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Abstract 

'Biological invasions' are currently recognised as one of the most prevalent drivers of global change. The 

proliferation of species in areas beyond their natural geographic range can have significant implications for 

the invaded community, endangering native biodiversity and ecosystem function, as well as jeopardising 

the provision of several ecosystem services. Critically, non-native ecosystem engineers such as oysters are 

far more likely to have profound impacts upon their new environment than those which do not exhibit 

habitat modification abilities. Using the recent spread of the Chilean oyster (Ostrea chilensis Philippi 1845) 

within the Menai Strait and Conwy Bay Special Area of Conservation (SAC) (North Wales, UK), this thesis 

demonstrates what can happen to a seemingly innocuous non-native species under the currently 

uncoordinated UK legislation framework. Despite minimal dispersal away from the invasion foci during the 

first 30 years following its introduction, this chapter shows that O. chilensis has expanded its distribution 

by at least 30 km of shoreline during the last 20 years. Mean densities within several oyster beds are high 

(>20 m
-2

), with a maximum density of 232 oysters m
-2

 observed over 1 km to the north-east of the invasion 

foci. Whilst restricted to a relatively narrow breeding season during the summer months (June-

September), the Chilean oyster population consistently recruits a high number of offspring each year 

(maximum mean monthly spat settlement = 2,570 m
-2

 y
-1

), particularly following periods of high food 

concentrations (up to 14.2 μg L
-1

) during early gametogenesis. Preliminary data suggests that O. chilensis 

may be exempt from heavy predation pressure within the SAC due to the absence of natural predators, 

thus increasing its persistence and eventual dominance along the low shores of the Menai Strait. The 

observed strong stock-recruitment relationship and highly reduced natural dispersal capacity (generally 

<100 m) of this species is in stark contrast to its relatively substantial range expansion, suggesting that 

other, potentially anthropogenically-mediated transport vectors are in operation. The commercial 

collection of oyster-fouled periwinkles (Littorina littorea L. 1758) is identified as one example of a 

currently unregulated anthropogenic activity which may facilitate its dispersal. Up to 10.5% of all 

periwinkles at several localities within the Menai Strait were fouled by oysters, with all but the largest 

oysters accidentally collected during the collection process. The process of 'winkle farming', whereby 

under-sized or overly-fouled periwinkles are returned to the Menai Strait by the central wholesaler 

(although, critically, not necessarily back to the site from which they were initially collected) to help 

maintain healthy stocks, may facilitate the local spread of O. chilensis. Additionally, the survival of several 

oyster epibionts throughout a laboratory simulation of the harvesting process highlights the potential of 

transfer to continental Europe, where live periwinkles are brought as grazers which help to reduce algal 

fouling on commercial Pacific oyster (Crassostrea gigas Thunberg 1793) trestles. The negative associations 

observed between the presence of oyster epibionts and proxies of general periwinkle marketability 

(namely dry flesh weight and orientation ability) could be utilised as a tool to dissuade collectors from 

harvesting oyster-fouled periwinkles. Finally, evidence is presented which suggests that further warming 

of the Earth's atmosphere is likely to further extend its breeding season. However, whilst unlikely to halt 

the poleward migration of non-native species indefinitely, future cold snaps (also predicted to increase in 
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both their frequency and intensity with climate change in north-western Europe) are hypothesised to act 

as a critical ‘reset’ mechanism which may impede the rate of biological invasions. Laboratory experiments, 

mimicking present conditions and future projections of acute periods of extreme freezing air 

temperatures, were conducted to estimate how the proliferation of the intertidal O. chilensis population 

may become compromised due to cold winter temperature aberrations. Non-native oysters did not 

perform as well as their native co-inhabitants under simulated future cold snap conditions. 16% and 63% 

of all oysters had died within 4 weeks following a 2h exposure period to -6°C and 10°C respectively, 

increasing to 63% and 100% mortality when cold snap frequency was effectively doubled. Small oysters 

(likely to be experiencing their first winter) cooled and thawed as much as three and nine times quicker 

than their larger counterparts respectively. Small oysters were also subjected to significantly greater 

periods of extracellular ice formation. However, no significant difference was observed between oyster 

survival rates across size classes within each temperature treatment. A case of 'strength in numbers' is 

presented, whereby small oysters, in the presence of several other conspecifics, are buffered against the 

effects of freezing air temperatures compared with those exposed to freezing temperatures in isolation. 

This has critical implications for the future invasion dynamics of this non-native oyster population within a 

designated SAC. In light of the findings presented within this thesis, future management options regarding 

this non-native oyster population are proposed, aimed at stimulating discussion among all those with 

environmental and economical interests within the SAC. 
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Crynodeb 

Cydnabyddir fod 'goresgyniadau biolegol' yn chwarae rôl flaenllaw mewn newid byd-eang. Gall cynyddiad 

rhywogaethau mewn ardaloedd y tu hwnt i'w ffiniau daearyddol naturiol gyflwyno goblygiadau 

arwyddocaol i'r gymuned sy'n cael ei bygwth. Peryglir bioamrywiaeth swyddogaeth ecosystem cynhenid, 

yn ogystal â darpariaeth mewn nifer o wasanaethau ecosystem. Mae ffyniant peirianyddion ecosystem 

anfrodorol megis wystrys yn llawer mwy tebygol o gael sgîl-effeithiau negyddol ar y gymuned dan 

fygythiad o'u cymharu â'r rhywogaethau hynny sydd ddim yn meddu ar rinweddau o'r fath, Gan 

ddefnyddio ffyniant diweddar y wystrysen Tsileaidd (Ostrea chilensis Philippi 1845) yn Ardal Cadwraeth 

Arbennig (ACA) y Fenai a Bae Conwy (Gogledd Cymru, DU), dengys y traethawd ymchwil hwn beth sy'n 

gallu digwydd i rywogaeth anfrodorol digon diniwed yr olwg o dan fframwaith deddfwriaethol dryslyd 

presennol y DU. Er nad iddi ledaenu ymhell oddi wrth ffocws yr ymlediad yn ystod y 30 mlynedd gyntaf yn 

dilyn ei chyflwyniad i'r ardal, dangosir yr astudiaeth bresennol fod O. chilensis wedi cynyddu ei amrediad 

yn ystod yr 20 mlynedd ddiwethaf, gan bontio o leiaf 30 km o arfordir. Mae'r dwysedd cymedrol oddi 

mewn i nifer o wlâu wystrys yn uchel (> 20 m
-2

), gydag uchafswm dwysedd o 232 wystrys m
-2

 wedi'i 

ardystio tua 1 km i'r gogledd-ddwyrain o ffocws yr ymlediad. Er bod y tymor atgenhedlu wedi'i gyfyngu i 

dymor yr haf yn bennaf (Mehefin-Medi), mae poblogaeth y wystrysen Tsileaidd yn parhau i recriwtio nifer 

fawr o epil bob blwyddyn (uchafswm cymedrol anheddiad misol = 2,570 m
-2 

y
-1

), yn enwedig yn dilyn 

cyfnodau ble mae crynodiad bwyd yn uchel (hyd at 14.2 μg L
-1

) yn ystod cyfnodau cynnar gametogenesis. 

Mae data rhagarweiniol yn awgrymu yn eithriedig o gyfnodau o bwysau ysglyfaethol trwm oddi mewn i'r 

ACA o ganlyniad i absenoldeb ei hysglyfaethwyr naturiol, gan gynyddu ei dyfalwch a'i goruchafiaeth ar hyd 

rhannau isel o arfordir rhynglanw'r Fenai. Mae'r berthynas gref rhwng 'stoc' a 'recriwtiaid' ac 

analluogrwydd y rhywogaeth yma i ledaenu dros bellteroedd arwyddocaol trwy ddull naturiol yn unig 

(<100 m) yn gwrthgyferbynnu'n llwyr gyda'r lledaeniad cymharol eang a nodwyd, ac felly'n awgrymu fod 

fectorau cludiant dynol hefyd ar waith. Adnabyddir y broses fasnachol o gasglu gwichiaid (Littorina littorea 

L. 1758) wedi'i llychwino gan wystrys Tsileaidd fel un enhgraifft o weithgaredd anreoledig, ddynol ei natur 

sydd o bosibl yn gyfrifol am y lledaeniad yma yn nosraniad O. chilensis. Nodwyd fod hyd at 10.5% o bob 

gwichiaid mewn nifer o ardaloedd o fewn yr ACA wedi'i llychwino gan wystrys, gyda phob un namyn y rhai 

hynny sy'n cario'r wystrys mwyaf eu maint yn cael eu casglu yn ystod y broses o gynaeafu. Adnabyddir 

hefyd fod 'ffermio gwichiaid', sef y broses o ddychwelyd gwichiaid sydd un ai'n rhy fach neu wedi'u 

llychwino’n ormodol yn ôl i'r Fenai (ond nid o'r rheidrwydd i'r man lle casglwyd hwy yn wreiddiol) er mwyn 

hybu'r boblogaeth, yn debygol o ychwanegu tuag at y lledaeniad yma. Yn ychwanegol i hyn, defnyddir 

efelychiadau o'r broses gynaeafu yn y labordy i ddangos fel y gallai'r wystrys oresgyn a chael eu cludo i 

gyfandir Ewrop, lle mae rhai gwichiad yn cael eu gwerthu'n fyw i ffermwyr pysgod cregyn sy'n defnyddio'r 

malwod fel porwyr i leihau llychwiniad algâu ar gregyn a chyfarpar ffermio wystrysen y Môr Tawel 

(Crassostrea gigas Thunberg 1793). Hyderir y gellir defnyddio'r perthnasau negyddol hynny rhwng 

presenoldeb llychwinol y wystrys Tsileaidd a^ iechyd cyffredinol y gwichiaid (trwy fesur biomas sych y 

cnawd a gallu cyfeiriadedd) i anghymell y casglwyr i beidio â chasglu gwichiaid wedi'i llychwino â'r wystrys, 
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Yn olaf, cyflwynir tystiolaeth sy'n awgrymu y bydd cynyddiad yn nhymheredd y môr yn sgîl cynhesu byd-

eang yn ehangu’r tymor atgenhedlu yn y rhywogaeth hon. Er nad yn debygol o roi terfyn ar ymfudiad tua'r 

pegynau yn gyfan gwbl, dangosir, ar y llaw arall, fel y gallai cynyddiad yn amlder ac arddwysedd cyfnodau 

llym o rewi caled (a ragdybir ar gyfer gogledd-orllewin Ewrop yn y dyfodol agos) weithredu fel sustem 

'ailosod' gritigol i arafu'r gyfradd lledaeniad mewn rhywogaethau anfrodorol. Defnyddwyr efelychiadau o 

gyfnodau llym o rewi caled arfaethedig a'r rhai hynny a ragdybir ar gyfer y dyfodol agos yn y labordy i 

ddangos sgîl-effeithiau posibl y fath gyfnodau ar gyfradd lledaeniad O. chilensis yn y Fenai o'i gymharu â 

rhywogaethau brodorol eraill. Ni ffynnodd wystrys anfrodorol cystal â'u cyfoedion brodorol o dan 

gyfnodau llym o rewi caled. Bu farw 16% a 63% o'r wystrys Tsileaidd o fewn 4 wythnos o'u cyflwyno i 

gyfnod o 2 awr yn unig ar dymereddau aer o -6 a -10°C yn ôl eu trefn. Trwy ddyblu'r cyfnod rhewi (2 awr, 

unwaith bob dydd am gyfnod o ddeuddydd), bu cynnydd arwyddocaol yn eu marwolaeth ar yr un 

tymereddau (-6°C = 63%, -10°C = 100%). Roedd cyfradd rhewi a meirioli wystrys bychan (h.y. y rhai hynny a 

oedd yn agored i dymereddau gaeafol am y tro cyntaf) gymaint â thair a naw gwaith yn fwy na'r hynny a 

recordiwyd mewn wystrys mwy yn ôl eu trefn. Dangoswyd hefyd fod wystrys bychan yn dioddef cyfnodau 

hirach lle'r oedd rhew allgellog yn ffurfio. Serch hynny, ni welwyd gwahaniaeth arwyddocaol yng 

ngoresgyniant O. chilensis ar draws yr holl feintiau o fewn pob triniaeth tymheredd. Cynigir tystiolaeth sy'n 

awgrymu mai 'mewn undod y mae nerth', lle mae wystrys bychan, ym mhresenoldeb nifer o wystrys eraill, 

yn cael eu clustogi rhag effeithiau'r rhewi caled o'u cymharu â phan breswyliant ar eu pen eu hunain. Mae 

gan y canlyniad yma arwyddocâd arbennig i ddeinameg ymlediad y wystrysen yma yn yr ACA yn y dyfodol 

agos. Yn sgîl yr holl ganlyniadau a gyflwynir oddi mewn i'r traethawd hwn, trafodir nifer o opsiynau 

rheolaeth addas ar gyfer y boblogaeth o wystrys Tsileaidd anfrodorol, gyda'r bwriad o ennyn trafodaethau 

brwd rhwng yr holl hapddalwyr sydd â diddordeb yn lles ac iechyd yr ACA yma. 

 



5 
 

List of Figures 

 

Figure 1.1 Suggested framework for defining operationally important terms in 

invasion studies (redrawn from Colautti and MacIsaac 2004). Potential invaders begin 

as propagules residing in a donor region (stage 0), and pass through a series of filters 

that may preclude transition to subsequent stages. A non-native species may be 

localised and numerically rare (stage III), widespread but rare (stage IVa), localised 

but dominant (stage IVb) or widespread and dominant (stage V). Adjectives are 

intended only to aid in conceptualising each stage, but should not be used to refer to 

the stage of interest. Three classes of determinants affect the probability that a 

potential invader will pass through each filter: (A) propagule pressure; (B) 

physicochemical requirements of the potential invader; (C) community interactions. 

Determinants may positively (+) or negatively (–) affect the number of propagules 

that successfully pass through each filter (Colautti and MacIsaac 2004)........................ 

 

Figure 1.2 A conceptual summary of processes occurring in and around dense 

systems of filter feeding bivalves such as mussels and oysters (redrawn from Dame 

1993)................................................................................................................................ 

 

Figure 1.3 Changes in abundance (A), biomass (B) and species richness (S) within an 

infaunal benthic community along an organic enrichment gradient (redrawn from 

Pearson and Rosenberg, 1978). PO = peak in abundance of opportunistic species........ 

 

Figure 1.4 Temporal or spatial changes in soft-sediment community located along a 

temporal or spatial gradient in organic enrichment (redrawn from Pearson and 

Rosenberg 1978).............................................................................................................. 

 

Figure I Digital image (taken parallel to the seabed) showing the relative positions of 

numerous 'needles' of a profile gauge, held tightly to both the oyster reef (bottom of 

image) and the camera by a modified copy stand (from Stäbler 2011)........................... 

 

Figure II Schematic representation of the calculations of three indices of complexity, 

namely 'chain and tape' = ∑(c) / ∑(t), 'vector dispersion' = var(α) and 'height 

difference' = ∑(b2) (from Stäbler 2011)............................................................................ 

 

 

 

 

 

 

 

 

 

 

 

 

 

24 

 

 

 

35 

 

 

 

37 

 

 

 

38 

 

 

 

44 

 

 

 

44 



6 
 

Figure III Relationship between and the 'chain and tape' index of oyster reef 

complexity total oyster shell density, observed at Plas Trefarthen (North Wales, UK) 

(from Stäbler 2011).......................................................................................................... 

 

Figure IV Boxplot of total biomass (g) of all organisms found within 1 m2 plots at Plas 

Trefarthen (North Wales, UK). Density category: 1 = no oysters, 2 = low oyster density 

(<10 m-2), 3 = medium oyster density (~50 m-2), 4 = high oyster density (>100 m-2) 

(from Vearey-Roberts 2011)............................................................................................ 

 

Figure V Relationships between both total number of individuals (left) and species 

richness (right) with oyster shell density at Plas Trefarthen (North Wales, UK) (from 

Stäbler 2011).................................................................................................................... 

 

Figure 2.1 Map showing the location of the Menai Strait and Conwy Bay Special Area 

of Conservation (SAC) (North Wales, UK; see inset map), as well as the site of original 

introduction of the Chilean oyster (Ostrea chilensis) at Tal y Foel. Two other SACs 

(bordering the Menai Strait and Conwy Bay SAC) and all Sites of Special Scientific 

Interest (SSSIs) (occurring either partially or wholly within the Menai Strait and 

Conwy Bay SAC) are also displayed, showing areas where provision under the 

Habitats Directive 1992 is therefore extended to mean high water. Data used to 

generate SAC and SSSI boundaries is subject to Crown Copyright (reserved). 

Countryside Council for Wales, Licence No. 100018813.................................................. 

 

Figure 2.2 Map showing intertidal sampling sites in the Menai Strait (North Wales, 

UK; see inset map), along with respective mean Chilean oyster (Ostrea chilensis) 

densities (number of oysters m-2, pooled from 0.5 m and 1.0 m above chart datum for 

each site). Rare / localised densities refer to areas where no oysters were recorded 

within the transects, but at least one individual found during a 30-minute timed 

search of the lower intertidal. Site names = 1: Abermenai Point, 2: Traeth Melynog, 3: 

Stud Farm, 4: Cae Aur, 5: Mermaid, 6: Tal y Foel (MAFF), 7: Plas Trefarthen, 8: 

Llanidan, 9: Mussels, 10: Castell Gwylan, 11: Moel y Don, 12: Plas Newydd, 13: Pwll 

Fanogl, 14: Church Island, 15: Glyn Garth, 16: Gallows Point, 17: Beaumaris, 18: Fort 

Belan, 19: Tŷ Calch, 20: Waterloo Port, 21: Plas Menai, 22: Y Felinheli, 23: Y Faenol, 

24: Porth Penrhyn............................................................................................................ 

 

 

 

45 

 

 

 

 

45 

 

 

 

46 

 

 

 

 

 

 

 

 

 

51 

 

 

 

 

 

 

 

 

 

 

 

56 



7 
 

Figure 2.3 Map showing subtidal sampling areas (3-8 m below chart datum), adjacent 

to each intertidal sampling sites in the Menai Strait (North Wales, UK; see inset map), 

along with respective mean Chilean oyster (Ostrea chilensis) densities m-2. L = areas 

where no oysters were found in any digital image quadrats, but at least one 

individual was collected by trawling a mussel dredge along the respective transect 

line. ND = no data. Pie charts indicate mean relative proportions of various substrata 

at each site. See Figure 2.2 for site names....................................................................... 

 

Figure 2.4 Change in Chilean oyster (Ostrea chilensis) densities (log-transformed) 

with distance (in metres) away from the invasion foci (Tal y Foel = 0 m) within the 

Menai Strait and Conwy Bay Special Area of Conservation (North Wales, UK) as of 

1992. Positive and negative values of x indicate movements to the north-west and 

south-east respectively. Patterned bar below graph shows the change in 

predominant substrate type with distance away from the invasion foci. Dark grey = 

hard substrate, Light grey = soft sediment overlaid with patches of boulders, pebbles 

and other debris, Open = sand / mud. Raw data obtained from Richardson et al. 

(1993b)............................................................................................................................. 

 

Figure 2.5 Change in Chilean oyster (Ostrea chilensis) densities (log-transformed) 

with distance (in metres) away from the invasion foci (Tal y Foel = 0 m) within the 

Menai Strait and Conwy Bay Special Area of Conservation (North Wales, UK) as of 

2009. Positive and negative values of x indicate movements to the north-west and 

south-east respectively. Patterned bar below graph shows the change in 

predominant substrate type with distance away from the invasion foci. Dark grey = 

hard substrate, Light grey = soft sediment overlaid with patches of boulders, pebbles 

and other debris, Open = sand / mud.............................................................................. 

 

Figure 2.6 Exceptionally high densities of the Chilean oyster (O. chilensis) observed at 

Plas Trefarthen, part of the Menai Strait and Conwy Bay Special Area of Conservation 

(North Wales, UK)............................................................................................................ 

 

Figure 2.7 Relative size-frequency distribution of the Chilean oyster (Ostrea chilensis), 

collected intertidally (dark grey) and subtidally (light grey) at Plas Trefarthen, Menai 

Strait (North Wales, UK) during October-November, 2009. Arrows denote mean size-  

 

 

 

 

 

 

 

57 

 

 

 

 

 

 

 

 

 

58 

 

 

 

 

 

 

 

 

59 

 

 

 

60 

 

 

 

 



8 
 

at-age, obtained from analysis of acetate peel replicas of the hinge region of the 

shell. Star denotes mean shell length of oysters born during the 2009 spawning 

season.............................................................................................................................. 

 

Figure VI A small Chilean oyster (Ostrea chilensis), collected live by Mr Paul Brazier at 

~10 m below chart datum at Plas Newydd (North Wales, UK) on the 19th July 2009 

(image by Mr Paul Brazier)............................................................................................... 

 

Figure VII Numerous Chilean oyster spat (Ostrea chilensis), newly settled on a piece 

of serrated wrack (Fucus serratus) and collected by Mr Paul Brazier at Llanidan (North 

Wales, UK) at approximately mean low water during the summer of 2010 (image by 

Mr Paul Brazier)............................................................................................................... 

 

Figure 3.1 Map showing the Menai Strait and Conwy Bay Special Area of 

Conservation (blue), and the locations of the ten sites (1-10) where Chilean oyster 

(Ostrea chilensis) larval settlement was monitored. Site names: 1. Abermenai Point, 

2. Traeth Melynog, 3. Stud Farm, 4. Cae Aur, 5. Mermaid, 6. Tal y Foel (site of original 

introduction), 7. Plas Trefarthen, 8. Llanidan, 9. Castell Gwylan, 10. Moel y Don. The 

data used to generate the SAC boundary are subject to Crown Copyright (reserved). 

Countryside Council for Wales, Licence NO. 100018813................................................. 

 

Figure 3.2 Photomicrographs (10x magnification) of histological sections of the 

reproductive tissue of Chilean oysters (Ostrea chilensis), showing (a) a male oyster 

showing early signs of gametogenesis (GSI stage 1, early development), (b) a large, 

ripe simultaneous hermaphrodite oyster (GSI stage 3, fully ripe), and (c) a near-spent 

individual showing empty follicles and the resorption of the remaining residual 

gametes (GSI stage I, resorption of residual). dg = digestive gland................................. 

 

Figure 3.3 Inter-annual variability of seawater temperature (°C) (red line) and 

chlorophyll-a concentration (μg L-1) (green line) (a-c), adult Chilean oyster (Ostrea 

chilensis) condition index ('small' or 40-50 mm shell length = grey line, 'large' or 60-

70mm shell length = black line) (d-f), the proportion of brooding female oysters (%) 

within the population (>60mm shell length) (shaded area) and the mean monthly 

spat settlement (number of settlers m-2) (solid line) (g-i) within the Menai Strait and 

Conwy Bay SAC (North Wales, UK). All error bars indicate ±1SE..................................... 

 

 

62 

 

 

 

77 

 

 

 

 

77 

 

 

 

 

 

 

 

83 

 

 

 

 

 

 

87 

 

 

 

 

 

 

 

90 



9 
 

Figure 3.4 Transverse section of a near-ripe Chilean oyster (Ostrea chilensis) follicle, 

functioning as a simultaneous hermaphrodite and showing the various stages of 

gametogenesis. Codes: MI = spermatogonia, MII = 1° spermatocytes, MII = 2° 

spermatocytes, MIV = spermatids, MV = spermatozoa, FI = oogonia, FII = ovocytes. 

Note lack of ripe female gametes (i.e. FIII, see Figure 3.77bii). These ova would be 

extremely large (up to 250 μm diameter) and would occupy the majority of the 

follicle............................................................................................................................... 

 

Figure 3.5 Relative percentages of Chilean oysters functioning as true males (♂), 

simultaneous hermaphrodites (♂♀) and true females (♀) within the Menai Strait and 

Conwy Bay SAC population. Bars: dark grey = small (40-50mm shell length), light grey 

= large (60-70mm shell length) oysters............................................................................ 

 

Figure 3.6 Seasonal change in mean (±SE) gonadosomatic index (GSI) of two distinct 

size classes of Chilean oyster (Ostrea chilensis) collected from the Menai Strait and 

Conwy Bay SAC population. Symbols: light grey squares = 'small' oysters (40-50mm 

shell length), dark grey diamonds = 'large' oysters (60-70mm shell length). See Table 

3.1 for GSI details............................................................................................................. 

 

Figure 3.7 Photomicrographs (10x magnification) of histological sections of the 

reproductive tissue of Chilean oysters (Ostrea chilensis), showing (a) a male oyster 

releasing gametes through a cross-section of a tubule (GSI stage 2, spawning; June 

2010), and (b) a large, hermaphrodite oyster showing degenerating gametes within 

the follicles at 10x (bi) and 40x (bii) magnification. ov = ovum, sp = spermatozoa. 

Note presence of numerous amoebocytes within the degenerating follicle................... 

 

Figure 3.8 Inter-annual variability between mean (±SE) site contributions to the total 

annual settlement observed within the Menai Strait and Conwy Bay SAC during each 

respective year of study. For site codes, see Figure 3.1. Bars: black = 2009, light grey = 

2010, dark grey = 2011..................................................................................................... 

 

Figure 3.9 Relationship between mean (±SE) site contributions to total annual 

settlement observed and mean adult oyster density at each respective site within the 

Menai Strait and Conwy Bay SAC..................................................................................... 

 

 

 

 

 

 

 

92 

 

 

 

 

94 

 

 

 

 

 

95 

 

 

 

 

 

 

96 

 

 

 

 

100 

 

 

 

101 



10 
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Glossary 

Term Synonyms Definition 

Biological invasions n/a 

Comprises of the anthropogenically-mediated 

movement of a non-native species across a 

biogeographic barrier and into an area beyond its 

native geographic range, as well as its 

subsequent proliferation, ecological interactions 

and impacts within its novel environment. 

Biotic resistance n/a 

The resistance of native species to either the 

establishment of or invasion by non-native 

species. 

Establishment or 

Established 

Naturalisation or 

Naturalised 

Non-native population which are capable of 

producing viable offspring that are, in turn, 

recruited either into the originally-introduced 

population or into a new geographic location to 

form inter-connecting or self-sustaining 

populations. 

Establishment-Invasion 

continuum 

Naturalisation-Invasion 

continuum 

A conceptualisation of the progression of non-

native propagules from forming an established 

population to becoming invasive (see Figure 1.1). 

Introduction Transfer 

The act of transferring, either deliberately or 

accidentally via human-mediated activities, a 

non-native species into an area beyond its native 

geographic range, although not always leading to 

the establishment of an invasive species. 

Invasibility n/a 

A measure of the resistance of habitats to 

biological invasions. Habitats with a high degree 

of invasibility are more likely to be impacted by 

the introductions of non-native species. 

Invasion foci 
Site of original 

introduction 

The area to which non-native propagules were 

initially introduced prior to the commencement 

of range expansion. 

Invasiveness n/a 

A measure of the overall capacity of a non-native 

species to become invasive, usually based upon 

specific life-history characteristics and 

reproductive dynamics. 
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Invasive species n/a 

A non-native species which has managed to 

establish a self-sustaining population within its 

novel environment, producing several 

generations of viable propagules which have 

subsequently spread over significant distances 

away from the site of original introduction in 

large numbers. It may become dominant in 

places and often capable of exerting economic 

and ecological changes within its new 

environment. 

Native Indigenous 

Any species which has evolved within a given 

geographical area over geological time scales or 

has arrived there more recently solely by natural 

dispersal mechanisms as opposed to 

anthropogenically-mediated transfers (see range 

expansion). 

Non-native species 
Alien 

Non-indigenous species 

Any species that, via anthropogenically-mediated 

activities, has overcome a biogeographic barrier 

and thus been transferred into an area beyond its 

natural geographic range. 

Novel environment New geographic region 

An area beyond the native geographic range of a 

particular species (i.e. where all propagules from 

their native range are unable to colonise due to a 

biogeographic barrier or a lack of adequate 

natural dispersal capacity). 

Propagule pressure n/a 

A composite measure of the number of 

propagules of a non-native species entering a 

new geographic region. It is widely-regarded as 

one of the only consistent predictors of invasion 

success across numerous taxa and geographic 

locations. Propagule pressure may be calculated 

by multiplying the number of introduction events 

with the number of non-native propagules within 

each event. As either one of these factors 

increases, propagule pressure also increases (see 

propagule rain or secondary spread below for 

comparison). 
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Propagule rain n/a 

Refers to the probability of non-native 

propagules extending their distribution further 

away from the invasion foci following an 

introduction event, rather than propagule 

pressure originating from their native region per 

se. 

Range expansion 

Range extension 

(also see 'secondary 

spread' - right) 

A concept relevant to both native and non-native 

species concerning their spread into new regions 

either by natural or anthropogenically-mediated 

dispersal, although not across biogeographic 

boundaries. A 'secondary spread' is a form of 

range expansion whereby propagules spread 

away from an invasion foci. 

Transient 
Casual 

Innocuous 

A non-native species which, despite its own 

ability to survive within its novel geographic 

region, is not yet capable of producing viable 

offspring. 

Transport vector n/a 

A broad term to define the causation, mode, 

speed and duration of the transfer of non-native 

propagules across a biogeographic barrier and 

into their novel environment. 
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Chapter 1 

General Introduction 

1.1 Biological invasions: what, where, when and why? 
For a species to occupy a wide geographical range, it must rely upon some degree of dispersal. 

Some species disperse by active movements such as walking, swimming or flying, whilst others 

rely on exogenous transport mechanisms such as oceanic currents or wind dispersal. Some 

disperse over several hundreds of kilometres, whilst others stay relatively close to their parents. 

Despite this plethora of dispersal strategies, no species has a fully cosmopolitan distribution. In 

fact, most taxa are confined to relatively small geographical areas, whilst relatively few are 

geographically widespread (Darwin 1859; MacArthur 1972; Gaston 1996). This relationship also 

holds true within evolutionary clades across the majority of taxa and ecosystems investigated 

(Calosi et al. 2009). Theoretical propositions as to how geographic ranges are limited far 

outweigh empirical-based evidence, although an intricate combination of several biological, 

physical and evolutionary mechanisms are likely to be operational towards the frontiers of any 

organism’s distribution (Brown et al. 1996; Lester et al. 2007; Gaston 2009). Some species may 

be confined to a particular region due to an impermeable physical barrier, ranging from 

waterfalls and localised areas of unsuitable habitat or terrain to entire mountain ranges and 

oceanic basins (Cox and Moore 1980). Others may be constrained by their lack of physiological 

tolerance and acclimation abilities to environmental stressors experienced towards the 

perimeters of their respective geographic distributions, including temperature, light availability, 

salinity and hypoxic conditions (Somero 2011). Temperature plays a critical role in the 

functioning of physiological mechanisms and is of particular relevance to ectothermic organisms, 

who must endure wide fluctuations in body temperature over both short- and long-term time 

scales. Dispersal in itself may also be a major determinant of geographic range extent in a 

rapidly-changing climate, when the rate of change may exceed that of the species’ dispersal 

capacity (Burrows et al. 2011). Occasionally, however, anthropogenically-mediated activities 

allow species to breach these otherwise impassable barriers and thrive in areas beyond their 

natural geographic ranges. ‘Biological invasions’ encompass all aspects of such transfers, as well 

as the subsequent proliferation of these species (hereafter termed ‘non-native species’) beyond 

their native ranges, including their survival, dispersal, ecological interactions with other co-

inhabitants and impacts upon their novel ecosystems. 

Humans may directly or indirectly facilitate the transfer of non-native species across 

biogeographic barriers and into new regions beyond their natural dispersal capacity. Direct 
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transfers concern instances where the invasion barrier has been overcome due to the implicit 

actions of man and can be further sub-divided into 'accidental' and 'deliberate' introductions. 

Deliberately-transferred organisms is a term usually reserved for species that have been 

intentionally introduced into new regions for the purpose of aquaculture, recreational use (e.g. 

sport fishing, shooting) or biological pest control. Accidental introductions, on the other hand, 

encompass a wide-range of anthropogenic activities where the surmounting of the invasion 

barrier was unintentional. Examples include the transfer of species attached to the hulls of 

shipping vessels (Gollasch 2002), within ship ballast water (Carlton 1985) or as accessory species 

of those which have been deliberately introduced for the purpose of aquaculture (Minchin 

1996). Indirect transfers of non-native species are rather less conspicuous. In this instance, the 

invasion barrier is, in effect, removed by an anthropogenic activity, which then allows for the 

introduction of species to new geographic regions by natural dispersal mechanisms (i.e. a form 

of range extension). Biological invasions, in this instance, thus occur as an indirect result of 

human activities. A classic example would be the completion of the construction of the Suez 

Canal in 1869, which subsequently enabled connectivity between species inhabiting the 

Mediterranean and Red Seas (i.e. Lessepsian migrations; see Galil 2008). A further caveat which 

somewhat clouds the definition of a biological invasion involves the anthropogenically-mediated 

warming of the Earth's atmosphere as a result of fossil fuel burning and land use changes. Ocean 

warming is known to facilitate the poleward migration of many species across several taxa and 

geographic regions, both native and non-native (Southward et al. 1995, 2005; Hawkins et al. 

2009). Some elements of global climate change may thus move but not remove invasion barriers 

per se. Poleward migrations of non-native species may therefore be considered to be an 

expansion of their geographic range following their introduction (i.e. part of the 'secondary 

spread'), or alternatively, as part of the invasion process outright (see Colautti and MacIsaac 

2004; Hodges 2008; Richardson et al. 2011). 

 

1.2 The invasion process 

The field of biological invasions has gained widespread attention in recent years, partly due to 

the extensive use of emotive ‘buzzwords’ such as ‘alien’, ‘exotic’, ‘noxious’, ‘nuisance’ and ’pest’ 

to describe those species that have become established within areas beyond their natural 

geographic range. However, respective definitions are often incongruent, leading to 

misinterpretation of important ecological concepts and thus undermining policy formation and 

management efforts (Colautti and MacIsaac 2004; Riccardi and Cohen 2007). For clarity, a 

glossary section is included herein which serves as a compendium of definitions of all relevant 

invasion-based terms that will be used throughout the remainder of this thesis. 
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Several key papers have attempted to describe the biological invasion process (e.g. 

Carlton 1985; Williamson 1996; Marchetti et al. 2004; Freckleton et al. 2006; Reise et al. 2006) 

and it is beyond the scope of this thesis to form a comprehensive critique of all proposed 

concepts. Suffice to say that significant advances in our understanding of the invasion process 

have come from stage-based approaches, which depict the invasion process as the passage of 

non-native species through a series of distinct stages between their native and novel 

environments. It may be argued that stage-based approaches unwittingly suggest that the 

invasion process is strictly discrete, with the attainment of each subsequent stage dependent on 

the termination of the previous stage. In reality, of course, it is known that "activities in prior 

stages do not stop with the inauguration of a subsequent stage" (Davis 2009), thus invasion may 

often undergo simultaneous periods of establishment, recruitment failure and dispersal. 

However, the practicality of stage-based approaches has undoubtedly facilitated better 

connectivity and understanding between the scientific community and those involved in the 

formation of management strategies concerning biological invasions, and are thus to be 

commended. 

A favoured model in modern-day invasion ecology is that of Colautti and MacIsaac 

(2004) and is based on the paradigm of ‘propagule pressure’; a "composite measure of the 

number of individuals released into a region to which they are non-native" (Lockwood et al. 

