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Summary

Estuarine environments are biologically productive ecosystems that are both economically and
socially important. Consequently, a decline in the microbiological water quality can pose a risk
to human health and have severe socioeconomic consequences, especially for areas that rely on
tourism and shellfisheries for income. The enumeration of faecal indicator bacteria (FIB) in
water samples has been the paradigm for estimating water quality in coastal zones, but there 1s an
emerging view that sediments are a poorly studied and yet a significant reservoir of FIB. The
aims of this thesis were: (I) to investigate the role of sediments as a reservoir for FIB and other
potentially pathogenic bacteria; (I) to examine the spatial ecology of FIB in relation to sediment
composition (grain size and organic matter content); (III) to investigate the influence of point and
diffuse pollution sources on the abundance of bacteria in marine and estuarine sediments; (IV)
to mvestigate the abundance of human pathogenic bacteria in the Conwy estuary, North Wales,
UK, and (V) to investigate the influence of suspended particulate matter (SPM) on the survival
of FIB 1n both fresh and brackish water. Culturable E. cofr, total coliforms, enterococct (FIB),
Salmonella, Campylobacter, Vibrio spp. and heterotrophic bacteria were enumerated in
sediments and water from the Conwy estuary that 1s subject to various point and diffuse sources
of pollution. FIB counts were three orders of magnitude greater in sediments compared with the
overlying water column, demonstrating that estuarine sediments are a significant reservoir for
FIB and other potential pathogens. In addition, sediment grain size analysis and organic matter
content determinations revealed that finer sediments such as clay, silt and very fine sand
contained significantly higher concentrations of all bacterial groups enumerated. The
enumeration of FIB in marine sediments surrounding an offshore sewage outfall pipe revealed
that spatial variations i FIB abundance reflected the course of the sewage effluent plume as
predicted by a hydrodynamic model, demonstrating the impact of point sources of microbial
pollution on the underlying sediments. To address the actual pathogen content of sediments
the Conwy estuary (rather than only indicator bacteria), PCR and qPCR were utilized to detect
and quantify known pathogen virulence genes, revealing that estuarine sediments are a reservoir
for pathogenic bacteria. Furthermore, qPCR suggested greater concentrations of FIB compared
with culture counts from the same sample, indicating the possible presence of viable but non-
culturable (VBNC) bacteria. Consequently, sediment-associated bacteria pose a risk to human
health 1f they are resuspended mto the water column under certain hydrodynamic processes, as
tide-dominated estuaries usually contain large areas of fine sand that are easily mobilized. To
mvestigate the influence of SPM concentration on FIB survival, fresh and brackish water
containing low (716 mg/1), high (7160 mg/l) and extreme (~ 1650 mg/l) SPM concentrations
were moculated with crude sewage and sheep faeces. FIB were enumerated every 24 hrs for 5
days, revealing that SPM concentrations influence FIB survival in brackish water but had minimal
mfluence in freshwater over time. In general, FIB concentrations mcreased with a decrease
SPM concentration. These data add to a limited body of evidence on the role of sediments as a
reservolr for pathogenic bacteria, with implications for routine monitoring protocols that assess
the microbial pollution of environmental waters. In addition, these data suggest that catchment-
based risk assessments of microbial pollution in aquatic systems should consider the source of
FIB, the hydrodynamics of the environment, and the subsequent influence of SPM
concentrations, all of which determine the survival of FIB in aquatic environments.
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1.1 The nature of the problem

The gut of warm blooded animals 1s a unique environment that provides a nutrient rich
habitat for millions of microbes (Ley et al., 2006). The human colon contains extremely high
densities of microbes, where quantities can reach 10" cells/ml (the human colon has a volume of
0.5 1) (Fig. 1.1) (Whitman ez al, 1998). The family Enterobacteriaceae, of the phylum
Proteobacteria, consists of many coliform and faecal coliform bactenia. Escherichia colr 1s
mcluded m the faecal coliform group and although a common commensal member of the gut
microbiome of humans and animals, some strains have the potential to be pathogenic
(Adlerberth & Wold, 2009). E. coli types are described as either commensal, extraintestinal or
diarrheagenic, as various strains have the ability to cause intestinal and extraintestinal disease.
(Kaper, 2005).

