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Summary 

 

 

Rheumatoid cachexia (RC), i.e. muscle wasting and adiposity gain in rheumatoid arthritis (RA), 

is driven by inflammation and is a major contributor to reduced strength and physical function. 

Current treatment for RA is based on approaches that aim to tightly control inflammation from 

diagnosis onwards. This is best exemplified by ‘treat-to-target’ (T2T), which targets low 

disease activity, preferably ‘clinical remission’. The success of T2T in controlling inflammation 

is well-established, but whether it has attenuated RC is unknown. In a cross-sectional trial, we 

demonstrated that, despite well controlled disease activity, RC and substantially impaired 

physical function was still present in patients treated by T2T.  

 

Consequently, adjunct interventions are required to restore body composition and function. 

Nutritional creatine (Cr) supplementation may provide a safe and easy means of improving 

muscle mass and physical function. In a randomised control trial, 12 weeks Cr 

supplementation significantly increased muscle mass, but was unable to improve objective 

measures of physical function.  

 

To investigate their associations with body composition, using serum from RA patients with: 

treated versus untreated disease; patients versus healthy controls; and patients before and 

after anabolic interventions (PRT or Cr supplementation), we were unable to identify serum 

biomarkers (i.e. tumor necrosis factor (TNF)-α, soluble TNF-α receptor-I, interleukin-6, insulin-

like growth factor (IGF)-1, IGF-binding protein 3, myostatin, adiponectin, and leptin) for RC.  

 

Following an unexpected, and substantial, loss of muscle mass in a patient in our Cr 

supplementation trial, we investigated and identified a probable catabolic effect of 

intramuscular (IM) corticosteroid (CS) injections used to treat active disease. Preliminary 

findings from an ongoing study revealed significant muscle loss in all five RA patients tested 

within 4 weeks of IM CS injection to treat a disease flare. These findings raise concerns about 

this routine and recommended treatment, and provide a further potential mechanism for RC. 
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General introduction 

 

 

This general introduction aims to give a brief overview of rheumatoid arthritis (RA) and 

‘rheumatoid cachexia’. Current therapy strategies for RA and their effectiveness in restoring 

body composition and physical function at the time my doctorate commenced will also be 

summarised. At the end of the chapter, an outline on how this thesis aims to investigate the 

key questions and issues raised is presented. 
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1.1. Rheumatoid arthritis 

 

Rheumatoid arthritis (RA) is a chronic autoimmune disease that affects approximately 1% of 

the United Kingdom (UK) population (Symmons et al., 2002) and features persistent synovitis 

and systemic inflammation. Rheumatoid arthritis is estimated to cost the National Health 

Service (NHS) ~£560 million a year in health care costs, with an additional cost to the economy 

of ~£1.8 billion from sick leave and work-related disability (Zhang & Anis, 2011; Ruderman et 

al., 2012). The disease presents as swollen joints with consequent arthralgia (Heiberg & Kvien, 

2002; Scott et al., 2010; Hetland, 2011), and is caused by a series of complex immune 

interactions that result in chronic synovial inflammation and a dysfunctional immunity response 

(Liu & Pope, 2003; Scott et al., 2010; Choy, 2012; Jung et al., 2012).  

 

The inflammatory state in RA involves over-expression of pro-inflammatory cytokines such as 

tumor necrosis nuclear factor-alpha (TNF-α), interleukin (IL)-1β, and IL-6 (Bingham, 2002; 

Walsmith & Roubenoff, 2002; Shrivastava & Pandey, 2013) relative to concentrations of anti-

inflammatory cytokines and natural cytokine antagonists such as soluble TNF-α receptor-1 

(Arend, 2001). This chronic inflammation results in progressive joint destruction, specifically 

to the bone and cartilage around the synovium (Walsmith & Roubenoff, 2002; Le Goff et al., 

2010; Choy, 2012; Jung et al., 2012; Shrivastava & Pandey, 2013). 

 

Rheumatoid arthritis is also associated with a range of co-morbidities. For example, patients 

with RA are at a ~2-fold increased risk of cardiovascular disease (CVD) events (Kitas & 

Gabriel, 2011), an equivalent impact on CVD risk as diabetes mellitus (Peters et al., 2009; 

John et al., 2011). The increased CVD risk in RA is not fully explained by the presence of 

traditional cardiovascular risk factors such as dyslipidemia, hypertension, or obesity (Elkan et 

al., 2009; Van Halm et al., 2009; Summers et al., 2010; Boyer et al., 2011; Kitas & Gabriel, 

2011), and appears, at least in part, to be attributable to the chronic inflammatory process 

integral to RA (Solomon et al., 2003; Kitas & Gabriel, 2011). Other co-morbidities include an 

increased risk of type II diabetes mellitus (Boyer et al., 2011), infections (Doran et al., 2002), 

osteoporosis (Haugeberg et al., 2000), and fatigue (Wolfe et al., 1996; Helal et al., 2012). 
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1.2. Rheumatoid cachexia 

 

In addition to arthropathy, patients with RA experience substantial changes in body 

composition. In particular, significant loss of muscle in the region of ~8–15% occurs in patients 

with controlled RA disease compared to age- and sex-matched healthy controls (HCs) 

(Helliwell et al., 1984; Helliwell & Jackson, 1994; Roubenoff et al., 1994; Westhovens et al., 

1997; Roubenoff et al., 2002; Walsmith et al., 2004; Toussirot et al., 2005; Arshad et al., 2007; 

Blackman et al., 2007; Engvall et al., 2008; Giles et al., 2008b; Book et al., 2009; Matschke et 

al., 2010a, 2010b; Binymin et al., 2011; Book et al., 2011; Dao et al., 2011). 

 

Additionally, patients with RA are typically overweight and obese (Marcora et al., 2005a, 

2005b, 2006; Stavropoulos-Kalinoglou et al., 2007; Elkan et al., 2009; Lemmey et al., 2009; 

Matschke et al., 2010a, 2010b; Stavropoulos-Kalinoglou et al., 2010; Santos et al., 2011), with 

excess fat mass (FM) ~12–18% greater than controls (Elkan et al., 2008; Giles et al., 2008b; 

Book et al., 2009; Matschke et al., 2010a, 2010b; Book et al., 2011; Dao et al., 2011; Santos 

et al., 2011). Worryingly, this increased FM occurs prominently on the truncal area with ~14–

25% greater trunk adiposity reported (Giles et al., 2008b; Book et al., 2009; Elkan et al., 2009; 

Book et al., 2011; Dao et al., 2011; Santos et al., 2011). 

 

This ‘involuntary loss of muscle, coupled with elevated adiposity’ is known as ‘rheumatoid 

cachexia’ (RC) (Roubenoff et al., 1992, 1994, 2004), and is a major contributor to the ~25–

30% losses of strength (Helliwell & Jackson, 1994; Marcora et al., 2005a; Lemmey et al., 2009; 

Matschke et al., 2010a, 2010b; Chen et al., 2011) and physical function (Walsmith & 

Roubenoff, 2002; Giles et al., 2008a; Lemmey et al., 2009; Matschke et al., 2010a, 2010b; 

Dao et al., 2011; Dufour et al., 2012; Kramer et al., 2012) observed in RA. Additionally, the 

notable increase in truncal adiposity (Marcora et al., 2005a, 2005b, 2006; Inaba et al., 2007; 

Giles et al., 2008b; Giles et al., 2010; Elkan et al., 2009; Lemmey et al., 2009, Santos et al., 

2011; Lemmey et al., 2012) exacerbates CVD risk (Abbasi et al., 2002; Dessein & Joffe, 2006; 

Inaba et al., 2007; Elkan et al., 2009; Giles et al., 2010; Stavropoulos-Kalinoglou et al., 2009). 

With muscle wasting noted in RA patients with early disease (Marcora et al., 2006, <6 months 

since symptom onset; Book et al., 2009, ≤12 months disease duration), it is conceivable RC 

may occur prior to disease onset in an inflammatory active ‘pre-clinical’ RA stage. More 

research into the temporal-course of RC is required. 
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1.3. Pathogenesis of rheumatoid cachexia 

 

The pathological processes responsible for RC are multifactorial and appear to involve a 

collective series of complex processes (Walsmith & Roubenoff, 2002; Metsios, et al., 2006). 

Rheumatoid cachexia is predominantly attributed to inflammation, specifically elevated 

concentrations of circulating pro-inflammatory cytokines, with TNF-α thought to be the 

principal driver (Roubenoff et al., 1992; 1994; Metsios et al., 2006; Engvall et al., 2008). 

Excess inflammation is thought to disrupt protein synthesis by reducing the anabolic actions 

of insulin-like growth factor (IGF)-I in the muscle, as well as increasing the activity of 

transcription factors responsible for protein degradation (Broussard et al., 2004; Fanzani et 

al., 2012). Reduced peripheral insulin action (Walsmith & Roubenoff, 2002), increases in 

muscle protein suppressant hormones (e.g., myostatin (Roth & Walsh, 2004; Schiaffino & 

Mammucari, 2011)), reduced habitual physical activity (Metsios et al., 2006; Stavropoulos-

Kalinoglou et al., 2010), and increased resting energy expenditure (REE) (Rall & Roubenoff, 

2004; Metsios et al., 2007; Roubenoff, 2009) are all too thought to contribute. 

 

 

1.4. Effects of pharmacological treatment for rheumatoid 

arthritis on rheumatoid cachexia 
 

Fundamental to current RA treatment is a strategy involving early (i.e. prompt diagnosis and 

commencement of medication) and aggressive use of disease-modifying anti-rheumatic drugs 

(DMARDs) (Ruderman et al., 2012) to achieve ‘tight control’ of disease activity. Frequent 

evaluation of disease activity (e.g., Disease Activity Score in 28 joints, DAS28) and 

inflammation (erythrocyte sedimentation rate (ESR) and/or C-reactive protein (CRP)) allows 

assessment of treatment success and, if required, modification in DMARD therapy (Luqmani 

et al., 2006; Dale & Porter, 2010; Scott et al., 2010; Hetland, 2011; Upchurch & Kay, 2012)). 

In addition, a key development in RA treatment has been the wider use of biological agents 

designed to specifically target immune cells and cytokines (e.g., TNF-α) involved in disease 

pathology (Ding & Deighton, 2010; Upchurch & Kay, 2012). 

 

More specifically, the ‘treat-to-target’ (T2T) recommendations have become one of the 

‘cornerstones’ in contemporary RA management (Ruderman et al., 2012). Initially outlined by 

Smolen et al. (2010a), T2T exemplifies the principles of ‘tight control’ through the use of a 

‘target’ – ideally ‘clinical remission’ (usually defined as DAS28 <2.6), or failing that, low disease 

activity (LDA; DAS28 <3.2) – to guide therapy adjustment accordingly. Following a T2T 
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approach has been shown to achieve superior clinical outcomes (reduced inflammation, 

disease activity, and progression of joint damage) than previous treatment regimens for RA 

(Saunders et al., 2008; Smolen et al., 2010a; Hetland et al., 2012; Jurgens et al., 2012; 

Wevers-de-Boer et al., 2012).  

 

Since RC has been primarily attributed to TNF-α driven muscle catabolism, it was suggested 

that treatment with anti-TNF-α drugs may reverse the process of RC and restore lean mass 

(LM) in RA patients (Walsmith & Roubenoff, 2002; Rall & Roubenoff, 2004). However, 

research (Marcora et al., 2006; Metsios et al., 2007; Serelis et al., 2008; Engvall et al., 2010) 

has demonstrated that despite successful control of disease activity (i.e. inflammation), no 

favourable effects on LM are observed. Furthermore, relative to standard DMARDs, anti-TNFs 

may increase FM (Engvall et al., 2010), particularly trunk FM (Metsios et al., 2007). Worryingly, 

other treatments used to supress disease activity such as chronic high dose corticosteroid 

(CS) therapy exert a catabolic effect on the muscle mass of patients (Roubenoff et al., 1990).  

 

Due to its favourable effect on disease activity it could be assumed that early ‘tight control’ of 

inflammation by a T2T approach, may avert, or at least attenuate, RC and the concurrent loss 

of physical function. When this doctorate commenced, the effect of current treatment 

strategies (specifically T2T), where ‘clinical remission’ and LDA are frequently attained, on 

body composition and objective physical function in RA was unknown, although assumed to 

be beneficial. 

 

 

1.5. Anabolic interventions for rheumatoid cachexia 

 

Owing to the ineffectiveness of conventional RA medication in reversing RC, the need for 

potential adjunct anabolic interventions that restore muscle mass and physical function in RA 

are required. Progressive resistance training (PRT) has been identified as an effective means 

of reversing RC and restoring physical function in RA patients (e.g., Häkkinen et al., 1999, 

2005; Häkkinen et al., 2003; Häkkinen, 2004; Marcora et al., 2005a; Lemmey et al., 2009; 

Sharif et al., 2011; Lemmey, 2011). Nevertheless, despite the well-established benefits and 

safety of exercise training, RA patient uptake of exercise is generally poor (e.g., Sokka et al., 

2008), particularly when supervision is withdrawn (Lemmey et al., 2012). Whilst adherence to 

exercise in RA patients is better in patients with well-controlled disease, superior functional 

ability, and a strong social structure (Munneke et al., 2003; Metsios et al., 2008), it seems that 
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high-intensity exercise training is unlikely to be widely adopted as a therapy for RC by the 

majority of RA patients. 

 

Anabolic nutritional supplementation offers a potential adjunct treatment option that is easily 

administered, inexpensive, and makes limited demands of the patient.  Whilst oral amino acid 

(i.e. protein) supplementation has been shown successful in increasing LM in the elderly with 

sarcopenia (Solerte et al., 2008) and patients with cancer cachexia (May et al., 2002), there 

is a distinct lack of published studies on the effect of nutritional supplementation on RC, with 

the majority of trials investigating whether diets or dietary supplements are able to moderate 

RA disease symptomology (for a review, see Stamp et al., 2005). 

 

Our group (Marcora et al., 2005b) previously investigated the effects of 12 weeks daily protein 

supplementation in patients with RA, and demonstrated favourable effects on muscle mass 

and some measures of physical function. Another potential protein supplement, creatine (Cr) 

monohydrate, potentially offers even greater benefits than other protein supplements (Nissen 

& Sharp, 2003), and the solitary trial investigating its efficacy in RA patients (Willer et al., 2000) 

found that 3 weeks oral Cr supplementation significantly increased strength. Unfortunately, 

body composition and other measures of objective physical function were not assessed in this 

study. Thus, dietary Cr supplementation may provide a promising option, but a well-conducted 

investigation into its efficacy in RA is needed. 
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1.6. Thesis design and hypotheses 

 

 

This thesis consists of four experimental studies (Chapters 3, 5, 6, 8), an invited review 

(Chapter 4), and a case report (Chapter 7). All chapters are written as stand-alone 

manuscripts that were/are to be submitted to international peer-reviewed medical journals. 

Author contributions to each chapter are shown in Appendix A. Tables and figures are 

imbedded within the text at appropriate locations. References are compiled at the back of the 

thesis and are written in accordance with the American Psychological Association (5th Ed.) 

referencing format.  

 

o Chapter 2  

In an extended literature review, Chapter 2 expands upon the concepts introduced in Chapter 

1 and explores the effects of RC, along with its proposed pathogenesis and treatment options.  

 

o Chapter 3 (Study 1)  

The first experimental chapter (3) investigates whether RC and consequent physical disability 

remain features of RA in the current treatment era where LDA and ‘clinical remission’ is widely 

attained. Chapter 3 presents a cross-sectional study in which body composition, physical 

function, and CVD risk in RA patients was compared with that of age- and sex-matched 

sedentary HCs. Findings from this study were compared with those previously reported by our 

group and others (i.e. studies performed either before local adoption of T2T strategies, or, if 

more recent, on patients who commenced treatment pre-T2T). Additionally, the RA patients 

were divided into ‘recent-onset’ (≤12 months since diagnosis) and ‘established’ (>12 months) 

cohorts to provide an insight into the temporal evolution of RC, disability, and CVD risk. 

Chapter 3 is written in accordance with the ‘STrengthening the Reporting of OBservational 

studies in Epidemiology’ (STROBE) guidelines (von Elm et al., 2007). 

 

 As we theorise RC occurs early in the disease process (i.e. in the ‘pre-clinical’ phase prior 

to the commencement of DMARD treatment), without a sufficient anabolic stimulus to 

improve body composition (e.g., physical activity or exercise), we hypothesised that RA 

patients, despite improved control of inflammation and disease activity, would still present 

with RC (i.e. significantly reduced LM and increased FM (particularly trunk FM)), poorer 
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objectively-assessed physical function, and exacerbated CVD risk, compared to age- and 

sex-matched healthy controls (HCs). 

 

 We hypothesised that body composition (e.g., LM, FM, trunk FM), and physical function 

would be comparable to those previously reported by our group and others (i.e. studies 

performed either before local adoption of T2T strategies, or, if more recent, on patients 

who commenced treatment pre-T2T). 

 

 We hypothesised that there would be no difference in measures between patients with 

‘recent-onset’ disease (≤12 months since diagnosis) and those with more ‘established’ 

disease (>12 months since diagnosis); inferring that changes to body composition, and 

consequent reductions in function and exacerbation of CVD risk, occur early in the disease 

process (i.e. in the ‘pre-clinical’ phase prior to the commencement of DMARD treatment). 

 

o Chapter 4  

In a review, Chapter 4 critically examines the relevant literature on Cr supplementation to 

evaluate whether this may provide an effective treatment option for RC.  

 

o Chapter 5 (Study 2) 

Chapter 5 describes the results of a double blind, randomised placebo-controlled study that 

investigated the effect of oral Cr supplementation on body composition, strength, and physical 

function in RA patients. Chapter 5 is written in accordance with the ‘Consolidated Standards 

of Reporting Trials’ (CONSORT 2010) statement (Schulz et al., 2010). 

 

 We hypothesised that 12 weeks of oral Cr supplementation would increase LM and 

improve measures of strength and objective physical function in patients with RA. 

 

o Chapter 6 (Study 3) 

Chapter 6 reports the results from biochemical assays conducted on samples from current 

(i.e. studies reported in this thesis) and previous studies performed by our group. This 

investigation sought to identify potential serum markers of inflammation and muscle 

anabolism/catabolism in a range of clinical RA scenarios including: RA versus HCs, ‘treated’ 

versus ‘untreated’ disease, and pre- and post-anabolic treatments (i.e. Cr supplementation 

(from Chapter 5), and PRT).  
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 Rheumatoid arthritis patients versus sedentary healthy controls – We hypothesised that 

RA patients would have higher serum concentrations of inflammatory (TNF-α, sTNF-RI, 

IL-6) and catabolic (myostatin) markers, lower concentrations of anabolic markers (IGF-I 

and IGFBP-3), and higher levels of adipokines (adiponectin and leptin) than age- and sex-

matched HCs. 

 

 ‘Recent-onset’ versus ‘established’ disease – As there were no differences in 

demographic, disease activity (DAS28), systemic inflammation (CRP), or body 

composition measures between the full Chapter 3 ‘recent-onset’ versus ‘established’ 

disease cohorts, we hypothesised no differences in any of the assessed serum 

biomarkers. 

 

 Untreated, uncontrolled disease versus treated, controlled disease - We hypothesised that 

treatment with methotrexate (MTX) or etanercept (ETN) would reduce levels of the 

inflammatory markers CRP and IL-6. Whilst we expect MTX to reduce TNF-α 

concentrations, an increase in circulating TNF-α levels is expected following ETN 

treatment. Despite this hypothesised increase in TNF-α, as the TNF-α is made biologically 

inactive by ETN, we would anticipate no changes in sTNF-RI. Both treatments would have 

no effect on myostatin, or IGF-I and IGFBP-3. Adipokine, adiponectin, and leptin, 

concentrations may decrease and increase, respectively, due to elevated FM following 

treatment.  

 

 Etanercept versus methotrexate therapy - We hypothesised that both treatments would 

decrease inflammatory markers to the same degree, and would have no effect on anabolic 

markers or myostatin. Adipokine (adiponectin and leptin) concentrations may decrease 

and increase, respectively, with treatment, especially with ETN, due to increases in 

adiposity. 

 

 Effect of progressive resistance training - We hypothesised that PRT would have no effect 

on serum levels of pro-inflammatory, anabolic (IGF-I and IGFBP-3), or catabolic 

(myostatin) markers. In contrast, we anticipated reductions in adipokines (adiponectin and 

leptin) as a consequence of attenuated adiposity.  

 

 Effect of oral creatine supplementation - We hypothesised that Cr supplementation would 

have no effect on any of the assessed serum biomarkers. 
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o Chapter 7 

Chapter 7 describes the case of a participant, from the Chapter 5 trial, who experienced 

substantial muscle loss following an intramuscular (IM) CS injection.  

 

 

o Chapter 8 (Study 4) 

To determine whether the response seen in Chapter 7 (i.e. loss of muscle mass) to IM CS 

administration is typical, we are conducting an on-going exploratory non-randomised trial 

(Chapter 8). This chapter presents the preliminary results from five patients who were 

administered an IM CS injection to treat active disease activity. Chapter 8 is written in 

accordance with the ‘Transparent Reporting of Evaluations with Nonrandomised Designs’ 

(TREND) guidelines (Des Jarlais et al, 2004). 

 

 We hypothesised that RA patients administered an IM CS injection to treat a disease flare 

(i.e. active disease) would experience significant loss of LM. 

 

o Chapter 9 

An overall discussion of the thesis findings is presented in Chapter 9. This chapter aims to 

answer the questions posed in the introduction by incorporating the results of the presented 

studies with evidence from the literature that has emerged since the commencement of my 

doctoral studies.  
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2 
 

Extended literature review 

 

 

This extended literature review expands on themes introduced in Chapter 1, and discusses, 

in greater depth, the rheumatoid cachexia (RC) research relevant to the studies in this thesis. 

 

The literature review is divided into three sections:  

- 2.1. Overview of RC, including its prevalence, its effect on physical function and co-

morbidity risk, and the underlying pathogenesis.  

- 2.2. Effect of current pharmacological treatment for rheumatoid arthritis (RA) on RC. 

- 2.3. Potential adjunct treatments that may attenuate or reverse RC and subsequently 

improve physical function in RA patients. 
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2.1. What is rheumatoid cachexia? 

 

 

‘I can't stay seated because I'm so thin. Forty six kilos, that can't be called fat. My 

bones are sticking through my skin and this despite a good appetite….’ 

Pierre-Auguste Renoir (Figure 2.1.) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Impressionist painter Pierre-Auguste Renoir in 1915 when ‘rheumatoid cachexia was clearly visible’. 

Source: ‘How Renoir coped with RA (Boonen et al., 1997), image reproduced under the CC-BY-AT 2.0 licence. 

 

In addition to arthropathy (Scott et al., 2010), significant loss of muscle mass frequently occurs 

in patients with rheumatoid arthritis (RA) (Summers et al., 2008). Muscle loss caused by 

inflammatory disease is not a new observation as Sir James Paget noted in 1873 that: 

 

 ‘…wasting occurs, in greater or lesser degree, in all muscles near joints that 

are inflamed…It is, I repeat, not a mere wasting from disuse: it is far more rapid than 

that…’ 

 

Cachexia (Greek. Kachexi ‘a; kako’s bad; ‘e’ xis condition) implies a state of advanced 

malnutrition and muscle wasting, and has been used to denote the loss of body cell mass 

(BCM), mostly muscle mass, which occurs in illness (Roubenoff, 2009). The accelerated and 

‘involuntary loss of muscle, coupled with elevated adiposity’ seen in patients with RA was 

termed ‘rheumatoid cachexia’ (RC) by Roubenoff and colleagues in the early 1990’s 
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(Roubenoff et al., 1992, 1994). In RA, muscle loss is typically unrecognised in clinical practice 

(Summers et al., 2008) as it is masked by an increase in adiposity (i.e. fat mass (FM)) which 

often makes it undetectable if only body mass (BM) or ‘body mass index’ (BMI) is assessed 

as 85% of patients have a ‘normal’ BMI (Summers et al., 2008). Due to the inaccuracy of BMI 

in RA, Stavropoulos-Kalinoglou et al. (2007) suggest that traditional BMI cut-offs should be 

reduced by 2 kg/m2 (i.e. 23 kg/m2 for overweight, 28 kg/m2 for obesity). Thus, RC is dissimilar 

from the cachexia seen in cancer or cardiac diseases which typically manifests in significant 

weight loss (Morley et al., 2011). Due to the regular concurrence of muscle loss and obesity, 

RC typically presents as ‘sarcopenic-obesity’ (Baumgartner et al., 2004).  

 

 

2.1.1. The prevalence of rheumatoid cachexia 

 

Currently no universally accepted definition of RC exists, and the prevalence varies depending 

upon the measurement method and definition of significant muscle loss employed (Summers 

et al., 2008). Using <50th percentile for arm muscle area or circumference of a reference 

population as their definition of RC, Roubenoff and colleagues identified 67% of RA patients 

as muscle wasted (Roubenoff et al., 1992). Using similar anthropometric measures (upper 

arm muscle circumference) to Roubenoff, and taking the <20th percentile of a reference 

population as the cut-off point, muscle wasting was observed in 14% of patients by Helliwell 

et al. (1984) and in 29% of patients by Fukuda et al. (2005). Employing the same measurement 

method but a more stringent criteria (<10th percentile of the reference population), muscle 

wasting was observed in 50% of patients by Munro and Capell (1997) and 24% by Hernandez-

Beriain et al. (1996). 

 

Body composition assessments by dual energy x-ray absorptiometry (DXA) identified RC in 

18% of women and 26% of men using the definition of fat-free mass index (FFMI) <25th 

percentile of a matched healthy population (Elkan et al., 2009). Whilst, with a definition of FFMI 

<10th percentile, 38% of patients were categorized as having RC by Engvall et al. (2008), 18% 

and 21% of women and men by Elkan et al. (2009), and 10% by Metsios et al. (2009). Using 

DXA-derived skeletal muscle index (cachexia defined as ≤5.45 kg (of appendicular lean mass1 

(ALM))/height (m2) for women, and ≤7.26 kg/m2 for men) (Baumgartner et al., 1998)), a series 

of studies from our research group (Marcora et al., 2005a, 2005b, 2006; Lemmey et al., 2009, 

2012) have identified that 57–67% of RA patients with controlled disease are significantly 

                                                           
1 Appendicular LM (ALM) can be used as a surrogate measure of muscle mass (Kim, Wang, Heymsfield, 
Baumgartner, & Gallagher, 2002). 
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muscle depleted. When compared to non-RA controls, the overall loss of LM in RA patients 

ranges between ~8–15% (Helliwell et al., 1984; Helliwell & Jackson, 1994; Roubenoff et al., 

1994; Westhovens et al., 1997; Roubenoff et al., 2002; Walsmith et al., 2004; Toussirot et al., 

2005; Arshad et al., 2007; Blackman et al., 2007; Elkan et al., 2008; Giles et al., 2008b; Book 

et al., 2009; Matschke et al., 2010a, 2010b; Binymin et al., 2011; Book et al., 2011; Dao et al., 

2011; for an excellent review, the reader is directed to Summers et al., 2008).  

 

Aside from LM loss, RA is also characterised by elevated adiposity (Roubenoff et al., 1992; 

Stavropoulos-Kalinoglou et al., 2007; Stavropoulos-Kalinoglou et al., 2010). Elkan et al. (2009) 

identified that 31% of women and 53% of RA males had a DXA-assessed FMI >90th percentile 

for healthy adults (reference population from Schutz et al. (2002)). Whilst using the same 

criteria, Engvall et al. (2008) found the prevalence of obesity was 40% amongst females and 

67% amongst males with RA. Santos et al. (2011) identified 35% of RA patients as ‘overfat’ 

(defined as a BIA-assessed BF% ≥40%), whilst Dao et al. (2011) found 42% of their patients 

were obese using DXA cut-off points of BF% (derived by age, sex, and race from a large 

cohort of healthy adults (Gallagher et al., 2000)). Disturbingly, Marcora et al. (2005a, 2005b, 

2006) and Lemmey et al. (2009) found that ~80% of patients were obese when defined as a 

DXA-derived BF% ≥38% and ≥27% for females and males, respectively (Baumgartner et al., 

1998). When compared to matched non-RA controls, levels of total FM have been shown to 

be ~12–18% greater in RA patients (Elkan et al., 2008; Giles et al., 2008b; Book et al., 2009; 

Matschke et al., 2010a, 2010b; Book et al., 2011; Dao et al., 2011; Santos et al., 2011), with 

elevations in trunk adiposity of ~14–25% (Giles et al., 2008b; Book et al., 2009; 2011; Elkan 

et al., 2009; Dao et al., 2011; Santos et al., 2011).  

 

Some researchers have found that females experience RC more than males. Giles et al. 

(2008b) found that female RA patients displayed lower LM and greater adiposity (i.e. higher 

FM, trunk FM, and BF%) relative to age- and sex-matched controls than male RA patients. 

Similar results were reported by Book et al. (2009) who also found deficits in LM and increases 

in FM (particularly trunk FM) were more pronounced in female than male patients with early 

RA. Conversely, sex-based disparities in the prevalence or degree of RC has not been 

observed in studies conducted by our group (Marcora et al., 2005a, 2005b, 2006; Lemmey et 

al., 2009, 2012; Matschke et al., 2010a, 2010b). 
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2.1.2. When does rheumatoid cachexia occur? 

 

There is evidence to suggest that RC is established early in the course of the disease. In a 

cohort of patients with very earlier RA (<6 months since symptom onset), Marcora et al. (2006) 

found a prevalence of low ALM (~63% of patients) and obesity (~80%) (unpublished 

observations) which were similar to those of established RA patients from previous studies 

(Marcora et al., 2005a, 2005b). Similarly, Book et al. (2009) found that RA patients with a 

disease duration of ≤12 months had low ALM relative to matched HCs. In this study, female 

patients also had higher total FM and trunk fat distribution than the HCs.  

 

The importance of identifying ‘pre-clinical’ stages (i.e. before symptoms appear) of RA has 

been recognized by the European League Against Rheumatism (EULAR) (Gerlag et al., 2012). 

Research (Rantapää‐Dahlqvist et al., 2003; Nielen et al., 2004; Sokolove et al., 2012) has 

indicated that RA disease processes, including elevated concentrations of pro-inflammatory 

cytokines such as TNF-α (i.e. one of the key purported drivers of RC) may already be apparent 

in the ‘pre-clinical’ phase (Sokolove et al., 2012). Both studies from Marcora et al. (2006) and 

Book et al. (2009) suggest that body composition changes occur early in the disease, 

conceivably, as hypothesised by these authors, before disease development and 

commencement of treatment.  

 

Interestingly, it appears that after this ‘initial’ accelerated loss of muscle (presumably during 

the pre-treatment period of uncontrolled disease activity/inflammation), once control of 

disease activity is achieved the rate of muscle decline in RA appears to be similar to that of 

sedentary non-RA individuals (i.e. annual muscle decline rates in the general population after 

the age of 30 years = ~0.10 kg/1% per year (Guo et al., 1999; Frontera et al., 2000; Morley et 

al., 2011)). Only two studies have looked at muscle decline in RA; each reporting a similar 

rate of loss (Westhovens, 19992; Lemmey et al., 2012) to non-RA controls. In contrast, the 

accumulation of FM may be ‘chronically elevated’ (Lemmey et al., 2012), as the rate of FM 

increases in a small sample (n = 9) of patients with established controlled RA was 0.8 kg/year, 

double that of sedentary healthy individuals (~0.4 kg/year, Guo et al., 1999). Overall, however, 

evidence concerning the time course (commencement and rate) of RC is scant and remains 

unclear. 

 

 

                                                           
2 Observations from doctoral studies. 
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2.1.3. Consequences of rheumatoid cachexia 

 

Rheumatoid cachexia is associated with impaired physical function and disability (Engvall et 

al., 2008; Giles et al., 2008a; Dao et al., 2011; Kramer et al., 2012). Just a 5% decrease in LM 

can lead to significant muscle weakness and loss of functional capacity (Walsmith & 

Roubenoff, 2002), which reduces a patient’s self-reported independence and quality of life 

(Bazzichi et al., 2005; Benitha et al., 2007; Engvall et al., 2008; Summers et al., 2008). 

Conversely, increasing muscle mass and reducing FM has been shown to have beneficial 

effects on physical function and strength in RA patients (Marcora et al., 2005a; Lemmey et al., 

2009). As the qualitative properties (e.g., muscle-specific force and architecture, activation 

capacity, and recruitment) of muscle that determine specific force do not appear to be 

compromised in patients with stable RA (Matschke et al., 2010a, 2010b), it appears it is loss 

of muscle quantity (i.e. muscle mass), rather than muscle quality, that contributes to the 

reduced function and strength. 

 

2.1.3.1. Effect on functional capacity 

Prior to the advent of the current DMARDs (e.g., the introduction of methotrexate (MTX) in the 

late 1980’s, and biologic agents in the early 2000’s (Upchurch & Kay, 2012)), the physical 

function of RA patients was found to be markedly reduced (up to 60%, Ekblom et al., 1974) 

compared to matched controls.  

 

However, despite substantial advancements in treatment, objectively measured physical 

function of patients with RA still appeared reduced by ~20–25%. The evidence for this includes 

studies conducted by our group, for example, Lemmey et al. (2009) found walking time 

(assessed by a 50’foot walk (50’W)) and the number of chair stands (assessed by the sit-to-

stand in 30 second test (STS-30)) were 21% and 25% poorer, respectively, compared to age- 

and sex-matched population norms (calculated using the 50th percentile performance level for 

healthy 60–64 year olds for the relevant tests; from the Senior Fitness Test Manual (Rikli & 

Jones, 2012)); and Matschke et al. (2010a, 2010b) who showed that RA patients, relative to 

matched non-RA individuals, demonstrated reductions of ~11% in the STS-30 test, and ~17% 

and ~25% slower 8’foot up and go (8’UG) and 50’W times, respectively. Kramer et al. (2012) 

found that, in RA patients, low thigh muscle mass was associated with higher reported 

disability and limitations in performance assessed by the Short Physical Performance Battery 

(e.g., single and repeated chair stands, walking tests).  
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Loss of handgrip strength (HGS) and hand function in particular is a major cause of disability 

in RA (Fraser et al., 1999). Bodur et al. (2006) found that up to 81% of patients reported 

experiencing some form of hand disability when compared to controls, and HGS has been 

found to be ~20–30% deficient in RA patients (Nordenskiöld & Grimby, 1993; Helliwell & 

Jackson, 1994; Häkkinen et al., 1995; Fraser et al., 1999), with Brorsson et al. (2012) reporting 

a 34% loss in the (Hand) Grip Ability Test. Consistent with these findings, Van Bokhorst-de 

van der Schueren et al. (2012) reported that 95% of their RA patients were below the 33rd 

percentile of an age- and sex-matched reference population for HGS.  

 

2.1.3.2. Effect on strength 

Muscle mass is a major determinant of strength in RA patients (Helliwell & Jackson, 1994; 

Roubenoff, 2001; Marcora et al., 2005a; Giles et al., 2008a; Matschke et al., 2010a, 2010b; 

Kramer et al., 2012). In earlier studies of strength, the lower extremity muscle function (using 

the Index of Muscle Function) of RA patients was 23% less than a matched control group 

(Ekdahl et al., 1989), and research revealed significant reductions in maximum isometric 

strength of both knee extensors (~35%) and flexors (~70%) in RA patients compared to 

controls (Nordesjö et al., 1983; Danneskiold-Samsøe & Grimby, 1986; Ekdahl & Broman, 

1992; Madsen et al., 1997). More recently, Lemmey et al. (2009) revealed that isometric knee 

extensor strength (IKES) was deficient by ~25% in stable RA patients relative to matched HCs. 

 

2.1.3.3. The role of adiposity on strength and physical function 

Whilst loss of LM significantly contributes to poor physical function, the excess adiposity 

characteristic of RC may exacerbate this (Stavropoulos-Kalinoglou et al., 2009; Kramer et al., 

2012). Some research (Giles et al., 2008a; Kramer et al., 2012) even suggests that FM may 

have a greater effect on disability in RA than loss of muscle, and that efforts to improve 

physical function in RA require a focus on fat reduction with at ‘least as much emphasis, if not 

more, than increasing LM’ (Giles et al., 2008a). Mechanistically, increased adiposity acts as 

‘dead weight’, ‘increasing the load faced by the limited muscle mass’ (Rolland et al., 2009), as 

well as obstructing range of motion and impairing movement (Giles et al., 2008a).  

 

Further, fat infiltration into the muscle is associated with decreased physical function in the 

elderly (Visser et al., 2003, 2005; Goodpaster et al., 2008; Marcus et al., 2012). Whilst it 

remains unclear what mechanism(s) explain the association between fat infiltration and 

physical function (Visser et al., 2002, 2005), intramuscular (IM) fat may be a marker of 

functional aspects of the muscle other than strength, such as muscle contractibility (cellular 

function), muscle metabolism (energy utilisation), neural factors (nerve function), or reduced 
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blood flow (Visser et al., 2002, 2005; Goodpaster et al., 2008). Further research into these 

mechanisms are needed.  

 

In general, while both low muscle mass and excess FM are independently associated with 

disability and loss of function (Kramer et al., 2012), research suggests that a synergistic 

relationship exists i.e. the co-existence of both conditions (sarcopenic-obesity), which 

regularly occurs in RA, markedly increases (~2.5–12.0 fold) disability risk (Baumgartner, 2000; 

Baumgartner et al., 2004; Dufour et al., 2012) relative to sarcopenia only or obese only 

participants.  

 

2.1.3.4. Rheumatoid cachexia, mortality, and co-morbidity  

In addition to loss of strength and physical functioning, RC has other serious health 

implications. The effect of RC on mortality rate has not been investigated in RA, in older adults, 

low muscle mass has been associated with increased all-cause mortality (Metter et al., 2002; 

Wannamethee et al., 2007). Whilst reduced LM may indicate poorer cardiorespiratory fitness, 

as muscle is the primary store of glucose, loss of muscle can also increase insulin resistance 

and its associated CVD risk (Srikanthan et al., 2010). Severe loss of LM also diminishes the 

body’s ability to fight infection as muscle is the primary store of body protein, and depletion of 

this store impairs adaptation to metabolic stress (Roubenoff & Rall, 1993; Walsmith & 

Roubenoff, 2002; Summers et al., 2008). In fact, the ~8 to 15% reduction in LM often described 

in RA patients represents 1/3–1/4 of the maximum survivable loss of total BCM (~40%, 

Roubenoff, 2001). 

 

The elevated adiposity seen in RA, particularly the accumulation of truncal fat, may contribute 

to insulin resistance (Dessein & Joffe, 2006) and increased risk of CVD (Walsmith & 

Roubenoff, 2002; Inaba et al., 2007; Book et al., 2009; Elkan et al., 2009; Stavropoulos-

Kalinoglou et al., 2009; Giles et al., 2010; Summers et al., 2010; Solomon et al., 2012). 

Although contrastingly, Metsios et al. (2009) found that presence of RC was not predictive of 

a worse CVD profile. Furthermore, as adipose tissue is a source of inflammation, reductions 

in pro-inflammatory cytokine activity have been associated with loss of FM in obese men 

(Sharman & Volek, 2004) and women (Ziccardi et al., 2002). As such, improving body 

composition, specifically reducing adiposity, may also reduce RA disease burden (i.e. 

inflammation). 
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Rheumatoid cachexia is also associated with an increased risk of osteopenia and osteoporosis 

as depletion of LM is significantly correlated with bone mineral density of the spine and hip, 

and is a strong independent predictor of bone mass in RA (Shibuya et al., 2002).  

 

 

2.1.3.5. Other factors that effect functional disability in rheumatoid arthritis 

Whilst loss of LM and excess adiposity are substantial predictors of impaired strength and 

physical function in RA, other factors may also contribute. Rheumatoid arthritis is 

characterised by chronic fatigue, joint damage, and pain; all of which have been associated 

with reductions in physical functioning (Scott et al., 2000; Heiberg & Kvien, 2002; Ormseth et 

al., 2015). Univariate correlations of patient characteristics with subjective physical functioning 

(HAQ) by Giles et al. (2008a) found that, alongside body composition (i.e. ALM and FM), RA 

disease activity (DAS28), disease duration, pain, morning stiffness, and radiographical 

damage were all associated with increased disability. Further, Lusa et al. (2015) found that 

significant indicators of slower walking speed (over 400m) were: older age, higher depression 

scores, higher reported pain and fatigue, higher swollen and replaced joint counts, higher 

cumulative prednisone exposure (possibly indicative of more active disease), non-treatment 

with DMARDs, and worse body composition (i.e. low muscle mass and increased FM). 

 

 

2.1.4. Pathogenesis of rheumatoid cachexia 

 

2.1.4.1. Inflammation and cytokines 

The pathological processes responsible for RC are multifactorial (Walsmith & Roubenoff, 

2002). Originally proposed in the early 1990’s, Roubenoff’s group and others have 

demonstrated that reductions in BCM or LM in RA are inversely associated with systemic 

inflammation and ‘sarco-active’ (i.e. muscle-active) pro-inflammatory cytokines, principally 

TNF-α, IL-1β, and IL-6 (Roubenoff et al., 1992, 1994; Rall et al., 1996; Munro & Cappell, 1997; 

Walsmith & Roubenoff, 2002; Walsmith et al., 2004; Metsios et al., 2006; Engvall et al., 2008).  

 

Although it is not precisely understood how these cytokines exert their effect on LM (Walsmith 

& Roubenoff, 2002, 2004; Rall & Roubenoff, 2004), several potential mechanisms of action in 

RA, and other muscle wasting conditions, have been proposed. The ‘IGF-Akt’ pathway has 

been identified as the key molecular pathway in controlling muscle growth (Fanzani et al., 

2012). Simply, IGF-1 increases protein synthesis by activating Akt (protein kinase B). 

Activated Akt inhibits protein degradation by phosphorylating, and thus repressing, the FoxO 



20 
 

family of transcription factors, specifically reducing the activity of the muscle-specific ubiquitin 

ligases ‘muscle atrophy F-box’ (MAFbx) and ‘muscle ring finger-1’ (MuRF1); key proteins 

responsible for ubiquitylation (i.e. the degradation) of myosin and other muscle proteins (Wang 

& Maldonado, 2006; Fanzani et al., 2012; Schiaffino & Mammucari, 2011).  

 

Activated Akt also stimulates mammalian target of rapamycin (mTOR) activity which in turn 

phosphorylates the ribosomal protein S6 (S6K) and other factors involved in translation 

initiation and elongation, and consequently, protein synthesis (Fanzani et al., 2012) (Figure 

2.2.). 

 

 

 

 

Figure 2.2. The IGF-Akt pathway and how cytokines such as TNF-α can disrupt key stages in protein synthesis. 

Source: Schiaffino and Mammucari (2011) and reproduced under the CC-BY-AT 2.0 licence. 

 

In RA, elevated pro-inflammatory cytokines, in particular TNF-α, may promote proteolysis (i.e. 

muscle protein degradation) through several mechanisms:  

 

A 

B  

Protein 

synthesis 
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1) By activating Jun N-terminal kinase (JNK), pro-inflammatory cytokines (e.g., TNF-α, IL-1β, 

and IL-6) can impair activation of Akt by inhibiting insulin receptor substrate (IRS) – an 

important step in the ‘IGF-Akt’ pathway (Lang et al., 2002; Broussard et al., 2003, 2004; 

Strle et al., 2004) (box A in Figure 2.2.). 

 

2) Pro-inflammatory cytokines can activate the transcription factor ‘nuclear factor kappa-β’ 

(NF-κB) (Lang et al., 2002). Activation of NF-κB increases the expression and 

accumulation of ubiquitinated proteins such as MuRF1 and MAFbx (Granado et al., 2005; 

Wang & Maldonado, 2006; Schiaffino & Mammucari, 2011; Fanzani et al., 2012). Activated 

NF-κB also inhibits skeletal muscle differentiation by suppressing the mRNA expression 

of myogenic differentiation 1 (MyoD) - a transcription factor that modulates signalling 

pathways involved in muscle development (Rall & Roubenoff, 2004) (box B in Figure 2.2.). 

 

3) Inflammatory cytokines can also block the action of IGF-I, either by reducing its expression 

or impairing its ability to bind to its receptor (Engvall et al., 2008; Fanzani et al., 2012). 

 

2.1.4.2. Adipokines 

Adipose tissue, especially visceral fat, is a recognised source of inflammation, producing 

catabolic pro-inflammatory cytokines such as TNF- α (Berg & Scherer, 2005; Metsios et al., 

2006; Garcia-Poma et al., 2007; Stavropoulos-Kalinoglou et al., 2010). Adipose tissue also 

expresses adipokines such as adiponectin and leptin (Popa et al., 2005; Otero et al., 2006; 

Engvall et al., 2010), two proteins that can modulate the inflammatory environment in RA 

(Otero et al., 2006).  

 

The exact inflammatory role of adiponectin is unclear. Some research in RA patients has 

shown it to exert an anti-inflammatory action, attenuating the immune response by reducing 

the activity of TNF- α and IL-6 (Wulster-Radcliffe et al., 2004; Chen et al., 2006; Toussirot et 

al., 2007; Targońska-Stępniak et al., 2010). However, conflicting findings suggest that 

adiponectin has a pro-inflammatory role in RA (Ebina et al., 2009; Rho et al., 2009; Oranskiy 

et al., 2012), with both Choi et al. (2009) and Giles et al. (2009, 2011) proposing that elevated 

serum adiponectin is associated with increased radiographical joint damage in RA.  

 

Whilst serum-based levels of adiponectin in RA are inversely correlated with FM (Giles et al., 

2009; Engvall et al., 2010), no research to date has identified an association with muscle loss 

in RA. However, elevated adiponectin concentrations have been associated with an increased 
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cachectic state in elderly patients with chronic heart disease (McEntegart et al., 2007; Paulo 

Araújo et al., 2009) and cancer (Wolf et al., 2006). Although the mechanisms behind 

adiponectin’s role in cachexia require further investigation, it has been hypothesised that 

adiponectin may increase REE (i.e. hypermetabolism) (Paulo Araújo et al., 2009), as well as 

increasing the expression of IL-6 (a key catabolic cytokine in RC) in RA (Ehling et al., 2006).  

 

Leptin plays a key role in appetite regulation and satiety. Leptin is expressed as adipocyte 

size increases, and generally acts as a negative feedback signal, decreasing appetite and 

increasing energy expenditure (Wislowska et al., 2007), although these effects in obese 

individuals are compromised due to leptin-resistance (Zhang & Scarpace, 2006). Additionally, 

it has been demonstrated that circulating levels of leptin increase in RA patients during 

inflammation, suggesting a contribution to the immune response (Otero et al., 2006; Seven et 

al., 2009). The exact inflammatory role of leptin is equivocal (Otero et al., 2006); leptin may 

increase the expression of pro-inflammatory cytokines in RA (Popa et al., 2005; Wislowska et 

al., 2007), although no relationship between RA disease activity (Bokarewa et al., 2003; 

Gunaydin et al., 2006; Allam & Radwan, 2012) and inflammation (Popa et al., 2005) have also 

been observed. Like adiponectin, leptin is primarily associated with adipose tissue (Wislowska 

et al., 2007), and no evidence, to date, has emerged to suggest a link with muscle loss in RA. 

 

2.1.4.3. Muscle-protein suppressant hormones 

Muscle wasting can be initiated by increased concentrations of muscle-protein suppressant 

hormones (Roth & Walsh, 2004; Schiaffino & Mammucari, 2011). One such hormone, 

myostatin, mediates catabolic signalling and is a potent negative regulator of skeletal muscle 

mass (Lee & McPherron, 2001; Roth & Walsh, 2004; Elkina et al., 2011; Schiaffino & 

Mammucari, 2011; Elliot et al., 2012). Circulating serum concentrations of myostatin have 

been found to be inversely related with muscle mass in the elderly (Schulte & Yarasheski, 

2001; Yarasheski et al., 2002, Léger et al., 2008) and in other conditions featuring muscle 

wasting such as cardiac cachexia (Hoenig, 2008) and COPD (Ju & Chen, 2012). Whilst 

myostatin has been found to be highly expressed in the synovial tissue of RA (Dankbar et al., 

2011), no research has investigated its role in RC.  
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2.2. Pharmacological treatment of rheumatoid 

arthritis and its effect on rheumatoid cachexia 
 

 

2.2.1. Fundamental principles of modern treatment 

 

Over the last decades there have been significant developments in both medication and 

strategy in RA treatment (Emery, 2006; Scott et al., 2010; Dale & Porter, 2010; Hetland, 2011; 

Ruderman et al., 2012). Although different RA management guidelines are available (e.g., 

from the American College of Rheumatology (ACR), British Society of Rheumatology (BSR), 

EULAR, National Institute for Health and Care Excellence (NICE)), several core principles 

exist:  

 

 Core principle 1: The importance of early diagnosis and treatment initiation  

Delayed therapy initiation is associated with poorer long-term prognostic outcomes in RA 

(Dale & Porter, 2010). Consequently, a ‘window of opportunity’ exists in which prescribed 

treatment is most effective (Möttönen et al., 2002; O’Dell, 2002; Goldbach-Mansky & Lipsky, 

2003; Luqmani et al., 2006; Ding & Deighton, 2010), and results in superior prospective clinical 

outcomes (i.e. reduced inflammation, pain, and joint damage) (Goldbach-Mansky & Lipsky, 

2003; Dale & Porter, 2010). Therefore, the earlier the diagnosis and initiation of treatment, the 

better the clinical outcomes. 

 

 Core principle 2: ‘Tight control’ of disease activity 

‘Tight control’ involves adjusting RA treatment until disease activity is suppressed below a 

predefined level of LDA or, preferably, ‘remission’ (often defined as DAS28 <2.6) (Emery, 

2006; Luqmani et al., 2006, 2009; Bakker et al., 2007; Schipper et al., 2010; Scott et al., 2010; 

Hetland, 2011). ‘Tight control’ is maintained by frequent re-evaluation of disease severity 

(Scott et al., 2010), with aggressive DMARD therapy, including combination therapy involving 

≥2 DMARDs (Goldbach-Mansky & Lipsky, 2003; Luqmani et al., 2006; Dale & Porter, 2010), 

and addition of biological agents if required. Corticosteroids (CS) may also be used to bridge 

the gap between DMARDs, or to provide rapid suppression of active disease (Ding & 

Deighton, 2010; Hetland et al., 2012). Overall, ‘tight control’ of RA has been shown to result 
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in significantly better clinical outcomes than previous treatment regimens (Grigor et al., 20043; 

Bakker et al., 2007; Verstappen et al., 2007; Goekoop-Ruiterman et al., 2010; Schipper et al., 

2010; Hetland et al. 2012), including greater rate of achievement of LDA and ‘remission’, and 

reduced radiographic progression.  

 

 Core principle 3: ‘Treat-to-target’  

In 2010, a set of ‘treat-to-target’ (T2T) recommendations were formulated (Smolen et al., 

2010a). These guidelines, entitled: ‘Treating rheumatoid arthritis to target: recommendations 

of an international task force’, were developed by a multinational steering committee of 

eminent rheumatologists as an ‘international initiative to help define RA treatment targets and 

recommendations to measure disease severity and encourage earlier diagnosis and optimize 

treatment’ (Smolen et al., 2010a). The principle of ‘tight control’ is a fundamental feature of 

T2T, which comprises four overarching principles and ten recommendations (Figure 2.3.). 

The T2T recommendations are now one of the ‘cornerstones of current RA management’ 

(Ruderman et al., 2012). 

 

Randomized controlled trials have demonstrated that a T2T approach achieves superior 

clinical outcomes compared to previous ‘non-targeted’ treatment regimens when various 

response (‘target’) criteria such as the ‘EULAR good response’ (Grigor et al., 2004), ‘Boolean 

criteria’ (Hetland et al., 2012; Wevers-de-Boer et al., 2012), DAS28 (Fransen et al., 2005; 

Verstappen et al., 2007; Saunders et al., 2008; Goekoop-Ruiterman et al., 2010), and ‘ACR 

remission criteria’ (Möttönen et al., 1999) are employed. A meta-analysis by Jurgens et al. 

(2012), entitled ‘Overview and analysis of treat-to-target trials in rheumatoid arthritis reporting 

on remission’, on four trials which featured tight disease control by T2T showed that applying 

this strategy approximately doubles the remission rate relative to usual carein patients with 

early RA. 

 

 

 

 

 

 

                                                           
3 The principle of ‘tight control’ of RA disease was first, and most thoroughly, investigated in the ‘TIght COntrol for 
Rheumatoid Arthritis’ (TICORA) study (Grigor et al., 2004).  

The four overarching principles of T2T 

A. The treatment of RA must be based on a shared decision between patient and 

rheumatologist. 

B. The primary goal of treating the patient with RA is to maximise long term health-

related quality of life through control of symptoms, prevention of structural damage, 

normalisation of function and social participation. 

C. Abrogation of inflammation is the most important way to achieve these goals. 

D. Treatment to target by measuring disease activity and adjusting therapy accordingly 

optimises outcomes in RA. 
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Figure 2.3. The ‘treat-to-target’ (T2T) principles and recommendations developed in 2008. The principle of ‘tight 

control’ is fundamental to T2T, with emphasis on the use of a ‘target’ to guide therapy. Source: Smolen et al. 

(2010a), for more information see https://www.t2t-ra.com, available online March 2016). 

 

 

2.2.2. Existing treatment guidelines for rheumatoid arthritis 

 

The current ACR, BSR, EULAR, and NICE guidelines all encourage and incorporate the 

principles of ‘tight control’ and T2T. This includes early initiation of DMARDs, with combination 

DMARD therapy if required, and frequent assessment of disease activity and damage until 

treatment targets have been achieved (Deighton et al., 2009 (NICE); Luqmani et al., 2009 

(BSR); Smolen et al., 2010b (EULAR); Singh et al., 2012 (ACR)). The primary aim for 

rheumatologists is to slow disease progression and relieve symptoms of inflammation and 

pain (Luqmani et al., 2006, 2009; Deighton et al., 2009; Scott et al., 2010; Smolen et al., 

The ten recommendations of T2T  

1. The primary target for treatment of RA should be a state of clinical remission. 

2. Clinical remission is defined as the absence of signs and symptoms of significant 

inflammatory disease activity. 

3. While remission should be a clear target, based on available evidence LDA may be 

an acceptable alternative therapeutic goal, particularly in established long-standing 

disease. 

4. Until the desired treatment target is reached, drug therapy should be adjusted at least 

every 3 months. 

5. Measures of disease activity must be obtained and documented regularly, as 

frequently as monthly for patients with high/moderate disease activity or less frequently 

(such as every 3–6 months) for patients in sustained LDA or remission. 

6. The use of validated composite measures of disease activity, which include joint 

assessments, is needed in routine clinical practice to guide treatment decisions. 

7. Structural changes and functional impairment should be considered when making 

clinical decisions, in addition to assessing composite measures of disease activity. 

8. The desired treatment target should be maintained throughout the remaining course 

of the disease. 

9. The choice of the (composite) measure of disease activity and the level of the target 

value may be influenced by consideration of co-morbidities, patient factors and drug-

related risks. 

10. The patient has to be appropriately informed about the treatment target and the 

strategy planned to reach this target under the supervision of the rheumatologist. 
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2010a, 2010b; Ruderman et al., 2012; Singh et al., 2012; Upchurch & Kay, 2012) by targeting 

‘clinical remission’ or, failing that, at least achieving LDA (Luqmani et al., 2006, 2009; Dale & 

Porter, 2010; Scott et al., 2010; Smolen et al., 2010a, 2010b; Singh et al., 2012; Upchurch & 

Kay, 2012). 

 

2.2.2.1. Assessment of physical function in rheumatoid arthritis patients 

Physical function is an important outcome measure in RA treatment. Both the ACR (Singh et 

al., 2012) and EULAR (Smolen et al., 2010b) state that the normalisation and maintenance of 

physical function is an important goal of T2T treatment. The current NICE (Deighton et al., 

2009) guidelines advocate measuring ‘functional ability’ (NICE Guidelines 79, section 1.5.1.4), 

whilst the BSR (Luqmani et al., 2009) state that disability should be assessed. Although no 

method of assessing functional limitation is suggested by EULAR (Smolen et al., 2010a/b) 

(Figure 2.2.): the ACR (Singh et al., 2012), BSR (Luqmani et al., 2009), and NICE (Guidelines 

79, section 1.5.1.4; Deighton et al., 2009) advocate the use of the Health Assessment 

Questionnaire (HAQ) – the ‘most widely used functional outcome measure’ in rheumatology 

(Ødegård et al., 2006).  

 

When assessed by the HAQ, initiation of treatment has favourable effects on physical function 

(e.g., Hallert et al., 2003; Marcora et al., 2006; Metsios et al., 2007; Book et al., 2011). 

However, this subjective, patient-reported measure, that is influenced considerably by the 

patient’s expectations, lack of recall, mood, general health status (Spiegel et al., 1988; 

Ødegård et al., 2006; Kingsley, Scott, & Scott, 2011), and, in particular, pain (which is 

generally reduced by ‘tight control’ of disease activity (e.g., Marcora et al., 2006; Kingsley et 

al., 2011)) has short-comings when used to assess function in patients with controlled RA. 

The HAQ (Bruce & Fries, 2005) generally fails to detect even substantial improvements in 

objectively measured physical function in stable RA patients who complete exercise training 

interventions (Van den Ende et al., 1997). For example, in Lemmey et al. (2009), significant 

improvements of 17–30% in objective function measures (50’W, 30 second arm curl test, 

8’UG, IKES) in established RA patients following 6 months PRT, which normalised their 

function relative to age- and sex-matched population norms, were undetected by the Multi-

dimensional HAQ (MDHAQ).  

 

Thus, for accurate evaluation of disability, objective function tests should be used in clinical 

practice (Arvidson et al., 2002). Objective physical function tests, such as walking tests, chair 

tests, or HGS, have been found preferable to the HAQ in the assessment of physical disability 
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in RA (Arvidson et al., 2002), although they (i.e. objective tests) are not encouraged or 

employed by any current treatment guideline (i.e. ACR, BSR, EULAR, NICE).  

 

 

2.2.3. If treatment suppresses disease activity and inflammation in 

rheumatoid arthritis, does it reverse rheumatoid cachexia? 

 

2.2.3.1. Pharmaceutical therapy has no favourable effect on rheumatoid cachexia 

It was proposed that treatment with anti-TNF-α drugs could reverse RC and restore muscle 

mass in RA patients (Walsmith & Roubenoff, 2002; Rall & Roubenoff, 2004; Marcora et al., 

2006; Metsios et al., 2006). The physiological basis behind this hypothesis was that blocking 

TNF-α activity (using pharmalogical treatment) would reduce TNF-α-driven muscle catabolism 

(see section 2.1.4.) (Metsios et al., 2006). Further, suppression of disease activity (and 

symptoms) may also increase physical activity and appetite levels, as well as reducing REE; 

possible components of RC atiology (Stavropoulos-Kalinoglou et al., 2010). 

