Bangor University

DOCTOR OF PHILOSOPHY

An ecological study of Chaetogaster limnaei(von Baer)

Gruffydd, Llyr Dafis

Award date:
1963

Awarding institution:
Bangor University
Bangor University

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal ?

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

AT BCOLOGICA SIUDI
 OF CIATOGANR LITMA (von Beor).

A Missis subnittod to the University of Jales by ILYR DAPIS GRUPFYDD in candidature for tho dogroo of PHILOSOPHIAE DOCTOR

BEST COPY

AVAILABLE

Poor text in the original thesis.
Some text bound close to the spine.
Some images distorted

Errata.

Details of setal lengths on Paces 23 and $2 l_{\text {t }}$ should read :-

Segment 2
From 72 to 96μ
85μ
From 51 to 68μ
60μ
49μ
42μ
50μ
45μ

Length of setae of
a mature Chaetogaster (Kidney form).
(average)
(average)

Segments 6, $7 \& 8$.
From 4.7 to 54μ

From 41 to 49μ
Average length
th of setae of kidney form

Costrants

Page
Soction 1. IVIRODUCITOA. 1
Soction 2. BHILST OF THE INHMOMURR. 2
(a) IAfe cyole and reprochation of Cragtrennter 11mast 7
(b) Foedrice in crategeter 11 mani. 10
Seoticn 3. MANERTATS ASD MEnHODS. 13
(E) Eabitrates and tlold ructe. 23
(b) Eampiling. 14
(c) Iaborntory treatmont of semples. 28
(d) Conorel. 20
 23
(a) Eangth of eotao. 23
(b) Ember af ectac per bundio. 24
(1) Desexrvitr popriaticin. 2
(1i) Sample frein arninge altch moar Irodiban.
(1i) Sample frein arninge altch moar Irodiban. 26 26
(14) smalo frou a themes backnater at malton. 26
(iv) Sumple from a das at Pocivar, Ioniswobire. 27
(v) Sample Irem Hielston, Corrmali. 27
(-1) sample from noading. 27
(a) A compariscon of the Intoman anntony of tho two forms. 28
 29
 34
(a) Bescrvelr popriaticm, 2960 35
(b) Becervois popointion, 296. 38
(e) streat peprilatiam, 190. 40
 42
(8) the cocurrence to mature forms. 42
(b) the axatouy of the mhine foxm. 48
 42
(d) Imoubataica co ocoocns. 43
(o) Factors influominis coecen promotion. 45
madang. 46
(s) Ghages in brading sotivity during 2960. 48
(1) outer popriation. 48
(1i) Klaney poperiation. 50
 52
(a) The cut ocmtents of Eloney chactogastar. 51
(Contents - continued)
(b) The gut contents of outer Chaatorastor.
Page 52
(1) Introduotion. 53
(14) Fiela rearita. 53
(c) Carcarita as a source of food for Chatopastor 54 24-2ats
(d) The anmiability or Pood to outor Gosatogaters. 55
 69 63
(a) Mapereal of Finataraster 11 mpant.
(a) Mapereal of Finataraster 11 mpant.

 63
(1) Tranafor íro old to young mails.
(1i) Itranafer from infestod adult malls to nconinfestod admit mails. 65
(c) An investigation of tremerer in the flold. 67
(d) Attraction of young suails to dead anails. 70
(e) The apecifladty of outer and kidney gaotegater. 72 on the outer form. 95
(1) Iack of tood. 95
(11) Drougit ocmathions. 95
(B) The reaction of Gisetorster 11 inpast to the mucus of its hort. 100
(h) the surwival af outer and kidnoy Ginatesester anny frem the hoat. 125
 GHBEOCMSYER ITHTAKS. 120
Secticn 21. Drsenssion. 120
(a) the moxpholocy and anatong co Cometerestor 11-9at 122
(b) The 2150 cyoile and asommal reprodnotion of ghactereter 24 man. 125
(a) Inaporal and soinicestation. 127
(d) Foeding in frapterentar 2impaot. 230
(e) Popalation dyricios. 132
(5) The natrove of the associsticn betwoen Creoterestar I4mpal and Inryase porserer. 237
(s) ine evainticin ac the orter and klaney forme of Copeternator 14 masis. 44
Soction 22. suntary. 345
Achinumberginss. 148
EICHITOCRAPiA. 149
(Contents - continmed)
Page
APPRIDIX A. Notes on a population of Masaiphomis hotornaitita infostring Ifrupan perreger. 153
APFPing B. The ressits of sampling in tabular form. 157

Section 1.

INTRODUCTION.

Chaetopastor limnael (V . Beer) is one of very fey 0ligochasta that have formed assooiations with other animals. Its relationship with freshmater pulmonates is usually described as oomensalism (p.138), but this has by no means boen universally acoeptod. The discovery of the worm in the snoil's kidney led some to believe that it could adopt a parasitic mode of 1ife. Vaghin (1946) went further and suggested that the commensal form living on the outer surface of the snail and the form found in the kidnoy beloneed to two distinct populations. The main aim of this work was to study the eoology and population dynamics of theso two forms and it was hoped that the results would help to explain the relationships that exist between these two forms of Ch, Limnael and their host.

Iymoea pereger (mili.), being comson and found in fairly large mumbers in North Tales, was ohosen as the source of Chaotogaster Iimnald used in this investigation. Two large populations of this snail were selected for study and were sampled for a perlod of tro years between January 1960 and February 1962. Frperimental work was carried out in the field and in the laboratory to test and extend ideas derived from the field data. In all cases L_{e} perepar was used as the host.

The response of Che limneei to various stimuli associatod with discovery of the host was observed, and a brief roport on the morphology and anatomy of the sexual form is presented. This part of the work homever can only be considored as an introduction to the investigation of

Mg. 1. (a) Ordinary seta from segment 2 of an outer form.
(b) Gonital seta of a kidney form.
a complex problem that has hitherto romainod unexplorod.

Soction 2.
RNIIBM OF THE LITGRAMURR.

Chaoteaster 2 impasi is an oligochaete mom belonging to the Pamily Maldidae. The gonera ghantosaster and Amphichoots are grouped together by Sperber (1948) in the aubfamily Chaotogastrineo because they are distinguished from all other Malaideo by a maber of charaotory. These are Lenethoned pharymx without a dorsal divertioulum and without any giand cells connooted to the body wall by numorous raasal muscular strands, a short naxrow cesophagus, a stomach sharply maricod off from both oesophagus and intestine, atronely reduced vascular systom and alosod nephrials. Mo halr sotac or oyes are prosent in either of the genera. In the gemus Ghatogaster the dorsal setae are wholly absent and the ventral setao of sogments 3 to 5 also have been lost. The septa are strongly perforated and there is often a statooyst present in the brain. Tho setao of this gemus are falrig straight with strongly ourving tooth at the distal ond. Thes curve is accontuated in the setse of Chagtopartori14masi (Mg. I) and the mumber of setae hers is high compared with that of other Gragtogenter speoles. Sperter states that segront 2 has 5 to 20 setac per bundle and the following sotal bearing segrents 4 to 20 per bundie. She also recoxis Ch. limpaes as haring no statocyst in the brain.

Gheotogastor Ifmeod was Firyt desoribed by von Beer in 1827. Fo desoribed it as an annulated worm possesaing yows of setre in patrs
aloag its rentral surface. One pair was situated at the anterior ond of the worm and the posterior end he desoribed as carrying sotel bundles at varying distances from each other. He found no eyes. The worms usod the setae in crawling and no swimaing movements were observed. The buccal aperture when open had the shape of a suoker, and loading from this to the prestomah was a narrow cosophagus. Postorior to this prestcmach was the part of the gut he nemed the trise-stomach. The prestomach and stomech described by V. Beor seom to correspoad to what are genorally considered to be the stomach and the intestine reapeotivily (Sperber 1948). Von Beer reported finding Ch. Ifmanat in the mantic cavity and in the kidnoy of Lymmaidio as well as in the mantio carity of planothil corspuys. Biso found the wosm living free in water which was inhabited by pormonate smails. Ho was not sure whether or not these were forms that had originated in the kidnoy and had boen ILberated frow the kidnoy with the urine. He was certain however that ose could not regand the presence of the wosm in the kldary as a chance ocouronoe, or as a temporary sojown macessary to ocmplete its devolopment.

Lanbostor (1869n) dosoribed Chootornater jimpoit as a mimuto whitish areature livine on the surfsce of the body and in the ridney of freshwater enails. He failed to find the worms during the winter months, but in the sumer they were plentiful.

Milloox (1900) reported finding the wom living on the hoed and in the respiratory carity of Ghysa hotexostrophs. Fis states that a few of the worms had anohored themselves to the host snail by embedalng their postorior ond in the spall tissuo.

In 1905, Amandale desoribed a woxm alosoly romembling

Che Iimaei (Che 11mpaei bengalis) Iiving on tho outer surface of Iymaeids. He maintained that when the Chaetogastor population grew excessively large or when the water became wasm or foul, the woms left their host and became free-living.

Michalsen (2926) had reason to belleve that Che 11 mnasi also livod as a commensal on orayfishes. He foumd the woma in the bottom of a bottle containing alcohol in which he had proserved a craypish.

Half (1928) roported finding Che 11 maot froo-living in a habitat in which lemasea and Plonoxbls lived in large mubers. Fio said that they were only foum thus during the aestivation period of the host analls.

Wagin (1932) foum Ch. IImeet in ereat mubers in the mantie cavities of pulmonates. Ho adds that he nover found the worsis in the froe-living state.

In a report on the variotios of Lympea pereger of Irish Lakes, Boycott, OL ohem and naterston (1932) montion that only one of eighteen populations examined was infosted with Che limpaai. In a later paper Boyoott (1936) discusses the causescte moztality in the young forms of freshmater mollusos and was of the opinion that ghe Ifmnoli is not a contributary canse of this mortality.

Krasnodobsid (1936) investigatod fooding in Che Ifrnaef.
Bo found the rorm usualiy cramiling on the head and body of aquatic molluses. rabie 1. (1.5) reproduced from his paper, shows the degree of infestation by Ele lfmagh on various speotes of freshavater snails. Ho also found
 and other aquatio plants.

$$
\text { Gren }(191,0) \text { reportod Pinding Ghe 1imnoet and Ghamen }
$$

Table 1.

Spectes	\% infestation
İqunas stagnalis	85
gadis auricuiaria	77
Radix ovata	76
Stacpiools palumtiris	88
Cosetus corrnous	83
Planortis planoxbla	46
Spiralina rortox	67
Aneylus lacustris	30
Phasa fomtinalis	100

Table 2.

Spectes
Iymanea starne21s
Lymaesa ovata
Lymanes perager
Manorbis cornous
PLonostris marelnatus
Anoylus fiuviatilis
Pryse fombinalle
Spheertut ep.
platatum ep.
thitontiae (all ap.)
of infestation

$$
80-100
$$

$$
100
$$

$50-70$
$80-100$
50-70
5-7
3-15
1-2
1-2
0
 Wallace (2941), whilat working on the life history of a tromatode parasite of Phe Ifrmat, Pound the oligooheote ocoasionally feeding on the aubstration sem alstanoe may from ite host. The trematodo
 Gnaterester by beccuing so large in the ceelem of the wom that it provents the passege of food through the gut.

Vagin (1946) while stopiting the biological cyole of Ste Ifmal obtafind the valus prosented in Table 2 (p. 5) for the percentage infestation of verious mol2mes ty the morin. Bo concontrated his studies
 (1). He found the worm on the extrinal suriace, in the mantile oavity
 kidney bo comeidored as beling an endoparmeltos and the othors inhabiting the mantle cavity and the outer surxace of the snail as cownensais. Inis reascoss for saying this will be prescanted later in this soction. Ho aald that the coumpnsal form obtained oniy shelter fren the host, and atteoned itself to the anall by aligeling to ite martwo Iayor of macis. In eaces of sovere Infestration sem of these forms appeased on the external surface of the molluse's she21.

Bager (2955) fown She 1frnant in the reaplixatory ohamber and aloug the outer IIp of the shell of the South Axtion anallo gincminveris

a. LAfe crole and reproduotion of Chaotogastor 21 mpaei.

Fon Baer (1827) moticed that Gagotogastor 21rmaght in common with all other hatasise, miltipiled asomaily by produoing a ohain of buis at its posterior and. H obsorved individuals possessing up to three budaing sones and remartood that all the buds were at difforent stages of dovelorment. In Iate autum he foumd the oggs of Ghe limpagi which he desoribed as having a thick trassparent cover open at both ends. Insido this was another layer surrevonding the embryo and profecting into both the onde to form pluge then soaling the openings. Hie does not state where he foum the cococns but the inference is that thay ware found in the keldmey. chavs (1860) coscribed the sequance of budaing in Gre itrmanto The series of mubers below ropresont his doscription of (a) a three bud form and (b) a soven bud form, the mubers ropresenting the buds in ordor of appearasce, 0 boing the parent animi.
(a) $0 \quad 2 \quad 1 \quad 3$
(b) $\begin{array}{llllllll}0 & 4 & 2 & 6 & 2 & 5 & 3 & 7\end{array}$

Ianbester (2869a) observod ghe 2trmant possessing obatins of 16 bule or soolls, the first sone of division cooursing bobend the thind abdondnal sotal buedie (sogmat 8). In his papors ($2869 \mathrm{~b}, \mathrm{e}$) he dasoribes the sexvil foym of the woxs. Compared with the imeature form this had approxdmateis doubie the muber af aetae in each bumale, i.e., instoad of 12 in the firat bundie it hed between 20 and 30 , and instead of 8 in each of the other bumales it had 26. Fowr alub ahaped seteo wore alse seme in froat of eech of the ffirst setal bumiles of the abdominal region (1.0., those of asgiont 6) in the mature spoodmens. This mature form, which was observed
in Ootober, was not procuroing buds.
Whereas Lankester foumd differences between the sotae of mature and inmature forms, Pircut (1906) formd two types of immature forms differing in respect of the zumber and longth of their setae. Ono form had about 6 to 8 setee por bundle and the other hed about 8 to 20 in each burdio. The formor also differed from the lattor in that it had ahortor soteo.

The worms observed by milloox (1900) were all aotivoly budaing and there wose no somal forms asong them. Stephenson (1925) also states that somal forme of Maid worme are vory rarely soen and in some worms ast nover soen.

Tegin (1932) found mature goneds in the autum but be ald not Find ary cococas.

A comaldarable amount of 2ight was thrown ca the breeding
 populations saparately bocause bo belleved that they comalistod of soparato "blalogionl apoedes" of Mhe lismat. Bo baced this beliof on the faot that their habite wese different and that thoir life cyale also differed alightly. Fio foum the cutar form reproduring asomaily throuchout the summer, aftem forming chalriots of upto 11 Inalvidunis. Towards lato llovenber the mumber dropped to about five and thas condition provailed until the early sumanor of the following year. In lugust be obsorvod sompaily matore individuals to the extent of 12 to 25 por cont of the population. No 00000 s nere fouma. Thus he maintalmed that the maln modo of reproduotion of this outer form was acciand and that the minestionl relationshap betweon the accumal and sacumi inifridueis mas sinilar to that of most Fidadiee. Vaghin foumi the

9

kidnoy form indistinguishable morphologically from the outer form. He Pound, however, that the percentage of worms that beceme sexuaily mature was far greater here than in the outer population. In July, the keldney forms each possessed between 4 and 5 buds and asecual roproduction contimued vatil the ond of Angust when between 4 and 10 per cont of the population beome mature. During the autumen the percontage of mature worms inoreased, and by the begluaing of Sovember 200 per cont of the population was somally mature. No individuals with buds were present. Coooons appeared in the kdiney of the molluses and embryonic dovelopeent procoeded in the kidney. The breoding woxme after dopositing their eges apparently died in the kidney and romains ap some of these were found in the kidney. At the ond Of Decomber nothing but cococns could be found In the kidsey on disseoticn. Toung worms hatohod from the cococns in liny and socn after hatohing propagation by way of brading began. So bere Vaghtn maintainod there wes complote altornation α erenerations. Fie suggested that transfor from ano malluse to another cocurd at the time of coprilation during the aumery, the worms cumpling from the Lidney into the mantie oavity and then orossing to the other snali.

Som molluso popilations Vagitin stuatiod wero often subjected to severt dreught conditions and to esoape dessication the snails buriod themeolves in sand. This resulted in the death of large numbers of the outer form of gheximent. To does not atate whether or not the ridmey forms surviv.

Faghin believed that the two forme of g. Ifmegh had diverged In faluily recont times and that the cuter form was ancentral. Fip also belloved that the kidnoy form showred a recapitulation of the ameestral mold
of Life men it temporemily loft the ridney in oxder to move onto a new host. The absence of morphological difforences between the two forms led Ifin to belleve that this was the very begiming of the alvergence of two spectes.

Bayer (1955) moticed that meohanical stimulation of a brading individual causod the soparation of fully devoloped buds from the parent wore and that further atimulation rearlted in the broaking opf of partily developed buds.

b. Jeoang is mpotoraster Ifrnat.

Hout roports on feoding in graotophater 11 masi are concerned WIth the EIgnifloance of the faot that Gpactornster will destroy trematode cervarla. Ianioster (1869a) montioned that the outer form fod on ceromila as woll as on rotifery and Protosos while the kidnoy form fed en onile derived from thile orgen. millocu (2900) hewevor soportod finaling culy atatums in the gut of Ane 19ryat.

Nrame (1917) fome earvaria in the gut of Ghe 11mpat and this find prompted his livestigntion of the feeding behavious of the morme Fe atates that the wosm on atecting the presonce of a moving ceromita in the immodate vicinity maloss a quilok movemont and enguifs it. Ho soems convincod that In ilman, in swaliowing great mubers of coroaria play an Impertent part in the controi of trematode Iarvee.

Wadin (1931) states that ing Ifmact soeds on varicur Protosen, Rotiform and somig Gadoeora as mall an on alatoms. In found that When the bout guall was infeoted by coxvaria mang of the ghacterntris had
these in their gut. The woxn colly attecked the corearia if the latter moved and resting corearla mere not towohod. He sald that Che Ifrmagi mert be conaliered as a signdifleant feotor in controliling trimatode infections alnce the aligochaote is found on unalls in very laxge mubors. Il also thought that it wourd be advisable to introduce Ghe 1 irmen into ponds where it was not fornd, in erior to attompt to coutrol the aproad ar parasiste trematoles.

Eremorobald (2936) thought it mowth while to verify magia'a
 of oulmi matorial ani that plant matertal mas only talom in largo quantition When the fosmer mee not avaliabie. Frotonom wero eaten comalstontiy and Gladocert, Ostrecods and Copepoin were frequontiy pormi in the gut. Fib was

 tho hoot small mang of the womes had coroaria in thoir gut. Appruatintely

 muber of corcaris if it wose prasent in large mulber., lut an the other mand be thouget that the muber of coroaris escaping from a suail is so large that promany oniry a mill perventage of them is eatem.

 in oach of mang monl reacols and fod thom on cullater, In moeocod in booging the woun alive in on vessel at 18° ofor 63 any. m mpsels whoh
were kept at 21 , to $26^{\circ} \mathrm{C}$ the worms did not live for more than 7 days. During the course of these experiments he noticed that many of the morms divided, oausing their number in eaoh dish to Fiuotuate a great deal. Gren (1940) also succeodod in lreeping freemiving the limnati alive for a period of time which he does not apeofly.

Varinin (1946) montions the faot that the ghaotogastor iniabiting the kidney of mollusas foed on cells derived from the kidnoy. He also states that these leldney forms are able to adopt a temorarliy froemilving mode of life whilet feeding co small organisms but ho does not provide any ovidence to support this statament. Fi formd various amall orgenisms inoluding Rotifers and protomen in the gut of the outer form of the worm.

Puris (1951) also belleved that Che 11 minas could be an inportant factor in the control of tromatode infeotions. He found that molluse infestation by larval forms of treatiodes was compeoted inversely
 hoavily infooted with tromatode larvac harfourred few op no Ohe limnach, and conversely populations hoavily intested with Che limagh were not hoavily infeoted with the trematode parasite. Hi thought that this was dre to the predatory action of Che Limmat on the miraotaia as will an on the cercarla themsalvos.

Bayor (1955) reporting on the presence of Ghe 1impaot an South Arrican anails felt that although the worm helped to combat trumatode imfootions it was not present in aurfioient numbers to play a major part in controlling the paraaite.

Enater (1960;p.e.) put forwand the theory that maier certaln

Fig. 2. Plan of the reservoir and its surroundings.

13

- parnelto becase of its feoaing habits. Although the giatorater - host relationchip ie cleariy an exmeple of comenselina in populations of

 cianding the peoriy ciliated mantile atructurnes. On the other hend, in poporiation of Mithopin tontaculata whore alliary foeding mochanim 1s important, the werm can be aimoat parrastio as it ingeste ploces of the ifood stringe forsud by the anail.

soetion 3.
 maryands AID mayions.

a. Enftatrad Yid ropto

 pratorenter 14 mand mas foun in the ralaug and on the orter surfeoc of

 296 to Fobruary 2962 in a sescrvole which is situnted at the cureadme of

 It if fod by a stroun untering hive wey along an gide and an ovorblow
 water. It was culy during vory dxy periods that the lovel foll below the matimu. smpline was carried out alons the outlet alde of the reservols

14
cae and two foot but thoreaftor the gradient is muah loss sovere. The bottom la covered by a doop layer of mud. Redon and Potemogoton grow in large quantities in the wator and it was cin these water plants that the
 no other mollusos were found. An p. 25 ase listed the animals ocmanis foumd in this habitat and the resnlis of the chmionl antiysis of the water. Honthly samples were also tacon between Pebruary 1961 and Jamuary 1962 from a slow moving leunomi strean at Coed Mawr, near Bagor. chais atroem is about four foot wido and one to two foet doep. The benks are atoop and hese again the bottem is of man. The dominent plants are potrearatis and Pretion and as in the zesorvoir He pareger was found in large numbere on these aquatie plents. The level of the water in the streat fivetuated a groat doal, rlaing actor hoavy rain and falline in any poriods, but it wes not obsorved to dry up completoly at any time auring thas sempling poriod. an page 16 in a list of the andmis formed in the etroam and the rosurte of the obmadeal amalyade of the mator.

Sampling, in both hebitats, was oaryiod out using a awoop net. 4 mylou matorial with a mosh ac 40 strames to the inok was usod for the not. This was fine enough to prevent the escape of very amall analis during sampling. The time taloen to obtain a eample was used to provide a rough indication of Fivotuations in mall popalation aise (hiliveton ot al 2958). Doring the anailis bxveating coeson, all vegetation bsought oot of the water by the met was searohod in the laboratory for youms anails.

Besorvolx fama.

		Incibriculus varilegatur (tha7.)
		Striaria 1acurtils (I_{0})
		Cheotegenter 14maol (v. Beor)
Pincuatma	1	Measpibecta motereallte (L_{0})
		encesslphonia complanata (L.)
		Howlobiolis etegrais (L_{0})
		Empotelalis ootulata (I_{0})
		theremercen tessulatur (mili.)
Patron finthes.		
Trubiluris	1	Polyeolls tenuris (Ijsma)
د10		Polyeelis migra (inli.)
Rolluge.		
castropeda	8	Itymase peregor (IMri1.)
		Iomanes peiuetris (tuil.)
		Flanorths albue (Mall.)
Pelecypoda	1	Sphaerium ep.
Inserta.		
F2Hapoptora	:	Poisoentrepid sp.
		Triacmodes ap.
		IAmephilus ap.
Hemiptersa	:	Jepa ofinerea (L.)
		Corrim falloni (FLob.)
Ocicante	1	Coomegrid larva (2 ap.)
colecpters	:	gypinus m? Lavra
Diptera	\%	Culex sp. Incura
Areolmatas.		
Acarina	8	Byirecald mite
Terteloritite		
Mphima	8	Smooth newt
	8	Speming toads
Places	1	3 upinod sticiclobaok
		irout (ruported to be present)

Amatrals of water.
Total hariness of wator in toms of Calculva 18.24 mgas. per 11400. calcive Chloride

[^0]Strean fama.