E. coli O157:H7 has been identified as a major public health concern, as infection can cause
haemorrhagic coliis which can lead to serious and life threatening complications such as
haemolytic uraemic syndrome (Ferens & Hovde, 2011). Cattle have been identified as an
important reservoir of O157:H7 (Ferens & Hovde 2011) and infection 1s often associated with
the consumption of contaminated meat (Dean-Nystrom et al, 1998). E. coli is an extremely
diverse species, which m addition to the gut, has been 1solated from both terrestrial and aquatic
habitats such as sediment (Perkins et al, 2014), soil (Byappanahalli er al, 2006) and water
(Barcina, 1995).

In addittion to members of the Enterobacteriaceae, intestinal enterococci (members of the
phylum Firmicutes) are also found in the gastrointestinal (GI) tract of humans and other animals
and can be found at levels between 10°-10" CFU/g of faeces (Adlerberth & Wold, 2009). They
are widely distributed among the animal kingdom and are part of the gut microbiome of
mammals, birds, reptiles and isects (Yost et al., 2011) They are Gram-positive Firmicutes that
are able to grow at a wide range of temperatures ranging between 10°C to 45°C (Domig ef al.,
2003). Enterococci are associated with millions of infections in animals and humans every year
(Byappanahalli er al, 2012). E. faccium and E. faecalis are the two most widely reported
pathogens that have the ability to cause a variety of infections, which mclude urinary tract
mfection, wound infections and endocarditis (inflammation around the heart) (Domig et al,
2003). Enterococcus spp. have been isolated from many different environments including

freshwater (Thevenon et al,, 2012), soil and vegetables (Abriouel et al, 2008), seawater and

beach sand (Goodwin et al., 2012).
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a
Salivary
gland Oral cavity, 108 cells/ml
Esophagus
Liver.
Stomach
Duodenum Pancreas
Colon
lleocecal
el Jejunum
Cecum
lleum Rectum

€ Bacterial population present

Oral cavity:

Gemella (e.g., G. haemolysans), Granulicatella,
Streptococcus (e.g., S. mitis), Veillonella, Prevotella,
Porphyromonas, Rothia, Neisseria, Fusobacterium,
Lactobacillus

Allochthonous microbes are generally outnumbered
by autochthonous microbes.

Stomach:
Helicobacter pylori

Allochthonous: Gemella (e.g., G. haemolysans),
Granulicatella, Streptococcus (e.g., S. mitis), Veillonella,
Prevotella, Porphyromonas, Rothia, Neisseria,
Fusobacterium, Lactobacillus

pH gradient Microbial biomass
Stomach 1.5-5 1073 cells/ml
Duodenum 5-7 1034 cells/ml
Jejunum 7~2 10+ cells/ml
lleurn 7-8 108 cells/ml
lleocecal valve
Colon 5_7 10""cells/ml

Smallintestine:

Escherichia coli, Klebsiella, Enterococcus, Bacteroides,
Ruminococcus, Dorea, Clostridium, Coprococcus,
Weissella, Lactobacillus (some species)

Allochthonous: Granulicatella, Streptococcus
(e.g., S. mitis), Veillonella, Lactobacillus

Large intestine:

Five major phyla: Firmicutes, Bacteroidetes,
Actionobacteria, Verrucomicrobia, and Proteobacteria.
Hundreds of species.

Allochthonous microbes are generally outnumbered
by autochthonous microbes.

Fig. 1.1 The human GI tract and its microbial community. (a) The main sections of the human
gastrointestinal tract. (b) pH gradient from the stomach to distal gut (left bar) and microbial
biomass (right bar). (¢) Each box details the dominant microbes in each habitat (allochthonous
or autochthonous). Image from (Walter & Ley, 2011).
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Coliforms have long been used as indicator bacteria to monitor faecal pollution of
environmental waters. However, they are a large and complex group of bacteria which includes
many bacteria that may not have originated from faeces (Carrero-colon et al, 2011). More
recently, coliforms have been replaced by alternate indicators such as enterococci and £. coll,
which are considered to be a more precise indicator of pollution (WHO, 2006). Pathogens
contained n faecal matter typically occur at low levels in the environment, and therefore, their
detection can be time-consuming and costly (Meays et al., 2004). Subsequently, it 1s much more
practical to enumerate non-pathogenic Faecal Indicator Bacteria (FIB), which are more
abundant, as a proxy for the potential risk of pathogenic bacteria (Meays et al., 2004). However,
as technology evolves and detection 1s becoming increasingly more efficient and accurate, the
detection of other faecal bacterial species and their associated pathogens is possible.

