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Summary 
 
Coastal grasslands, such as salt marshes and sand dunes, provide many important 
ecosystem services including ‘supporting services’ (soil formation, primary productivity 
and nutrient cycling), ‘provisioning services’ (fresh water supply, food and fibre 
products, bio-chemical or genetic resources), ‘regulating services’ (equable climate, 
pollution control, flood prevention, invertebrate pollination and pest regulation) and 
‘cultural services’ (recreation, education and aesthetic appreciation). Historically, salt 
marsh and sand dune grasslands were commonly used as agricultural livestock grazing 
land. Currently, some of these coastal grasslands are ‘conservation grazed’ (i.e. 
extensively grazed to maximise plant diversity and to provide a suitable habitat for 
over-wintering bird species), others have been ‘abandoned’ (i.e. large herbivores 
removed) due to the removal of agricultural subsidies or remain historically ‘un-
grazed’. Grazing management of coastal grasslands influences biological and physical 
habitat characteristics, ecosystem function, biodiversity and ecosystem service 
delivery. Understanding the impact of grazing is therefore vital to enable future robust 
management recommendations. Biodiversity is often used as an indicator of ecosystem 
health and ecosystem service provision with conservation priorities allocated 
accordingly. It is therefore essential to critically assess just how important biodiversity 
is to the provision of ecosystem services within a wide range of habitats. The review 
chapter draws together evidence for this argument from salt marsh and sand dune 
habitats with the conclusion that functional diversity and composition are more 
important than biodiversity per se (Chapter 2). The experimental chapters of this thesis 
deal with the impact of grazing upon temperate salt marsh and sand dune grassland 
biodiversity and ecosystem service provision. ‘Grazed’ (cattle grazed < 8 cm) and 
historically ‘un-grazed’ upper salt marsh plots were compared. ‘Fully grazed’ (ponies 
0.2 ha-1, cattle 0.05 ha-1 and rabbits 45 ha-1), ‘rabbit grazed’ and ‘un-grazed’ (for 8 
years) fixed sand dune grassland plots were also evaluated. Firstly, how grazing 
management affected ecosystem service provision of sand dune grassland was 
examined, by measuring a wide range of biophysical variables as proxies for ecosystem 
services (Chapter 3). ‘Supporting’ and ‘regulating’ services were provided 
predominantly by the un-grazed, ‘provisioning’ and ‘cultural’ services by the extensively 
grazed grassland. Secondly, the impact of short sward cattle grazing on the abundance, 
composition and diversity of the ground dwelling invertebrate community of an upper 
salt marsh was assessed using pitfall traps (Chapter 4). The findings showed that both 
cattle grazed and un-grazed saltmarsh habitat should be maintained to maximise 
invertebrate abundance and diversity and provide suitable habitat for coastal 
specialists. Thirdly, greenhouse gas emissions from grazed and un-grazed salt marsh 
were measured monthly for one year. Additionally, below-ground gas sampling tubes 
were used to measure soil methane concentrations (Chapter 5). Carbon dioxide efflux 
was greater from the un-grazed marsh soil but ‘hotspots’ of methane efflux were only 
found on the grazed marsh. Finally, the influence of grazing on the soil microbial 
community of both salt marsh and sand dune grasslands was measured by microbial 
biomass (fatty acid phospholipids: PLFAs), bacterial growth rate (Leucine incorporation) 
and respiration rates (Chapter 6). Microbial biomass, PLFA markers and bacterial 
growth rate were all influenced by grazing management. In summary, this work 
concludes that grazing management clearly affects biological and physical habitat 
characteristics, biodiversity, ecosystem function and ecosystem service delivery 
(Chapter 7). Management of coastal grasslands evidently involves trade-offs between 
biodiversity conservation and multiple ecosystem service provision. 
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Chapter 1: Thesis introduction 

Hilary Ford 

 

 

 

1.1 Overview 

Coastal grasslands, such as salt marshes and sand dunes, provide many important 

ecosystem services including carbon storage, coastal protection and recreation. 

Historically, both grassland habitats were commonly used as agricultural livestock 

grazing land. Currently, some of these coastal grasslands are ‘conservation grazed’ 

(i.e. extensively grazed to maximise plant diversity and to provide a suitable habitat 

for over-wintering bird species), others have been ‘abandoned’ (i.e. large 

herbivores removed) due to the removal of agricultural subsidies or remain 

historically ‘un-grazed’. Grazing management of coastal grasslands influences 

biological and physical habitat characteristics, ecosystem function, biodiversity and 

ecosystem service delivery. Understanding the impact of grazing is therefore vital to 

enable future robust management recommendations. Despite key ecological 

differences in the two study habitats (salt marshes: high productivity – low plant 

diversity; sand dune grasslands: low productivity – high plant diversity) I 

hypothesise that (i) grazing intensity will have a common directional effect on 

ecosystem characteristics, biodiversity and ecosystem function for both habitats, (ii) 

that this in turn will influence final ecosystem service delivery leading to 

management trade-offs. 
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1.2 Thesis outline 

The thesis is divided into seven chapters, and is presented as one review (Chapter 

2; not submitted), a series of four experimental research papers (Chapters 3-6) and 

an overall thesis discussion (Chapter 7) including a saltmarsh field site salinity map 

(Appendix 7.4). The review chapter investigates a current research question ‘Does 

biodiversity underpin ecosystem service provision?’ in relation to two coastal 

habitats, salt marshes and sand dunes. All four experimental chapters are 

concerned with the impact of grazing management on temperate upper salt 

marshes and fixed dune grasslands. Firstly, how grazing management affected 

ecosystem service provision of sand dune grassland was examined, by measuring a 

wide range of biophysical variables as proxies for ecosystem services (Chapter 3). 

Secondly, the impact of short sward cattle grazing on the abundance, composition 

and diversity of the ground dwelling invertebrate community of an upper salt 

marsh was assessed using pitfall traps (Chapter 4). Thirdly, greenhouse gas 

emissions from grazed and un-grazed salt marsh were measured using dark static 

chambers, monthly for one year. Additionally, below-ground gas sampling tubes 

were used to measure soil methane concentrations (Chapter 5). Finally, the 

influence of grazing on the soil microbial community of both salt marsh and sand 

dune grasslands was measured by microbial biomass (fatty acid phospholipids: 

PLFAs) and bacterial growth rate (Leucine incorporation), with links made to 

nutrient cycling (Chapter 6). The thesis discussion draws conclusions on the effect 

of grazing management on biological and physical habitat characteristics, 

biodiversity, ecosystem function and ecosystem service delivery for both salt marsh 

and sand dune habitats (Chapter 7). The trade-offs between management for 

maximum biodiversity and each set of ecosystem services will also be considered. 

1.3 Aims 

 

• Assess the relationship between biodiversity and ecosystem service 

provision in salt marshes and sand dunes (Chapter 2) 

• Record the impact of grazing on sand dune and salt marsh plant and 

invertebrate diversity (Chapters 3 & 4) 
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• Find suitable proxies for ecosystem services from measureable biophysical 

variables (Chapter 3) 

• Understand how grazing management influences ecosystem service 

provision of a coastal grassland (Chapter 3) 

• Determine how grazing effects salt marsh regulating service of ‘equable 

climate’ (Chapter 5) 

• Report how grazing influences microbial composition, activity and the 

supporting service of  ‘nutrient cycling’ in saltmarsh and sand dune 

grasslands (Chapter 6) 

• Provide a consensus view of grazing management and biodiversity – 

ecosystem service trade-offs in two contrasting coastal habitats (Chapter 7) 

 

1.4 Contribution of authors to each chapter 

Chapters 1, 2 and 7 are entirely my own work and have not been submitted for 

publication. Chapters 3 – 5 are pre-publication versions of three first author papers 

with other contributing authors, Angus Garbutt, Laurence Jones & Davey Jones, 

listed in chapter headings as they appear in the publishing journal. Chapter 6 is a 

modified version of a joint first author paper, with Johannes Rousk, accepted by 

Biology and Fertility of Soils. Johannes Rousk undertook the phospholipid fatty acids 

(PLFAs) and bacterial growth rate measurements. I carried out all the analysis for 

both journal and thesis versions. We were equally responsible for the written text 

in the journal version but I wrote > 90% of text for the thesis version. A hyperlink to 

each published research paper has been provided on the title page for Chapter 3-6. 
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Chapter 2: Does biodiversity underpin ecosystem service provision 

in temperate salt marshes and sand dunes? – A review 

Hilary Ford 

 

 

 

2.1 Introduction 

Biodiversity is often used as an indicator of ecosystem health and ecosystem 

service provision with conservation priorities allocated accordingly (Egoh et al., 

2007; United Nations Environment Programme: UNEP, 2010; Norris et al., 

2011). It is therefore vital to critically assess just how important biodiversity is 

to the provision of ecosystem services within a wide range of habitats. 

Ecosystem services are the benefits people obtain from ecosystems (Millennium 

Ecosystem Assessment: MA, 2005; Boyd & Banzhaf, 2007), commonly divided 

into ‘supporting services’ (soil formation, primary productivity and nutrient 

cycling), ‘provisioning services’ (fresh water supply, food, fibre, timber and fuel 

products, bio-chemical or genetic resources), ‘regulating services’ (equable 

climate, pollution control, flood prevention, invertebrate pollination and pest 

regulation) and ‘cultural services’ (recreation, education and aesthetic 

appreciation) and valued at US$ 16-54 trillion per annum in the 1990s (Costanza 

et al., 1997). Over sixty percent of the world’s ecosystems are degraded or over-

used, and with the global economy and human population set to increase over 

the foreseeable future, this trend is likely to continue with a negative effect on 

ecosystem service provision (Kettunen & Brink, 2006; Chapman, 2008; UNEP, 

2008). It is therefore crucial for both scientists and policy makers to work 

effectively together on ecosystem service projects to provide evidence-based 

management recommendations for biodiversity conservation and for the 
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delivery of ecosystem services (Bonte & Hoffman, 2005; Sutherland et al., 2006; 

Ruffo & Kareiva, 2009).  

It is commonly stated that biological diversity is key to ecosystem service 

provision (Convention on Biological Diversity: CBD, 2000). However, the explicit 

role biodiversity plays in the provision of ecosystem services remains unclear 

(Hooper et al., 2005; Norris et al., 2011). What is clear is that both biotic and 

abiotic factors influence ecosystem service provision. Biotic factors such as 

biodiversity, functional diversity and functional composition may influence 

ecosystem service delivery, and are underpinned by abiotic factors such as soil 

pH, nutrient status, redox potential, temperature, moisture content and 

vegetation structure. 

2.2 The theory - biodiversity measures and ecosystem function 

‘Biodiversity’ is formally defined as ‘the variability among living organisms from 

terrestrial, marine and other aquatic ecosystems and the ecological complexes 

of which they are part including diversity within species, between species and of 

ecosystems’ (CBD, 1992). However, in practice biodiversity is often measured 

using either species richness (number of species present within a community), 

species evenness (relative abundance of individuals of each species within a 

community) or indices such as the Shannon index that incorporate both 

diversity and abundance of species (Gaston & Spicer, 1998; Tilman & Lehman, 

2001). Both ‘the rivet hypothesis’ (Ehrlich & Ehrlich, 1981) and ‘the diversity-

stability hypothesis’ (Chapin et al., 2000) provide a theoretical basis for the 

value of biodiversity to ecosystem function. In brief, each species may react in a 

different way to an unfavourable event, such as a drought or disease outbreak, 

thus all should be protected under the precautionary principle, providing 

greater ecosystem resilience. These theories form the basis of the ‘biodiversity-

ecosystem function hypothesis’ that states that a reduction in biodiversity will 

cause a reduction in ecosystem level processes (Srivastava & Vellend, 2005), 

defined as supporting services in the MA (2005). Isbell et al. (2011) illustrated 

this argument by analysing data from 7 biodiversity experiments and concluding 
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that 84 % of 147 grassland plant species promoted ecosystem functioning at 

least once. Despite this, functional diversity or functional composition may be 

more important than biodiversity per se as outlined by Walker (1992) in the 

‘redundant species hypothesis’; as most species are redundant in their roles, 

only minimal diversity is necessary for proper ecosystem functioning.  

‘Functional diversity’ often focuses on the plant community and can be defined 

in two ways. Firstly as ‘functional group richness’ where plants are divided into 

well established functional types, that often conveniently coincide with 

taxonomy, e.g. nitrogen (N) fixing legumes, non leguminous forbs, C3 or C4 

grasses, shrubs and trees (Wright et al., 2006). Secondly, as ‘the range of 

functional traits possessed by the biota of an ecosystem’ (Diaz & Cabido, 2001). 

Where each plant species is classified according to a set of functional traits, 

either ‘functional response types’, for example drought or frost resistance, 

grazing tolerant or intolerant, or ‘functional effect types’ that affect ecosystem 

processes such as N fixers or ecosystem engineers (Diaz & Cabido, 2001). 

Ecosystem engineers are species that physically change biotic or abiotic 

materials and therefore control resource availability to other species (Lawton, 

1994; Jones et al., 1997). ‘Functional composition’ refers to the presence (or 

absence) of certain plant functional types or traits (Diaz & Cabido, 2001). The 

functional characteristics of dominant species, keystone species or ecological 

engineers may be crucial for ecosystem functioning (Hooper et al., 2005). 

Ecosystem function and processes are more-or-less equivalent to supporting 

services. 

Both biotic and abiotic factors underpin the diversity of all groups of organisms 

particularly microbes, invertebrates and plants. Soil microbial diversity may be 

driven by soil heterogeneity (Young et al., 1998; Bardgett et al., 2005) or 

intermediate levels of productivity and disturbance (Rainey et al., 2005). 

Invertebrate diversity may be driven by botanical composition, habitat structure 

or sward height, soil moisture, temperature and food supply (Curry, 1994). Plant 

species richness is often explained by the underlying productivity of an 

ecosystem, a hypothesised hump-backed relationship with biodiversity peaking 
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at intermediate levels of ecosystem productivity (Grime, 1973; Gough et al., 

2000; Mittelbach et al., 2001).  

2.3 Wider evidence - biodiversity measures, ecosystem function and multiple 

ecosystem service provision 

The likelihood of biodiversity, functional diversity or functional composition of 

an ecosystem influencing ecosystem service provision depends on the 

ecosystem service under consideration, ecosystem type and the way in which 

biodiversity is measured. For example, most studies focus on supporting 

services that are easy to quantity such as primary productivity and aspects of 

nutrient cycling. Furthermore, the vast majority of biodiversity - ecosystem 

service research is from grassland habitats using plant diversity as a proxy for 

total ecosystem biodiversity (Balvanera et al., 2006). In addition, research 

focusing on one particular ecosystem function or service and its relationship to 

biodiversity may underestimate the diversity required to sustain a multi 

functional ecosystem (Hector & Bagchi, 2007). There is also a need for caution, 

if ecosystem service protection is put forward as the main reason for 

biodiversity protection then any evidence of ecosystem services being provided 

by low diversity habitats may lead to less support for nature conservation 

(Ridder, 2008).  

There are several examples of an overlap between biodiversity and multiple 

ecosystem service provision (Odling-Smee, 2005). These associations, however, 

do not necessarily indicate causality. Where areas of priority biodiversity 

conservation were compared to areas providing major ecosystem services a 

positive association between the two was seen for the provisioning service of 

fresh water, regulating services of carbon (C) storage and flood control, and the 

cultural service of outdoor recreation (Marxan model - Chan et al., 2006). 

Biodiversity and provision of ecosystem services such as pollination, C 

sequestration, water quality and tourism were also highly correlated in Oregon, 

USA (Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model: 

Nelson et al., 2009). Scenarios that enhanced biodiversity conservation also 
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enhanced production of ecosystem services. Balvanera et al. (2006) presented a 

meta-analysis of the relationship between biodiversity and ecosystem 

functioning using data from experimental studies over the past fifty years. They 

analysed 446 measures of biodiversity effects, 252 from grasslands, 319 of 

which involved plant manipulations or measurements. They found that 

increasing biodiversity at one trophic level generally increased productivity, a 

key supporting ecosystem service, at that level. Plant diversity also appeared to 

enhance below ground plant and microbial biomass, leading to an increase in 

decomposer activity. The BIODEPTH project examined plant diversity and 

ecosystem properties in eight grassland plots across Europe (Hector & Bagchi, 

2007). As more ecosystem processes or supporting services such as primary 

productivity and decomposition or nutrient cycling, were included in their 

analysis, more species were found to affect overall functioning. Srivastava & 

Vellend (2005) compiled one hundred biodiversity and ecosystem function 

studies, half from grasslands and many from mesocosm experiments, and found 

that 71 % found a positive effect on diversity on at least one ecosystem function 

such as primary productivity, decomposition or invasion resistance. 

There is also evidence of a relationship between functional diversity or 

composition and ecosystem function or service provision. MacGillivray et al. 

(1995) showed that the difference between plant communities in response to 

burning, drought and frost were linked to functional plant traits not plant 

diversity. Mokany et al. (2008) found that mean functional trait values of plants 

explained a larger proportion of variation in five out of eight ecosystem services 

than either species diversity or functional diversity. Fornara & Tilman (2008) 

demonstrated that in grassland plants, plant functional complementarity, such 

as the planting of C4 grass and legume combinations increased the regulating 

service of C sequestration via a greater accumulation of soil C. Diaz & Cabido 

(2001) looked at 24 mainly grassland systems where species richness, functional 

richness and functional composition were related to ecosystem processes. 

Functional composition was most likely to influence supporting services such as 

above-ground primary productivity. The introduction of an invasive species is a 
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common way in which functional composition is altered, with potential 

implications for ecosystem service provision. Most ecosystem services rely more 

on functional composition than either biodiversity or functional diversity (Wall 

et al., 2004; Phoenix et al., 2008; De Deyn et al., 2009; Lavorel & Grigulis, 2012).  

2.4 Selected habitats – salt marshes and sand dunes 

Salt marshes (Figure 2.1) and coastal sand dunes (Figure 2.2) were chosen as 

model habitats for this thesis for three reasons. Firstly, as they are examples of 

semi-natural systems where diversity is seen as a ‘good’ or ‘natural’ aspect 

worthy of conservation (Jones et al., 2011), particularly in salt marshes 

monitored following managed realignment (Garbutt & Boorman, 2009). 

Secondly, as coastal habitats they have the potential to provide both terrestrial 

and marine ecosystem services. Thirdly, despite the fact they often occur 

alongside each other and are examples of successional habitats they vary 

enormously in terms of productivity, diversity, potential ecosystem service 

provision and available scientific literature. Salt marshes are characterised by 

high productivity, low botanical diversity, quantified ecosystem service 

provision and plentiful scientific literature (Adam, 1990; Vernberg, 1993; Zedler 

& Kercher, 2005). Sand dunes, in contrast, are typified by low productivity, high 

botanical and invertebrate diversity, and a largely un-quantified potential to 

provide ecosystem services, partly due to the predominance of published sand 

dune research within grey literature as opposed to peer-reviewed journals 

(Everard et al., 2010).  

Salt marshes, along with beaches and mudflats, occur in the temperate coastal 

intertidal zone (Figure 2.3), whereas in tropical or sub tropical intertidal zones 

mangrove ecosystems predominate (Vernberg, 1993; Mitsch & Gosselink, 

2000). They develop where the shore has sufficient shelter to ensure the build 

up of sediment from either rivers or the reworking of coastal shelf sediment. 

Salt marshes are highly productive, successional, vegetated habitats 

characterised by anaerobic conditions during tidal inundation, fluctuating 

salinity linked to variable fresh water and salt water inputs and daily and 
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seasonal fluctuations of temperature (Mitsch & Gosselink, 2000). Salt marshes 

are often typified by low plant diversity, increased slightly with elevation and 

grazing management (Daan et al., 2002). Upper and therefore drier zones of 

saltmarshes share some characteristics of semi-natural grasslands, such as the 

presence of particular grass species also characteristic of terrestrial grasslands 

and the occurrence of some generalist grassland invertebrates. 

 

Figure 2.1 Dyfi estuary salt marsh, Wales. 

Coastal sand dunes occur at all latitudes from the poles to the tropics (Figure 

2.3) but this review deals only with those that fall within the temperate zone. 

Sand dunes form where there is a plentiful supply of loose, sandy sediment that 

is transported inland by the wind. They form adjacent to sandy beaches above 

the storm water level and include the dunes themselves and dune slacks, 

sunken areas between dunes that are flooded in winter and spring (Martínez et 

al., 2004). Coastal dune systems, like salt marshes, are successional habitats 

characterised by particular stresses. Foredune plants need to be capable of 

withstanding strong winds, salt spray and sand burial. Further inland succession 

begins with sand tolerant grasses and forbs (Wiedemann & Pickart, 2004). Dune 
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systems tend to be lacking in nutrients such as N, phosphorus (P) and potassium 

(K) leading to low productivity (Willis, 1989). Partly as a result of these stresses, 

coastal sand dunes are noted for exceptional plant diversity. For example, sand 

dunes in the Netherlands contain 66 % of all recorded Dutch flora (de Vries et 

al., 1994). This high species richness may be due to the wide range of ecological 

niches present within a dynamic dune system (Willis, 1989). Low levels of 

nutrients such as N also allow survival of many stress tolerant plants (Packham 

& Willis, 1997). Fixed dune grasslands share some characteristics of other high 

diversity semi-natural grasslands (Bullock et al., 2011).  

 

Figure 2.2 Newborough Warren coastal sand dunes, Wales. 

Coastal habitats such as salt marshes and sand dunes are at risk from habitat 

change, over exploitation, invasive species, pollution and climate change 

(Martínez et al., 2004; MA, 2005). They are therefore in need of effective 

protection and management. These habitats are often converted to land for 

agriculture, forestry, golf courses, housing developments and tourism (Dijkema, 

1990; French, 2001; Martínez et al., 2004). Both habitats are also vulnerable to 

coastal erosion, particularly where the construction of sea defences interferes 
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with sand or sediment supplies (Lee, 2001). Exploitation for ground water, oil, 

gas or sediment or sand removal also threatens coastal marshes and dunes 

(French, 2001; Kennish, 2001). The introduction of non-natives such as Spartina 

anglica for coastal defence has altered the natural communities of many salt 

marshes (Gedan et al., 2009). Invasive wetland species tend to form a tall 

monoculture leading to a decrease in both plant and animal biodiversity, an 

increase in productivity and litter and changes in nutrient cycling (Zedler & 

Kercher, 2004). N and P pollution of salt marsh systems has been common over 

recent decades (Bakker et al., 1993). Nutrient enrichment may increase 

production of vegetation, decrease species richness and lead to eutrophication 

(Zedler & Kercher, 2005). Most sand dunes in the UK exceed the critical N load 

of 10 kg N ha-1 year-1 due to atmospheric N deposition (Grootjans et al., 2004; 

JNCC 2004; Jones et al., 2004). N addition to dune grasslands tends to increase 

grass and reduce legume biomass (de Vries et al., 1994; Heijden et al., 2008). 

Climate change leading to sea level rise and an increase in temperature or 

carbon dioxide (CO2) levels could alter both salt marsh and sand dune habitats 

(Pye, 1998; IPCC, 2007).  

Coastal dune habitats are considered a ‘priority habitat’ and salt marshes a 

‘general habitat in need of conservation’ under annex I of the EU Habitat 

Directive (1992). In the US, state laws preserve salt marshes (Vernberg, 1993). 

Salt marsh and sand dune management, in common with other semi-natural 

grassland habitats, focuses on biodiversity management, particularly for plants 

and breeding birds, and specific ecosystem services such as flood defence as 

opposed to general ecosystem service provision (Hofstede, 2003; Jones et al., 

2011). Until the 1980s, the majority of coastal dunes throughout Europe were 

managed in line with ‘stabilisation’ policies. Dunes were often stabilized via 

marram grass, scrub or tree planting. However, management has now shifted 

towards a more ‘dynamic approach’ involving grazing and scrub cutting 

(Houston, 2005).  
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Figure 2.3 Salt marsh and sand dune distribution, based upon Long & Mason (1983), Yang & 

Chen (1995) and Martínez et al. (2004). 

2.5 Ecosystem services of salt marshes and sand dunes 

Salt marsh and sand dune habitats provide a wide variety of ecosystem services. 

Ecosystem service provision will be assessed using the framework of the MA 

(2005). The evidence relating to the influence of ‘biodiversity’, ‘functional 

diversity’ or ‘functional composition’ on service provision will be considered, as 

summarised in Table 2.1. Salt marshes are very important for ecosystem service 

delivery as they link land, freshwater habitats and the marine environment. Salt 

marshes provide ‘supporting services’ (soil formation and nutrient cycling), 

‘provisioning services’ (grazing land, haymaking, edible plants, fish and shellfish, 

salt and chemical production), ‘regulating services’ (flood and erosion control, 

improvement of water quality, C sequestration) and ‘cultural services’ 

(recreation and education) (Adam, 1990; Vernberg, 1993; Levin et al., 2001; 

Zedler & Kercher, 2005; Gedan et al., 2009). Sand dune ecosystem service 

provision has been less well studied. But Jones et al. (2011) have identified 

several important ecosystem services such as soil formation, flood prevention 

and recreation. 
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2.5.1 Supporting services 

Evidence relating to three supporting services was reviewed: soil formation, 

primary productivity and nutrient cycling. Salt marshes and sand dunes are both 

successional habitats with the ability to build up and stabilise soil. Soil formation 

is essential as without it other services such as nutrient cycling, climate 

regulation via soil C storage and flood prevention would not be possible. The 

formation of soil is dependent on soil biota (European Academies Science 

Advisory Council; EASAC, 2009), an incredibly diverse group (Young et al., 1998), 

but it is difficult to directly relate microbial diversity to soil formation. Soil 

formation is linked to soil stability. The stabilization of salt marsh and sand dune 

sediment or soil relies on microalgal, bacterial, fungal and plant root exudates, 

and the physical structure provided by root hairs and algal, fungal and 

mycorrhizal filaments (Packham & Willis, 1997; Read, 1989; Underwood, 1997; 

Underwood, 2000). Waid (1999) argues that ‘metabiosis’ the theory that one 

functional group modifies the environment for another functional group, 

increases soil biodiversity and leads to stabilised, functioning soil communities. 

Primary productivity is fundamental to all other ecosystem services (EASAC, 

2009). Salt marshes are among the most productive habitats in the world 

(Vernberg, 1993; Mitsch & Gosselink, 2000; Figure 2.4). Sand dunes, in 

comparison, are low productivity systems. Plants tend to be viewed as the main 

primary producers, however within salt marshes microphytobenthos, seaweed 

and phytoplankton are also important (Simas & Ferreira, 2007) and in sand 

dune habitats the algal or microbial mats present in dune slacks also contribute 

to primary productivity (Vázquez, 2004). Callaway et al. (2003) experimentally 

planted an area of restored Californian salt marsh with 0, 1, 3 or 6 species of salt 

marsh plants. They found that communities containing 6 species were most 

productive, based upon biomass measurements. However, Salicornia virginica, 

when planted alone was comparably productive to multi species plots. C4 plants 

such as Spartina anglica, a common invasive plant species, also tend to 

photosynthesize rapidly and produce more biomass than native communities 

dominated by species such as Juncus gerardii or Festuca rubra (Bakker et al., 
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1993; Packham & Willis, 1997). Even the C3 invasive species of European salt 

marshes, Elytrigia athericus, had significantly higher annual net primary 

productivity than the original, more diverse, plant communities (Valery et al., 

2004). It is very difficult to find evidence of how plant diversity influences 

primary productivity in sand dunes, but the evidence from salt marshes 

suggests that functional composition may be more important for the supporting 

service of primary productivity than biodiversity. 

 

Figure 2.4 ‘Supporting service’, productive salt marsh habitat, Condor Green marsh, UK. 

Nutrient cycling (of N), often measured via the mineralisation of nitrogen by the 

soil microbial community, is important as it determines plant available nitrogen 

in most habitats, a limiting factor for plant primary productivity (Bardgett et al., 

2011). Decomposition may influence nitrogen cycling positively or negatively, 

dependent on the C:N ratio of organic matter substrate available to microbes 

(Bardgett, 2005). Decomposition in all soil types, including salt marsh and sand 

dune, is carried out by a diverse detrital food web of fungi, bacteria and soil 

fauna (Hopkins & Gregorich, 2005; Setälä et al., 2005). In fertile conditions 

where plants tend to allocate a large proportion of their C resources to rapid 
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growth, the litter produced tends to be high in nitrogen favouring a bacterial 

based food web and rapid cycling of nutrients. In less fertile conditions, litter 

tends to contain a lower proportion of N, fungi are more able than bacteria to 

break down this substrate, so a slow cycling fungal based food web develops 

(Wardle, 2005). Soil fauna detritivores, mainly nematodes, mites and 

collembola, fragment plant litter whilst feeding on the microflora of fungi and 

bacteria present on the litter surface (Schowalter, 2006). Breakdown of organic 

matter is rapid in a healthy mature salt marsh; in contrast, detritus in anaerobic 

water-logged salt marsh soil decomposes more slowly (Brady & Weil, 1996; 

Hazelden & Boorman, 1999). Coastal dunes tend to be characterized by a fairly 

low level of decomposition (Kooijman, 2004). As earthworms were only recently 

discovered to be part of the decomposer community of coastal dunes, this 

illustrates how little is known about the dynamics of the decomposer 

community in this habitat (Chamberlain & Butt, 2008). 

Wardle (2005) developed the hypothesis that as plant diversity increases, litter 

diversity and root exudate diversity will also increase, leading to a rise in 

decomposer diversity. Buth (1987) studied root decomposition in Dutch salt 

marshes using litter bags. He found that the more species rich root mix from 

Puccinellia maritima community decomposed more rapidly than monoculture 

stands of Atriplex portulacoides or Spartina anglica. Decomposition rate may 

also be influenced by type of dominant vegetation and presence or absence of 

invasive species, with high lignin content and low N content indicative of slow 

decomposition (Hemminga & Buth, 1991; Koojiman, 2004; Valery et al., 2004). 

For the soil detritivore community, soil microcosm experiments indicated 

functional dissimilarity amongst detritivore species was positively correlated 

with leaf litter loss (Heemsbergen et al., 2004). Plant species composition, 

chemical composition of plant litter, microbial abundance and detritivore type 

are probably more likely to alter decomposition rates than species richness or 

functional diversity per se. The importance of microbial diversity to nutrient 

cycling is largely unknown but various molecular techniques involving rRDA, 

rDNA and analysis of phospholipid fatty acids (PLFAs; Chapter 6) are being 
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increasingly used in an attempt to answer this question (Torsvik & Øvreas, 

2002), by linking taxonomic or functional microbial groups to specific soil 

processes (Bardgett, 2005). 

2.5.2 Provisioning services 

Evidence for three provisioning services was reviewed: fresh water, food & 

materials, and bio-chemicals & genetic resources. Salt marshes, as saline inter-

tidal environments, do not provide fresh water. Sand dunes, however, 

accumulate ground water and can be a potential source of fresh water. Fresh 

water can be used for drinking and irrigation. Most notably, The Amsterdam 

Water Supply Dunes of The Netherlands have been managed as a drinking 

water catchment area since 1874 (Meulen et al., 2004). 

Salt marshes provide livestock grazing land for provision of lamb and beef 

(Bouchard et al., 2003; Doody, 2008; Figure 2.5) and nursery grounds for fish 

such as mullet and sea bass (Mathieson et al., 2000; Veiga et al., 2006). Marsh 

plants such as Salicornia europaea may also be collected and eaten (King & 

Lester, 1995). Salt marshes were also traditionally used for turf cutting, salt pans 

and provision of hay, thatch and rope (Adam, 2000; Bouzille et al., 2001). Sand 

dunes are used for grazing, commercial forestry or opportunistic wild food 

collecting (Everard et al., 2010). Historically, machair, the coastal grassland 

confined to north-west Scotland and north-west Ireland, was used for crops and 

grazing, and marram grass was used for animal bedding, basket weaving and 

thatching (Angus, 1998; Power et al., 1998). Most products such as food or fibre 

harvested from salt marshes or sand dunes are more likely to be influenced by 

presence of particular species than biodiversity, particularly in the short term. 

At present bio-chemicals and genetic resources are not provided by salt 

marshes and sand dune habitats but certain coastal species are currently under 

investigation e.g. Sea holly Eryngium maritimum for biomedical use (Everard et 

al., 2010; Jones et al., 2011). As sand dunes in particular are diverse habitats 

there is potential for exploiting this service in the future. 
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Figure 2.5 ‘Provisioning service’, sheep grazing at Ynys Hir marsh, UK. 

2.5.3 Regulating services 

Four regulating services were investigated: climate regulation, pollution control 

and detoxification, flood prevention, and pollination and pest regulation. 

