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ABSTRACT 
 

Cancer is of paramount medical concern as an increasingly major contributor of disease-related 

fatalities of significant prevalence – particularly in the context of current statistical/stochastical 

epidemiological studies which predict that one in three people will contract cancer at some stage of 

their lives, whilst one in four of these patients will die as a consequence of their particular 

neoplastic-associated condition. 

 

The human Rad9 protein exists in two full-length isoforms (termed Rad9A and Rad9B) whose 

respective differentially-elevated levels and related expression profiles are distinctive for specific 

tumour cell tissue types. 

 

Most known functions of the DNA damage response protein Rad9 are executed via the well-

characterised Rad9-Rad1-Hus1 (“9-1-1”) protein complex, which is loaded onto chromatin in close 

vicinity to DNA lesion sites. 

 

The chromatin-loaded “9-1-1” complex functions as both a DNA damage “sliding-clamp” sensor 

and a recruitment platform which modulates and co-ordinates the activities of a wide variety of 

different proteins implicated in cell cycle checkpoint signalling, steroidal nuclear receptor 

signalling, protein chaperoning and DNA repair – via associative protein-protein interactions with 

the C-terminal tail domain of the Rad9 sub-unit. 

 

This toroidal, heterotrimeric “9-1-1” DNA sliding-clamp complex is highly conserved and its 

recently resolved crystal structure shows a functional similarity to the homotrimeric PCNA DNA 

sliding-clamp complex.  
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Associative ring formation amongst the individual Rad9, Rad1 and Hus1 sub-units is limited, via 

stringent steric and thermodynamic parameters, to the heterotrimeric type “9-1-1” DNA sliding-

clamp complex configuration. 

 

Recent clinical data strongly indicate that over-expression of Rad9, but not Hus1 or Rad1, also 

promotes tumour growth. 

 

Aside from the well-documented phenomena of the modulation of apoptotic signalling and 

pyrimidine nucleobase biosynthesis activities, comparatively little is known about the “9-1-1” 

complex-independent functions of the human Rad9 protein – whose dysfunctional activities may 

be implicated in the development and progression of carcinogenesis. 

 

The initial research emphasis of this Ph.D. project was focused on the elucidation on the 

mechanism of expression and potential functional roles of a novel N-Terminal truncated (“short”) 

variant of the Rad9 protein – termed “Rad9-S”, which is expressed in the experimental eukaryotic 

cell cycle model organism Schizosaccharomyces pombe. 

 

Expression of relatively low levels of a constitutive form of Rad9-S were detected in S. pombe 

cells under normal conditions, whilst significantly increased levels of an expressed inducible form 

of the protein were detected in S. pombe cells as part of an exclusive response to heat shock. 

 

In addition to Rad9-S, the constitutive expression of two shorter truncated Rad9 variants – termed 

Rad9-VS and Rad9-T (“very-short” and “tiny”), was also detected in S. pombe cells. 
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This experimental observation indicates that S. pombe may prove to be a useful homologous 

eukaryotic model organism, in future research studies, for the elucidation of the unknown 

functions of the four truncated isoform variants of human Rad9B which may be implicated in 

novel mechanisms of carcinogenic development and progression.   

 

The mechanism of expression of the Rad9-S, Rad9-VS truncated protein variants was postulated to 

involve alternative translation at the alternative AUG start-codon sites at Methionine 50 (M50) and 

Methionine 74 (M74) within the S. pombe rad9 gene, in which leaky ribosomal scanning is 

implicated. 

 

Heat shock may increase the frequency of leaky ribosome scanning, exclusive to the M50 

alternative AUG start-codon site, via alterations of the secondary topological configuration of the 

rad9 mRNA, in which rad9 mRNA-protein associative interactions with heat-shock proteins, RNA 

chaperones and/or RNA stabilisers may also be  implicated.  

 

The rad9 mRNA region spanning the codon region M1 to M50 inclusive may also function as a 

novel type of cis-acting hypothermic suppressor element that induces a supramolecular 

configurational  rearrangement of the mRNA secondary structure in response to cold shock which 

blocks leaky ribosome scanning at the alternative M50 AUG start-codon site with consequential 

suppression of Rad9-S expression under low (16˚C) and moderate temperatures (25-30˚C). 

 

Expression of the Rad9-T truncated protein variant was postulated to involve a limited proteolytic 

cleavage mechanism in which metacaspase-mediated and/or COP9 signalosome-mediated limited 

proteolytic processing may be implicated. 
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In silico sequence alignment analyses identified a potential metacaspase target-site motif within 

the S. pombe Rad9 protein and comparative modelling indicated that key residues at the focal 

cleavage-site of this motif were situated at the Rad9:Rad1 interface of the “9-1-1” DNA sliding-

clamp complex. 

 

In silico multiple sequence alignment analyses also indicated that the S. pombe Rad9 protein 

contained two sequences, flanking the identified potential metacaspase target-site motif, which 

exhibited significant homology with the two alternative C-termini of the H. sapiens Rad9B 

paralogue and its truncated isoforms. 

 

Distinctive phosphorylation-type post-translational modifications of Rad9-S were also found to 

influence the expression of the respective two smaller truncated protein variants; Rad9-VS and 

Rad9-T. 

 

 

It was postulated that a variety of potential Rad9 phospho-isoforms may be implicated in a 

interactive “activity-modulatory feedback” mechanism, in which they function as transcriptional 

and/or translational regulators of the expression of the Full-length Rad9, NΔ49-Rad9 (“Rad9-S”) 

and NΔ73-Rad9 (“Rad-VS”). 

 

Whilst kinase-mediated phosphorylation of several key residues, identified within a conserved 

potential metacaspase site in the full-length Rad9, Rad9-S and Rad9-VS protein isoforms, may 

inhibit proteolytic-cleavage formation of the detected Rad9-T truncated protein variant. 

 

 

 

 

 

 

 

                                                       [ix] 



Taken together, these data indicated that specific checkpoint kinase-mediated phosphorylation of 

the S. pombe Rad9 protein may constitute part of a “feedback” signalling network for the 

regulation of metacaspase-mediated processing of the S. pombe Rad9 protein which may be 

implicated in novel checkpoint responses that suppress the formation and/or alter specific 

functional activities of the Rad9-Rad1-Hus1 (“9-1-1”) DNA sliding-clamp and promote the 

proteolytic expression of two truncated Rad9 isoforms whose functions are unknown, but may 

elicit alternative regulatory cell cycle signalling pathways under particular genotoxic and/or 

environmental stress conditions. 

 

 

Whilst confirmation of the existance of these two postulated metacaspase-generated truncated 

Rad9 isoforms and elucidation of their roles in cell cycle checkpoint signalling remains to be 

established, their potential novel functions may be analogous to those of the H. Sapiens Rad9B 

isoforms which are as yet unknown.   

 

S. pombe cells “Cre-Lox”– engineered for the exclusive expression of the Rad9-S protein variant 

exhibited a high degree of cytotoxic sensitivity towards a wide range of different types of 

genotoxic agents.  

 

This supported the initial hypothesis which postulated that deletion of the first 49 N-terminal 

amino acid residues in the truncated Rad9-S protein variant would sterically suppress the 

formation of the constrained ring configuration of the Rad9-Rad1-Hus1 heterotrimeric DNA 

sliding-clamp complex and thus render the engineered cells unable to elicit the appropriate cell 

cycle checkpoint responses to various types of induced DNA damage. 

 

 

 

 

 

 

 

 

                                                      [x] 



An unanticipated, exceptional experimental observation was the partial resistance of engineered 

Rad9-S cells (~30% retained cell viability) towards acute exposure to the Topoisomerase I (Topo 

I) inhibitor drug camptothecin (~30% retained cell viability) – which transiently traps the enzyme 

on the DNA in S-phase. 

 

Consequential collision of DNA replication forks with the resultant duplex-immobilised DNA-

CPT-Topo I ternary complex leads to the formation of one-sided double-stranded breaks which are 

subsequently detected by the G2-M DNA damage checkpoint. 

 

Five key phosphorylation sites were identified within the truncated Rad9-S protein variant which 

were critical for the partial resistance of engineered Rad9-S cells towards camptothecin-induced 

DNA damage – notably; Y12 and Y62 (potential Mph1 kinase target sites) and T176, T363, S374 

(equivalent Rad3 kinase target sites to those found in the full-length Rad9 protein at positions 

T225, T412 and S423 respectively). 

 

 

A potential DNA-binding domain, spanning residues M50 – M74 Rad9, was also identified within 

the truncated Rad9-S protein that may possess additional functions as a nuclear translocation signal  

responsive element, a nuclease recruitment-site and/or exonuclease catalytically-active site which 

are implicated in the co-ordinated repair of camptothecin-induced DNA double-stranded breaks. 

 

 

Subsequent genetic and biochemical experimental data indicated that the truncated Rad9-S protein 

variant may mediate a co-ordinated cell cycle arrest signal and DNA repair response to  

camptothecin-induced DNA damage, that functions outside of the canonical Rad9-Rad1-Hus1 

complex, which is channelled into a novel pathway that interacts independently of both the G2-M 

and mitotic checkpoints. 
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Comparative acute survival assays performed on cultures of the S. pombe cells engineered for the 

exclusive expression of the truncated Rad9-S protein variant, under induced osmotic stress 

conditions, rendered the cells hyper-sensitive to camptothecin-induced DNA damage and hyper-

resistant to heat shock. 

 

Comparative acute survival assays also indicated that deletion of the Sty1 kinase, but not Wis1 

kinase, within an exclusive Rad9-S expression type genetic background also increased the 

sensitivity of the cells to camptothecin-induced DNA damage. 

     

 

Whilst comparative bioinformatics-based in silico sequence alignments of the Rad9-S, Sty1 and 

Wis1 indicated that both Rad9-S and Sty1 contained potential interactive motifs for the Rad3 

kinase, which were absent in the Wis1 protein. 

 

Taken together, these data indicated that the truncated Rad9-S protein variant may be implicated in 

two novel separate differential signalling responses upon exposure to either heat shock or 

camptothecin, in which appropriate pathway selection is dictated via the suppression or induction 

of Rad9:Sty1-mediated co-operative activation of the Rad3 kinase. 

 

Comparative acute survival assays indicated that deletion of rad1 within an exclusive Rad9-S 

expression type genetic background rendered the engineered cells hypersensitive to heat shock, but 

had no adverse impact on their observed partial resistance to camptothecin-induced DNA damage. 

 

Comparative acute survival assays also indicated that deletion of hus1 within an exclusive Rad9-S 

expression type genetic background rendered the engineered cells hypersensitive to both 

hyperthermic- and camptothecin- induced genotoxic cytological stresses. 
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Experimental genetic studies also indicated that the Rad17 clamp-loader protein is unlikely to be 

directly implicated in these Rad9-S–mediated checkpoint responses to hyperthermic- or 

camptothecin- induced genotoxic stresses. 

 

Taken together, these experimental observations indicate that the Rad9-S–mediated response to 

camptothecin-induced DNA damage proceeds via formation of a heterodimeric, “open-ring”, 

Rad9-S:Hus1 C-clamp type complex, whilst the Rad9-S–mediated response to hyperthermic stress 

proceeds via formation of an alternative heterotrimeric Rad9-S:Rad1:Hus1 toiroidal clamp 

complex and that these respective checkpoint pathways are novel functions of Rad9 which operate 

outside of the canonical full-length Rad9-Rad1-Hus1 heterotrimeric DNA sliding-clamp complex. 

 

It was also postulated that the shorter truncated isoform variants Rad9-VS and Rad9-T may be 

implicated in a feedback regulatory mechanism for modulatory control of the respective functional 

activities of the Rad9-S protein-mediated responses to both heat shock- and camptothecin- induced 

types of DNA damage – which may also be may also be analogous to those of the human Rad9B 

paralogue and its respective truncated isoforms. 

 

Future experimental studies into the identified S. pombe Rad9-S–modelled checkpoint response to 

camptothecin-induced genotoxicity may offer potential new insights into the reasons for the 

exclusive elevated expression of Rad9, but neither Rad1 or Hus1, in aggressive breast tumours 

and/or novel mechanisms of acquired tumour drug resistance to camptothecin-based anti-cancer 

chemotherapeutics. 
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Whilst future experimental investigation of the identified S. pombe Rad9-S–modelled checkpoint 

response to hyperthermic stress may advance knowledge of the complex mechanisms of action 

implicated in the combinatorial hyperthermic-enhanced efficacy of  chemo- and/or radio- 

therapeutic adjuvant clinical anti-cancer regimens and provide useful information of the acquired 

mechanisms of tumour resistance to these types of treatments. 

 

 

Taken together, in summarised context, progressive research into the initial “pilot data” acquired 

from this Ph.D. project may provide vital information for the future treatment of chronic breast 

cancer patients administered camptothecin-derivatised agents, in combination with adjuvant 

hyperthermotherapy and/or radiotherapy, to combat the metastatic spread of refractory tumours 

which have developed multiple drug resistance to the “conventional arsenal” of chemotherapeutic 

drugs utilised in standard clinical practice – such as taxols and anthracyclics. 
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1.1 Human Rad9: A Viable Anti-Cancer Chemotherapeutic Target 



 

Cancer is of paramount medical concern as an increasingly major contributor of disease-related 

fatalities throughout the world, which has prompted extensive research focused upon the 

progressive development of novel therapeutics with significantly improved pharmacological 

efficacy and markedly reduced toxicity-related side-effects. 

 

Statistical and stochastical analyses of clinical data, derived from a variety of epidemiological 

studies, indicate that one in three people will be diagnosed with cancer at some stage of their lives 

and one in four of these patients will die as a consequence of their particular neoplastic-associated 

condition. (American Cancer Society, 2011; IARC, 2011; WHO, 2011). 

 

The pathophysiological aetiology of cancer encompasses a diverse collection of systemically-

related disease conditions, ranging through a progressive series of pre-, intermittent- and post- 

neoplastic cytological states and origins with distinctive “biochemical signatures”  (defined in Fig 

1.1, p.5; Fig 1.9, p.16), which culminate in the manifestation of specific benign and malignant 

tumour sub-types – defined in Table 1.1, p.3 (Pecorino L., 2008; Weinberg R.A., 2006). 

 

The mechanism of carcinogenesis, implicated in the pathophysiological transformation from 

normal, to relatively benign and later aggressive, malignant cytological status, may be 

fundamentally regarded as an integral, systemic multi-stage process comprised of four key phases, 

notably; Initiation, Promotion, Progression through to Evolution to metastatic and/or multiple drug 

resistant morphological phenotypes (Fig 1.9, p.16). 

 

These four key phases are orchestrated via a cumulative complex interactive network of genetic, 

epigenetic and proteomic biochemical events (Fig 1.1, p.5; Fig 1.9, p.16) which are triggered via 

adverse combinations of acute and chronic lifestyle risk-related factors. 

 

Typical carcinogenic-associated risk factors include; age, sex, genetic/biochemical pre-dispositions, 

diet, metabolism, obesity, smoking, alcohol/drug abuse and relative acute/chronic exposure to 

various genotoxic and epigenetic toxins, ionising and non-ionising radiation sources which may be 

manifested in the form of pollutants, food additives, drugs/xenobiotics, household and a wide 

variety of different types of industrial/workplace-related materials/products – to name but a few 

examples! (Boelsterli U.A., 2007; Janes S.R.C., 2006; Klaassen C.D., 2008; Matzke M.A. et al, 

1999; Simons J.W., 1999; Sugimara T. and Ushijima T., 2000; Timbrell J.A., 2008). 
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 Table 1.1: Characteristic Features of Benign & Malignant Tumours 

 



    [Compiled via Collated Information From: Pecorino L., 2008; Weinberg R.A., 2006] 

  

                         BENIGN  
 

 

                     MALIGNANT 

 

                 Often encapsulated 

 

 

Rarely encapsulated and encapsulation is 

often incomplete when present 

 

 

      Non-invasive and remain localised 

      absence of metastatic capability 

 

 

Invasive with tendency to form secondary 

bodies with latent metastatic potential 

 

  Well differentiated with retained close 

  resemblance to the cells of origin  

 

 

Poorly differentiated with diminished 

resemblance to cells of origin and in 

some cases completely undifferentiated 

 

 

  Cells/nuclei of uniform size/appearance 

 

 

High incidence of variance in cell size and 

nuclei appearance 

Nuclei often hyperchromatic 

 

 

 Mitotic figures relatively rare or absent 

 

 

  Prevalent incidence of mitotic figures 

 

   Low or absent incidence of anaplasia 

 

 

    High incidence of varying degrees of  

    anaplasia 

  

 

 Relatively rare incidence of degenerative 

 transformations 

 

 

 Relatively high incidence of degenerative 

 transformations 

 

 Relatively slow/passive growth  

 

 

  Relatively rapid/aggressive growth 

   
Benign tumours are not regarded as truly cancerous, in the strictest medical sense, as a consequence of the fact 

that they are typically comprised of relatively restrictive, slow-growing groups of well-differentiated cells which 

only proliferate locally within well-defined boundary edges, often encapsulated in fibrous sheath type matrices 

which limits their invasive capacity (Pecorino L., 2008; Weinberg R.A., 2006). 

[In the majority of benign cases it is possible to accomplish complete eradication of the manifested neoplastic 

pathophysiological condition via surgical removal of the tumour in conjunction with “follow-up” radio and/or 

chemo-therapeutic treatments] 

 

Conversely, malignant tumours are clinically defined as truly cancerous conditions as a consequence of the fact 

that they are typical comprised of poorly-differentiated, rapidly-dividing cells which possess the capability to 

metastasise and invade neighbouring tissues (Pecorino L., 2008; Weinberg R.A., 2006). 

[In the majority of malignant cases it is relatively difficult to accomplish complete eradication of the manifested 

neoplastic pathophysiological condition as a consequence of the aggressive morphological nature of the tumour 

cells concerned, which enables them develop multiple drug resistance to a wide range of chemotherapeutics and 

to eventually spread throughout the body via the lymphatic system with consequential fatal prognosis for the 

patient]                                                                       
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The human Rad9 protein exists in two main forms, designated Rad9A and Rad9B (Dufault V.M. et 

al, 2003; Ishikawa K. et al, 2006; Leloup C. et al, 2010; Lieberman H.B. et al, 2006; Lieberman 

H.B. et al, 2011) –  which can also be expressed as several smaller isoforms (Fig 1.3, p.9).  

 

Elevated levels of expression of the human Rad9 protein isoforms A and B (Fig 1.3, p.9) have also 

been identified in tumour cells originating from a variety of different tissue types, which in some 

cases has been demonstrated to strongly correlate with hypermethylation of introns 1 and/or 2 

within the hRAD9 gene (Fig 1.7, p.13; Fig 1.8, p.14; Table 1.2, p.15). 

 

Suppressed expression of human Rad9A has also been correlated directly with the increased 

incidence and progressive development of a variety of different childhood and independent 

secondary cancers (Weis E. et al, 2011). 

 

The human Rad9 protein exhibits a versatile array of functions which modulate the activity of 

specific cell cycle genetic, epigenetic and proteomic biochemical events (Broustas C.G. and 

Lieberman H.B., 2012; Ishikawa K. et al, 2006; Lieberman H.B., 2006; Lieberman H.B. et al, 

2011; Marquardt J.U. et al, 2012) and may thus also impinge upon the four key developmental 

phases of carcinogenesis - Fig 1.1, p.5; Fig 1.2, p.8; Fig 1.9, p.16. 

 

The “Rad1/Hus1-Dependent” functions of human Rad9 rely critically upon the formation of the 

Rad9-Rad1-Hus1 toroidal, heterotrimeric PCNA-like DNA sliding clamp which acts as both a 

DNA damage sensor and a recruitment platform for various signalling proteins and DNA repair 

factors whose respective docking interactions involve the highly flexible C-terminal tail domain of 

the Rad9 protein which is situated outside of the Rad9-Rad1-Hus1 complex (Ishikawa K. et al, 

2006; Lieberman H.B. et al, 2006; Lieberman H.B. et al, 2011) – Fig 1.2, p.8. 

 

In addition to DNA damage detection, a variety of other key “Rad1/Hus1-Dependent” human 

Rad9 functions have been identified – notably; DNA Damage Checkpoint Activation, Specific 

DNA Repair Pathway Selection and Activity Modulation, Cell Cycle Phase-Specific Activity 

Modulation, Androgen Receptor Activity Modulation and Protein Chaperone Activity Modulation, 

via specific Rad9-Tpr2 regulatory protein interactions (Ishikawa K. et al, 2006; Lieberman H.B. et 

al, 2006; Lieberman H.B. et al, 2011; Wang L. et al, 2004; Xiang S-L. et al, 2001) – Fig 1.2, p.8. 
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   Fig 1.1: Key Factors Implicated in the Promotion of Carcinogenesis 

  
   [Compiled via Collated Information from: Chiarugi V. et al, 1994; Luo J. et al, 2009;  

                                                                              Perez de Castro et al, 2007; 

                                                                              Sinclair D.A. and Oberdoerffer P., 2009     

 

“Nucleocentric” mechanisms of carcinogenic induction are encompassed in the gerontological model (Top Left 

Figure), in which initial DNA damage-driven alterations in chromatin supra-molecular structure promote 

senescence and ageing, in conjunction with propagated accumulation of further genotoxic and/or epigenetic 

events which are amplified during successive cell cycle rounds (Sinclair D.A. and Oberdoerffer P., 2009) 

  

Reversible chromatin alterations implicated in the gerotological model, which are not a consequence of genomic 

aberrations, may “re-program” the “epigenomic clock” to a younger cytological transformation status (Sinclair 

D.A. and Oberdoerffer P., 2009). 

 

There are 12 essential hall-marks of cancer (Top Right Figure) which may be classified into three major 

categories, notably; Dysregulated Cellular Growth, Stress Factor-Induced Genomic Instability (Metabolic 

Stress, Oxidative Stress, Proteotoxic Stress, Mitotic Stress, DNA Damage Stress and DNA Replication Stress) 

and Dysfunctional Immunosurveillance (Denoyelle C. et al, 2006; Hanahan D. and Weinberg R.A., 2000; 

Hanahan D. and Weinberg R.A., 2011; Kroemer G. and Pouyssegur J., 2008; Luo J. et al, 2009; Papp B. et al , 

2003; Whitesell L. and Linquist S.L., 2005). 

 

Mitotic alterations implicated in carcinogenesis may be classified in two major categories, notably; 

Dysfunctional Cellular Events (Bottom Left Figure) and Dysfunctional Biomolecular Events (Bottom Right 

Figure) that constitute the main “biochemical triggers” which initiate the progressive transformation to 

neoplastic cytological status –  centrosomal and checkpoint protein kinases are of particular prevalence in this 

context (Perez de Castro L. et al,  2007). 

 

The human Rad9 protein has multi-functional roles which impinge on the regulated activity of the majority of 

the cellular events summarised in the figures above and thus may also exert significant oncogenic potential 

(Broustas C.G. and Lieberman H.B., 2012; Lieberman H.B. et al, 2011). 
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Several “Rad1/Hus1” – Independent functions of human Rad9, which do not require formation of 

the Rad9-Rad1-Hus1 complex, have also been identified – notably; Apoptotic Activity Modulation 

and Pyrimidine Nucleotide Biosynthetic Activity Modulation, via specific regulatory Rad9-CAD 

protein interactions (Komatsu K. et al, 2000; Lieberman H.B. et al, 2011; Lee M.W. et al, 2003; 

Lindsey-Boltz L.A. et al, 2004; Yin Y. et al, 2004; Yoshida K. et al, 2002) – Fig 1.2, p.8. 

 

Whilst the multiple functions of the human Rad9A protein have been extensively studied, 

comparatively little is known about the specific functions of the human Rad9B protein paralogue 

and its smaller isoforms (Fig 1.3, p.9). 

 

However, very recent experimental studies indicate that the human RadB protein paralogue may be 

functionally implicated in novel phasic G1-S transitional arrest type cell cycle checkpoint 

responses to nucleolar stress, which are mediated via both ATR-  and  JNK-  kinase signalling 

cascade pathways (Pérez-Castro A.J. and Friere R., 2012). 

 

Two isoforms of the human Hus1 protein, designated Hus1A and Hus1B (Hang H. et al, 2002),  

have also been identified (Fig 1.4, p.10) which has led to the deductive hypothesis that four 

potential Rad9-Rad1-Hus1 complex isoforms may exist that perform critically distinctive 

functional roles in specific cellular responses to replication stress and DNA damage (Dufault V.M. 

et al, 2003) – Fig 1.5, p.11 . 

 

Loading of The Rad9-Rad1-Hus1 complex onto DNA is accomplished via the Rad17:Rfc2-5 

complex (discussed later in detail in Section 1.2.1, pp.23-32). 

 

Intriguingly, four isoforms of the human Rad17 protein have also been identified (Fig 1.6, p.12) 

and thus it is conceivable to hypothesise that four isoforms of the Rad17:Rfc2-5 clamp-loading 

complex may exist, each of which interacts with and loads a specific isoform of the Rad9-Rad1-

Hus1 complex onto DNA in response to distinctive types of replication stress and/or DNA damage 

(Fig 1.5, p.11).  
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Human Rad9 is considered to be a particularly valid choice of potential anti-cancer 

chemotherapeutic target by the advantageous virtue of the fact that it acts both as a key interactive 

DNA damage sensory initiator component at the very start of various cell cycle checkpoint 

signalling cascades and as a multi-functional associative recruitment platform which modulates the 

activity of a diverse range of different proteins and repair factors implicated in the DNA damage 

response and other related biological processes (Broustas C.G. and Lieberman H.B., 2012; 

Ishikawa K. et al, 2008; Lieberman H.B., 2008; Lieberman H.B. and Zhu A., 2010; Lieberman 

H.B. et al, 2011) – Fig 1.2, p.8. 

 

Thus, the respective pharmacological efficacies of Rad9 activity-targeted anti-cancer 

chemotherapeutic strategies (discussed at the end of this section,  pp.17-22) are far less likely to be 

negated/circumvented via alternative pathway selection by-pass effects (Broustas C.G. and 

Lieberman H.B., 2012; De Palma M. and Hanahan D., 2012; Ishikawa K. et al, 2008; Lieberman 

H.B., 2008; Lieberman H.B. and Zhu A., 2010; Lieberman H.B. et al, 2011). 

 

As is the case for specific checkpoint kinase inhibitors due to the fact that the pharmacologically-

targeted proteins are functionally-implicated in a wide variety of down-stream cell cycle signalling 

cascades which comprise a number of complex, inter-communicative “cross-talk” regulatory 

pathways (Garrett M.D. and Workman P., 1999; Workman P., 2004; Yap T.A. et al, 2010).       
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         Fig 1.2: Summarised Overview of Human Rad9 Functions  
 

                                          
    
          Human Rad9 is an evolutionary conserved, multi-functional protein which spans a diverse 

           range of activity-modulatory roles in a variety of fundamental biomolecular processes that 

           can be categorized into two major groups – notably; “9-1-1” Complex-Dependent Functions 

           & “9-1-1” Complex-Independent Functions (An L. et al, 2010; Broustas C.G. and Lieberman 

           H.B., 2012; Deshpande A.M. et al, 2011; Ishikawa K. et al, 2006; Komatsu K. et al, 2000;  

           Lee M.W. et al, 2003; Lieberman H.B. et al, 2006; Lieberman H.B. et al, 2011; Lindsey-Boltz 

           L.A. et al, 2004; Saberi A. et al, 2008; Wang L. et al, 2004; Xiang S-L. et al, 2001;  Yin Y. et al,  

           2004; Yoshida K. et al, 2002). 

            

          [Solid arrows denote the specific “9-1-1” Complex-Dependent & “9-1-1” Complex-Independent 

          Functions, whilst dashed arrows denote the potential inter-communicative pathways between  

          the various functions which may act as an additional “cross-talk” network for regulation of  

          specific free- and Rad1/Hus1-associated Rad9 activities implicated in the preservation of  

          cellular genomic integrity]    
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Fig 1.3: hRAD9A and hRAD9B Gene Locus Sites & Protein Sequences  
 

                 
                  A: hRAD9A Genetic Data Resource: http://www.uniprot.org/uniprot/Q99638 

 

                    B: hRAD9B Genetic Data Resource: http://www.uniprot.org/uniprot/Q6WBX8 
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http://www.uniprot.org/uniprot/Q99638
http://www.uniprot.org/uniprot/Q6WBX8


   Fig 1.4: hHUS1 and hHUS1B Gene Locus Sites & Protein Sequences 
 

 
 

                    A: hHUS1 Genetic Data Resource: http://www.uniprot.org/uniprot/Q060921 

 

                    B: hHUS1B Genetic Data Resource: http://www.uniprot.org/uniprot/Q8HNYS 
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http://www.uniprot.org/uniprot/Q060921


        Fig 1.5: Alternative Complex Isoforms of  the “9-1-1” Clamp  
 

          [Taken and Adapted From: Dufault V.M. et al, 2003) 
 

 
 

 Various experimental studies have established that both the human Rad9A protein and the 

 paralogue protein, Rad9B (Fig 1.3, p.9) can associate with human Rad1, Hus1 and/or the 

 Hus1B protein paralogue (Fig 1.4, p.10), along with the human Rad17 protein component of  

 DNA clamp-loader complex (Fig 1.6, p.12). 

 

It has therefore been postulated that formation of four isoformic “9-1-1” DNA sliding-clamps 

is feasible and that each respective complex may possess distinctive biological functions in 

specific types of  DNA damage and/or cellular replication stress responses (Dufault V.M. et al, 

2003). 

 

Somewhat intriguingly, the human Rad17 protein component of the hRad17:RFC2-5 complex 

(which loads the “9-1-1” clamp onto the DNA – discussed in detail in Section 1.2.1, pp.23-32) 

also exists as four different isoforms (Fig 1.6, p.12). 

 

It is also therefore feasible to hypothesise the potential existence of four isoformic 

hRad17:RFC2-5  complexes, each of which associates with and loads a specific “9-1-1” clamp 

isoform onto DNA  - dictated by the type of structural DNA damage/lesion, in conjunction 

with the appropriate cell cycle checkpoint signalling response.   
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Fig 1.6: hRAD17 Gene Locus Site and Isoform Protein Sequences 
    

        
 

            hRAD17  Genetic Data Resource: http://www.uniprot.org/uniprot/Q75943 
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   Fig 1.7: Tissue-Specific Expression Profiles for the hRAD9A Gene  

 

 
    Expression Data Resource: http://www.genecards.org/cgi-bin/carddisp.pl?gene=RAD9A 
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http://www.genecards.org/cgi-bin/carddisp.pl?gene=RAD9A


Fig 1.8: Tissue-Specific Expression Profiles for the hRAD9B Gene  

 

 
     Expression Data Resource: http://www.genecards.org/cgi-bin/carddisp.pl?gene=RAD9B 
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http://www.genecards.org/cgi-bin/carddisp.pl?gene=RAD9B


       Table 1.2: hRAD9 Gene Expression – Neoplastic Correlations  
 

    

         Tumour 

          Tissue 

           Type 

 

 

         Correlated hRad9 Experimental Observations 

 

              Reference 

 

 

 

          Breast  

 

 

   Activation and over-expression of the hRAD9 gene at 

    the chromosomal 11q13 locus 

 

    DNA hypermethylation at Intron 1 and Intron 2 of 

    the hRAD9 gene 

 

 

 

   Chan V. et al, 2008 

   Cheng C.K. et al, 2005 

 

           

          Ovary 

 

 

    High significance of over-expression of the hRAD9  

    gene in both mitotic and apoptotic indices within 

    epithelial ovarian tumour cells 

 

 

 

 de La Torre J. et al, 2008 

 
   
          

        Prostate 

 

 

     Elevated cytological levels of the hRad9 protein as 

     as consequence of abberent amplification and/or 

     hypermethylation at CpG islands within the 3’ 

     end of Intron 2 of the hRAD9 gene  

 

 

 

     Rao K.V. et al, 2012 

     Zhu A. et al, 2008 

         

 

 
      
        Testicular 
 

 

     * Elevated cytological levels of the hRad9B protein 

         isoform within testicular seminoma cells 

  

 

 Hopkins K.M. et al, 2003 

 

           

 

 

 

           Lung 

  

 

 

       High cumulative cytological levels of the hRad9 

       protein expressed within the nuclei of non-small 

       cell lung carcinoma cells 

 

 

 

    Maniwa Y. et al, 2005 

 

        Non-synonymous H239R SNP within the hRAD9 

        gene expressed in relatively high cytological 

        levels within non-small cell lung adenocarcinoma 

        cells 

  

 

    Maniwa Y. et al, 2006 

    Tanaka Y. et al, 2010 

    Yuki T. et al, 2008 

 

           

 

         Thyroid       
 

 

        Elevated cytological levels of the hRad9 protein 

         expressed in thyroid tumours and significant 

         expression of higher levels of hRad9 in malignant 

         thyroid tumours cells in comparative analyses 

         with benign tumour cells  

          

 

 

 

   Kebebew E. et al, 2006 

 
             

          Gastric 

 

 

         Critical hRad9 functional requirement for G2/M 

          checkpoint signal-transduction identified within 

          gastric cancer cells 

 

 

 

    Hayashi K. et al, 2002 

   

* NOTE: Whilst the biological functions of the human Rad9A protein are well-documented, comparatively 

                  little is known about distinctive functions of the human Rad9B protein paralogue. 
 

                 The equivalent mouse homologue, mRad9b, has been demonstrated to function as an essential 

                  interactive protein component in embryonic development and in cell cycle checkpoint signalling 

                  response-mediated resistance to γ-irradiation- and Mitomycin C-induced types of DNA damage 

                  (Leloup C. et al, 2010). 
 

                  Both hRAD9A and hRADB genes exhibit distinctive expression profiles in different normal and 

                  cancerous tissue types  (Fig 1.7, p.13; Fig 1.8, p.14), in which the human Rad9B paralogue  may 

                  also serve as a specific biomarker for testicular seminomas (Hopkins K.M. et al, 2003). 
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Fig 1.9: Summarised Biochemical Roles of Rad9 in Carcinogenesis 

 
[Constructed via Collated Information From: Bartek J. et al, 1999; Bartkova J. et al, 2006; Gorgoulis V.G. et al,  

                                                                               2005; Janes S.R.C., 1999; Janes S.R.C, 2006; Matzke M.A. et al,  

                                                                               1999; Simons J.W.,1999; Sugimura T. and Ushijima T.,2000;  

                                                                               Timbrell J.A., 2008; Yamasaki H. et al, 1999] 

 

 
*Rad9 =  Dysfunctional Rad9 Interactions Which May Potentially be Implicated in Biochemical Activity  

                 Modulation of  Specific Genotoxic, Epigenetic & Proteomic Carcinogenic Initiation, Promotion,  

                 Progression & Evolution Events (Broustas C.G. and Lieberman H.B., 2012; Lieberman H.B.  

                 et al, 2011) 

 

  Specific Rad9-Modulated activities may also contribute to acquired tumour multiple drug resistance against  

  different types of anti-cancer chemotherapeutics - named classes of drugs are provided in italic notation 

  alongside their targeted biomolecular processes (Larsen I.K. and Kastrup J.S, 2002). 
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Pharmacological ligand and/or peptidomimetic manipulation of specific types of protein-protein 

hRad9-domain interactive associations, via specific targeting of particular functional-associated N-

Terminal terminal and C-Terminal Tail Domain recognition sites (discussed in detail in later 

sections of this chapter), may be feasible approaches for the future development of novel anti-

cancer chemotherapeutics with enhanced pharmacological efficacies and reduced toxic side-effects. 

 

Such treatments would potentially enable appropriate biochemical rectification of specific Rad9-

dysfunctional mechanisms (Fig 1.2, p.8) implicated in the various cytological states of 

tumourigenic propagation, progression and multiple drug resistance (Fig 1.9, p.16). 

 

A. priori, in order to avoid potentially severe, catastrophic toxicological side-effects, each member 

of this novel class of pharmaceuticals would have to possess a sufficiently high degree of 

specificity against its intended hRad9-protein interactive functional target.  

 
However, with the exception of enzymatic active-site targeted approaches (as in the case of kinase- 

and/or phosphatase-type regulatory post-translational modification of hRad9 functional protein 

activities – http://www.freepatentsonline.com./7384761.html), the design of such pharmacological 

ligands/peptidomimetics presents a difficult, challenging task as a consequence of several key 

factors (Yin H. and Hamilton A.D., 2005) – notably; 

                                                                 
(i) The majority of critical interactive residues within the endogenous specific protein-protein  

     interactive targets and/or respective protein ligands are relatively ambiguously-defined  

     and only provide indirect correlative data with respect to rational small-molecule drug  

     design. 
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(ii) Relatively large associative intrafacial supramolecular regions (~1600Ǻ/~170 atoms of 

      “buried” biomolecular interactive surface area) are implicated in the stable formation of  

       the protein-protein complexes, which impose a severe competitive capacity limitation 

       with regard to small-molecule drug specificity-targeted design. 

 

(iii) The supramolecular structural architecture of the interfacial protein-protein associative 

       regions display relatively flat/featureless topological surface characteristics, which impose 

       severe limitations on the selectivity of the designed small-molecule drug ligands. 

 

(iv) Ineffective design of simple peptide analogue-based ligand modulation of critical binding 

      domain motifs located within the individual protein components, implicated in the specificity 

      of the interactive complex formation, as a consequence of the non-contiguous nature of their 

      physio-biochemical properties.  

 

Nevertheless, advances in the development and implementation of various approaches for the 

design of effective and highly-specific small-molecule, peptide and peptidomimetic-based 

modulatory ligands of protein-protein interactions continue to progress (Cai Z. et al, 2008; Chu L-

H. and Chen B-S, 2008; Follis A.V. et al, 2012; Glanzer J.G. et al, 2011; Sillerud O. and Larson 

R.S., 2005) with subsequent successful practical applications. 

 

Significant progression into this field has been further augmented via the burgeoning new 

discipline of Chemical Biology, in conjunction with the experimental application of “Forward” and 

“Reverse” types of  “Chemical Genetics” approaches.   

 

One such key example, is the recent development of novel experimental anti-cancer 

pharmacological agents which specifically perturb p53-MDM2 type protein-protein interactions 

for selective induction of apoptosis in neoplastic cells (Dukina A.S. and Lindsley C.W., 2007). 
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Therefore, it is not entirely inconceivable that progressive research advancements into this field 

may be applied to the potential future design and development of a novel range of specific hRad9 

function-targeted anti-cancer chemotherapeutics (of the type discussed previously – p.17).   

 

An alternative feasible macromolecular-based approach, which may be adopted in the near future, 

would focus upon the design and development of novel anti-sense oligonucleotide strategies for 

suppression of aberrant hRAD9A/hRADB tumorigenic gene expression (Fig 1.3, p.9; Fig 1.7, p.13; 

Fig1.8, p.14; Table 1.2, p.15) and therapeutic anti-body conjugates targeted against oncogenic-

associated, elevated levels of expressed hRad9 protein variants (Broustas C.G. and Lieberman 

H.B., 2012; Ishikawa K. et al, 2008; Lieberman H.B., 2008; Lieberman H.B. and Zhu A., 2010; 

Lieberman H.B. et al, 2011) and/or Rad9-Rad1-Hus1 DNA clamp isoforms Fig 1.5, p.11). 

 

In summarised conclusion, the Rad9 protein is a potentially valid and versatile pharmacological 

target for the future design and development of at least seven potential different classes of novel 

anti-cancer chemotherapeutics – with respect to their specific biochemical modulatory modes of 

action, which may comprise; 

 

(i) Selective DNA damage checkpoint response hRad9/”9-1-1” complex-targeted apoptotic  

     induction in neoplastic cells. 

     

(ii) Perturbance of  hRad9/ “9-1-1”-complex-mediated enhanced error-prone types of DNA repair 

      mechanisms for selective suppression of perpetuated genomic errors implicated in the 

      cytological initiation, promotion and progression phases of carcinogenesis. 

 

 (iii) Suppression/reversal of  elevated DNA repair pathways implicated in the mechanisms of  

        tumour cell acquired multiple drug resistance to various DNA–damaging types of anti-prolific 

        conventional chemotherapeutics in current clinical use. 
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(iv) Suppression of aberrant, dysfunctional hRad9/“9-1-1”-complex-modulatory hormonal nuclear 

       receptor-DNA interactions, which may be implicated in cytological neoplastic growth 

       hormone-mediated progression events, for suppression of tumour cell metastatic 

       proliferation and/or acquired multiple drug resistance to steroid-based modulatory types 

       of anti-cancer chemotherapeutics in current clinical use. 

 

(v) Perturbance of adverse hRad9/”9-1-1”-complex-induced recombinant V, J, D gene type 

      immunoglobulin “class-switching” conversions for  suppression of tumour cell-specific 

      immune signalling responses, resistance to anti-body conjugate- and/or viral construct- 

      based therapeutics.  

 

(vi) Suppression of adverse oncogenic protein mis-folding events via specific modulation of 

       hRad9-TPR2 associative protein activities. 

 

(vii) Therapeutic modulation of  specific levels of free- and Rad1/Hus1-ring complexed- hRad9  

         isoforms, which may be implicated in tumourigenic progression, via appropriate  

         pharmacological targeting of hRad9-Jab1-interactive COP9 signalosome-coupled 

         proteosomal pathways and/or anti-sense hRAD9A/B gene expression manipulation.   

 

Specific pharmacological manipulation of the aforementioned hRad9 protein functions may also be 

utilised in combination with the current “conventional arsenal” of anti-cancer drugs in use, 

including the progressive development and clinical implementation of “3rd generation 

therapeutics”, for enhanced efficacy via suppression of potential novel hRad9-mediated 

biochemical mechanisms of acquired tumour multiple cross-resistance to a wide range of different 

agents  (Table 1.3, p.21). 
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Table 1.3: Potential Rad9-Mediated Tumour Resistance to Novel Therapeutics 
 

                      
              
Summarised examples of “3rd generation” cancer chemotherapeutics in current development and their 

efficacious biochemical mode(s) of action which may be countered via potential Rad9-mediated mechanisms of 

tumour multiple drug resistance.  
 

[Compiled via Collated Information From: An L. et al, 2010; Canfield C. et al, 2009; Carmeliet P. and Jain R.K., 2000; 

Chang D-Y et al, 2011; Cortajarena A.L. et al, 2008; Davids L.M. and Kleemann B., 2011; De Haro L.P. et al, 2010; Denny 

W.A., 2004; Fan Y. et al, 2003; Francia S., et al, 2006; Francia S. et al, 2007; Garrett M.D. and Workman P., 1999; 

Govinden S.V. and Goldenberg D.M., 2010; Hu J.C. et al, 2006;  Huang J. et al, 2007; Ishikawa K. et al, 2006; Kristeliet R. et 

al, 2004; Lieberman H.B., 2006; Lieberman H.B., 2008; Lieberman H.B. et al, 2011; Liu J. et al, 2008; McDonald E. et al, 

2006; McLaughlin F. and La Thangue N.B., 2004; Maloney A. and Workman P., 2002; O’Shea C.C., 2005; Pommier Y. and 

Kohn K.W., 2003; Ronald S. et al, 2011; Ruoslahti E. and Rajotte D., 2000; Saberi A. et al, 2008; Schellmann N. et al, 2010; 

Sunavala-Dossabhoy G. and De Benedettia A., 2009;  Wang L. et al, 2004; Workman P., 2002; Workman P., 2003a; 

Workman P., 2003b; Workman P., 2004; Workman P., 2005; Workman P., 2010; Xiang S-L et al, 2001; Yang D-Y. et al, 

2007; Yap T.A. et al, 2010; Yin Y. et al, 2004; Zawacka-Pankau J. et al, 2008; Zheng Q.Z. et al, 2010] 
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A significant proportion of the “conventional arsenal” of anti-cancer drugs which are utilised in 

current clinical practice may be regarded as strictly anti-proliferative chemotherapeutics which 

elicit their cytotoxic pharmacological efficacy via DNA damage induction and/or perturbance of  

DNA replicative processes (Larsen I.K. and Kastrup J.S., 2002; Pecorino L.,2008) – Fig 1.9, p.16. 

 

Consequently, such drugs are only capable of targeting actively cycling cells and are relatively 

ineffective against dormant neoplastic cells in the latent/quiescence Go phase of the cell cycle. 

 

Thus, there is serious post-treatment potential for the re-emergence and proliferation of surviving 

dormant tumour cells if they later undergo cytological transition from Go to active phases of the 

cell cycle (Pecorino L., 2008; Weinberg R.A., 2006). 

 

This necessitates regular monitoring of the patient after an apparently successful chemotherapeutic 

regimen, typically over a 5 year “remission” period, for early detection and appropriate clinical 

management in the case of a possible relapse of their respective neoplastic pathophysiological 

condition (Larsen I.K. and Kastrup J.S., 2002; Pecorino L., 2008; Weinberg R.A., 2006). 

 

Recent experimental studies have indicated that Rad9 may be implicated in mechanisms of 

alternate sensory DNA damage-mediated suppression of cell cycle checkpoint adaptations to cyclic 

re-switching between DNA re-section and DNA double-strand break-like structural formation 

events, which act “in concert” to  maintain a senescent/”dormant” cytological status (Deshpande 

A.M. et al, 2011). 

 

Future potential research and development of novel “anti-Rad9 senescence-abrogative” type 

pharmacological agents could be employed for the targeted biochemical enforcement of dormant 

tumour cells back into active phases of the cell cycle to ensure their eradication, via 

polychemotherapeutic regimens, thereby circumventing the clinical problem of remission. 
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1.2 Associative “9-1-1” Complex-Dependent Rad9 Functions 

1.2.1 Sensory Sliding-Clamp Physico-Biochemical Dynamics 
 
A wide variety of different types of biophysical- and/or biochemical- mediated structural 

distortions of DNA topology, may stall DNA polymerases and induce helicase-dissociation at the 

duplex replication fork, with consequential formation of large tracts of single-stranded DNA 

(ssDNA) at the damaged sites, which then become coated with Replication Protein A  (RPA) – Fig 

1.11A, p.25 (Byun T.S. et al, 2005; Delacroix S. et al, 2007; Namiki Y. and Zou L., 2006; Walter J. 

and Newport J., 2000; Xu X. et al, 2008). 

 

The resultant ssDNA.RPA tract complexes function as protein-interactive recognition substrates 

for the independent recruitment of the PCNA-like toroidal, heterotrimeric Rad9-Rad1-Hus1 DNA 

sliding-clamp complex (referred to commonly as the “9-1-1” complex – Fig 1.10, p.24), along with 

the primary/proximal transducer DNA damage response cell signalling kinases ATM and ATR 

(Fig 1.11D, p.25) in complex-association with its binding partner ATRIP (Fig 1.11C, p.25), to the 

respective chromatin-localised DNA damage sites  (Alderton G.K. et al, 2004; Byun T.S. et al, 

2005; Cortez D. et al, 2001; Delacroix S. et al, 2007; Kondo T. et al, 2001; Namiki Y. and  Zou L., 

2006; Unsul-Kacmaz K. and Sancar A., 2004; Walter J. and Newport J., 2000; Zou L. and Elledge 

S.J., 2003). 

 

Initial loading of the Rad9-Rad1-Hus1 complex (Fig 1.10, p.24) onto the resultant DNA 

polymerase α-RPA-ssDNA tract complexes at the stalled replication forks is accomplished via co-

associative recruitment of the Replication Factor C (RFC)-like “9-1-1” clamp-loader complex, 

termed “RSR” (Fig 1.12B, P.28) – which is comprised of the major Rad17 sub-unit (Fig 1.11E, 

p.25) in association with the smaller sub-units; Rfc2, Rfc3, Rfc4 and Rfc5 respectively (Byun T.S. 

et al, 2005; Griffith J.D. et al, 2002; Kanoh Y. et al, 2006; Kondo T. et al, 2001; Lee J. et al, 2003; 

Wu X. et al, 2005; You Z. et al, 2002; Zou L. et al, 2003), discussed on pp.25-26 with Fig 1.12, 

p.28.                                                 [23]  



Fig 1.10: Key Structural Features of the Rad9-Rad1-Hus1 Complex 

 

          
 

A: Absolute Anti-Clockwise N→C Stereochemical Configuration of the Rad9-Rad1-Hus1 Toroidal  PCNA-like 

      Heterotrimeric DNA Sliding-Clamp Complex (Bermudez V.P et al, 2003; Bylund G.O. et al, 2006; Doré A.S. 

      et al, 2009; Griffith J.D. et al, 2002; Venclovas C. and Thelen M.P., 2000; Xu M. et al, 2009). 
 

      Unlike the Rad1 and Hus1 Sub-Units, Rad9 also possess a highly mobile, unstructured C-Terminal Tail 

      Domain which protrudes outside of the “9-1-1” ring and engages with variety of DNA Damage Checkpoint  

      and Repair Proteins (Lieberman H.B. et al, 2011; Singh K.K. et al, 2007). 
 

B: X-Ray Crystallographic Resolution of the Protein Structure of the Rad9-Rad1-Hus1 Toroidal Complex  

     (Doré A.S. et al, 2009) , this image was generated from the appropriate PDB file via utilisation of the 

      Polyview 3D software tool (PDB ID: 3G65) – the approximate location of the Rad9 C-Terminal Tail  

      Domain is depicted (which is non-crystallisable as a consequence of its relatively high, unstructured 

      Mobility/Intrinsic Disordered Propensity and is thus evasive to X-Ray crystallographic resolution). 

      http://www.genome.jp/dbget-bin/www_bget?.pdb.3G65 

      http://polyview.cchmc.org/polyview3d.html 
 

C: Key Amino Residues, within the Rad9, Rad1 and Hus1 Sub-Units, which are implicated in various 

      “9-1-1” Complex N→C  Interface Associations and other Protein/DNA-Interactions (Doré A.S. et al, 

      2009; Gilljam K.M. et al, 2009;  Sohn S.Y. and Cho Y., 2009; Warbrick E., 1998; Xu M. et al, 2009) 

                                               XXXXX = Rad9 Interface-Associative Amino Acid Residues 

                                               XXXXX = Rad1 Interface-Associative Amino Acid Residues 

                                               XXXXX = Hus1 Interface-Associative Amino Acid Residues 

                                               XXXXX = PIP Box-Binding Pocket Amino Acid Residues (Absent in Rad1) – p.96 

                                               XXXXX = Hus1 Single DNA Nucleobase-Binding Pocket Amino Acid Residues 
 

D: Summarised Comparison of the Key Structural Features of the Rad9:Hus1, Hus1:Rad1 and Rad9:Rad1 

     Associative Interfaces within the “9-1-1” DNA Sliding-Clamp Complex (Doré A.S. et al, 2009; Sohn S.Y. 

     and Cho Y., 2009; Xu M. et al, 2009).    
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     Fig 1.11: Interactive Domains of “9-1-1” Clamp-Loading Proteins 
 

                   
 

A: Human Replication Protein A (RPA) is an ssDNA-binding, heterotrimeric toroidal complex comprised of three subunits; 

      RPA70, RPA32 and RPA14 (named according to their respective molecular weights – 70 kDa, 32 kDa and 14 kDa). 

      The DNA-Binding-Domains (DBDs) are indicated, along with key amino acid residues implicated in ssDNA associations 

      and the N-terminal recognition motif in the RPA70 sub-unit which binds to specific motifs within the Human Rad9A  

      protein (Fig B) and ATR-Interacting Protein (ATRIP – Fig C) (Binz S.K. and Wold M.S., 2008; Liu Y. et al, 2005;  

      Oakley G.G. and Patrick S.M., 2010; Shell S.M. et al, 2005; Xu X. et al, 2008 [Uniprot: P27694, P15927 and P35244] 
 

B: Key Structural Domains and Functional Motifs within the human Rad9A protein, of particular note; the C-terminal tail 

      domain motif which binds to the N-terminal RPA70 sub-unit recognition site, the “HFD” motif implicated in enhanced 

      activation of the human ATR kinase (Fig D) and methylation of three key Arginine residues (R172, R174 and R175) by  

      the PRMT5 methylase enzyme which is implicated in human Rad9-mediated activation of the human Chk1 cell cycle 

      checkpoint kinase. [Uniprot: Q99638] (He W. et al, 2011; Navadgi-Patil V.M. and Burgers P.M., 2009; Xu X. et al, 2008). 
 

C: Key Structural Domains and Functional Motifs within the human ATR-Interacting Protein (ATRIP) partner of the  

       human ATR cell cycle checkpoint kinase (Fig D), of particular note; the three RID domains (RPA-Interacting Domains),  

       the N-Terminal Checkpoint Recruitment Domain (CRD), the ATR-binding domain, the TopBp1 checkpoint mediator 

       protein-binding domain  and the CDK2-Interacting Protein Domain (CINP) (Lovejoy C.A. et al, 2009; Mordes D.A. and  

       Cortez D, 2008; Nakaya R. et al, 2010; Namiki Y. and Zou L., 2006; Xu X. et al, 2008).  [Uniprot: QW8XE1] 
 

D: Key Structural Domains and Functional Motifs within the human ATR cell cycle checkpoint kinase protein, of  

       particular note; the N-terminal ATRIP-binding domain, the two “HEAT” domain motifs (Huntingdon, Elongation 

       Factor 3, PP2A Substrate and TOR1), the “FAT/FAT-C” motif domains (FRAPP, ATM, TRAPP) and the “PRD” 

       (PIKK, PI3K/PI4K Regulatory Domain) which possesses kinase catalytic activity (Mordes D.A. and Cortez D., 2008). 

       [Uniprot: Q13535] 
 

E: Key Structural Domains and Functional Motifs within the human Rad17 Protein, of particular note; the ATP Nucleotide 

      Binding Site, the C-Terminal proximal/primary cell checkpoint ATR/ATM kinase interactive C-Terminal Domain and  

      key phosphorylated amino acids residues which modulate the functional activity of the protein (Bao S. et al, 2001; 

      Medhurst  A.L. et al, 2008; Post S. et al, 2001; Xu M. et al, 2009). [Uniprot O75943] 
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The biochemical mechanism of deployment of the Rad9-Rad1-Hus1 complex onto large tracts of  

RPA-coated ssDNA  (Fig 1.10, p.24) is thermodynamically-driven via a hydrolytic ATP-coupled 

protein-interactive process, analogous to that implicated in loading of the homotrimeric PCNA 

clamp onto replicative sites of the duplex (Bermudez V.P. et al, 2003; Bloom L.B., 2009; Ellison 

V. and Stillman B., 2003; Xu M. et al, 2009) – which may be defined in terms of  6 key co-

operative, sequential steps (Fig 1.12, p.28), notably; 

 

(i) Initial associative formation of the ternary [RSR clamp-Loader-“9-1-1”-clamp-RPA.ssDNA] 

     complex is elicited via ATP-binding to a specific nucleotide acceptor “pocket” within the 

     Rad17 sub-unit (Fig 1.11E, p.25) of the RSR clamp-loading complex. 

 

(ii) The resultant ATP-bound Rad17 sub-unit triggers supra-molecular conformational changes in 

       the modified [RSR clamp-Loader-“9-1-1”-clamp-RPA.ssDNA] ternary complex which induce 

       conversion of the “Rad9-Rad1-Hus1” complex from the “closed” conformer state to the partial 

       “open-ring” conformer state via thermodynamic promotion of non-covalent bond dissociation 

        events at the Rad9-Rad1 interface (Fig 1.10, p.24). 

        [This localised specificity of “9-1-1” ring-opening is attributed to the  physico-biochemical 

        properties of the Rad9-Rad1 interface which is extensively flat with the lowest surface area 

        span, has fewer associative interactions and  is the least energetically stable – Fig 1.10D, p.24 

        (Doré A.S. et al, 2009; Xu M. et al, 2009] 

 

(iii) Transient passage of the duplex through the dissociated Rad9-Rad1 “interfacial slot” enables 

       the Rad9-Rad1-Hus1 complex to encircle and associate with the DNA. 
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(iv) Simultaneous phosphorylation of the ATP-bound Rad17 sub-unit at Ser635 and Ser645 (Fig  

       1.11E, p.25) by the primary ATR checkpoint transducer kinase (in the form of a proximal 

       ATR-ATRIP-RPA.ssDNA type independently-loaded complex) induces supra-molecular  

       conformational changes within the ternary [RSR clamp-Loader-“9-1-1”-clamp-RPA.ssDNA]  

       which enhance the thermodynamic stability of the established open-ring conformer state-type  

       Rad9-Rad1-Hus complex-DNA associative interactions, prior to ring-closure of the “9-1-1” 

       clamp around the duplex (Bao S. et al, 2001; Bloom L.B, 2009; Medhurst A.L. et al 2008; 

       Post S. et al, 2001; Xu M. et al, 2009).        

       [The Rad9 sub-unit of the “9-1-1” clamp also contains a potential “HFD” ATR-activation  

       motif, located within its PCNAII-like domain – Fig 1.11B, p.25 (Navadgi-Patil V.M. and 

       Burgers P.M., 2009; Navadgi-Patil V.M. and Burgers P.M., 2011), which may facilitate ATR 

       phosphorylation of the Rad17 sub-unit component of the RSR clamp-loader complex] 

 

(v) Stabilised duplex-association of the Rad9-Rad1-Hus1 open-ring conformer state induces 

      supra-molecular conformational modifications within the ternary [RSR clamp-Loader- 

      “9-1-1”-clamp-RPA.ssDNA] complex which trigger hydrolysis of the ATP molecule 

      bound within the nucleotide-specific acceptor pocket of the Rad17 sub-unit (Fig 1.11E, p.25) 

      of the RSR clamp-loader complex (Kanoh Y. et al, 2006; Xu M. et al, 2009). 

 

(vi) Hydrolytic conversion of the Rad17-bound ATP molecule to Rad17-bound ADP, within the 

       RSR component,  induces supra-molecular conformational alterations within the ternary 

       [RSR clamp-Loader-“9-1-1”-clamp-RPA.ssDNA] complex which thermodynamically 

       promote Rad9-Rad1 interfacial re-association (thereby affecting “9-1-1” ring-closure around 

      the duplex)  and dissociation of the Rad17:Rfc2-5 clamp-loader complex from the ssDNA.RPA 

      substrate. (Bloom L.B, 2009; Kanoh Y. et al, 2006; Xu M. et al, 2009).  
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     Fig 1.12: Mechanism of “9-1-1” Clamp-Loading Onto DNA  
 

                     
 

A: Absolute Anti-Clockwise N→C Termini-Interfacial Stereochemical Configuration of the Toroidal,  

      Heterotrimeric Rad9-Rad1-Hus1 PCNA-Like DNA Sliding-Clamp Complex (Burtelow M.A. et al,  

      2001; Doré A.S. et al, 2009; Xu M. et al, 2009)  
 

B: Co-Operative Binding-Site Locations of the Individual RSR “9-1-1” Clamp-Loader Complex Sub-Units; 

      Rad17, Rfc2, Rfc3, Rfc4 and Rfc5, within the Rad9-Rad1-Hus1 Complex (Doré A.S. et al, 2009)  
 

C: Summarised Co-ordinated Biochemical Mechanism of RSR Complex-Mediated Loading of the “9-1-1” 

      Clamp onto DNA (Bloom L.B., 2009;  Shiomi Y. et al, 2002; Xu M. et al, 2009) –  Discussed in Detail 

      on pp.26-27.  
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Initial polarity-specific loading of the Rad9-Rad1-Hus1 PCNA-like sliding-clamp complex onto 

the DNA may proceed via either 5’- or 3’- orientated junctions proximal to the lesion site(s), 

determined via the supra-molecular, topological architecture of the localised area of damaged 

chromatin (Majka J. et al, 2006) – described summarily in Fig 1.13, p.30. 

 

The motion of the  Rad9-Rad1-Hus1 complex along the DNA may proceed via alternative “nut and 

bolt” or “washer and bolt”  type mechanisms (Fig 1.14, p.31), which are determined, selectively 

via the  physico-biochemical structural characteristics of the respective DNA lesion site(s), that in 

turn may modulate nucleosomal-based chromatin supra-molecular architecture re-modelling events 

(Beck S. and Olek A., 2003; Morales V. et al, 2001; Strahl B.D. and Allis D., 2000; Turner B.M., 

2002), which may later impinge sterically upon the traversal duplex progression of the loaded “9-

1-1” sliding-clamp (Adelman J.L. et al, 2010; Blanco F.J. and Montoya G., 2011; Bloom L.B., 

2009; Bowman G.D. et al, 2005; Georgescu R.E. et al, 2008; Ivanov I. et al, 2006; Kazmirski S.L., 

et al, 2005; Laurence T.A. et al, 2008; Yao N.Y.  et al, 2000; Yao N.Y. and O’Donnell M., 2008).   

 

Translocation of the loaded Rad9-Rad1-Hus1 complex, to proximal DNA lesion sites within 

localised regions of chromatin, may proceed via 1D or 3D mechanistic pathways (Fig 1.15, p.32), 

which may be determined, selectively by the specific types of encountered DNA damage which 

may exert influential effects upon chromatin supra-molecular architecture and/or topological re-

modelling alterations (Bloom L.B., 2009; Gowers D.M. and Halford S.E., 2003; Gowers D.M. et 

al, 2005; Halford S.E., 2009; Halford S.E. and Marko J.F., 2004; Laurence T.A. et al, 2008; Yao 

N.Y. et al, 2000).                                      
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 Fig 1.13:  DNA Polarity-Specific Models of “9-1-1” Clamp-Loading 

 
  [Taken and Adapted From: Majka J. et al, 2006] 

 

 
 

The Rad9-Rad1-Hus1 toroidal heterotrimeric complex is postulated to function as a DNA damage 

scanner, which may slide back and forth along DNA-associated chromatin supramolecular structural 

complexes, thereby acting as a continual “pro-active monitoring system” of genomic integrity 

(Burtelow M.A. et al, 2000; Roos-Mattjus P. et al, 2002). 
 

The functional polarity, with respect to 5’- or 3’- junction-specific orientated “9-1-1” complex- 

loading,  may be dictated by a variety of interactive, chromatin supramolecular architecture-related 

physico-biochemical parameters – including; clamp-loading site localisation, DNA lesion type and/or 

proximal/distal associative influences of DNA damage responsive proteins implicated in cell cycle 

checkpoint signalling and DNA repair (Majka J. et al, 2006). 
 

A: In the case of naked DNA, initial functionalized “9-1-1” complex-loading may be accomplished via 

      equivalent selective prevalence at either  5’- or 3’- junction termini prior to clamp-sliding to a 

      neighbouring junction site (Majka J. et al, 2006).  
 

B: RPA-coated DNA restricts initial functionalized “9-1-1” complex-loading onto 5’-junction termini, 

      in which 3’-junction terminal “9-1-1” complex-functionality may be elicited via 5’→ 3’ type 

      clamp-sliding to a neighbouring junction site (Majka J. et al, 2006). 
 

Different types of “9-1-1” clamp polarity-loading orientation may serve as a selective biochemical 

mechanism for the initiation of particular sensory-signals towards different types of DNA damage 

which are “translated” into Rad9 C-terminal tail domain-mediated functional interactions with 

specific target proteins implicated in the appropriate cell cycle checkpoint and/or DNA repair 

responses respectively (Majka J. et al, 2006).   
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 Fig 1.14: Mechanistic Models of “9-1-1” DNA Sliding-Clamp Motion  
 

  [Compiled via Collated Information From: Adelman J.L. et al, 2010; Blanco F.J. and Montoya G., 2011; 

                                                                             Bowman G.D. et al, 2005; Georgescu R.E. et al, 2008; 

                                                                             Ivanov I. et al, 2006; Kazmirski S.L. et al, 2005; 

                                                                             Laurence T.A. et al, 2008; Yao N. et al, 2000;  

                                                                             Yao N.Y. and O’Donnell M., 2008] 

 

                
 

The relative sliding velocity of the Rad9-Rad1-Hus1 heterotrimeric complex along the DNA, which may be 

critical to the detection of different types of DNA damage, is “biochemically governed” via the differential 

counter-strengths of repulsive (DNA-dissociative) and attractive (DNA-associative) interactions between the 

DNA molecule, amino acid residues and/or functional motifs within the three sub-units of the “9-1-1” toroidal 

clamp. 
 

DNA-dissociative interactions serve to reduce the frictional forces between the “9-1-1” clamp and DNA, thereby 

increasing the relative “sliding-velocity” of the complex along the DNA molecule.  
 

These DNA-dissociative interactions comprise electrostatic repulsion between negatively-charged acidic amino 

acid residues and the DNA phosphodiester groups, in conjunction with exclusion of hydrophobic amino acid 

residues from the extended “hydration spine” that is derived from the proximal chain of water molecule shells 

which surround the phosphodiester groups  of the DNA. 
 

DNA-attractive interactions serve as braking forces between the “9-1-1” clamp and the DNA, thereby 

decreasing the relative “sliding-velocity” of the complex along the DNA molecule. 
 

These DNA-attractive interactions comprise electrostatic attraction between positively-charged basic amino 

acid residues and the DNA phosphodiester groups, in conjunction with hydrogen-bonding  between hydrophilic 

amino acid residues and the extended DNA “hydration spine” and possibly Π-electron stacking/intercalative 

interactions between aromatic amino acid residues and DNA nucleobases. 
 

The Hus1 sub-unit of the “9-1-1” clamp also contains a hydrophobic pocket which can bind a single DNA 

nucleobase and may function as a component detector of modified base type DNA lesions. 
 

In the “Nut and Bolt” model,  the “9-1-1” complex slides progressively along the DNA in a rotating type motion 

which follows the “helical contour” of the duplex, via the central elliptical hole of the complex which facilitates 

passage of the DNA in a tilted orientation “in-plane” with the nucleobases.                
 

In the “Washer and Bolt” model, the “9-1-1” clamp slides progressively along the DNA in a “straddling/out-of-

plane” motion, which does not adhere to the conventional “helical contour” of the duplex and may be 

implicated in the detection and by-pass of bulky DNA lesions in special cases, such as PCNA- and “9-1-1”- 

clamp-mediated template-switching in Translesion Synthesis (TLS) mechanisms of DNA damage-site avoidance 

and repair (discussed later in detail –  Section 1.2.5, pp.112-116; Fig 1.51, p.112).  

 

                                                   [31] 

 



Fig 1.15: 1D & 3D “9-1-1–DNA” Lesion Site Translocation Pathways   
 

[Compiled via Collated Information From: Bloom L.B., 2009; Gowers D.M. and Halford S.E., 2003;  

                                                                          Gowers D.M. et al, 2005; Halford S.E., 2009;  

                                                                          Halford S.E. and Marko J.F.,2004; Laurence T.A. et al, 2008; 

                                                                          Yao N.Y. et al, 2000] 

 

                              
  
Sliding clamps, including the Rad9-Rad1-Hus1 toroidal, heterotrimeric complex, typically move along the DNA 

in a continuous manner, via a direct one-dimensional diffusion type process, between adjacent, non-specific 

localities to the lesion in the absence of any transient dissociation of the respective protein complex from the 

DNA molecule. 
 

The “9-1-1” sliding clamp may also adopt a one-dimensional “skip-to-lesion” motional pathway mechanism, in 

which the complex may be simultaneously moved through three-dimensional space along the one-dimensional 

duplex contour to the lesion site within the same DNA molecule, mediated via transient DNA dissociation/re-

association events co-ordinated via “inter-communicative” physico-biochemical events between adjacent 

Rad17:RFC2-5 clamp-loading complexes and the chromatin supramolecular architecture. 
 

Alternatively, the “9-1-1” sliding clamp may also adopt a three-dimensional “inter-segmental conveyance” 

motional pathway mechanism, mediated via transient DNA dissociation/re-association events co-ordinated via 

“inter-communicative” physico-biochemical events between adjacent Rad17:RFC2-5 clamp-loading complexes 

and local/global changes within the chromatin supramolecular architecture as a consequence of “bent-DNA” 

configurations induced by certain types of “bulky” types of DNA lesions (eg  inter- and intra- strand cross-

linkages). 

                                                  [32] 

 



1.2.2 DNA Damage Checkpoint Signal Activation and Modulation 

 
As discussed previously, DNA damage and genotoxic events play key significant roles in a variety 

of mechanisms associated with the cytological initiation, promotion and progression phases of 

carcinogenesis (Fig 1.9, p.16). 

 

The high fidelity of DNA replication, with regard to precision co-ordinated chromosomal 

segregation and accurate transmission of genetic information to daughter cells during mitotic or 

meiotic processes, is critical to the propagation of normal cytological status and functions. 

 

The vital requirement for accurate maintenance of genomic integrity and stability during mitotic 

and meiotic processes, under the constant evolutionary pressure of daily exposure to a wide variety 

of endogenous and exogenous inductive sources of DNA damage (discussed later in Section 1.2.5, 

pp.86-118), has culminated in the cytological establishment of a highly conserved, well-developed 

intercommunicative network of protein-protein associative signal transduction cascades which 

function collectively in cell cycle regulatory DNA damage response checkpoint pathways (Boye E. 

et al, 2009; Dasika G.K. et al, 1999; Houtgraaf J.H. et al, 2006; Kaufmann W.K. 1995; Latif C. et 

al, 2001; Mercer W.E., 1998; Sancar A. et al, 2004; Smith J. et al, 2010). 

 

The overall “cytological reaction” to DNA damage essentially comprises three main types of 

response, notably; the transient phase-specific cessation of cell cycle progression, the initiation of 

appropriate DNA repair mechanisms and/or induction of apoptotic pathways (Boye E. et al, 2009; 

Chiarugi V. et al, 1994; Houtgraaf J.H. et al, 2006; Humpal S.E., 2009; Kaufmann W.K., 1995; 

Sancar A. et al, 2004; Smith J. et al, 2010). 

 

 

 

                                                   [33] 



Selection of the most appropriate response is dictated via specific protein-protein interactive 

signalling events within the checkpoint pathways whose elicitation is governed by several key 

factors, notably; cytological phenotype/morphology, biochemical type, nature/origin, 

severity/relative abundance and/or combinations of DNA lesion(s) concerned and respective 

point(s) within the cell cycle at which DNA damage has occurred .   

 

Large tracts of ssDNA, generated as a consequence of stalled DNA polymerases during DNA 

replication at sites of DNA damage-induced lesions and resultant helicase dissociation at the 

advanced duplex replication fork, are coated with Replication Protein A (RPA) – which serves as a 

recognition trigger signal for the independent recruitment-activation of the “Rad9-Rad1-Hus1”, 

ATM and ATR/ATRIP complexes respectively (Byun T.S. et al, 2005; Delacroix S. et al, 2007; 

Richard D.J. et al, 2009; Walter J. and Newport J., 2000; Shin M.H. et al, 2012; Zou Y. et al, 

2006). 

 

 
The primary (proximal) transducer component proteins ATM (Ataxia Telangiectasia Mutated) and 

ATR (ATM and Rad3 Related) are members of the Phosphotidylinositol-3-OH Kinase-Related-

Kinase (PIKK/PI3K) family, activated in early checkpoint responses upon binding to the end sites 

of DNA damage (Abraham R.T., 2001; Brown K.D. et al, 2003; Matsuoka S. et al, 1998; Savitsky 

K. et al, 1995; Smith G.C. et al, 1999; Smith J. et al, 2010). 

 

                                                  
These “proximal” transducer kinases specifically recognise and phosphorylate specific Ser and Thr 

residues within the “SQ/TP” phosphorylation-target motifs, displayed on their respective protein 

substrates, comprised of the characteristic consensus sequence; Ser-Thr-Gln-Glu (Kim S.T. et al, 

1999). 
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ATM is a 350 kDa oligomeric protein which incorporates a myriad of  “HEAT” (Huntingdon, 

Elongation Factor 3, PP2A substrate and TOR1) type sequence motifs (Bakkenist C.J. and Kastan 

M.B., 2003; Perry J. and Kleckner N., 2003) and possesses significant homology to 

phosphoinositide 3-kinases, but with the notable exception of an absence of lipid kinase activity 

respectively (Savitsky K. et al, 1995; Shiloh Y., 1997). 

 

Under normal cytological conditions, the specific kinase activity of ATM is maintained at a 

regulatory suppressed minimal level in which the protein exists predominently in its inactive 

heterodimeric complex state (Niida H. and Nakanishi M, 2006). 

 

 

Conversion of the inactive homodimeric form of ATM, that exists predominantly within the 

normal, unstressed cytological environment, to the active monomeric species is triggered via 

protein-DNA interactions as a consequence of detected alterations in higher level chromatin 

supramolecular architecture which are induced via ionising radiation-induced duplex double-

stranded breaks in conjunction with the formation of linear DNA substrates (Bakennist C.J. and 

Kastan M.B., 2003; Finn K. et al, 2012; Ira G. and Hastings P.J., 2012; Niida H. and Nakanishi M., 

2006; Quevedo O. et al, 2012; Shin M.H. et al, 2012). 

 

 

These associative ATM-DNA interactions induce supramolecular conformational rearrangements 

within the ATM homodimeric complex that thermodynamically-facilitate intermolecular 

autophosphorylation of a critical Ser1981 target residue within the kinase domain of each ATM 

monomer (Bakennist C.J. and Kastan M.B., 2003; Finn K. et al, 2012; Ira G. and Hastings P.J., 

2012; Niida H. and Nakanishi M., 2006p; Shin M.H. et al, 2012). 

 

 

 

 

 

                                                 [35] 



Autophosphorylation of the ATM subunits at Ser 1981, within the  ATM homodimer,  functions as 

a sensitive/rapid “switch mechanism” for the induction of further supramolecular conformational 

changes within the homodimeric complex that promote dissociative formation of the active ATM 

monomeric species respectively and also expose the kinase active site of the protein to enable it to  

phosphorylate its “down-stream” transducer and effector targets (Bakennist C.J. and Kastan M.B., 

2003; Finn K. et al, 2012; Ira G. and Hastings P.J., 2012; Niida H. and Nakanishi M., 2006; Shin 

M.H. et al, 2012) – Figs 1.21-1.27, pp.57-63. 

 

The precise mechanism of activation of ATM, in response to ionising radiation type DNA damage-

induced alterations of higher level chromatin supramolecular structure, remains to be elucidated. 

 

 

Recent experimental studies have demonstrated that the implicated changes in chromatin 

conformational architecture may be detected by ATM at a considerable distance away from the 

originating double-stranded DNA break-site (DSB), in support of previous observations that have 

inferred that the initial early phase activation of ATM does not appear to involve association of 

ATM in close proximity and/or directly with the DSB site respectively (Niida H. and Nakanishi M., 

2006; Finn K. et al, 2012; Ira G. and Hastings P.J., 2012; Quevedo O. et al, 2012). 

 

Associative MRE11 protein interactions have also been demonstrated, in vitro., to enhance the 

catalytic kinase activity of post-activated ATM monomer and promote the cumulative recruitment 

of activated ATM to DSB-type DNA lesion sites within damaged chromatin (Finn K. et al, 2012; 

Ira G. and Hastings P.J., 2012; Lee J.H. and Paull T.T., 2004; Longhese M.P. et al, 2009; Niida H. 

and Nakanishi M., 2006). 

 

 

 

 

 

                                                  [36] 



The MRE11 protein is also a key component of the MRN complex, which is comprised of 

MRE11-RAD50-NBS1 associated proteins and participates in DSB type damage-site 

recognition/targeting events implicated in Homologous Recombination (HR) and Non-

Homologous End-Joining (NHEJ) DNA repair pathways respectively (Carney J.P. et al, 1998; 

Christmann M. et al, 2003; Finn K. et al, 2012; Ira G. and Hastings P.J., 2012) – discussed later in 

Section 1.2.5, p.109; Fig 1.48, p.109. 

 

The primary (proximal) transducer ATM kinase also phosphorylates Ser residues, at positions 278 

and 343, located within the NBS1 protein (Lim D.S. et al, 2000) – Figs 1.21-1.24, pp.57-60.  

 

These ATM-mediated post-translational phosphorylation events induce supramolecular 

conformational changes within NBS1 which serve as a critically favourable thermodynamic pre-

requisite for promotive associative participation of the protein in the formation of MRN complex 

foci at DSB-type DNA lesion sites within damaged chromatin (Zhao S. et al, 2000). 

 

ATM-mediated phosphorylation of BRCA1 is also a critical pre-requisite for the initiated 

formation of the BRCA1 Associated Surveillance Complex (BASC), which is comprised of a 

multi-functional interactions between various associative protein constituents that encompass; 

ATM, BLM, BRCA1, MLH1, MSH2 and MSH6 and the MRN complex respectively (Cortez D. et 

al, 1999; Finn K. et al, 2012; Foray N. et al, 2003; Ira G. and Hastings P.J., 2012; Niida H. and 

Nakanishi M., 2006; Wang Y. et al, 2000). 

 

The BASC protein components MLH1 and MSH2 are also implicated in the direct activation of 

ATM in response to ionising radiation (I.R.)-induced DNA damage via two distinctive types of 

intrinsically-co-ordinated biochemical signalling events which are comprised of associative 

protein-protein binding interactions between ATM-MLH1 and MSH2-CHK2 (Brown K.D. et al, 

2003) 
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These ATM-MLH1 and MSH2-CHK2 associative protein interactions may also constitute a 

synergistic molecular scaffold mechanism for ATM-induced phosphorylation of CHK2 at Thr68 

for activation of the S-phase cell-cycle checkpoint (Fig 1.21, p.57) and consequential initiation of 

DNA base mis-match repair (MMR) recognition of I.R.-induced DNA lesions respectively. 

(Matsuoka S. et al, 2000; Zhou B.B. et al, 2000; Christmann M. et al, 2003).  

 

ATM-activated CHK2 kinase-induced phosphorylation of the histone 2AX protein (H2AX), in  

 

close proximity to chromatin dsDNA breaks, may also constitute a biochemical sensory trigger  

 

for “downstream” signal recognition of these DNA lesions (Burma S. et al, 2001). 

 

 

 

ATM phosphorylated-inactivation of the NFkβ kinase inhibitor (Ikβ kinase) also triggers activation 

of the NFkβ kinase protein in response to dsDNA breakage events (Li N. et al, 2001). 

 

 

In addition to ATM activation, as discussed previously (pp.35-37), the Mre11-Rad50-Nbs1 (MRN) 

complex also provides tracts of ssDNA substrate-binding sites for Replication Protein A (RPA), 

which are generated via MRN complex-mediated re-section of duplex dsDNA breakages (Jazayeri 

A. et al, 2006; Myers J.S. and Cortez D., 2006). 

 

The resultant stretches of RPA-coated DNA, formed via the MRN complex-mediated rectification 

of DSB lesion sites, also act as recruitment substrates for activation of the ATR/ATRIP complex 

respectively. (Zou L. and Elledge S.J., 2003).  

 

ATR exists predominantly in the form of a stable complex associated with its regulatory protein 

counterpart “ATRIP” – ATR-Interacting Protein (Cortez D. et al, 2001; Alderton G.K. et al, 2004; 

Unsal-Kacmaz K. and Sancar A., 2004) – Fig 1.17B, p.51; Fig 1.17C, p.53. 
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ATR is a 303 kDa protein, which shares significant sequence homology with the H. sapiens  ATM  

and S. pombe Rad3 proteins respectively – hence its designated abbreviated name; ATM and 

Rad3-related protein (Cimprich K.A. et al, 1996) – Fig 1.17B, p.53. 

 

 

Previous experimental studies have indicated no measurable change in the overall kinase activity 

for ATR and thus it may be biochemically-primed to phosphorylate protein substrates in a 

constitutive manner in response to DNA damage (Abraham R.T., 2001; Finn K. et al, 2012; Ira G. 

and Hastings P.J., 2012; Niida H. and Nakanishi M., 2006) – Fig 1.19, p.55. 

 

Whilst more recent research work has established that the kinase activity of ATR may be induced 

via TopBP1-independent and TopBP1-dependent type mechanistic interactions with other proteins, 

such as FEM1B, MTA1 and RHINO, whose associative recruitment is co-ordinated via the sensory 

DNA sliding clamp Rad9-Rad1-Hus complex-coupled detection of DNA damage lesion sites 

within the chromatin supramolecular architecture (Cotta-Ramusino C. et al, 2011; Li D.Q. et al, 

2010; Lin S.J. et al, 2012; Navadgi-Patil V.M. and Burgers P.M., 2009; Pfander B. and Diffley J.F., 

2011; Qu M. et al, 2012; Smits V.A. et al, 2010; Sun T.P. and Shieh S.Y., 2009) – Fig 1.19, p.55. 

 

Experimental studies have also demonstrated that the ATR/ATRIP complex is implicated in the 

phosphorylated-modulation of a range of protein activities which initiate a variety of different 

DNA damage checkpoint response pathways, including; RAD9, H2AX, CHK1, CHK2 and p53 

(Tibbetts R.S. et al, 1999; Ward I.M. and Chen J., 2001; Liu Q. et al, 2004) – Figs 1.20-1.27, pp. 

56-63. 

 

Taken together, the experimental evidence indicates that the ATR primary (proximal) transducer 

checkpoint kinase may exist in both constitutive and inducible forms whose respective functional 

activities are dependent upon its sub-cellular translocation in response to environmental stresses 

and/or genotoxic type cytological events which adversely impinge upon DNA replication. 
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In contrast to ATM, activation of ATR is also triggered via associative interactions of the protein 

with various ssDNA-protein complexes in response to bulky DNA base adducts/lesions – notably; 

U.V.-induced pyrimidine dimers, large base-adducts, DNA cross-links and stalled replication forks 

(Unsal-Kacmaz K. et al, 2002). 

 

The overall major principle function of the primary (proximal) transducer proteins ATM and ATR, 

implicated in the initiation of various DNA damage response pathways, may be considered to be 

the phosphorylated activation of the secondary (distal) transducer type centrosome-associated 

checkpoint kinase proteins CHK1 (at Ser317 and Ser345), CHK2 at Thr68 and Ser123) and the 

p38 Mitogen-Activated Kinase (MAPK). 

 

These three secondary (distal) transducer/effector kinases are implicated in the phosphorylation-

mediated regulation of the activity of various “down-stream target” effector protein components 

that initiate the appropriate cell cycle checkpoint responses (Abraham R.T. et al, 2001; Brown A.L. 

et al, 1999; Bulavin D.V. et al, 2001; Bulavin D.V. et al, 2002; Chaturvedi P. et al, 1999; 

Matsuoka S. et al, 1998; Nyberg K.A. et al, 2002; Shieh S.Y. et al, 2000; Zhao H. and Piwnica-

Worms H., 2001), discussed summarily in Figs 1.21 – 1.27, pp.57-63. 

 

Co-ordinated biochemical orchestration of orderly cell cycle progression is normally regulated via 

the modulated activity of Cyclin-Dependent Kinases (CDKs), which are inactive in the 

phosphorylated form and require appropriate temporal activation via CDC25 phosphatase-

mediated dephosphorylated-induction of transient conformational changes within the CDK protein 

supramolecular structure, to enable the associative formation of the pre-requisite CDK-cyclin 

complexes that trigger specific sequential phases of the cell cycle (Nurse P., 1997; Morgan D.O., 

1997; Sherr C.J. and Roberts J.M., 1999; Stewart Z.A. et al, 2003). 
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A core critical function of the CHK1, CHK2 and p38-MAPK kinase proteins is the 

phosphorylation of the CDC25 effector class of protein phosphatases (A, B and C) – which induce 

supramolecular conformational changes within the respective CDC25 protein which abrogate its 

functional interactions with its Cyclin-Dependent Kinase (CDK) effector target(s) via three main 

biochemical mechanisms (Banin S. et al, 1998; Canman C.E. et al, 1998; Niida H. and Nakanishi 

M., 2006), notably; 

 

(i)  Promotion of thermodynamically-favoured complex formations between the CDC25 

     protein and the 14-3-3 class of proteins (eg 14-3-3σ) and subsequent translocation of the 

     resultant CDC25-14-3-3 protein complexes from the nucleus to the cytosol, where they 

     are sequestered – with consequential inhibition of CDC25-CDK associative interactions. 

     (Dalal S.N. et al, 1999; Hermeking H. et al, 1997; Peng  C.Y. et al, 1997). 

 

(ii) Promotion of  CDC25 protein ubiquitination events, prior to subsequent degradative  

      destruction of the CDC25 protein (Mailand N. et al, 2000). 

 

(iii) Inactivation of the phosphatase catalytic active-site within the CDC25 protein with resultant 

      inhibition of CDC25-mediated de-phosphorylation-activation of CDK targets and 

      consequential perturbed formation of critical CDK-cyclin signaling complexes implicated 

      in cell cycle progression (Niida H. and Nakanishi M., 2006).  

 

CHK1- and CHK2- phosphorylated abrogation of the critical biochemical pre-requisite CDC25A-

mediated dephosphorylation of  Thr14 and Tyr15 of CDK2 inhibits the functional formation and 

activities of the CDK2-Cyclin A and CDK2-Cyclin E complexes with consequential initiated G1/S 

cell cycle arrest. (Falck J. et al, 2001a; Falck J. et al, 2001b; Mailand N. et al, 2000; Niida H. and 

Nakanishi M., 2006; Peng C.Y. et al, 1997; Sanchez Y. et al, 1997) – Fig 1.21, p.57. 
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Whilst p38-MAPK-phosphorylated abrogation of CDC25A phosphatase activity inhibits the 

functional formation and activity of the CDK4-Cyclin D and CDK6-Cyclin D complexes with 

consequential initiation of G1/S cell cycle arrest (Lavoie J.N. et al, 1996; Yee A.S. et al, 2004; 

Thornton T.M. and Rincon M., 2009) – Fig 1.24, p.60. 

 

CHK1- and CHK2- phosphorylated abrogation of the the critical biochemical pre-requisite 

CDC25C-mediated dephosphorylated-activation of CDK1 (also known as Cdc2) inhibits the 

function formation and activities of the CDK1-Cyclin A and CDK1-Cyclin B complexes with 

consequential induction of G2/M cell cycle phase arrest (Abraham R.T. et al, 2001; Niida H. and 

Nakanishi M., 2006) – Fig 1.23, p.59. 

 

Protein phosphatase CDC25B-targeted dephosphorylation of CDK1 induces supramolecular 

conformational changes within the activated Cyclin-Dependent Kinase protein which promote the 

asscociative formation of the CDK1-Cyclin B1 complex (Schmitt E. et al, 2006). 

   

The CDK1-Cyclin B1 heterodimeric complex is a key functional biochemical signaling component 

in the mechanistic regulation of centrosomal microtubule nucleation events which are implicated 

in the modulatory control of  the G2/M interphase transitional progression of the cell cycle prior to 

initiation of early mitotic phase commitment (Schmitt E. et al, 2006; Trovesi C. et al, 2011).  

 

Unlike the CDC25A and CDC25C phosphatases, the CDC25B phosphatase functions as both a 

constitutive effector protein in the absence of DNA damage and an inducible effector protein under 

cytological conditions of genotoxic stress (Schmitt E. et al, 2006). 
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 In the absence of DNA damage, constitutive CHK1-mediated phosphorylated-inactivation of the 

CDC25B phosphatase (at N-terminus Ser151 and Ser230 residual sites) is a key negative feedback 

biochemical regulatory mechanism which serves two critical purposes; the  cytological prevention 

of catastrophic premature cell division and premature apoptotic induction (Schmitt E. et al, 2006).  

                                                                                                                             
Phosphorylation of Ser230 within the CDC25B phosphatase is an essential pre-requisite for the 

centrosomal localisation of protein to enable it to elicit the progressive duration of early S-phase 

through to mitosis (Schmitt E. et al, 2006) – Fig 1.24, p.60. 

 

Whilst phosphorylation of both Ser151 and Ser230 N-Terminal Domain residues, within the 

CDC25B phosphatase protein, is an essential pre-requisite for the associative formation of the 

dimerised 14-3-3σ:CDC25B complex – which is then translocated out of the nucleus and 

sequestered in the cytoplasm with consequential inhibition of CDK1-Cyclin B functional activities 

and initiated G2/M arrest (Schmitt E. et al, 2006) – Fig 1.24, p.60. 

 

Inducible CHK1- and CHK2-mediated phosphorylated-inactivation of the CDC25B phosphatase 

(at Ser151, Ser230 and Ser563 residual positions), in response to upstream DNA damage signal 

transduction, triggers the G2 Checkpoint and subsequent G2/M phase cell-cycle arrest as a 

consequence of the inhibited formation and functional activities of the CDK1-Cyclin B complex 

(Dalal S.N. et al, 1999; Schmitt E. et al, 2006) – Fig 1.24, p.60. 

 

Phosphorylation of Ser563, situated in close proximity to the CDK1 substrate-binding domain 

contained within the catalytic active-site of the CDC25B phosphatase protein, induces 

supramolecular conformational changes  within the enzyme which inhibit its dephosphorylation of 

CDK1 with consequential abrogation of associative formation and functional activities of the 

CDK1-Cyclin B heterodimeric complex and initiation of G2/M cell cycle arrest (Schmitt E. et al, 

2006) – Fig 1.24, p.60. 
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Phosphorylated-inactivation of the CDC25B protein, independent of “downstream” CHK1 and 

CHK2 biochemical cell-cycle modulatory signal transduction events, is also elicited via the 

p38αMAPK/MAPKAPK2 pathway in response to U.V.-induced DNA damage (Bulavin D.V. et al, 

2001; Bulavin D.V. et al, 2002; Nyberg K.A. et al, 2002) – Fig 1.24, p.60. 

 

                                                 
In this case, phosphorylated-activation of the p38α Mitogen Activated Kinase (p38αMAPK) 

protein, via MAPK Activating Protein Kinase 2 (MAPKAP2), enables it to phosphorylate 

CDC25B at residual position Ser309 (Bulavin D.V. et al, 2001; Bulavin D.V. et al, 2002; Nyberg 

K.A. et al, 2002) – Fig 1.24, p.60.  

 

p38-MAPK-mediated phosphorylation of Ser309 within CDC25B induces supramolecular 

conformational changes in the CDK phosphatase protein that thermodynamically promote 

associative binding interactions with 14-3-3 proteins resulting in cytoplasmic sequestration of the 

CDC25B–14-3-3 protein complex with consequential inhibition of CDK1 activation, perturbed 

associative formation and activities of the CDK1-Cyclin B complex, culminating in G2 checkpoint 

activation and G2/M cell-cycle phase arrest (Bulavin D.V. et al, 2001; Bulavin D.V. et al, 2002; 

Nyberg K.A. et al, 2002) – Fig 1.24, p.60.  

 

The expression of Cyclin-Dependent Kinases (CDKs) is constitutive throughout the entire cell 

cycle and their respective activity levels are also regulated via two main families of Cyclin-

Dependent Kinase Inhibitors (CDKIs), in addition to interactions with CDC25 phosphatases, 

which are implicated collectively in the modulatory control of  the cell cycle checkpoints, namely; 

 

(i) The INK4-type class of CDKIs, which include; p16INK4A (p16), p15INK4B (p15), p18INK4C  

     and p19INK4D (p19). 

 

(ii) The Cip/Kip-type class of CDKIs, which include; p21/Waf1/Cip1 (p21), p27/Kip1 (p27) and 

       p57/Kip2 (p57).                                        [44] 



The INK4-type CDKIs inhibit the activity of the CDK4 and CDK6 proteins and are G1-phase 

specific, whilst the Cip/Kip-type CDKIs possess a greater degree of versatility with respect to their 

capability to inhibit a range of CDKs throughout all phases of the cell cycle (Fig 1.20, p.56; Fig 

1.21, p.57; Fig 1.24, p.60; Fig 1.27, p.63). 

 

Cytological control of the relative levels and activities of cyclins during cell cycle progression is 

elicited via regulatory transcriptional mechanisms which result in the induction or suppression of 

cyclin-encoding genes and via polyubiquitination-type post-transcriptional modification cyclin-

targeted proteosomal degredation events (Knoepp D.M. et al, 1999; Stewart Z.A. et al, 2003). 

 

Both primary and secondary DNA damage checkpoint signal transducer kinase proteins; ATM, 

ATR/ATRIP, CHK1, CHK2 and p38-MAPK, are also implicated in the phosphorylation-enhanced 

stabilisation and activation of the effector “downstream” tumour-suppressor protein p53. 

 

The p53 protein is a versatile sequence-specific inductive transcriptional regulator which binds to 

the promoter-target domains of a range of modulatory genes that are implicated in the control and 

initiation of cell cycle progression, apoptosis, cell-cycle phase-specific arrest and DNA repair 

respectively (Shieh S.Y. et al, 2000; Kim M.Ae. et al, 2007) – Fig 1.21, p.57 and Fig 1.24, p.63. 

 

In addition, the p53 protein also self-regulates its own turn-over rate and relative transcriptional 

activity via a negative feedback mechanism upon binding to the promoter region of the MDM2 

gene with consequential elevated expression of the “ring-finger” ubiquitin ligase protein. 

 

The resultant enhanced expression of the MDM2 protein and consequential formation of the 

associative MDM2-p53 heterodimeric complex, targets the p53 protein for ubiquitination-mediated 

proteosomal degradation (Chen B.J. et al, 1994; Chehab N.H. et al, 1999; Kastan M.B., 1999; 

Unger T. et al, 1999; Hirao A. et al, 2000; Vogelstein B. et al, 2000; Maya R. et al, 2001). 
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The Rad9-Rad1-Hus1 complex is currently postulated to function as a DNA damage scanner 

which may slide back and forth along DNA-associated chromatin supramolecular structural 

complexes, thereby acting as a continual “early-warning safe-guard monitoring system” of 

genomic integrity. (Burtelow M.A. et al, 2000; Roos-Mattjus P. et al, 2002) – discussed previously 

in Section 1.2.1, pp.23-32. 

 

The C-Tail terminal domain of the Rad9 sub-unit, which protrudes out of the “9-1-1” sliding-

clamp sensory complex (Fig 1.10B, p.24; Fig 1.17A, p.53), possesses a high degree of disordered 

structure propensity which enables the polypeptide chain to adopt a wide array of transient 

supramolecular configurations that facilitate its associative interactions with a variety of different 

cell cycle signalling and repair factor proteins in response to detected DNA damage lesion sites.    

 

The Rad9 C-Terminal Tail domain also contains SQ/TP type kinase and phosphatase target motifs 

which engage in transient residue-specific constitutive and inducible phosphorylated/de-

phosphorylated types of protein-interactive events that are implicated in the modulation of  various 

ATR → Chk1 and ATR → p38MAPK signal transduction-initiated cell cycle checkpoint pathway 

responses to replication stress and genotoxic events (Chen M-J. et al, 2001; Fujinaka Y. et al, 

2012; Roos-Mattjus P. et al, 2003; St Onge R.P. et al, 2001; St. Onge R.P. et al, 2003), discussed 

summarily in Figs 1.20 – 1.29, pp.56-65. 

