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ABSTRACT 

The evolutIan of differences between adjacent populgtlom to 

studied using pcpulatiofs of &Odin Islam, and Atitl ka OdQ! MU l! 

at the boundary of cants natod Nine soil and normal pasture. The 

popdatians on the aims are tolerant whereas those on the pasture are 

nor-toles ant to his concentrations of heavy metals. 
This is considered as a situation that can thew light as the 

process of primary evolution. The tolerant and non-tolerant 

populatLons are in sufficient amity for then to e3whanae genes 
freely. Selection will be operating to eliminate un~ed typ" 
formed as a result of pis transfer. The pr luctton of unadaptod 

genotypes will produce pressures for factors limiting pone flow. 

And since genotypes from one habitat are entering the other habitat 

the genetic cams of colanisation can be studied. 
Studies rin natural populations are combined with studies using 

cOqPzter models. The main conclusion to emerge from these studies 

are as follows$ 

(a) ie situwti_cn in nature 
(i) Highly toles individuals can be soloctid fs man-tolerant 

poculatU= in a* o. aaration. 
(2) Selection for tolorome occurs is the early seedling stage. 
Soleatian is strong and has direction l and stabiliaing oa+- atiantýe. 
(3) There is coasideraUa population turvsr as sine soils. 
Talast populations are oars vegetative than noirtoleraJ* populati oos 
when orr, ýa as speaed plants. 
(4) Tolerant jwd non-tobst populations differ in now morphological 
characters. The" chat ter. form different ctlisal patterns across 
tea baumdaty. 
(5) Tolerant and rAnstola&at plants are cross compatible. 
(6) Tolerant sad na44eraat plants are partially isolated by a 
difference in their flowering tim.. The ditto is a result of 
"'Oct"*" har adaptation to local ecological conditions and selection 



for iý r king the bari*ful otrrats of gita glow. 

(7) Tolerant Plants harr a greater wlt u fertility than t tolorant. 
Them Is a nogativw relation betvag adding and dish, of tho 

tolerant population from the noartalorsnt populatfon: adfLag 

m be a tipp as an isolating i. s. 
(8) Metal tolera is itiheritod. 

(b) t 
(1) The cc .a of seed flow (uigmtioa - selection - eating) 
are diluent fron those of pollen flow (aipration - mating - 
solection). The latter is considered in detail. 
(2) Pollen flow maintain. a qwA in a population even it there is 

strong selection against that Cone. It increases the heteroaygosity 

of the pgeslation. 
(3) Pollen flow impo oa a genetic load on the population. 
(4) A gene for , sloop Cdr through a population of its ant 
accord and also wists the fixation of a favoured pens. 
(5) Setting oowmtýracta Pollen flow and reduces, the genetic load an 
the Population. 
(6) The e olutioes of dooineme, and oves is poesMe, under 
co dition, of pollen flow and selection. 
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Chapter I 

INTRODUCTION 



Introduction 

The unit of evolution is the population and it is within the 

population that we aast look for the weohanisis of evolution, 

Caa native morphology, ps1asontology or wen wqperiuental taxona y 

can provide only limited information about the factors which affect 

genetic chanos in populations azW het in species. These 

diaciplixaes while documenting the course of evolution and the 

conditict. under which it occurtsd" only provide problems for the 

population g. nsticist interested in the mechanisms of evolution. 
The investigation of different" within species is the first 

1 

stage in population studisa. It is a valuable approach that has 

lad to the rscogtition that spec Las am differentiated into cxsmeroua 
distinct populations and that thaulfte natural selection is an 

ubiquitous and important factors lkwev r, even though critical 

population comparisons distinguish the effects of the environment and 
the Qenotypeg they are little moats than an ectonsion of the method 

of caaparative morphology. They go little beyond Dasein in 

helping us to understand t 1w units of evolution and their detailed 

behaviour* 
A mors rwarding study is to look at the pia of genetic 

chanyo within populations over time. This has been fruitful in 

helping to recognise different types of selection and their different 

cansequemoes. A detailed study of such changeas the comparison 

of the young populations before selection with the parent populations 

after solectiong and a study of genetic polyaorphisra, has: led to the 

realisation that the selection pressures which cast be operating in 

natural populations may often to very severs. The importance 

of brooding systras in plaotsg the reaction of an orb to its 
eavirosussºt " pens expressioag and aaM other p Gina have been 
brought into relation with natural selection through the study of 
duaVex within populations. Woilc on natural populations is however 

cotton slaw and difficult, but considerable help has been obtained by 

using experimental populations and mathematical and computer models. 
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Al a result of them studies natural selection is no longer a 
poorly doc nted phýamstýan. 

Dut them is e third anale of attack on evolution in natural 

populations which has received rms (ably little attentions this is 

population differentiation war short distances. This is the 

subject of the thesis. Although it may seen a rather obscure 

and arbitrary topic for study it is important for two sons. 

Until a few years ago population differentiation over short 

distances vae thought to be impossible, and den first noticod was 

quite unexpected. It had boon thought that populations only a short 
distance apart could not remain distinct because they would interbreed 

and thereby tu l the diftorontiating affects of natural selection. 
If auch populations can be different than the initial premises about 
interbreeding and selection sauet be false. This alone would justify 

the inveatißation. 
flat them in more to the problem than this. hero is a situation 

which can throw light on the whole process of primary evolution. 

'o can consider that there are two genetically distinct populations 

which are in sufficient proximity for them to exchange genes more 

or less freely. Selection must be operating to eliminate the 

unadapted typos that are continually being formed an a result of Cone 

transfer. The effect of gone transfer will nevertheless be to 

change the gemticrd are'dtecture of the populaitiass, end Lu4ntsin 

their variability. The production of cwadapted genotypes will 

pr*duce prrSsurss for factors limiting gm flow and pramotin© 

speciatton. 
In adjacent populations gonotyper trove an® habitat are continually 

entering the other habitat and the genetic coneequences of 
colonisation can be studied. 

The study of changes within populations provides information 

about the piss of directional evolution, whereas situation s at the 
boundary of two populations throw light on branching and es, an; ivo 

evolution, Recently san's activities have disturbed natural habitats 
e borsously$ this suggests that empansive evolution may be a 
widespread P"Cess at the present time, and therefore of practical 



3 
Introduction 

consequence. Since the origin of major taxes has been quickly 
followed by expansive evolution in newly available adaptive zones, it is 

a very isportant process from a more general standpoLnt. 

For such a study it is necessary to have populations that are 

very distinct yet which are still in sufficient proximity to exchange 

Oon"s Such populations are to be expected wherever there is a 

sharp habitat ch; ngev such as from cliff to cliff-top pasture, from 

grazed to ut razod pasture, between soils of different p11, between 

water and land, and so on. The discrete habitats chosen for this 

study were soils conteminated with large quantities of heavy 

metals as a result of tipping fr old mine workings. The boundary 

between the contaminated wine soil and the normal pasture is often 

very sharp, the intermediate zone being usually only a few feet vice. 

Several species which grow on sine soil also occur in the adjacent 

pasture. Many mine soil plants have been shown to be tolerant to 

high las of mortal, whereas pasture plants are intolerant and 

die if planted into toxic soil. Because this character sensed 

reasonably clear cut, it wax chosen for particular study. 

Metal tolerance is an important character which has received 

auch attention. But the air of this study has been to elucidate 

evolutionery nism, using metal tolerance as a modal, so little 

attention has been paid to tolerance M me To not the background 

a general review of work on metal tolerance has been included in 

Appendix 1. 

Because closely adjacent populations have rarely been studied in 

great detaile nags of the probleas associated with such populations 

remain undefined. This thesis is a survey of the types of problem 
that might be acted, rather than a detailed investigation into 

any one particular feature. The situation in nature is coomplexj 
and therefore practical investigatio s have been carried out in 

conjunction with theoretical studies using computer models. The 

practical study has been concentrated on two contrasting mines with 
two species, the grasses Agj: his terris and A, ýnýtýt r rthu ochs tun* 
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The results from orte axple cis be an accident or peculiar to the 

Opocios or t LO tiino. But two oso pl es. if they show the same things 

point more clearly to general evolution ary situations. The 

co.. putur study has used iodoln develcpod largely with the results 

of the practical investigation in minds it is hoped to show how 

the study of n&tural populations points to new situations amenable 
to iathmeuatical and ca rter treatment. Until recently ecological 

Qonotics has bee the handmaiden of tax= r, and population 

g Lice has been the e cutivo of mathematical theories. But 
t azo approachoa together can show that evolution as a pl ttan 

of natural populations can be a di r ci +lina in its own right. 
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The two minas chosen for the gain part of this study differ In 

znenr as respects and are contrasted in tabular for. (Table 1). 

However they b the following in commma 
(a) A sharp boundary between contaiaated and non-cýaat ixrtt+rýi areas 

with a email interasdiats saw only about three tit Wicht. 
(b) A diffs in the toles of the populations that closely 

follows the pattern of contasiaation (Putwaia, 19631 %dWIlys 1965). 

(a) The possibility of gaw flow between the populations. 
The other ais*a used ißt this study or. iliad in Appendix 3. 

Tim species studied an Trsl ogan mine was A odor t Lot 

west Vernal Grass. Plants win collected from eight positions an 

a transact across the bound"7 of the rims (a.. Figs. 10 2e. and 
ftentimpioa). Frrob site was sm led lima an area cpprozi eteiy 
five yards vide, and two yards loo. The sites on the sins were 4%% 

an area of lam griadiag which shoved evidemee, of having been, 

ro-wo red s the soil therefore probably ease frag this period of 

reverting, 1873-1898 (see Table 1). The sites oft the aim scam 

fro a rough� lightly and sporadically grazed postum 
The species studied at Dm 1-Coed sins was hoes is tee liibtA. , 

Cosmos Hont Grass. Plant. mer s collected ugath fron eight positions 

acrws the boundary of the mL (see Fig. We The trisect used 

res the a me, as that at 1ie$Milly (1965) *=w t that an extra position 

at both oxtrouLtios was 1* faded. The pleats an the +aiso cons fron 

a silty area of griaclia with a vwy high water table. The plonts 

fras the pasture c : 3e ftvn a rod. y hillside with a very, thin soil 
le'a' that carri s an upland panturs. 

The i lltLYLdwd sites stoop the ttatmecta could be tez sd s grata 
populations but the tau population gill be rstricted to the tolerant 

and daepAoleraot types either side of the rain bauz tom. When t 

two populations are being dared as a whole, the bwndary site 
tam 5 at Tndegsn and s *beor 6 at D rws-fir-Coed) is not is ludsd 
In the im '. rieao. 



Table 1. Comparison of general features of the 

Trelogan and Drws-y-Coed mines. 

Trelogan mine Urws-y-coed mine 

Locution 

Grid reference 

Situation 

Rainfall 

p11 of soil 

Metal content Zn 
Pb 
Cu 

Vegetation 

Trelogan, Flintshire. Drwa-y-coed, near 
Rhyd-ddu, Caernarvon- 

shire. 

SJ123805 SH542535 
Very exposed, near At bottom of a steep 
sea, area of open aided west facing valley. 

pastures. Winds Winds blow up the valley. 

westerly. 

30-35 ins 80-100 ins 

6.1 - 7.6 4.2 

24,000-80,000 280 
2,600-3, ä0U 100 
100-500 2,600 

Anthoxenthuw odoratum" Agrostis tenuis"" 
Festuca ovine Festuca ovine 
Agrostis tenuis" Rumex acetosa*" 
Agrostis stolonifera" Galium hercynicum 
Agrostis tenuis a. (**Have shown to be 

stolonifera" tolerant to copper). 
Rex acetosa" 
Minuartia vorne 
and towards edge of 
mine and areas of 
lesser contamination 
Euphrasia sp. 
Plantago lanceolata" 
Viola lutea 
Cerastium ap. 
(" Have shown to be 

tolerant to zinc). 

(from Smith, 19 1) (from Dewey and Eastwood, 

1925) 

1848 1855 

1859-1873 1855-1909 
2,594 tons Pb ore 8,696 tons of Cu ore 
7,542 tons Zn ore 

1873-1898 
Sporadic reworking of 
old waste heaps 

1898-1909 
2,400 tons Pb ore 
15,346 tons Zn ore 

. 



Fig. la. Map of Trelogan Mine to shown position of transect. 
(Scale 1 in. : 100 yda. ) 

N 

100 k. N 

-S""., ,/ 

. .... Y Old Shaft 

-- ,:. , ý. 
ýýýýýýuýi. ýý 

.ý. 

8 

Fig. lb. Photograph of the mine-pasture boundary at Trelogan. 
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Fig. 2a. The Trelogan transect (Anthoxanthum). 

mine contaminated pasture pasture 

V 

transect 12345678 
sites 

distances between 60 65 2010 35 50 60 

sites (in ft. )* 

Fig. 2b. The Urwe-y-Coed transect (Aflrostis). 

mine contaminated pasture pasture 

transect 1234567$ 
sites ((IIIIII 

distances between 40 20 :0 1510 30 45 

sites (in ft. )* 

contaminated region 

" distances given are those between the centre of sites. 
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2. us ! WII or rýtr wcs 
Imu. to the t, rtiwt 0 t. 1 c. hwe twacwed 

cloddy tham at . 1lowitt (19 . anomy (1965) and l isilly (1966) 

ard ihrs a rimem of root firth In vst (or sits =trim* 

solution)' With the - riot Urtb in now solution. Wb r both 

tolarmat al now 64mmut Iz*UvL l1a tart rd&ily in va is rw tb. 

sotai solution iddbits the matins of ter -W u, mnk, f not that 

of loin (Iis. 3). 

Aftk 
plate of the gsiotypsr to be tested wor* pet s simvlo 

tillers or swell plaatr Into bmft of J da inn figs. I psttIii t sad 
allowed to drat fir "Waft In awam 1puffilix-"" with ou"lemmutary 
11 0" to praside a 16 Irr. 4 WIN lux period of pxvudtwo was 

iai bath to st mt li na riss god also to pit ' w*ifars 
bmltbr tills1se. The pleats ow "thou alit vp into Judi IAaai 
tillers Stow r the rams were semaved# and 00 Utlars were VIA" A 
is the date . mutleer. Cslci*. i st. (0.3 psa/litre) we. 
added to both metal sehn ate ratter kretanot. to better 

no t º11 we" /'1Ql0 'tad" in the 10INUAW by ßlssi eia 

3.5 i. 1i mot with mL* l dam' of 4m' simmooded trm 

elobox Wow v1 ) tea. 8m11 Arta at aerial were tested 
#S1 pWý 11oomrsi : ty / psi basbor Were "Bodo I. =" 

mom mu at aatýiw von toorw in aqu s poi a boots or ! fit 
! sr -s at aörd vsiap, larow oobnt ts atitfumrä with 0.23 , 
squore, xtr4w at palystyr " This -'4.4 360 tillers to be tested 
in air ts and raved the a iwid kb-- lemur Involved in d ia@ 
ýoluti«r. In both awkwat sotatlaar were, e ped overa two dew** 
and ten d wo were afawd for each test. Twenty tills m at emob 

wt' s pled in water and the sr in artel sale time 
no laic of tourm* ras cýiaulatýr4 as " 

told= of te3. r e. iffe at 1 rent is mw m1utis x 100 

lb. lavsla of NOW u.. 4 n. M than dwwm by ) illy (19(06) 
and GnV y 41960 an Ui. beams of rmtIft tarts own a r=p of 



Fig* 39 Isvtia0 at tiller of t*lw a* (let) 
(riet) äi OGPPw . alntiwa 
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T. .. I lOi. rsnc. tut3*p 
-, 

conceatraticss - coppor (as iniphato) 0.5 pm., sine (as sulphate) 

15 p. " lead (as nitrate) 12 ppa. 

(b) 'd M 
Although Seedling tests have mt yet bean used extensively in 

this isw. stigation, attempts xw waft to flop a seedling test 

still stapler than that devised by )4cNsilly (1965) in order to 

facilitate the screening of me-tolerant populations for tolerant 

iiidlvid o and to tost large abors of aNdli' gx resulting fron 
Crß. 

The method used by )IcNoilly involved 'sawing' seed on tins 

t 't n mesh touching the surface of a solution contained its a 

plastic baker. TM need was allowed to germinate and then growth 

rate of the root in water aalt growth rate in metal solution measured 

on a single arming. The ratio of the two gates gay, an indoor of 
tobt this correlated well with the tole sari of the we 

venwtypo tested as an adult. 
fiver this technique involved the necessity of 

(a) identifying and labelling 3Adivieiwl seodlin" 
(b) asking mal aýuaur-eiita an ich seedling to oat an index 
(a) )ci ling the seedlings while they were still growing. 
To eliminate these difficulties the Sk %ft root growth of wins 

and man-aim seedlings in different metal solutions was examitwd. 
Seedlings were sargt e s1aa mesh and length of the la st root 

uan'ad after three veaks. 
? be method distinguished clearly between tolerant and 

«tolerant Tation (Pig . 4) but when the lWouth distribution Is 

plotted (Fig. ßb) it to soan, that a very large Imoportioa of saedli r, 
altb000 they OM'ainato mad produce a shoot� do not show std 
appreciable root growth, clean Than copper - is not prae'lt. 

To investipata this fortbar, : m- tolararnt seedlings wore grow 
nadir the following conditiaar 
(a) Cold water (20°C instead of 2? C) 
(b) Aeration 



Fig. 4a. Response of tolerant and non-tolerant seedlings to 

copper. 

non-tolerant population 
ý` -- tolerant population 

" tolerant x non-tolerant cross 
2t 

14 1O \ 

0.01 0.05 0.1 0.25 0.5 1.0 

copper concentration (ppm) 

Fig. º'b. Root length distributions of tolerant and non-tolerant 
seedlings. 
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Techniques i tcissaacs-t.. tinp 

(c) h dl autrL t Attica 
(d) sand calbua 

Gdwih a tt4l matrimt salmtLe ai growsz at 20°C1 and gzwthp the 
! va amd i resod the a t&os* Of rootix . 
This tsawL u. gras used to tr, and deut tales s Zia s 

tram .1 gzt ati ns (art Chipt. r III. l. b). rr this 
ywpau a aodil iaº vu developed to test a1 mbar of 
meodliags. j/1180 a- vu str*t . over lang xticow_ n sl. r holders 

wad of 1/'40 %t 1/4" ysiyrtY4rrpeýr , Trip.. ilea. tit fo rd 
W Nam of pal nstyra teas sir in plawtia to** 4,184v* the 
avlutia , The few strips v are usted In miss DD that the 
voight at the bmalden :$ the w1an just **meh the wahre and be 
held than by surtaaa giro. This mtWm tad the sddsd ntage 
that ajir bidibl did wt ft m botmm the MICS. Omb sad the aoluliae, 
aid thWo ehr no äße of the rlcm ss&s isvia *I* solution as 
a malt of iv tlaM. 



$in e+ý.. e. ýr g 

3» co $ AXr w MW a 
8o that 'fasts at diftWaA tlasr +em1d be toopwrod with 

t ! loses a sv"i4 coastatt -- paar rosa t CkWAMW was ccastruatod. 
All the tea st adults .M seadlingf 11as QarrUd oat is this 

Chime'. 

A diawcot at the tea' aholdai relevant details its am is 

Five S. the lwy vM of the raw is wMaa the duok me, was 
housed was kept eta t at ao°c by wasm of a ton and boater vottim 

alten tivelt via " Isis r Witeb. ma air Swaim the I"dkt- was 
thereto" at a omastant trporsluz . MIS Utica sad b ek e's Us" 
for t4nvma tsstim wxs plaosd In the water bath whith was kit 

at 2 0C. ma saaotant roams , the uniform coal" Ot 
the li ma (with bet air *set" to the M*aids), and thsessrlatsd 

water bath assured that the taq at in vbLeb the plan" vets 

Qs W did not fl rt wies then O or two dognieso 

The Watet` bath Md lilts vW* + N1staly saoi rd, so that 

All the 11göcti*I was artificial aed t erefam wan st affected by 
di l Md asasasmi thous. Beta Wart aapiratsd ft m 
the v brAb by p plates. This C le" walortt- of the 

rater bah else dared a bi I idity fsv bli for `Dellte 
of the ttlles. 

The 1ißt iSLOW, iti at klart 1SVVI was 29300 toot mat and 
as piks wu kwt 10M ' catImO ss Lila fit. 



Fig. 5. The constant enviroment chamber. 
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pCp4*tiaas tol. rxnt r mal psatnts 
powati« are not, we iru t m+. s that Natural , nol. atto * My 

-cturr+. d to came this ditt*mvm.. l i1lr (l96) has produa*d 

. *t4ais tar VW7 pa++u-Ad 04oction pa'o. rý $Z's$ raintail%inQ tc4wvwm 

in aim pc utatices" Indeed it tja-to1arost mood is an an aims 

soils Lt dies » x4astioa press ss oust be wry hL i. 31wortbolwr 
tA cts of thq pgvve" at solcotim at alms remain 

ti ä. TM foilavino acts wer thwet e. investigated. 
!. Sid of o4wtiaeu is the *ratatiaa of highly tarnt tIpm 

l or can it oooýur va l rapidly? SZ. Tian and intensity at 

selsatians at w but uta" is the cite Cycle doss selection for tolrra 

emus and wbat is the intensity of selection? 1. Imsg. ºity: dross 

the langsvity of playa in l- ai 0e the pOttSrn at genetic , what 
is the pep dates twnwws and do the toYt and zsoo-tol. aratt 

ponlati m differ is this r. spsct? 4* Cbsnpst in wociated 

charaat t am gins plants differ at from normal plants ißt t twcters 
+O' hw thmt1? 

19 Jsa or 312=10N 
Mt . uph m. lutiow has tea ply mar mill iar of narr j 

r isatim am PCO&MG rapid eh&apss is populatiaas. This has Dot 

*opsºtrd1y at&am in . moires. Tº patevtial variability 

ssrtil+ýLlý tar selettias that resides in an aýºt di' ilitail" 
population äßa ban ab n by Coopsr (1959.19U) ,g what' selection for 
data of ear as gs oº. in s redowd trpsa well ait. ide the respe 

of the arigiasl varieties in less than three 9momm-aticas* 
it tb&etoes surd self to histe, the speed with th 

now t. 1 could be evolved. It it in that natmst onteram 
of metal a» po o&» arotad Mfficta as natural wpslattm (Hi11s 

. Jr* IM) 0 my aº oft aam Miau In ttr North wal« atwt them 
to «idm» that tta ve» vorkad dis by trod thr a wfaco (0604 

Cm Dydw* ? IMI . Dddgdrrt9 , ffld tel. 89 47X03). 

w_ _Ua1 
that ht i . tail a -an a aratiaas 000'w **turallr in mw 

arena. ll t teem aºtu nac. outcrops, wsW w *ino can be tr i 
b a* to prehistoric tlr (Cisat, 1952, pp. 183-99), and thaw is 
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eM doaoe that the Sommm mast tar ovum at Para Mountains )nDl.. 7, 
Gans for to&. -mom I ea, dd ti= tore have be= . stabli hed 

for a 1400 UAW in notural pc pulations. 
Zo wein flust of 12401 activity war in the early sad middle 

part of the einet tlh century, wird although the populations 

graving on dauta meted spoil br is are mostly less than a taco d 

years old, the genes rarpwribl" for the a4aptation wer vali bow 
been selected earlier. 

Hwwww r, it is difficult to see that this would be the amse 
in the 8 weam n Yailiqº ores. The contarinat. d tips in this area are 
maxis of we width boa been oterilised during smelting, and tim is 

no evidence of arc drposits or metal mining is this area. ft e tip. 

am vary tondo to corgi plant growth (Sparklo. and Cars, 1962) and 
Yet P"MIA"am of ARM LS stolar; it+ýra can be found graving on theca 

which have been . hove to have a hi ar sine tact than VAWMI 
pasture p atims (G eß'7 and thradahowg 1965). The smeitinp 
of metal a is the sommes area first boom in 1717 And extensive 
spoil Aeqe asst already harnt best pew by the and of the century 

sloe in i814 the Nmnt-Mw4-y-Yilwia wodca wirr built to extract 
qip r and iron from slag left bfr prowlaux werd O parke and Carr, 

19"L O it therm os e seers that m tal tolerance in this area bas 
developed within the last I L30 years. 

lnn vs mid wwolutim is suggested by the work of 9maydon 
(1965) who aha d that populations of ]tistaca + ºiM and &ENdig 

mummina dir ctiyr murr pa vania d tenting 2a signitieantly 
biphW sine toi than those in the sanvuadinq pasture. ? be 
las were first erected in 1936 is the course of an ecological 
art and therefore the toles had developed within the last 
30 7e r$. 

in spite of the" long term estimte. it Mr r quite likely 
that toler. iias nimmt be evolved much moor. rspidiy, Indeed In on. 
generation. Several system were therefore designed to look 

at this. 
(a) W&UR&M adjoes 

to order to lock at the process of selecrtion, plots of co r 
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oastspinºtsd .s tod soil were set up at the wwwinm ital 
station, fir. Tract artificial min" had oral d1momtoas of 
6 ft x3 ft and consisted of polythene l thsd pits i f"t 6 Im dMp 
in vhicmt the soil typet wrco put* The c týrsisýºtýaf soil can pica 
Fs2rs Mo sin, , Iatsss , and the Ewa-coat-isatsd soil ras a 
fertile low. both soils wer s atom st riltard to rake a'u that 
no sasdi survived. 

In $ptm*wo 1969 tin of CIA . Mrs (egvi al«, t to 
about 170, (00 mmpk) wom scattw 4 lr an oath mine. 
toolawft usdU 000 from VIVO 7" Cwd Mis and the sms-wW ann l: suds 

low fslladng typrs at mum Von ooswtz uat. d 
UL130 1.1* &oanistId et equal pstdiss of aint soil nod. tam soll; 
tol moods v*u sn as both, This uas to cants that tolerant 

raod+t arm on the wine moil -n1 also to study o"ecticin against 
toleroiics on the aww1 soil. 
Mina 2. This Consisted of equal patt of aim soil wW ions sail { 

tolerant seeds were a st on both. This w to study the 

wn.? 1 iaa at tolawb I In the pregame of an ads jacwnt population of 
UOVA-tal plat. 
Kias 3. ? bis cooaaiatad at aim moil aaly$ it was sown with u» 
tol k needs. WAS was to study tbG evolution of toi ras in the 

a: anon now free adjacent $roa tot ýt timen. 
Kiew 4. Thun oosiatºýd of three equal patches: a patch at also soil t 
and a patch of lour soil� aaarat 4 by a patch at aim and law .. U 

sized in 90 $ 30 Prurpce'tlevis by 1ea1iso All t Ares pata'! oo wvrs awn 
with 1$aß-tel n, mct Lards. ? bis x« to etoe tbs . fTh ct of an 
'-ate nmdiate Baum# as Um evobztirn of a to1. r t po latioo. 

Tb. atsts of the aLms in . luly, 19" (Pio. 6) ob=m that idm 
tol ss. ds wrs m mu asala alas soil, "m pia AWrir O (Pip. 6A) . 
is aýoaýtoýY at assd; soya an Iine sou, altbo m rly all 
of the seed iAai. s, aast of the sMdx iaags are killed sad irr 
f aalt, survive (Pips. Gb, 60 OW 6d). Tea LrALvidmair runrlved 
on flies 2s eras indiyi l an Mis. 3, but as Ludiri is pew on the 
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um copper »il of )lins 4. Us rsssos for the ditf«ýmme In 

mmiv 1 of m1-tolerant a.. ds an dLff v putdom of coppir 

cont. s3 *4 . Oil are not clear* Presumably the gsnsr l tL«ia 

at ttt** 3 and 4 vor. not as tgrow-able to seed sstabli et an 

the condition. at Mine 2$ this latter nine was at Abos batten of 

a staging field and con id rably votte r than the otterss 

in J'aly 1966 Pima ' taken tz* these assn and tested for 

to1wmme: Ualartumtely the material from Him I was lost and 

could not be tested in time. Th4 reau1t= are dxwn in Table 2. 

The p . ijs to groriap an the capper cant ted . oL1 of Mine a 

are cri no tol*x wt then toss W wLag con nos 1 *oil* This .. ins 

snc aRowt but c be oqWnsd firstly by the wester nature of this 

site and soccoay by the fact that Most of the plants fraia this no 

wom taken oa the ed2o of the plot e rv theft was ca, 3 I« 

how* aririthasnt by tsgatstiaa f"no tray the a MKxtvda. On the 

Mixes 3=4 bcwww the plants grari4n* on the uidtltttý4 aim DOLL 9 
and va »Lns moil ditutsd with lam, Pharr a Onater tolftVMS than tM 

noa_toi orauL oont i, A1tb a t! a tol co Au spot ** prost as 
ißt the tail *st. risi I tim twwutts illustrate the possibility 
of saloctin j plants fram ncrasi popolstiw»º which maw an Ord 

toler mo* The avelstion of toles is therofmo not necessarily 

a icmp ter process sad can occur in one or two g. ceratie s. 
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Toms 20 ToJ e of &Bwil plants t*m trios artificial 
aºiww ! *am with nonrlolarant cial s 

Sam of ýliwts o 
)4"n index 

tc4srum udiridwl tolaýanoaa 

Tolerant seed ftim 47 46 36 33 Drxs-y-Ca i 

Casaaralwi ar. d 9 13 967 

Coz u' sýi1 Hits $99 11 10 5 
Noraat . oii ttiiae w 11 10 g 11 17 
Cossr soil lila* 3 26 26 

l wa soil 
UM 4 :ä 18 27 9 
worwial son x4 13 31 37 12 
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(b) 'u cct i° in . oleic nr 
Seaft were am n an oWlac t wash floated (mot Chapter U. 2) on 

. o1utiots cotstaWnp va rio s cower levels. A gx+sltaLrwry s 'invent 

shaved that at 0 *1 p" nm; W totsrent g000tYP s showed root growth 

but no roots Vero YTO&SG rd by the s . 'toisra»t type. This 10"l 

was therefore chosen for acreGRI uv a mamtoa. rmt population for 

tolerant individuals. One thounmä seeds, of a ca raioi mjWq1e" 

rares sawn an nylon arsk and allowed to germinate and Wmv for three 

wets. Nearly all the seed cirwiriatad aid pro da ah t but 

only two individ"Is of the non-toles po*uiatioca prociueed plat 

with roots (6 on and 20m )o Out of 8a sew that gen l tact from 

a tolorist population 32 thdiviäa*ais prockiaad roots 1cn sr than 5 mu. 
21s We selected indivi is wears then grown to suits aal 

tbbir toll rvnnc s testoä. The rem" is obtaLr*d were as follows t 

p1 us am 

Control V*A* rr 3.9 + 0.2 (a. mxi pop., vslus 0.9) 

&t cted A 9.8 
, x, 1.4 

Sol. *" B 18.3 0.5 
central u Um 62. g; 1.4 (. win pop* valve 4003) 

It in seen that am of the oolected types shows a slightly 

greater toleruxr than the coatrol $ yet its irxlex of tolorsi o by 

no mWin . 'rc e-L. - that of tho fully tolerant atlas typo. Aptiti 

we hove here the possibility of selecting material that show* a 

slightly ! mod tole amm by simple ýccramiziy of tormal satirist. 
(C) 04mdicn- on j 

Abbott And 141sir (196') shoved that i! nnnwtolsrant scads wi 

mown as soil (a ail , trm Fir Kountain, Site 2) diluted 

with dtff. ront amomts of John i No. Ic ost tt hm the 
iadividWn show" a ratiard diffs ri tial survival with the m ers 

DUJWiviht Imro"Jno in relation to the amrt of dilution 
(TAUS 3). 
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TAblo 3. Survival of o as iw2 Ammwt-JA aet adLz º 
SOU dJ utsd with tt+ Al soil* 

riL1utic* sm vivA t frm 
Caper soLl : lkavol sail co 7,000 .. sds 

48wt o 
w7 

12 -t 33 
G-1 54 

The au rvii s i"me this @et t were WWRIned farther. The 

tnwh weight of the swtiviag material was to en$ and the plants 

wore ozovn to esbalts sad tested for to orwm. Plants that grow 
better (vi ly and by fresh weight est ates) net only t owed 

a hier Inks of tclor we (Yip. 7) s but the mom tolerance of 
the sarvivws trogt above that at the be" populattane When the 

cosver soil was only slightly diluted with ow mal aoiq one t with 
an Index to2ac Da of over % was selected. M reover out of 
22 plants tested, only one had an in&m of tolerat below 10. 
Selection Can therefore be extremely effective arg contapithuted 

soil $ and mere effective than in solution. 
(d) ii M ich 

Akeleatlem for tolerance can be a7 rapid process and 
s highly tolerant to vopM can be selected tram a nog mal 

population by screening '' rowº seedling.. Thee Si every reason 
to believe that these tivie eia will produce tolerant aft ring. 

The p. OOMme of extreme vag lent s is meal populatiaw har 
important i lications. HOW species, although Often passest in 
the vicinity of metal sites, s*= to be incapable of evolving 
tolls. in t tars em could say that thanes species do 
not haare the available tolerant variants s but this is really a 



Fig. 7. Relationship between index of tolerance and fresh weight 
of healthy plants growing on copper soil diluted with 
normal soil and sown with non-tolerant seed of A4rostis. 
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xe*. at-1- oft - of the fiats. no Ptwxic&wuw1 crud roologiaat 

plapa. tl. r at a spsci s, aath as Ant#atmir that able It to 
*wave tolovms have b little as th. 4 and It Ls all the mw* 

tý. ýºtinp tbw«bs tost toi ein, cm awm. rr atrr. 4r to be parat 

Ist RM»l . tom.. 
'Vat as the» toste iaUvi&ds delag in nos' m1 popi st%S7 

What is their aril sod the M ROM Sc. ' tbM&s t TOO" 

gvrrýi ca: mt yet be a=m. +rd but barn u! bup an the pr bl 

of prS«Adsptationo lUx most has been +ßät with troe a grosser 
Etui º its by 8l- p" (19"0 pp. IN 98) who 
distia a$ y of situation to %tick the tar pew latiýaa 
has been 1lode 

üe rare gel an the iallafilig (wt's aaibaing is mod) s 
Mir. A specific ti in oeº ecological rslaliaa hip m W. wl tbent 

t be rewirila in wwther. " 
Are the" toü tr ala ada tad to a apt aid* is mm"i 
habitats? 
N,. A qP*"tU racptatiec in riiwatie 5W by iaat++rýasit 1 

b. oý a iYs to #AWtbW sitwaio sue riOWOMAy selective in 

the saw di atiao. 5 

Are the toler indtriýuala souls at mamt mortal "Itmmw 
Dori the nw it tol ant types In noa-toa st pvpWL&ti=w 

in the vi e**ity of dwasits? 
N 6. AD idsptiv+e {atrýatnaýýl) Mdtticatian . 1*7 vit ast WWWAt1.1 
obaqp owwo & dtttareat ftmtlm In w dit" t tvo 3. « 
11elai tat r iw be vWy similar pt 1030-04og» to odiptati i to 
lew fatuity md be In a nas'Li p dstian becau" of 
Udos Mowwsr llyº (196% leddvQ far waif tol in 

Norm& yi OL im an poor soUx twod no wide=* Or th"* 
9. A dsarast. r ma"AWtivo or ý iTe in on ancestral gr 

air be ~iv* in " dwi. ilont grai .W 
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The s rtwarts outlined in the previous section show that 

selection owwa in the early selling stays. An opportunity to 

investigate the process of selection further arose whew a Or' of 

Ho gM lugattw; plants growing an lead aim soil at Hatua Kin., 

Llstawst, were fooad surreumded by a am of sesdlmss. The, group 

of plants covered about a square metre end tw other WM plants 

were in the irsaiats vicinity (5o 70) " 

Samples of the s ed lioops very taken in February and May x964. 

is the inter sample seedlings sharing wry poor growth, with several 

small did needle like l, vare kept separate from healthier, 

larger and green r, seedlings. The adults spei the seeds they 

proibacsd wav sampled is t ho late summer at 1964. astarid 

was gma up to maturity sad tested for lead tolerance Ist 1965. 