Climate regulation refers to the capacity of ecosystems to regulate levels of 

greenhouse gases such as CO2, methane (CH4) and nitrous oxide (N2O) (EASAC, 

2009). Soils store three times as much carbon as vegetation and are therefore 

important in terms of reducing carbon fluxes to the atmosphere (Fitter, 2005; 

Hopkins & Gregorich, 2005). Because of their high rates of carbon sequestration 

and low CH4 emissions, salt marshes could be very valuable C sinks (Choi & 

Wang, 2004; Hussein et al., 2004). It is known, however, that specific wetland 

plant species such as Juncus (rushes) vent CH4 via their aerenchyma into the 

atmosphere (Adam, 1990; Roslev & King, 1996; Chapter 5). The greenhouse gas 

fluxes of sand dune habitats have not been reported, although as dunes are 

successional habitats C accumulation is high (Jones et al., 2008; Jones et al., 

2011). It is largely unknown how climate regulation is influenced by biodiversity. 

It is more likely that the moisture content, temperature, salinity and 
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composition of plant community within salt marsh or sand dune soils will be 

more important to greenhouse gas fluctuations than biodiversity. 

Salt marshes may improve water quality by acting as a sink of excess nutrients 

such as N and P and pollutants such as herbicides, pesticides and heavy metals 

(Jickells et al., 2003; Defra / EA, 2005; Alvarez-Rogel et al., 2006; Andrews et al., 

2008). While wetland sediments can act as a sink for certain metals, plants may 

transform them to a more bio-available form, making metals available to other 

organisms in the food chain (King et al., 2002; Hwang et al., 2008). Even if plants 

are effective in sequestering metals in the short term, after the plant dies the 

metals may become available again to detritus feeders (Weis & Weis, 2004). It is 

often assumed that wetlands provide the best nutrient removal service where 

diversity is low and invasive species or fast growing native species dominate 

(Zedler & Kercher, 2005). Most studies have focused on the comparison of a 

limited number of species, usually the dominant native and the invasive species. 

A mesocosm experiment carried out by Herr-Turoff & Zedler (2005) compared 

grassland communities with and without the invasive species Phalaris 

arundinacea and found that both were equally effective in removing N from 

discharged water. Weis & Weis (2004) found that Phragmites australis, an 

invasive species in the US sequesters more metal in its roots and releases less 

via leaf excretion than the native Spartina alterniflora. In addition, Ravit et al. 

(2005) found that S. alterniflora is more likely to make a specific flame retardant 

chemical more bioavailable than P. australis due to the greater surface area of 

Spartina roots providing an increased habitat for microbial communities that 

include those that biotransform contaminants. One particular salt marsh plant, 

Atriplex portulacoides, appears to be more mercury tolerant than other salt 

marsh species, it retains mercury in root cell walls, effectively immobilizing it 

(Valega et al., 2009). Functional composition of plants and the microbial 

community seem much more important to the provision of pollution control 

and detoxification than biodiversity. 

Coastal ecosystems such as salt marshes and sand dunes are very important for 

flood control as they form a physical barrier between the land and the sea 
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(French, 2001; Doody, 2008; Jones et al., 2011; Figure 2.6). Saltmarshes are 

around 30 % more effective at dissipating wave energy than mud flats due to 

the presence of vegetation (Möller et al., 1999; Möller et al., 2001; Cooper, 

2005). Height, flexibility or leaf pattern of macrophytes are important for wave 

attenuation. For example, Spartina anglica was shown to dissipate wave energy 

three times more than Zostera anglica due to the stiffness of Spartina leaves, 

this is more likely to do with physical characteristics than species diversity 

(Bouma et al., 2005). In addition, the value of coastal protection afforded by salt 

marsh vegetation is likely to vary seasonally, especially if storms occur when 

plant biomass or density are low (Koch et al., 2009). Many coastal dunes in 

North America and Europe were planted with marram grass, Ammophilia 

arenaria, in place of the natural flora of the foredune, for stabilisation and flood 

prevention (Wiedemann & Pickart, 2004). Vegetation type and structure, as 

opposed to biodiversity, are more likely to influence the regulating service of 

flood prevention.  

 

Figure 2.6 ‘Regulating service’ of flood prevention, Glasson marsh, UK. 

Invertebrates are very important for the provision of pollination and pest 

regulation (Losey & Vaughan, 2006). Although salt marshes and sand dunes are 

not used for commercial crop production, these habitats provide a refuge for a 

range of invertebrate pollinators and pest control species, such as spiders and 

carabid beetles that may travel to adjacent agricultural areas. Salt marshes 
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support an abundant invertebrate community of medium diversity (Chapter 4), 

whereas sand dunes support a less abundant but more diverse population 

(Chapter 3). The presence of bee pollinators with different functional traits, 

related to flower visiting time and behaviour, was found to increase seed set 

and crop yield in pumpkins (Hoehn et al., 2008), and wild bee diversity was 

linked to effective pollination services for organic crops in California (Kremen et 

al., 2002). Biological control of pests is provided by generalist and specialist 

predators and parasitoids including spiders, beetles, wasps, nematodes, fungi 

and bacteria (Beattie & Ehrlich, 2001; Balmford et al., 2008). The abundance 

and diversity of pollinators and invertebrate pest regulators are both likely to be 

important in the potential provision of this service (Balmford et al., 2008).  

2.5.4 Cultural services 

Cultural services include recreation and tourism, education, conservation, 

spiritual and aesthetic values (Figure 2.7). These are likely to be enhanced by 

bio-diverse habitats (Church et al., 2011). Salt marshes and sand dunes are 

important for recreational activities such as bird watching, wildfowling and dog 

walking, and as educational models of successional habitats. Salt marshes 

provide habitat for a number of bird species such as redshank, lapwing, 

oystercatcher, skylark, reed bunting and meadow pipit which use them for 

roosting, feeding and breeding (Vernberg, 1993; Defra / EA, 2005; Doody, 2008). 

Vegetation sward height is a more important feature of habitat quality for 

breeding redshank than the presence of particular plant species (Norris et al., 

1997). Dune systems also provide valuable habitat for breeding birds and 

endangered species such as sand lizards, Lacerta agilis, and natterjack toads, 

Bufo calamita (Bonte & Hoffmann, 1998; Edmondson & Velmans, 1998). 

Spiritual values are more difficult to define although sand dunes are important 

to the Maori of New Zealand (Martínez et al., 2004). Visitors to salt marsh or 

dune habitats may not always value the natural habitat as might be expected. 

Sefton coast visitors put a greater value on an introduced habitat, pinewoods 

and their associated red squirrel population than on the ‘natural’ dune habitat 

(Edmondson & Velmans, 1998). And within the Meijendel dunes of the 
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Netherlands visitors rated an ‘unnatural’ feature most highly, the lakes 

constructed for drinking water (Meulen et al., 2004). 

 

Figure 2.7 ‘Cultural services’ of education, recreation and conservation, a break from soil and 

vegetation sampling at Crossens marsh, UK. 

2.6 Conclusions 

Salt marshes are important habitats for the provision of many ecosystem 

services, primary productivity, pollution control, flood regulation and 

recreational value in particular (Table 2.1). Soil formation, nutrient cycling, 

provision of food and fibre and climate regulation services are also provided. 

Sand dunes are key habitats for soil formation, climate regulation, flood 

prevention and recreation services. Most ecosystem services, ‘supporting’, 

‘provisioning’, ‘regulating’ or ‘cultural’ rely more explicitly upon functional 

composition rather than either biodiversity or functional diversity for their 

delivery. Current evidence highlights two services likely to depend upon 

biodiversity, the provisioning service of bio-chemicals and genetic resources and 

the regulating services of pollination and pest control. 
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Table 2.1 Ecosystem services provided by salt marsh and sand dune habitat ( = low,  = medium,  = high, composition = functional 
composition) following the framework of the MA (2005), information based on results of literature review and Jones et al. (2011). 

Service Provision by 
salt marshes 

Provision by 
sand dunes 

Importance of 
biodiversity 

How service could be measured 

Supporting  
Soil formation   Unknown Amount of top soil formed 
Primary Productivity   Composition Above and below ground net productivity 
Nutrient cycling   Unknown / 

Composition 
N mineralisation 

Provisioning  
Fresh water   Unknown Water quantity and quality 

Food and materials   Composition Total biomass 
Bio-chemicals and genetic 
resources 

  Biodiversity 
potential 

Total amount of useful substances that could be extracted 

Regulating  
Climate regulation   Unknown / 

Composition 
Greenhouse gas balance, C stock 

Pollution control and 
detoxification 

  Composition Accumulation of pollutants in sediment 

Flood prevention   Composition Water storage capacity, wave dissipation capacity 
Pollination and pest 
regulation 

  Biodiversity / 
Abundance 

Abundance of pollinators or pest regulators, distance to 
arable fields 

Cultural services  
Recreation, education and 
spiritual values 

  Biodiversity  Presence of landscape features, number of visitors 
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3.1 Abstract 

A coastal grassland was used as a model system to examine how grazing 

management, un-grazed (for six years), rabbit grazed or fully grazed (ponies 0.2 ha-

1, cattle 0.05 ha-1 and rabbits 45 ha-1), affected biodiversity and ecosystem service 

provision, by measuring an extensive suite of biophysical variables as proxies for 

ecosystem services. For ‘supporting services’, nutrient cycling was greatest in un-

grazed grassland but primary productivity did not differ. The ‘provisioning service’ 

of food production was only provided by fully grazed grassland. For grazing effects 

on ‘regulating services’ total carbon (C) stock did not differ and effects on pest 

regulating invertebrates and pollinator abundance were variable. The potential for 

flood control was considered greatest in the un-grazed grassland; with faster water 

infiltration than in the fully grazed grassland. The ‘cultural service’ of environmental 

appreciation was considered higher in fully grazed grassland due to significantly 

greater plant species richness, more forb species and more forbs flowering than in 

un-grazed grassland.  

Key-words: biodiversity, conservation, ecosystem function, management, semi-

natural grassland, trade-offs 
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3.2 Introduction 

Grassland management for multiple ecosystem services often results in potential 

conflicts or trade-offs (Macleod and McIvor, 2006). This is important as many 

ecosystem services are delivered by semi-natural grasslands (Bullock et al., 2011; 

Table 3.1); “supporting services” (primary productivity and nutrient cycling); 

“provisioning services” (food production, preservation of the genetic diversity of 

wild species and fresh water supply); “regulating services”, (maintenance of an 

equable climate, water storage, pest regulation and pollination) and “cultural 

services” (conservation status, environmental appreciation and recreation). In 

managed grasslands, the basic trade-off is between intensive management to 

maximise food production and extensive management resulting in lower 

production, but increased biodiversity and a wider range of cultural services 

(Power, 2010). Semi-natural, low productivity grasslands, traditionally used for low 

intensity cattle and sheep farming, have declined by 90 % in the UK since 1945, 

converted to intensive production by drainage and fertilisation (Bullock et al., 

2011). In many parts of Europe they now face a further threat, with managed 

grazing of these habitats being ‘abandoned’ in both the uplands and lowlands due 

to the removal of European Union (EU) subsidies (Strijker, 2005). Policy makers 

have signed up to halt biodiversity loss and degradation of ecosystem services 

within the EU by 2020 and to adopt an integrated approach to land use 

management (Kleijn et al., 2011). It is therefore vital to assess how abandonment of 

low productivity grazing land impacts on biodiversity, ecosystem function and 

potential consequences for ecosystem service provision. 

The effects of removing large herbivores (i.e. cattle, sheep or horses) are well 

understood for grassland biodiversity and ecosystem function, but the implications 

for wider ecosystem service provision have been poorly quantified, or not 

quantified at all, especially for multiple services (Power, 2010). Grazing removal 

decreases plant diversity (Pykälä, 2003), increases invertebrate and small mammal 

abundance and diversity (Morris, 2000; Schmidt et al., 2005), and can either 

increase or decrease bird abundance and diversity dependent on feeding and 

nesting sward requirements (Vickery et al., 2001). Where large grazers are removed 
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smaller grazers, particularly rabbits, may define habitat characteristics, keeping 

patches of grassland fairly open, preventing declines in plant diversity but allowing 

soil to become less compact (Isermann et al., 2010), creating a habitat with 

characteristics of both grazed and un-grazed grassland, with likely mixed effects 

upon ecosystem services. Voles and other small mammals are usually present, even 

within ‘un-grazed’ areas and have different effects on vegetation and nutrient 

cycling characteristics to large herbivores (Bakker, 2003). Cessation of cattle grazing 

where rabbits are not present leads to the development of a plant community 

dominated by highly competitive tall grasses or shrubs (Janišová et al., 2011) with 

reduced soil compaction and possible implications for several variables linked to 

ecosystem service provision.  

Table 3.1 Ecosystem services (S = supporting, P = provisioning, R = regulating, C = cultural) with list 
of proxy measurements. 
 
Ecosystem service  Proxy measurement 
Primary productivity (S) Annual net primary productivity (above ground) 
Nutrient turnover (S) N mineralisation rate 

 Detritivore feeding rate  
 Root turnover rate 

Food production (P) Number of cattle per hectare 
Genetic diversity (P) Plant species richness 
Equable climate (R) C stock 
Flood control potential (R) Water infiltration rate 
Pest regulation (R) Invertebrate biodiversity, spider and predatory beetle abundance 
Pollination (R) Nectar feeder biodiversity and abundance 
Conservation (C) Abundance of RDB or nationally scarce invertebrates 
Aesthetic appreciation (C) Plant biodiversity, vegetation structure, grass: forb ratio & 

flowering 

 

Above-ground primary productivity (ANPP), a key supporting service, may increase 

or decrease with grazing intensity (De Mazancourt et al., 1998; Leriche et al., 2003). 

Nutrient turnover, another supporting service, also shows variable effects with 

grazing management (Bakker, 2003; Bardgett et al., 1998; Van Wijnen et al., 1999). 

Coastal grasslands, particularly those adjacent to crop fields, may potentially 

provide invertebrates for the twinned regulating services of pest control and 

pollination (Everard et al., 2010; Losey and Vaughan, 2006). However, effects of 

grazing intensity on these services are difficult to predict. Invertebrate pest 
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regulators, such as spiders and beetles, are often more abundant on un-grazed 

grassland (Morris, 2000) but pollinators may be most abundant on grazed grassland 

due to a likely increase in floral resources (Potts et al., 2003; Sjödin et al., 2008). Soil 

moisture and temperature changes may also affect the regulating service of 

equable climate, via impacts upon C storage and greenhouse gas emissions (Luo 

and Zhou, 2006). The cultural service of aesthetic appreciation is likely to be higher 

in grazed grasslands due to expected greater plant diversity and abundance and 

diversity of forbs (Pykälä, 2003).  

To date, where links have been drawn between grazing intensity, impact upon 

ecosystem characteristics, and multiple ecosystem service provision, these have 

been largely based on literature reviews (Bullock et al., 2011; Kemp and Michalk, 

2007). There have been few habitat case studies where these effects have been 

quantified within an ecosystem services framework. The novelty of this study lies in 

using a wide range of habitat measurements across different grazing intensities as 

proxies for specific ecosystem services (Table 3.1). A managed grazing experiment 

within a low fertility grazed coastal grassland was used as a model system to 

examine how grazing affects ecosystem service provision, following the framework 

of the Millennium Ecosystem Assessment (MA, 2005) and the UK National 

Ecosystem Assessment (Bullock et al., 2011). The three grazing treatments used 

were ‘fully grazed’ (i.e. extensively cattle, pony and rabbit grazed), ‘rabbit grazed’ 

and ‘un-grazed’ (i.e. abandoned). The overarching hypothesis of this study is that 

‘changes in grazing will differentially affect individual services, and will alter the 

balance of supporting, provisioning, regulating and cultural ecosystem service 

provision of semi-natural grassland. 

3.3 Materials and methods 

3.3.1 Study site and experimental design 

Fixed sand dune grasslands are low-productivity semi-natural grasslands, and a UK 

Biodiversity Action Plan (BAP) priority habitat. Newborough Warren is a calcareous 

coastal sand dune grassland, located in NW Wales (53° 8’ 59” N, 4° 21’ 1” W), noted 

for its high biodiversity and designated as a National Nature Reserve, Site of Special 
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Scientific Interest and Special Area of Conservation under the EC Habitats and 

Species Directive 1992. The 389 ha site is managed by Countryside Council for 

Wales (CCW). Managed grazing was introduced in 1987; stocking levels have varied 

but the site is now grazed by ponies (Equus ferus caballus; 0.2 ha-1), cattle (Bos 

taurus; 0.05 ha-1) and rabbits (Oryctolagus cuniculus; 45 ha-1), designed to maximise 

plant diversity. Rare breed cattle, Belted Galloways and Dexters are stocked within 

the fully grazed study area for 18 months before being ‘finished’ on improved 

pasture and sold for meat (Graham Williams, pers. comm.). The predominant 

vegetation in the experimental area is fixed dune Festuca rubra - Galium verum 

grassland. In 2003, three replicate experimental blocks, each containing three 10 x 

10 m experimental units, one fully grazed unit (unfenced), one rabbit grazed unit 

(fenced with 10 x 10 cm mesh to exclude large grazers) and one un-grazed unit 

(fenced with 10 x 10 cm mesh and an additional 2.7 x 3.7 cm mesh buried 20 cm 

underground to prevent rabbit access) were set up. Experimental blocks are 

separated from each other by hundreds of metres and by low dunes. Prior to 

construction of grazing exclosures the vegetation was a uniform 4-6 cm height. 

Small mammals such as field voles (Microtus agrestis) and invertebrate herbivores 

were assumed to be present within all experimental units. All biophysical 

measurements avoided a 1 m buffer zone adjacent to the fences for rabbit grazed 

and un-grazed exclosures. Fully grazed units are denoted as PR1 - PR3 (PR stands 

for pony & rabbit grazed); rabbit grazed units as R1 – R3 and un-grazed units as U1 - 

U3.  

3.3.2 Soil characteristics 

Soil moisture content and temperature were recorded within each experimental 

unit, at six locations, once a month from June to September 2009. Soil conductivity 

was measured in direct volts using a Delta T Theta Meter HH1 across 6 cm depth 

and converted to percentage soil moisture content using a calibration suitable for 

mineral soils. Soil temperature was measured in the top 11 cm using a digital 

thermometer. Samples to determine bulk density and soil organic matter content 

were collected during September 2009 using three intact soil cores of 3.8 cm 

diameter and 15 cm depth from each experimental unit. Cores were dried at 105 ⁰C 
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for 72 h and the dry mass divided by the volume of the core to calculate bulk 

density. Loss-on-ignition, at 375 ⁰C for 16 h was used to estimate organic matter 

content. pH was determined using a Corning pH meter 220. Water infiltration rate 

was measured using three single ring infiltrometers (Carroll et al., 2004) per 

experimental unit. This method was used as vertical percolation flux dominates 

water flow in sandy soil. These 10 cm diameter x 20 cm length cylinders were 

hammered 5 cm into the ground and briefly filled with water to pre-saturate the 

ground. Water was again poured into the infiltrometers up to 5 cm from the top. 

The time taken for the water to move 5 cm down the infiltrometer was recorded 

and converted into a water infiltration rate in mm min-1.  

Plant available nitrogen (N) was measured by N mineralisation assays (Rowe et al., 

2011) calculated from three 15 cm depth soil cores per unit, taken in September 

2009. Soil cores were taken using plastic corers, capped at both ends to minimise 

soil disruption and stored intact at 4 °C. Accumulated inorganic N was flushed from 

the cores by spraying with a solution of similar ionic concentration to UK rain over 7 

d until 150 ml of leachate had been collected. Cores were incubated at 10 °C for 28 

d, homogenised and a sub-sample extracted using 1M KCl for the analysis of 

ammonium and nitrate content (Rowe et al., 2011). Net nitrification and 

ammonification rates were calculated over these 28 d, assuming that all previous 

inorganic N had been removed during the 7 d flushing period, and were expressed 

as mg N g-1 dry wt d-1. Litter breakdown via mesofaunal detritivores was measured 

in autumn using ten bait lamina (Terra Protecta GmbH, Germany) per unit (in two 

lines of five, 50 cm apart). 

3.3.3 Vegetation characteristics 

During July, vegetation height was measured at five points within five 1 x 1 m 

quadrats per experimental unit with a custom made drop disc of 20 cm diameter, 

10 g mass. Within two quadrats from each unit above-ground live vegetation and 

plant litter was collected from a 25 x 50 cm area cut to ground-level. One root core 

of 5 cm diameter and 10 cm depth was also taken per quadrat and washed to 

remove all soil. Above-ground vegetation, litter and roots were all dried at 80 °C for 
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24 h and weighed to give indicators of above-ground shoot biomass, litter biomass 

and below-ground root biomass respectively. C stock (t C ha-1) was measured for 

four pools: soil, roots, plant litter and shoots, derived from biomass using the 

following conversions: Soil C as 0.55 of soil organic matter; root C is 0.44 of root 

biomass (dry wt) and plant litter and shoot C is 0.42 of biomass (dry wt) in 

comparable UK fixed dune grasslands (unpublished data). ANPP, peak biomass from 

three grazer excluded areas per experimental unit, was recorded as a direct 

measure of primary productivity. During February 2009, vegetation was cut to 

ground level in three 50 x 50 cm areas per experimental unit. Each cut area was 

protected from pony, cattle and rabbit grazers by an 8 cm mesh gabion (50 x 50 x 

50 cm) and vegetation allowed to re-grow until peak biomass at the end of August 

when areas were re-cut within a central 25 x 25 cm area. Vegetation was dried at 

80 °C for 72 h then weighed and converted to kg dry wt m-2 yr-1 to provide a 

measure of ANPP. Autumnal fine root turnover was estimated by modifying the 

method of Lukac and Godbold (2010). In mid September 2010 four nylon 1 mm root 

turnover mesh strips (Normesh, UK), 2.5 cm wide x 15 cm long, were placed in 

vertical cuts made in the soil with 2.5 cm overlap at the bottom and 2.5 cm 

emerging from the soil, 50 cm apart, across a 2 m transect in each unit. After 28 d 

the mesh strips were removed along with a slightly wider and deeper intact soil 

core. Cores were pushed out and divided in two along the mesh line, the number of 

fine roots penetrating each mesh depth zone (0 – 2.5; 2.5 – 5; 5 – 7.5; 7.5 – 10 cm) 

were counted by eye as a proxy for fine root turnover.  

3.3.4 Biodiversity of plants and invertebrates 

Plant percentage cover, species richness and number of species flowering were 

recorded during July in five 1 x 1 m quadrats from each experimental unit. For 

functional group analysis, plant percentage cover data was standardised to 100 % 

and divided into six broad phylogenetic functional groups: lichen, moss, forbs, 

sedges, grass and shrubs.  

Pitfall traps were used to sample ground dwelling invertebrates for 26 d in May and 

28 in July. Six pitfall traps per experimental unit were set up in two lines of three, 2 
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m apart. Each trap consisted of a plastic cup (80 mm diameter x 105 mm deep) a 

third full with a 50/50 mix of ethylene glycol and water, to preserve invertebrates, 

with a drop of washing up liquid to break the surface tension. Each trap was pushed 

into a hole made by a soil auger until they were level with the soil surface.  A rain 

hat was placed over each trap and set at 3 cm from the ground. A wire basket of 5 

cm mesh size was also placed over each rain hat and pegged down to prevent 

interference by grazers. Most invertebrates caught in pitfall traps were identified to 

species level, apart from Diptera and parasitic Hymenoptera, and assigned to a 

functional group: predatory, zoophagous (predatory and scavenging), 

phytophagous (herbivore or granivorous), detritivore (feed on detritus and 

associated decomposer community of fungi and bacteria), or an additional category 

‘not assigned’.  

Nectar feeding invertebrates were sampled by bait-less pan traps, six per 

experimental unit (2 blue, 2 white, 2 yellow), for 72 h during June and again in July 

2009. In each experimental unit two triangles, 5 m apart, consisting of one pan trap 

of each colour, 1.5 m apart, was set up. Traps of the same colour were pooled to 

give three samples per experimental unit. Each trap consisted of 203 mm diameter 

shallow bowls sprayed yellow, blue or white, half filled with water containing a 

drop of washing detergent to break the surface tension. Wire baskets of 5 cm mesh 

size were placed over all traps to prevent damage by grazing animals. The contents 

of the pitfalls and pan traps were preserved in 70 % Industrial strength methylated 

spirits (IMS) or ethanol. 

3.3.5 Analysis 

The effect of grazing on each measured variable was analysed using an ANOVA on 

linear mixed effects model (lme) output in R (R Development Core Team, 2011) e.g. 

lme (temperature ~ grazing, random = ~1|block/grazing). This approach was used 

to enable the raw data to be analysed accounting for replication at the level of the 

experimental unit or block (n=3). Variables were log, square root, or arcsine square 

root transformed as appropriate to improve model fit. Results of best model fit 

were presented here based on lowest Akaike information criterion (AIC) number 
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and quantile probability plot (qqnorm) with most normal distribution. Where 

ANOVA results showed a significant grazing effect, differences between pairs of 

grazing treatments (PR & R; PR & U), were reported directly from the lme summary 

output. As the remaining treatment pair (R & U) could not be ‘read’ directly from 

the lme summary, the difference between values for R and U in relation to PR was 

divided by the standard error to give a number (#) for the following calculation 

‘2*(1 – pt(#,df=4))’ This gives a probability value for the difference between R and U 

for a two-tailed test where d.f. = 4. 

3.4 Results 

3.4.1 Soil and vegetation characteristics 

Soil temperature was significantly higher on the fully grazed than the un-grazed 

grassland. Vegetation height was significantly different between all treatment pairs 

with the lowest sward height in the fully grazed, intermediate in the rabbit grazed 

and highest in the un-grazed grassland (Table 3.2). Root biomass was significantly 

greater in the rabbit grazed than the un-grazed grassland. Plant litter was 

significantly higher in the un-grazed and rabbit grazed compared to the fully grazed 

grassland. Water infiltration rate, was significantly higher in the un-grazed and 

rabbit grazed than fully grazed grassland. Soil pH, moisture content, bulk density, 

organic matter content and above-ground shoot biomass were not significantly 

different between grazing treatments. Total C stock did not differ significantly with 

grazing. As separate C pools ‘soil’ and ‘shoots’ (above-ground live biomass) were 

not significantly different between grazing treatments (Figure 3.1). Root C stock 

was significantly greater for rabbit grazed than un-grazed grassland, contributing 

around 20 % of the total C pool. Plant litter C stock was significantly greater in un-

grazed and rabbit grazed than grazed grassland.  

ANPP and soil organic matter content (soil surface organic layer ~6 cm thick) did not 

differ significantly with grazing treatment (Table 3.2). Net nitrification rate was 

significantly higher in the un-grazed than the fully grazed grassland but net 

ammonification rate did not differ significantly with grazing treatment (Figure 3.2). 

Mesofaunal feeding rate was significantly greater for rabbit grazed in depth zone 1 
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and for un-grazed in depth zone 2 and 3 compared to fully grazed grassland (Figure 

3.3). Fine root turnover at 0-2.5 cm was significantly greater in un-grazed and rabbit 

grazed than fully grazed grassland (Figure 3.4).  

Table 3.2 Soil and vegetation characteristics, grazing treatment means ± standard deviations with 

bold letters indicating significant differences at *(p < 0.05) or ***(p < 0.001), ns = non-significant. 

 
 Fully grazed Rabbit grazed Un-grazed ANOVA 
Soil     

pH 6.21 ± 0.37 6.16 ± 0.45 6.01 ± 0.33 ns 
Moisture content (%)x 13.02 ± 8.12 8.28 ± 2.62 6.26 ± 5.42 ns 
Temperature (°C)x 18.08 ± 2.90 a 17.20 ± 0.39 ab 16.93 ± 2.20 b * 
Bulk density (g cm-3) 1.01 ± 0.07 1.02 ± 0.09 0.93 ± 0.10 ns 
Organic matter content 
(%) 

3.11 ± 0.71 3.23 ± 0.64 3.57 ± 0.92 ns 

Infiltration rate (mm min-

1) 
6.60 ± 1.94 a 22.74 ± 14.7 b 37.27 ± 28.8 b * 

Vegetation     
Vegetation height (cm) 5.27 ± 1.03 a 19.43 ± 7.68 b 37.63 ± 7.94 c *** 
Root biomass (kg dry wt 
m-2) 

1.24 ± 0.55 ab 1.22 ± 0.36 a 0.71 ± 0.26 b * 

Litter biomass (kg dry wt 
m-2) 

0.12 ± 0.03 a 0.22 ± 0.08 b 0.28 ± 0.04 b * 

Shoot biomass (kg dry wt 
m-2) 

0.83 ± 0.29 0.80 ± 0.29 0.59 ± 0.25 ns 

ANPP (kg dry wt m-2 y-1) 0.34 ± 0.09 0.35 ± 0.07 0.34 ± 0.10 ns 
x Mean values of 4 months data, June-September  
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Figure 3.1 Effect of grazing (PR = fully grazed, R = rabbit grazed, U = un-grazed) on C stock. Bold 

text indicates significant differences between grazing treatments for each component, * (p < 0.05), 

** (p < 0.01). 

 
Figure 3.2 Effect of grazing (PR = fully grazed, R = rabbit grazed, U = un-grazed) on N 

mineralisation. Bold text indicates significant differences between grazing treatments for each 

component, * (p < 0.05). 
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Figure 3.3 Effect of grazing (PR = fully grazed, R = rabbit grazed, U = un-grazed) on below-ground 

mesofaunal feeding rate in autumn. Bold text indicates significant differences between grazing 

treatments for each depth zone (d1 – d4), *(p < 0.05). 

 

 

 
Figure 3.4 Effect of grazing (PR = fully grazed, R = rabbit grazed, U = un-grazed) on number of new 

fine roots produced per month, as a proxy for potential fine root turnover. Bold text shows 

significant differences between grazing treatments for each soil depth * (p < 0.05). 
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3.4.2 Biodiversity 

Cumulative plant species richness, for un-grazed, rabbit grazed and fully grazed 

plots was 45, 49 and 61 species (per 15 m2) respectively. At the experimental unit 

level, fully grazed grassland was significantly more species rich, particularly for 

forbs, than un-grazed grassland (Table 3.3). Graminoids were equally species rich 

regardless of grazing intensity. Forb cover was significantly higher in fully and rabbit 

grazed grassland than in un-grazed habitat. In contrast, grass cover was significantly 

lower in fully grazed than rabbit or un-grazed grassland (Figure 3.5). Total number 

of species flowering, particularly forbs, and percentage of forb species flowering 

were all significantly greater in fully grazed than un-grazed habitat.  

Table 3.3 Plant species richness and flowering, grazing treatment means ± standard deviations 

with bold letters indicating significant differences at *(p < 0.05), ns = non-significant. 

 
Variable Fully grazed Rabbit grazed Un-grazed ANOVA 
Mean species richness (spp per 1 x 1 
m) 

    

All species 22.93 ± 4.04 
a 

18.93 ± 4.51 
ab 

16.20 ± 2.27 b * 

Graminoid (grasses & sedges) 7.33 ± 1.50 7.20 ± 0.86 6.60 ± 0.83 ns 
Forb 11.13 ± 2.45 

a 
7.80 ± 2.81 ab 5.47 ± 1.36 b * 

Number of species flowering     
All species 10.53 ± 3.36 

a 
8.93 ± 2.15 a 6.33 ± 1.84 b * 

Graminoid 4.40 ± 1.50 5.67 ± 0.98 4.60 ± 1.24 ns 
Forb 6.13 ± 2.20 a 3.27 ± 1.83 ab 1.73 ± 1.22 b * 

Percentage species flowering     
Graminoid 59.89 ± 16.8 

a 
79.02 ± 11.6 b 69.40 ± 16.4 

ab 
* 

Forb 54.36 ± 14.6 
a 

41.92 ± 15.1 
ab 

32.29 ± 21.2 b * 

Forb / forb + graminoid pc.     
Forb percentage 21.25 ± 0.07 

a 
16.65 ± 0.08 a 6.90 ± 0.05 b * 

 
Of nearly ten thousand invertebrates sampled from pitfalls, 40 % were predatory 

spiders of 62 species and 3 % predatory and zoophagous beetles, mainly carabids 

and Staphylinidae of 43 species. Pan traps sampled 14 bee species. Predatory 

Coleoptera were more abundant (ANOVA; F = 5.2, d.f. = 4, p < 0.05) and species rich 
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(ANOVA; F = 13.2, d.f. = 4, p < 0.01) in fully grazed than un-grazed grassland. 