Anno11da.
allgochacta Blirudinoa

Platriel inthes. Torbollaria

Holinges. Gastropoda

Pelecypode
Insecta.
Handiptora
Coleoptera

Gusteres.
Isopoda
Vertobrata.
A"phibla
Piscos

8 Chactogaster Iimmaci (7. Bacr)
: Inpobiella octulate (L_{0})
Glossiphonda complanata (L.)
: Palyoelis tosurds (Ijlma)

1 Iypmeat pereger (Hall.) Fingsa Pontinalis (L.)
Planorbis albus (buil.)
: Sphaerium sp.

8 Corim falleni (Mob.)

- Haliplus 1inaatioallis (Marsh)

Bytisoid sp. (prob. Platembus maculatus $\left(I_{0}\right)$)

Asellus sp.

1. Smooth newt

Spamining toads
: 3 apined atiokloback

Analyais of mator.

Fig. 3. The relation between flducial limits and sample sise for (A) average totel muber of Chaetogaster per snail, (B) average number of outer and kidney Ghaetogaster per snail in samples $5 \& 9$, and (C) snail sise in a sample of adult snails and a sample of young snails.

In any sanpling sohome it is necossary to balance lebour in doaling with acmples againat the reliability of the imformation it provides. As a guide to the appropriate sample sleo bearing these two aspects in mind, the Piducial limits of the mean values for the Ghotogaster popralaticn rero calculated from a prolitednary sample (Kige 3A). This shows that below a maple aite ch about 25 snails the ralianoe which oen be placed upon the mean doterioxates rapidiy vinile above 25 it improves relativigy alouly. That is to say, there was littic roturn for time spent above this aise of aamie. Eowover, to provide some safety margin for viriation in propertion and intensity of host infostation a sample sise 0445 malls was docdiod upoa. Inter somples (samples 5 \& 9) wero also
 sopacmitaly (I4c. 35). In sample 5 the popriation was small, whist in semple 9 it was large. Novertholeas, it is seen that in both cases a minemi sumple sime of 25 mails is sugsested as appopriate.

Howre 30 shows that the minimal dasireblo sise of sample for eatimating snail also was also around 25. For a semple of young snails this aropped to 15 because of uefromaity. Kowever, since this paremeter is quickiy meserred, samples taken frem the reservolr during 1960 usualiy consisted of about 200 individuals. As far as could be forvscon at the timo It was conaliored thet this musber of analis removed ance a fortmight frem the popriation would only doplote this by a mogliedible ancout. smplos thion from the reservoir and from the atroun during 1961 usualif exceedod 25 let mere considerably malior then those of the provious your in oxiex that moxe the could be deroted to experimontal worino
maryois of samplea of difforiont moen vives werv sive man

In respeot of Chaotopaster to study the aistribution of the individual values around the mean. These (1 1gs.17,18 p.37) showed that at low mean valuas the distribution approcimated to the Forssca type, at high mean values to the Nomal type while at midale values it was intermediate. Anee it was desirable to evaluate the relative variance at different population levols the coefflolent of rariation was caloulatod on transfoxiod. data. An appropriate tranaformation to an epproximate Nornal distribution was obtalned by using the torm $\sqrt{x+24}$, where x is the actual value rocoriod. The cooffictent of variation is an indox of zelative or proportional variability axpressed as a pervontage and calculated by acpressing the stranand applation as pervontage of the monn. The rearits are shown in Table 3 (p. 19) and it is soen that all coaffioionts ile between 4 and 18\%. Since the range of these linits is small and the upper linit is not excessivoly high, the use of the mean to represent the alve of the populaticn whs conaidered justiflable. A genoral characteristio of the confliciont hore is that it tends to inersase with the moan.

- Irbontory triat ont of geng.

The masurement taken to reprosent the sise of the snail was the Iongth of the shell from the thp of the spire to the leading odee of the aporturo. This was estimated to the noarest 0.1 ma, using a moremoter sorvo gacke. After belng measurod, all the snalls wore then pisced in soparate containery. This was necessary to provent the migration of Chaotogaster from one snail to another which would cocur if the snalle wese kopt together in ono dish for the four or PIve days takon to inveatigeto

Table 3.

Sample	Oator forms			Kidnoy forme		
	Hean No. of worms per sn'2.	Hoan of $\sqrt{x+24}$	cooff. of var.	Moan Mo. of woyms por $\mathrm{sn}^{\prime} \mathrm{I}$	Moan of	coorf. of vare
5	4.29	5.31	5.49	8.07	5.62	12.40
9	42.64	8.04	28.12	25.27	6.24	9.82
14	8.80	5.67	13.81	1.13	5.01	4.06
20	8.24	5.64	12.17	6.21	5.46	12.62

Fig. 4. Showing the process of dissection of $\mathrm{L}_{\text {o pereger }}$
after removal of shell. k, kidney. mf, floor of
mantle cavity. mr, roof of mantle cavity. pn,
pneumostome. uk, under side of kidney.
cos sample.
Fron each semple, 45 mails were soleoted at randen and each

 the cater surface of the anail werc removed naing a teat pipette. Thile was
 the manil. An incision mas then mado aozoss tho roof of the mantio cavity

 hove ound be removed. Finnily, the zidues man opllt open and the
 The mamber of worns foum in each of these throe altes wes meoorison.
the maber of bode per individual wan also meended for
 the enfetual 45. In the treatmont of the sumples of the mocoud yeare at the

 cuediviad and sil tho gmatle brought in wre dissocted.
 somed in the mantie carity of the sualis.

2no mater tomperature was avways reconded at the tive us smpilng.
a. Gunas
obtalned for use in experiments by breeding from egge in large tranics in the Ieberatory. The anails wrove Red throughout on an artifledal food parpared acoorilig to the following methoi described by stantion (2952) and matifled by 0.lerenchem (pers. comm.). Sixtoen gens. difed powdered
 mot miter. Ton gas. OC codiv aicinate mere addod and the mixture was
 colcive chloxide in 2600 ris. of wator was thon added slowly to one cormer of the container so that it ran madornoath the Irture; this was then icet owiyigint. The resultent gel of cilcivn alginate containing the Froment, ponierod grane and dried mils was insolubie in water. The gel was washed thoroughiy and stored In a rotirigerator. small ploces of the gel were fed to the snasis every few days and any stale food in the tanice that had not vocin eateri was almays renoved. Lrter about a woek the foed becemes sour and $s 0$ frosh food had to be propared onco a meok.

The pond water in the tamer war constantiy corsted and chamond ance a fortentiote. Demphels wowe bopt in the tanks to psevent exroese macterial gexuth (Standen 1949).

Nominfested Ie Barsger fron Baxieeg IsLand wore also noed In experiments. These were colleoted from a samil shallem strean on the faland and were to be found arwiling on water plants and on the muddy bottom in this atrean. Those enails were colleoted in the apring and at that tise they were plontiful. It has been roported that thes etream often drles up completely in aumar and so it sooms that thin population of Le pereger is deten aubjected to severe drought cosaltions. such conditions may be tho roason why phe 21 rroget was not prosent. Drought coulftions oan
amse a high rate of mortailty mongst outar forms (Vaghin 1946), and if drying up ocourred during the period whon both forms of the worm were leaving a dying gonaration of snails, the bldney popriation could also be aimilariy affected.

In ell experimente mails wore lopt in ifitered pond water In cioes dishes at $7^{\circ} 0$ and fod on the axtipleial fook.
 $25 \pm 2^{0} 0$ in water, as woll as in 0.3% saline and in snail kddney extraot. This strungth of saline is isotemic with the urine of In perefer (Plaken 1937). The Efioney extrot was propared by erushing large mumber of
 the kidnuy themen.
socticns of mature kidnoy forme, immetur wikney forms and innature outor form of Phentrant weve out in oxiar to escoxtain the position of the sogroanetive osgane mal to ocmpare the intosmal mantoms

 frumervere sections of the worm werv out at 7.5μ and atained with
 Lianey wese ave prepared by this method, the kidney heving surut of all beon rumoved from the snail and Plsod in Boudn's soluticm.

Section 4.

2his secticn deals with the differwnoes that wore found in the macphology and anatony of the outer and Hidnoy forms. The difforenoas found were in the muser and sise of seter, and in the thickeness of the gut antetholiun.

a. Ianth of rinter.

phatereater 2Smanef has no dorsel sotas and the ventral sotee aro absent in segmants 3 to 5. The sotao are dorbio pronged, the teoth being atrongly hooled (148. 1. p. 2).

The lengthe of the sotac from one bumale in each of segronts 2, 6, 7 and 8 of E1ve ravienily selectod cutor forme and Plve randonly solooted vidney form were meapured. The revalts are presented below. Outer form.

Ingeth of setro.

Avarage langth.

Sogront 2.
Hem 145μ to 192μ
170μ

Fron
95μ to 103μ
100μ

Fig. 5. The frequeney distribution of setal numbers in from the reservoir.

Elamey forme

Stace the Iureth of the sotan in sognonts 6, 7 and 8 were very duniary they were grovpel together as shown.

The avarace lengths of the setee in ane matrov hidney ghatemeters move as follows.

Segrant 2. 97μ
sognants 6, $7 \& 8$. 83μ

It suams that the sotac of outer forms are gligitisy but consistrentily Louger than the oompaponatise seted of latangy forms. The average langth of the sotec in the ono manse klaney foxm carminod
 the soter of the outer and diangy fosm is indietingutshable.

(1) Encurvols population.

A madom sample ocersisting of 20 outer and 20 kioney ghofegentry ware squashed umiar a covaralip and the mumber of setee in oech bumale in segments $2,6,7$ and 8 werv counted. Those results meo prosented In Mis. 5., an the total momber of setac per megront, 4.0.0 the men the mober of sotee in both burodes, and this is plotted acpingt the
mumber of andmals. It is soen that the kidney forms never had more than \boldsymbol{u}_{4} setae per segment, i.e., 7 por bumile. The outer forms however, in the vast majority of cases had between 25 and $2 L_{1}$ setroe por segment. odd sumbers of sotae per segmont are due to the fact thet the two bundles in the same segmont were not aimays mado up of the same muber of setao. Docasionaliy, an outer form was found that had as fow as 13 setae in ono segront. In such casos it was umaily the sixth sognont that had this low mumber of setae, all the other segments having between 25 and 24 . This contrant in sotal numbers affonds a moans of aistinguishing betwoen outor and kidney forme. hus worm heving μ_{4} wotec or loss in all segments would bo a kddnay form, and axy woss having wose then 34 in axy one or all of its segments would be in outer form. In praotico, the outer forme had mose then \mathcal{H}_{4} sotse in at least three of the segments in questica. The oxcopticen to this rule is the asse of mature kidnoy forme which aftem have an adartional ata in sowo brmalos giving a total of 15 or 16 seteo por segment (se0 p. 27).

These results were exminod statistically by ocuparing the maen maber of setal per sogment in outor and kddnoy forms for each sogment. The mothod unod to compare the moans was that for ocmpaning the moans of small amplos uaing teste givan in Bailoy (1959). The following table shows that in all segmonts the moans were significantiy different at the 2810 vel.
sogmant.

Values obtained for 'Student's' to Degs.of troedem

$$
23.462
$$

$$
7.318
$$

$$
7.318
$$

$$
\underline{1}_{4.872}
$$

12.374
12.374

OUTER
CHAETOGASTER
$\left[\begin{array}{l}11 \text { morms } \\ \text { excmined }\end{array}\right]$
KIDNEY
CMAETOGASTER
$\left[\begin{array}{l}8 \text { morms } \\ \text { excmined }\end{array}\right]$

After finding these differences in the setal numbers of the outer and kidnoy forms of the reservoir, it was deaided to investigate the possibility of this aifferemoe being general and not comflined to these particular popelations. smples of Ie pancerer obtained frem various parta of Byitain were oxaminoa. (ii) Semple from a drainage ditoh near Prodshem. Chantogsater $1 i^{\prime \prime}$ naed wore obtainod by diasocting a somplo of Lemparex from the above looation. Figure 6 shows the results of setal counts carricd out on these animis. Again, the number of setae per mogment nover excoeded 24 in the bidney forms. Eem mubbers of setae per sogmont were more common in the outer forms hare than in the reservoix anfmals. However, since these low numbers (1.e., I_{4} and belew) wore nover found in more than one segment of any worm, the outer forma wore still cacily distinguishabie. Three worws found on the outer surface of the host had 14 soteo or leas in all mogmonts. Caily hianoy colle wore found in their gut and it can therefore be sald with certainty that these ware keldney forms living tomporariliy on the outar surface of the seali. These
 (14i) Semple from a Themes beakrator at Waiton.

The Phe Iimaoi obtained by disseoting Le_perseor frea this habitat were again treated as abov, and the results are presented in F18. 7. 111 the kelaney forms had μ_{4} setae or less por megnont. Here, with the excoption of ase segrent of ane indivadual there was no overiep between the muber of setwe possessed by the kidnoy forms and outer forms, and 50 the cistinction between the two forms was exceptioneliy oloar.

[^1]
Fig. 10. The frequency distribution of setal numbers in
outer and lidiney forms of Ch. limneai obtained
from Reading.
(iv) Sanpie frim a dam at Foxbar, Renfrowshive.

The Inzwaca persexer obtained from this habitat yioldod many cuter ghaotospator but colly three kidney forms. The three kidney forms wore maturse and all had three genital sotse in each bundio on segment 6 . These gunital sotac are not includod in the results, witioh are presented In Fic. 8. It is soen that the mature kidney form ofton has more then 14. onilnary soteo por sogment. some bundles ware mado up of 8 sotae which
 colis were found in the gut of these matrure animals and this indicates that thoy rexe idicmey forms and that the mabor of setac per bornde tends to ingrsase at maturity. Nost of the cutor forms had more than U_{+}setee in overy segmont, but a fow had lest than 14 in sogmont 6 . (v) Smpio Irow Eiston, Cormail.

No lidney forms were found in the fempreser obtainod from thels halostat. Host of the outer forms had more than 14 setee in all sogmante, but scme had loss in one segnomt, and this was usuily bogant 6 . the results are prosented in Mis. 9. (vi) Sampie from noading.
 In this sample oither. 111 the outor Ghastogester without acoeption had mowe than if setao in all segmonts. The results from this samplo are presented in Fig. 10.

In ocmalusion it oan be said that the results obtained frem these widoly diapersed habitats agroe alosely with those obtainod loceliy at the secervelr. AII the keldmay forms expmined, with the expoption of

Plate 1. (a) Transverse section of the stomach region of an outer Chaetogaster. (x 560)
(b) Transverse section of the stomach region of a kidney Chaetogaster. (x 560)
sw, stomach wall. bw, body wall. c, coelom.
mature animals, had 14 setee or less per aegmont in all the four segments that mere observed; this moans a madimin of 7 setac per bundle. The outer forms unaliy had more than 24 sotee por segmont with a maxdmum of 24 per segment or, in other words, 12 per bundie. Some had less than i4 setae per sogment, but in no case was this true for more than ane segnent of ang animal. Figure 11 was constructed by pooling all the data used in Figs. 5 to 10 inciusive. The unghaded parts of the histograms represent malney forms that were found ca the outer suxface of anails in the semple 2xon Frodsham. From the pooled data it can be caloulated that 4.7% of the outer forms had less than μ_{4} setae in segment $2,20 \%$ had less than 14 In segment 6, 4% had less than 14 in segment 7 and oniy 2% had less than 24 in segment 8 . It is seen that the overlap between the setal mumbers of the kidney and the cuter forms is greatest in sagment 6. This overiap 1s presumably aaused by a loss of setao from the bundios of segrant 6. If this asarmption is correot, the only explanation that oan be suggested Is that in some way those bumalion, serving as attachmont organs, are subjected to greator stradns than the buallos of othor segments.

Sections of both types of Che limnaet wore cut in order to compare the anatomy of the two forme. Ton outer forms and tos kidnoy form wore exmaned in this way but no detailed histological observations wero made. Differences were found in the thickeness of the gut wail in the two Forms. Plate Ia shows a transvorse sootion through the atomach region af the gut of an outer Ghastorasters Plate Is a seotion of the semp region

Plate 2. (a) Transverse section of the intestinal region of an outer Chaetogaster. (x 560)
(b) Transverse section of the intestinal region of a kidney Chaetogaster. (x 560)
iw, intestinal wall. bw, body wall. c , coelom.

Fig. 12. (A) Prequency distribution histograms of snail size, (B) the degree of infestation of L. pereger by Ch . 1 imnaei, and (C) the average number of Chaetogaster per snail in each sample taken at the reservoir during 1960.
 be theleser than that of the kidney form. Plates 2a and 2b show transverse seoticas of the intestim of an cuter and a kidnoy foxill reapectiveiy. The aifference botween the intestinal onclothelium of the two forme is more unstied than the difference between the stomach ondothelia. Whereas the makey Porm has caly a thin, regular ondotholiun, the outor form has a Each seoper and moxe irrogular layer of colls ocostituting the ondothollum. It is possible that this contrast is related to the difforence in the atot Ce the two forme, the keldney forms feeding axolumivoly on kidney calls (p. 52) and the outer forme fooding on a varioty of planictonio plants and calmala and probably haring a move oomplex digestive mechanisa.

So other major anatcmicel difforences wers found.

Secticen 5.

8umpling of the I-mpan memere popaiation atarted in Jamary 1960. Figury 221. show the Gradual inervease in the stee of the muils up to the beginalise of May. Epewaing begen toriards the ond af Masch, ach epama appavio containing up to 60 egge. Undor Labosmtory conditioas and
 secohed a sime of about 8 mas. The majority of snaizs in the wintor samplea
 untsi the water temperature rose to about $8^{\circ} \mathrm{C}$. Toung analis appeared in the zeservoir popalation at the ond of May to the extent of 9% of the total sample. This ancgeats that the youns analis anorgod 4 to 6 meale
ater ovposition at this time of year. In the laboratory, with water temperatures at aroyi $15^{\circ} \mathrm{C}$ this period shortoned to 2 to 3 reoks. Young gnalis ocntinuod to appear in the population up to the begiming of July. By the 27th. of Juse all snails of the parent generation had Alsappeared. No direct evidence is offored by these results as to hom socn the adults die after spemaing. Howevor, at 16 to $18^{\circ} \mathrm{C}$ in the Ieboratory, doath usuaily cocurred 2 to 3 weoks after spaming.

The rate of inorease in the sise of the snails of the first generation in summer was groator than that of the parent generation in spring (Table 4), when temperatures were considerably Iower (Mig. 15). p. 32. made inorease continued threughout the sumer up to the ond of August. zue samples taicon on Angust 23th. and 31st. (samples 14 a 14b) wore very ma11, the snails being very difflcult to find. On Soptember 4th, a man 21 quantity of Is paroger spam was Soumd, and the next semple taken on septrmber 30th., suggested that a second generation of yomes snails had been added to the popriation. the histogram produoed from this semplo Ls characteristio of a popriation containing a high percontage of young forms in that it has a wide base. But since the tro previous samples Vis. 1he and $14 b$, were very small, this auggestion must for the present be treated with reserve. However, the theory is supported by the fact that in contrast to the clean shells of the anails of this probable second generation, sholls belonging to a fow imaividuals of the Prut generation stril1 rumaining in the population were thickly coatod with algao. It was this second generation together with possibly a fon individuals frea the firret, that overwintered in the reserroir. The growth rate of the second gemoration in the autumn was oven higiter than that of the elryt eoneraticn

Table 4.

The avorage growth rate of Le_pereger in mas. per woek.

	$\begin{aligned} & \text { Reservoir } \\ & 1960 \end{aligned}$	$\begin{aligned} & \text { Beservoir } \\ & 1961 \end{aligned}$	$\begin{aligned} & \text { Stream } \\ & 1961 \end{aligned}$
Epaing	$\begin{gathered} \text { Peb }- \text { May } \\ 0.459 \end{gathered}$	$\begin{aligned} & \text { Peb }=\mathrm{Kay} \\ & -0.100 \end{aligned}$	$\begin{gathered} \text { Fob }-\mathrm{Apx} \\ -0.030 \end{gathered}$
19	$\begin{gathered} \text { Yay_Jual } \\ 0.609 \end{gathered}$	$\begin{aligned} & \text { Jon - Aus } \\ & 0.514 \end{aligned}$	$\begin{gathered} \text { Jum }-A u g B \\ 0.154 \end{gathered}$
Anetum	$\operatorname{sop}_{0.689}-20 \mathrm{v}$	$\begin{aligned} & \operatorname{sop}_{0.401}-1007 \\ & 0.400 \end{aligned}$	$\begin{aligned} & \text { Sop }-800 \\ & 0.201 \end{aligned}$
vinter	$\begin{gathered} \mathrm{Ner} \\ 0.14 \mathrm{Jan} \end{gathered}$	$\begin{gathered} \text { Mor - Fob } \\ 0.206 \end{gathered}$	$\begin{gathered} \text { Rov - Jan } \\ 0.050 \end{gathered}$

Fig. 13. (A) Frequency distribution histograms of snail size, (B) the degree of infestation of $L_{\text {. pereger }}$ by Ch. limnaei, and (C) the average number of Chaetogaster per snail in each sample taken at the reservoir during 1961.

Fig. 14. (A) Frequency distribution histograms of snail size, (B) the degree of infestation of L. pereger by Ch. Iimnaei, and (C) the average number of Chaetogaster per snail in each sample taken at the coed Mawr stream during 1961.

M18. 15. Water temperatures.

Average snoil size (mins)

Averoge snail size (mms)

Snalls collected per minute

Fig. 16. An estimation of changes in the absolute size of the L. peregar populations of the reservoir and stream.

En ammor (rabie 4. p. 3i). Crowth dusing the wintor months was rotariod.
Figure 13 shows the ahanges in this sam population from Sumang 2962 to February 1962. This shows olearly that two goserations - Prizneme wore producod in 1961 thus providing ovidonce courlinming the cominatima frum from the previous year's resulte. The growth rate howe sulianed a admilar pattora to that of 1960.

Figur i4 was aram naing results obtalned throughout 2961 Trum a pepolation of In menger Liviag in the stroem at Cood Manro Athough the firet gomoratica here appeared at approaimatoly the samo then as the ane in the resorvoix, no acoond genoration was producod. Tin crurith sube of the population here wes gonorully slower than that of the propulaticm in the rogervois, elthough mator temperatures wore not
 ound in the cortum. It is seem that the axtumn growth ratea in both pepolations wese Migior than the sumor rutes. Taupernturses were falling
 It is peasible that food wae more plontiful at this timo, and it is ificoly
 in the anmes in beth minetats (see bolom), these was less compotitico stos sook.

The indang malls colleoted per mimute, was ueed to indicate
 altely from Jamary 2960 to the begdmaing of hay 1960 in the recorvois (a Inatrue ropeated here and in the stroan popriation in 190), and thon youe tropily as youns malls hatched. Following this zise was an equally Hene full indioating a mich montall ty rato in the young forme. Thin

Innmadio mortaility is foum in the majority of mollusos, and ie_pereger sequives a suxpivil of ase in five humived for the madntonance of its manave (Eaveott 1936, Gemfort 1957). Boyoott (1936) states that the Itectors that 24 m t the aise of a moliuso population act on the infents, the andis and the eges bating fairiy safe from prodators. These prodators that seal youmg malls ase listod in his papor, the mont inportant ones
 cannatrepoces larree and beetles suah as Mxdrophilus, Dytisous, cadds Larree and immous larvee. Sooh animals are plantiful in both the resezvoir nat the strem and could eadily wosount for the mortailty in the youns forim in both habitats. In the secoud yoar in the reservoir a seccud, eniler peak in the abvidence of analls cocurred at the time of hatohing
 supile mes tairea in mid - September when this phenciancen probebly ocourred.