 

However, Marcora et al. (2006) found that despite control of systemic inflammation, 6 months 

of treatment with anti-TNF therapy (etanercept (ETN)) had no effect on DXA-assessed LM 

relative to standard DMARD (MTX) therapy in treatment-naive early RA patients. Similarly, in 

patients with established RA, Metsios et al. (2007) found that whilst 3 months of treatment with 

ETN increased protein intake and physical activity levels, it had no effect on LM, and 

disturbingly increased truncal FM relative to standard DMARDs. Over a longer treatment 

period, in an open trial in female RA patients with established disease, Serelis et al. (2008) 

found no changes in either LM or FM following 12 months of infliximab treatment. Whilst in a 

21 month trial, Engvall et al. (2010) found patients treated with anti-TNFs (predominantly 

infliximab) in combination with MTX had a significant increase in FM and BF%, and no 

increase in LM, relative to patients treated with standard DMARDs (triple therapy: MTX, 

sulfasalazine (SSZ), and hydroxychloroquine (HCQ)). Whilst longer term (i.e. over a period of 

several years) studies are required, it appears that anti-TNF-α therapy, despite its clinical 

efficacy, fails to restore LM in RA patients, and may exacerbate adiposity, particularly trunk 

adiposity. 

 

2.2.3.2. Effect of corticosteroid therapy on body composition 

Along with DMARDs and biologics, an important pharmacological tool in the treatment of RA, 

particularly active RA, are CS. Corticosteroids can be administered orally, via IM injection, 

intravenous infusion, or injected directly into an inflamed joint (NICE Guidelines 79, 2009), and 
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rapidly suppress inflammation in patients with high disease activity i.e. early untreated RA or 

those experiencing a disease flare (Ding & Deighton, 2010). However, despite providing rapid 

and effective relief of inflammation and pain, chronic exposure to high dose CS has 

unfavourable effects on body composition including muscle loss (Horber et al., 1985; 

Roubenoff et al., 1990; Gibson et al., 1991; Short et al., 2004; Schakman et al., 2008), and 

can result in general myopathy which exacerbates muscle weakness (Owczarek et al., 2005; 

Pereira & de Carvalho, 2011).  

 

Another notable effect of chronic high and low dose CS use is an increase and redistribution 

of FM, particularly to the trunk (Horber et al., 1985; Da Silva et al., 2006; Mok et al., 2008). 

Whilst much research has investigated the effects of oral CS administration on body 

composition, the effects of a single high dose IM CS injection, as recommended for patients 

with active RA disease (i.e. at initial diagnosis or during a disease flare), is currently unknown. 

 

2.2.3.3. Does rheumatoid cachexia still exist in the modern treatment era? 

As discussed, current treatment, which follow the principles of ‘tight control’ and T2T generally 

successfully controls inflammation (Goldbach-Mansky & Lipsky, 2003; Bakker et al., 2007; 

Dale & Porter, 2010; Schipper et al., 2010; Emery et al., 2011), reduces the progression of 

radiographic damage, diminishes pain, and (as assessed subjectively by the HAQ) appears 

to attenuate functional disability (Molenaar et al., 2002; Cohen et al., 2007; Mäkinen et al., 

2007; Smolen et al., 2009).  

 

It has been suggested that achievement of disease ‘remission’ and the reduction in pro-

inflammatory cytokines may increase the potential for muscle synthesis, thus increasing 

physical activity, and optimising body composition (Stavropoulos-Kalinoglou et al., 2010). 

When this doctorate began, whether the relative success of a T2T treatment strategy in 

achieving LDA or ‘clinical remission’ has resulted in the attenuation of RC and subsequent 

improvements in objective physical function in RA patients had not been investigated.  
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2.3. Potential adjunct interventions for attenuating 

rheumatoid cachexia and improving physical 

function 
 

 

2.3.1.  Is there still a need for adjunct interventions that may restore 

muscle mass and physical function? 

 

Pharmaceutical treatments for RA (i.e. DMARDs) fail to significantly improve body composition 

or restore physical function (Marcora et al., 2006; Metsios et al., 2007; Serelis et al., 2008; 

Engvall et al., 2010) in RA. Therefore, when this doctorate commenced potential interventions 

that focus on restoring muscle mass and physical function needed to be identified. Indeed, if 

current treatment for RA (specifically T2T) proves ineffective in reversing RC and restoring 

normal function, then this necessity to identify adjunct treatments that do remains. 

 

2.3.1.1. Exercise and progressive resistance training 

Aerobic-based exercise has been shown to have beneficial effects on cardiorespiratory 

fitness, quality of life, and physical function (Cooney et al., 2011), and whilst RA patients 

should be encouraged to include both aerobic and strength exercise training as part of routine 

care, due to its substantial effects on muscle mass, resistance training appears to be the most 

beneficial means of reversing the consequences of RC (Lemmey, 2011). 

 

Two Cochrane Reviews (Van den Ende et al., 2000; Hurkmans et al., 2009) have supported 

the inclusion of PRT in the routine management of RA patients, and numerous studies have 

demonstrated strength training results in both functional and strength gains, and favourable 

changes to body composition (e.g., Häkkinen et al., 1999, 2003, 2004, 2005; Van den Ende 

et al., 2000). This also comprises work by our group including Marcora et al. (2005) who, in a 

pilot study, showed that 12 weeks of high-intensity progressive resistance training (PRT; 3 

x’s/week) increased total LM and ALM, decreased FM, trunk FM, and BF%, and substantially 

improved objectively-assessed functional capacity (including IKES and the STS-30) in RA 

patients.  

 

To further confirm the efficacy of PRT, Lemmey et al. (2009), in a randomised controlled trial, 

demonstrated that 24 weeks of PRT (2 x’s/week) significantly increased total LM and ALM, 
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decreased FM (particularly trunk FM), and was able to restore normal levels of physical 

function as measured by objective functional tests (training-specific strength was improved by 

119%, chair stands by 30%, knee extensor strength by 25%, arm curls by 23%, and 50’W time 

by 17%) in patients with established RA. Notably in this trial, low intensity range-of-movement 

exercises (i.e. the form of exercise most commonly prescribed for RA patients), which were 

performed by the control group, had no effect on measures of body composition or objective 

physical function. 

 

Unfortunately, RA patients are generally very sedentary (Sokka et al., 2008, 2010; Lee et al., 

2012) and despite its clear benefits and safety, patient uptake of exercise is poor. In the UK, 

~68% of RA patients perform no regular weekly exercise, and in some countries such as Italy 

and France, this figure is above 85% (Sokka et al., 2008). In the UK, only 18% of patients 

reported being physical active at least 3 x’s/week (Sokka et al., 2008).  

 

Remarkably, some research has shown that even patients who experience the benefits of 

exercise cease training once supervision is withdrawn. In a three year follow-up study to their 

2009 PRT trial, Lemmey et al. (2012) found that, despite the normalisation of objective 

physical function and the improvements in body composition, none of the patients in the PRT 

group had maintained this activity or any other form of regular high intensity exercise. As a 

result, the gains in ALM were completely lost and much of the losses in FM, trunk FM, and 

BF% were regained. Similarly, the training-induced gains in IKES, and the chair and arm curl 

tests were completely lost during detraining, although most (66%) of the improvement in the 

50’W was retained. Lack of adherence to exercise programmes once supervision is withdrawn 

in RA has been reported elsewhere (e.g., Hsieh et al., 2009), and loss of strength and 

functional gains from PRT is inevitable once training ceases (Lemmer et al., 2000; De Jong et 

al., 2009). 

 

Conversely, it should be noted that some studies have reported ‘high’ adherence rates to 

exercise, including high-intensity PRT. In the ‘Rheumatoid Arthritis Patients in Training’ 

(RAPIT) trial, the median percentage of sessions attended over 2 years, of 309 RA patients, 

was 74% (De Jong et al., 2003; Munneke et al., 2003). Further, in patients who had continued 

exercising once per week for the subsequent 18 months after the trail ended, strength (knee 

extension) gains were maintained (De Jong et al., 2009). Whilst it is beyond the scope of this 

thesis to discuss all the factors influencing exercise adherence, it appears that adherence is 

improved in patients with well-controlled disease, better functional ability, and a strong social 

structure (Munneke et al., 2003; Metsios et al., 2008). Owing to the substantial benefits on 
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body composition and physical function in RA, interventions aimed at improving exercise (or 

physical activity), particularly high-intensity PRT, adherence should be conducted. 

 

Overall, it seems that although highly beneficial, sustained high intensity exercise training is 

unlikely to be widely adopted by every RA patient as a therapy for reversing RC and restoring 

physical function. Thus, the challenge is to develop a treatment option that is easily 

administered, inexpensive, makes limited demands of the patient, and consequently would be 

widely acceptable. 

 

2.3.1.2. Nutritional supplementation 

Anabolic nutritional supplementation offers a treatment option that, if efficacious, should be 

widely acceptable to patients. Whilst oral amino acid supplementation has been shown 

successful in increasing LM in the elderly with sarcopenia (Solerte et al., 2008) and patients 

with cancer cachexia (May et al., 2002), interestingly, there is a striking lack of published 

studies on the effect of nutrition on RC, with the majority of trials investigating whether diets 

or dietary supplements are able to moderate RA disease symptomology (for a review, see 

Stamp, James, & Cleland, 2005). 

 

Our group (Marcora et al., 2005) previously investigated the effects of ß-hydroxy-ß-

methylbutyrate, glutamine, and arginine (HMB/GLN/ARG) amino acid supplementation as a 

treatment for RC in a randomised controlled trial involving forty RA patients. The results 

showed that 12-weeks daily protein supplementation (both HMB/GLN/ARG and a control 

mixture of non-essential amino acids (alanine, glutamic acid, glycine, serine)) was effective in 

increasing muscle mass (~0.4 kg ALM) and improving some (STS-30, IKES), but not all (HGS, 

elbow flexor strength), measures of physical function and strength.  

 

Creatine (Cr) monohydrate supplementation (methylguanidine-acetic acid; a naturally 

occurring compound made from three amino acids: arginine, glycine, and methionine) has in 

athletes and the general population generally been shown to be more effective in increasing 

LM and physical performance than other anabolic supplements including HMB/GLN/ARG (for 

a review, see Nissen & Sharp, 2003; Cribb et al., 2007).  

 

However, the findings from the only trial to investigate the effects of oral Cr supplementation 

in RA patients (Willer et al., 2000) are inconclusive. In this uncontrolled, un-blinded trial, twelve 

RA patients were orally supplemented with Cr supplementation for 21 days using 

recommended doses (20 g/day for 5 days followed by 2 g/day for 16 days), and the effects on 
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muscle strength, subjectively assessed function (HAQ), and disease activity were examined. 

It was found that Cr supplementation increased composite strength, as determined by the 

muscle strength index, in 8/12 patients by an average of 14%, although this improvement was 

not associated with changes in muscle Cr or PCr levels. The authors attributed the limited 

effectiveness of Cr to alterations in the kinetics of Cr in patients with RA (e.g., reduced 

transport into muscle, and increased metabolism and/or excretion).  

 

Whilst the findings of the Willer et al. trial are compromised by methodological limitations and 

a failure to assess body composition, the study does provide some indication that Cr 

supplementation may be safe, and also effective in improving strength in RA patients. Clearly, 

well-conducted investigations are needed to establish the efficacy of Cr supplementation in 

improving body composition and function in RA. 
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2.4. Literature review summary 

 

 

Rheumatoid arthritis is characterised by adverse changes in body composition (reduced 

muscle mass and increased adiposity) termed RC, which is a key contributor to the reduced 

physical function and strength seen in these patients. Since RC is attributed to inflammation, 

successful control of disease activity (i.e. inflammation) may attenuate RC, and the resulting 

decrements in physical function. The effect of current treatment strategy (i.e. ‘tight control’ and 

T2T), with much more frequent achievement of LDA or ‘remission’, on body composition and 

objectively-measured physical function in RA is yet to be investigated. 

 

Although high-intensity PRT has been shown to help restore muscle mass and normalise 

physical function in RA patients, the lack of uptake and adherence to high intensity exercise 

is poor. If RC is still a feature of modern day RA then adjunct anabolic treatments, such as 

nutritional oral Cr supplementation, may provide a specific treatment for improving body 

composition and physical function. The effects of oral Cr supplementation in RA are currently 

unclear.  

 

To advance the understanding of RC, additional investigations into its mechanisms are also 

warranted. In particular, the role of circulating pro-inflammatory cytokines, adipokines, 

catabolic proteins such as myostatin, and anabolic factors such as IGF-I should be further 

explored. Specifically, what is not fully understood is how these markers change in response 

to different pharmacological treatments of RA, or interventions designed to attenuate or 

reverse RC such as PRT or protein supplementation.  

 

Whilst the effect of current RA treatment strategies on RC is unclear, it is known that the 

pharmacological intervention initially thought most likely to succeed (anti-TNFs) does not 

recover lost LM, may exacerbate adiposity, and fails to restore normal physical function. 

Treatment by chronic high dose CS, although highly effective in suppressing disease activity, 

has deleterious effects on body composition in patients including muscle loss and increased 

adiposity, particularly centrally. The effects of a single bolus IM injection of CS, a routine and 

recommended treatment in active and early RA, on RC are unknown.  
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patients with rheumatoid arthritis? 

A cross-sectional study 
 

 

This study has been accepted for publication in Rheumatology (Oxford). 
 

  



35 
 

 

3.1. Introduction  

 

 

Rheumatoid arthritis (RA) is characterised by adverse changes in body composition (i.e. 

substantial loss of lean mass (LM) and increased adiposity), termed ‘rheumatoid cachexia’ 

(RC) (Roubenoff et al., 1992). Previously, a loss of ~8 to 15% in LM has been observed 

compared to matched non-RA healthy controls (HCs) (e.g., Roubenoff et al., 1994; Rall et al., 

2002; Roubenoff et al., 2002; Walsmith & Roubenoff, 2002; Giles et al., 2008b; Book et al., 

2009; Matschke et al., 2010a, 2010b; Dao et al., 2011; Baker et al., 2014), with total fat mass 

(FM) reportedly ~12 to 18% greater in RA (e.g., Giles et al., 2008b; Book et al., 2009; Elkan 

et al., 2009; Matschke et al., 2010b; Dao et al., 2011; Santos et al., 2011). Disturbingly, the 

majority of this excess FM occurs on the truncal area (Marcora et al., 2005a, 2005b; Marcora 

et al., 2006; Lemmey et al., 2009; Book et al., 2009, Book et al., 2011; Dao et al., 2011), and 

results in a large majority (up to 80%, Lemmey et al., 2009) of patients classified as obese 

and overweight (Elkan et al., 2009; Engvall et al., 2010; Santos et al., 2011). Examination into 

the prevalence and differences in RC between males and females in equivocal (Giles et al., 

2008b; Book et al 2009; Baker et al., 2015).  

 

This undesirable change in body composition can exacerbate mortality risk (Summers et al., 

2008), and is cited as a major contributor to the ~25% reduction in physical function and 

strength observed in RA (Roubenoff, 2001; Marcora et al., 2005a, 2005b, 2006; Giles et al., 

2008a; Lemmey et al., 2009; Stavropoulos-Kalinoglou et al., 2009; Matschke et al., 2010a, 

2010b; Chen et al., 2011; Kramer et al., 2012; Van Bokhorst-de van der Schueren et al., 2012; 

Lusa et al., 2015). 

 

In general, RA is associated with a greater risk of co-morbidity, most notably a two-fold 

increased risk (Solomon et al., 2003; Kitas & Gabriel, 2011) of cardiovascular disease (CVD) 

which accounts for the majority of deaths in patients (Humphreys et al., 2014; Bag-Ozbek & 

Giles, 2015). The increase in CVD in RA is not fully explained by the presence of traditional 

cardiovascular risk factors (Elkan et al., 2009; Kitas & Gabriel, 2011; Amaya-Amaya et al., 

2013) and is thought to be due to the inflammatory process inherent of the disease (Solomon 

et al., 2003). Inflammation is an important component of atherosclerosis (Kitas & Gabriel, 

2011), whilst TNF-α increases insulin resistance and the release of free fatty acids into the 

blood; both of which increase CVD risk (Dessein et al., 2006; Kitas & Gabriel, 2011). 
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As RC is driven by inflammation (i.e. pro-inflammatory cytokines e.g., TNF-α) (Roubenoff et 

al., 1992, 1994; Rall & Roubenoff, 2004; Walsmith et al., 2004; Engvall et al., 2008; Chen et 

al., 2011; Maghraoui et al., 2015), it was reasoned that pharmacological reduction of 

inflammation, specifically TNF-α, could reverse RC (Walsmith & Roubenoff, 2002; Summers 

et al., 2008). However, evidence suggests that anti-TNF-α therapy has no beneficial effect on 

body composition (i.e. does not reverse RC) (Marcora et al., 2006; Metsios et al., 2007; Serelis 

et al., 2008; Engvall et al., 2010; Toussirot et al., 2014).  

 

The primary aim of current RA treatment is to achieve a state of low disease activity (LDA), or 

if possible, ‘clinical remission’ (i.e. defined as a Disease Activity Score in 28 joints (DAS28) 

score of <2.6) (Luqmani et al., 2009; Dale & Porter 2010; Scott et al., 2010; Smolen et al., 

2010a, 2010b, 2014; Ruderman et al., 2012). To achieve this, management of RA is based 

around early diagnosis, and ‘tight control’ of disease activity by regular assessment, and 

adjustment of treatment when such control is not achieved (Luqmani et al., 2009; Scott et al., 

2010; Smolen et al., 2010a, 2010b, 2014). This approach is exemplified by the ‘treat-to-target’ 

(T2T) recommendations outlined by Smolen et al. (2010a, 2015).  

 

Since their formulation, the T2T recommendations have become one of the ‘cornerstones of 

current RA management’ (Ruderman et al., 2012), with the UK National Institute of Clinical 

Excellence (NICE) (Deighton et al., 2009), British Society of Rheumatology (BSR) (Luqmani 

et al., 2009), European League Against Rheumatism (EULAR) (Dale & Porter, 2010; Smolen 

et al., 2010b, 2014), and American College of Rheumatology (ACR) (Singh et al., 2012) 

guidelines for the management of RA all encouraging the use of early, tailored and targeted 

treatment, with achievement of LDA or ‘remission’ the primary objective. Several clinical trials 

have demonstrated that using a T2T (Fransen et al., 2005; Verstappen et al., 2007; Van Tuyl 

et al., 2008; Schoels et al., 2010; Jurgens et al., 2012; Farman et al., 2015; Stoffer et al., 2015) 

or ‘tight control’ (Grigor et al., 2004; Bakker et al., 2007; Schipper et al., 2010) approach 

achieves superior clinical outcomes (i.e. lower DAS28, reduced pain, higher rate of remission, 

and radiographic joint (cartilage) damage) compared to usual care.  

 

Restoration of functional ability is an explicit aim of the ACR, BSR, EULAR, and T2T 

recommendations (Deighton et al., 2009; Luqmani et al., 2009; Smolen et al., 2010a, 2010b, 

2014; Singh et al., 2012) with the ‘abrogation of inflammation’ proposed to be a potential 

solution (Smolen et al., 2010a). The few investigations which have assessed the effect of T2T 

on functional impairment in RA, to date, have only used subjective self-report instruments such 
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as the Health Assessment Questionnaire (HAQ) (e.g., Sakellariou et al., 2013; Seto et al., 

2013; Vermeer et al., 2013; Solomon et al., 2014; Sugihara et al., 2015). The HAQ is strongly 

influenced by symptomatological features, such as pain (Arvidson et al., 2002; Marcora et al., 

2006; Kingsley et al., 2011), that is often reduced following treatment. Further, the HAQ fails 

to detect substantial improvments in objective physical function in RA patients (Van de Ende 

et al., 1997; Lemmey et al., 2009). Therefore, objective measures of physical function are the 

most valid means of ‘true’ functional assessment (Arvidson et al., 2002). 

 

It would be anticipated that the relative success of current treatment (e.g., T2T) in effectively 

reducing patients’ inflammation and disease activity would also benefit body composition and 

objective physical function, particularly in those with well treated early disease. This stance is 

taken by Binymen et al. (2011) who stated that the most effective means to promote anabolism 

in RA is control of inflammatory disease activity. A similar suggestion was made by 

Stavropoulos-Kalinoglou et al. (2010), who stated that achievement of disease ‘remission’ and 

the reduction in pro-inflammatory cytokines may increase the ‘potential for muscle synthesis’. 

Whether the success of current treatment strategies, specifically a T2T approach, in achieving 

much lower disease activity (or clinical ‘remission’) has resulted in attenuated RC, and 

subsequent improvements in physical function in RA patients has not been investigated. 

 

Research suggests that the RA disease process may already be active before symptoms 

become clinically detectable, and the importance of identifying ‘pre-clinical’ stages of RA has 

been recognized by EULAR (Gerlag et al., 2012). In particular, there is evidence to suggest 

that inflammation (Kraan et al., 1998; Van de Sande et al., 2011), such as elevated 

concentrations of cytokines such as TNF-α, IL-1β, and IL-6 (Sokolove et al., 2012), exist in 

the ‘pre-clinical’ phase of RA; consequently, it may be that these same processes initiate RC 

in the very early stage of the disease, possibly prior to the appearance of detectable RA 

symptoms. Although there is some evidence to suggest that RC is established early in the 

course of RA (within 12 months of diagnosis) (Marcora et al., 2005a; Book et al., 2009, 2011), 

the question surrounding the temporal-course of RC requires further investigation. 

 

 

3.1.1. Aims and hypothesises  

 

The aim of this cross-sectional study was to investigate body composition, objectively-

assessed physical function, and CVD risk in RA patients with stable and well-controlled 

disease activity resultant of the contemporary treatment era. Additionally, the investigation 
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sought to further examine the time-course of RC, disability, and elevated CVD risk in RA 

patients.  

 

The study hypothesised that, despite improved control of inflammation and disease activity, 

RA patients would present with reduced muscle mass, increased FM (particularly trunk FM), 

poor objectively-assessed physical function, and exacerbated CVD risk, compared to age- 

and sex-matched HCs. We hypothesised that these findings would be similar to those 

previously reported by our group and others (i.e. studies performed either before local 

adoption of T2T strategies, or, if more recent, on patients who commenced treatment pre-

T2T). Further, we predicted that there would be no difference in these measures between 

patients with ‘recent-onset’ disease (≤12 months since diagnosis) and those with more 

‘established’ disease (>12 months since diagnosis); inferring that changes to body 

composition, and consequent reductions in function and exacerbation of CVD risk, occur early 

in the disease process. 

 

As achieving ‘remission’ is a fundamental goal of T2T, we also investigated the differences in 

body composition and objective physical function in patients whom had achieved clinical 

‘remission’ (i.e. defined as a DAS28 score <2.6) versus those who had not. We also compared 

patients ‘in remission’ with the HC group.  

 

Due to our hypothesis that RC possibly occurs prior to disease diagnosis and treatment 

inititation, we hypothesised that there would be no difference in body composition between 

patients ‘in remission’ and those not. We hypothesised that whilst patients ‘in remission’ will 

have better objective physical function (due to better control of pain and symptoms), their body 

composition and objective physical function will still remain significantly deficient compared to 

the HC. As research into RC prevalence between males and females is equivocal, we also 

investigated the sex differences in measures of body composition and objective physical 

function. 
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3.2. Patients and methods 

 

 

This cross-sectional study was conducted at the School of Sport, Health and Exercise 

Science, Bangor University, UK between February 2013 and March 2015. The study was 

approved by the North Wales Research Ethics Committee (REC) – West (12/WA/0323). 

 

 

3.2.1. Study population 

 

3.2.1.1. Inclusion/exclusion criteria 

Eighty-two (n = 82) RA patients with stable disease (as assessed by their rheumatologist) 

were recruited from outpatient clinics of the North West Wales Rheumatology Department 

(Peter Maddison Rheumatology Centre (PMRC), Llandudno, North Wales). For inclusion, 

participants had to: (a) fulfil the American Rheumatism Association 1987/2010 revised criteria 

for the diagnosis of RA (Aletaha et al., 2010); (b) be aged ≥18 years; (c) not be cognitively 

impaired; (d) be free of other cachectic diseases or conditions preventing safe participation; 

(e) not be taking anabolic drugs or nutritional supplements; (f) not be currently participating in 

a regular, intense exercise training; and (g) not be pregnant. Once recruited, participants were 

categorised into either ‘recent-onset’4 (disease duration of ≤12 months) or ‘established’ (>12 

months) groups. For comparison, n = 85 age- and sex-matched HCs were recruited from local 

community groups. To be eligible for the study, HCs must have satisfied all of the inclusion 

criteria for RA patients, except for the diagnosis of RA.  

 

3.2.1.2. Local patient care and treatment strategy  

In order to assess patients treated wholly using contemporary treatment approaches (e.g., 

treating to LDA or ‘remission’ characteristic of ‘tight control’ and T2T), to be eligible for the 

study, patients must have had commenced treatment post 1/1/2008. This date was chosen to 

approximately represent the time when PMRC adopted the T2T treatment strategies 

subsequently outlined by Smolen et al. (2010a). Whilst we acknowledge that patients locally 

                                                           
4 Patients in the ‘recent-onset’ group are being re-assessed annually for a duration of 8 years. All methods and 
outcome measures described in this section are repeated, and this longitudinal data will provide information on 
how patients’ relative body composition, physical function, and CVD risk change over time. This data is not 
presented in this thesis. 
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may have been treated by a ‘tight control’/T2T approach prior to this date, we believe patients, 

under the care of the PMRC, recruited after this date would provide a representative depiction 

of patients treated wholly with these approaches.  

 

 

3.2.2. Outcome measures 

 

Participants presented for assessments in an overnight fasted state, having refrained from 

strenuous exercise, caffeine, and alcohol over the preceding 24 hours. Relevant information 

(age, disease duration, medication) was collected by structured interview and from review of 

medical records.  

 

3.2.2.1. Anthropometric measures 

Routine anthropometric measures (body mass, height, and waist and hip circumferences) 

were recorded in accordance with standard procedures (Eston & Reilly, 2009). Body mass 

was measured to the nearest 0.1 kg using digital floor scales (SECA 635, Birmingham, UK), 

and height to the nearest 0.5 cm using a wall-mounted stadiometer (Body Care, Warwickshire, 

UK).  

 

3.2.2.2. Body composition measures 

Total and regional lean, fat, and bone masses were estimated using a whole body fan-beam 

dual energy X-ray absorptiometry (DXA) scanner (Hologic, QDR Discovery 45615, software 

V12.4). Appendicular lean mass (ALM; the summed LM of the arm and leg regions, i.e. left 

arm LM + right arm LM + left leg LM + right leg LM = ALM) was estimated using the method 

described by Heymsfield et al. (1990) (Appendix B) and acted as a surrogate measure of 

total body muscle mass (Kim et al., 2002). Manufacturer DXA examination procedures (daily 

calibration, subject preparation, positioning, and analysis) were followed for each scan. The 

radiation exposure was 3.6 μSv per scan. In-house assessment revealed a DXA co-efficient 

of variation (CV) of 1.4%, which corresponds with both manufacture guidelines and other 

studies (Kim et al., 2002). 

 

3.2.2.3. Strength and objective physical function measures 

Isometric maximal voluntary knee extensor strength (IKES) was measured using an isokinetic 

dynamometer (Humac Cybex Norm 2004, Computer Sports Medicine Inc, Massachusetts, 

USA). Participants were seated upright in the dynamometer with the hip and knee flexed to 

90 (0° = full extension in both), the dynamometer arm attached to the lower leg just above 
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the ankle and the axis of rotation aligned with the lateral condyle of the femur during 

contraction. After a submaximal warm-up and practice attempts, participants were asked to 

exert maximum force for ~3–5 seconds on three occasions for each leg with a one minute rest 

between trials. Peak force (Newtons, N) during each trial was recorded, and the largest force 

from the left and right leg were averaged and used for analysis. The dynamometer and its 

accuracy were verified periodically over the course of the study by loading the dynamometer 

with weights and recording the force produced. The repeatability was ‘good’ (CV = 0.3%) and 

compares well with other fixed dynamometers (Impellizzeri et al., 2008).  

 

Maximal voluntary hand-grip strength (HGS) was measured using a Grip-A dynamometer 

(Takei Kiki Kogyo, Japan). Participants were asked to stand upright holding the dynamometer 

parallel to their side, and to squeeze the hand-grip maximally whilst simultaneously adducting 

the arm. After a practice trial, both hands were tested alternatively three times with the best 

overall score in kilograms (kg) recorded. These strength tests have been routinely used by 

our group to assess RA patients (Marcora et al., 2005a, 2005b, 2006; Lemmey et al., 2009, 

2012; Matschke et al., 2010a, 2010b; Matschke et al., 2013). 

 

Participants completed three objective assessments of whole body physical function, 

developed specifically for assessing the capacity to perform activities of daily living in older 

adults (Rikli & Jones, 2012), and used routinely by our group to determine physical capacity 

in RA patients (Marcora et al., 2005a, 2005b, 2006; Lemmey et al., 2009, 2012; Matschke et 

al., 2010a, 2010b, 2013): 

 

- The ‘sit-to-stand in 30 second’ test (STS-30), which measures lower-body strength, 

involves participants rising from a seated position on a fixed straight-back chair (seat 

height 43.2 cm / 17 inches), while keeping their arms folded across the chest, as many 

times as possible in 30 seconds. The number of full repetitions completed was used for 

analysis.  

 

- The ‘8-foot up and go test’ (8’UG), which assesses dynamic balance, requires participants 

to rise from the same seated position as for the STS-30 , walk forward around a cone 8 

feet (2.44 metre) away, and return to the seated position as quickly as possible. The best 

time out of two attempts was used for analysis. 
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- The ‘50-foot walk test’ (50’W) assesses walking speed, and is the time taken in seconds 

to walk 50 feet unaided along a single straight line as quickly as possible. Participants had 

one practice walk before performing the test. 

 

3.2.2.4. Aerobic capacity 

The ‘Siconolfi’ step test (Siconolfi et al., 1985) was used as a predictive, sub-maximal measure 

of aerobic capacity (VO2max). This test consists of stepping up and down from a portable 10 

inch (25.4 cm) step for 3 minutes per stage, for a maximum of three stages. The stepping 

rates increased progressively from stage to stage (i.e. the stepping rates for stages 1, 2, and 

3 are 17, 26, and 34 steps per minute, respectively), and were maintained using a metronome 

(Metronome 3.0, ONYX). Each stage was separated by 1 minute of rest, and participants only 

progressed to the next stage if their heart rate, measured by telemetry (Polar Electro OY, 

Finland), at the end of the previous stage was less than 65% of their predicted maximal heart 

rate (i.e. 220–age).  

 

Steady state absolute oxygen consumption and a predicted relative VO2max were calculated 

using established equations. Patients taking beta (β)-adrenergic blocking agents (β-blockers) 

were excluded from performing this assessment. This test has been validated by our group 

for estimating aerobic capacity in RA (Cooney et al., 2013), systemic lupus erythematosus 

(Marcora et al., 2007), and ankylosing spondylitis patients (Thompson et al., 2015). 

 

3.2.2.5. Clinical measures  

Disease activity of each patient was assessed by the Disease Activity Score in 28 joints 

(DAS28), and systemic inflammation by serum C-reactive protein (CRP) level. The DAS28 

combines a 28 tender and swollen joint count with circulating CRP level and a subjective 

assessment of general health status (using a visual analogue (0–100) scale (VAS)). The 

DAS28, which is extensively used in clinical trials and routine RA management (Fransen et 

al., 2003), defines ‘clinical remission’ as a score <2.6 (Smolen et al., 2010a, 2010b, 2015). 

 

Subjective physical disability was assessed using the Multi-dimensional Health Assessment 

Questionnaire (MDHAQ) (Pincus et al., 2007). The MDHAQ is designed to improve the ability 

to detect improvements in function at the lower end of the scale as compared to the HAQ 

(Maska et al., 2011). The functional scale of the MDHAQ, the ‘disability index’ is rated from 0 

(best) to 3 (worse) with scores of 0 to 1 generally considered to represent mild to moderate 

difficulty, 1 to 2 moderate to severe disability, and 2 to 3 severe to very severe disability (Bruce 

& Fries, 2005; Pincus et al., 2007). The MDHAQ also contains a 21-point general pain VAS, 



43 
 

the RADAI (Rheumatoid Arthritis Disease Activity Index), a self-report joint count where 

patients indicate the current amount of pain (0 = none, 1 = mild, 2 = moderate, 3 = severe) 

being experienced in 16 different joints, and a 10-point fatigue VAS.  

 

Health-related quality of life was assessed using the Medical Outcomes Study 36-Item Short 

Form survey (SF-36) (Ware & Sherbourne, 1992) which is divided into physical and mental 

components. For this instrument, lower scores represent poorer patient-perceived mental 

and/or physical wellbeing.  

 

3.2.2.6. Physical activity 

A surrogate ‘physical activity’ measure was taken from the MDHAQ ‘exercise frequency’ 

question. For this question, participants indicated how many times they engaged in exercise 

(defined as ‘shortness of breath, sweating, and increased heart rate’). Participants were 

discouraged for including activities that were part of their daily routine (e.g., walking to the 

shop). 

 

3.2.2.7. Cardiovascular risk profile 

To assess CVD risk in the RA patients, blood samples were harvested by venipuncture at the 

median cubital vein following an overnight fast. The venipuncture procedure was performed 

by a trained investigator, or by a phlebotomist at the patients’ general practitioner (GP) surgery 

(a referral to GP for blood sampling was requested by the rheumatologist if necessary). The 

blood variables measured included serum lipids: total cholesterol (TC, mmol/L), low-density 

lipoprotein cholesterol (LDL-C, mmol/L), high-density lipoprotein cholesterol (HDL-C, mmol/L), 

triglycerides (TG, mmol/L), TC: HDL-C ratio; fasting plasma glucose (mmol/L); and CRP 

(mg/L). These variables were determined by analysis at the Department of Clinical 

Biochemistry’s laboratory (Blood Sciences group at Ysbyty Gwynedd, i.e. Gwynedd Hospital) 

in line with standard analysis procedures.  

 

Cardiovascular disease risk was predicted using the QRISK2 algorithm. Validated in different 

ethnic groups across England and Wales, the QRISK2 has been identified as a better 

discriminator of CVD than the modified Framingham score as it recognises ethnicity and the 

presence of RA as independent risk factors (Hippisley-Cox et al., 2008). The QRISK2 

algorithm also accounts for traditional CVD risk factors including: participant’s height (cm), 

weight (kg), systolic blood pressure (mmHg), TC: HDL-C ratio, current smoking status, 

diabetes status, family history (angina or heart attack in a first degree relative ≤60 years of 

age), presence of any renal impairment, and if anti-hypertensive medication is necessary. 
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Participants’ rested blood pressure reading was obtained manually, whilst seated, using a 

stethoscope (Littmann, 3M Health Care, St. Paul, USA) and sphygmomanometer (Welch 

Allyn, New York, USA). 

 

 

3.2.3. Statistical analysis 

 

No previous comparable research was available to calculate an a-priori power calculation; a 

target of 100 participants was planned in each group (RA and HC). The primary outcome of 

the study was ALM, and secondary outcomes included other measures of body composition 

(total LM, FM, trunk FM, ALM/BM% (ALM%), and total LM/BM% (LM%)), objective physical 

function, and CVD risk factors. Proportional body composition measures (in accordance with 

Janssen et al., 2002) were used (i.e. measures normalised for bodyweight, e.g., ALM%, LM%) 

as they more accurately interpret a participant’s relative muscle to fat composition when BM 

is dissimilar (Giles et al., 2008a; Schautz et al., 2012). Due to the effects of age and sex on 

body composition and physical function, appropriately matched groups were generated by 

excluding the oldest male and female HCs alternatively until the groups achieved similarity in 

terms of mean age (≤1 year) and gender distribution (equal % of females).  

 

Primary analysis included the comparison of the RA group versus the HC group; followed by 

a sub-analysis of ‘recent-onset’ versus ‘established’, ‘remission’ versus ‘not in remission’, and 

male versus female RA patients. All data is presented as mean (±SD) unless otherwise stated. 

Variables were checked for multi-collinearity, uni- and multi-variate outliers (Mahalanobis 

Distance), and normal distribution using Shapiro-Wilk tests. Where necessary, data (hip 

circumference, BMI, total FM, MDHAQ function, 8’UG, 50’W, VO2max) was logarithm 

transformed to obtain normally distributed data, and to assess its relative effect on associated 

significance values.  

 

Data analysis involved multiple (MANOVA) or univariate analysis of variance (ANOVA) where 

appropriate. Chi-squared tests were used for comparison of dichotomous variables. 

Significance was set at P < .05 and a trend was recognised as P = .05–.10, unless corrected 

by Bonferroni adjustment. As recommended by the STROBE (STrengthening the Reporting 

of OBservational studies in Epidemiology) 2007 guidelines (von Elm et al., 2007), confidence 

intervals (95% CI) for the between-group difference was reported. Pearson product–moment 

correlation (bivariate and partial when appropriate) was used to test the significance of 

relationships (r) of interest. Effect size was calculated (for body composition, objective physical 
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function, and lipid profile) data analysed by (M)ANOVA) as η2: small ≥.01; medium ≥.08; large 

≥.26; very large ≥.50. Participants with missing data (e.g., did not complete a particular test) 

were included the subsequent analysis of other measures; the number of missing data is 

shown in Appendix C. 

 

Over the study period, four researchers were involved in data collection (TJW, BJC, JW, and 

HJ). Intra-rater reliability assessment of anthropometric and physical function measurements 

revealed infraclass correlation coefficients (ICC) between .704 and .9965 (‘good’ to ‘excellent’ 

(based on commonly-cited cut-offs by Cicchetti, 1994)). All assessors were trained to perform 

DAS28 assessments by PMRC rheumatologists. All data was analysed using the Statistical 

Package for the Social Sciences 22.0 (SPSS) (Chicago, USA). 

  

                                                           
5 An ICC is measured on a scale of 0 to 1; 1 represents perfect reliability with no measurement error, whereas 0 
indicates no reliability: height, .996, excellent; waist circumference, ICC =.977, excellent; hip circumference, ICC 
=.735, good; STS-30, ICC =.700, good; 8’UG, ICC =.972, excellent; 50’W, ICC = .704, good; HGS, ICC =.934, 
excellent, IKES, ICC =.928, excellent. 
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3.3. Results 

 

 

One hundred and ninety-seven (n = 197) patients with RA were considered to be eligible by 

the rheumatologists and were approached to take part in the study. Of these, 115 (58%) 

declined participation. Thus, 82 patients with RA were recruited and tested; and of these 

patients, at the time of assessment, 33 had been diagnosed less than 12 months previously 

(‘recent-onset’ group; mean duration of 7.1 months), whilst the other 49 (‘established’ group) 

had a disease duration of between 12–61 months (mean duration of 34.7 months). Eighty five 

(n = 85) age- and sex-matched, sedentary HC participants served as controls. All participants 

were Caucasian. 

 

 

3.3.1. Primary analysis: Rheumatoid arthritis versus healthy control 

group  

 

3.3.1.1. Descriptive data and participants 

 

Table 3.1. shows the demographic and clinical characteristics of the 82 RA patients and 85 

HCs. The groups were precisely matched for mean age (P = .962) and gender distribution (P 

= .992). In regard to disease activity, the mean DAS28 score was 2.8, and 49% of patients 

were in a state of ‘clinical remission’ (DAS28 score <2.6). Most of the patients were receiving 

standard DMARD treatment, with 61% of patients treated by monotherapy and 37% by 

combination therapy (i.e. ≥2 DMARDs). The majority (83%) of patients were prescribed MTX 

(dose range: 10–25 mg). Seven patients were receiving low dose corticosteroid therapy (dose 

range: 2.5–10.0 mg); a dosage not thought to affect LM (Da Silva et al., 2006). No patients 

were on biological (e.g., anti-cytokine) therapy. Self-reported physical function (i.e. MDHAQ) 

in the RA group was 0.6 (defined as ‘mildly disabled’ by Bruce & Fries, 2005). There was a 

significantly greater number of current (P <.001) and ex-smokers (P = .016) in the RA group. 
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Table 3.1. Participant demographics for rheumatoid arthritis patients and 

sedentary, age- and sex-matched health controls 

 

 RA (n = 82) HC (n = 85) P 

 

 Age (years)  

 

60.9 (±11.7) 

 

60.9 (±8.1) 

 

.962 

 Sex (n female) (%) 53 (65) 55 (65) .992 

 Height (cm) 165.1 (±7.9) 168.1 (±8.6) .019* 

 Disease duration (months) 23.8 (±19.0)   

 Rheumatoid factor positive; n (%) 46 (56)   

 SPRA; n (%) 67 (85)   

 DAS28 (0-10) 2.8 (±1.0)   

 Systolic blood pressure (mmHg) 127.5 (±15.1) 120.5 (±9.5) .004* 

 Diastolic blood pressure (mmHg) 72.6 (±9.9) 70.9 (±6.9) .304 

 

Medications, n (%) 

 NSAIDS  22 (27) 5 (6) <.001* 

 MTX a 68 (83)   

 SSZ 5 (6)   

 LFM 7 (9)   

 HCQ 26 (32)   

 TAC  3 (4)   

 MYF 1 (1)   

 Mono DMARD therapy 50 (61)   

 Combo DMARDs (double or triple) b 30 (37)   

 No current DMARDs 2 (2)   

 Current corticosteroid use c 7 (9) 1 (1) .026* 

 Blood pressure medications 21 (26) 11 (13) .031* 

 Cholesterol medications 18 (22) 7 (8) .013* 

 Analgesics 35 (43) 3 (4) <.001* 

 Calcium supplements 11 (13) 3 (4) .021* 

 

Smoking status, n (%) 

   

 Current smokers 18 (22) 3 (5) <.001* 

 Ex-smokers 39 (48) 25 (31) .016* 

 Never smokers 25 (30) 52 (61) <.001* 

 

Exercise frequency d, n (%) 

   

 Do not exercise 40 (50) 7 (8) <.001* 

 1-2 times a month 6 (8) 7 (8) .825 

 1-2 times a week 11 (14) 27 (32) .005* 

 3+ times a week 20 (25) 41 (49) .001* 

 Cannot exercise due to disability 3 (4) 2 (2) .621 

 
Unless stated, data presented as mean (±SD). Differences at baseline were assessed using analyses of variance, 
or Chi-square test as appropriate. RA = Rheumatoid arthritis; HC = Healthy control group; SPRA = Sero-positive 
RA; DAS28 = Disease activity score in 28 joints; NSAIDS = Non-steroidal anti-inflammatory drugs; MTX = 
Methotrexate; SSZ = Sulfasalazine; LFM = Leflunomide; HCQ = hydroxychloroquine; TAC = Tacrolimus; MYF = 
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Myfenax; DMARDs = Disease modifying anti-rheumatic drugs. a = Additional folate supplement; b = Combination 
therapy (i.e. two or more DMARDs); c = Current corticosteroid range 5.0–10.0 mg; d = self-reported exercise 
frequency taken from Multi-dimensional Health Assessment Questionnaire (MDHAQ) (not reported: RA = 2, HC = 
1); * significant (P < .05). 

 

3.3.1.2. Anthropometry and body composition 

Despite being shorter (3.0 cm, P = .019, η2 = .06 (small), Table 3.1.), RA patients were 

considerably heavier (BM: +4.8 kg, P = .093, η2 = .03 (small), Table 3.2.), which resulted in a 

significantly higher BMI (+2.6 kg/m2, P = .002, η2 = .07 (small)). Patients with RA had greater 

waist circumference (+7.7 cm, P = .001, η2 = .07 (small)), and subsequently a higher waist: 

hip ratio (P <.001, η2 = .08 (medium)), than HCs. Body composition assessed by DXA revealed 

that, when adjusted for BM (i.e. % of), RA patients had 10% proportionally less muscle (ALM%, 

P <.001, η2 = .10 (medium)) than HCs (Table 3.2. and Figure 3.1.). Compared to HCs, patients 

with RA also exhibited lower levels of absolute (kg) ALM (-1.1 kg) and total LM (-0.8 kg), 

although statistically these differences were non-significant (P’s = .158 (η2 = .01, small), and 

.578 (η2 = .00), respectively).  

 

The RA group had considerably greater FM than the HC group (+5.4 kg; 27%, P <.001, η2 = 

.09 (medium)) with the majority (3.2 kg, 32%, P = .001, η2 = .08 (medium)) of this FM 

distributed on the trunk. Body fat % was also higher in the RA patients (P <.001, η2 = .08 

(medium)). Overall, almost a half of RA patients were obese6 (49%; n = 40/82), compared to 

just 15% (n = 13/85) in the HC group (P <.001). When taking into account participants who 

were also overweight, 74% (n = 61) of RA patients could be classified as either overweight or 

obese, compared to 46% (n = 39, P <.001) of the HCs.  

 

3.3.1.3. Strength and objective physical function 

Patients with RA were much poorer than matched, sedentary HCs for each of the objective 

measures of strength and physical function (Table 3.3.): IKES was 24% less (P <.001, η2 = 

.08 (medium)); HGS was 25% less (P <.001, η2 = .13 (medium)); STS-30 was 34% poorer (P 

<.001, η2 = .17 (medium)); 8’UG was 31% slower (P <.001, η2 = .20 (medium)); and 50’W was 

28% slower (P <.001, η2 = .22 (medium)). Estimated relative VO2max (ml/kg/min) from the 

Siconolfi step test revealed that RA patients had an 11% reduced aerobic capacity (P = .017, 

η2 = .04 (small)) compared to the HCs. Due to self-reported joint pain, problems with balance, 

                                                           
6 Based on definitions from Baumgartner et al. (1998): obesity was defined as ≥27% in males, and ≥38% in females. 
Overweight was defined as ≥24% in males, and ≥31% in females. Note: obesity was also calculated in accordance 
to the adjusted BMI cut-offs proposed by Stavropoulos‐Kalinoglou et al. (2007), that is, BMI cut‐off points should 

be reduced by 2 kg/m2 (23 kg/m2 for overweight and 28 kg/m2 for obesity). When using this definition, there was 
absolutely no difference in obesity prevalence (i.e. it remained 49% in the RA group) supporting the validity of these 
cut-offs in RA. 
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or effects of mediations (i.e. β-blockers), 20 RA patients (24%) were unable to complete (or 

attempt) the test, compared to just 4 HCs (5%). 

 

Table 3.2. Body composition measures for rheumatoid arthritis patients and 

sedentary, age- and sex-matched health controls  

 

 RA 

(n = 82) 

HC 

(n = 85) 

Absolute difference 

(CI) (% difference) 
P η2 

 

 Waist circ. (cm) 

 

91.6 (±17.9) 

 

83.9 (±10.8) 

 

↑ 7.7 (3.2–12.2) (8) 

 

.001* 
 

.07 

 Hip circ. (cm) 101.9 (±12.7) 99.1 (±7.8) ↑ 2.8 (-0.4–6.1) (3) .128 .02 

 Waist: hip ratio 0.90 (±0.10) 0.85 (±0.08) ↑ 0.05 (0.03–0.08) (6) <.001* .08 

 BM (kg) 76.5 (±17.9) 71.7 (±11.1) ↑ 4.8 (0.2–9.3) (6) .093# .03 

 BMI (kg/m2) 28.0 (±6.0) 25.4 (±3.4) ↑ 2.6 (1.2–4.1) (9) .002* .07 

 

DXA-assessed body composition  
 

 ALM (kg) 19.8 (±4.6) 20.9 (±5.2) ↓ 1.1 (-0.4–2.6) (6) .158 .01 

 ALM% 

(ALM/BM%) 
26.2 (±4.0) 28.8 (±4.2) ↓ 2.6 (1.4–3.9) (10) <.001* .10 

 Total LM (kg) 48.7 (±9.8) 49.5 (±10.0) ↓ 0.8 (-2.2–3.9) (2) .578 .00 

 Total LM% 

(LM/BM%) 
64.4 (±7.5) 68.6 (±6.8) ↓ 4.2 (1.9–6.3) (7) <.001* .08 

 Total FM (kg) 25.8 (±10.4) 20.4 (±6.2) ↑ 5.4 (2.7–7.9) (27) <.001* .09 

 BF (%) 32.7 (±7.8) 28.3 (±7.2) ↑ 4.4 (2.1–6.7) (16) <.001* .08 

 Trunk FM (kg) 13.1 (±6.3) 9.9 (±3.7) ↑ 3.2 (1.6–4.8) (32) .001* .08 

 Trunk FM%   

(trFM/FM%) 
49.4 (±7.3) 47.8 (±7.7) ↑ 1.6 (-0.6–4.0) (3) .146 .01 

 
Data presented as mean (±SD). CI = 95% confidence interval; RA = Rheumatoid arthritis; HC = Healthy control 
group; BM = Total body mass (scales); BMI = Body mass index; DXA = Dual x-ray absorptiometry; ALM = 
Appendicular lean mass; LM = Lean mass; FM = Fat mass; BF = Body fat; unless adjusted by Bonferroni 
adjustment: * significant (P < .05); # trend (P ≥ .05–.10). Effect size (η2): small ≥.01; medium ≥.08; large ≥.26; very 
large ≥.50. 

 

3.3.1.4. Subjective measures of disability and health  

As expected, patients with RA had a higher MDHAQ scores (P = .001, η2 = .30 (large)), and 

~75% higher general pain (P = .010, η2 = .30 (large)) and fatigue (P = .004, η2 = .30 (large)) 

scores than the HC group. Joint pain (RADAI) was also higher (P <.001, η2 = .29 (large)) in 

the RA group. Additionally, RA patients reported 30% poorer physical (P <.001, η2 = .36 

(large)) and 9% mental components (P = .003, η2 = .03 (small)) of the SF-36 questionnaire 

compared to controls (Table 3.3.). 
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Table 3.3. Objective physical function and self-reported disability for rheumatoid arthritis patients and sedentary, age- and 

sex-matched health controls  

 

 RA (n = 82) HC (n = 85) Absolute difference (CI) (% difference) P η2 

 

Objective function measures 

 

 IKES (N) 380 (±140) 472 (±152) ↓ 92 (46–138) (24) <.001* .08 

 HGS (kg) 26.5 (±8.8) 33.2 (±9.9) ↓ 6.7 (3.8–9.7) (25) <.001* .13 

 STS-30 test (reps) 12.0 (±3.6) 16.1 (±4.3) ↓ 4.1 (2.8–5.3) (34) <.001* .17 

 8’UG (secs) 7.4 (±3.9) 5.1 (±1.0) ↑ 2.3 (1.4–3.1) (31) <.001* .20 

 50’W (secs) 10.7 (±5.3) 7.7 (±1.8) ↑ 3.0 (1.8–4.3) (28) <.001* .22 

 Estimated VO2max § (ml/kg/min) 22.9 (±6.2) 25.3 (±6.4) ↓ 2.4 (0.3–4.5) (11) .017* .04 

 

Subjective measures of disability and health 

 

 MDHAQ score (/3) 0.6 (±0.5) 0.1 (±0.2) ↑ 0.5 (0.4–0.6) (83) .001* .30 

 MDHAQ pain (/10) 3.6 (±2.5) 0.9 (±1.4) ↑ 2.7 (2.0–3.3) (75) .010* .30 

 MDHAQ fatigue (/10) 3.7 (±3.1) 0.9 (±2.1) ↑ 2.8 (2.0–3.7) (76) .004* .30 

 RADAI (/48) 8.1 (±6.9) 2.1 (±3.7) ↑ 6.0 (4.4–7.7) (74) <.001* .29 

 SF-36 (physical) (/100) 42.5 (±10.2) 55.3 (±7.6) ↓ 12.8 (10.0–15.5) (30) <.001* .36 

 SF-36 (mental) (/100) 45.2 (±10.6) 49.3 (±6.9) ↓ 4.1 (1.3–6.8) (9) .003* .03 

 
Data presented as mean (±SD). CI = 95% confidence interval; RA = Rheumatoid arthritis; HC = Healthy control group; IKES = Isometric knee extensor strength; HGS = Handgrip 
strength; STS-30 = Sit-to-stand in 30 second test; 8’UG = 8-foot up and go; 50’W = 50-foot walk; VO2max = Estimated VO2max from Siconolfi step test (§ data only for RA = 
62/82 (n = 20 unable to complete), HC = 81/85 (n = 4 unable to complete)); MDHAQ = Multi-Dimensional Health Assessment Questionnaire; RADAI = Rheumatoid Arthritis 
Disease Activity Index; SF-36 = Short-form 36 questionnaire; unless adjusted by Bonferroni adjustment: * significant (P < .05). Effect size (η2): small ≥.01; medium ≥.08; large 
≥.26; very large ≥.50.
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Table 3.4. Correlation matrix between strength and physical function in 

rheumatoid arthritis patients 

 

 STS-30 (reps) 8’UG (secs) 50’W (secs) VO2max (ml/kg/min) 

 IKES (N) 
r = .378, 

P = .001* 

r = -.456, 

P < .001* 

r = -.553, 

P < .001* 

r = .289, 

P = .022* 

HGS (kg) 
r = .228, 

P = .043* 

r = -.388, 

P < .001* 

r = -.363, 

P = .001* 

r = .515, 

P < .001* 

 
Pearson-product correlation (bivariate) (r). IKES = Isometric knee extensor strength; HGS = Handgrip strength; 
STS-30 = Sit-to-stand in 30 second test; 8’UG = 8-foot up and go; 50’W = 50-foot walk; VO2max = Estimated 
VO2MAX from Siconolfi step test. * significant (P < .05). 

 

3.3.1.5. Correlational analysis 

Pearson correlational analysis was used to investigate the relationships between muscle (i.e. 

ALM and ALM%) and fat (total FM and BF%) and the objective measures of physical function 

(Figure 3.1.). In the RA group, ALM and ALM% were positively correlated with strength 

measures: IKES (r = .480, P <.001; r = .437, P <.001, respectively), and HGS (r = .518, P 

<.001; r = .472, P <.001, respectively), but not STS-30, 8’UG, or 50’W performance. Only 

ALM% was correlated with VO2max (r = .477, P <.001). Total FM was only correlated 

(negatively) with VO2max (r = -.405, P = .001), and BF% correlated (negatively) with IKES (r 

= -.329, P = .003) and HGS (r = -.379, P <.001). Neither fat measure was significantly 

correlated with STS-30, 8’UG, or 50’W performance. In the RA group, strength (IKES and 

HGS) were highly significantly correlated with all the other measures of physical function (STS-

30, 8’UG, 50’W, VO2max) (Table 3.4.). Interestingly, both STS-30 (r = -.263, P = .044) and 

8’UG (r = .349, P = .007), but not 50’W (r = .168, P = .203), became significant when IKES 

was used a co-variant (Figure 3.1., values marked with Ϫ represent this partial correlation). 

 

In the HC participants, ALM and ALM% were positively correlated with strength measures 

(IKES; r = .684, P <.001; r = .596, P <.001, respectively, and HGS; r = .843, P <.001; r = .787, 

P <.001, respectively), as well as VO2max (r = .309, P = .005; r = .613, P <.001, respectively) 

but not with any of the function tests (STS-30, 8’UG, 50’W). Total FM and BF% were negatively 

correlated with IKES (r = -.256, P =.019; r = -.544, P <.001, respectively), HGS (r = -.352, P = 

.001; r = -.695, P <.001, respectively), STS-30 (r = -373, P =.001; r = -.349, P = .001, 

respectively), and VO2max (r = -.628, P <.001; r = -.659, P <.001, respectively), but not with 

8’UG or 50’W performance. 
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Figure 3.1. Correlation matrix for body composition and physical function in rheumatoid arthritis patients. Pearson-
product correlation (r) matrix with R2 linear trend line. ALM = Appendicular lean mass; FM = Total fat mass; IKES 
= Isometric knee extensor strength; HGS = Handgrip strength; STS-30 = Sit-to-stand in 30 second test; 8’UG = 8-
foot up and go; 50’W = 50-foot walk; VO2max = Estimated VO2max from Siconolfi step test; Ϫ = adjusted r and P 
values when IKES strength is used a co-variant in a Partial correlational analysis. * significant (P ≤ .05); # trend (P 
> .05–.10). 

 

 

3.3.2. Sub-analysis: ‘Recent-onset’ versus ‘established’ cohorts 

 

3.3.2.1 Descriptive data and participants 

Table 3.5. displays the demographic and clinical characteristics of the RA patients in regard 

to their disease duration (‘recent-onset’ versus ‘established’). There were no significant group 

differences in gender (P = .531) or height (P = .452) between the two groups. Although not 

significant, the ‘recent-onset’ patients were 4.2 years older than the ‘established’ patients (P 

= .106).  

 

From a disease perspective, there was no difference in the proportion of sero-positive RA 

(SPRA) patients (P = .407) between the groups. Overall, disease activity was typically ‘low’ 

for both patient cohorts, although the ‘recent-onset’ patients had a marginally higher mean 

DAS28 score (3.0; 42% were ‘in remission’), than the ‘established’ patients (DAS28 of 2.7; 

53% in remission, P = .345 for the group difference in achieving ‘remission’. Nearly all (94%) 
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of the ‘recent-onset' patients were prescribed MTX, compared to 76% in the ‘established’ 

group (P = .030). Nearly half of the ‘recent onset’ patients (48%) were receiving combination 

therapy compared to 29% of the ‘established’ group (P = .066).  

 

Table 3.5. Participant demographics ‘recent-onset’ (<12 months) and 

‘established’ (1–7 years) rheumatoid arthritis patients 

 

 ‘Recent-onset’ 

(n = 33) 

‘Established’ 

(n = 49) 

P 

 

 Age (years)  

 

63.4 (±12.0) 

 

59.2 (±11.3) 

 

.106 

 Sex (n female) (%) 20 (61) 33 (67) .531 

 Height (cm) 165.9 (±8.4) 164.5 (±7.6) .452 

 Disease duration (months) 7.1 (±3.0) 34.7 (±17.0) >.001* 

 Rheumatoid factor positive; n (%) 19 (58) 27 (55) .601 

 SPRA; n (%) 25 (76) 42 (86) .407 

 DAS28 (0–10) 3.0 (±1.1) 2.7 (±0.9) .275 

 No. in remission (DAS28 <2.6) 14 (42) 26 (53) .345 

 C-reactive protein (mg/L) 11.9 (±15.3) 9.2 (±8.9) .305 

 

Medications, n (%) 

 NSAIDS  8 (24) 14 (29) .664 

 MTX a 31 (94) 37 (76) .030* 

 SSZ 2 (6) 3 (6) .991 

 LFM 2 (6) 5 (10) .510 

 HCQ 13 (39) 13 (27) .220 

 TAC  0 (0) 3 (6) .148 

 MYF 0 (0) 1 (2) .409 

 Mono DMARD therapy 16 (48) 34 (69) .057# 

 Combo DMARDs (double or triple) b 16 (48) 14 (29) .066# 

 No current DMARDs 1 (3) 1 (7) .776 

 Current corticosteroids c 2 (6) 5 (10) .573 

 Blood pressure medications 9 (27) 12 (25) .862 

 Cholesterol medications 4 (12) 14 (29) .078# 

 Analgesics 12 (36) 23 (47) .342 

 Calcium supplements 5 (15) 6 (12) .705 

 

Smoking status, n (%) 
   

 Current smokers 6 (18) 12 (24) .499 

 Ex-smokers 15 (45) 24 (49) .754 

 Never smokers 12 (36) 13 (27) .343 

 

 

   



55 

 
 

 

Exercise frequency d, n (%) 

 Do not exercise 16 (50) 24 (50) .965 

 1-2 times a month 2 (6) 4 (8) .720 

 1-2 times a week 4 (13) 7 (15) .778 

 3+ times a week 9 (28) 11 (23) .618 

 Cannot exercise due to disability 1 (3) 2 (4) .804 

 
Unless stated, data presented as mean (±SD). Differences at baseline were assessed using analyses of variance, 
or Chi-square test as appropriate. SPRA = Sero-positive RA; DAS28 = Disease activity score in 28 joints; NSAIDS 
= Non-steroidal anti-inflammatory drugs; MTX = Methotrexate; SSZ = Sulfasalazine; LFM = Leflunomide; HCQ = 
hydroxychloroquine; TAC = Tacrolimus; MYF = Myfenax; DMARDs = Disease modifying anti-rheumatic drugs. a = 
Additional folate supplement; b = Combination therapy (two or more DMARDs); c = Current corticosteroid range 
5.0–10.0 mg; d = self-reported exercise frequency taken from Multi-dimensional Health Assessment Questionnaire 
(MDHAQ) (not reported: recent = 1, established = 1). * significant (P < .05); # trend (P ≥ .05–.10).  