Araneae were also significantly most abundant (ANOVA; F = 9.72, d.f. = 4, p < 0.05) 

and species rich (ANOVA; F = 9.72, d.f. = 4, p < 0.05) on fully grazed land. Nectar 

feeders, as a proxy for pollinators, did not differ significantly in either abundance or 

species richness with grazing intensity.  

 
Figure 3.5 Effect of grazing (PR = fully grazed, R = rabbit grazed, U = un-grazed) on plant functional 

groups (adjusted to 100 %). Bold text shows significant differences between grazing treatments for 

each plant group, * (p < 0.05), ** (p < 0.01). 

 
Pan traps sampled Colletes cunicularius a Red Data Book (RDB3) listed sand mining 

bee, and pitfalls sampled the carabid beetle Amara lucida, Staphylinidae 

Mycetoporus piceolus and Mycetoporus punctus, Linyphiidae Mecopisthes peusi and 

the ground bug Megalonotus praetextatus, all nationally scarce invertebrates 

associated with coastal dune habitat (Alexander et al., 2005). Certain species were 

only found as one or two isolated individuals, C. cunicularius, A. lucida, M. punctus 

and M. praetextatus, and therefore cannot be linked to habitat type. The rove 

beetle M. piceolus was more abundant in the un-grazed grassland; in contrast the 

small spider M. peusi was more numerous in the grazed grassland. Full results for 

invertebrate abundance and diversity are presented in Table A3.1.  

 

Shrubs 
Grass 
Sedges 
Forbs 
Moss 
Lichen 

PR R U

P
la

nt
 fu

nc
tio

na
l g

ro
up

 (%
 c

ov
er

)

0

20

40

60

80

100 Grass * PR & U

Grass * PR & R

Forbs ** PR & U

Forbs *  R & U



Grassland grazing and ecosystem services  Chapter 3 

54 

3.5 Discussion 

Most European semi natural grasslands, including coastal grasslands, have suffered 

a decline in traditional grazing, with marginal grasslands being ‘abandoned’ or 

replaced by ‘conservation grazing’ to address conservation priorities such as plant 

diversity or provision of habitat for breeding birds (GAP, 2012). The relationships 

between grazing impacts on biophysical measures in this study and probable 

impacts on ecosystem services are summarised in Figure 6, supplemented by 

additional information from the literature for some services. We acknowledge that 

for some of these services, particularly the cultural services, they are proxies of 

‘potential’ ecosystem services, rather than ‘realised’ ecosystem services. From the 

results of this study, it is clear that different grazing regimes favour different 

ecosystem services, and management decisions necessitate trade-offs in delivery of 

those ecosystem services, or changes in the way grazing management is applied. 

Here, the widely held view that low intensity grazing is always the ‘best’ 

management option for the conservation of semi-natural grasslands is challenged. 

3.5.1 Supporting services 

Primary productivity and nutrient cycling are key supporting services of semi-

natural grasslands. These underlie regulating services such as equable climate by 

greater plant biomass leading to higher C sequestration rates (Soussana et al., 

2004), and provisioning services such as forage production and quality (Bullock et 

al., 2011). Nutrient cycling is important as it determines plant available N, a limiting 

factor for plant primary productivity (Bardgett et al., 2011). Decomposition may 

influence N cycling positively or negatively, dependent on the C:N ratio of organic 

substrate available to microbes (Bardgett, 2005). Generally, faster decomposition 

rates will be detrimental for C storage as soil respiration will increase (Luo and 

Zhou, 2006). Classic theory suggests that more intensively grazed land will be 

dominated by faster bacterial nutrient cycling and un-grazed or lightly grazed 

grassland by slower fungal cycling (Bardgett et al., 1998; McNaughton et al., 1997). 

However, in this study one aspect of nutrient cycling, net nitrification rate, was 

greatest in un-grazed grassland, supporting an opposing view that grazing by large 
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herbivores can decrease nutrient cycling (Bakker, 2003; Van Wijnen et al., 1999). 

This may be because cattle distribute N unevenly via their faeces and urine whereas 

smaller mammals such as voles, present within un-grazed units, return nutrients to 

plants more uniformly (Rotz et al., 2005). In addition, as the plant litter inputs, 

mesofaunal feeding rate and root turnover rate were greater in un-grazed and 

rabbit than fully grazed grassland more nutrients may be returned to the soil via 

decomposition in these grazing regimes. 

 

SUPPORTING SERVICE
PRIMARY 
PRODUCTIVITY (=)

REGULATING SERVICE
EQUABLE CLIMATE (=/+)

Organic matter ns
Soil C stock ns

Detritivore feeding rate *
Plant available nitrate *

Root biomass*
Litter biomass & C stock *

ANPP ns
Shoot biomass & C stock ns

Plant species richness *
Forb % cover *
Grass % cover *
Forb % flowering *

Vegetation height***

Bulk density ns
Daytime temperature *
Soil moisture ns
Water infiltration rate*

2 SOIL

SUPPORTING 
SERVICE
NUTRIENT 
CYCLING (+)

PROVISIONING SERVICE
FOOD PROVISIONING (-)

CULTURAL SERVICE 
ENVIRONMENTAL 
APPRECIATION (-)

REGULATING SERVICE
PEST CONTROL & POLLINATION (+/-)

Predatory invertebrates #
Pollinators #

3 OTHER

1 VEGETATION

Methane from cattle #

Cattle for meat #

Effects of grazer removal

REGULATING SERVICE
FLOOD CONTROL (+)

 
 

Figure 3.6 Effects of pony and cattle removal from coastal grassland on measured variables and 

potential ecosystem service delivery. Significant increase or decrease in variables indicated by up 

(↑) or down (↓) arrows (*p < 0.05, ***p < 0.001, ns = not significant), # for expected results from 

the literature. Direct links between variables (solid lines), indirect links to ecosystem services 

(dashed lines) with positive (+), equal (=) or negative (-) effects on ecosystem services are also 

shown. 
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3.5.2 Provisioning services 

It can be argued that the low intensity grazed coastal grassland is more important 

than other grassland management types for the provisioning service of food supply, 

with good quality beef or lamb produced at low stocking levels (Wood et al., 2007). 

This service would be lost upon removal of grazing. However, as grazing 

abandonment is not a static state, with natural succession shrubs and trees will 

dominate and non-commercial food sources such as nuts and berries may become 

important to some people, but these benefits are difficult to quantify (Everard et 

al., 2010). Genetic diversity of wild species may be enhanced by the use of rare 

breeds of cattle for conservation grazing and seed from semi-natural grassland used 

to create species-rich grasslands under agri-environmental schemes (Bullock et al., 

2011). This service may be enhanced by extensive grazing management to 

maximise plant biodiversity. 

Fresh drinking water supply, via recharge of aquifers under grassland is another key 

provisioning service. This service is also provided by both chalk aquifers underlying 

semi-natural grasslands and vast swathes of UK upland grasslands that are major 

water catchments (Holland et al., 2011; Koo and O’Connell, 2006). In this study 

water infiltration rates increased when large herbivores were removed, regardless 

of the presence or absence of rabbits, as large grazers are responsible for soil 

compaction (Elliott and Carlson, 2004). Even though the study coastal grassland is 

largely level, in sloping habitats it is likely that high water infiltration rates will 

improve water storage and reduce run-off (Marshall et al., 2009). It may therefore 

be proposed that rabbit grazed or un-grazed grasslands should be promoted on 

hillsides where water storage is important for land managers. If primary succession 

continues in the un-grazed or ‘abandoned’ grassland, shrubs are likely to dominate 

and the pattern of water infiltration and water storage may be reversed, with 

greater water storage in the grazed grassland due to lower evapo-transpiration 

rates (Chartier et al., 2011).  
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3.5.3 Regulating services 

Regulating services include maintenance of an equable climate, control of flooding 

and water quality and pest regulation and pollination. Semi-natural grasslands play 

an important part in maintenance of an equable climate as they are a valuable C 

store, according to current evidence emit little nitrous oxide and have lower 

methane emissions than intensively managed grasslands due to lower stocking 

levels (Bullock et al., 2011; Jones and Donnelly, 2004; Soussana et al., 2004). There 

is currently little consensus on the role of grazing in grassland C sequestration. 

Light, moderate or heavy grazing can all increase soil C, depending on grassland 

type (Kemp and Michalk, 2007). Conversely extensive grazing or no grazing may 

also increase C storage (Campbell et al., 1997; Soussana et al., 2004) and lead to 

increased C storage. This study found that total C stock from four combined pools, 

soil, roots, litter and shoots, did not differ with grazing intensity but that root C was 

greatest in fully and rabbit grazed, while litter C was greatest in rabbit and un-

grazed grassland. As root-derived C contributed more to total C stock than litter or 

shoot-derived C and root-derived C has a residence time of 2.5 times that of litter 

or shoot derived C (Rasse et al., 2005) there is potential for greater C storage in the 

grazed grassland.  

Water storage within grassland groundwater also maintains regulating functions 

such as moderating overland flow, reducing flooding and improving water quality 

by reducing nutrients and pathogenic bacteria than often contaminate surface 

waters (Bullock et al., 2011; Kemp and Michalk, 2007). The decreased infiltration 

rates due to compaction caused by grazing of cattle or other large herbivores leads 

to higher runoff and N contamination via faeces or urine (Cheng-Zhang and Squires, 

2010; Rotz et al., 2005). By contrast, grazing abandonment increases infiltration 

rates with significant potential as a tool to manage flood risk (Carroll et al., 2004). 

Invertebrate abundance and diversity, particularly of large predatory spiders, 

carabids and staphylinids is often higher in un-grazed grasslands (Ford et al., 2012a; 

Morris, 2000), with potential implications for pest regulation where semi-natural 

grasslands border arable fields. Our results show the opposite, with greatest 
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abundance and diversity of predatory invertebrates in the fully grazed grassland. As 

catch size was consistently greatest in fully grazed, intermediate in rabbit grazed 

and smallest in un-grazed it is likely that increased structural complexity of 

vegetation in the rabbit grazed and un-grazed treatments resulted in reduction of 

catch (Melbourne, 1999), therefore these results may not capture true abundance 

and diversity of predatory invertebrates. Nectar feeders and therefore pollinators, 

including bumble bees, hoverflies and butterflies, tend to be driven by floral 

abundance, floral richness, availability of nectar resources and sward structure 

(Potts et al., 2003; Sjödin et al., 2008), all factors influenced by grazing intensity. 

Grazing also affects soil microbial diversity, with clear effects on microbial 

composition in both sand dunes and saltmarsh (Ford et al., 2012b), although the 

implications for ecosystem services provision are unclear. 

3.5.4 Cultural services 

Proof of the importance of coastal grasslands to cultural services includes the 

conservation status of coastal grasslands as a UK Biodiversity Action Plan (UK BAP) 

listed priority habitat with some important plants, nationally scarce invertebrates 

(Alexander et al., 2005), birds such as RDB3 skylarks (Alauda arvensis) and BAP 

listed priority amphibian, natterjack toad (Epidalea calamita). Environmental 

appreciation and recreation are also key cultural services in semi-natural grasslands 

and coastal sand dunes in particular attract significant numbers of tourists (Bullock 

et al., 2011; Jones et al., 2011). Aesthetic appreciation of the environment is likely 

to improve with reduction in grass in favour of increased abundance of flowering 

plants (Mitteager et al., 2006; Paar et al., 2008). In this study plant species richness, 

particularly for forbs, and flower abundance were significantly greater in fully than 

in un-grazed habitat. Tall grasses were more dominant in the un-grazed areas, 

indeed Arrhenatherum elatius, a negative indicator species of fixed dune grassland, 

was present only within rabbit grazed and un-grazed grassland. Plassmann et al. 

(2010) also found that the number of positive indicator species was lower in un-

grazed grassland. Therefore a tentative conclusion could be drawn that aesthetic 

appreciation is greater in extensively grazed than un-grazed grassland. 
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3.5.5 Grazing management for conservation 

Mixed grazing is often recommended as grazing with both horses and cattle can 

lead to enhanced control of competitive grass species, opening up gaps for other 

plant species and increases in structural diversity compared to cattle grazing alone 

(Loucougaray, 2004). Welsh mountain ponies graze on poor quality forage and 

avoid flowering heads, with potential positive results for plant diversity, flowering 

and aesthetics, as argued in this study. Sheep will graze a sward shorter than either 

cattle or ponies and may select high quality plant parts such as flowers, pods and 

young shoots (Rook et al., 2004), making them less suitable for conservation 

grazing. Despite the majority of north–west European grassland managers 

promoting low intensity grazing by ponies and/or cattle, Newton et al. (2009), in a 

systematic review of grazing management, found that the presence of grazers 

consistently lead to a decline in ‘tussocky’ vegetation with negative effects on 

reptile and invertebrate habitat. Rotational grazing, where animals are moved at 

regular time intervals allowing vegetation time to ‘recover’, often has favourable 

effects on plant, bird and invertebrate diversity (Söderström et al., 2001; Wrage et 

al., 2011). It is also recognised that un-grazed vegetative buffer zones adjacent to 

riparian or arable fields, can allow spatial co-delivery of multiple ecological services, 

although these are rarely quantified (Olson & Wäckers, 2007). Where large grazers 

are removed rabbit grazing may define habitat characteristics, keeping patches of 

grassland fairly open, with a lower mean sward height than un-grazed grassland, 

preventing major declines in plant or forb diversity but allowing soil to become less 

compact (Isermann et al., 2010) with greater infiltration rates, results mirrored by 

this study. However, rabbits are often dependent on large herbivores to maintain 

the short vegetation they prefer, and these effects may not persist. 

3.5.6 Ecosystem service tradeoffs 

In the light of abandonment of low productivity grazing land throughout Europe, in 

addition to biodiversity measures of ‘success’ in conservation, ecosystem service 

measures and trade-offs need to be taken into account when choosing an 

appropriate grassland management scheme. Results from this case study and the 
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wider scientific literature indicate that extensively cattle grazed or mixed 

pony/cattle grazed grassland should be conserved for the ecosystem services of 

plant genetic diversity, food provision, cultural environmental appreciation and 

potential pollination services. Un-grazed grassland should be conserved for the 

ecosystem services of invertebrate biodiversity, water storage and flood control 

(particularly on hill-side slopes), nutrient cycling and the potential for pest 

regulation. Rabbit grazed grasslands provide slightly lower plant biodiversity and 

cultural services than grazed grasslands but similar water infiltration dynamics to 

un-grazed grasslands. Grazing management should depend on the conservation 

objectives for a particular habitat but should take into account likely trade-offs with 

other ecosystem services. Perhaps grassland managers, whilst maintaining 

extensively grazed areas, could trial the introduction of rabbit grazed or un-grazed 

‘buffer strips’ next to water courses, natural boundaries or arable fields, to 

minimise biodiversity and ecosystem service trade-offs. 
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3.8 Appendix 

Table A3.1 Invertebrate species counts for all grazing treatments from pitfalls and pan traps 

(nectar feeders only); COL (Coleoptera), ARA (Araneae), HYM (Hymenoptera), HET (Heteroptera), 

CHI (Chilopoda), HET (Heteroptera), OPI (Opiliones), DIC (Dictyoptera), ORT (Orthoptera), PUL 

(Pulmonata), ISO (Isopoda), DIP (Diploda), DER (Dermaptera), HAP (Haplotaxida); sorted by 

functional group; PRE (Predatory), ZOO (Zoophagous), OMN (Omnivore), PHY (Phytophagous, (B) 

Bryophyte feeder), POL (Pollen feeder), DET (Detritivore, (F) Fungivorous, (S) Scavenging), MYR 

(Myrmecophilous), DUN (Dung feeder), NEC (Nectar feeders) NOT (Not assigned). Spiders; FRH 

(foliage running hunter), GRH (ground running hunter), SA (Stalker/Ambusher), SWB (Space web 

builder), OW (Orb weaver), SW (Sheet weaver). N (nationally scarce), RDB3 (Red data book 3 

listed), * (associated with coastal dune habitat; Alexander et al., 2005). 

Order Family Species Common 
name 

Group PR R U Total 

COL Staphylinidae Tachyporus atriceps Rove beetle PRE1 24 10 2 36 
COL Staphylinidae Tachyporus dispar Rove beetle PRE1 6 3 0 9 
COL Staphylinidae Tachinus marginellus Rove beetle PRE1 0 0 1 1 
COL Staphylinidae Amischa analis Rove beetle PRE1 1 1 1 3 
COL Staphylinidae Oxypoda lentula  Rove beetle PRE1 1 0 0 1 
COL Staphylinidae Othius subuliformis Rove beetle PRE1 2 1 0 3 
COL Staphylinidae Quedius boops Rove beetle PRE1 2 0 0 2 
COL Staphylinidae Quedius curtipennis Rove beetle PRE1 3 0 0 3 
COL Staphylinidae Quedius fuliginosus Rove beetle PRE1 1 2 0 3 
COL Staphylinidae Quedius semiobscurus Rove beetle PRE1 6 4 0 10 
COL Staphylinidae Quedius molochinus Rove beetle PRE1 1 0 2 3 
COL Staphylinidae Quedius levicollis Rove beetle PRE1 1 3 0 4 
COL Staphylinidae Philonthus carbonarius Rove beetle PRE1 1 0 0 1 
COL Staphylinidae Philonthus cognatus Rove beetle PRE1 1 0 0 1 
COL Staphylinidae Philonthus splendens Rove beetle PRE1 0 1 0 1 
COL Staphylinidae Philonthus varians Rove beetle PRE1 1 0 0 1 
COL Staphylinidae Ocypus aenocephalus Rove beetle PRE1 13 5 0 18 
COL Staphylinidae Ocypus brunnipes Rove beetle PRE1 3 2 3 8 
COL Staphylinidae Ocypus olens Rove beetle PRE1 1 0 0 1 
COL Staphylinidae Stenus clavicornis Rove beetle PRE1 2 2 6 10 
COL Staphylinidae Stenus ossium Rove beetle PRE1 0 1 1 2 
COL Staphylinidae Stenus pusillus Rove beetle PRE1 1 0 0 1 
COL Staphylinidae Stenus juno Rove beetle PRE1 5 2 1 8 
COL Staphylinidae Stenus latifrons Rove beetle PRE1 0 1 0 1 
COL Staphylinidae Stenus nigritulus Rove beetle PRE1 1 0 0 1 
COL Staphylinidae Xantholinus linearis Rove beetle PRE1 6 4 0 10 
COL Staphylinidae Xantholinus longiventris Rove beetle PRE1 2 1 1 4 
COL Staphylinidae Aleochara sparsa Rove beetle PRE1 0 1 0 1 
COL Cantharidae Rhagonycha fulva Soldier beetle PRE2 10 0 0 10 
COL Coccinellidae Rhyzobius litura  Lady bird PRE2 5 2 1 8 
COL Coccinellidae Nephus redtenbacheri Lady bird PRE2 1 2 1 4 

COL Coccinellidae 
Subcoccinella 
vigintiquattuorpunctata  Lady bird PRE2 3 1 2 6 

COL Histeridae  Kissiter minimus Water beetle PRE3 1 0 0 1 
COL Carabidae Nebria salina Ground beetle ZOO4 1 0 0 1 
COL Carabidae Dyschirius globosa Ground beetle ZOO4 2 0 1 3 
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COL Carabidae Pterostichus versicolor Ground beetle ZOO4 1 0 0 1 
COL Carabidae Calathus fuscipes Ground beetle ZOO4 24 7 0 31 
COL Carabidae Calathus melanocephalus Ground beetle ZOO4 23 8 0 31 
COL Carabidae Badister bipustulatus Ground beetle ZOO4 8 5 5 18 
COL Carabidae Metabletus foveatus Ground beetle ZOO4 2 1 0 3 
COL Carabidae Notiophilus aquaticus Ground beetle ZOO4 1 0 0 1 
COL Carabidae Trechus obtusus Ground beetle ZOO4 0 0 1 1 
COL Carabidae Pterostichus niger Ground beetle ZOO4 0 2 0 2 
COL Carabidae Amara aenea Ground beetle PHY4 4 3 0 7 
COL Carabidae Amara communis Ground beetle PHY4 0 4 0 4 
COL Carabidae Amara lucida Ground beetle PHY4 N 1 3 0 4 
COL Carabidae Amara lunicollis Ground beetle PHY4 2 4 3 9 
COL Carabidae Amara ovata Ground beetle PHY4 0 0 1 1 
COL Carabidae Amara tibialis Ground beetle PHY4 3 1 0 4 
COL Carabidae Harpalus tardus Ground beetle PHY4 2 1 1 4 
COL Leiodidae Leiodes rugosa Fungus beetle PHY5 2 0 0 2 
COL Leiodidae Leiodes rufipennis Fungus beetle PHY5 12 10 2 24 
COL Leiodidae Sciodrepoides watsoni Fungus beetle PHY5 1 0 0 1 
COL Leiodidae Catops fuliginosus Fungus beetle PHY5 0 0 8 8 
COL Leiodidae Catops morio Fungus beetle PHY5 0 2 2 4 
COL Leiodidae Agathidium laevigatum Fungus beetle PHY5 1 0 0 1 
COL Byrrhidae Simplocaria semistriata Pill beetle PHY5 (B) 0 2 0 2 

COL Dryopidae Dryops ernesti 
Long-toed 
water beetle PHY5 2 0 0 2 

COL Dryopidae Dryops luridus  
Long-toed 
water beetle PHY5 0 0 1 1 

COL Tenebrionidae Lagria hirta  
Darkling 
beetle PHY5 2 0 2 4 

COL Tenebrionidae Melanimon tibialis 
Darkling 
beetle PHY5 7 5 1 13 

COL Tenebrionidae Phylan gibbus 
Darkling 
beetle PHY5 2 2 1 5 

COL Tenebrionidae Cteniopus suphureus 
Darkling 
beetle PHY5 1 1 0 2 

COL Chrysomelidae Chrysomela populi Leaf beetle PHY5 2 0 0 2 
COL Chrysomelidae Galerucella tenella Leaf beetle PHY5 1 0 0 1 
COL Chrysomelidae Lochmaea capreae Leaf beetle PHY5 1 3 0 4 
COL Chrysomelidae Longitarsus gracilis Leaf beetle PHY5 1 2 0 3 
COL Chrysomelidae Longitarsus luridus Leaf beetle PHY5 6 5 0 11 
COL Chrysomelidae Longitarsus jacobaea Leaf beetle PHY5 39 1 0 40 
COL Chrysomelidae Cassida prasina Leaf beetle PHY5 0 0 1 1 
COL Chrysomelidae Chaetocnema hortensis  Leaf beetle PHY5 1 0 0 1 

COL Chrysomelidae 
Neocrepidodera 
ferruginea Leaf beetle PHY5 20 13 1 34 

COL Chrysomelidae 
Neocrepidodera 
transversa Leaf beetle PHY5 1 0 0 1 

COL Curculionidae Otiorrhynchus ovatus Weevil PHY5 1 2 1 4 
COL Curculionidae Philopedon plagiatus Weevil PHY5 10 12 4 26 
COL Curculionidae Sitona lineellus Weevil PHY5 3 1 0 4 
COL Curculionidae Hypera plantaginis Weevil PHY5 7 3 0 10 
COL Curculionidae Apion pubescens Weevil PHY5 3 0 0 3 
COL Elateridae Agrypnus murinus  Click beetle POL6 33 20 3 56 
COL Elateridae Agriotes obscurus Click beetle POL6 11 5 0 16 
COL Hydrophilidae Megasternum concinnum Water beetle DET7 19 10 6 35 
COL Staphylinidae Anotylus tetracarinatus Rove beetle DET1 1 0 0 1 
COL Staphylinidae Ischnosoma splendidum  Rove beetle DET1 (F) 0 1 5 6 
COL Staphylinidae Mycetoporus piceolus Rove beetle DET1 (F) N 5 9 13 27 
COL Staphylinidae Mycetoporus punctus Rove beetle DET1 (F) N 0 1 0 1 
COL Staphylinidae Atheta brunneipennis Rove beetle DET1 (F) 0 0 1 1 

COL Staphylinidae 
Micropeplus 
staphylinoides Rove beetle DET1 (F) 0 1 0 1 

COL Latridiidae Corticaria minuta 
Scavenger 
beetle DET8 (F) 0 0 1 1 

COL Staphylinidae Drusilla caniculatata Rove beetle MYR1 0 6 0 6 
COL Staphylinidae Zyras collaris Rove beetle MYR1 0 0 1 1 
COL Staphylinidae Platydracus stercorarius Rove beetle MYR1 9 6 0 15 
COL Scarabaeidae Aphodius prodromus Dung beetle DUN9 0 1 0 1 
COL Scarabaeidae Onthophagus similis  Dung beetle DUN9 5 0 1 6 
COL Scarabaeidae Geotrupes stercorarius Dung beetle DUN9 0 0 2 2 
COL Scarabaeidae Aphodius fimetarius Dung beetle DUN9 1 0 0 1 
COL Scarabaeidae Aphodius rufipes Dung beetle DUN9 1 0 0 1 
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COL Scarabaeidae Sericea brunnea Dung beetle DUN9 0 1 0 1 

COL Carabidae 
Philorhizus 
melanocephalus Ground beetle NOT 0 1 2 3 

COL Staphylinidae Mocyta fungi Rove beetle NOT 23 13 12 48 
COL Staphylinidae Pella limbata Rove beetle NOT 0 0 1 1 
COL Staphylinidae Bisnius sordidus Rove beetle NOT 4 0 0 4 
COL Staphylinidae Badura macrocera  Rove beetle NOT 1 0 0 1 
COL Staphylinidae Megalinus glabratus Rove beetle NOT 3 0 0 3 
COL Lampyridae Lampyris noctiluca  Glow worm NOT 3 1 1 5 
ARA Clubionidae Cheiracanthium virescens Foliage spider PRE10 

(FRH) 
1 0 0 1 

ARA Clubionidae clubionid juveniles Foliage spider PRE10 
(FRH) 

3 1 0 4 

ARA Gnaphosidae Drassodes cupreus  Ground spider PRE10 
(GRH) 

10 3 2 15 

ARA Gnaphosidae Haplodrassus signifer Ground spider PRE10 
(GRH) 

0 2 0 2 

ARA Gnaphosidae Zelotes electus  Ground spider PRE10 
(GRH) 

19 6 0 25 

ARA Gnaphosidae Zelotes latreillei  Ground spider PRE10 
(GRH) 

4 19 16 39 

ARA Gnaphosidae Micraria pulicaria Ground spider PRE10 
(GRH) 

0 0 1 1 

ARA Gnaphosidae Gnaphosid juveniles Ground spider PRE10 
(GRH) 

2 12 1 15 

ARA Lycosidae Pardosa monticola  Wolf spider PRE10 
(GRH) 

643 371 5 1019 

ARA Lycosidae Pardosa palustris  Wolf spider PRE10 
(GRH) 

33 2 0 35 

ARA Lycosidae Pardosa armentata Wolf spider PRE10 
(GRH) 

2 0 0 2 

ARA Lycosidae Pardosa pullata  Wolf spider PRE10 
(GRH) 

103 360 269 732 

ARA Lycosidae Pardosa nigriceps  Wolf spider PRE10 
(GRH) 

15 52 145 212 

ARA Lycosidae Alopeosa barbipes Wolf spider PRE10 
(GRH) 

1 0 0 1 

ARA Lycosidae Alopecosa pulverulenta  Wolf spider PRE10 
(GRH) 

49 27 7 83 

ARA Lycosidae Trochosa ruricola Wolf spider PRE10 
(GRH) 

1 0 0 1 

ARA Lycosidae Trochosa terricola Wolf spider PRE10 
(GRH) 

10 6 2 18 

ARA Lycosidae lycosid juveniles Wolf spider PRE10 
(GRH) 

122 98 44 264 

ARA Thomisidae Xysticus cristatus Crab spider PRE10 (SA) 11 2 0 13 
ARA Thomisidae Xysticus erraticus Crab spider PRE10 (SA) 17 4 0 21 
ARA Thomisidae Xysticus kochi Crab spider PRE10 (SA) 11 1 0 12 
ARA Thomisidae Ozyptila atomaria Crab spider PRE10 (SA) 1 0 0 1 
ARA Thomisidae thomisid juveniles Crab spider PRE10 (SA) 9 3 2 14 
ARA Salticidae Euophys frontalis Jumping 

spider 
PRE10 (SA) 0 0 1 1 

ARA Salticidae Heliophanus flavipes Jumping 
spider 

PRE10 (SA) 0 0 1 1 

ARA Theridiidae Enoplognatha thoracica Comb spider PRE10 
(SWB) 

1 0 0 1 

ARA Dictynidae Argenna subnigra  Mesh webbed 
spider 

PRE10 
(SWB) 

58 60 4 122 

ARA Tetragnathidae Pachygnatha degeeri Orb weaver PRE10 
(OW) 

473 212 25 710 

ARA Linyphiidae Ceratinella brevipes Sheet weaver PRE10 (SW) 1 0 0 1 
ARA Linyphiidae Ceratinella brevis Sheet weaver PRE10 (SW) 0 0 2 2 
ARA Linyphiidae Walckenaeria acuminata Sheet weaver PRE10 (SW) 0 2 9 11 
ARA Linyphiidae Walckenaeria antica Sheet weaver PRE10 (SW) 11 14 6 31 
ARA Linyphiidae Walckenaeria atrotibialis Sheet weaver PRE10 (SW) 0 3 1 4 
ARA Linyphiidae Walckenaeria monoceros  Sheet weaver PRE10 (SW) 18 2 1 21 
ARA Linyphiidae Walckenaeria vigilax Sheet weaver PRE10 (SW) 0 1 0 1 
ARA Linyphiidae Dicymbium nigrum Sheet weaver PRE10 (SW) 8 3 0 11 
ARA Linyphiidae Peponocranium ludicrum Sheet weaver PRE10 (SW) 0 0 1 1 
ARA Linyphiidae Oedothorax fuscus Sheet weaver PRE10 (SW) 4 0 1 5 
ARA Linyphiidae Oedothorax retusus Sheet weaver PRE10 (SW) 5 0 0 5 
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ARA Linyphiidae Pelecopsis parallela  Sheet weaver PRE10 (SW) 2 0 0 2 
ARA Linyphiidae Pocadicnemis pumila Sheet weaver PRE10 (SW) 1 0 3 4 
ARA Linyphiidae Mecopisthes peusi Sheet weaver PRE10 (SW) 

N 
13 3 1 17 

ARA Linyphiidae Trichopterna thorelli Sheet weaver PRE10 (SW) 0 2 0 2 
ARA Linyphiidae Cnephalocotes obscurus Sheet weaver PRE10 (SW) 0 2 1 3 
ARA Linyphiidae Erigone atra Sheet weaver PRE10 (SW) 5 0 0 5 
ARA Linyphiidae Erigone dentipalpis Sheet weaver PRE10 (SW) 3 0 0 3 
ARA Linyphiidae Tiso vagans Sheet weaver PRE10 (SW) 95 69 12 176 
ARA Linyphiidae Troxochrus scabriculus Sheet weaver PRE10 (SW) 0 1 3 4 
ARA Linyphiidae Tapinocyba praecox  Sheet weaver PRE10 (SW) 11 0 2 13 
ARA Linyphiidae Gongylidiellum vivum Sheet weaver PRE10 (SW) 15 9 6 30 
ARA Linyphiidae Erigonella hiemalis Sheet weaver PRE10 (SW) 0 1 0 1 
ARA Linyphiidae Agyneta decora Sheet weaver PRE10 (SW) 5 1 1 7 
ARA Linyphiidae Centromerita concinna Sheet weaver PRE10 (SW) 3 6 0 9 
ARA Linyphiidae Centromerus prudens Sheet weaver PRE10 (SW) 0 0 1 1 
ARA Linyphiidae Stemonyphantes lineatus Sheet weaver PRE10 (SW) 2 1 0 3 
ARA Linyphiidae Bathyphantes gracilis Sheet weaver PRE10 (SW) 3 2 0 5 
ARA Linyphiidae Bathyphantes parvulus Sheet weaver PRE10 (SW) 4 1 0 5 
ARA Linyphiidae Lepthyphantes tenuis Sheet weaver PRE10 (SW) 23 10 2 35 
ARA Linyphiidae Lepthyphantes mengei Sheet weaver PRE10 (SW) 0 6 1 7 
ARA Linyphiidae Lepthyphantes pallidus Sheet weaver PRE10 (SW) 6 23 5 34 

ARA Linyphiidae 
Lepthyphantes 
zimmermani Sheet weaver PRE10 (SW) 1 2 0 3 

ARA Linyphiidae juveniles Linyphiidae* Sheet weaver PRE10 (SW) 55 33 6 94 
HYM Formicidae Lasius fuliginosus Ant PRE11 (P) 0 0 1 1 
HYM Formicidae Lasius mixtus  Ant PRE12 (P) 3 8 9 20 
HYM Formicidae Lasius umbratus  Ant PRE13 (P) 1 0 0 1 
HET Nabidae Nabis flavomarginatus Damsel bug PRE14 0 1 0 1 
CHI Lithobiidae Lithobius microps Centipede PRE15 0 1 2 3 