(a) Ties of solectt 
m. swolta (Tip. 8) ohm that most of the sol. ctiost for 

tolawme does indeed oe ar at the early seedling stags J rice the 

wed population ahevs a si9oaiticsutiy (P < 0. i%) lower men tolerance 

than the aeeälin9w, the se. the seedlings collected in Pelua y and 

Nay do mot differ sipaili+aautly is tot . Although the "poor" saa& 
lIng of the later s le show a slightly lam tolerance than the 

"pooch 84edlincs9 this dittrrsncs is not sit dficant. Selection is 

occiwrima at this stags for factors other than tolerance 
(resistants to expowreq drought, low antrieit leveist eta) 

especially aim* the difference between "poor" and "goods seedlings 
is teat rusk d. The evide ce therefore is that the Process at 

selection IUMITs. an initial . elation for t0lsr nt plants followed 
by selection for other factors ispc taut in aaYi al. in the "eia inq 

stage. 
(b) hhsity of . 1. ctiae 

Using the techniques described by You Valera (196, ) the al. ctia* 
pressUrS (or intensity) acting an the How poPtsxatiatt described 
above was calculated. The results are sh n in Table 4. 



Fig. 8. The process of selection in a small population of Holcus 
growing on a lead mine. 
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Table 4. IntursitLM of . S1. etL in a tobt 
MO&OL atiaº 

tiir l1 ätrbilist U 

8 dltaºMº"P47 +3 - 260 

POW'. GeodS"ai S +7 +3 

wo" $Dittiaýal tmMm g" ss t .r tolwmce ra + 
DIXICUSMI tOWSSIdO 3ANNOW tW. 

*tsbtlisla0 to w4ft isw vWisms " 
l tä los" torards grMtlr Wiwi =C* 
(dLar itiv aei. ctisa) ýs " 

no /isotL pmwae for tocAL t'IU O In #Äs early ***aim* 

stfas is ''mi'x ra ßt lstw utagss them is little 
! b0 vari re. of the smote is Nor is sft ýtl y 

(p <3%) ip t _. 'h t in $e this is diff t to stand 

at rW be a a1isg s'loat as a ßiß of picift +a 
*vow and r"Goop 

To gomder the asittiea twtbw, Mo ISCU R vi sm wrwar w wo 
ca. k ýd! the data of $ dlai11r, 10 (mit y) " It to 

My al featWIS of IUUWM% MW ON _ 
(a) setoa'tim &oaimt +toä woom 0 is a mir 1estum at Pros 

iMlNl ain .9 Md In '* pwtwo po"iim at Dr"'7. Coso TrOAMS" 20 
(b) ftai left a dectirm is SOWr 4a4 990441M WidwAm of 
. ýl. ation ewimt ar om aid . slash a mr maters 

thm t 
toi The Uoll at vzL ttim for tDIAMMO tsamd in nnvkd tat, 
am be as" to eras I for + ism t of astaatlca need" to 94 l 

to To t.: y bliity levels týýratýroatt this thesis an follow 

0< 9%6 00 P «C 1ý *so < 0,91% 
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Table 5. Intensities of selection in normal and Copper tolerant 

populations of A rg oetis based on adult/seed comparisons. 

(data from McNeilly, 1965) 

Selection intensity (%) 

Directional Stabilising 

Pasture 

Llandegfan -2 +5 

Mynedd Llandegai -14 +18 

Mine 

Parys Mt. 1. -10 +13 

Parys Mt. 2. -2 +13 

Parys Mt. 2. 
-31 +20 

(isolation) 

Mine/pasture transects 

at Drws-y-coed 

Transact 1. 

Site 1 (2) +65 +27 

2 (3) +62 +28 

3 (4) +59 +11 

4 (5) +54 +7 

5 (6) +31 +6 
6 (7) +0 +4 . 

(Figures in brackets are numbering of sites as 
used in this thesis) 

Traneect 2. 

Mine A +43 +5 
Pasture B +26 f1 
Pasture C -27 +8 

Pasture D -45 +12 

Pasture E -62 +10 

Estimated selection 
to get from pasture 
(Mean I. T. = 13.7) to +99.91 
Mine Mean I. T. = 55-3) 
in one generation. 

Note: Directional towards greater tolerance + 
Directional towards lesser tolerance - 
Stabilizing towards less variance =+ 
Stabilising towards greater variance (disruptive) 

-- 
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g. UM $V3TT, PMLA? I01t TMIYM AMID CATION TM 

(a) north il M MIrwtICnI 
T! a laapwitp of tho frs of a pap i1at1aa can Ism a 

aoiidsrab1" effect an Its Nolutio4. it' is lmwtmt tit two 

points of views it will affect both the rate of colootsatie and 
the rata of osmotic Apo. 'ire two will obviously 
Lat. act aim* it the oo1a Luttm errs ayaaitia sä*ptatiaa to 
the am a wiresa t, thz the We opt gawtic dmm*o rill aifect the 
rote of Cal aaiaatioeý. 

No"w*Arlrw 0 the two to so m extent distinct a 
will be first oos iämd .i . r*tdy, 

dm0 offact an colantaatia can be mWerstood it vs asomme that 
two oarpaeiaa are similar In ovemy otJrr respect (e. g., tins to reach 
rrtwrity, fortuity, Arlo. ) bot air is lang lived the other shaft 
lived. Tte lang lived air will admiso an area sea's rapidly 

at=* QAcb year Will isst e pat only establiabrd in that 
Y4Ar but at" all tbor established in pry vi tears. 

The effect as gsostio eiirr can best be emwAm4 using a fiter 
 Wri. The nodal is elaacribsd was fully in Cbmptsr V. s. as 
essaftImIly the nom, to at an 14malimed ulatiaeý (se randna Ottacts) 
at vita sins. The results of the it 81mulatton are aiallar 
to bat ri et be maimalad i idtively - (Pig. 9i. rwmia1 popdatiaas 
chimen eia than the annal bet the final aqu3iibrim iris naiv 
are the 1r is both m ua1 -nd p tstai e 

The x1ma, g tic s WIN rrº of a mal p tlaticu cl have 
intaerestlnp II -Im qm mom Firstly, 81=0 ad"tatun to Sieger it 
iaxiiai that the pasatio, lead in a WOMMISI poqulatioa is pretax than 
is an r sal u Oar air i iitamo. i Aw*the ragt3at3on In eppt p 
an vquilibriia (Pig. pa). 

_ 
swommys as lag of the Palos" pcps., 

latiaº bQki'4 the smaul 14 reflected in the pa ot7ps frequency. 
Pip. 90. aIMera the Qu~ in auhr at beteozyaotes in it parpulatioa 
with 0.2 potion filar and owmWiate eotian *gs1 at 04O-. tolerant. 



Fig. 9a. Effect of perenniality on response to selection. 
(selection pressure - 1, favoured gene dominant) 
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Fig. 9b. Effect of perenniality on response to selection with 

gene flow. 

o. 8 
(population as above, gene (pollen) flow = 0.2) 
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Fig. 9c. Effect of perenniality on heterozygosity. 
(population and gene flow as above, initial 

frequencies = 0.5 and 0.9) 
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It is seen that if at the b. gi gt meshes of hotavxy-11 

Is bells fte + ilu* 'ius tr ency� than the sn r iacreupw ww 

sls4y ißt the ps ial. Tb. a as Is true It vs start with a 
Met , tial i4hq ºI byre* the PftWWdAd lattos is wir 
ýrrrtýrýrraaýygeu r than the MOM"* 

If cotaaia st iss Involves gam it change " greater longevity will 

POPA- have tw ., sits offsets, it Will insrwNS the genetic lead an a 

10*140 (MMS thereby : +wlt IS fitter aft-Wity) bar of Its slower 

adprtatta , yet at the sam tins than, viii be mom seleniartlsn (anti 

lWar dints per year beesuft at te i1Ms'sesed pa"Miality). The 

bahn OWN two to s MW haw iäservat tap 4ýI iý1iýA s, ter 

suaiw&* to studies on the evoii t"S of the soweal or dial l+abit. 

T Antiaa at Wren.. MW . Mart dt*"ta oat sash yea 
we being emsidesed in thAS this innaive evolution a esl410184*100 
in the pars at a srnaaViag sftast by fareige pollen. It the 

ARAWiag offset is r ess tart a peruaw habit Will obviously be 
t, N"W*d rar WAN a iý it establialod it will liw for 

a 14" UAW aal will ýýr* quaraticam pvft" as Ox6ft 00*m 
of Ir º fsrrift the tti. a. C*16aLa*t1e is tbapete e likely 
to be vare ski in a pswmmW than in on swami it the popA&tI4M is 

M-M I- even aslarle" migration" or gore-fleas lord. 

rr Sowti esd by acoup~ smonlat a. it the first 
MºIMýºa ' is #1 Isutar got ý, i. ý!. " the 100 fv q#+MM+ cº"ß. 5i " than, 

ft 19 13P at tb. awl OINS, will be los domed by 1 initially 
hi gnr now iewrd It 00 pleat iss r ps, tai (am no, +0 ages 
Chi V. 1-1.0 fWafur Stan). The irr now load is 
t rWywrS likely to be is t *laataatiaw aas raid i* a ýaiai. 
(b) 

vwy ! er' O"Adift have ieft needs as the laspavity of puns in 
P04atlwms. Teas ("48) saio S "W (t96o) hap, W n" 

plafte of a now at lsw and , eland their Press, rill 

rNMMýr' OWNIVl YQwV º. few dmmvd pusisis of se 1, eetaussium* 
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S*lection : inagevity 

followed by long periods during which only a few ivAivLd tls died. 

The more intensive studies of Sager, on Planfan l lsýta Apo 

in pewit grassland gave a population turnover at 17. % per yser, with 

only about 3y; ß of the individuals living for =ore than two ? sera. 
No data is available for perennial grasses but the work of 

Harbsrd (1%1) showed that Festuca rubs in natural grassland bw 

vary little population turnovers the populations comiat iastead of 

a few dominant individuals which spread by vegetative piepe atigs. 

In view of the importance of bngevity and the poncity of data 

on this subject, it seared very relevant to invsstigata the situation 

in mine populations. The techniques used by Harb d (1961) Md 

Sagar (1960) were both very tedious, the former irN*IVllq entsative 

genecological trials and sampling, and the latter, detailed paMolpoph 

mapping.. ', staple, but less accurate, method was theref re used to 

atiaaata the population flex in mire populations. 
The invest i gat ion was carried out on at 

Tralogan eins. This plant has a tufted habit and ocuir s an the sift 

as scattered individuals# which can be easily dint aMialAW6 the 

plants wary mapped by oaiicing their position on Jim tau rst a 

plant was recorded it it touched or cars directly below & tape ire,. 
The deficiencies of this method were mainly two-fold. ? firstly, since 
the tape measure was often stretched over uneven gremad" parallan 

errors could occur. Secondly, since a line transact was wed plant 
death could not be distinguished from plant movement off the tr t. 
However the results show that little wont along the tri pt ire, 

and although it cannot be excluded* especially siass ea 1d bin 

'frost-orosioa" is now during the winter, it in likely to be fairly 

negligible. The transects were all about tann yard) jkMW i 

pasture, all radiated from one point and were on a patch VbW tt e 
were ra Brous s plants. 

The results are shown in Figs. 10,11 and Tabe 6 a%# 7. The 

salient points to =mVe are as follower 



Rig. 10. Longevity of individuals of Anthozanthue at Trelogan 
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Fig. 10. (cond. ) Longevity of individuals of Anthoxanthua at Trelogan 
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Fig. 10. (cond. ) Longevity of individuals of Anthoxanthtm at Trelogan 
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Rig. It. Change in number of mapped individuals of Anthoxanthum 
in mine population at Trelogan. 

9 

12 

ö 100 

1964 I 1965 1966 
date 

Fig. 12. Photographs showing dead or dying individuals in mine 

population at Trelogan. 
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Selection t longevity 

Table f,. Survival of individuals of Anthonanthum at six 

trr sods an Trelo sn min over a period of two year.. 

m*w of ia&tviäwats 

Transect ? rrivol$ D «U%* Arrival. £pQradic I 
ivor: 

1 13 9 1# 3 19 

9 5 7 18 
3 19 1 6 
4 7 16 0 6 21 

5 5 15 3 7 30 
6 4 15 3 5 16 

Total 42 83 i6 34 133 

1.1 divj im1. r ee« 4w on only oo& dat.. 

(1) There is considerable turnover of individualst the percentage 

turnover of individuals present in both 1964 and early 1963 is 1c7" 

but marry of the plants which survive for less than twelve xmifths 

flow r , mod produce end, so the turnover of theme more teapore y 

plants (. 1O r'. per year) to also important from the standpoint of 

evolutionary change* 
(ii) The degree of population turnover is less on trots (1) and 
(2) " Those trusects crass a much lower, wetter part of the area 
investigated and this suggests that drought either directly, or by 

raising the concentrations of ions in soil solution, is important in a,., z@v I- 
fwl of Mine plants. 
(iii) The papalatiai size shows an mall increase from 1965 to 
1966 (Fig. 11), but since no increase in Observed ±n 1965 over 
i96, no definite trend canbe established. The Population r rs 
could well be fluctuating about an equilibrium, 
(iv) Larger plants an the whole shag better survival I ouggooting 
that longevity is associated with increase in size of the individual, 



Table 7. Population parameters for the mine 

population of Anthoxanthum at Tre1ojan 

Parameter Value 

Total number of individuals observed 308 

Number present on 21/8/64 99 

of n n 27/7/66 158 
Net gain 59 

Percentage increase aver two years 59.6% 

Total arrivals 250 

Total lost 183 

Potential rate of increase/yr. 126% 

Number present present in 1964 and early 1965 
(established individuals) 61 

Numbers lost from established individuals 16 

Numbers surviving through period 42 

Survival of established individuals 72.4% 

Population turnover per year of established 1 individuals 

Percentage mortality per year of all individuals 
52.4 

observed 

Age distribution of plants that died or arrived 
during period of observation 

dying in less than 12 months 157 

living for 12-24 months 10 

living more than 24 months 42 
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z tui ta ano stud by mal aioorwat ion. On a mit 

wiz na ther v It! ar i l? awý of dead and dying vegetation. The photo"p 

urwahr (F'i (, J. 12) she r trugt 1 rnrve individu 1 i, and not just ae: odl ir+ja, 

do ilia and have ti rrf or. al ialtod life opan. 

in viaw of this populatian ttt w. r, there must be dynmlc famos 

ma inttin il the reine potodatiote. Selection amt he continuously 

aperatinnl, and genstie chame is pc"ibls in many Character other 

than tol are e. Whether this tic is Peculiar to &MMIMIge 

on Trelcxp nixie or whether it is gmmee-al to other grasses in 

ri tferartt habitats was not established. Since the longevity of 

the planets at Tralogan varied L -n f site to sits, it is likely 

that Icr svity is specific for giwaa populations under given 

con, dit ions. 

(C) Bq=&mWA& Cum 
To irnssticat" the problsxa of longevity further, and to sake 

ca qu%riaons between tolerant and now"lsSerant populations, 

s wc, e eiada on plants growing An a field 

trial in t1 tr ; K. i "isaeytal garden* The . aw t was primarily 

designed to investigate marpholegical ditferumma between tolerant 

and ton--tol eres* t and is fully deowibed in Chapter 111.4. 

Durjmj the oowr. o of this tx oarýwent two features were totted. 
iii survivv4 

The individuals era, v planted as spatord plants in August 1965 

and a yr that failed to etsbxliab vor. repl. s*ed in early October. 

The tswt « of individuals that disci were noted (Table 8). 

No obvious diffarsnMs bstvsiun t h* populwtiatks are 046n, semen though 

t ho nag-tslity is to sassy caw relaxe specific. T ho distribution 

of aart*l i, ty dwviatse mipnitieae ly, p< A%, fror th. Poi, rson. 
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Table do Alte ' of deaths in single plant trial 

of 
_____ 

ih . 
(Brackets denote a clones and rn r inside 

brackets show member of individuals dying out 

of $ total of 8 in that clone) 

i+h ar' of dMths 

f2 Total ? ýt fýrtaýrýºh MAW 19 nowerl" 

1 (3) U) (! ) (1) b 

2 (i) («) (') 8 

(2) (1) (i) (i) 5 

3 tom) (1) ) 
6 (1) (1) (1) (1j (I) (j) 8 

7 (x) s 
(1) (4) (i) 6 

(i i) Y*getauvwMi.. 

TM pi ants wwaro smaa+rd for d of Yo9Stst it ago by the ratio 
of the za *r of ativ* tiller to eeM. r of reproductive tiller,. 
Shane is gna al the native tiilara c. rr the Plants over to the next 
"earon, whereas the repnrvductive tilleve dis awe flovoru p, this v 
a aidire d also to give aua swrrr of par emdal ity. whom ray lair 

ratios mu, obtained, with mom or a few w©ftatiwr tiller, the plants 
had all t' "_ ý, p9 Wine of am ial a acrd some in tact died after a streng 
burst of tiewsring. The ritt, has deep plotted is Rig. iB (0,00 p. 12) 
On a lop trwrfersatian sine. gl. Atinp 109 Alb (a lop a" log b) 

3r sv the skm dis rjtias. Roomtis1Iy sialLar t deal but with 
wirr , attar at the Pols" tv WS obtaL .d uaift rl 4&t** 
It is .. w that the tolormat popuietLen to an the v W* (eºt a 
few plants at Site 2) more vegetative than the noebºtal ttt (the 



Iielcac. tjmn i lort'r OT gý, 

elffern in hit*1y sit ificsnt, so* Tatale 9), Cinj thwt the 

sine : ti *a are "am pet ermial than the posture pepulatiom.. 
; JVi4. rle has Already bum presented i. 'r w theoretical analysis 

which Mt ,,., is that Ds; 's tia1ity is likely # -i be to our. d titr Ioar 

cc* 4ittaris of ate-i'larw load such PA of L-11 mir* habitatise ikmwver 

the data. cº be int. rp tod in Other wayrw. 

wiL tly " uruwin the jacmut* s ßä ixdiviciuals in An 

iea. tAL j irjAm y not reflect their behaviour in the field. 

., juUy$ diffaMmes in v+ tatiVsi *s end 1cn ºity can coia* 

it Ity direct a tatiun to local cur itionn (Umdshows 1959, 

fra i w, wvu bL iah d data an U? rlýZ t btu, aW Co, ok19G2). 
'irdUy, the whole pximble. `.. r pair *uiiality in aAzplad (for full 

review, -see Cries 1954) am l intwrrslated with swr' oller aapeets of 

xif. -cycle strmtsgiws. 

Ter are therator racy reasom why pvpulatiom should differ 

in their p. si*x Klar. Tretre is ehºideaco from cwop plants that the 
lantj. vity of a plaxt is easily changed by solootian (Salwanits, 1937, 

p. 3P9 Helbaek, 1959, rihara, 195, " UUtChineod, 1962, and Khush, 1962). 

Ui ff es bt tw'o@n tolerant and ram-tolerant population with 

rrapect to this e actor are s ttWee" ie ºti i aims rarely 
tiavv such differe na a been ee ed b tween papulatiom of wild odes. 

Althau h the dsta pe tted here is inedequate to draw firne caecluaien 

about the causes of t, v& differet%oe in pore tlity, it doss anise 
tht possibility ox EttuadyinQ such life cycle chamateriatic. at ýº 

Elation 1 vil. 



5.1 ftm e mrsm +ei*te"i ehAz $cto" 

It. CHAMM XM ASSW I AT! ) CUARKTEM 

ýg 

I=) 1.41A 
previous worU an mwtai to 1.. wt plants harr .h am that they 

differ frc* rwral Floms in a ey*rnl features all Ar that to! rams. 

Di ffe ^ =em in calcium sand piutts response AM recorded bY Jewett 

( 195o, ýpr arvi meNeilly (i96S). sad Turm w (1966) has sham differr. sss 

in sulphur rempmuse. Schwanitz and Hallt (19%., 195") grw 

the tolerant out mm-tolaront populations of a rimat of species sr 

standard ccirditiam and shod that in del tolerant ply had 

¬KllQr flower*, sraallcr loaves s&d thinner stems. These differences 

were reflected in the slim of ', %* spid ,l calls of the leaves, 

but using other nva-tolerant vsritnts they atwwd that assll call si 
did not Oo hand in hand with tolerance. They concluded that them 

Nwst be i ep emt sslecty , for aorphology as well as tol e. 

This cavclusten wits com$, in od in jkjjM fn! `lsta by broker (1c j: in 

Progow of tolerant x non"telsrs& t arooserr� tolerance was not 

RssOcisted with morphology. Similar but less startling differences 

have been dct cct c"d in A W: C lid nines (DradahdW, 19591 

Jovett, 1964) and again the data sugoestsd a Complex adaptation of 

the populations to local factors rather than an affect of tolerance 

on overall size and yield. Only &light differences, in woe}, ', ' oqy 
between copper tolerant and beep-totcront plants were detected by 

NCNeilly (x965). 

Tim situation with regard to motpholooical characters was ru- 
investigatod using Ait from Tr. loget with four main points 
in view. 
(i) It has not yet lein ostubliM d if tolerant 

-6fijbqff! 
bin r' diftarn 

logically fr ow non-We it. 
(ii) The Intensity of selection is l ikwly to be different for 

differ eint ohtircters " and sly the boundary between, mine sui 
non-eL is just as clear out is factors lit expomaroj dryness, and 
associated a metier as it is in tolerance. the di ftas «st selection 
yrw. sww Oho"' 4 lead to clues of s differ ut steepness (. fain and 
ersdo r, 196). 
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(iii) The strop selection for toles-once in nine populations is 

analogous to the strono selection prosswe used in ssW artificial 

selection ssperiwsnts. It therefore sewed Wort ile to look 

for cdhASnpa in "secondary charact " such as are characteristic of 

artificial select ion prays es. Work on has frequently 

shown that ntr., q selection for one character loads to co related 

rf-vonseia in other whsractsrs. Such . zp. rissnts often ohm an ma st 

in the Variants of thaw other Mors (Natter aext Harrison, 1949" 

Clayton, yt ill .9 1957) " Similar have been iswnstigated in 

1<olitt (Cooper, 1960) whom correlated responses occurred 

in various floral (morphological) characters as s result of selection 
for rats of ear woorgence. 
(iv) The uvulution of tolerance is permissive its the some that it 

allows colonisation of an open habitat� and an increase in the su la rs 

of plants in that habitat. Ford (1962, p. 11) has argued an the 

basis of earlier investigations (Forrd and Your 1930) that in an 

expanding population selection is rcelaxed, and that this therefore 

permits trio survival of numerous variants. In other words stabilising 

selection is relaxed. How*~ an theoretical grounds, changes in 

variability will only be concooitont with in population also 

if the controlling factor is the same for baths selection controls 

the variability but it is unlikely that the costal ing factor of 

population at.. is salvation against rztaogwe variants. The situation 

on soul nines is a" obvious model to teat thaw two alternative 
hypotM... 

(b) ti ä 

Ton plants rrm each of the eifit sites along the Trslogan 
transact var. gram for two months In John Imam Me* I compote 

Bunches of two later or three asallsr tiller. v. -.. it planted 
at nine inch m eth0 in the iasntal garden in a single p!, ant 
trial Oac. rdiag tons i.; tl rL p d"i$q. There ww, r% coiw blocks 
and within each block the denims wax hie"rehi"l. TWO plagte 
A. ' ype war* Grow at each Point* The design was therefore s 
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2 population W 
=m and postgare) 

8 sites (four per popziatiae) 
80 owwtypes (ton per site) 

160 pl *ntx (two per tns ) 

4 ceps icata 

This desks ambled c ri. ous to bo miede bette popuiation , 

sites, and UsaatYPan, ax wall ws coa ºrisCn. of the within sites 

variat ion. 

'lbw enmriment was artet up in Amt 1965 and any plants that 

did not establish were replac. d a mouth later. The following 

characters were w att in the spring and amour of 1966. 

(i) Fl c, w. rinq t irr (mm Chyrt. r TY. 3. b. for full diacu*sian) 

(ii Plant height (an 2x/6/66) 

(iii) /fir of vegetative tiller s (as 1/8/66) 

(i v) Nuwbor of reproductive tillers (- infl ) (on 1/7/66) 

(r) Width of flag leaf (won of eight le ves) (cm 't ///(6) 

(vi) Lrigth of flag leaf (awn of eight lsav") (on 3/`6/66) 

Fron tt o waautýwata t h* following further paron tars ware 

calcul atad 
(vii) Total Hubar of tillers 
(viii) Ratio of vapetative to reproduetiw tillers (vagetatirwoirs) 

(sews Chapter 11.3. for full discussion) 
(ix) Coefficient of within plant variation in flag loaf length. 

The 9*nmcvl layout of the oaq ris. nt is sham in Fig. 3 which also 
illustrates the obvious size differ between toi MW non- 
tolsrint +l, ent&" 
(c) eia 
(i) Diffmre bstwon papulat * trams ect sits " +ßc1 g. notypos 
(Tab10 9) " tºifta4re s are fwAvd betwom teLeraut *ad noon-toles 

populMtioms in aenral atýatatstýs. Ccnsidsrable differences rue 
also found botwom sites within populatiatas, su0gmrtina considerable 
local brtaanapam. ity. ? bus within the tolerant population, site 2 
boharwr u laaslr for awvWUJL c 'aCtWs, whereas in the nor - 



rig. 13.1ýlýotývrýph U1 tssAiav ter ýrýeI1 iisý diti a 
etw taiýe,. nºt ird «taiýrt 1 ßiýiii lli Jim a 
MMO*d plant trial. 
(mle. tolwant W&NIal ta4iatod by VhLts sw"mdm) 
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Table 9. Differences between tolerant and 

non-tolerant plants of Anthoxanthum. 

Significance of 
various comparisons 

Mean of Mean of Between Between 
Character tolerant non-tol. 

Populations sites 
populations populations 

Flowering time 

Stage 1 2.9 8.6 ... .. " 

Stage 2 11.3 17.8 ... ... 

Stage 3 17.2 21.9 "" "'" 

Stage 4 32.1 28.0 """ """ 

Plant height 38.7 5G. 1 "' """ 

Veg. tiller number 37.0 40.9 N. S. " 

Reprod. tiller number 47.9 79.9 """ """ 

Width of flag leaf 5.3 5.4 N. S. "" 

Length of flag leaf 25.8 33.9 """ """ 

Vegetativeness (log) 1.902 1.627 """ """ 

Within plant variability 62.4 61.4 N. S. N. S. 

Differences between individual genotypes all significant (""" level). 

ýý=ý ýýT j .:. 
ý. '. 
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tell popolatim dt. 8 bnrir rt ILk+a the t. 1., apt 
poqulatiaa vith tos! t* perlt l i*tt 14000 of 9140 irat Md tlaNrw 
to tim (1M ? ip0" of-2a)9 XWOW 1, ! Ai ANd Off' Ul of 

the p1m*. fr sit» a is m bLor tl º in thm air p"tv" ait.. 
(Fig. 14) # but tr ei be» to aii ly rs* ab. s tb& root 
of the prost and in plhbety ati .y dr ior. 

ilm» paints ooigtwwd» tim paoslbility If very 1. sol itt it tiat j 
mw are wwutm aga ýq e tbw tom. er mnmt*l  iIt 
am" aa o»le Lc liy Wdftffl t h" to prrti Arty to srs. nt 
raw ooeridaisq paý1 &UM varisbuttye 
t üi um c14.. t«s -. wý 

Tbe ei t»o . btaioi for the dit o we» or. g*MM in 
Figs. t4waa. It to :: that S rar chr rastws trn eibri pattern 
«'ae r (e. g. flag isaf f Fig. 219 nithIn P"M vm tal , Pig. 3*) 
Awffl with other fatim er dLttft " aln.. t 
(e. g. F2 Asyl, Fig" 13, r flap lebt le Fig, 20). 
The odat of arr* 4uAwr d oiima patty s the 

1o sm ý owwa 
- 

omtsamw 

Bi iitlýri cb rtir 0"d be to srta a by d! l tmukt 

. earis+os lt -ar a at iiy in a syotned 
V*7 %hich aai* s tr e#Ltion of t h* 4bthe 
ba darer. Klowa (19' 1) 1 d! x%ww6 *rr Mb .d the 

aatd t 3m äistrLb Alm :' the dmwwgw b* aw oww" duslay 
at this bsr. The 4U S$ anmtMM per on the Yarti, s 
dwimet. m. low is allow at dicers +w . a. The dw" of 
t0 'dig* * will *1km äeP=d w tM St flw (Jam t BrwAfter, 1966) , 
but in a Qua ewtogi 1 su#ssR º+ dar" a Div pº spen&w. Do I 
flow i, at a aeetaiw sßß ire au d-lor Met-rs. 

TbWO wirr tarirrrý ew taw si wnrMºtit qw Mý rAPUM s. ter dk%Ml ri o 
the diffbt , eliaat PSUMIs. MIS iaitar . apL *tL to the best 
probatrla das the + et Ni 411308 at t rd, o" rims it is diffj,, it 
to msv+xt aeiaatitm fare ov. 2d chmes ß fir m- SU ft t 



Fig. 14. Zinc tolerance along Trelogan transact. 
(in this and subsequent set of figures, the points indicate 

individual genotypes) 

120 

loo 

80 

6o 

40 

pO 
20 

3 45 6 
transect sites 

Rig. 15. Plant height along Trelogan transact. 
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Fig. 16. N 
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Rig. 17. Number of reproductive tillers along Trelogan transact. 
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Fig. 18. V. 9. t. ti...... o along Trelogan tran. ect. 
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Fig. 19. Total nwber of tillers along Trelogan transact. 
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Fig. 20. Length of flag leaf along Trelogan transact. 
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Fig. 21. Width of flag lea f along Trelogan transact. 
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Fig. 22. Coefficient of variation of flag leaf length (within 

plant variation) along Trelogan transact. 
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selection iw tatad dug mat or* 

olesr out Md dixtif1et hm Ali'. 

If Ms root that the selective tames CbsIW a tly morves 

sit b7 f *Uqmm of the antim ova be und to ostJa. to 

setesties (Hgd. ss, 1946) aaa rdiag to the fossils 

äaa? /' 

oK" Mrtestles promm" 
aal d1stomme woo diapwal 

da 1M 1 UU d1wWo. Wee bet11omm, A me the 

fern atw of am rt are *% a 7$). 

Per sias y latiwas the latiwimp v"wom em be tad so s is 

artl*atas. 
Mir dLapW , 4istmoms tw vh patllaalLsu 
tai 0. l 91001 ias11 Red lf4w ari! liftso 1,93a, with 
(b) 7-11 f. st (Wisi31y� $9 aaiao Pias and pike) 
(a) 11.3-i402 tart (Posen" data USING Misr am pollen) 
This gives a mom mWors distsme at aglroý+ýeirlrwwr# yi fest. 

äaVw-! ºli dialrrlýrrs art be raw ly art#astld for some at the mom 

slaw set slims +- 
Pi, height (Pig. 15) gives oft it wrýtil0 dicta Of op"raa. 

30 tofto 

dip last lragh (Pig. z» gives m dance of 
. 100 fest. 

The selective w far those two am t1+ 

Ply hM &t 16% 

Flap lost 1 O.; % 

Mo value fir piout boi*k aim be &vA hire, a1 the stems of 
the alias WAW be 4@kMIUt rd by the fAIMOBUY ritt rhI h the a lthg 

slap it is 6ONVIOd art. Is the P00006 atadW the #U48 an "thor 

Bid* at IAW bWA dowry site are 45 ! ter! SIMMM " aNG GVO& t* atoe 
NOW dume a7 dw""Y at taw boww" (a" asp be the come for plant 
äßt) as in%uquwtila dlat s Mßä ate' -sl Imwr. tp paiys 
+ Lag Mwia be e. td to drab a atwb? o aim" in the are or 
Want height o i! 00 iaýSWVUA tilg distataaa wa 10 art *, the selection 
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ä l. oti_ $ iwaiatad rractw º 

iiaid be . 

A ft II . aale iw+wrtiputiaa at olial pattoens &crew miw 

Wise . esdd "wide aP "Md taobaiqm for studyb0 a. ls. ttan 

yr rrr an diff rr unt ýal+uar apt re. 

(iii) 'no du al Pattern " vsrLa ss 
AlwUk r lWortsmi l aie+ at the ilia.. is the between plant varis 

ossftioi. ee bititr (Fig. *3 'f. Par the BUM~a rsat nUw 

of van attan 1 been used to estimate the ility sines it SILSAtast s 

the ottesta of difiieawr I in AbomilstS sims. A stehrar +rtlasts 

has WON VA" far titmnoes, this 10 bared OR f grs. th y11- , 
riwrrei time boo bow plotted as the V*ri&rA* Maw it La t&ara ftV m 

an arbitrwUy timed date. the melting to platted as the varianoe, 

over - nimm st sook pssitisS It 1w a ldlr taw distributim 

the vantaws Is go ýrls ai to the No% 
Is my Of the SUM" it is BOW that the beti plait variability 

L rrw" at Ow bWAMMY ttig. $3s). NOW r#Myts bon been 

obt.. iaird tw MsMsiilr (j$öº$) Bad tar Jain Bad ft*dd ', 19"). 

marl w two powiiis rwean tar this. 

Iisntly, thee'. is swab es id r that the sslsttin go processes 

atone a eilwn viii isod tom immooed po ºlatica billty, at r 
bwAMma r. Moog (204) gives s iota for the cri r or gme 
iýnpwýaiý iý " larv. wdý Lou" tdW as a on me !r rhLdt ago 
can earwsiu40 that 1w vsnt om, will be plater the mares asst the 

mar irwýwrri , and ter star the aslestion. we si d tbw*tore 

mot hiss Brims" to be plater at the bate sr aim* bolas the 
(1400 free lssa m an MGM 1. )missyes fie' "tettoo 

Urur viii be th the e dass we stier so the lam 

At the ihr s amid ales be arm! it the clime 10 Oft"Wo 
i r" IS a boge as.. Uwft viii be t 1w axWWm mamft 

of guar SIMOMMOS gad t lNrtrs . elestioa vif be thou , ptt st whr than 



Rip. 23a. Variation between genotypes, within sites, along Trelogan 
transect for a range of characters. 

too, 

8o 
jE 

too 

transact sites transect sits 

Notes I. coefficient of variation 
2. variance 
3. variance/mean 

(for explanation, see text) 



Fig. 23b. Variation between genotypes, within sites, along Trelogan 
transect for a range of characters. 
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Notes 1. coefficient of variation 
2. variance 
(for erplanation, see text) 
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Wottiee 9 aaaoetat. d Matts 

bi-dirscti*wº1, especially if the bowulary is itself a botere. 

g omm habitat. Tim i artam of disruptive selection in 

ma4 nt a4' 1u variability ham b squstlly bom +ýroeýatrittrd (T odey, 
19999 QUO= and Thoday, 1964, and Clarke t rp szd, 1962). 
Disruptive selection it owe . tfialiw again if the selection 
I seomme are *tn r. 

No firm o4rwiwia con be do as to the relative razes 

played by diox%W itv selection and p awl baaxAary effects in 

of iuw, in isere. ain the variability at the b ry. U rtedly 
boil, are mors aat. Homar several fectvgw . wogs. The 

mm W-staaoy of the sffist is relatable I it reours in Notq 
difforunt charitarm for which them is specitia ection. PAWS. 

ora, if the cl" are classified in order of dear in st epness 
(they have been orrom4ped & ad aWbored In this order in Pig. 23) , 
it IS OOM that the variS at the bss º is whon the alum 
is st"Pwo i. e. a selection is was intense. This aportr 
t+ imrian that variability at tM boundu7 Is greater beg- 
selection is soy iatsr :. 