It was maticed that during the wintor months Lempereger

 Ireathe are mocossary (Greatic 2934, Finter 1953).

Two gmerraticms par anmin aro not at all unocmen in

 men arrost cmplote replacoment of the plisnt coneration by the soocna,

 milten and Jomes (1926) sucseat that theae was ovoa a thisi gonorntion

The type of life history described herv involving twe breeding entitithe by afferment gemerations, where the socond genoration almost umpletely rupleepd the Pirut, hes also been descoibed in a Irymag perspar pmonatica ly mutor (2961). In the mame peper he prosents data obtainod Syum a perintation ct this specios heving coily one broeding seasos a year. In the type of population be found that mpeming oocurrod much later that the eltut opemating pertod in a two cyale populetion, although anall sise and weter tempezutruse in spatig wore oqualiy favourabic for early breeding. IT mugests thet in such aseas genotio faptors aro involrod in dotomining Hin onmer broeding rather then epring and late - oumar breedinge As

 In the morvedr. This and the fact that the growth rate in the strean

soction 6.

Betriled gmontitative cosorvaticus werv mado on the oratogater

 Soluruay 1962. During this latter pertod, moathly amplos of Inmenger
wanc taken from the stream at Cood Mawr so that the Ghaetogaster population conid also be exemaned in a rather different habitat. The results obtained 2rue the sarielies taken in the seoond year in the reservoir, and those ceteilned from the atrean population were used ohiofly for comparison with the wore detailod results of the first year's sampling at the reservoir, and to ohoak on ovents during periods of great ahange.
a. Emamois porpulatica, 2960 .

Figure 12, p. 29 shows the changes in the populations of gemetergator Ilving on the outer surface of the snail and in the keldnoy C the amail. Proure 12 also shows the ohanges in the snail population which were disoussed in the provious seotion. The graphs drewn represent the mean number of Chaotogastor per snail in each samplo. Unfortunatoly, the caly record kopt of Chaptogestor numbers from semples 1, 2 and 3 was the sule totals of the kldnoy and outer forms found on each snail. Irea semple 4 on , separinte records were loept for the kidney and the outer Gaentogester: Howover, it is soen from amples 2, 2 and 3 that the average zumber of Phaptogastor per snail was voxy Iow in Jamaxy and oardy Pobruary. In anaple 4 (22nd. Fob.) the moan mubbor of the kidanoy form per anail was ereater than that of the outer form. By the begimning of Maroh, both these velwes had inereased slightily. In subsequent samples the mean value for the outer forms imeroesed rupidiy, and by the boginning of April it was greator than that of the keldney form. In eexiy May it reachod a peak at clout 43 cheotogestor por snail. The mean value for the kidnoy foxm imoreaced rather mose slowly to reah a peak at about 15 ghactorastor per
snail also in early May.
The peroentages of snafls infested by the outer and keldney Chaotogester (Fig 12) also increased during this period, the outer value reaching 100 per cont in early April and the kldney value doinf so about a month later.

The noxt semple taken on the 30th. of May showed that the average Chaetopaster population had been reducod drastically. Youne Ifmnase perecer mere hatchine in large numbers at this time, and the rast majority of these wer not as yet infested with Chaotogastor 2imnaei. Minety six per cent of this semple consisted of theso young snails, and consequently the mean values for Chastogaster per snail were very low, the keldney value being the lower of the two.

A similar pattern of events to that desoribed above ocourred during the sumer between June and the end of August. The mean valuos increased slowly from June onwards, the outer moan again having the hiphor rate of inorease. The peak, which was scmowhat lower than that oocurring in Mey, was detooted in late August. By this tiree thore was 100\% infestation of the snalls by both forms. Again the outer form reachod this ralue sooner than did the kidney form. It is unfortunate that only 7 smails ware taken on August 13th (sample $H_{1 a}$) and only 2 an August 30th (sample μ_{1} b). No more could be found although the whale of the sampling area was soarohed thoroughly. Obviousiy, these two samples do not givo a vory true ploture of the state of the Chaotogester population, but the mample talcon on August 30 th soems to indicate that a poak moan nuiber of chaetorgstor per snail was probably machod at that time. This is probably true aince semples taken in early sumpor showed a steady inorease in this moen and

Hig. 17. The frequency distribution of the number of outer Chaetogaster per snail in each of the samples
taken at the reservoir during 1960 .

Fig. 18. The frequency distribution of the number of
kidney Chaetogaster per snail in each of the
samples taken at the reservoir during 1960.
it is reasonable to assume that this inoreaso mould continue throughout the sumar until the doath of the flirst genoration of snails.

In September a second brood of young snails was produced and again the Ghastopaster sample (30th. Sopt.) was diluted by yourf non infosted snails. As a result the mean values for Chaotogastor por snafl dropped almost to zero. These low velues persisted throughout Ootober, but by November, both had inoreased silightiy. This slow inorease in both the outer and kidnoy populations ocntinued throughout the winter, but bere, umilke the previous finter, the mean value for the kddney form did not at any time excoed that of the outer form.

Pigures 17 and 18 show histograms of each sample for the outor and kdiney Chaetogaster populations respectively in relation to the host. The vertical ases represent the number of snails harbouring x Chaotogaster (horiscatal axes), the total number of snails excamened in oach sample being 45 excopt where otherrise stated. at tho times when the Chaotogaster population was low 1.0., following the appoarance of youme snalls, a large proportion of snails had very fer Geabtorastor on then, and a picture rosombling that of a Poisson distribution was obtainede A fer snails had a large number of Chaetopaster on thom, these being the fow ald snails of the provious generation still romainine in the population. As the mean number of Chaotoraster per snail inoroased, the distribution becemp more normal, the highost dogroe of normality oocurxing at the time of the Chastogaster population poak procoeding the appearanco of the flyst senoration of snails. This of course was the tim at whith the Oheoteraster population wes at its highost.

During the two months loading up to the thime of this Prets

Fig. 19. The average number of outer Chaetogaster per smail throughout 1960 on five different snail sise groups.

Fig. 20. The average number of kidney Chaetogaster per snail throughout 1960 on five different snail sise groups.

Mg. 21. The growth of the Chaetogaster populations on various snail size groups.
geatr then eurdy lay 2960, the rate of inorease of the mean value for the cmer pepritation becarse steadily greater (Fig. 12). The rate of inorease - Mand popuiation moan however remainod constantiy low. This Astervace Le demonstrated further in Mge. 19 and 20 for the outer and ealang pepraiations respeotively. Here the mean values have been coloulatod Sue 2ist inispldual aise groups of the smail folling betwoen 8 and 13 mas. The ecter pepulation in all these sise groups has a charactoriatio ourve endeating an cocelorating popilation growth rate during these two months. an the other hamd, the kidnoy population produces a fairily constant excurth rete ourwi if argining, it tonds to docolerate, the moen tomaing to reach - celling. These curves also show that in genoral the larger and progemably salor madis muppert a blggor peppulation of both outor and kideoy Pantratity then the mailor, younger malls.
buring these two months in the apring of 1960, the average (puren sute of the moen snail sise was 0.459 mac. per wook (lable 4, p. 31) an texals ment that a snail would inoroase in sise by about 1 min. Betwoen mempling date and the noxt. It was therefore quite eany to eoleot a parilecilar sise group of snails and follow its growth and the growth of its atametos poprilation throughout the spring. For exemple, the $8-8.9$ me.
 5 (Imen 7th.), and so an. The 8, 9, 10 and 11 ma. Eroups of Lato Dobanary mes sallowed through to eardy May in this way for both outer (Mc. 2n)
 Anenentar mabers for each of these groups followed through frea late Solemary to early May. Bach curve in fact follows the growth of a pertioular poaket of the Ghactogastor population and the four ourvos are
sealiy complements of the graph of moan values of Chaotogastor per smail shown in Fis. 12 (p. 29). The shape of these ourves acain is such that thoy show the acoelerating groorth rate of the outer form and the slow or oven docelorating growth reto of the kidnoy popalation.

D. Resompir population, 1967.

These results are presented in Fig. 13 (p. 32.). Op to the appearance of the flrst generation of snails in Jume, the pattorm is s an, stadlar to that of the previous year. From Jume to August however, 80 inerease was deteoted in oither the outer or the kidnoy population, and so peak was reached before the appearance of the seoond genoration of smails in Septomber. The only effect this secomd dilution of the snail population had, was to lower the mean values of Ghaatogsater por smail very sulghtiy, and to reduce the percentage of snails infostod. It is seen mowever, that these low moan values are approximatoly the samo as the corresponding ones in the previous year where they wexe preceeded by peak values. The peroentage infestation on the othor hand is silghtily greator here than in the flest year.

Up until February, the outor population meen remalnod constant at this low valuo reachod in Soptomber. The kidney population meak however showed a alight inorease from moath to month. Indeed, between lormmer and Pobruary it was found to be higher than that of the outer population as was the case early in 1960 .

C. Stroan population. 196.

When sampling began in Pobruary 1961, the outer population moan was oconsiderably higher than that of the didney population (Fig. I_{1} p. 32), and moreover, the former showed 100% infestation whilst the latter showed only 14\%. The 100% infestation by the outer form persistod until young snails appeared in early May, whilst the pronortion of snails infested by the kidney form rose steadily and reached a peak value of 73% also in eariy Hay. As in the reservoir, both kdiney and outer populations inoreased in mubers throughout the spring, the outer having the higher rate of incroase. The poak was reaohed in early May, and the outer population, as in the reservoir, was considerably larger than the kidnoy population. Fifth the appearanco of young snails in large numbers in June, the mean values for Chaetogaster per anail dropped to near gero. After this it was not until Fovember that any increase in these values was soen, and then only in the kidney population. The percentage of snails infested however had been inoreasing slowly up to this point. No second generation of young snails was produced in this habitat. By Jamuary the leldnoy population mean had increased further and both the mean and the peroentage infestation were well above those of the outer population. Thus, apart from in the uintor of 1960-6, the winter kidnoy population was always larger than the corresponding outer population in both atroam and reservoir. Talding into cocount the faot that only one ner generation of the host anail wes produced in the strean, it was seen that whilst there were minor differences between these amual cyoles, the general pattoxn was similar in all.

Section 7.
THE LIFE CYCLE OF CHABIOGASTER LIMAAKE.

No mature Cheatorantor 14mant of the outer type was Poum in either the resorvoir or the stream population. andy a very small proportion of the kidney forms booeme sezually mature. Figure 2.2 shows the percentage of the total number of kidney Gnaetofaster in each sample that wore mature. The breeding season commenced in Novenber or Decomber and continuod throughout the wintor and spring. Broept for tho 1solatod cocumronce of four mature woxms in eardy Jume 1961 in the reservoir no mature individuale wore foumd in the summer in eithor of the habitats.

B. 2no anatciny of the maturs forme

Asoxual roproduotion by budding ceasos in the mature andmals. The expemination of 9 mature individuals showed thon to possess betwoen 23 and 28 sogments with an absoneo of brdalng gomes. Conital soteo ave presont in addition to the noxmal ocmplement of setao, and an coomalcual bundle in these meture forms has ome more sete then the maxdmum fored in the bundios of imature forms (see p. 27). These genital setee are throe In mumber and are siturted aloagaide oach of the sotal bundies of sognont 6. They are similar in shape (Mic. 1. P. 2) to the ordinary sotec apart frem the fact that thoy havo ouly a simplo hook lnatoad of a double book

as in the ordinary setae. Thoy are however slightly longor than the average alse of the ordinary setas of segment 6. They also seom to be thiaker than the oxdinayy sotae. The falloring measuroments mere made on one aninal cily because of the scarodty of material. Mean longth of ordinary soteo on sognent $6=85 \mu$ Hean length of genital setao on segment $6=110 \mu$

A diagramatio representation of tho reproduative organs of the mature kidney form is given in Fig. 23. This was dram after examinimg 11 mature Forms.

What seomed to bo a single ovary was found in segment 6 . This contained ove at various stages af development, the ripe ova being situated dorsaily. A struoture resembling a testis was seen in one individual. This was definite in outiline and was situsted on the nerve cord near to septum $4 / 5$ in segment 5 . The spermatheose open in segment 5 alnost immeriately behind septum 4/5. The spoimathooal duct is short and is iined by oolumar opethelial colls. The spermathocal napulia usually extemds the whale length of the seguent and is lined by a mah more Mattened epothelium then the duot. The male frmenel opens into the ocolce just in front of septum $5 / 6$ and the vas deforens leads baok from it through this septuri to the atrium which in turn opens to the exterior in the anterior half of sogment 6. The clitellum is seen ocoupying it sogment 5 , segment 6 and about $\frac{1}{7}$ or less of segment 7 .

Plate 3. A Ch. limnaei cocoon found in the kidney of a L. pereger. (x 250)
fram the snall kidney; Plate 3 shows such a cocoon. This is a typicaliy Aligoohaete cococn with is barrel shaped, each end being slightiy elengated. The embryo can be seen through the transparent cocoon case. The coeocns are usually foum in the portion of the kidney near the arigin af the ureter.

Figure 22 (p. 42) shows the number of oococns in relation to the mumber of Chaotogastor that were found in the kidney of the snaile anding the laboraicory investigation of the samples taken at the reservoir and at the strean in 1960 and 2961. It is seon that the seascn in wifh cocouns were found corresponds to that in which mature Cheotogester oocurred. Indeed, In most cases, the cocoons were foud together with mature individuals in the lifiney. Many empty cocoon cases were also found in the kidney but these were not as numerous as the viable cococns. In the spring of 1960 these empty cases did not appear until well into the breeding season and were prosumably the remaing of cococms that had been deposited eariler in the season. Their precenoe in the kidney at this timo Indicates that the cococns hatohed in the leidney. Hewever, since the apty caces wore mot as munorous an the Dioble cococens, it is poasible that acmo cococas passed from the iddney through the uretor into the surroumaing water.

A11 the cocoons formd duming 1960 wore moasured. The width veried from 290μ to 330μ with an average of 230μ. The 2oagth vaxied betwan 230μ and 490μ with an avarage 350μ.

a. Inoubsticen of coporns.

70. aniy three hatahed as show below.

Date foumd. Date hatohed. Inoubation period. ITO. of buds per worm.

$21: 2: 60$	$26: 3: 60$	31 days.	Irone.
$26: 1: 61$	$22: 3: 61$	55 days.	One.
$1: 2: 61$	$7: 2: 61$	6 days.	None.

six cococns wore also kopt in 0. 偱 saline at $7^{\circ} \mathrm{C}$, but not on of these hatehed. A furthar eleven were kept in 0 . 抔 saline at $15^{\circ} \mathrm{C}$ but mene of these hatched ofther.

Out of eleven 00000 s that were kept in water at $25^{\circ} \mathrm{C}$ two hateohed as shown below.

Date found. Date hatchod. Incubation period.
12:12:61
8:1:62

27 days.
27 days.

12:12:61
8:2:62

One of these youns worms ras squached ruder a ooverslip and the number of setac it possossed in cach builie was counted under a mioroscope. It was a typicel bidney form in this reapeot. The setal bendies vere fully devoloped since they ineludod no ascoptionally short corening setao which is typical of doveloping bundio. the wosm poasosesd cur budating some.

The second youmg worm was added to a dish comtatulng a non impested snail in pond water to see misether or not it would enter the HAmey. Neter ton days the snail was disseoted. The worim was not found on the outar surface of the snail per in Its kidnoy. A soarch er the Aish rovealed the wort still living on the botton of the alsh. It was then introduced to another non - lifested suall in the cane way. Ageis the worn could not be foumd on the matl and a moarch of the dish was not
mocessful. The worm had probably died and disintecrated.
Thirteen ooocons were incubatod in kidney extract (see p. 22)
at $15^{\circ} \mathrm{C}$. Mone of the coco0ns hatched.
A11 the 00000 ss incubated mere kopt as desoribed for about
fle months and examinod every throe or four days.
A11 the co000ns that hatahed were inoubated in water and
although the munber is too small for any firm conclusions to be dram on requirements during inoubation it does appear that wator is a suitable nedive.

- Factors influsnoing cogopa production.

It is possible that the semal phase of the kidney form of Chatogaster 2impasi is synohronised with the 14 fe cyale of the host snail. This type of synchronism has been demonstrated by forty and suyth (1959) in Opalina ranarim wioh is parasitio in the rootum of Rana tomporarys and by miretski (2951) in Polystoma Intaceryime which is also a parasita of the frog. The former multipiles asomally during mont of the yoar but during the breeding seasco of the frog it ahanges its raproductive patterin to a sexual one. The latter relaases eggs whon the frog gees into water to breed and by the time the oggs have hatohod abundant tadpales are avaliable for infeotion. The sexual phase in kidney Gugstoragter occury Just prior to and during the time that spawing oocurs in the fe pexerer pepuletion, and such a ralationship as is established between gonisma and man coula be present here. Againgt this is the fact that no mature werme and coeoces were found during the second breeding soasch of the snail in the sumasp.

No Dend

Two buds

Three beds

Four buds

$$
2-0 \quad-\quad \text { segments }
$$

1-4- buds in order of appeorance

Fig. 24. The development of buds in Ch. Iimael.

The possibility that such a relationshlp oxists hovever needs investigating. Another possibie stimulus for the produotion of 00000 s is the casot of low winter tomperatures. Kature individuals and cococns appeared shen the water temperature dropped to about $10-8^{\circ} \mathrm{C}$. An attempt was made in the leborstory to induce coocon production at low temperatures. Imenty anails were takcon in liay frow a populatica of fepersener hoavily infested with kidney forms as well as with outer foxme. They wore then kept for 7 days in poad water at $7^{\circ} \mathrm{C}$ and then at $2^{\circ} \mathrm{C}$ for six woelcs. At the and of this period the analls were disaected and the Ridney Chaotogaster werv semoved and expmined. No cococns or matuxe individuals were found In any of the snails as shom in Pable 5, p. 47.
suaging from the field results the peroentage of mature individuals hore ahonid be at least 1 or 2 per oent assundig that low tenperatures do have the effeot of atimulating the Qhatogaster to beoom sompilly mature. Ono can only conolude that under the conditions of this coperfment low tumperatures do not soen to do this. It is neoessary to sepeat this experiment at affioxent times of the yoar so that anails at airfarent stages in their life history can be used. This should show whether or not I em tomperatures can induce maturity during cortain stages af the anail's 1ife history and not at other tines.

8. Budating

Doth kidney and outer Ghaptosentor roprodnce anemally by vordaing all the year round. Budaing omiy oeaces at maturity. P1gure 24 shows the growth of a ghatogantry frow a form with

smadi.	Outer Chaetogaster.	Kidnoy Chsetogaster.	Mature kidnoy forms.	C0000ns
1	10	3	-	-
2	9	7	-	-
3	13	7	\cdots	-
4	25	4	-	-
5	18	8	-	-
6	14	8	-	-
7	14	3	-	-
8	21	9	-	-
9	23	5	-	-
10	13	6	-	-
21	12	10	-	-
12	19	7	-	-
23	18	8	-	-
14	25	12	\cdots	-
25	7	10	-	-
16	5	4	-	-
17	27	9	-	-
18	11	6	-	-
19	Snail dead.			
20	Snail doad.			

Fig. 25. The outer Chaetogaster population of the reservoir throughout 1960 split into five groups according to the number of buds per worm.
sent to form having four buds. Inis diagrem applies to both outer and relaney forms.

The Plyst budding sone appears bohind segnont 8 . The Pluet ser segment foreod, behind this budaing sone, is what will eventualis be segment 8 of the new inalividnal. The seocod is segmant 7, the thind
 Pollemed in the formation of all subsequent buds. The noxt bod appears between the parent wosm and the flirst bud. the thind bod is foxmed wery soen after this at the poaterior end ar bud 1. The forth bod is produced Detweon the paront and the second bud. Vory ocoasionaily indivitmals moving 5 buds axe saca but rufortunatoly no data are avaliable relating to the poaition of the fifth brach the mowly foxmed chain of buds soems to
 mat casos. Whon the aninal aivides it veualiy breake into two parte and
 prosont on the now part dopond on how man buas wore oxicinnily proseat. It Is ansumed that the broak oopury at the posittion of the Plret mading
 a moparmation at this point.

(1) Oxter poprilatiens

Pigure 25 abows the pervantrget of oover Ginatoretion the each

the mabers were considered to be too small to be of any value. Barly in the year, when sampling began, it is seen that there was a predominance of individuals having 0,1 or 2 buds. Thereafter until apxil the peroentage of individuals mith 0 and 1 bud dropped steadily. The percentage of the 2 and 3 bud anfmals howevor increased due to the Arep in the numbers of the 0 and 1 bud animals, mith had producod more buts. Very fow suimals grow into the four bud stage at this time and the percentege of these remained constantiy low for sone fime. In Hay the pereantage of 0 and I bud andmale rose to a peak at the expense of the 2 and 3 bud animals. Obvicusiy, the population had reached a stage whero the individuals possessing the highor number of buds wore dividing produoing imaividuals with fow buds. Those then grow, and about a month later, in Jrue, this peak was soen in the two bud part of the population acocupanied by a fall in the peroentage of 0 and 1 bud forms. The 2 bud forms in turn producod another bud and consequentiy a peak appeared in the percentege of 3 bud forms in July, and naturally the pereentage of 2 bud forms foll. At the same time maxy andmals grow into 4 bud forms thus producing a silght peak in the percentage of these present in the population. As before, following the poak in the peroentege of forms havinc the highor numbers of buds ame a sharp drop in those and a Mise in the percentage of andmale with the lower numbers of buds.

The mumber of wormes in each sub - sample during the latter part of the sumar and in the autum was so mall that they could not be used. flowerar, it soens as though suevesive poake mere swachod in the percentege ralues for the 0, 1 and 2 bud animals during this time bocause a peak is seen in the pereontage number of the throe and four

Pig. 26. The kidney Chaetogaster population of the reservoir throughout 1960 split into five groups according to the number of buds per worm.

Tuil animals in oariy wintor. At this timo also the peroentage of 0,1 and 2 ruit autuals in the population was low.

It is soon that the population osolliates frequentiy between two extrums, i.e.. between a population of worms having 3 or more buds and a popplation coasisting mainiy of 0 and 1 bud individuals. Three such oacillations probably ocourred during 1960. Tha amplitude of these eacillations was highost in Hay, Jum and July which suggests a greator activity in asoswal reprodmotion st this time. It sooms that this aotivity Is 1ittile affected by changes in the life cyole of the host.

(1i) Kidney population.

Figure 26 shows the percentraes of bidney ghatorestery in each sub - sample having $0,1,2,3$ and 4 buds. Again the sub - samples wifich contrined $108 s$ than 20 Cisateraster: have not been inoluded.

The violent osofllations that were seen in the outer populaticn are not soen here, or at least they are not apparent in the resulta. A definite trend is sean however in that between Pebruary and Hay, the percentage of 0 bud forma in the population atoadily deoveased whilst that of the 4 bud form inoreased. Aso, after an inftial drop, the propertion of 2 bud forms remained fairiy steady. irkis drop oorresponds to an initial steep increase in the percentage of 3 bed forms which thoseafter remalned steady. The vilue for the 2 bain animals varied vory littie during this time. It is gathered that duming this period there was a steady ahift Prow the forms with the lower number of buads towards the forms with the nigher mumber of buds. Batween May and July, and Angust and November, the

to be of any value and they were ouitted. It seems that the condition of the population in winter is the reverse to what it was in July. This is best sean by looking at the parts of the population with 0 brds and 4 buds. Between July and November the fomer had increased considorably wifist the Iatter had deoreased.

It is difploult to draw conclusions from these results but it is seen that the kidney population is more stable than the outer populatica In that it does not display the osofliations that were seen in the latter. This suggests that conditions for the outor form are nore variable than those in the kidney. It is impossible to say with certainty that asesual seproduotion in the kdinay population is more active at cortain times of the year than at others. Again thore is no ovidence here to auggest that the pattern of aserual breeding activity in the kidney is affected by changes in the life cyole of the host.