HET Dipsocoridae 
Ceratocombus 
coleoptratus   PRE16 0 0 8 8 

OPI Nemastomatidae Nemastoma bimaculata Harvestmen ZOO15 0 0 1 1 
OPI Phalangiinae Lacinius ephippiatus Harvestmen ZOO15 0 5 2 7 
OPI Phalangiinae Platybunus triangularis Harvestmen ZOO15 5 7 2 14 
OPI Phalangiinae Lophopilio palpinalis Harvestmen ZOO15 0 3 0 3 
OPI Phalangiinae Oligolophus tridens  Harvestmen ZOO15 1 0 0 1 
OPI Phalangiinae Phalangium opilio Harvestmen ZOO15 204 53 4 261 
OPI Phalangiinae Opilio saxatilis Harvestmen ZOO15 20 22 10 52 
OPI Leiobunidae Leiobunum blackwalli Harvestmen ZOO15 0 0 1 1 
OPI Leiobunidae Leiobunum rotundum Harvestmen ZOO15 0 1 0 1 
OPI  immature harvesters* Harvestmen ZOO15 36 23 20 79 
HYM Formicidae Formica fusca  Ant OMN2 3 2 2 7 
HYM Formicidae Lasius niger  Ant OMN17 36 47 77 160 
HYM Formicidae Myrmica rubra  Ant OMN2 1 30 10 41 
HYM Formicidae Myrmica ruginodis Ant OMN17 9 34 23 66 
HYM Formicidae Myrmica sabuleti Ant OMN17 165 124 4 293 
HYM Formicidae Myrmica scabrinodis  Ant OMN17 21 10 34 65 
DIC Ectobiinae Ectobius panzeri Cockroach OMN18 11 2 1 14 
HET Tingidae Acalypta parvula Lace bug PHY14 71 34 38 143 
HET Berytidae Berytinus minor  Stilt bug PHY14 4 3 0 7 
HET Berytidae Berytinus montivagus Stilt bug PHY14 3 2 0 5 
HET Tingidae Kalama tricornis Lace bug PHY14 204 110 9 323 

HET Lygaeidae 
Megalonotus 
praetextatus Ground bug PHY14 N 0 1 0 1 

HET Lygaeidae Stygnocoris sabulosus Ground bug PHY14 2 0 1 3 
HET Lygaeidae Plinthiscus brevipennis Ground bug PHY14 0 0 1 1 
HET Rhopalidae Myrmus miriformis   PHY14 0 1 1 2 
ORT Acrididae Chorthippus brunneus Grasshopper PHY15 * 0 0 1 1 
ORT Acrididae Omocestus viridulus Grasshopper PHY15 * 0 2 0 2 

ORT Acrididae 
Myrmeleotettix 
maculatus Grasshopper PHY15 * 1 1 0 2 

PUL   Snails & slugs PHY15 150 153 80 383 
ISO Trichoniscidae Trichoniscus pusillus Woodlouse DET15 (S) 0 1 0 1 
ISO Philosciidae Philoscia muscorum  Woodlouse DET15 (S) 295 1251 136 1682 
ISO Armadillidiidae Armadillidium vulgare  Woodlouse DET15 (S) 52 347 37 436 
ISO Porcellionidae Porcellio scaber Woodlouse DET15 (S) 71 123 116 310 
DIP Julidae Cylindroiulus latestriatus  Millipede DET15 (S) 354 196 137 687 
DIP Julidae Julus scandinavius Millipede DET15 (S) 0 0 1 1 
DIP Julidae Ophyiulus pilosus Millipede DET15 (S) 20 1 3 24 
DIP Julidae Brachyiulus pusillus  Millipede DET15 (S) 15 7 8 30 



Grassland grazing and ecosystem services  Chapter 3 

71 

DIP Julidae Omatoiulus sabulosus Millipede DET15 (S) 0 1 0 1 
DIP Polydesmidae Polydesmus angustatus Millipede DET15 (S) 2 3 1 6 
DER Forficulidae Forficula auricularia  Earwig DET15 (S) * 14 4 1 19 
HAP Lumbricidae.  Earthworm DET15 53 30 11 94 

HYM Colletidae Colletes cunicularius Mining bee 
NEC2 
RDB3 0 0 2 2 

HYM Colletidae Colletes fodiens Solitary bee NEC2 1 0 0 1 
HYM Andrenidae Andrena nigroaenea  Mining bee NEC2 0 0 1 1 
HYM Halictidae Lasioglossum albipes Solitary bee NEC2 4 2 1 7 
HYM Megachilidae Osmia aurulenta Mason bee  NEC2 0 0 4 4 

HYM Megachilidae Osmia rufa 
Red mason 
bee NEC2 0 0 1 1 

HYM Colletidae Hylaeus communis 
Yellow face 
bee NEC2 2 4 3 9 

HYM Apinae Bombus hortorum Bumble bee NEC2 3 6 0 9 
HYM Apinae Bombus lapidarius Bumble bee NEC2 0 5 13 18 
HYM Apinae Bombus pascuorum Bumble bee NEC2 5 4 6 15 
HYM Apinae Bombus terrestris Bumble bee NEC2 0 7 0 7 
HYM Apinae Bombus bohemicus Bumble bee NEC2 3 0 0 3 
HYM Apinae Bombus lucorum Bumble bee NEC2 0 0 11 11 
HYM Apidae Apis mellifera Honey bee NEC2 0 0 5 5 
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4.1 Abstract 

 1. Saltmarsh conservation management often involves livestock grazing to 

maximise plant diversity and provide suitable breeding habitat for over-wintering 

coastal birds. The effect of grazing on invertebrates is rarely quantified, but results 

from limited studies of terrestrial and coastal grasslands demonstrate greater 

abundance and species richness in un-grazed grassland. 

2. The impact of short sward (< 8 cm) cattle grazing on the ground dwelling 

invertebrate community was assessed on an English inter-tidal upper salt marsh 

using pitfall traps. Abundance, species richness, functional group structure, 

abundance of coastal specialists, environmental factors that influence invertebrate 

habitat choice and food web composition were compared for grazed and un-grazed 

marsh.  

3. In total, 90000 invertebrates were sampled. Predatory, zoophagus and 

detritivorous Coleoptera were significantly more abundant on the un-grazed marsh. 

In contrast, predatory Hemiptera and Araneae were significantly more abundant on 

the grazed marsh. Sheet weaver spiders were significantly more abundant on the 

grazed marsh, foliage running hunters and space web builders more abundant on 

the un-grazed marsh. Most inter-tidal coastal specialist species exhibited clear 

habitat preference for the grazed marsh. Total species richness was not significantly 

different between grazing treatments. 

http://dx.doi.org/10.1111/j.1752-4598.2012.00202.x
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4. RDA analysis showed that two environmental variables influenced by grazing 

intensity, soil temperature and vegetation height, significantly explained the 

composition of invertebrate functional groups. Larger bodied invertebrates 

dominated the un-grazed food web. 

5. We conclude that both short sward cattle grazed and un-grazed saltmarsh 

habitat should be maintained to maximise invertebrate abundance and diversity 

and provide suitable habitat for coastal specialists. 

Key words Araneae, biodiversity, body size, Coleoptera, Hemiptera, food web, 

insects, pitfall, prey capture method, spiders. 

4.2 Introduction 

European salt marshes are highly productive and were traditionally managed as 

agricultural livestock grazing land (Bouchard et al., 2003; Doody, 2008). Grazing is 

still common place within the salt marshes of North West Europe and is often 

maintained with the twin conservation aims of maximising plant and bird diversity 

(Chatters, 2004; Milsom et al., 2000). It is well known that intermediate grazing 

pressure maximises plant diversity on Northern European marshes (Adam, 1990; 

Bakker et al., 1993).  Birds, however, show a variable response to grazing intensity 

as each species exhibits a particular habitat preference (Daan et al., 2002; Bouchard 

et al., 2003). Salt marshes are also an important coastal habitat for both highly 

specialised inter-tidal invertebrates (Pétillon et al., 2005), certain Red Data Book 

(RDB) listed or Biodiversity Action Plan (BAP) species (Alexander et al., 2005; Webb 

et al., 2010) and other invertebrates common to grasslands.  

The effects of saltmarsh grazing management on invertebrate diversity and 

abundance are poorly understood. Previous saltmarsh invertebrate studies have 

tended to focus on the zonation of particular groups, especially carabid beetles and 

spiders, with marsh elevation. Irmler et al. (2002) and Finch et al. (2007) both found 

that species richness of carabid beetles and Araneae increased with distance above 

mean high tide. British carabid and Staphylinidae saltmarsh communities have also 

been well documented (Hammond, 2000; Luff & Eyre, 2000). Most studies report 
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higher invertebrate species richness and abundance in un-grazed systems for both 

salt marshes and other grasslands (Bakker et al., 1993; Gibson et al., 1992a; Morris, 

2000; Kruess & Tscharntke, 2002). Pétillon et al. (2007) found that although this 

was true for spiders, for Coleoptera species richness was higher on grazed marsh. 

Short sward, livestock grazed marshes provide a suitable habitat for inter-tidal 

coastal specialist species (Andresen et al., 1990). 

We define invertebrate coastal specialists as those species that are only found in 

inter-tidal or estuarine habitats. These species are habitually or physiologically 

adapted to cope with tidal inundation and variable salinity. Some species, such as 

the saltmarsh spider Pardosa purbeckensis avoid flooding by moving vertically in tall 

vegetation, but if submerged in saline water they survive longer than related 

terrestrial wolf spiders (Pétillon et al., 2011). Another saltmarsh spider, Arctosa 

fulvolineata, withstands submersion by entering a hypoxic coma (Pétillon et al., 

2009). Some invertebrate species can osmoregulate in saline environments, 

controlling the water balance within their bodies (Williams & Hamm, 2002). Other 

marine invertebrates take advantage of plastron respiration (Flynn & Bush, 2008). 

Terrestrial invertebrates that occur in habitats likely to flood are often opportunists 

able to migrate horizontally to higher ground, enter a dormant stage underwater or 

reproduce rapidly to take advantage of flood free periods (Adis & Junk, 2002).  

Livestock grazing reduces above-ground biomass and vegetation height, causes a 

rapid turnover of plant material via the production of fresh leaves, reduces plant 

litter build up and has direct effects on plant species composition and structure via 

preference or avoidance of particular plant species by livestock  (Adam, 1990; Bos, 

2002). Sheep provide a uniform short sward whereas cattle, as more selective 

feeders, often produce a more ‘tussocky’ sward (Adam, 1990; Lambert, 2000). With 

high stocking density cattle can however produce a short, even sward of high 

quality forage, attractive for feeding geese, or provide variable structure, suitable 

for breeding birds (Bakker, 1989; Bos, 2002). In contrast, either in historically un-

grazed or abandoned upper salt marshes tall unpalatable grasses, such as Elytrigia 

athericus dominate (Bakker et al., 1993; Van Wijnen & Bakker, 1997; Bakker et al., 

2002). Livestock grazing also impacts upon abiotic marsh characteristics. Short 
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grazed vegetation leads to greater and more variable soil temperatures than un-

grazed grassland (Curry, 1994). Cattle disturbance generally results in a 

topographically variable soil surface whereas sheep evenly compact it, but both can 

lead to waterlogged ground with high soil salinity (Lambert, 2000). Grazing 

herbivores also return nutrients to the soil via dung input (Bakker et al., 1993). 

Abundance and diversity of terrestrial invertebrate fauna is greatest on un-grazed 

marshes, with a food web dominated by detritivores, as tall vegetation and 

increased litter layer depth increase available niches, food provision and provide 

cover from predators (Adam, 1990; Curry, 1994). The grazed marsh invertebrate 

food web is dominated by warmth seeking inter-tidal coastal specialists and 

phytophagus individuals dependent upon particular plant species (Andresen et al., 

1990; Bakker et al., 1993). If grazing intensity is very high phytophagus 

invertebrates also decline (Meyer et al., 1995). The marsh invertebrate food web 

can be characterised using functional groups (Blondel, 2003), in our study different 

trophic categories. ‘Bottom-up’ processes such as resource limitation or ‘top-down’ 

processes such as population limitation by predators can be studied using a 

functional group approach (Chen & Wise, 1999). Few studies have looked at the 

response of saltmarsh invertebrate functional groups to grazing. Meyer et al. (1995) 

described how the European saltmarsh invertebrate food web differed with sheep 

grazing intensity but most studies focus on either the macro-invertebrate 

community of the lower marsh (Salgado et al., 2007) or American saltmarsh food 

webs (Zimmer et al. 2004). As the marshes of North America differ from European 

marshes in terms of productivity, dominant plant species, effect of livestock grazing 

upon plant species richness and invertebrate community (Bazely & Jeffries, 1986; 

Adam, 1990; Ford & Grace, 1998; Garbutt & Boorman, 2009), it is difficult to relate 

North American food web studies to European marshes. 

Coleoptera communities are affected by moisture, temperature, salinity, vegetation 

height, trampling and soil compaction (Lassau et al., 2005; Pétillon et al., 2008; 

Hofmann & Mason, 2006; Morris, 2000). Spider species assemblages are 

particularly sensitive to moisture, vegetation height and vegetation structure 

(Bonte et al., 2000; Uetz et al., 1999; Bell et al., 2001; Pétillon et al., 2008). In a 
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Californian saltmarsh a positive relationship was found between plant species 

richness, vegetation tip height diversity and spider family richness due to increased 

potential of nesting and web building sites (Traut, 2005). Hemiptera, phytophagus 

Auchenorrhyncha leafhoppers in particular, increase in abundance and diversity 

with greater plant diversity, vegetation height and structural complexity 

(Biedermann et al., 2005). E. atherica invasion of salt marshes, characteristic of un-

grazed marshes, correlates to an increase in non coastal spider species leading to 

an overall increase in biodiversity but a decrease in abundance of coastal specialist 

species (Pétillon et al., 2005; Pétillon et al., 2010). Spider coastal specialists may 

decline as E. atherica stands tend to create drier more terrestrial conditions than 

other saltmarsh vegetation. Un-grazed inland salt meadows also exhibited a lower 

abundance of coastal specialist spider species than grazed meadows (Zulka et al., 

1997). 

The existing evidence suggests that un-grazed marshes may provide suitable habitat 

for a diverse invertebrate community, but that cattle grazed marshes with a 

uniform short sward may support a narrower range of saltmarsh specialist species. 

Prey selection within food webs may be influenced by body size of invertebrates; 

however, no published work has been carried out relating saltmarsh food web 

structure to body size of invertebrates. This study aims to assess the impact of 

grazing on abundance, diversity and functional group structure of the entire ground 

dwelling invertebrate community using pitfall sampling. Specifically addressing how 

grazing influences: abundance, species richness and functional group structure of 

Coleoptera, Hemiptera and Araneae; abundance and functional group structure of 

all other invertebrates; abundance of invertebrate coastal specialists; 

environmental factors that influence invertebrate habitat choice; and saltmarsh 

food web in relation to functional group and body size. The three main orders 

focused on within this study, Coleoptera, Hemiptera and Araneae, were chosen as 

they are well studied, easy to identify to species level, include important predators, 

often include larger bodied individuals and are used as bio-indicators of grassland 

ecosystem health (Biedermann et al., 2005; Pearce & Venier, 2006). 
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4.3 Methods  

4.3.1 Site description 

The salt marshes of the Ribble estuary cover around 2000 ha in total. The study 

area, Crossens Marsh (53⁰ 41’ 15” N, 2⁰ 57’ 4” W), is located on the southern edge 

of the Ribble estuary in North-West England and is part of the Sefton Coast Special 

Protection Area managed by Natural England, the statutory conservation body. The 

marsh was historically un-grazed but was split into two management types over 40 

years ago, un-grazed and cattle grazed (Figure 4.1). The grazed marsh is 

characterised by predominantly Festuca rubra saltmarsh NVC community (SM16d) 

and the un-grazed marsh by Elytrigia repens saltmarsh (SM28; Rodwell, 2000). E. 

repens replaces E. atherica on UK west coast. The grazed part of the marsh covers 

517 ha and is uniformly grazed by around 100 bullocks from late May to early 

October, approximately 0.2 cattle per hectare, and provides a consistent short 

sward (< 8 cm) for overwintering pink-footed geese (Anser brachyrhynchus) to feed. 

Small herbivores such as field voles are also present, particularly on the un-grazed 

marsh.  

 

Figure 4.1 Crossens Marsh field site with fence line marking boundary between un-grazed 

vegetation on the left, dominated by a tall sward (20 – 30 cm) of Elytrigia repens, and consistently 

short cattle grazed vegetation on the right (< 8 cm). 
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4.3.2 Experimental design 

All experimental units were selected within the high marsh zone where numerous 

creeks are present but tidal inundations are relatively rare, limited to around eight 

events a year on high equinox tides. A paired experimental design was used with six 

experimental units of approximately 10 m x 10 m set up on each side of a 600 m 

long section of the fence line, 100-150 m apart, in a ‘mirror image’ formation, giving 

six grazed (G1-G6) and six un-grazed (U1-U6) units (Figure 4.2). Each experimental 

unit was located between 20 m and 50 m from the fence line to ensure an 

adequate buffer zone and checked for standard elevation within ±10 cm. All 

measurements were carried out within these experimental units.  

G1

Grazed

Un-grazed

Fence line (600 m)
20 m ‘buffer’ zone

G2

G3

G4

G5

G6

U6

U5

U4U2

U3

U1

30 m

 
 
Figure 4.2 Experimental design at Crossens Marsh, G1–G6 were grazed experimental units, U1-U6 

were un-grazed units. 

 

4.3.3 Soil and vegetation characteristics 

Soil samples were collected during September 2009 from the top 15 cm of soil to 

measure salinity and pH. Soil was sieved to 2 mm and a sub sample of 10 g was 
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taken from each sample and shaken with 25 ml of deionised water (1:2.5 dilution 

factor). A Hanna pH209 pH meter was used to measure pH and a Jenway 4520 

Conductivity meter to measure electrical conductivity (mS cm-1) as a proxy for 

salinity (Douaik, Van Meirvenne & Tóth, 2007). Samples to determine bulk density 

and soil organic matter content were collected during September 2009 using intact 

soil cores of 3.8 cm diameter and 15 cm depth. Cores were dried at 105 ⁰C for 72 

hours and the dry mass divided by the volume of the core to calculate bulk density. 

Loss-on-ignition was used to estimate organic matter content (Ball, 1964). Soil 

moisture content and temperature were recorded at six locations within each 

experimental unit during September. Soil conductivity was measured in direct volts 

using a Delta T Theta Meter HH1 (four probes of 6 cm) and converted to percentage 

soil moisture content using a calibration suitable for organic soils. Soil temperature 

was measured using a digital thermometer (single 11 cm probe). 

Plant species richness and percentage cover were estimated by eye during July 

2009 in five 1 m x 1 m quadrats placed 3 m apart within each experimental unit. 

Within each quadrat a 25 cm x 50 cm corner was allocated and above-ground living 

vegetation collected. Plant litter was collected separately from the same area. One 

root core of 5 cm diameter and 10 cm depth was also taken per quadrat and 

washed to remove all soil. Above-ground vegetation, litter and roots were all dried 

at 80 °C for 24 hours and weighed to give indicators of above-ground live plant 

biomass, litter biomass and below-ground root biomass respectively. Vegetation 

height was measured in May and September at ten random positions within 1 m of 

each pitfall trap with a custom made drop disc of 20 cm diameter, 10 g mass. 

Vegetation height diversity was also calculated. All plant nomenclature follows 

Stace (2010). 

4.3.4 Ground dwelling invertebrates - pitfall traps 

Pitfall traps were used to sample ground dwelling invertebrates in spring and 

autumn. The traps were put in place for 28 days from 5th May to 2nd June 2009 and 

for 30 days between 4th September and 9th October 2009 (excluding 5 days where 

traps were removed due to high tides). Six pitfall traps per experimental unit were 



Grazing and saltmarsh invertebrates                                                                                                Chapter 4 

81 
 

set up in two lines of three, 5 m apart. Each trap consisted of a plastic cup (80 mm 

diameter x 105 mm deep) a third full with a 50/50 mix of ethylene glycol and water, 

recommended for preservation of invertebrates (Schmidt et al., 2006), with a drop 

of washing up liquid to break the surface tension. Each trap was pushed into a hole 

made by a soil auger until they were flush with the soil surface.  A rain hat was 

placed over each trap and set at 3 cm from the ground. A wire basket of 5 cm mesh 

size was also placed over each rain hat and pegged down to prevent interference by 

cattle. Pitfalls were emptied and replaced with new ethylene glycol mixture half 

way through the spring and autumn sampling periods to aid preservation of 

invertebrates. The contents of the pitfalls were preserved in 70 % Industrial 

strength methylated spirits (IMS).  

4.3.5 Invertebrate classification - functional groups & coastal specialists 

All invertebrates caught in the pitfall traps from Coleoptera, Hemiptera and 

Araneae were identified to species level, all other invertebrates were identified to 

family or order level. All invertebrates were also classified according to the 

following functional groups: predatory, zoophagus (predatory and scavenging), 

phytophagus (herbivore or granivorous), detritivore (feed on detritus and 

associated decomposer community of fungi and bacteria) (Kreeger & Newell, 2000), 

or an additional category ‘not assigned’ on the basis of species, family or order level 

information (Table A4.1). Invertebrate species authorities listed in Table A4.1. 

Spiderlings were excluded from the analysis as they were only counted in 

September. Larvae belonging to all other groups were assigned a functional group 

where possible. Araneae are all predators but were further grouped by prey 

capture method as proposed by Uetz et al. (1999).  

Coastal specialist carabid beetles were defined by Luff (1998), Araneae by Harvey et 

al. (2002). Nationally scarce invertebrates associated with coastal saltmarsh were 

defined by Buglife – The Invertebrate Conservation Trust (Alexander et al. 2005), 

these species are not necessarily coastal specialists but are nationally scarce 

invertebrates only found in particular habitats. The UK distribution of coastal 

specialist species were also checked using the National Biodiversity Network 
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interactive map (http://data.nbn.org.uk/imt, 2011). Invertebrate nomenclature 

follows Duff (2008) for Coleoptera and Fauna Europea (2004) for Araneae, 

Hemiptera and all other groups. 

4.3.6 Statistical Analysis – soil and vegetation characteristics 

Differences between grazing treatments for soil and vegetation characteristics were 

analysed using linear mixed effects models (lme) analysed by ANOVA using R 

v.2.12.1 (2010 As lme (salinity ~ grazing, random = ~1|block/grazing). This approach 

was used to enable the raw data to be analysed accounting for replication at the 

level of the experimental unit or block (n=6). Vegetation height diversity for the 

grazed and un-grazed marsh was calculated from the Coefficent of variance (CoV; 

Standard Deviation/Mean*100) of each set of ten heights from around each pitfall. 

4.3.7 Statistical Analysis – ground dwelling invertebrates 

For each of the twelve experimental units, the contents of the six pitfalls within 

each unit were pooled to give a total invertebrate count per unit. As trends in 

invertebrate community composition appeared similar between the May and 

September sampling periods the data were combined to give one measure of 

abundance to represent the year 2009. At the level of the experimental unit (n=6) 

differences in functional group abundance and species richness, within Coleoptera, 

Hemiptera, Araneae and all other invertebrate groups, between grazed and un-

grazed treatments were tested for statistical significance using Wilcoxon matched 

pairs test, Genstat v.10 (Payne et al., 2007). Box plots were produced using Minitab 

v.15 Statistical Software (2007). 

4.3.8 Statistical Analysis – relationship between environmental variables and 

functional group occurrence 

Linear direct gradient analysis (RDA) was carried out to examine the relationship 

between all environmental variables listed in Table 4.1 (mean at unit level), and the 

distribution of pitfall functional groups and prey capture methods from the six 

grazed and six un-grazed experimental units of the salt marsh. ‘Species’ data were 

entered into the analysis in the form log transformed count data (total for 
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experimental unit) of functional groups or Araneae prey capture methods, RDA 

scaling was focused on inter-species correlations and centred by species, grazing 

treatment of each unit was included in the final RDA triplot but was not used to 

influence the analysis. The significance of environmental variables was tested using 

automatic forward selection (Monte Carlo test, 500 permutations). All multivariate 

analysis was carried out in Canoco v.4.5 (Ter Braak and Šmilauer, 2003). 

4.3.9 Food web analysis 

The most abundant groups of invertebrates on the grazed or un-grazed marsh (≥ 1% 

of total abundance on one marsh type) were used to create a food web for the salt 

marsh based on taxonomy, functional group, body size and prey selection 

preferences. Body size was divided into three size classes based on body length, 

large (≤ 30 mm), medium (≤ 20 mm) and small (≤ 10 mm). Body size was 

determined for Coleoptera (Unwin, 1988), Hemiptera (Burrows, 2009; Bantock & 

Botting, 2010), Araneae (Jones-Walters, 1989) and other invertebrates (Chinery, 

1986; Tilling, 1987). Food web prey preferences, both for particular invertebrate 

groups and body size, were based on Lövei & Sunderland (1996), Clough et al. 

(2007), Rickers (2005) and Landis & Werf (1997) for predatory beetles and 

Hemiptera; Nyffeler (1999), Jones-Walters (1989) and Enders (1975) for spiders; 

Dias & Hassal (2005) for woodlice and sand hoppers. 

4.4 Results 

4.4.1 Soil properties and vegetation characteristics 

Soil bulk density, percentage moisture content and temperature were all 

significantly higher on the grazed marsh; soil pH was significantly higher on the un-

grazed marsh (Table 4.1). Plant species richness; percentage cover of Agrostis 

stolonifera, Glaux maritima, Puccinellia maritima and Triglochin maritima; and 

below-ground plant biomass were all significantly greater on the grazed marsh. 

Percentage cover of Elytrigia repens, above-ground plant biomass, litter biomass, 

vegetation height in May and September were all significantly higher on the un-

grazed marsh. Soil salinity, soil organic matter content, percentage cover of Festuca 
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rubra and vegetation height diversity were not significantly different between 

grazing treatments. 

4.4.2 Invertebrate summary 

This study captured nearly 90,000 ground dwelling invertebrates, around two thirds 

on the un-grazed marsh. Predators were one and a half times more abundant on 

the grazed than the un-grazed marsh, but not significantly so, 19 % and 9 % 

respectively of the total invertebrate count per grazing treatment. Zoophagus 

invertebrates were three times more abundant on the un-grazed marsh (Wilcoxon; 

w = 0, d.f. = 5, p < 0.05) and phytophagus individuals were equal between 

treatments, both groups only accounted for 1 - 3 % of total count per treatment. 

There were twice as many detritivores on the un-grazed than the grazed marsh, 78 

% compared to 55 % of the total. There were twice as many not assigned 

invertebrates on the grazed marsh, 23 % to 9 % on the un-grazed. Coleoptera 

accounted for 6 %, Hemiptera 1 % and Araneae 9% of the total invertebrate count. 

For Coleoptera, Hemiptera and Araneae combined species richness was not 

significantly different between grazing treatments. 

4.4.3 Abundance, species richness and functional group structure of Coleoptera 

Coleoptera were around three times more abundant and significantly more species 

rich (Wilcoxon; w = 0, d.f. = 5, p < 0.05, Table 4.2) on the un-grazed marsh. 

Predatory,  Zoophagus and Detritivorous Coleoptera were all significantly more 

abundant on the un-grazed marsh (Test statistics for each: Wilcoxon; w = 0, d.f. = 5, 

p < 0.05; Figure 4.3a). The most abundant species on the un-grazed marsh were 

zoophagus Bembidion iricolor (14 % of total Coleoptera), predatory Cantharis rufa 

(14 %) and predatory Cordalia obscura (11 %). The most abundant species on the 

grazed marsh were zoophagus Bembidion aeneum (20 %), not assigned Brundia 

marina (14 %) and C. rufa (14 %).  
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Table 4.1 Soil properties and vegetation characteristics measured from the grazed and un-grazed 

marsh. Sampling depths are presented alongside treatment means ± standard errors, ANOVA 

results (n = 6), number of replicate samples per experimental unit and month sampled. For 

vegetation height, for each of the 6 replicates per treatment the mean of 10 measurements was 

used in the analysis. For vegetation height diversity, CoV = coefficient of variance. 

 Depth 
(cm) 

Grazed Un-grazed  Reps Month 

Soil       
Salinity (mS cm-1) 0-15 4.2 ± 0.4 3.4 ± 0.3 ns   3 Sept.  
pH 0-15 7.6 ± 0.1 7.9 ± 0.1 *   3 Sept.  
Bulk density (g cm-3) 0-15 0.8 ± 0.0 0.7 ± 0.0 * 3 Sept.  
Organic matter content (%) 0-15 7.4 ± 0.7 6.3 ± 0.4 ns   3 Sept.  
Moisture content (%) 0-6 52.6 ± 0.1 44.5 ± 1.2 *  6 Sept.  
Temperature (⁰C) 0-11 14.9 ± 0.1 14.2 ± 0.0 *  6 Sept.  

Vegetation       
Plant species richness (species m-2) n/a 6.6 ± 0.3 3.7 ± 0.2 *   5 July  
% cover       

Agrostis stolonifera L. n/a 20.0 ± 5.3 0.0 ± 0.0 * 5 July  
Elytrigia repens L. n/a 0.7 ± 0.5 58.0 ± 6.0 ** 5 July  
Festuca rubra L. n/a 25.4 ± 4.7 31.2 ± 5.4 ns   5 July  
Glaux maritima L. n/a 6.0 ± 1.4 0.0 ± 0.0 **  5 July  
Puccinellia maritima Parl. n/a 28.3 ± 5.7 0.0 ± 0.0 *  5 July  
Triglochin maritima L. n/a 11.3 ± 2.4 3.2 ± 2.8 *  5 July  

Above ground biomass (kg dwt m-2) n/a 0.3 ± 0.0 0.7 ± 0.1 *  5 July  
Litter biomass (kg dwt m-2) n/a 0.0 ± 0.0 0.3 ± 0.0 * 5 July  
Below ground biomass (kg dwt m-2) 0-10 3.4 ± 0.2 1.0 ± 0.1 ***   5 July  
Vegetation height (cm) n/a 8.1 ± 0.5 29.2 ± 0.8 ***   6 May  
Vegetation height (cm) n/a 8.2 ± 0.4 19.2 ± 0.7 ***   6 Sept.  
Vegetation height diversity (CoV) (%) n/a 31.5 ± 4.6 29.9 ± 3.2 ns 6 May 
Vegetation height diversity (CoV) (%) n/a 29.1 ± 3.7 32.6 ± 3.8 ns 6 Sept. 

Significant differences between grazing treatments indicated by *(p < 0.05), **(p < 0.01) and ***(p < 
0.001). Non significant results recorded as ns (p > 0.05).   
 
 

4.4.4 Abundance, species richness and functional group structure of Hemiptera 

Hemiptera were around five times more abundant on the grazed than the un-

grazed marsh but total species richness did not differ (Table 4.2). Predatory 

Hemiptera were significantly more abundant on the grazed marsh (Wilcoxon; w = 0, 

p < 0.05, Figure 4.3b), phytophagus Hemiptera did not differ with grazing. On the 

grazed marsh the predatory shore bug Salda littoralis accounted for 67 % of total 

Hemipteran abundance. Phytophagus aphids accounted for 18 % of total 

abundance on the grazed marsh, 61 % on the un-grazed marsh.  
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Table 4.2 Invertebrate species richness comparison between grazed and un-grazed marsh; 

Coleoptera, Hemiptera and Araneae combined, separated into orders and at a functional group or 

prey capture method level. Species richness data are shown by treatment medians ± inter-quartile 

range, n = 6 in all cases. 