2005). The concept states that as the number of discrete release events and/or the number of 

individuals released increases, propagule pressure also increases. The prospective invaders begin 

as propagules within a potential ‘donor region’ (stage 0), and their passage into subsequent 

stages of the invasion process is controlled by a series of filters (see Figure 1.1). Some 

propagules are transferred into the transport vector (stage I) by an anthropogenically-mediated 

activity. Survival within the transport medium leads to introduction to a novel area (stage II), 

with the possibility of becoming established (stage III), providing that the species is able to 

survive and reproduce within its new geographic region. As seen in Figure 1.1, propagule 

pressure (determinant A) is heavily associated with all stages of the invasion process, which can 

also be facilitated (positive B and/or C determinants) or inhibited (negative B and/or C 

determinants) by the physicochemical requirements of the invader (B) and also by community 

interactions (C). In a similar vein, 'propagule rain' (sensu Lockwood et al. 2009, defined as  a 

function of the number of release events and the density of propagules within each release 

event, dispersed from the invasion foci following establishment) is linked with the post-

establishment success of an invasive species. Both the dispersal of an established species away 

from its invasion foci and its dominance within its new environment are highly dependent on
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Figure 1.1 Suggested framework for defining operationally important terms in invasion studies 

(redrawn from Colautti and MacIsaac 2004). Potential invaders begin as propagules residing in a 

donor region (stage 0), and pass through a series of filters that may preclude transition to 

subsequent stages. A non-native species may be localised and numerically rare (stage III), 

widespread but rare (stage IVa), localised but dominant (stage IVb) or widespread and dominant 

(stage V). Adjectives are intended only to aid in conceptualising each stage, but should not be 

used to refer to the stage of interest. Three classes of determinants affect the probability that a 

potential invader will pass through each filter: (A) propagule pressure; (B) physicochemical 

requirements of the potential invader; (C) community interactions. Determinants may positively 

(+) or negatively (–) affect the number of propagules that successfully pass through each filter 

(Colautti and MacIsaac 2004). 
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propagule rain and how physiologically well-suited a species is to its new environment. Whilst 

abundant within its area of initial introduction, a species can be highly restricted in terms of its 

geographic range extent by low propagule pressure (e.g. low fecundity, reduced breeding season 

and duration of larvae in the plankton, often linked with an increased period of maternal 

brooding) (stage IVb). The ability of a species to overcome such barriers restricting geographic 

spread and local dominance within the community is not temporally or intra-specifically ‘fixed’ 

and can change naturally and/or anthropogenically by several possible processes. These include 

the anthropogenic removal of a physical barrier previously restricting further dispersal (Rilov et 

al. 2004), the removal of a predator previously controlling invader density (Paine 1974), as well 

as the accelerated warming of the oceans due to global warming, with the resulting increase in 

spawning events and extension of the breeding season (see Reise et al. 2005) culminating in a 

widespread and abundant non-native, invasive population (stage V). As well as aiding in the 

clarification of one’s perceived definition of specific ‘invasive’ terminology, this supplementary 

terminology proposed identifies the factors that influence the relative ‘success’ of the potential 

invader at each stage of the invasion process (determinants A, B and C; Figure 1.1). Conflicting 

and often biased views due to subconscious associations with preconceived terms are also 

eliminated by the supplementation of with ‘operational’ terms (i.e. ‘stages’) with no a priori 

meaning (Colautti and MacIsaac 2004). 

 

1.3 Why should we care? 

To become invasive, an introduced species must often withstand extremely stressful conditions 

both within the transport vector and following its transfer into a new geographic region. 

Temperatures within ballast water tanks, for example, can increase as much as 16°C between 

points of uptake and release, whilst hypoxic conditions are also a regular occurrence (Seiden et 

al. 2011). Likewise, non-native epibionts of deliberately-introduced oysters may spend several 

days in transit and may thus be exposed to numerous stresses, including temperature, 

desiccation and hypoxia (Minchin 1996). Following their arrival into a new geographic region, 

introduced species must also be capable of producing viable propagules that are then capable of 

some degree of dispersal away from the adult population. Species which show a high degree of 

behavioural or phenotypic plasticity are thus generally considered to possess a higher degree of 

invasiveness (Davidson et al. 2011). It is therefore unsurprising that the majority of biological 

invasions are rendered unsuccessful. 

The 'Tens Rule' (sensu Williamson and Fitter 1996) describes the distribution of the 

probability of the successful progression of a non-native species through each stage of invasion 

along the establishment-invasive continuum. Initially based on European plant data, it is  
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suggested that approximately one in ten of introduced species survive the transport vector to 

become transient species within their novel environment. In turn, approximately one in ten of all 

transient species are capable of proliferation within their new geographical region, with only one 

in ten of all established species capable of becoming invasive. It should be noted that the point 

estimate of 0.1 is simply a measure of central tendency, and is not intended to represent a 

definitive proportion of propagules which progress into each subsequent invasion stage (see 

Caley et al. 2008). These predicted proportions will also vary depending on how one defines 

each stage along the established-invasive continuum and are likely to increase over time as the 

residence time of non-natives within new geographic regions increases. Nevertheless, the Tens 

Rule serves as a useful working estimate and concept which highlights that biological invasions 

are consistently rare events which are heavily reliant upon propagule pressure, life history 

characteristics and geographic location. Despite a relatively low number of successful invasions, 

the significance of this small portion of invaders becomes noteworthy when one considers the 

colossal socio-economic and ecological impacts that several previously-documented invasive 

species have bestowed upon their respective novel environments. 

 

1.3.1 Socio-economic impacts 

Whilst relatively rare, introductions of some non-native species beyond their native geographic 

range have been socio-economically catastrophic. For example the European shore crab, 

Carcinus maenas (L. 1758), is an invader to the Atlantic shores of both Canada and the United 

States of America, and costs relating to its dominant predatory impacts upon commercial 

shellfisheries are estimated to exceed US$44 million annually (Pimentel et al. 2005). Likewise, 

the manual removal of high densities of freshwater zebra mussels, Dreissena polymorpha Pallas 

1771, from the inlet pipes of several water treatment and power plants in North America is 

estimated to cost the US government over US$161-467 million a year (Connelly et al. 2007). 

Growing concerns are developing regarding the European invasion of the Chinese mitten crab, 

Eriocheir sinensis Milne-Edwards 1853, and its potential impact on several aspects of human 

health and biosecurity. Its extensive burrowing activity (see Panning 1938) have led to the 

accelerated erosion and collapse of riverbanks and levees, posing serious threats to flood 

defence systems and the management of water supplies. The crab is also a secondary host for 

the Oriental lung fluke, Paragonimus westermani Kerbert 1878, which can lead to severe 

pulmonary discomfort, paralysis and even death among humans (see Clark et al. 1998). 
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1.3.2 Invasion lags 

Whilst the advent of biological invasions far precedes that of any scientific records, a continual 

intensification in globalisation and transport, particularly since the industrial revolution, has 

directly led to an exponential rise in the rate of biological invasions (Hulme 2009). Regrettably, 

financial constraints and the occasional lack of effective collaboration between scientists and 

policy makers have meant that management efforts have generally focused on a few of the more 

pressing invaders, whilst the majority of transient and less invasive non-natives have received 

little or no attention. However, population growth and secondary spread following the 

establishment of a non-native species may vary dramatically over both time and space. Some 

transient species can persist for many years within their novel environment until conditions may 

later become favourable for reproduction (see Crooks and Soulé 1999). Although the biological 

factors operating following establishment are not well understood, three factors have been 

postulated as potential explanatory factors of time lags (see Table 1.1). The case of the Red Sea 

mussel, Brachidontes pharaonis (P. Fischer 1870), (introduced to the Mediterranean following 

the opening of the Suez Canal in 1869), its spread along the coast of Israel and its subsequent 

dominance over the native mussel, Mytiliaster minimus (Poli 1795), provides a rare documented 

example of a lag phase of approximately 120 years (Rilov et al. 2004). It is proposed that the 

onset of invasion was permitted due to recent shift in habitat conditions towards lower 

sedimentation rates and improved water exchange in areas previously devoid of mussels, as well 

as the ability of B. pharaonis to subsequently outcompete its indigenous counterpart following 

settlement within their novel environment (termed an 'environmental lag'). 

 

Table 1.1 Description of different types of lag phases (sensu Crooks and Soulé 1999). 

 

Type of Lag Description 

Inherent lag 
Caused by the nature of population growth and range expansions, and 
heavily influenced by the larval dispersal capabilities of the invading 
species. 

Environmental lag 
Caused by shifts in ecological conditions towards a more favourable 
environment for the invading species. 

Genetic lag 
Caused by the relative lack of genetic fitness of the invading species 
within its new environment. 
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1.3.3 Changes in the rate of invasion 

Anthropogenically-mediated transfers of species across the globe are expected to continue to 

bridge the gaps between several biogeographically-distinct regions. This unprecedented 

exchange of species is rapidly leading to the replacement of native species with non-native 

invaders, reducing spatial diversity and promoting biotic homogenisation (McKinney and 

Lockwood, 1999). The duration of environmental lags may become reduced in the near future 

due to our rapidly-changing climate. Biological invasions and climate change are currently 

recognised as two of the most prevalent modifiers of environmental change on a global scale. 

Whilst the independent impacts of both environmental drivers continue to receive ample 

attention in the scientific literature, empirical studies regarding the intricate interactions 

between both processes are required (Dukes and Mooney 1999; Stachowicz et al. 2002; Ward 

and Masters 2007). The Earth’s atmosphere has warmed by 0.74±0.18°C since the early 1900s 

and a further warming of 1-3°C is predicted by the end of the 21st century (IPCC 2007). 

Worryingly, native and non-native species are responding disproportionately to a 

warming climate (Southward et al. 1995; Hawkins et al. 2003; Mieszkowska et al. 2005; Hiddink 

and ter Hofstede 2008). For native species, which have evolved within their unique environment 

for several thousands of years, a rapidly-warming climate may be disastrous. Many species are 

already pushed to their physiological limits within their current native range and further 

physiological stresses may hamper their competitive resistance (Somero 2011). The invasiveness 

of newly-introduced non-natives may, on the other hand, be facilitated by climate change, with 

the generally broader thermal tolerance and greater dispersal capacity of several established 

non-natives favouring their proliferation at the expense of several native competitors (Sorte et 

al. 2010). Studies investigating phenological adaptations (i.e. changes in the timing of key events, 

including reproductive maturity) to climate change have also revealed interesting differences 

between native, transient non-natives and invasive species (Willis et al. 2010). Moore et al. 

(2011) showed that, in a single geographic region, the spawning season of warm water limpets is 

becoming increasingly prolonged, whilst more cold-acclimated species are expressing increasing 

reproductive failure. As well as an increase in mean global surface temperature, the Earth's 

climate is also expected to become increasingly variable. Extreme climatic events, including 

hurricanes, flooding, droughts, heat waves and cold snaps, are likely to become more common. 

However, the responses of both native and non-native species to such changes require urgent 

attention (Smith 2011). Whilst climate change-related ocean warming is likely to extend the 

duration of the brooding season of several non-native species, it remains to be seen whether or 

not future plankton dynamics will match or mismatch with the nutritional requirements of adult 
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conspecifics (see Cushing 1990) and have positive or negative effects on the future proliferation 

and invasiveness of non-native species. 

 

1.4 Transfers of non-native oysters around the world 

Several oyster fisheries around the world have undergone ‘boom and bust’ phases, including the  

Eastern oyster, Crassostrea virginica (Gmelin 1791), in Chesapeake Bay (USA) (Mann et al. 1991), 

the Chilean oyster, Ostrea chilensis Philippi 1845, in Foveaux Strait (New Zealand) (Doonan et al. 

1994) and the native European oyster, Ostrea edulis L. 1758, in the UK (see Yonge 1960). The 

United Kingdom, in particular, has a long tradition of oyster fishing, with landings peaking during 

the early 1900s. Although mainly considered as the foodstuff of the ‘working class’ during 

this time, a rise in the demand from increasingly populated cities resulted in overfishing, 

severely depleting the natural oyster populations (Yonge 1960). Pathogenic infections (e.g. a 

haplosporidian parasite from the genus, Bonamia; see Sprague 1971), spatfall failure and 

mortalities due to natural disasters (including the abnormally cold winter of 1962-1963; see 

Crisp 1964) have also contributed to the decline of O. edulis landings in the UK. Between 

1920 and 1972, oyster landings in England and Wales declined rapidly from 40 million to 3 

million individuals per annum (Davidson 1976). Even by 2010, only 206 T (equating to 

approximately 4 million oysters) were commercially fished from UK waters (FAO 2005). Such a 

drastic loss has prompted the need for oyster cultivation and, more specifically, research into 

the culture of more suitable, alternative species with which to replenish the native oyster stocks; 

a field of study led initially in the UK by the Ministry of Agriculture, Fisheries and Food (MAFF) 

(see Walne 1974). Considering that oysters have been introduced to 73 countries worldwide 

(Ruesink et al. 2005), such a lack of understanding of the ecological implications of non-

native oyster introductions is cause for concern. 

 

1.5 The ecological importance of oysters 

Initial studies into transfers of non-native oysters across biogeographical boundaries were 

conducted due to an increased focus on novel methods of fishery stock enhancement and 

water quality management issues (e.g. Mann et al. 1991; Coen et al. 2000). However, recent 

emphasis on biodiversity preservation and other conservation matters has ignited much 

interest into the potential impacts of oyster culture, (re)introductions of native oysters and 

transfers of non-native oysters upon the environment (see Table 1.2). Historically, most 

ecological publications concerning interactions between non-natives and their associated native 

co-inhabitants focus solely on negative ecological interactions pertaining from competition, 

parasitism and predation. However, more recent work on facilitation (i.e. a term 
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Table 1.2 A non-exhaustive list of studies demonstrating the ecosystem engineering abilities of oysters and their subsequent effects on other  

associated habitats. 

 

 

Oyster Species Location Impacted Habitat Mode of Engineering Source 

Crassostrea virginica 
Swansboro Region  
North Carolina 
USA 

Spartina alterniflora 
Salt marsh 

Oyster cultch laid seaward to the salt marsh buffered 
the erosive effects of wave action and storm events. 
Oyster reef also reduced current flow, leading to 
increased sedimentation and stabilisation within the 
marsh. Oyster cultch provided a complex physical 
structure that was inhabited by numerous species of 
economic importance. 

Meyer et al. (1997) 

Crassostrea virginica 
Neuse River Estuary 
North Carolina 
USA 

Crassostrea virginica 
Oyster reef 

Positive correlation between reef height and flow rate 
resulted in an increase in the delivery rate of suspended 
particulate material, leading to improvements in oyster 
growth, condition and survival. 

Lenihan (1999) 

Crassostrea virginica 
Chesapeake Bay  
Virginia 
USA 

Estuarine community 

Along with increasing anthropogenic inputs of 
nitrogenous compounds (mainly fertiliser), the loss of 
oysters and their filter-feeding activity are thought to 
have led to shifts from primarily benthic to pelagic 
primary production, as well as an increase in harmful 
algal blooms. Such changes may have caused a shift in 
community dominance from macroalgae and nekton to 
microbial organisms and jellyfish. 

Jackson et al. (2001) 

Crassostrea virginica 
Chesapeake Bay  
Virginia 
USA 

Estuarine community 

Loss of oysters and their filter-feeding ability was linked 
to an increase in turbidity, leading to negative 
implications for ecologically-important habitats, such as 
seagrass beds and other primary producers. 

Newell and Koch (2004) 
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Crassostrea gigas 
Bay of 
Mont Saint-Michel 
France 

Sabellaria alveolata 
Biogenic reef 

Larvae from nearby oyster culture facilities settled on 
cultch, increasing species richness. Oyster reefs altered 
local hydrodynamics, leading to nearby areas of 
increased sedimentation and the creation of a novel 
environment for several infaunal species. Oysters may 
also be outcompeting Sabellaria alveolata for food due 
to a higher filtration rate. Sporadic discoveries of new 
predators within the reef habitat in the presence of 
oysters suggested the possibility of the creation of new 
multi-trophic level species associations. 

Dubois et al. (2006) 

Crassostrea hatcheri 
(ancient population) 

Patagonia  
Argentina 

Shallow-shelf benthos 

Oysters provided a hard substrate which was colonised 
by a wide range of epibionts from a wide range of taxa. 
High biodiversity was also facilitated by its wide 
geographic distribution, high abundance and longevity. 

Parras and Casadío (2006) 

Crassostrea gigas 
Bay of Veys 
France 

Macrobenthic 
assemblage associated 
with the tubeworm, 
Lanice conchilega 

Oysters induced a top-down effect by modifying water 
quality and food input and quality, leading to a trophic 
shift in the underlying infaunal community from 
suspension-feeders to predators. High oyster densities 
increased secondary production, causing a shift from 
pelagic to benthic consumers, thus modifying benthic-
pelagic coupling and trophic dynamics within the 
community. 

Dubois et al. (2007) 

Saccostrea glomerata 
Sydney Harbour 
Sydney 
Australia 

Artificial seawall 
Facilitation of whelk (Morula marginalba) densities due 
to presence of oysters led to a trophic shift in the 
dominant species within the community. 

Jackson et al. (2008) 

Crassostrea gigas 
Wadden Sea  
Germany 

Intertidal native mussel 
(Mytilus edulis) 
Mussel reef 

Shift in dominance from mussels to non-native oysters 
altered habitat structure, leading to a change in the 
associated benthic community. Community structure 
was changed due to the differences in ecosystem 
engineering functioning between mussels and oysters. 

Kochmann et al. (2008) 
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integrating all types of intra- and inter-specific positive interactions whereby at least one species 

benefits and none are harmed in any way) has stimulated scientific endeavours that have 

significantly improved our understanding of the key drivers which help structure ecological 

communities (see Rodriguez 2006). Habitat modification has been identified as the most 

commonly reported mechanism by which invasive species facilitate native species and, in some 

cases, habitat modification can have as significant an effect on community dynamics as other 

biotic driving forces such as competition and predation (Bertness et al. 1999). By instigating 

physical state changes in biotic and abiotic materials, thus altering the availability of resources to 

other species, oysters have the ability to create, maintain and modify their habitat in such a way 

as to significantly affect the associated biological community. Formal terminology was devised 

by Jones et al. (1994), who termed such organisms ‘ecosystem engineers', and their habitat 

modifying activities ‘ecosystem engineering’. Ecosystem engineers may also be further divided 

into two subclasses; ‘autogenic’ and ‘allogenic’ engineers. Autogenic engineers modify the 

environment via their own physical structures, whilst allogenic engineers modify their 

environment by causing physical state changes in biotic or abiotic materials. Oysters can be 

incorporated into both classes of ‘engineering’, thus highlighting their undeniable significance as 

environmental modifiers. Ecosystem engineers are far more likely to have profound impacts 

within their new environment compared to those non-natives that do not exhibit habitat 

modification abilities. Whilst both engineering and non-engineering non-native species may 

present biological stresses in the form of competition and predation, the native biota must also 

contend with changes to their physical environment as a result of invasions by ecosystem 

engineers (Vitousek 1986). 

 

1.5.1 Oysters as habitat modifiers 

Oyster shells provide a hard substratum upon which fouling organisms may settle, often in areas 

otherwise consisting of soft sediments. Due to their gregarious nature, oysters (particularly reef-

forming species such as C. virginica) are capable of forming complex, three-dimensional 

assemblages on the sea bed, creating crevices that offer spatial refuge for both juvenile 

conspecifics (Bartol and Mann 1999) and a range of other organisms (Coen et al. 2000) from 

both predators and physical stresses. Lehnert and Allen (2002) also demonstrated the essential 

role of oyster shell aggregations as nursery grounds for several phyla, including juveniles of key 

members of the trophic web. Importantly, oyster shell is highly resistant to degradation and 

therefore persists on the seabed long after the death of its former occupant. The significance of 

oysters as autogenic ecosystem engineers thus extends far beyond their lifespan. Artificially-

created oyster reefs (formed from cultch i.e. a collection of single oyster valves) have been 
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shown to facilitate macrofaunal diversity and recruitment of oyster larvae at a comparable rate 

to that of naturally-formed reefs (Meyer and Townsend 2000). It has been suggested that such 

‘persistent’ habitat modifiers are likely to have a delaying effect on ecological change (Jones et 

al. 1994), thus enhancing ecosystem ‘stability’ (Pimm 1984). However, the allogenic habitat 

modification capabilities of oysters are lost post-mortem, and a comparison of the effects of the 

ecosystem engineering abilities of live and dead oysters/cultch on the associated benthic 

community is lacking. 

Oyster reefs are also known to indirectly affect local community dynamics due to 

physical-biological coupling. Their physical structure results in the modification of physical 

variables, leading to changes in biodiversity and ecosystem function. The construction of 

artificially-formed American oyster cultch reefs at the seaward periphery of a Spartina 

alterniflora salt marsh has been shown to buffer the erosive effects of wave action. Such reefs 

also instigated sediment accretion within the marsh, leading to improved structural stabilisation 

(Meyer et al. 1997). Biologically, the creation of habitat-fringing cultch beds provides a suitable 

habitat for several species, including juvenile and economically-important organisms (Meyer and 

Townsend 2000). Similarly, manipulations of mussel bed density within a laboratory flume have 

shown that flow speeds within the mussel assemblage decreases with increasing density. This 

leads to an increase in sediment loading and a reduction in erosion potential of the underlying 

sediment, thus a transition from destabilisation to consolidation of the substratum (Friedrichs 

2004). Earlier flume experiments by Weissburg and Zimmer-Faust (1993) also demonstrated a 

positive relationship between turbulence at the benthic boundary layer with both current speed 

(analogous to the findings of Lenihan (1999) at the upper regions of oyster reefs) and sediment 

particle size, which subsequently led to a reduction in the chemosensory abilities of the 

predatory blue crab, Callinectes sapidus (Rathbun 1896), when exposed to odour plumes 

emanating from actively filtering hard clams, Mercenaria mercenaria (L. 1758). A similar effect 

due to the physical structure of oyster reefs may well be instigated, although no published 

evidence was found in support of this deduction. 

The effect of oyster reef structures upon local flow patterns has been identified as the 

most influential factor controlling physical-biological coupling. Lenihan (1999) observed that the 

reef structure not only controlled local physical variables, but also had subsequent implications 

for the resident oyster community. Filter-feeding bivalves require sufficient water movement to 

ensure adequate provision of suspended organic material and removal of waste material. 

However, water flow should not be too high so as to inhibit larval settlement (Butman 1987) 

growing near the upper crest of the reef were subjected to quicker flow than those near the 

basal fringes of the reef, resulting in improved food supply and reduced sedimentation rates, 
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and thus a decrease in hypoxia stress. It is therefore clear that habitats such as oyster reefs have 

the ability to indirectly control local population production through physical-biological coupling, 

the understanding of which is fundamental to improve our conservation, restoration and 

management of such habitats and their natural resources (Lenihan 1999). 

 

1.5.2 Oysters as translocators of energy from the water column to the benthos 

Oysters are proficient filter-feeders and are considered to be significant contributors to the 

translocation and transformation of large quantities of energy between the overlying water 

column and the benthos (Dame et al. 1980). A conceptual diagrammatic representation of the 

multiple roles played by dense aggregations of filter-feeding organisms is given in Figure 1.2. By 

filtering large quantities of organic matter from the water column and directly incorporating 

such material as tissue biomass, oysters function as important trophic links that provide a 

previously inaccessible source of energy to a range of carnivorous predators and detritivors. 

Callinectes sapidus, for example, is recognised as a highly-voracious predator of juvenile 

American oysters in Chesapeake Bay (Eggleston 1990). Mature oysters are known to lose a large 

percentage of their body mass during spawning (Brown and Russell-Hunter 1978) and as the 

spring phytoplankton bloom declines, oyster gametes may also become an important source of 

nutrition for bentho-pelagic carnivores. Oysters of the genus Crassostrea, in particular, are highly 

fecund, with larvae remaining in the plankton for approximately three weeks following external 

fertilisation (Galtsoff 1964). In the same species, Bernard (1974) estimated a release of 500 kcal 

m-2 of energy as gametes in a population with mean oyster density of 190 g m-2. By reducing the 

deposition rate of organic carbon into deeper waters during spring phytoplankton bloom events, 

the role of oysters in reducing the extent of summer hypoxia within stratified embayments (thus 

initiating a top-down grazing control on phytoplankton) has been intensively argued within the 

scientific community (see Newell 1988; Pomeroy et al. 2006; Newell et al. 2007). 

Not all energy acquired from plankton consumption is accumulated as oyster tissue 

(see Figure 1.2). All epibenthic filter feeders have the ability to actively remove suspended 

particulate matter from the water column and deposit it as faeces or pseudofaeces, which 

either sinks to the bottom as a result of gravity or is carried away from the area by water 

movements. The process of particle filtration, digestion and subsequent release as faecal 

material is termed ‘biodeposition’ and the voided products termed ‘biodeposits’. It has been 

shown that suspended particulate matter of 1-12 µm diameter is routinely filtered by the 

American oyster, C. virginica, with optimal efficiency at 3 µm (Haven and Morales-Alamo 

1970). Such material is subsequently released as larger faecal pellets of 500-3,000 µm 

diameter. It has been estimated that the Pacific oyster, Crassostrea gigas, voids 8.9 g g
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Figure 1.2 A conceptual summary of processes occurring in and around dense systems of filter 

feeding bivalves such as mussels and oysters (redrawn from Dame 1993). 

Aerobic Sediments 

Anaerobic Sediments 

Filtration Metabolites 

S
e
d

im
e
n
ta

tio
n

 R
e
s
u
s
p
e
n
s
io

n
 

Mineralisation 
PO4 

NH4 CO2 

DOC 

Release 

Sulphate Reduction 

DON 

H2S 

N2 

PO4 

CH4 Methanogenesis 

Mobile Phosphate 

Denitrification NO2 

PARTICULATE DISSOLVED 



36 
 

oyster-1 y-1 as biodeposits, giving an estimated calorific value of 1,545 kcal m-2 (Bernard 

1974). Biodeposits provide a highly suitable substrate for microbial colonisation. When re-

suspended in the water column by water movements or other means, biodeposits can be 

reutilised by oysters or carried away from the oyster bed, thus further increasing the 

productivity of the oyster reef and adjacent areas. Bernard (1974) suggested that 

sedimentation of a large quantity of biodeposits can modify the physical and chemical 

properties of the underlying sediment, allowing for the establishment of a diverse group of 

organisms, although no evidence was given to support his theory. 

Due to an exponential increase in marine aquaculture, as well as an increasing 

awareness of the importance of conserving biodiversity for maintaining ecosystem services, 

more recent studies concerning the impacts of oysters as ecosystem engineers have focused 

on evaluating the impacts of oyster aquaculture on the underlying sediment and its 

associated fauna, often with conflicting conclusions. Oyster trestles have been shown to 

decrease current flow, thus increasing the local deposition of sediment and organic material 

(Nugues et al. 1996). Biodeposition by the cultured species also contributes to the organic 

enrichment of the underlying sediment, particularly in ‘low energy’ areas where there is 

insufficient flow to inhibit sedimentation. Unlike finfish aquaculture, which requires the 

addition of processed feed, bivalve aquaculture relies on natural sources of suspended 

organic material for food. Although no net input of organic material is added into the 

environment, the packaging of seston into larger, heavier faecal material can cause a 

localised accumulation of organic material in the underlying sediment (Grant et al. 1995). A 

subsequent increase in the biological oxygen demand of aerobic microbial communities can 

lead to hypoxia/anoxia in the top layers of the sediment and overlying water (Lenihan and 

Micheli 2001), with mass mortalities of the least tolerant organisms. Conceptual patterns in 

species abundance, biomass and richness with increasing organic enrichment within a soft -

sediment benthic community were shown by Pearson and Rosenberg (1978) (Figure 1.3). 

Recovery of a soft-sediment community is often characterised by a succession of community 

members, beginning with opportunistic, r-strategists such as worms from the genus, 

Capitella. These species are usually surface and/or shallow sub-surface deposit feeders. 

Their bioturbation activities irrigate and oxygenate the top few millimetres of sediment. 

Alterations to the sediment community allows for further colonisation by a range of species 

that are less tolerant to toxic conditions or unstable and unstructured sediment habitats 

(Lenihan and Micheli 2001), progressing to the re-establishment of a similar community to 

that observed in unaffected, neighbouring regions. Minor organic enrichment, on the other 

hand, can give rise to an increase in species abundance, biomass and richness (Figures 1.3
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Figure 1.3 Changes in abundance (A), biomass (B) and species richness (S) within an infaunal 

benthic community along an organic enrichment gradient (redrawn from Pearson and 

Rosenberg, 1978). PO = peak in abundance of opportunistic species. 
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Figure 1.4 Temporal or spatial changes in soft-sediment community located along a temporal or spatial gradient in organic enrichment (redrawn from 

Pearson and Rosenberg 1978). 
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and 1.4). 

 

1.5.3 Oysters as prey items for keystone predators 

Due to their sessile, epibenthic lifestyle, oysters are susceptible to predation by a wide range 

of mobile organisms, including crabs, fish, gastropods, lobsters, seabirds and starfish. A 

detailed assessment of the significance of each individual predator species and the 

importance of oysters as part of their respective diet is well beyond the scope of this 

introductory thesis chapter. However, some oyster predators have been identified as 

keystone species, having a disproportionately large influence upon their environment 

relative to their abundance. Keystone species, such as the predatory ochre starfish, Pisaster 

ochraceous (Brandt 1835), are capable of controlling the density and distribution of 

influential benthic organisms, thus manipulating the structure of the biological community 

(see Paine 1974). Studies concerning diet preference of keystone predators provide useful 

insights into foraging behaviour, leading to improvement in our understanding of community 

dynamics. Crabs, in particular, are voracious predators of several bivalve species, and are 

considered to be significant contributors to the structuring of marine benthic habitats (Leber 

1985; Raffaelli et al. 1989; Mascaró and Seed 2001b). The known preferential behaviour of 

crabs, in terms of both prey size and species selection, has direct implications for the 

abundance and distribution of prey species, which are themselves modifiers of the benthic 

community. ‘Optimal foraging theory’ (see Hughes 1980), where a predator selects the most 

energetically profitable prey item per unit handling time, often forms the premise by which 

size-selective predation is explained (Elner and Hughes 1978; Dare et al. 1983). However, 

although prey handling times (and thus net energetic profitability) vary with both prey and 

predator species (Hughes and Seed 1981; Mascaró and Seed 2001a, 2001b), leading to 

variation in foraging tactics when presented with different prey items (Juanes 1992).  

Unlike those concerning size-selective predation, investigations into species preference 

are not so well documented. However, it has been established that shore crabs, when presented 

with a range of bivalve species (including oysters) of pre-determined ‘optimal’ sizes, show 

preference towards mussels (e.g. Dare et al. 1983; Mascaró and Seed 2001a, 2001b). Although 

known to feed indifferently on both flat (Ostrea edulis) and cupped (Crassostrea gigas) oysters 

(Mascaró and Seed 2001a), the reluctance of both Carcinus maenas, and the edible crab, Cancer 

pagurus L. 1758, to feed on the Chilean oyster, Ostrea chilensis Philippi 1845, even when 

presented in the absence of any other prey species, was attributed to mechanical difficulties 

during handling (Richardson et al. 1993b). Bishop and Peterson (2006) established the tendency 

of the blue crab, when presented with equal numbers of the native Eastern oyster, Crasostrea 
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viginica, and the non-native Suminoe oyster, Crassostrea ariakensis (Fujita 1913), to select the 

non-native prey; the latter once a candidate species to replenish stocks of the decimated native 

C. virginica stocks in Chesapeake Bay (North America). Selection was thought to be based upon 

the contrasting shell strength, with significantly less energy required to crush open the shell of C. 

ariakensis. The implications of such findings have undoubted importance to the success of 

management of natural resources (Mascaró and Seed 2001b) and demonstrate the value of 

relating life-history theory with results from contained mesocosm experiments that compare 

ecological responses of native and non-native oysters in response to dominant features within 

the recipient environment. However, one must avoid the formulation of over-generalistic 

conclusions regarding the influence of keystone predators on community dynamics based solely 

upon prey preference trials involving adult predators. Differences in the spatial distribution, 

feeding habits and prey preference of juvenile crabs compared to their adult conspecifics have 

been established. Compared to their adult conspecifics, patterns in size-selective predation 

patterns are rather more inconsistent in juvenile crabs, possibly due to the physical constraints 

imposed on smaller individuals that have limited access to larger prey (Mascaró and Seed 

2001b). 

 

1.6 Case Study – the non-native Chilean oyster (Ostrea chilensis Philippi 1845) population in 

the Menai Strait (North Wales, UK) 

Despite the ever-increasing volume of scientific publications regarding the potential economic 

and ecological impacts pertaining from biological invasions, financial constraints and the 

occasional lack of coordination between the scientific community and policy makers mean that 

monitoring and management strategies must be prioritised to focus on those species. Despite 

strong evidence, information regarding several seemingly transient non-native species is often 

lacking. 

Native to both Chile and New Zealand (see O'Foighil et al. 1999), the Chilean oyster 

(Ostrea chilensis) has supported a highly profitable fishery in New Zealand since the mid-

nineteenth century (NZMF 2008), although epizootics of the haplosporidian parasite, Bonamia 

exitiosa (Hine et al. 2001) have impeded commercial output during the last 20 years or so (see 

Dinamani et al. 1987). Based solely on its life history characteristics, it may be hypothesised that 

the offspring of O. chilensis is highly unlikely to disperse great distances away from adult 

conspecifics (Millar and Hollis 1963; Cranfield 1968; Westerskov 1980); a desirable feature of any 

species in terms of both fisheries and aquaculture management (Walne 1974). The Chilean 

oyster is a protandric hermaphrodite. Unlike most other oyster species, it has a low fecundity 

and a highly extended brooding period. An individual female oyster (50-85mm shell length) will 
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typically brood ~50,000 larvae within the mantle cavity (Cranfield and Allen 1977) for up to eight 

weeks (Chaparro 1990; Chaparro et al. 1993). The proportion of brooding females within a 

population can be as low as 6% (Cranfield and Allen 1977), although this is highly variable 

between populations (see Buroker et al. 1983). It is thought that the larvae are predominantly 

released as pediveligers, thus explaining their imminent settlement in close proximity to adult 

conspecifics, providing that a suitable substratum is available (Hollis 1962; Cranfield 1968; 

Westerskov 1980). Evidence of the premature release of small numbers of larvae has also been 

documented (Cranfield and Michael 1989), although the ability of such larvae to undergo 

metamorphosis and settlement, as well as their survival rate and fitness, has not been 

investigated. 

The Chilean oyster was experimentally introduced into the UK during the early 1960s 

(Walne 1974) by the Ministry of Agriculture, Fisheries and Food (MAFF) (now part of the Centre 

of Environment, Fisheries and Aquaculture Sciences). Laboratory-reared juvenile O. chilensis, 

cultured under strict quarantine conditions by the MAFF from broodstock imported from both 

Chile and New Zealand, were transplanted onto the low intertidal shore at Tal y Foel, Menai 

Strait (North Wales, UK), in an attempt to establish its potential as a replacement species with 

which to supplement the dwindling native European oyster stocks (Walne 1974). However, the 

subsequent growth trials soon demonstrated that O. chilensis suffered high spat mortalities 

during the winter months, was relatively slow growing and was also susceptible to infection by 

haplosporidian parasites of the genus Bonamia; traits which quickly ruled out the species as a 

suitable oyster species with which to supplement the dwindling native O. edulis stocks. Despite 

evidence of spat recruitment in 1970 (Walne 1974), the focus of the MAFF was subsequently 

turned to other avenues of research, and the remaining surviving oysters at Tal y Foel were 

abandoned and left to their own devices. Interest in the status of this non-native oyster 

population within what is now part of a designated Special Area of Conservation (SAC) is 

restricted to a single survey, conducted in 1992 by Richardson et al. (1993b), who note that O. 

chilensis generally remained confined to a 0.4 km stretch of the shoreline at Tal y Foel. However, 

more recent anecdotal observations and unpublished data suggest that the local geographic 

range of this population has recently expanded (see Morgan 2007a). 

 

1.7 Conclusions and questions addressed 

This introductory chapter highlights the multiple ecosystem engineering properties of non-native 

oysters and how their future invasion potential may become further augmented in the face of 

global climate change. Preliminary data have repeatedly shown that O. chilensis promotes 

species richness within the Menai Strait and Conwy Bay SAC, primarily due to its provision of a 
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hard substratum in an area otherwise predominating of soft sediments. In high densities, several 

mobile species also take refuge within its intricate shell matrix (Appendix I). However, no 

analysis has yet been conducted to investigate how this increase may endanger the qualifying 

habitats of the SAC and their ecosystem function. Regrettably, a worryingly low amount of 

robust scientific endeavour has been dedicated to elucidate the past, present and future 

invasion dynamics of the Chilean oyster population within the Menai Strait and Conwy Bay SAC. 

Following a 30-year lag phase confined to the site of original introduction, anecdotal 

observations of occurrences of O. chilensis as far as 30 km away from the invasion foci during the 

last 8 years signifies an urgent need to update the distribution records of this non-native oyster 

species. Moreover, no information exists regarding its reproductive dynamics or its future as a 

significant invader within its introduced region. 