Socticn 8.
FBEDIME IN CHARYOGASTER LTMUAKI.

The gut contents of samples of Cuactogastar Ifmaci taken fram the reservoir were investigated at six week intervals throughout 1961. Imenty outer and twenty kidnoy Chaptogaster from eaoh sample wore squashod undor a covorslip and the organiane observed in the gut wore reoorded.
a. Tho gut oontonts of xidney Gnatorastor.

A11 the kidnoy Chactogastor oxemined throughout the year

Plate 4. Longitudinal section of the stomach and intestine of a kidney form to show the crystalline concretions remaining undigested in the intestine. kc, mollusc kidney cells containing crystalline concretions present in the stomach. cc, undigested crystalline concretions in the intestine. (x 250)

Plate 5. (a) Section through an infested kidney of a
L. pereger, and (b) a section through a non-infested kidney. ch, kidney Chaetogaster. kI, kidney lamellae. lu, kidney lumen. (x 160)
semtained oniy kidney colls and orystalline concretions derived from the yianoy (Plecen 1937, Pan 1958, Andrew 1959). Some individuals had oniy the aryenis in thoir gut whilst othars also had groups of cells oontaining these erystais. These colls were usuaily foum in the position of the gut Coccothed by sperber (2948) as the stomach, and by the time they had passed. finte the intestime conif the ocystals were to be seon remaining malgested (rante 4). These obsorvations mugeest that the kidney forms feed exalusivoly nthe 20080 cells containing crystalline concrotions which are Ascharged Ty the ldinag. They may also ongule considerable quantities of the anail wito minlat freding on these colls.

A histological oxamination of the kitnoyn of In perxeger fncosted with grotogestor, and a comparison of those with monminfested Inidnays show that the worms do not appear to domage the kianoy in any ray. Flate 5a. shows a seotion of an infosted zlakey and Plate 5\%. a mection cen minfestod kidney. The lamilse of the infested kidnay do mot mem to have been brolcen or dernged by the worms whioh are seen to ininabit the Inmen in between the iemoliae. The Iamileo of the infested kidney berover nem to have been foreed aloser together ane to the presence of gimatemater:
 enis forming gart of the imtact kidney but rather on those colle wioh have been discharged into the bidney lumen and would nomaily be voided. It is pointed out in the naxt seoticn (p.118) that idaney forms will net cet organions mormaily consumad by outer foxme.

3. Therut ontonte of ceter fontorestero

(1) Introduotion.

The outer form foods on smell plants and animals present in the water in wich it lives. Thilat feeding it anohors itself onto the bedy of the snall with all its setac escopt the anterior bundle on segment 2. Ungin (1931) was of the opinfon that it uses its setae to anchor iten2f to the mucus present on the murface of the anail. It has beon chearred during the course of this study that wheroes chactogastor oannot eneni ch smooth, alean giass, it Inds no difficulty in attaching itseif to, and cremilige alone a molluco mophe truill loft on the some glase. cus Wuefn"s cpinicn was thervforv probably correot since it is seen that Prasterastor is quite oapabio of moving officiontiy on a thin rilm of mucus ench as would ocour on the suxface of the smail. The part of the worm's boly antertor to segment 6 is held array frow the smail and the worm can ecten be seen in this posture under the edge of the sholl, on the tentacles and on the small's foot. The froe anterior ond of the worn moves slowhy Irem aido to side in the water and when a food organien suina or floate near to its head the wonm quickiy onguifs its prey. Daring thels process the pharysur is scen to dilate but the action of catohing the proy is too quick to be obsorvod with the miced oye. Fagdn (1931) observed a similar bohariour in Ghaotogagtor 11 mand Pooaing on corcaria.
(14) FLold Bosulte.

Feconds of the gut contents of outer ghateraster obtainad fre the semples taken during 290 (see $p, 51$) are prosented in Table 6 (p. 54). The valves presented are the mam mamberv of each argand per individual wosn. the palnoipmi food was of diabems but diliate Protonca and Botifore were also takon in large mubers. Piomontous algan.
$54 a$

siste 6.

the average muber of food organimes in the gut of each worm of the outer type in the cemplos takom.

Date.

Sremmanferas and R1agellate Protosoa were also found in the gut of
aterenter. Outor Chastomastor that 14 ved on snails infected by ceroariae weve aften found to have eaten these organdeas.

The diatome caton by the Chaptorastar wore usuaily members of the epnara listed belows

Comis.

Mevicule
Gumeila
Buotia
Pimmiaria
Comphomema Tabellaria symedre

Habit
Planktonic Planktonic or oncrusting PLanictondo Planiticato pherusting Planitarilo Planktorilo
loat of these gonera are pianktonio. The onoruting eamphomen crows attached to the aubstraturim by ahoret stalk.

The inghest concomitrations of diations and rotifers formed in the gut wore recoried in the late aumer and autuma chilates on the other hand socupd to bo least mumpras in the gut at these times.

Enaplime larvae were aleo foum on two cocantions in the gut co the worms exmalnod.

It is soon that most of the organdeas eatan by the outer pratorenter aro pinnictonde.

Bocause cony a small proportion of the snalla from the reservols wore infected with ceromice, the mumber of ohnoterester foumad daring the routin oxpmination of the gut ocutents to have eaten these was
-very amall. Consequentiy it was ixpossible to estinate the extont to which Smetekastor fod on cercarila. It was therefore docided to oollect a large maner of snails from the reservoir and to investigato tho gut contentis - euter Chatogestor from those snails that wore infeoted with corcariae. Anout 300 snalls were taken from the reservoir, and 20 of these were found to be liberating cercertee. The 20 carcaria o infected anails were Alssected and the percontage of cuter ginatranator on sach snail having recegrisable cercarise in their gut is show in Table 7 ($p .56$). On average. bout 16β of the Gheotognstar had coreariso in their gut at this particular tene. Therv is a great daal of variation in the percentage value for cach mail and this is partiy cus to the faot that the muber of onaotogastar per mail was often very low. Another possible reasca is that some sualls mexe more heavily infosted with corcarlae than othore and that those larwe were leaving their bosts in variasle mubers. It is inpossible to say what proportion of the muber of coroariac loaving the anail is eatan by the guter ghatonanter. It is therefore not ponsible to alscover from
 Itiberated into the water.

It is poesible that feoding ocmilttions for the outor form are Detter on the snail than on the substratum of the pood. Tris hypothoote has beon testod experimonteily by comparing the gut ocantente of freomilving outer Chaotogentar with thowe of the corter forms IIving on the smail.

The snails iverested with outer ghnatomether noed in this

Snal2	Poroontage of Chaetorastor: containding cercarise	Number of mosms axmanod
1	13.27	7
2	0	1
3	75.0	4
4	14.29	14
5	0	1
6	0	3
7	0	1
8	0	2
9	200.0	2
10	25.79	38
21	36.36	12
12	4.55	22
23	7.89	76
14		9
25	8.62	588
16	9.92	218
17	8.33 8.70	36 69
18	8.70 5.19	7
29 20	6.76	74

experimant wore kopt in distilled water for 7 days. The distililed water van replaced every two days to make sure that no food orgarkems wore available for the ghatogester at the ond of the 7 day period in distiliod weter it was scen by amaining 10 of the outer gaootogester that their gut tas ccuplotely cmpty. This starrod Phastomestor population was than used in the faliowing experituont.

One snail infestod with the starved outer Ghastogastar was Niacod in a gmall dish coutaindig about 200 ml . of pond water. Another manil infestod with the starred outor forms was disaected and the latter wese removed and placed in mothor alsh courtaining 200 mi. of pond water.

 Amos and the regults are prosertod in Table 8 (p. 58).

The results mere pooled to efto the total aumber cof ongondens found in 40 wosm ifving on the host and in the 40 froomiting worme. A X^{2} goobmesemerelt test perrosmed on the totals abows that therv is a ifonflioant difforence botincen the low muber of orgemiman found in the freomilving grotogastor and the higher maber in those Ilving en the anail. Theis auggests that the avaliablility of food is greater for the gnotropester: Living on the small then for the fremilving foxme this it empeofaliy
 Sroomifing phatopnater but a Pair mubor had boon tainen by the worms
 ilving on the anail.

There are two poasible reasons why the aveliability of food

A comparison of the food taboa by cetter Prastegnter whon on its host and when froomliving.

	Chaetogester on the mmall.					Froomliving Chaotogastor.				
	sept 1	mept 2	mapt 3	Expt 4	20t	Bupt 2	Rupt 2	Brept 3	Expt 4	Tot
Deations	4	4	8	1	17	0	0	0	0	0
motifora	20	8	7	9	44	2	2	0	6	10
cursete	25	17	59	42	142	52	23	5	27	107
corcertae	0	2	0	0	2	0	0	0	0	0

The results of χ^{2} teste performod on the totals:-
Orgentim.
Diatcas motifora clilata

smeintty P less than
115.6
21.45
0.001
0.001
0.001

Is giveter on the snall. Fixatiy, the fact that the snall moves through the manter mons that in affeot the ghatogntor is able to soarch a greater walum of water for food then it would if it mere craviling on the eubetratin, and consequatly the chances of flnding food are greater. Epenaly, it has boen observed that the ralil'e ulisated opithellus
 Seng the body ce the snail. Agaln, ther moans that the gosetognaters 24viag in this awrent which move along the snail, can soarch a greater value of water for food with leas exponattrare of enery then it could ohberwise.
sumeo grantomator foode Iargely an plonitondo plents and
 Lives in a ourront of mator, the fow maresting algen and the formoniforta
 Yrobubly obtatred ofther becance these oxgentian wore disturbed by the anail so beocming plenitionio or by graternter alinging to the soot of

sontile 9.

 the host. To do this it mast Ioave ite proseat hout at the Inteat when

the smail at this the are usuaily doad. The ease and iroquenoy with wifioh Emoterastor establishos itcelf ca a new host was investigatod. Wrst of ail, experiment was performed to see whether Gheotorastor in faot does Zeave tho host small. Owse this was establisbod, the tranafor of Gepotoratior frem one snail to another was investigated in the laboratory. in the riold, experiments wexp carriod out in an attwapt to discover the mothod of tremafer. the mart group of exporfments were dosignod to chow whother or mot the outer and iddnoy forms were habitat apeoifilo. Pollowing on frow these, it was dooidod to subjoot outor forms to adverse oonditions to soe whether this would osune thom to anter the kidney. Shico, during tho
 a frwo-ilivine mode of 1ifo, soveral experfmente wore performed to woe how lang the outor and blanoy forms could survive in the froo-living atate. Fupertmenta wero also performed to stugy the reaposeo of the wosm to the moons trails of its boet.

Shortage of mberifil proverated the ropetitice of may of the experimonts dosoribod in this nootica. nhean the experissontal worty was piammed, it mes necessary to teke into conaideration the aumber of mom infostod snails that would be availeble for nee in auch worto. It was foumd that thes frootor limited the muber of expertments that could be doce if these were to be made in duplicate or tripilloate. Therofory, it was docidod that in ordor to extond the range and type of experiments to be performod, many of them could not be tuplioatod.
a. Disporsal of Chantonestox 24mpas.

The purpose of the experiment desoribed below was to find out if and in what mubers ghaotognstor loaves a dying snail whioh was infosted with both outer and kidnoy forms. The infosted snail was kilied by making and Anolsion through the brain. Abeloos (1942) and Folikalak (1947) state that poireonates have the power to rogunorate the head, but not the head egacila. Anes, damging the brain was the obvious way of keliling the snail In a exadual manert the snails usuaily startod deocuposing six to ton days after danage.

After beine 'rinled' the sundl was placod in a maill dish which mes searohed 000 a day For an onatogestar that had dispersed from the mail. This was continuod until mo more Graatseratar more found. The arperimont was repeated a further three timas and the results are presontad in tuble 9 (p. 62).

A control experinent in the form of four living snalle in Endividual disbes ran conowruntiy with the expertmont desourbed. Ho Inotperster were obeerved to leave these maile. At the end of the expeciment those ware dissected and the mubers of Cheotognstor foum in ce ch then were as fallemsi-

Snail 1. Outer forve 11. Kidney forme					
\cdots		22.			10
-	\cdots	14.			8.
-	- "	16.	-		10.

The mimber of worms leaving the killod anaila coens to be less than would be expeoted if it is asmued that tho experfmental and contrail snails had eimilar populations of Gastegsters This is ospeciaily true of the outer forms. It mast be comoluded that although comsiderable muber are able to leave the hont, vader these experimontal comaltione
zebse 9.

The dispersal of outer and liddnoy Chaetogastor from dying emails.

	Outer forms				Thang forme			
	$\begin{gathered} \text { Snail } \\ 1 \end{gathered}$	$\begin{gathered} \text { Snall } \\ 2 \end{gathered}$	$\frac{\text { Soad1 }}{3}$	$\begin{gathered} \text { Snait } \\ 4 \end{gathered}$	$\begin{gathered} \ln a_{11} \\ 1 \end{gathered}$	$\begin{gathered} \frac{\operatorname{snail1}}{2} \end{gathered}$	$\begin{gathered} \text { Snail } \\ 3 \end{gathered}$	$\begin{gathered} \text { Snall } \\ 4 \end{gathered}$
- 1	0	0	0	0	0	0	0	0
mav 2	0	0	0	0	0	0	0	0
Hen	0	0	3	0	-	0	0	0
Den 4	0	1	0	0	0	0	0	1
may 5		10 cbses	rvatic	man mol				
Day 6	0	1	0	0	0	0	0	0
Pay	0	0	2	0	1	0	0	2
Dey 8	0	1	0	0	2	1	1	0
- 9	0	4	0	0	0	1	0	1
Dev 10	3	0	0	0	0	2	0	0
mov 12	0	0	0	0	0	0	0	0
Day 12	0	0	0	0	3	0	0	0
-n 23	2	0	0	0		0		0
Day 14	0	0	0	0	0	0	0	0
Dis 15	0	0	0	0	0	0	0	0
Total	4	7	4	0	11	4	2	3

many fall to do so.

(1) Imanafer from old to young andis.
seperiments mere carried cut to discover the degree of
finfestation of young mails witioh could be achioved by graotomatior. the merna were introduced to the young gnalls in three mays, (A) by adaing infostod snails to a dich containing mall momineostod suails, (B) by
 INom-infested snailis, hrod in the laboratory, were infested with cutar or Lefoney Phaotorester as required. for use in these experinonts.
 wore sot up. To dich A wore addod 5 Iive adult aunis incoated with outer
 cony outor mpaterasters and to alh 6 all the outer ghatogater obtaimed frev five of the infested anails. these were left for ten dayw and then the young snalls were exmaned. Table 10 (p, 64) thews the dogree of infestation in each of these throe aighes. It is seen that the migheat
 had beon introducod.

This axporimont was rupentod valus kianay Ginetorater and malls infoated with kidnay forms oniy. Binh a cometained 10 young malis
 miliod infestod adult smails and ach C containod 10 youms malle pins all the Fhotorentar obtained on discoothica from 10 inferted adult malle.

64

	Mumber of cator Cheotegantor recovered		
	Dich 1	Bich 3	Dach C
	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \text { dead } \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{gathered}$	doed doed 1 0 1 0 0 doed 0 4 0 1 0 0 0	$\begin{aligned} & 2 \\ & 1 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 0 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \end{aligned}$
Sotal	2	7	27

doed - jouss mall had alod befose complation of tho axposimet.

Frese were loft for ton days and then the youns snalls were dissected. zen reanits are presented in Tablo 11 (p, 66) .

It is difficolt here to estumete in which dish the higher Angree of infestation coomered, since In dich a four or the ifvealut Increstod smails diod bafore the and of the tra day poriod. The dagree of Infostation was as migh bero as in dich G g and this sugcests that the
 a manil that had been killod (cp. dish B).

The results obtalnod from aich 4 are usarfil bevever in that the aituation is comparsble to that in matrose where the old gemerstion is aying and the new gomeration is aluiy bocouing infostod with Gratperatero ming shou that dispersal of kidney forms does oocur from a dying ammesomt poperiation to a joung popriation.
(14) Sranafor Irve infested adult anails to mondinfosted adult amaile.
 outer
f praterenter wore placod in each of tan dichen and lect for 20 daym. it the ond of this period one or other or both of the maile had died in firo c) the dishes. The death of adult maile was a difiloulty cuparioncod in all experimonts in witich thoy wore used. the oxfermal mop-infested anail was teicon from oach of the rrmatining Ifvo dishes and disaceted and the

Sons1.	Outer form seovered.
1	2
2	0
3	1
4	4
5	4
20tal	11

stable 11.

	Mumber of Eldnoy Cheoterantor secovered		
	Pleh 1	Dish 3	DLeh 0
$\begin{array}{cc} \text { seadl } & 1 \\ : " & 2 \\ : & 3 \\ " & 4 \\ : & 5 \\ " & 6 \\ " & 7 \\ " & 8 \\ : & 9 \\ " & 10 \end{array}$	$\begin{aligned} & 2 \\ & 1 \\ & 2 \\ & 0 \\ & 0 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 2 \\ & 0 \end{aligned}$	$\begin{gathered} 2 \\ 1 \\ 1 \\ 2 \\ 3 \\ 2 \\ 1 \\ 2 \\ 0 \\ 0 \\ 0 \\ \text { doed } \end{gathered}$
Total	12	1	11

doad - young anall hed diod beforv completion of the expexfinent.

A11 the five snails assumed to be infested at tho start of the anporiment wore also disseoted to ohook that thoy were in faot impasted ned mex foum to be so.

The results shew that transer aid 0000 m but it is not paenable to say how this took place. It may hav ocoursod daxing oontact ep enpulation between the two analis, or it may have happened ty the mifration of cuactorester from on hont to anothor without the smails ingling been in conteot.

Tho expexinent was ropeated using kidnoy Graternston instoad - the outer form. At the ond of this experimont both mombers of the pairw cemails romatned alive in ouiy four dishes. All the suppesediy infested manis were Aiscocted and were foun to be infestod with icidnoy forme. the oulcinal nominfested snails wexp found to have beocme infostod as theme belem.

Sna11.	Elaney fonme meoverod.
1	0
2	1
3	0
4	3
2otal	4

It is evident that tranafer trock place but again it is smpeasisle to doduce from the remults how tinds was brought about.
c. An fruatimation of trantor in thifinid.

Two frumes moanuring $12^{\prime \prime} \times 12^{n} \times 2^{n}$ wove conntruetpd of permpers and these ware coverad with a nylon mash of 22 atzonds to the inoh.
the age was covered by a single layer of this material and the other by - double layer, these layers having a halrainch apace between them. Ien Inrge nominfested smails wore enclosed in each of these cages and these mexe then placed in the reservoir and left for ten days. It was hoped thet the anails in the two arges would shom different degrees of infeatation Dy ghe Ifmaat. When the oages were recovered it was found that the water Iovel had dropped loaving the aages out of the wator and that all the malls wex doad. the cages were set up a second tive but with the same result. 20 put the cages deoper in the water so that there would be no danger of thedr being exposed was out of the questicn ainoe part of each cage had to ve out of the water to enable the mails to cone to the surface for teroathing (Chootum 1934, Bunter 1953). The thind time the exporimont was attompted the oages were found to have been distrutbed by children and the manis contained in them had oscapod. It was then deofded to do this experimant in the College Pond, whore the water loval ruanins constant and where the oages were safe from an interferonce. Theds was done ance in pocember and again in Joly. The cages were placod in the pond with about thase inches projecting above the surface of the wator so that the anaile could breathe. In the single layered ange contaot was posalble between the malosed anatis and the posi snatile, irut in the dorbio layered cago this was not possiblo. The disadvantage co using the College Pond for thata cuperfment was the fact that the snails hore were mot infested with ldimey chatogastor and the results related to outor Qpaetogaster coniry Aftor ten days the snails in the cages were dissocted and the results obtainod are presented in Table 12 (p. 69).

No tranafer ocourred in oithor of the cages in December, but

The outer Chaotogaster reoovered from analls placed in aagea in College Pond.

	December.		JuFy.	
8.13	Singio 1ayered cage	Derible layered cage	$\begin{aligned} & \text { Mingle } \\ & \text { layered } \\ & \text { cage } \end{aligned}$	$\begin{aligned} & \text { Doubio } \\ & \text { layered } \\ & \text { cage } \end{aligned}$
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$	0 0 0 0 0 0 0 0 dead dasd	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \text { dead } \end{gathered}$		2 2 0 0 0 0 1 dosa doad dead
zotal	0	0	18	5

doad smail dead before ecmplotion of apperfment.
in Juay the anails in both oages had beoces infested. If, in July, transfer in the aingle layered oage cocourred as a result of controt betweon the cmalosed anails and the pond ansilis, then it is reasonable to assume that the amee result ahould have been obtained in Decomber. 3inos this was not the caee it is very $24601 y$ that the snails in July bocamo infosted by gmatematar that wose temporarily froe-living. The lesser infestation in the double layered cage presumahly resillted from the greator cobstado it provided to the Chentersestor in reaching the maile. In ocnoluaion it
 nint in Docember booause Preo-living Gmatoratior were present in the poed In dray and not in Docomber. This is prosumably ane to the feot that at thas time Chaetoxastor wore leaving the ald dying ganoration and becounding tmporasily froe-2iving. phis exporiment also augeosts that in nature young analls bocom infostod to a groator axtent by ghatiogastor: that have acsurod - trapposary froo-living mode of 14 fo and to a lessor oxtont through conteot mith infosted snails, as also suggosted by the experfinemt cin treanefor to yever anails (p. 63).

a. Attreation of youmanalls to doad matis.

On two ocoasions during Flold sempling a aluster of adoilt ymman pervery were found ollinging to a doad madl. It men cooldod to impestigate the possibility that snails for somo reacon wert attraoted to - doying or doad individual. If youms analls proved to be so attreoted them stess would provide an epportumity for the trunafor of smatoratiar frem the ala dying gonoration to the young gonoration of amatle. The following
comervations were carried out in the Colloge Pond at a time when the adult enalle vere dying and the young snails were plentiful. Ton dead adult amale attached to a leagth of thread were placed in the pond. As controle, tran anpty E. parepor sholis and ton pieces of stone aimilar in sise to the coed snatis and the eupty sholis usod, wre also piacod in the pond in the and way. 111 three sets were laft in the pond for ton hours, and at moungy intervals duxing this time the muber of young le persper below cheat 5 mas. in alse foum attached to each was reoonded. All the results wear pooled to give the total muber of young snails that had been observed an sech set of objecte over the ton howr period.

> Hepty shelis Stemes Dead enatis
sotel muber of joung mails.
$44 \quad 147$
18

If the young mails mere not attractod difforvatialiy to any c) those, the vaives obtalnod should not be signiflicantiy difforent from cach other. A X^{2} gocinessmentit test performed on these data showe thent thore is a algoificant difforence in disturbution betweon thoa and s It oan be sald that the young anails are attraoted most by the stones and loast of all by the doad In paseserg Thls test also ahowt, when appliod AnAcridualiy to each pair, that the mails are more attracted to the empty she11s then to tho doad snails and that they are loss attracted to the empty shells then to the atcoses. It appeare thorwore that youms mails are not attreoted to dead snaile and the megesticn made earilior, that tremefor of chatomaster frem the old to the young mall may be facilitiated In this way, is not aupported.

-. Tho speodel city of outor and kidnoy Ohaotoraster.

Vaghin (1946) succested that these two forms of Ghaotorastor 14mand wore in faot oblological' specios of Che 1smaek. He did not put Forvard any experimental evidosce to expport his theory, and thervfors it mas docidod that it was nocessary to invostageto this possibility further by experfimental manm. Brperiments wore porformed to see if kidnoy forme renoved from the host would infent the klanoy of a nom-infostod anall, and seo whether the outor form an remesteblishing itsolf on the snail would combinus to live ondy on the outer surface of the anail.