 

3.3.2.2. Anthropometry and body composition  

There was no differences in DXA-assessed body composition measures between ‘recent-

onset’ and ‘established’ patients (P’s = .747–.998, all η2 values = .00; Table 3.6.). There was 

also no difference between waist (P = .654, η2 = .00) and hip (P = .960, η2 = .00) 

circumferences, or waist: hip ratio (P = .726, η2 = .00). 

 

Table 3.6. Body composition measures for ‘recent-onset’ (<12 months) and 

‘established’ (1-7 years) rheumatoid arthritis patients 

 

 ‘Recent-onset’ 

(n = 33) 

‘Established’ 

(n = 49) 

Absolute difference 

(CI) (% difference) 
P η2 

 Waist circ. (cm) 92.7 (±16.3) 90.9 (±19.0) 1.8 (-6.2–9.9) (2) .654 .00 

 Hip circ. (cm) 101.8 (±11.3) 102.0 (±13.7) 0.1 (-5.9–5.6) (0) .960 .00 

 Waist: hip ratio 0.91 (±0.10) 0.90 (±0.11) 0.01 (-0.04–0.06) (1) .726 .00 

 BM (kg) 77.2 (±19.5) 76.0 (±17.0) 1.2 (-9.2–6.9) (2) .777 .00 

 BMI (kg/m2) 27.9 ±(5.7) 28.1 (±6.3) 0.3 (-2.4–3.0) (1) .838 .00 

 

DXA-assessed body composition 
 

 ALM (kg) 19.8 (±4.6) 19.8 (±4.7) 0.0 (-2.2–2.0) (0) .951 .00 

 ALM% (ALM/BM%) 26.2 (±4.0) 26.1 (±4.0) 0.0 (-1.8–1.8) (0) .970 .00 

 Total LM (kg) 49.6 (±11.1) 48.8 (±10.0) 0.8 (-3.9–5.5) (2) .747 .00 

 Total LM% 

(LM/BM%) 
64.4 (±7.2) 64.4 (±7.7) 0.0 (-3.3–3.4) (0) .998 .00 

 Total FM (kg) 26.0 (±10.5) 25.6 (±10.4) 0.4 (-4.3–5.1) (2) .878 .00 

 BF (%) 32.6 (±7.6) 32.7 (±8.1) 0.1 (-3.5–3.6) (0) .965 .00 

 Trunk FM (kg) 13.3 (±6.7) 12.9 (±6.0) 0.4 (-2.5–3.2) (3) .943 .00 

 Trunk FM% 

(trFM/FM%) 
49.3 (±8.0) 49.5 (±6.9) 0.2 (-3.5–3.2) (0) .927 .00 
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Data presented as mean (±SD). CI = 95% confidence interval; RA = Rheumatoid arthritis; BM = Total body mass 
(scales); BMI = Body mass index; DXA = Dual x-ray absorptiometry; ALM = Appendicular lean mass; LM = Lean 
mass; FM = Fat mass; BF = Body fat; trFM = Trunk fat mass. Effect size (η2): small ≥.01; medium ≥.08; large ≥.26; 
very large ≥.50. 
 
 
 

3.3.2.3. Strength and objective physical function  

There were no differences between the ‘recent-onset’ and ‘established’ patients for any of the 

objective measures of strength or physical function (P’s = .435–.778, η2 = .00–.01 (no effect 

to small); Table 3.7.). 

 

Table 3.7. Objective physical function and self-reported disability for ‘recent-

onset’ (<12 months) and ‘established’ (1-7 years) rheumatoid arthritis patients  

 

 ‘Recent-onset’ 

(n = 33) 

‘Established’  

(n = 49) 

Absolute difference 

(CI) (% difference)  
P η2 

 

Objective measures 

 

IKES (N) 385 (±146) 376 (±137) 9 (-56–75) (2) .778 .00 

HGS (kg) 25.9 (±10.3) 26.8 (±7.7) 0.9 (-5.0–3.2) (4) .669 .01 

STS-30 test (reps) 11.7 (±4.0) 12.2 (±3.3) 0.5 (-2.2–1.2) (4) .546 .01 

8’UG (secs) 7.0 (±2.3) 7.7 (±4.7) 0.6 (-1.1–2.4) (9) .685 .00 

50’W (secs) 10.0 (±2.5) 11.2 (±6.5) 1.2 (-1.2–3.5) (12) .435 .00 

Estimated VO2max 

(ml/kg/min) 

22.7 (±6.5) 23.0 (±6.0) 0.4 (-2.8–3.6) (2) .745 .01 

 

Subjective measures 
 

MDHAQ score (/3) 0.5 (±0.4) 0.6 (±0.6) 0.1 (-0.1–0.3) (20) .088# .01 

MDHAQ pain (/10) 3.5 (±2.5) 3.6 (±2.6) 0.2 (-1.4–1.0) (6) .130 .00 

MDHAQ fatigue 

(/10) 
3.8 (±3.1) 3.6 (±3.0) 0.2 (-1.2–1.6) (5) .446 .01 

RADAI (/48) 7.7 (±4.8) 8.4 (±8.0) 0.7 (-2.3–3.8) (9) .634 .01 

SF-36 (physical) 

(/100) 
44.7 (±7.5) 41.1 (±11.5) 3.6 (-1.0–8.2) (8) .065# .03 

SF-36 (mental) 

(/100) 
44.4 (±11.0) 45.8 (±10.4) 1.4 (-6.2–3.4) (3) .586 .00 

 
Data presented as mean (±SD). CI = 95% confidence interval; RA = Rheumatoid arthritis; IKES = Isometric knee 
extensor strength; HGS = Handgrip strength; STS-30 = Sit-to-stand in 30 second test; 8’UG = 8-foot up and go; 
50’W = 50-foot walk; VO2max = Estimated VO2max from Siconolfi step test; MDHAQ = Multi-dimensional Health 
Assessment Questionnaire; RADAI = Rheumatoid Arthritis Disease Activity Index; SF-36 = Short-form 36 
questionnaire; unless adjusted by Bonferroni adjustment: * significant (P < .05); # trend (P ≥ .05–.10). Effect size 
(η2): small ≥.01; medium ≥.08; large ≥.26; very large ≥.50. 
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3.3.2.4. Subjective measures of disability and health  

There were no significant differences in any subjective measure of health and disability (Table 

3.7.) including the MDHAQ (P = .088, η2 = .00 (small)). There were no differences in the 

amount of general pain (P = .130, η2 = .00), fatigue (P = .446, η2 = .001 (small)), or in the 

mental (P = .586, η2 = .00) component of the SF-36 questionnaire, although the difference of 

3.6 in the physical component approached significance (P = .065, η2 = .03 (small)). 

 

3.3.2.5. Relative cardiovascular risk and lipid profile  

Table 3.8. shows the lipid profiles of the two RA sub-groups, along with their relative 

cardiovascular risk (as determined by the QRISK2). There were no differences in fasting 

glucose (P = .290, η2 = .01 (small)), LDL-C (P = .892, η2 = .00), TG (P = .175, η2 = .08 

(medium)), or TC levels (P = .803, η2 = .00). However, the ‘recent-onset’ group had a 

marginally higher HDL-C level (P = .017, η2 = .05 (small)) and TC: HDL-C ratio (P = .030, η2 

= .08 (medium)). Patients with ‘established’ disease did tend to take a greater number of 

prescribed cholesterol-controlling medications (i.e. statins) (29% versus 12%, P = .078).  

 

Whilst there were no group differences in 10-year QRISK2 score (P = .164, η2 = .08 (medium)), 

relative risk (P = .675, η2 = .01 (small)), or estimated heart age (P = .237, η2 = .06 (medium)), 

52% of the ‘recent-onset’ patients were classified as being at ‘high risk’ (≥20% probability) of 

having a cardiovascular event within 10 years, compared to 37% of the ‘established’ group (P 

= .024). Overall, 43% of RA patients were classed as being at ‘high risk’, 18% at ‘moderate 

risk’ (≥10–20% probability), and 39% at low risk (≤10% probability) of a suffering a 

cardiovascular event.  

 

  



58 

 
 

 

Table 3.8. Cardiovascular risk and lipid profile for ‘recent-onset’ (<12 months) and ‘established’ (1-7 years) patients  
 

 ‘Recent-onset’  

(n = 33) 

‘Established’  

(n = 49) 
Absolute difference (CI) (% difference) P η2 

 

Lipid profile (normal range) 

 

 Glucose (mmol/L) (3.9–5.0) 5.1 (±0.8) 4.9 (±0.8) 0.2 (-0.2–0.6) (4) .290 .01 

 HDL-C (mmol/L) (≥1.2) 1.6 (±0.5) 1.4 (±0.3) 0.2 (0.0–0.4) (13) .017* .05 

 LDL-C (mmol/L) (≤3.0) 3.0 (±0.9) 3.0 (±1.0) 0.0 (-0.5–0.4) (0) .892 .00 

 TC:HDL-C ratio (≤4.5) 3.3 (±0.6) 3.8 (±1.1) 0.5 (0.1–0.9) (15) .030* .08 

 Cholesterol (mmol/L) (≤5.0) 5.1 (±1.2) 5.0 (±1.3) 0.1 (-0.7–0.6) (2) .803 .00 

 Triglycerides (mmol/L) (≤1.5) 1.2 (±0.6) 1.4 (±0.7) 0.4 (-0.1–0.7) (33) .175 .08 

 

Cardiovascular risk profile 

 

 Systolic blood pressure (mmHg) 128.1 (±14.3) 127.1 (±15.9) 1.0 (-6.1–8.1) (1) .787 .00 

 Diastolic blood pressure (mmHg) 74.8 (±10.6) 71.1 (±9.3) 3.8 (-0.8–8.3) (5) .106 .06 

 Hypertension; n (%) 7 (23) 14 (31)  .414 - 

 Diabetes; n (%) 2 (6) 1 (2)  .347 - 

 First degree relative CVD; n (%) 4 (12) 10 (20)  .296 - 

 Chronic kidney disease; n (%) 2 (6) 1 (2)  .347 - 

 Atrial fibrillation; n (%) 4 (12) 4 (8)  .586 - 

 History of CVD 3 (9) 4 (8)  .597 - 

 10-year QRISK2 score 21.2 (±15.5) 16.3 (±13.9) 4.9 (-2.1–11.9) (23) .164† .08 

 Typical person’s risk score a 15.2 (±10.3) 10.8 (±9.8) 4.4 (0.4–9.2) (29) .069# .19 

 Relative risk b 1.7 (±1.3) 1.9 (±1.7) 0.2 (-0.6–0.9) (12) .675 .01 

 QRISK2 heart age c 68.4 (±12.2) 64.9 (±12.6) 3.6 (-2.4–9.5) (5) .237 .06 

 Difference from actual age (years) 5.2 (±7.0) 6.5 (±6.6) 1.3 (-1.9–4.5) (25) .428 .00 
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Data presented as mean (±SD). CI = 95% confidence interval; RA = Rheumatoid arthritis; HDL = High-density lipoprotein - cholesterol; LDL-C = Low-density lipoprotein - 
cholesterol; TC = Triglycerides; CVD = Cardiovascular disease; a = taken from QRISK2, matched score for age, sex and ethnic group; b = patient risk divided by typical risk; c = 
age at which a typical person has the same 10-year QRISK2 score as patient; † = if age is a co-variant, P = .781: * significant (P < .05); # trend (P ≥ .05–.10). Effect size (η2): 

small ≥.01; medium ≥.08; large ≥.26; very large ≥.50.
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3.3.3. Sub-analysis: ‘In remission’ versus ‘not in remission’  

 

Table 3.9. shows the differences in demographics between RA patients ‘in remission’ (n = 40) 

(defined as a DAS28 score <2.6; mean DAS28 = 2.0 (±0.4)) and those ‘not in remission’ (n = 

42) (mean DAS28 = 3.6 (±0.8), P <.001, η2 = .62 (very large)). Those ‘in remission’ had lower 

inflammation (CRP, P = .024, η2 = .06 (small)), and fewer tender (P <.001) and swollen joints 

(P = .002). Whilst there were no other meaningful differences, there were more males in the 

‘in remission’ group (P = .187). To that end, in an ANCOVA with sex included as a co-variant, 

an adjusted significance value was calculated to remove this gender difference.  

 

No significant differences in body composition were observed between those ‘in remission’ 

and those ‘not in remission’ (Table 3.10.). The majority of body composition measures were 

significantly different between the ‘in remission’ and HC groups, apart from BM (P = .397, η2 

= .00) and BMI (P = .084, η2 = .03 (small)). Strength, and objective and subjective physical 

function scores were superior in the ‘in remission’ group compared to those ‘not in remission’ 

(P’s = .001–.057), with the exception of the STS-30 test (P = .459, η2 = .00) (Table 3.11.). 

These differences remained constant even when sex was included as co-variant (P’s = .002–

.052, η2 = .00–.14). Apart from estimated VO2max and the SF-36 mental score (P’s = .187 (η2 

= .02 (small)), and .647 (η2 = .00), respectively), despite being ‘in remission’, patients were 

significantly poorer than the HC group (P’s < .001–.026). 

 

 

3.3.4. Sub-analysis: Sex differences  

 

Demographically, there appeared to be no differences between males and females (Table 

3.12.). The difference in systolic blood pressure between female RA patients and female HCs 

was significant (P = .003), but no difference was observed between males (P = .351). The 

deficiency in ALM (-2.5 kg, a relative difference of 11%, P = .005) between RA males and HC 

males was significant; conversly, no difference was seen between female RA and HCs (-0.2 

kg, 1%, P = .597). Further, whilst trunk FM% between female RA and HCs was significant (P 

= .032), the difference between male RA and HCs was not (P = .763) (Table 3.13.). Apart from 

VO2max, which was significant between RA and HC females (P = .046) but not between males, 

P = .201, all other objective physical function measures between RA and HCs remained 

significantly different (Table 3.14.). 
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Table 3.9. Participant demographics for rheumatoid arthritis in ‘remission’ (DAS28 <2.6) or ‘not in remission’ (DAS28 ≥2.6) 

 

 ‘In remission’ versus ‘Not in remission’ HC versus ‘In remission’ 

 ‘In remission’  

(n = 40) 

‘Not in remission’  

(n = 42) 
P  HC (n = 85) P  

 

 Age (years)  

 

60.4 (±12.2) 

 

61.4 (±11.3) 

 

.706  

 

60.9 (±8.1) 

 

.764  

 Sex (n female) (%) 23 (58) 30 (71) .187  55 (65) .438 

 Height (cm) 166.0 (±8.2) 164.2 (±7.5) .287  168.1 (±8.6) .195  

 Disease duration (months) 23.1 (±17.5) 24.5 (±20.6) .740    

 Rheumatoid factor positive; n (%) 21 (53) 25 (60) .395   

 SPRA; n (%) 32 (80) 35 (83) .886   

 DAS28 (0-10) 2.0 (±0.4) 3.6 (±0.8) <.001*    

 CRP (mg/L) 7.3 (±7.7) 13.1 (±14.4) .024*    

 Systolic blood pressure (mmHg) 126.2 (±15.4) 128.9 (±15.0) .444  120.5 (±9.5) .048*  

 Diastolic blood pressure (mmHg) 71.0 (±8.9) 74.3 (±10.7) .149  70.9 (±6.9) .985  

 

Medications, n (%) 
  

 NSAIDS  6 (15) 16 (38) .018* 5 (6) .093# 

 MTX a 34 (85) 34 (81) .626   

 SSZ 3 (8) 2 (5) .604   

 LFM 3 (8) 4 (10) .743   

 HCQ 13 (33) 13 (31) .880   

 TAC 1 (3) 2 (5) .586   

 MYF 0 (0) 1 (2) .326   

 Biological agents  0 (0) 0 (0) -   

 Mono DMARD therapy 24 (60) 26 (62) .860   
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 Combo DMARDs (double or triple) b 15 (38) 15 (36) .867   

 No current DMARDs 1 (3) 1 (2) .972   

 Current corticosteroid use c 3 (8) 4 (10) .743 1 (1) .061# 

 Blood pressure medications 5 (13) 16 (38) .005* 11 (13) .945 

 Cholesterol medications 8 (20) 10 (24) .677 7 (8) .059# 

 Analgesics 14 (35) 21 (50) .170 3 (4) <.001* 

 Calcium supplements 5 (13) 6 (14) .813 3 (4) .056# 

 

Smoking status, n (%) 
     

 Current smokers 7 (18) 11 (26) .180 3 (5) .014* 

 Ex-smokers 19 (48) 20 (48) .493 25 (31) .007* 

 Never smokers 14 (35) 11 (26) .542 52 (61) .001* 

 

Exercise frequency d, n (%) 

   
  

 Do not exercise 22 (55) 18 (45) .272 7 (8) <.001* 

 1-2 times a month 4 (10) 2 (5) .363 7 (8) .745 

 1-2 times a week 4 (10) 7 (18) .376 27 (32) .009* 

 3+ times a week 10 (25) 10 (25) .900 41 (49) .014* 

 Cannot exercise due to disability 0 (0) 3 (8) .085# 2 (2) .328 

 
Unless stated, data presented as mean (±SD). Differences at baseline were assessed using analyses of variance, or Chi-square test as appropriate. RA = Rheumatoid arthritis; 
SPRA = Sero-positive RA; DAS28 = Disease activity score in 28 joints; NSAIDS = Non-steroidal anti-inflammatory drugs; MTX = Methotrexate; SSZ = Sulfasalazine; LFM = 
Leflunomide; HCQ = hydroxychloroquine; TAC = Tacrolimus; MYF = Myfenax; DMARDs = Disease modifying anti-rheumatic drugs. a = Additional folate supplement; b = 
Combination therapy (i.e. two or more DMARDs); c = Current corticosteroid range 5.0–10.0 mg; d = self-reported exercise frequency taken from Multi-dimensional Health 
Assessment Questionnaire (MDHAQ) (not reported: not in remission = 2, HC = 1). * significant (P < .05); # trend (P ≥ .05–.10).  
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Table 3.10. Body composition measures for rheumatoid arthritis in ‘remission’ (DAS28 <2.6) or ‘not in remission’ (DAS28 

≥2.6) 

 

 ‘In remission’ versus ‘Not in remission’ HC versus ‘In remission’ 

 ‘In remission’ 

(n = 40) 

‘Not in remission’ 

(n = 42) 

Absolute 

difference (CI) 
P P¥ (η2) HC (n = 85) 

Absolute difference 

(CI) 
P¥ (η2) 

 

 Waist circ. 

(cm) 

 

90.3 (±16.5) 

 

92.9 (±19.2) 

 

-2.6 (-10.5–5.3) 

 

.514 

 

.258 (.01) 

 

83.9 (±10.8) 

 

-6.4 (-10.7– - 0.3) 

 

.039* (.04) 

 Hip circ. (cm) 100.0 (±10.0) 103.8 (±14.7) -3.9 (-9.4–1.7) .169 .246 (.02) 99.1 (±7.8) -0.9 (-5.1–2.9) .592 (.00) 

 Waist: hip 

ratio 
0.90 (±0.12) 0.90 (±0.09) 0.00 (-0.05–0.04) .949 .139 (.00) 0.85 (±0.08) -0.05 (-0.07– -0.02) <.001* (.06) 

 BM (kg) 74.9 (±17.7) 78.0 (±18.2) -3.2 (-11.1–4.7) .425 .183 (.01) 71.7 (±11.1) -3.2 (-7.3–2.9) .397 (.00) 

 BMI (kg/m2) 27.0 (±5.1) 29.0 (±6.7) -2.0 (-4.6–0.7) .143 .133 (.03) 25.4 (±3.4) -1.6 (-3.4–0.2) .084# (.03) 

 

DXA-assessed body composition 

 ALM (kg) 19.7 (±4.6) 19.9 (±4.6) -0.1 (-2.2–1.9) .905 .148 (.00) 20.9 (±5.2) 1.2 (0.6–2.8) .003* (.01) 

 ALM% 

(ALM/BM%) 
26.9 (±3.9) 25.5 (±3.9) 1.3 (-0.4–3.1) .122 .347 (.03) 28.8 (±4.2) 1.9 (1.2–3.5) <.001* (.05) 

 Total LM (kg) 48.2 (±9.4) 49.2 (±10.3) -1.0 (-5.4–3.4) .650 .071# (.00) 49.5 (±10.0) 1.3 (-0.2–4.6) .052# (.00) 

 TLM% 

(LM/BM%) 
65.5 (±6.6) 63.3 (±8.0) 2.2 (-1.0–5.5) .179 .458 (.02) 68.6 (±6.8) 3.1 (1.5–5.8) .001* (.04) 

 Total FM (kg) 24.2 (±9.2) 27.3 (±11.3) -3.1 (-7.7–1.4) .176 .241 (.03) 20.4 (±6.2) -3.8 (-7.1– -0.8) .014* (.04) 

 BF (%) 31.5 (±7.0) 33.8 (±8.5) -2.4 (-5.8–1.0) .170 .434 (.03) 28.3 (±7.2) -3.2 (-6.1– -1.5) .001* (.04) 

 Trunk FM (kg) 12.2 (±6.1) 13.9 (±6.4) -1.6 (-4.4–1.1) .242 .252 (.03) 9.9 (±3.7) -2.3 (-4.3– -0.4) .017* (.04) 

 Trunk FM% 

(trFM/FM%) 
49.0 (±7.9) 49.8 (±6.8) -0.8 (-4.1–2.4) .611 .281 (.00) 47.8 (±7.7) -1.2 (-3.2–1.8) .581 (.00) 
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Data presented as unadjusted mean (±SD). CI = 95% confidence interval; RA = Rheumatoid arthritis; HC = Healthy control group; BM = Total body mass (scales); BMI = Body 
mass index; DXA = Dual x-ray absorptiometry; ALM = Appendicular lean mass; LM = Lean mass; FM = Fat mass; BF = Body fat; unless adjusted by Bonferroni adjustment: * 
significant (P < .05); # trend (P ≥ .05–.10); P¥ = adjusted significance value when sex included as co-variant due to difference in proportion of male to females. Effect size (η2): 
small ≥.01; medium ≥.08; large ≥.26; very large ≥.50. 
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Table 3.11. Objective physical function and self-reported disability for rheumatoid arthritis in ‘remission’ (DAS28 <2.6) or 

‘not in remission’ (DAS28 ≥2.6) 

 

 ‘In remission’ versus ‘Not in remission’ HC versus ‘In remission’ 

 
‘In remission’ 

 (n = 40) 

‘Not in 

remission’  

(n = 42) 

Absolute 

difference (CI) 
P P¥ (η2) HC (n = 85) 

Absolute 

difference (CI) 
P¥ (η2) 

 

Objective function measures 

    

 IKES (N) 414 (±141) 343 (±130) 71 (10–132) .023* .052# (.03) 477 (±155) 62 (26–117) .002* (.06) 

 HGS (kg) 29.6 (±8.3) 22.9 (±9.3) 6.6 (2.7–10.5) .001* .002* (.14) 33.4 (±10.0) 3.8 (2.4–7.4) <.001* (.12) 

 STS-30 test (reps) 12.3 (±3.3) 11.7 (±3.9) 0.5 (-1.1–2.1) .513 .459 (.00) 16.1 (±4.3) 3.8 (2.3–5.3) <.001* (.16) 

 8’UG (secs) 6.6 (±2.1) 8.2 (±4.9) -1.6 (-3.3–0.1) .057# .042* (.02) 5.1 (±1.0) -1.5 (-2.5– -0.4) .008* (.16) 

 50’W (secs) 9.5 (±2.4) 11.9 (±6.8) -2.3 (-4.6– -0.1) .042* .037* (.01) 7.7 (±1.8) -1.8 (-3.3– -0.4) .014* (.18) 

 VO2max 

§(ml/kg/min) 

23.8 (±5.4) 21.8 (±7.0) 2.0 (-1.1–5.2) .199 .368 (.02) 25.3 (±6.4) 1.5 (-0.8–4.0) .187 (.02) 

 

Subjective measures of disability and health 
    

 MDHAQ score (/3) 0.3 (±0.3) 0.8 (±0.6) -0.5 (-0.7– -0.3) <.001* <.001* (.22) 0.1 (±0.2) -0.2 (-0.4– -0.1) .001* (.17) 

 MDHAQ pain (/10) 2.4 (±2.2) 4.6 (±2.3) -2.2 (-3.2– -1.2) <.001* <.001* (.21) 0.9 (±1.4) -1.5 (-2.2– -0.8) <.001* (.14) 

 MDHAQ fatigue 

(/10) 
2.3 (±2.6) 5.1 (±3.0) -2.8 (-4.0– -1.5) <.001* <.001* (.10) 0.9 (±2.1) -1.4 (-2.4– -0.5) .002* (.20) 

 RADAI (/48) 4.2 (±4.1) 11.8 (±6.9) -7.6 (-10.1– -5.1) <.001* <.001* (.35) 2.1 (±3.7) -2.1 (-3.9– -0.2) .026* (.06) 

 SF-36 (physical) 

(/100) 
46.1 (±9.2) 39.2 (±10.0) 6.9 (2.6–11.1) .002* .002* (.11) 55.3 (±7.6) 9.2 (5.9–12.5) <.001* (.22) 

 SF-36 (mental) 

(/100) 
48.6 (±7.7) 42.0 (±12.0) 6.5 (2.3–11.0) .005* .007* (.09) 49.3 (±6.9) 0.7 (-2.5–4.1) .647 (.00) 
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Data presented as unadjusted mean (±SD). CI = 95% confidence interval; RA = Rheumatoid arthritis; HC = Healthy control group; IKES = Isometric knee extensor strength; HGS 
= Handgrip strength; STS-30 = Sit-to-stand in 30 second test; 8’UG = 8-foot up and go; 50’W = 50-foot walk; VO2max = Estimated VO2max from Siconolfi step test (§ data only 
for RA = 62/82 (n = 20 (n = 7 in ‘remission’; n = 13 not in ‘remission’, P = .156) unable to complete), HC = 81/85 (n = 4 unable to complete)); MDHAQ = Multi-dimensional Health 
Assessment Questionnaire; RADAI = Rheumatoid Arthritis Disease Activity Index; SF-36 = Short-form 36 questionnaire; unless adjusted by Bonferroni adjustment: * significant 
(P < .05); # trend (P ≥ .05–.10); P¥ = adjusted significance value when sex included as co-variant due to difference in proportion of male to females. Effect size (η2): small ≥.01; 
medium ≥.08; large ≥.26; very large ≥.50.
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Table 3.12. Participant demographics for male and female rheumatoid arthritis patients and sedentary, age- and sex-

matched healthy controls 
 

 Male Female 

 RA (n = 29) HC (n = 30) P  RA (n = 53) HC (n = 55) P (η2) 

 

 Age (years)  
 

65.0 (±7.8) 

 

63.8 (±9.3) 

 

.593  

 

58.6 (±12.9) 

 

59.4 (±6.9) 

 

.695  

 Height (cm) 172.9 (±6.0) 176.3 (±5.4) .026*  160.8 (±4.9) 163.6 (±6.3) .011*  

 Disease duration (months) 22.7 (±18.3) 

 

24.4 (±19.5) 

 
 Rheumatoid factor positive; n (%) 18 (62) 28 (53) 

 SPRA; n (%) 23 (79) 44 (83) 

 DAS28 (0-10) 2.7 (±1.2) 2.9 (±0.9) 

 Systolic blood pressure (mmHg) 127.9 (±16.2) 124.1 (±8.1) .351  127.3 (±14.8) 118.1 (±9.8) .003*  

 Diastolic blood pressure (mmHg) 72.5 (±8.4) 73.8 (±6.5) .591  72.7 (±10.7) 69.1 (±6.7) .109  
 

Medications, n (%) 
   

 NSAIDS  10 (34) 2 (7) .008* 12 (23) 3 (5) .010* 

 Corticosteroids a 5 (17) 0 (0) .024* 2 (4) 1 (2) .536 

 Blood pressure medications 5 (17) 4 (13) .676 16 (30) 7 (13) .020* 

 Cholesterol medications 8 (28) 5 (17) .312 10 (19) 2 (4) .012* 

 Analgesics 12 (41) 0 (0) <.001* 21 (40) 3 (5) <.001* 

 Calcium supplements 7 (24) 0 (0) .004* 3 (6) 3 (5) .659 
 

Smoking status, n (%) 
      

 Current smokers 3 (10) 2 (7) .612 15 (28) 1 (2) <.001* 

 Ex-smokers 20 (69) 13 (43) .047* 19 (36) 12 (22) .107 

 Never smokers 6 (21) 15 (50) .019* 19 (36) 42 (76) <.001* 
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Exercise frequency b, n (%) 

 Do not exercise 14 2 <.001* 26 5 <.001* 

 1-2 times a month 3 2 .612 3 5 .496 

 1-2 times a week 3 13 .004* 8 14 .181 

 3+ times a week 8 13 .207 12 28 .002* 

 Cannot exercise due to disability 1 0 .305 2 2 .970 

 
Unless stated, data presented as mean (±SD). Differences at baseline were assessed using analyses of variance, or Chi-square test as appropriate. RA = Rheumatoid arthritis; 
HC = Healthy control group; SPRA = Sero-positive RA; DAS28 = Disease activity score in 28 joints; NSAIDS = Non-steroidal anti-inflammatory drugs; MTX = Methotrexate; SSZ 
= Sulfasalazine; LFM = Leflunomide; DMARDs = Disease modifying anti-rheumatic drugs. a = corticosteroid range 5.0–10.0 mg; b = self-reported exercise frequency taken from 
Multi-dimensional Health Assessment Questionnaire (MDHAQ) (not reported: RA female = 2, HC female = 1) * significant (P < .05).  
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Table 3.13. Body composition measures between male and females in rheumatoid arthritis patients and sedentary, age- 

and sex-matched healthy controls 

 

 Male Female 

 RA 

(n = 29) 

HC 

(n = 30) 

Absolute differencea 

(CI) (% difference)b 

RA 

(n = 53) 

HC 

(n = 55) 

Absolute differencea 

(CI) (% difference)b 

 

 Waist circ. (cm) 

 

99.2 (±13.7) 

 

91.0 (±9.7) 

 

8.2 (2.0–14.4) (8)*  

 

87.5 (±18.6) 

 

80.1 (±9.4) 

 

7.4 (1.7–13.0) (8)* 

 Hip circ. (cm) 98.8 (±9.1) 98.3 (±6.2) 0.5 (-3.6–4.6) (1) 103.6 (±14.1) 99.5 (±8.6) 4.1 (-0.3–8.6) (4)# 

 Waist: hip ratio 1.00 (±0.07) 0.92 ±(0.06) 0.08 (0.04–0.11) (8)** 0.85 (±0.07) 0.80 (±0.05) 0.04 (0.02–0.07) (5)* 

 BM (kg) 84.7 (±17.1) 80.1 (±9.3) 4.6 (-2.5–11.7) (6) 72.0 (±16.9) 67.1 (±9.2) 4.9 (-0.3–10.0) (7)# 

 BMI (kg/m2) 28.2 (±4.8) 25.8 (±2.9) 2.4 (0.4–4.5) (9)* 27.9 (±6.7) 25.1 (±3.6) 2.8 (0.8–4.8) (11)* 

 
DXA-assessed body composition 
 ALM (kg) 24.4 (±3.6) 27.0 (±2.9) -2.6 (-4.3– -0.8) (11)* 17.4 (±2.9) 17.6 (±2.3) -0.2 (-1.3–0.7) (1) 

 ALM% (ALM/BM%) 29.5 (±3.0) 33.0 (±2.9) -3.5 (-5.1– -2.0) (12)** 24.4 (±3.2) 26.6 (±2.8) -2.2 (-3.3– -1.0) (9)** 

 Total LM (kg) 58.1 (±7.7) 61.2 (±5.9) -3.1 (-6.6–0.6) (5)# 43.7 (±6.7) 43.2 (±4.5) 0.5 (-1.6–2.7) (1) 

 Total LM% (LM/BM%) 70.0 (±5.9) 74.8 (±4.7) -4.8 (-7.6– -2.1) (7)* 61.3 (±6.4) 65.2 (±5.2) -3.9 (-6.0– -1.6) (6)* 

 Total FM (kg) 23.6 (±9.6) 18.2 (±5.5) 5.4 (1.4–9.5) (30)* 26.9 (±10.7) 21.6 (±6.2) 5.3 (2.0–8.6) (25)* 

 BF (%) 26.9 (±6.2) 21.9 (±5.0) 5.0 (2.0–7.9) (23)* 35.8 (±6.8) 31.8 (±5.6) 4.0 (1.7–6.4) (13)* 

 Trunk FM (kg) 12.9 (±6.3) 9.9 (±3.7) 3.0 (0.3–5.6) (30)* 13.2 (±6.3) 9.8 (±3.7) 3.4 (1.4–5.3) (35)* 

 Trunk FM% (trFM/FM%) 53.1 (±6.5) 53.6 (±6.0) -0.5 (-3.8–2.8) (1) 47.4 (±7.0) 44.6 (±6.6) 2.8 (0.3–5.4) (6)* 

 
Data presented as mean (±SD). CI = 95% confidence interval for absolute difference; RA = Rheumatoid arthritis; HC = Healthy control group; BM = Total body mass (scales); 

BMI = Body mass index; DXA = Dual x-ray absorptiometry; ALM = Appendicular lean mass; LM = Lean mass; FM = Fat mass; BF = Body fat; a = between group (RA versus HC) 

difference; b = relative percentage (%) difference; ** = significant (P <.001); * significant (P < .05); # trend (P ≥ .05–.10). 
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Table 3.14. Objective physical function and self-reported disability between male and females in rheumatoid arthritis 

patients and sedentary, age- and sex-matched healthy controls  

 

 Male  Female 

 RA 

(n = 29) 

HC 

(n = 30) 

Absolute differencea  

(CI) (% difference)b 

RA 

(n = 53) 

HC 

(n = 55) 

Absolute difference a  

(CI) (% difference)b 

Objective physical function 

 IKES (N) 474 (±131) 610 (±136) -136 (-207– -66) (29)** 328 (±116) 402 (±108) -74 (-118– -31) (23)* 

 HGS (kg) 34.0 (±9.6) 44.4 (±7.2) -10.4 (-14.8– -6.0) (31)** 21.9 (±5.8) 27.4 (±4.8) -5.5 (-7.6– -3.5) (25)** 

 STS-30 test (reps) 11.7 (±4.2) 16.6 (±5.0) -4.8 (-7.3– -2.4) (41)** 12.1 (±3.3) 15.8 (±3.9) -3.7 (-5.1– -2.3) (31)** 

 8’UG (secs) 7.8 (±5.6) 5.2 (±1.1) 2.6 (0.5–4.7) (33)* 7.2 (±2.6) 5.1 (±0.9) 2.1 (1.4–2.9) (29)** 

 50’W (secs) 11.0 (±7.9) 7.5 (±1.9) 3.5 (0.6–6.5) (32)* 10.6 (±3.1) 9.2 (±2.9) 2.8 (1.8–3.7) (26)** 

 Estimated VO2max § 

 (ml/kg/min) 
26.0 (±7.0) 28.3 (±6.8) -2.4 (-6.4–1.7) (9) 21.4 (±5.2) 23.6 (±5.4) -2.2 (-4.4–0.0) (10)* 

 

Subjective measures of disability and health 

 MDHAQ score (/3) 0.6 (±0.6) 0.0 (±0.2) 0.6 (0.4–0.8) (100)** 0.5 (±0.5) 0.1 (±0.3) 0.4 (0.3–0.6) (80)** 

 MDHAQ pain (/10) 3.9 (±2.5) 0.5 (±0.9) 3.4 (2.4–4.4) (87)** 3.4 (±2.5) 1.1 (±1.6) 2.2 (1.4–3.0) (65)** 

 MDHAQ fatigue (/10) 3.7 (±2.9) 0.5 (±1.5) 3.2 (2.0–4.4) (86)** 3.7 (±3.2) 1.1 (±2.4) 2.6 (1.5–3.7) (70)** 

 RADAI (/48) 9.7 (±7.9) 1.3 (±2.2) 8.4 (5.4–11.4) (81)** 7.3 (±6.1) 2.5 (±4.2) 4.8 (2.8–6.8) (66)** 

 SF-36 (physical) (/100) 42.0 (±10.6) 56.7 (±6.6) -14.7 (-19.3– -10.1) (35)** 42.8 (±10.0) 54.4 (±8.0) -11.6 (-15.1– -8.1) (27)** 

 SF-36 (mental) (/100) 46.8 (±9.2) 49.7 (±7.0) -2.9 (-7.2–1.4) (6) 44.4 (±11.2) 49.1 (±6.8) -4.7 (-8.3– -1.1) (11)* 

 
Data presented as mean (±SD). CI = 95% confidence interval for absolute difference; RA = Rheumatoid arthritis; HC = Healthy control group; IKES = Isometric knee extensor 

strength; HGS = Handgrip strength; STS-30 = Sit-to-stand in 30 second test; 8’UG = 8-foot up and go; 50’W = 50-foot walk; VO2max = Estimated VO2max from Siconolfi step 

test (§ data only for RA = 62/82 (n = 20 unable to complete: male (9), female (11)), HC = 81/85 (n = 3 unable to complete: male (1), female (3)); MDHAQ = Multi-Dimensional 

Health Assessment Questionnaire; RADAI = Rheumatoid Arthritis Disease Activity Index; SF-36 = Short-form 36 questionnaire; a = between group (RA versus HC) difference; b 

= relative percentage (%) difference; ** = significant (P <.001); * significant (P < .50); # trend (P ≥ .50–.10). 
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3.4. Discussion 

 

 

3.4.1. Summary of key results 

 

Despite successful treatment of disease activity, RA patients treated exclusively with T2T 

demonstrated substantial deficits in muscle mass (~10%) and significantly greater levels of 

FM (~27%) when compared to age- and sex -matched sedentary HCs, along with functional 

and strength impairments in the region of ~24–34%. Both these incidences are extremely 

similar to those previously reported. Additionally, there were no differences in any measure of 

either body composition or physical function between patients with ‘recent-onset’ or 

‘established disease’ indicating changes occur early in the course of the disease. There was 

no difference in body composition between patients whom had achieved clinical ‘remission’ 

and those ‘not in remission’. Whilst ‘remission’ patients had superior physical function than 

those ‘not in remission’, it remained significantly poorer than the HC group. 

 

 

3.4.2. Interpretation of results 

 

A key goal of contemporary RA treatment (i.e. T2T) is achieving LDA (usually defined as 

DAS28 <3.2), preferably ‘clinical remission’ (usually defined as a DAS28 score <2.6; Smolen 

et al., 2010a, 2010b, 2015). In our cohort, disease activity was seemingly well controlled 

(mean DAS28 score was 2.8) with almost half (49%) of patients achieving ‘remission’. This 

success in controlling disease activity, due to early treatment instigation and ‘tight control’ of 

disease, supports evidence of the superior efficacy of current treatment approaches such as 

T2T (Bakker et al., 2007; Verstappen et al., 2007; Schipper et al., 2010; Schoels et al., 2010; 

Jurgens et al., 2012; Ruderman et al., 2012; Stoffer et al., 2015).  

 

However, despite these improvements in clinical markers of disease, abnormal body 

composition was still evident with a relative loss of muscle mass (adjusted for BM) of 10% and 

an increased in total FM of 27% relative to age- and sex-matched sedentary HCs. The loss of 

muscle in patients exclusively treated by T2T strategies is similar to that reported for patients 

treated by previous, less effective strategies i.e. 8–15% compared to non-RA controls (e.g., 

Roubenoff et al., 1994; Roubenoff et al., 2002; Walsmith & Roubenoff, 2002; Toussirot et al., 
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2005; Giles et al., 2008b; Book et al., 2009, 2011; Matschke et al., 2010a, 2010b; Dao et al., 

2011). Remarkably, the 10% deficiency in muscle mass observed here is comparable to the 

13% deficiency originally reported by Roubenoff et al. (1994) some 20 years previously. 

Further, as with our current findings, total FM (and trunk FM) values have previously been 

reported to be ~20% greater in RA patients relative to HCs (Giles et al., 2008b; Book et al., 

2009; Elkan et al., 2009; Matschke et al., 2010b; Dao et al., 2011; Santos et al., 2011).  

 

In our cohort, the deficiency in muscle (i.e. ALM) between RA males and HC males (a relative 

difference of 11%) appeared greater than the deficiency in female RA versus female HCs 

(1%). This supports the findings of Baker et al. (2015) but not those of others (Giles et al., 

2008b; Book et al., 2009), and may occur as female patients have less LM to lose. Similar to 

Book et al. (2009) and Giles et al (2008b), we found female RA patients, relative to HCs, had 

greater trunk adiposity % than male patients with RA.  

 

Despite ‘mild’ self-reported disability (an MDHAQ score of 0.6) and LDA, objectively-assessed 

physical function was greatly impaired in RA patients compared to the HC group. This included 

24–25% deficits in strength (IKES and HGS), and even larger relative reductions in the STS-

30 (34%), 8’UG (31%), and 50’W (28%) tests. Remarkably, like body composition, these 

deficits in performance are identical or, in the case of the 8’UG, actually worse than those 

previously observed by our group (Marcora et al., 2005a, 2005b, 2006; Lemmey et al., 2009, 

2012; Matschke et al., 2010a, 2010b, 2013). When compared to matched-HC function, 

Lemmey et al. (2009) found IKES (25%), number of chair stands (STS-30) (30%), and walking 

time (50’W) (17%) were reduced compared to a population normative values (Rikli & Jones, 

2012); whilst Matschke et al. (2010a, 2010b, 2013), using the same tests, showed when 

compared to matched HCs, RA patients demonstrated a 11–12% reduction in the STS-30 test, 

17% slower times in the 8’UG and 25–26% slower 50’W times. 

 

In 2013, Rikli and Jones published ‘minimal fitness standards’ compatible with living 

independently until late in life using a battery of five objective tests (including the STS-30 and 

8’UG). Comparing the scores observed in our RA patients to the values provided by Rikli and 

Jones further empathises just how poor the physical function of our patients is. In our RA 

cohort, the females (mean age 58.6 years) achieved a STS-30 score appropriate for healthy 

‘moderate functioning’ females aged 80–84 years, and the RA males (mean age 65.0 years) 

a score in line with healthy ‘moderate functioning’ males of 85–89 years. For the 8’UG test, 

the respective equivalents were 85–89 years for the females, whilst the males actually failed 

to achieve the standard of 90–94 year old healthy males. Hence on average, both the female 

and male RA patients had the function of healthy sex-matched individuals ~25 years older. 
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As well as poor physical function, patients in the current study also displayed poor levels of 

aerobic capacity (estimated VO2max = 22.9 ml/kg/min), which was 11% worse than the HC 

group mean. Worryingly, this value may actually be an overestimation of the whole RA 

population as it only represents the more functionally able three quarters of the RA group as 

20 patients could not perform or complete the test. Furthermore, such low aerobic fitness (i.e. 

a VO2max <28 ml/kg/min (Kodama et al., 2009)) is associated with substantially higher rates 

of all-cause mortality and CVD risk in healthy individuals (Franklin & McCullough, 2009) and 

RA patients (Metsios et al., 2015). 

 

A primary goal of current treatment for RA (Smolen et al., 2010a; 2015) is ‘normalisation’ of 

function. Since our successfully treated RA patients objective function is considerably aberrant 

relative to sedentary matched HCs, then this aspiration of ‘normalising’ physical function is 

some way off being realised, and in this regard, current treatment approaches are failing. Body 

composition (i.e. LM and FM) has a key role in a patient’s strength and objective physical 

function (Giles et al., 2008a, Kramer et al., 2012; Lusa et al., 2015), therefore, it is unsurprising 

that without any improvements in body composition as a result of T2T, that physical function 

is still reduced. Consequently, the identification and promotion of potential adjunct anabolic 

treatment interventions in a clinical setting, such as exercise (Marcora et al., 2005a; Lemmey 

et al., 2009) and nutritional supplements (Marcora et al., 2005b), that improve body 

composition and restore strength and physical function should be an important aspect of RA 

care and management.  

 

Whilst loss of LM has been identified as a key contributor to the disability and impaired physical 

functioning (Walsmith & Roubenoff, 2002; Giles et al., 2008a, 2008b; Chen et al., 2011; Dao 

et al., 2011; Kramer et al., 2012; Lusa et al., 2015) seen in RA. In our RA patients, a greater 

level of muscle mass (i.e. both relative (ALM%) and absolute ALM) was positively correlated 

with increased strength. Interestingly, muscle mass was not associated with performance of 

any of the other objective functional tests (i.e. STS-30, 8’UG, 50’W). However, because 

muscle mass is highly correlated with muscle strength (Landers et al., 2001; Marcora et al., 

2005a; Baker et al., 2014), the relationship between muscle mass and physical function that 

is often cited could simply be a mediating function of muscle strength (Visser et al., 2005). 

Whether low muscle mass itself contributes to decline in physical function, or whether this 

association is mediated by muscle strength remains unclear (Visser et al., 2005). In our study, 

the correlation between LM and both STS-30 and 8’UG became significant when lower limb 

strength (i.e. IKES) was used a co-variant.  
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This finding supports previous research, in SLE (Andrews et al., 2015) and the elderly (Visser 

et al., 2005; Manini & Clark, 2012), that weakness (i.e. low muscle strength) is a key predictor 

of disability. Consequently, interventions aimed at increasing muscular strength could be 

employed above those that focus on muscle mass. For example, in the promotion of exercise, 

a ‘strength protocol’ of heavy weight (80–100% of maximum) and low reps (1–3 reps) (Campos 

et al., 2002) could be used to emphasise strength gains over muscle hypertrophy. However, 

as muscle mass is significantly associated with strength, increasing muscle mass could also 

improve physical function by increasing strength.  

 

The excess adiposity observed in our patients is also likely to have a negative influence on 

their physical function (Giles et al., 2008a; Stavropoulos-Kalinoglou et al., 2009; Rolland et al., 

2009; Kramer et al., 2012). The 5.4 kg of additional FM (essentially ‘dead weight’) found in the 

RA patients, compared to the matched HCs, could have increased the load faced by the limited 

muscle mass (Rolland et al., 2009) (i.e. they lacked appropriate muscle mass for their BM), 

along with reducing the range of motion of the limbs (Giles et al., 2008a). In our trial, higher 

FM and BF% were significantly associated with poorer strength (IKES, HGS) and aerobic 

capacity. Like muscle, FM was not correlated with the performance of the other function tests. 

It appears a ‘synergistic relationship’ between muscle mass, FM, weakness, and impaired 

physical function exists, supporting evidence that individuals with both conditions (i.e. 

sarcopenic-obesity) are more disabled that those with either condition alone (Baumgartner, 

2000; Morley et al., 2001; Baumgartner et al., 2004; Dufour et al., 2012).  

 

Whilst there were no significant differences in body composition between the groups (i.e. ‘in 

remission’ versus ‘not’), RA patients ‘in remission’ (i.e. lower inflammation, tender, and swollen 

joints) generally had superior physical function measures (both objective and subjectively 

measured) than those ‘not in remission’. However, it is unclear whether better response to 

treatment is the reason for these patients ‘in remission’ having better function. Although the 

cross-sectional nature of the current study is unable to ascertain changes in body composition 

and physical function, it may be that as a result of milder disease, the function of the ‘remission’ 

patients has been relatively better than the ‘not in remission’ patients throughout the respective 

courses of disease. Further research is needed to assess longitudinal changes across disease 

duration.   

 

Nonetheless, apart from aerobic capacity in the ‘in remission’ group, body composition and 

physical function still remained considerably poorer than those of the HCs which makes clear 

that successful suppression of disease activity alone, even when ‘clinical remission’ is 

attained, does not reverse RC or normalise physical function.  
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It is important to state that the majority of patients in our cohort were treated using MTX 

monotherapy, in contrast with the more ‘aggressive’ combination DMARD or biologic therapies 

often advocated in current treatment guidelines. Although this may appear atypical on 

appearance, our patients were successfully controlled with a relatively simple and 

conservative treatment strategy (i.e. MTX monotherapy). This may infer that only patients with 

the mildest, most responsive, and best controlled disease agreed to take part. If this was the 

case, then our RA participants were at the higher end of functional capacity and the large 

deficits in function we observed constitute an underestimation of the disability of the broader 

RA population.  

 

 

3.4.3. Differences in ‘recent-onset’ versus ‘established’ rheumatoid 

arthritis  

 

There were no differences in disease activity and systemic inflammation between the ‘recent-

onset’ and ‘established’ RA groups, indicating that treatment was successfully able to attain 

early control of the disease. Although there was no difference in the dosage, the proportion of 

‘recent-onset’ patients (48%) on a combination of DMARDs (generally MTX plus HCQ) was 

higher than for the ‘established’ group (29%). This follows both the NICE and ACR guidelines 

which state that in patients with newly diagnosed RA, a combination of DMARDs should be 

used. No patients in either group were being treated by biological agents, seemingly as good 

disease control had generally been achieved by initial DMARD monotherapy. 

 

No disparities were seen between the two RA groups in any of the anthropometric, body 

composition, or physical function measures. Notably, this suggests that even prompt control 

of disease activity (i.e. within <12 months of diagnosis) by contemporary treatment regimens 

(42% of the ‘recent-onset’ group were in remission) does not arrest RC or the resultant loss in 

objective-physical function. As suggested by both Book et al. (2009) and Marcora et al. (2006), 

these results support the idea that the perturbations in body composition (i.e. RC) occur early, 

certainly within 12 months, but conceivably prior to diagnosis and initiation of treatment in the 

‘pre-clinical’ stage of RA (Gerlag et al., 2012). Pertinently, inflammation (Kraan et al., 1998; 

Van de Sande et al., 2011) and elevated levels of cytokines such as TNF-α, IL-1β, and IL-6 

(Sokolove et al., 2012) have been observed pre-RA diagnosis; these pro-inflammatory 

cytokines are thought to be the principle drivers of RC ((Roubenoff et al., 1994; Walsmith et 

al., 2004; Engvall et al., 2008; Giles et al., 2010)). If body composition changes do occur in 
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the ‘pre-clinical’ stage of RA, this explains why even prompt and successful control of disease 

and inflammation is unable to prevent RC. 

 

Interestingly, the ‘recent-onset’ group had an 8% (relative to ‘established’; absolute difference 

= 3.6%) greater physical component score from the SF-36. This difference, albeit not 

significant, can be classified as a minimally clinically significant difference (≥2.5%) (Strand & 

Singh, 2008). Greater self-reported physical function in early disease, followed by a 

subsequent decline as disease duration increases, is not an uncommon finding (e.g., Welsing 

et al., 2001; Hallert et al., 2003; Book et al., 2011) and has been attributed to the recent 

adaptation of treatment (Welsing et al., 2011), and early overestimation of functional ability 

(Drossaers-Baker et al., 1999). Patients with ‘established’ disease may have a better 

understanding of their physical limitations. 

 

Both the ‘recent-onset’ and ‘established’ RA patient groups displayed normal and well-

controlled levels of HDL-C, TG, and TC: HDL-C ratio. High levels (i.e. ≥ normal range) of TC 

and LDL-C were found in both groups indicating better clinical control of ‘bad cholesterol’ (e.g., 

LDL-C) is needed in these patients. The ‘recent-onset’ patients had significantly higher levels 

of HDL-C, a lower TC: HDL-C ratio, and tended to have lower (albeit, non-significantly) levels 

of TG, than the ‘established’ patients. In RA, systemic inflammation leads to pro-atherogenic 

changes of the lipoprotein metabolism (Nurmohamed, 2007; Bag-Ozbek & Giles, 2015) 

making lipid profiles often difficult to interpret in clinical practice. Further, the literature 

surrounding these changes is contradictory, reporting either increased, decreased, or similar 

levels for TC, LDL-C and HDL-C in comparison to HCs (for review, see Nurmohamed, 2007).  

 

Further, the association between lipid measures and the risk of CVD in RA appears to be 

paradoxical, whereby lower levels of TC, LDL-C, and atherogenic ratios are actually 

associated with higher CVD risk (Kitas & Gabriel, 2011; Myasoedova et al., 2011; Bag-Ozbek 

& Giles, 2015). This may be due to the lipid-lowering effects of RA-related systemic 

inflammation (Kotler, 2000; Nurmohamed, 2007; Popa et al., 2007; Kitas & Gabriel, 2011; 

Myasoedova et al., 2011; Bag-Ozbek & Giles, 2015). Successful immunotherapy in RA (i.e. 

controlling disease activity and reducing inflammation) has been shown to increase these 

serum lipid values (Myasoedova et al., 2011; Bag-Ozbek & Giles, 2015). In our results, 

interestingly, it was the ‘recent-onset’ group only who displayed characteristics of the ‘lipid 

paradox’ (i.e. a lower CVD risk (via QRISK2 score) was correlated with higher levels of TC (r 

= -.467, P = .016), and LDL-C (r = -.517, P = .007)). In the ‘established’ group, higher 

inflammation (CRP) was associated with higher CVD risk (i.e. QRISK2 score) (r = .560, P < 

.001). 
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Additionally, the role of HDL-C in RA in particular is difficult to interpret. Normally, HDL-C 

exerts an athero-protective, anti-atherogenic, anti-inflammatory effect. For example, 

protecting LDL from oxidation and preventing atherosclerosis (Ansell et al., 2004). However 

in RA, and in the presence of inflammation, changes in HDL-C composition, including 

displacement of the anti-atherogenic, anti-inflammatory components apolipoprotein A1 (ApoA-

1) and paraoxonase 1 (PON-1) by pro-inflammatory proteins such as serum amyloid A (SAA) 

and complement component 3, may exert pro-atherogenic, pro-inflammatory effects that can 

increase atherosclerotic and CVD risk (Van Lenten et al., 2006; Eren et al., 2013; Bag-Ozbek 

& Giles, 2015). Therefore, the levels of HDL-C in our cohort should be viewed with caution.  

 

Despite no differences in gender, smoking, hypertension, and obesity, the ‘recent-onset’ group 

trended towards a higher CVD risk (i.e. QRISK2 score). This could be an artefact of the age-

difference observed between the two groups (4.2 years). Indeed, when age was included as 

a co-variant in an ANCOVA, there was no significant difference between the groups 10 year 

QRISK2 score (adjusted means; recent: 18.6 (±1.9) versus established: 18.0 (±1.6), P = .781); 

i.e. age explained approximately 80% of the pre-adjusted difference7. Overall, the mean 10 

year QRISK2 score of all the RA patients was 19%, with 43% of patients classified as ‘high’ 

risk. This 1.9 times increased CVD risk seen in our patients is similar to that widely stated for 

RA patients (e.g., Solomon et al., 2003; Boyer, et al., 2011; Kitas & Gabriel, 2011; Humphreys 

et al., 2014; Bag-Ozbek & Giles, 2015).  

 

 

3.4.4. Study strengths and limitations  

 

The study benefits from having well matched RA patient and HC cohorts for comparison, and 

the use of DXA is considered the ‘gold-standard’ for body composition assessment in research 

(Provyn, et al., 2008). Furthermore, we investigated and favoured the use of objectively 

assessed physical function, over subjective measures, such as the HAQ, which has previously 

been used to assess favourable effects of RA treatments on functional capacity (Sakellariou 

et al., 2013; Seto et al., 2013; Vermeer et al., 2013; Solomon et al., 2014; Sugihara et al., 

                                                           
7 In the QRISK2, the relative effect of age is amplified as it used to multiply BMI, systolic blood pressure, family 
history, smoking, hypertension, type 2 diabetes and atrial fibrillation. Using the QRISK2 algorithm, a difference of 
4 years (59 to 63) can equate to 4% change in QRISK2 estimated 10 year risk of CVD (manual manipulation of 
calculation using the following criteria representative of our sample: female with RA, white, light smoker, no 
diabetes, no chronic kidney disease, no atrial fibrillation, current blood pressure treatment, TC: HDL-C ratio of 3.5, 
systolic blood pressure of 125 mmHg, height of 165.0 cm, weight of 75.0 kg). This 4% change equates to 80% of 
the 5% difference in QRISK2 scores.  
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2015). Although the HAQ (and its variations e.g., MDHAQ) can be valuable in measuring the 

initial self-reported functional improvements following treatment initiation in uncontrolled RA 

(Young et al., 2000, Welsing et al., 2001, Hallert et al., 2003; Kingsley et al., 2011; Marcora et 

al., 2006), in patients with stable, well-controlled disease activity, the HAQ can be an 

insensitive measure of functional change (e.g., Van den Ende et al., 1997; Lemmey et al., 

2009). The lack of association between the HAQ and objective function in patients with 

controlled disease may occur due to a ‘ceiling effect’. In patients who can already perform 

some of the basic functional tasks described the HAQ without any difficulty (e.g., ‘1b. Get in 

and out of bed’ or ‘1c. Lift a cup or glass to your mouth’), then no matter how effective an 

intervention in improving strength or objective functional measures is (e.g., exercise), the 

ability to perform these tasks remains the same. Therefore, the HAQ may not reflect ‘true’ 

physical capacity (Arvidson et al., 2002).  

 

Indeed, in our study, RA patients reported ‘mild’ functional disability (via the MDHAQ) despite 

having objectively measured physical function significantly inferior than the HCs (i.e. an 

equivalent function of healthy sex-matched individuals ~25 years older). Further, despite the 

‘recent-onset’ RA group self-reporting an 8% greater SF-36 physical component and a 20% 

greater MDHAQ score (both trends), no differences were observed in objective functional 

measures. Whilst the importance of measuring function (albeit, self-reported by HAQ) in RA 

management has been recognised by both NICE and ACR, it seems that an objective measure 

of physical function would be the most valid means of assessment (Arvidson et al., 2002). 

Currently, the outcome metric for evaluating the efficacy of RA treatment is usually a 

composite measure of disease activity (e.g., DAS28, Simple Disease Activity Index (SDAI), or 

Combined Disease Assessment (CDA) index), but none of these measures includes any 

objective test of function, and consequently none is accounting for patient disability using the 

most valid assessment tools. 

 

The principle limitation to the study is its cross-sectional design, preventing identification of 

causality. Whilst the pathogenesis of RA (i.e. inflammation) has been associated with RC 

(Roubenoff et al., 1994, 2002), other factors may also contribute to the aberrant body 

composition and physical function observed. Whilst the RA patients in the current study were 

less sedentary than the HC, the between-group difference only amounted to ~30 minutes of 

‘exercise’ per week, and both groups fell well short of the minimum recommendation for long-

term loss of FM of 250 minutes per week of moderate intensity physical activity (PA) advocated 

by the American College of Sports Medicine (2010). This ~30 minute disparity in low-moderate 

intensity PA is unlikely to account for the difference in muscle mass, as higher-intensity 

exercise is required to elicit hypertrophy (e.g., Marcora et al., 2005; Lemmey et al., 2009). In 



79 

 

our trial, RA patients reported more analgesia and fatigue than the HCs; both of which can 

conceivably result in poorer physical function. 

