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SUMMARY 
Straw price increases due to biofuel demand have created a perceived need within the 

agricultural industry to investigate and develop alternative bedding materials for housing ruminant 

livestock. This thesis addresses the suitability of woodchip, as such an alternative, indoor bedding 

material for livestock, focusing particularly on management of the soiled bedding, its nutrient 

composition, its use as an agronomic resource and its economic viability within the Welsh farming 

sector. In all studies, straw was used as the benchmark to which the woodchip treatments were 

compared. Many studies have investigated the use of woodchip in out-winter pads (OWP), but the 

material’s indoor performance and in particular, its potential for re-use, is not well documented. 

Two independent housing trials, both including sheep and cattle, were conducted. The first trial 

(ADAS) assessed the effect of different initial woodchip moisture contents on the performance of 

the bedding material and its subsequent composting. The second trial (IGER) evaluated the effects 

of hay and silage diets on woodchip’s bedding and composting performance. The ADAS trial 

showed that woodchip’s absorbency capacity and physical shape were critical in determining its 

bedding and composting success. In comparison to differences determined by bedding materials 

and livestock characteristics, the IGER trial suggested that dietary inputs had little influence on the 

woodchip’s bedding and composting performance. Overall, the results indicate that composting of 

spent woodchip bedding was less effective than that of straw bedding, due to the lack of available N 

which limited microbial activity. The limited breakdown of the woodchips during composting, 

however, does potentially allow the re-use of the bedding materials for further housing cycles. 

Barley sown growth trials, amended with composted bedding materials showed that woodchip 

composts yielded reduced biomass in comparison to conventional NPK based fertilisers and straw 

bedding compost. When the coarse woody fraction of the compost was removed (>8 mm in 

diameter), leaving just the fine (< 8mm) nutrient-enriched fraction, plant growth performance was 

slightly enhanced at application rates equivalent to 100 t ha-1. Estimates of N loss from woodchip 

treatments were high during housing, but limited during composting due to a generic lack of 

available nutrients, compared to straw. Using economic modelling, a cost/benefit analysis of 

woodchip bedding versus straw showed that woodchip is more cost efficient than straw on the 

condition it is re-used. 

In summary, the thesis concludes that woodchip is a potentially viable alternative to straw 

bedding for Welsh farmers, on condition of specific management practices. Future work is required 

to identify and mitigate N losses during the woodchip bedding phase. 
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1.1  General introduction and need for research 

 

Increasingly variable weather conditions and bulk demand from the expanding biofuels industry are 

forecast to increase significantly the cost of straw available for animal bedding throughout the UK. 

This will particularly affect Welsh farmers, especially if the rising cost of straw is coupled with rising 

oil prices. This is because the topography, climate and primary soil type in Wales do not allow 

sufficient cereal production to satisfy the nation’s straw bedding requirements. As such, on top of the 

basic cost of straw, most Welsh farmers have to pay a substantial haulage cost, exposing them to the 

risk of increases in the price of fuel. 

These two factors create the need for a sustainable substitute to bridge the gap when straw 

prices become too high. In light of these combined and mounting pressures, the Welsh Government 

(WG) commissioned this research project to investigate the feasibility of using woodchip as an 

alternative to straw bedding, with emphasis on the material’s long-term environmental and economic 

sustainability. There are a variety of suitable, locally sourced materials available to farmers in 

different regions of Wales. However, straw is currently the most popular bedding type, and is 

estimated to cost the nation’s farming industry £12.5m per annum. Conversely, wood is a 

comparatively abundant resource in Wales, and interest in the use of locally sourced wood fuel is 

gaining momentum. This would allow an emerging woodchip transport industry to take advantage of 

infrastructural developments initiated by growth in domestic woodchip fuel demand, to supply 

agricultural premises with woodchip for animal bedding.  

The Woodchip for Livestock Bedding Project ran from December 2005 until May 2008 to 

evaluate the potential of woodchip as an alternative indoor bedding material to straw, for use under 

sheep and cattle during the winter housing period. The project was funded by the WG via Farming 

Connect Objective 1 monies, the Forestry Commission Wales and the Environment Agency Wales. 

The project was executed under the co-ordination of Hybu Cig Cymru (HCC) by a multi-party 

collaboration, principally including Bangor University, IGER Aberystwyth, ADAS Pwllpeiran and 

Glynllifon College, with a participatory contribution from Aberystwyth University.  

The candidate enrolled as a PhD student at Bangor University, funded by the WG, in March 

2006, which coincided with the project’s composting phase. As the Bangor University representative, 

the candidate’s primary role was to sample, analyse and report on the composting performance of 

bedding-compost treatments from housing trials conducted at ADAS and IGER. After the composting 

phase, the candidate determined and reported the product’s agronomic value through a series of 

comparative growth trials; reviewed and summarised legislation surrounding the finished product’s 

sale, distribution and agronomic application; and developed an economic model to fully appraise the 
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material’s economic viability in comparison to straw bedding. In addition, HCC conducted 10 on-

farm woodchip housing trials and open days, at private farms throughout Wales, in order to 

demonstrate the material’s efficacy directly to the general public. It was the candidate’s role to attend 

each open day and advise farmers through PowerPoint presentations and question and answer 

sessions on all aspects of using woodchip as winter bedding. 

 

1.2  Plan of thesis 

The experimental chapters of this thesis comprise three empirical areas of investigation from the 

parent project: composting processes, agronomic evaluation of the compost and an economic 

appraisal of woodchip within an agricultural context. A general theme of nitrogen cycling and 

budgeting links all three experimental chapters, with empirical data used where possible, the 

remaining data being estimated from external sources.  

Chapter 2 provides a contextual framework through a review of the issues surrounding the 

project, such as current UK agricultural policy and related markets and industry structure, before 

moving on to critically evaluate a range of novel bedding materials and housing systems and the 

resulting livestock performance. The chapter concludes with a general overview of composting 

dynamics and fertility value. 

Chapter 3 describes the processes of composting woodchip bedding with controlled initial 

feedstock variables, initial moisture content and livestock dietary inputs. Results are presented in 

full to provide a clear appraisal of the composting process, although the discussion focuses on the 

influence the different initial moisture contents in the woodchips (at ADAS) and dry vs. wet feeds 

(at IGER) had on decomposition. This is followed by more general discussion of nutrient 

dynamics, especially nitrogen in the contrasting composts. The chapter concludes with a 

comparative assessment of the beddings’ nitrogen budgets.  

Chapter 4 examines the agronomic value of a selected range of composted amendments, 

assessed through a series of grass and barley growth trials using a range of application rates. 

Chapter 5 appraises the economic viability of woodchip as an indoor winter bedding in 

comparison to straw, based on DEFRA prescribed housing densities for sheep and cattle and the 

Government project’s recommendation that composted woodchip be re-used as bedding over a 

number of winter housing periods, on condition that relevant UK PAS100 regulations are satisfied 

each summer.  

Chapter 6 draws conclusions from the three previous experimental chapters and identifies 

areas of further work. Appendices consist of additional work carried out to support the results 

presented in the main experimental chapters.  
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1.3 Aims and objectives 

The aims, objectives, protocols and outcomes of this research were agreed with the funding body 

prior to the candidate’s enrolment at Bangor University. The project structure was agreed as 

follows: 

 

• Housing trials: to be carried out under a variety of different conditions. The objective was 

to assess the usability and performance of woodchip independently and in comparison to 

straw as winter bedding. Conducted by ADAS, IGER and Glynllifon College in 

association with HCC, prior to Bangor University’s involvement. 

 

• Compost quality: the soiled bedding’s performance and nutrient status were to be 

monitored during and after composting. The objective was to establish the composts’ 

value as a fertiliser and develop a timescale for the woodchip’s use as bedding before 

being applied to the field (Chapter 3). 

 

• Compost markets: potential markets were to be investigated for composted woodchips in 

agronomic, horticultural and industrial settings, with the objective of establishing end-use 

options for woodchip/manure compost and validating markets (Appendix III). 

 

• Compost agronomy: the agronomic benefit of composted woodchips was to be 

investigated within a range of agricultural contexts. The objective was to establish the 

optimal use of woodchips with the aim of providing practical guidance to farmers and 

developing market confidence in composted woodchip products (Chapter 4). 

 

• Economic appraisal: current costs of sourcing, using and composting woodchip bedding 

were to be assessed in comparison to other conventional agronomic options (e.g. fertiliser, 

straw etc.). The objective was to establish the cost-effectiveness of using composted 

woodchips in agriculture (Chapter 5). 
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2.1  Introduction 
 

The majority of land in Wales is either occupied by farm holdings or is common land (which 

equates to 1.7 million hectares (Mha) of a total national land area of 2.1 Mha). Most of the nation’s 

agricultural land is used to graze livestock (1.45 Mha), as the soil quality, altitude and climate 

restrict arable crops to coastal areas and sheltered valleys (Welsh Government, 2012). There are 

8.62 million sheep, mostly in upland areas, accounting for around 27 % of the UK total, and 1.1 

million cattle, 11 % of the UK total (Welsh Government, 2012). The majority of agricultural 

activity in Wales takes place on small to medium sized farms. The average holding size in Wales is 

37 ha; in England 85 ha; in Scotland 107 ha and in Northern Ireland 41 ha (DEFRA(a), 2011). 

 

Table 2.1: Agricultural land use in Wales 
Agricultural area (’000 ha) 2001 2009 2010 2011 
Total area  1,623 1,670 1,710 1,713 
Permanent grass  974 1,027 1,021 1,045 
Rough grazing(a)  408 394 410 404 
Arable land  184 172 190 206 
Woodland and other land 56 78 90 57 
 (a) Includes common grazing      
Source: Farming Facts and Figures: Wales 2012; June Agricultural Survey 
 

2.1.1 The livestock bedding market and related issues 

2.1.1.1 Straw 

Among the escalating financial challenges expected to face British farming in the near future is the 

increasing demand for straw from the rapidly expanding biomass industry. The UK Government’s 

Biomass Strategy (BEC, 2007) adopted the recommendation made by the Biomass Task Force 

(DEFRA, 2005) that one third (3 – 3.3 Mt) of straw produced in the UK each year could be made 

available to the biomass industry in the long term, without disruption to livestock use or buying costs. 

Between 2009 and 2011, the area of wheat farmed in the UK increased from 1.78 Mha to 1.97 Mha. 

However, the area of total (winter and spring) barley decreased from 1.14 to 0.97 Mha (DEFRA(a), 

2011). The UK Government’s Biomass Energy Centre estimates wheat and barley straw yield to be 

3.5 t /ha and 2.75 t /ha respectively (BEC(a), 2011); although yield is dependent on a wide range of 

factors, not least cultivar choice and climatic conditions. For example, actual wheat straw yield in 

2007 was 3.46 t /ha and barley straw 2.68 t /ha. Variation is due to the complex pressures growers 

face when choosing cultivar varieties and sowing times: considerations include soil type, moisture 
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and nutrient status, fertiliser costs and increasingly variable seasonal conditions, as well as the need to 

forecast market demand. Dry winters result in higher spring soil N contents than wet winters. If this is 

not accounted for in spring fertiliser dressings it can lead to rapid early growth and weak stems, 

increasing the risk of root lodging. To avoid this, growers often use ‘shorteners’ – growth regulating 

hormones that produce shorter, broader straws. However, stems that are short and, particularly, brittle 

cannot be processed into round bales as efficiently as long stems; with escalating fertiliser costs, 

many farmers chose to plough the straw back into the soil (Doyle; The Irish Farmers Journal, 2012).  

In 2011, the area of wheat cropped in the UK was 1.97 Mha and 0.97 Mha of barley, which, 

by the Biomass Energy Centre’s yield estimates, produced 6.89 Mt and 2.67 Mt of straw respectively. 

In addition, 109,000 ha of oats potentially generated 430,000 tonnes of straw (although oat straw is 

most commonly used as equine bedding); 0.7 Mha of oilseed rape offered a potential total yield of 1 

Mt of rape straw (DEFRA(b), 2011). However, this is generally too friable for use as livestock 

bedding. In summary, UK straw production in 2011 was approximately 10 Mt, excluding oilseed 

residues (BEC(a), 2011). In 2004, only 200,000 tonnes of straw were burnt for energy, but from 2003 

to 2010, the average annual £ /t for Hesston (large sized bales) wheat straw increased 185 %, from 

£16 to £45; even allowing for climate-driven price rises, that is a mean increase of 23.1 % pa. The 

combined average price of (Hesston baled) barley and wheat straw rose by 22.5 % pa over the same 

period (DEFRA(b), 2011). It is acknowledged that 2003 straw prices were unusually low; however, 

these are ex-farm prices, so exclude the cost of haulage. The retail diesel price litre-1 increased 42 % 

between January 2003 and January 2008 (and 74 % between January 2003 and the high of July 2008). 

At the time of writing, the 2013 average retail price of diesel is 142.68 pence litre-1 and the average 

national wholesale price per tonne of Hesston baled wheat straw is £59. This highlights the escalating 

financial pressure the Welsh agricultural community has been under since this project was completed. 
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Source: DECC 2013 – Office of National Statistics – Weekly Fuel Prices, June 2003 - April 2013. 

 

Figure 2.1: Average annual retail ultra-low sulphur diesel (ULSD) fuel prices 2003-13 ± 1 se. 

Year* historical weekly price records were available from Jun 2003 to April 2013 (present). 
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It is unknown if, or to what extent, the British government’s estimated annual UK straw production 

of 9 to 10 Mt takes into account the increasingly variable climate, or whether the assignment of one 

third of the UK’s annual straw harvest by the Biomass Task Force (DEFRA, 2005) is a cautious 

estimate that will safeguard a rolling reserve for agriculture if a harvest fails. Furthermore, if these 

divisions of the UK straw stock were to become entrenched, it is likely the biomass industry would 

seek to secure 5 year, fixed price/volume contracts with growers, similar to those used by major 

supermarkets. In the past these have provided producers with the opportunity of a guaranteed 

income that allows them the financial flexibility to plan ahead. However, in poor harvest years, 

fixed volume contracts would result in the straw bedding market absorbing all the shortfall between 

the total yield and the biomass industry’s contracted claim, potentially forcing prices to 

uneconomic levels and destabilizing the market. In addition, novel factors influencing demand in 

the biomass market that previously had little or no effect on availability of straw for livestock 

bedding - such as sharp increases in fossil fuel prices or legislative changes to aviation fuel duty - 

will generate significant and unexpected competition. This is because at least some, financially 

flexible, farmers will switch production to grow these cash crops. Furthermore, it is difficult to 

conceive how the UK Government could legislate against bioenergy producers buying more than 

their recommended quota within a free market, if demand exists. 

Agriculture across Europe is facing narrower profit margins under the current global 

economic downturn. However, there is a particularly acute and protracted paradox in Wales: Welsh 

lamb is renowned the world over, but Welsh hill farming is perhaps the poorest sector within the 

UK’s agriculture portfolio. Farmer’s profit margins are squeezed between a small number of large-

scale animal feed and agrochemical suppliers and the well-documented buying power of the major 

supermarkets, leaving little flexibility for individual farmers to increase their earnings. Indeed, 

profit-driven cost cutting in the animal feed manufacturing industry was thought to have been the 

cause of the BSE epidemic during the 1980s. Dr. Wilesmith’s initial conclusion to the BSE Inquiry, 

published in Oct 2000 stated: 

 

…cattle were exposed to the scrapie agent via sheep offal present in cattle feedstuffs and 

[…] cattle became infected following changes in rendering methods which resulted in either 

a cessation or a reduction of inactivation of the scrapie agent…  

(BSE Inquiry, 2000).  

 

This causal prognosis has since been disputed - but the cost cutting actions of the feed 

manufacturers have not. 
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 As previously mentioned, market instability is also exacerbated by the responsiveness of a 

few large-scale, affluent operators to changes in government policy and economic trends, 

generating a collective shock to national markets when little or no supply-side slack exists. 

Between 2007 and 2008, the total land area in the UK planted with cereal crops increased by 13 %, 

whereas the total number of sheep and cattle decreased by 2.4 % and 1.9 % respectively. These 

decreases were amplified in Wales: there was a 5 % reduction in sheep numbers and a 2 % 

reduction in cattle numbers during 2007-08 (DEFRA, 2008). While this ephemeral flux eases the 

strain on straw bedding prices within the annual cycle, it highlights an erratic inter-relationship of 

supply and demand between cereal and livestock markets. 

 The 2005 EU CAP reforms push farmers to be innovative and diversify, but rapid 

diversification to take advantage of market trends requires considerable existing capital. Therefore, 

it is only affordable to a small percentage of large-scale individual or corporate operators, which 

leaves the majority of farmers facing financial paralysis, many of them having already gone 

bankrupt. The total number of ‘dormant’ holdings in Wales increased by 66 % between 2003 and 

2011, while the number of ‘livestock-only’ registered holdings fell by 17 % over the same period 

(Welsh Government 2007 and 2012).  

 

Table 2.2: Number of holdings in different farming sectors             ± % change 

Type of farming: 2003 2009 2010 2011   2003 - 2011 

Cereals 269 394 388 415   54.3 

General cropping 98 148 119 123   25.5 

Horticulture 423 332 337 457   8.04 

Dairy 3,015 2,094 1,984 1,908   -36.7 

Cattle + sheep (LFA) 11,899 11,425 10,897 10,941   -8.05 

Cattle + sheep (non LFA) 3,028 2,169 2,032 2,046   -32.4 

Mixed (crop + livestock) 608 796 750 775   27.5 

Minor holdings  2,564 3,771 4,263 4,126   60.9 

Dormant holdings 10,686 15,140 16,731 17,765   66.2 

All types 35,499 39,024 40,168 40,900   15.2 
 Source: Farming Facts and Figures: Wales, 2007 and 2012 
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2.1.1.2 Biomass 

Biomass is the generic term for material derived from growing plants or from animal manure. 

Bioenergy refers to the technical systems through which biomass is converted and used as an 

energy source. A wide variety of conversion routes have been developed that produce a variety of 

fuels in a solid, liquid or gaseous form. These fuels address all types of energy markets: heat, 

electricity and transportation. In the EU-27 (the European Union, including accession countries), 

bioenergy constitutes only 3.7 % of the total primary energy supply, but 20 % of Finland’s gross 

inland consumption and 16 % of Sweden’s (EUBIA, 2007). 

In 1995, Nielsen concluded a 3-year study on behalf of the International Energy Agency 

(IEA), stating that straw was problematic as a fuel for heat and power production, because it did 

not offer reasonable power efficiencies, or stable operational and environmental conditions at 

acceptable economies of scale. However, the economic problems were in relation to the 

procurement and delivery costs of predominantly Hesston baled straw in Austria, Denmark, 

Holland, and Sweden - but not the UK. Today, there are 5 straw-fired biomass plants under various 

stages of development (BEC(b), 2011) at Tansterne, Hull (operated by GB BIO Ltd) with capacity 

to burn 75,000 tonnes of straw per annum; Wetwang in Yorkshire (East Yorkshire Power Ltd) 

which will have an output of 15 megawatts (MW) generated from burning both wood and straw 

(1MW requires approx.10,000 tonnes of wood or 6,000 tonnes of straw (BEC(b), 2011)); and three 

others at Brigg, North Lincs; Mendlesham, Suffolk and Sleaford, Lincs, all operated by Eco2 Ltd 

and each with the capacity to burn 240,000 t straw pa (Eco2, 2012). The straw is either used 

directly, in the form of bales, or torrefied into pellets. Torrefaction (drying or roasting) of straw 

with pelletisation increases the energy density of the resource, further reducing transport costs per 

tonne. This processing step also makes the pellets hydrophobic and therefore easier to store. 

Torrefied pellets can be directly co-fired with coal or natural gas at very high rates, and thus can 

make use of existing processing infrastructure. This enables a low cost, emission-saving transition 

from fossil fuel use in power stations. However, pellets are limited to a co-firing rate of 15 % in 

modern Integrated Gasification Combined Cycle (IGCC) power plants. 

 

2.1.1.3 Biofuels 

There is a wide range of existing biofuels, and efforts are on-going to develop still more. Each fuel 

type is defined by its feedstock and the processing method thereof. They include vegetable oil, 

biodiesel, bioalcohols, bioethers, biogas, syngas and solid biofuels. Of these, biodiesel (oil-based) 

and bio-alcohols (fermented sugars) are the principal fuel types (Pistonesi et al., 2008).  



 

 10 

 Bio-sugars are fermented to produce bioethanol, in a similar process to that used in beer and 

wine making (see Figure 2.2). All vegetative materials (grain, stems and leaves) are composed of 

sugars in various amounts, so in principle almost any plant can serve as a feedstock. In practice, the 

choice of raw material depends on the local climate, landscape and soil type, as well as the sugar 

content and processing ease of the various plants available. First generation (1G) biofuels use the 

most sugar-rich ‘food’ part of the crop. The most common feedstocks are sugar cane, sugar beet 

and cereal seeds and grains. 

 

  
Figure 2.2: Bioethanol production from wheat using malting and fermentation. (Tovey, CRed 

UEA, 2008) 

 

In 2008, this co-demand caused sharp increases in global food prices, and, in poorer countries such 

as Haiti, led to shortages and social unrest. Furthermore, food crops require considerable amounts 

of agro-chemicals, particularly fertilisers - which defeats the primary purpose of bioenergy: 

reducing greenhouse gas (GHG) emissions compared to fossil fuels. 

 In an effort to mitigate this carbon cost, second generation (2G) biofuel technologies are 

being developed to process the residual, non-food parts of crops such as straw and sugar cane, as 

well as non-food crops such as miscanthus, jatropha and eucalyptus, forest residues, waste woods, 

and municipal solid wastes. The biofuels industry promotes 2G fuels as low cost, having a higher 

net energy balance and the potential to save up to 90 % in GHG emissions - based on the premise 

that the 2G feedstock was previously a waste by-product and, therefore, that the agrochemical 

carbon input is attributable to the production of grain for food. Figure 2.3 illustrates the process by 

which 2G bioethanol is produced from waste by-products, namely straw and wood. However, these 

non-food materials contain less sugar than grain does. It also tends to be locked in relatively 

inaccessible molecular structures and is therefore more expensive to process (ePURE, 2011). 2G 

biofuels are likely to broaden the scope for UK feedstock supply and may result in a calorific 

pricing structure for all organic ‘waste’ products, particularly straw - which has a relatively high 

biomass potential - resulting in a dysfunctional pricing mechanism for the livestock bedding 

market. In addition, high biomass crops such as miscanthus, short-rotation coppice (SRC) 
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and maize are expected to broaden the geographical area suited to feedstock production and could 

thus, depending on prevailing market conditions, reduce the area used for straw-producing cereal 

crops. 

 

 
Figure 2.3: Bioethanol production from wood or straw by acid hydrolysis and fermentation. 

(Tovey, CRed UEA, 2008) 

 

Worldwide, most bioethanol is derived from sugar cane. In 2006, Brazil produced 18.3 billion litres 

(Bl) from sugar cane. The USA produced 15.7 Bl from molasses and corn, while Europe generated 

1.6 Bl from wheat, barley, rye and sugar beet (Worldwatch Institute, 2007). Grain crops such as 

wheat, with a high starch content that has to be converted to sugars first, yield on average 0.875 

tonnes of oil equivalent (toe) /ha, compared to sugar beet (2.65toe /ha) in the EU (EUBIA, 2007). 

 

Table 2.3: Bioethanol produced by some EU states 2004 – 09 (million litres) 

Country 2004 2005 2006 2007 2008 2009 
France 101 144 293 539 1000 1250 
Germany 25 165 431 394 568 750 
Spain 254 303 396 348 317 465 
Lithuania 0 8 18 20 20 30 
UK 0 0 0 20 75 70 
EU Total 528 913 1593 1731 2816 3702 

Source: ePURE 

 

Europe has a bioethanol production capacity (PC) of 7,252 Ml pa, produced mostly from sugar 

juice, raw alcohol and wheat (see Table 2.3). However, there is a further 1,751 Ml pa of capacity 

under construction, which will be mainly derived from wheat (ePURE, 2011). 

 At the time of writing, only British Sugar in Norfolk has operating bioethanol production 

facilities, with a capacity of 70 Ml from sugar beet. However, there are three major construction 

projects underway: Ensus Plc. on Teesside, with a PC of 400 Ml pa (completed in 2010); Vivergo 

Fuels Ltd in Hull (PC 420 Ml pa) and Vireol Ltd near Grimsby (PC 200 Ml pa). Both will process 

wheat, giving the UK a potential capacity of 1 Bl pa (EUBIA, 2007; ePURE 2011). This would 
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represent approximately 2 % of the total road transport fuel consumption (49,035 Ml) used in the 

UK during 2006 (Tovey, CRed 2008). Interestingly, if every hectare of wheat (bioethanol) and 

oilseed rape (biodiesel) grown in the UK during 2006 (including 466,000 ha of set-aside, split 

50:50), had been given over to the production of 1G biofuel, it would have yielded 6,517 Ml or 

13.3 % of the total road fuel used that year. 

 In 2005, the UK government announced the Renewable Transport Fuels Obligation (RTFO) 

which requires that, by 2010, at least 5 % (by volume) of all transport fuel is biofuel, with a 

provision for further increases to follow. Using figures published by NNFCC, it is estimated 

(assuming a 50:50 split between biodiesel and bioethanol), that approximately 0.87 Mha of oilseed 

rape and 0.5 Mha of wheat will need to be grown in the UK just to meet this transport target.  

 The UK boasts the highest wheat yields in the world, averaging 7.88 t/ha between 2005 and 

2009 (DEFRA, 2009), and the EUBIA estimates UK bioethanol yields from wheat to be 2,686 l/ha 

(3:1 (t) output ratio). Therefore at maximum capacity, the two refineries at Teesside and Hull will 

process 305,287 ha – 17 % of the UK’s 2007 field-grown wheat harvest. However, in June 2007, 

there was 438,000 ha of set-aside land (which can be used for energy cropping, but does not qualify 

for the Energy Aid Payment of €45 /ha (NNFCC) that in-field produce attracts). By 2008 arable 

set-aside had fallen by 67 % to just under 194,000 ha (DEFRA(b), 2010). This was in response to 

the EU’s 0 % set-aside requirement, designed to increase grain production and control rising food 

prices (Clarke, 2007). 

 2G straw can only produce around 290 litres of bioethanol per tonne of dry material, 

compared to 420 l/t of 1G wheat grain, which is 31 % less w/w (density of bioethanol: 0.789 kg 

/litre). So, hypothetically, if the refineries in Teesside and Hull were converted to process 2G straw, 

they would need 2.83 Mt of torrefied straw, or - more realistically - 3.1 Mt at 10 % moisture 

content to meet their combined capacity. In a poor harvest that would represent all, if not more 

than, the biomass industry’s Government-recommended straw quota. 

 

2.1.1.4 Wood 

In 2005, only 12 % of the total land surface of Wales was under forestry and woodland. 8 % was 

urban and miscellaneous land, and the remaining 80 % was under agricultural production (Welsh 

Government, 2006). However, the nation’s forested land area was representative of the rest of the 

UK. It is low in comparison with other areas of the world. The EU’s average is 37 %, while 

Europe’s and Russia’s combined is 44 %; North and Central America have 33 %; Asia 19 % and 

Africa 21 % (Forestry Commission, 2008). It is perhaps not surprising that the UK had a 3.7 Mt 

wood trade deficit in 2007. Nevertheless, within this macrotrading portfolio, the woodfuels market, 
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significant for establishing an industrial and commercial infrastructure within which woodchip for 

livestock bedding can operate, roughly doubled in Wales between 2004 and 2007. Softwood 

deliveries increased from 100,000 to 200,000 t between 2006 and 2007 and hardwood deliveries 

increased from 150,000 to 300,000 t between 2004 and 2007 (Forestry Commission, 2008). 

Woodchip has historically been a non-commercial by-product of forestry/woodland management, 

municipal transport departments and private commercial operators. However recent spikes in 

conventional energy prices combined with growing public concern over CO2 emissions have 

generated strong demand for pre-chipped woodfuel. As a result, for 10-tonne minimum deliveries, 

suppliers in 2010 were charging on average £80 /t (range £60 - £90) at 30 % moisture or £107 /odt 

(oven dried tonne) (DECC, 2010). However the DECC forecast international wood fuel supplies to 

increase up to 2030, and the average cost in real terms to fall to £55 /odt by 2015 to  £40 /odt by 

2020 and £24 /odt by 2030 at current exchange rates. 

 

 

2.1.2 Sustainability 

During the Second World War, the German strategy of using U-boats to besiege Britain led to 

serious concerns for food security. At that time, agricultural policy was not high on the agenda, so 

food production was ‘by any means necessary’. In 1947, the government introduced the 

Agriculture Act, which, in essence, served as a precursor to the European Common Agricultural 

Policy (CAP), established following the signing of the Treaty of Rome in 1957 and the creation of 

the EEC on 1st January 1958. Both policies’ key objectives were to increase agricultural 

productivity and self-sufficiency, stabilise markets and ensure low prices for consumers, as 

illustrated in Figure 2.4. To facilitate these objectives, the EU supported production and capital 

costs though blue box measures (see Figure 2.4) such as land drainage and headage payments, 

while simultaneously using interventionist buying tactics and distorted trade tariffs to create a false 

floor market – amber box measures. 
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Figure 2.4: Transition from pillar 1 (amber & blue box) to pillar 2 (green box), in 2005. 

 

In the late 1940s and 50s, European commitment to intensive agricultural production was boosted 

by the global development and availability of agro-chemicals (Murphy, 2005; Ogaji, 2005). Miller 

(2002) states that developed world agriculture is responsible for 75 % of global pesticide use, 

which Edwards (1994) estimated to be nearly 2.5 Mt /pa., made up of 45 % herbicides, 30 % 

insecticides, 19 % fungicides and 6 % other pesticides. This total mass represents a 32-fold global 

increase since 1950, with a total value of nearly $30 billion.  

In 2002, global fertiliser use was 141.5 Mt. The UK was the thirteenth highest-consuming 

nation, applying 1.8 Mt - equivalent to 30.4 kg per person (WDId, 2002). The average wheat yield 

in the UK from 1885 to 1959 was 2.5 t /ha, but jumped to an average of 6 t /ha from 1960 to 2008 

(DEFRA(a) 2010). However, in addition to the environmental hazards caused by nutrient run-off, 

such as the eutrophication of surrounding watercourses, Ames (1979) suggested that excess use of 

agro-chemicals may cause increased incidences of cancer in humans and other potential exposure-

related hazards.  

Throughout the European CAP zone, subsidised production and the extensive use of 

agrochemicals over the last fifty years has resulted in broad and devastating shifts in land use and 

soil nutrient balances. Non-productive areas such as woodlands and heaths have been cleared for 

commercial use, hedgerows removed to maximise existing field areas and traditional farming 
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practices such as break-cropping, under-sown-leys and fallow land have been increasingly 

abandoned. In combination, these changes have contributed to a catastrophic decline in farmland 

birds (Fuller et al., 1995; Chamberlain et al., 2000; Donald et al., 2002; Benton et al., 2003). The 

use of high doses of pesticides on arable land not only destroys both herbivorous pests and 

beneficial predatory invertebrates alike - which Pimentel et al. (1993) estimates costs the USA 

alone $540 million /yr. - but also eradicates the primary trophic level of many complex food webs, 

unravelling a network of biotic inter-dependencies and replacing it with a costly, vulnerable and 

environmentally unsustainable platform of chemo-crop dependency. However, with the emergence 

of energy-cropping and the hard lessons learnt from a produce-centric CAP, Bellamy et al. (2009) 

has shown that, compared to wheat, miscanthus energy crops are more beneficial to bird 

populations before the canopy develops, inhibiting wild ground flora. They argue that profit-

restrained, regulated management techniques must be established now, before industry practices 

become entrenched, if any significant benefit to biodiversity is to be realised.  This issue was first 

publicised by the environmental lobby in the early 1980s, leading to the creation of the Wildlife 

and Countryside Act, 1981. Although this policy was not well received by the farming community, 

it marked the start of a U-turn in agricultural policy by re-introducing the notion of environmental 

sensitivity. Agro-environmental schemes such as the demarcation of Environmentally Sensitive 

Areas (ESA) followed in 1987 and the Countryside Stewardship Scheme (CSS) in 1991, but these 

were voluntary, incentive-based and farm-specific, so were not integrated on a landscape, 

ecosystem or even habitat level. 

In 2002, the Curry Commission recommended public policy’s main objective should be: 

 

…to reconnect our farming and food industry: to reconnect our farming with its market and 

the rest of the food chain: to reconnect the food chain with the countryside; and to 

reconnect consumers with what they eat and how it is produced. (Curry et al., 2002) 

 

The commission urged policy makers to evaluate the true cost of intensive production generated by 

Pillar 1 measures and to engage with an inclusive philosophy, combining wildlife habitat 

regeneration and local cultural heritage with quality and diversity of primary produce, which in 

turn would benefit the direct consumer and the broader community. The Curry Commission was 

used as the basis of the UK Government’s Environmental Stewardship Scheme in 2005. At a 

European level, pressure to reform the production-based CAP was reportedly brought about by the 

convergence of a number of widely varying factors:  
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• The USA, via the World Trade Organisation, lobbied for the removal of EU interventionism 

on the basis of its distorting effect on international trade;  

• EU sustainable development policies and initiatives; 

• Pressure from NGO groups. 

 

However, the primary incentive driving the EU CAP reforms was the unfeasible economics of 

production-based subsidies following enlargement of the Union. The twelve (2004-07) ascension 

countries would have more than doubled the number of EU subsidy claimants from 6.5 million 

farmers to 13.3 million. Romania’s 4.9 million farmers alone were equivalent to 75 % of the 

existing EU-15 claimants, and the ratio of these nations’ financial contributions to the EU fund, 

relative to the cost of subsidising their farmers, was completely untenable. 

 

 

2.2  Housing 

2.2.1 Materials 

In comparison, the underlying factors forcing livestock farmers to find alternative bedding types 

are the same the world over: the closing of sawmills (Magner, 2008), and increased prices as 

competitive demand for by-products emerges (Marcinkowski and Adams, 2007). In contrast, the 

solutions are region-specific. Even within small communities, individual farmers may find different 

bedding types optimal for their particular modus operandi, based on climate, topography, cost and 

locality of available materials, livestock type, purpose and performance, and the intended use of the 

finished compost.  

Marcinkowski and Adams (2007) provide a comprehensive, generic guide to the agronomic 

requirements of a bedding material: 

 

 Comfortable for livestock to lie on  

 Non-abrasive to the knees and hocks 

 Non-slip, providing a sure footing when livestock recline and rise 

 High in absorptive capacity for water and urine 

 Low in initial levels of environmental bacteria 

 Able to slow or inhibit bacterial growth 

 Non-compactable and not dusty 
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 Easy to handle and maintain in stalls 

 Inexpensive 

 Safe for land application 

 In constant supply 

 

Bacterial content is of most concern to the 3,368 dairy holdings in Wales, owing to transfer via the 

teat canal, which causes mastitis. Rendos et al. (1975) compared the bacterial contents of a range of 

conventional bedding types used in temperate latitudes: namely, wheat straw, hardwood sawdust 

and hardwood shavings. Cows bedded on sawdust had the greatest teat-end populations of total 

coliforms and Klebsiella. Streptococci were most numerous on straw-bedded cows and 

Staphylococci were more numerous on both straw and sawdust-bedded cows compared to those on 

shavings. Rendos et al. proposed that the differences were related to the existing bacterial 

populations within the beddings. Given the biological and chemical similarities between hardwood 

sawdust and hardwood shavings, it is reasonable to extrapolate that the contrast in bacterial 

populations is a result of the bedding’s physical structure, creating dissimilar micro-environmental 

conditions and that wood-based beddings made of larger particles - which allow greater airflow 

throughout and therefore lower humidity - offer a less favourable habitat for coliforms, Klebsiella 

and Staphylococci. However, Eberhart and Buckalew (1972) proposed that successful measures to 

exclude the common mastitogens, Streptococcus agalactiae and Staphylococcus aureus, merely 

opened a niche for more exotic mastitogenic bacterial species to succeed.  

Cameron et al. (2004) presented a possible solution for dairy farmers. According to the 

report, the use of waste paper and paper pulp offers two significant benefits: greater absorbency 

than straw and a less suitable habitat for bacteria. In a study conducted at the University of Maine, 

Marcinkowski and Adams (2007) found the high (9.5) pH of a ‘Fibre Mix’ (a patent-pending 

combination of paper fibre, ash, clay fillers and lime), significantly limited bacterial growth in the 

bedding and on the cows’ udders. In particular, the ash was found to inhibit the growth of coliform 

bacteria. He added, however, that paper-pulp fibre is often delivered very wet and requires 

considerable drying before use as cattle bedding; also, after bedding, it was heavy to handle 

without machinery. Conversely, shredded waste paper is not robust and putrefies when wet, thus 

large quantities are required to prevent the bedding becoming a slippery hazard to livestock. A 

collaborative study between DEFRA and the Open University, published in 2008, showed that the 

mean quantity of waste paper produced per household in 2007 was < 200 kg, of which > 95 % was 

recycled (Jones et al., 2008). Largely as a result of the Government’s recycling schemes over the 

last decade, the quantity of waste paper available to farmers has been dramatically reduced, so in 
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small rural communities, sustainable volumes for livestock bedding may simply not be available. In 

addition, farmers would presumably need to collect the material as efficiently as the local council’s 

dedicated waste services to maintain the co-operation of any reluctant householders in the area. 

Ward et al. (2000) compared the chemical and physical properties of processed newspaper to wheat 

straw and wood shavings as animal bedding and found chopped or pelleted forms of newspaper and 

shavings had greater water holding capacities (> 400 %) than straw (200 %). They concluded that 

recycled newspaper was a viable bedding material, provided that source material is suitably 

processed for purpose and, critically, toxicity levels are low. 

Zehnder et al. (2000) examined the use of municipal solid waste compost (MSWC) under 

cattle and found elevated concentrations of copper (Cu) in the kidneys, and lead (Pb) in both the 

liver and kidneys of the livestock at slaughter, although tissue concentrations of these elements 

were within a normal range for healthy cattle. They concluded that cattle bedded on MSWC were 

probably inhaling additional amounts of these elements from the bedding and excreting them 

through their faeces. 

Bracken (Pteridium aquilinum) may offer a cheaper, more robust and absorbent alternative 

to straw bedding. It can be harvested using conventional balers in September, when the fronds have 

lower toxicity, but this material carries an enormous risk to animal health. It is the only higher plant 

known to have carcinogenic spores, as well as containing an array of toxins that cause conditions 

such as induced thiamine deficiency, acute haemorrhage syndrome, bright blindness, enzootic 

hematuria and upper alimentary carcinoma (Donnelly, 2003). Bracken also harbours ticks, 

particularly Ixodes ricinus, which is a known vector for the spirochaete responsible for causing 

Lyme disease (Page, 1997) and so should never be issued under young (< 1 yr) livestock.  

Nevertheless, bracken has a long history in the UK. John Lightfoot’s disgust for the fern 

was clear in his 1777 Flora Scotica, in which he suggests ‘burning it, laying manure on it and 

urinating on it’, presumably on separate occasions (Lightfoot, 1777). However, it is now 

understood that reforestation is a more effective, if not particularly agronomic method of 

eradication (Page, 1997). Bracken bedding is unpopular these days, but it has been used for 

centuries in Wales; in fact, if farmers have a sizeable bracken infestation on their land (which 

results in over-grazing of the remaining grassed area) cutting and harvesting the fronds is still one 

of the few agronomic control methods available. If bracken’s toxicity can be mitigated, it could be 

a perfectly acceptable bedding material, as it can be stored outside when baled with little 

degradation, yet after housing, it decomposes quickly and carries a high nutrient value to land when 

applied as a fertiliser. 
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There are many accounts describing the use of woodchip in outdoor corrals (French et al., 

2008), but none examining its specific use and performance under livestock in barns. A recurring 

and critical issue with outdoor woodchip corrals is excess leachate polluting the surrounding 

environment (McDonald et al., 2008). However, this issue is mitigated indoors, when dry 

woodchips (< 20 % moisture content) are used under sparse livestock densities on an appropriately 

constructed concrete base, with or without a run-off capture facility, as any free liquids are trapped 

long enough to be absorbed into the under layer of woodchips. Table 2.4 details the absorbency of 

a range traditional livestock bedding materials. Out-wintering on woodchip pads is discussed in 

greater detail in section 2.2.2. 

 
Table 2.4: Type and absorbency of traditional bedding materials 

Material Type  Absorbency Factor* 

Wheat straw 
baled 2.1 

chopped 2.1 

Barley straw 
baled 2.0 

chopped 2.0 

Oat straw 
baled 2.5 

chopped 2.4 

Hay 
baled 3.0 

chopped 3.0 

Sawdust 
hardwood 1.5 

softwood 2.5 

Shavings 
hardwood 1.5 

softwood 2.0 

Corn stover  2.5 

Sand  0.3 

Peat moss  10.0 
* Weight of water held per unit weight of dry material; assumes initial moisture content of bedding < 10 %  
Source - Ontario Ministry of Agriculture, Food and Rural Affairs, online 

 

In 2006, ADAS Pwllpeiran ran a pilot project to test the agronomic viability of canary reed grass 

(Phalaris arundinacea) (CRG) under sheep, as a possible substitute for wheat straw bedding in 

Wales. They concluded CRG bedding did not affect the performance of sheep or present any 

additional health and welfare issues. Although the bedding costs for CRG at the time were 58 % 

higher than straw, the ex-farm price for both materials was around £40 /t. CRG is a forage crop that 

provides fibers for use in pulp and papermaking processes, but is predominantly grown as an 

energy crop, and can therefore be grown on set-aside land. However, it is difficult to envisage how 

the market forces needed to result in significant quantities of CRG being grown for bedding could 

occur, because if straw bedding prices were to increase owing to competitive demand from the 
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bioenergy market, then they would do likewise for CRG. Furthermore, cereals yield two products 

with a diversity of markets and are therefore more agronomically viable to grow than CRG. 

However, it seems unlikely farmers would risk the expense of planting CRG without establishing 

potential returns from both markets, so the initial premise remains unchanged. In this context, the 

solution is to find a material that fulfils all of Marcinkowski and Adam’s (2007) bedding 

requirements but has a low calorific value. 

Panivivat et al. (2004) compared novel bedding materials, granite fines, sand and rice hulls 

to long wheat straw and wood shavings, beneath sixty dairy heifers. In summary, they found the 

growth performance and dry matter intake did not differ across the five bedding types, although 

calves housed on granite fines and sand were treated more often for scours and calves housed on 

straw received the fewest antibiotic treatments. Granite fines formed a harder surface than other 

beddings, and calves housed on fines and sand were dirtier than those on biotic beddings. Straw 

had the warmest surface temperature; rice hulls and shavings were warmer than granite fines and 

sand. Faecal coliform counts were greatest in rice hulls before bedding, but in straw beds after 

bedding, when straw also had the lowest concentration of ammonia at 10 cm above the surface. 

Many studies have shown that the great advantage of abiotic beddings is that they are inhospitable 

to mastogenic bacteria (Zdanowicz et al., 2004) and even E. coli O157:H7 (Westphal et al., 2011). 

However, Justice-Allen et al. (2010) proposed that recycled bedding sand could be an 

environmental source of Mycoplasma spp. (including M. bovis) infections in dairy cows, albeit 

from a non-comparative bedding study. 

Many regions around the world are currently investigating alternative bedding types as 

government legislation dictates a plethora of market responses to climate change. The overarching 

solution that emerges is one of ‘whatever is regionally appropriate’ in terms of soil requirements 

(finished product nutrient values), regional climate and livestock purpose. For example, sand seems 

to be successful in Maryland and Maine, so long as the damp sand doesn’t freeze at night. Bracken 

is a possible alternative to straw in Wales, but not under young livestock (< 1yr old) and with strict 

controls; likewise paper, if sufficient quantities of non-toxic material are available, and CRG if 

market mechanisms promote its availability. Woodchip (the larger cut the better) is good for 

abating mastitogens in dairy barns. However, straw’s versatility, absorbency and degradability 

means it will remain the totemic livestock bedding material in temperate regions (Olson, 1940), if 

price allows. 
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2.2.2 Systems 

Housing systems are governed by livestock type, bedding material and the particular layout and 

operating capabilities of an individual farm’s facilities and machinery. For example, in the UK it is 

a fairly common practice with cattle not to put bedding where the livestock stand to feed, owing to 

their propensity to defecate and urinate while eating. The slurry from this feeding area can be easily 

collected and stored, then reintroduced to the bedding after housing to accelerate decomposition or 

left to mature before being applied directly to land. However, while using a scraped area requires 

less bedding during the housing period, it is generally more labour intensive to maintain, than for 

example, deep litter systems, where an initial layer of bedding is topped up periodically (Kapuinen, 

2001). There is myriad of system refinements that have been developed by farmers, under the 

confines of their own facilities, but this section will focus on the generic, comparative use of 

woodchip under livestock in outdoor corrals and indoor pens over winter. 

The concept of using woodchip in outdoor corrals (OWC) to over-winter livestock, 

originated in New Zealand (Smith et al., 2005) during the early 1990s, as a low cost means of 

husbandry without expensive buildings. It has since been adopted in temperate regions around the 

world, including Canada (Larney et al., 2008), Scandinavia (Manninen et al., 2008), France 

(Menard et al., 2010) and the UK. Corrals can either be lined with plastic sheeting or unlined 

(Dumont et al., 2010). The key problem with unlined corrals is the vertical and horizontal diffusion 

of leachate entering and polluting the surrounding land and watercourses (Morse-Meyer et al., 

1997; Miller et al., 2006; Vinten et al., 2006); The UK’s Code Of Good Agricultural Practice 

(CoGAP, 2009) does not give specific direction on the positioning of OWCs, but implies through 

its instructions on storage of agricultural waste that corrals should be at least 50 m away from a 

watercourse, spring, well, borehole or any source of drinking water, and at least 10 m from any land 

drains and vulnerable groundwater (IGER, 2007) principally to prevent contamination from the 

spread of protozoans (Cryptosporidium and Giardia). McDonald et al. (2008) examined the 

leachate volume and nutrient flow from four dissimilar OWC’s in Scotland and found significant 

flows of leachate occurred on most days during a 1-year sampling period, and that leachate volumes 

increased with stocking density. Their conclusions indicated that corral development is worthy of 

specific regulatory attention, which does not currently exist. This recommendation is echoed in the 

majority of government-funded and academic-based projects in England and Wales (Smith et al., 

2005), Ireland (French et al., 2008; French and Hickey, 2004) and in Scotland (Vinten et al., 2006).  

A waning tradition in Scandinavia and parts of northern and eastern Europe is to use tree 

pollards as both a source of leaf fodder and bedding. Wooded meadows were pollarded in August; the 

leafy branches cut into manageable lengths and tied together using hazel (Corylus avellana) or birch 
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(Betula) twigs, so that they could be easily carried. They were then hung on racks, in trees or on 

fences to dry, before being fed to the livestock in barns over winter. The animals ate both the leaves 

and the bark, after which the farmers burnt the remaining twigs for fuel (Read, 2008). 

 
2.2.3 Livestock performance 

A wide range of research has been undertaken on the impacts on livestock welfare, performance 

and behaviour, under various housing conditions. Kossaibati and Esslemont (1997) estimated that 

production diseases and other health problems in an average dairy herd in England are dominated 

by mastitis (38 %) and lameness (27 %). Both these conditions are, in varying measure, a product 

of bedding type, housing system and floor texture. Eberhart and Buckalew (1972) showed 

incidences in which efforts made to exclude the two most common mastogenic bacteria, 

Streptococcus agalactiae and Staphylococcus aureus, from the bedding matrix simply opened up 

the niche to other species. Rendos at al. (1975) compared the anti-bacterial performance of 

sawdust, wood shavings and wheat straw beddings and suggested the inherent environmental 

properties of sawdust and straw supported more common mastogenic bacteria than shavings. 

Faecal coliforms and Klebsiella were prevalent in sawdust, Streptococci in straw and Staphylococci 

in both sawdust and straw when compared to numbers of colony forming units (CFU) in shavings. 

In general, higher incidences of lameness have been found in herds housed on unyielding floor 

surfaces without sufficient bedding (Singh et al., 1993; Webster, 2002; Barker et al., 2007; Norring 

et al., 2010). 

Higgins and Dodd (1989) assessed out-wintered animal performance in six locations around 

Scotland. Their results showed an average weight loss ranging from 24 to 73 kg for out-wintered 

steers (100 kg initial weight), on a projected gain of 0.75 kg/day, when compared with the 

performance of housed steers. In contrast, Hickey et al. (2002) found that, 126 Charolais-Friesian 

steers (474 kg mean initial weight), accommodated on outdoor woodchip pads (OWPs) had a 

higher daily live-weight gain, carcass gain and food intake, and lower fat scores, per 100 kg carcass 

than animals housed on indoor slats. Furthermore, neither the provision of wind shelter nor an 

increased space allowance within OWP treatments delivered any significant increase in the steers’ 

growth or energy efficiency, and there was no physiological or behavioural evidence to suggest the 

subjects required wind shelter, or were distressed by out-wintering. The study also found that 

woodchip provided the animals more security during the standing/lying mechanism than slats, and 

animals accommodated on OWPs had a lower severity of hoof under-run and white line disease, 

but suffered more severe heel erosion, at low stocking densities.  
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French and Hickey (2004) followed up their earlier research by investigating the 

attributable influence of the environment (indoor vs. outdoor), space allowance and surface type 

(slat vs. woodchip), on the animals’ intake and performance. Animals housed outdoors on 

woodchip at a low stocking density of 10.8 m2 had higher growth rates (0.35 %) than those on 

indoor slats with 2.7 m2 /animal. They concluded that 60 % of the advantage was attributable to 

increasing the space allowance from 2.7 m2 to 10.8 m2 on slats, while the remainder was due to a 

softer lying surface provided by woodchips. However, they went on to state there was no 

productive advantage per se in accommodating animals outdoors rather than indoors.  

In a recent study, Dumont et al. (2012) tested livestock performance on OWPs based on 

woodchip size, feeding management and area allowance. The study used a Greco-Latin square 

experimental design and divided thirty-four, 18-month-old Charolais/Friesian steers (average 

weight 470 kg) into four groups, which were randomly rotated around OWPs containing four 

woodchip (Douglas Fir) sizes: (i) an irregular-shaped flat 5 cm to 10 cm woodchip (similar to the 

ADAS W53 chips used in the present study); (ii) a long-shape woodchip 2 cm to 4 cm; (iii) a 

cubic-shape woodchip 1 cm to 2 cm (similar to the ADAS W34 andW55) and (iv) sawdust 0.1 cm 

to 1 cm. Feed management meant cattle were fed silage either from a concrete feed area in front of 

the OWP, or from the surface of the OWP itself. Area allowances included: 11.1, 11.8, 14 and 18.6 

m2 steer−1. The study found no significant differences in silage intakes between experimental 

treatments, although daily live-weight gain (DLWG) was greatest on the fine sawdust bedding, and 

least on the large irregularly shaped 5 – 10 cm woodchips. 

Menard et al. (2010) carried out an extensive study over four years in Brittany, France, 

designed to assess the comparative efficacy of woodchip and straw on OWP through the 

accumulative analyses of animal performance (milk yield, growth), hygiene (cleanliness, mastitis, 

quality of milk) and welfare (injuries, lameness, human-animal relationship); in addition, the study 

was designed to characterise the effluents released. Primarily, they concluded OWP are suitable for 

dry cows and heifers, but not lactating cows. 

Dunne et al. (2008) compared the meat colour, composition and eating quality of 45 

Charolais steers accommodated in OWPs stocked at 18 m2 /head, indoors on slatted floor pens at 

2.5 m2 /500 kg bodyweight and in straw-bedded pens at 4 m2 /head, for 132 days. Although mean 

carcass weights were 372, 351 kg and 362 kg respectively, they concluded that accommodating 

cattle on OWP had no significant lasting effect on meat colour and no impact on composition or 

eating quality. 

Von-Keyserlingk et al. (2008), supported the findings of (Hickey et al, 2002) that floor 

hardness and bedding depth were the determining causes of lesions, lameness and hoof disease 
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during housing and added that greater space allowances enhanced cattle performance by reducing 

competitiveness in the feed and lying areas, suggesting that partitioned feed gates would reduce the 

bullying of socially subordinate animals by dominant herd members. There is broad consensus that 

stocking density is a critical factor in livestock performance. Gonyou et al. (1985) found that feeder 

lambs, at a density of 0.32 m2 vs. 0.48 m2 / lamb, underperformed by 1.5 kg /lamb (10 %) and 

Randolph et al. (1981), reported decreases in swine performance at high stocking densities; 0.33 m2 

(vs. 0.66 m2 /pig) resulted in a reduced daily gain of 44 g /day (6.8 %) and a less efficient feed/gain 

ratio of 2.47 vs. 2.39. Furthermore, the same study observed an increase in aggressive behaviour 

within the high-density pig pens, but added that the data showed no consistent correlation between 

performance and levels of aggression or type of activity.  

The behavioural preferences of cattle to base and bedding types have been studied in some 

detail. Hacker et al. (1969) tested two mattress types, rubber and synthetic resin, with five base 

types: electrically heated concrete (mean temperature 18° C); standard concrete with 1.3 cm 

plywood cushion between the mat and the base; Zonolite insulated concrete; 1.3 cm plywood sheet 

on a wooden frame; and, lastly, standard concrete. The time cattle spent lying on each treatment 

was recorded over two winters and revealed their conclusive preference (p < 0.01) for synthetic 

resin mats over rubber and for the electrically heated concrete base (p < 0.01) over the other four 

bases. Keys et al. (1976) conducted a ‘free choice’ experiment, to test cattle preference to three 

bedding types: dewatered manure solids (DwMS) (29 % dry matter); dehydrated manure solids 

(DhMS) (90 % dry matter); and sawdust (81 % dry matter). During winter, cattle spent an average 

of 0.5, 6.6, and 6.2 hrs /day respectively lying on each bedding type, and 0.5, 3.4, and 2.0 hrs /day 

during the summer. The trial demonstrated cattle’s preference for dry bedding; however, the 

relative cost of producing sufficient material to fill one stall 10 cm deep was $2.63 for DwMS, 

$11.46 for DhMS and $1.27 for sawdust. Equivalent bedding production costs could not be 

determined, so the article’s (now dated) prices are included as a guide. Similarly, Reich et al. 

(2010) demonstrated cattle’s preference for drier bedding through a trial involving five groups of 

three non-lactating Holstein cows on five sawdust beddings with systematically varying moisture 

contents, conducted in both summer and winter. Average lying time was 10.4 ± 0.4 h/d on the 

wettest treatment, compared to 11.5 ± 0.4 h/d on the driest, and 12.1 +/- 0.4 h/d in winter compared 

to 9.9 +/- 0.6 h/d during the summer. However, they found no correlation between season and 

bedding dry matter.  

More recently, Norring et al. (2010) concluded that comfort is a discernible priority to 

cattle, following a study of 18 cows using three stall surface materials (concrete, soft rubber 

matting, and sand). Where no choice of bedding was given, lying times were longest on the rubber 
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mats compared to other surfaces (rubber mat, 768 mins /d; concrete, 727 mins /d; sand, 707 mins /d 

(all treatments ± se 16 mins/d)). Where a choice of two out of three surfaces was available the 

cattle again preferred rubber mats to stalls with a concrete floor (median 73 vs. 18 from a total of 

160 observations per day), but showed no preference for sand compared with a concrete floor or 

rubber mats. 

By now it will be apparent that sheep are less commonly used as case studies in housing 

trials than cattle, so the report by Wolf et al. (2010) on 64 Suffolk x Mule (Blue-faced Leicester x 

Welsh Speckled Face) and 64 Charolais x Mule lambs is interesting, particularly as it mirrors this 

study in comparing woodchip and straw beddings. Their results showed that lambs used woodchip 

as a bedding material when lying or standing almost twice as often as straw (p < 0.001), but 

showed no preference between bedding types when eating hay or concentrates (p > 0.05). 

Furthermore, there was no significant effect based on sex, which day the lambs were observed, 

whether the lambs had prior experience of the bedding materials, on their preference for woodchip 

(all (p > 0.05)). Wolf et al. (2010) concluded that woodchip is a suitable alternative bedding 

material to straw and is unlikely to affect the lambs’ performance through changes in the 

proportion of time spent lying, standing or eating. 

Perhaps unsurprisingly, these behavioural studies all show that livestock prefer warm, dry 

and cushioned housing conditions. This isn’t a luxury, as inadequate housing systems have 

repeatedly been shown to adversely affect the health (Webster, 2002), welfare (Singh et al., 1993; 

Endres and Barberg, 2007) and therefore the productivity of all types of livestock (Randolph et al., 

1981; Gonyou et al., 1985; Kossaibati and Esslemont, 1997; Kiernan et al., 2003; French and 

Hickey, 2004; Von-Keyserlingk et al., 2008; Hill et al., 2011).  

 

2.2.4 Sanitization by composting 

A critical question investigated by the present project was whether the woodchip bedding could 

sustain high enough composting temperatures to eliminate the pathogens Escherichia coli and 

Salmonella enterica so it could be safely re-used as bedding each winter, until the material is fully 

degraded and ready for land spreading (section 2.3.2, below).  

Cattle are the primary reservoir of Escherichia coli (E. coli) serotype O157:H7 (Wells et al., 

1991), but the prevalence of faecal shedders is usually less than 1 % of the herd, estimated to be 

between 3 – 50,000 CFU /g of faeces. However, the infective dose for humans is only about 101 

CFU /g; the lowest of all the common human food-borne pathogens (Kirk, 2003). Fortunately, E. 

coli O157 does not persist for long periods in the farm environment, particularly within abiotic 

livestock beddings (Westphal et al., 2011), but can grow under conditions normally considered 
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adverse to bacteria (Himathongkham et al., 1999). However, Larney et al. (2003) reported that > 

99.9 % of total coliforms were eliminated within the first seven days of composting animal wastes 

at mesophilic temperatures between 33.5 to 41° C, well below the baseline thermal kill limit of 55° 

C stated in the US and Canadian composting guidelines (USEPA, 2003; Canadian Council of 

Ministers of the Environment, 2000) and the 65° C for 7 days required by the UK (PAS100). 

Furthermore, research by Kumar and Sekaran (2005) reported that vermicomposting reduced 

Salmonella and E. coli counts to nil after 60 days in compost material, and after 70 days from 

within the earthworms’ guts. Regardless of the composting method, during the first 2-5 weeks of 

composting, wastes and liquid runoff should be contained to prevent seepage of bacteria into 

ground water.  

The UK PAS100 regulatory standards require that composts reach > 65° C for a minimum of 

seven days (not necessarily consecutively), to be deemed sanitized. Legislation governing the re-

use of woodchip-manure compost requires that: 

 

• It does not endanger human, animal or environmental health - PAS 100 composting 

standards.  

• ‘The animals have dry areas to lie down’ (Schedule 1 of the Welfare of Farmed Livestock 

(Wales) Regulations 2007, paragraph 13 and 17 in particular) – if the compost has met 

PAS100 temperature requirements and has not subsequently been watered or subjected to 

high levels of rainfall, it is reasonable to expect the moisture content will be sufficiently 

low to provide dry bedding the following winter. 

• ‘The composted woodchip does not contain high levels of dust, noxious gases or spores 

etc.’ After seven months’ composting of typical agricultural feedstocks and conditions, 

levels of dust, noxious gases and spores within the woodchip manure should not present a 

hazard, although tests should be carried out if in any doubt. 

 

Tiquia et al. (1998) questioned the efficacy of windrows in eliminating faecal Streptococci. In 

particular, the cooler areas at the outer edges of the windrows could potentially reduce efficiency in 

the sanitisation process. However, regular mixing of well-managed windrow composts ensures that 

virtually all the material is subjected to temperatures above 55° C. Kirk (2003) also identified the 

environmental parameters critical to pathogen survival as:  

 

• Type of slurry or manure  

• pH  
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• Moisture content  

• Temperature  

• Abundance and diversity of microbes within the compost environment.  

 

In a recent and extensive study of six Belgian dairy herds, Verbist et al. (2011), found that 

Klebsiella pneumoniae can be prevalent within the livestock’s immediate environment (faeces, and 

in this case, used sawdust bedding), without causing significant mastitis problems, and confirmed 

unused sawdust bedding was not an important source of the species. Carroll and Jasper (1978) 

investigated the distribution of Enterobacteriaceae in recycled cattle manure bedding, and their 

findings supported these environmental control mechanisms. Contrary to Verbist et al. (2011), they 

reported Klebsiella were not common in bovine faeces, but went on to state that the composting 

process effectively reduced coliform counts to, or near to, zero. This is particularly encouraging 

when considered in conjunction with evidence presented by Rendos et al. (1975), who showed that 

hardwood shavings (bulky, porous, potentially low humidity) supported significantly fewer 

Enterobacteriaceae and Staphylococci CFUs than hardwood sawdust (compact, reduced airflow, 

greater humidity), implying that large particulate, ligneous beddings offer pathogens a sub-optimal 

environment. Furthermore, Carroll and Jasper (1978) added that if the compost moisture content 

increases and temperature drops, coliforms return in large numbers. They concluded that 

composted cattle manure was a satisfactory bedding material, provided it was dried properly before 

application, but they did not state the specific moisture content. Although, as Keys et al. (1976) 

showed, the cost of dehydrating manure solids to 90 % dry matter is not economically viable, so it 

is perhaps fortunate that this criterion is not stipulated in the UK PAS100.  
 

2.3  Composting 
 

2.3.1 Benefits of composting within the farm environment  

Nutrients can be seen as the base currency of every farm system; production removes them, and 

(often expensive) fertilisers are used to replace them. To maximise efficiency, producers must 

ensure that nutrients that don’t go to market in crops and livestock, but are retained and recycled on 

the farm. One important method of maintaining nutrient balance within a livestock system is 

composting the winter bedding, and thereby recycling organic wastes into fertiliser.  

Nitrogen retention is the primary focus of agricultural composting because of its criticality 

to production and its high loss potential. The speed and efficiency of composting is largely 



 

 28 

dependent on the feedstock’s physical and chemical properties; total and available carbon to 

nitrogen (C:N) ratio; surface area; oxygen levels and moisture content.! 

!

2.3.2 Composting process and nutrient dynamics 

Microbes require C, N, phosphorus (P) and potassium (K) for growth, but also use N for protein 

synthesis and oxidize C for energy, generating heat and releasing CO2 (Sweeten and Auvermann, 

2008). As a result, more C than N is required. Misra et al., (2003) state that while C:N ratios 

between 20 and 40:1 are acceptable, 25 to 30:1 are optimal for composting. Similarly, Bernal et al. 

(2009) proposed a C:N ratio for composting in the range of 25 to 35:1, adding that C:N ratios of 

less than 20:1 are prone to excess N losses. This was corroborated by Kuo et al. (2004), that 

reported C:N ratios greater than 40:1 result in limited microbial growth and longer composting 

time. Michel et al. (2004) reported that less than 10 % of N was lost when C:N ratios were greater 

than 40:1 during dairy manure composting amended with straw sawdust and sand. However, these 

ratios broadly represent the consensus, with minor deviations depending on feedstocks. Eiland et 

al. (2001) successfully composted a mixture of miscanthus straw and pig manure with initial C:N 

ratios of 25:1 and 16:1 and Zhu (2007) concluded that an initial C:N ratio of 20:1 was more 

efficient than 25:1 when composting pig manure with rice straw. Further, Calderón et al. (2004) 

showed that N mineralization is related to the C:N ratio of manures, reporting that a ratio of 19:1 

resulted in negative N mineralization while manures with an average C:N ratio of 16:1 had positive 

N mineralization. However, Eghball et al. (2002) proposed that the availability of C and N in 

manure was more important than the general C:N ratio, which is supported by findings in the 

present study where ratios of available C to available N in the woodchip composts were never 

greater than 10:1, due to very low concentrations of both DOC and TSN. 