 
Invertebrate group Functional group / prey capture 

method 
Grazed Un-grazed  

Coleoptera, Hemiptera, 
Araneae 

All 51.0 ± 6.8 60.5 ± 7.3 ns 

Coleoptera All 28.0 ± 6.5 37.0 ± 1.5 * 
Coleoptera Predatory 10.0 ± 3.5 13.0 ± 1.5 ns 
Coleoptera Zoophagus 8.0 ± 0.8 9.0 ± 0.8 ns 
Coleoptera Phytophagus 5.0 ± 1.5 5.0 ± 1.5 ns 
Coleoptera Detritivore 3.0 ± 0.8 7.0 ± 2.8 ns 
Coleoptera Not assigned 2.0 ± 0.0 2.0 ± 0.0 ns 
Hemiptera All 6.0 ± 1.5 5.5 ± 2.5 ns 
Hemiptera Predatory 2.0 ± 0.0 1.0 ± 0.8 ns 
Hemiptera Phytophagus 4.5 ± 1.8 4.0 ± 1.5 ns 
Araneae All / Predatory 17.5 ± 1.8 20.0 ± 2.3 ns 
Araneae Foliage running hunter 0.5 ± 0.0 1.0 ± 0.0 ns 
Araneae Ground running hunter 4.5 ± 1.0 6.0 ± 0.8 ns 
Araneae Space web builder 0.0 ± 0.0 1.0 ± 0.0 * 
Araneae Sheet weavers 12.7 ± 0.5 12.0 ± 0.8 ns 
Significant differences between grazing treatments indicated by *(p < 0.05), non significant results as 
ns (p > 0.05), Wilcoxon Matched-Pairs test. 

 

4.4.5 Abundance, species richness and prey capture methods of Araneae 

As an entirely predatory group Araneae were significantly more abundant on the 

grazed marsh (Wilcoxon; w = 0, d.f. = 5, p < 0.05, Figure 4.4a) but species richness 

did not differ (Table 4.2). Foliage running hunters were significantly more abundant 

on the un-grazed marsh (Wilcoxon; w = 0, d.f. = 5, p < 0.05, Figure 4.4b). Ground 

running hunter abundance was not significantly different between the grazed and 

un-grazed marsh. Space web builders were more abundant on the un-grazed marsh 

(Wilcoxon; w = 0, d.f. = 5, p < 0.05). Sheet weavers were significantly more 

abundant (Wilcoxon; w = 0, d.f. = 5, p < 0.05) but not more species rich on the 

grazed marsh. The grazed marsh was numerically dominated by two sheet weaver 

Linyphiidae species, Erigone longipalpis (42 % of total Araneae for grazing 

treatment) and Oedothorax fuscus (21 %). The wolf spider P. purbeckensis (9 %) 

were also common on the grazed marsh. The un-grazed marsh was characterised by 

the Linyphiidae Allomengea scopigera (39 %) and P. purbeckensis (20 %).  
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4.4.6 Abundance and functional group structure of other invertebrates 

For all other invertebrates total abundance was twice as high on the un-grazed 

marsh. Zoophagus invertebrates, all harvestmen, were significantly more abundant 

on the un-grazed marsh (Wilcoxon; w = 0, d.f. = 5, p < 0.05, Figure 4.5a). Predatory 

(all parasitoid wasps), phytophagus, detritivore and not assigned functional groups 

did not differ significantly with grazing treatment (Figure 4.5a, 4.5b). Even though 

the abundance of all detritivores did not differ between grazing treatments their 

composition did. On the un-grazed marsh Orchestia gammerella (68 %) and 

woodlice (23 %) were most abundant. On the grazed marsh Collembola (69 %) and 

O. gamerella (30 %) were common. Of particular interest within the not assigned 

category are the Tipulidae, these were caught fifty times more frequently on the 

grazed marsh. 

4.4.7 Abundance of coastal specialist species 

Coastal specialist ground beetles, Bembidion minimum and Dicheirotrichus gustavii, 

rove beetle B. marina and nationally scarce saltmarsh shore bug Saluda opacula 

were found predominantly on the grazed side of the marsh (Table A4.1). As were 

Araneae coastal specialist species Silometopus ambiguus and E. longipalpis.  The 

coastal spider P. purbeckensis was found almost equally on both the grazed and the 

un-grazed marsh. The carabid B. iricolor was recorded mainly on the un-grazed side. 

Even though D. gustavii and S. opacula show clear habitat preferences they are only 

found in low numbers compared to the other coastal specialist species listed. Three 

species, B. marina, S. ambiguus and E. longipalpis were sampled in greater 

abundances in G5, the most saline experimental unit, than any of the other units. 
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Figure 4.3 Coleoptera (a) and Hemiptera (b) abundance from grazed (grey bars) and un-grazed 

(white bars) salt marsh characterised by functional group: PRE = predatory; ZOO = zoophagus; PHY 

= phytophagus; DET = detritivore; NOT = not assigned. Significant differences between grazing 

treatment indicated by *(p < 0.05), non significant results as ns (p > 0.05), Wilcoxon matched pairs 

test.  
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Figure 4.4 Araneae abundance from grazed (grey bars) and un-grazed (white bars) salt marsh 

characterised by functional group (a): PRE = predatory and further classified by prey capture 

method (b): FRH = foliage running hunter; GRH = ground running hunter; SWB = space web 

builder; SW = sheet weaver. Significant differences between grazing treatment indicated by *(p < 

0.05), non significant results as ns (p > 0.05), Wilcoxon matched pairs test. 
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Figure 4.5 All other invertebrates (not Coleoptera, Hemiptera or Araneae) abundance from grazed 

(grey bars) and un-grazed (white bars) salt marsh characterised by functional group: a) PRE = 

predatory; ZOO = zoophagus & PHY = phytophagus; b) DET = detritivore & NOT = not assigned. 

Significant differences between grazing treatment indicated by *(p < 0.05), non significant results 

as ns (p > 0.05), Wilcoxon matched pairs test. 
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4.4.8 Environmental factors that influence invertebrate habitat choice 

The RDA triplot (Figure 4.6) shows a visual interpretation of the relationship 

between eight environmental variables, selected by Monte Carlo forward selection, 

and the distribution of functional groups or prey capture methods. Axis 1 explained 

79 % of the variation in functional group or prey capture method occurrence, axis 1 

and 2 combined explained 89 % of the variation. The Monte Carlo test for all axes 

was significant for three environmental variables; temperature (positively 

correlated with axis 1: F-ratio = 23.73, P < 0.01), vegetation height (negatively 

correlated with axis 2: F-ratio = 3.59, P < 0.05) and salinity (positively correlated 

with axis 2: F-ratio = 2.38, P < 0.05), all other environmental variables either 

correlated with these three or did not describe a significant proportion of the 

variation in functional group occurrence. Grazing intensity was clearly separated 

out by axis 1, with all grazed experimental units positively associated with and all 

un-grazed units negatively associated with axis 1. Predatory, zoophagus, and 

detritivorous Coleoptera were all negatively associated with axis 1, as were foliage 

running hunters, space web builders and zoophagus and phytophagus other 

invertebrates. Predatory Hemiptera and sheet weaving spiders were positively 

associated with axis 1. Phytophagus Hemiptera and ground running hunter spiders 

were negatively associated with axis 2, not assigned Coleoptera and other 

detritivores were positively associated with axis 2. 

4.4.9 Food web analysis 

Large detritivores, mainly Orchestia and woodlice, accounted for 71 % of all the 

invertebrates sampled on the un-grazed marsh, 17 % on the grazed marsh (Figure 

4.7). Small detritivores, predominantly collembola, accounted for only 6 % on the 

un-grazed marsh compared to 38 % on the grazed marsh. Large crane flies were 

more numerous on the grazed marsh (7 %). Small flies and mites were abundant in 

both grazing treatments. Large and medium predatory beetles accounted for 6 % of 

all invertebrates on the un-grazed marsh, 2 % on the grazed marsh. Medium 

hunting spiders were present in equal proportions on both marsh types (2 %). Small 

Linyphiidae were much more abundant, both in total and proportional abundance, 
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on the grazed marsh (13 %) compared to the un-grazed marsh (3 %). Predatory 

shore bugs were only present on the grazed marsh (2 %).  
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Figure 4.6 RDA triplot showing the relationship between eight environmental variables and the 

distribution of sixteen functional groups and prey capture methods. Environmental variables were 

selected by forward selection (Canoco v.4.5; Monte Carlo test, 500 permutations); the three 

significant ones, temperature, vegetation height and salinity are shown in bold. Grazed 

experimental units (G1-G6) are displayed as grey circles, un-grazed units (U1-U6) as white circles.  
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Figure 4.7 Ground dwelling invertebrate food web for cattle grazed and un-grazed salt marsh. 

Body length of invertebrates: L (large ≤ 30 mm), M (medium ≤ 20 mm), S (small ≤ 10 mm). 

Functional group of invertebrates: DET = detritivore, PHY = phytophagus, PRE = predatory (L PRE 

beetles also include zoophagus beetles). Invertebrate abundance is expressed as percentage of 

total invertebrates per grazing treatment.  

 

4.5 Discussion 

4.5.1 Overview 

This study focused on the impact of cattle grazing on the abundance, diversity and 

functional group structure of the entire ground dwelling saltmarsh invertebrate 

community. Our results indicate that overall invertebrate abundance was greater 

on the un-grazed marsh. This finding is in line with evidence from other grassland 

and saltmarsh systems (Andresen et al. 1990; Bakker et al. 1993; Morris 2000). 

Coastal specialist abundance was greatest on the uniformly short sward cattle 

grazed salt marsh. European saltmarsh conservation often involves livestock grazing 

to improve plant diversity and provide a suitable habitat for over-wintering 
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breeding birds and invertebrate coastal specialists. Here we argue that un-grazed 

areas of marsh also have a conservation value in their own right. As well as higher 

invertebrate abundance the functional structure of the un-grazed marsh is also 

different from the grazed marsh, with many large predators and detritivores 

present.  The grazed marsh was characterised by high plant species richness, short 

vegetation, limited plant litter and warm compact soil prone to water-logging. The 

un-grazed marsh was dominated by E. repens, leading to a deep plant litter layer 

and drier less compact soil than the grazed marsh.  Vegetation height diversity did 

not differ between grazing treatments. 

4.5.2 Coleoptera, Hemiptera & Araneae 

Coleoptera abundance and species richness was much higher on the un-grazed 

marsh. This may be due to reduced physical disturbance of the habitat. Duffey 

(1975) showed that even moderate trampling by humans of five treads a month, to 

simulate cattle treading, reduced Coleoptera abundance by 82 % after a year 

compared to an un-trampled control. Coleoptera also lack submersion resistance 

(Rothenbücher & Schaefer, 2006), relevant as un-grazed marshes are drier habitats 

than grazed marshes due to plant litter build up and reduced waterlogging. Large 

and medium sized predatory, zoophagus and detritivorous beetles were very 

abundant on the tall un-grazed marsh, in contrast small predatory Hemiptera 

preferred the short, moist vegetation of the grazed marsh. Large invertebrates 

favour the un-grazed marsh as birds select larger invertebrates when feeding so tall 

vegetation is likely to provide cover from this type of predation, small predatory 

invertebrates prefer the grazed marsh due to reduced competition from larger 

invertebrate predators (Enders, 1975; Lassau et al., 2005). Detritivorous beetles are 

associated with the un-grazed marsh due to the availability of greater amounts of 

plant detritus than the grazed marsh. 

Overall spider abundance was greater on the grazed marsh due to the 

predominance of small sheet weaving Linyphiidae spiders. Foliage running hunters 

and space web builders were more abundant on the un-grazed marsh. Ground 

running hunters were slightly more abundant on the un-grazed marsh. These 
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differences can largely be explained by structural differences between the two 

marsh types. Erigone atra, Oedothorax fuscus, Oedothorax retusus and Savignya 

frontata, all active Linyphiidae aeronauts, are found in much greater numbers on 

the grazed marsh than the un-grazed marsh, partly due to their ability to disperse 

into open or disturbed habitats, such as grazed land, where competition from larger 

invertebrate predators is low (Bell et al., 2001; Gibson et al., 1992b). Prey 

availability and preference for wetter habitats may also explain why Linyphiidae 

prefer the grazed marsh. Erigonine Linyphiidae, around half the sheet weavers 

sampled from the grazed marsh, are less than 2 mm long and feed on Collembola 

and small flies, an abundant food source on the grazed marsh (Enders, 1975; Figure 

4.6). Another sheet weaver, Hypomma bituberculatum, was very abundant on the 

grazed marsh, it survives submersion in fresh water (Harvey et al., 2002) and can 

therefore compete with other spider species in waterlogged plots. The comb spider 

Robertus lividus, a space web builder, was found only on the un-grazed marsh 

where litter levels were greatest as in Harvey et al. (2002). The foliage running 

hunter, Clubiona stagnatilis, was more abundant on tall un-grazed marsh. The most 

common ground running hunter species, P. purbeckensis, did not show a clear 

habitat preference but two other Lycosids, Pardosa pullata and Pirata piraticus 

were more abundant on the un-grazed marsh. It is worth noting that the use of 

pitfall traps to sample ground dwelling invertebrates will lead to under 

representation of certain spider groups, such as orb weavers, dependent upon the 

vertical structure of upper foliage layers. 

 4.5.3 Other invertebrates 

Previously mentioned predatory groups, Coleoptera, Hemiptera and Araneae were 

often closely associated with a particular marsh type. In contrast, all other 

predatory invertebrates, parasitoid wasps, were equally abundant between grazing 

treatments. Parasitoid wasps are a diverse group providing a key ecosystem service 

in the regulation of insect populations (Fraser et al., 2008), as active fliers this group 

was less influenced by ground level environmental variables. Zoophagus 

invertebrates were significantly more abundant on the un-grazed marsh. Dennis et 

al. (2001) found that in upland grasslands most harvestmen tended to prefer un-
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grazed or sheep grazed to cattle grazed swards. The crane flies, Tipulidae, were 

much more abundant on the grazed marsh, in line with Cole et al.’s findings (2010) 

from grazed uplands. Large detritivores such as woodlice and the sand hopper, O. 

gammerella, were much more abundant on the un-grazed marsh due to the high 

level of plant detritus available as combined food source and shelter. Small 

detritivores such as Collembola were most abundant on the grazed marsh as in 

Meyer et al. (1995). They are able to proliferate here as they can survive anoxia in 

water-logged habitats by utilising passive drifting, a dormant egg stage and plastron 

respiration (Marx et al., 2009). 

4.5.4 Abundance of coastal specialist species 

For carabid inter-tidal coastal specialists B. minimum and D. gustavii the grazed 

marsh provided a more suitable habitat than the un-grazed marsh, as in Pétillon et 

al. (2007; 2008). The rove beetle B. marina also preferred the grazed marsh. In 

contrast, B. iricolor was more abundant on the un-grazed marsh. The Hemipteran 

nationally scarce invertebrate Saldula opacula was only present on the grazed 

marsh. For Araneae, coastal Linyphiidae specialists, E. longipalpis and S. ambiguuus, 

were much more abundant on the grazed marsh, as in Pétillon et al. (2005; 2007). 

4.6 Conclusion 

Soil temperature, bulk density and moisture content were higher on the grazed 

marsh. Plant species richness and below-ground root biomass were greater on the 

grazed marsh. Percentage cover of E. repens, above-ground plant biomass and litter 

biomass, were all significantly higher on the un-grazed marsh. Management of salt 

marshes for the conservation of invertebrates should aim to strike a balance 

between preserving maximum invertebrate diversity and abundance and 

maintaining a habitat suitable for coastal specialists.  Un-grazed salt marshes 

provide a suitable habitat for an abundant and diverse invertebrate community, but 

cattle grazed marshes with short swards support a greater abundance and diversity 

of nationally scarce saltmarsh or inter-tidal coastal specialist species. The saltmarsh 

food web also differs markedly with grazing intensity. The un-grazed marsh is 

dominated by large detritivores and predatory beetles; the grazed marsh by smaller 
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detritivores and Linyphiidae spiders adapted to open or disturbed habitats. Grazing 

intensity influences two key drivers of invertebrate habitat choice, vegetation 

height and soil temperature, via vegetation removal and soil compaction. Particular 

species, functional groups or coastal specialists respond differently to these 

variables. Therefore, the provision of both un-grazed and short sward cattle grazed 

habitat is important to salt marsh invertebrate conservation management. 
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4.9 Appendix 

Table A4.1. Total counts of all invertebrates sampled from grazed ‘G’ and un-grazed ‘U’ marsh. 

Order, family, species, species authority and common name are listed alongside functional group, 

prey capture method and coastal specialist information in the ‘Group’ column (evidence for 

functional group assignment from list of superscript numbers). Order: COL = Coleoptera, HET = 

Heteroptera, HOM = Homoptera (Heteroptera and Homoptera both sub-orders of Hemiptera), 

ARA = Araneae, HYM = Hymenoptera, OPI = Opilones, PUL = Pulmonata, LEP = Lepidoptera, HAP = 

Haplotaxida, COLL = Collembola, ISO = Isopoda, AMP = Amphipoda, ACA = Acarina, DIP = Diptera, + 

includes larvae, L = larvae only. Group: PRE = predatory, ZOO = zoophagus, PHY = phytophagus, 

DET = Detritivore (DET (S) = scavenging, DET (F) = fungivorous), NOT = not assigned, FRH = foliage 

running hunter, GRH = ground running hunter, SWB = Space web builder, SW = Sheet weaver, CS = 

coastal specialist, N = notable species associated with salt marsh. Invertebrate nomenclature 

follows Duff (2008) for Coleoptera and Fauna Europea (2011) for all other invertebrates. 

Order Family Species Species authority Common 
name 

Group G U 

COL Staphylinidae Tachinus rufipes Linnaeus,1758 Rove beetle PRE1* 0 30 
COL Staphylinidae Tachyporus 

nitidulus 
Fabricius, 1781 Rove beetle PRE1 0 2 

COL Staphylinidae Tachyporus pusillus Gravenhorst, 
1806 

Rove beetle PRE1 0 5 

COL Staphylinidae Amischa analis Gravenhorst, 
1802 

Rove beetle PRE1 0 3 

COL Staphylinidae Cordalia obscura Gravenhorst, 
1802 

Rove beetle PRE1 14 394 

COL Staphylinidae Oxypoda 
brachyptera 

Stephens, 1832 Rove beetle PRE1* 33 56 

COL Staphylinidae Oxypoda procerula Mannerheim, 
1830 

Rove beetle PRE1* 2 3 

COL Staphylinidae Stenus palustris Erichson, 1839 Rove beetle PRE1* 2 0 
COL Staphylinidae Stenus fulvicornis Stephens, 1833 Rove beetle PRE1 0 1 
COL Staphylinidae Stenus bimaculatus Gyllenhal, 1810 Rove beetle PRE1 0 1 
COL Staphylinidae Stenus canaliculatus Gyllenhal, 1827 Rove beetle PRE1 1 1 
COL Staphylinidae Stenus clavicornis Scopoli, 1763 Rove beetle PRE 0 5 
COL Staphylinidae Stenus juno Paukull, 1789 Rove beetle PRE1 2 7 
COL Staphylinidae Stenus brunnipes Stephens, 1833 Rove beetle PRE1* 3 54 
COL Staphylinidae Lathrobium 

fulvipenne 
Gravenhorst, 
1806 

Rove beetle PRE1 9 173 

COL Staphylinidae Lathrobium 
geminum 

Kraatz, 1857 Rove beetle PRE1* 5 125 

COL Staphylinidae Sunius propinquus Brisout, 1867 Rove beetle PRE1* 0 1 
COL Staphylinidae Othius laeviusculus Stephens, 1833 Rove beetle PRE1* 4 0 
COL Staphylinidae Gabrius osseticus Kolenati, 1846 Rove beetle PRE1 0 1 
COL Staphylinidae Philonthus 

carbonarius 
Gravenhorst, 
1802 

Rove beetle PRE1 13 0 

COL Staphylinidae Philonthus cognatus Stephens, 1832 Rove beetle PRE1 2 4 
COL Staphylinidae Philonthus 

umbratilis 
Gravenhorst, 
1802 

Rove beetle PRE1 2 0 

COL Staphylinidae Quedius fuliginosus Gravenhorst, 
1802 

Rove beetle PRE1 0 1 

COL Staphylinidae Quedius levicollis Brullé, 1832 Rove beetle PRE1* 45 45 
COL Staphylinidae Quedius semiaeneus Stephens, 1833 Rove beetle PRE1* 0 1 
COL Staphylinidae Ocypus 

aenocephalus 
De Geer, 1774 Rove beetle PRE1* 0 1 

COL Staphylinidae Xantholinus linearis Olivier, 1795 Rove beetle PRE1 4 1 
COL Staphylinidae Xantholinus 

longiventris 
Heer, 1839 Rove beetle PRE1 7 89 

COL Coccinellidae Anisosticta Linnaeus,1758 Lady bird PRE2 2 0 
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novemdecimpunctat
a 

COL Coccinellidae Coccinella 
undecimpunctata 

Linnaeus,1758 Lady bird PRE2 16 0 

COL Staphylinidae Tasgius globulifer Geoffroy, 1785 Rove beetle PRE3* 1 26 
COL Staphylinidae Tasgius ater Gravenhorst, 

1802 
Rove beetle PRE3* 0 1 

COL Cantharidae+ Cantharis rufa Linnaeus,1758 Soldier beetle PRE2 176 533 
COL Carabidae Loricera pilicornis Fabricius, 1775 Ground beetle ZOO4 25 4 
COL Carabidae Clivina fossor Linnaeus,1758 Ground beetle ZOO4 0 4 
COL Carabidae Dyschirius globosus Herbst, 1784 Ground beetle ZOO4 0 2 
COL Carabidae Trechus 

quadristriatus 
Schrank, 1781 Ground beetle ZOO4 0 1 

COL Carabidae Bembidion lampros Herbst, 1784 Ground beetle ZOO4 0 1 
COL Carabidae Bembidion varium Olivier, 1795 Ground beetle ZOO4* 20 3 
COL Carabidae Bembidion assimile Gyllenhal, 1810 Ground beetle ZOO4* 17 269 
COL Carabidae Bembidion 

minimum 
Fabricius, 1792 Ground beetle ZOO4* (CS) 64 4 

COL Carabidae Bembidion aeneum Germar, 1842 Ground beetle ZOO4 246 267 
COL Carabidae Bembidion iricolor Bedel, 1879 Ground beetle ZOO4* (CS) 13 517 
COL Carabidae Pterostichus niger Schaller, 1783 Ground beetle ZOO4 3 162 
COL Carabidae Pterostichus minor Gyllenhal, 1827 Ground beetle ZOO4* 20 148 
COL Carabidae Pterostichus nigrita Paykull, 1790 Ground beetle ZOO4 0 2 
COL Carabidae Pterostichus diligens Sturm, 1824 Ground beetle ZOO4 0 126 
COL Carabidae Olisthopus 

rotundatus 
Paykull, 1790 Ground beetle ZOO4 9 5 

COL Carabidae Agonum 
marginatum 

Linnaeus,1758 Ground beetle ZOO4 2 0 

COL Carabidae Agonum viduum Panzer, 1796 Ground beetle ZOO4 0 1 
COL Carabidae Dicheirotrichus 

gustavii 
Crotch, 1871 Ground beetle ZOO5 (CS) 32 1 

COL Carabidae Demetrias 
atricapillus 

Linnaeus, 1758 Ground beetle ZOO4 1 0 

COL Carabidae Amara communis Panzer, 1797 Ground beetle PHY4 0 18 
COL Carabidae Harpalus rufipes De Geer, 1774 Ground beetle PHY4 0 5 
COL Carabidae Harpalus affinis Schrank, 1781 Ground beetle PHY4 1 0 
COL Staphylinidae Carpelimus 

corticinus 
Gravenhorst, 
1806 

Rove beetle PHY1 0 1 

COL Chrysomelida
e 

Chrysolina 
staphylaea 

Linnaeus, 1758 Leaf eater PHY2 1 15 

COL Chrysomelida
e 

Phaedon 
armoraciae 

Linnaeus, 1758 Leaf eater PHY2 0 2 

COL Chrysomelida
e L 

  Leaf eater PHY2 3 10 

COL Apionidae Protapion fulvipes Geoffroy, 1785 Weevil PHY6 4 0 
COL Erirhinidae Notaris scirpi Fabricius, 1793 Weevil PHY7 8 6 
COL Helophoridae Helophorus 

brevipalpis 
Bedel, 1881 Water beetle PHY8 64 18 

COL Hydraenidae Ochthebius 
dilatatus 

Stephens, 1829 Aquatic beetle PHY9 72 24 

COL Byturidae Byturus ochraceus Scriba, 1790 Fruit beetle PHY10 12 5 
COL Staphylinidae Omalium caesum Gravenhorst, 

1806 
Rove beetle DET1 0 3 

COL Staphylinidae Micropeplus 
staphylinoides 

Marsham, 1802 Rove beetle DET (F)1 0 3 

COL Staphylinidae Ischnosoma 
splendidum 

Gravenhorst, 
1806 

Rove beetle DET (F)1 5 39 

COL Staphylinidae Sepedophilus 
marshami 

Stephens, 1832 Rove beetle DET (F)1 0 71 

COL Staphylinidae Atheta graminicola Gravenhorst, 
1806 

Rove beetle DET (F)1 1 0 

COL Staphylinidae Atheta triangulum Kraatz, 1856 Rove beetle DET (F)1 2 0 
COL Staphylinidae Atheta (other)  Rove beetle DET (F)1 3 15 
COL Staphylinidae Anotylus rugosus Fabricius, 1775 Rove beetle DET1 2 3 
COL Leiodidae Catops morio Fabricius, 1787 Fungus beetle DET (S)6 0 8 
COL Cryptophagid

ae 
Atomaria atricapilla Stephens, 1830 Fungus beetle DET (F)11 0 1 

COL Cryptophagid
ae 

Atomaria fuscata Schöenherr, 1808 Fungus beetle DET (F)11 0 1 

COL Lathridiidae Corticaria 
punctulata 

Marsham, 1802 Mould beetle DET11 1 7 
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COL Lathridiidae Corticarina minuta Fabricius, 1792 Mould beetle DET11 0 2 
COL Staphylinidae Lesteva sicula heeri Fauvel, 1871 Rove beetle DET (S)12 0 5 
COL Staphylinidae Lesteva 

longoelytrata 
Goeze, 1777 Rove beetle DET (S)12 1 0 

COL Hydrophilidae Cercyon impressus Fabricius, 1775 Water beetle DET13 0 2 
COL Hydrophilidae Megasternum 

concinnum 
Marsham, 1802 Water beetle DET13 17 111 

COL Hydrophilidae Sphaeridium 
scarabaeoides 

Linnaeus,1758 Water beetle DET13 1 0 

COL Ptiliidae Ptenidium Sp.  Feather 
beetle 

DET (F)13 0 1 

COL Ptiliidae Acrotrichis Sp.  Feather 
beetle 

DET (F)13 2 67 

COL Staphylinidae Brundinia marina Mulsant & Rey, 
1853 

Rove beetle NOT (CS) 172 111 

COL Staphylinidae Mocyta fungi  Gravenhorst, 
1806 

Rove beetle NOT 58 25 

COL Carabidae L     NOT 32 3 
COL Staphylinidae 

L 
   NOT 0 108 

HET Nabidae Stalia major Costa, 1841 Damsel bug PRE14 0 1 
HET Nabidae Nabis lineatus Dahlbom, 1851  Damsel bug PRE14 0 3 
HET Dipsocoridae Ceratocombus 

coleoptratus 
Zetterstedt, 1819  PRE11 0 13 

HET Saldidae Saldula opacula Zetterstadt, 1838  Shore bug PRE15* (N) 28 0 
HET Saldidae Saldula pallipes Fabricius, 1794 Shore bug PRE15* 4 0 
HET Saldidae+ Salda littoralis Linnaeus, 1758 Shore bug PRE16 638 2 
HOM Cicadellidae Aphrodes albifrons  Linnaeus, 1758 Leaf hopper PHY17 0 1 
HOM Cicadellidae Aphrodes bicinctus  Schrank, 1776 Leaf hopper PHY17 1 5 
HOM Cicadellidae Arthaldeus 

pascuellus  
Fallen, 1826 Leaf hopper PHY17 5 1 

HOM Cicadellidae Psammotettix 
putoni 

Then, 1898 Leaf hopper PHY17 12 0 

HOM Cicadellidae Conosanus 
obsoletus 

Kirshbaum, 1858 Leaf hopper PHY17 6 3 

HOM Cicadellidae Streptanus sordidus Zetterstedt, 1828 Leaf hopper PHY17 7 0 
HOM Cicadellidae Macrosteles 

viridigriseus 
Edwards, 1922 Leaf hopper PHY17 5 0 

HOM Delphacidae Javesella dubia Kirschbaum, 1868 Leaf hopper PHY17 1 2 
HOM Delphacidae+ Javesella pellucida Fabricius, 1794 Leaf hopper PHY17 0 29 
HOM Stenorrhynch

a 
  Aphids only PHY17 173 102 

HET Miridae Megaloceraera 
recticornis 

Geoffroy, 1785 Mirid bug PHY15 0 1 

HOM Cicadellidae L Cicadellidae larvae   PHY17 66 5 
ARA Clubionidae Clubiona stagnatilis Kulczynski, 1897 Foliage spider PRE 

(FRH)18 
3 25 

ARA Gnaphosidae Micaria pulicaria Sundevall, 1831 Ground spider PRE 

(GRH)18 
0 15 

ARA Lycosidae Trochosa ruricola De Geer, 1778 Wolf spider PRE 
(GRH)18 

12 49 

ARA Lycosidae Pardosa 
purbeckensis 

Cambridge, 1895 Wolf spider PRE (GRH) 

18 (CS) 
454 515 

ARA Lycosidae Pardosa pullata Clerck, 1757 Wolf spider PRE 
(GRH)18 

2 22 

ARA Lycosidae Pirata piraticus Clerck, 1757 Wolf spider PRE 
(GRH)18 

5 73 

ARA Tetragnathida
e 

Pachygnatha clercki Sundevall, 1823 - PRE 
(GRH)21 

73 153 

ARA Tetragnathida
e 

Pachygnatha 
degeeri 

Sundevall, 1830  - PRE 
(GRH)21 

106 1 

ARA Theridiidae Robertus lividus Blackwall, 1836 Comb spider PRE 
(SWB)18 

0 153 

ARA Linyphiidae Walckenaeria 
nudipalpis 

Westring, 1851 Money spider PRE  
(SW)18 

0 1 

ARA Linyphiidae Walckenaeria 
vigilax 

Blackwall, 1853 Money spider PRE 
(SW)18 

33 9 

ARA Linyphiidae Walckenaeria incisa Cambridge, 1871 Money spider PRE 
(SW)18 

1 0 

ARA Linyphiidae Walckenaeria kochi Cambridge, 1873 Money spider PRE 
(SW)18 

21 37 
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ARA Linyphiidae Walckenaeria 
acuminata 

Blackwall, 1833 Money spider PRE 
(SW)18 

0 83 

ARA Linyphiidae Hypomma 
bituberculatum 

Wider, 1834 Money spider PRE 
(SW)18 

243 58 

ARA Linyphiidae Oedothorax fuscus Blackwall, 1834 Money spider PRE 
(SW)18 

1086 13 

ARA Linyphiidae Oedothorax retusus Westring, 1851 Money spider PRE 
(SW)18 

156 9 

ARA Linyphiidae Silometopus 
ambiguus 

Cambridge, 1905 Money spider PRE 
(SW)18(CS) 

273 15 

ARA Linyphiidae Savignia frontata Blackwall, 1833 Money spider PRE 
(SW)18 

242 104 

ARA Linyphiidae Araeoncus humilis Blackwall, 1841 Money spider PRE 
(SW)18 

1 0 

ARA Linyphiidae Erigone dentipalpis Wider, 1834 Money spider PRE 
(SW)18 

1 0 

ARA Linyphiidae Erigone atra Blackwall, 1833  Money spider PRE 
(SW)18 

177 1 

ARA Linyphiidae Erigone longipalpis Sundevall, 1830 Money spider PRE 
(SW)18 
(CS) 

2213 9 

ARA Linyphiidae Leptorhoptrum 
robustum 

Westring, 1851 Money spider PRE 
(SW)18 

10 4 

ARA Linyphiidae Centromerita 
concinna 

Thorell, 1875 Money spider PRE 
(SW)18 

0 26 

ARA Linyphiidae Bathyphantes 
approximatus 

Cambridge, 1871 Money spider PRE 
(SW)18 

6 9 

ARA Linyphiidae Bathyphantes 
gracilis 

Blackwall, 1841 Money spider PRE 
(SW)18 

70 27 

ARA Linyphiidae Bathyphantes 
parvulus 

Westring, 1851 Money spider PRE 
(SW)18 

0 7 

ARA Linyphiidae Tenuiphantes tenuis Blackwall, 1852 Money spider PRE 
(SW)18 

67 143 

ARA Linyphiidae Palliduphantes 
tenuis 

Cambridge, 1871 Money spider PRE 
(SW)18 

0 1 

ARA Linyphiidae Allomengea 
scopigera 

Grube, 1859 Money spider PRE 
(SW)18 

25 1010 

HYM Parasitic 
Hymenoptera 

  Parasitoid 
wasp 

PRE19 623 615 

OPI    Harvestmen ZOO19 1 68 
PUL    Snail PHY19 7 78 
LEP    Moth larvae PHY19 21 22 
HAP Enchytraeidae   Pot worm DET20 147 0 
COLL    Springtail DET19 13857 3391 
ISO    Woodlice DET (S)19 76 9539 
AMP Talitridae Orchestia 

gammarella 
Pallas, 1766 Sandhopper DET (S)19 6133 2777

3 
ACA    Mite NOT 1168 563 
HYM Formicidae   Ant NOT 18 4 
DIP Tipulidae+   Crane fly NOT 2461 56 
DIP Other Diptera    NOT 4078 4087 
DIP Limoniidae L    NOT 29 0 
DIP Stratiomyidae 

L 
   NOT 48 3 

DIP Ephaedridae L    NOT 29 0 
DIP Scatophagida

e L 
   NOT 48 0 

DIP Other fly 
larvae     

   NOT 281 37 

Duff, A.G. (2008) Checklist of Beetles of the British Isles 
(http://www.coleopterist.org.uk/checklist2008%20AH.pdf) 
Fauna Europea (2004) http://www.faunaeur.org/about_fauna_standards.php  
* refers to functional group assigned on the basis of conspecifics. 
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5.1 Abstract 

Soil greenhouse gas emissions from cattle grazed and un-grazed temperate upper 

salt marsh were measured using dark static chambers, monthly for one year. 