Binar the aim boxy can be rvoorftd as a model for a 
a nee" wvixu at (Wo 00 1s scoaa. d by one po #" 
lat iat) , the eatM of variability is rw Ubir said sie 
the iepsrtara, of dive se OOtipb in aatUsi papuistia*. 

(ii) cftvautord nmwnmo* 
11w dt ,ý bo#-t t! s the ps u1 t; Laa in rsrle" 

a. rpWDOL44 al of cwld oithrr bis t by IaIspsnd t 
as1 tim or by*aersistmdr mass. 2160 evi4eme Wit" r 
Sd%d in tit* trrnrlawº arotiarat, NUODSOU t at ats+caQ MAIMM r+ýtýäRiraa 
is acourr3M iW't-: + ah"wALuse . 

"MOV" It sins. t is'. LA eoaai 11- ri0 variation in toes aua 
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Selection i associated eharrct. ra 

the  ine we shoal d magert, if cerraiated responses e: KUt, significant 

xxtatiowbips between tolerawo and the characters ass a rsd. This 

could result either fron pleiatropy or li: ccape. Quadratic regresaioaw 

were therefore fitted to test for oarrslations between was of the 

reawant associated characters and tolarsee, but no significant 

relationship was found (Table 10) . 

Table 10. RalatiOnship b*twan talon and 
Antlý taet#týýýe. othh chýu'ýwýtear. in 

ß u. ic i coerriaiwt. Etp. ctr d 
charerc sion of Probability 

_ r. sttimubip 

rlowýi r, 0 time 
(1iti¢i* e i) -0.119 . o. ooo6 > 10% 

Plast hsi art -0.11 j +0.000? -> 10% 

Yry* tiller no* . 0.313 -0.0026 > 10% 

Raprad. tiller no* 4.357 -0.0101 -> 10+ßi 

r. o ti tivuisga +0.037 -o. 0oom < IM 
rrtqin t 

vinFtaätlitr 

'i rIM 
-t11- 

MMMMM to Ma 310 Istoo N1 sI at that 

ýdeýM MO! ýaýdlllllr w// s* "- omit 11A{N11 in eg7. 

i,! fawiýtiýarý nri ULtr. 
mw t p-itd1a irr ant ditt e gels is fifty (bble It) 

ad rr mär sm be ýsiýrtl t. ýa town is wo "am 
in aw via" sum flit' woo a). sasousw ftr tsl wmNr 
a 

mw 

r 
astwMI 

a*aa ýr sit usto it Is irr asi u ma t er 
9w ae ow dwimillsouse of ýtýt1 t aalnot! it ißt 

, 
Mm mote== varAm" at aýýt*d ffilhu-No tote Mat +3 
VW4 *M# s º) to mi meow at as wit in. 

7 
ý 

.. a 

ýýý 
ý_ 



Selection s ae; ocitted characters 

Table 119 t)iftersi es in variation of characters Of 

toter at nL cuntolerant plants of AaW-i2E&pthum in the 

single plant trial. 

Variability between plants 

C ractar within sites 

Tolerant tolerant 

Fjoworin g time (i) 11. /A < 21.5 

18.44 < I3. j 

17.0 < 18.5 
C iv) 16.5 < 23* 1 

ä'larft hiluht' 13.7 > 1264 

Veg. tiller no. 51.5 < 70.3 

} eprod. tiller no. 4 47.2 > 41.4 

Width of flag leaf" 16.2 < 16.4 

Lenuth of flag leaf* 22,9 > i9. 'ß 

Total tiller niaabwr 

Vegetat ivetesa 0.146 < 00 213 

Within plant var. " 17.0 < t 3. ßi 

'coefficient of variatien. 

37 

variance (cf. Ttxoday, 1958. Nor can MY sividonco tja obtained for 
Ford's hypoaºthh, ia (Ford and Ford, 1930) that new variants will be 

permitted in ap rpu1otiQtj that is increasing in size. Selection 
in natura is a precise process which does not allow the survival of 
variants which deviate widely from the norm. 
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Isolation $ introduction 

1. I, 1TL& OUCTIcN1 

38 

T'; tý, i; iyuz"talme of isulation in prcraoting population diverge co and 

mimaýciatlori t, aw lonU been reautd. ed and fully dated (o. g.,, kayrr 

: ý4: . ºot, z . yý ; r13; ß ark" flakes ,I 9). Isolation was co- %idored 

n prerequisite f,, r popu1i tivii riiv&rttonc*" until honey (19504 shoved 

that i.. iMruptiv4 z. +electicn could effect auch divergence in th, absence 

of iscAeßtione zorent1y, the occurrunce o: divergence in nature by 

c1isruptivo ., cioction how heen shown in ilio '', U-da nub (Clarke and 

S. hoptaar.: Ä. )-J in Týµ,. ý. a 1u bu tiºia (Creed tom., 1959) and in variauß 

grows ý; ýc"ci:. (Jain anº: Brat show, 19k. '6j ;. tco, & flibU I, rrtdMh. «W, 19()(). 

All- of P0j)U utiazi aiitar c, o in t1141 f', rt: ca Of gena flow 

il)u, ftrnto,. the per of n&turul selection in keepinnti populations 

Jietixnct. imoovor Vota flow is not without effect. Generally it 

slows sim j)c)pulation divergence (but see Millicent und Tho4layf 1961, 

and : Aroa us and º" icºentel , 1%)01) anti produces un*daptod VWwtypes f wawa 

the crossin{, of two a , ited types. In such situation wc might expect 

tits evolutioc-, of barrier: to jene ezchan'je (gene fnow). Lvidence for 

the developw cnt of breeding harries when two ilrevicxtaly separate species 

caest lugs bi disv.. 1sa by ä%obJlw iky, I9411. hybrid 4ones, between 

Corvus coroz o and C. con ix, two sp. ciec of crow, are narrowest 

where the tvc types have been toVethet lon , t. : -i silarly breedin 

barriers t twam species are often atoa, t where tuo types tuest i 

evidence for this has tann found by brwan (19(5) and others in 

i)ro. ophil&t 1*uJ tobt. Th© procesa ! aa 0100 beef's dwat- onrtral ed experi- 

mentally 4-night Ot ., 11956) and theoretically (Crosby, 19(, 4) 
. 

However Ti low (1965) states that "the evolution of mechanis& s to 

inhibit intorbreedin(I appo+u*a to have tak n ; placa-, ta direct result 

of selection inn narrow zone of contact rnthf r infrequently" and 
considers that since the perfection of such vxK*mnjkja presumes the 

production of "poorly adapted genotypealt by hybridieettton, there ps t 
have been prior divergence and hence isolation, 

Narertholeiy, To daY and Gibson (19G2. ) have rihamm that not only 
can diver e occur without prior isolation but ai2o that evolution 
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Isolation introduction 

of crc)HHint, beºrriarx can tale place under disruptive selection it, 

DropcphiIa. Amruptive s *1esr-tion, by oefinition,, creates "poorly 

adapted : Hnotype i". 

); echani ic retucinj the hamful effect. of (sem flaw were 

irneatioated . 
ir, closely adjacent populationa an occur at mine boundaries 

since this is rk situation in which barriers to genes flow might to 

expected. Several poesible barriers to s ftochanre will be com3itlered 

in turn. 
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". IWK *: l ATIBILITY BARRIEIL, 

There wrculc' tja evh+. errce of ar incompatibility harrier (ass 

Oppos4mi toi for uauvaple, flowering ti or [mogrAphical barrier) 

between the two pvpulatiam if c. rouses 4ctween mains and p*Ature 

plants wert, loss isucreom ul thaw rar'aAa, " within the pop: üationar. 

However evi dence. from rI'vious work nº, jasts that if such h rriers 

are pre cent they are not very powrºrful.. Evidence for gene-flow 

(locNeilly, to itself avidwwe for the absence of breeding 

ba rierFz. '. orocrrrr Wilkins (19«)) and fro. iir (19((3) found no dif- 

ficulty in crossing tolerant and no i-tolarwit races of Foutuca ovina 

and Silt * inflata respectively. TO investigate this more t orotigk'ly" 

the auccown of cros e c, ckY 4uuring a. p tical aas. -1 ysis of metal 

tolerance w-A i rensur &1. 
(a) T., ethod 

............... 
Cruaj:. +Qjs Were m*Uo by enclosing i¬ lorrscerticu of the plants 

to be croaxod in glassine bac" 1ho plante vats r-watched for 

flowering t ime , and the croaacis were made in an unnot ted greenhouse. 

Compatibility in ýribv ºnthuwe was ave"UXE' l as the nt ber of f¢a*edc per 

inflorescence. in q oetil the need is mall and difficult to count 

so that me" set was indicated by the success" (setting of at least 

ten , sect} or t"failure" (setting lrai than ten atoc4 of a cross. No 

ditf r nces in seed viability wuro faune between different crosses and the 

viability was get*rnlly high. 

(L) 't, ROUIWV- 
The rcwulta (Taub> , -s x . _: ýid 12b) have been Pooled for the separate 

sites alonU the trsnwecstºs We int wi iii to kite iki ý� : the laded) 

to give four types of crosses. 

14, tolerant x tol bran 
2. tolerant (f *tiiýýtj x non-to1ortsnt (mA) t 

3. no --tolor, a*t (Eule) x tc mr t (male) 

4. non-tolerant x non-tolerant. 

In A m! g in both 196e and . 9&5 mid in hu xnthuca ill 064 

there in no siVnificant difference betwoou tau :, uce of c. x ogss" 
within lations and cros os between w :, ulati o thus giving no 
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Tt bla I2a& succo* at croomm bets si az within 

tGlarant a** faw olerNtt papu1. tisns of 1, MW 

i`srl . s-v Tol Non-tale Man-tal. w ere" Mou--tal* tA 'dal. Ma»-tal. 

Failure 

sucoo" 

y^. 'ailum -12 11 14 

St sm 20 21 27 

c(Miwal=Y X2 

Within p u1atic /b. tw m pe° . itio iIa 0*248 no** 
1965 0.1rß, 8 Y. $. 

Within ta1* rr nt/ within non- telsrant 1964 " 0.266 n s. 

41 

Reciprocals 1964 -- 0- 132 ns III. 

; Leciprocals 19 "1 x 0.068 nos. 



Isolation : incompatibility 
42 

Table 12b. : ä*e eat in crosses between and within tolerant 

and non-tolerant populations of Ani thoo3ot tz 

Seed per Tal. x Non-tol. Non-tol. 
iolo x Tal. x I nfl oreacence ton-tol . x tol. Nor&--t o7.. 

0 22 r3 33 1tir 
l -, 17 19 .1 

(-10 10 t 

11-100 3 9 1 ;; 

tý - 33 37 1 ý` 

V, % 
1-5 - 33 ,8 19 
6-1a - 20 10 

11-10) - !37 

cwriN(°iLmy X, 2 
on clan es 0-5 and 5-100 

Within populations/between population 19(, 4 - 0.294 n. n. 

Within i, n-tolerant/betw, en population 1965 - 4.375 '° 

Within non-tolerant/tolerant x non-tolerant 19165 - 0.005 nee, 

'Within tolarant/within non-tolerant 1%4 . 0.53) n. a. 

feciprocale 1%4 6.753 

itoc iprocal e 1965 16.453 ' "' 

evidence of the evolution of breeding barriers, h ovrever, in l9(ß5 

in Antho hue the between population crosses yields significAnt1y 
less than the within non-tolerant population crosses. This difference 

can be completely accounted for by the difference in the success of 
the reciprocal crosses which is observed both in 1964 and 1965. There 
the öifference was startling and the cross of tolerant x non-tolerant 
yields far fewer seed when the non-tolerant was used as the female parent. 
(c) Di jt2M jgn 

Apart froa the startling differences in the reciprocal crosses of 
Mýthoor thi 9 there is no evidence of clear cut inccrpateb. itity barriers 
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botwom the two 1ati0m. t thus. CrOSMIS WW M&40 in 

isolation and the rwaüts z , pct tit diff r6nt ifs t ax ple� a 
tolerant parent vas offered simUta sly pollen from both tolerant 

and r al+ rasa plants. Cititim in the utylw between two types 

of pollen r iy be i rtant ( arli +aa ü better, 1949, p. 2! 53). 

This has nvt beer investiate4. The urlgin of incu"tibil ty barriers 

batvew species of WýA growing in the mass area, b*tt not bowers 

species vid*. y separaý .i en takte, hsa been recently shown by 

Grant (19(116) 0 
»itfatiraiwALs in ; he mmmmx of reciprocal crvasor ox* well known In 

plwnt . UG y indicate the begitmi of an inco"tibility W wrier, 

This ph oaxo. mm is seens tar .ia. plo* betxees% the two sub -opoci. e of 

rice (C , vIm tz a, 2 1, p. 20)o iiua , the least suc ce"f ul CMOs 
in the prra zt study is non tose t1 aale w tolerant male� i. o* 

only *e flow off the mine auto the pasture AMO&M to be hindered* 
This soma se i. sing because selection pressure a isst tolerance an 
$ha nture iee likely to bis low t3 1s lectice foi tolesenc* an the 

vtin. ad it will be ah vn later ( tiara Y. 2. a) that ONO flay load 19 

more rim. wtwn . s1. ctian intanaities am high. 

i`at a plants have boom rh c im to have a maximUy greater sei t- 
fertility than nc+ttolarsJet plats (lie 3ati m IV. 4. b). The 
differms in mdf4cwtility be%o tolerant and nn-tolerant 

jb23gj1t 3 in itsait too mull to account for the di! f t in re+i 
.. t of the r ect eü e (Tebl, 13)o tt rer, it is known that crosses 
between a mel fixt ibie aspect . and sei ftibl o species are 
lese eeefui if the *elt»ceapºtible mies in umA as the female 

parent. wes and n , tewt (1%x) comidured this to be the result of the 
deleterious effect or self . -compatibility 0ener entering t hie f. 
ißtible species + Cousine iixreeditg de sion in the ration, 
In 2gLM euch a reciprocal barrier In only present whom self.. 
incaapat ibl e and snit-cospat ibl e species ccm into contact. 

Am#her y sibble reason for the reciprocal dil'gereme is that the 
eine Plimts are gw 'allY 'ter (Chapter III. Ia. c) than meine 
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Table 13s Ca *ism of diffennam bit süed aet by 

reciprocal cross wW by . el f ing in ssig thz 
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iprocalo nirto týý 
l'irºy 020 'ot+aýett Tal. non-tole 

Ttü, tiara-toi. Tal. idtail. $"Ylhp Reciprocals 

: 6t 0.371 0. U(-, " 3.912 1.239 0. g :. 673 

1965; 0-57ä 0.084 5.039 2.735 0.49+ «. 32º4 

plants % they wm Ld t1 erefore ta& to car 1f+rar in the Zinsetioi 

bag at ctidve falling polla«. The Tortolerant howwor would receive 

vvsT little pollen, and theta only t ttIm bag wain agitated. 
Amoves vin c were mace jnflas, encenow wom matc*tod for height 

as well as f'ioww-ift time ao ti r> is not likely to be a . Trews 

error. 

The evidence for the DIRTe of isolating barrier. in 

A_ti, 
_ 

k2 in the direction of proven ing the spread of tolerasit 

ptmss into ssawtela t POPulatiam is thwef id+rrablo. 

Hammer becwjm it is rather us turd further sonic Is necessary 
to eentirn whethw it is a real +ºes ro n urAw field ce editions. 
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3. F DUNG TIME 

t* of the mis 4e. t methods of reducing _- flow bahnen 

pvp*. atio. is for t1 to differ in their flowering ties. mit 

sei isolation iss oamem tawrb related spoicies, and it therefore 

seemed obvious to it ctigate difference* im flowering ties of Miss 

sad s*on«. ths psoitlatio w. 
(Iýº) F y. rM in ga 

.d 
Observatiam an the tlarMre'ýiag tum of the popüatiem of mmu 

and 6UWXgWgOJM wv "ate in the field in 2964 and 1965. 

iii Aprostis 
'l. m rtnq tt s was &one&*" fire the numbw of in fl 

at different stragwc of du slog ek tom d in 30 ear* ate at w 

giY time. The quadrats v. r. thmm r modaNar an the sites &lamb 

the -y-coed tit wars y described tester x2, i). 

The :fl uw rii staow w wo rwmb d and scored as fol la. $ 
StAgs 1. Inflonmiv K* +wwlos d within the ýeathp flag loaf 

c spi aa, tiller ri-otlame 
intion ae head showing bate N gart risible. 

3. Cul* bar math inf . me w* visible, panicle not e endoll. 
41. *au al" apm end arvad will ly. 

5. aasthors and/or stLi u eaparsd an part or s of 
iaaýftaýrrawýcýaº. 

6. Flm rm clesed* piu mm bra mu 
The results (Nig. Ska) swm that plants on the pins t1OWrr 

wli r than thme, an the aäjaoaat pectin., mad that the isolation is 

mom IW-- a 1, con the bawWax 7. The dLttnvmo in stages of #'iawui,.. 
Lug can be used to srtirrtto thes"llnLIONt isolation in talur of dsya 
it estimates are aa* an two dates. 'wie time taken to jars through 
a Domain bar of xtamw at a gig site can be related to the 
dilfauo ösirasa amt to Iýsat *stimmten of the duration 
of the staff are obtained from dAffQl4Mt sitars. The valuer setLa tted 
in this way fir* the followings 

7 day's ; Oe 511 + 0.085 stages 
Thi O WS the aL of days La l at ion &g t 



Fig. 24a. Flowering time in field, along Drwe-y-Coed transect. 
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Fig. 24b. Flowering ti" in greenhouse, along Dnn-y-Coed transect. 
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Fig. 24c. Ecological conditions along Drws-y-Coed transect. 
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"to wmwbw 234s67 

nowsrum 
mamrum 

ý, 
34,73 486 8.49 7.85 0 2.79 

(swum t sit.   0) 

$isLl rd as nowwrbW its. w obtabod by )M. Uh (2965) 

stoWl" the a. UWw"t In 1$li mt its tons at days hoist len him 

vita wars 

7 +w : 0.963 1 o. oai stag 

site "abor 2)is67 
favorlft seem t to ss 6.09 3.96 12.17 7.95 0 3.23 
i. 1iirt Site, " (1) 

the melts at Mir (i$s) app mil, with the rewits of 
the j! -1001% sf b' rlr Ang that the i 1stisa is a 1M t wwsr YOtrr. 

AltM a *rti1M i stilt tttes at the ämtiw at te ilararis 

P04AW WW it MOON i da * repStor Mier at Drws ftCOrd Sft Mr 
tb most, at the pi s an is flower, tfor a parted aal 3.5 undo, In 

Offset t ervio the li iq t1 dims m that 81 tar of 
the tatel"ll Deo ar WO "fir art. the 

aituatim at the and st the glevorl* period fas not base ommin" to 

am it the 01010 110110 ! ice sitar the t43,810109 kWe 

rý alaýpýd. dtia an pima in the rwýýral rar 1 log 
go Ali 0t %bA t de. ' is the are iaolat aft hotwe 

pe atiOMIN At of the tl+reer ias PWIAW6 

(ii) ssiUwu 
$iteýoýrº rfa rr a at ýdM distinpui 

the purrs is a Girrw am were moored lath 117 tw the tollou p 
steam at t1smrti . 
swigs to Ufi uii s hood dual fl Mit ID1II* net risible. 

3. WONG +wi n& is ýr& irr U044way p ogysaone 
1 sir exlr dou 

ft*IJ Ad 7 omits Wined is i'964 ware from a trat about 
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twenty yards away fre the main traweet studied in 196,. The rewtis 
(Fig. 25r) chew that plants on the miner flower earlier than these 

an the past add that the plea frown the positions nearer the wirne 

boundary We the earliest to ti"Wo The difforenins between the 

rites are hi&ly si dfioant is both y**" (P < 0.1%). The Isolation 

in t n. of days was calanlwt d using the method vutllasd mare for 

. 
Ascv&U, * The results of the estimates ov as tollwa i 

7 dwT 0 0.761 
" 

0.099 at* 

slaw *nd Ia34567 8 
Is 1"latiaa 1964 4.60 7.17 2.94 0 
(+srlie0t 

i965 2.21 3.79 %70 3.13 1.56 2.21 O 0. ?A 
sits " a) 

To aal+etau the flwAwgahg tim dift e in torus of damns wry 
"Oursiiy a mdifi+oatios of the abo" netbad Was us" in the ter of 

% the *ASWUAn of 1 srº Wr 00004r*d as WD 

oll 'na of 14 plants t*kM fron the Misr In oar t**t square beer 
(With as 1 itil" dlartarbome at tin soil as po+reibý r), Md balm M buk 
to the Yea o 1CMMiM t b* 4 wstis of . otsov red the WAOW of 
each at the t osst sitdr a pmaim ativat of the dittormsas 
bstww n the sib oould be rr6k 

The results ! rin stir 3" JLGOO hr at iadiriäwý, ý frs we 
ftNP 1" 11.59.0. W days 

2n Jt. 't + b. dos 

3 7.78 O. Z5 dri 
9.19+0.45 oswo 

40 

? boo wunaum give the to towim VWA for t]LwowLnß timm in t. zi a of 
dw+to 

site Wr*W a)45678 
P1. srum *t*gs 4.14 60" 3.23 0 1964 
e aa rrtwd to do" 1.97 5.03 4.96 2.70 1.38 2.01 O 0*62 1965 (swil"t "to a 0) 

Tim . etimat"s win tt MW +li tly 10 r tbAwe sbt&jerd 



Fig. 25a. Flowering time in field, along Trelogan transact. 
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Fig. 25b. Flowering time in garden, along Trelogan transect. 
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Isolation : flc rwrinr: time 

above, but the gensral pattern is the same. 

The chmrntion of the flowering period in is amt 

3-4 woo 1 und therefore the isolation is of the s wow order as at 

Drua-y-Coed. 

Theme figures of the degree of isolation between the two 

population. da not take into acc+aunt los... of pollen du. to the affects 

of distance and the effect of plant d city. w :o effect of distance 

is discussed by Jain mWß raäahaav (1966) and teed not be elaborated 
erst dist*nai has a pow. rtul isolating atfcc: t. 

The affect of density is that a higher density at the aewes of 

polirn wi11 give w gs*Atsr t of 90- flow into another population. 

In the early sta .a of colonisation of contaminated $oils# plant density 

aua the aim would have kin auch iris than in the surrounding areas and 
the early colonisers would have been subject to considerable gene flow, 

At such a stage isolation caused by any wins would have been of mat 
importaace, g and selection pressures to pro kic. differences in flowering 
time would consequently have been higher than later on. At the present 
time the density of plants on the mine is considerably greater than 

off the mina (since the species studied are dominant ssnbars of the 

mine communities) and isolation through flowering time is reinforced 
to saws deg rea by "Iolation throe º dwwity". 

(b) &ao tiara in sl t iýrat *rn* 
The ditt doee seen in flowering time in the field could either 

be . swir atally induced,, or genetically drt. in. d and therefore 
brou¢tt About by evolutionary prao s. To test this pfaru were 
yi ndor' stau lard vonditiaW in tM 03WS'iwattal pardrn and diff .a 
in flown ring ties studied. 
{i) Agr tiw 

The, following mater *1 was soared for f1 , rL Jn 196. 
(a) Plants growjn9 outside in 7" pots in John lanes compost* Collected 
in /utur'; xi 1963. 
(b) Material the some as . bam, but cloned in December 1964 and planted 
in ßr0 pats in Jahn Imes compost g and kept in an ur ted greaahou ae. 
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It. 15. . seen (Fig. 24ß+) that the pattern of flowering paraLleln 

thM. t fcwn*' in the field. Moreover the regression of genotypes 

in jsa t1 pots against the same genotypes in large r 't Is 

sitnificant (Fig. aria), showing that the genetic component is not 

obscured by �rviro , rsatal affects. Similar data were obtained by 

McNsilly (1965) on plants growing in water culture. 

(ii) Muth xa -, thtm 

The flowering time of plants along the tralogan transect was 

recorded during the course of a spaced plant uxperisant described 

mosre fully in Chapter III. 4. 

The results (Fig. 3' b) indicate that the pattern of floverian 

is here again siailar to that in mature. The differences botweeen 

tolerant and non-tolerant populations are of the *was order as in 

the field. Site 8 is an'ialaw, mince here the plants are 

considerably earlier than in the field. The reason for this is 

not clear. 
in the previous year, the dato of oar emergence had been 

recorded as the same genotypeog but which were graving u r. pl icated 

and unr+ondeniaed as normal stock aaterial. There is a good 

correlation between date of flowering in 1965 and 1966 (rig. 2Gb). 

The differsnt* in flowering is therefore consistent over years. 
In both ýýto g, and IIt Rtlo therefore, the evidence shows 

that the differences recorded in the field atme genetically 
det. rnind. Althowg extensive results are available only for 

these two contrasting alms$ Jowett (1964) noted that lead skins, 

populations ofAMCggM& in cultivation flaw on average about four 

days earlier than pasture population, and Bradshaw (1959) found 
th t. "1910 load nine population again of 6, is flowered a 

week earlier than the pasture population adjacent to it, Broker 

(1964) reported that the prostrate tolerant ecotype of 5i1o2 infleta 

flowers se eral weeks earlier in water culture than t 1m nor", fem. 

It can therefore be concluded that selection has produced 
different" in flows: tine that are not only i portant as an 



Fig. 26a. Relationship between flowering time of Agrostis in two 
contrasting conditions. 
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isolating mochanimg but surprising in view of the short diztw! kces 

over which they occur. 

(c) The oi in of the fl ri time diffSIMSI 

The differosncos in flowering time recorded in the previous 

suction may either be the result of adaptation to local ecological 

conditions, nothing to do with { flow, or they may have evolved 

as a consequence of gem flows i. e. , specifically as an isolating 

mach ni, . Although the fact of isolation is indisputable, it 

in i"rtant to keep these causes disti rect. 

(i) Adaptation to local conditions. 

The mine environs ent differs from the pasture in many factors. 

Apart frao the higher metal concentration, it usually has a 1wer 

fertility, higher pH, coarser soil texture, and generally there 

is leise competition from other plant.. Changes in several 

associated characters, have already been discussed (Chapter 111.4) 

and it in possible that flowering tigre is another auwWle of 

adaptation to local conditions. Mine populations are ungra ed; 

Dart 1. Lg sicuerata from ungraaad pastures fl capers earlier than 

that from heavily grazed posture (Stapledon, 1926). Mine soils 

are . cýtimee similar in texture to sand dunes sand dune 

populations of "o flower considerably earlier than pasture 

Populations* Moreover, Legestiu (1965) has argued that in a 

species colonising a relatively bare area and expanding rapidly, there 

will be a premium on rapid development und earlier flowering. 

Two environmental factors possibly selecting for early 

flowering time were investigated in the fields water content and 
temperature of the soil. The water content of the soil was 

estimated from the difference betwert wet weight and air-dry weight 

of soil ales from both Drwa-y-Coed and Trelogan. Soil 

teaperature was measured using aaxi>na and minim thermometers 

placed fire centimetres below the soil surface. Readings were 
taken at weekly intervals for two months prior to flowering. This 

was done only for the :. hrrs-y-Coed transact. 
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The rruäta (Fig. Spa OW 250) stunt that thAaro are distinct 

oorrolatios between t'1owerloo time and soil dryes, as well am 

bit º tla rieo time and moil toolp sture. The" oorrelations 

are in the mated diretion; warier drier soils have t to earlier 

flowering types. tis mvei tt are some thtanst im ions 

to this pattern. At t -yI*Cftd, alt ois ds earlier 

flowering is sews at warmers drier siteos site 7 (off the eins) 

har aal later flasriap than site 3 (an the aims) is spits, of 

similar soologisal v Lions. Again at ? rslognº sites i sei 8 

are mm prtional iss that they do not oo. rralato with the *"logical 

pattem 
The . solo t tasters that have been wsur d could therefore 

to . a. r.. xtet dour , sae the ti+ rrrinw time pattern. Other 

00444044 tuners could also be i lvedo but to identify these 

is OW drlaLl vows d requ fer rar StMIY. Ibee. is wm*brrr way 
in ubjeh flova t wir be altepod by $"W%Uol It ally be 

1#ßd (pyr#olo ly or { rtically) to owe Other 3 riological 

or x1991" character bhp ected OR their cm AmOmt I 
nomplift tuts will them itself cbm" loft tly. Clmom 

md Niamey (1938) bm . *AM that IS fluwerr$" t to 
linked to mwW ýooý raýtWg . rid darr lan@tA Is kaarIN to 

affect flawý- loo as "I1 N. socoholo lº (.. g. relit., t9ä0. p. 176). 
"woven me sLae momt rsiatla yb li+ tng tins 
tats was tamed within the toi at º (UK* iii , 

clomm the motors to be mdicard in mW w Wo 

(1) or triaßi of io now 
or_____ that 4itf"I"aw is f1a. sriap tins em aria. as a 

rMwit of + neben for a as mal irs rnrtrictU paar fa, has bum 
d rraýt ýd in Very týW lasi: + eýrýr. Partial litt pýpwu1mad tswpam" 
is"atiow cwt Wkwo ntobMbriurisi roam of purrs in tomw 



Tnblc 14. Uifferencr": s in flowering time of various ecoivprea 

Species , cotyle' Flowering time Author 

(. ilia cnpitata normal form earlier 
sand dune form later Grant (1I). 2) 

madig clegans vernalis (lowland) -i' ing" 

aestivalis (mid-alt. ) summer 
densifolia (lowland) autumn Clausen (19ci1) 

1. yia lplntyglossa normal form earlier* 
maritime form later Clausen (19113) 

liemizonia citrina April* 

lutescens August-September 

luzulnefolia April 

rudis August-September Babcock (1924) 

I. actucn graminifolin early spring" 
catnadensis summer Whittaker (1944) 

Ixeris denticulata asp. typica spring 
sap. sonchifolia autumn 
sap. elegans summer Stebbins (1950) 

Pinus attenuata inland later* 

radinta coastal earlier Stebbins (1950) 

I. nmium amplexicaule normal form summer' 
vernal race spring Bernstrom (1952) 

Viola tricolor normal form earlier 
coastal sand dune later Clausen (1926) 

Silone cucubalis normal earlier 
maritima prostrate coastal later Marsden-Jones 

(19311) 
Geranium robertianum normal earlier 

shingle beaches later Becher (1947) 

Mimulus guttatus coastal late 
mountain latest 

valley and foothills early Vickery (1953) 

Silene vulgaris normal form earlier 
calamine form later Broker (19h3) 

Geum urbane normal later' 
rivale wet habitats earlier Clausen (1958) 

Succisa pratensis northern race earlier 
Ranunculus acer alpine earlier 
Solidnao virgaurea alpine and coastal earlier 
Numex acetosa alpine earlier 
Leontodon autumnale coastal earlier Turesson (1925) 

Agrostis canina var. fascicularis fifth June* 

var. arida sixth June 
tenuis ninth June 
stolonifera fifteenth June 
gigantea tenth June Davies (1953) 

CL. trkia xantiann normal race later' 
Self compatible race earlier Moore (1965) 

Salvia mellifera early spring 
apiana late spring Grant (1964) 

*evidence that 

- 
'ecotypest 

Closely 
adjacent 
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(Aettstein and Ono, 1968); a similar situation occurs in related 

apecies of pines on the California coast (Stebbins, 1930)« And 

it is perhaps relevant that ecotype formation very often go** hand 

in hand with differences in flowering time (Table li), but this can 

equally be interpreted in terms of adaptation to local conditions. 

Although natural selection for adaptation to local conditions 

can explain in part the differences in flowering time reported here, 

this cannot be the complete explanation. The earlier flowering 

towards the boundary in the mine populations of both r iss and 

____, 
1ý°'zeAth in present on nines that am ecologically very different 

and it can only partly be explained an the basis of local adaptation 

to water content and soil temperature* This suggests that boundary 

populatis flower earlier possibly as a result of a selection for 

a mechanism to prevent gem flow; the evidence from this data is 

however by no moans cl tar. It can be visual iced that gene flow 

will w local adaptation in flowering tins, since the plants 

that do flower earlier will be pollinated by s#*ilar earlier 

flowering adapted types and therefore not more of the appropriate 

type of seed. In this way germ flow will assist in the build up 

of earlier flowering types it such types are an advantage in terms 

of local ecological adaptation. 

To investigate the matter further a series of populations were 

collected in 1963 fron lead mines in Cardiganshira (Appendix 

and a.. aloe Chapter I V. I.. 6) . The area of the mines and the 

distance of the populations from the edge of the minas was recorded 

when the plants were collected. Thew Maze taken as me nur s of 
the prsimity of the tolerant populations to the non-tolerant, The 

populations were planted in normal potting compost,, and scared for 
flowering time in the summer of 1966. The results (Fig. 27) show 
that the flowering time is significantly earlier the emaller the area 
of the mine but not significantly so in relation to the distance 
from the edge of the mines. The saga trend is nevertheless present 



Fig. 27. Relationship between flowering stage of tolerant 
Agrostie populations from Cardiganshire and distance 
from nearest non-tolerant plants. 
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Fig. 28. Relationship between size of plants of Anthoxanthum 
from the mine population, and stage of flowering. 
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, opul tion,: y are j-elatwJ to speciations au'* we seeing the to insringu 

of this p, rt.:, jsx'? The formation of brooding barrier in this 

irustaice iwsi. ts selection in promoting divergence, but is not a 

Integral part of the process. The evolution of breeding barriorz 

i. here therefore very different Prate the process of 'catastrophic 

loction' described by Lawi5 (19(:: ). U aver (i%1 ), in discu ein 

edaphic endemics and species which at t ho edges of their r¬n eu 

have poculiar habitat al, considers t? species to be t? products 

of 'catastrophic selection' i i. e. selection of a far specially 

ad pted, 'automatically' t chroiaoso lly or through inbroeding) 

isolated typos, rather than the products of a gradual process. 

The pr'eent wort he that the procoasoa leading to 

reproductive barriers and morphological Or physiological differences 

axe independent; the reproductive b rrriers can therefore bpUin 

gradually and become quite major, an can the morphological and 

physiological differences. The result is progressive speciation 

which can be seen at any stage depending on the particular 

circamxtersceaº. The following stages of speciation might be 

expecteds 

(w) continuous uniformity. 
(b) continuous population (no breeding barriers), but dilergonce 

of two or more sections. 
(c) discontinuous pop' rti¢ns (breeding barriers) s with divergence 

(d) vary diascontinuouse with increasing diverqence. 

Soveral workers (Schwrickerath, 1931 and . ̂ t' ; uier, l962) have in 

f xt regarded reine populations an distinct taxA which are relicts 

of a fonseirly wid4, iy distributed species, or as endoEUice (and 

therefore isolated) to peculiar *oil types. Serpentine species 
have also } oen viewed in this light (Kruck$, be-g, 1957). There in 

here a problem of tw low. Maury of the so-called separate taza 
found an special soils should swat probably not be regarded true 
"biological species" (Grant * 1957) and ,y not have reached the 
store advanced stages of spec i aºt i on ((c) Al td (d) above). 
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Colnnisatiof of sine habitats not only requires the evolution of 

tolerance but can include changes in morphological and other 

physiological characters. Distinct types may therefore he the 

prod! acts of recent evolutions they may also not be reproductively 

isolated Eras the parental types* Parallel independent evolution 

of similar morphological ecotypes (cf. Turosson, 1922) may give 

a pattern that would erroneously be interpreted as a formerly 

widespread 'species' with a present-day disjunct distribution. 