As mentioned previously, compost bulk density (related to porosity and particle surface 

area), nutrient content (especially availability of C and N) temperature, pH, moisture and supply of 

O together determine the speed and efficiency of decomposition. Aerobic decomposition takes 

place on particle surfaces in the presence of O2, so smaller compost solids allow faster rates of 

microbial digestion and reproduction, and greater heat generation. However, very fine material may 

compact, restricting airflow, leading to anaerobic conditions that generate malodorous and harmful 

emissions of hydrogen sulphide (H2S) (Hagenstein et al., 2003), methane (CH4), denitrification 

products, nitrogen oxide (N2O) and nitrogen gas (N2) (Moral et al., 2012), as well as ammonia 

(NH3).  
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Ammonia volatilization is a surface process accelerated by airflow (Misselbrook et al., 

2001; Gilhespy et al., 2009; Dumont et al., 2012), so the large bulky woodchips, with less surface 

area, potentially reduce NH3 loss. However this benefit is counteracted by their rigid shape, which 

maintains porosity and airflow. Conversely, straw bedding has a large surface area and greater 

absorbency capacity by weight, but less structural rigidity, which potentially restricts airflow. 

Soiled straw bedding has a low lignin content and high levels of AC and AN in optimal ratio for 

microbial metabolism, reproduction, and thus decomposition and nitrification. High compost 

temperatures generate convection currents that draw in fresh O and drive off water vapour, CO2 

and NH3. Turning the compost frequently helps maintain O levels, especially in less rigid compost 

structures, and brings new material into contact with microbes, but also releases previously trapped 

NH3. Moisture content is critical as microbes can only use chemicals in solution on particle 

surfaces. According to Misra et al. (2003) compost moisture content should be between 50 and 60 

% at the start of composting and reduced to 30 % by the end. Excess moisture or even water-

logging will cause an increase in nutrient run-off, inhibit microbial function and reduce oxygen 

diffusion throughout the compost. If the compost becomes anaerobic after nitrification has 

occurred, then NO3
- is denitrified to N2O or N2 and lost to the atmosphere (Bernal et al., 2009).  

The heat that microbes generate within the compost is an important measureable response 

to the initial chemical and physical conditions. The initial temperature increment is dominated by 

three bacterial groups. Psychrophilic bacteria colonize the compost between 0 and 22° C, as the 

compost warms up; conditions favour mesophilic (middle range) bacteria, which thrive at 10 to 45° 

C; multiplying rapidly on readily available sugars and amino acids, their activity increases the 

temperature beyond their tolerance and they are succeeded by thermophilic bacteria with an 

optimal temperature range of 40 to 60° C (Rynk, 1992), although Bernal (2009) narrows this range 

to between 52 and 60° C. The thermophilic phase is important for the quality of the compost, as 

pathogens are normally eliminated at and above 55° C and weed seeds at 62° C (Misra et al., 

2003). Thermophilic microbial activity requires depleted O to be replaced, or conditions will 

rapidly become anaerobic. During the early active phase of composting, large amounts of urea N is 

hydrolysed into NH4
+ then mineralised, which increases compost pH. However, at pH >8.5 

ammonium dissociates into NH3 and CO2. Martins and Dewes (1992) found that as much as 55 % 

of total N loss could be volatized as NH3 during the thermophilic phase; immobilized, if sufficient 

AC is present; or nitrified, depending on the composting stage and characteristics of the pile. 

Zvomuya et al. (2005) suggested reducing NH3 volatilization using phosphogypsum, an acidic by-

product of P fertiliser manufacture in Canada and America, but the technique carries risks: 

phosphogypsum contains trace concentrations of radium.  
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2.3.3 Value of compost as organic fertiliser 
The most significant benefits of applying compost to soils - as opposed to chemical fertilisers - are 

its long-term benefits to soil health and nutrition. Compost is a rich source of organic matter 

(SOM), important in sustaining soil fertility and, hence, in sustainable agricultural production. In 

addition to being a potential source of plant nutrients on decomposition (e.g. if it contains proteins), 

it improves the physical, chemical and biological properties of the soil (Bernal et al., 2009). 

 

2.3.3.1 Physical properties 

According to Werner (1997), compost improves soil physical properties by lowering bulk density 

and thus increasing pore space and aeration, generating a more favourable environment for 

biological activity. In addition, compost increases the soil’s water holding capacity (Shiralipour et 

al., 1992) by improving infiltration (Butler and Muir, 2006). Conversely, soil in poor physical 

condition is linked to a decline in crop performance and profitability, as well erosion and nutrient 

leaching into surface and ground waters (Kuo et al., 2004). 

 

2.3.3.2 Chemical properties 

Alvarez et al. (1988) showed a positive correlation between SOM content and levels of available 

Ca, K, Mg, Na, and P, in addition to increasing total soil N. Furthermore, Wong et al. (1999) 

showed that manure compost can be used to restoring soils whole nutrient balance, as it increases 

the concentration of macro- and micro-nutrients available for plant growth. 

 

2.3.3.3 Biological properties 

The findings of Wong et al. (1999) were supported by Das and Dkhar (2011), who reported that 

organic fertilisers enhanced soil microbial populations and increased rhizosphere soil 

physicochemical properties compared with application of inorganic NPK fertiliser.  In addition, 

Wander et al. (1994) found that organic farming systems (which are characterised by the 

application of compost, or compost-like organic materials) support higher levels of microbial 

diversity and activity than conventional systems using inorganic fertilisers. 

 

As compost is applied to the soil, over time an active nutrient cycling capacity will be developed, 

based on a diverse and healthy microbial community. This will increase the rate at which nutrients 

are made available for crop uptake. These advantages can be anticipated to reduce cropping risks, 

increase yields and provide cost savings from reduction in use of inorganic fertiliser. 
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3.1  Introduction 

 

The Welsh Government (WG) has forecast a significant reduction in the availability of straw 

bedding to the UK agricultural livestock sector. This has arisen due to increasing demand for straw 

within the expanding biofuels industry. This loss of straw from the agricultural sector will 

particularly impact Welsh farmers, especially if coupled with rising fuel prices and therefore 

haulage costs, as Wales’s topography and primary soil type does not allow sufficient cereal 

production to satisfy the nation’s livestock bedding requirements. In light of these combined 

pressures, WG commissioned the Woodchip for Livestock Bedding Project to investigate the 

feasibility of woodchip as an alternative source of livestock bedding, with specific emphasis on its 

long-term environmental and economic sustainability.  

There are a variety of locally-sourced materials suitable for livestock bedding available to 

farmers in different regions of Wales. However, straw is currently the most popular and is 

estimated to cost the nation’s farming industry £12.5m per annum. In comparison, wood represents 

an abundant national resource, with significant residues coming from both the forestry and 

furniture manufacturing industries. In addition, interest in the use of locally sourced products is 

gaining momentum and an emerging woodchip agric-bedding industry could take advantage of the 

infrastructural developments initiated by growth in the use of woodchip as an alternative, 

renewable, domestic heating fuel.  

To date, many studies have investigated the use of outdoor winter corrals, within which 

woodchips are used as a base material (Dumont et al., 2010; Larney et al., 2008a and 2006; Hickey 

et al., 2002), but none have yet specifically examined the practical and environmental benefits of 

using woodchip as an indoor bedding material. Based on this knowledge gap, woodchip housing 

trials were conducted with sheep and cattle over an eight week period. Overall, these trials sought 

to develop practical recommendations for the optimal use of woodchip bedding and assess its 

composting performance and potential reuse as bedding material. Additionally, these studies sought 

to elucidate a broader understanding of the nutrient dynamics and temporal changes in the 

material’s physical characteristics. The aim was to relate these observed changes to agronomic and 

environmental priorities. In this context, an emphasis was placed on the fate of nitrogen throughout 

the bedding and composting process. 

Trial 1 (hereafter referred to as the ADAS trial) sought to investigate and compare the 

influence of initial woodchip moisture content on the woodchip bedding’s efficiency and 

subsequent composting efficiency. The hypothesis was that woodchip with lower moisture content 

would have a greater capacity to absorb fluid and incorporate solid wastes throughout the litter 
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layer, thereby increasing the time between fresh bedding applications (i.e., promoting increased 

resource use efficiency). In order to better understand the material’s absorbency capacity, two 

separate experiments were carried out to assess the absorbency rate and capacity of woodchips with 

different moisture contents. A full description of these experiments is presented in Appendix I, and 

key points are highlighted in this chapter’s results section. In addition, the impact of woodchip 

moisture content was also investigated in terms of its end use in composting and the resultant 

compost quality. Throughout the trials direct comparison was made with conventional straw 

bedding practices. Trial 2 (hereafter referred to as the IGER trial) investigated the effect of a dry 

hay diet against that of a wetter silage diet on the performance of woodchip and straw bedding and 

subsequent compost. Performance was defined by whether the quantity or frequency (and thus, 

material and labour costs) of fresh bedding applications increased in silage fed pens to maintain a 

standard level of livestock performance (scored on animal weight gain, feed intake, health, 

respiratory problems, cleanliness score and welfare). It was hypothesized that woodchip under the 

wetter silage diets would be used less efficiently, due to increased quantities of liquid excrement 

compared to the hay diets; conversely composting performance of silage/woodchip would be 

enhanced due to greater quantities of available C and N. While bedding, manure and composting 

findings are presented here, the livestock’s health and welfare were outside the scope of this 

project.  

 

Presentation of results  

Where applicable, results are presented on a dry matter (DM) basis, unless clearly stated otherwise 

(wet weight (WW and w/w) or fresh weight (FW)). Results of the housing and composting trials 

are presented in the order of physical and then chemical dynamics, as opposed to chronological 

order (housing then composting); because of the sheer volume of chemical analyses carried out and 

reported, the candidate considered that it would be of greater benefit to the reader to have a 

continuous compendium of chemical results, albeit at the cost of having to refer back to the 

physical results.  
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3.2  Method  
 

3.2.1 Study design  

Housing protocols at the two trial sites were not linked, so no statistical comparisons can be drawn 

between the ADAS and IGER results. In addition, there were aspects of both sites’ protocols that 

could have been altered to facilitate more accurate and in-depth analysis of the results.  
 

Table 3.1: Dates and duration of housing trials at ADAS and IGER 

Housing periods Start  Finish Duration 

ADAS       Sheep 20-Jan-06 17-Mar-06 8 wks. 

ADAS      Cattle 03-Feb-06 31-Mar-06 8 wks. 

IGER       Sheep and Cattle  25-Jan-06 23-Mar-06 8 wks. 

 

Source of woodchip and straw  

The woodchip used at both sites was sourced from Coed Fron Goch sawmill, Trisant, near 

Aberystwyth (52°21’45”N, 3°53’19”W). Chipping was done prior to delivery at the trial sites, 

using a Heizohack HM8-400 drum wood chipper (Heizohack GmbH, Gunzenhausen, D-91710 

Germany). Although the ADAS W53 and W55 woodchips had similar initial moisture contents, the 

W53 woodchip bedding was produced from fencing post points, which resulted in a bias towards 

large, flat, splinter shaped woodchips (Plate 3.1), ranging from 5 – 10 cm long and 1 – 3 cm wide, 

but only 0.5 – 1.5 cm thick, compared to the W55 (and W34) stocks, which were chipped from 

rounds and gave a square, ‘chunky’ chip (approximately 1 – 3 cm cubed) even though the same 

make and model of chipper was used (Plate 3.2). Furthermore, it suggested fence post ‘points’ are 

essentially made from the centre of the bough, and therefore contain predominantly older, denser 

wood than wood chipped from rounds, which must contain heterogeneously aged material. This has 

proved to be an important factor and will be discussed in subsequent sections.  

There were two woodchip deliveries used at IGER over the course of the study. The first 

one was used in weeks 1-5 of the housing trial and the second in weeks 6-8 inclusive. Due to the 

physical and chemical similarity of the two woodchip stocks (see Table 3.43), no further 

differentiation between the stocks is necessary. Wheat straw at ADAS and IGER was locally 

sourced. However, due to limited availability, ADAS wheat straw was supplemented with barley 

straw. Given time constraints and volume of prerequisite analyses for HCC, it was beyond the 

scope of this project to investigate the extent this protocol anomaly may have had on the results. 
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3.2.1.1 ADAS: Study Design 

ADAS Pwllpeiran is the UK’s largest independent provider of environmental consultancy, rural 

development services and policy advice, and as such was well placed as a project partner to provide 

services, input, manpower, experimental space and importantly, livestock. Two studies were 

undertaken at the ADAS Pwllpeiran station located at Cwmystwyth, Ceredigion, UK (52°21’19”N, 

3°48’02”W). The design of the two livestock studies ran in parallel, one with pregnant ewes and 

the other with yearling Welsh Black cattle. Both studies lasted 8 weeks and consisted of 4 

treatment pens and 3 woodchips with initial moisture contents of 34.4 %, 52.7 % and 54.9 %, 

alongside a conventional straw-based treatment. For the purposes of this paper the three woodchip 

bedding types will be referred to as W34, W53 and W55 respectively: or S34, S53, S55 (sheep-

woodchip treatments) and C34, C53, C55 (cattle-woodchip treatments) when referring to individual 

compost treatments.  

 

ADAS Cattle study 

The cattle housing trial ran from 3rd February until 31st March 2006. Thirty two one-year-old 

Welsh Black cattle were divided equally into four groups (balanced for age, sex, weight and 

cleanliness) and housed in an open-fronted shed. Each group (n = 8) was housed in separate pens 

measuring 4.3 m x 10.6 m. Group 1 was housed on straw (control: moisture content 11 %), Group 

2 was housed on W34 moisture (w/w) woodchip, Group 3 was housed on W53 moisture (w/w) 

woodchip and Group 4 was housed on W55 moisture (w/w) woodchip. Owing to limitations in the 

design of the study (which were beyond the control of Bangor University), the treatment pens were 

only singularly replicated. Ideally, a replication rate of three or greater would have been desirable 

for a study of this kind.   

Silage was fed ad libitum and 2 kg head-1 day-1 of concentrates offered at a single front-

facing feeding station (see Table 3.5). Standing areas behind the feed face were regularly scraped 

clean and the manure removed, but not reintroduced before composting. All pens were bedded to 

an initial depth of 100 mm. To maintain housing and animal cleanliness, additional bedding 

material was applied when livestock showed signs of clagging. Table 3.3 provides details on the 

size, area allowance and livestock number pen-1, as well as the total dry matter (DM) and moisture 

content (MC; %) of beddings deployed pen-1 throughout the eight week housing period. At the end 

of the study, all bedding material was chemically and physically characterised and subsequently 

composted. 
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ADAS Sheep study 

Notably, the 8 week ADAS sheep housing trial ran from 20th January until 17th March 2006, so 

concluded two weeks prior to the cattle housing trial. However, ADAS started composting them 

the same day, resulting in the 4 sheep treatments being constantly two weeks older than the 

respective cattle treatments throughout the composting trial which concluded on 4th November 

2006, when the cattle compost treatments were 31 weeks old and the sheep compost treatments 

were 33 weeks old. The ADAS sheep housing trial consisted of 120 twin-bearing ewes in mid 

gestation divided equally into four groups (balanced for age, sex, weight and cleanliness) and 

housed in a purpose-built experimental sheep shed. Each group (n = 30) was housed in its own pen 

within the sheep shed measuring 6.7 m x 4.6 m; Group 1 was bedded on straw (control: moisture 

content 11 %), Group 2 on W34 moisture woodchip, Group 3 on W53 moisture woodchip and 

Group 4 on W55 moisture woodchip. Silage was offered to the sheep ad libitum from a single 

feeding face at the front of the pen. EweMaster® 18 % protein sheep pellets (concentrate) were fed 

at a rate of 500 g head-1 d-1 in troughs at the side of each pen (see Table 3.5).   

At the start of the trial, all pens were bedded to a depth of 100 mm. To maintain housing 

and animal cleanliness, additional bedding material was applied as a top-up layer as and when 

required. Table 3.3 provides details on the size, area allowance and livestock number pen-1, as well 

as the total DM and MC (%) of beddings deployed pen-1 throughout the eight week housing period, 

after which all bedding material was chemically and physically characterised. 

 

ADAS protocol anomalies: Bedding types and moisture contents 

The trial’s aim was to facilitate robust analysis of the effect initial moisture content had on the 

bedding and composting performance of woodchip. In order to determine with confidence that 

observed differences in the results were due to the woodchip’s initial moisture content, it was 

agreed that woodchip stocks with three moisture contents would be tested: 20 %, 40 % and 60 %. 

However, there was insufficient time for ADAS to achieve these moisture contents prior to the start 

of the housing, so the trial commenced with initial woodchip moisture contents of 34.4 %, 52.7 % 

and 54.9 %. In addition, each livestock trial included a straw treatment. ADAS started the trials 

using wheat straw, but switched to barley straw because they were unable to procure any more 

wheat straw. 

 
Different ages of livestock composts  

It is understood that ADAS wanted their sheep (pregnant ewes) turned out one month before they 

lambed in mid-April. As such, they conducted their eight week sheep housing trial two weeks 

earlier than the cattle trial. After releasing the sheep, the bedding was moved from the purpose-
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built sheep shed to the barn the cattle were still housed in, where it was set in pyramidal piles to 

begin composting. Two weeks later the cattle were turned out and the beddings also set in 

pyramidal piles. It was at this point the candidate’s PhD programme at Bangor began. So the first 

samples collected from the sheep-based composts were 15 days old and the cattle-based composts 

were 1 day old. 

 

Manure handling  

Different volumes of water were added to compost treatments during the first 2 months composting 

when ADAS considered they were becoming too dry. Table 3.2 shows water was added to all three 

sheep-woodchip treatments and the cattle W34 % treatment. 
 

Table 3.2: Volumes of water added to a range of woodchip composts at ADAS 

Treatment Composting week Volume (litre) 
Sheep 34 % Wk. 3 148 
  Wk. 5 230 
Total (ltrs)   378 
Sheep 53 % Wk.5 55 
  Wk.7 70 
Total (ltrs)   125 
Sheep 55 % Wk.5 123 
  Wk.7 80 
Total (ltrs)   203 
Cattle 34 % Wk. 3 116 
  Wk. 5 100 
Total (ltrs)   216 

 

ADAS did not record (volume or nutrient content) of seepage from the beddings or composts; nor 

did they weight, sample or replace (before composting) the manure scrapped from behind the feed 

face during housing. In addition, ADAS weighed the soiled beddings before composting, but not 

after, so the composts’ mass loss could not be determined. This may have been resolved using one 

ton sub-samples kept in litter bags beside the parent composts, turned at the same frequency and 

weighted, although this would have required pre-emptive knowledge. 

 
Feeding protocol 

Dry matter intake was recorded, but no feed refusal data was recorded. In addition, ADAS were 

unable to provide data on the nutrient content of the silage and concentrates given to the livestock 

during the trials, nor samples for analysis at Bangor. 
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3.2.1.2 IGER: Study Design 

The former Institute of Grassland and Environmental Research (IGER), at the Aberystwyth 

Research Centre sought to increase the efficiency of livestock production while minimising its 

input on natural environments. IGER had a number of research farms, extensive laboratory 

facilities and scientific expertise, and was in a position to contribute to investigating the effect of 

different winter feeds (hay and silage) on the performance of woodchip and straw beddings under 

cattle and sheep, and the subsequent composting of soiled material. This is an important 

consideration and a priority measurable within the agricultural industry in relation to the bedding’s 

cost efficiency and nutrient (specifically N) input for compost quality. The housing trials were 

conducted in cattle barns at the main IGER site located at Plas Gogerddan, Aberystwyth, 

Ceredigion, UK (52°26’01”N, 4°01’02”W). The moisture content of the straw bedding used in both 

trials was 13.5 % and the mean moisture content of the two woodchip deliveries used in both trials 

was 50.7 %. 

 

IGER Cattle study 

The 8 week IGER cattle housing trial ran from 25th January until 23rd March 2006. Twenty-four 

15-month-old heifers were divided equally into four groups (balanced for age, sex, weight and 

cleanliness), with each group (n = 6) being housed in pens measuring 8.8 m x 4.4 m with a feed 

barrier along the front. Group 1 was bedded on straw and fed hay, Group 2 was bedded on straw 

and fed silage, Group 3 was bedded on woodchip and fed hay, and Group 4 was bedded on 

woodchips and fed silage.  

 At the start of the housing period pens were bedded to achieve a depth of bedding of 125 

mm woodchips or 100 mm straw. To maintain housing and animal cleanliness, additional bedding 

was applied as and when required. No concentrates were offered to livestock, but forage was 

offered ad libitum, designed to achieve a refusal margin of 10 % (see Table 3.6). Fresh silage was 

given three times a week and fresh hay was given daily. Table 3.4 details the size, area allowance 

and livestock number pen-1, as well as the total DM and MC (%) of beddings pen-1 during the 8 

week housing period, after which all bedding material was chemically and physically characterised. 

 

IGER Sheep study 

The 8 week IGER sheep housing trial ran from 25th January until 23rd March 2006. Sixty-four 12-

month-old ewe lambs were divided equally into four groups (balanced for age, sex, weight and 

cleanliness) and housed in a purpose-built experimental sheep shed. Each group (n = 16) was 

housed in pens measuring 8.8 m x 4.4 m with a feed barrier along the front. Group 1 was bedded on 

straw and fed hay, Group 2 was bedded on straw and fed silage, Group 3 was bedded on woodchip 
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and fed hay, and Group 4 was bedded on woodchips and fed silage. At the start of the housing 

period the pens were bedded to achieve a depth of 125 mm woodchips or 50 mm straw. To 

maintain housing and animal cleanliness, additional bedding material was applied as and when 

required. No concentrates were offered to the livestock, but forage was offered ad libitum, with 

levels designed to achieve a refusal margin of 10 % (see Table 3.6). Fresh silage was given three 

times a week and fresh hay was given daily. Table 3.4 provides details on the size, area allowance 

and livestock number pen-1, as well as the total DM and MC (%) of beddings deployed pen-1 

throughout the eight week housing period, after which all bedding material was chemically and 

physically characterised. 

 

Protocol anomalies 

Hay and silage feed samples were not analysed and excess bedding was deployed in cattle 

treatments over the course of the eight week housing trial. This resulted in, firstly, IGER having to 

order a second woodchip delivery after 5 weeks, which contained a fractionally different moisture 

content, but similar chemical composition (see Table 3.43); and, secondly, in windrow composts 

that were too large for the space available. As such, approximately 50 % of the cattle-woodchip 

and 30 % of cattle-straw composts had to be discarded (see Table 3.19). This action inevitably 

altered the proportionate composition of the composted material in terms of the precise ratio of 

bedding and manure inputs during housing.  

 

Tables 3.3 (ADAS) and 3.4 (IGER): show the number of livestock pen-1; pen area m2; livestock area 
allowance m2 hd-1; dry mass of bedding hd-1, pen-1 and % moisture content of raw bedding.  

ADAS Housing  Animals Pen area Density Bedding Bedding Bedding 
Treatments pen-1 m2 m2 hd-1 DM kg hd-1 DM (kg) MC % 
Sheep W34 30 30.8 1.03 77.5 2326 34.4 
Sheep W53 30 30.8 1.03 74.4 2233 52.7 
Sheep W55 30 30.8 1.03 77.9 2336 54.9 
Sheep Straw 30 30.8 1.03 19.9 597 10.8 
Cattle W34 8 45.6 5.70 355 2840 34.4 
Cattle W53 8 45.6 5.70 328 2620 52.7 
Cattle W55 8 45.6 5.70 325 2602 54.9 
Cattle Straw 8 45.6 5.70 168 1347 10.8 
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IGER Housing Animals Pen area Density Bedding Bedding Bedding 
Treatments pen-1 m2  m2 hd-1 DM kg hd-1 DM (kg)  MC % 
SSS 16 38.7 2.42 17.2 276 91.9 
SSC 16 38.7 2.42 64.9 1038 45.9 
SHS 16 38.7 2.42 9.77 156 91.9 
SHC 16 38.7 2.42 48.8 781 45.9 
CSS 6 38.7 6.45 277 1659 91.9 
CSC 6 38.7 6.45 659 3952 45.9 
CHS 6 38.7 6.45 268 1609 91.9 
CHC 6 38.7 6.45 461 2766 45.9 

 

Tables 3.3 and 3.4 show IGER deployed approximately 100 % more woodchip and 50 % more 

straw cattle-1 than ADAS, but 21 % less woodchip and 50 % less straw sheep-1. 
 

Tables 3.5 (ADAS) and 3.6 (IGER): Forage % DM per livestock type and total feed rations (kg) 
treatment-1 and head-1 day-1. DMi = dry matter intake. 
ADAS Feeding Silage Silage DMi Silage DMi Concentrates Concentrates 
Treatments  % DM kg pen-1  kg hd-1 d-1 kg pen-1  kg hd-1 d-1 
Sheep W34 20.4 902 0.54 840 0.5 
Sheep W53 20.4 941 0.56 840 0.5 
Sheep W55 20.4 941 0.56 840 0.5 
Sheep Straw 20.4 946 0.56 840 0.5 
Cattle W34 26.7 2285 5.10 896 2.0 
Cattle W53 26.7 2016 4.50 896 2.0 
Cattle W55 26.7 2150 4.80 896 2.0 
Cattle Straw 26.7 2016 4.50 896 2.0 

 
 

IGER Feeding Feed Forage Forage DMi 10 % refusal Forage DMi 
Treatments type  % DM kg pen-1 DM kg pen-1  kg hd-1 d-1 
SSS Silage 29.6 824 82.4 0.92 
SSC Silage 29.6 782 78.2 0.87 
SHS Hay 82.7 664 66.4 0.74 
SHC Hay 82.7 662 66.2 0.74 
CSS Silage 29.6 2410 241 7.17 
CSC Silage 29.6 2315 231 6.89 
CHS Hay 82.7 2054 205 6.11 
CHC Hay 82.7 2067 207 6.15 
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3.2.2 Material characterisation 

The initial bedding material (woodchip and straw) was characterised for Total C, Total N, 

Dissolved Organic Carbon (DOC), Total Soluble Nitrogen (TSN), Dissolved Inorganic Nitrogen 

(DIN), Dissolved Organic Nitrogen (DON), Ammonium (NH4
+) and Nitrate (NO3

-), Salts 

(Electrical Conductivity, K, Na, Ca), pH and Phosphorus (Total P and Available P), as well as 

metals (Cu and Zn). The rationale for analysing this selection of nutrients was to assess composting 

efficiency, as a result of changes in nutrient concentrations during composting and, ultimately, to 

establish the end product’s fertility value. The chemicals analysed for total nutrient content within 

the composts were selected to determine compost maturity at the end of the composting period, and 

as indicators of the compost’s long term, more stable nutritional value. Over the course of the 7 to 

8 month composting, one would expect a large reduction in carbon content as the organic material 

is broken down and the microbes oxidize C for energy, generating heat and releasing CO2 (Sweeten 

and Auvermann, 2008). Organic N in the form of urea, proteins and amino acids quickly become 

hydrolysed into ammonia-N, which includes both ionized ammonium, (NH4
+) and un-ionized 

ammonia, (NH3). Anhydrous NH3 is highly soluble, so fundamental processes of decomposition, 

such as rising temperatures, high pH, moisture evaporation and compost turning also increases NH3 

emissions. Other N loss pathways include denitrification after ammonia-N is nitrified under aerobic 

conditions into nitrite (NO2), then rapidly into nitrate NO3
-, which can be denitrified if anaerobic 

conditions develop, then emitted as N2O or N2. Urea-N, NH4
+ and NO3

- can also be lost in seepage 

if moisture levels are high. However, under the conditions of the present study, volatilization of 

NH3 is considered the most prevalent loss mechanism. Electrical conductivity summarizes the 

concentration of soluble salts, inorganic nitrogen (NH4
+ and NO3

-), P, K, Na, Mg, S and Ca, in the 

compost solution. These nutrients are essential for plant growth, so retention during composting is 

critical to the finished product’s fertility value. Metals Cu and Zn are not highly soluble, so 

concentrations are only expected to increase relative to compost mass loss; Cu and Zn are essential 

to plant growth in trace quantities, but toxic at higher concentrations. 

 

3.2.3 Methods of characterisation in raw beddings and composts 

3.2.3.1 Determination of pH and Electrical Conductivity (EC)  

To determine pH and EC, 20 ml of distilled water was added to 20 cm3 of compost in a labelled 

plastic beaker (if the compost absorbed all the water, a further 20 ml was added (i.e. 1:2 compost-

to-water v/v)), mixed with a stirring rod and left to stand for 30 minutes. The pH meter was 

calibrated with pH 4 and 7 standard buffers, and EC meter with a 0.01 M KCl solution, set to 1410 
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µS cm-1.  After the 30 minutes had elapsed, pH and EC was measured. These methods follow those 

of Smith and Doran (1996) and Rhoades (1982). 

 

3.2.3.2 Determination of Total Carbon and Total Nitrogen 

The candidate prepared samples for these analyses then sent them to Prof. Will Cook at Duke 

University, Colorado for analysis. Samples were oven dried at 80° C for 72 hrs then ground into 

powder, before (127 mg ±1.26) was added to analyser foil cups. Total C and N was analysed using 

a dynamic flash combustion system coupled with an infrared (C as CO2) and chemo-luminescence 

(N2O for N) detection system (Nelson and Sommers, 1996). Samples were analysed using an 

automated LECO CHN2000 Analyzer (Leco Corp., St Joseph, MI, USA). All results are reported 

on a dry weight basis. The total C (TC): total N (TN) ratio is used in further discussions throughout 

the thesis. 
 

3.2.3.3 Determination of Dissolved Organic Carbon (DOC) and Total Soluble Nitrogen (TSN) 

This method involves the quantitative extraction of DOC and TSN from composts using an 

equilibrium extraction with distilled water and follows Jones and Willett (2006) and Jones et al. 

(2002). Samples (30 g wet weight) were shaken (200 rev min-1) with 150 ml distilled water on a 

flatbed shaker for 1 hour. These were drained (200 µm nylon filter) and centrifuged at 8000 rpm 

for 10 min. The supernatant solution was analysed for DOC and TSN on a Shimadzu TC-TNV 

analyzer (Shimadzu Corp., Kyoto, Japan). TSN incorporates the measurement of dissolved organic 

nitrogen (DON).!DOC and TSN are assumed to be the microbially available fractions of total C and 

N and are referred to as available carbon (AC), available nitrogen (AN) and AC:AN ratio in 

discussion sections throughout the thesis. 
 

3.2.3.4 Determination of Dissolved Inorganic Nitrogen (NO3
- and NH4

+) 

Fresh weight samples (30 g wet weight) were mixed with 150 ml distilled water and shaken for 1 

hour. Samples were drained (200 µm nylon filter) and centrifuged at 8000 rpm for 10 mins. 

Supernatant solutions were subsequently colourimetrically analysed for NO3
- and NH4

+ on a San+ 

segmented flow autoanalyser (Skalar UK Ltd, York, UK). During analysis, nitrate is determined by 

reduction to nitrite via a copperized cadmium column. The nitrite is then determined by diazotizing 

with sulfanilamide followed by coupling with N-(1-naphthyl) ethlyenediamine dihydrochloride. 

This method follows that of Mulvaney (1996). All results are reported on a dry weight basis. In the 

case of NH4
+, the reaction of NH4

+ with salicylic acid in the presence of hypochlorite generates a 

green coloured azo dye complex, which is detected colourimetrically. For both NO3
- and NH4

+ the 

range of standards was 0-10 mg l-1 and the limit of detection was 0.05 mg N l-1. 
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3.2.3.5 Determination of Dissolved and Total Phosphorus  

To determine available P, samples (30 g wet weight) were extracted with 150 ml of distilled for 1 

hour and filtered (200 µm nylon filter) prior to centrifuging for 10 minutes at 8000 rev min-1. To 

determine Total P, samples (30 g wet weight) were dried at 80° C for 24 hours and ground. 0.2 g 

(dry weight) of this was subsequently digested with 1.6 ml concentrated nitric acid, followed by the 

addition of 0.4 ml concentrated perchloric acid. Digested samples were subsequently filtered 

(Whatman No. 541 filter paper) and stored for analysis. P in the water and acid extracts essentially 

followed the method of Murphy and Riley (1962). Briefly, standards (0 to 20 mg l-1) were created 

and added to all wells of a 96 well reading plate. 180 µl of Ames Reagent (NH4-molybdate 

dissolved in H2SO4) and 30 µl ascorbic acid (10 % w/v) were then added to the samples and 

standards. Solution absorbance at 820 nm was subsequently determined with a Versamax® plate 

reader (Molecular Devices Inc., Sunnyvale, CA). All results are reported on a dry weight basis. The 

limit of detection was 0.12 mg P l-1. 

 

3.2.3.6 Determination of exchangeable cations 

Samples (30 g wet weight) were shaken with distilled water (150 ml), drained and centrifuged for 

10 mins at 8000 rev min-1. Concentrations of K, Na and Ca were measured using a Jenway flame 

emission photometer (Camlab Ltd., Cambridge, UK) and compared against a range of standards, 

which were prepared from a 1000 mg 1-1 stock solution for each element (Rowell, 1994). All 

results are reported on a dry weight basis.  

 

3.2.3.7 Determination of Cu and Zn 

Samples (30 g wet weight) were oven dried overnight and finely ground with a ball mill. 0.2 g was 

subsequently weighed into a 15 ml test tube and placed into a digestion block after the addition of 

1.6 ml nitric acid and 0.4 ml perchloric acid. The tubes were subsequently heated with the 

following thermal regime: 100° C for 1 hour, 133° C for 1 hour and 150° C for 5 hours, and then 

left to cool overnight. Solutions were filtered (Whatman No. 541 filter paper) into 20 ml 

polypropylene vials and analysed on a Varian Techtron AA-975 Atomic Absorption 

Spectrophotometer (Agilent Technologies Inc., Santa Clara, CA). Appropriate dilutions and 

standards were utilised. All results are expressed on a dry weight basis. 
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3.2.4 Composting  

Composting at both ADAS and IGER was carried out indoors. ADAS used pyramidal woodchip 

compost piles approximately 2 m high by 4 m at the base, as shown in Plates 3.1 and 3.2, with 

smaller, less structurally defined, straw piles.  

 

 
Plate.3.1: ADAS: Woodchip compost with W53 initial moisture content 

 
Plate 3.2: ADAS: Woodchip compost with W34 initial moisture content 

 

IGER used conventional windrows approx. 4 m long, 2.5 m wide by 2 m high, although compost 

sizes varied considerably between livestock types. Both sites provided the composts with ample 

ventilation.  
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3.2.4.1 Compost temperature 

Eltek thermocouple data loggers (Eltek Ltd, Cambridge, UK) were inserted in the centre of each 

compost treatment at ADAS and recordings taken at 30 minute intervals (Plate 3.3).  
 

 
 
Plate 3.3: an electronic data logger inserted into the centre of the ‘Shp W53’ woodchip compost on the end 
of a bamboo cane and marked with a yellow tag so it can be easily seen. The white lead relays the 
temperature readings back to a central portal that is periodically transmitted to a computer in the ADAS 
Pwllpeiran office. 
 

In the IGER trial, compost temperatures were recorded using data-loggers (Maxim DS1921G 

‘Thermochron iButtons’), which also recorded temperature at 30 minute intervals (Plate 3.4). 

 

 
 
 

3.2.4.2 Compost moisture content 

Samples (~145 g wet weight) were taken at each time point and dried at 80° C for 72 hours. The 

percentage moisture loss was then calculated as a percentage of fresh weight. This analysis allowed 

subsequent expression of results on a dry weight basis. 

 

3.2.4.3 Oxygen content  

Compost atmospheric oxygen content was measured using a handheld Minolta O2 analyzer (Konica 

Minolta Sensing, Inc., Nieuwegein, Netherlands). This was sheathed in a metal pipe with wire 

Plate 3.4: Maxim ‘Thermochron iButton’ 
Twine was tied through the hole in the fob and a 
metal tipped cattle prod used to push the device 
into the centre of the compost heap. When the 
data needed to be downloaded, the device was 
retrieved by pulling the twine.  
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gauze fixed over the lead end to allow forced entry into the centre of the compost without the 

intake pipe becoming blocked with compost debris. The other end of the metal pipe was sealed 

with insulation tape to stop air from outside the compost being drawn in during sampling. Due to 

the limited availability of the Minolta O2 analyzer, ADAS sheep compost O2 levels were only 

measured at weeks 10, 12, 16, 22 and 28 and weeks 8, 10, 14, 20 and 26 in the cattle composts.   

 

3.2.4.4 Compost turning 

Composts at both sites were turned the day before each sampling event (see Tables 3.7 and 3.8 and 

Figures 3.1 to 3.4). Turning frequency was designed to balance oxygen requirements, particularly 

in straw composts, while minimising loss of NH3, and heat from woodchip piles. ADAS and IGER 

turned their composts heaps (with a front loader tractor) every two weeks for the first two months, 

then every four weeks for a further four months and finally at six weekly intervals until the final 

sample collection (see subsequent section). The soiled bedding was composted over an eight month 

period to comply with BSI PAS 100 process controls, sampling and testing parameters.  

 

3.2.4.5 Compost quality  
Nutrient analyses of the compost material were carried out using the methods described in section 

3.2.2. 

 

3.2.4.6 Compost sampling 

Following the input of different dietary (IGER only) and livestock feedstock variables during 

housing, the 8 bedding treatments per trial site were composted (woodchip treatments at ADAS 

were composted in pyramid heaps and in windrows at IGER). Straw composts at both sites were 

piled up as efficiently as possible, but nondescript heap forms resulted. Compost samples were 

collected at the start of the composting trials and then at two weekly intervals; thereafter they were 

collected for the first two months of composting, then every four weeks for a further two months 

and finally at six weekly intervals until the final sample collection. This resulted in nine sampling 

events in total. Four individual 0.5 - 1 kg sub-samples were taken from dispersed points within 

each treatment in an attempt to overcome sample heterogeneity at each sampling event. While 

compost treatments were not replicated, four sub-samples were considered justifiable because the 

composts had been turned the day before. All samples were then analysed by the candidate at 

Bangor University, except for Total N and C, which were prepared by the candidate then sent to 

Duke University, Colorado, USA for analysis. 
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Each sampling event at ADAS and IGER was carried out in a single day ≤ 24hrs after the 

composts were turned. Tables 3.7 and 3.8, show the compost ages in days and weeks at each 

sampling event. Within the results section,!compost age is referred to in composting weeks. 

 

Table 3.7: ADAS Sheep (left), Cattle (right); pyramid compost age at each turning and sampling event  
Sampling 
Event 

Composting 
Days 

Composting 
Weeks   Sampling 

Event 
Composting 

Days 
Composting 

Weeks 
T0 ~ 20/1/06 15 2   T0 ~ 3/2/06 1 0 
T1 29 4   T1 15 2 
T2 43 6   T2 29 4 
T3 57 8   T3 43 6 
T4 85 12   T4 71 10 
T5 113 16   T5 99 14 
T6 155 22   T6 141 20 
T7 197 28   T7 183 26 
T8 ~ 17/3/06 232 33   T8 ~ 31/3/06 218 31 
 

Table 3.8: IGER Sheep and Cattle windrow compost age at each turning and sampling event! 
Sampling 
Event 

Composting 
Days Composting Weeks 

T0 ~ 25/1/06 9 1 
T1 23 3 
T2 37 5 
T3 51 7 
T4 79 11 
T5 107 15 
T6 149 21 
T7 191 27 
T8 ~ 23/3/06 226 32 

 

3.2.4.7 Frequency of variable analyses 

All listed nutrients were analysed in the raw bedding. Due to cost and/or time pressures, soluble P, 

TN, TC, (ergo, Total C:N) were only analysed at the start and end of composting. In addition to the 

cost and time issues, the concentrations of Total P, Cu and Zn were expected to change very little 

during composting, so were analysed at the end of composting only (see Tables 3.7 and 3.8 for 

compost ages at each sampling event). 

 

pH and EC were analysed in samples collected at T0, 1, 2, 3, 4, 5, 6, 7 and 8 

NO3
-, NH4

+, DIN, DON, TSN, DOC, (ergo, AC:N), K, Na, Ca were analysed in samples collected 

at T0, 2, 4, 6 and 8 
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Soluble P, TN, TC, (ergo, TC:N) were analysed in samples collected at T0, T8 

Total P, Cu and Zn were analysed in samples collected at T8 only 

 

 

3.2.5 Statistical methods 

The Welsh government’s funding did not provide for multiple replicates of each housing/bedding 

treatment at ADAS and IGER, resulting in one bedding-compost treatment-1. While four separate 

samples were taken from each heap on each sampling occasion, strictly these only provide a more 

accurate estimate of the composition of each heap and cannot be statistically analysed as 

independent replicates of each treatment combination. Nonetheless, because the designs of the two 

experiments were both fully factorial, this still allowed each main treatment effect (defined as 

bedding type, livestock type and bedding material at ADAS; and bedding, livestock and feed types 

at IGER) to be tested, by using the full set of interactions between them as the error term in the 

model. For example; stock on four of the eight bedding-composts at IGER were fed silage (these 

included two sheep treatments, one bedded on straw and the other on woodchips, and the same 

under cattle), while the stock in the remaining four pens were fed hay, but in all other aspects, were 

replicates of the four silage-fed treatments. It is acknowledged this approach does not provide a 

powerful test of the main effects, but it is a valid conservative model. A cost of the design is that it 

does not allow any straightforward method of testing the significance of interaction terms. It is 

reasonable to assume that any complex statistical method to attempt this would only provide weak 

results and add little useful information. Therefore, in adopting the chosen statistical model it is 

important to recognise that non-significant results for the main effect treatments do not necessarily 

imply that they have little impact on the measured variables. Instead, the lack of significance could 

be the result of large interactions between non-target variables included in each treatment - such as 

livestock and or bedding type when analysing the influence of feed type - creating a large error 

term. The selected statistical design is represented using the codes for the individual treatment 

compost heaps defined above, is to show how each pen/heap acts as a replicate for each main effect 

treatment (Tables 3.9 to 3.11 for the ADAS experiment and Table 3.12 for the IGER experiment).  

A further complication in the implementation of the experiments at ADAS was the different 

ages of the sheep and cattle composts (by two weeks) at the start of the composting period, 

resulting from the difference in timing between the two livestock types being turned out of the 

pens. Because, logistically, the subsequent sampling dates had to be the same for both compost 

types, this creates a two week disjuncture when the comparisons are made between sets containing 

cattle and sheep compost heap data. In order to find the solution to this problem likely to introduce 
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the least error, the candidate followed expert advice (personal communications, J. R. Healey) and 

made visual assessments of the changes in ADAS cattle composts and IGER sheep composts (as a 

reference only), on a per nutrient basis, to estimate the variability of nutrient changes in the ADAS 

sheep composts during the first 2 weeks of composting. It was concluded that changes to the 

ADAS sheep compost’s nutrient profile during the initial weeks were likely to have been smaller 

than those within the cattle composts. Therefore, in order to display the bedding data consistently 

between the two livestock types to enable comparison, while using the most accurate timeframe, 

the ADAS experiment results are presented using the cattle compost age. However, when sheep 

and cattle compost data are presented separately, the correct compost ages are given. 

 

Table 3.9: Summary of composts per bedding type in the ADAS experiment 

Independent  
pens and compost heaps 

 
Bedding type treatments 

codes W34 W53  W55  Straw  
Sheep Woodchip W34 S34 S34 S53 S55 SS 
Sheep Woodchip W53 S53 C34 C53 C55 CS 
Sheep Woodchip W55 S55 

    
Sheep Straw SS 

    
Cattle Woodchip W34 C34 

    
Cattle Woodchip W53 C53 

    
Cattle Woodchip W55 C55 

    
Cattle Straw CS 

    
 

Table 3.10: Summary of composts included per bedding material in the ADAS experiment  

Independent  
pens and compost heaps  

  Bedding materials treatments  
codes Woodchip Straw 

Sheep Woodchip W34 S34 S34 SS 
Sheep Woodchip W53 S53 S53 CS 
Sheep Woodchip W55 S55 S55   
Sheep Straw SS C34   
Cattle Woodchip W34 C34 C53   
Cattle Woodchip W53 C53 C55   
Cattle Woodchip W55 C55     
Cattle Straw CS     
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Table 3.11: Summary of composts included per livestock type in the ADAS experiment 

Independent  
pens and compost heaps  

  Livestock type treatments  
codes Sheep Cattle  

Sheep Woodchip W34 S34 S34 C34 
Sheep Woodchip W53 S53 S53 C53 
Sheep Woodchip W55 S55 S55 C55 
Sheep Straw SS SS CS 
Cattle Woodchip W34 C34     
Cattle Woodchip W53 C53     
Cattle Woodchip W55 C55     
Cattle Straw CS     

 

Table 3.12: Summary of composts included per treatment type in the IGER experiment 

Independent  
pens and compost heaps  

 
Bedding type 

treatments 
Feed type 
treatments 

Livestock type 
treatments 

codes Straw Woodchip Silage Hay Sheep Cattle  
Sheep Silage Straw SSS SSS SSC SSS SHS SSS CSS 
Sheep Silage Chip SSC SHS SHC SSC SHC SSC CSC 
Sheep Hay Straw SHS CSS CSC CSS CHS SHS CHS 
Sheep Hay Chip SHC CHS CHC CSC CHC SHC CHC 
Cattle Silage Straw CSS 

      
Cattle Silage Chip CSC 

      
Cattle Hay Straw CHS 

      
Cattle Hay Chip CHC 

      
 

To mitigate the disparity between the raw bedding and composting week 0 treatment levels, while 

maintaining continuity within the results section, change in nutrient concentrations during the 

housing period are presented in Tables 3.23, 3.24 (ADAS) and 3.44 (IGER), as opposed to 

presenting a contrast of the two data sets together - as is the case for the composting data see 

section 3.3.4.5 (ADAS) and section 3.3.5.5 (IGER), in which the results for both start and end of 

composting are determined from data at the same treatment level. 

 

Software programmes used in data analysis and graph generation were MS Excel v2010; SPSS 

v19.0 (IBM UK Ltd, Portsmouth, UK) and SigmaPlot v10.0 (Systat Software, San Jose, CA). 
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In order to manage such large data sets, individual analyses were carried out by treatment groups at 

different stages of the housing – composting continuum. Four separate samples of each raw 

bedding (4 replicate samples treatment-1) used at ADAS and IGER were sent to Bangor University 

where they were analysed by the candidate. These results of the four samples (raw bedding type-1) 

were considered to be valid replicates, and therefore meaned to provide a single result, a valid 

representative value for each raw bedding. However, for reasons previously described, the four 

pseudo-replicates samples collected compost-1 sampling event-1 was considered statistically invalid. 

Therefore data analysis was moved up a level and each compost mean (incl. sem) was used as a 

single data point (incl. sem). For example, analysis of the ADAS W34 bedding type, which was 

trialled in 1 sheep and 1 cattle pen, is represented as n=2. An alternative method, would have been 

to determine the mean of all ‘pseudo-replicate’ samples, i.e. in the case of the ADAS W34 bedding 

type, n=8 (2 composts * 4 samples compost-1). However, time did not allow for all the necessary 

data set adjustments to be carried out. 

ADAS raw bedding treatment groups (number of individual samples) are defined as:  

• Bedding types (W34 (n=4); W53 (n=4); W55 (n=4) and straw (n=4)) 

• Bedding materials (woodchip (n=12) and straw(n=4))  

ADAS compost treatment groups (number of compost means) are defined as: 

• Bedding types (W34 (n=2); W53 (n=2); W55 (n=2) and straw (n=2))  

• Bedding materials (woodchip only (n=6) NB* straw ‘type’ and ‘material’ is the same data   

• Livestock types (sheep (n=4) and cattle (n=4))  

In additional, the unbalanced number of samples per treatment group meant it was not possible to 

analyse all the ADAS treatment groups in a single multivariate ANOVA using SPSS. 

 

IGER raw bedding treatment groups (number of samples) are defined as:  

• Raw bedding types (Wc1 (n=4); Wc2 (n=4) and straw (n=4)) IGER needed two woodchip 

bedding deliveries. 

• Raw bedding materials (woodchip (n=8) and straw (n=4)) 

IGER compost treatment groups (number of compost means) are defined as: 

• Bedding types (straw (n=4) and woodchip (n=4))  

• Feed types (silage (n=4) and hay (n=4))  

• Livestock types (sheep (n=4) and cattle (n=4))  
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Nutritional differences BETWEEN the treatments within each group were determined at:  

• Raw bedding  

• Change during housing 

• Start of composting – ADAS week 0* and IGER week 1  

• End of composting – ADAS week 31* and IGER week 32 

Nutritional changes WITHIN each treatment over composting time:  

• ADAS nutrient content at week 0* versus week 31* 

• IGER nutrient content at week 1 versus week 32 

• IGER  total mass of nutrients at week 1 versus week 32 

 

ADAS: Raw bedding  
Method of determining nutritional difference between ADAS raw bedding types  
Test:  Univariate ANOVA 
Post hoc test: Tukey HSD 
Factor: Degrees of Freedom 
Intercept 1 
Bedding types 3 
Residual 12 
Corrected Total 15 

 
Method of determining nutritional difference between ADAS raw bedding materials 
Test:  Univariate ANOVA 
Post hoc test: None 
Factor: Degrees of Freedom 
Intercept 1 
Bedding materials 1 
Residual 14 
Corrected Total 15 

 

IGER: Raw bedding 
Method of determining nutritional difference between IGER raw bedding stocks: straw, woodchip delivery 1 
(Wc1) and woodchip delivery 2 (Wc2) 
Test:  Univariate ANOVA 
Post hoc test: Tukey HSD 
Factor: Degrees of freedom 
Intercept 1 
Bedding stocks 2 
Residual 9 
Corrected Total 11 
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Method of determining nutritional difference between IGER raw bedding materials 
Test:  Univariate ANOVA 
Post hoc test: None 
Factor: Degrees of freedom 
Intercept 1 
Bedding materials 1 
Residual 10 
Corrected Total 11 

 

Composting 

ADAS: Bedding types 
Method of determining nutritional differences between ADAS bedding types at week.0*; week.31* and 
change during housing 
Test:  Multivariate ANOVA 
Post hoc test: Tukey HSD 
Factor: Degrees of freedom 
Intercept 1 
Bedding types 3 
Residual 4 
Corrected Total 7 

 
Method of determining nutritional changes during composting in each bedding type at week.0* versus 
week.31* 
Test:  Multivariate ANOVA 
Post hoc test: None 
Factor: Degrees of freedom 
Intercept 1 
Sampling events 1 
Residual 2 
Corrected Total 3 

 

ADAS: Bedding materials and Livestock types 
Method of determining nutritional difference between bedding materials at week.0*; week.31* and change 
during housing and between livestock types at week.0*; week.31* 
Test:  Multivariate ANOVA 
Post hoc test: None 
Factor: Degrees of freedom 
Intercept 1 
Bedding materials 1 
Livestock types 1 
Residual 5 
Corrected Total 7 
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Method of determining nutritional difference within ADAS bedding material (woodchip only) at week.0* 
versus week.31*  
Test:  Univariate ANOVA 
Post hoc test: None 
Factor: Degrees of freedom 
Intercept 1 
Sampling events 1 
Residual 10 
Corrected Total 11 

 
Method of determining nutritional difference in ADAS livestock types at week.0* versus week.31* 
Test:  Multivariate ANOVA 
Post hoc test: None 
Factor: Degrees of freedom 
Intercept 1 
Sampling events 1 
Residual 6 
Corrected Total 7 

 

IGER 
Method of determining nutritional differences between IGER bedding types: feed types and livestock types 
at week.1, week.32 and change during housing 
Test:  Multivariate ANOVA 
Post hoc test: None 
Factor: Degrees of freedom 
Intercept 1 
Bedding 1 
Feed 1 
Livestock 1 
Residual 4 
Corrected Total 7 

 
Method of determining nutritional difference within IGER bedding, feed and livestock types at week.1 
versus week.32 and total mass (TM) of nutrients at week 1 versus TM at week.32 (see Appendix IV). 
Test:  Multivariate ANOVA 
Post hoc test: None 
Factor: Degrees of freedom 
Intercept 1 
Sampling events 1 
Residual 6 
Corrected Total 7 

 

  



 
68 

Regression analysis 

Changes in nutrient concentration in each treatment type were assessed using linear and, where 

appropriate, non-linear, decay regression. Linear regression analyses were carried out in both Excel 

and SPSS, and the resulting correlation co-efficients compared. Once it had been established the p 

values produced in SPSS were based on the same values and criteria as those in Excel, they were 

determined as correct. Decay curve regression analyses and associated ANOVA were produced 

using SigmaPlot. All graphs were generated in SigmaPlot. 
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3.3  Results  
 

3.3.1 Temperature changes in ADAS and IGER compost treatments 

Figures 3.1 to 3.4 show the temporal dynamics of compost temperatures (° C) by livestock type, 

during each site’s 8 month composting trial. The dashed line (- - -  ) at 65° C indicates UK PAS 

100 pathogen guidelines, which require compost temperatures to achieve > 65° C for 7 days (not 

necessarily consecutively), in order for the compost to be deemed ‘sanitized’. This is a compulsory 

requirement for all commercial producers, and is pertinent to this study if farmers were to choose to 

re-use the compost as bedding the following year. Temperature is one of the primary indicators of 

composting performance (Bernal, 2009). With the exception of IGER’s silage/woodchip 

treatments, all woodchip composts achieved thermophilic temperatures (> 50° C) within the first 10 

days, but only ADAS’s W34 composts met UK PAS100 thermal kill requirements. Most straw 

treatments reached temperatures > 70° C; the upper limit before microbes are inhibited (Larney et 

al., 2008(a); Schulze, 1962). Optimal compost temperatures depend largely on feedstock (Nakasaki 

et al., 1985). Tuomela et al. (2000) report that 40 - 50° C is optimal for lignin degradation, but 

within the broader spectrum of farmyard manure 40 - 65 °C is considered ideal (Rynk, 1992; 

Eghball, 2002; Misra, 2003; Kuo, 2004 and Bernal, 2009). 

  At ADAS, neither W53 nor W55 woodchip treatments under sheep or cattle met the 

PAS100 requirement (Figures 3.1 and 3.2), indicating a limited capacity to absorb sufficient 

nutrient-rich liquid excrement to stimulate microbial activity. In contrast, both W34 treatments 

attained peak temperatures > 70° C and sustained > 65° C for 10 days during the first 3 weeks’ 

composting, as did the sheep-straw. These results show the importance of initial moisture content 

in determining woodchip’s capacity to retain excretal N during housing and achieve the regulatory 

requirements for re-use. 

 IGER’s woodchip treatments did not achieve 65° C (Figure 3.3 and 3.4), but - critically - 

neither of the silage-woodchip treatments achieved thermophilic composting. The maximum 

temperature achieved was 43° C in CSC after 120 days, which was in contrast to the hay fed 

woodchip treatments, which both reached > 50° C. Again, this result indicated that the a priori 

tested variable at IGER had a controlling influence on composting performance. In summary, the 

temperature results from both sites suggest that a combination of dry bedding and dry feed stuff 

would deliver the best composting performance.   



 

 

 
Figure 3.1: Temperatures (°C) achieved during an 8 month composting period of woodchip and straw derived bedding materials from the sheep 

trial at ADAS. The graph shows the results for the different initial woodchip moisture contents (34, 53 and 55 %) in comparison to straw. The 

composts were pyramidal structures and turning events are also shown. 
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Figure 3.2: Temperatures (°C) achieved during an 8 month composting period of woodchip and straw derived bedding materials from the cattle 

trial at ADAS. The graph shows the results for the different initial woodchip moisture contents (34, 53 and 55 %) in comparison to straw. The 

composts were pyramidal structures and turning events are also shown. 
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Figure 3.3: Temperatures (°C) achieved during an 8 month composting period of woodchip and straw derived bedding materials from the sheep 

trial at IGER. The graph shows the results for the different bedding material-animal feed combinations. The composts were windrow structures and 

turning events are also shown. 
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Figure 3.4: Temperatures (°C) achieved during an 8 month composting period of woodchip and cattle derived bedding materials from the cattle 

trial at IGER. The graph shows the results for the different bedding material-animal feed combinations. The composts were windrow structures and 

turning events are also shown. 
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3.3.2 Compost moisture contents at ADAS and IGER  
 

3.3.2.1 Woodchip absorbency capacity and water drop penetration time (WDPT)  

Two experiments were carried out to determine the water absorbance characteristics of woodchips. 

The first aimed to establish the water absorbency rate and water holding capacity of woodchips 

containing different initial moisture contents (50 %, 40 %, 30 %, 20 %, forced air dried (FAd), 6.89 

% and 0 %). The second experiment involved measurement of the water penetration drop time 

(WPDT; Letey, 1969) to characterise the degree of surface hydrophobicity in woodchips with 

differing moisture contents (50 %, 40 %, 30 %, 20 %, naturally air dried (NAd), 14.5 % and 0 %). 

(See Appendix I for full details). 

 

 

Experiment 1: Woodchip absorbency rate and capacity 

Woodchips were prepared with initial moisture contents of 50 %, 40 %, 30 %, 20 %, 6.89 % and 0 

% (see Appendix I for methods) the treatments were then submerged for 1 hour before being 

weighed, this was repeated after immersion periods of either 1 day or 1 week. The net weight 

results are summarised in Figure 3.5 and Table 3.13. 

 

Table 3.13: Woodchip weights recorded at each time interval after immersion in water. Values represent 
means, incl. ±1 se. % MC represents the initial moisture content of the woodchip. 

% MC Start (g) se 1 hour (g) se 1 day (g) se 1 week (g) se 

50.3 % 82.8 0.62 148 1.97 170 4.15 190 2.94 

40.2 % 77.4 0.70 149 0.62 172 1.66 193 2.88 

30.2 % 71.7 0.43 145 2.16 165 2.56 188 1.14 

20.3 % 66.5 0.13 154 0.87 172 0.54 196 0.70 

6.89 % 61.1 0.46 155 2.19 181 2.08 200 1.86 

0 % 56.7 0.18 139 2.65 174 1.20 193 1.73 
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Figure 3.5: Absorbency rate (speed of absorbency) and capacity (volume of water) of woodchips 

with different initial moisture contents. Each column increment represents the percentage weight 

increase within the defined time period, based on the initial mean weight of the treatment. a, b, c 

and d, in each column increment represent significant (p <0.05) differences between each 

treatment during that time period.  

 

Experiment 2: Water Drop Penetration Time (WDPT)  

The WDPT test was developed by Letey (1969) and measures the time that hydrophobicity persists 

on a porous surface. A drop of water is placed on a woodchip surface and the time taken for the 

liquid to penetrate the matrix is recorded. If the drop does not penetrate immediately, it indicates 

that the water surface tension is above that of the wood and woodchip surface. This is identified by 

the water contact angle being greater than or equal to 90°. The WDPT measures the stability of 

water repellency (Doerr, 1998), which is an important determinant of factors such as soil surface 

run-off. Letey et al. (2000) recognised that, owing to the radius of some pores being greater than 

the droplet radius, part of the droplet might disappear, even when the liquid to surface contact 

angle is more than 90°. 
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Plate 3.5: 0 % replicate 1, drop 2         Plate 3.6: 50 % replicate 1, drop 3 
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Figure 3.6: Average water drop penetration time in woodchips of different intrinsic moisture 

content. Values represent means (n=9) incl. ±1 se. 

 

 

The results in Figure 3.6 show that hydrophobicity appears to inhibit absorption in woodchips to a 

similar extent at all initial moisture contents. However, as < 5 % MC is impractical within a 

working agricultural scenario, woodchip hydrophobicity may be considered a purely theoretical 

problem for Welsh farmers.  
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3.3.2.2 Raw bedding and compost % moisture contents at ADAS   
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Figures 3.7 (sheep) 3.8 (cattle) and 3.9 (bedding types): show changes in % moisture content 

sheep (fig. 3.7) and cattle (fig. 3.8) treatment-1 during composting at ADAS and the site’s ‘a priori’ 

variable; bedding type (fig. 3.9). (n=#) indicates the number of composts included treatment-

1.Values represent mean ±1 se. 
 

The sheep composts were 2 weeks old by the first sampling event. As the W34 compost’s 

temperature in the intervening period reached > 70° C (see Figures 3.1 and 3.2), it is reasonable to 

assume considerable amounts of moisture may have evaporated. It may also be deduced from the 

data in Figure 3.7 that temperature increases in Sheep 55% during the first 2 weeks of composting 
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reduced the material’s moisture content, as the compost MC is 7.5 % lower than the initial 53% in 

the raw bedding. Conversely, MC in Sheep 53% treatment is still greater after 2 weeks’ composting 

than it was in the raw bedding, suggesting less efficient composting, probably as a result of the 

woodchips being older, denser material, made from fence post points with a C:N ratio of 592:1 

compared to 408:1 and 438:1 in W34 and W55 respectively. Straw bedding clearly absorbed many 

times its initial MC of 10.8 %, in excretal liquids and sustained high thermophilic temperatures for 

3 weeks (Figures 3.1 and 3.2). 

The cattle woodchip data suggest ca. 70 % MC is the maximum absorbency capacity of 

woodchips under indoor livestock housing conditions, as all three woodchip treatment MCs were 

within a range of 2.2 % on day 1 of composting. Therefore, the W34 treatment absorbed an 

additional 95 %, compared to only 30 % and 26 % in the W53 and W55 treatments respectively. 

Although the capacity percentages are different, the pattern of these results reflects those found in 

the water absorbency experiment described in section 3.3.2.1 and Appendix I. On the strength of 

this evidence it is reasonable to conclude that drier woodchips have the capacity to absorb greater 

amounts of excretal liquid, making them more efficient as bedding and facilitating greater 

microbial activity, hence higher compost temperature.   
 

Table 3.14: Dry matter content in ADAS raw beddings (RB) and additional effluent moisture absorbed 
during housing in soiled bedding (SB) and ‘Manure’ (mass of material in SB minus RB). Dry mass (DM), 
wet weight (WW), moisture content (MC), ‘at day #’ denotes the age of the treatment compost.  

!
RB RB RB SB SB WW SB gain Manure Manure Manure 

! DM kg MC kg WW kg WW kg gain  kg g kg-1 of DM DM kg WW kg MC% 

Treatment    at day 15 at day 15 at day 15 at day 15 at day 15 at day 15 
S34 2326 800 3125 3332 207 88.9 816 2208 63 
S53 2233 1177 3409 3546 137 61.4 871 3994 78 
S55 2336 1283 3619 3446 -172 -73.8 1747 4334 60 
SS 597 65.0 662 962 301 503 841 2738 69 
Treatment    at day 1 at day 1 at day 1 at day 1 at day 1 at day 1 
C34 2840 977 3818 4748 931 328 519 5482 91 
C53 2620 1381 4001 4415 414 158 858 6625 87 
C55 2602 1429 4031 4408 377 145 1003 7372 86 
CS 1347 145 1492 2359 867 643 560 5311 89 
SB (WW) is determined by RB (DM) and compost MC at the time of sampling; SB gain g kg-1 of RB (DM) is SB gain (kg) as a percentage of RB 
DM (kg) *1000. Manure (DM) was determined as compost (DM) – RB (DM) and manure (WW) by compost (WW) – SB (WW).    
 