The nom-infosted smailis unod in these experimonts ranged frow 5 to 15 mas . in sise. Four sozios of experfments wore performed and oach erpertmont ran for ton days. The enly roason for diviaing these experfmente into four sorlos was that each sozies was carylod out at a difforent thm.

3 mains 1. nimpariment A.
awonty-five nom-infested madis mexe placed in each of two class aishes. About 600 outor theatementer mose introisoed into ape dish and sbout 300 didnoy chmatorntiter wexe pat in the other. At the and af the ten day period the smails were deseoted and the spsults are prosonted in Tablos 13 and 14 (pp. 73 \& 74).

The majority of the Cheatogestar retureod to the type of habitat from which they wore orldinally swoved. The keldnay forme that remained on the outor surface all had kidnoy colls cony in thoir get. This augests that the momes had odthor fod in the keldrey of thoir prosent hoet
swate 23.
The outer ghatogester recovered in Rypt. A, Sories 1.

	The Ousotegaster recovered	
Smad1	on the outcer surface	In the bidiney
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25		$\begin{gathered} 3 \\ 0 \\ 26 \\ 24 \\ 3 \\ 0 \\ 27 \\ 13 \\ 21 \\ 3 \\ 0 \\ 4 \\ 0 \\ 1 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$
20tal	566	88

Bead - snail doad beforv ompletion af experimant.

74
sente 14.
the Lidney Chapeqastor rocovered in Enpt. A, Series 1.

ased = suail doad before eomplotion of experimont.
of atill retained food in thoir gut that had boen obtained in the kdiney cf the provious host.
meperimont B_{0}
This experiment was similar to the previous experiment but move four dishes were prepared with five snails only in each. To ane diah, 30 kidnoy Chaotorantor were addod and to another 30 outer Chaetosaster. This moant that if all tho Cheotosastor beoane establishod on the snails each anail on average would harbour aix worms. It was seen from the fleld sesuits that mails of the sise used in these experiments could support a moch larger population of kidney and outer forms than this, and so it was considared that this member of Chaetogastor would not oause overorowding cn the snail. In the third and fourth dishos, the mumber of Chatorastor introducod was designed to calles overorowing of the worms on the snalls, the mumbers being 250 outer forman in one dish and 250 kednoy forms in the other. This mould give an average of 50 wozm por snail if thoy all established themselves on a now host, which was greator then any averago velwo for elthor form obtained from riold results. It was hoped that this expariment would show whether or not outer Chaatopaster would enter the Elidney in overorowdod condetions, and whother bldnoy foras undor suoh comastions would emerge onto the outor aurisec of the mail. The results are shown in fables 15 a \& b and $16 a \& b$ (pp. 76 \& 77).

It soems that meny outor Ghaetorastor in the dish that abould have contalnod excosis outer Gheotorastor had presumably died and disintegratod. The rosults for the kidnay form augest that ovororowaing in the kidnoy carces some of the worma to romain on the outor surface of the amall. wost of these had keldnoy oells in thoir gut.
sente 15 a.
The outor Graptoratey, recovered from irept. B, Sories 1. (cuoess frietore itor introducoa)

	The Gheotegantar recovered	
Snat2	en the cater surface	In the Elanoy
1 2 3 4 5	$\begin{array}{r} 9 \\ 12 \\ 16 \\ \\ \\ \text { de } \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
setal	37	0

sabie 25 \%.
The kidnoy Cheotomenter secoveryd from Eipt. B, serios 1. (excese Mnatacietar introducod)

	Tre Onatomatar mophersa	
smatl	en the curtor murace	$\begin{aligned} & \text { In the } \\ & \text { yefaney } \end{aligned}$
1 2 3 4 5	$\begin{array}{r} 4 \\ 7 \\ 21 \\ 25 \\ 2 \end{array}$	$\begin{array}{r} 4 \\ 24 \\ 24 \\ 14 \\ 8 \\ 3 \end{array}$
Natel	1.9	53

doed = snall doad befors complotion of expoximont.

2nene 16 a.

$$
\text { The outer geaterastar rocovored from Enpt. B, sexios } 1 .
$$ (fow Qhaotorastar introducod)

	The Chaetegaster yeouvered	
Small	on the outer suarrace	$\begin{aligned} & \text { in the } \\ & \text { blaney } \end{aligned}$
1 2 3 4 5	4 4 6 6	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Total	24	0

sable 16 \%.
 (fow Gheoterentere Introducod)

	The orntometer meomenal	
Small		in the redany
1 2 3 4 4	0 0 2 0 0	3 4 7 3 2
trates	2	19

It was possible that in obtraining Chaetopastor for use in theme experfments a fow outer forms mere takon with the kdinoy forms and viee versa. In an offort to eliminate this possibility, from horeon, the S.materastar ueed for sotting up an experimant with the excoption of the shrst in every series, wore usualiy those that hed boen retrieved from their "true" habitat in the provious experiment. 411 the worva foumd in the "wrong' habitat (2.0., kidnoy fosme on the outer suxface and outer forms In the lelanoy) ware discordod. In this way it was hoped to filter out any corter forms contradnating the keidnoy forme, and any kidnoy forms contaninating the outer forme.

Inperfmont C.
Twonty nocminfested smails were pieced in oach of two diahos. Ilfty of the Hidney Geagtograter that had been recovered fron the kidnoy of the snoils in Brept. I were added to one dich and 50 of the outer thatorastrer recovered fros nept. B werv adiad to the other dish. Atter the urual ten days the snalle wore diasected and the sogulte are shown in shales 27 and 18 (pp. 79 \& 80). Dufortumately a high pervontage of the Plomey forms did not sueceod in establiabing thomsolven on the mails. Fowever, no bidnoy forme mere found on the outer surface and no outer forms woro found in the kidney.

Beperiment D.

The 23 outer Ghetoreater secovered from Bupt. O wers added to a aish contalning 5 mom-infosted matis. The two idduey form reoovered
 the results in Tables 19 a and of (p. 62) wore obtainod on disseotice arter the ueval ten day period. Bore again no outor forme were foom in the

The outer chaotrogastar recovered from Rept. C, Series 1.

8 nail	The Chaetogastor recovered	
	Ca the cutter 84 rfaco	is the didney
1 2 3 4 5 6 7 8 9 10 11 12 13 24 15 16 27 18 29 20	0 3 1 1 0 5 1 1 3 2 0 0 2 3 0 1 0 0	
Total	23	0

doad - enail dead before cexplotrica of experimant.

The Hidney Ghasteraster recovered fren Rept. C Series 1.

Small	The Chaotogastor reoeverod	
	on the cater guxaco	$\begin{aligned} & \text { in the } \\ & \text { idioney } \end{aligned}$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 29 20	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 1 0 0 1
Total	0	2

daad $=$ mall doad beforv complotion of experinont.

81

2ana 29 a.

The outer Ghatogester reoovered from Rept. D, Sexios 1.

	The Chaotogastor recovered	
Snall	an the ortar surface	$\begin{aligned} & \text { in the } \\ & \text { Ifinney } \end{aligned}$
1 2 3 4 5	$\begin{aligned} & 5 \\ & 3 \\ & 1 \\ & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Totel	21	0

2anke 19 b.

The kidnoy Chootognter, recovied frem Eppt. D, Soxion 1.

Smal	The chaotegastor recovered	
	Cu the cater sumpace	$\begin{aligned} & \text { In the } \\ & \text { Elatury } \end{aligned}$
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$
Total	0	2

Hiluay and no kidney forms were found on the outer surface.

ineperiment E .

The 11 outer Chastogaster recovered in Rept. D were again addod to a dish containing 5 nominfested snails and the one kidney form recovered was added to 5 nom-infested snails in another diah. Tables 20 a and ib (p. 83) shom that all 11 outer forms were reoovered from the outer eurface of the snails and that the kldnoy Gmatogaster was not recovered.
8504183.

Epeximont A.
This flrst experiment of the second serios invalved the use of fow chactogastor to avoid poasible overorowaing. Two dishes were set upe the Alirst containing 15 nocmimfosted snails and 60 outer Gpatogaster and the second 15 now-infosted smails and 60 Eldmey graetocerters $1 / 2$ the Chaotogaster used wore obtained from infested snalla collooted Irron the rasorvolv. 111 care was taken as uoun to avoid contaminating the zidnoy Chotogestar wh outer form and vice rerea. Tables 21 and 22 (pp. 84 \& 85) show that of the cuter forme recovered not cno was formd in the kidnoy and conly a very small proportion of the kidnoy forms zecovered had remained on the outer surface of the smail. Exporimant B .

The outer forms recovered firm the outer eurrace of the mall in rept. A and the kddnoy forms reooverod from the kaldney were placed in separate dishes each containing 10 nouminfosted amails. 121 outor forms stayed on the surface of the anall and only one of the kidnoy forme that were recovered had not gove into the zidnoy (Tables 23 \& 24 , pp. 86 \& 87).

Table 20 a.

The outer Ghaotogastor recovered from Rupt. F, Series 1.

	The Chaotogaste	ecovered
Snail	on the outer surface	in the klaney
1 2 3 4 5	3 4 2 3	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Total	11	0

Table 20 b.

The kidnoy Chatomator reoovered frem Rrpt. R, Sories 1.

Snail	The Chaetogaster recoverved	
	ca the outer surfeos	In the blaney
1 2	$\begin{aligned} & \text { doad } \\ & \text { doad } \end{aligned}$	
3 4 5	0 0 0	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$
Total	0	0

dead = snail dead beforv completion of experiment.

84

Table 21.

The outer Chaetogaster recovered from Expt. A, Series 2.

[^2]The Lidnay Chaoteraster rocovered from lapt. A, Sexies 2.

Smad1	The Ghaetogastor recovered	
	an the outer surface	In the
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 12 \\ 14 \\ 25 \end{array}$	0 0 0 0 0 0 1 0 0 1 0 0 0 0	2 3 2 0 1 2 2 2 6 0 4 3 5 2
Sotal	2	32

asad = snail doad before completion of experinont.

The outer Chaptarater reoovered from ixpt. B, Sexios 2.

	The Gheotogantor recovered	
Snad1	an the oator surface	$\begin{aligned} & \text { in tho } \\ & \text { indaney } \end{aligned}$
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 90 \end{array}$	3 2 2 4 2 1 5 4	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Total	23	0

gnas	the Gustogaster spoeverad	
	can the cater aurface	in the salaner
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 4 \\ & 1 \\ & 4 \\ & 4 \\ & 4 \\ & 2 \\ & 3 \\ & 4 \\ & 2 \end{aligned}$
Total	1	2.

doed = mall dead befox completion of experimont.

21.03 3

Inaperimont in
Chatogestar were again talcon from fleld material for use In the Ilryt experimont of this sorlos. An excess muber of outer and Idinay forms was used in an attompt to produco ovororowding on the smails. 20 10 nom-infosted snails 250 outer forms were added, and to another ton analle mere addod 250 kidnoy forms. Tables 25 and 26 (pp. 89 \& 90) show that move outor forms were recovored than mere added presumably as a mesult of acosual reproductions Hone of those were fornd in the ridnay. On the cher hand, large proportion of the ridney forms recovered were forma an the cuter murface of the anails. It seoms thereforv that the larger the memer of kidnoy forse that is introdncod, the higher is the proportica c. Hdnoy forze found outaide the kidnay.

The keldnoy forms that wore form on the outer auxface of the mails in theis experimont wove agnin introduced to mominfosted anails. They wore adiod to 5 such smails. Ton wosms were reocvered and af these, 9 wase Found in the leldney as shown in Table 27 (p.90). This reantt magests that it was overoxowiling that proventod those from ontering the relanoy in the first place.
gurices 40
By the thime this cories af axperimonts was performed it had been establishod that the outer and kidnoy forms corld be recogulsed by the
 forms usod were cramaned to make sure that thoy had the "Joloney" mumber af setac. It was fortruate that suoh an maninathon was mot meescary for the outer foxm ainee the poprilation of mails in the College Pent mexe
sablo 25.

The outer Ghaotogastor secoverved from Rept. A, Sories 3.

Snall	The Chaotogastor recovered	
	on the outer surface	$\begin{aligned} & \text { In the } \\ & \text { keidnoy } \end{aligned}$
$\begin{gathered} 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 7 \\ 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	7 23 33 23 24 28 51 40 43 22	0 0 0 0 0 0 0 0 0 0
Total	284	0

sante 26.
The Lidney gianteganter recoverad frow Exppt. A, Series 3.

Small	The Oheotogaster recovered	
	can the outer eurface	$\begin{aligned} & \text { In the } \\ & \text { kilanoy } \end{aligned}$
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$	5 3 9 2 8 1 2 7 4 3	$\begin{array}{r} 12 \\ 4 \\ 7 \\ 78 \\ 5 \\ 4 \\ 5 \\ 6 \\ 5 \\ 6 \end{array}$
Total	43	72

mane 27.
 lept. A) Sertos 3.

	Tre Graptegentar recevered	
Smal1	an the cutcer surface	$\begin{aligned} & \text { In the } \\ & \text { ididnoy } \end{aligned}$
1 2 3 4 5	$\begin{aligned} & 0 \\ & 2 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 4 \\ & 3 \\ & 0 \end{aligned}$
Setal	1	9

9

Imrested with outer forms ceily. the latter were ueod in proference to crine forms obteined firm snails infested with both types. In thils way 1t we certalis that moithor the orter nor the kidney forms used wowe cantmalnated with the other form.

Enparimont $\mathbf{A}_{\text {。 }}$
Five mobinfested maile max placol in oech of tro alshes.
 adana, and to the other colly 25 kidnoy fozme, a muber that could easily Te copompoditod by 5 mails. The recults are presented in Tables 28 and 8. (9. 92). In the digh muppled with excoas Singtognter a lavge muiber of werne was reacooveted for and had promunbly died. In both dishos, an 11 propertica romatred an the outer surreo of the smails, but the muber of sotece per bumdle they possencod and the faot that only idenoy calls wero Soun in thoir gut shomed that they werv typical ildnoy forme. Equerimont B.

Again, wo tichos oach ocutaining 5 mominitostod anails mare und. fince no ovidence of overecomitist of the cuter form was coen in provicus oxperimente, i.0.0 mo cuter foum wow found in the kidney, it

 Haghly probable that the outor gnagtometer uped in that experiment more

xanto 28 a.
The kidney Gractogastor: reeovered frow Expt. A, Series 4. (escesa Ginatogattor introducod)

8 mall	The Chaetogaster reoovered	
	on the cuter suxfrace	in the kidney
1 2 3 4 5	2 2 0 0	$\begin{aligned} & 8 \\ & 1 \\ & 9 \\ & 4 \end{aligned}$
Totas	2	22

table 28 b .
 (for gasatocasters introduced)

Smat1	The Ghootogastor zreovered	
	an the enter murface	In the Eldmay
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 4 \\ & 2 \\ & 0 \\ & 0 \end{aligned}$
20 en	1	6

dead = mall doal beforv ocmpletion of experimonto
comaiticons of axcoss Ghootogastor, and 100 outer forms, a figure ocnsidored Srien the ovidonce of FLeld rosults not to be an axpess, wore addod to the covead dish as a control. Tables 29 a and b (p .94) show the number of mosine rooovered. In noithor of the dishos wore and Chaotogestor foumd in the klanoy. The number of Ghatergater recovered was greator in both cases them the number introduced and this again was presumbly dre to asosual sepraduetion.

In ocnolusion it oan be said that outer Dopetocatore will not enter the Lidney even if overeromalng cocurs on the outer arriface of the anil. The caly escoption was foma in Eropt. At Sories 1 (p. 72 a Table 13 p. 73) and the axplanation that has been suggosted is that the supposedny

 surrace of the sualls whon the auter fock wore eallootod for woe in this experinant.

It appoart that the apece avnilable in the ididney limite the member of ghatogastor that ofther enter or can romain thore. shoee that ofther do not oator the bidnoy at ali, or havime antered leave agein, mpparembly remain on the outer mirface of the mall ot least for some timo. But it is not bown for hew long they cen aurvito outula the ridnoy in this maner. It is poesible that there in comtimove micaretica in and out
 curvival worild be increased due to the froct that thay weura be aile to extain food in the ridney.

94

sume 29 a.
The coter Chatognetor neoovered from Bupt. B, Serles 4. (excess gnapherritor introduced)

Small	The thaetogaster recovered	
	on the outer surface	$\begin{aligned} & \text { In the } \\ & \text { zeianey } \end{aligned}$
2 2 3 4 5	$\begin{array}{r} 268 \\ 106 \\ 125 \\ 202 \\ 62 \end{array}$	0 0 0 0 0
Total	763	0

Ensie 29 b.
The outer Ghatemiter mecovard frim Brpt. D, Sextes 4. (row Imeatoratter introdeced)

8nall	The Chaoterastor \times recovesed	
	on the curter aurfece	$\begin{aligned} & \text { In the } \\ & \text { xilaney } \end{aligned}$
1 2 3 4 5	$\begin{aligned} & 52 \\ & 28 \\ & 49 \\ & 44 \\ & 37 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Total	209	0

The ofreot of soleoted empixorentol oonditions on the outer form.

It has beon shown that under nomal ocnditions the cutor forms well not onter the kioney. The reaction of outor forme to cortaln abocrmal conditions was investigatod in the folloring experimonts.
(1) Laok of Pood.

Irmasoa perreger infested with euter form only were used so that at the end of the experiment it could be aald that any worms found in the Elanoy mere oxifinaliy outor forme. Ten af those infested mails more placed in a dish containing distilled mater and loft for \mathcal{I}_{4} days. The alytillod water was replaced every other day to mako suxe that no food orgendems were available for the Chaotogenter. Arter 24 days the anails wore exmained to see if any Chactegastar had entored the kidnoy. The coperimont wes repeated and the reaulta are preaented in Tablea 30 and 32 (1p. 96×97).

Ose Gaptoreator frem each mall was exmined to see if any food wes present in the gut. No roeoginablo food organdems were found in asy of them.

It is conoluded that cubter Chatrenter do not now into the midnoy whon they are dopired of food.
(14) Drought comaltions.

Ten snails infestod with outer Ghantograter culy wero piacod In a dish containing molst aphagrum moss and left for 24 daye. The mons wes loopt molst throughout this period. The experimont was repeated and the results (Tables 32 \& 33. Pp. 98 \& 99) show that youe of the wosse had been driven into the kidnoy by the dry conditione. It is gredged that the

The segrits of the experimoat dealemed to tost the seaction of coter Chanterastor whon doprifod of food

dead = small doed before complotich of exporimont.

The results of a soccud experiment cosignod to test the reacticn - outer ghatocinter when lopritred of food.

	The Chaotogettar reeovered	
3 mal 11	an the cutcer arreace	$\begin{aligned} & \text { in the } \\ & \text { bianey } \end{aligned}$
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$	$\begin{array}{r} 5 \\ 6 \\ 6 \\ 7 \\ 0 \\ 25 \\ 7 \\ 9 \end{array}$	0 0 0 0 0 0 0 0
Total	35	0

dead m snali doed bofore complotion of experimat

The resulte of an uperimat dogignad to tost the roaction of outer ghapterentar in irought conditicus.

Snat1	The Graples trys neeovered	
	can the auterp curface	In the
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$	$\begin{aligned} & 1 \\ & 5 \\ & 2 \\ & 8 \\ & 7 \end{aligned}$	0 0 0 0 0
Total	23	0

The rearits af a socund experimut costgod to trat the reactica of criber Chatoraster to drourint conditione.

2 aral	The ghetocentar recovered	
	on the cutber aurfaee	$\begin{aligned} & \text { in the } \\ & \text { infanne } \end{aligned}$
$\begin{array}{r} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$	$\begin{aligned} & 0 \\ & 3 \\ & 0 \\ & 2 \\ & 7 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
Total	12	0

caad a mail doad berone completton of oxpeximont.
cumanthoas of the experimont wore fairisy sovore adroc haif the mails in suct diches died through dessicutiono

Provicus experiments have shown that وraptergeters whon
 © the mail. It has been demonstrated further that lelonog foxms will
 cotber forme will coily inhebit the outor surface of the amall. The mothod Wy which the worm tinale the sonill could almply be the reault of a ohence meeting of anall and wosm. on the other haid it was thoucht poeallio that both forne of gemotogetex may cotively mook a mail ou which to asteblish themeolves. It was with thic poandilility in mind that the followdre
 frecm acoks to oatablich iteolf finaliy in the inidnoy.

neperimont 1.

It was necossary for thele and arbsoquent oxposimenta in theis cootica to use containose that wose conted inaide with a Film of algen, baoteria otc. such a surfece provided the Grmetognter with a suitable
 the glase dishes to be used, for about a wook.

 wose solootod at rundem. Fond water was pousod into the diak and a bument

2neper was mode to oram an the algal fila inside the dish for 5 minutes wituin the 14 mits of each of these four randomiy selected drales. Thus When the snail was removed, four of the ofrales ware covered with mucua seareted by the foot of the snail, and four vere not. Imenty cuter ghantesaster were introduced into the dish and it was hoped that if the monns were attracted by the macus, they would acounulate on the apote of smane, or at least show a tendoncy to momain on theso apots longor than thay would an the dirales not covered by mucus. The experiment was left sor 2ir hours, and at intervels during this time the number of worns present as each of the olght ofrales was recoxded. The oxperiment was performed theve thmes and the results are presented in Fables 34,35 and 36 (pp. 102, 103 a 104). It is soen that the muber of Cpactorantor on each apot of macss tended to increase, whlet the muiber on oach of the ratreated spots tended to doorvase. A X^{2} coodnesenor-rit teat was performed cen the totel numbers of Chagtogaster seen on the spots of macus and on the entreated spots throughout the 24 hourw. mil showed that the ramer of wouns foum on the treatod areas was sfonirloantiy greator than that found on the untreated areas in all throe axperimonts (soe pp. 102, 103 a 104). This is presumably ofther due to Chaotognstor romaining on the apots of macus for a meoh longer period than on the control apota, or to the worme remaining throughout on the apot of macus once the mucus had been deteoted. The former explanation is probably nearer the truth ainee it is soen that
 aporeasod, indicating that Gusotorastor did in faot loavo the treatod area. Dy observing the behaviour of the ghateganter in the dish it was conaluded that their movementes were ocmpletely randiom and that thoy ald not doteot

2nsio 34.
(1) The cocurronce of chantorenter an spots troated and apots not treated with snall mucus.

2tme	Treated spots				Uutreated ppots			
	2	2	3	4	5	6	7	8
(3) houns	0	0	1	2	2	2	0	0
2 bour	1	2	1	1	2	2	2	0
3 hemer	2	1	2	2	1	0	0	0
6 heurs	1	1	1	2	2	1	2	0
18 mears	3	2	3	2	1	1	2	0
20 heves	3	1	4	1	2	1	0	0
$22 \text { beure }$	4	2	3	2	2	0	0	1
22 beurs	3	2	2	2	2	2	0	0
Setal	26	7	16	8	8	6	3	2

$X^{2} \quad 6.469 \quad P$ Iess than 0.05

3202035

 not treatod with anall mecos.

$$
X^{2}=5.482 \quad \text { P } 203 s \text { than } 0.05
$$

(111) The cocurronee of Onenterester an apote treated and on spots not trested with small muens.

Texe	Ireated epots.				untsoated spota.			
	1	2	3	4	5	6	7	8
- mears	2	2	1	0	2	1	0	2
3 mouse	8	1	0	4	0	2	0	0
6 sours	9	2	0	5	0	0	0	0
18 bours	22	2	2	4	0	0	0	0
$2{ }^{2}$	8	1	2	4	2	0	0	0
2\% hours	9	1	2	3	1	0	0	0
sotas	48	9	7	20	3	2	0	1

$$
X^{2}=33.8 \quad P 2 \text { ess then } 0.000
$$

the macus until thoy came upon it during the course of this random monement. This experiment therefore shows that outer Chaotogester is stimulated to remain on tho smail muous for a much longer period of time then it would co a substratur where mous was not prosent.