 

We acknowledge that RA treatment is a constantly evolving process and as such, no single 

‘modern/current era’ of treatment may exist. However, by recruiting patients from within the 

last 7 years (post 1/1/2008), we feel we were able to assess a group of patients diagnosed 

and treated using the most contemporary treatment regimens (i.e. early recognition of disease, 

prompt and aggressive treatment when required, and ‘tight control’ of disease through a T2T 

approach to ensure attainment of LDA or ‘remission’). A limitation of the present study is the 

lack of quantitative assessment (using the Smolen et al. (2010a) guidelines) of whether 

patients were treated by a T2T approach (i.e. adherence to T2T). However overall, our trial 

highlights that this approach, despite being successful in bringing about LDA, and in about 

half of patients, ‘remission’, does not reverse RC. 

 

An additional limitation was our lack of an a-priori power (sample size) calculation. Although 

we did not achieve our initial target of 100 RA patients, a post hoc calculation using measures 

of relative ALM% revealed adequate power had been achieved (d = 0.63, 1-β error probability 

= 0.98). 

 

 

3.5. Conclusion 

 

 

This study has shown that RA patients only exposed to contemporary, enhanced treatment 

remain significantly deficient in muscle mass, fatter, particularly around the trunk, and 

functionally much poorer than sedentary, age- and sex-matched HCs. Thus, although current 

treatment, observing the principles of ‘tight control’ and T2T, is successful in the control of 

inflammation and disease activity, it has failed to preserve body composition or physical 

function any more than previous treatment regimes. A primary ACR, EULAR, and NICE goal 

of current treatment for RA is normalisation of function. Since our successfully treated RA 

patients objective function is considerably aberrant relative to sedentary matched HCs, then 

this aspiration of normalising physical function is some way off being realised, and in this 

regard, current treatment approaches are failing.  

 

Consequently, the identification and promotion of potential adjunct anabolic treatment 

interventions, such as exercise (specifically PRT) and nutritional supplements that restore 
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body composition (not just increase LM, but also reduce FM), strength, and physical function 

still remain an important aspect of future RA care and research. Further, assessment of 

objective physical function should feature or be, at least, considered when making clinical 

decisions. Objective physical function could be used as a ‘target’ in the evaluation of treatment 

therapy; in addition to assessing composite measures of disease activity and structural 

changes, and ideally body composition. 

 

We observed no differences between patients with ‘recent-onset’ and ‘established’ disease 

duration suggesting that RC occurs early in the disease process, possibly before symptom 

presentation. These ‘pre-clinical’ changes to body composition may explain why even 

successful and prompt control of disease in the present does not prevent RC (i.e. it has already 

taken place). Hence, effective adjunct anabolic treatments need to be advocated, and 

hopefully initiated, at diagnosis of RA. 
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4.1. Introduction 

 

 

Patients with rheumatoid arthritis (RA) often experience a substantial loss of muscle mass 

(‘rheumatoid cachexia’ (RC)) (Roubenoff et al., 1992; Walsmith & Roubenoff, 2002), which 

results in significant adverse consequences such as decreased strength (Van Bokhorst-de 

van der Schueren et al., 2012), impaired physical function (Giles et al., 2008a; Summers et 

al., 2008), and a reduction in quality of life (Giles et al., 2008a). Unfortunately, current 

pharameutical treatments for RA do not attenuate this muscle loss, nor fully restore physical 

function (Marcora et al., 2006; Metsios et al., 2007; Engvall et al., 2010). Whilst progressive 

resistance training (PRT) has been shown to be effective in restoring both muscle mass and 

function in RA patients (e.g., Marcora et al., 2005a; Lemmey et al., 2009; Sharif et al., 2011), 

the high-intensity (i.e. 80% of 1RM) of this training means that this form of exercise is unlikely 

to be widely adopted by all RA patients.  

 

Consequently, anabolic nutritional supplementation offers a potential treatment option that is 

easily administered, inexpensive, and makes limited demands of the patient. It has been 

reported that up to 75% of RA patients believe that food and nutrition may play an important 

role in their symptom severity, with up to 50% of RA patients reportedly trying some form of 

dietary manipulation in an attempt to attenuate symptomology (Stamp et al., 2005). Scientific 

evidence continues to suggest that diet should be part of routine care in those with wasting 

disorders (for review, see Stamp et al., 2005). 

 

Interestingly, there appears to be a lack of research into the use of diet to improve body 

composition or functional outcomes in RA. Our group previously investigated the effects of 12 

weeks of a mixture of ß-hydroxy-ß-methylbutyrate, glutamine and arginine (HMB/GLN/ARG) 

protein supplementation in 40 RA patients (Marcora et al., 2005b). The results showed that 

both HMB/GLN/ARG and a control mixture of other, non-essential, amino acids (alanine, 

glutamic acid, glycine, and serine) were effective in increasing muscle mass and improving 

physical function in RA patients. Thus it appears that protein per se is capable of significantly 

improving LM, total body protein, and objective measures of physical function, such as the sit-

to-stand in 30 second test, which reflect the ability to perform activities of daily living in RA 

patients (i.e. getting in and out of a chair). 
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Another potential nutritional supplement that could be used to restore muscle mass and 

functional capacity in RA patients is oral administration of creatine (Cr). This article reviews 

the evidence regarding the potential of Cr as an adjunct treatment to improve muscle mass 

and function in RA patients. In the course of doing this, the mechanisms and effectiveness of 

Cr in athletic populations will be described before we present a review of the existing evidence 

regarding the efficacy of Cr in RA-relevant clinical trials. 

 

 

4.1.1. What is creatine? 

 

Creatine, or methylguanidine-acetic acid, is a naturally occurring compound made from three 

amino acids; arginine, glycine, and methionine (Casey & Greenhaff, 2000), and is synthesized 

within the body, primarily in the liver, kidney, and pancreas (American College of Sports 

Medicine, 2010). Most (~95%) of the total Cr pool is contained in skeletal muscle, with ~60% 

(75 mmol· kg dry weight (dw)-1) in the phosphorylated form, phosphocreatine (PCr) (Harris et 

al., 1974; Casey et al., 1996), and the remaining 40% (50 mmol· kg dw-1) existing as free Cr 

(Bogdanis et al., 2007). Muscle does not synthesize Cr itself but is dependent on Cr uptake 

through specific membrane sodium dependent transporters (Longo et al., 2011). 

 

Creatine has generally been shown to be more effective than other protein-based supplements 

in increasing LM. For example, Cribb et al. (2007) showed that Cr (1.5 g/kg per day for 11 

weeks) was able to significantly improve LM by 6%, compared to whey protein (4%; P < 0.05) 

in 33 trained males. Further to this, in a meta-analysis (Nissen & Sharp, 2003) of 48 studies, 

both LM and strength gain were unaffected by whey protein and other supplementation such 

as androstenedione when compared to a placebo treatment, and only supplementation with 

either Cr or HMB resulted in a significant gains (Table 4.1.). The superior gains in LM and 

strength from Cr relative to HMB, combined with the additional benefits of Cr to energy 

production and recovery identifies Cr as a potentially highly effective adjunct treatment for 

improving RC and physical function.  

 

 

 

 

 

 

 



84 

 

4.1.2. What does creatine do? 

 

4.1.2.1. Changes in adenosine triphosphate energy synthesis 

Creatine performs many roles in the body, the most important of which is in generating energy 

for the muscles. Muscle relaxation and contraction, and therefore the movement of the body, 

is fuelled by energy liberated from the dephosphorylation of adenosine triphosphate (ATP).  

 

ATP ↔ adenosine diphosphate (ADP) + phosphate (P) + energy  

(catalysed by the enzyme ATPase) 

 

The ATP stores in the body are limited (concentration in skeletal muscle is approximately 24 

mmol· kg/dw (Harris et al., 1974)), and without a means of resynthesizing ATP at an equally 

rapid rate, maximal exercise exhausts these stores within 1–2 seconds (Burton et al., 2004). 

To overcome this storage limitation, the body is able to maintain a continuous ATP supply 

through different metabolic re-synthesis pathways: either anaerobically in the cytosol, or 

aerobically in the mitochondrion. 

 

As stated previously, Cr is primarily stored in the body in a phosphorylated form as PCr, with 

the muscle content of PCr 3–4 times higher than that of ATP (Bogdanis et al., 2007). In a 

process called dephosphorylation, some energy for ATP re-synthesis comes directly from the 

hydrolysis (splitting) of phosphate from PCr (Bogdanis et al., 2007). 

 

PCr ↔ Cr + P + Energy  

(catalysed by the enzyme creatine kinase (CK)) 

 

In this process, the liberated phosphate group can then combine with ADP in a reaction 

catalysed by CK to restore ATP levels (Kreider et al., 1998) and maintain high cellular 

ATP/ADP ratios (Bemben et al., 2001): 

 

ADP + P ↔ ATP + Cr  

(catalysed by CK) 

 

As a consequence, it would be anticipated that increasing initial Cr stores and thereby delaying 

PCr depletion would enhance re-synthesis of ATP and augment performance (Greenhaff, 

1995; Wyss & Kaddurah-Daouk, 2000). Ingestion of Cr supplements (20 g a day for 5 days) 

has been shown to increase the total Cr and PCr concentration of human skeletal (Table 4.2.), 
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and indeed, reduced blood lactate concentrations have been observed after high-intensity 

(Balsom et al., 1995) and endurance exercise (Tang et al., 2013); although these findings are 

not universal (Engelhardt et al., 1998). 

 

4.1.2.2. Changes in muscle mass and protein synthesis 

Creatine is an osmotically active substance. Thus, as skeletal muscle cell Cr and PCr 

concentrations rise, the cell will rapidly draw in extracellular water (ECW) via osmosis in order 

to maintain equilibrium (Lang et al., 1998). The uptake of Cr and water into the muscle 

accounts for the increases in body mass (approximately 1–2 kg) usually observed after a few 

days of supplementation (e.g., Powers et al., 2003). Total body water has been reported to 

increase up to 3 litres (9%) (Bemben et al., 2001); of which intracellular water (ICW) has been 

shown to increase by between 0.8-3.0 litres (an increase of 3–9% from baseline values) (e.g., 

Ziegenfuss et al., 1998; Poortmans & Francaux, 1999; Gotshalk et al., 2002; Chrusch et al., 

2001) in the absence of changes in ECW (Ziegenfuss et al., 1998).  

 

The intramuscular uptake of Cr and the associated increase in ICW increases osmotic 

pressure, which in turn stimulates protein synthesis. Cellular hydration state is an important 

factor in controlling cellular protein turnover, i.e. an increase in cellular hydration inhibits 

proteolysis and stimulates protein synthesis (Ingwall et al, 1974), whereas cell shrinkage has 

opposite effects (Sipilä et al., 1981; Bessman & Savabi, 1988; Häussinger et al., 1993; Balsom 

et al., 1993; Lang et al., 1998). However, it is unclear whether acute Cr supplementation 

augments muscle protein by this mechanism (Parise et al., 2001; Louis et al., 2003). 

 

Creatine has also been shown to stimulate muscle hypertrophy by inducing expression of 

muscle myogenic factors such as MRF4, MyoD, and myogenin (Hespel et al., 2001). 

Deldicque et al. (2005, 2008) showed that the muscle gene expression of insulin-like growth 

factor (IGF)-I was raised following Cr supplementation. This finding was corroborated by Burke 

et al. (2008) who found increased muscle content of IGF-I as a result of Cr supplementation 

combined with 8 weeks of PRT. These findings are highly relevant to Cr’s anabolic potency 

as IGF-I produced locally in the muscle (mIGF-I) is thought to regulate adult skeletal muscle 

maintenance and hypertrophy (Adams, 2002).  
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Table 4.1. Summary of the results from the meta-analysis by Nissen and Sharp (2003) 

 

Supplement 

(n = studies) 

Average dosage 

(maintenance dose) 

Duration 

(weeks) 
Net lean mass change Net strength change 

Creatine (n = 18) 19.4 g/day for 5.3 days (6.7 g/day) 7.5 +0.36%/week* +1.09%/week* 

HMB (n = 9) 3 g/day 8 +0.28%/week* +1.40%/week* 

Chromium (n = 12) 485 ug/day 11.2 +0.08%/week +0.25%/week 

Androstenedione (n = 3) 200 mg/day 10.7 +0.05%/week -0.06%/week 

Protein (n = 4) 1.15 g/kg per day 6.3 +0.12%/week -0.18%/week 

DHEA (n = 2) 125 mg/day 10 +0.12%/week +0.06%/week 

 
The net change is expressed as % change per week. Only Cr and HMB resulted in significant changes; * = P < .05. HMB: ß-hydroxy-ß-methylbutyrate; DHEA: 
Dehydroepiandrosterone 

 

 
Table 4.2. Changes in total creatine and phosphocreatine levels in the body following Cr supplementation 

 

 Mean baseline total Cr levels in the body1 Increase after 20 g/day for 5 days 

Total creatine 

 

Approximately 125 mmol· kg/dw (Harris et al., 1992) (90 

to 160 mmol· kg/dw) (Casey & Greenhaff, 2000)  

 

+ 25 mmol· kg/dw (approximately 20%) (Hultman et al., 

1996)  

 

Phosphocreatine 

 

Approximately 75 mmol· kg/dw (Bogdanis et al., 2007) 
+ 8 mmol· kg/dw (approximately 11%) (Stec & Rawson, 

2010) 

 
1Typical values for an average 70 kg male. 
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Conversely, Cr supplementation in conjunction with PRT has been shown to lower serum 

levels of myostatin (Saremi et al., 2009; Schiaffino et al., 2011), a hormone that is highly 

expressed in RA synovial tissues and inhibits muscle growth by reducing myoblast (muscle) 

proliferation (Zimmers et al., 2002; Schiaffinio et al., 2011) and thus is associated with muscle 

atrophy (Zimmers et al., 2002) and joint destruction (Dankbar et al., 2011). The anabolic 

response to Cr supplementation is particularly evident in type II muscle fibres (Sipila et al., 

1981; Soderlund et al., 1992), which is particularly important because RA patients present with 

preferential atrophy of type II fibres (Wortmann, 1993). 

 

4.1.2.3. Reduction in inflammatory cytokines 

Patients with RA exhibit high synovial levels and serum concentration of the cytokines TNF-α 

and IL-1ß (Walsmith & Roubenoff, 2002). These cytokines, in addition to causing synovial 

inflammation (Choy 2012), also modulate the expression of enzymes controlling muscle 

protein degradation (Fanzani et al., 2012). Bassit et al. (2008) investigated the effects of Cr 

supplementation (20 g/day for 5 days prior to competition) on plasma levels of pro-

inflammatory cytokines, TNF-α, IL-1ß, and prostaglandin E2 (PGE2), in triathletes after a half-

ironman competition. These cytokines are typically raised following prolonged strenuous 

exercise (Morley et al., 2001), but Cr supplementation attenuated the increases in TNF-α by 

42% and 64%, IL-1ß by 72% and 71%, and PGE2 by 86% and 91%, 24 and 48 hours post 

exercise, respectively. Similar results by the same group were reported in Santos et al. (2004). 

 

The exact mechanisms behind Cr supplementations apparent ‘anti-inflammatory’ effects are 

unclear. Santos et al. (2004) postulated that Cr’s ability to increase muscle cell volume may 

increase its integrity and resistance to injury and tissue damage, thus reducing the production 

of inflammatory cytokines such as TNF-α. Deminince et al. (2013) hypothesised that Cr 

supplementation increases total ATP stores in the cell, this reduces adhesion of neutrophils 

as well as increasing the activity of the adenosine A2A receptor (which has potent anti-

inflammatory effects).  

 

4.1.2.4. Creatine and bone degradation 

RA patients are at 2-fold increased risk of having osteoporosis and ~28% of patients develop 

this condition (Haugeberg et al., 2000; Engvall et al., 2008). In wheelchair-independent 

patients experiencing Duchenne dystrophy, Cr supplementation was able to enhance bone 

mineral density (3%) and reduce urinary cross-linked N telopeptides of type I collagen (NTx) 

excretion, a marker for bone resorption (Louis et al., 2003). In addition, Candow et al. (2008) 

also reported a reduction in NTx (-27%) versus placebo (13%; P < .05), and similar findings 
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were reported by Chilibeck et al. (2005) who showed that in elderly men, Cr was able to 

improve arm bone mineral density by 3% (P < .001) versus placebo (-1%) However, more 

research is needed in this area to understand the mechanisms behind this action. 

 

4.1.2.5. Athletic performance  

Creatine has repeatedly demonstrated efficacy in improving high-intensity short-term exercise 

performance and subsequent recovery. For example, in cycling, Cr supplementation has been 

shown to significantly enhance peak power output (Balsom et al., 1995; Tarnopolsky, 2000; 

Wiroth et al., 2001) and maximal work (Casey et al., 1996) during repetitive sprints. Similarly, 

runners who supplemented with Cr decreased their 100 metre sprint time and total time for 6 

× 60 metre sprint intervals (Skare et al., 2001), and highly trained football players improved 

their repeated sprint performance (6 × 15 metre sprints with 30 seconds recovery) and 

attenuated fatigue-induced decline in jumping ability following Cr supplementation (Mujika et 

al., 2000).  

 

Creatine supplementation has also been found to be effective in improving performance of a 

variety of sustained high-intensity activities (e.g., kayaking for 5 minutes (McNaughton et al., 

1998); 1000 metre rowing (Rossiter et al., 1996); and running 300 and 1000 metre intervals 

(3–4 minute rest) (Harris et al., 1993)). These functional benefits are attributed to increased 

ATP re-synthesis, heightened availability of PCr in type II fibres, and increased total Cr stores 

(Bogdanis et al., 2007). These effects may be particularly beneficial to older adults or clinical 

populations who experience difficulty performing short-term, relative high intensity activities 

such as hurrying for a bus, crossing roads, climbing stairs, or digging in the garden. 

 

Creatine has also been shown to improve strength related measures. In an analysis of 22 

studies, athletes supplementing with Cr had an average 8% greater increase in muscle 

strength than placebo (for a review, see Rawson and Volek, 2003). Furthermore, Cr 

supplementation when combined with PRT has been shown to be more effective at increasing 

strength and weightlifting performance than PRT alone (Volek et al., 1997; Larson-Meyer et 

al., 2000). Improvements in strength translate into increased work capacity, and thus improved 

ability to perform activities of daily living such as walking, carrying shopping, doing housework 

etc. (Baumgartner et al., 2004; Marcora et al., 2005a; Giles et al., 2008a). 

 

Although ~70% (Kreider, 2003) of short-term studies on Cr supplementation report some 

ergogenic benefit, the responses are often variable amongst individuals (Rawson and Volek, 

2003), and supplementation generally does not result in improvements in endurance 
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performance (e.g., repeated 6 km treadmill and terrain run performance) (Balsom et al., 1993; 

Stroud et al., 1994; Balsom et al., 1995; Chilibeck et al., 2007). 
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4.2. Critical review of relevant clinical literature 

 

 

4.2.1. Aim  

 

The aim of this review is to examine existing evidence assessing the efficacy of Cr 

supplementation in improving muscle mass and physical function, with particular reference to 

its potential use in treating RC and its consequences. To achieve this we searched for, and 

extracted relevant data from published research papers in RA and other conditions for which 

findings are likely transferable to the RA population, e.g., aging population and other 

musculoskeletal and wasting diseases. 

 

 

4.2.2. Search methods  

 

Peer-reviewed research articles were included in this review provided they: (1) investigated 

the effects of Cr supplementation in RA patients or other populations deemed relevant to RA 

(i.e. elderly populations (>60 years) or musculoskeletal disorders featuring loss of muscle and 

physical function); (2) included body composition (muscle and/or FM) and/or physical function 

as outcome measures; and (3) conducted an intervention of any design in RA patients; or 

undertook a blinded placebo-controlled trial for non-RA populations, to ensure only evidence 

of higher certainty of evidence was included. As the purpose of this review is to investigate 

alternative treatments to high-intensity exercise for restoring muscle mass and physical 

function, data on the additive effects of Cr supplementation and PRT were excluded. 

Publications were also excluded if they were a literature review, thesis, abstract, or a letter or 

comment, and the search was limited to English language citations.  

 

PubMed and Google Scholar were searched for literature until May 2014 using the search 

term ‘creatine supplementation’ combined with ‘cachexia’; ‘clinical’; ‘patient’; ‘older adults’; 

‘elderly’; ‘sarcopenia’, and ‘rheumatoid arthritis’. In addition, the reference sections of the 

selected papers were hand-searched for relevant ancestral references. The title and abstract 

of each search result was first screened for relevance according to the inclusion criteria above, 

before full articles were obtained. Full-text articles were then screened before final inclusion 

in this review.  
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4.2.3. Search results 

 

The initial search returned 758 articles, excluding duplicates, of which 21 met the inclusion 

criteria and were selected for this review. One trail investigating Cr supplementation of RA 

patients was found (Willer et al., 2000). This study was not controlled in any way so is 

considered to provide evidence of low certainty. The body composition and physical function 

data extracted from trials in older adults are presented in Table 4.3., and data extracted from 

trials in other relevant clinical populations appear in Table 4.4.  

 

4.2.3.1. Rheumatoid arthritis 

Willer et al. (2000) was the only study identified that completed a trial of Cr in an RA population. 

Twelve RA patients were un-blinded to the Cr supplementation and no placebo group or 

control arm existed. Participants were given oral Cr supplementation for 21 days using 

recommended doses (day 1-5: 20 g/day; day 6-21: 2 g/day) and the effects on muscle 

strength, subjectively assessed function during activities of daily living (Health Assessment 

Questionnaire; HAQ), and disease activity were examined. It was found that Cr 

supplementation increased muscle strength by an average of 14% (P = .020), as determined 

by the muscle strength index (the mean of eight strength measurements during flexion and 

extension of the knee and elbow/max sample strength*100 (Stucki et al., 1994). This increase 

in muscle strength was not associated with changes in skeletal muscle Cr or PCr levels. 

Routine clinical measures of disease activity and subjectively evaluated physical function 

showed no changes. 

 

The authors attributed the limited effectiveness of Cr to alterations in the kinetics of Cr in 

patients with RA (e.g., reduced transport into the muscle, increased metabolism, and/or 

excretion). However, this interpretation places emphasis on the subjectively assessed 

function, which was unchanged, rather than the objectively measured strength, which did 

improve significantly. It is known that the HAQ is weakly associated with objective measures 

of physical condition such as strength (r = -.35) and joint mobility (r = .27) (Van den Ende et 

al., 1997), and is often insensitive to even large changes in objective function in patients with 

controlled disease (e.g., Van den Ende et al., 1997; Lemmey et al., 2009). Additionally, only 

12 patients were included in the study. Given that Cr supplementation reported to be 

ineffective in approximately 30% of individuals (Greenhaff et al., 1995), it would be anticipated 

that only 8 of the RA patients in this investigation would see any benefit. Consistent with this 

prediction, strength increases were noted in 8 patients. Moreover, the study supplementation 
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period only lasted three weeks, much less than the 8–12 weeks recommended by 

manufacturers and used by other studies. Thus, whilst the findings of Willer et al’s trial are 

inconclusive, they do provide some indications that Cr may be effective in the RA population. 

Clearly more research is needed in this area.  

 

4.2.3.2. Aging and sarcopenia 

Nine studies (Bermon et al., 1998; Rawson et al., 1999; Rawson & Clarkson, 2000; Jakobi et 

al., 2001; Gotshalk et al., 2002; Cañte et al., 2006; Stout et al., 2007; Gotshalk et al., 2008; 

Gualano et al., 2014) were identified that investigated the effects of Cr supplementation in 

older adults and met the inclusion criteria. Four of these studies, reported that Cr increased 

body mass by 0.5–1.9 kg (Rawson et al., 2000; Jakobi et al., 2001; Gotshalk et al., 2002; 

Gotshalk et al., 2008) and that this gain was predominantly LM, with increases in muscle mass 

of up to 2.2 kg (Gotshalk et al., 2002). In contrast, no significant changes in body mass or LM 

were found in the remaining five studies (Bermon et al., 1998; Rawson et al., 1999; Rawson 

et al., 2000; Stout et al., 2007; Gualano et al., 2014), although a trend of increased LM 

following Cr supplementation relative to placebo (P = .062) was found by one of these 

(Gualano et al., 2014). As expected, no significant changes in body fat % (BF%) subsequent 

to Cr supplementation in older participants were reported (Rawson et al., 1999; Rawson et al., 

2000; Gotshalk et al., 2002).  

 

Three of the six studies that measured muscle strength changes reported improvements 

following Cr supplementation. Gotshalk et al. (2002) reported strength increases of both 

maximal leg press (7–8%), knee extensor (9%), and knee flexor muscles (15%) in older males, 

whilst in females increases in leg press (3% or 5.2 kg) and bench press (4% or 1.7 kg) were 

found (Gotshalk et al., 2008). In a cross-over design, Stout et al. (2007) found that Cr 

significantly increased maximal isometric grip strength by 7%. Conversely, Jakobi et al. (2001) 

found that 5 days of Cr supplementation was unable to increase elbow flexor maximal 

voluntary strength or any other muscle contractile properties (twitch and tetanic recordings 

from electrical stimulation of the muscles). Similar findings were reported by Rawson (2000) 

who found no significant effect on isometric elbow flexor strength after 5 days 

supplementation, and Bermon et al. (1998) who found no increase in chest strength compared 

to a placebo (P > .05).  

 

All studies assessing short-term physical function reported significant improvements in lower-

extremity functional tests such as the STS test by up to 12% (Gotshalk et al., 2002; Canete et 

al., 2006; Gotshalk et al., 2008; Neves et al., 2011), and a tandem gait test by 6% (Gotshalk 
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et al., 2002) to 9% (Gotshalk et al., 2008) following Cr supplementation. Lower body power 

(as assessed by a 10 second Wingate test) was shown to improve by 11% (Gotshalk et al., 

2002) and Rawson et al. (1999) reported that leg fatigue (as expressed as a % change in the 

total peak torque generate and assessed by 5 × 30 second knee extensions at 180° on an 

isokinetic dynamometer) was reduced by 9% (compared to a 5% increase in the placebo 

group, P < .05). Similar findings by Stout et al. (2007) showed lower body muscle endurance 

(cycling capacity at fatigue threshold) was improved by 16% compared to the placebo group. 

However, owing to Cr supplementation’s ability to predominantly increase ATP/PCr re-

synthesis, as expected, assessments of endurance capacity (i.e. 1-mile walk test; and gross 

mechanical efficiency, ventilatory threshold, and peak oxygen intake determined during cycle 

ergometry) were not significantly improved following Cr supplementation (Cante et al., 2006).  

 

Overall, these studies demonstrate that Cr supplementation appears beneficial in improving 

measures of short-term objective physical functioning in older adults, but not tasks with an 

endurance component. Improvements in such tasks (e.g., improving the number of chair 

stands) may translate into an improved ability to perform more practical activities of daily living 

such as getting out of a car, or in and out of a chair. 

 

4.2.3.3. Trials in other clinical populations 

One study (Roy et al., 2005) trialled Cr supplementation in osteoarthritis (OA). Osteoarthritis 

is the most common form of arthritis, and as with RA, is characterised by joint damage, muscle 

weakness, poor physical function (Slemenda et al., 1997), and predominantly affects females 

(Lawerence et al., 2008). In this investigation, Roy et al. reported limited effects of Cr 

supplementation in OA patients recovering from total knee arthroplasty, despite a significant 

increase in serum Cr concentration, with no improvements in muscle strength (handgrip, 

dorsiflexion, and quadriceps strength, 30-foot timed walk, and 4-step climb) observed after 40 

days (10 days pre-surgery and 30 days post-surgery) of Cr supplementation relative to 

placebo.  

 

One trial (Alves et al., 2013) reported the use of Cr supplementation in fibromyalgia, another 

chronic syndrome of unknown etiology, characterized by some similarities in symptomology 

to RA, including pain, muscle dysfunction, disability, and fatigue (Leader et al., 2009). Some 

of the fibromyalgia symptoms such as muscle dysfunction and fatigue could, in theory, be due 

to low muscle levels of ATP and PCr (Alves et al., 2013). A randomised controlled trial of Cr 

supplementation in fibromyalgia patients (Alves et al., 2013) found that muscle PCr content 

increased and muscle strength improved relative to the placebo group (leg-press by 10%, P = 
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.020; chest-press by 1%, P = .020; and isometric handgrip strength by 6%, P = .070) in the Cr 

group.  

 

Myopathy is a muscle wasting disorder which primarily affects skeletal muscle. Much like RC, 

this can cause a variety of complaints including progressive weakness and wasting of skeletal 

muscle, and fatigue (for a review, see Kley et al., 2011). Seven trials of Cr supplementation in 

populations with myopathies were found, with these investigations reporting mixed results on 

the efficacy of oral Cr. In a cross-over design trial in 30 Duchenne muscular dystrophy (DMD) 

adolescents (Tarnopolsky et al., 2004), the Cr supplementation phase increased LM by 0.7 kg 

and grip strength by ~20% compared to the placebo phase. In a similar design, Cr 

supplementation improved maximal strength and fatigue resistance in 15 other patients with 

DMD (Louis et al., 2003). Further to these trials, improvements in muscle PCr/P ratio and 

preservation of calf muscle strength were also reported by Banerjee et al. (2010) in 18 DMD 

patients. 

 

In contrast, in cross-over design trials of patients with Myotonic muscular dystrophy 1 (DM1), 

Cr failed to induce any changes in muscle strength, LM, or disease symptoms (Walter et al., 

2002; Tarnopolsky et al., 2004), or improve function or strength in DMD patients (Escolar et 

al., 2005) or patients with myotonic dystrophy type 2 (DM2) (Schneider-Gold et al., 2003). 

 

Two studies (Norman et al., 2006; Bourgeois et al., 2008) were found that reported trials of Cr 

supplementation in cancer patients. Up to 80% of cancer patients have associated muscle 

wasting which is termed cancer cachexia (Tan & Fearon, 2008). Like other forms of cachexia, 

this is characterised by a preferential loss of skeletal muscle mass (with or without a loss of 

FM) which cannot be reversed through conventional methods of nutrition (Fearon et al., 2011). 

In patients with cancer, Cr supplementation improved handgrip strength by 6% (P = .019) 

(Norman et al., 2006) and reduced BF% (-4%; P < .05) relative to a placebo group (Bourgeosis 

et al., 2008).  

 

Overall, results in clinical trials investigating the use of Cr supplementation are equivicol, of 

the twelve clinical trials identified, six showed positive effects of Cr on muscle mass and/or 

strength and function measures. 
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Table 4.3. Summary of studies investigating the effects of creatine supplementation on body composition and function in 

adults over 60 years 

 

Study 
Treatment arm 
(mean age ±SD) 

Supplementation 
period 

Study design 
Body composition 

changes 
Physical function 

changes 

(Rawson et al., 1999) 
10 males 

(66.7 ±1.9 years) 

20 g/d for 10 days 
followed by 4 g/day for 

20 days 

vs PL group (dextrose) 
(n = 10) 

↔Body density, ↔LM, 
↔% BF 

 
↑Leg fatigue performance 

 
 

(Rawson et al., 2000) 
9 males 

(65.0 ±2.1 years) 
 

20 g/day for 5 days 
vs PL group (sucrose) 

(n = 8) 
↑BM, ↔LM 

 
↔Strength 

 

(Cante et al., 2006) 
10 females 

(67.0 ±6.0 years) 
 

0.3 g per kg/day for 7 
days 

vs PL group (n = 6) No details 
↑Objective function tests, 

↑Endurance capacity 

(Gotshalk et al., 
2002) 

10 males 
(65.4 ±1.5 years) 

0.3 g per kg/day for 7 
days 

vs PL group (powdered 
cellulose) (n = 8) 

↑BM, ↑LM 
↑Strength, ↑Power, 

↑Objective function tests 
 

(Gotshalk et al., 
2008) 

15 females  
(63.3 ±1.2 years) 

0.3 g per kg/day for 7 
days 

vs PL group (powdered 
cellulose) (n = 12) 

 
↑BM, ↑LM, ↔%BF 

↑Strength, ↑Objective 
function tests 

 

(Stout et al., 2007) 
 7 males and 8 

females 
(74.5 ±6.4 years) 

20 g/day for 7 days 
followed by 10 g/day 

for 7 days 
Cross-over design ↔BM 

↑Strength, ↑Endurance 
(cycling capacity at fatigue 

threshold), ↔Objective 
function tests 

 

(Jakobi et al., 2001) 
7 males 

(72.5 ±2.5 years 
20 g/day for 5 days 

vs PL group 
(maltodrextin) (n = 5) 

 
↑BM, ↔LM ↔MVC or contractile force 

(Bermon et al., 1998) 
4 males and 4 

females 
(71.0 ±1.9 years) 

20 g/day for 5 days 
followed by 3 g/day for 

8 weeks 
vs PL (glucose) (n = 8) 

↔Lower limb volume, 
↔BM, ↔%BF 

↔Strength 
↔Endurance 

 

(Gualano et al., 
2014) 

15 females  
(66.1 ±4.8 years) 

20 g/day for 5 days 
followed by 5 g/day for 

23 weeks 

vs PL (dextrose) (n = 
15) 

↑LM, ↔FM 
↑Strength 

↑Objective function tests 
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↑Significant increase/improvement; ↔No significant change (aP < .050 for interaction between placebo and Cr group). Cr: Creatine; PL: Placebo; BM: Body mass; BF%: Body 
fat %; FM: Fat mass; LM: Lean mass; MVC: Maximal voluntary contraction; No details: No details are specified or this measure was not made.  
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4.2.4. Review conclusions 

 

Around 2/3rds of RA patients are middle-aged or elderly females (Symmons et al., 2002), and 

the existing evidence indicates that Cr can be successful in countering the effects of 

sarcopenia in older populations independent of exercise training (Rawson & Venezia, 2011), 

specifically in older females (Brose et al., 2003; Aguiar et al., 2013). Of the nine included trials 

that have supplemented the elderly with Cr, only three (Bermon et al., 1998; Rawson, 2000; 

Jakobi et al., 2001) found no beneficial effect on LM, strength, or physical function. However, 

the magnitude of effect appears to be reduced relative to that observed in young healthy 

individuals (Moon et al., 2013), and the limited number of studies indicates that further work is 

needed to fully evaluate the role of Cr supplementation (Devries & Phillips, 2014).  

 

Creatine has generally been shown to be effective in a range of clinical conditions (Chung et 

al., 2007) including muscle wasting disorders (Tarnopolsky et al., 2004; Banerjee et al., 2010), 

and cancer cachexia (Norman et al., 2006). Despite the inconclusive findings of the solitary 

RA study (Willer et al., 2000), of the twelve clinical trials identified, six showed positive effects 

of Cr on muscle mass and/or strength and function measures. 

 

Whilst this review has sought to evaluate studies investigating the use of Cr supplementation 

in populations with similar presentation to RA, it is limited by the lack of bias and/or quality 

assessment. Future reviews should ultilise an assessment of study quality and bias to help 

further determine the effects of Cr supplementation in these groups.  
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Table 4.4. Summary of clinical trials investigating the effects of creatine supplementation on body composition and physical 

function  

 

Study 
Condition 

 
Treatment 

arm 
Supplementation 

period 
Control arm 

Body composition 
changes 

Physical function 
changes 

Other 
effects 

(Roy et al., 
2005) 

Osteoarthritis 
n = 18 

 

10 g/day pre surgery; 
5 g/day for 30 day 

post-surgery 

vs PL (n = 19) 
(dextrose) 

 
↓%BF, ↓FM, 

↔LM (CSA), ↔BW 
 

↔Strength ↔PCr 

(Alves et al., 
2013) 

Fibromyalgia n = 16 
20 g/day for 5 days 
followed by 5 g/day 

for 16 weeks 

vs PL (n = 16) 
(dextrose) 

Not measured 
↑Strength 

 

↔QoL 
scores, 
↔Pain, 

↔Cognition, 
↑PCr 

 

(Norman et 
al., 2006) 

Cancer 
(cachexia) 

n = 16 
(colorectal 

cancer) 
 

20 g/day for 5 day 
followed by 5 g/day 

for 8 weeks 

vs PL (n = 15) 
(cellulose) 

↔LM 
↑Strength 

 
↔QoL scores 

 

(Bourgeosis et 
al., 2008) 

n = 9 
(adolescents 

with leukaemia 
(acute 

lymphoblastic) 
 

2 sets of 8 weeks 
(with a 6 weeks wash 

out in-between) 

vs control 
‘natural 

history’ group 
(n = 50) 

↔LM, ↓%BF 
 

No details 

↔Bone 
mineral 
content 

 

(Banerjee et 
al., 2010) 

Duchenne 
muscular 
dystrophy 

(DMD) 
 

n = 18 
(adolescents) 

 
5 g/day for 8 weeks 

 
vs PL (n = 15) 

(vitamin C) 
No details ↑Strength ↑PCr 

(Escolar et al., 
2005) 

n = 15 
(adolescents) 

5 g/day for 24 weeks 

 
vs PL (n = 16) 

(cocoa 
powder) 

No details 
↔Strength, 

↔Objective function 
tests 

 

(Tarnopolsky 
et al., 2004) 

n = 30 
(adolescents) 

0.10 g per kg/day for 
16 weeks 

 
Cross-over 
design (PL 

group 
dextrose) 

↑LM ↑Strength 
↓Bone 

breakdown 
markers 
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(Louis et al., 
2003) 

 
n = 15 

(adolescents) 
(12 with DMD 

and 3 with 
Becker 

dystrophy) 

3 g/day for 13 weeks 

Cross-over 
design (PL 

group 
maltodextrin) 

No details 
↑Strength (MVC), 

↑Fatigue resistance 
 

 

(Tarnopolsky 
et al., 2004) Mytonic 

muscular 
dystrophy 1 

(DM1) 
 

n = 34 5 g/day for 36 weeks 

 
Cross-over 
design (PL 

group 
dextrose) 

↔LM 
↔Strength, 

↔Objective function 
tests 

 

(Walter et al., 
2002) 

n = 34 
11 g/day for 10 days 
followed by 5 g/day 

for 45 days 

 
Cross-over 
design (PL 

group 
cellulose) 

↔LM 
↔Strength 

 
↔ADL, 

↔QoL scores 

(Schneider-
Gold et al., 

2003) 

Mytonic 
muscular 

dystrophy 2 
(DM2) 

n = 10 
10 g/day for 13 

weeks 
vs PL (n = 10) 

 
No details 

 
↔Strength 

 
↔QoL scores 

 
↑Significant increase/improvement; ↓Significant decrease/reduction; ↔No significant change (aP < .05 for interaction between placebo and Cr group). Cr: Creatine; PL: Placebo; 

CSA: Cross sectional area; ADL: Activities of daily living; PCr: Phosphocreatine; QoL: Quality of life; MVC: Maximal voluntary contraction; BM: Body mass; BF%: Body fat %; 
FM: Fat mass; LM: Lean mass; PRT = Progressive resistance training; No details: No details are specified or this measure was not made.  
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4.2.5. Factors affecting creatine effectiveness in certain individuals 

or populations 

 

Apart from inadequate supplement duration or dose, various other factors influence Cr 

effectiveness. It has been reported that 20–30% of individuals do not respond to Cr 

supplementation; when ‘non-responsiveness’ is defined as an increase in resting total muscle 

Cr of <10 mmol· kg/dw following 5 days loading at 20 g per day (Greenhaff et al., 1995). 

Syrotuik et al. (2004) found that based on pre-existing biological and physiological factors, 

‘responders’ (defined in that study as ≥20 mmol· kg/dw increase in intramuscular Cr) 

possessed a biological profile of: (i) low initial levels of total Cr or PCr (~<110 mmol· kg/dw); 

(ii) higher percentage of type II fibres (>63%); and (iii) a higher preload muscle fibre cross-

sectional area (CSA) (~>1500 μm2). For individuals whose initial muscle Cr concentrations 

reach near or above 150 mmol· kg/dw, Cr supplementation does not appear to augment 

muscle Cr uptake, increase PCr re-synthesis, or improve performance (Harris et al., 1992; 

Casey et al., 2000; Syrotuik et al., 2004). Not surprisingly, optimal responses to Cr 

supplementation are generally observed in groups with reduced serum and muscle levels of 

Cr such as vegetarians and low meat eaters, which include many older individuals.  

 

Although the majority of the studies reviewed found benefits of Cr supplementation in the 

elderly, it has been suggested that uptake of Cr into muscle is reduced in older adults (>60 

years) relative to younger participants (Rawson et al., 1999; Stec & Rawson, 2010), and that 

subsequently older adults may require a longer Cr treatment period (Chrusch et al., 2001).  

 

 

4.2.6. Safety of creatine  

 

Concerns about possible side effects of Cr supplementation have been raised in lay 

publications, mailing lists, and online forums. However, none of the studies included in this 

review, including those in clinical trials, reported any adverse incidents during the trials ranging 

from 5 days to 36 weeks. This is consistent with other studies of long term (10 months to 5 

years) (e.g., Poortmans et al., 1997; Poortmans & Francaux, 1998) or high dose Cr 

supplementation (10 g/day) (e.g., Earnest et al., 1996; Gualano et al., 2008) that have reported 

no adverse side effects. Further, a review of by Persky and Rawson (2007) found no increased 

incidence of side effects in clinical studies supplementing with Cr. Pertinent to RA, study by 

Chung et al. (2007) found that Cr supplementation had no effect on conventional anti-

inflammatory and immunosuppressive medical treatment, including steroid and MTX 
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treatment, for patients with chronic idiopathic inflammatory myopathies. Overall, current 

evidence does not hint towards any negative health effects of Cr (Walliman, 2013). Therefore, 

the anecdotal reports remain unsubstantiated and may be unrelated to Cr supplementation 

(Kreider et al., 1998).  

 

Concerns about the long-term safety of Cr have specifically been related to kidney function. 

Theoretically, the high nitrogen content (~32%) of Cr could place additional strain on the 

kidney if taken in large excess for a long period of time (Poortmans et al., 1997). Estimated 

glomerular filtration rate (eGFR) is widely accepted as the best overall measure of kidney 

function, with elevated serum and urine creatinine levels the most commonly used markers 

for estimating eGFR (Gualano et al., 2008). However, since Cr is converted to creatinine 

(Wyss & Kaddurah-Daouk, 2000), it is normal for individuals who take Cr supplements to have 

elevated creatinine levels (Shao & Hathcock, 2006), thus falsely suggesting renal function 

impairment. In 18 young healthy sedentary males, use of alternative eGFR markers such as 

cystatin C has shown that Cr supplementation does not promote renal dysfunction (Gualano 

et al., 2008). Whether cystatin C is useful marker of renal function following Cr 

supplementation in clinical populations or older adults requires further study.  

 

There is currently limited research on the effects of Cr supplementation in patients with exiting 

low eGFR. A prospective report (Gualano et al., 2009) suggests that short-term (35 days) Cr 

supplementation (5 days of 20 g/day followed by 5 g/day) does not affect kidney function in 

individuals with a single kidney and mildly decreased eGFR. However, more research is 

needed in this area. Similarly, no evidence has emerged that Cr supplementation results in 

impaired liver function or liver damage (Mayhew & Mayhew, 2002; Schroder et al., 2005). 

 

 

4.2.7. Prescription of creatine to patients  

 

4.2.7.1. Type of creatine 

Creatine supplements are usually taken as a tablet or powder (mixed with water), and exist in 

a variety of forms including Cr ethyl ester, Cr hydrochloride, and the most commonly available, 

Cr monohydrate (Cr complexed with a molecule of water). No differences in effectiveness 

have been found between these different Cr forms (Spillane et al., 2009).  
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4.2.7.2. ‘Loading’ dosage 

Creatine should be ‘loaded’ into the muscle (using a high dose) for the first few days followed 

by a lower maintenance dose (Bogdanis et al., 2007). The most common ‘loading’ dosage 

recommendation for Cr supplementation is 20 g/day (in four 5 g doses) for 5 days, as stores 

appear to be maximised within 5 to 6 days at this dose (Harris et al., 1992). Alternate loading 

phases exist including daily doses based on body mass such as 0.25 g/kg (Bogdanis et al., 

2007) or 0.15 g/kg (Vorgerd et al., 2000). However, a constant dose of 3 g/day, without an 

intensive loading phase, achieved an increase in total Cr levels equal to a standard 5 day 

loading protocol and subsequent maintenance phase after 28 days (Hultman et al., 1996). 

 

4.2.7.3. ‘Maintenance’ and frequency 

Total muscle Cr can be maintained after the initial loading phase by the ingestion of small daily 

Cr doses of 2–5 g (Hultman et al., 1996). This period of low dosage is called the ‘maintenance 

phase’. Here, Cr is usually taken in 8 to 12 week cycles, with a 4 to 5 weeks ‘washout’ period 

in between to allow serum Cr to return to baseline levels. 

 

 

4.3. Conclusion 

 

 

Oral Cr supplementation works primarily by enhancing the re-synthesis of ATP via increased 

stores of PCr in the muscle, and thus improving recovery during and after physical activity. 

Creatine also augments muscle protein synthesis thereby increasing muscle mass. This 

review found only one study in which RA patients were supplemented with Cr and its findings, 

whilst promising, were inconclusive. However, trials in populations with similar presentation to 

RA (i.e. reduced muscle mass and impaired physical function), including older females, 

indicate that Cr is an efficacious way to improve muscle mass, strength, and physical function. 

Therefore, additional studies in RA populations are advocated, as confirmation of the efficacy 

of Cr supplementation would provide an easy, safe, and effective means of reversing the 

effects of RC in the majority of the RA population.
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5.1. Introduction  

 

 

Patients with rheumatoid arthritis (RA) usually experience substantial loss of lean mass (LM) 

(known as ‘rheumatoid cachexia’ (RC) (Roubenoff et al., 1992; Roubenoff, 2009). This loss of 

LM is a major contributor to the decreased strength (Van Bokhorst-de van der Schueren et al., 

2012) and impaired physical function (Giles et al., 2008a; Summers et al., 2008; Lemmey et 

al., 2009; Kramer et al., 2012; Lusa et al., 2015) observed in RA.  

 

Contemporary pharmacologic treatments for RA, exemplified by the ‘treat-to-target (T2T)’ 

strategy, do not ameliorate this LM loss, nor fully restore physical function (Chapter 3; Marcora 

et al., 2006; Metsios et al., 2007; Engvall et al., 2010; Toussirot et al., 2014). Whilst exercise 

(specifically, progressive resistance training (PRT)) has been shown to be highly effective in 

restoring both LM and function in RA patients (e.g., Marcora et al., 2005a; Lemmey et al., 

2009), the lack of adherence to sufficiently intense training means this form of therapy is 

unlikely to be widely adopted (Lemmey et al., 2012). Due to its relative ease and simplicity, 

anabolic nutritional supplementation offers a potential adjunct treatment intervention for 

improving LM and function that could be widely accepted. Indeed, our group (Marcora et al., 

2005b) has previously demonstrated that daily oral protein supplementation, without additional 

exercise, for 12 weeks improved LM and some measures of objectively-assessed physical 

function in RA patients.  

 

Creatine (Cr), a combination of essential amino acids, is a popular dietary supplement 

generally shown to have greater benefits on both LM and physical function than generic 

protein supplementation (Nissen & Sharp, 2003; Cribb et al., 2007). Oral Cr supplementation 

is able to enhance adenosine triphosphate (ATP) re-synthesis by increasing initial stores of 

phosphocreatine (PCr) in the muscle, and thereby aid recovery during and after physical 

activity (Greenhaff et al., 1994). Creatine supplementation also increases LM (Nissen & Sharp, 

2003). Following Cr uptake, extracellular water (ECW) is absorbed by muscle via osmosis in 

order to restore intramuscular protein levels (Greenhaff et al., 1994; Ziegenfuss et al., 1998; 

Francaux & Poortmans, 2006), and the resulting increase in mechanical stress caused by the 

expansion in intracellular water (ICW) has been proposed to act as an anabolic signal for 

protein synthesis (Ingwall et al., 1974; Powers et al., 2003; Francaux & Poortmans, 2006). 
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The majority of trials investigating Cr usage have shown it to be effective in improving LM and 

performance measures in a range of athletic (e.g., Skare et al., 2001; Kreider, 2003; Kreider 

et al., 2010) and clinical populations (e.g., Rawson & Volek, 2003; Gualano et al., 2012; Alves 

et al., 2013; Gualano et al., 2014) including those with similar presentation to RA (i.e. reduced 

muscle mass and impaired physical function) such as muscular dystrophy and the elderly 

(Gotshalk et al., 2002, 2008). However, results are not completely unequivocal with several 

studies in older adults (Rawson et al., 1999; Rawson & Clarkson, 2000; Jakobi et al., 2001) 

and clinical populations (Walter et al., 2002; Tarnopolsky et al., 2004a, 2004b; Sakkas et al., 

2009) showing no effect on either LM or physical function (for review, see Chapter 4).  

 

To date, only one study (Willer et al., 2000) has investigated the efficacy of oral Cr 

supplementation in RA patients. In this short uncontrolled trial, twelve patients underwent three 

weeks of supplementation, and although strength increased, no changes in subjectively-

assessed physical function or muscle Cr levels were found, and body composition changes 

were not investigated. Thus, the findings of the trial are inconclusive, although they do provide 

some indication that Cr supplementation may be efficacious in RA patients. 

 

The current study aimed to investigate the effects of 12 weeks of oral Cr supplementation on 

body composition, strength, and objectively-assessed physical function in patients with RA. 

We hypothesised that Cr supplementation would: (1) increase LM; and (2) improve strength 

and objective physical function.  
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5.2. Patients and methods  

 

 

A 24-week, double-blind randomised, placebo-controlled trial was conducted between April 

2013 and August 2014 at the School of Sport, Health, and Exercise Science, Bangor 

University, UK. The study was approved by the North Wales Research Ethics Committee - 

West, and registered on the International Standard Randomised Controlled Trial Number 

Register (ISRCTN: 37558313). The full trial protocol can be found at 

http://clinicaltrials.gov/show/NCT01767844.  

 

 

5.2.1. Study population 

 

Rheumatoid arthritis patients with stable disease (i.e. no change in medications in the 

preceding 3 months) were recruited from outpatient clinics of the North West Wales 

Rheumatology department (Peter Maddison Rheumatology Centre, Llandudno General 

Hospital, North Wales). For inclusion, participants had to: (a) fulfil the American College of 

Rheumatology/European League Against Rheumatism 2010 revised criteria for the diagnosis 

of RA (Aletaha et al., 2010); (b) be aged ≥18 years; (c) not be cognitively impaired; (d) be free 

of other cachectic diseases or conditions preventing safe participation in the study; (e) have a 

glomerular filtration rate (GFR) ≥60 mL/min/1.73m2; (f) not be taking anabolic drugs or 

nutritional supplements; (g) not be currently participating in a regular, intense exercise training; 

and (h) not be pregnant. Participants were withdrawn if they experienced a change in 

medication, including the delivery of a corticosteroid (CS) injection, to treat active disease (i.e. 

disease flare). 

 

 

5.2.2. Supplementation and randomisation protocol 

 

Participants were randomised to receive either supplementary Cr (treatment) or placebo 

(control) drinks for 12 weeks. Randomisation was performed using a secure online system 

independently from the research team by the North Wales Organisation for Randomised Trials 

in Health (NWORTH), a registered clinical trials unit. Patients were stratified into two groups 

(i.e. Cr and placebo) based on age and sex (stratification variables: 18–44, 45–59, 60+ years). 
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Both the principle researcher (TJW) and participants were blinded to supplement assignment 

until trial completion. 

 

In accordance with manufacture recommendations, and previous strategies (e.g., Greenhaff 

et al., 1994; Willer et al., 2000), the Cr group received 20 g of Cr monohydrate 

(myprotein.co.uk, Cheshire, UK) (4 x 5 g/day) for a 5-day ‘loading period’ followed by 3 g/day 

for the remainder of the 12 week supplementation period (‘maintenance dose’). The Cr was 

mixed with a mango-flavoured drink powder (Foster Clarks Ltd, Malta, EU) to improve taste. 

The placebo group received only the mango-flavoured drink powder. Both groups received 

their supplements in individually portioned packets, which they were instructed to dilute with 

water to produce a mango-flavoured drink. The appearance of the different treatment packets 

were indistinguishable, as were the flavouring and colouring of the drinks (Figure 5.1.). 

Adherence was monitored through return of the empty packets, and participants were asked 

to maintain their routine physical activity and dietary habits and notify the investigators of any 

substantial lifestyle changes. 

 

 

Figure 5.1. Image shows placebo (left) and creatine (Cr) supplementation (right) treatments. Both treatments were 

indistinguishable in appearance, taste and smell. Image shows both treatments in their individually prepared bags 
(front), and mixed with water (back). 

 
Placebo Creatine 
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5.2.3. Assessments and outcome measures 

 

Participants were assessed at baseline (pre-supplementation), day 6 (post-loading phase), 

week 12 (immediately after cessation of supplementation), and week 24 (follow-up 12 weeks 

after cessation of supplementation). For each assessment, participants presented fasted, and 

having refrained from strenuous exercise, caffeine, and alcohol in the preceding 24 hours. 

Relevant information (age, disease duration, medication) was collected by interview and 

review of medical records. Throughout the study participants were questioned about any 

adverse events or side effects related to taking the supplement. 

 

5.2.3.1. Anthropometric and body composition measures 

As previously described in Chapter 3, body mass (BM) and height were recorded in 

accordance with standard procedures (Eston & Reilly, 2009). Body mass index (BMI) was 

calculated as BM (kg)/height (m2). Total and regional lean, fat, and bone masses were 

estimated using a whole body fan-beam dual energy X-ray absorptiometry (DXA) scanner 

(Hologic, QDR Discovery 45615, software V12.4). Appendicular lean mass (ALM; i.e. the 

summed LM of the arms and legs) was used as a surrogate measure of total body muscle 

mass (Kim et al., 2002). The radiation exposure was 3.6 μSv per scan and 14.4 μSv for the 

total study (i.e. four scans per person). 

 

Immediately after the DXA scan, and whilst still supine, total body water (TBW), intracellular 

(ICW), and extracellular (ECW) were estimated using bioelectrical impedance spectroscopy 

(BIS; Hydra 4200, Xitron Technologies, San Diego, USA). Measurements were taken on the 

right side of the body using disposable electrodes (Kendall Q-Trace Gold 5500, Mansfield, 

USA): two attached at the wrist and two at the ankle in accordance with the manufacturer’s 

wrist-to-ankle protocol. Quality control procedures were performed periodically (all 

measurements satisfied the manufacturer’s parameters for ICW and ECW; CV’s = 0.05% and 

0.02%, respectively) and the proximity of the scanner had no effect on the BIS (unpublished 

observations by our group).  

 

5.2.3.2. Strength and objective physical function measures 

Isometric maximal voluntary knee extensor strength (IKES) was measured using an isokinetic 

dynamometer (Humac Cybex Norm 2004, Computer Sports Medicine Inc, Massachusetts, 

USA) and maximal voluntary handgrip strength (HGS) was measured using a Grip-A 

dynamometer (Takei Kiki Kogyo, Japan). Three objective assessments of whole body physical 
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function were completed; the ‘sit-to-stand in 30 second’ test (STS-30), the ‘8-foot up and go 

test’ (8’UG), and the ’50-foot walk test’ (50’W). These tests were specifically developed for 

assessing the capacity of older adults to perform activities of daily living (Rikli & Jones, 2012), 

and are routinely used by our group (e.g., Marcora et al., 2005a, 2005b, 2006; Lemmey et al., 

2009, 2012; Matschke et al., 2010a, 2010b).  

 

5.2.3.3. Aerobic capacity  

The submaximal ‘Siconolfi’ step test (Siconolfi et al., 1985) was used to estimate aerobic 

capacity (VO2max). 

 

5.2.3.4. Clinical measures and self-reported physical disability 

Disease activity was assessed by the Disease Activity Score in 28 joints (DAS28), and 

systemic inflammation by C-reactive protein (CRP). To determine subject eligibility, and 

examine the effect on renal function, estimated glomerular filtration rate (eGFR) was 

monitored at baseline and then periodically over the course of the treatment period from review 

of patients’ regular blood chemistry screenings. Self-reported physical disability was 

subjectively assessed using the physical function component of the Multi-dimensional Health 

Assessment Questionnaire (MDHAQ) (Pincus et al., 2007). 

 

 

5.2.4. Statistical analysis 

 

An a-priori power calculation using the muscle strength index (MSI) data8 of Willer et al. 

indicated that a minimum sample of 12 per group was required (mean Δ = 7.4 MSI units (%), 

SD Δ = 9.8, effect size (ES) = 0.8, P = .050, power = 0.80). This estimate was confirmed using 

the maximal work improvements during sprint cycling observed in elderly men following Cr 

supplementation (Wiroth et al., 2001) (mean Δ 3.1, SD Δ = 2.7, ES = 1.1, P = .050, power = 

0.85). To allow for dropouts we aimed to recruit 20 patients per group.  

 

Unless otherwise stated, data is presented as mean (±SE). Significance was set at P < .05 

and a trend was recognised as P = .05–.10, for analysis conducted on participants who 

completed supplementation. The primary outcome of the study was ALM (i.e. ‘muscle mass’), 

and secondary outcomes included measures of objective physical function; DXA-measures of 

                                                           
8 Ideally we would have powered the trial using body composition data from previous trials investigating Cr use in 
RA, however, no such studies exist. Although trials investigating body composition change in the elderly were 
available, we felt that powering our study using data from RA patients was more appropriate. Consequently, we 
chose the Willer et al. strength (i.e. MSI) changes to calculate required sample size. 
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total LM, fat mass (FM) and BF%; bioelectrical impendence measures of TBW, ICW, and 

ECW; anthropometric measures; self-reported health and disability (SF-36 and HAQ); and 

disease activity (DAS28 score). Chi-squared tests were used for comparison of dichotomous 

variables. Differences between groups for outcome variables at each assessment point were 

tested by analysis of variance (ANCOVA), with baseline values controlled as a co-variant. 

 

Variables were checked for univariate outliers, and normal distribution using Shapiro-Wilk 

tests. Where necessary, data (STS-30, 8’UG, 50’W) was logarithm transformed to obtain 

normally distributed data, and to assess its relative effect on associated significance values. 

Confidence intervals (CI) (95%) and ES (η2: small ≥.01; medium ≥.08; large ≥.26; very large 

≥.50) were calculated, and Pearson product–moment correlation assessed relationships (r) of 

interest. Statistical guidance was provided by the NWORTH trials unit, and data was analysed 

using the Statistical Package for the Social Sciences 22 (SPSS) (Chicago, USA). 

 

5.2.4.1. Missing data 

Where appropriate, the expectation-maximization algorithm (EM) was used to impute missing 

DXA (8% of data points missing; 12/140), IKES (6%; 9/140), HGS (5%; 7/140), STS-30 (5%; 

7/140), 8’UG (5%; 7/140), 50’W (7%; 10/140)) values and restore sample size. The same eight 

participants (Cr: n = 5; placebo: n = 3) were unable (not requested), due to problems with pain 

or balance, to perform the step test throughout the trial (i.e. at each time point). As such, 

VO2max data was also imputed.  