The primary aim of this thesis is to investigate past records, present observations and 

future predictions relating to the biological invasion of the non-native Chilean oyster within the 

Menai Strait and Conwy Bay SAC. Chapter 2 presents the finding of a quantitative survey of the 

current distribution of the oyster population within the area. The data are compared with the 

findings of Richardson et al. (1993b) which, prior to scientific studies herein, served as the only 

comprehensive survey of the Chilean oyster population to date. The chapter also outlines how 

the current UK legislation framework does not offer adequate mitigation measures for those 

species that are currently innocuous beyond their native geographic range. Chapter 3 provides a 

comprehensive account of the reproductive dynamics of the Chilean oyster population, 

investigating both the spatial and temporal variability over three years of study. Despite its high 

settlement rates, the highly-reduced planktonic larval phase and highly-gregarious nature of this 

species suggests that the dispersal of this species away from the site of original introduction is 

heavily-reliant upon secondary dispersal mechanisms related to anthropogenically-mediated 

activities. Following anecdotal observations of oyster-fouled common periwinkles (Littorina 

littorea L. 1758) within the area, Chapter 4 investigates the potential role of a previously 

unidentified anthropogenic activity, namely the commercial collection of periwinkles, as a 

transport vector responsible for both the small- and large-scale dispersal of this non-native 

oyster species. Using both field observations and laboratory experiments, Chapter 5 investigates 

the potential impact of forecasted increases in both the frequency and intensity of cold winter 

climatic extremities on the future proliferation of this non-native oyster population. Finally, 

Chapter 6 provides a synthesis of all experimental chapters and discusses possible future 

regulation and management advice regarding the proliferation of a non-native oyster species in 

areas beyond its native geographic range. It is my intention for each data chapter to function 

equally as stand-alone chapters when read in isolation and a comprehensive synthesis when 
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read as a full document, thus explaining some overlap within the introduction and discussion 

sections of all data chapters. Additional information relevant to the main body of text is also 

included in the form of appendices at the end of each chapter and all references cited 

throughout the entire thesis are compiled in Chapter 7. 
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Appendix I: Assessing oyster reef complexity and its relationship with 

biodiversity 

 

Preliminary studies have been carried out on the changes in community composition associated 

with an increasing density of O. chilensis. The following figures are just some of the results from 

two MSc projects which I co-supervised with Drs Jan Hiddink and Gwladys Lambert (Stäbler 

2011) and Prof. Chris Richardson (Vearey-Roberts 2011) respectively. Reef complexity was 

estimated from a digital image of a standard profile gauge, whose 'needles' followed the outline 

of the underlying oyster bed (see Figure I). This outline could then be converted to several 

indices of complexity using the formulas presented in Figure II. Several measures of oyster reef 

complexity were shown to be highly correlated with oyster density (see Figure III for example). 

 

  
 

Figure I Digital image (taken parallel to the seabed) showing the relative positions of numerous 

'needles' of a profile gauge, held tightly to both the oyster reef (bottom of image) and the 

camera by a modified copy stand (from Stäbler 2011). 

 

 
 

Figure II Schematic representation of the calculations of three indices of complexity, namely 

'chain and tape' = ∑(c) / ∑(t), 'vector dispersion' = var(α) and 'height difference' = ∑(b2) (from 

Stäbler 2011). 
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Figure III Relationship between and the 'chain and tape' index of oyster reef complexity total 

oyster shell density, observed at Plas Trefarthen (North Wales, UK) (from Stäbler 2011). 

 

Figures IV and V show how total biomass, number of individuals and species richness all increase 

with increasing oyster density. Both epifaunal (Stäbler 2011) and mobile (Vearey-Roberts 2011) 

species showed significant increases in richness with increasing oyster densities, although no 

such difference was observed within the infaunal community. 

 

 
 

Figure IV Boxplot of total biomass (g) of all organisms found within 1 m2 plots at Plas Trefarthen 

(North Wales, UK). Density category: 1 = no oysters, 2 = low oyster density (<10 m-2), 3 = medium 

oyster density (~50 m-2), 4 = high oyster density (>100 m-2) (from Vearey-Roberts 2011). 



46 
 

 
 

Figure V Relationships between both total number of individuals (left) and species richness 

(right) with oyster shell density at Plas Trefarthen (North Wales, UK) (from Stäbler 2011). 

 

This suggests that allogenic ecosystem engineering (sensu Jones et al. 1994; Chapter 1) is 

currently of relatively low importance to the non-native oyster population in the Menai Strait. 

Given the dynamicity of the tidal currents and the relatively recent formation of the Plas 

Trefarthen oyster reef (<20 years old), it is likely that rates of sedimentation is low within the 

region, thus explaining the difficulties experienced in standardising core volumes between 

replicates. However, the ever-increasing build-up of oyster shells is likely to aid in the trapping of 

sediment (see Chapter 1). The allogenic engineering properties of non-native oysters and their 

potential impacts upon the native biodiversity and ecosystem function may not be stable in time 

and space, and should thus not be disregarded. 
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Chapter 2 

 

 

 

 

 

 

 

 

Capricious bioinvasions versus uncoordinated management 

strategies: how the most unlikely invaders can prosper under the 

current UK legislation framework 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



48 
 

2.1 Abstract 

Biological invasions are known to be highly unpredictable and context-dependent, varying both spatially 

and temporally, particularly in areas of intense anthropogenic activity and disturbance. Even the most 

unlikely invader can rapidly become problematic in the absence of frequent, coherent and flexible 

management strategies. Using the recent spread of the Chilean oyster (Ostrea chilensis Philippi 1845) 

within a designated Special Area of Conservation (SAC), this chapter describes what can happen to 

seemingly innocuous non-native species under the often complicated and uncoordinated current UK 

legislation framework. Following >30 years of containment at Tal y Foel (North Wales, UK), O. chilensis, a 

species with a highly-reduced natural dispersal capacity, has now spread over a range of >30 km of 

shoreline. Alternative transport vectors, including rafting and several anthropogenic activities, are likely to 

have facilitated the dispersal of O. chilensis away from Tal y Foel. Areas of high oyster densities (maximum 

= 232 oysters m
-2

) have become established both close to and distant from the site of original 

introduction. The presence of all year classes throughout the observed age range (≤7 and ≤9 years old in 

the intertidal and subtidal populations, respectively) confirms regular annual recruitment within the SAC. 

Information is now urgently required regarding the factors that promote the persistence and spread of O. 

chilensis within its new environment, as well as the impacts of its increasing localized dominance on the 

native biodiversity and ecosystem function. As well as providing valuable, up-to-date information on the 

recent spread of this non-native species, this chapter highlights discrepancies in the current UK legislation 

framework that allow for the successful establishment and spread of even the most unlikely invaders. The 

formation of a comprehensive and dedicated EU legal framework for managing invasives is advocated that 

also promotes coherence and continuity with impending legislative instruments concerning other relevant 

sectors. 

 

 

 

 

 

 

The following chapter has been published in the journal 'Aquatic Conservation: Marine and 

Freshwater Ecosystems' (2011 5-year impact factor = 2.217) and is thus subject to copyright by 
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2.2 Introduction 

Biological invasions have long been recognised as a key component of anthropogenically-

mediated changes to the environment on a global scale (Vitousek et al. 1997). Whilst only a 

small fraction of introduced non-native species (NNS) are thought to proliferate and become 

ecologically and/or economically damaging within their new environment (see Williamson 1996), 

the costs associated with some of the most severe biological invasions can often be catastrophic 

(Pimentel et al. 2005). Means of predicting which NNS are most likely to become invasive, as 

well as the spatial and temporal dynamics of their respective invasions, have thus become major 

focal points of both management and research efforts in recent years. Of particular prevalence is 

the identification of biological traits that are shared amongst the most effective invaders (e.g. 

Ehrlich 1989; Williamson and Fitter 1996; Pattison et al. 1998). Whilst reviews of the biology and 

invasive history of NNS (e.g. Eno 1996; Eno et al. 1997; Hill et al. 2005) provide useful insights 

into their potential invasiveness, evidence in support of consistent biological traits (including 

high fecundity and high natural dispersal capabilities) across multiple invasive taxa is often 

lacking (Lodge 1993; Kolar and Lodge 2001; Hayes and Barry 2008). Furthermore, both species 

invasiveness and habitat invasibility can be spatially and temporally variable, especially in areas 

of intense anthropogenic activity and disturbance (Colautti et al. 2006), meaning that even the 

most unlikely invader can rapidly become problematic in the absence of regular risk assessment 

and monitoring protocols. The present study documents the recent spread of one such species, 

namely the non-native Chilean oyster (Ostrea chilensis Philippi 1845) within the Menai Strait and 

Conwy Bay Special Area of Conservation (SAC). 

Native to both Chile and New Zealand (see O'Foighil et al. 1999), O. chilensis has 

supported a highly profitable fishery in New Zealand since the mid-nineteenth century (NZMF 

2008), although commercial yields have varied in the last two decades due to epizootics of the 

haplosporidian parasite, Bonamia exitiosa (Hine et al. 2001) (see Dinamani et al. 1987). Based 

solely on its life history characteristics (see Millar and Hollis 1963; Cranfield 1968; Westerskov 

1980), it is thought that the offspring of this oyster species is highly unlikely to spread far from 

adult conspecifics; a desirable implication for both fisheries and aquaculture management 

(Walne 1974). It is a protandric hermaphrodite and, unlike most other oyster species, it has a 

low fecundity and a highly extended brooding period. An individual female oyster (50-85 mm 

shell length) will typically brood ~50,000 larvae within the mantle cavity (Cranfield and Allen 

1977) for up to eight weeks (Chaparro 1990). The proportion of brooding females within a 

population can be as low as 6% (Cranfield and Allen 1977), although this is highly variable 

between populations (see Buroker et al. 1983). The larvae are predominantly released as 

pediveligers, rapidly settling in the vicinity of their adult conspecifics providing that a suitable 
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substratum is available (Hollis 1962; Cranfield 1968; Westerskov 1980). Evidence of the 

premature release of small numbers of larvae has also been documented (Cranfield and Michael 

1989), although the ability of such larvae to undergo metamorphosis and settlement, as well as 

their survival rate and fitness, is unclear. 

O. chilensis was experimentally introduced into the UK by a branch of the Ministry of 

Agriculture, Fisheries and Food (MAFF) during the early 1960s. Following a strict quarantine 

regime, releases of laboratory-reared juvenile O. chilensis, cultured by the MAFF from 

broodstock imported from both Chile and New Zealand, were transplanted onto the low 

intertidal shore at Tal y Foel (now part of the Menai Strait and Conwy Bay SAC - see Figure 2.1), 

in an attempt to establish the potential of this oyster as an aquaculture species (see Walne 

1974). Subsequent growth trials soon demonstrated that O. chilensis suffered high spat 

mortalities during the winter months. The species was also deemed to be relatively slow-

growing and susceptible to the disease, Bonamiasis; traits that quickly ruled out the species as a 

possible replacement oyster for the native oyster, Ostrea edulis L. 1758. Despite evidence of 

recruitment in 1970 (see Walne 1974), with the focus of the MAFF was subsequently turned to 

other avenues of research, and the remaining surviving oysters at Tal y Foel were abandoned 

and left to their own devices. 

A census of the O. chilensis population in 1992 reported that a small, discrete population 

had become established at Tal y Foel (see Figure 2.2), restricted to a 0.4 km stretch of the 

intertidal (mean density = 2.3±0.9 oysters m-2, maximum oyster density = 12 oysters m-2 in very 

close proximity to the invasion foci) (see Richardson et al. 1993b). A lack of suitable settlement 

substrata surrounding the area of original introduction was believed to have impeded the 

further spread of O. chilensis, although a few isolated examples were also found attached to 

commercial oyster trestle frames, located 0.5 km northward from Tal y Foel. More recently, 

several anecdotal sightings of O. chilensis within other areas of the SAC have been reported, 

although no specific, formal monitoring of this non-native oyster population has been carried 

out. 

As well as providing valuable, up-to-date information on the recent spread of this NNS 

within and around a designated marine SAC, this chapter suggests likely vectors responsible for 

the successful propagation of O. chilensis. Current discrepancies in UK legislation and 

management strategies concerning the effective regulation of NNS, allowing for the successful 

establishment and spread of even the most unlikely invaders are also discussed. 
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Figure 2.1 Map showing the location of the Menai Strait and Conwy Bay Special Area of Conservation (SAC) (North Wales, UK; see inset map), as well as 

the site of original introduction of the Chilean oyster (Ostrea chilensis) at Tal y Foel. Two other SACs (bordering the Menai Strait and Conwy Bay SAC) 

and all Sites of Special Scientific Interest (SSSIs) (occurring either partially or wholly within the Menai Strait and Conwy Bay SAC) are also displayed, 

showing areas where provision under the Habitats Directive 1992 is therefore extended to mean high water. Data used to generate SAC and SSSI 

boundaries is subject to Crown Copyright (reserved). Countryside Council for Wales, Licence No. 100018813. 
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2.3 Methods 

2.3.1 Study site 

The Menai Strait is a narrow tidal channel (mean width = 0.8 km) that separates the Isle of 

Anglesey from mainland Wales (Figure 2.1). Due to a large anomaly between tidal ranges at 

opposing ends of the Menai Strait, the area is subjected to strong quadri-diurnal tidal currents of 

up to 2.5 m s-1. A residual flow from Liverpool Bay in the north-east to Caernarfon Bay in the 

south-west and a relatively short seawater residence time of 2-3 days (Rippeth et al. 2002) 

results in a continuous supply of relatively nutrient-rich sea water; a key feature to the success 

of the large-scale commercial mussel (Mytilus edulis L. 1758) farming industry in the north-

eastern end of the Menai Strait (Simpson et al. 2007). Small-scale cultivation of the Pacific oyster 

(Crassostrea gigas (Thunberg 1793)) also occurs in the southern part of the Menai Strait at Tal y 

Foel and Plas Menai (see Figure 2.2). 

Despite the strong tidal flow in the Menai Strait, the area is sheltered from wave action, 

thus creating a unique environmental setting with an associated high biodiversity. The area 

forms part of the Menai Strait and Conwy Bay SAC (see CCW 2009), primarily selected due to the 

presence of four qualifying marine habitat types ('Mudflats and sandflats not covered by sea 

water at low tide', 'Reefs', 'Sandbanks slightly covered by sea water all the time' and 'Large 

shallow inlets and bays'), listed under Annex 1 of the EC Habitats Directive 1992, along with their 

associated biota. The SAC also contains, either partially or wholly, a number of Sites of Special 

Scientific Interest (SSSIs), as well as two Special Protection Areas (SPAs), classified under the EC 

Birds Directive 1979 and its subsequent amendments. The majority of the SAC is subtidal, with 

its landward boundary following the mean low water mark (approximately 2.0 m above chart 

datum). Some areas of the intertidal are also protected when seaward boundaries of SSSIs or 

SPAs adjoin or overlap the landward fringe of the SAC (see Figure 2.1). The region is considered 

to be of major ecological and economic interest, and has been the focus of several scientific 

studies since the early 1960s (Young 1994; Morris and Goudge 2006). 

 

2.3.2 Intertidal population survey 

Surveys of the distribution of the intertidal O. chilensis population were conducted in October, 

2009. Twenty-four sites were chosen, based on the following criteria: a) the presence of a 

suitable habitat/substratum type for oyster settlement, b) close proximity to the site of the 

original introduction of O. chilensis by the MAFF, c) evidence of natural spat settlement of other 

bivalve mollusc species, such as mussels (Mytilus edulis L. 1758) and cockles (Cerastoderma 

edule (L. 1758)), d) anecdotal evidence of possible oyster presence, and e) high anthropogenic 

activity (e.g. aquaculture, bait collecting, periwinkle collection, yachting). 
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Each site was surveyed during a 5-day period of extreme low water spring tides (tides 

less than 0.5 m above chart datum). Three replicate 80m transect lines were laid parallel to the 

low water mark at two tidal levels (0.5 m and 1.0 m above chart datum) at each site. Four 

replicate 0.25 m2 quadrats were randomly placed either side of each transect line at 20 m 

intervals, giving a total coverage of 10 m2 per transect (60 m2 per site, 1080 m2 in total). Pre-

survey observations showed that employing this sampling strategy accounted for the ‘clumped’ 

distribution of O. chilensis and the high small-scale variability in density. The numbers of live and 

dead oysters were counted within all quadrats. A digital image was acquired of the first of each 

set of four quadrats, and used to estimate oyster shell percentage cover and biotope type of 

each site. 

All live oysters within each photographed quadrat were measured along the dorso-

ventral axis of the flat (right) shell valve (hereafter ‘shell length’) to the nearest 0.1 mm using 

Vernier callipers. A 30-minute ‘timed search’ was conducted at any site where no oysters 

occurred within any of the quadrats. This gave an indication of whether or not oysters were 

present in the area, but at densities too low to be detected by the sampling strategy.  

 

2.3.3 Subtidal population survey 

Observations of the subtidal oyster population were conducted adjacent to 17 of the 24 

intertidal sites during November, 2009. Digital images of the shallow subtidal at each site were 

obtained using a purpose-built camera sled, fitted with a Canon EOS 400d Digital SLR camera 

housed inside a water-proof casing and towed using a small boat (90 bhp outboard motor) at ~2 

knots along single transect lines (810.0±94.9 m) during periods of extreme high water spring 

tides (6.0 m above chart datum). The camera settings were pre-calibrated in a tank of sea water 

in the laboratory, ensuring a 0.15 m2 field of vision. Still images were captured every 12 seconds, 

ensuring an average coverage of 11.81±1.43 m2 at each site. Sampling depth was estimated by 

subtracting tidal range away from observed depth, giving depths of approximately 3-8 m below 

chart datum. For comparative purposes, images were also obtained from deeper parts (>20 m 

below chart datum) of the Menai Strait where possible. The images were later analysed for the 

presence/absence of O. chilensis and to give an indication of the habitat type at each site.  

Samples of subtidal O. chilensis were also obtained for size-frequency analysis using a 

mussel dredge (750 x 200 mm steel frame, mesh size = 5mm at cod end), trawled along each 

transect line in order to obtain relative densities of adult O. chilensis at each site. Geographic 

coordinates (decimal degrees) were obtained at the beginning and end of each trawl, giving an 

estimation of the total area sampled during each trawl. The shell length of each live-caught 

oyster was measured to the nearest 0.1 mm using Vernier callipers. A comparison of the 
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estimates of oyster density obtained by dredging and from images of the sea bed showed that 

the fishing efficiency of the dredge was in the region of 20%. 

 

2.3.4 Age determination 

The age of various sizes of O. chilensis (approximately 20-80 mm shell length), collected from 

intertidal and subtidal sites, was determined from the presence of annual growth lines in acetate 

peel replicas of resin embedded and etched shell sections (see Richardson et al. 1993a). Acetate 

peel replicas were viewed using a transmitted light microscope fitted with a Ricoh Caplio R7 

digital camera. Photomontages of the sectioned umbo region were produced using Omnimet® 

image analysis software and the number of annual growth lines was counted. The distance 

between each growth band was also calculated (see Richardson et al. 1993a). 

 

2.4 Results 

O. chilensis occupies a narrow tidal range along the shores of the Menai Strait, extending from 

mean low water into the shallow subtidal (2.0 m above to 8.0 m below chart datum), meaning 

that the entire oyster population resides within the SAC boundary. No oysters were found at 

depths >20 m below chart datum, where fast currents and a lack of suitable substrata most likely 

inhibit larval settlement. Both the mean intertidal density and the range of the population have 

increased markedly since 1992 (Table 2.1). Oysters are now found intertidally from the 

southernmost tip of the Menai Strait (Abermenai Point) to Glyn Garth, covering a distance of >30 

km of shoreline (Figure 2.2). This distribution pattern was generally closely mirrored in the 

shallow subtidal, with the highest subtidal oyster densities observed at Abermenai Point, Tal y 

Foel, Plas Trefarthen and Llanidan (Figure 2.3). No oysters were found subtidally at sites where 

O. chilensis was absent or rarely found intertidally. Furthermore, mean oyster density was highly 

correlated with the habitat type, with significantly higher densities present in areas where hard 

substrata was predominant. O. chilensis has now become established on the mainland side of 

the Menai Strait, near Caernarfon. 

Using intertidal observations made in 1992 by Richardson et al. (1993b), a linear 

decrease in log-transformed oyster densities is generally evident in both north-easterly and 

south-westerly directions away from the invasion foci (Figure 2.4). This exponential decline is 

consistent with the highly-reduced natural dispersal capacity of this species. Areas of soft 

sediment which flank either side of the oyster bed may have also restricted further dispersal 

(Figure 2.4). Repeating the analysis with the data obtained during the current study period 

(Figure 2.5) highlights several interesting points. Although the current mean oyster density 

observed at Tal y Foel (12.8±1.8 m-2) is comparable to those recorded in 1992 (see Table 2.1), the  
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Table 2.1 Comparative table of distribution parameters for the Chilean oyster (Ostrea chilensis) population in the Menai Strait and Conwy Bay Special 

Area of Conservation (North Wales, UK) between 1992 and 2009. 1992 data obtained from Richardson et al. (1993b). 

 

 1992 2009 

Site of overall maximum oyster density Tal y Foel Plas Trefarthen 

Mean (±SE) Intertidal Oyster Density at site of maximum density 2.3±0.9 oysters m-2 59.2±6.9 oysters m-2 

Mean (±SE) Subtidal Oyster Density at site of maximum density n/a 35.2± 4.5 oysters m-2 

Maximum observed density (intertidal) and location 12 oysters m-2 (Tal y Foel) 232 oysters m-2 (Plas Trefarthen) 

Maximum observed density (subtidal) and location n/a 112 oysters  m-2 (Plas Trefarthen) 

Intertidal Size Range (shell length) 10-100 mm Spat-90 mm 

Subtidal Size Range (shell length) 20-95 mm Spat-100 mm 

Age classes present (intertidal) Spat – 5 years old Spat – 7 years old 

Age classes present (subtidal) Spat – 7 years old Spat – 9 years old 

Total range covered <1 km >30 km 
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Figure 2.2 Map showing intertidal sampling sites in the Menai Strait (North Wales, UK; see inset map), along with respective mean Chilean oyster 

(Ostrea chilensis) densities (number of oysters m-2, pooled from 0.5 m and 1.0 m above chart datum for each site). Rare / localised densities refer to 

areas where no oysters were recorded within the transects, but at least one individual found during a 30-minute timed search of the lower intertidal. 

Site names = 1: Abermenai Point, 2: Traeth Melynog, 3: Stud Farm, 4: Cae Aur, 5: Mermaid, 6: Tal y Foel (MAFF), 7: Plas Trefarthen, 8: Llanidan, 9: 

Mussels, 10: Castell Gwylan, 11: Moel y Don, 12: Plas Newydd, 13: Pwll Fanogl, 14: Church Island, 15: Glyn Garth, 16: Gallows Point, 17: Beaumaris, 18: 

Fort Belan, 19: Tŷ Calch, 20: Waterloo Port, 21: Plas Menai, 22: Y Felinheli, 23: Y Faenol, 24: Porth Penrhyn. 
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Figure 2.3 Map showing subtidal sampling areas (3-8 m below chart datum), adjacent to each intertidal sampling sites in the Menai Strait (North Wales, 

UK; see inset map), along with respective mean Chilean oyster (Ostrea chilensis) densities m-2. L = areas where no oysters were found in any digital 

image quadrats, but at least one individual was collected by trawling a mussel dredge along the respective transect line. ND = no data. Pie charts 

indicate mean relative proportions of various substrata at each site. See Figure 2.2 for site names. 
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Figure 2.4 Change in Chilean oyster (Ostrea chilensis) densities (log-transformed) with distance (in metres) away from the invasion foci (Tal y Foel = 0 m) 

within the Menai Strait and Conwy Bay Special Area of Conservation (North Wales, UK) as of 1992. Positive and negative values of x indicate movements 

to the north-west and south-east respectively. Patterned bar below graph shows the change in predominant substrate type with distance away from 

the invasion foci. Dark grey = hard substrate, Light grey = soft sediment overlaid with patches of boulders, pebbles and other debris, Open = sand / mud. 

Raw data obtained from Richardson et al. (1993b). 



59 
 

 

Figure 2.5 Change in Chilean oyster (Ostrea chilensis) densities (log-transformed) with distance (in metres) away from the invasion foci (Tal y Foel = 0 m) 

within the Menai Strait and Conwy Bay Special Area of Conservation (North Wales, UK) as of 2009. Positive and negative values of x indicate movements 

to the north-west and south-east respectively. Patterned bar below graph shows the change in predominant substrate type with distance away from 

the invasion foci. Dark grey = hard substrate, Light grey = soft sediment overlaid with patches of boulders, pebbles and other debris, Open = sand / mud. 
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Figure 2.6 Exceptionally high densities of the Chilean oyster (O. chilensis) observed at Plas Trefarthen, part of the Menai Strait and Conwy Bay Special 

Area of Conservation (North Wales, UK). 
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predominant habitat type of this locality has changed markedly such that mussels lays now 

dominate the majority of an area once covered by cobble stones and mixed hard substrata 

(Figures 2.4 and 2.5). The soft sediment barrier to the north-east of Tal y Foel has now been 

breached, giving rise to a second exponential decline in oyster density originating at Plas 

Trefarthen (Figure 2.5) with mean intertidal oyster density of 59.9±6.9 oysters m-2 and a 

maximum of 232 oysters m-2. A steady linear decline in logarithmic densities persists north-east 

of Plas Trefarthen, with the lowest densities correlating with a significant decrease in hard 

substrata towards Moel y Don. Although a somewhat erratic decline in oyster densities was 

observed south-west of Tal y Foel, unusually high densities (21.1±6.0 oysters m-2) were also 

found at Abermenai Point. Whilst only low densities (<0.2 oysters m-2) have become established 

on the soft-sediment substratum separating the site of original introduction and Plas Trefarthen, 

a large number of oysters were found attached to trestle frames at this location (approximately 

66 oysters per frame). 

Size-frequency distributions of both intertidal and subtidal populations of O. chilensis 

along the Menai Strait displayed clear modal size-class peaks that corresponded to the 

population year classes determined from the number of growth lines in the sectioned shells. 

However, this relationship breaks down after 4-5 years as the size classes of the oysters merge 

together and overlap so that there is no longer a distinction between subsequent modal (year) 

classes (Figure 2.7). The oldest oysters collected from the intertidal and subtidal were seven and 

nine years old respectively (both >80mm shell length). The presence of all year classes from 

newly settled spat (<1 year) to oysters up to 7 and 9 years old, in the intertidal and subtidal 

respectively, indicates that there has been regular annual recruitment into the populations over 

the last 10 years (Figure 2.7). 

 

2.5 Discussion 

The present investigation documents a significant increase in both the density and range of the 

non-native Chilean oyster in the Menai Strait and Conwy Bay SAC over the last 20 years. 

Following at least 30 years of containment at Tal y Foel (see Richardson et al. 1993b), it has now 

spread over a range of more than 30 km along the Menai Strait. It is also likely to have spread 

outside the southern boundary of the SAC. Areas of very high densities have become established 

both near and distant from the site of original introduction. The Chilean oyster is the dominant 

benthic organism within such patches. 

Regular annual recruitment is likely to have contributed to the localised dominance of O. 

chilensis within areas of the SAC. Within its native range, O. chilensis is known to produce larvae 

at seawater temperatures as low as 9-10°C (Stead 1971; Westerskov 1980), with peak larval
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Figure 2.7 Relative size-frequency distribution of the Chilean oyster (Ostrea chilensis), collected 

intertidally (dark grey) and subtidally (light grey) at Plas Trefarthen, Menai Strait (North Wales, 

UK) during October-November, 2009. Arrows denote mean size-at-age, obtained from analysis of 

acetate peel replicas of the hinge region of the shell. Star denotes mean shell length of oysters 

born during the 2009 spawning season. 
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production coinciding with water temperatures of approximately 13-18°C (Hollis, 1962; Stead, 

1971; Cranfield and Allen 1977; Westerskov 1980; Jeffs et al. 1996). Hayes and Barry (2008) 

suggest climate similarity between the native and new environments to be one of the only 

consistent predictors of NNS establishment success over several biological groups. The Menai 

Strait shares many similar environmental conditions to those found in several areas harbouring 

commercial densities of O. chilensis within its native range (Table 2.2). Whilst the UK is 

positioned several latitudinal degrees higher than both Chile and New Zealand, interactions 

between atmospheric circulation and seasonal patterns in oceanic heat exchange augments its 

relatively mild winters (Seager et al. 2002) and temperate oceanic climate, giving a climatic 

match of 70% similarity between the native and non-native range of O. chilensis (‘CLIMATCH’; 

Bureau of Rural Sciences 2009). Information regarding potential regulators of recruitment 

success (e.g. predation, intra- and inter-specific competition) within its novel environment is 

currently lacking (although see Appendix III).  

 

2.5.1 Possible avenues of spread during the last 20 years 

Considering its highly-reduced planktonic larval phase, its inability to spread along the Menai 

Strait during the first 30 years following its establishment, and the largely unfavourable 

conclusions to the assessment of its suitability as a potential aquaculture species in the UK, the 

recent and relatively substantial spread of O. chilensis along the Menai Strait may seem 

somewhat surprising. However, prolonged delays in population expansions have been commonly 

observed in nature amongst even the most notorious alien invaders (termed ‘lag phases’ sensu 

Crooks and Soulé 1999). Due to the nature of population growth, particularly in relation to 

sedentary and slow-moving species, a NNS might need to reproduce and reach a critical effective 

population level before it can expand its distribution from the site of original introduction (i.e. an 

‘inherent lag’). Lag phases can also be surpassed either from a direct or indirect alteration to 

environmental conditions or geographical features which hitherto restricted the successful 

proliferation of a particular NNS. Warmer sea temperatures, arising from global climate change, 

may lead to earlier spawning events and an extended breeding period (Stachowicz et al. 2002), 

potentially increasing the invasibility of an NNS. The construction of the Suez Canal, linking the 

waters of the Mediterranean and Red Seas, has led to several instances of Lessepsian migrations 

(see Galil 2008). Alternatively, lag phases may be overcome by a product of a change in genetic 

fitness which previously inhibited the ability of a NNS to compete and proliferate within its novel 

environment. Whilst the hybrid product of the UK native (Spartina maritima (Curtis) Fernald) 

and North American non-native (Spartina alterniflora Loisel) cord grasses is infertile (Spartina 

townsendii H. and J. Groves), its later allotetraploid derivative (Spartina anglica C.E. Hubb) is
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Table 2.2 Comparative table of environmental parameters, likely to affect the reproductive capabilities of the Chilean oyster (Ostrea chilensis) in both 

its native range (New Zealand and Chile) and in the Menai Strait and Conwy Bay Special Area of Conservation (North Wales, UK). 

 

 

 

Location 

Peak minimum 

seawater 

temperature 

Peak maximum 

seawater 

temperature 

Salinity Water flow Sources of data 

Foveaux Strait (New Zealand) 8.0°C 16.0°C 34.5-35.5 <2-3 knots Westerskov (1980) 

Otago Harbour (New Zealand) 6.5°C 16.0°C 31.7-35.6 0.6-2.75 knots Westerskov (1980) 

Quempillén Estuary (Chile) 9.5°C 18.8°C 28-33 n/a Toro et al. (1995) 

Menai Strait (North Wales, UK) 5.0°C 18.0°C 32-35 1-4 knots Evans et al. (2003) 
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fertile and is now a dominant of the intertidal fringe of saltmarshes through most of north-west 

Europe (see Williamson 1996). 

Assuming an exponential decline in densities away from a central point of release, a 

logarithmic transformation of oyster densities should display a linear decrease with distance 

away from the parental stock, so long as the natural dispersal ability of the larvae remains 

consistent and is the only operating factor. This pattern has been observed in species with low 

reproductive dispersal capabilities over very short distances, such as the samphire, Sargassum 

spinuligerum Sonder (Kendrick and Walker 1991). However, considerable range expansions in 

populations of introduced species are not exclusive to those species possessing a significant 

planktonic larval dispersal phase (e.g. Jackson 1986; Johannesson 1988; O'Foighil 1989; Thiel 

2003). NNS of limited natural dispersal abilities must rely on alternative sources of transport 

away from the adult population, often related to a wide range of anthropogenic and 

anthropogenically-mediated activities (e.g. Johnson et al. 2001; Hewitt et al. 2007; Mineur et al. 

2007). Such alternative vectors of NNS spread often stem from sporadic and unregulated 

activities (see below), or are simply unknown, providing further challenges to management 

strategies. Since 1992, it appears likely that alternative vectors (see below, with additional 

references in Appendix II) may have facilitated the relatively long-distance dispersal of O. 

chilensis to areas away from Tal y Foel. 

 

Increase in Anthropogenic Activities 

The breaching of physical or environmental barriers previously inhibiting the geographic spread 

of NNS (e.g. waterfalls, mountain ranges, unsuitable habitat) can often be facilitated by 

anthropogenic activities. For example, facilitation of upstream anadromous fish migrations, 

through the removal of natural physical barriers such as waterfalls, has been called into question 

due to the possibility of promoting the spread of invasive species (Kerby et al. 2005). A lack of 

suitable settlement substrata flanking the Chilean oyster bed at Tal y Foel was previously 

identified by Richardson et al. (1993b) as a likely factor that had constrained the spread of O. 

chilensis away from Tal y Foel. Anecdotal evidence indicates that breaching of this physical 

environmental barrier has occurred due to several anthropogenic activities, the intensity of 

which has significantly increased in the area during recent years. Activities include bivalve 

culture, fishing and associated bait collecting (including ‘peeler crabs’ (pre-ecdytic shore crabs, 

Carcinus maenas L. 1758) and periwinkle (Littorina littorea L. 1758) collection (see Chapter 4). 

During the late 1990s, more than 300 oyster trestles were moved from Tal y Foel 

towards Plas Trefarthen (now the current site of maximum mean oyster density in the Menai 

Strait), following a change of ownership of the Tal y Foel commercial oyster beds and a 
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significant increase in the intensity of bivalve culture in the area. Man-made coastal structures 

(e.g. boats, breakwaters, moorings, off-shore wind turbines) can be colonized by NNS, and are 

thought to occasionally facilitate their spread by providing ‘hitch-hiking’ or ‘stepping stone’ 

opportunities (e.g. Petersen and Malm 2006; Hewitt et al. 2007; Locke et al. 2007). This chapter 

shows commercial oyster trestles to be a suitable settlement substratum for O. chilensis in areas 

otherwise lacking hard substrata. 

Several large O. chilensis of various sizes (up to 90 mm shell length) were found on a 

patch of ground near Porth Penrhyn, along with some large Pacific oyster specimens. It is 

believed that they were accidentally transferred from the southwestern end of the Menai Strait 

by a trawler carrying mussels from Tal y Foel (E.I.S. Rees, pers. comm.). During our surveys, 

juvenile oysters were quite often found attached to mussels at both Abermenai Point and 

Llanidan. Oysters ranging between 5 and 45 mm shell length were also found attached to the 

shells of common periwinkles at several sites, particularly those containing high oyster densities. 

Periwinkle collection is an unregulated activity within the area and novel information regarding 

the periwinkle fishery within the SAC is presented in Chapter 4. Approximately 50 adult O. 

chilensis are also known to have been deliberately transferred (a legal activity under the current 

legal framework) from Tal y Foel to the mainland shore at Tŷ Calch during 2006/7, but were 

never retrieved. A small population of O. chilensis has subsequently become established on the 

mainland side of the Menai Strait.  

 

Rafting 

The passive transport of sessile organisms upon floating debris (termed ‘rafting’) is a known 

significant route for the geographic expansion of some marine organisms, often over large 

distances (e.g. Jackson 1986; O'Foighil 1989). Rafting upon floating pumice stones has been 

identified as the most likely method of trans-Pacific range expansion of O. chilensis (O'Foighil et 

al. 1999). Canopy-forming macroalgae are well-known rafting vectors (e.g. Hobday 2000; Thiel 

2003). Both the serrated wrack (Fucus serratus L.) and the kelp (Laminaria digitata (Hudson) 

Lamouroux) are commonly found along the Menai Strait, particularly in areas of high oyster 

densities (pers. obs.). Several independent records of O. chilensis attached to rafts (particularly 

macroalgae) have been reported. A single oyster (52 mm shell length) was found attached to the 

holdfast of Laminaria digitata at Traeth Melynog (T.A. Whitton, pers. comm.); a sandy beach 

neighbouring Abermenai Point. Several O. chilensis spat have also been identified on a F. 

serratus frond at Llanidan (see Appendix II). Dislodgement of large macroalgae often occurs in 

the Menai Strait during winter storms, whilst deliberate removal of macroalgae is also a 

common occurrence amongst some bait collectors, with the latter activity gaining increased 
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popularity in the area during the last 20 years (B. Roberts and R. Sharp, pers. obs.). The net flow-

through of water in a south-westerly direction (Rippeth et al. 2002) and the regular formation of 

a back-eddy at Abermenai Point throughout most of the flooding tide (see Morgan 2007a) may 

lead to an eventual breach of an inherent lag through the eventual accumulation of Chilean 

oyster rafts at Abermenai Point, and may go some way to explain the anomalously high densities 

at this site shown in Figures 2.3 and 2.7. Macroalgae are not the sole rafting vector for Chilean 

oysters on the SAC, as four adult O. chilensis were found attached to a water-logged stick near 

Castell Gwylan in 2004 (see Appendix II). 