The ADAS cattle data in Table 3.14 shows that during housing the cattle straw bedding absorbed 

643 g of effluent kg-1 of raw bedding (DM); twice the weight absorbed by the cattle W34 (328 g 

kg-1), which in turn, absorbed twice the weight taken up by W53 (158 g kg-1) and W55 (145 g kg-1), 

reaffirming that woodchip with lower initial moisture content is a more efficient bedding material. 
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Estimation of N lost in manure removed from ADAS cattle pens  

Table 3.15 shows estimates of manure removed from the ADAS cattle treatments during housing 

and associated loss of N from the composted material. This assessment of N loss is included in the 

site nitrogen budget presented in section 3.3.6. Manure volume is estimated by age, sex and weight 

to be 22.5 kg head-1 day-1 and contain 10 % dry matter (DEFRA (RB209), 2010), resulting in a 

total manure (DM) input of 1008 kg pen-1. The DM of manure removed is determined as follows: 

1,008 kg – (compost DM pen-1 – bedding DM pen-1). If the N content of the manure DM is 

estimated to be 3.6 %, (or 0.36% wet weight) (DEFRA (RB209), 2010) then the total estimated kg 

N removed pen-1 can be calculated (presented in the final column of Table 3.15). However, by 

DEFRA’s estimates; total manure pen-1 is 10,080 kg (at 10 % DM) theoretically includes 9,072 ltrs 

(or kg) of excretal liquid. Therefore, based on the weights of the soiled beddings pen-1; W34 (931 

kg), W53 (414 kg), W55 (377 kg) and Straw (867 kg), lost 89.8 %, 95.4 %, 95.8 % and 90.4 % 

respectively, as seepage during the housing period. However, IGER’s cattle fed silage on woodchip 

seepage volumes (100 ltrs head-1) indicate that much of this liquid may have been absorbed or at 

least trapped in the bedding layer and then evaporated instead of passing straight through the 

bedding. This is an unknown and, without empirical data, cannot be satisfactorily determined. 
 

Table 3.15: Estimation of N loss in manure removed from the ADAS cattle treatment pens 
ADAS  DEFRA estimate of  ‘Manure’ DM Estimated manure Estimated N removed 
Treatment  manure DM (kg) pen-1  (kg) pen-1 removed DM (kg) pen-1 3.6 % pen-1 DM 
C34 1,008 519 489 17.5 
C53 1,008 858 151 5.36 
C55 1,008 1003 5 0.11 
CS 1,008 560 448 16.1 

‘Manure’ refers to additional DM of SB (minus RB DM).  
Italics indicate estimates (DEFRA (RB209), 2010). 
 

The figures in Table 3.15 suggest ADAS removed almost 50 % manure (DM) from the cattle W34 

and straw treatments; 15 % from the W53 and < 1 % form W55.  
 

3.3.2.3 Raw bedding and compost % moisture contents at IGER   

IGER’s woodchip compost temperature data suggests the wetter silage diet, limited microbial 

activity in comparison to hay-fed livestock treatments (see Figures 3.3 and 3.4) although this is not 

supported by a comparative decrease in hay MC versus silage MC, see Figure 3.12, rather, that 

compost MC was initially determined by bedding type in sheep Figure 3.10 and cattle Figure 3.11. 

Although, the temperature increases seen in all four silage-fed composts treatments between weeks 

15 - 26 (Figures. 3.3 and 3.4) are clearly illustrated by the decrease in silage MC (Figure 3.12).   
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Figures 3.10 (sheep) 3.11 (cattle) and 3.12 (feed): show changes in % moisture content sheep (fig. 

3.10) and cattle (fig. 3.11) treatment-1 during composting at IGER and the site’s ‘a priori’ 

variable; feed type (fig. 3.12). (n=#) indicates the number of composts included treatment-1.Values 

represent mean ±1 se. 
 

In a study of this type, where a woodchip bedding material is directly compared to straw bedding, 

the different ratios of bedding to manure (B:M) in the bedding-compost after housing are of critical 

significance. The B:M ratio is probably the most important determining factor in this composting 

trial, but should it be seen as an inherent physical advantage (or disadvantage) of each bedding type 

or should the B:M ratio be controlled, in order to test the beddings under the balanced conditions? 

Table 3.16 shows that in 5 out 6 woodchip composts at ADAS, there is < 400 g of manure to 
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woodchip kg-1, but 1.44 kg sheep manure to straw kg-1 and > 400 g of cattle manure to straw kg-1. 

IGER’s sheep B:M ratios are similar to ADAS, (see Tables 3.16 and 3.17) but CHS and CHC have 

balanced B:M ratios. 

 

3.3.2.4 Compost weights 

ADAS 

Table 3.16: Total dry matter (DM) of raw bedding (RB) applied to each ADAS treatment and the total DM 
of composted bedding. DM of manure is determined by deducting the DM of RB from the DM of compost. 
B:M ratio is the ratio of raw bedding : manure in the compost after housing.  

ADAS RB Manure  B:M Compost Compost 

Treatments DM (kg) DM (kg) ratio DM (kg)  % DM 

S34 2326 816 0.35 3142 57 

S53 2233 871 0.39 3104 41 

S55 2336 1747 0.75 4083 52 

SS 589 850 1.44 1438 39 

C34 2840 519 0.18 3360 33 

C53 2620 858 0.33 3478 32 

C55 2602 1003 0.39 3606 31 

CS 1347 560 0.42 1907 25 
 

IGER  

Due to excess bedding being applied during IGER’s housing trials (Table 3.17), parts of the soiled 

beddings (SB) were discarded in order for the compost windrows to fit back in the space available 

(see section 3.2.1.2).  
 

Table 3.17: Dry mass (DM) of bedding and manure inputs in all IGER treatments, as well as volumes of 
seepage and DM of discarded and composted SB from cattle.  
IGER RB Manure  B:M Seepage SB Discarded  Composted Compost 
Treatments DM (kg) DM (kg) ratio  (ltrs) DM (kg) SB DM (kg) SB DM (kg)  % DM 

SSS 276 371 1.34 –! 647 – 647 39.2 
SSC 1038 422 0.41 – 1460 – 1460 48.3 
SHS 156 304 1.94 – 460 – 460 34.7 

SHC 781 375 0.48 – 1156 – 1156 46.2 

CSS 1659 852 0.51 35 2511 856 1655 27.5 
CSC 3952 1339 0.34 600 5291 2958 2333 34.2 
CHS 1609 968 0.60 35 2577 670 1907 31.5 
CHC 2766 1823 0.66 250 4589 2395 2194 35.0 
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3.3.3 Compost (%) oxygen contents at ADAS and IGER 

 

3.3.3.1 Oxygen (%) content in ADAS compost treatments 

Overall, the woodchip composts maintained high oxygen levels throughout the sampling period 

(Tables 3.18 and 3.19) primarily as a result of the rigidity of the woodchips, which provided robust 

structural porosity and maintained airflow throughout the composts. Ideally, all composts should 

maintain > 10 % oxygen but not < 5 % (Cooperband, 2000), which most of the ADAS composts 

did, apart from the cattle-straw treatment. This is thought to be due to the straw-based composts’ 

high moisture content and rapid degradation, resulting in structural collapse and compaction, 

limiting oxygen diffusion within the pile. In addition, the necessity of having a standardized 

turning schedule for all the composts meant that the turning regime proved too infrequent for 

wetter straw-manure material. Compost turning is essential to replenish depleted oxygen levels in 

composts that have high moisture contents and lack a porous structure. However, turning the 

compost also releases NH3 trapped within the pile, and, in the case of woodchip based composts, 

where decomposition rates are slow due a lack of available nutrients, the heat released by the 

break-up of the material disadvantages mesophilic bacterial colonies, which take time to re-

establish temperate conditions. Consequently, the turning schedule over the first two to four 

months when composting is most active, was too infrequent for straw based composts but too 

frequent for woodchip composts.  

 

Table 3.18: Oxygen (%) content in ADAS compost treatments between weeks 8 – 26 (cattle) and weeks 10 
– 28 (sheep). 
Treatment week 10 week 12 week 16 week 22 week 28 
Sheep W34 17.4 18.6 18.6 18.4 19.7 
Sheep W53 19.4 20.4 19.5 20.4 20.1 
Sheep W55 15.9 19.6 19.8 20.5 20.2 
Sheep Straw 15.5 17.3 17.2 17.7 19.8 
            
Treatment week 8 week 10 week 14 week 20 week 26 
Cattle W34 14.5 18.8 18.9 19.8 19.9 
Cattle W53 19.5 17.4 20.1 20.1 20.2 
Cattle W55 17.7 19.9 18.6 19.9 20.1 
Cattle Straw 5.10* 0.90** 3.00** 0.90** 8.80* 

* oxygen deficient  
** anaerobic 
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3.3.3.2 Oxygen (%) content in IGER compost treatments 

O analysis began on week 9 of the IGER composting period (Table 3.19), by which point IGER’s 

sheep-silage-straw (SSS) compost had cooled to ≤ 40° C. This is in contrast to the sheep-silage-

woodchip (SSC) compost which did not achieve 40° C throughout the composting period (see 

Figure 3.3). It is suggested the anaerobic conditions which developed in both the sheep and cattle 

silage-fed composts were caused by a lack of  heat convection, drawing in fresh air and 

replenishing depleted oxygen levels. The particularly low temperatures recorded in the sheep-

silage-woodchip (SSC) throughout the composting period will certainly have limited convection 

and resulted in its anaerobicity.   

 

Table 3.19: Oxygen (%) content in IGER compost treatments from week 9 to week 27. 
Treatment     week 9 week 11 week 15 week 21 week 27 

Sheep 
Silage 

Straw 5.50* 7.90* 1.60** 1.00** 7.70* 
Woodchip 4.60** 6.70* 15.8 1.20** 6.20* 

Hay 
Straw 19.1 20.0 17.9 19.7 19.1 
Woodchip 19.6 20.2 18.9 19.8 19.5 

Cattle 
Silage 

Straw 16.9 18.9 19.7 19.8 19.5 
Woodchip 19.2 19.1 18.7 18.3 19.2 

Hay 
Straw 20.2 20.4 20.4 20.4 20.7 
Woodchip 18.2 20.3 20.9 20.4 20.4 

* oxygen deficient  
** anaerobic 
 

 

 

!
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3.3.4 Chemical changes during housing and composting at ADAS  

 

3.3.4.1 Chemical characterisation of raw beddings 
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Table 3.20: Mean nutrient contents in each of the ADAS raw bedding types and raw bedding materials, incl. ±1 se. Letters a, b, c, d; different letters (by row) 
after bedding type data denote difference (p <0.05) in variable concentrations. Identical letter(s) denote (p >0.05). Symbols displayed between bedding material 
data represent (* p<0.05; ** p<0.01 and *** p<0.001) differences in variable concentrations. 

ADAS W34       W53       W55       Straw       Tukey Wood       Straw     

Variables (n=4)   se   (n=4)   se   (n=4)   se   (n=4)   se   HSD (n=12)   se   (n=4)   se 

pH 3.42 ± 0.03 a 4.23 ± 0.02 a 4.04 ± 0.03 a 7.70 ± 0.54 b 0.38 3.89 ± 0.18 *** 7.70 ± 0.54 

EC mS/cm 0.16 ± 0.01 a 0.05 ± 0.00 a 0.15 ± 0.01 a 3.36 ± 1.13 b 0.80 0.12 ± 0.03 *** 3.36 ± 1.13 

NO3
- mg/kg 0.23 ± 0.19 a 1.10 ± 0.43 a 0.92 ± 0.54 a 0.00 ± 0.00 a 0.51 0.75 ± 0.42   0.00 ± 0.00 

NH4
+ mg/kg 0.42 ± 0.14 a 0.45 ± 0.45 a 4.34 ± 0.92 a 97.2 ± 9.92 b 7.11 1.73 ± 1.10 *** 97.2 ± 9.92 

DIN mg/kg 0.65 ± 0.29 a 1.55 ± 0.65 a 5.26 ± 1.41 a 97.2 ± 9.92 b 7.16 2.48 ± 1.33 *** 97.2 ± 9.92 

DON mg/kg 22.1 ± 4.10 a 11.7 ± 2.15 a 36.1 ± 12.6 a 367 ± 136 b 96.9 23.3 ± 8.73 *** 367 ± 136 

TSN mg/kg 22.8 ± 4.32 a 13.2 ± 2.32 a 41.3 ± 13.8 a 464 ± 136 b 96.8 25.8 ± 9.79 *** 464 ± 136 

DOC mg/kg 2462 ± 149 a 655 ± 47.4 a 2566 ± 142 a 6433 ± 1783 b 1270 1895 ± 471 ** 6433 ± 1783 

AC:N 120 ± 22.0 a 53.5 ± 9.54 ab 87.1 ± 26.2 ab 14.1 ± 0.58 b 25.1 86.8 ± 23.3 ** 14.1 ± 0.58 

K mg/kg 247 ± 5.00 a 125 ± 4.15 a 382 ± 16.3 a 4947 ± 1819 b 1286 252 ± 55.6 *** 4947 ± 1819 

Na mg/kg 21.5 ± 0.59 a 9.68 ± 0.74 a 19.9 ± 2.24 a 333 ± 103 b 72.8 17.0 ± 3.01 *** 333 ± 103 

Ca mg/kg 11.4 ± 0.75 b 4.63 ± 0.13 a 17.7 ± 0.44 c 33.1 ± 1.84 d 1.45 11.2 ± 2.82 *** 33.1 ± 1.84 

TN g/kg 1.20 ± 0.05 a 0.81 ± 0.04 a 1.10 ± 0.06 a 4.49 ± 0.81 b 0.57 1.03 ± 0.09 *** 4.49 ± 0.81 

TC g/kg 486 ± 3.43 a 479 ± 1.16 a 478 ± 1.59 a 433 ± 3.93 b 3.95 481 ± 2.37 *** 433 ± 3.93 

TC:N 408 ± 21.6 b 592 ± 33.5 c 438 ± 20.6 b 100 ± 18.8 a 34.4 479 ± 46.4 ** 100 ± 18.8 

AP mg/kg 6.55 ± 0.31 a 7.61 ± 0.52 a 10.1 ± 0.37 a 20.2 ± 3.24 b 2.36 8.10 ± 0.87 *** 20.2 ± 3.24 

TP mg/kg 1481 ± 146 a 1024 ± 131 a 2279 ± 200 a 2715 ± 626 a 485 1594 ± 298   2715 ± 626 

Cu mg/kg 2.51 ± 0.26 a 9.30 ± 5.03 a 7.01 ± 3.86 a 4.16 ± 0.94 a 4.54 6.28 ± 2.53   4.16 ± 0.94 

Zn mg/kg 13.7 ± 0.79 a 83.9 ± 3.67 b 15.5 ± 1.03 a 6.45 ± 0.05 a 2.75 37.7 ± 18.0   6.45 ± 0.05 
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Differences in Ca, Zn concentrations and total C:N ratio between the three raw woodchip beddings 

are considered to be due to W53 being produced from older wood - see section 3.2.1. Initially, the 

slightly elevated Zn levels found in W53 were thought to suggest that the ex-fence post points had 

been treated with a wood preservative, as some American brands such as Green’s clear wood 

preservative contain Zinc Naphthenate (23.6 %) and Zinc metal (3 %). However, preservative 

treated wood usually contains between 1 to 5 g Zn /kg (personal communication with D. L. Jones). 

Nevertheless, the higher total C:N present in W53 compared to W34 (p = 0.02) and W55 (p = 

0.04), is considered to result from the material being produced from older, core wood. Differences 

and similarities in nutrient concentrations between wood and straw bedding materials are in line 

with expectations. Straw contains significantly greater concentrations (p <0.01) of all measured 

variables, except NO3
-, total phosphorus (TP) Copper (Cu) and Zinc (Zn).   

 

3.3.4.2 Actual change in nutrient concentrations during ADAS housing trials 

Actual change in nutrient concentrations during housing is presented because the raw bedding data 

and composting week* 0 data originate from different treatment 'levels' - i.e. bedding types, 

bedding materials and livestock types at the start of composting are all combinations of at least 2 

housing treatments, each composed of different percentages of bedding and livestock manure.  

 

Table 3.21: Actual change in nutrient concentrations during the housing period incl. ±1 se and se of diff. 
(Tukey HSD). Letters a, b, c, d; different letters (by row) after treatment data denote difference (p <0.05) in 
variable concentrations. Identical letter(s) denote (p >0.05). 
ADAS W34*       W53*       W55*       Straw*       Tukey  
Variable (n=2)   se   (n=2)   se   (n=2)   se   (n=2)   se   HSD 
pH 4.88 ± 0.16 a 4.05 ± 0.26 a 4.05 ± 0.07 a 0.47 ± 0.36 b 0.33 
EC mS/cm 2.41 ± 0.26 a 3.01 ± 0.30 a 1.86 ± 0.84 a 3.09 ± 1.93 a 1.51 
NO3

- mg/kg 532 ± 252 a 235 ± 18.7 a 180 ± 163 a 47.8 ± 10.2 a 213 
NH4

+ mg/kg 1369 ± 839 a 2389 ± 136 a 1387 ± 1148 a 4242 ± 474 a 1064 
DIN mg/kg 1901 ± 587 a 2623 ± 155 a 1567 ± 985 a 4290 ± 484 a 887 
DON mg/kg 424 ± 17.1 a 430 ± 64.8 a 370 ± 154 a 1153 ± 361 a 282 
TSN mg/kg 2325 ± 604 a 3054 ± 90.4 ab 1937 ± 832 a 5443 ± 123 b 735 
DOC mg/kg -112 ± 129 a 2239 ± 449 a -514 ± 614 a 5654 ± 5437 a 3883 
AC:N -107 ± 0.22 a -48.6 ± 0.17 c -61.0 ± 0.15 b -11.8 ± 0.88 d 0.66 
K mg/kg 3976 ± 1232 a 4160 ± 667 a 1591 ± 710 a 5096 ± 148 a 1116 
Na mg/kg 955 ± 521 a 956 ± 333 a 316 ± 164 a 1155 ± 49.2 a 453 
Ca mg/kg 797 ± 285 ab 890 ± 163 ab 322 ± 143 a 1719 ± 23.1 b 254 
TN g/kg 5.11 ± 0.81 a 6.58 ± 0.89 a 6.10 ± 0.24 a 14.6 ± 2.32 b 1.86 
TC g/kg -55.2 ± 3.93 a -40.6 ± 4.03 a -47.9 ± 13.2 a -52.3 ± 19.5 a 17.1 
TC:N -337 ± 8.55 c -530 ± 6.85 a -377 ± 3.82 b -76.1 ± 1.57 d 8.28 
AP mg/kg 253 ± 18.5 a 239 ± 94.5 a 345 ± 52.6 a 354 ± 122 a 116 
* bedding means include sheep and cattle compost data of different ages; sheep +2 weeks. 
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pH increases during housing were similar between the woodchip beddings, owing to the buffering 

effect of manure additions (Table 3.21). In contrast, the straw bedding pH remained much the same 

throughout the housing period. Increases in the concentration of each nitrogen fraction were similar 

between all bedding types, but overall total available nitrogen (TSN) increased significantly more 

in the straw bedding than in both W34 and W55. Decreases in W34 and W55 DOC concentrations 

are the result of the sheep composts being 2 weeks old when the first samples were taken. For 

example, DOC concentrations in the S55 treatment had fallen by 1.1 g /kg, from 2566 mg /kg in the 

raw bedding down to 1437 mg /kg by the time the first samples were analysed. Similarly, 

concentrations in S34 had fallen by 250 mg/kg. In contrast, DOC in C34 increased by 20 mg /kg 

and in C55 by 100 mg /kg. These disparities where compounded by the bedding type means not 

being adjusted proportionately to mass inputs for each livestock type, generating a disproportionate 

influence from the sheep data. This source of error is acknowledged, but time did not allow for 

adjustments throughout the datasets and statistical analyses. However, DOC concentrations were 

very low in the W53 raw bedding, compared to W34 and W55 and the changes during housing 

resulted in similar DOC contents in all three woodchip types at the start of composting. There is 

considerably greater DIN (due to NH4
+ content) in the raw straw than the three woodchip bedding 

types, but this is not statistically significant (p >0.05) because of the level of variation within the 

straw stock itself (the result of ADAS using a mixture of wheat and barley straw). 

 
Table 3.22: Actual change in nutrient contents of bedding material and livestock treatments during 
housing, incl. ±1se. Symbols displayed between treatment data represent significant (* p<0.05; ** p<0.01 
and *** p<0.001) differences in variable concentrations between treatments within pairs. 
ADAS Wood*       Straw*     Sheep*     Cattle     

Variable (n=6)   se   (n=2)   se (n=4)  se   (n=4)   se 

pH 4.33 ± 0.19 *** 0.47 ± 0.36 3.57 ± 0.94   3.15 ± 1.03 

EC mS/cm 2.43 ± 0.32   3.09 ± 1.93 2.87 ± 0.85   2.31 ± 0.38 

NO3
- mg/kg 315 ± 104   47.8 ± 10.2 345 ± 159   152 ± 66.9 

NH4
+ mg/kg 1715 ± 426 ** 4242 ± 474 1697 ± 821 * 2996 ± 578 

DIN mg/kg 2030 ± 358 ** 4290 ± 484 2042 ± 704   3148 ± 545 

DON mg/kg 408 ± 44.9 ** 1153 ± 361 735 ± 261   454 ± 122 

TSN mg/kg 2439 ± 337 ** 5443 ± 123 2777 ± 931   3602 ± 659 

DOC mg/kg 538 ± 578   5654 ± 5437 384 ± 817   3250 ± 2646 

AC:N -72.2 ± 11.3 * -11.8 ± 0.88 -57.2 ± 19.4   -57.0 ± 19.9 

K mg/kg 3242 ± 662   5096 ± 148 3016 ± 846   4395 ± 704 

Na mg/kg 742 ± 213   1155 ± 49.2 604 ± 223   1088 ± 216 

Ca mg/kg 670 ± 145 ** 1719 ± 23.1 790 ± 337   1074 ± 251 

TN g/kg 5.93 ± 0.42 ** 14.6 ± 2.32 7.15 ± 1.76   9.04 ± 2.65 

TC g/kg -47.9 ± 4.56   -52.3 ± 19.5 -59.2 ± 5.59 * -38.9 ± 4.20 

TC:N -415 ± 37.3 ** -76.1 ± 1.57 -327 ± 93.5   -333 ± 95.1 

AP mg/kg 279 ± 35.2   354 ± 122 226 ± 30.4 * 370 ± 43.8 

* bedding means include sheep and cattle compost data of different ages; sheep +2 weeks. 
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The low concentration of DIN in the raw woodchip bedding (Table 3.20) is compounded by high 

losses (assumed to be of volatilized NH3) during housing, highlighted by the contrasting increases 

in TSN (p <0.01) between straw and wood-based treatments during housing (Table 3.22). This is a 

critical farming practice and environmental issue to address if woodchip is to be considered viable 

as winter livestock bedding. TN increase in straw composts is indicative of straw’s performance as 

a bedding material and the resulting compost B:M ratio (see Table 3.16).   

 

3.3.4.3 Chemical characterisation of treatments at the start of composting 

Table 3.23: Mean nutrient contents in each ADAS bedding type at the start of the composting period, incl. 
±1 se and SE of Diff. (Tukey HSD). Letters a, b, c, d; different letters (by row) after treatment data denote 
difference (p <0.05) in variable concentrations. Identical letter(s) denote (p >0.05). 
ADAS W34       W53       W55       Straw       Tukey  

Week 0 * (n=2)   se   (n=2)   se   (n=2)   se   (n=2)   se   HSD 

pH 8.29 ± 0.16 a 8.28 ± 0.26 a 8.09 ± 0.07 a 8.17 ± 0.36 a 0.33 

EC mS/cm 2.57 ± 0.26 a 3.06 ± 0.30 a 2.01 ± 0.84 a 6.45 ± 1.93 a 1.51 

NO3- mg/kg 532 ± 252 a 236 ± 18.7 a 181 ± 163 a 47.8 ± 10.2 a 213 

NH4+ mg/kg 1369 ± 839 a 2389 ± 136 a 1391 ± 1148 a 4339 ± 474 a 1064 

DIN mg/kg 1902 ± 587 a 2625 ± 155 a 1572 ± 985 a 4387 ± 484 a 887 

DON mg/kg 446 ± 17.1 a 442 ± 64.8 a 406 ± 154 a 1520 ± 361 a 281 

TSN mg/kg 2347 ± 604 a 3067 ± 90.4 ab 1979 ± 832 a 5907 ± 123 b 735 

DOC mg/kg 2351 ± 129 a 2894 ± 449 a 2051 ± 614 a 12087 ± 5437 a 3883 

AC:AN 1.06 ± 0.22 a 0.95 ± 0.17 a 1.10 ± 0.15 a 2.03 ± 0.88 a 0.66 

K mg/kg 4223 ± 1232 a 4285 ± 667 a 1973 ± 710 a 10043 ± 148 b 1116 

Na mg/kg 977 ± 521 a 966 ± 333 a 336 ± 164 a 1488 ± 49.2 a 453 

Ca mg/kg 808 ± 285 ab 895 ± 163 ab 340 ± 143 a 1752 ± 23.1 b 254 

TN g/kg 6.306 ± 0.81 a 7.39 ± 0.89 a 7.19 ± 0.24 a 19.1 ± 2.32 b 1.86 

TC g/kg 431 ± 3.93 a 438 ± 4.03 a 430 ± 13.2 a 380 ± 19.5 a 17.1 

TC:TN 69.67 ± 8.55 a 60.2 ± 6.85 a 60.0 ± 3.82 a 20.3 ± 1.57 b 8.28 

AP mg/kg 259.7 ± 18.5 a 247 ± 94.5 a 355 ± 52.6 a 375 ± 122 a 116 
* bedding means include sheep and cattle compost data of different ages; sheep +2 weeks. 
 

Table 3.23 shows TSN levels in straw are significantly (p <0.05) higher than in woodchip bedding-

composts. DOC concentrations are approximately four times greater in straw than woodchip 

bedding, although the difference is not significant (p >0.05) because of high variation between 

sheep and cattle. Consequently, ratios of AC:N in all four bedding types are < 3:1, but for opposite 

reasons. Straw composts have an excess of available N, which is prone to loss, whereas woodchip 

treatments are deficient in both DOC and TSN, likely to result in microbial immobilization 

(Eghball 2002); it is the actual concentrations of TSN and DOC that are expected to mediate 

microbial decomposition. The comparatively high EC values and concentrations of NH4
+ in the 

W53 treatments are noteworthy and are discussed in section 3.4.  
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Table 3.24: Mean nutrient contents in ADAS bedding material and livestock treatments at the start of 
composting, incl. ±1se. Symbols displayed between treatment data represent significant (* p<0.05; ** 
p<0.01 and *** p<0.001) differences in variable concentrations between treatments within pairs. 
ADAS Wood       Straw     Sheep       Cattle     

Week 0 */ 2 (n=6)   se   (n=2)   se (n=4)    se   (n=4)    se 

pH 8.22 ± 0.09   8.17 ± 0.36 8.42 ± 0.09 * 8.00 ± 0.07 

EC mS/cm 2.55 ± 0.31 * 6.45 ± 1.93 3.80 ± 1.59   3.24 ± 0.43 

NO3
- mg/kg 316 ± 104   47.8 ± 10.2 346 ± 159   153 ± 66.9 

NH4
+ mg/kg 1717 ± 426 ** 4339 ± 474 1723 ± 841 * 3022 ± 602 

DIN mg/kg 2033 ± 358 ** 4387 ± 484 2069 ± 724   3174 ± 569 

DON mg/kg 431 ± 44.0 ** 1520 ± 361 844 ± 347   563 ± 203 

TSN mg/kg 2464 ± 334 ** 5907 ± 123 2913 ± 1030   3737 ± 767 

DOC mg/kg 2432 ± 253 * 12087 ± 5437 3413 ± 1148   6279 ± 3749 

AC:AN 1.04 ± 0.09   2.03 ± 0.88 1.20 ± 0.04   1.37 ± 0.51 

K mg/kg 3494 ± 629 ** 10043 ± 148 4441 ± 1884   5820 ± 1577 

Na mg/kg 760 ± 213   1488 ± 49.2 700 ± 295   1184 ± 232 

Ca mg/kg 681 ± 143 ** 1752 ± 23.1 807 ± 341   1091 ± 255 

TN g/kg 6.96 ± 0.38 *** 19.1 ± 2.32 9.05 ± 2.60   10.9 ± 3.50 

TC g/kg 433 ± 4.03 ** 380 ± 19.5 410 ± 16.6 * 430 ± 10.2 

TC:TN 63.3 ± 3.61 ** 20.3 ± 1.57 55.8 ± 12.2   49.2 ± 10.4 

AP mg/kg 287 ± 35.6   375 ± 122 237 ± 31.2 * 381 ± 46.7 

 * bedding means include sheep and cattle compost data of different ages; sheep + 2 weeks. 
 

Table 3.24 shows differences in nutrient concentrations between bedding materials (wood and 

straw) and highlights the capacity of straw bedding to retain greater volumes of manure (liquid and 

faeces) than woodchip. Cattle composts contain greater amounts of manure, hence higher 

concentrations of ammonium and soluble P. The fractionally lower pH in cattle than sheep 

treatments may result from anaerobicity developing within the manure fraction. Said-Pullicino et 

al. (2007) state that drops in pH are usually associated with anaerobicity, but only the straw 

treatments showed periodical anaerobicity (see Tables 3.18 and 3.19) although small anaerobic 

pockets at the centre of the woodchip piles cannot be ruled out. In addition, as shown by the 

nutrient budgets (section 3.3.6) there were high levels of N loss during housing. The significantly 

lower EC readings in woodchip compared to straw treatments (p <0.05) is attributable to the 

differences in K, Ca and NH4
+. Straw composts contain higher concentrations of most measured 

nutrients than woodchip (see Table 3.24). 
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3.3.4.4 Chemical changes during composting - Regression analysis 

Regression analysis of pH, EC, NO3
-, NH4

+, DIN, DON. TSN, DOC, AC:AN, K2O, Na, and Ca 

within ADAS bedding and livestock types; for individual bedding treatment results see Appendix 

VII. Most nutrient profiles were analysed using linear regression, however, concentrations of NH4
+ 

decreased rapidly then remained low, so an exponential decay curve was used. Similarly, DIN in 

ADAS straw and cattle treatments decreased rapidly, but then increased at week 31, befitting an 

exponential decay / linear combination curve. Treatment (n= #), shown on each graph, refers to the 

number of compost heap means (not individual samples) included in each treatment data.   
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Figures 3.13 (bedding) and 3.14 (livestock): show the relationship between pH and composting 

time in bedding materials and livestock types. Solid regression lines relate to Straw and Sheep 

treatments; dashed regression lines, to Woodchip and Cattle treatments. Values represent mean ±1 

se. Fig. 3.13 * data include sheep and cattle composts of different ages; sheep + 2 weeks. Fig. 3.14 

* sheep composts are constantly + 2 weeks (wks. 2 to 33) in relation to the cattle timeline depicted. 
 

Table 3.25: pH regression equations and corresponding R2 values per treatment; (p<0.05) shows that 
composting time is a significant factor in determining changes in pH within treatments.  

Treatment Equation R2 p. value 
Straw y = 0.0086x + 8.4245 R² = 0.2038 .223 
Woodchip y = 0.0138x + 8.0928 R² = 0.2628 .158 
Sheep y = 0.0139x + 8.2132 R² = 0.3251 .109 
Cattle y = 0.011x + 8.1382 R² = 0.1867 .245 
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Figures 3.13 and 3.14 show pH fluctuations are greatest during composting weeks 0 – 14, when 

microbial activity is expected to be highest. In all treatments pH is > 7.5 throughout composting 

with a slight upward trend, indicating substantial NH3 loss, particularly straw at week 10; pH > 8.8.  

Table 3.25 shows that the rate of change is not consistent over time.  
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Figures 3.15 (bedding) and 3.16 (livestock): show the relationship between EC and composting 

time in bedding materials and livestock types. Solid regression lines relate to Straw and Sheep 

treatments; dashed regression lines, to Woodchip and Cattle treatments. Values represent mean ±1 

se. Fig. 3.15 * data include sheep and cattle composts of different ages; sheep + 2 weeks. Fig. 3.16 

* sheep composts are constantly + 2 weeks (wks. 2 to 33) in relation to the cattle timeline depicted.  
 

Table 3.26: EC regression equations and corresponding R2 values per treatment; (p<0.05) shows that 
composting time is a significant factor in determining changes in EC within treatments.  

Treatment Equation R2 p. value 
Straw y = -0.0353x + 7.9872 R² = 0.0130 < .001 
Woodchip y = -0.0458x + 3.1364 R² = 0.2378 .226 
Sheep y = 0.0813x + 4.3546 R² = 0.5802 < .05 
Cattle y = 0.0305x + 2.6386 R² = 0.5065 < .05 

 

Table 3.26 and the corresponding Figures 3.15 and 3.16 show that EC (relating to soluble salt 

concentrations) increases linearly over time in all treatments except woodchip. Furthermore, the 

rate of increase is clearly greater in straw than in woodchip; this illustrates woodchip bedding’s 
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deficiency in a broad spectrum of soluble nutrients, and its consequently low rate of 

decomposition.  In addition, the rate of increase is clearly greater in sheep than cattle compost. 
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Figures 3.17 (bedding) and 3.18 (livestock): show the relationship between NO3

- and composting 

time in bedding and livestock types. Solid regression lines relate to Straw and Sheep treatments; 

dashed lines, to Woodchip and Cattle treatments. NO3
- in straw is analysed using an exponential 

growth curve (3 parameters) f = y0+a*exp(b*x). Values represent mean ±1 se. Fig. 3.17 * data 

include sheep and cattle composts of different ages; sheep + 2 weeks. Fig. 3.18 * sheep composts 

are constantly + 2 weeks (wks. 2 to 33) in relation to the cattle timeline depicted.  
 

Table 3.27: NO3
- regression equations and corresponding R2 values per treatment; (p<0.05) shows that 

composting time is a significant factor in determining changes in NO3
- within treatments.  

Treatment Equation R2 p. value 
Straw y =!32.85 * exp0.046x R² = 0.9677 < .05 
Woodchip y = -18.47x + 674.77 R² = 0.2256 .238 
Sheep y = -8.4409x + 788.65 R² = 0.0904 .623 
Cattle y = 4.5625x + 187.38 R² = 0.1455 .526 

 

Typically, NO3
- concentrations increase over composting time, (see ADAS straw data in Figure 

3.17) and are, therefore, more accurately analysed using an exponential growth curve. However, 

changes in NO3
- within the woodchip treatment - and by inclusion, in the sheep and cattle treatment 

data - meant NO3
- profiles in all three treatments were analysed using linear regression. The straw 

compost data shows high levels of nitrification throughout composting (Table 3.27), but only up to 
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week 4 in the woodchip treatments (note: NO3
- levels in the woodchip at week 0 show more 

influence from the 2 week old sheep fractions than the straw composts at this point). After week 4, 

nitrate levels in woodchip-based composts decrease, reaching near zero by week 31. The reason for 

this reversal is clear when compared to NH4
+ levels over the same period. Figures 3.19 and 3.20, 

show NH4
+ concentrations quickly decreased from week 0 to week 4, due to nitrification, 

immobilization or loss, as gas or liquid. Figures 3.17 to 3.20 show that decreasing NH4
+ levels 

cross with increasing concentrations of NO3
- ca. week 4. After which, it is suggested microbes are 

forced to convert NO3
- back into NH4

+ for growth and function; an energy inefficient process, and 

as both DOC and TSN are already low (see Figures 3.25 to 3.28), microbial activity is reduced and 

decomposition slows.  

The ratios of manure, woodchip and straw within the collective of composts that make up 

each livestock treatment are considered to be the reason why the process is delayed in the sheep 

treatment, which achieved higher levels of nitrification than cattle, as microbes did not need to 

assimilate nitrate until after week 12.  
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Figures 3.19 (bedding) and 3.20 (livestock): show the relationship between NH4
+ and composting 

time in bedding materials and livestock types. Solid regression lines relate to Straw and Sheep 

treatments; dashed regression lines, to Woodchip and Cattle treatments. All treatments analysed 

using an exponential decay curve (3 parameters) f = y0+a*exp(-b*x). Values represent mean ±1 

se. Fig. 3.19 * data include sheep and cattle composts of different ages; sheep + 2 weeks. Fig. 3.20 

* sheep composts are constantly + 2 weeks (wks. 2 to 33) in relation to the cattle timeline depicted. 

 
Table 3.28: NH4

+ regression equations and corresponding R2 values per treatment; (p<0.05) shows that 
composting time is a significant factor in determining changes in NH4

+ within all treatments.  
Treatment Equation R2 p. value 
Straw y =!4309.2 * exp-0.21x R² = 0.9898 < .01 
Woodchip y = 1716.8 * exp-0.47x R² = 0.9998 < .001 
Sheep y = 1723.3 * exp-0.37x R² = 0.9993 < .001 
Cattle y = 3011.6 * exp-0.31x R² = 0.9906 < .01 

 

Figures 3.19 and 3.20 show decreases in NH4
+ concentrations decreased rapidly during the first 

weeks of composting and Table 3.28 shows the rate of decrease in all treatments!over time, was 

significantly (p<0.01) correlated to the predictions of the respective decay curve regression models.  
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Dissolved Inorganic Nitrogen (DIN) 
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Figures 3.21 (bedding) and 3.22 (livestock): show the relationship between DIN and composting 

time in bedding materials and livestock types. Solid regression lines relate to Straw and Sheep 

treatments; dashed regression lines, to Woodchip and Cattle treatments. Straw (Fig 3.15) and 

Cattle (Fig 3.16) treatments are analysed using an exponential decay / linear combination curve f 

= y0+a*exp(-b*x)+c*x. Woodchip (Fig 3.15) is analysed using an exponential decay curve (3 

parameters) f = y0+a*exp(-b*x). Values represent mean ±1 se. Fig. 3.21 * data include sheep and 

cattle composts of different ages; sheep + 2 weeks. Fig. 3.22 * sheep composts are constantly + 2 

weeks (wks. 2 to 33) in relation to the cattle timeline depicted. 

 

Table 3.29: DIN regression equations and corresponding R2 values per treatment; (p<0.05) shows that 
composting time is a significant factor in determining changes in DIN within treatments.  

Treatment Equation R2 p. value 
Straw y = 4352.!5 * exp-0.21x + 50.5x R² = 0.9053 .!195 
Woodchip y = 2004.4 * exp-0.12x R² = 0.9769 < .05 
Sheep y = -47.411x + 1784.8 R² = 0.8486 < .05 
Cattle y = 3153.!5 * exp-0.21x + 20.8x R² = 0.9642 .120 

 

Figures 3.21 and 3.22 show DIN decreased in all treatments; straw treatments contained higher 

concentrations than woodchip throughout composting; and DIN in ‘cattle’ appeared to decrease 

more rapidly than ‘sheep’ (+ 2 wks.). Table 3.29 shows rate of decreased in woodchip and sheep 

treatments! over time, was significantly (p<0.05) correlated to values predicted in the respective 

decay curve regression models (note: ‘sheep’ (p= <0.05) but with the lowest R2 value, illustrating 

the linear model’s greater tolerance for variability than the ‘fitted’ decay curve regression model).  
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Dissolved Organic Nitrogen (DON) 
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Figures 3.23 (bedding) and 3.24 (livestock): show the relationship between DON and composting 

time in bedding materials and livestock types. Solid regression lines relate to Straw and Sheep 

treatments; dashed regression lines, to Woodchip and Cattle treatments. Values represent mean ±1 

se. Fig. 3.23 * data include sheep and cattle composts of different ages; sheep + 2 weeks. Fig. 3.24 

* sheep composts are constantly + 2 weeks (wks. 2 to 33) in relation to the cattle timeline depicted. 

 

Table 3.30: DON regression equations and corresponding R2 values per treatment; (p<0.05) shows that 
composting time is a significant factor in determining changes in DON within treatments.  

Treatment Equation R2 p. value 
Straw y = -24.082x + 1469.3 R² = 0.2145 .432 
Woodchip y = -8.8019x + 372.51 R² = 0.7459 .059 
Sheep y = -9.7255x + 620.6 R² = 0.2980 .341 
Cattle y = -15.518x + 672.79 R² = 0.3733 .274 

 

Figures 3.23 and 3.24 show straw treatments contained higher DON concentrations than woodchip 

throughout composting and error bars show levels of DON were consistently low in all the 

woodchip composts. DON concentrations decreased at a similar rate over time in the two livestock 

treatments; however the variation within each was large so the linear change over time was not 

significant in either (Table 3.30). 
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Total Soluble Nitrogen (TSN) 
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Figures 3.25 (bedding) and 3.26 (livestock): show the relationship between TSN and composting 

time in bedding materials and livestock types. Solid regression lines relate to Straw and Sheep 

treatments; dashed regression lines, to Woodchip and Cattle treatments. Values represent mean ±1 

se. Fig. 3.25 * data include sheep and cattle composts of different ages; sheep + 2 weeks. Fig. 3.26 

* sheep composts are constantly + 2 weeks (wks. 2 to 33) in relation to the cattle timeline depicted. 

 

Table 3.31: TSN regression equations and corresponding R2 values per treatment; (p<0.05) shows that 
composting time is a significant factor in determining changes in TSN within treatments.  

Treatment Equation R2 p. value 

Straw y = -89.998x + 4329.1 R² = 0.4338 .227 

Woodchip y = -65.685x + 1961.6 R² = 0.8064 < .05 
Sheep y = -57.136x + 2405.4 R² = 0.7290 .066 

Cattle y = -86.389x + 2701.6 R² = 0.6518 .099 
 

TSN decreased over time in all treatments; the linear decrease was significant in woodchip, which 

had lower TSN than straw throughout. The small woodchip treatment error bars (see figure 3.25) 

show that the variation in initial moisture content between the raw bedding and livestock types had 

very little influence on determining TSN concentrations over time (Table 3.31). 
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Dissolved Organic Carbon (DOC) 
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Figures 3.27 (bedding) and 3.28 (livestock): show the relationship between DOC and composting 

time in bedding materials and livestock types. Solid regression lines relate to Straw and Sheep 

treatments; dashed regression lines, to Woodchip and Cattle treatments. Values represent mean ±1 

se. Fig. 3.27 * data include sheep and cattle composts of different ages; sheep + 2 weeks. Fig. 3.28 

* sheep composts are constantly + 2 weeks (wks. 2 to 33) in relation to the cattle timeline depicted. 

 

Table 3.32: DOC regression equations and corresponding R2 values per treatment; (p<0.05) shows that 
composting time is a significant factor in determining changes in DOC within treatments.  

Treatment Equation R2 p. value 
Straw y = -134.43x + 15325 R² = 0.0664 .676 
Woodchip y = -35.391x + 2852.5 R² = 0.2710 .368 
Sheep y = 41.495x + 4280.2 R² = 0.0911 .622 
Cattle y = -161.8x + 7661.2 R² = 0.3347 .307 

 

Figures 3.27 and 3.28 show bedding type was the determining factor controlling DOC 

concentrations over time, and contrast between beddings emphasizes DOC concentrations were 

much lower in woodchip than straw composts throughout. The difference in (non-significant) 

trends between livestock treatments in Table 3.32 may be indicative of microbial responses to the 

higher ratios of manure to bedding in the collective of sheep composts compared to cattle.  
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Available C:N ratio (AC:N) 
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Figures 3.29 (bedding) and 3.30 (livestock): show the relationship between AC:N and composting 

time in bedding materials and livestock types. Solid regression lines relate to Straw and Sheep 

treatments; dashed regression lines, to Woodchip and Cattle treatments. Values represent mean ±1 

se. Fig. 3.29 * data include sheep and cattle composts of different ages; sheep + 2 weeks. Fig. 3.30 

* sheep composts are constantly + 2 weeks (wks. 2 to 33) in relation to the cattle timeline depicted.   

 

Table 3.33: AC:N regression equations and corresponding R2 values per treatment; (p<0.05) shows that 
composting time is a significant factor in determining changes in AC:N within treatments.  

Treatment Equation R2 p. value 

Straw y = 0.0449x + 4.2461 R² = 0.0963 .611 
Woodchip y = 0.2599x + 1.8392 R² = 0.8742 < .05 
Sheep y = 0.1719x + 1.2939 R² = 0.8691 < .05 
Cattle y = 0.2404x + 3.5879 R² = 0.4873 .190 

 

AC:N ratio increased over time (p = 0.02) (Table 3.33) in the woodchip treatment, largely due to 

the decrease in TSN (p = 0.04) (Table 3.31). In contrast the increase in straw AC:N ratio up to 

week 10 (Figure 3.29) is attributable to the rapid decomposition of compost solids releasing large 

quantities of organic C into the matrix; the straw AC:N ratio then decreased slightly, which is 

attributable to DOC being oxidised in greater quantities than TSN is taken up. In cattle composts 

AC:N ratio (Fig. 3.30) increased rapidly to week 20, and then fell, whereas in sheep it increased 

only slowly to week 20 and then greatly to week 31. 
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Potassium (K2O) 
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Figures 3.31 (bedding) and 3.32 (livestock): show the relationship between K2O and composting 

time in bedding materials and livestock types. Solid regression lines relate to Straw and Sheep 

treatments; dashed regression lines, to Woodchip and Cattle treatments. Values represent mean ±1 

se. Fig. 3.31 * data include sheep and cattle composts of different ages; sheep + 2 weeks. Fig. 3.32 

* sheep composts are constantly + 2 weeks (wks. 2 to 33) in relation to the cattle timeline depicted. 

 

Table 3.34: K2O regression equations and corresponding R2 values per treatment; (p<0.05) shows that 
composting time is a significant factor in determining changes in K2O within treatments.  

Treatment Equation R2 p. value 

Straw y = -208.54x + 12327 R² = 0.6672 .091 

Woodchip y = -101.34x + 4679.1 R² = 0.4005 .252 
Sheep y = -115.73x + 5975.4 R² = 0.5781 .136 

Cattle y = -140.54x + 7206.6 R² = 0.6299 .109 
 

Figures 3.31 and 3.32 show a non-linear change over time in K2O concentrations in all treatments.  

There is an increase during the first 4 to 6 weeks as the labile manure fraction is rapidly broken 

down, and then a decrease as large quantities are leached in solution. Table 3.34 shows no overall 

linear relationships between K2O concentrations and composting time in either bedding material or 

livestock type, although there are significant decreases (p <0.05) in the both bedding treatments, 

between the start and end of composting (see Figures 3.61 and 3.62). Livestock urine contains large 

concentrations of highly soluble K2O (personal communications with D.L. Jones), and as a result, 

large amounts are easily lost in seepage throughout the composting period.  
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Figures 3.33 (bedding) and 3.34 (livestock): show the relationship between Na and composting 

time in bedding materials and livestock types. Solid regression lines relate to Straw and Sheep 

treatments; dashed regression lines, to Woodchip and Cattle treatments. Values represent mean ±1 

se. Fig. 3.33 * data include sheep and cattle composts of different ages; sheep + 2 weeks. Fig. 3.34 

* sheep composts are constantly + 2 weeks (wks. 2 to 33) in relation to the cattle timeline depicted. 

 

Table 3.35: Na regression equations and corresponding R2 values per treatment; (p<0.05) shows that 
composting time is a significant factor in determining changes in Na within treatments.  

Treatment Equation R2 p. value 
Straw y = -18.804x + 1703.7 R² = 0.1281 .554 
Woodchip y = -17.122x + 824.02 R² = 0.6244 .112 
Sheep y = -15.23x + 792.82 R² = 0.8531 < .05 
Cattle y = -19.855x + 1295.1 R² = 0.8985 < .05 

 

The decrease in concentration of Na in the composts is shown most clearly when the composts of 

the two livestock treatments are separated (Figures 3.33 and 3.34, Table 3.35). This reflects the 

difference in quantity and quality of manure added by the two livestock types during housing. Each 

of the four pens per livestock treatment had equal numbers of animals and a silage diet. 

Furthermore, Na concentrations tend to be higher in straw composts than woodchip because the 

B:M ratio is lower; thus a straw compost contains proportionately higher levels of Na kg-1.  

  



 

102 
 

Calcium (Ca) 
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Figures 3.35 (bedding) and 3.36 (livestock): show the relationship between Ca and composting 

time in bedding materials and livestock types. Solid regression lines relate to Straw and Sheep 

treatments; dashed regression lines, to Woodchip and Cattle treatments. Values represent mean ±1 

se. Fig. 3.35 * data include sheep and cattle composts of different ages; sheep + 2 weeks. Fig. 3.36 

* sheep composts are constantly + 2 weeks (wks. 2 to 33) in relation to the cattle timeline depicted. 

 

Table 3.36: Ca regression equations and corresponding R2 values per treatment; (p<0.05) shows that 
composting time is a significant factor in determining changes in Ca within treatments.  

Treatment Equation R2 p. value 
Straw y = -38.931x + 1491.8 R² = 0.3331 .308 
Woodchip y = -14.767x + 531.68 R² = 0.7315 .065 
Sheep y = -18.162x + 669.35 R² = 0.5173 .171 
Cattle y = -23.454x + 874.08 R² = 0.6056 .121 

 

Initial Ca content, as with initial K and Na content, is strongly influenced by livestock dietary 

inputs, but the pattern and rate of loss during composting is determined by the physical-chemical 

characteristics of the bedding-compost. Figures 3.35 and 3.36 show some evidence that Ca 

concentrations were initially higher in cattle than sheep treatments owing to difference in their 

excretal inputs, and strong evidence that they were initially much higher in straw than woodchip 

treatments due to B:M ratio. Concentrations in each bedding type then tended to decrease due to 

leaching and, to a lesser extent, microbial immobilization over time, though the linear decrease was 

not significant (Table 3.36) - see section 3.4 for further discussion.  
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3.3.4.5 Chemical changes between the start and end of composting  

The following graphs show change in compost nutrient concentrations between the start (Week* 0) 

and end (Week* 31) of composting. Week* denotes that the bedding type and bedding material 

data includes sheep beddings which began composting two weeks earlier than the cattle beddings. 

The timescale displayed is that of cattle beddings. The sheep data can be viewed as from Week 2 to 

Week 33 respectively. Symbols displayed above paired columns denote significant (* p<0.05; ** 

p<0.01 and *** p<0.001) differences in the tested concentrations within the treatment between the 

start and end of composting; (n=#) displayed after each treatment denotes the number of compost 

treatments included in the treatment data. 
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pH and EC 
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Figure 3.37: pH in each bedding type at the start (white bars) and end (grey bars) of composting 

at ADAS. Values represent mean ±1 se. Figure 3.38: pH in bedding materials and livestock types 

at the start (white bars) and end (grey bars) of composting. Values represent mean ±1 se. Week* 

bedding means include sheep and cattle compost data of different ages; sheep +2 weeks. 
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Figure 3.39: Electrical Conductivity (EC) of each bedding type at the start (white bars) and end 

(grey bars) of composting at ADAS. Values represent mean ±1 se. Figure 3.40: EC of bedding 

materials and livestock types at the start (white bars) and end (grey bars) of composting. Values 

represent mean ±1 se. Week* bedding means include sheep and cattle compost data of different 

ages; sheep + 2 weeks.  
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Nitrate and Ammonium 
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Figures 3.41: Nitrate content in each bedding type at the start (white bars) and end (grey bars) of 

composting at ADAS. Figure 3.42: Nitrate content in bedding materials and livestock types at the 

start (white bars) and end (grey bars) of composting. Week* bedding means include sheep and 

cattle compost data of different ages; sheep + 2 weeks. Values represent mean ±1 se. 
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Figure 3.43: Ammonium content in each bedding type at the start (white bars) and end (grey bars) 

of composting at ADAS. Figure 3.44: Ammonium content in bedding materials and livestock types 

at the start (white bars) and end (grey bars) of composting. Week* bedding means include sheep 

and cattle compost data of different ages; sheep + 2 weeks. Values represent mean ±1 se. 
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DIN and DON  
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Figure 3.45: Dissolved inorganic nitrogen (DIN) content in each bedding type at the start (white 

bars) and end (grey bars) of composting at ADAS. Figure 3.46: Dissolved inorganic nitrogen 

(DIN) content in bedding materials and livestock types at the start (white bars) and end (grey bars) 

of composting. Week* bedding means include sheep and cattle compost data of different ages; 

sheep +2 weeks. Values represent mean ±1 se. 
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Figure 3.47: Dissolved organic nitrogen (DON) content in each bedding type at the start (white 

bars) and end (grey bars) of composting at ADAS. Figure 3.48: Dissolved organic nitrogen (DON) 

content in bedding materials and livestock types at the start (white bars) and end (grey bars) of 

composting. Week* bedding means include sheep and cattle compost data of different ages; sheep 

+ 2 weeks. Values represent mean ±1 se.  
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TSN and DOC  
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Figure 3.49: Total soluble nitrogen (TSN) content in each bedding type at the start (white bars) 

and end (grey bars) of composting at ADAS. Figure 3.50: Total soluble nitrogen (TSN) content in 

bedding materials and livestock types at the start (white bars) and end (grey bars) of composting. 

Week* bedding means include sheep and cattle compost data of different ages; sheep + 2 weeks. 

Values represent mean ±1 se. 
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Figure 3.51: Dissolved organic carbon (DOC) content in each bedding type at the start (white 

bars) and end (grey bars) of composting at ADAS. Figure 3.52: Dissolved organic carbon (DOC) 

content in bedding materials and livestock types at the start (white bars) and end (grey bars) of 

composting. Week* bedding means include sheep and cattle compost data of different ages; sheep 

+ 2 weeks. Values represent mean ±1 se.  



 

108 
 

Available C:N and Total C:N  
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Figure 3.53: Available C:N ratio in each bedding type at the start (white bars) and end (grey bars) 

of composting at ADAS. Figure 3.54: Available C:N ratio in bedding materials and livestock types 

at the start (white bars) and end (grey bars) of composting. Week* bedding means include sheep 

and cattle compost data of different ages; sheep +2 weeks. Values represent mean ±1 se. 
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Figure 3.55: Total C:N ratio in each bedding type at the start (white bars) and end (grey bars) of 

composting at ADAS. Figure 3.56: Total C:N ratio in bedding materials and livestock types at the 

start (white bars) and end (grey bars) of composting. Week* bedding means include sheep and 

cattle compost data of different ages; sheep +2 weeks. Values represent mean ±1 se. 
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TN and TC  
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Figure 3.57: Total N content in each bedding type at the start (white bars) and end (grey bars) of 

composting at ADAS. Figure 3.58: Total N content in bedding materials and livestock types at the 

start (white bars) and end (grey bars) of composting. Week* bedding means include sheep and 

cattle compost data of different ages; sheep + 2 weeks. Values represent mean ±1 se. 

 

Table 3.37: Percentage of Total N that is available N (AN) at the start and end of composting in each 
bedding type, bedding material and livestock type at ADAS; Week * denote bedding means include sheep 
and cattle compost data of different ages; sheep +2 weeks. 

ADAS % of Total N as AN    ADAS % of Total N as AN  
Bedding type Week 0 * Week 31 *   Treatments Week 0 * Week 31 * 
W34 (n=2) 36.6 3.7   Straw (n=2) 31.3 10.2 
W53 (n=2) 41.9 2.5   Wood (n=6) 35.5 2. 8 
W55 (n=2) 27.9 2.2   Sheep (n=4) 31.9 6.3 
Straw (n=2) 31.3 10.2   Cattle (n=4) 37.0 3.0 
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Figure 3.59: Total C content in each bedding type at the start (white bars) and end (grey bars) of 

composting at ADAS. Figure 3.60: Total C content in bedding materials and livestock types at the 

start (white bars) and end (grey bars) of composting. Week* bedding means include sheep and 

cattle compost data of different ages; sheep +2 weeks. Values represent mean ±1 se. 

 

Table 3.38: Percentage of Total C that is available C (AC) at the start and end of composting in each 
bedding type, bedding material and livestock type at ADAS; Week * denote bedding means include sheep 
and cattle compost data of different ages; sheep + 2 weeks. 

ADAS % of Total C as AC   ADAS % of Total C as AC  
Bedding type Week 0 * Week 31 *   Treatments Week 0 * Week 31 * 
W34 (n=2) 0.6 0.5   Straw (n=2) 3.1 3.7 
W53 (n=2) 0.7 0.6   Wood (n=6) 0.6 0.5 
W55 (n=2) 0.5 0.5   Sheep (n=4) 0.9 1.8 
Straw (n=2) 3.1 3.5   Cattle (n=4) 1.5 0.8 
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Potassium and Sodium  
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Figure 3.61: Potassium (K2O) content in each bedding type at the start (white bars) and end (grey 

bars) of composting at ADAS. Figure 3.62: Potassium (K2O) content in bedding materials and 

livestock types at the start (white bars) and end (grey bars) of composting. Week* bedding means 

include sheep and cattle compost data of different ages; sheep + 2 weeks. Values represent mean 

±1 se. 

 

Bedding type

W34 (n=2) W53 (n=2) W55 (n=2) Straw (n=2)

N
a 

(m
g/

kg
) (

dr
y 

w
ei

gh
t)

0

200

400

600

800

1000

1200

1400

1600

1800

Week* 0 
Week* 31 

Bedding materials and Livestock types

Straw (n=2) Woodchip (n=6) Sheep (n=4) Cattle (n=4)

N
a 

(m
g/

kg
) (

dr
y 

w
ei

gh
t)

0

200

400

600

800

1000

1200

1400

1600

1800

Week* 0 
Week* 31 

 
Figure 3.63: Sodium content in each bedding type at the start (white bars) and end (grey bars) of 

composting at ADAS. Figure 3.64: Sodium content in bedding materials and livestock types at the 

start (white bars) and end (grey bars) of composting. Week* bedding means include sheep and 

cattle compost data of different ages; sheep + 2 weeks. Values represent mean ±1 se.  
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Calcium and Available (soluble) P  
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Figure 3.65: Calcium content in each bedding type at the start (white bars) and end (grey bars) of 

composting at ADAS. Figure 3.66: Calcium content in bedding materials and livestock types at the 

start (white bars) and end (grey bars) of composting. Week* bedding means include sheep and 

cattle compost data of different ages; sheep + 2 weeks. Values represent mean ±1 se. 
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Figure 3.67: Available (soluble) phosphorus (P2O5) content in each bedding type at the start 

(white bars) and end (grey bars) of composting at ADAS. Figure 3.68: Available (soluble) 

phosphorus (P2O5) content in bedding materials and livestock types at the start (white bars) and 

end (grey bars) of composting. Week* bedding means include sheep and cattle compost data of 

different ages; sheep + 2 weeks. Values represent mean ±1 se.  
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There was no significant change in pH over the composting period (Figures 3.37 and 3.38), or in 

soluble salt concentrations (Figures 3.39 and 3.40), which may have been expected in the sheep 

treatments owing to the volume of water ADAS added to the composts between weeks 3 and 7. 

NO3
- increased (p <0.05) in the straw bedding-compost treatment (Figure 3.42) but decreased (p 

<0.05) in W53 (Figure 3.41), NO3
-levels also decreased in W34 and W55, but because levels were 

so low, variations between sample readings increased the error of the mean resulting in p >0.05 for 

these two treatments. NH4
+ concentrations decreased, as expected in all treatments. Straw and cattle 

treatments contained greater NH4
+ concentrations than sheep and woodchip in week 0* (Figures 

3.43 and 3.44), but by week 31* concentrations had reduced significantly (p <0.01 in cattle and 

woodchip (notably W53) and p <0.05 in straw). Changes in DIN over the composting period 

(Figures 3.45 and 3.46) followed a very similar pattern to NH4
+, owing to the relatively small 

increases in nitrified ammonium-N. All treatments show decreases in DON (Figures 3.47 and 

3.48), but only decreases in the woodchip, notably W34 (Figure 3.47), were significant (p <0.01). 

Likewise, TSN concentrations (Figures 3.49 and 3.50) were predominantly the same as DIN, thus 

NH4
+ was the dominant form of AN throughout the composting period - indicating low levels of 

nitrification followed by loss, either by leaching or by being converted back into NH4
+ and 

immobilized.  

DOC concentrations (Figures 3.51 and 3.52) appear to remain unchanged, but they do not 

account for mass loss, so DOC levels will have reduced substantially. Owing to AC:N ratios 

remaining below 10:1 in woodchip treatments throughout composting (Figures 3.53 and 3.54), 

decomposition would appear to have been inhibited, as much by a lack of AC, as by a lack of AN. 

Although there is a significant increase (p <0.001) of TN in the woodchip compost during 

composting (Figure 3.57), levels remained very low in comparison to straw-based treatments 

(Figure 3.58), reflecting the high TC concentrations (Figures 3.59 and 3.60) and TC:N (Figures 

3.49 and 3.50)  still present at the end of composting. Table 3.37 (AN as a % of TN) shows that 

W34 had a higher percentage of TN as AN at the start and end of composting, indicating that the 

drier woodchips with greater absorbency capacity had a microbial nutritional advantage over the 

initially wetter W55 constituted of chips of the same size and shape. In addition, the W53 which 

contain larger splinter shaped chips, which compacted during bedding to form a more distinct 

surface layer of manure, had the highest % TN as AN of all three woodchip bedding types at the 

start of composting but lost this advantage during composting, and the percentage of TN as AN by 

the end of composting in W53 was in line with the other two woodchip treatments based on 

absorbency capacity expectations. Table 3.38 (AC as a % of TC) shows a strong contrast in the % 

of TC as AC in woodchip beddings compared to straw beddings. It is suggested that the AC 
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deficiency in woodchip treatments plays a significant role in limiting microbial activity within 

these compost-beddings.  

Potassium (Figures 3.61 and 3.62) and sodium (Figures 3.63 and 3.64) concentrations 

deceased in all treatment levels, significantly (p <0.05) when analysed separately in the straw and 

woodchip bedding materials. This suggests that significant levels of soluble salts were leached 

from both beddings during composting. Similarly, reductions are seen in concentrations of calcium 

(p <0.01) in straw and woodchip (Figure 3.65), but so too from cattle and W53 treatments (p 

<0.05) (Figures 3.65 and 3.66 respectively). Conversely, soluble P levels increased in all treatments 

except W34 and W55 (Figures 3.67 and 3.68), though changes in soluble P were not significant in 

any of the treatments. 

 

3.3.4.6 Chemical characterisation of composts at the end of composting  

Table 3.39: Mean nutrient contents in each of the ADAS bedding types at the end of the composting, incl. 
±1 se and SE of Diff. (Tukey HSD). Letters a, b, c, d; different letters (by row) after treatment data denote 
difference (p <0.05) in variable concentrations. Identical letter(s) denote (p >0.05).  
ADAS W34       W53       W55       Straw       Tukey  
Week 31 * (n=2)   se   (n=2)   se   (n=2)   Se   (n=2)   se   HSD 

pH 8.12 ± 0.09 a 8.52 ± 0.02 a 8.55 ± 0.18 a 8.48 ± 0.33 a 0.27 
EC mS/cm 3.24 ± 0.78 a 2.47 ± 0.20 a 2.66 ± 0.14 a 11.3 ± 3.22 a 2.34 
NO3

- mg/kg 249 ± 246 a 22.3 ± 15.8 a 5.45 ± 3.48 a 1532 ± 249 b 248 
NH4

+ mg/kg 40.8 ± 15.7 a 29.6 ± 8.24 a 25.4 ± 6.97 a 150 ± 111 a 79.9 
DIN mg/kg 290 ± 262 a 52.0 ± 24.0 a 30.9 ± 10.5 a 1682 ± 138 b 210 
DON mg/kg 117 ± 11.1 a 201 ± 83.9 a 182 ± 91.4 a 857 ± 376 a 280 
TSN mg/kg 407 ± 273 a 253 ± 108 a 213 ± 102 a 2539 ± 238 b 277 
DOC mg/kg 1836 ± 436 a 2516 ± 1181 a 2064 ± 1003 a 12282 ± 5112 a 3790 
AC:N 6.88 ± 3.54 a 9.73 ± 0.52 a 9.64 ± 0.10 a 4.69 ± 1.57 a 2.76 
K mg/kg 2515 ± 511 ab 1583 ± 518 a 1704 ± 294 a 4941 ± 539 b 673 
Na mg/kg 470 ± 23.8 a 320 ± 171 a 290 ± 162 a 791 ± 260 a 249 
Ca mg/kg 206 ± 22.9 a 112 ± 41.5 a 140 ± 37.0 a 327 ± 60.4 a 60.3 
TN g/kg 10.5 ± 1.05 a 9.89 ± 0.74 a 9.81 ± 0.12 a 25.5 ± 3.22 a 2.45 
TC g/kg 392 ± 5.36 ab 418 ± 14.8 a 406 ± 12.7 a 330 ± 14.9 b 17.8 
TC:N 37.9 ± 3.34 a 42.7 ± 4.74 a 41.6 ± 0.91 a 13.2 ± 2.28 b 4.45 
AP mg/kg 217 ± 126 a 358 ± 199 a 351 ± 208 a 566 ± 118 a 237 
TP mg/kg 2134 ± 63.6 a 2417 ± 112 a 2302 ± 218 a 5189 ± 728 b 545 
Cu mg/kg 12.7 ± 2.76 a 14.2 ± 1.85 a 13.2 ± 1.86 a 29.0 ± 10.9 a 8.16 
Zn mg/kg 99.5 ± 17.0 a 146 ± 24.3 a 121 ± 1.61 a 193 ± 25.7 a 27.8 
Week* bedding means include sheep and cattle compost data of different ages; sheep + 2 weeks. 
 