It also somas unlikely that populations adapted to peculiar 

conditions at the edges of a species range cy" .lý. only occur when 

the populations of this species are widely repira. ted with little 

gare flow between then ( Raven g 1964, after 4. r, 1959). Theao and 

the results of Thoday (19584 show that sysapatric (or parapatric) 

divergence in a reality and can lead to reproductive isolation. 

Selection for reproductive barriers is largely secondary to 

selection for directly adaptive characters, but the potential 

for permanent isolation is there. The present work suggests that 

the processes of divergence, directional change, colonisatiosn, 

and speciation are inextricably linked and that forces 

promoting speciation are cocoon in adjacent natural populations, 

even f these populations never reach the stage where we can 

definitely say that they are two species. Evolution begins at the 

population level and we need not look for the processes causing 

speciation only in taws which are already highly distinctive. 
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The roll of brooding systems in plant evolution has been 

frequently discuss d. The problem has considered mainly the 

function of tubres i an the basis of am ple theoryp inbreeding 

should land to hommo ygosity and loss of varisbilitys whams 

outbrssdiyti cb *a1d cMs. &rvs this varlability* The problem is 

that of it*rwding as a "ul ind alloy of evolution" $ inbreeding 

is gonw 1ly regarded as a retrogressive stop which evvntually leads 

to Eination. Stebbins (1957) states that since t. large geners, 

of angio s caesist entirely of seit-fes'tilising species,, and self- 

fertilisers ,m invariably derived fxee caress-Ortllia. rs, r remis 

can safely make the w tIonj therefore, that seit-fertilisation 

slams dmm evolutionary progress in t1a. e ring plants" but qualifies 

this statement with the ren Ok e "the adoption of prsckýwinset sei f- 

tsrtillsstion is by no meow the prelude to evolutionary o rtination, 

since soss sea t. fertilising groups appear to hire existed for 

several geological spodws and may wen have outlasted sassy of their 

cross-fertilizing relati s". 

fleasatly it has been sham that the omount of variability present 

in inbred populations has geosrally been wndammati*ated (tor 

discussion soy Ines and Allard, 1965, and Allard, 1965). Variability 

is preserved because h*tw4W sot s are often sup rior to ha'Otygotes 

In fitness and is released to a sv islrq degree by only oooaaianat out. 
crossing. 

The . wolutim of breeding system his boo generally cGrAidered 
to gear by a protz of . W, oation both papuiatie with different 

strat+gior rather than direst selection of individuals with certain 

attributes within po latices. the Process, has been aalind 
"inure 0, tint, aid errs a slmw process than selection of 
w "tie direst kind. In view of the b kdow t of the distinction 
between, the raivo of diode vt tiding efstess end in the of 
. direst OW140000 far iotQrdMM4 selection, it is pertinent to look 
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for the direct adaptive value of inbreeding rather than inquire why 

it has developed "taut da aim=". 

Several possible reasons have been discussed by,, among others e 
Stebbins (1957) and Baker (1959) . They may be listed as follows: 

U) The certainty of fertilisation. 

Several species self-pollinate under conditions unfavourable to 

cross-pollinnticn. Good maples, apart frag those quoted by 

Stebbins (1957), coýue from crap plants where the transport of a crop 

away Trani its source of pollinators has often led to the evolution of 

self-fertility. In California, the tonato is largely selfed since 
little outcrossing is possible because of the absence of the insect 

vectors native to Pie ruu j the original hose of the tomato (Rick 
j 1950) . 

(ii) Establishment after lang distance dispersal. 

Baker (1955) has given evidence that species at the margins of 
the range of a peius (or isolated on islands) show morwworphic and not 
dimorphic or dioeeious flowers. Stebbins (1957) gave similar instances 

for 1, Non and 92 e Bannister (1965) working on PiM 

jZ ißt showed that "colonisation is likely to be accompanied at first 
by an increase in the degree of Inbreeding,, but outbreeding will tend 
to be restored as the population density increases�. The absence of 
other Plants t after establ isheettt following long distance dispersal, 
is given by all these workers as the reason for the greater self- 
fertility of marginal and colonising populations. 
(iii) PrarehtJon of gum flow. 

During the colenisatioes of a new and fairly uniform habitat, a 
high selective advantage is given to a genetic type which can quickly 
build up a large population of well adapted individuals from the 
progeny of a few initial colonizers. It is advantageous therefore 
that the de, ants of an initial coloniser should resemble 
that coloniser as closely as possible. There are two main 
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aspects to this. Firstly s it is ac vantage ous for the ori oisW 

roloni vior to hs3 lLßnozv, ?,. Ls. Stebbins (V j') quotes the case of 

sever: al self -incmiryatiblc arousals who may heap their Venetic 

coiuatUncy th. rouyh hav. iag reduced clu reoene n rss and/or chin 4ia 
frequencies. secondly, crossing with extraneous pollen would I ecid 

to a diluticm of the new adaptive cl. sracter by the parent charescto: r 
(Esker, 1') 59 J. it has been suggested (Jain and ari dzhaw, 

that selection pressures actinw on pperennials are considerably higher 

than those on annuals, since the selection pressures acting on a, 

pere. uiia1 population must be mummsed over many years. Thereforo one 

might expect gene flow to have less drastic effects on perennials than 

on mwatals, as annuals in particular would then have to evolve sie 

mechaniea of avoiding the deleterious effects of gene flowo the 

relative high frequency of eel fing annuals as opposed to perennials 
(Stebbira, 1950) iss therefore intereuttn frame this standpoint. 
(iv) teure of recessives. 

Du ring the colonisation of a now habitat, now genes may be 

required. if these are in a recessive condition they t, ill more 

easily be umasked by inbreeding " tsoore and Lewis (19(5') describe 

a derived self-fertile pop . lation of C1a$c e,, which has `-: fite petals 
(n recessive character) whereas most of the species has lsvun r--pi* 

fl owers$ 
(v) Earliness of flowering. 

Individuals of a cross-pollinating species that flower first may 

Produce fr `seeds because there are few other plante to pollinate them. 

Self-Pollination in plants that flower early would therofore be of 

selective advantage. This Lai one of the main reasons advocatod by 

4OVre end L. awin (19t4) for the self-fertility of populations of 
C_%NO: LL'& Flenn there is a Iqrm+ium on earlincas of flowering because 
the growing seasons to often truncated by drought; the degree Of 

eel f ing and flowering t iso are Also correlated, he two would 

reinforce each other to prevent Gene flow and indeed little ev ie 

for the occurrence of gene exchange can be found in theee PopuletiOfU . 
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(vi) ")0ntjFit, y of plant7. 

1lr ttý; ý! rrv: l. ncj in it dense stand have rwre chance of t inc 

poltin tot than Mona growinýj far trart grid widely MMcntterc. 06 

ö', f=t 'actor I. w; been cotesideroO indirtct1y by f. lcar (1fl53i who 

mlitr, ad Vint in tropical forests, vrizore the ci iý x verjetotim i 4i o 

rcixture, of any species, there rare far more l er*athrodite ý, "¬ i. r. 

than In t iiq Brate '`orent:: which are more or i ;, vi dorme stand- r%r 

onto or a fear apecierý. This iss relAted to factors (i) and (ii). 

There in therefore evidsnce for a wide range of factors which 

right be iarportant in putting self-festi1iaation at a premi . 
However, the processes of selection whereby these factors gproduce 

sfl f-fert it isst ion have been little examined. Most of the 

evIdonce is circumstantial and comes from comparisons between 

species. Baker (1933) rr larks that "despite the ý elative ea-%e 

with which outbreeding may give way to inbreeding, it aeeaaa that the 

natural existence of self-incompatible and self-compatible races 

within the name species is father u: IuauS111. 

Work by Julen (194ß), tfeddowa (1931) and Jerkin (1931) or, 
herhalte plants has shown th. tt theme is cotiderable natural 

variability in the level of seal f-caenpatibil ity in lei z-ms and ; raise . 
In *ome instances, the highly i ilf-fertile plants also have highly 

eel f-fertile denies (Jonkin 
, 1931, and Tlio $; , 

)55). k1thouch 
in ganerwl " progeny salted wei several aerations show evidence 
of inbroedin9 depressions . in some species, e" 9" " IAIlleur 2r2 te=e 

an+i F+ý b, occasional lines show ý rrently nor a1 vitality 
(Jul en, 19048). More direct evidence for the inheritance of , self- 
fertility conks from a dialiel analysis of this character in Vicia 

........... (ltowlan s, 19(o); the genes responsible show dominance and non- 
additivity of action. Selection for self-fertility in this plant 
j reasonably effective (ºtowland4,1961). 

Selection for &:, lf-cos patibility therefore seas quite possible 
and there a4 very little reason why it should not occur render the 
ric*lht ca1Mit1on, s in x. L sir 2 ºýs, ja , ti xý. ý. 
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Ä r. rnyw i m. *n Rortint of this thesis si tuetti c were mcri i 

whW there y harp «1icfe%r-entlation b. twox iý-, mlratimm may 

a few r etrts* �mart. 
The Mites, tio s mogv* t 3. t4mi fr llning 

the ºolsfiti of tar lind} arr*rt. +e iss fairly wide sated d3. ss +sº"a i1+ 

often nec: a. nary to colonise the minn toil, there is co iicierchlce 

cserse 4`l cw i etww4m the popisl &t ions, tho Mine populations flower 

etirl ier, and there in a aisle ranje of plant density on different 

n meas. 

m. study was divided into four sect iono t the utab1 it rt of 

(Affeire . in self-compatibility of plants frc adjacent 

poinüatinnis, an examination of differ between varioum tolerant 

populations, an inv sstigtion into the refect" of self-fertility on 

vigour and a computer simulation of the wocosa. The computer 

a imul at ion in presented in Chapter V. 

(W 
af far irr of *4,1 esr ti 22MAIMMIM 

(i) }- ethod 

'rhea colt-fortiiity of Ads and A 1bo3arlhum plants collected 

fror the transects described in Chwper 11.1. was estimated by 

enclosing about five inflorescences from one , jenoty; ae inside a 

; Massire bag, and countino the seed set. I'1snts were collected ae 

one or a few tilleraq to sake sure that only a aixtet genoty 

wws a lgid. The seed of Agl osti s was counted using an illtzinst. d 

back rt and viability confirmed by qemin&tjGn tests on selected 

sampl omc. 
ii. ) OSUZtx 

I %e results were startling (Figi. 29* 30), the self-fertility of 
tolerant populations was far An excess of the, self-fertility of the 

adjacent non-tolerant populations. Not only v re the mean differences 

co ºid rabls, but the pattern of distribution of self-fertility within 
the population. (Fig. 29) shaved that while all the individuals in 
the non-toil population had a low self-fertility, thm tolerant 
population contained some individuals with a very high self-fertility. 



Fig. 29a. Self-fertility of tolerant and non-tolerant 
populations of Agrostis from Drws-y-Coed. 
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Fig. 29b. Self-fertility of tolerant and non-tolerant 
populations of Anthoxanthum from Trelogan. 
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Fig. 30a. Self-fertility along Trelogan transect. 
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Fig. 30b. Self-fertility along Drava-y-Coed tranaect. 
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7'! m s. ray ºnlu ý t`ýý; lora toad to Ufld, r+ phaxisv t; eirfe r i$ 

"ýtvc the io,. -ujr t4 on$. 

ce ally r tart. I irjj u th, -sharp difference at the popul ºtion 

unary (Fjcg. 30) I it i another exaMl a of populatitr, diffor. n- 

f atic n over short distanceee Even for two spmci a two 

F=ontrr rating mit", the pattern waa very similar. 

'Ilia reality of the differences gras confirmed by than : al l cnrinq: 

(a) 'ihre defree of salt-fertility is characteristic of the 

In 1965, replicate sol to (. p aurato p3 :.. a st < tend/or bafga) were 

made in ýr ttic 
. 
ILUM . From the mnalymin of variance (able Via') 

it was I aaiäle to calculate the relative genetic contributi, cwn to 

"h overall v riai cs in the character of set. tine ("bro, d-senf . 

. ori t&bil ityrt ). It gave a value of g. 3', ýº. 

Similar results (Table 13b) from a serie: 3 of t irn+ in 

Caurdloav : hire (m+ next section, Cater IY. 4. c) and where the 

replicate sei fs wary separate begat, flare the value 59.1,4. 

Table 15, Antiilyeta of v.. ritnce on 
fertility in difforsnt toloraan* 

~YI 

ia 14ýi hýgýxý (Trelogan) 

Squalres 

Tot&1 875.46 178 
Ganotyp" 658.23 48 13.71 8.21 *"" (V .V 
Er"W 217.23 130 1.67 v 

(b) bAM&A (Cardiganshire) 

arc. Am* of a. r. rar, Square ExpKtation Squares 

rwtal 7903.0 al 
Ginotyp. s i260.3 40 1565.1 3.39 . «. 2Va + Vs 
: 4rroar 1647.7 41 4ý, pl,. 9 Y 

a 
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There itt tit rof*r a strong v~t is cor t for this character. 

"ß`1i#, v j t't: rihsr reflected in Anthoxanthtmr by tho fact that 

t!,, ý! a of fertility is correlated bstwoeri penotypes irrer 

Ila) within the tolerant population. (Not bough^, 

-t . et wft3 wail ablo for non-tolerant plants to reach any firn 

Conclusion) . 
In A21M5t. U them a significant. correlation between the 

.. lf-fertility 4*' different t otyp grown under a ranDe of 

prscultureº conditions (Fin. 29a and )lc). The pr culture 

con+. iit ions ware t plants cloned from stock material in December 

. 196' and wrovino in the ------hawýrºs in X11 pots t plants collected 

early in 19649 trev S1 in the qreefth ºe in small 16" pats and 

seriously pot-bounds and stock material collected in Autumn 1963" 

growing outside in large ?" pots,, 

(b) The degree of self-fertility is inherited,, 

! goad produced by stl tang was garown up and the sal f-fart il ity 

of the mature plants tested. This warn 409W for the tolerant 

Mt 1MW population and various plants of A ti from the 

Casdig*n. hire mine populations. In 6mh sha significant 

pearrent-offspring regression was obtained. (Fig, 31b). This 

remission is not a trug heritability sites the offspring are 

pro is of selfino ant not tTossinG3 

cawwrtanci (S .b) wMr- 56 . n'th res r assslon coefficient ý" , , rý x+ l 
rari., se. 

( 
ºt cn of 

n seifinc 
;D4 ft H 

me p. (1/2) 1i 

C7ý'" h'ý s1 2D 

/2D + x/Q1 +E 
'i. r"**lta *3er Ak WOM 1"0 Clear cut because a ºaly of the 

plats (4, plants, 14 f iliac) failed to riet any seed an mating* 
Only plants f r*% ens "in* (CAM Rli. idal) not . awl at alt successfully 
(10 plants, 5 f&%IIitr). Plants Crum this mine it od& 
st $Ufic*, nt pet offsprixig roxyt-emrji,.: rt (pig. "1d) whet; an ex t, 



Fig. 31a. Relationship between self-fertility of tolerant 
genotypes of Anthoxanthum in 1964 and 1965. (seed set per inflorescence) 
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offspring (produced by selfing) in tolerant Anthoxanthum. 
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individual which produced sixty seeds per initorescencs and which 

came from t"e highest selfing parent is removed from the calculation. 

Won wiO this extreme individual the regression has a slope 

greater tear, unity suggesting thst the progeny produced by sslfinj 

have an kNM*vwd ability to self. 

It is not clear why none of the other plants of j astis 

produced seed. It could be a direct consequet"a[ inbreeding 

depression, but equally it evild have been due to the fact that 

the plants were planted as seedlings rather late, in the season 

(January) and therefore did not have the full photoperiode They 

did it fact fic+v r rather poorly. 
(c) Sensitivity to crossing conditions is the ears in troth 

populations. 

The differs between tolerant and non-tolerant in seed set on 

selfing might perhaps be the result of a differential sensitivity 

to bagging. Hcorowor there is no difference in seed not in crosses 

of tolerant and non-tolerant plants. In Section IV. 2, on 

incompatibility barriers, it was noted that there were no significant 
differencmw between tolerant and non-tolerant plants when cross 

were made between cerotypee within each population. Moreover the 

mean seed r+o--t (Table 16) shows that in 1964 the non-tolerant met 

more seed, where" in 1965 the tolerant did no. No trend 

therefore emorges and it can be concluded that the two populations 

do not differ to any detectable extent in their sensitivity to 

bagging. 

(iii) Discussion 

The greater self-fertility of tolerant populations is interesting 

in view of the rarity with which differences in brooding systems 
have been demonstrated within a species. The work of Moore and 
Lewis (1963) is the only other clear cut case described. 

Altem on. can speculate about the possible reasons for the 

greater self-fertility in the tolerant populations at Trelogan and 
ih-ws-Y-Coed, the data does not pnrride any cl ear cut qt rs. 
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Table 16. fd set data for crossing and oral fing in 

! nthtýxurthum and Aarost is as seed Urart per 

inflorescence, unless otherwise stated) 

Population 

Man 
seed get 

for 
eeltine 

maxionm 
stood not 

for 
selfing 

mean 
seed set 

for 
crossing 

Conditions of golfing 
and crossing 

0.065 0.85 
non-to4erant (1964) per 100 per 100 3.20 bagging 

flarots florets 
(1966) 0.084 1.04 4.1.8 bagging 

(after i ddcws, 0. 'r' - - open isolation 
1931) 

(ettor BarrI Li, 0.0)0 67 
limited Period of 1963) Per 100 - per 100 

1%^ florets 

toltr, unt (1964) O. 5"1 

(1965) 0.576 

a ma a 

gym-tolerant (1965) 0.24 

(after Dodd, ne, f,. ua 
1931) 

(after [kirr i, x:. 97 1953) 

toierant(1965, Drws- 0.54 
Y-Cood) 

(1965,1.17 
Cardiganshire 

fiooretis ", 

4.85 2.71 bagging 

4.82 5.23 bagging 

5.00 17. 'i8 bagging 

- - open isolation 

30 100 bagging 

4 17.48 bagging 

37.6 - bagging 
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The testa do not sham at marked "inverse cline" with 

regard to selfings plants tom' the boundary do not clearly sham 
sore selfing Ana though at both alum there are trends in this 

direction (Fig. 30)" 

The earlier flowering of the wins populations (Chapter IV. 2) 

suggests another reason for the greater ,. lt-tortility of miter popu- 
iwt ions e perhaps the earlier genotypes toad to gal fs because they 

have fewer other plants with which to cross pollinate. The t taw of 
flowering was therefore plotted against the dowses of salting for 

planks tim the aim populatiar. 
The rrasults of the regression analyses a as follower 

ý ps salting 1965 / date of stigma, amergence, 1966, 

y-a. 24 . ©. 01L2* f O. OW06 ft `P> 10Ir 

'ms s selfing 1965 / stage of flowering 1965. 

Y"1.11 " 0.20* P> 96 (a now-linear regression was not 
calculated) 

! either of thaw regressions Axes signifiaanaes showing that 
flowering time is net Important in promoting salting in nine populations. 

Another r asap ter the greeter self-fertility of tolerant 

populations may bn that the toles MOOMMsn has at" tar reaching 

effects an the plants mstabolime, that the self-inciapatibility 

aschanim is sqet. Te tolorans of plants of ýM an the 

aim at Trelagem was therefor. plotted against their . slf«ta"tility 
MFig. 32}. A highly suggestive relationship is obtained. However 

apart from 'physiological upset' two aller reasons might lead us to 

expect a relationship between tolerance and salting. 
Firstly, rifting oalid be a method of avoiding UMs thaw and a 

swam of helping selection to tie the tolerant guns. Then the sore 
an individual is salted the more tolerant it should feg since, it will 
probably be the parapsW of a melted parent. 

Secondly, it Silting dew promote the evolution of tolerance, 
Uran it will be NO" orttf*etiv+o it it is 115*5d to a gone for tolerance. 

Staple correlations ors, inadtquatn in distinguishirsg batsmen, 



Fig. 32. Relationship between tolerance and self-fertility of 
tolerant population of Anthozanthue from Trelogan 
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thaar l ibilitii. They ara therefore . z, 1o .d thairstiomlly 

in chapter V. 4. 

3i, s the results prea«*t+ed gars establish a clear diftwwwo, 

in melt-tartil ity bstwom the two populat ions g but provide little 

iatoluxtien about the possible causes of ouch a ditty, a further 

itw.. tig. ti«* wau undertaken. 

ät 2at 
" 

wllýIýýýIýýilrAM 

The rsiat iaa hip betwom ssi ! ufert il ity & Ad oUm population 
a roeteriattmm vor studied on a rare* of poppulation, quite ww"ated 
to the previous. 
(1) Nds 

pa ixtiaw tub pt. aº each) os 4ißä 3r ä. ý m me collected 
in April 1965 A 29 lead coat isoted orwo Is Caedtganrdcir.. 

The aims trey vM4ft the powlatidsr are listed to Awww z 2. 
The toiiiada population characteristics era recordeds 

(a) ortesk distarwre between the pst iatien and the edge of the suers 
0" was .. tieat. d fly and owe a sommum of the pr slaity of 
the toil pepulet `oaw to oawtaiwamt patwre p igulations. 
(b) Ara at the nine ! tom rbioh the parraatica cwt this was also 
stiaated vi ft lly mod ,{e an a. tiaNºtr for the p* ozLaity at the 

wins p+a atme to pause's papwtations. Area to in somw gras a better 

eatlasta that diatamsi aim* it for *wool* the wind direction eve* 
the diatepWi nsans'sd is äff the aim tbas the popd&tL*n is frass 

a usc. CLOY *frM1 'dt '' rw' tale this odgef 

(a) punt donaltyl the dimity of the indiviäwix is the area at 
collection was . rte atad an the following scales 

to 1aIO1s tod 

16 widely et a 
9. Sparsely di trrLbut. d 
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(). individuud, s not easily distinguished and forming a sward 
(d) Age of the rites this was obtained frag Joni (1922) 

(e) P"lanrerina time: the f1 ering stage of the individuals was 

noted in July, 1960, This ! already been discussed (CTuzatlmr Iv. 3) . 
'^ he plante were grown in standard greenhouse conditions 

for several months and tested for self-fertility. In as many 

cases as possible two replicate sei fs were made and there is 

good agreement between degree of sal fing in replicates, as 

already discussed (Table 15b). Ten plants from each popui, atioa'a 

were tested and the analysis of variance (Table 17) shows 

significant 0', - approx. 1X) differences between populations. 

Table 17. An 1yeie of variance on degroe of self- 
fertility in different mine populations of 

Ajjr2&tis from Cardiganshire 

source 
Sums of 

C'är ä" mean square F 
Squares 

Total 24.857 271 

Popul&tinns 3.855 27 i.!: 8 1.659 
Error '' . Q4:: 3Ir4 O. ßG1 x' 

37, j244 ' 1. fl 

at 1' G L4 

A log tr. r. formation has been used twcxuse there was A war ced 

skewness within populations in the direction of low saifing. 
(ii) Fteu1 is 

The multiple non-linear regression of solfing on four 
features, namely distance, areas density and age is not significant 

and selective regression techniques fail to pick out any particular 
relationship As significant eve: on a log tranaformatj«i. 
(Flowering tie, which only becane available later, could not be 
included in this analysis)* This probably lay in the fact that 
many of the variables were thss lv s correlated, This haH tim 
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wffmt of rr heiog t ho aastributien to the 1000001-Oft 81=0 a negativ. 

eovariaroe tar. is Parasit in the morellsim constants. Individual 

r*, sii as an the sqporsts variabiss (Figs. 33-33 and fable 18) 

confirmed that thor N&S OW%v1wtrd. 
(a) Distap and 1100.. 

Apart from the main ssiloatton of yOPUlatLan iron Cardltsaohire 

in 1965, gawks fro aline collected from f few m4now in 196. Tose 

Miaw were Jiff t from theme in s. tia d in 1965, and only their 

area mould be imam {from a. 3 i hs s miete MOB) ri= when th"O 

AIM" ~* 6611LO Ot*d the bir , fat rtility of sine pait: iatiens 

Well not knioM1. 
The 40 0" of Mi fing has bar plotted against the distance of the 

poptlatim. f. the edge of the min., and A04=t the mare root of the 

sma oat' the mine (Pig. ")e The spore rout of the 'arm has be m used 

,o that the ales of W mine can be ; wwidas ed to terms of "ist N 
i. e. as a linear mead. 2%* SnWhr are diffia it to i Bret. It 

to moat that mating to fly grater ißt Brest of Ommwr 
flan, i. te twnarrd the edge of the min or as eoallo MAJOGO Staab 

trends Mgrs seen clearly in the Sam of selftu g/arom, in both 1964 and 
1961. Ail the re ties We ap 11 t positive qtaadrotlA and 

negative 1lawes alle p eim&U patt of pollen distribution fror a 
sommo It fear mopkieftl popuiatisms we Wt sau*i4 .d ißt the 

aoam. lat"w (I- as peAsU shore the dotted 1 Iva in Pion* 33 and 34) 
than Ulle rr rsLsm of SWISS as dill r+ molting an spa" root 
et area (ti6) as. significant (? &U* 18b). 

Umatem it t*w p agar from the calculation is 

chu imomly 1-1414FAMOD mw&vvws sev"Itl reasons suggest that this 
NNW met be UWAY ftsmillds 
1. Zte wee trends we mean Ira if the fiel polo" are included 

in WOO off . 
a. 2%0 tOW ati4mr r" the POP411410018 with the hi nt, OWWVO 

of net fOtQrti'1 ity t tb4V may harre became 'adopted' to iabaro. dinp 
and Von" far soidortility Atze *Preading through the pope ation 



Fig. 33. Relationship between self-fertility and distance fror 
non-tolerant plants in tolerant populations of Aflrostis 
from Cardiganshire. 
(in this and subsequent set of figures: 

the points indicate individual populations, 

points above horizontal line not included in fitted 
regressions) 
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Rig. 34a. Relationship between self-fertility and plant density 
in tolerant populations of Agroetis from Cardiganshire. 
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Fig. 34b. Relationship between self-fertility and age of sine in 
tolerant populations of Agrostis fro. Cardiganshire. 



Fig. 35a. Relationship between distance of tolerant populations 
from edge of mine and area of mine in tolerant populations 
of Agrostis from Cardiganshire. 
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Fig. 35b. Relationship between density of plants and distance 
from non-tolerant plants in tolerant populations of 
Agrostis from Cardiganshire. 
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Table l 8a. A relit iani hip between self-fertility and 

v iou ip opul tirm features of rostig airs 

populatiows frcxn Cardtcja hira. 

parameters and their i . ificanco of 
significance regression 

Constaxrt Coefficient coefficien 
of x of x° z 1C 

^1 
111 __ Fl, 

"r 
M3 "iat 

" 
tu tr tog d dst 

area of jaine 2.35 -0.0077 +O. w,,.: 0.3) nos. 
di3tn ce from edge «. 25 -0.01 it +1.1 0. a.: ', nest 

density of plants 6.70 -0.27" +a:., " 6C - 

age of iiºine 0.001,. X .,. ri. . 

log Jo to 

area of nine 0.13 -0.00032 -0.000 r6 0.0.53 nos* 

distance frt edge 0.12 +0*0=)l0 "0. (X)20 0.011 n. 9. 

density of plants 0.46 -0.020" +_ . 6" -. 3i., * 

age of mina 0.07 -0.00026 -0.0(ß4 0.09 nee* 

of th. Lr own aocord (o+rr final di, rawsilon and Chapt. r v. 3). 

3. Opi, of the populati. s was rsc+ord d so coming from at large 

but oattr mly patchy arcs of cantasinstiob, i. s* packets of 

tolerant and ewer-tolsremt plants wore probably intermingled. 
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Tattle 18b. A relationship between self-fertility and 

va, rJnu-s populatimi feiturem of Afro ti. r uit 

populatAonz from Canroir; a#Wdreo 

«-ronmion par act, eri 
significance 

Coefficisu t 
Corm tAflt 

of x 

aAnnti their 

Coefficient 

or ', x 10it 

i nntfica e of 
regression 

F 

Minus four hi test ry ý) 
J*y at £ 

M' . wv 

SeifinsL g2inti 

untr ! forx4od dta 
T^roa of e. in ¢ 11") i*. It " 

area of nine 1. L'') -0.01) +",. w, w> s 

C: isteu, rce from edge 2.14 -x. 01:: ' +0-37 :. 34 

density of plants 1;. 3< -O. 1)*" +13 115.59" 

age of mina o. 63 +0.00!. i. -(). 0.35 1.1 , 11 

1ouI; r foredd. a 

area of mine 0.11 -0.00150. +0.02' 4 7.99 * 

distasice from edoa 0.13 -0.00092" . 0.011 ,w 13 

deity of plants 0.28 -0.4488. +0.83 4. V, # 

&g, o of mine -0.0054 -0.00011 *0.0048* 2 W, 

r+ . at nis i» botxoan 

ar. a/'di&tancm -4. li ý. GT"" 'x. o 

ama/da: �sity _73.42 6.81 1.00 

araaa/0190 104.97 -0.56 t1 o. 14 
distance/density ' ".,. 1-3 ck! '' 5.11 

diatance/sk a 141.21 -0.1,4 7.0 ý ý. 53 
tiAOI'Lti i ty/L1, w 5.54 -0.16 211 0 x) 0.1 !t 
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(b) xknitity. 

The , ra uaNion of &olfinp on plant density is si niticant (Table 

A$ rig- jIae). However the negative relationship between the two 

in tested; wig low density could well lei to an increase 

in selection for salt»t rtilityr it is difficult to see that a high 

amity would do so. 

However plant density is related to distance (Table 10 and Fig. 

)5b) argd e of the amt donme populations eýnnt, f° the wwalest 

nines (Floe 350 e to other words, the relationship between selfir 
the relation between seiht i and density eight be a eases n CS 

area and distance. From the available data it is bible to decide 
if this is the case. 

The relationship between s lfiag and area is itself interesting, 

and suggests either that the ecological conditions at the edge of the 

mime are assn favourable for colonization (i. s,, low toxic) or that 

there are towards the edge of the mires wears seeds available for 

oolonisati . 
(c) Age. 

No clear rslatianahip between selfing and age amerges (Fi®. Sib 

a Table 18). A significant Orion is obtained only are a log 

transf t inn and when the four ia*1 popul at irrer are net 
ca eider ed $ salfino is greater if the eins is younger* 
(d) Flowering time. 

p'1ewering tie does not appear to be related to sal f ing. No 

significant relationship was obtained� and the trends do net sham 

any Particular features. 

Ya2.95 " 0*0000i4x - 13 K 10`8 x P> 1.0% 
(iii) Discwrsion. 

This LVIVOWItigAtIAM illustrates the inadequacy Of general 
mass ion t. thniiqurs in pimp Out mat ivO factors of population 
diff. A sang intensive study an fvOw aims ( ring degree 
of aetai aaetasinstiaa, wind direction� density of plants in 
o4joiall pAi; urs Stc. ) 

might have been pam qf. iv. 
' 
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crrý x; Ily ; ircc the rc; ultw ; ýr sz rite c! Item zx: ý ow that elfin 

ml: z t We <; cxt era s ire] by a range of fnctca". zu i no one population 

charur. tex'. ist lc eºe rP, es na important. 

rso'; iht ^, rye sn for an increase in the . self-fertility of 

a uoput tion diracu)iowl earl ior, will he considered in turn in the 

i1 ht of the above werI. on metal mines. 

(a) Certainty of f'artllisations 

This is an unlikely reason since pollination on the r: 'ino 

should not be any harder tluui on the paßt lath pol: ulatiowi of 

both ap cies are wind- , pinata and their rnU e, -o »ne+d rot i ty 

In the wi. lil. 

(h) ]: ata'hlia&uent after long distance 

The mine populations nori l .ly sun . rndod by is them of 

the A zo s3pecimn, but 1311Ut r orten fowui near tt' c* nL of I. r+oEti 

areas of contraitfat ioil ,i hero estAbl i bblOnt U AY present probi ee, m. s. 

However, the relatioriihij between golfing and dintanlce iii` if 

anythini1� ne , eativet although sore of the highest selfinq points 

("exceptional popur. latio s") are among the furthest fr the edge 

of the nirae. 
(c) Prevention of gonna flow. 

: Jiutirct trends soon that spa=, gast s3lfinCi in to : ux, fe extent 

related to gomm flow, being more where there is likely to be more 

gore flow. 

(ei) : Laosure of recessives. 

The uenetic analysis of tolerance (Chapter Vi) indicates that 

this character is clt*iinnt. lfing in therefore not likely to 

hAve bean i& portant in readapting populations by reveal inu tolerant 

r esessives. 
(a) L: a rl ine s of t] owerit . 

No relation Chip between sei fing ßn'1 fl owearinq t. iano in 

=-1et tahio. 1 rest nably fl srinct t feie is so %all rerjut etted t'. w. ttt 
It is unusual for i"divi(iualM to be a, % PrftctxLou a,,, * t) rk : tairz 
X11 inAtac3. 
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(f) Demity of planti. 
T 'he relationship betvoen selfing and plant demity is in the 

opposite cIrection to that ez ted" Passible mwons for this have 

a], x +. y t di, soyafit. 

(d) -al, f-f Uity and vigour. 

Studies here were 41 done on ý1 etho thcaý. hornet pop Tations 

of this plant aro strongly out (see above and Morrill, 1%3) 

and the plants slww marked proto n. It might therefore be expected 

that the motor self-fertility of the singe populations leads to 

inbreeding depression. This was investigated by weastwing the 

morphology and seht-fo tiiity of different get t pes, and by a ccm , ), ati. 

tion experi nt. 
(i) Morphology of soh fad plants. 

Since the self-fertility of Arttt oýcanth a was us: azurod (moo 

Chapter IV. 4 . b) an the same genotypes that ware used in the spa ed 
plant trial (Chapter 11.4)* the relationship between morphology and 
*elting within the tolerant population was investigated (Table 19) 

using sion sisthods. There is no evidence that plants that 

spelt more are in any way I*" $ fit' than plants that self less. This 

to perhaps not surprising boc*uso 

(a) they were grown as spaced plants 
(b) they were already the read t of selection in the mire popui sit i on s 
any non vi *za individuals would have been . 1iminated. 

Deceuao no effect of eel fing on fitneas could be detected in the 
spaced plant trial the psrforea ce of individuals grown from seed 
produced by "I fing was studied in dmnss pure stands and in competition 
with seed produced by crossing. 
(i i) Competitive PWf0nMM" of sal fild material. 
(a) NKhod. 

In order to assess the oospetitive performs of eel fed material 
the following types were Vrmm in go s 50 mixture and pure stands, 
after the technique. of Do Wit (1960) . 

Todft-am cross" / NO t 1erant cros 
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tee,; t iove-1,11. P Untrreen $0.1 r-re- rt1 t3t 

teal cho acter: In the tu1csrand popu- 

lation of +ý t? sue 

; te ;r mion s )rcte4! 
coefficient-, ifjs L 'ic, ea 

C; hi ractör(x) Constant; x of äa 
relation ipp 

ktýi t 39. " -cr. ncs)17 -o. 1( X)2 ý->1 _ý, ", 

ltiAA wx a 
ve"getat iv "'1. ý --0,097 +O. CX}'. 1? -ä 101 
txJi ors 

KLtt k er of 

till«'ra 

VeOot at irrsfifilo 
4 i. z. aýr) 

* ithin ply t r, c -cl. ol o. ý > 10- 
variation 
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t<aI : r>rt croas: sos r Tolerant x Non-tolerant croa es. 

: ion-tolerant cr uv/ Tolerant x Non-tolerant crcrsý c ý. 