The genus Salmonella, ke E. coli, belongs to the family Enterobacteriaceae. They are
commensal members of the gut microbiota of many animals including birds, mammals, reptiles,
livestock and msects (Diez-Gonzalez, 2011). More than 2,500 serovars of Salimonella have been
identified, but it 1s the subspecies of .. enterica that has been predominantly linked with disease
in humans and animals (Timme ef al, 2013). S. enterica 1s considered to be one of the main
causes of foodborne infections worldwide (Timme ef al., 2013). The pathogenic serotypes within
this group can cause multiple clinical conditions such as enteritis (inflammation of the small
mtestine causing swelling fever and diarrhoea) septicaemia and abortion in humans and other
animals (Uzzau et al, 2000). Information collected from population studies and national
surveillance systems revealed that from 1996 to 2000 Sa/monella were the leading cause of death
related to the consumption of contaminated foods in England and Wales (Adak et al., 2005). In
addition, a study by Scallan er al, (2011) estimated that each year in the USA Salmonellosis 1s
the leading cause of hospitalization and death from a foodborne illness. Salmonella have also
been isolated from various different environments including beach sand (Bolton et al., 1999),
estuarine water and sediments (Bolton et al,, 1999).

Campylobacter are Gram-negative, microaerophilic bacteria. When compared to other
enteric bacteria they have a rather restricted temperature range for growth, which 1s between ca.
30 to 46°C (Humphrey et al., 2007). Similar to Sa/monella, Campylobacter spp. are able to
colonise the GI tract of different animals including livestock, birds, cats and dogs (Blaser, 1997).
C. lari and C. colr are recognised as important zoonotic pathogens, but C. jejuni is one of the
most familiar, with most infections thought to be caused by food poisoning (Blaser, 1997). In
addition, Campylobacter infections in cattle and sheep can have reproductive implications

(Thompson et al., 1988). In developed and industrialized countries, pathogenic strains of
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Campylobacter are thought to be one of the main causes of enteric illnesses in humans (Levin,
2007). Numerous studies have 1solated Campylobacter spp. from secondary environments such
as rivers (Bolton ef al., 1987) and coastal environments (Alonso & Alonso, 1993). Furthermore,
Salmonella and Campylobacter have been 1solated from shellfish, harvested for human
consumption posing a risk to human health (Bakr er al, 2011; Wilson & Moore, 1996). Despite
this, the monitoring of Salmonella and Campylobacter presence in bathing waters 1s not a
requirement of EU legislation. £. coli has been defined in the past as a good indicator of faecal
pollution, but its use for all ecosystems 1s under question (Desmarais er al, 2002). For example,
certain studies have shown that Sa/monella spp. can survive for longer in soil than £. coli (Temple
et al., 1980), and enterococci have been shown to survive as well as E. colf (Desmarais et al,
2002) and even for longer periods in sediments (Haller ef al, 2009). In addition, results from
the DNA fingerprinting of £. coli in beach sand indicated that some £. coli strains may have
become naturalised to the environment (Ishii et al, 2007). Furthermore, growing evidence
suggests that strains of FIB can proliferate in environmental waters independent of a host (Power
et al., 2005). Consequently, microorganisms derived from the GI tract of humans and other
animals enter terrestrial and aquatic natural environments where they have the potential to re-

enter the host and cause infection by a number of routes.