The exporimont was repoated uaing kidnoy Chaetogastor and the sesults are presonted in Tabios 37, 58 and 39 (pp. 106, $107 \& 108$). I5 Is eoen that the behaviour of the kidnay forma is aimilar to that of the outor forma. χ^{2} tests wore carriod out cal the totalls as before and in two cases out of thrieo (sec pp. 106, $107 \&$ 108) the mumbers of Smatorastor observed on the mave throurhout the 24 hourse was alepielioantiy ereator than that of Chpotorastar obeorved on the untroetod arvas. Nithough there is no sigulfioant difference between these values in the third acse (p. 106), it is soen that the trond is for the Ghaetoganter to aegregato - the treated areas rather then on the untroated anes. Xidnoy finatomenter however ald not soom to be able to ormil aloag the alcal film in the experimontal dishes as offlotiontiy as the outor form. Thesefore, the faot that the mous might provide a bottor anohoring surfece them the agal Fily, in this caso, cannot be igrored. This wight also bo twoo to seme cortent for the outer form, and it is a possible explanation as to why both forms are attrected by the mevis, an the other hand the mocus may be eoting as a obomical atimulus to the Chatogaster.

reperfmont 2.

This experiment was performed to investigate the beheviour of Chaetogastor whan placed on a moous trail producod by a Inmean perveres. blehos coatod inside with an algail file woxe again used in this exporiment.
swhe 37.
(1) The ocourrence of keldney Ghaptogastor on apots treatod and on spots not treated with anall macus.

$X^{2}-23.54 \quad P$ 108s thas 0.002
(1i) The ocouronce of keldnoy ghaotoraster on opote troatod and on spots not treatod with snall macus.

$X^{2}=6.000$
P less than 0.05

swh20 39.

(11i) The ocourronce of lidinoy Graetocastior on spots treated and on spote not treatod with small mapus.

2mo	Irwated apets				Unfruated apote			
	1	2	3	4	5	6	7	8
(3) Moures	0	1	0	1	0	0	1	2
2 maxis	0	2	1	2	0	0	2	2
\% howers	0	3	2	2	0	0	2	2
6 mours	0	3	1	2	0	0	2	1
28 movers	0	4	1	2	0	0	2	0
28 muxe	0	4	1	2	0	0	2	0
24 hours	0	4	1	1	0	0	1	0
2otas	0	22	6	7	0	0	11	7

$$
X^{2}=2.402 \quad=\text { eroator than } 0.05
$$

(s) Gator Chagtogastor

A Iympaas perepor was allowed to arevil along the bottom of the atish. The path it had taken was easily discomeble beocuse of mathe Iest by ita radula ea the algal film. Outor Ghaotorantor wose thon placod -a the moous trail about $3^{\prime \prime}$ behdind the moving snail and thoir movements were observed. The experiment mes performed twice and 10 ghmoteraster mere used each tim. The movemants of the worme ase reeoniod in Table 40 a and b ($p .110$). A11 the woxne fallowod the smali's manes trail. Ine plant tise the experiment was performed (rable 40 e) four of the ton worme trarsod in the direotion of the anail and oventuaing osught up with it and eftechod themsolves to 1t. The romining adx indtially moved alonct the meoous trail in the oppeaite alreotion to that taken by the snall, beat one cf thene rovorsed its alrootican and Finally foum the anall. The other f1T0 oveatuajly laft the treil altogother aftor osmaline back and forth sicas it for at loant half in houre. The soccent the the experiment wes pexformed five of the wome noved alous the trail tomarde the anall and EInaily attachod thanselves to it. The remalning five moved in the cyposite direotion and oventually laft the moon trail mithout having found the spail. Shose wosme sleo sumined an the movas tradi for at loast
 for more than one bours.
 wore placed in the alah along a atruight lise dran an the undor mersuce of the dish. No mucus trail was present. 101 the worme moved anow from
 rablo 40 - (p. 210).

2-350 40 The behaviour of outer Mhactagestar on the mocus irail of its bent. (c)

This experiment shows conolusively that outer Chaotorastor vini follow the moons trail of a snail and if the right direotion is talom initially they will owstanil the amil and attach thomsolvos to it.

It is probable that as the trail gots oldor, and the mucus slowiy disappears, the stimalus, whether ahealioal or othoxwiso, weakons and beomes mose difficult to deteot. Thess the intansity of the stimulus, whelich is probably greetent impdiatoly behind the anail, deoreases anadualily in the dirwotion anny from the snail. It follows that if the wosin, whon placed at ary ase point on the trail, wes able to doteot a negher concontration of mucus in ove atreotion and thom nove in that alceotica, it would almays move towarde the small. It would appear however that the woxm is isoupable of dotooting mall afforences in the ococontratica c the movis and that it is a mattor of ahence whother ar mot it will move inetulailly in the direotica of the amall. Bonover, it mas deoddod to imvestigato the posesbility that the wosm had avoh a direotional ebsility
 getimalus is 21 coly to be atroagest.

Twonty outor forms were plecod individualiy on the macous treall of Le perseger about ano inch bohind the anail. Table 42 (p. 212) shows that 11 worms turnod in the direction of the snail and estabilehed thonselves on it. One wont in the opposite dirwoticn emetialis but oventually roversed its dirvotica and found the snail. Acoothor started moving towards the snall but turned beck before reaching the anall. The remaining 7 turmod in the opposito direotion to that takon by the anall and add not find it. The worms that did not find the amail loft the macous trail aster oremine beak and forth alous it for poriode suaging frem

The behavicur of outer Chaotosastor whem piaced ca the rucous trail of its host ons inch behfind the gnail.

crantegastor	Bohaviour.	
2	Hoved temaras smadi.	Forma snall.
2	Hoved tromards gnall.	Forme small.
3	reved in epposito dsrootion.	Turnad becic and foum smail.
4	Hoved in cppoaite direotion.	Buentuaily left trail.
5	roved tomaris mail.	Forma zanil.
6	Heved in opposite direotion.	Invatusily loft trall.
7	Hoved townrds madl.	Tursed beck and ovemerniliy lert traill.
8	reved in opposite airecticn.	Eventually left trail.
9	Hoved tomards anail.	Pound amail.
10	Elowd tomards snail.	Fermd anail.
11	Hoved in opposite dirootion.	Brentualiy 20ft trail.
12	woved in opposite invotion.	Eventualiy loft trall.
23	moved tommete mati.	Found smat1.
14	Hoved tomarts mall.	Foum manil.
25	Hoved towards minil.	Focma amail.
26	Hoved in opposite direotion.	Evantuaily loft trall.
27	Coved in eppent to dixecticon.	Ematually loft truell.
18	moved tommils anall.	Found mat1.
39	Hoved tevards mail.	Found ana11.
20	noved tomarts snatil.	Found anail.

35 to 75 mintes. This experfaent conflrms the ocnaluaion drawn eardier that it is only by chance that the worm moves intitialiy in the drection of the snail.

(14) Kidney Ghootorestor.

The experiment described above was ropeated with some modiflcations using kidney forms. The spoed at which reloney forms oan orman soems to be moin slower than that of the outer forme, and to maloe it casier for them to overharil the smail, thay were placod en the moous tratl maif an inch bohind the snall imstoad of throe inohos and cue inoh as was dome in the case of the outer forme.

Ten kldney Gaotogaster wore placed on the meores trall and cbeorvations wore contimed for 50 mifroter. The results are prosented in Table 42 a (p. 114). Not one of the gratrergeter placed on the trall had meved from the poaltica where they mexe flset placed even after 30 minutes had olepsed. It was dectded against contirming obsorvaticas beyond 30 minutes beoause by that tive the snail had moved a considennito distance (at loest 12 inches), and the chanoes of a kidnoy chastognter ovexhacifing it at that stage wore vory small.

The experimont was rapoated and this time the midooy forme were placod on the mocus truil immodiately bohind the mail. table 42 B (p. 114) shows that again the Ghastegater: remained 1 mobile an the anocus Exuil for 30 minntes with the exopption of ase which loft the trail after 15 minutes.

A ocutrol exporimont was performed luy piacing ton rioney Chatopastar in the dish along a straight lim drum on the under suritace of the dish. Ro moovis trail was prosont on tho botten of tive dish. ino

114

4050 42.
The bohariour of zidnoy ganatogetery on the macous trail up its boet. (a) Wesm placod $\frac{1}{2}{ }^{\circ}$ behind snail.

smatrageter.

Bohaviour.

(b) Werms placod inmaiatoly behind anail.
gnatessater.
Behaviour.
1 Remained in oxifinal position after 30 mimites. 2 Bomalned in oxicinal position after 30 minutes. 3 Ioft trall aftor 15 minates.
4 Bomained in copinal positicm after 30 misurtes. 5 homained in oxfofmal position after 30 minutes. 6 momalned in orfeinal position after 30 mimutes. 7 momained in orisinal position after 30 wimites. 8 somained in oulginal position after 30 winutes. 9 Imained in oricinal poaition after 30 mimates. 10 Homalnod in orietnal poniticn after 30 misutes.
(e) Control.

Cmatorator

Shavicure.
1 Hoved awoy from 1ine aftor 23 misurtes.
2 gematned near line after 30 mifurtes.
3 Moved anny frea 21 me after 10 misutes.
4 Hoved amy frem 210 after 20 mimites.
5 Bomained noar 21 moter 30 minutes. roved amy frow 14 no atter 27 mimertoa.
7 Hoved amay irou 11me after 5 misutes.
8
9 mamainad year 14m after 30 minutos. momained moar Iine after 30 minates.
10 Meved anny frem 21 me aftor 7 minutes.
maver wex obsorved for 30 minutes and during this time six wore soen to mave many from the 240 ; the remainfing fous atill remained in their arigimal position on the 11 me at the and of the 30 minute poxiod (Tahle A2 (0. P. 124).

It aomes thorefore that the mavous truil has seme attrmoticen sere these didnoy forms. This is shown by the fact that thay worid reanin Amevile on such a trail, wore so than thoy would if no trail was prosent.

In comaluaicn, it can be said that the outer form ahowa a Carinite response to a mucous trall lort by Lemerserns and that somo stimules canses the worm to folliow this trail. It is obvious that this provides a mans by which the outer ghaptogeters can aotivoly moarch for the ment. she restuits anggeat that the woxm oan atilli doteot the marre - Iong time after it has beon coponttod by the amail but it is vosy 14 m iy thet for ghatorentax to bo bile to sigh a heat by thit mathod the trual mouna have to be a fairig reoont one.

 peasibie that other stimull are sequared before the kidong form on be induced to search for its host.

Buxing the corwec of the expeximanti descorlbed how, the Enentorastor wore rod on Protomea and agoo and wore ropt et 7 \%. The
algas and Protosoa were obtained from oultures prepared by boiling weter - 211 y leaves in water and leaving them for about a week. After thads time the water was found to contain ofliate Protoson, Botifere and verlove colonial and unicellular algae in large numbers. About 2 or 3 mis. c) this oulture wore added to the dishos containing the Chaotogastor every three or four days.

Experiment A_{0}

six outer Chaetorastiog were placed in each of two dishes ecmedning pood water and fed as described above. After 40 days three gnactogaster were atill alive in each. These wero examined and were foum to have fed on ofliate Protosoa and a fen Botifora.

neperimont B_{0}

Six outer Chaotognster wers placed in pond wator in each of four dishos and six kidney Chatoraster were pat in oach of another Sour Aishos. These mere fed as before and aramined at intervals as show in sable 43 (p. 117). After six days all the kidney forms had died. Ono center form romalned alive after 49 days. This was exandned and wes found to have fed laryely on ofllate Protosoa.

Experiment C_{0}
Dishos oontaining outer and kidnoy Gheatopaster wero not up as in Frept. B. Here however, it was deoided to texminato the experymant before all the Chaotogester had died in oxder that the mimer of soteo per bundle in the surviring individuals could be observed. The sogitits are show in Table 44 (p. 117).

After $\mathcal{I H}_{4}$ days the onily surviving leidnoy form wae ermaned

Table 43.
The survival of froo-Living Ghootomstor. Impt. B.

	Dish	Days					
		0	3	6	$\boldsymbol{\mu}$	29	49
Cutor forms auroiving.	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	6	4 1 1 5	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 5 \\ & \hline \end{aligned}$	0 0 0 6	5	i
Claney forms aurdving.	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	6 6 6	2 1 0 0	0 0 0 0	-	\pm	\pm

Trasie 440
The survival of froo-ilving phaotogastor. lept. C.

	Dlsh	Days			
		0	6	14	3
outer forms surviving	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	6 6 6 6	6 6 6 6	7 3 3 6	9 5 8 9
Bldnoy form surviving	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & \hline \end{aligned}$	6 6 6 6	6 6 6	0 0 1 0	

Sevan to have the muber of setae per bundle that is usual in kidney forms. 2he cuter forms mere expmined aftor 34 days and the muber of setre per Emadle was also normal here. This suggests that the freemiling mode of ITf has no effect on the muber of setae per bundie. Hore important is twe fact that the outer forms surfired for a muah longer period than the Ididney forns. The outer Chaetogastor had fod on oillates and rotifers verlist the beldney Chastogaster had not fod at all. So it soems that the Ifleney forms will not feed on organdeme normally taken by the outer forms. Athcogh this conolusion is based on the oxamination of one worm, it is arpportod by the fact that on investigating the gut content of the kidnoy forms foumd on the outer surface of smails in Rept. A, Series 4 (part e. (this seotion. p. 91), culy kidney cells were formd. This was also the cese In kidnoy Ghatocastor that happened to be found on the outer aurface ct anail during sampling. It was also moted during the periodical eremination of the dishes, using a binocular miloroscope, that whoreas food cousid be soen in the gut of the outer forms, the gut of the kidnoy forms was empty.

Erperiment D_{0}
Throe dishes each containing air outer Ghatornater and another throe dishos having six kidnoy Chaotragstar in each wore sot upe Fhese were than left until all the ghatognters had diod, the worms belne Led as alrasdy dosoolbed. Table 45 (p. 219) shows tho mubor or Ghatomitar eurviving at different stages in 811 six dishes. Again it is moen that the cuter forms awrive for a langer period in the freomiling atate then co the ylanay Chaotoraster.

rable 45.

The sumival of freouliving Chaetogastor. Frot. D.

	Dlah	Days							
		0	3	13	16	22	26	38	49
Outer Porms -uviving	$\begin{aligned} & 1 \\ & 2 \\ & 3 \end{aligned}$	6 6 6	6 7 6	$\begin{array}{r} 6 \\ 10 \\ 3 \end{array}$	6 9 3	4 8 0	4 8 0	1 3 0	0 0 0
Tlanoy forms suxtiving	1 2 3	6 6 6	6 5 5	7 4 5	7 3 4	2 0 3	0 0 0	0 0 0	0 0 0

Fig. 27. A comparison of the Chaetogaster population on snails infested and on snails not infested with Glossiphonia heteroclita.

These axperfmonts have shown that Chaotocestar 1impali can amive for a considereble poriod away from the host anail. In scue ances criannoe of asamal reproduotion was soen when the muber of Chactergetor It a dich inoreased boyond the mulber that was orlginaily introanced. They Ineve also shom that cutar forms oan survive for a longer porica in this manemiving atate than can tho kidney forme. The maximum time for whioh an cuter Ghaotorastor was kept alive was 49 days, whilet that for a kivoy materastar was 22 days. In mept. D, whioh was allowod to contime matil 12 the woxms had died, the average survival period for the outcer form was 22.05 days and that for the kidney form mas 14.37 days. It was also seticod that whilst the outer ghaetogater will foed on organdsme awimaing oce rlanting in the water, the kidnoy foxm will not.

Soctican 10.

(L.)

 As pe 153). Seven sampies taken in 1960, in which leoches wore picutcirin,
 zumber of outer or kidnay gratomitery found on the sualle. she averuge

 infosted mails win plottod for cach of the smoplos, agelmat the avesue in
the leach - Free snails. The data for the outer and the kidney populations are presented separately. Since a straight line dram through these points anest bisects the angle between the x and the y axes in both oases, it Ls obvious that there is no interaction between the leech and the Smactogaster populations.

Section 12.
DIscossion.

It has been ostablishod that Ghatornator Itmaed IIves an the outer aurface of the snail's body and also in the kidney of the snail. Te wonns wore found in the mantie oavity of the snail. Von Baor (2827) and Ianicoster (2869) both found the worm 1iving in the mollusc'a Himey as woll as in the mantle or respiratory oavity, and an the outer aurface of the smail. Between 1869 and 2946, when Vachin problished his paper on the bialogical specio of Pre 14mat, no suferonco at all was mado to the
 A.e Iimnal as an aligoohaote woxm living in tho mantle oevity and on the cutcor surface of Preshwater amails. Epezber (1950) in ber ley to the Tridideo doos not mantion the bidney form at ail. It is eiguiriount that the presont study ald not roveal any Phatogestar IITing in the mantio
 this region of the snoil. The xoporte statiag thet ghe Ifract inturits the mantle covity of in perveer and ether Iroshwater proncontes probabis stom from the fact that en splitting open this covity it le extrumely easy

out through the damaged part into the mantle oavity. This happons within a Few seconds and it almost certainiy explains the presence of any Qn. limnaei in the mantle oovity.
e. The moxpholory and anstong of Chaotoraster 11mnoot.

Chaetogastor species are aistinguished from each other by means of their setas. The shape of the distal prongs of the setse and the muber present in each bundle are the most important coriteria, but their length also varies from ane species to another. the shape of the setwe of the outer and kidnoy fonns of Che limpail is very aimilar. Thoy aiffer however in number and length. The sotac of the outer fosm aro Longer and more numerous than those of the kidney fors. Plaut (2906) whe described two forms of Che limpees difforing in reapeot of Ionsth and sumber of setae was probably desoribing the outor and leldnoy forms.

Apart from the differsonces in the thickness of the gut wall af the two forms, their intemal anatcuy is simdiar. The thicioness of the stamach and intestinal wall is greater in the outer Pors than in the leflney form. Since no detailed histological exmainations were carriod out it is not poasible to say with certainty whother these dirferences aro ane to an increase in the muber or to a aifforence in the meture of the celis socreting digestive enaymes. It is possible that the cutter fors has a more ocmplex digestive syaten to cmable it to deal with a more veried act. Alternatively the outer form may possess moxe ming cocreting eolls " to proteot the gut wall from demage by solld atruetrures such as the chitinous jaws of zotifers and the asilcated Iruatrules of diatomes, which
seen to pass throwgh the gut undigested.
Ienicester (18690,0) stated that the mature form of Che IImnat mad four genital sotae on esch side in segment 6. All mature indifidusis exmafned here had only three on each side. These were of course kidnoy Fenm and it in quite likely that lankeater's deacmption refers to mature cuter forms. Inds may also account for the fact that he foumd double the noual mmber of ordinary setas in the mature form. The mature kidney Porms exmaned ocoesiomaliy had cese extra seta in each bundle. In both the frmature outer and kidney forms the number of setae per segnent is more or Less the sam on all segmonta, but Lankester found that the flrst bundle (sogeont 2) was made up of 12 sotas whilat the romainder had only 8 per prampe. Ose mast assure, in the light of these observations, that Imancester's observations were incorreot. Tho seteo of the mature kidnoy form were not foum to be longer than those of the imatrure form as had veen reported by Lankester (18690). Again ho may have been roforying to the mature outer form. Vejdovaky (1884) on the othor hamd foum no Afferenoes betroen ofther the number or the longth of the sotec of matrure and immature forms. It is not known whether he was roforying to the kidney or the outer foria.

Two sphoricell massen presured to be tostes were coen in megment 5 Lying on the nerwe cord noar septun 4/5. There sooms to be a great deal of comtroveray reganding the position and form of the teates in

 that what he sam wexe apermatheceo. Vojdoviky (1884) and bohorm (1916) both state that the bostes of ghe diephmus are looce massos of apermabogonia

124

2ying on the nervo cord in segment 5. According to Vejdovaky the epermatogonia break loose from the testes and Pix themselves to various engans in the body cavity where they complete their development. Stephensos (2922) found no testes at all in Che oxpontanis. Ho only sam male colls ettached to strands of comeotive tissue in the body carity. Sperber nemever found umistakeable testes in Che Alaphamas and their position agroes with the position of the spherical masses desoribed hore. It soems posible therefore that the structures seen in che Ifrmaot were in faot testes.

What soossod to be a single ovary was seon in sogment 6 . Vejdorsky (1884) and Lankester (1869) found paired ovaries in segment 6 athe 2impaif. Dohorne (2916), Sperber (1948) and Vojdovaky Found dofinite paived ovaries in segmont 6 of Che diaphamp. Stophonson (1922) found ova in segront 6 of Che diaphanin but was not sure whether definite ovasios were formed. Dohorne (1923) sald that the ova in Che Alaphanu aso diffusely formed everywhere in segmant 6. Nowe of the gheniment ovaries oxsmined seoned to be paired and were dortinito in outline. Thes shows a condition between the two extremes montioned above in that the ovary is noither diffuse nor definitoly paired, bat is dofinite and aingle. Cloazdy It is necessary to examine many more individuals before this controvery over the form of the teatos and ovary is finalis settiod.

The desoription of the upernathacas and the male aifforent
 Spexber $(2948,2950)$ statos that the gentital sotee of Che Xirmat have a double hook at their distal ond, but a careftil ermanation has shown that in tho kidnoy form at least theac aro simple hookod (ILs. 1, p. 2).
B. The Iife oxole and asexual reproduction of Chootopaster Iimpal

In comon mith most Raididse the sexual form of Che limnsoi
Ls very rare. Ho mature individuals were found in the outer population and the few that cocurred in the keidney population were foumd mainily amping the winter months. Thus a majority of individuals of both the cuter and kidnoy populations reproduced asomally by budaine all the year 2roma. Fon Baer (1827), Lenkester (18690) and Fagin (1931) all observod matrure forms of Che 21 masal in very small numbers in the autumn. Vaghin (2946) atated howevar that the iddney population was 100% mature in late autumen. The outer forms on the other hand beome mature in late sumer and arly to the extent of $12-15 \%$ of the total population. It is urfortumate that it camnot be doduced with certainty whether Baer, Ianicoster and magin were discussine mature kidney forms or not, and therefore it must be conoludod from Vaghin's results that conditions are most favourable for samal reproduction for the outer forms in late sumper, 1.e., two or three months eariler than the onset of maturity in the kidnoy forms. The results α this present work indicate that the breeding season of the kidmey form was a ISttle later than the one desoribed by Faghin. Thls is almost certainif due to the difforence in temperatures botween the pussim habitats on which Vashin wortced and habitets in llorth fielos. Although it has boen auggested that the Itre eyole of Cha Ifmpal is aymohxontsed with that of its host, it is highly probable that food and tomperature conditions piny a mejor part in controviling it. Judging from the grouth rate of InT men pereger, produotion of food sooned to be at a maximen during late gumar and autume. It is reasonable to asaumo, sinco the anails feed on plant
mberial consisting mostiy of encrusting diatoms, and since cuter Chantogastor Seed largoly on planktonio diatcins, that food conditions for both orgainime are Eindiarly affected by the seascons. Tacing this and Vaghin's ovidonce smin consideration one would have axpected to Pind matrure moxns in the cuber population at about this tipe. Indeod, mature worma may have beon present in the cuter populaticn at this time but were not doteoted because the totel muber of Chatogastar talom in oach sample during this period wae aiways very small. On the other hand, in winter, whon mature kidney forme were found, the mimber of worms taken in each semple was alway faluig high thus inoreasing the possibility of dotecting mature worme. ginee feeding conditions in the kidney are presumably foirly conatant throughout the yoar it is 11jooly that the most important factor contrailing the bseeding seascn of the kidmey forme is temperature, although it could perhaps be influnnoed by the host's roproduotive aycle. This Iatter guggestion has been mentiomed more then onco in this mork but there is no
 nature is perhape evidoneo to the combrew, and oloariy further investifation Is mocessasy to alarify this point.