 

Both ATM  and ATR primary (proximal) transducer checkpoint kinases phosphorylate specific 

residues within the C-tail terminal domain of the Rad9 protein sub-unit in response to replication 

stress- and.or genotoxic event- induced DNA damage lesions which are detected by the “9-1-1” 

sensory DNA sliding-clamp complex (Chen M-J et al, 2001; Fujinaka Y. et al, 2012; Shin M.H. et 

al, 2012; St. Onge R.P. et al, 2001; St. Onge R.P. et al, 2003) – Fig 1.16, p.52. 
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Methylation of the Rad9 sub-unit, at specific arginine residues R172, R174 and R175, is a critical 

post-translational modifion pre-requisite for the induction of supramolecular conformational 

changes within the protein which may be implicated in initial ATR activation (via associative 

“HFD” motif  interactions) and promote engagement of its C-Terminal Tail Domain with the ATM, 

ATR and CK2 kinases (Dai Y. and Grant S., 2010; He W. et al, 2011; Nadvadgi-Patil V.M. and 

Burgers P.M., 2009; Shangary S. et al, 2000) – Fig 1.16, p.52; Fig 1.17A, p.53. 

 

Induction of supramolecular changes within the C-terminal tail domain of Rad9, mediated via 

Casein Kinase 2 (CK2)- and ATR-mediated phosphorylation of the Ser387 side-chain (Fig 1.17A, 

p.53), enables it to associate with the Topoisomerase IIβ Binding Protein 1 (TopBP1) N-terminal 

BRCT I and BRCT II domains. (Delacroix S. et al, 2007) – Fig 1.17D, p.53; Fig 1.18, p.54. 

 

ATM phosphorylation of the Rad9 C-terminal domain at Ser272 (Shangary et al, 2000; Shin M.H. 

et al, 2012), may also be implicated in the induction of supramolecular conformational changes 

within the protein which serve to enhance the associative ATR/ATRIP-TopBP1-“9-1-1”-BRCA1 

ternary complex interactions that initiate CHK1 activation (Rappas M. et al, 2010; Shangary S. et 

al, 2000; Shin M.H. et al, 2012) – Fig 1.17A, p.53; Fig 1.18, p.54. 

 

From a biochemical mechanistic overview of CHK1 activation, TopBP1 may be considered as a 

BRCT-domain interactive biomolecular co-ordinator of the associative “9-1-1”, ATR-ATRIP and 

BRCA1 complex integral functions which are implicated in the mediation of Chk1 kinase-initiated 

cell cycle checkpoint responses to replication stress and genotoxic cytological events (Delacroix S. 

et al, 2007; Lee J. et al, 2007) – Figs 1.18-1.20, pp.54-56. 
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The resultant “Rad-Rad1-Hus1 DNA sliding-clamp complex – TopBP1” interaction-induced 

supramolecular conformational changes within the TopBP1 protein permit access and binding of 

the ATR-ATRIP complex to the ATR-Activating Domain (AAD), located between BRCT VI and 

BRCT VII domains of the TopBP1 protein, accompanied by consequential “positive-feedback” 

activation of the ATR kinase (Delacroix S. et al, 2007). 

 

Additional “TopBP1 – ATR/ATRIP” complex-induced supramolecular conformational changes 

enable formation of associative interactions between the Breast Cancer Susceptibility Protein 

(BRCA1) and the BRCT domains of TopBP1 (Delacroix S. et al, 2007; Foray N. et al, 2003) – 

Figs 1.21-1.24, pp.57-60. 

 

Each respective associative BRCT domain-protein complex interaction, within the TopBP1 protein,  

is formed via a “head-to-tail” supramolecular α-β-α anti-parallel dimerised tandem (BRCT)2 

configuration in which the N-terminal face of one BRCT domain  is orientated opposite the two C-

terminal α-helices of the other BRCT domain via an extended “inter-BRCT-bridging” hairpin 

polypeptide loop (Kilkenny M.L. et al, 2008; Manke I.A. et al, 2003; Rodriguez M. et al, 2003). 

 

The resultant tandem (BRCT)2 configurations form phosphopeptide motif sub-domain binding 

pockets for specific phosphorylated proteins (such as Rad9 and BRCA1), which are stabilised via 

an intricate symmetrical self-complementary inter- and intra- hydrogen-bonding network of side-

chain and main-chain Ser residues and peptide-backbones of A, L, T, E residues which is 

“thermodynamically-reinforced” via hydrophobic C, H, L, P, R, S, Y residual interactions 

(Kilkenny M.L. et al, 2008; Manke I.A. et al, 2003; Rodriguez M. et al, 2003). 
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The adaptor protein Claspin is also currently postulated to be essential for the correct orientation of 

the ATR protein and the “9-1-1” complex in a specific protein-protein interactive supramolecular 

complex configuration to enable ATR to phosphorylate the C-terminal tail domain of the hRad9 

protein at Ser 387 (Chini C.C. and Chen J., 2003; Sar F. et al, 2004; Sorensen C.S. et al, 2004; Liu 

S. et al, 2012).  

 

 [As discussed previously (p.46), phosphorylation of the Ser387 residue within the C-Terminal Tail 

Domain of Rad9, which protrudes out of the  sensory “9-1-1” DNA sliding-clamp complex, is an 

essential post-translational modification pre-requisite for associative interactions with the TopBP1 

protein (Delacroix S. et al , 2007) – Figs 1.17, p.53 and Fig 1.18, p.54. 

 

This hypothesis is based upon investigative experimental observations that have indicated that the 

“ring-like” supermolecular structure of Claspin binds to stalled DNA replication forks with a high 

degree of specificity in which the protein may participate in direct associative interactions with 

various branched DNA structures (Sar F. et al, 2004). 

 

In this respect, Claspin is also postulated to function as a critical associative detector element for 

ATR/ATRIP complex-recognition of stalled DNA replication forks and co-ordination of ATR 

phosphorylated-activation of CHK1-initiated checkpoint pathways which elicit the delayed origin-

firing of DNA replication forks (Shechter D. et al, 2004) – Figs 1.17, p.53 and Fig 1.18, p.54.  

 

Claspin is predominantly localised within the cell nucleus and its phosphorylation, in response to 

DNA damage and replicative stress, is an essential post-translational modification-induced 

supramolecular conformational transitional pre-requisite which enables the protein to interact with 

the associative ATR/ATRIP/“9-1-1” complexes and the secondary (distal) transducer protein 

kinase CHK1 respectively (Chini C.C. and Chen J., 2003) – Fig 1.18, p.54. 
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Claspin-enhanced synergistic interaction of CHK1 with the ATR/ATRIP and “9-1-1” complexes 

facilitates maximal ATR phosphorylated-activation of CHK1 (triggered via initial formation of 

ATR- and Rad9 C-terminal tail domain- TopBP1 associative complexes) with consequential 

amplified transduction of the DNA damage response signal to various down-stream biochemical 

effector targets (Chini C.C. and Chen J., 2003; Delacroix S. et al, 2007) – Figs 1.17, p.53 and Fig 

1.18, p.54. 

 

 

In conclusive summary, the Rad9-Rad1-Hus1 complex both senses DNA damage and triggers 

ATR/ATRIP-initiated downstream cell-signalling cascades (Fig 1.20, p.56) that elicit the 

appropriate G1/S, Intra-S,  G2/M (Figs 1.21-1.26, pp.57-62) and Intra-M phase (Figs 1.27-1.29, 

pp.63-65) types of checkpoint-mediated cell cycle arrest, apoptosis and/or DNA repair responses 

(Dai Y. and Grant S., 2010). 

 

Protein Kinase Cδ is also known to be implicated in the constitutive and genotoxic-induced 

phosphorylation of Rad9 (Yoshida K. et al, 2003). 

 

At least 9 potential Protein Kinase Cδ phosphorylated target sites have been identified within the 

Rad9 protein, which may be implicated in the post-translational generation of differential 

phosphorylation-state isoforms of Rad9 that may elicit specific modulatory functions on cell cycle 

checkpoint-mediated signalling responses to different types of DNA damage and/or replication 

stress (Yoshida K. et al, 2003). 

 

Selection of these checkpoint responses may in turn be “biochemically-governed” via the nature 

and extent of DNA damage, in conjuction with the temporal point(s) within the cell cycle where 

specific genotoxic and/or replication stress events occur (Matsuoka S. et al, 1998; Brown A.L. et 

al, 1999; Chaturvedi P. et al, 1999; Shieh S.Y. et al, 2000; Abraham R.T. et al, 2001; Zhao H. and 

Piwnica-Worms H., 2001). 
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Additional PCNA-Rad9-Hus1 interactions may also mediate biochemical “cross-talk” signals 

between the various cell cycle checkpoint pathways, to elicit inhibition of DNA replication in 

response to particular genotoxic and/or replication stress events, as an additional level of control 

which serves as “back-up/safe-guard” mechanism for the cytological preservation of genomic 

integrity. (Komatsu K. et al, 2000c). 
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Fig 1.16: hRad9A – Key Checkpoint Signalling Domains & Residues 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

A: Elementary Functional Proteomic Signalling Domain Map of the hRad9A Protein [Uniprot: Q99638] 

 

      R172,  R174,  R175 = PRMT5 Methylase-Targeted Arginine Residues Implicated in DNA Damage Checkpoint 

                                           Signalling (He W. et al, 2011). 

       

       = Potential “HFD” Functional Motif Implicated in Associative Enhancement of ATR Kinase Activity  

                      (Navadgi-Patil V.M. and Burgers P.M., 2009). 

       

      XXXX = Kinase/Phosphatase Target Motif Sites Implicated in Cell Cycle DNA Damage Checkpoint Signalling 

                      (Canfield C. et al, 2009; Chen M. et al, 2001 St. Onge R.P. et al, 2001; St. Onge R.P. et al, 2003;  

                       Ueda S. et al, 2012; Yoshida K. et al, 2002). 

 

      XXXX = Nuclear Localisation Signal Motif (Hirai I. and Wang H-G., 2002; Kadir R. et al, 2012). 

       

B: hRad9A C-Terminal Tail Protein Kinase/Phosphatase Interactive Phosphorylation Target Motif Sites Implicated in Cell 

      Cycle Checkpoint Modulatory Signal-Mediated DNA Damage Response Type Pathways. 

      (Compiled via Collated Information  From: Canfield C. et al, 2009; Chen M.J. et al, 2001; St. Onge R.P. et al, 2003). 

 

 [NOTE: Phosphorylation sites at Y28 (located within the N-terminal domain) and the C-Terminal tail domain of hRad9 are 

                also implicated in critical S/M checkpoint control events with regard to signal transduction-mediated inhibition of 

                premature chromosomal condensation events throughout the entire duration of the S-phase of the cell cycle, prior 

                to M-phase initiation (Zhang C. et al, 2008).] 
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     Fig 1.17: Key Features of  ATR- and Chk1- Activation Proteins 

 

                              
 

A: Key Checkpoint Signalling Residues and Motifs within the human Rad9A protein, of particular note; the C-terminal tail 
      domain residues phosphorylated by ATM and Casein Kinase 2 (CK2), the “HFD” motif implicated in enhanced 

      activation of the human ATR kinase (Fig B) and methylation of three key Arginine residues (R172, R174 and R175) by  

      the PRMT5 methylase enzyme , all of which are implicated in human Rad9-mediated activation of the human Chk1 cell 

      cycle checkpoint kinase (Dai Y. and Grant S.; 2010; He W. et al, 2011; Navadgi-Patil M. and Burgers P.M., 2009). 

      [Uniprot: Q99638]  
 

B:  Key Structural Domains and Functional Motifs within the human ATR cell cycle checkpoint kinase protein, of  

       particular note; the N-terminal ATRIP-binding domain, the two “HEAT” domain motifs (Huntingdon, Elongation 

       Factor 3, PP2A Substrate and TOR1), the “FAT/FAT-C” motif domains (FRAPP, ATM, TRAPP) and the “PRD” 

       (PIKK, PI3K/PI4K Kinase Domain) – whose catalytic activity may be enhanced via associative allosteric interactions 

       of the ATR protein with the “HFD” motif situated within the human Rad9A protein (Fig A). 

       (Mordes D.A. et al ,2008; Mordes D.A. and Cortez D., 2008; Navadgi-Patil M. and Burgers P.M., 2009) 

        [Uniprot: Q13535] 
 

C: Key Structural Domains and Functional Motifs within the human ATR-Interacting Protein (ATRIP) partner of the  

       human ATR cell cycle checkpoint kinase (Fig B), of particular note; the N-Terminal Checkpoint Recruitment Domain 

      (CRD), the ATR-binding domain, the TopBp1 checkpoint mediator protein-binding domain  and the CDK2-Interacting 

      Protein Domain (CINP) (Lovejoy C.A. et al, 2009; Mordes D.A. and Cortez D, 2008). [Uniprot: QW8XE1] 
 

D: Key Functional BRCT Domains and Amino Acid Residues of the TopBP1 Mediator/“Scaffold” protein, of particular 

       note; The N-Terminal BRCT Triplet Domain which associates with the human Rad9A protein (Fig A) via BRCT1  

       sub-domain interactions with the ATR (Fig B)-phosphorylated Ser387 residue of the human Rad9A C-Terminal Tail 

       Domain and the ATR Activation Domain (AAD) which associates with the  PRD Domain  of ATR and allosterically 

       enhances its kinase catalytic activity (Fig B) (Huo Y.G. et al, 2010; Mordes D.A. et al, 2008; Rappas M. et al, 2010;  

       Yan S. and Michael W.M., 2009a; Yan S. and Michael W.M., 2009b). [Uniprot: Q92547] 
 

E: Key Functional Domains of the Claspin Mediator/“Scaffold” ring protein, of particular note; the coiled-coil domains 

      which are implicated in associative DNA interactions and the three Chk1 (Fig F)  interactive sites and their key 

      phosphorylated Ser residues within the Chk1-Binding Domain (CKDB) (Sierant M.L. et al, 2010; Tanaka K., 2010). 

      [Uniprot: Q9HAW4] 
 

F: Key Functional Domains of the Chk1 Checkpoint Signal Transducer protein, of particular note; The N-Terminal  

      Catalytic Kinase Domain and Key Phosphorylation Sites and Associative Kinase Active Site Lid Sub-Domains 

      (Regional Motifs 1 and 2) within the Autoinhibitory/Activity Regulator Domain (Tapia-Alveal C. et al, 2009).    

      [Uniprot: O14757] 
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            Fig 1.18: “9-1-1” Clamp-Orchestrated Chk1 Activation 
 

[Collated via Adapted Information Taken From: Canton D.A. and Scott J.D., 2010; Cimprich K.A. & Cortez D., 2008; 

                                                                                              den Elzen N. et al, 2004; Fujinaka Y. et al, 2012; He W. et al, 2011; 

                                                                                              Leung- Pineda V. et al, 2006; Mordes D.A. and Cortez D., 2008; 

                                                                                              Navadgi-Patil V.M. & Burgers P.M., 2009; Navadgi-Patil V.M. & 

                                                                                              Burgers P.M., 2011; Palermo C. et al, 2008; Rappas M. et al, 2010;   

                                                                                              Tanaka K., 2010; Sierant M.L. et al, 2010; Smith J. et al, 2010; 

                                                                                              Yan S. & Michael W.M., 2008a; Yan S. & Michael W.M., 2008b; 

                                                                                              Tapia-Alveal C. et al, 2009; Ueda S. et al, 2012;  

                                                                                              Warmerdam D.O. et al, 2010] 

                                                                                                                                                                                                                                                                                                            

    

Essential post-translocational modifications of the Rad9 protein for “9-1-1” clamp complex-initiation of the ATR→Chk1 DNA damage 

response pathways are PRMT5-mediated methylation of Rad9 at Arg172, Arg174 and Arg175), ATM–mediated phosphorylation at 

Thr272 residue and Casein Kinase 2 (CK2) –mediated phosphorylation of  Ser341 and Ser387 (Dai Y. and Grant S., 2010; He W. et al, 

2011) – Fig 1.17A, p.53. 

 

Interactions between the Rad9  “HFD” ATR-activation motif and ATR, in conjunction with association of the ATR catalytic PRD domain 

with the TopBP1 AAD domain, which is  facilitated via the proximal association of the TopBP1 protein with the Rad9 C-terminal tail 

domain (via the TopBP1 BRCT Domain – Rad9-S387 Casein Kinase 2 (CK2)-phosphorylated residue) activates the ATR kinase (Mordes 

D.A. et al, 2008; Mordes D.A. and Cortez D., 2008; Navadgi-Patil V.M. and Burgers P.M., 2009; Rappas M. et al, 2010) – Figs 1.17A, 1.17B, 

1.17D, p.53. 

 

Subsequent “9-1-1” clamp-complex recruitment of claspin, facilitates its phosphorylation by ATR (at Thr919, Ser945 and Ser982) which 

induces supramolecular configurational changes that mediate associative interactions of the secondary (diatal) checkpoint kinase Chk1 

within the Chk1-binding domain of the adaptor  protein (Sierent M.L. et al, 2010; Tanaka K., 2010) – Fig  1.17E, p.53. 

 

Subsequent ATR-mediated phosphorylation-activation of Chk1 (at Ser317 and Ser345) induces supramolecular configurational changes 

within the secndary (distal) transducer checkpoint kinase which promote domain lid-dissociation from the catalytic active site and thus 

enable Chk1 to phosphorylate its downstream protein effector targets for elicitation of the appropriate cytological responses to the “9-1-1” 

clamp sensor-detected genotoxic- and/or replication stress- induced DNA damage lesions (Tapia-Alveal C. et al, 2009; Warmerdam D.O. et 

al, 2010) – Fig 1.17F, p.53. 

 

Chk1-mediated phosphorylation-activation of the p53 protein, enables it to associate with the PMMID gene promoter and induce expression 

of the Wip1 protein phosphatase, which also targets and dephosphorylates Chk1 (at Ser317 and Ser345), with consequential initiation of 

supramolecular conformational changes within the checkpoint kinase which promote re-aasociation of the lid domains 1 and 2 with the 

catalytic  site for Chk1  inactivation – thereby providing a negative feedback mechanism for regulation of Chk1-mediated DNA damage 

signalling (den Elzen N. et al, 2004; Leung-Pineda V. et al, 2006) – Fig 1.17F, p.53. 

 

Regulation of Chk1 activity is also mediated via associative interactions with the 14-3-3σ for cytosolic sequestration of the resultant 

Chk1:14-3-3σ complex , thereby preventing Chk1 from phosphorylating its nuclear-localised protein effector targets (Canton D.A. and 

Scott J.D., 2010; Dunaway S. et al, 2005).  
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      Fig 1.19: Constitutive and Inducible Models of ATR Activation 

 

[Compiled via Collated Information Adapted From: Cotta-Ramusino C. et al, 2011; Fujinaka Y. et al, 2012; 

                                                                                                     Li D.Q. et al, 2010; Lin S.J. et al, 2012; Mordes D.A. et al, 2008;  

                                                                                                     Mordes D.A. and Cortez D., 2008;  

                                                                                           Pfander B. and Diffley J.F., 2011; Qu M. et al, 2012; 

                                                                                           Smith J. et al, 2010; Smits V.A. et al, 2010;  

                                                                                           Sun T.P. and Shieh S.Y., 2009 

 

 
 

Under normal cytological conditions, a basal level of associative RPA:ATRIP-mediated constitutive ATR activity is 

sufficient for maintenance of genomic integrity (Smits V.A. et al, 2010). 

 

Genotoxic cytological conditions of DNA damage, replication stress and/or other environmental stresses induce elevated 

levels ATR activity via TopBP1-independent and TopBP1-dependent mechanisms which are mediated via associative Rad9 

functional  C-Terminal Tail Domain protein interactions within the “9-1-1” clamp complex (Smits V.A. et al, 2010). 

 

The TopBP1-independent mechanism of “9-1-1” clamp complex-enhanced ATR activation may proceed via allosteric 

modulation of the catalytic kinase activity of the PRD domain of ATR (Fig 1.17B, p.53) via Rad9 “HFD” motif domain 

interactions with the ATR checkpoint kinase protein and elicits G1 and G1 cell cycle phasic arrest in response to genotoxic 

events (Navadgi-Patil V.M. and Burgers P.M., 2009; Smits V.A. et al, 2010) 

   

The TopBP1-dependent mechanism of “9-1-1” clamp complex-enhanced ATR activation, discussed previously in Fig 1.18, 

p.54, elicits S and G2 cell cycle phasic arrest in response to genotoxic events (Smits V.A. et al, 2010). 

 

The FEM1B protein (human homologue of the Caenorhabditis  elegans sex determination fem1 protein) may also be 

implicated in functional associative Rad9 C-terminal tail domain interactions which elicit the “9-1-1” clamp complex-

mediated TopBP1-independent and TopBP1-dependent mechanisms of elevated ATR checkpoint kinase-mediated 

phosphorylated-activation of Chk1-initiated  cell cycle checkpoint responses to DNA damage and replication stress (Sun T.P. 

and Shieh S.Y., 2009). 

 

A recently discovered novel protein, “RHINO” (“Rad9-Rad1-Hus1 Interacting Orphan”) has also been demonstrated to 

associate with both Rad9 and TopBP1 and may therefore be implicated in the TopBP1-dependent mechanism of elevated 

ATR checkpoint kinase-mediated phosphorylated-activation of Chk1-initiated  cell cycle checkpoint responses to DNA 

damage and replication stress (Cotta-Ramusino C. et al, 2011). 

 

The MTA1 protein (Metastasis-Associated Protein 1) has been demonstrated to be required for activation of  ATR-Claspin-

Chk1-initiated checkpoint responses to both U.V.-  and Ionising Radiation- induced forms of DNA damage and double-

stranded duplex breaks and thus may also be functionally implicated in TopBP1-independent and/or TopBP1-dependent 

“9-1-1” clamp complex-mediated mechanisms of enhanced ATR activity (Li D.Q. et al, 2010). 

 

Other unidentified associative protein interactions (designated “X”? in the figure above) may also be implicated in the 

Rad9-Rad1-Hus1 complex-mediated  TopBP1-independent and TopBP1-dependent mechanisms of enhanced ATR activity 

in response to genotoxic events (Smits V.A. et al, 2010). 
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  Fig 1.20: “9-1-1” Clamp-Intercommunicative Chk1 Signal Network  
 

   [Taken and Adapted From: Dai Y. and Grant S., 2010; He W. et al, 2011] 

 

 

 
 
Rad9-Rad1-Hus1 complex-initiated ATR-Chk1 kinase activation triggers a variety of key “downstream” protein signalling 

protein component “cross-talk” activities which are implicated in regulatory cell cycle DNA damage response checkpoint 

pathways (Dai Y. and Grant S., 2010; Sancar A. et al, 2004; Smith J. et al, 2010).  

 

These pathways are comprised of complex protein inter-communicative “downstream” sequential signalling cascades of 

DNA Damage Sensors, Mediator/Adaptor “Scaffold” Platforms, Primary (Proximal) Transducers, Secondary (Distal) 

Transducers and Effectors whose respective function/activities are regulated via specific transient types of associative 

phosphorylation and dephosphorylation post-translational modifications mediated via various types of kinase and 

phosphatase catalytic events which also modulate protein-specific associative 14-3-3 protein-sequestration events 

respectively (Christmann M. et al, 2003; Dai Y. and Grant S., 2010; Dunaway S. et al, 2005; Niida H. and Nakanishi M., 

2006; Smith J. et al, 2010) . 

 

The human Rad9A protein component of the “9-1-1” clamp functions collectively in the initiation of 7 key Chk1-Activated 

DNA Damage Checkpoint Pathways – notably; the G1/S Checkpoint (Fig 1.21, p.57), The Intra-S Phase Checkpoint (Fig 

1.22, p.58), the G2/M Checkpoint (Fig 1.23, p.59),  the p38-MAPK Checkpoint (Fig 1.24, p.60), the Circadian Checkpoint 

(Fig 1.25, p.59), the G2-Decatenation Checkpoint (Fig 1.26, p.60) and the Intra-M Phase Spindle Checkpoint (Figs 1.27-1.29, 

pp.63-65) (Boye E. et al, 2009; Dai Y. and Grant S., 2010; Houtgraaf J.H. et al, 2006; Sancar A. et al, 2004; Smith J. et al, 

2010; Thornton T.M. and Rincon M., 2009). 

 

Rad9-Rad1-Hus1 complex-initiated ATR/Chk1 activation of apoptotic signalling pathways may also impinge upon the 

functional activity of  “9-1-1” clamp-independent Rad9-mediated modulation of apoptotic signal DNA damage checkpoint 

responses (discussed later in Section 1.3.2, pp.127-130).  

 

Associative human Rad9A C-Terminal Tail Domain protein-interactive signalling functions, coupled with ATR-initiated 

Chk1-Activation, also mediate “9-1-1” clamp-modulation of the activities of particular DNA repair pathways – most 

notably; Base-Excision Repair (BER), Chromatin Re-Modelling/Assembly, Double-Strand Breakage (DSB) Repair 

Mechanisms, Replicative Senescence and Translesion Synthesis (TLS) Repair (discussed in detail later in Section 1.2.5, 

pp.86-118). 
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   Fig 1.21: “9-1-1” Clamp Influences on G1/S Checkpoint Activation 

 

Rad9-Rad1-Hus1 complex-induced ATR→Chk1 activation initiates both a rapid G1/S arrest and a sustained G1/S via two distinctive 

subsequent Chk1 kinase-mediated biochemical interactions (Bartek J. and Lukas J., 2001a; Bartek J. and Lukas J., 2001b; Sancar A. et al, 

2004; Smith J. et al, 2010). 

 

Chk1 kinase phosphorylation-mediated inactivation of Cdc25A phosphatase initiates its ubiquitination-targeted proteolytic degradation, 

with consequential inhibition of Cdc25A-mediated Thr14 and Tyr15 dephosphorylation-activated CDK2 and maintenance of the S-phase 

promoting Cyclin E/CDK2 complex in its inactive phosphorylated state which prevents loading of Cdc45 onto the replication origin with 

consequential inhibition of progressive replication origin firing (Falck J. et al, 2001a; Falck J. et al, 2001b; Mailand N. et al, 2000; Niida H. 

and Nakanishi M., 2006; Peng C.Y. et al, 1997; Sancar A. et al, 2004; Sanchez Y. et al, 1997; Smith J. et al, 2010). 

 

Chk1 kinase phosphorylation-mediated activation of p53 enables it to bind to the p21 gene promoter with enhancement p21 transcriptional 

activity and  consequential  elevated expression of the p21 protein, which then binds to the CDK4/6:Cyclin D complex and perturbs 

CDK4/6:Cyclin D complex-mediated phosphorylated-activation of the retinoblastoma protein (Rb) with subsequent inhibition of Rb-

mediated E2F transcription factor release with resultant suppressed transcription of S-phase genes,  culminating in sustained G1/S arrest. 

 

The p21 protein also associates with and inhibits the activity of the CDK2:CyclinE/A complex for secured maintenance of G1/S cell cycle 

checkpoint arrest (Sancar A. et al, 2004; Smith J. et al, 2010) 

 

ATM kinase-mediated phosphorylation-induced conversion of Chk2 to its autophosphorylation-activated dimeric kinase form also results 

in Chk2-mediated phosphorylation of Cdc25A with consequential Rapid G1/S arrest or Chk2-mediated phosphorylation of p53 with 

consequential sustained G1/S arrest (Falck J. et al, 2001a; Falck J. et al, 2001b; Mailand N. et al, 2000; Niida H. and Nakanishi M., 2006; 

Peng C.Y. et al, 1997; Sanchez Y. et al, 1997; Smith J. et al, 2010). 

 

Co-operative parallel pathway “cross-talk redundancy” between the respective “9-1-1” complex-activated and ATM-activated secondary 

(distal) transducer kinases Chk1 and Chk2, that phosphorylate both Cdc25A and p53, ensures the initiation of an appropriate degree of 

sustained G1/S arrest response which is dependent upon the biochemical nature and extent of the DNA damage (Abraham R.T., 2001; 

Niida H. and Nakanishi M., 2006; Sancar A. et al, 2004; Smith J. et al, 2010). 
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 Fig 1.22: “9-1-1” Clamp Influences on Intra-S Checkpoint Activation 

 

                                
Rad9-Rad1-Hus1 complex-induced ATR→Chk1 activation initiates Intra-S Phase arrest via subsequent Chk1 kinase phosphorylation and inactivation of 

Cdc25A phosphatase which is then subject to ubiquitination-targeted proteolytic degradation, with consequential  inhibition of Cdc25A-mediated Thr14 and 

Tyr15 dephosphorylation-activated CDK2 and abrogated CDK2:CyclinE/A complex activities (Falck J. et al, 2001a; Falck J. et al, 2001b; Falck J. et al, 2002; 

Mailand N. et al, 2000; Niida H. and Nakanishi M., 2006; Peng C.Y. et al, 1997; Sanchez Y. et al, 2007; Smith J. et al, 2010). 

 

Single-stranded DNA gaps may also be detected via associative  “9-1-1”  clamp ATR/ATRIP-activation which, together with activated Chk1, can perturb the 

catalytic  activity of  the Cdc7/Dbf4 protein kinase with consequential  inhibition of DNA replication initiation (Sancar A. et al, 2004; Smith J. et al, 2010). 

In addition to perturbed replication origin firing, the “9-1-1” clamp-triggered ATR→Chk1 pathway also elicts several othe key functional influences on DNA 

damage responses – notably; inhibition of homologous recombination (HR) DNA repair factors, induction of replication fork stability (via associative retention 

of DNA polymerases  within the replication machinery via inhibition of MCM DNA helicase, Mus81 enonuclease-mediated fork cleavage activities and/or fork 

reversal DNA lesion by-pass via modulation of BLM DNA helicase activity) and promotion of alterantive DNA repair pathways to HR such as Translesion 

Synthesis (TLS)-coupled  “Template –Switching”  (Christmann M. et al, 2003; Jansen J.G. et al, 2007; Sancar A. et al, 2004; Taylor M. et al, 2011). 

 

ATM kinase-mediated phosphorylation-induced conversion of Chk2 to its autophosphorylation-activated dimeric kinase form also results in phosphorylation of 

Cdc25A and consequential Intra-S-Phase arrest of the cell cycle (Falck J. et al, 2001; Mailand N. et al, 2000; Niida H. and Nakanishi M., 2006; Peng C.Y. et al, 

1997; Sancar A. et al, 2004; Sanchez Y. et al, 2007; Smith J. et al, 2010). 

 

In either case, ubiquitin-targeted proteolytic removal of Cdc25A phosphatase maintains the S-phase-promoting Cyclin E/Cdk2 complex in its phosphorylated, 

inactive state which perturbs loading of Cdc45 onto the replication origin with consequential inhibition of progressive replication origin firing (Sancar A. et al, 

2004; Smith J. et al, 2010). 

 

Both ATR- and ATM- kinase-mediated phosphorylation of Nbs1 impinge upon formation and associative activities of the Mre11-Rad50-Nbs1 (“MRN”) 

complex  for the orchestrated co-ordination of MRN complex-mediated repair of DNA double-stranded breaks and stalled DNA replication fork recovery, in 

conjunction with inhibition of DNA replication initiation via downstream interactions of the MRN complex with the SMC1/SMC3 heterodimeric complex  

(Christmann M. et al, 2003; Sancar A. et al, 2004; Smith J. et al, 2010).   

 

ATM kinase-mediated phosphorylation of BRCA1 and FANCD2 , with consequential formation of the BRCA1:FANCD2 complex may also impinge upon the 

activity of associative Rad9 C-terminal tail domain BRCA1:TopBP1 ternary complex activities which initiate the recovery of stalled DNA replication forks 

(Christmann M. et al, 2003; Sancar A. et al, 2004; Smith J. et al, 2010). 

 

Interactive association of Fhit (Fragile Histidine Triad Transcription Protein) with the Hus1 sub-unit, within the “9-1-1” clamp complex, is an  essential pre-

requisite  for the co-ordinative coupling of Chk1 activation with cell cycle arrest  to enable sufficient time for DNA repair in mid-S phase (Ishii H. et al, 2006; 

Pichiorri F. et al, 2008) 

 

In Fhit-defective cells,  inappropriate Chk1-initiated DNA damage responses are elicited with consequential uncoupling of cell cycle arrest and impaired DNA 

repair processes which culminate in the propagation of genomic instability and promotion of carcinogenesis (Cirombella R. et al, 2010; Ishii H. et al, 2006)     
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 Fig 1.23: “9-1-1” Clamp Influences on G2/M Checkpoint Activation 
 

             
 

Rad9-Rad1-Hus1 complex-induced ATR→Chk1 activation initiates G2-M arrest via subsequent Chk1 kinase 

phosphorylation of the Wee1 kinase (at Ser 549) which enables formation of the Wee1-14-3-3σ complex with subsequent 

enhancement of the inhibitory Cdc2-targeted Wee1 kinase activity, which phosphorylates CDK1 at Thr14 and Tyr15  with 

consequential abrogation of functional CDK1 associative CDK1/Cdc2:Cyclin B complex-mediated signalling activities which 

are required for G2 cell cycle progression into the mitotic (“M”) phase  (Lee J. et al, 2001; Nyberg K. et al, 2002; Sancar A. 

et al, 2004; Smith J. et al, 2010; Stewart Z.A. et al, 2003). 
 

ATM kinase-mediated phosphorylation-induced conversion of Chk2 to its autophosphorylation-activated dimeric kinase 

form also results in phosphorylation of the Cdc25C phosphatase which initiates the associative formation and subsequent 

nuclear translocation/cytoplasmic sequestration of the  resultant Cdc25C:14-3-3σ complex with consequential inhibition of 

Cdc25C-mediated Thr14 and Tyr15 dephosphorylation-activation of CDK1/Cdc2 and abrogated CDK2/Cdc2:Cyclin B 

complex-mediated signalling activities (Abraham R.T., 2001; Niida H. and Nakanishi M., 2006; Sancar A. et al, 2004; Smith 

J. et al, 2010). 
 

Co-operative parallel pathway “cross-talk redundancy” between the respective “9-1-1” complex-activated and ATM-

activated secondary (distal) transducer kinases Chk1 and Chk2, that phosphorylate both Cdc25C and Wee1, ensures the 

initiation of an appropriate degree of sustained G2-M arrest response which is dependent upon the biochemical nature and 

extent of the DNA damage (Abraham R.T., 2001; Niida H. and Nakanishi M., 2006; Sancar A. et al, 2004; Smith J. et al, 

2010). 
 

Induction of the G2 checkpoint may also be initiated via direct associative interactions of the  14-3-3σ protein with the 

CDK1/Cdc2-Cyclin B complex, with consequential nuclear translocation/cytoplasmic sequestration of the resultant 

CDK1/Cdc2:14-3-3σ ternary complex and thus perturbed CDK2/Cdc2:Cyclin B complex-mediated signalling activities 

(Chan T.A. et al, 1999; Nyberg K.A. et al, 2002; Sancar A. et al, 2004; Smith J. et al, 2010). 
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 Fig 1.24: “9-1-1” Clamp-Induced p38-MAPK Checkpoint Signalling 
 

          
 

Autophosphorylation-activated ATM and “9-1-1” clamp-activated ATR primary (proximal) transducer kinases may also activate the p38-

MAPK kinase isoforms in response to DNA damage and/or perturbed DNA replication induced by various cytological stress factors 

including; U.V. irradiation, cold shock, heat shock, cold shock, osmotic shock, oxidative stress and inflammatory biochemical signalling 

events (Bulavin D.V. et al, 2001; Casanovas O. et al, 2000; Denoyelle C. et al, 2006; Faust D. et al, 2005; Ito K. et al, 2006; Kishi H. et al, 

2001; Reinhardt H.C. et al, 2007; Reinhardt H.C. and Yaffe M.B., 2009; Reiser V. et al, 2006; Thornton T.M. and Rincon M., 2009; Zhou 

B.B. and Elledge S.J., 2000). 

 

Activation of the p38-MAPK isoforms may proceed via direct ATM-mediated phosphorylation and/or via an indirect pathway involving 

ATR-phosphorylation of Thousand-and-One Kinases (TAO’s) which then initiate phosphorylated-activation of Map Kinase Kinases 3 and 

6 (MKK3/6) which in turn phosphorylate and thereby activate the p38 MAPK kinases (Raman M. et al, 2007; Reinhardt H.C. et al, 2007; 

Reinhardt H.C. and Yaffe M.B., 2009; Thornton T.M.  and Rincon M., 2009; Wang X. et al, 2000; Zhou B.B. and Elledge S.J., 2000). 

 

p38 MAPK kinase isoforms both stabilise and phosphorylate  p53 (at Ser15, Ser389 and Ser392) with consequential induction of p21, which 

is also stabilised by p38 MAPK’s, which culminates in the induction of rapid G1/S arrest, Mid-S phase arrest and G2/M arrest (Bulavin 

D.V. et al, 1999; el-Deiry W.S. et al, 1993; Han J. and Sun P., 2007; Huang C. et al, 1999; Hui L. et al, 2007; Kim Y.G. et al, 2002; She Q.B. 

et al, 2000; She Q.B. et al, 2001) – via the respective celle cycle checkpoint pathways discussed previously (Figs 1.21 – 1.23, pp.57 -59). 

 

p38 MAPK phosphorylation-mediated activation of  p53-induced elevated transcriptional expression of the GADD45 proteins (Growth 

Arrest DNA Damage) also results in the cumulative formation of GADD45:CDK1(Cdc2) complex with consequential inhibition of 

CDK1(Cdc2)/Cyclin B activity and initiation of G2/M cell cycle arrest (Zhan Q. et al, 1999; Thornton T.M. and Rincon M., 2009). 

 

p38 MAPK kinase isoforms are also implicated in the phosphorylation-inactivation and subsequent 14-3-3σ protein-mediated cytosolic 

sequestration of the phosphatases Cdc25A and Cdc25B (via p38 MAPK-induced activation of the MAPKAP2 kinase which then 

phosphorylates and inactivates Cdc25B), in conjunction with p38 MAPK phosphorylation-mediated activation of  p53-induced elevated 

transcriptional expression of 14-3-3σ, with consequential initiation of maintained G1/S arrest and G2/M arrest (Goloudina A. et al, 2003; 

Hermeking H. et al, 1997; Lemaire M. et al, 2006; Lopez-Girona A. et al, 1999; Manke I.A. et al, 2005; Morris M.C. et al, 2005) – via the 

respective cell cycle checkpoint pathways discussed previously (Figs 1.21 - 1.23, pp.57 - 59). 

 

p38 MAPK kinase isoforms also target and modulate the transcriptional activity of the INK4a/ARF gene locus, with consequential elevated 

expression of  the encoded p16 (INK4a) and p19 (ARF) proteins which regulate the G1/S checkpoint via two distinctive mechanistic 

pathways (Bulavin D.V. et al, 2004; Faust D. et al, 2005; Ito K. et al, 2006; Roussell M.F., 1999; Thornton T.M. and Rincon M., 2009). 

 

The p16 protein inhibits Cyclin-Dependent Kinase CDK4/6 activation and initiates a maintained G1/S arrest, whilst the p19 protein 

enhances the functional stability of the p53 protein (via cytosolic sequestration of the MDM2 protein which targets p53 in the nucleus for 

ubiquitin-mediated proteolysis) with consequential elevated expression of p21 which culminates in rapid G1/S arrest and G2/M arrest 

(Weber J.D. et al, 1999; Tao W. and Levine A.J., 1999) – via the respective cell cycle checkpoint pathways discussed previously (Figs 1.21 – 

1.23, pp.57 -59). 

 

p38 MAPK kinase isoforms also inactivate Cyclin D1 via direct targeted phosphorylation and/or phosphorylation-stabilisation of the HMG-

Box transcriptional  protein HBP1 which suppresses the transcriptional activity of the Cyclin D1 gene, with consequential initiation of a 

maintained G1/S cell cycle arrest (Lavoie J.N. et al, 1996; Yee A.S. et al, 2004; Thornton T.M. and Rincon M., 2009). 

                                                             [60] 



    Fig 1.25 “9-1-1” Clamp Influences on the Circadian Checkpoint 
 

     [Compiled via Collated Information Taken and Adapted From: He W. et al, 2011;  

                                                                                                                    Kondratov R.V. and Antoch M.P., 2007; 

                                                                                                                    Kondratov R.V. et al, 2007; 

                                                                                                                    Levi F. and Schibler U., 2007; 

                                                                                                                    Morgan D.O., 1997; 

                                                                                                                    Zhou B.B. and Elledge S.J., 2000] 

 

                                 
 

The core circadian clock proteins PER1 (Period 1) and TIM1  (Timeless), together with its non-circadian partner TIPIN 

(TIM1-Interacting Protein), are also implicated in the activation of the primary (proximal) transducer kinases Chk1 and 

Chk2 in response to genotoxic damage and/or DNA replication stress for the regulatory temporal co-ordination of the G1/S 

(ATM→Chk2 pathway) and G2/M (“9-1-1” clamp-initiated ATR→Chk1 pathway) cell-cycle checkpoints with DNA 

metabolism (Antoch M.P. and Kondatov R.V., 2010; Chen C. and McKnight S.L., 2007; Collis S.J. and Bolton S.J., 2007; 

Duffield G.E. at al, 2002; Gauger M.A. and Sancar A., 2005; Hong C.I. et al, 2009; Unsul-Kacmaz K. et al, 2005; Zhou B.B. 

and Elledge S.J., 2000) – Figs 1.21 - 1.24, pp.57-60. 

 

The Chk2-ATM-PER1 heterotrimeric complex initiates the G1/S checkpoint arrest and the ATR-TIM1-Chk1 

heterotrimeric complex initiates the G2/M checkpoint arrest, in which TIM1 may also be  implicated in the ATM-dependent 

activation of the Chk2-initiated G2/M arrest (Antoch M.P. et al, 2005; Kemp M.G. et al, 2010; Yang X. et al, 2010) – 

discussed previously in Fig 1.21, p.57 and Fig 1.23, p.59. 

 

TIM1, in heterodimeric complex association with its non-circadian partner TIPIN, may also interact with Claspin, DNA 

polymerases, the Replication Protein A sub-unit RPA34 and MCM helicase in a collectively protein assembly which travels 

with the DNA replication fork and may initiate an Intra-S phase-type replication checkpoint arrest for temporal co-

ordination of transient oscillatory DNA replication and DNA recombination events which are induced under both normal 

and genotoxic/replication stress-related cytological conditions (Gotter A.L., 2003; Gotter A.L. et al, 2007; Loros J.J. et al, 

2007; Unsul-Kacmaz K. et al, 2007; Yoshizawa-Sugata N. and Masai H., 2007). 
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Fig 1.26: “9-1-1” Clamp-Induced G2-Decatenation Checkpoint Model  
 

[Compiled via Colated Information Adapted From: Greer Card D.A. et al, 2010; He W. et al, 2011; 

                                                                                                   Pichierri P. et al, 2003; Pichierri P. et al, 2011; 

                                                                                                   Pichierri P. et al, 2012; Sancar A. et al, 2004 
 

 
The Rad9-Rad1-Hus1 complex is loaded onto RPA-coated stalled replication forks, whose induction may be mediated via a variety of 

different genotoxic- and/or replication-stress- related cytological events which culminate in adverse DNA topological rearrangements within 

the chromatin supramolecular architecture (discussed later in Section 1.2.5, pp.86-118; Fig 1.35, p.89 and Fig 1.36, p.90) – as in the case of 

the impairment of Topoisomerase II activity with resultant formation of catenated chromatids that may promote double-strand breakage 

(DSB) events. (Dillon L.W. et al, 2010; Greer Card D.A. et al, 2010). 

 

Human Rad9A, acting in associative concert with TopBP1 (which also binds Topoisomaerse II), ATR and BRCA1, within the “9-1-1” clamp 

complex, may trigger a G2-Decatenation checkpoint in which ATM-mediated phosphorylation of Rad9A at Thr272 within its C-Terminal 

Tail Domain and Thr68 within Chk2 is also implicated with consequential prevention of cut-like cytological phenotypes, suppression of re-

replication events and phasic arrest of cell cycle progression to provide time for stalled fork recovery and/or appropriate rectification of 

DSBs via the Homologous Recombination Repair  (HRR) pathway (discussed later in Section 1.2.5, p.109; Fig 1.48, p.109) – which is 

initiated via Chk1-phosphorylated-activation of the Rad51 DNA repair factor (Enders G.H., 2008; Greer Card D.A. et al, 2010). 

 

Both ATM and ATR primary (proximal) transducer checkpoint kinases are also implicated in the differential phosphorylation of  the 

Werner Syndrome  protein (WRN) which possesses 3’-5’-exonuclease and helicase domain activities and catalyses the unwinding of 

secondary DNA structures such as hairpins, DNA forks, resolution of recombination intermediates via Holliday Junction Branch migration 

and induction of D-loop dissociation and degradative removal of  bubbles, stem-loops,  and 3-way or 4-way DNA junctions (Ammazzalorso 

F. et al, 2010; Oshima J., 2000; Pichierri P., 2003; Pirzio L.M. et al, 2008; Rossi M.L. et al, 2010;  Salk D., 1985; Sidorova J.M., 2008). 

 

ATR phosphorylated-activation of WRN (at Ser991, Thr1152 and Ser1256), via “9-1-1”-complex associative WRN-Rad1 interactive 

recruitment of WRN in association with RPA at nuclear foci of stalled replication fork sites and in close proximity to the primary 

transducer checkpoint kinase, initiates WRN-catalysed repair of the stalled DNA fork and  thus prevents formation of DSBs to enable 

replication fork recovery (Ammazzalorso F. et al, 2010; Gray M.D. et al, 2005; Pichierri P. et al, 2007; Rossi M.L. et al, 2010). 

 

Collapsed replication fork degeneration-induced DSB formation is prevented via ATM-mediated phosphorylation of WRN (at Ser1058, 

Ser1141 and Ser1292) which induces supramolecular conformational changes within the WRN protein which promote its dissociation from 

RPA and the Rad1 sub-unit of the “9-1-1” clamp, prior to appropriate rectification of the collapsed replication fork via the alternative  

Chk1-activated Rad51-Mediated HRR repair pathway (Ammazzalorso F. et al, 2010; Pichierri P. et al, 2007; Pichierri P. et al, 2011).  
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Fig 1.27:”9-1-1” Clamp Influences on Intra-M Phase Checkpoints 
 

[Compiled via Collated Information Taken and Adapted From: Chin C.F. and Yeong F.M., 2010 

                                                                                                                         Malumbres M. and Barbacid M., 2007 

                                                                                                                         Musacchio A. and Hardwick K.G., 2002] 

   
The cytological regulation of the centrosome cycle and appropriate temporal chromosomal segregation is tightly choreographed via a series 

of sequential Intra-M Phase checkpoints for the prevention of propagated chromosomal aberrations during mitosis (Fig 1.9, p.16), thereby 

acting as a further “safe-guard” against potential neoplastic transformation and progression (Chin C.F. and Yeong, 2010; Malumbres M. 

and Barbacid M., 2007; Mussachio A. and Hardwick K.G., 2002).  

 

Cyclin-Dependent Kinases (eg CDK1/Cdc2, CDK4), NIMA (Never-In-Mitosis Aspergillus)-like Kinases (NEKs),  Polo-Like Kinases (eg 

PLK1) and Aurora Kinases (Aurora-A, Aurora-B, and Aurora-C) function as  transducers and/or effectors in various signalling pathways 

which control appropriate co-ordination of centrosome cycle progression in conjunction with mitotic spindle formation and activation of 

the Anaphase Promoting Complex/Cyclosome (APC/C) (Chin C.F. and Yeong, 2010; Chung I. et al, 2011; Longhese M.P. et al, 2006; 

Malumbres M. and Barbacid M., 2007; Mussachio A. and Hardwick K.G., 2002).  – Fig 1.28, p.64. 

 

The functional activity of the Spindle Assembly Checkpoint (SAC), which “monitors” and ensures the correct symmetrical bipolar 

attachment orientation of the mitotic spindle microtubules to the sister chromatids, is regulated by the Bub Kinases (Bub1, BubR1), Aurora 

B kinase and a dual-specificitySer/Thr/Tyr kinetochore kinase known as the Monopolar Spindle Kinase 1 (MPS1/TTK1) that are key 

components of the Mitotic Checkpoint Complex (MCC) (Chin C.F. and Yeong, 2010; Malumbres M. and Barbacid M., 2007; Mussachio A. 

and Hardwick K.G., 2002)  – Fig 1.28, p.64; Fig 1.29, p.65. 

 

Co-ordinated ATM and associative “9-1-1” clamp-ATR ternary complex functions culminate in the  activation of the distal transducer 

kinases Chk1 and p38 (Fig 1.24, p.60) which in turn may impinge upon the regulation of various Intra-M phase checkpoints, including in 

particular the Spindle Checkpoint (Fig 1.20, p.56; Fig 1.28, p.64; Fig 1.29, p.65), via phosphorylation-mediated alteration of the functional 

activities of specific kinases such as Aurora B, BUB1, CDK1/CCNB, PLK1 and the Kinesin-Like Plus-End Directed Motor protein – termed 

“CENP-E” (Chin C.F. and Yeong, 2010; Malumbres M. and Barbacid M., 2007; Mussachio A. and Hardwick K.G., 2002). 
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 Fig 1.28: Asymmetric Kinetochore Spindle Attachment Rectification 
 

[Compiled via Collated Information Taken and Adapted From: Acquaviva C. and Pines J., 2006 

                                                                                                                         Chan G.K. and Yen T.J., 2003 

                                                                                                                         Fuller B.G. and Stukenberg P.T., 2009 

                                                                                                                         Maresca T.J. and Salmon E.D., 2010 
 

 
During Prometaphase (Fig 1.27, p.63), formation of asymmetrical types of kinetochore-mitotic spindle attachments (ie Syntelic or 

Merotelic) triggers activation of the Spindle Assembly Checkpoint complex (SAC) in conjunction with the soluble Mitotic Checkpoint 

Complex (MCC), which inhibit the Anaphase Promoting Complex/Cyclosome (APC/C) and initiate a “Wait Anaphase” signal arrest to 

provide time for the dissociative removal of misaligned kinetochore-mitotic spindle attachments and completion of Monotelic kinetochore-

mitotic spindle reattachment-directed formation of the correct symmetrical bi-polar Amphitelic kinetochore-mitotic spindle attachments, 

prior to separation of the sister chromatids (Acquaviva C. and Pines J., 2006; Chan G.K. and Yen T.J., 2003; Longhese M.P. et al, 2008; 

Quevedo O. et al, 2012; Tan A.L.C. et al, 2005) –Fig 1.29, p.65.  

 
Cytokinetic activity within the mitotic spindle “mid-zone” is regulated by the Chromosomal Passenger Complex (CPC), which is implicated 

in the co-ordination of APC/C specificity factor Cdc20-mediated inhibition of mitotic checkpoint activation with sister chromatid 

disjunction during Anaphase (Maresca T.J. and Salmon E.D., 2010; Tseng B.S. et al, 2010; Tsukahara T. et al, 2010). 

 

Progression from metaphase to anaphase is mediated via the Cdc20 specificity factor component of the APC/C complex, which suppresses 

CDK1 activity via induction of Cyclin B degradation and induction of Securin degradation to liberate the protein Separase required for the 

catalytic separation of sister chromatids durning Anaphase via hydrolysis of the protein Cohesin – which maintains associated sister 

chromatid pairs during Metaphase. (Maresca T.J. and Salmon E.D., 2010; Tan A.L.C. et al, 2005) – Fig 1.29, p.65. 

 

Consequential loss of CDK1 activity, in conjunction with dephosphorylation of the INCENP protein and relocation of the CPC complex 

from the centromeres to the spindle mid-zone, prevents inappropriate/catastrophic activation of the mitotic checkpoint during Anaphase in 

response to loss of kinetochore-mitotic spindle attachment tension as a consequence of normal sister chromatid separation. (Maresca T.J. 

and Salmon E.D., 2010; Tan A.L.C. et al, 2005; Vázquez-Novelle M.D. et al, 2010) – Fig 1.29, p.65. 
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Fig 1.29: Mechanistic Overview of the Mitotic Spindle Checkpoint  

 

[Compiled via Collated Information Taken and Adapted From: Grimison B. et al, 2006; Kitagawa K. et al, 2003; 

                                                                                                                                         Liu J. et al, 2007; Maresca T.J. & Salmon E.D.,2006; 

                                                                                                                                         Longhese M.P. et al, 2006; Maresca T.J. and Salmon E.D.,  

                                                                                                                                          2010;  Tan A.L.C. et al, 2005; Vigneron S. et al, 2004                                                                                                                                                                                                                                            

 
INCENP and Aurora B kinase are key functional components of the chromosomal tension sensory apparatus which detects anomalous 

asymmetrical/non-bipolar kinetochore-mitotic spindle attachments (Fig 1.28, p.64) and initiates formation of the spindle checkpoint-

mediated signalling cascade complex (Liu S.T.  et al, 2003; Tan A.L.C. et al, 2005;Tseng B.S. et al, 2010; Vigneron S. et al, 2004). 

 

CDK1-mediated phosphorylation of Bub1 promotes formation of the Bub1:Bub3 heterodimeric complex, which is recruited to the 

kinetochore via associative Skp1-Bub1 interactions, with consequential kinetochore recruitment of the Mad1:Mad2 heterodimeric complex 

via associative Bub3 interactions within the resultant kinetochore-Skp1-Bub1-Bub3 ternary complex (Yamaguchi S. et al, 2003). 

 

p38-MAP Kinase-mediated phosphorylation of CENP-E may also promote its association with kinetochore-bound microtubules for 

activated kinetochore-mitotic spindle-CENP-E ternary complex-mediated recruitment of the Bub3:BubR1/Mad3 heterodimeric complex 

via associative CENP-E – BubR1/Mad3 interactions (Ditchfield C. et al, 2003; Howell B.J. et al, 2001; Huang Y. et al, 2009; Maia A.F. et al, 

2010). 

 

Mps1 kinase-mediated hyperphosphorylation of Mad1 and Bub1, in conjunction with Bub1 kinase-mediated phosphorylation of Mad1 am 

Bub3 (denoted by red arrows), induce transient sub-complex conformational changes within the associative kinetochore-mitotic checkpoint 

ternary complex that promote protein component associative re-organisation and  turn-over (denated by green arrows) events with 

consequential release of soluble Mad2 – termed “Mad2(aq)” which forms Cdc20-inhibitory type soluble complexes (Brady D.M. and 

Hardwick K.G., 2000; Hewitt L. et al, 2010; Seeley T.W. et al, 1999; Wassmann K. et al, 2003). 

 

The heterodimeric Mad2(aq):Mad1 complex sequesters the Ubiquitin Ligase APC/C complex specificity factor Cdc20 with consequential 

inhibition of APC/C-Cdc20 complex-mediated ubiquitin-targeted proteasomal degradation of Securin and Cyclin B, thereby blocking 

Anaphase progression and mitotic exit (Emre D. et al, 2011; Fava L.L. et al, 2011; Maldonado M. and Kapoor T.M., 2011; Orth M. et al, 

2011). 

 

Mps1 kinase- and Bub1 kinase-mediated phosphorylation of the APC/C-Cdc20 complex may also elicit its associative transfer to the 

heterotrimeric BubR1/Mad3-Mad2-Bub3 complex, which promotes Cdc20 destabilisation with consequential inhibition of proteosomal 

degradative removal of Securin and Cyclin B for maintained Anaphase arrest and blocked mitotic exit (Yudkovsky Y. et al, 2000) . 

 

Both BubR1/Mad3 and Mad2 also abrogate associative interactions between the APC/C complex and Cdc20 protein within the resultant 

BubR1/Mad3-APC/C-Cdc20 -Mad2-Bub3 ternary complex (Morrow C.J. et al, 2005; Hewitt L. et al, 2010). 
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1.2.3 Androgen Nuclear Receptor Activity Modulation 
 

The C-terminal domain of the hRad9 protein, acting within the hHus1/hRad1 associative 

hetereotrimeric toroidal 9-1-1 DNA sliding-clamp complex, has also been observed to interact with 

the C-terminal Ligand Binding Domain (LBD) of  nuclear Androgen Receptor (AR) in a co-

regulatory capacity which suppresses its transactivation in prostate tumour cells. (Wang L. et al, 

2004) – Summarised in Fig 1.32, p.72. 

 

The nuclear Androgen Receptor protein (AR) is essentially comprised of four domains, namely; 

the N-Terminal Transactivation Domain (TTD), the DNA Binding Domain (DBD), the Hinged-

Region Domain and the C-Terminal Ligand Binding Domain (LBD) respectively. (Chang C.S. et 

al, 1988a; Chang C.S. et al, 1988b; Chang C. et al, 1995; He B. and Wilson E.M., 2002; Lee D.K. 

and Cheng C., 2003; Manglesdolf D.J. et al, 1995) – Fig 1.31, p.71. 

 

The inactive nuclear AR is sequestered in the cytosol in stable associative complexation with heat 

shock proteins, such as Hsp70 and Hsp90, respectively – Fig 1.30, p.70. 

 

Initial activation of the nuclear AR is triggered via endogenous ligand associative interactions of 

the steroid hormone substrates; testosterone and 5α-dihydroxytestosterone, with the AR C-terminal 

LBD, which induce supramolecular configurational alterations within the AR protein that 

thermodynamically-favour heat shock complex dissociation, promote AR phosphorylation and 

translocation to the nucleus. (Manglesdolf D.J. et al, 1995; Lee D.K. and Cheng C., 2003) – Fig 

1.30, p.70 and Fig 1.31, p.71 
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Ligand-activated AR dimerisation, mediated via anti-parallel associative interactions between the 

two respective individual AR protein sub-units, then proceeds within the nuclear environment 

(Bledsoe R.K. et al, 2002; He B. and Wilson E.M., 2002; Langley E. et al, 1995) – Fig 1.30, p.70. 

 

The supramolecular configuration of the AR dimer enables it to recognise and bind to specific 

DNA response element sequences within target gene promoters, via duplex major groove 

intercalation associations with the two DNA Binding Domains (DBDs), prior to subsequent 

recruitment of a variety of endogenous selective type I steroid co-regulators which contain specific 

sequence motifs that interact with the N- and C- termini of the AR dimer, for consequential 

enhancement of gene transcription. (Heinlein C.A. and Chang C., 2002) – Fig 1.30, p.70 and Fig 

1.31, p.71. 

 

For example, protein ligands of the p160/Steroid Receptor Coactivator family – which include; 

SRC1, SRC-2/TIF2, SRC3/A1B1/pCIP/RAC3 interact with the DNA-AR dimer complex via 

induction of a supramolecular configurational realignment of helix 12 within the AR dimer sub-

units to expose a small hydrophobic binding pocket within the AR C-Terminal LBD – to which the 

small α-helical LXXLL motif (Fig 1.31, p.71), contained within the coactivator protein ligand, is 

docked. (Heery D.M. et al, 1997; Darimont B.D. et al, 1998; Feng W. et al, 1998; Glass C.K. and 

Rosenfeld M.G., 2000; Llopis J. et al, 2000; McInery E.M. and O’Malley B.W., 2002). 

 

Conversely, other AR protein co-activator ligands, such as ARA54 and ARA70 interact with the 

DNA-AR dimer complex via targeted recognition and docking with the FXXLF motif (Fig 1.31, 

p.71) - which is also a ligand-dependent AR-associated peptide motif, located within the AR N-

Terminal Transactivation Domain (N-TTD), that mediates interactions between the AR N-TTD 

and AR C-LBD terminal domains which optimise maximal nuclear AR transactivation. (Yeh S. 

and Chang C., 1996; Chang C. et al, 1999;  Kang H.Y. et al, 1999, Hsu C.L. et al, 2003).  
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AR co-regulatory ligands such as; ARA54, ARA67, ARA70N, Gelsolin and SRC-1, modulate AR 

transactivation via subtle, transient differential alterations of the supramolecular configuration of 

the AR N-C termini interaction respectively. (Hsu C.L. et al, 2005) – Fig 1.31, p.71. 

 

In this respect, AR co-activators such as; ARA54, ARA70N, Gelsolin and SRC1 induce 

enhancement of AR transactivation, whilst  ARA67 acts as an AR co-repressor via induced 

enhancement of a particular supramolecular AR N-C termini interactive configuration which 

results in steric inhibition of AR transactivation. (Hsu C.L. et al, 2005). 

 

The C-terminal domain of hRad9 also contains an FXXLF motif of similar functional homology 

sequence to the FXXLF motif situated within the N-terminal transactivation domain (N-TTD) of 

the AR (He B. et al, 2002; Wang L. et al, 2004) – Fig 1.32, p.72 and possesses a relatively strong 

associative interactive affinity for the C-terminal AR-LBD as a consequence of several key 

features related to the thermodynamically-favourable amino acid sequence side-chain physico-

chemical properties present within and/or in flanking proximal relative positions to the FXXLF 

motif which closely match the optimal binding criteria model (proposed by He B. and Wilson E.M., 

2003) with regard to interaction of the AR-TDD N-terminal FXXLF motif with the C-terminal 

AR-LBD - notably; 

 

(i) The presence of two positively-charged/protonated amino group Lys side-chain residues,  

      at positions K359 at positions K360 within the hRad9 C-terminal domain (Fig 1.32, p.72) 

      – situated directly adjacent to the end of the N-terminus of the residual FXXLF motif. 

      (He B.  and Wilson E.M., 2003; Wang L. et al, 2004). 

 

(ii) The absence of positively-charged/protonated-basic group side-chain amino acid residues 

      at the end of the C-terminus of the residual FXXLF motif within the hRad9 C-terminal 

      tail domain. (He B. and Wilson E.M., 2003; Wang L. et al, 2004) – Fig 1.32, p.72. 
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(iii) The absence of potential α-helical conformer-distortional types of amino acid side-chains 

       (such as glycine and proline) within the FXXLF motif located in the hRad9 C-terminal 

        tail domain. (He B. et al, 2002; Wang L. et al, 2004) – Fig 1.32, p.72. 

 

(iv) The critical location of a phenylalanine residue (F366)  to the FXXLF motif 

       C-terminus (Fig 1.32, p.72) within the hRad9 C-terminal tail domain 

       (He B. et al, 2002; Wang L et al, 2004). 

 

The hRad9 protein, acting within the hHus1/hRad1 associative hetereotrimeric toroidal 9-1-1 DNA 

sliding-clamp complex, is currently hypothesised to possess an anti-carcinogenesis role with 

regard to the suppression of functional AR transactivation as a consequence of inhibitory 

disruption of the AR N-C termini interactions – Fig 1.32, p.72. 

 

These inhibitory interactions are mediated through associative binding interactions between the 

AR C-terminal LBD and the FXXLF motif within the protruding C-terminal tail domain of the 

hRad9 protein, which are initially triggered via formation of DNA damage lesions within the AR 

target promoter response elements, for prevention of un-regulated AR Dimer-induced 

dysfunctional enhanced gene transcription of steroidal growth factors. (Wang L. et al, 2004) – Fig 

1.32, p.72.  

 

The AR also modulates the transcriptional activity of a range of genes which are implicated in a 

range of different cytological processes, including; apoptosis, ATP-coupled ion transport, 

differention, development, genotoxic responses, inter-cellular signalling, metabolism, 

morphogenesis,  replication stress responses (Bolton E.C. et al, 2007; Massie C.E. et al, 2007). 

 

The AR also has non-genomic type functions within various plasma membrane- and kinase- 

mediated signalling pathways (Bennett N.C. et al, 2010), which may impinge upon other Rad9-

modulated activities such as checkpoint activation, DNA repair and nucleotide biosynthesis. 

          

                                                   [69]      



      Fig 1.30: Mechanistic Overview of Androgen Receptor Activity 
 

       [Compiled via Collated Information From: Bennett N.C. et al, 2010;  Centenera M.M. et al, 2008] 

 
 

    
 

Binding of the steroidal substrates testosterone, or  DHT (dihydrotestosterone – synthesised via conversion of testosterone to 

DHT via the enzyme 5-α-Reductase), to the Ligand Binding Domain (LBD) of the AR monomer (AR) induces supra-

molecular configurational changes within the protein, that initiate its phosphorylated activation at residues Ser80 and Ser93 

(situated within the N-Terminal Transactivation Domain – NTTD) and Ser641 (situated within the Hinge Domain), which in 

turn induces further supra-molecular configurational changes that promote dissociation from the AR Hinge-Domain-

Filamin A-Actin Filament and (Hsp90)2:Hsp70 protein chaperone interactions which maintain the AR in the cytosol in an 

inactive state (Bennett N.C. et al, 2010; Brinkmann A.O. et al, 1989; Brinkmann A.O. et al, 1999; Centenera M.M. et al, 

2008; Gioeli D. et al, 2002; Marcelli M. et al, 2006) 
 

Subsequent associative interactions between the hinge-domain and nuclear localisation site (NLS) domain within the 

released AR-Steroid Substrate complex and the transportor protein Importin-α mediate nuclear translocation of the 

monomeric AR-Steroid Substrate complex (Bennet N.C. et al, 2010; Lamont K.R. and Tindall D.J., 2010). 
 

Dissociation of Importin-α, within the nuclear microenvironment, promotes dimerisation of the AR-Steroid Substrate 

complex (Bennet N.C. et al, 2010; Centenera M.M. et al, 2008; Lamont K.R. and Tindall D.J., 2010). 
 

The resultant dimeric AR complex, (AR)2, then binds to sequence-specific Androgen Response Elements (AREs) situated 

within the DNA of various genes, via Zinc-Finger Motifs (Fig 1.31, p.71), which induce proximal site configurational changes 

within the local chromatin supra-molecular architecture that facilitate access of the transcriptional protein machinery to the 

gene promoters with consequential enhancement of gene expression (Beato M., 1989; Bolton E.C. et al, 2007; Chen T., 2008; 

Claessens F. et al, 2001; Cleutjens C.B. et al, 1997; Funder J.W., 1993; Lambert J.R. and Nordeen S.K., 1998). 
 

The gene transcriptional-induction activity of the dimeric Androgen Receptor Complex, (AR)2 is regulated via interactions 

with a variety of two main classes of Co-Activator and Co-Repressor proteins – notably; The “ARA-type” ligands which 

associate with F/WxxLF motifs situated in the NTTD Domain and the “SRC/p160-type” ligands which associate with the 

LxxLF motif situated in the LBD Domain (Bennett N.C. et al, 2010; Chang C-Y. and McDonnell D.P., 2005; Chen T., 2008; 

Glass C.K. and Rosenfeld M.G., 2000; Kemppainen J.A. et al, 1999; Rosenfeld M.G. et al, 2006) – discussed in detail on 

pp.67-68. 
 

Subsequent DNA-transcriptional and translational protein machinery interactions induce further conformational changes 

within the chromatin supra-molecular architecture which promote dissociation of the Androgen Receptor Dimer, from the 

ARE binding-site, into the monomeric form which is then exported out of the nucleus and re-cycled via re-asscoiative 

formation of the cytososkeletal-bound (Hsp90)2:Hsp70-AR-FilaminA-Actin ternary complex (Bennett N.C. et al, 2010) 
 

Phosphorylation at Ser80, Ser93 and Ser641 residues within the nuclear-exported monomeric form of Androgen Receptor 

stabilises and protects the protein from proteasomal degradation, prior to re-cycling (Bennett N.C. et al, 2010).   

                                                       [70] 



        Fig 1.31: Functional Domain Map of the Androgen Receptor 
 

           [Compiled via Collated Information From: Bennett N.C. et al, 2010; Centenera M.M. et al, 2008 

                                                                                      Koochekpour S, 2010; Nguyen D. et al, 2001 

                                                                                             

            
   
The Androgen Nuclear Receptor Monomer is classified into 5 main domain-containing segments – notably; A or B (designated for each of 

the respective 2 isoforms of  the AR which are expressed – A = Full-Length Isoform, B= Truncated N-Terminus Isoform, both containing 

the “N-TTD” Domain Isoform), C (containing the DNA Binding Domain – “DBD”), D (Containing the “Hinge Region”), E (containing the 

Nuclear Exclusion Signal –“NES” and comprising the major portion of the “LBD” Domain) and F (containing the Nuclear Localisation 

Signal – “NLS” and comprising the minor  C-terminal  portion of the LBD) (Adler A.J. et al, 1993; Beato M. et al, 1995; Ham J. et al, 1988).                                                                                                                         

 

Phosphorylation of residues Ser80, Ser93 and Ser641 enhances the stability of the Androgen Receptor monomer and protects the protein 

from preoteasomal degradation (Bennett N.C. et al, 2010; Block L.J. et al, 1998). 

 

Phosphorylation of residues Ser213, Ser506 and Ser650 is a critical pre-requisite for induction of the transcriptional activity of the 

Androgen Receptor dimer (Bennett N.C. et al, 2010; Rochette-Egly C., 2003). 

 

The N-Terminal Transactivation Domain (“N-TTD”) contains FxxLF and WxxLF motifs, the Activation Function protein-interactive 

surface sub-domains AF1 and AF5 and the Transactivation Unit sub-domains TAU1 and TAU5 (Jenster G. et al, 1995). 

 

The C-Terminal Ligand-Binding Domain (“LBD”) contains the LxxLL motif, and the Activation Function protein-interactive sub-domain 

AF2 (Bennett N.C. et al, 2010). 

 

The AF2 sub-domain possesses a higher affinity for FxxLF and WxxLF motifs within the N-Terminal Transactivation Domain (NTTD), 

than the FxxLL-like motifs contained within the “SRC/p160 type” co-regulatory protein ligands which associate with the Ligand-Binding 

Domain (He B. et al, 2004; He B. et al, 1999; He B. et al, 2000; He B. et al, 2001; Bennett N.C. et al, 2010; Matias  P.M. et al, 2000; Nazareth 

L.V. et al, 1999; Sack J.S. et al, 2001). 

 

The FxxLF and WxxLF motifs within the N-TTD associatively interact with the “ARA-type” co-regulatory protein ligands (Heery D.M. et 

al, 1997; Hur E. et al, 2004). 

 

The N/C-Termini interactions between the NTTD and LBD domains, mediated via the FxxLF, WxxLF and LLxxL motifs, are implicated in 

the DNA-dependent  formation of the active Androgen Receptor dimer (He B. and Wilson E.M., 2002;  Li J. et al, 2006).   

 

Thus the TAU1 and TAU5 sub-domains, “in concert” with the AF1 and AF5 sub-domains, function collectively as the major NTTD domain 

regulatory sites for modulation of the transcriptional activity of the Androgen Receptor (Bennett N.C. et al, 2010; Wong C.I. et al, 1993) .  

 

The DNA-Binding Domain (DBD) is comprised of the three α-helical domains of the respective Zinc-Fingers and the C-Terminal Extension 

(Freedman L.P. et al, 1988; Remerowski M.L. et al, 1991 Schoenmakers E. et al, 2000; Truss M. and Beato M. 1993) 

 

The first Zinc-Finger contains a D-box motif comprised of 5 key residues which are implicated in DNA base-sequence recognition of the  

Androgen Response Element (ARE) and engage in associative AR-binding interactions withing the major  groove of the duplex, the 2nd Zinc 

Finger contains a D-Box Motif comprised of 5 key residues which engage in DNA-dependent AR dimerisation (Bennett N.C. et al, 2010; 

Centenera M.M. et al, 2008; Dahlman-Wright K. et al, 1991; Roche P.J. et al, 1992; Schoenmakers E. et al, 1999). 

 

Proximal polypeptide sequences flanking the D-box and P-box motifs effect additional  associative interactions which enhance the stability 

and  DNA binding affinity of the Androgen Receptor dimer (Haelens A. et al, 2001; Tsai S.Y. et al, 1988; Umesono K. et al, 1989). 

 

The C-Terminal Extension (CTE) motif effects additional DBD domain associations, “in synch.” with adjacent residues within the 2nd Zinc 

Finger Motif, which enhance the DNA-binding affinity and specificity of the Androgen Receptor dimer to the ARE within the target gene 

(Bennett N.C. et al, 2010; Schoenmakers E. et al, 1999; Verrijdt G. et al, 2006). 
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  Fig 1.32: ”9-1-1” Clamp Suppression of Androgen Receptor Activity 
 

 
 

A: The human RAD9A protein C-terminal tail domain (highlighted in green) contains an FXXLF  

     motif (spanning positions 361 to 365) which resembles similar functional sequence homology to  

     the FXXLF motif located in the androgen receptor N-Terminal transactivation domain 

     respectively. (Wang L. et al, 2004). 

 

B: Associative-DNA response element sequence interactions with the ligand-activated dimerised  

      nuclear Androgen Receptor (AR)2 result in enhanced gene transcription under normal 

      conditions.(Heinlein C.A. and Chang C., 2002). 

 

Recruitment of the heterotrimeric toroidal “9-1-1” DNA sliding-clamp complex to sites of chromatin 

damage in proximity to the AR dimer target response element sequence also results in inhibitory 

associative interactions between the AR C-Terminal Ligand Binding Domain and the FXXLF motif 

within the protruding C-Terminal Tail Domain of the Rad9 protein with consequential suppression 

of functional AR transactivation for prevention of potential inappropriate/dysfunctional, un-

regulated expression of steroidal growth factor-mediated cytological neoplastic transformation 

and/or carcinogenesis. (Wang L. et al, 2004).  
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An androgen response element (ARE) has also been identified within the human RAD9A gene,of 

specific target sequence: 5’-CCAAGGCTCTGGTAGTTCTTGGA-3’, to which the zinc finger 

motifs of the AR dimer bind (interactive DNA base sequence recognition target motifs are 

indicated in bold, underlined italics above) with consequential elevation of expressed Rad9A 

protein levels (Moehren U. et al, 2008). 

 

The human Rad9A protein may therefore also auto-modulate its cellular levels and functional 

activities in a potential regulatory feedback mechanism, mediated via Rad9A protein-AR 

interactions, which impinge upon RAD9A gene-AR transcriptional activity.  

 

The plasma membrane-localised estrogen receptor-substrate complex, 17β-estradiol/Estrogen 

Receptor α (E(2)/ER), has also been demonstrated to suppress genotoxic-initiated ATR cell cycle 

checkpoint responsive activities via E(2)/ER induction of rapid PI3K/AKT signalling which 

suppresses associative TopBP1-ATR interactions (Pedram A. et al, 2009). 

 

The resultant E(2)/ER-activated AKT kinase perturbs associative interactions between ATR and 

TopBP1, via phosphorylation of Ser1159 within the TopBP1 protein and also inhibits associative 

interactions between Chk1 and Claspin via targeted phosphorylation of Chk1, with consequential 

suppression of ATR-Chk1-initiated DNA damage response checkpoint signalling pathways 

(Pedram A. et al, 2009). 

 

Since the Rad9-Rad1-Hus1 complex is a fundamental sensory/adaptive mediator of various ATR-

Chk1-initiated genotoxic signalling responses (discussed in detail previously – Section 1.2.2, 

pp.46-65) it is conceivable that additional complex “feedback” mechanisms of cell cycle 

checkpoint pathway regulation may be elicited via associative indirect and/or direct “9-1-1” 

clamp-modulation of Androgen and/or other steroidal receptor activities which impinge upon 

E(2)/ER-mediated PI3K/AKT kinase signalling. 
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Other experimental studies have demonstrated that all three sub-units of the Rad9-Rad1-Hus1 

complex can associate with the TPR2 protein, in which the functional activity of TPR2 is 

modulated exclusively via protein domain-specific Rad9-TPR2 interactions (Xiang S-L. et al, 

2001) – discussed in detail in Section 1.2.4, pp.75-85. 

 

The key function of the TPR2 protein is the modulation of the activity of the Hsp90-mediated 

chaperone protein-folding pathway (Brychzy A. et al, 2003; D’Andrea L.D. and Regan L., 2003; 

Li J. et al, 2011; Moffatt N.S. et al, 2008;Wandlinger S.K. et al, 2008; Young J.C. et al, 1998) – 

discussed in detail in Section 1.2.4, pp.75-85. 

 

As discussed previously, the (Hsp90)2Hsp70 protein chaperone complex apparatus is also 

implicated in the cytosolic sequestration and stabilisation of the androgen receptor monomer in its 

unphosphorylated, inactive form (Fig 1.30, p.70). 

 

Thus it is possible that associative “9-1-1” complex-mediated regulation of TPR2 activity, via 

Rad9-TPR2 functional domain interactions, may be implicated in a separate feedback mechanism 

which impinges upon androgen receptor activity via modulation of Hsp90 and Hsp70 activities.     
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1.2.4: Modulation of TPR2 Activity-Influenced Protein Folding 

 
Post-translational re-modelling of immature client protein/nascent polypeptides into the correct 

supramolecular conformational forms of the functional mature proteins is performed by the protein 

folding machinery which is comprised of a number of key interactive chaperone, co-chaperone and 

co-factor type component complexes (Fink A.L., 1999; Mahalingham D. et al, 2009; Goetz M.P. et 

al, 2003; Wandlinger S.K. et al, 2008) – Fig 1.33B, p.80. 

 

Associative complex interactions of the Hsp70 and Hsp90 chaperone components, with the client 

nascent protein/polypeptide substrate, are mediated via their respective ATPase-coupled activities 

which constitute a cyclical ADP-ATP exchange regulatory mechanism (Grenert J.P. et al, 1999; 

Johnson J.L. and Brown C., 2009; Riggs D.L. et al, 2004) – Fig 1.33B, p.80. 

 

The Hsp70:ATP complex exhibits rapid “on/off” switching kinetics for targeted client nascent 

protein/polypeptide substrates, in which Hsp70-mediated hydrolysis of ATP is initiated via 

associative interactions between the homologous DNAJ domains of the related co-chaperone 

components Hsp40 and p23 (Karagöz G.E. et al, 2011; Ohtsuka K. and Hata M., 2000; Wandlinger 

S.K. et al, 2008; Wegele H. et al, 2004) – Fig 1.33B, p.80. 

 

The resultant ADP-bound–Hsp70 complex induces further supramolecular conformational changes 

within the Hsp70 chaperone component which enhance the strength of its associative binding 

interactions with the client nascent protein/polypeptide substrate (Johnson J.L. and Brown C., 

2009; Wegele H. et al, 2006) – Fig 1.33B, p.80. 

 

The ATP-bound–Hsp90 complex induces supramolecular conformational changes within the 

Hsp90 chaperone component which enhance the strength of its associative binding interactions 

with the client nascent protein/polypeptide substrate (Grenert J.P. et al, 1999; Johnson J.L. and 

Brown C., 2009) – Fig 1.33B, p.80. 
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Whilst Hsp90-mediated ATP hydrolytic formation of the ADP-bound–Hsp90 complex induces 

supramolecular conformational changes within the Hsp90 protein which disrupt its associative 

binding interactions with the client nascent protein/polypeptide substrate (Grenert J.P. et al, 1999; 

Johnson J.L. and Brown C., 2009; Wandlinger S.K. et al, 2008) – Fig 1.33B, p.80. 

 

The adaptor protein Hop/p60, in conjunction with the co-factors Aha1, Cdc37 and p23, regulates 

the transient stability of the supramolecular conformational complex states implicated in the 

Hsp70/Hsp90-mediated folded conversion of the immature client protein/nascent polypeptide 

substrates to mature functionally-configured protein products (Carrigan P.E. et al, 2006; Harst A. 

et al, 2005; Johnson B.D. et al, 1998; Karagöz G.E. et al, 2011; Wandlinger S.K. et al, 2008; 

Wegele H. et al, 2004; Wegele H. et al, 2006) – Fig 1.33B, p.80. 

 

Associative Hop-Hsp70 interactions are relatively weak, in contrast to the tight binding of Hop to 

Hsp90 and p23 (Harst A. et al, 2005; Johnson B.D. et al, 1998; Johnson J.L. and Brown C., 2009;  

Karagöz G.E. et al, 2011; Wegele H. et al, 2004; Wegele H. et al, 2006) – Fig1.33B, p.80. 

 

Hop1 also stabilises the nucleotide-free transition state of Hsp90 and inhibits its ATPase activity to 

elicit release of the folded mature protein product from the Hsp70/Hsp90 chaperone complex 

machinery and facilitate the associative loading transfer of another immature client protein/nascent 

polypeptide substrate from Hsp70 to Hsp90 which is required for initiation of a fresh cycle of the 

folding pathway mechanism (Carrigan P.E. et al, 2006; Li J. et al, 2011; Southwood D.R. and 

Agard D.A, 2011; Wegele H. et al, 2006; Yi F. et al, 2010 – Fig 1.33B, p.80.  

 

Associative Cdc37-Hsp90 complex interactions are responsive towards ADP- and ATP- bound 

nucleotide transition states (discussed on pp.73-74) and also elicit further supramolecular 

conformational changes which promote the associative recruitment of other co-factors such as p23 

(Gaiser A.M. et al, 2010; Harst A. et al, 2005; Mandal A.K. et al, 2007)– Fig 1.33B, p.80.  
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Subsequent associative interactions between the N-terminus of Hsp90 and the co-chaperone p23 

enhance the ATPase-driven release of the folded mature protein product from the Hsp70/Hsp90 

chaperone complex machinery (Eustace B.K. and Jay D.G, 2004; Harst A. et al, 2005; Karagöz 

G.E. et al, 2011 Wegele H. et al, 2004; Wegele H. et al, 2006) – Fig 1.33B, p.80. 

 

 

Tetratricopeptide Repeat Protein 2 (TPR2), also known as DNAJC7 (DNA J Homologue Sub-

Family C, Member 7), is a Type III member of the DNAJ Hsp40 protein family (Brychzy A. et al, 

2003; Moffatt N.S. et al, 2008; Murthy A.E. et al, 1996) – Fig 1.33A, p.80. 

 

The TPR2 protein, in conjunction with Hop/p60, is capable of replacing the component functional 

activities of of Type I and Type II J-Proteins within the Hsp70/Hsp70 chaperone machinery, but 

cannot perform this task in the absence of Hop/p60 (Brychzy A. et al, 2003; Moffatt N.S. et al, 

2008; Ramsey A.J. et al, 2007; Ramsey A.J. et al, 2009) – Fig 1.33B, p.80. 

 

Independent TPR2-mediated protein chaperoning of nascent client protein/polypeptide substrates 

in the absence of other J-proteins is a temporally unstable mechanism which maintains an optimal 

level of regulated TPR2 activity and thus prevents prolonged TPR2-mediated inhibition of Hsp90 

which would otherwise culminate in abrogated protein folding (Brychzy A. et al, 2003; Moffatt 

N.S. et al, 2008; Ramsey A.J. et al, 2007; Ramsey A.J. et al, 2009). 

 

Analogous to Hop/p60, TPR2 also contains two TPR motifs (designated Tpr1 and Tpr2) which  

can bind simultaneously to Hsp70 and Hsp90 via an associative mechanism which requires ATP to 

promote binding interactions between Hsp70 and the J-domain within TPR2 (Brychzy A. et al, 

2003; Moffatt N.S. et al, 2008; Ramsey A.J. et al, 2007; Ramsey A.J. et al, 2009) – Fig 1.33A, 

p.80. 
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However, the interactive mechanisms of the associative Hop–Hsp70/Hsp90 and TPR2–

Hsp70/Hsp90 complexes are different (Brychzy A. et al, 2003; Moffatt N.S. et al, 2008; Ramsey 

A.J. et al, 2007; Ramsey A.J. et al, 2009). 

 

In the absence of ATP, TPR2 is capable of engaging in associative interactions with only one of 

the proteins at a time – ie Hsp70 or Hsp90 (Brychzy A. et al, 2003; Moffatt N.S. et al, 2008; 

Ramsey A.J. et al, 2007; Ramsey A.J. et al, 2009). 

 

Unlike Hop/p60, TPR2 specifically induces the ATP-independent dissociation of Hsp90 from the 

nascent client protein/polypeptide substrate within the Hsp70/Hsp90 chaperone complex 

machinery, but has no disruptive effect on associative Hsp70 interactions (Brychzy A. et al, 2003;  

Liu F-H. et al, 1999; Moffatt N.S. et al, 2008; Ramsey A.J. et al, 2007; Ramsey A.J. et al, 2009) – 

Fig 1.33B, p.80. 

 

This exclusive specificity of TPR2 for Hsp90 is mediated via associative interactions between a 

critical Asp residue within the C-Terminal EEVD motif of the Hsp90 protein and the dicarboxylate 

clamp motifs contained within the Tpr1 and Tpr2 domains of the TPR2 protein (Prasad B.D. et al, 

2010; Moffatt N.S. et al, 2008; Young J.C. et al, 1998) – Fig 1.33A, p.80. 

 

The binding specificity of TPR2 for Hsp90 is also enhanced via extensive Van der Waal’s contacts 

between neighbouring hydrophobic residues situated in flanking positions which surround the 

dicarboxylate clamp motifs within the Tpr1 and Tpr2 domains of the TPR2 protein (Prasad B.D. et 

al, 2010; Moffatt N.S. et al, 2008; Young J.C. et al, 1998) – Fig 133A, p.80. 
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The Tpr1 and Tpr2 domains within the TPR2 protein are also functionally implicated in the 

disruption of the Hsp90 – nascent client protein/polypeptide substrate binding interactions, whilst 

the TPR2 Hsp40-Like J-domain induces ATP hydrolysis and formation of associative interactions 

between Hsp70 and the resultant Hsp90-liberated nascent client protein/polypeptide substrate 

interactions (Brychzy A. et al, 2003;  Liu F-H. et al, 1999; Moffatt N.S. et al, 2008; Ramsey A.J. 

et al, 2007; Ramsey A.J. et al, 2009)  – Fig 1.33A and Fig 1.33B, p.80. 

 

Thus the principle function of TPR2 is the transient associative retro-conversion of incorrectly 

folded nascent client protein/polypeptide substrates from the later predominant Hsp90 complexes 

to the earlier predominant Hsp70 complexes within the Hsp70/Hsp90 chaperone machinery 

(discussed previously on pp. ) and consequential rectification of the respective anomalous substrate 

supramolecular configurations via initiation of further fresh cycles of the mechanistic folding 

pathway interactions (Brychzy A. et al, 2003; Liu F-H. et al, 1999; Moffatt N.S. et al, 2008; 

Ramsey A.J. et al, 2007; Ramsey A.J. et al, 2009)  – Fig 1.33B, p.80. 

 

A. priori, TPR2 may be regarded as a critical regulatory “safe-guard” component of the 

Hsp70/Hsp90 chaperone protein folding system for the prevention of cumulative levels of 

misfolded/dysfunctional proteins and thus suppression of proteotoxic-types of induced 

carcinogenesis (discussed previously in Section 1.1 in Fig 1.1, p.5 and Fig 1.9, p.16). 
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 Fig 1.33: TPR2 Modulation of Hsp90 Chaperone Complex Activity 
 

              
 

A: Domain map of the TPR2 protein (Key residues implicated in dicarboxylate clamp formation are indicated in red and  

      underlined; Key residues implicated in Hsp90 protein binding specificity are indicated in red; Key J-Domain residues,  

      including the critical “HPD” functional motif, which bears significant sequence homology to the Hsp40 protein and are 

      implicated in associative Hsp90 interactions are indicated in orange) – Top Figure. 
 

     Key functional domains of the Hsp90 protein are N-Terminal ATP/ADP binding-site, the M-domain (containing an Arg 

     residue which is critical for associative interactions with the J-Domain of the TPR2 protein) and a C-Terminal Domain 

     (containing a critical EEVD motif which mediates associative T1 and T2 TPR domain interactions with the TPR2 protein 

      and  is implicated in the selective specificity of Hsp90 interactions within the chaperone pathway) – Bottom Figure. 

    

B: Summarised mechanism of the regulatory role of TPR2 within the chaperone protein-folding pathway 

     (discussed in detail on pp.75-79).  
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The Tpr1 and Tpr2 domains of the TPR2 protein also associatively interact with the N-termini of 

each of the sub-units of the heterotrimeric, toroidal Rad9-Rad1-Hus1 DNA sliding-clamp complex 

(Xiang S-L. et al, 2001) – Fig  1.34, p.82. 

 

Unlike the respective TPR2-Rad1 and TPR2-Hus1 interactions, the TPR2 J-domain is also 

implicated in the association with Rad9, in which it modulates the cellular localisation of both the 

TPR2 and Rad9 proteins (Xiang S-L. et al, 2001) – Fig 1.34, p.82. 

 

As discussed previously, the “9-1-1” complex suppresses the transcriptional activity of the AR via 

specific Rad9-AR interactions (Section 1.2.3, pp.66-74), whilst TPR2 is known to be implicated in 

the modulation of Hsp70/Hsp90 chaperone complex machinery-mediated functional maturation-

folding of nascent client steroid receptor protein substrates such as the progesterone receptor 

(Blatch G.L. and Lässle M., 1999; Felts S.J. et al, 2007; Goebl M. and Yanagida M., 1991; 

Schűlke P. et al, 2010; Smith D.F., 2004).   

 

The (Hsp90)2Hsp70 protein chaperone complex apparatus is also implicated in the cytosolic 

sequestration and stabilisation of the AR and other steroid nuclear receptor monomers in their 

respective unphosphorylated, inactive forms (discussed previously in Section 1.2.3, pp.66-74; Fig 

1.30, p.70). 

 

Taken together, these experimental observations indicate additional “9-1-1” complex-mediated 

“feed-back” mechanisms that may regulate nuclear steroidal receptor functional activities via 

associative “9-1-1” complex–TPR2 interactions (Fig 1.34, p.82) and thus also impinge upon the 

“9-1-1” complex-mediated suppression of the transcriptional activity of the AR (discussed 

previously in Section 1.2.3, pp.66-74; Fig 1.32, p.72).  
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 Fig 1.34: Rad9-Modulated TPR2 Activity – Key Domain Interactions 

 

 
 

A:  Elementary domain map of the TPR2 protein with highlighted T1, T2 and “HPD” domains (discussed in detail 

         previously in Fig 1.33, p.77). 

          

        Individual Tricopeptide Repeat (TPR) motifs are comprised of the characteristic, conserved  ~34 amino acid 

        acid (generalised) sequence:  [WLF]-X(2)-[LIM]-[GAS]-X(2)-[YCF]-X(8)-[ASE]-X(3)-[FYL]-X(2)-[ASL]-X(4)-[PKE] 
 

        [http://www.ncbi.nlm.nih.gov/structure/cdd/cddsrv.cgi?uid=194311  PubMed Protein Conserved Domains Archive 

                                                                                                                             clo2429: TPR Superfamily 

                                                                                                                             PSSM Id: 1943911 

                                                                                                                             Name: TPR [Update 5th May 2011]  
 

        [d’Andrea L.D. and Regan L., 2003; Goebl M. and Yanagida M., 1991; Lamb J.R. et al, 1995] 
 

        TPR2 interacts with all three protein sub-units of  the Rad9-Rad1-Hus1 complex via N-Terminal T1 domain associative 

        interactions, whilst additional C-Terminal T2 domains and J Domain interactions are required for both Hus1 and 

        Rad9 association and TPR2 homodimerization (Xiang S-L. et al, 2001). 

 

B:  The human Rad9A protein contains N-Terminal and C-Terminal interactive domains  which associate with the T1 and 

        T2 domains of the TPR2 (Fig A)  protein respectively (Xiang S-L. et al, 2001). 
 

        The N-Terminal BH3-like domain within the human Rad9A protein may also be implicated in the modulation of the 

        associative strength of the respective Rad9A N-Terminal – TPR2-T1 and Rad9A C-Terminal – TPR2-T2 domain  

        interactions (Xiang S-L. et al, 2001). 
 

        Residue-specific Kinase-mediated phosphorylation and/or Phosphatase-mediated dephoshorylation of the human 

        Rad9A C-Terminal domain may induce transient supramolecular configurations which modulate the associative 

        strength of its interaction with the TPR2 T2-domain (Xiang S-L. et al, 2001). 
 

        The associative strength of the respective interactions between Rad9A and the T1 andT2 domains of TPR2 are also 

        regulated by the J-domain of TPR2, unlike the other two sub-units of the “9-1-1” clamp complex; Rad1 and Hus1 

        (Xiang S-L. et al, 2001).  
 

        The presence of ATP has also been demonstrated, in Vitro, to inhibit the aforementioned associative Rad9A-TPR2 

        protein-protein interactions – in which TPR2 J-domain-mediated regulation of Hsp70 chaperone functionality, via 

        stimulation of its ATPase catalytic activity, may thus enhance Rad9A-TPR2 associative interactions as a consequence 

        of the elevated induction of hydrolytic conversion of ATP to ADP (Xiang S-L. et al, 2001). 
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The mechanism of Hsp70/Hsp90 chaperone complex machinery-mediated functional maturation-

folding of the nascent secondary (distal) transducer checkpoint protein kinase Chk1 client protein 

substrate is equally dependent upon TPR2 and Hop/p60, but does not require the p23 co-chaperone 

(Felts S.J. et al, 2007; Redlak M.J. and Miller J.A., 2011) – Fig 1.33B, p.80. 

 

Other research studies have also demonstrated that Swe1 and Wee1 effector checkpoint kinase-

mediated phosphorylation of Hsp90 is implicated in the modulation of the functional activities of 

Hsp70/Hsp90 chaperone complex machinery (Mollapour M. et al, 2010; Redlak M.J. and Miller 

J.A., 2011).  

 

As discussed previously, the heterotrimeric toroidal Rad9-Rad1-Hus1 complex is implicated in the 

initiation of various ATR/ATRIP→Chk1-activated regulatory cell cycle checkpoint pathways in 

response to genotoxic and/or DNA replication stresses (Section 1.2.2, pp.33-65). 

 

Taken together, these experimental observations indicate additional “9-1-1” complex-mediated 

“feed-back” mechanisms that may regulate cell cycle checkpoint activities via associative“9-1-1” 

complex–TPR2 interactions (Fig 1.34, p.80), which may also be implicated in the appropriate 

modulation of the Rad9-Rad1-Hus1 complex-mediated ATR/ATRIP→Chk1 activation (discussed 

previously in Section 1.2.2, pp.33-65) in response to proteotoxic types of induced DNA damage 

and/or DNA replication stress. 