; ir: )t cx::! njtion wa: 4 used al..; a control to l, cw c at t!: n 

,. orfarr-laace of tolerant materiel; the sec d 

PrA., to 1c*äk 1crr any inbreeding depression in competitive rfortwxnce 

gsrrl tic 1 :t: to looL for any hybrid vigour between the 

. °urc Ata, n, iz at t; , if-d nsity were al a included wo Ut the 

iyeiventage reduction by a coiipetitor (", e.. Incti(xn pressure" Oua 

to tLu other type) coulr be csgiOs5s (t (: #eat(tt anti 'OitonOvicf#j V)66), 

.. >j f row cel : ra ar+d frag artificial crosses was use, in this 

ux erLur nt. This eliminated any efio: acs of gene flow (c. f. n aural 

.. lliad ) and also ai giant that seed could be chosen from cros , as where 

t 4e parent:: wort) Ice wm not to rolf. However because the amount of 

)seed was 1 i. c lted t. tbc kwporiiaent was on a nw li scale (tvao r, ,t; ýa .' 
" t. 14and. i were r c'wnn -i 'eed1inýs (previ esl. y sarmi t tot; in 

damp f-ýltev pnnpc r in 1. etri-dishes) at two i cli spacing in a ý; ri= 

Magi), ' in WOOdOn t(Xill*tr) t W65, filled with gterilis*4- loam. 

,, oam l 'rofei'able to John Jenem in sLoing competitive relatiozu; 

(y: c" . llý 1Y3 In Cho cc atit. i 
. ý. ý "plots" the typos were 

tu-rrnnue aLtoritatoly. %`wenty-four plants were put in ouch tax 

as weil ,ra . Xard row of the . apropriate types. The L tcriAl 

urea . Lwn in October 1' j quid , eeoed in April an, = '%u t l9( . 
The p, -arent rzourco cif' the hoed produced by goolfIng was note;. 

so that a cotanurison of the perforuance of 3etni produced by 

=jenotylon with difiernnt amounts of s el fing could also to wet e. 

(b) i. eoults. 

ßecaeuz" of seed shortage there wsz inadequate replication and 

the results cannot be comic ereil as cat. ýrlusivo. They are pre nto 

in Tablas 20 and = and an i: eplaccm, oxnt 'apL (! )a + its l9< ) 

in Pigs 3ti. Because the material wr.. + required for further 

e, rimentations Only tiller ntw ber wek, . s,. r arcs(:. 
Llatlavtour as Pure atan'Jr v ,,, I 
It can be seen that prc JY by el f irs of' ui °, s. ary 
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'11. iei. cim (tiller rnaabsr) of pKwe stands And 

3 tares of ty-> +ý Tf ýtnth! Yx. ýittým. 

ýa 4 -ý o1era1TC Cross 

-A3 ri, n-tolerant sse1f 

t.! ýl. ýrru'st ýclt 

,x tel rrwit xI un-tolerant cross 

Apr. ii 1()o(., August 
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'Fig- 
36a. Yield (tiller number) of progeny of tolerant crosses and 

non-tolerant crosses in mixtures and pure stands. 
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Fig. 36b. Yield (tiller number) of progeny of tolerant selfs and 
tolerant crosses in mixtures and pure stands. 
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Fig. 36c. Yield (tiller number) of progeny of tolerant crosses and 
tolerant x non-tolerant crosses in mixtures and pure stands. 
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Fig. 36d. Yield (tiller number) of progeny of non-tolerant crosses 
and tolerant x non-tolerant crosses in mixtures and pure 
stands. 
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plante do not do much worse than those produced by crosses when 

pure stands are considerod. Thus at full density the agreement 
between replicates is reasonable and in April 1966 the self, 

yielded 91; x, as tauch as the crosses. In August they yielded 

more than the crosses, 1076. The data from half density showed 
great variation between replicatest in one replicate no great 
difference was seen, while in the other then self did far worse* 

w1um ran--tolerant wolfs are considered (unfortunately only 
one replicate was possible) they did considerably Worse than the 
tolerant selfs if the yield of wolfs is considered a percentage 
of the yield of the crosses. 

The tolerant crosses produced fewer tillers than the non- 
tolerant crosses, thus confirming the field experiment data 
(Chapter II1.4 and Pias. 16,17). 

Behaviour in mixtures (fig. 36) s 
The results show that non-tolerant plants contribute more to 

the yield of a mixture than tolerante and that tolerant crosses 

yield more In a mixture than tolerant selfs. These results are 
confirmed it we look at the p ntage reduction from pure stands 
at half density (Table 21). The selection pressures are strongest 
on the tolerant type in the tolerant/non-tolsract mixture, and on 
the eel fed type in the self'/cross mixture. 

This is confirmation that tolerant types are competitively 
interior to nm»tolerent ($aNeilly, 1965" Putxain, personal 
corwonicatLen). It also suggests that inbreeding depression doe 

occur in mine plants as a result of self ing, but not to a very 
 m$ d degree. 

The results of coasting tolerant s non-tolerant crosses 
against crosses within populations are also interesting " inc* they 
sham the between population crosses to be rather better in 
competition. This is particularly so when the man-toler&nt type 
is tswolved. "Hybrid vigour" therefore seems to occuur when the 
two tapes are crossed. If this effect is real then it has quite 
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Table 21. Percentage reduction in yield (tiller n ma't r) 
due to the other ca nt in the mixture (yield at 

half city compered with yield in 50 s 50 
mixture). 

ä reduction 

Types in mixture April Ault 

r: 52 60 

x 40 25 

rz 38 3" 

"s 37 

fx 36 53 

s -33 34 

-2 40 59 

m29 4 
am 

important urnoso in ommidaring the effect. of pays floc. 

(a) H. ri unc of ply mod by genotypes with different raunt. 

of .. itin (Fig. 37). 
since the iwdividwi gaatyp. s used in this iwsnt wsr+e 

noted, it was possible to investigate the relationship between degree 

of selfiup and pert in pure stand under high density and in 

competition with the crossoess The results both ohm the sage 

pattern, ead the relationship is highly significant in the case of 

qýoi r from cau p titian with material from crosses $ the bettor 

yielders (tiller n, a" r) are both low selfers and very high s lfors, 

with intýa diato types yielding the worst. 
Isis) Di, +. ioa. 

The results of this wall sa riasmt are extrasaly inter*st ing. 

Not aetly IN the poor r oo titivw porige of tolerant types 
We aeon-tobt) confirmed but inbreeding depression effects 



Fig. 37a. Yield (tiller number) of progeny from selfs of parents 
with different degrees of self-fertility, in crowded 
pure stands. 
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Fig. 37b. Yield (tiller number) of progeny from selfs of parents 
with different degrees of self-fertility, in mixtures 
with progeny from crosses. 
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become apparent in mixtures of &&I fed And Crossed arterial. 

Ham, the inbreeding depression is only seen clearly in c etition 

And the depreasion .. ems t loans than in the non tolerant population. 

This suggests that the tolerant population has become adopted to 

icing' a hypothesis which is confirmed by the individual 

pert of genotypes in c +etitions the high swelling types 

yield an much as the law seifi types� while the intermediate s. lforx 

do worst. The high salting types are likely to have had a history 

of inbreeding and therefore could have become adapted to it. In 

the intermediate selfers inbreeding may be more recent or any have 

been eliminated largely by outcrossing and they are therefore not 

adapted to inbreeding. 

i. i 
The existence at pepdatioas with different degrees of self- 

fertility up the possibility of investigating the adaptive 

significance of difter4 t breading systent A preliminary investi- 

gation presented here her shmn that no one selective factor can be 

considered to have the breading systems but that ä 
fairly consistent relates . atilts between the degree of 

setting of a po, wlatioe and its neatness to the edge of this nine. 
This implies that molting is at ap . i* where albre is a 

id , ble nagt of gene flow. 
N. evid no L. available as to the effectiveness of self- 

fertility as an isolating wise: no marker Oa er. are 

available and self-fertility in the presswe of other genotypeo 

ca=wt be tested. The gaits in the nue6er of tolerant seeds that 

result from self ag ray sow wrath from the data presented lege, 

but two factors out be d. 

Firstly, altbongb the amount of getting is love tolarmt 

popul atiaaS do contain individual. with a rely high self-wert il ity , 
often at valuer e9VVQW*inQ normal crags fertility (Table 16). 
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T. ia e In livtlma1'i are I ik. ely to t, p ; xre . iACcesmful than the rest of 
the popuiut. ios4 when gene flow load is serious. 

aýý+cen: 1ý"t: ant of set fbv_; ja au cared %t 7)rws -y. -r�ao<: 
and 'Ire1 an at a stagy *d in evolution ha» already pro a:. ac 

for mcx+sº 1irso. In the "artier : stacjc of colotii:: ati f,, Uta 

ds ottsity of p1 antu on the wtha was probably far lower than Lh+i 

den3ita" cd the p& tux°o: i; s other wards the off t of gene flow 

were more Seri otw then than they are now (see Ch ter V. 1. a for 

theoretical analysis). Flo expect et MMimila r situation to that 
de acrthe ` by Mmnimbftr. (1 )t 5) 

*n m*Ay an irüt l incro1' as In L. 
,v 

*Aunnt of seitinj followed by a decline. It is therefore 

interesting that the relationship or (1ou) melfing on the age of 
the reine Fran which t: w population cam gave a ssA11 but si n1ricwit 

regression: the later the lote of the eine (the younger the mine),, 
the bra at or the amount of self in+j. 

Arwthcrr factor which could prow ote aoltinr on ruii is 

inbroodirn., s+t a few ft. uxier individuals* In the face of 

gone flc*'l, the i uccesaful plante under t ea* conditions are prost 

likely to be 'si tings' between the founders. This would load 

to an initial reatdju st t of the gem co lezea to preatIr t t°`+ a 
to the more violent effects of inbreeding depression that would 

otherwise rerun from u$1 'jng. ich s systaw iss suggested by 

lexa1s n (195) and Rolands (1961) for achieving successful self- 
fertile lines in legumes. Dresse (19%) in an experimental and 
theoretical &nA%lysis of ass tative atiftn (*tirg of like with 
like) h&s said that such a+atiny "is the initial and most i mr ortAnt 
step towards the satablis1rr t of facultative inbreedinq in 

hitharto obligate cuthreeding species". 
It is also possibly one of the reaaona why sei fing toes not 

occur off the mine pupulati i these non-eniiw bitats I: ve 
been long colonisad and the populatiOflj have never suffered fmxi 
serious inbreeding. Another , non for the erbt, ce of , wol fin, 
in non-mine population (which airiia suffer ifj,, kVj gene f1 r) 1vv tbae 
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'e: ct tl-snt vi-ne flow Ivagd too , "ro stere the hi }hoar the Asa! t. imi 

+r+ý . 2z, r"" (f*ý%m +t. er V. '; -C) x it is i*ni. ikc1y that the, , %electlo n 

, %r"sM'? r it th' v. Mt'cro t, % mM-wthx ,m Ar thn r:: i z order ov's that 

nri h- ini ne ! i's-i` of 11v, l(%) . 

're-etat i. ve evidence for the Mine T)O P *i r, t ic hAvinn hoc n 

to %., 4fLnq (anrt premvehly inbreeji. n+i) in -ru enf tdi 

rvnvi 1h i., w toe a very important .i not in un:. iorntAnd in, th. r 

Ch#Atux* to (VO-PX'fw dtnii. Thun i. b+ particuli r"ly no ilrglaticui tci the 

r4iýmltdv, zºf the cw putsr simulation (Chapter V. 1) whirr mlicw thAt 

^+ -w±n«" for self-fertility will mpread thrmanh the population of 

its corn wccnrd, if there in no selection against it. However 

flow in u intaining bete ro y omity the efficiency )f ýr . Mm 
(Chapter V.?. , 1) suggests again that inbreedinr. e dcpre sior may not 
be serio za in mine plat iom s heavy selection for tolerance can 

retain thi. * character in the population despite gjo flow frcxn 

non-toles ant plant. ', but this gene f1c" will miiso crtu3e otYºer 

clove ctors to be hiolily peter zyjous. The rolGsof 4elfinq in 

mine lp lationx are di, ic: i d later, after at pro aaºtation of the 

results of the cor Puter yind, at. ion (Chaaptor V). 

71-c ccrc1uzic, r,.,, c arrived at hatte arc applicable to my 

colonizing m ies e aving into rmw ground by evolutionary 

and the higher self-fartility of wine 1"pulati; saa º ay show the 
i 0, jii nint, j of the proc. g 3s that have da so homy colonir3inq 

+pec; ies del i'-f. rt ii.. 
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'3Q''care c n; vý i titer 3 r. ý, ti -. r r3 ;Otz cr tt ha c ; natur g taul at 1. cstt a fairly 

detailed acco ut of the modal that t been ud is necessary� 

sitwo thca evac1lo. : onE to he rdr-., r- ^r, ý ; av ch an inventigLRtion 

r aýEwttly (n; en "n the p i. ie* on which it to hwecl. 

(a) : 51 nU 1p ^ene rýýci+3i 

The ;: _ , se used hOrG starts with a single radii brooding pope-- 

latipan, cs "tieA, of t3 a. ýýtyeas AA� AB and ', 'B. The fate of 

the pcqadat: Lon over Aubsoqu ent {jeder at I ons is obtained as follows z 

(, ntxty'p 3 AA An UH 

rraflot": fir"! fr quOi1CifN UVw 

. at in to be at rnndrara the frrgwrm: lee of the different ýtý t. zr infi, w 

mat ing" are 

AA A8 Du 

2 
AA u uY unt 

w 
ýýra UV Y YW 

i3 tnt vw w 

Knowing vis fx. *q . ncy of . *ch type of eating we can calculate 

tho uonutyr e fr qu*nei. s in the next usn. z ation, since on tll* basis 

of siuplc ý, usidt lion law.:,, ., v yrodUcts of tl ratings are known. 

The equations giving the genotype tr. gwencies in the following 

gen wativn re knwn as rwwrrsz squati©na since if the tk%quencY 

In any n'th e Trat ian is known� than tho g notyps trequanci. s 
... the (n + 1)'th gsneration Can be Qalculatnd. The gone frequencies 

ww a a. rims of g eratiom can thus be calculated to find rat** 
of change and equilibrium positions (when no was change is apparent). 
Her* the mice equations were worked out by the computer, and 
by inserting a loop in the programme g the pese of the penes 

and hypes over 9 rat icuas Was calculated. 
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The ejoclel therefore is of an idealised p puletiat. infinitely 

large, with no rani effects. 

various influences were then put an this population to investierte 

their effects. 
(i) selection 

At each generation the retypes are subjected to melection 

pressures an foil ws 

Gwwtype AA AD L 
selection a1 a2 a3 

Fitts (1-8 
li 

i1-an) (1-a3ý 

which can be natal as sui sve aW rssp. ctively. 

in suba quart generations the genotype 'frequencies' become 

u' ý. u sc ru where u' , v#9 wt "" frequency in the 
following generation. 

V, sVK8 
v 

WI awxa 
w 

but since u' + YO + wl are now not equal to ones they &m converted 

to true frequamies by dividing by T, where T" u" ' f' + WI. 

(ii) Gans Flaw. 

Gone flow is imposed on the population by the addition of ! 3B 

ga typea. if a certain proportion of these ganotypeas g. enters 

the population, the other genotypes are reduced to a frequency of 

i- 91 i. e. gem flow is measured as the frequaeacy of incoming 

ý"notypes. Two types of gore flow are studied and for the sake of 
convenience they will be termed pollen flow and seed flow. 
(w) ]Pollen flow. 

Selection occurs ! the incasing genotypes have muted with 
the r ixdtr of the population. 

The model here in as follwa s 
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Genotype frequencies dales 

Genotype frequencies tales 

incasl ng 
genotype 

AA AB Ba ffi 
(1-9)u (1-g)v (1-S)w 9 

UVw 

Hating* t place in the following frequency: 

1 AA An na 

nA t1-g)uy ti-o)uv Ci-a)uº 

AB (1-g)vu (1-9)v` (1-q)vv 

S Ba ; 
(i_U)vu 

... rýiýYYYYYYý11Y- 

`1-g)wv 

Y-YYYqºY 

(1-W)w6+ 

YYYY Y 

ý. 

ae gu 

Genotype frequencies in the next generation are calculated am before 

and selection iss imposed on these. 

(b) Seed flaw 

selection occurs both on the pre-existing population Arai on 

the incoming gwwtyypea, toe they mate. Here the extra genotypes 

do not enter the eating scheme till the genotype frequencies for 

the next enerat bat (and before selection) are calculated. Then s 

U' s u(1-g) whwrs u', v'1 w' 

v' - v(i-y) frequ. ncies in tho following 

r' " w(1-. g) generation 

followed by selection an thesis genotypes. 

(iii) Changing gone flow 

It has been stressed previously that in the early stages of 

colonisation, the density of individuals in an wrap, will probably 

be low and therefore the gene flaw fadem outside high. As colcmisa- 

tion proceeds, the density increases and therefore the gene fl caw 

ciecr asea. To investigate the genetic changese t! zat are 1 ikely to 

occur during early coloniaction,, a model of changing gene-flow was 
devsloped. 

The formula for population increase Lancier fei iLited resources'" 
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Lis as follows 

N"i: 

1 -pan-rt 

where N= tu=ber at given time 

Iä a niz ber at end 

n« constant to define timber at begimin! jr given by 

NmK 
n 1 -e 

ar - constant to determine rate of population increase with time 

tst im o. 

This gives the well known sigaoid cur el where an initial exponential 

phase in followed by a slowing down to reach a constant aasbar 

when resources become limiting* 

It seemed reason bl e to axw%sm that th* dscreaae of pollen flow 

due to incrsaao in population rassöors in a given area (density) would 

follow a similar ppattern. The equation d val. op. d for this was an 
fol14ws I 

g)(1- Wi+SI 
1f ýn-rt 

where 
N- garm flog at a given generation 

g* final gene flow 

n" constant to determine initial aunt of gem flow 

ra constant to dttfrwins rate of c crew. of pollen flow with 
generation 

t- generation. 

Using this formula the amount of pollen flow at each generation could 
be defined from an initially high to a firjl low value. 
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(iv) Self-fertility 

86 

DDiff. rent degrees of seif-fertility ars imposed on the genotypsr 
AA and AS, in the follawino way. 

Gsencrty'p41 AA AS ) 

Self-fertility ai a, ý 
fixes 

Ifs W, the genotype AA salfs to a degree s1* then the proportion 

ai of LA females product offspring Mittcut the iiwolvawent of wales. 

The remainder of the fraales (in a frequency i- a1) bread at random. 

The frequencies of the different uaatinga are then 

AA 

AD 
plý 

an 

AA AB an 

a u+a)u3 )uv UK 

ai)vu a� v+ a2)v2 vx 

(1 - aI)vu ga)rwv v 

self ravAm self rant 

Recurrence equatiaw are calculated as before. In this modal the 

gsnotyp* 88, is ra given any as1! -fertility. This is i wrtwnt. 
T? a reason for this is that taw model for siting was d. v. lap*d in 

vwctiron with a model for potty flow whore it was desired that 

the inacming yea 1 ohma1d not , self. To fix the , selling of any 
ponotYP* a autbjectod to asloction impf i*a that the gum for 

asking is linked to the g« that it selected, i. e. the model her* 
is of a gone for apt fing coWlai c1 y JLIMý to AA and donu t or 

recta. ivo according to the value of An uniin ed two -a-: 
model is do. cribsd later. 
(r) rereiia1 ity 

This foature was 1Ap©. sd on tts Population by including the 

jonatypes of the prwia rr*t ion in thQsw of the present one 
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: volutiQ; x : rw-lcla 

Thus AA AD HS 

g icy in aeration n un rM wn 

Frequency in generation n+1 after eating, stl eat ion l gomfl aw 

is n+i 
a+i ~n+l 

Then ' 1'raquencT' in new generation 

: un " un+ ivn` vn+ 1 ~n *w t 
+1 

a un+ i vni i ~n+ 1 

lifter correctil n for change in tot* 1 frequency. 

In other words we are dealing here not with tiom frequmncies at 

each generation separately, but with the cwuiatiys own frequency. 

(ri) sueary 

The whole motel can be risad in terms of the situation 

existing at the boundary of metal contaminated arras. The tolerant 

population carries a gene for tolerahne, As whereas the posture 

population carries, B. Thew is selection for tolerance an the 

mine, ad non-tolerant genes are continually entering and tending to 

dilute the tolerante* The tolerant genotypes AA, and the hetexozygote, 

can self to varying degrees, and can be + al or perennial. 

f nl nrt ion and gene-flow can also very, the latter between populations 

or over generations as colonisation proceeds. The model therefore 

assumes no two way tla+ across a boundary. The model is also quite 

general tar any habitat where colonization and selection from a 

neighbouring sources in occurrirn. 
(b) Tho WM ao4. 

This was developed to study w: clusions from the one gems model 
further. &srentiaity it did not differ from the on. gone model I except 
that the ' extra' t ras used to impose dominance (see Chapter VI) ed 
melting an the populwt ion. 

Instead of regarding setting as an 'automatic attribute' of certain 

LftnOtype., " 0+n, determining this character was introduced into this 

models The gase for this character was Unlinked to the other gone " 
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an which selection and gatte-flow were' iaposed in a siailar war to 

that described for the am gens model. The Ome for aal fing was 

given the property of "incomplete penwtranc&"$ when present in a 

hcmosyg us state with a genotype of the other gang a certain 

proportion ai of those goo types mated, When present in the hetero- 

sygous state, a proportion a2 selfed. By varying as in relation to 

al the goo for selling could be given different degrees of dominance. 

(c) T =113: = aMtia s W. wrajrommee 

Recurrence equations for the am R and two gone models, when 

there iss pol l esn fl w, and sel f ing are given in Appendix 3. 

The p a+ ý... are also given in this Appendix together with a 

brief description of the awrthod of present ing the data for the pro- 

gr a and a description of the form of the print out. Only a few 

selected pro r+smmes are included. Modifications are made using the 

methods described above. 
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ý ;. TIM EMICTS OF GENE FL d 

(a) Pollen tt< 

If pollen flow in the only influence on the populations then 

iii incoming typo, M. rapidly spreads through the population. 

H, oi.. vsr if there is selection against 88' the result will depend on the 

intensity of selection and the amount of pollen flows with low 

selection pressures and a high degree of pollen flow,, the incoming 

type wins, otherwise an equilibrium to not up with both genes in the 

population. The result &I no depetsda pan the degree of domin+mce of 

the favoured gene. 

several important features emerge from the data. 

(i) Pollen fit !A remarkably effective in maintaining a gene in a 

population in spite of selection against that gone (Fig. 38). For 

example,, when dominance is prssentq, only 0.1 pollen flow will reduce 

the frequency of the favoured f to 0.68, when the selection against 

the incoming gone is 0, fir. 

(ii) Pollen flow is very effective in maintaining heteroaygosity 

(Fig. 39). When then is finance of the favoured gun I an incoming 

recessive gem will be s9 tered in the haterosygous state, and this 

leads to an excess of bstaros7yates ever randois expectation. This may 

give the impress ion, from looking at genotype frequencies, that t ere 

is selection in favour of the heteroaygote. Moreover there is also 

an excess of heteroaygoten when no dominance is presents here the 

selection against the hoteroaygote, AS is half that against M. When 

the favoured gerne is rece3sive, the frequency of hater sygotes is 

slic tly below random ezasetation, but not very sexch so in spite of 

straw selection against beterr+: py cotes. 

The relative mnber of heteroWgotea is also oreater, the greater 

the salmction press against Bu. In other words,, an a metal sins 

where selection. presesses are high the tataber of hate osygotes in the 

par l at i on will be large. The sit of segregation observed in 

seedlings from mine populations (McNoilly, 1965) supports this. 

(iii) The msibec of 96"Wat iew required to reach equilibrium shows 

some interesting features. In this model I the equilibrium position 



38. Effect of selection and pollen flow on gene frequency 
at equilibrium. 
(selection coefficients indicated on graphs, 

degrees of dominance are of favoured gene) 
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Fig. 39. Effect of selection and pollen flow on beterozygosity 

at equilibrium. 
(selection coefficients indicated on graphs, 

degrees of dominance are of favoured gene) 
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Wes cimpem v the Game fr gw. aaiss did aft bfr mom than 
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tgviiibriva was also vsd very rapidly in the models of Jain and 

W&dMbW (t')66) " Swolvttten on mines is theoretically (as well as in 

practise) a rapid process" 

(ii) The pattern of program to equilibsiss was quite straightforward, 

with a "old aº in the initial. stagesl followed by a slowing down 

as equil ibrim is opprowhod (? id. We $sawra at the sstrao* choice 

of the squilibsias dstinitiim, the effective rquilibrluw values 

are actually yea "d Ißt no& t Ow wal ta*. than it suggested 

. bm. O. 
(b) Cýaoasuo whs1l. n flaw 

to the 1i ßats Motia, the affects of a high degree of pollen 
Clow we" name to be startl l 1. It therefore OSOMö "levant to 

tdrertlasta the Offsets at changing fs' sa high dsgYw of pollen flow 
in the early omwatto s, as would broom at the bsgipaing of coloni- 

satten, to a low degree at per flow, as would be the ease in the 

later stags. of seiooiAwttten __ pagination density had increased. 

qtr the situation when tM tsvrursd gins was dorinsat hw been 

ii-""Gat do 

rlts 098tim that this initial piouw of intense pollen flew 

can bme serious o wr '0. IO MW the bapdattame tvoluti. n in a 
colmiaia gipaslrr is " dynaio precise. 210 bigb initial pete flow 
lau to the tnlqanw st the tawwwubis sr e side rably and the degree 
to which this bappmo d"Peaft an several ! eatures. 
(i) "hott of osiaeisstias CFi0* 401 It colaoisatian is slaver 
and the AUVAM aS sm flow decor e. am* slay tben this attests of 
pollen º an ao" WrI006. The rate Or caleciaatiea will of searse, 
dpi, d on the rats Ord OVOIYttan but We particular Mteed-ba k" 

set" bas cat bow orasidsä 
(l; ) 1r aMWOUM pss ONDAIMPt the IS MINING type (Rip. 4a) 
It the tion is grast. then the its at this gape 
flow ww net be as guru" as rya the pore are of a lauer order. 
He" t aaiap Oft"s aas w M* the favoured ONO completely in this 
initial pöw. 



Fig. 40. Change in gene frequency under influence of selection 
and pollen flow. 
(selection coefficients indicated on graph, 

pollen flow = 0.2) 
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Fig. 41. Effect of different rates of changing pollen flow on 
gene frequency. 
(selection coefficient - 0.4, 

favoured gene dominant) 
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(iii) The Pu'evatialitY of the ooloniaing species (Fig. 4Z)$ a 

porgnni&l mafars a far lower redwatLou In the frequency of the favoured 

gem in PLO initial stags. It is also slower to x"Cover lrcýa this 

foitii r. acts but by this UM t b* situation 38 las serious. 

(iv) no initial oafe tr uaW (flg. 43) $a low initial was 

lraque. e 1does Place the population at a greater disadvantage but 

again the effect is sot ve ry morlow. It selection is ur high 

tl the initial ow. irq does not affect the population at 

all* 
The results a1.0 ooatim that this high initial pollax now 

suss a ory high dogrw of brtaraýqºgoýsitýº (pip. 44). With very 

strong . s1aotiow prg+s024. the initial ooloaisers as likely to be 

pra+atically aU b. tor s`Oe t... 

(o) preº11ý 
1l1+ýv _ 

IMMA. 

lt ha. buss ready St M1404 in pnwºivaa scanners that gum 

flaw can have dales Wir--- for a population striving 

to aalsauer adaptations the paw mad 7Ds, 1-mock. of the 

adapted types are lowarä. sitnatim is aaalogau to a load 

molting tram have ul ti r, aOKIN favourable p are 

substituted by d. latoelaw ONW# A pwetic and paartiow load has 

the enact at prwin Ott~ ality' MIMMMOVt '" of a papu- 

latiaß. MU is a tester which is part iarly 1OGrtant in bawn 

papvlaati . e. it is miss l teat for ai ývDalattaa the 

limiting latter to pro ti. *I" to the -NOW r" at adopted individuals 

it can perýWmme wAft as viii to the own In a colonial" NAWKIOS 

ern the liiaitiup factor is rat. of ofttatiaa to a pemaliar 

"tat. 't tram this effect as pop Tation also, 

pswti+o dismass will *saw in the direction at re ucing the gran-tlat 

lard. 
it is tAtratare important to caicuist. the degree of mortality 

that a population waters tram the iutraducti+ou at unad pted types 

by pssa flow. This is diffiawlt to assess intuitively: thus it we 

have a dosiuapt c the papulatLa will have aany it cüaºing harmful 
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Fig. h2. Effect of changing pollen flow on gene frequency with 
different amounts of selection. 
(selection coefficients indicated on graphs, 

favoured gene dominant) 
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Fig. 43. Effect of changing pollen flow on gene frequency with 
different initial gene frequencies. 
(selection coefficients indicated on graphs, 

favoured gene dominant, 
initial gene frequencies = 0.1,0.5, and 0.9) 
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Fig. 44. Effect of changing pollen flow on frequency of 
heterozygotes. 
(selection coefficients indicated on graphs, 

favoured gene dominant, 
initial gene frequency = 0.5) 
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Fig. 45. Genetic load with different amounts of selection and 
pollen flow, at various gene frequencies. 
(selection coefficients indicated on graphs, 

gone frequencies, indicated by 'p', are of favoured 

gene) 
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td) a 
1Q1 

? her ott. cta of a4., -, l flau ww% investigated only bri. CLy since 

seed now did ant semi an iaportaut a factor as pollen flow in mine 

situations. S*d probably doss not travel as fare and uff' ver7 high 

ssIsstim intensitissg such as occ+ar in sines, the haratul effects of 

r flaw weir law than those of paten flow (pig. 46). Under hijh 

saiswtias iotaisitica 'early all the inam' ng genotypes arge killed 

beta" tb*y U. 
U, tr 3+OMIs' ecttoe Li* Lt the dito is true. 0eri 

the imi, i'Les scot is emly partly selected egalrwt the remainder ere 
left to mate with the a tr a embers of the pe Jetion. The fr. cy 

of be" the ttwemriDd typet (AA mid AD) is thwatom ro&xwd by the 

cartra n genotypes.. (t er pollee flow tipalt to Vd geeotypss vat* with 
lac dt poUen before rrlectaa end the m oared pss acre ewet so drast i« 

eall7 rodoWd to mobw byre t Eiaa that occurs is AA is offest 
by the leeres.. ißt AN WWrotrob U sc 80 wstimW. ) 

Haase shred ow Mauves the addI"e or sxtxa yp" before 

ratin " it has ra effect ao ýs eq+sa e all the a bws mate 

at r+ndan. tl ar pollee flaw mating is mco 1 in that the 
inamsnq oftotypo do wit as" with 11 etv a but only with the (fum .) 

0 ºp* prosout s12*01Y i 



Fig. 46. Effect of selection and seed flow on gene frequency at 
equilibrium. 
(selection coefficients indicated on graphs, 

degrees of dominance are of favoured gene) 
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ý. TUE EP'FEC S OF SxLnUG 

31iin har a COUSIdrrablw affect as the spread of guar through 

populations, A gwo far .. luau viii its lt a rs d through a 

popnlat#oo it tb is onthiag to oppaw it. Crosby (1949) showed 

that the hoartylo w1 tf tKt i1. type of the Primirome will spread 

through the populstiaa and reach fixation it ao viability efl at. oppose 
it. This is iq r LilwstPat. M in Fie. 47� In the lnatalum s Iftore 

Nlscttiat " Oe 
lia will ai s or aid the procs at MlSotino. ? has it thor. it 

selection, against ar ssiw pes. Mating will assist in the aiLaiirtion 

of this orr9 become the glow that are sheltered in the hater aygous state 
will he arpossd. This to also tsir it than Is is. dosiwrnoe, but hers s411tf 
lap Will bard a to" Important part to plow in fixation of Uis favoured 

ogee sip the to dº selection against the hataroapºgota (Fig. 47). 

This to an the uns can rani and asswees plaiatropio sheets or 
liMwps of the favoured penn to a gum tar silting. 

oks~vor, inn It tlw s it no 11*ft ºs ling does d the rate 
to fixation. ? abbla 23 gives the pes' of Etta to fixation 

sbw tbeft is Gisto sat. ctLees against the racessives and ubw the 
tmv d MM has M initisi ! xeqp« r of a. i. Al bou In the 
swoft of link"* the + tth is acct ro effectiv. 'o Lt. Still coimiaeraaiy 
hutme the rate at wkiO fixation to reachW. 



Fig. 47" Change in gene frequency under the influence of 
selfing, selection, and selfing plus selection, in the 
absence of gene flow. 
(selection coefficients indicated by 'all 

self-fertility indicated by 'a', 
selfing gene no dominance, 
selfing gene completely linked to favoured gene) 
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(a) No s Is tins 
In the grqWjMW aectisar it has brn aIAaru that 000 IISW rats 

spsinst a. 1s atioa is salting ants to the direction of selection. 

To vqs rstio bw all these Or" features IMOVact * the effects of gams 

tlwr sad salting with aas selection viii be Considered first. 

The results, ßaä in as Lfiod feure, (Pip. 48), show that 

nor flow is a rar potent t. is º that is ost easily couat. raiftod by 

self Lag. The isaarthg g"wtjVM wine ew thwo Is a high degt of 

golfiap. Pelsn tier is los V* 4w& than . asd flog and can be 

oaf ot«dý am* . y. ihr the gros for siting is dot U... 

the heti r sayg rtsº . 1s0 melts) " *b4" it is N& SWO afteettye in Counter- 

"tine M fuw* 
A #@vie for . molto, it it 1 s. so sufficient sei: -fetilitrs will 

therefor. mead a"ONO a IPOPMWi n In the taee of gow tI4w opposing 

it. 
(b) 
ti) C*is a. 

This and swat umadsiS were only investigated in the oars of 

pollen flaw. 
(a) Effect of soldreg as pear Cretwawiose 

it can be seen (Pig. 449) that asiftng oossi4er. biy increases the 

frequency of the selected goo and thereby alleviates som of the 

oltacts of po1140 flow. The effect hn rss of selling increases dis- 

propoetionattoly with the # so in sal, ti gs with the dsc ro"o in 

selection Preava.,, and with dac roses in pollen flow. 

Tbc door" of doximance at the am* for salting or of the lavour. d 

gaus doss not greatly &ftaut the result. Under big* swamis of pollen 
flow dawinsaos of salting leads to bettor resistance to "lion flows 

whereas vxWkw lower pollen flow there is little diffoz'snoe evident. 
(b) Elfrot of setting on bst. rogpvto froqu+ nies. 

lofting " as * tad % »docas the frequency of hotorosppotos in the 

papatatiea (Pig. 90)o Hasooer, s doninancae is present, and under 
strong elective pressirres against the incoing gww% even a very high 



firy. 4IS. Effect of gene flow and selfin'j in the abwence of 
selection. 
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Fig. 49. Effect of selfing on gene frequency at equilibrium 
with different amounts of selection and pollen flow. 
(self-fertility indicated on graphs, 

selfing gene no dominance, 
favoured gene dominant, 

selfing gene completely linked to favoured gene) 
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Fig. 50. Effect of selfing on heterozygosity at equilibrium 
with different asiounts of selection and pollen flow. 
(self-fertility indicated on graphs, 

selfing gene no dominance, 

selfing gene completely linked to favoured gene) 
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Lvolutioa I a. lfing plus gme flow 

dam of : aafing doss not r*dWW *1* frsgtal of 1ýrt ors below 

the MOW ßt1 "WOOtati, "21 poll et flat aiitiiar hr*. rosygosity 

to a MarIkablo degrM, I NV the faa. of saltinp. 

tai »mbw of o º"wtiawr to s ibriis. 