1.2 Transmission routes of pathogens in the catchment

Pathogens that are present in faecal matter can contaminate water bodies via a number of
point and non-point or “diffuse” sources. A point source of pollution occurs at one geographical
location, such as waste-water effluent entering the environment via a sewage outfall pipe. The
treatment of waste water 1s essential for protecting water resources, wildlife and public health.
The traditional solution to control the release of microbial contaminants from the release of
sewage effluent 1s addressed by sewage treatment plants (Kay ef al., 2008). However, many studies
have revealed that Faecal Bacteria (FB) can still enter the environment despite treatment (Loutit
& Lewis, 1985; Rittenberg et al., 1958). Furthermore, under heavy rainfall and storm conditions,
wastewater can be discharged into the sea untreated through combined sewer overflows (CSO’s)
(Passerat et al., 2011). In comparison, a diffuse source of pollution is the widespread input of
contaminants, a typical example 1s microbial contamination from agricultural runoff, particularly
from land where excreted waste 1s re-applied for crop cultivation (Topp et al., 2009). In addition,
many rural areas discard domestic wastewater through on-site septic tanks. These tanks are often

linked with drainage fields where soil adsorption filters out many potentially harmful substances
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such as bacteria and phosphates (Cheung & Venkitachalam, 2000), but surface and ground waters
can become polluted. Site inspections in North Carolina revealed that faulty septic tanks in highly
developed areas were a source of high faecal coliform counts found in surrounding estuarine
waters (Cahoon et al, 2006). A diffuse source of pollution is often much more difficult to
quantify. Furthermore, identifying the source of contaminants can be extremely problematic
compared to a point source of pollution (Meays ef al, 2004). In addition, extreme weather
conditions such as storms and floods can result in the increased transportation of contaminants
from the land to the sea (Wetz & Yoskowitz, 2013). As the transition point where rivers meet the
sea estuarine environments are particularly susceptible to pollution as they filter large proportions

of water from riverine inputs (GESAMP, 2001).

1.3 Socioeconomic impacts of microbial pollution in coastal waters

Estuarine and coastal environments are of major socioeconomic importance; these regions
not only provide areas of recreation, but also provide many resources for economic activities
(Costanza et al., 1998). Fisheries and aquaculture provide jobs for 0.5 million people in the EU,
and maritime tourism provides approximately 3 million jobs, which in 2005 resulted in a turnover
of €72 bilion (COM(2008) 534 final). It 1s estimated that 60% of the world’s population reside
i areas around the coast and this figure is set to increase, resulting in a rise in the interactions
between the ocean and humans. (Knap er al, 2002). Consequently, an increase in anthropogenic
activities exerts environmental pressures on these coastal environments. Furthermore, climate
observations have recorded an increase in extreme weather conditions over recent years which
further 1mpacts upon the health of coastal systems (Wetz & Yoskowitz, 2013). Faecal
contamination of environmental waters can therefore have significant negative impacts on human

health, causing problems on a world wide scale.

1.4 Infection relating to bacterial contamination of seafood

Seafood 1s an important food source for many parts of the world and represents a major
source of protein for over two billion people (FAO, 1999). Estuarine filter feeding shellfish such
as mussels, scallops and oysters are especially susceptible to bacterial contamination if grown
sewage contaminated waters (Bakr er al, 2011). Eating shellfish that are harvested from polluted
waters can cause human infectious diseases (Wittman & Flick, 1995). Every year over 800 million

meals are consumed that potentially consist of contaminated shellfish and other sea foods
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(Shuval, 2008). In addition, over 4 million people are estimated to be infected with the potential
debilitating or even lethal hepatiis A and E (HAV/ HEV) every year from eating contaminated
shellfish (Shuval, 2003).

‘Whilst not a genus of bacteria originating from the gut, Vibrio spp. are ubiquitous in aquatic
environments. They belong to the phylum Proteobacteria and are Gram-negative facultative
anaerobes (Oliver et al,, 1983). They are commonly found in marine environments, particularly
brackish and estuarine waters (Singleton et al, 1982). Several Vibrio spp. cause disease in
humans, however, the most important are V. vulnificus, V. parahacmolyticus and V. cholerae
(Gopal et al., 2005). V. vulnificus can cause septicacmia which can be fatal (Howard & Bennett,
1993), V. parahaemolyticus is mainly responsible for mild gastroenteritis (Danels er al., 2000),
whilst V. cholerae can cause acute gastrointestinal infection which can to lead to death if left
untreated (Heidelberg er al, 2000). V. cholerae has been responsible for several pandemics
throughout the 19th and 20th Centuries resulting in high mortality rates (Dziejman et al., 2002).
Approximately 200 serotypes of V. cholerae are known but only two types 01 and 0139 are
thought to relate to “true” cholera, with most cases of infection thought to be brought on by eating

contaminated sea foods (Cabral, 2010).