 

In this context, associative “9-1-1” complex–TPR2 interactions may be implicated in the 

suppression of proteotoxic-induced carcinogenesis events (discussed previously in Section 1.1 in 

Fig 1.1, p.5 and Fig 1.9, p.16). 
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Various research studies have also indicated that the Hsp70 chaperone protein mediates several 

key functional activities which are implicated in the negative regulation of  pro-apoptotic pathways, 

notably; the inhibition of Procaspase-9 recruitment to Apaf-1 proteosome (Beere H.M. et al, 2000), 

suppression of Aspf-1 apoptoproteosomal activity (Saleh A. et al, 2000), suppression of the 

catalytic activity of N-terminal kinase domain of c-Jun – which is implicated in the development of 

tolerance to caspase-independent mechanisms of induced apoptosis (Gabai V.L. et al, 2000) and  

protection against stress-induced apoptosis (Mosser D.D. et al, 2000). 

 

Full-length human Rad9A is also cleaved by Caspase-3, at specific proteolytic target motifs within 

the PCNA-like II domain and C-Terminal Tail domain, to yield N-terminal BH3-like domain-

retained truncated fragments which bind and inhibit the functional activites of BH3-type apoptotic 

suppressor proteins such as BCl-xL and BCl-2 with consequential promotion of apoptosis 

(Earnshaw W.C. et al, 1999; Komatsu K. et al, 2000a; Komatsu K. et al, 2000b; Le M.W. et al, 

2003; Nicholson D.W. et al, 1999) – discussed in detail later in Section 1.3.2, pp.127-130. 

 

The C-Tail Terminal Tail domain of full-length human Rad9 has also been demonstrated to 

interactively associate with the p21 gene promoter and enhance its transcriptional activity with 

consequential elevated  p21 protein activity-mediated induction of apoptosis (Yin Y. et al, 2004). 

 

Taken together, these experimental observations indicate additional “9-1-1” complex-mediated 

“feed-back” mechanisms that may regulate Hsp70-mediated proapoptotic suppression activities 

and “9-1-1” complex-independent Rad9-mediated apoptotic modulatory functions via 

associative“9-1-1” complex–TPR2 interactions (Fig 1.34, p.82) – which in turn may impinge upon 

the functional activities of the TPR2-regulation of the Hsp70/Hsp90 chaperone protein-folding 

complex machinery (Fig 133., p.80). 
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The protein chaperone components Hsp70, Hsp90 and TPR2, within the multi-functional protein-

folding complex machinery (Fig 1.34, p.82), have also been demonstrated to interact with U-Box 

Type Ubiquitin Protein Ligases (E3s) and it has been postulated that these interactions may be 

implicated in a sensory mechanism which targets irreversible mis-folded proteins for proteosomal 

degradation (Hatakeyama S. et al, 2004). 

 

Associative Jab1 (CSN5) interactions with the Rad1 sub-unit component of the “9-1-1” DNA 

sliding-clamp are also known to be required for its targeted ubiquitination, mediated via E3 

Ubiquitin Protein Ligases, which constitutes as key pre-requisite step for the initiation of the 

sequential proteolytic degradation of the heterotrimeric, toroidal Rad9-Rad1-Hus1 complex (Hirai 

I. et al, 2004; Huang J. et al, 2007) – discussed later in Section 1.4, pp.131-139. 

 

Taken together, these experimental observations indicate additional “9-1-1” complex-mediated 

“feed-back” mechanisms that may regulate the activities of both the Rad9-Rad1-Hus1 complex 

and independent Rad9 functions (summarised previously in Fig 1.2, p.8), via associative“9-1-1” 

complex–TPR2 interactions (Fig 1.34, p.82) which modulate the level of “9-1-1” complex 

proteolytic degradation and/or may also be implicated in the proteolytic-specific targeting of the 

respective individual Rad1, Hus1 and Rad9 sub-units in response to different types of proteotoxic-

induced DNA damage and/or DNA replication stress. 

 

Such mechanisms may also be implicated in the modulation of the levels and activities of the 

individual isoforms of the Rad9, Hus1 and Rad17 proteins (Fig 1.3, p.9; Fig 1.4, p.10; Fig 1.6, 

p.12) for regulation of the functional activities of each of four potential “9-1-1” DNA sliding-

clamp isoforms (Fig 1.5, p.11) and individual Rad9A and Rad9B isoforms (Fig 1.3, p.9) 

respectively. 

 

These plausible potential functions of Rad9-TPR2 interactions are strictly hypothetical at present 

 

 since the  precise roles of Rad9 in the regulation of TPR2 activity are unknown. 
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1.2.5 DNA Repair Pathway Selection and Activity Modulation 

 

DNA in every cell is subjected to a myriad of different types of damage-orientated molecular insult 

via exposure to a diverse variety of endogenous biochemical reactions and 

exogenous/environmental genotoxic agents which proceed via spontaneous and/or inductive events 

that can be sub-categorised into several defined classifications in the context of their respective 

biomolecular interactive mechanisms (Pallis A.G. and Karamouzis M.V., 2010; Tuteja N. and 

Tuteja R., 2001) – depicted summarily in  Fig 1.35, p.89. 

 

The relative severity and impact of the resultant structural DNA alterations on the perturbance of 

the continuity of genetic information is variable and dependent to a large extent upon the precise 

biochemical nature of the respective lesion (Pallis A.G. and Karamouzis M.V., 2010; Tuteja N. 

and Tuteja R., 2001). 

 

Negligible disruptive effects are manifested via alkylation of a single DNA base, whilst minor 

disruptive effects are associated with the hydration/loss of a DNA base and consequential 

apurinic/apyrimidinic site formation (Pallis A.G. and Karamouzis M.V., 2010; Tuteja N. and 

Tuteja R., 2001). 

 

Major disruptive effects are manifested in the case of formation of large/sterically bulky base 

adduct insertions, DNA base-dimers, intra-/inter-strand cross-linkages within the DNA molecule 

and/or with a large biomolecular species such as a protein and single-/double-stranded breakages 

within the duplex (Caldecott K.W., 2008; McKinnon P.J. and Caldecott K.W., 2007; Pallis A.G. 

and Karamouzis M.V., 2010; Tuteja N. and Tuteja R., 2001). 

 

The culminative physio-biochemical effect of these genotoxic events, particularly in the case of 

large/steric bulk DNA lesions, is the promotion of stalled replication forks as a consequence of 

induced topological alterations within the DNA (Dillon L.W. et al, 2010) – Fig 1.36, p.90. 
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Each cell also experiences approximately 10,000 – 50,000 single-strand DNA breaks and 50 – 200 

double-stranded DNA breaks per day as a consequence of acute and chronic exposure to a wide 

variety of genotoxic biophysical and biochemical insults (Caldecott K.W. et al, 2008; McKinnon 

P.J. and Caldecott K.W., 2007; Speit G. et al, 1984) – depicted summarily in Fig 1.35, p.89. 

 

In particular, genotoxic events which induce double-stranded breakage type DNA lesions (DSB’s) 

are considered to be the most potent promoters of carcinogenesis as a consequence of the fact that 

rectification of DSB’s is accomplished via the cytological employment of various recombinational 

repair pathways (Fung H. and Weinstock D.M., 2011; Tuteja N. and Tuteja R., 2001 – depicted 

summarily in Fig 1.37, p.91 and  Fig 1.48, p.109. 

 

With the notable exception of Gene Conversion, these recombinational pathways possess an 

inherent degree of mechanistic error-prone DNA repair potential which may compromise genomic 

integrity. (Christmann M. et al, 2003; Fung H. and Weinstock D.M., 2011; McKinnon P.J. and 

Caldecott K.W., 2007; Pastink. A. et al, 2001; Povik L.F., 2006; Tuteja N. and Tuteja R., 2001). 

 

Induction of DNA replication stress may also result in DSB repair-induced formation of cis- and/or 

trans- type chromosomal hybrid proto-oncogene-fusion type translocation constructs which are 

expressed as carcinogenic-promoting chimeric type oncogenic proteins (Dillon L.W. et al, 2010; 

Hegyi H. et al, 2009; Huang M. et al, 2002a; Longhran T.P. et al, 2000; Okuya M. et al, 2010; 

Povirk L.F., 2006; Rabkin C.S. and Janz S., 2008) – Fig 1.36, p.90.  

 

The accumulation of chromosomal breaks in response to DNA replication stress, as a consequence 

of defective repair of DSB type lesions, is also a well-documented early indicator of 

carcinogenesis (Bartkova J. et al, 2005; Bryant P.E., 2004; Fung H. and Weinstock D.M., 2011; 

Pallis A.G. and Karamouzis M.V., 2010). 
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The Intra-/Inter- Cross-Link Repair (ICL) and Translesion Synthesis Repair (TLS) pathways, 

which are implicated in the cytological rectification and/or by-pass of large/sterically bulky DNA 

lesions (Fig 1.37, p.91; Fig 1.39, p.100; Fig 1.40, p.101; Fig 1.51, p.112), also exhibit error-prone 

mechanistic potential which may contribute to compromised genomic integrity (Christmann M. et 

al, 2003; Pallas A.G. and Karamouzis M.V., 2010;  Tuteja N. and Tuteja R., 2001). 

 

Mutation-induced disproportionate dysregulation of the dynamically-balanced equilibrium 

between replicative DNA lesions and selective DNA repair pathway activation responses may 

culminate in the promotion of carcinogenesis (Bartkova J. et al, 2005; Dillon L.W. et al, 2010) – 

Fig 1.36, p.90. 

 

Tumourigenic pre-disposition may also be a consequence of manifested expression of 

dysfunctional mutations within genes that encode DNA damage checkpoint and/or DNA repair 

proteins, including Rad9 (Bartek J. et al, 2007a; Bartek J. et al, 2007b; Branzie D. and Foiani M, 

2008; Dillon L.W. et al, 2010) – Fig 1.36, p.90.   
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Fig 1.35: DNA Damage Types and Sources – A Biochemical Summary                  

                                                          

 
 

[Compiled via Collated Information From: Ashby J. et al, 1994; Barnes D.E. and Lindahl T., 2004; Becker M.M. and 

Wang Z., 1989; Beukers R. et al, 2008; Blank M. and Goodman R., 1999; Behari J. and Paulraj R., 2007; Boucher D. et al, 

2006; Chan S.W. and Dedon P.C., 2010; Cooper W.G., 1993; Cooper W.G., 1996; Crumpton M.J. and Collins A.R., 2004; 

Falone S. et al, 2007; Fang Y.Z. et al, 2002; Farver O., 2000; Ferguson L.R. and Denny W.A., 2007; Hall D.B. et al, 1996; 

Hemnani and Parihar M.S., 1998; Hill M.A., 1999; Horton A.A. and Fairhurst S., 1987; Kelly S.O. and Barton J.K., 1999; 

Kim G.Y., 2002; Kundrat P. and Stewart R.D., 2006; Larson I.K. and Kastrup J.S., 2002; Maranon J. and Sorrain O.M., 

1978; Marnett L.J. et al, 2003; Marnett L.J. and Plastaras J.P., 2001; Matsumoto H. et al, 2007; McCann J. et al, 1993; 

Mishra P.C. and Mishra R.N., 1976; Nair U. et al, 2007; Nakagawa H. et al, 2006; Nickens K.P. et al, 2010; Nikjoo H. et al, 

1998; Nunez M.L. et al, 1999; Olsson G. et al, 2004; Prise K.M. et al, 1998a; Prise K.M. et al, 1998b; Rao M.S. and Reddy 

J.K., 1991; Reddy J.K. and Rao M.S., 1989; Rein R. and Harris F.E., 1964; Roots R. et al, 1990; Schulte-Frohlinde D. et al, 

1990; Sharma R.A. et al, 2001; Simko M., 2007;  Slupphaug G. et al, 2003; Teoule R., 1987; Wolffe A.P. and Hayes J.J., 

1999; Zheng R. et al, 2010] 
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   Fig 1.36: Types of DNA Conformer-Induced Replicative Inhibition 

 

    [Taken and Adapted From: Dillon L.W. et al, 2010] 

      

                           
                      
Different types of DNA damage and/or replication stress may promote dissociation of the DNA polymerases, 

Polα, Polδ and Polε, from the helicase/topoisomerase replicative complex to generate long tracts of ssDNA 

which possess the potential to fold  into a variety of topological secondary structures within the duplex. 

 

These topological secondary structures may stall the replication fork with consequential activation of the ATR-

dependent DNA damage response checkpoint pathways. 

 

[A variety of different types of associative protein interactions within the C-terminal tail domain of the Rad9 

 sub-unit, which protrudes outside of the Rad9-Rad1-Hus1 PCNA-like DNA sliding-clamp sensory complex, 

 are also implicated in ATR-Chk1-activated DNA damage response checkpoint pathways – discussed previously 

 in Section 1.2.2, pp.33-65] 

 

Fragile sites within the chromatin supra-molecular architecture, in proximity to localised ssDNA topological 

secondary structures, may be particularly susceptible to spontaneous types of replication fork reversal and/or 

erratic polymerase “associative-dissociative hopping” progression at regions of secondary structure along the 

DNA. 

 

Dysfunctional activation and/or suppression of these secondary structure-induced ATR-dependent checkpoint 

pathways may compromise appropriate regulatory cell cycle responses to DNA damage and/or replication 

stress with consequential propagation of DNA breakage events and chromosome translocational aberrations, 

which in turn may promote carcinogenesis (Rabkin C.S. and Janz S., 2008)  – Fig 1.9, p.16. 
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  Fig 1.37: Classification Review of DNA Damage Repair Mechanisms 

 

   [Compiled via Collated Information From: Christmann M. et al, 2003; Barnes D.E. and Lindahl, 2004; 

                                                                             Fousteri M. and Mullenders L.H., 2008;  Friedberg E.C., 2005; 

                                                                             Hakem R., 2008; Li G.M., 2008; Verbeek B. et al, 2008 

 

       
                         Table 1.5: Summarised DNA Repair Mechanism Responses                                          
 

                         
 
             Note: The most important damage response is probably excision-mediated repair of the DNA, whilst 

                        the direct-reversal repair is somewhat limited to removal of small alkylation DNA lesions and 

                       direct ligation of single-stranded and double-stranded phosphodiester bond lyses. 

 

                       An associative mutagenic risk of cumulative error-prone replicative potential exists in the case of 

                       DNA damage tolerance responses elicited via NHEJ, SSA  and MMEJ by-pass repair mechanisms. 
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Although the majority of biochemical pathways associated with DNA repair are primarily 

constitutive, various experimental studies have also identified a number of inter-communicative 

modulatory DNA damage response pathway interactions implicated in the selective induction and 

regulatory control of specific DNA repair mechanisms respectively. (Hwang B.J. at al, 1998; 

Bartek J. et al, 2001; D’Amours D. and Jackson S.P., 2002; Lee S.H. and Kim C.H., 2002;  

Venkitaraman A.R., 2002; Christmann M. et al, 2003). 

 

The homotrimeric PCNA clamp has also been demonstrated, experimentally, to interact with the 

Rad9 and Hus1 sub-units of the heterotrimeric Rad9-Rad1-Hus1 (“9-1-1”) complex in response to 

genotoxic events and/or perturbed DNA replication (Komatsu K. et al, 2000c). 

 

Under normal cytological conditions, PCNA-DNA interactions may enhance the topological 

flexibility of the lagging strand of the replication fork for the facilitated access of the associative 

protein complexes which are implicated in the synthesis, assembly and ligation of the base 

sequence complementary okazaki fragments (Querol-Audí J. et al, 2012). 

 

In contrast to the PCNA clamp, “9-1-1” complex-DNA interactions may enhance the transient 

topological stability of localised DNA damage sites to provide sufficient time for the targeted 

recruitment and assembly of protein complexes which are implicated in the rectification of specific 

genotoxic lesions, thereby facilitating their recognition and repair (Querol-Audí J. et al, 2012). 

 

Taken together, these phenomena may indicate that the differential DNA-interactive functions of 

the PCNA and “9-1-1” DNA “sliding clamp” complexes could serve as a critical component of a 

variety of checkpoint-coupled mechanisms which are responsible for the sequential co-ordination 

of cell cycle arrest, DNA repair and re-initiation of DNA replication in response to specific 

genotoxic and/or environmental cytological stresses. 
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The Rad9-Rad1-Hus1 heterotrimeric toroidal PCNA-like DNA “sliding clamp” complex also 

performs several key integral functions in the biochemical modulation of various DNA repair 

mechanisms (Fig 1.37, p.91; Fig 1.38, p.98; Table 1.4, p.99), thus providing an inter-

communicative link with the respective “downstream” signal transductional “cross-talk” effector 

responses of the regulatory cell cycle DNA-damage checkpoint pathways (Fig 1.38A, p.98) – 

notably; 

   
(i)  Protection of recessed 5’end DNA substrates, generated as in situ. transient intermediates in 

 

     various biochemical mechanisms of DNA repair/maintenance pathways, from extensive 

     exonuclease degradation and promoted resolution of the resultant “9-1-1”-complex-stabilised 

     structures back to their respective native supramolecular duplex topological configurations 

     (Ellison V. and Stillman B., 2003) – Fig 1.38B, p.98. 

 

(ii) Associative Rad9 C-Terminal Tail Domain interactions with DNA polymerase ε, within the 

      “9-1-1” sliding-clamp complex may also be implicated in the recognition and repair of DNA 

      gaps and/or single-stranded DNA breaks – SSBs (Sukhanova M.V. et al, 2011). 

      [In this context, it has also been postulated that Rad9-SSB interactions, within the “9-1-1”  

       sliding-clamp complex, may provide a regulatory signal link which couples DNA damage 

       checkpoint responses with the appropriate selection of the Base Excision Repair and Single- 

       Stranded Break DNA repair pathway activities (Sukhanova M.V. et al, 2011)]   

 

 (iii)  The “9-1-1” sensory complex has also been elucidated to be a critical biochemical trigger 

         for initiation of  “downstream” DNA-damage checkpoint signal transductional responses 

         to DNA replication fork arrest (Longhese M.P. et al, 1997), dsDNA breaks (Kondo T. et al, 

         2001; Melo J.A. et al, 2001) and perturbed telomere maintenance (d’Adda di Fagagna F.  

         et al, 2004; Garvik B. et al,1995; Lydall D., 2009; Lydall D. and Weinert T,1995; 

         Longhese M.P. et al, 2000; Nabetani A. et al, 2004; Slijepcevic P., 2006; Slijepcevic P. 

         and Al-Wahiby S., 2005) – Fig 1.38A and Fig 1.38B, p.98.            
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(iv)   Various experimental studies have demonstrated that the human Rad9 protein (hRad9), 

          acting within the Rad1-Hus1 associative PCNA-like toroidal heterotrimeric DNA “sliding- 

          clamp”, is implicated in the enhancement of the catalytic activity of particular enzymes 

          implicated in DNA repair pathway and/or maintenance mechanisms (Table 1.4, p.99). 

 

 (v)  The biochemical mechanisms of  the “9-1-1” complex-stimulated DNA repair nuclease type 

        enzymatic activities (Table 1.4, p.99) may also involve associative interactions between an  

        identified potential nuclease-binding/nuclease catalytic activity type domain motif within the 

        hRad9 protein (Bessho T. and Sancar A., 2000 – discussed summarily in Fig 1.44B, p.105). 

 

(vi)  The “9-1-1” clamp has been postulated to be implicated in a biochemical feedback type of 

        mechanism which co-ordinates the recruitment and regulation of the enzymatic activities of  

        APE1, FEN1, LigI and Polβ in SP-BER and LP-BER DNA repair pathways (Balakrishnan L.  

        et al, 2009; Collura A. et al, 2012) – discussed summarily in Fig 1.41, p.102 and Fig 1.42, 

        p.103.  

 

 (vii)  Rectification of oxidised DNA base adducts, via co-ordinated interactions beween the BER 

         and MMR repair pathways, may also involve “9-1-1” clamp-mediated recruitment and 

         activity modulation of the APE1, FEN1, hOGG1, Lig I, MLH1, MSH2, MSH3, MSH6, 

         MYH1, NEIL1, Polβ and TDG proteins (Bai H. et al, 2010; Balakrishnan L. et al, 2009; 

         Chang D-Y. et al, 2011; Germann M.W. et al, 2010; Guan X. et al, 2007b; He W. et al, 

         2008; Park M.J. et al, 2009; Luncsford P.J. et al, 2010; Reha-Kranz L.J. et al, 2011; 

         Taricani L. et al, 2010; Zheng L. et al, 2010); described summarily in Figs 1.41-1.47, 

         pp.102-108.  

 

        [Note: Differential ATR/ATRIP and TopBP1 associative cross-talk signalling with the 

                    Rad9-Rad1-Hus1 and MSH2:MSH6 complexes, which are independently recruited 

                    to the DNA lesion sites, may also serve as a regulatory activation mechanism for the 

                    Chk1-initiated and Chk2-initiated DNA damage checkpoint pathways – Fig 1.44, 

                    p.105]                                               [94] 



(viii) Epigenetic nucleosomal post-translation modification-based chromatin re-modelling of  

 
         histones H3 and H4, via Rad9-associative enzymatic activity regulation of  histone 

         Deacetylase (Fig 1.46B, p.107), Metnase (Fig 1.50, p.111) and TLK1/TLK1B (Fig 1.52, 

          p.117) within the “9-1-1” clamp, may be implicated in specific signal response-mediated 

          modulation of the SP-BER (Fig 1.42, p.103), LP-BER (Fig 1.42, p.103), MMR (Fig 1.43,  

          p.104), HR (Fig 1.48, p.109), NHEJ (Fig 1.48, p.109) and TLS-Coupled “Template- 

          Switching” DNA repair pathways (Fig 1.51, p.112 – discussed in detail on pp.113-116)  

          (Canfield C. et al, 2009;  Chang D-Y. et al, 2011; De Benedetti A. et al, 2010; De Haro L.P.  

           et al, 2010). 

 

    [In this context, the selective activation/modulation of specific DNA repair pathways may be 

     dependent upon the type and physio-biochemical structure of the DNA damage site which is 

     “sensed” via distinctive transient conformer associations between the Rad9-Rad1-Hus1 

      complex and“lesion-fixed” DNA topological alterations of the chromatin supramolecular 

      architecture]  

 

 

                        

The heterotrimeric toroidal Rad9-Rad1-Hus1 complex may also be implicated in the sequential 

recruitment and modulation of DNA repair factor functions that propagate recurring cycles of 

DNA re-section and DNA re-synthesis which  activate  different DNA damage checkpoints in an 

alternate manner with consequential maintained quiescent/dormant cytological status (Deshpande 

A.M. et al, 2011) – Fig 1.49, p.110. 

 

This DNA repair-mediated mechanism of perpetuated quiescent cytological status may also be 

implicated in the observed multi-drug resistance of dormant tumour cells to a wide variety of 

different types of anti-proliferative chemotherapeutics (Deshpande A.M. et al, 2011; Essers M.A. 

and Trumpp A., 2010; Trumpp A. and Wiestler O.D., 2008). 
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Dbf-Dependent Kinase (DDK, also known as Cdc7)-mediated phosphorylation of the Ser319, 

Ser320 and Ser321 residues, situated within the C-Tail Terminal Domain of the Rad9 Sub-unit, are 

postulated to induced supra-molecular conformational changes within the “9-1-1” sliding-clamp 

complex which promote its dissociation from the DNA after elicited genotoxic detection and 

initiation of appropriate cell cycle checkpoint responses in order to facilitate access of various 

protein components of the DNA repair machinery to the lesion site (Furuya K. et al, 2010; Paek 

A.L. and Weinert T., 2010) – Fig 1.53, p.118. 

 

Somewhat paradoxically, other experimental studies have indicated that the “9-1-1” sliding-clamp 

complex also has a function in the recruitment of various DNA repair proteins to the DNA damage 

lesion site via associative interactions with the C-Tail Terminal Domain of the Rad9 sub-unit – 

which also enhances some of their respective activities (discussed previously and summarised in 

Table 1.4, p.99). 

 

Phosphorylation of the DDK/Cdc7 kinase by the secondary (distal) transducer kinase Chk1 occurs 

within the Intra-S phase cell cycle DNA Damage Checkpoint – which is also initiated via 

associative “9-1-1” complex interactions (discussed previously in Section 1.2.2, pp.33-65; Fig 1.20, 

p.56 and Fig 1.22, p.58). 

 

Taken together, these different experimental observations may indicate that the DNA repair pre-

requisite for dissociation or retention of the heterotrimeric toroidal Rad9-Rad1-Hus1 complex may 

be dictated by the biochemico-physical nature of the encountered DNA lesion in conjunction with 

the appropriate selected type of mechanism(s) for its rectification – which in turn may be 

“governed” via “9-1-1” complex-initiated Chk1-mediated cell cycle checkpoint signal-specific 

events (discussed previously in Section 1.2.2, pp.33-65). 
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Dissociation of the “9-1-1” sliding-clamp complex from the DNA lesion, via DDK/Cdc7 kinase-

mediated phosphorylation of the C-Terminal Tail Domain of the Rad9 sub-unit, may also be 

constitute a DNA damage checkpoint response to extensive and/or very severe DNA damage. 

 

In this context, the function of the DDK/Cdc7 kinase would be the prevention of inappropriate 

DNA lesion site-recruitment of Y-polymerases and/or other repair factors implicated in error-prone 

mechanisms of DNA repair, which would otherwise result in a catastrophic loss of genomic 

integrity in the surviving cell with consequential promotion of carcinogenesis. 
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     Fig 1.38: Functional Roles of the “9-1-1” Clamp in DNA Repair 
 

             
A: Summarised modulatory roles of hRad9, acting within “9-1-1” sensory complex-initiated checkpoint DNA damage 

      response-repair pathways at various phases of the cell-cycle – LP-BER and SP-BER are phase-specific, whilst other 

      pathways are comparatively non-cell cycle phase-specific (López-Contreras A.J. and Fernandez-Capetillo O., 2010). 

       

     NOTE: A critical phosphorylation site at T225, identified in the homologous eukaryotic S.pombe PCNA-like domain  

                   of the spRad9 protein, is hypothesised to be implicated in kinase-mediated type interactive regulation and/or 

                   selection of particular DNA damage repair pathways - for example, via integral template-switching between 

                   BER/NER and TLS pathways via ubiquitin-coupled determinant utilisation of X-type or Y-type DNA 

                   polymerases respectively (Jansen J.G. et al, 2007; Kai M. et al, 2007) – Figs 1.39 - 1.42, pp.100-103; 

                   Fig 1.51, p.112.   

                   [Homologous functional phosphorylation site(s) may also exist in the case of the human hRad9 protein] 
 

B: Associative interactions of “9-1-1” complex with various DNA structural substrate intermediates, generated via 

       DNA maintenance and/or DNA damage repair pathway processes, are postulated to be essential for both the 

       prevention of catastrophic extensive exonuclease degradation of the resultant 5’-recessed ends and enhanced  

       promotional rectification of these transient supramolecular conformational forms back to reconstituted duplex 

       DNA (Taken and Adapted From: Ellison V. and Stillman B., 2003; Nabetani A. et al, 2004).  

                                                    [98] 



Table 1.4: “9-1-1” Clamp-Modulated DNA Repair Protein Activities 
 

                      
  

NOTE: The Rad9 and Hus1, but not Rad1, sub-units of the “9-1-1” DNA sliding-clamp complex contain binding pockets 

                 for the PCNA-Interacting Peptide (PIP) box motif  (Doré A.S. et al, 2009; Eichinger C.S. and Jentsch S., 2011; 

                 Komatsu K. et al, 2000c; Sohn S.Y. and Cho Y., 2009; Xu M. et al, 2009) – Highlighted in Fig 1.10C, p.24 

                 (Section 1.2.1).  
 

                 The PIP Box motif is of general consensus sequence: QxxL/I/MxxHF/DF/Y and is contained in a variety of   

                 different proteins including DNA polymerases and other associated DNA repair proteins (Gilljam K.M. et al, 

                 2009; Warbrick E., 1998; Warbrick E., 2000; Warbrick E., 2006). 
 

                 Thus, in addition to Rad9 C-Terminal Tail domain associations, the “9-1-1” complex may modulate the functional  

                 activities of the various proteins (tabulated above) via Rad9 and Hus1 sub-unit PIP box-binding interactions. 
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     Fig 1.39: A Mechanistic Overview of Global Genomic Repair 
 

      [Taken and Adapted From: Christmann M. et al, 2003; Shuck S.C. et al, 2008] 

            
 

GGR is mainly a transcription-independent NER pathway for removal of DNA lesions of non-transcribed genomic domains 

and non-transcribed regions of transcribed DNA strands for predominantly favoured, rapid and efficient removal of highly 

duplex-distortive lesions (Balajee A.S.et al, 1997; Hanawalt P.C., 2002; Mullenders L.H. and Berneburg M., 2001) 
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Fig 1.40: A Mechanistic Overview of Transcription-Coupled Repair 

 

[Taken and Adapted From: Christmann M. et al, 2003; Fousteri M. and Mullenders L.H.F., 2008] 

     

                    
Transcription-Coupled Repair (TCR) is an alternative NER-pathway which is cytologically-utilised for the removal of 

various RNA-polymerase blocking lesions within transcribed strands of active genes (Bohr V.A. et al, 1985; Mellon I. et al, 

1987) 

 

DNA lesion-induced conformational changes within the supramolecular duplex structure inhibit the transcriptional process 

of RNA Polymerase II (RNAPII) with consequential displacement of RNAPII mediated via CSA, CSB and/or TFIIS 

assembly at the lesion site, initiated facilitative recruitment access of the exonucleases XPF-ERCC1 and XPG for subsequent 

cleavage removal of the DNA lesion-containing strand and strand re-synthesis via DNA polymerases Polδ and/or Polε prior 

to strand-annealing performed by DNA Ligase I (Christmann M. et al, 2003). 

 

In contrast to the GGR-NER DNA repair pathway (Fig 1.39, p.100), the TCR-NER pathway is also predominantly more 

efficient at removal of U.V.-induced CPD type DNA lesions (Christmann M. et al, 2003). 
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Fig 1.41: “9-1-1” Co-Ordination of the BER Repairosome Activities 

 

[Taken and Adapted From: Balakrishnan L. et al, 2009] 

 

        
 
A variety of experimental studies have indicated that the “9-1-1” complex stimulates APE1, FEN1, 

DNA Ligase I and DNA Polymerase β enzymatic activies via direct associative interactions with the 

C-Tail Terminal Domain of the Rad9 component sub-unit (Collura A. et al, 2012; Gembka A. et al, 

2007; Guo Z. et al, 2008; Helt C.E. et al, 2005; Rodriguez M. et al, 2003; Smirnova E. et al, 2006; Song 

W. et al, 2007; Song W. et al, 2009; Toueille M. et al, 2004; Wang W. et al, 2006;  Wu X. et al, 1999; 

Zheng L. et al, 2010). 

 

In the above model, structural interactions between FEN1 and DNA Polβ stimulate the cleavage 

activity of FEN1, whilst maximal stimulation DNA Ligase I activity is mediated via APE1 and DNA 

Polβ interactions, whilst Rad9 is not considered to be implicated in the direct stimulation of these 

respective enzymatic activities (Balakrishnan L. et al, 2009). 

 

Thus, the primary function of the “9-1-1” clamp is to act as a mediator for the sequential recruitment 

of the respective protein components of the Base Excision Repairosome and co-ordination of their 

“synergy-orchestrated” enzymatic activities via specific Rad9 C-Terminal Tail Domain interactions 

(Balakrishnan L. et al, 2009). 

 

Arrows pointing in a single direction denote a specific stimulatory interaction between one particular 

protein with another protein (Balakrishnan L., et al, 2009). 

 

Arrows pointing in both directions denote potential stimulatory and counter-stimulatory interactive 

protein activities within the Base Excision Repairosome complex (Balakrishnan L. et al, 2009). 

 

The respective of SP-BER and LP-BER mechanistic DNA repair pathways are summarily discussed 

on the following page (Fig 1.42, p.103) together with the above model (inset) to indicate the associated 

functional roles of the respective enzymes whose activities are modulated by the “9-1-1” clamp. 
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Fig 1.42: “9-1-1” Clamp Modulation of SP-BER & LP-BER Activities 

 

 
Base Excision Repair (BER) Pathways may proceed via utilisation of a range of different TypeI and TypeII N-glycosylase enzymes, 

dependent upon the nature of the base modification – typically for the repair of oxidised or alkylated DNA bases, for example hOGG1 

(repair of oxidation-modified Gunanine – Fig A) or hUNG1 (for repair of oxidatively-deaminated Cytosine conversion to Uracil – Fig B) 

( Christmann M. et al, 2003; Scharer O.D. and Jiricny J., 2001). 

 

[Type I glycosylases excise modified bases to generate an apurinic/apyrimidinic (AP) within the DNA, whilst Type II glycosylases excise 

modified bases and also effect cleavage of the resultant AP site via their 3’-endonuclease activity with consequential formation of a single-

stranded DNA breakage (Christmann M. et al, 2003; Wilson D.M. 3rd  and Barsky D., 2001). 

 

Selection of either the Short-Patch or Long-Patch BER pathway is critically pre-determined via the propensity of the DNA polymerase β 

(Polβ) catalytic lyase activity towards 5’-cleavage of the generated Apurinic/Apyrimidinic intermediate – which is dependent upon the 

biochemical nature of the AP-site. (Matsumoto Y. and Kim K., 1995; Prasad R. et al, 1998; Sobol R.W. et al, 2000) 

 

The Short-Patch BER (SP-BER) pathway proceeds via a sequential mechanism that is “triggered” via initial recognition and hydrolytic 

cleavage excision of the modified base lesion (via a DNA N-glycosylase enzyme) and removal of the resultant AP site via 3’-end excision -

mediated by Apurinic/Apyrimidinic Endonuclease I (APE1) and 5’-displacement mediated via the catalytic lyase activity of Polβ (that 

targets the hemi-acetal form of the AP-site 5’-deoxyribose residual form) which also subsequently inserts the appropriate one-nucleotide 

repair patch, into the resultant DNA strand “gap”, followed by direct annealing/”gap”sealing of the inserted one-nucleotide repair patch 

via the cooperative interaction of DNA Ligase IIIα, XRCC1, Polβ and Poly(ADP-Ribose) Polymerase I (PARP). 

(Dianov G.L. et al, 1992; Kubota Y.et al, 1996; Sobol R.W. et al, 1996; Wiebauer K. and Jiricny J., 1990)  

 

The Long-Patch BER (LP-BER) pathway proceeds via an alternative sequential mechanism that is “triggered” via PCNA-complex 

recognition of SP-BER-generation of reduced of oxidised AP sites (eg 3’-unsaturated aldehydes or 3’-phosphates), that are resistant to Polβ 

catalytic lyase-mediated hydrolytic β-elimination, in which cooperative interactions between PCNA and its RFC-loading complex in 

conjunction with DNA polymerase δ (Polδ) and/or DNA polymerase ε (Polε) invoke strand-dissociation at the AP DNA lesion site, followed 

by Flap Endonuclease I (FENI)-mediated excision of the displaced deoxyribosephosphate strand intermediate and  subsequent Polδ/Polε-

mediated sythesis and insertion of a longer oligonucleotide repair patch (typically ~ 2-10 nucleotides) into theresultant “gap” – prior to 

“gap-filled long-path annealing/sealing” by DNA Ligase I for completion of DNA repair (Klugland A. and Lindahl T., 1997; Nakamura J. et 

al, 2000; Prasad R. et al, 1996 Srivastava D.K. et al, 1998; Stucki M. et al, 1998) 
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   Fig 1.43: A Mechanistic Overview of Base-Mismatch DNA Repair 
 

   [Taken and Adapted From: Christmann M. et al, 2003] 

                                
 
The Base-Mismatch DNA Repair (MMR) pathways consist of several sequential key steps which are initiated via DNA base-pair anomalous 

site recognition of base-base mismatches, insertions/deletion frameshift-induced mismatches via the MutSα complex (comprised of hMSH2 

and hMSH6 sub-units) and/or alternative loop-specific insertion/deletion frameshift-induced mismatches via the MutSβ complex 

(comprised of hMSH2 and hMSH3 sub-units – not shown) respectively (Acharya S. et al, 1996; Christmann M. and Kaina B., 2000; Fishel R. 

et al, 1993; Genschel J. et al,1998;  Leach F.S. et al, 1993; Palombo F. et al, 1995; Palombo F. et al, 1996; Umar A. et al, 1994) – notably; 
 
1. Phosphorylation of the hMSH2:hMSH6 protein sub-units of the Mut Sα complex and/or hMSH2:hMSH3 protein sub-units of the  

    MutSβ complex induces transient conformational changes within the supramolecular structure which converts them to the respective  

    “active state” MutSα-ATP and/or MutSβ-ATP complexes that are able to recognise and associate with the DNA base mismatch lesion 

     site (Christmann M. et al, 2003; Fishel R., 1998; Gradia S. et al, 1997) . 

 

2. Consequential conversion of ADP→ATP within the adenosine nucleotide binding-sites of the MutSα and/or MutSβ complex, initiated 

    via binding of the MutSα-ADP and/or MutSβ-ADP complexes to the DNA mismatch lesion site, also induces conformational changes 

    within the respective supramolecular complexes structures which stimulate their intrinsic ATPase catalytic domain activities with 

    consequential hydrolysis of ATP which induces further conformational alterations within the supramolecular MutS complex isoform  

    structures that enables them to associate with the heterodimeric MutLα complex (comprised of hMLH1 and hPMS2 protein sub-units), 

    whilst the energy released from ATP hydrolysis is “thermodynamically-coupled” to active translocated assembly of the resultant  

    multimeric complex along the duplex from the origin of the mismatch lesion site to an SSB signal site implicated in DNA strand- 

    specificity identification (Alani E. et al, 1997; Blackwell L.J. et al, 1998a;  Blackwell L.J. et al, 1998b; Blackwell L.J. et al, 2001; 

    Christmann M. et al, 2003; Li G.M. and Modrich P., 1995; Nicolaides N.C. et al, 1994; Papadopoulous N. et al, 1994). 

 

3.  MMR multimeric complex recruitment of exonuclease I to the anomalous base-pair duplex site elicits hydrolytic cleavage excision  

     removal of  the base mismatch prior to MMR multmeric comples-mediated sequential recruitment of DNA polymerase δ and DNA 

     ligase enzymes for subsequent corrective base-replacement oligonucleotide synthesis and “gap-sealing”/reannealing of the resolved 

    duplex region (Christmann M. et al, 2003; Genschel J. et al, 2002; Longley M.J. et al, 1997). 

 

4. Intrinsic MMR multimeric complex ATPase activity, “triggered” via the biophysico-chemical mechanism described in step 2 above,  

    also initiates binding of ATP to the hMSH sub-unit adenosine nucleotide binding sites with consequential inducement of other types 

    of transient conformational rearrangements within the supramolecular MMR multiplex complex structure which result in the 

    formation of an ATP hydrolysis-independent DNA “sliding clamp” that diffuses away from the repaired base mismatch site and  

    functions as a signal for “inactive-state” MMR protein sub-unit dissociation from the rectified DNA duplex structure (Alani E. et al, 

    1997; Christmann M. et al, 2003; Berardini M. et al, 2000; Gradia S. et al, 1999; Gradia S. et al, 2000). 
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   Fig 1.44: “9-1-1” Clamp Influences on MMR-Apoptotic Induction                                                                                                                                                                                                                                                              
 

                         
 

A: ATR-activated DNA damage checkpoint signalling responses may be initiated via two independent TopBP1 adaptor  

      protein-mediated pathways (Fig A taken and adapted from Pabla N. et al, 2011). 
 

      The “9-1-1” clamp-TopBP1-ATR/ATRIP-RPA ternary complex activates Chk1 kinase signal-mediated DNA damage 

      checkpoint responses which culminate in cell cycle arrest (discussed previously in Section 1.2.2, pp.33-65). 
 

      The hMSH2:hMSH6-TopBP1-ATR/ATRIP-RPA ternary complex activates Chk2 kinase and p53 signal- mediated DNA 

      damage checkpoint responses which culminate in cell cycle arrest and apoptotic induction  (discussed previously in 

      Section 1.2.2, pp.33-65). 
 

      The Rad9 sub-unit of the “9-1-1” clamp complex contains a conserved “HFD” motif which may interact with ATR and  

      enhance its catalytic kinase activity (Navadgi-Patil M. and Burgers P.M., 2009) – discussed previously in Section 1.2.2, 

      pp.33-65; Fig 1.17A, p.53; Fig 1.18, p.54; Fig 1.19, p.55. 
 

      Thus, it is possible that biochemical “cross-talk” between the two independent pathways may take place via Rad9- 

      modulated activity of ATR, which in turn may impinges upon the regulation of the MMR DNA repair pathway 

      (Reha-Krantz L.J. et al, 2011). 
 

      A p53 binding-site consensus sequence has also been identified within the transcriptional promoter of the hMSH2 gene  

      (Christmann C. et al, 2003; Sherer S.J. et al, 2000; Warnick C.T. et al, 2001). 
 

      The hMSH2, hMSH3, hMSH6 proteins also interact with the three sub-sunits of “9-1-1” clamp (Bai H. et al, 2010; Liu Y.  

      et al, 2010) and the Rad9-Rad1-Hus1 complex also enhances the G/T DNA substrate-binding activity of the MutSα 

      protein component of the DNA Mis-Match Repair (MMR) pathway (Bai H. et al, 2010; Liu Y. et al, 2010) –  discussed 

      summarily in Fig 1.43, p.104.  
 

      Thus,  these two independent pathways may act in a synergistic mechanism which regulates the overall activity of the 

      MMR pathway via Rad9- modulation of ATR catalytic activity and hMSH2:hMSH6-TopBP1-ATR/ATRIP-RPA- 

      activated “feedback” p53-mediated transcriptional modulation of hMSH2 activity levels – that in turn may regulate 

      the MMR pathway via stoichiometric alteration of the relative levels of  hMSH2:hMSH3 and hMSH2:hMSH6 dimers  

      (discussed summarily in Fig 1.43 , p.104).  
 

B: The human Rad9 protein also contains an MLH1 interactive domain (He W. et al, 2008), which may mediate “9-1-1” 

       clamp-modulation of the MLH1-PMS2 interactive functions within the MMR DNA repair pathway (Fig 1.43, p.104) 

       and a conserved catalytic 3’-5’ exonuclease motif (Bessho T. and Sancar A., 2000) which may also associate with and  

       modulate the activity of other nucleases implicated in various repair pathways.    
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Fig 1.45: Mechanistic Overview of the “GO-System” Repair Network  
 

[Taken and Adapted From: Slupphaug G. et al, 2003] 

            
 

Collaborative “alternative-switching” between various DNA repair pathways may be utilised in the form of 

additional levels of cytological  “back-up safe-guards” for the preservation of replicative genomic integrity – 

as illustrated in the above example of the “Go System”, which exploits mutual synergistic DNA repair 

mechanisms for prevention of perpetuated oxidative-modified-Guanine-base-mediated mutagenic effects (such 

as 8-Oxoguanine – “Go”-induced base-pair mismatches) via several alternative interacting pathways which 

prevent and/or remove mis-incorporated Go lesions from newly-synthesised DNA daughter-strands during 

DNA replication (Slupphaug G. et al, 2003), notably; 

 

(i) Human Mut T Homologue 1 (MYH1)-mediated hydrolytic-reduction of  8-OxodGTP 

     (Fujikawa K. et al, 1999; Sakai Y. et al, 2002; Sukami K. et al, 1993). 

 

(ii) BER- and/or MMR-initiated Oxoguanine Glycosylase 2 (OGG2)-mediated repair of 8-OxoG:A 

      mismatches (Slupphaug G. et al, 2003). 

 

(iii) BER-, GGR- and/or TCR-initiated OGG2-mediated repair of 8-OxoG:C mismatches 

       (Christmann M. et al, 2003; Slaupphaug G. et al, 2003) 

 

(iv) BER-initiated NEIL1 glycosylase-mediated repair of 8-OxoG:C mismatches 

       (Slupphaug G. et al, 2003). 

 

Thus potential mutagenic propagation of A:8-OxoG via successive rounds of DNA replication, as a consequence 

of initial circumvented C:8-OxoG repair, is prevented via cytological employment of either individual or 

combined versions of these respective pathways (Slupphaug G. et al, 2003).    
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    Fig 1.46: Modulatory ”9-1-1” Clamp-MYH1 Activity Interactions 

       

      [Taken and Adapted From: Cai R.L., 2000; Chang D.Y. et al, 2011; Luncsford P.J. et al, 2010]  
 

          
 
A: The heterotrimeric Rad9-Rad1-Hus1 PCNA-like DNA Sliding-Clamp complex, modulates the activity of the 

      human MutY homologue (hMYH1) via associative Rad9 C-Terminal Tail domain interactions with the IDC 

      loop/”hinge-domain” of the DNA glycosylase enzyme, thereby regulating the MMR pathways implicated in 

      excision  and replacement of oxidised-type nucleobase adducts (Luncsford P.J. et al, 2010). 

 

      [The C-Tail Terminal domain of the Rad9 sub-unit of the “9-1-1” clamp also interacts with and enhances 

      the activity of the Apurinic Endonuclease DNA repair enzyme APE1 – which also associates within the IDC 

      loop/”hinge-domain” of the hMYH1 DNA Glycosylase repair enzyme (Luncsford P.J. et al, 2010).  

      

 

B: In S. pombe, the heterotrimeric Rad9-Rad1-Hus1 PCNA-like DNA sliding-clamp complex also modulates  

     chromatin re-modelling in response to oxidative stress induced DNA damage, via co-operative regulation  

     of histone deacetylase spHst4 (HDAC) and spMyh1 Activity mediated via associative interaction of each 

     respective enzyme with the spRad9 C-Terminal Tail domain (Chang D.Y. et al, 2011). 

 

     In S. pombe, under normal cytophysiological conditions, the histone deacetylase spHst4 is complex-associated 

     with both spMyh1 and the heterotrimeric “9-1-1” clamp complex, in which spHst4, spMyh1 and spHus1 sub- 

     unit are physically bound to telomeres Chang D.Y. et al, 2011) 

 

     Oxidative stress-induced DNA damage triggers an spMyh1-dependent decrease in spHst4 protein levels with 

     consequential hyperacetylation of histone 3 at Lys56 which in turn induces alterations in chromatin supra- 

     molecular structure that promote telomeric dissociation of spHst4 and the spHus1 sub-unit of the “9-1-1” 

     clamp complex and telomeric association of spMyh1 – whose DNA glycosylase activity is enhanced via 

     associative interactions with the C-Terminal Tail  domain of the spRad9 subunit in responsive preparation 

     for  MMR-mediated excision-replacement of oxidised nucleobase adducts (Chang D.Y. et al, 2011; Luncsford 

     P.J. et al, 2010). 
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  Fig 1.47:  “9-1-1” Clamp Modulation of Oxidative Mismatch Repair 

 

   [Taken and Adapted From: Germann M.W. et al, 2010  

 

 
 

Integrative repair pathway model for the co-ordinated recification of the DNA-incorporated 

oxidized-base adduct 8-Oxoguanine (Germann M.W. et al, 2010). 

 

[Note: Corrective Pathways are indicated in green; Detrimental Pathways are indicated in orange] 
          

The “9-1-1” clamp may also modulate of the respective activities of the implicated hOGG1, MSH2, 

MSH3, MSH6, and MYH1, via associative interactions with the C-Tail Terminal Domain of the Rad9 

component sub-unit, for selective regulation of the respective pathways implicated in this integrative 

repair network (Bai H. et al, 2010; Chang D-Y. et al, 2011; Germann M.W. et al, 2010; Luncsford P.J. 

et al, 2010; Park M.J. et al, 2009). 

 

Uncertainty remains as to whether or not similar “9-1-1” clamp-associative interactions 

modulate the activity of the hMTH protein, which may also be implicated in regulation of 

this integrative DNA repair network.  
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    Fig 1.48: Mechanistic Overview of DNA dsBreak Repair Pathways 

 

   [Taken and Adapted From: Christmann M. et al, 2003; McHugh P.J. et al, 2001; Longhese M.P. et al, 2010] 

 
 

The hetereotrimeric “MRN” complex, comprised of Mre11-Rad50-Nbs1, is a key multi-functional component of both the HR  (Homologous 

Recombinational Repair –HRR and Single-Stranded Annealing – SSA) and the Non-Homologous End Joining (NHEJ) pathways implicated 

in the repair of double-stranded DNA breaks (DSBs) – that possesses endonuclease, exonuclease, helicase enzymatic activites and forms 

associative interactions with FEN1 for removal of the excess terminal 3’- and 5’- DNA “overhangs”/”flaps” which are in situ-generated “by-

products” of these respective DNA mechanisms (Christmann P. et al, 2003; Dion V. et al, 2012; Trovesi C. et al, 2011). 

 

Homologous Recombinational Repair (HRR), also termed “Gene Conversion” (GC), is an error-free mechanism of DSB-repair as a 

consequence of utilisation of the “daughter-strand region” of DNA in the undamaged chromosome, which shares sequence homology with 

that of the damaged DNA strand region in the corresponding chromosomal partner, as a template for exchange of genetic information 

during repair of the respective DSB lesion  (Christmann M. et al, 2003; Fujinaka Y. et al, 2012; George C.M. et al, 2011; Sonada E. et al, 

2001) – mediated via the following steps: 

 

(i) MRN complex-mediated 5’→ 3’ directional re-section of the DSB lesion sites results in the formation of a 3’-single-stranded DNA, 

     which is effectively “shielded” from 3’exonucleolytic dregredation via association with the hepatameric RAD52 protein (Stasiak A.Z. 

     et al, 2000) and 5’ exonucleolytic degredation via association with the Rad9-Rad1-Hus1 heterotrimeric “9-1-1” complex respectively 

     (Ellison V. and Stillman B., 2003). 

 

(ii) Associative interactions between the resultant 3’-ssDNA-complex-bound RAD52 heptamer with the Replication Protein A (RPA) and  

      RPA and RAD51 proteins initiate DNA strand-exchange activity with the DSB homologous DNA sequence region of the undamaged  

      corresponding chromosome (Benson F.E. et al, 1994; Siggurdson S. et al, 2001) – mediated via RAD51-catalysed damaged-DNA  

      “strand invasion” complementary  base sequence “D-loop” displacement of the undamaged DNA duplex homologous template region 

      (Baumann P. and West S.C., 1997; Gupta R.C. et al, 1998). 

 

(iii) Completion of DSB repair is then accomplished viaDNA synthesis, ligation and holliday junction branch migration, mediated via  

       associative functional interactions between the RAD51 multi-paralogue nucleoprotein assembly (comprised of RAD51B. RAD51C,  

       RAD51D, XRCC2 and XRCC3 proteins), DNA polymerase and DNA ligase proteins respectively (Eggler A.L. et al, 2002; Christmann  

       M. et al, 2003; Liu N. et al, 2002; Masson J.Y. et al, 2001;Schild D. et al, 2000; Takata M. et al, 2000; Wiese C. et al, 2002). 

        

Single-Stranded Annealing (SSA) and Microhomology-Mediated End-Joining (MMEJ) are error-prone mechanisms of DNA repair 

implicated in the repair of DSB sites which are flanked by repeat sequences in which the complementary strands of the respected 

homologous regions are re-annealed via DNA ligases whilst the generated excess overhang tails are subsequently cleaved via the 

exonuclease activity of the MRN complex - with consequential loss of the intermediate sequences situated between the respective ligated 

homologous ends (Christmann M. et al, 2003; Carney J.P. et al, 1998; Crespan E. et al, 2012;  Decottignies A., 2007; McHugh P.J. et al, 

2001; McVey M. and Lee S.E., 2008; Taylor E.M. et al, 2009; Trujillo K.M. et al, 1998; Yu A.M. and McVey M., 2010). 

 

Non-Homologous End Joining (NHEJ) is an alternative error-prone mechanism of DNA repair in which Ku70-Ku80 dimeric complex-

mediated DSB site-recognition is also required for recruitment of the catalytic subunit of the DNA-Dependent Protein Kinase 

(DNA-PKcs) to the DNA ds breakage lesion with consequential formation of DNA-PK holoenzyme – which is implicated in phosphorylated-

activation of the single-stranded specific exonuclease protein Artemis and activation of the XRCC4 DNA Ligase IV protein (Christmann M. 

et al, 2003; Mc Hugh P.J. et al, 2001). 

 

The NHEJ-repair mechanism consists of  initial 5’- and 3’- single-strand flap and hairpin loop degradation – mediated via the interactive 

functional associative multi-enzyme complex comprised  of MRN, Artermis and FEN1 proteins, prior to subsequent re-ligation of the 

processed DNA ends via the XRCC4 DNA Ligase IV enzyme respectively (Christmann M. et al, 2003;  McHugh P.J. et al, 2001). 
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Fig 1.49: “9-1-1” Clamp Modulation of DSB-Induced Quiescence 

 

[Taken and Adapted From: Carneiro T. et al, 2010; Deshpande A.M. et al, 2011] 

 
DNA damage checkpoints may exhibit impaired adaptation to replicative senescence as a consequence of 

transient, interachangable signal responses to double-stranded DNA breaks (Desphande A.M. et al, 2010). 

 

Generation of long 3’ ssDNA overhangs at the DSB sites, via Exo1 and/or other nuclease activity-mediated DNA 

re-section of the shortest telomeric termini, may trigger “9-1-1” clamp-initiated checkpoint signalling responses 

(depicted in Figures A and C).  

 

Recruitment of the DNA polymerases Polε and Pol2 to the “nuclease-processed” DSB lesion sites, via the claspin 

and “9-1-1” ring-complexes, may then enable re-synthetic conversion of the long 3’-ssDNA overhangs back to 

dsDNA (Fig B). 

 

[Polε and Pol2 may also form a claspin-like DNA polymerase catalytic heterodimeric complex which elicits the 

  re-synthesis conversion of ssDNA to dsDNA – Fig B] 

 

Alternatively,  the resultant long 3’-ssDNA overhangs may be cleaved to truncated DSB-like structures via 

53BP1-induced nuclease re-section activities (Fig D).   

 

[The Rad9 sub-unit of the “9-1-1” complex possesses a potential 3’-5’exonuclease catalytic motif (Bessho T. and 

 Sancar A., 2000), which may also associatively co-ordinate and/or modulate the activity of other nucleases 

implicated in the generation and conversion of these long 3’ ss-DNA overhangs at the DSB lesion sites] 

 

Continual “3’-ssDNA Re-Section – Re-Synthesis” cycling may occur at each dysfunctional truncated telomeric 

terminus site, via generation of fresh ssDNA and DSB-like substrates which trigger alternate checkpoint 

responses (Fig A and Fig B; Fig C and Fig D) with consequential suppression of checkpoint signalling and 

perpetuation of DNA damage, culminating in maintained cell cycle quiescence (Deshpande A.M. et al, 2010). 

 

                                                     [110] 



Fig 1.50: “9-1-1” Clamp Modulation of Metnase Functional Activities 
 

[Taken and Adapted From: De Haro L.P. et al, 2010] 
 

                  
Metnase is a multi-functional human protein that contains catalytic methylase (“SET”), nuclease and transposase domains which are 

implicated in the regulation of specific activities of several  key DNA metabolic processes – notably; Non-Homologous End-Joining (NHEJ – 

Fig 1.48, p.109), DNA Integration, Chromosomal Decatenation and Chromosomal Translocation (Beck B.D. et al, 2008; Hromas R. et al, 

2008; Jiang H.Y. et al, 2002; Lee S.H. et al, 2005; McClendon A.K. et al, 2005; Williamson E.A. et al, 2008; Wray J. et al, 2010). 

 

Over-expression and corelated activity enhancement of Metnase in leukaemic and breast tumour cells has been implicated in their acquired 

multiple drug resistance towards several classes of Topoisomerase II inhibitory-type anti-cancer chemotherapeutics (Wray J. et al, 2009a; 

Wray J. et al, 2009b) – notably; Anthracyline Antibiotics (eg Daunorubicin, Doxorubicin) and Epipodophyllotoxins (eg Etoposide, 

Teniposide). 

 

Metnase has been demonstrated to interact with and stimulate the enzymatic activity of Topoisomerase IIα, thereby promoting relaxation 

of positive DNA supercoils and resolution of DNA catenanes for prevention of stalled DNA replication forks (De Haro L.P. et al, 2010). 

 

Metnase-mediated methylation of nucleosomal Histone H3 sub-units, at lysine residues K4 and K36, induces conformational changes within 

the chromatin supramolecular architecture which facilitate access of repair proteins to damaged DNA lesion sites and thereby enhance the 

efficiency of Homologous Recombination (HR) and NHEJ DNA repair processes (Fnu S. et al, 2011) – discussed in Fig 1.48, p.109. 

 

Metnase Histone H3 methylation-induced chromatin “re-modelling” may also impinge upon the functional mechanism of  “9-1-1” clamp-

modulated TLK1/1B activity which is implicated in TLS regulation (Canfield C. et al, 2009) – discussed summarily in Fig 1.52, p.117. 

 

Metnase has also been demonstrated to enhance the enzymatic activity of DNA Ligase IV, which may contribute to the enhanced efficiency 

of HR and NHEJ DNA repair (De Haro L.P. et al, 2010) – discussed summarily in Fig 1.48, p.109. 

 

Metnase also interacts with and stimulates the enzymatic activitiy of Topoisomerase IIα, thereby promoting relaxation of positive DNA 

supercoils and resolution of DNA catenanes for prevention of stalled DNA replication forks (De Haro L.P. et al, 2010), which may also 

constitute a regulatory mechanism for the modulation of G2-Decatenation Checkpoint activities (discussed previously in Fig 1.26, p.62). 

 

Metnase may be implicated in the promotion of co-ordinated stalled replication fork recovery and re-start mechanisms, mediated via its 

SET domain conserved PIP box interactions with the Rad9 and PCNA monomer sub-units, which modulate specific functional activities of 

the respective homotrimeric PCNA and heterotrimeric “9-1-1” DNA sliding-clamp complexes, however the enzyme does exhibit any 

influential regulation of replication fork progression. (De Haro L.P et al, 2010). 

 

In addition to its automethylation-mediated activity regulation, Metnase may also modulate specific functional activities of the 

homotrimeric PCNA and heteotrimeric “9-1-1” clamp complexes via specific methylation-type post-translational modifications of the 

respective PCNA and Rad9 sub-units respectively (De Haro L.P. et al, 2010). 

 

These PCNA- and “9-1-1” clamp- Metnase interactions may also be implicated in enhancement of the enzymatic activities of Translesion 

Synthesis (TLS) DNA  Polymerases which mediate replicative “template-switch” by-pass of  “bulky” DNA lesions, such as U.V.-induced 

Thymine Dimers  (De Haro L.P. et al, 2010; Livnah Z. et al, 2010; Jansen J.G. et al, 2007; Zhuang and Ai Y., 2010) – discussed summarily in 

Fig 1.51, p.112. 

 

Metnase-mediated Rad9 methylation may also be implicated in the modulation of “9-1-1” clamp-ATR/ATRIP-RPA ternary complex 

activation of Chk1 kinase-initiated DNA damage checkpoint responses via a similar mechanism to that of PRMT5 methylation of Rad9 (He 

W. et al, 2011) – discussed previously in Section 1.2.2, pp.33-65; Fig 1.18, p.54. 

 

The “9-1-1” clamp complex may modulate Metnase functional activities, via “Rad9 C-terminal Tail Domain – SET Domain PIP box” type 

associative interactions (De Haro L.P. et al, 2010). 

 

Taken together, these Rad9-Metnase interactions could constitute an intricate “feedback network” mechanism of co-ordinated regulation of 

the functional activities of the Rad9-Rad1-Hus1 complex and the enzyme which in turn modulate chromatin re-modelling, stalled 

replication fork recovery/re-start and HR , NHEJ and TLS-coupled “Template-Switching” DNA repair pathway activities. 
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Fig 1.51: “9-1-1” Clamp Modulation of TLS & Template-Switching 

[Taken and Adapted From: Livneh Z. et al, 2010; Jansen J.G. et al, 2007; 

                                                Zhuang Z. and Ai Y., 2010] 
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Bulky DNA lesions are primarily removed via nucleotide excision repair pathways (Fig 1.39, 

p.100 and Fig 1.40, p.101) – but these may also be effectively “by-passed” via alternative 

translesion synthesis and/or template-switching DNA repair pathways in which full-length Rad9 

protein associative functioning within the “9-1-1” complex is a critical mechanistic component 

(Jansen J.G. et al, 2007) – Fig 1.51, p.112. 

 

In these instances selection of the translesion synthesis or template switching mechanism, for 

effective DNA repair and/or by-pass of the bulky lesion site for unhindered continuation of DNA 

replication, is biochemically determined via the relative extent of ubiquitination of the PCNA 

complex (Jansen J.G. et al, 2007) – Fig 1.51, p.112. 

 

Monoubiquitination of the PCNA complex initiates the translesion synthetic pathway which 

utilises the stringent proof-reading DNA polymerases (eg Polδ and Polε), whereas polyubitination 

of the PCNA complex initiates the template-switching pathway which utilises the Y-family of 

DNA polymerases and associative catalytic sub-units respectively (Chang D.J. and Cimprich K.A., 

2009; Jansen J.G et al, 2007; Lee K.Y. and Myung K., 2008; Masuda Y. et al, 2010). 

 

In the hypothetical model postulated by Jansen J.G. and co-workers (Fig 1.51, p.112), translesion 

synthesis is triggered via stalled enzymatic activity of Polδ at DNA lesion sites which only mildly 

perturb the functional configuration of the duplex supramolecular structure with consequential 

recruitment of RPA and Rad6/Rad18 to the template strand and subsequent Rad6/Rad18 complex-

mediated p21-regulated ubiquitination of PCNA (Fig 1.51, p.112). 

 

Transient substitution of Polδ for Polη (a “non-stringent proof-reading” Y-polymerase) enables 

synthesis of a relatively short oligonucleotide template for utilisation by Polδ, which is then re-

positioned at the primer terminus past the DNA lesion site via a secondary polymerase switching 

event prior to re-initiation of replicative progression (Jansen J.G. et al, 2007) – Fig 1.51, p.112. 
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The hypothetical model proposed by Jansen J.G. and co-workers also postulates that severe DNA 

lesion-induced alterations of the functional conformation of the duplex supramolecular structure, 

result in stall replication forks as a consequence of suppressed Polη (and/or other selected DNA Y-

polymerases)-mediated incorporation of bases that is limited to the region opposite the 3’-

nucleotide of the DNA lesion site (Fig 1.51, p.112). 

 

 This “replication-inhibitory” site acts as a polyubiquitination “trigger” for “9-1-1” clamp 

recruitment to the alternative downstream 5’-primer site from the DNA lesion and independent 

loading of the ATR/ATRIP complex to the RPA-coated ssDNA region, prior to Rad9-recruited 

TopBP1-activation of the ATR kinase and subsequent phosphorylation of CHK1 with resultant 

initiation of the G2 checkpoint and G2/M phase cell-cycle arrest (Jansen J.G. et al, 2007) – 

discussed previously in detail in Section 1.2.2, pp.33-65; Fig 1.23, p.59.  

 

In this secondary TLS-repair pathway, the checkpoint DNA damage response is “silenced” via 

ATR/ATRIP complex displacement and “9-1-1” complex-mediated promoted recruitment and 

interactive assembly of the Rev1 sub-unit in association with the Polζ sub-units Rev3 and Rev7 

(Jansen J.G. et al, 2007) – Fig 1.51, p.112. 

 

Polκ, in association with Rev1-Rev3-Rev7 ternary complex, acts a functional pre-requisite for 

subsequent translocation of the resultant Rev1-Polζ(Rev3/Rev7)-Polκ teranary complex to the 

PCNA-Polδ-Polη ternary complex (Jansen J.G. et al, 2007) – Fig 1.51, p.112. 
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Rev1-polyubiqinated-PCNA association-mediated Polη displacement-exchange of binding of the 

Rev1-Polζ(Rev3/Rev7)-Polκ polymerase complex at the 3’-terminus of the DNA lesion site then 

proceeds, prior to Polζ-mediated 5’-nucleotide incorporation within the distorted duplex region, 

followed by subsequent Y-polymerase-mediated DNA strand gap-filling synthesis and annealing 

performed via DNA Ligase-recruitment – mediated via the “9-1-1” complex respectively (Jansen 

J.G. et al, 2007) – Fig 1.51, p.112.   

 

Recruitment of the Y-polymerases for the template switching pathway is potentially error-prone, 

due to the relative low proof-reading stringency of these enzymes and somewhat paradoxically, 

this is also an essential functional feature of the Y-polymerases which enables these enzymes to 

perform DNA synthesis even in the presence of base-lesions/mismatches which would hinder the 

progress of high fidelity proof-reading polymerases (eg Pol δ) respectively (Jansen J.G. et al, 

2007).  

 

In these circumstances, associative protein kinase/phosphatase interactive Rad9 

functions/signalling within the “9-1-1” complex (discussed previously in Section 1.2.2, pp.33-65; 

Fig 1.16, p.52) may serve to enhance the DNA replicative fidelity of the Y-polymerases to 

preserve genomic integrity (Jansen J.G. et al, 2007) – Fig 1.51, p.112. 

 

The “9-1-1” sliding-clamp complex may also modulate the activities of the Tousled-Like Kinase 

TLK1 and/or its isoform TlK1B, via Rad9 associative TLK1/TLK1B interactions, which are 

implicated in the co-ordinated removal of nucleosomes from the chromatin for facilitated access of 

the TLS repair machinery to the bulky DNA lesion site and subsequent reassociation of the 

displaced nucleosomes at the location of the rectified duplex distortion (Canfield C. et al, 2009; De 

Benedetti A. et al, 2009; Sunavala-Dossabhoy G. and De Benedetti A., 2009) – Fig 1.52, p.117. 
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The co-ordinated modulation of Metnase functional activities, mediated via associative Rad9 C-

Terminal Tail domain interactions within the “9-1-1” sliding-complex and PCNA-Metnase 

heterodimeric complex interactions, may also be implicated in the co-ordinated regulation of TLS 

polymerase activities and removal of nucleosomes at the bulky DNA lesion site via methylation of 

histone H3 sub-units (De Haro L.P. et al, 2010) – Fig 1.50, p.111. 

 

Initiated recruitment of DNA base-mismatch repair pathways (Fig 1.43, p.104; Fig 1.45, p.106; Fig 

1.47, p.108) may also be implicated in both the TLS and template-switching mechanisms within 

the integrative hypothetical model (Fig 1.51, p.112) as an additional “safe-guard” against the low 

proof-reading fidelity of Y-polymerases for preservation of genomic integrity (Jansen J.G. et al, 

2007). 
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Fig 1.52: “9-1-1” Clamp Modulation of TLK1 Activity-Mediated TLS 
 

[Taken and Adapted via Collated Information From: Canfield C. et al, 2009; De Benedetti A. et al, 2009;  

                                                                                                      Jiao Y. et al, 2012;  

                                                                                                      Sunavala-Dossabhoy G. & De Benedetti A, 2009]  
                                                                                                                                                                                                                        

                            
Asf1 is a histone H3-H4 chaperone implicated in chromatin re-modelling for promotion of nucleosomal assembly onto newly replicated 

DNA and nucleosomal disassembly from activated promoter sites or damage lesion sites within the DNA for faciliatated, unhindered access 

of the respective transcriptional, translational or repairosome protein machinery (Adkins M.W. and Tyler J.K. 2004; Linger J.K. and Tyler 

J.K., 2007). 

 

TLK1 (Tousled-Like Kinase) is a Serine/Threonine Kinase which may act as a chaperone for Asf1 and modulate its activity via residue-

specific post-translation phosphorylation modifications at Ser10 and Ser192 (De Benedetti A. et al, 2009; De Benedetti A. et al, 2010; Sillje 

H. and Nigg E., 2001). 

 

The nascent mRNA transcript of the TLK1 gene is alternatively-spliced and translated into two isoformic proteins, TLK1 and TLK1B, 

which possess similar functional activities and are often referred to collectively as TLK1/1B (Shalom S. and Don J., 1999; Canfield C. et al, 

2009). 

 

Initial associative exchange of Asf1 from the Rfc1 sub-unit of the PCNA clamp-loader (Rfc1-5) to the Rad17 sub-unit of the “9-1-1” clamp-

loader (Rad17:Rfc2-5) may occur, in response to DSB and/or “Bulky” DNA damage lesions (eg U.V.-induced Thymine-Dimer formation), 

followed by loading of the Rad9-Rad1-Hus1 complex onto the DNA damage site (Canfield C. et al, 2009; Ronald S. et al, 2011) 

 

TLK1/1B kinase may then be recruited resultant Asf1-Rad17:Rfc2-5-“9-1-1”-clamp-DNA ternary complex, via associative Rad9 sub-unit 

interactions – which may also modulate the catalytic activity of TLK1/1B, with consequential phosphorylation of the Rad9 C-tail terminal 

domain at Thr328 which triggers ATM-mediated checkpoint activation-induced cell cycle arrest to enable DNA repair to take place 

(Canfield C. et al, 2009; Sunavala-Dossabhoy G. and De Benedetti A., 2009). 

 

Phosphorylation of the Rad9 C-Terminal Tail Domain at Thr328, via TLK1/1B, also induces supra-molecular configurational changes 

within the ternary complex which trigger dissociation of the Rad17;Rfc2-5 clamp-loader, associative exchange of TLK1/1B from the Rad9 

sub-unit  to Asf1 and dissociative nucleosomal translocation of the dimeric Asf1-TLK1/1B complex (Canfield C. et al, 2009) 

 

TLK1/1B phosphorylation of Asf1, at Ser10 and Ser192, may induce supra-molecular configurational alterations within the protein which 

enhance the  associative affinity  of the Asf1 histone H3 and H4 binding-sites (“H3bs” and “H4bs”) and promote dissociation of the 

resultant Asf1:Nucleosome:TLK1/1B complex, thereby effecting the removal of nucleosomes to enable unhindered access of  “9-1-1” clamp-

recruited DNA polymerases and other repair proteins to the  DNA lesion site (via associative Rad9 C-Tail Terminal Domain Interactions) 

for DSB repair and/or TLS-mediated by-pass of “bulky” DNA lesions (Canfield C. et al, 2009; De Benedetti A. et al, 2009; De Benedetti A. 

et al, 2010; Sunavala-Dossabhoy G. et al, 2003; Sunavala-Dossabhoy G. et al, 2005). 

 

ATM checkpoint kinase-mediated phosphorylation of  the TLK1/1B sub-unit, at Ser695, suppresses its kinase activity and induces supra-

molecular conformational changes within the “DNA-free”/unbound TLK1/1B:Asf1-Nucleosome complex promote dissociation of the 

Asf1:TLK1/1B dimer to enable nucleosomal re-association with the DNA, mediated via RSC protein mobilization – which also serves as a 

co-ordinative trigger signal for cell cycle resumption after DNA repair has been accomplished  (Canfield C. et al, 2009; Groth A. et al, 2003; 

Shim E.Y. et al, 2007). 
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  Fig 1.53: Phospho-Regulated “9-1-1” Clamp DNA Repair Activities 
 

    [Taken and Adapted From: Furuya K. et al, 2010; Paek A.L. and Weinert T., 2010] 

 

        
 
In the above S. pombe model (proposed by Furuya K. et al, 2010), the Rad9 sub-unit component of the “9-1-1” clamp co-ordinates the 

transitional equilibrium between Rad9-Rad1-Hus1 complex-association to the DNA damage lesion site, activation of Chk1 kinase-initiated 

DNA damage checkpoint responses and subsequent Rad9-Rad1-Hus1 complex-dissociation for facilitated recruitment of repair proteins to 

thr DNA damage lesion site (Paek A.L. and Weinert T., 2010). 

 

Initial spRad17:Rfc2-5 complex-loading of the “9-1-1” clamp onto the DNA and subsequent phosphorylation of spRad9 at T225, T412 and 

S423 by the primary/proximal transducer kinase, spRad3, triggers activation of the secondary/diastal transducer kinase, spChk1, which 

initiates DNA damage checkpoint responses (discussed previously in detail in Section 1.2.2, pp.33-65 ). 

 

The initial spRad3- and/or spTel1- phosphorylation of spRad9, at T412, may also enhance Rad9 C-Terminal Tail Domain interactions with 

Replication Protein A (RPA) and thus promote stabilisation of the “9-1-1” clamp-DNA association at the lesion site of DNA damage 

(Furuya K. et al, 2004; Furuya K. et al, 2010). 

 

Rad3-phosphorylation of spRad9 at T225 also induces supra-molecular conformational alterations within the hetereotrimeric “9-1-1” 

clamp which sterically weaken associative interactions at the spRad9-spHus1 interface via disruption of a critical hydrogen bond between 

spRad9-T225 and spHus1-H125 (Furuya K. et al, 2010). 

 

Subsequent spChk1 kinase-initiated DNA damage checkpoint responses also activate the Dbf4-Dependent Kinase (DDK) homolog spHsk1 

which phosphorylates the Rad9  C-Terminal Tail Domain at residue positions Ser319, Ser320 and Ser321 (Furuya K. et al, 2010). 

 

DDK phosphorylation-mediated post-translational modification of spRad9 induces further supra-molecular conformational changes within 

the heterotrimeric “9-1-1” clamp which disrupt spRad9 C-Terminal Tail Domain-spRPA associative interactions and promote 

disengagement of the Rad9-Rad1-Hus1 complex from the DNA , thereby facilitating unimpeded access of DNA repair proteins to the DNA 

damage site for the correct, efficient repair of the DNA lesion (Furuya K. et al, 2010). 

 

An equivalent mechanism may occur in human cells, involving the equivalent functional protein homologues hsATR (spRad3), hsATM 

(spTel1) hsChk1 (spChk1), hsRad9-hsRad1-hsHus (spRad9-Rad1-Hus1) and hsCdc7 (spHsk1) respectively – in the case of  the H. sapiens  

“9-1-1” complex weakened associative interactions at the hsRad9-hsHus1 interface would occur  via equivalent ATR (spRad3) 

phosphorylation of the hsRad9 T195 residue and disruption of the critical hsRad9-T195-hsHus1-H131 hydrogen bond (Doré  et al, 2009). 
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1.3 “9-1-1” Complex-Independent Rad9 Functions 

 

1.3.1 Pyrimidine Nucleobase Biosynthesis Activity Modulation 

 
The hRad9 protein has also been experimentally observed to directly modulate the activity of the 

CAD (Carbamoylphosphate synthetase/Aspartate Transcarbamoylase/Dihydroorotase) multi-

enzymatic protein complex, a key component of the pyrimidine biosynthetic pathway (Lindsey-

Boltz L.A. et al, 2004) – Fig 1.54, p.124 and Fig 1.55, p.125. 

 

Associative interactions between the CSPaseII domain within the multi-enzymatic protein CAD 

and the N-terminus and PCNA-liked domains I and II within the human Rad9A protein induce 

supramolecular conformational changes within the CAD protein which result in a two-fold  

enhancement of the Vmax value of the CSPaseII catalytic activity (Lindsey-Boltz L.A. et al, 2004) 

– Fig 1.56, p.126. 

 

Negative regulatory control of the Rad9A-enhanced CSPaseII catalytic activity of the CAD protein 

is mediated via allosteric cooperative effects of transitional Rad9A C-Terminal tail domain 

dephosphorylation/phosphorylation site-induced supramolecular configurational modifications 

which promote dissociation of the N-terminal-PCNAI-PCNAII-CSPaseII intreactions within the 

bound Rad9A-CAD ternary complex (Lindsey-Boltz L.A. et al, 2004) – Fig 1.56, p.126. 

 

The biochemical mechanism implicated in Rad9A associative enhancement of the activity of the 

CSPaseII domain of the CAD multi-enzymatic complex remains to be elucidated, although several 

hypothetical have been proposed (Lindsey-Boltz L.A. et al, 2004), notably;   

 

(i) The bound CAD-Rad9A complex may induce supramolecular configurational changes within  

     the CSPaseII domain which enhance affinity for its substrates; Glutamine, bicarbonate 

     and ATP respectively (Lindsey-Boltz L.A. et al, 2004). 
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(ii) The bound CAD-Rad9A complex may induce supramolecular configurational changes within  

      the CSPaseII domain which enhance its glutaminase activity with a consequential increase 

      in Vmax with no resultant alteration of substrate affinity. 

 

      However, this hypothesis is contradicted by previous experimental studies which indicated that 

      the two-fold enhancement in Vmax of CPSaseII  in the CAD-Rad9A complex was unperturbed 

      when ammonia was substituted as a nitrogen donor in place of glutamine (Lindsey-Boltz L.A. 

       et al, 2004).  

 

(iii) Associative interactions between CAD and the Rad9A complex may result in the induction 

       of supramolecular conformational changes which promote a thermodynamically-favourable 

       shift towards oligomeric assembly of CAD to its hexameric enyzymatically-active form with 

       enhancement of hexameric conformational stability and/or suppression of hexameric sub-unit 

       dissociation respectively. (Lindsey-Boltz L.A. et al, 2004). 

 

       Previous experimental studies  indicate that dissociation of the active CAD hexameric form 

       to its monomeric form had neglible effect on CSPaseII domain activity but did resulted in a 

       significant decrease in the ATCase activity respectively (Carrey E.A. et al, 1985; Qiu Y. and  

       Davidson J.N., 2000). 

 

       Taken together initially, these experimental observations appeared to indicate that Rad9A  

       associative binding interactions with CAD might possibly promote enhancement of the 

       ATCase Vmax value (Lindsey-Boltz L.A. et al, 2004) 

 

       However, previous studies have established that the activity of the CPSaseII domain within 

       the CAD  is the actual rate-limiting step (Coleman P.F. et al, 1977)  such that enhancement 

       of ATCase catalytic activity via Rad9A would have neglible effect on the overall activity 

       of the CAD protein (Lindsey-Boltz et al, 2004).  
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An alternative hypothetical transition-state intermediate mechanism may account for the 

experimentally observed two-fold increase of the CSPaseII Vmax value in CAD which is mediated 

via associative Rad9A-CAD complex interactions. 

 

The critical step in this mechanism could involve the promotional formation of a 

thermodynamically-favourable transition-state with significantly lowered activation energy via 

discrete supramolecular conformational alterations within the active site of the CSPaseII domain of 

the CAD protein which are induced via specific co-operative non-covalent associative interactions 

within the Rad9A N-terminus and PCNA-like I and II domains respectively. 

 

 

To date, this type of postulated mechanism does not appear to have been considered in the current 

research literature and may warrant future experimental investigation. 

 

In contrast, no similar binding interactive effect has been experimentally observed between CAD 

and hRad9 acting within the associative hHus1/hRad1 hetereotrimeric toroidal 9-1-1 DNA sliding-

clamp complex, indicative that hRad9 may possess independent functions related to the 

modulation of pyrimidine biosynthesis coupled to DNA damage responses and checkpoints 

implicated in regulatory cell cycle biochemical signalling processes respectively (Lindsey-Boltz 

L.A. et al, 2004). 

 

 

Enhanced activity of ribonucleotide reductase via transcriptional and/or post transcriptional 

mechanisms in response to DNA damage is a well-documented phenomenum (Elledge S.J. et al, 

1993). 
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Modulation of CSPaseII activity via proteolytic degredation with the apoptotic protein caspase-3 

(Huang M. et al, 2002b) and/or via associative phosphorylation interactive events with Protein 

Kinase A and MAP kinase components of the signalling cascade pathways implicated in cell 

growth and cell cycle regulation have also been experimentally demonstrated (Graves L.M. et al, 

2000; Sigoillot F.D. et al, 2002a; Sigoillot F.D. et al, 2002b; Sigoillot F.D. et al, 2003) – Fig 1.55, 

p.125. 

 

Enhanced CSPaseII activity has also been observed in comparative experimental studies performed 

on tumour cells (Reardon M.A. and Weber G., 1985; Sigoillot F.D. et al, 2004) which may be 

correlated with elevated levels of Rad9 expression in specific cancerous tissue types – discussed 

previously in Section 1.1, pp.2-22; Fig 1.7, p.13; Fig 1.8, p.14; Table 1.2, p.15. 

 

The original hypothetical assumption postulated that alterations in the relative concentration levels 

of ribonucleotide triphosphate (rNTP) pools would have little affect on the relative concentration 

levels of deoxribonucleotide triphosphate (dNTP), on the basis that rNTP pool levels are 

approximately 100 fold higher than those of the dNTP pool levels respectively with insignificant 

consequential modulatory effects on DNA damage response pathways in relation to cell survival 

and mutation frequency (Lindsey-Boltz L.A. et al, 2004).  

 

However there is currently no experimental evidence to support this hypothetical assumption, 

whilst alterations in rNTP levels may be of significance with regard to RNA damage and RNA 

synthesis associated genotoxic stress responses (Feyzi E. et al, 2007), implicated in cellular 

recovery mechanisms which may promote induction of pyrimidine biosynthesis via functionally-

interactive CAD-Rad9A complex formation respectively (Linsey-Boltz L.A. et al, 2004). 

 

In addition to nucleic acid synthesis, pyrimidine biosynthesis is also a critical biochemical pre-

requisite for the synthesis of UDP-carbohydrates and CDP-lipids which are utilised in a versatile 

range of different cellular functions (Huang M. and Graves L.M., 2003). 
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Other experimental studies have also revealed that whilst CAD is mainly localised in the cytosol, a 

minor proportion of this multi-enzyme protein complex appears to be localised within the nucleus 

(Angeletti P.C. and Engler J.A., 1998; Carrey E.A. et al, 2002;  Sigoillot F.D. et al, 2003). 

 

Thus, Rad9 may potentially function in a range of complementary versatile roles with regard to 

cytological maintenance and integrity within regulatory cell cycle signalling pathways in addition 

to those implicated in DNA damage response checkpoints respectively.   
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       Fig 1.54: Biochemical Overview of CAD-Catalysed Reactions 
 

      [Compiled via Collated Information From: Coleman P.F. et al, 1977;  Evans D.R. & Guy H.I., 2004; 

                                                                                           Jones M.E., 1980; Levine R.L. et al, 1971; Mori M. et al,  

                                                                                           1976; Shoaf W.T. & Jones M.E., 1973; Sigoillot  F.D. 

                                                                                           et al, 2002a; Sigoillot F.D. et al, 2002b; Tatibana M. and 

                                                                                           Ito K., 1969]  

 

 
 

A: CAD is protein with multi-enzymatic functions containing Carbamoylphosphate Synthetase II  

      (CSPaseII), Dihydroorotase (DHO) and Aspartate Transcarbamoylase (ATCase) type catalytic  

      domains. 

 

B:The CAD multi-enzymatic protein is implicated in the catalysis of first three key steps within the 

     pyrimidine biosynthetic pathway, in which the rate-limiting step is determined by the relative 

     activity of the CSPaseII domain within the CAD complex respectively (Coleman P.F. et al,  

    1977; Hager S.E. and Jones M.E., 1967; Jones M.E., 1980). 
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      Fig 1.55: CAD Activity Regulation – Key Domains & Residues 
          

         [Compiled via Collated Information From: Sigoillot F.D. et al, 2002b; Sigoillot F.D. et al, 2005] 
 

        
 

A:Allosteric regulation of the relative activity of the CSPaseII domain within CAD is mediated via 5’-UTP (uridine  

      nucleotide) negative feedback inhibition and positive feedback activation via PRP (phosphoribosylpyrophosphate)  

      respectively (Carrey E.A. and Hardy D.G., 1988) 

      

     PKA1-mediated phosphorylation of Ser1406 induces supramolecular conformational changes within the CSP.B sub- 

     domain which desensitize the CSPaseII catalytic domain towards 5’-UTP negative feedback allosteric inhibition and 

     PRPP positive feedback allosteric activation (Sigoillot F.D. et al, 2002b;Sigoillot F.D. et al, 2005). 

 

     MAPK-mediated phosphorylation of Thr456 induces supramolecular conformational changes within the CSP.A sub- 

     domain which densensitize the CSPaseII catalytic domain towards 5’-UTP negative feedback allosteric inhibiton and  

     enhance the CSPIIase catalytic domain towards PRPP positive feedback allosteric activation (Graves L.M. et al, 2000). 

 

     The MAPK and cAMP-dependent kinase (PKA1 and PKA2) signalling pathways are implicated in the control of cell 

     growth via cell-cycle phase-specific sequential phosphorylation-mediated modulation of CAD catalytic activities 

     (Robinson M.J. and Cobb M.H., 1997; Sigoillot F.D. et al, 2002b; Sigoillot F.D. et al, 2005). 

 

     MAPK-mediated phosphorylation of Thr456 occurs immediately prior to cell cycle S-Phase initiation, with consequential 

     enhancement of PPRP-stimulated CSPaseII catalytic activity and conversion of 5’-UTP from an allosteric inhibitor to an 

     allosteric activator of CSPaseII catalytic activity, thereby providing the necessary metabolic precursors for the required 

     biosynthesis of DNA, RNA and glycoproteins (Sigoillot F.D. et al, 2002b; Sigoillot F.D. et al, 2003; Sigoillot F.D. et al, 

     2007). 

 

     Cell cycle progression and exit from S-phase  initiates Thr456 dephosphorylation and PKA1-mediated phosphorylation 

     of Ser1406 reverts the enhanced PPRP-stimulation of CSPaseII activity to the basal  activity level with consequential 

     down-regulation of CAD catalytic activities (Kotsis D.H. et al, 2007; Sigoillot F.D. et al, 2002b; Sigoillot F.D. et al, 2003). 

 

 

B: Apoptotic suppression of pyrimidine biosynthesis is mediated via Caspase 3 site-specific proteolytic cleavage of CAD at  

      two target substrate motifs situated within the B2 and B3 sub-units of the CPS.B sub-domain of the CSpaseII catalytic 

      domain (Huang M. et al, 2002b; Larsen B.D. and Megeney L.A., 2010). 
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               Fig 1.56: Associative Rad9-CAD Domain Interactions  
 

                         [Compiled via Collated Information From: Lindsey-Boltz L.A. et al, 2004 

                                                                                                                Sigoillot F.D. et al, 2002b 

                                                                                                                Sigoillot F.D. et al, 2005] 
 

 

 
A: Basic component map of the multi-functional protein CAD protein indicating the CSPaseII 

      (GLN-CPSA-CPSB), DHOase and ATCase catalytic domains (Top Figure). 

 

      Basic component map the human Rad9A protein indicating the PCNA-like domain I,  

      PCNA-liked Domain II and the C-Tail Terminal Domain (Bottom Figure).  

 

B: Comparative CAD Co-immunoprecipitation studies with human Rad9A fragments indicate 

      that the N-Terminus and PCNA-like I and II domains are implicated in the associative  

      CAD-Rad9A interactions which elevate the overall activity of the CAD protein via enhanced 

      CSPase II domain catalytic activity (Lindsey-Boltz L.A. et al, 2004). 

 

      These comparative CAD Co-immunoprecipitation studies also indicate that the C-Terminal 

      Tail domain of the human Rad9A protein could be implicated in the negative regulation of 

      the Rad9A-PCNA I/II-domain-CAD associative interactions and thus serves as a potential 

      mechanism for modulatory control of the Rad9A-enhanced CSPaseII catalytic activity of 

      the CAD protein (Lindsey-Boltz L.A. et al, 2004) – discussed on p.119.  
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1.3.2 Intrinisic Apoptotic Signalling Activity Modulation 
 

The hRad9 protein is hypothetically postulated to play a key modulatory role at the crux of the 

delicate balance of regulatory cell cycle check-point biochemical signalling determinants which 

enable cytological survival, via induction of DNA repair and/or by-pass of minor DNA damage or 

initiate apoptotic responses and trigger programmed cell death respectively, on the basis of noted 

observations in several experimental studies (Komatsu K. et al, 2000a; Komatsu K. et al, 2000b; 

Lee M.W. et al, 2003; Yin Y. et al, 2004; Yoshida K. et al, 2002;) – notably; 

 

(i) Associative interactions of the hRad9 protein with the p21 promoter consensus DNA-binding  

     sequence have been observed to directly induce expression of the pro-apoptotic p21 protein in 

     the absence of hHus1 and hRad1 proteins respectively (Yin Y.  et al, 2004). 

 

(ii) Associative interactions of the hRad9 C-terminus with the cAbl kinase have been observed  

      to result in subsequent cAbl-mediated phosphorylation of a specific Tyrosine residue (Y28) 

      situated within BH3-like domain of the hRad9 N-Terminus, which has been demonstrated to 

      be a critical modification pre-requisite that triggers supramolecular conformational type 

      alterations within hRad9 N-terminal BH3-like domain to enable it to engage with and  

      inactivate apoptotic suppressor proteins such as Bcl-xl and Bcl-2 via binding interactions 

      between the respective BH3 domains of the proteins (Komatsu K. et al, 2000a; Komatsu K.  

      et al, 2000b;  Yoshida K. et al, 2002).                                                     
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(iii) The hRad9 protein has also been observed to be proteolytically processed by the apoptotic 

       enzymatic protein Caspase-3 at several specific identified sequence motifs within the hRad9 

 

       protein (Fig 1.57, p.130) with consequential eradication of the functional capability of the 

 

       protein to form the associative hHus1/hRad1 heterotrimeric toroidal 9-1-1 DNA sliding-clamp 

       

       complex and generation of hRad9 N-terminal fragments with retained BH3-like binding 

 

       domains which may possess the ability to associate with and inactivate various BH3-type  

        

       apoptotic suppressor proteins, such as Bcl-2 and Bcl-xl, with subsequent promotion of 

 

       apoptosis (Lee M.W. et al, 2003). 

 

 

On the basis of these observed experimental phenomena, a hypothetical model has been postulated 

for cytological apoptotic induction signalling in response to extensive/irreparable DNA damage 

(Fig 1.57, p.130) in which hRad9 is implicated as a critical determinant component (Lee M.W. et 

al, 2003).   

 

Intriguingly, both ATRIP and Rad9 contain potential Caspase-3 cleavage sites within their 

respective acidic α-helical motifs which associate with the N-Terminal DNA-Binding-Domain F 

(DBD-F) of the 70kDa Replication A protein sub-unit (RPA70) – Fig 1.11A, p.25, notably; 

  

(i) The DIDD Caspase-3 proteolytic target motif situated within the C-Terminal Tail Domain of 

      Rad9 (Fig 1.57, p.127), which also comprises part of its RPA70 DBD-F associative acidic  

      α-helical motif: DDFAN DIDDSYMI (Fig 1.11B, p.25). 

 

(ii) The potential DDLE Caspase-3 proteolytic target motif situated within the ATR-Interacting 

       Protein (ATRIP), which comprises part of its RPA70 DBD-F associative acidic α-helical 

      motif: GDETA DDLEELDT (Fig 1.11C, p.25). 
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A feasible postulate of this observation is that Caspase-3 cleavage of these sites within ATRIP and 

Rad9 may serve to inhibit their associative RPA-protein interactions and thus prevent both 

constitutive and induced Rad9-mediated activation of ATR with consequential suppression of 

ATR-Chk1 initiated cell cycle checkpoints (discussed previously in Section 1.2.2, pp.33-65) and 

promotion of proapoptotic signalling-mediated events. 
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   Fig 1.57: Independent hRad9-Mediated Apoptotic Induction Model 
 

     [Compiled via Collated Information From: Earnshaw W.C. et al, 1999; Nicholson D.W.,1999; 

                                                                                Komatsu K. et al, 2000; Yoshida K. et al, 2002; 

                                                                                Lee M.W. et al, 2003; Yin Y. et al, 2004] 

 

             
 

Activation of the BH3-like binding domain, triggered via associative interactions with the c-Abl kinase at the C-terminal tail 

domain and subsequent phosophorylation of Y28 by the kinase within the full-length hRad9 protein N-Terminus, enables it 

to bind and inactivate BH3-type apoptotic suppressor proteins such as Bcl-xl and Bcl-2 with consequential induction of 

apoptosis (Komatsu K. et al, 2000; Yoshida K. et al, 2002), whilst additional phosphosphorylation of Rad9 by Protein Kinase 

Cδ is also required for binding of the Rad9 BH3-like domain to the Bcl-2 protein (Yoshida K. et al, 2003)  – Fig B. 
 

The full-length hRad9 protein is also implicated in direct associative interactions with the p21 promoter DNA-binding 

consensus sequence which results in elevated inductive expression of the p21 protein in an hHus1/hRad1-independent 

mechanism (Yin Y. et al, 2004) – p21 protein phosphorylation associative-interactions are also implicated in the inhibition of 

pro-caspase 3 activation, CDK and DNA replicative processive activities respectively (Suzuki A. et al, 1998; Suzuki A. et al, 

1999; Child E.S. and Mann D.J., 2006) – Fig B. 
 

Caspase-3 is also implicated in proteolytic cleavage inactivation of a range of other proteins including; polyADPribose 

polymerase, ATM, RAD51, the DNA-PK catalytic sub-unit, CAD (discussed previously in Section 1.3.1, pp.119-126; Fig 

1.55B, p.125) and possibly ATRIP (discussed on pp.128-129) – all of which participate in DNA damage checkpoint response 

and/or repair pathways respectively (Nicholson D.W., 1999).  
 

Caspase-3 cleavage of the full-length hRad9 protein abrogates associative hHus1/hRad1 heterotrimeric toroidal 9-1-1 DNA 

sliding-clamp complex formation and functions, that may serve a regulatory purpose under cytological conditions of 

extensive DNA damage in which DNA repair would be inappropriate due to enhanced error-prone probability and/or when 

DNA repair is no longer thermodynamically favourable. (Lee M.W. et al, 2003) – Fig A and Fig B. 
 

Caspase-3 proteolytic processing of full-length hRad9 also generates several intact N-terminal fragments with the retained 

activated BH3-like protein binding-domain, which are subsequently translocated from the nucleus to the cytosolic 

environment where they bind and inactivate  BH3-type apoptotic suppressor proteins such as BCl-xl and BCl-2 with 

consequential induction of apoptosis. (Lee M.W. et al, 2003) – Fig A and Fig B. 
 

Thus, the hRad9 protein may have potential distinctive modulatory functions within the penultimate decisive end-point 

“signalling crux” of DNA repair and cell survival versus apoptotic programmed cell death respectively. 
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1.4 COP9 Signalosomal Regulation of Rad9 Functional Activities 
 

Experimental investigations have indicated that the Rad1 sub-unit of the “9-1-1” DNA sliding-

clamp complex may also possess a chaperone-like function which may serve to stabilise and 

protect the Hus1 sub-unit from ubiquitin-targeted proteolytic degradation, via formation of the 

heterodimeric Rad1:Hus1 complex, within the cytoplasm (Hirai I. et al, 2004) – discussed 

summarily in Fig 1.58, p.135. 