Additionally, below-ground gas sampling tubes were used to measure soil methane 

(CH4) concentrations. CH4 efflux from grazed and un-grazed salt marsh did not 

differ significantly, however grazing did lead to ‘hotspots’ of underground CH4 (up 

to 6 % of total air volume) and CH4 efflux (peak of 9 mg m-2 h-1) significantly linked 

to high soil moisture content, low soil temperatures and the presence of Juncus 

gerardii. Carbon dioxide (CO2) efflux was greater from the un-grazed marsh (mean 

of 420 mg m-2 h-1) than the grazed marsh (mean of 333 mg m-2 h-1) throughout most 

of the year and was positively correlated with deeper water table and greater soil 

temperatures. Grazing was not a significant predictor of nitrous oxide (N2O) soil 

emissions. Global Warming Potential (GWP; over 100 years), calculated from mean 

yearly chamber fluxes for CH4 and CO2, did not differ significantly with grazing 

treatment. Seasonal variation in the key drivers of soil greenhouse gas efflux; soil 

temperature, moisture and water table, plus the presence or absence of 

aerenchymatous plants such as J. gerardii were more important to the magnitude 

of greenhouse gas emissions than grazing management per se.   

http://dx.doi.org/10.1016/j.ecss.2012.08.002
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5.2 Introduction 

Methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) are all major 

greenhouse gases. Despite natural wetlands accounting for a third of global CH4 

flux, their contribution to Global Warming Potential (GWP) may be off-set by their 

carbon sink capabilities and minimal N2O emissions (Dassonville & Renault, 2002; 

Denman et al., 2007; Lai, 2009). Managing wetlands to minimise their GWP is 

therefore crucial. Most previous research focuses on freshwater wetlands such as 

peatlands (Le Mer & Roger, 2001; Limpens et al., 2008; Lai, 2009) with the GWP of 

coastal habitats such as tidal flats and salt marshes remaining less well quantified 

(Pacyna & ManØ, 2006). European salt marshes are often managed by livestock 

grazing to provide a suitable habitat for over-wintering bird species (Adam, 1990; 

Milsom et al., 2000; Chatters, 2004), however, the impact of this management on 

the GWP of this habitat is not well known. Grazing management is expected to have 

clear implications for GWP as soil moisture content, soil temperature and plant 

community composition, all key drivers of soil greenhouse gas emissions, often 

differ with grazing intensity (Bakker et al., 1993; Curry, 1994; Lambert, 2000). 

Despite the fact that salt marshes are by definition inter-tidal wetlands, their upper 

zones share many characteristics of semi-natural grasslands due to infrequent 

inundation. Aerated grassland soils are large carbon stores, produce little CH4 and 

emit significant amounts of N2O only under intensive grazing or fertiliser input 

regimes (Soussana et al., 2007; Allard et al., 2007; Del Grosso, 2010). Upper 

temperate salt marshes, common throughout Europe and characteristic of the vast 

area behind summer dykes in the Wadden Sea area of Germany (Bakker et al., 

1993), may therefore have a similar GWP to terrestrial grasslands during the 

summer months if tidal inundation is rare. 

CH4 is produced by methanogenic archaea from either CO2 or acetic acid when soil 

conditions are suitably anoxic (Denman et al., 2007). Where an oxic soil layer exists 

above an anoxic layer up to 88 % of CH4 produced can be oxidised by 
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methanotrophs (Calhoun & King, 1997). CH4 leaves the soil via three pathways, 

diffusion, ebullition and through the aerenchyma of certain plant species (Van der 

Nat & Middelburg, 2000). In wetland soils, CH4 production is increased by standing 

water or waterlogged soil, high soil temperatures and increased organic matter or 

substrate availability (Le Mer & Roger, 2001; Ding et al., 2004; Kankaala et al., 

2005). In the sulphate rich marine environment sulphate reducing bacteria typically 

out-compete methanogenic archaea in the anaerobic decomposition of organic 

matter, a process governed by the redox potential (Piker et al., 1998). As 

saltmarshes are tidal it is assumed that CH4 emissions from this habitat are 

relatively insignificant. Bartlett et al. (1985) reported that North American coastal 

saltmarshes do not contribute significantly to CH4 emissions. However, in a recent 

review of CH4 emissions from temperate tidal marshes Poffenbarger et al. (2011) 

reported that while polyhaline tidal marshes had lower CH4 emissions than fresh 

water marshes, oligohaline marshes had the highest and most variable emissions. 

To our knowledge, CH4 efflux has not been measured for the upper zone of the salt 

marsh that may only be tidally inundated a dozen times a year. Cattle grazing may 

increase soil CH4 emissions directly via the input of animal dung, a moderate CH4 

source, and indirectly via CH4 ebullition caused by cattle trampling (IPCC, 1996; Lin 

et al., 2009; Herbst et al., 2011). In addition, grazed salt marshes may be prone to 

water-logged ground, have greater plant species richness than un-grazed marshes 

and are often characterised by Juncus species (rushes) that are known to vent CH4 

via their aerenchyma (Adam, 1990; Roslev & King, 1996; Lambert, 2000). 

CO2 efflux is comprised of microbial (soil) and plant respiration. Soil respiration 

requires aerobic decomposition conditions, intermediate soil moisture and 

becomes faster with increased soil temperature and ecosystem productivity (Luo & 

Zhou, 2006). Both European and North American saltmarshes have high levels of 

primary productivity (Vernberg, 1993; Mitsch & Gosselink, 2000) but exhibit 

variable redox potential and soil moisture regimes due to differences in timing and 

duration of tidal inundation. Regularly inundated salt marshes and mudflats are 

likely to show very different soil characteristics to upper salt marshes that are less 

frequently inundated. Studies of grazing and CO2 efflux have largely concentrated 
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upon grassland systems. In Soussana et al. (2007) grasslands under widely differing 

grazing and fertiliser addition regimes were all net sinks of CO2. However, livestock 

grazing may reduce plant respiration directly via removal of above-ground plant 

biomass by herbivores and also reduce soil respiration indirectly via decreased 

supply of readily available carbon to roots and microbes (Luo & Zhou, 2006). 

Despite this effect, ‘hotspots’ of CO2 emissions from livestock dung, up to 50 % 

higher than control plots have been recorded (Lin et al., 2009) and should also be 

taken into account. Grazing intensity also influences soil carbon storage. Light, 

moderate or heavy grazing can all increase soil carbon, depending on grassland 

type (Kemp & Michalk, 2007). Conversely, extensively grazed or un-grazed 

grasslands may store more carbon than intensively managed grassland (Campbell et 

al., 1997; Soussana et al., 2004). 

N2O soil emissions occur where an aerobic soil surface layer coupled with an 

anaerobic layer immediately beneath provides suitable conditions for aerobic 

nitrifying bacteria to produce nitrate, from which anaerobic denitrifying bacteria 

produce N2O (Mitsch & Gosselink, 2000). Nitrification may also occur in the 

oxidised root zone of plants. N2O soil emissions are increased by high nitrate 

availability and compacted, waterlogged, warm soil (Van Groenigen et al., 2005; Lin 

et al., 2009; Del Grosso, 2010). In general, N2O emissions are considered 

detrimental as they increase atmospheric pollution. However, in coastal systems, 

denitrification leading to increased N2O efflux may be seen as environmentally 

beneficial, when this prevents the release of nitrate into the marine environment 

that can lead to eutrophication (Brin et al., 2010). There are very few studies 

concerning N2O emissions from freshwater or saltwater wetland soils (Poffenbarger 

et al., 2011). Most studies from grasslands record greater soil N2O emissions with 

increased livestock grazing intensities. Animal trampling leads to compact, warm, 

waterlogged soils, and the addition of animal waste a nitrate source, providing ideal 

conditions for soil N2O efflux (Van Groenigen et al., 2005; Saggar et al., 2007; Lin et 

al., 2009; Del Grosso, 2010). However, Wolf et al. (2010) provides conflicting 

evidence, soil N2O emissions were highest in un-grazed steppe grasslands and 

lowest in grasslands with highest stocking densities. 
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In this study we examine the effect of cattle grazing on greenhouse gas efflux and 

estimated GWP of a temperate upper saltmarsh. The following three hypotheses 

were examined: 1) Soil CH4 efflux will be greater in the cattle grazed than the un-

grazed salt marsh due to differences in compaction and soil moisture content; 2) 

Combined soil and plant CO2 efflux will be greater in the un-grazed (aerobic, free 

draining soil with a large above-ground plant biomass) than the grazed marsh; 3) 

Soil N2O efflux will be greater in the grazed than the un-grazed marsh due to 

differences in compaction, waterlogging and nitrate supply. 

5.3 Study area, materials and methods 

5.3.1 Crossens marsh 

The salt marshes of the Ribble estuary cover 2000 ha in total. The study area, 

Crossens Marsh (53⁰ 41’ 15” N, 2⁰ 57’ 4” W), is located on the southern edge of the 

Ribble estuary in north-west England and is part of the Sefton Coast Special 

Protection Area managed by Natural England. The marsh has been arbitrarily split 

into two management types by a fence line that has been in situ for at least forty 

years, running more-or-less perpendicular to the shore. The grazed marsh is 

characterised by predominantly Festuca rubra saltmarsh National Vegetation 

Community (NVC; SM16d) and the un-grazed marsh by Elytrigia repens saltmarsh 

(SM28; Rodwell, 2000). The grazed part of the marsh covers 517 ha and is grazed 

uniformly by around 100 bullocks from late May to early October (0.2 cattle per 

hectare) to provide an overwintering feeding habitat for pink-footed geese (Anser 

brachyrhynchus). All experimental units were selected within the oligohaline 

(salinity = 0.5 – 5 PSU (practical salinity units)) high marsh zone where numerous 

creeks are present but tidal inundations are relatively rare, limited to around eight 

events a year on high equinox tides. A paired experimental design was used with six 

experimental units of approximately 10 m x 10 m set up on each side of a 600 m 

long section of the fence line, 100-150 m apart, in a ‘mirror image’ formation, giving 

six grazed (G1-G6) and six un-grazed (U1-U6) units (Figure 5.1). Each experimental 

unit was located between 20 m and 50 m from the fence line to ensure an 
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adequate buffer zone and checked for comparable elevation within ±10 cm. All 

measurements were carried out within these experimental units.  

G1

Grazed

Un-grazed

Fence line 600 m

G2

G3

G4

G5

G6

U6

U5

U4U2

U3

U1

30 m

SALT MARSH 

U1

G1

Un-grazed units

Cattle grazed units

Block 1 Block 5 Block 6Block 2 Block 3 Block 4

Buffer zone 20 m

 
 
Figure 5.1 Experimental design at Crossens Marsh. All units are 10 m x 10 m square at 20 - 30 m, 30 

- 40 m or 40 - 50 m from the fence line. Not to scale. 

5.3.2 Marsh characterisation 

The following measurements were taken for saltmarsh characterisation in 2009. 

Soil samples were collected during September from the top 15 cm of soil to 

measure salinity and pH. Soil was sieved to 2 mm and a sub sample of 10 g was 

taken from each sample and shaken with 25 ml of deionised water (1:2.5 dilution 

factor). A Hanna pH209 pH meter was used to measure pH and a Jenway 4520 

Conductivity meter to measure electrical conductivity (mS cm-1) as a proxy for 

salinity. Samples to determine bulk density and soil organic matter content were 

also collected using intact soil cores of 3.8 cm diameter and 15 cm depth. Cores 

were dried at 105 ⁰C for 72 hours and the dry mass divided by the volume of the 

core to calculate bulk density. Loss-on-ignition was used to estimate organic matter 

content (Ball, 1964). Soil carbon stock in kg C m-2 was calculated from bulk density 

and the conversion factor of soil carbon as 0.55 of soil organic matter (Emmett et 

al., 2010). Soil moisture content and temperature were recorded at six locations 

within each experimental unit during September. Soil conductivity was measured in 

direct volts using a Delta T Theta Meter HH1 (four probes of 6 cm) and converted to 
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percentage soil moisture content using a calibration suitable for organic soils. Soil 

temperature was measured using a digital thermometer (single 11 cm probe). 

Vertical water infiltration rate, inversely related to waterlogged soil conditions, was 

measured using three single ring infiltrometers (Carroll et al., 2004) per 

experimental unit.  

The potential for nutrient cycling by microbes was assessed using a measure of 

mineralisable N (Rowe et al., 2011). Three N mineralisation cores, 3.8 cm diameter 

and 15 cm depth, were taken from each experimental unit, during September. Soil 

cores were taken using plastic corers, capped at both ends to minimise soil 

disruption, and stored intact at 4 °C. Accumulated inorganic N was flushed from the 

cores by spraying with a solution of similar ionic concentration to UK rain over 7 

days until 150 ml of leachate had been collected. Cores were incubated at 10 °C for 

28 days, homogenised and a sub-sample extracted using 1 M KCl for the analysis of 

ammonium and nitrate content (Rowe et al., 2011). N mineralization rate was 

calculated over these 28 days assuming that all previous inorganic N had been 

removed during the 7 day flushing period. Mineralisable N was expressed as μg N g-

1 day -1 on both a dry soil weight and organic matter basis. The biological activity of 

soil meso-faunal decomposers, a proxy for aerobic soil activity, was measured using 

custom made bait lamina (Terra Protecta GmbH, Germany), 15 cm long with 16 

holes filled with cellulose, bran and charcoal. Ten bait lamina per experimental unit 

were set up in two lines of five, 50 cm apart, pushed vertically into the ground so 

the top hole was 1 cm below the soil surface. Strips were placed in the ground in 

late June for 44 days and again in mid September for 34 days until 10 – 40 % of the 

bait had been degraded. Strips were removed, washed and each hole assessed for 

biological activity or ‘feeding rate’. Feeding rates were standardised to percentage 

bait removed per 7 days. 

Above-ground net primary productivity (ANPP), peak biomass from three grazer 

excluded areas per experimental unit, was recorded as a direct measure of primary 

productivity. At the beginning of March, vegetation was cut to ground level in three 

50 cm x 50 cm areas per experimental unit. Each cut area was protected from cattle 

by an 8 cm mesh gabion (50 x 50 x 50 cm) and vegetation allowed to re-grow until 
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peak biomass at the end of August when areas were re-cut within a central 25 cm x 

25 cm area. Vegetation was dried at 80 °C for 72 hours then weighed and converted 

to kg dry wt m-2 yr-1 to provide a measure of ANPP. Above-ground living plant 

material and plant litter were collected for five 25 cm x 50 cm quadrats per 

experimental unit in July, one root core of 5 cm diameter and 10 cm depth was also 

taken per quadrat and washed to remove all soil. Above-ground vegetation, litter 

and roots were all dried at 80 °C for 72 hours and weighed to give indicators of 

above-ground live plant biomass, litter biomass and below-ground root biomass 

respectively. Above-ground biomass can be linked to dark chamber respiration 

rates. 

5.3.3 CH4, CO2 and N2O chamber fluxes 

Above-ground greenhouse gas fluxes were measured by a closed dark static 

chamber method. Each chamber consisted of a polyvinyl chloride (PVC) pipe of 15 

cm height (30 cm internal diameter) with a rubber Septa sampling point located 

half way up, sealed to a 2 mm acrylonitrile butadiene styrene (ABS) lid, painted 

silver to reflect heat . These chambers were of similar diameter to those commonly 

used, but lower in height, and were chosen to increase the likelihood of measuring 

minor fluxes of CH4 and N2O by increasing the surface area to volume ratio. During 

measurement periods each static chamber was attached by a rubber seal to an in 

situ PVC pipe base (0.71 m2). The base was placed firmly in the soil to a depth of 5 

cm with 10 cm visible above-ground in June 2010, to give a combined chamber and 

base volume of 0.018 m3. Vegetation and plant litter were not removed from within 

the chambers.  

Two chambers per experimental unit, with bases 3 m apart, were used to measure 

daytime (between 11am and 3pm) greenhouse gas fluxes once a month for twelve 

months from September 2010 to August 2011. Gas samples were taken with a 30 

ml syringe at 0, 30, 60, 90 and 120 minutes after chamber placement and 

immediately transferred to a 22 ml vial, over pressurised in the field but returned to 

lab pressure prior to analysis. Internal chamber temperature was recorded in two 

grazed and two un-grazed chambers per month using Tinytag data loggers (TGP-
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4017 -40 to +85°C; Gemini Data Loggers). Gas analysis was carried out over the 

following three days using a Perkin Elmer Clarus 500 Gas Chromatograph (GC) with 

a Porapaq QS (80 – 100 mesh) analytical column and Turbomatrix 40 headspace 

autoanalyser. CO2 and CH4 were detected by FID, N2O by ECD (at 375 °C, sample 

oven at 40 °C) to give ppm and peak area (mV) measurements for the three gases. 

The following standard gases were used to calibrate the GC, A: N2O 1 ppm, CH4 3.9 

ppm, CO2 995.5 ppm; B: N2O 5.1 ppm, CH4 50.4 ppm, CO2 510.8 ppm; and C: N2O 2 

ppm, CH4 20.3 ppm, CO2 257.7 ppm. Samples were run after a calibration was 

achieved with an r2 of > 0.99 for all three gases.  

5.3.4 Flux calculation 

Greenhouse gas fluxes were calculated from ppm and peak area measurements for 

each chamber using a GCflux model (Levy et al., 2011) run on Genstat 13.1 (Payne 

et al., 2011). For CO2 and N2O, fluxes were calculated for the full 0 to 120 minutes 

time scale (5 time points). For CH4 fluxes the first time point (time 0) was excluded 

as it was often high compared with ambient air concentration (~1.8 ppm) due to 

probable ebullition from disturbance in placing the chamber as in Alm et al. (2007). 

The GCflux model calculated fluxes, with chamber volume and temperature 

accounted for, by five methods: 1) Simple averaging; 2) Linear regression; 3) 

Intercept method; 4) Negative exponential regression; 5) Asymptotic regression. 

Final model selection, and therefore flux output for further analysis, was based on 

the highest r2 value. Within this study method 2) ‘Linear regression’ was 

consistently the best model fit for each data set. Regression values of r2 < 0.7 were 

excluded unless they were indicative of low level or zero fluxes as in Waddington et 

al. (2010). Flux output in nmol m-2 s-1 was converted to mg m-2 h-1 for statistical 

analysis. 

5.3.5 CH4 soil concentration 

Underground soil CH4 concentrations were measured using plastic gas sampling 

tubes, 10 cm long, with an internal diameter of 16.5 mm, with 8 small holes (2.5 

mm diameter) drilled at either 2.5 cm, 5 cm or 7.5 cm along the tube, depth when 

inserted in soil (Figure 5.2), to allow soil air at this depth to enter the tube. A 
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silicone bung was used to seal the base of the tube, a 17.5 mm Septa suba seal was 

attached to the top of each tube to allow gas sampling via syringe. The gas sampling 

tubes were installed in the field in July 2010, flush with the soil surface, three per 

experimental unit, one 2.5 cm, 5 cm and 7.5 cm, 5 cm apart in a triangle formation. 

Each set of tubes was protected by a rain hat and wire basket to prevent 

interference by cattle. The gas sampling tubes were allowed to equilibrate for one 

month to allow measurement of gas from the tubes to accurately reflect the soil 

concentration of CH4 at each soil depth. Gas was sampled from each tube once in 

October 2010, January and July 2011 using a 30 ml syringe. Samples were 

immediately transferred to a pre-evacuated 22 ml glass vial, over pressurised in the 

field but returned to lab pressure prior to analysis. Gas analysis was carried out 

using the GC. CH4 was detected using FID to give ppm and peak area 

measurements. As many measurements were higher than the lab standard CH4 

concentrations of A (3.9 ppm), B (50.4 ppm) and C (20.3 ppm), additional standards 

of 0.1 % (1000 ppm), 1 % (10,000 ppm) and 10 % CH4 (100,000 ppm) were used to 

calculate ppm from area measurements more accurately. Soil CH4 percentages for 

underground gas samples were calculated directly from soil CH4 concentrations in 

ppm. 

2.5 cm

7.5 cm

5 cm

Gas sampling point – Septa suba seal

Silicone bung

10 cm

16.5 mm

2 mm 
holes

Hypothesis: 
Anoxic layer 
below ~ 5 cm on 
grazed marsh

Soil surface

 

Figure 5.2 Schematic representation of the underground gas sampling tubes. 
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5.3.6 Environmental measurements as predictors of chamber gas fluxes 

As soil temperature, soil moisture content and water table level are common 

drivers of soil greenhouse gas emissions these were measured monthly for twelve 

months alongside gas chamber measurements to provide possible predictive data 

for the size of greenhouse gas efflux. In addition plant community composition, 

particularly the presence of Juncus species, can influence the production of CH4 via 

aerenchyma; this was therefore recorded in the middle of the twelve month 

sampling period and used in later predictive models (2.7). Soil temperature and soil 

moisture content were recorded adjacent to each chamber immediately prior to 

monthly gas measurements (with the same equipment as in section 2.2). It was also 

recorded if chambers or experimental units appeared waterlogged. Water table 

measurements were taken monthly at the same time as gas measurements from 

dip wells, one per experimental unit, located between the two chambers. The dip 

wells, 1 m depth, 35 mm internal diameter, PVC slotted screen (Stuart Well Services 

Ltd., Norfolk, UK), were installed in October 2010. Water table measurements were 

therefore not available for September or October. Plant species percentage cover 

was assessed by eye for each experimental unit during May 2011 for three 1 m x 1 

m quadrats and within the two gas measurement collar areas.  

5.3.7 Statistical analysis 

Differences between grazing treatments for all environmental variables and flux 

measurements were analysed using ANOVAs on linear mixed effects (lme) models 

using R (R Development Core Team, 2011) taking into account the effect of 

sampling month ‘lme (CO2flux ~ grazing*month, random = 

~1|block/grazing/month’. This approach was used to enable the raw data to be 

analysed accounting for replication at the level of the experimental unit (n=6; 

Crawley, 2007). In addition, lme models were used to assess the influence of water 

table level, soil moisture and soil temperature, all recorded alongside chamber 

measurements; percentage cover of Agrostis stololinifera, Aster tripolium, E. 

repens, F. rubra, Glaux maritima, Juncus gerardii, Puccinellia maritima and 

Triglochin maritima recorded from chambers and experimental units; and salinity, 
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bulk density, organic matter content, above ground biomass, litter biomass, all 

measured prior to chamber measurements; on underground soil CH4 concentration 

and above-ground CO2 and CH4 fluxes. Results of best model fit are presented here 

based on lowest Akaike information criterion (AIC) and quantile probability plot 

(qqnorm) with most normal distribution. 

5.3.8 Up-scaling conceptual diagram 

A conceptual diagram was produced to compare the GWP of greenhouse gas fluxes 

from the grazed and un-grazed salt marsh over the Crossens marsh study site. 

Mean greenhouse gas fluxes from chamber measurements over the study year, for 

grazed versus un-grazed marsh (n = 6), were converted to CO2 equivalents (g CO2e 

m-2 yr-1) for a 100 year GWP (CO2 = 1, CH4 = 25, N2O = 298; Denman et al., 2007) 

and expressed as a comparative flux estimate for grazing type. Carbon stored in 

plant biomass for the grazed and un-grazed salt marsh, over one year, was 

calculated from mean ANPP for each treatment using a shoot carbon value of 42 % 

(unpublished data) to give a value in g C m-2 yr-1. This was then converted to CO2 

equivalents in g CO2 m-2 yr-1 using a conversion factor of x 3.67 (molar mass of CO2 

= 44, molar mass of C = 12, 44/12 = 3.67). CO2 allocated to roots was not calculated. 

In addition to variables directly measured within this study, CH4 efflux via cattle, 

enteric (i.e. microbial fermentation within rumen and large intestine), from waste 

and via trampling were also estimated to provide a more realistic comparison 

between grazing regimes. CH4 efflux via cattle was calculated based on 100 bullocks 

on Crossens Marsh over 517 ha for 1/3 of the year (beef cattle emit 48 kg CH4 hd-1 

yr-1 enteric CH4 & 6 kg CH4 hd-1 yr-1 CH4 from waste; IPCC 1996). CH4 efflux via 

ebullition caused by cattle trampling was not directly measured but was included in 

the diagram as an additional factor that may influence greenhouse gas emissions as 

in (Herbst et al., 2011). The effect of grazing on GWP (CH4 soil efflux + CH4 cattle 

efflux + CO2 efflux – ANPP = GWP (g C02e m-2 yr-1)) was analysed by ANOVA on an 

lme model using R as in section 2.7. 

5.4 Results 

5.4.1 Marsh characterisation 
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Bulk density, soil carbon stock, soil moisture content, soil temperature and below-

ground plant biomass were all significantly higher on the grazed marsh in 

comparison to the un-grazed marsh.  Soil pH, water infiltration rate, ANPP, above-

ground plant biomass, litter biomass and vegetation height were all significantly 

greater on the un-grazed marsh (Table 5.1). Soil salinity and organic matter content 

were not significantly different between treatments although salinity showed 

greater spatial variability (between experimental units) on the grazed marsh. 

Nitrate mineralisation rate was significantly greater for the un-grazed marsh but 

ammonium mineralisation rate was significantly greater on the grazed marsh. Total 

nitrogen mineralisation was not significantly different between grazing treatments 

(Table 5.1). Below-ground meso-faunal feeding activity (Figure 5.3), a proxy for 

aerobic soil conditions, was significantly greater in un-grazed than grazed marsh 

(ANOVA; F = 37.37, d.f. = 5, p < 0.01). Within each marsh type feeding activity was 

faster in summer than autumn (ANOVA; F = 18.89, d.f. = 10, p < 0.01). On the 

grazed marsh no feeding activity was recorded below 4.5 cm in summer and 3 cm in 

the autumn, indicating possible anaerobic conditions.  

5.4.2 CH4 chamber fluxes 

CH4 fluxes were recorded monthly from September 2010 to August 2011 (Figure 

5.4). Mean CH4 fluxes fell within the range of 0.01 to 1.27 mg m-2 h-1 (GCflux model 

2: linear flux, mean r2 = 0.68). Peak CH4 fluxes of up to 9.82 mg m-2 h-1 on the 

grazed marsh and 0.28 mg m-2 h-1 on the un-grazed marsh were recorded in 

February, one of the most water-logged months. CH4 production showed high 

spatial heterogeneity between experimental units with chambers within G1 and G2 

exhibiting consistently larger fluxes than other grazed units. There were no 

significant differences in CH4 fluxes with grazing treatment, either for one year’s 

data (Figure 5.4) or for each month separately but there were significant 

differences between months (ANOVA; F = 3.22, d.f. = 98, p < 0.01). For the grazed 

marsh soil moisture content and the presence of J. gerardii both positively 

increased CH4 soil flux whereas increased temperature significantly decreased CH4 

flux (moisture ANOVA; F = 6.73, d.f. = 50, p < 0.05, Juncus ANOVA; F = 14.34, d.f. = 

4, p < 0.05, temp ANOVA; F = 8.10, d.f. = 50, p < 0.01). For the un-grazed marsh no 
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soil or vegetation factors were significant for CH4 flux, indicative of the negligible 

flux recorded for this treatment. 

Table 5.1 Soil properties and vegetation characteristics measured from the grazed and un-grazed 

marsh. Sampling depths are presented alongside treatment means ± 95% confidence intervals, 

ANOVA results (n = 6) and number of replicate samples per experimental unit. For vegetation 

height, for each of the 6 replicates per treatment the mean of 10 measurements was used in the 

analysis. Org. mt indicates organic matter. This table includes some results previously published in 

Ford et al. (2012). 

 Depth 
(cm) 

Grazed Un-
grazed 

F statistic         Rep 

Soil       
Salinity (PSU) 0-15 2.5 ± 1.0 2.0 ± 0.7 1.78 ns   3 
pH 0-15 7.6 ± 0.2 7.9 ± 0.2 7.49 *   3 
Bulk density (g cm-3) 0-15 0.8 ± 0.1 0.7 ± 0.0 11.56 * 3 
Organic matter content (%) 0-15 7.4 ± 1.5 6.3 ± 0.8 0.48 ns   3 
Carbon stock (kg C m-2) 0-15 4.74 ± 

0.7 
3.69 ± 
0.3 

7.51 * 3 

Moisture content (%) 0-6 52.6 ± 
0.2 

44.5 ± 
2.5 

10.32 *  6 

Water infiltration rate (mm min-1) n/a 0.02 ± 
0.01 

8.52 ± 
2.06 

182.98 **
* 

2 

Temperature (⁰C) 0-11 14.9 ± 
0.1 

14.2 ± 
0.1 

37.52 ** 6 

Nitrogen mineralisation rates       
NO3

- (μg N g-1 dry wt day-1) 0-15 0.04 ± 
0.03 

0.25 ± 
0.15 

32.87 ** 3 

NH4
+ (μg N g-1 dry wt day-1) 0-15 0.08 ± 

0.03 
0.02 ± 
0.02 

24.59 ** 3 

NO3
- & NH4

+ (μg N g-1 dry wt day-1) 0-15 0.12 ± 
0.05 

0.28 ± 
0.15 

2.50 ns 3 

NO3
-
 (μg N g-1 org. mt day-1) 0-15 0.54 ± 

0.48 
3.75 ± 
2.16 

52.37 **
* 

3 

NH4
+

 (μg N g-1 org. mt day-1) 0-15 1.19 ± 
0.57 

0.34 ± 
0.28 

18.34 ** 3 

NO3
- & NH4

+ (μg N g-1 org. mt day-1) 0-15 1.73 ± 
0.76 

4.10 ± 
2.21 

5.56 ns 3 

Vegetation       
Above-ground net primary 
productivity (kg dry wt m-2 yr-1) 

n/a 0.58 ± 
0.10 

1.20 ± 
0.16 

9.09 * 3 

Above-ground biomass (kg dry wt m-2) n/a 0.3 ± 0.1 0.7 ± 0.1 24.15 ** 5 
Litter biomass (kg dry wt m-2) n/a 0.0 ± 0.0 0.3 ± 0.1 24.68 ** 5 
Below-ground biomass (kg dry wt m-2) 0-10 3.4 ± 0.4 1.0 ± 0.2 73.86 **

*   
5 

Vegetation height (cm) n/a 8.2 ± 0.8 19.2 ± 
1.4 

103.28 **
*   

6 

Significant differences between grazing treatments indicated by *(P < 0.05), **(P < 0.01) and ***(P < 
0.001). Non significant results recorded as ns (P > 0.05).   
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Figure 5.3 Below-ground meso-faunal bait lamina feeding activity for both grazing treatments (G = 

grazed; U = un-grazed) in summer and autumn 2009 as a function of soil depth. Values represent 

means ± 95% confidence intervals. Significant differences denoted by ** (P < 0.01), non-significant 

by ns. 