1.5 Factors affecting pathogen survival in water

The survival of FIB can vary between bacterial types and can differ among different water
bodies (Anderson et al., 2005). For example, in coastal waters, salinity plays an important role in
survival; 1t has been shown that FIB survival 1s lower in high salinities and hight also has a
deleterious effect, especially when combined with a high salinity content (Bordalo et al., 2002).
It has been suggested that the survival of FIB 1s determined by the amount of exposure to
sunlight, but n freshwater bodies FIB are more resistant to the effects of UV than in seawater
(Fujioka et al., 1981) and thus should be taken into consideration when setting the criteria for
water quality measures. The lack of nutrients has also been reported several times as a limiting
factor on the survival of allochthonous bacteria in environmental waters (Barcina et al, 1997;
Hendricks, 1972), but certain water bodies will be susceptible to regular deposits of nutrients
such as nearshore waters from ground water runoff, which will aid in the persistence of FIB
concentrations (Boehm er al, 2009). Predation by protozoa and competition are also factors

affecting their survival rates in environmental waters (Korhonen & Martikainen, 1991).

1.6 Factors affecting pathogen survival in sediments
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The survival of FIB within an environment 1s controlled by the interactions of a complex
combination of physical, chemical and biological parameters. For sediments, previous studies
have demonstrated that nutrient availability (Haller et al., 2009), organic matter content (Pote et
al., 2009), sediment grain size ( Haller er al., 2009; Howell er al, 1996), clay content (Burton et
al., 1987), heavy metal content (Jones, 1964), predation by protozoa (Davies ef al., 1995; Garcia-
Lara et al., 1991; Enzinger & Cooper, 1976), competition with other microorganisms (Marino &
Gannon, 1991), temperature (Pote et al., 2009), salinity, sunlight intensity (Pommepuy et al.,
1992; Davies & Evison, 1991) and seasonal variation (Faust ef al, 1975) can all influence the
survival and persistence of FIB. It 1s now largely accepted that sediments may provide favourable
conditions for bacteria to survive and grow (Chandran er al, 2011; Craig et al., 2004; Burton e
al., 1987; LaLiberte & Grimes, 1982). Comparative studies have led to the conclusion that
survival of FIB 1s greater in sediments compared to the water column (Sherer et al., 1992; Shiaris
et al., 1987; Hood & Ness, 1982; Grimes, 1975), which can be attributed to the higher organic
content (Craig et al., 2004; Gerba & Mcl.eod, 1976). Stephenson and Rychert, (1982) evaluated
bottom sediments in six streams and found that concentrations of £. coli were as much as 760-
fold greater than that of k. coli concentrations in the overlying water. It was also proposed that
organic matter content had a significant impact on survival. Faecal coliform (FC) concentrations
were evaluated in the sediments and the overlying waters of a freshwater environment,
demonstrating that FC concentrations were 100-fold greater in the mud (Van Donsel &
Geldreich, 1971). Faust et al., (1975) performed in situ experiments to investigate the physical
parameters effecting the survival of K. coli in estuarine water, revealing that persistence varied
with the season and salinity concentrations, and survival was extended with the addition of
montmorillonite. It was also proposed that the most important factor influencing the survival of
E. coli was temperature, with low temperatures prolonging existence. Montmorillonite (a group
of minerals that form a clay) 1s usually a large component of estuarine sediments, it has been
suggested that 1t provides L. coli and possibly other faecal bacteria protection against
bacteriophage attack in saline conditions (Roper & Marshall, 1974). In addition, Ghoul et al.,
(1990) suggested that the uptake of osmoprotecting substances such as betaines from the
sediment helped alleviate the deleterious effects of saline waters, but also recommended that

further in situ studies should be undertaken to confirm this.