 

2.5.2 Potential effects of O. chilensis on the qualifying habitats of the SAC 

Whilst the likely effects of the spread of O. chilensis on the qualifying habitats of the SAC are 

currently unknown, the influential role played by oysters in the regulation of local population 

and community dynamics through their habitat creation and modification abilities (termed 

‘ecosystem engineering’ sensu Jones et al. 1994) are numerous (Ruesink et al. 2005). Oyster 

reefs may be involved in the protection and amelioration of neighbouring ecologically-important 

habitats such as saltmarshes and seagrass meadows (Peterson and Heck 1999; Meyer and 

Townsend 2000; Newell and Koch 2004). Their gregarious nature leads to the creation of 

structurally-complex, heterogeneous biogenic habitats that promote niche diversification and 

biodiversity (Dame and Patten 1981; Zimmerman et al. 1989; Kennedy 1996; Lehnert and Allen 

2002; Dubois et al. 2006), often leading to changes in the trophic structure of the community 

(Newell 1988; Dubois et al. 2007; Newell et al. 2007). Due to their structural resilience, oyster 

shells persist on the sea bed long after their death, and as a result, the ‘engineering’ functions of 

oysters extend far beyond their own lifespan (Parras and Casadío 2006). 

Within their native range, regeneration of biogenic reefs is thought to provide new 

habitats for the proliferation of O. chilensis. The resulting increase in habitat complexity is 

thought to promote stocks of the commercially-important blue cod, Parapercis colias (Forster in 

Bloch and Schneider 1801) (Cranfield et al. 2001), as well as macrobenthic biodiversity (Cranfield 

et al. 2004). A strong linear increase in both the number of individuals and species richness of 

benthic organisms with increasing oyster shell density has been observed within the Chilean 

oyster beds of the Menai Strait (see Appendix I). The increased complexity offered by higher 

oyster shell densities is shown to have a positive effect on the abundance of several species, 

including several polychaetes and marcoalgae, as well as O. chilensis juveniles. This may have 

important implications for the growth of the Chilean oyster population. As larvae are released at 

an advanced stage of development (pediveliger), the natural dispersal potential of the Chilean 

oyster is limited to the locality where they were released (Cranfield 1968; Stead 1971; 
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Westerskov 1980). Furthermore, it is likely that strong chemical signals from adult conspecifics, 

known to induce settlement behaviour in several other oyster species (e.g. Tamburri et al. 1992; 

Zimmer-Faust and Tamburri 1994), help maintain a strong stock-recruitment relationship. 

Further analysis is now required to see whether or not the positive increase in biodiversity with 

oyster density has implications on the trophic structure of the community, the ecosystem 

services provided and the quality and quantity of the qualifying habitats of the SAC and their 

associated flora and fauna (particularly “reefs”, as defined by CCW 2009). 

  

2.5.3 Review of current key legislation concerning the introduction and spread of non-native 

species in the UK 

The Convention on Biological Diversity 1992 (hereafter ‘CBD’) is routinely regarded as the most 

influential instrument regarding the conservation of biodiversity from the growing threats posed 

by NNS across all continents and concerning all transport vectors. Under Article 8(h), each 

Member State is obliged, as far as possible and as appropriate, to “prevent the introduction of, 

control or eradicate, those alien species which threaten ecosystems, habitats or species”. Whilst 

methods of implementation of Article 8(h) are not directly prescribed, subsequent Decisions 

communicated by the Conference of the Parties (COP) have aided in its transcription to regional 

and national legislation. Of particular significance is the introduction of non-binding Guiding 

Principles (GPs) (Annex I of the 6th COP, Decision VI/23), calling for a “precautionary” (GP 1) and 

“three-stage hierarchical” (i.e. “prevention”, “detection / surveillance” and “control / 

eradication") (GP 2) approach to managing biological invasions, with strong encouragement for 

collaboration and information-sharing between Member States (GPs 8 and 9). With at least 45 

global instruments and several more dealing, at least indirectly, with the control of NNS at 

regional and national levels (Fasham and Trumper 2001), a comprehensive account of NNS policy 

is well beyond the scope of this paper. Rather, we aim to highlight legislation concerning 

currently innocuous NNS that became established prior to the enactment of the relevant 

legislation. Where pertinent, we highlight the shortcomings within the current policy framework 

which has allowed for the spread of such species. 

The UK’s commitment to Article 8(h) of the CBD is currently addressed through various 

European Directives and several national legislation and strategies (Table 2.3), most of which are 

often supplementary provisions, added to legislation directly concerning the protection of other 

particular interests (e.g. birds, shellfish movements, specific habitats, water quality). 

Responsibility for the implementation of each individual piece of legislation is thus devolved to 

several different governmental agencies, departments and statutory advisors to whom the 

nature of the legislative obligations concern, resulting in a rather conflicting and disjointed 
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legislation framework concerning NNS. Whilst the emphasis of both legislation and management 

efforts is placed on the more successful and cost-effective prevention of NNS introductions (see 

Table 2.3), such strategies do not make provision for those currently innocuous NNS that 

became established prior to the enactment of legislation, and thus do not fully adopt the 

hierarchical approach indicated in GP 2 of the CBD. Furthermore, GP 1 states that a “lack of 

scientific evidence should not be used as a legitimate reason for lack of action”.  

 The EC Habitats Directive 1992 aids in the conservation of diversity amongst both 

species and habitats across the European Union, thus partially fulfilling each Member State’s 

commitment to the objectives of the CBD. Article 22(b) relates to the safeguarding of various 

habitats and wildlife from the potentially detrimental effects of NNS, and is prescribed through 

the designation of SACs that are managed accordingly to protect and conserve those habitats 

and species identified as being of European importance (see Annex I and II of the Directive 

respectively). Under Regulation 35 of the Habitats Regulations 2010, each relevant 

Governmental Agency are required to provide conservation objectives for each respective SAC, 

as well as to assess and stipulate potentially detrimental activities that are of relevance to the 

objectives of the Directive. However, it appears that no provision is made for accidentally-

introduced species nor indeed for those species that have already become established prior to 

enactment. Also of relevance are the anthropogenic activities within the SAC that are likely to be 

associated in facilitating the spread of O. chilensis (see above). Whilst recognized as potential 

targets for review under the UK Marine and Coastal Access Act 2009, ‘bait collecting’ (i.e. hand-

collection of ‘peeler crabs’, lugworms (Arenicola marina L. 1758) or sword razor shell (Ensis 

siliqua (L. 1758)) and ‘winkle picking’ (i.e. hand-collection of Littorina littorea) are two examples 

of anthropogenic coastal activities that are currently subjected to minimal regulation under 

current UK legislation. Quantification of the importance of such unregulated activities to the 

transfer of NNS is now recommended as part of the assessment of currently unmanaged 

anthropogenic activities within SACs, as specified under Regulation 35 of the Habitats 

Regulations 2010. Whilst the recent formation of central depositories of information has likely 

improved public awareness concerning invasive species, the associated risks associated with 

their accidental transfer to new environments need to be fully considered if Statutory 

Instruments and other forms of control are to be created to help regulate human-mediated 

spread of NNS. 

The Wildlife and Countryside Act 1981, along with its many amendments, is considered 

by many as offering some of the most powerful legislation regarding the introduction of NNS 

into the UK, although the lack of enforcement of this legislation since its ratification is 

contradictory to such views (Fasham and Trumper 2001). Excluding Scotland, where the Wildlife 



70 
 

Table 2.3 Summary of some of the key concerning non-native species in the UK, along with their respective relevance to the Chilean oyster (Ostrea 

chilensis) population in the Menai Strait and Conwy Bay Special Area of Conservation (North Wales, UK). 

 

Legislative 

Instrument 

Section of relevance to NNS and / or 

invasive species management 

Does the provision cover NNS already-

established prior to the enactment of the 

relevant legislation? 

 
EC Habitats Directive 

1992 
 

 
Following the obligations stated under the Bern Convention 
1979, the Directive concerns the conservation of several 
habitats of ‘European importance’ and their associated flora 
and fauna. 
 
Article 22b notes that each Member State must ensure that 
“the deliberate introduction into the wild of any species which 
is not native to their territory is regulated so as not to prejudice 
natural habitats within their natural range or the wild native 
fauna and flora and, if they consider it necessary, prohibit such 
introduction”. 
 

 
Like the ECC Birds Directive 1979, the Directive focuses on 
the prevention of introduction, thus the provision offered 
to species which have already become established prior to 
the enactment of this Directive is weak. Despite the 
habitat modification abilities of oysters, there remains no 
information on the modification abilities of O. chilensis 
upon the qualifying habitats within the SAC. 
 

 
Shellfish and Specified 

Fish (Third Country 
Imports) Order 1992 

 

 
The Order relates to the restriction of importation into GB of 
any shellfish or specified fish species from non-Member State 
Countries. 
 
Article 1 states that “no person shall import into Great Britain 
from a third country any shellfish or specified fish except under 
the authority, and in accordance with the provisions, of a 
licence issued by the appropriate Minister”. 
 

Again, the Order makes provision for the prevention of 
entry of selected species from outside political boundary, 
but fails to address the prevention of movements of those 
NNS who have already become established within GB. 
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Imports of Live Fish Act 

1980 
 

 
The Act aims to prevent the import, keeping or release of live 
fish and shellfish, along with their reproductive products, into 
the waters of England and Wales (except under licence). 
 
Article 1 (s1) forbids the “release, in any part of England and 
Wales of live fish, or the live eggs of fish, of a species which is 
not native to England and Wales and which in the opinion of 
the Minister might compete with, displace, prey on or harm the 
habitat of any freshwater fish, shellfish or salmon in England 
and Wales”. 
 

 
The text appears to lack reference to those species that 
have already become established prior to its enactment. 
Furthermore, this Act is specific to the import and keeping 
of those NNS which are known to be harmful to the 
habitats of fish and shellfish. Whilst the habitat 
modification abilities of oysters in general are well-
documented, no information is currently available on the 
ecosystem engineering potential of the Chilean oyster. 
 

 
Wildlife and Countryside 

Act 1981 
 

 
The Act is considered by many as offering some of the most 
powerful legislation regarding the introduction of NNS into the 
UK. 
 
Section 14 of the Act signifies that it is  “an offence to release 
(or allow to escape) into the wild animals "not ordinarily 
resident" or that are not regular visitors to Great Britain and 
other animals listed in Part I of Schedule 9, except under 
licence”. 
 

 
The Act makes no provision for those species introduced 
prior to the enactment of this legislation. Furthermore, 
the Chilean oyster is absent from Schedule 9, and is 
unlikely to be added to the list under the current 
consenting process. It therefore currently remains legal to 
transfer this species within the UK under this Act. 
 

 

 

 



72 
 

 

 

 

 
 

Marine and Coastal 
Access Act 2009 

 
Marine (Scotland) Act 

2010 
 
 

 
Whilst no new or additional measures specifically relating to 
NNS are provided within these Acts, they provide the means 
for the creation of Conservation Orders that can be used to 

manage otherwise unregulated activities when this is 
necessary to further the conservation objectives of a particular 

Marine Conservation Zone or Marine Protected Area 
respectively. 

 

Whilst, in principle, this potentially provides a useful 
additional tool to the management of all NNS, it does not 
clearly address the precautionary approach noted in GP 1 
of the CBD. It is envisaged that a NNS would have to 
demonstrate invasiveness, either within the Protected 
Area or elsewhere, before any action is taken under this 
premise. 

EC Plants Health 
Directive 2000  

 
The Directive provides a legal framework for plant health 
within the EC, providing “protective measures against the 
introduction into the Community of organisms harmful to 
plants or plant products and against their spread within the 
Community”. 
 

 
The Directive actively embraces the GPs of the CBD (see 
Unger, 2003), adopting a ‘precautionary’ approach to 
invasive species management and is one of the only 
legislative Instruments adequately addressing both the 
introduction of new NNS as well as the spread of all NNS, 
including those already established prior to its enactment. 
 
It is unfortunately only relevant to plant species and their 
associated ‘pests’. Furthermore, implementation of the 
Directive at UK-level is devolved to the relevant 
governmental agencies within each of the 4 UK countries, 
meaning that adequately achieving its objectives thus 
requires substantial coordination. 
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and the Environment (Scotland) Act 2011 has provided several superseding amendments to the 

Act (see below), it remains “an offence to release (or allow to escape) into the wild animals "not 

ordinarily resident" or that are not regular visitors to Great Britain and other animals listed in 

Part I of Schedule 9, except under licence” under Section 14 of the Act. The term “not ordinarily 

resident” is taken to signify any species that is not resident in the wild in the UK, and thus 

Section 14(1)(a), as with many other UK legislation concerning NNS (see Table 2.3), is involved in 

the control and prevention of entry of NNS, and does not directly address those species that 

were introduced prior to the formulation of legislation, unless listed under Schedule 9. The 

minimum review period for additions to Schedule 9 is, at best, quinquenial, and there does not 

appear to be any mechanism for adding a species to the Schedule in the interim period. 

Furthermore, the consenting process for adding species to Schedule 9 appears to be heavily 

based on previous knowledge of taxa-specific invasions (e.g. evidence of previous invasive 

capabilities, likelihood of invasive behaviour based on life history characteristics; see Annex B of 

DEFRA 2009). In Scotland, however, Schedule 9 has been repealed under Article 17 (s8) of the 

Wildlife and the Environment (Scotland) Act 2011. Provision is instead provided by way of 

Orders. It appears that Section 14(1)(b) also makes provision for the anthropogenically-

facilitated spread of a NNS to new areas outside its native range.  

The Invasive Non-native Species Framework Strategy for Great Britain (DEFRA 2008) 

contains many promising aspects in relation to the development of legally-binding instruments 

aiding in the management of invasive species. The objectives of the Strategy are grounded in the 

GPs of the CBD, with sections 6 and 7 dedicated to both the ‘prevention of introduction’ and the 

‘early detection, surveillance, monitoring and rapid response’ of NNS respectively. Section 7 also 

advocates the need for more rapid response assessments to identify, as well as regular, careful 

monitoring of even the most inconspicuous species, thereby increasing the efficacy of 

management decisions and strategies, with 7.1 and 7.3 specifically referring to those established 

NNS who are yet to demonstrate their invasive capabilities. With its main obligation aimed at 

achieving or maintaining “good environmental status in the marine environment by 2020” (see 

Article 1 (s1)), the EC Marine Strategy Framework Directive 2008 (transcribed to UK legislation 

through the Marine Strategy Regulations 2010) requires all Member States to provide, by 2012, 

“an analysis of the essential features and characteristics, and current environmental status of 

those waters...”, including “an inventory of the temporal occurrence, abundance and spatial 

distribution of non-indigenous, exotic species” (see Table 1 of Annex III of the Directive). Whilst it 

is appreciated that conducting frequent surveys that solely target a particular NNS would not be 

cost-effective, it may be possible to incorporate monitoring of the spread of NNS into present 

survey designs of the relevant conservation agency or otherwise (particularly within SACs, where 
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qualifying habitat surveys are conducted under the premise of the ‘Common Standards 

Monitoring for Designated Sites’ (Williams 2006). The formation of central depositories of 

information will also encourage knowledge transfer between all of the various stakeholders, 

including governmental agencies and research institutes. It is hoped that these aspects can 

either be transcribed into legislation, either through major amendments to the current 

legislative framework or, more preferably, through provision stemming from the creation of 

comprehensive EU legislation, specifically intended for the management of non-native and / or 

invasive species and their many associated sectors of interest (e.g. aquaculture, climate change, 

fishing) (see below). Encouragingly, responsibility for the organization, development and 

implementation of the Invasive Non-native Species Framework Strategy for Great Britain has 

been allocated to a single coordinating body, namely the Great Britain Non-Native Species 

Mechanism (see Section 4 and Annex 1 of DEFRA 2008). 

Four policy options have been proposed for consideration regarding the development of 

the EU Strategy on Invasive Species (Genovesi and Shine 2004). Table 2.3 aides in highlighting a 

minimum requirement for the targeted amendments to existing NNS legislation, particularly 

where the focus is placed solely on the introduction of new NNS. Expanding the provision to 

cover those NNS that have become established prior to the enactment of the relevant legislation 

would cover a broader range of potentially invasive species, as well as abide to the 

precautionary approach introduced in GP 1 of the CBD (“Option B+” of Genovesi and Shine 

2004). This is not a novel suggestion (see Manchester and Bullock 2000), and it remains 

unknown why a revision of the legal provision concerning NNS in the UK has not been previously 

considered. Scotland has provided additional and upgraded provisions to several Acts of 

Parliament, including the Wildlife and Countryside Act 1981, through the ratification of the 

Wildlife and the Environment (Scotland) Act 2011. However, this strategy alone does not address 

the current complexity and lack of coherence and connectivity in the current legislation 

framework regarding invasive species. We advocate the opinions of Shine et al. (2010), who 

suggests the creation of a comprehensive and dedicated EU legal framework for managing 

invasive species (“Option C” of Genovesi and Shine 2004). For each Member State, the 

framework would provide clear, direct objectives for both the prevention of invasive species, as 

well as rapid risk assessment and prioritization techniques for the management of those 

currently innocuous NNS that have already become established. As demonstrated by the 

Invasive Non-native Species Framework Strategy for Great Britain (DEFRA 2008), responsibilities 

should be granted to a dedicated coordinating body, and a mechanism promoting effortless 

coherence and continuity with impending legislative instruments and other relevant sectors 

should also be created. 
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Conclusions 

As far as the Chilean oyster population in the Menai Strait and Conwy Bay SAC is concerned, 

complete eradication of a species whose long-distance dispersal relative to its natural ability is 

very likely facilitated by multiple transport vectors would now undoubtedly prove impossible. 

Information is urgently required regarding the factors which promote the persistence and spread 

of this non-native oyster within the SAC and beyond, as well as the impacts of its increasing 

localized dominance on the native biodiversity and ecosystem function. Bearing in mind the 

profound ecosystem engineering abilities of oyster, it is therefore considered to be of prime 

importance to identify which factors are currently controlling the distribution and invasive 

abilities of the non-native O. chilensis population, how likely these factors are to change in the 

near future, and what implications this might have on the native communities within the Menai 

Strait and Conwy Bay SAC. 

Additional provision would be enforced if the Chilean oyster was to be commercially 

cultured in the area in the future. The EC Regulation concerning the use of alien and locally-

absent species in aquaculture 2007 provides a dedicated framework involving "the introduction 

of alien species and translocation of locally absent species for their use in aquaculture within the 

EC". The term “introduction” in this instance appears to cover the deliberate movement of a NNS 

to “an environment outside its natural range for use in aquaculture”, and is thus likely to include 

the intentional movements of those NNS that have already become established within the EU to 

areas beyond their natural dispersal abilities. It currently remains unclear how the Regulation 

will be transcribed to UK legislation. Further clarification for the inclusion of already established 

NNS within the legislation is advocated. 
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Appendix II: Anecdotal accounts of sightings of the Chilean oyster (Ostrea 

chilensis) in the Menai Strait 

 

 

"I had another search for Tiostrea yesterday afternoon. The furthest 

east was near to Castell Gwylan and that was just a single individual. I 

could find none at Moel y Don. I found just a few near the old jetty 

below Porthamel so they seem to decline quite markedly to the east of 

the Llanidan lane to the shore where there were about 5 per square 

metre. There may be another mechanism aiding the spread as I found four 

on a water-logged stick." 

 

Mr E. Ivor S. Rees – 12th October 2004 

 

 

"Apart from the Brynsiencyn area, the only occurrence of Tiostrea that 

I'm aware of is near Port Penrhyn.  The last time I visited Ballast 

Bank, I found a patch of ground just NW of the harbour wall where there 

were quite a few large Crassostrea gigas and what I thought were Ostrea 

edulis in various sizes up to about 9cms in length. Kim Mould (of 

'Bangor Mussel Producers') suspected that they were T. lutaria and when 

I looked at them back here it seems he was right. At least, they are 

definitely not O. edulis, so I'm guessing that they're T. lutaria as I 

don't have any description of that species. Kim seems to think that they 

were transferred from the W end of the Strait by the 'Still Ostrea' with 

some Brynsiencyn mussels. As far as I know, no-one has any commercial 

interest in Tiostrea. Kim said he did take some of the large C. gigas 

for his own consumption and would eat the T. lutaria too if he found 

them!" 

 

Mr Bill Cooke – 14th October 2004 

 

 

"Found a couple of oysters at 10 m whilst diving off Plas Newydd.  I 

have attached photos of the small one which I brought back" 

 

Mr Paul Brazier – 31st July 2009 
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Figure VI A small Chilean oyster (Ostrea chilensis), collected live by Mr Paul Brazier at ~10 m 

below chart datum at Plas Newydd (North Wales, UK) on the 19th July 2009 (image by Mr Paul 

Brazier). 

 

 

Figure VII Numerous Chilean oyster spat (Ostrea chilensis), newly settled on a piece of serrated 

wrack (Fucus serratus) and collected by Mr Paul Brazier at Llanidan (North Wales, UK) at 

approximately mean low water during the summer of 2010 (image by Mr Paul Brazier). 
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Chapter 3 

 

 

 

 

 

 

 

 

Reproductive dynamics of the non-native Chilean oyster (Ostrea 

chilensis Philippi 1845) outside its native geographic range: 

past, present and future 
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3.1 Abstract 

The geographic range expansions of many non-native species (NNS) are being facilitated as a 

result of a rapidly warming climate, often at the expense of native competitors. Understanding 

long-term changes in the reproductive dynamics of NNS is thus critical for the attainment of 

long-term conservation objectives. As well as providing comprehensive data on the reproduction 

of the Chilean oyster (Ostrea chilensis) outside its native geographic range (Menai Strait, North 

Wales, UK), this chapter demonstrates the importance of seasonal seawater temperature 

changes and food availability on the initiation, rate and magnitude of gametogenesis. Despite its 

narrow breeding season (June-July) and low annual numbers of brooding oysters (≤4.6% of all 

oysters ≥60 mm shell length), high spatfall was observed each year (maximum mean monthly 

spat settlement = 2,570 spat m-2 y-1), particularly following periods of high food concentrations 

(up to 14.2 μg L-1) during early gametogenesis. Coupled with evidence of its highly-reduced 

natural dispersal capacity (<100 m), it is suggested that anthropogenically-mediated transport 

vectors have played a critical role in the recent spread of the O. chilensis population within the 

Menai Strait. Evidence is presented suggesting that a significant increase in mean annual 

seawater temperatures is likely to have contributed to the recent increase in the proliferation of 

this non-native oyster within the UK. Whilst further warming of the Earth's atmosphere is likely 

to further extend the breeding season, it remains to be seen whether or not future plankton 

dynamics will match or mismatch with the nutritional requirements of adult Chilean oysters and 

how this may affect the invasions success of this species in the near future. 
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3.1 Introduction 

Oysters (family: Ostreidae) inhabit areas of the intertidal and shallow sublittoral of estuarine and 

marine environments, spanning between temperate and tropical latitudes (Carriker and Gaffney 

1996). Historically, overfishing, disease and recruitment failure have led to the decimation of 

many commercial shellfish stocks worldwide, prompting considerable scientific endeavour into 

the culture of more suitable, alternative species with which to replenish native oyster beds. As a 

result, several oyster species have been deliberately introduced into areas beyond their native 

geographic range (see Walne 1974; Mann 1979). Often facilitated by human-mediated activities, 

movements of non-native species (NNS) across biogeographic boundaries have led to 

ecosystem-level changes with significant economic implications (Thomas et al. 2004). As a result, 

'biological invasions' are currently identified as one of the most prevalent modifiers of global 

change (Vitousek et al. 1997). By instigating physical state changes in biotic and abiotic materials 

(thus altering the availability of resources to other species), non-native oysters can create, 

maintain and modify their habitat, leading to significant community and ecosystem level changes 

within their new environment (termed ‘ecosystem engineering’ sensu Jones et al. 1994). Their 

shells provide a hard substratum upon which fouling organisms may settle, often in areas of 

otherwise predominantly soft sediment. Gregarious behaviour promotes the formation of 

complex, three-dimensional benthic assemblages which offer a spatial refuge from predators 

and physical stresses (Coen et al. 2000) for a range of organisms including juveniles of 

commercially-important species (Lehnert and Allen 2002). Oysters are also proficient filter-

feeders and play a key role in the translocation and transformation of large quantities of energy 

between the overlying water column and the benthos (Dame et al. 1980). By filtering large 

quantities of organic matter from the water oysters can function as important trophic links that 

provide a previously inaccessible source of energy to a range of benthic carnivorous predators 

and detritivors (Dame and Patten 1981). Biodeposition of faecal material can also modify the 

physical and chemical properties of the underlying sediment, and also initiate changes in the 

species assemblage composition and trophic pathways (Dubois et al. 2007). 

The magnitude of any biological invasion is governed by the adaptivity and tolerance of 

the invader to a wide range of environmental factors (i.e. its invasiveness), the sensitivity of the 

invaded community to invasion stress (i.e. its invasibility), as well as the frequency and intensity 

of invader propagule release (i.e. propagule pressure). These determinants are becoming 

significantly compromised as a result of a rapidly warming climate, often favouring the 

proliferation of non-native species (NNS) at the expense of several native co-inhabitants (Dukes 

and Mooney 1999; Hellmann et al. 2008; Rahel and Olden 2008). Specifically, the reproductive 

dynamics of many temperate marine species is highly influenced by both sea temperature and 
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the synchronicity between productivity and propagule development (Philippart et al. 2003). A 

warmer environment is likely to promote the establishment and spread of several NNS that were 

unable to proliferate under previous thermal regimes. Consequential phenological adaptations 

(e.g. augmented breeding season, earlier onset of recruitment, increased reproductive output) 

may further enhance invasive propagule pressure (Stachowicz et al. 2002; Sorte et al. 2010; 

Willis et al. 2010). Native species, on the other hand, are likely to be pushed closer to their upper 

thermal tolerance limits, with the increased physiological stress leading to a reduction in their 

competitive ability (Somero 2011). Understanding the reproductive dynamics of NNS is thus 

critical to the formation, prioritisation and successful execution of future management 

strategies, aimed at promoting the preservation of native biodiversity and ecosystem 

functioning. Such information can be particularly beneficial if obtained prior to the 

establishment of a NNS, when the prevention of spread through eradication is still a viable 

management option. 

The Chilean oyster (Ostrea chilensis Philippi 1845) is indigenous to Chile and New 

Zealand, spanning a geographic range of 41-47°S and 34-47°S respectively (Buroker et al. 1983). 

The species is highly regarded as an oyster of both ecological and economic significance within 

its native range. Whilst infection by a haplosporidian parasite (Bonamia exitiosa Hine et al. 2001) 

has severely depleted fishing stocks in New Zealand during the last 25 years (Dinamani et al. 

1987), over 8 million oysters was nonetheless harvested in 2009, equating to a retail value in 

excess of US$14.5 million. The increase in habitat complexity associated with dense O. chilensis 

beds is known to cause significant changes to the benthic macrofaunal community (Cranfield et 

al. 2004), as well as enhancing the commercially-important blue cod, Parapercis colias Forster 

1801, stocks (Cranfield et al. 2001). Relative to other congeners, O. chilensis exhibits a highly 

extended brooding period, where the developing larvae remain in the mantle cavity for up to 8 

weeks (Chaparro 1990). O. chilensis is a protandric hermaphrodite, maturing first as males 

before later developing into either simultaneous hermaphrodites or true females (Jeffs 1998). 

The larvae are predominantly released as pediveligers and will settle within a couple of hours, 

providing that a suitable substratum is available (Millar and Hollis 1963). Propagule dispersal is 

thus highly restricted and likely to be influenced by local currents and timing of release 

(Broekhuizen et al. 2011), although the possibility of earlier release as planktonic veliger larvae 

has also been proposed at lower latitudes (Cranfield and Michael 1989). 

The Chilean oyster was introduced at Tal y Foel (Menai Strait, North Wales, UK) by the 

Ministry of Agriculture, Fisheries and Food (MAFF) during the early 1960s (Walne 1974) in an 

attempt to establish its potential as an alternative species with which to boost the diminishing 

native oyster (Ostrea edulis L. 1758) populations. Despite its highly reduced natural dispersal 
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capacity and initial lack of spread during the first 30 years following its introduction (Richardson 

et al. 1993b), the Chilean oyster has recently shown a significant enhancement in its 

geographical extent within the now-designated Menai Strait and Conwy Bay Special Area of 

Conservation (SAC). A significant increase in the intensity of several local anthropogenic activities 

(e.g. bait collecting, mussel harvesting, yachting) and a lack of sufficient regulation under the 

current UK legislation framework have been suggested as possible reasons for this change (see 

Chapters 2 and 4), although the role of longer-term changes in key environmental parameters is 

currently unknown. Due to its status as a valuable fishery species and its potential as an 

important ecosystem engineer, the life history and reproductive dynamics of O. chilensis have 

been extensively studied throughout its native range (see Toro 1995; Jeffs and Creese 1996). 

Although the Chilean oyster is known to cause significant changes to species diversity with 

increasing densities in the Menai Strait (see Appendix I), information regarding the recently-

observed proliferation of the UK Chilean oyster population is completely lacking. The present 

investigation thus provides comprehensive, quantitative information on the reproductive 

dynamics of the O. chilensis population within the Menai Strait and Conwy Bay SAC, with focus 

on both intra- and inter-annual spatial and temporal variation in the resulting spat recruitment 

patterns. As well as providing critical information for the effective management of this species 

outside its native geographic range, the present study demonstrates the value of critical 

environmental parameters, measured both across the entire native range of this species and 

within the SAC, as useful predictors of future invasion success of O. chilensis in a rapidly-

changing climate. The data demonstrate how even the most innocuous NNS can become 

invasive if left unregulated for a considerable length of time. 

 

3.2 Methods 

3.2.1 Water temperature and chlorophyll-a concentration 

Seawater temperature was monitored at 30 minute intervals during the entire study period 

(April 2009–October 2011) using three temperature loggers (Gemini Tinytag™ Splash 2 TG-410), 

each mounted on fixed structures at 0.8 m above chart datum at each of three locations in the 

Menai Strait, namely Abermenai Point, Mermaid and Plas Trefarthen (see Figure 3.1 for all site 

locations hereafter). Data collection and logger maintenance (including the removal of fouling 

organisms) were carried out at monthly intervals (when possible) during extreme low water 

spring tides (ELWS). Upon retrieval, the data were manually ‘de-spiked’ in order to remove 

anomalous values obtained during periods when the loggers were aerially exposed during ELWS. 

Monthly seawater chlorophyll-a concentrations were also determined at each site during the 

same period using the spectrophotometric method of Jeffrey and Humphrey (1975). 500 mL of 
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Figure 3.1 Map showing the Menai Strait and Conwy Bay Special Area of Conservation (blue), and the locations of the ten sites (1-10) where Chilean 

oyster (Ostrea chilensis) larval settlement was monitored. Site names: 1. Abermenai Point, 2. Traeth Melynog, 3. Stud Farm, 4. Cae Aur, 5. Mermaid, 6. 

Tal y Foel (site of original introduction), 7. Plas Trefarthen, 8. Llanidan, 9. Castell Gwylan, 10. Moel y Don. The data used to generate the SAC boundary 

are subject to Crown Copyright (reserved). Countryside Council for Wales, Licence NO. 100018813. 
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seawater was collected from ~50 cm below the surface at each site during ELWS. Samples were 

stored in opaque bottles and were always processed within 2 h following collection. Samples 

were filtered through 47 mm Whatman GF/C-type filter paper at 0.7 bar residual pressure and 

the chlorophyll-a extracted in 10 mL of acetone during a 24 h period of refrigeration. Each 

sample tube was centrifuged at 1000 rpm for 10 minutes and the absorbance of the resulting 

supernatant was measured at wavelengths of 630, 647, 664 and 750 nm using a 

spectrophotometer. Chlorophyll-a concentration was calculated using the following equation: 

 

                                                                     
  

      
  

 

where En = absorbance at wavelength n (nm), LP = cuvette light-path (cm), Ve = extraction 

volume (mL) and Vf = filtered volume (L). 

 

3.2.2 Adult brooding status and reproductive condition 

Between April 2009 and October 2011, 15 small (40-50 mm shell length) and 15 large (60-70 mm 

shell length) oysters were collected monthly from Plas Trefarthen. To minimise the effect of any 

site-specific variation, all oysters were collected at 0.8 m above chart datum and from a 

restricted stretch of the shoreline (<0.3 km). All debris and epifaunal organisms were removed 

from the exterior surface of all specimens using a blunt knife and a hard-bristled brush. All 

oysters were transferred immediately to the laboratory, where both shell valves and their 

respective tissue sample were dried to constant weight at 60°C for 72 h in a drying oven and 

subsequently weighed to the nearest 0.01 g using a top-loading balance. Dried tissues were fully 

combusted at 500°C for 5 h in a muffle furnace and the ash-free dry weight (AFDW) of each 

tissue sample calculated. A condition index was calculated for each oyster using the following 

equation: 

 

                      
           

        
  

 

The presence of oyster larvae within the mantle cavity was also noted where applicable. 

Estimates of the number of brooding larvae, mean larval size and stage of development were 

obtained by retaining each brood on a 100 μm sieve and washing before dilution in 100 mL of 

filtered seawater. Following re-suspension of the larvae using a perforated plunger, five replicate 

samples (500 μL each) were pipetted onto a haemocytometer. Mean larval density, size and life 
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stage were determined using a compound microscope fitted with a calibrated eyepiece graticule 

and viewed at up to 40x magnification. 

To ascertain the relationship between changes in adult oyster condition and 

gametogenesis, monthly assessments of gonad development in 5 mm3 sections of gonad tissue 

taken from a further 15 small and 15 large oysters were undertaken between March and 

November 2010, based on the histological methods of Jeffs (1998). The gonad is packed around 

the digestive gland, so care was taken to ensure that samples were obtained from a localised 

region of the tissue to ensure consistency and comparability between individuals (see Jeffs 

1998). Tissues were fixed for 36 h in Bouin’s solution and preserved in 70% industrial methylated 

spirit until required. Following dehydration through a graded alcohol series (70-100% ethanol), 

the tissues were cleared in xylene and embedded in paraffin wax. 7 μm-thick microtome sections 

were stained and counter-stained with haematoxylin and eosin respectively and permanent slide 

mounts prepared. Each histological preparation was examined using a compound microscope at 

up to 40x magnification to determine the sex (male, female or hermaphrodite) and subsequently 

assigned to a particular gonadosomatic index (Table 3.1), indicative of their respective stages of 

development (see Figure 3.2). 

 

3.2.3 Patterns of spat settlement 

Spatial and temporal variations in spat settlement were assessed at 10 sites in the Menai Strait 

and Conwy Bay SAC. At each site, four replicate settlement panel arrays were placed at intervals 

of 10 m at 0.8 m above chart datum. Each array consisted of four replicate slate panels (18x15 

cm each), with the centre of each panel positioned 20 cm away from the centre of its closest 

neighbouring panel. Slate is a natural material that is commonly found along the shores of the 

Menai Strait, where it is often fouled with several sessile epifauna, including O. chilensis. 

Panel arrays were first deployed during March 2009. At monthly intervals, all panels 

were collected and replaced with fresh panels, lightly cleaned using a soft wire brush and rinsed 

in a light acid solution. Collected panels were carefully placed in a designated rack system which 

avoided contact between panels and immediately returned to the laboratory for analysis. Only 

the underside of each panel was examined, whilst a 1cm-thick border around the perimeter of 

the panel was also ignored to avoid potential edge effects. Each panel thus equated to a total 

area of 0.02 m2, equivalent to 0.32 m2 at each site. All spat (including dead specimens, 

distinguished by disarticulated shell valves with only the left valve remaining attached) were 

counted under a dissection microscope (6x magnification), giving an estimate of monthly 

settlement. 
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Table 3.1 Descriptions of the various gonadosomatic index (GSI) stages observed in the Chilean 

oyster (Ostrea chilensis) population from the Menai Strait and Conwy Bay SAC. 

 

GSI Description 

0 

 
Resting or Spent 
Total absent of any gametogenic products. 
Includes both immature oysters and spent oysters. 
 