 

In these instances of missing data, the EM algorithm was used to impute missing values 

(Schafer, 1997), restore sample size and ensure that missing outcome measures were unlikely 

to bias the results. Expectation-maximization is based on two iterating (50 iterations were 

used) steps – expectation and maximization – which generate means and variances for 

missing data based on known values for that variable. Data was estimated from other variables 

(i.e. based on the r in each group for that particular variable). Little's MCAR test (to assess if 

data was ‘missing completely at random’) and Separate Variance t-tests (to assess if data was 

‘missing at random’) indicated that EM was an appropriate method to use. Expectation-

maximization was employed above ‘multiple imputation’9 which does not permit necessary 

analysis in SPSS on multiple datasets (Van Ginkel & Kroonenberg, 2014), and above other 

imputation methods such as ‘last observation carried forward’ which is now largely 

discouraged in clinical trials (e.g., Molnar et al., 2008; Blankers et al., 2010). Sensitivity 

                                                           
9 No differences in accuracy have been reported between methods (Lin, 2010), and for reference we compared 
both methods and considered the outputs (group means) to be near identical. 
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analysis using only measured (‘raw’ or ‘complete case’) data was used to confirm our 

observations with EM data10.  

                                                           
10 Sensitivity analysis using ‘raw’/’complete case’ data confirmed results from EM data. In terms of between group 
differences, in the Cr group statistical significance (i.e. P < .05) was lost in some variables that had previously 
demonstrated (possibly due to insufficient n): (baseline to week 12): ALM (primary outcome measure) (0.50 kg, P 
= .005*, i.e. maintained significance); total LM (0.90 kg, P = .097); FM (0.26 kg, P = .674); TBW (1.10 L, P = .064§); 
ICW (0.76 L, P = .064§); ECW (0.35 L, P = .251§); (B-24): ALM (0.08 kg, P = .778); total LM (-0.12 kg, P = .832); 
FM (0.01 kg, P = .893); TBW (0.28 L, P = .678); ICW (-0.14 L, P = .794); ECW (0.19 L, P = .491).  
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5.3. Results  

 

 

5.3.1. Baseline demographics 

 

Forty patients were randomised and commenced treatment with either Cr (n = 18) or placebo 

(n = 22). The flow of patients through the study is shown in Figure 5.2. For patients who 

completed the trial (Cr: n = 15; placebo: n = 20), there were no statistically significant 

differences in demographic, disease, treatment, body composition, strength, or objective 

physical function variables between the groups at baseline; although the placebo group were 

somewhat larger (BM, LM, and FM) and consequently tended to be stronger (Table 5.1.). 

 

 

5.3.2. Treatment safety and compliance 

 

Five patients withdrew from the trial. In the Cr group, one female (64 years) withdrew 

complaining of lethargy and aching muscles (this was not considered treatment related, and 

was attributed to fatigue following function testing due to poor physical fitness, obesity, being 

a smoker, and having moderate disease activity), and a female (70 years) and a male (44 

years)11 were both withdrawn after being administered IM CS injection to treat a disease flare 

druing the study. In the placebo group, one male (62 years) suffered from a reoccurrence of 

angina (prior history), and one female (74 years) was withdrawn due to receiving an IM CS 

injection for a disease flare. 

 

Over the 12 week treatment period, no changes in DAS28 were observed in either group (Cr 

Δ= -0.1 ±0.2; placebo Δ= -0.1 ±0.2; between-group difference: 0.0 (95% CI: -0.6–0.6), P = 

.990, η2 = .00)). No treatment-related adverse side effects were reported in the Cr group, and 

all patients’ eGFR remained ≥60 mL/min/1.73m2. The supplementary drinks were well 

received, with no differences in compliance (P = .896; mean consumption of 99% of provided 

supplement consumed, range 87–100%; and mean of 99%, range 80–100%, for Cr and 

placebo, respectively). All participants declared no substantial changes in diet, medication, 

and lifestyle during the study.  

                                                           
11 See Chapter 7 for the effect of this CS injection on body composition. 
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Figure 5.2. CONSORT diagram showing recruitment and path of patients through the study. GFR = (estimated) 

glomerular filtration rate; Cr = Creatine supplementation group; DNC = randomised but did not commence 
treatment (i.e. did not attend baseline and were subsequently withdrawn); * = due to missing data, final analysis 
for body composition data included values using expectation-maximization imputed data; # = missed sessions 
(placebo) at day 6, week 12 and week 24 were not the same participant.  
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Table 5.1. Baseline demographics of rheumatoid arthritis patients who 

underwent 12 weeks of oral creatine or placebo supplementation 

 

 Creatine (n = 15) Placebo (n = 20) P 

 Age (years) 63.0 (±10.0) 57.2 (±10.4) .104 

 Sex (female) (%) 10 (67) 14 (70) .833 

 Disease duration (months) 112.4 (±82.8) 141.4 (±160.1) .493 

 Rheumatoid factor +, n (%) 8 (53) 13 (65) .376 

 Height (cm) 165.1 (±7.9) 166.1 (±9.1) .734 

 BM (kg) 67.3 (±10.3) 76.7 (±19.0) .092# 

 BMI (kg/m2) 24.7 (±3.6) 27.8 (±6.6) .113 

 ALM (kg) 18.4 (±4.2) 20.6 (±5.7) .227 

 Total LM (kg) 45.9 (±8.5) 50.1 (±12.4) .274 

 Total FM (kg) 19.8 (±7.2) 24.9 (±10.5) .113 

 DAS28 2.8 (±0.8) 2.6 (±0.9) .608 

 

Medications, n (%) 
   

 NSAIDS  4 (27) 10 (50) .163 

 Methotrexate 9 (60) 12 (60) 1.00 

 Other DMARDs 6 (40) 7 (35) .889 

 Biologics  1 (7) 4 (20) .617 

 Current corticosteroids a 2 (13) 2 (10) .759 

 

Strength and physical function measures 

 IKES (N) 348 (±156) 417 (±127) .159 

 HGS (N) 236.6 (±92.8) 237.9 (±99.8) .969 

 STS-30 (reps) 11.7 (±4.0) 13.2 (±2.9) .206 

 8’UG (secs) 8.2 (±3.3) 6.6 (±1.7) .119 

 50’W (secs) 11.0 (±4.0) 9.8 (±2.2) .300 

 VO2max (L/min) 1.8 (±0.4) 1.7 (±0.5) .918 

 MDHAQ 0.5 (±0.5) 0.5 (±0.4) .917 

 
BM = body mass; BMI = body mass index; ALM = appendicular lean mass; FM = fat mass; DAS28 = disease 
activity score in 28 joints; NSAIDS = non-steroidal anti-inflammatory drugs; DMARDs = disease modifying anti-
rheumatic drugs; IKES = isometric knee extensor strength; HGS = handgrip strength; STS-30 = sit-to- stand in 30 
second test; 8’UG = 8-foot up and go; 50’W = 50-foot walk; VO2max = estimated VO2max from Siconolfi step test; 
MDHAQ = Multi-dimentional Health Assessment Questionnaire. a = current corticosteroid use, range 2.5–5.0 mg. 

Unless stated, data presented as mean (±SD). * P < .05; # P = .05–.10. 

 

 

5.3.3. Treatment effectiveness  

 

5.3.3.1. Body composition measures 

Twelve weeks of Cr supplementation resulted in a significant increase in ALM of 0.52 (±0.13) 

kg in the Cr group, with no change in the placebo group (0.05 (±0.13) kg; between-group P = 

.004, η2 = .23 (medium)) (Table 5.2). Similarly, total LM increased by 0.60 (±0.37) kg) following 
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Cr supplementation, with no change in the placebo group over the same period (-0.06 (±0.29) 

kg), albeit the between-group change was not significant (P = .158, η2 = .06 (small)). The 

increase in LM accounted for most of the 1.10 (±0.58) kg BM gain observed in these patients 

from baseline to week 12 (P = .195, η2 = .06 (small)). In the Cr group there was an increase 

in ICW from baseline to week 12 (0.64 ±0.22 L, P = .035, η2 = .13 (medium)), however this 

change was only weakly correlated with the ALM increase (r = .481, P = .082). 

 

At week 24, the increases from baseline values for ALM (P = .293, η2 = .03 (small)) and total 

LM (P = .977, η2 = .00) were comparable for both groups. This indicates a regression back to 

baseline for ALM and total LM in the Cr group following supplementation cessation and further 

supports a treatment effect. From weeks 12 to 24, the decline in ALM in the Cr group 

corresponded with reductions in water compartments (TBW (r = .801, P = .001) and, more 

pertinently, ICW (r = .711, P = .004). No changes in FM or body fat % were observed at any 

time point, and, similarly, no significant changes in any aspect of body composition were 

detected at day 6, for either group. 

 

5.3.3.2. Strength and physical function measures 

The effects of Cr supplementation on strength and objective physical function measures are 

displayed in Table 5.3. There was no change in IKES over the 12 week treatment period with 

the increase over time between the groups comparable (P = .408, η2 = .02 (small)). Following 

12 weeks cessation of Cr supplementation, IKES was seemingly increased in the Cr group, 

as evidenced by a 34 (±14) N increase from baseline to week 24 (P = .075, η2 = .10 (medium)) 

relative to the placebo group. However, this trend was the result of one participant who 

improved by 143 N from baseline to week 24. Removing this individual resulted in the loss of 

this trend (adjusted means, baseline to week 24 change: Cr = 25 (±14) N, placebo = 2 (±11) 

N, between-group difference: 23 (95% CI: -14–60) P = .215, η2 = .05 (small)). Similarly, there 

were no differences between the two groups in changes in HGS from baseline to week 12 (P 

= .833, η2 = .00), or to week 24 (P = .969, η2 = .00).  

 

Consistent with the lack of effect on strength measures, there were no meaningful changes in 

any of the objective physical function measures, as both groups improved their STS-30, 8’UG, 

and 50’W test performances comparably (between-group P’s = .764, .555, and .335, 

respectively, for baseline to week 12 between-group changes). Creatine supplementation also 

had no effect on estimated VO2max (L/min) (between-group P = .762, η2 = .00), or self-

reported physical disability (MDHAQ) (Cr = -0.1 ±0.1, placebo = -0.1 ±0.1; between-group 

difference, 0.0 (95% CI: -0.3–0.4), P = .836, η2 = .06 (small)) over the 12 week 

supplementation period. 
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Table 5.2. Changes in body composition in rheumatoid arthritis patients following 12 weeks oral creatine supplementation 

 

  Creatine (n = 15) Placebo (n = 20) Differences between-group for ∆ 

  Mean Mean Mean (CI) P η2 

 ALM (kg) Δ B–12 +0.52 (±0.13) +0.01 (±0.11) 0.52 (0.18–0.86) .004* .23 

 Δ B–24 +0.40 (±0.18) +0.15 (±0.15) 0.25 (-0.23–0.73) .293 .03 

 Total LM (kg) Δ B–12 +0.60 (±0.37) -0.06 (±0.29) 0.65 (-0.27–1.57) .158 .06 

 Δ B–24 +0.21 (±0.37) +0.19 (±0.32) 0.01 (-0.99–1.01) .977 .00 

 BM (kg) Δ B–12 +1.10 (±0.58) +0.11 (±0.46) 0.99 (-0.54–2.52) .195 .06 

 Δ B–24 +0.61 (±0.70) +0.92 (±0.55) -0.31 (-2.15–1.53) .736 .00 

 Total FM (kg) Δ B–12 +0.41 (±0.45) +0.18 (±0.37) 0.23 (-0.94–1.40) .693 .01 

 Δ B–24 +0.65 (±0.52) +0.48 (±0.45) 0.17 (-1.26–1.60) .810 .00 

 Body fat (%) Δ B–12 +0.1 (±0.4) +0.5 (±0.3) -0.3 (-1.4–0.8) .595 .01 

 Δ B–24 +0.3 (±0.5) +0.6 (±0.4) -0.3 (-1.6–1.0) .608 .01 

 

Water compartments 

 TBW (L) Δ B–12 +1.08 (±0.27) -0.01 (±0.23) 1.07 (0.34–1.80) .005* .22 

 Δ B–24 +0.42 (±0.31) -0.11 (±0.27) 0.53 (-0.32–1.37) .213 .05 

 ICW (L) Δ B–12 +0.64 (±0.22) -0.01 (±0.19) 0.65 (-0.05–1.24) .035* .13 

 Δ B–24 +0.12 (±0.24) -0.10 (±0.20) 0.22 (-0.41–0.85) .481 .02 

 ECW (L) Δ B–12 +0.44 (±0.11) 0.0 (±0.09) 0.44 (-0.15–0.73) .004* .23 

 Δ B–24 +0.36 (±0.12) +0.03 (±0.11) 0.36 (0.03–0.68) .035* .13 

 
ALM = appendicular lean mass; BM = body mass (scales); FM = fat mass; TBW = total body water; ICW = intracellular water; ECW = extracellular water. Changes (Δ) between 
time points (B = baseline, 12 = week 12 (immediately post-supplementation); 24 = week 24 (12 weeks post-supplementation)) are presented as the adjusted mean (±SE) from 
ANCOVA. The between-group difference for each Δ is displayed with 95% confidence interval (CI) along and effect size, η2: small = .01; medium = .08; large = .26; very large = 
.50. * P < .05.  
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Table 5.3. Changes in strength and objective physical function measures in rheumatoid arthritis patients following 12 weeks 

oral creatine supplementation 

 

  Creatine (n = 15) Placebo (n = 20) Differences between-group for ∆ 

  Mean  Mean  Mean (CI) P η2 

Strength measures 

 IKES (N) Δ B–12 +26 (±12) +13 (±10) 13 (-19–45) .408 .02 

 Δ B–24 +34.3 (±13.7) +0.7 (±11.8) 33.6 (-3.6–70.9) .075# .10 

 HGS (N) Δ B–12 +11.0 (±6.8) +9.1 (±5.9) 1.9 (-16.3–20.1) .833 .00 

 Δ B–24 +9.5 (±6.0) +9.2 (±5.2) 0.3 (-15.9–16.6) .969 .00 

 

Objective physical function measures 

 STS-30 (reps) Δ B–12 +2.0 (±0.7) +1.8 (±0.5) 0.2 (-1.6–1.9) .764 .02 

 Δ B–24 +2.1 (±0.7) +2.3 (±0.6) -0.2 (-1.9–1.4) .856 .01 

 8’UG (secs) Δ B–12 -0.44 (±0.24) -0.25 (±0.21) -0.19 (-0.85–0.46) .555 .01 

 Δ B–24 -0.29 (±0.30) -0.32 (±0.26) 0.03 (-0.80–0.86) .943 .00 

 50’W (secs) Δ B–12 -0.31 (±0.23) -0.61 (±0.20) 0.30 (-0.32–0.91) .335 .03 

 Δ B–24 -0.23 (±0.25) -0.40 (±0.22) 0.17 (-0.50–0.85) .606 .08 

 VO2max (L/min) Δ B–12 0.0 (±0.0) 0.0 (±0.0) 0.0 (-0.1–0.1) .762 .00 

Δ B–24 0.0 (±0.1) +0.1 (±0.0) -0.1 (-0.2–0.1) .219 .06 

 
IKES = isometric knee extensor strength; HGS = handgrip strength; STS-30 = sit-to- stand in 30 second test; 8’UG = 8-foot up and go; 50’W = 50-foot walk; VO2max = estimated 
V02max from Siconolfi step test. Changes (Δ) between time points (B = baseline, 12 = week 12 (immediately post-supplementation); 24 = week 24 (12 weeks post-
supplementation)) are presented as the adjusted mean (±SE) from ANCOVA. The between-group difference for each Δ is displayed with 95% confidence interval (CI) and effect 
size, η2: small = .01; medium = .08; large = .26; very large = .50. * P < .05; # P = .05–.10. 
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5.4. Discussion 

 

 

Our results indicate that Cr supplementation improves body composition, specifically muscle 

mass, but not strength or objective physical function in patients with RA. In the current study, 

both ALM (+0.52 kg) and total LM, (+0.60 kg) increased following 12 weeks of Cr 

supplementation. Whilst there was a small and non-significant increase in FM as a 

consequence of Cr supplementation (0.41 ±0.45 kg), the greater gain in ALM meant that 

proportional muscle mass (ALM/BM%) was not diminished (27% to 28%, respectively) from 

baseline to week 12. The addition of LM observed in the Cr group cannot be attributed to 

supplementation-induced increased calorie intake. Twelve weeks of Cr supplementation 

resulted in an additional calorie intake of approximately 1348kcal (based on ~4kcal/g protein). 

Given that 1 kg FM ≈ 7700 kcal, this over nutrition would equate to a FM gain of ~0.18 kg. The 

difference observed in FM gain between the Cr and placebo groups was 0.23g, therefore 

whilst the additional calories account for the majority of the difference in FM gain, they do not 

account for the difference in LM (a 0.60 kg increase in the Cr group). 

 

The magnitude of LM increase we observed is comparable to that seen previously in older 

men (Gotshalk et al., 2002), older women (Gotshalk et al., 2008; Gualano et al., 2014), and 

patients with muscle dystrophy (Tarnopolsky et al., 2004a) following Cr supplementation. The 

body composition changes are also similar to those we previously observed following 12 

weeks of protein supplementation in RA patients (i.e. increases of 0.40 kg in ALM and 0.73 kg 

in total LM, whilst FM remained unchanged (Marcora et al., 2005b)). These results, together 

with the response to PRT (Marcora et al., 2005a; Lemmey et al., 2009), and the finding that 

muscle quality (i.e. maximal force exerted per unit muscle) is not impaired in RA patients 

(Matschke et al., 2010a, 2010b), further emphasise that RA patients are not, as once believed 

(Rall et al., 1996), resistant to muscle anabolic stimuli. 

 

The changes in ALM following 12 weeks Cr supplementation were reflected in changes in 

body water, specifically a significant 1.08 L increase in TBW due to expansion of both ICW 

(0.64 L), and ECW (0.44 L) during this period. Similar changes in body water were observed 

in younger adults following Cr supplementation (Ziegenfuss et al., 1998; Powers et al., 2003; 

Francaux & Poortmans, 2006). The mechanisms by which Cr supplementation increases TBW 

and shifts fluid into the intracellular space are unclear (Ziegenfuss et al., 1998). However, it 
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has been suggested that as skeletal muscle cell Cr and PCr concentrations rise, ECW is drawn 

into the cell by osmosis to maintain intracellular protein concentration (Lang et al., 1998; 

Ziegenfuss et al., 1998; Francaux & Poortmans, 2006). The uptake of Cr into the muscle 

following supplementation (Greenhaff et al., 1994), and subsequent increases in mechanical 

stress caused by the rise in ICW have been postulated to stimulate protein synthesis (Ingwall 

et al., 1974), although it is unclear if Cr augments muscle protein by this mechanism (Francaux 

& Poortmans, 2006).  

 

In our trial, at week 24 (i.e. 12 weeks after Cr supplementation ceased), ICW returned towards 

its baseline level and, over the same ‘washout’ period, 0.12 kg ALM and 0.38 kg total LM were 

lost. These reversions to, or toward, baseline over the 12 week withdrawal period, provide 

further evidence that the changes seen at week 12 are due to Cr supplementation. 

Interestingly, at week 24, despite the losses due to withdrawal of Cr, ALM and total LM were 

still 0.40 kg and 0.21 kg, respectively, above baseline values, suggesting some longer term 

retention of body composition changes following Cr supplementation.  

 

The lack of a Cr-induced improvement in either strength or function that we observed in this 

study contrasts with the 14% gain in composite strength reported by Willer et al. (2000) 

following short-term Cr supplementation in RA patients. Similarly, improvements in both 

strength (IKES and HGS) and objective physical function measures, such as the 5-repetition 

STS and 6 metre tandem walk test, following Cr supplementation have been observed in older 

adults (Gotshalk et al., 2002; Brose et al., 2003; Stout et al., 2007; Gotshalk et al., 2008; 

Gualano et al., 2014), as well as other clinical groups such as patients with fibromyalgia (Alves 

et al., 2013) and muscle dystophy (Tarnopolsky et al., 2004).  

 

However, the reported effects of Cr supplementation on measures of strength and function 

are equivocal. Creatine supplementation had no effect on HGS, IKES, timed 30ft walk (30’W), 

and a timed four step climb test (SCT) in osteoarthritic patients following surgery (Roy et al., 

2005), whilst in patients with muscular dystrophy, supplementation with Cr failed to improve 

HGS or IKES (Walter et al., 2002; Schneider–Gold et al., 2003; Tarnopolsky et al., 2004b), or 

function: SCT, 30’W, and time taken to stand from supine (Tarnopolsky et al., 2004a, 2004b; 

Escolar et al., 2005). Furthermore, despite eliciting an increase in LM, 2 weeks of Cr 

supplementation did not improve ankle dorsiflexion strength in 20 HIV–positive men (Sakkas 

et al., 2009). Additionally, several studies in older adults (Rawson et al., 1999; Rawson & 

Clarkson, 2000; Jakobi et al., 2001; for review, see Chapter 4) found no benefit of Cr 

supplementation on either strength or function. Consistent with the literature, Cr 
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supplementation in our investigation had no effect on aerobic capacity (Kreider, 2003; Kreider 

et al., 2010; Alves et al., 2013). 

 

The explanations for the lack of change in strength and objective physical function following 

Cr supplementation in our trial is unclear, but may be due to several factors: 

 

- Since both groups in our trial had comparable improvements in the function tests, it 

suggests that, despite prior practice, performance was enhanced by a learning effect.  

 

- The increase in LM over the 12 weeks may simply reflect an increase in ICW (i.e. muscle 

water content), and, as hypothesised by Sakkas et al. (2009), may not be of ‘functional 

benefit’ as protein synthesis has not yet occurred. 

 

- As Cr supplementation primarily increases the performance of high-intensity activity lasting 

~2-5 seconds (i.e. those using the ATP/PCr system), it may that the objective physical 

function tests used in the current trial were unable to noticeably benefit from an 

improvement in this system. For example, the STS-30 lasts for a period of 30 seconds. 

However, the one test expected to benefit most from improvments in the ATP/PCr system, 

the IKES which lasts for ~3 seconds, also did not improve. 

 

Responsiveness to Cr supplementation is reported to vary, with only ~70–75% of individuals, 

irrespective of age, deemed to be ‘responders’ (Greenhaff et al., 1994; Syrotuik & Bell, 2004). 

The main determinant of ‘responsiveness’ is thought to be initial muscle Cr concentrations, as 

when this is high (~150 mmol· kg/dw) supplementation does not appear to augment muscle 

Cr stores further. (Syrotuik & Bell, 2004). Consistent with this estimation, strength increases 

were noted in 67% of RA patients in the Willer et al. study, and in our study, 80% of participants 

‘responded’, when ‘response’12 was defined by an increase in ALM (range: 0.24–1.47 kg).  

 

As the current study was a ‘proof of principle’ (efficacy) trial, we did not consider it appropriate 

to use an intention-to-treat approach (i.e. include data from patients withdrawn or whom 

dropped out). However, it should be noted that dropouts from the study were not treatment-

related, and therefore, exclusion of these participants was unlikely to have biased our sample 

heavily. 

 

                                                           
12 The remaining ~20% ‘non-responders’ change in ALM between Baseline and Week 12 ranged from -.43 to .05 
kg. 
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In the current study, oral Cr supplementation was well tolerated, with high compliance and no 

adverse side effects. Additionally, supplementation had no effects on RA disease activity or 

renal function (eGFR), thus providing further evidence that supplementing with Cr is safe 

(Willer et al., 2000; Gotshalk et al., 2002; Francaux & Poortmans, 2006). Although the lack of 

effects on strength and physical function are disappointing, the increase in LM suggests that 

Cr supplementation may be beneficial in patients with severe RC, since a marked loss of LM 

both impairs the body’s ability to fight infection due to limited expendable protein reserve for 

immune cell production, and increases the risk of mortality (Summers et al., 2008). The lack 

of efficacy demonstrated on physical function in this study further emphasises that sustained 

PRT (Marcora et al., 2005a; Lemmey et al., 2009) should be performed by RA patients wishing 

to substantially increase LM, and, subsequently, restore their strength and physical 

functioning.  

 

 

5.5. Conclusion  

 

 

In patients with RA, 12 weeks of oral Cr supplementation had beneficial effects on muscle 

mass, but not on strength or objectively-assessed physical function. Given compliance to Cr 

was high, and no adverse treatment related effects were observed, Cr may offer an 

acceptable, safe, low-cost, and reasonably effective means for RA patients with severe RC to 

help restore muscle mass. However, for patients wishing to improve their muscle mass, 

strength and physical function, PRT should be performed as an adjunct intervention option. 
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6 
 

Serum biomarkers of muscle anabolism 

and catabolism, and systemic 

inflammation in rheumatoid arthritis 

patients: Potential markers of 

rheumatoid cachexia? 

 

 

In collaboration with Professor Claire Stewart at Liverpool John Moore’s University. 
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6.1.  Introduction 

 

 

‘Rheumatoid cachexia’ (RC) is the term given for the loss of lean mass (LM) and increased fat 

mass (FM) seen in patients with rheumatoid arthritis (RA) (Roubenoff et al., 1992; Roubenoff, 

2009). The pathogenesis of this condition, and in particular the muscle loss, is complex and 

unresolved (Walsmith et al., 2004; Fanzani et al., 2012). Investigations into these mechanisms 

are often cost-intensive and invasive (e.g., muscle biopsies), creating a major difficulty in 

developing research-informed anti-muscle wasting therapy strategies (Palus et al., 2014). 

Specifically, there is a need for the identification of reliable serum-based biological markers 

(biomarkers) that can be easily attained and reliably detected at low cost to guide diagnosis 

and therapy in conditions characterised by muscle wasting (Zoico & Roubenoff, 2002; Cesari 

et al., 2012; Palus et al., 2014; Hofmann et al., 2015). 

 

In this study, we assessed a variety of serum-based biomarkers potentially implicated in the 

pathogenesis of RA and RC. Subsequently, and in order to provide insight into disease 

adaptation, we conducted exploratory investigations of these biomarkers in a range of clinical 

scenarios including: RA patients versus matched healthy controls (HC); RA patients with 

untreated, uncontrolled disease versus patients with disease-modifying anti-rheumatic drug 

(DMARD) treated, controlled disease; ‘recent-onset’ versus ‘established’ RA; anti-TNF therapy 

versus standard DMARD therapy; and following two non-pharmaceutical anabolic 

interventions (i.e. high intensity PRT, and nutritional supplementation) used to attenuate the 

effects of RC. To our knowledge this is the first study to investigate a range of potential 

biomarkers of RC to see if consistent patterns or models emerge across a variety of clinical 

and anabolic scenarios. 
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6.2.  Potential biomarkers of interest: a review 

 

 

6.2.1. Overview and justification of biomarkers selected 

 

Rheumatoid arthritis is characterised by over-expression and, subsequently, elevated 

concentrations of pro-inflammatory cytokines (e.g., tumor necrosis factor-α (TNF-α), 

interleukin (IL)-1, and IL-6) locally in the joint and systemically in the blood (Walsmith & 

Roubenoff, 2002; Choy, 2012; Jung et al., 2012; Shrivastava & Pandey, 2013). Aside from 

arthropathy, these cytokines are thought to be central to the inflammation-driven muscle loss 

seen in RC (Roubenoff et al., 1994; Walsmith & Roubenoff, 2002). Consequently, 

measurement of inflammatory markers are important in determining markers of RC.  

 

As a result of interference from cytokines, in particular TNF-α (Roubenoff et al., 1994; 

Walsmith & Roubenoff, 2002; Engvall et al., 2008), RC is attributed to an imbalance of anabolic 

(e.g., insulin growth factor-I (IGF-I)) and catabolic (e.g., myostatin) factors (e.g., Lee & 

McPherron, 2001; Blackman et al., 2007; Engvall et al., 2008; Palus et al., 2014). As such, we 

assessed both IGF-I and myostatin concentrations. As RC is characterised by excessive 

adiposity, we also explored the role of two key adipokines (adiponectin and leptin) which are 

principally expressed by adipocytes. In recent times, these adipokines have attracted 

increasing interest in rheumatology due to their roles in inflammation and immune regulation 

(Giles et al., 2009; Neumann et al., 2011).  

 

A figurative summary of our proposed markers and their potential roles in RC is shown in 

Figure 6.1. In the next section, these biomarkers and their response to pharmacological and 

non-pharmacological anabolic interventions are discussed in greater detail. 
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Figure 6.1. A summative figure of the complex interaction of potential cytokines and hormones in RC. ? = 

unknown/clear relationship in RA; +/- = inconsistent findings in regard to direction of effect.  

 

 

6.2.2. Inflammatory biomarkers 

 

6.2.2.1. Tumor necrosis factor-α (TNF-α)  

The cytokine TNF-α is produced primarily by monocytes and macrophages (Shrivastava & 

Pandey, 2013), in addition to adipocytes and skeletal muscle (Pedersen & Febbraio, 2012). 

Whilst beneficial at low concentrations in RA (Feldmann & Steinman, 2005), at high 

concentrations, TNF-α causes excess inflammation, overproduction of other cytokines, and 

articular damage (Jung et al., 2012; Shrivastava & Pandey, 2013). Further, TNF-α, formerly 

known as ‘cachectin’ (because it causes cachexia (Beutler et al., 1985)), has been implicated 

in the muscle wasting found in chronic disease (Sherry & Cerami, 1988), and although the 

exact mechanisms are unclear, is believed to be the principal driver of RC (Roubenoff et al., 

1992, 1994; Walsmith & Roubenoff, 2002; Walsmith et al., 2004). 

 

6.2.2.2 Soluble tumor necrosis factor-alpha receptor-I (sTNFR-I)  

Tumor necrosis factor-α binds to two high affinity cell surface receptors: TNF-RI (p55) and -

RII (p75). Soluble TNF receptors I and II (sTNF-RI and II) are released by proteolytic cleavage 

of the extracellular domains of these transmembrane receptors (Rooney et al., 2000; Spoettl 



126 

 

et al., 2007). These sTNF-Rs, also known as ‘TNF-binding proteins’ (Björnberg et al., 1994), 

act as TNF-α antagonists and can inhibit TNF-α mediated pro-inflammatory effects (Hawari et 

al., 2004; Spoettl et al., 2007). For example, sTNF-RI binds with circulating TNF-α, competing 

with cell surface receptors and inhibiting its biological activity (Rooney et al., 2000). As such, 

in an effort to attenuate its effects, increased sTNF-RI expression often occurs in the presence 

of elevated TNF-α (Olsson et al., 1992; Rooney et al., 2000), and sTNF-RI have been found 

elevated in the serum of RA patients compared to HCs (Cope et al., 1992). 

 

6.2.2.3. Interleukin-6 (IL-6) 

Interleukin-6 is another pro-inflammatory cytokine involved in RA (Shrivastava & Pandey, 

2013; Blüml et al., 2014) and potentially RC pathogenesis. Increased circulating IL-6 has been 

shown to be negatively correlated with LM in RA (Engvall et al., 2008) with research 

suggesting a role in muscle protein turnover (Zoico & Roubenoff, 2002; Bowen et al., 2015); 

although findings are equivocal (García-Martínez et al., 1994; Zoico & Roubenoff, 2002). 

When interpreting the role of IL-6, it is important to consider that it can also have anti-

inflammatory effects, including TNF-α down-regulation (Dinarello & Moldawer, 2000). 

 

 

6.2.3 Anabolic biomarkers 

 

6.2.3.1. Insulin-like growth factor-I (IGF-I) and insulin-like growth factor-binding protein 

3 (IGFBP-3) 

Progressive decline in the secreation of growth hormone (GH) and its principal circulating and 

tissue mediator, insulin-like growth factor-I (IGF-1) have been identified as one of the the key 

pathophysiological mechanisms of muscle loss in aging (Corpus et al., 1993). Interestingly, 

total GH production in RA is comparable to matched non-RA controls (Rall et al., 2002; 

Blackman et al., 2007); thus GH deficiency is ‘not the cause of RC’ (Rall et al., 2002; Rall & 

Roubenoff, 2004). 

 

As the anabolic mediator of GH, IGF-1 is considered the primary factor in maintaining adult 

skeletal muscle mass and inhibiting muscle protein degradation (Adams, 2002; Engvall et al., 

2008; Schiaffino & Mammucari, 2011; Fanzani et al., 2012; Bowen et al., 2015; Sharples et 

al., 2015). Low circulating IGF-I concentrations have been associated with sarcopenic-related 

muscle loss (Corpus et al., 1993) and cachexia in malnourished older adults (Ponzer et al., 

1999). 
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Although impaired, or reduced, systemic IGF-I function would be anticipated to exacerbate the 

catabolism in RA (Lemmey et al., 2001), investigations into circulating IGF-I concentrations 

have yielded contradictory and inconsistent results, partly due to the demographic and clinical 

differences in patients studied (Blackman et al., 2007). Compared to HC, both reduced 

(Lemmey et al., 2001; Matsumoto & Tsurumoto, 2002; Häkkinen et al., 2005; Blackman et al., 

2007; Engvall et al., 2008) and normal (Rall et al., 2002; Toussirot et al., 2005) IGF-I 

concentrations have been reported. As GH production seems to be unaffected in RA, the 

reductions in IGF-1 occasionally reported (e.g., Lemmey et al., 2001) may suggest that RA 

patients are GH resistant or insensitive (Blackman et al., 2007).  

 

Insulin-like growth factor-binding protein 3 (IGFBP-3) is a multifunctional protein that can 

mediate the effects of IGF-I on a variety of cellular functions (Baxter, 2001). As its principle 

carrier protein (Baxter, 2001), the bioavailability of IGF-I is moderated by IGFBP-3 

concentrations (Neidel et al., 1997). Like IGF-I, contrasting levels of IGFBP-3 have been 

identified in the serum of RA patients (e.g., lower: Lemmey et al., 2001; Blackman et al., 2007; 

normal: Rall et al., 2002; Toussirot et al., 2005; and elevated: Matsumoto & Tsurumoto, 2002). 

 

Few studies have measured the potential involvement of IGF dysregulation on muscle 

deficiency in RA. A recent trial by Baker et al. (2015) found low LM was associated with low 

serum IGF-I concentrations in RA patients. In contrast, Engvall et al. (2008) found no such 

association with circulating IGF-I, but found that the IGF-I/IGFBP-1 ratio (a surrogate measure 

of bioavailable IGF-I) was correlated with reduced LM. Given the findings of Baker et al. (2015) 

and Engvall et al. (2008), and the strong anabolic function of IGF-I (Adams, 2002; Hofmann 

et al., 2015), investigation into the utility of serum IGFs as blood-based biomarkers of RC is 

justified. 

 

 

6.2.4. Catabolic biomarkers 

 

6.2.4.1. Myostatin  

Myostatin is a protein expressed in developing skeletal muscle (Lee & McPherron, 2001; Han 

et al., 2013). It is a natural candidate for a muscle atrophy biomarker (Palus et al., 2014) as it 

mediates catabolic signalling and is a potent negative regulator of muscle mass (Lee & 

McPherron, 2001; Zimmers et al., 2002; Roth & Walsh, 2004; Dankbar et al., 2011; Elkina et 

al., 2011; Schiaffino & Mammucari, 2011; Han et al., 2013). Circulating myostatin 

concentrations are inversely related with LM in the elderly (Schulte & Yarasheski, 2001; 
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Yarasheski et al., 2002; Léger et al., 2008) and in other conditions associated with muscle 

wasting including cardiac cachexia (Hoenig, 2008) and chronic obstructive pulmonary disease 

(Ju & Chen, 2012). Whilst myostatin has been found to be highly expressed in RA synovial 

tissue (Dankbar et al., 2011), no research has investigated whether systemic myostatin 

associates with RC.  

 

 

6.2.5. Adipokines 

 

6.2.5.1. Adiponectin 

Adiponectin is predominantly involved in lipid and carbohydrate metabolism (Serelis et al., 

2008; Oranskiy et al., 2012). Although adiponectin may exert an anti-inflammatory action by 

attenuating the immune response and reducing the secretion and activity of TNF- α and IL-6 

(Wulster-Radcliffe et al., 2004; Toussirot et al., 2007; Targońska-Stępniak et al., 2010), a pro-

inflammatory role has also been identified (Ebina et al., 2009; Giles et al., 2009; Oranskiy et 

al., 2012; Meyer et al., 2013). In RA specifically, serum (Giles et al., 2009; Giles et al., 2011; 

Klein-Wieringa et al., 2011; Oranskiy et al., 2012; Meyer et al., 2013) and synovial (Choi et al., 

2009) concentrations of adiponectin have been associated with greater radiographic joint 

damage and may be related to a more aggressive disease phenotype (Baker et al., 2015). 

 

Interestingly, elevated serum adiponectin levels have been considered a biomarker of a 

cachectic state in starvation (Szabó et al., 2014), elderly patients with chronic heart failure (i.e. 

cardiac cachexia) (McEntegart et al., 2007; Paulo Araújo et al., 2009; Loncar et al., 2013), and 

in patients with cancer cachexia (Wolf et al., 2006). Further, research by Baker et al. (2015) 

recently reported that serum adiponectin was associated with low muscle mass in RA. 

Whether the increased concentrations of adiponectin represent a more active, inflammatory 

(and thus, catabolic) disease state, or if adiponectin can directly influence the catabolic 

pathways (McEntegart et al., 2007; Paulo Araújo et al., 2009) responsible for RC is unclear. 

 

6.2.5.2. Leptin 

Leptin primarily regulates adipose tissue mass and energy balance (Wislowska et al., 2007) 

by controlling satiety (Myers, 2015). Leptin is expressed when adipocyte size increases; acting 

centrally as a negative feedback signal, decreasing appetite and increasing energy 

expenditure (Wislowska et al., 2007). As such, leptin is highly correlated with adiposity (Popa 

et al., 2005; Wislowska et al., 2007). Leptin release from adipose tissue is stimulated by pro-

inflammatory cytokines such as TNF-α and IL-1β (Härle et al., 2006). Acting in opposition to 
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adiponectin (Otero et al., 2006), leptin may in turn stimulate proliferation and activation of 

monocytes (Härle et al., 2006) and the expression of pro-inflammatory cytokines in RA (Popa 

et al., 2005; Wislowska et al., 2007; Seven et al., 2009). However, findings are inconsistent 

with no association between leptin and disease activity reported by others (Anders et al., 1999; 

Bokarewa et al., 2003; Popa et al., 2005; Gunaydin et al., 2006; Allam & Radwan, 2012; 

Abdalla et al., 2014). Whilst the association with adiposity is well recognised, leptin’s role in 

inflammation, and potentially muscle loss in RA, requires further investigation. 

 

 

6.2.6. Effect of current pharmaceutical therapy  

 

Rheumatoid arthritis is treated with a combination of DMARDs, primarily methotrexate (MTX); 

a widely-functioning immunosuppressant (Fransen et al., 2003). In patients who fail to respond 

to traditional DMARDs, biological agents that target specific immunological processes (e.g., 

TNF-α) are used (Dale & Porter, 2010; Ruderman et al., 2012). The agent etanercept (ETN), 

a genetically recombinant soluble TNF-α receptor protein (Fox, 2000), binds to TNF-α forming 

a complex that is unable to interact with the TNF receptor (Choy, 2012). Whilst ETN renders 

TNF-α immunologically inactive (Fox, 2000), it does not eradicate it from the tissue fluid and 

may even lengthen its half-life (Feldmann & Maini, 2001; Bhatia & Kast, 2007). Consequently, 

TNF-α concentrations are often increased following ETN treatment (e.g., Bhatia & Kast, 2007). 

 

6.2.6.1. Effect of current pharmaceutical treatment on body composition 

It was originally thought that inhibiting TNF-α activity, a proposed driver of RC, would 

potentially reverse, or at least attenuate, muscle loss in RA (Rall & Roubenoff, 2004). 

However, although successful in reducing inflammation and disease activity (Fransen et al., 

2003; Nishina et al., 2013), anti-TNF-α therapy does not restore muscle (Marcora et al., 2006; 

Metsios et al., 2007; Serelis et al., 2008; Engvall et al., 2010; Toussirot et al., 2014), and 

appears to contribute to RC by exacerbating FM (Engvall et al., 2010), particularly trunk FM 

(Metsios et al., 2007; Toussirot et al., 2014). Recent research by our group (Chapter 3) found 

that, despite early well-controlled disease activity and inflammation characteristic of a ‘treat-

to-target’ (T2T)) strategy, RC is still a feature of modern RA. 

 

6.2.6.2. Effect of pharmaceutical treatment on anabolic factors 

In regard to IGF status, Marcora et al. (2006) found that although 12 weeks of treatment with 

either ETN or MTX caused an initial increase in serum IGF-I and IGFBP-3, these returned to 

baseline concentrations at 24 weeks. Sarzi-Puttini et al. (2006) also found that 12 weeks of 
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anti-TNF-α therapy increased serum IGF-I values in corticosteroid (CS) treated RA patients, 

whilst Engvall et al. (2010) reported no changes in IGF-I levels following anti-TNF-α treatment 

or triple DMARD therapy (MTX+HCQ+SSZ) over a longer 21 month period. 

 

6.2.6.3. Effect of pharmaceutical treatment on catabolic factors 

As TNF-α primarily exerts its inflammatory and catabolic effects independent of myostatin, 

anti-TNF-α therapy is unlikely to affect its concentrations. A literature search for the effects of 

anti-TNF-α or traditional DMARD therapy (e.g., MTX) on myostatin concentrations yielded no 

results.  

 

6.2.6.4. Effect of pharmaceutical treatment on adipokines (adiponectin and leptin) 

Suppression of inflammation has been thought to have no effect on serum adiponectin levels 

(Neumann et al., 2011), however results are inconsistent. Methotrexate administration has 

been shown to increase (Laurberg et al., 2009) and decrease (Manrique-Arija et al., 2016) 

serum adiponectin levels, whilst both stable (Härle et al., 2006; Derdemezis et al., 2009; Popa 

et al., 2009; Gonzalez-Gay et al., 2011; Toussirot et al., 2014) and increased adiponectin 

levels (Komai et al., 2007; Nagashima et al., 2008; Serelis et al., 2008; Engvall et al., 2010; 

Cansu et al., 2011) have been reported in RA patients receiving anti-TNF-α therapy.  

 

Manrique-Arija et al. (2016) found that 6 months of MTX treatment significantly increased 

blood leptin concentrations, although adiposity was also increased; it is not reported if leptin 

changes were associated with FM changes as would be expected. No changes in serum leptin 

was observed following 3–24 months of anti-TNF-α therapy (Derdemezis et al., 2009; 

Gonzalez-Gay et al., 2009; Popa et al., 2009; Toussirot et al., 2014), although Engvall et al. 

(2010) reported increased levels following 21 months treatment of infliximab.  

 

 

6.2.7. Adjunct treatments that improve muscle mass in rheumatoid 

arthritis 

 

Without a pharmacological means of reversing RC, potential adjunct treatments that focus on 

restoring muscle mass are needed (Rall & Roubenoff, 2004). Below, two different interventions 

and their potential effect on the biomarkers selected are outlined. 
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6.2.7.1. Effect of progressive resistance training  

Progressive resistance training (PRT) is undoubtedly the most effective means of reversing 

the effects of RC (e.g., Häkkinen et al., 2005; Marcora et al., 2005a; Lemmey et al., 2009; 

Lemmey, 2011). It has been suggested that exercise and PRT may have an anti-inflammatory 

effects via the reduction of pro-inflammatory cytokine activity (e.g., Petersen & Pedersen, 

2005; Kadoglou et al., 2007). However, the exact effects are unclear, with studies, including 

one in RA (Rall et al., 1996), finding no effect of exercise on TNF- α, IL-1, or IL-6 

concentrations (e.g., Conraads et al., 2002; Bruunsgaard et al., 2004; Bautmans et al., 2005; 

Kelley & Kelley, 2006; Olson et al., 2007; De Salles et al., 2010). 

 

Despite significant LM increases in RA patients following PRT, both Lemmey et al. (2009) and 

Häkkinen et al. (2005) demonstrated no change in serum IGF-I or IGFBP-3 concentrations. 

This absence of a change in circulating IGFs is consistent with obsrevations in healthy elderly 

participants following PRT (e.g., Kraemer et al., 1999; Häkkinen et al., 2005). Conversely, 

intramuscular levels (mIGF-I and mIGFBP-3) are significantly increased following PRT 

(Lemmey et al., 2009). The absence of serum IGF-I change with training suggests circulating, 

predominantly liver-derived, IGF-I in the blood may be of ‘minor or only transitory, 

noncumulative importance’ in muscle hypertrophy (Walker et al., 2004) and, as such, may not 

be an appropriate marker of muscle metabolism (Kraemer et al., 1999; Adams, 2002), 

particularly following anabolic stimuli such as PRT. 

 

The effects of PRT on serum myostatin levels are inconsistent. Whilst serum myostatin 

concentrations were found to be decreased following 8 weeks (Saremi et al., 2010) and 10 

weeks PRT (Walker et al., 2004) in healthy untrained males, they were increased after 12 

weeks of PRT by two studies by Willoughby (2004a; Willoughby & Taylor, 2004b).  

 

Although some researchers have found that PRT increased serum adiponectin concentrations 

in healthy individuals (Olson et al., 2007; De Salles et al., 2010), including the elderly (Fatouros 

et al., 2005; Brooks et al., 2007), findings are variable (Lee & Kwak, 2014) and are influenced 

by training duration and intensity (De Salles et al., 2010). Adiponectin increases following PRT 

have also been attributed to an enhancement of insulin sensitivity (Fatouros et al., 2005), as 

well as a reduction in FM that often accompanies training (Giles et al., 2009; Oranskiy et al., 

2012)). Reductions in serum leptin have been reported following exercise training in the elderly 

(Kohrt et al., 1996; Fatouros et al., 2005; De Salles et al., 2010), although these changes also 

appear to be largely a function of reduced adiposity (Kohrt et al., 1996). 

 



132 

 

6.2.7.2. Effect of oral creatine supplementation 

Anabolic nutritional supplementation offers a potential adjunct treatment that is easily 

administered, inexpensive, and, compared to PRT, makes limited demands of the patient. 

Creatine monohydrate (Cr) supplementation has favourable effects on both LM and physical 

function in healthy adults (Nissen & Sharp, 2003), the elderly (e.g., Rawson et al., 1999; 

Rawson & Clarkson, 2000; Gotshalk et al., 2002; 2008), and clinical populations (e.g., Louis 

et al., 2003; Leader et al., 2009). However, its efficacy in RA is inconclusive (Willer et al., 2000; 

Chapters 4 and 5).  

 

Although limited, some research has found Cr supplementation reduces post-exercise 

inflammation (Santos et al., 2004; Bassit et al., 2008). Specifically, Cr supplementation 

attenuated increases in TNF-α (Santos et al., 2004; Bassit et al., 2008), IL-1β (Bassit et al., 

2008), and CRP (Deminince et al., 2013) in trained athletes after long and short distance 

running. Whilst these effects were identified in healthy athletes, if confirmed to be 

generalisable, these findings potentially have favourable implications for RA where elevated 

levels of these cytokines may drive RC (Roubenoff et al., 1994, 2009).  

 

Although studies have shown that Cr may increase expression of mIGF-I (Deldicque et al., 

2005, 2008; Burke et al., 2008), these trials included concurrent PRT making it difficult to 

isolate the effect of Cr per se. Whether these IGF-I increases are observable in serum 

concentrations is unknown. Similarly, whilst Cr supplementation following PRT has been 

shown to reduce myostatin concentrations (Saremi et al., 2010; Schiaffino et al., 2013), it is 

unknown if Cr per se is responsible. A literature search for the effects of Cr supplementation 

on adiponectin and leptin generated no results. 

 

 

6.2.8. Aims and hypothesis 

 

The aim of the following study was to investigate a comprehensive range of serum-based 

markers of RC in order to identify key biomarkers for future application in RA. Principally, we 

set out to explore putative muscle anabolism and catabolism, and inflammatory biomarkers in 

a range of clinical scenarios.  
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6.2.8.1. Disease states and the effects of pharmaceutical DMARD treatment 

 

 (1a) Rheumatoid arthritis patients versus sedentary healthy controls – We 

hypothesised that RA patients would have higher serum concentrations of inflammatory 

(TNF-α, sTNF-RI, IL-6) and catabolic (myostatin) markers, lower concentrations of 

anabolic markers (IGF-I and IGFBP-3), and higher levels of adipokines (adiponectin and 

leptin) than age- and sex-matched HC. 

 

 (1b) ‘Recent-onset’ versus ‘established’ disease – In this sub-analysis of Chapter 3 

RA patients described in (1a), as disease activity will be well controlled, and that body 

composition changes have already occurred prior to disease diagnosis (see Chapter 3 for 

discussion), we hypothesised no differences in demographic, disease activity (DAS28), 

systemic inflammation (CRP), or body composition between ‘recent-onset’ versus 

‘established’ disease cohorts. Accordingly, we hypothesised no differences in any of the 

assessed serum biomarkers. 

 

 (2a) Untreated, uncontrolled disease versus treated, controlled disease – We 

hypothesised that:  

- Treatment initiation with MTX or ETN would reduce levels of the inflammatory markers of 

CRP and IL-6. Whilst we expect MTX to reduce TNF-α concentrations, an increase is 

expected following ETN treatment. Despite this hypothesised increase in TNF-α, as the 

TNF-α is made biologically inactive by ETN, we would anticipate no changes in sTNF-RI. 

 

- Treatment would have no effect on myostatin, or IGF-I and IGFBP-3. Adipokine, 

adiponectin and leptin, concentrations may decrease and increase, respectively, due to 

elevated FM following treatment.  

 

 (2b) Etanercept versus methotrexate therapy – We hypothesised that:  

- Both treatments would decrease inflammatory markers, but would have no effect on 

anabolic markers or myostatin.  

 

- Adiponectin and leptin concentrations would decrease and increase, respectively, 

consistent with concurrent treatment-induced increases in adiposity. 
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6.2.8.2. Effects of non-pharmaceutical anabolic interventions 

 

 (3) Effect of progressive resistance training – As serum markers may not be a true 

indicator of intramuscular metabolism, we hypothesised that PRT would have no effect on 

serum levels of pro-inflammatory13, anabolic (IGF-I and IGFBP-3), or catabolic (myostatin) 

markers. In contrast, we anticipated adiponectin and leptin concentrations would increase 

and decrease, respectively, consistent with concurrent exercise-induced decreases in 

adiposity. 

 

 (4) Effect of oral creatine supplementation – Owing to limited research on Cr 

supplementation and inflammatory processes, and the insensitivity of biomarkers in 

assessing intramuscular changes in muscle metabolism, we hypothesised that Cr 

supplementation would have no effect on any of the inflammatory, anabolic, or catabolic 

markers. As Cr supplementation does not affect adipose tissue, no changes are 

hypothesised in adiponectin and leptin concentrations.  

                                                           
13 Unfortunately, CRP was not measured in Lemmey et al. (2009) and therefore is not presented for this analysis. 
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6.3.  Patients and methods 

 

 

6.3.1. Participants  

 

Data was derived from trials conducted by the Rehabilitation of Musculoskeletal Disorders with 

Exercise Sciences (ReMeDES) group over an approximate ten-year period (~2005–2015). All 

participants were 18 years and older, not pregnant, and were not taking part in regular high-

intense physical activity when recruited. All patients fulfilled the ACR/EULAR 1987 and/or 

2010 criteria for RA (Aletaha et al., 2010). Eligible age- and sex-matched HC participants with 

no history of chronic disease were recruited from the local community. Each study was granted 

approval by the North West Wales Research Ethics Committee, and written informed consent 

was obtained from all participants (n = 13414). In order to investigate the effects of different 

treatment strategies, disease states, and anabolic interventions on the range of biomarkers, 

several scenarios were investigated: 

 

6.3.1.1. Disease states and the effects of pharmaceutical DMARD treatment 

 

 (1a) Rheumatoid arthritis patients (n = 32) versus sedentary healthy controls (n = 

39) 

Samples from 32 RA patients and 39 HC were taken during the Chapter 3 cross-sectional 

trial. As a sub-analysis (1b), the differences between ‘recent-onset’ (≤12 months diagnosis; n 

= 13) and ‘established’ (1-7 years diagnosis; n = 19) disease cohorts were also investigated. 

 

 (2a) Untreated, uncontrolled disease versus treated, controlled disease (n = 24)  

Baseline samples from the Marcora et al. (2006) investigation into the comparative effects of 

12 weeks ETN or MTX treatment on body composition in treatment-naïve RA patients were 

used to compare the serum biomarker status of RA patients before and after initiation of 

treatment. As a sub-analysis (2b), we investigated the relative effects of MTX (n = 12) and 

ETN (n = 12) treatment. 

 

 

                                                           
14 All (n = X) refers to the number of samples that were available to be analysed from each study, and not the total 

number of participants that were recruited and participated in each of the trials.  
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6.3.1.2 Effects of non-pharmaceutical anabolic interventions 

 

 (3) Effect of progressive resistance training (n = 19)  

To investigate the effects of 24 weeks PRT on serum biomarkers, pre- and post-intervention 

samples were taken from RA patients who were part of the Lemmey et al. study (2009). 

Samples included patients randomised into PRT (n = 10) or low-intensity range-of-movement 

home exercise (control) (n = 9) groups. 

 

 (4) Effect of oral creatine monohydrate supplementation (n = 20)  

To investigate the effects of nutritional Cr supplementation on serum biomarkers, pre- and 

post-intervention samples were taken from the trial described in Chapter 5. Samples included 

patients randomised into Cr (n = 9) or placebo (control) (n = 11) groups. 

 

 

6.3.2. Serum preparation  

 

For each of the studies, fasted overnight blood samples were harvested by venipuncture from 

the median cubital vein. After collection, blood was allowed to clot by leaving it undisturbed on 

ice for ~30 minutes. Once clotted, blood was spun at 3000 rpm for 10 minutes at 4°C 

(Eppendorf centrifuge 5810 R, Germany). The resulting liquid supernatant (serum) was 

aliquoted into Eppendorf tubes using a Pasteur pipette. The serum was apportioned into 3 x 

1.0 ml and 2 x 0.5 ml quantities, with any remaining sample distributed as 200 μl samples. 

Samples were frozen at –80°C prior to delivery to Liverpool John Moore’s University for 

analysis.  

 

 

6.3.3. Assay outcome measures and methods 

 

6.3.3.1. Serum biomarkers and assay procedure 

Eight biomarkers (TNF-α, sTNF-RI, IL-6, myostatin, IGF-I, IGFBP-3, adiponectin, and leptin) 

were analysed using a ‘sandwich’ enzyme-linked immunosorbent assay (ELISA) technique 

(R&D Systems, Minneapolis, USA). In a ‘sandwich’ ELISA, a monoclonal antibody specific for 

the biomarker is pre-coated onto a microplate15. Standards and samples were pipetted into 

the wells of the microplate and any biomarker present was bound by the pre-coated 

                                                           
15 See Appendix D for full individual detailed assay procedures including specific diluent, sample quantities, and 

intra-assay co-efficient of variations. 
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immobilized antibody. After washing away any unbound substances, an enzyme-linked 

polyclonal antibody specific for the biomarker was added to the wells – this ‘sandwiched’ the 

biomarker between the antibodies. Following another wash to remove any unbound antibody-

enzyme reagent, a substrate solution was added which resulted in a colour development in 

proportion to the amount of biomarker bound in the initial step. The colour development was 

stopped and the intensity (i.e. optical density; OD) was measured (Figure 6.2.). 

 

 

Figure 6.2. A fully developed microplate (TNF-α shown as an example). Standards are shown in box i. The highest 

(32.00 pg/ml) (and darkest) standard is at the top (A1-2), and the lowest (0.00 pg/ml) standard at the bottom (H1-

2). Columns 3-12 show the participant samples in duplicate. For example, H5-6 (box ii) shows relatively high TNF-

α levels (darker colour), and E9-10 (box iii) show a relatively low TNF-α concentration (clearer colour). 

 

6.3.3.2. Assay preparation and equipment 

Reagents, samples, and working standards were prepared in line with the manufacturer’s 

protocols detailed in the instructional inserts. All samples, including standards, were analysed 

in duplicate in a 96-well microplate. To read the samples, the microplate reader (CLARIOstar, 

BMG LABTECH, Germany) was set to the appropriate wavelength (typically 450 nm, with a λ 

correction of 540 or 570 nm, although this varied per marker (see Appendix D)). The OD was 

determined <30 minutes of assay completion, and a curve was generated (using four 

parameter log/log regression) from the standards. From this curve, biomarker values were 

ascertained by the microplate reader’s data analysis software (MARS, V3.10 R2, BMG 

LABTECH, Germany). 

 

(i) 

(ii) 

(iii) 

A  

B 

C 

D 

E 

F 

G 

H 

 

1 2 3 4 5 6 7 8 9 10 11 12 
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6.3.3.3. Routine clinical disease activity measures 

Routine disease activity measures (Disease Activity Score in 28 joints (DAS28) and CRP) are 

presented. Elevated serum CRP is part of the acute phase response and is used as a standard 

marker of systemic inflammation (Shrivastava & Pandey, 2013).  

 

6.3.3.4. Anthropometric measurements and body composition measures 

Body mass (BM) was recorded in accordance with routine procedures (Eston & Reilly, 2009). 

To facilitate understanding of participant’s relative anabolic and catabolic state, body 

composition (dual energy X-ray absorptiometry (DXA)) data is presented. These measures 

include: appendicular LM (ALM; a surrogate measure of muscle mass (Kim et al., 2002)), 

ALM% (ALM/BM%), total FM, and body fat percentage (BF%). For the purpose of this 

investigation, RC refers to measures of muscle mass and FM. A Hologic QDR Discovery 

45615 (software V12.4) DXA scanner was used in the cross-sectional (Chapter 3) and Cr 

supplementation trials (Chapter 5), whilst a Hologic QDR1500 (software V5.72) scanner was 

employed in the Lemmey et al. (2009) and Marcora et al. (2006) studies.  

 

 

6.3.4. Statistical analysis 

 

All data are presented as mean (±SD) unless otherwise stated. Chi-squared tests were used 

for dichotomous variable comparison. Variables were checked for multi-collinearity, uni- and 

multi-variate outliers (Mahalanobis Distance), and normal distribution using Shapiro-Wilk 

tests. Where necessary, data was logarithm transformed to obtain normal distribution (RA 

versus HC: TNF-α, IL-6, leptin; ETN versus MTX: sTNF-α, IL-6, leptin). Data analyses to 

compare two distinct groups (e.g., RA versus HC, ‘recent’ versus ‘established’) involved 

univariate analysis of variance (ANOVA). Consistent with the original analysis from Marcora 

et al., a 2 x 2 repeated measures ANOVA was used to detect an effect of treatment (ETN 

versus MTX) (treatment x time interaction). If an interaction was identified, post-hoc tests were 

used to identify within group differences. Due to its similar pre-post nature, this analysis 

method was used for the PRT and Cr supplementation data. Subsequently, using the ‘time 

effect’ output from the 2 x 2 ANOVA analysis (ETN versus MTX), we were able to ascertain 

the difference between untreated and treated states as this ‘time effect’ provides pooled data 

from both treatment arms at time point 1 and time point 2 (i.e. untreated and treated).  
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Significance was set at P < .05 and a trend was recognised as P = .05–.10. An effect size (ES) 

(η2: small ≥.01; medium ≥.08; large ≥.26; very large ≥.50) was calculated to support 

interpretation of differences. Confidence intervals (95% CI) are reported when appropriate, 

and Pearson product–moment correlation (bivariate and partial) was used to test relationships 

(r) considered of interest by the researchers. 