1.7 Sedimentary processes in an estuarine environment
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The weathering and erosion of rocks, soil and riverbanks result in the formation of sediments
mn the natural environment (Malham er al, 2014). In additton, human activities such as
agriculture, forestry operations and road construction can impact on soil and river bank erosion
leading to increased levels of sediment in rivers and streams (Wood & Armitage, 1997). Sediment
grain size can range from < 4 um (clay), to 2000 um (very coarse sand) up to large boulders.
Estuaries provide a channel for the transportation of sediments from rivers to the sea, as
sediments move towards the sea, the continued deposition and resuspension influences grain
size distribution (Dyer, 1995). The larger sediment particles can become deposited on the river
channels, whilst the finer particles are transported towards the estuary (Dyer, 1995). Most tide-
dominated estuaries are often funnel shaped and comprise large areas of fine-grained sediments
which results in the constant mixing of suspended particles from both the rivers and the sea
(wells, 1995). In addition, extreme weather conditions such as storms can have a significant

mmpact on sediment formation, transport and resuspension (Liu & Huang, 2009).

1.8 Methods for the detection of FIB in recreational water and regulatory standards

1.8.1 Water quality legislation requirements

The Revised Bathing Water directive (2006/7/EC) (E.C. 2006) implemented through the
Water Framework Directive (2000/60/EC) (E.C. 2000) states that based on a 90 percentile-
evaluation, F. coli concentrations in water measured in any one assessment period should not
exceed 500 CFU/100 ml to be classified as ‘good’ or ‘sufficient’” quality in transitional and coastal
waters. However, for a classification of ‘excellent’ the percentile values should be no more than
250 CFU/100 ml. Concentrations of mtestinal enterococci are also measured, with a imit of 100
CFU/100 ml to be classified as ‘excellent’ and a limit of 200 CFU/100 ml for ‘good’ quality.
Bacterial abundance 1s measured in water samples only, and counts are determined by a
cultivation-based assay on a selective microbiological medium. However, the directive does not
monitor the levels of other potentially harmful groups such as Salmonella or Campylobacter and

does not consider FIB concentrations in sediments.

1.8.2 Culture-based microbiological enumeration methods

Microorgansims exist in significant numbers and as members of complex communities.

Consequently, determining the structure and function of these communities 1s not an easy task
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(Fuhrman, 2009). The main difference between monitoring FIB levels in water samples and
sediment samples 1s the need to efficiently dislodge, separate and extract the microorganisms
from the sediment particles. Twenty two methods to extract FIB from sand were evaluated by
Boehm et al, (2009), the highest FIB recovery obtained by hand shaking the sand in a solution
of phosphate-buffered saline or deionized water (1:10 w/v) for 2 minutes, allowing to settle for
30 seconds and included a rinse step. The results, however, were based on sand and it was
suggested that for sediments which have a higher silt and clay content a more rigorous form of
extraction method may be more effective (Boehm er al., 2009). Craig et al., (2002) found that
when compared with hand shaking or using sonication methods, the sonication bath was the most
effective form of FIB extraction from sand, when mixed with 0.19% peptone water but when
sediments with a higher content of silt and clay were tested, the most appropriate method was to
hand shake the sediment and eluent for one minute. However, Epstein & Rossel, (1995) found
that the best form for recovering bacteria from sand was to use an ultrasonic probe, but the
efficiency of the method was determined by sample size. Boenigk, (2004) suggested that for
sediments with a higher clay content a harsher mechanical treatment would be required to
separate the bacteria from the sediment, which could often result in cell damage and so proposed
a method which involved chemical disintegration of silicates using hydrofluoric acid, this reduced
sediment particles and allowed for a gentle sonication procedure to follow. It would seem that
the most effective form of CFU extraction depends on the composition and characteristics of the
sediment, and it 1s therefore essential to use the most effective method to give an accurate result
of FIB enumeration.