Asomil propegation was mave active in the outer pepriation
 popolatation but hare the differomice was not 80 masted. This secme to inilicate that conditions in the kidnoy aro more cometant then thoeo on the cetor surface of tho mati. Agnin, the reaccm is probably that the avaliability of food varies less in the ldidnoy than on the outor gurface of the snail. Stuco outer Ghategretar foed largely en plamt matestal, the sood availabio to thom varies with ilght intonaltys tamperaturs and the
mennet of nutrients present in the water. Vaghin (1946) also observed - ervater aotivity in asosual reproduation in summer, but his maxdmua of 22 bude per individual in the outer population in arman soems rather high. In the populations studied here the romber of buds never oxcoeded 5 in the outer or kddnoy populations. Thls was because the chain of brade brolce In two at the first formod budidig sone usually before the 5 boid stage was reachod, somotimes at this number but never later. The Figures below evpresent an individual having four buds, 0 boing the parent morm and the members 1 to 4 represent the buds in ordor of appearance.

$$
\begin{array}{lllll}
0 & 4 & 2 & 1 & 3
\end{array}
$$

 with that givon by Horlant-lloowis (1958) for Che diepharis.

- propersar and yoinfostaticn.

Vaghin (2946) atatod that Che 2tmpaed invaiod anothor host curing the process of host ocpulation. Although it is probably trwe that ghaptogastor may arose from ase snall to anothor at this timo, aveh behaviour does not explain hew the youmg snalis becomo infentode copraiatica coos not usualiy cocur until the anails are about 8 mas. Leans, and alnoe adult snails of the pasent genoration all die within about four wooke of the appearance of young anails in the populatica, oopulation botwoen members of aifferent generations would seen to be inposaible. It is thorefore mocessary to suggest anothor mothod by which a now gomeration of insma perserer is infested. It has boen shom that both kelaroy and outor fosme atoperse on the doath of the hoat and will infoat another mall whos
eartaeted. It has also boen shom that transfor of Casategastor from ono anall to another does cocur when both suails are alive whether the rociplent Enall be young or adult. This euggests three mathods of dispersal, (a) by Ineoming freemiliving for a period after the death of the boat until a now meat is found, (b) by transfer from one anall to another whan two snaila are In contset and (0) by some Chaptopaster leaving a hoalthy host and pinatig another. The relative inportance of these is dirricunt to asces Intin in apport of (a) it has been shom that th. 11 mast is to to foum Sroomilving at the time when the adurit snails are dying. With regand to (a) and (c) experimonts have also shown that both forsas of Ga limesef en murvive froomifing for at least cove meok, bat that the outor form oan seurvive for longer periods then the kidnoy form. It is not surpisianc therefore that the percentage of a yourg mail popuration infented by the seldoy form is uevaily lower than that isfosted by the cutor form. Furthor gresecas for this are that the maber of ouber forms leavine the dyine host fomerration is prosumably sevoral times groates then the minion of dibnos forms loaving, and the fact that dalmey grapterater do not soun to reaet to the macous trails of the host as vigerously as the cutber coxi theroby seducing the probebility of their Sinding a host. It is also poesilio that som kidncy Ghaetorastery fall to loave the kidnoy when the suall atos. The meocus trail of the host mast be a conciderable ald to the outer form in 1 ts searoh for a boat in that the worm deen not have to ce2y ontrirely on a chance moeting. It soums that the kiloney foxm does lave to rely to a greater extent an auch a ofroungtave. Fowever, in stuming the responso of the blanoy form to macus, the worme mex removed from the sedeney by dispoction and it is possibio that this would have been Arfoseme

Ind they loft the kdanoy of thoir own socord. There is also the posalbility that the kidnoy forms reaot to a difforent stimalus in thoir soarch for a mont. Whon one considers that the kidnoy form mast find the external epoming of the ureter, which is situatod just inside the mantle cavity and cbeve the anterior end of the pnoumostame (Maylor 1894-1900), in oxdor to entor the kidnoy, it ceoms 2 ikely that it does so in response to a stimules. This coold possibly be obomioal and derivod from the exorvetica ce the ledmoy, but this problem has not beon atudiod. If correot, it is 24koly that the ledioney form's sonse organs may respond to different atimull srom thowe of the outer foxm. the opening of the ureter is silitwike with no aphinoter and has boon shown to allow the ontry of Chpetoraster evan in
 in all the infestod snails oxmained this oxyen was inteot.

It has been shown that Ghatomater removed from the kldnoy of ano amall almays infest the bildnoy if introduced to another mail. The entor forms also estabilsh themsolves only on the ortor surface of another mall. Al2 efforts to induce the outer forms to enter the kidnoy failod.
 the outer surface of tho small. It will be mocossansy to eateblish the cartont of this migration in aifforemt soasons and undor vanying intonaltios ef infostaticn to Cotoridise its oaveo.
the atatement made by Amonialo (1905) that gmotemitar $205 t$ the hast to bocce froo-2liting whon the wator beommo wasm or foul moode investigating. This may be selated to the floot that gemerontery ioave a doad mail which is doocmposing and ereating foul conditione. The possibility hes been montionod that scme cooccus dopositod

In the didney may pass out into the surrounding water through the ureter. If the embryos ocupleted thoir devolopment in the pond the young worms could serve to infest the next generation. Any $00000 \mathrm{~m}_{\mathrm{s}}$ produced by the cutor population would inovitably develop and hatch on the substratum of the poed in the seme way. However, the number of 000000 n produced by a population of Cheetogaster is so small that their value from the point of VLew of dispersal is negilgible. Cooocn produotion does of oourse provide for now genetical patterns esential for the evolution of the speotes.

a. Hooding in Chaetorastor Himpaei.

The outer form of Gh, limpaed foods an diatons and small planktonic animals. If the host is infestod with corcarise the worm will also onguif these as they amorge from the andil. The kldanoy form foode ccociusivoly on colls dorivad from tho kidnoy and will not eat any of the organfisas normaily taken by the outor form umder any of the conditions investigated.

Soveral authors have suggestod that Ch, 2irmaed plays an smportant part in controlling coroaria mumbers. This work also abows that many coroartiac are dostroyed by Chaetorastor but it is inposeible to eay whethor this has any siendficant aimemitive offeot on the corcouria population because it is not known what proportion of the corcaria population is oaton.

The rate at which food is caught by the outer form whon on the spatl is greater than whon the wosm is froo-living, and loes avescy io expended in doing so. The reason for this is that when ca the amail a

Fig. 29. A comparison of changes in the absolute size of the Chaetogaster population and in the average number of Chaetogaster per snail in the stream.
greater volve of water can be searched for food dro to the ofliary eurronts on the snail and the movements of the suail iteelf. This is one roason Wh Cheotogaster bonoflta frow its assodiation with the anail.

- Popuration Drmader.

Thgares 22, 23 and μ_{4} (pp. 29, 32 32) were ecnstructed using data for the average muber of Mrateaster par mail. Thil coes not give a true Indication of changes in the absolute sise of the Guategater: popolation. In oxier to do this it is mooesemsy to relate the averuge vilue of the doneity of the chatasuster population to that of the rost popriatica. Thes has boon dowe by naing the produot of the averase number or Ghaternter: per snafl and the mubor of malls collooted per minute (soe 126. 16, p. 32). It does not however taks into socount the mubber of Ghactogenter that ano freemilving at and particular time. these calculatod mives for both the outer and kidnoy populations have boon plotted together with the oricimal Gruphs of avexuge vives and prosented in IHge. 28 and 29. It is recu that the eorrected graphs, indicating the changes in the absolute aise of the Qheatogastor pegniation, are very afmiar in thoir goneral appearance to the oxistinal graphe beed ca average viluos per suali, fat those are some ainor differences.
stnce the goneral petterin of changes in sboolute minbege is vely aindiar for the outer popeniation and the ididnoy popalation, they will
 29 In this section will apply to both outer and kidnoy populations.

sise contimuously from the time the woras flrst beoame eatablished an the foung snails in the resorvoir and in the strean until these died. A atoop arop In the numbers of Chatoraster oocurred when the youmg anails appeared. sech an inorease in the average mubers of Chatorastor per anail could be omued by (a) multiplication of Chatomasters (b) snail mortality, seaulting in release of Chaotognstor which could establish themsolves on the remaining snalle, and (0) seloctive mortality of anails harbouring Iess than the average mmber of Cheptorsastoro Undoubtediy, asosmal reprodretion by Chatognstor ounses an inorease in its mubers, and it Is probabie that ghaetopriter Ieaving doad anaile serve to inorease the everage muber of flantogsater per snall on the aurviving indifidnals. It Is milisoly howevor that there is aelootive mortality of onails harbouring only few Chatocantery isornding that Ghatogastor has a harminl offeot on the snail it in moxe libeig that there would be meleotive mortality of hoavily infested snails. 4 docrease in the avorage muber of Chatograter: per snail could be due to (a) moxtality of Gapoterneters ompocially durine dispersel, (b) dilution of the snosil poppiation by large mubers of young mondifested snails, and (c) the celootive mortality of mails having more than the average muber of Ghatrogettry 4 mentioned abow, the poasibility that selootive noptality of hoanily infestod snails oocurs onnot be ignored a though there is 20 evidonce to mugsest that it does so.

Since the graphe incilcation changes in absolute minber of Chestoraster follow those of averase minbor per small rexy alowely it socme speconable to cosaluile that mittipliontion of Paptegetion by acemal reproduction is the maln caneo of increace in average mubers per mail. Inds inorease cometimes mitil the death of the snall gomoration. It is
corlous that the cause of any decrease in the absolute population sise was oither Chactogastor loaving their host and beocuing froo-living or mortality. Suah dealine in population alse coinoided with mortallity of adult snails aftor broeding. Thus, at flust alght, it means that the dealine was due to Chootorgator assuming a froo-living mode of life. But ainoe the sbsolute sise of the Chastorester population on the now genoretion of analls was considorably smallor than that on tho previous genoration, hoevy mortality of Chaotomstor mast have oomursed during diepersal. Although dilution of the host popalation by young smalls ocatributes temards the doaling in average mumbers, the olose correlation betwoen the graphs of average numbers and those indicating ahanges in absolute population sise shows that a drop in avorage mubers of Chatognater per mall is largely due to Chaotometor moxtality.
so far, in thise cootion, culy geproral trands comen to both cuter and liddnoy populations in the strom and in the seservoir have boen alscussed. There are howewr minor atsosppanoles within both the seservoir and the stream populations in the two grephs. The popalaticas of the two meifeats will be discussod seperatoly, but aince these disorepanotes axe cemmon to both kidnoy and outor populations in each habitat, the alsonsalona whll naturaily apply to both bidnoy and outor populatione.

The poake of ming 1960 and languat 1960 in the reservois popalation (M18. 28, p. 231) shom by the graph of average values ase also shown by that indicating absointe popuintion siso, and 80 is the poek of Hay 1961. Woither exaph showe a poak in Angust 296. The lanant and soptembor samplies of 1961 wose ane month appart and it is quite posacibie that a mall peak did cocur in septraber and was not deteotod bepmage of
the lans interval between the sampling dates. This possibility is amphasised when one considers that had the samples of 2960 been taken monthly instead of fortoightiy, the August peak of that year could also have been missed. Although no peak was doteoted, a drop in the percentage of mails infested with Chaotoraster ocourred following the appearance of yovan snails at this time whioh brought the percentage down to a viluo cemparmble to those following other peak vilues.

The two graphs differed in the timing of peake in Auguat 1960 and Hay 1961 and detalled anmyals showed thet these wore due to comarasts in the overlap of the host generations. In 1960 the graph of average numbers indicates a peak at the ond of August whilst that for absolute manibers shows a peak at the ond of July. The disorepanacy is due to the fact that at the ond of August the anail poporlation was extroesiy mail, and although the averuge muber per mail on the surviving mails was hich the absolute sise of the chsatorester, popalation on the analla was mali. In tay 1961 the suail popolation was extromely small at the fine of the peak value in tho graph of averuge mubers (iny 11th), and as a reant the cbaolute sise of the Grgatognstor poprolaticn was molativoly amall although the average mamer per snail was high. Comvorsely, in the neat sample
 young snails in the popriation, may of which were infested, together with a few heovily infeated adults moant that the coxrected raino man hefor pespito this, it is difficult to bellove that the smateraster poperiation could have miltipiled to suoh an extont during this short pexiod of timo. Ore can only assume that by May 12th. the groator part of the grantomiter poprolation was freomiliting following the danth of the mafority of the analls

MISSING

PRINT
of the parent generation. In the previous year most of the parent snails died immediately after the appearance of the young snails and consequently the phenomenon described above was not encountered. The subsequent drop in the absolute size of the Ghaetogaster population between June and August 1961 was due to the final disappearance of heavily infested adult snails and also to the post-hatching high mortality rate amongst the young snails.

The graph indicating changes in the absolute size of the streas population (Fig. 29, p. 131) differs from that for average numbers in showing a steep increase in the Chaetogaster population sise in the autum. The apparent scarcity of the worm as indicated by the graph of average values is because the host snail became exceptionally abundant in the stream at this time. As a result, the Chaetogaster population became diluted and the increase in its size could not be detected by the average number of Chaotogaster per snail.

The accuracy of these corrected graphs which indicate ohanges in the absolute size of the Chaetogaster population depends of course on the accuracy of the estimates of the relative size of the snail populations; these estimates introduce another parameter which leaves room for further error.

Imediately following the appearance of young snails, the percentage of snails infested by either form of Chaetogaster was always low. This value then increased and eventually reached between 90 and 100\%. \therefore : The initial rate of infestation (see \% infestation, Figs. 12, $13 \& 14$. p. 29, 32 \& 32) by the outer form was usually greater than that by the keldney form (e.g., May 1960, September 1960, June 1961 and Soptember 1961 in the
sesorvoix). After this initial period, infestation by both forms inoreased at a coaparable rate, but with the outer population always retaining its inditial advantage. It soems thorefore that the two forms achieve madmum imfestation of the host in silightiy different ways. The outer form establishes itsolf initially can more snails than does the bdidney form, probably, as explained earilior (p. 128), because the former has more erflodent aispersal mochantens. The overiap of the two genorations af anails, and the possibility of maibers of difforent gonorations ocuing into contaot with esoh other also provides an opportumity for the Gheotosaster, the catior form in particular, to trunsfer from ane generation to anothor. After the initial period of infeatation, further infestation of the now gepperation by both forms is probably brought about by contact and copplation botween the anails. Bocause of the nature of the miorohabitat in which the redanoy forms divell, it would be reasonable to asouse that thair mieration from ano host to another is very 1imitod. Tho results show however that after an initial slow poriod, the rate of infostation by ldinney forms compares with that by outer forms. This suggests that kddnoy forms are sble to migrato anto the outor surfece of the smail and reach othors quite sreely.

It is seen that the average mumber of Cheotosastor por anail In the kidnoy in winter (Reservoir 1959-60, 1962~62. Strean 1961m62.e00 Figs. 12, 13 and $44, p, 29,32 \& 32$) is arton greator then that of outar chaetorester. This situmition is reversed in the spring, sumor and artumen. The probable explanation is that at 10 w winter temperatures foeding conditions in the kidong are better than in the arrroumding wator. at the hefrer temperatures of othor seascos this may not be true, but hore
there are other factors to be considered. Whereas the outer population mas pienty of space in which to expand, this resourve aan be and probabiy 1s 14miting in the kidney. As explained ($p, 38$) the average number of ghnatogester in the keldney tonds to reach a coiling, and this is cortainiy partily due to the 1 imitations of apece in the kidney. When this comaltion 19 reachad, many of the wosme probably leave the kidney and it is at this Wime that one would expeot to find this form on the outer eurrece of the mati. These worms would servo to infost other snails because saturation In the Eidnoy afton oocurw at approvimately the tho whan the exatis axe oppriating. This is replooted in the frot that mardman infestation af the mont poperiation by kidnoy forms colnoldes with the breeding seanco af this manil in Harioh - April 1960 and Februaxy 1961 in the rewervoir (Mige 12 and 23, p. $29 \& 32$).

 Armaga paxerer.

The outer form of Ghe lismed bmerfts from its assoditulon with fe pereger in that it obtaing shaltor amd a nove plonturul suppiy of sood with loss exponatitro of enory then it worila is it wore fromiliving. It is shaltered from amsil predabors, wat of course it is mot proteoted from
 the triclad

 proconce of the Chastognters, and so the tern 'ocmmanalim' can be ansuly uppliod to the ascociation. In other mpecies of frombator prinenater it
has been shown that Ghaetogastor oan be a aymbiont or even a parasite (mintor 1960. pers. © cmin.).
anyth (1962) states that coumonsallsm may be considored a type of $200 s e$ assooiation in whioh two andmals of different apeofes live together without netaboile dependenco, although ape or both organdsas mas seceive benofit from the assoolation. Ho stresses the inpostance of the absence of motabolio dopendonce in this type of assootation sinco in his opinican it is this feature which separates commonsals on the ans hand frow parasites and symbicants on the other. Ho furthor states that paracitisa 1s a relative phenomencu, the degree of parasitiven deponding on the dogree to which the parasite is metabolicully dopendont on ite bont. Thus, ho atatos that symbiosis can be rogardod as a apeofal case of paracition in which some metabolic by-procuots of the parasite are of value to the host and presmably vice versa.

Other relaticuships of the conmemsel type are to be scen mongst the Oldsooheota and they all have cortaln obarnoteriatios in common. The mont signiflicant af those is that the worms atill food on froe-living argandens and honce are not entirely dopendent on the hoot at eny atage in their ilfe hintory. For example, Stophonson (1910) found

 in the sponge, cocording to stepheasca, becanco this habitat affors them - ocplous food supply. It is 11502y that thoy cleo gain proteotica frae the aponge. namandale (1906) also foumd a epeoios of ompetoratior Ilving In assoodetion with this spongo, a aloser assootation porhape then that of the throe worms dosoribod by stephonecn since it fod an docaytige aponge
material. IV also found a epecies of Chsotogastor IIving an Plumatole and Poeding on Protosoa.

Paracites anongst the Oligoohaeta are however less common. There are a muber of records of Oligochsota as internal parasites, but Stephonson (1930a) soems to be rather sueplidous of most of thom. Two have boon couvinotingly dosoribed however. Ono is Alfodeno buohtensta ((Mais bounhiensis, Stophonson 2930b) which is parasitic in the Harderian giand of froge of the gonas Phrmamerus and the other is A11odero intel (= Eofmareodolia Iutst, Mchacisen 1926) found in the urotors of the fros Eria remiona, IAttio is known of these worms but it seems that oven thoy can exivive froomilving. Stophosson auggesta that the former is not naturally parrasitio and suspects that it is foumd freenifoing, and the Iattor has in frot beon found froo-iliving. Dorsal setae are prosent in froemiliving An Inten but not in the parasitio form. The gut of the paragitio form is also degenerato. Stephanson atates that the gut of the paracitio An bapchiencis is also degenerato. Thus, hore is a altuation
 that a parasitio and froo-ilving form of both thoce Naid woxm oxiat, moeds investigrating.

Becords of external parasitos are almost entiroly compined to the family Branohiobdal11deo which ocntains conly loech-like parasitos of the gells and external surface of freshwator orayfishes. There seoms to be some controveray as to whether they are trive parmaitos or not. finil (2914) atates that they are not parasitic whan young, the fort at thin time containing regetabla material, but the adult neos its jams to broak the seln of the hoat in oxdor to arak the blood. Foweror, smalimood (2906)
and coodnight (1940) are rather more centious, and the latter bolieved that If scme Branohiobdelildae are parasitic they are only facultative parmsites. now (1959) sugeests that the young forms live on the move forma and flora a the expakeleton of the hont. The adult Branohiobdellid worm ho dosoribes as having an eversible pharymr which can be forced into a wound made by the teeth in oxder to feed on the blood and Iymphatic Fluid of the host.

The metabollo dopendonce of the kldney forin of the Limpaed
 1s more akdn to the parasitio oligochactes than to the commensal types. Fer exmplo, beouse Chestogster trises coily kidney colls it is more appendent on its host than the Branchiobiallideo which consuma a great doal of regotable matorial. Howerer, seotions of infestod kidnay (D. 5a, p. 52) have show that the thacom of thels oxgan axe not damaged by the woxm and apparentiy coily discariod colls ocntaining matabolic wastos are eaten, and not Iivings Innotional cells. However, it cannot bo denisd that the kidney foxm is highiy copmanent os the matabolim of lite host and camot be regaried as a ccumonsaly it is acoording to smints definfition s parasite. The ability of thats form to live apart frow its host to a 2fmited axtemt does not alter this conciuaion alnoe such an ettribote is a councm foature of many undoutoted parradites.

The zidnoy form also obtalus mbiter as a sooult ac its relationship with the suali. It also bonerits by having a ecustant mupiy of food and it in probably protected agninst doasicatica during dry periods whon the smails are driven to sentivate. In thele roapeot it is probebly vetter protected than the outer form.

It is surprising that sinoe the kidnoy form has evolved anch an obligatory melationship with the host, the worm's disporsal mochanisms do not seen to be as efflicient as those of the outer form which is leas copendent on the host. The problem of how the kidnay form finds ite host hes by no means been solved, and until this has beon done, no conoluaions solating to the ofricioney af disporsal mochanimas an be dreme.

The ralaticuships betweon ghe limpal and coo host apecles coiv werv investigated. Consequantiy it is not known whother Gig 1suan Is host apecifle or not. Judeing however frow the woxk of other authors 2t probably is not and will colcudse any multable freshwater gatropod. IF this is so, it would be extremply difricuit in a mixed population of

 this dirploulty was not onocumbered atioe othor molluses besides In permese were caly presont in very small mabers.

6

Veghin (2946) based inds dednotions, that the tre forms of Oh 1fmpol showod siges of alvorgoneo leading to the oreation of two onfological apecies', on the fact that bo found difforronces in the miole and 1ife cyaio ce the two forms. Further ofidence has boon acoumited mere which mupposta hie theory. The two forms airplay (a) merplealogical
 feoding habits, their ability to survive anay frou tho hoot and thair respense to the anocus tratis of the host, and (0) behaviourn defformees

In that they ocoupy differsat sites on the host and always retosn to their sempeotive microhabitats. On this ovidence it in suggested thet the asvergence of these two forms has resched the level of subspediation at 2east, and that the kidney form should thorefore be ocnaldored as a cubrpeofes of cheotorester limmest. It is further sugsested that this
 that the two formas do not interbreed is necessary before they can be treated as soparate speodes. As the two forms are not ocmplotely isolatod Erim each other and can ocme into contect during the mignaticn of the sfanoy form cato the outer marace of the nail, orossbreeding in poasible. Vagrinis ovidence that the breeding soascms of the tro forms do not oofnoldo suggests that interbreeding may not oocur. A solution af this probian necassitates attempting to crosebroed these two forms experimontaily. The obvious arguant against reoogriaing the beldney form an a
 has in some way becuse oomaitionod to living in the kianoy. This fiew can be discardod whon the following factes are conaldarod. An morgholocion gromis, no intermodiato stages Ifncing the two forms have beom foum, and alnce conditicaling would paresumbly be a grodial change thase changes sheuld have boen onccumbered. The kidnoy form, when axposed to conditicens eveny from the host, cannot be induced to bohave ainiliardy to the outor form as would be axpectod if it wore almply a mattor or conditioning. A gotug worm which hatehed from a cocock thet had boen deponited in the kidmey and reared outside the host proved to be a typical keldmay some on
 Noxth Nes were cull infested by the outer form and thic augeate that the

143

itioney form was ontirely absent and therefore is not periodicaily derived frice the outer population. Klanoy forms introduced to these anails always estallishod themselves in the kddney. This same approach can also be used to show that an individual of the outer form has not beon derived from the Ladney population.