Table 3.39 shows no significant differences (p >0.05) in nutrient concentrations between the three 

woodchip composts in the ADAS experiment after composting. However, the W34 treatment 

contains higher mean levels of NO3
-, NH4

+ (and consequently, TSN), K, Na and Ca, and lower 

concentrations of soluble P, DON, DOC, TC (and consequently lower AC:N and TC:N) than W53 
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and W55. This contrasting nutrient profile indicates marginally greater microbial activity during 

composting in the initially drier W34, which is supported by the compost temperature data shown 

in Figures 3.1 and 3.2. It is also interesting to note that the contrast in nutrient levels between W53 

and W55 bedding at the start of composting (see Table 3.23), which is considered to be attributable 

to the differences in age and shape of the chips, has greatly diminished.     

AC:N ratios in all four bedding types in the ADAS experiment are < 10:1 (Table 3.39), but 

for opposite reasons. Straw composts have excess AN (in relation to AC) and so are prone to N 

loss, whereas woodchip treatments are deficient in both AC and AN, resulting in microbial 

immobilization of N. This supposition is supported by the estimated N budgets presented in section 

3.3.6 which show the percentages of N lost from straw and woodchip during composting.  

 

Table 3.40: Mean nutrient contents in ADAS bedding material and livestock treatments at the end of 
composting, incl. ±1se. Symbols displayed between treatment data represent significant (* p<0.05; ** 
p<0.01 and *** p<0.001) differences in variable concentrations between treatment pairs. 
ADAS Wood       Straw     Sheep       Cattle     

Week 31* (n=6)   se   (n=2)   se (n=4)   se   (n=4)   se 

pH 8.40 ± 0.10   8.48 ± 0.33 8.56 ± 0.10   8.27 ± 0.10 

EC mS/cm 2.79 ± 0.26 ** 11.32 ± 3.22 6.01 ± 2.90   3.84 ± 1.40 

NO3
- mg/kg 92.4 ± 80.8 ** 1532 ± 249 456 ± 297   448 ± 444 

NH4
+ mg/kg 32.0 ± 5.72 * 150 ± 111 97.1 ± 55.0   25.9 ± 4.43 

DIN mg/kg 124 ± 85.9 *** 1682 ± 138 553 ± 350   474 ± 448 

DON mg/kg 167 ± 35.9 ** 857 ± 376 480 ± 254   199 ± 94.2 

TSN mg/kg 291 ± 88.5 *** 2539 ± 238 1033 ± 587 * 673 ± 543 

DOC mg/kg 2138 ± 434 ** 12282 ± 5112 6607 ± 3607   2741 ± 1478 

AC:N 8.75 ± 1.10   4.69 ± 1.57 7.40 ± 1.60   8.07 ± 1.67 

K mg/kg 1934 ± 274 ** 4941 ± 539 2476 ± 771   2896 ± 862 

Na mg/kg 360 ± 70.6 * 791 ± 260 314 ± 103 * 622 ± 143 

Ca mg/kg 153 ± 23.5 * 327 ± 60.4 167 ± 47.5   225 ± 54.4 

TN g/kg 10.1 ± 0.36 *** 25.5 ± 3.22 13.5 ± 2.90   14.3 ± 4.81 

TC g/kg 406 ± 7.11 ** 330 ± 14.9 385 ± 13.4   388 ± 26.3 

TC:N 40.7 ± 1.78 *** 13.2 ± 2.28 32.2 ± 5.70   35.5 ± 8.30 

AP mg/kg 309 ± 86.1   566 ± 118 269 ± 139   477 ± 51.5 

TP mg/kg 2284 ± 83.6 *** 5189 ± 728 2818 ± 556   3203 ± 909 

Cu mg/kg 13.4 ± 1.02 * 29.0 ± 10.9 12.9 ± 1.80   21.6 ± 6.08 

Zn mg/kg 122 ± 11.4 * 193 ± 25.7 156 ± 24.3   123 ± 17.4 

Week* bedding means include sheep and cattle compost data of different ages; sheep + 2 weeks. 
 

Table 3.40 shows the contrast in nutrient concentrations between wood and straw-based composts 

in the ADAS experiment and highlights critical deficiencies within the woodchip bedding after 

composting, especially in TSN and DOC, but the significant difference in TC:N ratios (13:1 in 

straw and 41:1 in woodchip) is perhaps the most influential result, caused by the inhibitive 

consequences to microbial functioning at ratios < 40:1 (Bernal; 2009). Furthermore, the results 
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illustrate the dominant influence of bedding type, compared to livestock inputs: sheep compost 

TSN concentrations are significantly (p <0.05) greater than in cattle composts, whereas cattle Na 

concentrations are significantly (p <0.05) greater than in sheep composts. 

 

 

 

3.3.5 Chemical changes during housing and composting at IGER  
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3.3.5.1 Chemical characterisation of raw beddings 

Table 3.41: Mean nutrient contents in each of IGER’s raw beddings types, including both woodchip deliveries (Wc1 and Wc2)) and raw materials, incl. ±1 se. 
Letters a, b, c, d; different letters (by row) after bedding type data denotes difference (p <0.05) in concentrations. Identical letter(s) denote (p >0.05). Symbols 
displayed between bedding material data represent (* p<0.05; ** p<0.01 and *** p<0.001) differences in concentrations. 

IGER Wc1       Wc2       Straw       Tukey mean Wc       Straw     

Raw Bedding (n=4)   se   (n=4)   se   (n=4)   se   HSD (n=8)   se   (n=4)   se 

pH 3.11 ± 0.13 a 3.33 ± 0.08 a 7.49 ± 0.12 b .159 3.22 ± 0.08 *** 7.49 ± 0.12 

EC mS/cm 0.13 ± 0.02 a 0.10 ± 0.01 a 3.70 ± 0.40 b .327 0.12 ± 0.01 *** 3.70 ± 0.40 

NO3
- mg/kg 2.65 ± 1.55 a 0.86 ± 0.86 a 0.00 ± 0.00 a 1.45 1.76 ± 0.89   0.00 ± 0.00 

NH4
+ mg/kg 0.57 ± 0.20 a 0.28 ± 0.14 a 30.7 ± 1.91 b 1.58 0.43 ± 0.13 *** 30.7 ± 1.91 

DIN mg/kg 3.22 ± 1.47 a 1.14 ± 0.77 a 30.7 ± 1.91 b 2.07 2.18 ± 0.86 *** 30.7 ± 1.91 

DON mg/kg 20.2 ± 8.72 a 25.7 ± 5.00 a 234 ± 24.2 b 21.4 23.0 ± 4.77 *** 234 ± 24.2 

TSN mg/kg 23.5 ± 10.2 a 26.8 ± 5.37 a 265 ± 23.6 b 21.6 25.2 ± 5.37 *** 265 ± 23.6 

DOC mg/kg 1438 ± 290 a 1359 ± 211 a 3902 ± 399 b 438 1399 ± 167 *** 3902 ± 399 

AC:N 175 ± 89.2 a 58.3 ± 15.3 a 14.8 ± 1.42 a 73.9 117 ± 47.4   14.8 ± 1.42 

K mg/kg 157 ± 19.9 a 149 ± 10.9 a 6383 ± 572 b 467 153 ± 10.6 *** 6383 ± 572 

Na mg/kg 25.5 ± 2.08 a 25.6 ± 2.29 a 536 ± 134 b 109 25.5 ± 1.43 *** 536 ± 134 

Ca mg/kg 5.35 ± 0.91 a 4.77 ± 1.18 a 51.5 ± 2.62 b 2.46 5.06 ± 0.70 *** 51.5 ± 2.62 

AP mg/kg 7.62 ± 0.21 a 7.73 ± 0.34 a 11.1 ± 0.67 b .643 7.68 ± 0.19 *** 11.1 ± 0.67 

TP mg/kg 967 ± 8.44 a 847 ± 102 a 3088 ± 236 b 210 907 ± 54.2 *** 3088 ± 236 

TN g/kg 1.52 ± 0.16 a 1.30 ± 0.05 a 5.45 ± 0.09 b .156 1.41 ± 0.09 *** 5.45 ± 0.09 

TC g/kg 483 ± 0.40 a 477 ± 9.54 a 443 ± 7.08 a 9.64 480 ± 4.26 ** 443 ± 7.08 

TC:N 322 ± 34.2 a 366 ± 6.61 a 81.3 ± 2.68 b 28.7 344 ± 19.1 ** 81.3 ± 2.68 

Cu mg/kg 3.15 ± 0.08 a 3.00 ± 0.07 a 3.04 ± 0.34 a .291 3.08 ± 0.06   3.04 ± 0.34 

Zn mg/kg 30.3 ± 0.34 a 25.1 ± 1.44 a 5.06 ± 0.65 b 1.32 27.7 ± 1.64 ** 5.06 ± 0.65 

Table 3.41 shows significant differences between raw straw and woodchip bedding and the similarity of IGER’s two woodchip deliveries.   
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3.3.5.2 Actual change in nutrient concentrations during the IGER housing trial 

Table 3.42: Actual change in nutrient concentrations during IGER’s housing period within each bedding, feed and livestock treatment, incl. ±1 se. Symbols 
displayed between paired treatment types represent (* p<0.05; ** p<0.01 and *** p<0.001) differences in variable concentrations. 

IGER Straw       Wood     Silage       Hay     Sheep       Cattle     

Housing (n=4)   se   (n=4)   se (n=4)    se   (n=4)   se (n=4)    se   (n=4)   se 

pH 0.93 ± 0.05 *** 5.20 ± 0.07 3.12 ± 1.23   3.01 ± 1.23 3.14 ± 1.24 * 2.99 ± 1.22 

EC mS/cm 3.76 ± 1.37   4.17 ± 0.61 4.11 ± 0.79   3.82 ± 1.28 5.60 ± 0.41 * 2.33 ± 0.57 

NO3
- mg/kg 70.9 ± 11.7 ** 19.0 ± 4.3 56.5 ± 19.7 * 33.4 ± 11.2 51.3 ± 18.3   38.7 ± 15.6 

NH4
+ mg/kg 2544 ± 521   1422 ± 102 2211 ± 403   1756 ± 543 2231 ± 541   1735 ± 397 

DIN mg/kg 2615 ± 527   1441 ± 102 2267 ± 421   1789 ± 550 2283 ± 556   1774 ± 407 

DON mg/kg 1408 ± 509   1201 ± 309 1490 ± 416   1119 ± 406 1954 ± 223 ** 655 ± 174 

TSN mg/kg 4023 ± 939   2642 ± 318 3757 ± 577   2908 ± 921 4237 ± 750   2429 ± 441 

DOC mg/kg 9350 ± 970 ** 2946 ± 187 6576 ± 2209   5720 ± 1676 6968 ± 2248   5327 ± 1519 

AC:N -11.1 ± 0.84 *** -53.9 ± 0.24 -32.9 ± 12.3   -32.1 ± 12.5 -33.1 ± 12.1   -31.9 ± 12.6 

K mg/kg 3383 ± 1152   4885 ± 916 5411 ± 1044   2858 ± 605 3881 ± 799   4387 ± 1364 

Na mg/kg 2891 ± 338   1682 ± 258 2424 ± 380   2150 ± 518 2074 ± 381   2499 ± 499 

Ca mg/kg 1831 ± 237 * 949 ± 166 1584 ± 315   1197 ± 299 1225 ± 242   1555 ± 370 

TN g/kg 15.5 ± 1.21 ** 4.73 ± 0.47 10.8 ± 3.66   9.40 ± 2.69 10.9 ± 3.20   9.31 ± 3.21 

TC g/kg -47.1 ± 3.95   -38.7 ± 2.42 -44.5 ± 3.11   -41.4 ± 4.69 -42.0 ± 4.63   -43.9 ± 3.35 

TC:N -62.1 ± 1.34 *** -267 ± 4.83 -164 ± 58.2   -165 ± 60.2 -169 ± 61.0   -160 ± 57.3 

AP mg/kg 426 ± 20.7 ** 263 ± 23.2 325 ± 60.4   365 ± 38.7 354 ± 63.5   335 ± 36.3 

 
Table 3.42 shows that during housing, pH significantly increased in woodchip treatments compared to straw owing to the buffering effect of manure, 

but that AC:N and TC:N ratios (p <0.001); NO3
-, DOC, TN, and soluble P (p <0.01); and Ca (p <0.05) all increased by a significantly greater amount 

in straw than woodchip treatments. In contrast pH, EC (p <0.05) and DON (p <0.01) increased by a significantly greater amount in sheep than cattle 

treatments, and NO3
- (p <0.05) in silage than hay treatments. 
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3.3.5.3 Chemical characterisation of treatments at the start of composting 

Table 3.43: Nutrient concentrations at week 1 in IGER’s bedding, feed and livestock treatments, incl. ±1 se. Symbols displayed between paired treatment types 
represent (* p<0.05; ** p<0.01 and *** p<0.001) differences in variable concentrations. 

IGER Straw       Wood     Silage       Hay     Sheep       Cattle     

Week 1 (n=4)   se   (n=4)   se (n=4)    se   (n=4)   se (n=4)    se   (n=4)   se 

pH 8.42 ± 0.05   8.42 ± 0.07 8.47 ± 0.06   8.36 ± 0.03 8.49 ± 0.05 * 8.35 ± 0.03 

EC mS/cm 7.46 ± 1.37 * 4.29 ± 0.61 6.02 ± 1.13   5.73 ± 1.62 7.51 ± 1.32 * 4.24 ± 0.64 

NO3
- mg/kg 70.9 ± 11.7 ** 20.8 ± 4.26 57.4 ± 19.2 * 34.3 ± 10.7 52.1 ± 17.9   39.5 ± 15.1 

NH4
+ mg/kg 2575 ± 521   1423 ± 102 2226 ± 411   1772 ± 548 2247 ± 550   1751 ± 400 

DIN mg/kg 2646 ± 527   1444 ± 102 2284 ± 429   1806 ± 554 2299 ± 564   1790 ± 410 

DON mg/kg 1642 ± 509   1224 ± 309 1619 ± 418   1247 ± 430 2083 ± 277 ** 783 ± 159 

TSN mg/kg 4288 ± 939   2667 ± 318 3902 ± 626   3053 ± 953 4382 ± 818   2574 ± 455 

DOC mg/kg 13252 ± 970 *** 4344 ± 187 9226 ± 2898   8370 ± 2383 9619 ± 2957   7978 ± 2238 

AC:N 3.61 ± 0.84   1.71 ± 0.24 2.23 ± 0.49   3.09 ± 1.00 2.04 ± 0.30   3.28 ± 1.01 

K mg/kg 9767 ± 1152 * 5039 ± 916 8679 ± 1470   6127 ± 1626 7150 ± 1442   7656 ± 1942 

Na mg/kg 3427 ± 338 * 1708 ± 258 2705 ± 468   2430 ± 665 2355 ± 495   2780 ± 631 

Ca mg/kg 1883 ± 237 * 954 ± 166 1612 ± 324   1225 ± 312 1254 ± 254   1583 ± 380 

TN g/kg 20.9 ± 1.21 *** 6.14 ± 0.47 14.2 ± 4.83   12.8 ± 3.82 14.3 ± 4.36   12.74 ± 4.33 

TC g/kg 396 ± 3.95 ** 441 ± 2.42 417 ± 12.4   420 ± 14.2 419 ± 14.1   417 ± 12.6 

TC:N 19.1 ± 1.34 *** 72.9 ± 4.83 46.1 ± 16.5   46.0 ± 15.3 41.8 ± 13.9   50.2 ± 17.4 

AP mg/kg 437 ± 20.7 ** 271 ± 23.2 334 ± 61.4   374 ± 39.7 363 ± 64.5   345 ± 37.3 

 

Table 3.43 shows that at the start of composting (week 1) the straw composts contained significantly higher levels of soluble salts, NO3
-, K, Na, Ca, 

soluble P (and thus EC), as well as greater DOC, TN, TC and lower TC:N ratio than woodchip-based composts. Differences between feed and 

livestock treatments match the increases during housing shown in Table 3.42. 
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3.3.5.4 Chemical changes during composting - Linear regression analysis 

Regression analysis of pH, EC, NO3
-, NH4

+, DIN, DON, TSN, DOC, AC:AN, K2O, Na, and Ca 

within IGER bedding, livestock and feed types; individual bedding treatments are shown in 

Appendix VII. Similar to the ADAS results, a linear regression analysis was satisfactory for most 

nutrient profiles, with the exception of NO3
-, NH4

+, DIN and TSN profiles; specific details of each 

analysis are described where appropriate. Treatment (n= #) is not shown in each graph because 

each treatment data consists of four (n=4) compost heap means (see Table 3.12 for full details).  
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Figures 3.69 (bedding) 3.70 (livestock) and 3.71 (feed) show the relationship between pH and 

composting time in bedding, livestock and feed types. Solid regression lines relate to black dot 

treatment icons; dashed regression lines, white dot treatment icons. Values represent mean ±1 se. 
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Table 3.44: pH regression equations and corresponding R2 values per treatment; (p<0.05) shows that 

composting time is a significant factor in determining changes in pH within treatments.  

Treatment Equation R2 p. value 
Straw y = 0.0067x + 8.2904 R² = 0.3018 .126 
Woodchip y = -0.0292x + 8.2072 R² = 0.7807 < .01 
Silage y = 0.0034x + 8.4405 R² = 0.2870 .137 
Hay y = -0.0259x + 8.0571 R² = 0.6781 < .01 
Sheep y = -0.0193x + 8.34 R² = 0.6454 < .01 
Cattle y = -0.0032x + 8.1576 R² = 0.0606 .523 

 

Table 3.44 shows pH decreased linearly in woodchip, whereas Figure 3.69 shows a slight increase 

in straw composts. Figure 3.70 shows a non-linear response (decrease then increase) in sheep, but 

no clear trend over time in cattle composts. Figure 3.71 also shows a non-linear response (decrease 

then increase) in hay, whereas pH shows a slight tendency to linear increase in silage composts. 
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Figures 3.72 (bedding) 3.73 (livestock) and 3.74 (feed): show the relationship between EC and 

composting time in bedding, livestock and feed types. Solid regression lines relate to black dot 

treatment icons; dashed regression lines, to white dot treatment icons. Values represent mean ±1 

se. 

 
Table 3.45: EC regression equations and corresponding R2 values per treatment; (p<0.05) shows that 
composting time is a significant factor in determining changes in EC within treatments.   

Treatment Equation R2 p. value 
Straw y = 0.287x + 7.3858 R² = 0.8929 < .001 
Woodchip y = 0.0275x + 3.104 R² = 0.1907 .240 
Silage y = 0.1736x + 5.407 R² = 0.8971 < .001 
Hay y = 0.1409x + 5.0828 R² = 0.8426 < .001 
Sheep y = 0.1614x + 6.6579 R² = 0.8650 < .001 
Cattle y = 0.1531x + 3.8319 R² = 0.8743 < .001 

 

Table 3.45 shows that salt EC content increased significantly during composting in all treatments 

except woodchip  (p <0.001) (Figures 3.72, 3.73 and 3.74). In woodchip composts EC remained 

much more stable, though did show a slight tendency to increase. 
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Figures 3.75 (bedding) 3.76 (livestock) and 3.77 (feed): show the relationship between NO3
- and 

composting time in bedding, livestock and feed types. Solid regression lines relate to black dot 

treatment icons; dashed regression lines, to white dot treatment icons. NO3
- in straw is analysed 

using an exponential growth curve (3 parameters) f = y0+a*exp(b*x). Values represent mean ±1 

se. 
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Table 3.46: NO3
- regression equations and corresponding R2 values per treatment; (p<0.05) shows that 

composting time is a significant factor in determining changes in NO3
- within treatments. 

Treatment Equation R2 p. value 
Straw y = -13.632 * exp1.02x R² = 0.9777 < .05 
Woodchip y = -1.9053x + 183.46 R² = 0.0355 .762 
Silage y = 15.213x + 115.31 R² = 0.7198 .069 
Hay y = 21.947x - 1.6256 R² = 0.9697 < .01 
Sheep y = 22.4x + 45.484 R² = 0.8572 < .05 
Cattle y = 14.761x + 68.202 R² = 0.9008 < .05 

 

Figures 3.75, 3.76, 3.77, show that NO3
- concentrations increased significantly during composting 

in all treatments except woodchip and silage. There was no evidence of any trend over time in the 

woodchip NO3
- profile, but there is an overall pattern of increase in the silage. Table 3.46 shows the 

rate at which NO3
- levels increased over time in straw, hay and both livestock treatments, was 

significantly (p<0.05) correlated to the values predicted by the respective regression models. 
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Figures 3.78 (bedding) 3.79 (livestock) and 3.80 (feed): show the relationship between NH4
+  and 

composting time in bedding, livestock and feed types. Solid regression lines relate to black dot 

treatment icons; dashed regression lines, to white dot treatment icons. All treatments were 

analysed using an exponential decay curve (3 parameters) f = y0+a*exp(-b*x). Values represent 

mean ±1 se. 

 
Table 3.47: NH4

+ regression equations and corresponding R2 values per treatment; (p<0.05) shows that 
composting time is a significant factor in determining changes in NH4

+ within treatments.  

Treatment Equation R2 p. value 
Straw y = 3343.8 * exp-0.30x R² = 0.9953 < .01 
Woodchip y = 1867.0 * exp-0.28x R² = 0.9996 < .001 
Silage y = 3053.6 * exp-0.34x R² = 0.9998 < .001 
Hay y = 2177.9 * exp-0.23x R² = 0.9942 < .01 
Sheep y = 2891.0 * exp-0.28x R² = 0.9998 < .001 
Cattle y = 2325.5 * exp-0.31x R² = 0.9884 < .01 

 

Figures 3.78, 3.79, and 3.80, show NH4
+ concentrations decreased rapidly during composting in all 

treatments as nitrification occurred up to week 11, which thereafter continued at a much lower rate, 

fitting the exponential decay regression curves and resulting in significant correlations in all 

treatments. Table 3.47 shows the rate at which NH4
+ levels decreased over time in all treatments 

was significantly (p<0.01) correlated to the predicted values in the respective decay curve 

regression models. 

  



 

126 
 

DIN 

Weeks composting

1 5 11 21 32

D
IN

 (m
g/

kg
) (

dr
y 

w
ei

gh
t) 

0

1000

2000

3000

4000
Straw 
Woodchip 

Weeks composting

1 5 11 21 32

D
IN

 (m
g/

kg
) (

dr
y 

w
ei

gh
t) 

0

500

1000

1500

2000

2500

3000

3500

Sheep 
Cattle

!
!

Weeks composting

1 5 11 21 32

D
IN

 (m
g/

kg
) (

dr
y 

w
ei

gh
t) 

0

500

1000

1500

2000

2500

3000

3500
Silage 
Hay 

 

 

Figures 3.81 (bedding) 3.82 (livestock) and 3.83 (feed): show the relationship between DIN and 

composting time in bedding, livestock and feed types. Solid regression lines relate to black dot 

treatment icons; dashed regression lines, to white dot treatment icons. An exponential decay / 

linear combination curve f = y0+a*exp(-b*x)+c*x was used to analyse all the treatments except 

Woodchip (Fig 3.75) which was analysed using an exponential decay curve (3 parameters) f = 

y0+a*exp(-b*x). Values represent mean ±1 se. 
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Table 3.48: DIN regression equations and corresponding R2 values per treatment; (p<0.05) shows that 
composting time is a significant factor in determining changes in DIN within treatments.  

Treatment Equation R2 p. value 
Straw y = 3775.7 * exp-0.37x + 35.8x R² = 0.9823 .!085 
Woodchip y = 1659.!3 * exp-0.17x R² = 0.9801 < .05 
Silage y = 3044.1 * exp-0.35x + 10.1x R² = 0.9015 .199 
Hay y = 2310.9 * exp-0.31x + 14.1x R² = 0.9976 < .05 
Sheep y = 3238.!8 * exp-0.46x + 8.81x R² = 0.9543 .136 
Cattle y = 2223.0 * exp-0.24x + 17.4x R² = 0.9926 .055 

 

Concentrations of DIN in all treatments (Figures 3.81, 3.82, and 3.83) are strongly influenced by 

decreases in NH4
+ during the first half of the composting period (weeks 0 – 11), after which, 

concentrations remained low due to the relatively smaller increases in NO3
-. This pattern is 

indicative of the low level of nitrification in the woodchip composts, which is also evident in both 

the livestock and feed type results, although the effect on these treatments was mitigated by the 

inclusion of an equal number of straw bedding-composts (see table 3.12). Therefore, DIN profiles 

in all treatments except woodchip, were most accurately analysed using an exponential decay / 

linear combination curve, whereas the woodchip data was analysed with a (3 parameter) 

exponential decay curve. Table 3.48 shows the rate at which DIN levels decreased over time in the 

woodchip and hay treatments was significantly (p<0.05) correlated to the predicted values in the 

respective decay curve regression models.  
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Figures 3.84 (bedding) 3.85 (livestock) and 3.86 (feed): show the relationship between DON and 

composting time in bedding, livestock and feed types. Solid regression lines relate to black dot 

treatment icons; dashed regression lines, to white dot treatment icons. Values represent mean ±1 

se. 

 
Table 3.49: DON regression equations and corresponding R2 values per treatment; (p<0.05) shows that 
composting time is a significant factor in determining changes in DON within treatments.  

Treatment Equation R2 p. value 
Straw y = -35.589x + 2287.7 R² = 0.4558 .211 
Woodchip y = -24.893x + 787.84 R² = 0.4954 .185 
Silage y = -35.41x + 1795.2 R² = 0.6851 .084 
Hay y = -25.072x + 1280.4 R² = 0.9921 < .001 
Sheep y = -58.868x + 2111.4 R² = 0.9503 < .01 
Cattle y = -1.6141x + 964.15 R² = 0.0139 .850 

 

Figures 3.84, 3.85, and 3.86; DON concentrations showed a general trend to decrease in all 

treatments during composting, but the pattern was more variable than for DIN (especially for cattle 

composts). In sheep, and especially hay, composts the linear decrease in DON was clearly 

significant, with a very steep decline for sheep (Table 3.49). 
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Figures 3.87 (bedding) 3.88 (livestock) and 3.89 (feed): show the relationship between TSN and 

composting time in bedding, livestock and feed types. Solid regression lines relate to black dot 

treatment icons; dashed regression lines, to white dot treatment icons. An exponential decay curve 

(3 parameters) f = y0+a*exp(-b*x) was used to analyse all the treatments except Cattle (Fig 3.82) 

which was analysed using an exponential decay / linear combination curve f = y0+a*exp(-

b*x)+c*x. Values represent mean ±1 se. 
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Table 3.50: TSN regression equations and corresponding R2 values per treatment; (p<0.05) shows that 
composting time is a significant factor in determining changes in TSN within treatments.  

Treatment Equation R2 p. value 

Straw y = 4607.1 * exp-0.12x R² = 0.8290 .085 
Woodchip y = 3322.8 * exp-0.26x R² = 0.9670 < .05 
Silage y = 4302.8 * exp-0.14x R² = 0.8583 .071 
Hay y = 3476.4 * exp-0.23x R² = 0.9745 < .05 
Sheep y = 4820.3 * exp-0.14x R² = 0.9858 < .01 
Cattle y = 2684.2 * exp-0.03x + 199x R² = 0.9001 .200 

 

TSN is calculated as the sum of DIN and DON concentrations. Figures 3.87, 3.88, and 3.89, show 

that TSN, like DIN and DON concentrations, decreased in all treatments during composting. TSN 

in sheep composts were higher at the start of composting than cattle, due to the higher ratios of 

manure to bedding in sheep-straw bedding composts, but decreased at a faster rate (note: sheep 

beddings started composting 2 weeks before cattle beddings), resulting in both treatments 

containing similar concentrations at the end of composting, whereas, straw treatments contained 

greater amounts of TSN than wood throughout.  Table 3.50 shows the rate at which TSN levels 

decreased over time in the woodchip, sheep and hay treatments, was significantly (p<0.05) 

correlated to the predicted values in the respective decay curve regression models. 
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Figures 3.90 (bedding) 3.91 (livestock) and 3.92 (feed): show the relationship between DOC and 

composting time in bedding, livestock and feed types. Solid regression lines relate to black dot 

treatment icons; dashed regression lines, to white dot treatment icons. Values represent mean ±1 

se. 

 
Table 3.51: DOC regression equations and corresponding R2 values per treatment; (p<0.05) shows that 
composting time is a significant factor in determining changes in DOC within treatments.  

Treatment Equation R2 p. value 
Straw y = -221.22x + 21176 R² = 0.1719 .488 
Woodchip y = -88.233x + 4119.1 R² = 0.7935 < .05 
Silage y = -163.09x + 14213 R² = 0.1762 .482 
Hay y = -146.36x + 11082 R² = 0.4963 .184 
Sheep y = -260.23x + 15089 R² = 0.4002 .252 
Cattle y = -49.225x + 10207 R² = 0.0622 .686 

 

Figures 3.90, 3.91, and 3.92, show that DOC levels were very low in the woodchip treatment at the 

start, but showed very little variability between replicates, thus the small consistent decrease during 

composting was significant (see Table 3.51). The other treatments showed far more variability 

between replicates and over time. 
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Figures 3.93 (bedding) 3.94 (livestock) and 3.95 (feed): show the relationship between AC:N ratio 

and composting time in bedding, livestock and feed types. Solid regression lines relate to black dot 

treatment icons; dashed regression lines, to white dot treatment icons. Values represent mean ±1 

se. 
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Table 3.52: Available CN regression equations and corresponding R2 values per treatment; (p<0.05) shows 
that composting time is a significant factor in determining changes in available CN within treatments.  

Treatment Equation R2 p. value 
Straw y = -0.0036x + 5.8994 R² = 0.0007 .965 
Woodchip y = 0.1985x + 2.2885 R² = 0.9533 < .01 
Silage y = 0.1395x + 3.5315 R² = 0.7570 .055 
Hay y = 0.0553x + 4.6564 R² = 0.2370 .406 
Sheep y = 0.0624x + 3.7675 R² = 0.2860 .353 
Cattle y = 0.1325x + 4.4204 R² = 0.7074 .074 

 

Figures 3.93, 3.94, and 3.95 show AC:N ratios were highly variable between replicates and over 

time. Nonetheless, there is a striking contrast between the significant linear increase in woodchip 

(Table 3.52) and the non-linear pattern for straw composts (increase up to week 11 followed by a 

decrease).  The increase in AC:N in the woodchip treatments is primarily attributable to the 

decrease in DOC (Figure 3.90). The linear increases in AC:N in silage and cattle treatments 

separately were close to significant (Table 3.52).  
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Figures 3.96 (bedding) 3.97 (livestock) and 3.98 (feed): show the relationship between K2O and 

composting time in bedding, livestock and feed types. Solid regression lines relate to black dot 

treatment icons; dashed regression lines, to white dot treatment icons. Values represent mean ±1 

se. 

 

Table 3.53: K2O regression equations and corresponding R2 values per treatment; (p<0.05) shows that 
composting time is a significant factor in determining changes in K2O within treatments.  

Treatment Equation R2 p. value 

Straw y = 3.4763x + 16225 R² = 0.0001 .988 
Woodchip y = -70.951x + 4834.6 R² = 0.9242 < .01 
Silage y = -61.095x + 11304 R² = 0.1289 .553 
Hay y = -6.3804x + 9755.3 R² = 0.0010 .960 

Sheep y = -32.263x + 10286 R² = 0.0295 .783 
Cattle y = -35.212x + 10773 R² = 0.0399 .747 

 

Figures 3.96, 3.97 and 3.98, show high variability in K concentrations between replicates and over 

time in all treatments except woodchip composts, which show a small but highly significant 

decrease over time (Table 3.53). Despite the high variability amongst replicates there was a striking 

similarity in the non-linear fluctuations in K, over time, amongst sheep, cattle, silage and hay 

treatments, analysed separately. It is clear that the overwhelming contrast is between the trends for 

straw composts (showing no trend over time) and woodchip (the only treatment to contain lower 

concentrations at week 32 than week 1 (Figure 3.117)). This is considered to be the result of greater 

leaching from the woodchip than the straw composts.  
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Figures 3.99 (bedding) 3.100 (livestock) and 3.101 (feed): show the relationship between Na and 

composting time in bedding, livestock and feed types. Solid regression lines relate to black dot 

treatment icons; dashed regression lines, to white dot treatment icons. Values represent mean ±1 

se. 
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Table 3.54: Na regression equations and corresponding R2 values per treatment; (p<0.05) shows that 
composting time is a significant factor in determining changes in Na within treatments.  

Treatment Equation R2 p. value 
Straw y = -13.049x + 5129.8 R² = 0.0163 .838 
Woodchip y = -24.104x + 1545.2 R² = 0.8176 < .05 
Silage y = -19.864x + 3342.4 R² = 0.1503 .519 
Hay y = -17.29x + 3332.7 R² = 0.0908 .622 
Sheep y = -19.562x + 3302.1 R² = 0.0939 .616 
Cattle y = -17.592x + 3373 R² = 0.2028 .447 

 

Figures 3.99, 3.100 and 3.101 and Table 3.54 show a strikingly similar set of results for Na 

concentrations as for K. Again, woodchip (small significant decrease over time) versus straw (no 

trend over time) was the dominant contrast. Figure 3.118 shows that Na was leached to such an 

extent from the woodchip composts during composting (p <0.05), that the losses dominated results 

in the cattle and hay treatments also.  
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Figures 3.102 (bedding) 3.103 (livestock) and 3.104 (feed): show the relationship between Ca and 

composting time in bedding, livestock and feed types. Solid regression lines relate to black dot 

treatment icons; dashed regression lines, to white dot treatment icons. Values represent mean ±1 

se. 

 
Table 3.55: Ca regression equations and corresponding R2 values per treatment; (p<0.05) shows that 
composting time is a significant factor in determining changes in Ca within treatments.  

Treatment Equation R2 p. value 
Straw y = -22.843x + 1677.3 R² = 0.1284 .554 
Woodchip y = -14.313x + 640.07 R² = 0.3180 .322 
Silage y = -24.334x + 1254.4 R² = 0.2564 .384 
Hay y = -12.822x + 1063 R² = 0.1253 .559 
Sheep y = -16.124x + 1068.4 R² = 0.1707 .489 
Cattle y = -21.032x + 1249 R² = 0.2207 .425 

 

Figures 3.102, 3.103 and 3.104 show Ca concentrations were also strongly influenced by bedding 

material (woodchip versus straw). While there was a general pattern of decrease over time, no Ca 

treatment profile was significantly correlated (Table 3.55). The non-linear fluctuations over time 

were very similar between in sheep, cattle, silage and hay treatments, although this is attributed to 

rates of loss in seepage, determined predominately by the physical and labile properties of the two 

bedding materials). However, Figures 3.102 and 3.119 show that, unlike K and Na, a large 

proportion of the initial Ca was also leached from straw composts, not just from woodchip. 
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3.3.5.5 Chemical changes between the start and end of composting  

The following graphs show change in compost nutrient concentrations between the start (Week 1) 

and end (Week 32) of composting at IGER. Symbols displayed above paired columns denote 

significant (* p<0.05; ** p<0.01 and *** p<0.001) differences in the tested concentrations within 

each treatment, between the start and end of composting; (n= #) displayed after each treatment 

denotes the number of compost means (each, the mean of 4 samples) included in the data. 
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Figures 3.105 (pH) and 3.106 (EC): pH and EC levels in IGER treatments at week 1 (white bars) 

and week 32 (grey bars). Values represent mean ±1 se. Symbols displayed above treatment 

columns represent (* p<0.05; ** p<0.01 and *** p<0.001) significant changes over time. 
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Figures 3.107 (NO3
-) and 3.108 (NH4

+): Nitrate and ammonium in IGER treatments at week 1 

(white bars) and week 32 (grey bars). Values represent mean ±1 se. Symbols displayed above 

treatment columns represent significant (* p<0.05; ** p<0.01 and *** p<0.001) changes in 

concentrations over time. 
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Figures 3.109 (DIN) and 3.110 (DON): Dissolved inorganic nitrogen and dissolved organic 

nitrogen in IGER treatments at week 1 (white bars) and week 32 (grey bars). Values represent 

mean ±1 se. Symbols displayed above treatment columns represent significant (* p<0.05; ** 

p<0.01 and *** p<0.001) changes in concentrations over time.  
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TSN and DOC 
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Figures 3.111 (TSN) and 3.112 (DOC): Total soluble nitrogen and dissolved organic carbon in 

IGER treatments at week 1 (white bars) and week 32 (grey bars). Values represent mean ±1 se. 

Symbols displayed above treatment columns represent significant (* p<0.05; ** p<0.01 and *** 

p<0.001) changes in concentrations over time. 
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Figures 3.113 (AC:N) and 3.114 (TC:N): Available CN and total CN ratios in IGER treatments at 

week 1 (white bars) and week 32 (grey bars). Values represent mean ±1 se. Symbols displayed 

above treatment columns represent significant (* p<0.05; ** p<0.01 and *** p<0.001) changes in 

concentrations over time.  
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TN and TC 
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Figures 3.115 (TN) and 3.116 (TC): Total nitrogen and total carbon in IGER treatments at week 1 

(white bars) and week 32 (grey bars). Values represent mean ±1 se. Symbols displayed above 

treatment columns represent significant (* p<0.05; ** p<0.01 and *** p<0.001) changes in 

concentrations over time. 

 

Table 3.56: Percentage of total N as available N (AN) (left), and percentage of total C as available C (AC) 
(right), at the start and end of the IGER composting trial. 

IGER % of Total N as AN   IGER % of Total C as AC 
Treatments (n=4) Week 1 Week 32   Treatments (n=4) Week 1 Week 32 

Straw 20.1 9.2   Straw 3.4 4.1 
Wood 43.9 3.0   Wood 1.0 0.4 
Silage 36.7 6.9   Silage 2.3 2.9 
Hay 27.2 5.3   Hay 2.1 1.7 
Sheep 35.7 6.5   Sheep 2.4 1.8 
Cattle 28.2 5.7   Cattle 2.0 2.7 
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Potassium and Sodium 
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Figures 3.117 (K20) and 3.118 (Na): Potassium and sodium in IGER treatments at week 1 (white 

bars) and week 32 (grey bars). Values represent mean ±1 se. Symbols displayed above treatment 

columns represent significant (* p<0.05; ** p<0.01 and *** p<0.001) changes in concentrations 

over time. 
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Figures 3.119 (Ca) and 3.120 (P2O5): Calcium and soluble P in IGER treatments at week 1 (white 

bars) and week 32 (grey bars). Values represent mean ±1 se. Symbols displayed above treatment 

columns represent significant (* p<0.05; ** p<0.01 and *** p<0.001) changes in concentrations 

over time.  
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There was a significant drop in pH in both woodchip and hay composts (p<0.05) (Figure 3.105), 

although all treatments remained within a pH range of 7 to 9 over the composting period. 

Concentrations of soluble salts were highly contrasting between bedding types: EC readings in 

straw composts were significantly higher after composting than at the start, whereas EC readings in 

woodchip remained almost unchanged throughout (Figure 3.106). NH4
+ decreased significantly in 

all treatment types during composting (Figure 3.108) but notably, NO3
- only increased significantly 

in straw (Figure 3.107, see section 3.4 for further discussion). DIN (p<0.001), DON (p<0.05), TSN 

(p<0.001) and DOC (p<0.001) all decreased significantly in woodchip during composting (Figures 

3.109-3.112). The significant drop in DOC is of particular concern, as concentrations at the start of 

composting were already critically low for microbial growth and function. Thus, as the ADAS data 

shows, AC:N ratios remained below 10:1 in woodchip treatments throughout the composting 

period (Figure 3.113); so decomposition would appear to have been inhibited as much by a lack of 

AC as by the lack of AN. Although, increases in TN were significant (p <0.05) at IGER (Figure 

3.115), they were less so than at ADAS (p <0.001) (Figure 3.58). TN levels in IGER’s woodchip 

composts also remained very low in comparison with straw-based treatments, reflecting the high 

TC:N (Figure 3.114) and TC (Figure 3.116) concentrations still present at the end of composting. 

The percentage of TN as AN in IGER’s woodchip treatment was higher at the start and end of 

composting (Table 3.56) than at ADAS (Table 3.37). This is possibly due to manure not being 

removed at IGER. Nevertheless, the proportion of TN as AN at the end of composting is still low 

compared with the straw treatment. At both sites, the low percentages of TN as AN are likely to 

have been due to immobilization. Concentrations of K and Na increased in the straw treatment 

during composting, but decreased in woodchip (Figures 3.117 and 3.118). This contrast is 

considered to be the result of greater mass loss in the more labile straw compost, although both 

bedding materials will have lost nutrients via seepage. Ca concentrations decreased significantly in 

all treatments except hay during composting at IGER (Figure 3.119). Most notable are the 

decreases in both woodchip and straw treatments (p <0.001), demonstrating the levels of Ca lost 

(considered to be via seepage and immobilization) were highly significant in both bedding types, 

not just woodchip, as was the case for K and Na). Soluble P concentrations increased in all 

treatments during composting, significantly in woodchip (p <0.01) and silage (p <0.05) (Figure 

3.120). These increases may, in part, be due to compost mass loss, but the reason for a significant 

increase in the woodchip and a non-significant increase in the straw compost remains unclear 

(Larney 2008(a)).  
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3.3.5.6 Chemical characterisation of treatments at the end of composting 

Table 3.57: Nutrient concentrations at week 32 in the bedding, feed and livestock treatments in the IGER experiment, including ±1 se. Symbols displayed 
between paired treatment types represent (* p<0.05; ** p<0.01 and *** p<0.001) differences in variable concentrations. 

IGER Straw       Wood     Silage       Hay     Sheep       Cattle     

Week 32 (n=4)   se   (n=4)   se (n=4)    se   (n=4)   se (n=4)    se   (n=4)   se 

pH 8.52 ± 0.33 ** 7.54 ± 0.31 8.56 ± 0.29 ** 7.51 ± 0.31 7.96 ± 0.44   8.11 ± 0.41 

EC mS/cm 14.7 ± 1.64 ** 4.19 ± 0.68 9.94 ± 3.73   8.94 ± 2.72 11.2 ± 3.47 * 7.72 ± 2.74 

NO3
- mg/kg 1218 ± 68.8 *** 76.9 ± 50.6 630 ± 343   666 ± 327 736 ± 344 * 559 ± 318 

NH4
+ mg/kg 311 ± 66.4 ** 40.8 ± 12.1 193 ± 102   158 ± 78.5 239 ± 105   113 ± 54.3 

DIN mg/kg 1529 ± 130 *** 118 ± 62.4 823 ± 439   823 ± 400 975 ± 447 * 672 ± 371 

DON mg/kg 1198 ± 444   143 ± 11.3 892 ± 552   449 ± 213 391 ± 154   950 ± 554 

TSN mg/kg 2727 ± 392 ** 261 ± 70.5 1715 ± 906   1272 ± 563 1366 ± 590   1622 ± 902 

DOC mg/kg 14456 ± 2836 ** 1895 ± 142 10225 ± 4982   6126 ± 2598 6845 ± 3122   9506 ± 4841 

AC:N 5.21 ± 0.45   8.47 ± 1.62 7.52 ± 1.31   6.16 ± 1.60 5.36 ± 0.74   8.32 ± 1.61 

K mg/kg 13866 ± 781 *** 2815 ± 288 8849 ± 3649   7832 ± 2749 8348 ± 3293   8333 ± 3194 

Na mg/kg 4280 ± 447 ** 891 ± 109 2823 ± 1224   2348 ± 768 2594 ± 1000   2577 ± 1061 

Ca mg/kg 770 ± 22.0 *** 296 ± 43.0 493 ± 145   573 ± 132 504 ± 140   563 ± 139 

AP mg/kg 749 ± 141   463 ± 45.1 739 ± 145   473 ± 51.3 673 ± 140   540 ± 114 

TP mg/kg 5130 ± 356 ** 1734 ± 117 3554 ± 1109   3310 ± 908 3237 ± 785   3627 ± 1192 

TN g/kg 29.8 ± 2.20 ** 8.64 ± 0.56 18.4 ± 6.37   20.0 ± 6.22 17.6 ± 4.96   20.8 ± 7.30 

TC g/kg 352 ± 7.64 ** 432 ± 2.65 395 ± 23.2   390 ± 24.3 397 ± 18.3   388 ± 28.0 

TC:N 12.1 ± 1.18 *** 50.7 ± 3.46 34.2 ± 12.6   28.6 ± 10.0 30.8 ± 9.88   32.1 ± 12.8 

Cu mg/kg 18.6 ± 2.55 ** 10.0 ± 0.59 15.7 ± 3.49   12.9 ± 2.38 12.0 ± 2.04   16.5 ± 3.41 

Zn mg/kg 117 ± 13.4 * 88.1 ± 8.54 100 ± 15.1   106 ± 12.7 120 ± 12.6 * 85.1 ± 5.43 
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The data in Table 3.57 shows all nutrient concentrations are significantly higher in the straw than 

the woodchip treatment after composting, except for DON (p =0.062) and soluble P (p =0.051). 

The significance of the differences in TC:N ratio (12:1 in straw and 51:1 in woodchip) is perhaps 

the most fundamental, because of the effect ratios < 40:1 have on microbial function (Bernal 2009). 

Furthermore, the results illustrate the dominant influence of bedding type, in contrast to feed and 

livestock types. Where only pH differed significantly (p <0.01) between silage and hay and EC, 

NO3
-, DIN and Zn levels were significantly (p <0.05) higher in sheep than cattle composts. 
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3.3.6 Nutrient balances (N Budget) in ADAS and IGER trials  

Due to limitations in the housing and composting trial protocols, empirical data are supported by 

estimates, derived from (IOTA - online), which are highlighted with italics. The different livestock 

demographics, feed types and protocols deployed in each of the four livestock trials increased the 

complexity of these analyses, so data sources and calculations are described where necessary. 

Attention is also drawn to data presentation in the summary tables (section 3.3.6.6); these are 

aggregated into the four bedding-livestock treatments per site, determined as total N mass, divided 

by the total number of livestock. But in order to fully convey the results, data presented in sections 

3.3.6.2 - 3.3.6.5 are specific to each treatment pen; see Tables 3.9 – 3.12 in section 3.2.5 for details 

of treatment groups. 
    

3.3.6.1 Summary of experimental designs at ADAS and IGER 

3.3.6.1.1 ADAS 

ADAS Livestock Sheep  Cattle 

Demographics  Twin bearing ewes 12 month old bullocks 

Total livestock number 120 32 

Livestock per treatment 30 8 

Mean live weights at start (kg hd-1) 52.3  (36.5 - 71) 399    (394 - 402) 
Mean live weights at end (kg hd-1) na 402    (393 - 414) 
Housing period dates ~ 8 weeks 25/1/06 - 23/3/06 25/1/06 - 23/3/06 

Area allowance m2 hd-1 1.03 5.70 

      
ADAS Feed Concentrates Silage 
% DM 90  (Dumont, 2012) 23.5 ± 3 
Sheep mean DMi kg hd-1 d-1 0.50 0.56 
Cattle mean DMi kg hd-1 d-1 2.00 4.73 
Feeding rates   ad libitum ad libitum 
      
ADAS Bedding Straw Woodchip 
Sheep total DM kg hd-1 19.9 76.7 
Cattle total DM kg hd-1 168 336 
% DM 10.8 66, 47 and 45 
C:N ratios 96.0 407, 590 and 437 
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3.3.6.1.2 IGER 

IGER Livestock Sheep  Cattle 

Demographics  12 month old ewe lambs 15 month old dairy heifers 

Total livestock number 64 24 

Livestock per treatment 16 6 

Mean live weights at start (kg hd-1) 53.9 (53.8 - 54.0) 335   (328 - 339) 

Mean live weights at end (kg hd-1) 52.4 (47.7 - 56.0) 374   (355 - 392) 

Housing period dates ~ 8 weeks 20/1/06 - 17/3/06 3/2/06 - 31/3/06 

Area allowance m2 hd-1 2.42 6.45 

      

IGER Feed Hay Silage 

% DM 82.7 29.6 

Sheep DMi kg hd-1 d-1 0.74 0.90 

Cattle DMi kg hd-1 d-1 6.13 7.03 

Feeding rates + frequency  ad libitum+10 % d-1 ad libitum+10 % /wk-3 

      

IGER Bedding Straw Woodchip 

Sheep DM kg hd-1  13.5 56.9 

Cattle DM kg hd-1  272 560 

% DM 13.5 50.7 

C:N ratio 81.0 344 
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3.3.6.2 Bedding N content  

Data in Table 3.58 is determined by multiplying raw bedding kg hd-1 DM, shown in Tables 3.3 

(ADAS) and 3.4 (IGER) by the raw bedding N content (g kg-1) shown in Tables 3.20 (ADAS) and 

3.41 (IGER).  

  
Table 3.58: Dry matter (DM) bedding N content hd-1 treatment-1 at ADAS and IGER 

ADAS  Bedding type g N hd-1   IGER Bedding type g N hd-1 

S34 Wood 92.6   SSS Straw 94.0 

S53 Wood 60.4   SSC Wood 91.6 

S55 Wood 85.3   SHS Straw 53.3 

SS Straw 89.4   SHC Wood 68.9 

C34 Wood 424   CSS Straw 1508 

C53 Wood 266   CSC Wood 930 

C55 Wood 356   CHS Straw 1462 

CS Straw 756   CHC Wood 651 
 

 

3.3.6.3 Forage dry matter intakes (DMi) and estimated N content 

DMi g hd-1 d-1 is determined as: Total DMi pen-1 shown in Tables 3.5 (ADAS) and Table 3.6 

(IGER) / 56 (housing period (days)) divided by livestock treatment-1 (ADAS sheep n=30 and cattle 

n=8; IGER sheep n=16 and cattle n=6) * 1000 (to convert kg to g). The (IOTA, online) estimated 

percentages of N in fresh silage and fresh hay are: silage 0.69 % N and hay 1.49 % N. Note that 

these % N figures are on a fresh weight basis, and therefore % N increases the lower the forage 

DM content. On a dry weight basis: ADAS sheep silage 20.4 % DM content = 3.38 % N (DM); 

ADAS cattle silage 26.7 % DM content = 2.58 % N (DM). At IGER (unlike ADAS), the same 

silage and hay was fed to both sheep and cattle, so feed specific DM contents were the same, but 

livestock either received silage 29.6 % DM = 2.33 % N (DM) or hay 82.7 % DM = 1.8 % N (DM). 

To avoid increased distortion in the estimated % N in hay and silage at IGER (Table 3.61) - and, 

more widely, between forage, livestock and manure – all estimates were determined using a single 

source (IOTA) but were cross-referenced with empirical publications to ensure the estimates were 

representative.  

ADAS sheep and cattle were both fed silage, supplemented daily with concentrates. Silage dry 

matter intakes (DMi) and estimated N contents (IOTA) are detailed in Table 3.59 and concentrate 
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intakes and N contents in Table 3.60. The N content in cattle concentrates was determined, 

assuming 16% (DM) crude protein (Dumont 2012). 

 

Table 3.59: ADAS silage dry matter intakes (DMi) and estimated N content hd-1 d-1 

ADAS DMi   g hd-1 d-1 N   g hd-1 d-1 
S34 537 18.2 
S53 560 18.9 
S55 560 18.9 
SS 563 19.1 
C34 5100 132 
C53 4500 116 
C55 4800 124 
CS 4500 116 

 

 
Table 3.60: ADAS concentrate intakes and (DM) estimated N content hd-1 d-1 

ADAS    Concentrates g hd-1 d-1 N g hd-1 d-1 

Sheep      (18 % CP) 500 14.4 

Cattle      (16 % CP) 2000 51.2 

 

 
Table 3.61: IGER dry matter forage intakes (DMi) and estimated N content hd-1 d-1 
IGER DMi   g hd-1 d-1 N   g hd-1 d-1 

SSS 919 21.4 

SSC 873 20.4 

SHS 741 13.3 

SHC 739 13.3 

CSS 7174 167 

CSC 6889 161 

CHS 6113 110 

CHC 6151 111 
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3.3.6.4 Livestock N content  

Initially, estimates of N in sheep and cattle were calculated following the methods of Garret (1959), 

but the resulting inputs, when combined with bedding and estimated forage data proved too high, 

so revised estimates were calculated using (IOTA) data. Livestock live-weights (L-W) are 

calculated as mean weight pen-1. Sheep N content is calculated assuming 2.75 kg of L-W is fleece 

containing 146 g N kg-1 and the remaining body mass contains 20 g N kg-1. Cattle N content is 

estimated to be 32 g N kg-1 (IOTA). 

 
Table 3.62: ADAS livestock live weights (L-W) and estimated N content head-1 at start and end of housing 

ADAS Start L-W kg hd-1 N kg hd-1 End L-W kg hd-1 N kg hd-1 

S34 (n=30) 52.3 1.39 - - 

S53 (n=30) 52.4 1.39 - - 

S55 (n=30) 52.3 1.39 - - 

SS (n=30) 52.2 1.39 - - 

C34 (n=8) 400 12.8 393 12.6 

C53 (n=8) 402 12.9 405 13.0 

C55 (n=8) 402 12.9 414 13.2 

CS (n=8) 394 12.6 396 12.7 
NB: the ewes were in late gestation after housing so no live-weights were assessed. 
 

 

Table 3.63: IGER livestock live weights (L-W) and estimated N content head-1 at start and end of housing 

IGER Start L-W kg hd-1 N kg hd-1 End L-W kg hd-1 N kg hd-1 

SSS (n=16) 53.8 1.42 56.0 1.47 

SSC (n=16) 53.9 1.42 55.9 1.46 

SHS (n=16) 54.0 1.43 47.7 1.30 

SHC (n=16) 54.0 1.43 49.9 1.34 

CSS (n=6) 336 10.8 387 12.4 

CSC (n=6) 336 10.8 392 12.5 

CHS (n=6) 328 10.5 355 11.4 

CHC (n=6) 339 10.8 363 11.6 
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3.3.6.5 Manure and Seepage (IGER only) 

Seepage was not collected at ADAS (see ‘ADAS protocol anomalies’ in section 3.2.1.1) and, given 

the sites different protocols - particularly the bedding mass head-1, moisture content treatment-1 and 

removal of manure - it is not viable to estimate ADAS seepage volumes using IGER’s data. 

IGER collected and analysed seepage from the bedding in each of the trial’s 8 bays on a 

weekly basis, through a single drainage point in the centre of each bay. The floors were fractionally 

concave, sufficient to draw liquids. As the 3-sided bays were covered with a roof, the seepage is 

considered to be undiluted liquid excreta, not dirty water, as is common from OWPs. In a review to 

establish ‘standard’ figures for excretal N from different livestock demographics, Smith and Frost 

(2000) list an average manure output for 12 - 24 month, 400 kg cattle as 26 ltrs/kg d-1. This is in 

agreement with estimates used in the present study, derived from DEFRA’s RB209 manual, that 

each of IGER’s 15 month old heifers produced 1370 litres of liquid excrement over the 8 weeks 

(DEFRA, 2010), or 24.5 ltrs/kg d-1, consisting of 50 % urine (100 % moisture) and 50 % dung (90 

% moisture) based on estimates used by Dumont et al (2012). These figures are put into perspective 

by Weiss (2004). In a dedicated study using lactating Holstein cows, Weiss (2004) reported an 

average manure (faeces plus urine) production of 64 kg hd-1 d-1 (27 to 102 kg d-1) containing 12.5 

% DM content (8.2 – 15.1 %) which, on average consisted of 32 % urine, however, urine (as % of 

manure) ranged between 13 to >71 %. In addition, Smith and Frost (2000) quoted a standard 10 % 

DM content across a wide range of livestock demographics. IGER’s, cattle fed silage on woodchip 

(CSC n=6) treatment recorded 600 litres of undiluted seepage, equating to 7.3 % of the estimated 

total liquid excrement volume. In contrast, seepage from the equivalent treatment fed hay (CHC 

n=6) was 250 litres ~ 3.04 % and only 35 ltrs was collected from each of the cattle straw bedding 

treatments, equating to 0.43 % of the estimated total liquid excrement volume. Table 3.64 shows 

total seepage volumes head-1 and DIN (NH4
+, NO2 and NO3

-) g head-1 from each cattle treatment. 

The candidate was not involved in the collection or analysis of seepage at IGER. 
 

Table 3.64: IGER: Seepage volumes and DIN content head-1 cattle treatment-1. 

IGER: Seepage Volume ltrs hd-1 DIN g hd-1 

CSS 5.83 11.4 

CSC 100 318 

CHS 5.83 16.2 

CHC 41.7 81.9 
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3.3.6.6 N balances during housing and composting at ADAS and IGER 

 

3.3.6.6.1 ADAS: Sheep treatments 

ADAS: Sheep housing  Straw Bedding Woodchip Bedding 

INPUTS g N hd-1 (n=30) g N hd-1 (n=90) 

Bedding g N hd-1 89.4 79.4 

Silage DMi g N hd-1 (a) 1067 1046 

Concentrates g N hd-1 (b) 806 806 

Livestock g N hd-1 (not incl.) (c) 1391 1394 

INPUT  g N hd-1 1963 1932 
  

  
OUTPUTS 

  
Soiled Bedding (SB) g N hd-1 803 753 

Livestock g N hd-1 (c) na na 

OUTPUT  g N hd-1 803 753 

N % change - Housing -59.1 -61.0 
  

  
Estimated loss pathways  1 to 4 (1 = max loss - 4 = min loss) 

Livestock uptake 2 2 

Seepage NH4
+ and NO3

- 4 3 

NH3 emissions 1 1 

N2O, N2 emissions 3 4 
  

  
ADAS Composting Straw Compost Woodchip Compost 

Week 2  g N hd-1 803 753 

Week 33  g N hd-1 (d) 534 786 

N % change - Composting - 33.5 4.30 

Data in italics are estimates derived from IOTA (online) 

(a) Silage N content 3.38 % DM (Sheep silage 20.4 % DM content) – see section 3.3.6.3 

(b) Sheep concentrate N is calculated from feed label (18 % CP) DM 

(c) Sheep N uptake not determined; for safety reasons the pregnant ewes were not weighted after housing 

(d) N loss from sheep composts is estimated by multiplying TN (g /kg) at week 33 by 50 % mass loss in straw 

composts and 35 % mass loss in woodchip composts. Mass loss estimates are derived from IGER results 
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3.3.6.6.2 ADAS: Cattle treatments 

ADAS: Cattle housing  Straw Bedding Woodchip Bedding 

INPUTS g N hd-1 (n=8) g N hd-1 (n=24) 

Bedding g N hd-1 756 349 

Silage DMi g N hd-1 (a) 6512 6947 

Concentrates g N hd-1 (b) 2867 2867 

Livestock g N hd-1 (c ) 12598 12839 

INPUT  g N hd-1 22734 23002 
  

  
OUTPUTS 

  
Soiled Bedding (SB) g N hd-1 5102 3241 

Livestock  g N hd-1 (c ) 12662 12934 

OUTPUT  g N hd-1 17764 16176 

N % change - Housing - 21.9 - 29.7 
  

  
Estimated loss pathways  1 to 4 (1 = max loss - 4 = min loss) 

Livestock uptake 2 2 

Seepage NH4
+ and NO3

- 4 3 

NH3 emissions 1 1 

N2O, N2 emissions 3 4 
  

  
ADAS Composting Straw Compost Woodchip Compost 

Week 0  g N hd-1 5102 3241 

Week 31  g N hd-1  (d) 2740 3104 

N % change - Composting - 46.3 - 4.26 

Data in italics are estimates derived from IOTA (online) 

(a) Silage N content 2.58 % DM (Cattle silage 26.7 % DM content) 

(b) Cattle concentrate N is calculated on (16 % CP) DM (Dumont 2012) 

(c ) Livestock N: Cattle 3.2 % N 

(d) N loss from cattle composts is estimated by multiplying TN (g /kg) at week 31 by 60 % mass loss in straw 

composts and 25 % mass loss in woodchip composts. Mass loss estimates are derived from IGER results 
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3.3.6.6.3 IGER: Sheep treatments 

IGER Sheep housing Straw Bedding Woodchip Bedding 

INPUTS g N hd-1 (n=32) g N hd-1 (n=32) 

Bedding g N hd-1 73.6 80.3 

Forage DMi g N hd-1 (a) 974 943 

10 % Feed refusal g N hd-1 (a) 97.4 94.3 

Livestock g N hd-1 (b) 1425 1426 

INPUT  g N hd-1 2569 2543 
  

  
OUTPUTS 

  
Soiled Bedding (SB) g N hd-1 760 551 

Livestock  g N hd-1 (b) 1384 1405 

OUTPUT  g N hd-1 2143 1955 

N % change - Housing - 16.6 - 23.1 
  

  
N Losses and Removals 

  
Seepage g N hd-1 - - 

Livestock uptake g N hd-1 (b) - 41 - 21 

Discarded SB g N hd-1 (c) - - 
  

  
IGER Sheep composting Straw Compost Woodchip Compost 

Week 1  g N hd-1 760 551 

Week 32  g N hd-1 466 575 

N % change - Composting - 38.6 4.36 

Data in italics are estimates derived from IOTA (online) 
 

(a) Hay 1.80 % N (82.7 % DM content; Silage 2.3 3 % N (29.6 % DM content) 

(b) Livestock N: 2.0 % N in sheep meat and 14.6 % N in wool (2.75 kg wool hd-1) 

(c) No soiled sheep bedding (SB) was discarded 
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3.3.6.6.4 IGER Cattle treatments 

IGER Cattle housing Straw Bedding Woodchip Bedding 

INPUTS g N hd-1 (n=12) g N hd-1 (n=12) 

Bedding g N hd-1 1485 790 

Forage DMi g N hd-1 (a) 7766 7599 

10 % Feed refusal g N hd-1 (a) 777 760 

Livestock g N hd-1 (b) 10624 10800 

INPUT  g N hd-1 20652 19950 
  

  
OUTPUTS 

  
Soiled Bedding (SB) g N hd-1 (c ) 8476 4507 

Livestock  g N hd-1 (b) 11872 12080 

OUTPUT  g N hd-1 20348 16587 

N % change - Housing - 1.47 - 16.9 
  

  
N Losses and Removals 

  
Seepage g N hd-1 13.8 200 

Livestock uptake g N hd-1 (b) 1248 1280 

Discarded SB g N hd-1 (c ) 2587 2444 
  

  
IGER Cattle composting Straw Compost Woodchip Compost 

Week 1  g N hd-1 5889 2063 

Week 32  g N hd-1 3077 2079 

N % change - Composting - 47.7 0.74 

Data in italics are estimates derived from IOTA 

(a) Hay 1.80 % N (82.7 % DM content); Silage 2.33 % N (29.6 % DM content) 

(b) Livestock N: Cattle 3.2 % N 

(c) 50 % approx. of soiled cattle beddings (SB) were discarded before composting. Output SB g N hd-1 is 

estimated by SB mass multiplied by week 1 g N /kg. 