All of the above techniques have been used for enumeration by classic culture-based
methods, which were first introduced i the 1800s and are still widely used today. These methods
usually involve the cultivation of bacteria either on selective or non-selective media or in broth,
followed by enumeration and possible further identification analysis of presumptive colonies.
The introduction of chromogenic and flourogenic substrates which detect specific enzymatic
activity and create a colour or light reaction allows for increased sensitivity and a faster detection
without the need for further biochemical testing (Perry & Freydiere 2007). Membrane filtration
1s a common method used to detect bacterial cells in water, the membrane pores retain the
bacteral cells as water 1s filtered through, this can then be used m culture-based methods.
Culture-based methods remain to be a time consuming and labour intensive exercise due to the
long incubation periods required for cell growth. It 1s also well established that many pathogens
and non-pathogenic bacteria can enter mnto a metabolically dormant state when exposed to

adverse environmental conditions, when in this dormant state they are Viable but non-culturable
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(VBNC) on routine bacteriological laboratory media (Oliver, 2005). Where bacterial counts are
low, an enrichment broth can be used to stimulate growth so detection can be possible, but this
step will eliminate any possible quantitative results and only provides information on presence
or absence (Ibekwe er al, 2002). The presence of VBNC cells can have public health
consequences 1f they remain undetected by the routine monitoring of bathing and shellfish

harvesting waters.

1.8.3 Molecular-based techniques used to detect and quantify FIB in environmental samples

Classical culture-based methods are limited by their inability to detect VNBC cells. However,
modern molecular biological techniques allow for a more rapid detection of FIB with more
accurate results (Jasson er al, 2010; Hewson & Fuhrman, 2006). Many of these new processes
are based on utilising the amplified nucleic acids that result from the Polymerase Chain Reaction
(PCR), but often the extraction and purification of DNA from a sample can be the limiting factors
i such methods (Jackson er al., 1997). This 1s especially true for marine sediments, as quite often
these sediments may exhibit a high percentage of organic matter, heavy metals and organic
pollutants, all of which interfere with the recovery of Deoxyribonucleic Acid (DNA) and when
co-extracted with DNA inhibit PCR. Extraction of DNA from soils and sediments often relies
upon commercial kits and can be achieved by either direct lysis of the cells within the matrix or
by recovering the cells prior to cell lysis. Left et al, (1995) compared three different DNA
extraction methods that mcorporated cell lysis within the sediments and cell lysis following
removal from the sediments. DNA yield and purity varied significantly between methods but the
method shown to yield the most DNA from soils and sediments was direct lysis. However direct
lysis 1s more likely to extract PCR inhibitors along with the DNA and may also include DNA
from other sources, for example dead and decaying cells (Steffan er al, 1988). In another study,
four direct lysis methods to extract DNA from three different soil types and one marine sediment
were compared. The two most successful methods incorporated a bead beating step but only
one yielded enough DNA from the sediment sample to allow visualisation on an agarose gel,
idicating that the characteristics of the soil or sediment type has a considerable influence on the
results (Carrigg et al., 2007). Methods currently used to extract DNA vary extensively with varying
results and often mclude several purification steps.

Once the DNA has been extracted and purified, the PCR method can be used to amplify a
target sequence by a thermal cycling process that first denatures the DNA strands, followed by

annealing and extension of the added primers, facilitated by a polymerase enzyme. This 1s

30



repeated 1 a thermocycler which results in an increased number of copies of the target sequence
(Leonard et al,, 2003). The PCR amplification product can then be detected and analysed by gel
electrophoresis, nucleic acid probes or by hybridization. PCR has the advantage of being rapid
and accurate with high specificity and sensitivity. It can even detect very low numbers of microbes
i a given sample and it has been used to detect specific genes in numerous substances such as
food (Elizaquivel ef al., 2012), seawater and freshwater (Shanks et al, 2011; Haugland et al,
2005), soil (Hoppener-Ogawa et al., 2007) and sediments (Liao et al, 2011). In addition, the
PCR method has the added advantage of being able to detect actual pathogens.

Pathogenic bacteria have the ability to cause intestinal and extraintestinal disease by
means of a varied combination of virulence factors such as toxins, invasins and adhesins (Hacker
et al., 1997). The genome of pathogenic bacteria can contain regions known as pathogenicity-
associated islands (PAIs). These regions carry functional virulence genes that can be detected by
PCR. In addition, virulence factors are often encoded by genes that are present on mobile genetic
components such as bacteriophages and plasmids, thus enabling the transference of virulence
between bacteria (Hacker et al,, 1997).