$sltiaq not. in t1w $am dirotion as Nlocttiau in apposing Pollan 

floc sad tbwets s tUA pattern at the time, taken to ruseb O" libritm is 

OW ist as with Ml1NOt ift and pi1aº t1o 'w Ibm with a law degree of 

p*IUS t, . w, isif buMM tb* rat. at I&ICh iqui1ib! i is rsacbod" 

to 'irr ab vines o Ui º at t b* woo for . if! h to the aw that 

is baut 0400WO SWIM to lMs, *MWttv. 44 AM HM t+ ing Pellen 

1ä4M Moo 5t). UNOW 4t "USK I a* gem for O"n" to d 

btt. # +* 'r of salting sir similar to 

tb*W #A ißt a* vow mod"" tS irr tN asif bg to linked to the 

mar tw teawafte 
,°º 

it i Nina sm" 'e " ive in core ter acting pollen 
fl. v. 

(a) mum A 
(f) a" "m Opiae, 

elm ! ý' ýatF t4ýr fiel of ata opt so iait ply 
bim lage-me ac p uo irk ttg 1) "+ tos tßs, tins needed to 
reaft 

(Pig. SO 0 this r "m 6010010 of the 
d 

Sd type is dl and 

ý. 

ft e am 
mid 

ºfin to lind to the sav 'ame 
iM M ýIýý º+(' ýº It we start with a low 

a prscL& i" WON& (0ý 40,00 U. "WO Use, it -bis no 

rº #r o errrtioaý OtAM 
Yd the @ so* ' 44A to . tom ' OOM ' :. tn tts 1 qmmy 

Waw 6004M '0000*' " 0u0' ' sift" ay starts to spread 
t3 romo am "O"Amo at tar SkS4 5* Ot9 law sitar the 

Population, has ara. the biek doom of palm now in the initial 
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Fig. 51. Effect of salting on gene frequency at equilibrium 
with different amounts of selection and pollen flow, 

when selfing gene not linked to favoured gene. 
(self-fertility indicated on graphs, 

selfing gene no dominance, 
favoured gene dominant) 
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Fig. 52. Effect of selfing on gene frequency under conditions of 
changing pollen flow. 
(selection coefficients indicated by Intl 

self-fertility indicated by 'a', 

selfing gene no dominance, 
favoured gene dominant) 
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Fig. 53" Change in frequency of selfing gene and favoured gene 
under conditions of changing pollen flogs and with 
selfing gene not linked to favoured gene. 
(selection coefficients indicated by let s 

self-fertility indicated by 'a', 
initial frequencies of selfing gene indicated by 'u', 
selfing gene no dominance, 
favoured gene dominant, 

change in pollen flow as before) 
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Evolution : selfing plus yew flow 

stages. 
With a hi*A r initial fMgaooo, (0.3) the melting gone is 

effective in r MiM the effects of g no flow and itself spreads 
tbro the population wore, rapidly. h owrot the effect is not so 

marked as in the model wbor tbor is complete linkage of waiting 

gen. to ra a*rrd camas 

. tee li«ý arc toga, * (d) a. lt Ian 

In awe to1L1 the Precis* attest an a population Suffering 
iraa t b* effects of pollen fb i,, the pollen flag load with different 

dopsws of silting SAS calculated using the fo la. dis ussed in 
chapter Y. s. c. Tbc results prov d vwy ro ling. 

It the solfing gwso Is v oosive, i. 00 the borooy go'te only is 

sheds Una it has as attest an the pollen flow load it the to o wed 
pmt is fit. WA con be aeon tw the equation fa' pmaotic load 
(App dix 3) s with full damiumnoe the beteroryyoto tos v =jab" s and 
the gtio lead depuods an the frequency of the Owed ! gante. 
? h. vallw taart e lýe+ýqu of tl" gatr contains the malting 
tan iwä is arro vbw Mina to r ewolvo. 

mar, the attest of a rworsiV* veno, tar silting, t lea the 
favoured 91010 in not , is to reduce the P4140 flow load is a 
MONOW similar to that tar a MOIR dawipmmt or deoiIVnt , rolling genes but 
to alr cent. 

A van daminaut or dowlswat orao ter soltiag generally e the 
gonstio lead still f e. Pig. % &aara the reduction in pollen 
flow lead by ca rt. melts g of AA with different armounts of ono 
flow, at vari level* at deisaMo Of both 900089 and at voices levels 
of , Mleatiaw. The a1w olvio values before melting we as in Pig. 43. 

1follinp is owe effective is 0a ionh La" Under the following 

Gamut Locos 
(1) it te fwd ; 01010 shorn no dominance (or is rcessive) rather 
than it it is mat dot. in other wards r elt"feetility to likely 

1,. s 4wead tbrwAob a tola, " population it the tobt is no . 4omift"t 
or "wo"ive. ,, the ;b pollen flow load in redmed if 



Fig. 54. Decrease in genetic load due to complete selfing 
(self-fertility = 1.09 as Against 0) with different 
amounts of selection and pollen flow, and at various 
gene frequencies. 
(selection coefficients indicated on graphs, 

gene frequencies, indicated by Opt, are of favoured 

gene, 
selfing gene completely linked to favoured gene) 
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tolerance is dominant (Fig. We ? here am therefore two proceampe 

acting. 
(ii) it the gene for sel fing in itself dominant. 
(iii) if the pollen flat is great.:. In the abseme of polle-flaw 

and at a high fq isnV of f dooiwot favoured gene, melting does in 

fact ASMW the food an t? w population. This is prommably because 

it unmasks d letoriouo genes which otherwise would be hidden in the 

heterozygous stau. 
(ir) if the soloctiau pressure is p: wter. 

Again hers the intuition rqwotatioiss are vornan out. meting on 
the whome, teuer the gens flow lead on a popdation. Howwrer, 

other intebi. tLag features mang. width load w to e ct alt- 
fortuity to follow a definite pattern in the fields greater if 
the e leation is greater, greater st pollen flow is greater, greater 
it the favoured character is a dawiaant and also the goer for 

salting should be dosiflint. Them hyvwthwm am amenable, to 

practical iae . stipatioas. 

(. ) 
It has been abmn that .. hing confers two types of advantage 

to a population evolving in the presence of pollen flow. Firstly 
it hastens the process of selection and fly it alleviates the 
pun flow load an the population. 

V. would therefore Nmpeat a {fir for setting that is unlinked 
to the favoured peep (and on, whLah no direct selection is acting) to 
a~ trough the population under conditions of selection and owe 
flair. Howe r it hau also been shwa (this Chapter, ration 4 a) 
that such a paar would also moread through the population of its any 
accord, in the total abNaaa of selections and ova in the presence 
of gone flow against it. Does selection an another uolirdked 
901m (*ego for toles) hasten this pr omm? 

Although the effect of an wmli g -a for swating on pollen 
flaw load was not calculated, the spar ead of such a gene through 
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the poQulatioa was investigated Ort a two 9000 WWkW under different 

selection pros o on the favoured qrs. 

The results are interesting (Fig. 55). If the guns for 

self Lug is not douiooot, trau selection for the other goats only 

slightly ids its final Bung ncy cal'Qparod with the f uency 

when there is no sal. atioo. gawror it also hasty the rate 

at which oquilibrion is reached. In this case thW*: tW* the spread 

of a setting peng throu& ai lation is largely because of its 

isherOnt twWkWW to do so, j an well as be aiw of pollen flow plus 

selection (pollen flaw load). 

Wt b0, Salting p is da insert, then it spreads through the 

population lair becanw of its auto atic spread and wore because of 

its favourable effect an pollen flow loaf. If the gene for anhing 

isposos a high fertility then its spread is considerably more wbM 

there is , election. We spread I* even greater,, if the tavour*d 

dMIMMO. Wine show no 
These results tl tw% show thew forcer which may be wexy 

I- wulnent is the agreed of a 9000 fror gal HMO Firstly, given 

the population IS ads to inbreeding e Lo** suffer, no inbreeding 

depswiont the Selfing p Will earn, in frequency in the 

population cute atiaally. 
ß. c ly, It t w* is sel60tio , but no g ns now, then the rate 

at which the self ing paw spreads Is increased. 

't'hirdly, it than is guns flow this will tend to oppoase the 

spread of the sei fing getio if t1mrs is no selection. But if there 

is 04110 44100 the selling pans will increase more rapidly than under 

ow other circunstaaw. 



Fig. 55. The frequency of the selfing gene at equilibrium, 
with different amounts of selection on the favoured 
gene, and with various degrees of self-fertility and 
pollen flow. 
(selfing gene unlinked to favoured gene) 
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5. DISCUSSION 

One of the most remarkable features to emerge from this avm , or 

simulation is t ha' affiatIVOW s of peas 91OW as a force dotermtniE J 
the genetic structure of pepelatiaas. This effeatirºenes is a 

reflection of the for bell at that diner t Tation ever short 
distances (aympatrie ditterOutiatiom) is impossible (Matr, 1947), 

Gem flow mau, it it is ai*ff144satly powerful and it selection 
is mac, completely obliterate the favoured game. xvws where 

selection is very strong and genotype l quencies are not greatly 

affected, it can Imposo a swims, gone flow load an the population. 
This pons flow load is the i*eseese of population fitness since 
load measures the frequency of mortality in tbz population. Gone 

flow load can have serums COn qI .s from two points of view. 
Firstly, it may affect the rate of colonisation if this is 

dependent an having a sat! "tftiM supply of adopted variants. The 

supply of an adequate =MbW cf m4ants adapted to the particular 

habitat may net saw a+t em in view of the large amounts 

of seed that can be prodwed by, soar ale, one individual of 
Aa,,. However selection prssa *s acre multiplicative, and 
returning to the axwiple of vier populations, w it era s tolerant 
individuals are prodooed, tyW st JAM Carry gamw adaptia them 

physiologically and ýoorphato eaý. lýº to oller features of the mine 
habitats. Tire rate of go, is adaptation to a complex of factors 

could well be important in determining tl, o rate of colonisation. 
may, wan if the population mine is at a mazimss or there 

Is sass otl factor detOMIUADp the rate of i re, 9400 flow 
load will still have genetic _ sand.; there will be constant 
selection for ýohoniads to reduce Gene flow and iamreaso population 
fitness. 

teens flow is ißt also an a means of preserving betearomygosity. 
Scan W116 Vary little pollen flaw the proportion of beterosygotes in the 
population is above swQar Rations, particularly so wham the 
incasing Oft" are recessive. Strong selection against th increases 
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the proportion and tharsfors even with such selection inccwairtg 

yea are maintuuined in the population. The pattern of pollen 

distribution is leptalairtic which iapiiss that while a conaiderabl® 

sasount of pollen lands a short distance from the sources an 

appreciable amount travels very long distances. This "background 

rain" of pollen is probably a very important factor in dispersing 

ones over a wide distance since even if there is selection against 

such genes they will be maintained in the population. 

The extreme hsterosygosity has probably another important 

consec}uenos. It might well be a factor permitting the initial 

spread of genes for arl f-fertility or it nay swamp some of the 

otherwise harmful oas guaaces of in-breeding among a few founder 

members of the population in Is early stapes. Whereas the 

population may tend to become hawoaygous for the favoured (tolerant) 

gone because of jre2ectioe rive sel*ing, the other genes will 

effectively still resemble the outside populations since many of 

them will to be yea" because of el in alone{ and it 
jtq& 

has been shoim that gem flaw counteracts this. There is a balance 

here bete several processes. 
The problem of self-fertility is in general not a simple om; 

and this is moat powerfully illustrated in the above computer 

sietulation. The spread of gerws ibr self-fertility may be mqpected 
for several rwuons $ they sehr spread of their own accord, they 

may favour the process of seleciiong or they may act as an isolating 

mechanism. The latter has been investigated in some detail wo 
the results suggest that whereas f gene for self ing will reduce the 

e-flow load an a popuulationg the selection for such genes (in 

the face of flenne for cross fertility entering the population) is 

not very effective. Homo er, the 1 idcage of genes for self-fertility 
sind the favoured g- is an effective way of assisting the spread 
of self-fertility with its consequent "beneficial" effects. 

Although the computer results do not support any one theory 
about sei fing wrquirocslly, curtain predictions o enable to 
esperisentwl me ination can be made. Linkage of the gem for 
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aspires to the gat" for talrra"", cwt. ' s ftng when the 

tol*n r iss flat d='nst as . har sMh t tMr%r are diSWAO ed 

cm rlL s'" 
T. *IQ4*l s disouussd in this dupter ab, %t o &bOm &119 the 

vasptaxity of aroall Saals wolsttioet acid i]tlu : trste t b* 
intserslatia*Aips of t* a asr sst stem i; als Ln this 

. volutic t. 
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Thcare I. as in fact b4imi very little work stone on the Utica 

of heavy raunt tolerance. Wilkins (1960) werlcing on lead tolerance 

in F* tyice c. -vL% states that "in spite of the ant of effort 

. fcvotect to refining the aia*ut'ement of tolerance, the nature of the 

genetic neci-: Ani P controlling it has not bin established with 

ccrtainty''" He nevvrtheleas found that tolerance (whether high 

or medics rAnge) was dominant and that a armor gene with ju # ;. wo 

alleles was an inadequate modol to oglwin the result.. . hethor 

these several spate wenno at one locus or at were than one,, was 

not estat4 ixhed. 

IIrckmr (1963) regain f*""d d ai ti itauc. of J,, tolerance 

in : 51one inf . ta. How. ver, the MA data (frag golfing Fl's) allowed 

one to conclude very little sitze only tint plants per family were 

tested it was therefore again not decided whether se gation 

vtUt cOsrtti u or dl continuous. 

That w"W gen ox *r, involved in the determination of tolerance 

in supported by Jaw. tt (19) *nd FscNeilly (1965), and by the prose* 

work which siºe totere new to he an a12 or twathino efftict but 

ContirPIcußly vAriab1a in natural populations. 

1Eore tsp. cifis studies of Ja ott (1959) an the genetics of 

tolerance, : %he l ijxtications that lead tolorat . in A rost tended 

to be partly recessive but Jowwtt su eeto that this could be an 

srtefttct of pre-culture conditLam which were different in parents 

and progegr. Nrverthsieas his data provide evidece for ccmtinuxus 

variation in the character and also considerable segregation, suggesting 

quite +aaicad heterozyge. tty of the parents, 

D1r. Neilly (1963) c4m par. d the copper tolerance of seed a ad adults 
of different popul. tions, and found a high correlation (r . 0.983) 

between the two. This suggests that the character of tolerm ce 
has a high heritability. 

Further evidence of the genetic control of metal tolerance 

comes fron a study of the phenaomnon in yeasts. Sarno (1962) 

found that when Yeast strains were crc n in high copper concentrations 
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they produced two levels of resistance. Both levees Were contrroll sd 
by daaitont ov eie- which were vw-y closely l inwod. Bissbar resin ;c 
hags been obtained by Antoine (1965) $ he e tar alleles at am locus 

v ere oaasidwrod to be responsible for copper resistance in mast. 

Again the alleles for copper resistance were dominant to the 

non-rvista ce allele. It is interesting that evidence was also 

presented for ar cable ettactivenow of copper ions in mutating 

the gone for coppev resistant, to alleles of higher resistance i in 

this Instance notation appears to be directed. Gonaul ontavenia 

acrtivity of capper Laws has bean d rated by Von Room (1961k) 

and srpr t ew efe . be important in the evolution of metal tolerance 

itself. Haw+rrer there is no evidowo for this In higher plants. 
There is therefore considerable evidws that metal tolerance 

is genetically det rmiswd, but apart from Indications that it has a 
high heritability and is often dominsnt$ very few details of its 

is ritamm is hier plants are available. 



Toneticp s freest , gatt *ia Uq 

I. IXflSTIi ATICM 

In view of t eeareitY of infoeuwtiaa an the idwaritano 

of wrtal toi ce in pplantss w tic Lzwe-tigatian involving 

oevo rat bund od cr.. s we* . rtakre with ý vi, wr to *lucid - Ing 

the fallowing e 

'hat i" tho s4i e of tim charrctsr+t 

In it determined by am or mmW game 

is it determined differeetly on different nimm? 

What is the r*latises*ip betwom tats to diffsrjnt m tw! s? 
What is the door** of )*t. ramygamity of the ocros s for toi macs 

in the popzlatiaaa? 

Al thouO the cross. e have bean ende (Seed mitt data two already 
boom dive d in Ch ter , scot of the material has not yet 
been assessed for toles. IkeM 1 soar prsUainsry data for 

cater tolsr s we available (Fig. 56). The char&atar in 

clearly inbrritsd. But there is a poe. hility that the Artics 

of tolerance tart.. frm ei.. to wine. Thus in creases %twe, 

plants from uses-, 'Coed we Involved, copper tot o saws to 

show no dalli , wheream at Parys MouotaSn it abiws dari . 
The da manor of copper tales as Parys Mountain in confirimed 
in the study raortad in Chapter II. i3. b. and ! Five 4a (the crass 
involved tolerant plants from this region) " 'Ibs s Mlyris of 
further cross" will confirm or disprove these findings. 
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Fig. %. Genetic analysis of copper tolerance in A rostis. 
(parents and F1 progeny of preliminary crosses 
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g. 1R1i c&i. rrION tom' DCMI$ANC& 

it is usually iagvrrsibls to predict without ginstic aftlysia 

whether a character will be dminwnt, recessive or show no 
dominance. tja bi ical grounds a aataent resulting In an 

ww) ea detici+saay will tag to be recessive (or show no dominamo) 

whereas one conferring a new onaym. will tomd to be dominant 

(or ohm no dami º). In this woes we night WOU expect 

tolerance to be dominant or to ohm no domi l, rather than be 

recessive. 

Howwsr, in spite of recent cameo ersy (see fir, 1963s + 

Sheppard and Ford, 1966) , it is geMraäly accepted that the degree 

of dominance of a character is not an inflexible property but can 
be +altared by natural select ion. The situation occurring at the 

boundary of closely adjacent populations is such that we might well 

expect the evolution of dominanceo Thos the oaqpstor simulation 

outlined in Chapter V showed firstly that the p flow load an a 

population is less it the favoured pry to domirr nt * and secondly 

that undo condition of pollen flow and high selection there 

was a very large proportion of bet gates in tu, population. 
C of Crosby's (1963) nala obJocti4ns to the idea that dominance 

cannot be evolved is the low frequency of hrtºeropyrgatas in natural 
populatlOM4, Pol ism also asintalso lot ýy gotas in a 
population and daoisann modification Is well known haar (Sheppard 

and Fords 19")o Tor. are therefore two reasons why we shod d 

aveat evolution of dominance in a population suffering from ©aase 
flow loade 

tAý! "+aarttniately this ides could not be tested in the field SXDapt 
that the indications are that tolerance is lropmaiy though p 
by no ins iss iabiy `dMU ant { this latter its that dominance 

any not be an ißt property of toles pes. 

A cos is Badet was therefore oiled to üw stigat. the 

(a) 
The modal was a modification of the two pons cut described 
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earlier (Chapter V. 1 . b) . One Oftm was considered a dominance 

modifier of the other %WAidcsd 9016 1diith determines the tolerance. 

The danima e reel at to of the go -0 toi stante wss* mod according 

to which s, difisr genotype was prseßt. An MCWWIe is gi'vr n in than 

table and shows the f it'i s. ss of the dif t*rarrt g ty " wban the 

initial gone ham to d in nos and asst haa+os got. a titns. * of zero. 

C. sn*Rypw subJectsd to direct "lection 

AA Aü M 

138 110 damth. nc. 

Ub 1 0.7,0 dial aawiname 
bb 1 0.5 0 no daaimmmce 

(b) 2AM5 g 
The results ter that tti dwouiinarics modifier does not spread 

through the g cation to sivy aiible extent in the &bmwe of 
pollen flow* 

in the prommae of pollen flair however the out- (Table 24) 
dsads an . wwul factors. TIM spteud,, not only at downinatc. 

modiftsrs, but also of aardiftirs produoit t ov rdoel, oo11 is possible. 
The a*" is, one of the modifier boing not 1 ii*sd to the pier 

for tol . With l i*sgo, the spread of the modifier will 
obviously be aus effective. 

C widering the g' *rai actuation, the aodifivar rmmtmx a highw 

i i) it the selection is greeter. 
The sprasd of the modifier is onttMt with ver'y' high selection 
prarauras as would aýýotw on a mum* 
(ii) It the pollen glow is la*a. 

The sttsat of poollaa flaw is oomlrac. Althesa a greater riW 
equilibrium is rftdwd if the pollen flaw is lssas, the tlso taken to 
reed' equilibrium is iahpero Presemably, with no pollen now the 
tie. taken to egsiliPris is se iah and the sMv&ch ss slow that 
it rsCtr '. es in the ssdrl as the djbtjd equil ib rium value (in this 
eta" jene frequency dmmW is loan than 0.0001). 
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Table : 4a. Equilibrium frequency (>, ) of a dominance 

modifier in a population subjected to selection and 
pollen flow 

(Figures in brackets refer to iuuber of generations 
to equilibrium, 

initial frequency of modifier gene s 1;. 
initial frequency of favoured gene = 9Q°; `3) " 

pollen flaw 
Selection 

0 0.1 0.2 0.3 0.4 0.5 

Modifier no dominance 

1.0 1.1 39 26 16 7 1 

(11) (652) (413) (351) (3iß') (8) 

0.8 1.1 1 1 1 0 0 

(13) (12) (13) (14) (33) (30) 
o. 6 1.1 1 1 0 0 0 

(1£ý) (13) (2.3) (36) (z9) (29) 
()64 1.1 1 0 0 0 0 

(26) (30) (44) (51) (76) (173) 

Moditi. T dcmin tnt 

1.0 1.2 54 48 40 35 30 
(11) (171) (108) (84) (72) (65) 

0.8 1.18 38 30 23 15 
(14) (188) (125) (105) (100) (107) 
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Table 24b. Equilibrium frequency (') of an aver-dominance 
modifier in a population subjected to selection and 

pollen flow. 
(Figures in brackets refer to numb er of generation to 

equilibrium,, 
initial frequency of modifier g em " 
initial frequency of favoured g ei . 9Q, ' 
selection coefficient " 1.0). 

Degree of aver-dominance 
pollan flaw 

AA AB BB 0 0.1 0.2 0.3 0.4 0.5 

Modifier no domirr fl a 

0.8 101.11 72 5b 44 35 27 
(11) (236) (l(3) (133) (117) (111) 

0.4 101.5 90 ßl 73 66 8 

(11) (55) (43) (33) (35) (32) 

M . #P ubr d; min .l 
o. fs 101.3 (, ä 56 

. 
50 45 11 

(11) (97) ((; 5) (53) (45) (41) 
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(iii) if there iss greater dcrsxinance of the modifier. 

With no doaisuu*e the modifier only spreads utruier high selection. 

(iv) if' the cbcinanc* modification is greater. 

Gerte for over. -dominance rah a higher froquoncy than w+ a for 

domintime. 

(a) t, atM 
An obvious corollary to Obese reysul. ta is the actation that 

aý gem will s+ my different direct ions of dominance at the opposite 

arm of a aline ( ing the selection in sufficiently sstr ng at 

both ezvi, ). 'Where is very little evidence for this in the literature, 

but it is a very real possibility tihrat has Yet to be e xMi . 
bone aevidence comes from the work of O'i)onald and Uavio (1939) who 

provide evidence for tief dark-phase in the cwlauration of the 

Aortic S: ua being more dominant whom it is more frequent; the 

light phase is conversely loan recessive fiere it is more frequent. 

()'Donald and Davis however coneidar that such evolution of dominance 

"can only c ur once the pupulaºtion has become isolated from the 

migration taking place within the clines the introduction of align 

gene cw lssver must continually break door the s ifier batant#". 

Tim prat data suggest that such isolation may not only be 

usssaeces; aary, p hegt positively dotriamntal to the evolution of dominance 

within a miss. 
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GEM. WhL CONCLUSIONS 

The evolution of differences between closely adjacent 

populations in a complex process and reflects the complexity of 

genetic adaptation in natural halit&tas 

in the particular case which has been the subject of these 

investigations, the differences that have been found are very 

extensive. Tolerant and non-tolerant population differ in 

their response to nutrients, morphology, longevity, flowering time, 

and self-fort ility. The exact causes of these various differences 

between the emulations have only been briefly oxmined: but it 

memo clear that while . any are direct adaptations to the local 

conditions of the habitats, others such an flowering time and 

self-fart il ity appear to be adaptations to the particular genetic 

conditions in adjacent diverging populations. 

This boa significant boaring on the general problem of 

expansive evolution. The evolution of a species rAy be necessitated 

by changing conditions; but in other casts a species extends its 

range and enters a now habitat by the evolution of genotypes ad& : ed 

to this new enrirenment. This in so in the case of species enuring 

metal contaminated regions. 

The tial pr*requisite for this is that the basic population 

or species should carry variants that confer adaptation to the new 

habitat. This adaptation aºay be gradual and involve the occupation 

of intermediate zones, or,, as has been shown to be a possibility 
in o Lis 9 it may be immediate because of the press: e in the 

base population of eats us variants costfering adaptation in one 

ration. unce the primary recquirements of the habitat have 

been fulfilled in this ways the adaptation can become precise by 

more specific selection. 
The factors determining such evolutionary change are complex� 

but the moral principles have been frequently discussed, While 

it is generally accepted and can be sh n an theoretical grounds that 

complete inbreeding leads to h ygosity and loss of variability, 
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w completely p. ictic population is probably not the aast 

effective In promoting the origin of infroopecitic novelties. 

Wright (M)3 I1 first proposed that a coiiplax of mami-isolated 

populatiau, is the . oat effective system for evolutionary change, 

and this is reflected in the idea that selling with occasional 

outcrossing I. a very effective brooding system. It is alas 

analogous to a papal at ion. such as ! bgil ithum on Traf oian mine 

coexisting of a few c inant individuals around which there in a 

tligh turnover of retailer tncii, YIcluala which aunt he a source of, 

occasiowal. y highly acted, se pants. In all these systems 
there is room for favourable {c tzpleat e to become establitted 

and not be destroyed by rand interbreeding. 

In the case of metal-tolamme the precin* source of the 

adaptation in not known t tolerant plan; 'n normal populations 

either have some alternative adaptive role or are unwanted 

segre ants s 

once the a' -, i ! able variation in to hand the populations will 

trat to enter a stew j d&pt ive pea;. Thin in itself will create 

problt*a sinew i ny large scale interbreeding of the locally 

differentiated population with the base 11opulation tend* to be 

deleterious. Previous cork on metal mines has shown that natural 

seed produced by tolerant plants has a lower tolerance than 'eod 

produced by tha same plants in isolations there in intercraesing 

with the non-tolerant populations in the natural habitats (icNeüly, 

1965) and this dilutes the tolerance. 

on such metal mires the forces of disrr tiv" selection seem in 
t{ lv*s suft, cient to off. ct divver9wrw-, e: gem flow is not an 
i"ssib1Q 1xudMn. But there are rwworthelgs pxwsurea to wolve 
brooding barriers *nd so reduce t h* pine flow load on the population. 

broodiu., `arri. r may be Litt+oa ,c: tvea very subtle. The 

"rl ier f ow ing time and Bator x eV -fertility of the toi Brent 

populwtiaw are by no awans a 3iI c1 re n* to ,. election for 
wecha ir to maco tha Omw fl* w. They are rolated to 
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environ+ental factors of the mine habitat and ge trel genetic 

strategies of colonising species (in the absence of gene flow). 

Other ct gee such as greater longevity are similarly of wide 

implication. But whatever their causes, they have a mexýzed 

effect on gene flow. 

Another 'barrier' to gone flow is the evolution of dominance 

which has been shown in thi3 stidy to be a theoretical possibility. 

An increased dominance of the genes conferrin adaptation in the 

mwr habitat reduces the geese flow load and shelters the incoming 

genes in a recessive for. At the sea* time as the effects of 

4;:, ans flaw are sL tmiseds there in increased hieterozygosity and 

increased variability o `'ýe now population. 

vesw floor in erna11 Joxes can have directly beneficial effect; 

its deleterious effects z an be easily hsld in check P; natural 

selection. Firstly$ the colonieinn species may : ruder from 

inbreeding anion ta few initial colo sers: emmminhq with the 

parent population may offset some of the serious effects. Secondly, 

the old population may continue to provide useful variants for the 

new population, helping it to adapt to local conditions: this Is the 

principle of recurrent back-crossing in plant breeding. Greotter 

dive: - ice under disruptive selection with a limited gem flow 

than under bi-directional selection (no gene flow) has been found 

by encporimental selection in 2roso4i1a (Millicent and 'r`2lodwpj 1961). 

The precise result of gene flow under a given met of conditions 

can only be defined by exp. riaentationi this definition would 
tats the form of a relationship hetwo en th * :: tsic variability of 

a given character, the selection pressure, and the amount of gem 
flow needed to annul prows to eelectio s. 

There t, a third beneficial effect of t#ono flow. A SPecios 

which occupier a number of contrastinj habitats became broken up 
into Ie Qrul differently zfL, g+ted tl ett tons by disruptive selection. 
Each populatIO , subject as it is to itb own directional and 
stabi1L, Lntj s*lectionf, is not very variable. But if gone flaw is 

iriresed an such a avste a of xtl at io, , +oa rh pWul at ion shores 
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the variability of all others. This problem has been coniiyiered 

on a theoretical level by Levine (1963) who suggests that the 

Apt izmao level for gene flow i ncreames if there in a variation 

of the environ ent with time, but is decreased if there is 

stability of the envire Nantei differences. This stability 

will be less if the envi. ro zt is patchy and the organism has 

little opportunity of escaping frgm where it first establishes s 

it then lands in different conditions in different a Brations. 

. 'here the organism has the ability to choose its own uniform 

sd he, in a 1, *tfikrfj&nacAa& 69wircgaAwat, trat it is effectively 

In a rstabio situation and the optimum gore flow is much lower. 

Tha work of I.. evins shows then-afore that in any given . nvirom*ontal 

, pattern, burrs Is w ge 'i flow strategy which in the opti, arri for 

any species. The bal ar e between variability senil genet is load 

d an't; an opt iº deans flow- 

In view of the" corwiddorationj;, tt e tontatJve nature of 

ttze l,: o1atin¬ uwcl"uUx; "us ropcr-tod tore may not be 3urpri ain e 

G1 wI.,; ". t ex.: pec thoro mochnn; i8n to proceed' only to ,c rtain 

: ýcc; rerr but there is as yet insufficient Immrl, Ac, }e rhout the 
. y,. tLe 

and ttr: cture of tolerant and non-tolerant population-J, jo it ci. fle 

whothor : mich an opti ^ tans been approached. 

t tºatevrsr the precise balance in mine populations,, it is cl+aºr 
that forces leading to isolation arcs pro sent and that this 

irsclai ion hag n1 ready proceeded to eo. ue degree. The ovoluti 

of breeding harriers can therefore occur within a unit that i: 

more or leas panmictic. Tho ? orror belie' that allopatric 

divergcntic+o is «'n :i tontia1 prOr qui: 9ite to the evolution of 

breeding harriers (M. ayr, 1947) is thereforn brought into question. 
The adjacent populations because they are in different iwaa are 

perhaps by def i. ni t' bn not sympatric , arn! thar, fare it could be 

said that this e I, 1r does not nhcwr the beginnings of s poatric 

specietion. (The term 'paratpatric' is ri useful alternative 

:: i: o t3 c8e: situations are clearly distinct from gr(ms allapatry). 
Whatever definition is giver, to this process it illustrates 
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two features about speciation. Firstly, isolation is not a 

prerequisite to divarcencs: adjacent populations can be as 

üiffer*nt frcw: each other as populations hundreds of rules 

apart. secondly, ex ensive evolution inevitably leads to 

geographical iz lati: )f. At the, im innings of this process 

specific isolating aww%anisas may have arisen between a4; cent 

populations which have subsequently beca c separated. The 

study of two already separated groups ear lead to the hypothesis 

that Ui divurgetwu and irulati L$i kwAc1Lrni mss leave deval-vjmd 

pi ,, Ay in ievIaiicas, witen, in fact they might have arisen before 

geographical separation. After e11 it is at the initial stages 

of divergence that isolating maschanisana would, be the most useful. 

Closely adjacent populations therefore provide a powerful 

tool for the study of evolution and this tt'05is has indicated the 

several ways in which such populations can help us understand the 

processes of selection, colonisation, and spociotion. It also 

has repercussions on subjects, as t 1vcr3c as evolution of anon 

expression ^uui of life cycle strategies. General studies of 

already distinctive races or closely related species have been 

" , xvalual-l r la indicating the types of evolutionary chance that 

might be erected at the population level, However,, they have 

diverted attention fron the primary factors leading to population 

change, divergence awl expansion. Ad Ja mt populations show, 

above all, that e )l. ution has a bet, inninj. 
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It 

This review deals cºiraly with 1'ictzer plants but does not 

contain ct tiota11 ed ri appraisal of the work of Taunett (19x9) $ 
McN. il ly (19(c) and Gz-ecsory (19(ßc) carried out in the 

i)cpa to t cif . ericultural ! otan}, University ßo23eß+ge of North 

Wale, fl rigor. 

Nor does it consider the ecological, gityra io1 ojca1 and 

evolutionary problnw oueiated with serpentine soils ee'i with 

Aluminium eirot mmgarmose toxicity in plants. 
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1. ECOLOGICAL 1NY2 STIGATIONS 

(a) sýeci. s W2east on cMIMInated aoii 

of plants an mettal cc aminated soil has boe 

long so ºi eefi. The earliest record its probably that of 

Thal ius (quorte 1 by i mate 196 5) who noted HLrga t iA XI wit 

an indicator of metals, in 1: 88. Eron before 1900 them was 

c siden ble work in this field: for ox ample ßt mahnte (1885) 

air! ionsch (Iä94) quota lists of species which are fount! on 

zinc contaminated soils. And early works an raining (e. g. Poster, 

1F394) also franuantly mention indicator plants. 

An attempt to classify thewe plants into various typos was 

ade by Li binan and Auquior (1964), who recognized the followings 

tt. tailo, diyte* - tars uniquely found on metal contaminated soil. 

Absolute letal lophytes - found only on rAetal conta nd i natod soil over 

all their distribution s. p. Viol 1a M, o r*api alpotre tsp. 

i. ocsi tndrt: ai loq, hytes - only occur an Contaminated *oil in a given 

r. ions **go Ar ri&. +a iti ºq St M mvwdes ice). 

t'ssuaasel: ra 1wphyt. s -t sxw OccUrriM ^1 80 on norma sail. 

ruactiva eudu eta11opatiyt* - abunclan. and often more rigorous 

, va cants inet 's soil e. o. C Biala rotwtditoli.,, PcdXjdp4 i. s, 

?t spas pul. gioi sew, 6W22t1a tMati ,W isie cant (w), mui. 

Indifferent :... rudameta11r1h1tes - live on contmnuinated soil but 

»eitler show abundance nor particular vitality *,, g, P1& 'M 

A ; cident. 1 psoudO et d1ophyte! I - usually weeds and ruderals wring 

spor*4icilly and arioaina reduced vigour on contaminated soils* 

A siMilar but less extensive study vas made by : Schwiaker&th 

(1931). II. shared very sharp chan ,3 in species ca oaition 
acrroas the boundary botr en contaminated end mrmal pasture soil' 

within a tranmec: t lei cjth of 13 me. Lr s. 11 species were lonti ied 

to the mine, 13 were more or less co neon to both habitats, anal 6 
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were confined to the pasture and did not appear on the +iine. 

Nicoll# et, al. (19C5) term such sharp vegetation changes, "cut-auto 

and discuss their uee in biochoettica; prospecting. 
Specien of r °es ro stricted to copper contaminated are 

are well knoºrn and (often bell tc, ing to the genera *. o2Xa 

and ý: e i 2t t: have boon t iven the name of "copper tow" 

(; 'arson, 19V,, 195(, Schatz, 1955, Nogguchi,, 1950, and ? 3o pic i 

; %nd Furuta, 1956)e 

n . jct. -. e classiftcettons am A reflection of the fact that the 

specie.,? fcund c. n metal contaminated soils are often very 

characteristic either in that they are lar oiy restricted to such 

soils or in that oily a few spocios (out of a whole range of 

xpecLos in te backer nd vej; otation) can colonise them. 