!
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3.4 Discussion  
 

Following HCC’s conclusions and practical recommendations for the suitability of woodchip as a 

livestock bedding drawn from the housing trials carried out at ADAS and IGER, this discussion 

evaluates the influence of each site’s a priori variable on the beddings, and their subsequent 

composting performance, before expanding into a more general discussion of the changes in 

nutrient concentrations during composting. The discussion is then concluded with an appraisal of 

the nitrogen budgets. 

 

Housing trials 

The eight week housing trials undertaken by ADAS and IGER, as well as anecdotal evidence from 

the demonstration farms across Wales concluded that generally woodchip can be an effective 

bedding material under cattle and sheep. Standards of animal health, welfare and cleanliness were 

reported to be as high on woodchip as on straw (HCC, 2008). Although, more woodchip bedding 

was needed under animals fed silage than hay. Older livestock appeared to perform well, but there 

were indications woodchip bedding did not suit finishing lambs (HCC, 2008). Given the free-

draining nature of woodchips, it was recommended for use on concrete floors, preferably with 

effluent drainage capture system underneath, as seepage from hard-core or soil surfaces may 

pollute surrounding watercourses. For both cattle and sheep an initial 10cm layer of woodchips is 

preferable, as the manure and bedding did not integrate well, so an excessive under-layer is wasted. 

Furthermore, unlike manured straw bedding that quickly transfers to the animal’s fur, woodchip’s 

abrasive texture meant, that although the bedding appeared heavily manured, the livestock did not; 

so farmers were recommended to follow the appearance of the livestock rather than the bedding 

surface in determining when to apply top-ups (HCC, 2008). This is both an important economic 

factor and the reason why IGER required a second delivery of woodchips after 5 weeks (see 

‘Protocol anomalies’ in section 3.2.1.2). 

 

Water retention characteristics (ADAS) 

The capacity of woodchip to absorb moisture is fundamental to its usefulness as a livestock 

bedding material. In an indoor bedding context, chips with the maximum water storage capacity 

should be chosen to reduce seepage volumes and the depth of bedding needed (i.e. creating 

environmental and economic benefits). It would also be desirable from an end- and interim-use 

perspective (e.g. thermophilic composting, fertiliser value) to maximise the nutrient content of 

woodchip during use. The key parameters of interest include the speed (rate) with which the 
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material is able to absorb moisture and the quantity of moisture the woodchip is able to absorb 

(capacity). The water absorbency test results (section 3.3.2.1 and Appendix I) show that during the 

first hour of wetting, raw woodchips with a low initial moisture contents absorbed significantly 

more moisture, and at a faster rate than initially wetter woodchips. However, the results also 

indicate that if the woodchip become too dry (<5 % moisture), hydrophobicity and water repellency 

occurs, a property which is undesirable in the context studied here. The water drop penetration test 

(WDPT) results (see Figure 3.6) show that hydrophobicity initially inhibits water absorption in dry 

woodchips to a similar extent as those with a ≥30 % initial moisture contents. However, it should 

be noted that achieving moisture content of <5 % would be difficult in most conventional on-farm 

chipping scenarios without investment in, for example, forced-air drying technologies. Conversely, 

it could become an issue if the wood was sourced from reclaimed dry or heat-treated household 

timber. However, as hydrophobicity is a relatively short lived phenomenon (<1 h) this negative 

effect would only be of significance in the first few days of housing, until all the woodchip bedding 

had re-hydrated. Furthermore, the hydrophobicity response may be lessened by the high osmotic 

content and warm temperature of urine which would lower droplet surface tension. Overall, the 

woodchips have a low water retention capacity in comparison to other materials (e.g. smectite, 

waste paper pellets) due to the lignin-induced physical rigidity of the material. It could be possible 

to improve the water uptake properties of the woodchip by dilution with other materials, or by 

mechanically disrupting the woodchips to create planes of weakness for greater expansion/swelling 

on contact with water, in addition to promoting N ingress into the centre of the woodchip, 

facilitating its subsequent composting.     

The cattle woodchip data (see Figure 3.8) suggest ca. 70 % MC is the maximum absorbency 

capacity of woodchips under indoor livestock housing conditions. Therefore, the W34 treatment 

absorbed an additional 95 %, compared to only 30 % and 26 % in the W53 and W55 treatments 

respectively. Although the capacity percentages are different, the pattern of these results reflects 

those found in the water absorbency experiment conducted in the laboratory. So on the strength of 

this evidence, it is reasonable to conclude that drier woodchips have the capacity to absorb greater 

amounts of excretal liquid and are therefore are more efficient as a bedding material, facilitating 

greater microbial activity (evident from higher compost temperatures (Figures 3.1 and 3.2)). 

However, the advantages of greater nutrient retention in the W34 over the W53 and W55 

treatments during housing were less evident during the composting phase, than the physical 

differences inherent within the W53 treatment. The flat, large shaped chips in W53 compacted, 

creating a capping effect which trapped the manure on the surface of the bed. On the one hand, this 

development may have been beneficial in trapping liquids long enough to allow increased 
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absorption into the bedding beneath, however this could be negative for livestock welfare and 

bedding cost. There is no evidence of W53 treatments requiring more frequent top-up bedding (see 

Table 3.16); however, removal of manure from the feed area may have affected this response. 

Table 3.15 estimates that 151 kg of manure was removed from C53 compared to none from the 

C55, yet C53 received 18 kg more bedding. Although, the absorptive advantage from the manure 

being trapped above the W53 bedding will have been counteracted by far greater quantities of N 

loss via NH3 volatilization. This physical anomaly in the W53 treatment is fortunate in adding to 

our understanding of woodchip as winter animal bedding. By contrast, the square shaped W34 and 

W55 woodchip beddings were more mobile, allowing feed and excreted solids to become 

integrated, but also causing urine to pass through more quickly. Therefore, differences in available 

nutrients between W34 and W55 are more representative of the comparative absorbency capacities 

than between W34 and W53 treatments.  

Optimising moisture availability during composting is essential to ensure that either 

microbial desiccation or anaerobic conditions do not prevail. It is unfortunate that the moisture 

content gradient of the raw bedding used in these trials were confounded by differences in source 

material, preventing a robust analysis of this factor. Despite this, some general observations can be 

made. During the composting phase, significant amounts of moisture were lost in some treatments. 

This can be ascribed to the initial composting temperatures exceeding 70° C, resulting in the loss of 

water vapour (e.g. ADAS sheep W34). In contrast, when composting failed to achieve high 

temperatures (e.g. ADAS sheep W53) moisture contents were seen to increase. This is likely to 

have arisen from the breakdown of labile material in the manure, releasing water which was not 

subsequently evaporated (via hydrolysis reactions). In broader terms, decomposition rate (compost 

temperature) and nutrient retention within the bedding-composts, is determined by the balances and 

resulting interaction of not just moisture contents, but also oxygen levels, particle surface area and 

the chemical properties of the feed-stocks. However, compared to straw-based composts, results 

show the nutritional advantage, absorbed by the W34 treatment compared to W53 and W55 during 

housing, was too small to significantly alter its overall composting performance in light of the more 

fundamental nutrient deficiency in the wood-based composts and percentage of wood within each 

woodchip compost (B:M ratio).  

 

Dietary inputs (IGER) 

With the exception of greater nitrate concentrations at week 1 (after housing) in silage fed 

treatments and lower pH in hay treatments at week 32 (after composting), the results in Table 3.43 

and Table 3.57 show the different feed types had no significant influence on nutrient concentrations 
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in compost at week 1 or at week 32. It should be noted that generally, however, nutrient contents in 

silage-fed treatments were higher than those in hay-fed, consistent with the livestock’s DMi d-1 

shown in Table 3.6. This balance of nutrient inputs between the feed-based composts is due to 

IGER’s ad libitum feeding protocol, resulting in the animals satisfying their daily nutritional and 

energy demands as required, notwithstanding variations in the livestock’s metabolic capabilities 

and quantities of extractable nutrients in each feed type. Furthermore, cattle fed wet silage 

produced a greater volume of urine than those fed hay – the total volume of seepage captured from 

CSC was 600 litres compared to 250 litres from CHC (see Table 3.64), however, the amounts of 

liquid absorbed by the cattle woodchip treatments were similar – moisture content of CSC and 

CHC composts after housing was 65.8 and 65.0 % respectively (see Figure 3.11). This tells us that 

even the woodchips under cattle fed a dry hay diet had reached their maximal water absorbance. 

 

Nutrient dynamics during composting 

The regression lines in Figures 3.17 and 3.75 show nitrification occurring over time in straw 

composts, but only up to week 4 (ADAS) and week 11 (IGER) in the woodchip treatments (note: 

NO3
- levels in ADAS woodchip at week 0 show more influence from the inclusion of 2 week old 

sheep fractions than from the straw composts at this point). After weeks 4 and 11, nitrate levels in 

the wood-based composts decreased to near zero by the end of composting. The reason for this 

reversal is clear when seen in relation to NH4
+ levels over the same period. Figures 3.19 and 3.20 

(ADAS) and 3.78 to 3.80 (IGER) show NH4
+ concentrations quickly decreased from week 0 to 

weeks 4 and 11 respectively, because of nitrification, immobilization or loss as gas or liquid. When 

viewed in unison, Figures 3.17 to 3.20 (ADAS) and 3.75 to 3.80 (IGER) show that as decreasing 

NH4
+ levels cross with increasing concentrations of NO3

- ca. weeks 4 and 11. Microbes are forced 

to convert NO3
- back into NH4

+ for growth and function - a process that requires a lot of energy. As 

levels of DOC and TSN are both already low, microbial activity is limited and the composting 

process slows dramatically. This hypothesis is supported by Rosswall (1981):  

 

Microorganisms generally prefer ammonium as a nitrogen source, and their ability 

to use nitrate is restricted. Of the 2500 genera of fungi described, only 20 have been 

reported to assimilate nitrate (Payne, 1973; Downey, 1978). The occurrence of 

nitrate assimilation in bacteria seems to be more common than in fungi, although it 

is in no way ubiquitous (Hall, 1978). Since the assimilatory nitrate reductase is 

repressed by ammonium (Gottschalk, 1979), the latter is the preferential nitrogen 

source for microorganisms. 
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The ratios of manure, woodchip and straw within the collective of composts that make up each 

livestock treatment are considered to be the reason why the process is delayed in the sheep 

treatment, which achieved higher levels of nitrification than cattle and microbes did not need to 

assimilate nitrate until after week 12.  

The ratio of DOC to TSN or available C:N (AC:N) is an important parameter in 

composting, particularly in the present project, where levels of both AC and AN were critically 

deficient in wood-based treatments at both trial sites. Enzymatic breakdown of compost solid 

surfaces release nutrients into the matrix; a proportion of these available nutrients become 

assimilated by microbes for biological function, while the rest remain in solution and are constantly 

transformed and recycled over time. However, for the process to be sustained, microbes must have 

AC and AN - fundamental nutrients for growth, reproduction, respiration and energy - in a ratio of 

≤ 25:1. At higher ratios, the proportion of AN immobilized by microbes increases (compared to 

AC), resulting in less AN for microbial activity (i.e. protein synthesis), causing temperatures within 

the compost to drop and the decomposition process to slow. Conversely, when AC:N is < 25:1, 

there is sufficient N available for microbial growth and activity, so the excess ammonia-N is 

susceptible to loss as gaseous NH3, liquid NH4
+,  or, after nitrification as NO3

- as N2O and N2 if the 

whole, or parts of the compost become anaerobic. In the present study, levels of available N in the 

woodchip composts are critically deficient. However, AC:N ratios are still <10:1 throughout 

composting, because available C is concurrently deficient, resulting in small amounts, but 

nevertheless a high percentage of available N remaining in the compost solution and so at risk of 

being lost (because of the microbial requirement of AC and AN in a set ratio, regardless of the size 

of the available N pool). Conversely the straw composts have similar AC:N ratios (Figures 3.29, 

3.30 and 3.93, 3.94, 3.95) throughout composting and loss of N is high, but, levels of NO3
- increase 

linearly throughout composting see ADAS Figure 3.17 and Table 3.27 and IGER Figure 3.75 and 

Table 3.46. 

Ammonia volatilisation is strongly pH-dependent. In theory, at temperatures ≤ 25° C, NH3 

and NH4
+ are in equilibrium at ca. pH 9.0, and higher pH favours gaseous formation and loss of 

NH3. However, in reality, the NH3 and NH4
+ equilibrium depends much more on the physical 

dynamics and chemical properties of the particular compost matrix. Therefore, with pH generally 

above 8.0 in most of the treatments, most of the time, and temperatures predominantly ≥ 40° C for 

the first 130 days, conditions are likely to have caused substantial NH3 emissions. Tiquia and Tam 

(2000) and Raviv et al. (2002) are representative of the consensus view that this is a significant loss 

route for NH4
+ without the corresponding mass balance increase of NO3

-. The high pH levels 

recorded in this study would indicate NH3 volatilisation was a significant N loss pathway. 
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ADAS treatments were not acidic at any time during composting, and – with the exception 

of the SHC compost treatment between weeks 21 and 27; neither where the IGER treatments. This 

would inhibit the emergence of common white-rot fungi species such as Phlebia radiate and 

(particularly) Phanerochaete chrysosporium as DeForest et al. (2004) and Niku-Paavola et al. 

(1988) report these species’ optimal activity range is limited to pH 3 - 4.5. However, many species 

of ammonia-assimilating fungi exist, some of which thrive in neutral-alkaline conditions. 

Soponsathien (1998) identified Coprinus spp., L. tylicolo and T. tesquorum as succeeding in 

neutral-alkaline conditions. In addition, Yamanaka (2003) reported that P. urinophila grew well 

even at pH 9.0. Therefore while resource competition is typical between bacteria and fungi, in this 

instance, both domains will have immobilized significant percentages of inorganic N; adding to 

losses as NH3. 

 

pH changes during composting 

An increase in pH values up to 9.0 are not uncommon in successful composting (Sundberg et al., 

2004; Ogunwande et al., 2008), and even pH values as low as 6.5 should not inhibit composting 

(Sundberg et al., 2004). The pH values in the present project are in line with these previous studies. 

pH fluctuates in the early stages of composting as different biochemical processes prevail at 

weekly or even daily timescales. For example, Nakasaki et al. (1992) and Tuomela et al. (2000) 

state that there is usually a drop in pH once organic material begins to decompose, promoting the 

production of organic acids as seen in the present project with pH lowest at weeks 4 to 6. Paillat et 

al. (2005) found pH decreased in composts with high NH3 emissions, which is supported in 

findings by Helyar (1976) that nitrification also lowers pH. It is proposed that all three of these 

factors had varying responsibility in determining the drop in pH seen over the first 4 to 6 weeks at 

both trial sites. Gibbs et al. (2000) reported that turning the compost exposes fresh material for 

microbial colonisation and leads to the release of NH3 that has accumulated in the internal void 

spaces of manure stacks, so increasing pH. This is evident in the present study in IGER cattle and 

straw treatments between weeks 3 and 11, when NH3 emissions would have been greater than 

during the latter stages of composting. Ogunwande et al. (2008), approached the issue from 

reverse, by reporting that a decrease in pH can result from a decrease in turning frequency, which is 

evident in ADAS composts after week 20. Said-Pullicino et al. (2007) state that drops in pH are 

usually associated with anaerobicity, but only the straw treatments showed periodical anaerobicity 

in this study - although small anaerobic pockets at the centre of the woodchip piles cannot be ruled 

out. Furthermore, if anaerobic pockets were present, it is possible that some NO3
- was denitrified to 

N2O and N2.  
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Electrical conductivity during composting 

Electrical conductivity (EC) of the compost solution is a very informative, though non-specific, 

assessment of soluble salts concentrations and is therefore a useful indicator of compost’s 

nutritional value to plants over the immediate to short term. The critical upper limits are between 3 

and 5 mS cm-1 and are similar for both soils and plants. 

EC readings at both experimental sites show the woodchip treatments increased during 

housing due to the addition of manure, from 0.12 mS cm-1 (mean EC in raw woodchips from both 

sites) to 2.55 mS cm-1 at ADAS and 4.29 mS cm-1 at IGER, but then remained unchanged until the 

end of composting 2.79 mS cm-1 at ADAS and 4.19 mS cm-1 at IGER. The difference between the 

two sites’ EC readings is likely to be incidental, due to ADAS removing manure from behind the 

feed face where livestock predominately defecate/urinate while eating, so less excrement entered 

the compost matrix, even though IGER used 100 % more woodchip bedding, under 2 fewer cattle 

treatment-1.  

As previously discussed, the initially drier W34 at ADAS absorbed more excretal liquids 

during housing than the W53 and W55 treatments and consequently, is expected to contain and 

maintain higher EC readings during composting. However, EC in W34 only increased by 0.67 mS 

cm-1, compared to 0.65 in W55 and -0.59 in W53 (see Tables 3.23 and 3.39 and Figure 3.39); 

illustrating the absorptive advantage gained by lower initial MC was almost completely lost within 

the broader context of nutrient deficiency - primarily the low concentrations and proportionate 

availability of C and N; lack of cation exchange sites and physical properties of the wood-based 

composts. 

In contrast, EC measurements in straw treatments increased throughout composting. At 

ADAS, EC in raw straw was 3.36 mS cm-1 then 6.45 mS cm-1 after housing and 11.3 mS cm-1 after 

composting. Similarly, EC in IGER’s raw straw was 3.7 mS cm-1 then 7.46 mS cm-1 after housing 

and 14.7 mS cm-1 after composting. This shows, first, that EC increase from manure inputs!during 

housing, was equivalent under both bedding types, which is expected because DMi and animals 

pen-1 were replicated in each livestock treatment; second, that soluble salt concentrations in the 

straw treatments increased by approximately 100 % during composting at each site, even though 

significant amounts will have been leached (K, Na, Ca, NH4
+ and NO3

-), NH4
+ immobilized and 

emitted as NH3 and some NO3
- denitrified - highlighting straw compost’s performance. Whereas, 

EC readings in the woodchip treatments, show losses were counterbalanced by quantities made 

available by microbial decomposition. In other words, the woodchip compost’s fertility value 

(measured by soluble salt content) did not increase during the 8 month composting period. This 

conclusion is of critical importance in determining how to manage soiled woodchip bedding.  
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Phosphorus dynamics during composting 

Previous studies have indicated that phosphorus levels generally drop during composting (Sommer, 

2001; Larney et al., 2008b). Larney et al. (2008b) also noted significantly different P 

concentrations in straw and woodchip bedding (woodchip having a higher start concentration), and 

that losses during composting were not significantly different between the two bedding types, 

which is in agreement with the results presented here. Barnett (1994) reported total P 

concentrations in dairy cattle manure of approx. 6.37 g kg-1 and 6.57 g kg-1 within sheep manure, 

similar to straw treatments at ADAS (Table 3.40) and IGER (Table 3.57) while Bremer et al. 

(2008) found soluble P accounted for 28 % of total P in cattle manure, similar to the 26.7 % in 

IGER’s woodchip treatment at week 32 but otherwise approx. 10 – 20 % higher than all other 

treatments after composting, which might be expected when comparing uncomposted to composted 

samples. Larney (2008a) states the reason for increased extractability of P in the presence of wood 

chips is unclear. However, Miller et al. (2003) found that higher calcium content in straw than 

wood chips (1.0 vs. 0.4 g kg−1) and hypothesized that may have caused increased phosphate 

precipitation, reducing extractability in manure mixed with straw bedding.  

 

Potassium, sodium and calcium dynamics during composting 

Due to high concentration of K in plant material (ca. 80-100 mM in cell sap) and the relatively low 

K demand of animals, K is typically excreted in large concentrations by both sheep and cattle 

(personal communications D. L. Jones). Within urine, potassium is predominantly present in a 

soluble mineral form (e.g. KHCO3), which is both available to plants but also prone to leaching 

during composting and after application to soil (Zarabi and Jalali, 2012). Within compost or solid 

faecal material, a large proportion of the K is present as free K+, however, a small proportion of the 

total K is also occluded in undigested plant material and immobilised in microbial cells.  Excess K 

can potentially interfere with the absorption of other nutrients and micronutrients, so a balance, 

particularly of K:Ca, is critical. However, the results suggest woodchip derived composts contain a 

good balance of K and Ca (13:1 at ADAS and 9:1 at IGER). As K is only taken up in small 

amounts by the microbes, K concentrations (expressed on a weight basis) should progressively 

increase during composting, which is generally the case in IGER’s range of treatments (see Figure 

3.117), although notably K levels reduced in the woodchip treatment during composting. The 

reductions seen in the ADAS composts (Figures 3.31, 3.32 and summarised in Figures 3.61, 3.62), 

would indicate that substantial losses in seepage had occurred. Further, the findings suggest that the 

IGER woodchip composts would contain a substantial amount of K if it were to be used at 

moderate application rates (10 t ha-1 equates to 28 kg K ha-1) and of agronomic significance.  
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 Sodium is an essential, but rarely limited, micronutrient for plants and microbes growing in 

agricultural soils. However, Na can replace some of a plant’s K demand. For example, sugar beet 

(Beta vulgaris) usually takes up about 50 kg Na ha-1 from soil with sufficient K. This high uptake 

rate is an ancestral function within modern cultivars from its indigenous origins in sodium rich, 

maritime environments with only small quantities of K (The Potash Development Association 

(PDA), leaflet 12, 2006). Other crops require and remove somewhat less sodium. In sheep and 

cattle, sodium is used in saliva to neutralise the acids formed by bacteria in the rumen liquor. If 

animals experience Na deficiency, they automatically prioritize blood Na levels and substitute 

saliva Na with K, but this process reduces resorption of Mg, placing the animal at risk of 

hypomagnesaemia (PDA, leaflet 6, 2005). Na levels in the ADAS treatments were significantly 

higher in the raw straw than woodchip beddings, but the rate at which they decrease over time is 

determined more by the type of livestock manure than the bedding types (see Table 3.35). Na is 

particularly prone to leaching from composts and soils (Zarabi and Jalali, 2012; Wright et al., 

2008). It should be noted, however, that if compost seepage is collected it can also be used a liquid 

fertiliser with minimal risk of environmental damage (Jarecki et al., 2012). 

 Calcium availability rarely limits agricultural production in lowland Welsh soils, as 

considerable amounts of Ca2+ are held on the soil’ exchange complex, preventing them from 

leaching. In addition, regular liming of grassland and arable land at rates of 1-10 t CaCO3 ha-1 has 

tended to replenish Ca removed in livestock production (as silage or in animals). There are no 

reported cases of low Ca2+ directly limiting composting or maturation or agricultural wastes; 

however, co-composting organic residues with lime often speeds up the composting of nutrient-

imbalanced, metal contaminated or low pH wastes (Wang et al., 2008; Wong and Fang, 2000).  Ca 

is an essential nutrient within plant cell wall structure and provides for normal transport and 

retention of other elements, as well as strength. It is also thought to counteract the impact of alkali 

salts and organic acids within a plant. Losses of Ca by precipitation (e.g. CaCO3, Ca3(PO4)2) or 

leaching are uncommon in soil and composts due to sorption of Ca2+ to negatively charged cation 

exchange sites on the solid surfaces. This displacement of H+ helps maintain a high pH (it was >7.5 

throughout the 8 month composting period) (Brady and Weil, 2008). Although not specifically 

investigated here, it is suspected that, unlike composts derived from green waste and biosolids, the 

cation exchange capacity (CEC) of the woodchip-derived composts was very low. If the woodchips 

had decomposed fully then they would have a high CEC (Jokova et al., 1998); however, that was 

not the case in these trials and it is suggested limited cation exchange sites in wood-based composts 

became quickly saturated, and subsequently, substantial quantities of cations were leached. This is 

supported by Lunt (1961) who showed that woodchips add to soil did not increase the soil’s CEC.  
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However, increasing the surface area of woodchips by crushing them, or mixing with sawdust, 

could – depending on co-composted materials – increase CEC significantly, as shown by Sanchez-

Cordova et al. (2008). However, as with K and Na, in the absence of any negatively charged 

colloids, the overall decrease in soluble Ca2+ is most likely due to leaching and, to a lesser extent, 

to microbial immobilization. Immobilization is postulated because Tables 3.36 (ADAS) and 3.55 

(IGER) show that soluble Ca2+ does not decrease linearly, but fluctuates, especially between weeks 

0 – 12; the most biologically active phase of composting (see accompanying Figures 3.35 – 3.36 

and 3.102 – 3.104) .   

 

Nitrogen loss pathways 

Average estimated N losses from woodchip treatments across both trial sites were highest during 

housing: 33 % compared to a net N increase of 1.3 % during composting. In contrast, straw 

treatments lost 25 % of initial N during housing and 42 % during composting (see section 3.3.6.6). 

These estimates generally agree with other studies comparing straw and woodchip beddings. In a 

cattle-only study, Hao et al. (2004) reported higher N loss from straw-bedded manure composts (42 

%) and smaller loss (12 %) from woodchip. Eghball et al. (1997) also reported N losses of between 

19 % and 42 % N from cattle manure. It is suggested the high estimated N losses from both 

bedding types during the ADAS sheep housing trial were due to a combination of the high stocking 

rate (30 pen-1 at 1.03 m2 hd-1) and N content (18 % crude protein) in the concentrates fed on a daily 

basis. Therefore, the estimates are considered to be in the correct range. To support this claim, 

ADAS cattle-woodchip treatments (which were also fed concentrates) lost 30 % of initial N during 

housing, compared to 17 % from IGER’s woodchip beddings. Differences in bedding mass hd-1 

between the two sites (ADAS 336 kg hd-1 DM vs. 560 kg hd-1 DM at IGER) and IGER’s data 

including 50 % hay fed cattle, are both factors likely to have contributed to lower N losses at 

IGER. Although both Dumont (2012) and Chadwick (personal communications) state that larger 

area allowances (m2 hd-1) increase NH3 emissions (due to a greater exposed surface area), and 

section 3.3.6.1 shows IGER’s cattle and sheep had greater area allowances than ADAS livestock, it 

is not possible, without a balanced comparison of housing protocols, bedding mass and livestock 

pen-1, to estimate loss levels by area allowance. 

During storage and decomposition of manure solids, N is lost in gaseous and liquid forms 

that contribute strongly to the debit side of nitrogen balance-sheets. Gaseous as well as leaching 

losses are highest at the beginning of the decomposition and decrease with time (Eghball, 1997). 

Both are affected by temperature, B:M ratio, pH, initial N-content and compost turning frequency 

(Jones, 2004). Dewes (1995) reported gaseous N losses to be far higher than liquids, following a 
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177 day experiment with cattle manure - only 2.5 % to 3.4 % of the initial N was lost in liquid 

form, but 25 % to 44 % was lost as ammonia. Further, Eghball (1997) calculated that 92 % – 95 % 

of TN loss was volatilized as NH3 in contrast to < 0.5 % as inorganic N in seepage.  

Denitrification can occur during composting, although it is of much less significance as an 

N loss pathway in comparison to NH3 volatilisation (Maeda et al., 2010). The denitrification of 

oxidised nitrogen (NO2
- and NO3

-) into N2O and N2 is, by definition, an anaerobic process, only 

possible after nitrification has taken place under aerobic conditions. Therefore, it is considered 

denitrification as an N loss pathway in woodchip composts was limited by a combination of the 

very low nitrate levels and the material’s porosity that maintained airflow. Luo and Saggar (2008) 

reported denitrified N losses of only 0.01 % from cattle manure deposited on out-winter woodchip 

pads (OWPs). As these are exposed to winter rainfall, there is a greater potential for anaerobic 

conditions to develop due to water-logging. In contrast, Moral et al, (2012) reported N losses (as % 

of initial total N) from soiled cattle (fed silage and concentrates) straw bedding-composts, 

established in early July, as; 1.5 % emitted as NH3; 1 % as N2O and 5.2 % as N2. The study 

reasoned that the loss profiles were predominantly due to anaerobic conditions developing in the   

middle and lower areas of the heaps, as well as compost temperature and rainfall. Consequently, it 

is assumed that denitrified N losses from indoor woodchip beddings are at or lower than 0.01 %. 

However, anaerobic conditions (O2 < 5 %) did develop in the ADAS cattle straw compost 

after nitrification had taken place; under these circumstances, denitrification may account for as 

much as 3-5 % N being lost as N2O and N2. During a six week soil-manure incubation study, 

Calderon (2004) showed that as much as 5 % of N was denitrified; linking these two studies, 

Thorman et al. (2006) suggested that efforts to conserve mineralised N during composting may 

only result in greater amounts of denitrified N when the material is applied to the soil. 

Estimated inorganic N losses from ADAS and IGER’s woodchip composts are broadly in 

line with the findings of Hadas and Portnoy (1994) that reported AN losses of 11 % to 29 % of TN 

after 32 weeks’ composting. Ammonia volatilization is considered to be the most prevalent N loss 

pathway from both bedding types during housing and from straw during composting, although 

denitrified losses are considered to have played an increasingly important role, particularly in the 

cattle straw treatments, which became anaerobic due to compost compaction (Savoie et al., 1996; 

Amon et al., 2001).  

The structural rigidity of woodchips appeared to limit integration of the manure and 

bedding fractions during housing, causing a stratified layering. It is expected that this exposed 

manure surface layer was significant in N volatilization from woodchip beddings during housing. 

Subsequently, AN levels in the wood-based composts were very low from the start, and after the 
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initial microbial activity oxidised concurrently low levels of biodegradable C, decomposition 

slowed. The initial moisture content of the woodchips played an important role: the trials showed 

that only woodchips with initial MC < 50 % achieved UK PAS100 thermal kill temperatures, 

owing to greater capacity to absorb nutrient rich liquid during the housing period, facilitating 

higher levels of microbial activity during the first three weeks of composting. However, after eight 

months of composting the nutritional differences between all woodchip-based composts regardless 

of pre-treatments were negligible. 

Clearly, the present study advocates composting as a means of managing, on-farm nutrient 

balances, as well as, weed seed and pathogen transfer. Shepard et al, (2002) listed the benefits of 

composting as follows;  

 

• Reduction of substrate mass 

• Improved friability and handling characteristics  

• Destroys weed seeds and potentially harmful pathogens by generating high (60 – 70º C) 

temperatures 

• Provides phyto-sanitary effects on incorporation into the soil 

• Incorporates inorganic N into the organic fraction, thus protecting from immediate loss after 

application 

• Reduces odour and ammonia emissions during land spreading 

• Concentrates plant nutrients, enabling application rates to be lower and the risk of crop 

smothering to be reduced. 

 

Compost management techniques, ranging from actively managed, frequently turned piles to 

simple stockpiles, play a major role in nutrient retention, conversion dynamics and ultimately the 

quality of the finished composted product. However, Moral (2012) highlight potential 

environmental impacts that arise from composting. They include diffuse pollution of water via 

leachate from storage heaps (Dewes et al., 1993) and NH3 (Sommer et al., 2006), N2O and methane 

(CH4) emissions to the atmosphere (Chadwick et al., 2011). Both N2O and CH4 are potent 

greenhouse gases with global warming potentials of 297 and 25 times greater, respectively, than 

carbon dioxide (CO2) (Forster et al., 2007). Environmental and management factors influence the 

extent of these losses, but more importantly, is the content and availability of nutrients within the 

material being applied to the land (Moral, 2012).  

Nevertheless, there is an economic argument for not composting, by cutting out the 

associated management costs and allowing soil microbes to breakdown the material in situ (this 
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approach is discussed further in section 5.4). However, applying non-composted soiled bedding to 

grazing land can lead to significant problems, in particular, the transfer of disease to healthy stock 

(Chambers et al., 2001), and therefore, should be avoided. To minimise the risk of transferring 

disease, Chambers et al. (2001) advocate that all slurries and solid manures (soiled bedding) should 

be stored for at least one month before land application, after which, pasture should not be grazed 

by adult livestock for 1 – 2 months, until all visible signs of solids have disappeared, and 6 months 

before grazing young stock that are more susceptible to infection. 
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3.5 Conclusions 

 
• Woodchips with lower moisture content absorbed more liquid during housing.  

• Woodchips with lower % MC reached higher temperatures during composting, which were 

sustained long enough to satisfy BSI PAS100 compost sanitization regulations. 

• Anecdotal evidence suggested the physical shape of the woodchips influenced the 

interaction between the bedding material and manure fractions.  

• Livestock numbers, area allowances and nutritional intakes were balanced within each 

livestock trial at IGER, so dietary inputs appeared to have little influence on composting 

performance, compared to bedding type, although differences were evident, in seepage 

volumes from hay- vs. silage-fed cattle treatments (600 L from silage-fed vs. 250 L from 

hay-fed treatments). However, although IGER and ADAS trials were incomparable, 

variations in IGER’s feed-based compost seepage volumes were considered beyond the 

absorbency capacity of the ADAS cattle-woodchip beddings, as the moisture content of all 

three was 68 % MC ± 1 % at the start of composting. 

• Estimated N losses (% N loss head-1) were similar in both woodchip and straw beddings 

during the housing periods at both sites.  

• Both woodchip and straw compost treatments had low AC:N ratios, but, critically, straw 

composts had AN concentrations in excess of microbial functioning requirements. Thus the 

excess was at risk of being lost to the environment, as estimated % N losses head-1 show in 

section 3.3.6. In addition, although deficient concentrations of both AC and AN in 

woodchip treatments, will have restricted microbial function (growth and activity). The 

AC:N ratios in woodchip composts were < 10:1; therefore a small quantity, but relatively 

high % of AN was still at risk of being lost to the environment. 

• It is suggested that leaching of K, Na and Ca in seepage from both compost-bedding types 

was a major loss pathway. Nevertheless, decomposition of solids resulted in straw compost, 

EC readings increasing by 100 %, whereas decomposition in woodchip treatments was only 

sufficient to maintain EC readings at a constant level throughout the composting period. 
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4.1  Introduction 

The previous chapter detailed the nutrient dynamics within the straw-manure and woodchip-

manure composts over 7 months (the compost having previously been used as livestock bedding). 

This chapter investigates the subsequent agronomic benefit of the material in a range of agricultural 

contexts.  

In 2000, the World Resource Institute (NationMaster, 2012) ranked the UK seventh highest 

in terms of average chemical fertiliser use out of 138 countries (UK average use = 285.8 kg NPK 

fertiliser ha-1 yr.-1 over 5.98 Mha of arable and permanent cropland, which equates to a total use of 

ca. 1.7 × 106 t NPK yr.-1). Owing to the increased desire to develop more sustainable agricultural 

systems, there is an urgent need to improve fertiliser use efficiency in the UK. Part of the 

Woodchip for Livestock Bedding Project’s mandate was to encourage the primary use of organic 

fertiliser in Wales, supplemented with chemicals if necessary (Paul and Beauchamp, 1994). Pot 

scale growth trials were carried out because of the concurrent demands of the WG project, resulting 

in the first two growth trials starting in November. In addition, limited space and funding did not 

allow plot scale field trials to be carried out at Bangor, as IGER and ADAS both carried out field 

trials, although their trials were non-replicated and designed for open day exhibition purposes. The 

results of these plot trials are presented, for reference only, in Appendix II.  The growth trials 

described in this chapter aimed to establish and develop best practice guidelines on the most 

efficient and profitable end use of the woodchip-manure compost. To this aim, three greenhouse-

based growth trials were carried out to address two key objectives: 

 

1. To determine the optimum lifespan of the woodchip as a recyclable bedding and to 

assess its value as an organic fertiliser.  

2. To establish the relative agronomic benefit of the ‘fine’ and ‘coarse’ fraction of the 

woodchip-derived compost to determine whether sieving the compost represents a 

worthwhile option for farmers to increase its fertiliser value. 

 

To address the first objective, a grass-based trial was established to compare the relative agronomic 

performance of 1- and 3-year old woodchip-manure composts. For comparison, the trial included 

two control treatments: a conventional NPK inorganic fertiliser at a rate of 150-57-79 kg ha-1 

respectively and a ‘zero-addition’ treatment which received no fertiliser. To address the second 

objective, two spring barley trials were carried out to establish whether there was any agronomic 

benefit to be gained from sieving the woodchip-manure compost to extract the fine, well-

decomposed fraction that was thought to be more nutrient enriched. These latter trials were carried 
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out because of concerns that the coarse woody fraction in the woodchip compost might lock up soil 

nitrogen when applied to land, reducing subsequent crop yield. To simulate commercial compost 

screening machines, an 8 mm sieve was used to separate the fractions. The < 8 mm material was 

mostly composed of composted manure and hay or silage feed with a small amount of wood. In 

contrast, the > 8 mm fraction was almost entirely made up of intact woodchips, which showed few, 

if any, visual signs of degradation. Both trials included the three parent compost amendments and 

their size defined fractions, three straw based amendments and two 3 year old woodchip 

comparisons, as well as control treatments: soil-only and conventional NPK. In the first of the two 

barley growth trials, compost amendments were applied at 100 t ha-1 and NPK at 221-84-116 kg ha-

1. In the second trial, conventional application rates were applied, compost at 10 t ha-1 and NPK at 

150-57-79 kg ha-1. These two trials are referred to as B100 and B10, respectively.  
 

 

4.2  Methods  

4.2.1 Experimental design 

A factorial, randomised block design was used in each of the 3 trials, comprising 28 pots in the 

grassland trial and 64 pots in both the barley (10 and 100 t ha-1) trials. All three trials were 

conducted in a temperature-controlled greenhouse with a minimum photoperiod of 16 hours d-1, 

heated to maintain 20° C during daytime and 18° C at night, augmented as necessary by 400 W 

Sun SON-T horticultural lamps. Treatment pots in all three trials (as above) were positioned on an 

absorbent, felt covered bench in a central location in the greenhouse and lightly watered on a daily 

basis. It is expected that nutrient loss, particularly from the NPK control treatment, will have been 

considerable – although, regrettably, time constraints and WG project objectives did not allow the 

measuring and analysing of seepage volumes and nutrient contents to be included. However, it 

should be noted that generally the same amount of water was added to each pot within the 

randomised design. 

 

4.2.2 Characterisation of soil  

Typical brown earth topsoil (Eutric Cambisol, Denbigh Series) (Soil Survey of England and Wales; 

1983), was used in all three pot trials. It was chosen as it represents a dominant soil type under 

lowland (< 500 m altitude) sheep and cattle grazing in Wales. Prior to sampling, the soil had 

received regular urine and faecal inputs from grazing sheep throughout the year. The soil had a 

sandy clay loam texture and was collected from the surface Ah horizon (5–20 cm) of a lowland (15 
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m altitude) freely draining, heavily sheep-grazed grassland which received regular fertilisation (120 

kg N, 60 kg K and 10 kg P yr.-1) at Bangor University’s Henfaes research farm, Abergwyngregyn, 

Gwynedd (53º14’ N, 4º01’ W). However, in 2007, when the soil used in this study was collected, 

concomitant WG obligations and requirements did not allow the candidate to conduct soil analyses, 

so on the advice of D. L. Jones, analyses of the same field soil, taken the same year, by Dr. S. 

Lucas and published in (Lucas and Jones, 2009) were adopted and are represented in Table 4.1.  
 

Table 4.1: Chemical and physical characteristics of the typical brown earth used in all three growth trials. 
Soil analysis Brown Earth 
EC1:1 (µS cm-1) 80  ± 4 
pH(1:1 H2O) 6.06  ± 0.07 
CaCO3 (g kg-1) 0.11  ± 0.02 
Water holding capacity (g kg-1) 520  ± 20 
Dry bulk density (g cm-3) 0.93  ± 0.03 
Moisture content (g kg-1) 160  ± 10 
Organic C (g kg-1) 2.1  ± 0.1 
Total N (g kg-1) 0.16  ± 0.01 
C:N ratio 13.3  ± 0.6 
Soil solution NO3

- (mg N l-1) 13.7  ± 1.3 
Soil solution NH4

+ (mg N l-1) 1.4  ± 0.1 

Exchangeable cations 
 Na (mg kg-1) 29  ± 3 

K (mg kg-1) 116  ± 18 
Ca (mg kg-1) 1595  ± 217 
Mg (mg kg-1) 89  ± 19 
Al (mg kg-1) 22  ± 2 
Extractable P (mg kg-1) 9.9  ± 0.3 
Soil respiration (g CO2 m-2 h-1) 0.6  ± 0.02 

  

4.2.3 Determination of soil mass  

Pots for the plant growth trial were prepared by mixing together the appropriate amount of compost 

and soil, placing the mixture in a plastic bag and shaking it to ensure homogenisation. The pots 

were then filled and seeds inserted by hand, 2 cm beneath the surface. The approximate soil mass 

in the pots was 1.35 kg pot-1 in the grass and barley B10 trials and 0.95 kg pot-1 in the barley B100 

trial. 
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4.2.4 Determination of fertiliser application rates 

The abbreviated term NPK is used to describe the pre-blended 21 % N : 8 % P2O5 : 11 % K2O 

inorganic fertiliser (YaraMila®) Yara UK Ltd, Grimsby, UK, used in all three trials. A multiplier 

of 7.143 was determined to achieve an application ratio of 150-50-80 NPK, or as near as possible 

accounting for the pre-blend: 150-57-79 kg ha-1 (only N needs be calculated as P and K are ratio 

bound). Therefore, 1.022 g NPK fertiliser was applied pot-1. The compost amendments were 

applied at a rate of 14.3 g pot-1 equivalent to 10 t ha-1.  

 

4.2.4.1 Grass trial  

The grassland growth trial was conducted under glasshouse conditions, described in section 4.2.1, 

at Bangor University’s Pen-y-Ffridd Field Station between 26th November 2007 and 14th April 

2008 and consisted of seven treatments described in Table 4.2 replicated four times. Treatments 

include two topsoil controls: zero-addition and commercial NPK fertiliser applied in a single dose 

at a rate equivalent to 150-57-79 kg ha-1. Compost amendments were all cattle-derived woodchip-

manure, and included (1) ADAS C34 and C55, to elucidate whether the bedding’s initial moisture 

contents influenced the subsequent fertility of the composts, and (2) IGER CSC containing the 

same component feedstocks - cattle (silage) manure and woodchip (Tables 4.2 and 4.3). Two 

further cattle woodchip-manure amendments were obtained from Glynllifon College and Pontbren 

Farmers’ Group. Both had been composted in open-air piles for three years. The aim was to assess 

the fertility value of mature woodchip-manure products. Watering was carried out on a daily basis 

for 20 weeks, then the above-ground biomass was harvested and oven dried at 80° C for 48 h. 

Topsoil and amendment nutrient contents are shown in Table 4.3.  

 

Table 4.2: Abbreviations for amendments used in the grassland trial. 

Treatments    Abbreviation 

1. Topsoil only   Soil 

2. NPK fertiliser (app. rate 150-57-79 kg/ha)   NPK 

3. ADAS Cattle woodchip 34 %   W34 

4. ADAS Cattle woodchip 55 %    W55 

5. IGER Cattle fed silage on woodchip   CSC 

6. Pontbren 3 year old woodchip   Pb3 

7. Glynllifon 3 year old woodchip   Glyn3 
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Table 4.3: Nutrient content in Grass trial topsoil and amendments. Where two numbers are presented, the 
first represents the nutrient added in the amendment while the second represents the intrinsic available soil 
nutrient concentration. 

Grass trial Total Total N DIN P2O5 K2O 

Treatments C:N (mg /pot) (mg /pot) (mg /pot) (mg /pot) 

Topsoil * 13 187 17.7 11.6 136 

NPK + Soil 4 215 +187 215 +17.7 81.8 +11.6 112 +136 

ADAS C34 + Soil 41 135 +182 0.41 +17.1 4.91 +11.2 28.7 +132 

ADAS C55 + Soil 43 142 +182 0.29 +17.1 8.00 +11.2 28.6 +132 

IGER CSC + Soil 59 106 +182 0.52 +17.1 6.99 +11.2 32.5 +132 

Pb3 + Soil 10 504 +182 1.56 +17.1 4.87 +11.2 45.1 +132 

Glyn3 + Soil ND ND ND ND ND 

* Soil nutrient contents (Lucas and Jones, 2009) 

 

4.2.4.2 Barley trial 1 (100 t/ha)  

The B100 trial was conducted under glasshouse conditions at Pen-y-Ffridd Field Station between 

17th July and 13th November 2007. The trial consisted of 16 treatments (Table 4.4) each with 4 

replicates. These included two topsoil control treatments: a zero-addition and a conventional NPK 

fertiliser, applied in a single dose at a rate equivalent to 221-84-116 kg ha-1. The amendments 

included both sheep- and cattle-derived 1 year old woodchip composts (Treatments 3 - 11) and 

two, 3 year old woodchip composts obtained from Glynllifon and Pontbren (Treatments 15 - 16). 

For comparison, three, 1 year old, straw-based compost amendments were included (Treatments 12 

- 14). The project’s woodchip composts were sieved through an 8 mm mesh to obtain the two size 

fractions (< 8 mm and > 8 mm). Each pot was planted with 4 barley seeds. The same pre-blended 

NPK was used in this trial as in the grass trial, but was applied at a single dose rate of 1.51 g NPK 

pot-1 to reflect the increasing N demand of cereals. The compost was applied at a rate of 100 t ha-1, 

equivalent to 143.1 g compost pot-1. Amendment nutrient contents are shown in Table 4.5. 

Nutrient contents varied depending on the different compost bulk densities and, as a result, the 

mass of soil added.  
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Table 4.4: B100 growth trial, compost amendments, associated abbreviations and group definitions 

Treatments Abbreviation Group 

Topsoil only Soil 
Controls 

Nitrogen-Phosphorus-Potassium fertiliser NPK 

ADAS Cattle woodchip 55 %   ADAS C55 

Parent compost IGER Sheep fed hay on woodchip IGER SHC 

IGER Cattle fed silage on woodchip IGER CSC 

ADAS Cattle woodchip 55 % (> 8 mm) ADAS C55 > 8 

Large fraction IGER Sheep fed hay on woodchip (> 8 mm) IGER SHC > 8 

IGER Cattle fed silage on woodchip (> 8 mm) IGER CSC >8 

ADAS Cattle woodchip 55 % (< 8 mm) ADAS C55 < 8 

Small fraction IGER Sheep fed hay on woodchip (< 8 mm) IGER SHC < 8 

IGER Cattle fed silage on woodchip (< 8 mm) IGER CSC < 8 

ADAS Sheep straw ADAS SS 

Straw ADAS Cattle straw ADAS CS 

IGER Sheep fed hay on straw IGER SHS 

Pontbren 3 year old woodchip Pb3 
3 year old 

Glynllifon 3 year old woodchip Glyn3 
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Table 4.5: Nutrient content in B100 trial topsoil and amendments. Where two numbers are presented, the 
first represents the nutrient added in the amendment, while the second represents the intrinsic available soil 
nutrient concentration. 

B100 trial Total Total N DIN P2O5 K2O 

Treatments C:N (mg /pot) (mg /pot) (mg /pot) (mg /pot) 

Topsoil * 13 187 17.7 11.6 136 

NPK + Soil 4 316 +187 316 +17.7 121 +11.6 166 +136 

ADAS C55 + Soil 43 1422 +128 2.92 +12.1 80.0 +7.91 286 +92.7 

IGER SHC + Soil 42 1433 +128 42.4 +12.1 74.8 +7.91 369 +92.7 

IGER CSC + Soil 59 1058 +128 5.21 +12.1 124 +7.91 325 +92.7 

ADAS C55 >8 + Soil 58 1064 +128 2.19 +12.1 60.0 +7.91 275 +92.7 

IGER SHC >8 + Soil 54 1082 +128 12.4 +12.1 58.8 +7.91 406 +92.7 

IGER CSC >8 + Soil 64 994 +128 4.88 +12.1 63.2 +7.91 304 +92.7 

ADAS C55 <8 + Soil 21 2589 +128 5.33 +12.1 145 +7.91 321 +92.7 

IGER SHC <8 + Soil 22 2787 +128 25.5 +12.1 137 +7.91 225 +92.7 

IGER CSC <8 + Soil 27 1938 +128 9.51 +12.1 164 +7.91 324 +92.7 

ADAS SS + Soil 16 3190 +68.4 221 +6.45 97.9 +4.23 630 +49.6 

ADAS CS + Soil 11 4112 +68.4 260 +6.45 64.0 +4.23 784 +49.6 

IGER SHS + Soil 13 3959 +68.4 250 +6.45 80.9 +4.23 1870 +49.6 

Pb3 + Soil 10 5036 +128 15.6 +12.1 48.7 +7.91 451 +92.7 

Glyn3 + Soil ND ND ND ND ND 

* Soil nutrient contents (Lucas and Jones, 2009) 

 

4.2.4.3 Barley trial 2 (10t/ha)  

The B10 trial was conducted under glasshouse conditions as described in section 4.2.1 at the Pen-y-

Ffridd Field Station between 30th November 2007 and 28th March 2008. The trial consisted of 16 

treatments (Table 4.6) each with 4 replicates. These included two topsoil control treatments; a zero-

addition and a pre-blended NPK fertiliser, applied in a single dose of 1.02 g NPK pot-1, equivalent 

to 150-57-79 kg ha-1 (the same as the grass trials). The amendments included both sheep- and 

cattle-derived 1 year old woodchip composts (Treatments 3 - 11) and two, 3 year old woodchip 

composts obtained from Glynllifon and Pontbren (Treatments 15 - 16). For comparison, three, 1 

year old, straw-based compost amendments were included (Treatments 12 - 14). The project’s 

woodchip composts were sieved through an 8 mm mesh to obtain the two size fractions (< 8 mm 

and > 8 mm). Each pot was planted with 4 barley seeds. The compost was applied at a rate of 10 t 
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ha-1, equivalent to 14.3 g compost pot-1. Amendment nutrient contents are shown in Table 4.7. 

Nutrient contents varied depending on the different compost bulk densities and, as a result, the 

mass of soil added.  

 

Table 4.6: B10 growth trial, compost amendments, associated abbreviations and group definitions. 

Treatments Abbreviation Group 

Topsoil only Soil 
Controls 

Nitrogen-Phosphorus-Potassium fertiliser NPK 

ADAS Cattle woodchip 34 %  ADAS C34 

Parent compost ADAS Cattle woodchip 55 %  ADAS C55 

IGER Cattle fed silage on woodchip IGER CSC 

ADAS Cattle woodchip 34 % (> 8 mm) ADAS C34 > 8 

Large fraction ADAS Cattle woodchip 55 % (> 8 mm) ADAS C55 > 8 

IGER Cattle fed silage on woodchip (> 8 mm) IGER CSC >8 

ADAS Cattle woodchip 34 % (< 8 mm) ADAS C34 < 8 

Small fraction ADAS Cattle woodchip 55 % (< 8 mm) ADAS C55 < 8 

IGER Cattle fed silage on woodchip (< 8 mm) IGER CSC < 8 

ADAS Sheep straw ADAS SS 

Straw ADAS Cattle straw ADAS CS 

IGER Cattle fed hay on straw IGER CHS 

Pontbren 3 year old woodchip Pb3 
3 year old 

Glynllifon 3 year old woodchip Glyn3 
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Table 4.7: Nutrient content in B10 trial topsoil and amendments. Where two numbers are presented, the 
first represents the nutrient added in the amendment, while the second represents the intrinsic available soil 
nutrient concentration.  

B10 trial Total Total N DIN P2O5 K2O 

Treatments C:N (mg /pot) (mg /pot) (mg /pot) (mg /pot) 

Topsoil * 13 187 17.7 11.6 136 

NPK + Soil 4 215 +187 215 +17.7 81.8 +11.6 112 +136 

ADAS C34 + Soil 41 135 +182 0.41 +17.1 4.91 +11.2 28.7 +132 

ADAS C55 + Soil 43 142 +182 0.29 +17.1 8.00 +11.2 28.6 +132 

IGER CSC + Soil 59 106 +182 0.52 +17.1 6.99 +11.2 32.5 +132 

ADAS C34 >8 + Soil 53 110 +182 0.33 +17.1 4.03 +11.2 28.1 +132 

ADAS C55>8 + Soil 58 106 +182 0.22 +17.1 6.00 +11.2 27.5 +132 

IGER CSC >8 + Soil 64 99.4 +182 0.49 +17.1 6.32 +11.2 30.4 +132 

ADAS C34 <8 + Soil 19 225 +182 0.68 +17.1 8.11 +11.2 30.9 +132 

ADAS C55 <8 + Soil 21 259 +182 0.53 +17.1 14.5 +11.2 32.1 +132 

IGER CSC <8 + Soil 27 194 +182 0.95 +17.1 16.4 +11.2 32.4 +132 

ADAS SS + Soil 16 319 +176 22.1 +16.6 9.79 +10.9 63.0 +127 

ADAS CS + Soil 11 411 +176 26.0 +16.6 6.40 +10.9 78.4 +127 

IGER CHS + Soil 10 480 +176 17.5 +16.6 6.81 +10.9 173 +127 

Pb3 + Soil 10 504 +182 1.56 +1.71 4.87 +11.2 45.1 +132 

Glyn3 + Soil ND ND ND ND ND 
* Soil nutrient contents (Lucas and Jones, 2009) 

 

4.2.5 Characterisation of meadow grass seed  

EM1 Mixed meadow grass seed (Emorsgate Ltd, King’s Lynn, Norfolk, UK) was selected for the 

grass trial. Considered a general purpose mixed grass seed containing: Cynosurus cristatus L. 

(crested dogstail, 50 %); Festuca rubra L. (slender creeping red fescue, 35 %); Agrostis capillaris 

L. (common bent, 10 %); and Phleum bertolonii (smaller cat's tail, 5 %), planted at a density of 4 g 

m-2 equivalent to 57.2 mg seeds pot-1.  
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4.2.6 Characterisation of barley variety 

The Hordeum vulgare L. cultivar variety Optic was chosen as it currently accounts for approx. 55 

% of the malting barley market. Optic is considered to be disease resistant, and its short, strong 

straw avoids lodging (Encyclo, 2012). 

 

4.2.7 Compost storage  

At the end of the composting period, approx. 150 kg of each compost treatment was brought back 

to Bangor University in gas permeable ‘Hippo’ construction sacks (Waste Management Services 

Ltd., Chandlers Ford, Hampshire, UK) and stored at Henfaes research farm at 20° C. Subsamples 

(50 kg) were taken from most, but not all, compost treatments and stored at Pen-y-Ffridd 

glasshouse until required. It was considered that decomposition would be limited as far as 

practically possible under these conditions, although not eliminated.   

 

4.2.8 Amendment selection  

All 1 year old composts had to be woodchip-based, to test the agronomic benefit of annually 

sieving the soiled woodchip beddings. In addition, the selection of specific 1 year old composts 

used in the grassland and B10 trials was prioritised by determining differences in fertility resulting 

from the initial moisture contents of ADAS woodchip treatments and differences in fertility 

resulting from IGER’s feed and livestock inputs in the B100 trial. Straw treatment selection aimed 

at limiting the differences between the wood and straw-based amendments to the bedding material 

itself, by selecting composts with similar dietary inputs. However, choice was limited. There was 

no choice of 3 year old composts, and NPK application rates were determined to maximise contrast 

in growth between the two controls; while the rates applied were high, they do fall within the 

common range applied across the UK. It is acknowledged, however, that DEFRA (2010) requires 

NPK applied to barley at rates ≥ 100 kg N ha-1 to be split into two doses. This is an error in the 

protocol for which the candidate takes full responsibility.  

 

4.2.9 Preparation of compost amendments  

After mixing the 50 kg bags of selected composts, approximately 3 kg was extracted by a series of 

gloved hand-grabs. In the laboratory, each 1 year old woodchip treatment was sieved through an 8 

mm mesh, resulting in 12 – 25 % < 8 mm (by weight). To obtain the correct weight of woodchip-

derived amendment per pot, composts were repeated quartered with a knife until the correct 
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weights were achieved. These were then individually stored in the fridge until use. To obtain a 

representative quantity of straw and 3 year old woodchip, 1 kg of material was collected by gloved 

hand-grabs after vigorously mixing the material. This subsample was then repeatedly divided with 

a knife until the correct weights were obtained then stored in the fridge. NPK was weighed out: 

1022 mg pot-1 for the grassland and B10 trials and 1506 mg pot-1 for the B100 trial. 
 

4.2.10 SPAD chlorophyll readings 

A Minolta SPAD 502 meter (Spectrum Technologies, Plainfield, IL) 

was used to measure the chlorophyll content in the top leaf of each 

plant. Research has shown that leaf chlorophyll content is closely 

correlated to levels of nitrogen in the plant, and consequently SPAD 

measurements provide a good indicator of plant-available N in the 

soil. The method is a quick and cost-effective apparatus to determine 

when fertiliser is needed without damaging the crop. 

 

4.2.11 Determination of plant biomass 

Plant biomass was determined as the total vegetative mass above pot soil level, produced during 

the growth trial. The harvested biomass was removed with scissors, put in individually marked 

paper bags and dried in the oven at 80 °C for a minimum of 48 hours, after which the materials 

were weighed and their dry weights recorded. 

 

4.2.12 Determination of grain and straw yield (barley trials only) 

After determining total above-ground biomass in each pot, the barley grain and straw were 

harvested, separated, oven-dried and weighed as described above. 

 

4.2.13 Statistics 

Biomass analysis in all three trials, as well as grain yield, straw residue and tiller numbers in both 

barley trials, were analysed using a univariate ANOVA design (SPSS v18.0, IBM UK Ltd, 

Portsmouth, UK) and post-hoc Tukey (HSD) tests to establish the mean standard error of difference 

between treatments. SigmaPlot v10.0 (Systat Software, San Jose, CA) was used to generate graphs. 
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4.3  Results 

4.3.1 Grass trial 

During seed formation, available nutrients are translocated to the top of the tillers to give the seeds 

the strongest possible start, after which the parent plant dies off (Dorrington-Williams, 1957). 

Hence top leaf SPAD index values peak just before the grass matures. The NPK grass treatment 

(Plate 4.1) shows clear signs of necrosis in the older leaves, as nutrients are translocated to the 

younger shoots (which are not chlorotic) and the plants have not begun to produce tillers. This 

suggests nutrients were becoming limited due to uptake and leaching after 19 weeks, but the NPK 

amended grasses were not as stressed as those in the woodchip amendments. The 3 year old 

woodchip treatments (Plates 4.2 and 4.3) produced less dense swards than the NPK treatment and 

reached maturity before the trial concluded - see Figure 4.1. These responses indicate a more rapid 

depletion of available nutrients. 
 

 
Plate 4.1: Grass trial: Grass in topsoil + NPK (week 19) 

 

  
 

 

Plate 4.3: Grass trial: Grass in topsoil + 
Glynllifon’s 3 yr. old compost (week 19) 

 

Plate 4.2: Grass trial: Grass in topsoil + 
Pontbren’s 3 yr. old compost (week 19) 
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Early sward density in the one-year-old ADAS cattle 55 % woodchip treatments was sparse (Plate 

4.4), indicating low germination rate. The grass that did emerge was frail and matured quickly. 

This growth pattern suggests strong competition for limited nutrients right from the start of the 

trial. Nevertheless, sward density and growth in the ADAS cattle 55 % woodchip treatments was 

greater than in the topsoil only control treatment (Plate 4.5), suggesting the amendment had a 

positive net effect. 
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Figure 4.1: Grass trial foliar SPAD readings taken at week 19. Control treatments (white bars); 1-

year-old cattle woodchip-manure compost (grey bars); independent 3 year old woodchip-manure 

compost (hashed bars). Error bars represent ± 1 se. 

Plate 4.4: Grass trial – Grass in topsoil + ADAS 
C55 (week 19) 

 

Plate 4.5: Grass trial – Grass in topsoil only 
(week 19) 
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Table 4.8: Effect of different compost and fertiliser treatments on above-ground grass biomass yield at 
harvested on 14th April 2008 after 20 weeks. Values represent means ± 1 se. Significant differences between 
treatments (p <0.05) are denoted by superscript letters.  
Treatment Biomass (g pot-1) 

Topsoil  1.19 ± 0.10
a 

NPK 2.79 ± 0.32
ab 

ADAS C34 1.78 ± 0.50
ab 

ADAS C55 2.19 ± 0.81
ab 

IGER CSC 2.26 ± 0.67
ab 

Pb3 3.11 ± 0.56
ab 

Glyn3 3.97 ± 0.54
b 

 

Biomass yield data in Table 4.8 shows the soil-only control treatment produced significantly less 

biomass than the Glyn3 treatment. However, notably, there was no significance, and thus 

agronomic value, between the soil-only and 1-year woodchip amendments. Although biomass was 

marginally greater in the amended treatments, this could equally be attributed to the woodchip’s 

aeration and water regulating properties (drainage and storage), as opposed to nutrient status. 

Nevertheless, the results of the grass trial are generally in line with expectations, showing greater 

above-ground biomass in the amended treatments than the soil-only. This dispels concerns that soil 

available N would become immobilized owing to the inclusion of C rich material with very low 

available N. Barker (2001) found leaf and yard waste composts limited growth due to N 

deficiencies, but also found that N-rich, mature composts provided a good media for promoting turf 

grass growth. Biomass production in the 3 year old woodchip amendments was encouraging, 

particularly in comparison to the NPK treatment. I hypothesize that the growth advantage in both 

of the 3 year old woodchip treatments was enhanced (and possibly determined in Glyn3) by the 

amendment’s physical properties, which promoted soil aeration in the clay rich soil that had a poor 

structure when wet. Overall, the statistical results of this trial were rather inconclusive, and it is 

unfortunate that nutrient data for Glyn3 was not available. However, Table 4.3 shows that even 

after 3 years composting, Pontbren’s available N (AN) accounted for only 0.31 % of total N (TN). 

This compares to a mean AN content of 0.33 % of TN in the 1 year old compost amendments, 

suggesting that even after 3 years the Pontbren compost was not fully matured. However, the older 

woodchip amendments did produce the most plant biomass; it is, therefore, concluded that mature 

woodchip-manure compost has the potential to be a suitable and valuable fertiliser. 

 



 
194 

4.3.2 B100 barley trial 

In all treatments except ADAS SS, SPAD index values peaked in week 8 as the barley went to 

seed, after which the parent plants gradually died off. The relative persistence of top leaf 

chlorophyll in the straw-based treatments (see Figure 4.2) indicates sufficient nutrients were 

available throughout the trial, in comparison to barley grown in the NPK amended topsoil, which 

produced the highest SPAD value of all the treatments in week 8, but one of the lowest by week 10. 

Bar-Tal et al. (2004) showed that organic compost, when applied to land consistently over a 

number of years, generates a build-up of soil nutrients, so gradually less compost is needed to 

maintain soil fertility. There was a marked textural (maturity) difference between the Pontbren 

compost - which had a rich loamy texture with no remaining woodchip - and the water-logged 

Glynllifon compost that contained many sizable, intact woodchips. This contrast between the two 3 

year old composts is evident in biomass and grain yields shown in Figures 4.3 and 4.5, which 

illustrates the importance of good compost management and the potential agronomic value of 

woodchip-manure. It was anticipated the B10 results would be less contrasting in this regard, hence 

the decision to carry out this trial at amplified application rates.  

As expected, the fine (< 8 mm) fractions of IGER’s 1 year old amendments produced 

greater biomass and grain yield than their corresponding large (> 8 mm) fractions (see Figure 4.3). 

However, sieving the compost every summer solely to extract the fine material for fertilizer is 

considered uneconomic, as after 7 months composting, the fine fraction only represented 14 % of 

the total composted bedding. Therefore, a farmer would initially need 7,143 tons of unsieved 

compost to extract enough fine material to cover 10 hectares at 100 t/ha. Even if the bedding were 

deployed economically, that quantity of woodchip would be sufficient to house 14,617 cattle or 

63,724 sheep, so by necessity, the farm would have many hundreds of hectares. Furthermore, this 

application rate would cover the ground 1.75 cm deep. In addition, by applying the compost by 

weight, rather than by percentage N, resulted in the drier straw amendments having a nutritional 

advantage over the woodchip-based amendments. However, sieving the immature woodchip 

bedding-compost each summer could prove to be commercially advantageous on a number of 

levels: firstly, by sieving the material straight after the compost has achieved thermophilic 

temperatures, farmers would limit the risk of pathogen re-inoculation by removing the most 

nutritious compost material, and, in so doing, restricting any excess degradation of the woodchips, 

concomitantly extending the woodchip’s viability as a bedding material. In addition, removing the 

manure fraction from the sanitized woodchips before storage during the summer would enhance 

airflow through the pile, ensuring a lower moisture content in the recycled woodchip and therefore 

producing more efficient bedding the following winter. 