 

5.4.3 CO2 chamber fluxes 

Mean monthly CO2 fluxes of 74 to 949 mg m-2 h-1 were recorded, up to a peak of 

2570 mg m-2 h-1 on the grazed and 1811 mg m-2 h-1 on the un-grazed marsh in June, 

one of the warmest months (GCflux model 2: linear flux, mean r2 = 0.83). Grazing, 

month and grazing: month interaction all had significant effects on CO2 fluxes 

(Figure 5.4) with warmer weather linked to larger fluxes, more often on the un-

grazed than the grazed marsh (grazing ANOVA; F = 16.572, d.f. = 5, p < 0.05, month 

ANOVA; F = 22.68, d.f. = 110, p < 0.001, month:grazing ANOVA; F = 2.406, d.f. = 110, 

p < 0.05). High soil temperatures and deeper water table led to greater CO2 fluxes 

for both grazing management treatments (temp ANOVA; F = 127.19, d.f. = 117, p < 

0.001, water ANOVA; F = 14.885, d.f. 105, p < 0.001). For both the grazed and un-

grazed salt marsh CO2 fluxes were most spatially variable (between experimental 

units) over the summer months. 
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Figure 5.4 Monthly methane and carbon dioxide fluxes, comparison with grazing treatment (G = 

grazed; U = un-grazed) for September 10 to August 11. Values in left hand panels represent means 

± 95% confidence intervals. Values in right hand panels represent mean of 2 gas chambers for 

grazed (G1-G6) and un-grazed (U1-U6) experimental units. Significant differences between grazing 

treatments, month or grazing: month interaction indicated by *(P < 0.05), **(P < 0.01) and ***(P < 

0.001). Non significant results recorded as ns (P > 0.05).   

 

5.4.4 N2O chamber fluxes 

N2O fluxes of between -0.003 and 0.050 mg m-2 h-1 for the grazed and -0.040 and 

0.005 mg m-2 h-1 for the un-grazed marsh were recorded over four months; 

September, November, December and January (model 2: linear flux, mean r2 = 

0.47); other months were excluded due to accidental moisture collection within 

vials leading to false peak area output on the GC. There were no significant 

differences in flux with grazing (ANOVA; F = 4.47, d.f. = 5, ns) and recorded fluxes 

were very low with a mean of 0.003 mg m-2 h-1. 
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5.4.5. CH4 soil concentration 

During the waterlogged months of October and January, underground soil CH4 

concentrations were spatially variable (between experimental units), particularly on 

the grazed marsh, representing between 0.002 % and 6.29 % of the total soil air 

volume (Figure 5.5). In line with the results from the static chamber fluxes, the 

highest percentage of CH4 was recorded from experimental units G1 and G2. The 

un-grazed marsh did not accumulate high levels of CH4, 0.001 % to 0.081 %. CH4 

was only detectable in very low concentrations in July due to the very dry 

conditions. Underground soil CH4 concentration was significantly different between 

time periods (month ANOVA; F = 24.24, d.f. = 22, p < 0.001) but not significantly 

different between grazing treatments. For the grazed salt marsh, lower soil 

temperatures and the presence of J. gerardii (saltmarsh rush) within units 

correlated significantly with soil CH4 concentration (temp ANOVA; F = 4.56, d.f. = 

35, p < 0.05, Juncus ANOVA; F = 7.64, d.f. = 4, p < 0.05). For the un-grazed salt 

marsh low soil temperatures and high soil moisture content correlated with high 

soil CH4 concentration (temp ANOVA; F = 89.210, d.f. = 22, p < 0.001, Moisture 

ANOVA; F = 4.618, d.f. = 22, p < 0.05). 

 

Figure 5.5 Influence of grazing on underground soil methane concentrations, expressed as 

percentage on a volumetric basis for October 2010, January and July 2011 on a log scale. Values 

shown for all grazed (G1-G6) and un-grazed (U1-U6) experimental units. Significant differences 

between grazing treatments, month or grazing: month interaction indicated by ***(P < 0.001). 

Non significant results recorded as ns (P > 0.05).   
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5.4.6 Environmental measurements as predictors of chamber gas fluxes 

Soil temperature, measured adjacent to chambers, was significantly affected by 

grazing (ANOVA; F = 8.08, d.f. = 5, p < 0.05) and month (ANOVA; F = 3962.765, d.f. = 

110, p < 0.001). As the interaction between grazing and month was also significant 

(ANOVA; F = 19.931, d.f. = 110, p < 0.001) this indicates that daytime soil 

temperature was higher on the grazed marsh during the spring and summer and 

higher on the un-grazed marsh in winter (Figure 5.6). Soil moisture adjacent to 

chambers, within the top 6 cm of soil, did not significantly alter with grazing 

(ANOVA; F = 1.75, d.f. = 5, ns) despite a trend towards higher moisture content in 

grazed soils in most months (Figure 5.6). The effect of month was significant 

(ANOVA; F = 1.87, d.f. = 98, p < 0.05). Water table level, measured within dipwells, 

was not significantly different between grazing treatments (ANOVA; F = 0.02, d.f. = 

5, ns) but effect of sampling month was highly significant (ANOVA; F = 57.99, d.f. = 

97, p < 0.001). Temperature, soil moisture, water table level and the presence of J. 

gerardii were all significant indicators of either CH4 efflux, CO2 efflux or soil CH4 

concentration as detailed in sections 3.2, 3.3 and 3.5. 

5.4.7 Up-scaling conceptual diagram 

The up-scaling conceptual diagram (Figure 5.7) shows no significant difference in 

GWP over 100 years for the grazed and un-grazed salt marsh (ANOVA; F = 0.41, d.f. 

= 5, ns). The GWP of the upper saltmarsh was estimated to be ~2000g CO2e m-2 yr-1, 

regardless of grazing management. 

5.5 Discussion 

5.5.1 Marsh characterisation 

The grazed marsh was characterised, in 2009, by compact, moist soil, anaerobic 

below ~5 cm with high available ammonium characteristic of reduced conditions, 

probably caused by cattle trampling. Below ground root biomass and soil carbon 

stock were also greater on the grazed marsh. The un-grazed marsh had more 

aerobic, free draining soil, experienced a smaller range in temperature, with greater 

available nitrate and faster below-ground meso-faunal feeding rate than the grazed  
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Figure 5.6 Influence of grazing on soil moisture, water table depth and soil temperature, measured 

monthly alongside gas measurements. Values represent means ± 95% confidence intervals. 

Significant differences between grazing treatments, month or grazing:month interaction indicated 

by *(P < 0.05), **(P < 0.01) and ***(P < 0.001). Non significant results recorded as ns (P > 0.05).   
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Grazed
comparative flux estimate 
2090 ± 1362 g CO2e m-2 yr-

1

Un-grazed
comparative flux estimate 
1951 ± 1698 g CO2e m-2 yr-1

CO2 efflux
3777 ± 1246

Biomass CO2 stored 
-896 ± 414

Biomass CO2 stored 
-1846 ± 531

N2O efflux 
< 16

N2O efflux 
< 16

CH4 efflux 
95 ± 140

CH4 efflux 
20 ± 14

CH4 efflux 
9#

Trampling CH4 efflux 
2 x soil##

Soil CH4 0.6 % Soil CH4 0.008 % 

Aerobic microbes
Denitrifying bacteria

Methanogens

CO2 efflux 
2882 ± 1154

Methanogens
Denitrifying bacteria

Aerobic microbes

 

Figure 5.7 Up-scaled conceptual diagram for total greenhouse gas efflux from grazed and un-

grazed salt marsh using yearly means (calculated from monthly means; Fig. 6.), ± 95% confidence 

intervals, to give a flux estimate per year for Crossens Marsh. All gas fluxes are expressed in g 

CO2e m-2 yr-1 for Global Warming Potential (GWP) of 100 years (CO2 = 1, CH4 = 25, N2O = 298; 

Denman et al., 2007). No significant difference in GWP between grazed and un-grazed salt marsh 

(ANOVA; F = 0.41, d.f. = 5, ns). # CH4 efflux via cattle (calculated for Crossens Marsh; IPCC, 1996); 

## CH4 efflux via ebullition caused by cattle trampling (Herbst et al., 2011). 

 

marsh. Grazing intensity also clearly affected vegetation characteristics, with the 

grazed marsh characterised by short vegetation and greater plant diversity. Fast 

growing dominant species such as E. repens were not present on the grazed marsh 

allowing rushes such as J. gerardii to develop, in comparison the un-grazed salt 

marsh was mainly a monoculture of E. repens with no Juncus species present. 

Above-ground plant and litter biomass were greater on the un-grazed marsh.  

In addition to preliminary marsh characterisation the key known drivers of 

greenhouse gas emissions: soil temperature, soil moisture content, water table 

level and plant community were measured alongside chamber measurements for 
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the 2010-2011 experimental period. This allowed us to measure the effect of 

grazing and season on both environmental characteristics and greenhouse gas 

efflux. Results indicated that despite differences in temperature and soil moisture 

content between grazing treatments, the effect of month of measurement was a 

more important determinant of environmental characteristics than grazing 

treatment per se. For example, soil temperature spanned a range of ~15 °C over the 

measurement year but differences between grazing treatments were rarely greater 

than ~2 °C except in the summer months. Also, water table depth ranged from <30 

cm over winter and spring to >80 cm in summer but remained constant across 

grazing treatments. 

5.5.2 CH4 

Grazing intensity was not a significant predictor of either soil CH4 concentration or 

CH4 soil efflux. However, for the grazed salt marsh both under-ground and soil 

efflux CH4 were spatially variable, with ‘hotspots’ occurring in conditions of high soil 

moisture content, low soil temperature and presence of J. gerardii. During the 

waterlogged autumn and winter months, underground soil CH4 concentrations of 

up to 6 % and a peak CH4 flux of 9.82 mg m-2 h-1 were recorded from the grazed 

marsh. In contrast, the highest recorded soil CH4 level from the un-grazed marsh 

was 0.08 %, with a peak flux of 0.28 mg m-2 h-1. Over the one year study period, 

mean monthly CH4 fluxes across both grazing treatments varied from 0.01 to 1.27 

mg m-2 h-1 in line with fluxes recorded from North American and Australian salt 

marshes, a temperate tidal lagoon and a European flooded coastal meadow 

(Priemé, 1994; Deborde et al., 2010; Chmura et al., 2011; Livesley & Andrusiak, 

2012) but greater than those recorded from a UK salt marsh (Dausse et al., 2012). 

Our variable soil CH4 fluxes support the recent review by Poffenbarger et al. (2011), 

that oligohaline marshes have more temporally and spatially variable emissions 

than previously thought. 

It is well known that CH4 efflux is increased by anaerobic waterlogged soils (Ding et 

al., 2004; Kankaala et al., 2005). It is more unusual for soil CH4 flux to be correlated 

with low temperatures, as in this study. In fact, high soil temperatures are usually 
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indicative of high CH4 efflux (Le Mer & Roger, 2001). This unexpected result can be 

explained by high temperatures being correlated to drier summer months, where 

CH4 flux was minimal or absent. The positive relationship between Juncus within 

plots and CH4 flux may be due to Juncus itself, or the conditions it needs to grow. 

Roslev and King (1996) found that Juncus effusus stems, growing in a freshwater 

marsh, act as a conduit for CH4 release from soil. In addition, the largest CH4 efflux 

from a North American salt marsh was recorded from a mixed Juncus – Carex plant 

community (Magenheimer et al., 1996). Plant mediated CH4 transport, via 

aerenchyma, may account for up to 90 % of total soil CH4 efflux in vegetated 

marshes (Livingston & Hutchinson, 1995; Van der Nat & Middelburg, 1998; Van der 

Nat & Middelburg, 2000). Methanogens are usually most active at neutral or 

slightly alkaline conditions (Le Mer & Roger, 2001), as provided by both grazing 

treatments in this study. Soil organic matter content was not found to be indicative 

of CH4 efflux in the study salt marsh. As peak CH4 soil efflux was relatively low 

compared to the high CH4 concentration found under the soil on the grazed upper 

salt marsh, it is likely that the majority of CH4 produced is subsequently oxidised by 

methanotrophs at the soil surface or rhizosphere where oxic conditions exist (Ma & 

Lu, 2011). As livestock grazed salt marshes are often characterised by compact soil, 

prone to waterlogging, and the presence of Juncus species (Bakker et al., 1993; 

Lambert, 2000; Bos et al., 2002) it is possible that this management may increase 

soil CH4 efflux.  

5.5.3 CO2 

Grazing was a significant predictor of CO2 efflux, with greater fluxes recorded from 

the un-grazed marsh throughout summer, autumn and winter but from the grazed 

marsh during spring. CO2 efflux was of greater magnitude than the CH4 efflux. With 

mean annual fluxes of 420 mg m-2 h-1  for un-grazed and 333 mg m-2 h-1 for the 

grazed marsh, up to a peak of 2570 mg m-2 h-1 in summer, these values are broadly 

comparable to both UK and North American salt marshes (Chmura et al., 2011; 

Dausse et al., 2012), and illustrate the importance of season to the magnitude of 

CO2 flux. We can infer from biomass and ANPP measurements that above-ground 

carbon storage was greater in un-grazed salt marsh. In contrast, root and soil 
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carbon stocks were greater in the grazed marsh as in Allard et al. (2007). High rates 

of CO2 efflux, from both grazing treatments, were positively predicted by a deeper 

water table, indicative of aerobic soil and higher soil temperatures as in Luo & Zhou 

(2006). Studies from grasslands, tidal flats and saltmarshes show that soil CO2 efflux 

is consistently amplified by increasing soil or air temperature (Raich, 1992; Klassen 

& Spilmont, 2012). We therefore suggest that temperature fluctuation due to 

seasonal trends and future climate change are more important to the carbon 

budget of temperate salt marshes than grazing management. 

5.5.4 N2O 

Grazing was not a significant predictor of N2O soil emissions throughout the winter 

months. The grazed marsh had higher ammonium mineralisation rates but lower 

nitrate mineralisation rates than the un-grazed salt marsh. As nitrates are more 

readily converted to N2O than ammonium it might be expected that the un-grazed 

marsh would produce more N2O than the grazed marsh but this was not the case. 

Higher fluxes of N2O, up to 0.05 mg m-2 h-1 were recorded from the grazed marsh, 

compared to a maximum of 0.005 mg m-2 h-1 from the un-grazed marsh. These 

results are comparable to cattle grazed and un-grazed New Zealand grassland 

(Saggar et al., 2007) but lower than values recorded for a UK saltmarsh (Blackwell et 

al., 2010). As the recorded fluxes were very low and not predicted by any measured 

soil or vegetation characteristics we regard the upper saltmarsh as neither a source 

nor sink of N2O.  

5.5.5 Validity of up-scaling 

Static chambers are perhaps not the best way to measure overall greenhouse gas 

budgets for a habitat such as a saltmarsh due to temporal and spatial flux variations 

(Denman et al., 2007). However, they are an essential tool in the measurement of 

treatment differences such as grazing intensity that would be largely impossible 

with the eddy covariance technique (Sullivan et al., 2010), which is more applicable 

to catchment scale measurements. Within this study we provided a conceptual 

diagram (Figure 5.7) of mean comparative yearly flux estimates of GWP for grazed 

and un-grazed saltmarsh and found that grazing management does not significantly 
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alter GWP. This comparative approach was justified as sampling monthly for one 

year provided a fuller picture of soil greenhouse gas efflux than sampling just once 

or twice as was common in previous saltmarsh studies (Lindau & Delaune, 1991; 

Wang et al., 2007; Dausse et al., 2012).  In order to make this up-scaling exercise 

more realistic, in addition to directly measured soil greenhouse gas emissions and 

ANPP, CH4 efflux via cattle (enteric and waste) was also estimated based on cattle 

intensity at the study site. Cattle may also increase soil CH4 efflux via trampling. 

Herbst et al. (2011) found that CH4 flux doubled from background ‘soil’ levels when 

cows grazed in the vicinity of an eddy covariance tower, although part of this effect 

may be due to CH4 released directly from the cows, it is also likely that part of this 

effect is CH4 ebullition via trampling. This potential CH4 source would be greatest 

when livestock were present on the salt marsh during waterlogged times of year. In 

this study CO2 soil efflux was responsible for a much larger proportion of GWP than 

CH4 efflux, only partially offset by the CO2 ‘locked up’ in plant biomass (Figure 5.7). 

The conditions needed for high rates of soil respiration, a low water table and warm 

soil, were the opposite of the cooler waterlogged soil conditions that stimulated 

soil CH4 efflux. Where N2O soil efflux was measured it did not contribute markedly 

to GWP. As GWPs for grazed and un-grazed saltmarsh were estimated from a 

combination of chamber measurements and ANPP it is not possible to directly 

compare the estimated GWP of ~2000 g CO2e m-2 yr-1, regardless of grazing 

intensity, to the GWP of other habitats. However this flux was of comparative 

magnitude to a North American peat land (Strack & Waddington, 2007). 

5.6 Conclusion 

In this study it was hypothesised that livestock grazing management would 

influence soil physical characteristics (e.g. soil temperature and moisture content) 

and plant community composition (e.g. presence of Juncus species) that would in 

turn regulate the CH4, CO2 and N2O fluxes of saltmarsh habitats. Our results 

showed that soil temperature, soil moisture content, water table depth and the 

presence of J. gerardii were the most significant predictors of saltmarsh greenhouse 

gas flux. However, the effect of grazing intensity on these variables was small 

compared to the much greater impact of seasonal variability. Our first hypothesis 
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was refuted, as soil methane efflux was not consistently greater in the cattle grazed 

than the un-grazed salt marsh. However, ‘hot spots’ of both underground soil 

methane concentration and soil methane efflux were only present on the grazed 

marsh, occurring under conditions of high soil moisture content, low soil 

temperatures and the presence of J. gerardii. Our second hypothesis, that 

combined soil respiration and plant carbon dioxide efflux would be greater in the 

un-grazed marsh, was partially substantiated as CO2 efflux was greater from the un-

grazed marsh throughout the majority of the year and was positively correlated 

with deeper water table and higher soil temperatures. Our third hypothesis, that 

soil nitrous oxide efflux would be consistently greater from the grazed salt marsh 

was refuted due to lack of evidence. Grazing was not a significant predictor of N2O 

soil emissions. The GWP (100 years) of a temperate upper salt marsh, calculated 

from mean yearly chamber fluxes of greenhouse gases (CH4 and CO2) and offset by 

ANPP, was not significantly altered by livestock grazing management.  
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6.1 Abstract 

The effect of grazing by large herbivores on the microbial community, and the 

ecosystem functions they provide is relatively unknown in grassland systems. 

Therefore, the impact of grazing upon the size, composition and activity of the soil 

microbial community was measured in field experiments established in two coastal 

grasslands: ‘Grazed’ (cattle grazed) and historically ‘un-grazed’ salt marsh; ‘fully 

grazed’ (ponies 0.2 ha-1, cattle 0.05 ha-1 and rabbits 45 ha-1), ‘rabbit grazed’ and 

‘un-grazed’ (for 8 years) sand dune grassland. Total fatty acid phospholipids (PLFAs), 

bacterial and fungal PLFA concentrations, proxies for microbial biomass, were all 

significantly greater in grazed than un-grazed salt marsh (p < 0.05) and showed a 

trend towards greatest biomass in the rabbit grazed sand dune soil. Fungal-to-

bacterial ratio did not differ with grazing for either habitat. Redundancy analysis 

(RDA) showed that soil moisture, bulk density and root biomass significantly 

explained the distribution of PLFA markers (p < 0.05) with a clear distinction 

between the saltmarsh and sand dune grassland habitats along axis 1 (89 %), driven 

by the soil moisture gradient. Grazing explained the separation of PLFA markers 

along axis 2 (7 %). Gram-positive bacteria and actinomycetes were more 

proportionally abundant in un-grazed, while Gram-negative bacteria dominated 

http://dx.doi.org/10.1007/s00374-012-0721-2
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more in grazed grasslands. Bacterial growth rate (Leucine incorporation) was 

greater in un-grazed salt marsh, possibly reflecting the more rapid nitrification rate, 

but did not differ with grazing in sand dune grassland. Grazing alters carbon (C) and 

nitrogen (N) soil inputs via changes in dung, plant litter, root exudates and root 

turnover rate. This in turn affects microbial biomass, composition and activity. 

Keywords: Livestock grazing, decomposer ecology, bacterial growth rate, PLFAs, 

nutrient cycling 

6.2 Introduction 

Many types of semi-natural grasslands, including coastal grasslands, have been 

traditionally managed by low intensity cattle or sheep grazing. However, in the light 

of removal of European Union (EU) subsidies for marginal grazing land (Strijker, 

2005; Taylor, 2006) it is not known how grazing abandonment will affect these 

habitats. The effects of large herbivore removal are relatively well studied for plant, 

invertebrate and bird communities (Morris, 2000; Vickery et al., 2001; Pykälä, 

2003). However, effects upon the soil microbial community, and therefore soil 

ecosystem functions such as plant nutrient availability and organic matter 

decomposition, are less well known (Smith et al., 2003). Characteristic features of 

grazed and un-grazed grassland habitats are likely to have direct impacts upon soil 

microbial biomass, growth rates and community composition. 

Cessation of livestock grazing leads to the gradual development of a plant 

community dominated by highly competitive tall grasses or shrubs with an 

increased plant litter layer (Bakker et al., 1993; Janišová et al., 2011) and has 

variable effects on root biomass, turnover and exudation (Piñeiro et al., 2010). Soil 

microbial activity and abundance are directly related to the quantity and quality of 

food sources such as plant litter, senescent roots and root exudates (Beare et al., 

1991; Mawdsley & Bardgett, 1997; Grayston et al., 2001). Bacteria may benefit 

from higher quality litter with a lower C / N ratio and therefore a higher N nutrient 



Grazing and soil microbes                                                                                                                  Chapter 6 

145 

 

input. Grazing intensity also affects abiotic factors. Short grazed vegetation leads to 

greater and more variable soil temperatures than un-grazed grassland (Curry, 1994). 

Even a small increase in soil temperature may increase microbial activity and 

growth (Anderson, 1992) but is unlikely to affect community composition 

(Strickland & Rousk, 2010). Cattle compact the soil surface via treading leading to 

waterlogged ground (Lambert, 2000) and return nutrients to the soil via dung input 

(Bakker et al., 1993). Soil compaction will change soil structure and aeration with 

effects upon microbial community composition (Clegg, 2006). Grazing animals also 

return nutrients to the soil via dung input (Bakker et al., 1993) that greatly 

influences microbial activity in the soil. For instance, cattle faeces are a source of 

soil C and can increase microbial biomass and respiration (Lovell & Jarvis, 1996; 

Hatch et al., 2000) and livestock urine is a source of utilizable N linked to increases 

in respiration, nitrous oxide (N2O) emissions and microbial biomass (Ritz et al., 

2004).  

Salt marshes differ from other terrestrial systems due to regular cycles of 

inundation by tides that transiently saturate the soil with water, and thereby limit 

oxygen availability. In these systems, the overriding influence of soil moisture 

(Waksman & Gerrettsen, 1931) is particularly emphasized.  While microbial activity 

increases with higher water availability in dry conditions (Iovieno & Baath, 2008; 

Bapiri et al., 2010), the relationship changes at high water availabilities, and 

waterlogged soils exhibit reduced soil respiration (Luo & Zhou, 2006).  

While it has been shown that factors including tillage (Six et al., 2006; Van 

Groeningen et al., 2010), N fertilization (de Vries et al., 2006) and grazing intensity 

(Bardgett et al., 2001; Klumpp et al., 2009; Lopez-Sangil et al., 2011) can affect the 

size and composition of the soil microbial community, the precise changes within 

the microbial community between different systems have not been addressed, and 

to date insights have been mostly limited to individual case-studies (Strickland & 

Rousk, 2010). For the microbial community, land-use factors are arbitrary, while 
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the direct influence of the micro-scale environment and growth conditions will be 

all important. That is, we will only be able to generalize effects of land-use to the 

extent that they expose microbial communities to selective pressures such as pH 

changes (Rousk et al., 2010) or organic matter quality (Rousk & Bååth, 2007).  

In this study I investigated the impact of grazing intensity on the active soil 

decomposer community of temperate upper saltmarsh and fixed sand dune 

grasslands. These coastal grasslands are priority habitats under the Agri-

Environment Scheme (Natural England, 2009). By including two independent 

grazing systems, we aimed to assess and relate the influence of grazing on the soil 

microbial community to the system specific differences inherent between 

ecosystems. Microbial biomass concentrations and community composition were 

measured using fatty acid phospholipids (PLFAs; Sundh et al., 1997) and bacterial 

growth rate by protein synthesis (Leucine incorporation; Kirchman et al., 1985). For 

the salt marsh two grazing treatments were used, ‘grazed’ (i.e. moderately cattle 

grazed) and ‘un-grazed’ (historically un-grazed). For the sand dune grassland three 

grazing treatments were used, ‘fully grazed’ (i.e. extensively cattle, pony and rabbit 

grazed), ‘rabbit grazed’ and ‘un-grazed’ (i.e. abandoned).  We hypothesized the 

main source of variation in the microbial composition would occur between the 

two systems based on key environmental drivers such as soil moisture and nutrient 

availability, but that we would also find a secondary effect of grazing intensity.  

6.3 Methods 

6.3.1 Salt marsh 

The study area, Crossens Marsh (53⁰ 41’ 15” N, 2⁰ 57’ 4” W), is a salt marsh located 

on the southern edge of the Ribble estuary in North-West England and is part of 

the Sefton Coast Special Protection Area managed by Natural England, the 

statutory conservation body. The marsh was historically un-grazed but was split 

into two management types over 40 years ago, un-grazed and cattle grazed by an 
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arbitrarily placed boundary fence. The grazed marsh is characterised by 

predominantly Festuca rubra saltmarsh NVC community (SM16d) and the un-

grazed marsh by Elytrigia repens salt marsh (SM28; Rodwell, 2000). The grazed part 

of the marsh covers 517 ha and is uniformly grazed by around 100 bullocks from 

late May to early October, approximately 0.2 cattle (Bos Taurus) ha-1, and provides 

a consistent short sward height (< 8 cm) for overwintering pink-footed geese (Anser 

brachyrhynchus) to feed. Small herbivores such as field voles are also present, 

particularly on the un-grazed marsh. All experimental units were selected within 

the high marsh zone where numerous creeks are present but tidal inundations are 

relatively rare, limited to around eight events a year on high equinox tides. A paired 

experimental design was used with six experimental units of approximately 10 m x 

10 m set up on each side of a 600 m long section of the fence line, 100-150 m apart, 

in a ‘mirror image’ formation, giving six grazed (G1-G6) and six un-grazed (U1-U6) 

units (Figure 6.1). Each experimental unit was located between 20 m and 50 m 

from the fence line to ensure an adequate buffer zone and checked for standard 

elevation within ±10 cm. All measurements were carried out within these 

experimental units.  

G1

Grazed

Un-grazed

Fence line (600 m)
20 m ‘buffer’ zone

G2

G3

G4

G5

G6

U6

U5

U4U2

U3

U1

30 m

 

Figure 6.1 Experimental design at Crossens Marsh salt marsh, grazed experimental units (G1-G6) 

and un-grazed units (U1-U6). All units are 10 m x 10 m square at 20 - 30 m, 30 - 40 m or 40 - 50 m 

from the fence line. Not to scale. 
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6.3.2 Sand dune grassland 

Newborough Warren is a calcareous coastal sand dune grassland, located in NW 

Wales (53° 8’ 59” N, 4° 21’ 1” W), noted for its high biodiversity and designated as a 

National Nature Reserve, Site of Special Scientific Interest and Special Area of 

Conservation under the EC Habitats and Species Directive 1992 (Plassmann et al., 

2010). The 389 ha site is managed by Countryside Council for Wales (CCW) and 

grazed by Welsh mountain ponies (Equus ferus caballus; 0.2 ha-1), rare breed cattle, 

Belted Galloways and Dexters (Bos Taurus; 0.05 ha-1), and rabbits (Oryctolagus 

cuniculus; 45 ha-1) (Plassmann et al., 2009), designed to maximise plant diversity. 

Grazed vegetation is characteristic of NVC SD12 and SD8 (Rodwell, 2000). In 2003, 

three replicate experimental units, each containing three 10 m x 10 m experimental, 

one fully grazed unit (unfenced), one rabbit grazed unit (fenced with 10 cm x 10 cm 

mesh to exclude large grazers) and one un-grazed unit (fenced with 10 cm x 10 cm 

mesh and an additional 2.7 cm x 3.7 cm mesh buried 20 cm underground to 

prevent rabbit access) were set up (Figure 6.2; Plassmann et al., 2009). Small 

mammals and invertebrate herbivores were assumed to be present within all 

experimental units. Fully grazed units are denoted as PR1 - PR3 (PR stands for pony 

& rabbit grazed); rabbit grazed units as R1 – R3 and un-grazed units as U1 - U3. 

Block 1

Block 3

Block 2

PR3

R3

U3

PR2

U2 R2
U1

R1
PR1

10 m

10 m

All experimental units within a block are 10 – 20 m apart

~100 m

~100 m

U1

R1

PR1

Un-grazed units

Rabbit grazed units

Pony & rabbit (fully) 
grazed units

 

Figure 6.2 Experimental design at Newborough Warren sand dune grassland, three replicated 

blocks of three grazing treatments, fully grazed, rabbit grazed and un-grazed. Not to scale. 
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6.3.3 Soil and vegetation analyses 

In November 2010, four soil cores (5 cm depth, 5 cm diameter) per experimental 

unit were taken, vegetation, roots and stones were removed and the remaining soil 

was sieved to ≤ 2 mm and stored for 1 week at 5 °C before further analyses. For soil 

respiration, 10 g sub-samples, four per experimental unit, were weighed into 50 ml 

polypropylene centrifugation vials and soil respiration rate at 22 °C measured 

continuously on a multichannel IR respirometer (PP-systems Ltd, Hitchin, UK). The 

reported soil respiration rate was the 4 hour average measurement taken after 

reaching a stable rate. Gravimetric soil moisture was estimated by determining the 

weight loss of samples dried initially at 105⁰C for 72 hours. Subsequently, organic 

matter (OM) content was estimated by loss-on-ignition from soil sub samples (375 

⁰C for 16 hours; Ball, 1964). Soil pH (5 g soil: 12.5ml water dilution factor) was 

determined using a Corning pH meter 220. Samples to determine bulk density were 

collected during September 2009 using three intact soil cores of 3.8 cm diameter 

and 15 cm depth from each experimental unit. Cores were dried at 105 ⁰C for 72 

hours and the dry mass divided by the volume of the core to calculate bulk density. 

Soil cores for total soil C and N were air dried, thoroughly homogenised and dried 

at 105 ⁰C for 3 hours prior to analysis. Samples were analysed on an Elementar 

Vario-EL elemental analyser (Elementar Analysensysteme GmbH, Hanau, Germany), 

using oxidative combustion to detect C and N. The C / N ratio was also calculated 

using a weight ratio. 

The potential for nutrient cycling by microbes was measured by N mineralisation. 

Three N mineralisation cores, 3.8 cm diameter and 15 cm depth, were taken from 

each experimental unit, during September 2009. Soil cores were taken using plastic 

corers, capped at both ends to minimise soil disruption, and stored intact at 4 °C. 

Accumulated inorganic N was flushed from the cores by spraying with a solution of 

similar ionic concentration to UK rain over 7 days until 150 ml of leachate had been 
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collected. Cores were incubated at 10 °C for 28 days, homogenised and a sub-

sample extracted using 1 M KCl for the analysis of ammonium and nitrate content 

(Rowe et al., 2011). Mineralisable N was expressed as mg N g-1 OM (organic matter) 

for plant and microbial available N. Above-ground live vegetation (shoot) and plant 

litter were collected from five (two in sand dunes) 25 cm x 50 cm zones, cut to 

ground-level, in July 2009. One root core of 5 cm diameter and 10 cm depth was 

also taken per quadrat and washed to remove all soil. Above-ground vegetation, 

litter and roots were all dried at 80 °C for 24 hours and weighed to give indicators 

of above-ground shoot biomass, litter biomass and below-ground root biomass 

respectively. Root turnover was measured during September 2010 via four nylon 1 

mm root turnover mesh strips (Normesh, UK), 2.5 cm wide x 15 cm long, placed in 

vertical cuts made in the soil with 2.5 cm overlap at the bottom and 2.5 cm 

emerging from the soil, 50 cm apart, across a 2 m transect in each unit. After 28 

days the mesh strips were removed along with a slightly wider and deeper intact 

soil core. Cores were pushed out and divided in two along the mesh line, the 

number of fine roots penetrating each mesh depth zone (0 – 2.5 cm; 2.5 – 5 cm; 5 – 

7.5 cm; 7.5 – 10 cm) were counted by eye as a proxy for fine root turnover (Lukac & 

Godbold, 2010).  