 

6.3.4.1. Treatment of missing or unknown data 

During analysis, TNF-α plates 2, 4, and 5 standards were distorted. With no procedure (known 

to the researchers) to manually alter the standards once in the data analysis software, these 

values were unattainable. To overcome this, we used an online application (elisaanalysis.com, 

LTG Ventures Pty, 2015) to fit an ELISA curve to our raw OD values. By averaging the 

standards from plates 1 and 3, we were able to attain an appropriate mean set of standards. 

Using the application, missing TNF-α values could be determined. In order to assess the 

accuracy, we compared plate 1 TNF-α values from the data analysis software to the 

application values using a paired samples t-test and Pearson correlation. The values were 

comparable and deemed acceptable by the researchers (t-test: data analysis software TNF-α 

mean: 5.74 (±5.82) pg/mL; online application mean: 5.95 (±6.15) pg/mL; P = .468; correlation: 

r = .956, P <.001).  

 

In patients being treated with ETN, all ‘post-treatment’ TNF-α values increased above the 

concentration of the top standard. When we applied the raw data to the online analysis tool, 

this too was unable to determine these exceedingly high values. Subsequently, a curve was 

created on Microsoft Excel using the standards from plates 1 and 3 (as previously described). 

Using a standard linear regression line (y = 25.082x–8.4573, R2 = 0.9506), we were able to 

determine these missing values. 
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6.4. Results 

 

 

6.4.1. Disease states and the effects pharmaceutical DMARD 

treatment 

 

6.4.1.1. Rheumatoid arthritis patients versus sedentary healthy controls (1a) 

Consistent with Chapter 3, there were no differences in age (P = .242) or gender (P = .658) 

between the RA patients and HC (Table 6.1.). Overall mean disease duration for the patients 

was 28.0 (±21.7) months; ~2.3 years. Compared to HC, RA patients had aberrant body 

composition with relative muscle mass (i.e. ALM%) deficient by 8% (P = .121, η2 = .03, small), 

and total FM (21%) and BF% (13%) significantly higher (P = .016, η2 = .08, medium; and P = 

.040, η2 = .07, small, respectively) (body composition data for this subset of Chapter 3 cohorts 

can be found in Appendix E).  

 

Disease activity and serum biomarker data is presented in Table 6.1. Compared to HC, serum 

markers of inflammation, TNF-α (P = .002, η2 = .13, medium) and IL-6 (P < .001, η2 = .28, 

large), were elevated in the RA group by 44 and 81%, respectively. Consistent with the 

elevation in TNF-α, concentrations of sTNF-RI were also raised in the RA group (by 26%, P = 

.001, η2 = .20, medium). There were no differences in myostatin, IGF-I, IGFBP-3, or 

adiponectin concentrations16 (P’s = .284 –.854). Patients with RA had greater leptin levels (P 

= .047, η2 = .06, small), although when FM was used a co-variant, the estimated difference 

was negligible (P = .971).  

 

Full correlational analysis for RA and HC groups is shown in Table 6.2. With regard to the 

association between serum biomarkers, and body composition: in the RA group there were 

no correlations between TNF-α and measures of muscle mass: ALM (r = -.202, P = .268) and 

ALM% (r = -.266, P = .141). There were also no correlations between CRP and ALM (r = .168, 

P = .388) or ALM% (r = -.205, P = .278), or between IL-6 and ALM (r = .230, P = .206) or 

ALM% (r = -.040, P = .829).  

  

                                                           
16 Difference in adiponectin between RA and HC remained insignificant (P = .593) when FM was used as co-

variant. 
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Table 6.1. Basic demographics, disease activity, and serum biomarkers of rheumatoid arthritis patients and sedentary age- 

and sex-matched healthy controls 

 

 Normal range a RA (n = 32) HC (n = 41) Absolute difference (CI) (%) P η2 

 

Demographics 
     

 

 Age (years) - 62.1 (±7.2) 59.6 (±10.2) ↔ 2.5 (-1.6–6.6) (4) .242 - 

 Sex (female n;%) - 20 (62.5) 27 (65.8) - .658 - 

 

Disease activity 
    

  

 DAS28 (1-10) - 2.9 (±0.8) - - - - 

 CRP (mg/L) - 8.5 (±7.0) - - - - 

 

Biomarkers 

 
    

 

 TNF-α (pg/mL) 0.55–2.82 (∆ 1.21) 3.66 (±2.34) 2.06 (±2.26) ↑ 1.60 (0.50–2.69) (44) .002* .13 

 sTNF-RI (pg/mL) 749–1966 (∆ 1198) 1467.0 (±472.1) 1079.7 (±306.7) ↑ 387.3 (200.8–573.8) (26) .001* .20 

 IL-6 (pg/mL) <3.13 6.73 (±6.57) 1.29 (±1.31) ↑ 5.45 (3.30–7.60) (81) <.001* .28 

 Myostatin (pg/mL) 1264–8588 (∆ 4206) 1913.6 (±784.9) 2095.6 (±788.4) ↔ 181.9 (-199.5–563.3) (10) .344 .02 

 IGF-I (ng/mL) 40–258 (∆ 105) 107.1 (±36.6) 105.6 (±32.5) ↔ 1.5 (-14.6–17.6) (1) .854 .00 

 IGFBP-3 (ng/mL) 835–3778 (∆ 2375) 3072.9 (±836.9) 2873.6 (±739.0) ↔ 199.3 (-169.1–567.7) (7) .284 .02 

 Adiponectin (ng/mL) 865–21424 (∆ 6641) 13303.0 (±6850.7) 14694.4 (±6284.2) ↔ 1292.3 (-4435.4–1850.8) (9) .415 .01 

 Leptin (pg/mL) 2205–11149 (∆ 4760) 18840.4 (±25758.28) 9861.1 (±9304.8) ↑ 8979.3 (-326.3–17632.3) (48) .042* .06 

 

Group means (±SD) with 95% confidence intervals (CI) reported for the difference. Data was analysed using analysis of variance. RA = Rheumatoid arthritis; HC = Healthy 
controls; TNF-α = Tumor necrosis factor-α; sTNF-RI = Soluble tumor necrosis factor-α receptor-1; IL-6 = Interleukin-6; IGF = Insulin-like growth factor; IGFBP-3 = Insulin-like 
growth factor binding protein-3. a = as provided by manufacturer. * P < .05; Effect size (η2), small = ≥ .01; medium = ≥ .08; large = ≥ .26; very large = ≥ .50.  
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Table 6.2. Correlations between primary outcome measures: rheumatoid arthritis patients versus sedentary age- and sex-

matched healthy controls 
 

 

Rheumatoid arthritis (n = 32) 

 sTNF-RI IL-6 Myostatin IGF-I IGFBP-3 Leptin Adiponectin DAS28 CRP ALM ALM% FM BF% BM 

TNF-α -.206 .003 .037 -.286 -.067 .005 .284 -.122 -.144 -.202 -.266 .069 .146 -.048 
sTNF-RI - .384* .220 .209 -.161 .481* -.242 -.009 .340# .300# -.104 .319# -.094 .396* 
IL-6  - -.141 -.099 -.346 -.008 -.318# .202 .230 .116 -.040 .191 .232 -.040 
Myostatin   - .198 -.141 .517* -.051 -.240 -.107 .360* .058 .328# -.127 .401* 
IGF-I    - .533* .049 -.127 .244 .072 .120 .289 -.170 -.399# -.065 
IGFBP-3     - -.060 .063 .335# -.096 -.463* -.049 -.232 .047 -.417* 
Leptin      - -.269 .016 .237 .193 -.557* .829* .440* .698* 
Adiponectin       - -.388* -.240 -.503* -.028 -.278 -.053 -.489* 
DAS28        - .195 -.120 -.005 -.103 .074 -.116 
CRP         - .164 -.205 .299 .157 .315# 
ALM           - .411* .259 -.319 .716* 
ALM%           - -.737* -.823* -.325# 
FM             - .700* .854* 
BF%              - .301 

 

Healthy control (n = 39) 

TNF-α -.125 .050 -.132 -.102 .103 -.185 .188   -.134 -.233 -.071 .027 .189 
sTNF-RI  .137 .103 -.125 -.203 -.112 -.326*   .173 .039 -.031 -.136 .137 
IL-6   -.126 -.351* -.243 -.115 -.032   .057 -.012 -.004 -.055 .119 
Myostatin    .270# .116 .023 .014   .310# .115 .013 -.188 .284# 
IGF-I     .480* .230 .160   .234 .241 .216 .064 .007 
IGFBP-3      .226 .252   -.205 .119 .057 .151 -.442* 
Leptin       .055   -.331* -.071 .801* .788* -.348* 
Adiponectin          -.305# -.232 .058 .233 -.093 
ALM            .752* -.142 -.628* .362* 
ALM%            .054 -.334* -.330* 
FM              .848* -.238 
BF%               -.395* 

 
Data presented as r value. TNF-α = Tumor necrosis factor-α; sTNF-RI = Soluble tumor necrosis factor-α receptor-1; IL = Interleukin; IGF = Insulin-like growth factor; IGFBP-3 = 
Insulin-like growth factor binding protein 3; DAS28 = Disease activity score in 28 joints; CRP = C-reactive protein (both DAS28 and CRP data only available for RA group; ALM 



143 

 

= Appendicular lean mass; FM = Fat mass; BF% = Body fat percentage; BM = Total body mass (on scales). * P < .05; # trend (P ≥ .05–.10) (significant positive and negative 
relationship).
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There was a positive correlation between myostatin and ALM in both the RA (r = .360, P = 

.047) and HC (r = .310, P = .051). Conversely, adiponectin was inversely correlated with ALM 

(r = -.503, P = .003) and BM (r = -.489, P = .005) in the RA group. Interestingly, adiponectin 

was also moderately and inversely associated with ALM in the HC (r = -.305, P = .055) 

(however BM was not; r = -.093, P = .570). Higher concentrations of IGFBP-3 were also 

correlated with lower levels of ALM (r = -.463, P = .008) and BM (r = -.417, P = .017) in the RA 

group. Whereas only BM (r = -.442, P = .004), and not ALM (r = -.205, P = .206), was correlated 

with IGFBP-3 in the HC. Leptin was highly correlated with adiposity in the RA patients (FM: r 

= .829, P <.001, and BF%: r = .440, P = .035), and as a consequence, BM (r = .698, P <.001). 

Similar significant correlations were seen in the HC (Table 6.2.). 

 

From a disease perspective, there was a negative correlation between adiponectin and 

disease activity (DAS28) (r = -.388, P = .034), and a weak association between adiponectin 

and IL-6 (r = -.318, P = .076). No correlation was seen between adiponectin and TNF-α (r = 

.284, P = .116). No correlations were observed in the RA patients between leptin (with FM 

controlled for in a partial correlation) and DAS28 (r = .184, P = .340); IL-6 (r = -.207, P = .273); 

TNF-α (r = -.090, P = .637), or disease duration (r = .023, P = .905). There was a weak 

relationship between IGFBP-3 and DAS28 (r = .335, P = .071). 

 

6.4.1.2. ‘Recent-onset’ and ‘established’ disease (1b) 

Mean disease duration for the ‘recent-onset’ RA cohort was 6.9 (±2.6) months, and 41.3 

(±17.4) months for the ‘established’ RA group (P <.001). There were no differences in age, 

sex (P’s = .801–.926, Table 6.3.), or body composition (P’s = .422–.926, Appendix E). 

Differences in disease activity and biomarkers are shown in Table 6.3. Compared to the 

‘recent-onset’ group, patients with ‘established’ disease had a lower DAS28 score (P = .043, 

η2 = .14, medium) but similar CRP levels (P = .911, η2 = .00). There were no differences in 

TNF-α, sTNF-RI, IL-6, IGF-I, IGFBP-3, adiponectin, or leptin measures (P’s = .130–.744). 

Myostatin appeared elevated in the ‘established’ patients (P = .077, η2 = .10, medium), but 

remained within the ‘normal range’ provided by the manufacture.  

 

6.4.1.3. Untreated, uncontrolled disease versus treated, controlled disease (2a) 

The collective group (n = 24) consisted of 18 (75%) females, and the mean age was 51.8 

(±13.0) years. Whilst there was no change in ALM (P = .102, η2 = .12, medium), measures of 

BM, FM, and BF% (P’s = .050–.096) were moderately increased following treatment 

(Appendix F).  
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Table 6.4. shows the effects of treatment on disease activity and serum biomarkers. Both 

DAS28 (P <.001, η2 = .75, very large) and CRP (P = .002, η2 = .36, large) decreased 

significantly by 52 and 47%, respectively. Although overall TNF-α concentration was increased 

following treatment (P = .037, η2 = .18, medium), further examination revealed that this 

response was isolated to the ETN group (see 6.4.1.4.). Increases in myostatin (P = .030, η2 = 

.21, medium), IGFBP-3 (P = .034, η2 = .19, medium), and leptin (P = .012, η2 = 26, large) with 

control of disease were also observed. In contrast, IL-6 level was reduced (P = .021, η2 = .22, 

medium), with change correlated with the concurrent reduction in CRP (r = .596, P = .002). 

The increase in leptin was correlated with the increase in FM (r = .554, P = .005), and as 

previously noted, this became non-significant when FM was used as co-variant (data not 

shown). Increases in IGFBP-3 were not correlated with TNF-α (r = 0.13, P = .952). No changes 

were seen in the other biomarkers (sTNF-RI, IGF-I, or adiponectin, P’s = .223–.734). 

 

In a state of high disease activity (i.e. untreated disease) (mean DAS28: 6.0 (±0.9)), similar to 

the cross-sectional RA patients (see 6.3.1.1.), there was no correlation between TNF-α and 

measures of muscle mass including ALM (r = .042, P = .854) and ALM% (r = -.281, P = .206). 

There were also no correlations between CRP and ALM (r = -.180, P = .401) or ALM% (r = -

.280, P = .185), or IL-6 and ALM (r = -.229, P = .282) or ALM% (r = -.090, P = .676). Again, 

there was a significant positive correlation with myostatin and ALM (r = .705, P < .001) in the 

RA group. 

 

6.4.1.4. Etanercept versus methotrexate therapy (2b) 

There was no difference in age between the two treatment groups (ETN: 53.7 (±10.9) versus 

MTX: 49.8 (±15.0) years, P = .482, η2 = .02, small), with an equal female distribution (n = 9/12, 

75% in each). No significant treatment x time interactions were observed for any body 

composition variables (Appendix G), however, there were moderate time main effects for BM 

(P = .093, η2 = .12, medium), FM (P = .053, η2 = .16, medium), and BF% (P = .069, η2 = .14, 

medium). Post hoc tests revealed moderate FM (P = .099) and BF% (P = .065) increases in 

the MTX group. 

 

Whilst no significant treatment x time interactions were observed for DAS28 and CRP (Table 

6.5.), there were large main effects for time (Table 6.4.). As well as a time main effect (P = 

.037, η2 = .18, medium), there was also a significant treatment x time interaction (P = .039, η2 

= .18, medium) for TNF-α, with post hoc tests revealing a 67% increase (P = .035) following 

ETN treatment. Time main effects were observed for IL-6 and myostatin, with post hoc tests 

revealing decreases in IL-6 for both the MTX (P = .011) and ETN groups (P = .095). Myostatin 

was reduced in the MTX group (P = .046).  
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A time main effect was identified for IGFBP-3 (P = .034, η2 =.19, medium), with post hoc 

analysis showing a non-significant increase in the ETN group (P = .085). There was a time 

main effect for leptin (P = .012, η2 = .26, medium), and post hoc tests revealed, although leptin 

concentrations increased in both groups, a trend in the MTX group only (P = .085). No other 

main effects were seen (sTNF-RI, IGF-I, or adiponectin).  
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Table 6.3. Basic demographics, disease activity, and serum biomarkers between ‘recent-onset’ (<12 months disease 

duration) and ‘established’ (≥12 months disease duration) rheumatoid arthritis patients 
 

 ‘Recent-onset’ (n = 13) ‘Established’ (n = 19) Absolute difference (CI) (%) P η2 

      

Demographics      

 Age (years) 59.0 (±10.8) 60.0 (±10.0) ↔1.0 (-6.6–8.5) (2) .801 - 

 Sex (female n;%) 8 (61.5) 12 (63.2) - .926 - 

 

Disease activity 
    

 

 DAS28 (1-10) 3.2 (±0.9) 2.6 (±0.6) ↑ 0.6 (0.0–1.1) (19) .043* .14 

 CRP (mg/L) 8.3 (±5.8) 8.6 (±8.0) ↔ 0.3 (-5.1–5.7) (4) .911 .00 

 

Biomarkers 

 TNF-α (pg/mL) 3.11 (±2.07) 5.20 (±5.55) ↔ 2.09 (-1.21–5.39) (40) .205 .05 

 sTNF-RI (pg/mL) 1610.5 (±554.1) 1355.0 (±377.4) ↔ 255.6 (-79.8–591.1) (16) .130 .08 

 IL-6 (pg/mL) 8.69 (±7.25) 5.47 (±5.71) ↔ 3.22 (-1.47–7.90) (37) .171 .06 

 Myostatin (pg/mL) 1661.3 (±773.6) 2241.4 (±932.7) ↓ 580.1 (-67.9–1228.1) (27) .077# .10 

 IGF-I (ng/mL) 113.0 (±38.2) 103.1 (±35.9) ↔ 9.9 (-17.2–36.9) (9) .462 .02 

 IGFBP-3 (ng/mL) 3186.3 (±969.3) 2995.3 (±751.1) ↔ 191.0 (-430.3–812.2) (6) .535 .01 

 Adiponectin (ng/mL) 11255.8 (±5850.2) 14654.7 (±7106.0) ↔ 3398.9 (-1476.5–8274.2) (23) .165 .06 

 Leptin (pg/mL) 17418.0 (±14278.3) 19813.6 (±31690.7) ↔ 2395.6 (-16831.3–21622.5) (12) .744 .00 

 
Group means (±SD) with 95% confidence intervals (CI) reported for the difference. Data was analysed using analysis of variance. DAS28 = Disease activity score in 28 joints; 
CRP = C-reactive protein; TNF-α = Tumor necrosis factor-α; sTNF-RI = Soluble tumor necrosis factor-α receptor-1; IL-6 = Interleukin-6; IGF = Insulin-like growth factor; IGFBP-

3 = Insulin-like growth factor binding protein-3. * P < .05; # trend (P ≥ .05–.10); Effect size (η2), small = ≥ .01; medium = ≥ .08; large = ≥ .26; very large = ≥ .50.  



148 

 

Table 6.4. Basic demographics, disease activity, and serum biomarkers of untreated and treated disease in rheumatoid 

arthritis patients (n = 24) 
 

 Untreated disease Treated disease Absolute difference (CI) (%) P η2 

 

Disease activity 
     

 DAS28 (1-10) 6.0 (±0.9) 3.2 (±1.5) ↓ 2.8 (2.1–3.5) (47) <.001* .75 

 CRP (mg/L) 36.8 (±33.3) 15.9 (±21.7) ↓ 20.9 (8.8–33.0) (57) .002* .36 

 

Biomarkers  

 TNF-α (pg/mL) 23.64 (±25.42) 35.85 (±27.14) ↑ 12.21 (-24.51–0.09) (52) .037* .18 

 sTNF-RI (pg/mL) 1490.8 (±732.7) 1457.9 (±520.7) ↔ 32.9 (-148.6–214.4) (2) .734 .01 

 IL-6 (pg/mL) 22.90 (±24.01) 12.20 (±23.71) ↓ 10.70 (1.34–20.05) (47) .021* .22 

 Myostatin (pg/mL) 1848.0 (±1146.4) 2126.7 (±1150.7) ↑ 278.7 (39.9–517.4) (15) .030* .21 

 IGF-I (ng/mL) 96.7 (±41.7) 103.0 (±42.5) ↔ 6.3 (-8.0–0.5) (7) .367 .04 

 IGFBP-3 (ng/mL) 3288.1 (±834.6) 3525.5 (±784.1) ↑ 237.4 (18.4–456.5) (7) .034* .19 

 Adiponectin (ng/mL) 12879.8 (±6768.5) 13288.4 (±6955.4) ↔ 408.6 (-787.76–1604.9) (3) .497 .02 

 Leptin (pg/mL) 14957.4 (±12643.5) 19985.0 (±15,622.3) ↑ 5027.5 (2282.7–7772.4) (34) .012* .26 

 
Untreated and treated data is presented as means (±SD) with 95% confidence intervals (CI) reported for the difference. Data was analysed using a 2x2 analysis of variance for 
the effects of ETN vs MTX (see Table 6.5.), with the main effect for time (i.e. pooled group data) used as the relative untreated versus treated states. DAS28 = Disease activity 

score in 28 joints; CRP = C-reactive protein; TNF-α = Tumor necrosis factor-α; sTNF-RI = Soluble tumor necrosis factor-α receptor-1; IL-6 = Interleukin-6; IGF = Insulin-like 
growth factor; IGFBP-3 = Insulin-like growth factor binding protein-3. * P < .05; Effect size (η2), small = ≥ .01; medium = ≥ .08; large = ≥ .26; very large = ≥ .50. 
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Table 6.5. Disease activity and serum biomarkers changes in etanercept and 

methotrexate treated rheumatoid arthritis patients 
 

Measure ETN (n = 12) MTX (n = 12) 

P (η2) 

Treatment 
x time 

Time 

     
Disease activity     
DAS28      
 Pre 6.1 (±0.7) 5.8 (±1.1) 

.793 
(.00) 

<.001* 
(.75) 

 Post 3.2 (±1.6) 3.1 (±1.4) 

 Change -2.9 (±0.5)* -2.7 (±0.5)* 
     
CRP (mg/L)     
 Pre 46.0 (±41.8) 27.7 (±19.6) .471  

(.02) 
.002*  
(.36)  Post 20.8 (±30.5) 11.1 (±2.9) 

 Change -25.3 (±10.4)* -16.6 (±5.6)* 
 
Biomarkers 

  
  

TNF-α (pg/mL)     
 Pre 36.11 (±28.75) 11.17 (±13.62) 

.039* 
(.18) 

.037* 
(.18) 

 Post 60.40 (±10.13) 11.30 (±11.08) 
 Change +24.29 (±10.10)* +0.14 (±4.38) 
     
sTNF-RI (pg/mL)     
 Pre 1766.85 (±946.29) 1237.8 (±337.1) 

.555  
(.02) 

.734 
(.01) 

 Post 1789.56 (±513.32) 1154.0 (±303.2) 
 Change +22.71 (±155.91) -83.83 (±92.75) 
     
IL-6 (pg/mL)     
 Pre 33.16 (±28.26) 19.12 (±27.93) 

.766 
(.00) 

.021* 
(.22) 

 Post 20.57 (±30.99) 3.06 (±2.21) 
 Change -12.59 (±8.30)# -16.07 (±8.00)* 
     
Myostatin (pg/mL)     
 Pre 1623.7 (±1095.0) 2034.9 (±1201.6) 

.276  
(.06) 

.030* 
(.21) 

 Post 1762.5 (±946.0) 2430.2 (±1254.8) 
 Change +138.7 (±135.7) +395.3 (±175.7)* 
     
IGF-I (ng/mL)     
 Pre 94.6 (±33.9) 98.8 (±49.7) 

.213 
(.07) 

.367 
(.04) 

 Post 92.2 (±29.9) 113.8 (±51.3) 
 Change -2.5 (±8.8) +15.0 (±10.3) 
     
IGFBP-3 (ng/mL)     
 Pre 3067.1 (±751.1) 3509.1 (±886.5) 

.276 
(.05) 

.034* 
(.19) 

 Post 3422.3 (±833.9) 3628.8 (±752.9) 
 Change +335.2 (±187.4)# +119.7 (±96.2) 
     
Adiponectin (ng/mL)     
 Pre 12080.6 (±7309.4) 13679.0 (±6400.7) 

.880 
(.00) 

.497 
(.02) 

 Post 12579.1 (±6913.8) 13997.7 (±7228.8) 
 Change +498.5 (±735.3) +318.6 (±925.4) 
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Leptin (pg/mL)     
 Pre 17892.1 (±17439.9) 16578.6 (±16583.7) 

.235 
(.06) 

.012*  
(.26) 

 Post 21069.7 (±9602.7) 20457.6 (±20642.8) 
 Change +3177.6 (±3446.4) +3879.1 (±2052.9)# 
     

 
Pre-and post-treatment scores are presented as means (±SD). Changes are presented as means (±SE). Both the 
treatment x time interaction and main effect for time significance values are presented from analysis of variance (2 
x 2 repeated measures design). If an interaction was detected, post-hoc tests were used to identify where the 
difference lay at within group level. Note: time effect donates untreated versus treated states, and therefore is also 
presented in Table 6.4. DAS28 = Disease activity score in 28 joints; CRP = C-reactive protein; TNF-α = Tumor 

necrosis factor-α; sTNF-RI = Soluble tumor necrosis factor-α receptor-1; IL-6 = Interleukin-6; IGF = Insulin-like 
growth factor; IGFBP-3 = Insulin-like growth factor binding protein-3. * P < .05; Effect size (η2), small = ≥ .01; 
medium = ≥ .08; large = ≥ .26; very large = ≥ .50. 

 

 

6.4.2. Non-pharmaceutical anabolic interventions 

 

6.4.2.1. Effect of progressive resistance training (3) 

At baseline, the groups were not significantly different for age (PRT: 56.0 (±7.3); control: 62.7 

(±12.7) years, P = .169, η2 = .11, small), sex (PRT: female n = 9/10, 90%; control: female n = 

6/9, 67%, P = .210), or disease duration (PRT: 69.2 (±82.0) months; control: 148.9 (±114.2) 

months, P = .096, η2 = .39, large)). Twenty four weeks PRT resulted in a significant 1.0 (±0.2) 

kg increase in ALM (P = .001), and a 2.7 (±1.3)% reduction in BF% (P = .071) (Appendix H). 

Whilst no interaction was detected (P = .304, η2 = .07, small), a main effect for time was 

observed for sTNF-RI (P = .033, η2 = .27, large). No other changes were observed in any 

measure (TNF-α, IL-6, IGF-I, IGFBP-3, adiponectin, and leptin) (Table 6.6.).  
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Table 6.6. Disease activity and serum biomarkers changes in rheumatoid 

arthritis patients undergoing 24 weeks of high-intensity progressive resistance 

training or low-intensity range-of-movement home exercise. 
 

Measure PRT (n = 10) Control (n = 9) 

P (η2) 

Group x 
time 

Time 

 
Disease activity 

   
 

DAS28      
 Pre 3.2 (±1.2) 3.3 (±1.0) 

.383 
(.05) 

.840 
(.00) 

 Post 2.9 (±1.2) 3.5 (±0.7) 

 Change -0.3 (±0.3) +0.2 (±0.3) 
     
Biomarkers     
TNF-α (pg/mL)     
 Pre 2.69 (±1.35) 3.45 (±2.06) 

.829 
(.00) 

.582 
(.02) 

 Post 2.26 (±1.50) 3.26 (±2.29) 
 Change -0.43 (±0.52) -0.19 (±0.97) 
     
sTNF-RI (pg/mL)     
 Pre 1278.4 (±335.6) 1998.8 (±909.1) 

.304 
(.07) 

.033* 
(.27) 

 Post 1162.5 (±315.7) 1689.9 (±1174.7) 
 Change -116.0 (±109.5) -308.9 (±147.7)# 
      
IL-6 (pg/mL)     
 Pre 8.04 (±11.03) 9.32 (±6.70) 

.539 
(.02) 

.904 
(.00) 

 Post 6.48 (±6.69) 10.37 (±7.70) 
 Change -1.56 (±1.97) +1.05 (±3.97) 
     
Myostatin (pg/mL)     
 Pre 2090.7 (±845.01) 2038.0 (±509.1) 

.816  
(.01) 

.895 
(.00) 

 Post 2063.7 (±1291.2) 2135.3 (±1190.8) 
 Change -27.0 (±427.0) +97.3 (±314.1) 
     
IGF-I (ng/mL)     

 Pre 94.4 (±27.1) 115.6 (±42.5) 
.397 
(.05) 

.637 
(.01) 

 Post 98.0 (±27.6) 109.2 (±42.6) 

 Change +3.6 (±10.2) -12.5 (±15.4) 

     

IGFBP-3 (ng/mL)     

 Pre 2970.5 (±798.4) 3450.2 (±936.6) 
.342 
(.06) 

.373 
(.05) 

 Post 2979.2 (±945.8) 3181.9 (±641.0)) 

 Change +8.8 (±144.2) -268.3 (±261.3) 

     

Adiponectin (ng/mL)     

 Pre 11131.9 (±7527.5) 12253.6 (±7310.5) 
.159 
(.12) 

.877 
(.00) 

 Post 12864.4 (±8721.7) 10853.7 (±7409.7) 

 Change +1732.5 (±1558.8) -1399.9 (±1342.4) 
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Leptin (pg/mL) 

 Pre 10883.4 (±8041.5) 44694.7 (±39353.3) 
.595 
(.02) 

.363 
(.05) 

 Post 9316.9 (±6880.9) 38819.1 (±30937.7) 
 Change -1566.5 (±1235.0) -5875.6 (±8818.6) 
     

 

Pre-and post-exercise scores are presented as means (±SD). Changes are presented as means (±SE). Treatment 
x time, and time main effects are presented from analysis of variance (2 x 2 repeated measures design). If a main 
effect was detected, post-hoc tests were used to identify where the difference lay at within group level. PRT = 
Progressive resistance training; Control = Home exercise group; DAS28 = Disease activity score in 28 joints; TNF-
α = Tumor necrosis factor-α; sTNF-RI = Soluble tumor necrosis factor-α receptor-1; IL-6 = Interleukin-6; IGF = 
Insulin-like growth factor; IGFBP-3 = Insulin-like growth factor binding protein-3. * P < .05; Effect size (η2), small = 
≥ .01; medium = ≥ .08; large = ≥ .26; very large = ≥ .50. 

 

6.4.2.2. Effect of oral creatine monohydrate supplementation (4) 

No differences between the Cr and placebo groups were identified for age (Cr: 56.6 (±11.3); 

placebo: 55.3 (±10.8) years, P = .800, η2 = .00), sex (Cr: n females = 5/8, 63%; placebo: n 

females = 9/12, 75%, P = .550)), or disease duration (Cr: 91.5 (±54.4) months; placebo: 80.6 

(±95.5) months, P = .774, η2 = .09, medium)). In this smaller subset of patients (n of 8) 

(compared to the whole population reported in the Chapter 5), Cr supplementation increased 

ALM by 0.5 (±0.3) kg, with a moderate group x time effect (P = .078, η2 = .18, medium) but no 

main effect for time (P = .165, η2 = .12, medium). No main effects were seen for BM or FM, 

although there was a main effect for time for BF% (P = .064, η2 = .22, medium). Post hoc 

analysis revealed an unexplainable 1.3 (±0.4) BF% increase in the placebo group (P = .039) 

(Appendix I). 

 

Whilst no main effects were seen in DAS28, there was a main effect for time in CRP (P = .029, 

η2 = .25, medium) (Table 6.7.). Post hoc tests showed a CRP reduction of 2.5 (±1.1) mg/L in 

the placebo group (P = .052). There was a moderate group x time interaction for TNF-α (P = 

.073, η2 = .188, medium), but no main effect for time (P = .405, η2 = .00). Subsequent analysis 

showed a 34% reduction in TNF-α in the Cr group (P = .083). There was a group x time 

interaction for sTNF-RI (P = .025, η2 = .25, medium), with post hoc analysis revealing a 

decrease in the placebo group (P = .006). No main effects were observed in any other 

biomarker (IL-6, myostatin, IGF-I, IGFBP-3, adiponectin, or leptin).  
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Table 6.7. Disease activity and serum biomarkers changes of rheumatoid 

arthritis patients orally supplementing for 12 weeks with either creatine or 

placebo. 
 

Measure Creatine (n = 8) Placebo (n = 12) 

P (η2) 

Group x 
time 

Time 

 
Disease activity 

   
 

DAS28      
 Pre 3.0 (±0.8) 2.5 (±0.6) 

.371 
(.05) 

.185 
(.10) 

 Post 2.6 (±0.9) 2.4 (±0.8) 

 Change -0.4 (±0.2) -0.1 (±0.2) 
     
CRP (mg/L)     
 Pre 6.1 (±3.3) 8.5 (±6.2) 

.449 
(.03) 

.029* 
(.25) 

 Post 4.9 (±1.6) 6.0 (±4.0) 
 Change -1.3 (±1.0) -2.5 (±1.1)# 
 
Biomarkers 

  
  

TNF-α (pg/mL)     
 Pre 7.02 (±1.92) 4.18 (±1.64) 

.073# 
(.19) 

.405 
(.00) 

 Post 4.65 (±1.72) 5.09 (±1.47) 
 Change -2.37 (±1.17)# +0.90 (±1.18) 
     
sTNF-RI (pg/mL)     
 Pre 896.5 (±123.3) 1383.7 (±100.7) 

.025* 
(.25) 

.952 
(.00) 

 Post 1044.9 (±123.4) 1227.7 (±100.8) 
 Change +148.5 (±138.1) -156.0 (±45.5)* 
     
IL-6 (pg/mL)     
 Pre 11.12 (±6.14) 14.79 (±4.69) 

.686 
(.01) 

.244 
(.07) 

 Post 6.02 (±4.55) 11.12 (±3.47) 
 Change -5.10 (±1.34) -3.67 (±4.07) 
     
Myostatin (pg/mL)     
 Pre 2058.6 (±293.5) 2111.3 (±245.5) 

.662 
(.01) 

.535 
(.03) 

 Post 1919.1 (±279.2) 2086.9 (±233.6) 
 Change -139.5 (±134.5) -24.4 (±193.4) 
     
IGF-I (ng/mL)     
 Pre 84.4 (±11.3) 103.0 (±9.2) 

.476 
(.03) 

.059# 
(.19) 

 Post 64.5 (±10.3) 93.6 (±8.4) 
 Change -19.9 (±15.3) -9.4 (±6.2) 
     
IGFBP-3 (ng/mL)     
 Pre 2902.8 (±176.4) 2719.1 (±150.4) 

.091# 
(.15) 

.431 
(.04) 

 Post 3020.3 (±160.9) 2569.8 (±137.2) 
 Change +117.4 (±100.8) -149.3 (±93.3) 
     
Adiponectin (ng/mL)     
 Pre 13990.2 (±3325.8) 12534.7 (±2836.2) .966 

(.00) 
.102 
(.14)  Post 11893.9 (±2834.6) 11471.8 (±2417.4) 
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 Change -2096.4 (±1906.1) -1062.9 (±1215.2) 
     
Leptin (pg/mL)     
 Pre 9029.3 (±6687.7) 19734.2 (±8424.7) 

.455 
(.03) 

.711  
(.01) 

 Post 9859.9 (±8197.5) 24766.5 (±6539.3) 
 Change +830.7 (±833.5) -5032.2 (±3906.1) 
     

 

Pre-test and post-test scores are presented as means (±SD). Changes are presented as means (±SE). Treatment 
x time, and time main effects are presented from analysis of variance (2 x 2 repeated measures design). If a main 
effect was detected, post-hoc tests were used to identify where the difference lay at within group level. DAS28 = 
Disease activity score in 28 joints; CRP = C-reactive protein; TNF-α = Tumor necrosis factor-α; sTNF-RI = Soluble 
tumor necrosis factor-α receptor-1; IL-6 = Interleukin-6; IGF = Insulin-like growth factor; IGFBP-3 = Insulin-like 
growth factor binding protein-3. * P < .05; # trend (P ≥ .05–.10); Effect size (η2), small = ≥ .01; medium = ≥ .08; large 
= ≥ .26; very large = ≥ .50. 
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6.5. Discussion 

 

 

6.5.1. Summary of key findings 

The aim of this exploratory study was to investigate a comprehensive range of serum-based 

biomarkers of RC (i.e. body composition, specifically LM and FM). As hypothesised, patients 

with well-controlled stable RA disease activity had elevated levels of circulating pro-

inflammatory cytokines (TNF-α and IL-6) compared to HCs. However, no differences in 

anabolic, catabolic, and markers of adiponectin and leptin were observed. Adiponectin and 

IGFBP-3 were inversely associated with muscle mass, although serum markers of 

inflammation were not. Myostatin was positively correlated with muscle mass.  

 

When investigating the effects of either ETN, a recombinant sTNF-receptor, or MTX, a 

traditional DMARD, on RC in treatment-naive patients with high disease activity, initiation of 

either treatment reduced DAS28 and inflammation (i.e. CRP). As hypothesised, levels of TNF-

α were increased following ETN use. Treatment had no effect on anabolic markers or 

adipokines. Anabolic interventions (both PRT and oral Cr supplementation), despite 

favourable effects on body composition, resulted in negligible changes in the biomarkers 

analysed including serum concentrations of IGF-I. Interestingly, TNF-α concentrations were 

reduced following Cr supplementation, and may potentially warrant further study in RA where 

chronic inflammation exists. 

 

Mechanistically, whilst no single biomarker was consistently associated with the LM deficits 

characteristic of RC, the role of adiponectin, along with the relationship between myostatin, 

IGFBP-3, and body composition, may warrant further study. Despite its association with RC 

in the literature, it appears that current systemic inflammation in RA patients with controlled 

disease is not a good indicator of muscle mass or the mechanism behind muscle deficiency. 

Similarly, serum IGF status is a poor indicator of body composition, and in particularly, muscle 

anabolism. 

 

Overall, in a range of serum biomarkers in various disease and treatment conditions, including 

two interventions used to attenuate RC, disappointingly, no consistent roles for these 

biomarkers in RC could be identified.  
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6.5.2. Disease states and the effects pharmaceutical DMARD 

treatment 

 

6.5.2.1. Rheumatoid arthritis patients versus sedentary healthy controls (1a) 

Unsurprisingly, serum pro-inflammatory cytokine (TNF-α and IL-6) concentrations were 

elevated in RA patients compared to HC. These cytokines play a key role in RA path ogenesis 

(Fox, 2000; Jung et al., 2012), and research has consistently shown raised systemic 

concentrations in RA patients (Roubenoff et al., 1994; Arend, 2001; Walsmith & Roubenoff, 

2002; Shrivastava & Pandey, 2013; Blüml et al., 2014; Manrique-Arija et al., 2016). However, 

although elevated in comparison to our HCs, the observed mean serum TNF-α value of 3.7 

pg/mL suggests relatively mild disease activity, with concentrations falling below the 10.6 

pg/mL reported in early (<12 months) active RA, defined as DAS28 ≥3.2 (Manrique-Arija et 

al., 2016)17. The elevated sTNF-RI concentrations observed in our RA group suggest an effort 

to counter the effects of TNF-α (Fox, 2000; Hawari et al., 2004). This soluble receptor has an 

anti-inflammatory role as it competes with cell surface TNF receptors to bind with TNF-α 

(Rooney et al., 2000; Spoettl et al., 2007). 

 

Along with arthropathy, pro-inflammatory cytokines are considered the main drivers of RC 

(Roubenoff et al., 1994; Walsmith & Roubenoff, 2002; Rall & Roubenoff, 2004; Engvall et al., 

2008). Although the exact mechanisms by which these cytokines exert their catabolic effect 

are unclear (Walsmith & Roubenoff, 2002; Rall & Roubenoff, 2004), it is thought they can 

disrupt key protein synthesis pathways including down regulating IGF-I (Broussard et al., 

2003, 2004; Strle et al., 2004; Engvall et al., 2008), and increasing the rate of muscle 

degradation (Granado, Priego, Martín, Villanúa, & López-Calderón, 2005; Dogra et al., 2007; 

Schiaffino & Mammucari, 2011; Fanzani et al., 2012). However, we observed no association 

between inflammatory markers (i.e. serum TNF-α, IL-6, and CRP) and measures of muscle 

mass. Pertinently, early research by Roubenoff’s group also found no direct association 

between circulating TNF-α and loss of body cell mass (essentially, skeletal muscle mass) 

(Roubenoff et al., 1994). In addition, no association between serum TNF-α or CRP and LM 

was reported in two studies in RA by Engvall et al. (2008, 2010), and in cancer cachexia by 

Moldawer et al. (1988) and Maltoni et al. (1997). Conversely, Engvall et al. (2008) found IL-6 

levels to be inversely related with LM, a result not seen in our data.  

 

                                                           
17 Our mean RA IL-6 concentration (6.7 pg/mL) was also less than the 20.1 pg/mL reported in this study. 
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The absence of any relationship between circulating inflammatory markers and LM may be 

explained by several factors. Firstly, the effects of cytokines often occur in a paracrine or 

autocrine fashion (Roubenoff et al., 1994; Maltoni et al., 1997), influencing pathways that 

downstream are responsible for protein synthesis/degradation (Reid & Li, 2001; personal 

communication, Dr Emma Watson, University of Leicester). Thus, serum concentrations may 

not be representative of intramuscular activity (Roubenoff et al., 1994; Engvall et al., 2008) or 

cachexia (Moldawer et al., 1988; Maltoni et al., 1997). In the future, treatment of cachexia 

should focus on the identification of downstream signals that are specific to skeletal muscle 

(Reid & Li, 2001).  

 

Secondly, identification of casual relationships between inflammation and RC is difficult due 

to the different ‘timelines’ involved; whereas inflammatory cytokine production can vary day 

by day, changes in body composition can take much longer (Walsmith and Roubenoff, 2002). 

Loss of LM is greatest during active disease (Roubenoff et al., 1994). Therefore, in well-

controlled RA, such as in our cross-sectional patients, concentrations of pro-inflammatory 

cytokines will be relatively low when obtained, whilst changes in muscle mass may have 

already occured. Interestingly, no association between muscle mass and systemic 

inflammation was noted in our highly active disease, treatment-naïve, patients, although these 

patients were already presenting with low ALM and obesity (i.e. RC) (Marcora et al., 2006). 

These findings strengthen our belief, postulated in Chapter 3, that RC, principally muscle loss, 

primarily occurs in the ‘pre-clinical stage’, before DMARD treatment has been initiated and 

gained control over inflammation. Additionally, preliminary evidence from our group (see 

Chapter 7 and 8) suggests intramuscular CS injections given to treat active RA (e.g., at 

diagnosis) may also contribute to RC. 

 

No differences in serum IGF-I or IGFBP-3 concentrations were observed between the RA and 

HC groups. This supports findings by Rall et al. (2002), and Toussirot et al. (2005), but not 

others (Lemmey et al., 2001; Matsumoto & Tsurumoto, 2002; Blackman et al., 2007; Baker et 

al., 2015). Whilst Engvall et al. (2008) reported no differences in absolute serum IGF-I 

concentrations between RA and controls, they postulated that increased IGFBP-1 levels in RA 

reduce bioavailable IGF-I. Although considered a key factor in muscle anabolism (Bowen et 

al., 2015), we observed no relationship between serum IGF-I and LM. This finding confirms 

previous research (Kraemer et al., 1999; Adams, 2002; Walker et al., 2004; Engvall et al., 

2010) that, unlike local muscle IGF-I (mIGF-I), circulating, predominantly liver-derived, serum 

IGF-I is not an accurate marker of anabolic processes. Longitudinal studies are needed to 

clarify the involvement of systemic IGF-I in RC (Baker et al., 2015). 
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Interestingly, in the RA group, higher levels of IGFBP-3 were correlated with reduced ALM 

and BM (the latter association was also observed in the HC). Although processes are unclear, 

research by Foulstone et al. (2003) suggests that excessive IGFBP-3 during early 

differentiation reduces proliferation of mononucleated muscle cells, and their fusion into 

multinucleated, contractile muscle fibres. However, this effect requires further clarification 

(personal communication, Professor Claire Stewart, co-investigator in the Foulstone et al. 

study).  

 

Contrary to our hypothesis, we observed no difference in systemic myostatin levels between 

RA and HC. Serum myostatin has previously been associated with low muscle mass in the 

elderly (Schulte & Yarasheski, 2001; Yarasheski et al., 2002; Léger et al., 2008) and other 

clinical conditions such as COPD (e.g., Hoenig, 2008; Ju & Chen, 2012). As such, it was 

purported to be a promising biomarker of cachexia (Palus et al., 2014). We unexpectedly 

observed a positive relationship between ALM and serum myostatin in the RA group18. As a 

similar correlation was also seen in the HC, we assume that this is a non-disease specific 

effect.  

 

The most likely explanation for this positive correlation is that since myostatin is mainly 

synthesised and excreted into circulation by skeletal muscle (Lee & McPherron, 2001; Bergen 

et al., 2015), it is conceivable that total muscle mass determines serum myostatin level. 

Positive correlations between LM and myostatin have been reported by Bergen et al. (2015) 

in 240 participants (including young (~33 years, n = 80), elderly (~75 years, n = 80), and 

sarcopenic19 (~79 years, n = 80) participants), and Yamada et al. (2016) in n = 69 adult (~56 

years) outpatients undergoing peritoneal dialysis. Thus, circulating concentrations of 

myostatin may provide a significant, albeit weak, biomarker of muscle mass, (Bergen et al., 

2015), and when investigating changes in serum myostatin, it may be useful to take individual 

muscle mass into account (Yamada et al., 2016). 

 

Interestingly, myostatin was also associated with increased FM and overall BM, and this is 

consistent with the suggestion that myostatin may be involved in regulating adiposity (Allen et 

al., 2011; Zhu et al., 2014). In support of this, Zhu et al. (2014) and Hittel et al. (2009) found 

that serum myostatin concentrations were increased in overweight patients compared with 

normal-weight controls and, similar to our results, positive correlations between BM and 

myostatin were observed (Hittel et al., 2009). In RA patients, who are characteristically obese 

                                                           
18 This relationship (i.e. myostatin concentrations positively correlated with muscle mass) was also observed in 
patients with untreated disease activity from Marcora et al. (2006). 
19 Based on ALM cut-offs (male: ≤5.67 and female: ≤7.23 kg/m2). 
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(e.g., Summers et al., 2008; Lemmey et al., 2009), there may be an association between 

myostatin and adiposity, although mechanisms are undefined (Allen et al., 2011). Myostatin is 

expressed by adipose tissue in low concentrations (Han et al., 2013), thus increased myostatin 

levels, like muscle mass, may reflect increased FM. Further, as LM often increases as an 

anatomical response to the stress imposed by increased body weight (i.e. obesity) 

(Baumgartner et al., 2004), it may be that elevated myostatin concentrations with FM are 

actually a result of the increased muscle mass seen in these patients. Overall, we observed 

no evidence for myostatin as a biomarker of muscle wasting mechanisms, although owing to 

extensive previous literature (e.g., Schulte & Yarasheski, 2001; Yarasheski et al., 2002; Léger 

et al., 2008) further research should be conducted into its role in RA-related cachexia. 

 

Patients with RA had a ~2-fold increase in serum leptin concentration compared to controls. 

As leptin is produced by adipocytes (Wislowska et al., 2007), these elevated levels are 

consistent with the excess FM in RA patients. Indeed, when FM was controlled for, no 

differences were seen. Research into leptin differences between RA patients and HC have 

yielded contrasting findings, with comparable (Anders et al., 1999; Popa et al., 2005, 2009; 

Manrique-Arija et al., 2016), lower (Härle et al., 2004), and higher (Bokarewa et al., 2003; 

Toussirot et al., 2005; Gunaydin et al., 2006; Seven et al., 2009; Abdalla et al., 2014) levels 

reported in RA. The correlation between leptin and relative FM (i.e. BF%) may explain the 

inverse relationship with relative LM (i.e. ALM%) in the RA group.  

 

Leptin has been implicated in the pathogenesis of RA (Härle et al., 2006; Otero et al., 2006; 

Rho et al., 2009; Seven et al., 2009; Targońska-Stępniak et al., 2010; Toussirot et al., 2015) 

by increasing pro-inflammatory cytokine expression (Härle et al., 2006; Wislowska et al., 

2007). However we, like others, found no association between leptin and DAS28 (Anders et 

al., 1999; Bokarewa et al., 2003; Toussirot et al., 2005; Gunaydin et al., 2006; Allam & 

Radwan, 2012; Abdalla et al., 2014), TNF-α, IL-6, or disease duration (Popa et al., 2005; 

Abdalla et al., 2014; Manrique-Arija et al., 2016).  

 

Some research suggests that adiponectin concentrations are elevated in RA patients 

compared to controls (Choi et al., 2009; Laurberg et al., 2009; Popa et al., 2009; Ozgen et al., 

2010), however, we found no difference (Nagashima et al., 2008; Targońska-Stępniak et al., 

2010; Manrique-Arija et al., 2016). Although adiponectin may reduce pro-inflammatory 

cytokine expression in RA (Wulster-Radcliffe et al., 2004; Toussirot et al., 2007; Targońska-

Stępniak et al., 2010), elevated serum adiponectin has also been found to be associated with 

increased radiographical damage and disease activity (Giles et al., 2009, 2011; Klein-Wieringa 
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et al., 2011; Oranskiy et al., 2012; Meyer et al., 2013). Supporting an anti-inflammatory action, 

we observed a significant negative correlation between adiponectin and DAS28. 

 

Interestingly, we found an inverse relationship between adiponectin and muscle mass in the 

RA (significant) and HC (trend) groups. Whilst this suggests a non-disease specific 

mechanism, this result supports observations by Baker et al. (2015) who found that elevated 

serum adiponectin levels were associated with reduced muscle mass in RA patients. Although 

the precise role of adiponectin on muscle metabolism is unclear (Mourtzakis & Bedbrook, 

2009), some research suggests that adiponectin can directly influence the inflammatory (and 

catabolic) pathways responsible for cachexia (McEntegart et al., 2007), including IL-6 up-

regulation (Ehling et al., 2006) and increased energy expenditure (Paulo Araújo et al., 2009). 

As adiponectin can be associated with active disease (Giles et al., 2009; Rho et al., 2009; 

Meyer et al., 2013), Baker et al. postulated that adiponectin may represent a ‘biological marker 

of a catabolic state in RA’, and that high circulating adiponectin levels may identify those who 

have undergone, or have ongoing, catabolism (Baker et al., 2015). Conversely, we observed 

a negative association between adiponectin and IL-6 in our RA patients, again supporting an 

anti-inflammatory role for adiponectin.  

 

6.5.2.2. Untreated versus treated disease / (2b) etanercept versus methotrexate (2a) 

Treatment with ETN or MTX moderately increased adiposity and BM. These changes have 

subsequently been observed by others (Metsios et al., 2007; Engvall et al., 2010; Chen et al., 

2013; Toussirot et al., 2014), and may occur due to increased well-being and appetite due to 

reductions in inflammation and symptoms (Marcora et al., 2006; Metsios et al., 2007), or 

metabolic and/or hormonal changes (Toussirot et al., 2014). Metsios et al. (2007) and Engvall 

et al. (2010) both reported that, despite similar disease activity reductions, anti-TNF’s 

increased FM and trunk FM, respectively, more than traditional DMARDs. Therefore, FM gain 

following anti-TNF-α treatment may be a drug specific effect, although further study is 

necessary (Engvall et al., 2010; Toussirot et al., 2014). 

 

Unsurprisingly, disease activity (DAS28) and CRP were reduced following treatment (Catrina 

et al., 2002; Kotyla et al., 2015). The comparable reductions indicate MTX was equally 

effective as ETN in reducing disease activity in our patients. Whilst we hypothesised that other 

inflammatory markers would also decrease upon treatment initiation, we observed a large 67% 

increase in serum TNF-α concentrations in the ETN group. This effect has been observed 

previously (Zou et al., 2002; Zou et al., 2003; Madhusudan et al., 2004; Bhatia & Kast, 2007; 

Kotyla et al., 2015) with TNF-α concentrations reported to increase ~7-fold in a dose-related 

manner after ETN administration (Barrera et al., 2001). This action occurs as ETN 



161 

 

competitively binds to TNF-α, rendering it biologically and immunologically inactive (Fox, 2000; 

Bhatia & Kast, 2007) but not eradicating it from the circulation (Fox, 2000; Feldmann & Maini, 

2001). As others (Barrera et al., 1995; Aggarwal & Misra, 2003; Nishina et al., 2013) have 

found, no meaningful change in TNF-α occurred following MTX therapy, although this is not a 

universal finding (Majumar & Aggarwal, 2001; Manrique-Arija et al., 2016).  

 

In an effort to regulate its effects, the binding of TNF-α with its membrane-bound receptor (i.e. 

TNF-RI) induces the release of sTNF-RI (Olsson et al., 1992). As TNF-α was unable to interact 

with its transmembrane receptor due to the competitive binding action of ETN (a recombinant 

human sTNF-receptor with a similar anti-inflammatory action to natural sTNF-RI (Fox, 2000)), 

as anticipated, and as previously reported (Sato et al., 2011), we saw no changes in sTNF-RI 

concentrations following treatment. 

 

As hypothesised, treatment resulted in a large reduction in IL-6. Whilst MTX is a known 

inhibiter of IL-6 expression (e.g., Aggarwal & Misra, 2003; Halilova et al., 2012; Nishina et al., 

2013; Manrique-Arija et al., 2016), IL-6 concentrations were also partially reduced in the ETN 

group, most likely due to the decrease in bioactive TNF-α; a recognised inducer of IL-6 (Fox, 

2000). Like others, we observed a correlation between the reductions in IL-6 and CRP (e.g., 

Madhok et al., 1993; Lacki et al., 1997). The acute-phase response (which includes CRP 

expression) follows IL-6 changes (Madhok et al., 1993), thus the ability of MTX to reduce CRP 

concentration (Kapral et al., 2006) may be in part due to a reduction in IL-6 expression.  

 

As expected, we observed no change in serum IGF-I concentrations in either treatment arm. 

No change in IGFBP-3 was seen in the MTX group, which supports findings by Özden et al. 

(2008) in patients with psoriatic arthritis, although we did observe a moderate increase in 

IGFBP-3 following ETN treatment. Research in juvenile idiopathic arthritis patients suggested 

that intensified anti-inflammatory treatment with ETN may increase serum IGF-I and IGFBP-3 

by attenuating the inhibitory effect of pro-inflammatory cytokines (Schemling et al., 2002). 

However, unlike Schemling et al. we observed no change in serum IGF-I, and therefore why 

we observed an IGFBP-3 increase is unclear. For reasons also unknown, myostatin was 

increased in the MTX group. Owing to the associations between IGFBP-3 and myostatin with 

LM in previous scenarios, we tested whether changes in myostatin and IGFBP-3 were 

associated with treatment-induced body composition improvements, however, no correlations 

existed. Increases in myostatin and IGFBP-3 were not associated with any other biomarker 

changes. 
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Although there is evidence that MTX treatment (Laurberg et al., 2009; Manrique-Arija et al., 

2016) and anti-TNF-α therapy (Komai et al., 2007; Nagashima et al., 2008; Serelis et al., 2008; 

Cansu et al., 2011) may increase adiponectin concentrations, like others (e.g., Härle et al., 

2006; Derdemezis et al., 2009; Gonzalez-Gay et al., 2011; Toussirot et al., 2014) we observed 

no changes. Leptin was non-significantly elevated following treatment, with increases 

correlated with elevated adiposity. Manrique-Arija et al. (2016) also found that 6 months of 

MTX treatment significantly increased leptin concentrations, although it was not reported if the 

changes in leptin were due to changes in FM.  

 

 

6.5.3. Non-pharmaceutical anabolic interventions 

 

6.5.3.1. Effect of progressive resistance training (3) 

Twenty four weeks PRT significantly increased muscle mass along with reducing adiposity in 

RA patients. This supports the role of PRT as an effective anabolic intervention that can be 

used to reverse the effects of RC (e.g., Häkkinen et al., 2005; Marcora et al., 2005a; Lemmey, 

2011). No exacerbation of inflammation (i.e. increase in TNF-α or IL-6) was observed. This 

lack of an inflammatory effect of PRT supports previous research in both RA (Rall et al., 1996) 

and healthy individuals (e.g., Conraads et al., 2002; Bruunsgaard et al., 2004; Bautmans et 

al., 2005; Kelley & Kelley, 2006; Olson et al., 2007; De Salles et al., 2010; Libardi et al., 2012).  

 

As with the original analysis (Lemmey et al., 2009), and research by Häkkinen et al. (2005) in 

RA, we observed no changes in serum IGF-I or IGFBP-3 following PRT. However, Lemmey 

et al. (2009) did observe increases in mIGF-I, supporting the stance by Walker et al. (2004) 

that growth factor responses local to the muscle are more important than circulating factors in 

contributing to muscle hypertrophy with resistance training, and that circulating serum IGF-I 

may not be a meaningful marker of mIGF-I activity (Kraemer et al., 1999; Adams, 2002; 

Engvall et al., 2010). 

 

No changes were seen in myostatin concentrations following PRT. The literature on the effect 

of PRT on serum myostatin is contradictory with both increases and decreases reported 

(Walker et al., 2004; Willoughby, 2004a; Willoughby & Taylor, 2004b; Saremi et al., 2010). 

These differences have been partly attributed to the sampling time with acute myostatin 

increases reported immediately post-exercise (Willoughby, 2004a; Willoughby & Taylor, 

2004b;) but then returning to baseline levels ~48 hours later (Walker et al., 2004). In our trial, 
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samples were harvested 3–7 days after the intervention period (Lemmey et al., 2009), thus 

acute myostatin changes resultant of PRT may have gone undetected.  

 

Despite eliciting a reduction in adiposity, PRT resulted in no changes in serum adiponectin or 

leptin concentrations. Whilst this contrasts with research in the elderly where increases in 

adiponectin (Fatouros et al., 2005; Brooks et al., 2007; Olson et al., 2007; De Salles et al., 

2010; Lee & Kwak, 2014) and reductions in leptin (Kohrt et al., 1996; Fatouros et al., 2005; De 

Salles et al., 2010) were observed (primarily due to exercise-induced FM reductions), results 

are inconsistent (see review by Golbidi & Laher, 2014). 

 

The explanations for this lack of change are unclear. In type 2 diabetic males (mean age: ~50 

years), Boudou et al. (2003) found no differences in adiponectin and leptin levels, despite 

significant exercise-induced reductions in FM (8 weeks of exercise training). The authors 

identified that ≥10% loss of FM is required to elicit changes in these adipokines concentrations; 

pertinently this threshold was not achieved in our study (i.e. reduction in FM following PRT 

was ~7%). Further, the effects on adipokines concentrations can also be influenced by training 

protocols (intensity, volume, duration), as well as participants initial conditioning status, energy 

balance conditions, and baseline levels of FM (Fatouros et al., 2005; Golbidi & Laher, 2014). 

 

6.5.3.2. Effect of oral creatine monohydrate supplementation (4) 

Like PRT, Cr supplementation increased LM. Increased muscle protein synthesis following Cr 

supplementation is thought to be stimulated by an increase in mechanical stress from a Cr-

induced osmotic rise in intracellular water (Ingwall et al., 1974; Francaux & Poortmans, 2006). 