Numerous variations of PCR exist, but the main disadvantage to conventional end-point
PCR 1s that it cannot distinguish between dead or live cells, as it utilises DNA. Reverse
Transcriptase-Polymerase Chain Reaction (RT-PCR) aims to overcome this problem by utilising
RNA instead of DNA, thus results are more representative of living cells by only detecting live
cells (Yaron & Matthews, 2002). First strand cDNA can be synthesised using the RNA as a
template and then amplified. Real-Time quantitative PCR (QPCR) which uses fluorescence to
monitor the synthesis of the PCR product in real ime allows a quantitative result which can be
related back to the number of bacterial cells within a sample (Heid er al., 1996) and multiplex
PCR can simultaneously detect several different target genes ( Jofre et al., 2005; Ibekwe et al.,
2002).
1.9 The Conwy catchment

The Conwy Estuary, North Wales, UK, 1s an extremely important and productive estuary
that provides areas for recreation, food and jobs. It supports a commercial shellfish bed that
generates a local annual income of approximately £270,000. In addition, the Conwy estuary
mmpacts on blue flag beaches that attract thousands of tourists every year. A decline m the
microbial water quality of the Conwy estuary could have significant ecological and economic
consequences as well as human health implications. The Conwy catchment covers approximately

300 km® and has a human population of ~ 112,000, with 89,000 living in close proximity to the
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coast (Thorn et al., 2011). The catchment also incorporates large mountainous areas, with a large
proportion utilised for extensive agriculture (Oliver er al, 2008). Consequently, the Conwy
estuary 1s susceptible to mputs of microbial pollution, particularly from the discharge of
wastewater effluent. In addition the geographical location of the Conwy catchment means the
area 1s prone to flooding which could add to the flow of microbial contaminants from the land
to the sea.

Much of the work for this thesis has been carried out using samples taken from the Conwy
estuary, as a reduction in microbial water quality of this area could have major ecological and
economic consequences. This thesis 1s part funded by Welsh Water Ltd who has a particular
mterest mn 1dentifying and accounting for any environmental implications associated with their

activities to provide clean, safe drinking water and the disposal of wastewater.

1.10 Aims and objectives of this thesis

Microbial contamination of environmental water can pose a significant risk to human
health, particularly in areas utilised for bathing, recreation and the harvesting of shellfish. As
anthropogenic activities increase, and an increase in extreme weather events contribute to the
transfer of faecal contaminants in to environmental waters, there 1s a necessity to fully understand
the complex interactions of faecal bacteria within the environment. Management strategies to
safeguard human health have included the implementation of legislative measures to monitor
water quality. For example the Revised Bathing Water directive (2006/7/EC) (E.C. 2006)
mmplemented through the Water Framework Directive (2000/60/EC) (E.C. 2000) details
measures to be applied for the monitoring of bathing waters. Subsequently, most of the previous
research has focused on the survival and persistence of FIB in the water column. It 1s only
recently that sediments have been recognised as a potential and important reservoir of FIB, thus
the interactions between FIB and their associated pathogens and sediments 1s currently under-
researched.

By using a suite of multi-disciphinary techniques this thesis focuses on addressing the
paucity of information regarding the imteractions between FIB and other potentially pathogenic
bacteria in sediments, in order to characterise the mechanisms that underpin the transport and
persistence of pathogens in the Conwy catchment. In addition, the abundance of aquatic Vibrio
spp. and culturable heterotrophic bacteria have been assessed in order to compare the
mteractions of the indigenous bacterial communities with the interactions of FIB communities

within sediments.
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The key objectives of the thesis are as follows:

I. To mvestigate the role of sediments as a reservoir for FIB and other potentially
pathogenic bacteria.

2. To examine the spatial ecology of FIB in relation to sediment composition (grain size
and organic matter content)

3. To mvestigate the influence of pomnt and diffuse pollution sources on the abundance of
FIB, other potential pathogens and the imdigenous microbial community in marine and
estuarine sediments

4. To mvestigate the abundance of FIB and human pathogenic bacteria in estuarine

sediments using both culture-based and molecular methods.
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5. To mvestigate the influence of suspended particulate matter (SPM) on the survival of FIB

in both fresh and brackish water.

This thesis 1s presented as a succession of manuscripts that are prepared for publication i peer
reviewed scientific journals. Each chapter in this thesis 1s linked by the key objectives detailed

above
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