 

            

195 

Treatment

Soil
 on

ly
NPK

ADAS C
55

IG
ER S

HC

IG
ER C

SC

ADAS C
55

 >8

IG
ER S

HC >8

IG
ER C

SC>8

ADAS C
55

 <8

IG
ER S

HC <8

IG
ER C

SC <8

ADAS S
S

ADAS C
S

IG
ER S

HS
Pb 3

Glyn
 3

Pl
an

t c
hl

or
op

hy
ll 

in
de

x 
- P

VS
PA

D

0

10

20

30

40

50

 
Figure 4.2: B100 Optic barley trial, top leaf chlorophyll index (SPAD) at week 6 (white bars); week 8 (light grey bars); week 10 (hashed bars); week 12 

(mid grey bars) and week 14 (dark grey bars). Compost applied at 100 t/ha in treatments 3 – 16 and NPK 221-84-116 kg/ha in treatment 2). Error bars 

represent ±1 se. 
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Plates 4.6 and 4.7 contrast barley growth and fecundity between the ADAS cattle fed silage on 

straw, and the IGER cattle fed silage on woodchip treatments after 12 weeks.  
 

  
 

 

Plates 4.8 and 4.9 illustrate the difference in productivity between the two 3 year old woodchip-

manure compost amendments. Pontbren’s rich loamy compost had no intact woodchips, whereas 

Glynllifon’s water logged, immature amendment still contained large quantities of sizable 

woodchips. 

Plate 4.9: B100 Trial: Optic barley in topsoil + 
Glynllifon’s 3 yr. old (week 12) 

 

Plate 4.8: B100 Trial: Optic barley in topsoil +  
Pontbren’s 3 yr. old (week 12) 

Plate 4.6: B100 Trial: Optic barley in topsoil + 
ADAS CS (week 12) 

 

Plate 4.7: B100 Trial: Optic barley in topsoil + 
IGER CSC (week 12) 
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Plates 4.10 and 4.11, and 4.12 and 4.13, illustrate the productivity of IGER’s SHC and CSC small 

(< 8 mm) and large (> 8 mm) fractions. The small fractions contained mostly degraded manure and 

waste feed with a few wood particles, whereas the large fraction was made up of mostly intact 

large woodchips. However, the cost/benefit of sieving year-old woodchip-manure compost at farm-

scale proved uneconomic. 
 

  
 

 

Plate 4.10: B100 Trial: Optic barley in topsoil 
+ IGER SHC < 8mm (week 15) 

Plate 4.11: B100 Trial: Optic barley in topsoil 
+ IGER SHC > 8mm (week 15) 

Plate 4.12: B100 Trial: Optic barley in topsoil 
+ IGER CSC < 8mm (week 15) 

Plate 4.13: B100 Trial: Optic barley in topsoil 
+ IGER CSC > 8mm (week 15) 
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Figure 4.3: Above-ground plant biomass (g pot-1) dry weight in B100 Optic barley trial including 

Tukey HSD standard error of the difference (harvest date 13th November 2007). Bar patternation 

represent amendment groups, left to right; controls (intensely dotted and white bars); 1 yr. old 

composts (mid-grey bars); large (>8 mm) 1yr. old fractions (wide hashed bars); fine (<8 mm) 1 yr. 

old fractions (narrow hashed bars); straw composts (dotted bars) and 3 yr. old composts (dark 

grey bars). Error bars represent ±1 se. Different letters indicate significant differences between 

treatments at p < 0.05. 
 

The B100 trial biomass results (Figure 4.3) show ADAS CS produced greater biomass than all 

others treatments (p<0.01), except ADAS SS (p>0.05). In contrast, all three large (>8 mm) fraction 

amendments were the least agronomic, producing significantly less biomass than Pontbren 

(p<0.05) and both ADAS straw amendments (p<0.001) and even the zero-addition control 

treatment, although not significantly (p>0.05). Dumont et al. (2010) discuss this occurrence in 

relation to N uptake in grass grown in spent timber residues, and suggest N immobilization may be 

the causal factor, although they do not rule out the basic lack of available N in the amendment. 

Likewise, both these factors are considered to have strongly influenced the results of the present 

study. 

 Analysis of treatment groups (groups are defined in Table 4.4), shows straw amendments 

contain the most agronomic value (p<0.01) compared to all other groups except the NPK treatment 



199 
 

(p>0.05), but the actual result was (p<0.055). On weight-based application rates, the straw 

composts have a nutritional advantage over woodchips, highlighting the real agronomic value of 

the 3 year old Pontbren treatment and the benefit of good compost management, which is in 

contrast to the biomass yield from the Glynllifon 3-year old (unmanaged) compost.  

 
Table 4.9: Total pots, plants and tillers treatment-1; average number of tillers plant-1 incl. ± 1 se. 

B100 treatments Pots Plants Tillers Tillers plant-1 
Topsoil 4 14 15 1.08 ± 0.08 
N-P-K (221-84-116 kg/ha-1) 4 16 42 2.63 ± 0.22 
ADAS C55 4 14 29 2.08 ± 0.08 
IGER SHC 4 13 33 2.65 ± 0.38 
IGER CSC 4 14 26 1.90 ± 0.18 
ADAS C55 > 8mm 4 14 26 1.88 ± 0.18 
IGER SHC > 8mm 4 16 29 1.81 ± 0.26 
IGER CSC > 8mm 4 12 18 1.54 ± 0.21 
ADAS C55 < 8mm 4 16 28 1.75 ± 0.14 
IGER SHC < 8mm 4 15 44 2.94 ± 0.43 
IGER CSC < 8mm 4 15 39 2.65 ± 0.39 
ADAS SS 4 13 54 4.00 ± 0.54 
ADAS CS 4 14 81 5.85 ± 0.74 
IGER SHS 4 14 41 3.06 ± 0.41 
Pontbren 3 yr. 4 14 49 3.65 ± 0.59 
Glynllifon 3 yr. 4 15 25 1.67 ± 0.26 
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Figure 4.4: Number of tillers plant-1 (counted on 13th November 2007) in the B100 Optic barley 

trial including Tukey HSD. Bar patternation represent amendment groups, left to right:; controls 

(intensely dotted and white bars); 1 yr. old composts (mid-grey bars); large (>8 mm)  1yr. old 

fractions (wide hashed bars); fine (<8 mm) 1yr. old fractions (narrow hashed bars); straw 

composts (dotted bars) and 3 yr. old composts (dark grey bars). Error bars represent ±1 se. 

Different letters indicate significant differences between treatments at p < 0.05. 

 

Tillering m-2 is a quick, non-intrusive method of assessing the nitrogen content in crops. 

DEFRA (2010) estimate that 500 shoots m-2 is indicative of crops containing 5 kg N ha-1 in late 

autumn and 15 kg N ha-1 in early spring. As the pot trials were conducted under controlled climatic 

conditions, Table 4.10 shows the estimated barley N content ha-1 derived from DEFRA’s early 

spring figures. 
 

Table 4.10: estimated (in italics) barley N content kg ha-1 in the B100 trial treatment groups, based on 
tillers m2 in early spring conditions (DEFRA, 2010).  

Treatment Groups Tillers m-2 Barley kg N ha-1 
Topsoil 26 0.79 
NPK 73 2.20 
Parent compost 51 1.54 
Large fraction 42 1.27 
Small fraction 65 1.94 
Straw  102 3.07 
3 year old 65 1.94 

 

In comparison to other studies (Le Gouis, 1999; Benke, 2010) these estimates are very low. This 

may be caused by an anomaly in scaling up the data i.e. 70 pots m-2, leaching, or factors relating to 

pot scale growth conditions such as pot volume limiting rhizosphere development, and/or the C:N 

ratio of the amendments (Qian and Schoenau, 2002). Table 4.9 shows that germination rate was 

between 81 % (plants n=13) in 2 treatments and 100% in 3 treatments. Nevertheless, Figure 4.4 

shows tillering plant-1 is strongly correlated to biomass, although, notably, plants grown in the large 

(>8 mm) fraction amendments produced 2 tillers plant-1 compared to 1 tiller plant-1 in the soil-only 

control, suggesting there was greater nutrient availability in the large fraction amendments than in 

the soil-only during the early weeks of the trial when shoots were forming, but that available 

nutrient levels in (>8 mm) dropped below those in soil-only, as the trial progressed, hence the 

biomass results seen in Figure 4.3. 
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Figure 4.5: Grain yield (g pot-1) dry weight in the B100 Optic barley trial including Tukey HSD 

standard error of the difference (harvest date 13th November 2007). Bar patternation represent 

amendment groups, left to right: controls (intensely dotted and white bars); 1 yr. old composts 

(mid-grey bars); large (>8 mm) 1 yr. old fractions (wide hashed bars); fine (<8 mm) 1 yr. old 

fractions (narrow hashed bars); straw composts (dotted bars) and 3 yr. old composts (dark grey 

bars). Error bars represent ±1 se. Different letters indicate significant differences between 

treatments at p < 0.05. 

 

Grain yields are closely correlated to biomass, ADAS CS yielded significantly more grain than all 

other treatments (p<0.001) and ADAS SS (p<0.05). Both IGER’s small (<8 mm) fractions 

produced greater (p>0.05) yields than all the 1 year old amendments and inorganic NPK. Yield 

from the Pb 3 year old amendment was greater (p >0.05) than from all 1 year old woodchip 

composts and significantly (p <0.05) than all 3 large fraction 1 year old amendments. 

 Again, the three large (> 8 mm) fraction composts yielded less grain than all the other 

treatments, including the soil-only control, but statistical differences are limited by treatment to 

Pontbren (p<0.05) and both ADAS straw amendments (p<0.001) and - as a group - only straw 

(p<0.001). Interestingly, though not significantly, sheep on woodchips result in greater productivity 

than cattle on woodchips, whereas the opposite is true in the straw amendments. This observation is 



202 
 

considered the result of B:M interactions, discussed in Chapter 3 - in particular, woodchip’s 

capacity to absorb the small, discrete urine volumes that sheep produce compared to cattle.  

 Analysis of grain yield by treatment group (defined in Table 4.4), shows exactly the same 

results as biomass production – higher yields from straw than all other groups (p<0.001), except the 

3 year old composts (p<0.01) and the NPK treatment (p>0.05). 

 Similarly, straw residues (data not shown) determined as biomass - grain yield was 

significantly (p<0.001) greater from the straw compost amendments than from all 3 groups of 1-

year old woodchip amendments. There were however, no statistical differences, at any measure, 

between the 1 year old parent compost amendments and their large and small fractions.  

 

Table 4.11: two estimates (italics) of percentage N uptake in B100 trial Optic barley based on biomass N 
content of 11.8 mg N g-1 DM (IOTA fresh weight data was adjusted to account for an estimated 20 % 
moisture content). Column (2nd from right), shows estimated crop uptake (%) of initial DIN content and 
column (far right) shows estimated crop uptake (%) of initial DIN after 20 % mineralization of initial TN 
content. Italics denote estimated data, see footnotes for data sources.     
B100 Trial Biomass * Biomass DIN ** % Uptake of  % Uptake of initial DIN*** 

Treatments  g pot-1  mg N pot-1 mg pot-1 initial DIN  +20% mineralisation of TN 

Topsoil 4.43 52.4 17.7 296 94.9 

NPK 11.2 122 334 36.5 28.1 

ADAS C55 4.66 57.0 15.0 380 17.6 
IGER SHC 7.49 86.3 54.5 158 23.5 
IGER CSC 4.96 57.7 17.3 333 22.7 
ADAS C55 >8 3.88 47.0 14.3 329 18.6 
IGER SHC >8 4.36 51.4 24.5 210 19.3 
IGER CSC >8 2.80 32.5 17.0 192 13.5 
ADAS C55 <8 4.60 54.7 17.4 314 9.75 
IGER SHC <8 10.6 122 37.6 323 19.6 
IGER CSC <8 10.7 125 21.6 580 28.8 

ADAS SS 19.3 211 227 92.6 24.0 
ADAS CS 27.9 307 266 115 27.9 
IGER SHS 12.9 129 256 50.5 12.2 
Pb3 14.6 162 27.7 587 15.3 
Glyn3 5.54 67.9 ND ND ND 
*     Biomass N content 11.8 mg N g-1 DM (adjusted for estimated 20% MC) derived from IOTA (2012)  
**   Soil TN and DIN were analysed by Lucas, published in Lucas and Jones, (2009)   
*** Includes 20 % mineralisation of TN during growth trial, (Hadas and Portnoy, 
1994) 

 

 

Table 4.11 attempts to estimate % N uptake in B100 trial treatments based on fresh weight crop N 

content data (IOTA, 2012), then adjusted for 20 % (whole crop) moisture content (11.8 mg N g-1 

DM). Further, estimates are given for % N uptake (including initial DIN content) based on 20 % of 
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TN in the potting medium, becoming available via mineralization during the growth trial. Hadas 

and Portnoy (1994) reported that between 11 and 29 % of TN was mineralized in 4 composted 

cattle manures incubated in soil over a 32 week period at 30° C and 60 % water-holding capacity.  
 

 

 

4.3.3 B10 barley trial 

SPAD values in the B10 trial (shown in Figure 4.6) peaked in week 10, as opposed to week 8 in the 

B100 trial, and chlorophyll levels remained high for longer across all treatments, although index 

readings were lower than in the B100 trial. 
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Figure 4.6: B10 Optic barley trial, top leaf chlorophyll index (SPAD) at week 8 (white bars); week 10 (light grey bars); week 12 (hashed bars); 

week 14 (mid grey bars) and week 16 (dark grey bars). Compost applied at 10 t/ha in treatments 3 – 16 and NPK 150-57-79 kg/ha in treatment 2). 

Error bars represent ±1 se. 
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Plate 4.14: B10 Trial: Optic barley in topsoil + 
Pontbren’s 3 yr. (week 12) 

 

Plate 4.15: B10 Trial: Optic barley in topsoil 
+ Glynllifon’s 3 yr. (week 12) 

 

Plate 4.16: B10 Trial: Optic barley in topsoil + 
ADAS C34 > 8mm (week 12) 

Plate 4.17: B10 Trial: Optic barley in topsoil + 
ADAS C34 < 8mm (week 12) 

Plate 4.18: B10 Trial: Optic barley in topsoil + 
ADAS C55 > 8mm (week 12) 

 

Plate 4.19: B10 Trial: Optic barley in topsoil + 
ADAS C55 < 8mm (week 12) 
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In contrast to the B100 plates, there is a striking similarity between all six treatments featured in 

the B10 plates above. All plants express N deficient chlorosis in the middle leaves and necrosis in 

the lower leaves at week 12. 
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Figure 4.7: Above-ground plant biomass (g pot-1) dry weight in B10 Optic barley trial including 

Tukey HSD standard error of the difference (harvest date 28th March 2008). Bar patternation 

represent amendment groups, from left to right; controls (intensely dotted and white bars); 1 yr. 

old composts (mid-grey bars); large (>8 mm) 1yr. old fractions (wide hashed bars); fine (<8 mm) 

1 yr. old fractions (narrow hashed bars); straw composts (dotted bars) and 3 yr. old composts 

(dark grey bars). Error bars represent ±1 se. Different letters indicate significant differences 

between treatments at p < 0.05. 

 
Biomass yield from the large and small woodchip fractions of both ADAS C34 and C55 composts 

seem counter-intuitive (see Figure 4.7), as both ADAS’s large fraction amendments produced 

greater biomass than their respective small fractions. This trial’s application rate is determined to 

achieve optimal results from nutrient-rich organic compost and, as shown in Chapter 3, the 

project’s woodchip composts are N deficient compared to the straw compost. So it is suggested the 

agronomic advantage in the ADAS large fractions is due to the intact woodchips acting as a soil 

bulking agent, regulating soil moisture and providing aeration. Although, in comparison, the 

biomass produced in each of IGER’s three CSC derived amendments are in line with expectations. 
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Therefore, it is suggested that this paradox, specific to the ADAS amendments, relates to the use of 

a scraped area within the ADAS cattle pens during the bedding phase, but further research would 

be needed to validate this point. However, contrary to the grass trial results, the ADAS C34 

amendment yielded greater barley biomass (p >0.05) than the ADAS C55, indicating the initially 

drier C34 woodchip bedding amendment retained greater amounts of available nutrients during the 

B10 trial. This supports the hypothesis that woodchips with lower moisture content have a greater 

absorbency capacity as a bedding material. Although, this effect may be more conclusively proven 

in growth trials using higher compost application rates than 10 t ha-1. Pb3 (Plate 4.14) produced 

taller and structurally stronger plants than the corresponding Glyn3 compost (Plate 4.15), but 

produced similar biomass and grain yields than the 1-year old woodchip amendments. This is 

considered a response to the surprisingly low AN content in the ‘well-managed’ Pb3 compost (see 

Table 4.7) and critical to understanding the timescale that woodchips remain viable as a bedding 

material (lifespan) and compost maturation. 

Analysis of differences between treatment groups (defined in Table 4.6) supports the 

pattern described between individual amendments: NPK produced significantly greater biomass 

than all other groups, (p<0.001), and straw (p<0.05). Straw amendments produced greater biomass 

than soil-only, parent composts, small fractions and 3 year old composts (p<0.01) and large 

fractions (p<0.05).  

 
Table 4.12: total number of pots, plants and tillers treatment-1; average number of tillers plant-1 inc. ± 1 se. 

B10 treatments Pots # Plants # Tillers # Tillers plant-1 
Topsoil 4 16 17 1.06 ± 0.06 
N-P-K (150-56-79 kg/ha-1) 4 16 29 1.81 ± 0.06 
ADAS C34 4 16 18 1.13 ± 0.13 
ADAS C55 4 16 17 1.06 ± 0.06 
IGER CSC 4 16 18 1.13 ± 0.13 
ADAS C34 > 8mm 4 16 18 1.13 ± 0.13 
ADAS C55 > 8mm 4 16 20 1.25 ± 0.18 
IGER CSC >8mm 4 16 18 1.13 ± 0.13 
ADAS C34 < 8mm 4 17 17 1.00 ± 0.00 
ADAS C55 < 8mm 4 12 13 1.08 ± 0.06 
IGER CSC < 8mm 4 16 16 1.00 ± 0.06 
ADAS SS 4 12 18 1.50 ± 0.24 
ADAS CS 4 16 16 1.00 ± 0.06 
IGER CHS 4 12 16 1.33 ± 0.12 
Pontbren 3 yr. 4 16 19 1.19 ± 0.06 
Glynllifon 3 yr. 4 12 14 1.17 ± 0.10 

 



208 
 

B10 Trial Treatments

Top
so

il

N-P
-K

ADAS C
34

ADAS C
55

IG
ER C

SC

ADAS C
34

 > 
8m

m

ADAS C
55

 > 
8m

m

IG
ER C

SC >8
mm

ADAS C
34

 < 
8m

m

ADAS C
55

 < 
8m

m

IG
ER C

SC < 
8m

m

ADAS S
S

ADAS C
S

IG
ER C

HS

Pon
tbr

en
 3 

yr

Glyn
llif

on
 3 

yr

Ti
lle

rs
 /p

la
nt

0.0

0.5

1.0

1.5

2.0
Tukey HSD se = 0.16

a

b

a

a

a a

ab

a

a

a a

ab

a

a

a

ab

 
Figure 4.8: Number of tillers plant-1 in the B10 Optic barley trial including Tukey HSD standard 

error of the difference (counted on 28th March 2008). Bar patternation represent amendment 

groups, left to right; controls (intensely dotted and white bars); 1 yr. old composts (mid-grey bars); 

large (>8 mm) 1 yr. old fractions (wide hashed bars); fine (<8 mm) 1 yr. old fractions (narrow 

hashed bars); straw composts (dotted bars) and 3 yr. old composts (dark grey bars). Error bars 

represent ±1 se. Different letters indicate significant differences between treatments at p < 0.05. 

 

The lack of tillering plant-1 in the B10 trial (Table 4.12 and Figure 4.8) is considered to result from 

the low compost application rate and thus limited amounts of available nutrients. In addition, 

seasonal effects, particularly temperature, even under greenhouse conditions, cannot be ruled out, 

and if this was the case, then watering the barley on a daily basis may have negatively influenced 

growth. This is postulated because the B10 NPK treated barley (Plate 4.20) was not initially 

nutrient deficient, but produced one less tiller plant-1 than the B100 NPK barley, which was grown 

during spring and summer, and the ADAS and IGER field trial results (see Appendix II) show 

barley biomass increases sharply at application rates up to 75 – 100 kg N ha-1, but then yields level 

off at rates >75 kg N ha-1 as crop N requirements are met and the excess is wasted. 
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Figure 4.9: Grain yield (g pot-1) dry weight in the B10 Optic barley trial including Tukey HSD 

standard error of the difference (harvest date 28th March 2008). Bar patternation represent 

amendment groups, from left to right; controls (intensely dotted and white bars); 1 yr. old 

composts (mid-grey bars); large (>8 mm) 1 yr. old fractions (wide hashed bars); fine (<8 mm) 1 

yr. old fractions (narrow hashed bars); straw composts (dotted bars) and 3 yr. old composts (dark 

grey bars). Error bars represent ±1 se. Different letters indicate significant differences between 

treatments at p < 0.05. 

Plate 4.20: B10 Trial: Optic barley in topsoil + NPK (week 12) 



210 
 

Grain yield in the B10 trial was dominated by the NPK treatment (Plate 4.20), which produced 

significantly greater quantities than all the woodchip amendments (p<0.05) and the soil-only 

control (p<0.001), but none of the straw treatments (see Figure 4.9). ADAS SS produced 

significantly more grain than most 1 year old woodchip derivatives (p<0.05), with the exception of 

ADAS C34; both ADAS C34 and C55 (>8 mm) and IGER CSC (<8 mm). Agronomic differences 

between the 1 and 3 year old woodchip amendments were not significant at rates of 10 t ha-1. 

However, even at this lower application rate, there are still notable differences between the two 

aged amendment performances, reaffirming the benefits of good compost management.  

Overall, these results show that at pot scale, an equivalent of 10 t ha-1 of low nutrient 

woodchip compost is beneath the rate needed to determine significant variations in plant growth 

between woodchip derived amendments. Although the weight-based advantage of nutrient rich, 

straw compost were apparent. Further trials, based on percentage N applications rates, are needed 

to clarify these results. 

Interestingly, analysis of grain yield between groups shows greater variation than observed 

in the biomass-grouped analysis. NPK grain yield is again significantly different from all other 

groups (p<0.001) except straw (p>0.05). Grain yield is significantly greater in straw amendments 

(by group) than the soil-only and 3 year old woodchip compost (p<0.001) and the three groups of 

1-year old woodchip composts (p<0.01). In addition, the soil-only treatment yielded significantly 

less grain than NPK and straw compost (p<0.001); large fraction (p<0.01); whole and small 

fraction groups (p<0.05); but not statistically less than the 3-year old woodchip compost (p>0.05) - 

although sample size (n=2), compared to (n=3) in other groups may have biased the result.  

  Of the three analyses - biomass, grain and straw yield - straw yields (data not shown) vary 

the least with the results similar to those for biomass, except that the quantity of straw harvested 

from the NPK was not significantly greater than the straw produced in the small fraction of IGER’s 

CSC (p>0.05).  
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4.4  Discussion 

The grass trial set out to establish the agronomic value of 3 year old woodchip bedding-compost in 

comparison to 1 year old woodchip-manure compost. It may be in the farmer’s interest to limit the 

amount of decomposition between housing periods to extend the life of the woodchip’s usefulness 

as a bedding material. However, as an absolute minimum, the compost must be managed 

sufficiently well to meet the UK PAS100 pathogen regulation, which requires that the ‘compost 

must reach 65° C for at least 7 days’ (WRAP, 2005) before it can be re-used the following season 

as livestock bedding. 

The two barley trials determined that, at farm-scale production volumes, there was no 

agronomic benefit in sieving the woodchip-manure composts each year to extract the fine fraction. 

Compost nutrient analyses discussed in Chapter 3 show the project’s 1 year old woodchip 

composts are nutrient deficient, at least at levels necessary to add value as a fertiliser. Of these, 

available nitrogen appears to be the deficiency most strongly expressed in the barley B10 and B100 

trials (Berry, 2010). Furthermore, the B10 results show that the ADAS C34 derivatives, with lower 

initial moisture content, produced a greater plant biomass than ADAS C55 with higher initial 

moisture content. This suggests the absorbency potential of initially dryer woodchips becomes 

transferred in sequestering a greater nutrient load than woodchips with higher initial moisture 

content. In addition, it is reasonable to assume that efficient composting during the summer months 

not only sanitizes the compost - a legal requirement for its re-use - but higher composting 

temperatures increase evaporation, thus producing a more absorbent bedding the following winter 

and, ultimately, a higher value fertiliser when the woodchips are finally degraded sufficiently to be 

applied to land.  

None of the woodchip-manure compost treatments in the B10 trial matched the productivity 

of NPK or straw-based compost treatments, due to the nutritional disadvantage with straw. 

However, the agronomic value of Pontbren’s well-managed compost is encouraging, demonstrating 

woodchip’s potential value to Welsh farming in the near future. Although this is a national project, 

its purpose is to assist individual farmers in making personal decisions when straw bedding prices 

become uneconomic. The project did not suggest woodchip is the only or the best alternative to 

straw and fully encouraged individuals to develop innovative, cost-effective solutions for 

themselves, so long as the materials, and the way they are used, conformed to regulatory waste 

requirements. However, at a national level, woodchip was considered the most widely available 

material in Wales, and, to that end, the project aimed to deliver impartial and helpful advice. 

Following these growth trials, the project recommended: 
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1. Re-use of the compost-sanitized bedding for consecutive winters, as long as the 

woodchips remain intact and viable as bedding, before spreading it on the land. 

2. There is no agronomic benefit from sieving the woodchip-manure compost for fertiliser 

each year, although this is surpassed by the economic benefits of extending the 

woodchip’s viability as a bedding material.  

 

The predominant theme to emerge from other growth studies that include woodchip amendments is 

reduced yields due to microbial immobilization of N. Variations occur dependent on age, species of 

plants and whether the woodchips are co-composted or mixed with other amendments. However, 

there are instances where woodchip-induced N immobilization is a benefit. Van Rensburg and 

Morgenthal (2004) studied the remedial effects of adding small applications (5-15 t/ha) of 

woodchips to platinum tailings in South Africa, and found them beneficial to the early 

establishment of vegetation by increasing plant production, basal cover and medium nutrient status 

(P and K). The study considered that the woodchip additions reduced nitrate contamination through 

microbial N immobilization, although the authors cautioned that the positive effects on growth may 

be reversed if the microbial response is prolonged, and suggested that the woodchips are 

composted first. The obvious relevance of this to Welsh agriculture is in nitrate vulnerable zones 

where the woodchip compost applied in the autumn could be used to reduce N leaching (Smith et 

al., 2010).  

Organic production systems are often blighted by weed encroachment, resulting in lower 

yields and, consequently, less competitive prices than conventional equivalents. Law et al. (2006), 

trialled two commercial techniques for growing organic bell peppers (flat, bare ground versus 

black, polythene-covered raised beds), both treatments were tested under five weed suppressant 

regimes (straw, compost, woodchips, undersown clover and an organic herbicide) to assess pepper 

yield and weed control efficacy. The trials concluded that organic bell pepper yields, similar to 

those gained from inorganic production, can be achieved by combining the polythene-covered 

raised bed system with mid-season, inter-row applications of woodchip mulch. Although organic 

horticultural production is limited in Wales, if UK consumer demand for local produce continues to 

increase, then its relevance would be enhanced. However, the fertility value of immature woodchip 

compared to other amendments, consistently resulted in low or negative productivity, especially 

under pre-emergent and young vegetation, including trees (Chong and Lumis, 2000; Venner et al., 

2011), crops (Termine et al., 1987; Miyasaka et al., 2001; Soumare et al., 2002; Helgason et al., 

2007; Smiciklas et al., 2008; Pill and Goldberger, 2009), grasses! (Sullivan et al., 1998; Barker, 

2001) and ornamental flowers (Bugbee, 2002; Jayasinghe et al., 2010). 
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Venner et al. (2011) found similar issues in woodchip’s performance as an organic-waste-

derived substrate to those found in this project, albeit under paper birch (Betula papyrifera) 

seedlings, demonstrating the spectrum of species inhibited by the inclusion of immature woodchip 

in the growing media. The study also reported that small woodchips (< 10 mm) caused 

waterlogging, and so recommends the use of large chunks, applied as an incorporated amendment, 

not surface mulch, to give soil structure and break-up the focus of N immobilization in the soil. 

Conversely, TerAvest et al. (2010), reported that N enriched woodchip compost, applied!to!young 

in situ orchard apple trees (Malus domestica Borkh), 18 months prior to sampling, had beneficial 

effects on growth compared to ground cultivation or legume cover crops. Translocation of N to 

growth zones in spring and perennial wood N reserves in summer was greatest in trees treated with 

the enriched woodchip compost. Woodchip compost enrichment with inorganic fertiliser in this 

instance, but also with biosolids (Barker, 2001; Bugbee, 2002; Pill and Goldberger, 2009), allows 

the pre-established vegetation to benefit from the positive soil structural advantages, while 

mitigating the limiting effects of immobilization. These findings reflect very positively on the 

recommendation that woodchip-manure bedding is re-used over a number of years, incrementally 

enriching the woodchip compost, before it is applied as a fertiliser. Finally, TerAvest et al. (2010) 

show that woodchip-derived compost suits wood growth when trialled over a suitable timeframe, in 

contrast to the rapid N uptake requirements of fast growing plants and grasses with lower lingo-

cellulosic content.  

Pill and Goldberger (2009) found that biosolid-woodchip co-compost limited growth of 

‘Beefsteak’ tomato plants (Lycopersicon esculentum) during the first 6 weeks, in conditions where 

concentrations of co-compost exceeded 33.3 %; the remaining treatment media were made up of 

equal volumetric percentages of perlite and sphagnum peat moss, straight perlite, or straight peat 

moss. Furthermore, growth was reduced by excessive porosity and low water retention in 

treatments containing mostly perlite with < 33.3 % co-compost, but growth increased with higher 

concentrations of co-compost, due to the beneficial physical and nutritional characteristics of 

woodchip and biosolids, respectively. Similarly, Bugbee (2002) reported on a wide range of 

ornamental plants grown in 0, 25, 50, and 100 % woodchip–biosolid (3:1) compost, supplemented 

with a mixture of bark, peat and sand. Plants grown in the 50 and 100 % co-compost treatments 

were stunted and chlorotic for several weeks after planting, due to high salinity and ammonium 

levels, but recovered by mid-season and were among the fittest at the end of the growing season.!

Soumare et al. (2002) trialled the same species of tomato plant (Lycopersicon esculentum) 

in Senegal, amended with ramial chipped wood (RCW) or litter compost. RCW consists of young 

growth, forest residues, and so would normally be expected to have a higher nutrient content than 
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chips from older roundwood. Nevertheless, the study found RCW depressed tomato growth and 

yield, which it attributed to the woodchips inducing intense N immobilization in the soil due its 

high C:N ratio. The constituents of RCW are similar to ‘yard trimmings’ in the US, which Sullivan 

et al. (1998), found to have more than twice the slow-release N value of woodchip-sawdust media, 

under tall fescue (Festuca arundinacea).  

In conclusion, woodchips used as weed suppressant surface mulch should be applied mid-

season, or N enriched and incorporated if used as a soil amendment. Woodchip should not be 

applied to pre-emergent, or very young, vegetation unless fully mature.  

 

4.5  Conclusions 
 

The grassland trial was inconclusive, but indicated that woodchip-manure compost will be a 

suitable and valuable organic fertiliser once it has fully matured. Further, there is little agronomic 

benefit in annually sieving the woodchip-manure compost to extract the fine nutrient-rich fraction 

for fertiliser. This, however, is less significant than the economic benefit gained by separating the 

woodchip from the manure (after thermal kill compost temperatures have been achieved) to stop 

unwanted decomposition of the woodchips, in circumstances where the material is to be recycled as 

bedding the following winter. In addition, it is postulated that removing the manure fraction from 

the bedding-compost before storing the woodchips undercover will facilitate greater airflow 

throughout the pile during the summer, and result in bedding with lower moisture content for re-

use the following winter. This is of critical importance, as the previous chapter showed, woodchips 

with low moisture content (< 35 %) have increased capacity to absorb excretal liquids during 

housing, which facilitated greater microbial activity and, thus, generated thermal kill compost 

temperatures during the early stages of composting. This is a regulatory, waste management 

requirement for the bedding to be safely recycled on an annual basis. In addition, findings from the 

B10 trial showed the ADAS C34 derivatives, with lower initial moisture content, yielded greater (p 

> 0.05) biomass than the ADAS C55, which had a higher initial moisture content. This indicates 

that the greater absorbency capacity of dryer woodchips not only improves the material’s bedding 

and composting performance, but also that the benefits are transferred to crops via the sequestration 

and retention of available nutrients.  

The number of years (lifespan) the woodchips would remain intact, and thus a viable 

bedding material, was not determined in the present study. Initial estimates of three years were 

based on a visual assessment of the ‘well managed’ Pontbren 3 year compost. However, it is 
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understood this material was used as bedding for 1 winter season and then composted for 3 years. 

If the present project’s woodchip management recommendations are deployed – composting the 

soiled bedding long enough to achieve thermal kill temperatures (65° C for at least 7 days), before 

stopping decomposition by separating the manure and woodchip fractions and storing the 

woodchips undercover to dry out until the following winter’s housing period – it is feasible the 

bedding-compost may last for 5 years (or more), before the majority of chips are degraded. 

However caution should be taken, as this proposed estimate is purely for the purposes of 

extrapolating an economic lifespan of the woodchip material.  

It is recommended that compost maturity be determined by analysis of C:N ratio and TN 

and DIN content, because a visual assessment may not be reliable. However, the B100 trial results 

showed that even with a weight-based nutritional disadvantage the 3 year old Pontbren woodchip 

compost had agronomic value in comparison with the conventional straw composts. It is suggested 

that microbial decomposition in the Pontbren compost had slowed to a very low rate, despite 

having a C:N ratio of 10:1, owing to critically low levels of available N, but the process was 

reinvigorated when the compost was mixed with topsoil at the start of the trial, making significant 

levels of N available to the barley. This is in agreement with the findings of Hadas and Portnoy 

(1994). 

Comparison of the initial nutrient content in each treatment at the start of composting 

versus biomass yield at the end is not a simple one, due to unplanned complexities from having 

unbalanced (weight-based) amendment volumes. The consequence of this was that amounts of 

available nutrients and the extent the different material’s physical properties influenced the 

physico-chemical and bio-chemical dynamics in each treatment medium during the trial. Therefore 

these trials would have been improved by applying amendments by % N rather than by weight.  
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5.1  Introduction 

This chapter uses economic modelling to present a range of applied scenarios. Following 

examination of nutrient dynamics that occurred during the composting of woodchip-derived 

manure (WM) that had previously been used for animal bedding, this paper assesses the economic 

viability and subsequent agronomic benefit of WM compost in a range of agricultural contexts. 

Because of the diversity of individual farming practices throughout Wales (e.g. farm size, livestock 

type, geographical location, infrastructure, proximity to suppliers etc.) this analysis was approached 

from a broad perspective, using applied case study examples to demonstrate a variety of potential 

scenarios involving the use of woodchip on farms. The aim was to provide the greatest number of 

farmers with an accurate and realistic assessment of using woodchip bedding under current market 

conditions. Where possible, costings are industry quotes, accurate at the time of writing. All 

costings should thus now be viewed as guides, although current prices can be inputted if desired.   

 

5.2  Scenarios 

Scenarios are based on two fundamental facts: 80 % of Welsh agricultural land is categorised as 

Less Favoured Area (LFA) and the national average holding size is 40 ha (see Table 5.3). Under 

Tir Gofal, a maximum of 72 Dairy, Suckler or Beef cattle younger than 24 months, or 480 breeding 

ewes (with or without lambs) are permitted on a 40 ha holding within a Disadvantaged Area. Beef 

cattle younger than 24 months were not used in these scenarios. The permitted number of livestock 

increases proportionately to 360 mature cattle, or 2,400 breeding ewes, on 200 ha. 

In order to standardise the scenarios, a hypothetical set of parameters were developed:  
 

1. Cattle and sheep are both housed for 8 weeks.  

2. Bedding application rates for sheep consist of an initial 10 cm base layer followed by a 

5 cm top-up layer per week, giving a total bedding depth of 45 cm; bedding application 

rates for cattle consist of an initial 15 cm base layer followed by two 5 cm top-up layers 

per week, giving a total bedding depth of 85 cm.  

3. If woodchip is bought by weight, then moisture loss must be accounted for in the weight 

purchased. For example, 94.91 t of woodchip with 50 % moisture content (MC) fills the 

same volume (306 m3) as 86.68 t at 30 % MC. ‘Green’ or ‘recently felled’ wood 

contains 45–60 % moisture, depending on the tree species and season.  
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4. All purchased woodchip, waste wood or round timber is assumed to have a 50 % MC, 

so must be stored either chipped or unchipped, until the woodchip is < 30 % MC, as 

recommended in Chapter 3. 

5. The chipper model used in all the scenarios is a 6-year-old, ex-trade, Laimet HP 25. To 

hire a similar model costs approximately £100 for 1 day and £50 /day thereafter, 5 days 

hire is discounted to £50 /day.  

 

This paper also assumes the (> 30 % MC) bulk density of G30 woodchip (chip sizes 1-3 cm) to be 

3.224 m3 t-1 (based on Simpson and TenWolde (1999) and Wood Fuels Handbook (Antonini and 

Bergomi, 2008)) and its cost to be £60 t-1 (English Wood Fuels, 2012), although prices vary 

considerably depending on location, season, wood type, moisture content and diesel prices at the 

time of purchase. The current market price of ‘short round wood’ suitable for chipping is £15 t-1. 

Waste wood currently costs between £5 t-1 in Scotland and £55 t-1 in south-east England (Materials 

Recycling World, 2012). In these scenarios waste wood in Wales is estimated to cost between £5 

and £15 t-1, but prices may be surcharged if screening for metal fragments is needed before delivery 

(if, for example, the wood comes from broken pallets). Treated waste wood products are not 

suitable for woodchip bedding, as they may contain levels of copper, chromium and arsenic (CCA), 

creosote, light organic solvent preservatives (LOSP), micro emulsions, paints and varnishes. 

Farmers should ensure that any waste wood deliveries contain no treated materials before arrival.  

Costs associated with giving production land over to grow wood for bedding are not 

included, as this is not considered an agronomic option for the majority of farmers in Wales, where 

the average holding is < 40 ha. Instead, it is assumed that farmers will use existing stands and then 

buy waste or recycled wood to supplement wood volumes if needed. Hedge cutting and woodland 

management are pre-existing annual costs, supported by the SFP scheme /Tir Gofal schemes, and 

farmers are encouraged, but not required under GAEC 15 to leave trimmings in situ to decompose. 

If farmers choose to buy a Laimet chipper, it is recommended that timber and waste wood is 

chipped green, because dry wood (particularly spruce) will quickly blunt the blade and 

dramatically increase the chipper’s maintenance costs. Another word of caution is that farmers 

must not underestimate the area required to store the woodchip during the summer, although this 

can be achieved outside using a cover that will shed a large proportion of rainfall, while still 

allowing plenty of air movement (DTI, 2002).  

The aim of storing the woodchips is to maximise moisture loss while minimising material 

decomposition. Temperatures within the pile should increase rapidly during the first month before 

stabilising, depending on the height of the pile, compaction and age of the material. The DTI 
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(2002) reports that, in loosely stacked 5 m high piles, temperatures stabilise at approximately 50° 

C, but that larger, compacted piles can reach > 80° C, increasing the risk of combustion. However, 

dangerously high temperatures are unlikely with the volumes of woodchip piles discussed in this 

paper. Therefore, active aeration using a lattice of piping (Rynk, 1992) or turning the woodchip 

piles during the summer, will reduce the woodchip’s initial MC from > 50 % in recycled cattle 

bedding and from > 40 % in recycled sheep bedding (see Chapter 3, Figures 3.7 - 3.12), after the 

soiled bedding materials - woodchip and manure fractions – have been composted (ca. 6 weeks) to 

achieve PAS100 sanitization requirements. As discussed, woodchip piles should not be > 5 m high 

until the material is ≤ 30 % MC (DTI, 2002), after which the loosely stacked piles can be increased 

to 10 m high. A simple method can be used to calculate the space required for storing woodchips: 

taking the scenario above, where a farmer has 480 ewes housed for 8 weeks at a density of 1.33 m2 

head-1, (480 × 1.33) is multiplied by the total depth (m) of woodchip that will be applied over the 8 

weeks, (480 × 1.33) × 0.45 = 287 m3. The area (m2) required to store 287 m3 of woodchip with > 30 

% MC in 5 m high piles is √ (287 / 5) = 7.6 × 7.6 m, and the area (m2) required to store woodchip < 

30 % MC in 10 m heaps is, √ (287 / 10) = 5.4 × 5.4 m. 

 

Notional cost of storage and handling 

Hamelinck (2005) considers that commercial woodchip biomass stored in the open costs €1.1 m-3 

yr-1, which at current exchange rates (£0.8086 / €1) assigns a storage cost to 287 m3 of £255.28 yr-1 

or £0.89 m-3 yr-1. This cost is discounted, however, against the cost of storing the equivalent 

volume of straw bedding (37.7 m3 needed to house the same number of livestock). Although this is 

a smaller volume, straw stored in barns carries a higher opportunity cost than woodchip stored 

outside.  

Likewise, mechanisms of dispersing each bedding type in the pens during winter housing 

depend on housing area and barn height. Straw is either broken up and strewn around the pens by 

hand or mechanically using a chopper to break-up and blow the straw into the bedding area. 

However, the chopped straw generates the ideal habit for mange mites, Sarcoptes scabiei var. 

bovis, which can leaded to intense irritation and less time spent lying down cudding, thus lower 

live-weight gains, or even weight loss (personal communications, N. Lowe, Wynnstay Feeds, 

2012). Conversely, there are no reported cases of woodchip bedding supporting Sarcoptes scabiei 

var. bovis populations and the woodchip can be carried in a front-loader, tipped and then spread 

out, using the bucket to drag the chips around the pen.  Labour and fuel costs involved in these 

different handling methods are considered to be comparatively balanced for smaller operations 

involving 72 cattle or 480 sheep, but increasingly disproportionate (woodchip bedding costs > 
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straw) at larger volumes, owing to the straw bedding’s expansion factor In addition, the necessity 

of sieving the recycled woodchip bedding (estimated to be £3 /t, personal communications, K.A. 

Smith (ADAS)) and turning the woodchip piles (maximum 1 or 2 times) during the summer on a 

40 ha holding, incurs fuel and labour costs. However, these costs are estimated to be similar to 

those incurred by the necessity to turn straw composts more frequently (6 to 8 times over the 

summer) - although, again, as the operating scale of a farm increases, so does the disparity in fuel 

and labour costs of storing and handling the different volumes of straw and woodchip.  

The average bulk density of baled straw is 150 kg m-3 versus 40 kg m-3 loose (Kronbergs 

and Smits, 2008). Therefore straw has an expansion factor of 3.75. In addition, this figure can be 

used as a multiplier to calculate the volume of woodchip bedding required from a known volume of 

straw or vice versa. For example, 72 cattle require 306 m3 of woodchip ((72 x 5 m2) x 0.85 cm) = 

306 m3 or 81.6 m3 of straw ((72 x 5) x 0.85) = 306 x 40 (kg m-3 loose straw) /150 (kg m-3 baled 

straw) = 81.6 m3 or (306 m3 woodchip /3.75 = 81.6 m3 straw).  

Because of the many differences in storage and handling requirements associated with each 

bedding type, a notional standard storage and handling cost of £1 t-1 yr-1 is applied to both 

woodchip and straw. This is a simplified cost structure, but it does have the benefit of accounting 

for the increasing differential in woodchip vs. straw bedding costs at larger stock volumes. The 

notional cost associated with housing 2400 cattle over 8 weeks on woodchip (£3,164) is £2,756 > 

straw (£408) whereas for 72 cattle the differential is £83 (£95 vs. £12). 
 

Recycling a rolling stock 

Compost volume (m3) was not formally measured before and after the housing and composting 

periods. Instead it was visual estimated: except for moisture losses, there appeared to be little or no 

change in woodchip treatment volumes during the trial’s composting period - and therefore, little or 

not change in the woodchip volumes available for the second winter’s housing. Annual 

assessments of volumetric composting reduction between winter housing periods would be 

essential to inform farmers in advance, of the quantities of extra bedding needed to be chipped and 

dried ready for use. To compensate for this knowledge gap and ensure sufficient bedding over 

successive winters, an annual addition of 20 % of the initial volume of woodchip needed in year 

one has been accounted for, year on year. Chapter 3 showed the importance of the woodchip 

bedding’s initial moisture content. If the woodchip moisture content is > 30 % at the start of 

housing, it is recommended that waste straw or extra manure is added to the soiled bedding after 

housing to ensure the compost briefly reaches thermal kill temperatures, before being sieved to stop 

further decomposition during storage over the summer.  
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5.2.1 Stocking densities (animals ha-1) 

Under Tir Gofal, overall stocking rates should not exceed 2.4 livestock units (LSU) /ha where:  

 

• 1 Dairy cow/Suckler cow = 1 LSU 

• 1 Beef animal (> 24 months) = 1 LSU 

• 1 Beef animal (< 24 months old) = 0.6 LSU 

• 1 Breeding Ewe (with or without lambs) = 0.15 LSU. 

 

On agriculturally improved grassland the rate is 2.4 LSU/ha; for other mandatory habitats, e.g. 

semi-improved grassland, stocking density should not exceed 1.0 LSU/ha overall. However, those 

rates can be modified on the basis that if the average rate is 1.0 LSU/ha for 12 months then it will 

be possible to graze 4.0 LSU/ha for 3 months (i.e., 4 times the average annual rate must not be 

exceeded), after which the area would then have to remain livestock-free for the remaining 9 

months. 

At present, 80 % of Welsh agricultural land is designated as a Less Favoured Area. In areas 

where this is the case, livestock producers are entitled to receive financial support under the Tir 

Mynydd scheme (WG, Tir Mynydd; 2007 – 2013) (the Welsh form of the Hill Livestock 

(Compensatory Allowances) scheme). 

To qualify for the scheme, farmers have to have a maximum of 1.8 LSU/ha in 

Disadvantaged Areas and 1.2 LSU/ha in Severely Disadvantaged Areas. The scheme is due to end 

in 2013, as described under the Rural Development Plan (2010). For those farmers in receipt of 

Single Payment Scheme support payments, however, there are cross-compliance requirements 

(Statutory Management Requirements (SMRs) and Good Agricultural and Environmental 

Condition requirements (GAEC)). If breaches of these compliance requirements are found on 

inspection, then payments may be reduced, withdrawn or even recovered. GAEC9, which deals 

with avoidance of overgrazing and unsuitable supplementary feeding, does not specify a maximum 

grazing stocking density but requires that land and livestock be assessed on their condition. 

However, in recent years, bankruptcies and incentivized stock reductions have led to concerns of 

ecological succession from under-grazing in fragile upland and LFAs. So, for clarity, the following 

economic scenarios assume the use of Tir Mynydd maximum stocking densities in disadvantaged 

areas. 
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5.2.2 Housing densities (animals m-2) 

5.2.2.1 Cattle 

The WG Code of Practice for the Welfare of Livestock Cattle (2010) states that ‘the space 

allowance should be worked out in terms of the whole environment; the age, sex, liveweight and 

behavioural needs of the stock; the size of the group and whether any of the animals have horns, 

and should be based on expert advice’. In line with these recommendations, the scenarios use the 

following space allowances head-1 for cattle: 

 
• Dairy, Suckler and Beef > 24 months - 5 m2 head-1 

• Beef < 24 months   - 3 m2 head-1. 

 
5.2.2.2 Sheep 

As this project focused on winter housing, space allowances for sheep were based on those 

deployed in the project’s housing trials and the Welsh Government guidelines for pregnant lowland 

ewes: 

 
• Pregnant Ewes    - 1.33 m2 head-1. 

 
The Welsh Government recommended space allowances are listed in Table 5.1 and can be found in 

the Code of Practice for the Welfare of Livestock: Sheep, March 2010. 

 

Table 5.1: Welsh Government recommended space allowances for sheep  

Lowland ewes (60 - 90 kg liveweight) 1.2 - 1.4 m2 floor space / ewe during pregnancy. 

Lowland ewes after lambing with lambs at foot 
up to 6 weeks of age 2.0 - 2.2 m2 floor space / ewe and lambs. 

Hill ewes (45 - 65 kg live weight) 1.0 - 1.2 m2 floor space / ewe during pregnancy. 

Hill ewes after lambing, with lambs at foot, up 
to 6 weeks of age 1.8 - 2.0 m2 floor space / ewe and lambs. 

Lambs up to 12 weeks old 0.5 - 0.6 m2 floor space / lamb. 

Lambs and sheep 12 weeks to 12 months old 0.75 - 0.9 m2 floor space / lamb / sheep. 

Rams 1.5 - 2.0 m2. 
Code of Practice for the Welfare of Livestock: Sheep March 2010 
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5.2.2.3 Organic livestock housing densities 

Organic livestock space requirements shown in Table 5.2 are more generous than conventional 

densities, and the stock should ideally have access to outdoor areas as well: 
 

Table 5.2: Minimum space requirements for organically farmed sheep and cattle in the UK 

Stock Weight Soil Association indoor area 
requirement / head (m2) 

Minimum organic indoor area 
requirement / head (m2) 

Cattle 100 kg 2.6 1.5 

Cattle 200 kg 4.4 2.5 

Cattle 350 kg 7.0 4.0 

Cattle > 350 kg 8.7 with a minimum 
of 1.75 m2 / 100 kg 

5.0 with a minimum 
of 1 m2 / 100 kg 

Dairy cow  10.5 6 

Bull  10 +  
30 m2 outdoor exercise area 

10 +  
30 m2 outdoor exercise 

Ewe  1.5 1.5 

Ewe + lambs  2.0 2.0 
Soil Association Organic Standards (2012) and Compendium of UK Organic Standards (2006) 

 

5.2.3 Calculating the amount of bedding required 

This is done by calculating the total depth of bedding (m) that will be applied over the entire 

housing period and multiplying it by the area (m2) per animal. For instance, 72 dairy cattle that are 

housed at 5 m2 for 8 weeks with an initial 15 cm layer and 10 cm top-up layers each week 

thereafter: 5 m2 × 0.85 (depth, m) = 4.25 m3 head-1, multiplied by the total number of cattle being 

housed, 72 × 4.25 = 306 m3. Principally, the calculation is the same for sheep, except the total 

depth of bedding will be less over 8 weeks (10 cm + (7 × 5 cm)) = 0.45 m3. 

To convert volume to tonnes, the value above is divided by the total volume by m3 t-1, 

depending on the woodchip’s moisture content (see Table 5.7). For woodchip with 50 % MC; 306 

(m3) / 3.224 (m3 t-1) = 95 t. Organic dairy cattle housed at 6 m2 head-1; 6 × 0.85 = 5.1 m3 head-1 × 72 

= 367.2 m3 total volume of bedding, or 367.2 / 3.224 (50 % MC) = 114 t. 

 

Straw bulk density and bedding volumes 

Kronbergs and Smits (2008) report the average bulk densities of loose straw and baled straw are 40 

kg m-3 and 150 kg m-3 respectively. Further, the mean weight of large Heston bales is 550 kg (500 
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– 600 kg) (Brears, 2012). This data is used to determine the following bedding volumes and costs 

of housing sheep at 1.33 m2 head-1 and cattle at 5 m2 head-1 over an 8 week period.  

 

Sheep straw  

480 sheep, housed for 8 weeks with an area allowance of 1.33 m2 hd-1 require (1.33 × 0.45) × 480 = 

287 m3 of loose straw; 287 m3 × 40 kg m-3 = 11.49 tonnes of straw, or 20.9 large Heston bales that 

take up a storage area of 76.6 m3. The current cost of straw delivered to a farm in Wales is 

determined as £76 t-1, by the overall mean of 2012 delivery quotes listed in Table 5.9. Therefore 

the straw bedding use over 8 weeks is 24 kg hd-1 costing a total of £873 or £1.82 hd-1.  

 

Cattle straw  

As above, an initial 15 cm bedding layer covering 5 m2 and weekly top-ups of 10 cm for 8 weeks, 

totalling 170 kg hd-1 or £12.92 hd-1 at £76 t-1. The straw needed for bedding 72 cattle at 5 m2 hd-1 

for 8 weeks is 12.24 t (£930 at £76  t-1), equivalent to 22 large Heston bales requiring a storage area 

of 81.6 m3. 
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Table 5.3: Tir Gofal maximum number of livestock on 40 and 200 ha holdings and total weight of woodchip needed to house cattle and sheep over 8 weeks. 
Land type, livestock category Housing density Maximum head Total (t) woodchip Maximum head Total (t) woodchip 
 and equivalent LSU m² on 40 ha bedding  (50 % MC) on 200 ha bedding  (50 % MC) 
      

Agriculturally Improved Grassland      
Maximum of 2.4 LSU/ha       
Dairy or Suckler cow = 1 LSU/ha 5.00 96.0 127 480 633 
Beef ( > 24 months) = 1 LSU/ha 5.00 96.0 127 480 633 
Beef ( < 24 months) = 0.6 LSU/ha 3.00 160 127 800 633 
Pregnant Ewes = 0.15 LSU/ha 1.33 640 119 3200 594 
Semi-Improved Grassland      
Maximum of 1.0 LSU/ha       
Dairy or Suckler cow = 1 LSU/ha 5.00 40.0 52.7 200 264 
Beef ( > 24 months) = 1 LSU/ha 5.00 40.0 52.7 200 264 
Beef ( < 24 months) = 0.6 LSU/ha 3.00 66.7 52.7 333 264 
Pregnant Ewes = 0.15 LSU/ha 1.33 267 49.5 1333 248 
       
LFAs (cover 80 % of Wales)      
Disadvantaged Areas      
Maximum of 1.8 LSU/ha       
Dairy or Suckler cow = 1 LSU/ha 5.00 72.0 94.9 360 475 
Beef ( > 24 months) = 1 LSU/ha 5.00 72.0 94.9 360 475 
Beef ( < 24 months) = 0.6 LSU/ha 3.00 120 94.9 600 475 
Pregnant Ewes = 0.15 LSU/ha 1.33 480 89.1 2400 446 
       
Severely Disadvantaged Areas      
Maximum of 1.2 LSU/ha      
Dairy or Suckler cow = 1 LSU/ha 5.00 48.0 63.3 240 316 
Beef ( > 24 months) = 1 LSU/ha 5.00 48.0 63.3 240 316 
Beef ( < 24 months) = 0.6 LSU/ha 3.00 80.0 63.3 400 316 
Pregnant Ewes = 0.15 LSU/ha 1.33 320 59.4 1600 297 
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Tables 5.4, 5.5 and 5.6 provide a range of costs head-1 for woodchip bedding, illustrating the 

economic significance of moisture contents at different costs t-1. 

 

Table 5.4: Cost of woodchip £ head-1 of Dairy or Suckler or Beef cattle > 24 months, when housed at a 
density of 5 m2 head-1 for 8 weeks with an initial 15 cm base layer and 7×10 cm top-up layers thereafter. 

Cost (£ /t) 20 % MC 30 % MC 40 % MC 50 % MC 60 % MC 

£2 /t 2.32 2.41 2.52 2.64 2.72 

£10 /t 11.62 12.03 12.58 13.18 13.58 

£20 /t 23.23 24.07 25.16 26.36 27.15 

£30 /t 34.85 36.10 37.74 39.55 40.73 

£40 /t 46.47 48.13 50.33 52.73 54.30 

£50 /t 58.08 60.16 62.91 65.91 67.88 

£60 /t 69.70 72.20 75.49 79.09 81.45 
 

Table 5.5: Cost of woodchip £ head-1 of Beef cattle < 24 months, when housed at a density of 3 m2 head-1 
for 8 weeks with an initial 15 cm base layer and 7×10 cm top-up layers thereafter. 
Cost (£ /t) 20 % MC 30 % MC 40 % MC 50 % MC 60 % MC 

£2 /t 1.39 1.44 1.51 1.58 1.63 
£10 /t 6.97 7.22 7.55 7.91 8.15 
£20 /t 13.94 14.44 15.10 15.82 16.29 
£30 /t 20.91 21.66 22.65 23.73 24.44 
£40 /t 27.88 28.88 30.20 31.64 32.58 
£50 /t 34.85 36.10 37.74 39.55 40.73 
£60 /t 41.82 43.32 45.29 47.46 48.87 
 

Table 5.6: Cost of woodchip £ head-1 of Pregnant Ewes, when housed at a density of 1.33 m2  head-1 for 8 
weeks with an initial 10 cm base layer and 7×5 cm top-up layers thereafter. 

Cost (£ /t) 20 % MC 30 % MC 40 % MC 50 % MC 60 % MC 

£2 /t 0.33 0.34 0.35 0.37 0.38 

£10 /t 1.64 1.69 1.77 1.86 1.91 

£20 /t 3.27 3.39 3.54 3.71 3.82 

£30 /t 4.91 5.08 5.32 5.57 5.74 

£40 /t 6.54 6.78 7.09 7.43 7.65 

£50 /t 8.18 8.47 8.86 9.28 9.56 

£60 /t 9.82 10.17 10.63 11.14 11.47 
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Table 5.7: Discrepancies in volume and weight between (softwood) woodchip moisture contents when 
buying by volume or weight 

Woodchip Volume Water cost when DW of Water cost when 
% moisture  (m3 t-1) buying volume (£ t-1) Wood (t-1) buying weight (£ t-1) 

0 3.69 0.00 10 0 
10 3.67 0.03 9 6.00 
20 3.66 0.11 8 12.00 
30 3.53 0.77 7 18.00 
40 3.38 2.03 6 24.00 
50 3.22 3.79 5 30.00 
60 3.13 5.46 4 36.00 

                   

Domestic fuels and livestock bedding require woodchips with less than 30 % MC. The woodchip 

supply chain in Wales is not currently geared to delivering calorific value, because of the time and 

space required to season the quantity of wood demanded. Hence, woodchip prices are variable and 

relatively high compared to straw. However, the Forestry Commission Wales (FCW) has agreed 

with the Centre for Alternative Technology (CAT) to store large quantities of felled wood on site in 

order to dry it out. The FCW has also agreed that once implemented, this measure will service the 

needs of both the domestic wood fuels and agricultural markets. 
 

 

5.2.4 Straw  

Table 5.8: Wholesale price t-1 of straw on 25th November 2012 by region across the UK mainland 

 Pick-up baled 
barley straw (£ t-1) 

Pick-up baled 
wheat straw (£ t-1) 

Big sq. baled 
barley straw (£ t-1) 

Big sq. baled 
wheat straw (£ t-1) 

North East 70 - 58 42 
East Yorks - - 55 45 
N Midlands 68 - 55 40 
E Midlands - - 55 39 
C Midlands 70 50 50 38 
E Counties - - 50 37 
South-East 70 60 48 36 
South - - 50 42 
South-West 68 68 53 46 
South Wales 70 55 58 48 
SE Scotland - - 63 50 

Prices supplied by the British Hay & Straw Merchants Association 
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Straw merchants use the prices in Table 5.8, supplied by the BHSMA and published in Farmer’s 

Weekly, to determine where to buy the cheapest straw. Prices also differ between wheat and barley, 

as well as by bale size. Therefore, Wales’ straw imports may come from anywhere in England - not 

just Shropshire or Norfolk - and a single delivery may consist of straw from a number of locations, 

depending on regional prices at different times. Quotes (£ /t) for deliveries to three locations in 

Wales (Bangor, Aberystwyth and Carmarthen, representing north, mid and south Wales) were 

obtained from three merchants in Shropshire: Church Stretton, Oswestry and Ludlow on 26th April 

2008 and 25th November 2012. In 2008 the Ludlow and Oswestry merchants reported static prices 

since September 2007, whereas the Church Stretton merchant’s prices had dropped £4 t-1. By 2012, 

straw prices were reported as lower than 2011, but delivery charges continue to rise due to 

unprecedented diesel prices. 
 

Table 5.9: Comparison of quotes (£ /t) given by three Shropshire straw merchants for Heston baled wheat 
straw on 26th April 2008 and 28th November 2012 delivered to three locations in Wales. 

 
To Bangor  Aberystwyth   Carmarthen   

From         2008 2012 Change 2008 2012 Change  2008 2012 Change  
Church Stretton £60 £75 + £15 £60 £75 + £15  £64 £75 + £11  
Oswestry £65 £70 +£5 £70 £74 + £4  £70 £79 + £9  
Ludlow £65 £78 + £13 £58 £78 + £20 £70 £80 + £10 

Average £63.33 £74.33 + £11 £62.66 £75.66 + £13 £68 £78 + £10 

 

In 2008, the wholesale price of straw, not the place of origin, determined the final price. The straw 

quoted by the Ludlow merchant (See Table 5.9) for delivery to Bangor in 2008 had been bought in 

Yorkshire (by road it is 280 miles from York to Bangor), whereas the Oswestry merchant had 

bought the straw delivered to Bangor from Cambridgeshire (it is 230 miles by road from 

Cambridge to Bangor), but at a slightly higher price - hence the deliveries arrived in Bangor at the 

same price. In November 2012, straw was still available in Shropshire, so distance to the 

destination determined delivery prices. Therefore, it is economic for farmers to use local 

merchants, unless they’re going to purchase straw directly from the producer and collect it 

themselves. 
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5.2.5 Housing trials  

Tables 5.10 and 5.11 contrast the bedding costs from the housing trials. Particular attention is 

drawn to the weight and cost of woodchip used head-1 in the two right hand columns. 

 

Table 5.10: Total cost and cost animal-1 of woodchip used at IGER and ADAS 
Livestock Chip used Total cost Cost /t Housing density Weight of chip Cost of chip 
SITE kg £ £   t-1 m²  head-1 kg  head-1 £   head-1 
Sheep             
ADAS 13445 1035 76.99 0.95 149 11.50 
IGER 3980 273 68.70 2.42 124 8.54 
Cattle             
ADAS 15600 1212 77.70 5.64 650 50.51 
IGER 14700 1032 70.19 6.45 1225 85.98 
 

From Table 5.10 it can be calculated that the average cost of woodchip used under sheep (137 kg 

hd-1 at £72.85 t-1) was £10.02 hd-1. In contrast, the average cost of woodchip used under cattle (938 

kg hd-1 at £73.95 t-1) was £68.24 hd-1. 