 

The “9-1-1” complex has also been demonstrated to interact with the Jab1 (CSN5) sub-unit of the 

COP9 signalosome complex, via associative Jab1-Rad1 interactions, which may serve as a signal 

trigger for the sub-cellular translocation of the resultant Rad9-Rad1:Jab1-Hus1 ternary complex 

out of the nucleus to the cytoplasm (Huang J. et al, 2007). 

 

The Jab1 protein (Jun-Activating Binding Protein 1), also known as CSN5 (COP9 Signalosome 

Sub-Unit 5), is a critical associative component of the COP9 signalosome complex (CSN) which is 

required for mediation of the functional CSN activities (Adler A.S. et al, 2006; Chamovitz D.A. 

and Segal D., 2001; Richardson S.K. and Zundel W., 2005; Wei N. and Deng X.W., 2003; Wei N. 

et al, 2008) – Fig 1.59, p.136. 

 

The COP9 signalosome complex exhibits multi-subunit protease activities which are implicated in 

cytosolic regulation of cullin-RING ligase-ubiquitin E3 complex functions within the ubiquitin-

targeted proteosomal pathway (Wei N. et al, 2008) – Figs 1.59 - 1.61, pp.136-138.  

 

Associative Jab1 (CSN5) interactions with the Rad1 sub-unit component of the “9-1-1” DNA 

sliding-clamp are also known to be required for its targeted ubiquitination, mediated via E3 

Ubiquitin Protein Ligases, which constitutes as key pre-requisite step for the initiation of the 

sequential proteolytic degradation of the heterotrimeric, toroidal Rad9-Rad1-Hus1 complex (Hirai 

I. et al, 2004; Huang J. et al, 2007) – Fig 1.60, p.137 and Fig 1.61, p.138. 
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As discussed previously (Section 1.2.4, p.84), the protein chaperone components Hsp70, Hsp90 

and TPR2 which function within protein-folding complex machinery also interact and modulate 

Ubiquitin Protein E3 Ligases (Hatakeyama S. et al, 2004). 

 

Thus potential “cross-talk” signalling between the Hsp70/Hsp90 protein complex-folding 

machinery and Jab1-mediated proteolytic “9-1-1” complex degradation, mediated via the 

differential formation of the “9-1-1”complex-TPR2 (discussed previously in Section 1.2.4, p.84) 

and Rad9-Rad1:Jab1-Hus1 ternary complexes, may be implicated in the selective modulation of 

the levels and activities of the individual isoforms of the Rad9, Hus1 and Rad17 proteins (Fig 1.3, 

p.9; Fig 1.4, p.10; Fig 1.6, p.12) for regulation of the functional activities of each of four potential 

“9-1-1” DNA sliding-clamp isoforms (Fig 1.5, p.11) and individual Rad9A and Rad9B isoforms 

(Fig 1.3, p.9) respectively. 

 

This intricate “cross-talk” signalling may also be implicated in the regulation of the activities of 

nuclear steroidal receptors and their associated protein factors such as the Progesterone receptor 

and the Steroid Receptor Co-Activator (SRC1), whose respective functions are also regulated via 

Jab1 (CSN5)-protein interactions within the associative COP9 signalosome complex (Chauchereau 

A. et al, 2000; Wei N. et al, 2008) – Fig 1.59, p.136. 

 

The ubiquitin-proteosomal system also constitutes a major mechanism for the regulation of a 

variety of different cytological processes, including those associated with cell cycle checkpoints 

and DNA repair pathways (McBride W.H. et al, 2003). 
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Furthermore, small-molecule inhibitors of specific component proteins within the ubiquitin-

proteosomal system have been demonstrated to trigger activation of the G1/S, Intra-S and G2/M 

cell cycle checkpoints (Bendjennat M. et al, 2003; McBride W.H. et al, 2003) – discussed in detail 

previously in Section 1.2.2, pp.33-65. 

 

Jab1 (CSN5)-mediated functions within the COP9 signalosome complex also modulate the 

respective activities of several key proteins which have been identified as critical implicators in the 

progression of various different types of cancerous diseases – including; AP-1, c-Jun, p27/Kip1, 

p53, Smad4/Smad7 (Huang J., et al, 2007; Shackleford T.J. et al, 2011; Wei N. et al, 2008) – Fig 

1.59, p.136. 

 

Various experimental studies have also indicated that Jab1 (CSN5) has key functional roles in the 

modulation of cell cycle progression, genomic stability, carcinogenesis and cell survival in 

response to cytological radiosensitivity (Doronkin S. et al, 2002; Doronkin S. et al, 2003; 

Fukumoto A. et al, 2005; Fukumoto A. et al, 2006; Huang J. et al, 2007; McBride W.H. et al, 

2003; Tian L. et al, 2010; Tomoda K. et al, 2004). 

 

Deletion of the Jab1 gene in mouse embryonic fibroblasts and osteocarcinoma cells has been 

demonstrated to enhance their genomic instability as a consequence of elevated spontaneous DNA 

damage and homologous recombination repair defects, via p53-mediated suppressed expression of 

the Rad51 protein (whose key functional role in homologous recombinational repair was discussed 

previously in Fig 1.48, p.109), which also enhances the radiosensitivity of these cells to γ-

irradiation and promotes apoptotic induction (Tian L. et al, 2010). 
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Jab1 (csn5) over-expression has also been demonstrated to suppress genotoxic and replication 

stress-induced Chk1 phosphorylation with consequential impairment of activated checkpoint 

responses and  cytological propagation of genomic instability which may be implicated in the 

development of carcinogenesis (Tomada K. et al, 1999; Bech-Otschir D. et al, 2001; Bech-Otschir 

D. et al, 2002; Nemajerova A. et al, 2007). 

 

Experimental studies also indicate that the MIF1→Jab1 (CSN5)→Ubiquitin E3 Ligase (CSF) 

proteosomal signalling pathway may be implicated in the regulation of Chk1- and Chk2- initiated 

DNA damage checkpoint responses, whilst its dysfunction may have a key role in tumour cell 

survival and developmental progression to metastatic cytological status (Nakayama K.I. and 

Nakayama K., 2006; Nemajerova A. et al, 2007). 

 

The heterotrimeric toroidal Rad9-Rad1-Hus1 PCNA-like DNA sliding-clamp complex is also 

implicated the initiation of various cell cycle checkpoint pathways via mediation of 

ATR/ATRIP→Chk1-activation of “down-stream” effector  biochemical signalling cascades 

(discussed previously in detail in Section 1.2.2, pp.33-65). 

 

This collective experimental evidence indicates the feasible existence of novel Rad9-Rad1-Hus1 

sliding-clamp complex-“feed-back” mechanisms, mediated via associative Rad1-Jab1 interactions, 

which regulate the activity of  “9-1-1” complex-initiated cell cycle checkpoint signalling (Section 

1.2, pp.23-118) and independent Rad9 apoptotic modulation in response to genotoxic and/or DNA 

replication stresses (Section 1.3.2, pp.127-130) – Fig 1.62, p.139. 
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  Fig 1.58: Rad1-Modulated “9-1-1” Clamp Stability & Translocation 
 

  [Taken and Adapted From: Hirai I. et al, 2004] 
 

 
 
In the above model, proposed by Harai I. et al, 2004, the Rad1 protein functions as a chaperone stabiliser for the Hus1 

protein. 

 

Unlike Rad1, Hus1 is relatively unstable within the cytosolic environment and is highly susceptible to proteolytic 

degradation (Hirai I. et al, 2004). 

 

Elevated Rad1 expression is a genotoxic-inductive cellular response, which promotes formation of the Rad1:Hus1 

heterodimeric complex (Hirai I. et al, 2004) 

 

Associative interactions of Rad1 with the Hus1 protein effectively “shield” Hus1 against proteolytic degradation and the 

resultant heterodimeric Rad1:Hus1 complex is sufficiently stable to enable its translocation to the nuclear environment 

where association with the Rad9 protein takes place for subsequent “9-1-1” clamp formation and loading of the 

heterotrimeric complex onto localised chromatin sites of DNA damage (Hirai I. et al, 2004).  

 

As discussed in detail later (Fig 1.60, p.137; Fig 1.61, p.138), associative interactions between the COP9 Signalosome protein 

component Jab1 (CSN5) and the Rad1 sub-unit within the “9-1-1” clamp promote translocation of the resultant Rad9-

(Rad1-Jab1)-Hus1ternary complex from the nucleus to the cytoplasm for sequential ubiquitination-targeted proteolytic 

degradation (Huang J. et al, 2007). 

 

Ubiquitin-targeted proteosomal degradation of the “9-1-1” clamp via initial hydrolytic decomposition of the Rad1 sub-unit 

may constitute a key regulatory “rate-limiting” step implicated in the dissociation of the remnant Hus1:Rad9 heterodimeric 

complex via increased instability of the Hus1 sub-unit due to elimination of the protective Rad1:Hus1 associative 

interactions (Hirai I. et al, 2004; Huang J. et al, 2007) – Fig 1.60, p.137. 

 

Initial proteolytic removal of the Rad1 sub-unit would thus facilitate proteosomal degradation of the remnant 

Hus1 and Rad9 sub-units (Hirai I. et al, 2004; Huang J. et al, 2007) – Fig 1.60, p.137. 
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  Fig 1.59: Jab 1 Proteosomal Functions & CSN Complex Interactions 
 

  [Taken and Adapted From: Chamovitz D.A. and Segal D., 2001] 
 

 
Jab1 (also known as CSN5) is a metalloproteinase protein which has distinctive functions that operate both outside of and 

within the COP9 signalosome (CSN) complex – which is comprised of 8 different CSN sub-units in total. (Chamovitz D.A. 

and Segal D., 2001; Deng X.W. et al, 2000a; Deng X.W. et al, 2000b; Freilich S. et al, 1999; Fukumoto A. et al, 2004; 

Kapelari B. et al, 2000; Kato J.Y. et al, 2006; Kwok S.F. et al, 1998; Kwok S.F. et al, 1999; Richardson K.S. and Zundel W., 

2005; Serino G. et al, 1999; Scherer S.J. et al, 2000; Sugiyama Y. et al, 2001; Tomoda K. et al, 2002; Wei N. and Deng X.W., 

2003; Wei N. et al, 1998; Wei N. et al, 2008). 

 

These Jab1 functions modulate the activity of a wide variety of proteins which are implicated in regulatory cellular process, 

including; CDK Inhibitors (eg p27/Kip1), Cytokines (eg MIF – Macrophage Migration Inhibitory Factor), Oncoproteins (eg 

the c-Jun sub-unit of the AP-1 Transcriptor Factor Complex; eg the Steroid Receptor Co-Activator – SRC1), 

Integrin/Adhesion Receptors (eg LFA-1) and Hormonal Receptors (eg the G-protein coupled Lutopin/Choriogonadotropin 

Receptor – LHR) (Bianchi E. et al, 2000; Chauchereau  A. et al, 2000; Claret F.X. et al, 1996; Kleeman R. et al, 2000; Li S. et 

al, 2000; Richardson K.S. and Zundel W., 2005; Tomada K. et al, 1999; Wei N. et al, 2008). 
 

Dotted lines denote protein translocation trafficking and associative Jab1 (CSN5) protein interactions implicated in 

formation of the CSN complex, dissociative release of Jab1 from its heterodimeric complex with LFA-1 and Jab1-targeted 

proteolytic degradation of the LHR receptor (Bianchi E. et al, 2000; Chamovitz D.A. and Segal D., 2001; Li S. et al, 2000) . 
 

The Jab1 (CSN5) protein component, functioning within the nuclear CSN complex, also initiates AP-1 transactivation via 

associative stimulatory interactions with the oncoprotein c-Jun (which is also a sub-unit of the AP-1 transcription factor) 

and via associative stimulatory interactions with both the Progesterone Receptor (PR) and the Steroid Receptor Co-

Activator – SRC-1 (Chauchereau A. et al, 2000; Claret F.X. et al, 1996; Chamovitz D.A. and Segal D., 2001). 
 

Solid black lines denote associative Jab1 (CSN5)-mediated protein interactions with either LFA-1, MIF1 or LHR which 

inhibit the transactivation of the AP-1 protein transcription factor (Bianchi E. et al, 2000; Kleemann R. et al, 2000; Li S. et 

al, 2000; Chamovitz D.A. and Segal D., 2001).  
 

The nuclear CSN complex suppresses the activity of the p27/Kip1 Cyclin-Dependant Kinase Inhibitor (CDKI) protein, via 

associative interactions with the Jab1 (CSN5) sub-unit, which promotes cell cycle progression via Jab1(CSN5)-mediated 

translocation and removal of p27/kip1 from the nucleus to the cytosolic environment for targeted proteolytic degradation 

(Chamovitz D.A. and Segal D., 2001; Fukumoto A. et al, 2004; Kato J.Y. et al, 2006; Tomoda K. et al, 1999; Tomoda K. et al, 

2002; Vlach J. et al, 1997). 
 

Cytosolic sequestration of Jab1(CSN5), via associative interactions with the MIF1 protein, prevent formation of the active 

CSN complex with consequential nuclear accumulation of p27/Kip1 and induction of cell cycle arrest (Chamovitz D.A. and 

Segal D., 2001; Fukumoto A. et al, 2004; Kato J.Y. et al, 2005; Kleemann R. et al, 2000; Tomoda K. et al, 2002). 
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Fig 1.60: Rad1-Jab1 Associative “9-1-1” Clamp Degradation Model    
 

[Compiled via Collated Information From: Huang J. et al, 2007;  Richardson K.S. and Zundel W., 2005] 
 

 
 

Associative interaction of Jab1 with the Rad1 sub-unit of the “9-1-1” clamp initiates its translocation from the nucleus to the 

cytoplasm and primes the complex for ubiquitin-targeted proteasomal degradation (Huang J. et al, 2007). 
 

Recruitment of the Cul-E3 complex (comprised of the component assembly of the UbE3-Adaptor, UbE3-Recognition and 

Cullin proteins) to the “9-1-1” clamp is mediated via associative interactions between the Rad1-Jab1 sub-complex and the 

UbE3-Recognition component (Huang J. et al, 2007; Richardson K.S. and Zundel W., 2005). 
 

Simultaneous recruitment of the Ring Finger (RF) protein component to the resultant ternary complex initiates recruitment 

and activation of the UbE2-Conjugating Enzyme, with subsequent transfer of ubiquitin from the UbE1 –Activating Enzyme 

to the UbE3-Ligase enzyme and consequential polyubiquitination of the Rad1 sub-unit (Schweccheimer C., 2004). 
 

Jab1 and the CulE3 assembly dissociate from the resultant Rad9-Rad1(Ub)n –Hus1 complex, prior to initial degradation of 

the Rad1-sub-unit by the 26S proteasomal complex, followed by subsequent polyubiquitination and degradation of the Hus1 

and Rad9 sub-units respectively (Hirai I. et al, 2004; Huang J. et al, 2007; Wei N. and Deng X.W., 2003). 

                                                   [137] 

 



Fig 1.61: Jab1-Targeted “9-1-1” Clamp Proteolysis – CSN Regulation 

 

[Compiled via Collated Information From: Huang J. et al, 2007;  Richardson K.S. and Zundel W., 2005] 
 

 
 

Regulation of Cullin activity and Rad1-targeted recognition of the”9-1-1” clamp is mediated via associative interactions the 

Jab1 (CSN5) sub-unit of the COP9 signalosome complex (CSN) (Fig 1.60, p.137). 
 

The CSN complex also regulates Cullin assembly dissociative turn-over and recycling of the component sub-units via 

transient interactions with CAND1 (Glickman M.H. et al, 1998; Richardson K.S. and Zundel W., 2005; Schwechheimer C., 

2004; Wei N. and Deng X.W., 2003). 
 

Dissociation of the Jab1 (CSN5) sub-unit from the COP9 signalosome renders the CSN complex inactive, thereby promoting 

formation of the Cul-E3 assembly, whilst subsequent nuclear translocation and association of Jab1 to the nucleus with the 

Rad1 sub-unit of the “9-1-1” clamp initiates cytoplasmic translocation of the Rad9-Rad1-Hus1 complex to the cytoplasm for 

ubiquitin-targeted proteasomal degradation (Huang J. et al, 2007; Wei N. and Deng X.W., 2003; Schwechheimer C., 2004). 
 

Negative regulation of Ubiquitin E3 ligase activity by the COP9 signalosome is also dependent upon the associative presence 

of the Jab1 (CSN5) sub-unit within the CSN complex (Richardson K.S. and Zundel W., 2005; Wei N. and Deng X.W., 2003). 
 

Thus, Jab1 (CSN5) association with the Rad1 sub-unit of the “9-1-1” clamp suppresses formation of the active CSN complex 

with consequential enhancement of UbE3-Ligase activity for sequential degradation of the Rad9-Rad1-Hus1 complex.  
 

The regulation of associative Cullin-E3 complex activities is inhibited via re-cycling of Nedd8, whilst deneddylation of Cullin 

within the associative “9-1-1” clamp ternary complex is an essential pre-requisite for the initiation of proteasomal 

degradation of the Rad1 sub-unit and subsequent successive proteasomal degradation of the Hus1 and Rad9 sub-units 

(Huang J. et al, 2007; Richardson K.S. and Zundel W., 2005; Schwechheimer C., 2004; Wei N. and Deng X.W., 2003). 
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Fig 1.62: Jab1-“9-1-1” Complex-Coupled Cell Cycle Regulation 
 

[Compiled via Collated Information Taken and Adapted From: Bech-Otschir D. et al, 2001 

                                                                                                                         Bech-Otschir D. et al, 2002 

                                                                                                                         Dai Y. and Grant S., 2010 

                                                                                                                         Earnshaw W.C. et al, 1999 

                                                                                                                         Huang J. et al, 2007 

                                                                                                                         Komatsu K. et al, 2000 

                                                                                                                         Lee M.W. et al, 2003 

                                                                                                                         Nakayama K.I. and Nakayama K., 2006 

                                                                                                                         Nemajerova A. et al, 2007 

                                                                                                                         Nicholson D.W., 1999 

                                                                                                                         Yin Y. et al, 2004 

                                                                                                                         Yoshida K. et al, 2002 

                                                                                                                          

 
 

Interaction of the Macrophage Migratory Inhibitory Factor (Mif1) protein with Jab1 (CSN5) co-ordinates the secondary 

(distal) transducer kinase Chk1- and Chk2- mediated checkpoint signalling responses to genotoxic stress- and/or 

environmental stress-induced perturbance of DNA replication with SCF (Skip Cullin F-Box) Ubiquitin-targeted proteolytic 

degradation of key cell cycle effector proteins, such as Cdc25A phosphatase, E2F and the Cyclin-Dependent Kinase 

Inhibitor (CDKI) p27/Kip1, for appropriate regulation of their respective functional activities in the maintenance of 

cytological genomic integrity (Nemajerova A. et al, 2007). 
 

Thus, the  SCF multi-protein ubiquitin proteosomal complex is an integral mechanistic component for the regulated control 

of transitional G1/S checkpoint activities through to transitional G2/M checkpoint activities (discussed in detail previously 

in Section 1.2.2, pp.33-65). 
 

Associative Jab1-Rad1 interactions target the “9-1-1” DNA sliding-clamp complex for proteolytic degredataion with 

consequential inhibiton of ATR→Chk1-initiated checkpoint signalling responses to DNA damage and/or replication stress. 

 

CSF-mediated degradation of the “9-1-1” complex may also result in the liberation of free Rad9 which in turn may undergo 

phosphorylation at Y28 by c-Abl and proteolytic cleavage by Caspase 3 into truncated BH3-like domain-retained N-

terminal fragments that bind and inactivate apoptotic suppressor proteins, such as Bcl-2 and Bcl-xL, with consequential 

induction of apoptosis (discussed previously in Section 1.3.2, pp.127-130; Fig 1.57, p.130). 
 

The C-Tail Terminal domain of Rad9, acting independently of the “9-1-1” DNA sliding-clamp complex can also interact 

with the promoter of the p21/WAF1 gene and stimulate its transcriptional activity with consequential elevated expression of 

the p21 protein which elicits sustained G1/S arrest (Fig 1.21, p.57) and apoptotic induction (Fig 1.57, p.130). 
 

Red dotted lines indicate the potential interactive “feed-back” modulatory pathways which impinge upon the respective 

functional activities of the Jab1 and “9-1-1” DNA sliding-clamp complex.  
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1.5 Project Brief: Research Background, Aims and Objectives  
 

1.5.1 S. pombe: A Versatile Eukaryotic Model Organism  
 

From a historic perspective, tentative exploration into the potential versatility of the fission yeast 

organism Schizosaccharomyces pombe as an experimental homologous eukaryotic model system 

for the mechanistic investigation of regulatory processes implicated in cell division, growth and 

development, was undertaken by Murdoch Mitchison and co-workers back in the 1950’s (Egel R., 

2010; Mitchison J.M., 1990; Nasim A. and Hannah M.A., 1993). 

 

In the 1970’s and beyond,  Sir Paul Nurse and co-workers incorporated Leupold’s genetic-based 

studies on S. pombe (Leupold U., 1958) into the original experimental approaches adopted by 

Mitchison’s research group for significant progressive development and refinement of the 

established eukaryotic model system prototype (Bartlett R. and Nurse P., 1990; Enoch T. et al, 

1992; Enoch T. et al, 1993; Hayles J. and Nurse P., 1986; Kholi J. and Nurse P., 1995; Lee M. and 

Nurse P., 1988; Moreno S. et al, 1989; Moreno S. et al, 1991; Norbury C. and Nurse P., 1990; 

Nurse P., 1997a; Nurse P., 1997b). 

 

Subsequent pioneering work contributed by Sir Paul Nurse, in collaboration with independent 

studies performed by other research teams led by Timothy R. Hunt and Leland H. Hartwell, 

culminated in the identification of key regulatory proteins of the cell cycle (Hartwell L., 2001; 

Hunt T., 2002; Nurse P., 2001; Nurse P.M., 2002a; Nurse P.M., 2002b). 

 

Consequentially, these three scientists were jointly awarded the Nobel Prize in Physiology and 

Medicine for their significant contributions made to the progressive advancement of detailed 

knowledge of the key biochemical mechanisms implicated in the regulation of the cell cycle 

(http://nobelprize.org/nobel_prizes_medicine/laureates/2001). 
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The fission yeast Schizosaccharomyes pombe has since become well established universally as a 

robust experimental eukaryotic model system and it is also widely utilised for the elucidation and 

“in-depth” study of an extensive range of potential cell cycle regulatory mechanisms which may be 

implicated in the progressive development of carcinogenic processes (Beretta G.L. and Peregro P., 

2005; Bitton D.A. et al, 2011; Deshpande G.P. et al, 2009; Egel R., 2010; Forsburg S.L., 1999; 

Forsburg S.L., 2003a; Forsburg S.L., 2005; Gómez E.B. and Forsburg S.L., 2002; Henry S.A. and 

Patton-Vogt J.L., 1998; Nurse P., 2009; Spradling A. et al, 2006; Sugiura R., 2002; Wood V. et al, 

2002). 

 

S. pombe is particularly attractive to researchers as an experimental eukaryotic model system of 

choice by virtue of several key advantageous features of the organism (Egel R., 2010; Nurse P., 

2009) – notably; 

 

(i) It is a unicellular fungus of comparatively simple organisation and exhibits a relatively rapid 

     rate of growth (typically, broth culture double-time ~ 3 hours; petri-plate agar colony culture 

     establishment ~ 3 - 4 days – at its normal physiological incubation temperature of 30°C. 

     (Forsburg S.L. et al, 2003c). 

 

(ii) It possesses a conventional eukaryotic cell cycle and a mitotic nuclear division process, 

      compatible to that of mammalian cells, which incorporates a wide range of conserved key  

      functional protein homologues that are implicated in various cell cycle regulatory pathways. 

      (Bitton D.A. et al, 2011; Chen Y. and Sanchez Y., 2004; Deshpande G.P. et al, 2009; 

       Dhillon N. and Hoekstra M.F., 1994; Enoch T. et al, 1992; Forsburg S.L. et al, 

       1994a; Forsburg S.L.,1994b;  Furuya K. and Carr A.M., 2003; Gómez E.B. and 

       Forsburg S.L., 2004; Kelly T.J. et al, 1993; Nurse P., 1977; Nurse P., 2009;  

       Russell P. et al, 1989; Yue M. et al, 2011) – Fig 1.63,p.143; Fig 1.64, p.144. 
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(iii) It possesses an almost conventional meiotic cell cycle which can be readily exploited for the 

       experimental investigation of recombinant DNA repair mechanisms and the relatively 

       “straight-forward”  selective generation of specific “gene knock-out” mutant cross-strains. 

        (Forsburg S.L. and Rhind P., 2006; Gutz H., 1967; Gutz H. and Doe F.J., 1973;  

         Hyppa R.W. and Smith G.R., 2009; Nurse P., 2009; Pankratz D.G. and Forsburg S.L.,2005;  

         Pryce D.W. and McFarlane R.J., 2009) – Fig 1.63, p.143. 

 

(iv) It is relatively easily to manipulate in both classical and molecular genetic-based experimental 

       analyses. 

       (Breitkreutz B.J. et al, 2008; Deshpande G.P. et al, 2009; Forsburg S.L., 1993; Forsburg S.L.,  

        1994a; Forsburg 2003b; Forsburg 2003d; Forsburg S.L.and Nurse P., 1991; Forsburg S.L., 

        2001; Forsburg S.L. and Sherman D.A., 1997; Kelly T.J. et al, 1993; Kumar R. and Sing J., 

        2006; Lyne R. et al, 2003; Moreno S. et al, 1991; Moreno  S. et al, 1989; Nurse P., 2009;  

        Siam R. et al, 2004; Watson A.T.et al, 2008; Wood V. and Bähler J., 2002).  

        [http://biosci.osu.edu/~nile/nurse_lab_manual] 

 

(v) A full range of versatile reverse genetics-based protocols has been established for the organism. 

      (Alfa C. et al, 1993; Egel R.,2010; Nurse P., 2009; Sabatinos S.A. and Forsburg S.L., 2010) 

      [http://biosci.osu.edu/~nile/nurse_lab_manual] 

                                                 
(vi) Complete library sets of S. pombe strains, which comprise specific genetically-defined mutants  

      for a wide range of equivalent types of key functionally-conserved mammalian homologous 

      proteins that are implicated in various cell cycle regulatory processes, are well established and  

      commercially available. 

      (http://pombe.bioneer.co.kr; Nurse P., 2009; Spirek M. et al, 2010). 
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 Fig 1.63: Overview of the Fission Yeast S. pombe Life-Cycle 

 

               [Taken and Adapted From: http://www-rfc.usc.edu/~forsburg/cclecture.html] 

                  
 

  Table 1.5: H. sapiens and S. pombe Functional Protein Homologues 

 

   [Compiled via Collated Information From:  

    Chen Y. and Sanchez Y., 2004; Christmann M. et al, 2003; Ellison V. and Stillman B.,2003;  

    Furuya K. and Carr A.M., 2003; Harrison J.C. and Haber J.E., 2006; Lieberman H.B. et al, 1996;  

    Melo J. and Toczyski D., 2002; Niida H. and Nakanishi M., 2006; Nyberg K.A. et al, 2002;  

    Volkmer E. and Karnitz L.M., 1999; Yue M. et al, 2011]  

                                                

    
 
The meiotic life-cycle is particularly useful for generation of experimental S.pombe cross-strains, such as double 

knock-outs for elucidation of specific protein-protein interactions within DNA damage response pathways and 

investigation of recombinational DNA repair mechanisms (Top Left Figure). 

 

The mitotic cycle is a useful experimental eukaryotic model for elucidation of novel protein interactive 

signalling events in cell cycle regulatory DNA damage checkpoint pathways (Fig 1.64, p.144) which may be 

implicated in specific mechanisms of carcinogenesis and neoplastic transformation in Human cells respectively 

(Top Right Figure). 

 

A wide range of equivalent functional proteins, implicated in DNA damage response pathways, are highly 

conserved  between mammalian and yeast cells (selected key examples tabulated above). 
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    Fig 1.64: Examples of Key Conserved Checkpoints in S. pombe  
 

      [Collative Figure Adaptation From: Furuya K. and Carr A.M., 2003 

                                                                          http://www-rfc.usc.edu/~forsburg/cclecture.html] 

 

 
 

Conserved equivalent homologous protein functions implicated in the mammalian mitotic cell cycle 

checkpoint signalling responses to different types of DNA damage and/or replication stress can be 

conveniently studied, via appropriate experimental genetic manipulation, in the eukaryotic model 

organism Schizosaccharomyces pombe (Abraham R.T., 2001; Bitton D.A. et al, 2011; Deshpande G.P. 

et al, 2009; Dhillon N. and Hoekstra M.F., 1994; Enoch T. et al, 1992; Forsburg S.L., 2005; Furuya K. 

and Carr A.M., 2003; Nurse P. et al, 2009). 

 

A comparative tabulated summary of conserved key equivalent protein functional homologues, 

implicated in mitotic checkpoint signalling responses, is provided on the previous page (Table 1.5, 

p.143). 

 

The equivalent, conserved human Rad9-mediated mitotic checkpoint signalling pathways have been 

discussed in detail previously (Section 1.2.2, pp.33-65 – to which the reader is referred for 

comparative explanation of the equivalent S. pombe mitotic checkpoints depicted in the figure above). 
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1.5.2 The Initial Discovery of “spRad9-S”: A Novel spRad9 Variant 

The S. pombe experimental eukaryotic model system was instrumental in the initial identification 

and functional characterisation of the human Rad9 protein in mitotic DNA damage responsive 

checkpoint pathways (Caspari T. et al, 2000a; Caspari T., 2000b; Lieberman H.B. et al, 1992; 

Lieberman H.B. et al, 1996; Murray J.M. et al, 1991; Subramani S., 1991).  

 

The potential existance of a novel truncated variant of the spRad9 protein (termed “spRad9-S”) 

was discovered by Caspari T. and co-workers during the course of their investigative SDS-PAGE 

and Western Blot experiments, performed on precipitated protein extracts acquired from cultures 

of different strains of S. pombe cells which were genetically-engineered to express a C-terminal 

haemaglglutinin (HA)  epitope-tagged version of the spRad9 protein (spRad9-c3xHA) – Fig  1.65, 

p.147. 

 

Subsequent “follow-up” experimental work revealed that the induction of “spRad9-S” expression 

only occurred at elevated temperatures, whilst no inducible  expression of “spRad9-S” was 

observed in S. pombe strain cultures exposed to varying doses of U.V. light or ionising radiation 

(Caspari T. et al, unpublished data) – Fig 1.65, p.147. 

 

The research team also found that significantly lower levels of “spRad9-S” were expressed in 

precipitated protein extracts acquired from cell cultures of an isolated temperature-sensitive mutant 

S. pombe strain, TCY282, which was also genetically-engineered to express spRad9-c3xHA 

(Caspari T. et al, unpublished data) – Fig 1.66, p.148. 
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The researchers also noted that the approximate molecular weight of the truncated spRad9-S 

variant was 40kDa (Fig 1.65, p. 147), which they postulated could be equated to a loss of the first 

49 amino acids from the N-Terminus of the full-length Rad9 protein and may be correlated with a 

potential alternative translation AUG codon start site they identified within the rad9 gene at 

Methionine 50 (Caspari T. et al, unpublished data). 

 

If these hypothetical deductions are correct, then the expressed “spRad9-S” protein variant may be 

an M50 AUG start site-encoded alternative translation product which would be unable to form a 

“9-1-1” clamp-like complex as a consequence of truncation of the spRad9 PCNA-like I domain via 

loss of the first 49 N-Terminal amino acids that form key associative interactions with the Rad1 

protein (Caspari T. et al, unpublished data).  

 

The researchers also observed expression of “spRad9-S” in comparative size-exclusion 

chromatographic analyses of protein extracts, acquired from an S. pombe strain expressing the 

wild-type Rad9-HA and a mutant S. pombe strain expressing the L196P site-directed PCNA-like 

domain mutagenised version of the Rad9-HA protein, Rad9-192 – which cannot form associative 

Rad1 and Hus1 toroidal DNA sliding-clamp protein-protein interactions (Caspari T. et al, 2000a; 

Caspari T. et al, 2000b) – Fig 1.65, p.147. 

 

Taken together, these tentative experimental data indicated the potential existance of a smaller 

truncated variant of the S. pombe Rad9 protein, whose regulated expression is independent from 

both that of the full-length Rad9 protein (Fig 1.66, p.148) and the heterotrimeric PCNA-like Rad9-

Rad1-Hus1 toroidal DNA damage sensory sliding-clamp (Fig 1.65, p.147) respectively. 

 

The data also indicate that this truncated “spRad9-S” protein variant may possess potential novel  

independent functions which operate outside of the canonical “9-1-1” clamp complex. 
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       Fig 1.65: SDS-PAGE & HPLC-SEC Fractionation Analyses 
 

                     
 

A: Experimental Western blots total protein extracts acquired from S. pombe cells expressing the C-terminal 

     epitope-tagged full-length spRad9-3xHA protein variant, resolved via 10% SDS-PAGE, transferred onto 

     nitrocellulose membranes which were then  probed with an Anti-HA antibody (Caspari T. et al,  2000a; 

     Caspari T. et al, 2000b). 

 

     The experimental data are indicative of induction of  “spRad9-S” in response to elevated thermal stress. 

     Comparative studies with an administered 250Gy dose of ionising radiation (IR) are indicative that the 

     spRad9 C-tail terminal domain is phosphorylated in response to IR-induced DNA damage and as a 

     consequence the relative molecular mass of the protein is increased with resultant retarded migration 

     on the SDS-PAGE gel respectivedly (Caspari T. et al, 2000a; Caspari T. et al, 2000b). 

 

 

B: Prolonged probing of the total protein extract acquired from S. pombe spRad9-3xHA cells grown at 27ºC 

     facilitates detection of a relatively lower concentration of “spRad9-S” indicative of constitutive expression 

     of  “spRad9-S” (Caspari T. et al, 2000a; Caspari T. et al, 2000b). 

 

     Furthermore, a relatively low concentration of the SDS-PAGE retarded phosphorylated form of the 

     full-length spRad9 protein was detected – indicative of endogenous constitutive phosphorylation of  

     the full-length spRad9 protein respectively (Caspari T. et al, 2000a; Caspari T. et al, 2000b). 

 

 

C: Size Exclusion Chromatographic data of total protein cell extracts acquired from S. pombe strains, 

     incubated at 29ºC, expressing C-terminal 3xHA tagged variants of full length spRad9 and the 

     full-length spRad9-192 (L196P) mutant proteins (samples run on a Superdex 200HR 10/30 column) 

     (Caspari T. et al, 2000a; Caspari T. et al, 2000b) 

 

     [The L→P mutation at amino acid position 196, within the full-length spRad9-192 mutant variant, is 

      situated in a PCNA-like domain and impairs formation of the 450kDa “9-1-1” heterotrimeric toroidal 

      associative Rad9-Rad1-Hus1 DNA “sliding-clamp” complex] 

 

      The majority of the expressed spRad-S-3xHA protein variant was eluted in fractions 15 and 16 even 

      under conditions that prevent formation of the 9-1-1 complex, as evident in the spRad9-192 fractions 

      above  (Caspari T. et al, 2000a; Caspari T. et al, 2000b). 

 

       Thus the experimental data are indicative that expression of the novel truncated “spRad9-S” protein 

       variant is independent of 9-1-1 complex formation respectively (Caspari T. et al, 2000a;  

       Caspari T. et al, 2000b). 
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          Fig  1.66: Comparative SDS-PAGE Western Blot Analyses 
 

                 
 

 

A: Western blot analyses of total protein extracts acquired from S. pombe cells expressing the full-length Rad9  

      C-terminal 3xHA epitope-tagged protein variant, incubated at 36ºC for 90 minutes and then exposed to 

      variable doses of U.V. radiation. (Caspari T. et al, Unpublished Data). 

 

     The experimental data are indicative of an absence of a significant dose-response relationship between  

      “spRad9-S” expression and U.V. radiation dose respectively (Caspari T. et al, Unpublished Data). 

 

      Thus expression of the novel truncated “spRad9-S” protein variant is induced in response to elevated 

      temperature/heat shock, but not in response to U.V. irradiation respectively. 

      (Caspari T. et al, Unpublished Data). 

 

 

B: Comparative Western blot analyses of total protein cell extracts acquired from three S. pombe strains, 

      expressing the full-length Rad9 C-terminal 3xHA epitope-tagged protein variant, incubated at 36ºC for  

      90 minutes prior to exposure to a 450Gy dose of ionising radiation or no irradiation in the case of the 

       experimental controls respectively (Caspari T. et al, Unpublished Data). 

 

     TCY282 and TCY314 are the respective uncharacterised conditional temperature-sensitive S. pombe mutant   

     strains (Caspari T. et al, Unpublished Data). 

 

     TCY282 cells express normal levels of the full-length Rad9 protein, but abnormally low, suppressed levels of  

     the novel truncated “spRad9-S” protein variant and thus indicative that the regulated expression of the  

     novel truncated “spRad9-S” protein variant is independent of that of the full-length Rad9 protein.  

     (Caspari T. et al, Unpublished Data). 

 

      The SDS-PAGE gel-retarded phosphorylated forms of the full-length Rad9 protein are clearly detected in 

      the absence and presence of ionising radiation, as a consequence of the increased molecular weight of the 

      protein compared to the unphosphorylated form respectively (Caspari T. et al, Unpublished Data) 

 

      The data are indicative that phosphorylation  of the full-length Rad9 protein is both an endogenous 

      constitutive process and inductive process in response to ionising radiation respectively. 

      (Caspari T. et al, Unpublished Data). 
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1.5.3 Ph.D. Project Experimental Aims and Objectives 
 

The aim of this Ph.D. project was the initial biochemical characterisation of the novel “spRad9-S”  

truncated protein variant with specific emphasis on its mechanism of expression and potential 

functional/regulatory roles in DNA replication stress and/or DNA damage response pathways.  

 

Thus, the experimental objectives of this Ph.D. project were concentrated on four defined areas of 

laboratory-based investigation – notably; 

 

(i) Elucidation of the mechanism of expression of the  “spRad9-S” truncated protein variant. 

 

(ii) Comparative assessment of the relative sensitivity of S. pombe cells, engineered for the  

      exclusive expression of the “spRad9-S” truncated variant towards different types of 

      induced environmental stress and induced DNA damage cytological conditions. 

 

(iii) Genetic, proteomic and biochemical “deciphering” of potential signalling pathways 

       mediated exclusively by the “spRad9-S” truncated protein variant in response to one 

       or more specific types of induced environmental stress and/or induced DNA damage 

       cytological conditions.  

 

(iv) Comparative analyses of the sub-cellular localisation and/or “translocational trafficking” 

       of the “spRad9-S” truncated protein variant under normal, DNA damage and environmental 

       stress imposed cytological conditions.                                          
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The experimental data acquired from the studies performed on the novel “spRad9-S” truncated 

protein variant in this Ph.D. project may provide valuable insights into potential novel independent 

functions of the human Rad9 protein, which act outside of the canonical Rad9-Rad1-Hus1 

complex. 

 

In stark contrast to the extensive functional characterisation of the full-length human Rad9A 

protein, very little information exists on the biochemical roles of the full-length human Rad9B 

protein paralogue and its expressed truncated isoform variants (Fig 1.3, p.9).  

 

Intringuingly, comparative in silico alignment analyses of the human Rad9B isoform amino acid 

sequences with the hypothetical “spRad9-S” truncated protein variant sequence indicate a potential 

significant degree of equivalent amino acid sequence homology between “spRad9-S” and 

truncated Rad9B isoform 2 (Uniprot ID: Q6WBX8-2 and truncated Rad9B isoform 3 (Uniprot ID: 

Q6WBX8-3) respectively (Caspari T. and Janes S., unpublished data).  

 

The experimental work undertaken in this Ph.D. project may therefore also provide useful 

information on the potential functions of the equivalent human Rad9B truncated isoforms, which 

remain unknown to date. 

 

The initial biochemical characterization of the “spRad9-S” truncated protein variant, which 

constitutes the main research focus of this Ph.D. project, may culminate in the identification of 

potential novel Rad9-mediated checkpoint signalling functions which could be implicated in 

progressive stages of carcinogenesis and/or novel mechanisms of acquired tumour resistance 

towards particular anti-cancer clinical treatment regimens.  
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2.1 Sourced Materials – Purchase Details 

Supplier                                                       Materials/Apparatus/Reagents 

 
Abcam                                                                             Monoclonal antibody – Cat No.:ab5467 
330 Cambridge Science Park                                          Anti-CDK1  

Cambridge                                                                       (S.pombe Cdc2 cross-reactive specificity) 

CB4 0FL                                                                          Clone: Y100.4 

U.K.                                                                                 Form: Myeloma Sp2 

                                                                                         Host: Mouse 

                                                                                         Isotype: IgG2b 

                                                                                         [Ab] = 1.1mg/mL 

 

Acros Organics                                                               Boric acid 

Geel                                                                                Trichloroacetic acid                                                                     

Belgium 

 

 

Alpha Laboratories Ltd                                                  1-200μL Gel loading pippette tips 

40 Parham Drive 

Eastleigh 

Hampshire  

SO50 4NU 

U.K.  

 

 

Bassaire Ltd                                                                   Model K4V laminar flow workstation 

Duncan Road 

Park Gate 

Southampton 

SO31 1 ZS 

U.K. 

 

  

 

BDH AnalR                                                                   Chloroform 

VWR International Ltd                                                  Ethanol 

Poole                                                                              1M HCl (aq) 

Dorset                                                                             Glacial acetic acid 

BH15 1TD                                                                      Isopropanol 

U.K.                                                                                KOH pellets                                                                    

                                                                                       MgCl2.6H2O 

                                                                                       MgSO4.7H2O 

                                                                                       NaH2PO4                                                                

                                                                                       Na2H2PO4 

                                                                                        Sodium dodecylsulphate 

                                                                                        Sodium thiosulphate 
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Supplier                                                       Materials/Apparatus/Reagents 
 

BioFX Laboratories                                                        Chemiluminescent sensitive HRP 

10715 Red Run Boulevard                                             Microwell and/or membrane substrate 

Suite 114                                                                         2x 110mL kit 

Owings Mills 

MD 21117 

U.S.A 

 

 

c/o Bioquote Ltd 

(U.K. and Ireland Distributors 

for BioFX Laboratories) 

The Raylor Centre 

James Street 

York 

YO10 3DW 

U.K. 

 

 

Bioline                                                                           α-select chemically-competent E.coli cells 

16 The Edge Business Centre                                        Genotype:                            

Humber Road                                                                F


deoRendA1recA1gyrA96hsdR17(rk


mk


 )phoA                                                        

London                                                                          supE44thi-1Δ(lacZYA-argF)U169Φ80δlacZΔM15 

NW2 6EW 

 

                                                
Bio-Rad Laboratories Ltd                                               Bio-Rad Gel Doc 2000 white light and U.V. 

Bio-Rad House                                                                imager system 

Maxted Road                                                                   Bio-Rad Mini-Protean®Tetra cell 

Hemel Hempstead                                                           Bio-Rad Protean® IEF cell 

Hertfordshire                                                       

HP2 7DX 

U.K. 

 

Cleaver Scientific Ltd                                                     Multiple small SDS-PAGE gel western  

Unit 4                                                                               blotting equipment 

Triton Park 

Brownsover Road 

Swift Valley 

Rugby 

Warwickshire 

CV21 1SG 

 

Cole-Palmer Instrument Company Ltd                            Binder incubators 

Unit 3 

River Brent Business Park 

Trumpers Way 

Hanwell 

London 

W7 2QA 

U.K. 
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Supplier                                                       Materials/Apparatus/Reagents 
 

Covance                                                                           Monoclonal Anti-Body HA.11 

5858 Horton Street                                                          Clone: 16B12 

Suite 500                                                                         Form: Ascites 

Emeryville                                                                      Host: Mouse 

California                                                                        Isotype: IgG1 

94608                                                                              [Ab] = 2-3 mg/mL 

U.S.A. 

 

 

DakoCytomation                                                             Polyclonal rabbit anti-mouse 

Dako U.K. Ltd                                                                 immunoglobulins/HRP 

Angel Drove 

Ely 

Cambridgeshire 

CB7 4ET 

U.K. 

                                               
Dr. Adam T. Watson                                                        S. pombe Cre-RMCE base-strain plasmid pAW1   

Genome Damage and Stability                                        S.pombe Cre-RMCE donor plasmid pAW8 

Centre 

School of Life Sciences 

University of Sussex 

Falmer 

Sussex 

BN1 9QG 

U.K. 

 

 

EMD Chemicals Inc.                                                       Calbiochem® protein G plus/protein A agarose 

480 South Democrat Road                                               beads suspension (Product No. IP05) 

08027 Gibbstown 

U.S.A. 

 

 

Finnzymes OY                                                                Phusion high fidelity DNA polymerase (2U/μL) 

Keilaranta 16A                                                                5x Phusion polymerase GC buffer 

02150 

Espoo 

Finland 

 

 

Fisher Scientific Ltd                                                        Methanol (HPLC Grade) 

Bishop Meadow Road                                                     Stuart heat-stir magnetic stirrer and stirrer bars 

Loughborough                              

Leicestershire 

LE11 5RG 

U.K. 

 

Fistreem International Ltd                                               Calypso model WCA004 MH1.7/WCA300 RTA9 

Monarch Way                                                                  Coupled distilled/de-ionised purified mains water 

Belton Park                                                                      supply treatment system 

Loughborough 

Leicestershire 

LE11 5XG 

U.K. 
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Supplier                                                       Materials/Apparatus/Reagents 

 

Fuji Photofilm (Europe) GmbH                                      Fuji blue medical X-Ray film SuperRX 

Heesenstrasse 

D-40549 

Dusseldorf 

Germany 

 

GE Healthcare U.K. Ltd                                                  ÄKTA design ÄKTA-FPLC HPLC system 

(Formerly Amersham Biosciences U.K. Ltd)                 Destreak rehydration buffer solution 

Amersham Place                                                              ECL Plus western blotting detection system kit   

Little Chalfont                                                                 High molecular weight protein standard kit 

Buckinghamshire                                                            (for internal standard calibration of HPLC-SEC)  

HP7 9NA                                                                         Hybond-C extra nitrocellulose blotting membrane                                         

U.K.                                                                                 Hyperfilm ECL 

                                                                                         Immobiline™DryStrip pH3-10 11cm                                                                                         

                                                                                         IPG ampholytes buffer pH 3-10 

                                                                                         Superdex 200HR 10/30 size exclusion HPLC 

                                                                                         chromatographic column (for HPLC-SEC) 

                                                   
 

Genetic Research Instrumentation Inc.                           Dark Reader™ CE transilluminator DR-45M 

Gene House                                                                     230v, 50Hz, 9W                                                      

Queenborough Lane                                                        (Clare Chemical Research Inc., Dolores CO81323) 

Rayne 

Braintree 

Essex 

CM77 6TZ 

U.K. 

 

                                                   
GeneFlow Ltd                                                                 Norgen Biotek HighRanger Plus 100 Bp DNA 

Fradley Business Centre                                                  marker ladder (100Bp to 10000Bp) 

Wood End Lane                                                              Mini-PAGE vertical sub-system 

Fradley                                                                            Maxi-PAGE vertical Sub-system 

Staffordshire                                                                    Omni-PAGE mini-blotting unit 

WS13 8NF                                                                       Omni-PAGE maxi-blotting unit 

U.K.                                                                                 Techne TC-312 PCR thermocycler                                                             

                                                                                    

                                                           
Greiner Bio-One Ltd                                                      Plastic screw-cap centrifuge tubes (15mL; 50mL) 

Stroudwater Business Park                                             15mL capacity glass culture test tubes 

Brunel Way                                                                    1.5mL capacity plastic eppendorf microfuge tubes 

Stonehouse                                                                     1.5mL capacity screw cap plastic microfuge tubes                  

Gloucestershire                                                              Petri-plates 

GL10 3SX                                                                      Pippette tips 

U.K.                                                                                Plastic spectrophotometer cuvettes 

       .                                                                                Plastic syringes (various sizes) 

 

 

Hanna Instruments Ltd                                                   pH211 microprocessor pH meter 

Pages Industrial Park 

Edenway 

Leighton Buzzard 

LU7 4AD 

U.K. 
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Supplier                                                       Materials/Apparatus/Reagents 
 

Hawksley Medical and Laboratory                                 Hawksley thoma double cell clear sight counting 

Equipment                                                                       chamber (haemocytometer) 

Marlborough Road 

Lancing Business Park 

Lancing 

Sussex 

BN15 8TN 

U.K. 

 

 

ID Labs Inc.                                                                    IDPure™ spin column DNA Gel extraction kit 

UWO Research Park                                                       IDPure™ spin column plasmid DNA miniprep kit 

100 Collip Circle 

Suite 117 

London 

ON 

Canada 

N6G 4X8 

 

Invitrogen Ltd                                                                 PCR primer oligonucleotides 

3 Fountain Drive 

Inchinnan Business Park 

Paisley 

PA4 9RF 

U.K. 

 

 

Jackson ImmunoResearch Europe Ltd                           Goat affinipure anti-mouse IgG 

Unit 7                                                                              HRP-conjugated light-chain specific 

Acorn Business Centre                                                   antibody – 115-035-175 

Oaks Drive 

Newmarket 

Suffolk 

CB8 7SY 

U.K. 

 

 

Jencons Scientific Ltd                                                    Agarose gel electrophoresis equipment                                       

Cherrycourt Way Industrial Estate                                Consort EV231 electrophoretic power pack 

Stanbridge Road                                                             Jencons-PLS SorvallR Legend T centrifuge 

Leighton Buzzard 

Bedfordshire 

LU7 8UA 

U.K.  

 

 

Jet-X-Ray                                                                        MI-5 X-Ray film processor 

Unit 7 

Thurston Industrial Estate 

Jerrard Street 

Lewisham 

London 

SE13 7SH 

U.K.  
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Supplier                                                       Materials/Apparatus/Reagents 
 

Keison Products                                                              PTR-60 360˚ vertical multi-functional rotator 

PO Box 2124 

Chelmsford 

Essex 

CM1 3UP 

U.K.                                                                           

                                                     
 

Lab M Limited                                                                Agar for petri-plate media 

Topley House 

52 Wash Lane 

Bury 

Lancashire 

BL9 6AS 

U.K. 

 

 

Leica Microsystems CMS GmbH                                  Type F oil immersion liquid 

Ernst Leitz-Str. 17-37                                                     Leitz SM-LUX fluorescent microscope                                                     

355 Wezlar                                                                      (Leitz-Wezlar) 

Germany                    

 

 

Melford Laboratories Ltd                                               40% Acrylamide:bisacrylamide  (37.5:1 ratio)                                  

Bildeston Road                                                               Agarose high-strength electrophoresis grade 

Chelsworth                                                                     (molecular biology grade) 

Ipswich                                                                           Ampicillin (sodium salt) 

Suffolk                                                                            Disodium EDTA 

IP7 7LE                                                                          5-Fluoro-orotic acid 

U.K.                                                                               Glycerol (DNAse, RNAse, protease free) 

                                                                                       Glycine 

                                                                                       KCl 

                                                                                       Lactose 

                                                                                       Malt extract 

                                                                                       NaCl 

                                                                                       Sorbitol 

                                                                                       TEMED 

                                                                                       Tris base (Ultra-pure) 

                                                                                       Tryptone 

                                                                                       Tween20 

                                                                                       Yeast extract 

                                                                                       Yeast nitrogen base 

 

 

Merck                                                                             Isoamylalcohol 

VLR International Ltd 

Hunter Boulevard 

Magna Park 

Lutterworth 

Leicestershire 

LE17 4XN 

U.K. 
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Supplier                                                       Materials/Apparatus/Reagents 
 

Millipore (UK) Ltd                                                         Millipore ultra-pure water supply system 

Units 3 and 5 

The Court Yards 

Hatters Lane 

Watford 

Hertfordshire 

WD18 8YH 

U.K. 

 

 

National Diagnostics                                                      Bromophenol blue 

Unit 4                                                                              ProtoMarkers™ pre-stained protein markers 

Fleet Business Park                                                        Ultra-pure ammonium persulphate 

Itlings Lane                                                                    Ultra-pure protogel 

Hessle                                                                             30% (w/v) Acrylamide:0.8% (w/v) bisacrylamide  

Hull                                                                                 (37.5:1 ratio) 

HU13 9LX 

U.K. 

 

 

New England Biolabs (UK) Ltd                                    SpeI restriction endonuclease (10U/μL) 

New England Biolabs Inc.                                             10x SpeI buffer (10x NE Buffer 2) 

240 County Road                                                           Phusion high fidelity polymerase (2U/μL) 

Ipswich                                                                          (Finnzymes) 

MA01938-2723                                                             5x Phusion polymerase GC buffer (Finnzymes) 

                                                                                      

                                                                                      

NGS Precision Cells                                                      701M 100µL capacity quartz microcuvette 

195 Central Avenue                                                       (10mm sub-micro black masking) 

Suite G 

Farmingdale 

NY11735 

 

 

Perbio Science UK Ltd                                                  UVP CL-1000 Ultra-violet cross-linker 

Unit 9 

Atley Way 

North Nelson Industrial Estate 

Cramlington 

Northumberland 

NE23 1WA 

U.K. 

 

                                                            
PHOTOSOL Ltd                                                            Film processor developing reagents 

Hubert Road 

Brentwood 

Essex 

CM14 4JE 

U.K. 
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Supplier                                                       Materials/Apparatus/Reagents 
 

Premier International (UK) Foods Ltd                            Marvel milk protein powder 

Bridge Road 

Long Sutton 

Spalding 

Lincolnshire 

PE12 9EQ 

U.K. 

 

 

Prior Clave                                                                      Midas 56 Prior Clave Autoclave 

129/131 Nathan Way 

Woolwich 

London 

SE28 0AB 

U.K. 

 

 

Promega Corporation                                                      Calf intestinal alkaline phosphatase (1U/μL) 

2800 Woods Holow Road                                              10x “CIAP” buffer 

Madison                                                                          SphI restriction endonuclease (10U/μL) 

WI 53711-5399                                                               10x SphI buffer K 

Madison                                                                          T4 DNA ligase (3U/μL) 

U.S.A.                                                                             10x T4 DNA ligase buffer 

                                                                                       100μL (100mM) dNTPs (dATP, dGTP, dCTP, dTTP) 

 

 

 

Roche Diagnostics Ltd                                                  Complete mini protease inhibitor cocktail tablets 
Charles Avenue                                                             RNAse A (100mg pure dry bovine pancreatic extract) 

Burgess Hill 

West Sussex 

RH15 9RY 

U.K. 

 

 

Santa Cruz Biotechnology Inc.                                      c-Myc antibody (9E10) 

Bergenheimer Str. 89-2                                                  sc-40 

69115 Heidelberg                                                           Epitope 408-439 (h) 

Germany                                                                         Isotype: Mouse IgG1 

                                                                                        [200µg/mL]     

 

 

 

 

Sanyo Gallenkamp Plc                                                   Sanyo orbisafe orbital incubators 
Monarch Way                                                                (incubator shakers) 

Belton Park                                                                    Sanyo SP BIO spectrophotometer 

Loughborough                                                               Hawk 15/05 refrigerated bench top microfuge 

Leicestershire 

LE11 5XG 

U.K. 
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Supplier                                                       Materials/Apparatus/Reagents 
 

Sartorius UK                                                                   Acculab ALC-210.4 balance 

Longmead Business Centre                                            Sartorius TE212 balance 

Blenheim Road 

Epsom 

KT19 9QQ 

U.K. 

 

  

Scientific Laboratory Supplies Ltd                                 DNAse and RNAse Free Sterile PCR Tubes 

Wilford Industrial Estate                                                 Small SDS-PAGE gel Western Blotting Tank 

Ruddington Lane                                                             Apparatus (Cleaver Scientific Ltd) 

Wilford                                                                            Stuart Scientific Disruptor Genie 

Nottingham                                                                     Stuart Scientific Drive Unit STR8 Platform Rocker 

NG11 7EP                                                                       Stuart Scientific Gyro-Rocker SSL3 

U.K.                                                                                 Stuart Scientific Vortex Genie-2 

                                                                                        3MM Whatman CHR Chromatography Paper 

                                                                                        Whatman 0.2μm Sterile Filter Units 

                                                   
 

Sigma-Aldrich Chemical Company Ltd                         Adenine hemi-sulphate 

Fancy Road                                                                     β-Mercaptoethanol 

Poole                                                                               β-Microglobulin 

Dorset                                                                             CaCl2.2H2O 

BH12 4QH                                                                      Caffeine 

U.K.                                                                                Calcofluor white MR2/fluorescent brightner 28 

                                                                                        CoCl2.6H2O 

                                                                                        CuSO4.2H2O 

                                                                                        Cycloheximide  

                                                                                        D-(+)-Glucose 

                                                                                        Dimethylsulphoxide 

                                                                                        Dithiothreitol 

                                                                                        Ellipticine  

                                                                                        Ethidium bromide (Fluka) 

                                                                                        Etoposide 

                                                                                        FICOLL400 (Fluka) 

                                                                                        G418 antibiotic 

                                                                                        GenElute™ plasmid miniprep kit 

                                                                                        “General glassware” (flasks and beakers) 

                                                                                        Glass beads (425-600μm diameter/30-40 U.S. Sieve) 

                                                                                        HEPES 

                                                                                        Hoechst 33258 

                                                                                        Hoechst 33342 

                                                                                        Hydrogen peroxide 

                                                                                        Hydroxylamine 

                                                                                        Hydroxyurea (Fluka) 

                                                                                        Iodoacetamide 

                                                                                        L-Leucine 

                                                                                        Lithium acetate 

                                                                                        Lyticase (200U/mg lyophilised powder preparation) 

                                                                                        Magnetic stirrer bars 

                                                                                        Menadione 

                                                                                        Metal “hockey-stick” flame spreaders 

                                                                                        Methylmethanesulphonate 

                                                                                        MnCl2.7H2O 

                                                                                        Mitomycin C 

                                                                                        N-Ethylmaleimide (NEM) 
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Supplier                                                       Materials/Apparatus/Reagents 
 

Sigma-Aldrich Chemical Company Ltd                         NiSO4.6H2O 

Fancy Road                                                                     N-methyl-N’-nitrosoguanidine 

Poole                                                                               Nonidet P40 (NP-40) 

Dorset                                                                             4-Nitroquinoline-1-oxide 

BH12 4QH                                                                      Phenol (Fluka) 

U.K.                                                                                 p-Phenylenediamine 

                                                                                        Phenylmethylsulphonylfluoride 

                                                                                        Phleomycin (stabilised Cu2+ complex preparation) 

                                                                                        S-(+)-camptothecin 

                                                                                        Sodium azide 

                                                                                        Sodium citrate 

                                                                                        Sodium fluoride 

                                                                                        Sodium metabisulphite 

                                                                                        Sodium nitoprusside 

                                                                                        Sodium orthovanadate (Na3VO4) 

                                                                                        t-Butylhydroperoxide 

                                                                                        Thiabendazole 

                                                                                        Trisodium phosphate (Na3PO4) 

                                                                                        Triton X-100 (molecular biology grade) 

                                                                                        Uracil 

 

                                                      
 

VWR International Ltd                                                   Glass microscope slide cover slips (18mm x 18mm) 

Hunter Boulevard                                                            Glass microscope slides (75mm x 25mm x 1mm) 

Lutterworth 

Leicestershire 

LE17 4XN 

 

 

Wolf Laboratories Ltd                                                    CETI magnum B binocular light microscope 

Colenso House 

1 Deans Lane 

Pocklington 

York 

YO42 2PY    

 

 

Yeast Genetic Resource Centre                                      S. pombe gene-deleted and gene-mutated strains 

Osaka City University 

Japan                                    
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2.2 Buffer Solutions – Composition and Function 
 

2.2.1 Buffer Solution Details I: DNA Extraction, Purification & Analytical Sample Reagents 

 

[Note: The initial pH of each respective prepared buffer solution was measured with a pH211 

             Microprocessor pH Meter (Hanna Instruments) and adjusted when necessary to the 

             required correct pH value via the appropriate drop-wise addition of 1M aqueous HCl 

             or 1M aqueous KOH with constant magnetic stirring of the solution] 
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  2.2.2. Buffer Solution Details II: TCA-Precipitated & Soluble Protein Sample Preparations 
 

 
 

[Note: The initial pH of each respective prepared buffer solution was measured with a pH211 

             Microprocessor pH Meter (Hanna Instruments) and adjusted when necessary to the 

             required correct pH value via the appropriate drop-wise addition of 1M aqueous HCl 

             or 1M aqueous KOH with constant magnetic stirring of the solution] 
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     2.2.3. Buffer Solution Details III: 1D-PAGE, 2D-PAGE and Western Blot Analyses 
 

 
 

[Note: The initial pH of each respective prepared buffer solution was measured with a pH211 

             Microprocessor pH Meter (Hanna Instruments) and adjusted when necessary to the 

             required correct pH value via the appropriate drop-wise addition of 1M aqueous HCl 

             or 1M aqueous KOH with constant magnetic stirring of the solution] 

 

 

 

 

 

 

 

 

                                                  [164]        

                                            



      2.2.4. Buffer Solution Details IV: Enzyme Storage and Reaction Media Compositions 

 

     
      

     [Note: The initial pH of the prepared  Lyticase Reaction Buffer solution was measured with a pH211  

                 Microprocessor pH Meter (Hanna Instruments) and adjusted when necessary to the required 

                 correct pH value via the appropriate drop-wise addition of 1M aqueous HCl or 1M Aqueous 

                 KOH with constant magnetic stirring of the solution. 

    
               The resultant pH-corrected Lyticase Reaction Buffer was then filtered-sterilised via a sterile 

                 syringe and 0.2µM filter assembly prior to use] 
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   2.2.5 Buffer Solution Details V: S.pombe Cre-Lox Base-Strain Transformation Reagents 
 

         
 

    2.2.6 Buffer Solution Details VI: Hoechst-Calcofluor Dual Fluorescence Stain Preparation 
 

                  
         
 [Note: The initial pH of each respective prepared buffer solution was measured with a pH211 Microprocessor  

             pH Meter (Hanna Instruments) and adjusted when necessary to the required correct pH value via the 

             appropriate drop-wise addition of 1M aqueous HCl or 1M aqueous KOH with constant magnetic 

             stirring of the solution] 

                

             Hoechst 33342 proved to be better for S. pombe cell nuclei fluorescence staining than Hoeschst 33258 

             due to its greater lipophilicity and capacity to permeate the cell wall and cell membrane]  
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2.3 Media Composition and Function 

 

2.3.1 Liquid Media Composition and Function – Broth Culture Preparations 

 

 
 

Note: Preparation of sterilised LB-Amp liquid/broth medium was accomplished via addition of 500µL of a 

          1mg/mL sterile stock solution of Ampicillin to 500mL of pre-autoclaved LB which had cooled to ~ 40˚C. 
 

          The 1mg/mL Ampicillin stock solution comprised 0.05g Ampicillin powder dissolved in 50mL of ultra- 

          pure millipore water, which was then passed through a sterile syringe and 0.2µM filter assembly into 

          a fresh sterile 50mL plastic Greiner centrifuge tube. 
 

          1mL aliquots of the resultant sterile preparation of 1mg/mL Ampicillin stock solution were then 

          pippetted into sterile 1.5mL capacity plastic eppendorf microfuge tubes which were then stored at  

          -20˚C until required. 
 

          Preparation of the EMM media was accomplished via addition of a freshly prepared, filter sterilised 

          aqueous solution of Yeast Nitrogen Base (3.35g in 50mL millipore ultra-pure water) to 450mL of pre- 

          autoclaved EMM medium which had cooled to ~ 40˚C. 
 

          500mL of the very nutrient-rich SOC medium was prepared and aliquoted into ten 50mL capacity glass 

          media bottles which were then autoclaved and the resultant sterile aliquots of SOC media stored at room 

          temperature until required for use (this was necessary as an individual bottle of SOC medium became 

          rapidly contaminated within 24-48 hours after opening and exposure to the atmosphere). 
 

          All other media were made up in 500mL aliquots with double-distilled water, autoclaved and then stored 

          at room temperature until required for use. 
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        2.3.2 Solid Media Composition and Function – Agar Culture Plate Preparations 

        

Note: Preparation of sterilised LB-Amp, YEA-5FOA, YEA-G418 and YEA-HU agar media was accomplished 

          via addition of 500µL of a 1000x  final concentration sterile stock solution of Ampicillin, 5-FOA, G418 or 

          HU (in each case an aqueous solution prepared in millipore water and filtered sterilised via a sterile 

          syringe and 0.2µM filter assembly) to 500mL of pre-autoclaved agar medium which had cooled to 

          ~40˚C. 
 

          Individual 1mL aliquots of the filter-sterilised 1000x stock solutions of Ampicillin, 5-FOA, G418 or HU 

          were stored in 1.5ml capacity plastic eppendorf microfuge tubes at -20˚C until required for use. 
 

          Preparation of the EMM agar media was accomplished via addition of a freshly prepared, filter sterilised 

          aqueous solution of Yeast Nitrogen Base (3.35g in 50mL millipore ultra-pure water) to 450mL of pre- 

          autoclaved EMM medium which had cooled to ~ 40˚C. 
 

          ~25mL aliquots of the prepared agar media were then poured into individual sterile plastic petri-plates,  

          which were stood at room temperature for ~24 hours to set, then wrapped in polyethylene bags and stored 

          in the 4˚C cold-room until required for use.  
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2.4 S. pombe Genomic DNA Extraction Protocol 

Total genomic DNA extracts were prepared from the required S. pombe strains via utilisation of the 

following protocol: 

 

(i) A sterile/autoclaved toothpick was utilised to inoculate 10mL YEA medium (Section 2.3.1, p.167) with 

     a“tip-loaded” amount of material from each respective YEA streak-plate culture S. pombe strain.  

     [Each respective YEA medium inoculated culture was set up in a 50mL capacity Greiner plastic 

      centrifuge tube fitted with a loose screw cap, which was then placed in a Sanyo Orbisafe type orbital 

       incubator shaker set at 30ºC, 180 r.p.m. for 24 hours] 

 

(ii) After the incubation time had elapsed, a 4mL aliquot of each respective culture was transferred to a  

      fresh 15mL capacity Greiner plastic screw-cap centrifuge tube and spun down at 3,300g for 10 minutes 

      in a Jencons-PLS  SorvilleR Legend T centrifuge in the 4ºC cold room. 

 

(iii) Each resultant supernatant was then discarded and each of the respective cell pellets was then  

       re-suspended in 4mL millipore ultra-pure sterile/autoclaved millipore water and re-spun at 

       3,300g for 10 mins at 4ºC (as described for stage (ii) above). 

 

(iv) Each resultant supernatant was then discarded and each of the respective washed cell pellets was then  

       re-suspended in 200μL of  genomic DNA extraction buffer solution (Section 2.2.1, p.162) and each 

       resultant cell re-suspension buffer solution mixture transferred to a sterile/autoclaved screw-cap plastic 

       1.5mL capacity microfuge tube. 

 

(v) A  200μL aliquot of ice-cold Phenol/Chloroform/Isoamylalcohol solution was then added to each 

      resultant cell pellet suspension and x8 small spatula spoonfuls of glass beads were then added to 

      each resultant cell pellet re-suspension solvent mixture in each screw-cap microfuge tube. 

 

(vi) Each screw-cap microfuge tube was then placed on a Genie Disruptor for 6 minutes, in the 4ºC cold 

       room, in order to break open the cells and release the genomic DNA into solution. 
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(vii) Each screw-cap microfuge was then placed in a Sanyo Hawk 15/05 refrigerated bench-top microfuge 

       and spun at 12000 rpm, 4ºC for 5 minutes, after which each resultant top aqueous layer (which 

       contained the genomic DNA) was pippetted off, taking care not to disturb the interface and lower  

       organic solvent layer and transferred to a sterile/autoclaved 1.5mL capacity eppendorf microfuge tube. 

       [Whilst each resultant lower organic layer and cell debris pellet was subsequently discarded] 

 

(viii) 0.8x vol retained genomic DNA aqueous layer of Isopropanol (~160μL) was then added to the 

        contents of each 1.5mL capacity plastic eppendorf tube, in order to effect precipitation of the genomic 

        DNA from solution. 

 

(ix) Each plastic 1.5ml capacity eppendorf tube was then placed in the refrigerated bench-top microfuge and 

      spun at 12000 rpm, 4ºC for 30 minutes, after which each resultant supernatant was carefully pippetted  

      off and discarded. 

 

(x) Each plastic 1.5mL capacity eppendorf tube was then placed in a 37ºC static  incubator (lid open) 

      and allowed to stand for 20 minutes, in order to remove  residual traces of isopropanol from 

      each precipitated genomic DNA pellet. 

 

(xi) Each resultant precipitated genomic DNA pellet was then re-dissolved in 50μL ultra-pure, 

      sterile/autoclaved millipore water, after which 1μL of RNAse A (10mg/mL) was added to each 

      resultant aqueous genomic DNA solution and each resultant reaction mixture incubated at 37ºC  

      for 30 minutes to degrade contaminating traces of RNA which may otherwise have adversely 

      interferred with the PCR reactions to be performed. 

 

(xii) The resultant S. pombe strain  RNA-free genomic DNA extracted preparations were then stored 

         at -20ºC until required. 
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2.5  Cre Recombinase-Mediated Cassette Exchange (Cre-RMCE) Protocols  

The S. pombe Cre-RMCE transformation system methodology (devised by Watson A.T. et al, 

2008), was adapted for generation of the experimental engineered rad9 mutant/variant expressing 

S. pombe strains utilised in this study (depicted summarily in Figs 2.1-2.6, pp.171-176). 

 

Fig 2.1:PCR Protocols for the Generation of the pAW1 plasmid-Derived loxP-ura4-LoxM3 

rad9 gene locus-targeted fragment and pAW8 Donor Plasmid SphI-rad9-SpeI Gene Cassette 

Inserts 

 

 

NOTE: The Phusion Polymerase enzyme possesses 3’-5’ exonuclease proof-reading activity 

              and therefore was the very last component to be added to each of the prepared PCR 

              reaction mixtures, immediately prior to use, in order to maximise preservation of  

              primer oligonucleotide integrity.   

 

              All PCR reactions were performed on a TECHNE TC-312 PCR Thermocycler. 

 

              Negative control PCR reactions, in which autoclaved/sterile ultra-pure millipore 

              water was substituted in place of the genomic DNA solution, were  performed in 

              parallel for each of the respective PCR reaction mixtures utilised. 
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Fig 2.2: Basic Essential Components of the Cre Recombinase-Mediated Cassette Exchange System 

 

[Taken and Adapted From: Watson A.T. et al, 2008] 

 

A: Plasmid pAW1 is utilised to construct the cassette acceptor S. pombe transformation base-strain, in this case the plasmid 

      is PCR-modified with wild-type rad9 5’-end and 3’end primers, that include a portion of the upstream promoter for  

      minimisation of potential gene promoter disruption. 

 

      Subsequent integration of the generated pAW1 plasmid PCR product into the S. pombe genomic DNA, via a standard 

      Lithium Acetate transformation protocol, results in its targeted insertion at the rad9 gene locus with consequential 

      inactivation/effective deletion of the gene, thus producing the Δrad9 S. pombe base-strain – which expresses the S.pombe 

      Ura4+ selectable marker gene (Fig 2.3, p.173 and Fig 2.4, p.174).  

 

 

B:  Fusion PCR- mutagenised rad9 gene variant cassettes were prepared via utilisation of appropriately designed primers 

       incorporate spacer and SphI and SpeI site sequences at their respective 5’ and 3’ ends for integration into the pAW8 

       donor plasmid multiple cloning-site (Fig 2.5, p.175 and Fig 2.6, p.176). 

       (SphI and SpeI restriction digest sequence sites were chosen as they are absent in the rad9 gene). 

       The pAW8 donor plasmid also contains the S. cerevisiae LEU2 selectable marker gene (Fig 2.3, p.173) and the S.pombe  

       CRE recombinase gene situated downstream from the S.pombe Pnmt promoter and rad50  intron1 spacer sequences 

       and upstream from the S.pombe Tnmt terminator sequence respectively. 

       [The direction of gene transcription is indicted via the white arrow in the above figure] 

 

Both the base-strain strain pAW1 plasmid and the donor pAW8 plasmid incorporate wild-type loxP and mutated loxM3 

recombination sites, consequentially, the hetereospecific nature of the designed recombination sites ensures that the cassette 

inserted exchange product once formed within in the base-strain is stable - ie prevents the occurrence unstable self-

recombination events which would otherwise result in deleted removal/translocation of the cassette insert within the base-

strain S. pombe genome. 

 

The principle advantage of this Cre-RMCE system is that only one homologous integration step is required and thus the 

procedure is both efficient and less time-consuming in comparison with other standard molecular biology techniques. 

 

[NOTE: pAW1 Plasmid Map – Appendix 2.11.1, pp.269-271; pAW8 Plasmid Map – Appendix 2.11.2, pp.272-275] 

                                                   [172] 



 
Fig 2.3: Mechanistic Overview of the Cre-RMCE System for Generation of Rad9/Rad9S Strains 

[Taken and Adapted From: Watson A.T. et al, 2008] 

                  

 

Note: Resultant transformed S. pombe base-strain cells grown on EMM (minus Leucine) and YEA (5-FOA)  

          media replica plates. 

 

          Transformed cells lack the Cre-RMCE-exchanged Ura4+ gene which encodes orotidine monophosphate 

          dehydrogenase – an enzyme involved in Uracil  biosynthesis and therefore cannot convert 5-FOA to the 

          5-Florouracil suicide-substrate (which inhibits the thymidylate synthetase enzyme with subsequent  

          depletion of dTTP and abrogated DNA synthesis), thus they are able to grow on the YEA-5FOA plate. 

 

          Transformed cells also express the S. cerevisiae LEU2 gene, incorporated via the pAW8-Rad9 Cre- 

           RMCE plasmid exchange – which encodes an enzyme involved in Leucine biosynthesis, namely;  

           β-Isopropylmalate Dehydrogenase, and thus are able to grow on the EMM (minus Leucine) plate. 

 

           In contrast, the un-transformed S.pombe strain cells cannot grow on either plate as a consequence of  

           expression of the Ura4+ selectable marker gene and lack of the LEU2 selectable marker gene 

          respectively. 
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Fig 2.4: Base-Strain Plasmid pAW1 PCR Modification Primers: Sequences and Target Sites 

 

Primer                                 Annealing Target Site 

Rad9-S1                               -159 to -81 bases upstream region from the rad9 gene ATG start codon 

Rad9-S2                              +136 to +216 bases downstream region from the rad9 gene TAG stop codon 

A: Rad9-S1 and Rad9-S2 primer oligonucleotide-targeted S. pombe rad9 gene sites PCR-integrated 

     into the Cre-RMCE base-strain pAW1 plasmid 

 

B: Rad9-S1 and Rad9-S2 primer oligonucleotide Cre-RMCE base-strain pAW1 plasmid BPS 

     target sites utilised for PCR integration of the S. pombe rad9 gene loci sequences 

 

C: Rad9-S1 and Rad9-S2 PCR primer oligonucleotide base sequences 

 

     NNNNN = rad9 gene locus targeting sequences (PCR integrated into the pAW1 plasmid) 

                                                                                                                       

     NNNNN = Cre-RMCE base-strain pAW1 plasmid BPS  complementary primer annealing 

                        sequences 

      
 

NOTE: The resultant PCR-modified pAW1 plasmid-derived loxP-rad9-loxM3 fragment  was then utilised to  

              transform the “wild-type” S. pombe  strain 804 to generate the Δrad9 S. pombe Cre-RMCE base-strain 

              via genomic DNA rad9 gene locus-targeted integration of the loxP-ura4+-loxM3 cassette sequence. 

              (Appendix 2.11.4, p.277) 

 

            [Thus, the endogenous “wild-type” rad9 gene is deleted effectively via targeted insertional inactivation] 

 

             The Lithium Acetate Transformation protocol utilised was identical to that described in Section 2.5.3, 

             pp.188-191, with the notable exception that an overnight culture of wild-type S. pombe strain 804 in 

             EMM media (containing Adenine, Leucine and Uracil) was  transformed with the PCR-modified pAW1 

             Plasmid fragment to generate the required Δrad9 S. pombe Cre-RMCE “base-strain”. 

 

             The resultant culture of transformed cells was plated out onto an EMM Minus Uracil agar petri-plate to 

             select  exclusively for  Cre-Lox Δrad9 S. pombe Cre-RMCE “base-strain” colonies. 

 

                                                     [174]        



Fig 2.5: PCR Primers for Generation of Full-Length rad9 Gene pAW8 Plasmid Cassette 

Inserts 
 

 

 

Primer                                        Annealing Target Site 

Rad9-S5                                     -80 to -84 bases upstream region from the ATG start codon 

Rad9-S6                                     +136 to +157 bases downstream region from the TAG stop codon 

Rad9-S7                                     +198 to +219 bases downstream region from the ATG start codon 

Rad9-S8                                     +240 to +279 bases downstream region from 3rd HA TAG stop codon 

 

 Note: S. pombe strain 804 genomic DNA was utilised to generate the untagged/wild-type rad9 gene cassette  

           insert, whilst S. pombe strain 150 genomic DNA was utilised to generate the C-terminal 3xHA epitope 

           tagged full-length rad9-3xHA gene cassette insert respectively. 

 

           PCR primers Rad9-S5 and Rad9-S8 were also utilised in the Fusion PCR Mutagenesis Protocol (detailed 

           in Fig 2.6, p.176) for  the construction of experimental modified rad9 gene pAW8 plasmid cassette inserts 

           and amplification of  the integrated rad9 gene from the genomic DNA extract  acquired from each of the 

           respective “Cre-Lox”- generated S. pombe strain for PCR genotype assay (detailed in Section 2.6.2, 

           p.192) and DNA sequence verification  (detailed in Section 2.6.3, pp.193-195). 
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Fig 2.6: Fusion PCR Protocol for the Generation of pAW8 Plasmid Experimental Mutated 

rad9 Gene Cassette Inserts [PCR Primer Sequences – See Appendix 2.11.3, p.269] 
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2.5.1 PCR Product Gel Purification Protocol 

(i)A 45µL aliquot of the appropriate PCR product was mixed with 5µL of 10x DNA Sample  

    Loading Buffer Dye (Section 2.2.1, p.162) and the resultant 50µL sample loaded onto a 1% 

    TAE Agarose Electrophoretic Gel (Section 2.2.1, p.162) which was then run at 120V constant 

    setting in 1x TAE buffer for 45 minutes. 

 

(ii)The IDPure™ Spin Column DNA Gel Extraction Kit (ID Labs Inc.) was then utilised, in conjunction 

     with 1% agarose electrophoretic gel purification, for isolation of the respective PCR generated pAW8 

      rad9 gene cassette inserts – in accordance with the summarised kit protocol: 

 

(iii) The resultant resolved PCR DNA product bands on the gel were visualised via non-U.V. light-based 

       fluorescence, for avoidance of potential U.V-induced damage and  preserved DNA integrity (via 

       (utilisation of the Dark Reader™ CE Transilluminator DR-45M Imager Apparatus), excised from the 

       gel with a clean scalpel blade, after which the resultant gel slices were weighed and placed in 1.5mL  

       capacity plastic eppendorf microfuge tubes. 

 

(iv) The appropriate volume of kit binding buffer II solution (400μL/100mg of excised gel slice) was then 

       added to each respective eppendorf tube, prior to incubation at 55ºC in a hot block for ~10 minutes 

       during which the tube contents were periodically removed and vortexed briefly every ~2 minutes until 

       each respective gel slice had completely dissolved. 

 

(v) Each resultant solution was then pippetted into a supplied kit column assembly, which once loaded was 

       stood for 2 minutes at room temperature prior to centrifugation in a Sanyo Hawk 15/05 refrigerated  

       bench-top microfuge at 10,000rpm, 4ºC for 2 minutes. 

 

(vi) The resultant eluents were then discarded and each column then loaded with 500μL kit wash solution,  

       immediately after which the spin column assembly was re-spun at 10,000 rpm, 4ºC for 2 minutes  in a 

       Sanyo Hawk 15/05 refrigerated bench-top microfuge and the resultant eluents discarded. 
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(vii) The wash step procedure (detailed in the previous stage) was then repeated, after which each spin 

      column assembly was re-centrifuged at 10,000rpm, 4ºC for a further 2 minutes to remove any residual 

      traces of  wash solution from the columns – which would have otherwise impeded elution of the 

      respective purified PCR products from the columns. 

 

 

 (viii) The columns were then placed in fresh/clean 1.5mL capacity plastic eppendorf microfuge tubes, prior 

           to the addition of 30μL of kit elution buffer to the centre of each column – after which each column 

          assembly was stood at room temperature for 2 minutes prior to centrifugation at 10,000 rpm, 4ºC for 

          2 minutes in a Sanyo Hawk 15/05 refrigerated bench-top microfuge. 

 

(vii) The resultant eluted/purified PCR product solutions, contained within the 1.5mL capacity plastic 

        eppendorf microfuge tubes were then stored at -20ºC until required. 
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2.5.2 Donor pAW8-Experimental Rad9 Cassette Insert Plasmid Construction Protocols 

2.5.2.1 SphI and SpeI Restriction Enzyme Digest Protocol  

The restriction digest reaction mixture, utilised for complementary multiple cloning site donor Cre-RMCE 

plasmid pAW8 and PCR-generated rad9 experimental gene cassette insert SpeI and SphI restriction 

sequence site cleavages, comprised: 

                                                       5μL DNA solution (Plasmid pAW8 or Cassette Insert*) 

                                                       5μL 10x SpeI NE Buffer 2 (refer to p.165 for full details) 

                                                       5μL 10x Sph1 Buffer K (refer to p.165 for full details) 

                                                       0.5μL SpeI Restriction Enzyme (10U/μL) 

                                                       0.5μL SphI Restriction Enzyme (10U/μL) 

                                                       34μL Autoclaved/Sterile Ultra-Pure Millipore Water 

                                                       Total Reaction Volume = 50μL 

                                                       [*Note: Amount of DNA equivalent to 4ng] 

The respective restriction digest reaction mixtures were set up in thin-walled PCR tubes which were then 

placed in the 37ºC incubator for a time period of 24 hours. 
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2.5.2.2 Ligation Protocol 

After the 24 hours time had elapsed, the thin-walled PCR tubes containing the restriction digest mixtures 

were removed from the 37ºC incubator and placed in a TECHNE TC-312 PCR Thermocycler set at 65ºC 

for 20 minutes – Programme Parameters Utilised:  

                                                                              Pre-Heat Hot-Lid 105ºC 

                                                                              Hot-Lid = On 

                                                                              Hot Start = Off 

                                                                              Pause = Off 

                                                                              65ºC Pre-Cycle = 1 Minute 

                                                                              65ºC Post-Cycle = 19 Minutes 

                                                                              Hold = 25ºC 

Incubation of the SpeI/SphI digest reaction mixtures at 65ºC for 20 minutes was an essential pre-requisite to 

inactivate the restriction enzymes prior to performing the ligation reactions. 

 

[A final hold cooling temperature of 25ºC was selected to ensure that the DNA remained in the double-

stranded duplex configuration – since rapid cooling of the “heat-inactivated” restriction digest reaction 

mixtures to 4ºC would have promoted the formation of DNA single-stranded molecules with consequential 

ligation anomalies] 

 

The ligation reaction mixture, utilised for construction of the required Cre-RMCE pAW8 donor plasmid-

gene cassette inserts; pAW8-rad9, pAW8-rad9-3xHA and pAW8-rad9-S-3xHA  - for subsequent S. pombe 

base-strain transformations, comprised: 

                                                             5μL SpeI/SphI Digested Plasmid pAW8 Reaction Mixture (~4ng) 

                                                             5μL SpeI/SphI Digested PCR-Generated Cassette Gene Insert (~2ng) 

                                                             2μL 10x T4 DNA Ligase Buffer 

                                                             1μL T4 DNA Ligase (3U/μL) 

                                                             7μL Sterile/Autoclaved Ultra-Pure Millipore Water 

                                                             Total Reaction Volume = 20μL 

The  respective ligation reaction reaction mixtures were set up in thin-walled PCR tubes – placed in the  

 

25ºC static Binder incubator for a time period of 24 hours. 
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2.5.2.3 α-Competent E. coli Cell Transformation Protocol 

A modified version of the Bioline protocol was utilised for the respective E. coli competent cell 

transformations with the Cre-RMCE donor pAW8 plasmid rad9/rad9-S  gene cassette insert ligation 

constructs; pAW8-rad9, pAW8-rad9-3xHA and pAW8-rad9-S-3xHA. 

 

(i) α-select chemically-competent E.coli cells (commercially supplied by Bioline – see Section 2.1, p.153 

     for details) were removed from -80ºC storage and thawed on wet ice and the resultant thawed cell  

     suspension  mixed homogeneously via light flicking of the container tube. 

 

(ii) 50μL of the homogeneous cell suspension was then mixed with the 20μL total volume of the 

     respective Cre-RMCE donor pAW8 plasmid rad9/rad9-S gene cassette insert ligation construct 

     reaction mixture in a 1.5mL capacity plastic eppendorf tube, which was then incubated on ice 

     for 30 minutes. 

 

(iii) The 1.5mL capacity plastic eppendorf tube which contained the cooled resultant transformation 

       reaction mixture was then placed in a 42ºC hot-block for 45 seconds and then removed and placed 

       back on wet ice for a further 2 minutes. 

 

(iv) 930μL of SOC medium (see Section 2.3.1 p.167 for full details of media composition) was then 

       added to the tube contents (ie final total reaction volume = 1000μL) and the resultant transformation 

       reaction mixture incubated at 37ºC for 90 minutes – after which time the tube was then spun at 12000 

       rpm at 4ºC for 2 minutes in a bench-top refrigerated microfuge, the supernatant removed/discarded and  

      the resultant transformed cell pellet re-suspended in 50μL fresh SOC medium. 

 

(v) The resultant 50μL cell suspension was then evenly spread out onto an LB Ampicillin agar (Section 

      2.3.2, p.168) petri-plate – incubated for 24 hours at 37ºC. 

 

 
 

 

                                                   [181] 

 
 



2.5.2.4 Miniprep Protocols 

The IDPure™ Spin Column Plasmid DNA Miniprep Kit (ID Labs Inc.) was then utilised for extraction and 

 

purification of plasmids from selected colonies from the respective transformed α-chemically competent E. 

coli cell cultures (Section 2.5.2.3., p.181) – via the summarised Low Copy Number Kit Protocol: 

 

(i) A sterile/autoclaved wooden toothpick was utilised to inoculate 5mL of L.B. ampicillin broth medium 

    (Section 2.3.1, p.167) with one transformed α-chemically competent E. coli cell colony, picked from the  

     respective L.B ampicillin selection agar petri-plate, in a 50mL capacity Greiner plastic centrifuge tube 

     (fitted with a loose screw-cap) and the resultant broth culture placed in the 37ºC Sanyo orbisafe 

      incubator (set at 180 r.p.m. shake speed) for 24 hours duration. 

 

(ii) 1.5mL of the resultant broth culture was then pippetted into a 1.5mL capacity plastic eppendorf 

      microfuge tube which was then spun at 12000rpm at 4ºC for 2 minutes in a Sanyo Hawk 15/05 

      refrigerated bench top microfuge. 

 

(iii) The resultant supernatant was discarded, prior to addition of further 1.5mL of culture to the tube, which 

       contained the retained cell pellet, after which the tube was re-centrifuged at 12,000rpm, 4ºC for 2 

       minutes and the resultant supernatant discarded. 

 

(iv) The resultant cell pellet was then gently re-suspended in 200μL of the kit solution 1 and the resultant 

       mixture stood at room temperature for 1 minute.  

 

(v) 400μL of the kit solution II was then added and blended gently with the tube contents via successive 

      inversion of the tube 6 times , after which the resultant mixture was stood for 1 minute at room 

      temperature. 

     [Note: The mixture was NOT vortexed to prevent genomic DNA contamination of the plasmid extract]  
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(vi) 700μL of kit solution III was then blended with the resultant tube contents, via gentle repetitive tube 

      inversion and the resultant mixture stood at room temperature for 1 minute, prior to centrifugation in 

      in a Sanyo Hawk 15/05 refrigerated bench top microfuge refrigerated bench top microfuge at 12000rpm, 

      4ºC for 5 minutes. 

 

(vii) Half of the resultant supernatant was then transferred, via pipette, to a kit column assembly – which 

        was then placed in a in a Sanyo Hawk 15/05 refrigerated bench top microfuge and spun at 10,000rpm 

        for 2 minutes at 4ºC. 

 

(viii) The resultant eluent was the discarded and the remainder of the supernatant, acquired from step (vii), 

         was then added to the kit column assembly which was then re-spun in a Sanyo Hawk 15/05  

         refrigerated bench top microfuge at 10,000rpm at 4ºC for 2 minutes. 

 

(ix) The resultant eluent was then discarded and 500μL of kit wash solution was then added to the column, 

       prior to re-centrifugation of the kit column assembly at 10,000rpm, 4ºC for 2 minutes in a Sanyo Hawk  

       15/05 refrigerated bench top microfuge. 

 

(x) The resultant eluent was discarded and step (ix) repeated with 500μL of fresh kit wash solution. 

 

(xi) The resultant eluent was then discarded and the kit column assembly was then re-spun at 10,000rpm, 

       4ºC for a further 2 minutes in a Sanyo Hawk 15/05 refrigerated bench top microfuge to remove any 

        residual traces of  wash solution from the column – which would have otherwise impeded elution of  

        the respective purified plasmid DNA from the column. 

 

(xii) The column was then transferred to a fresh, clean 1.5mL capacity plastic eppendorf microfuge tube 

        and 50μL of the kit elution buffer was then added to the centre of the column, after which the column 

        assembly was stood at room temperature for 2 minutes prior to centrifugation in a Sanyo Hawk 15/05 

        refrigerated bench top microfuge at 10,000rpm, 4ºC for 2 minutes and the resultant eluted/purified  

        plasmid DNA solution was then stored at -20ºC until required. 
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As the research work progressed it was discovered that utilisation of the GenELute™ Plasmid Miniprep Kit 

(Sigma Life Sciences), in place of the IDPure™ Spin Column Plasmid DNA Miniprep Kit (ID Labs Inc.) , 

resulted in a significant improvement in efficient extraction yield, purification quality and stability of the 

constructed Cre-Lox pAW8 Cre-Lox donor plasmids isolated from selected Ampicillin-resistant colonies 

acquired from transformed α-chemically competent E. coli cell cultures (Section 2.5.2.3., p.181) 

 

An optimised, modified protocol of the  GenELute™ Plasmid Miniprep Kit (Sigma Life Sciences) was later 

adopted for this purpose – comprised of the following key steps: 

 

(i) A sterile/autoclaved wooden toothpick was utilised to inoculate 2mL of L.B. ampicillin broth medium 

    (Section 2.3.1, p.167) with one transformed α-chemically competent E. coli cell colony, picked from the 

     respective L.B ampicillin selection agar petri-plate, in a 15mL capacity Greiner plastic centrifuge tube 

     (fitted with a loose screw-cap) and the resultant broth culture placed in the 37ºC Sanyo orbisafe 

      incubator (set at 180 r.p.m. shake speed) for 35 hours duration. 

 

(ii) 1 mL of the resultant broth culture was then pippetted into a 1.5mL capacity plastic eppendorf 

      microfuge tube which was then spun at 12000rpm at 4ºC for 2 minutes in a Sanyo Hawk 15/05 

      refrigerated bench top microfuge. 

 

(iii) The resultant supernatant was discarded , the pelleted cells were re-suspended gently re-suspended in 

       200μL of the supplied re-suspension solution and the resultant  mixture incubated at room temperature 

       for 1 minute.  

 

(iv) 200μL of the supplied lysis solution was then added and blended gently with the tube contents via  

       successive inversion of the tube 8 times , after which the resultant mixture was stood for 1 minute  

       at room temperature. 

       [Note: The mixture was NOT vortexed to prevent genomic DNA contamination of the plasmid extract]  
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(v)  700μL of the supplied neutralization/binding solution was then blended with the resultant tube contents, 

       via gentle repetitive tube inversion and the resultant mixture stood at room temperature for 1 minute,  

       prior to centrifugation in a Sanyo Hawk 15/05 refrigerated bench top microfuge at 12000rpm, 4ºC for  

       10 minutes. 

 

(vi)  A GenElute Miniprep Binding Column-microfuge tube assembly was set up and pre-equilibrated via 

        addition of 500 μL of the supplied column preparation solution to the column, prior to centrifugation 

        of the assembly in the refrigerated bench-top microfuge at 12000rpm, 4ºC for 1minute. 

 

(vii)  750μL of cleared lysate, acquired previously from step (vi), was then loaded onto the column and 

         the assembly incubated at room temperature for 2 minutes, prior to centrifugation at 12,000rpm, 4ºC 

         for 1 minute in a Sanyo Hawk 15/05 refrigerated bench top microfuge. 

 

(viii) The resultant eluent was then discarded and 750μL of kit wash solution was then added to the column, 

          prior to re-centrifugation of the kit column assembly at 12,000rpm, 4ºC for 1 minute in a Sanyo 

          Hawk 15/05 refrigerated bench top microfuge. 

 

(ix)  The resultant eluent was then discarded and the kit column assembly was then re-spun at 12,000rpm, 

        4ºC for a further 1 minute in a Sanyo Hawk 15/05 refrigerated bench top microfuge to remove any 

         residual traces of wash solution from the column – which would have otherwise impeded elution of  

         the respective purified plasmid DNA from the column. 

 

(x)  The column was then transferred to a fresh, clean 1.5mL capacity plastic eppendorf microfuge tube 

        and 60μL of the kit elution buffer was then added to the centre of the column, after which the column 

        assembly was stood at room temperature for 2 minutes prior to centrifugation in a Sanyo Hawk 15/05 

        refrigerated bench top microfuge at 12,000rpm, 4ºC for 2 minutes and the resultant eluted/purified 

        plasmid DNA solution was then stored at -20ºC until required. 
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2.5.2.5  Restriction Digest Assay Verification of Donor pAW8-rad9 Plasmid Constructs 

5μL aliquot samples of the resultant Cre-RMCE donor plasmid pAW8 mini-prepped plasmid extracts, 

acquired from individual colony cultures of transformed  Ampicillin-resistant  competent E. coli  cells 

(Section 2.5.2.4, pp.182-185), were subjected to comparative Sph1 and SpeI restrictive digest analyses. 