6.3.4 PLFAs 

The PLFA composition from a 1 g fresh soil sub-sample was determined according 

to Frostegård et al. (1993) with modifications (Nilsson et al., 2007). An internal 

standard (methyl nonadecanoate fatty acid 19:0) was added before the 

methylation step. To obtain indications of bacterial and fungal biomass specific 

PLFA markers were summed (Frostegård and Bååth 1996; Table 6.3). PLFAs were 

also grouped according to Gram-negative, Gram-positive bacteria and 

actinomycetes. 
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6.3.5 Bacterial growth rate and turnover times 

Bacterial growth was estimated by measuring the incorporation of leucine (Leu) 

into bacteria (Kirchman et al., 1985) extracted from 1 g soil sub-samples (stored at 

5 °C) using the homogenization / centrifugation technique (Bååth, 1994), with 

modifications (Bååth et al., 2001; Rousk & Bååth, 2011). We added 2 µl [3H]Leu (37 

MBq ml-1, 5.74 TBq mmol-1, Perkin Elmer) that was combined with non-labelled Leu, 

resulting in a final concentration of 275 nM Leu in the bacterial suspensions. The 

samples were then incubated for 2 h at 22 °C in the dark. Bacterial growth was 

estimated from the amount of Leu incorporated into extracted bacteria per hour 

and gram of soil. A rough index for bacterial turnover time was calculated by 

dividing the bacterial biomass (nmol PLFAs g-1) by bacterial growth rate (nmol Leu 

incorporation g-1 h-1). 

6.3.6 Statistical analysis 

Differences between pairs of grazing treatments (Salt marsh: G & U; Sand dune: PR 

& R, R & U, or PR & U) for all variables were analysed using linear mixed effects 

models (lme) in R v.2.12.1 (2010), e.g. lme (pH ~ grazing, random = 

~1|block/grazing). This approach was used to enable the raw data to be analysed 

accounting for replication at the level of the experimental unit or block (Salt marsh 

n = 6; Sand dune n = 3). Where necessary, variables were log-, square root- or 

arcsine square root transformed. Results of best model fit are presented here 

based on lowest Akaike information criterion (AIC) number and quantile probability 

plot (qqnorm) with most normal distribution. For overall grazing effect, results are 

presented as an Analysis of Variance (ANOVA) of the lme model. For the sand dune 

data, significant differences between treatment pairs (e.g. PR & R) were reported 

directly from the lme analysis.  

The relationship between salt marsh and sand dune grassland PLFA composition 

(mol-% of the 30 most abundant PLFAs; standardized to unit variance) and 
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environmental variables (soil parameters from Table 6.1 & 6.2) from grazed and un-

grazed experimental units was analyzed with a redundancy analysis (RDA). RDA 

scaling was focused on inter-‘species’ (PLFAs) correlations and centered by species. 

Grazing treatment of each unit was included in the final RDA tri-plot but was not 

used to influence the analysis. The significance of environmental variables was 

tested using automatic forward selection (Monte Carlo test, 500 permutations). All 

multivariate analysis was carried out in Canoco v.4.5 (Ter Braak and Šmilauer, 

2003). The RDA tri-plot shows a visual interpretation of the relationship between 

environmental variables and the distribution of PLFA markers for both salt marsh 

and sand dune grassland. 

6.4 Results 

6.4.1 Soil and vegetation characteristics 

Organic matter content, bulk density, C/N ratio, net ammonification rate, root 

turnover and root biomass were all significantly greater on the grazed salt marsh 

grassland (Table 6.1). Net nitrification rate, soil pH, litter and shoot biomass were 

all significantly greater on the un-grazed salt marsh. Salt marsh soil basal 

respiration rate did not differ with grazing treatment. For the sand dune grassland, 

the majority of soil and vegetation variables did not differ significantly with grazing 

intensity (Table 6.2). Soil basal respiration rate and root biomass were greater in 

the fully and rabbit grazed than the un-grazed sand dune grassland. Litter biomass 

was greater in the rabbit and un-grazed than the fully grazed sand dune grassland. 

Net nitrification rate was greatest in the un-grazed sand dune soil. 
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Table 6.1 Soil and vegetation characteristics of the salt marsh in grazed and un-grazed 

experimental units (n = 6). 

 Grazed Un-grazed Model SE  
Soil     

Organic matter content (%) 15.60 12.05 (1.16) * 
Basal respiration rate (μg C g-1 org. mt h-1) 23.92 23.35 (2.75) ns 
pH 7.15 8.07 (0.12) *** 
Gravimetric soil moisture content (%) 126 111 (10.6) ns 
Bulk density (g cm-3) 0.81 0.72 (0.03) * 
C/N ratio 15:1 13:1 (0.55) * 
N mineralisation rate     

NO3
- (μg N g-1 org. mt day-1) 0.54 3.75 (1.29) *** 

NH4
+(μg N g-1 org. mt day-1) 1.19 0.34 (0.29) ** 

Vegetation     
Root turnover (no. fine roots month-1) 53.67 36.28 (3.98) ** 
Root biomass (kg dry wt m-2) 3.37 0.96 (0.29) *** 
Litter biomass (kg dry wt m-2) 0.01 0.34 (0.07) * 
Shoot biomass (kg dry wt m-2) 0.32 0.69 (0.07) * 

Treatment means and model standard error from linear mixed effects model (ANOVA) output 
org. mt = organic matter 
Significant differences between grazing treatments *(p < 0.05), **(p < 0.01) ***(p < 0.001) 
Non significant results ns 
 
 

Table 6.2 Soil and vegetation characteristics of the coastal grassland for three grazing treatments 

(PR = fully grazed, R = rabbit grazed, U = un-grazed; n = 3). 

 PR R U Model SE  
Soil      

Organic matter content (%) 9.65 10.83 8.27 (0.96) ns 
Basal respiration rate (μg C g-1 org. mt h-1) 17.92 a 16.13 a 9.08 b (2.31) * 
pH 6.21 6.16 6.01 (0.21) ns 
Gravimetric soil moisture content (%) 35.73 41.25 31.79 (3.73) ns 
Bulk density (g cm-3) 1.01 1.02 0.93 (0.04) ns 
C/N ratio 12:1 12:1 11:1 (0.31) ns 
N mineralisation rate      

NO3
- (μg N g-1 org. mt day-1) 0.85 a 1.89 3.59 b (0.91) * 

NH4
+(μg N g-1 org. mt day-1) 2.28 2.85 1.44 (1.00) ns 

 Vegetation      
Root turnover (no. fine roots month-1) 43.36 a 54.83 b 49.17 a (3.84) * 
Root biomass (kg dry wt m-2) 1.24 a 1.22 a 0.71 b (0.21) * 
Litter biomass (kg dry wt m-2) 0.12 a 0.22 b 0.28 b (0.04) * 
Shoot biomass (kg dry wt m-2) 0.83 0.80 0.59 (0.20) ns 

Treatment means and model standard error from linear mixed effects model (ANOVA) output 
org. mt = organic matter 
Significant differences between grazing treatments (a is different from b) *(p < 0.05), **(p < 0.01) 
Non significant results ns 
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6.4.2 PLFAs 
 
Total PLFA, bacterial and fungal PLFA concentrations, proxies for microbial biomass, 

were all significantly greater in grazed than un-grazed salt marsh but did not differ 

with grazing treatment in sand dune soils (Figure 6.3). The relative abundances of 

both bacterial and fungal PLFA markers did not differ significantly with grazing 

treatment for either salt marsh or sand dune grassland; consequently the fungal-to-

bacterial ratio did not differ between treatments (Tables 6.4 & 6.5). Gram-negative 

bacterial PLFAs were proportionally more abundant in the grazed, actinomycetes in 

the un-grazed salt-marsh soil. Gram-positive bacterial PLFAs were proportionally 

more abundant in the un-grazed than the fully grazed sand dune grassland.  

Table 6.3 PLFA markers used for taxonomic groups. 

Taxonomic group PLFA group Specific PLFA markers Reference 
PLFA biomarkers    

Bacteria Multiple groups i15:0, a15:0, 15:0, i16:0, 
16:1ω9, 16:1ω7c, 10Me16:0, 
cy17:0, a17:0, 18:1ω7, cy19:0 

Frostegård & Bååth, 
1996 

Gram-positive 
bacteria 

Branched PLFAs i15:0, a15:0, i16:0, i17:0, a17:0 O’Leary & Wilkinson, 
1988 

Gram-negative 
bacteria 

Cyclopropyl and 
mono PLFAs 

cy17:0, 16:1w7c, 16:1w7t and 
18:1w7 

Wilkinson, 1988 

Actinomycetes 10Me-PLFAs 10Me16:0a, 10Me16:0b, 
10Me17:0, 10Me 18:0 

Kroppenstedt, 1985 

Fungi Polyunsaturated 
PLFAs 

18:2ω6,9 Frostegård & Bååth, 
1996 

Fungal / 
bacterial ratio 

Multiple groups Fungi / Bacteria Frostegård & Bååth, 
1996 

 
Table 6.4 Relative proportions of PLFA markers for grazed and un-grazed saltmarsh soil (n = 6). 

 Grazed Un-grazed Model SE  
Bacteria (%) 60.2 59.7 (0.53) ns 
Fungi (%) 1.9 1.8 (0.23) ns 
Gram-positive bacteria (%) 15.4 15.9 (0.47) ns 
Gram-negative bacteria (%) 33.0 30.5 (0.85) * 
Actinomycetes (%) 6.4 8.2 (0.37) ** 
Fungal/bacterial ratio 0.03 0.03 (0.01) ns 
Treatment means and model standard error from linear mixed effects model (ANOVA) output 
Significant differences between grazing treatments *(p < 0.05), **(p < 0.01), non significant results 
ns 
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Table 6.5 Relative proportions of PLFA markers for sand dune grassland soil (PR = fully grazed, R = 

rabbit grazed, U = un-grazed; n = 3). 

 PR R U Model SE  
Bacteria (%) 52.2 51.2 53.2 (1.19) ns 
Fungi (%) 5.5 6.0 4.7 (0.01) ns 
Gram-positive bacteria (%) 16.4 a 15.3 a 19.2 b (0.84) * 
Gram-negative bacteria (%) 25.6 25.9 23.0 (1.07) ns 
Actinomycetes (%) 8.9 8.8 10.1 (0.48) ns 
Fungal/bacterial ratio 0.11 0.12 0.09 (0.02) ns 
Treatment means and model standard error from linear mixed effects model (ANOVA) output 
Significant differences between grazing treatments *(p < 0.05), non significant results ns 
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Figure 6.3 Total, bacterial and fungal PLFA concentrations for salt marsh (G = grazed; U = un-

grazed) and sand dune grassland (PR = fully grazed; R = rabbit grazed; U = un-grazed). Treatment 

means and model standard error from linear mixed effects model (ANOVA) output. Significant 

differences between grazing treatments indicated by *(p < 0.05), non significant results by ns.  
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6.4.3 PLFAs and environmental variables 

The RDA tri-plot (Figure 6.4) shows the relationship between environmental 

variables and the distribution of PLFA markers for both salt marsh and sand dune 

grassland. Axis 1, and axes 1 and 2 combined, explained 89 % and 96 % of the 

variation in relative abundance of PLFA markers respectively. The Monte Carlo test 

for the first and all axes was significant for three environmental variables; 

gravimetric soil moisture (F-ratio = 48.86, p < 0.01), bulk density (F-ratio = 4.95, p < 

0.01) and root biomass (F-ratio = 4.37, p < 0.01). All other environmental variables 

either correlated with these three or did not describe a significant proportion of 

PLFA marker occurrence. The RDA plot shows a clear distinction between the salt 

marsh and sand dune grassland habitats along axis 1, related to the soil moisture 

gradient. Grazing intensity, although not included within the analysis as an 

environmental variable, is related to separation of PLFA markers along axis 2. Un-

grazed salt marsh and sand dune experimental units were all positively associated 

and grazed units negatively associated with axis 2. Using the PLFA markers 

composition to indicate how grazing intensity affected the microbial community 

composition we found that markers associated with Gram-positive bacteria (i.e. 

i17:0, i15:0) and actinomycetes (i.e. 10Me16:0a, 10Me 18:0) were relatively more 

abundant in soils with lower grazing pressures, while markers associated with 

Gram-negative bacteria i.e. (16:1w7t, 16:1w7c, 18:1w7) were relatively more 

abundant in systems with higher grazing pressures.  

6.4.4 Bacterial growth rate and turnover times 

Bacterial growth rate was significantly faster in un-grazed than grazed salt marsh, 

possibly reflecting the higher total soil N (Figure 6.5; Table 6.1). Bacterial growth 

rate was not significantly different between the sand dune grassland grazing 

treatments. The bacterial turnover time was also significantly quicker in un-grazed 

compared to the grazed salt marsh (ANOVA; F = 16.99, d.f. = 5, p < 0.01). Bacterial 
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turnover time did not differ significantly with grazing treatment for the sand dune 

grassland.  Possible explanations of bacterial biomass, growth rate and turnover 

times in relation to nutrient cycling for the salt marsh and sand dune grasslands are 

proposed two conceptual diagrams (Figures 6.6 & 6.7). 
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Figure 6.4 RDA triplot showing relationship between environmental variables and distribution of 

PLFA markers for both salt marsh and sand dune grassland experimental units (Salt marsh: G1-G6 

= grazed, U1-U6 = un-grazed; Sand dune grassland: PR1-PR2 = fully, R1-R3 = rabbit grazed, N_U1-

N_U3 = un-grazed; black circles = grazed or fully grazed, grey circles = rabbit grazed, white circles = 

un-grazed). Significant environmental variables (Canoco v.4.5; Monte Carlo test, 500 permutations) 

have larger, bold font. 
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Figure 6.5 Bacterial growth rate for salt marsh (G = grazed; U = un-grazed) and sand dune 

grassland (PR = fully grazed; R = rabbit grazed; U = un-grazed). Treatment means, error bars as 

standard deviation of the mean. Significant differences between grazing treatments indicated by 

*(p < 0.05), non significant results by ns. 
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Figure 6.6 Conceptual diagram explaining differences in microbial biomass, activity and nutrient 

cycling between cattle grazed and un-grazed salt marsh. 
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Figure 6.7 Conceptual diagram explaining differences in microbial biomass, activity and nutrient 

cycling for sand dune grassland grazing treatments (ns = non significant differences). 
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6.5 Discussion  

6.5.1 Salt marsh microbial biomass, activity and nutrient cycling 

In this study, saltmarsh microbial biomass was positively influenced by grazing as in 

other grassland soils (Bardgett et al., 1997; 2001) and was of a comparative 

magnitude to other salt marshes (Córdova-Kreylos et al., 2006). The fungal-to-

bacterial balance was not altered by grazing intensity. Bacterial and fungal PLFA 

concentrations were both greater for grazed than un-grazed saltmarsh grassland, 

probably as a result of greater soil organic matter and C availability from dung input 

(Bardgett et al., 1998) and increased mycorrhizal fungi due to large root biomass 

and rapid root turnover rates. Paradoxically, despite the input of nutrient rich dung 

and urine into the grazed salt marsh soil the un-grazed salt marsh exhibited more 

rapid nutrient cycling in the form of greater N mineralization, possibly due to the 

greater plant litter input or better soil aeration. In addition, the un-grazed salt 

marsh soil exhibited a lower C / N ratio than the grazed marsh, indicative of high 

available soil N and potentially faster microbial cycling. This may explain the fact 

that both bacterial growth rate and estimated bacterial turnover times were faster 

in un-grazed than grazed salt marsh. It is often assumed that there is a direct 

positive relationship between bacterial growth rate and respiration rate.  However, 

in this study the saltmarsh soil basal respiration rate did not differ with grazing 

treatment showing that this assumed relationship can be uncoupled (Iovieno & 

Bååth, 2008). Aerated lab samples may have artificially increased soil respiration 

recorded from the grazed salt marsh compared to true field conditions where the 

grazed marsh is often waterlogged and anaerobic (Chapter 5). An explanation of 

grazing effects on saltmarsh bacterial biomass, activity and nutrient cycling is 

illustrated in Figure 6.6.  
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6.5.2 Sand dune microbial biomass, activity and nutrient cycling 

Total microbial biomass for our sand dune grassland soil was comparable to similar 

habitats (Chang et al., 2011). Bacterial and fungal PLFA concentrations did not 

differ significantly between fully, rabbit or un-grazed sand dune grassland. The 

fungal-to-bacterial ratio was also un-altered by grazing intensity. Bacterial growth 

rate and turnover time did not differ significantly with grazing treatment in this 

habitat, however a possible trend towards a more rapid growth rate in the rabbit 

grazed grassland was identified. The rabbit grazed or un-grazed (except by small 

mammals) soils exhibited more rapid nutrient cycling in the form of greater N 

mineralization, possibly due to the greater input of plant litter and more even 

distribution of small droppings. Soil organic matter content and root turnover rates 

were also greatest in the rabbit grazed habitat. Soil respiration rate was 

significantly greater in the fully and rabbit grazed sand dune grassland than the un-

grazed grassland tentatively mirroring bacterial growth rate patterns. An 

explanation of grazing effects on sand dune grassland bacterial biomass, activity 

and nutrient cycling is illustrated in Figure 6.7.  

6.5.3 Microbial composition patterns 

Most of the variation, 89 % of the microbial PLFA composition, was related to site 

differences, clearly separating the salt marsh and sand dune communities on a soil 

moisture gradient. A smaller proportion of the total variation, 7 %, was consistently 

related to grazing intensity for both habitats and was partly explained by measured 

environmental variables including bulk density and root biomass. Using the PLFA 

markers composition to indicate how grazing intensity affected the microbial 

community composition we found that markers associated with Gram-positive 

bacteria and actinomycetes were relatively more abundant in soils with lower 

grazing pressures, while markers associated with Gram-negative bacteria were 

relatively more abundant in systems with higher grazing pressures.  
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Gram-positive bacteria may be aerobic or anaerobic (Paul & Clark, 1996), 

consequently it is difficult to assign this group a definite soil function. There is some 

evidence that they are fast growing (Bardgett et al., 1999) and are more reliant 

upon a C supply dominated by the soil organic matter from plant litter rather than 

the labile plant root exudates (Treonis et al., 2004; Olsson & Johnson, 2005; Bird et 

al., 2011). Actinomycetes are chemorganotrophic, filamentous bacteria (Paul & 

Clark, 1996). ~90% of soil actinomycetes are Streptomyce, capable of rapidly 

degrading less readily decomposable soil organic matter components (Tate, 2000), 

more common in un-grazed plant litter (Valery et al., 2004; Vargas Gil et al., 2009). 

Actinomycetes are adapted to water stress by resisting plasmolysis (Killham, 1994), 

allowing them to thrive in the un-grazed dry sand dune grassland. Actinomycete 

biomarkers are also common in unsaturated salt marsh sediment (Córdova-Kreylos 

et al., 2006).  

Gram-negative bacteria, from our results proportionally more abundant in grazed 

grasslands, form close associations with the plant rhizosphere (Söderberg et al., 

2004; Wardle et al., 2004), correlated with the presence of labile C resources, a 

result common to many habitats (Steer & Harris, 2000; Bird et al., 2011). 

Considering other PLFA markers, a denitrification marker, cy19:0 (Jackson et al., 

2003), was very closely correlated with high soil moisture content and therefore 

occurred most frequently on the grazed salt marsh. An anaerobic bacterial marker, 

16:0 (Findlay et al., 1990), was also characteristic of grazed plots. A greater relative 

abundance of monounsaturated fatty acids and the aerobic bacterial marker 

18:1w9 (Findlay et al., 1990) on the un-grazed compared to the grazed marsh was 

indicative of more aerobic conditions.  

6.6 Conclusions 

This study explored the impact of grazing management on two coastal grassland 

soil microbial communities. Bacterial biomass was greatest in cattle grazed salt 
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marsh and rabbit grazed sand dune grassland, potentially due to the presence of a 

large root biomass, sometimes associated with rapid root turnover and a ready 

source of C from both root degradation and dung. Bacterial activity (growth rates 

and turnover times) was most rapid in un-grazed salt marsh and rabbit grazed sand 

dune grassland. Un-grazed salt marsh grassland had a much greater nitrification 

rate and potential decomposition rate than the grazed marsh due to potentially 

more aerobic soil conditions and the input of plant litter. Rabbit grazed sand dune 

grassland also had rapid nutrient cycling and C and N inputs from dung, urine and 

plant litter combined. These features explain the greater bacterial activity in un-

grazed or rabbit grazed soils.  Higher grazing intensity across both grassland 

habitats stimulated PLFA markers associated with Gram-negative bacteria, 

associated with the use of labile C resources from root exudates, while lower 

grazing intensity favoured a dominance of Gram-positive bacteria and 

actinomycetes, more dependent on the decomposition of plant litter. This study is 

an early step in assessing the consequences of land-use change on nutrient cycling 

driven by the soil microbial community. 
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Chapter 7: Thesis discussion 
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7.1 Overview 

In this thesis I have studied biodiversity, ecosystem function and ecosystem service 

provision in saltmarsh and sand dune grasslands. Firstly in the form of a literature 

review (Chapter 2) and secondly via four experimental research papers (Chapters 

3–6) assessing the effect of land – use change via grazing introduction or grazing 

abandonment. It is clear from Chapter 3 that sand dune grassland grazing 

management involves trade-offs between the potential for ecosystem service 

provision provided by grasslands with different grazing intensities. Extensively 

cattle & pony grazed grassland was important for food provision, cultural 

environmental appreciation and potential pollination services, un-grazed or 

‘abandoned’ grassland for potential pest regulation and nutrient cycling, rabbit 

grazed for a balance between the two. Chapter 6 provided a more in depth look at 

the soil microbial community composition in relation to the supporting service of 

nutrient cycling. 

So far in this thesis the evidence for ecosystem service provision by cattle grazed 

and un-grazed saltmarsh grasslands has not been discussed. Evidence from the 

saltmarsh invertebrate paper (chapter 4) could be used to generate hypotheses 

concerning provision of food for wetland birds. For example, as large bodied 

invertebrates are more abundant on the un-grazed marsh and large detritivores an 

important food source for birds such as the endangered redshank (Tringa tetanus), 
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this habitat may offer greater availability of food for wetland birds than grazed salt 

marshes. Provision of habitat for wetland birds is of conservation interest and links 

to the cultural services of bird watching and wildfowling. In addition, the greater 

abundance of predatory spiders on the grazed marsh and in contrast, the greater 

abundance of predatory Coleoptera on the un-grazed marsh may have implications 

for the regulating service of pest control, especially where salt marshes border 

agricultural crop land, although at present this is untested and therefore 

speculative. The saltmarsh greenhouse gas balance chapter links directly to the 

regulating service of ‘equable climate’. Chapter 6 also provides information on the 

relationship between the soil microbial community and nutrient cycling for salt 

marsh grasslands. 

In order to assess how sand dune and saltmarsh grassland grazing management 

compare in the potential provision of ecosystem services evidence from chapters 3 

(sand dune), 4 & 5 (salt marsh) and 6 (both habitats) have been combined, 

alongside supplementary data from the salt marsh analysed and presented in Table 

A7.1 and Figure A7.1. Two conceptual diagrams were created to compare the effect 

of livestock grazing on two contrasting coastal ecosystems, the ‘high productivity – 

low biodiversity’ salt marsh grassland and the ‘low productivity – high biodiversity’ 

sand dune grassland (Figure 7.1a & 7.1b). Salt marsh and sand dune grasslands 

provide many ecosystem services; environmental appreciation (cultural service), 

primary productivity and nutrient cycling (supporting services), pest control, 

pollination, equable climate, flood prevention or water storage (regulating 

services), and food production (provisioning service). Many of these overlap with 

services provided by semi-natural grasslands. Despite the differences in 

biodiversity, productivity and soil moisture content between the two experimental 

coastal grasslands, salt marshes and sand dunes, it is remarkable how similarly 

they react to the presence of large herbivore grazers in terms of potential 

ecosystem service provision (Figure 7.1). Grazing by large herbivores has two main 

ecosystem effects; a decrease in vegetation height and an increase in soil 

compaction. These in turn influence other ecosystem characteristics and functions 

that affect final ecosystem service provision.  
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SUPPORTING SERVICE
PRIMARY 
PRODUCTIVITY (-)

REGULATING SERVICE 
EQUABLE CLIMATE (=)

Organic matter ns 
Soil C stock *

Detritivore feeding rate**
Plant available nitrate ***
Bacterial activity *
Bacterial biomass *

Root biomass & C stock*** 

Litter biomass & C stock*

ANPP *
Shoot biomass & C stock *

Plant sp. richness
Forb % cover *
Grass % cover *
Flowering ?

CATTLE GRAZING
1 VEGETATION EFFECTS

Temperature *
Soil moisture*
Bulk density *
Water infiltration ***
Redox potential **
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CATTLE GRAZING
2 SOIL EFFECTS

SUPPORTING 
SERVICE
NUTRIENT 
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PROVISIONING SERVICE 
FOOD PROVISIONING (+)
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REGULATING SERVICE
FLOOD PREVENTION (-)

REGULATING SERVICE
PEST CONTROL & POLLINATION (+/-)

Predatory invertebrates
Coleoptera *
Spiders *

Pollinators  ns

CATTLE GRAZING
3 OTHER EFFECTS

a) Salt marsh

CO2*
CH4 ns
N2O  ns

Veg. height ***

Cattle for meat#
Methane from cattle  #

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.1 Effects of saltmarsh cattle grazing (a) and sand dune coastal grassland cattle and pony 

grazing (b) on vegetation, soil and other measured ecosystem characteristics as proxies for 

ecosystem service delivery. Measured ecosystem characteristics are shown in italics with a 

significant increase or decrease indicated by arrows (*p < 0.05, **p < 0.1, ***p < 0.001, ns p > 0.05) 

with grazer removal indicated by arrows, # for expected results from the literature. Solid lines 

show direct effects between variables, dashed lines show indirect effects to ecosystem services 

with positive, equal or negative effects indicated within brackets. 

SUPPORTING SERVICE
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PRODUCTIVITY (=)

REGULATING SERVICE
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Organic matter ns
Soil C stock ns

Detritivore feeding rate *
Plant available nitrate *
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Reduced vegetation height favours an increase in species richness as dominant tall 

grasses are reduced and percentage cover of forbs and flowering of forbs increases. 

These factors infer an enhanced aesthetic environmental appreciation or ‘cultural 

service’. Short grazed vegetation supports more small spiders but fewer large 

predatory Coleoptera than longer un-grazed vegetation, with variable effects on 

potential pest control, a ‘regulating service’ and possible implications for food 

provision for birds. For primary productivity and nutrient cycling, ‘supporting 

services’, the trend is towards reduced service provision for grazed grasslands due 

to decreased above ground net primary productivity (ANPP), detritivore feeding 

rate and plant and microbial available nitrogen. Large herbivore soil compaction 

leads to increased soil moisture content, reduced water infiltration rate and 

reduced aerobicity of the soil leading to a negative effect on flood prevention, a 

‘regulating service’. For equable climate, another ‘regulating service’, grazing has 

mixed effects. Root and soil carbon storage increases with grazing, a positive effect. 

But methane efflux from soil, via grazed salt marsh ‘hotspots’, and via cattle is also 

increased, a negative effect. Finally direct food production, a ‘provisioning service’, 

is only provided by livestock grazed coastal grasslands. 

7.2 Conclusion 

Extensive grazing management is often recommended for conservation of coastal 

grasslands as it maximises plant diversity and provides a suitable breeding habitat 

for particular bird species. In the light of abandonment of marginal grazing land 

throughout Europe, including salt marsh and sand dune grasslands, we suggest that 

in addition to biodiversity measures of ‘success’ in conservation, ecosystem service 

trade-offs need to be taken into account when choosing an appropriate grassland 

management scheme. Extensively or moderately cattle grazed coastal grasslands 

should be conserved for food provision, cultural environmental appreciation and 

pollination services, un-grazed grassland for flood prevention, pest regulation, 

primary productivity and nutrient cycling. The impact of grazing on equable climate, 

across different coastal grasslands, is not clear. This thesis conclusion highlights the 

fact that comprehensive measurement of management effects on both biodiversity 
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and ecosystem service provision needs to take place to inform a ‘best compromise’ 

for managers of all coastal and terrestrial habitats. 

7.3 Future research questions 

 

 What are the trade-offs in management for biodiversity and ecosystem 

service provision in other habitats? 

 What are the biodiversity and ecosystem service benefits of Elytrigia repens 

un-grazed salt marshes? Are they always ‘bad’ for conservation as often 

assumed by conservation management bodies such as Natural England and 

RSPB? 

 Large bodied invertebrates appear to be more abundant in un-grazed 

Elytrigia repens saltmarsh than conservation grazed marsh. What 

implications does this have for food provision for birds such as the 

redshank? 

 Do other grazed saltmarshes experience methane hotspots linked to 

waterlogged soil and presence of Juncus species? Do saltmarsh creeks emit 

methane? What are the implications for greenhouse gas balance 

management? 
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7.4 Appendix 

Table A7.1 Soil properties and vegetation characteristics measured from the grazed and un-grazed 

salt marsh (Crossens Marsh; Figure 4.2). Treatment means, lme model SE and ANOVA results (n = 

6) are presented as in chapter 4. Nectar feeders were analysed with paired t tests in Genstat. 

 Grazed Un-grazed Model SE  
Vegetation     

ANPP (kg dry wt m-2 yr-1) 0.58 1.20 0.20 * 
Graminoid species richness 3.40 1.97 0.24 ** 
Forb species richness 3.17 1.73 0.59 * 
Forb percentage 11.63 3.45 3.06 * 

C stock     
Shoot C stock (t C ha-1) 1.36 2.90 0.28 ** 
Litter C stock (t C ha-1) 0.04 1.43 0.28 ** 
Root C stock (t C ha-1) 14.82 4.24 1.27 *** 
Total C stock (above & soil C stock) (t C 
ha-1) 

63.98 45.14 4.52 ** 

Nectar feeders (pollinators)     
Abundance 72.17 84.67 11.03 ns 
Species richness 9.00 8.17 0.95 ns 

Significant differences between grazing treatments indicated by *(p < 0.05), **(p < 0.01) and ***(p < 
0.001). Non significant results recorded as ns (p > 0.05).  
 

7.4.1 Methods for Table A7.1 

7.4.1.1 Vegetation 

Above ground net primary productivity (ANPP), peak biomass from three grazer 

excluded areas per experimental unit, was recorded as a direct measure of primary 

productivity. During early March 2009, vegetation was cut to ground level in three 

50 cm x 50 cm areas per experimental unit. Each cut area was protected from pony, 

cattle and rabbit grazers by an 8 cm mesh gabion (50 x 50 x 50 cm) and vegetation 

allowed to re-grow until peak biomass at the end of August when areas were re-cut 

within a central 25 cm x 25 cm area. Vegetation was dried at 80 °C for 72 hours 

then weighed and converted to kg dry wt m-2 yr-1 to provide a measure of ANPP. 

Plant percentage cover and species richness were recorded by eye during July in 

five 1 m x 1 m quadrats from each experimental unit. 

7.4.1.2 C stock  

Carbon stock measurements (t C ha-1) were derived from soil or biomass 

measurements (Chapter 4; section 4.3.3) for four pools: soil, roots, plant litter and 



Thesis discussion  Chapter 7 

178 
 

shoots, using the following conversions; Soil carbon is 0.55 of soil organic matter 

(Emmett et al., 2010); Root carbon is 0.44 of root biomass (dry wt) and plant litter 

and shoot carbon are 0.42 of biomass (dry wt) in grassland habitats (Jones et al., 

2002; Jones et al., 2005). 

7.4.1.3 Nectar feeders (pollinators) 

Pollination was indirectly quantified by pan trap sampling of nectar feeders. Six 

baitless pan traps of three colours (2 blue, 2 white, 2 yellow) to attract nectar 

feeders were set for 72 hours during June and again in July 2009. In each 

experimental unit two triangles, 5 m apart, consisting of one pan trap of each 

colour, 1.5 m apart, was set up. Traps of the same colour were pooled to give three 

samples per experimental unit. Each trap consisted of 203 mm diameter bulb bowls 

sprayed yellow, blue or white, half filled with water containing a drop of washing up 

liquid to break the surface tension. Wire baskets of 5 cm mesh size were placed 

over all traps to prevent damage by grazing animals. The contents of the pitfalls and 

pan traps were preserved in 70 % Industrial strength methylated spirits (IMS) or 

ethanol and nectar feeders as potential pollinators were identified. 
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Figure A7.1 Bulk soil electrical conductivity (ECa), a combined measure of soil saturation, salinity 

and texture for 0-30 cm soil depth, mapped by geophysical electromagnetic induction (EMI) 

imaging in October 2010 by David Robinson (CEH). Methods as in Moffett et al. (2010). This map is 

a close up of the Crossens marsh field site (inset shows wider area) with the fence line marked by 

a black dashed line and grazed experimental units (G) by G1-G6 and un-grazed (U) by U1-U6. 

Moffett, K.B., Robinson, D.A. & Gorelick, S.M. (2010) Relationship of Salt Marsh Vegetation Zonation 

to Spatial Patterns in Soil Moisture, Salinity and Topography. Ecosystems 13, 1287-1302. 
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