 

Table 5.11: Total cost and cost animal-1 of straw used at IGER and ADAS  
Site Straw used Total cost  Cost /t Housing density  Weight of straw  Cost of straw  
  kg £ £   t-1 m²  head-1 kg  head-1 £   head-1 
Sheep             
ADAS 660 34.65 52.50 0.95 22.0 1.16 
IGER 470 25.85 55.00 2.42 14.7 0.81 
Cattle             
ADAS 1510 79.28 52.50 5.64 189 9.91 
IGER 3555 195.53 55.00 6.45 296 16.29 
 

Data in Table 5.11 show that the average cost of straw used under sheep (18.34 kg hd-1 at £53.75 t-

1) was £0.98 hd-1. In the case of straw used under cattle (242.5 kg hd-1 at £53.75 t-1) the cost was 

estimated to be £13.10 kg hd-1. The different housing systems and area allowances deployed at 

each site and the variation in woodchip prices are reflected in the quantities of bedding used and 

the cost per animal. In both trials, straw was cheaper than woodchip. 
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5.2.6 Chippers  

Laimet HP 25  

New: £ 22,925 excl. VAT.   £ 7,629 ex-trade 6 years old 

 
The Laimet HP-25 chipper uses a conical screw blade, which also functions as a feed unit. There 

are five different chip sizes, ranging from 15–25 mm up to 60–100 mm, although it can produce 

chips up to 230 mm in diameter. The quoted output ranges from 40 to 120 m3 hr-1 (12.5–37 t hr-1), 

depending on the blade used as well as the size and type of wood. However, a Laimet HP-25 owner 

suggests that a maximum output of 12.5 t hr-1 (depending on manpower) is a more realistic rate. 

This chipper is suitable for all types of clean wood: coniferous and deciduous, thinnings, tree tops, 

pruned and unpruned saplings, blocks, sawn surfaces and even frozen wood, but it should be noted 

that any timber or wood should be chipped green, because the Laimet’s single blade will blunt 

quickly on dry wood, particularly spruce. The blade should be sharpened every full working day 

(8–10 hr). This can be done by the owner and takes approximately 20 minutes. Once the blade has 

worn down, it is more cost effective to have it re-tipped with hard welding than to buy a 

replacement - a new blade costs £4,805. The HP 25 design enables the owner to carry out 

maintenance themselves, so avoiding call-out costs. 

 

Costs  

Blade sharpening every 8–10 hrs   = £ n.a. 

Blade re-tipping £1000 /600 hrs   = £ 1.66 /hr. 

Anvil repair £100 /500 hrs    = £ 0.20 /hr. 

Servicing £150 /250 hrs   = £ 0.60 /hr. 

Output; 12.5 t /hr. 

Fuel Consumption; 2.5 ltrs /t 

Fuel Consumption; 31.25 ltrs /hr. 

 

Maintenance costs      = £ 0.197 t-1 
Data courtesy of Fuelwood Harvesting  !
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Heizohack HM8-400   

New: £ 25,695 excl. VAT.  £ 8,551 ex-trade 6 years old 

 
The output of the Heizohack HM8-400 and the 8-400K (crane fed) are the same, as the infeed and 

drum size are identical on both machines. The factory output figure for this model is 40 m3 hr-1, 

(12.5 green t hr-1) with conveniently stacked cord wood (1 cord = 128 ft3 (4’ × 4’ × 8’), equivalent 

to 3.6 m3, consisting of 66 % solid wood, 12 % air space and 22 % bark) or can be as much as 55 

m3 hr-1 when being loaded from a lorry or forwarder. The benefit of the hand-fed model over the 

crane-fed is apparent when feeding smaller diameter timber as the drum can be kept full. 

The annual running costs for the chipper are obviously dependent on the type and volume 

of timber being chipped and any contaminants in the timber. The main wearing parts (as with any 

chipper) are the blades and the anvil. The design of the Heizohack blades are such that they allow 

10 mm of sharpening; this equates to 5 sharpenings when cutting good clean timber with no 

contaminants. The HM8-400 blades need sharpening every 30–40 chipping hours (unless damaged 

by stones, nails etc.). For efficiency, three sets of blades are used in rotation: one in use, one spare 

set with the chipper, and one away being sharpened. 

 

Costs 

Set of eight blades (@ £10.00 each)  = £240.00 excl. VAT 

Average sharpening costs per set of blades = £24.00 excl. VAT 

Rotating three sets of blades as above will give around 630 hours of chipping. 

Anvil/shearbar     = £230.00 excl. VAT 

The anvil/shearbar is four-sided and in normal use will last approx 400 hours per side. 

Blade costs = £240 

Sharpening = £360  

Anvil costs = £230   divided by 1600 hours  = £0.14 /hr. 

Total blade and anvil costs    = £1.09 /hr. 

500 hr service costs (approximate)  = £165 excl. labour & VAT.  

 

Running costs (not incl. diesel or labour) = £1.42 /hr excl. VAT.                
Data courtesy of A C Price 

= £600 /630 hours = £0.95 /hr. 



 
236 

Greenmech CM 220 MT 55   

New: £ 18,950 excl. VAT.  £ 6,306 ex-trade 6 years old 

 
The Greenmech 220 uses six disc blades mounted on a flywheel that have a fully sharpened 

circumference, so only a third of the cutting edge on each disc is in use at any one time - the rest of 

the cutting circumference is kept in reserve. The blades can be rotated to the next sharp section 

when performance is lost, giving less down time and a longer period between sharpenings than 

conventional flat blades or flail systems. The Greenmech 220 MT 55 is produced as both a PTO 

and a standalone unit with an output of 7 t hr-1.  

The blades need rotating every 50 chipping hours (unless damaged by stones, nails etc.), 

and then removing and sharpening every 150 hrs. Blades can be sharpened 6–10 times (1050–1650 

hrs) before they need to be replaced. Replacement sets cost £177, or £29.50 /blade. 

The Greenmech 220 has two anvils, which have a 4 – 5 yr. life-span (2000–4000 hrs under 

trade-use conditions). Each anvil costs £120 to replace or £240 for both. This should be taken into 

consideration if farmers are buying a second hand ex-trade chipper. 

 

Costs  

Sharpening set of six blades @ £50 /150 hrs   = £0.33 /hr 

Blade replacement @ £177 set of 6 /1000 hrs  = £0.18 /hr 

Anvil replacement @ £240 set of 2 /3000 hrs  = £0.08 /hr 

Servicing @ approx £165 excl. labour & VAT = £0.33 /hr 

 

Running costs (not incl. diesel or labour)   = £0.92 /hr excl. VAT. 
 

Data courtesy of Green mech Ltd   
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Jenson A328  

New: £ 16,500 excl. VAT. £ 5,491 ex-trade 6 years old 

 
The Jenson A328 model has been discontinued and replaced by the A340. It has two disc blades 

similar to the Greenmech 220. The anvil needs turning every 40 hrs and daily maintenance consists 

of torquing the blade bolts, greasing the feed roller shafts and checking the belt tension. Output is 5 

t hr-1. 

 

Costs  

Blade sharpening @ £50 /40 hrs     = £1.25 /hr 

Blade replacement @ £300 /280 hrs     = £1.07 /hr 

Anvil repair @ £25 /80 hrs      = £0.31 /hr 

Anvil replacement @ £300 /280 hrs     = £1.07 /hr 

Servicing @ £100 /500 hrs      = £0.20 /hr 

 

Running costs (not incl. servicing, diesel or labour)  = £3.70 /hr excl. VAT. 

!

Data courtesy of Elite Plant Hire and Arborcut 
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5.2.7 Depreciation costs  

Depreciation is calculated using the reducing balance method. Buying an ex-trade chipper costs 

less initially, but may incur higher maintenance costs than a new chipper (Table 5.12). An ex-

privately owned chipper is initially more expensive, so depreciation is higher with no guarantee of 

lower maintenance costs.  

 

Table 5.12: Depreciation rates for new chippers and ‘trade’ chippers based on 500 – 800 working hours 
/yr, (private use is < 500 hours /yr). 

Chipper model   New  Trade: Year 1 Trade: Year 2  Private: Year 1 
  £  25 % (£) 15 % (£)  12.5 % (£) 

Laimet HP 25   22,925  5,731 2,579  2,866 
Heizohack HM8-400   25,695  6,424 2,891  3,212 
Green mech 220 MT 55 18,950  4,738 2,132  2,369 
Jenson A328   16,500  4,125 1,856  2,063 
 

The scenarios in this report are based on a 6 year old ex-trade Laimet HP 25 which depreciates at 

12.5 % pa. for < 500 operating hours /yr. Table 5.13 shows a selection of depreciation costs hd-1 of 

480 and 2400 sheep (with an area of 1.33 m2 hd-1) and 72 and 360 cattle (with an area of 5 m2 hd-1). 

This simple method of dividing the annul depreciation cost by the number of livestock is justified 

because extra use of the chipper for reasons other than producing woodchip bedding cannot be 

anticipated, so the total depreciation is assigned hd-1 and not t-1. 

 

Table 5.13: Annual depreciation of four chipper models £ hd-1 under four different livestock regimes (480 
and 2400 sheep and 72 and 360 cattle).  

Ex-trade   6 yr. old Depreciation. Output    Annual  Depreciation   £  hd-1 
Model ex-trade  12.5 %  (£) t hr-1 480 sheep 72 cattle  2400 sheep 360 cattle  
Laimet HP 25 7,629 954 12.5 1.99 13.24 0.40 2.65 
Heizohack  8,551 1,069 12.5 2.23 14.83 0.44 2.97 
Green mech 6,306 788 7 1.64 10.93 0.33 2.19 
Jenson 5,491 686 5 1.43 9.52 0.29 1.90 
 

5.2.8 Chipper hire 

The cost of hiring chippers in this capacity range is £100 for 1 day and £50 day-1 thereafter. 5 days 

hire is discounted to £50 day-1.  

 The four livestock bedding volumes used in this report are detailed under ‘Disadvantaged 

Areas’ in Table 5.3: they are 480 sheep, 89 t; 72 cattle, 95 t; 2400 sheep, 446 t and 360 cattle, 475 
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t. The Laimet HP 25 has a output of 12.5 t hr-1, so it is assumed that farmers with 480 sheep or 72 

cattle on 40 ha holdings will only need to hire a chipper for one day, costing £100, and farmers or 

groups of farmers with 2400 sheep or 360 cattle will need to hire a chipper for 5 days, costing 

£250. 
 

5.2.9 Running costs 

Variable costs  

Hydraulic oil cost:   £1.44 /ltr (Northern Wood Heat, 2012) 

Motor oil cost:   £0.96 /ltr. (Northern Wood Heat, 2012) 

Red Diesel Fuel:   72.55p /ltr. (Oct 2012) (DairyCo, 2012) 
 

Hydraulic oil consumption:  £0.08 /hr. (Northern Wood Heat, 2012) 

Motor oil consumption:  0.07p /hr. (Northern Wood Heat, 2012) 

Fuel consumption (Laimet):  £22.67 /hr. (section 5.2.6) 

Labour cost:    £14.50 /hr. (personal communication; Burton Nurseries 2012) 
 

Total operating fuel and labour cost = £37.25 hr-1 or £2.98 t-1 

 

Maintenance costs  

Table 5.14: Maintenance costs for different wood chippers (£ t-1).! 
Maintenance Action Laimet  Heizohack Green mech  Jenson  

Blades  Sharpened nil - DIY 0.05 t-1 0.05 t-1 £ 0.25 t-1 
  Re-tipped £ 0.13 t-1  or n/a n/a n/a 
  Replaced £ 1.66 t-1 0.08 t-1 0.03 t-1 £ 0.21 t-1 

Anvil Turn n/a Every 400 hrs. x4 n/a Every 40 hrs. 
  Repair £ 0.02 t-1 n/a n/a £ 0.05 t-1 
  Replace n/a 0.01 t-1 0.01 t-1 £ 0.21 t-1 
  Service £ 0.05 t-1 0.03 t-1 0.05 t-1 0.04 t-1 

Fuel ltrs t-1 2.5  DNA DNA DNA 

Output t  hr-1 12.5 12.5 7 5 

Running costs:  £ t-1 0.20 0.17 0.14 0.76 
DNA means data not available.  n/a means not applicable   
 

Total operating cost of a bought Laimet Chipper = £41.63 hr-1 or £3.33 t-1 

Total operating cost of a hired Laimet Chipper = £37.25 hr-1 or £2.98 t-1 



 
240 

Additional costs  

The haulage fuel costs of the different beddings are not determined, as they are accounted for in the 

delivery price.      

 

5.3  Sensitivity analysis 

This analysis estimates the cost of beddings (woodchip and straw) head-1 based on three forms of 

bedding material (wood, woodchip and straw) and two sets of livestock area allowances based on 

the WG Code of Practice for the Welfare of Livestock Cattle (2010) and housing densities used in 

the present study. 

  

• 1 m2, 1.33 m2, 1.5 m2, 2 m2 and 2.5 m2 hd-1 for flocks of 480 and 2400 sheep.  

• 4 m2, 4.5 m2, 5 m2, 5.5 m2 and 6 m2 hd-1 for herds of 72 and 360 cattle 

 

Additional costs such as storage and handling and N loss (kg N) are determined for all 

bedding types. Further, chipping costs are determined for waste/recycled and/or home grown wood, 

based on whether a chipper is bought or hired.  

In addition, the analysis extends over a 5 year time period, to show the average cost of each 

bedding type under each scenario (£ yr-1 over a 5 year period) and assumes that a farmer will 

produce the full volume of woodchip bedding needed for each herd / flock size in the first year, but 

in subsequent years will only need to produce 20 % of the initial bedding volume to replace any 

lost or degraded material, in order to maintain the same volume of bedding year on year. Hence, 

the project does not attempt to predict a definitive ‘lifespan’ for woodchip used as animal bedding 

but, rather, envisages a rolling stock of woodchip bedding that includes material of mixed age. 

Conversely, it is assumed the volume of straw bedding needed yr-1 remains the same.  

    

The cost of raw materials is defined in three groups:  

• Wood, (home grown and or waste/recycled) delivered with 50 % MC and then chipped, 

before being stored (priced at £5, £15 and £30 t-1). 

o For home grown wood prices t-1 reflect different felling and collecting costs. 

Farmers with large, established stands are assumed to be able to fell and collect their 

wood at a lower price t-1 than a farmer with less trees or equipment.  

o The available price of waste/recycled wood will vary on a farm to farm basis around 

Wales, depending on location and personal contacts. South Wales has a large 
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furniture industry, and forestry is a major land-use throughout the country, so the 

average price t-1 is estimated at approx. £15 t-1 with a higher price of £30 t-1 to 

account for screening costs. For example, recycled pallet wood will need to be 

screened for metal, nails etc. 

• Pre-chipped wood (woodchip), delivered with 50 % MC with a conversion factor of 3.224 

m3 t-1, priced at £60 and £80 t-1 reflect current wood fuel prices at 50 % MC. 

• The range of straw prices used (£50, £60, £70 and £80 t-1), broadly reflect the prices 

farmers in Wales have paid for straw to be delivered over the last 5 years. Higher prices of 

£90 or £100 t-1 were not included because the analysis shows  

 

Finally, the analysis also includes comparison of costs over time for buying versus hiring a chipper. 

 

5.3.1 Determination of costs  

Storage and handling 

The notional storage and handling cost of £1 t-1 applied to both woodchip and straw beddings (see 

section 5.2), advantageously biases baled straw storage, which has a conversion factor of 6.66 m3 t-

1 compared to woodchip at 50 % MC 3.224 m3 t-1 or 3.53 m3 t-1 at 30 % MC, but this is ameliorated 

by the increased handling costs associated with larger volumes of woodchip bedding, such as 

sieving. Therefore, in the absence of any empirical data, this notional cost is considered 

satisfactory. 

 

N loss  

Differences in N loss between the project’s two sheep trials suggest the high stocking density / low 

area allowance hd-1 at ADAS had a greater effect on N losses than the greater bedding volume hd-1 

at IGER (see Table 5.15). However, there is a matrix of interacting factors influencing N losses 

during housing and composting, some of which have already been discussed in previous chapters. 

They include: livestock species and area allowance; bedding volume and frequency of top-ups 

(whether top-ups are targeted or broadcast); physical properties of the bedding material 

(absorbency of liquids and integration of solids); housing system (manure scrapped from the 

feeding area). Aside from those factors, N losses are particularly influenced by the types and 

quantities of feed offered hd-1 and by housing ventilation (rapid airflow across the bedding surface 

increases NH3 loss).  
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Table 5.15: Bedding volumes (m2 hd-1) and N losses (kg hd-1) from the sheep and cattle trials. 
Trial   Sheep     Cattle   

 Area  Straw Woodchip Area Straw Woodchip 
Bedding m2 hd-1 kg hd-1 kg hd-1 m2 hd-1 kg hd-1 kg hd-1 

IGER 2.42 14.7 124 6.45 296 1218 
ADAS 1.03 22.0 149 5.70 189 652 

 Area  Straw Woodchip Area Straw Woodchip 
N loss m2 hd-1 g hd-1 g hd-1 m2 hd-1 g hd-1 g hd-1 

IGER 2.42 426 588 6.45 303 3362 
ADAS 1.03 1159 1179 5.70 4970 6826 

 

N loss from ADAS cattle is exaggerated by the removal of slurry during the trial, but no slurry was 

removed from the sheep pens. The ADAS sheep on straw (n=30) had an area allowance of 1.03 m2 

hd-1, but received 22 kg of bedding hd-1 and lost 1159 g N hd-1, compared to 2.42 m2 hd-1 and 14.7 

kg of bedding hd-1 which lost 426 g N hd-1, at IGER. However, ADAS pregnant ewes (fed silage 

and concentrates) were not weighed after housing, so some of these recorded losses may be 

accounted for as live-weight gain. Therefore it is, unfortunately, not feasible to include incremental 

costs for N loss, based solely on different area allowances presented in this analysis. Instead a flat 

rate cost hd-1 has been applied, determined by the mean weight of N lost from ADAS and IGER’s 

livestock/bedding combinations. The current cost of N is determined as £0.80 - 0.85 kg-1 (personal 

communications, Dr. K.A. Smith). 

 

5.3.1.1 Costs specific to home-grown and waste/recycled wood 

Fuel and Labour costs  

The fuel and labour cost t-1 for using a Laimet HP 25 are defined under ‘Variable costs’ in section 

5.2.9, determined as £2.98 t-1  

 

Annual depreciation cost 

Annual depreciation of a 6 year old ex-trade Laimet HP 25 is defined in section 5.2.7; e.g.  

£954 / 480 (sheep) = £1.99 hd-1  

£954 / 72 (Cattle) = £13.24 hd-1 

£954 / 2400 (sheep) = £0.40 hd-1  

£954 / 360 (Cattle) = £2.65 hd-1 

As depreciation costs are static for each livestock type/group size, they are presented in 

combination with maintenance costs as a summary of costs associated with buying a chipper.   
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Maintenance costs 

The maintenance costs t-1 for using a Laimet HP 25 are defined in section 5.2.9, determined as 

£0.197 t-1. 
 

Tables 5.16 to 5.23 are summaries for sheep bedding only, showing cost head-1 yr-1 in the first two 

years and the average cost yr-1 over a 5 year period, depending on the cost t-1 of parent materials 

and livestock area allowances (shown in the two left-hand columns). This selection of summary 

tables is presented to best illustrate the price sensitivities between straw and wood beddings. For 

example, cost variations between cattle beddings follow a very similar pattern to sheep, and straw 

bedding and pre-chipped wood costs are the same head-1 for 480 sheep as for 2400, because the 

cost of N loss, storage and handling are proportionate. A full set of data tables displaying all 

associated costs described above are shown in Appendix VI. To reiterate, after the first year, an 

estimated 20 % of the initial bedding volume is needed to top-up the recycled bedding stock, hence 

lower woodchip bedding costs in year 2 and declining average annual costs over 5 years. 

 

Table 5.16: Summary of bedding cost at different area allowances hd-1 in years 1 and 2 and the average 
cost hd-1 yr-1 over a total of 5 years for a farmer with 480 sheep to buy wood at £5, £15 or £30 t-1 and buy a 
chipper to produce woodchip on-farm. 

Price of Sheep Cost Cost Cost Cost Cost Cost 
Wood  area    hd-1 in  hd-1 in hd-1 yr-1 hd-1 yr-1 hd-1 yr-1 hd-1 yr-1 
£ t-1  m2 hd-1 Year 1 Year 2 over 2 yrs. over 3 yrs. over 4 yrs. over 5 yrs. 

5 1.0 3.80 2.89 3.34 3.19 3.12 3.07 
5 1.3 4.22 3.01 3.62 3.41 3.31 3.25 
5 1.5 4.44 3.07 3.76 3.53 3.41 3.35 
5 2.0 5.08 3.26 4.17 3.86 3.71 3.62 
5 2.5 5.72 3.44 4.58 4.20 4.01 3.90 

15 1.0 5.20 3.17 4.18 3.84 3.67 3.57 
15 1.3 6.08 3.38 4.73 4.28 4.06 3.92 
15 1.5 6.54 3.49 5.01 4.51 4.25 4.10 
15 2.0 7.87 3.81 5.84 5.17 4.83 4.63 
15 2.5 9.21 4.14 6.68 5.83 5.41 5.15 
30 1.0 7.29 3.59 5.44 4.82 4.51 4.33 
30 1.3 8.86 3.94 6.40 5.58 5.17 4.92 
30 1.5 9.68 4.12 6.90 5.97 5.51 5.23 
30 2.0 12.06 4.65 8.36 7.12 6.50 6.13 
30 2.5 14.45 5.18 9.82 8.27 7.50 7.04 
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Table 5.17: Summary of bedding cost at different area allowances hd-1 in years 1 and 2 and the average 
cost hd-1 yr-1 over 5 years for a farmer with 480 sheep to buy wood at £5, £15 or £30 t-1 and hire a chipper 
for one day at £100 day-1 to produce woodchip on-farm.  
Price of Sheep Cost Cost Cost Cost Cost Cost 
Wood  area    hd-1 in  hd-1 in hd-1 yr-1 hd-1 yr-1 hd-1 yr-1 hd-1 yr-1 
£ t-1  m2 hd-1 Year 1 Year 2 over 2 yrs. over 3 yrs. over 4 yrs. over 5 yrs. 

5 1.0 1.99 1.10 1.55 1.40 1.33 1.28 
5 1.3 2.41 1.22 1.82 1.62 1.52 1.46 
5 1.5 2.62 1.28 1.95 1.73 1.62 1.55 
5 2.0 3.25 1.47 2.36 2.06 1.91 1.82 
5 2.5 3.87 1.65 2.76 2.39 2.20 2.09 

15 1.0 3.39 1.38 2.39 2.05 1.88 1.78 
15 1.3 4.26 1.59 2.93 2.48 2.26 2.13 
15 1.5 4.72 1.70 3.21 2.71 2.46 2.31 
15 2.0 6.04 2.02 4.03 3.36 3.03 2.83 
15 2.5 7.36 2.35 4.85 4.02 3.60 3.35 
30 1.0 5.48 1.80 3.64 3.03 2.72 2.54 
30 1.3 7.05 2.15 4.60 3.78 3.38 3.13 
30 1.5 7.86 2.33 5.09 4.17 3.71 3.44 
30 2.0 10.23 2.86 6.54 5.32 4.70 4.33 
30 2.5 12.60 3.39 8.00 6.46 5.69 5.23 

 

Table 5.18: Summary of bedding cost at different area allowances hd-1 in years 1 and 2 and the average 
cost hd-1 yr-1 over 5 years for a group of 5 farmers with 480 sheep each, to buy wood at £5, £15 or £30 t-1 
and share the costs of buying a chipper to produce woodchip on-farm.  
Price of Sheep Cost Cost Cost Cost Cost Cost 
Wood  area    hd-1 in  hd-1 in hd-1 yr-1 hd-1 yr-1 hd-1 yr-1 hd-1 yr-1 
£ t-1  m2 hd-1 Year 1 Year 2 over 2 yrs. over 3 yrs. over 4 yrs. over 5 yrs. 

5 1.0 2.19 1.29 1.74 1.59 1.52 1.47 
5 1.3 2.60 1.41 2.01 1.81 1.71 1.65 
5 1.5 2.82 1.48 2.15 1.92 1.81 1.74 
5 2.0 3.45 1.66 2.55 2.25 2.11 2.02 
5 2.5 4.08 1.84 2.96 2.59 2.40 2.29 

15 1.0 3.59 1.57 2.58 2.24 2.08 1.98 
15 1.3 4.46 1.79 3.12 2.68 2.45 2.32 
15 1.5 4.91 1.89 3.40 2.90 2.65 2.50 
15 2.0 6.24 2.22 4.23 3.56 3.22 3.02 
15 2.5 7.57 2.54 5.05 4.21 3.79 3.54 
30 1.0 5.68 1.99 3.84 3.22 2.91 2.73 
30 1.3 7.25 2.34 4.79 3.98 3.57 3.32 
30 1.5 8.05 2.52 5.29 4.37 3.91 3.63 
30 2.0 10.43 3.05 6.74 5.51 4.90 4.53 
30 2.5 12.80 3.58 8.19 6.66 5.89 5.43 
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Table 5.19: Summary of bedding cost at different area allowances hd-1 in years 1 and 2 and the average 
cost hd-1 yr-1 over 5 years for a group of 5 farmers with 480 sheep each, to buy wood at £5, £15 or £30 t-1 
and share the cost of hiring a chipper for 5 days at £50 day-1 to produce woodchip.  
Price of Sheep Cost Cost Cost Cost Cost Cost 
Wood  area    hd-1 in  hd-1 in hd-1 yr-1 hd-1 yr-1 hd-1 yr-1 hd-1 yr-1 
£ t-1  m2 hd-1 Year 1 Year 2 over 2 yrs. over 3 yrs. over 4 yrs. over 5 yrs. 

5 1.0 1.89 1.00 1.44 1.30 1.22 1.18 
5 1.3 2.30 1.12 1.71 1.51 1.42 1.36 
5 1.5 2.52 1.18 1.85 1.63 1.51 1.45 
5 2.0 3.14 1.36 2.25 1.96 1.81 1.72 
5 2.5 3.77 1.54 2.66 2.29 2.10 1.99 

15 1.0 3.29 1.28 2.28 1.95 1.78 1.68 
15 1.3 4.16 1.49 2.83 2.38 2.16 2.02 
15 1.5 4.61 1.60 3.11 2.60 2.35 2.20 
15 2.0 5.94 1.92 3.93 3.26 2.92 2.72 
15 2.5 7.26 2.24 4.75 3.91 3.50 3.24 
30 1.0 5.38 1.70 3.54 2.92 2.62 2.43 
30 1.3 6.95 2.05 4.50 3.68 3.27 3.03 
30 1.5 7.75 2.23 4.99 4.07 3.61 3.33 
30 2.0 10.12 2.76 6.44 5.21 4.60 4.23 
30 2.5 12.49 3.29 7.89 6.36 5.59 5.13 

 

Table 5.20: Summary of bedding cost at different area allowances hd-1 in years 1 and 2 and the average 
cost hd-1 yr-1 over a total of 5 years for a farmer with 2400 sheep to buy wood at £5, £15 or £30 t-1 and buy a 
chipper to produce woodchip on-farm. 
Price of Sheep Cost Cost Cost Cost Cost Cost 
Wood  area    hd-1 in  hd-1 in hd-1 yr-1 hd-1 yr-1 hd-1 yr-1 hd-1 yr-1 
£ t-1  m2 hd-1 Year 1 Year 2 over 2 yrs. over 3 yrs. over 4 yrs. over 5 yrs. 

5 1.0 2.21 1.30 1.75 1.60 1.53 1.48 
5 1.3 2.63 1.42 2.03 1.82 1.72 1.66 
5 1.5 2.85 1.48 2.17 1.94 1.82 1.76 
5 2.0 3.49 1.67 2.58 2.27 2.12 2.03 
5 2.5 4.13 1.85 2.99 2.61 2.42 2.31 

15 1.0 3.61 1.58 2.59 2.25 2.08 1.98 
15 1.3 4.49 1.79 3.14 2.69 2.47 2.33 
15 1.5 4.95 1.90 3.42 2.92 2.66 2.51 
15 2.0 6.28 2.22 4.25 3.58 3.24 3.04 
15 2.5 7.62 2.55 5.09 4.24 3.82 3.56 
30 1.0 5.70 2.00 3.85 3.23 2.92 2.74 
30 1.3 7.27 2.35 4.81 3.99 3.58 3.33 
30 1.5 8.09 2.53 5.31 4.38 3.92 3.64 
30 2.0 10.47 3.06 6.77 5.53 4.91 4.54 
30 2.5 12.86 3.59 8.23 6.68 5.91 5.45 
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Table 5.21: Summary of bedding cost at different area allowances hd-1 in years 1 and 2 and the average 
cost hd-1 yr-1 over 5 years for a farmer with 2400 sheep to buy wood at £5, £15 or £30 t-1 and hire a chipper 
for 5 days at £50 day-1 to produce woodchip on-farm.  
Price of Sheep Cost Cost Cost Cost Cost Cost 
Wood  area    hd-1 in  hd-1 in hd-1 yr-1 hd-1 yr-1 hd-1 yr-1 hd-1 yr-1 
£ t-1  m2 hd-1 Year 1 Year 2 over 2 yrs. over 3 yrs. over 4 yrs. over 5 yrs. 

5 1.0 1.89 1.00 1.44 1.30 1.22 1.18 
5 1.3 2.30 1.12 1.71 1.51 1.42 1.36 
5 1.5 2.52 1.18 1.85 1.63 1.51 1.45 
5 2.0 3.14 1.36 2.25 1.96 1.81 1.72 
5 2.5 3.77 1.54 2.66 2.29 2.10 1.99 

15 1.0 3.29 1.28 2.28 1.95 1.78 1.68 
15 1.3 4.16 1.49 2.83 2.38 2.16 2.02 
15 1.5 4.61 1.60 3.11 2.60 2.35 2.20 
15 2.0 5.94 1.92 3.93 3.26 2.92 2.72 
15 2.5 7.26 2.24 4.75 3.91 3.50 3.24 
30 1.0 5.38 1.70 3.54 2.92 2.62 2.43 
30 1.3 6.95 2.05 4.50 3.68 3.27 3.03 
30 1.5 7.75 2.23 4.99 4.07 3.61 3.33 
30 2.0 10.12 2.76 6.44 5.21 4.60 4.23 
30 2.5 12.49 3.29 7.89 6.36 5.59 5.13 

 

Table 5.22: Summary of sheep bedding costs hd-1 in years 1 and 2 and average cost hd-1 yr-1 over 5 years 
when woodchip is bought at £60, £80 or £100 t-1.  

Price of Sheep W.chip  W.chip  W.chip  W.chip  W.chip  W.chip  
Woodchip area   £ hd-1 in £ hd-1 in £ hd-1 yr-1 £ hd-1 yr-1 £ hd-1 yr-1 £ hd-1 yr-1 

£ t-1  m2 hd-1 Year 1 Year 2 over 2 yrs. over 3 yrs. over 4 yrs. over 5 yrs. 
60 1.0 9.05 2.35 5.70 4.58 4.02 3.69 
60 1.3 11.86 2.95 7.40 5.92 5.17 4.73 
60 1.5 13.30 3.25 8.28 6.60 5.77 5.26 
60 2.0 17.56 4.16 10.86 8.63 7.51 6.84 
60 2.5 21.82 5.07 13.44 10.65 9.26 8.42 
80 1.0 11.84 2.91 7.37 5.88 5.14 4.69 
80 1.3 15.57 3.69 9.63 7.65 6.66 6.06 
80 1.5 17.49 4.09 10.79 8.56 7.44 6.77 
80 2.0 23.14 5.28 14.21 11.23 9.75 8.85 
80 2.5 28.80 6.47 17.63 13.91 12.05 10.93 

100 1.0 14.63 3.46 9.05 7.19 6.26 5.70 
100 1.3 19.28 4.43 11.86 9.38 8.14 7.40 
100 1.5 21.68 4.93 13.30 10.51 9.12 8.28 
100 2.0 28.73 6.40 17.56 13.84 11.98 10.86 
100 2.5 35.78 7.86 21.82 17.17 14.84 13.44 
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Table 5.23: Cost of straw bedding hd-1 yr-1 for sheep, dependant on price (£50 - £100 t-1) and livestock area 
allowance (1, 1.33, 1.5, 2 and 2.5 m2 hd-1). 
 

Price of Sheep Straw 
Straw area   bedding 
£ t-1  m2 hd-1 £ hd-1 yr-1 
50 1.0 3.85 
50 1.3 4.99 
50 1.5 5.57 
50 2.0 7.29 
50 2.5 9.01 
60 1.0 4.53 
60 1.3 5.88 
60 1.5 6.58 
60 2.0 8.64 
60 2.5 10.70 
70 1.0 5.20 
70 1.3 6.78 
70 1.5 7.60 
70 2.0 9.99 
70 2.5 12.39 
80 1.0 5.88 
80 1.3 7.68 
80 1.5 8.61 
80 2.0 11.34 
80 2.5 14.08 

100 1.0 7.23 
100 1.3 9.48 
100 1.5 10.63 
100 2.0 14.04 
100 2.5 17.45 
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Figure 5.1 (above): Comparison of bedding options and associated costs (£ hd-1 yr-1) for sheep at 

1.33 m2 hd-1 over a 5 year period. Straw bedding costs are fixed at the current market price (76 t-1 

yr-1) and contrasted against a range of typical woodchip price options.     
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Figure 5.2 (above): Comparison of bedding options and associated costs (£ hd-1 yr-1) for sheep at 

1.33 m2 hd-1 over a 5 year period when a group of 5 farmers with 480 sheep or 72 cattle, buy or 



 
249 

hire a chipper. Straw bedding costs are fixed at the current market price (76 t-1 yr-1) and contrasted 

against a range of typical woodchip price options.     
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Figure 5.3: Effect of purchase price of bedding material on the cost (£ hd-1 yr-1 over 5 yrs.) for 

sheep at 1.33 m2 hd-1 

 

Table 5.24 shows the incremental change in cost hd-1 (sheep, in Yr. 1 when 100 % bedding volume is 
required and Yr. 2 (onwards) when 20 % volume is required), and mean incremental change in cost hd-1 
(sheep, over 5 yrs.), transferred by every £1 t-1 ± change in price of bedding material.  
Sheep Cost inc. hd-1 (£) Cost inc. hd-1 (£) Cost inc. hd-1 yr-1 (£) Cost inc. hd-1 yr-1 (£) 

area for every £1 t-1 (±) of for every £1 t-1 (±) of for every £1 t-1 (±) of for every £1 t-1 (±) of 

m2 hd-1 wood or chips in Yr. 1 wood or chips in Yr. 2 wood or chips over 5 yrs. straw over 5 yrs. 

1.0 0.14 0.03 0.05 0.07 
1.3 0.19 0.04 0.07 0.09 
1.5 0.21 0.04 0.08 0.10 
2.0 0.28 0.06 0.10 0.14 
2.5 0.35 0.07 0.13 0.17 
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Table 5.25 shows the incremental change in cost hd-1 (cattle, in years 1 and 2), and mean incremental 
change in cost hd-1 (cattle, over 5 years), transferred by every £1 t-1 ± change in price of bedding material.  
Cattle  Cost  inc. hd-1 (£)  Cost  inc. hd-1 (£)  Cost  inc. hd-1 yr-1 (£) Cost  inc. hd-1 yr-1 (£) 

area   for every £1 t-1 (±) of for every £1 t-1 (±) of for every £1 t-1 (±) of for every £1 t-1 (±) of 

m2 hd-1 wood or chips in Yr. 1  wood or chips in Yr. 2  wood or chips over 5 yrs. straw over 5 yrs. 

4.0 1.05 0.21 0.38 0.51 
4.5 1.19 0.24 0.43 0.57 

5.0 1.32 0.26 0.47 0.64 
5.5 1.45 0.29 0.52 0.70 
6.0 1.58 0.32 0.57 0.77 

 

In Tables 5.24 (sheep) and 5.25 (cattle), the incremental changes in cost hd-1 and average cost hd-1 

are the same for buying all wood-based bedding; whether it be woodchip (chips) or wood (or 

whether the wood is bought and chipped by a group, or a single farmer, who buy or hire a chipper). 

Because the volume of bedding needed is dependent on each livestock area allowance and not the 

method of producing the bedding.  

Both Tables 5.24 and 5.25 show that in year one (Yr.1), using straw bedding carries a lower 

incremental cost or saving per £1 t-1 change in price of raw bedding material than wood-based 

bedding. In year two (Yr.2) the pattern is reversed: wood-based bedding has a lower increment 

cost/saving than straw, owing to the provision that only 20 % of year one’s bedding volume is 

required to top-up the recycled bedding stock. After 5 years the average incremental cost/saving hd-

1 of sheep and or cattle is lower for wood-based bedding than straw.  
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5.4  Discussion  

Figure 5.1 shows that in year 1, buying pre-chipped wood at £80 or £60 t-1 or buying a chipper and 

wood at £30 t-1 is more expensive hd-1 than buying straw bedding at the current market price of £76 

t-1 including delivery. However by year 2, it is more cost effective to either own or hire a chipper 

and buy wood for < £30 t-1 than it is to buy straw; by year 3, the only option more expensive yr-1 

than straw is buying pre-chipped wood at £80 t-1. In year 4, use of straw bedding is the least 

economic option and the average yearly cost hd-1 for using woodchips continues to fall.  

If a group of farmers, each with 480 sheep (or 72 cattle) shares the cost of buying or hiring 

a chipper, then the use of woodchip bedding becomes a more economic option than straw even 

more quickly. Figure 5.2 illustrates that without exception, a co-operative of farmers would benefit 

from sharing the costs of producing woodchip bedding on-farm if wood is bought for £30 t-1 or 

less, in contrast to using straw bedding at the current market price - even in year one when the full 

initial bedding volume must be produced. In addition, the average cost hd-1 yr-1 continues to fall 

and, by year 5, using woodchip bedding produced on-farm is twice as cost-efficient as buying 

straw.   

Figure 5.3 illustrates at the prices t-1 at which straw bedding is a more or less economic 

option yr-1 over a 5 year period than woodchip bedding derived by different means. At £10 t-1 straw 

bedding is a more economic option than buying wood to produce woodchip bedding on-farm, and 

equal to the cost of buying woodchip. However, under current market conditions neither straw nor 

woodchip are likely to be available at less than £50 or even £60 t-1 and within that price range, 

woodchip delivered to the farm continues to be a more economic option than straw. At > £30 t-1, 

straw use becomes less economic than buying wood and hiring a chipper, although £30 t-1 is 

considered a high price for waste/recycled or home grown wood, it is not for straw; as such, buying 

wood and hiring a chipper is more economic than using straw. The option of buying wood at < £30 

t-1 and buying chipper results in lower average bedding costs head-1 yr-1 than straw, when straw 

prices are > £50 t-1.  

In combination, Figures 5.1 to 5.3 and Tables 5.24 and 5.25 show that using wood-based 

bedding is cheaper than straw in the long term, and that wood is less sensitive to fluctuations in the 

purchase price t-1 than straw. 

A simple but effective system, widely used in Scandinavian countries for drying large 

quantities of woodchip, is to lay a perforated pipe or lattice of pipes underneath the woodchips, 

attached to a compressor that blows air through the piles - similar to aerated static composting 

(Rynk, 1992). This not only reduces the length of time required to dry the woodchip, but also 

achieves lower moisture content than just leaving them to air-dry naturally. It has not been possible 
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to find out the cost involved, but for large quantities of stored woodchip, it would certainly seem 

very beneficial.   

Looking ahead, it is expected climate variability, in combination with shifting market 

demands, government policies and incentivised schemes, will continue to put pressure on straw 

production in the UK. A summary publication by the UK Government, (Met. Office, 2012) reports 

(with moderate - low confidence) that by 2100, temperatures in the south of the UK will increase 

by up to 3 °C and by up to 2.5 °C further north. In addition, rainfall levels are confidently predicted 

to increase in northern Europe (by up to 10 %) and decrease in southern Europe (by up to 5 %). 

However, the scientific community is less confident about the latitude of the transition zone, 

suggesting precipitation levels will generally increase in southern England, but some areas may 

decrease by up to 5 %. Consequently, the study is non-committal on crop yield projections, but 

suggests yields are likely to increase in N. Ireland and Scotland and decrease in the south. To 

counteract this climatic uncertainty, plant breeders will continue to develop broad spectrum 

varieties, such as types with greater rough resistance, capable of meeting and maintaining the UK’s 

food security. Meanwhile, the biomass industry’s demand for organic material will not relent in the 

short to medium term. Delivand et al. (2011) show large-scale rice-straw fuelled combustion 

projects in Thailand would remain viable if the selling price of electricity dropped by 16 % (based 

on $0.0758 USD /kWh) and the biofuel price increased by 36 % (based on $31.0 USD/t)) over a 

forecast 20 year lifespan. Clearly, if such an operating buffer capacity were to be realised in UK 

biofuel production facilities, organic material for agric-bedding use would quickly be priced out of 

the market. 

In Croatia, wheat straw, corn stover and forest residues are currently considered the most 

financially viable cellulosic biofuels, with an average energy potential in wheat straw of 8.5 PJ; in 

corn stover, 7.2 PJ; and in forestry residues, 5.9 PJ (Cosic et al., 2010). In addition, Simon et al. 

(2010) evaluated the economic radius of using crop residues and dedicated energy crops to supply 

200-million-litre biodiesel plants in France. Their results show cereal straw and corn stover 

biomass would be viable up to 58 km to 168 km from the plant, depending on the crop residue and 

its abundance. But the cost of supplying a plant with the energy crop miscanthus is much higher. 

Thus it can be concluded that crop residues offer a lower cost to the producers of biodiesel in the 

near term than a dedicated crop; therefore, in a country the size of the UK, with its distinct arable 

regions, it would take only a couple of strategically located large-scale biodiesel plants to consume 

the entire straw market. In combination, these two European studies suggest a continuing upward 

trend in straw demand, and thus price. While the biomass industry demand on the UK wood stock 

is mitigated by imports, pressure on UK straw availability cannot be mitigated in the same way; 
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even importing torrified straw would increase costs, thus reducing its competitiveness over 

domestic prices. However, if sufficient volumes of low cost straw could be imported, domestic 

straw prices would still be vulnerable to many of the pre-existing issues highlighted above.  

 If a situation is reached where costs for organic bedding become completely untenable, one 

possible solution would be the use of synthetic materials. Rubber matting is hygienic, re-usable and 

resilient. In addition, Norring et al. (2010) conducted a behavioural study of cattle housed on 

rubber matting, sand and concrete flooring, with small quantities of bedding. Although concrete 

and sand are not the most challenging comparisons, cattle did prefer the rubber matting. In contrast, 

however, Lindner and Hoy (1997) studied broiler hen ethology and hygiene on three bedding 

treatments: deep litter woodchip (with and without mixing) and straw. They concluded that hen 

behaviour and cleanliness indicated that unmixed deep litter woodchip beddings, topped-up every 5 

days, was the preferred treatment – providing economic costs allowed.  

 Aleksandra et al. (2006) analysed the microbial dustiness of baled straw (conventional and 

organic) and of woodchips from piles that had been stored outdoors for up to 11 months, using total 

spore count, cultivation, and measuring of endotoxin and chemical markers of fungal biomass, 

lipopolysaccharide and peptidoglycan. Overall the study found dustiness was greater in the centre 

than on the surface, except for fungal and bacterial biomass in woodchips, and fungal biomass in 

organic straw. In addition, organic straw contained considerably less bacterial dust than 

conventional straw, but bacterial dustiness increased in both straw types due to summer storage, 

although less so in organic straw. Although this study describes standing biofuel stockpiles, the 

findings are directly applicable to organic livestock beddings considered in this project, and 

highlight the considerable human and animal health benefits of using and storing of woodchips 

compared to straw.  
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5.5  Economic conclusions 

In combination, Figures 5.1 to 5.3 show that under typical livestock housing conditions (1.33 m2 

sheep-1), buying wood and or woodchip as livestock bedding is a more economic option than straw, 

particularly if a group of farmers share the costs of buying a chipper, and more so if a group of 

farmers share the cost of chipper hire, based on the study’s recommended criteria that the 

woodchip bedding is annually recycled, after BSI PAS100 thermal kill sanitization, then separated 

from the manure fraction before being stored and replenished with an estimated 20 % of the initial 

bedding mass. The analysis includes a range of purchase prices for wood, woodchip and straw as 

well as livestock area allowances, but other possible permutations of this economic model could be 

made. For example, a farmer may find that the recycled bedding stock required an annual addition 

of 15 % or 25 % woodchip, or that achieving 30 % moisture content in the recycled bedding stock, 

before the start of the following year’s winter housing period, required more pro-active 

management approaches (such as those discussed in section 5.4), which would in turn increase the 

handling cost of woodchips, in relation to straw. Equally, the notional storage costs applied to one 

or both bedding materials may be inaccurate: e.g. A farmer may decide not to compost straw 

bedding after housing and apply it straight to the land instead, thereby eliminating the cost of 

compost management (albeit at the expense of potentially greater N loss and disease transfer). 

Measurements of N losses via different pathways (Moral et al., 2012), under a range of housing 

conditions would add depth and definition to this analysis by enabling an incremental cost of N 

loss kg-1 for different area allowances and elucidating whether an optimal area allowance for sheep 

and for cattle on each bedding type exists, or whether N losses differ due to the different 

interactions and integration of the manure and bedding fractions. The analysis may be enhanced 

further by scaling down the required bedding volumes at larger area allowances. Cattle bedding 

volumes and area allowances increased concurrently in the present study, but logic suggests the 

frequency of top-up applications required by livestock with greater area allowances would be less 

than under livestock in more densely stocked housing units; thus total bedding volumes would 

remain roughly the same. However, an adjustment to standardising bedding volumes across 

different area allowances would not alter the study’s main finding, that woodchip is a more 

economic bedding material for Welsh farmers than straw when used long term and in accordance 

with the criteria set out in this report.  
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6.1  Conclusions  

The woodchips, with their low surface area and dense rigid shape, did not homogenise with the 

nutrient-rich manure inputs, resulting in: 1) more bedding being applied and thus a higher bedding-

to-manure ratio, which resulted in high total C:N ratios in the compost after housing (this point will 

be discussed later); and 2) a large amount of manure being retained on the surface above the 

bedding, from which NH3 was readily volatilized, following rapid ammonification during housing. 

Furthermore, it was observed that large, flat, splinter-shaped woodchips compacted more readily 

than small cubic woodchips, reducing woodchip-manure integration and, potentially, further 

increasing NH3 emissions. In addition, but to a lesser extent, significant quantities of NH4
+, K, Na, 

and Ca were lost in excretal liquids that passed freely through the bedding. However, woodchips 

with initially lower moisture contents had a greater capacity to absorb nutrient-rich excretal liquids, 

resulting in them having significantly higher nutrient contents after housing than woodchips with 

initially high moisture contents. However, the scale of this nutritional advantage was only relevant 

between woodchip beddings and not in comparison to straw bedding-composts, which proved far 

superior. The straw bedding lost a similar amount of N during housing, partly because the area 

allowances, pen sizes, dry matter intake and feed types offered to the livestock on the two bedding 

types within each of the four livestock trials (sheep and cattle at ADAS and IGER) were balanced. 

However, straw lost N for different reasons: the material has a larger surface area, lower lignin 

content and thus less structural rigidity. This allows the bedding and manure to mix more easily, 

and thus less bedding was required. However, the low biomass-to-manure ratio still meant manure 

inputs were exposed to surface losses of NH3; although straw is more absorbent than woodchip by 

weight, less bedding volume still resulted in liquid nutrient loss in seepage. Fresh straw has a lower 

total C:N ratio than wood, combined with a lower biomass-to-manure ratio. This resulted in the 

straw bedding-compost having a significantly lower total C:N, and higher concentrations of labile 

C and N than woodchip. 

Once composting began, the structural differences between wood and straw beddings 

resulted in them having different biomass-to-manure ratios and physico-chemical characteristics. 

Total C:N ratios in the woodchip composts were high, owing to both the quantity of wood present 

(biomass-to-manure ratio) and original total C:N ratio of wood, thus having a proportionately low 

manure content and low available C:N ratio. This was compounded by a wider deficiency in a 

range of soluble salts that were lost in seepage during the bedding phase, leaving insufficient 

quantities remaining in the compost for microbial growth and activity. This resulted in low 

compost temperatures and slow decomposition rates, except in the drier woodchips, which 

achieved thermophilic temperatures and BSI PAS100 sanitation required for recycling the bedding 
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the following winter. With both available C and N at such low concentrations, N loss from the 

woodchip composts was negligible during composting phase, owing to microbial immobilization. 

Although, leaching is thought (data not recorded) to have continued throughout composting, 

evidenced by the reduction in cations K Na and Ca. Normally, cations are not easily leached, due to 

their electro-static attraction to negatively charged colloidal surfaces that are prevalent in soils, but 

not in wood. Decomposition of the woodchip composts was not only limited by deficiency of 

available nutrients, but also by the high percentage of complex lignin compounds in the wood. 

Decomposition of lignin’s complex lattice structures is initiated by peroxidase enzymes produced 

by white rot fungi. Thus the bacterial community is entirely dependent on the establishment of 

these fungi before the nutrients bound up in the wood become available.  

Consequently, the nutrient deficiencies in the woodchip composts were evident in the plant 

growth trials. The grass trial showed there was no significant difference in biomass yield, and thus 

agronomic value, in 1 year old woodchip amendments compared to the zero addition control. In 

addition, it was thought that the 3 year old woodchip composts were mature and, thus, would have 

significantly greater agronomic value than 1 year old woodchip composts. However, the results 

showed that both 1 and 3 year old woodchip composts had similarly low available N contents (ca. 

0.31% of total N in both), and the trial was considered inconclusive.  

The B10 and B100 barley trials set out to determine the agronomic value of sieving the 

woodchip bedding-composts to extract the fine (<8 mm) fraction, thought to be rich in nutrients, 

and subsequently applied at rates of 10 and 100 t ha-1 respectively. However, biomass yield from 

the fine fractions of 1 year old woodchip amendments (10 t ha-1) was lower than from the coarse 

fraction and the results were inconclusive at 100 t ha-1. The trial emphasized the low levels of 

available N loss during housing and subsequent immobilization during composting.  

These conclusions may seem negative, by focusing on the woodchip bedding-compost’s 

nutrient deficiencies. However, N losses could be mitigated during housing by removing or 

limiting N loss from the manure, by: 

• Removing slurry from the feed area during housing, to reduce the volume of 

exposed manure and thus NH3 loss and (in addition) reducing the volume of bedding 

needed and frequency of top-up applications (leading to material and labour cost 

savings).  

• Equipping housing units with drainage capture system to prevent nutrient seepage, 

particularly under cattle with greater volumes of excretal liquids.   

• Ensuring the woodchip moisture content is < 30% when it is applied as bedding, 

increasing the absorbency capacity of the bedding and facilitating sufficient 
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microbial activity to achieve the essential BSI PAS100 thermal kill composting 

temperatures.  

• Targeting heavily soiled areas of the bedding layer when applying top-ups to reduce 

the amount of manure exposed to the air and lessen NH3 volatilization, following 

the methods of Gilhespy et al. (2009) for limiting NH3 emissions from straw 

bedding. 

• Adding removed slurry to slurry pits/lagoons, with the aim of limiting further N 

losses. 

 

These strategies may also be applied to straw bedding to limit N loss. However, because the 

production and haulage of wood within Wales is likely to require less diesel and fertilizer than 

conventionally grown, annual wheat or barley straw bales transported from Yorkshire, Shropshire 

or Norfolk, woodchip is considered a more environmentally sustainable bedding than straw. In 

addition, if this study’s recommendations for using and recycling woodchip bedding are 

practicable, then woodchip is a more economic bedding option than straw after 1 to 4 years of re-

use, and the transferred costs (hd-1 of livestock) are less sensitive to price fluctuations in the raw 

material.  

This project recommends using 1 to 3 mm sized cubic woodchips with ca. 30% moisture 

content, in addition to removing manure from feed areas and using drainage capture during 

housing. Between housing periods, the soiled bedding must be actively composted for ca. 6 weeks 

to ensure the material is sanitized, before being sieved and stored in piles 5 m high to dry over the 

summer, which can be increased to 10 m, but only if the woodchip’s moisture content is < 30%. An 

estimated provision of 20% (initial bedding volume) per year, should be produced and added to the 

sanitized bedding stock after it has been separated from the manure fraction, to compensate for 

volume losses during housing and sieving, as well as degradation of chips during storage. The 

growth trials conducted here indicated that mature woodchip-manure compost will be of agronomic 

value as an organic fertilizer. Alternatively, the spent woodchip could be added to a slurry lagoon, 

where it may reduce N losses before being decomposed. 

In broad terms, this study adds to the existing scientific understanding of woodchip use 

within livestock agriculture, but this study is unique in specifically investigating the use of 

woodchip as a recyclable, indoor bedding commodity and identifying its conditions of use 

throughout the material’s entire lifecycle. Consequently, the scope of this study has elucidated 

many areas where further research is needed (see section 6.2.2). 
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6.2  Recommendations and further research  

6.2.1 Improvements to the present study 

Replication and standardisation of experimental treatments are prerequisites of scientific 

investigation. The omission of these procedures from the trial protocols was no one institution’s 

responsibility or oversight, but a collective decision based on funding and the essential 

requirements necessary to fulfil the Welsh Government’s objectives. Nevertheless, this does not 

detract from the considerable value of the work untaken. Indeed, at the time this project was 

executed there were few, if any, studies that specifically examined the practical and economic 

suitability of woodchip as an indoor livestock bedding material. Therefore, while it should be 

understood that this is far from a definitive study, it is hoped that the work provides a useful 

platform from which future research will benefit.  

Summary of essential and recommended improvements: 

1. Standardization of housing protocols to allow direct comparison between treatments:  

• Scraped areas – either use them in all treatments or none. 

• Bedding quantities and housing densities (stocking densities). Protocols must include 

standardised space allowance /head and bedding depths depending on the duration of 

housing period. 

• Feed types and quantities (including supplements) should be identical in trials where 

feed is not a tested variable. 

• A metered and appropriate drinking water dispenser, so livestock can drink ad lib but 

quantities/head/day are recorded (this data would be interesting to compare with 

different feed types) and ‘an appropriate dispenser’ - i.e. not a bucket in the corner 

which can be kicked over. If the volume of seepage was collected from the stalls this 

would allow a water mass balance to be calculated.  

• The same flooring must be applied to all treatment pens. Preferably, this would allow 

collection of seepage to determine nutrient loss rates. 

• Determine the mass of composts, both intermittently during the active composting 

phase and at the end of composting period and during the maturation phase, if 

undergoing long-term storage. This will allow calculation of dry matter loss after 

accounting for moisture content. 

• Standardisation and regulation of moisture contents during composting. 
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• Standardised woodchips shapes, age and species of wood. Greater characterisation of 

the wood porosity and water holding capacities would also be beneficial. 

 

2. Four or more replicate pens of each experimental treatment. A greater number of smaller 

housing units with fewer animals per pen, to allow for true replication of tested variables. 

Preferably, these housing pens would be randomly allocated to allow the trials to be 

statistically robust.  
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6.2.2 Further research 

Housing 

1 Trials comparing the performance of woodchip with a range of other bedding types besides 

straw, such as paper derivatives. 

 

2 Quantify the economic cost-benefits of housing livestock indoors on woodchip, compared 

to out-winter pads, in relation to the N losses. 

 

3 Further research into the absorbency potential of woodchips at differing initial moisture 

contents (see appendix I). 

 

4 Investigate the pre-treatment of woodchips to increase absorbency (e.g. by crushing or 

change in drying regime).  

 

5 Investigation of N transformations that occur in woodchip bedding and identification of the 

different factors control them (e.g. chip size, tree species, urine loading etc). 

 

6 Behavioural responses of sheep and cattle to differing feed types, including wastage and 

manure volumes.  

 

7 Investigate human and animal pathogen persistence in a wide range of bedding types e.g. 

wood (chips, shavings, sawdust); paper (pulp, shredded, recycled); varieties of crop 

residues (wheat, barley, corn, rice) and recycled composted waste (municipal waste, 

biosolids, farmyard manure), as well as abiotic beddings (sand, flint, rubber) etc. 

 

Composting 

8 Undertake replicated trials to cross compare the effects of different dietary inputs and 

differing pre-bedding moisture contents on the woodchip’s composting performance over a 

longer timescale, e.g. 5 years. 

 

9 Identify the extent to which compost structure (windrow vs. pyramid), and the frequency 

and timing of turning, control N losses during composting. 
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10 Investigate the effect of using labile, absorbent additions to control N losses on bedding 

performance, its subsequent composting and fertility value (e.g. co-bedding and co-

composting with paper). 

 
11 Determination of organic N mineralisation rates in woodchip composts, particularly low 

molecular weight DON, which represents an important source of N for microorganisms and 

some plants. 

 

Land spreading  

12 From barn to field: the persistence of steroid hormones [14C] 17β-estradiol and [14C] 

testosterone via differing pathways. Do livestock sex hormones survive from housing, 

through composting or slurry storage, to reach the field in sufficient concentrations to risk 

polluting neighbouring watercourses via seepage? (see Appendix V) 

 

13 Carbon sequestration / storage in soil – is there agronomic value in bio-charring the soiled 

bedding and then ploughing it into the soil each autumn? 

 

14 Identify fertiliser replacement rates from woodchip-manure composts of different ages. 

 

15 A dedicated study of N balances throughout the woodchip bedding, composting and land 
spreading continuum. 

 

16 Extensive greenhouse and field trials to establish fertility value of a wide range of 

composted livestock beddings with emphasis on other nutrients (e.g. micronutrients not 

included in these trials).  

 

General  

17 Social survey of farmers’ attitudes to different bedding types. 

 

18 On-farm feedstock evaluation – assist individual farmers to maximise the potential of 

various bedding resources they have on-farm, or otherwise make informed decisions on 

external sourcing of materials they could use for bedding. 
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A1 Woodchip water absorbency  
Two experiments were carried out to determine the water absorbance characteristics of woodchips. 

The first aimed to establish the water absorbency rate and water holding capacity of woodchips 

containing different initial moisture contents (50 %, 40 %, 30 %, 20 %, 0 % and forced air dried 

(FAd), 6.89 %). The second experiment involved measurement of the water penetration drop time 

(WPDT; Letey, 1969) to characterise the degree of surface hydrophobicity in woodchips with differing 

moisture contents (50 %, 40 %, 30 %, 20 %, 0 % and naturally air dried (NAd) 14.5 %. 

 

A1a: Experiment 1 - Sample preparation 

To establish a homogenous moisture content in all the woodchip used in this experiment, 

approximately 2 kg of ADAS W34 raw bedding was rinsed with water, placed in pre-weighed 

aluminium foil trays and forced air dried at 30 ± 2° C in a fan-assisted oven for 17 d, until constant 

weight had been achieved. The woodchips were then thoroughly mixed before being divided into 

eighteen replicate batches, sealed in air-tight plastic bags and labelled with their weights. Fifteen of 

these were subsequently stored at 4° C, while the remaining three were oven dried at 80° C for 3 d to 

determine their initial moisture content. These oven-dried samples were retained and used as the 

replicate batches of woodchip containing 0 % moisture. Three of the fifteen bags were further 

randomly selected and labelled FAd (forced air dried) 6.89. The remaining 12 samples were placed in 

nylon mesh and fully immersed in tap water for 100 h to allow the woodchips to reach their water 

holding capacity. The bags were then removed from the water and allowed to drain until no further 

water loss was seen. The water saturated chips were then placed in aluminium foil trays, placed in a 

30° C fan-assisted oven and allowed to dry until moisture contents of 50, 40, 30 and 20 % had been 

achieved. This was achieved after drying times of 8, 12, 14 and 16 d respectively. The chips were then 

weighed, labelled and stored in sealed plastic bags at 4° C. Table 1 shows the mean moisture contents 

achieved for each increment group. 
 

Table A1.1: Target and actual moisture contents in the woodchips used in the experiments. Values represent 
means ± SEM (n = 3). 
Target moisture content (%) Actual moisture content (%) 
50 50.3 ± 0.1 
40 40.2 ± 0.1 
30 30.2 ± 0.1 
20 20.3 ± 0.1 
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Replicate samples of woodchips with the differing water contents (50, 40, 30, 20, 6.89 and 0 %; n = 3) 

were submerged in tap water and their weight gains recorded after 1 hour, 1 day and 1 week.  

The amount of water sorption over time is shown in Figure A1.1.  
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Figure A1.1: Absorbency rate and capacity of woodchips with different initial moisture contents. Each 

column increment represents the percentage weight increase with the time period based on the initial 

mean weight of the treatment. Letters a, b, c, and d within each column increment represent significant 

(p<0.05) differences between treatments.  

 

 

Woodchip’s capacity to absorb moisture is fundamental to its usefulness as a livestock bedding 

material. The key parameters are the speed (rate) with which it is able to absorb moisture and the 

quantity of moisture it is able to absorb (capacity). Figure A1.1 shows that during the first hour of 

wetting, woodchips with low initial moisture contents absorb significantly more moisture at a faster 

rate than those with higher initial moisture contents. The maximal rate of absorption was achieved by 

the FAd treatment 6.89 % initial MC, beyond which the absorbency rate becomes limited by 

hydrophobicity. However, this level of desiccation would be unobtainable in most conventional farm 

scenarios. 
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A1b: Experiment 2 - Water Drop Penetration Time (WDPT)  

The WDPT test was developed by Letey (1969) and measures the time that hydrophobicity persists on 

a porous surface. A drop of water is placed on a woodchip surface and the time taken for the liquid to 

penetrate the matrix is recorded. If the drop does not penetrate immediately, it indicates that the water 

surface tension is above that of the wood and woodchip surface. This is identified by the water contact 

angle being greater than or equal to 90°. The WDPT measures the stability of water repellency (Doerr, 

1998), which is an important determinant of factors such as soil surface run-off. Letey et al. (2000) 

recognised that, owing to the radius of some pores being greater than the droplet radius, part of the 

droplet might disappear even when the liquid to surface contact angle is more than 90°. 

 

            
                      0 % replicate 1, drop 2           50 % replicate 1, drop 3 
 

 

A1b.1 Sample Preparation 

After drying woodchip samples in a 30° C (± 2° C) oven to achieve the required initial moisture 

contents of 50 %, 40 %, 30 % and 20 %, samples were placed in sealed, labelled plastic bags. The 

naturally air-dried ‘NA-d’ woodchips were taken from previously soaked woodchips that had then 

been hung in nylon bags in a ventilated room for 3 months prior to use (moisture content of 14.5 %).  

 

A1b.2 Method 

A standard sized (~ 0.03 ml) droplet of distilled water was pipetted on to the surface of three 

woodchips selected from each treatment (50 %, 40 %, 30 %, 20 %, naturally air dried (NAd) 14.5 % 

and 0 %) and the precise absorption time recorded. This process was repeated two more times. If 

penetration time exceeded 1 hour, samples were covered to avoid evaporation.  
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A1b.3 Results 
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Figure A1.2: Mean (n=9) treatment water drop penetration time, ±1 SE. 
 
The results in Figure A2.2 show that hydrophobicity appears to inhibit absorption to a similar extent as 

woodchips with high initial moisture contents. However, <5 % MC is impractical within a working 

agricultural scenario; as such, woodchip hydrophobicity may be considered a purely theoretical 

problem for Welsh farmers. However, the results do confirm that woodchip absorbency rates and 

capacity are dramatically enhanced in woodchips with MC that is <30 % MC and, preferably, as near 

to the air-dried minimum as possible. 

 

A1 References 
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Appendix – II(a) – ADAS Field trials  

The application of composted woodchip-based manure to grassland. 

 

A2a.1 Objective  
To evaluate the effect of applying composted woodchip-based manure to conservation cut grassland.  

The demonstration had a total of 14 plots, which included plots receiving artificial N.  The application 

rate of composted material was at a flat rate, based on manure spreading rates but not exceeding 150 

kg/ha N.  ADAS assessed yield and ensiling quality of grass obtained from the different composts and 

compared to inorganic N fertiliser.  The demonstration was also designed to give an indication of how 

much N was locked up. 

 

A2a.2 Treatments 
14 plots, 3 m wide and 10 m long were marked out and allocated at random to one of the following 

treatments. 