 

(i) Each restriction digest reaction comprised: 5µL pAW8 Plasmid DNA “mini-prep” extract (~2ng) 

                                                                           5µL 10x SpeI NE Reaction Buffer 2 

                                                                           5µL 10x SphI Reaction Buffer K 

                                                                           0.5µL SpeI Restriction Enzyme (10U/µL) 

                                                                           0.5µL SphI Restriction Enzyme (10U/µL) 

                                                                           34µL Autoclaved/Sterile Ultra-Pure Millipore Water 

                                                                           Total Reaction Volume = 50µL 

       Note: A negative comparative control digest was performed with 5µL of  “empty” pAW8 Plasmid 

                 DNA (~2ng). 

                 A comparative digest control was also performed with 5µL of the appropriate PCR-engineered 

                 rad9 gene cassette insert (~2ng). 

        The digest reaction mixtures were set up in thin-walled PCR tubes, which were then placed in the 37°C 

        static binder incubator for 24 hrs  (this incubation time was utilised to ensure maximal restriction 

        digestion of the DNA samples, prior to comparative ethidium gel analyses). 

 

(ii) The following day, each 50µL digest reaction mixture was placed into a separate 1.5mL capacity plastic  

      eppendorf tube containing 40µL isopropanol and the resultant 90µL total volume contents vortexed  

      briefly (~10 seconds) prior to incubation on dry ice for 15 minutes. 

 

(iii) Each tube contents was then spun at 12,000 r.p.m., 4°C for 20 minutes in a Sanyo Hawk 15/05 bench- 

       top refrigerated microfuge, after which time the supernatant was removed and discarded (via utilisation 

       of fine glass pasteur pipette-coupled vacuum aspiration, taking due caution not to disturb/dislodge the  

       precipitated plasmid DNA pellet). 
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(iv) Each tube was then placed (cap open) in the 37°C static binder incubator for 20 minutes for evaporated  

       removal of remnant traces of isopropanol from the precipitated plasmid DNA pellet. 

 

(v) Each resultant dried plasmid DNA pellet was then dissolved in 18µL of sterile/autoclaved, ultra-pure  

      millipore water, prior to the addition of 2µL of 10x DNA Sample Loading Buffer Dye and the resultant  

      mixture vortexed briefly (~10 seconds). 

 

(vi) 10µL aliquots of each of the resultant prepared mini-prep pAW8 plasmid DNA samples were then  

        loaded onto a 1% 1xTBE agarose electrophoretic gel (containing 0.5µg/mL ethidium bromide,  

        run at 120V constant setting for 30 minutes – Section 2.2.1, p.162), after which time the gel was 

        visualised via U.V. trans-illumination on the Bio-Rad Gel 2000 Imager System for identification  

        and selection of plasmid mini-preps which contained the ligated PCR-engineered rad9 gene cassette 

        insert.  

 

(vii) Comparative DNA control samples of the un-digested “empty” pAW8 plasmid, appropriate PCR- 

        engineered cassette insert and a selected pAW8-rad9 plasmid construct mini-prep extract (identified 

        from stage (vi) previously) were prepared  via pipette-mixing of 9µL of the appropriate aqueous DNA 

        solution with 1µL of 10x DNA Sample Loading Buffer Dye. 

 

(viii) These prepared un-digested samples, along with the remaining 10µL aliquots of the “empty” pAW8 

          plasmid digest and the corresponding selected pAW8-rad9 plasmid construct mini-prep extract 

          sample were then run on a 1xTBE agarose electrophoretic gel (Section 2.2.1, p.162) – as described 

          previously in stage (vi). 

           

NOTE: These comparative un-digested and restriction-digested sample analyses were necessary for  

              identification of  successfully-ligated  pAW8-rad9 constructs and for verification that the 

              restriction endonucleases SpeI and SphI only cleaved within their specific base-sequence 

              target-recognition sites (ie that the respective enzymes did not exhibit any unanticipated  

              non-specific/“star” activity with regard to cleavage at random sites within the pAW8 plasmid 

              and/or PCR-engineered rad9 gene cassette inserts). 
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2.5.3  S.pombe Transformation Protocol 

A lithium acetate-based protocol was utilised for the respective Δrad9 Cre-RMCE S. pombe base-strain cell 

transformations with the Cre-RMCE donor pAW8 plasmid mini-prepped gene cassette insert ligation 

constructs – comprised of the following summarised steps: 

 

(i) A sterile/autoclaved wooden toothpick was utilised to inoculate 50mL of sterile/autoclaved EMM 

    Minus Uracil selective  medium (Section 2.3.1, p.167) with a small amount of the Δrad9 S. pombe 

    Cre-RMCE base-strain YEA agar petri-plate culture, in a sterile/autoclaved 250mL capacity glass conical 

     flask (capped loosely with aluminium foil) and the resultant broth culture placed in the 30ºC Sanyo 

     orbisafe incubator (set at 180 r.p.m. shake speed) for 24 hours duration. 

 

(ii) The following day, a 100μL aliquot of the resultant broth culture was diluted with 900μL EMM Minus 

      Uracil medium and the resultant 1 in 10 diluted culture sample (1mL) was then placed in a plastic 

      microcuvette for subsequent measurement of the optical density at A595  (O.D. 595) in a Sanyo SP BIO 

      Spectrophotometer (against a set blank reference of 1mL EMM  minus Uracil broth medium) and the  

      optical density of the “neat” culture calculated: 

      ie A595 (“neat” culture) = A595 (1 in 10 diluted culture) x 10              

 

(iii) An appropriate volume of resultant broth culture was then diluted with the appropriate volume of EMM 

       (minus Uracil) broth  medium to a final A595 optical density = 0.5 units dictated by the calculated 

       diluent factor ratio, D.F.R.: 

 

       ie D.F.R. = Calculated A595  (“neat” culture)  

                                              0.5 

       In accordance with the related equation:  V1 = C2 x V2 

                                                                                       C1 

 
                                                                                  Where: 

                                                                                               V1 = Volume of measured cell culture 

 

                                                                                               V2 = Volume of cell culture required 

 

                                                                                               C1 = O.D.595 of cell culture measured 

                                                                                          

                                                                                               C2 = O.D.595 of cell culture required 
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 (iv) A 50mL aliquot of the adjusted A595 = 0.5 optical density units broth culture was then placed in a  

      50mL capacity sterile plastic Greiner screw-cap centrifuge tube and the spun at 3,300g for 5 minutes 

      in a Jencons-PLS SorvallR Legend T Centrifuge in the 4ºC cold room. 

 

(v) The resultant supernatant was then discarded, the cell pellet re-suspended in 50mL ultra-pure, 

      sterile/autoclaved millipore water and the cell solution re-centrifuged at 3,300g for 10 minutes in 

      a Jencons-PLS SorvallR Legend T Centrifuge the 4ºC cold room. 

 

(vi) The resultant supernatant was then discarded, whilst the washed cell pellet was re-suspended in 1mL 

      of  sterile/autoclaved utra-pure millipore water and transferred to a 1.5mL capacity eppendorf plastic 

      microfuge tube. 

 

(vii) The resultant cell solution was then spun at 3000rpm at 4ºC for 2 minutes in a Hawk 15/05 

        refrigerated bench top microfuge, the supernatant discarded and the retained cell pellet was 

        re-suspended in 1mL of LiAc-TE buffer solution (Section 2.2.5, p.166) prior to re-centrifugation 

        at 3000rpm at 4ºC for 2 minutes. 

 

(viii) The supernatant was then discarded and the resultant washed cell pellet re-suspended in 250μL of 

         LiAc-TE buffer solution (Section 2.2.5, p.166). 

 

(ix) Each transformation reaction mixture comprised:  

       100μL prepared Cre-RMCE S. pombe  base-strain  LiAc-TE cell suspension 

       2μL non-denatured (ie NOT pre-heated to 95ºC prior to use) salmon sperm carrier DNA (10mg/mL) 

       10μL of the appropriate  Cre-RMCE donor plasmid pAW8-rad9 construct mini-prep solution (~4ng) 

– prepared previously  in accordance with the protocol described in Section 2.5.2, pp.179-187 

     

        Set up in a 1.5mL capacity plastic eppendorf microfuge tube and incubated at room temperature for 

        10 minutes prior to the addition of 260μL of LiAc-TE-PEG buffer solution (Section 2.2.5, p.166). 

 
   (x)   Each eppendorf tube, containing each respective transformation reaction mixture, was then placed in 

           the 30ºC static binder incubator for 1 hour. 
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   (xi) Each tube was then removed from the incubator, followed by the addition of 43μL of  42ºC 

          pre-equilibrated DMSO to each respective transformation reaction mixture, prior to placement 

          of each tube in a 42ºC hot block for 5 minutes for subsequent cell culture heat shock plasmid 

          transformation phase. 

 

   (xii) Each tube was then placed in a Sanyo Hawk 15/05 refrigerated bench top microfuge and the 

           resultant heat shock transformed cell solutions spun at 3000rpm, 4ºC for 2 minutes. 

 

   (xiii) The supernatant was then discarded and each resultant cell pellet was then re-suspended in 1mL of 

            sterile/autoclaved, ultra-pure millipore water, prior to re-centrifugation at 3000rpm, 4ºC for 2 

               minutes in a Sanyo Hawk 15/05 refrigerated bench top microfuge. 

  

    (xiv) The supernatant was discarded and each resultant washed transformed cell pellet was then  

              re-suspended in 100μL sterile/autoclaved YEA medium (Section 2.3.1, p.167). 

 

     (xv) 10mL aliquots of sterile/autoclaved YEA medium (Section 2.3.1, p.167), contained in 50ml  

             capacity sterile Greiner plastic centrifuge tubes, were then inoculated with the respective 100μL 

             YEA medium suspensions of transformed S. pombe Cre-RMCE  base-strain cells, after which the 

              tubes were loosely capped and placed in the 30ºC Sanyo Orbisafe orbital incubator shaker for 24 

              hours. 

 

 
      (xvi) The following day a 1mL aliquot of each resultant broth culture was placed in a 1.5mL capacity 

               plastic eppendorf microfuge tube and spun at 3000rpm, 4ºC for 2 mins in the Sanyo Hawk 15/05 

               refrigerated bench top microfuge. 

 

      (xvii) In each case, the supernatant was subsequently discarded and the resultant pellet of transformed 

               Cre-RMCE S. pombe base-strain cells was then re-suspended in 50μL of autoclaved/sterileYEA 

               Medium (Section 2.3.1, p.167). 

 

                                                  [190] 

 

 



        (xviii) Each resultant cell suspension was then evenly spread out onto an EMM (minus Leucine) agar  

                 selection medium petri-plate(Section 2.3.2, p.168) via utilisation of a 70% (v/v) ethanol- 

                 sterilised flame spreader and each resultant culture placed in the 30ºC static binder incubator  

                 for 7 days. 

 

      (xix) The resultant colonies on each incubated EMM (Minus Leucine) agar petri plate were then  

                replica-plated onto  fresh EMM (Minus Leucine) and YEA-5FOA agar selection plates 

                (Section 2.3.2, p.168) and the resultant cultures placed in the 30ºC static binder incubator  

                for 7 days. 

 

[NOTE: pAW8 plasmid constructs prepared and utilised are detailed in Appendix 2.11.5, p.278 

 

              Generated “Cre-Lox” S. pombe  strain genotypes are detailed in Appendix 2.11.7, p.280] 
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2.6  Initial “Cre-Lox”-Engineered S. pombe Strain Verification Assays 

2.6.1 Selective Agar Media Phenotyping Assays 

Selected colonies of the “Cre-Lox”-generated S. pombe strains were streaked, via utilisation of 

sterile/autoclaved cocktail sticks, onto YEA, EMM (Adenine,Leucine, Uracil supplemented), EMM (Minus 

Uracil), EMM (Minus Leucine) and YEA-5FOA agar petri-plates (Section 2.3.2, p.168), which were then 

placed in the 30°C static binder incubator for three days for comparative assessment of their relative growth 

sensitivity on the respective media utilised.    

 

2.6.2 PCR Genotyping Assays 

2.6.2.1 PCR Genotypic Verification of the Δrad9 Cre-RMCE “Base-Strain” 

A genomic DNA extract of the pAW1-generated Cre-Lox “base-strain” was prepared (Section 2.4, pp.169-

170) and subjected to comparative genomic PCR analyses with primer pair combinations Rad9-5, Rad9-9; 

Rad9-9 and Rad9-10; Ura4-1 and Ura4-4; Ura4-1 and Rad9-10; Ura4-4 and Rad9-10 respectively. 

 

[The PCR Thermocycler Program utilised was the same as that for Rad9-S5 and Rad9-S8 primers – Fig 2.7, 

p.193] 

 

 2.6.2.2 PCR Genotypic Verification of pAW8-rad9 Base-Strain Cre-RMCE Transformants 

Genomic DNA extracts were prepared from the  S. pombe strains (via the protocol described previously in 

Section 2.4, pp.166-167) and subjected to comparative genomic PCR analyses with primer pair 

combinations Rad9-S5 and Rad9-S6 (for  the untagged  rad9  S. pombe strain)  or Rad9-S5 and Rad9-S8 

(for C-terminal HA epitope-tagged, engineered rad9 S. pombe strains) for confirmation of the presence of 

the respective Cre-RMCE-integrated engineered rad9 gene cassette – Fig 2.7, p.193] 

[NOTE: All PCR primer sequences are detailed in Appendix 2.11.3, p.276 ]     
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2.6.3 DNA Sequence Verification of the  “Cre-Lox” Engineered S. pombe Strains   

(i) Genomic DNA extracts were prepared from 10mL YEA broth cell cultures of each “Cre-Lox”- 

    engineered S. pombe strain (Section 2.3.1, p.167), via the protocol described previously in  

    Section 2.4 (pp.169-170) and utilised for PCR amplification (Fig 2.7, below) of the respective  

    modified rad9 gene (integrated at the endogenous rad9 gene locus situated within Chromosome 1) . 

 

Fig 2.7: Summarised PCR Reaction Mixtures and Thermocycler Parameters  

 

 

(ii) After completion of the thermocycler program, each PCR reaction mixture (100µL) was transferred to a 

  

      1.5mL capacity plastic eppendorf microfuge tube containing 80µL “neat” Isopropanol, after which the  

      contents were vortexed briefly (~ 10 seconds) and the resultant mixture incubated on dry-ice for 15 mins,  

       prior to centrifugation at 12,000 r.p.m. at 4°C for 20 minutes in a Sanyo Hawke 15/05 refrigerated  

       microfuge. 

 

(iii) The resultant supernatant was removed via utilisation of fine glass Pasteur pipette evacuation (taking 

       care not to disturb/dislodge the precipitated DNA pellet) and each tube was then placed  (cap open) 

       in the static 37°C binder incubator for 20 minutes for evaporated removal of remnant traces of  

       isopropanol. 

 

(iv) 45µL of sterile/autoclaved, ultra-pure millipore water was then added to each tube, followed by the  

       addition of 5µL of 10x DNA Loading Buffer Dye and the resultant contents mixed thoroughly via 

       vortexing (~1 minute). 
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(v) The resultant 50µL samples were then gel purified utilising a 1xTAE Agarose gel (Section 2.2.1, p.162) 

      and the IDPure™ Spin Column DNA Gel Extraction Kit (ID Labs Inc.) – as described previously 

      in Section 2.5.1 (pp.177-178). 

 

(vi) 2µL of each resultant purified DNA eluent solution was then transferred to a 1.5mL capacity plastic 

       eppendorf tube containing 98µL of sterile/autoclaved, ultra-pure millipore water and the contents 

        vortexed briefly (~10 seconds). 

 

(vii) The resultant DNA sample (100µL) was then placed in a Precision Cells Type 701M U.V. quartz  

         microcuvette cell, which was then placed in a Sanyo SP BIO Spectrophotometer set at 

         A=260nm/”DNA Measurement Mode” (“zeroed” previously against a blank reference analyte  

         solution, placed in the identical U.V. quartz microcuvette cell, which comprised 98µL of  

         sterile/autoclaved, ultra-pure millipore water mixed with 2µL of the elution buffer supplied in the  

         IDPure™  Spin Column DNA Gel Extraction Kit).  

 

 

(viii) The corresponding concentration of the remainder of the “neat”, eluted DNA solution was then 

          calculated via utilisation of the equation:  

                                                                           [DNA] (µg/mL) =  A260 x D.F. x 50* 

                                                                                                                    1000  
 
                                                                                   Where: A260 = U.V. Absorbance at Wavelength, λ = 260nm 

 

                                                                                                 D.F. = Eluted DNA Sample Dilution Factor = 50 

                                                                                                            (ie A 1 in 50 diluted DNA Sample Prep.) 

 

                                                                                                 One A260 O.D. Unit = *50µg/mL DNA 

 

(ix) The remainder of the “neat”, eluted DNA solution was then adjusted, via addition of the appropriate 

         

        amount of sterile/autoclaved millipore water, to a final concentration of 10ng/µL and stored at -20°C 

        

        until required. 

 

 

(x) A 100µL aliquot of each DNA sample (10ng/µL)  and 100µL aliquots of the rad9 gene sequencing PCR 

      primers Rad9-S13, Rad9-S14, Rad9-S15, Rad9-S16 and Rad9-S17 (at 2pmol/µL final concentration 

      prepared from the  10µM primer stock solutions via appropriate serial dilutions in sterile/autoclaved 

      ultra-pure millipore water) were placed in 1.5mL capacity eppendorf tubes, marked with the appropriate 

      sample bar-code labels  (supplied by the  service company) and sent to Eurofins MGW Operon for 

      DNA sequencing (Fig 2.8, p.195).                [194]       

                                                                         



        Fig 2.8: Summarised Details of DNA Sequencing Primers and ddNTP Terminators  
                                                                                           

  

 A: Progressive “gene-walking” site map and sequences of the PCR primers utilised for DNA 

      sequencing of the PCR-amplified rad9 gene samples prepared from genomic DNA extracted 

      from cell cultures of the various “Cre-Lox”-engineered S. pombe strains.  

 

      [Figure ranges detailed underneath each representative primer arrow denote the relative 5’- 3’ 

        base-pair positions spanning the complementary annealing target sequence recognised 

        specifically by each respective primer]. 

 

B: PCR-amplified rad9 gene samples and primers were submitted to the service company 

     Eurofins MWG Operon (http://www.eurofinsdna.com) for DNA sequencing. 

 

     The samples were processed on an ABI Prism 3730xl 96 capilliary electrophoresis array  

     DNA Analyzer in conjunction with appropriate ABI Big-Dye® ddNTP fluorescent DNA 

     chain terminators and instrument operating instructions/protocols* – as supplied by the 

     company Applied Bisystems Life Technologies Inc. (http://www.appliedbiosystems.com). 

 

     [*The ratio of dNTP’s to ddNTP’s is carefully selected to ensure single-hit kinetics, in which 

      only one ddNTP terminator is incorporated into a single DNA chain per PCR thermocycle] 

 

      Each DNA chain-incorporated ddNTP fluoresces at a distinctive wavelength for highthroughput 

      sample scanning and efficient base detection assignment for rapid, reliable DNA sequencing.   
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2.6.4 Engineered rad9 Gene Expression Verification 
  
Comparative 1D SDS-PAGE and Western Blot Analyses were performed on TCA-precipitated total 

extracts acquired from 10mL YEA cell cultures of each respective “Cre-Lox”-engineered S. pombe strain 

(prepared via utilisation of the protocols described in Section 2.8.1, pp.200-202) for detected confirmation 

of viable protein expression of the respective “Cre-Lox”-integrated, PCR-modified rad9 gene variants. 
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2.7  Preparation of S. pombe  Genetic “Cross-Strain” Mutants  
 

(i) Sterile/autoclaved wooden cocktail sticks were utilised to transfer a small amount of each required  

     S. pombe strain from a YEA agar plate (Section 2.3.2, p.168) culture  to the same 1.5mL capacity  

     plastic eppendorf microfuge tube which contained 50µL of autoclaved/sterile ultra-pure millipore water. 

 

(ii) The tube contents were then agitated gently via repetitive pipetting and the resultant S. pombe strain 

       mixture was then pippetted as a single 50µL drop onto a Malt Extract Agar petri-plate (Section 2.3.2, 

       p.168), which was then allowed to stand on the lab bench at room temperature until the drop had dried. 

 

(iii) The resultant Malt Extract Agar petri-plate culture was then placed in the 25˚C static incubator for three 

        days. 

 

(iv) After the incubation time had elapsed, a sterile/autoclaved wooden cocktail stick was utilised to transfer 

       a small of amount of the resultant cross-strain mated culture from the Malt Extract agar petri-plate to a 

       1.5mL capacity plastic eppendorf microfuge tube which contained 500µL of 30%(v/v) aqueous 

       ethanol. 

 

(v) The resultant tube contents were then vortexed briefly (~30 seconds) and the resultant mixture stood on 

       the lab bench at room temperature for 30 minutes to provide sufficient time to ensure complete cell 

       lysis to leave only the intact mated cross-strain spores. 

 

(vi) 50µL of the resultant mixture was then pippetted onto a fresh YEA agar petri-plate and spread evenly 

       over the plate via utilisation of a 70% ethanol-sterilised flame spreader. 

 

(vii) The resultant YEA agar petri-plate culture was then placed in the 30˚C static incubator for three days. 

 

(viii) The resultant colonies were then replica-plated onto a fresh YEA agar petri-plate and the appropriate 

          agar selection media petri-plate (detailed in Table 2.1, p.198) which were then placed in the 30˚C 

          static incubator for three days. 
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 Table 2.1: Gene Marker-Based Replica Plate Selection of  S. pombe “Cross-Strain” Colonies    

 

 
 

[Note: The compositions of all the selection agar media utilised are detailed summarily in 

            Section 2.3.2, p.168 

 

            Full genotypes of S. pombe strains utilised and double-mutant strains constructed 

            are detailed in Appendices 2.11.6, p.279; 2.11.7, p.280 and 2.11.8, p.281] 
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(ix) Sterile/autoclaved wooden cocktail sticks were then utilised to pick and streak ten individual colonies  

      from the appropriate replica plate and onto a freshYEA agar petri-plate (Section 2.3.2, p.168) which was  

      then placed in the 30˚C static incubator for three days. 

 

(x) After three days incubation had elapsed, a small of amount of each resultant streak colony culture was 

      transferred to a separate 50mL capacity plastic Greiner centrifuge screw-lid tube which contained 

      15mL of YEA broth medium (Section 2.3.1, p.167) . 

 

(xi) The resultant inoculated cultures, contained within the 10 Greiner Tubes, were then placed in the 

        30˚C placed in the 30ºC Sanyo orbisafe incubator shaker for 24 hours duration. 

 

(x) Total TCA-precipitated protein extract samples were then prepared from each respective culture 

      (protocol detailed in Section 2.81, pp.200-202). 

 

(xi) The resultant total protein extracts were then subjected to SDS-PAGE/Western-Blotting analysis 

        (protocols detailed in Section 2.8.4, pp.223-224  and Section 2.8.6, pp.231-233). 

 

(xii) Streak colony cultures which exhibited the appropriate selection plate phenotype and Western Blot 

        analytical result for the respective S. pombe cross-strain were then transferred from the original 

        YEA agar petri-plate and re-plated onto separate fresh YEA agar petri-plates (Section 2.3.2, p.168) 

        which were then placed in the 30˚C static incubator for three days. 

 

(xiii) After three days incubation time had elapsed, each correct colony culture was transferred from the 

         YEA agar petri-plate to a 1.5mL capacity plastic screw-cap microfuge tube which contained 

         1mL of  a solution comprised of 30%(v/v) Glycerol in YEA broth medium (Section 2.3.1, p.167). 

 

(ix) The tubes were then capped, the contents vortexed briefly (~30 seconds) and the resultant S. pombe 

       cross-strain stock cultures stored at -80˚C until required .    
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2.8 Protein Sample  Preparation and Analysis Protocols 

2.8.1 Preparation and Analysis of TCA-Precipitated Total Protein Extracts 

A trichloroacetic acid (TCA)-based protocol was utilised for the preparation of precipitated total protein 

cellular extracts from S. pombe – comprised of the following summarised steps: 

 

(i) A sterile/autoclaved wooden toothpick was utilised to inoculate 50mL of sterile/autoclaved YEA 

     medium (see Section 2.3.1, p.167) with a small amount of the appropriate S. pombe strain, taken  

     from the respective YEA agar petri-plate culture, in a sterile/autoclaved 250mL capacity glass  

     conical flask (capped loosely with aluminium foil) and the resultant broth culture placed in the 

     30ºC Sanyo orbisafe incubator (180 r.p.m. shaker speed) for 24 hours duration. 

 

(ii) The following day, a 100μL aliquot of the resultant broth culture was diluted with 900μL YEA 

      medium and the resultant 1 in 10 diluted culture sample (1mL) was then placed in a plastic  

      microcuvette for subsequent measurement of the optical density at A595 in a Sanyo SP BIO 

      Spectrophotometer (against a set blank reference of 1mL YEA) and the optical density of the 

      “neat” culture calculated: 

      ie A595 (“neat” culture) = A595 (1 in 10 diluted culture) x 10 

 

(iii) The equivalent volume of the resultant “neat” broth culture which corresponded to 7 equivalent A595 

       optical density units was calculated, removed from the respective flask and placed in a 15mL capacity 

       Greiner plastic screw-cap centrifuge tube: 

       

          

(iv) The calculated A595 7 optical densities equivalent volume of cell culture aliquot was then placed in  

       a 50mL capacity plastic Greiner centrifuge screw-cap tube and  spun at 3,300g for 5 minutes in a 

      Jencons-PLS SorvallR Legend T Centrifuge in the 4ºC cold room.  
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(v) The supernatant was discarded, the resultant cell pellet re-suspended in 50mL of ultra-pure millipore 

      water, after which the resultant cell was then spun at 3,300g for 10 minutes in a Jencons-PLS SorvallR 

      Legend T Centrifuge in the 4ºC cold room.  

 

(vi) The supernatant was discarded and the washed cell pellet re-suspended in 200μL of ultra-pure millipore  

       water prior to transfer of the resultant cell suspension to a 1.5mL capacity plastic eppendorf microfuge 

       tube. 

 

(vii) The resultant cell suspension was then spun at 12,000rpm, 4ºC for 2 minutes in a Sanyo Hawk 15/05 

      refrigerated bench top microfuge, the supernatant discarded and the resultant cell pellet re-suspended 

      in 200μL of ultra-pure millipore water, prior to re-centrifugation at 12,000rpm, 4ºC for 2 minutes. 

 

(viii) The supernatant was discarded and the resultant cell pellet re-suspended in 200μL of 20% (w/v) 

          aqueous Trichlorocetic acid solution [20% TCA(aq)], after which the resultant cell suspension  

          was transferred to 1.5 mL capacity plastic crew-cap type microfuge tube containing 8 small  

          spatula spoonfuls of glass beads (~150μL glass beads), prior to placement of the tube on the 

          Genie disruptor for 6 minutes in the 4ºC cold room. 

 

(ix)  400μL of 5% (w/v) TCA(aq) was then added to the resultant lysed cell suspension and the resultant 

        solution transferred to a fresh 1.5mL capacity plastic eppendorf microfuge tube, which was then spun 

        at  12,000 rpm, 4ºC for 5 minutes in a Sanyo Hawk 15/05 refrigerated bench top microfuge. 

 

(x) The supernatant was discarded and the resultant precipitated protein pellet was then re-dissolved in 

      400μL of 1x SDS-PAGE protein sample loading buffer (Section 2.2.2, p.163). 

  

(xi) The relatively low pH/high acidicity of the resultant protein solution was adjusted back to the buffer 

       solution pH value of 6.8 via dropwise addition of 1M Tris-HCl pH8.8 solution (Section 2.2.2, p.163) 

       until the pH indicator present in the resultant 1x SDS-PAGE protein sample loading buffer solution 

        turned from yellow to blue. 
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(xii) The resultant pH-adjusted protein sample solution was then incubated in the 95ºC hot block for 

       5 minutes and then cooled on ice for 5 minutes prior to storage at -20ºC until required. 
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2.8.2 Preparation of Soluble Total Protein Extracts 

(i) A sterile/autoclaved wooden toothpick was utilised to inoculate 100mL of sterile/autoclaved YEA 

    medium (see Section 2.3.1, p.167) with a small amount of the  appropriate S. pombe strain, taken 

     from the respective YEA agar petri-plate culture, in a sterile/autoclaved 250mL capacity glass  

     conical flask (capped loosely with aluminium foil) and the resultant broth culture placed in the 

     30ºC Sanyo orbisafe incubator (180 r.p.m. shaker speed) for 24 hours duration. 

 

(ii) The following day, a 100μL aliquot of the resultant broth culture was diluted with 900μL YEA 

      medium and the resultant 1 in 10 diluted culture sample (1mL) was then placed in a plastic  

      microcuvette for subsequent measurement of the optical density at A595 in a Sanyo SP BIO 

      Spectrophotometer (against a set blank reference of 1mL YEA) and the optical density of the 

      “neat” culture calculated: 

      ie A595 (“neat” culture) = A595 (1 in 10 diluted culture) x 10 

 

(iii) The equivalent volume of the resultant “neat” broth culture which corresponded to 40 equivalent A595 

       optical density units was calculated, removed from the respective flask and placed in a 15mL capacity 

       Greiner plastic screw-cap centrifuge tube: 

        

 

 (iv) The calculated A595 40 optical densities equivalent volume of cell culture aliquot was then placed in  

         a 50mL capacity plastic Greiner centrifuge screw-cap tube and  spun at 3,300g for 5 minutes in a 

         Jencons-PLS SorvallR Legend T Centrifuge in the 4ºC cold room.  

 

 

(v) The supernatant was discarded and the resultant cell pellet re-suspended in 50mL of ultra-pure millipore 

      water, after which the resultant cell suspension was then spun at 3,300g for 10 minutes in a Jencons- 

      PLS SorvallR Legend T Centrifuge in the 4ºC cold room.  
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(vi) The supernatant was discarded and the resultant cell pellet re-suspended in 50mL of Buffer “HP” 

        (Section 2.2.2, p.163), after which the resultant cell was then spun at 3,300g for 10 minutes in 

        a Jencons-PLS SorvallR Legend T Centrifuge in the 4ºC cold room.  

 

(vii) The resultant cell suspension was then spun at 12,000rpm, 4ºC for 2 minutes in a Sanyo Hawk 15/05 

       refrigerated bench top microfuge, the supernatant discarded and the cell pellet re-suspended in 1mL 

       of Buffer “HI” (Section 2.2.2, p.163), prior to re-centrifugation at 12,000rpm, 4ºC for 5 minutes. 

  

(viii)  The resultant cell suspension was then spun at 12,000rpm, 4ºC for 2 minutes in a Sanyo Hawk 15/05 

         refrigerated bench top microfuge at 12000rpm, 4˚C for 5 minutes, after which the supernatant was 

         discarded and the cell pellet resuspended in 400μL of Buffer “HI” (Section 2.2.2, p.163). 

         

(ix)   The resultant cell suspension was then transferred to a 1.5ml capacity plastic screw-cap microfuge 

        tube, which contained 10 small spatula spoonfuls of glass beads (~200μL glass beads) and the tube 

        was then placed on the Genie Disruptor in the 4˚C cold-room for 16 minutes. 

 

(x)   The resultant lysed cell homogenate suspension was then transferred to a 1.5ml capacity plastic  

      eppendorf  microfuge tube. 

 

(xi)   200µL of Buffer “HI” (Section 2.2.2, p.163) was added to the drained glass beads in the 1.5ml  

          capacity plastic screw cap microfuge tube, the contents vortexed for 30 seconds and the resultant 

        solution transferred to the 1.5mL capacity eppendorf microfuge tube which contained the lysed 

         cell homogenate suspension. 

 

(xii)  The glass bead wash step (stage xii) was repeated with a fresh 200μL aliquot of Buffer “HI” 

 

          (Section 2.2.2, p.163). 
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(xiii) The resultant  combined lysed cell homogenate solution (final total volume ~1mL) was then spun 

         in a Sanyo Hawk 15/05 refrigerated bench top microfuge at 12000rpm, 4˚C for 10 minutes. 

 

(xiv) The supernatant (ie the soluble protein extract)  was then transferred to a fresh 1.5ml capacity plastic 

          eppendorf microfuge tube and stored at -20˚C until required. 
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2.8.2.1 Preparation and Analysis  of Cytosolic and Nuclear Fractionated Protein Samples 

(i) Both the supernatant and pellet fractions, acquired from the appropriate S. pombe strain culture via the  

     total soluble protein extraction protocol described previously (Section 2.8.2, pp.203-205) were retained. 

 

(ii) 200μL of 100% (w/v) TCA(aq) was added to the total soluble protein extract (ie the cytosolic  

      supernatant fraction)  and the resultant mixture spun in a Sanyo Hawk 15/05 refrigerated bench 

      top microfuge at 12000rpm, 4˚C for 10 minutes. 

 

(iii) The supernatant was discarded and the precipitated protein pellet mixed with 150μL of 4x SDS 

        PAGE Sample Loading Buffer (Section 2.2.2, p.163), 40μL of 1M Tris-HCl pH8.8 (Section 2.2.2,  

        p.163) and 310μL of millipore ultra-pure water. 

 

(iv) The resultant, neuralised protein solution was then incubated in a 95°C hot-block for 5 minutes and 

        then cooled on ice for 5 minutes, prior to storage of the prepared  protein sample (ie the total 

 

        cytosolic protein fraction) at -20°C until required. 

 

(v) The retained pellet fraction, acquired from the initial total soluble protein extraction (Section 2.8.2, 

       pp.203-205) was mixed with 450μL of millipore ultra-pure water and 150μL of 4xSDS PAGE 

       Sample Loading Buffer (Section 2.2.2, p.163). 

 

(vi) The resultant protein solution was then incubated in a 95°C hot-block for 5 minutes and then cooled on  

         ice for 5 minutes, prior to storage of the prepared  protein sample (ie the total nuclear protein fraction) 

         at -20°C until required. 
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Phenol:chloroform:isoamylalcohol-based DNA extractions were also performed on the pellet and 

supernatant fractions acquired from the appropriate S. pombe strain cultures, via the Total Soluble Protein 

Extract protocol (described previously in Section 2.8.2, pp.203-205), for verification that the pellet was the 

nuclear fraction (ie contained DNA) and the supernatant was the cytosolic fraction (ie contained no DNA). 

 

(i) The insoluble retained pellet fraction in the 1.5mL capacity plastic eppendorf microfuge tube was re- 

      suspended in 500µL of ultra-pure millipore water, the resultant suspension mixed with 500µL 

      of Phenol:Chloroform:Isoamylalcohol and the resultant mixture vortexed (~30 seconds). 

 

(ii) A 500µL aliquot of the soluble supernatant fraction was transferred to a 1.5mL capacity plastic  

      eppendorf microfuge tube that contained 500µL of Phenol:Chloroform:Isoamylalcohol and the  

      resultant mixture vortexed briefly (~30 seconds). 

 

(iii) The both eppendorf tubes were then spun in a a Sanyo Hawk 15/05 refrigerated bench-top microfuge 

        at 12000rpm, 4˚C for 10 minutes. 

 

(iv) The upper aqueous layer (~500µL) from each tube was carefully transferred, via pipette, to a fresh 

        individual 1.5mL capacity plastic eppendorf microfuge tube which contained 400µL of  “neat” 

        Isopropanol. 

        [The lower organic layer and interface contained in the original eppendorf tubes was then discarded] 

 

(v) The resultant contents of each tube was then vortexed (~30 seconds) prior to incubation on dry-ice 

       for 30 minutes. 

 

(vi) After the incubation time had elapsed, the eppendorf tubes were spun in a a Sanyo Hawk 15/05 

       refrigerated bench-top microfuge at 12000rpm, 4˚C for 30 minutes. 
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(v) The resultant supernatants were remove via careful pippetting and discarded, after which each  

       open-capped tube was placed in the 37˚C static incubator for 20 minutes to evaporate residual 

        traces of Isopropanol. 

       

(vi) A 5µL aliquot of 10x DNA Loading Buffer Dye (Section 2.2.1, p.162) and 45µL of millipore ultra-pure 

       water was then added to each tube and  the resultant mixture repeatedly vortexed (~30 second bursts) 

       for 2 minutes. 

 

(vii) The resultant tube contents were then repetitively pippetted for a further minute. 

 

(viii) A 10µL aliquot of each prepared sample was then loaded onto a 1% (w/v) 1xTBE (0.5µg/mL ethidium 

         bromide) agarose electrophoretic gel (0.5µg/mL ethidium bromide) run in 1xTBE buffer at 120V  

         constant setting for 45 minutes (Section 2.2.1, p.162). 

 

(ix) The gel was then visualised and photographed under the U.V. transillumination setting on the Bio-Rad 

        Gel Doc 2000 White Light and U.V. imager system. 
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2.8.2.2 Preparation and Analysis of Total Soluble Protein HPLC-SEC Fractionated Samples 

(i) 250μL of the appropriate soluble total protein extract (Section 2.8.2, pp.203-205) was injected, via 

     utilisation of a  microlitre syringe, into the sample loop of the  ÄKTAFPLC  High-performance Liquid  

     Chromatography (HPLC) System which was fitted with a Superdex 200HR 10/30 Size Exclusion 

     Column (Amersham Pharmacia Biotech/GE Healthcare) that had been pre-equilibrated with Buffer 

     “HM” (Section 2.2.2, p.163) and  pre-calibrated with a High Molecular Weight Gel Filtration Internal 

      Protein Standard Kit (Amersham Pharmacia Biotech/GE Healthcare). 

 

[Instrumentation configuration and selected operating parameters for the size-exclusion chromatographic 

 (SEC) fractionation of  the loaded total soluble protein extract are summarised below]    

                                                                                                  

 

(ii) A total of 24 successive 1ml fractions were eluted into separate 15mL capacity plastic Greiner Screw-lid  

      centrifuge tubes placed into the carousel of the FRAC-950 Rotary Fraction Collector. 

 

(iii) Eluted fractions 8 to 16 inclusive were transferred to separate 1.5mL capacity plastic eppendorf  

       microfuge tubes and stored at -20°C until required, whilst the remaining fractions were discarded. 
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(iv) 20μL of the total soluble protein extract (un-fractionated) and each of the HPLC-SEC eluate fractions 

       were mixed with 10μL of millipore ultra-pure water and 10μL of 4xSDS PAGE Loading Buffer 

       (Section 2.2.2, p.163) in separate 1.5mL capacity plastic crew-lid microfuge tubes, which were then  

        incubated in a 95°C hot-block for 5 minutes. 

 

(v) The prepared protein samples were then cooled on ice for 5 minutes and stored at -20°C until required. 

 

(vi) 10μL of protein standard mass marker and 30μL aliquots of the prepared HPLC-SEC fractionated 

       protein samples were loaded onto a 10% SDS-PAGE gel on the GeneFlow Mini-PAGE Vertical 

       Sub-System (Section 2.8.4, pp.223-224). 

       Sample Loading Order on each of the two SDS-PAGE Gels: 

 

       Protein      Total (Un-Fractionated)      HPLC-SEC Eluate Fraction Samples 

       Standard   Soluble Extract Sample     8     9    10    11    12    13    14    15    16  

       Marker 

 

 

(vii) After completion of electrophoresis, the resolved proteins on each gel were then transferred onto 

        separate sheets of  Hybond-C™ Nitrocellulose Blotting Membrane via utilisation of the GeneFlow  

        Tank Sub-Electroblotter System (Section 2.8.6, pp.231-233). 

 

(viii) After subsequent incubation in the “Blocking Buffer” (Section, p. ) the Western Blot membrane was 

         probed with the appropriate primary Anti-Body (“Anti-HA” Ab or “Anti-Myc” Ab) – described in the 

         Western Blot Analytical Protocol (Section 2.8.6, pp.231-233).  

          

  (ix) The membrane was then washed and incubated with the secondary HRP-conjugated Polyclonal 

         Rabbit Anti-Mouse Anti-Body and washed again prior to 30 minutes film exposure and development 

         (described in the Westerm Blot Analytical Protocol – Section 2.8.6, pp.231-233). 
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2.8.2.3 Preparation and Analysis of Total Soluble Protein Co-IP “Pull-Down” Samples  

(i) A truncated yellow Gilson pipette tip was utilised to transfer a 150μL aliquot  of Calbiochem® Protein 

     G Plus/Protein A agarose bead suspension (EMD Chemicals Inc.) to a 1.5mL capacity plastic eppendorf 

     microfuge tube. 

 

(ii) 1mL of Buffer “HI” (Section 2.2.2, p.163) was added to the beads in the eppendorf tube, which was 

       then placed (cap hinge faced outwards) in a Sanyo Hawk 15/05 refrigerated bench top microfuge and 

       spun briefly for 5 seconds at 5000 rpm, 4°C, after which the tube was re-oreintated 180° in the rotot 

       (cap hinge faced inwards) and re-spun briefly for 5 seconds at 5000 rpm, 4°C. 

 

 

(iii) The resultant supernatant  was discarded, the bead pellet resuspended in another 1mL aliquot of 

 

       Buffer “HI” (Section 2.2.2, p.163) and the wash step repeated (Step (ii)). 

        

 

(iv) The supernatant was discarded and the resultant washed bead pellet  resuspended in 300μL of Buffer 

 

       “HI” (Section 2.2.2, p.163). 

 

 

(v) The following “reaction mixtures” in three fresh 1.5mL capacity plastic eppendorf microfuge tubes 

      were then set up: 

 

                                     Tube 1                                     Tube 2                                       Tube 3 

 

     Protein G Bead 

     Suspension              100μL                                      100μL                                        100μL 

 

     Soluble Total 

     Protein Extract         150μL                                      150μL                                        150μL 

 

     “Neat” IgG Ab         5μL                                          None                                           None 

 

     “Neat” HA Ab          None                                        5μL                                             None 

 

     “Neat” Myc Ab        None                                        None                                           5μL  

 

      [Total Reaction Volume in each Tube = 255μL] 

 

 

(vi) The lid of each eppendorf tube was then sealed with parafilm and placed in the platform of a Keison 

        PTR-60 360˚ multi-functional vertical rotator  in the 4˚C cold room for 24 hours total incubation time. 

 

 

                                                 [211] 

 



(vii) Each eppendorf tube was then placed in the in a Sanyo Hawk 15/05 refrigerated bench top microfuge 

        (cap hinge facing outwards) and spun briefly for 5 seconds at 5000 rpm, 4°C, after which the tube was 

        re-orientated 180° in the rotor (cap hinge faced inwards) and re-spun briefly for 5 seconds at 5000 rpm, 

        4°C. 

 

(viii) The bead pellets  were then resuspended in fresh 1ml of aliquots of Buffer “HI” (Section 2.2.2, p.163) 

          and the tubes placed (cap hinge faced outwards) in a Sanyo Hawk 15/05 refrigerated bench top 

          microfuge, spun briefly for 5 seconds at 5000 rpm, 4°C, after which the tubes was re-oreintated 180° 

          in the rotor (cap hinge faced inwards) and re-spun briefly for 5 seconds at 5000 rpm, 4°C. 

 

 

(ix) The resultant supernatants  were discarded, the bead pellets re-suspended in another 1mL aliquot of 

 

       Buffer “HI” (Section 2.2.2, p.163) and the wash step repeated (Step (ix). 

 

 

 

(x) The resultant supernatants were discarded, the bead pellets re-suspended in 1mL of Buffer “HI” 

       (Section 2.2.2, p.163) and the resultant bead suspensions transferred to  fresh 1.5ml capacity plastic  

       eppendorf  microfuge tubes via utilisation of truncated yellow Gilson pipette tips. 

  

 

(xi) Each eppendorf tube was then placed in the in a Sanyo Hawk 15/05 refrigerated bench top microfuge 

       (cap hinge facing outwards) and spun briefly for 5 seconds at 5000 rpm, 4°C, after which the tube was 

        re-orientated 180° in the rotor (cap hinge faced inwards) and re-spun briefly for 5 seconds at 5000 rpm, 

        4°C. 

 

   

 (xii) The resultant supernatants were discarded and the bead pellets subjected to a further 4 wash cycles 

         described previously  in stages (xi) – (xii).  

 

 

 (xiii) Each resultant washed bead pellet was mixed with 50μL of millipore ultra-pure water and 50μL of  

          4x SDS-PAGE Sample Loading Buffer (Section 2.2.2, p.163) and transferred to a 1.5ml capacity 

           plastic screw cap microfuge tube via utilisation of a truncated yellow Gilson pipette tip. 
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(xiv) The resultant bead mixtures were then incubated in the 95°C Hot-Block for 5 minutes and then 

         cooled on ice for 5 minutes, prior to storage of the prepared “Co-IP Pull-Down” protein  samples  

          at -20°C until required. 

 

(xv)  10μL of the total soluble protein extract was mixed with 5μL of millipore water and 5μL of  the 

          4x SDS-PAGE  Sample Loading Buffer (Section 2.2.2, p.163) in a 1.5mL capacity plastic screw cap 

          microfuge tube, which was then incubated in the 95°C Hot-Block for 5 minutes and then cooled 

          on ice for 5 minutes,  prior to storage of the prepared Total Input Reference protein sample at -20°C 

          until required. 

 

 

(xvi)   10μL of the protein standard mass marker and 20μL aliquots of each protein sample were loaded 

 

            onto two 10% SDS-PAGE gels on the Bio-Rad Mini-Protean® Tetra Cell System (Section 2.8.4, 

   

            pp.223-224). 

 

           Sample Loading Order on each of the two SDS-PAGE Gels: 

 

                               [Total Soluble Extract]      [Bead Samples]                

           Protein        Total  Input Reference      IgG   HA   Myc     

           Standard                                           

           Marker                                                     

 

 

 (xvii)  After completion of electrophoresis, the resolved proteins on each gel were then transferred onto 

            separate sheets of  Hybond-C™ Nitrocellulose Blotting Membrane via utilisation of the GeneFlow  

            Tank Sub-Electroblotter System (Section 2.8.6, pp.231-233). 

   

 

(xviii)  After subsequent incubation in the “Blocking Buffer” (Section 2.2.3, p.164), one of the Western 

            Blot membranes was probed with the primary HA Antibody (1 in 3000 dilution in blocking buffer  

             solution) and the remaining Western Blot membrane was probed with the primary Myc Antibody 

              (1 in 500 dilution in blocking buffer solution) – as described in the protocol detailed in Section 

               2.8.6 (pp.231-233).  

          

  (xix)  Both membranes were then washed and incubated with the secondary HRP-conjugated Light-Chain 

             Antibody (1 in 5000 dilution in blocking buffer) and washed again prior to 30 minutes film 

             exposure and development (described in the protocol detailed in Section 2.8.6, pp.231-233). 
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2.8.3 Preparation of Total Protein Extracts for 2D-PAGE Analyses 

2.8.3.1 Preparation of TCA-Precipitated Total Protein 2D-PAGE Samples  

(i) A sterile/autoclaved wooden toothpick was utilised to inoculate 100mL of sterile/autoclaved YEA 

    medium (see Section 2.3.1, p.167) with a small amount of the appropriate S. pombe strain, taken  

    from the respective YEA agar petri-plate (Section 2.3.2, p.168) culture, in a sterile/autoclaved 

    250mL capacity glass conical flask (capped loosely with aluminium foil) and the resultant broth 

     culture placed in the 30ºC Sanyo orbisafe incubator (180 r.p.m. shaker speed) for 24 hours duration. 

 

(ii) The following day, a 100μL aliquot of the resultant broth culture was diluted with 900μL YEA 

      medium and the resultant 1 in 10 diluted culture sample (1mL) was then placed in a plastic  

      microcuvette for subsequent measurement of the optical density at A595 in a Sanyo SP BIO 

      Spectrophotometer (against a set blank reference of 1mL YEA) and the optical density of the 

      “neat” culture calculated: 

      ie A595 (“neat” culture) = A595 (1 in 10 diluted culture) x 10 

 

(iii) The equivalent volume of each resultant “neat” broth culture which corresponded to 40 equivalent A595 

       optical density units was calculated, removed from the respective flask and placed in a 50mL capacity 

       Greiner plastic screw-cap centrifuge tube: 

        

 

(iv) The calculated A595 40 optical densities equivalent volume of cell culture aliquot was then placed in  

       a 50mL capacity plastic Greiner centrifuge screw-cap tube and  spun at 3,300g for 5 minutes in a 

      Jencons-PLS SorvallR Legend T Centrifuge in the 4ºC cold room.  

 

 

 

(v) The supernatant was discarded, the resultant cell pellet re-suspended in 50mL of ultra-pure millipore 

      water, after which the resultant cell suspension was  spun at 3,300g for 10 minutes in a Jencons-PLS 

      SorvallR Legend T Centrifuge in the 4ºC cold room.  
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(vi) The resultant supernatant was discarded and the pellet re-suspended  in 400μL ice-cold 10% (v/v) TCA  

       in Acetone, after which the resultant cell suspension was transferred to a 1.5ml capacity plastic screw- 

       lid microfuge tube which contained add 10 small spatular spoonfuls of glass beads (~200μL glass 

       beads). 

 

     Note: The 10%(v/v) TCA in Acetone solution was freshly  prepared fresh, immediately prior 

                to use, via mixing 200μL 20% (v/v) TCA(aq) with 200μL  “neat” Acetone solvent. 

                [ TCA was found to undergo a reaction with Acetone if the prepared reagent was allowed 

                 to stand at room temperature for several several hours] 

 

(vii) The tube was then placed in the FastPrep Genie Disruptor for 16 minutes, after which time 200μL of 

         20% TCA were added and the tube contents vortexed briefly for ~10 seconds, prior to transfer of the 

         resultant  mixture to a fresh 1.ml capacity plastic eppendorf microfuge tube, which was then spun at  

         12000 rpm for 5 mins at 4ºC in a Sanyo Hawk 15/05 refrigerated bench top microfuge. 

                       

(viii) The supernatant was discarded, the precipitated pellet re-suspended in 1mL of ice-cold Acetone and 

         the resultant emulsion vortexed briefly for ~10 seconds, prior to incubation on dry- ice for 15 minutes, 

         after which time the mixture was spun at 12,000 rpm for 30 minutes at 4 °C in a Sanyo Hawk 15/05 

         refrigerated bench top microfuge. 

  

 

(ix) The supernatant was discarded and the resultant pellet re-suspended in 1mL of ice-cold wash solvent  

          solution of composition: 

                                                  20mL Isopropanol 

                                                  20mL 2:1(v/v ratio) CHCl3:CH3OH 

                                                  10mL Glycerol 

         [Note: This solvent was made up in a 50mL capacity Greiner Tube and stored at -20ºC until required] 

          

          The resultant mixture was then placed on the Genie Disruptor in the 4°C cold room  for 16 minutes 

          (without the addition of glass beads). 
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(x) The resultant emulsion was then incubated on dry-ice for 30 mins and then spun at 12,000 rpm for 

      30 mins at 4ºC in a Sanyo Hawk 15/05 refrigerated bench top microfuge. 

 

(xi)  The supernatant  was discarded and the resultant pellet was re-suspended in 960μL of millipore water, 

         prior to the addition of 40μL 1M Tris-HCl pH8.8 (Section 2.2.2, p.163) to neutralise the acidity of the 

         TCA-precipitated total protein extract and the resultant mixture was then spun at 12000 rpm, 4ºC for 5 

         minutes in a Sanyo Hawk 15/05 refrigerated bench top microfuge. 

 

 

(xii) The resultant supernatant was discarded, the neutralised protein pellet was then re-suspended  in 1mL  

         of millipore water and the resultant solution was then spun at 12,000 rpm, 4ºC for 5 minutes in a  

         Sanyo Hawk 15/05 refrigerated bench top microfuge. 

 

(xiii) The resultant supernatant was discarded and  the wash step (stage iv) repeated. 

 

 

 

(xiv) The supernatant was discarded and the washed protein pellet was then re-suspended in 1mL of 1M 

         Tris-HCl pH7.0 (Section 2.2.2, p.163), after which the resultant mixture was spun at 12,000 rpm,  

          4ºC for 5 minutes in a Sanyo Hawk 15/05 refrigerated  bench top microfuge. 

 

(xv) The resultant supernatant was discarded and the protein pellet re-dissolved in 1mL of millipore water, 

         after which the resultant solution was spun at 12,000 rpm, 4ºC for 5 minutes in a Sanyo Hawk 15/05 

         refrigerated  bench top microfuge. 

            

(xvi)  The resultant supernatant was discarded and  the wash step (stage xiv) repeated. 

 

 

(xvii) The resultant supernatant was discarded and the neutralised protein pellet re-dissolved in 1mL of 

           50mM Tris-HCl pH7.0 (Section 2.2.2, p.163), after which the resultant solution was spun at  

           12,000 rpm, 4ºC for 5 minutes  in a Sanyo Hawk 15/05 refrigerated  bench top microfuge. 

 

                                                   [216] 

 



(xviii) The resultant supernatant was discarded and the washed, pre-equilibrated protein pellet was then  

            re-dissolved in 125μL of 0.2% SDS, 50mM Tris-HCl, pH7 (Section 2.2.2, p.163). 

 

(xix) A GE HealthCare Destreak™ Buffer solution (proprietary formulation), which contained 0.5% (v/v) 

         pH3-10 GE Healthcare IPG Ampholyte Buffer Solution (proprietary formulation) was prepared in 

         accordance with the manufacturer’s instructions. 

 

 

 

(xx)  625μL of the prepared Destreak™ Buffer solution was then mixed with the prepared 125μL total 

          protein extract (Stage xviii) and the resultant sample (750μL total volume) stored at -20°C until 

          required. 

 

 

           [The remainder of the prepared of  Destreak™ Buffer solution was also stored at -20°C until  

             required for future 2D-PAGE sample preparations] 
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2.8.3.2 Preparation of Comparative Alkaline Phosphatase-Digested 2D-PAGE Samples  

(i) A sterile/autoclaved wooden toothpick was utilised to inoculate 100mL of sterile/autoclaved YEA 

    medium (see Section 2.3.1, p.167) with a small amount of the appropriate S. pombe strain, taken  

    from the respective YEA agar petri-plate (Section 2.3.2, p.168) culture, in a sterile/autoclaved  

    250mL capacity glass conical flask (capped loosely with aluminium foil) and the resultant broth 

     culture placed in the 30ºC Sanyo orbisafe incubator shaker for 24 hours duration. 

 

(ii) The following day, a 100μL aliquot of the resultant broth culture was diluted with 900μL YEA 

      medium and the resultant 1 in 10 diluted culture sample (1mL) was then placed in a plastic  

      microcuvette for subsequent measurement of the optical density at A595 in a Sanyo SP BIO 

      Spectrophotometer (against a set blank reference of 1mL YEA) and the optical density of the 

      “neat” culture calculated: 

      ie A595 (“neat” culture) = A595 (1 in 10 diluted culture) x 10 

 

(iii) The equivalent volume of each resultant “neat” broth culture which corresponded to 50 equivalent A595 

       optical density units was calculated, removed from the respective flask and placed in a 50mL capacity 

       Greiner plastic screw-cap centrifuge tube: 

        

 

(iv) The calculated A595 50 optical densities equivalent volume of cell culture aliquot was then placed in  

       a 50mL capacity plastic Greiner centrifuge screw-cap tube and  spun at 3,300g for 5 minutes in a 

      Jencons-PLS SorvallR Legend T Centrifuge in the 4ºC cold room.  

 

 

 

(v) The supernatant was discarded, the resultant cell pellet re-suspended in 50mL of ultra-pure millipore 

      water, after which the resultant cell suspension was spun at 3,300g for 10 minutes in a Jencons-PLS 

      SorvallR Legend T Centrifuge in the 4ºC cold room.  
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(vi) The supernatant was discarded, the resultant cell pellet re-suspended in 50mL of Buffer “HP” 

       (Section 2.2.2, p.163) after which the resultant cell suspension was  spun at 3,300g for 10 

        minutes in a Jencons-PLS SorvallR Legend T Centrifuge in the 4ºC cold room.  

 

(vii) The supernatant was discarded and the resultant cell pellet re-suspended in a 1mL aliquot of 

         Buffer “HI” (Section 2.2.2, p.163) after which the resultant cell suspension was transferred to  

         a 1.5mL capacity plastic eppendorf microfuge tube which was then which was then spun at 

         12,000 r.p.m. for 5 mins at 4ºC in a Sanyo Hawk 15/05 refrigerated bench top microfuge. 

 

 

(viii) The supernatant was discarded and the resultant washed cell pellet re-suspended in a 250µL 

          aliquot of Buffer “HI” (Section 2.2.2, p.163) after which the resultant cell suspension was 

          transferred to a 1.5mL capacity plastic screw-cap microfuge tube which contained 10 small 

          spatula spoonfuls of glass beads (~200µL of glass beads). 

 

(ix)    The tube was then placed in the FastPrep Genie Disruptor for 16 minutes, after which time 250μL of 

          Buffer HI (Section 2.2.2, p.163) were added and the tube contents vortexed briefly for ~10 seconds,  

          prior to transfer of the resultant  mixture to a fresh 1.ml capacity plastic eppendorf microfuge tube, 

          which was then spun at 12,000 rpm for 5 mins at 4ºC in a Sanyo Hawk 15/05 refrigerated bench top  

          microfuge. 

 

(x)   The resultant lysed cell solution (~500μL total volume) was then transferred to a fresh 1.5mL  

         capacity plastic eppendorf microfuge tube which was then spun at 12,000 rpm for 5 mins at 4ºC 

         in a Sanyo Hawk 15/05 refrigerated bench top microfuge. 

 

(xi) The pellet was discarded and the resultant supernatant transferred to a fresh 1.5mL capacity 

        Eppendorf microfuge tube. 

        [The prepared soluble total protein extract was stored at -20˚C until required] 

  

(xii) A truncated yellow pipette tip was utilised to transfer a 175µL aliquot of Calbiochem® Protein G 

        Plus Protein A agarose bead suspension to a 1.5mL capacity plastic eppendorf microfuge tube.       
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(xiii) 1mL of Buffer “HP” (Section 2.2.2, p.163)  was then added to the beads in the eppendorf tube which  

         was then placed (cap hinge facing outwards) in a Sanyo Hawk 15/05 refrigerated bench top microfuge, 

         spun briefly for ~10 seconds at 5,000 r.p.m., 4˚C, after which the tube was re-orientated 180˚ within 

         the rotor (cap hinge facing inwards) and re-spun for ~10 seconds at 5,000 r.p.m., 4˚C. 

 

 

(xiv) The resultant supernatant was discarded and  the bead pellet re-suspended in 1mL of Buffer 

 

          HP (Section 2.2.2, p.163) and the wash step  repeated as described in the previous step (xii). 

 

 

 

(xv)  The resultant supernatant was discarded and the entire volume of prepared total soluble protein 

          extract (~500µL) added to the washed beads in the 1.5mL capacity plastic eppendorf  microfuge 

           

          tube. 

 

 

(xvi) A 15μL aliquot of  “neat” HA antibody solution was then added to the bead-soluble protein 

   

         mixture and the eppendorf tube sealed with parafilm prior to placement in the platform of  

  

         of a Keison PTR-60 360˚ multi-functional vertical rotator  in the 4˚C cold room for 24 

         hours total incubation time. 

 

 

 

(xvii)  The following day,  the eppendorf tube was removed from the PTR-60 rotating platform and 

            placed (cap hinge facing outwards) in a Sanyo Hawk 15/05 refrigerated bench top microfuge, 

            then spun briefly for ~10 seconds at 5,000 r.p.m., 4˚C, after which the tube was re-orientated 

            180˚ within the rotor (cap hinge facing inwards) and re-spun for ~10 seconds at 5,000 r.p.m., 4˚C. 

 

(xviii) 1mL of ultra-pure millipore water was then added to the beads in the eppendorf tube which  

            was then placed (cap hinge facing outwards) in a Sanyo Hawk 15/05 refrigerated bench 

            top microfuge, spun briefly for ~10 seconds at 5,000 r.p.m., 4˚C, after which the tube was 

            re-orientated 180˚ within the rotor (cap hinge facing inwards) and re-spun for ~10 seconds 

            at 5,000 r.p.m., 4˚C. 
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(xix)  The resultant supernatant was discarded and the bead wash step, described in the previous  

            

           stage above, was then repeated a further four times with fresh 1mL aliquots of ultra-pure 

       

           millipore water. 

           

                         
(xx)  The supernatant was discarded and the bead pellet re-suspended in 1mL of 1x  Calf Intestinal 

 

          Alkaline Phosphatase (CIAP) Reaction Buffer  – prepared in situ. via the successive addition 

 

          900µL of ultra-pure millipore water, followed by 100µL of 10x CIAP Reaction Buffer 

 

          (Section 2.2.4, p.165) to the eppendorf tube contents. 

 

              

 

(xxi)  The eppendorf tube which was then placed (cap hinge facing outwards) in a Sanyo Hawk 

           15/05 refrigerated bench top microfuge, spun briefly for ~10 seconds at 5,000 r.p.m., 4˚C, 

            after which the tube was re-orientated 180˚ within the rotor (cap hinge facing inwards) 

            and re-spun for ~10 seconds at 5,000 r.p.m., 4˚C. 

 

 

(xxii) The resultant supernatant was discarded, prior to the successive  addition of 350µL of 

      

           ultra-pure millipore water,  50µL of 10x CIAP Reaction Buffer  and 100µL (100 units) 

         

           of Calf Intestinal Alkaline Phosphatase (Section 2.2.4, p.165)  to the tube contents. 

 

 

 

(xxiii) The bead pellet was re-suspended thoroughly in the resultant reaction mixture, prior 

           

            to  placement of the eppendorf tube in the Sanyo 37˚C  incubator-shaker for 8 hours 

           

          

 

(xxiv) The eppendorf tube which was then placed (cap hinge facing outwards) in a Sanyo Hawk 

            15/05 refrigerated bench top microfuge, spun briefly for ~10 seconds at 5,000 r.p.m., 4˚C, 

             after which the tube was re-orientated 180˚ within the rotor (cap hinge facing inwards) 

             and re-spun for ~10 seconds at 5,000 r.p.m., 4˚C. 

 

(xxv)  The resultant supernatant was discarded and the bead pellet subjected to five successive 

            washes with fresh 1mL aliquots of ultra-pure millipore water (as per the method described 

            previously – stage xviii, p.220). 
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(xxvi) The resultant supernatant was discarded and a 500μL aliquot of an ice-cold solvent comprised 

            

            of 10% TCA (w/v) in 1:1:2 (v/v) Acetone:DMSO:Glycerol, was then added to the bead pellet 

 

            in the eppendorf tube, which was then sealed with parafilm, vortexed briefly (~10 seconds) 

 

            and placed on the FastPrep Genie Disruptor for 16 minutes  in 4˚C  cold-room. 

 

 

 

(xxvii) The resultant mixture was then transferred to a fresh 1.5ml capacity plastic eppendorf microfuge  

            

             tube which contained 500µL of 50% (w/v) ice-cold TCA in Acetone, after which the contents 

 

             were vortexed briefly (~10 seconds) and the tube incubated in dry-ice for 30 minutes. 

 

 

(xxviii) After the incubation time had elapsed, the eppendorf tube was placed in a Sanyo Hawk 15/05 

              refrigerated bench top microfuge and spun at 12,000 r.p.m. for 30 minutes at 4˚C. 

 

(xxix)   The supernatant  was discarded and the resultant pellet was re-suspended in 900μL of millipore  

              water,  prior to the addition of 100μL 1M Tris-HCl pH8.8 (Section 2.2.2, p.163) to neutralise  

              the acidity of the TCA-precipitated total protein extract and the resultant mixture was then spun 

              at 12000 rpm, 4ºC for 5 minutes in a in a Sanyo Hawk 15/05 refrigerated bench top microfuge. 

 

(xxx)   The supernatant was discarded and the resultant protein pellet sample prepared as per the protocol 

            described previously in Section 2.8.3.1 – stages (xii) through to (xx) inclusive (pp.216-217). 

  

 (xxx) The prepared 2D-PAGE protein sample was then stored at -20ºC until required. 
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2.8.4 1D SDS-PAGE Analytical Protocol 

 

(i) The resolving polyacrylamide gel was made up in a 15mL capacity plastic Greiner centrifuge tube, the 

      contents vortexed briefly (~ 10 seconds) after addition of the final reagent component (Ammonium 

      Persulphate) and the mixture poured evenly into the appropriate plate assembly via utilisation of a 5mL  

      capacity plastic Pasteur pipette. 

 

(ii) 1mL of “neat” Isopropanol was then stratified evenly on top of the resolving gel, within the plate  

      assembly, via utilisation of a fresh 5mL capacity plastic Pasteur pipette. 

 

(iii) The plate assembly was stood at room temperature until the resolving gel had set and then the  

        Isopropanol layer was removed via utilisation of a fine gel-loading plastic Gilson pipette tip  

        attached to a 1ml Blue Gilson pipette tip which in turn was attached to a P1000 Gilson pipette. 

 

(iv) The surface of the cast resolving gel was then rinsed several times with millipore ultra-pure water,  

        via utilisation of a 5mL capacity plastic Pasteur pipette and remnant traces of water removed via 

        the pipette assembly described previously (stage (iii) above). 
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(v)  The stacking polyacrylamide gel was made up in a 15mL capacity plastic Greiner centrifuge, the 

        contents vortexed briefly (~ 10 seconds) after addition of the final reagent component (Ammonium 

        Persulphate) and the mixture poured evenly on top of the cast resolving gel via utilisation of a 5mL  

        capacity plastic Pasteur pipette, after which the appropriate well comb was inserted into the gel and 

       the cast plate assembly stood at room temperature to set. 

 

(vi) The cast plate assembly was then placed in the appropriate gel tank system, which was then filled with  

       1x SDS-PAGE Running Buffer (Section 2.2.3, p.164). 

 

(vii) The comb was then removed and the wells flushed gently with 1x SDS-PAGE Running Buffer  

         (Section 2.2.3, p.164), via utilisation of a 5mL capacity plastic syringe fitted with a truncated plastic 

         Gel-Loading Gilson pipette tip, for removal of unpolymerised acrylamide:bisacrylamide from the 

         cast well channels. 

 

(viii)  20μL aliquot samples of prepared protein samples and a 10μL aliquot of the ProtoMarkers™ 

           (National Diagnostics) Protein Molecular Weight Marker Ladder Reference Standard were  

           loaded onto the 10% SDS-PAGE gel plate assembly, immersed in the gel tank which contained  

           1x SDS-PAGE running buffer  (Section 2.2.3, p.164)  

 

(ix) The resultant loaded SDS-PAGE gel assembly was then connected up to the Consort EV231 

       electrophoresis power pack and initially run at 90V constant setting, until the visible blue sample  

       band had fully migrated from the upper stacking (spacer) gel into the lower resolving (separation)  

       gel, below the stratified interface – after which time the voltage was increased to 120V constant  

       setting and run for a total time of ~ 3 hours until the visible blue sample band had migrated to the 

       bottom of the gel. 

 

 

 

 

                                                 [224] 

 



2.8.5 2D-PAGE Analytical Protocol 

2.8.5.1 IPG Strip Rehydration: Active Protein Sample Uptake   

(i) 100μL of the prepared 2D-PAGE protein sample was pippetted carefully along a channel edge of the  

     isoelectric focusing tray to form a thin, even line of liquid.  

 

 

 

(ii) A standard 11cm pH3-10  IPG strip (supplied by GE Healthcare) was removed from -20°C storage and 

      allowed to defrost at room temperature for 10 minutes prior to removal of the protective plastic cover 

      from the gel side of the strip via utilisation of fine forceps. 

 

 

 

(iii) The IPG strip was then placed gently, gel side down, onto the pippetted thin line of protein sample held  

       in the channel of the isoelectric focusing tray. 

       [The correct polarity orientation of the IPG strip, prior to placement onto the protein sample, was   

         verified via alignment of its “+” labelled end with the positive terminal labelled end of the isoelectric 

         focusing tray] 

 

 

(iv) 2.5ml of electrophoresis grade mineral oil (supplied by BioRad) was then pippetted carefully over the 

        top surface (non-gel side) of the placed IPG strip, within the channel of the isoelectric focusing tray, 

        to prevent evaporation of the protein sample and IPG strip dehydration during the active rehydration  

        process. 

 

 
(v)  The isoelectric focusing tray was then covered with its lid and the resultant assembly placed in the 

       BioRad Protean IEF cell, which was then set to 12 hours Active Rehydration at 50V, 20°C via 

       selection of the appropriate pre-programmed parameter settings, in accordance with the manual 

       instructions. 
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2.8.5.2 IEF-PAGE: 1st Dimension Gel Electrophoresis 

(i) After 12 hours of active rehydration had elapsed, the BioRad Protean® IEF cell was switched off and the  

     isoelectric focusing tray removed carefully from its instrument housing. 

 

 

 
(ii) The IPG strip was then removed from the isoelectric focusing tray and placed on a small sheet of filter  

       paper (non-gel side down), for 10 minutes at room temperature, to absorb any residual traces of mineral 

       oil from the strip. 

 

 

 

(iii) Meanwhile, the isoelectric focusing tray assembly was carefully cleaned with a 10% (w/v) aqueous  

       solution of Sodium Dodecylsulphonate (SDS) and then rinsed thoroughly with deionised water to 

       ensure that no traces of SDS remained, after which the tray was dried thoroughly prior to re-use. 

 

 
(iv) Fine forceps were utilised to place a paper electrophoresis wick (supplied by BioRad) on the positive  

       and negative termini of the sample channel within the isoelectric focusing tray, after which 10μL of  

       millipore utra-pure water was pippetted onto each wick. 

 

 

 

(v)  Fine forceps were then utilised to position the IPG strip, in the correct polarity orientation, (gel side  

       down) over the wick-covered termini of the prepared sample channel in the isoelectric focusing tray. 

 

 

 

(vi) 2.5ml of electrophoresis grade mineral oil (supplied by BioRad) was then pippetted carefully over the 

        top surface (non-gel side) of the placed IPG strip, within the channel of the isoelectric focusing tray, 

        to prevent evaporation of the protein sample and IPG strip dehydration during the isoelectric focusing  

        process. 
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(vii)  The isoelectric focusing tray was then covered with its lid and the resultant assembly placed in the 

          BioRad Protean® IEF cell, in the correct polarity orientation, after which the standard “Rapid ΔV” 

          isoelectric focusing pre-programmed method was selected to run – in accordance with the manual 

           

          instructions: 

 

 

          Parameter Settings: Voltage Slope: Rapid ΔV 

                                              Rehydration: No 

                                              Gel Length: 11cm 

                                              Focus Temperature: 20°C 

                                              Limit/Gel: 50μA 

                                              S4 500V Hold: Yes 

 

          [Note: The selected Rapid ΔV Pre-Programmed Steps S1, S2 and S3  Voltage/Time Focusing 

                      Parameters (ie the Sequential “Total Volt-Hour” Settings) are calculated automatically 

                      by the instrumentation software from the IPG Strip Length and Number of IPG Strips 

                      Entered. 

 

                       The optional S4 500V Hold Step was selected for prevention of over-focused protein 

                       samples within the IPG Strips.] 
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2.8.5.3 SDS-PAGE: 2nd Dimension Gel Electrophoresis  

(i) After the Rapid ΔV program had completed, the BioRad Protean® IEF cell was switched off and the  

     isoelectric focusing tray removed carefully from its instrument housing. 

 

 

(ii) The IPG strip was then removed from the isoelectric focusing tray (via utilisation of fine forceps) and 

       placed on a small sheet of filter paper (non-gel side down), for 10 minutes at room temperature, to 

       absorb any residual traces of mineral oil from the strip. 

 

(iii) Meanwhile, the isoelectric focusing tray assembly was carefully cleaned with a 10% (w/v) aqueous 

       solution of Sodium Dodecylsulphonate (SDS) and then rinsed thoroughly with deionised water to 

       ensure that no traces of SDS remained, after which the tray was dried thoroughly and stored in its 

       protective housing within BioRad Protean® IEF cell until required. 

 
 

(iv) Fine forceps were then utilised to place the IPG strip in a channel of a clean BioRad IPG Strip 

       Equilibration Tray (gel face up), after which 3.5mL of Equilibration Buffer I (Section 2.2.3, p.164). 

       was pippetted carefully over the gel surface of the IPG Strip and the tray placed on a orbital 

       shaker (set to a “moderate speed” ~ 40 r.p.m.) for 10 minutes at room temperature. 

       

 

(v) After the 10 minutes incubation time had elapsed, the buffer solution was drained from the channel 

      (via careful decantation of the tray)  and discarded. 

 

 (vi) 3.5mL of Equilibration Buffer II (Section 2.2.3, p.164) was then pippetted carefully over the gel  

        surface of the IPG Strip and the tray placed  back on the orbital shaker (set to a “moderate speed”  

        ~ 40 r.p.m.) for 10 minutes at room temperature. 
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(vii)  Meanwhile a 12.5% resolving polyacrylamide gel was made up in a 50mL capacity plastic Greiner 

 

         centrifuge tube, the contents vortexed briefly (~ 10 seconds) after addition of the final reagent 

         component (Ammonium Persulphate) and the mixture poured evenly into the  GeneFlow Maxi-PAGE 

         Vertical Sub-System plate assembly via utilisation of a 10ml capacity glass volumetric pipette. 

         
 

(viii) 1mL of “neat” Isopropanol was then stratified evenly on top of the resolving gel, within the plate  

         assembly, via utilisation of a fresh 5mL capacity plastic Pasteur pipette. 

 

(ix) The plate assembly was stood at room temperature until the resolving gel had set and then the  

        isopropanol layer removed (via gentle decantation of the plate assembly)                . 

 

(x) The surface of the cast resolving gel was then flushed several times with 1x SDS-PAGE Running Buffer  

      (Section 2.2.3, p.164), via utilisation of a 10mL capacity glass volumetric pipette. 

 

(xi) The plate assembly was placed in the GeneFlow Maxi-PAGE Vertical Sub-System tank, which was 

       then filled carefully with 1x SDS-PAGE Running Buffer (Section 2.2.3, p.164). 

 

(xii) Fine forceps were then utilised to position the pre-equilibrated IPG strip carefully on top of the surface  

        of the resolving gel within the immersed plate assembly of the GeneFlow Maxi-PAGE Vertical Sub- 

        System. 
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(xiii) A thin polyethylene strip was then utilised to push the IPG strip into direct contact with the 

         surface of the resolving gel. 

        [Note: Care was taken to ensure no air bubbles were trapped between the IPG Strip and the 

                   gel surface and that the entire edge of the strip was in firm contact with the gel surface,  

                   but not pushed into the resolving gel itself] 

 

(xiv) The resultant loaded SDS-PAGE gel assembly was then connected up to the Consort EV231 

         electrophoresis power pack and initially run at 240V constant setting for 60 minutes at room 

         temperature.  

 

(xv)   The empty BioRad IPG Pre-Equilibration Tray was then washed with a 10% (w/v) aqueous solution 

          of Sodium Dodecylsulphonate (SDS) and then rinsed thoroughly with deionised water, after which 

          the tray was dried thoroughly and stored on the lab bench until required. 
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2.8.6 Western Blot Analytical Protocol 

(i) After completion of electrophoresis, the SDS-PAGE gel was carefully removed and placed in the 

    appropriate Western Blot Transfer System assembly: 

          

     

 

(ii) The resultant assembly was then immersed in the appropriate tank system which contained a solution  

      comprised of methanol (15%v/v) in 1x Transfer Buffer solution (Section 2.2.3, p.164), connected up 

      to a Consort EV231 electrophoretic power pack and run at 50V constant setting for 3 hours. 

 

(iii) The resultant blotting membrane, onto which the SDS-PAGE resolved protein samples had been 

       transferred, was then carefully removed from the blotting apparatus and immersed in a small plastic 

       tank that contained a 100mL “Blocking Buffer” solution comprised of 3% (w/v) milk protein in 1xPBS 

       buffer (0.05%v/v Tween20), which was then gently agitated on an orbital platform at room temperature  

       for 30 minutes.  

 

(iv) The blotting membrane was then removed from the tank and placed in a plastic wallet with 5mL of the 

       appropriate diluted solution of primary antibody probe*, which was then carefully sealed to avoid  

       trapped air bubbles and placed on a rocker platform in the 4ºC cold room for 24 hours incubation.  

       [*NOTE: For the primary anti-HA antibody = 1 in 1000 dilution in “Blocking Buffer” 

                       For the primary anti-Myc antibody = 1 in 500 dilution in “Blocking Buffer” 

                       For the primary anti-Cdc2 antibody = 1 in 2000 dilution in “Blocking Buffer”] 
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(v) The following day, the blotting membrane was removed from the plastic wallet and washed via  

      immersion in a small plastic tank that contained 100mL of  1xPBS (0.05% Tween20) buffer solution 

      (Section 2.2.3, p.164) – which was then agitated via placement on an orbital platform for 10 minutes at  

      room temperature. 

 

                                                                         
(vi) The blotting membrane was then subjected to two further additional washes (as described previously  

        above) with fresh 100mL aliquots of the 1xPBS (0.05% Tween20) solution. 

 

(vii) The resultant washed blotting membrane was then placed in a plastic wallet with 4mL of a 1 in 3000  

        diluted solution (in “Blocking Buffer” – Section 2.2.3, p.164) of the polyclonal rabbit anti-mouse 

       derived secondary HRP-conjugated antibody probe, which was then carefully sealed to avoid trapped  

       air bubbles and placed on an orbital platform at room temperature for one hour – after which time, the  

       membrane was removed from the plastic wallet and subjected to a further three 10 minute washes in  

       1xPBS (0.05% Tween20)  buffer solution (Section 2.2.3, p.164) – as described previously. 

      

       [NOTE: In the case of Western Blot analyses of  “Co-IP” samples, the HRP-conjugated Light-Chain 

                     secondary antibody was utilised as a 1 in 5000 diluted solution in “Blocking Buffer”  

                    (Section 2.2.3, p.164) instead of the polyclonal rabbit anti-mouse derived secondary 

                     HRP-conjugated antibody] 

                   

(viii) The blotting membrane was then rinsed with 250μL of freshly prepared chemiluminescent HRP 

          developer solution – comprised of 125μL of reagent A mixed with 125μL of reagent B, as supplied 

          in the BioFX Chemiluminescent Sensitive HRP Microwell and/or Membrane Substrate 2x 110mL 

          Kit (Section 2.1, p.152), prior to placement in a transparent thin plastic wallet in a film cassette. 

 

(ix)  The film cassette was then taken to the photographic dark room, opened and a piece of Fuji Blue 

         Medical X-Ray SuperRX film placed directly on top of the transparent thin plastic wallet which 

         contained the blotting membrane, then the cassette was closed and the film exposed for 30 minutes,  

         prior to subsequent development of the film on a Jet-X-Ray MI-5 X-Ray Film Processor.                                                                                                  
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NOTE: As the research work progressed it was found that a significant improved in the quality of the  

             Western Blots was acquired with the GE Healthcare ECL Plus Western Blotting Detection 

             Systems Kit, utilised in conjunction with GE Healthcare ECL Hyperfilm compared to those 

              those acquired previously with the BioFX Chemiluminescent Sensitive HRP Microwell and/or 

              Membrane Substrate 2x 110mL Kit and Fuji BlueMedical X-Ray SuperRX film. 

                

              [In this case, the GE Healthcare ECL Plus Western Blot developing solution was freshly  

               prepared from the kit, immediately prior to use, via mixing a 1mL aliquot of the supplied 

               Lumigen™ PS-3 Solution A (Detection Reagent) with 15µL of Solution B RPN2132V2] 
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2.9 Acute and Chronic Survival Assay Protocols 

2.9.1 Chronic Survival Assays – “Drop-Plate” Protocol 

(i) A sterile/autoclaved wooden toothpick was utilised to inoculate 5mL of sterile/autoclaved YEA 

    medium (Section 2.3.1, p.167) with a small amount of each appropriate S. pombe strain, taken  

    from the respective YEA agar petri-plate (Section 2.3.2, p.168) culture, in a sterile/autoclaved 

    15ml capacity glass culture test-tube (capped loosely with a plastic top) and the resultant broth 

    culture placed in the 30ºC Sanyo orbisafe incubator (180 rpm shaker speed) for 24 hours duration. 

 

(ii)  The following morning, the tubes were removed from the incubator and a 10μL aliquot of each 

       broth culture placed onto the square metal grid of a Hawksley Thoma Double Cell Clear Sight  

       Counting Chamber which was then viewed under a CETI Magnum B Binocular light microscope 

       at 60x magnification. 

 

(iii) After initial visual verification had established that the cells were viable and in S-phase, the number 

        of cells in 4 large grid squares  was counted – from which the average number of cells/mL in the 

      undiluted broth culture is calculated via the equation: 

 

      Average cells/mL (x10
6
) = Total No. of Cells Counted  

                                                                      4 

    

                            

(iv) An appropriate volume of cell culture  was diluted with an appropriate volume of autoclaved /sterile 

       YEA medium (Section 2.3.1, p.167) to yield 1 mL (1000µL) final broth culture concentration of  

       1x10
7

cells/mL*, in a sterile/autoclaved 1.5mL capacity plastic eppendorf microfuge tube. 

      

       *Via the equation:  V1 = C2 x V2              Where: 

                                                            C1                                V1 = Volume of measured cell culture 

                                                                                                 V2 = Volume of cell culture required 

                                                                                                 C1 = Concentration of cell culture measured                                                                                                                                                                          

                                                                                                 C2 = Concentration of cell culture required 
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(v)  Successive serial dilutions (100µL of the appropriate strain culture concentration mixed with 900µL 

      YEA medium) were prepared in sterile/autoclaved 1.5mL capacity plastic eppendorf microfuge for 

      acquisition of 1mL total volume cultures of a final concentration of 1x10
6
 cells/mL, 1x10

5
 cells/mL 

       and 1x10
4

cells/mL respectively. 

 

(vi) 5µL drops of each appropriate strain/cell concentration culture were pippetted onto the control 

       (YEA only) and test compound YEA-agar plates (Section 2.3.2, p.168), which were then stood  

       at room temperature for 20 minutes to allow the drops to dry, prior to placement of the prepared  

       “drop-plates” in the static Binder 30˚C incubator for three days. 

        
       [Note: In the case of comparative heat-shock drop-plate assays the drop-plates were placed in 

                  the static Binder 37˚C incubator for three days] 

        
 
(vii) After three days had elapsed, the  drop-plate cultures were removed from the respective incubator 

 

        and photographed  in a Bio-Rad Gel Doc 2000 White Light and U.V. imager system (“White-Light” 

 

        mode). 
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2.9.2.2 Acute Survival Assays 

2.9.2.2(i) Acute U.V. Survival Assay 

Ultra-violet (U.V.) radiation induces Thymine dimerisation type cross-linkage adducts within 

DNA (eg T-T Cyclobutane dimer, T-T 6,4-photoproduct and T-T Dewar photoproduct) and other 

nucleobase-derived dimers such as the Thymine-Cytosine 6-4 photoproduct (Becker M.M. and 

Zang Z., 1989; Beukers R., 2008). 

 

The comparative cytotoxic sensitivity of various S. pombe strains towards these genotoxic effects 

of U.V. irradiation was assayed via the following protocol: 

 

(i) A sterile/autoclaved wooden toothpick was utilised to inoculate 5mL of sterile/autoclaved YEA 

    medium (Section 2.3.1, p.167) with a small amount of each appropriate S. pombe strain, taken  

    from the respective YEA agar petri-plate (Section 2.3.2, p.168) culture, in a sterile/autoclaved 

    15ml capacity glass culture test-tube (capped loosely with a plastic ) and the resultant broth 

    culture placed in the 30ºC Sanyo orbisafe incubator (180 rpm shaker speed) for 12 hours duration. 

 

(ii)  The following morning, the tubes were removed from the incubator and a 10μL aliquot of each 

       broth culture placed onto the square metal grid of a Hawksley Thoma Double Cell Clear Sight  

       Counting Chamber which was then viewed under a CETI Magn B Binocular light microscope at 

       60x magnification. 

 

(iii) After initial visual verification had established that the cells were viable and in S-phase, the number 

        of cells in 4 large grid squares  was counted – from which the average number of cells/mL in the 

      undiluted broth culture was calculated via the equation: 

 

      Average cells/mL (x10
6
) = Total No. of Cells Counted  

                                                                      4 
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(iv) An appropriate volume of cell culture  was diluted with an appropriate volume of autoclaved /sterile 

       YEA medium (Section 2.3.1, p.167) to yield 1 mL (1000µL) final broth culture concentration of  

        1x10
7

cells/mL*, in a sterile/autoclaved 1.5mL capacity plastic eppendorf microfuge tube. 

      

      *Via the equation:  V1 = C2 x V2              Where: 

                                                          C1                                V1 = Volume of measured cell culture 

                                                                                               V2 = Volume of cell culture required 

                                                                                               C1 = Concentration of cell culture measured                                                                                                                                                                          

                                                                                               C2 = Concentration of cell culture required 

 

 

 

(v)  A 10µL of the resultant 1x10
7

cells/mL cell culture was then mixed with 990µL of YEA medium 

       (Section 2.3.1, p.167) in a fresh autoclaved/sterile 1.5mL capacity plastic eppenforf microfuge tube 

        to yield a broth culture concentration of 1x10
5
 cells/mL. 

 

(vi) A 500µL aliquot of the prepared 1x10
5
 cells/mL S. pombe strain broth culture was then mixed with 

      500µL of YEA medium (Section 2.3.1, p.167) in a fresh sterile/autoclaved 1.5mL capacity eppendorf  

      microfuge tube and the resultant contents vortexed briefly (~10 seconds). 

                                                               

(vii) 10μL aliquots of each prepared 5x
410 cells/mL YEA S. pombe strain broth culture,were then spread 

         out onto 7 YEA agar (Section 2.3.2, p.168) petri-plates (~ 500 cells/plate), via a 70% ethanol- 

         sterilised flame spreader and allowed to dry at room temperature for 10 minutes. 

 

(viii) Each YEA petri-plate culture (lid removed) was then placed in the chamber of a UVP CL-1000 U.V. 

         Cross-Linker and irradiated with a successive increased acute dose of ultra-violet light – thus each  

          respective S. pombe strain culture was plated out onto 7 YEA agar petri-plates and each plate exposed 

          to a different dose of U.V.: 
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Note: It was necessary to ensure that each YEA agar petri-plate culture was dry prior to U.V. irradiation to 

          prevent the incidence of experimental data anomalies as a consequence of damp-quenching of the 

         acute U.V. dose administered. 

 

         Each dry YEA agar petri-plate culture was U.V. irradiated with the petri-plate cover lid removed to 

         prevent the incidence of experimental data anomalies as a consequence of absorbance of a fraction of 

         the acute U.V. dose administered by the plastic cover lid – which would have otherwise effectively 

         “shielded” the culture from the full U.V. dose exposure. 

 
 (ix)  The resultant petri-plate cultures were then placed in the static 30˚C Binder incubator for three days 

 

         after which time the plates were removed and the number of surviving viable cell colonies 

 

         counted on each plate. 
 

 

        The number of surviving cell colonies for each U.V.  dose (J/M2) exposure was then calculated as  

       

        percentage value, relative to the total number of viable colonies counted on the plate culture which 

 

        contained cells that had not been U.V.-irradiated: 

 

       
 
       These “processed data” were then plotted as a % Cell Survival (log scale) vs U.V.  Dose (J/M2) 

  

        response graph for each respective S. pombe strain assayed. 
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2.9.2.2(ii) Acute Survival Assays with Different Types of Genotoxic Compounds 

 
With the notable exception of Methylmethane Sulphonate (pp.243-247) and the Topoisomerase II Inhibitors 

– Ellipticine and Etoposide (pp.248-251), a standardised protocol was utilised for comparative acute 

survival assays of various S. pombe strains with different classes of genotoxic compounds (pp.239-249). 

 

 

(i) A sterile/autoclaved wooden toothpick was utilised to inoculate 5mL of sterile/autoclaved YEA 

    medium (see Section 2.3.1, p.167) with a small amount of each appropriate S. pombe strain, taken 

    from the respective YEA agar petri-plate culture, in a sterile/autoclaved 15ml capacity glass culture 

    test-tube (capped loosely with a plastic top) and the  resultant broth culture placed in the 30ºC 

    Sanyo orbisafe incubator (180 rpm shaker speed) for 12 hours duration. 

 

(ii)  The following morning, the tubes were removed from the incubator and a 10μL aliquot of each 

       broth culture placed onto the square metal grid of a Hawksley Thoma Double Cell Clear Sight  

       Counting Chamber which was then viewed under a CETI Magnum B Binocular light microscope 

       at 60x magnification. 

 

(iii) After initial visual verification had established that the cells were viable and in S-phase, the number 

        of cells in 4 large grid squares  was counted – from which the average number of cells/mL in the 

      undiluted broth culture was calculated via the equation: 

 

      Average cells/mL (x10
6
) = Total No. of Cells Counted  

                                                                      4 

    

                            

(iv) An appropriate volume of cell culture  was diluted with an appropriate volume of autoclaved /sterile 

       YEA medium(Section 2.3.1, p.167) to yield 1 mL (1000µL) final broth culture concentration of  

        1x10
7

cells/mL*, in a sterile/autoclaved 1.5mL capacity plastic eppendorf microfuge tube. 

      

      *Via the equation:  V1 = C2 x V2              Where: 

                                                          C1                                V1 = Volume of measured cell culture 

                                                                                               V2 = Volume of cell culture required 

                                                                                               C1 = Concentration of cell culture measured                                                                                                                                                                          

                                                                                               C2 = Concentration of cell culture required 
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(v)  A 10µL of the resultant 1x10
7

cells/mL cell culture was then mixed with 990µL of YEA medium  

       (Section 2.3.1, p.167) in a fresh autoclaved/sterile 1.5mL capacity plastic eppenforf microfuge tube 

        to yield a broth culture concentration of 1x10
5
 cells/mL. 

 

(vi) A 200µL aliquot of the resultant 1x10
5
 cells/mL S. pombe strain culture was then mixed with 800µL  

       of YEA medium (Section 2.3.1, p.167) in a fresh sterile/autoclaved 1.5mL capacity plastic eppendorf  

       microfuge tube to yield a YEA broth culture concentration of  2x10
4

cells/mL. 

 

(vii) A 500µL aliquot of the prepared 2 x10
4

cells/mL S. pombe strain culture was then mixed with 500µL 

        of a “double-strength” (2x) concentrated YEA solution of the test compound in a fresh 1.5mL capacity 

        plastic eppendorf microfuge tube to yield the experimental culture to be assayed. 

       [Thus each prepared experimental assay culture comprised 1x10
4

cells/mL with 1x final  concentration 

         strength* of the respective test compound in a total volume of 1mL YEA medium] 

          

        *NOTE: The specific concentrations and prepared solutions of the various genotoxic agents assayed 

                       and solutions of the different genotoxic agents utilised are detailed on the following pages 

                       (pp.242-251). 

 

(viii) A 50µL aliquot was then removed from the prepared experimental assay culture and plated out onto 

          aYEA agar (Section 2.3.2, p.168) petri-plate via utilisation of an ethanol-sterilised flame-spreader. 

 

(ix) The remainder of the experimental assay culture (~950µL)was then placed in the 30˚C Sanyo Incubator  

        Shaker for a total time of 4 hours, during which a 50µL aliquot of the culture was removed at regular 

       30 minute intervals and plated out onto a separate YEA agar (Section 2.3.2, p.168) petri-plate via 

        utilisation of a 70% ethanol-sterilised flame-spreader. 

 

(x) The resultant petri-plate cultures were then placed in the static 30˚C Binder incubator for three days 

 

      after which time the plates were removed and the number of surviving viable cell colonies 

 

      counted on each plate. 
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(xi) The number of surviving cell colonies at each time point was then calculated as a percentage value, 

       

        relative to the total number of viable colonies counted on the initial plate culture (prepared prior 

     

        to placement of the experimental assay culture in the Sanyo 30˚C Incubator Shaker – which was 

 

        designated the “Time = 0 minutes” culture  that corresponded to the representative 100%  relative 

  

        cell survival). 

 

 

        
         

 

       These “processed data” were then plotted as a % Cell Survival (log scale) vs  Time (Minutes) type 

  

        time-course graph at the fixed-dose concentration of the specific genotoxic agent for each respective 

 

        S. pombe strain assayed. 
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Oxidative Stress-Inductive Agents 

 

[Compiled via Collated Information From: Hemnani T. and Parihar M.S., 1998;  
                                                                          Hix S. et al, 1995; 

                                                                                 Marnett L.J. et al, 2003; 
                                                                                 Martins E.A. and Meneghini R., 1990;                                                                                 

                                                                               Slupphaug G. et al, 2003] 
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DNA Alkylating and Cross-Linking Agents 

 

[Compiled via Collated Information From: Daniel D.S. and Tainer J.A., 2000; 
                                                                          Durante M. et al, 1989; Lu L.J. et al, 1990; 

                                                                                 Hu J. et al, 2008; Painter R.B., 1978; 

                                                                                 Slameová D. et al, 1997; Strauss B. et al, 1975;  

                                                                                 Tomasz M. and Palom Y., 1997; 

                                                                                 Tubbs J.L. et al , 2007] 
 

 
 

NOTE: The MMS Survival Assay Protocol utilised was a different procedure to that of the other 

               mutagenic agents – described in detail on the following pages (pp.244-246). 
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Acute Varied Methylmethanesulphonate (MMS) Dose Survival Assay 

(i) A sterile/autoclaved wooden toothpick was utilised to inoculate 5mL of sterile/autoclaved YEA 

    medium (Section 2.3.1, p.167) with a small amount of each appropriate S. pombe strain, taken 

    from the respective YEA agar petri-plate (Section 2.3.2, p.168) culture , in a sterile/autoclaved 

    15ml capacity glass culture test-tube (capped loosely with a plastic ) and the resultant broth  

     culture placed in the 30ºC Sanyo orbisafe incubator shaker for 12 hours duration. 

 

(ii)  The following morning, the tubes were removed from the incubator and a 10μL aliquot of each 

       broth culture placed onto the square metal grid of a Hawksley Thoma Double Cell Clear Sight  

       Counting Chamber which was then viewed under a CETI Magnum B Binocular light microscope 

       at 60x magnification. 