1 

 
Early Development (see Figure 2a) 
Typified by onset of follicle formation (<25% of the entire histological section), 
containing early-stage gametogenic products. 
Ripe gametes (particularly ova) extremely rare. 
 

2 

 
Late Development 
Characterised by general increase in gonad mass (25-50% of the entire histological 
section). 
Reduction in stored food within the connective tissue. 
All stages of gametogenesis now present, with predominant stage of both male and 
female products varying between follicles. 
 

3 

 
Fully Ripe (see Figure 2b) 
Gonad mass >50% of the entire histological section. 
Ripe gametes (usually male) now predominant, although majority of follicles still 
contain small amounts of 1° and 2° spermatocytes and/or oocytes. 
 

2 

 
Spawning 
Although still relatively full, follicles are now undergoing an active discharge of 
gametes. 
Characterised by a general loss of late-stage gametogenic products into tubules. 
 

1 

 
Resorption of Residual Gametes (see Figure 2c) 
Follicles continue to reduce in size 
Follicles contain residual gametes undergoing cytolysis by phagocytotic 
amoebocytes, occurring in very high densities within the follicles and, less 
commonly, the connective tissue matrix. 
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Figure 3.2 Photomicrographs (10x magnification) of histological sections of the reproductive tissue of Chilean oysters (Ostrea chilensis), showing (a) a 

male oyster showing early signs of gametogenesis (GSI stage 1, early development), (b) a large, ripe simultaneous hermaphrodite oyster (GSI stage 3, 

fully ripe), and (c) a near-spent individual showing empty follicles and the resorption of the remaining residual gametes (GSI stage I, resorption of 

residual). dg = digestive gland. 
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3.2.4 Larval dispersal 

During June 2011, a transplantation experiment was conducted to mimic and quantify larval 

dispersal away from an established oyster bed. The experiment was designed to help determine 

whether site-specific spat settlement is a result of proximity to adult oysters or simply due to 

larval supply from more distant conspecifics. A total of 100 adult oysters (50-90 mm shell length) 

were transferred from Plas Trefarthen to the low shore (0.8 m above chart datum) of two sites 

(Mermaid and Traeth Melynog), where both adult oysters and spat settlement were rarely 

observed during 2009-2010 (see Chapter 2). The chosen sites were not, however, located 

towards the perimeters of the current distribution of O. chilensis within the Menai Strait, thus 

ensuring that the geographic range expansion of this NNS was not intentionally encouraged. 

Settlement panels were positioned both within and at specific distances away from the newly-

transferred oyster patches (0, 20, 40 and 100 m). All panels were positioned at the same tidal 

height and only in one direction (towards the south-west), away from the transferred oyster 

patch. Spat settlement was estimated on each panel in July, which was the peak settlement 

period observed in the Menai Strait during both 2009 and 2010 (see below). 

 

3.2.5 Data analysis 

A 3-way mixed model ANOVA was used to compare inter- and intra-annual oyster condition of 

both small and large oysters. Inter-annual variability in condition indices was intended to be 

discussed in relation to specific environmental parameters (namely sea temperature and 

chlorophyll-a concentration) recorded during each particular year, thus Year (3 levels) was 

considered a fixed factor. Both Month (9 levels) and Size (2 levels) were considered random 

factors, with Month nested within Year. Due to the ordinal nature of the GSI, a non-parametric 

Scheirer-Ray-Hare test was used to assess whether or not any significant temporal differences in 

GSI could be observed between the two size classes of oyster. A 3-way mixed model ANOVA was 

used to compare peak spatfall densities between years and sites, as well as among settlement 

panel arrays within sites. Inter-annual variability in peak settlement was intended to be 

discussed in relation to specific environmental parameters (namely sea temperature and 

chlorophyll-a concentration) recorded during each particular year, thus Year (3 levels) was 

considered a fixed factor. Both Site (4 levels) and Array (4 levels) were considered random 

factors, with Array nested within Site. Spatial (site: 10 levels, random) and temporal (year: 3 

levels, fixed) variability in mean total annual spatfall was compared using a non-parametric 

Scheirer-Ray-Hare test. A 2-way ANOVA was used to test for any differences in spat settlement 

with distance away from the introduced oyster patches (4 levels, fixed) and between sites (2 

levels, random). All ANOVA statistical analyses were conducted using the software GMav5 for 
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Windows (University of Sydney, Australia; see Underwood and Chapman 1997), whilst all non-

parametric and regression-based tests were conducted using Minitab (Version 15). 

 

3.3 Results 

3.3.1 Water temperature and chlorophyll-a concentration 

Environmental parameters showed relatively little variability between locations, with site-

specific differences in seawater temperatures generally smaller than the stated accuracy of the 

data loggers themselves. As a result, data were pooled together to give mean estimates for the 

Menai Strait as a whole. Seawater temperature generally followed a consistent annual seasonal 

cycle, with minimum (~4.5°C) and maximum (~18.5°C) temperatures recorded during the winter 

(December to February) and summer (June-August) months respectively (Figure 3.3a-c). Whilst 

the spring (March-May) of 2011 was unequivocally warm, the attainment of a maximum 

temperature was delayed by several weeks and also persisted for a shorter duration compared 

to both 2009 and 2010. Chlorophyll-a concentration generally fluctuated between ~0.5-2.5 μg L-1 

for the majority of each year, although the timing and strength of the spring phytoplankton 

bloom showed inter-annual variability. A  maximum peak of ~8.0 μg L-1 was observed during mid-

March during all three years of observation with an additional and much greater peak in 

phytoplankton productivity (~17.0 μg L-1) occurring nearly a month later during 2009. Smaller 

peaks in productivity (>4.0 μg L-1) were also more commonly observed in 2009 (Figure 3.3a-c). 

 

3.3.2 Adult reproductive condition and brooding status 

Distinct temporal differences in condition were observed within years between small and large 

oysters (Size | Date (Year): F33,1008 = 1.54, p = 0.027). In 2009, both small and large oysters 

showed a similar temporal change in condition throughout, with a significant decline between 

May and June (Figure 3.3d) coinciding with observations of brooding females within the 

population (Figure 3.3g). Whilst a similar initial pattern was also observed in 2010 and 2011 

(Figures 3.3e-f), the subsequent post-spawning recovery differed between small and large 

oysters (see SNK in Table 3.2). The condition of the small oysters continued to decline into 

August before showing signs of improvement towards October. The condition of large 

conspecifics, on the other hand, significantly increased soon after the brooding period, staying 

relatively stable until another period of reduced condition into October (Figures 3.3e-f). No 

evidence of brooding or spat settlement was observed following this second period of decline in 

condition (Figure 3.3g-i). 

In O. chilensis, male and female gametes undergo five and three stages of gametogenic 

development respectively. Towards the spawning period, developing and ripe gametes can occur 
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Figure 3.3 Inter-annual variability of seawater temperature (°C) (red line) and chlorophyll-a concentration (μg L
-1

) (green line) (a-c), adult Chilean oyster (Ostrea chilensis) condition index 

('small' or 40-50 mm shell length = grey line, 'large' or 60-70mm shell length = black line) (d-f), the proportion of brooding female oysters (%) within the population (>60mm shell length) 

(shaded area) and the mean monthly spat settlement (number of settlers m
-2

) (solid line) (g-i) within the Menai Strait and Conwy Bay SAC (North Wales, UK). All error bars indicate ±1SE. 
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Table 3.2 3-way mixed model ANOVA examining the temporal (both intra- and inter-annual) variability in condition of adult Chilean oysters (Ostrea 

chilensis) from two distinct size classes (small: 40-50 mm, large: 60-70 mm shell length). ns = no significant difference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of Variation df MS F p 

Year 2 6.4 5.53 0.009 

Date (Year) 33 1.2 3.08 <0.001 

Size 1 11.1 19.17 <0.001 

Year x Size 2 1.6 2.79 0.076 

Size x Date (Year) 33 0.6 1.54 0.027 

Residual 1008 0.4   

Total 1079    

     

Cochran's Test C = 0.034, p>0.05   

Transformation None   

     

 SNK Test Size x Date (Year) (SE = 0.16) 

     

   Size (Date (Year)): 
 
 

   2009 ns 

   2010 
 
Large>Small from 
Aug-Oct 

   2011 
 
Large>Small from 
Aug-Oct 
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Figure 3.4 Transverse section of a near-ripe Chilean oyster (Ostrea chilensis) follicle, functioning 

as a simultaneous hermaphrodite and showing the various stages of gametogenesis. Codes: MI = 

spermatogonia, MII = 1° spermatocytes, MII = 2° spermatocytes, MIV = spermatids, MV = 

spermatozoa, FI = oogonia, FII = ovocytes. Note lack of ripe female gametes (i.e. FIII, see Figure 

3.77bii). These ova would be extremely large (up to 250 μm diameter) and would occupy the 

majority of the follicle. 

 



93 
 

within individual follicles in this species (see Figure 3.4). Histological observations showed that 

small oysters within the SAC predominantly functioned as true males. Female reproductive 

products became more commonly observed within the follicles of larger conspecifics, with the 

concurrent presence of both male and female developing gametes within a single follicle 

confirming their functioning as simultaneous hermaphrodites (Figure 3.5). Several oysters from 

both size classes revealed signs of gametogenesis (i.e. GSI stage 1, early development) as early as 

March, indicating that gametogenesis within this population commences when sea temperature 

is ≤8°C. Evidence of spawning within the oyster population was observed in histological 

preparations from as early as mid-April, when seawater temperature approached 12°C. Peak 

spawning activity occurred during May, coinciding with the peak maximum GSI in both small and 

large oysters (Figure 3.6) and the appearance of brooding females during June-July (Figure 3.3g-

i). In all three years of study, the numbers of brooding female oysters were very low (≤4.6% of all 

oysters ≥60 mm shell length throughout the whole year) and a clearly-defined, narrow period of 

brooding activity was also regularly observed (June-July) (see Figure 3.3g-i). No oysters were 

ever found to be brooding outside this period. The smallest brooding oyster measured 60.3mm 

shell length. Mean brood size was estimated to be 57,077±5,568 larvae per oyster (n = 6). In all 

but one brooding oyster, the larvae measured 290-330 μm shell length, with their light colour 

and presence of a ciliated velum characteristic of veliger larvae. The remaining oyster, collected 

during July 2010, contained larvae measuring 380-420 μm shell length. These larger larvae were 

generally darker in colour and had developed features characteristic of pediveliger larvae (see 

Chanley and Dinamani 1980). Release from the mantle cavity would thus have been imminent. 

The decline in oyster condition index between May and July each year coincided with a 

significant reduction in GSI (pooled within size classes) (Scheirer-Ray-Hare 2-way ANOVA: H8,253 = 

154.7, p<0.001), as well as the start of both ripe gamete release (Figure 3.7a) and phagocytic 

digestion of residual gametes within the emptying follicles (Figures 3.7bi-bii). No significant 

difference was observed in GSI between the two size classes of oysters within months (Scheirer-

Ray-Hare 2-way ANOVA: H1,253 = 0.040, p = 0.840). However, no ripe ova were ever observed in 

small oysters throughout the study period. Furthermore, spawning in both small and large 

oysters appeared to occur prior to the full completion of development of the female gametes, 

suggesting that male gametes were released slightly earlier than female gametes within this 

population. GSI began to recover ~8-10 weeks following the peak spawning period in both size 

classes, although never to a level where a second spawning event would be possible. The 

breakdown and resorption of predominantly female gametes (i.e. GSI stage I, resorption of 

residual gametes) was occasionally observed in large oysters between August and November, 

always accompanied by numerous phagocytotic cells (Figure 3.7bi-bii). Whilst gamete resorption 
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Figure 3.5 Relative percentages of Chilean oysters functioning as true males (♂), simultaneous 

hermaphrodites (♂♀) and true females (♀) within the Menai Strait and Conwy Bay SAC 

population. Bars: dark grey = small (40-50mm shell length), light grey = large (60-70mm shell 

length) oysters. 
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Figure 3.6 Seasonal change in mean (±SE) gonadosomatic index (GSI) of two distinct size classes of Chilean oyster (Ostrea chilensis) collected from the 

Menai Strait and Conwy Bay SAC population. Symbols: light grey squares = 'small' oysters (40-50mm shell length), dark grey diamonds = 'large' oysters 

(60-70mm shell length). See Table 3.1 for GSI details. 
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Figure 3.7 Photomicrographs (10x magnification) of histological sections of the reproductive tissue of Chilean oysters (Ostrea chilensis), showing (a) a 

male oyster releasing gametes through a cross-section of a tubule (GSI stage 2, spawning; June 2010), and (b) a large, hermaphrodite oyster showing 

degenerating gametes within the follicles at 10x (bi) and 40x (bii) magnification. ov = ovum, sp = spermatozoa. Note presence of numerous 

amoebocytes within the degenerating follicle. 



97 
 

was observed in both size classes during autumn (September-November), the occurrence of 

male and female gametes within the degenerating follicles differed between size classes, with 

large oysters containing varying amounts of residual sperm and large, ripe ova within the 

gonad/digestive gland complex; the latter was never observed in smaller conspecifics. 

 

3.3.3 Patterns of spat settlement 

Spat settlement was observed in all three years of study, with the period over which settlement 

occurred also relatively consistent between years. Spatfall was initially observed during June, 

peaking in July and progressively decreasing again between August and September. No larvae 

were settled between October and May (Figure 3.3g-i). However, whilst the general temporal 

pattern of spat settlement was relatively consistent between years, the magnitude of peak 

spatfall was extremely variable. Focusing on the four main sites of spat settlement only (namely 

Abermenai Point, Tal y Foel, Plas Trefarthen and Llanidan), mean peak settlement densities 

within sites were generally greater in 2009 (Year | Site: F6,144 = 0.33, p<0.001), although a degree 

of caution should be taken in interpreting the output of this ANOVA due to the lack of 

homogeneity of variances observed between treatments (see Table 3.3). 

Incidentally, slightly warmer sea temperatures and the availability of nearly twice as 

much food during the spring phytoplankton bloom period were also observed during 2009 

(Figure 3.3a-c). Interestingly, relative site-specific contributions to total mean annual settlement 

(Figure 3.8) were highly consistent each year (Scheirer-Ray-Hare 2-way ANOVA: H6,11 = 0.64, p = 

0.996) and were positively correlated (Pearson correlation coefficient = 0.961, p<0.001) with 

local adult densities within each respective site (Figure 3.9). Furthermore, the magnitude of peak 

spat settlement was always greater at Plas Trefarthen (i.e. the site of highest mean adult oyster 

density; see Chapter 2) throughout the three years of study (see SNK in Table 3.3). 

 

3.3.4 Larval dispersal 

No larvae were observed to have settled >40 m away from the transferred adult oyster patch 

(Figure 3.10), hence observations of spatfall at 100 m away from the oyster patches were 

removed from any statistical analysis. A significant reduction (Distance: F2,18 = 23.46, p = 0.041) in 

mean spat settlement density was observed with increasing distance away from adult 

conspecifics (Table 3.4), with no significant differences observed among differing locations (Site: 

F1,18 = 1.77, p = 0.200). 
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Table 3.3 3-way mixed model ANOVA examining the spatial (both between and within sites) and temporal (both intra- and inter-annual) variability in 

the magnitude of peak spat settlement density in the Chilean oyster (Ostrea chilensis) within the Menai Strait and Conwy Bay SAC. ns = no significant 

difference. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source of Variation df MS F p 

Year 2 764861311.3 1.73 0.255 
Site 3 317960908.1 287.49 <0.001 
Array (Site) 12 4584338.9 1.27 0.240 
Year x Site 6 441829209.2 134.03 <0.001 
Year x Array (Site) 24 3296569.2 0.92 0.580 
Residual 144 3596419.6   
Total 191    

     

Cochran's Test C = 0.454, p <0.01   
Transformation None   

     

 SNK Test Year x Site (SE = 453.9) 

     
   Year (Site):  

   Site 1 ns 
   Site 2 2009>2010=2011 
   Site 3 2009>2011>2010 
   Site 4 2009>2010=2011 
     
   Site (Year):  

   Year 1 Site 3>Site 4>Site 1=Site 2 
   Year 2 Site 3>all others... 
   Year 3 Site 3>all others... 
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Table 3.4 2-way ANOVA examining the difference in spat settlement density of the Chilean oyster (Ostrea chilensis) away from patches of adult oysters 

at two sites within the Menai Strait and Conwy Bay SAC. 

 

Source of Variation df MS F p 

Site 1 67.0 1.77 0.200 

Distance 2 760.9 23.46 0.040 

Site x Distance 2 32.4 0.86 0.441 

Residual 18 37.8   

Total 23    

     

Cochran's Test C = 0.475, p>0.05   

Transformation Square Root   

     

 SNK Test Distance (SE = 2.0) 

     

   Distance:  

   Across all sites 0 m>20 m=40 m 
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Figure 3.8 Inter-annual variability between mean (±SE) site contributions to the total annual settlement observed within the Menai Strait and Conwy 

Bay SAC during each respective year of study. For site codes, see Figure 3.1. Bars: black = 2009, light grey = 2010, dark grey = 2011. 

 

 

0 

10 

20 

30 

40 

50 

60 

1 2 3 4 5 6 7 8 9 10 

Si
te

 c
o

n
tr

ib
u

ti
o

n
 t

o
 t

o
ta

l 
an

n
u

al
 s

p
at

fa
ll 

(%
) 

Site 



101 
 

 

 

 

 

Figure 3.9 Relationship between mean (±SE) site contributions to total annual settlement observed and mean adult oyster density at each respective 

site within the Menai Strait and Conwy Bay SAC. 
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Figure 3.10 Change in mean (±SE) spat settlement with distance away from a transferred adult 

oyster patch (n = 100). Bars: light grey = Traeth Melynog, dark grey = Mermaid. 
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3.4 Discussion 

This chapter presents the first-ever documentation of the reproductive dynamics of O. chilensis 

outside its native geographic range. Reproductive activity within the UK Chilean oyster 

population is highly restricted, with a narrow period of spat settlement (3-4 months) and equally 

low numbers of brooding females observed annually. Nonetheless, significant spatfall (maximum 

mean monthly spat settlement = 2,570 m-2) with a strong stock-recruitment component is 

evident each year. 

Seawater temperature has traditionally been regarded as the principal environmental 

parameter in determining both the onset and rate of gametogenesis of several marine 

invertebrates (Orton 1920; Coe 1931; Giese 1959), leading to the proposition of distinct 

differences in the reproductive dynamics of congeneric populations at different latitudes 

(Thorson 1950). In the northern hemisphere, short breeding periods restricted to the summer 

months and low numbers of large long-lived individuals are thus often indicative of populations 

at or close to their northernmost geographic extent. Equally, the duration of the breeding 

season is expected to increase at lower latitudes, occasionally resulting in continual recruitment 

throughout the year, with peak spawning activity occurring much earlier in the year than at 

higher latitudes (Lewis 1986). Independent studies of O. chilensis populations across its entire 

latitudinal extent reveal clear differences in the duration of the breeding season and are 

generally supportive of this hypothesis (Table 3.5). The UK Chilean oyster population (53°N) is 

most akin to the southernmost populations found in New Zealand (46°S) in terms of its 

reproductive dynamics, exhibiting a clear, unimodal periodicity in brooding activity, with 

evidence of spatfall restricted to the warmer summer months (Cranfield and Allen 1977; 

Westerskov 1980; Jeffs and Hickman 2000). Conversely, oysters inhabiting lower latitudes within 

their native range (36°S) are capable of brooding all year-round, with peak larval settlement 

correlating with periods of lower seawater temperatures (Jeffs et al. 1996, 1997). Both size and 

number of brooding females within the UK population is also analogous to those observed 

within several high latitude oyster populations in New Zealand (Hollis 1962; Cranfield and Allen 

1977), although a lack of consistency across all localities at similar latitudes (see Table 3.5) is 

likely to be a product of the large degree of variability in growth between different populations, 

as well as between individuals within a single population (Toro et al. 1995). 

It is generally accepted that climatic regimes influence the geographic distribution of 

species, partly through specific physiological temperature thresholds which determine their 

breeding potential and survival (Somero 2011). The establishment and invasion of the non-

native Pacific oyster, Crassostrea gigas (Thunberg 1793), has been associated with increasing 

summer temperatures in regions of both the UK (Spencer et al. 1994) and Wadden Sea 
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(Diederich et al. 2005). Likewise, several studies have also reported a critical thermal limit for the 

initiation of the release of gametes in O. chilensis, although purported temperatures again vary 

considerably between localities (Solis 1967; Jeffs et al. 1996). In the UK, gamete release was 

observed as early as April-May, when seawater temperature approached 12°C. This is consistent 

with the observations from several studies from New Zealand (e.g. Jeffs et al. 1996; Brown et al. 

2010), although much lower than that reported from Chilean laboratory culture trials (Chaparro 

1990). Historical records show that the mean annual seawater temperature in the Menai Strait, 

estimated from mean monthly air temperature at RAF Valley meteorological station (Anglesey, 

North Wales, UK) (see supplementary material for details), has significantly increased since the 

introduction of O. chilensis during the early 1960s (Figure 3.11). During the first 30 years 

following the introduction of O. chilensis into the Menai Strait, only 38.7% of the mean annual 

sea temperatures were greater than the average mean annual temperature between 1962 and 

2011 (i.e. 10.95°C), coinciding with observations from 1992 of a highly-restricted population 

distribution (0.4 km) with relatively low oyster densities (see Richardson et al. 1993). Conversely, 

78.9% of the annual mean sea temperatures were >10.95°C between 1993 and 2011. The 

Chilean oyster is now found along >30 km of the Menai Strait coastline, with densities of up to 

232 oysters m-2 (Morgan and Richardson 2012a), suggesting that temperature has played a 

crucial role in the spread of this NNS within the Menai Strait and Conwy Bay SAC. Whilst 

anthropogenically-mediated increases in greenhouse gas concentrations have led to an increase 

of 0.74±0.18°C in the global mean surface temperature since the beginning of the 20th century 

(IPCC 2007), a further increase of 1.5-3.0°C has been predicted towards the end of 2100 (IPCC 

2012). Given that O. chilensis proliferates in generally warmer climes within its native range, 

anthropogenically-mediated warming of the oceans is likely to facilitate the future spread of this 

non-native oyster species by extending its breeding season. Such phenological changes have 

already been demonstrated for other phyla (Edwards and Richardson 2004), often favouring NNS 

at the expense of many native congeneric species (see Hellmann et al. 2008). 

Despite its narrow breeding season, O. chilensis spatfall intensity was relatively strong 

during all years of study and was particularly pronounced following a period when food 

concentration during early gametogenesis was exceptionally high. Although the rate of 

gametogenesis within several bivalve populations has been linked with a specific range of 

seawater temperatures, the magnitude of gamete production is ultimately dependent on the 

availability of nutrients, obtained either through external food supply or from stored nutrient 

reserves (Seed 1976; Newell et al. 1982). Several trials involving the laboratory culture of O. 

chilensis have also highlighted the importance of a high food ration during the broodstock 

conditioning period in order to maximise offspring yields (e.g. Chaparro 1990; Wilson et al. 
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Figure 3.11 Mean annual sea temperatures (°C) in the Menai Strait during the last 50 years, estimated from air temperature observations from Valley 

metrological station (Anglesey, North Wales, UK) and known to be in direct correlation with sea temperatures in the south-eastern end of the Menai 

Strait (see Appendix V for more details). The periodicity of the temperature data is relative to the introduction of the Chilean oyster (Ostrea chilensis) 

into the area in 1962. Dotted horizontal line is equivalent to the average mean annual temperature between 1962 and 2011. 
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Table 3.5: Latitudinal variation in the reproductive dynamics of the Chilean oyster, Ostrea chilensis, both within and outside its native geographic range. 

Geographic 

Location 
Latitude 

Sea 

temperature 

range 

Spat settlement 

period 

(no. of months) 

Size of 

Smallest 

Brooder 

Annual percentage 

of brooding (≥60 

mm) oysters 

Source 

Manukau Harbour 

New Zealand 
36° 29’ S 11.0-24.0°C 

All year round 

(12 months) 
49mm 17% 

Jeffs et al. (1996) 

Jeffs et al. (1997) 

Hauraki Gulf 

New Zealand 
36° 58’ S 13.0-23.0°C 

All year round 

(12 months) 
37mm 16% 

Jeffs et al. (1996) 

Jeffs et al. (1997) 

Tasman Bay 

New Zealand 
41° 00’ S 11.0-18.0°C 

Spring-Winter 

(7 months) 
61mm 22.6% Brown et al. (2010) 

Quempillén, Chiloé 

Chile 
41° 52’ S 9.0-19.0°C n/a 37mm n/a Toro et al. (1995) 

Otago Harbour 

New Zealand 
45° 50’ S 7.0-17.0°C 

Spring-Summer 

(5 months) 
42mm 19.5-21.0% Westerskov (1980) 

Foveaux Strait 

New Zealand 
46° 40’ S 8.5-16.0°C 

Spring-Summer 

(5 months) 
60mm 7-10% 

Jeffs and Hickman 

(2000) 

Menai Strait, Wales 

United Kingdom 
53° 10’ N 4.5-18.5°C 

Spring-Summer 

(2 months) 
61mm ≤4.6% This Chapter 
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1996). Chlorophyll-a concentrations between sites were relatively constant throughout the 

duration of this study. However, chlorophyll-a concentration towards the north-eastern end of 

the SAC (where currently O. chilensis are extremely rare) can be twice as high as those observed 

herein (see Simpson et al. 2007). Given a lack of regulation regarding accidental and deliberate 

transfers within the SAC (see Morgan and Richardson 2012a, 2012b), this is of critical importance 

to the future of this NNS. 

Histological evidence of a rapid increase in gamete development following the spring 

phytoplankton bloom within the UK Chilean oyster population supports the theory that a strong 

reserve of nutrients is plays an important role in regulating the rate of gametogenic 

development in many nutrient-storing marine invertebrates (see Gabbott 1976, 1983). Several 

bivalve species are known to be reliant on stores of energy reserves (principally glycogen) when 

food supply is low. Size- and age-related differences in dry weight-related condition indices 

(often directly correlated with glycogen content; see Gabbott and Stephenson 1974) have 

previously been observed in Ostrea edulis (Walne 1970), and have been attributed to a higher 

metabolic demand in smaller, younger individuals (Holland and Hannant 1976). Due to the high 

spring peak plankton bloom and the relatively increased incidence of smaller peaks (including a 

peak of ~6 μg L-1 immediately following the spawning period), small oysters may have been able 

to recover at the same rate as larger conspecifics during 2009. Conversely, lower nutrient 

availability during both 2010 and 2011, particularly following the spawning period, may have 

hampered the recovery of small oysters due to their relatively higher metabolic demands. The 

post-spawning recovery in both small and large oysters coincides with histological observations 

of post-spawning gamete resorption. Interestingly, gamete resorption can occur in unfavourable 

environmental conditions, including periods when food reserves are low (Lubet et al. 1987). This 

leads to the recycling of gametes and the repartitioning of energy to satisfy other metabolic 

demands. Resorption of extremely large ova, present only in large O. chilensis in the Menai Strait 

population, is likely to aid in the post-spawning recovery of this oyster species under long 

periods of malnutrition. 

Due to its extended brooding period and highly reduced planktonic larval stage, O. 

chilensis is unlikely to spread considerable distances away from adult conspecifics within the 

Menai Strait by natural dispersal alone. Supporting evidence of a strong stock-recruitment 

relationship and an extremely limited dispersal distance is demonstrated in this chapter. 

Gregarious settlement, common in several other oyster species (e.g. Bayne 1969; Tamburri et al. 

1992, 2008), may further assist in promoting a strong stock-recruitment relationship. The 

previously documented recent spread of this NNS across >30 km of shoreline during the last 20 

years is paradoxical with these findings, suggesting that other vectors of dispersal are in 
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operation (see Morgan and Richardson 2012a, 2012b). Management experience relating to 

another NNS with a highly-reduced natural dispersal capacity, namely the invasive ascidian, 

Didemnum vexillum (Kott 2002), has shown that the identification and regulation of all transport 

vectors (thus inhibiting propagule pressure) is critical to the success of eradication efforts (see 

Holt and Cordingley 2011). Other vectors of dispersal have been proposed to explain the recent 

spread of this species outside its native range, including rafting (O'Foighil et al. 1999), bivalve 

culture (Morgan and Richardson 2012a) and periwinkle harvesting (Morgan and Richardson 

2012b), although such events are often sporadic and difficult to quantify. Jeffs (1998) has 

suggested that the simultaneous development and release of spermatozoa and ova within 

mature hermaphrodites means that self-fertilisation is a strong possibility within this oyster 

species. However, evidence presented herein indicates that the timing of gametogenesis within 

large, hermaphroditic oysters may be slightly offset, with spermatozoa being released prior to 

the attainment of fully ripe ova within the same follicles. This, together with evidence from 

Chaparro (1990) indicating the requirement of a higher water temperature (>14°C) to initiate the 

release of female gametes in O. chilensis, would predicate against self-fertilisation in the species. 

 

Conclusions 

Seawater temperature is shown to be the primary determinant of the initiation of reproductive 

development within the UK's non-native Chilean oyster population, whilst food availability 

during the early period of gametogenesis is likely to determine the numbers of gametes 

produced. Whilst ocean warming as a result of global climate change is likely to extend the 

duration of the brooding season of this species, it remains to be seen whether or not future 

plankton dynamics will match or mismatch with the nutritional requirements of the broodstock 

(see Cushing 1990) and have positive or negative effects on the proliferation of this species 

within the designated SAC and beyond. The highly restricted natural larval dispersal of this 

species may allow relatively more time for intervention in the invasion process. However, the 

potential for self-fertilisation (albeit minimal) and the ever-increasing frequency of 

anthropogenically-mediated transfers of this species indicate that actions to mitigate the spread 

of this non-native oyster should not be disregarded. The observed contrast between the 

restricted breeding cycle and relatively high densities of both adult oysters and spat settlement 

suggests that the early post-settlement survival of this species may be relatively low. Scientific 

endeavour to aid in the management of this increasingly dominant non-native oyster population 

should thus be focused on two aspects: a) the early post-settlement mortality of Chilean oyster 

spat, with particular focus on intra- and inter-specific competition and predation, and b) the 

identification and regulation of all transport vectors (thus inhibiting propagule pressure). 
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Appendix III: Early post-settlement mortality and the role of predation 

 

Preliminary data conducted during the course of this study period suggest that predation is 

unlikely to play a key role in the early post-settlement mortality of O. chilensis. Following natural 

settlement on slate panels, oyster spat (~4-day old) were transferred to one of three 

experimental sub-tidal cage set-ups (see Figure VIII) to test whether or not early post-settlement 

mortality differed when predators were excluded. Oyster spat survival was monitored from 

digital images (see Figure IX) of each plate at the following intervals: 1, 2, 3, 4, 7, 9, 11, 15 and 24 

days. 

 

 

 

 

Figure VIII Illustration of three cage designs used to test the role of predation in shaping the 

distribution of O. chilensis in the Menai Strait (North Wales, UK). 'Full Cage': panels fully enclosed 

in a 500 μm mesh and held in shape by a PVC tubing framework, positioned inside the mesh. 'No 

Cage': PVC tubing framework only. 'Intermediate Cage': a form of procedural control, where 

panels were partly enclosed with 500 μm apart from two open ends which gave predators access 

to the panels. By positioning these open ends perpendicular to the main channel flow, the 

treatment would also account for any reduction in flow over the panels due to the presence of 

the mesh, mimicking the 'Full Cage' treatment.  

 

 

Whilst yet to be statistically analysed, no obvious difference (relative to the observed variability) 

can be noted in mortality between any of the cage treatments (see Figure X), suggesting that 

predation does not play a key role in the structuring of the non-native O. chilensis in the Menai 

Strait. It is therefore possible that O. chilensis is 'released' from predation pressure in the Menai 

Strait due to the absence of natural predators (sensu "Enemy Release Hypothesis"). Increased 

intra-specific competition may account for some of the observed mortality, which formed a 

plateau at ~75% within all treatments. However, density was not considered a factor within the 

current design. 
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Figure IX Early post-settlement mortality of newly-settled O. chilensis (5 days old at ‘Day 1’) 

following a period of 7 days in the Menai Strait.  

 

 

 

Figure X Survival rate of O. chilensis spat in the presence or absence of predators. Error bars 

indicate ±1SE. 
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Appendix IV Shore crab (Carcinus maenas) predation on the Chilean oyster 

(Ostrea chilensis) 

 

Preliminary data show that, in the absence of any other prey species, C. maenas can consume O. 

chilensis over a broad size range with mean size consumed increasing with crab size (Figure XI). 

 

 

Small Crabs (35-45 mm carapace width): 

 

 

 

 

 

 

 

 

Medium Crabs (50-60 mm carapace width): 

 

 

 

 

 

 

 

 

Large Crabs (>70 mm carapace width): 

 

 

 

 

 

 

 

Figure XI: Size class (mm) preference (expressed as mean number eaten per day) of the shore 

crab, Carcinus maenas, feeding on Chilean oysters (Ostrea chilensis) when presented equal 

numbers of each respective size class. 
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A vast range of opening techniques were used to gain access to the oyster flesh, with 

energetically-unfavourable ‘chelal boring’ technique (see Elner and Hughes 1978) predominantly 

used for all but the smallest oysters (see Figure XII). However, when crabs were presented with 

either oysters or mussels of a preferred size class, the number of oysters consumed daily 

declined rapidly whilst the number of mussels consumed daily remained relatively stable (see 

Figure XIII). 

 

 

 

 

 

 

 

 

 

 

 

Figure XII Numerous dead O. chilensis showing shell damage following a 'chelal boring' attack by 

C. maenas. Note central hole in all specimens, where the continuous twisting action of the chela 

has eventually resulted in access to the oyster flesh. 

 

 

Figure XII Temporal variability in mean number of O. chilensis (squares) and M. edulis (circles) of 

a known preferred size range consumed daily when presented to isolated C. maenas (n = 6 

each). Prey availability was kept constant by replacing eaten individuals immediately following 

consumption by a similar-sized conspecific. 
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These data suggest that the Chilean oyster gains a refuge against predation from even the 

largest shore crabs after 35 mm shell length (corresponding with approximately 2 years of 

growth in the Menai Strait; see Chapter 2). Furthermore, although smaller oysters can be eaten 

by shore crabs, it appears that they are also rejected based on a number of possible factors: 

 

1. Mechanical difficulty in handling the oyster shell. 

2. Learnt or otherwise acquired knowledge regarding the energetically-unfavourable nature of 

oysters in relation to the ease of access to the flesh. 

3. Preference towards more accessible prey items, such as mussels. 
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Appendix V Estimation of historic sea surface temperatures from air 

temperatures recorded at RAF Valley meteorological station (North Wales, 

UK). 

 

Walne (1958) identifies a near isometric linear relationship between mean monthly air 

temperatures recorded at RAF Valley (North Wales, UK) and mean monthly sea surface 

temperatures at Tal y Foel. This relationship would theoretically allow for a simple conversion of 

meteorological data in order to predict sea water temperature within the south-western end of 

the Menai Strait. However, it cannot be assumed that this relationship, observed over a period 

of only one year, holds true today or has indeed held true ever since the introduction of O. 

chilensis into the Menai Strait. Furthermore, thermal recording equipment has changed 

dramatically over the last 50 years, often highlighting the need for data calibration between 

long-term records. 

 

In order to get a better estimate of the relationship between mean monthly air and sea surface 

temperatures within this region, sea temperature data were sourced from the scientific 

literature. A keyword search within 'Google Scholar' including the terms "mean monthly" AND 

"temperature" AND "Menai Strait" was used to identify potential sources of information. The 

raw data for each study were verified, extracted and correlated with mean monthly air 

temperatures from historic RAF Valley for each relevant month and year. Due to the relative 

consistency of the relationship across all data sets, the data were then pooled together to give 

an approximation of the relationship between local air and seawater temperatures over the last 

50 years (see Figure XIV). 

 

There was a highly significant correlation between pooled mean monthly air and seawater 

temperatures at RAF Valley and Tal y Foel respectively. Between 4 and 18°C, air temperature at 

Valley changes 0.93°C with every degree change of seawater temperature (F1,114 = 1814.9, 

p<0.001). Thus, historic mean monthly air temperatures recorded at RAF Valley were converted 

to estimated seawater temperatures of the Menai Strait during the last fifty years and then used 

to estimate the change in seawater temperature since the introduction of O. chilensis in 1962 

(seen in Figure 3.11). 