Which of the two varietiles of Ch. 2impeof represonts the ancostrel form is open to discussion. Stophenson (1950) believed that the whale of the gemas mas dorlvod from parasitic ancostors. Fils thoory Is bacad on the "absonce of asconilng cillaxy aotion and antiperistalsis In the intestins, the roduotion of the vescular gystom, the absonce of complote disseptmonts and ocnsequentiy of apnrin sacs and ovisacs, the generalif carnivercus hablt, the thimpess of the body wall and consequant tranopareney, and the sometimos cemmansal and oplsootio modo ar life'. It Reo thought that the absonce of dorsal setae indionted paranitic anoestroms. sperber (2948) refoeted his arrinonts and pointed out that nowe of his culteria auggostod parasition. sio also argoed that since Gugtogneter and Amphohoote are 80 covicomiy clocely related and probably have acman meastor and becanse mphiaheath does not display all the oharaoters montionod by Stephonscn, the mode dP 14fe oannot have boen the cause of tho peculiarities of the two genaru. Coupared with the outer form, the ridmey form of che 14 manes showe maricod meduotion in tho mubor of setio and to a Iesser extant in the thicicnoss of the gut will. On the other hama the cuter form ecmpared to Ireomiliving mabbers of the gomas shows alaptation to its mode of Iife in that it has more seter per bemale. then it may be sald, follouling Stophensen's argumonts, that the freemilving epecies have been darived from parasitic forme which porhaps passed through a stage
ecmparable with that of the outer foril of Ghe_1imseat. The initial change Erca parmaitism to commensalism would preaumably have involved an inerease In the maber of setac brought about by seleotion for more efflotent mothods af attachment to the surface mocors P1in of the smail. This is of course assuming that the osiginal parasitio forns were in a ocmparable sitmation to the present kidney form of Ghe Ilmaei where offloiont atteohmont organs ware not necossary. The change from commonsalism to a Ireemiling mode of life would have brought about a docrease in the muber of setac beoause these would have been no longer necessary for anohoming the worm to another andmal. Coxvereely, the froemilving formes have been the ancestors of the goms. The kidney form of ghe 7 impaet would then clearif be the nowest oreation of this line af evolution, having boen ovalved from an intermediate comensal form, similar pertaps to the outer form of this apeofes. It is seon bowever that these two argumonte are based on the assumption that during the ovolution of the worn the mumber of soteo per bundle first of all inoreased and thon dooreased. Cleariy, in the iater stages this would have involvod the reversal of its eariler ovoluticn. As this is contradictory to the generally acooptod thoory of the invevoralbility of ovolution another explanation mast be sought. A poesible theory is that the kidnay and outer forms each diverged indopendontiy grow an ancostral frooulifing form. the ovalution of the keldnoy form would have invoived a reduotion in the number α setso, and the ovolution of the outer Porm an increase in the mumer of sotae. in viow of Sperberis exitiodsm of Stephonson's other axgunents this thoory is proterity the oastor to socopt, particulariy alnce parasitio forms usuily ovoive fres freemitiong forms, and thers on cenervif grovads, the reverse process is a

445

very unlikoly evont. Consideration of these arguments and the evidonce available shows that the most acceptable explanation seems to be that the lidaney and outer forms of Che 1imnali are products of divergent lines of ovolution originating from an ancestral froo-living form.

Soction 12.

sumenary.

The ecology and popolation dynamias of Ghootogastor 14 mpeod ifving in assooiation with Lympeen pereser wore studiod in two habitats. The habitats and sampling mothods usod have boen dosoribed.

It has beon shown that there are two distinot forms of Che 1impsoi, ano living as a facultativo ocmmonsal on the outor surfece of the snail and the other as a parasito in the kidnoy of the snall.

It was establishod that the outer form possesses more sotan per bundle and a thicker gut wall than the kidney form. The kdanoy form never has more than 7 setee per bumale but the outer form usvalis has between 8 and 12 setse por bumdie. samples obtainod from various parts of mitain conflrmed this obsorvation.
superimonts porformed in the laboratory have shown that both the bddnoy and the outor form, when removed from thoir host and introducod to a non-infested anall, always netussed to thoir reapeotive mabitats.

The outor forms food on small planitionic animels and plants, but the kednoy forme have bocome adapted to foeding on colls doxtved frome the lidaney of the snail.

Both forms are attreoted by meocua trails loft by the hoa

146

smail, but the reaction shown by the outer form is much more definite than that shown by the kidnoy form.

Because of these moxphological, behavioural and physiological differences between the two forms it has been suggested that the kidney Porm be considored as a aubspoies of Chaotogaster Ifmasi.

In the reservoir and in the stream where the observations were made, the overwintering anail population was roplacod in the apring by young snails. In the stroan these smails showed an amnal cyole. In the reservoir however, the spring genoration produced a second generation of youne anails in lato sumer and it was this seoond genoration that overwintered. The reason for this difference in the two populations is probably onvixommental.

The population of both outer and kidney forma was soen to be man on the vory young snails. These Ghatocrestor popriations inoreased in mubers as the snails grow. The rate of finorease of the kidmoy pepriation in winter was often greator than that of the outar pepriation but the position was sevorsed in sumeer. It is thought that this was dre to the groater availability of food in the kidnay as compared to the outor surface of the snail in winter. The reverse is probably true in avimer. The rate of infostation of a new generation of anails was froater by the outer forin than by the kidney foxm probably because the outer forme have a bettor survival rato whon froemiling, are more aotive in seeking a now boat and can taice better advantage of comtact betwoen two anails. in the death of ane gonoration of smails and the appearance of a now goneration,
 and finaliy establish themesives on the latter. It is probable that
contact and copulation between two snalls aids the dispersal of both forms. During the process of transfor fron one generation of snails to the noxt a large proportion of the Chaotopaster population died.

Both populations of Ghaptorastor increased in sise mainly by asomal roproduotion. Buds are produced in a chain at the posterior end of the worm and these evontually break amay to form now individuals. Buding was most aotive duving the sumer and autume. The masimum sise of the kidney population seems to be restrioted by the amount of apeoe evailable in the kidney. Space does not limit the sise of the outer population.

The semal form of Che limagat was very rare and was only found in the lidnoy population druing the winter months. Cococas producod by these indriduals wore deposited in the kidney. 121 cocoons foum were incubated but conis five out of 57 hatohed. Ono was oxaminod and proved to be a typical kidnay form. the matrure ididney form was expmined and the structure and positicn of the roproduotive orgens were deseribod berioniy.

The survival of the two foxms away frous the hoet was imvestigatod experimontaliy and it was found that when fod an Protosoa, Rotifera eto., the cuter form outilived the kdanoy form by a conadiorable time.

It is auggested that both forms benorit by the assooiation in that they obtain shaiter from small pradatore and a bottor supply of food. The kidnoy forms are probably also proteoted to a cortain dogree from dossioation when the snail is dxiven to cestivato.

The evolution of Fhe 2ftreat was discussed byichiy.

Acknoundgragata

I am extromoly incobtod to my supervisor, Dr T. B. Beynoldeca, for his advice and oritioism during the course of this study and in the proparation of this roport.

I am gratoful to Professor F. W. R. Brwabell and to the soademic and technical staff of the Department of 20070ay at Bangor for overy holp and encoursegement seooivod.

 pereger and to Dr Olleronshan for his adrice on the rearing and maintenance of smails in the laboratory.

This wort was cary-ied out during the tomure of an Award rocoivod from the Dopartmont of soiontiflic and Induatrial mosearoh.

BIBLIOGRAPHY.

- indicates that the oxiginal papers were not consulted.
- ABBL00s, M. (194,2) Sur la regeneration do Ia toto des mallusques gastoropodes. C. R. Aoad. Sci. Paris, 214, 883.

ANLREN. IV. (1959) Textbook of Comparative Fistology. Cafori univeralty Press.

AndANDALS, N. (2905) Notes on an Indian worm of the geme Chatogester: J. P. As. So0. Bonga, 1 (4), 117.

AINTANDALR, N. (2906) Notes on the Ireshwater fama of India, No. 5. Some animals foumd associated with Sponsilia eartert in Calcutta. J. P. As. Soc. Bengal, 2 (5), 187.

BuIR, K. Von (1827) Boitrage zur Korminis dor niedern Thiere 111. Nova. Aota. phys mood. Acad. Joop. Caro2. Mat. Cur. Born, 23, 605.

BATIES, N. I. J. (1959) Statiatical methods in Molog. The Bigliah Oniveraltios Press Itde, Iondon.

MAYRR, F. A. H. (1955) Notos on a carmivorcus oligochsote commonsal an certain freshater snails in South Arricn. Proo. sool. Soo. Lond., 125, 407.

BOYCOIT, A. F. (1936) The habits of freshwater Rallusca in meitain. J. Andm. Beol., 5, 116.

BOYCOIT, A. E., ORMFAY, C. and WMIERSTON, A. R. (2932) Rotes on the lake Invenas af South West Ireland. Proc. malac. Soo. Lond., 20, 205.

CHusidi: E. P. (2934) Limologicel invostigations on reapiraticen ammal rifgritory cyole and other related phomenoma in freahwator poimonate matis. trens. Amer. milarono. Soo., 53, 348.

Ginin, I. (1940) Contributions frem the Mological Iaboratory of the satence
 Limitic Cilgochaote of China.
 Turyburger maturw. 2., 2, 37.

COMFORT, A. (1957) tre duretion of life in mollusos. Proc. miac. Seo. lona., 32, 249.

DARI, A. G. (1959) Krafticein Byenahiobielia - on paraeitisic oligoohaet 1 don avenska fauman. Fauma ooh Flora, 54, 60.
\times Dertornit, A. (2923) Obsexvaticons sur Chaetogastor diaphamis a maturita sempi10. C. R. Sco. Biol. Paris, 88, 886.
 7001. Fip. Gen., 56, 25.

DE WIT, H. F. (1955) The 11fe cyale and some othor blological dotails af the freshwater snail, Physafominalis (1). Basteria, 19, 35.

Duxchif, C. J. (1959) The 1ife ofole and ecolosy of the frashater anail Exysa fontinalir (L). J. Anim. Bool., 28, 97.

coomilffr, C. J. (1940) The Branchiobdellidao of Iforth Amerioan Grayflahes. Dilinois biol. Yoagor., 17 (3).
 An oviluation of techriques used in estimating snail populations. BuIL. Orge mond. Sante, and BuII. Whd. Klth. Org., 19, 66.

HAIL. M. C. (1914) Description of a new gemus and specios of the

HBRTAFI - Hesists, H. (1958) Ia reproduction asamoe chen les ammildea. Anmeo, biol.: 34 (3). 233.
 shorves of Loch Imond. Proo. Eley. Soc. Zation 653, 84.

ELATIER? W. R. (1960) Persenal conmantoation.
HONTER, F. R. (1961) IAre cyoles of foum freshmater anaila in IImited popriations in Iooh ramen, with a discussion of infrappecirle variation. Pyoo. sook. Soo. Lenci., 137 (1), 235.

INIGSIIER, B. R. (2869a) A combiribution to the mowlodge of the Lower Annolids. Trans. Idnn. S00., 26, 632.
 forms in the comilparous ollegoheotous womes. lma. lage nat. Het., 4 (4), 102.

Intimstir, B. R. (18690) The samal form of Chastoraster jimaet. quart. J. mior. Sat., 9, 272.

MICHAKLSKR, W. (1926) Sohmarosondo O21epochaten nobst Mrorterwneon uber verwandtechartiliabe Besiolmagen der Arohioligoohaton. Matt. sool. Hus. Hamburg, 42, 91.
 activity of the helminth by infivenoing the condition of the host. C. R. Aoad. Sol. J. R. S. S., 78, 613.

MOFTX, M. M. Bl. and SIXTH, J. D. (2960) Mhioorine control of sexual roproduction in ogeina remarsm parasitio in Rapa termoryarta. Rature, Icua., 186, 559.
urazex, A. (1927) The foeding habits of ghaternator 14mpaed. socrn. 20010g. Praha, 1, 22.

OILERERSHAN, C. B. (1960) Possonal commanicatica.
PAI, C - T. (1958) The genoral histology and topographio miocronation
 119 (3), 235.
 2. The maretory Hochanise in certain \#ellusoa. J. exp. Biol., 1_{4}, 20.
 de qualques especes do cotto famille. Bot. surisse. roal., $\boldsymbol{1}_{4}, 185$.
resmoidson, T. B. and rousce, J. O. The Food of four apedies of 2 abo drolling triclade. J. Andin. Bool. (in press).
 Chatorasters V. Beox, 2827. An. Jao. Jam. - Pruio, 9. 51.
 11, 100.

SirMF, J. D. (1962) Introduotion to Andmal Parmeitology. The Faglioh univeraities Prese Lita., Lenden.

SPRRRER, C. (194B) A taxcencmiceil study of the Maldidno. 2002. Midr. Oppeala, 28, 1.

SPERBER, C. (1950) A gutde for the dotorndnation of maropean Maldidae. zoo1. Budr. Dppeala; 29, 45.
sMANDENS, O. D. (1949) The oulture of the anail veotors planoxth boisayi and Bulimus truogtus. Am. trop. Med. Parasit., 43. 23.

STANDTHN, O. D. (1951) Some observations upon the maintenance of Anstrelorbis ilabratur in the laboratory. Am, trop. liad. Paraait., 45, 80.

SIMEPHinsiof, J. (1910) On some anvatio oligoohaete worms ocmensal in Spongilia partert. Pro. Ind. Bus. Caloutta, 5, 233.

SIKPRITISSON, J. (1915) On the somal phase in certain af the Raididac. Trans. Roy. Soc. Bain., 50, 789.

SITEPHENSON, J. (1922) Contributions to the morphology, olassiflioation and zoogeography of Indian Oligochaeta, 4. On the difruse produotion of sexal cells in a species of Chactogestor. Proc. scol. Soc. Lend., 1:2, 109.

SmEPHBTSOR, J. (19303) The 011gochaota. Cuford Univereity Preas.
STMPHENSOR. J. (29300) An oligooheote worm paranitio in froge of the genme Phrynomerus. Amn. Mag. nat. Filst., 6 (10), 367.

TATLOR, J. F. (1894-2900) Monograph of the land and froshwater Hollusoa of the British Islos, Vol. 1. (Struotwal and Genoral). Taylor Rros., Leods.

VACrilli, F. I. (1946) On the Bologioal Spocies of Chaotogestor 1imagh K. Baer. C. R. Rasi. Sot. U. R. S. 8., 51, 481.

VRIDOVSKI, F. (1884) System und Morphologie dor 011gochaoten. Prag-
WheIIr, F. L. (1931) Ghatoraster 14mani K. Baer als Cervarionvertiliger. 2001. Ans., 95 (1:2), 55.
 martabile (Cort) (LAseorohildeo, Irematoda). LIms. deer. micr. S00., 60, 309.

Wharion, C. I. and Jowis, W. N. (2926) Further observations on the 1190 matory of Ifrmaen trumentula. Paraoitology, 28, 144.

WILICOX, 1. A. (1901) Cheategnter IAmad - a parasito or commensal on Physa batorog tropha, faer. Mat., 35, 905.

WOLF, TV. (1928) Jber die Dodonraum dor Moldan im Goblato von Prag in Jahroseykius OLiepohmotia. Int. Iev. Indroblai., 20, 377.

APPRIDIX A.

Notes on a population of Gloasiphonia hetoroclita infesting Iypenea pereger.

Introduction.
Hillst examinding samples of Iymnaoa pererer taken from the reservoir it mas noticed that many of the snails hartoured the leech Glossiphonis hateroolita ($L_{\text {. }}$) in their mantle cavity; no looches were found In snails from the strean at Cood Mawr. The number of leeches found on cach snail was recoriod for a period of two yeare betwean January 1960 and February 1962. The leeohes found wore preserved in 70% aloohol, and at the ond of the sempling period the weight of leoches taken from each sample was measured. The leeohes were dried on filter paper prior to weighing.

Littie is known of the life history of Glossiphonia hetoronits.
It is reported (Ham 1962) that the Glossiphionidas doposit their eggs in thin walled cocoons and the leeoh places its body over this, assuming a protective role. Eventuaily the eumpyos break free of the cocoon and attach thomsolves by means of an embryomio attaohment organ to the ventral surface of the parent. It is thought vilikoly that ang matrients are transfered from parent to young during this period. Howevor, the parent probably provides shelter, and the movements of the paront muply water for respizatory puxposes. Later, the embryos broak froe from their eg8 nembranes and attach themeolves to the parent by moens of their posterior suaker. In Glossiphonia cerplansta the embryo usualiy reasins in the 00000 for 5 to 6 days (Kam 1957), beocmes attaohod by the embryomio attachmoat orgen for 4 to 5 days and alings to the parent by moans of its posterior

Averoge
(facil size
Percentoge of
swoils infested
Average weight
of leeches
(mgms)
Average number of
leeches per snail

Average number of
leeches per snail
(results pooled)
sucioer for a further 14 days or so. This lesoh lives for two years and breeds in both yeare.
pesults.
Figures 30 and 31 were dram using the data obtained from the samples taken during 1960 and 1961. Figure 30 A shows the peroentage of snails in each sample that were infested with Gle hateronita. During the summer months of June, July, August and Septomber of 1960 and 1961 the snail population was not infested. Infestation began in Ootober and maximu infestation was reached in midrinter. The percentage infestation then declined gradually, reaching sero in May. It is seen In Fig. 30 B that the average sise of the leoahes (indicated by average weight) increased steadily throughout the winter. The mean mumber of leeches per anail (ME. 30 C) increased from zero during the flrst half of the winter and then decreased steadily to reach mero again in Hay. As would be expeoted, Figs. 30 A and 30 C follom a vary similar pattern.

All the data obtained from leech-infested samples were pooled together and the average number of loeches foum on each anail sise group of 1 min. was caloulated (Fig. 31). It is moen that there is a dofinite tendonoy for the average namber of leeches per anall to inoreese with snail sise.

Conolusions.
The resulte 0 1960 and 1961 ase so aimilar that thoy will not be alscrused separately. The graphs produced from these results all show trends in a particular disection, but osoiliations within these tronds are mather vialent. This is aleargy due to the loeoh semples being too
small and to elindinate this, larger samples would have to be taken. Novertholess, userul comoluations can be drann from the graphs.

1. Glosstphonia pateronita inhabits the mantle oavity of Ismanea pereger between October and May oniy. They are not found on the snail during the sunner months. The population on the smalls was graduaily built up between Ootober and Jeupury, then begimaing in Pobruary, the loeches gradunily left thelr hoet and prosunably become froo-living.
2. The avernge woight of the leeches inoreased throughout the wintor to resah a peak between March and May. Fihon reminfestation cosuryed in the following Ootober, the leeches wore, on average, small and presumably moatiy poung indiflamis. It Pollows that breeding had ocourred during the sumper months.
3. The leoch was found ouly to infest snails Iarger than 3 mes. In sise. The reascon for this is that the prounontone and mantio oarity of the larger snails probebly ciffer loss resistance to the ontry of the leech and mere apace to acocmnodate it. Since the leech feods on the molluse (Man 1955), a Large host cffors a better food sumply. The leoohes finaily disappear from the snall population at the time when the old anails are being replaced by young anails. Thus the disappearance of the large old mails may be a factor comtributing towards the final disappearance of the loeches from the anall population.

It is signifioant that the avorage woight of tho looch axops betroen May and October. As stated above, young loeckes are almost cortainify introducod into the population at this time. The meusual way in which the Glossiphionidee incubete their youns probebly acocunts for the adult loeohes adopting a froomilving habit curing thoix broeding season in
eariy sumer. Inis is probably the most important and perhaps the only factor cansing the leeoh to leave the host snail and become freomiving doring the sumper moaths.

The results have dealt with one aspect of the behariour of the Che hotereolita population. They do not show what proportion of the 2eoch population lives on the mollaso in winter and they do not provide ang alreot evidonce showing what happens to this population in the summer. modeed, until more is known about the timing of breoding and the growth rate of the young, it is not pesaible to acocumt for the absence of leeahes frow the smails between June and Soptember. But it is interesting to note that the breoatng of ghe haterpoilth and its host aro synohrowised so that the period of soarelty of Inreensimed anails colmoldes with the devolopmontal period af leech ege and embryo. The length of time the young leech spenda freemining after parental care bas cesesed is not know. To answor these promiens it world cbolously be macessary to sample the freomiting part of the 2oech population as well as the paraeltic part.

Reformons.

Hing K. H. (2955) The ecology of Mritish freshwater loechos. J. Anin. Eool., 24, 98.
 gemplangta (L_{0}). J. Andin. Fook., 26, 99.

Mhir, K. I. (2962) Imeahes (mirudinea), thair atruoture, phasiology, ocologr and ombryalogy. Owford : Porguman.

APPRNDIX B.

The resupts of samplink in tabular form.

Sample	Date	No. of snails per sample	Mean Sna11 sise	Moan No. Outer forms per snall	Hean No. Kidney forma per snail	Moan Mo. Leeahes per snall
Rosorvoir population (fortaightij samples).						
1	21:1860	96	6.79			0.8
2	25:1:60	110	7.12			0.5
3	8:2:60	124	6.33			0.04
4	22:2:60	107	7.66	2.6	5.2	0.4
5	7:3:60	102	10.10	4.29	8.07	0.7
6	21:3860	99	9.90	8.07	8.16	0.1
7	4:4:60	179	13.93	12.76	9.42	0.3
8	1984860	110	12.71	20.93	11.56	0.02
9	5:5:60	84	12.57	42.64	15.27	0.1
10	30:5860	254	2.13	4.64	0.51	-
11	23:6:60	205	2.90	1.16	0.11	
12	27:6:60	98	4.06	0.53	0.09	
13	11:7860	58	7.04	1.93	0.24	
14	25:7:60	109	7.00	8.80	1.13	
4ia	13:8:60	7	8.58	5.57	0.1	
1,6	131:8:60	2	11.35	28.00	5.5	
15	30:9860	53	5.45	0.24	0.09	
16	10:10:60	51	7.00	0.38	0.04	-
17	24:10:60	49	8.09	0.58	0.07	0.1
18	14:11:60	61	10.02	2.98	2.96	0.3
29	5:12:60	58	10.92	4.47	1.60	0.5
20	23:1:61	58	11.70	8.24	6,24	0.6
Pesosucir popouration (monthiy samples).						
1	13:2:61	22	21.87	11.4	8.68	0.2
2	2782:61	20	12.65	12.85	12.55	0.8
3	23:3:62	18	12.00	15.72	7.61	0.4
4	12,5161	12	21.60	43.5	8.25	
5	5:6:61	60	3.35	6.71	1.33	
6	25:8:61	25	7.03	1.76	2.28	
7	28:9:62	62	4.05	0.97	0.40	
8	9:11:61	28	6.45	0.21	0.25	0.1
	15:12:61	58	8.72	0.74	2.05	0.4
10	6:2:62	25	9.08	0.72	1.80	0.5

contimed from previous page.

Sample	Date	$\begin{aligned} & \text { No. of } \\ & \text { snails } \\ & \text { per } \\ & \text { sample } \end{aligned}$	Maan Snail size	Hean Ho. Outer forms per snail	Hoan No. Kidney forms per snall
Strest ponulation					
2	6:2:61	21	23.39	8.85	0.9
2	22:2:61	19	14.79	8.1	1.84
3	7:3:61	22	24.51	9.71	6.9
4	20:3:61	13	24.68	10.15	6.23
5	11:5:61	33	12.90	61.00	17.6
6	12:6861	45	2.75	0.04	0.09
7	13:7:61	73	3.58	0.03	0.03
8	28:8:61	45	4.54	0.8	0.18
9	19:9:61	50	6.42	0.6	0.28
10	2:11:61	43	7.68	1.09	2.19
21	16:1:62	74	8.27	1.0	5.al

- Average namber of the sum of the outor and kidnoy forms per snail.

[^0]: - 10.00 mens. per 11tro.
 = 13.80 mente. per 11tre.

[^1]: OUTER
 CHAETOGASTER
 $\left[\begin{array}{l}32 \text { worms } \\ \text { examined }\end{array}\right]$

[^2]: dead = snail dead before completion of experiment.