 

(iii) After initial visual verification had established that the cells were viable and in S-phase, the number 

        of cells in 4 large grid squares  was counted – from which the average number of cells/mL in the 

      undiluted broth culture was calculated via the equation: 

 

      Average cells/mL (x10
6
) = Total No. of Cells Counted  

                                                                      4 

    

                            

(iv) An appropriate volume of cell culture  was diluted with an appropriate volume of autoclaved /sterile 

       YEA medium(Section 2.3.1, p.164) to yield 1 mL (1000µL) final broth culture concentration of  

        1x10
7

cells/mL*, in a sterile/autoclaved 1.5mL capacity plastic eppendorf microfuge tube. 

      

      *Via the equation:  V1 = C2 x V2              Where: 

                                                          C1                                V1 = Volume of measured cell culture 

                                                                                               V2 = Volume of cell culture required 

                                                                                               C1 = Concentration of cell culture measured                                                                                                                                                                          

                                                                                               C2 = Concentration of cell culture required 

 

(v)  A 10µL of the resultant 1x10
7

cells/mL cell culture was then mixed with 990µL of YEA medium  

       (Section 2.3.1, p.164) in a fresh autoclaved/sterile 1.5mL capacity plastic eppenforf microfuge tube 

        to yield a broth culture concentration of 1x10
5
 cells/mL. 
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(vi) A 400µL aliquot of the resultant 1x10
5
 cells/mL S. pombe strain culture was then mixed with 600µL  

       of YEA medium (Section 2.3.1, p.167) in a fresh sterile/autoclaved 1.5mL capacity plastic eppendorf  

       microfuge tube to yield a YEA broth culture concentration of  4x10
4

cells/mL. 

 

(vii) Individual 250μL aliquots of each diluted S. pombe strain culture (4x
410 cells/mL) were then pippetted  

         into 6 autoclaved/sterile plastic 1.5mL capacity plastic eppendorf microfuge tubes which contained 

       either 250µL YEA medium only (no MMS) or a 0.02% (v/v), 0.04% (v/v), 0.06% (v/v), 0.08% (v/v), 

       0.1% (v/v) solution of MMS in YEA. 

 

(viii) Thus each assay set of 6 eppendorf tubes, for each S. pombe strain tested, contained 2 x 410 cells/mL  

          in 500µL of a varied concentration range of MMS in YEA medium (0% to 0.05%v/v MMS in YEA):   

           

 

(ix) The eppendorf tubes were then placed in the 30˚C Sanyo Incubator Shaker for one hour, after which 

       time they were removed and a 500µL aliquot of a 1% (w/v) SodiumThiosulphate in YEA (“Stop”) 

       solution added to each tube – that was then vortexed briefly (~10 seconds). 

       [NOTE: The Sodium Sulphate component of “Stop” solution reacts with the MMS to “neutralize” 

                      the DNA base-alkylation activity of the mutagenic agent] 

 

(x) A 50µL aliquot (~500 cells) from each resultant assay culture was pippetted onto a fresh,  

 

       individual YEA agar plate and spread evenly over the medium surface via utilisation of  

 

       a 70% ethanol-sterilised flame-spreader. 

 

 
 (xi) The resultant petri-plate cultures were then placed in the static 30˚C Binder incubator for three days 

 

        after which time the plates were removed and the number of surviving viable cell colonies 

 

        counted on each plate. 
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(xii) The number of surviving cell colonies for each MMS dose exposure was then calculated as a 

       

         percentage value, relative to the total number of viable colonies counted on the plate culture which 

 

         contained cells that had not been treated with MMS: 

 

 

        
 

 
         These “processed data” were then plotted as a % Cell Survival (log scale) vs %(v/v) MMS dose 

  

          response graph for each respective S. pombe strain assayed. 
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Phleomycin (Intercalation-Redox-Coupled DNA Cleavage Agent)  
 

[Compiled via Collated Information From:  Sleigh M.J., 1976; Stern R. et al, 1974; 

                                                                                  Stretkowski L. et al, 1986; 

                                                                                  Tanaka N., 1983] 
 

 
 

A: Phleomycin is similar to the Bleomycin anti-biotics with regard to its genotoxic biochemical mode of action. 

      The “tail” section of the molecule intercalates within the major groove of the DNA duplex, in which the 

       positively charged Guanidium group may form electrostatic associative interactions (“salt linkages”) with  

       the negatively charged phosphate groups of the nucleic acid polymer “backbone”. 
 

       The Bithizole group within the “intercalative tail segment” may also form associative Π- Π type aromatic 

       electron base-stacking interactions with the nucleobases situated in the major groove of the duplex. 

 

B: The metal ion-chelation domain of Phleomycin forms a redox-inert organometallic complex with Cu2+  ions 

      and is supplied commercially as a stabilised preparation in this form (Sigma-Aldrich Company). 
 

      Once inside the cell, formation of the DNA-intercalated Fe2+:Phleomycin complex initiates redox-cycle 

      generation of reactive free-radical oxygen species within the major groove of the duplex which react with  

      the phosphodiester bonds with consequential double-strand cleavage of the nucleic acid.  
 

 Stock 1mL aliquots of 1mM Phleomycin in DMSO (100%/“neat”) were stored in Eppendorf tubes at -20˚C until required,  

 from which an 8µM solution of Phleomycin in YEA was prepared fresh, immediately before use. 
 

 [Thus, the acute survival assay culture comprised 1mL of YEA  which contained 1x104cells and 4µM of Phleomycin] 
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Topoisomerase Inhibitors 
 

[Compiled via Collated Information From: Martinkova E. et al, 2009;  

                                                                                 Monteccuco A. and Biamonti G., 2007; 

                                                                                 Nitiss J.L. and Wang J.C., 1996; 

                                                                                 Pommier Y., 2006; Stiborová M. et al, 2004; 

                                                                                 Stiborová M. et al, 2006 

                                                                                 Zhao H. et al, 2012] 

 

    
 

NOTE: ELP and ETP  Survival Assays were performed on Lyticase-Treated Cell Cultures, also 

              in comparative control with CPT – described in detail on the following pages (pp.249-251). 
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The Topoisomerase II inhibitors Ellipicine and Etoposide were discovered to be relatively impermeable, 

with regard to their inability to traverse the cell wall and membrane of S. pombe cells, as indicated via 

initial acute survival assays performed with the respective drugs with YEA broth cultures of the  “Cre-Lox” 

rad9-deleted base-strain in which the cells were insensitive to even excessively high doses of the 

compounds. 

 

To circumvent this experimental problem, the appropriate S. pombe strains were treated with lyticase in 

order to partially degrade the cell wall and thereby facilitate entry of the drugs into the resultant protoplast 

culture preparations – the treatment protocol was comprised of the following steps: 

 

(i) A sterile/autoclaved wooden toothpick was utilised to inoculate 25mL of sterile/autoclaved YEA 

    medium (Section 2.3.1, p.167) with a small amount of the appropriate S. pombe YEA agar (Section 2.3.2, 

    p.168) petri-plate culture, in a sterile/autoclaved 100mL capacity glass conical flask (capped loosely with 

    aluminium foil) and the resultant broth culture placed in the 30ºC Sanyo orbisafe incubator (set at 180  

    r.p.m. shake speed) for 24 hours duration. 

 

(ii) The following day, a 100μL aliquot of the resultant broth culture was diluted with 900μL YEA broth 

      medium and the resultant 1 in 10 diluted culture sample (1mL) was then placed in a plastic microcuvette 

      for measurement of the optical density at A595  (O.D. 595) in a Sanyo SP BIO Spectrophotometer (pre-set  

      against a blank reference of 1mL YEA broth medium) and the optical density of the “neat” culture 

      calculated: 

       ie A595 (“neat” culture) = A595 (1 in 10 diluted culture) x 10   

 

 (iii) An appropriate volume of resultant broth culture was then adjusted with the appropriate volume of  

        YEA broth  medium to an A595 optical density of 0.25 units/mL, dictated by the calculated diluent  

        factor ratio – D.F.R.   

        ie D.F.R. = Calculated A595  (“neat” culture)  

                                              0.5 

        Via the equation:  V1 = C2 x V2              Where: 

                                                          C1                                V1 = Volume of measured cell culture 

                                                                                               V2 = Volume of cell culture required 

                                                                                               C1 = O.D.595 of cell culture measured                                                                                                                                                                          

                                                                                               C2 = O.D.595 of cell culture required 

                                                    [249] 



 (iv) The resultant diluted culture was then returned to the 30ºC Sanyo orbisafe incubator (set at 180 r.p.m.  

        shake speed) for a further ~2.5 hours duration, until the optical density of the culture had doubled 

        (ie A595 = 0.5). 

 

(v) A 40mL aliquot of the resultant culture was then transferred to a 50 mL capacity plastic Greiner  

      centrifuge tube which was placed in a Jencons-PLS SorvallR Legend T centrifuge and spun at  

      3000 r.p.m. at 25˚C for 5 minutes. 

 

(vi) The supernatant was discarded and the cell pellet re-suspended in 1mL of YEA-Lyticase reaction buffer 

        (Section 2.4.2, p.162), prior to transfer of the resultant cell suspension to a 1.5mL capacity plastic  

        eppendorf  microfuge tube – which was then spun at 3000 r.p.m., at 25˚C for 5 minutes in a Sanyo 

        Hawk 15/05 refrigerated bench-top microfuge.  

 

(vii) The supernatant was discarded and cell pellet re-suspended in 1mL of YEA-Lyticase Reaction Buffer 

         which also contained 2U/µL Lyticase enzyme*. 

         [*Note: The prepared solution was filter-sterilised after addition of the enzyme prior to use] 

 

(viii) The eppendorf tube which contained the resultant cell suspension was then placed in the static 30˚C 

          Binder incubator for 20 minutes. 

 

(ix) After the incubation time had elapsed, the eppendorf tube which contained the cell suspension was 

       then placed in and spun at 3000 r.p.m. at 25˚C for 5 minutes in a Sanyo Hawk 15/05 refrigerated  

       bench-top microfuge. 

 

(x) The supernatant was discarded, the cell pellet re-suspended in 1mL of YEA medium and the resultant 

       cell suspension in the eppendorf tube was re-spun at 3000 at 25˚C for 5 minutes in a Sanyo Hawk 

       refrigerated bench top microfuge. 

 

(xi)  The resultant cell pellet was washed a further four times with fresh 1mL aliquots of YEA medium 

         as described previously in stage (x) above. 
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(xii) The resultant washed cell pellet was re-suspended in a fresh 1mL aliquot of YEA medium and 

         transferred to a 15mL capacity plastic Greiner centrifuge tube which contained 9mL of YEA 

         medium. 

 

(xiii)  A 10μL aliquot of the resultant culture preparation was placed onto the square metal grid of a  

          Hawksley Thoma Double Cell Clear Sight Counting Chamber and viewed under a CETI  

          Magnum B binocular light microscope  at 60x magnification. 

 

(xiv) The total number of cells in 4 large grid squares was then counted, from which the average number of  

          cells/mL in the culture was calculated via the equation: 

 

           Average cells/mL (x10
6
) = Total No. of Cells Counted  

                                                                            4 

 

 

(xv) The cell culture was then diluted to a final concentration of  2x10 
4   cells/mL via the appropriate 

         addition of YEA medium – which was calculated via the equation: 

         V1 = C2 x V2             

                       C1 

 
         Where: 

                                                                                                

          V1 = Volume of measured cell culture 

          V2 = Volume of cell culture required 

          C1 = Concentration of cell culture measured (cells/mL)                                                                                                                                                                          

          C2 = Concentration of cell culture required (cells/mL) 

 

     (xvi) 500µL of the   2x10 
4   cells/mL YEA cell culture was then mixed with 500µL of an 80µM solution 

              of the appropriate drug in YEA medium (ie Etoposide, Ellipticine or Camptothecin) in a 

              sterile/autoclaved  1.5mL capacity plastic eppendorf microfuge tube. 

 

     (xvii) The eppendorf tube which contained the resultant experimental culture, comprised of 40µM of the 

               drug and 1x10 
4   cells in 1mL of YEA broth medium, was then utilised for the acute survival  

               assay protocol described previously (Section 2.9.2.2(ii), pp.240-241).  

[Note: The Lyticase Pre-Treatment Protocol was devised via collated information adapted from the 

             the methodologies described by Forsburg S.L., 2003d; Forsburg S.L. & Rhind P., 2006;  

             Sipickzi M. et al, 1985] 
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                Anti-metabolic, Anti-Mitotic and Checkpoint PI3 Kinase Inhibitor Agents 

  

              [Compiled via Collated Information From: Calvo I.A. et al, 2009; 

                                                                                        Norland P. and Reichard P., 2006; 

                                                                                        Sabisz M. and Skladanowski A., 2008; 
                                                                                        Sakaria J.N. et al, 1999; 

                                                                                                Walker G.M., 1982; 

                                                                                        Zhou B.B. et al, 2000] 
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2.9.3 Lactose Synchronisation Assays 

 
(i) A sterile/autoclaved wooden toothpick was utilised to inoculate 100mL of sterile/autoclaved YEA broth 

     medium (Section 2.3.1, p.167) with a small amount of the appropriate S. pombe strain YEA agar  

    (Section 2.3.2, p.168) petri-plate culture, in a sterile/autoclaved 250mL capacity glass conical flask  

    (capped loosely with aluminium foil) and the resultant broth culture placed in the 30ºC Sanyo orbisafe  

    incubator (set at 180 r.p.m. shake speed) for 24 hours duration. 

 

(ii) The following day, a 100μL aliquot of the resultant broth culture was diluted with 900μL YEA broth 

      medium and the resultant 1 in 10 diluted culture sample (1mL) was then placed in a plastic microcuvette 

      for subsequent measurement of the optical density at A595  (O.D. 595) in a Sanyo SP BIO  

      Spectrophotometer (against a set blank reference of 1mL YEA broth medium) and the optical density of  

      the “neat” culture calculated: 

       ie A595 (“neat” culture) = A595 (1 in 10 diluted culture) x 10   

 

 (iii) An appropriate volume of resultant broth culture was then adjusted with the appropriate volume of  

        YEA broth  medium to an A595 optical density of 0.25 units/mL, dictated by the calculated diluent  

        factor ratio – D.F.R.   

 

        ie D.F.R. = Calculated A595  (“neat” culture)  

                                              0.5 

        In accordance with the related equation:  V1 = C2 x V2 

                                                                                       C1 

 
                                                                                  Where: 

                                                                                               V1 = Volume of measured cell culture 

 

                                                                                               V2 = Volume of cell culture required 

 

                                                                                               C1 = O.D.595 of cell culture measured 

                                                                                          

                                                                                               C2 = O.D.595 of cell culture required 

 

        The resultant diluted culture was then returned to the 30ºC Sanyo orbisafe incubator (set at 180 r.p.m.  

        shake speed) for a further ~2.5 hours duration, until the optical density of the culture had doubled 

        (ie A595 = 0.5). 
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(iv) A 50mL aliquot  of the resultant culture (equivalent to 5x10
8  

cells) was then transferred to a 50mL 

     capacity plastic  Greiner centrifuge tube which then spun at 3,000r.p.m at 25˚C for 5 minutes in a  

     Jencons-PLS SorvallR Legend T Centrifuge. 

 

(v) The supernatant was discarded and the cell pellet re-suspended in 1mL of  sterile/autoclaved aqueous 

      7% (v/v) lactose solution, prior to transfer of the resultant solution to a sterile/autoclaved 1.5mL 

       capacity plastic eppendorf microfuge tube – which was then spun at 3,000 r.p.m at 25˚C for 5 

       minutes in a Sanyo Hawk 15/05 refrigerated bench top microfuge. 

 

(vi) The resultant superanatant was discarded and and cell pellet re-suspended in 1mL of sterile/autoclaved  

        aqueous 7% (v/v) lactose solution. 

 

(vii) Aqueous lactose solutions of decreasing percentage concentration strength (% v/v) were prepared, via 

         mixing of the appropriate volumes of sterile/autoclaved 30%(v/v) and 7% (v/v) aqueous Lactose stock 

         solutions, which were then utilised to set up a differential Lactose density centrifugation gradient in a 

         15mL capacity plastic Greiner screw-cap centrifuge tube via careful successive stratification of 1.5mL 

         aliquots of decreasing aqueous Lactose solution concentrations on top of each other: 
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[Note: Successive stratification of decreasingly dense lactose solutions was accomplished via utilisation 

            of a truncated blue Gilson  tip, which was inserted just below the 1.5mL layer of the greater  

            density lactose solution (loaded previously) to pippette the 1.5mL layer of the preceeding, less 

            dense lactose solution – detailed in Stage (vii) on the previous page.  

             ie A 1.5mL aliquot of the highest density solution (30% v/v lactose) was loaded first, followed 

                 by successive loading of 1.5mL aliquots of decreasingly dense lactose solution] 

 

(viii) The resultant cell suspension [acquired from stage (vi) – on the previous page] was then pippetted 

          carefully onto top of the freshly prepared Lactose Density Gradient contained within the 15mL 

          capacity plastic Greiner centrifuge – which was then spun at 750r.p.m at 25˚C for 8 minutes in a  

          Jencons-PLS SorvallR Legend T Centrifuge. 

 

 (ix) A truncated blue Gilson pipette tip was utilised to transfer a 400µL aliquot of resolved G2-phase  

        S.pombe cells from the upper middle section of resultant turbid white cell suspension (which 

        appeared in the middle of the tube after density gradient centrifugation) to a fresh sterile/autoclaved 

        1.5mL capacity plastic eppendorf microfuge tube – which was then spun at 3,000 r.p.m. at 25˚C for 

        5 minutes in a Sanyo Hawk 15/05 refrigerated bench top microfuge. 

       [Note: Caution was exercised to ensure that no S. pombe cells were taken from the very top of the  

                   suspension as these were in the stationary cell cycle phase] 

 

(x) The resultant supernatant was discarded and the cell pellet re-suspended in 1mL of YEA broth medium 

     prior to re-centrifugation in the Sanyo Hawk 15/05 refrigerated bench top microfuge at 3,000 r.p.m. at 

     25˚C for 5 minutes. 

 

(xi) The supernatant was discarded and the cell pellet was then re-suspended in 700µL of YEA broth 

        medium, after which a 20µL aliquot of the resultant cell suspension was then mounted on a glass 

        slide and cover slip assembly prior to examination at 60x magnification under a CETI Magnum B 

        binocular  light microscope for verification that exclusive isolation of small G2-phase S.pombe cells 

        had been accomplished. 
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(xii) The remaining cell suspension was then divided into two individual 340µL aliquots which were 

        placed into separate sterile/autoclaved 1.5mL capacity plastic eppendorf microfuge tubes. 

 

(xiii) A 340µL aliquot of YEA broth medium was added to one tube (No CPT comparative control) and 

         a 340µL aliquot of  a 400µM solution of Camptothecin (CPT) in YEA broth medium was added 

         to the other tube (comparative CPT-induced DNA damage – final CPT concentration = 200µM). 

 

(xiv) A 30µL aliquot ( initial “zero time” sample) was then taken from each each tube and placed in 

         separate eppendorf tubes which contained 200µL of “neat” (100% v/v) methanol (which instantly 

         killed/”fixed” the cells). 

 

(xv) The remaining 650µL cell cultures, contained in the eppendorf tubes, were then placed in the 30ºC 

         Sanyo orbisafe incubator (set at 180 r.p.m. shake speed) for a total time period of  6  hours, during 

         which 30µL aliquots were removed and fixed in methanol (as described in the previous stage above) 

         at 20 minute time intervals. 

 

(xvi) The resultant “fixed” cell suspension aliquots, contained within the eppendorf tubes, were spun at 

          3,000 r.p.m. at 25˚C for 5 minutes in a Sanyo Hawk 15/05 refrigerated bench top microfuge. 

 

(xvii) The resultant supernatants were discarded and the cell pellets re-suspended in 30µL of “neat” 

             (100%v/v)  methanol. 

 

    (xviii) 5µL aliquots of the prepared cell suspensions were placed on glass microscope slides and 

               allowed to dry for 5 minutes at room temperature. 

 

    (xix) 15µL of prepared Hoechst 33342:Calcofluor-White staining solution (reagent composition  

             detailed in Section 2.2.6, p.166) was then placed on top of the dried cell suspension, after  

              which a glass microscope slide cover slip was applied. 
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     (xx)  Each prepared slide sample was mounted on the stage of a Leiz SM-LUX fluorescence microscope 

              and a drop of Type F  lens immersion liquid (Leica Microsystems CMS GmbH) placed on top of 

              the coverslip, prior to examination of the fixed, stained S. pombe cells at  1000x magnification  

             (oil immersion – set wavelength λ = 340nm) for visualisation of the  nuclei and wall septa.  

 

     (xxi) The number of septated S. pombe cells was scored within a total group count of 100 cells and thus 

              the percentage of S. pombe septated cells was determined for each sample. 

 

      (xxii) The data were then plotted as a Mitotic Index Time-Course graph of % Septated Cells Vs Time 

                (minutes). 

 

      [Note: This protocol was devised via collated information taken and adapted from the following 

                   methodology sources: Forsburg S.L. and Rhind P., 2006; Green M.D. et al, 2009; 

                                                          Luche D.D. and Forsburg S.L., 2009; Walworth N. et al, 2003] 
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2.10 In Silico Analyses – Bioinformatics Software Tools Utilised 

2.10.1 Protein Physico-Biochemical Property Estimations  

 
Estimated average masses (kDa) and/or other appropriate physico-biochemical properties of selected 

protein and polypeptide sequences (such as pI isoelectric point values pertinent to 2D-PAGE analyses) were 

determined via utilisation of the on-line software package Protein Calculator (Version 3.3). 

 

Protein Calculator 3.3 (Scripps Institute) Server – http://www.scripps.edu/~cdputnam/putcalc.html 

 

 

 

2.10.2 Protein Secondary Structural Conformation Analyses  

 
Comparative analyses of the relative content of coil, helix and strand secondary structural motifs within 

selected protein and polypeptide sequences was performed via utilisation of the software package YASPIN 

– http://www.ibi.vu.nl/programs/yaspin/www (Lin K. et al, 2005). 

 

2.10.3 Protein Transmembrane-Spanning Domain Analyses  

 
Comparative identification analyses and modelling of potential transmembrane-spanning domain regions 

within selected protein and polypeptide sequences were performed via utilisation of the software packages 

Kyte-Doolittle Hydropathy Plot (Kyte J. and Doolittle R., 1982), PHOBIUS Käll L. et al, 2004), SPLIT 4.0 

(Juretic D. et al, 2002), TmPred (Hofmann K. and Stoffel W., 1993) and TMRPres2D (Spyropoulous I.C. et 

al, 2004). 

 

Kyte-Doolittle Hydropathy Plot – http://gcat.davidson.edu/rakarnik/kyte-doolittle.htm 

PHOBIUS – http://phobius.sbc.su.se/ 

SPLIT 4.0 –  http://split.pmfst.hr/split/4/ 

TMpred – http://www.ch.embnet.org/software/TMPRED_form.html 

TMRPres2D – http://bioinformatics.biol.uoa.gr/TMRpres2D/ 
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2.10.4 Protein Coiled-Coil Repeat Motif Analyses  

 
Comparative identification analyses of potential coiled-coil repeat motif type domain regions within 

selected protein and polypeptide sequences were performed via utilisation of the software packages  COILS 

(Lupas A. et al, 1991a; Lupas A. et al, 1991b), MARCOIL (Delorenzi M. and Speed T., 2002; Gruber M. et 

al, 2006), MultiCoil (Newman J.R. et al, 2000; Wolf E. et al, 1997), MultiCoil2 (Trigg J. et al, 2011) and 

REPPER (Gruber M. et al, 2005). 

 

COILS – http://www.ch.embnet.org/software/COILS_form.html 

 

MARCOIL – http://toolkit.tuebingen.mpg.de.marcoil 

 

MultiCoil – http://groups.csail.mit.edu/cb/multicoil/cgi-bin/multicoil.cgi 

 

MultiCoil2 – http://groups.csail.mit.edu/cb/multicoil2/cgi-bin/multicoil2.cgi 

 

REPPER – http://toolkit.tuebingen.mpg.de/repper 

 

 

 

2.10.5 Comparative Protein Sequence and Functional Motif Homology Alignments 

 
Comparative sequence homology and functional motif sequence alignments were performed via utilisation 

of the software packages cNLS Mapper (Kosugi S. et al, 2009), COBALT Multiple Alignment 

(Papadopoulos J.S. and Agarwala R., 2007), ELM (Dinkel H. et al, 2012; Puntervoll P. et al, 2003; 

Perrodou E. et al, 2008), PSI-BLAST and EMBOSS Pairwise Alignment in conjunction with the Jemboss 

Alignment Editor (Carver T.J. and Mullan L.J., 2005).  

 

cNLS Mapper – http://nls-mapper.iab.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi  

 

COBALT – http://www.ncbi.nlm.nih.gov/tools/cobalt/cobalt.cgi?/link_loc=BlastHomeAd 

 

ELM – http://elm.eu.org/ 

 

PSI-BLAST – http:// www.ebi.ac.uk/Tools/sss/psiblast 

  

EMBOSS – http://artedi.ebc.uu.se/programs/pairwise.html 

 

Jemboss Alignment Editor – http://emboss.sourceforge.net/Jemboss/jae.html 
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2.10.6 Kinase-Specific Protein Phosphorylation Site Target Residue Predictions 

 

Potential phosphorylated residues within selected protein and polypeptide sequences were 

identified via utilisation of the on-line software packages NetPhos2.0 and NetPhos3.1b (Blom N. 

et al, 1999; Miller M.L. and Blom N., 2009). 

NetPhos Server Site – http://www.cbs.dtu.dk/services/Netphos. 

 

Potential kinase-specific substrate target motifs and residues within selected protein and 

polypeptide sequences were identified via utilisation of the on-line software package NetPhosK  

Server Site – http://www.cbs.dtu.dk/services/NetphosK (Blom N. et al, 2004; Miller M.L. and 

Blom N., 2009). 

 

 

2.10.7 Protein Aggregate Potential Motif Sequence Predictions 

 
Potential protein aggregation motif polypeptide sequences were identified via utilisation of the  

on-line software packages BETASCAN (Bryan A.W. Jr. et al, 2009), TANGO (Fernández-Escamilla A.M. 

et al, 2004a; Fernández-Escamilla A.M. et al, 2004b) and ZYGGREGATOR (Routledge K.E. et al, 2009; 

Tartaglia G.G. and Vendruscolo M., 2008; Tartaglia G.G. and Vendruscolo M., 2010) 

 

BETASCAN Server Site – http://groups.csail.mit.edu/cb/betascan/betascan.html 

TANGO Server Site – http://tango.crg.es/  
 

ZYGGREGATOR – http://www-venduscolo.ch.cam.ac.uk/zyggregator.php 
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2.10.8 Protein Intrinsic Disorder Sequence Predictions 

 
Many proteins possess regions of intrinsically-disordered polypeptide sequence within their 

 

respective supramolecular structures which are key functional component domains that enable 

 

them to interact with a versatile array of different ligands/substrates and/or other proteins  

 

(Dunker A.K. et al, 2000; Dunker A.K. et al, 2008; Follis A.V. et al, 2012; Tompa P. et al, 2009;  

 

Vucetic S. et al, 2007; Wrabl J.O. et al, 2011; Xie H. et al, 2007a) – Fig 2.9, p.264.   

 

 

 

These versatile protein interactions also orchestrate the dynamic regulation of both normal and 

dysfunctional cytological processes which are implicated in the suppression and promotion of 

pathophysiological events, including cancerous conditions (Cortese M.S. et al, 2008; Hegyi H. et al, 2009; 

Iakoncheva L.M. et al, 2002; Midic U. et al, 2009; Sandhu K.S., 2009; Uversky V.N. et al, 2008; Uversky 

V.N. et al, 2009; Xie H. et al, 2007b). 

 

 

The highly mobile/flexible C-Terminal Tail Domain of the human Rad9  protein may also possess 

 

 a high degree of intrinsically-disordered structural propensity which enables it to participate in a 

 

variety of different protein-protein interactions (discussed previously in Chapter 1, pp.2-139;  

 

Fig 1.10, p.24). 

 

 

 
The bioinformatics software programs DisCon (Fig 2.10, p.265) and metaPrDOS (Fig 2.11, p.266) were 

utilised for the in silico identification of potential intrinsically-disordered structural regions within the full-

length and truncated variant forms of the S. pombe Rad9 protein. 

                    
These particular bioinformatics-based approaches were chosen for the prediction of intrinsically-disordered 

structure content (DisCon) and intrinsically-disordered structural motifs (metaPrDOS) as both programs 

utilise combinatorial hybrid algorithms, derived from a variety of other disorder proteomics-based  software 

tools, for improved analytical accuracy (Ishida T. and Kinoshita K., 2007; Mizianty M.J. et al, 2011; 

Uversky V.N. et al, 2007). 
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Intrinsic protein disorder motifs are often identified in characteristic sequences which possess a low 

complexity, a higher content of Proline and charged amino acid residues and a lower relative proportion of 

hydrophobic and/or “large/bulky” amino acid residues (Dyson H.J. and Wright P.E. 2005; Peng K. et al, 

2006; Radivojac P. et al, 2004; Romero P. et al, 2001; Uversky V.N. et al, 2000; Zhang H. et al, 2009). 

 

The aqueous intracellular environment will “thermodynamically-orientate” the configuration of the 

polypeptide chain(s), such that hydrophobic amino acid residues are confined to the interior of the protein 

supramolecular structure and are excluded from the external hydrophilic micro-environment, with 

consequential enhancement of ordered hydrophobic interactions/Van-der-Waal’s bonding forces (Zhang H. 

et al, 2009). 

 

Thus, sequence motifs which possess a high degree of ordered structure tend to contain a high proportionate 

number of relatively hydrophobic residues – in particular; Tryptophan, Tyrosine, Phenylalanine, Isoleucine, 

Leucine, Valine and Aspargine (Dunker A.K. et al, 2001; Radivojak P. et al, 2007; Romero P. et al, 2001; 

Vacic V. et al, 2007; Williams R.M. et al, 2001). 

 

Hydrophilic amino acid residues, within the polypeptide chain(s) of the protein, are “thermodynamically-

orientated” towards the external aqueous intracellular microenviroment with consequential formation of a 

dynamic network of multiple hydrogen-bonding interactions with water molecules and other biomolecular 

species (Zhang H. et al, 2009). 

 

Thus, sequence motifs which possess a high degree of intrinsic structural disorder tend to contain a high 

proportionate number of relatively hydrophilic residues – in particular; Alanine, Arginine, Glycine, 

Glutamine, Serine, Glutamate, Proline and Lysine (Dunker A.K. et al, 2001; Radivojak P. et al, 2007; 

Romero P. et al, 2001; Vacic V. et al, 2007; Williams R.M. et al, 2001). 
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These unstructured sequence motifs provide a relatively large accessibility surface area for multiple, 

dynamic solvent interactions on exposed polypeptide chain regions within the supramolecular structure of 

the protein and thus the majority of structurally-disordered regions tend to lack a defined secondary 

structure (Cheng J. et al, 2005; Kim R. and Guo J.T., 2010; Le Gall T. et al, 2007; Liu J. et al, 2002; Mohan 

A. et al, 2006; Radivojac P. et al, 2004; Radivojac P. et al, 2007; Schlessinger A. et al, 2009; Uversky V.N. 

and Dunker A.K., 2010; Uversky V.N. et al, 2000; Vucetic S. et al, 2003). 

 

The bioinformatics software programs DisCon (Fig 2.10, p.265) and metaPrDOS (Fig 2.11, p.266) scan for 

these characteristic biophysical traits of ordered and disordered structure sequence motifs in conjuction with 

secondary structure propensity and relative solvent accessibility evaluations, via a combinatorial set of 

algorithms, to generate the intrinsic structural disorder prediction profile for the protein (Berman H.M. et al, 

2000; Chang D.T. et al, 2008; Dor O. and Zhou Y., 2007; Hecker J. et al, 2008; Ishida T. and Kinoshita K., 

2007; Jones D.T. and Wards J.J., 2003; Kumar S. and Carugo O., 2008;  Mizianty M.J. et al, 2011; Oldfield 

C.J. et al, 2005; Peng K. et al, 2005; Su C.T. et al, 2009; Wootton J.S. and Federhen S., 1993). 
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    Fig 2.9: Models of Conserved and Adaptable Protein Conformers  
 

     [Taken and Adapted From: Dunker A.K. and Kriwacki R.W., 2011] 

 

 
 
 

A: In the “conventional conserved configuration model” the protein is maintained in a single 

      supramolecular conformation which possesses restricted specificity for one or a very limited 

      number of ligands/substrates (L/S) and upon dissociation of the ligand/substrate (L/S) the 

      protein is retained in its single supramolecular configuration. 

 

 

B: In recent times, classes of proteins have been discovered which have a “in-built” domains of 

      intrinsically-disordered structure – as is the case for the Rad9 protein which has a highly 

      flexible, structurally-disordered C-Terminal Tail Domain. 
 

      In the “unconventional intrinsic disordered structural adaptive model”, these proteins can 

      adopt a versatile range of different binding supramolecular configurations (by virtue of their 

      highly flexible, intrinsically-disordered domains) and thus possess “promiscuous specificity” 

      for a wide variety of different ligands/substrates (L/S) and/or associative protein-protein 

      interactions. 
 

      Upon dissociation of the ligand/substrate (L/S), the protein reverts to its native state of “in-built” 

      intrinsically-disordered region-mediated supramolecular configurational flexibility/adaptability. 
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    Fig 2.10: DisCon – Program Operational System Flow-Diagram 

       

      [Taken and Adapted From: Mizianty M.J. et al, 2011] 

 

            
           [DisCon Server – http://biomine.ece.ualberta.ca/DisCon/] 
 

The DisCon bioinformatics software tool calculates the relative percentage proportionate number of amino 

acids residues identified as possessing significant probability of intrinsic disordered structural propensity 

within the total number of amino acids residue in the polypeptide chain sequence of the protein. 

 

The software program utilises three key steps in the calculation process which determines the relative 

percentage of disordered amino acid residue content within the protein – notably; 

 

1. Generation of a Position-Specific Scoring Matrix (PSSM) for the inputted amino acid sequence via the 

    PSI-BLAST software program and Weighted Observed Percentage  (WOP) profiles via the NCBI nr 

    Data-Base – which are then processed via the PFILT software program for removal of anomalous 

    sequence correlated to low-complexity regions, transmembrane-spanning regions and coiled-coiled 

    segments. 

 

    Combinatorial processed data analyses of the amino acid sequence of the protein, acquired from the 

    REAL-SPINE3, PSI-PRED and PROFbval software programs also constitute an integral for this 

    PFILT-based “data filtering” process. 

 

2.  These derived combinatorial algorithm data predictions are then further processed, in conjunction with 

     the IUPred (Intrinsic Unstructured Predictor) software program algorithm for the generation of a set of 

     defined numerical-based descriptional features that quantify collectively the amino acid structural 

     sequence information encoded in the prediction profiles generated in the initial stage (described above). 

 

     The feature selection algorithm, which incorporates components of the IUPred software program, is then 

     utilised for the refined selection of 29 key features which are most relevant to the prediction of disorder 

     amino acid residue content probability. 

 
3. The selected numerical-based structural descriptors are then processed into a collective ridge regression 

     algorithmic model system for generation of the predicted % disorder content value output. 
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 Fig 2.11: metaPrDOS – Program Operational System Flow-Diagram 
 

 [Taken and Adapted From: Ishida T. and Kinoshita K., 2008] 

 

     
     

    [metaPrDOS – http://prdoc.hgc.jp/cgi-bin/meta/top.cgi] 
 

The meta-PrDOS software program utilises a combination of algorithms derived from 7 Intrinsic Structural 

Disorder software program-based predictions, which are average probability-weighted and processed via the 

Meta-Prediction (via an SVM-based algogorithm) for generation of the structural order and disorder amino 

acid residue profile of the inputted protein sequence – red residues above the probability value of 0.5 (ie the 

extrapolated Y-axis “Threshold FP rate = 5.0%” line on the graphical plot) are designated disordered.  
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2.10.6 RNA Secondary Structure Folding Predictions 

 
The supramolecular secondary structure adopted by a particular RNA sequence is governed by several 

functional stability and thermodynamic-related constraints – notably; relative GC versus AU and GU base-

pair content, the number of stem-configured base-pairs, the number of hairpin loop-configured base-pairs 

and the number of unpaired bases situated within interior loops and/or bulges (Nelson N. and Istrail S., 

2012). 

 

The GC base-pair contains three hydrogen bonds, whilst the AU and GC base-pair only contain two 

hydrogen bonds – thus more energy is required break a GC base-pair than an AU or GU base-pair and 

consequently, a higher GC base-pair content within a particular secondary structural RNA configuration 

enhances its stability (Nelson N. and Istrail S., 2012). 

 

The thermodynamic stability of particular secondary structural RNA configuration is also directly related to  

stem-length – the longer the stem region, the more base-pairs it contains and thus the greater the energy 

required to denature or “melt” the stem region (Nelson N. and Istrail S., 2012). 

 

Hairpin-loops which contain more than 10 base-pairs or less than 5 bases decrease the thermodynamic 

stability of the secondary structural RNA configuration as more energy is required for their formation to 

overcome steric constraints – thus less energy is required to denature or “melt” these loops (Nelson N. and 

Istrail S., 2012). 

 

The thermodynamic stability of particular secondary structural RNA configuration is also directly related its  

unpaired base content – the larger the proportion of unpaired bases,  the lower the number of base-pairs  and 

the lower the stability (Nelson N. and Istrail S., 2012). 

 

In silico bioinformatics-based predictive RNA-folded secondary structural configurational analyses of the 

the S. pombe rad9 gene were performed via utilisation of the RNAfold software tool available on the 

Vienna RNA Secondary Structure Server  site (Gruber A.R. et al, 2008; Hofacker I.L., 2003) – an example 

of the data display is given in Fig 2.12, p.268. 
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       Fig 2.12: Vienna RNAfold Analysis of S. pombe rad9 Intron 2 
 

 
 

[Vienna RNA Secondary Structure Folding Server – http://rna.tbi.univie.ac.at/] 
 
The Dot-Plot analysis is a two-dimensional X-Y graphical display of the RNA sequence in which the most 

thermodynamically probable base-pairs are high-lighted. 

 

The Mountain-Plot analysis is a graphical display of the Minimal Free Energy, Partition Factor and Centroid 

(Averaged Minimal Free Energy and Partition Factor Plots) of the positional base-pairs and their respective 

entropic formation propensity within the highest thermodynamically-favoured RNA secondary folded 

structural conformation. 

 

The Pairing Probability Display and Positional Entropy Display for each respective base-pair configuration 

within the predicted secondary RNA folded supramolecular structural conformation are colour-coded 

according to a “Thermodynamic Propensity” scale (as indicated above).  
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2.11 MATERIALS AND METHODS SUPPLEMENTARY APPENDICES 

 

APPENDIX 2.11.1: pAW1 Cre-Lox Non-Essential Gene Replacement Plasmid Maps 
 

Taken and Adapted From:  http://web.uni-frankfurt.de/fb15/mikro/euroscarf/data/P30537.html  

                                               

                                                Watson A.T. et al (2008)  
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       pAW1 Cre-Lox Non-Essential Gene Replacement Plasmid DNA Sequence Map 

 
    Collated Information Source: http://web.uni-frankfurt.de/fb15/mikro/euroscarf/data/P30537.html 
 

 
        1 cggatccccg ggttaattaa cataacttcg tatagcatac attatacgaa gttatagctt 

       61 agctacaaat cccactggct atatgtatgc atttgtgtta aaaaagtttg tatagattat 

      121 ttaatctact cagcattctt tctctaaata ggaatttgtt acttaatgga gaaaaaaatg 

      181 tttcgattta cctagtgtat ttgtttgtat actcacgttt aatttcaaac atccattcta 

      241 tcttgtgtaa tttttggcat ggtgaaaaag ataatcagcc ttataatctt tacaaaagta 

      301 agaaattctg taaataagcc ttaatgccct tgctttaaat taaaatggtt ctttttcatg 

      361 ataatgtttg cactttgtga atatatttta gatagttctg tgaggtataa ttaagatgtt 

      421 ttagagactt atacaatttt gtctttataa attcttaatt gattttacca tcccagttta 

      481 actatgcttc gtcggcatct ctgcacatgt cgtgttttct taccgtattg tcctaccaag 

      541 aacctctttt ttgcttggat cgaaattaaa ggtttaaaag caaagttatg gatgctagag 

      601 tatttcaaag ctattcagct agagctgagg ggatgaaaaa tcccattgcc aaggaattgt 

      661 tggctttgat ggaagaaaag caaagcaact tgtcagtcgc ggtcgatttg acgaagaaat 

      721 ccgaaatctt agaattggta gataaaattg gaccctatgt ctgtgttatc aagacacata 

      781 ttgacgttgt cgaggatttc gaccaggata tggtagaaaa actggtggcc ttaggtaaaa 

      841 agcatcgttt tcttatcttt gaggatcgca aattcgcaga cattggaaat accgtcaagc 

      901 tacaatatgc atctggtgtg tacaaaattg cttcttgggc tcatatcaca aattgccata 

      961 cagtgccagg cgagggtatt atacaaggcc tcaaagaagt tggtttacct ttgggacgtg 

     1021 gtctcttgct tttggctgaa atgtcttcca aaggctcttt ggctactggt tcctacacag 

     1081 agaaaacctt agaatggttt gagaagcata ccgatttttg ctttggcttt atagctggtc 

     1141 gtcgatttcc taaccttcaa agcgactaca taactatgtc ccctggtatc ggcttggatg 

     1201 ttaaaggaga cgggctggga cagcaatatc gtactcctga agaagtgatt gtaaactgcg 

     1261 gtagcgatat catcattgtt ggtcgtggag tctatggagc tggtcgtaat cctgttgtcg 

     1321 aagccaagag atatagagaa gctggttgga aggcatatca gcaaagactt tctcagcatt 

     1381 aaaaaaagac taatgtaaaa tttttttggt tggttattga aaaagtcgat gccttgtttg 

     1441 cgtttgtttt cctaggcgtt ttatgtcaga aggcatttag aattagtata caagtactct 

     1501 ttggtaaaat tttatgtagc gactaaaata ttaactatta tagataaaca ccttgggaat 

     1561 aaaaagtaat ttgctatagt aatttattaa acatgctcct acaacattac cacaatcttt 

     1621 tctcttggat tgacattgaa taagaaaaga gtgaattttt ttagacttgt aatgataact 

     1681 atgtacaaag ccaatgaaag atgtatgtag atgaatgtaa aataccatgt agacaaacaa 

     1741 gataaaactt ggttataaac attggtgttg gaacagaata aattagatgt caaaaagttt 

     1801 cgtcaatatc acaagctata acttcgtata tggtattata tacgaagtta tgtttaaacg 

     1861 agctcgaatt catcatcaag cttatcgata ccgtcgacct cgaggggggg cccggtaccc 

     1921 agcttttgtt ccctttagtg agggttaatt gcgcgcttgg cgtaatcatg gtcatagctg 

     1981 tttcctgtgt gaaattgtta tccgctcaca attccacaca acatacgagc cggaagcata 

     2041 aagtgtaaag cctggggtgc ctaatgagtg agctaactca cattaattgc gttgcgctca 

     2101 ctgcccgctt tccagtcggg aaacctgtcg tgccagctgc attaatgaat cggccaacgc 

     2161 gcggggagag gcggtttgcg tattgggcgc tcttccgctt cctcgctcac tgactcgctg 

     2221 cgctcggtcg ttcggctgcg gcgagcggta tcagctcact caaaggcggt aatacggtta 

     2281 tccacagaat caggggataa cgcaggaaag aacatgtgag caaaaggcca gcaaaaggcc 

     2341 aggaaccgta aaaaggccgc gttgctggcg tttttccata ggctccgccc ccctgacgag 

     2401 catcacaaaa atcgacgctc aagtcagagg tggcgaaacc cgacaggact ataaagatac 

     2461 caggcgtttc cccctggaag ctccctcgtg cgctctcctg ttccgaccct gccgcttacc 

     2521 ggatacctgt ccgcctttct cccttcggga agcgtggcgc tttctcatag ctcacgctgt 

     2581 aggtatctca gttcggtgta ggtcgttcgc tccaagctgg gctgtgtgca cgaacccccc 

     2641 gttcagcccg accgctgcgc cttatccggt aactatcgtc ttgagtccaa cccggtaaga 

     2701 cacgacttat cgccactggc agcagccact ggtaacagga ttagcagagc gaggtatgta 

     2761 ggcggtgcta cagagttctt gaagtggtgg cctaactacg gctacactag aaggacagta 

     2821 tttggtatct gcgctctgct gaagccagtt accttcggaa aaagagttgg tagctcttga 

     2881 tccggcaaac aaaccaccgc tggtagcggt ggtttttttg tttgcaagca gcagattacg 

     2941 cgcagaaaaa aaggatctca agaagatcct ttgatctttt ctacggggtc tgacgctcag 

     3001 tggaacgaaa actcacgtta agggattttg gtcatgagat tatcaaaaag gatcttcacc 

     3061 tagatccttt taaattaaaa atgaagtttt aaatcaatct aaagtatata tgagtaaact 

     3121 tggtctgaca gttaccaatg cttaatcagt gaggcaccta tctcagcgat ctgtctattt 

     3181 cgttcatcca tagttgcctg actccccgtc gtgtagataa ctacgatacg ggagggctta 

     3241 ccatctggcc ccagtgctgc aatgataccg cgagacccac gctcaccggc tccagattta 

     3301 tcagcaataa accagccagc cggaagggcc gagcgcagaa gtggtcctgc aactttatcc 

     3361 gcctccatcc agtctattaa ttgttgccgg gaagctagag taagtagttc gccagttaat 

     3421 agtttgcgca acgttgttgc cattgctaca ggcatcgtgg tgtcacgctc gtcgtttggt 

     3481 atggcttcat tcagctccgg ttcccaacga tcaaggcgag ttacatgatc ccccatgttg      
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     3541 tgcaaaaaag cggttagctc cttcggtcct ccgatcgttg tcagaagtaa gttggccgca 

     3601 gtgttatcac tcatggttat ggcagcactg cataattctc ttactgtcat gccatccgta 

     3661 agatgctttt ctgtgactgg tgagtactca accaagtcat tctgagaata gtgtatgcgg 

     3721 cgaccgagtt gctcttgccc ggcgtcaata cgggataata ccgcgccaca tagcagaact 

     3781 ttaaaagtgc tcatcattgg aaaacgttct tcggggcgaa aactctcaag gatcttaccg 

     3841 ctgttgagat ccagttcgat gtaacccact cgtgcaccca actgatcttc agcatctttt 

     3901 actttcacca gcgtttctgg gtgagcaaaa acaggaaggc aaaatgccgc aaaaaaggga 

     3961 ataagggcga cacggaaatg ttgaatactc atactcttcc tttttcaata ttattgaagc 

     4021 atttatcagg gttattgtct catgagcgga tacatatttg aatgtattta gaaaaataaa 

     4081 caaatagggg ttccgcgcac atttccccga aaagtgccac ctgacgcgcc ctgtagcggc 

     4141 gcattaagcg cggcgggtgt ggtggttacg cgcagcgtga ccgctacact tgccagcgcc 

     4201 ctagcgcccg ctcctttcgc tttcttccct tcctttctcg ccacgttcgc cggctttccc 

     4261 cgtcaagctc taaatcgggg gctcccttta gggttccgat ttagtgcttt acggcacctc 

     4321 gaccccaaaa aacttgatta gggtgatggt tcacgtagtg ggccatcgcc ctgatagacg 

     4381 gtttttcgcc ctttgacgtt ggagtccacg ttctttaata gtggactctt gttccaaact 

     4441 ggaacaacac tcaaccctat ctcggtctat tcttttgatt tataagggat tttgccgatt 

     4501 tcggcctatt ggttaaaaaa tgagctgatt taacaaaaat ttaacgcgaa ttttaacaaa 

     4561 atattaacgc ttacaatttc cattcgccat tcaggctgcg caactgttgg gaagggcgat 

     4621 cggtgcgggc ctcttcgcta ttacgccagc tggcgaaagg gggatgtgct gcaaggcgat 

     4681 taagttgggt aacgccaggg ttttcccagt cacgacgttg taaaacgacg gccagtgagc 

     4741 gcgcgtaata cgactcacta tagggcgaat tggagctcca ccgcggtggc ggccgctcta 

     4801 gaactagtgg atcccccggg ctgcaggaat tcgat 

 

 

 

          NNNNNNN = Forward Adaptive  PCR Primer BPS Target Site  [bp region: 1 – 21] 

                 

                        NNNNNNN = loxP  [bp region: 22 – 55] 

 

                        NNNNNNN = S.pombe ura4+ gene promoter  [bp region: 56 – 587] 

 

                        NNNNNNN = S. pombe ura4+ gene translation sequence [bp region: 588 – 1382] 
 

          NNNNNNN = S.pombe ura4+ gene terminator sequence [bp region: 1383 – 1817] 
 

          NNNNNNN = loxM3  [bp region: 1818 – 1851] 
 

          NNNNNNN = Reverse Adaptive  PCR Primer BPS Target Site  [bp region: 1852 – 1871] 
 

          NNNNNNN = pBluescript KS “Vector Backbone”  [bp region: 1872 – 4835] 

                    [incorporated ampR gene sequence] 
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APPENDIX 2.11.2: pAW8 Cre-Lox Donor Gene Exchange Plasmid Maps 
 

Taken and Adapted From:  http://web.uni-frankfurt.de/fb15/mikro/euroscarf/data/P30545.html  
                                               

                                                Watson A.T. et al (2008) 
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                          pAW8 Cre-Lox Donor Gene Exchange Plasmid DNA Sequence Map 
 

   Collated Information Source:  http://web.uni-frankfurt.de/fb15/mikro/euroscarf/data/P30545.html 
       

        

        1 caaaaagtta ggtgtaacag aaaatcatga aactatgatt tctaatttat atattggagg 

       61 attttctcta aaaaaaaaaa tacaacaaat aaaaaacact caatgacctg accatttgat 

      121 ggagtttaag tcaatacctt cttgaaccat ttcccataat ggtgaaagtt ccctcaagaa 

      181 ttttactctg tcagaaacgg ccttaacgac gtagtcgatc cggacgatgg ccaaccttcc 

      241 aattcattaa atcgagtcct ccatcagatg atttacaagg ttttgcatag aatccctaag 

      301 taagagaagt tgttagtgat ttcttcaagt ttactaaaat ttacatacaa atggatgatc 

      361 tcttctccat tgtttccttt cttcttgcaa acgcgtttta caaagagatg acatgctatt 

      421 ttctgattat ttttttctat agttttctat tttgtacgtc cttgggagtc cgaaatgtaa 

      481 aatcggggta tggttagtag cggcagcgtt cattatggta tataaaagat aaaaagtagg 

      541 ggcaagcgag acagaatggg atacaagggc atcgtctata attatagcta aaaattgtat 

      601 tttaatttgt attttttgta attttatttc tcattgtttt acttaaaatg aatgcgaatt 

      661 agagaaaact tcaacgaaat gtcaaaataa gctcagcaaa atatacaatt ttagggaaag 

      721 cgatcagcaa cttattctcc ggtgtagatt ctttttcttc ataaattcca acaatgtaac 

      781 tgccaattga tttttctcta gatgctaata aattgaaact aatgaatata ataacacagg 

      841 ttttgataaa ttgtaaactc ttactcaaaa aaagaatgtt aaaactaatt taaccttttt 

      901 ataaaggctc atggcgttaa agaggatagt aaaaattcta caatttttta atttaatgtc 

      961 acaattgtct tgcgaatata attctattaa ttttcgctaa ctgctgtttt agtactatta 

     1021 ctttcaatat gccttatatg caactttaat tcatgaagaa tgcaatattt ttgcaatctt 

     1081 tcttgtactg agcgcttttt atcatttagt actcattatt taatttttca gtaaagggca 

     1141 ataaataaat ttgtagaaga tgcaatgtaa tctcctctat ccttttgctc atatgtttat 

     1201 gagtatacct agtctagaaa ggcttgtatt taaaatatta ttcaataaaa attcacaatt 

     1261 tttacgacat gtgctaccat tcacttaact tcctgattat aaaattggtt cgtttatact 

     1321 aattacttaa gtacctttaa ctaaacaaaa tgcctatata tatattaatt tacaatgagt 

     1381 gtcagataag tcactatgtc cgagtggtta aggagttaga ctcgccatcg atggtatggt 

     1441 gcactctcag tacaatctgc tctgatgccg catagttaag ccagccccga cacccgccaa 

     1501 cacccgctga cgcgccctga cgggcttgtc tgctcccggc atccgcttac agacaagctg 

     1561 tgaccgtctc cgggagctgc atgtgtcaga ggttttcacc gtcatcaccg aaacgcgcga 

     1621 gacgaaaggg cctcgtgata cgcctatttt tataggttaa tgtcatgata ataatggttt 

     1681 cttagacgtc aggtggcact tttcggggaa atgtgcgcgg aacccctatt tgtttatttt 

     1741 tctaaataca ttcaaatatg tatccgctca tgagacaata accctgataa atgcttcaat 

     1801 aatattgaaa aaggaagagt atgagtattc aacatttccg tgtcgccctt attccctttt 

     1861 ttgcggcatt ttgccttcct gtttttgctc acccagaaac gctggtgaaa gtaaaagatg 

     1921 ctgaagatca gttgggtgca cgagtgggtt acatcgaact ggatctcaac agcggtaaga 

     1981 tccttgagag ttttcgcccc gaagaacgtt ttccaatgat gagcactttt aaagttctgc 

     2041 tatgtggcgc ggtattatcc cgtattgacg ccgggcaaga gcaactcggt cgccgcatac 

     2101 actattctca gaatgacttg gttgagtact caccagtcac agaaaagcat cttacggatg 

     2161 gcatgacagt aagagaatta tgcagtgctg ccataaccat gagtgataac actgcggcca 

     2221 acttacttct gacaacgatc ggaggaccga aggagctaac cgcttttttg cacaacatgg 

     2281 gggatcatgt aactcgcctt gatcgttggg aaccggagct gaatgaagcc ataccaaacg 

     2341 acgagcgtga caccacgatg cctgtagcaa tggcaacaac gttgcgcaaa ctattaactg 

     2401 gcgaactact tactctagct tcccggcaac aattaataga ctggatggag gcggataaag 

     2461 ttgcaggacc acttctgcgc tcggcccttc cggctggctg gtttattgct gataaatctg 

     2521 gagccggtga gcgtgggtct cgcggtatca ttgcagcact ggggccagat ggtaagccct 

     2581 cccgtatcgt agttatctac acgacgggga gtcaggccac tatggatgaa cgaaatagac 

     2641 agatcgctga gataggtgcc tcactgatta agcattggta actgtcagac caagtttact 

     2701 catatatact ttagattgat ttaaaacttc atttttaatt taaaaggatc taggtgaaga 

     2761 tcctttttga taatctcatg accaaaatcc cttaacgtga gttttcgttc cactgagcgt 

     2821 cagaccccgt agaaaagatc aaaggatctt cttgagatcc tttttttctg cgcgtaatct 

     2881 gctgcttgca aacaaaaaaa ccaccgctac cagcggtggt ttgtttgccg gatcaagagc 

     2941 taccaactct ttttccgaag gtaactggct tcagcagagc gcagatacca aatactgttc 

     3001 ttctagtgta gccgtagtta ggccaccact tcaagaactc tgtagcaccg cctacatacc 

     3061 tcgctctgct aatcctgtta ccagtggctg ctgccagtgg cgataagtcg tgtcttaccg 

     3121 ggttggactc aagacgatag ttaccggata aggcgcagcg gtcgggctga acggggggtt 

     3181 cgtgcacaca gcccagcttg gagcgaacga cctacaccga actgagatac ctacagcgtg 

     3241 agctatgaga aagcgccacg cttcccgaag ggagaaaggc ggacaggtat ccggtaagcg 

     3301 gcagggtcgg aacaggagag cgcacgaggg agcttccagg gggaaacgcc tggtatcttt 

     3361 atagtcctgt cgggtttcgc cacctctgac ttgagcgtcg atttttgtga tgctcgtcag 

     3421 gggggcggag cctatggaaa aacgccagca acgcggcctt tttacggttc ctggcctttt 

     3481 gctggccttt tgctcacatg ttctttcctg cgttatcccc tgattctgtg gataaccgta 
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     3541 ttaccgcctt tgagtgagct gataccgctc gccgcagccg aacgaccgag cgcagcgagt 

     3601 cagtgagcga ggaagcggaa gagcgcccaa tacgcaaacc gcctctcccc gcgcgttggc 

     3661 cgattcatta atgcagctgg cacgacaggt ttcccgactg gaaagcgggc agtgagcgca 

     3721 acgcaattaa tgtgagttag ctcactcatt aggcacccca ggctttacac tttatgcttc 

     3781 cggctcgtat gttgtgtgga attgtgagcg gataacaatt tcacacagga aacagctatg 

     3841 accatgatta cgccaagctt gcatggcggc cgcataactt cgtatagcat acattatacg 

     3901 aagttatgca tgcggagagc tcggagtcga cgaactagta taacttcgta tatggtatta 

     3961 tatacgaagt tatgcggccg cgcgaattca ctggccgtcg ttttacaacg tcgtgactgg 

     4021 gaaaaccctg gcgttaccca acttaatcgc cttgcagcac atcccccttt cgccagctgg 

     4081 cgtaatagcg aagaggcccg caccgatcgc ccttcccaac agttgcgcag cctgaatggc 

     4141 gaatggcgcc tgatgcggta ttttctcctt acgcatctgt gcggtatttc acaccgcata 

     4201 ccatcgtccg gatcaatgaa gtagatgagt ttactacctg tatatacttt tttttttgtc 

     4261 aaagtcactt ttatggcatt tccatgttga aggattagcc acagcactaa attttcagcg 

     4321 tatgattgct tttaaatatt taattttcat cgttttttaa ttaatattca aaacgattta 

     4381 atgccttcta catctgaagt caagctcata gactcgggtt gggtagctaa aactacatct 

     4441 aacacgaagg ggtatagcct tcttaaagta tactcatgta taaacgtttt gggttcatat 

     4501 ttttgggcca cgtggtttat aaaaattctt aactacacca ctcggtatcc cgcacccgtc 

     4561 tacgtttcta cgatttcgag ctaatattga gtaaagtgat tagcaaaaaa aataaaagta 

     4621 ctcgttgtcg gagatcaaga atttttctat tatctcatct aaaccacttt ctaaaagcga 

     4681 aaaacaaaat cgtaatatgc agcttgaatg ggcttccata gtttgaaaga aaaaccctag 

     4741 cagtactggc aagggagaca ttccttttac ctggctaatc gccatcttcc agcaggcgca 

     4801 ccattgcccc tgtttcacta tccaggttac ggatatagtt catgacaata tttacattgg 

     4861 tccagccacc agcttgcatg atctccggta ttgaaactcc agcgcgggcc atatctcgcg 

     4921 cggctccgac acgggcactg tgtccagacc aggccaggta tctctgacca gagtcatcct 

     4981 tagcgccgta aatcaatcga tgagttgctt caaaaatccc ttccagggcg cgagttgata 

     5041 gctggctggt ggcagatggc gcggcaacac cattttttct gacccggcaa aacaggtagt 

     5101 tattcggatc atcagctaca ccagagacgg aaatccatcg ctcgaccagt ttagttaccc 

     5161 ccaggctaag tgccttctct acacctgcgg tgctaaccag cgttttcgtt ctgccaatat 

     5221 ggattaacat tctcccaccg tcagtacgtg agatatcttt aaccctgatc ctggcaattt 

     5281 cggctatacg taacagggtg ttataagcaa tccccagaaa tgccagatta cgtatatcct 

     5341 ggcagcgatc gctattttcc atgagtgaac gaacctggtc gaaatcagtg cgttcgaacg 

     5401 ctagagcctg ttttgcacgt tcaccggcat caacgttttc ttttcggatc cgccgcataa 

     5461 ccagtgaaac agcattgctg tcacttggtc gtggcagccc ggaccgacga tgaagcatgt 

     5521 ttagctggcc caaatgttgc tggatagttt ttactgccag accgcgcgcc tgaagatata 

     5581 gaagataatc gcgaacatct tcaggttctg cgggaaacca tttccggtta ttcaacttgc 

     5641 accatgccgc ccacgaccgg caaacggaca gaagcatttt ccaggtatgc tcagaaaacg 

     5701 cctggcgatc cctgaacatg tccatcaggt tcttgcgaac ctcatcactc gttgcatcga 

     5761 ccggtaactt ttagattaac atttgtttaa atatgaaatt aggcaatgta acatactgca 

     5821 ggcaaatttt ggtgtacggt aagtaaattg gacatatgat ttaacaaagc gactataagt 

     5881 cagaaagtga gaatgagatt gaaataatta attcaactta ttcaattgat gatatgccag 

     5941 gattcctctt cctttatctt caatgtttcg attaacaggt ccattatccg gtttttagtt 

     6001 tcgctgcaca ttgccgaatg acaatcggat tcctttaagc tttgcttttg ccctgttttc 

     6061 tctccccagt aatcgttggg tgactgaacc atccagtagc cgagagttac gtttttcctg 

     6121 atttaataaa tatccatatc tatttgtctc gtggtgtttt acagcaacta accgaaatta 

     6181 ctattttgca tcatccaacc ataaagagac aacaataatt ctagaaaaca tataacaagt 

     6241 gtttttttct atttacgtct catacgcaaa gtccacttta ccatgttttg gaaacttgta 

     6301 cccaaccatt catttttcga ttttgtaatg aggctctttt cttctaacaa tcattgaggt 

     6361 cattatcatg tgtcctcacc tattgtttaa attgaggctt gcgctattcc caaaattgtg 

     6421 ggtattattt tcatatatca gtatctgcaa tttcggttca actccggaag ctcggtaccc 

     6481 aactgtggga atactcaggt atcgtaagat gcaagagttc gaatctctta gcaaccatta 

     6541 ttttttttct ctcaacataa cgagaacaca caggggcgct atcgcacaga atcaaattcg 

     6601 atgactggaa attttttgtt aatttcagag gtcgcctgac gcatatacct ttttcaactg 

     6661 aaaaattggg agaaaaagga aaggtgagag cgccggaacc ggcttttcat atagaataga 

     6721 gaagcgttca tgactaaatg cttgcatcac aatacttgaa gttgacaata ttatttaagg 

     6781 acctattgtt ttttccaata ggtggttagc aatcgtctta ctttctaact tttcttacct 

     6841 tttacatttc agcaatatat atatatatat atatatatat ttcaaggata taccattgta 

     6901 atgtctgccc ctaagaagat cgtcgttttg ccaggtgacc acgttggtca agaaatcaca 

     6961 gccgaagcca ttaaggttct taaagctatt tctgatgttc gttccaatgt caagttcgat 

     7021 ttcgaaaatc atttaattgg tggtgctgct atcgatgcta caggtgttcc acttccagat 

     7081 gaggcgctgg aagcctccaa gaaggctgat gccgttttgt taggtgctgt gggtggtcct 

     7141 aaatggggta ccggtagtgt tagacctgaa caaggtttac taaaaatccg taaagaactt 

     7201 caattgtacg ccaacttaag accatgtaac tttgcatccg actctctttt agacttatct 

     7261 ccaatcaagc cacaatttgc taaaggtact gacttcgttg ttgttagaga attagtggga 

     7321 ggtatttact ttggtaagag aaaggaagac gatggtgatg gtgtcgcttg ggatagtgaa     
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     7381 caatacaccg ttccagaagt gcaaagaatc acaagaatgg ccgctttcat ggccctacaa 

     7441 catgagccac cattgcctat ttggtccttg gataaagcta atgttttggc ctcttcaaga 

     7501 ttatggagaa aaactgtgga ggaaaccatc aagaacgaat ttcctacatt gaaagttcaa 

     7561 catcaattga ttgattctgc cgccatgatc ctagttaaga acccaaccca cctaaatggt 

     7621 attataatca ccagcaacat gtttggtgat atcatctccg atgaagcctc cgttatccca 

     7681 ggctccttgg gtttgttgcc atctgcgtcc ttggcctctt tgccagacaa gaacaccgca 

     7741 tttggtttgt acgaaccatg ccatggttcc gctccagatt tgccaaagaa taaggtcaac 

     7801 cctatcgcca ctatcttgtc tgctgcaatg atgttgaaat tgtcattgaa cttgcctgaa 

     7861 gaaggtaaag ccattgaaga tgcagttaaa aaggttttgg atgcaggtat cagaactggt 

     7921 gatttaggtg gttccaacag taccaccgaa gtcggtgatg ctgtcgccga agaagttaag 

     7981 aaaatccttg cttaaaaaga ttctcttttt ttgtgatatt tgtacataaa ctttataaat 

     8041 gaaattcata atagaaacga cacgaaatta caaaatggaa tatgttcata gggtagacga 

     8101 aactatatac gcaatctaca tacatttatc aagaaggaga aaaaggagga tgtaaaggaa 

     8161 tacaggtaag caaattgata ctaatggctc aacgtgataa ggaaaaagaa ttgcacttta 

     8221 acattaatat tgacaaggag gagggcatca ca 

 

 

          NNNNNNN = S.pombe ars1 Replication Origin   [bp region: 231 – 1424]  
 

          NNNNNNN = pUC19 “Vector Backbone”  [bp region: 1425 – 3860] 

                                               [Incorporated ampR gene sequence] 

 

                        NNNNNNN = loxP  [bp region: 3874 – 3907] 

 

                        NNNNNNN = Multiple Cloning Site {SphI-SacI-SalI-SpeI}  [bp region: 3908 – 3939] 

 

          NNNNNNN = loxM3  [bp region: 3940 – 3972] 
 

          NNNNNNN = nmt1 Terminator  [bp region: 4213 – 4769] 
 

          NNNNNNN = Cre bacteriophage P1 recombinase  [bp regions: 4775 – 5767; 5817 – 5855] 

 

                        NNNNNNN = S.pombe rad50 Intron 1  [bp region: 5768 – 5816] 

 

                        NNNNNNN = nmt41 Promoter  [bp region: 5856 – 6462] 

 

                        NNNNNNN = S. cerevisiae LEU2  [bp region: 6481 – 7995] 

 

                        NNNNNNN = S. cerevisiae LEU2 Terminator [bp region: 7996 – 8252] 
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APPENDIX 2.11.3: PCR Primers – Sequence and Function 
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APPENDIX 2.11.4: pAW1 Plasmid PCR Fragment-Integrated rad9 Gene Locus Map 
 

 
 
    CGATTGATGT TGGCCATTAC ACTTTCGTAC AAATTTCGGC GCGCGTGTCT ATACTAATAT 

    AAGTGCGTTA AAGCAGGTGC CGGATCCCCG GGTTAATTAA cggatccccg ggttaattaa 

    cataacttcg tatagcatac attatacgaa gttatagctt agctacaaat cccactggct 

    atatgtatgc atttgtgtta aaaaagtttg tatagattat ttaatctact cagcattctt 

    tctctaaata ggaatttgtt acttaatgga gaaaaaaatg tttcgattta cctagtgtat 

    ttgtttgtat actcacgttt aatttcaaac atccattcta tcttgtgtaa tttttggcat 

    ggtgaaaaag ataatcagcc ttataatctt tacaaaagta agaaattctg taaataagcc 

    ttaatgccct tgctttaaat taaaatggtt ctttttcatg ataatgtttg cactttgtga 

    atatatttta gatagttctg tgaggtataa ttaagatgtt ttagagactt atacaatttt 

    gtctttataa attcttaatt gattttacca tcccagttta actatgcttc gtcggcatct 

    ctgcacatgt cgtgttttct taccgtattg tcctaccaag aacctctttt ttgcttggat 

    cgaaattaaa ggtttaaaag caaagttatg gatgctagag tatttcaaag ctattcagct 

    agagctgagg ggatgaaaaa tcccattgcc aaggaattgt tggctttgat ggaagaaaag 

    caaagcaact tgtcagtcgc ggtcgatttg acgaagaaat ccgaaatctt agaattggta 

    gataaaattg gaccctatgt ctgtgttatc aagacacata ttgacgttgt cgaggatttc 

    gaccaggata tggtagaaaa actggtggcc ttaggtaaaa agcatcgttt tcttatcttt 

    gaggatcgca aattcgcaga cattggaaat accgtcaagc tacaatatgc atctggtgtg 

    tacaaaattg cttcttgggc tcatatcaca aattgccata cagtgccagg cgagggtatt 

    atacaaggcc tcaaagaagt tggtttacct ttgggacgtg gtctcttgct tttggctgaa 

    atgtcttcca aaggctcttt ggctactggt tcctacacag agaaaacctt agaatggttt 

    gagaagcata ccgatttttg ctttggcttt atagctggtc gtcgatttcc taaccttcaa 

    agcgactaca taactatgtc ccctggtatc ggcttggatg ttaaaggaga cgggctggga 

    cagcaatatc gtactcctga agaagtgatt gtaaactgcg gtagcgatat catcattgtt 

    ggtcgtggag tctatggagc tggtcgtaat cctgttgtcg aagccaagag atatagagaa 

    gctggttgga aggcatatca gcaaagactt tctcagcatt aaaaaaagac taatgtaaaa 

    tttttttggt tggttattga aaaagtcgat gccttgtttg cgtttgtttt cctaggcgtt 

    ttatgtcaga aggcatttag aattagtata caagtactct ttggtaaaat tttatgtagc 

    gactaaaata ttaactatta tagataaaca ccttgggaat aaaaagtaat ttgctatagt 

    aatttattaa acatgctcct acaacattac cacaatcttt tctcttggat tgacattgaa 

    taagaaaaga gtgaattttt ttagacttgt aatgataact atgtacaaag ccaatgaaag 

    atgtatgtag atgaatgtaa aataccatgt agacaaacaa gataaaactt ggttataaac 

    attggtgttg gaacagaata aattagatgt caaaaagttt cgtcaatatc acaagctata 

    acttcgtata tggtattata tacgaagtta tgtttaaacg agctcgaatt CCCTCATCAT  

          ACGATACGTT ACATAGTAGT TCTAATAAAT CAATAAGATA GTGAATAATG TAACCCAATT 

    AATTAAATTC 

 

          NNNNNNNN =  Flanking  S.pombe Chromosome 1 Base Sequences  

          NNNNNNNN = pAW1 Plasmid Flanking (F)orward and (R)everse BPS Base Sequences 

          NNNNNNNN = pAW1 Plasmid Flanking LoxP and LoxM3 Base Sequences 

          NNNNNNNN = pAW1 Plasmid Ura4+ Gene Base Sequence 
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APPENDIX 2.11.5: pAW8 Cre-Lox Donor rad9 Gene Exchange Plasmid Constructs 
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  APPENDIX 2.11.6: Pre-Constructed (Pre-Supplied) S. pombe Strains Utilised in this Study 
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       APPENDIX 2.11.7: Constructed Full-Length, Truncated and Point-Mutated rad9 Strains 
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       APPENDIX 2.11.8: Cre-Lox Double-Mutant S. pombe Strains Constructed for this Study 
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3.1 Introduction 
 

Comparative western blot analyses of TCA-precipitated total protein samples, prepared from YEA 

broth cultures of cells of an S. pombe strain which expressed an HA epitope-tagged C-terminal 

variant of the Rad9 protein, indicated the existance of a novel constitutive and heat shock-

inducible truncated variant of lower molecular mass (~40kDa) than that of the full-length protein 

(~50kDa) – Fig 3.1, p.286. 

 

There are several plausible hypothetical mechanisms which may account for the expression of this 

short protein variant (termed “Rad9-S”) – notably; 

 

(i) The Expressed S. pombe Rad-S Variant is a De-Phosphorylated Version of the Rad9 Protein 

    A significant shift in molecular weight from ~60kDa to ~45kDa has been observed in SDS- 

    PAGE analyses of  in vitro de-phosphorylation within the C-terminal domain of human Rad9 

   (hRad9), in which the constitutively-phosphorylated form migrates with the corresponding 

   60kDa higher molecular weight marker band position on the gel (St. Onge R.P. et al, 2001). 

 

   In contrast with this observation, initial experimental work has indicated the molecular weight of  

   the un-phosphorylated S. pombe Rad9 protein does not correlate with an equivalent molecular 

   weight reduction to that of the characteristic 40kDa of the novel Rad9-S protein variant (Fig 3.1,  

    p.286). 

 

    Therefore it is unlikely that the Rad9-S variant is a de-phosphorylated form of the full length 

    S. pombe Rad9 protein.  
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(ii) Rad9-S is a Post-Translational Modified Limited-Proteolytic Cleavage Product of Rad9  

      It is feasible that Rad9-S may actually be the resultant product of limited proteolytic post- 

      translational modification of the full length Rad9 protein in S. pombe cells. 

 

      This hypothesis would be consistent with the fact that caspase-3-mediated cleavage of the  

      hRad9 protein during apoptotic processes triggered via DNA damage events has been 

      observed to occur in both in vitro and in vivo types of experimental study (Lee M.W. et al, 

      2003) – as discussed in detail previously in Chapter 1 (Section 1.3.2, pp.127-130). 

 

                                                                                                             
(iii) The Expressed Rad-S Protein is an Alternative Gene-Spliced Translational Product 

       Rad9-S expression in S. pombe cells may originate from alternative mRNA splicing of the 

       full-length Rad9 gene, involving retention of intron 1, with a consequential translational 

       shift to a downstream AUG initiation site at M50 respectively – discussed in detail in 

       Chapter 4. 

 

        This hypothesis is currently considered to be the most favourable explanation for the 

        mechanism of Rad9-S expression as it is also validated via previous experimental 

        studies which have isolated and identified up to three tissue-specific different mRNA 

         molecular variants of hRad9 (Hopkins K.M. et al, 2003). 

 

       Other experimental work, which supports this particular hypothesis, indicates the existence  

       of a paralogue sequence variant of hRad9 - designated as hRad9B, in certain tissue types  

       (Dufault V.M. et al, 2003). 

 

      Progressive experimental studies into potential alternative expression of the hRad9B gene 

      have thus far identified 4 smaller isoform variants of the Rad9B protein (discussed previously 

      in Chapter 1, Section 1.1,  pp.2-22; Fig 1.3, p.9). 
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     The full-length human hRad9A and hRad9B paralogue (Isoform 5) proteins also exhibit  

 
       characteristically very different expression profiles in a variety of normal and cancerous  

       tissue types (discussed previously in Chapter 1, Section 1.1, pp.2-22; Fig 1.3, p.9).  

 

       Whether or not expression of alternative mRNA splice-variants of hRAD9A and hRAD9B  

       genes in human cells is correlated with characteristic expression profiles for different  

       levels of specific isoform sub-type sets of the  hRad9A and hRad9B proteins, which 

       are unique to particular normal and cancerous human cell tissue types, remains to be 

       determined.                        
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       Fig 3.1: Constitutive and Heat-Inducible “Rad9-S” Expression 

 

             
 

Experimental confirmation of the original observations made by Caspari T. and co-workers 

(discussed previously in Chapter 1, Section 1.5.2, pp.145-148). 
 

rad9-deleted (Δrad9 = rad9::ura4+) and “wild-type” S. pombe cells (rad9-c3xHA) were cultured in 

YEA medium at 30°C to a density of 1 x 107 cells/mL. 
 

[The full genotypes of the utilised S. pombe strains are detailed in Appendix 2.11.6 , p.279]. 
 

Aliquots (5 x 108 cells) were then withdrawn from the respective cultures and re-incubated in YEA 

medium at either 30°C or 37°C for a further 30 minutes.  
 

1.4 x 107 cells, acquired from each respective re-incubated culture, were utilised for the preparation 

of TCA-precipitated total protein extracts. 
 

20μL aliquots of the prepared protein samples were resolved on 10% SDS-PAGE gels which were 

then utilised in comparative Western blot analyses probed with either the anti-HA or anti-Cdc2 

primary antibody. 
 

[Protein sample preparation, SDS-PAGE resolution and Western blot methodologies are detailed in  

 Section 2.8.1, pp.200-202; Section 2.8.4, pp.223-224 and Section 2.8.6, pp.231-233] 
 

Protein samples isolated from the rad9-deleted S. pombe cell cultures served as comparative negative 

non-specific/cross-reactivity controls in the anti-HA Western blot for verification that the detected 

protein bands in the rad9-c3xHA samples were exclusive to the specific expression of Rad9 protein 

isoforms.  
 

The comparative anti-Cdc2 Western blot served as a qualitative control for verification that 

equivalent amounts of total protein for each sample had been loaded. 
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3.2 Creation of Experimental S. pombe Strains 

The S. pombe rad9 gene is comprised of four protein-encoding exons separated by three interstitial 

non-coding introns and also contains 4 methionine AUG codons (at positions M74, M311, M312 

and M358), in addition to the M1 and M50 AUG codon sites (Fig 3.2, pp.289-290). 

 

Thus the S. pombe rad9 gene possesses the potential to express up to 4 progressively smaller novel 

spRad9 isoforms, in addition to the full-length spRad9 protein and the postulated spRad9-S 

truncated variant (Fig 3.2, pp.289-290).   

 

It was proposed that if these potential alternative AUG codon start-site translational products of the 

S. pombe rad9 gene are expressed as stable protein products then they may also exhibit novel 

functions, outside of the canonical Rad9-Rad1-Hus1 heterotrimeric DNA sliding-clamp complex, 

towards different  types of induced DNA replication stress and DNA damage. 

 

The Cre-Lox system (devised by Watson A.T. et al, 2008) was adapted for the generation of an 

initial set of novel S. pombe strains, whose respective cells were engineered for the exclusive 

expression of specific experimental Rad9 protein variants (Fig 3.2, pp.289-290). 

 

This Cre-Recombinase-Mediated Cassette Exchange (Cre-RMCE) adaptation was a binary system 

which required the preparation of two essential components (Fig 3.3, p.291) – notably; 

 

(i) The rad9 gene-deleted S. pombe base-strain (Section 3.2.1, pp.292-297), whose cells contained 

     the LoxP-ura4+-LoxM3 exchange cassette integrated at the endogenous rad9 gene locus  

     within chromosome 1 (Fig 3.3, p.291). 
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(ii) A set of pAW8 donor plasmid constructs (Section 3.2.2, pp.298-307) which contained the 

      LoxP-modified rad9 allele-LoxM3 exchange cassettes (Fig 3.3, p.291), that encoded the 

      experimental Rad9 protein variants (Fig 3.2, pp.289-290). 

 

Transformation of the Δrad9 base-strain with the pAW8 donor plasmid constructs resulted in the 

Cre-RMCE-integration of the PCR-modified rad9 alleles at the endogenous rad9 gene locus 

situated within chromosome 1 (Fig 3.3, p.291) for consequential generation of the desired initial 

set of novel experimental S. pombe strains whose cells expressed specific Rad9 protein variants 

(Fig 3.2, pp.289-290). 
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           Fig 3.2: Experimental S. pombe rad9 Gene Constructs 
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The structure of the S. pombe rad9 gene is indicated, together with the relative positions of 

the introns, exons and potential alternative translational AUG codon start sites at M50, M74, 

M311,M312 and M358. 

 

The residue-spanning regions and the total number of amino acids (in brackets) encoded by 

each respective exon are also indicated. 
 
Details of the “cre-lox”–engineered rad9 allele S. pombe strain genotypes and their respective 

hypothetical Rad9 protein expression phenotypes are provided are summarily tabulated. 

 

Cre-lox construction of the rad9-M50A-c3xHA S. pombe strain was later undertaken by Dr. 

Thomas Caspari for utilisation in comparative experiments with the rad9-M50L-c3xHA  

S. pombe strain, constructed by the author, to ascertain whether or not the Rad9-S protein 

variant is an alternative  translation product at the Methionine 50 AUG codon initiation site. 

 

[In this context, the rad9-M50A-c3xHA strain served as an experimental control to 

accommodate the documented phenomenon that the S. pombe organism can utilise the CUG 

codon (encoding leucine) as an alternative translation start codon substitute for the normal 

AUG methionine codon under certain conditions] 

 

 

NOTE: Other truncated Rad9 protein variants derived from limited-proteolytic processing 

              of the full-length Rad9 protein and/or the potential alternative translation site-type 

              truncated Rad9 protein isoforms may also exist. 
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               Fig 3.3: Overview of the Adapted Cre-RMCE System      
 

 
 

The rad9-deleted base-strain (Δrad9) contains the loxP-ura4+-loxM3 cassette integrated at the endogenous rad9 

gene locus situated within chromosome 1 (Fig A). 
 

The pAW8 donor plasmid construct contains the PCR-modified rad9 allele, which is cloned within the loxP- and 

loxM3- flanked MPS via complementary Sph1 and SpeI restriction site digestion and ligation (Fig A). 
 

The pAW8 donor plasmid construct also contains the S. pombe CRE gene, which encodes the recombinase 

enzyme that catalyses the “cre-lox” cassette exchange transformation reaction, is situated downstream from the 

S. pombe Pnmt promoter and rad50-intron1 spacer sequences and upstream from the S. pombe Tnmt 

terminator sequence – the direction of gene transcription is indicated via the white arrow (Fig A). 

   

Transformation of the base-strain with the appropriate pAW8 donor plasmid construct (Fig A) results in Cre-

Recombinase-Mediated-Cassette-Exchange (Cre-RMCE) of the PCR-modified rad9 allele at the endogenous 

rad9 gene locus situated within chromosome 1 and consequential generation of the experimental S. pombe strain 

whose cells exclusively express the modified Rad9 protein variant (Fig B). 
 

The heterospecific nature of the wild-type loxP and mutated loxM3 recombination sites ensures that the 

inserted exchange product, once formed within the transformed base-strain, is stable and prevents the 

occurrence of unstable self-recombination events which would otherwise result in deleted removal and/or 

translocation of the PCR-engineered rad9 allele cassette insert within the transformed base-strain. 
 

The ura4+ gene encodes an enzyme involved in uracil biosynthesis (orotidine monophosphate dehydrogenase) 

which converts 5-Fluoro-orotic acid (5-FOA) to 5-Fluorouracil – which is a suicide substrate that inhibits the 

enzyme thymidylate synthetase, thereby blocking DNA replication as a consequence of impaired dTTP 

synthesis that results in cell death. 
 

Thus, only transformed base-strain cells are able to grow on YEA agar containing 5-FOA, due to the fact they 

lack the  ura4+ gene – which serves as a positive selection marker for the exclusion of colonies which arise from 

untransformed base-strain cells.  
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3.2.1 Construction and Genotypic Verification of the “Cre-Lox” 

Δrad9 Base-Strain   

 

The loxP-ura4+-loxM3 exchange cassette fragment was generated via endogenous rad9 gene locus 

BPS site-directed PCR-modification of the pAW1 non-essential gene replacement plasmid and 

utilised to transform the S. pombe strain 804 (genotype: ura4-D18 leu1-32 ade6-M210 h-)  – via 

the methodologies described in detail in Section 2.5, pp.171-191.  

 

The orientation of the resultant rad9 gene locus-integrated exchange cassette fragment 

(incorporated within chromosome 1 of the transformed S. pombe strain 804) was such that the loxP 

sequence was situated 181 nucleotides upstream of the rad9 gene start codon at position 1714271, 

whilst the loxM3 sequence was situated 136 nucleotides downstream of the rad9 gene stop codon 

at position 1715762 respectively (Fig 3.4, pp.296-297). 

 

The genotype of the constructed base-strain (designated strain no.1339) was verified via 

comparative PCR analyses performed with selective pairs of rad9- and ura4- targeting primer 

probes on genomic DNA extracts acquired from the “wild-type” strain 804 and the rad9::ura4+-

deleted strain 917 (Fig  3.4, p.296) – whose respective genotypes are; 

804 genotype = ura4-D18 leu1-32 ade6-M210 h- 

917 genotype = rad9::ura4+ ura4-D18 leu1-32 ade6-M210 h- 

1339 (“base-strain”) genotype = rad9::loxP-ura4+-loxM3 ura4-D18 leu1-32 ade6-M210 h- 

 

Comparative PCR genotyping analyses performed with the primer probe pair Ura4-1 and Ura4-4 

resulted in the generation of detectable products from crude genomic DNA extracts of all three 

strains which indicated that they all contained the ura4 gene (Fig 3.4, pp.296-297). 
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Detection of a significantly weaker PCR product band, acquired from the S. pombe strain 804 

genomic DNA extract, was attributed to sub-optimal annealing of the Ura4-1 and Ura4-4 primer 

probe pair to the altered base-sequence of the ura4-D18 gene – which is a site-directed 

mutagenised modification of the “wild-type” ura4+ gene that encodes a catalytically-inactive 

orotidine monophosphate dehydrogenase enzyme (Fig 3.4, pp.296-297). 

 

Comparative PCR genotyping analyses performed with the primer probe pair Rad9-5 and Rad9-9  

resulted in the detection of a very strong product band acquired from the S. pombe strain 804 

genomic DNA extract, that was not detected in the genomic DNA extracts isolated from the rad9-

deleted S. pombe strains 917 and 1339 (Fig 3.4, pp.296-297) – which verified the presence of the 

rad9 gene in the “wild-type” S. pombe strain 804 and confirmed the absence of the rad9 gene 

within the S. pombe strains 917 and 1339. 

 

Detection of a strong PCR product band via primer probe pair Rad9-9 and Rad9-10 analysis of 

crude genomic DNA extract acquired from the “wild-type” S. pombe strain 804 confirmed the 

presence of the rad9 gene (Fig 3.4, pp.296-297). 

 

PCR primer probe pair Rad9-9 and Rad9-10 analysis of the crude genomic DNA extract acquired 

from the S. pombe strain 917 yielded two thinner bands of higher base-pair content than the rad9 

gene which was attributed to sub-optimal primer annealing to segments of residual complementary 

rad9 base sequence that were present as a consequence of the method utilised to construct this 

strain – in which the ura4+ gene had been inserted directly within the endogenous rad9 gene locus 

to prevent its functional expression (Fig 3.4, pp.296-297). 

 

 

 

 

                                                    [293] 



Lack of a detectable product band in the case of the PCR primer probe pair Rad9-9 and Rad9-10 

analysis of the crude genomic DNA extract acquired from the constructed cre-lox base-strain 1339, 

was attributed to the successful integration of the loxP-ura4+-loxM3 at the endogenous rad9 gene 

locus and consequential deletion of the complementary rad9 base sequences for primer annealing 

(Fig 3.4, pp.296-297). 

 

PCR primer probe pair Ura4-1 and Rad9-10 and Ura4-4 and Rad9-10 analyses of the crude 

genomic DNA extract acquired from the “wild-type” S. pombe strain 804 failed to yield any 

product bands, which was attributed to the fact that the respective rad9 and mutated ura4-D18 

genes are isolated from each other (ie not situated in adjacent proximity) within the genotype of 

this strain and the mutated ura4-D18 gene contains an altered base-sequence which prevents 

optimal complementary annealing of the Ura4-1 and Ura4-4 primers (Fig 3.4, pp.296-297). 

 

PCR primer probe pair Ura4-1 and Rad9-10 analysis of the crude genomic DNA extracts acquired 

from the rad9-deleted S. pombe strains 917 and 1339 yielded single band products, which was 

attributed to the presence of complementary ura4+ gene primer-annealing base-sequences within 

the genetic constructs of these strains (Fig 3.4, pp.296-297). 

 

PCR primer probe pair Ura4-4 and Rad9-10 analysis of the crude genomic DNA acquired from the 

rad9-deleted S. pombe strains 917 and 1339 yielded a single band product in the case of S. pombe 

917, whilst no product was detected in the case of  S. pombe strain 1339 (Fig 3.4, pp.296-297). 

 

In the case of the S. pombe strain 917 genomic construct, the ura4+ gene is inserted directly within 

the endogenous rad9 gene locus to prevent its functional expression which enables complementary 

Rad9-10 and Ura4-4 primer annealing and consequential formation of a PCR product (Fig 3.4, pp. 

296-297).  
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But in the case of the cre-lox S. pombe base-strain 1339 genomic construct, the ura4+ gene is 

situated with a cre-lox exchange cassette flanked by complementary rad9 gene BPS, loxP and 

loxM3 which is inserted at the endogenous rad9 gene locus on chromosome 1 (Fig 3.4, pp.296-

297). 

 

Consequently, no PCR product is formed with the primer probe pair Rad9-10 and Ura4-4 due to 

the deletion of the Rad9-10 primer-targeted complementary annealing base-sequence in the cre-lox 

base-strain construct (Fig 3.4, pp.296-297). 

 

Taken together, these comparative PCR genotyping data confirmed that the genetic construction of 

the rad9-deleted “cre-lox” base-strain (strain no. 1339) was correct and contained the exchange 

cassette (loxP-ura4+-loxM3) integrated at the endogenous rad9 gene locus situated within 

chromosome 1 (Fig 3.4, pp.296-297). 
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        Fig 3.4: Δrad9 “Cre-Lox Base-Strain” Genotype Verification  
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A summarised structural map of the loxP-ura4+-loxM3 integrated at the endogenous  

S. pombe rad9 gene locus within chromosome 1 is illustrated in the top figure. 

 

[NOTE: Refer to appendix 2.11.4, p.270 for  DNA sequence details of the rad9 gene 

                locus-integrated loxP-ura4+-loxM3 pAW1 fragment] 

 

 

 

The base sequence-complementary annealing sites of the rad9 and ura4+ gene-targeting 

primers are illustrated in the middle figure: 

 

Rad9-5 binds within the rad9 gene at 103 base-pairs downstream from the translational 

AUG start-codon of the first methionine.  

 

Rad9-9 binds with the rad9 gene -137 base-pairs upstream from the TAG stop codon. 

 

Rad9-10 binds -648 base-pairs upstream from the translational AUG start-codon 

of the first methionine encoded by the rad9 gene.   

 

Ura4-1 binds within the ura4+ gene 31 bases downstream from the translational AUG 

start-codon of the first methionine.  

 

Ura4-4 binds within the ura4+ gene 16 bases upstream from the TAA stop codon.  

 

[NOTE: Refer to appendix 2.11.3, p.269 for details of the PCR primer sequences] 

 

 

 

The acquired genotypic data for each PCR primer probe pair combination is provided in  

the bottom two figures. 
 

H2O = Ultra-pure millipore water (negative PCR control) 

 

804 = Genomic DNA extract from the “wild-type” 

           S. pombe strain – genotype: ura4-D18 leu1-32 ade6-M210 h- 

917 = Genomic DNA extract from rad9::ura4+ gene-deleted 

          S. pombe strain – genotype: rad9::ura4+ ura4-D18 leu1-32 ade6-M210 h- 

1339 = Genomic DNA extract from constructed rad9::loxP-ura4+-loxM3 S. pombe “Cre-Lox” 

             “Base-Strain” – genotype: rad9::loxP-ura4+-loxM3 ura4-D18 leu1-32 ade6-M210 h-            

Crude genomic DNA extracts, prepared from overnight 30˚C YEA broth cultures of the 

respective S. pombe strains, were utilised as PCR templates in comparative genotying assays 

with the primer probe pairs indicated. 

 

Comparative 1.0% TBE agarose gel (0.5µg/ml ethidium bromide) gel analysis was performed 

on 10 µL loaded samples (each sample comprised a 5µL aliquot of the crude PCR product 

combined with 5µL of 2x DNA loading dye buffer – detailed in Section 2.2.1, p.162) 

 

[Total genomic DNA extract preparation, PCR and agarose gel analysis methodologies are 

detailed in Section 2.2.1, p.162, Section 2.4, pp.169-170; Section 2.6.2, p.192] 
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3.2.2 Construction and Restriction Digest Verification of the pAW8  

Donor Plasmid Set  

The full-length untagged rad9 allele cassette insert was constructed via a single PCR reaction with 

a 5’-flanking forward primer which contained the Sph1 restriction site (Rad9-S5) and a 3’-flanking 

reverse primer which contained the Spe1 restriction site (Rad9-S6), utilising genomic DNA 

isolated from the “wild-type” S. pombe strain 804 (genotype: ura4-D18 leu1-32 ade6-M210 h-
 ) – 

Fig 3.5, p.300. 

 

The full-length C-terminal HA-tagged rad9 allele cassette was constructed via a single PCR 

reaction with a 5’-flanking forward primer which contained the SphI restriction site (Rad9-S5) and 

a 3’-flanking reverse primer which contained the SpeI restriction site (Rad9-S8), utilising genomic 

DNA isolated from the “wild-type” S. pombe strain 150 (genotype: rad9-c3xHA kanMX6 ura4-D18 

leu1-32 ade6-M210 h-) – Fig 3.6, p.301. 

 

Mutated C-terminal HA-tagged rad9 alleles were constructed via a fusion PCR protocol (described 

in detail in Section 2.5, p.176; Fig 2.6, p.176) utilising genomic DNA isolated from S. pombe 

strain 150 with two PCR primer sets (Figs 3.7-3.12, pp.302-307). 

 

 (i) A 5’-flanking forward primer which contained the SphI restriction site (Rad9-S5) with the  

      mutant reverse primer. 

 

(ii)  A 3’-flanking reverse primer which contained the SpeI restriction site (Rad9-S8) with the  

       mutant forward primer. 

 

The two mutant primers also contained complementary overlapping annealing sequences which 

accommodated the desired modification to enable fusion of the initial products in a subsequent 

PCR reaction. 
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The resultant final fusion PCR product was then amplified, utilising the 5’-flanking forward primer 

(Rad9-S5) and 3’-flanking reverse primer (Rad9-S8). 

 

The promoter sequence of 181 nucleotides between loxP and the appropriate translational start 

codon (ATG1, ATG50, ATG74, ATG312 or ATG358) was restored in these PCR-generated rad9 

allele cassette inserts.  

 

The prepared rad9 allele cassette inserts were then cloned into the cre-lox pAW8 donor plasmid, 

via complementary SphI and SpeI restriction site digestion and ligation reactions (described in 

detail in Section 2.5.2, pp.179-187). 

 

Comparative undigested and Sph1/Spe1-digested PCR product, “empty” pAW8 plasmid and 

ligated pAW8 plasmid construct samples were then prepared and analysed on 1% (w/v) TBE-

agarose gels (which contained 0.5µg/ml ethidium bromide) – as per the methodologies described 

in detail in Section 2.5.2.5, pp.186-187. 