The species fouxid on tho &ix* Foil ", re verf , vi and obviously 

differ according to the geoi)raphical arca and local ecoiatica1 

conditiuu . Haveyer no very clear cut t is pattern axerges. 

If we look at the list Uiten by Sthwickerath, of plants growinjj 

on iM. re or lass contaminated zinc boil in Ck-% uiy. the following 

fahliea are roPs entc: ts 

Grcuainne , species 

I"api1'lonacoao l ti 

Compositas 3 

Cai yophyllacsao 

tosaceas 2 ee 

and l( other fa iilie:; are singly re-presented. 47ew other c*h ive 

lists are available frow other area. 

Most of the species found on i inc toils are herbs (with a 
few low ltrubs such as C4U WA vu1 saris and the awajor ity are 

pereennials. This may be a reflection of the fact that such 

mines are normally surro mle"A by pasture co. auu it ies, or may in 

sonne other w be related to the ecologic, -. 1 con, 11tions. 

A1thoatth spe ce does not perufit the iiic1la3ion of 1 ists of 

species irowii on contsuinated soils, examples of the cossonest 
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recur frequently in this review* Other records (not mentioned 

subsequently) of plants growing on contaminated soils are 

frequent. Thus Andras (1882) quoted by Schultz (1912) went ions 

AnMs 1. r1 as an indicator of zinc; Bailey (1898) dealt 

with "copper plants"; Stutzer (1907), Simon (1909) and Batewnnn 

and Wells (1917) co sidered several species found on copper 

contaminated soils; Linstow (1929) and Uorn (1937) gave further 

a plea of indicator plants; Nemec at al. (193G) quoted 

Equisetue arronse as a gold accussletor; Robinson et al. (1947) 

considered several species growing an zinc soil; Rune (1953) 

listed plants found on naturally occurring toxic soils in Weden; 

and more recently lead from exhaust fue ss and orchard sprays 

has been shown to haw profound effects on vegetation by Warren 

and Dslavautt (1960) . 

Plants growing on metal contaminated soil are tiuerefore well 
known; the is by no means rare. The colonisation of 

toxic areas is is regular feature, and whereas the colonisation of 

some is sporadic, other areas carry regular comunitiea. 

(b) Comenanity studies on C291MInated soils 
several workers mostly in Germany, have e ined in detail 

the plant comities found on metal contaminated sail. 

Schwickerath (1931) studied the association on twenty lead 

and zinc mine tips and found that they could be subdivided into 

vegetation types representing different phases of col onisat ion. 

The early colonisers and species characteristic of all the 

vegetation types were Violg lutes, ! I= iA e1°ngat4t, !! L A 
xornas Ttgaspi alpestre. 

Koch (1932) also gave a brief account of plant ccm mmjt ies 

on nine soil, in particular, the Main. veil a- ? hLaSi alpestre 
association. 

The most detailed ecological investigation on mine populations 
as yet carried out is that by I rast (l%5), lie reconsidered the 

classifications of the mine plant caamunities by other workers 
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(Schwick rath, 1931, H"Lmm=" 1936, Koch* 1932, and schubertt 

1952, as lad, and TUx. rL, 1937 und Lebrun at al , 1949, on 

capper) and regarded the cu ni ti ea growing on lead and zinc 

soils in mid"Evrops as all belonging to ova association which 

he ten+ed the Violetea calewineriae% being characterised by 

yialä. 
. 
iE * Si sns cHSHba; i is Mar; ht*al ie and M II i$ 

tarn RID. hercrnicA. Within this general class he recognised 
three groups t the Armerion hellen i in drier habitats in aid- 
Gsrr, r" the Thlaspii©n calaminariae of mid-bumps and the Galio-- 

Minu. vrtion vernma of the alpine r. gions. 

m.,.. confirms that panm cities carry charactsrixtic 

species and can be identified as forming distinct associations. 
Although extensive classifications of mine coup pities have boffin 

rarely carried out elsewhere other than in Germany, it is clearly 

evident that they are very different from those of the surrounding 

vegetation and that communities on different contaminated areas 

are similar. This fact is used in biog. och. micwl prospecting 
(e. g. Nicoll. at al. 1965) and is therefore Ltaportant. 

Species And caa mnities characteristic of cc t&uinatcd areas 

am therefore well known. Several workers have considered the 
factors which influence the distribution of species in the mine 
c' inttiss. 
(c) Fo 44AMPL iffigIga distributi on ted $oil 

(i) Metal concentration and type. 

The overriding characteristic of these contaminated soil., 
whether they are natural outcrop. or waste tips, is the high metal 
concentrations in the soil. However although the area of 
contamination In frequently recognisable by a flora different 
fray that in the surrounding ore", very few workers have studied 
precisely to what extent meal concetftration and type of metal 
are important in dttanaining the distribution of mine plants. 

Jerach (1894) showed that soil taken frag around the roots 
of calamine plants, had a slightly lower concentration of sine 
than soil taken from bars areas (no estimate of si gni f icancs can 



Mstwl t*IWVL C. $ ecology vii 

be Mad* from tO data) 9 suggat ing that the Plants colaaiad 

arm of haar coi . ntration and th rsfoh prw aably lo»r 

tonicity. 
Sdwiaksrath (1931) found that his vegetation types, 

rapr. a. ntinp increasing colonisation, were correlated with both 

lead and zinc concentration of the soils increasing colonisation 

was correlated with lower concentrations of the metals. Whether 

the colonisation mwlioratod the soil or whether the soil 

concentration determine the colonisation was not ezatnined in 

detail. However the evidence wax that colonization depended 

on the presence of other species (therefore on am* meliorative 

effect) and not just an soil type: five retailed quadrats showed 
that$ with inc: wwsinq colanisutian, new species were distinctly 

associated with the Lost sward. 

Ernst (19,65) rec gnis. d three initial phases in the colonisation 

of zinc contaminated arsaa z w*kd the last of the.. pia * which 
contained several specie., hast as the whole a lcanr concentration 
than the first. 

Both of three studios are open to the criticism that neither 
of them followed a particular coa unity over a period of time. 
The different, apparently sequential $ phamm mW surly reflect 

a decreasing metal concentration in the original soil. Certainly 

other factors are involved but whether a massrad successic l 
process occurs an mines cannot be regarded as finally established, 

The study of Nicolls at a1. (i%) smph siaed in a subtle 

way, the controlling effect of metals on the vegetation.. As 
expected, sharp changes in the vegetation coincided with change. in 
total contamination. However, changes in the relative amounts 
of l ads copper and zinc were also important. Of the various 

species considered,, , AEbM ec *oa ata seemed to tolerate high 

concentrations of all three metals s Bulboetyl is kerb at and 
rcaroM glwbra were found in sus of high copper, while 

wig enncw. was found where the copper concentration 
was 1a ver. In moral, charges in lead and copper were more 
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determinant than changes in sinc. 

viii 

Tb... various studies r. -emphasise the obvious i*poltAtwe of 

metal contamination and show that it can have a precise effect an 

species distribution. Herer other factors are also important. 

(ii) Factors other than metal conta*tn&tion. 

The ixportance of factors other than metal concentration In 

determining the vsgetatiom brewing an mine sail is often VW7 

clear cuts mines on acid soils differ markedly from those with 

a higher pill having gGnWMdIy fa mr species and being typified 

by AIroeti st as the +d"inaAt cGIRPaa t. itv rsr there is 

evidence trams other sources that additional factors can be caritical. 

schwickerath (1931) first noted that elements in the soil, 

other than metals, may be important for survival of plants in 

contaminated area... Thus his rsgotat ion tom, mentioned earlier, 

although they correlated with tot*A iaad and zinc in the soil 

seemed to correlate better with the calci a3l/sinc ratio. Since 

calcium alleviates the uptake and toxic effects of zinc, and more 

so of lead$ this ratio is probably a good measure of zinc 

availability. Uad was perhaps oos lately unavailable to plants 

in this instance. 

T ho iwportai o at other soil furs was further pointed out 
by F, rn t (1965) . Ho studied the ecological conditions on min.. 

ctwacterisdd by the three snit iwl stete of coi onis&t is ,try 
the slla **, 

... 
il is stage, the M tip Vs , .. 

hesr y iciuw stags and the kELgd Lgj spp. stage. The S w*W an 
Mina stages Urm on soils differing mostly in their water 
capacity. This was a reflection of the soil texture. 1 

grow cm soils with a coarse texturreg low water capacity, and 
(because of the high conductivity of large soil particles) low 

surface temp ratura. Ni 'k ia on the other h and grow on soils 
with finer texture, high water caZ ityg but (b ecause of a law 

conductivity of beat fres surface bsCAu0 * of mall air 

ryes) hi&ti a rfac. to rature. The habits of thsss plaints, 
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clop rooting 61.12M with nsrrov. r loaves than the tea l fora mg 

and the stallax rooting but tufted habit end t Ile like loaves 

of H tiny adapted than to t1wir respective ihabitwts. The 

WghrjWjjj phase was consi4dore4 to be a success ion from the agave 

two mess but also characteristic of soils of even higher 

wit cr cr_? +e. r ity käs as mentioned aal ready j lower metal content. 

Ernst therefore provides very clear cut evidence for the iugwwtance 

of factors other than metal content to plants growing an metal 

contapin t*c' soils. 

Nicoll* at al. (1965) found that while calcium and Phosphorus 

level in the soil warted an Lwsortant effect on the composition 

of the vegetation an metal outcrops, physical factors such as 

relief, drainage and soil texture, sasmed relatively unimportants, 

these studieli on the factors determining plant distribution 

in wont4Wainated areas have been inadequate frn a several stwuVoints. 

Firstlyt they have rarely been dorm in conjunction with 

physiological studies to determine the tolerance of the various: 

species to different metal concentrations. As a consequence, it 

to not know whether the mite plants r consideration are tolerant 

or not to different levels of metal in the soil, or whether other 

factors must br ontrollinq their distribution, 

s condly, evidence will be pros rated in the following section 

which shows that the ability to colonise mine areas, requires the 

ability to evolve tolerance. The evolutionary factor in plant 
distribution on metal contaminated area" is Important, The 

classification of metal seit plants into motwllophytrs anti 
psoudc aatallophytos (Laabinon and Auquior, 1964a) outlined earlier 

nay reflect Mj ja iU an ability to tolerate high contamination 

but an ability to am v auch tolerance. 
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... CV(L LITIONARY IMW; S"TIGAT1ONS 

The odstence of plants an metal contaminated soils Immediately 

raises the question of whether the" plants belong to species 

which are for some reason inherently tolerant to metals, or 

whetter they are plants that have evolved a special tolerance not 

possessed by the remainder of the species. 

(s) ;. vi datico fot. 
Tile first coaqiArativo study of mine find non-wine populatione 

canon from Prat (1934). H. found Ml 3ri. ua ailyeotre uwirj 

an Mail cantaininj o. B`. d - 1.0% copper by dry weight. Seed from 

M4andar'itsia "ily t on the mina, and mood of the same species 

fron a botanical garden were ciupared for gresrth an garden soil 

with varying quantities of copper carbonate. Plants from the 

contaminated soil grow far better at the higher concentrations 

of copper than those from the uacontsminated and at the hiesst 

concentrations the plante from uncontaminated areas died in the 

seedlings stage. On normal soil the plants from the wine wore 

quite healthy and therefore had no absolute need for capper. 

Prat attributed the increased resistance of plants growing on 

copper mines to the action of natural selection. 

This inrestigation was the only one of its kind, till the 

19509s when studies of eine and non-wine populations were resumedg 

independently, in Great Britain and in Ggr. 

Bradshaw (1952) reported populations of A9Kq#tAL't=jj 

tolerant to mine soil; plants of the same species from a 

neighbouring pasture did not grow on the mine soil. Following this 

Wilkins (1957.1960) developed a rooting technique which showed 
Feetuca oxint to be tolerant of lead, and demonstrated & 

correlation between tolerance and ssotti t of extractable le ade in 

the soil. Using this technique . ubs quent workers showed 'sserous 

other species to be tolereAt, often to several metals (depending 

on the type of natal contankinntion). Thi eºe results arre 

s'Miarised in the following table. 
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ies Metal Author r 

Agrostia tenuia Pb, Zn, Ni'Cu Jewett (1958) ! Gregor y and 
Dradahaw (1965) 

Agrostil etolonitera Pb Jewett (1958) 

Ln Gregory and Bradshaw (1965) 
Archer (1964) 

A. teams s otoloaittra Zn Gregory and Bradshaw (1965) 
Archer (1964) 

Agrostil canine º1 Gregory and Bradshaw (1965) 

Featuca rubra Zn G*. gory and Bradshaw (1965) 

Fata ovine Zn Gregory and Bradshaw (1965) 

Holaus lanatus Zn Jenkins and Winfield (196k) 

Anthazanthtm odoratum Zn Gregory and Bradshaw (1965), 
Putwain (1963) 

Rvaax ecetosa Zas Spilling and Thcsas (1964) 

Cu Coacklsy and E awao (1966) 

Plantago lsnooolata Zn aiiiiasu and Morgan (1964) 

tiz tia was in v .ti pat sd by Fhsaphreye and Farnworth (1964) i 

plants from a zinc lead mite were shown to grow satisfactorily on 

*oil fron the mine while Lawrence (19G4. personal coumunic^ticn) 

reports that Mim i4 frois normal soils is not tolerant to stals. 

Work in Germany has also produced an impressive list of plants 

showing tolerant races. Thus Sctnrranitz aM Hahn (1954a, 1954b) 

recording death (or not) in water culture with different tents 
of since showed the following to be tolerant if taken fron canta.., inated 

soil : yiot lofts, A] sine jreerna, 7e ý1 rta_ m uºt; a iczm. 

C 
.. +� a rot ifolLa, Pta tasLu. Aas. 42104AS RUMM iset2me They 

also showed that SUMM i ate produced a copper tolerant race. 
Further work by Haumeister (19 4), Da x . ister and Burghardt (1956)& 

WAS (1961) recording rate of photosynthesis and general growth 

and Brooker (1962) recording dry wt in water cut Lure t has confizvaed 

that SiiSM is atw fords races specifiaally tolerant to zinc and to 

copper. 

i ýrpp (1963) woaaur. d the cellular resi8twtlce to metals by finding 
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the Come ttration that prod d death of spidsraal calla 
(as recognised by failure of the cell to plasnolyne in strong 

sugar solution). This technique shoved that IMMIc tº icinaA 

as well as Tusailaa fsrftrw could evolve races dogs tolerant to 

copper thnn the notmal ones. 

Uri (19ß6) using a similar technique staged that species of 

s trwi copper contaminated regions had a far higher resistance 

to copper than species tram norsal soils. This rrozic was however 

not extubded to the iexti%, specific 1.1.1. 

Frog all thaw : irhd1 ncs we can say that the evolution of 

metal tolerance is a vary general pt sms and characteristic 

of a wide rangt of species. Is there any evidence that some 

species are iitha tly tolerant to metals (ev when not 9r4minQ 

an metal caesteninated soil) and are thereby able to colonise 

contaminated areas? 
(b) v for gjqWA- toi o# iea 

The only work which suggests that inherent tolstarco may be 

important in colonising metal sines, comes from the work of Rapp 

(1963)e She showed that the cellular reisist me of Iilems 'X ata 

from r xvmd soil was just as high as the resistance of Silk from 

nl, ne. soils. This finding is however in contrast to the whole 

plant investigations of Wachsmaien (1961) and Schwanitst and i ahn 
(19544. ). It implies either that the technique at ... pp was too 

insensitive to pick up a diffeivam: eg or that copper tolerant Sjj2ft 

has some exclusion mechanism which prevents the copper reaching 

the calls. 
(c) ''o cart L er t' 

Several workers in the literature on plants growing on metal 

contaminated soils have suggested that these plants have s positiv. 

need for the metal, and are for this reason restricted to such areas 
(sea* Schatz $ 1953) . The findings on tolerant races suggest that 

this is not the cases tolerant plants (wo plants from contaminated 

it as g orally) grow well in nor"Al Soil. However theme is saes 
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svi dames tost tolerant plants x st t4 atsd in their ewth by 

1. vas of msial e« dsi ably abme the i alas ya-e triax! 
(tra) levels. 

TIM firrt rºi4 * for this was ProduCed by Pramroistor (2954) , 

quad Bintoiator sad Do rdt (i95ä) A who 9rw plants of &ilodA iItlwta 

in diftwneit lwusix of zinc sad mmmard dress pcluatton wes well 

as the rata of wio latiaia. In a psrllmda=y a rieun! an" 

situ vss s+d"d to ports of soil' it was shown to be st1 . sting in its 

.n at and resulted In a creator trash vsight ca creator eate of 

cmrb. n dais #. i st10b Of tM #oiSrUnt iYPS4 

The r nIta nr exteaded to sand ml. turr imrnta Giants 

lraý t ai» abamad a sltgbt atimuiatiaa in Chair rate of carbN 
dioxide aaairilatiaa by t) a4dition at 10 mg and =O a %im wlpbate 

per litt. of +witvrs oslutioa tae aantrol plants at U)o wo showed 

a lw+ar rata of stamm dimtide a»in latteiu R. paat Masst. 

in »ter dultmýa4 utsvs 10 a and 200 mg site sulphates per litt» 

add. d to the o" tu ; solution, a wo s w1" i 'ýº clear coot effect of 
the since and tM biter cono xatio4 it wsod t 3w rate of carbon 

diaarids assimilation of tolerant Plants but led to the d ttb of U, 

lboo+tol. wvm o 
Thy m rsaulta ra º coatix d kay s "WO extesisivo is rtignti si 

(ßv sister Od eurgsardt� 1956). The stipulating effect of the 

zinc on the rate of carbon diosi«! o assimilation was p ratla1$. d by 

"iailar tlt. cta as te ch1cs pI 'I1 contents of the iss' s. 
Furth. - evidame, comma from Jewett (1964) as Antis Doris 

with 1. dt Pvtwain (1963) as Atstt s us haw with sisa, and Darker (196, 

personal cassxmiezatiaß) an Ac to tseutis with led, C VW and 
sine, and McNsilly (1965) on f rtiw t i. with ooppw,, All th 

authors found indices of talg) os arsato than 100% 1-10% tMft MOO 

 or. root gr vtb In metal than in watsr. Again Jikias mad 
Winfiaid (1964) f*da romy claw cut stiwulatary affect of Moo 
an 'kiln. In tiara at tom. case. did the contro. Pla ti show 
stim4atod grarth with ine rosin Natal e anRr &tiorr. 
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Altbau i 3rnat (1965b) did not use normal control populations, 

S out of 6 species fror zinc sail* produced at greater percentage 

gominatLoa and rate of qwuinatiaes in 50 ppa zinc than in 1 ppme 

ftilvbjus mnWtitOlium, a species from a nor s1 area did not show 

this e! "f'"ct. 

Thors is therefore ccnsiderabls avicbr ce that tolerant plants 

are stimdatad in their growth by mil smomts of metal. This 

caild be intarpratad as a definite need for metal in the" plants 

but a fairer interpret,: G i can is probably that, because of the 

alficia cy of the tui(ýý'-+tca maCIWim in, irwkCtivating the nstals, 
the normal trace e1 wt requires %t is rather higher. 

Amain it has ban shown in this thesis and elsewhere ( illy, 

1965, Putwaing 1963, personal coaorunicatian) that metal tolerant 

plants am generally caupotitively inferior to normal plants 

when grown on normal moil. This again may be a reflection of 
$ 'need' for setal by tolerant plants. Or a sin it may indicate 

that the normal aast&boi iss is in sm e way upa*t by the tot er x" 

OWAURnime 
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3. GEOGRAPHICAL INVESTIQATIONZ 

Metal contaminated areas, either naturally occurring er 

man-mach, are way widely distributed. They also, an hass b4mm 

previously shown, carry a very distinct type of vegetation which 

ofteT ;. -it, nins species largely or wholly restricted to , wich 

areas. The geographical distribution of these s_. Ycies is 

therefore hiWy dis jemlet and this has attracted the attention of 

seyeral workers. 

Schultz (1913) l., anked at plants ýpowing on tal mines frc 

g, ogr, ihica1 standpoint and carae to some interesting ccncluixiols 

which har r cwvaot go unchall. ect, H. argued that . inc. 

both Viol, 1u .0 and Ati wa 'i Aa M. Mv plants cni son3, y found on 

co it einte d Roil 11 have their main distribution in ttv. -alpire 

re-lions of üurope (end Mi is also in the arctic r ions and 
Asiatic mountains) and show alsawhare in Europa a highly disjunct 

distribution (being largely limited to metal contwinate d areas), 
they ragt h "a been widely distributed throughout Europe at am 
time whai v conditions ww o favourable. Those conditions would 

heºrrs bau Coole Cry which allowed little foreatatiaa and may have 
been "coullteredq he Bugg Us in the fourth ice &go" Zinc. 
then coedit ions haw been euch warner and he argues that the* r 
distribution has been limited to mite tips where they do not suffer 
from the additional effects of competition. He con, idend em* 
other faaw s heavy ustal plants: ? hlasui Alvestax'a and Armhis hallar# 
he suggests are also of a formerly wide distribution but sri, 
h er and 3i1ene rua, au'is do not show a clear cut picture. 

Similar arguments t, a those developed by Schultz, (1912) have 
been used in connection with a study of I! stuca *pj . growing on 
contaminated areas in and around Bel otus (Auquier, 1964). Auquier 

came to the following conclusions. The Fee s belong to 

sreveral to a but none of these taxa are completely restricted to 

cia weine soils, their relatives being often found in upland areas, 
However, in Belgium itn&lf these plants are strictly confined to 
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calruins (zinc containioatad) soils$ and seem to be absent from 

neighbours nom al soils. Auquier infers fron this that 

these taxa represent remains of plants which Once had a wide 

distribution taring the arctic-alpine climate of tae last ice 

age. 
However several of the species aentioaed by ScjmAz (igl2) 

&n d the i. str M" have been -shaorn (previous section) to evolve 

tolerant races. It is probs'`p that the other species have also 

dons so. More* er there is no reason to believe that this 

process takes a particularly long time (see this thesis). This 

leads to several explanations of the disjunct distributiorii. 

Firstly,, them. so-called species are not distinct and 

reproductivity isolated from their relatives, but are products 

of parallel evolution as different wines from these relatives in 

the neighbouring pastures. This say be the case with ; aquier 
(i')(4) where the taxes are by no ins very c ist inst. 

Secondly, these species are distinct (da not have any near 

relatives in the vicinity) and have in the past evolved tolerance 

which new enables thew to escape competition from notmal plants. 

This is a modification of the explanation of Schultz and Auquier. 

Thirdly, contaminated soils are ca only ancaociated with 

cum's activities, and may simply indicate the efficient of 
dizsperswl thrauah hsn a(, ency. )lang of the nines are. in 

m ntainous regions mad dispersal of alpine scsbers such as 
Vl, ala lgtewg Hie rtia Mu-L ýfld 23! l i alomtre frag upland to 

l owl and mining arses could Asi ly have occurred. 

Fourthly' many metal omens are recent and in no way correlated 

with natural metal outcrops. Armes about plant distribution 

cI, 4'Ami, cannot involve factors present more than a few hundred 

Year Ka** 

There are therefore several el anat i onz: for the disjunct 

distribution of Nits species and no-one has yet considered these 

possibilities fully. 
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4. TAXCl1Q4IC INVESTIGATIONS 

The difference in morphology of plants growing on metal 

contaminated areas, from plants in normal areas was noted 

by ! IauMarm (1885) and Jonach (1894) . tumorous workers have since 
then remarked aus this feature of tolerant populations,, 

it is there ore not surprising that taxonomists have attased 

to classify those plants as separate taxa. Floras und the literature 

are strewn with subspecific and varietal epithets (e. g. see Ernst, 

1965) referring to mine taxe. 

Two genera have received considerable taxonomic attention. 

Hei-ans (1960) considered taxonomic problems associated with the 

type viol,, calaminaria. Chromosome counts an this type grow 

the zinc contaminated areas of the Aachen district paw the 

chr=, v*s=ne inw ber of an - 52 whereas co alts on its relative, 
Viola lutea from nil regions gave Zn . 'i$. On this basis 

Heissna rtsioved Viola c aminariA (sc etiauas previously termed, 

Viola lut&L var. calseaiiaria) from the Viola lutaa group of the 

gems and re-established it as a distinct species. This work is 

interesting in that it suggests that perhaps some of the mine races 

may have been formed by a process similar to catastrophic selection 
(involving drastic chromosomal adjustments of a specially adapted 
type, leading to isolation) described by Lewis (1962). Ho ever 
no attempt to cross those species have been reported. 

Auquisr (1964a) investigated the genus Fei c, growing on 
metal contaminated soils in and around Belgium and classified the 

genus into two main species, one of which they divide further 
into subspecies, varieties and forms. This work can however be 

criticised from several standpoints. Firstly, material used in 
this study was collected directly from the fields no attempt was 
made to grog it under standard conditions, The taxa include the 
fine delimitations of variety, sub-variety and forma; these could 
easily be environmental modifications, Sadly, even if the 
differw*ss between the taxa are inherited they could easily harnt 

S 
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bi % aeheiwd by parallel welution on different seiner prince the 

characters that wage measured (longth of floral parta, anatomy of 

tillers, hairiness, vein nrbrr, leaf diar eter) could easily have 

been affected by s lection for local motion. 

The tarpon is izre tioutions on r: tne plants are either too 

©. U' OIy or Kliebte. TY3 adapted ý* ezteem conditLonx Bauet 

be clasaitiad With the help of exyerimce tal ter if any reliable 

picture is to 4OW009 and ao NIP WiXOMtid tax*n=W hass so far been 

dam. 
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5, PHYSIOLOGICAL INVESTIGATIONS 

Physiological investigations on plants growing on contaainated 

soil have been largely limited to measuring the levels of the 

various . ttslo In the plants. 

(a) Lj 

Baue (1885) quotes the several early works in this fielet. 

Ruse found the following values for plants growing on zinc 

cortwsinwtsd soil. 
14 hx) in aah , ZnO of dry wt. 

Thlaspi aljsstr. 21030 1.32 

Viola tricolor var. calaait is 4.28 0.37 

Anneria wl paris 6.27 0.37 

silts inflata 2.66 0.44 

He also quotes Braun as finding considerable quantities: 
to Viola tricolor, and Krauch who found unhealthy grasses growing 

near a zinc tip to contain 0.242 ßr0 (of dry wt. ) and unhealthy 

rye in the se se area, 0.07 j" Jetach (189) showed that plants 

growing on heavily contasinatod zinc soil (percentage by dry wt*) 

of: ICO 3=14.25-17.75"and ofrnO. si02.2HOm0.81 - 3.73) 
contained fairly large quantities of sire, but that the quantities 

varied according to the plant organ tnvs Rigitod. 
Min ash I iolo, S_ a ave * IOWA 

2. .31.8-1.6 2.3-2.9 

'oý. YSaorxsa 1.8 - 1.9 - 2.3 - 2.9 1.2 - 1.5 

x'uvther studies on calamine plants am quoted by KoIfnig (1899), 

1 ing And Ko1kwitsc (191-10t 8er trend and Audreitclwvaº (1933). 

Javill iar (1908) v Labend (1901) and Macquinay at a1. (1961) on 

1 ic 0 
Engt (1965) confirmed that zinc was taken into plants growing 

on contaminated soil eu d extamnd. d these studies fu than. Most of 
the zinc - :a fatmd in the roots and loaves (f ive species incest i gaud) , 
loss in JA etas * and least of all in the flowers. Moreover the 

quantity of zinc in the plants iced (by 113.3% in CS&gW. L is 
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bam) during the growing season (June-October). Different 

plants were also shoim to acc late different its of site� 

the average values for the mors camm members of calamine soils 

beings 

zinc content in Aber of sites 
gpas dry wto investigated 

1_ 'trr usº* c* 1aaii*ria 79757 7 

f: ýerir writ ._ 
týwi i+at'i 3 *326 g 

M_ 1- , sxv. DSEEML a3 , '07 17 

&UMdA NEWEL 192-P MIMIE+9r12 10895 2 

Slam thm1lLMe tR 41 iii 1.719 27 

t'ioI& cal iDri0 64 

Thl uni wiP*st a should pwsfi*ps be considered as an 

. cctmulator plant since in several instates it contained a higher 

concentration than the eameentration of available zinc in the soil. 

Although this oay to some extant reflect the quantity of zinc 
in the soil on which theca plants were living, this order was 

consistently maintained oven if the plants were talgen from the 

same contaminated r*gi3n. Ernst quotes the work on plants 

growing on tormal soil and here the zinc values range from )a l(' ppo. 
Ernst studied the relation batvsax available zinc (Scharren 

 nd Munk, 1956) and the zinc in the plant and found that in 

gal the higher the zinc in the soil, the higher the quantity 
In the platt. Although the absolute amount taken up varied from 

region to region, the correlation was always good within atpr one 

area And for all the species studied. This was in contrast with 

the remalts of Macquisiay and Heut (1960) who, measuring the total 

zinc content, only found a good relation with Si1ear cucubalia var. 
Lis' 

Nicolls at &1. (1963) studied the metal content of plants and 

soil at r , urwl metal outcrops. All the species studied took up 

zinc wlmº growing on rocke with a high zinc content, and again 

as with the results of Ernst the species allowed differing zinc 
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aceim+ulation, and eorearer ace organs accumulated more than 

thers. The precise pattern of zinc accuowletion within the 

rant rrried with the apeties, some species having a higher 

noct. ul at i of in the flower heads (Hul boat yl ipb ii bona) , some 

owing no definite differences (To tiros tsp. now. ) while in 

others the pattern de ended on the metal concentration in the 

moil (%ol a olmbrai. AtMin there was a marked diffwurmr 

in the uptake of zinc by Trioid growing on nor al and 

contaminated soile in all the species eamined there was a 

clear cut linear relation between zinc concentration in the 

plant and that in the soil* 

er inrestigati -via an the uptake of zinc include those 

Toms and Jay (1964) , Vogt ist al* (194) and Robinson et al. 

. Anc v nrefore is readily taken in by plants meins an 

zinc conti +inatad soil and nowhere in the literature is the" 

any evidence of these plants h vinj an exclusion nech*igim, 

enahlirtv to survive an cont in, tnd soils. The tolerance 

aochani .* of zinc rust be internal. 

(b) Cow. r 

Studios on cr r por uptake have been fever than those an zinc 

uptake. 

The earliest reference is probably that of Bataoan and Well's 
(1917) +. ho found eppr ýý,.. ý. 1 ýa quantities of copper in plants 
(both living and dead) on copper contaainated Fib 

of 2,000 - 09000 pps were Obtained for Pang ,A jjrumrrM and 
Des iaphara, whi 1" lower values were found in )t jai sro' +ut 

and Tr tr a. Dead vegetation an the whole conaiinsd snore 

copper than living plants. Prat AW Komarek (1934) found that 

plants of Agrostis albm (stolonifera) and $eZandritat sUvestrs 

growing on soils rich in copper (1; w - Cu) contained O. Zý 3.2% 

capper in the ash. Persson (19y6) again found that "copper 

soss"s" do in fact take up this element. Similar results have 
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been obtained by Too. and Jay (1964) 0 Clarke (1953) and 

Duvi fwd and t weryer-de Seat (1963) " 

The only detailed investigation (Nicoll* at al. 1965) has 

prodded some very interesting resents. Here a very peculiar 

pattern was seen for all species t copper uptake stayed lair and 

constant with increasing soil copper till a certain level was 

ached at which this 'resistants' to uptsko seamed to break 

down. Abern this lvvai this quantity in the plant incresmed 

abruptly and at higher levels in the soil, no plants were founde 

species diffaeä. joth in the copper content at low soil levels and 

in the level at which the sudden increase in copper is own* 
Thss. differing reactions to copper in the sail sUggsst that 

the capper does not just became available to the plant at a 

girl total soil ldral but that a ge *ains exclusion omwh&nimm 
is in action. This is supported by the finding that values of 

copper sv a little otivvv the lovrl at which therm is greatly 
increasing uptake are lethal. Moreover the species found in the 

avert toxic areas, P gjyV4Aý nlgýM% takes up very little copper 
(" ewuciam of 20 ppa is the leaves) an soils cantAining 10,000 

PDS" 

Thor* is thorator o evidenco that the ma chanim of copper 
uptake is different from the uptake of aim. This is further 

supported by Vogt et ei. (19k)) t analyses of plant, growing over 

, %n wgposw'e of copper are showed that they did not differ in 

copper contest frag those growing off the ore. Ho r there 

were ,: iced differences in zinc content. These results are 

supported by investigations an copper and zinc in plants growing 

on nonaal soil. tictiar5ýue and Roy (1933) found that the wz 
little variation in copper content of tree leaves over the 

growing season, but that zinc sbAmed conisi4 rab1e variatia. s. 
Holmes (1944) noted that wti. rsaa copper in plants rarely varies 
more than 5.15 ppm* the mine content can va rar from 20 ppa 
10 92000 ppa. 



metal tolerance $ physiology 

However the interpretation of studies relating soil 

xxiii 

content to plant content is difficult, since wren high soil 

copper Contents may qo hand in hand with low copper availability 

(pytsaean and DScusa g 1966). Ci ear interpretation is OW y 

possible if such ecological investigations are coupled with 

experiments using culture solutions of known composition. 

The ability to restrict copper uptake oust also be peculiar 

to a far species since the absence of high copper in plants is 

by no means universal. 
(a) d 

Studies on the uptako of lead have been very few. Jensch 
(189) shvwd that whereas 1u*xil and 

__ 
an contaminated 

soils contained sine, no lead was detectablöl even though the 

soil Contained 0.72- . 06% of this el nt. These moults are 

similar to those found by Nobbe, Bressler and will (quoted in 

Schwickrerrth, 1931, but no reference given): if equal quantities 

of lead and zinc are given to a plant s then a ssaallor quantity of 
lead than mine 3s taken up. 

Micolls it a1. (1965) also deal with lead uptake. The 

pattern here reswbies that of copper rather than since in that 

the uptake is constant with i sing levels of soil lead, 

till a certain point is reached when uptake becomes unrestricted, 

and rises abruptly. The species also are rarely present wtien 
the soil load value is above 1ýoo4 pre - the level at which there 

is a sudden increase in lead uptai:. Again Polycaruaea cil bta 

sews to have a higher level than the other species this again 

suggests affinities with copper. The levels of load in the 

plants are always much below the levels of copper or zinc. 
Further studies are needed on the uptake of lead by plants 

growing on lead contaminated soil. 
(d) The glEbMaama of toieratýce 

There have bean i attempts to investigate the mechanism of 

heavy metal tolerance is higher plants (apart from the recent 
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wo=4c of Grspory, 1963) . It is a subject trat has generally 

been overlooicsd, but is likely to prow* phgsiologica11y sud 

biochemically reeling. 
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6. cc z uSIUvS 

Plante gx4minQ as metal caatanitwt*d soil have gsnsraUy 

l; Oeaase adapted to high metal levels by nagt:.. _. 
1 sslsctions 

normal population ysi t colmniso the mine habitats. This 

is confirmed by the physiological studies$ plants as aims 

habitats generally take up the wtal and high metal concentrations 

are well ktm to be toxic to normal calls. The . volution of 

toisrm+res is therefore a critical ! actor in considering 

distribution on metal contsainatad areas. This has repercussions 

in othw areas of the subject. Classifications of species 

according to their frequency on contaminated soil is a reflection 

of their ability to evolve toles. The structure of the 

various communities may be determined in a similar way. 
Adsptati©o to lOCSil Or 4tioiis suggssts that related factors 

other than tolerance are involved: theme lead to ejuaV" in 

morphology aal associated c 4nfunioas in geographical and 

to cwwmic intorprrtations. 

jW 1ution is an inportant process and has r percussions on 

other botanicw1 aspects of rains plants. Sixailar problems arg 

undoubtedly present in other spoci" acted to extr emiro, ents, 
but they way not have c mm to light. Plants growing on mina 
habitats sm conspicuous and have been studied extemiwlpr 
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Nits 

(a) North WOO ,L 

m#ii 

Ps27$ Mountain, Ansl. ii«y. Grid r0furs cs SH l369O7. Mined for copper., 

tt&tna Hines L1. xwwst, Caernmavanwhires 'Grid x-et ce 311 7821603. 