Whilst research has found that Cr supplementation with (Burke et al., 2008) and without 

exercise training (Deldicque et al., 2005) can increase mIGF-I concentrations, we observed 

no change in serum IGF-I following supplementation. The lack of effect on serum IGF status 

following Cr supplementation is not surprising following the lack of change following PRT; a 

much greater anabolic stimulus than Cr. Thus, this finding provides further support that serum 

IGF-I levels may not be an accurate marker of local muscle activity following anabolic 

interventions (Adams, 2002; Lemmey et al., 2009).  

 

Research has suggested that Cr supplementation in trained athletes may attenuate increases 

in systemic inflammation such as TNF-α (Santos et al., 2004; Bassit et al., 2008), IL-1β (Bassit 

et al., 2008), and CRP (Deminince et al., 2013), but not IL-6 (Bassit et al., 2008). Interestingly, 

and in support of these findings, the Cr group in our trial showed a 34% reduction in serum 

TNF-α, and no change in IL-6, following 12 weeks of supplementation. This finding potentially 

has favourable implications for RA patients as elevated concentrations of TNF-α have been 
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associated with arthropathy (Scott et al., 2010) and RC (e.g., Roubenoff et al., 1994, 2009), 

although we observed no such relationship between TNF-α and measures of muscle mass. 

 

Two studies (Saremi et al., 2010; Schiaffino & Mammucari, 2011) have reported that 

reductions in serum myostatin after PRT can be augmented by Cr supplementation. Whilst 

the specific physiological processes are unknown (Saremi et al., 2010), it is thought by some 

that the anabolic actions of Cr may involve a down regulation of myostatin (Willoughby & 

Rosene, 2003). However, we saw no change in myostatin following 12 weeks Cr 

supplementation, possibly due to a lack of concurrent exercise (Saremi et al., 2010; Schiaffino 

& Mammucari, 2011). As expected, due to its lack of effect on adiposity, we saw no change in 

circulating adiponectin or leptin levels.  

 

 

6.5.5. Similarities in biomarker changes in the scenarios investigated 

 

In a variety of clinical scenarios, this study investigated a range of serum biomarkers in the 

hope of enhancing understanding of RC. Whilst some markers possibly warrant additional 

investigation, disappointingly, across the different scenarios explored, no consistent roles for 

the serum biomarkers in RC could be identified. 

 

 Inflammatory markers 

As expected, compared to controls, RA patients have elevated levels of systemic markers of 

inflammation (TNF-α, sTNF-RI, and IL-6), although these are substantially reduced by drug 

treatment. Although ETN therapy increased TNF-α concentrations, as evident by substantial 

reductions in disease activity, the circulating TNF-α was rendered biologically and 

immunologically inactive by the treatment. Whilst Cr supplementation resulted in a reduction 

in TNF-α, it caused an unexplained increase in sTNF-α. In contrast, PRT had no effect on any 

inflammatory marker (TNF-α, sTNF-RI, or IL-6). Systemic inflammation was not associated 

with LM measures in any scenario, including in patients with active RA disease.  

 

 Catabolic markers 

Serum myostatin concentrations were comparable between RA and HC cohorts. Surprisingly, 

serum myostatin, generally thought as a catabolic marker, was positively correlated with 

muscle mass and adiposity in both the cross-sectional and untreated RA cohorts, as well as 

the HC group. The most likely explanation for this is that myostatin is produced by muscle, so 

those with more LM express more myostatin. Circulating myostatin was increased following 
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DMARD initiation, although this was not related to improvements in body composition, whilst 

myostatin was unchanged by Cr supplementation and PRT, even though these interventions 

significantly increased LM. 

 

 Anabolic markers 

No differences or changes in serum IGF-I were seen in any scenario, and muscle mass was 

repeatedly not correlated with serum IGF-I. There was no difference in IGFBP-3 between RA 

and HC cohorts, and interestingly, serum IGFBP-3 was inversely correlated with LM in these 

groups. Changes in IGFBP-3 were inconsistent across the intervention studies with a 

significant increase following treatment initiation (but no change in LM) and a moderate 

increase following Cr supplementation (which increased LM), but no change following PRT 

(which had a much greater anabolic effect than Cr supplementation). 

 

 Adipokines 

Whilst no changes or differences in adiponectin were observed in any scenario, serum 

adiponectin was inversely associated with LM in both the RA and HC participants. Serum 

leptin was greater in RA patients than controls, and was increased by treatment and 

suppression of disease activity in previously treatment-naïve patients. These differences in 

leptin were seemingly due to increased adiposity. Conversely, despite a decrease in FM 

following PRT, no reductions in leptin were observed. Creatine supplementation had no effect 

on leptin (or adiposity).  

 

 

6.5.6. Study limitations  

 

6.5.6.1. Intramuscular activity 

Biomarkers derived from serum samples were chosen as they provided a relatively non-

invasive and cost-effective means to assess the mechanisms of RC. However, it appears 

circulating biomarkers are not accurate reflections of further downstream mechanisms or local 

muscle activity (Roubenoff et al., 1994; Kraemer et al., 1999; Reid & Li, 2001; Adams, 2002; 

Walker et al., 2004; Engvall et al., 2008, 2010). Therefore, although more invasive and 

expensive to acquire by biopsy, intramuscular concentrations are likely to provide better 

markers of RC, especially in response to anabolic stimuli. Unfortunately, no muscle biopsy 

samples were available for this study. In future research, to gain a better understanding of the 

complex cascades involved in RC, and the direction of any metabolic effects, studies should 



166 

 

investigate our biomarkers and their subsequent influences on different receptors, hormones, 

cytokines, or molecular responses downstream in the signalling pathway(s). 

 

6.5.6.2. Assay methodology 

Biochemistry data reported in the Lemmey et al. (2009) and Marcora et al. (2006) studies were 

generated by radioimmunoassays (RIA) rather than ELISA which was used in the present 

investigation. Radioimmunoassay’s are regarded as being more specific and sensitive than 

ELISA (Fowler & Cheng, 1983), e.g., RIA often give higher (~3–4 fold) IGF-I values than ELISA 

(Clemmons, 2007). In our study, we were able to perform a comparative analysis of original 

baseline IGF-I/BP-3 data from Lemmey et al. and Marcora et al. to the recent (ELISA) 

analysis20. Overall, whilst showing similar patterns of data, RIA generated data was ~25% 

higher than our current ELISA generated values. 

 

Inconsistent myostatin results may have occurred to the technical limitations and low 

sensitivity (Lakshman et al., 2009; Bergen et al., 2015; Hofmann et al., 2015; Yamada et al., 

2016) associated with enzyme-linked immunosorbent assay-based approaches (e.g., ELISA) 

to measure serum myostatin. 

 

6.5.6.3. Sample condition  

Whilst in the current study serum was immediately frozen upon harvesting and stored at –

80°C, potential sample decay needs to be considered (de Jager et al., 2009). Samples from 

both the cross-sectional study and the Cr supplementation trial were obtained in the previous 

~2 years, whereas samples from Lemmey et al. and Marcora et al. were collected ~7–10 years 

ago. Research has shown that in the absence of repeated freeze-thaw cycle, serum samples, 

including TNF-α, IL-6 (Kenis et al., 2002; Ho et al., 2005), IGF-I, and IGFBP-3 (Ito et al., 2005), 

stored at -80°C are stable (i.e. lack of sample degradation) for a period of up to ~10 years 

(Arts et al., 2014). 

 

6.5.6.4. Low sample sizes 

Sample numbers in each scenario ranged from 8 to 41, and in some cases, despite well-

matched groups, the relatively small n made interpretation of the data problematic. Although 

                                                           
20 For example, pooled data from the original PRT manuscript (Lemmey et al., 2009) showed a mean IGF-I 
concentration of 123.5 ±41.5 ng/mL, this is compared to an IGF-I concentration of 105.0 ±36.3 ng/mL (‘recently 
analysed’) (Δ 15%, P = .007). The ‘older’ IGFBP-3 mean concentration of 4069.5 ±739.16 ng/mL was significantly 
different (Δ 22%, P < .001) than the ‘recently analysed’ IGFBP-3 mean of 3176.21 ±847.16 ng/mL. In the ETN/MTX 
study (Marcora et al., 2006), the ‘older’ IGF-I concentrations were significantly greater than the ‘recently analysed’ 
levels (139.71 ±55.29 versus 96.73 ±41.66, Δ 31%, P < .001). Similar results were seen for IGFBP-3 (5013.75 
±1142.50 versus 3288.10 ±834.63, Δ 34%, P < .001).  
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a significant value did generally indicate a large change or group difference in the data, some 

effects may have been missed due to small sample sizes. Whilst the use of 95% CI’s and ES 

enhance data interpretation, larger n’s would have aided analysis. 

 

6.5.6.5. Other potential biomarkers of rheumatoid cachexia 

The biomarkers chosen in the current study aimed to represent a wide range of different 

inflammatory, anabolic, and catabolic pathways. Whilst the majority of RA research attributes 

RC to either: 1) increased pro-inflammatory cytokine activity; 2) reduced physical activity; or 

3) increased resting energy expenditure (e.g., Metsios et al., 2006), other potential mediators 

of RC may exist and merit future study. In particular, testosterone (anabolic factor) and cortisol 

(catabolic factor) could be investigated further.  

 

Testosterone is a hormone that promotes protein synthesis and efficient repair of muscle 

damage, as well as inhibiting the release of pro-inflammatory (and catabolic) cytokines such 

as TNF-α and IL-6 (Morley et al., 2006). Research suggests that, compared to age-matched 

controls, male RA patients have lower levels of testosterone (Cutolo et al., 1988; Tengstrand 

et al., 2002), however these reduced values may still be high enough to afford some protection 

against LM loss (Munro & Capell, 1997). Overall, the contribution of testosterone to RC 

requires further investigation.  

 

Cortisol is a steroid hormone involved in different metabolic processes in the body including 

inhibiting inflammation (in particular, TNF-α and IL-6) (Jessop & Harbuz, 2005). However, 

reports suggest that in RA circulating levels of cortisol are ‘normal’ (Rall et al., 1996; Jessop 

& Harbuz, 2005; Blackman et al., 2007), and not elevated as would be expected in the setting 

of increased pro-inflammatory activity (e.g., IL-6). This abnormal ‘normal’ level suggests a 

relative hypoadrenalism and hypocortisolism (i.e. underactivity of adrenal glands and 

insufficient cortisol production) in patients with RA (Jessop & Harbuz, 2005; Blackman et al., 

2007) and an overall inadequate anti-inflammatory response to inflammation. 

 

Hypercortisolemia (excessive levels of cortisol) can lead to loss of LM (Thomas, 2007) by 

increasing skeletal muscle proteolysis (Paddon-Jones et al., 2003; 2006). Whilst elevated 

levels of cortisol have been associated with cachectic patients with chronic heart failure (Anker 

et al., 1997), there is limited research into the role of cortisol and RC. Study by Rall et al. 

(1996) and Blackman et al. (2007) both reported no differences in cortisol levels between RA 

and HC participants, despite the presence of RC (i.e. significantly reduced LM) in these 

patients.  
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6.6. Conclusion 

 

 

The aim of this study was to investigate a comprehensive range of serum-based markers of 

RC in order to identify key biomarkers for future application in RA. However, despite studying 

a range of easily attainable and cost-effective serum-biomarkers in various disease and 

treatment conditions, including two efficacious interventions used to attenuate RC, 

disappointingly we observed no consistent themes for circulating inflammatory, anabolic, 

catabolic, and adipokine (i.e. adiponectin and leptin) biomarkers. 
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Significant muscle loss following 

intramuscular corticosteroid injection 

used to treat active rheumatoid 

arthritis; a case report 
 

 

This case report was published in the Journal of Rheumatology and Orthopedics, 2015 
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7.1. Background 

 

Intramuscular (IM) injection of corticosteroids (CS) is the recommended treatment, routinely 

used, to suppress inflammation and relieve pain during an acute episode or exacerbation of 

rheumatoid arthritis (RA) (National Institute for Health and Care Excellence (NICE) Guidelines 

79, 2009). Although potential adverse events such as increased blood pressure and infection 

have been reported following IM CS injection (Choy et al., 2005; Da Silva et al., 2006; Berthelot 

et al., 2013), the effects on muscle mass are less well documented. We present the case of a 

patient with RA who developed significant muscle loss following an IM CS (triamcinolone 

acetonide, 40 mg) injection given for a disease flare.  

 

 

7.2. Case presentation 

 

A 44-year-old male, with established RA (disease duration ~10 years), controlled with 

leflunomide (20 mg daily), was participating in a clinical trial (Chapter 5) assessing the effects 

of oral creatine (Cr) monohydrate supplementation (a form of protein supplementation taken 

to increase muscle mass). The primary outcome measure of this study was dual x-ray 

absorptiometry (DXA)-assessed appendicular lean mass (ALM; a surrogate measure of 

muscle mass (Kim et al., 2002)), and the inclusion criteria were stable disease and medication, 

with no recent history (<3 months) of CS injection. At the start of the trial, disease activity was 

controlled and ‘low’ (Disease Activity Score in 28 joints; DAS28 score = 2.9). Seven weeks 

later, his disease ‘flared’. Consequently, he consulted his GP who confirmed a flare (but did 

not record a DAS28), and gave an IM CS injection (triamcinolone acetonide, 40 mg) to the 

outer upper quadrant of the gluteal muscle. The rheumatology and research team were not 

notified of the CS injection at the time. 

 

Twenty eight days after the injection, the patient was followed up as per the Cr 

supplementation trial protocol. He reported a dramatic improvement in his flare symptoms, 

and his DAS28 was 1.5. Body composition was re-assessed by DXA (see Table 7.1.), and 

revealed a 2.4 kg (4%) loss of total lean mass (LM) in the 12 weeks between baseline and 

follow-up measures, mostly from the arms and legs (2.0 kg, 7% loss of ALM), indicating 

general rather than localised muscle loss. Notably, the patient in question was randomised 

into the Cr supplementation group, consequently his muscle mass was expected to increase 
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during this period. Over the same period, other patients who had been administered Cr 

supplementation increased their ALM and LM by 0.5 and 0.6 kg, respectively. It should be 

noted that neither total LM nor ALM were restored in the ensuing ~2 months.  

 

This loss of muscle is substantial. To put it into context, a loss of 5% total LM results in muscle 

weakness and loss of functional capacity (Walsmith & Roubenoff, 2002). Further, a recent 

study performed by our group (Chapter 3) comparing body composition and physical function 

in RA (n = 82) patients with well-controlled disease and healthy age- and sex-matched controls 

(n = 85) revealed that RA patients have ~10% less muscle mass when ALM is normalised to 

bodyweight, and this loss coincides with substantial deficits in function (i.e. 25–35% poorer 

performance in objective function tests). 

 

 

7.3. Discussion 

 

Possible explanations for the LM loss observed following IM CS injection are: i) variance in 

the DXA measurement; ii) the effect of inflammation during the RA flare (i.e. due to elevated 

levels of pro-inflammatory cytokines, principally TNF-α (Walsmith & Roubenoff, 2002)); or iii) 

an effect of the IM CS injection. The effect is unlikely to be related the DXA-measurement. 

Using data from our trial’s placebo arm (n = 20), in-house assessment of our DXA revealed a 

co-efficient of variation (CV) of 1.4%, which is within the manufacturers recommendation of 

≤1.5%. Whilst it is possible that the depletion of LM occurred between the onset of flare and 

the CS injection, this single case report raises the possibility that the IM CS injection, which is 

regularly used as treatment of active RA, may be contributing to the substantial and sudden 

loss of muscle mass observed.  

 

Previous evidence on muscular atrophy induced by IM CS is scarce. A search of the literature 

revealed only a single case report that subjectively-assessed CS injection induced local 

muscle atrophy (Park et al., 2013). Additionally, although the exact mechanisms are unclear, 

stimulation by CS of the ubiquitin-proteasome system through the increased expression of 

atrogenes (atrophy genes such as MuRF-1), as well as inhibition of anabolic pathways (e.g., 

mTOR/S6 kinase 1 and insulin-like growth factor (IGF)-I), may result in muscle atrophy 

(Schakman et al., 2013). If muscle loss is a common iatrogenic effect of IM CS treatment, this 

is of particular concern for RA patients, as ‘rheumatoid cachexia’ (Walsmith & Roubenoff, 

2002) characterises the disease and contributes to the reductions in strength and physical 

function seen in these patients (Giles et al., 2008a). 
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Table 7.1. Change in body composition and disease activity following disease flare and subsequent treatment with intra-

muscular injection of corticosteroid (triamcinolone acetonide)  
 

 
Assessment 1 

(56 days pre-CS) 

Assessment 2 

(28 days post-CS) 
∆ 1–2 (%) 

Assessment 3 

(86 days post-CS) 
∆ 2–3 (%) 

ALM (kg) 29.4 27.4 -2.0 (-7) 27.8 +0.4 (2) 

Total lean mass (kg) 66.1 63.7 -2.4 (-4) 64.0 +0.3 (1) 

Fat mass (kg) 22.0 21.6 -0.4 (-2) 21.6 0 (0) 

Body fat (%) 

 

24.2 24.5 +0.3 (1) 24.5 0 (0) 

DAS28 (0–10): 2.9 1.5 -1.4 (-47) NA NA 

 Tender joints (n) 1 0 -1 (-100) NA NA 

 Swollen joints (n) 1 0 -1 (-100) NA NA 

 VAS global health (1-100) 23 0 -23 (-100) NA NA 

 CRP (mg/L) 8 <5a NA NA NA 

  
CS: Corticosteroid injection (40 mg triamcinolone acetonide); ∆ = change; ALM = Appendicular lean mass (muscle of arms and legs); DAS28 = Disease Activity Score in 28 joints 
(not measured at Assessment 3); CRP = C-reactive protein level; VAS = Visual analogue scale for global health; NA = Not assessed. a = CRP at ‘Assessment 2’ fell below 
detectable range (<5 mg/L); b = no measure of DAS28 was made at ‘Assessment 3’. 
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7.4. Conclusion 

 

In an era in which single high-dose CS injections are, in accordance with NICE and European 

League against Rheumatism (EULAR) (Smolen et al., 2010b) recommendations, routinely 

used to treat active disease (Da Silva et al., 2006), this incident gives rise to concerns that this 

standard treatment may be contributing to the deficiency of muscle mass commonly observed 

in RA patients (Walsmith & Roubenoff, 2002; Giles et al., 2008a; Summers et al., 2008). Thus, 

it is important to investigate whether the apparent effect of acute IM CS injection that we 

observed is a common response. If this adverse effect is confirmed by an on-going 

observational study (Chapter 8) by our group, this raises important concerns about the use of 

IM CS injection in the treatment of active RA.
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Does a single high dose intramuscular 

corticosteroid injection, used to treat 

disease flare, exacerbate muscle loss 

in rheumatoid arthritis? A pilot trial 
 

 

This chapter contains preliminary results from an on-going trial. 

  



175 

 

 

8.1. Introduction 

 

 

Corticosteroids (CS) are anti-inflammatory agents routinely used in the treatment of active 

rheumatoid arthritis (RA) (Da Silva et al., 2006; Ding & Deighton, 2010). Administration of CS 

by intramuscular (IM) injection has been used since the late 1980’s, and is recommended to 

suppress inflammation and relieve pain in the management of early disease (i.e. recently 

diagnosed) (‘European League Against Rheumatism (EULAR) recommendations for the 

management of rheumatoid arthritis with synthetic and biological disease-modifying anti-

rheumatic drug’, Smolen et al., 2010b; Luqmani et al., 2006), and during an acute episode or 

exacerbation of RA (i.e. a disease flare) (National Institute for Health and Care Excellence 

(NICE) Guidelines 79, Section 1.4.2.1, 2009). Intramuscular CS injections have been shown 

to provide significant short-term benefits in relieving inflammation and pain in RA (e.g., Corkill 

et al., 1990; Choy et al., 1993; Gough et al., 1994; Choy et al., 2005; Luqmani et al., 2006).  

 

Despite being effective in controlling disease activity, chronic high dose CS treatment is known 

to have detrimental effects on body composition including loss of lean mass (LM) and an 

increase in fat mass (FM) (e.g., Horber et al., 1986, Roubenoff et al., 1990; Dekhuijzen & 

Decramer, 1992; Natsui et al., 2006; Pereira & de Carvalho, 2011; Mok et al., 2008). Whilst 

even at relatively low doses, chronic CS use reduces bone mass and increases the risk of 

osteoporosis (Ding & Deighton, 2010).  

 

Although potential adverse events such as hypertension and infection have been reported 

following IM CS injection (Choy et al., 2005; Da Silva et al., 2006; Berthelot et al., 2013), the 

effects on body composition of this treatment are unclear. Our research group recently 

observed a substantial loss of dual-energy x-ray absorptiometry (DXA)-assessed muscle 

mass (-2.0 kg in appendicular LM, ALM; i.e. ~7% of total ALM) in an RA patient following a 

single CS injection given to treat a disease flare (Chapter 7). However, it is possible that the 

depletion of LM occurred prior to the CS injection, due to the catabolic effects of active disease 

(i.e. elevated pro-inflammatory cytokines, principally TNF-α (Roubenoff et al., 1994)).  

 

A search of the literature revealed one other case report of local muscle loss following CS 

injection (Park et al., 2013); although this assessment was only made subjectively (i.e. by 

visual observation). Nonetheless, these reported cases raise concerns that CS treatment may 
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be contributing to the loss of muscle mass, known as ‘rheumatoid cachexia’ (RC) (Roubenoff 

et al., 1992; Walsmith & Roubenoff, 2002; Chapter 3), and physical function (Marcora et al., 

2005a; Giles et al., 2008a; Summers et al., 2008; Lemmey et al., 2009; Kramer et al., 2012; 

Lusa et al., 2015), observed in RA patients. Thus, it is important to determine whether the 

possible iatrogenic effects of acute CS injection on muscle loss is a common response. 

 

To our knowledge, this pilot study is the first to investigate the effects on body composition of 

a single high dose IM CS injection (120 mg depomedrone; methylprednisolone acetate 

aqueous solution) given to treat disease flare in RA patients. We hypothesised that acute loss 

of muscle mass (assessed by ALM) occurs as a result of high dose IM CS injection in RA 

patients. The findings from this study will provide insights into whether the routine, and 

recommended, treatment of RA ‘flares’ with IM injection of CS exacerbates muscle loss and, 

thus, contributes to impaired physical function in RA patients. 
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8.2. Methods 

 

 

This quasi-experimental (non-randomised, single group, pre-post intervention) pilot study was 

conducted at the School of Sport, Health and Exercise Science (SSHES), Bangor University 

between March 2015 and August 2015. The study was approved by the North Wales Research 

Ethics Committee – West (15/WA/0013). 

 

 

8.2.1. Study population 

 

Rheumatoid arthritis patients presenting with active disease (disease flare), and treated with 

an IM injection of CS, were recruited from outpatient clinics of the North West Wales 

Rheumatology department (Peter Maddison Rheumatology Centre, Llandudno, North Wales). 

For inclusion, participants had to: (a) fulfil the American College of Rheumatology/EULAR 

2010 revised classification criteria for the diagnosis of RA (Aletaha et al., 2010); (b) be aged 

≥18 years; (c) not be cognitively impaired; (d) be free of other cachectic diseases or conditions 

preventing safe participation; (e) not be pregnant; and (f) not have any contraindication to a 

high dose IM CS injection (e.g., uncontrolled diabetes mellitus, active infection, previous 

hypersensitivity to CS injections, idiopathic thrombocytopenia, acute heart failure, or active 

peptic ulcer).  

 

Active disease was determined by the attending rheumatologist and was appraised by clinical 

assessment of overall disease activity (i.e. worsening of signs and symptoms of sufficient 

intensity and duration to lead to change in therapy), and not necessary based solely on the 

Disease Activity Score in 28 joints (DAS28). If considered appropriate, a standard CS injection: 

120 mg of depomedrone (methylprednisolone acetate aqueous solution) was given as an IM 

injection. The injection was administered deep into the lateral upper quadrant of the gluteal 

muscle. Potential adverse effects of a single CS IM injection were explained to the patient 

including risk of infection, injection site reaction, and raised blood pressure or blood sugar 

levels (taken from manufacture guidelines; Pfizer Limited, Kent, 2014 (reference: PL 

00057/0963)).  
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8.2.2. Assessments and outcome measures 

 

Due to ethical considerations (i.e. delaying treatment), we could not assess patient’s body 

composition prior to administration of an IM CS injection. Therefore, patients were DXA-

scanned within four hours after their IM CS injection having refrained from food, exercise, 

caffeine, and alcohol during the interim period (‘Visit 1’, baseline). Approximately four weeks 

(~27-32 days) later, participants returned to Bangor University for a follow-up testing session 

and reassessment (‘Visit 2’, post-CS), having followed a similar pre-DXA dietary and fluid 

intake to ‘Visit 1’. Relevant clinical and demographic information was collected by structured 

interview and from review of medical records.  

 

8.2.2.1. Anthropometric and body composition measures  

Routine anthropometric measures (body mass (BM), height, and waist: hip ratio) were 

recorded in accordance with standard procedures (Eston & Reilly, 2009). Total and regional 

lean and fat masses, along with bone mineral content (BMC) and density (BMD), were 

estimated using a whole body fan-beam DXA scanner (Hologic, QDR Discovery 45615, 

software V12.4). Appendicular lean mass (ALM) (the summed LM of the arms and legs) was 

estimated using the method described by Heymsfield et al. (1990) (Appendix B) and acted 

as a surrogate measure of total body muscle mass (Kim et al., 2002).  

 

8.2.2.2. Clinical measures  

Disease activity (DAS28) of each patient was assessed at both visits to SSHES by the same 

investigator (TJW). The ‘EULAR response criteria’ was used to determine response to 

treatment (Fransen et al., 2005). The venipuncture procedure (for CRP assessment) was 

performed by a phlebotomy-trained investigator (TJW) and CRP was determined by analysis 

at the Department of Clinical Biochemistry’s laboratory (Ysbyty Gwynedd, Gwynedd Hospital) 

in line with routine procedures.  

 

 

8.2.3. Statistical analysis 

 

Inclusion of a control group was not possible for this pilot study as denying treatment to 

patients with uncontrolled disease activity (‘flare’) would be unethical. As a prospective study, 

and due to the absence of appropriate comparable studies, it was also not possible to perform 
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an a-priori power calculation to determine sample size. Whilst the preliminary results 

presented here are taken from patients during the first 5 months of recruitment, increased 

power for the full dataset will be achieved with an overall target of 12–15 patients over a 52 

week recruitment period.  

 

All data is presented as mean (±SD) unless otherwise stated. Significance was set at P < .05 

and a trend was recognised as P = .05–.10. The primary outcome measure was DXA-

assessed ALM, and secondary outcome measures included disease activity (DAS28), and 

other body composition variables (i.e., LM, relative measures of LM (i.e. ALM%, LM%), FM 

and relative measures of FM (i.e. body fat % (BF%), trunk FM, trunk FM%), bone mineral 

content (BMC), bone mineral density (BMD), and anthropometric measures (i.e. waist and hip 

circumferences, and waist: hip ratio)). A CRP test that returned below the detectable range 

(i.e. <5.0 mg/L) was recorded as 4.0 mg/L as per standard PMRC clinical practice. 

 

Data analysis involved paired samples t-tests (pre- and post-measures), with confidence 

intervals (95% CI) and effect size (η2: small = .01; medium = .08; large = .26; very large = .50) 

reported for each variable. Patients who did not attend both sessions (i.e. ‘Visit 1’ and ‘Visit 2’, 

baseline and post-CS injection, respectively) were not included in the final analysis. Data was 

analysed using the Statistical Package for the Social Sciences 22 (SPSS) (Chicago, USA).  
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8.3. Results (preliminary) 

 

 

8.3.1. Recruitment and participant flow 

 

Over the trial’s preliminary 5 month recruitment period, a total of 10 patients were administered 

an IM CS injection for active disease and were eligible for the trial. Of these 10 patients, n = 6 

consented to take part and attended the initial assessment (Visit 1; baseline). Of the 6 patients 

recruited who attended baseline assessment, one patient, female aged 61 years, was 

withdrawn following admittance to hospital for suspected meningitis. This was not deemed 

treatment-related by the attending rheumatologist. Five patients completed the trial and were 

analysed. The mean duration from injection to measurement at Visit 1 was 0.7 (range: 0.3–

1.0) hours (~40 minutes), whilst the mean duration from ‘Visit 1’ (baseline) to ‘Visit 2’ (post-

CS) was 30 days (range: 27–32 days).  

 

 

8.3.2. Descriptive data and participants 

 

Table 8.1. shows the baseline demographic data for the five patients who were followed up 

~four weeks following the IM CS injection. The mean age of participants was 59.0 (±7.1) years, 

with a disease duration of 198.4 (±169.3) months (approximately 17 years). All patients were 

on standard disease modifying anti-rheumatic drug (DMARD) therapy, with no use of biologic 

agents reported. One patient was taking oral CS treatment (5.0 mg/day); a dose not thought 

to cause muscle atrophy (Da Silva et al., 2006). No patients reported any substantial changes 

to lifestyle (e.g., diet or exercise) over the 4 week trial period. No adverse events were 

reported.  

 

 

8.3.3. Body composition changes 

 

Mean body composition changes are shown in Table 8.2., with individual changes in BM, 

ALM, total LM, and FM shown in Figure 8.1. Four weeks following a CS IM injection, an 

average of 1.1 (-1.9– -0.4) kg ALM (i.e. muscle mass) was lost (P = .015 (ƞ2 = .81, very large)), 

whilst total LM was reduced by 1.9 (-3.3– -0.5) kg (P = .020 (ƞ2 = .78, very large)). Muscle 
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mass corrected for BM (ALM%) showed a reduction of 3% (P = .046 (ƞ2 = .67, very large)) 

relative to baseline measures.  

 

Table 8.1. Participant demographics at baseline 

 

 (n = 5) 

 Age (years)  59.0 (±7.1) 

 Sex (n female) (%) 3 (60) 

 Height (cm) 166.7 (±12.7) 

 Disease duration (months) 198.4 (±169.3) 

 

Medications, n (%) 

 NSAIDS  2 (40) 

 MTX a 4 (80) 

 HCQ 2 (40) 

 Combination therapy (≥2 DMARDs) 1 (20) 

 Biological agents  0 (0) 

 Current oral corticosteroid use b 1 (20) 

 Analgesics 3 (60) 

 Calcium supplements 0 (0) 

 
Data presented as mean (±SD). DAS28 = Disease Activity Score in 28 joints; NSAIDS = Non-steroidal anti-
inflammatory drugs; MTX = Methotrexate; HCQ = Hydroxychloroquine; DMARDs = Disease modifying anti-
rheumatic drugs. a = Additional folate supplement; b = Current corticosteroid dose of 5.0 mg. 

 

Whilst no significant changes were seen in total FM (P = .725 (ƞ2 = .03, small)), BF% (P = .258 

(ƞ2 = .30, large)), or trunk FM (P = .343 (ƞ2 = .22, medium)), there was a 3% increase in trunk 

FM% (P = .069 (ƞ2 = .60, very large)). The concurrent reduction in LM and small increase in 

FM resulted in a mean BM loss of 1.5 (-3.7–0.6) kg (P = .119 (ƞ2 = .50, very large)), and a 0.7 

(-2.0–0.6) kg/m2 reduction in BMI (P = .205 (ƞ2 = .36, large)). No significant changes were 

seen in mean BMD (P = .620 (ƞ2 = .07, small)) or BMC (P = .664 (ƞ2 = .05, small)). 

 

 

8.3.4. Disease activity changes 

 

Mean DAS28 was significantly reduced by 40% (P = .007 (ƞ2 = .87, very large)) (Table 8.3. 

and Figure 8.2.). There were large reductions in the number of tender joints (-50%, P = .205 

(ƞ2 = .36, large)), number of swollen joints (-80%, P = .066 (ƞ2 = .61, very large)), and the VAS 

global health (-63%, P = .008 (ƞ2 = .86, very large)). All five patients showed a ‘moderate’ 
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DAS28 response based on the ‘EULAR response criteria’21 (Fransen et al., 2005), with three 

patients attaining ‘clinical remission’ (DAS28 score <2.6) (Smolen et al., 2010a, 2010b; Pincus 

et al., 2011) post-IM injection. Thus, all patients were deemed to be responsive to the IM CS 

injection. 

 

8.3.4.1. Patient 03, F, 67 

For mean CRP, we observed a non-significant increase of 5.0 mg/L (P = .702 (ƞ2 = .04, small)), 

but this was due to an increase of 52.0 mg/L in one patient (female, aged 67 years). Despite 

the apparent increase in inflammation, this patient showed an overall DAS28 reduction of 1.6, 

with decreases in the number of tender (-3) and swollen joints (-1), and the VAS (-48). Based 

on her initial DAS28 score of 4.4, the 1.6 reduction in her score indicates a ‘moderate’ 

response (EULAR response criteria). Excluding the CRP rise in this patient, the mean CRP in 

the remaining four patients was reduced by 6.7 mg/L (-59%, CI: -19.3–5.8, P = .186 (ƞ2 = .04, 

small)). 

  

                                                           
21 Due to all patients presenting with an initial DAS28 score >3.2, only a ‘moderate’ or ‘none’ EULAR response 
could be attained. To achieve a ‘good’ response, patients must have an initial DAS28 score of <3.2. 
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Figure 8.1. Individual, and mean, absolute body composition changes following an intramuscular corticosteroid 

injection to treat a rheumatoid arthritis disease flare. Data presented as individual plots (labelled as study number, 

male (M) or female (F), and age in years, e.g., 01, M, 62) (pre (baseline) - and post- corticosteroid (CS) injection) 

with mean line (▲- - -▲). ALM = appendicular lean mass; LM = lean mass; * P < .05; n.s = non-significant.  
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Table 8.2. Body composition changes following an intramuscular corticosteroid injection to treat a rheumatoid arthritis 

disease flare 
 

 Baseline Post-CS Absolute difference (CI) % difference P η2 

 Waist circumference (cm) 94.8 (±15.3) 94.4(±13.7) -0.4 (-8.6–7.8)  0 .898 .01 

 Hip circumference (cm) 106.0 (±9.5) 106.8 (±10.3) 0.8 (-9.0–10.6) 1 .831 .01 

 Waist: hip ratio 0.86 (±0.10) 0.88 (±0.08) 0.02 (-0.05–0.09) 2 .388 .19 

 BM (kg) 83.6 (±10.9) 82.1 (±11.1) -1.5 (-3.7–0.6) -2 .119 .50 

 BMI (kg/m2) 30.5 (±6.0) 29.8 (±6.2) -0.7 (-2.0–0.6) -2 .205 .36 

 

Body composition by DXA 

 ALM (kg) 21.9 (±4.9) 20.8 (±4.9) -1.1 (-1.9– -0.4) -5 .015* .81 

 ALM% (ALM/BM%) 26.1 (±4.5) 25.2 (±5.0) -0.8 (-1.7–0.0) -3 .046* .67 

 Total LM (kg) 52.4 (±10.9) 50.5 (±10.1) -1.9 (-3.3– -0.5) -4 .020* .78 

 Total LM% (total LM/BM%) 62.3 (±10.3) 61.4 (±10.2) -1.0 (-2.6–0.7) -2 .183 .39 

       
 Fat mass (kg) 29.2 (±10.5) 29.5 (±10.8) 0.3 (-1.9–2.5) 1 .725 .03 

 Body fat (%) 34.6 (±11.0) 35.5 (±11.0) 0.8 (-0.9–2.6) 2 .258 .30 

 Trunk FM (kg) 14.5 (±5.9) 15.1 (±6.2) 0.6 (-1.0–2.3) 4 .343 .22 

 Trunk FM% 49.2 (±7.3) 50.8 (±6.8) 1.6 (-0.2–3.4) 3 .069# .60 

       
 BMD (g/cm2) 1.22 (±0.14) 1.21 (±0.16) -0.01 (-0.07–0.04) -1 .620 .07 

 BMC (g) 2590.9 (±689.9) 2573.5 (±720.9) -17.5 (-120.8–85.9) -1 .664 .05 

 
Data presented as mean (±SD). CI = 95% confidence interval; CS = Corticosteroid injection; BM = Body mass (scales); BMI = Body mass index; DXA = Dual x-ray absorptiometry; 
ALM = Appendicular lean mass; LM = Lean mass; BMD = Bone mineral density; BMC = Bone mineral content; * P < .05; # trend (P = .05–.10); Effect size (η2), small = ≥ .01; 
medium = ≥ .08; large = ≥ .26; very large = ≥ .50. 
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Table 8.3. Change in disease activity (DAS28 and sub-components) following an intramuscular corticosteroid injection to 

treat a rheumatoid arthritis disease flare 
 

 Baseline Post-CS Absolute difference (CI) % difference P η2 

 DAS28 (0–10): 4.2 (±0.7) 2.6 (±1.2) -1.7 (-2.6– -0.8) -40 .007* .87 

 Tender joints (n) 4 (±3) 2 (±3) -2 (-7–2) -50 .205 .36 

 Swollen joints (n) 5 (±5) 1 (±1) -4 (-8–0) -80 .066# .61 

 VAS global health (1-100) 57 (±23) 21 (±21) -36 (-57– -16) -63 .008* .86 

 CRP (mg/L) 12.2 (±7.3) 17.2 (±27.8) 5.0 (-28.7–38.7)† 41 .702 .04 

 
Data presented as mean (±SD). CI = 95% confidence interval; CS = Corticosteroid injection; DAS28 = Disease Activity Score in 28 joints; VAS = Visual analogue scale for global 
health; CRP = C-reactive protein; * P < .05; # trend (P = .05–.10); Effect size (η2), small = ≥ .01; medium = ≥ .08; large = ≥ .26; very large = ≥ .50. † = CRP includes the increase 
of 52.0 mg/L in patient 03, F, 67.
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Figure 8.2. Individual, and mean, disease activity scores change following an intramuscular corticosteroid injection 

to treat a rheumatoid arthritis disease flare. Data presented as individual plots (labelled as study number, male (M) 
or female (F), and age in years, e.g., 01, M, 62 = participant 01, male, aged 62 years) (pre (baseline) - and post- 
corticosteroid (CS) injection) with mean line (▲- - -▲). DAS28 = Disease Activity Score in 28 joints; *P < .05. Ϫ = 
Disease activity classification: high = >5.1; moderate = >3.2–≤5.1; low = ≥2.6–≤3.2; remission = <2.6; taken from 
Pincus et al. (2011). 
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8.4. Discussion 

 

 

8.4.1. Main findings 

 

Although only preliminary, results from these five patients and our case study (Chapter 7), 

suggest that a bolus IM CS injection used to treat active RA disease results in significant 

reductions in LM, specifically ALM. As this loss of LM is likely to have clinically significant 

adverse effects on physical function, these findings raise important concerns about the routine 

use of this treatment in RA patients with active disease. 

 

Patients presenting in clinic with active or uncontrolled RA are usually administered an IM CS 

injection. Such injections are recommended by the national guidelines for the management of 

active RA (‘EULAR recommendations for the management of rheumatoid arthritis with 

synthetic and biological disease-modifying anti-rheumatic drugs’, Smolen et al., 2010b; NICE 

Guidelines 79, section 1.4.2.1, 2009; ‘British Society of Rheumatology (BSR) and British 

Health Professionals in Rheumatology (BHPR) guidelines for the management of polymyalgia 

rheumatica’, Dasgupta et al., 2010), and provide significant short-term benefits by rapidly 

attenuating inflammation and pain (e.g., Corkill et al., 1990; Choy et al., 1993; Gough et al., 

1994; Choy et al., 2005). Indeed, in our five patients, the CS injection was extremely 

successful in controlling disease activity, with DAS28 significantly reduced by 40% and 3/5 of 

patients going from ‘moderate’ disease activity to ‘remission’ (DAS28 of <2.6).  

 

However, despite control of the disease, approximately four weeks later, 1.1 kg of ALM (i.e. 

muscle mass) (~5%) was lost while total LM decreased by 1.9 kg (~4%). Whilst the literature 

on IM CS-driven muscle loss is scant, our group previously observed a loss of 2.0 kg ALM 

(~7%) in an RA patient following a single CS injection given to treat a disease flare (Chapter 

7). In this case, we were uncertain if this loss of muscle had occurred prior to the CS injection 

(i.e. as a result of active inflammation). However, the preliminary results from this current trail 

support the proposal that this loss was primarily a result of the IM CS injection.  
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8.4.2. Interpretation of findings 

 

Our findings are consistent with the reported effects of chronic high dose CS treatment which 

is known to have detrimental effects on body composition including loss of LM (e.g., Horber et 

al., 1986, Roubenoff et al., 1990; Dekhuijzen & Decramer, 1992; Natsui et al., 2006; Mok et 

al., 2008; Pereira & de Carvalho, 2011). The exact mechanism underlying the changes to 

muscle following CS use is unclear. It is thought that the stimulation of the ubiquitin-

proteasome system by CS is mediated through the increased expression of several atrogenes 

(i.e. genes involved in atrophy), such as MuRF-1; a ubiquitin ligase involved in the 

identification of protein to be degraded by the proteasome system. Corticosteroids may also 

exert an anti-anabolic action by inhibiting anabolic pathways (e.g., mTOR/S6 kinase 1 and 

insulin-like growth factor (IGF)-I), thus blunting muscle protein synthesis (Short et al., 2004; 

Schakman et al., 2013).  

 

Chronic low (Da Silva et al., 2006) and high dose CS use (Mok et al., 2008) has also been 

implicated in the redistribution of fat to the truncal area. Although we saw no change in the 

total FM of our patients, we did observe a moderate 3% increase in trunk FM% suggesting a 

shift of FM to the trunk may also occur following acute administration of high dose CS. Whilst 

the precise mechanisms are unknown, hyperinsulinemia, changes in expression and activity 

of adipocyte derived hormones and cytokines such as leptin and TNF-α, and increased food 

intake (CS increases appetite) are all thought to contribute to this effect (Da Silva et al., 2006). 

Trunk obesity is a distinctive feature of RA body composition (Giles et al., 2008b; Elkan et al., 

2009; Dao et al., 2011) and exacerbates the risk of CVD (Inaba et al., 2007; Stavropoulos-

Kalinoglou et al., 2009; Giles et al., 2010; Summers et al., 2010).  

 

Although chronic (Da Silva et al., 2006; Natsui et al., 2006; Mok et al., 2008; Ding & Deighton 

2010) and acute IM CS (Choy et al., 2005) use have also been recognised to increase the risk 

of osteoporosis, we saw no changes to bone measures (BMD or BMC). 

 

 

8.4.3. Significance  

 

A loss of just 5% LM (as seen in this trial) can result in muscle weakness and loss of functional 

capacity (Walsmith & Roubenoff, 2002), and reductions in muscle mass are a major 

contributor to the decreased strength (Marcora et al., 2005a; Van Bokhorst – de van der 

Schueren et al., 2012; Chapter 3) and impaired physical function seen in RA (Giles et al., 



189 

 

2008a; Summers et al., 2008; Lemmey et al., 2009; Lusa et al., 2015). Further, loss of LM 

(and therefore loss of expendable protein) also impairs the immune system’s ability to respond 

to infection and trauma (Roubenoff, 2001; Summers et al., 2008).  

 

Significantly, the 1.1 kg loss of ALM seen in our patients following the IM CS injection is 

identical to that (i.e. 1.1 kg) we observed in Chapter 3 comparing RA patients with age- and 

sex-matched healthy controls. Considering the majority of newly diagnosed patients, and 

patients undergoing active disease ‘flares’, experience an IM CS injection to supress disease 

activity, it may be that the treatment is contributing significantly to the discrepancy in LM 

observed in RA patients. On appearance there appeared to be no difference in the magnitude 

of loss between males (n = 2) and females (n = 3), although gender-differences in treatment 

response need to be confirmed in a larger study. 

 

Without some form of anabolic stimuli, it is unlikely that the body is able to spontaneously 

restore this lost LM. Certainty, in our case patient (Chapter 7), the lost LM had not been 

restored 12 weeks later. This further emphasises the importance for adjunct interventions 

designed to increase muscle mass in RA. Primarily, progressive resistance training (PRT) 

(Marcora et al., 2005a; Lemmey et al., 2009) appears most beneficial for patients wishing to 

increase LM and improve their physical functioning. 

 

Interestingly, it appears muscle loss following IM CS injections may be a generic treatment 

class effect. In our case report (Chapter 7) the patient received triamcinolone acetonide (40 

mg), whilst in the current study, 120mg of methylprednisolone was administered. Both CS 

forms resulted in comparable reductions in muscle mass (~5%).  

 

 

8.4.4. Limitations  

 

We acknowledge several limitations of the preliminary findings presented here. First, the low 

n of our sample makes it difficult to generalise the effect of IM CS injection to all RA patients, 

and results should be interpreted conservatively. However, we feel that even with the small 

sample, the large effect sizes (ƞ2 = .67–.81) and consistent pattern of muscle loss supports 

concerns that CS IM injection can contribute to muscle loss in RA. This will be confirmed once 

more patients are recruited in the full trial.  
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Due to ethical considerations we were unable to perform a randomised, placebo-controlled 

trial, as denying treatment to patients with active RA would not be ethically justifiable. The lack 

of a control group is a weakness of our quasi-experimental study design. However, even 

without a control/placebo arm, associations identified in quasi-experiments do meet some 

requirements of causality because the intervention precedes the outcome measurement 

(Harris et al., 2006). 

 

 

8.5. Conclusion  

 

 

The preliminary results from this study indicate that bolus IM injection of high-dose CS, a 

recommended and routine treatment for uncontrolled disease activity in RA, causes 

substantial loss muscle mass. If this effect is confirmed by our full study (n ≈ 12–15), then risk: 

benefit analyses of this treatment should be conducted, as should investigations into potential 

alternative treatments for rapidly dealing with the inflammation and pain of uncontrolled RA.
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9 
 

General discussion 

 

 

This general discussion reviews the key findings of this thesis, proposes potential future 

research and recommendations, and outlines the strengths and limitations of the work 

completed during my doctoral research.  
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9.1. Summary of key findings 

 

 

9.1.1. ‘Treat-to-target’, despite providing effective control of disease 

activity, does not prevent rheumatoid cachexia 

 

Patients with rheumatoid arthritis (RA) typically experience significant loss of muscle mass 

and increased adiposity, a condition known as ‘rheumatoid cachexia’ (RC) (Roubenoff et al., 

1992; Roubenoff et al., 1994; Summers et al., 2008). As RC has been attributed to 

inflammation (especially tumor necrosis factor (TNF)-α)-driven muscle catabolism (Roubenoff 

et al., 1992, 1994; Metsios et al., 2008), it was proposed that successful control of 

inflammation/disease activity may attenuate the effects of RC. Current RA treatment, 

exemplyfied by the ‘treat-to-target’ (T2T) strategy (Verstappen et al., 2007; Saunders et al., 

2008; Goekoop-Ruiterman et al., 2010; Smolen et al., 2010a, 2010b; Jurgens et al., 2012; 

Stoffer et al., 2015), emphasises tight control of inflammation, with achievement ‘clinical 

remission’ (usually defined as a disease activity score in 28 joints (DAS28) <2.6 (Smolen et 

al., 2010a, 2010b)), or failing that achievement of low disease activity (LDA), the goal. Whether 

T2T, specifically the achievement of ‘clinical remission’ or LDA, has resulted in the attenuation 

of RC and subsequent improvements in objective physical function in RA patients had not 

previously been investigated.  

 

In study 1 (Chapter 3), the disease activity of 82 RA patients exclusively treated by a T2T 

approach was well-controlled with the mean DAS28 score of the group (= 2.8) indicating LDA 

and approximately half (49%) achieving ‘remission’. However, despite successful control of 

disease activity we found that compared to age- and sex-matched healthy controls (HCs) 

aberrant body composition was still evident in RA patients, with significant loss of muscle mass 

(10%; adjusted for body mass (BM)), and increased total (27%) and trunk (32%) adiposity 

observed. These values are remarkably similar to those reported for patients who were 

treated, or commenced treatment, prior to T2T (prior to ~2008), i.e. muscle mass loss of ~8–

15% and total (and trunk) fat mass (FM) ~12–18% greater relative to HCs (see Chapters 2 

and 3). Consequently, study 1 is the first to show that despite tightly controlling disease 

activity, T2T has not prevented, or even attenuated RC. 
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9.1.2. Strength and objective physical function remains significantly 

poorer compared to sedentary controls 

 

Despite only self-reporting their disability as ‘mild’ (Multi-dimensional Health Assessment 

Questionnaire (MDHAQ) score = 0.6), RA patients in study 1 displayed greatly impaired 

strength (reduced by 24–25%) and objective physical function (reduced by 28–34%) relative 

to age- and sex-matched HCs. Consistent with the absence of improvement in body 

composition, these deficits in performance are similar to, and certainly not better, than those 

previously observed by our group (Marcora et al., 2005a, 2005b, Marcora et al., 2006; 

Lemmey et al., 2009, 2012; Matschke et al., 2010a, 2010b; Matschke et al., 2013) and others 

(e.g., Brorsson et al., 2012; Kramer et al., 2012). This finding indicates that even aggressive 

treatment to suppress disease activity leaves RA patients with significant functional 

deficiencies equivalent to a healthy individual of the same sex who is 25 years older.  

 

 

9.1.3. Rheumatoid cachexia may occur prior to disease diagnosis 

 

In study 1, there was no difference in body composition between the ‘recent-onset’ (<12 

months from diagnosis) and ‘established’ (1–7 years from diagnosis) disease groups. This 

finding supports previous suggestions (Marcora et al., 2006; Book et al., 2009) that RC is 

established early in the course of RA, possibly in a ‘pre-clinical’ phase. Research has shown 

that disease processes may be active before RA symptoms become clinically detectable 

(Gerlag et al., 2012). Specifically, elevated systemic inflammation has been found to exist in 

a ‘pre-clinical’ phase of RA (Kraan et al., 1998; Van de Stade et al., 2011; Sokolove et al., 

2012). Using stored serum (1–12 years prior to disease diagnosis22) samples from RA 

patients, Sokolove et al. (2012) found elevated concentrations of pro-inflammatory cytokines 

(TNF-α, interleukin (IL)-1β, and IL-6) prior to diagnosis, with concentrations appearing to peak 

~0–2 years prior to diagnosis (Figure 9.1.). 

 

                                                           
22 In this study, the median time of onset of symptoms was ∼6 months prior to diagnosis, and in no instance where 

it could be assessed did symptoms precede the presence of cytokines. 
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Figure 9.1. Graph showing the mean number of elevated cytokines (TNF-α, IL-1β, and IL-6) evaluated in a ‘pre-

clinical’ stage. Source: Sokolove et al. (2012) and reproduced under the CC-O licence. 

 

Pertinently, these specific pro-inflammatory cytokines (i.e. TNF-α, IL-1β, and IL-6) have been 

associated with the pathophysiological processes behind RC (Roubenoff et al., 1992; 

Roubenoff et al., 1994; Metsios et al., 2006). Thus, it is possible that uncontrolled inflammation 

initiates muscle wasting and adiposity gain prior to the appearance of detectable joint 

symptoms, subsequent diagnosis, and the commencement of disease modifying anti-

rheumatic drugs (DMARD) treatment. 

 

Interestingly, it appears that after this ‘initial’ loss of muscle, and once RA has been stabilised, 

the rate of muscle mass decline is comparable to that of normal sedentary individuals of the 

same sex and similar age (Westhovens, 1999; Lemmey et al., 2012) (i.e. annual muscle 

decline rates after 30 years of age in the general population = ~1.0% per year (Frontera et al., 

2000; Morley et al., 2011; Von Haehling et al., 2012)). This finding is supported by preliminary 

data from the longitudinal arm of study 1 which shows in (n = 10) RA patients the mean decline 

of muscle (adjusted for BM; ALM%) over 12 months is 0.7%. However, only a full data set will 

allow a conclusive interpretation of this finding.  
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9.1.4. Adjunct anabolic treatments are still needed to reverse 

rheumatoid cachexia and normalise physical function 

 

Study 1 revealed that RC still exists despite tightly-controlled disease activity through T2T. 

Together with evidence that DMARD and anti-TNF-α therapy is unable to reverse RC (Marcora 

et al., 2006; Metsios et al., 2007; Serelis et al., 2008; Engvall et al., 2010; Toussirot et al., 

2014) and preliminary evidence from our group (Chapter 7 and 8) that intramuscular (IM) 

corticosteroid (CS) injections are contributing to RC, the identification and promotion of adjunct 

anabolic interventions such as exercise (specifically progressive resistance training (PRT) 

(Marcora et al., 2005a; Lemmey et al., 2009)), or nutritional supplements (Willer et al., 2000; 

Marcora et al., 2005b) should be an important aspect of RA care and research. Since the 

beneficial effects of exercise such as high-intensity PRT are well-established, and the uptake 

of this form of treatment is generally poor (e.g., Lemmey et al., 2012), in this thesis, a less 

demanding, more acceptable, nutritional treatment option was investigated. 

 

 

9.1.5. Nutritional creatine supplementation can be effective in 

reversing muscle mass loss from rheumatoid cachexia 

 

A nutritional supplement considered likely to be effective in reversing the effects of RC was 

creatine (Cr) monohydrate. Creatine is a popular form of protein supplementation shown to 

improve physical function via enhanced energy (i.e. ATP) regeneration, and increased muscle 

mass (e.g., Casey & Greenhaff, 2000). In Chapter 4, we reviewed the mechanisms of Cr 

supplementation and its potential as an anabolic therapy for RA patients. Our review identified 

only one study in which RA patients supplemented with Cr (Willer et al., 2000), and its findings, 

whilst promising, were inconclusive. Conversely, trials in populations with similar presentation 

to RA patients (i.e. reduced muscle mass and impaired physical function), including older 

adults (e.g., Rawson & Clarkson, 2000; Tarnopolsky, 2000; Brose et al., 2003; Aguiar et al., 

2013) and those with muscle wasting conditions (e.g., Tarnopolsky et al., 2004; Norman et al.. 

2006; Chung et al., 2007; Banerjee et al., 2010), indicated that Cr may offer an easy, safe, 

and effective means to improve muscle mass, strength, and physical function. 

 

Accordingly, we conducted a randomised controlled trial (RCT) (Chapter 5) that found 12 

weeks of oral Cr supplementation was able to significantly increase LM (primarily skeletal 

muscle mass) (~0.5 kg), but not strength or objective physical function. Whilst this lack of 

effect on physical function is disappointing, the increase in LM observed suggests that Cr may 
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be beneficial in patients with severe RC since a marked loss of LM impairs the body’s ability 

to fight infection due to limited expendable protein reserve for immune cell production 

(Summers et al., 2008). Nonetheless, in patients wishing to increase muscle and strength and 

physical function, high intensity exercise such as PRT (e.g., Hakkinen et al., 1999; 2005; 

Marcora et al., 2005a; Lemmey et al., 2009) remains easily the most efficacious treatment 

option.  

 

Overall it appears that exercise remains the most important and clinically relevant 

countermeasure against RC (Walsmith & Roubenoff, 2002). However, the challenge now is to 

increase adherence and uptake of physical activity in patients with RA. It has been shown that 

patients whom participate in regular exercise have lower disease activity and better functional 

ability (Munneke et al., 2003; Metsios et al., 2008). Thus, the first step to increasing physical 

activity appears to be controlling RA disease activity.  

 

Whilst other barriers such as facility access and social support exist (Metsios et al., 2008), 

another important aspect is clinician knowledge and the lack of time invested in exercise 

advice during a typical ~15 minute consultation. Research by Iversen et al. (2004) found that 

just 42% of rheumatologists believe strengthening and aerobic exercises are useful in the 

management of RA, with only ~20% (Iversen et al., 2004) confident they could instruct patients 

to exercise effectively. Clearly, there is a need for better rheumatologist-based knowledge of 

exercise prescription in RA, and for health care professionals to recognise the pivotal role they 

play in disseminating information about exercise to their patients. Whilst the latest ‘ACR-

EULAR current care guidelines’ (2015) recommend exercise training in the management of 

RA, it is yet to be seen whether patient uptake to exercise is improved. 

 

 

9.1.6. Serum-based markers of rheumatoid cachexia 

 

In order to enhance the understanding of markers of RC, Chapter 6 investigated a range of 

anabolic, catabolic, and inflammatory serum biomarkers in different disease and treatment 

conditions. These conditions included a sub-sample of RA and HC participants from study 1, 

untreated and subsequently treated patients, and the effects of two types of anabolic 

interventions used to attenuate RC (PRT and oral Cr supplementation (study 2)). As would 

be predicted, patients with RA, even when disease activity was stable and well-controlled, had 

elevated levels of circulating pro-inflammatory cytokines (TNF-α and IL-6) compared to HCs 

(Walsmith & Roubenoff, 2002; Shrivastava & Pandey, 2013). However, no differences in 
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anabolic, catabolic, and markers of adiponectin and leptin were observed between the groups 

(Rall et al., 2002; Toussirot et al., 2005).  

 

Interestingly, adiponectin and insulin-like growth factor binding protein 3 (IGFBP-3) were 

significantly inversely associated with muscle mass in the RA group, whilst weaker correlations 

were also observed in the HC group suggesting a non-disease specific mechanism. Elevated 

adiponectin may directly stimulate inflammatory (and catabolic) pathways responsible for 

cachexia (McEntegart et al., 2007), including increased IL-6 expression (Ehling et al., 2006), 

whilst increased IGFBP-3 may prevent muscle cell proliferation (Foulstone et al., 2003). 

Markers of inflammation (TNF-α and IL-6) were not associated with reduced muscle mass. A 

possible explanation for this is that RC probably occurs during active inflammation (i.e. in early 

RA prior to commencement of treatment, or during disease flares), but our samples generally 

only included patients with controlled disease (see section 9.1.3. Does rheumatoid cachexia 

occur prior to disease diagnosis?). Despite having a role in muscle wasting (Schulte & 

Yarasheski, 2001; Ju & Chen, 2012), our data showed that myostatin was actually positively 

correlated with muscle mass. This finding is supported by other studies (Lee & McPherron, 

2001; Bergen et al., 2015; Yamada et al., 2016), and most probably occurs as myostatin is 

excreted into circulation by skeletal muscle (Lee & McPherron, 2001), and therefore serum 

myostatin level may reflect total muscle mass. 

 

When investigating the effects of etanercept (ETN) or methotrexate (MTX) on RC in treatment-

naive patients with high disease activity, initiation of either treatment (i.e. ETN or MTX) 

reduced DAS28 and C-reactive protein (CRP) levels by ~50%. Levels of TNF-α were 

increased by 67% following ETN use. This occurred as ETN binds with TNF-α rendering it 

biologically and immunologically inactive (Fox, 2000; Bhatia & Kast, 2007), but not eradicating 

it from the blood. No change in TNF-α was seen following MTX therapy, which predominantly 

reduces IL-6 expression (Aggarwal & Misra, 2003; Nishina et al., 2013). Neither ETN nor MTX 

had any effect on anabolic markers or adipokines (e.g., Gonzalez-Gay et al., 2011; Toussirot 

et al., 2014). 