 

The resultant data verified that construction of the required cre-lox pAW8 plasmid set had been 

accomplished and that the SphI and SpeI restriction enzymes utilised did not cleave at any internal 

sites within the rad9 alleles of the PCR-generated pAW8 donor plasmid cassette inserts (Figs 3.5-

3.12, pp.300-307. 
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                      Fig 3.5: pAW8-rad9 Plasmid Construction  
 

 
 

1 = Millipore water with PCR primers Rad9-S5 and Rad9-S6 (negative contamination PCR control) 

2 = “Wild-type” rad9 (S .pombe strain 804) genomic DNA with Rad9-S5 and Rad9-S6 PCR primers 

3 = Resultant Rad9-S5 and Rad9-S6 PCR primer product cleaved with SpeI and Sph1 restriction enzymes  

4 = “Empty” pAW8 “cre-lox” donor plasmid DNA (uncleaved) 

5 = Ligated pAW8-rad9 donor plasmid DNA construct (uncleaved) 

6 = “Empty” pAW8 “cre-lox” donor plasmid DNA (SpeI and SphI restriction enzyme digested) 

7 = Ligated pAW8-rad9 donor plasmid DNA construct (SpeI and SphI restriction enzyme digested) 

 

Comparative 1.0% TBE agarose gel (0.5µg/ml ethidium bromide) gel analysis was performed with 20µL loaded 

sample aliquots. 
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               Fig 3.6: pAW8-rad9-c3xHA Plasmid Construction 
 

 

 

1 = Millipore water with PCR primers Rad9-S5 and Rad9-S8 (negative contamination PCR control) 

2 = rad9-c3xHA (S. pombe strain 150) genomic DNA with Rad9-S5 and Rad9-S8 PCR primers 

3 = Resultant Rad9-S5 and Rad9-S8 PCR primer product cleaved with SpeI and Sph1 restriction enzymes  

4 = “Empty” pAW8 “cre-lox” donor plasmid DNA (uncleaved) 

5 = Ligated pAW8-rad9-c3xHA donor plasmid DNA construct (uncleaved) 

6 = “Empty” pAW8 “cre-lox” donor plasmid DNA (SpeI and SphI restriction enzyme digested) 

7 = Ligated pAW8-rad9-c3xHA donor plasmid DNA construct (SpeI and SphI restriction enzyme digested) 

 

Comparative 1.0% TBE agarose gel (0.5µg/ml ethidium bromide) gel analysis was performed with 20µL loaded 

sample aliquots. 
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       Fig 3.7: pAW8-rad9-ΔIntron1-c3xHA Plasmid Construction 
 

 

1 = Millipore water with PCR primers Rad9-S5 and Rad9-S9 (negative contamination PCR control) 

2 = rad9-c3xHA (S. pombe strain 150) genomic DNA with Rad9-S5 and Rad9-S9 PCR primer product 

3 =  Millipore water with PCR Primers Rad9-S8 and Rad9-S10 (negative contamination PCR control) 

4 = rad9-c3xHA (S. pombe strain 150) genomic DNA with Rad9-S8 and Rad9-S10 PCR primer product 

5 = Millipore water and PCR master-mix only (negative fusion PCR control) 

6 = PCR product from Rad9-S5–Rad9-S9 and Rad9-S8–Rad9-S10 PCR fragments (uncleaved) 

7 = PCR product from Rad9-S5–Rad9-S9 and Rad9-S8–Rad9-S10 PCR fragments  (SpeI and Sph1 digest) 

8 = “Empty” pAW8 “cre-lox” donor plasmid DNA (uncleaved) 

9= Ligated pAW8-rad9-ΔIntron1-c3xHA donor plasmid DNA construct (uncleaved) 

10= “Empty” pAW8 “cre-lox” donor plasmid DNA (SpeI and SphI digest) 

11= Ligated pAW8-rad9-ΔIntron1-c3xHA donor plasmid DNA construct (SpeI and SphI digest) 

 

Comparative 1.0% TBE agarose gel (0.5µg/ml ethidium bromide) gel analysis was performed with 20µL loaded 

sample aliquots. 
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          Fig 3.8: pAW8-rad9-M50L-c3xHA Plasmid Construction 
 

 
 

1 = Millipore water with PCR primers Rad9-S5 and Rad9-M50LR (negative contamination PCR control) 

2 = rad9-c3xHA (S. pombe strain 150) genomic DNA with Rad9-S5 and Rad9-M50LR PCR primer product 

3 =  Millipore water with PCR primers Rad9-S8 and Rad9-M50LF (negative contamination PCR control) 

4 = rad9-c3xHA (S. pombe strain 150) genomic DNA with Rad9-S8 and Rad9-M50LF PCR primer product 

5 = Millipore water and PCR master-mix only (negative fusion PCR control) 

6 = PCR product from Rad9-S5–Rad9-M50LR and Rad9-S8–Rad9-M50LF PCR fragments (uncleaved) 

7 = PCR product from Rad9-S5–Rad9-M50LR & Rad9-S8–Rad9-M50LF PCR fragments  (SpeI/Sph1 digest) 

8 = “Empty” pAW8 “Cre-Lox” donor plasmid DNA (uncleaved) 

9= Ligated pAW8-rad9-M50Lc3xHA donor plasmid DNA construct (uncleaved) 

10= “Empty” pAW8 “Cre-Lox” donor plasmid DNA (SpeI and SphI digest) 

11= Ligated pAW8-rad9-M50L-c3xHA donor plasmid DNA construct (SpeI and SphI digest) 

 

Comparative 1.0% TBE agarose gel (0.5µg/ml ethidium bromide) gel analysis was performed with 20µL loaded 

sample aliquots. 
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           Fig 3.9: pAW8-NΔ49-rad9-c3xHA Plasmid Construction 

   

1 = Millipore water with PCR primers Rad9-S5 and Rad9-S12 (negative contamination PCR control) 

2 = rad9-c3xHA (S. pombe strain 150) genomic DNA with Rad9-S5 and Rad9-S12 PCR primer product 

3 =  Millipore water with PCR primers Rad9-S8 and Rad9-S11 (negative contamination PCR control) 

4 = rad9-c3xHA (S. pombe strain 150) genomic DNA with Rad9-S8 and Rad9-S11 PCR primer product 

5 = Millipore water and PCR master-mix only (negative fusion PCR control) 

6 = PCR product from Rad9-S5–Rad9-S12 and Rad9-S8–Rad9-S11 PCR fragments (uncleaved) 

7 = PCR product from Rad9-S5–Rad9-S12 & Rad9-S8–Rad9-S11 PCR fragments  (SpeI/Sph1 digest) 

8 = “Empty” pAW8 “cre-lox” donor plasmid DNA (uncleaved) 

9= Ligated pAW8-NΔ49-rad9-c3xHA donor plasmid DNA construct (uncleaved) 

10= “Empty” pAW8 “cre-lox” donor plasmid DNA (SpeI and SphI digest) 

11= Ligated pAW8- NΔ49-rad9-c3xHA donor plasmid DNA construct (SpeI and SphI digest) 

 

Comparative 1.0% TBE agarose gel (0.5µg/ml ethidium bromide) gel analysis was performed with 20µL loaded 

sample aliquots. 
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         Fig 3.10: pAW8-NΔ73-rad9-c3xHA Plasmid Construction  
 

         

1 = Millipore water with PCR primers Rad9-S5 and Rad9-M74R (negative contamination PCR control) 

2 = rad9-c3xHA (S. pombe strain 150) genomic DNA with Rad9-S5 and Rad9-M74R PCR primer product 

3 =  Millipore water with PCR primers Rad9-S8 and Rad9-M74F (negative contamination PCR control) 

4 = rad9-c3xHA (S. pombe strain 150) genomic DNA with Rad9-S8 and Rad9-M74F PCR primer product 

5 = Millipore water and PCR master-mix only (negative fusion PCR control) 

6 = PCR product from Rad9-S5–Rad9-M74R and Rad9-S8–Rad9-M74F PCR fragments (uncleaved) 

7 = PCR product from Rad9-S5–Rad9-M74R & Rad9-S8–Rad9-M74F PCR fragments  (SpeI/Sph1 digest) 

8 = “Empty” pAW8 “cre-lox” donor plasmid DNA (uncleaved) 

9= Ligated pAW8-NΔ73-rad9-c3xHA donor plasmid DNA construct (uncleaved) 

10= “Empty” pAW8 “Cre-Lox” donor plasmid DNA (SpeI and SphI digest) 

11= Ligated pAW8- NΔ73-rad9-c3xHA donor plasmid DNA construct (SpeI and SphI digest) 

 

Comparative 1.0% TBE agarose gel (0.5µg/ml ethidium bromide) gel analysis was performed with 20µL loaded 

sample aliquots. 
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          Fig 3.11: pAW8-NΔ311-rad9-c3xHA Plasmid Construction 
 

        

1 = Millipore water with PCR Primers Rad9-S5 and Rad9-M312R (negative contamination PCR control) 

2 = rad9-c3xHA (S. pombe strain 150) genomic DNA with Rad9-S5 and Rad9-M312R PCR primer product 

3 =  Millipore water with PCR primers Rad9-S8 and Rad9-M312F (negative contamination PCR control) 

4 = rad9-c3xHA (S. pombe strain 150) genomic DNA with Rad9-S8 and Rad9-M312F PCR primer product 

5 = Millipore water and PCR master-mix only (negative fusion PCR control) 

6 = PCR product from Rad9-S5–Rad9-M312R and Rad9-S8–Rad9-M312F PCR fragments (uncleaved) 

7 = PCR product from Rad9-S5–Rad9-M312R & Rad9-S8–Rad9-M312F PCR fragments  (SpeI/Sph1 digest) 

8 = “Empty” pAW8 “cre-lox” Donor Plasmid DNA (uncleaved) 

9= Ligated pAW8-NΔ311-rad9-c3xHA donor plasmid DNA construct (uncleaved) 

10= “Empty” pAW8 “cre-lox” donor plasmid DNA (SpeI and SphI digest) 

11= Ligated pAW8- NΔ311-rad9-c3xHA donor plasmid DNA construct (SpeI and SphI digest) 

 

Comparative 1.0% TBE agarose gel (0.5µg/ml ethidium bromide) gel analysis was performed with 20µL loaded 

sample aliquots. 
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          Fig 3.12: pAW8-NΔ357-rad9-c3xHA Plasmid Construction 

     

1 = Millipore water with PCR primers Rad9-S5 and Rad9-M358R (negative contamination PCR control) 

2 = rad9-c3xHA (S. pombe strain 150) genomic DNA with Rad9-S5 and Rad9-M358R PCR primer product 

3 =  Millipore water with PCR primers Rad9-S8 and Rad9-M358F (negative contamination PCR control) 

4 = rad9-c3xHA (S. pombe strain 150) genomic DNA with Rad9-S8 and Rad9-M358F PCR primer product 

5 = Millipore water and PCR master-mix only (negative fusion PCR control) 

6 = PCR product from Rad9-S5–Rad9-M358R and Rad9-S8–Rad9-M358F PCR fragments (uncleaved) 

7 = PCR product from Rad9-S5–Rad9-M358R & Rad9-S8–Rad9-M358F PCR fragments  (SpeI/Sph1 digest) 

8 = “Empty” pAW8 “cre-lox” donor plasmid DNA (uncleaved) 

9= Ligated pAW8-NΔ357-rad9-c3xHA donor plasmid DNA construct (uncleaved) 

10= “Empty” pAW8 “cre-lox” donor plasmid DNA (SpeI and SphI digest) 

11= Ligated pAW8- NΔ357-rad9-c3xHA donor plasmid DNA construct (SpeI and SphI digest) 

 

Comparative 1.0% TBE agarose gel (0.5µg/ml ethidium bromide) gel analysis was performed with 20µL loaded 

sample aliquots. 
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3.3 Genotypic and Phenotypic Analyses of the Constructed Strains 

 

The genotype of the “cre-lox” rad9-deleted S. pombe “base-strain” (Δrad9), constructed from the 

wild-type S. pombe strain 804 (whose genotype is defined as: ura4-D18 leu1-32 ade6-M210 h-), 

 is rad9::loxP-ura4+-loxM3 ura4-D18 leu1-32 ade6-M210 h- such that it expresses the “wild-type” 

ura4+ gene which encodes the normal functional form of an enzyme that is involved in uracil 

biosynthesis (orotidine monophosphate dehydrogenase) and compensates for the presence of the 

mutant ura4-D18 gene which encodes a catalytically-inactive version of this enzyme. 

 

Cells of this “cre-lox”– constructed (Δrad9) “base-strain” are therefore able to grow on 

Edingburgh minimal agar medium which does not contain uracil (“EMM minus U”), but die on 

yeast adenine rich agar medium containing 5-Fluoro-orotic acid (“YEA – 5-FOA”)  due to the fact 

that the expressed functionally-active orotidine monophosphate dehydrogenase enzyme catalyses 

the conversion of 5-FOA to the “suicide substrate” 5-Fluorouracil (5-FU) which blocks the 

biosynthesis of 2’-deoxyribothymidine-5’-triphosphate (dTTP), via the inhibition of the enyzyme 

thymidylate synthetase, with consequential depletion of the cellular dTTP pool and inhibition of 

DNA replication (Fig 3.13, p. 311). 

 

The “generalised genotype” of  the “cre-lox” – transformed S. pombe base-strain (Δrad9) cells 

may be defined as:  rad9::loxP-“rad9X”-loxM3 ura4-D18 leu1-32 ade6-M210 h- (where “rad9X” 

represents a specific PCR-modified/mutant rad9 allele which is incorporated into the base-strain 

via Cre-recombinase cassette-mediated exchange of the ura4+ gene that of the modified/mutant 

rad9 gene via transformation with the appropriate pAW8 “cre-lox” donor plasmid construct – 

described previously in Fig 3.3, p.291). 

 

 

 

 

 

                                                  [308] 



Cells of these Δrad9 “base-strain” – transformed S. pombe strains are therefore unable to grow on 

the “EMM minus U” agar medium, but retain growth viability on the “YEA – 5FOA” agar 

medium due to the fact that they only contain the mutant ura4-D18 gene (Fig 3.13, p.311). 

 

The selection plate phenotype data (Fig 3.13, p.311) and PCR genotype assay (Fig 3.14, p.312), 

indicated conclusively that the intended “cre-lox”-construction of the required initial set of 

experimental S. pombe strains had been accomplished. 

 

DNA sequencing was also employed to confirm that the “cre-lox” – engineered S. pombe strains 

contained the correct specifically PCR-modified/mutated rad9 alleles (as per the methodology 

described previously in Section 2.6.3, pp.193-195). 

 

Comparative Western blot analyses detected equivalent levels of expression of the respective 

engineered Rad9 protein in the case of the S. pombe strains rad9-c3xHA, rad9-(ΔIntron1)-c3xHA, 

rad9-(M50A)-c3xHA, rad9-(M50L)-c3xHA and NΔ49-rad9-c3xHA (“rad9-S”-c3xHA), but a 

significant lower level of protein expression in the case of the S. pombe strain NΔ73-rad9-c3xHA  

(Fig 3.15, p.313) – which may be due to suppressed expression and/or enhanced cytological 

instability of this particular engineered NΔ73-Rad9 truncated Rad9 protein variant.   

 

Whilst the experimental S. pombe strains “cre-lox”-engineered for the exclusive expression of the 

Rad9 protein truncated variants N-Δ310-Rad9-c3xHA and N-Δ357-Rad9-c3xHA contained the 

correct integrated fusion PCR-modified rad9, as verified via PCR genotyping (Fig 3.14, p.312) and 

DNA sequencing, no expressed protein was detected in the Western blot assay (Fig 3.15, p.313). 

 

This may be due to the fact that expression of these two truncated protein variants is at a very low 

level within the respective “cre-lox”- engineered S. pombe cells which is beyond the detection 

threshold limit of the Western blot assay. 
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Alternatively, these particular engineered truncated protein variants may be highly unstable and/or 

non-functional expression products which are “primed” for rapid proteasomal pathway degradation 

via specific amino acid residue target-site ubiquitination- and/or sumoylation- type post-

translational modifications. 
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Fig 3.13: Plate Selection of Cre-RMCE-Generated S.pombe Strains  
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           Fig 3.14: Comparative rad9-Specific PCR Genotype Analysis 

 

 
 

1 = Millipore Water (Negative Contamination PCR Control) 

2 = Δrad9 (S. pombe Cre-Lox Base-Strain) 

3 = “Wild-Type” Strain 804  rad9 (~2.2 kBp) 

4 = rad9 (~2.2kBp) 

5 = rad9-c3xHA (~2.3 kBp) 

6 = rad9-ΔIntron1-c3xHA (~2.3 kBp) 

7 = rad9-M50A-c3xHA (~2.3 kBp) 

8 = rad9-M50L-c3xHA (~2.3 kBp) 

9 = NΔ49-rad9-c3xHA (~2.1 kBp) 

10 = NΔ73-rad9-c3xHA (~2.09 kBp) 

11 = NΔ311-rad9-c3xHA (~1.3kBp) 

12 = NΔ357-rad9-c3xHA (~1.2 kBp) 

 

 

Crude genomic DNA extracts, prepared from overnight 30˚C YEA broth cultures of the respective S. pombe 

strains, were utilised as PCR templates for comparative genotyping analyses . 

 

Comparative 1.0% TBE agarose gel (0.5µg/ml ethidium bromide) gel analysis was performed on 10 µL loaded 

samples (each sample comprised a 5µL aliquot of the crude PCR product combined with 5µL of 2x DNA 

loading dye buffer – composition detailed in Section 2.2.1, p.162). 

 

[Total genomic DNA extract preparation, PCR and agarose gel analysis methodologies are detailed in Section 

2.2.1, p.162, Section 2.4, pp.169-170; Section 2.6.2.2, p.192] 

 

The expected approximate sizes (kilobase-pairs – kBp) of the respective amplified rad9 gene PCR products are 

indicated in brackets. 
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           Fig 3.15: rad9-Specific Gene Expression Profile Analysis  
 

                

                                     1 = Millipore Water (Negative protein detection control) 

                                     2 = Δrad9 (S. pombe Cre-Lox base-strain; Negative Rad9 protein detection control) 

                                     3 = “Wild-Type” Strain 804  - Expressed Rad9 Protein Mr ~ 50kDa 

                                     4 = rad9 – Expressed Rad9 protein Mr ~ 50kDa 

                                     5 = rad9-c3xHA – Expressed Rad9 protein Mr ~ 50kDa 

                                     6 = rad9-ΔIntron1-c3xHA – Expressed Rad9 protein Mr ~ 50kDa 

                                     7 = rad9-M50A-c3xHA – Expressed Rad9 protein Mr ~ 50kDa 

                                     8 = rad9-M50L-c3xHA – Expressed Rad9 protein Mr ~ 50kDa 

                                     9 = NΔ49-rad9-c3xHA – Expressed Rad9 protein Mr ~ 42kDa 

                                    10 = NΔ73-rad9-c3xHA – Expressed Rad9 protein Mr ~ 39kDa 

                                    11 = NΔ311-rad9-c3xHA – Expressed Rad9 protein Mr ~ 13kDa 

                                    12 = NΔ357-rad9-c3xHA – Expressed Rad9 protein Mr ~ 8kDa 
 

A: Western Blot membrane probed with the anti-HA primary anti-body. 
 

B: Western Blot membrane probed with the anti-Cdc2 primary anti-body. 

       [Positive protein detection and equivalent protein loading control – Cdc2 Mr ~ 34kDa] 

        

20µL sample aliquots of TCA-precipitated total protein extracts (prepared from overnight 30°C YEA broth 

cultures of each strain) were loaded onto 10% SDS-PAGE gels, run at 120V for 5 hours at room temperature, 

prior to Western blot analysis. 

 

[Protein sample preparation, SDS-PAGE resolution and Western blot methodologies are detailed in Section 

 2.8.1, pp.200-202; Section 2.8.4, pp.223-224 and Section 2.8.6, pp.231-233] 

 

The expected molecular mass of each protein was estimated via utilisation of the on-line Scripps Institute 

software tool Protein Calculator v3.3 (http://www.scripps.edu/~cdputnam/putcalc.html). 
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3.4 In Silico Protein Stability Assessment of the Engineered S. pombe 

Rad9 Protein Variants  
 

Comparative Western blot analyses performed on TCA total protein extracts, acquired from 

overnight 30˚C YEA cell cultures of S. pombe strains “Cre-Lox”-engineered for the exclusive 

expression of the hypothetical truncated variants NΔ310-Rad9-c3xHA and NΔ357-Rad9-c3xHA, 

failed to detect any translational products (Fig 3.15, p.313). 

 

One plausible explanation for this experimental observation is that these specific truncated Rad9 

protein variants are unstable translational products, which retain neglible functional viability and 

are therefore highly susceptible to proteolytic pathway-targeted degradation.  

 

 

Protein folding, anti-/pro- aggregation propensity and intrinsic order/disorder relationships are key 

interactive supra-molecular structural parameters which impinge upon the relative stability, half-

life and functional viability of an expressed protein within its localised cytological 

microenvironment(s) (Banavar J.R. et al, 2007; Chakrobortee S. et al, 2012; Fawzi N.L. et al, 

2008a; Fawzi N.L. et al, 2008b; Hoang T.X. et al, 2006; Kulkarni P. et al, 2011; Liu J. et al, 2006; 

Mohan A. et al, 2009; Morimoto R.I. et al, 2012; Nair S.S. et al, 2011; Sanchez-Ruiz J.M., 2010; 

Tompa P. and Kovacs D., 2010; Trovato A. et al, 2006; Wang Y. et al, 2009; Xie H. et al, 2007b; 

Zhang Y. and Calderwood S.K., 2011). 

 

Therefore, comparative in silico analyses of the relative proportions of localised intrinsic structural 

order/disorder regions (Section 3.4.1, pp.315-319), anti-/pro- aggregative functional motifs 

(Section 3.4.2, pp.320-330) and secondary structural helix, strand and coil motifs (Section 3.4.3, 

pp.331-353) were performed on the amino acid sequences of the engineered experimental full-

length and truncated variant isoforms of the S. pombe Rad9 protein (Fig 3.2, p.289) for 

hypothetical prediction of their respective cytological stabilities and identification of the key 

common protein structure-stability relationships implicated (Section 3.4.4, pp.354-357). 
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3.4.1 Intrinsic Structural Disorder Analyses  

Comparative metaPrDOS (Ishida K. and Kinoshita K., 2007) analyses of the full-length “wild-

type” Rad9 protein with the full-length Rad9-M50A (“M50A”) and Rad9-M50L (“M50L”) 

mutants indicated that all three polypeptide sequences possessed identical localised regions of 

intrinsic structural order and a highly significant level of intrinsic structural disorder propensity 

confined almost exclusively to the C-terminal tail domain (Fig 3.16, p.317). 

 

These in silico data observations are consistent with the highly flexible mobile nature of the Rad9 

C-terminal tail domain which is postulated to be an essential physico-biochemical functional 

property that enables it to associatively interact with and modulate the activity of a variety of 

different proteins implicated in regulatory cell cycle checkpoint-signalling responses (Broustas 

C.G. and Lieberman H.B., 2012).   

 

Comparative metaPrDOS analyses of the truncated NΔ49-Rad9 and NΔ73-Rad9 polypeptide 

sequences yielded equivalent localised region-specific intrinsic structural order/disorder profiles to 

that of the “wild-type”, “M50A”- and “M50L”- point-mutant full-length Rad9 polypeptide 

sequences (Fig 3.17, p.318). 

 

The conserved intrinsically-disordered structure of the highly flexible C-tail terminal domain,  

within the truncated protein variants NΔ49-Rad9 (“Rad9-S”) and NΔ73-Rad9 (“M74”) – Fig 3.17, 

p.318, may also be implicated in specific protein-protein interactions which function in checkpoint 

signalling responses to replicative stress and/or DNA damage.  

 

Whilst comparative metaPrDOS analyses of the Sty1 kinase phosphorylation target-like motif  

110GYGSES115  indicated that it was a 100% structurally-ordered in the case of the “wild-type” 

and point mutant M50A and M50L full-length Rad9 polypeptide sequences (Fig 3.16, p.317), this 

was not the case with the truncated protein variants NΔ49-Rad9 (“Rad9-S”) and NΔ73-Rad9 

(“M74”) – Fig 3.17, p.318                         [315] 



Intringuingly, comparative metaPrDOS analyses of this equivalent “GYGSES” motif within the 

truncated protein variants NΔ49-Rad9 (61GYGSES66) and NΔ73-Rad9 (37GYGSES42) indicated 

that it was ~90% structurally-ordered and ~10% structurally-disordered as a consequence of the 

first “position-equivalent” glycine residue (61G – “Rad9-S”; 37G – “M74”) which was identified as 

a high-probability intrinsically-disordered residue (Fig 3.17, p.318). 

 

This particular glycine residue is adjacent to a potential tyrosine phosphorylation site, which may 

be targeted by the Sty1 kinase (predicted via comparative polypeptide sequence analyses with the 

on-line software tools NetPhos 2.0 and NetPhosK – discussed later in detail in Chapter 6). 

 

Taken together, these in silico data analyses may be indicative of novel replication- and/or 

environmental stress- type checkpoint-responsive signalling pathway functions of the truncated 

protein variants NΔ49-Rad9 (“Rad9-S”) and NΔ73-Rad9 (“M74”) which are distinct from those of 

the full-length Rad9 protein (discussed later in detail in Chapter 6). 

                          

In contrast with the full-length Rad9, “Rad9-S” and “M74” truncated Rad9 protein variants (Fig 

3.16, p.317 and Fig 3.17, p.318), metaPrDOS analyses of the hypothetical polypeptide sequences 

for the truncated Rad9 variants; NΔ310-Rad9 (“M311”), N-Δ311Rad9 (“M312”) and NΔ357-Rad9 

(“M358”), indicated that these three proteins possessed a very high degree of intrinsically-

disordered propensity with very limited/negligible ordered structure (Fig 3.18, p.319). 

 

These in silico data are also consistent with the highly flexible nature of the “structurally-adaptive” 

C-terminal tail domain (Broustas C.G. and Lieberman H.B., 2012), progressively smaller 

fragments of which comprise the entire polypeptide sequences of the truncated Rad9 protein 

variants NΔ310-Rad9 (“M311”), NΔ311-Rad9 (“M312”) and NΔ357-Rad9 (“M358”) – Fig 3.18, 

p.319.   
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   Fig 3.16 metaPrDOS Analyses of Rad9, M50A and M50L Mutants 
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 Fig 3.17 metaPrDOS Analyses of Rad9, “Rad9-S” & “M74” Variants 
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Fig 3.18: metaPrDOS Analyses of Rad9, “M311”, “M312” & “M358” 
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3.4.2 Anti- and Pro- Aggregation Functional Motif Analyses  
 

Amphiphilic motifs of general sequence: (X)(n)Z, Z(X)(n) (n>2) or (XZ)(n) (n>2), in which X is 

representative of a hydrophobic amino acid residue and Z is representative of a charged or polar 

amino acid residue, are implicated in the formation of supramolecular aggregation-type structures 

within proteins that include fibres, tubes, ribbons or rolled sheets – which may also infer an 

enhanced level of resistance to proteolytic degradation and therefore prolong the cytological “half-

life” of a particular protein (Kulkarni P. et al, 2011; Moore C.L. et al, 2000; Moore C.L. et al, 

2011; Zhang Y. and Calderwood S.K., 2011). 

 

A higher degree of hydrophobicity within these amphiphilic motifs enhances their relative intrinsic 

structural order propensity and promotes aggregate formation, whilst a higher degree of 

hydrophilicity within these amphiphilic motifs enhances their relative intrinsic structural disorder 

with consequential suppression of aggregate formation (Banavar J.R. et al, 2007; Chakrabortee S. 

et al, 2012; Hoang T.X. et al, 2006;  Kulkarni P. et al, 2011; Moore C.L. et al, 2011; Morimoto R.I. 

et al, 2012; Trovato A. et al, 2006; Zhang Y. and Calderwood S.K., 2011). 

 

                                                   

Several in silico-based analytical approaches were utilised to ascertain the relative content of 

potential anti-aggregative, pro-aggregative and protease-resistant type motifs contained within the  

respective amino acid sequences of the engineered S. pombe Rad9 proteins in order to acquire 

some predictive hypothetical insights into their comparative cytological stabilities – these were: 

 

(i) Multiple sequence alignments between the full-length S. pombe Rad9 protein and the  anti- 

     aggregative sequence motifs KLVFF, KLVF, VLFKF (Castelletto V. et al, 2011a; Castelletto V.  

     et al, 2011b) and FAEDVG (Kalkarni P. et al, 2011) – Fig 3.19, p.328. 
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(ii) Multiple sequence alignments between the full-length S. pombe Rad9 protein and the pro- 

      aggregative/protease resistance sequence  motif QIVYK (Moore C.L. et al, 2011) and the 

      pro-aggregative sequence motif PQLATLADEVSASLAKQGL situated within the PHF43 

      (paired helical filament) of the Tau protein C-terminal domain (Esposito G. et al, 2000) 

      Fig 3.19, p.328.  

 

(iii) Identification of potential pro-aggregative motifs within the full-length S. pombe Rad9 

       protein via analysis of its amino acid sequence with the on-line bioinformatics software 

       programs BETASCAN (Bryan A.W. Jr. et al, 2009), TANGO (Fernández-Escamilla A.M.  

       et al, 2004a; Fernández-Escamilla A.M. et al, 2004b) – Fig 3.19, p.328. 

 

(iv) Identification of potential pro-aggregative regions with the full-length S. pombe Rad9 

       protein via analysis of its amino acid sequence with the on-line bioinformatics software 

       program ZYGGREGATOR (Routledge K.E. et al, 2009; Tartaglia G.G. and Vendruscolo 

       M., 2008; Tartaglia G.G. and Vendruscolo M., 2010) – Fig 3.20, pp.329-330. 

 

These combined analyses identified 10 potential motifs which may be implicated in the relative 

functional stability of the engineered S. pombe Rad9 protein variants (Table 3.1, p.327). 

                                                     
 

The engineered full-length S. pombe Rad9 proteins Rad9-c3xHA, Rad9-(M50A)-c3xHA, Rad9-

(M50L)-c3xHA and the truncated NΔ49-Rad9-c3xHA protein variant (“Rad9-S”) contained a total 

of 7 aggregation-inductive motifs, 4 aggregation-suppressive motifs and 5 protease-resistant motifs 

(Table 3.1, p.327; Fig 3.19, p.328). 

 

The engineered truncated “M74” S. pombe Rad9 protein variant, NΔ73-Rad9-c3xHA, contained a 

total of 7 aggregation-inductive motifs, 5 protease-resistance motifs, but only 2 aggregation-

suppressive motifs (Table 3.1, p.327; Fig 3.19, p.328). 
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This reduction in the number of aggregation-suppressive motifs within the engineered truncated 

NΔ73-Rad9-c3xHA S. pombe Rad9 protein variant, compared with that of the engineered full-

length S. pombe Rad9 proteins Rad9-c3xHA, Rad9-(M50A)-c3xHA, Rad9-(M50L)-c3xHA and 

the truncated NΔ49-Rad9-c3xHA protein variant (“Rad9-S”), may be implicated in its relatively 

low level of expression – which was approximately half the level of that observed for the other 

full-length Rad9 and “Rad9-S” proteins detected in the Western blot assay (Fig 3.15, p.313).  

 

The hypothetical amino acid sequences for the alternative translational AUG codon initiation start 

site-derived truncated S. pombe Rad9 variants NΔ310-Rad9, NΔ311-Rad9 and NΔ357-Rad9 

contained none of these potential motifs (Table 3.1, p.327; Fig 3.19, p.328). 

 

Analysis of the full-length S. pombe Rad9 amino acid sequence with the on-line software program 

ZYGGREGATOR (Routledge K.E. et al, 2009; Tartaglia G.G. and Vendruscolo M., 2008; 

Tartaglia G.G. and Vendruscolo M., 2010) also indicated very narrow marginal regions of 

moderate to high aggregative propensity score, which were negatively countered by interspaced 

regions of low aggregative propensity score within the AUG codon initiation start site-derived 

truncated S. pombe Rad9 variants NΔ310-Rad9, NΔ311-Rad9 and NΔ357-Rad9 (Fig 3.20, pp.329-

330). 

 

                                                     
Taken together, these in silico analyses indicated a significant the lack of potential pro-, anti- and 

protease-resistant motifs within the AUG codon initiation start site-derived S. pombe Rad9 variants 

NΔ310-Rad9, NΔ311-Rad9 and NΔ357-Rad9 which may render these truncated isoforms highly 

unstable and functionally non-viable – this could also account for the lack of detected expression 

of the engineered S. pombe truncated protein variants NΔ311-Rad9-c3xHA and NΔ357-Rad9-

c3xHA observed in the Western blot assay (Fig 3.15, p.313). 
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Phosphorylated amino acid residues situated adjacent to or within pro-aggregative amphiphilic 

sequences may also increase their hydrophilicity due to the proximal presence of the polar, ionised 

phosphate groups, with consequential suppression of critical non-polar/hydrophobic interactions 

that are required for the functional aggregative propensity of these motif types (discussed 

previously in detail on p.320).     

 

Kinase phosphorylation residue target site probability predictions were therefore performed on the 

identified 10 potential anti-aggregative, pro-aggregative and protease-resistance sequence motifs 

which may be implicated in the relative functional stability of the engineered S. pombe Rad9 

protein variants (Table 3.1, p.327; Fig 3.19, p.328) via utilisation of the on-line NetPhos software 

tools (Blom N. et al, 1999; Blom N. et al, 2004; Miller M.L. and Blom N., 2009). 

  

Only four, out of the total of 10, of these motifs contained potential kinase target-site residues with 

high phosphorylation probability scores (predicted via in silico sequence analyses with the on-line 

NetPhos 2.0 and 3.1b programs) – notably; 60KYIF63 

                                                                      110GYGSESASRKD120,  

                                                                                             200PLQERVLLTSFTEEVVHNRDILKQ223   

                                                                      224PTQTTVSIDGKEFERVALENGVSVTLSLRE253 

 

With the exception of the anti-aggregative 60KYIF63, the remaining 3 of these motifs were pro-

aggregative and protease-resistance (Table 3.1, p.327). 

 

The engineered full-length S. pombe Rad9 protein variants Rad9-c3xHA, Rad9-M50A-c3xHA, 

Rad9-M50L-c3xHA and the truncated S. pombe Rad9 variants NΔ49-Rad9-c3xHA (“Rad9-S”)  

and NΔ73-Rad9-c3xHA (“M74”) all contained these three pro-aggregative motifs (Fig 3.19, p.328), 

which may infer an enhanced degree of  stability within these respective proteins. 
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In silico analysis of the tyrosine and three serine residues contained within the identified pro-

aggregative and protease-resistant 110GYGSESASRKD120 motif, via utilisation of the on-line 

software programs Netphos2.0 and Netphos3.1b (Blom N. et al, 1999; Miller M.L. and Blom N., 

2009), were all identified as high-probability phosphorylation residues – Table 3.1, p.327. 

 

Intriguingly, the tyrosine residue (at position 111) within this sequence was also identified as a 

potential Wis1 kinase target site, predicted by the software program NetPhosK (Table 3.1, p.326), 

whilst the adjacent glycine residue (at position 110) was identified (by the software program 

MetaPrDOS) as an exclusively intrinisic structurally-disordered residue within the engineered S. 

pombe Rad9 truncated variants NΔ49Rad9-c3xHA (“Rad9-S-c3xHA”) and NΔ73Rad9-c3xHA 

(Fig 3.17, p.318; Table 3.1, p.327). 

 

Analysis of the full-length S. pombe Rad9 amino acid sequence, with the on-line software program 

ZYGGREGATOR (Routledge K.E. et al, 2009; Tartaglia G.G. and Vendruscolo M., 2008; 

Tartaglia G.G. and Vendruscolo M., 2010), also indicated that the identified pro-aggregative and 

protease-resistant 110GYGSESASRKD120 motif sequence was also situated within a region 

(spanning residues ~115S through to 140F)  of moderate to high aggregative propensity with 

relatively little negative “counter-acting” regions of low aggregative propensity (Fig 3.20, pp.329-

330). 

 

Taken together, these in silico analyses may be indicative that the relative stability of the 

engineered full-length S. pombe Rad9 variants Rad9-c3xHA, Rad9-M50A-c3xHA, Rad9-M50L-

c3xHA and truncated S. pombe Rad9 isoforms NΔ49Rad9-c3xHA (“Rad9-S-c3xHA”) and 

NΔ73Rad9-c3xHA, is potentially regulated via Wis1 kinase-mediated phosphorylated-modulation 

of the relative aggregation propensity of the 110GYGSESASRKD120 motif. 

 

 

 

                                                    [324] 



Netphos 2.0 and 3.1b software analyses of the pro-aggregative and protease-resistant 

200PLQERVLLTSFTEEVVHNRDILKQ223 motif indicated that only the serine residue at position 

209  possessed high phosphorylation-site probability status and this particular sequence was also 

situated directly adjacent to the 224PTQTTVSIDGKEFERVALENGVSVTLSLRE253  pro-

aggregative and protease-resistant motif which contained the Rad3 kinase target phosphorylation 

site at threonine 225 (Kai M. et al, 2007) – Table 3.1, p.327. 

 

Netphos 2.0 and 3.1b software analyses of the identified pro-aggregative and protease-resistant 

224PTQTTVSIDGKEFERVALENGVSVTLSLRE253  motif indicated that the serine residues at 

positions 230 and 250 also possessed high phosphorylation-site probability status, whilst the 

threonine residues at positions 227 and 228 were assigned borderline/moderate threshold 

phosphorylation-site probability values (Table 3.1, p.327).  

 

Taken together, these in silico analyses may be indicative that the relative stability of the 

engineered full-length S. pombe Rad9 variants Rad9-c3xHA, Rad9-M50A-c3xHA, Rad9-M50L-

c3xHA and truncated S. pombe Rad9 isoforms NΔ49Rad9-c3xHA (“Rad9-S-c3xHA”) and 

NΔ73Rad9-c3xHA, is also potentially regulated via Rad3 and/or other protein kinase-mediated 

phosphorylated-modulation of the relative aggregation propensity of these two motifs. 

 

In S. pombe, Rad3 kinase-mediated phosphorylation of Rad9  is implicated in various checkpoint 

responses to DNA damage, whilst Wis1 kinase-mediated phosphorylated-activation of Sty1 kinase 

is implicated in a variety checkpoint responses to U.V.-induced DNA damage and environmental 

cytological stresses that may adversely impinge on DNA replication, DNA repair and/or other co-

ordinated biochemical processes which work collectively to maintain the preservation of genomic 

integrity (Alao J.P. and Sunnerhagen P., 2008; Furuya K. and Carr A.M., 2003; Furuya K. et al, 

2010; Nurse P. et al, 2009; Paek A.L. and Weinert T., 2010).                                              
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Taken these phenomena into consideration, it is possible that cell cycle checkpoints may also be 

 

 implicated in the regulation of the cytological stability, levels and functional activities of a variety 

of S. pombe Rad9 isoforms via signal pathway activation of specific kinases which mediate the 

phosphorylated-modulation of the aggregation propensity of the three Rad9 pro-aggregative and 

protease resistant type motifs; “GYGSESASRKD”, “PLQERVLLTSFTEEVVHNRDILKQ” and 

“PTQTTVSIDGKEFERVSVTLSLRE”  (Table 3.1, p.327; Fig 3.19, p.328). 
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    Table 3.1: Identified SpRad9 Protein Stability Modulation Motifs 

 

 

 
* = High-probability phosphorylation sites identified by the NetPhos on-line bioinformatics tools 

     (Blom N. et al, 1999; Blom N. et al, 2004; Miller M.L. and Blom N., 2009) 
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    Fig 3.19: Site Map of SpRad9 Protein Stability Modulation Motifs 
 

 
 

Structural map of the S. pombe rad9 gene indicating the relative positions of the introns, exon-

encoded amino acid-spanning regions, potential alternative AUG codon translational start sites and 

identified potential pro-aggregative, anti-aggregative and protease-resistance type functional motif 

sites: 

 

XXXXX = Potential  KLVFF-, VLFKF- and FAEDVG- equivalent peptide aggregation suppressive  

                   motifs identified via comparative pair-wise sequence alignments performed with the  

                   on-line bioinformatics software tools EMBOSS and JEMBOSS. 

 

XXXXX = H. sapiens microtubule-associated Tau protein C terminus equivalent pro-aggregative 

                   and protease resistance motif. 

 

XXXXX = Potential H. sapiens microtubule-associated Tau protein C terminus functional motif- 

                    equivalent protein aggregation/protease resistant motifs identified via comparative  

                    pair-wise sequence analyses performed with the on-line bioinformatics tools EMBOSS 

                    and JEMBOSS 

 

XXXXX = Potential protein aggregation-associated protease resistance functional motif identified via 

                   multiple sequence alignment analyses performed with the on-line bioinformatics software  

                   tools EMBOSS, JEMBOSS and PSI-BLAST 

 

XXXXX = Potential peptide aggregation inductive motifs identified via sequence analyses performed  

                   with the on-line bioinformatics software tools BETASCAN and TANGO. 

 

* = High-probability phosphorylation sites (identified by the NetPhos on-line bioinformatics tool) 

 

                                                      [328] 



Fig 3.20: Comparative Map of SpRad9 Stability Modulation Motifs   
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A: ZYGGREGATOR software-generated mapping of identified regions of high, moderate  

       and low probability aggregation propensity. 

 

       The relative positions of the potential alternative AUG methionine translational start 

       codon sites of the engineered S. pombe Rad9 full-length and truncated protein isoforms 

       are also indicated. 

 

 

B: Residue-spanning regional map of the anti-, pro- and protease-resistant motif sites within 

       the S. pombe Rad9 protein identified via multiple sequence alignment analyses (described 

       previously on p.321) and utilisation of the aggregation sequence motif-predictive on-line 

       software programs BETASCAN and TANGO. 

 

       [Details of these identified motif sequences are provided in Table 3.1, p.327 and Fig 3.19, 

        p.328]   
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3.4.3 Secondary Supra-Molecular Structural Motif Analyses 
 

The relative stability of a particular protein is also dependent upon the arrangement and content of 

secondary structural motifs (ie helices, strands and coils) within its supramolecular architecture 

(Banavar J.R. et al, 2007; Hoang T.X. et al, 2006; Kulkarni P. et al, 2011). 

 

Several in silico-based analytical approaches were utilised to ascertain the relative proportions and 

types of  helix-, strand- and coil- based secondary structural motif “sub-architecture” contained 

within the  respective amino acid sequences of the engineered S. pombe Rad9 proteins in order to 

acquire some predictive hypothetical insights into their comparative cytological stabilities – these 

were: 

 

(i) In silico prediction and modelling of potential transmembrane spanning domains via amino acid 

     sequence analyses of the full-length S. pombe Rad9 protein with the on-line software tools 

     Kyte-Doolittle Hydropathy Plotter (Kyte J. and Doolittle R., 1982) , PHOBIUS (Käll L. et al, 

     2004), SPLIT 4.0 (Juretic D. et al, 2002), TMpred (Hofamnn K. and Stoffel W., 1993) and  

     TMPres2D (Spyropoulous I.C. et al, 2004) – Sub-section 3.4.3.1, pp.332-339. 

 

(ii) In silico prediction of potential secondary structure repeat motifs and/or associated coiled- 

      coiled domains via comparative amino sequence analyses of the full-length S. pombe Rad9  

      protein with the on-line software tools COILS (Lupas A. et al 1991), MULTI-COIL (Newman 

      J.R. et al, 2000; Wolf E. et al, 1997; Trigg J. et al, 2011), MARCOIL (Delorenzi M. and Speed 

      T., 2002; Gruber M. et al, 2006) and REPPER (Gruber M. et al, 2005) – Sub-section 3.4.3.2,  

       pp.340-350. 

 

(iii) In silico predictive assessment of the relative proportional content of helix-, strand- and coil-  

       secondary structural motif regions within the engineered full-length and truncated S. pombe  

       Rad9 variants via comparative amino sequence analyses of the full-length S. pombe Rad9 

       protein with the on-line software tool YASPIN  ( Lin K. et al, 2005) – Sub-section 3.4.3.3,  

       pp.351-353.                              [331] 



3.4.3.1 Transmembrane-Spanning Domain Analyses 

 
In silico analysis of the full-length S. pombe Rad9 amino acid sequence with the on-line software 

program TMpred resulted in the identification of a high-probability potential transmembrane 

domain region comprised of 20 amino acids, spanning residues 254F – 274V inclusive (Fig 3.22A, 

pp.335-336). 

 

Intringuingly, this predicted transmembrane-spanning domain region also contained the AAVILA 

pro-aggregative sequence, identified via previous analyses of the full-length S. pombe Rad9 amino 

acid sequence with the software tools BETASCAN and TANGO (Section 3.4.2, pp.320-330; Fig 

3.19, p.328), which was also flanked by the hydrophilic, charged ionic residues arginine (255R = 

positive electrostatic potential) and glutamate (262E = negative electrostatic potential) – Fig 3.22A, 

pp.335-336.  

 

The pro-aggregative AAVILA motif could be implicated in the enhancement of the relative 

stability of the full-length S. pombe Rad9 protein and/or its truncated isoforms, via promotion of 

hydrophobic interactions which increase intrinsic structural order within the protein 

supramolecular architecture and suppress proteolytic degradation. 

 

In this hypothetical context, the hydrophilic 255R and  262E flanking residues (Fig 3.22A, pp.335-

336) may serve to reduce the aggregative propensity of the AAVILA motif to suppress 

catastrophic irreversible denaturation of the supramolecular architecture of the full-length S. 

pombe Rad9 protein and/or its truncated isoforms which would otherwise result in their rapid 

proteolytic degradation.     
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Comparative transmembrane-spanning domain helix and strand models of this potential domain 

were constructed via utilisation of the software program TMPres2D (Fig 3.22B and Fig 3.22C, 

pp.335-336), in concurrence with the data acquired from analysis of the 254F – 274V sequence with 

the software program YASPIN – which indicated a high probability of helix (~50% relative 

proportion), strand (~45% relative proportion) and coil (~5% relative proportion) secondary 

structural motifs within this domain (Fig 3.22D, pp.335-336). 

  

Although comparative predictive transmembrane-spanning domain analyses performed on the full-

length S. pombe Rad9 amino acid sequence with the software programs PHOBIUS, Kyte-Doolittle 

Hydropathy Plotter and SPLIT 4.0 indicated that it was highly improbable that the TMPred-

identified 254F – 274V domain was a conventional transmembrane-spanning domain (Fig 3.23, 

pp.337-338). 

 

However, the PHOBIUS data plot did indicate a highly significant non-cytoplasmic motif posterior 

label probability prediction for the 254F – 274V amino acid sequence (Fig 3.23A, pp.337-338). 

 

This identified non-cytoplasmic motif 254F – 274V amino acid sequence was contained within the 

engineered full-length S. pombe Rad9 protein variants; Rad9-c3xHA, Rad9-(M50A)-c3xHA and 

Rad9-(M50L)-c3xHA and the engineered truncated S. pombe Rad9 proteins; NΔ49-Rad9-c3xHA 

(“Rad9-S”) and NΔ73-Rad9-c3xHA (“Rad9-M74”) – Fig 3.2, p.289; Fig 3.23A, pp.337-338. 

 

Comparative multiple alignment analyses of the identified non-cytoplasmic motif 254F – 274V 

within the S. pombe Rad9 protein with other Schizosaccharomyces yeast Rad9 proteins, in 

conjunction with the H. sapiens RadA and Rad9B proteins, indicated that homologous variants of 

this motif were conserved and also contained potential “HFD-like” ATRRad3  checkpoint kinase-

activation motifs (Fig 3.24, p.339). 

 

                                                   [333] 



Taken together, these in silico data are indicative that this non-cytoplasmic motif sequence may be 

implication in the co-ordinated nuclear translocation of the Rad9 protein and Rad9-mediated 

activation of the the ATRRad3 kinase within various cell cycle checkpoint pathways.  

 

One plausible hypothetical function of this non-cytoplasmic motif could be the facilitated 

transportation of the full-length S. pombe Rad9 protein and its truncated isoforms through the 

nuclear membrane to chromatin lesion sites, via transient formation of an unconventionally-

configured transmembrane-spanning (TM) domain (Fig 3.22A and Fig 3.22B, pp.335-336) which 

may be initiated and/or stabilised via the pro-aggregative AAVILA motif, during checkpoint 

responses to genotoxic damage and/or other cytological stresses that adversely impinge upon DNA 

replication and/or other biochemical processes which are implicated in the maintenance of 

genomic integrity. 

 

COIL, MULTICOIL and MARCOIL analyses of the S. pombe Rad9 protein (Fig 3.26, pp.347-

348) predicted zero coiled-coil structural repeat probability within the protein, which may be 

indicative that the potential non-cytoplasmic 254F – 274V type motif  may adopt a strand-configured 

TM domain (Fig 3.22C, p.335-336). 

 

The absence of this non-cytoplasmic motif, in the case of the hypothetical amino acid sequences of 

the alternative translation-generated truncated S. pombe  Rad9 isoform products NΔ310-Rad9, 

NΔ311-Rad9 and NΔ357-Rad9 (Fig 3.22, pp.335-336 and Fig 3.23A, pp.337-338), may render 

these proteins functionally non-viable and susceptible to ubiquitination- and/or sumoylation- 

targeted proteolytic degradation as a consequence of their impaired capacity to penetrate the 

nuclear membrane and prolonged cytoplasmic retention. 

 

This hypothetical postulate may also account for the lack of detected expression of the engineered 

S. pombe truncated variants  NΔ311-Rad9-c3xHA and NΔ357-Rad9-c3xHA in the comparative 

Western blot assay (Fig 3.15, p.313).      [334]                                                



   Fig 3.22: Transmembrane-Spanning Domain Modelling of SpRad9   
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A: Analysis of the full-length S. pombe Rad9 protein amino acid sequence with the on-line 

       TMpred software tool. 

 

       The X-axis defines the amino acid residue position and the Y-axis defines the 

       transmembrane-spanning probability score on the data plot: probability score 

       values of over 500 are significant, the higher these score values the more significant 

       the predicted probability. 

 

       The relative positions of the potential alternative AUG methionine translational start 

       codon sites of the engineered S. pombe Rad9 full-length and truncated protein isoforms 

       (Fig 3.2, p.289) and the C-terminal tail domain region are indicated. 

 

       The identified potential transmembrane-spanning 254F – 274V sequence is highlighted in 

        in yellow and also contains the pro-aggregative AAVILA motif (identified previously via 

        analyses with the on-line software tools BETASCAN and TANGO – Section 3.4.2, 

        pp.320-330; Fig 3.19, p.328). 

 

 

 

B: Transmembrane-spanning helical model of the identified 254F – 274V sequence, generated 

       via utilisation of the on-line TMPres2D software program. 

 

       The charged residues 255R (positive electrostatic potential, indicated in blue) and 262E 

       (negative electrostatic potential, indicated) which flank the the pro-aggregative AAVILA 

        motif (circled in orange) are indicated.  

 

 

 

C: Transmembrane-spanning strand model of the identified 254F – 274V sequence, generated 

       via utilisation of the on-line TMPres2D software program. 

 

       The charged residues 255R (positive electrostatic potential, indicated in blue) and 262E 

       (negative electrostatic potential, indicated in red) which flank the the pro-aggregative 

       AAVILA motif (circled in orange) are indicated.  

 

 

 

D: Analysis of the relative proportions and localised distribution of helix, strand and coil 

       secondary structural motifs within the identified 254F – 274V sequence (highlighted in 

       yellow). 

 

       The “wild-type” full-length S. pombe Rad9 amino acid region spanning residues 200P  

       through to 280L   was analysed with the on-line software tool YASPIN and the acquired 

       data converted into a graphical format via utilisation of the Microsoft Excel software 

       program. 

 

        The X-axis defines the amino acid residue position and the Y-axis defines the 

        predicted helix, strand and coil propensity probability score on the data plot. 

         

        The horizontal red line on the data plot denotes the propensity prediction threshold 

        [probability scores above 5 are significant and correlate with plotted values above 

         the threshold line]          
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Fig 3.23: Hydropathy Profile Analyses of the S. pombe Rad9 Protein  
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A: Analysis of the full-length S. pombe Rad9 protein amino acid sequence with the on-line 

       PHOBIUS software tool. 

 

       The X-axis defines the amino acid residue position and the Y-axis defines the Posterior 

       label probability score on the data plot: the higher the score the more significant the 

       predicted probability. 

 

       The relative positions of the potential alternative AUG methionine translational start 

       codon sites of the engineered S. pombe Rad9 full-length and truncated protein isoforms 

       and the C-terminal tail domain region are indicated (Fig 3.2, p.289). 

 

       The TMpred-identified potential transmembrane-spanning 254F – 274V sequence 

       (Fig 3.22A, p.335), containing the pro-aggregative AAVILA motif (identified  

       previously via analyses with the on-line software tools BETASCAN and TANGO 

       – Section 3.4.2, pp.320-330; Fig 3.19, p.328) is highlighted in yellow. 

 

 

 

B: Analysis of the full-length S. pombe Rad9 protein amino acid sequence with the on-line 

       Kyte-Doolittle Hydropathy Plotter software tool. 

 

       The X-axis defines the amino acid residue position and the Y-axis defines the relative 

        hydrophility/hydrophobicity score on the data plot: the more negative the score, the 

        more more hydrophobic the residue, the more positive the score the more hydrophilic 

        the residue.  

 

     The relative regional position of the TMpred-identified potential transmembrane- 

       -spanning 254F – 274V sequence (Fig 3.22A, p.335) is highlighted in yellow. 

 

 

 

C: Analysis of the full-length S. pombe Rad9 protein amino acid sequence with the on-line 

       SPLIT 4.0 software tool. 

 

       The X-axis defines the amino acid residue position and the Y-axis defines the relative 

       propensity index score for the appropriate parameter (modified hydrophobic moment, 

       transmembrane helix, beta propensity) on the data plot: the higher the score, the 

       more significant the predicted propensity. 

 

     The relative regional position of the TMpred-identified potential transmembrane- 

       -spanning 254F – 274V sequence (Fig 3.22A, p.335) is highlighted in yellow. 
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Fig 3.24: In Silico Identification of a Conserved 29 Residue-Spanning 

Potential Non-Cytoplasmic ATRRad3 Kinase Activation Motif    

 

 
 

The relative positions of the potential alternative AUG methionine translational start codon 

sites of the engineered S. pombe Rad9 full-length and truncated protein isoforms (Fig 3.2, 

p.289) and the C-terminal tail domain region are indicated. 

 

The TMpred- and PHOBIUS-identified potential transmembrane-spanning/non-cytoplasmic 
254F – 274V sequence, containing the pro-aggregative AAVILA motif flanked by the 

hydrophilic arginine = R and glutamate = E residues (identified previously via analyses with 

the on-line software tools BETASCAN  and TANGO – Section 3.4.2, pp.320-330; Fig 3.19, 

p.328), is highlighted in yellow. 

 

In silico comparative multiple-alignment analyses of the identified transmembrane-

spanning/non-cytoplasmic S. pombe Rad9 254F – 274V sequence, with those of the homologous 

functionally-equivalent proteins H. sapiens Rad9A, full-length Rad9B (isoform 5) and other 

Schizosaccharomyces yeast strains indicated, were performed with the on-line bioinformatics 

software tools COBALT, EMBOSS, JEMBOSS and PSI-BLAST. 

 

Conserved (R/K)-(A/G)-(A/L/I)-(V/L)-(I/L/S/T)-(L/F)-(A/S)-(D/E) potential pro-aggregative  

motif-incorporated transmembrane-spanning/non-cytoplasmic domain sequences are 

highlighted in the blue, orange and red boxes. 

 

Conserved equivalent Schizosaccharomyces yeast Rad3 kinase-activation motifs and the 

conserved equivalent ATR kinase-activation motif within the full-length and truncated 

isoforms of H. sapiens Rad9B paralogue, that bear significant homologous resemblence to the 

H. sapiens Rad9A “HFD”-type ATR activation motif are highlighted in the purple box – in 

which the key aromatic-type residue pairs (HF, YF and YY) that interact with specific 

allosteric binding-sites within the ATRRad3 kinase enzyme are indicated (determined via 

information acquired from the research published by Burgers V.M. and Navadgi-Patil P.M., 

2009). 
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3.4.3.2  Secondary Structural Repeat Motif Domain Analyses 
 

In silico analysis of the full-length S. pombe Rad9 amino acid sequence with the on-line software 

program REPPER identified two potential repeat secondary structural type motifs within the 

protein of relatively low periodicity which spanned regional domains located between the residues 

27V – E157 and 152Y – K287 respectively (Fig 3.25B, pp.345-346). 

 

The presence of these two domain sequences within in the engineered full-length S. pombe Rad9 

protein variants and truncated S. pombe Rad9 protein variants NΔ49-Rad9-c3xHA (“Rad9-S”) and 

NΔ73-Rad9-c3xHA (“Rad9-M74”) may contribute to the functional stability of these proteins. 

 

In this context, the distinctive absence of these two domain sequences within the engineered 

truncated S. pombe Rad9 variants NΔ311-Rad9-c3xHA and NΔ357-Rad9-c3xHA may render these 

proteins highly unstable and could account for their lack of detected expression in the Western blot 

assay (Fig 3.15, p.313).  

 

This hypothetical postulation is also supported by additional comparative in silico analyses of the  

identified 27V – E157 and 152Y – K287  domain sequences (discussed in the following latter part of 

this section). 

 

The identified  27V – E157 domain sequence contained the anti-aggregative motifs 54KKAFF58, 

60KYIF63, 139RIIFK141, along with the pro-aggregative/protease resistant motifs 

110GYGSESASRKD120 and 138IIFKF142 (discussed previously in Section 3.4.2, pp.320-330) – Fig 

3.27B, pp.349-350. 
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Whilst the identified 152Y – K287 domain sequence contained the multi-functional anti-

aggregative/pro-aggregative/protease resistant motif 210FTEEVV215, along with the pro-

aggregative/protease-resistance sequences 200PLQERVLLTSFTEEVVHNRDILKQ223, 

224PTQTTVSIDGKEFERVALENGVSVTLSLRE253 and 256AAVILA261 (discussed previously in 

Section 3.4.2, pp.320-330) – Fig 3.27B, pp.349-350. 

 

The distinctive lower proportion of anti-aggregative motifs in the identified 152Y – K287 domain 

sequence may account for its assigned high significance probability score, as a consequence of 

increased structural order propensity, compared with that of the identified  27V – E157 domain 

sequence – which contained two anti-aggregative motifs and was assigned a relatively moderate 

probability score (Fig 3.25B, pp.345-346). 

 

Comparative phosphorylation site prediction analyses performed on both the 27V – E157 and  

152Y – K287 domain sequences, with the on-line bioinformatics software tools NetPhos2.0, 

NetPhos3.1b and NetPhosK (Blom N. et al, 1999; Blom N. et al, 2004; Miller M.L. and Blom N., 

2009), indicated that both these secondary structural motifs contained number of potential kinase 

target sites which were assigned significant probability scores (Fig 3.27, pp.349-350).  

 

These in silico analyses also indicated that the 27V – E157 sequence contained more potential 

phosphorylated residues than the 152Y – K287 sequence (Fig 3.27, pp.349-350), which could be 

implicated in the kinase-modulated hydrophilicity enhancement and suppressed aggregative 

propensity of the pro-aggregative/protease resistant motifs (discussed previously in Section 3.4.2, 

pp.320-330) contained within these domains. 
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In this hypothetical context,  the higher proportion of potential phosphorylated residues within the 

27V – E157 sequence (Fig 3.27, pp.349-350), in conjunction with its two anti-aggregative motifs 

may enhance the intrinsic disordered structural instability of this domain which could also account 

for its lower assigned probability score compared with that of the 152Y – K287 domain sequence 

(Fig 3.25B, pp.345-346). 

 

The very low probability score of the 290I – D426 domain, identified via analysis of the “wild-type” 

full-length S. pombe Rad9 protein with the on-line bioinformatics program REPPER (Fig 325B, 

pp.345-346), may also be a consequence of the fact that it contains only one pro-aggregative motif 

(295FILATVV301) and 11 potential phosphorylated serine residues (Fig 3.27, pp.349-350) – which 

could be implicated in the kinase-modulated enhancement and suppressed aggregative propensity 

of the  295FILATVV301 motif which would also significantly increase extent of the intrinisic 

structural disorder within the 290I – D426 domain. 

 

This hypothetical postulate is also consistent with the fact that the identified 290I – D426 sequence is 

situated within the C-terminal tail domain of the S. pombe Rad9 protein – which possesses highly 

mobile, “structurally-adaptive” properties that enable it interact with a variety of different proteins 

implicated in cell cycle checkpoint responses and DNA repair pathways (Broustas C.G. and 

Lieberman H.B., 2012). 

 

The predicted high instability of the potential 290I – D426 secondary  structural repeat motif, which 

would be the only domain of this type contained within the supramolecular architecture of the 

engineered truncated S. pombe Rad9 variants NΔ311-Rad9-c3xHA and NΔ357-Rad9-c3xHA, may 

render these proteins particularly susceptible to proteolytic degradation and thus also account for 

the lack of their detected expression in the comparative Western blot assay (Fig 3.15, p.313). 
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The pro-aggregative/protease resistant 110GYGSESASRKD120, contained within the 27V – E157 

domain sequence (Fig 3.27, p.349-350), also possessed several unique features, notably; a Wis1 

kinase phosphorylation target residue 111Y (situated within a Sty1 kinase-like Wis1 target 

recognition motif sequence) and the intrinsic structural variability of the 110G residue, which was  

ordered in the case of the engineered full-length S. pombe Rad9 protein variants and disordered in 

the case of the engineered truncated S. pombe Rad9 protein variants NΔ49-Rad9-c3xHA (“Rad9-

S”) and NΔ73-Rad9-c3xHA (“Rad9-M74”) – discussed previously in Section 3.4.1, pp.315-319. 

 

The 152Y – K287 domain sequence also contained the transmembrane-spanning/non-cytoplasmic 

ATRRad3 kinase-activation motif (Fig 3.25, p.345-346 and Fig 3.27, p.349-350), identified via the 

on-line bioinformatics programs TMpred and PHOBIUS, in conjunction with multiple alignment 

analyses with the H. sapiens “HFD” ATR-activation motif sequence (discussed previously in Sub-

section 3.4.3.1, pp.332-339). 

 

Confinement of the potential Wis1 kinase-targeted Sty1 kinase-like  110GYGSESASRKD120 motif  

to the 27V – E157 region and the potential “HFD”-like  ATRRad3 kinase-activation motif to the 152Y 

– K287 region may also be indicative of separate, differential functions of these domains within the 

full-length S. pombe Rad9 protein and/or its truncated isoforms (Fig 3.27, pp.349-350). 

 

Comparative analyses of the full-length S. pombe Rad9 amino acid sequence with the on-line 

software programs COILS, MULTICOIL and MARCOIL indicated a very low/insignificant 

probability of the existance of coiled-coil repeat type secondary structural motifs within the protein 

(Fig 3.26, pp.347-348). 
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Taken together, these in silico data may be indicative that the intrinsic secondary structural 

configurations of the 27V – E157 and 152Y – K287 domains, are regulated via specific kinase-

mediated post-translational phosphorylation events which alter the transient supramolecular 

structure-function relationships of the full-length S. pombe Rad9 protein and/or its truncated 

isoforms (ie NΔ49-Rad9-c3xHA and NΔ73-Rad9-c3xHA) to enable them to act as key component 

initiators of differential cell cycle checkpoint signalling pathway reponses to genotoxic and/or 

other environmental type cytological stresses which adversely impinge upon various biochemical 

processes implicated in the propagation of genomic integrity – such as DNA replication and DNA 

repair (Alao J.P. and Sunnerhagen P., 2008; Furuya K. and Carr A.M., 2003; Furuya K. et al, 

2010; Nurse P. et al, 2009; Paek A.L. and Weinert T., 2010).                                              

  
. 
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     Fig 3.25: Secondary Structure Repeat Motif Analysis of SpRad9 
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A: The relative positions of the potential alternative AUG methionine translational  

       start codon sites of the engineered S. pombe Rad9 full-length and truncated protein 

       isoforms (Fig 3.2, p.289) and the C-terminal tail domain region are indicated. 

 

       The TMpred- and PHOBIUS-identified potential transmembrane-spanning/non- 

       cytoplasmic 254F – 274V sequence, containing the pro-aggregative AAVILA motif  

       flanked by the hydrophilic arginine = R and glutamate = E residues (identified 

       previously via analyses with the on-line software tools BETASCAN  and TANGO 

       – Section 3.4.2, pp.320-330; Fig 3.19, p.328), is highlighted in yellow. 

 

 

 

B: Analysis of the full-length S. pombe Rad9 protein amino acid sequence with the on-line 

       bioinformatics software tool REPPER. 

 

       The X-axis defines the amino acid residue position and the Y-axis defines the relative 

       periodicity score on the top data plot – in which regional locations of potential repeat 

       and/or coiled-coil motifs are presented as lines that are colour-coded according to their 

       determined relative probability weightings via the significance scale indicated 

       underneath.  

           

       The relative regional position of the TMpred- and PHOBIUS- identified potential 

       transmembrane-spanning /non-cytoplasmic motif sequence 254F – 274V motif  

       sequence (Fig 3.22A, p.335) is highlighted in yellow. 

 

       The two graphs, situated below the  colour-coded significance scale, are data plots of  

       the relative intensity (Y-axis) vs periodicity score (X-axis) for the two amino acid 

       residue-spanning regions identified as potential repeat and/or coiled-coil secondary 

       structural motifs. 
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Fig 3.26: Coiled-Coil Motif Analyses of the S. pombe Rad9 Protein 
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A: The relative positions of the potential alternative AUG methionine translational  

       start codon sites of the engineered S. pombe Rad9 full-length and truncated protein 

       isoforms (Fig 3.2, p.289) and the C-terminal tail domain region are indicated. 

 

       The TMpred- and PHOBIUS-identified potential transmembrane-spanning/non- 

       cytoplasmic 254F – 274V sequence, containing the pro-aggregative AAVILA motif  

       flanked by the hydrophilic arginine = R and glutamate = E residues (identified 

       previously via analyses with the on-line software tools BETASCAN  and TANGO 

       – Section 3.4.2, pp.320-330; Fig 3.19, p.328), is highlighted in yellow. 

 

 

B: Analysis of the full-length S. pombe Rad9 protein amino acid sequence with the on-line 

       bioinformatics software tool COILS. 

 

       The X-axis defines the amino acid residue position and the Y-axis defines the relative 

       coiled-coiled probability score on the data plot – probability scores of above 0.5 are 

       significant. 

 

       The standard program window settings (14, 21, 28) utilised to dictate the alogorithm 

       analytical stringency are indicated – the higher the window setting value the higher  

       the analytical stringency. 

             

       The relative regional position of the TMpred- and PHOBIUS- identified potential 

       transmembrane-spanning 254F – 274V/non-cytoplasmic motif sequence (Fig 3.22A, p.335) 

       is highlighted in yellow. 

 

 

C: Analysis of the full-length S. pombe Rad9 protein amino acid sequence with the on-line 

       bioinformatics software tool MULTICOIL. 

 

       The X-axis defines the amino acid residue position and the Y-axis defines the relative 

       coiled-coiled probability score on the data plot – probability scores of above 0.5 are 

       significant. 

 

       Probability score plots for dimeric repeat motifs, trimeric repeat motifs and the sum  

       total of dimeric and trimeric repeat motifs are indicated. 

             

       The relative regional position of the TMpred- and PHOBIUS- identified potential 

       transmembrane-spanning 254F – 274V/non-cytoplasmic motif sequence (Fig 3.22A, p.335) 

       is highlighted in yellow. 

 

 

D: Analysis of the full-length S. pombe Rad9 protein amino acid sequence with the on-line 

       bioinformatics software tool MARCOIL. 

 

       The X-axis defines the amino acid residue position and the Y-axis defines the relative 

       coiled-coiled probability score on the data plot – probability scores of above 0.5 are 

       significant. 

             

       The relative regional position of the TMpred- and PHOBIUS- identified potential 

       transmembrane-spanning 254F – 274V/non-cytoplasmic motif sequence (Fig 3.22A, p.335) 

       is highlighted in yellow. 
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Fig 3.27: Kinase Site and Aggregative Modulatory Motif Analyses of 

the REPPER-Identified Coiled-Coil Repeat Domain Sequences within  

the S. pombe Rad9 Protein  
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A: The relative positions of the potential alternative AUG methionine translational start codon sites  

        of the engineered S. pombe Rad9 full-length and truncated protein isoforms (Fig 3.2, p.289) and  

        the C-terminal tail domain region are indicated. 

 

       The pro-aggregative protease resistant motif 110G – 120D motif, which also contains the potential  

       Wis1 kinase target site at 111Y and potential phosphorylated residues 113S, 115S and 117S (discussed 

       previously in Section 3.4.2, pp.320-330), is highlighted in light blue.  

 

       The TMpred- and PHOBIUS-identified potential transmembrane-spanning/non-cytoplasmic  

        254F – 274V sequence, containing the pro-aggregative AAVILA motif (indicated in orange) flanked  

        by the hydrophilic arginine = R and glutamate = E residues (identified previously via analyses 

        with the on-line software tools BETASCAN and TANGO – Section 3.4.2, pp.320-330; Fig 3.19,  

        p.328), is highlighted in yellow. 

 

       The transmembrane-spanning/non-cytoplasmic 254F – 274V sequence (highlighted in yellow) also 

       contains a putative ATRRad3 kinase-activation “HFD-like” motif  (Fig 3.24, p.339), indicated in  

       purple. 

 

 

 

B: Analysis of the full-length S. pombe Rad9 protein amino acid sequence with the on-line 

       bioinformatics software tool NetPhos2.0. 

 

       The X-axis defines the amino acid residue position and the Y-axis defines the relative 

       phosphorylation probability score on the data plot. 

 

       The horizontal pink line on the data plot denotes the probability threshold – scores of  

       above 0.5 are significant. 

 

       Correlated positions of potential coiled-coil repeat domains and their colour-coded 

       probability significance scale (identified via analysis of the full-length S. pombe Rad9  

       protein amino acid sequence with the on-line bioinformatics software tool REPPER – 

       Fig 3.25, p. ) are superimposed on the data plot. 

 

       The right margin of the data plot indicates the number of high probability-predicted 

       serine, threonine and tyrosine residues within each potential coiled-coil repeat domain. 

 

       The relative positions of the pro-aggregative protease resistant motif 110G – 120D motif 

       (highlighted in light blue) and the transmembrane-spanning/non-cytoplasmic ATRRad3 

       kinase-activation motif (highlighted in yellow) are also indicated.   

 

 

 

C: Residue-spanning regional map of the anti-, pro- and protease-resistant motif sites 

       within the S. pombe Rad9 protein identified via multiple sequence alignment analyses 

       (described previously on p.321) and utilisation of the aggregation sequence motif- 

        predictive on-line software programs BETASCAN and TANGO. 

 

       [Details of these identified motif sequences are provided in Table 3.1, p.327 and Fig 3.19, 

        p.328] 

 

       The relative positions of the pro-aggregative protease resistant motif 110G – 120D motif 

       (highlighted in light blue) and the transmembrane-spanning/non-cytoplasmic ATRRad3 

       kinase-activation motif (highlighted in yellow) are indicated.   
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3.4.3.3 Helix, Strand and Coil Secondary Structural Motif Analyses  
 

In silico analysis of the full-length “wild-type” S. pombe Rad9 amino acid sequence with the on-

line software program YASPIN indicated that all the engineered S. pombe full-length Rad9 

variants and the truncated  Rad9 variants NΔ49-Rad9-c3xHA (“Rad9-S”) and NΔ73-Rad9-c3xHA 

(Fig 3.2, p.289) contained significant regions of helix, strand and coil secondary structural motifs 

within their respective protein supramolecular architectures (Fig 3.28, p.353). 

 

The acquired data also indicated that the protein supramolecular architectures of the engineered  

S. pombe truncated Rad9 variants NΔ311-Rad9-c3xHA and NΔ357-Rad9-c3xHA were comprised 

almost extensively of significant regions of coil secondary structural motif, interspaced with very 

low proportions of significant regions of helix secondary structural motif, with a distinctive 

absence of significant regions of strand secondary structural motif (Fig 3.28, p.353). 

 

In silico analysis of the full-length “wild-type” S. pombe Rad9 amino acid sequence with the on-

line software programs COILS, MARCOIL, MULTICOIL and REPPER also indicated zero 

coiled-coil structural repeat propensity within the C-terminal tail domain of the protein (discussed 

previously in Section 3.4.3.2, pp.340-350). 

 

Taken together, these in silico data are indicative that the supramolecular structural architecture of 

the engineered S. pombe truncated Rad9 variants NΔ311-Rad9-c3xHA and NΔ357-Rad9-c3xHA is 

of a predominently random coil nature, which would also account for their almost exclusive 

intrinsic structural disorder propensity (discussed previously in Section 3.4.1, pp.315-319).  

 . 

These postulated in silico data correlations are also consistent with the highly flexible nature of the 

“structurally-adaptive” Rad9 C-terminal tail domain (Broustas C.G. and Lieberman H.B., 2012), 

progressively smaller fragments of which comprise the entire polypeptide sequences of the 

engineered truncated Rad9 protein variants NΔ311-Rad9-c3xHA and NΔ357-Rad9-c3xHA.    
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The distinctive absence of extensively distributed  helix and strand secondary structural motifs 

within the sequences of the engineered S. pombe Rad9 truncated variants NΔ311-Rad9-c3xHA and 

NΔ357-Rad9-c3xHA (Fig 3.28, p.353) may render these proteins highly unstable and prone to 

rapid proteolytic degradation, which could also account for the lack of their detected expression in 

the comparative Western blot assay (Fig 3.15, p.313).    
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    Fig 3.28: Secondary Structural Motif Profile Analysis of  spRad9 
 

 
 

The relative positions of the potential alternative AUG methionine translational start codon sites of 

the engineered S. pombe Rad9 full-length and truncated protein isoforms (Fig 3.2, p.289) and the C-

terminal tail domain region are indicated in the top figure. 
 

Analysis of the relative proportions and localised distribution of helix, strand and coil secondary 

structural motifs within the “wild-type” full-length S. pombe Rad9 amino acid sequence was 

performed with the on-line software tool YASPIN and the acquired data converted into a graphical 

format via utilisation of the Microsoft Excel software program. 
 

The X-axis defines the amino acid residue position and the Y-axis defines the predicted helix, strand 

and coil propensity probability score on the data plots, whilst the orange right-angled arrows 

indicate the relative positions of the N-terminal methionine start residues of the engineered 

full-length and truncated S. pombe Rad9 protein variants. 
 

The horizontal red line on the data plots denotes the propensity prediction threshold, probability 

scores above 5 are significant and correlate with plotted values above the threshold line.          
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3.4.4 Correlated In Silico Data Analyses: A Comparative Review of 

the Critical Structure-Stability Relationships Identified Within the 

Engineered Full-length and Truncated S. pombe Rad9 Isoformic 

Variants  
 

The degree of intrinsic structural order decreases proportionately with the progressive deletion of  

increasing longer polypeptide regions relative to the N-terminus within the engineered S. pombe 

Rad9 variants (Fig 3.29A and Fig 3.29B, pp.356-357) – which may be defined in the hierarchy of 

most structurally ordered as; 

 Rad9 > Rad9 NΔ49-Rad9  > NΔ73-Rad9 >>> NΔ310-Rad9 = NΔ311-Rad9 >>>> NΔ357-Rad9. 

 

The engineered full-length S. pombe Rad9 variants and truncated isoforms NΔ49-Rad9 and   

NΔ73-Rad9 all contain helix-, strand- and coil- of secondary structural motifs – which may be 

defined in the hierarchy of most abundant as: coil >strand > helix (Fig 3.29A and Fig 3.29D, 

pp.356-357). 

 

In contrast, the amino acid sequences of the truncated Rad9 variants NΔ310-Rad9, NΔ311-Rad9 

and NΔ357-Rad9 are progressively smaller fragments of the C-terminal tail domain whose 

secondary structural motif composition approximates to ~95% random coil and ~5% helix (Fig 

3.29D, pp.356-357). 

 

These in silico data observations are consistent with the highly mobile, intrinsically disordered 

structural nature of the Rad9 C-terminal tail domain which enables it to engage with a variety of 

different proteins implicated in cell cycle checkpoint signalling responses and DNA repair 

pathways (Broustas C.G. and Lieberman H.B., 2012).  
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The engineered full-length S. pombe Rad9 variants amd truncated isoforms NΔ49-Rad9 and   

NΔ73-Rad9 all contain aggregation modulatory and protease resistant motifs (Fig 3.29C, pp.356-

357) – which may be defined in the hierarchy of most abundant as: 

Aggregation inductive  > protease resistant > aggregation suppressive 

 

Intriguingly, the relative proportion of aggregation suppressive motifs within the engineered 

truncated S. pombe  Rad9 variant NΔ73-Rad9-c3xHA is 50% less than that of the engineered S. 

pombe full-length Rad9 variants (Rad9-c3xHA, Rad9-(M50A)-c3xHA and Rad9-(M50L)-c3xHA) 

and the truncated NΔ49-Rad9-c3xHA variant (Fig 3.29C, pp.356-357) – which may be correlated 

with the observed ~50% equivalent reduction in the relative level of expression of the NΔ73-Rad9-

c3xHA protein in the comparative Western blot assay (Fig 3.15, p.313). 

 

In this context, the suppressed level of NΔ73-Rad9-c3xHA protein expression may be a 

consequence of its lower anti-aggregative motif content which could enhance its aggregation and 

denaturing propensity, such that it is more prone to sumoylation- and/or  ubiquitination- mediated 

proteolytic targeting and thus reduce its cytological half-life.  

 

In contrast, the amino acid sequences of the truncated Rad9 variants NΔ310-Rad9, NΔ311-Rad9 

and NΔ357-Rad9 all lack aggregation modulatory and protease resistance motifs (Fig 3.29, 

pp.356-357). 

 

The lack of substantial intrinsic structural order, protein aggregation modulatory motifs, protease 

resistant motifs and functional secondary structural domains within the engineered C-terminal tail 

domain-derived truncated S. pombe Rad9 variants, NΔ311-Rad9-c3xHA and NΔ357-Rad9-C3xHA, 

may render these proteins highly unstable within the cell and particularly susceptible to rapid 

proteolytic degradation, which would account for the absence of their detected expression in the 

Western blot assay (Fig 3.15, p.313). 
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  Fig 3.29: Stability Profiling of  the S. pombe Rad9 Protein Isoforms 
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A: Basic map of the S. pombe Rad9 protein indicating the relative positions of the 

       alternative translational start-site AUG-encoded methionine residues, which  

       are the equivalent N-termini of the engineered Rad9 isoforms. 

        

       The C-terminal tail domain region is also indicated. 

        

 

B: Comparative analysis of the relative intrinsic structural disorder content within 

       the engineered full-length and truncated S. pombe Rad9 protein variants performed 

       via analysis of their respective amino acid sequences with the on-line software 

       tool DisCon (Mizianty M.L. et al, 2011). 

 

 

C: Comparative analysis of the relative potential pro-aggregative, anti-aggregative 

       and protease resistant motif content within the engineered full-length and truncated 

       S. pombe Rad9 protein variants (discussed previously in Section 3.4.2, pp.320-330). 

 

 

D: Comparative analysis of the relative percentage of potential secondary structural helix,  

       strand and coil motif content within the engineered full-length and truncated S. pombe  

       Rad9 protein variants determined via utilisation of the on-line bioinformatics tool 

       YASPIN (Lin K. et al, 2004) – discussed previously in Section 3.4.3.3, pp.351-353. 
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4.1 Introduction 
 

Early experimental investigations into S. pombe rad9 gene expression revealed that it was 

comprised of 4 exons and three introns which were spliced into two alternative transcriptional 

products – notably; one mRNA sequence in which all the introns were excised and another mRNA 

sequence in which intron 1 was retained (Murray J.M. et al, 1991). 

 

Retention of intron 1 within the S. pombe rad9 mRNA transcript would result in the premature 

termination of the translational product acquired from the first AUG initiation start-codon 

corresponding to the first  methionine residue (M1) of the S. pombe Rad9 protein (Fig 4.1, p.361)  

 

The next accessible translation-viable “down-stream” AUG initiation start-codon, within this 

intron 1-retained rad9 mRNA transcript would correspond to the 50th methionine amino acid 

residue (M50) within the S. pombe Rad9 protein with consequential expression of a truncated 

Rad9 protein variant (“Rad9-S”) which lacks the first 49 amino acids situated in the N-terminus of 

the full-length S. pombe Rad9 protein (Fig 4.1, p.361).  

 

Since internal ribosome entry sites (IRES) are typically situated upstream of the first AUG 

translational start codon (Spriggs K.A. et al, 2005; King H.A. et al, 2010), it is also unlikely that a 

functional IRES sequence exists within the transcribed mRNA region spanning the AUG1 and 

AUG50 codons.  

 

Correlated with these phenomena, the mechanism of expression of the “Rad9-S” truncated protein 

variant in S. pombe cells may originate from alternative mRNA splicing of the full-length Rad9 

gene, involving retention of intron 1, with a consequential translational shift to a downstream AUG 

initiation site at M50 respectively (Fig 4.1, p.361). 
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Certain types of RNA hairpin motifs possess the capability to recruit ribosomes independently of 

IRES sequences and the formation of these secondary loop structures may also be temperature 

dependent, in which their respective supramolecular topologies are modulated via conjunctive 

interactions with RNA annealers, RNA helicases and/or RNA chaperones (Choi S.I. et al, 2009; 

Dunker A.K. and Uversky V.N., 2010; Herschlag D., 2005; Liu J. et al, 2006; Rajowitsch L. et al, 

2007; Russell R. et al, 2008; Tompa P. and Csermely P., 2004; Zu T. et al, 2011).  

 

Comparative sequence analysis of the three introns contained within the S. pombe rad9 gene 

indicated that intron 1 possesses an unconventional degenerative 5’ splice-site consensus sequence 

and contained a unique, potential stem-loop aptamer-like consenus sequence (Fig 4.2, p.362). 

 

On the basis of these phenomena and in silico observations, it was postulated that under certain 

conditions of environmental stress (eg heat shock) and/or genotoxic stress, intron 1 may adopt a 

unique stem-loop type of secondary structural configuration which prevents its excision during 

splice-processing of the S. pombe rad9 gene (Fig 4.3, p.363; Fig 4.4, p.364). 

 

In this hypothetical context, it was also postulated that the retained intron 1 sequence within the 

transcribed mRNA of the S. pombe rad9 gene may also function as a novel RNA stem-loop 

aptamer-based “riboswitch” that may induce supramolecular configurational changes within the 

mRNA molecule (Fig 4.3, p.363; Fig 4.4, p.364). 

 

It was proposed that these intron 1-mediated supramolecular configurational changes within the 

transcribed S. pombe rad9 mRNA may block access of the ribosomal-based translational 

machinery at the first AUG start codon (methionine 1), but facilitate its access to the alternative 

AUG start codon at Methionine 50 – with consequential induction of elevated translational 

expression of the truncated “Rad9-S” protein variant (Fig 4.3, p.363; Fig 4.4, p.364). 
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Fig 4.1: Postulated Intron 1 Retention Model of “Rad9-S” Expression  

 
 

Retention of intron 1 within the S. pombe rad9 mRNA transcript could result in premature 

translational termination of full-length Rad9 protein expression (via ribosomal recruitment 

to the first AUG methionine codon initiation site) and re-initiation of translation via 

ribosomal recruitment at the next downstream AUG codon initiation site (situated at 

methionine 50). 

 

The right-hand side of the figure indicates the protein bands, detected in the Western blot 

assay (described below), that correspond to expression of the full-length Rad9 protein (Mr ~ 

50kDa) and the truncated “Rad9-S” variant (Mr ~ 40kDa). 

 

 “Wild-type” S. pombe cells (rad9-c3xHA) were cultured in YEA medium at 30°C to a density 

of 1 x 107 cells/mL. 

 

[The full genotypes of the utilised S. pombe strains are detailed in Appendix 2.11.6 , p.279]. 

 

Aliquots (5 x 108 cells) were then withdrawn from the respective cultures and re-incubated in 

YEA medium at either 30°C or 37°C for a further 30 minutes.  

 

1.4 x 107 cells, acquired from each respective re-incubated culture, were utilised for the 

preparation of TCA-precipitated total protein extracts. 

 

20μL aliquots of the prepared protein samples were resolved on a 10% SDS-PAGE gel which 

was then utilised in a Western blot analysis probed with the anti-HA primary antibody. 

 

[Protein sample preparation, SDS-PAGE resolution and Western blot methodologies are 

detailed in Section 2.8.1, pp.200-202; Section 2.8.4, pp.223-224 and Section 2.8.6, pp.231-233] 
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 Fig 4.2: Internal Intron Sequences within the S. pombe Rad9 Gene  
 

   The Schizosaccharomyces pombe  rad9 Gene Sequence (DNA Sense Strand) 
 
5’ACCAGTTTCAATTCTGTTTGTCAAAAATTGTCTATCGTTATTCGTTCAGCATTCGTCTACATCAAT

TCACGTACTGGTATATAAAATGGAATTCACTGTTTCAAATGTTAATCTTCGGGACCTCGCAAGGAT

CTTTACAAATCTTTCTAGAATCGATGATGCTGTCAACTGGGAAATTAACAAAAATCAGGTGTGTTG

GAACTTTTTTCAAACCTTACTAAACATTGAAACTAATTGGTAAAGATAGAGATTACATGTTTAAATT

CTTCTAGGTCAGGATTTAGCATGGTGACTTTAAAAAAGGCATTTTTTGACAAGTACATTTTTCAGC

CGGATTCCGTCCTGTTGACGGGATTGATGACTCCTACAATACGTATTCGTACGCAAGTCAAGCCCA

TACTATCTGTGTTTAGAAACAAAATCTTTGATTTCATCCCGACTGTCGTCACTACCAATAGCAAGA

ACGGTTATGGCAGTGAATCTGCAAGCAGAAAAGATGTGATTGTCGAGAATGTTCAAATCTCAATCT

CTACTGGTAGCGAGTGTAGGATTATATTTAAATTCTTATGCAAGCACGGTACGTAGTTTGTCCGTC

TTATTATTTTATTTGCTCTACTAACGTTTATTCATCAAGGAGTGATTAAAACATATAAAATATCATA

TGAACAAACCCAAACTTTACACGCTGTTTTTGATAAATCTCTTAGTCACAATAATTTTCAAATAAAC

TCAAAAATTCTAAAAGATTTGACTGAACATTTTGGTCAGAGAACGGAAGAGCTTACAATTCAACCA

CTTCAAGAACGTGTTTTACTTACAAGTTTCACAGAAGAGGTCGTACATAATAGAGATATTTTGAAG

CAACCTACCCAAACAACTGTTTCCATTGATGGTAAAGAATTTGAACGCGTCGCACTTAATGAGGGA

GTCTCTGTTACCCTTTCTCTACGTGAATTTCGTGCTGCCGTCATTTTAGCAGAGGCATTGGGAAGC

TCGATTTGTGCATATTACGGTGTCCCAGGAAAACCGATACTTTTAACTTTTGCAAAAGGGAAAAAT

TCCGAAATTGAAGCGCAGTTCATTCTTGCAACTGTAGTTGGATCAGATGAACAAGAGGTGTCATCT

ATGATGGGAAATAGATGGCAGCACAGTTCAACACCAGCTTCTCTGTTCAATTCAGTAGAGCGCAAC

AACTCATTGACTGCTGTAGCACATAATCCCCCTGGATCTATTGGATGGCAAACTGATGTATGTAAT

TCGGCTTTAGTACTAAGTACAATAATTTATTAACATTAACTTTATAGCAAAGTGACTCATCCAGAAT

GTTTAATTCTGCGCTTGACCGAAGCGACGAAACTAATGGCATTAAGGAGCCATCAACCACAAACG

ATGCTGGTCAATCATTGTTCTTAGATGGTATTCCAAATGAATCCGAGCTTGCTGCTTTTAATAATG

ATGTGAACGATGATGCCGAATTTGGACCAACGCAAGCTGAACAAAGTTATCATGGCATTTTCTCTC

AGGAAGACTAGGAAAATCCTTCTTTGCTATGGTGTGTAAAATTATGAACATTTACAGGTGCTTGTG

ACAACCTCATAAAACACAGCACTCATATTATATAATGTACAATATTTATCAATAATTTAGTTTTTTT

TAAC3’ 

 

 

5’ACCA....... = Exon 1  5’ Un-Translated Region 

 

.…..TAAC3’ = Exon 4  3’ Un-Translated Region 

 

NNNNNNN  = Exons 1 – 4 Translated Regions 

 

NNNNNNN  = Introns 1 – 3   

 

NNNNNNN  = Consensus Splice Signal Sequences within Introns 1 – 3: GTANGT = 5’ Donor Site* 

 

                                                                                                                          CTAAN = Branch Point 

 

                                                                                                                          AG = 3’ Acceptor Site             

 

[*NOTE: Intron 1 Contains the Degenerative 5’ Donor Site Sequence  GTGTGT as Opposed to the 

                Conventional 5’ Donor Site Consensus Sequence GTANGT] 
 

ATG = Full-Length Rad9 Translation Met Start Codon Site 

 

ATG = Rad9-S Alternative Splice Translation Met Start Codon Site 

 

 

Note: Intron 1 also contains a potential  AACTTTTTTCAA stem-loop consensus sequence 

          which may function as a component of an RNA aptamer/Riboswitch-linked regulatory 

          mechanism, that upon folding, may adopt secondary RNA structure(s) which 

          effectively block the 5’-donor, branch and the 3’-acceptor splice sites from  

          snRNP-processed cleavage via sterically-shielded extensive base-pair formation 

          respectively. 
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Fig 4.3: Intron 1 RNA Aptamer-Mediated Rad9-S Expression Model 
 

 

 
An unusual  palindromic stem-loop like sequence identified within Intron 1, absent in Introns 2 and 3 

of the S. pombe rad9 gene, may act as a stem-operator loop and/or RNA aptamer/Riboswitch binding-

site for specific ligand(s) – “X?” depicted above, in which ligand-binding induces a suparmolecular 

conformational change in the secondary intron 1 RNA structure with consequential 

thermodynamically/entropically stabilised alternative hydrogen-bond associations which sterically-

shield the 5’-donor, branch and 3’-acceptor splice sites from the snRNP proteins with consequential 

intron 1 retention in the processed mature mRNA and expression of the truncated Rad9-S protein 

variant via the alternative AUG codon start site at position M50 respectively. 

 

Alternatively, the 5’-untranslated region and Exon 1 sequences may participate in associative 

supramolecular secondary structure interactions with ligand(s) – “X?”, thereby acting as a RNA-

aptamer/riboswitch trigger which promotes formation of the intron 1 step-loop secondary 

supramolecular figuration that prevents its excision via snRNPs during mRNA splicing and 

processing, resulting in favoured expression of the truncated Rad9-S protein via the alternative AUG 

start codon site at position M50 respectively. 
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Fig 4.4: Intron 1 Aptamer Model of Heat-Shock Rad9-S Induction 
      

 

 

 

Elevated levels of the truncated Rad9-S protein variant in response to heat stress induction 

may be a consequence of increased flexibility modifications to the supramolecular structure 

of the postulated intron 1 RNA stem operator loop, mediated via thermal dissociation of the 

lower energy A=T base-pairs, thereby facilitating ribosomal access to the alternative 

translational AUG codon initation site at position M50 with subsequent enhancement Rad9-S 

Expression. 

 

The 5’-donor, branch and 3’-acceptor splice sites within the intron 1 mRNA sequence are 

still sterically-shielded from the snRNP spliceosomal complexes due to retention of its step 

operator loop configuration via the higher energy GC base-pairs and /or associative 

interactions with other ligand(s) – “X?” or proteins (eg heat shock proteins, RNA chaperone 

proteins and/or RNA stabilizer proteins).   
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4.2 Induced Expression of Rad9-S is a Specific Cytological Response 

 to Hyperthermic Stress 
 

In order to ascertain whether or not the induction of the truncated “Rad9-S” protein variant was an 

exclusive heat shock response, as opposed to alternative types of genotoxic and/or micro-

environment stresses, Western Blot analyses were performed on TCA-precipitated total protein 

extracts acquired from YEA broth cell cultures of the “cre-lox”– constructed S. pombe strain rad9-

c3xHA exposed to a variety induced adverse cytological conditions. 

 

These induced stresses were cold shock, heat shock, pH shock (acidic shock vs alkaline shock), 

osmotic stress (1M sorbitol, LiAc-TE-PEG, polyethyleneglycol – PEG), glucose starvation (lactose 

substituted for glucose in the YEA medium), oxidative stress (in the presence of hydrogen 

peroxide, menadione, sodium nitroprusside and tert-butylhydroperoxide), mutagenic stress 

(hydroxylamine, ethidium Bromide, sodium metabisulphite), metal ion toxicity (Li+, Na+, K+, Mg2+, 

Ca2+, Mn2+, Co2+, Ni2+, Cu2+), PI3-kinase inhibition (caffeine), ribonucleotide biosynthesis 

inhibition (hydroxyurea), mitotic inhibition (thiabendazole), DNA cleavage/cross-linking/adduct-

forming agent exposure (methylmethane sulphonate, mitomycin C, 4-methyl-N’-nitro-N-

nitrosoguanidine, 4-nitroquinoline-1-oxide, phleomycin, U.V. irradiation) and topoisomerase 

inhibition (camptothecin, ellipticine, etoposide) – Fig 4.5, pp.368-370. 

 

Increasing % (v/v) concentrations of dimethylsulphoxide (DMSO)  and ethanol (EtOH), which 

were utilised for preparation of the stock solutions of the oxidative stress inducers, caffeine and 

various genotoxic agents, were also tested and served as negative experimental controls for 

confirmation that exposure of “cre-lox”– constructed S. pombe strain rad9-c3xHA cultures to these 

solvents did not induce expression of  the truncated “Rad9-S” protein variant within the cells (Figs 

4.5H and 4.5I, pp.368-370). 
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Whilst the acquired Western blot data indicated that genotoxic-, hypothermic-, redox-, glucose 

depletion-,  acidic- and alkaline- induced stresses did not induce expression of the truncated 

“Rad9-S” protein variant (Fig 4.5, pp.368-370), the possibility that one or more of these conditions 

may be implicated in the suppression of “Rad9-S” expression cannot be ruled out. 