 

Historic seawater temperature data were extracted from Fry (1975), Utting (1988), Spencer 

(1990), Spencer (2002) and Evans et al. (2003), as well as Chapter 3. 
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Figure XIV Relationship between mean monthly seawater and air temperature within the Menai 

Strait and RAF Valley respectively. Icons depict different sources of data (see text above for 

references). 
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Chapter 4 

 

 

 

 

 

 

 

 

The potential role of an unregulated coastal anthropogenic 

activity in facilitating the spread of a 

non-native biofoulant 
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4.1 Abstract 

Despite an exponential rise in anthropogenically-mediated transfers of non-native species during 

the last 150 years, several coastal anthropogenic activities remain unregulated under current 

legislation frameworks. This study investigates the potential role of commercial periwinkle (Littorina 

littorea) harvesting as an unregulated facilitator of both small- and large-scale geographic range 

expansion of an invasive oyster epibiont (Ostrea chilensis) within the Menai Strait (North Wales, UK) 

and beyond. The frequency of oyster-fouled periwinkles was greatest in areas of high adult oyster 

abundance and restricted to large, market-sized periwinkles (>20 mm shell height) inhabiting the 

low shore. Active efforts by commercial collectors to reject oyster-fouled periwinkles were found to 

be inadequate, with oysters of all sizes observed within collected hauls. Whilst the survival of fouled 

and unfouled periwinkles was comparable under post-collection refrigerated conditions, a 

significant decrease in both mobility and flesh content was associated with the presence of oyster 

epibionts. Survival of all but the smallest oyster epibionts under post-collection refrigerated 

conditions enhances the possibility of accidental non-native oyster transfers. Better interventions 

during both initial visual inspection and post-griddling stages are recommended, as well as the 

development of techniques that kill off all non-native epibionts, whilst leaving the freshness and 

marketability of the periwinkles uncompromised. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following chapter has been published in the journal 'Biofouling' (2011 5-year impact 

factor = 4.488) and is thus subject to copyright by the publisher Taylor and Francis Ltd. 

Please consult the original journal article and cite as follows: 

 

Morgan EH and Richardson CA. 2012. The potential role of an unregulated coastal 

anthropogenic activity in facilitating the spread of a non-native biofoulant. Biofouling. 28: 

743-753. 
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4.2 Introduction 

Anthropogenically-mediated introductions of species into areas beyond their native geographic 

range have become progressively more frequent during the last 150 years (Hulme 2009). The 

successful proliferation of some of these 'non-native species' (hereafter 'NNS') has led to 

ecosystem-level changes within their new environment, often with major economic 

ramifications (Vitousek et al. 1997). The significance of such 'biological invasions' will ultimately 

be determined by the rate of secondary dispersal following successful establishment of a NNS 

population (Johnson et al. 2001). In its simplest form, the secondary spread of a NNS can be 

viewed as a single, unidirectional movement of propagules from the site of original introduction 

along an invasion 'front', with all suitable habitats behind the front being occupied by the 

invader (see Wilson et al. 2009). Based on this premise, the rate of spread would be expected to 

be generally greater in those NNS that exhibit high natural dispersal capacities, particularly in 

taxonomic groups where all subsequent phases of the life cycle are generally sessile or slow-

moving (Mileikovsky 1971; Crisp 1978; Scheltema 1978; Strathmann 1985; Shanks et al. 2003). 

However, biological invasions are seldom this simple, and the geographic range expansion of 

even aplanic and anchiplanic NNS can be significantly augmented by other vectors, 

predominantly derived from anthropogenically-mediated activities such as ballast water 

transfers (Carlton 1985), hull fouling (Gollasch 2002) and accidental transfers associated with 

deliberate collection and movements of commercially-targeted species (Minchin 1996). Whilst 

the clarification and quantification of all potential mechanisms of dispersal is thus a major goal 

for those aiming to mitigate or prevent future biological invasions, several coastal 

anthropogenically-mediated mechanisms of dispersal and their potential to facilitate the spread 

of NNS remain completely overlooked. 

The Chilean oyster, Ostrea chilensis Philippi 1845, is one example of a NNS that has 

recently managed to spread over relatively considerable distances despite its minimal natural 

dispersal capacity (Chapter 3). Native to both Chile and New Zealand, O. chilensis was 

deliberately introduced into the Menai Strait (North Wales, UK) at Tal y Foel (Figure 4.1) during 

the early 1960s as part of native oyster stock regeneration trials (see Walne 1974). Unlike other 

oyster species within the same genus, the progeny of O. chilensis are brooded throughout the 

entire larval development period within the female mantle cavity and are liberated as 

pediveligers that settle within minutes of their release (Millar and Hollis 1963; Cranfield 1968; 

Westerskov 1980), meaning that their natural dispersal capacity is highly reduced (see 

Broekhuizen et al. 2011). Although remaining relatively contained within its site of original 

introduction for over 30 years (see Richardson et al. 1993b), the Chilean oyster is now found 
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Figure 4.1 Map of the south-western end of the Menai Strait (North Wales, UK), showing site locations in relation to the town of Caernarfon (square 

symbol). Site codes: 1. Abermenai, 2. Mermaid, 3. Tal y Foel, 4. Plas Trefarthen, 5. Llanidan, 6. Caernarfon. Inset map shows location of the Menai Strait 

in relation to Wales. 
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along more than 30 km of the low foreshore of the Menai Strait, with several localised areas of 

exceptionally high densities of up to 232 oysters m-2 (Chapter 2). 

The increase in hard surface area and structural complexity associated with increasing 

densities of O. chilensis has been shown to significantly alter species richness within the oyster 

bed (see Appendix I). However, the mechanisms that have facilitated the recent spread of this 

species away from its site of original introduction are yet to be identified. Following several 

recent observations of oyster-fouled common periwinkles, Littorina littorea L. 1758 (known 

locally as ‘capped winkles’; Figure 4.2), the current study was designed to investigate the 

potential of the periwinkle industry as a transport vector which may facilitate the spread of O. 

chilensis both locally and across international boundaries. 

Periwinkles generally predominate in the mid to low intertidal, and as a result, are 

gathered by hand during low spring tides. Current annual harvesting values for the UK are 

lacking, although a total of 1,027 T was declared in Ireland alone during 2009 (FAO FishStat, 

Version 1.0.1). This equates to a retail value in excess of £2.5 million, though capture figures are 

likely to be somewhat higher due to undeclared landings that stem from the ‘underground’ 

nature of the industry (Cummins et al. 2002). Whilst stocks are mainly targeted during the winter 

months (when consumption in south-western Europe is at its highest), periwinkle collection 

occurs all year round and often supplements the income of bait collectors and fishermen whose 

target species become unavailable during closed seasons and periods of unsuitable tides or 

weather conditions. Periwinkles from the UK are also regularly exported live to France, where 

they are used by oyster farmers as a method of mitigating algal fouling of cultured Pacific 

oysters, Crassostrea gigas (Thunberg 1793), and the mesh bags in which they are contained (see 

Enright et al. 1983; Cigarria et al. 1998; Carver et al. 2003). 

Periwinkle collection is currently subject to minimal regulation throughout the world and 

is highly region-specific. Stock management is thus largely determined by the actions of the 

periwinkle collectors and wholesalers themselves. In most regions within the UK and Ireland, all 

harvested periwinkles are sold to a central wholesaler. Post-harvesting processing is often 

minimal, with little more than a quick visual inspection and weighing at the wholesale facility to 

ensure adequate consistency of commercially-sized periwinkles prior to international export 

(Cummins et al. 2002; pers. obs.). Some wholesalers may subsequently separate hauls into 

marketable and unmarketable size fractions using a griddling device. This process allows for the 

sorting of periwinkles into ‘small’, ‘medium’ and ‘large’ size classes (usually approximately 

<14mm, 14-20mm and >20mm respectively, although the exact definition of each size fraction 

varies with region). Periwinkles may then be re-bagged and kept in refrigerated conditions until 

sold (Cummins et al. 2002). The griddling process may also be used to facilitate 
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Figure 4.2 Common periwinkles (Littorina littorea) showing various degrees of fouling by the Chilean oyster (Ostrea chilensis), known locally as 

“gwichiaid hefo capiau” (Welsh for “winkles with caps” or “capped winkles”). 
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the return of both ‘small’ and overly-fouled periwinkles to the shore for ongrowing (although not 

necessarily to the exact site of collection), thus maintaining local stocks; a practice known in 

some areas as ‘winkle farming’ (B. Roberts, pers. comm.). Such casual and unregulated 

movements of a target species, sometimes across international boundaries, can occasionally 

lead to the accidental transfer and/or spread of associated NNS (Minchin 1996; Eno et al. 1997). 

 The present study aimed to demonstrate the potential of the periwinkle industry as an 

unregulated coastal anthropogenic activity that may facilitate the geographic range expansion of 

an established non-native epibiont, whose natural dispersal capacity is highly limited (see 

Chapter 3). The significance of this increasingly-dominating oyster epibiont in relation to the 

marketability of harvested periwinkles was also explored. It is hoped that the findings of this 

chapter will help to highlight pressing issues with regards to this unmanaged fishery, promoting 

healthy cooperation between all stakeholders to protect both commercial and environmental 

interests within the Menai Strait, as well as in other areas where periwinkles are harvested 

worldwide. Specifically, the study aims to answer the following: 

 

1. How does the occurrence of oyster-fouled periwinkles relate to adult O. chilensis 

densities in the Menai Strait and how likely are they to be collected by commercial 

periwinkle collectors? 

2. What is the likely fate of oyster-fouled periwinkles once collected by commercial 

periwinkle collectors and sold to a central wholesaler? 

3. Are there any significant differences between the quality and vigour of oyster-fouled and 

unfouled periwinkles? 

 

4.3 Methods 

4.3.1 Oyster fouling frequency and evidence of commercial collection 

During December 2010, a total of six sites (>0.5 km apart) were surveyed within the Menai Strait 

(North Wales, UK; see Figure 4.1). Three sites (Abermenai, Llanidan, Plas Trefarthen) contained 

high mean densities of O. chilensis (>25 oysters m-2) at low water, whilst the remaining three 

sites (Caernarfon, Mermaid, Stud Farm) contained significantly lower mean densities (<1 oyster 

m-2) (Figure 4.1). Commercial periwinkle harvesting is known to be a regular activity within all 

sites throughout the year (pers. obs.). At each site, a total of sixty quadrats (0.25 m2) were 

surveyed at low-, mid- and high-water (approximately 1, 3 and 5 m above chart datum and 

hereafter ‘HW’, ‘MW’ and ‘LW’ respectively), giving a total coverage of 45 m2 at each site. All 

periwinkles within each quadrat were counted and their shell height (operculum lip margin to 

spire tip) measured to the nearest 1 mm using Vernier callipers. The number of periwinkles 
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fouled by O. chilensis within each quadrat was noted, and the respective shell lengths (umbo to 

shell margin) of each epibiont was measured to the nearest 0.1 mm. The number of adult O. 

chilensis was also noted within every fifth quadrat, giving an estimation of mean adult oyster 

density at each site. Sub-samples of periwinkles collected by two independent commercial 

periwinkle collectors at two sites (Llanidan and Plas Trefarthen, LW only) were obtained to 

investigate whether or not the specimens collected using the survey technique were 

representative of those collected commercially for human consumption. Neither collector had 

any prior knowledge of the experimental design or the purpose of the study, thus ensuring that 

their collections were fully representative of a typical periwinkle haul in terms of periwinkle size 

range and the numbers of oyster-fouled specimens. 

 

4.3.2 Survival of periwinkles and their oyster epibionts under refrigerated conditions 

The impact of a refrigeration period (typically carried out at a wholesaler facility following 

collection) upon the survival of both target species (i.e. periwinkles) and the non-native 

epifoulant (i.e. oysters) was also empirically assessed. During June 2011, a total of ninety Chilean 

oyster shells (right, flat shell valves only) were deployed inner shell surface upwards on the 

shore at LW at Plas Trefarthen for two weeks to encourage natural O. chilensis spat settlement. 

All shells were subsequently retrieved and examined for the presence of O. chilensis spat. 

Twenty eight shells, with the highest densities of spat settlement on their inner surface, were 

selected (hereafter ‘spat shell plates’), and their respective densities manipulated to ensure 

approximately equal spat coverage (~2 spat cm-2). Three additional groups of oysters (each 

containing 105 oysters), measuring 15-25, 40-50 and 65-75 mm shell length and representative 

of 1-, 2- and 3-year old oysters respectively, were additionally collected from the same locality. 

Chilean oysters within the Menai Strait population show great variation in their degree of 

attachment to hard substrata. Some adult oysters are found attached to stones, shells or adult 

conspecifics, whilst others have outgrown their site of attachment and form loose aggregations 

(pers. obs.). Newly-settled oyster spat, on the other hand, are always attached and cannot be 

stripped from the shell substrata without causing severe damage (Walne 1974; pers. obs.). In an 

attempt to standardise oyster attachment across all size classes, the left, cupped valve of each 

adult oyster was glued to a right shell valve using a small amount of non-toxic adhesive putty 

(MilliputTM). The use of epoxy-based adhesives in this manner ensured that both the newly-

settled spat and larger oysters were always in contact with a relatively similar area of shell 

substrata, whilst leaving their respective rates of survival uncompromised (e.g. Harper 1992; 

Macreadie et al. 2011). When not in use, all spat shell plates and oysters were stored in well-

aerated flow-through seawater aquaria at 15°C. 
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Twenty-four spat shell plates and ninety oysters from each size class were transferred to 

a refrigerator held at 5°C, simulating the conditions that they might have experienced if they had 

been accidentally gathered by periwinkle collectors and transferred to a wholesaler facility. 

Following intervals of 2, 6, 12, 24, 48 and 72 h in the refrigerator, four spat shell plates and 

fifteen oysters from each size class were returned to labelled baskets within the maintenance 

aquarium. The remaining four spat shell plates and thirty oysters from each adult size class were 

kept fully submerged at 15°C throughout and acted as a control treatment. No attempt was 

made to determine the actual cause of mortality (i.e. due to the periodicity of aerial exposure or 

the actual refrigerated temperature, or equally, a combination of both), thus justifying the lack 

of adequate procedural control (e.g. whereby oysters were held in water at 5°C). Oyster 

mortality was estimated 72 h following re-immersion. Adductor muscle activity was assessed 

under a stereo microscope. An oysters was deemed to be dead if the shell valves were 

disarticulated from each other, leaving only the left valve attached (spat only), or if the shell 

valves remained agape following slight physical disturbance to the adductor muscle. 

Similarly, the tolerance of fouled and unfouled periwinkles (n = 140 each) to refrigerated 

conditions was assessed during the same period to assess whether or not oyster epibionts had a 

significant effect on periwinkle survival. One hundred and twenty periwinkles from both 

treatment groups were transferred to a refrigerator held at 5°C, with 20 randomly-selected from 

each group returned to labelled cages within the maintenance aquarium after the following 

intervals: 2, 6, 12, 24, 48 and 72 h. The remaining twenty periwinkles from both treatment 

groups were kept fully submerged at 15°C throughout, again acting as a control treatment. 

Periwinkle mortality was estimated 72 h following re-immersion. A periwinkle was deemed to be 

dead if either its exposed foot showed no response to gentle physical disturbance using a metal 

seeker, or alternatively, if re-orientation had not been successfully completed following a period 

of 24 h. 

 

4.3.3 Comparison of fitness and quality of fouled and unfouled oyster epibionts 

During a field visit to Plas Trefarthen in June 2011, 'fouled' (n = 91) and 'unfouled' (n = 71) 

periwinkles of similar size (mean shell height = 25.4±0.1 mm) were collected and held in a 25 L 

flow-through aquarium until required. All fouled periwinkles had at least one oyster (mean shell 

length = 15.3±1.1 mm) attached to their shell surface with no other epibionts. Using a 

modification of the methods of Eschweiler and Buschbaum (2011), the relationship between the 

presence of oyster epibionts and periwinkle fitness was assessed by comparing the relative 

mobility and dry weight of fouled and unfouled L. littorea. The capacity of upturned periwinkles 

to re-orientate themselves back into an upright position was used as a proxy to assess the effect 
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of oyster fouling on periwinkle mobility. Ten periwinkles from both fouled and unfouled 

collections were placed upside-down in one of four 5 L aquaria, each containing a layer (2 cm 

deep) of sand and topped-up with seawater held at ambient temperature (15°C). An additional 

five periwinkles from the fouled group, whose oyster epibionts had been manually removed 

prior to the commencement of the experiment, were also placed in each aquarium in a similar 

manner (thus leaving thirty-one fouled and unfouled periwinkles in the holding tank). The 

periwinkles were initially equally spaced so as not to influence each other following their return 

to an upright position. Following 90 minutes within the aquaria, the number of fully re-

orientated periwinkles within each treatment was counted. The high degree of similarity in the 

response of both fouled and unfouled periwinkles within each of the four aquaria (χ2≤0.38, 

p≥0.944) allowed for the pooling of periwinkles from each tank across each of the three 

treatments. This gave a more adequate degree of replication within each treatment and also 

allowed for the comparison of the ratios of re-orientated to upturned periwinkles in each 

treatment using a χ2 test of independence. The remaining thirty-one periwinkles within both 

fouled and unfouled collections were boiled in tap water for 2 minutes. The flesh was then 

removed using a fine dissecting needle, placed in pre-weighed ceramic vials and dried to 

constant weight in a drying oven for three days at 65°C. Dry weights were determined to the 

nearest 0.001 g using a top-pan balance. The mean dry flesh weight of the periwinkles was used 

as a proxy for comparing the body condition of fouled and unfouled winkles, which were 

compared using a 2-sample t-test. 

 

4.4 Results 

4.4.1 Oyster fouling frequency and evidence of commercial collection 

Periwinkles fouled by O. chilensis were observed at five of the six study sites (Figure 4.3; 

Appendix VI), with the proportion of oyster-fouled periwinkles greater at those sites containing 

higher adult oyster densities (Kruskal-Wallis H = 224.6, df = 5, p<0.001; Figure 4.3 inset). 

Periwinkles fouled by O. chilensis were found exclusively at LW and no oysters were ever found 

attached to periwinkles of <20 mm shell height (Figure 4.4). Whilst oyster fouling was more 

commonly observed on periwinkles ≥26.0 mm (Kruskal-Wallis H = 885.38, df = 4, p<0.001), 

periwinkle size-frequency at LW (pooled between all sites) followed a left-skewed, unimodal 

distribution, with a mean shell width of only 21.7 mm (Figure 4.4). This 'mismatch' may partly 

explain the relatively low fouling frequency (≤10.5% of all periwinkles at each site) observed 

throughout the study area (Figure 4.3; Appendix VI). 

The size range of fouling oysters observed varied between sites, with generally greater 

range in size observed at sites containing high mean adult oyster densities. Whilst predominantly 
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Figure 4.3 Mean percentage fouling frequency (±SE) of Chilean oysters (Ostrea chilensis), attached to common periwinkles (Littorina littorea) at each 

study site within the Menai Strait (North Wales, UK). Inset shows a highly positive correlation (second degree polynomial) between fouling frequency 

and mean adult oyster density (no. m-2) within each site. Symbols: circle = Llanidan, cross = Plas Trefarthen, diamond = Caernarfon, plus = Tal y Foel, 

square = Abermenai, triangle = Mermaid. 



127 
 

 

 

Figure 4.4 Size-specific mean percentage fouling frequency (±SE) (dark grey bars) of common periwinkles (Littorina littorea) (pooled across all sites), 

fouled by the Chilean oyster (Ostrea chilensis) in the Menai Strait (North Wales, UK). Data overlays size-class frequencies (%, grey silhouette) of 

periwinkles collected during a quantitative study at mean low water (pooled across all sites). 
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Figure 4.5 Comparative boxplots of the size distribution of epifouling Chilean oysters (Ostrea chilensis) collected by commercial periwinkle collectors 

(i.e. 'Collector 1', 'Collector 2') and by the author of this chapter (i.e. 'Study') at Abermenai Point (shaded boxes) and Plas Trefarthen (unshaded boxes) 

(Menai Strait, North Wales, UK). 
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fouled by juvenile oysters (<12 mm shell length) at all sites, periwinkles were also occasionally 

fouled by larger, mature oysters (up to 50 mm shell length) at both Plas Trefarthen and 

Abermenai (Figure 4.5). Neither the ratio of fouled to unfouled periwinkles (χ2≤0.186, df = 1, 

p≥0.666) nor the median size of periwinkles (Mann-Whitney W≤40780.5, p≥0.217) differed 

significantly between those sub-sampled from independent periwinkle collectors and those 

collected directly from LW (Figure 4.5). However, using the modal class progression analysis of 

Bhattacharya (1967) (pooled across sites), three distinct oyster size-classes were identified in the 

samples collected at LW (4.0, 11.1, and 35.0 mm shell length), whilst only two size classes were 

detected in the sub-samples obtained from local periwinkle collectors (3.6 and 10.6 mm shell 

length). This suggests that active attempts to avoid the collection of periwinkles with oyster 

epibionts >25 mm are made by commercial collectors, although their efforts are not entirely 

infallible (see outliers in Figure 4.5). 

 

4.4.2 Survival of periwinkles and their oyster epibionts under refrigerated conditions 

The survival rate of oysters to varying periods of refrigeration showed a differing response with 

size (Log Rank χ2 = 257.9, df = 3, p < 0.001), with spat oysters showing greater vulnerability than 

all other size groups (Figure 4.6). Nearly all spat oysters (92.7%) died following an emersion 

period of only 6 h. The mortality rate of spat oysters could be fitted to a Gompertz model (see 

Figure 4.6 inset), resulting in an LT50 value of 3.2 h. Conversely, oyster mortality was negligible 

across all other size fractions and control treatments, with ≤2.8% mean mortality observed in all 

treatments. All oysters from all size class groups survived within the control treatment, 

confirming the significance of the refrigeration process upon their rate of mortality. Additionally, 

both fouled and unfouled periwinkles were able to survive refrigeration for up to 72 h, with no 

mortality observed within either treatment. 

 

4.4.3 Comparison of fitness and quality of fouled and unfouled oyster epibionts 

The presence of oyster epibionts was negatively associated with the ability of periwinkles to re-

orientate themselves under submerged conditions (χ2 = 13.572, df = 2, p = 0.001). Whilst none of 

the fouled periwinkles were capable of re-orientation, 27.5% of their unfouled conspecifics were 

able to return to an upright position in under 90 minutes. Interestingly, only 10% of periwinkles 

whose epibionts had been manually removed prior to the commencement of the experiment 

were able to fully re-orientate themselves following the experimental treatment, suggesting that 

growing with an increasingly large epibiont may compromise their ability to re-orientate in some 

way. Unfortunately, further analysis to test for any significant difference between the re-

orientation ability of unfouled and control periwinkles could not be carried out due to the small 
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Figure 4.6 Kaplan-Meier curves of the survival of Chilean oyster (Ostrea chilensis) when exposed to varying durations of refrigerated conditions. Spat = 

<5mm, Small = 15-25mm, Medium = 40-50mm, Large = 65-75mm shell length. Inset shows a Gompertz model (             
    

, where a = 1.0, b = -

8.5 and c = -0.8, R2>0.999) fitted to the mean percentage mortality (±SE) of spat oysters over time, giving an LD50 = 3.2h (dotted arrow). 
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sample size of the 'control' group, thus giving >20% of all treatments with expected counts of <5 

(see Yates et al. 2002). Fouled periwinkles (0.264±0.010 g) had a significantly poorer body 

condition than unfouled conspecifics (0.308±0.009 g) (t = -3.30, df = 60, p = 0.002). 

 

4.5 Discussion 

Periwinkle shells are often fouled by many native and non-native epibionts, including algae 

(Wahl 1996), barnacles (Buschbaum and Reise 1999), oysters (Eschweiler and Buschbaum 2011; 

present study) and spionid worms (Warner 1997). The common periwinkle has no known natural 

chemical, mechanical or physical defences to regulate epifouling intensity. It has been suggested 

that, at high densities (>400 periwinkles m-2), epibionts may be directly removed by the 

‘bulldozing’ and grazing activity of conspecifics (Wahl and Sönnichsen 1992; Wahl et al. 1998). 

However, periwinkle densities are probably never high enough within the Menai Strait (<100 

periwinkles m-2) to initiate sufficient ‘bulldozing’ activity. Moreover, the proportion of oyster-

fouled periwinkles was significantly greater at sites containing higher adult oyster densities in 

the Menai Strait, suggesting that fouling frequency is related to epibiont propagule supply. 

Sessile and slow-moving benthic marine invertebrates rely on the dispersal of larval progeny as 

their foremost method of transport away from adult conspecifics. The duration spent in the 

water column as planktonic larvae thus serves as a major contributor to the distribution and 

reproductive dynamics of these species. Whilst the larvae of L. littorea spend several weeks in 

the water column (Fretter and Graham 1980) and are likely to be transported over vast 

distances, pediveliger larvae of O. chilensis are known to settle within minutes following release 

(Millar and Hollis 1963; Cranfield 1968; Westerskov 1980). Whilst periwinkle stock recruitment is 

likely to be affected by the actions of collectors and wholesalers in other neighbouring regions, 

the fouling of periwinkles by oysters is restricted to those areas where adult oysters are present. 

Epibionts were only present on marketable, ‘large’ periwinkles (≥20 mm shell height) in 

the Menai Strait and were virtually exclusive to LW, echoing the findings of both Smith and 

Newell (1955) and Warner (1997) at other locations within the UK. Warner (1997) suggested that 

size-specific fouling frequency is simply a function of the time spent as a potential basibiont and 

the increased surface rugosity of older shells caused by shell erosion and abrasion. However, 

periostracum abrasion was not particularly obvious in large periwinkles in the Menai Strait 

populations and settlement appeared to occur equally on both newer (i.e. recently deposited) 

and older regions of the shell. Furthermore, small periwinkles were relatively uncommon at LW 

in the Menai Strait, with >93% of the total periwinkle population of ≥18 mm shell height (pooled 

across sites). Size-frequency distributions of gastropods along a vertical shore gradient can 

become disproportionate due to a combination of two factors; an unequal rate of mortality 
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amongst distinct size classes (either over the whole or part of the intertidal range of the species 

in question), and the active migration of a particular size cohort, relative to all others (Vermeij 

1972). Physical and biological factors may therefore inhibit the ability of smaller periwinkles to 

inhabit areas of the high and low shore respectively. The observed absence of small periwinkles 

at LW in the Menai Strait may be attributed to an increase in predation pressure imposed upon 

juvenile periwinkles. The green shore crab, Carcinus maenas (L. 1758) predates voraciously upon 

small periwinkles <9 mm in length, with successful attacks on periwinkles of 9-18 mm shell 

length taking five times longer but those >18 mm remaining unconsumed (Hadlock 1980). 

Considering the limited encroachment into the intertidal by O. chilensis in the Menai Strait 

(Chapter 2) and the prominence of large periwinkles at LW (this Chapter), the tendency of 

oysters to settle on larger periwinkles is, in this case, likely to be related to the intolerance of O. 

chilensis to the stresses of the intertidal zone (Stead 1971; Westerskov 1980) and the sheer lack 

of smaller periwinkles at LW. Whatever the mechanism that restricts fouling of all but the largest 

periwinkles, the likelihood of the accidental collection of oyster-fouled periwinkles by collectors 

becomes inadvertently increased by concentrating collection efforts at LW (where larger, more 

economically-valuable periwinkles are found). 

Oysters are known to have a profound influence upon key ecological processes, 

including the maintenance of biodiversity through their habitat-modification abilities and their 

role in nutrient cycling and food-web dynamics through the translocation of energy from the 

overlying water column to the benthic environment (see Ruesink et al. 2005 for review; Chapter 

1). Oysters are also vectors of many disease-causing organisms. The Chilean oyster is highly 

susceptible to infection by Bonamia ostreae (Pichot et al. 1980), which has previously decimated 

several European populations of the European native oyster, Ostrea edulis L. 1758 (e.g. Balouet 

et al. 1983; van Banning 1985). In 2011, B. ostreae was confirmed to be present within an area of 

the Menai Strait, resulting in significant shellfish movement restrictions into, out of and within 

the region by way of a Confirmed Designation Notice (issued under the Aquatic Animal Health 

(England and Wales) Regulations 2009). It is likely that this potential vector of spread of infection 

is also likely to remain undetected given the currently unregulated nature of the periwinkle 

fishery. Considering its ecosystem engineering potential and its status as a vector of a highly-

infectious parasite, it is thus crucial that the dispersal capacity of O. chilensis is not facilitated by 

the relaying of oyster-fouled periwinkles to areas away from their original point of collection. 

This chapter is believed to be the first to investigate the potential role of commercial periwinkle 

harvesting as an unregulated anthropogenic activity that facilitates the geographic range 

expansion of a non-native epibiont across regional and international boundaries. The fate of the 

oyster epibionts is largely dependent on the overall degree of fouling within a locality and the 
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actions of both the collector and the wholesaler during the collection and post-collection 

processes respectively (see Figure 4.7). Periwinkles are collected from numerous populations, 

each with a varying degree of oyster fouling. Bags containing heavily-fouled periwinkles are 

instantly rejected upon a brief visual inspection of a small sub-sample. The remainder are 

normally griddled and sorted into three distinct size classes, with small periwinkles (i.e. those 

<14 mm shell height) rejected due to their low market value (McKay and Fowler 1997). In both 

cases of rejection, the periwinkles are returned to the Menai Strait to supplement local stocks, 

although not necessarily to the same locality from which they were originally collected. The 

remaining periwinkles are usually sold to the European market within 72 h of collection during 

periods of peak demand to ensure maximum freshness of the marketable product. The fate of 

these marketable periwinkles and their epibionts is currently unknown, although it is believed 

that some may be sold on to French oyster farmers who use them as a method of biocontrol 

within culture bags (Cummins et al. 2002). 

The presence of oyster epibionts had no significant effect on the survival of periwinkles 

under simulated commercial refrigerated conditions, meaning that fouling is unlikely to 

negatively affect periwinkle freshness and survival. However, fouled periwinkles are more likely 

to be unmarketable due to their unsightly appearance, as well as their liability to block the 

griddling mechanism and to add excess weight to collected hauls. Excessively-fouled periwinkles 

are routinely discarded by wholesalers, who may return them to areas within the collection 

catchment area (although not necessarily to their original origin) in an attempt to maintain local 

stock recruitment. A period of emersion is a suitable method of mitigation against the spread of 

non-native epibionts when the tolerance of the target species is greater than that of the fouling 

organisms (Katayama and Ikeda 1987). Stress tolerance can often vary with size and age of a 

fouling organism (e.g. Murphy 1983; Sukhotin et al. 2003; this Chapter). Additionally, the 

emersion period must not be too long so as to compromise the quality and freshness of the 

commercial product. Owing to the ability of marketable periwinkles and all but the smallest O. 

chilensis to survive out of water for at least three days, the current study disregarded emersion 

as a successful method of mitigation against the spread of the Chilean oyster. Furthermore, the 

ability of Chilean oysters to tolerate several days of exposure to cold, refrigerated air suggests 

that the practice of ‘winkle farming’ could easily augment the geographic spread of this NNS. It 

remains to be seen whether or not other NNS are being transferred during the periwinkle 

collection process and subsequent ‘winkle farming’ in other countries, where management of 

the fishery is equally lacking (e.g. Canada, Ireland). 

To quantify and put into context the harvesting model depicted in Figure 4.7, consider 

that the average marketable 'medium' and 'large' periwinkle weigh approximately 4.0 and 7.0 g
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Figure 4.7 Schematic diagram depicting the typical commercial harvesting process of the common periwinkle (Littorina littorea) in the UK. Activities 

within the rounded-edged box represent those which occur within a typical wholesaler facility. 
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respectively. Consider also that a full collection bag is likely to hold up to 50 kg of periwinkles. 

The majority (82.5%) of periwinkles collected at LW in the Menai Strait are likely to be large (i.e. 

>20 mm shell height). Assuming a single haul with 10.5% of oyster-fouled periwinkles (i.e. the 

highest mean fouling frequency observed), a full bag is therefore likely to hold up to 354 large, 

oyster-fouled periwinkles. Rejection of these periwinkles upon visual inspection at the 

wholesaler facility would mean that several hundred oysters have the potential to be 

accidentally transferred to new localities within the Menai Strait with each bagful due to the 

process of 'winkle farming'. Should the periwinkles be accepted and griddled, it is likely that up 

to 20% of all fouling oysters will be ≥15 mm shell length, meaning that up to 71 oysters will 

survive the post-harvest refrigeration period per bag. 

It is possible that the increase in Chilean oyster epibionts may have a negative impact on 

the periwinkle industry if transfers of this non-native oyster species both within and beyond the 

Menai Strait are left unregulated. Epifouling by several intertidal species is known to be 

concurrent with a reduction in the fitness of L. littorea, with both crawling speed (Buschbaum 

and Reise 1999; Eschweiler and Buschbaum 2011) and re-orientation (this Chapter) significantly 

lower in fouled periwinkles. Being active grazers of algal films, periwinkles are reliant upon 

correct orientation and locomotion for efficient feeding. Epibiont-induced increase in drag has 

been shown to decrease periwinkle growth (Wahl 1996), whilst laboratory studies have shown 

that the reproductive output of littorinid snails, manifested as a reduction in egg production and 

gonadosomatic index, decreased when epibionts were present (Buschbaum and Reise 1999; 

Chan and Chan 2005). It is likely that fouled periwinkles expend more energy in the development 

of foot muscle and possibly the deposition of shell material as opposed to reproductive and 

somatic growth (Wahl 1997). 

 

Conclusions and recommendations 

Considering the lack of adequate active avoidance of oyster-fouled periwinkles throughout the 

harvesting process, the industry should not be disregarded as a vector for transporting Chilean 

oysters across both local and international borders, particularly given the ability of all but the 

smallest oysters to survive in refrigerated conditions for several days. Whilst, in principle, the 

practice of ‘winkle farming’ is to be commended, care should be taken to return all periwinkles 

to the site where they were initially collected, thereby minimising the chances of facilitating the 

range expansion of O. chilensis and other NNS. Whilst collectors appear to actively avoid larger 

epibionts, the procedure is by no means flawless and smaller conspecifics that are capable of 

surviving the post-collection refrigeration period are, nonetheless, also collected accidentally. 

Given the sheer numbers of periwinkles collected, the manual removal of epibionts is unlikely to 
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be a financially viable option that would provide a fail-safe method of inhibiting the accidental 

transfer of NNS. A significant reduction in periwinkle fitness and quality associated with fouled 

periwinkles support the findings of several others (e.g. Wahl 1997; Buschbaum and Reise 1999; 

Buschbaum 2000; Chan and Chan 2005; Eschweiler and Buschbaum 2011). It is suggested that 

raising awareness among bait collectors and wholesalers of NNS and their potentially damaging 

effects upon the industry and beyond may serve as a useful deterrent that discourages the 

collection of fouled periwinkles. Furthermore, this chapter highlights the inadequacy of the post-

collection processing method as a mitigation measure to restrict the accidental NNS transfer. 

Better interventions during both initial visual inspection and post-griddling stages are 

recommended, as well as the development of techniques that kill off all non-native epibionts, 

whilst leaving the freshness and marketability of the periwinkles uncompromised. 
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Appendix VI: Population dynamics and oyster fouling frequency of the common periwinkle, Littorina littorea, in the 

Menai Strait (North Wales, UK) 
 

 

Figure XV Percentage size-frequency distributions of the common periwinkle, Littorina littorea, at mid- (Figures XIIIa-b) and low-shore (Figures XIIIc-d) in 

the Menai Strait (North Wales, UK) during June (closed bars) and December (open bars) 2010. Data for both shore levels pooled from six sites. 

Figure XIIIa 

Figure XIIIb 

Figure XIIIc 

Figure XIIId 
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Table I Quantitative observations of common periwinkles (Littorina littorea) fouled by Chilean oysters (Ostrea chilensis) at 6 sites in the Menai Strait 

(North Wales, UK). Variability of all calculated means denoted in standard error units. MS = mid-shore, LS = low-shore. 