. , rW for lead and zinc. 

(b) cäei u&Mhiro& ad Nat ohi 'e M !M 

M account of theao miss is given by Jodes (1922). This account 

includes a Qap shaving the location of the mines,, and gives details 

of the mining history of the different mines, These details are 

therefore not included belowo 

The numbering used is that of Jones ý p. 187 . 

Montg mra-yshire eines are indicated by (M) 

(i) Msxw from which collections were sade in 19(4. 

1. Abby Cansol". 

3. Ab. ryztwyth Bvlchgivyu. 

18. C.. gynoa. 

22. Cairtell. 

25. Ownbrwyno. 

30, Coal og Vat. 

31. Cyr ayml og North. 

43. Great West van. 
47. Fron9och. 
70. Lim. 
87" Rh. Ldol United. 

(1i) Mims lrm which collections were ende in 1965. 

4. Alltycrib. 

9. ßrcnf card. 

10. m7n*ri, m. 
15, Ditch. 



min" 

16. Hwlcbglas. 

23. C"t " 
27 " Cwmerf in. 

35. " 
G. DAren 2aat. 

37" varen south. 

41. El par. 

76. Tiynyddgorddu. 

80. P. ngraigddu. 

mcir 

$1. Psnpontbr. n. 
83. Fº+ cefu. 
83, rwll R, mnan. 

95. Ystrad Einion. 

4. (M) Cae Conroy. 

16. (x) Gorse. 

17. (M) L1 a»rc ur. 

23. (M) Penyclun. 

26. (M) Rhoewydol. 

(iii) otter mines visited but which shawl A no cl Bari y contaminated 
ääw. 

11, Ba yfi. 

63. Llancynf"1yfl. 

66. L1. ot to i. 

72. iav den. 

74, N+osi 91 ao« . 

94i. Yinys. 
3. (M) IIrywfeftsn. 

6. (M) ceul. an. 

30. (M) Van Sauet. 
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RECURRENCEEQUAT10NSANDC0MPUT9R 

FR0GRAMMES 



C0NT9MTS 

1. 

a. 

3" 

'. 

G. 

Page 

ca ßW MOIXIL t MOTATict4 xxxv 
cmrt Gr MWE $ RQUAT1(* S ssxni 
(a) Rsourraes squat ions tam a papulat ice 

subjected to pollen flow and salting mvi 
(b) Equation fW psnatie load sxzvL 
c c1111 1 ? 4QCC : GRAJ44ES s=vii 

(a) Pollan flow a. lfiaA $ equilibrium positit xxw 1I 
(b) Seed flow ss1fL gr equilibrium positions xli 
(c) Pollan flow saliiwj s programs to 

equilibrium ßc1 iv 
(d) Iaailaa flow , walling in a perennial. : progress 

to equilibrium xlvii 
(a) Coming pollen flow sal fing s pro w 

to *quit ibriuw 1 
(f) ßernatia laud LIT 
NO GCL WIML i WTATxc t lri 

TWO MM H i. EQUATIONS IV-1i 
Two GUM WJML $ PAOG W*1ZS 1rüi 
(a) Two g pollen flow salting i equilibrium 

powitir 1viii 
(b) We psis Ada pit pollen flow eating in a 

pu areaial $ progress to equilibrium lxtii i 
(a) Two 9one pollen flair erolutiun of 

donizu+s $ equilibrium positi*s,. lsix 



ol» qm modal a notatia* 

i. c* GENE MODELS NOTATION 

*1 s. lf-f. rtility of AA 

14. '> ft H AB 

0 gene (Pollen or seed) now of on 

p frequency of A 

QnnB 

u frequency of AA 

Tn AB 

MMN 33 



Ow 9Iº wdal t «q«t io» aa ww i 

2. CM GENE lýODº ,e PXKIATIOHS 

(w) R ti tu a ton sub ected to il 

flow And , elfing. 

notations 

A AI frequency of AA in the next generation 
AB' n"1, of nn 

B{I nMj it n ff N 

AA' - a, u + (p-alu) 1-(pfd + q) + 
1/4 

ae 29p 

AD' nq+ (p-alu) -q (pa + q) 

8D' .q (pg i q) - 
1/4ß2v (q-p) + 2gp 

(b) °slft a. J tLic lpjLd 
Notations 

ABI g ff' refer to recurrence equationa in previous sect Lou 

a selection coefficient 

h degree of doi inane of favoured gene (- I for lull 

dasinance) 

Genetic lead (I) (1-h) AB' 



one gem softl $ o! s 

g. c*M G ME MODM, $ raýýcaccýýZ1ML 

got )$ adjustable pax'wst. ýrs which have been built into the 

pro9rames aro underlined on the progrmm® sheets. 

(s) P'oa ow fs uilibrium iti 

i taut data as saris of tu*nbars s 

iii 

xi a1 takes the value xi in steps of x2 until x3 

73 

xj 

z degree o f dominance o f self ing gww j i. o. a, ýmat 1. x4 . 

x g takes the value x5 in steps of x. until aK " x 
x6 

X7 

X8 initial frequency of p 

N fitness of AA (RI- selection pressure on AA) 

x N It AB 

10 
x It N3 

1 

Output data as series of numbers in column st 

Column 10 number of {, ýý ter. ~ ý* # rmtr to equilibrium 

2. a1 

3" a,. 
4.9 

5. u 
6. v 
7. v 
8. p 
9. q 



Uns gave model : b--Vg awý* 

F'rocjr ad j uatabl e fors 

definition of equilibrium point 

viii 

maxim v1 bsr of U. n. rat Jam 



c g«m model t progrwm« 

Ai70,; OVI CS PCLLEh FLOW SLLF I Pay - PFS(1 )' 
LLE(1 P+ SWITCH S: 't AC, A I NNs' 
FLAT. .., 3, BO, C o U, V, U, P0, SU, 5V, SW, T. P, P1, P2, 

H, J, ; -., 
E. 1 , E2,11 , 12, F1. F2' 

c Tt. GER Co' 
FI LT z ; _4?? , 
__ cJUL; T ,A A13 LAM UU VV ww p i?, 

AD 1.1., 1, t30, E2.1 , Fes , P0, SU, 3V, 5'vJ 
Grp ,.: ° 1A STLP 11 UNTIL Fl DO 

L ST LP 12 WIT IL 12 i)O 

A(, AI 
cJ : ý1.; t }+ 1' 

. "g1-ß' 

: X11' i- 
1 

.. -uu. 25101" 

I 

*Lj 

r"-jl 

V 

=u+T' 

U 
V .; V' 

1: +V ýý t 



one uum model i in rau=w 

F: 50 

.' P 
,i aC 4 j", ' 

"ýr :a4, + rý ý 

THLI (t11 T IT3Cj), 
cj), 

'-, F REE: PO1 NT(4), U, V, 
;t 

c)Tý, , ý;. A I II 

1ý 
ý1ý 

X1 

OR CO GR JO o) 
CU, E'REFIX(; -1.51?? ), FRE: LPo1; T 

W, P2 ,Q 



I 0«w model i Dro wmu w si i 

(b) SMd tior, º __ _t 
Lltbriur position.. 

Irr. *st. output a$W adjustable parstvrs e** as in (a) Pollan 
friar a ltingt equilibrium positions. Parmustsr defining pollen 
flaw nm dot Ines seed t1ar. 



on* Qonli ii arm - 
111ý11ls xi#i 

ý... TQPi0V 1 CS SEED FLOW SELF I NQ - SFS (1). ' 
)WITCH Sin AGAIN' 

rst.. AL r� B, B'7, C, U, V, W. U0, VO, WO" SU, SV, SW , T, P, F1, P0, 
Q, 1, E1r E )t 11r 13, F1, F3' 

!i iTL(. l i- R" -') 
NE-d .. T .:. I A?? 

G: "U, T AA AH LA1i UU VV Jp 

LALL? ? 
11 . Fl, DO, '), 13, F3, P0, Su, 

Fol". . ": =t: 1 STEP Iii UNTIL Fl DU 

, i: =L3 STLP 13 U14T IL F3 Do 

1: u A*cj(1' 

11: ZPC' 
r. ", A 1,,. 

1' 

t': *P1 
m1-F" 

T: U" Q' 
-u. 25*`-i*Y* (Q-P) 
atJ+T+R 

V-V-T 

f: =U+V+W' 
1/T1 

l,:, eU*'i-*1 

ak0T 9'L; 

W: * , Cl 
U: aU*,. u 
V -V* S3v 
wa !v0s 1w 
T. *L+V+I; 

T: "i/T' 
U: -U*T' 
V: =V*T 



one geno nodal $ progra *uea ziiii 

W: s4%aT * 
c; =U. 5*Y+U' 

c-. 's3"5*v+ 

IF (Af-3s(P1-PL) LESS U. 00JOU1 OR CO QR 
-5_09) Tl; U' PRftT DICITS(3), C%0, PREFIX(f'Csl?? ), FREEP: )INT 

C3), 
ý,, u, C, (E; k'EPO1lT(4), U, V. W, P2, tý 
1-LSz.. IU, Ii P1 : =P2 
(OT( A(; A P') 

f, G 



tos ge» model $ prD '9 xl irr 

(c) wts t2 xb um. 

i: iVut data ass .. Vies of mss: 

X, initial trequ«cy of p 

X2 fitr*aa of AA 

z3 pM AD 

=4 ah IM 

Zý as 

'g7 9 

Output data wo series of tnzzbrrs in colst 

Column 1. g tion 

2. u 
3. r 
4. M 
5" p 
6, q 

aad when equilibrium is reachedg also, as a series of tabors 
&0 %t a. 

Pr cp, m-a adjustable fcr& 

definition of equilibrium point 

maximum number of gorerations 



one go* model a pso0 - -0 as 

A:, Tot: ov I CS RATE TO EQU ILI E3R I U; "; POLLEN FLOW SELF I , ̀: G 
PFS(2)' 

SWITCH S: =AQAlN 
; SAL A, B, Co U, V, W, SU, SW, SV, 

c.. H, J, L' 
TE'iER CO' 

L. '? PPP r! T 
C;,,. U!, T UU 
i t_A Eiý, 

;, _,. "U' 
F'1: "F'Ü 

-F'1 "P'1 

v: 4. Ll*# 1"o' 
u,: -s. Q' 

v'J wwp 

.. U. SV, SW, A, B, CO 

*1v 

i, P, P1, P2, Q, 

of 

AGAII'l: 
Pkl:. T DIQITS(3), Cri, PREFIX(Cz: S17? ), FREEPOI;,, T t Ii), 

U, V, 1.,, p1, Q' 

(. C): SC(, +ý 1 

P: *P1' 

L: 5"H' 

u: npop 
toi 

LI* 

i': *A"U' 

r 

V: mlsP-) 
v. avoC' 
V: aV+Q I 

U: =U"FP' 
U: aU+T' 

U: -U+H' 



One n now : prrogr 

U: -U. SU' 

W: aloo! 'W' 
TI =U +y+W' 
T: -1 /T' 
U: aU*T' 
V: -V"'! ' 
W. -MoT 

U: =U+P' 
Q: _, +1 ' 
IF (AfhS(P1-p2) LESS 
T(IEN PkIR; T £CL??. 
(4), 

U. V, 

yUT( 

_I l)' 

ulri 

0.000001 OR Co C4R 500) 
DIGiITS(3), (, 'o, PREF! x ME51?? ), FhEEPOINT 

w, P2, Q, 
FRELPOINT(3), A. 3, C hEc IN P1: =P2' 

AC, AIN 



CM COQ= ýod*1 8 ro is ues ZIVIL 

(d) POJIMJU-W i; to i ib 

I: %sut, output and adjustable parameters WaLctly as in (c) Pollen 

now scltinpt progreso to oquilibriura. 



o» pier mod 44 : proyar iawiii 

Af, TOP1OVI C3 tZATE_ TO EQUILIBRIUM POLLEN FLOW SELFI NG 
FERENN1 AL 

- PF"SE' (2 )' 

1uE. 4It SWITCH S: -AQAIPJ' 
-. AL At U, Co U, V, W, SU, SW, SV, T. P, P1, P2, Q, 
V, Pot 

'� Hº J, L, Q1 , Q2, UI , U2, V1 , V2, W1 , W2' 
Iý 'FL(, t f( co, 
IiI., 1 ; L-, '? 
2. U; 

.TU,; 
VV VWP 

iýLA,. ) P, , ill, SV, SW, At C3, C' 

t;.: =U 

1=t'1+P1 ' 
1: sc-, . P1 f(1)1 

: 11: atir1. Q1' 

A , t1 I 
r ; kIcl DI GITS(3), Co, )PRFTIX(£: CS1?? ), FREEPDI I; T 
(4), 

. 1, V1 F%1, Q 1 

1 : ýrt1 

a21-- 1 

50 

U: ýi'"ýý 1 

V: aPP-11" 



om petto model 8 Programm« 

V: �V+a 

J: * +' 

V-Vq: V' 
Gl : 22, tA , 't"J ' 

+U 1 

+ 
1: wL* 

-1/T 
tQu"T' 

Yom' t aV. T S 

1 F' Ckf)st P1--Pý) LESS (). 00UJ()y OR 
r1L- i'fd IT t_S, L.??, D1 Cal TS(3)r Co, 

H. Co URE_E: POINT(4), 

V-): *V2 
1: s1ý2 

i: 1 : QUA I 

1G 

xlix 

CO GR 5(; 0) PREF: X(c£; S1?? ), FRREEPCCi1ýT 

U2, V2, W2, P2, Q2 



cm 011* Nodal $a me- 

(a) arawl is to U ibri . 

IAaxtt data as sari.. of nad*m t 

X1 initial frequency of p 

s2 fitness of AA 

313 N" AD 

314 hb 

xg at 
X 

X7 final pollen flow, 9 

1 

MB maber determining rate of change of pollen flaw 
defined as r in the basic equation (Chapter V. t) 
e. g. when r. I' and initial pollen flair " 0.999, 
then final pollen flaw reached in approu. 15 
generations; when r"0.5 ' final pollen flaw 
reached in approx. 30 generations 

C utpttt data an series of r*sbera in co1uww i 

Colu 1. gina* Betion 
2. pollen flow at a given genamtian 
g. u 
40 V 
3" v 
G, p 
7. q 

and wta equal ibriuo Is reached, also, as a saris of e**bers 
": 94ß"g 

pr-D wilwommum adjuatablo fors 

maim= mbor of gonorations 
dolinftion of r: Uiitial pollen flow by n9 wh q 



Co* gins n odes $ pro- 

initial flaw . (1 " o)ti `/ 
e n) fo 

(Dotal ". expWantiai) 

lt 



one ouse model 9 P113=0001110, ILL 

A: Tc OVICS RATE TO DQUILl3RIUt; CHANGINQPOLLEN FLOW 
ýc: LFt' G CPFS(2)' 

,, F. GIP; iWITCri S:, wA(AIU' 
k--A1- As E3, C, U, V, W, SU, SW, 5V, T, P, P1. P2, Q, 

i), P0, 
ýa, H, J, L%R, LA' 

1: Ti. (Li, CD 
F'1, I i: T a... L2? 
G A) T UU YV WW P Q? ' 

kLA1. ) F', "', : U, SV, SW, A, [3, LA, R' 

C, ). =U' 
P1 : ap! ý' 

-1--P1' 
=F'1. F'i' 

v: 'z*P1"ý' 
"(k. ti 

t, . c: "'1~L')IC' 

AQA fi: 
PliltlT LL: L_??, ýiGilsc3), Co, PREF! xCC: s1?? 3, FREEPO[t; T 
(3)1 c, 
Li ,v. 1J 0 P1, ýý' 

C: '1+f: XP( . 9U 8 i*CU)' 
C:. 21-1/C' 11 

-(1-[A)*C' 
: ýc A' 

N: 
'1 , 4) , j3 

ii2 ýtqýi l 

L: '°lU"25*(i 

'J: m2*}". r, ' 
U: up"F>I 



on* g model ! magr e 

234 
fý-p - Qt 

mg Vý. 

:.: mall. p' 
U: mmU+ f1 

«: ýu" u 
" V. `-Y' 

xxj 

V; 'V 

f'2 s 3aU+f' 

If Co GF: 100 
7'riEi. Pfýl rýT £1 L??, DIGITS(3), c0, PREFIX(I L31?? ), I ;. TC3), 

to , F'2 ,Q, 
Fr(LLiP(-)INT(3), At fit C L: L 5L(; 11: F1:  ºP2 

(4oTo (., A I 
ý1 

litt 



Om ý mod" : ai , (pa s. 

(f) c ýtsjPJ ?" 

Input data ass movies of z ºrss 

xI p takes the value x, i 
in steps of x2 Stil X3 

M2 

xý selection coefficient takes tie value x, in steps 
ofx untilx6 

xSs 
x6 

17 g takes the value s7 in stops at x. until 

X8 

S 

'10 ai takes the value x, 10 
in steps of s21 Until x12 

sl2 

13 
degree of dosina nca of the sal tiny irr " i. e. a. 
ei ac13 

xi4 1-he where h is degree of doninance of favoured 
gim 

Output data as series of borg in coly +r s 

Co1vm top 

8. mdectiaat eo. fficient 
s" 0 

4. 

5. tic load 

liv 



01* Do! M u*dW i prDgt'ý a IV 

A�TU CiV1Cý9 ETIC LOA[ PF'S L 

Jt,... A, AA, Hl, J C, 1', Q, 1, S, LA, Aß, Abo, fig, El t 11 , Fl, LZ , I, ', Fl , E3, X73,13, E4,14, F4' 
AS _, 'i 1,11, Fl, L' , 12p L)# 139 F 3, E4,14, F4, 

ißt P: xvE1 !; TEP 11 UNTIL Fl DO 
S: z (2 STEP 12 UNTIL F2 DO 

r' LA. -L) STEP 13 UNTIL !3 iiU 
STLP 14 UNTIL F3 on 

1. : 1* A"AE, C)' 

-., A* P' 

A. -2"A' 

R, 1" tQ-CC+i A*P«P)"u)' 
1: LI --u. 5«, ̀. u*P"c)' (C+A )' 

PtiI AT PRIiFIXW, 'Sl?? ) , FREEPOINTC3), P, S, i. , ;, A, j' 



Two 
- modal $ Natation 

ý. TWO Gim Ham.: KATION 

ai Self-fartility Imposed by AA 

"nnp An S 
bi i" si 

i: 

pollen flow (aabb) 

b1 40 p 

P frequency of A 

Qpa 

u ý+ $ 

rNb 

bYi 



Two gone fra i$ Erstions ivii 

5. TWO G8318 INKOELs EQUATIONS 

Reza 7f aas equation for a pe tl*tion subjected to pollen flow 

*Aä with solfing deter thed by an unlink d ges . 

rotations 
LAM' fror r of LAM in nest geration 

tl f! AABbl N0 AABb 0 

ctc. ctc. 

Amt " hp 2u 2(blp 
. b3q) + p'u(u + 0.5r)( p. O. 5&. q) 

MBb' " 242uv(b1p " b2q) "p v(a1p + O. 5a2q) 

AAbb' . np2Y (b1p . baq) + pvty . iýº1p + 0.5&q) 
Aatf' " bpqu2(blp + b3 . q) " pqu (u " 0.5v) 42 

AaBb' . Ztpquv (bip + b2 + a) " PquVaa + pug (bxp + b2q) 

A&bb0 " hpgv2 (b1p " b. " q) " pqv Ct + 0.5'u) %. pvp (blp " b2q) 

am# . hKi 2ua (b2p + q) . 0. ýi pqu (u " 0.5v) &'1 

+ bý . 2bg2uv (b2p + q) + 0. ßa3 " qug (bap + q3 

*abb$ " hgar (b2p + q) " O. Spgy (V " 0.5u) %" qrp (bap " q) 



Two A«. Model t PC-vik' s lviii 

6. TWO GEMS I .: P Gýý 

iah TV* flay is um titans. 

Input data as Mrim of mxdmws i 

si aI t*kme the ralue x1 in stspa of a2 until Y3 

X2 

x3 

_` degree of d atinance of se fing rq ! "®. a2 e ui"say 

*5 Q takas the V 1UO T-5 in stogy of % until s7 

*6 

28 initial frequency of self Lug rp 

*9 M" fzwoursd 0u 

xio fitness of AABB 

=na AABb 
li 

. 

n" Ali 

218 

output data ai 5iwies of oumtmor3 in eo1' v cm two lures: 

Line to Coles to tuba' of Ocneratims to equiiibrius 
2. a1 

3* 42 
4. p 
5. P 
6. q 
7" u 
8* v 



Two cam 4ods1 1p rom"m 

Litt 2. Column 1. frequency of *. A 

2. « AA 

" 
" 

ARM 8. ý+ 
9. ý' aabb 

Programme &4justabls for: 

"x 

definition of equilibrium point 
vtwthw overall equalibriurm, or equilibrium of pq or equilibrium 
of u 

maximum moubw of Conrations 



Two go" modwd 3 progr a lx 

ANTONOV ICS TWO GENE POLLEN FLOW SELF I NG - TPFS(I )' 
BEGIN S WITCH St= AGAIN' 
kLAL A, Ei, Co. U, E, F, Go lit It J, K, L, M, No 0" R, 

P, 
Q, U. V, AA, AB , 8A, BB, GA. LA, RR, SS, TT, MM, NN9 WW, 

xx, YY, 
...!.. El t E3, i1, 139 F1. F3, P4, LJO, 
:; '!, 5f', : 33, S4, s5, Si, S8, S9, P1, P2, Ui, U2, To Q2, 

V2, 
Ai}C) 
1, TECILR Ct -' 

i'RIiý, T 1-CLr??, 
:. (: OUi :T AA AB LAIi pQUV? , LLL't r-, R SS TT mM Nf WW X 

YY Z2 
º 

,: tat- i? 
HLAL E. 1,11, Fl, ABO, E3,139 F3: P0, Uo, 

j1 , ssc'-, 33,9.44 ä5r Sbº S%º Se, S-9º 

F GR AA: *E1 3TEP 11 UNTIL Fl DO 
FOR :; TEP 1) UNTIL F3 DO 

AB : '*AA*Aº3O ' 
Co: aU 

P1 : 'PO' 
U1: aUC' 

ACiAJ 

f': +ßf'1 

u: §ZU1 1 
V: ul-u' 

CAA: a1-LA' 
t3A : 141 -AA' 
BB : s1-Ab' 
A: =P*P 
3., axp*Q 
C: IRQ. Q' 
L): -usu 



TV* Qens NOW i progr .i 

F: =V*V' 
G: £*(ýA* D' 

lwAo2"E 

u: =13/ß"P+B B. Q' 
ý.: -E, A*P+ob+ 

'hab*P+Q' 

,, ý : 'A+*AA+O. 5* p, ' 

0: =D+u. 5"E' 
f-,: *t=+U. 5* ' 
,j: =P; LA* J' 

Ho X+ 1°10 E+U*Dl 
WW; $*i"K+H*H+V*L' 
J: wA*J1 
RRa++(*J+N*Ot 
SS: =r, "J+N*E: ' 
TT; *+I*J+ýti*Rl 
A: *lQ* LA*L, ' 
L. 4C*1. t 
": '*0.5 *, ,' 
XX; *L+i o0' 
YYu ii" L+ 'tL+U*A' 
Lam' i+' I0 L+3A R+V"A' 

RR : 8cRR. S1' 
ss: "ss"s2' 
TT: -TT"S3' 
it; io"" llOS4' 
Ni: ; h41 S5' 
vw: «wwws6' 
i; X: +ti X s"1 , 
YYt"YY"S6' 
Z.: dLýo s9' 

I: ORR+S5+TT+MM+NN+WW+XX+YY+2Z' 
I: Oi /T' 

RR: l4kROT' 
SStaISS+T' 
TT: SITT"T' 
J, 1, ' ai-INOT 1 

w 



Tito aene model $ programs 

Ni ; UNN*T I 

1fi r: -W tJ *T 
: ý: is--XX*T 
YY: ixYYMT' 

P2: +t kR +5S+TT+0.5*(N; M+MN+WW) 
U2: IORR+hM+xX+O. 5* (SS+jrIN+YY) I 
ß-2: C-1-P2' 
Y2: -1-U2' 

w 

IF(. \OS(P1-P2)+ASS(U1-u2) LESS 0.00001 OR CO GR 500) 
THLN 
PRINT UL??, DIGITS(, ), C0, PREFIXCCES1?? a, FREEPOINT 
(3), 

AAA, Ab, LA, FREEPOINT(4), P2, (2, U2, V2, £JäL??, PREFIX 
(££31 ?? )0 
VREE: P OI NT C4 a, RR, SS3 

YY, 1:. Z 

ELSE BEGIN 
P9 : ýP2' 
U1 *MU 2t 
, OTO AGM N 

ENiD' 
.W END' 

TTº MM,, NM, WWI XXº 



TWO 0.1* no&d s pro r womom Wit 

(b) 

i2put data as a riss of x=bwat 

x1 *1 
x2 '! '3 

7.3 final pollen now u 

grit camber detortintng rate of change of pollen flow 
(sae t Gem Modal1 changing pollen flow) 

313 initial frequawy Of salt ap 

nan faºvl-u dMu 

x7 fitness of AAB 
se 1 AADb 

" 

" 
" 
x i4 a" 
xi5 "U aabb 

x16 initial frequency of AADº 

Xi? nnn 

" 

" 
3 nnM 

g4 q ti N, b 

Output data as series of n obern in cola as on two 1 inea s 

Line I* Column to geae'itiari 
2. g 
3" Q 
40 q 
3" u 
G. v 



Tva gem mOdsi 1 proor t 

Lins 2. Colter i. truancy of AABD 

2. U AADb 

" 

©0 p 
9" " 

n AaBb 
U atbb 

aad when equilibrium in readied$ also, as sariaa of n*anbers 
all a2 

ProQraaa adjustible ter: 

woucinam towbar of genosations 
d thdtion of initial pollen flow by n, where, 

initial flog r (1 - 9) (1 - 
lie )f9 

lady 

(notes 0a. ouen'tLa1) 



Two pisse sodsi s pro0rro.. 13` 

AIITONOV I CS TWO GENE RATE TO EQUILIBRIUM CHANG I fir POLLEN 
FLOW 

SELFINq - TCPFSC2)! 
BEGIN SWITCH St= AQAIN' 
' E: AL A, E3, C, D, E, F, G, H, I, J, K, L, M, N, 0, R, P. 
R O, LAF, 
Q, U, V, AA, AD, bA, Fib, GA, LA, RR, SS, TT, Ml lit Mr,, WW, 
X.., YY, 

hi; G, Sä! 3, T14, MMO, N11-: 0, WWQ, XXo, YYO, ZZo, 
-11 82,53, $4, S5, &6, S7, Sb, $9, P1, P2, Ui, U2, T. 
Q, V2, 

i HTEWR CO' 
PRIý; T ::,. 7?, 
CGOUNT L. Ai P 

RR SS 
YY 2z 

?, 
£týý? 
kEAD AA, AB, LAF, 
,; 1 , S2, S3, S4, S`i, 

, RO, SSO, TTO, MMO, 

QuV?, TT MH NI d WW 

R0, P0, U0, 
ss S%. S8, S9, 
1N0, WWO, XXO, YYO, ZZ0' 

co. - ve r, 
LA: p1+EXPCý. 0 8-RO*CO)' 
l. A Z x1 i1 /LA 
LAs+'(1~LAF), 0 LA' 
, A: =LA+LAF' 

P1 : *E'U 
j1 : "U0' 
Qi: *1-P1' 

Q2tm1-P1 
V2: *1-v1' 
RR: OIRR0' 
SS: w ; Sp' 
TT *TTO' 
F, maI. Im, C) I 
1 N: =f. tdo' 

V1: u1-U1 I 

XÄ 



Two pew l el I prograaos lsvi 

INZMWWO' 
Xt mXXO 
YYtayyO' 

_Z: mLZu 

AQA I N: 
PRINT CCL??, DRGITS(3), Co, PREFIX(LZS1?? ), FREEPOINT 
(3), LA, 
F'REEPOIMT(4), P1, Q2, U1, V2, CCL.??, PREFIX(CCS1?? ), 

t-r : EPOU NT(4), RR, SS, IT, MMi, Niel, WW9 XX, YY, ZZ' 
U: -C 0+1 ' 

LA: "1+EXP(6.9O 8-RO CO)' 
LA: m1-1 /LA 
LA: '(1-LAF). LA' 

.. 
A: ALA+LAF' 

[,: -pi 

U; -U1' 

(4A: 01 -LA' 

E: A: o1--AA' 
Lr.: =1-AF. i' 
A: -P*P' 

C: ýQ+Q' 
D: nU*U' 
i.. 1 U'V 
F's aV*V' 
G °üA* D 

: m(_, A*2*E' 
I "(WO F' 
Jt °bA*P+j3b*Q' 
:.: =t3A«f'+i tB+Q 

=LtkJ*Y+Ej' 

..: Ris*A© s 
MsQA+AA+O. 5*i, l 
011, ©+0.5. E' 

=t- +0.5.,. ' 

FC I =k3 * ,K 
I,: 69r*K+ri*o' 



3ko pops no" parw gram" 

U: InHbK+M+E+U0 L 
w. Wml "x+fit R+ 
J8uAOJ' 

TTs"1", + . ".: 
' 

A: -Q" LA " L' 

.. X: =ý, ".. +hie 0' 
YY: 4. ,+ .+; .+ t_+U *At 
ýL: m1".. +: ";, +y'*A' 

ri R: i? RO: A 1 

1T : 'TT4,,, 31 
Mil -In IIM*bI» 1 

r'N : ";, ýN" '-; 5 
h' : aWW*'it, ý 

XX: 'ý, '. X 371 
YY: "YY" ýL, 

T: =RR+SS+TT+MN+NN+WW4 XX+YY+,, 2 
Ts"1Ji' 

RR -- arlio T 
ý, SsOSS*T 
TT: aTT*T' 
i°ihi2ý'trMýlI 

N: '1- NOT' 
wW: UI; WsTI 
XX - ",. X" T' 
YY: "rY+, i 

: '2: 0 RR fSS+1'T+0.5, bCh, M+c; N+41Wa' 
U2 s *IZR+t &1+XX+0.5. CSS+I, N+YY)' 
Aý1: o1-P2 ' 

, d:: =1-u2' 

t'2 i OP2+w1 ' 

ull: 
V2iý. cýti1I 

lzvii 

Ts NP2+Q2' 



Two ON* modal 1 394W panes lxviii 

Tsai/1" 

P2: =P2 . T' 

T: =v2+V2' 

$ Y2 : OV2 " 

IF C Co c, R 5U ) 
T: ILt. 

PRINT -CL??, DI 4! TSC3), CO. PREFI XCC£S1 ?? ), FREEP01 NT 
(3). 

AA, A13, IA, FREEPOINT(4), P2, Q2, UZ, V2, L£L??, PREFIX 
cri;., 1?? ), 
t'RLLPOIý: TC4), RR, SS, TT, Ilti, HN, WW, XX, 

ry. 

ELSE ßEG! N 
P1se 2, 
, )1: sU2, 
1.11 
V1 '' 
(0TO AGAIld 

EKG' 



Two go" good" $ p9"4W+ 11111111 11 og 

ich 

Input data an earia of *barsi 

x1 0 tam tIM VAIUO XI ixt . t®ps of ßc2 vatic M3 

23 
X4 initini fre uency of 4wb nce modifier p 
25 a0" ramaur4'-d cam u 

tit ne« of AABD 

ý? nn 

1, 
N It aaB x 

xi4 1 It c abb 

Output data as Barics of tiabczz in column on two Urea: 

Lins 1. Column 1. saber of tic a to equilibrium 
2.9 
3+ 
fit* q 

u 
G. v 

Liter 2. Column 1. ft-e}uo cy of LABU 

2. U AADb 

a 
" 

9. 'I p oabb 

lxix 



Two gar* modal = pnigrameass 

Programs adjustable fart 

lss 

definition of equilibz'Lt* i point 
wbet er overall rquUibrrium* or equilibrium of pg or equilibrium 
of u 

Dassi number os oenerations 



Two t1$ prow 

ALTONOVLCS TWO GENE POLLEN FLOW SELFIMG - TPFSCI)' 
BEGIN SWITCH S: 9l AGAIN' 
REAL As H, C, D, E, F, Go H, I# P. 
Q, U, V, GA r LA, RR, SS, IT, MM, NN, Wtü, XX, YY, 
LL, E3, ! 3, r3, PU, U0, 
s, SL, S3, `: 4.55, S6, S7, S8 v 59, P1 , PZ, U1 , 

U2I To ct2, V2, 
ABO 
INTEGER CO' 

PRINT ££L. 4??, 
£CUUI', T LAM PQU V7, 
£CL F4i SS TT MM NN WW 

YY ZZ 
?. 
CEL? ? 
Kr: AD F~: 3i 13, F3, P0, Uo, 
; i1, S2, sj, S4* 35, . ̀Ls 37, SÖ, S9' 
i c7+, A: mot; j STEP 13 Ui+T IL F3 Dd 
JLr1 1 !: 
C() :-0 

P1:, NPO 
U1: XU0$ 

AC, A I H: 
CC: SCU+ 

nß'1 

Ut: U1' 
V: '1 -U' 

(; A x al -LA' 
A: -POP % 

C: RG. if 
1, xü *U 

L: RU"v' 
F: "y sy' 

1t c-A*F' 
iM: «" C; "AOS1' 
SS: 8,; 1 «A 0 32 , 

13mi 

xx 



two Gem mod 4ip arauns 

TT: =! +A*S3' 

"P* 1J 
ter{*t+A*U' 

Wt4: -I"Ei+A*V' 

L. A 

Yv: QH C+B*ß' 
ý: ý: ý1*C+ý3*YI 

M =YY*S.: ' 

Ts @Pfi+SS+TT+Wl+., +rd+ k-W+XX+YY+Zl' 
T: =1/T' 

RR :,, I FIROT 1 
ßi2 s*S: i T 

TT: =T'r«"r' iýfl: a}. fýýý"ý 
, ariýrI 

WW: sWW+T' 

YY: wYY"T' 

. '2.1 =. ýZ*T ý 

P2: 10 RR +: )S+TT+U-5*(ml+Nt4+ww)' 
LJ2: =RR+r, M+xx+0.5. (3S+NNYY)' 

Q2: al-N2' 
Vd 3 d1-UZ' 

ixxii 

IF CM s(Pi -p2)+ABS(U1-U2) LESS 0.000'1 
TtIEINi OR CO GR 5000 ) 

`--- 
PRIi! T . E! _??, DIcjITS(4), Co, PRCFIX(LC31?? ), FREF. P ', ALT C3), 

, -+, FREEPOINT(4), P2, Q2, U2, V2, LEO?, PREFIX (a£tS1 7? ), 

FRLFPOI NT(4), RR, SS, Ti., MM, NN, WW, XX, 
YY, .: Z 

ELSE E3E; t i' 

QU2' 
4UTO L. r? CIA 114 