 

Anabolic interventions (both PRT and oral Cr supplementation) resulted in negligible changes 

in the serum biomarkers analysed, with the exception of TNF-α levels, which were reduced by 

34% following Cr supplementation. Interestingly, similar results have been reported in athletes 

following post-exercise Cr supplementation (Santos et al., 2004; Bassit et al., 2008) and this 

effect may warrant further study in RA as elevated TNF-α is believed to drive RC (Roubenoff 

et al., 1994). 
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The overarching conclusion from this set of experiments (Chapter 6) was that no single serum 

biomarker was consistently associated with the LM deficits characteristic of RC. Despite its 

association with RC in the literature, it appears that current low-level systemic inflammation in 

RA patients with controlled disease is not a good indicator of muscle mass or of any 

mechanism of muscle catabolism (Roubenoff et al., 1994; Engvall et al., 2008). Similarly, 

serum IGF status is a poor indicator of body composition and muscle anabolism (Adams, 

2002). The role of adiponectin and IGFBP-3 with body composition may warrant further 

investigation. 

 

 

9.1.7. Intramuscular corticosteroid injections may contribute to 

rheumatoid cachexia 

 

Whilst numerous potential mechanisms of RC, including inflammation and physical inactivity, 

have been identified (Roubenoff et al., 1992, 1994; Walsmith & Roubenoff, 2002; Metsios et 

al., 2006; Engvall et al., 2008), in Chapter 7 and 8 we explored whether an IM CS injection, a 

National Institute for Health and Care Excellence (NICE) recommended (NICE Guidelines 79, 

section 1.5.1.4) and routinely used treatment to rapidly suppress inflammation and relieve pain 

during an acute episode or exacerbation of disease activity, may also contribute to muscle 

wasting in RA.  

 

During the analysis of study 2, we identified a 2.4 kg (4%) loss of total LM and a 2.0 kg (7%) 

loss of ALM in an RA patient whom had previously been administered an IM CS injection by 

his GP to control a disease flare. This novel finding was highly concerning as a possible 

contributor to RC. However, the duration between the original and follow-up measurements 

meant we could not exclude the effect of active inflammation on muscle mass during the RA 

flare (i.e. prior to the CS injection). To that end, in Chapter 8 we found that, in a preliminary 

sample (n = 5), a bolus IM CS injection used to treat active RA disease (i.e. a disease flare) 

resulted in substantial reductions in LM (-1.9 kg, ~4%), specifically ALM (-1.1 kg, ~5%). 

Coincidently, the 1.1 kg loss of ALM seen in these patients following an IM CS injection is 

identical to the difference (1.1 kg) between RA patients and age- and sex-matched HC we 

observed in Chapter 3. 

 

In patients with recently diagnosed RA, an IM CS injection (either Methylprednisolone acetate 

or Triamcinolone acetonide) is recommended by NICE to supress disease activity. Therefore, 

it may be that this treatment is partly responsible for the discrepancy in LM reported in early 
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RA. This finding emphasises the importance for adjunct interventions designed to increase 

muscle mass, such as PRT (e.g., Marcora et al., 2005a; Lemmey et al., 2009), to be delivered 

as early in the disease process as possible.  
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9.2. Future direction 

 

 

9.2.1. Assessing physical function and body composition in clinic 

 

Whether using DAS28 or EULAR response criteria, research has shown that applying a ‘treat-

to-any target’ strategy results in greater RA remission rates (Jurgens et al., 2012). Given that, 

as we have shown, even RA patients considered to be in ‘remission’ have substantial deficits 

in strength and physical functioning, assessment of function should be considered as a ‘target’ 

of treatment alongside composite measures based on disease activity (e.g., DAS28).  

 

Pertinently, a fundamental objective of T2T is normalisation of function (Smolen et al., 2010a; 

Smolen et al., 2015), although no recommendation on its measurement is provided. Whilst a 

subjective patient-reported measures of function (i.e. the HAQ) has been used in 

rheumatology for decades, it is influenced substantially by pain (which is often reduced by 

initiation and ‘tight control’ of disease activity (e.g., Marcora et al., 2006; Kingsley et al., 2011)). 

Further, the HAQ generally fails to detect substantial, and clinically significant improvements 

in objectively measured physical function in RA patients with controlled disease (Van den 

Ende et al., 1997; Lemmey et al., 2009).  

 

To that end, in the future management of RA, the evaluation of treatment success should 

include objective assessments of physical function. Perhaps the two most appropriate 

assessments are the STS-30 and handgrip strength (HGS). Both of these tests are quick (<60 

seconds), easy, and safe to administer in clinics, and together measure upper and lower body 

functioning. The STS-30 correlates well with walking ability (as assessed by the 50’W test (r 

= -.553, P = .001; study 1), a test that, due to space limitations, may be difficult to implement 

in a busy hospital environment).  

 

Measuring HGS in RA may be particularly favourable as the ‘British Society of Rheumatology 

(BSR) Guidelines for the Management of RA’ (Luqmani et al., 2006) state hand function should 

be maintained or improved following treatment. Further, research in older adults from the 

general population (Newman et al. 2006; Gale et al., 2007) and RA patients (Pincus et al., 

2001; Wolfe et al., 2003) shows that HGS is a strong predictor of independence and mortality. 

Like all objective assessments of function, these tests could be influenced by joint 
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involvement, nevertheless they provide a superior indication of functional status in RA patients 

than subjective measures such as the HAQ (Chapter 3). 

 

As RC is a key determinant of strength and physical function (Giles et al., 2008a; 

Stavropoulos-Kalinoglou et al., 2009; Kramer et al., 2012; Lusa et al., 2015), there is also a 

benefit in assessing body composition in an outpatient setting (Chen et al., 2011; Lemmey, 

2016). In all of the studies in this thesis, body composition was assessed via dual x-ray 

absorptiometry (DXA) – the ‘gold standard’ for research body composition assessment (Ellis, 

2000; Provyn et al., 2008). However, DXA is not readily available to rheumatologists, and 

usually requires a scheduled appointment with the hospital imaging department. Due to its 

relatively low cost, accuracy, easy operation, and high portability (Ellis, 2000), bioelectrical 

impedance analysis (BIA) may be the most favourable method of evaluating body composition 

in a clinical setting (Chen et al., 2011; Androutsos et al., 2014). Research indicates BIA has 

moderate to strong agreement with DXA in the assessment of body composition in the elderly 

(e.g., Moon et al., 2013; Bosaeus et al., 2014), and has been successfully used to investigate 

RC by others, including the group of Kitas et al. (e.g., Stavropoulos-Kalinoglou et al., 2007; 

Metsios et al., 2007; Metsios et al., 2009).  

 

Whilst participants in our studies were assessed following an overnight fast, Androutsos et al. 

(2014) found that food and drink consumption prior to BIA results in only minor, non-clinically 

significant changes in body composition (i.e. changes are within the precision limits of the 

device). Therefore, assessments in clinical settings do not require strict adherence to fasting, 

and this should increase the opportunities for clinical application. A pragmatic trial could 

investigate the feasibility of performing these tests (i.e. strength, physical function, and body 

composition) in clinic, with potential research focusing on their use as a treatment goal (the 

‘target’) to guide a T2T strategy. 

 

 

9.2.2. Adiposity and other factors may also affect physical function 

 

Excess adiposity contributes to self-reported disability, weakness, and poor functional 

performance in RA (Giles et al 2008b; Stavropoulos-Kalinoglou et al., 2009; Kramer et al., 

2012). In study 1, our RA patients were significantly ‘fatter’ (5.4 kg) than the matched HCs, 

and this increased adiposity was correlated with poorer strength and aerobic fitness. Several 

mechanisms may account for the role of FM on physical function, including the increased load 
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on the muscle (Rolland et al., 2009), and interference with limb mechanical kinematics and 

range of motion (Giles et al., 2008a; Runhaar et al., 2011).  

 

Excess adiposity can also influence physical function via ‘fat infiltration’ in skeletal muscle 

(Visser et al., 2002, 2005; Goodpaster et al., 2008; Kramer et al., 2012; Addison et al., 2014). 

Intramuscular adipose tissue (IMAT) is an ectopic fat depot found beneath the fascia and 

within the muscles (Addison et al., 2014), and although the mechanism(s) are unclear, may 

impair local muscle contractility (cellular function), muscle fibre recruitment (nerve function), 

or muscle metabolism (energy utilisation) (Visser et al., 2002, 2005). Fat infiltration into the 

muscle is positively correlated with body fat percentage (BF%) (Visser et al., 2002, 2005; 

Baker et al., 2014) suggesting that those with high BF% (such as the majority of RA patients) 

also typically have high levels of IMAT. No study to date has investigated the role of IMAT on 

physical function in RA patients. Whilst loss of LM and excess adiposity are substantial 

predictors of impaired strength and physical function in RA, other factors such as joint damage, 

fatigue (Scott et al., 2000; Giles et al., 2008a; Ormseth et al., 2015), and pain (Appendix J; 

Heiberg & Kvien, 2002; Lusa et al., 2015) should not be overlooked. 

 

 

9.2.3. Corticosteroid injections and rheumatoid cachexia 

 

Study 4 raises concerns about the routine use of IM CS treatment in RA, and if the effect of 

iatrogenic muscle loss is confirmed by our full study (expected n ≈ 12–15), then since loss of 

muscle mass has substantial adverse functional (Walsmith & Roubenoff, 2002) and 

immunological (Roubenoff, 2001; Summers et al., 2008) consequences, careful consideration 

needs to be given to administration of this treatment.  

 

9.2.3.1. A potential role for creatine supplementation following corticosteroid injection 

 

Whilst the effects on muscle mass are concerning, there are currently no other alternative 

treatments for uncontrolled RA that can provide such rapid suppression of inflammation and 

pain as IM CS injections. Other anti-inflammatory treatments (e.g., MTX), including biologics, 

take several weeks to take full effect (Lambert, 2012), in which time significant loss of muscle 

as a result of untreated active disease would have taken place. If muscle loss is a common 

effect of IM CS injections, a short period of oral Cr supplementation, commenced on the day 

of treatment, may maintain muscle mass. This cheap and convenient intervention, if 

successful, would allow RA patients to continue to benefit from the potent and rapid anti-
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inflammatory effects afforded by an IM CS injection, without the adverse effect on body 

composition.   
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9.3. Thesis strengths and limitations23 

 

 

9.3.1. Study design 

 

Study 1 involved a large cross-sectional design which allowed a comparison of body 

composition and physical function in RA patients and matched HCs. Whilst cross-sectional 

trials are useful in estimating the prevalence and magnitude of a condition (e.g., RC, disability), 

they make it difficult to determine the cause or time-course of these conditions (Sedgwick, 

2014). In our study, to determine temporal changes in body composition and physical function, 

patients are being followed-up for 8 years as part of a longitudinal design. However, to 

investigate if, as we hypothesise, RC does occur in a ‘pre-clinical’ stage, a very large 

longitudinal prospective study would need to track body composition changes in the general 

population and then explore the (~1%) who develop RA.  

 

Chapter 4 involved a review of the Cr supplementation literature with specific consideration 

to populations with similar losses of muscle mass and function as RA. A systematic search 

method allowed the identification of all relevant publications, specifically placebo-controlled 

trials. Further investigation could utilise a meta-analysis approach which would allow for better 

statistical assessment (e.g., error, bias, risk, and effect size) of the clinical effectiveness of Cr 

supplementation on a particular outcome measure (e.g., LM) in these groups (e.g., the elderly, 

muscular dystrophy). 

 

Study 2 involved a double blind placebo-controlled RCT which investigated the effects of Cr 

supplementation in RA patients. A RCT design is considered the ‘gold standard’ in clinical 

research (Misra, 2012), as they are largely untainted by bias (Kaptchuk, 2001) (see 9.3.3. 

Internal validity) and allow demonstration of causality. In study 4 (i.e. the effects of IM CS), 

we used a single group in a non-randomised, pre-post intervention design. Methodologically, 

it would have been ideal to use a randomised control group who did not receive an IM CS 

injection, however, denying treatment to patients experiencing active disease would be 

unethical, thus this approach was not an option. It is important to acknowledge that 

                                                           
23 As study 3 (biochemical analysis of various disease scenarios) contains experimental studies from this thesis, 
the relative limitations (i.e. participant bias and study design) of these individual studies (1, 2 and 4) are described 
separately. The relative limitations of the assay analysis for study 3 is described in section 9.3.2.3. Detection and 

measurement bias. 
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associations identified in quasi-experiments, such as study 4, do meet some requirements of 

causality because the intervention often precedes the outcome measurement (Harris et al., 

2006). 

 

 

9.3.2. Internal validity 

 

Internal validity refers to the certainty that results and findings are true for the study population, 

and indicates the control over potential confounding variables to reduce alternative 

explanations for the effects of any intervention (Jüni et al., 2001; Halperin et al., 2015). 

 

9.3.2.1. Selection and non-response bias 

‘Selection bias’ refers to biased allocation of comparison groups. A strength of study 2’s (and 

the trials of Marcora et al. (2006) and Lemmey et al. (2009) analysed in Chapter 8) RCT 

design was the use of randomised groups, thus reducing ‘selection bias’. In study 2, 

participants were randomised (stratified for age and sex) independently from the research 

team by the North Wales Organisation for Randomised Trials in Health (NWORTH; a 

registered clinical trials unit) using a secure online system.  

 

In all trials, there was a risk of ‘non-response bias’ if participants who consented to take part 

in the study differed from those who did not, which may have resulted in a sample that is not 

representative of the population (Sedgwick, 2014). In clinical trials, ‘study non-participants’ 

often have higher disease and mortality rates, poorer health status, and lower levels of 

functioning than ‘study participants’ (Gelea & Tracy, 2007). In RA specifically, patients who 

participate in research trials typically have less fatigue, pain, and stiffness, and are more 

motivated (Nordgren et al., 2013). Consequently, it may be that the RA patients who agreed 

to participate were at the greater end of functional capacity. If this is the case for our studies, 

then the alarming deficiencies in function and body composition (e.g., study 1) we observed 

in our RA cohort would be underestimations of even greater deficits in the general RA 

population.  

 

9.3.2.2. Performance bias 

Participant ‘performance bias’ refers to unequal provision of care, apart from treatment, under 

evaluation, and may occur if additional treatment interventions or attention are provided 

preferentially to one group (Jüni et al., 2001). To remove ‘performance bias’ in study 2, both 

the patient and myself (researcher) were blinded to treatment allocation (i.e. Cr or placebo) 
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until after trial termination and initial data analysis. Blinding both patients and experimenters 

prevents ‘performance bias’ and safeguards against differences in placebo responses 

between the group (Jüni et al., 2001).  

 

In study 2, our inability to determine an improvement in objective physical function tests 

following Cr supplementation (i.e. both groups improving at similar rates) may, in part, be due 

to a learning effect. This apparent learning effect occurred despite participants performing one 

practice beforehand. However, in previous studies when our group has employed the same 

practice routine (e.g., Lemmey et al., 2009), we have observed no such learning effect. In 

future trials, a familiarisation session (~1–2 weeks pre-randomisation) could be used to reduce 

the chance of such effect from occurring. 

 

In order to further remove potential sources of ‘performance bias’, in studies 1 and 2 all 

participants were exposed to the same tests of strength and function. The whole body 

objective physical function assessments, specifically developed and validated for assessing 

the capacity of older adults to perform activities of daily living, were taken from the Senior 

Fitness Manual (Rikli & Jones, 2012). The protocols for strength and other functional tests 

used have been extensively employed by our group (e.g., Marcora et al., 2005a, 2005b, 2006; 

Lemmey et al., 2009, 2012; Matschke et al., 2010a, 2010b, 2013). Additionally, in studies 1 

and 2, all instructions and encouragement were pre-prepared and standardised, although in 

some cases participants’ required additional instruction. 

 

The ‘Siconolfi’ step test (Siconolfi et al., 1985) was used as a predictive, sub-maximal measure 

of aerobic capacity (VO2max). This test has been validated by our group in RA (Cooney et al., 

2013), systemic lupus erythematosus (SLE; Marcora et al., 2007), and ankylosing spondylitis 

(Thompson et al., 2015) patients. In additional support of this test, direct VO2max measures 

(i.e. treadmill-based using a calibrated online breath-by-breath system) in 144 RA patients 

(mean: 20.9 (±5.7) ml/kg/min) by Metsios et al. (2015) yielded similar, albeit smaller, values to 

those from the step test (study 1 mean VO2max: 22.9 (±6.2) ml/kg/min; study 2 mean: 25.1 

(±6.8) ml/kg/min).  

 

9.3.2.3. Detection and measurement bias 

The assessment and measurement of an outcome is exposed to potential bias and error. In 

all the experimental studies, the primary outcome variable was body composition, specifically 

measures of LM by DXA. Dual-energy x-ray absorptiometry has little measurement error, and 

is considered the ‘gold-standard’ for body composition assessment in research (Ellis, 2000; 
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Provyn et al., 2008). Appendicular LM was estimated using the validated method described 

by Heymsfield et al. (1992) (Appendix B), and acted as a surrogate measure of total muscle 

mass (Kim et al., 2002). For blood sample collection (studies 1 and 2), participants presented 

for assessment following an overnight fast (i.e. no food upon waking, and only water allowed 

to help medication intake), therefore food and drink consumption was relatively comparable 

for all participants prior to each scan. In study 4, as patients presented immediately after their 

IM CS injection and non-fasted, at visit 2 they were asked to consume a comparable diet to 

that at visit 1. Manufacturer DXA examination procedures (daily calibration, subject 

preparation (i.e. clothes, jewellery), positioning, and analysis) were followed for every scan, 

and an in-house assessment revealed a DXA co-efficient of variation (CV) of 1.4%. This value 

corresponds with both manufacture guidelines and other studies (e.g., Scafoglieri et al., 2011).  

 

In study 1, four researchers were involved in data collection. Intra-rater reliability assessment 

of anthropometric and physical function measurements revealed intra-class correlation 

coefficients (ICC) between .704 and .996 (‘good’ to ‘excellent’, based on based on commonly-

cited cut-offs by Cicchetti (1994)). 

 

In studies 1, 2, and 4, a DAS28 score is reported. In study 1, this was performed by either 

myself or another researcher (BJC). In study 2 and 4, this was performed by myself. Prior to 

data collection, both experimenters were taught how to perform a DAS28 evaluation by 

rheumatologists from the PMRC. In several patients attending rheumatology outpatient clinics 

the difference in DAS28 values between the rheumatologists and experimenters were 

negligible (unfortunately, no quantitative data was collected). The rheumatologists were 

satisfied with our competence to perform this assessment during data collection. Research 

has shown that following appropriate training, DAS28 scores between non-medically trained 

professionals (i.e. health care assistants) and rheumatologists are comparable (Toms et al., 

2015). 

 

9.3.2.4. Attrition bias  

Attrition bias is the biased occurrence and handling of deviations from protocol and loss to 

follow up. A frequently reported reason for a deviation from protocol is ‘non-adherence to 

treatment’ (Jüni et al., 2001). In study 2, self-reported adherence to the treatment drinks was 

excellent (i.e. 99% in both Cr and placebo groups). As part of studies 2 and 4, participants 

were asked not to change their lifestyle (e.g., start exercising intensely) to prevent confounding 

the treatment effects. In both trials, participants declared no substantial changes in lifestyle, 

although this was not quantitatively measured.  
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Loss to follow up relates to participants unavailability for assessments during the study period 

because they: (i) refuse to participate further (‘drop outs’); (ii) cannot be contacted; or (iii) 

clinical decisions are made to stop the assigned interventions (‘withdrawn’) (Jüni, Altman, & 

Egger, 2001). In study 2, five patients were ‘withdrawn’ or ‘dropped out’ (Cr group; n = 3, and 

placebo group; n = 2). Over the course of the trial, there were also several ‘missed sessions’ 

in both groups, primarily due to patients being uncontactable. In line with CONSORT, the 

proportion of patients not included in the analysis, along with the number of missing data was 

reported. In study 4, one patient was withdrawn due to hospital admittance (suspected 

meningitis) and this was deemed non-treatment (i.e. IM CS injection) related. 

 

 

9.3.3. External validity 

 

External validity concerns the generalisability of the results of a clinical trial to other patient 

populations, settings, treatment variables, and measurement variables (Jüni et al., 2001). 

 

9.3.3.1. Patient selection 

All patients were recruited from rheumatology outpatient clinics in North West Wales. Patients 

in study 1 and 2 were ineligible if they had active RA (stable disease was quantified by no 

change in medication in the preceding three months, or by the expert opinion of the 

rheumatologist in care), or were participating in regular high-intense exercise/taking anabolic 

supplements.  

 

In study 1, the reduced use of combination DMARD therapy and complete lack of biological 

agents in our RA patients suggests an apparent ‘selection bias’. In the general UK RA 

population, ~5% of patients are prescribed biological agents (Ding & Deighton, 2010), thus we 

would expect ~3–4 patients to be on biologics in study 1. Although our RA sample may appear 

atypical on appearance, it seems our patients were successfully controlled with a relatively 

simple and conservative treatment strategy (predominantly MTX monotherapy). However, as 

discussed, this may further infer that only patients with the mildest and best controlled disease 

agreed to take part. Whilst, this is perhaps the largest threat to external validity in this thesis, 

if correct, then the differences observed would have underestimated the already alarming body 

composition and functional deficiencies of the RA patient population. 
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For safety purposes, in the Cr supplementation study (study 2), 30 patients screened with an 

estimated glomerular filtration rate (eGFR) of <60 ml/min/1.73m2 were excluded (17% of the 

total n = 179 screened). This reduces the external validity to this group of patients (i.e. those 

with renal impairment). Overall, RA patients in our samples may not be completely 

representative of the patient population (Rothwell, 2005), and the use of larger, more inclusive 

multi-centre trials should be encouraged. Further investigation could explore the safety of Cr 

in patients with renal impairment. 

 

9.3.3.2. Outcome measures  

All the objective physical function tests used in this thesis have been validated in a comparable 

population (e.g., the elderly; Rikli & Jones, 2012), and have been extensively used in testing 

RA patients. Surrogate outcome measures can affect external validity (Rothwell, 2005). The 

main surrogate measure used was ALM (as a proxy measure of muscle mass), although this 

has been validated by Fuller et al. (1992). Aerobic capacity (VO2max) was predicted using 

heart rate changes during an indirect, sub-maximal ‘Siconolfi’ step test. This test has been 

extensively validated in appropriate populations including RA (see 9.3.2.2. Performance 

bias), and shows good agreement with direct online VO2max measures (Metsios et al., 2015). 

In Chapter 3, a surrogate self-reported ‘physical activity’ measure was taken from the MDHAQ 

‘exercise frequency’ question. Whilst giving a good overall indication of the physical activity of 

our patients, as far as the author is aware, this question has not been validated against 

objective measures of physical activity (e.g., accelerometers). Future research could utilise 

objective measures of physical activity or validated physical activity questionnaires (e.g., the 

International Physical Activity Questionnaire (IPAQ)) to accurately measure the physical 

activity of participants with RA. 

 

9.3.3.3. Follow up duration 

A risk to external validity in some intervention trials is inadequate treatment and/or follow-up 

duration (Rothwell, 2005). In study 2, a Cr supplementation period of 12 weeks was used. 

This time period was recommended by the manufacturer, but has also been used in other 

clinical trials (for a review, see Chapter 4). We subsequently followed patients up 12 weeks 

after cessation of Cr supplementation. This is longer than the 4 week ‘wash-out’ period often 

reported, and provided a good indication of how long treatment benefits were maintained.  

 

In study 4, we re-assessed patients 4 weeks following their IM CS injection. Four weeks was 

chosen as this was the same amount of time, following an IM CS injection, that a substantial 

change in body composition (i.e. loss of LM) was noted in our case patient (Chapter 7). An 
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extension (granted in November 2015) to study 4 allows our group to assess body 

composition in the participants 6–9 months after their IM CS injection, thus providing long term 

data into whether any lost muscle is regained. However, without any anabolic stimulus (e.g., 

exercise, PRT), restoration in muscle mass seems unlikely.  

 

9.3.3.4. Application to other conditions 

As RC has been attributed primarily to elevated pro-inflammatory cytokines (Roubenoff et al., 

1992, 1994; Walsmith & Roubenoff, 2002; Metsios et al., 2006), it can serve as a model of 

chronic inflammatory disease-driven muscle wasting. As such, the findings of this thesis may 

be applicable to sarcopenia (Morley et al., 2011) and other diseases characterised by 

inflammatory drive-muscle wasting (for a review, see Tan & Fearon, 2008). Study 2 adds to 

the existing literature surrounding Cr supplementation and its use in RA and other clinical 

conditions characterised by muscle wasting (e.g., cancer cachexia, COPD, HIV, muscular 

dystrophy). 

 

Study 4, and the findings from the case report in Chapter 7, describe a potentially serious 

consequence of using IM CS injections in the treatment of active RA (i.e. disease flare). Due 

to logistical and ethical reasons, we did not investigate the use of IM CS injection at point of 

disease diagnosis where an IM CS injection is regularly given (Ding & Deighton, 2010), 

consequently we cannot generalise to these patients. Worryingly, IM depots of CS are used 

in other conditions, not just RA, to treat acute uncontrolled inflammation (e.g., SLE, leukaemia, 

Crohn's disease, acute interstitial nephritis, asthma (Shatsky, 2009)). The adverse effect on 

body composition from this type of treatment should be investigated in these populations to 

fully ascertain its relative risk benefit. 

 

9.3.4.5. Effect versus efficacy analysis 

As a ‘treatment intervention’ focused trial, study 2 used a ‘per-protocol’ analysis (i.e. efficacy 

among those who are adherent and able to tolerate the treatment, Del Re et al., 2013) over 

an ‘intention-to-treat’ (ITT) analysis which compares all patients or groups as initially 

randomised (including data from those whom were withdrawn or dropped out). An ITT analysis 

was not deemed appropriate as the aim of study 2 was exploratory, and the primary aim was 

to investigate the physiological efficacy (i.e. to determine whether the intervention produces 

the expected result under ideal circumstances (Gartlehner et al., 2006)) of Cr rather than its 

effect (i.e. the degree of beneficial effect under a more ‘real world’ clinical setting (Gartlehner 

et al., 2006)) in medical practice. A ‘per protocol’ approach was used as it tests the ‘true 

efficacy of the intervention when used as directed’ (Del Re et al., 2013) (i.e. the efficacy of the 
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patients whom consumed Cr). Regardless of analysis approach (ITT or ‘per protocol’, 

according to The European Agency for the Evaluation of Medicinal Products 

(CPMP/EWP/1776/99, 2001), if appropriate, imputation (as performed in study 2) of missing 

data is acceptable. 

 

As another treatment intervention-based trial, study 4 also employed an efficacy analysis of 

IM CS on patients who had both pre- and post-data only. As one patient was withdrawn, and 

not included in the final analysis, this too was a ‘per protocol’ analysis.  
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9.4. Final conclusion and recommendations  

 

 

9.4.1. Summary 

 

In summation, despite a tightly controlled T2T approach which results in low disease activity 

and ‘clinical remission’ for the majority of patients with RA, RC (i.e. muscle wasting and 

adiposity gain) remains a major contributor to reduced physical function and strength. As high 

intensity exercise is unlikely to be universally adopted as treatment of RC, nutritional Cr 

supplementation may be beneficial in patients with severe muscle wasting. Physiologically, no 

consistent biomarkers for RC were identified in the serum of RA patients in a range of 

scenarios including treated versus untreated disease, versus healthy controls, and following 

exercise and Cr supplementation. Disturbingly, an IM CS injection, a routine and 

recommended treatment given to supress active disease (i.e. flare), may contribute to RC. 

 

 

9.4.2. Recommendations 

 

o Abnormal body composition and physical function (i.e. RC) should be investigated at RA 

disease diagnosis, and used alongside measures of inflammation and disease activity to 

evaluate treatment efficacy and to help guide treatment. Ideally, quick and easy 

assessment of both objective physical function (by STS-30 and HGS) and body 

composition (by BIA) should be made in an outpatient setting.  

 

o Adjunct anabolic therapies should be prescribed. High intensity PRT (exercise) remains 

the most efficacious tool to help reverse RC and restore lost physical function in those 

willing and able to do it, however, in patients with extreme muscle wasting, nutritional Cr 

supplementation may be beneficial in increasing muscle mass. 

 

o Mechanistically, the individual roles of adiponectin and IGFBP-3 in RC warrant further 

investigation. Additionally, the anti-inflammatory effects (reductions in TNF-α) of Cr 

supplementation should also be explored further.  
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o If consistent muscle loss following IM CS injections is confirmed by our full study, then 

research into the efficacy of oral Cr supplementation, commenced immediately after IM 

CS injection, in preventing CS-induced muscle loss should be performed. 
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Appendix A - Author contributions to thesis chapters 

 

 

Contributions based on the International Committee of Medical Journal Editors criteria24: 

 1a) study conception and design; and/or 1b) acquisition of data; and/or 1c) analysis and 

interpretation of data; 

 2: Drafting the article or revising it critically for important intellectual content; 

 3: Final approval of the version of the article to be published. 

 

Chapter 3 

 Lemmey, AB – 1a, 1c, 2, 3;  Wilkinson, TJ – 1b (49% of RA sample, 42% of HC sample), 

1c, 2, 3;  Clayton, RJ – 1b (51% of RA, 19% of HC);  Sheikh, F – 1b, 1c, 3;  Whale, J – 1b 

(19.5% of HC);  Jones, H – 1b (19.5% of HC);  Ahmad, Y- 1a, 1c, 3;  Chitale, S - 1a, 1c, 3; 

 Jones, JG - 1a, 1c, 2, 3;  Maddison, PJ - 1a, 3;  O’Brien, TD - 1a, 1c, 2, 3 

 

Chapter 4 

 Wilkinson, TJ – 1a, 1b, 1c, 2, 3;  O’Brien, TD – 1a, 2, 3;  Lemmey, AB - 1a, 2, 3 

 

Chapter 5 

 Wilkinson, TJ – 1b, 1c, 2, 3;  Lemmey, AB - 1a, 1c, 2, 3;  Ahmad, Y – 3;  Chitale, S – 3; 

 Sheikh, F – 3;  Jones, JG - 2, 3;  O’Brien, TD - 1a, 1c, 2, 3 

 

Other acknowledgments: 

 Dr Nina Hjelde (F2, PMRC) for help in recruiting and contacting patients.  

 

Chapter 6 

 Wilkinson, TJ – 1a, 1b, 1c, 2;  Stewart, C – 1a, 1b, 1c;  Lemmey, AB - 1a, 1b, 1c, 2;  

O’Brien, TD - 1a, 1c, 2 

 

Other acknowledgments: 

 Authors and researchers involved in the studies from which serum was collected. 

 

Chapter 7 

 Wilkinson, TJ – 1a, 1b, 1c, 2, 3;  O’Brien, TD- 1c, 2, 3;  Lemmey, AB- 1a, 1c, 2, 3;  

Jones, JG – 1a, 1c, 2, 3 

 

Chapter 8 

 Wilkinson, TJ – 1a, 1b, 1c, 2;  Sheikh, F- 1a, 2;  Jones, JG – 1a, 2;  Lemmey, AB- 1a, 

2;  Ahmad, Y- 1a;  Chitale, S- 1a;  O’Brien, TD- 1a, 2  

                                                           
24 International Committee of Medical Journal Editors authorship guidelines available at www.icmje.org/. 
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Appendix B - Appendicular muscle estimated using the method 

described in Heymsfield et al. (1992) 
 

 

Heymsfield et al. (1992) evaluated the potential of DXA to isolate appendages of human 

participants and to quantify extremity skeletal muscle mass. The post-scan skeleton is 

subdivided into several regions: 

1. The neck cut is made just below the chin.   

2. The rib cuts are made as close to, but not touching, the 

spine.  

3. The arms are isolated by running a line through the 

humeral head.  

4. The pelvis cut is placed just above the pelvic brim and 

the system computer automatically draws the lower 

pelvic lines.  

5. The spine cut is placed just below the last pair of ribs 

coming out of T12 

 

Appendicular lean mass (ALM) is calculated by summing the 

lean mass (LM) (as measured by DXA) of two arm regions 

(#3) with the two leg regions (#4) (i.e. L Arm + R Arm + L 

Leg + R Leg). 

 

See example below for a DXA-assessed body composition 

table and the four regions summed to create ALM. 

  

 

  

1 

2 

3 

5 

4 
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Appendix C - Missing data for each variable of interest in Chapter 3 

from STROBE 2007 guidelines  
 
 

 RA n/82 (%) HC n/85 (%) 

 
Body composition measures 

  

 Waist circ. (cm) 82 (100%) 83 (98%) 
 Hip circ. (cm) 82 (100%) 83 (98%) 
 Waist: hip ratio 82 (100%) 83 (98%) 
 BM (kg) 82 (100%) 85 (100%) 
 BMI (kg/m2) 82 (100%) 85 (100%) 
 ALM (kg) 81 (99%) 85 (100%) 
 ALM% (ALM/BM%) 81 (99%) 85 (100%) 
 Total LM (kg) 81 (99%) 85 (100%) 
 Total LM% (LM/BM%) 81 (99%) 85 (100%) 
 FM (kg) 82 (100%) 85 (100%) 
 BF (%) 82 (100%) 85 (100%) 
 Trunk FM (kg) 82 (100%) 85 (100%) 
 Trunk FM% (trFM/FM%) 82 (100%) 85 (100%) 

 
Objective physical function 
 IKES (N) 78 (95%) 84 (99%) 
 HGS (kg) 82 (100%) 85 (100%) 
 STS-30 test (reps) 79 (96%) 83 (98%) 
 8’UG (secs) 81 (99%) 83 (98%) 
 50’W (secs) 82 (100%) 84 (99%) 
 VO2max (ml/kg/min) 62 (76%) 81 (95%) 
 
Self-reported disability 

  

 HAQ score (/3) 82 (100%) 84 (99%) 
 MDHAQ pain (/10) 80 (98%) 84 (99%) 
 MDHAQ fatigue (/10) 79 (96%) 84 (99%) 
 RADAI (/48) 82 (100%) 84 (99%) 
 SF-36 (physical) (/100) 80 (98%) 84 (99%) 
 SF-36 (mental) (/100) 80 (98%) 84 (99%) 

 

RA = Rheumatoid arthritis; HC = Healthy control; BM = Total body mass (on scales); BMI = Body mass index; ALM 
= Appendicular lean mass; ALM% = ALM/BM%; FM = Fat mass; BF% = Body fat percentage ; IKES = Isometric 
knee extensor strength; HGS = Handgrip strength; STS-30 = Sit-to-stand in 30 second test; 8’UG = 8-foot up and 
go; 50’W = 50-foot walk; HAQ = Health Assessment Questionnaire; MDHAQ = Multi-dimensional Health 
Assessment Questionnaire; RADAI = Rheumatoid Arthritis Disease Activity Index; SF-36 = Short-form 36 
questionnaire. 
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Appendix D - Full assay procedures for each biomarker tested 

 

 

Tumor Necrosis Factor-α (TNF-α) 

Human TNF-α was measured using a quantitative ‘sandwich’ ELISA technique. 50 μl of Assay 

Diluent RD1F was added to each well of the 96-well ELISA plate, before 200 μl of Standard, 

sample, or control, was added per well. After being covered by an adhesive strip, the wells 

were left to incubate for 3 hours at room temperature. Liquid was removed by the wells by 

aspirating or inverting the plate and decanting the contents. Excess liquid was removed by 

rapping the inverted plate on a clean paper towel several times. Each well was filled with 400 

μl of ‘Wash Buffer’, before the liquid was removed again. These ‘washing’ steps were repeated 

6 times, before all excess liquid was removed. 200 μl of Human TNF-α HS Conjugate was 

added to each well, covered and incubated for 2 hours at room temperature. The plate was 

then washed again before 50 μl of ‘Substrate Solution’ was added to each well. After covering, 

this was incubated for 1 hour at room temperature. 50 μl of ‘Amplifier Solution’ was added to 

each well, covered and incubated for 30 minutes, before finally, 50 μl of ‘Stop Solution (SS)’ 

was then added to each well. To read the samples, the microplate reader (CLARIOstar, BMG 

LABTECH, Germany) was set to a wavelength of 490 nm (λ correction of 540 or 570 nm). The 

optical density (OD) was determined within 30 minutes of the Stop Solution being added. The 

normal range of TNF-α according to manufactures data was between 0.550 and 2.816 pg/mL 

(mean 1.206 pg/mL). The manufactures minimum detectable dose (MDD) of TNF-α ranged 

from 0.038-0.191 pg/mL. The mean MDD was 0.106 pg/mL. The mean intra-assay co-efficient 

of variation (CV) between TNF-α duplicates was 18.8%. Although this is greater than reported 

by the manufacture (CV = 7.2 to 10.4), this is comparable to those reported by Aris et al. 

(2000) whom found CV of 14.3% in 17 adult cystic fibrosis patients. 

 

Soluble Tumor Necrosis Factor-alpha Receptor-1 (sTNF-RI) 

Soluble TNF receptor was measured using a quantitative ‘sandwich’ ELISA technique. 50 μl 

of Assay Diluent RD1-7 was added to each well before 200 μl of Standard, control or sample 

was added (the serum sample was diluted using the manufactures suggested 10-fold dilution 

of 50 μl of sample plus 450 μl of Calibrator Diluent RD5-5). The plate was incubated for 2 

hours at room temperature. Each well was aspirated and washed using ‘Wash Buffer’ (400 

μl), with the process being repeated a total of four washes. Excess water was removed by 

inverting the plate and blotting against a paper towel. 200 μl of sTNF-RI Conjugate was added 

to each well, covered and incubated for 2 hours (serum only). The plate was washed again, 

before 200 μl of ‘Substrate Solution’ was added to each well, and the plate was covered and 

incubated for 20 minutes at room temperature. Attention was given to protecting the plate from 



253 

 

light. 50 μl of SS was added, and the wells changed from blue to yellow in colour. To read the 

samples, the microplate reader was set to a wavelength of 450 nm (λ correction of 540 or 570 

nm), and the OD was determined within 30 minutes of the SS being added. The normal range 

of sTNF-RI according to manufactures data was between 749 and 1966 pg/mL (mean 1198 

pg/mL). The manufactures MDD of sTNF-RI ranges from 0.43-1.20 pg/mL. The mean MDD 

was 0.77 pg/mL. The mean intra-assay CV between sTNF-RI duplicates was 4.5%. This is 

comparable to those reported by the manufacture (CV = 4.4 to 5.2%). 

 

Interleukin-6 (IL-6) 

Human IL-6 was measured using a quantitative ‘sandwich’ ELISA technique. 100 μl of Assay 

Diluent RD1W was added to each well before 100 μl of Standard, control or sample was 

added, and the plate was incubated for 2 hours at room temperature. Each well was aspirated 

and washed using ‘Wash Buffer’ (400 μl), with the process being repeated a total of four 

washes. Excess water was removed by inverting the plate and blotting against a paper towel. 

200 μl of Human IL-6 Conjugate was added to each well, covered and incubated for 2 hours. 

The plate was washed again, before 200 μl of ‘Substrate Solution’ was added to each well, 

and the plate was covered and incubated for 20 minutes at room temperature. Attention was 

given to protecting the plate from light. 50 μl of SS was added, and the wells changed from 

blue to yellow in colour. To read the samples, the microplate reader was set to a wavelength 

of 450 nm (λ correction of 540 or 570 nm), and the OD was determined within 30 minutes of 

the SS being added. The normal range of IL-6 according to manufactures data is typically 

below the lowest IL-6 standard (3.13 pg/ml). The manufactures MDD of human IL-6 is typically 

less than 0.70 pg/mL. The mean intra-assay CV between IL-6 duplicates was 15.2%. Although 

this is greater than reported by the manufacture (CV = 1.7 to 4.4), this is comparable to those 

reported by Knudsen et al. (2007) whom found CV of 10.5% in 10 adult RA patients. 

 

Insulin-like Growth Factor-1 (IGF-I) 

Serum IGF-I was measured using a quantitative ‘sandwich’ ELISA technique. To begin, the 

serum sample was pre-treated to release the IGF-I from binding proteins. This was achieved 

by adding 20 μl of serum to 380 μl of ‘Pretreatment A’ (21 mL of acidic dissociation solution) 

in a polypropylene tube. Following vortex, this was incubated for 10 minutes at room 

temperature. 50 μl of the resultant sample was then added to 200 μl of reconstituted 

‘Pretreatment B’ (buffered protein with blue dye and preservatives) and mixed. 150 μl of Assay 

Diluent RD1-53 was added to each well before 50 μl of Standard, control or sample was 

added. The plate was then incubated for 2 hours at 2-8 °C. Each well was aspirated and 

washed using Wash Buffer (400 μl), with the process being repeated a total of four washes. 
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Excess water was removed by inverting the plate and blotting against a paper towel. 200 μl of 

cold IGF-I Conjugate was added to each well, covered and incubated for 1 hours at 2-8°C. 

The plate was washed again, before 200 μl of ‘Substrate Solution’ was added to each well, 

and the plate was covered and incubated for 30 minutes at room temperature. Attention was 

given to protecting the plate from light. 50 μl of SS was added, and the wells changed from 

blue to yellow in colour. To read the samples, the microplate reader was set to a wavelength 

of 450 nm (λ correction of 540 or 570 nm), and the OD was determined within 30 minutes of 

the SS being added. As the sample was pre-treated, the concentration read from the standard 

curve was multiplied by a dilution factor of 100. The normal range of IGF-I according to 

manufactures data was between 40 and 258 ng/mL (mean 105 ng/mL). The manufactures 

MDD of IGF-I ranges from 0.007-0.056 ng/mL. The mean MDD was 0.026 ng/mL. The mean 

intra-assay CV between IGF-1 duplicates was 4.6%. This is comparable to those reported by 

the manufacture (CV = 3.5 to 4.3%). 

 

Insulin-like Growth Factor Binding Protein-3 (IGFBP-3) 

IGFBP-3 was measured using a quantitative ‘sandwich’ ELISA technique. 100 μl of Assay 

Diluent RD1-62 was added to each well before 100 μl of Standard, control or sample was 

added (the serum sample was diluted using the manufactures suggested 100-fold dilution of 

10 μl of sample plus 990 μl of Calibrator Diluent RD5P-1X). The plate was incubated for 2 

hours at 2-8 °C. Each well was aspirated and washed using ‘Wash Buffer’ (400 μl), with the 

process being repeated a total of four washes. Excess water was removed by inverting the 

plate and blotting against a paper towel. 200 μl of IGFBP-3 Conjugate was added to each well, 

covered and incubated for 2 hours at 2-8 °C. The plate was washed again, before 200 μl of 

‘Substrate Solution’ was added to each well, and the plate was covered and incubated for 30 

minutes at room temperature. Attention was given to protecting the plate from light. 50 μl of 

SS was added, and the wells changed from blue to yellow in colour. To read the samples, the 

microplate reader was set to a wavelength of 450 nm (λ correction of 540 or 570 nm), and the 

OD was determined within 30 minutes of the SS being added. The normal range of IGFBP-3 

according to manufactures data was between 835 and 3778 ng/mL (mean 2375 ng/mL). The 

manufactures MDD of IGFBP-3 ranges between 0.02-0.14 ng/mL. The mean MDD is 0.05 

ng/mL. The mean intra-assay CV between IGFBP-3 duplicates was 8.3%. Although this is 

greater than reported by the manufacture (CV = 2.3 to 5.0), this is comparable to those 

reported by Toussirot et al. (2005) whom found CV of 6.2% in 38 adult RA patients. 
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Myostatin  

Myostatin (or GDF-8) was measured using a quantitative ‘sandwich’ ELISA technique. Prior 

to assay analysis, to remove the pro-peptide from GDF-8, solutions of 1 N HCI (Hydrochloric 

acid solution; 100 mL: 91.67 mL of deionized water added slowly to 8.22 ml of 12 N HCI), and 

1.2 N Sodium hydroxide (NaOH)/0.5 M 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES; 100 mL: 75 mL of deionized water added slowly to 12 mL of 10 N NaOH, along with 

11.9 g of HEPES – final volume made up of deionized water) were created. To activate GDF-

8 to immunoreactive GDF-8 detectable by the Quantikine GDF-8 immunoassay, the following 

activation procedure was used: 1 N HCI was added to the sample before being incubated for 

10 minutes at room temperature. Following this, 1.2 N NaOH/0.5 M HEPES was added and 

mixed. Finally, Calibrator Diluent RD5-26 (1X) was mixed in preparation of the assay.For the 

remaining assay, 50 μl of Assay Diluent RD1-17 was added to each well before 50 μl of 

Standard, control or sample was added. The plate was incubated for 2 hours at room 

temperature on a horizontal orbital microplate shaker (0.12” orbit) set at 500 ±50 rpm. Each 

well was then aspirated and washed using ‘Wash Buffer’ (400 μl), with the process being 

repeated a total of four washes. Excess water was removed by inverting the plate and blotting 

against a paper towel. 200 μl of GDF-8 Conjugate was added to each well, covered and 

incubated for 2 hours. The plate was washed again, before 200 μl of ‘Substrate Solution’ was 

added to each well, and the plate was covered and incubated for 30 minutes at room 

temperature on the benchtop. Attention was given to protecting the plate from light. 50 μl of 

SS was added, and the wells changed from blue to yellow in colour. To read the samples, the 

microplate reader was set to a wavelength of 450 nm (λ correction of 540 or 570 nm), and the 

OD was determined within 30 minutes of the SS being added. The normal range of GDF-8 

according to manufactures data was between 1264 and 8588 pg/mL (mean 4206 pg/mL). The 

manufactures MDD of GDF-8 ranges from, 0.922–5.32 pg/mL. The mean MDD is 2.25 pg/mL. 

The mean intra-assay CV between myostatin duplicates was 4.6%. This is comparable to 

those reported by the manufacture (CV = 3.5 to 4.3%). 

 

Adiponectin  

Total Adiponectin was measured using a quantitative ‘sandwich’ ELISA technique. 100 μl of 

Assay Diluent RD1Wwas added to each well before 50 μl of Standard, control or sample was 

added (the serum sample was diluted using the manufactures suggested 100-fold dilution of 

10 μl of sample plus 990 μl of Calibrator Diluent RD6-39). The plate was incubated for 2 hours 

at room temperature. Each well was aspirated and washed using ‘Wash Buffer’ (400 μl), with 

the process being repeated a total of four washes. Excess water was removed by inverting 

the plate and blotting against a paper towel. 200 μl of adiponectin conjugate was added to 
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each well, covered and incubated for 2 hours at room temperature. The plate was washed 

again, before 200 μl of ‘Substrate Solution’ was added to each well, and the plate was covered 

and incubated for 30 minutes (serum only) at room temperature. Attention was given to 

protecting the plate from light. 50 μl of SS was added, and the wells changed from blue to 

yellow in colour. To read the samples, the microplate reader was set to a wavelength of 450 

nm (λ correction of 540 or 570 nm), and the OD was determined within 30 minutes of the SS 

being added. The normal range of adiponectin according to manufactures data was between 

865 and 21,424 ng/mL (mean 6641 ng/mL). The manufactures MDD of adiponectin ranges 

between 0.079–0.891 ng/mL. The mean MDD is 0.246 ng/mL. The mean MDD is 0.05 ng/mL. 

The mean intra-assay CV between adiponectin duplicates was 7.6%. Although this is greater 

than reported by the manufacture (CV = 2.5 to 4.7), this is comparable to those reported by 

Harle et al. (2006) whom found CV of 10% in 16 adult RA patients. 

 

Leptin 

Human Leptin was measured using a quantitative ‘sandwich’ ELISA technique. 100 μl of 

Assay Diluent RD1-19 was added to each well before 100 μl of Standard, control or sample 

was added (the serum sample was diluted using the manufactures suggested 100-fold dilution 

of 10 μl of sample plus 990 μl of Calibrator Diluent RD5P-1X). The plate was incubated for 2 

hours at room temperature. Each well was aspirated and washed using ‘Wash Buffer’ (400 

μl), with the process being repeated a total of four washes. Excess water was removed by 

inverting the plate and blotting against a paper towel. 200 μl of leptin conjugate was added to 

each well, covered and incubated for 1 hour. The plate was washed again, before 200 μl of 

‘Substrate Solution’ was added to each well, and the plate was covered and incubated for 30 

minutes at room temperature. Attention was given to protecting the plate from light. 50 μl of 

SS was added, and the wells changed from blue to yellow in colour. To read the samples, the 

microplate reader was set to a wavelength of 450 nm (λ correction of 540 or 570 nm), and the 

OD was determined within 30 minutes of the SS being added. The normal range of leptin 

according to manufactures data was between 2205 and 11,149 pg/mL (mean 4760 pg/mL). 

The manufactures MDD of leptin is less than 7.8 pg/mL. The mean intra-assay CV between 

leptin duplicates was 7.8%. Although this is greater than reported by the manufacture (CV = 

3.0 to 3.3), this is comparable to those reported by Harle et al. (2006) whom found CV of 10% 

in 16 adult RA patients. 
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Appendix E - Body composition of (A) subset Chapter 3 rheumatoid arthritis patients and sedentary age- 

and sex-matched healthy controls; and (B) between ‘recent-onset’ (<12 months disease duration) and 

‘established’ (≥12 months disease duration) rheumatoid arthritis patients 
 

 

(A) 

 RA (n = 32) HC (n = 41) Absolute difference (CI) (%) P η2 

 ALM (kg) 20.4 (±4.9) 20.6 (±4.7) ↓ 0.2 (-2.5–2.1) (1) .867 .00 

 ALM% 27.5 (±4.4) 29.7 (±7.2) ↓ 2.3 (-5.2–0.6) (8) .121 .03 

 BM (kg) 75.2 (±18.3) 70.1 (±10.5) ↑ 5.1 (-1.7–12.0) (7) .139 .03 

 FM (kg) 23.8 (±11.3) 18.8 (±5.4) ↑ 5.0 (1.0–9.0) (21) .016* .08 

 BF% (%) 31.2 (±8.4) 27.2 (±6.7) ↑ 4.0 (0.2–7.9) (13) .040* .07 

 

(B) 

 ‘Recent-onset’ (n = 13) ‘Established’ (n = 19) Absolute difference (CI) (%) P η2 

 ALM (kg) 20.0 (±5.0) 20.6 (±4.9) 0.6 (-3.0–4.2) (3) .738 .00 

 ALM%  27.2 (±4.6) 27.6 (±4.4) 0.4 (-2.8–3.7) (1) .786 .00 

 BM (kg) 74.1 (±15.4) 76.0 (±20.4) 1.9 (-11.7–15.5) (3) .780 .00 

 FM (kg) 23.3 (±8.5) 24.1 (±13.1) 0.8 (-7.6–9.3) (3) .845 .00 

 BF% (%) 32.5 (±8.0) 29.6 (±9.0) 2.9 (-4.5–10.3) (9) .422 .03 

 
Group means (±SD) with 95% confidence intervals (CI) reported for the difference. Data was analysed using analysis of variance. RA = Rheumatoid arthritis; HC = Healthy 
controls; ALM = Appendicular lean mass; ALM% = ALM/BM%; BM = Total body mass (on scales); FM = Fat mass; BF% = Body fat percentage. * = P < .05; # = trend (P ≥ .05–
.10); Effect size (η2), small = .01; medium = .08; large = .26; very large = .50. 
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Appendix F - Body composition of untreated and treated disease in rheumatoid arthritis patients from 
Marcora et al. (2006) 

 
 

 Untreated disease (n = 24) Treated disease (n = 24) Absolute difference (CI) (%) P η2 

 ALM (kg) 15.8 (±4.3) 16.1 (±4.4) ↑ 0.3 (-0.1–0.7) (2) .102 .12 

 BM (kg) 73.9 (±16.4) 75.1 (±16.9) ↑ 1.2 (-0.2–2.6) (2) .093# .12 

 FM (kg) 30.3 (±11.2) 31.1 (±10.9) ↑ 0.8 (-1.7–0.0) (3) .053# .16 

 BF% (%) 40.3 (±8.1) 40.9 (±7.8) ↑ 0.5 (-0.1–1.1) (1) .069# .14 

 
Pre-test post-treatment scores are presented as means (±SD). Changes are presented as means (±SE). Treatment x time, and time main effects are presented from analysis of 
variance (2 x 2 repeated measures design). If a main effect was detected, post-hoc tests were used to identify where the difference lay at within group level. ALM = Appendicular 
lean mass; BM = Total body mass (on scales); FM = Fat mass; BF% = Body fat percentage. * = P < .05; # = trend (P ≥ .05–.10); Effect size (η2), small = .01; medium = .08; large 
= .26; very large = .50. 
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Appendix G - Body composition changes of etanercept (ETN) and methotrexate (MTX) treated rheumatoid 

arthritis patients from Marcora et al. (2006) 
 

 

Measure ETN (n = 12) MTX (n = 12) 
P (η2) 

Treatment x time Time 

ALM (kg)     
 Pre 15.8 (±4.2) 15.8 (±4.2) 

.583 
(.01) 

.102 
(.12) 

 Post 16.2 (±4.9) 15.9 (±4.2) 
 Change +0.4 (±0.3) +0.2 (±0.2) 
     
BM (kg)     
 Pre 76.4 (±14.4) 72.4 (±18.7) 

.991 
(.00) 

.093# 
(.12) 

 Post 77.5 (±16.1) 73.6 (±18.3) 
 Change +1.1 (±1.1) +1.2 (±0.7) 
      
FM (kg)     
 Pre 31.7 (±8.2) 28.9 (±13.8) 

.567 
(.02) 

.053# 
(.16) 

 Post 32.3 (±8.5) 30.0 (±13.2) 
 Change +0.6 (±0.6) +1.1 (±0.6)# 
     
BF% (%)     
 Pre 42.0 (±6.8) 38.6 (±9.2) 

.196 
(.08) 

.069# 
(.14) 

 Post 42.2 (±6.5) 39.5 (±8.9) 
 Change +0.2 (±0.3) +0.9 (±0.4)# 
     

 
Pre- and post-treatment scores are presented as means (±SD). Changes are presented as means (±SE). Both the treatment x time interaction, and main effect for time significance 
values are presented from analysis of variance (2 x 2 repeated measures design). If an interaction was detected, post-hoc tests were used to identify where the difference lay at 
within group level. Note: time effect donates untreated versus treated states, and therefore is also presented in Appendix F. ALM = Appendicular lean mass; BM = Total body 
mass (on scales); FM = Fat mass; BF% = Body fat percentage. * = P <.05; # = trend (P ≥ .05–.10); Effect size (η2), small = .01; medium = .08; large = .26; very large = 0.50. 
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Appendix H - Body composition changes in rheumatoid arthritis patients undergoing 24 weeks of 

progressed resistance training or home exercise from Lemmey et al. (2009) 
 

 

Measure PRT (n = 10) Control (n = 9) 
P (η2) 

Group x time Time 

ALM (kg)     
 Pre 14.1 (±2.0) 15.7 (±4.0) 

.011* 
(.32) 

.045* 
(.22) 

 Post 15.0 (±1.9) 15.6 (±3.6) 
 Change +1.0 (±0.2)*  -0.1 (±0.3) 
     
BM (kg)     
 Pre 63.3 (±7.1) 75.8 (±13.2) 

.266  
(.07) 

.403 
(.04) 

 Post 63.8 (±6.2) 72.4 (±11.1) 
 Change 0.5 (±0.9) -3.4 (±3.4) 
      
FM (kg)     
 Pre 23.6 (±6.6) 31.8 (±9.8) 

.678 
(.01) 

.133 
(.13) 

 Post 21.9 (±6.8) 28.9 (±12.2) 
 Change -1.7 (±1.1) -3.0 (±2.9) 
     
BF% (%)     
 Pre 36.9 (±7.8) 41.7 (±9.0) 

.939 
(.00) 

.048* 
(.21) 

 Post 34.2 (±9.3) 39.1 (±12.6) 
 Change -2.7 (±1.3)# -2.5 (±2.1) 
     

 
Pre-test and post-test scores are presented as means (±SD). Changes are presented as means (±SE). Treatment x time, and time main effects are presented from analysis of 
variance (2 x 2 repeated measures design). If a main effect was detected, post-hoc tests were used to identify where the difference lay at within group level. PRT = Progressive 
resistance training; ALM = Appendicular lean mass; BM = Total body mass (on scales); FM = Fat mass; BF% = Body fat percentage. * = P < .05; # = trend (P ≥ .05–.10); Effect 
size (η2), small = .01; medium = .08; large = .26; very large = 0.50. 
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Appendix I - Body composition changes between the subset of Chapter 5 rheumatoid arthritis patients 

supplementing with 12 weeks of oral creatine or placebo 
 

 

Measure Creatine (n = 8) Placebo (n = 12) 
P (η2) 

Group x time Time 

ALM (kg)     
 Pre 19.1 (±3.3) 21.9 (±6.2) 

.078# 
(.18) 

.165 
(.12) 

 Post 19.5 (±3.7) 21.9 (±6.0) 
 Change 0.5 (±0.3) -0.1 (±0.2) 
     
BM (kg)     
 Pre 71.5 (±13.4) 79.6 (±23.1) 

.224 
(.02) 

.134 
(.01) 

 Post 73.1 (±14.7) 79.8 (±21.9) 
 Change 1.6 (±1.0) 0.2 (±0.6) 
      
FM (kg)     
 Pre 21.6 (±9.0) 24.8 (±13.4) 

.680 
(.01) 

.202 
(.10) 

 Post 22.4 (±9.8) 25.2 (±13.3) 
 Change 0.8 (±0.3) 0.4 (±0.5) 
     
BF% (%)     
 Pre 28.1 (±6.1) 34.1 (±11.2) 

.292 
(.00) 

.064# 
(.22) 

 Post 28.6 (±6.4) 35.4 (±11.9) 
 Change 0.4 (±0.7) 1.3 (±0.4)* 
     

 
Pre-test and post-test scores are presented as means (±SD). Changes are presented as means (±SE). Treatment x time, and time main effects are presented from analysis of 
variance (2 x 2 repeated measures design). If a main effect was detected, post-hoc tests were used to identify where the difference lay at within group level. ALM = Appendicular 
lean mass; BM = Total body mass (on scales); FM = Fat mass; BF% = Body fat percentage. * P < .05; # trend (P ≥ .05–.10); Effect size (η2), small = .01; medium = .08; large = 
.26; very large = 0.50. 
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Appendix J - The association of pain with strength and physical function in rheumatoid arthritis  

(Chapter 3) 
 

 

Physical function measure 
Subjective pain measures 

MDHAQ general pain (Q2) φ MDHAQ joint pain (Q3) φ SF-36 ‘bodily pain’ component † 

IKES (N) r = -.198, P = .086# r = -.202, P = .077# r = .286, P = .012* 

HGS (N) r = -.239, P = .032* r = -.208, P = .061# r = .226, P = .044* 

STS-30 (reps) r = -.250, P = .028* r = -.217, P = .055# r = .262, P = .021* 

8’UG (secs)∞ r = .460, P < .001* r = .476, P < .001* r = -.380, P = .001* 

50’W (secs)∞ r = .414, P < .001* r = .514, P < .001* r = -.380, P = .001* 

VO2max (ml/kg/min) r = .044, P = .736 r = -.067, P = .606 r = -.007, P = .959 

 
MDHAQ = Multi-dimensional Health Assessment Questionnaire; SF-36 = Short-form 36 questionnaire; IKES = Isometric knee extensor strength; HGS = Handgrip strength; STS-
30 = Sit-to-stand in 30 second test; 8’UG = 8-foot up and go; 50’W = 50-foot walk; VO2max = Estimated VO2max from Siconolfi step test; ∞ = higher score denotes poorer 
performance; φ = higher score on MDHAQ denotes more pain; † = higher score on SF-36 denotes less pain. * P < .05; # trend (P ≥ .05–.10). 
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