 

Abermenai 
Point 

Mermaid Tal y Foel 
Plas 

Trefarthen 
Llanidan Caernarfon 

Jul Dec Jul Dec Jul Dec Jul Dec Jul Dec Jul Dec 

Mean 
periwinkle 

density 
(no. m-2) 

MS: 
88.9 ± 
15.6 

43.1 ± 
8.3 

9.8 ± 
2.2 

3.3 ± 
1.4 

74.2 ± 
.11.6 

14.1 ± 
3.5 

44.4 ± 
8.6 

35.0 ± 
6.6 

11.1 ± 
2.9 

2.1 ± 
0.7 

55.5 ± 
8.3 

38.8 ± 
7.9 

LS: 
65.6 ± 
11.9 

44.8 ± 
9.2 

60.5 ± 
10.1 

45.2 ± 
9.4 

44.3  ± 
9.0 

22.2 ± 
7.0 

82.4 ± 
13.4 

77.3 ± 
12.3 

32.1 ± 
6.0 

10.3 ± 
2.0 

80.0 ± 
12.6 

59.9 ± 
10.0 

Percentage of 
fouled 

periwinkles 

MS: 13.1% 3.2% 4.1% 2.5% 10.0% 5.5% 

LS: 33.3% 11.3% LS: 24.8% 42.6% 21.7% 18.2% 

Percentage 
fouled by 

oysters 

MS: 0% 0% 0% 0% 0% 0% 

LS: 4.8% 0% 1.4% 0.5% 2.6% 0.2% 

Size of smallest 
periwinkle fouled by 

oysters 
20 mm n/a 26 mm 21 mm 25 mm 28 mm 

Size range of 
fouling oysters 

3-15 mm n/a 4-6 mm 3-17 mm 3-6 mm 7 mm 
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Chapter 5 

 

 

 

 

 

 

 

 

Acute cold winter temperature abnormalities and the 

proliferation of invasive species: an overlooked facet of 

global climate change? 
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5.1 Abstract 

Successive cold winters during recent years have done little to convince climate change sceptics 

of the general warming of the Earth’s atmosphere. Paradoxically, global warming is likely to be 

intricately linked to cold winter extremes in the Northern Hemisphere. Much uncertainty 

surrounds the significance of extreme climatic events, such as cold snaps, in mitigating the rate 

of change of geographic distributions, with the failure of their inclusion in modelled projections 

of future global biodiversity patterns suggested to be accountable for some of the large 

variability observed. Whilst unlikely to halt the northward migration of both native and non-

native species, the predicted increase in the frequency and intensity of acute climatic extremes, 

particularly cold winter snaps, may well play a major role in suppressing the rate of invasiveness 

of non-native species within their respective new environments. Using the Chilean oyster 

(Ostrea chilensis) as a model species, this study investigates the potential effects of lethal and 

non-lethal climate change-induced cold winter temperature stress on the future success of a 

non-native species within its introduced range. By exposing various size classes of oysters (small: 

25-35 mm, medium: 45-55 mm, large: 65-75 mm shell length) to a single, 2h period of freezing 

air temperatures (-2, -6 or -10°C, thus mimicking conditions potentially experienced at mean low 

water spring tides), oyster survival rate was shown to be significantly lower with decreasing air 

temperature (Kaplan-Meier Survival Analysis: Χ2 = 91.706, p < 0.001). Conversely, native co-

inhabitants showed increased vigour to freezing conditions. The blue mussel, Mytilus edulis, 

showed negligible mortality across all treatments, whilst mortality of the European oyster, 

Ostrea edulis, was confined to two back-to-back periods of air temperatures at -10°C. Small O. 

chilensis cooled and thawed as much as three and nine times quicker than their larger 

counterparts respectively, and were also subjected to significantly greater periods of 

extracellular ice formation. However, no significant difference was observed between oyster 

survival rates across size classes within each temperature treatment, suggesting that smaller, 

younger oysters are relatively more tolerant to freezing conditions than larger conspecifics (X2 ≤ 

2.00, p ≥ 0.368). Four weeks following a single 2h exposure period at -2°C, -6°C and -10°C, 

survival rates were 95%, 80% and 55% respectively. A case of 'strength in numbers' is presented, 

whereby small oysters, in the presence of several other conspecifics, are buffered against the 

effects of freezing air temperatures compared with those exposed to freezing temperatures in 

isolation. This has critical implications for the future invasion dynamics of this non-native oyster 

population within a designated SAC. Our findings are discussed in relation to the successful 

proliferation of this non-native species within a designated Special Area of Conservation and its 

role in modifying the native biodiversity. 
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5.2 Introduction 

Climatic parameters, particularly temperature, are instrumental in shaping the geographic 

distribution of organisms (Hutchins 1947; Thorson 1950; Southward 1958; Southward et al. 

2005; Hawkins et al. 2009), with the biogeographic boundaries of many species directly related 

to their physiological capacity to tolerate thermal extremes (Somero 2010). Anthropogenically-

mediated increases in greenhouse gas concentrations have led to an increase of 0.74±0.18°C in 

the Earth's mean surface temperature since the early 1900s (IPCC 2007). Worryingly, native and 

non-native species are responding differently to a warming climate (Southward et al. 1995; 

Hawkins et al. 2003; Mieszkowska et al. 2005; Hiddink and ter Hofstede 2008). The breakdown 

of climatic barriers currently restricting the recruitment of transient non-natives can augment 

invasion frequency (Rahel and Olden 2008), whilst the generally broader thermal tolerance and 

larger dispersal capacity of established non-natives are likely to favour their proliferation at the 

expense of native co-inhabitants (Sorte et al. 2010). Phenological adaptations in response to a 

warming climate can also promote species invasiveness by increasing propagule pressure 

(Stachowicz et al. 2002; Ward and Masters 2007; Moore et al. 2011). Conversely, greater 

physiological stress pertaining from atmospheric warming can often be detrimental to the 

competitive resistance of native species (Lockwood and Somero 2011), facilitating the biotic 

homogenisation of habitats with severe global implications to the functioning of ecosystems and 

the multiple services which they provide (McKinney and Lockwood 1999; Olden et al. 2004; 

Helmuth et al. 2006). 

Projections of future global climate change forecast a further 1.5-3.0°C increase in the 

global mean surface temperature by the end of the 21st century (IPCC 2007), punctuated by 

numerous climatic extremities (e.g. storms, hurricanes, heat waves, floods, droughts, cold snaps) 

(termed 'extreme climatic events' or 'ECEs') of increasing frequency and intensity (see IPCC 

2012). Specifically, evidence is gathering which indicates an increasing prevalence of acute 

periods of exceptionally cold air temperatures (termed 'cold snaps') across large parts of the 

Northern hemisphere (Wang et al. 2010; Smith 2011; Liu et al. 2012). Several winters have been 

disrupted by periods of extreme sub-zero temperatures of record-breaking proportions, with 

devastating impacts on the structure and functioning of many native marine communities (e.g. 

1962/63, Crisp 1964; 1978/79, Beukema 1979; 2009/10, Wethey et al. 2011). The impacts of 

cold snaps are of particular relevance to intertidal communities, which experience varying 

degrees of aerial exposure during each tidal cycle and are thus subjected to large variations in 

several abiotic factors on a daily basis. Highly mobile organisms (e.g. crabs, fish) are able to 

migrate to the more favourable subtidal zone with the ebbing tide and even those which fail to 

retreat in time are able to find refuge in less stressful microhabitats within the intertidal zone 
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(e.g. sheltered crevices, rock-pools, beneath canopy-forming macroalgae). Sessile and slow-

moving organisms are, by contrast, required to withstand periods of several hours of exposure 

to physical stressors such as desiccation, solar radiation and temperature extremes. The severity 

of the stress gradient is accentuated in areas where the timing of low water of spring tides 

(LWST) coincides with the hottest and coldest climatic conditions during the summer and winter 

months respectively (Helmuth et al. 2006). 

Global warming is predicted to instigate species extinctions (Thomas et al. 2004) and 

poleward migrations (Parmesan and Yohe 2003) across several taxa. However, much uncertainty 

surrounds the significance of ECEs in mitigating the rate of change of geographic distributions, 

with the failure of their inclusion in modelled projections of future global biodiversity patterns 

likely to be accountable for some of the large variability observed (Pereira et al. 2010). This is of 

particular concern considering that maximum and minimum temperatures, as opposed to annual 

mean temperatures, are often of the greatest significance to the persistence and invasiveness of 

many non-native species (Stachowicz et al. 2002). Whilst unlikely to halt the poleward migration 

of non-native species indefinitely, future cold snaps have been hypothesised to act as a critical 

‘reset’ mechanism which may impede the rate of biological invasions (Canning-Clode et al. 2011; 

Firth et al. 2011). Recent scientific endeavour within the field of ECEs has resulted in significant 

advancements in understanding of how cold snaps are likely to affect ecosystems and the 

services which they provide. Field observations showing correlations between cold winter 

temperatures and rates of mortality have been complemented by empirical testing of past, 

present and future climatic scenarios (Urian et al. 2010; Canning-Clode et al. 2011). Comparisons 

of the response of non-native species with their native ecological competitors have made 

subsequent predictions of community and ecosystem level changes more plausible (e.g. 

Lockwood and Somero 2011). Physiological stress is also likely to show divergence across the 

size/age gradient of both native and non-native congeneric species (e.g. Roy et al. 2002), and its 

incorporation into experimental design is known to be critical if more accurate predictions 

regarding future changes in invasion success are to be made (e.g. Urian et al. 2010). Whilst an 

increasing number of studies are beginning to highlight the importance of such parameters in 

order to make credible conclusions regarding the potential impacts of future cold snaps on 

biological invasions, no studies to date has taken all of these pertinent findings into 

consideration within their experimental design. 

The intertidal zone of the Menai Strait and Conwy Bay Special Area of Conservation 

(SAC) (Figure 5.1) was identified as a suitable area to investigate the effects of cold snaps of 

increasing frequency and severity upon native and non-native species. Partly due to its historic 

status as an area supporting commercial fisheries and aquaculture growth trials of many bivalve 



143 
 

molluscs, areas within the SAC (particularly the lower intertidal) support populations of several 

non-native species, including the Pacific oyster (Crassostrea gigas Thunberg 1793), the hard shell 

clam (Mercenaria mercenaria L. 1758) and the Chilean oyster (Ostrea chilensis Philippi 1845). 

These species co-exist with functionally-related natives, including commercially-important 

molluscs (e.g. the blue mussel, Mytilus edulis L. 1758) and rare, protected species (e.g. the native 

oyster, Ostrea edulis L. 1758). Non-native oysters may compete for resources such as food and 

space with many native species within their new environment and can also alter biodiversity and 

ecosystem functioning through habitat modification (e.g. Cranfield et al. 2001; Gutiérrez et al. 

2003; Padilla 2010). 

Ostrea chilensis is a flat oyster belonging to the family Ostreidae, and is native to both 

Chile and New Zealand, where it is a commercially-important species. It is a protandric 

hermaphrodite and the larvae are brooded within the female mantle cavity pending their release 

as pediveligers, which settle within minutes to hours following release (Millar and Hollis 1963). 

The species was deliberately introduced into the low intertidal at Tal y Foel (Menai Strait, North 

Wales, UK) by the Ministry of Agriculture, Fisheries and Food (MAFF) during the early 1960s to 

investigate its potential as an alternative culture species to replace the diminishing native oyster 

populations of the UK (see Walne 1974). Its initial spread away from the site of original 

introduction was unsurprisingly slow (averaging 13.3m y-1) given its relatively low fecundity 

(Cranfield and Allen 1977), highly reduced pelagic larval phase (Millar and Hollis 1963) and the 

lack of suitable substratum flanking both sides of the oyster bed (see Richardson et al. 1993b). 

However, more recent evidence has shown a significant increase in both range expansion 

(averaging 0.6 km y-1) and density (up to 232 oysters m-2) (Chapter 2). This has led to significant 

changes to the local biodiversity of the communities associated with the oysters (see Appendix I) 

and, potentially, the qualifying habitats (see Annex I of the EC Habitats Directive) which warrant 

its current conservation status. Incidentally, LWST occurs between ~0400-0700h and ~1600-

1900h (GMT) in the Menai Strait. The intertidal Chilean oyster population, occurring up to 2 m 

above chart datum within the SAC (Chapter 2), is thus subjected to both the coldest (am, winter) 

and warmest (pm, summer) annual air temperature extremes for up to 2 hours during each 

period of LWST. 

Using the non-native O. chilensis as our model species, we investigated the significance 

of climate change-induced increases in the frequency and intensity of winter cold snaps as a 

potential mechanism controlling the spread and proliferation of an invasive species outside its 

native geographic range. Present observations and future projections of extreme cold snaps 

were mimicked in the laboratory. The resilience of O. chilensis to observed and future predicted 

acute cold snaps was then empirically compared with that of its native ecological co-inhabitants, 
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Figure 5.1 Map showing southern boundary of the Menai Strait and Conwy Bay Special Area of Conservation (SAC) (shaded in pink/orange) in relation to 

sites of collection and monitoring. Inset map shows general area of the entire SAC in relation to Wales (UK). Data used to generate SAC and SSSI 

boundaries is subject to Crown Copyright (reserved). Countryside Council for Wales, Licence No. 100018813. 
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namely Mytilus edulis and Ostrea edulis. Results from the laboratory experiments were 

complemented with real-time field observations of pre- and post-winter Chilean oyster and blue 

mussel densities within the SAC. Size-specific and density-dependent responses of small Chilean 

oysters, possibly experiencing their first winter, through to large, fully mature conspecifics to 

acute cold snaps were also investigated. 

 

5.3 Methods 

5.3.1 Field survey 

Pre- (October 2010) and post-winter (March 2011) Chilean oyster and blue mussel abundances 

were determined at three sites (Llanidan, Plas Trefarthen and Tal y Foel) within the south-

western end of the SAC (Figure 5.1), each known to harbour established populations of both 

bivalve species. O. edulis is extremely rare throughout the SAC and thus were not included in this 

part of the study. At each site, a 100 m transect parallel to the shore were surveyed at 0.8 m 

above chart datum. Five quadrats (0.1 m2 each), with a distance of no more than 1 m between 

each quadrat, were placed at 20 m intervals along each transect line, giving a total coverage of 6 

m2 at each site. All live oysters and mussels were counted within each quadrat. Air temperature 

at each site was monitored every 0.5 h throughout the experimental period using a temperature 

logger (Gemini Tinytag™ Splash 2), housed within a Stevenson Screen and placed in an open 

location at <10 m above mean tidal level. Seawater temperature was also recorded using similar 

data loggers, affixed to solid structures at 0.8 m above chart datum at each of the three sites. 

 

5.3.2 Animal collection and maintenance 

Both O. chilensis and M. edulis were dredged from shallow subtidal populations (3.0 m below 

chart datum) at Plas Trefarthen (53°10'N 4°15'W) (North Wales, UK) during October 2011. Due 

to their rarity within the SAC, O. edulis were sourced from a commercial supplier (Rossmore 

Oysters Ltd.), who harvests a shallow subtidal population in Loch Ryan (54°55'N 05°10'W) 

(Scotland, UK). Despite inhabiting areas of slightly different latitudes, the collection of all species 

from the shallow subtidal ensured that any potential differences in their proficiency to tolerate 

freezing stemming from differential thermal exposures was minimal, although the likely 

confounding effects of environmental parameters between locations could not be eliminated. To 

test for any size-specific differences in tissue biomass between species, the allometric 

relationship between tissue dry weight and shell length was estimated for each of the three 

bivalve species (see Appendix VII). Thirty individuals across the size range available for each 

species were measured to the nearest 0.1 mm using Vernier callipers and all fouling organisms 

removed. The dry flesh weight of each shucked bivalve was determined following drying at 60°C 
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for 72 h. No significant difference was observed between the slope of each length-weight 

relationship between species (Shell Length | Species: F2,84 = 0.33, p = 0.717). All remaining 

bivalves were thus measured to the nearest 1 mm and grouped into small (25-35 mm), medium 

(45-55 mm) and large (65-75 mm) size classes, equivalent to 0.07-0.20, 0.45-0.84 and 1.44-2.27 g 

dry flesh weight respectively. Only undamaged individuals that readily responded to physical 

disturbance (i.e. shell valves fully closing upon physical contact under submerged conditions) 

were used. Regrettably, insufficient numbers of small O. edulis were available, thus only two 

groups of native oysters (medium and large) were available for all laboratory experiments.   

All bivalves were held in large, closed-system holding tanks containing fully-aerated 

seawater and maintained under an 8:16 h light:dark regime at a constant temperature of 

5.0±0.1°C, equivalent to the typical ambient winter seawater temperature regime within the 

Menai Strait. Approximately 50% of the seawater within each holding tank was changed daily 

and a mixture of microalgal cultures (Pavlova lutheri (Droop) J.C. Green, Rhinomonas reticulata 

(I.A.N. Lucas) G. Novarino, Tetraselmis chuii Butcher) at approximately 1.0-3.0x106 cells mL-1) was 

drip-fed into each holding tank. Following an acclimation period of 2 weeks, no bivalves had 

perished and thus all individuals were deemed adequate for use in all subsequent laboratory 

experiments. 

 

5.3.3 Single acute exposure to freezing air temperatures under laboratory conditions 

A total of 400 bivalves (see Table 5.1) were used to assess the size-specific survival of each 

species following a single, artificially-induced exposure to freezing air temperature (2 h 

duration). For all three species, each individual was allocated to one of five temperature 

treatments (three experimental and two controls), giving 10 individuals per available size class in 

each temperature treatment (Table 5.1). All bivalves across all three species were exposed to 

their respective treatment temperatures simultaneously. 

Freezing air temperatures (-2, -6 and -10°C ) were achieved using an external thermostat 

unit fitted to an ordinary house-hold upright freezer unit. A thermostatic probe (sensitive to 

within 1°C) was placed towards the centre of the freezer and mounted in a way so as not to be 

affected by the wire racks or cooling pipes within the walls of the freezer. Temperature stability 

was monitored using two temperature loggers, placed within the upper and lower freezing 

compartments respectively. An air temperature of 5°C was obtained using a standard, house-

hold upright refrigerator and temperature stability was monitored in the same manner as for the 

freezing treatments. All treatments were thus conducted within enclosed units, standardising for 

any lack of air recirculation. Both 'Control' and 'Procedural Control' treatments were conducted
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Table 5.1 Descriptive table showing details of each experimental treatment in which Chilean oysters (Ostrea chilensis), blue mussels (Mytilus edulis) and 

European flat oysters (Ostrea edulis) of up to three distinct size classes were exposed to various cold temperatures within enclosed household 

refrigerators and freezers, mimicking acute winter cold snaps. S = small (25-35 mm), M = medium (45-55 mm), L = large (65-75 mm shell length). 

 

Treatment 
No. O. chilensis No. M. edulis No. O. edulis 

Description 

S M L S M L S M L 

-2°C 10 10 10 10 10 10 n/a 10 10 
Aerial exposure for 2 h at -2°C within 

freezer 

-6°C 10 10 10 10 10 10 n/a 10 10 
Aerial exposure for 2 h at -6°C within 

freezer 

-10°C 10 10 10 10 10 10 n/a 10 10 
Aerial exposure for 2 h at -10°C within 

freezer 

Control 10 10 10 10 10 10 n/a 10 10 
Submersion at 5°C within refrigerator 

Procedural Control 10 10 10 10 10 10 n/a 10 10 
Aerial exposure for 2 h at 5°C within 

refrigerator 
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conducted within a refrigerator, whilst all three freezing treatments were conducted within a 

freezer. 

Following subjection to their respective temperature treatments for 2 h, all bivalves 

were returned to their holding tanks and mortality within each treatment group was assessed 

daily for a period of 28 days. An individual was considered to be dead when no response was 

shown to external physical disturbance and the adductor muscle was also fully relaxed. Pre-

observations using time-lapse video showed that Chilean oysters that had previously been 

exposed to acute cold temperatures would often remain partially agape. The oysters were also 

slow to respond to any external physical disturbance but would, however, show signs of feeding 

behaviour if left submerged for a few hours. Such specimens were considered to be alive (albeit 

in a moribund state) and remained within the holding tanks until they showed no response. 

Comparisons of survival between treatments and between size classes were made using a 

Kaplan-Meier survival analysis and a log-rank test with Bonferroni correction (Kleinbaum and 

Klein 2012). 

 

5.3.4 Increased frequency of freezing exposure under laboratory conditions 

To assess the impact of cold snap frequency on native and non-native bivalves, the freezing 

exposure experiment (described above) was repeated with another 400 individuals, but with the 

addition of one additional period of exposure (2 h duration) to each respective temperature 

treatment, commenced 24 h following the initial exposure period. Between the two exposure 

periods, all bivalves were returned to the holding tanks and kept under ambient conditions as 

described above. 

Due to the mixed semi-diurnal periodicity of the tides in the Menai Strait, this design 

could not provide (nor did it aim to achieve) an accurate representation of the natural conditions 

experienced by bivalve populations within the SAC. However, the timing of syzygy (i.e. the 

alignment between the sun, moon and the Earth) means that those organisms inhabiting the low 

intertidal within the SAC become emersed during both the coldest (during early winter 

mornings) and warmest (during summer afternoons) parts of each day during periods of LWST. 

The divergence between winter air and seawater temperatures are likely to be much lower 

when emersed during the warmest part of the day, thus bivalves are unlikely to undergo periods 

of thermal-related stress during this part of the tidal cycle. Restricting the experimental 

organisms to one emersion period per day also ensures that any significant morality can only be 

related to the period of exposure to freezing air temperatures. 
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5.3.5 Changes in tissue freezing rate with size, density and exposure temperature under 

laboratory conditions 

The change in internal tissue temperature of both small and large O. chilensis and M. edulis was 

determined during a typical acute period of exposure (2 h duration) to current (-2 and -6°C) and 

predicted future (-10°C) freezing conditions. A hole (3.8 mm diameter) was drilled into the dorsal 

end of one shell valve (always the right, flat valve of oysters), taking care to avoid damaging the 

mantle tissue. Each hole was then plugged with a tapering PTFE plug, housing a thermocouple 

(type K) whose tip was always in direct contact with the exposed reproductive tissue. Dental wax 

(Majestic Drug Co. Inc.) was used to further ensure that the plugs remained air-tight. Plugged 

bivalves were then acclimated within the holding tank for a further three days and only healthy 

specimens (i.e. those that showed a closing response when touched) were used. Each bivalve 

was then independently subjected (i.e. one at a time) to one of three freezing temperature 

treatments (-2, -6 or -10°C) for a period of 2 h as described above, with the internal tissue 

temperature of each specimen measured every minute. Following 2 h under freezing conditions, 

bivalves were immediately returned to a water bath containing seawater held at 5°C. 

Measurements of the internal tissue temperature continued until the tissue had returned to 

ambient temperature. Total time spent frozen was estimated as the total number of minutes 

spent under the freezing point of seawater. By assessing the freezing and thawing rates of each 

bivalve individually (i.e. not in the presence of other conspecifics), the potential influence of 

neighbouring conspecifics was thus excluded whilst also mimicking areas of low oyster densities 

within the SAC, usually towards the edge of its non-native geographic range. For further 

comparative purposes, the effect of density on the rate of freezing was thus repeated for small 

Chilean oysters in the presence of numerous conspecifics across the entire size range, mimicking 

areas within the SAC where O. chilensis is by far the most numerous species within the low 

intertidal (Chapter 2). 

 

5.4 Results 

5.4.1 Field survey 

Air temperatures were relatively similar between sites, with differences generally less than the 

stated accuracy of the data loggers. Site data were therefore pooled to give an average air 

temperature profile for the south-western end of the SAC. Air temperatures showed a high 

degree of variability throughout the winter of 2010-2011, with temperature differences of >8°C 

occasionally observed during individual days (Figure 5.2). The warmest temperatures (~13°C) 

were observed at ~1500 h, whilst the coldest temperatures (~-6°C) were observed at ~0600 h, 

with the latter coinciding with periods of MLWS. Sub-zero air temperatures were observed at 
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Figure 5.2 Mean winter air (blue line) and sea (red dotted line) temperatures (°C) recorded along the shore of the Menai Strait (Anglesey, North Wales, 

UK) during 2010-2011. Data overlay the change in tidal height (m above chart datum) in the area over the same period (grey line). Chilean oysters 

predominantly occupy areas ≤1 m above chart datum, thus showing how they were, in general, inundated by the tide during most of the coldest 

freezing temperatures observed. 
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some point during 30 days of winter. However, freezing air temperatures <-2°C were rarely 

observed during the survey period and temperatures as low as -6°C were only recorded during 

the early hours of 20th December 2010, when O. chilensis would have been inundated by the tide 

(see Figure 5.2). Considering that the majority of the O. chilensis population within the SAC 

inhabit areas ≤1 m above chart datum, it is suggested that oysters were exposed to freezing air 

temperatures during 2 of the 30 days only. In addition, oysters were never exposed to 

temperatures lower than -1°C (see Figure 5.2). Throughout the remaining 28 days where sub-

zero air temperatures were recorded, O. chilensis was thus able to gain refuge in the shallow 

subtidal. 

Changes in mean seawater temperature showed a distinct temporal lag in relation to 

changes in air temperature and varied between ~3°C and 8°C during the course of the study 

period. A mean seawater temperature of 4.6°C was recorded during the coldest day of the 

winter period, which was comparable to the temperature chosen for the 'Control' and 

'Procedural Control' treatments in the laboratory experiments (i.e. 5°C). Neither M. edulis nor O. 

chilensis showed any significant decline in density following the winter period at both Tal y Foel 

(mussels: t = -0.95, df = 58, p = 0.348, oysters: t = 0.99, df = 58, p = 0.326) and Llanidan (mussels: 

t = 0.48, df = 58, p = 0.634, oysters: t = 0.58, df = 58, p = 0.567). Due to a period of stock 

manipulation by a commercial mussel farmer at Plas Trefarthen, an estimation of mean post-

winter mussel density for this site was not possible. Pre- and post-winter oyster densities at this 

site again were not significant different (t = 1.88, df = 58, p = 0.064) (see Figure 5.3). 

 

5.4.2 Size-specific response to acute periods of freezing air temperatures under laboratory 

conditions 

No significant difference was observed between the survival rate of small, medium and large O. 

chilensis within each temperature treatment (Kaplan-Meier Survival Analysis: χ2≤2.00, p≥0.368). 

O. chilensis size-classes were therefore pooled across each treatment and their survival rate at 

each treatment temperature compared using a log-rank test (Figure 5.4). Survival rate decreased 

significantly with decreasing freezing air temperautre (χ2 = 98.87, df = 4, p<0.001), with median 

time until death estimated at 27.6±0.4, 25.5±0.7 and 18.9±1.4 days at -2, -6 and -10°C 

respectively. Four weeks following a single 2 h exposure period at -2°C, -6°C and -10°C, O. 

chilensis survival was observed to be 97%, 84% and 55% respectively. Similarly, no significant 

difference was observed between the survival rate of small, medium and large Chilean oysters at 

each temperature treatment when cold snap frequency was effectively doubled (Kaplan-Meier 

Survival Analysis: χ2≤0.592, p≥0.744). Again, pooling oysters across each respective treatment 

revealed that survival rate decreased significantly with decreasing freezing air temperautre (χ2 =  
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Figure 5.3 Pre- (solid bars) and post-winter (dotted bars) mean (±SE) densities (m-2) of non-native Chilean oysters (Ostrea chilensis) (white) and native 

blue mussels (Mytilus edulis) (dark grey), during winter 2010-2011 at three sites located within the Menai Strait and Conwy Bay SAC (North Wales, UK). 

ND = no data available at due to unexpected harvesting of mussel population at this location. 
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Figure 5.4 Pooled proportion of Chilean oysters (Ostrea chilensis) surviving after exposure to air temperatures of -2, -6 and -10°C for 120 minutes, either 

during one or two consecutive days. All oysters survived both control and intermediate control treatments and have hence been removed from the 

figure to improve clarity. Symbols: open diamond = -2°C, single period; closed diamond = -2°C, double period; open square = -6°C, single period; closed 

square = -6°C, double period; open circle = -10°C, singe period; closed circle = -10°C, double period. 

 



154 
 

 

 

Figure 5.5 Change in tissue temperature of small (light grey) and large (dark grey) Chilean oysters (Ostrea chilensis), exposed to an aerial temperature of 

-6°C for 120 minutes and subsequentlly reimmersed in seawater held at 5°C (depicted by dashed arrow). Lines: light grey = small oysters (40-50mm shell 

length), dark grey = large oysters (60-70mm shell length). Similar patterns were observed for M. edulis when frozen at -6°C and for both species when 

frozen at -10°C, although freezing rates at the latter temperature were considerably greater (see Table 5.2). 
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164.27, df = 4, p<0.001), with median time until death estimated at 20.9±1.9 and 9.3±1.2 for -6 

and -10°C treatments respectively (Figure 5.5). Whilst no O. chilensis had died in the -2°C 

temperature treatment, 63% of all oysters survived at -6°C, whilst none survived at -10°C. 

Critically, oyster mortality across both control and procedural control treatments was negligible, 

confirming that the freezing air temperature was the only factor responsible for the decreasing 

survival rate. 

Native co-inhabitants (pooled across respective size classes) showed differential 

responses to freezing conditions. M. edulis showed negligible mortality (<2%) across all 

treatments (χ2 = 3.584, df = 4, p = 0.465), whilst significant O. edulis mortality was confined to 

periods of two consecutive periods of exposure to -10°C only (χ2≥18.965, p<0.001). Median time 

until death in this instance was estimated to be 22.1±1.1 days, with only 62% oysters surviving. 

 

5.4.3. Changes in tissue freezing rate with size, density and exposure temperature under 

laboratory conditions 

The typical pattern of change in tissue temperature observed in small and large O. chilensis 

when individually exposed to freezing temperatures is shown in Figure 5.5. Following an initial 

sharp decrease, tissue temperature underwent a period of stabilisation at ~-2°C due to the 

counteractive effect of heat of fusion release during phase transition of the extracellular fluid to 

form ice. The subsequent decline indicates the rate at which ice is formed in the visceral tissue 

(i.e. ‘freezing rate’), eventually culminating in thermal equilibrium with the external air 

temperature. Given that seawater in the Menai Strait (salinity ~33) freezes at ~1.9°C, internal 

tissue temperatures of both small and large O. chilensis were unlikely to reach the critical point 

at which they would freeze. Observations at -2°C were thus omitted from further analysis. 

At both -6°C and -10°C, small O. chilensis froze and thawed significantly quicker than 

both large conspecifics and M. edulis of similar biomass (Table 5.2a-d). A larger distinction 

between thawing rates was observed between small and large O. chilensis frozen at -6°C 

(approximately seven-times quicker) compared to -10°C (approxiamtely two-times quicker) 

(Figure 5.6). Ice crystals were present within the tissues of small oysters for a significantly longer 

period than in large oysters during both temperature treatments (Table 5.2e-f). Whilst a similar 

relationship was observed between the different size classes of M. edulis, mussels cooled and 

thawed relatively slower than non-native oysters of similar biomass, meaning that mussels are 

exposed to ice crystal formation for significatly less time than oysters (pooled across size classes) 

(Table 5.2e-f). Gaping behaviour also differed during periods of aerial exposure. Whilst 

commonly-observed in O. chilensis, particularly large oysters, such behaviour was seldom 
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Figure 5.6 Mean (±SE) change in internal tissue temperature of small (25-35 mm shell length) 

and large (60-70 mm shell length) Chilean oysters (Ostrea chilensis) and blue mussels (Mytilus 

edulis), individually exposed to an aerial temperature of -6°C or -10°C for 120 minutes and 

immediately followed by a period of immersion in seawater held at 5°C. Figures (a), (b) and (c) 

refer to freezing rate (°C min-1), thawing rate (°C min-1) and total time where the tissues were 

frozen (mins) respectively. SO = small oysters, LO = large oysters, SM = small mussels, LM = large 

mussels. 
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Table 5.2 Fully-crossed ANOVAs examining freezing and thawing rates (°C min-1) of small (35-45 

mm shell length) and large (65-75 mm shell length) Chilean oysters (Ostrea chilensis) and blue 

mussels (Mytilus edulis) , as well as the total time for which tissues remain frozen (mins) 

following a 2 h period at -6 or -10°C. 

 

(a) -6°C Freezing rates 

Source of Variation df MS F p 

Species 1 0.0057 15.74 <0.001 
Size 1 0.0231 63.62 <0.001 
Species x Size 1 0.0017 4.70 0.0483 
Residual 20 0.0004   
Total 23    

 

Cochran's Test 
Transformation 

C = 0.578, p<0.05 
None 

 

 SNK Test Species x Size (SE = 0.008) 

   
  Sp(Si): 

  Small Oysters<Mussels 
  Large ND 
    

 

 

(b) -10°C Freezing rates 

Source of Variation df MS F p 

Species 1 0.054 37.67 <0.001 
Size 1 0.113 79.00 <0.001 
Species x Size 1 0.010 7.30   0.014 
Residual 20 0.001   
Total 23    

 

Cochran's Test 
Transformation 

C = 0.637, p<0.05 
None 

 

 SNK Test Species x Site (SE = 0.02) 

   
  Sp(Si): 

  Small Oysters<Mussels 
  Large Oysters<Mussels 
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(c) -6°C Thawing rates 

Source of Variation df MS F p 

Species 1 1.6188 40.97 <0.001 
Size 1 23.0260 621.09 <0.001 
Species x Size 1 0.0008 0.02 0.888 
Residual 20 0.0371   
Total 23    

 

Cochran's Test 
Transformation 

C = 0.463, p>0.05 
Log10 

 

 SNK Test Species (SE = 0.06) 

   
  Species: 

  
Across all 
Sizes 

Mussels<Oysters 

    

  Size (SE = 0.06) 

    
  Size:  

  
Across all 
Species 

Large<Small 

    

 

(d) -10°C Thawing rates 

Source of Variation df MS F p 

Species 1 72.430 23.37 <0.001 
Size 1 3.744 50.75 <0.001 
Species x Size 1 0.065 0.88   0.359 
Residual 20 0.074   
Total 23    

 

Cochran's Test 
Transformation 

C = 0.426, p>0.05 
Log10 

 

 SNK Test Species (SE = 0.08) 

   
  Species: 

  
Across all 
Sizes 

Mussels<Oysters 

    

  Size (SE = 0.08) 

    
  Size:  

  
Across all 
Species 

Large<Small 
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(e) -6°C Total time frozen 

Source of Variation df MS F p 

Species 1 477.042 9.71 0.005 
Size 1 2109.375 42.92 <0.001 
Species x Size 1 135.375 2.75 0.113 
Residual 20 49.142   
Total 23    

 

Cochran's Test 
Transformation 

C = 0.320, p>0.05 
None 

 

 SNK Test Species (SE = 2.02) 

   
  Species: 

  
Across all 
Sizes 

Oysters>Mussels 

    

  Size (SE = 2.02) 

    
  Size:  

  
Across all 
Species 

Small>Large 

    

 

(f) -10°C Total time frozen 

Source of Variation df MS F p 

Species 1 294.00 8.65   0.008 
Size 1 4648.17 136.78 <0.001 
Species x Size 1 104.17 3.07   0.096 
Residual 20 33.98   
Total 23    

 

Cochran's Test 
Transformation 

C = 0.457, p>0.05 
None 

 

 SNK Test Species (SE = 1.68) 

   
  Species: 

  
Across all 
Sizes 

Oysters>Mussels 

    

  Size (SE = 1.68) 

    
  Size:  

  
Across all 
Species 

Small>Large 
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observed in mussels. Critically, small oysters showed a significant, approximately three-fold 

reduction (F1,11≥35.38, p<0.001) in freezing rate when positioned among similar-sized 

conspecifics as opposed to when they were measured in isolation (Figure 5.6). 

 

5.5 Discussion 

Severely cold winter temperatures are known to cause mass mortalities within many temperate 

intertidal populations (e.g. Crisp 1964; Firth et al. 2011; Wethey et al. 2011). This chapter lends 

support to the hypothesis that native and non-native competitors may differ in their response to 

cooler air and seawater temperatures associated with future climatic change, although these 

responses may not always be favourable to the invading species. Whilst unlikely to halt the 

poleward migration of both native and non-native taxa, the predicted increase in both the 

frequency and intensity of acute periods of extreme freezing temperatures may operate as a 

critical 'reset' mechanism which inhibits the rate of poleward spread of introduced species. 

Canning-Clode et al. (2011) suggest that the survival of the non-native green porcelain crab, 

Petrolithses armatus (Gibbes 1850), in the warm Atlantic waters of the south-eastern United 

States is severely hampered by periods of exceptionally cold winter seawater temperatures. The 

northern geographic range limit of the invasive lionfish (Pterois spp.) within the same geographic 

area is also thought to be determined by temperature (Kimball et al. 2004). However, for mobile 

species such as these, their survival during periods of extremely cold winters is partly 

determined by their ability to migrate to areas of more favourable temperature at a rate that is 

quicker than that of the cooling environment (see Hiddink and ter Hofstede 2008; Burrows et al. 

2011). This chapter presents a relatively easier and perhaps more pertinent alternative by 

investigating the impact of present and future acute freezing events on sessile habitat-modifying 

species that predominate in the intertidal zone, where the magnitude of temperature 

aberrations is likely to be much greater. 