 

T1  Control – No Nitrogen 

T2  AN25  – 25 kg/ha N as NH4
+ NO3

-  

T3  AN50  – 50 kg/ha N as NH4
+ NO3

-  

T4  AN75  – 75 kg/ha N as NH4
+ NO3

- 

T5  AN100 – 100 kg/ha N as NH4
+ NO3

-
 

T6 AN150 – 150 kg/ha N as NH4
+ NO3

- 

T7  Com CSt  – 15 tonne/ha as Cattle/Straw 

T8  Com C20  – 15 tonne/ha as Cattle 34 % moisture 

T9 Com C40 – 15 tonne/ha as Cattle 53 % moisture 

T10  Com C60  – 15 tonne/ha as Cattle 55 % moisture 

T11  Com SSt  – 15 tonne/ha as Sheep/Straw 

T12  Com S20  – 15 tonne/ha as Sheep 34 % moisture 

T13 Com S40  – 15 tonne/ha as Sheep 53 % moisture 

T14  Com S60  – 15 tonne/ha as Sheep 55 % moisture 
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A2a.3 Materials and methods 
A2a.3.1 Soil analysis 

Preliminary soil samples (0 – 7.5 cm depth) were collected winter / spring 2007 and analysed for P and 

K status. Appropriate applications of P and K were added to achieve soil indices of 3 for phosphate 

and 3 for potash (RB209) so that these were not limiting during the experiment. Immediately prior to 

fertiliser / compost application, soils were collected and assessed for pH P and K status. Subsamples of 

compost were stored under cover in ½ tonne dumpy bags over the winter of 2006/07. Samples were 

analysed for N content and used to calculated the N / ha.  

Plots were 3 m wide and 10 m long. Plots were marked out in grassland used for silage making.  

Fields were then closed for silage in mid-May.  Composts were applied evenly to the whole area of the 

plots. Artificial fertiliser (ammonium nitrate @ 34.5 % N) was applied by hand to ensure an even 

application onto the surface of the plots. Half of each plot (5 m x 2.4 m) was harvested in mid-July a 

day or two prior to the woodchip open day.  Dry matter yields and estimates of silage quality of the 

forage from each plot was assessed and made available for presentation at the open day. The other half 

of each plot was left uncut to demonstrate grass growth. 

 

A2a.4 Results 
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Figure A2.1: Comparison of ensiled grass N contents harvested from the ADAS trial. Partner sheep 

and cattle bedding composts are combined.  
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Biomass harvested from in the ADAS grass trial (t/ha)
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Figure A2.2: ADAS’s grass trial biomass yields (t/ha). ± SE is not included for inorganic N treatments 

as ADAS did not provide data replicates. 

 

Composted treatments were applied at the equivalent to 15 t ha-1. Compost N content was not 

determined. However, using IGER’s application rate as a guide, it appears the composted amendments 

underperformed compared to biomass produced from the equivalent rate of artificial N. Woodchip 

compost yields are also lower than their straw-based counterparts. 
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Appendix – II(b) – IGER Field trials  

A demonstration evaluating the effect of compost derived from different husbandry practises on the 

yield of spring barley. 

 

A2b.1 Objective  
A demonstration was conducted to evaluate the effect of applying compost derived from dairy heifers 

or sheep, bedded on straw or woodchip and fed either hay or silage. The application rate of composts 

was based on their % N content and compared with plots receiving artificial N. The demonstration 

assessed the yield of barley forage and barley grain obtained from the different composts and 

compared to inorganic N fertiliser.  

 

A2b.2 Treatments 
13 plots, 3 m wide and 10 m long were marked out and allocated at random to one of the following 

treatments. 

 

T1  Control – No Nitrogen 

T2  AN25  – 25 kg/ha N as NH4 NO3  

T3  AN50  – 50 kg/ha N as NH4 NO3 

T4  AN75  – 75 kg/ha N as NH4 NO3 

T5  AN100 – 100 kg/ha N as NH4 NO3 

T6  Com CSH  – 75 kg/ha N as Cattle/Straw/Hay Compost 

T7  Com CSS  – 75 kg/ha N as Cattle/Straw/Silage Compost 

T8 Com CWH – 75 kg/ha N as Cattle/Woodchip/Hay Compost 

T9  Com CWS  – 75 kg/ha N as Cattle/Woodchip/Silage Compost 

T10  Com SSH  – 75 kg/ha N as Sheep/Straw/Hay Compost 

T11  Com SSS  – 75 kg/ha N as Sheep/Straw/Silage Compost 

T12 Com SWH  – 75 kg/ha N as Sheep/Woodchip/Hay Compost 

T13  Com SWS  – 75 kg/ha N as Sheep/Woodchip/Silage Compost 
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A2b.3 Materials and methods 
 

A2b.3.1 Soil analysis 

Preliminary soil samples (0 – 7.5 cm depth) were collected during winter/spring 2007 and analysed for 

P and K status. Appropriate applications of P and K were added to achieve soil indices of 3 for 

phosphate and 3 for potash (RB209) so that these were not limiting during the experiment. 

Immediately prior to fertiliser / compost application, soils were collected and assessed for pH P and K 

status. Subsamples of compost were stored under cover in ½ tonne dumpy bags over the winter of 

2006 / 07. Samples of the compost were analysed for % N content and used to calculated the rate 

required to achieve 75 kg N / ha.   

Plots were 3 m wide and 10 m long. Composts were applied evenly to the whole area of the 

plots. Artificial fertiliser (ammonium nitrate @ 34.5 % N) was applied by hand to ensure an even 

application onto the surface of the plots. Plots were ploughed to a depth of 100 mm and power 

harrowed in preparation for sowing. Spring barley (cv Riviera) was drilled at a rate of 185 kg / ha to 

establish a 10 m by 2.4 m plot and rolled. Half of each plot (5 m x 2.4 m) was harvested as whole-crop 

in mid-May, a day or two prior to the wood chip open day. Dry matter yields and nitrogen content of 

the forage from each plot was assessed and made available for presentation at the open day. The other 

half of each plot was harvested as dry grain in August, after which grain yield and nitrogen content 

was assessed. 
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Plate A2.1: IGER’s CSC and CHC Barley Riviera field trial plots demonstrated at the IGER open day in mid-
May 2007. 
 

Table A2.1: shows % N (determined by IGER) in each treatment compost, the application rate 

required to achieve 75 kg N / ha and the actually mass applied. 

Treatment % N Compost tonnes (75 kg N ha-1) Compost kg (30 m2 plot) 

SSS 1.72 4.37 13.1 

SSC 0.74 10.1 30.3 

SHS 1.16 6.45 19.3 

SHC 0.68 11.0 32.9 

CSS 1.49 5.02 15.1 

CSC 0.46 16.3 48.9 

CHS 1.16 6.45 19.4 

CHC 0.42 17.7 53.0 
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A2b.4 Results 
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Figure A2.3: IGER’s barley field trial yields (t/ha); biomass (entire bar); grain (hashed bar section); 

straw (white bar section). ± SE is not included as IGER did not provide data for replicates. Inorganic 

N treatment codes are displayed as Control #; determined by the applied rate kg/ha. Compost 

treatment codes are displayed by Livestock/Feed/Bedding e.g. Sheep Silage Chip, SSC. 

 

 

At percentage N application rates, biomass from the composted treatments is below that produced by 

inorganic N at the equivalent rate (75 kg N ha-1) and woodchip-based treatment yields are also lower 

than each equivalent straw-based treatment, but the difference in biomass between straw and woodchip 

amendments was not as great as shown in pot trials.    

 



 
280 

 

 

 

 

 

 

 

APPENDIX III 



 
281 

Appendix – III – Compost Markets: End use options for 
woodchip/manure compost 
 
 

A3.1 Aim 
To investigate potential markets for composted woodchips in agronomic, horticultural and industrial 

settings, with an objective to establish and validate markets.  

 

A3.2 Introduction 
The opportunities to establish commercial ‘end use’ markets for woodchip/manure (WM) compost are 

hindered by a number of processing factors: 

 

• Legislatively, the lesser volume of compost produced the better – a full waste management 

license is needed if a farmer’s on-site operating volume (including bedding in use, part and 

finished compost) is >1000 m3. However, it is expected that average individual farm-scale 

production volumes and infrequency of supply will economically exclude farmers from 

securing large or long-term contracts with local authorities and the biomass/industrial sector, 

when competing with green waste producers. 

 

• In addition to the prohibitive licensing and regulatory costs associated with producing 

commercial WM compost at farm-scale, there are a range of novel factors affecting its 

standardized production: 

 

- Pre-bedding moisture content – percentage H2O  

- Type of livestock manure – sheep or cattle 

- Wood type – hardwood or softwood 

- Livestock feed – hay or silage 

- Quantity of woodchip used – ratio of woodchip to manure in compost 

- Weather – outdoor composting only 

- Management – turning regime, compost location, watering etc. 
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The influence of these variables in unique combinations causes irregular decomposition rates and 

chemical composition, and thus variations in the final compost value.  

The single most critical factor in producing WM compost for on-farm use is the woodchip’s 

pre-bedding moisture content; it is considered that with > 30 % H2O content, the woodchip will not 

absorb sufficient N-rich liquid excrement to fuel the required level of early microbial metabolic 

activity, needed to satisfy the PAS 100 temperature requirements of 65O C for 7 days, in conjunction 

with maintaining compost moisture levels and a strict monthly turning protocol.  

 The following schematic diagram identifies a range of possible end uses for WM compost. 

 
 
 
Figure A3.1: Possible end uses for WM compost. 
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A3.2.1 Glossary 

PAS 100: PAS 100 is a processing standard that itemises the allowable source-segregated feedstocks, 

monitoring, output testing requirements for composts and permitted levels of contaminants. 

COGAP: Code of Good Agricultural Practice 

WMLR: Waste Management Licensing Regulations 1994 (as amended No.3 Regs 2005) 

 

A3.2.2 Legislation  

The regulations surrounding the sourcing, use and sale of WM compost are complex. However, there 

are some solid markers to help us navigate the finer points. 

Firstly, an overriding requirement for a waste activity to be exempt from licence is that the waste 

must be recovered or disposed of without endangering human health and without using processes or 

methods that could harm the environment. Specifically, such processes should be carried out without:  

 

•  Risk to water, air, soil, plants or animals   

•  Causing nuisance through noise or odours     

•  Adversely affecting the countryside or places of special interest 

 

If this overriding requirement, or any one of the specific limitations, is unlikely to be met then a waste 

management licence will be required. 

The scenarios in this report focus on regulations specific to ‘end-use’ options. However, the 

regulations regarding the sourcing and composting of WM are the same in almost all cases; to avoid 

repetition they are listed here:  

 

- If the woodchip comes from a waste source e.g. pallets, exemption (under paragraph 15 of 

schedule 3, WMLR 1994) must be registered to use the woodchip – ALL scenarios. 

 

- Compost storage, transportation and application to land are controlled by the WMLR; 

exemptions permit compost and some uncomposted wastes to be spread to land for agricultural 

benefit under paragraph 7a of schedule 3 - WMLR – scenarios 2 4 5 7 8 9. 
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- Composting of <1000 m3 can be registered exempt under paragraph 12, schedule 3 WMLR, but 

>1000 m3 requires a Waste Management license – ALL scenarios. 

 

- A paragraph 12 exemption must be registered to compost the woodchip. The EA is reluctant to 

grant a paragraph 12 exemption where the proposed site is within 250 m of a ‘receptor’ 

(housing, places of work, public rights of way, livestock etc.), due to concern over bio-aerosols 

– there are smaller limits dependent on the volume and type of compost, operating methods, 

prevailing wind and risk management provisions. This is in the Interim Internal Guidance on 

Composting. – ALL scenarios 

 

- The compost must meet the COGAP requirements – ALL scenarios: 

 

• Run-off from field heaps does not cause water pollution. 

• Run-off from stores on concrete bases should be collected and contained. 

• Poultry manure stored outside must be in narrow A-shaped heaps to shed rainwater.  

 

- Compost that is Quality Protocol certified (which includes the PAS 100 standard) can be sold 

and moved without license. Otherwise, it is considered ‘waste’ – ALL scenarios. 

 

A3.3 Scenarios 
The following scenarios are listed in the same order as in the diagram above, starting with ON-farm 

activities. The regulatory information herein was gathered with the help of Sarah Aubrey 

(Environment Agency), Les Eckford (Animal Health) and Gavin Watkins (VLA). 

 

1. Re-using WM compost as a bedding the following year  

Woodchip compost can be re-used as bedding so long as the following conditions are satisfied. 
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• It meets PAS 100 composting standards and therefore does not endanger human, animal or 

environmental health. 

 

• And ‘the animals have dry areas to lie down’ (Schedule 1 of the Welfare of Farmed Livestock 

(Wales) Regulations 2007, paragraphs 13 and 17 in particular) – if the compost has met PAS 

100 temperature requirements it is reasonable to expect the moisture content will be 

sufficiently low to provide dry bedding the following winter. 

 

• And ‘the composted woodchip does not contain high levels of dust, noxious gases or spores 

etc.’ – after 7 months’ composting there should be no noxious gases, but depending on the 

compost’s novel factors (listed in the introduction) precautionary analysis of dust and spores 

may need to be carried out.  

 

 

2. Using part or fully finished WM compost in years 1, 2 or 3 as a soil improver 

Full or part-finished WM compost can be used as a soil improver. It does not have to reach PAS 100. 

However, if has not, it must not leave the site of production, and part-finished compost must be fully 

ploughed in, as large chunks of woodchip on the soil surface could be classified as waste disposal. The 

agric-waste exemption paragraph 7A allows up to 50 t/ha (based on nutrient requirements). 

Exemptions are issued free of charge, if the compost is spread on the farm that produced the waste. 

Spreading must meet COGAP requirements; 

- 10 metres from a watercourse  

- 50 metres from a spring well or borehole  

- No spreading on waterlogged ground  

- No spreading on steep slopes  

- No spreading on frozen land – frozen for 12 hrs or more in a 24 hr period. 

 

3. Using finished WM compost as a grassland or cereal fertiliser 
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This presents no problem: the regulations are the same as above.  

 

4. Using WM compost in years 1, 2 or 3 as a weed-disease control, tree mulch in orchards, 

which results in produce: 

a.    For home consumption only 

b.    For farm-gate sales or supply to a local market 

 

Must be registered exempt under paragraph 7 and paragraph 12; the mulch itself must be used on the 

same site it is produced and cannot be sold to market unless composted to PAS 100 standard in which 

case it can fall under the WRAP Quality Protocol, as materials exempt in paragraph 12 are still not 

allowed off site. 

There are no problems with selling produce grown in or from WM compost. 

 

5. Using WM compost in years 1, 2 or 3 as a mushroom growing medium, resulting in produce: 

a.    For home consumption only 

b.    For farm-gate sales or supply to a local or national market 

 

Providing the mushrooms are grown at the site of compost production, regulations are the same as the 

above, except that the volume of compost allowed on site of production at any one time is <10000 m3 

before the producer needs a full licence.  

In 2004/05, ADAS Pwllpeiran was commissioned to conduct a series of trials, using WM 

compost as an organic mushroom growing medium. The 2004 trial results found that, of the 4 varieties 

of mushroom trialled, only oyster mushrooms bore fruiting bodies and concluded that further work 

was needed. In 2005 a follow-on trial was carried out using 6 varieties of mushrooms and concluded 

that the ‘commercial possibilities of cultivating varieties of edible fungi on woodchip-based and other 

substrates has yet to be demonstrated.’  

The report went on to say, ‘At present, the potential for outdoor exotic mushroom growing in 

Wales is likely to be limited to small-scale growing of oyster mushrooms or shiitake on oak logs. These 

systems can provide additional on-farm enterprises for farms wishing to diversify and to supply local 

markets, but harvest period and yield is likely to be erratic and dependent on weather and seasonal 

conditions.’ (ADAS, 2005-2006). 
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Using WM compost as an absorbent medium for filling in boggy gateways or paths; 

a.    Using raw un-composted woodchip bedding straight from the barn 

b.    Using ‘PAS100 temperature sanitized’ 1st yr WM compost 

 

Not allowed. This material is not listed as exempt under paragraph 19 and this activity carries a high 

risk of pollution.  

 

*NB: Orchard fruits and mushroom growing are highlighted here, but organic farmyard manure can be 

use to produce all horticultural products, for either home or commercial consumption.  

However, depending on the source of the woodchip, high metal content/PTE - Potentially 

Toxic Elements analysis may be needed. For example, chipped pallets are likely to be high risk and 

compost analysis must be carried out to ensure no detriment to humans, land or livestock. 

 

The next set of scenarios looks at the sale of WM compost, again with just a key point summary for 

each scenario outlining the laws and regulations surrounding the sale of WM compost and the 

responsibilities of the seller and buyer when moving it off-farm. 

 

6.   Farm-gate domestic sales of ‘PAS100 temperature sanitized’ WM compost 

E.g., would a gardener need a waste movement license to buy compost for their roses? 

 

The PAS 100 compost remains a ‘waste’ (and therefore operating volume on-site must remain <1000 

m3) until it is moved off the site of production, whereupon it can be treated as a product, but as an 

agric-waste, it must comply with the Quality Protocol. Therefore, a buyer/gardener would not need a 

license, but the QP requires the seller to keep track of where the compost has gone.  

QP certification is quite complicated, and costs £2000+ (lab and certification costs), so it is 

only worthwhile if production volumes are large, or if a number of farms form a collective.  

Therefore, while there is no limit to the amount of PAS 100 finished compost that can be stored 

off site, the production volume on site will still be limited to 1000 m3 per farm at any one time. As a 

guide, a farmer housing 200 ewes over winter would produce roughly 40-50 m3. 
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7.   Farm to farm sales: 

a.   Livestock farmer supplying composted manure to a market gardener. 

b.   Livestock farmer supplying composted manure to another organic livestock farmer 

 

Regulations are the same as above. 

 

8.   Selling the WM compost to the local authority: 

a.    As mulch e.g. for roundabouts 

b.    As a soil improver 

c.    As a fertiliser 

 

It is anticipated the volumes produced by the majority of sole trading livestock farmers will be 

insufficient for LA requirements.  

 

A3.4 Summary 
 

It is considered that, for the majority of farm-scale operations, the end use options for mature WM 

compost will be economically confined to on-farm use, unless farmers form a collective, which would 

enable them to produce WM at sufficient economies of scale by spreading the costs of certification and 

machinery, while benefiting from each partner’s volume allowance.  

However, the volume and performance of existing green waste available to large-scale end 

users such as LAs and industrial consumers, significantly undermines the need for, and so demand for, 

bulk production of WM compost. 
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APPENDIX – IV – Change in total mass of nutrients at IGER 
 
A4.1 Nitrate (NO3

-) and Ammonium (NH4
+) 
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Figures A4.1 (NO3

-) and A4.2 (NH4
+): show total mass of nitrate and ammonium in compost treatments at week 

1 (white bars) and week 32 (grey bars). Error bars represent ±1 SE. Symbols displayed above treatment 

columns represent significant (* p<0.05; ** p<0.01 and *** p<0.001) changes in mass. 

A4.2 Dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON) 

Bedding Feed and Livestock types ((n=4) in each case)
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Figures A4.3 (DIN) and A4.4 (DON): show total mass of DIN and DON in compost treatments at week 1 

(white bars) and week 32 (grey bars). Error bars represent ±1 SE. Symbols displayed above treatment columns 

represent significant (* p<0.05; ** p<0.01 and *** p<0.001) changes in mass. 

 

 

A4.3 Total soluble nitrogen (TSN) and dissolved organic carbon (DOC)  

Bedding Feed and Livestock types ((n=4) in each case)

Straw Woodchip Silage Hay Sheep Cattle
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Figures A4.5 (TSN) and A4.6 (DOC): show total mass of TSN and DOC in compost treatments at week 1 

(white bars) and week 32 (grey bars). Error bars represent ±1 SE. Symbols displayed above treatment columns 

represent significant (* p<0.05; ** p<0.01 and *** p<0.001) changes in mass. 

 

DOC in woodchip composts fell by 68 % and TSN by 92 % compared to decreases in straw treatments of 56 % 

(DOC) and 72 % (TSN). DOC losses were greater in hay (68 %) than silage (55 %) treatments, although TSN 

(82 %) loss was the same in both feed treatments. Sheep and cattle treatments varied the least, where DOC and 

TSN in sheep treatments fell by 63 % and 84 %, while in cattle composts they fell by 61 % and 80 % 

respectively. 
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A4.4 Total nitrogen (TN) and total carbon (TC) 

Bedding Feed and Livestock types ((n=4) in each case)
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Figures A4.7 (TN) and A4.8 (TC): show total mass of TN and TC in compost treatments at week 1 (white bars) 

and week 32 (grey bars). Error bars represent ±1 SE. Symbols displayed above treatment columns represent 

significant (* p<0.05; ** p<0.01 and *** p<0.001) changes in mass. 

 

A4.5 Potassium (K2O) and Sodium (Na) 

Bedding Feed and Livestock types ((n=4) in each case)
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Figures A4.9 (K) and A4.10 (Na): show total mass of potassium and sodium in compost treatments at week 1 

(white bars) and week 32 (grey bars). Error bars represent ±1 SE. Symbols displayed above treatment columns 

represent significant (* p<0.05; ** p<0.01 and *** p<0.001) changes in mass. 

 

A4.6 Calcium (Ca) and soluble P (P2O5) 

Bedding Feed and Livestock types ((n=4) in each case)
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Figures A4.11 (Ca) and A4.12 (P): show total mass of calcium and soluble P in compost treatments at week 1 

(white bars) and week 32 (grey bars). Error bars represent ±1 SE. Symbols displayed above treatment columns 

represent significant (* p<0.05; ** p<0.01 and *** p<0.001) changes in mass. 
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Appendix – V – From Barn to Field; the persistence of steroid hormones 

[14C]17β-estradiol and [14C]testosterone via differing pathways.  
 

The following is preliminary work conducted in preparation, although technical difficulties prevented 

completion of the experiment within the time available. 

 

A5.1 Hypotheses 

 

1. The inclusion of a manure management phase - i.e. slurry storage, active (60° C) or static (25° 

C) composting - will lessen the levels of endocrine disrupting hormones 17β-estradiol (E) and 

testosterone (T) being applied to agricultural land and, thereafter, potentially entering 

surrounding watercourses via leaching. 

2. Composted manure/bedding treatments will degrade/deactivate a greater amount of steroids 

than slurry storage. 

3. Active (60° C) composting will degrade/deactivate a greater amount of steroids than static (25 

°C) composting. 

4. Active woodchip-manure composts will degrade/deactivate a greater amount of steroids than 

straw-manure composts. 

  

 

Homogenised Cattle Slurry (HCS) 
 

   Testosterone                17β-Estradiol 
 

 

 

Soil  Woodchip    Straw          Slurry     Soil       Woodchip Straw    Slurry 

 

          60°C     25°C        60°C   25°C                               60°C   25°C            60°C     25°C 
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A5.2 Treatments and Replicates 

 

Testosterone (T) 

Soil + Slurry + T 

Slurry (aged, active or static?) + T  

Straw + Slurry + T composted at 60° C (temperature ramp profile) 

Straw + Slurry + T composted at 25° C 

Woodchip + Slurry + T composted at 60° C (temperature ramp profile) 

Woodchip + Slurry + T composted at 25° C 

 

17β-estradiol (E) 

Soil + Slurry + E 

Slurry (aged, active or static?) + E  

Straw + Slurry + E composted at 60° C (temperature ramp profile) 

Straw + Slurry + E composted at 25° C 

Woodchip + Slurry + E composted at 60° C (temperature ramp profile) 

Woodchip + Slurry + E composted at 25° C 

 

 

ALL TREATMENTS HAVE 3 REPLICATES N = 36 
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A5.3 Treatments 

 
Rep Testosterone CODE Rep Estradiol CODE

1 Slurry+T ST 1 1 Slurry+E SE 1
2 Slurry+T ST 2 2 Slurry+E SE 2
3 Slurry+T ST 3 3 Slurry+E SE 3
1 Soil+Slurry+T SST 1 1 Soil+Slurry+E SSE 1
2 Soil+Slurry+T SST 2 2 Soil+Slurry+E SSE 2
3 Soil+Slurry+T SST 3 3 Soil+Slurry+E SSE 3
1 Straw+Slurry+T 25°C SST25 1 1 Straw+Slurry+E 25°C SSE25 1
2 Straw+Slurry+T 25°C SST25 2 2 Straw+Slurry+E 25°C SSE25 2
3 Straw+Slurry+T 25°C SST25 3 3 Straw+Slurry+E 25°C SSE25 3
1 Woodchip+Slurry+T 25°C WST25 1 1 Woodchip+Slurry+E 25°C WSE25 1
2 Woodchip+Slurry+T 25°C WST25 2 2 Woodchip+Slurry+E 25°C WSE25 2
3 Woodchip+Slurry+T 25°C WST25 3 3 Woodchip+Slurry+E 25°C WSE25 3
1 Straw+Slurry+T 60°C SST60 1 1 Straw+Slurry+E 60°C SSE60 1
2 Straw+Slurry+T 60°C SST60 2 2 Straw+Slurry+E 60°C SSE60 2
3 Straw+Slurry+T 60°C SST60 3 3 Straw+Slurry+E 60°C SSE60 3
1 Woodchip+Slurry+T 60°C WST60 1 1 Woodchip+Slurry+E 60°C WSE60 1
2 Woodchip+Slurry+T 60°C WST60 2 2 Woodchip+Slurry+E 60°C WSE60 2
3 Woodchip+Slurry+T 60°C WST60 3 3 Woodchip+Slurry+E 60°C WSE60 3  

 

Temperature ramps for 60° C compost treatments 

Days

0 10 20 30 40 50

Te
m

p 
(°

C
)

0

10

20

30

40

50

60

70

80

Woodchips
Manure
Combined

 
 

Intervals ˚C 
sem ±  
(n=6) 

2 days 19 3.22 

4 days 40 8.28 

6 days 50 7.89 

8 days 55 5.09 

10 days 61 2.04 

12 days 62 1.23 

2 weeks 60 1.13 

3 weeks 58 3.11 

4 weeks 56 2.37 

5 weeks 56 2.45 

6 weeks 53 4.05 
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The table above shows the mean temperature gradient of 6 cattle manure composts: 3 woodchip-

manure from ADAS and 3 straw-manure; 1 from ADAS and 2 from IGER. 

 

Randomised Bench-top blocks  

Estradiol treatments in pink; testosterone treatments in blue 

 

ST1 SST25 1   ST2 SSE25 2   SE3 WSE25 3 

WSE25 1 SE1   SSE2 WSE25 2   SST25 3 ST3 

WST25 1 SSE25 1   WST25 2 SST2   SSE25 3 SST3 

SST1 SSE1   SE2 SST25 2   WST25 3 SSE3 

 

Randomised 60° C incubator blocks  
 

SSE60 1   SST60 2   WSE60 3 

WST60 1   SSE60 2   SST60 3 

WSE60 1 !! WSE60 2   WST60 3 

SST60 1   WST60 2   SSE60 3 

 

Table 1 

Present all background data for parent materials Woodchip, Straw, Manure and Soil. 
 

Table 2 

% Recovery of spiked [14C] hormones via water extracts at the start and end of treatment processes 
 

Table 3 

Rate constants 
 

Figure 1 

Mean temperature ramps from an amalgam of cattle composts at ADAS and IGER trails to 

demonstrate how method for lab active composting was developed. See previous page. 
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Figure 2 
14C evolution in Testosterone inoculated treatments 
 

Figure 3 
14C evolution in 17β-estradiol inoculated treatments 

 

A5.4 Manure: Bedding ratio 
 

Data on cattle excrement/day from DEFRA, RB-209, section 2 was applied to a space/head housing 

regime, based on DEFRA’s regulatory guidelines, to calculate a standardised, ‘livestock-weight 

dependant’ manure: bedding ratio over 16 weeks housing. (DEFRA; rb209 Section 2) 
 
Woodchip at 50 % mc (wet weight) 

Cattle weight  
Housing 

(wks) 
Total woodchip 

required/head (kg) 

Total undiluted 

excreta/head (kg) 

g of bedding / 

g’s of excreta 

400 kg 16 792 2882 3.64 

500 kg 16 1318 3559 2.70 

550 kg  16 1318 5646 4.28 
 
Woodchip at 40 % mc (wet weight) 

Livestock 

Type 

Housing 

(wks) 
Total woodchip 

required/head (kg) 

Total undiluted 

excreta/head (kg) 

g’s of excreta / 

g of bedding 

400 kg 16 754 2882 3.82 

500 kg 16 1257 3559 2.83 

550 kg  16 1257 5646 4.49 
 

Woodchip at 30 % mc (wet weight) 

Livestock 

Type 

Housing 

(wks) 
Total woodchip 

required/head (kg) 

Total undiluted 

excreta/head (kg) 

g’s of excreta / 

g of bedding 

400 kg 16 722 2882 3.99 

500 kg 16 1204 3559 2.96 

550 kg  16 1204 5646 4.69 
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Woodchip at 20 % mc (wet weight) 

Livestock 

Type 

Housing 

(wks) 
Total woodchip 

required/head (kg) 

Total undiluted 

excreta/head (kg) 

g’s of excreta / 

g of bedding 

400 kg 16 697 2882 4.13 

500 kg 16 1161 3559 3.07 

550 kg  16 1161 5646 4.86 

 

Straw at 8-11 % mc (wet weight) 

Livestock 

Type 

Housing 

(wks) 
Total straw 

required/head (kg) 

Total undiluted 

excreta/head (kg) 

g’s of excreta / 

g of bedding 

400 kg 16 281 2882 10.3 

500 kg 16 469 3559 7.59 

550 kg  16 469 5646 12.0 

 

The table below shows the corresponding % of NPK within the waste  
 

Stock type / head % N content % P (P2O5) % K (K2O) 

Dairy cow (550 kg) 0.5 0.2 0.5 

Beef stock (500kg) 0.52 0.2 0.52 

Beef stock (400kg) 0.5 0.2 0.52 

 

A5.5 Calculating hormone quantities, (T and E) 

Volume of a cylinder   V=πr2h 

Assuming the jar has a diameter of 5 cm (r = 2.5 cm) it would be filled up to 5 cm, therefore:  

3.142 x 2.52 x 5 = 98.17 cm3 

The best way to work out bedding-manure ratio is to test what weight of (unpacked) straw would fill 

98.17cm3 and add weight of manure according to the above ratio (1:10.3)  

Example: if 98.17 cm3 of straw weights 8g then add 82.4 g of manure etc.  
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Roughly speaking, the straw volume will be absorbed into the manure, whereas the denser, solid 

woodchip will keep its volume in the jam jar after the manure is added, so the (1:4) ratio of woodchip-

manure will result in roughly the same total volume as the (1:10) manure-straw treatments.   

Calculate the volume-mass figure for the manure (1 cm3= # grams) then estimate the volume of 

composts based on MC of woodchip beddings using the tables above. 

 

A5.6 Statistical Analysis  

T and E results analysed independently but under the same statistical treatments. 

The central pillar of the analysis would be an ANOVA or GLM for each hormone, comparing all 

treatments against each other. Of particular interest would be: 

 

• Active WC vs. Active Straw and to lesser extent – Static WC vs. Static Straw 

• Static Straw vs. Slurry only vs. Slurry + Soil 

• Static Woodchip vs. Slurry only vs. Slurry + Soil 

 

Furthermore a combined analyses of results between;  

• Active – Static (both woodchip and straw) 

• Woodchip – Straw (both active and static) 

 

A5.7 Feedstock background and Analysis 

pH  

The table below shows how the manure neutralises the acidic wood so that it has the same pH as 

straw-manure even before composting: 
 
ADAS pH before and after composting 

Treatment  Before bedding After bedding, before composting  After composting 

Woodchip 34 %  3.4 8.3 8.1 

Woodchip 53 % 4.2 8.3 8.5 

Woodchip 55 % 4.0 8.1 8.6 

Straw 7.7 8.2 8.5 
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All woodchip treatments at IGER and Glynllifon showed the same pH pattern. 

 

Electrical Conductivity (EC) 

Electrical conductivity (EC) is a means of measuring total soluble salt content and is used to assess the 

potential risk of salt injury to plants. EC readings of up to 8.5 mS/cm were found in the composts, but 

it must be remembered these concentrations will be greatly reduced when dispersed on to land. The 

values were similar to those of conventional manure-based composts. 

 

HCS - Slurry 

Two slurries were collected from neighbouring farms near Chester, Cheshire. (Slurry 1) OS: SJ 349 

722 and (Slurry 2) OS: SJ 350 724. No lime or detergents are used on either premises.  
 

Slurry 1 – generated over 2 weeks by 120 beef bullocks and heifers of mixed breeds, all aged 1 to 2 

years and fed first cut grass silage. The stock was transient over the 2 week period as animals were 

bought and sold, but the gender split remained approximately 65 % male / 35 % female, of which none 

were pregnant, although the number of resident heifers in oestrous was unknown.  
 

Slurry 2 – collected from a 14 year old cow, not pregnant or in estrous, and an 18 month old entire 

bullock, both fed organic hay.  

 

Soil  

Sandy clay loam textured Eutric Cambisol collected from the surface Ah horizon (5–20 cm) of a 

lowland (15 m altitude) freely draining, heavily sheep-grazed grassland which receives regular 

fertilisation (120 kg N, 60 kg K and 10 kg P yr_1) and occasional manure addition. 

Chemical and Physical characteristics of the soil used in the study: 
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Method for Slurry, (Woodchip and Straw) Analysis  

Before starting hormone exp. take 3x2 = 6 (A6 sized bags) reps of each material, freeze them – this 

means respiration analysis of slurry won’t be possible. But other than that, do all the same analyses on 

slurry and beddings. 

 

1. EC and pH  

2. Water Holding Capacity, DM and MC 

3. DOC and TSN → C:N ratio  

4. NO3
- and NH4

+ 

5. Available P 

6. K, Na, Ca (Mg and Al) 

 

Measuring experimental environment factors  

If possible use a Thermochron to record °C every half hour on bench-top – take mean recording for 

duration ±sem. alternatively, measure temp with thermometer that has a max and min facility and 

record humidity levels throughout.  
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Table A6.1: Price sensitivity analysis of chipping wood on-farm for bedding 480 sheep  

Price Sheep Woodchip  Woodchip  Cost of Cost of Chipping BUY HIRE Storage  BUY HIRE BUY HIRE BUY HIRE 

of area   volume mass Woodchip  N lost Fuel & Dep. + Cost of  and  Chipper Chipper Chipper Chipper Chipper Chipper 

Wood  allowance applied applied applied (1.36 kg hd-1) Labour Maint. hire handling  £ hd-1 in £ hd-1 in £ hd-1 in £ hd-1 in £ hd-1 yr-1 £ hd-1 yr-1 

£ t-1  m2 hd-1 m3 hd-1 kg hd-1 £ hd-1 at £0.30 kg-1 £ hd-1 £ hd-1 £ hd-1 £ hd-1 Year 1 Year 1 Year 2 Year 2 over 5 yrs. over 5 yrs. 

5 1.00 0.45 140 0.70 0.53 0.42 2.01 0.21 0.14 3.80 1.99 2.89 1.10 3.07 1.28 

5 1.33 0.60 186 0.93 0.53 0.55 2.02 0.21 0.19 4.22 2.41 3.01 1.22 3.25 1.46 

5 1.50 0.68 209 1.05 0.53 0.62 2.03 0.21 0.21 4.44 2.62 3.07 1.28 3.35 1.55 

5 2.00 0.90 279 1.40 0.53 0.83 2.04 0.21 0.28 5.08 3.25 3.26 1.47 3.62 1.82 

5 2.50 1.13 349 1.74 0.53 1.04 2.06 0.21 0.35 5.72 3.87 3.44 1.65 3.90 2.09 

15 1.00 0.45 140 2.09 0.53 0.42 2.01 0.21 0.14 5.20 3.39 3.17 1.38 3.57 1.78 

15 1.33 0.60 186 2.78 0.53 0.55 2.02 0.21 0.19 6.08 4.26 3.38 1.59 3.92 2.13 

15 1.50 0.68 209 3.14 0.53 0.62 2.03 0.21 0.21 6.54 4.72 3.49 1.70 4.10 2.31 

15 2.00 0.90 279 4.19 0.53 0.83 2.04 0.21 0.28 7.87 6.04 3.81 2.02 4.63 2.83 

15 2.50 1.13 349 5.23 0.53 1.04 2.06 0.21 0.35 9.21 7.36 4.14 2.35 5.15 3.35 

30 1.00 0.45 140 4.2 0.53 0.42 2.01 0.21 0.14 7.29 5.48 3.59 1.80 4.33 2.54 

30 1.33 0.60 186 5.6 0.53 0.55 2.02 0.21 0.19 8.86 7.05 3.94 2.15 4.92 3.13 

30 1.50 0.68 209 6.3 0.53 0.62 2.03 0.21 0.21 9.68 7.86 4.12 2.33 5.23 3.44 

30 2.00 0.90 279 8.4 0.53 0.83 2.04 0.21 0.28 12.06 10.23 4.65 2.86 6.13 4.33 

30 2.50 1.13 349 10.5 0.53 1.04 2.06 0.21 0.35 14.45 12.60 5.18 3.39 7.04 5.23 
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Table A6.2: Price sensitivity analysis of chipping wood on-farm for bedding 72 cattle  

Price Cattle Woodchip  Woodchip  Cost of Cost of Chipping BUY HIRE Storage  BUY HIRE BUY HIRE BUY HIRE 

of area   volume mass Woodchip  N lost Fuel & Dep. + Cost of  and  Chipper Chipper Chipper Chipper Chipper Chipper 

Wood  allowance applied applied applied (8.6 kg hd-1) Labour Maint. hire handling  £ hd-1 in £ hd-1 in £ hd-1 in £ hd-1 in £ hd-1 yr-1 £ hd-1 yr-1 

£ t-1  m2 hd-1 m3 hd-1 kg hd-1 £ hd-1 at £0.30 kg-1 £ hd-1 £ hd-1 £ hd-1 £ hd-1 Year 1 Year 1 Year 2 Year 2 over 5 yrs. over 5 yrs. 

5 4.0 3.40 1055 5.27 2.58 3.14 13.46 1.39 1.05 25.51 13.44 18.61 6.71 19.99 8.05 

5 4.5 3.83 1186 5.93 2.58 3.54 13.48 1.39 1.19 26.72 14.62 18.96 7.05 20.51 8.56 

5 5.0 4.25 1318 6.59 2.58 3.93 13.51 1.39 1.32 27.93 15.81 19.30 7.39 21.03 9.07 

5 5.5 4.68 1450 7.25 2.58 4.32 13.54 1.39 1.45 29.14 16.99 19.65 7.73 21.55 9.59 

5 6.0 5.10 1582 7.91 2.58 4.71 13.56 1.39 1.58 30.35 18.17 20.00 8.08 22.07 10.10 

15 4.0 3.40 1055 15.82 2.58 3.14 13.46 1.39 1.05 36.05 23.99 20.72 8.82 23.79 11.85 

15 4.5 3.83 1186 17.80 2.58 3.54 13.48 1.39 1.19 38.58 26.49 21.33 9.42 24.78 12.84 

15 5.0 4.25 1318 19.77 2.58 3.93 13.51 1.39 1.32 41.11 28.99 21.94 10.03 25.77 13.82 

15 5.5 4.68 1450 21.75 2.58 4.32 13.54 1.39 1.45 43.64 31.49 22.55 10.63 26.77 14.81 

15 6.0 5.10 1582 23.73 2.58 4.71 13.56 1.39 1.58 46.17 33.99 23.16 11.24 27.76 15.79 

30 4.0 3.40 1055 31.64 2.58 3.14 13.46 1.39 1.05 51.87 39.80 23.88 11.98 29.48 17.54 

30 4.5 3.83 1186 35.59 2.58 3.54 13.48 1.39 1.19 56.38 44.28 24.89 12.98 31.19 19.24 

30 5.0 4.25 1318 39.55 2.58 3.93 13.51 1.39 1.32 60.88 48.76 25.90 13.98 32.89 20.94 

30 5.5 4.68 1450 43.50 2.58 4.32 13.54 1.39 1.45 65.39 53.24 26.90 14.98 34.60 22.64 

30 6.0 5.10 1582 47.46 2.58 4.71 13.56 1.39 1.58 69.89 57.72 27.91 15.99 36.31 24.33 
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Table A6.3: Price sensitivity analysis of chipping wood on-farm for bedding 2400 sheep  

Price Sheep Woodchip  Woodchip  Cost of Cost of Chipping BUY HIRE Storage  BUY HIRE BUY HIRE BUY HIRE 

of area   volume mass Woodchip  N lost Fuel & Dep. + Cost of  and  Chipper Chipper Chipper Chipper Chipper Chipper 

Wood  allowance applied applied applied (1.36 kg hd-1) Labour Maint. hire handling  £ hd-1 in £ hd-1 in £ hd-1 in £ hd-1 in £ hd-1 yr-1 £ hd-1 yr-1 

£ t-1  m2 hd-1 m3 hd-1 kg hd-1 £ hd-1 at £0.30 kg-1 £ hd-1 £ hd-1 £ hd-1 £ hd-1 Year 1 Year 1 Year 2 Year 2 over 5 yrs. over 5 yrs. 

5 1.00 0.45 140 0.70 0.53 0.42 0.42 0.10 0.14 2.21 1.89 1.30 1.00 1.48 1.18 

5 1.33 0.60 186 0.93 0.53 0.55 0.43 0.10 0.19 2.63 2.30 1.42 1.12 1.66 1.36 

5 1.50 0.68 209 1.05 0.53 0.62 0.44 0.10 0.21 2.85 2.52 1.48 1.18 1.76 1.45 

5 2.00 0.90 279 1.40 0.53 0.83 0.45 0.10 0.28 3.49 3.14 1.67 1.36 2.03 1.72 

5 2.50 1.13 349 1.74 0.53 1.04 0.47 0.10 0.35 4.13 3.77 1.85 1.54 2.31 1.99 

15 1.00 0.45 140 2.09 0.53 0.42 0.42 0.10 0.14 3.61 3.29 1.58 1.28 1.98 1.68 

15 1.33 0.60 186 2.78 0.53 0.55 0.43 0.10 0.19 4.49 4.16 1.79 1.49 2.33 2.02 

15 1.50 0.68 209 3.14 0.53 0.62 0.44 0.10 0.21 4.95 4.61 1.90 1.60 2.51 2.20 

15 2.00 0.90 279 4.19 0.53 0.83 0.45 0.10 0.28 6.28 5.94 2.22 1.92 3.04 2.72 

15 2.50 1.13 349 5.23 0.53 1.04 0.47 0.10 0.35 7.62 7.26 2.55 2.24 3.56 3.24 

30 1.00 0.45 140 4.2 0.53 0.42 0.42 0.10 0.14 5.70 5.38 2.00 1.70 2.74 2.43 

30 1.33 0.60 186 5.6 0.53 0.55 0.43 0.10 0.19 7.27 6.95 2.35 2.05 3.33 3.03 

30 1.50 0.68 209 6.3 0.53 0.62 0.44 0.10 0.21 8.09 7.75 2.53 2.23 3.64 3.33 

30 2.00 0.90 279 8.4 0.53 0.83 0.45 0.10 0.28 10.47 10.12 3.06 2.76 4.54 4.23 

30 2.50 1.13 349 10.5 0.53 1.04 0.47 0.10 0.35 12.86 12.49 3.59 3.29 5.45 5.13 
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Table A6.4: Price sensitivity analysis of chipping wood on-farm for bedding 360 cattle  

Price Cattle Woodchip  Woodchip  Cost of Cost of Chipping Option 1 Option 2 Storage  BUY HIRE BUY HIRE BUY HIRE 

of area   volume mass Woodchip  N lost Fuel & Dep. + Cost of  and  Chipper Chipper Chipper Chipper Chipper Chipper 

Wood  allowance applied applied applied (8.6 kg hd-1) Labour Maint. hire handling  £ hd-1 in £ hd-1 in £ hd-1 in £ hd-1 in £ hd-1 yr-1 £ hd-1 yr-1 

£ t-1  m2 hd-1 m3 hd-1 kg hd-1 £ hd-1 at £0.30 kg-1 £ hd-1 £ hd-1 £ hd-1 £ hd-1 Year 1 Year 1 Year 2 Year 2 over 5 yrs. over 5 yrs. 

5 4.00 3.40 1055 5.27 2.58 3.14 2.86 0.69 1.05 14.91 12.75 8.01 6.01 9.39 7.36 

5 4.50 3.83 1186 5.93 2.58 3.54 2.88 0.69 1.19 16.12 13.93 8.36 6.35 9.91 7.87 

5 5.00 4.25 1318 6.59 2.58 3.93 2.91 0.69 1.32 17.33 15.11 8.70 6.70 10.43 8.38 

5 5.50 4.68 1450 7.25 2.58 4.32 2.94 0.69 1.45 18.54 16.30 9.05 7.04 10.95 8.89 

5 6.00 5.10 1582 7.91 2.58 4.71 2.96 0.69 1.58 19.75 17.48 9.40 7.38 11.47 9.40 

15 4.00 3.40 1055 15.8 2.58 3.14 2.86 0.69 1.05 25.45 23.29 10.12 8.12 13.19 11.16 

15 4.50 3.83 1186 17.8 2.58 3.54 2.88 0.69 1.19 27.98 25.79 10.73 8.73 14.18 12.14 

15 5.00 4.25 1318 19.8 2.58 3.93 2.91 0.69 1.32 30.51 28.30 11.34 9.33 15.17 13.13 

15 5.50 4.68 1450 21.8 2.58 4.32 2.94 0.69 1.45 33.04 30.80 11.95 9.94 16.17 14.11 

15 6.00 5.10 1582 23.7 2.58 4.71 2.96 0.69 1.58 35.57 33.30 12.56 10.55 17.16 15.10 

30 4.00 3.40 1055 31.6 2.58 3.14 2.86 0.69 1.05 41.27 39.11 13.28 11.29 18.88 16.85 

30 4.50 3.83 1186 35.6 2.58 3.54 2.88 0.69 1.19 45.78 43.59 14.29 12.29 20.59 18.55 

30 5.00 4.25 1318 39.5 2.58 3.93 2.91 0.69 1.32 50.28 48.07 15.30 13.29 22.29 20.24 

30 5.50 4.68 1450 43.5 2.58 4.32 2.94 0.69 1.45 54.79 52.55 16.30 14.29 24.00 21.94 

30 6.00 5.10 1582 47.5 2.58 4.71 2.96 0.69 1.58 59.29 57.03 17.31 15.29 25.71 23.64 
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Table A6.5: Price sensitivity analysis of a group of 5 farmers with 480 sheep each, sharing the costs of buying or hiring a chipper  

Price Sheep Woodchip  Woodchip  Cost of Cost of Chipping BUY HIRE Storage  BUY HIRE BUY HIRE BUY HIRE 

of area   volume mass Woodchip  N lost Fuel & Dep. + Chipper and  Chipper Chipper Chipper Chipper Chipper Chipper 

Wood  allowance applied applied applied (1.36 kg hd-1) Labour Maint. Hire handling  £ hd-1 in £ hd-1 in £ hd-1 in £ hd-1 in £ hd-1 yr-1 £ hd-1 yr-1 

£ t-1  m2 hd-1 m3 hd-1 kg hd-1 £ hd-1 at £0.30 kg-1 £ hd-1 £ hd-1 £ hd-1 £ hd-1 Year 1 Year 1 Year 2 Year 2 over 5 yrs. over 5 yrs. 

5 1.00 0.45 140 0.70 0.53 0.42 0.40 0.10 0.14 2.19 1.89 1.29 1.00 1.47 1.18 

5 1.33 0.60 186 0.93 0.53 0.55 0.40 0.10 0.19 2.60 2.30 1.41 1.12 1.65 1.36 

5 1.50 0.68 209 1.05 0.53 0.62 0.41 0.10 0.21 2.82 2.52 1.48 1.18 1.74 1.45 

5 2.00 0.90 279 1.40 0.53 0.83 0.41 0.10 0.28 3.45 3.14 1.66 1.36 2.02 1.72 

5 2.50 1.13 349 1.74 0.53 1.04 0.41 0.10 0.35 4.08 3.77 1.84 1.54 2.29 1.99 

15 1.00 0.45 140 2.09 0.53 0.42 0.40 0.10 0.14 3.59 3.29 1.57 1.28 1.98 1.68 

15 1.33 0.60 186 2.78 0.53 0.55 0.40 0.10 0.19 4.46 4.16 1.79 1.49 2.32 2.02 

15 1.50 0.68 209 3.14 0.53 0.62 0.41 0.10 0.21 4.91 4.61 1.89 1.60 2.50 2.20 

15 2.00 0.90 279 4.19 0.53 0.83 0.41 0.10 0.28 6.24 5.94 2.22 1.92 3.02 2.72 

15 2.50 1.13 349 5.23 0.53 1.04 0.41 0.10 0.35 7.57 7.26 2.54 2.24 3.54 3.24 

30 1.00 0.45 140 4.2 0.53 0.42 0.40 0.10 0.14 5.68 5.38 1.99 1.70 2.73 2.43 

30 1.33 0.60 186 5.6 0.53 0.55 0.40 0.10 0.19 7.25 6.95 2.34 2.05 3.32 3.03 

30 1.50 0.68 209 6.3 0.53 0.62 0.41 0.10 0.21 8.05 7.75 2.52 2.23 3.63 3.33 

30 2.00 0.90 279 8.4 0.53 0.83 0.41 0.10 0.28 10.43 10.12 3.05 2.76 4.53 4.23 

30 2.50 1.13 349 10.5 0.53 1.04 0.41 0.10 0.35 12.80 12.49 3.58 3.29 5.43 5.13 
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Table A6.6: Price sensitivity analysis of a group of 5 farmers with 72 cattle each, sharing the costs of buying or hiring a chipper  

Price Cattle Woodchip  Woodchip  Cost of Cost of Chipping BUY HIRE Storage  BUY HIRE BUY HIRE BUY HIRE 

of area   volume mass Woodchip  N lost Fuel & Dep. + Chipper and  Chipper Chipper Chipper Chipper Chipper Chipper 

Wood  allowance applied applied applied (8.6 kg hd-1) Labour Maint. Hire handling  £ hd-1 in £ hd-1 in £ hd-1 in £ hd-1 in £ hd-1 yr-1 £ hd-1 yr-1 

£ t-1  m2 hd-1 m3 hd-1 kg hd-1 £ hd-1 at £0.30 kg-1 £ hd-1 £ hd-1 £ hd-1 £ hd-1 Year 1 Year 1 Year 2 Year 2 over 5 yrs. over 5 yrs. 

5 4.00 3.40 1055 5.27 2.58 3.14 2.69 0.69 1.05 14.74 12.75 7.98 6.01 9.33 7.36 

5 4.50 3.83 1186 5.93 2.58 3.54 2.70 0.69 1.19 15.93 13.93 8.32 6.35 9.84 7.87 

5 5.00 4.25 1318 6.59 2.58 3.93 2.70 0.69 1.32 17.12 15.11 8.66 6.70 10.35 8.38 

5 5.50 4.68 1450 7.25 2.58 4.32 2.71 0.69 1.45 18.31 16.30 9.01 7.04 10.87 8.89 

5 6.00 5.10 1582 7.91 2.58 4.71 2.71 0.69 1.58 19.50 17.48 9.35 7.38 11.38 9.40 

15 4.00 3.40 1055 15.82 2.58 3.14 2.69 0.69 1.05 25.29 23.29 10.09 8.12 13.13 11.16 

15 4.50 3.83 1186 17.80 2.58 3.54 2.70 0.69 1.19 27.80 25.79 10.69 8.73 14.11 12.14 

15 5.00 4.25 1318 19.77 2.58 3.93 2.70 0.69 1.32 30.30 28.30 11.30 9.33 15.10 13.13 

15 5.50 4.68 1450 21.75 2.58 4.32 2.71 0.69 1.45 32.81 30.80 11.91 9.94 16.09 14.11 

15 6.00 5.10 1582 23.73 2.58 4.71 2.71 0.69 1.58 35.32 33.30 12.51 10.55 17.07 15.10 

30 4.00 3.40 1055 31.6 2.58 3.14 2.69 0.69 1.05 41.11 39.11 13.25 11.29 18.82 16.85 

30 4.50 3.83 1186 35.6 2.58 3.54 2.70 0.69 1.19 45.59 43.59 14.25 12.29 20.52 18.55 

30 5.00 4.25 1318 39.5 2.58 3.93 2.70 0.69 1.32 50.08 48.07 15.25 13.29 22.22 20.24 

30 5.50 4.68 1450 43.5 2.58 4.32 2.71 0.69 1.45 54.56 52.55 16.26 14.29 23.92 21.94 

30 6.00 5.10 1582 47.5 2.58 4.71 2.71 0.69 1.58 59.05 57.03 17.26 15.29 25.62 23.64 
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Table A6.7: Price sensitivity analysis of buying pre-chipped wood for bedding Sheep 

Price Sheep Woodchip  Woodchip  Cost of Cost of Storage     
of area   volume mass Woodchip  N lost and  Woodchip  Woodchip  Woodchip 

Woodchip allowance applied applied applied (1.36 kg hd-1) handling  £ hd-1 in £ hd-1 in £ hd-1 yr-1 
£ t-1  m2 hd-1 m3 hd-1 kg hd-1 £ hd-1 at £0.30 kg-1 £ hd-1 Year 1 Year 2 over 5 yrs. 
60 1.00 0.45 140 8.37 0.53 0.14 9.05 2.35 3.69 
60 1.33 0.60 186 11.14 0.53 0.19 11.86 2.95 4.73 
60 1.50 0.68 209 12.56 0.53 0.21 13.30 3.25 5.26 
60 2.00 0.90 279 16.75 0.53 0.28 17.56 4.16 6.84 
60 2.50 1.13 349 20.94 0.53 0.35 21.82 5.07 8.42 
80 1.00 0.45 140 11.17 0.53 0.14 11.84 2.91 4.69 
80 1.33 0.60 186 14.85 0.53 0.19 15.57 3.69 6.06 
80 1.50 0.68 209 16.75 0.53 0.21 17.49 4.09 6.77 
80 2.00 0.90 279 22.33 0.53 0.28 23.14 5.28 8.85 
80 2.50 1.13 349 27.92 0.53 0.35 28.80 6.47 10.93 
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Table A6.8: Price sensitivity analysis of buying pre-chipped wood for bedding Cattle 

Price Cattle Woodchip  Woodchip  Cost of Cost of Storage     
of area   volume mass Woodchip  N lost and  Woodchip   Woodchip  Woodchip 

Woodchip allowance applied applied applied (8.6 kg hd-1) handling  £ hd-1 in £ hd-1 in £ hd-1 yr-1 
£ t-1  m2 hd-1 m3 hd-1 kg hd-1 £ hd-1 at £0.30 kg-1 £ hd-1 Year 1 Year 2 over 5 yrs. 
60 4.0 3.40 1055 63.28 2.58 1.05 66.91 16.29 26.41 
60 4.5 3.83 1186 71.18 2.58 1.19 74.95 18.00 29.39 
60 5.0 4.25 1318 79.09 2.58 1.32 82.99 19.72 32.37 
60 5.5 4.68 1450 87.00 2.58 1.45 91.03 21.43 35.35 
60 6.0 5.10 1582 94.91 2.58 1.58 99.08 23.15 38.33 
80 4.0 3.40 1055 84.37 2.58 1.05 88.00 20.51 34.01 
80 4.5 3.83 1186 94.91 2.58 1.19 98.68 22.75 37.94 
80 5.0 4.25 1318 105.46 2.58 1.32 109.36 24.99 41.86 
80 5.5 4.68 1450 116.00 2.58 1.45 120.04 27.23 45.79 
80 6.0 5.10 1582 126.55 2.58 1.58 130.71 29.47 49.72 
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Table A6.9: Price sensitivity analysis of buying straw for bedding Sheep 

Price Sheep Straw Straw Cost of Cost of Storage  Annual 
of area   volume mass Straw  N lost and  straw 

Straw allowance applied applied applied (1.78 kg hd-1) handling  bedding 
£ t-1  m2 hd-1 m3 hd-1 kg hd-1 £ hd-1 at £0.30 kg-1 £ hd-1 £ hd-1 
50 1.00 0.45 68 3.38 0.41 0.07 3.85 
50 1.33 0.60 90 4.49 0.41 0.09 4.99 
50 1.50 0.68 101 5.06 0.41 0.10 5.57 
50 2.00 0.90 135 6.75 0.41 0.14 7.29 
50 2.50 1.13 169 8.44 0.41 0.17 9.01 
60 1.00 0.45 68 4.05 0.41 0.07 4.53 
60 1.33 0.60 90 5.39 0.41 0.09 5.88 
60 1.50 0.68 101 6.08 0.41 0.10 6.58 
60 2.00 0.90 135 8.10 0.41 0.14 8.64 
60 2.50 1.13 169 10.13 0.41 0.17 10.70 
70 1.00 0.45 68 4.73 0.41 0.07 5.20 
70 1.33 0.60 90 6.28 0.41 0.09 6.78 
70 1.50 0.68 101 7.09 0.41 0.10 7.60 
70 2.00 0.90 135 9.45 0.41 0.14 9.99 
70 2.50 1.13 169 11.81 0.41 0.17 12.39 
80 1.00 0.45 68 5.40 0.41 0.07 5.88 
80 1.33 0.60 90 7.18 0.41 0.09 7.68 
80 1.50 0.68 101 8.10 0.41 0.10 8.61 
80 2.00 0.90 135 10.80 0.41 0.14 11.34 
80 2.50 1.13 169 13.50 0.41 0.17 14.08 
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Table A6.10: Price sensitivity analysis of buying straw for bedding cattle 

Price Cattle Straw Straw Cost of Cost of Storage  Annual 
of area   volume mass Straw  N lost and  straw 

Straw allowance applied applied applied (11.7 kg hd-1) handling  bedding 
£ t-1  m2 hd-1 m3 hd-1 kg hd-1 £ hd-1 at £0.30 kg-1 £ hd-1 £ hd-1 
50 4.0 3.40 510 25.50 3.50 0.51 29.51 
50 4.5 3.83 574 28.69 3.50 0.57 32.76 
50 5.0 4.25 638 31.88 3.50 0.64 36.01 
50 5.5 4.68 701 35.06 3.50 0.70 39.26 
50 6.0 5.10 765 38.25 3.50 0.77 42.51 
60 4.0 3.40 510 30.60 3.50 0.51 34.61 
60 4.5 3.83 574 34.43 3.50 0.57 38.49 
60 5.0 4.25 638 38.25 3.50 0.64 42.38 
60 5.5 4.68 701 42.08 3.50 0.70 46.27 
60 6.0 5.10 765 45.90 3.50 0.77 50.16 
70 4.0 3.40 510 35.70 3.50 0.51 39.71 
70 4.5 3.83 574 40.16 3.50 0.57 44.23 
70 5.0 4.25 638 44.63 3.50 0.64 48.76 
70 5.5 4.68 701 49.09 3.50 0.70 53.28 
70 6.0 5.10 765 53.55 3.50 0.77 57.81 
80 4.0 3.40 510 40.80 3.50 0.51 44.81 
80 4.5 3.83 574 45.90 3.50 0.57 49.97 
80 5.0 4.25 638 51.00 3.50 0.64 55.13 
80 5.5 4.68 701 56.10 3.50 0.70 60.30 
80 6.0 5.10 765 61.20 3.50 0.77 65.46 
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APENDIX – VII – Linear regression analysis of bedding types at ADAS 
A7.1 pH  
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Treatment Line equation R2 p. value 

W34 y = 0.0071x + 8.0535 R² = 0.0564 .539 

W53 y = 0.0101x + 8.2619 R² = 0.1641 .280 

W55 y = 0.024x + 7.9631 R² = 0.5869 .016 

Straw y = 0.0086x + 8.4245 R² = 0.2038 .223 
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A7.2 EC  
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Treatment Line equation R2 p. value 

W34 y = 0.0283x + 2.8067 R² = 0.2598 .161 

W53 y = 0.0035x + 2.7218 R² = 0.0107 .791 

W55 y = 0.017x + 2.3913 R² = 0.2744 .148 

Straw y = -0.0353x + 7.9872 R² = 0.013 .000 
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A7.3 Nitrate 
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Treatment Line equation R2 p. value 

W34 y = -23.987x + 978.54 R² = 0.3943 .257 

W53 y = -14.924x + 540.6 R² = 0.4319 .228 

W55 y = -16.501x + 505.16 R² = 0.4018 .251 

Straw y = 47.655x - 72.246 R² = 0.9514 .005 
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A7.4 Ammonium 
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Treatment Line equation R2 p. value 

W34 y = -30.773x + 744.78 R² = 0.4418 .221 

W53 y = -52.462x + 1232.9 R² = 0.4063 .247 

W55 y = -32.003x + 765.33 R² = 0.4588 .209 

Straw y = -113.57x + 2932.1 R² = 0.6629 .093 
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A7.5 Dissolved Organic Nitrogen (DON) 
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Treatment Line equation R2 p. value 

W34 y = -12.174x + 452.88 R² = 0.7909 .043 

W53 y = -6.9681x + 338.88 R² = 0.5168 .171 

W55 y = -7.2635x + 325.76 R² = 0.5151 .172 

Straw y = -24.082x + 1469.3 R² = 0.2145 .432 
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A7.6 Total Soluble Nitrogen (TSN)  
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Treatment Line equation R2 p. value 

W34 y = -66.933x + 2176.2 R² = 0.8728 .020 

W53 y = -74.354x + 2112.4 R² = 0.6596 .095 

W55 y = -55.767x + 1596.2 R² = 0.7833 .046 

Straw y = -89.998x + 4329.1 R² = 0.4338 .227 
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A7.7 Dissolved Organic Carbon (DOC) 
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Treatment Line equation R2 p. value 

W34 y = -47.112x + 2993.1 R² = 0.3396 .302 

W53 y = -34.051x + 3040.6 R² = 0.2459 .396 

W55 y = -25.009x + 2523.7 R² = 0.1857 .469 

Straw y = -134.43x + 15325 R² = 0.0664 .676 
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A7.8 Available C:N ratio 
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Treatment Line equation R2 p. value 

W34 y = 0.2136x + 1.0832 R² = 0.8772 .019 

W53 y = 0.2719x + 1.7879 R² = 0.9045 .013 

W55 y = 0.2943x + 2.6464 R² = 0.6896 .082 

Straw y = 0.0449x + 4.2461 R² = 0.0963 .611 
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A7.9 Potassium (K) 
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Treatment Line equation R2 p. value 

W34 y = -90.886x + 5046.7 R² = 0.5815 .134 

W53 y = -134.79x + 5315.8 R² = 0.4543 .212 

W55 y = -78.336x + 3674.8 R² = 0.2083 .440 

Straw y = -208.54x + 12327 R² = 0.6672 .091 
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A7.10 Sodium (Na) 
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Treatment Line equation R2 p. value 

W34 y = -16.628x + 971.27 R² = 0.9794 .001 

W53 y = -23.558x + 936.05 R² = 0.6062 .121 

W55 y = -11.182x + 564.73 R² = 0.2132 .434 

Straw y = -18.804x + 1703.7 R² = 0.1281 .554 
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A7.11 Calcium (Ca) 
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Treatment Line equation R2 p. value 

W34 y = -16.584x + 635.97 R² = 0.6000 .124 

W53 y = -19.864x + 627.15 R² = 0.6470 .101 

W55 y = -7.8532x + 331.91 R² = 0.7852 .045 

Straw y = -38.931x + 1491.8 R² = 0.3331 .308 
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Appendix – VIII – The Woodchip for Livestock Bedding Project 
 

To access to all the Woodchip for Livestock Bedding Project public releases (pdf.) go to: 

http://www.hccmpw.org.uk/publications/farming_and_industry_development/alternative_bedding_for_li

vestock/ 

 

The candidate was the principle or sole contributor to the following titles listed on the webpage above: 

 

 An assessment of woodchip compost 

 Productivity of woodchip compost 

 Woodchip compost – options for use 

 Economic appraisal of woodchip use 

 The Woodchip for Livestock Bedding Project (final report) 

 

 

 