Our study provides strong evidence to suggest that current sub-zero winter air 

temperatures may not be quite cold enough to significantly hamper the persistence of the non-

native Ostrea chilensis population in the Menai Strait, with only 18% of the intertidal population 

expected to perish when exposed to a single 2 h period at -6°C (i.e. the coldest air temperature 

observed). Due to its aggregated distribution and its rarity at tidal heights >1 m above chart 

datum, it is also proposed that O. chilensis may have avoided prolonged exposure to freezing air 

temperatures during the relatively cold winter of 2010-2011 simply due to the mismatch 

between periods of extreme LWST and the coldest freezing air temperatures. However, Chilean 

oysters are likely to experience much higher rates of mortality in the near future if forecasted 

increases in the frequency and intensity of cold winter temperature aberrations in the Northern 
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Figure 5.7 Differential tissue freezing rates of small (25-35mm) Chilean oysters exposed to sub-zero cold snap temperatures (°C) in isolation (light grey 

bars) or in the presence of conspecifics (dark grey bars). Error bars = ±1SE. 
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Hemisphere (see Wang et al. 2010; Liu et al. 2012) are correct. At -6°C, oyster mortality was 

nearly twice as high when cold snap frequency was effectively doubled. Furthermore, whilst 

nearly half of the Chilean oysters are expected to perish following an exposure to a single 2 h 

period at -10°C, two consecutive daily periods of -10°C is very likely to lead to a rapid loss of the 

entire intertidal O. chilensis population, even in areas of high oyster density. This chapter 

highlights the need for a more long-term assessment of survival following periods of freezing 

stress. Mortality across all treatments (where mortality was significant) was not observed until 

approximately 3 days following cold snap exposure. Ibing and Theede (1975) also showed how a 

mortality response following exposure to freezing conditions can be delayed for several days. 

With the frequency and intensity of cold snaps increased, the periodicity of significant mortality 

(i.e. the time up to MTTF) also increased. O. chilensis mortality was observed even after 3 weeks 

following exposure to freezing air temperatures, suggesting that long-term monitoring of native 

and non-native intertidal populations is required following cold snap periods. 

The seminal work of Southward (1958) demonstrated how the thermal tolerance of 

intertidal organisms are often closely-related to the extent of both their geographic range and 

their occupied positions along the intertidal gradient. Consideration of the geographic 

distribution of each species investigated in the current chapter is in agreement with this 

concept, indicating that O. chilensis is not as well-adapted to deal with periods of sub-zero 

temperatures compared with two of its new ecological competitors. The Chilean oyster spans 

between 36-46°S latitude in the Southern Hemisphere (Toro 1995; Jeffs et al. 1996), but is 

confined to higher latitudes (53°N) beyond its native geographic range (Chapter 2). Despite this 

clear latitudinal difference, the interaction between the atmospheric circulation and oceanic 

heat exchange gives the UK its mild climate relative to several US states which occur on the same 

latitude (Seager et al. 2002). This results in a climatic similarity of 70% between the native and 

non-native range of O. chilensis ('CLIMATCH', Bureau of Rural Sciences 2009). Critically, however, 

harsh winter ECEs are limited in both Chile and New Zealand, where sub-zero temperatures in 

coastal regions are likely to be restricted to the poleward fringe of the Chilean oysters' native 

geographic distribution. 

Suitable habitat for Ostrea chilensis occurs down to far deeper depths in the coastal 

waters of New Zealand (see Cranfield et al. 2001) than in the Menai Strait, meaning that subtidal 

populations are more likely to predominate within its native geographic extent. In contrast, O. 

chilensis within the Menai Strait generally occupies a narrow band from the low intertidal (2 m 

above chart datum) into the shallow subtidal (<8 m below chart datum), with the highest 

densities concentrated around 0.5 m below chart datum (Chapter 2). Information regarding the 

freeze tolerance of O. chilensis is scant and restricted to anecdotal evidence in Walne (1974), 
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who notes that the Chilean oyster is unable to cope with periods of "quite moderate frost", 

although no experimental data are provided to support this statement. By contrast, M. edulis 

showed greater resilience to freezing conditions than O. chilensis. In north-western Europe, the 

geographic range of M. edulis extends from the Franco-Spanish border (~42°N) as far north as 

the Svalbard Archipelago (~78°N) (Christiansen 1965). Mussels are also found along a much 

wider extent of the vertical shore gradient than both oyster species, with open coast populations 

predominating in the intertidal and reproductively-active individuals found throughout the 

entire eulittoral zone (Seed 1969). The freeze tolerance of mussels has been extensively studied 

and they have been shown to withstand exposure to temperatures of -10°C for at least 24 h 

(Williams 1970). Mussels were therefore not expected to perish during the current study, 

although their inclusion served as a useful proxy to determine whether or not any mortality may 

have been introduced due to the artificial freezing conditions. Significant losses of native oysters 

were restricted to those exposed to potential future cold winter temperatures, although 

mortality was never greater than 38%. In terms of its native geographic range, O. edulis occurs as 

far north as the Norwegian Sea (~62°N) (Alcaraz and Dominguez 1985). This species 

predominantly populates areas towards the low-water mark of the intertidal and into the 

shallow sublittoral, although it is extremely tolerant to periods of tidal emersion (Hummel et al. 

1988). Native oysters can therefore be considered to be relatively well-adapted to periods of 

freezing temperatures. 

Whilst information regarding the freeze tolerance of O. edulis is currently lacking, 

juvenile O. edulis are known to survive for several weeks in seawater maintained at 3°C, even in 

the absence of an exogenous food source (Child and Laing 1998).  Shell valve gaping and high 

mortalities were reported in UK O. edulis populations during the extremely harsh and extended 

winter of 1962-63 (Crisp 1964). Mortality was attributed to the limited functioning of the 

adductor muscle, resulting in gaping, which in turn compromised the oyster’s ability to deal with 

sediment loading. Observations of gaping behaviour were largely restricted to O. chilensis during 

the current study. Ostrea chilensis responded to physical stimuli and were thus deemed to be 

alive until the functionality of the adductor muscle was completely lost. It is likely that the rate 

of decline in the survival of O. chilensis will be even greater in the Menai Strait than in the 

laboratory since under field conditions silt concentration will be much higher and the 

combination of silt loading and low temperatures would act synergistically and increase oyster 

mortality.  

Gaping behaviour has been documented in several bivalve species during periods of 

physiological stress (Davenport and Wong 1994) and is commonly cited as a mechanism for 

increasing aerobic respiration (Moon et al. 1970; Bayne et al. 1976; Nicastro et al. 2008). Many 
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bivalves can utilise anaerobic metabolic pathways during periods of both short-term (e.g. during 

tidal emersion, predator attacks) and long-term stress (e.g. during cold winters, exposure to 

noxious environments). The American oyster, Crassostrea virginica (Gmelin 1791), is known to 

be reliant on the coupled fermentation of glycogen and asparate during such periods, with 

succinate and alanine accumulated as the metabolic end products (de Zwaan and Wijsman 

1976). No information is currently available on the anaerobic metabolic pathways of O. chilensis 

and no attempts were made to control for any inter-specific variability in gaping-induced rates of 

evaporative cooling during the current investigation. Whilst gaping may potentially allow for 

optimum metabolic functioning during periods of tidal emersion, such behaviour will also 

inevitably lead to a significant level of water loss, although not always resulting in a significantly 

greater rate of mortality (see Lent 1969; Bayne et al. 1976). Differential behaviour during periods 

of tidal emersion has been shown to cause niche separation between indigenous (Perna perna L. 

1758) and invasive (Mytilus galloprovincialis Lamarck 1819) mussels (Nicastro et al. 2010). 

Further studies would be required to test this hypothesis under cold (as opposed to warm) 

thermal extremities. 

The influence of thawing rate on the tolerance of organisms to freezing temperatures 

may, on occasion, be dependent upon the rate of freezing. In some cases, a critical freezing rate 

is evident, above which a slower thawing rate will lead to significantly more physical damage to 

the organism than if the tissues were thawed more quickly (Malek and Bewley 1978). 

Alternatively, a slower thawing rate is more beneficial when the rate of freezing is below the 

critical value. Clear size-specific differences were observed in freezing and thawing rates of both 

oysters and mussels when individually exposed to extreme sub-zero air temperatures, with 

smaller bivalves freezing and thawing much quicker than larger conspecifics. The rate of freezing 

is known to be a critical component in determining both the degree of freeze tolerance in 

intertidal organisms and whether or not ice formation will occur within the tissues (Murphy and 

Johnson 1980). Smaller organisms have a higher surface area to volume ratio, meaning that cold 

air can act on more of their surface relative to their volume per unit time. The endothermic 

phase transition of seawater from liquid to solid (i.e. latent heat of fusion) will also be prolonged 

in larger individuals, meaning that their tissues will be buffered against the effects of freezing air 

temperatures for a longer period, thus delaying the onset of tissue ice formation (see Williams 

1970). 

The lack of any significant difference in the survival rates across size classes when 

bivalves were exposed to freezing temperatures in numbers analogous to the high densities 

observed at several areas within the SAC. Smaller, younger Chilean oysters are thus either more 

capable of tolerating freezing than larger conspecifics or are somehow offered some kind of 
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protection from freezing air temperatures by their larger conspecifics within the oyster matrix. 

Our observations of a significant reduction in the freezing rate of small oysters when located 

within a dense patch of conspecifics as opposed to when exposed in isolation suggests that 

'strength in numbers' may become critical to the long-term survival and dominance of this NNS 

in a rapidly-changing climate. Previous work has demonstrated the significance of position (both 

between shores and within patches of conspecifics on a single shore) on body temperature. For 

example both Helmuth (1999) and Denny et al. (2011) demonstrated how mussels occupying the 

edge of a patch can differ in their body temperatures by as much as compared to those 

occupying within the matrix, although the direction of this relationship is likely determined by 

experimental conditions (e.g. wind direction and strength, patch size). Furthermore, inhabiting 

an area within the matrix increases the thermal inertia of the oyster patch, thus mitigating any 

rapid temporal changes in key physical environmental parameters. This has critical implications 

for the future invasion dynamics of O. chilensis outside its native range. Ostrea chilensis locally 

forms dense patches of up to 232 individuals m-2 within the Menai Strait, whilst also occurring as 

single individuals in areas towards the edge of its geographic range (Chapter 2), possibly due to 

small-scale, anthropogenically-mediated transfers (Chapter 4). 

 

Conclusions 

Our limited understanding of the potential impacts of ECEs on both native and non-native 

species remains limited partly due to our neglecting of the 'increasing variability' element of 

climate change (see Lloret et al. 2012). Whilst further anthropogenically-mediated increase in 

global atmospheric temperature will continue to facilitate the poleward migrations of many 

native and non-native species alike, ECEs such as cold snaps are likely to play a critical role in 

alleviating the rate of biological invasions, particularly for sessile, epibenthic marine organisms 

that inhabit the intertidal zones. Size, density and behaviour (e.g. gaping, gregariousness) are all 

important parameters which can alleviate the stresses exhibited during cold snaps and need to 

be carefully considered when investigating the potential responses of species to a rapidly-

changing climate. Particular focus on the impacts of invasive habitat-modifiers is justified. In the 

case of non-native habitat modifiers like O. chilensis, it is also important to consider their lasting 

effect on the native ecosystem, even following significant mortality events. Whilst the 

translocation of energy from the pelagic to the benthic food web is restricted to live oysters, the 

ecosystem engineering capacity of oysters through their habitat modifying abilities is preserved 

well beyond the lifetime of the animal. 
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Appendix VII Consistency in size-specific biomass between O. chilensis, M. 

edulis and O. edulis. 

 

 

Figure XVI Relationship between tissue dry weight (g) and shell length (mm) of the Chilean 

oyster (Ostrea chilensis; filled circles), the blue mussel (Mytilus edulis; crosses) and the European 

oyster (Ostrea edulis; open circles). Regression model (Y = a.Xb) fitted to data pooled between 

species, where a = 2.37x10-6 and b = 3.19 (R2 = 0.963). 

 

Table II ANOVA table with shell length as a covariate, comparing the allometric relationships 

between dry flesh weight (g) and shell length (mm) of Ostrea chilensis, Mytilus edulis and Ostrea 

edulis. 

 

Source df MS F p 

Shell Length 1 8.586 1052.45 <0.001 

Species 2 0.006 0.76 0.470 

Shell Length x Species 2 0.003 0.33 0.717 

Residual 84 0.008   

Total 89    
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Chapter 6 

General Discussion 

Ever since the recognition that biological invasions pose one of the most prevalent threats to 

biodiversity and ecosystem functioning on a global scale, attempts have been made to identify 

predisposed characteristics that may assist in the detection of those non-native species that are 

most likely to show a high degree of invasiveness following their introduction (e.g. Rejmánek and 

Richardson 1996; Williamson and Fitter 1996; Goodwin et al. 2001; Kolar and Lodge 2001; 

Lockwood et al. 2005). 'Propagule pressure' (i.e. the product of the number of introduction 

events and the number of propagules released during each introduction event) is widely-

acknowledged as being the primary determinant of establishment success (see Lockwood et al. 

2005). Similarly, the likelihood of 'range expansions' or 'secondary spread' is highly-dependent 

on the extent of propagule release by the newly-established population (Rouget and Richardson 

2003). Species with a large dispersal capacity and extended breeding season are thus more likely 

to become successful invaders. 

Based on its reproductive dynamics and life history characteristics alone, the Chilean 

oyster is not what one would consider typical of a successful invader. A significant energetic 

investment in the production of large, yolk-rich ova results in the production of relatively few 

larvae compared with other oyster species (Cranfield and Allen 1977). Ostrea chilensis has the 

longest brooding period of any oyster species (6-8 weeks), with the release of larvae as 

pediveligers (Millar and Hollis 1963) meaning that propagule dispersal is generally limited to <1 

km away from the adult stock population (Broekhuizen et al. 2011; Chapter 3). The breeding 

season of O. chilensis is also restricted to the warmer summer months within high latitude 

populations across both its native (Cranfield and Allen 1977; Westerskov 1980; Jeffs and 

Hickman 2000) and non-native geographic extent (Chapter 3). However, the strong stock-

recruitment relationship consistently observed in the Menai Strait during all three years of study 

(Chapter 3) is contradictory to its relatively large range extension (>30 km) during the last 20 

years (Chapter 2). This suggests that other important transport vectors (e.g. rafting, bivalve 

culture, periwinkle collection) are currently in operation (see Chapters 2 and 4). Despite its low 

reproductive output, a high degree of spat recruitment was observed within several established 

oyster patches along the Menai Strait (Chapter 3). In agreement with the 'Enemy Release 

Hypothesis' (Elton 1958), preliminary data suggests that, in the absence of natural predators, 

newly-settled O. chilensis may likely thrive due to their limited subjection to predation pressure 
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(Appendices III and IV). The occurrence of O. chilensis in locally high densities may also buffer 

against periods of physiological stress, even in the face of global climate change (Chapter 5). 

 The O. chilensis population in the Menai Strait offered a unique opportunity to study a 

biological invasion of known provenance. This study highlights what can happen when a 

seemingly innocuous and perhaps 'uncharismatic' non-native species is left unregulated (see 

Chapter 2). Following its deliberate initial introduction by the MAFF in 1962, a 50-year period has 

elapsed where any interest in the O. chilensis invasion in the Menai Strait has been, for the most 

part, non-existent. The remainder of this discussion chapter is intended to serve as a timely 

synopsis of three pertinent and topical points of interest emerging from this chapter, namely 1) 

the current uncoordinated strategies relating to the management of non-native species within 

the UK, 2) the potential of unregulated anthropogenic activities as facilitators of secondary 

spread, and 3) the potential impacts of extreme climatic events as regulators of the rate of 

biological invasions. I conclude with a discussion regarding several management options relevant 

to the O. chilensis population within the Menai Strait and Conwy Bay SAC, which will hopefully 

form a basis for numerous discussions in light of the information presented herein. 

 

6.1 Bridging the gap – preventing new introductions and mitigating against secondary spread 

by improving coordination between decision makers 

Equitable, efficient and sustainable management of natural resources has often been facilitated 

by the devolvement of specific conservation objectives to several distinct but collaborative 

entities (Dressler et al. 2006), but in the case of non-native species management, this may 

arguably be a case of 'too many cooks...'. Responsibilities regarding various aspects of biological 

invasions have traditionally been divided between several organisations within the conservation 

sector, including agriculture, fisheries, forestry, pest control and water resource management. 

As a result, management strategies and legislation concerning several adjacent habitats and 

ecosystems have often become uncoordinated, despite clear similarities in terms of their 

respective conservation objectives (Chapter 2). Whilst this predicament may seem trivial at first, 

it has critical implications for the regulation of marine non-native species which span both sides 

of the intertidal-subtidal boundary. It has meant that management strategies and legislation 

concerning one portion of a non-native population may not necessarily offer adequate provision 

for the remaining individuals which occupy what would strictly be termed a 'different' habitat. 

The successful management of non-native species whose vertical distribution spans both the 

intertidal and shallow subtidal thus brings with it a major discrepancy unless complete 

coordination and collaboration between all stakeholders are obtained. A sound understanding 
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and empathy for the different environmental factors operating is also required if successful 

management strategies are to be implemented. 

Whilst a considerable number of statutory authorities and non-governmental bodies are, 

to some degree, concerned with various aspects of non-native species management and 

legislation, there has been, until very recently at least, a lack of a central strategic approach 

adopted across all involved parties. In addition, the lack of cooperation and coordination 

between all those involved has occasionally resulted in periods where statutory and non-

governmental bodies were completely unaware of the work carried out by one another (Fasham 

and Trumper 2001). The recent formation of the GB Non-Native Species Secretariat has 

facilitated some degree of coordination between all relevant parties. However, numerous 

fallacies have been identified in the current UK legislation framework which overlooks both 

transient and established non-native species that have yet fully demonstrated their invasive 

tendencies (see Chapter 2). The EC Regulation concerning the use of alien and locally-absent 

species in aquaculture 2007 provides a dedicated framework regarding "the introduction of alien 

species and translocation of locally absent species for their use in aquaculture within the EC". 

Despite its rather unclear definition of the term “introduction”, this legislative instrument may 

encouragingly concern deliberate movements of a NNS to “an environment outside its natural 

range for use in aquaculture”, and may thus include the intentional movements of those species 

that have already established within the EU to areas beyond their natural dispersal capacity. It 

currently remains unclear how this Regulation will be transcribed to UK legislation, and I would 

therefore advocate further clarification for the inclusion of already established NNS within any 

new additions or amendments to the legislation framework at both UK- and EU levels. 

 

6.2 Unregulated anthropogenic activities – inconspicuous facilitators of biological invasions 

Coastal anthropogenic activities can act as transport vectors which facilitate the range expansion 

of many introduced species. Such activities which remain unregulated have the potential to 

obscure management efforts regarding non-native species, particularly when the species in 

question has a particularly short natural dispersal capacity (see Chapters 3 and 4). Whilst the 

spread of several species of algae, for example, is restricted to a distance of <100 m via natural 

means alone (Dudgeon et al. 2001), anthropogenic activities such as recreational boating can 

significantly augment their dispersal capacity (Johnson et al. 2001; Minchin et al. 2006; Mineur 

et al. 2008). Despite increasing vigilance and enforcement of legislation regarding commercial 

vessels and their ballast water activities in North America (see US Coast Guard – Implementation 

of Ballast Water Discharge Standard, 21 June 2012), there currently remains no monitoring of 

inter-state traffic of recreational boats within this region. The potential role of unregulated 
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coastal anthropogenic activities as facilitators of both introductions and range expansions of 

non-native species is thus identified as a highly pressing issue in need of immediate further 

investigation. 

 

6.3 Global climate change – more than just warming! 

Evidence is gathering supporting the view that biological invasions and range expansions of 

introduced species are likely to increase in a warming climate. Native species are expected to 

struggle, whilst invasive species have been shown to become more persistent with warming sea 

temperatures (Stachowicz et al. 2002; Hellmann et al. 2008; Sorte et al. 2010). Whilst an 

increase in mean global surface temperature of 0.74±0.18°C is expected by the end of this 

century (IPCC 2007), the increasing variability in climatic parameters is also likely to affect both 

native and non-native species. Our generally warming climate is thus expected to be punctuated 

by numerous extreme climatic events (ECEs), including hurricanes, storms, flooding, heat waves, 

droughts and cold snaps (see Chapter 5) of increasing frequency and intensity (IPCC 2012). 

Whilst the ecological responses of marine communities to climatic means are becoming 

increasingly well-studied, the impacts of ECEs are relatively unknown (Smith 2011). It has been 

suggested that the failure to include the impacts of climatic extremities in modelled projections 

of future global biodiversity patterns may go some way in explaining some of the large variability 

observed (Pereira et al. 2010). This is of particular concern considering that maximum and 

minimum temperatures, as opposed to annual mean temperatures, are often of the greatest 

significance to the persistence and invasiveness of many non-native species (Stachowicz et al. 

2002). Whilst not expected to prevent the poleward migration of non-native species indefinitely, 

future cold winter temperature aberrations have been touted as a critical ‘reset’ mechanism 

which may impede the rate of biological invasions in the near future (Canning-Clode et al. 2011; 

Firth et al. 2011). 

Encouragingly, a 'Special Edition' on ECEs in the context of marine science was recently 

published by the Journal of Experimental Marine Biology and Ecology (see Firth and Hawkins 

2011 and articles therein). However, many scientific endeavours concerning the potential effects 

of ECEs upon marine ecological systems forego what is clearly demonstrated in Chapter 5 to be 

critical parameters that significantly influence the overall outcome. For example, the metabolism 

of all ectothermic organisms is highly-influenced by both body size and environmental 

temperature. This relationship is most consistently observed in aquatic organisms, where the 

high specific heat capacity and heat of vaporisation of the surrounding water buffers against 

large fluctuations in temperature. However, populations occupying the intertidal zone are 

subjected to a distinct suite of environmental stressors compared to conspecifics inhabiting the 
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shallow subtidal. The switch from fully submerged to fully emersed conditions is relatively rapid, 

making the intertidal zone one of the most stressful physical environments of all. The severity of 

intertidal life is further exacerbated by sessile organisms such as oysters, which cannot actively 

migrate to less stressful microhabitats and must instead rely on their shells as the only line of 

defence during times of stress. Surprisingly, several high-impact papers make no attempt to test 

for size-specific differences in the responses of ectothermic species to climate change (e.g. 

Canning-Clode et al. 2011). Likewise, many have restricted their analyses to observations of a 

single, specific density (e.g. Urian et al. 2010) despite clearly different responses between single 

specimens and those occurring in aggregations (see Denny et al. 2011; Chapperon and Seuront 

2012; Chapter 5). Modelling and biomimetic studies are extremely useful tools in instances 

whereby the physiological responses of invaders within novel geographic localities are sought 

(e.g. Helmuth et al. 2006; Lima and Wethey 2009; Denny et al. 2011). However, such approaches 

do not incorporate the behavioural and/or phenotypic plasticity observed within species across 

their respective geographic distributions. For example, C. virginica at the northernmost limit of 

its geographic distribution has been shown to exhibit feeding activity at significantly lower 

temperatures than conspecifics from more southern populations (Comeau et al. 2012). Such 

traits need to be investigated and incorporated into models in order to provide a more accurate 

representation of the response of invaders to climate change. Additionally, community- and 

ecosystem-level approaches incorporating multiple complex interactions between the invader 

and other species which occupy the same or adjacent trophic levels are expected to reveal 

differential responses to climate change than those postulated from species-level studies. Over-

generalistic extrapolations of individual species' responses to community- and ecosystem-level 

outcomes should thus be treated with caution (Walther 2010). 

 

6.4 Management options for the non-native O. chilensis population in the Menai Strait and 

Conwy Bay SAC 

The prevention of unwanted introductions is globally-acknowledged as the principal method for 

mitigating biological invasions (Leung et al. 2002), although this form of response is not always 

possible. Such is the case with deliberate introductions that occurred several years prior to the 

formation of any advice or legislation concerning non-native species introductions. In situations 

where prevention is not a viable option, a rapid response (i.e. early detection and eradication 

prior to its establishment) is recognised as the best management practice (see Wittenberg and 

Cock 2001). In an era of significant financial hardship, one can appreciate why policy, monitoring 

and management strategies have been required to focus their efforts on those species that are 

currently undergoing or have recently undergone a dramatic increase in their geographic 
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distribution, overall density and threats to native ecosystems. However, bearing in mind the now 

well-established concept of a lag phase within the invasion process (see Crooks and Soulé 1999; 

Chapter 1), it is relatively straightforward to see why we may thus always struggle to overcome 

the threats of biological invasions. 

Whilst beyond the scope of the present investigation, other studies have highlighted the 

potential influence of O. chilensis upon both the native biological community and one of the 

qualifying habitats of the SAC, namely 'reefs'. The provision of a hard substratum that gains 

increasing complexity with increasing numbers of O. chilensis is known to be linked with a 

significant increase in both epifaunal and mobile species richness (see Appendix I), although it 

currently remains unknown how this change translated into modifications in trophic level 

dynamics and ecosystem function. During my study period, an outbreak of the haplosporidian 

parasite (later identified as Bonamia ostreae) was detected in cultured native European oysters 

(Ostrea edulis) towards the south-western end of the Menai Strait. As well as the obvious 

implications for this locally endangered Biodiversity Action Plan-listed species, the presence of B. 

ostreae also enforced restrictions on the collection and movement of bivalves to, from and 

within the area, with significant impacts for the mussel industry in the region (currently the 

largest of its kind in Britain). Considering the likelihood that several natural and unregulated 

anthropogenically-mediated transport vectors are continuing to facilitate the spread of this 

species, the mere presence of O. chilensis, a known vector of Bonamia spp., within the Menai 

Strait and Conwy Bay SAC requires urgent attention. By coupling what has already been 

established from the current scientific literature regarding the Chilean oyster in Chile and New 

Zealand with the first-ever comprehensive study on the invasion dynamics of this species beyond 

its native geographic range presented in this thesis, a total of four management options are 

identified: 

 

6.4.1 Do nothing – leave it to nature 

A significant increase is expected in the frequency and intensity of acute cold winter 

temperature aberrations in Northern Europe (Wang et al. 2010; Liu et al. 2012). As 

demonstrated in Chapter 5, O. chilensis is poorly adapted to short periods (i.e. 2 hours) of 

exposure to freezing air temperatures. Future cold snaps may thus function as a critical 'reset' 

mechanism which could potentially eliminate the entire intertidal O. chilensis population within 

the Menai Strait. Financially, this is obviously the best option as it incurs no set-up costs 

whatsoever. However, Chapter 2 also documents the occurrence of significant numbers of O. 

chilensis within the shallow subtidal population which, given their survival in cold seawater 

temperatures (5°C; see Chapters 4 and 5), would most likely remain unaffected by forecasted 
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acute cold temperature aberrations. Furthermore, the projected mean increase in seawater 

temperature due to global climate change (IPCC 2007) is also expected to extend the breeding 

season of O. chilensis within the Menai Strait (Chapter 3). Propagule rain is thus expected to 

increase, meaning that the Chilean oyster is likely to become more persistent and widespread. In 

addition, small intertidal oysters are expected to gain a spatial refuge away from the effects of 

future cold snaps by settling in and amongst high densities of adult conspecifics (Chapters 3 and 

5). Intra-specific competition for food and space may thus be partly offset by the thermal 

benefits of aggregated behaviour. 

 

6.4.2. Large-scale eradication effort – dredging or smothering 

Eradication methods for non-native oysters can be economically and logistically feasible with 

rapid response to relatively novel invasions (Guy and Roberts 2010). However, eradication of this 

well-established species is likely to be a "high risk-high reward" approach in both ecological and 

economic terms. Coupling of eradication efforts with commercial aquaculture incentives may 

alleviate the financial burden. The eradication of the invasive gastropod, Crepidula fornicata, 

following its accidental introduction into the Menai Strait in 2007 was successfully accomplished 

by smothering them with several tonnes of the commercially-harvested mussel, Mytilus edulis 

(Morgan 2007b). Whilst no information is available regarding the ecological relationship 

between O. chilensis and M. edulis, the Pacific oyster, Crassostrea gigas, is known to out-

compete the native mussel in the Wadden Sea due to its rapid growth and extremely high 

reproductive output (Diederich et al. 2005). Considering the much lower fecundity, slower 

growth rate and a highly-reduced spawning season for the Chilean oyster (Chapter 3), M. edulis 

is likely to show better competitive resilience against O. chilensis than that of the Wadden Sea 

population against C. gigas, although this would require empirical testing prior to its 

implementation. Dredging may offer a more robust approach to eradication and would also 

remove the allogenic engineering effects of O. chilensis. However, bottom-fishing gear is known 

to have multiple negative effects on several benthic habitats, particularly the response of 

biogenic habitats to scallop dredging (Kaiser et al. 2006). Given the current extent and 

dominance of the O. chilensis population (Chapter 2) and the expectedly high associated 

economic and ecological impacts upon native biodiversity, ecosystem function and health of the 

qualifying habitats of the SAC, this option is unlikely to be feasible and must serve as a timely 

reminder of the importance of early detection and a rapid response to biological invasions. 
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6.4.3 Mitigation – target transport vectors and trial (small-scale) eradication 

The paradoxical relationship between the restricted natural dispersal capacity (Chapter 3) and 

relatively long-range range expansion of the O. chilensis population during the last 20 years 

(Chapter 2) highlights an urgent need to investigate both natural and anthropogenic transport 

vectors of non-native species within the Menai Strait and Conwy Bay SAC (see Chapters 2 and 4). 

The economic costs of a full, large-scale eradication effort would arguably be better partitioned 

into several small-scale investigations into various non-native transport vectors, coupled with 

trials to develop effective eradication techniques. Pilot studies, conducted following the 

detection of the invasive ascidian, Didemnum vexillum Kott 2002, upon floating pontoon 

structures within Holyhead marina (Anglesey, North Wales) (see Griffith et al. 2009), serve as 

good examples of a rapid response to halt the proliferation of a newly-detected invader. Plastic 

wrappings and bags were used to isolate, smother and kill D. vexillum colonies through 

stagnation. Further success was gained by accelerating the eradication process through the 

addition of calcium hypochlorite to the enclosed bags (see Holt and Cordingley 2011). However, 

despite their best efforts under bureaucratic and financial constraints, D. vexillum has since 

returned to the area. In this respect, consideration of all transport vectors (in this case, boats) 

and their respective significance throughout the invasion process is of prime importance 

(Chapter 4) in order to adequately reduce propagule pressure, thus eliminating the possibility of 

re-introductions following eradication efforts. 

 

6.4.4 Commercial fishery – bespoke product for special occasions or comprehensive international 

exportation? 

Walne (1974) highlighted several problems with regards to the culture of O. chilensis in the 

Menai Strait, leading to the termination of all growth trials involving this species and the 

abandonment of the Chilean oyster population in situ. Relative to the native European oyster, 

growth rates of O. chilensis were deemed to be inadequate. In addition, spat cultured from 

Chilean broodstock, in particular, showed high mortality during periods of "quite moderate 

frost". As mentioned previously, the Chilean oyster is also susceptible to infection by 

haplosporidian parasites within the genus, Bonamia. Another obstacle yet to be fully negotiated 

is the general lack of spat available for ongrowing. Traditional spat production methods involve 

the collection of pediveligers (i.e. larvae that are ready to settle) from sacrificed adult oysters. 

However, as highlighted in Chapter 3, the proportion of brooding females within a population 

can be extremely low (≤4.6% of oysters ≥60 mm shell length) and thus this method is extremely 

inefficient. In this respect, Jeffs et al. (2008) suggested the possibility of culturing premature 

veliger larvae, also obtained during the traditional method, thus increasing the supply of 
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available spat for ongrowing. However, no follow-up experiments relating to this method was 

found in the scientific literature, hence comparisons of subsequent growth and vigour of 

cultured premature and mature larvae are currently lacking. 

An alternative option, and one which would no doubt stimulate fervent discussion 

among potential stakeholders, would be to start a fishery for this species within the Menai Strait 

and Conwy Bay SAC. In New Zealand, O. chilensis (famously known locally as the 'Bluff' oyster) is 

a commercially-important species, with annual landings of over 8 million oysters in 2009 

equating to a market value of approximately US$14.5 million. The much-celebrated Bluff oyster 

season takes place between February and July, with the interim period giving ample time for 

adult oysters to spawn and recover. The occurrence of O. chilensis in the Northern Hemisphere 

could supplement the New Zealand market during the close season of the Bluff oyster fishery, 

making the availability of fresh oysters in New Zealand an all-year round prospect. However, the 

presence of B. ostreae in the Menai Strait, the strict biosecurity measures enforced in New 

Zealand and the sheer logistical difficulties make this proposition a highly-unlikely option. A 

more feasible option would be the harvesting of the O. chilensis population as a bespoke 

commodity, reserved for exclusive occasions held, for example, by the New Zealand High 

Commission in the UK or during the International Rugby Union Test Matches (e.g. the 'Autumn 

Series'). 

Preliminary taste trials have revealed O. chilensis from the Menai Strait to be "very 

similar, if not quite as strong" to those harvested each year from Foveaux Strait, New Zealand (N. 

Anderson, pers. comm.). Whilst the general size and meat content were thought not to be quite 

as substantial as those from New Zealand waters, it should be noted that the oysters in question 

were hand-collected from the intertidal zone and were thus not fully representative of the larger 

conspecifics which inhabit the shallow subtidal in the Menai Strait (see Chapter 2). Collected in 

June 2012, evidence of spent gonads within several oysters meant that the flesh of certain 

individuals was watery and not representative of an 'in season' Chilean oyster from the Foveaux 

Strait. One other possible issue may be the high infestation rates of the shells by boring species 

such as the polychaete, Polydora ciliata Johnston 1838, and the sponges, Cliona celata Grant 

1826 and Halichondria panicea Pallas 1766. Polydora is also commonly observed within oyster 

populations in northern New Zealand, where its boring activities cause 'blisters' within the shells 

which are both foul-smelling and unsightly (O'Sullivan 1996). Extreme infestations may lead to 

an increase in an energetic investment into shell repair at the expense of somatic growth, 

although treatment in a hypersaline solution has shown much promise without compromising 

the quality of the oysters themselves (see Dunphy et al. 2005). Infestations of oyster shells by P. 



176 
 

ciliata in the Menai Strait appear to become more prevalent with increasing oyster size/age 

(pers. obs.). 

The commercial harvesting of the highly invasive yet economically valuable Chinese 

mitten crab, Eriocheir sinensis, from the River Thames is currently a hotly-debated topic (see 

Clark et al. 2011). Advocates of the fishery consider this to be the only viable method of 

controlling the population. Others may argue that reports of the potentially high economic value 

of this fishery could lead to unauthorised deliberate transfers of E. sinensis to other river 

catchments within the UK, thus facilitating its range expansion. Illicit transfers of non-native 

species have previously been documented within UK waters. Following its introduction to 

England during the 1970s, the invasive signal crayfish, Pacifasticus leniusculus (Dana 1852), is 

thought to have been deliberately relocated to several other rivers (Maitland 1987). As with any 

new commercial fishery, all potential environmental impacts pertaining from the commercial 

harvesting of O. chilensis would need to be satisfied prior to its commencement. As noted above, 

the impacts of dredging upon the oyster reef community, for example, would need to be 

addressed. Strict regulations regarding import/export, fishing techniques, permits and 

enforcement would also need to be employed. 

 

6.5 Concluding remarks 

Despite continuous recognition of the adverse economic and ecological effects of many invasive 

species, several aspects of the dynamics of the invasion process remain poorly understood, 

partly due to its complex and context-dependent nature. As well as providing a better 

understanding of the proliferation of an otherwise unfamiliar invader within a designated marine 

Special Area of Conservation, research presented in this thesis has helped prioritise topical and 

poorly-studied areas within the field of invasion ecology that require urgent consideration. 

Whatever the raisons d'être, our current approach to management effectively means that we 

will always be playing 'catch up' in the quest to halt biotic homogenisation and the loss of native 

biodiversity. Despite the recent financial recession, a change in attitude in tackling biological 

invasions is required which incorporates complete collaborative and cooperative commitment 

by all those involved which should then feedback into a single, central repository and legislation 

framework for all non-native species, regardless of their invasion stage. Novel, practical ideas 

regarding early detection and rapid response measures are also encouraged to ensure the 

successful eradicate of non-native species prior to their future proliferation. This attitude is of 

particular relevance in the face of a rapidly-changing climate. 
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