 

Hypo-osmotic, hyper-osmotic and high concentrations of specific metal ions within the cytological 

nuclear micro-environment can alter the topological configuration of  DNA and/or the chromatin 

supramolecular structure with consequential suppression or induction of the expression of specific 

genes, in which the modulation of specific DNA-protein interactions may be implicated and in 

some instances contribute to the development of carcinogenesis (Desoize B., 2003; Durham T.R. 

and Snow E.T., 2006; McClellan J.A. et al, 1990; Ni Bhriain N. et al, 1989; Ordóñez E. et al, 

2008; Zambelli B. et al, 2012).    

 

In order to ascertain whether or not hypo-osmotic, hyper-osmotic and/or high concentrations of 

specific metal ions of the S. pombe rad9 gene may also be implicated in the modulated expression 

of the truncated “Rad9-S” protein, individual YEA broth cultures of the “cre-lox”– constructed S. 

pombe strain rad9-c3xHA cells were exposed to either 1M sorbitol, LiAc-TE-PEG, 

polyethyleneglycol – PEG,  Li+, Na+, K+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+ or Cu2+  (Fig 4.5, pp.368-

370). 

 

Subsequent Western blot analysis of the TCA total protein extracts acquired from these 

experimental S. pombe rad9-c3xHA cell cultures treated failed to detect the presence of “Rad9-S” 

(Fig 4.5, pp.368-370), which was indicative that hyo-osomotic, hyper-osmotic and high 

concentrations of metal ions are not implicated in the mechanism of induction of “Rad9-S” 

truncated protein variant expression. 

 

However, these data could be indicative that hypo-osmotic, hyper-osmotic and/or high 

concentrations of specific metal ions may be implicated in the suppression of  “Rad9-S” truncated 

protein variant expression (Fig 4.5, pp.368-370). 
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Post-transcriptional 5’-methylcytosine DNA modifications are also known to be implicated in 

epigenetic-based mechanisms which may regulate the expression of various genes and/or result in 

their “silenced” suppression (Jones P.A. et al, 2012).  

 

Intriguingly, hypermethylation at CpG islands within introns 1 and 2 of the human RAD9A gene 

has been detected within breast and prostate tumours, that may be implicated in the regulation of 

expressed Rad9A protein levels within these neoplastic cell types which may also be a key 

biochemical factor that “governs” their metastatic capacity (Chan V. et al, 2008; Cheng C.K. et al, 

2005; Zhu A. et al, 2008). 

 

In order to ascertain whether or not DNA methylation of the S. pombe rad9 gene may also be 

implicated in the modulated expression of the truncated “Rad9-S” protein, a YEA broth culture of 

the “cre-lox”– constructed S. pombe strain rad9-c3xHA cells was exposed to the mutagenic agent 

sodium metabisulphite, which initiates the sulphation-mediated deamination-type reactive 

conversion of cytosine to uracil and 5’-methylcytosine to thymine within DNA (Clark S.J. et al, 

1994).  

 

Subsequent Western blot analysis of the TCA total protein extract acquired from the S. pombe 

strain rad9-c3xHA cell culture treated with sodium metabisulphite failed to detect the presence of 

“Rad9-S” (Fig 4.5F, pp.368-370) – which may indicate that DNA methylation of the S. pombe 

rad9 gene is not implicated in epigenetically-silenced “Rad9-S” expression. 

 
Taken together, the acquired experimental data confirmed that the mechanism of inductive 

expression of the truncated “Rad9-S” variant is an exclusive heat shock type response (Fig 4.5, 

pp.368-370). 
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Fig 4.5:  Experimental Induction of S. pombe “Rad9-S” Expression      
                                   

             
 

Individual 50mL YEA broth medium cell cultures of the “Cre-Lox” – constructed S. pombe strain rad9-c3xHA 

were incubated at 30˚C over a 12 hour time period, then diluted to an optical density A595 = 0.25 with the 

appropriate volume of YEA medium and the resultant diluted cultures re-incubated at  30˚C for a further time 

period of ~2.5 hours until they had attained an optical density value of A595 = 0.5 – after which time the 

resultant cultures of actively cycling cells were re-incubated at 30˚C for a further 30 minutes under imposed 

experimental conditions of specific types of environmental stress or induced DNA damage exposure (a 

comprehensive explanation of Figs A – I is provided on the following pages, pp.369-370). 

 

TCA-precipitated total protein extract samples were then prepared from the appropriate *calculated 

volumetric aliquot of each culture (*equivalent to 10 A595 optical density units) of which 20μL aliquots were 

resolved on 10% SDS-PAGE gels which were then utilised in comparative Western blot analyses probed with 

the anti-HA primary antibody (Figs A – I above). 
 

[Protein sample preparation, SDS-PAGE resolution and Western blot methodologies are detailed in Section 

 2.8.1, pp.200-202; Section 2.8.4, pp.223-224 and Section 2.8.6, pp.231-233] 
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Experimental Induction of “Rad9-S” – Figure Legend (Fig 4.5)      

 
A: Exposure of each YEA broth culture to the defined temperature for 30 minutes. 

  

 

 

B: Exposure of each YEA broth culture to the defined pH for 30 minutes 

      [in this case the cell culture was spun down at 3000rpm at 25˚C for 5 minutes, the supernatant discarded 

       and the cell pellet re-suspended in the identical volume of YEA medium adjusted to the specific pH value*, 

       prior to incubation at 30˚C for 30 minutes] 

 

      [* Note: Each aliquot of pH-adjusted YEA medium was filter-sterilised, via utilisation of a sterile syringe 

                     and 0.2μm filter assembly prior to cell pellet re-suspension] 

 

 

 

C: Exposure of each YEA broth culture to the oxidative stress-inducing agent for 30 minutes 

       [in this case the cell culture was spun down at 3000rpm at 25˚C for 5 minutes, the supernatant discarded 

        and the cell pellet re-suspended in the identical volume of YEA medium which contained 400µM of either: 

       Hydrogen Peroxide (H2O2) 

       Menadione (MDN) 

       t-Butylhydroperoxide (TBH) 

       Sodium Nitroprusside (SNP)] 

         

       The resultant cultures were then incubated at 30˚C for 30 minutes 

 

 

 

D: Exposure of each YEA broth culture to the respective metal ion species for 30 minutes 

       [in this case the cell culture was spun down at 3000rpm at 25˚C for 5 minutes, the supernatant discarded 

        and the cell pellet re-suspended in the identical volume of YEA medium which contained 400mM of the 

        appropriate metal ion salt] 

 

       The resultant cultures were then incubated at 30˚C for 30 minutes 

 

 

 

E: Exposure of each YEA broth culture to the respective environmental condition for 30 minutes 

      [In the case of U.V. exposure, the cell culture was spun down at 3000rpm at 25˚C for 5 minutes, the 

       supernatant discarded and bottom of the centrifuge tube (containing the cell pellet) excised with a  

       scalpel blade and exposed to 50 J/M2 U.V. irradiation prior to re-suspension of the treated cell pellet  

       in the identical volume of YEA medium] 

 

      [In the case of the other imposed environmental conditions, the cell culture was spun down at 3000rpm 

       at 25˚C for 5 minutes, the supernatant discarded and the cell pellet re-suspended in the identical volume  

       of YEA medium which comprised either: 

       10mM Caffeine in YEA (Caff)  

       3% (w/v) Lactose in YEA (Lact) 

       1M Sorbitol in YEA (Sorb) 

       1M KCl in YEA (KCl) 

       LiAcTE Buffer (made up in YEA medium instead of water) – detailed in Ch.2, Section 2.2.5, p.166 

       40% (w/v) Polyethylene Glycol 4000 in YEA (PEG) 

       LiAc-TE–PEG Buffer (made up in YEA instead of water) – detailed in Ch.2, Section 2.2.5, p.166 

         

      The resultant cultures were then incubated at 30˚C for 30 minutes 
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Experimental Induction of “Rad9-S” – Figure Legend (Fig 4.5) 

[Continued]      
 

 F: Exposure of each YEA broth culture to the respective genotoxic agent for 30 minutes 

       [in this case the cell culture was spun down at 3000rpm at 25˚C for 5 minutes, the supernatant discarded  

        and the cell pellet re-suspended in the identical volume of YEA medium which contained either: 

        10mM Hydroxyurea (HU) 

        4µM Hydroxylamine (H2NOH) 

        0.05%(v/v) Methylmethanesulphonate (MMS) 

        4µM Mitomycin C (Mit C) 

        4µM 4-Methyl-N’-Nitro-N-Nitrosoguanidine (MNNG) 

        4µM 4-Nitroquinoline-1-Oxide (4-NQO) 

        4µM Sodium Metabisulphite (NaHSO3) 

 

        The resultant cultures were then incubated at 30°C for 30 minutes.  

 

 

 

G: Exposure of each YEA broth culture to the respective genotoxic agent for 30 minutes 

       [in this case the cell culture was spun down at 3000rpm at 25˚C for 5 minutes, the supernatant discarded 

        and the cell pellet re-suspended in the identical volume of YEA medium which contained either: 

       40µM S-(+)-Camptothecin (CPT) 

       4µM Phleomycin (Phleo) 

       40µM Thiabendazole (TBZ) 

       4µM Ethidium Bromide (EtBr) 

                                     

        [in the case of Ellipticine (Ellip) and Etoposide (Etop) the cell pellet was re-suspended in 1mL of Lyticase- 

         YEA and incubated at 30°C for 20 minutes – as described in Section 2.9.2.2 (ii), protocol stages (vi) and  

         (vii), p. 250, after which time the treated cells were pelleted and washed in 4x 1mL fresh aliquots of YEA 

         – as described in the Section 2.9.2.2 (ii), protocol stage (xi), p.250. 

 

         The resultant cell pellet was then re-suspended in an initial identical volume of YEA (ie the total volume of  

         YEA in the diluted S. pombe strain culture which had an adjusted optical density value of A595 = 0.5 and   

         also contained 40μM of Ellipticine or Etoposide] 

 

        The resultant cultures were then incubated at 30°C for 30 minutes.  

 

 

 

H: Exposure of each YEA broth culture to the respective concentration of Dimethylsulphoxide 

       solvent (DMSO) for 30 minutes  

       [in this case the cell culture was spun down at 3000rpm at 25˚C for 5 minutes, the supernatant 

       discarded and the cell pellet re-suspended in the identical volume of YEA medium which 

       contained the appropriate % (v/v) of DMSO solvent prior to re-incubation at 30°c for  30 

       minutes] 

 

 

               

I: Exposure of each YEA broth culture to the respective concentration of % (v/v) Ethanol (EtoH) 

    for 30 minutes at 30°C 

    [in this case the cell culture was spun down at 3000rpm at 25˚C for 5 minutes, the supernatant 

     discarded and the cell pellet re-suspended in the identical volume of YEA medium which 

     contained the appropriate % (v/v) of DMSO solvent prior to re-incubation at 30°C for 30 minutes] 
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4.3 The Truncated “Rad9-S” Protein Variant is an Alternative 

Translational Product that Originates from the Internal AUG 

Initiation Codon Situated at Methionine 50 and Whose Expression is 

Independent of Intron 1 Retention Within the Transcribed S. pombe 

rad9 mRNA 
 

In order to verify whether or not the truncated “Rad9-S” protein variant was indeed an alternative 

translation product, originating from ribosomal scanning at the internal AUG codon start-site at 

methionine 50 within a transcribed intron 1-retained rad9 mRNA, comparative Western blot 

analyses were performed on TCA-precipitated total protein extracts acquired from YEA broth cell 

cultures of the “Cre-Lox”–constructed S. pombe strains rad9-c3xHA, rad9-(ΔIntron1)-c3xHA, 

rad9-M50A-c3xHA, rad9-M50L-c3xHA,  NΔ49-rad9-c3xHA and NΔ73-rad9-c3xHA exposed to 

heat shock in the absence or presence of a translational inhibitor type anti-biotic – cycloheximide 

(Fig 4.6, p.373). 

 

The presence of detected “Rad9-S” expression in TCA-precipitated total protein extracts acquired 

from the experimental culture of the rad9-ΔIntron1-c3xHA strain, under heat-shock conditions 

(37°C) in the absence of cycloheximide, indicates that retention of intron 1 within the transcribed 

rad9 mRNA sequence is not implicated in the mechanism of alternative translated expression of  

the “Rad9-S” protein (Fig 4.6, p.373). 

 

In silico RNA secondary structural folding analyses of intron 1, performed via utilisation of the 

bioinformatics Vienna RNA-Fold software tool, also indicated that it would be unlikely to adopt 

the postulated aptamer configuration (Fig 4.3, p.363; Fig 4.4, p.364) in the alternative-translation 

mechanism of expression of the truncated “Rad9-S” protein variant (Fig 4.7, p.374). 
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The  absence of detected “Rad9-S” expression in TCA-precipitated total protein extracts acquired 

from the experimental cell cultures of the rad9-c3xHA and rad9-ΔIntron1-c3xHA S. pombe strains, 

incubated under heat-shock conditions (37°C) in the presence of cycloheximide, indicate that the 

truncated“Rad9-S” protein variant is an alternative translational product (Fig 4.6, p.373). 

 

The  absence of detected “Rad9-S” expression in TCA-precipitated total protein extracts acquired 

from the experimental cell cultures of the rad9-M50A-c3xHA and rad9-M50L-c3xHA S. pombe 

strains, incubated under heat-shock conditions (37°C) in the absence of cycloheximide, also 

indicate that the “Rad9-S” protein is most likely to be a an alternative translational product which 

is expressed via the AUG start codon at Methionine 50 (ie NΔ49-Rad9-c3xHA) – Fig 4.6, p.373. 

 

Eukaryotic alternative N-terminal translated protein expression can also be initiated at non-AUG 

codon start sites, such as leucine CUG codons, contained within microsatellite expansions of the 

transcribed mRNA (Kochetov A.V., 2008a; Kochetov A.V. et al, 2008b; Zu T. et al, 2011). 

 

The  absence of “Rad9-S” in TCA-precipitated total protein extracts acquired from the 

experimental cell cultures of the rad9-M50A-c3xHA and rad9-M50L-c3xHA S. pombe strains, 

incubated under heat-shock conditions (37°C) in the absence and presence of cycloheximide, also 

indicates that the CUG codon at leucine 50 is not utilised as an non-AUG type of alternative 

translational initiation start codon for expression of the truncated “Rad9-S” protein variant (Fig 4.6, 

p.373). 
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   Fig 4.6: Heat-Specific Induction of S. pombe “Rad9-S” Expression  
 

 
 

Individual 50mL YEA broth medium cell cultures of the appropriate “Cre-Lox” – 

constructed S. pombe strain were grown to overnight (30˚C for  ~12 hour time period), then 

diluted to an optical density A595 = 0.25 with the appropriate volume of YEA medium and 

the resultant diluted cultures re-incubated at  30˚C for a further time period of ~2.5 hours 

until they had attained an optical density value of A595 = 0.5 – after which time the cultures 

of actively cycling cells were re-incubated either at 30°C or 37°C for a further 30 minutes in 

the absence or presence of 100μg/mL cycloheximide (CHX) – a translational inhibitor type 

antibiotic. 

 

TCA-precipitated total protein extract samples were then prepared from the appropriate 

*calculated volumetric aliquot of each culture (*equivalent to 10 A595 optical density units) of 

which 20μL aliquots were resolved on 10% SDS-PAGE gels which were then utilised in 

comparative Western blot analyses probed with either anti-HA primary antibody. 

 

[Protein sample preparation, SDS-PAGE resolution and Western blot methodologies are 

detailed in Section 2.8.1, pp.200-202; Section 2.8.4, pp.223-224 and Section 2.8.6, pp.231-233] 
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Fig 4.7: Vienna RNAfold Analysis of the Intron 1 mRNA Sequence of 

 the S. pombe rad9 Gene 
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4.4 In Silico RNA Folding Analyses of the Untranslated Regions 

Within the S. pombe rad9 Gene Reveal that the 3’-UTR May be 

Implicated in Hyperthermically-Induced Expression of the Truncated 

“Rad9-S” Protein Variant  
 

Internal ribosome entry sites (IRES), typically situated upstream of the first AUG translational 

start codon within the 5’-untranslated region (5’-UTR), may regulate translational initation of 

alternative downstream AUG start codon sites within the transcribed RNA  (Araujo P.R. et al, 

2012; Bazykin G.A. and Kochetov K.A., 2011; King H.A. et al, 2010; Kochetov A.V. et al, 2005; 

Kochetov A.V., 2008a; Kochetov A.V. et al, 2008b; Spriggs K.A. et al, 2005; Vazquez-Pianzola P. 

and Suter B., 2012; Zu T. et al, 2011). 

 

Functional 5’-UTR and 3’-UTR regions within transcribed yeast mRNA molecules have also been 

correlated with high levels of gene expression (Kochetov A.V. et al, 2002). 

 

In silico prediction and modelling analyses of the optimal thermodynamically-adopted secondary 

structural configurations of the 5’-UTR and 3’-UTR domains contained within the S. pombe rad9 

mRNA were performed, via utilisation of the on-line bioinformatics software program Vienna 

RNAfold, in order to ascertain whether or not these sequences had the potential capacity to 

regulate expression of the truncated “Rad9-S” protein variant (Fig 4.8, p.377; Fig 4.9, p.378). 

 

The acquired in silico data indicated that whilst the 5’-UTR RNA sequence was unlikely to adopt 

an energetically-favorable functional loop secondary structural configuration that would be 

capable of regulating translational initiation within the transcribed S. pombe rad9 gene (Fig 4.8, 

p.377), the 3’-UTR sequence was predicted to fold into a thermodynamically-favorable secondary 

structural configuration comprised of several stem-loop sub-domains (Fig 4.9, p.378). 
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The complexity of the supramolecular architecture of the predicted optimal 3’-UTR secondary 

RNA structure (Fig 4.9, p.378) may be indicative that this sequence possesses the latent adaptive 

capacity to switch between different stem-loop configurations whose energetically-favored 

formation is temperature-dependent. 

 

It is therefore hypothetically conceivable that the 3’-UTR sequence may function as a temperature-

responsive translational regulatory element, within the S. pombe rad9 gene, which may also be 

implicated in the hyperthermic induction  of “Rad9-S” expression.  
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Fig 4.8: Vienna RNAfold Analysis of the 5’-UTR Sequence of the 

S. pombe rad9 Gene 
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Fig 4.9: Vienna RNAfold Analysis of the 3’-UTR Sequence of the 

S. pombe rad9 Gene 
 

 

 

 
 

 

                                                   [378] 



4.5 The Amino Acid Encoded mRNA M1-S49 Spanning Region of the 

S. pombe rad9 Gene May Be Implicated in the Hypothermic 

Suppression of Truncated “Rad9-S” Protein Variant Expression 
 

Comparative Western blot assays performed on TCA-precipitated total protein extracts acquired 

from YEA cell cultures of the “cre-lox” – constructed S. pombe strains Δrad9, rad9-c3xHA and 

NΔ49-rad9-c3xHA (“rad9-S”-c3xHA) incubated at 16˚C (hypothermic stress), 30˚C (nominal 

temperature) or 37˚C (hyperthermic stress) indicated that expression of the truncated “Rad9-S” 

protein variant is suppressed at lower temperatures (Fig 4.10, p.384). 

 

The acquired Western blot assay data also indicated that phosphorylation of the “Rad9-S” 

truncated protein variant is suppressed under cytological conditions of hyperthermic stress (Fig 

4.10, p.384).  

 

Taken together, these experimental observations may be indicative that protein phosphatase-

mediated post-translational modifications of the truncated “Rad9-S” protein variant are implicated 

in the mediation of novel cell cycle checkpoint responses to specific heat-shock type cytological 

stresses that may impair a variety of biochemical mechanisms which collectively maintain 

genomic integrity. 

 

The hypothermically-suppressed expression and post-translational dephosphorylation of the 

truncated  “Rad9-S” protein variant, under the imposed lower temperature conditions of 16˚C and 

30˚C (Fig 4.10, p.384), may also be indicative of novel mechanisms which regulate its relative 

levels and functional activities within the cell. 
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These Western blot assay data also revealed both a significant enhancement of lower temperature 

basal level expression and reduction of hyperthermically-induced expression of the truncated 

“Rad9-S” protein variant within the TCA-precipitated total protein extracts acquired from the 

experimental YEA cultures of the NΔ49-rad9-c3xHA S. pombe strain, whose cells were “cre-lox” – 

engineered for the exclusive expression of “Rad9-S” (Fig 4.10, p.384). 

 

These experimental observations may be indicative of a responsive elemental domain, contained 

within the M1 – M50 segment of the transcribed S. pombe rad9  mRNA, which inhibits the direct 

recruitment of ribosomes to the downstream AUG50 codon initiation site and thereby suppresses 

alternative translational expression of the truncated “Rad9-S” protein variant under hypothermic 

(16˚C) and lower nominal (30˚C)  temperature conditions within the cell.  

 

In order to test this hypothesis, comparative in silico RNA optimal secondary structure prediction 

analyses were performed on the amino acid encoded  M1 – S49 base sequence region contained 

within the S. pombe rad9 mRNA transcript via utilisation of the on-line bioinformatics software 

tool Vienna RNAfold (Figs 4.11- 4.14, pp.385-390). 

 

The acquired in silico data indicated that the T18 – C40 codon region, contained within the 

encoded M1 – S49 segment of the transcribed S. pombe rad9 mRNA, was predicted to fold into a 

thermodynamically-favorable secondary structural configuration comprised of several stem-loop 

sub-domains (Fig 4.11, pp.385-386  and Fig 4.12, pp.387-388). 

 

 

Dispersed responsive elements, organised within functional regions of yeast mRNA molecules, are 

known to modulate the translational activity of the transcribed genes and thus regulate the 

expressed cellular levels of their encoded proteins (Kochetov A.V. et al, 2002). 
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The nucleotide composition, dinucleotide, base-paired and unpaired base content of the linear 

sequences and/or secondary structures of these dispersed responsive elements, contained within the 

transcribed yeast mRNA molecules, also determines their functional capacity with regard to the 

degree of translational expression they induce or suppress in the respective genes (Kochetov et al, 

2002). 

 

In silico composition profiling of the loop, unpaired and paired bases, contained within the optimal 

T18 – C40 secondary RNA structure (Fig 4.13, p.389), predicted by the Vienna RNAfold  software 

tool, indicated that its supramolecular fold architecture consisted of 5 loops, in which the 

hierarchical order of abundance of unpaired and paired bases was defined as:  

unpaired bases > stem-loop bases > A:U base-pairs > G:C base-pairs > G:U base-pairs 

 

 

These in silico analyses also estimated the denaturing “melting temperature” (Tm) of the predicted 

optimal T18 – C40 secondary RNA structure to be around 30˚C, which correlated with the 

relatively low proportional content of  G:C base-pairs (that contain three hydrogen bonds and 

require more energy for their thermal dissociation compared with A:U or G:U base-pairs which 

only contain two hydrogen bonds and therefore require less energy for their thermal dissociation) –   

Fig 4.13, p.389.  

 

 

Thus, the relatively low Tm and multi-loop supramolecular architectural complexity of the 

predicted optimal T18 – C40 secondary RNA structure may be indicative that this sequence acts as 

a hypothermic responsive element that possesses the latent adaptive capacity to switch between 

different  configurations whose energetically-favored formation is temperature-dependent. 
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Comparative in silico modelling of the optimal thermodynamically-favoured supramolecular 

configurations of the isolated T18 – C40 encoded mRNA sequence and the T18 – C40 region 

incorporated within the M1 – S49 encoded mRNA sequence, predicted by the on-line Vienna 

RNAfold bioinformatics software tool, yielded two distinctive RNA secondary structures which 

contained different stem-loop arrangements (Fig 4.14, p.390). 

 

These acquired in silico data were indicative that the sequences flanking the potential T18 – C40 

hypothermic responsive cis-element, situated within the encoded M1 – S49 segment of the 

transcribed S. pombe rad9 mRNA, may be implicated in the modulation of its secondary 

supramolecular architecture (Fig 4.14, p.390). 

 

 

Taken together, these acquired Western blot data and comparative in silico RNA secondary 

structure analyses indicate a hypothetical mechanism for hypothermically-suppressed truncated 

“Rad9-S” protein variant expression, which is mediated via dispersed responsive elements situated 

within the encoded M1 – S49 segment of the transcribed S. pombe rad9 mRNA (Fig 4.15, p.391). 

 
Low temperature conditions (below 30˚C) may promote formation of the predicted  T18 – C40 

multi stem loop-configured secondary RNA structure whose supramolecular configuration 

sterically hinders ribosomal access to the downstream AUG50 translational initiation codon and 

thus prevents expression of the truncated “Rad9-S” protein variant, whilst ribosomal access to the 

AUG1 start codon remains unaffected and enables translation of the first N-terminal 17 amino 

acids of the full-length S. pombe Rad9 protein to proceed (Fig 4.15A, p.391). 

 

Subsequent ribosomal progression to the T18 RNA codon may then initiate a translational pause  

and induce transient supramolecular configurational changes within the transcribed S. pombe rad9 

mRNA that result in the specific recognition recruitment of an RNA chaperone/helicase complex 

to the  T18 – C40 multi stem loop-configured secondary RNA structure (Fig4.15B, p.391) 
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The  recruited RNA chaperone/helicase complex may then catalyze the unfolding of the T18 – C40 

multi stem loop-configured secondary RNA structure, which in turn promotes its dissociation from 

the transcribed S. pombe rad9 mRNA and re-initiates progressive ribosomal translation of the 

encoded T18 – C40 amino acid sequence (Fig 4.15C, p.391). 

 

Subsequent ribosomal translation of the encoded C40 – M50 amino acid sequence may then induce 

transient supramolecular changes within the transcribed S. pombe rad9 mRNA that trigger the re-

formation of the T18 – C40 multi stem loop-configured secondary RNA structure which blocks 

leaky ribosomal scanning of the AUG50 translational initiation codon and thus prevents expression 

of the truncated “Rad9-S” protein variant, whilst progressive ribosomal translation results in the 

exclusive expression of the full-length S.pombe Rad9 protein (Fig 4.15D, p.391). 

 

Thus sequential induction of exclusive full-length Rad9 protein expression is permitted under 

hypothermic cytological conditions that suppress the expression of the truncated “Rad9-S” protein 

variant (Fig 4.15, p.391). 
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          Fig 4.10: Hypothermic Suppression of Rad9-S Expression   
 

 
 

Individual 50mL YEA broth medium cell cultures of the appropriate “Cre-Lox” – 

constructed S. pombe strain were grown to overnight (30˚C for  ~12 hour time period), then 

diluted to an optical density A595 = 0.25 with the appropriate volume of YEA medium and 

the resultant diluted cultures re-incubated at  30˚C for a further time period of ~2.5 hours 

until they had attained an optical density value of A595 = 0.5 – after which time the cultures 

of actively cycling cells were re-incubated either at 16°C, 30°C or 37°C for a further 30 

minutes. 

 

TCA-precipitated total protein extract samples were then prepared from the appropriate 

*calculated volumetric aliquot of each culture (*equivalent to 10 A595 optical density units) 

of which 20μL aliquots were resolved on 10% SDS-PAGE gels which were then utilised in 

comparative Western blot analyses probed with either the anti-HA primary antibody or the 

anti-Cdc2 primary anti-body. 

 

[Protein sample preparation, SDS-PAGE resolution and Western blot methodologies are 

detailed in Section 2.8.1, pp.200-202; Section 2.8.4, pp.223-224 and Section 2.8.6, pp.231-233] 

 

Protein samples prepared from the rad9-deleted S. pombe strain cell cultures served as 

comparative negative non-specific/cross-reactivity controls in the anti-HA Western blot for 

verification that the detected bands in the protein extracts prepared from the cell cultures of 

the rad9-c3xHA and NΔ49-rad9-c3xHA S. pombe strains were exclusive to the specific 

expression of Rad9 protein isoforms.  

 

The comparative anti-Cdc2 Western blot served as a qualitative control for verification that 

equivalent amounts of total protein for each sample had been loaded. 
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Fig 4.11: Vienna RNAfold Analysis (“Raw Data” Output) of the 

Encoded M1 – S49 Sequence Within the Transcribed S. pombe rad9 

mRNA 
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Vienna RNAfold Analysis (“Raw Data” Output) of the Encoded M1 – 

S49 Sequence Within the Transcribed S. pombe rad9 mRNA – Figure 

Legend (Fig 4.11) 
 

The potential hypothermic responsive cis-elemental T18 – C40 sequence, identified within 

the transcribed M1 – S49 S. pombe rad9 mRNA, is highlighted in yellow (top figure) and its 

relative base-positional location within the dot (middle figure) and mountain (bottom figure) 

“raw data” plots is also highlighted in yellow.    
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Fig 4.12: Vienna RNAfold Analysis (“Processed Data” Output) of the 

Encoded M1 – S49 Sequence Within the Transcribed S. pombe rad9 

mRNA 
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Vienna RNAfold Analysis (“Processed Data” Output) of the Encoded 

M1 – S49 Sequence Within the Transcribed S. pombe rad9 mRNA – 

Figure Legend (Fig 4.12) 
 

Comparative minimal free energy (MFE) and centroid base-pairing probability and base-

positional entropy “processed data” analysis plots of the predicted optimal secondary 

structure of the M1 – S49 encoded sequence within the transcribed S. pombe rad9 mRNA are 

indicated. 
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Fig 4.13: Structural Component Analysis of the Encoded M1 – S49 

Sequence Within the Transcribed S. pombe rad9 mRNA 
 

 
 

A: In silico optimal secondary structural configuration of the M1 – S49 encoded mRNA 

       region of the transcribed S. pombe rad9 gene predicted with the on-line bioinformatics 

       software tool Vienna RNAfold. 

 

       The multi-looped configuration of the potential hypothermic responsive suppressor 

       cis-element, comprised of the T18 – C40  codon mRNA sequence, is highlighted in the 

       red box. 

 

 

B: In silico supramolecular architecture composition analysis of the optimal secondary 

       structural configuration of the identified potential hypothermic responsive suppressor 

       cis-element (predicted with the on-line bioinformatics software tool Vienna RNAfold). 

 

       The transcribed rad9 mRNA base sequence (black) and corresponding codon-translated 

       amino acid sequence (green)  is indicated.  

 

       The estimated melting temperature (Tm ~ 30˚C) of the secondary RNA structure is also 

        indicated. 
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Fig 4.14: Comparative Secondary RNA Structural Conformer 

Analyses of the Isolated and M1–S49-Incorporated T18–C40 Encoded 

Sequences Within the Transcribed S. pombe rad9 mRNA 
 

 
 

Comparative minimal free energy (MFE) base-pairing probability and base-positional 

entropy “processed data” analysis plots of the optimal secondary structures of the isolated 

(left) and M1–S49-incorporated (right) potential hypothermic responsive cis-elemental 

suppressor T18 – C40 encoded S. pombe rad9 mRNA base sequence, were generated via in 

silico predictive modelling with the on-line bioinformatics software tool Vienna RNAfold. 
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   Fig 4.15: Hypothermic Inhibition Model of “Rad9-S” Suppression 

 

          
 

         [A detailed explanation of this hypothetical model is provide in the text on pp.382-383]  
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4.6 Heat-Induction of Rad9-S is Restricted to Actively Cycling Cells 
 

In order to ascertain whether heat-induced expression of the truncated “Rad9-S” protein variant 

was co-ordinated temporally with specific phases of the cell cycle, a comparative Western blot 

analysis was performed on TCA-precipitated total protein extracts acquired from aliquots taken 

over regular 5 minute time intervals from a YEA broth cell culture of the “Cre-Lox”– constructed 

S. pombe strain rad9-c3xHA incubated under heat stress conditions (37˚C) – Fig 4.16, p.393. 

 

The acquired data indicated that maximal heat-induced expression of the truncated “Rad9-S” 

protein variant is restricted to a 20 minute time period within actively cycling S. pombe cells (Fig 

4.16, p.393), which could be temporally co-ordinated with the typical ~20 minute duration of 

replicative DNA processes in the S phase of the S. pombe cell cycle (Carlson C.R. et al, 1999; 

Lygeros J. et al, 2008; Nasmyth K. et al, 1979). 

 

Thus, these experimental observations may indicate that the truncated “Rad9-S” protein variant is 

implicated in a novel checkpoint pathway responses to hyperthermically-induced DNA damage 

and or replication fork arrest. 
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     Fig 4.16: Temporal Assay of Heat-Induced Rad9-S Expression 
 

                    
 

A 100mL YEA broth medium cell culture of the “cre-lox” – constructed S. pombe strain rad9-c3xHA 

was grown overnight (30˚C for  ~12 hour time period), then diluted to an optical density A595 = 0.25 

with the appropriate volume of YEA medium and the resultant diluted culture re-incubated at  30˚C 

for a further time period of ~2.5 hours until it had attained an optical density value of A595 = 0.5 – 

after which time the culture of actively cycling cells was re-incubated at 37°C for a further 30 minutes. 
 

TCA-precipitated total protein extract samples were then prepared from the appropriate *calculated 

volumetric aliquots of each culture (*equivalent to 10 A595 optical density units) at 5 minute time 

intervals over the total incubation time of 30 minutes.  
 

A 100mL YEA broth medium cell culture of the “cre-lox” – constructed S. pombe strain Δrad9 was 

also grown overnight (30˚C for  ~12 hour time period), then diluted to an optical density A595 = 0.25 

with the appropriate volume of YEA medium and the resultant diluted culture re-incubated at  30˚C 

for a further time period of ~2.5 hours until it had attained an optical density value of A595 = 0.5 – 

after which time the culture of actively cycling cells was re-incubated at 37°C for a further 30 minutes, 

prior to preparation of a TCA-precipitated total protein extract sample from the appropriate 

*calculated volumetric aliquot of the culture (*equivalent to 10 A595 optical density units). 
 

20μL aliquots of these prepared protein samples were resolved on 10% SDS-PAGE gels which were 

then utilised in comparative Western blot analyses probed with either the anti-HA primary antibody 

(Fig A) or the anti-Cdc2 primary anti-body (Fig B). 
 

The protein sample prepared from the rad9-deleted (Δrad9) S. pombe strain cell culture served as 

comparative negative non-specific/cross-reactivity control in the anti-HA Western blot for 

verification that the detected bands in the protein extracts prepared from the cell cultures of the 

rad9-c3xHA were the expressed full-length Rad9 (Mr ~ 50 kDa) and NΔ49-Rad9-c3xHA/“Rad9-S” 

(Mr ~ 40kDa) proteins. 
 

[Protein sample preparation, SDS-PAGE resolution and Western blot methodologies are detailed in 

Section 2.8.1, pp.200-202; Section 2.8.4, pp.223-224 and Section 2.8.6, pp.231-233] 
 

The comparative anti-Cdc2 Western blot served as a qualitative control for verification that 

equivalent amounts of total protein for each sample had been loaded (Fig B). 
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4.7 Impaired Formation and DNA Clamp-Loading of the “9-1-1” 

Complex Does Not Induce Expression of the “Rad9-S” Truncated 

Protein Variant  
 

It was postulated that inductive expression of the truncated “Rad9-S” protein variant may be 

implicated in an auxiliary type of compensatory mechanism for mediation of alternative DNA 

damage checkpoint signalling responses and preservation of genomic integrity under adverse 

cytological conditions in which the normal formation and/or functional activities of the canonical 

full-length Rad9-Rad1-Hus1 complex have been perturbed.  

 

In order to test this hypothesis, Western blot analyses were performed on TCA-precipitated total 

protein extracts acquired from YEA broth cultures of the “Cre-Lox”– constructed  S. pombe strains 

rad9-c3xHA, rad9-M50L-c3xHA and NΔ49-rad9-c3xHA – in which the cells also contained 

deletions of either the rad1, hus1 or rad17 genes respectively (Fig 4.17, p.396). 

 

The data indicate that perturbance of the canonical Rad9-Rad1-Hus1 complex, via deletion of the 

rad1 or hus1 genes, is not implicated in the induction mechanism of expression of the truncated 

NΔ49-Rad9-c3xHA (“Rad9-S”) protein variant. 

 

Likewise, perturbance of DNA-loading of the “9-1-1” clamp (via deletion of the rad17 gene) is 

also not implicated in the induction mechanism of expression of the truncated NΔ49-Rad9-c3xHA 

(“Rad9-S”) protein variant. 

 

Intriguingly, the data also indicate that rad1 gene deletion-perturbance of formation of the Rad9-

Rad1-Hus1 complex within an excluded “Rad9-S” expression genetic background (rad9-M50L-

c3xHA) results in the induction of a smaller truncated isoform, termed “Rad9-VS” (“Very Short”) 

– which  may be a consequence of translation at the next alternative AUG codon start, downstream 

of Methionine 50 at Methionine 74, within the rad9 gene (Fig 4.17, p.396). 
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Since the postulated “Rad9-VS” truncated isoform would still retain the C-terminal tail protein-

interactive domain and a conserved component of intrinsic stability/order (discussed previously in 

Chaper 3, pp.295-296 and Fig 3.15, p.293), S. pombe cells “cre-lox”-engineered for the exclusive 

expression of only the full-length Rad9 protein may utilise a “leaky ribosomal scanning” type 

compensatory mechanism for the expression of the NΔ73-Rad9 protein variant – which may retain 

some unknown DNA damage response signal functions. 

 

No “Rad9-VS” expression was detected in comparative Western blot analyses of TCA-precipitated 

total protein extracts acquired from YEA cell cultures of the rad9-c3xHA Δrad1 and NΔ49-rad9-

c3xHA Δrad1 S. pombe strains (Fig 4.17, p.396). 

 

 This may be may be due to the fact that both the rad9-c3xHA Δrad1 and NΔ49-rad9-c3xHA 

Δrad1 S. pombe strains retain the capability to express the truncated “Rad9-S” protein variant, 

which may also perform critical roles in the regulation of “9-1-1” complex-independent functional 

activities of the full-length Rad9 protein. 

 

Taken together, these experimental observations may indicate that induced expression of the 

postulated NΔ73-Rad9 protein variant (“Rad9-VS”) within the cells of the rad1 gene-deleted rad9-

M50L-c3xHA strain may enable them to regulate “9-1-1” complex-independent functions of the 

full-length Rad9 protein via an alternative compensatory mechanism in the absence of  “Rad9-S” 

(NΔ49-Rad9) expression. 

 

However, the lack of detected “Rad9-S” or “Rad9-VS” isoforms in the Western blot analysis of the 

protein sample prepared from rad9-c3xHA Δrad1 S. pombe strain culture may be indicative of  

independent functions of the full-length Rad9 protein, that act outside of the “9-1-1” complex and 

suppress the expression of the truncated “Rad9-S” and/or “Rad9-VS” protein variants (Fig 4.17, 

p.396). 
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Fig 4.17: Perturbed “9-1-1” Complex-Induced Expression of a Novel 

Truncated S. pombe Rad9 Variant – “Rad9-VS” 

 

                  
 

50mL YEA broth medium cell cultures of the appropriate S. pombe strains were grown overnight 

(30˚C for  ~12 hour time period), then diluted to an optical density A595 = 0.25 with the appropriate 

volume of YEA medium and the resultant diluted cultures re-incubated at  30˚C for a further time 

period of ~2.5 hours until it had attained an optical density value of A595 = 0.5. 
 

TCA-precipitated total protein extract samples were then prepared from the appropriate *calculated 

volumetric aliquots of each culture (*equivalent to 10 A595 optical density units). 
 

20μL aliquots of these prepared protein samples were resolved on 10% SDS-PAGE gels which were 

then utilised in comparative Western blot analyses probed with either the anti-HA primary antibody 

(Fig A) or the anti-Cdc2 primary anti-body (Fig B). 
 

[Protein sample preparation, SDS-PAGE resolution and Western blot methodologies are detailed in 

Section 2.8.1, pp.200-202; Section 2.8.4, pp.223-224 and Section 2.8.6, pp.231-233] 
 

A: Comparative Western blot assay of SDS-PAGE-resolved protein samples prepared from the YEA 

       cell cultures of the rad9-c3xHA, rad9-c3xHA Δrad1, rad9-c3xHA Δhus1 and rad9-c3xHA Δrad17 

       S. pombe strains. 
 

B: Comparative Western blot assay of SDS-PAGE-resolved protein samples prepared from the YEA 

       cell cultures of the rad9-(M50L)-c3xHA, rad9-(M50L)-c3xHA Δrad1, rad9-(M50L)-c3xHA Δhus1 

       and rad9-(M50L)-c3xHA Δrad17 S. pombe strains. 
 

C: Comparative Western blot assay of SDS-PAGE-resolved protein samples prepared from the YEA 

       cell cultures of the NΔ49-rad9-c3xHA, NΔ49-rad9-c3xHA Δrad1, NΔ49-rad9-c3xHA Δhus1 and 

       NΔ49-rad9-c3xHA Δrad17 S. pombe strains. 
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4.8: Comparative 2D PAGE-Coupled Western Blot Analyses Reveal 

the Expression of Additional Novel Truncated Rad9 Isoforms Within 

S. pombe     
 

2D PAGE-coupled Western blot analyses were utilised for the enhanced resolution and detection 

of other potential S. pombe Rad9 isoforms which may be expressed at lower cellular levels beyond 

the effective detection capacity of  conventional 1D SDS-PAGE-coupled Western blot assays. 

 

Comparative 2D PAGE-coupled Western blot analyses performed on TCA-precipitated total 

protein extracts acquired from YEA cell cultures of the S. pombe strain rad9-c3xHA, incubated 

under nominal temperature (30˚C) or heat shock (37˚C) conditions, indicated the expression of two 

smaller truncated variants – termed “Rad9 Very Small” (“Rad9-VS”) and “Rad9 Tiny” (“Rad9-T”), 

in addition to the full-length Rad9 protein and “Rad9 Short” (“Rad9-S”) truncated protein variant 

(Fig 4.18, p.399). 

 

The data also indicated that post-translational dephosphorylation of these four S. pombe Rad9 

isoforms occurred under conditions of hyperthermically-induced cytological stress, which was 

evident from changes in their respective profile patterns in which some of the resolved 

phosphoisoform species expressed at the nominal 30˚C incubation temperature were absent or 

were shifted more towards the cathode terminal (Fig 4.18, p.399). 

 

Taken together, these experimental observations were indicative that specific checkpoint 

phosphatases may be implicated in the post-translational modification of the S. pombe Rad9 

isoforms in response to hyperthermically-induced cytological stresses which may also adversely 

impinge upon a variety of biochemical processes that orchestrate the maintenance of genomic 

integrity. 
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Comparative 2D PAGE-coupled Western blot analyses performed on TCA-precipitated total 

protein extracts acquired from YEA cell cultures of experimental “cre-lox” – constructed S. pombe 

strains, which either expressed phosphorylation site-mutagenised variants of the “Rad9-S” protein 

or the unmutagenised “Rad9-S” protein within kinase-specific deletion type genetic backgrounds, 

indicated that specific phosphoisoforms of the “Rad9-S” protein may be implicated in the 

regulation of the levels of expressed “Rad9-VS” and “Rad9-T” isoforms (Fig 4.19, p.400; Fig 4.20, 

p.401). 

 

These data observations are indicative that specific kinase-mediated post-translational 

phosphorylation modifications of the larger “Rad9-S” truncated protein variant may be implicated 

in the regulation of the levels of expression and functional activities of the two smaller 

truncated“Rad9-VS” and “Rad9-T”  isoforms in checkpoint responses to different genotoxic and/or 

environmental types of cytological stresses. 

 

Comparative 2D PAGE-coupled Western blot analyses performed on TCA-precipitated total 

protein extracts acquired from YEA cell cultures of experimental “cre-lox” – constructed S. pombe 

strains, which either expressed phosphorylation site-mutagenised variants of the “Rad9-S” protein 

or the unmutagenised “Rad9-S” protein within a variety of checkpoint gene-specific deletion type 

genetic backgrounds, revealed that this truncated protein variant may exist in a variety of  

hypophosphorylated, hyperphosphorylated and unphosphorylated isoforms which may have 

distinctive differential functions in the cytological maintenance of genomic integrity (Fig 4.20, 

p.401). 

 

Taken together, these experimental observations are indicative that the larger truncated “Rad9-S” 

protein variant, possibly in conjunction with the two successively smaller truncated “Rad9-VS” 

and “Rad9-T” isoforms, are functionally implicated in cell cycle checkpoint signalling pathways. 
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            Fig 4.18: 2D-PAGE Analytical Detection of spRad9 Isoforms 
 

            
 

Individual 100mL YEA broth medium cell cultures of “Cre-Lox” – constructed rad9-c3xHA 

S. pombe strain were grown overnight (30˚C for  ~12 hour time period), then diluted to an 

optical density A595 = 0.25 with the appropriate volume of YEA medium and the resultant 

diluted cultures re-incubated at  30°C for a further time period of ~2.5 hours until they had 

attained an optical density value of A595 = 0.5 – after which time the cultures were re-

incubated either at 30˚C or 37°C (induced “heat shock” stress) for a further 30 minutes. 

 

TCA-precipitated total protein extract samples were then prepared from the appropriate 

*calculated volumetric aliquot of each culture of actively cycling cells (*equivalent to 40 A595 

optical density units) and utilised in comparative 2D-PAGE–coupled Western Blot analyses – 

probed with the primary “anti-HA” antibody. 
 

[Protein sample preparation, 2D-PAGE resolution and Western blot methodologies are 

detailed in Section 2.8.3.1, pp.214-217; Section 2.8.5.2, pp.226-224; Section 2.8.5.3, pp.228-

230; Section 2.8.6, pp.231-233] 
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       Fig 4.19: Kinase-Site Modulation of Rad9 Isoform Expression 

 
Individual 100mL YEA broth medium cell cultures of the appropriate S. pombe strain were grown 

overnight (30˚C for  ~12 hour time period), then diluted to an optical density A595 = 0.25 with the 

appropriate volume of YEA medium and the resultant diluted cultures re-incubated at  30°C for a 

further time period of ~2.5 hours until they had attained an optical density value of A595 = 0.5, after 

which time they were incubated for a further 30 minutes at 30°C. 
 

TCA-precipitated total protein extract samples were then prepared from the appropriate *calculated 

volumetric aliquot of each culture of actively cycling cells (*equivalent to 40 A595 optical density 

units) and utilised in comparative  2D-PAGE–coupled Western Blot analyses – probed with the 

primary “anti-HA” antibody. 
 

[Protein sample preparation, 2D-PAGE resolution and Western blot methodologies are 

detailed in Section 2.8.3.1, pp.214-217; Section 2.8.5.2, pp.226-224; Section 2.8.5.3, pp.228-

230; Section 2.8.6, pp.231-233] 
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Fig 4.20: 2D-PAGE Alignment Analyses of Rad9-S Phosphoisoforms 
 

 
 
Comparative 2D-PAGE-coupled Western Blot alignment analyses of TCA-precipitated total protein 

extracts acquired from specific gene “knock-out” and kinase site-directed mutagenised NΔ49-rad9-

c3xHA type S. pombe strains. 

 
Individual 100mL YEA broth medium cell cultures of the appropriate S. pombe strain were grown 

overnight (30˚C for  ~12 hour time period), then diluted to an optical density A595 = 0.25 with the 

appropriate volume of YEA medium and the resultant diluted cultures re-incubated at  30°C for a 

further time period of ~2.5 hours until they had attained an optical density value of A595 = 0.5, after 

which time they were incubated for a further 30 minutes at 30°C. 
 

TCA-precipitated total protein extract samples were then prepared from the appropriate *calculated 

volumetric aliquot of each culture of actively cycling cells (*equivalent to 40 A595 optical density 

units) and utilised in comparative  2D-PAGE–coupled Western Blot analyses – probed with the 

primary “anti-HA” antibody. 
 

[Protein sample preparation, 2D-PAGE resolution and Western blot methodologies are 

detailed in Section 2.8.3.1, pp.214-217; Section 2.8.5.2, pp.226-224; Section 2.8.5.3, pp.228-

230; Section 2.8.6, pp.231-233] 

 

A: Aligned 2D PAGE-coupled Western blot analyses with the hypophosphorylated (HYPO) and 

       hyperphosphorylation (HYPER ) isoforms indicated. 

 

B: Aligned 2D-PAGE-coupled Western blot analyses indicating the identified 22 phosphoisoforms. 
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4.9: In Silico Elucidation of Hypothetically Feasible Mechanisms of 

Expression of the Truncated “Rad9-VS” and “Rad9-T” Isoforms   
 

The estimated molecular mass of the engineered NΔ73-Rad9-c3xHA truncated variant (~39 kDa) 

was equivalent to that of the “Rad9-VS” isoform detected in the 2D PAGE-coupled Western blot 

assays (Fig 4.18, p.399). 

 

 

Comparative in silico and Western blot analyses, discussed in detail previously in Chapter 3 

(Section 3.3, pp.308-313; Section 3.4, pp.314-357) also indicate that the engineered NΔ73-Rad9-

c3xHA truncated protein variant is most likely to be a functional protein product that originates 

from downstream ribosomal scanning of the AUG initiation codon translation site at methionine 74. 

 

Taken together, these experimental observations indicate that amino acid sequence of the 

expressed “Rad9-VS” truncated variant is identical to that of the engineered NΔ73-Rad9-c3xHA 

truncated variant. 

 

The molecular mass of the truncated “Rad9-T” isoform (~34 kDa), detected in the 2D PAGE-

coupled Western blot assays, did not correlated closely with those of the engineered truncated 

protein variants NΔ311-Rad9-c3xHA (~13 kDa) and NΔ357-Rad9-c3xHA (~8 kDa) 

 

Comparative in silico and Western blot analyses, discussed in detail previously in Chapter 3 

(Section 3.3, pp.308-313; Section 3.4, pp.314-357) also indicated that the engineered NΔ311-

Rad9-c3xHA and NΔ357-Rad9-c3xHA truncated variants are likely to be non-functional, highly 

unstable proteins which are rapidly targeted for proteolytic degradation. 

 

Taken together, these experimental observations indicate the truncated “Rad9-T” variant is not an 

expressed protein product that originates from downstream ribosomal scanning of the AUG 

initiation methionine codon translation sites at M311, M312 or M358. 
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Several hypothetical mechanisms may account for the expression of the truncated “Rad9-T” 

isoform detected in comparative 2D PAGE-coupled Western blot assays (Fig 4.18, p.399; Fig 4.19, 

p.400).   

 

Differential S. pombe rad9 gene splicing, with or without retention of one or more of the three 

introns, may result in the generation of rad9 mRNA transcripts that contain alternative AUG 

translational initiation codon sites, at different positions to those of the “wild-type” rad9 mRNA 

transcript, which may encode alternative Rad9 protein isoforms such as “Rad9-T”. 

 

Alternatively, expression of the truncated “Rad9-T” variant may be a consequence of limited 

proteolytic processing of the full-length S. pombe Rad9 protein and/or the truncated NΔ49-Rad9 

(“Rad9-S”)  variant and/or the truncated NΔ73-Rad9 (“Rad9-VS”) variant. 

 

Several comparative in silico-based analytical approaches were utilised in order to ascertain which 

of these postulated mechanisms was most likely to be implicated in the expression of the truncated 

“Rad9-T” isoform – notably; 

 

(i)  In silico prediction and modelling of thermodynamically-optimised secondary structures for  

     the three introns contained within the S. pombe rad9 gene via analyses of their respective 

     RNA base-sequences with the on-line bioinformatics software tool Vienna RNAfold. 

     (Section 4.8.1, pp.404-406). 

 

(ii) Multiple sequence alignments between the full-length S. pombe Rad9 protein, S. pombe  

      metacaspase cleavage target motifs and H. sapiens Rad9A caspase 3 cleavage target motifs, 

      performed via  utilisation of the on-line bioinformatics software tools EMBOSS, JEMBOSS 

      and PSI-BLAST – Section 4.8.2, pp.407-417). 
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4.9.1 Intron-Retained S. pombe rad9  mRNA Transcripts are Unlikely 

to be Implicated in the Expression of the “Rad9-T” Truncated 

Isoform    
 

The fact that two isoformic rad9 mRNA transcripts have been identified within S. pombe (Murray 

J.M. et al, 1991) prompted comparative in silico RNA secondary structure prediction analyses of 

the three introns within the S. pombe rad9 gene, which were performed via utilisation of the 

bioinformatics software tool Vienna RNAfold, in order to ascertain whether or not their retention 

within rad9 mRNA transcripts was likely to be implicated in the expression of the truncated 

“Rad9-T” protein variant. 

 

The acquired in silico data indicated that all three introns of the S. pombe rad9 gene are most likely 

to adopt typical intronic-excision type conformations, which would be removed via spliceosomal 

processing of the nascent S. pombe rad9 mRNA transcript (Fig 4.21, p.405; Fig 4.22, p.406). 

 

Thus, these data indicate that retention of introns 1, 2 and/or 3 within the transcribed S. pombe 

rad9 mRNA is unlikely to be implicated in potential riboswitch/aptamer type functions that 

modulate the translational expression of the “Rad9-T” isoform detected in comparative 2D PAGE-

coupled Western blot assays (Fig 4.18, p.399; Fig 4.19, p.400).    
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      Fig 4.21: rad9 Intronic RNA Folding Analyses – “Raw Data” 
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   Fig 4.22: rad9 Intronic RNA Folding Analyses – “Processed Data” 
   

 
 
 

 

 

 

 

 

 

 
 

                                                   [406] 



4.9.2 A Limited-Proteolytic Cleavage Mechanism May be Implicated 

in the Expression of the Truncated “Rad9-T” Isoform 
 

The COP9 signalosome (CSN) is implicated in the 26S proteosomal pathway-directed degradation 

of the human Rad9-Rad1-Hus1 complex – which is initiated via associative interactions between 

the Rad1 sub-unit of the “9-1-1” DNA “sliding-clamp” and the Jab1 (CSN5) sub-unit of the CSN 

complex (Huang J. et al, 2007). 

 

 

Various experimental studies in the fission yeast S. pombe have also demonstrated that a 

homologous functional equivalent COP9 signalosome complex is implicated in the proteosomal 

pathway-targeted degradation of proteins, for regulation of their respective concentration levels 

and activities within the cell (Liu C. et al, 2003; Mundt K.E. et al, 1999;  Mundt K.E. et al, 2002; 

Zhou C. et al, 2001; Zhou L. and Watts F.Z., 2005). 

 

 

A feasible hypothetical postulation is that Dbd1, via associative interactions with DET1, histones 

and histone deacetylases (Benvenuto G. et al, 2002; Martinez E. et al, 2001; Schroeder D.F. et al, 

2002),  may serve as a protein mediator type recruitment platform for the co-ordinated assembly of 

the CSN complex, Rad9 and the Cullin-Rbx-E2 to specific DNA damage lesion sites within the 

chromatin supramolecular architecture and facilitate later interactions of the Rad9 protein with 

specific sub-units of the COP9 signalosome complex (CSN) – Fig 4.23, p.413. 

 

In this respect, COP9-initiated polyubiquination-mediated “proteolytic processing” of the S. pombe 

Rad9 protein (Fig 4.23, p.412) may be implicated in the formation of truncated variant type 

isoforms with potential novel functions, such as the truncated “Rad9-T” isoform which was 

detected in comparative 2D PAGE-coupled Western blot assays (Fig 4.18, p.399; Fig 4.19, p.400). 
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Taken in the together in the context of the hypothetical “working model”, illustrated in Fig 4.23 

(p.413), CSN proteolytic degradation of the DNA-associated S. pombe full-length Rad9 protein 

and/or the truncated “Rad9-S” and/or “Rad9-VS” isoforms, may also serve as a regulatory control 

mechanism for termination of Rad9-initiated checkpoint signalling responses once DNA damage 

lesion sites within the chromatin have been detected and repaired to enable phasic re-enagagement 

of the arrested cell cycle.  

 

Several caspase 3 target cleavage motif sites have also been identified within the human Rad9A 

protein (Lee M.W. et al, 2003). 

 

In S. pombe, under conditions of oxidative stress-induced post-mitotic arrest in Edinburgh Minimal 

Medium (EMM), elevated levels of diacylglycerol have been demonstrated to initiate a caspase-

dependent apoptotic-like pathway in which metacaspase enzyme Pca1, the BH3-domain protein 

Rad9 and diacylglycerol-binding proteins Pck1 and Bzz1 are implicated (Low C.P. et al, 2008) – 

summarily depicted in Fig 4.24 (p.414). 

 

In YEA medium, associative Rad9-metacaspase interactions may result in “limited proteolytic 

processing” of the full-length S. pombe Rad9 protein and/or truncated “Rad9-S” and “Rad9-VS” 

variants with consequential formation of shorter truncated variant type isoforms (such as the 

“Rad9-T” isoform) with potential novel functions, in addition to regulation of the concentration 

levels and activities of the respective full-length,“Rad9-S” and/or “Rad9-VS” isoforms (Fig 4.24, 

p.414). 

 

This hypothetical “working model” is also supported by bioinformatics-based data acquired from 

comparative in silico caspase and metacaspase optimal proteolytic target substrate motif sequence 

alignments performed on the S. pombe Rad9 protein (Fig 4.25, p.415) 
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These comparative in silico analyses identified a distinctive metacaspase proteolytic target site 

within the regional sequence 110GYGSESASRKV120  of  the S. pombe Rad9 protein, which upon 

cleavage was predicted to yield a detectable C-terminal tail HA epitope-tagged polypeptide 

fragment with an estimated molecular weight of ~34 kDa (Fig 4.25, p.415) that was equivalent to 

the molecular weight of the “Rad9-T” isoform detected in the 2D PAGE-coupled Western blot 

assays (Fig 4.18, p.399; Fig 4.19, p.400). 

 

 

Comparative multiple sequence alignment analyses of this potential metacaspase cleavage target 

motif also indicated that equivalent homologues were conserved within the Rad9 proteins of 

different Schizosaccharomyces clades (Fig 4.26B, p.416). 

 

In silico analysis of this  110GYGSESASRKV120   motif with the on-line bioinformatics NetPhos 

tools indicated that the tyrosine and serine residues were high-probability phosphorylation sites 

and that the tyrosine residue was situated within a  potential Wis1 kinase-target Sty1 kinase-like 

substrate motif type phosphorylation site (Fig 4.25, p.415). 

 

Intringuingly, in silico sequence alignment analyses of the S. pombe Rad9 protein with the 5 

isoforms of the H. sapiens Rad9B paralogue identified two sequences, situated within and flanking 

the 110GYGSESASRKV120 metacaspase cleavage target motif, which were equivalent homologues 

of the alternative GSFSIF and VVCRKEFNGSDAKYFCII C-terminal sequences of the human 

Rad9B full-length and truncated protein isoforms (Fig 4.26A, p.416).  

 

In silico comparative modelling analysis also indicated that this potential 110GYGSESASRKV120 

metacaspase cleavage target motif was also situated within the Rad9:Rad1 interactive domain of 

the heterotrimeric Rad9-Rad1-Hus1 DNA sliding-clamp complex (Fig 4.26C, p.416). 
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Taken together, these in silico indicate that cell cycle checkpoint signalling responses to specific 

types of genotoxic and environmental cytological stresses may be implicated in the regulation of 

functional activities of the heterotrimeric Rad9-Rad1-Hus1 DNA sliding-clamp complex, via 

kinase-mediated phosphorylation and/or phosphatase-mediated dephosphorylation post-

translational modifications of the 110GYGSESASRKV120  proteolytic motif which alter its 

supramolecular configuration and render it susceptible or resistant to metacaspase cleavage. 

 

In this hypothetical context, metacaspase-mediated proteolytic cleavage of the  

110GYGSESASRKV120 target motif (which is situated within the Rad9:Rad1 interface of the  

heterotrimeric heterotrimeric Rad9-Rad1-Hus1 DNA sliding-clamp – Fig 4.26C, p.416) may 

promote dissociation of the “9-1-1” complex and generate two truncated Rad9 isoforms; Rad9-

CΔ118-426 and “Rad9-T” (NΔ117-Rad9), that may be functionally-implicated in novel cell cycle 

checkpoint signalling responses to specific types of genotoxic and/or environmental cytological 

stresses. 

 

Loss of the protein-interactive C-terminal domain in the truncated Rad9-CΔ118-426  protein 

variant may be compensated  via its 112GSESAS117 motif, which has equivalent homology to the 

C-terminus GSFSIF sequence of the human Rad9B isoforms 1, 2 and 3 (Fig 4.26A, p.416) and 

contains three serine residues, which may undergo kinase-mediated phosphorylation and/or 

phosphatase-mediated dephosphorylation type post-translational modifications that enable the 

motif to engage with and modulate the  functional activities of  a variety of proteins implicated in 

cell cyle checkpoint signalling and/or DNA repair pathways. 
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NΔ117-Rad9 (“Rad9-T”) truncated variant would contain the 118RKDVIVENVQISISIGSECRII139 

motif, which has equivalent homology to the C-terminus VVCRKEFNGSDAKYFCII sequence of 

the human Rad9B isoforms 4 and 5 (Fig 4.26A, p.416), which may likewise undergo kinase-

mediated phosphorylation and/or phosphatase-mediated dephosphorylation type post-translational 

modifications at the Ser129 and Ser134 residues that enable the motif to engage with and modulate 

the  functional activities of  a variety of proteins implicated in cell cyle checkpoint signalling 

and/or DNA repair pathways. 

 

The NΔ117-Rad9 (“Rad9-T”) truncated variant would also contain the C-terminal tail domain, 

which enables the Rad9 protein to interact with and modulate the functional activities of a variety 

of proteins that are implicated in the mediation of DNA damage checkpoint signalling responses 

and DNA repair pathways (Broustas C.G. and Lieberman H.B., 2012). 

 

Taken together, these in silico data observations indicate that these two truncated S. pombe Rad9-

CΔ118-426  and NΔ117-Rad9 (“Rad9-T”) variants may elicit different checkpoint responses to 

specific types of genotoxic and environmental cytological stresses and whose respective functions 

may be equivalent to those of the human Rad9B isoforms. 

 

In this respect, S .pombe may also prove to be a useful eukaryotic model system for future 

investigative studies of unknown cell cycle checkpoint and DNA repair functions which may be 

specific to particular human Rad9B isoforms. 

 

TCA-precipitated total protein samples prepared from “cre-lox”–constructed rad9-c3xHA strain 

cultures, which were utilised in comparative 2D PAGE-coupled Western blot analyses, only 

enabled the detection of the C-terminal HA epitope-tagged Rad9 protein isoforms Rad9-c3xHA, 

NΔ49-Rad9-c3xHA (“Rad9-S”), NΔ73-Rad9-c3xHA (“Rad9-VS”) and NΔ117-Rad9-c3xHA 

(“Rad9-T”) – Fig 4.27, p.417. 
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Thus the potential expression of novel C-terminal truncated S. pombe Rad9 protein isoforms, 

which could be derived from metacaspase or other limited-proteolytic processes, may remain 

undetected in these comparative 2D PAGE-coupled Western blot assays due to removal of a 

portion of the protein which contains the HA epitope-tagged C-terminus – as would be the case for 

the postulated truncated Rad9-CΔ118-426, NΔ49-Rad9-CΔ118-426 and NΔ73-Rad9-CΔ118-426 

variants which may result from metacaspase cleavage of the alternative translationally expressed 

full-length Rad9, Rad9-S and Rad9-VS isoforms (Fig 4.27, p.417). 

 

Therefore the possible existence of additional C-terminal truncated S. pombe Rad9 isoforms cannot 

be excluded as these would also remain undetected.  
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 Fig 4.23:COP9-Directed Rad9 Partial Proteosomal Processing Model   
 

 [Compiled via Collated Information Adapted From: Liu C. et al, 2003; Mundt K.E. et al, 1999; 

                                                                                                          Mundt K.E. et al, 2002; Zhou C. et al, 2001; 

                                                                                                          Zhou L. and Watts F.Z., 2005] 

                                                                                                              

 
 

A detailed explanation of this hypothetical model is provided in the text (pp.407-408) 
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Fig 4.24: Rad9-Targeted Metacaspase Cleavage Processing Model 
 

[Compiled via Collated  Information Adapted From: Lim H.W. et al, 2007; Low C.P. et al, 2008; 

                                                                                                             Low C.P. and Yang H., 2008;  

                                                                                                             Rodriguez-Menocal L. and D’Urso G., 2004 

     

 

 
A detailed explanation of this hypothetical model is provided in the text (p.408) 
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Fig 4.25:In Silico Identification of Potential Caspase Cleavage Sites  

Within the S. pombe Rad9 Protein   

                

                    
A: In Silico Identification of Potential Caspase-Like Cleavage Target Sites within the S. pombe Rad9 Protein 

       M1, M50, M74 = Postulated Alternative Translation AUG Start-Codon Sites 

 

       XXXX = Identified Potential Caspase Cleavage Target Motifs 

 

       XXXX = Potential Identified Metacaspase-Like Cleavage Target Motif 
 

       [Potential caspase cleavage target sites were identified via in silico multiple sequence alignment analyses with optimal  

       caspase cleavage motifs – which were derived via compiled information collated from Agard N.J. and Wells J.A., 2009;  

       Garcia-Calvo M. et al, 1998; Geley S. et al, 1997; Pereira N.A. and Song Z., 2008; Stennicke H.R.  et al, 2000;  

       Thornberry N.A.  et al, 1997; Tiatsiaki L. et al, 2011. 
 

B: *Relative molecular masses of the hypothetical C-terminal HA epitope-tagged polypeptide fragments produced via 

         hypothetical caspase-like proteolytic cleavage of the S. pombe Rad9 protein situated in close proximity to or within 

         the C-Terminal Domain  
      

         [*The kDa values were determined via utilisation of the “on-line” software tool Protein Calculator v3.3] 
 

C: The identified potential metacaspase-like target site within the S. pombe Rad9 protein would result in the generation of 

       a C-Terminal HA-Tagged fragment of approximate mass ~34kDa, upon proteolytic cleavage – this determined 

       molecular mass also correlates closely with the molecular weight range of the “Rad9-T” truncated protein variant that 

       was detected on Western blot of the 2D PAGE-resolved total protein extract samples (Fig 4.18, p.399). 
 

       This potential metacaspase-like cleavage site is situated within a distinctive Sty1 kinase target motif and is distinctive 

       from the other identified caspase-like sites. 

 

D: The distinctive “YVAD-like” potential metacaspase-like cleavage site is also situated within close proximity to adjacent  

       tyrosine and serine residues which are identified as high-probability phosphorylation kinase-target sites. 
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Fig 4.26: Comparative In Silico Alignment Analyses of the Potential 

Metacaspase Target Motif Sequence Identified Within the S. pombe 

Rad9 Protein   
 

 
 

A: In silico alignments of the two alternative C-terminal sequences of the H. sapiens Rad9B isoforms with the 

       amino acid sequence of the S. pombe Rad9 protein, performed with the on-line bioinformatics software 

       tools EMBOSS, JEMBOSS and PSI-BLAST 
 

B: In silico multiple alignment analyses of Schizosaccharomyces Rad9 proteins with the potential metacaspase 

       target motif sequence identified within the S. pombe Rad9 protein, performed with the on-line software 

       programs EMBOSS, JEMBOSS and PSI-BLAST 
 

C: In silico comparative modelling analysis of the potential S. pombe Rad9 metacaspase target motif sequence 

       within the resolved structure of the human Rad9-Rad1-Hus1 DNA sliding-clamp complex (PDB file: 3G65) 

       were performed with the RasMol software program, structural images were generated by the PolyView3D 

       program.    
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  Fig 4.27: Possible Identity of  2D-PAGE-Detected spRad9 Isoforms 
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4.10 In Silico Protein Stability Assessment of the Hypothetically 

Predicted Amino Acid Sequences of the Detected S. pombe Rad9 

Isoforms – “Rad9-S”, “Rad-VS” and “Rad9-T” and Undetected 

Metacaspase-Mediated Limited-Proteolytic Rad9 Cleavage Products   
 

Protein folding, anti-/pro- aggregation propensity and intrinsic order/disorder relationships are key 

interactive supra-molecular structural parameters which impinge upon the relative stability, half-

life and functional viability of an expressed protein within its localised cytological 

microenvironment(s) (Banavar J.R. et al, 2007; Chakrobortee S. et al, 2012; Fawzi N.L. et al, 

2008a; Fawzi N.L. et al, 2008b; Hoang T.X. et al, 2006; Kulkarni P. et al, 2011; Morimoto R.I. et 

al, 2012; Nair S.S. et al, 2011; Trovato A. et al, 2006; Zhang Y. and Calderwood S.K., 2011). 

 

Therefore, comparative in silico analyses of the relative proportions of localised intrinsic structural 

order/disorder regions (Section 4.10.1, pp.419-421), anti-/pro- aggregative functional motifs 

(Section 4.10.2, pp.422-426) and secondary structural helix, strand and coil motifs (Section 4.10.3, 

pp.427-429) were performed on the amino acid sequences of the postulated full-length and 

truncated variant isoforms of the S. pombe Rad9 protein (Fig 4.27, p.417) for hypothetical 

prediction of their respective cytological stabilities and identification of the key common protein 

structure-stability relationships implicated (Section 4.10.4, pp.430-434). 
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4.10.1 In Silico Predictive Intrinsic Structural Disorder Analyses 

 

Comparative in silico intrinsic structural disorder analyses, performed with the on-line 

bioinformatics software tools metaPrDOS (Fig 4.28, p.420; Fig 4.29, p.421) and DisCon (Fig 4.33, 

pp.433-434), indicated that the full-length Rad9 and truncated protein isoforms “Rad9-S” (NΔ49-

Rad9), “Rad9-VS” (NΔ73-Rad9) and “Rad9-T” (NΔ117-Rad9) all retained the intact highly 

mobile/flexible protein-interactive C-terminal tail domain – in which the relative hierachy of 

intrinsic structural disorder propensity (highest → lowest) may be defined as: 

                               “Rad9-T” > “Rad 9-VS” > “Rad9-S” > Rad9 

Comparative in silico intrinsic structural disorder analyses, performed with the on-line 

bioinformatics software tools metaPrDOS (Fig 4.28, p.420; Fig 4.29, p.421) and DisCon (Fig 4.33, 

pp.433-434), indicated that the metacaspase-generated C-terminal truncated protein isoforms 

Rad9-cΔ118-426, NΔ49-Rad9-cΔ118-426 and NΔ73-Rad9-cΔ118-426 (Fig 4.27, p.417), all highly 

lacked the highly mobile/flexible protein-interactive C-terminal tail domain and contained a 

distinctive region of very low structural disorder probability (Fig 4.28, p.420; Fig 4.29, p.421) in 

which the relative hierachy of intrinsic structural disorder propensity (highest → lowest) may be 

defined as: 

               NΔ73-Rad9-cΔ118-426  > NΔ49-Rad9-cΔ118-426  > Rad9-cΔ118-426 

 

These acquired in silico data also revealed that the hypothetical metacaspase-generated “Rad9-T” 

isoform (NΔ117-Rad9) had the highest structural disorder propensity and that of the limited 

proteolytic process-generated cΔ118-426 truncated variants was higher than that of their uncleaved 

sources, with the exception of the full-length Rad9 protein (ie Rad9 ~ Rad9-cΔ118-426;  

NΔ49-Rad9-cΔ118-426 > NΔ49-Rad9; NΔ73-Rad9-cΔ118-426 > NΔ73-Rad9) – Fig 4.33, 

pp.433-434. 

These structural order hierachies correlate with the relationship of increased intrinsic disorder as a 

function of decreased N-terminal amino acids which constitute the major intrinsically-ordered 

structural component of the respective full-length and truncated Rad9 protein isoforms. 
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       Fig 4.28: metaPrDOS Analyses of  Detected spRad9 Isoforms 
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     Fig 4.29: metaPrDOS Analyses of spRad9 Cleavage Products  
 

 
 

                                                  [421] 



4.10.2 In Silico Predictive Aggregation and Protease Susceptibility 

 

Comparative in silico analyses of the relative abundance of anti-aggregative, pro-aggregative and 

protease-resistance sites (identified via the applied bioinformatics strategies discussed in detail 

previously in Chapter 3, Section 3.4.2, pp.320-330) were performed on the full-length and 

predicted truncated isoform amino acid sequences of the S. pombe Rad9 protein (Fig 4.30, p.424; 

Fig 4.31, pp.425-426; Fig 4.33, pp.433-434). 

 

The acquired data indicated that the relative proportion of anti-/pro- aggregative and protease 

resistant motifs within the full-length Rad9 protein and its postulated truncated isoforms “Rad9-S” 

(NΔ49-Rad9), “Rad9-VS” (NΔ73-Rad9) and “Rad9-T” (NΔ117-Rad9), summarised graphically in 

Fig 4.33, pp. , was in a hierachical order (most abundant → least abundant) – which may be 

defined as: 

Aggregation Inductive Motifs > Protease Resistant Motifs > Aggregation Suppressive Motifs 

 

In contrast, these data also revealed that the relative proportion of anti-/pro- aggregative and 

protease resistant motifs within the hypothetical predicted amino acid sequences of the truncated 

isoforms Rad9-cΔ118-426 and NΔ49-Rad9-cΔ118-426, summarised graphically in Fig 4.33, 

pp.433-434, was in a hierachical order (most abundant → least abundant) – which may be defined 

as: 

Aggregation Suppressive Motifs > Protease Resistant Motifs = Aggregation Inductive Motifs 

 

In the case of the postulated NΔ73-Rad9-cΔ118-426 variant, the data indicated that the 

hypothetical amino acid sequence of this protein did not contain any aggregation suppressive 

motifs, but did contain protease resistance and aggregation inductive motifs in identical 

proportions to those found within the Rad9-cΔ118-426 and NΔ49-Rad9-cΔ118-426 truncated 

isoforms (Fig 4.33, pp.433-434). 
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The acquired in silico data also indicated that the full-length Rad9 protein and truncated protein 

variant “Rad9-S” (NΔ49-Rad9) contained equivalent proportions of anti-aggregative, pro-

aggregative and protease resistant motifs, whilst the truncated isoforms “Rad9-VS” (NΔ73-Rad9) 

and “Rad9-T” (NΔ117-Rad9) contained equivalent proportions of pro-aggregative and protease 

resistant motifs, but only half the number of anti-aggregative motifs to that of full-length Rad9 and 

“Rad9-S” proteins (Fig 4.33, pp.433-434). 

 

Comparative in silico analyses of the relative abundance of anti-/pro- aggregative and protease 

resistant motifs within the hypothetical amino acid sequences of the postulated truncated isoforms 

“Rad9-VS”, “Rad9-T”, Rad9-cΔ118-426 and NΔ49-Rad9-cΔ118-426 indicated that they contained 

an equivalent proportion of anti-aggregative motifs which correlated to 50% less than that found in 

the full-length Rad9 and truncated “Rad9-S” protein variant (Fig 4.33, pp.433-434). 

 

These data also revealed that the hypothetical amino acid sequences of the Rad9-cΔ118-426, 

NΔ49-Rad9-cΔ118-426 and NΔ73-Rad9-cΔ118-426 truncated protein variants contained identical 

proportions of pro-aggregative and protease resistance motifs, in which the relative abundance of 

pro-aggregative motifs was ~14% and protease resistant motifs was ~20% of those found within 

the Rad9, “Rad9-S”, “Rad9-VS” and “Rad9-T” isoforms (Fig 4.33, pp.433-434). 

 

 The data also indicated a distinctive absence of anti-aggregative motifs in the case of the truncated 

NΔ73-Rad9-cΔ118-426 isoform (Fig 4.33, pp.433-434).   
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   Fig 4.30: Site Map of SpRad9 Isoform Stability Modulation Motifs 

 

 
 

Structural map of the S. pombe rad9 gene indicating the relative positions of the introns, exon-

encoded amino acid-spanning regions, potential alternative AUG codon translational start sites (full-

length Rad9 = M1, “Rad9-S” = M50 and “Rad9-VS” = M74), the metacaspase cleavage site (which 

generates the “Rad9-T” = NΔ117-Rad9 isoform and the truncated protein variants Rad9-cΔ118-426, 

NΔ49-Rad9-cΔ118-426 and NΔ73-Rad9-cΔ118-426) and identified potential pro-aggregative, anti-

aggregative and protease-resistance type functional motif sites: 

 

XXXXX = Potential  KLVFF-, VLFKF- and FAEDVG- equivalent peptide aggregation suppressive  

                   motifs identified via comparative pair-wise sequence alignments performed with the  

                   on-line bioinformatics software tools EMBOSS and JEMBOSS. 

 

XXXXX = H. sapiens microtubule-associated Tau protein C terminus equivalent pro-aggregative 

                   and protease resistance motif. 

 

XXXXX = Potential H. sapiens microtubule-associated Tau protein C terminus functional motif- 

                    equivalent protein aggregation/protease resistant motifs identified via comparative  

                    pair-wise sequence analyses performed with the on-line bioinformatics tools EMBOSS 

                    and JEMBOSS 

 

XXXXX = Potential protein aggregation-associated protease resistance functional motif identified via 

                   multiple sequence alignment analyses performed with the on-line bioinformatics software  

                   tools EMBOSS, JEMBOSS and PSI-BLAST 

 

XXXXX = Potential peptide aggregation inductive motifs identified via sequence analyses performed  

                   with the on-line bioinformatics software tools BETASCAN and TANGO. 

 

* = High-probability phosphorylation sites (identified by the NetPhos on-line bioinformatics tool) 
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   Fig 4.31: Zyggregator Analysis of the Postulated Rad9 Isoforms 
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A: ZYGGREGATOR software-generated mapping of identified regions of high, moderate  

       and low probability aggregation propensity. 

 

       The relative positions of the potential alternative AUG methionine translational start 

       codon sites of the S. pombe Rad9 isoforms (full-length Rad9 = M1, “Rad9-S” = M50 and  

       “Rad9-VS” = M74) and the metacaspase cleavage site (which generates the “Rad9-T” =  

        NΔ117-Rad9 isoform and the truncated protein variants Rad9-cΔ118-426, NΔ49-Rad9-cΔ118- 

        426 and NΔ73-Rad9-cΔ118-426) are also indicated. 

 

 

B: Residue-spanning regional map of the anti-, pro- and protease-resistant motif sites within 

       the S. pombe Rad9 protein identified via multiple sequence alignment analyses (discussed 

       previously in Section 3.4.2, pp.320-330) and utilisation of the aggregation sequence motif- 

       predictive on-line software programs BETASCAN and TANGO. 

 

       [Details of these identified motif sequences are also provided in Table 3.1, p.327 and Fig  

        4.30, p.424]   
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4.10.3 In Silico Predictive Coil, Helix and Strand Secondary 

Structural Sub-Type Motif Content 

 

In silico analysis of the full-length “wild-type” S. pombe Rad9 amino acid sequence with the on-

line software program YASPIN indicated that S. pombe full-length Rad9 and all of its truncated 

variants contained significant regions of helix, strand and coil secondary structural motifs within 

their respective protein supramolecular architectures (Fig 4.32, p.429). 

 

The acquired data indicated that the relative proportion of component secondary structural sub-

motifs within the full-length Rad9 protein and its postulated truncated isoforms “Rad9-S” (NΔ49-

Rad9) and “Rad9-VS” (NΔ73-Rad9), summarised graphically in Fig 4.33, pp.433-434, was in a 

hierachical order (most abundant → least abundant) – which may be defined as: 

                                   Coil > Non-Defined > Strand > Helix 

 

In the case of the postulated NΔ117-Rad9-cΔ118-426 9 (”Rad9-T”) variant, the data indicated that 

the hypothetical amino acid sequence did not contain any structurally undefined regions and 

retained the hierachical order  (most abundant → least abundant) of Coil > Strand > Helix, similar 

to that defined for  the full-length Rad9 protein and truncated “Rad9-S” and “Rad9-VS” isoforms 

(Fig 4.33, pp.433-434). 

 

In contrast, these data also revealed that the relative proportion of component secondary structural 

sub-motifs within the hypothetical predicted amino acid sequences of the truncated isoforms Rad9-

cΔ118-426, NΔ49-Rad9-cΔ118-426 and NΔ73-Rad9-cΔ118-426  summarised graphically in Fig 

4.33, pp.433-434, was in a hierachical order (most abundant → least abundant) – which may be 

defined as: Helix > Coil > Strand. 

 

The data also indicated that these truncated isoforms did not contain any non-defined structural 

regions.   
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These data also indicated that the full-length Rad9 protein and truncated isoforms “Rad9-S” 

(NΔ49-Rad9), “Rad9-VS” (NΔ73-Rad9) and “Rad9-T” (NΔ73-Rad9) consisted of a predominant 

random coil secondary supramolecular structural sub-architecture (Fig 4.33, pp.433-434), which 

may be correlated with the conserved region high structural disorder propensity attributed to the 

retained highly mobile/flexible protein-interactive C-terminal tail domain that was identified via 

comparative metaPrDOS analytical plots of  the  hypothetical amino acid sequences of the 

respective proteins (Fig 4.28, p. 420). 

 

In contrast, the data also revealed that the truncated isoforms Rad9-cΔ118-426, NΔ49-Rad9-

cΔ118-426 and NΔ73-Rad9-cΔ118-426 were comprised of a predominant helix secondary 

supramolecular structural sub-architecture (Fig 4.33, pp.433-434), which may be correlated with 

the conserved relative large region of very low structural disorder propensity that was identified in 

comparative metaPrDOS analytical plots of the hypothetical amino acid sequences of the 

respective proteins (Fig 4.29, p.421).      
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        Fig 4.32: YASPIN Analysis of the Postulated Rad9 Isoforms 
 

   
 

Analysis of the relative proportions and localised distribution of helix, strand and coil secondary 

structural motifs within the “wild-type” full-length S. pombe Rad9 amino acid sequence was 

performed with the on-line software tool YASPIN and the acquired data converted into a graphical 

format via utilisation of the Microsoft Excel software program. 
 

The X-axis defines the amino acid residue position and the Y-axis defines the predicted helix, strand 

and coil propensity probability score on the data plots, whilst the orange right-angled arrows 

indicate the relative positions of the N-terminal methionine start residues of the S. pombe 

Rad9 protein isoforms (full-length Rad9 = M1, “Rad9-S” = M50 and “Rad9-VS” = M74) and the 

metacaspase cleavage site (which generates the “Rad9-T” = NΔ117-Rad9 isoform and the truncated 

protein variants Rad9-cΔ118-426, NΔ49-Rad9-cΔ118-426 and NΔ73-Rad9-cΔ118-426) is denoted via 

the black and light blue dotted line. 
 
 

The horizontal red line on the data plots denotes the propensity prediction threshold, probability 

scores above 5 are significant and correlate with plotted values above the threshold line.          
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4.10.4 Correlated In Silico Data Analyses: A Comparative Review of 

the Critical Structure-Stability and Potential Functional Viability  

Relationships Identified Within the Full-length Rad9 Protein and 

Truncated S. pombe Rad9 Isoforms 
 

Taking all of the in silico analytical data into consideration (Fig 4.33, pp.433-434), the most 

probable hierarchy of relative functional stability (most stable → least stable) of the full-length 

Rad9 protein and the postulated Rad9 truncated isoforms may be defined summarily as: 

 

 

All these Rad9 isoforms contain conserved protease resistance motifs and definitive regions of 

conserved secondary structural supramolecular sub-architecture, which is indicative that they could 

possess functional activities that may be implicated in novel checkpoint signalling responses to 

specific genotoxic and/or environmental types of cytological stresses which adversely impinge on 

biochemical processes implicated in the maintenance and propagation of genomic integrity.   

 

The postulated metacaspase cleavage site (111GYGSESASRKD120) contained within the full-

length Rad9 protein and truncated “Rad9-S” and “Rad9-VS” variants is situated within a Sty1 

kinase-like substrate motif, in which tyrosine 111 is a potential phosphorylation target of the Wis1 

kinase and may thus be indicative that MAP kinase checkpoint signalling pathways are implicated 

in the modulation of limit proteolytic processing-mediated expression and/or functional activities 

of the  truncated NΔ117-Rad9, Rad9-cΔ118-426, NΔ49-Rad9-cΔ118-426 and NΔ73-Rad9-cΔ118-

426 isoforms. 
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This metacaspase target motif is also situated at the associative Rad9:Rad1 interfacial junction (Fig 

4.26, p.416), which upon limited proteolytic cleavage may result in the dissociation of the 

heterotrimeric toroidal Rad9-Rad1-Hus1 DNA “sliding-clamp”complex and/or the potential 

alternative “Rad9-S”:Hus1:Rad1 and “Rad9-VS”:Hus1-Rad1  DNA “sliding-clamp” complexes 

(identified via predictive in silico comparative modelling analyses – discussed in detail in Chapter 

5, Section 5.2, p.442, Fig 5.1, p.446)  

 

In silico comparative multiple sequence alignment analyses also indicated that the S. pombe full-

length Rad9 protein contains two distinctive sequences flanking the metascaspase cleavage motif 

which bear siginificant homologous resemblance to the two alternative C-termini of the full-length 

human Rad9B paralogue and its isoforms (Fig 4.26, p.416). 

 

In this context, metacaspase-mediated limited proteolytic processing of the full-length S. pombe 

Rad9 protein and truncated “Rad9-S” and “Rad9-VS” variants would result in generation of the 

truncated “Rad9-T” variant (NΔ117-Rad9) whose N-terminus would contain the 

RKDVIVENQISISTGSECRII sequence which is homologous to the C-terminal 

VCCRKEFNGSDAKYFCII sequence of the human Rad9B full-length isoform 5 and truncated 

isoform 4 (in addition to the S. pombe C-terminal tail domain sequence), along with the 

simultaneous generation of the truncated Rad9-cΔ118-426, NΔ49-Rad9-cΔ118-426 and NΔ73-

Rad9-cΔ118-426 whose C-termini contain the GYGSESAS sequence which is homologous to the 

C-terminal GSFSIF sequence of the human Rad9B isoforms 1, 2 and 3 (Fig 4.26, p.416). 

 

The presence of two potential protein-interactive sequences within the “Rad9-T” isoform (ie the 

Rad9B isoform 4 and 5 C-terminal homologous sequence situated within the “Rad9-T” N-terminus 

and the S. pombe C-terminal tail domain sequence) is also consistent and may correlate directly 

with the acquired comparative in silico DisCon data analyses which indicated that this protein 

variant possessed the highest degree of intrinsic structural disorder propensity (Fig 4.33, pp.433-

434). 
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Whilst the presence of the C-terminal human RadB isoform 1, 2 and 3 homologous sequence 

within the truncated S. pombe isoforms Rad9-cΔ118-426, NΔ49-Rad9-cΔ118-426 and NΔ73-

Rad9-cΔ118-426 may correlate with the conserved minor region of high probability intrinsic 

structural disorder propensity at the C-terminal end of their respective hypothetical amino acid 

sequences observed on the in silico metaPrDOS analytical data plots (Fig 4.29, p.421). 

 

Taking together, these in silico data analyses indicate that these distinctive isoforms of the full-

length S. pombe Rad9 protein may have differential functions which could be implicated in the 

modulation of novel checkpoint responses to genotoxic and/or environmental cytological stresses 

which impair the propagation of genomic integrity and such functions may be equivalent to those 

of the human RadB paralogue and its isoforms which are largely unknown. 

 

In this hypothetical context, these truncated structural isoforms could also be implicated in auto-

regulatory mechanisms of specific cytological levels and/or functional activities of the full-length 

Rad9 protein and the identified Rad9 truncated isoforms within the S. pombe eukaryotic model 

organism which may be equivalent to those of the human Rad9B paralogue and its isoforms.  
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 Fig 4.33: Stability Profiling of the Truncated SpRad9 Isoforms 
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Top Figure: Comparative analysis of the relative intrinsic structural disorder content  

                      within the full-length and truncated S. pombe Rad9 protein isoforms 

                      performed via analysis of their respective amino acid sequences with the 

                      on-line software tool DisCon (Mizianty M.L. et al, 2011). 

 

 

Middle Figure: Comparative analysis of the relative potential pro-aggregative, anti- 

                           aggregative and protease resistant motif content within the full-length 

                           and truncated S. pombe Rad9 protein isoforms – discussed previously 

                           in Section4.10.2, pp.422-426. 

 

 

Bottom Figure: Comparative analysis of the relative percentage of potential secondary 

                            structural helix, strand and coil motif content within the full-length 

                            and truncated S. pombe Rad9 protein isoforms determined via utilisation 

                            of the on-line bioinformatics tool YASPIN (Lin K. et al, 2004) – discussed 

                            previously in Section 4.10.3, pp.427-429. 
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4.11 A Complex Signalling Network May Regulate the Levels of 

Expression and Functional Activities of the S. pombe Rad9 Isoforms 

in Selective Checkpoint Responses to Specific Types of Genotoxic and 

Environmental Cytological Stresses 
 

The experimental observation that specific phosphoisoforms of the “Rad9-S” truncated protein 

variant may be implicated in the modulated expression of the “Rad9-VS” and “Rad9-T” isoforms 

(Section 4.8, pp.397-401), taken together with the restrictive temporal expression of “Rad9-S” in 

actively cycling cells in S-phase (Section 4.6, pp.392-393), may be indicative of co-ordinated 

functional roles of “Rad9-VS”, “Rad9-T” and possibly other proteolytic cleavage-derived Rad9 

isoforms in the “feedback” regulation of “Rad9-S”-mediated DNA damage checkpoint signalling 

activities (Fig 4.34, p.439). 

 

 

The mechanism of expression of the full-length Rad9, “Rad9-S” and “Rad9-VS” truncated protein 

variants may comprise alternative translation at the alternative AUG start-codon sites at the 

respective methionine 1 (M1), methionine 50 (M50) and methionine 74 (M74) situated within the 

mRNA of the transcribed S. pombe rad9 gene, in which leaky ribosomal scanning is implicated 

(Janes S. et al, 2012, Journal of Cell Science, recently accepted manuscript publication “in press” 

– see Appendix 8.1) – Fig 4.34, p.439. 

 

Hypothermic stress and nominal temperature (<30˚C) conditions may induce supramolecular 

configurational changes within the secondary structure of a responsive cis-element contained 

within the encoded M1 – M50 segment of the transcribed S. pombe rad9 mRNA (Section 4.5, pp.-) 

which sterically hinders leaky ribosomal scanning with consequential suppressed expression of the 

truncated “Rad9-S” variant and/or the truncated “Rad9-VS” protein variant.   
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In this hypothetical context, hyperthermic stress conditions (>30˚C) would “melt” the secondary 

structure of the hypothermic stress responsive RNA cis-element (Section 4.5, pp.379-391), situated 

within the encoded M1 – M50 domain, enhancing the relaxation and topological flexibility of the 

transcribed S. pombe rad9 mRNA and thereby increasing the frequency of leaky ribosome 

scanning with consequential inducted expression of elevated levels of the truncated “Rad9-S” 

variant and/or the truncated “Rad9-VS” protein variant.   

 

Associative rad9 mRNA interactions with heat-shock proteins, RNA chaperones and/or RNA 

stabilisers may also be implicated in the regulated expression of the full-length Rad9, “Rad9-S” 

and “Rad9-VS” protein isoforms (Fig 4.34, p.439). 

 

Different phosphoisoforms of the S. pombe full-length Rad9, “Rad9-S”, “Rad9-VS”, “Rad9-T” 

and/or other proteolytically-derived truncated rad9 variants could also act as RNA stabilisers 

and/or RNA chaperones which modulate the supramolecular structure of the transcribed rad9 

mRNA to direct the ribosomal machinery to specific AUG translational start-codon sites in a 

“feedback” mechanism which serves to regulate the expressed levels and functional activities of 

specific Rad9 variants (Fig 4.34, p.439). 

 

Expression of the “Rad9-T” truncated protein variant may involve a limited proteolytic cleavage 

mechanism in which metacaspase-mediated and/or COP9 signalosome-mediated limited 

proteolytic processing may be implicated (Fig 4.34, p.439). 

 

Kinase-mediated phosphorylation of several key residues, identified in the conserved potential 

metacaspase site within the full-length Rad9, “Rad9-S” and “Rad9-VS” protein isoforms, may 

inhibit proteolytic-cleavage formation of the detected “Rad9-T” truncated protein variant and  the 

undetected Rad9-CΔ118-426, NΔ49-Rad9-CΔ118-426 and NΔ473-Rad9-CΔ118-426 truncated 

isoforms (Section 4.9, pp.402-417) – Fig 4.34, p.439. 
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Whilst phosphatase-mediated dephosphorylation of several key residues, identified in the 

conserved potential metacaspase site within the full-length Rad9, “Rad9-S” and “Rad9-VS” 

protein isoforms, may promote proteolytic-cleavage formation of the detected “Rad9-T” truncated 

protein variant and the undetected Rad9-CΔ118-426, NΔ49-Rad9-CΔ118-426 and NΔ473-Rad9-

CΔ118-426  truncated isoforms (Section 4.9, pp.402-417) – Fig 4.34, p.439. 

   

The C-terminal tail domain, which enables the Rad9 protein to interact with and modulate the 

functional activities of a variety of proteins that are implicated in the mediation of DNA damage 

checkpoint signalling responses and DNA repair pathways (Broustas C.G. and Lieberman H.B., 

2012), is conserved within the the full-length Rad9, “Rad9-S” ,“Rad9-VS” and “Rad9-T” protein 

isoforms, but is absent in the Rad9-CΔ118-426, NΔ49-Rad9-CΔ118-426 and NΔ473-Rad9-

CΔ118-426 truncated isoforms. 

 

These Rad9-CΔ118-426, NΔ49-Rad9-CΔ118-426 and NΔ473-Rad9-CΔ118-426 truncated 

isoforms may be implicated in the competitive suppressive regulation of the functional activities of 

the full-length Rad9, “Rad9-S” ,“Rad9-VS” and “Rad9-T” protein isoforms in various protein 

complexes, via formation of equivalent complexes which are lack the capability to initiate 

functional Rad9 protein C-terminal tail domain checkpoint signalling responses.  

 

Specific checkpoint kinase-mediated post-translational phosphorylation modifications within the 

C-terminal tail domain of the human Rad9A protein enable it to interact with the promoter 

consensus DNA-binding sequence of the WAF1 gene and induce expression of the p21 protein, 

independently of the Rad9A-Rad1-Hus1 heterotrimeric DNA sliding clamp complex, thereby 

modulating apoptotic signalling pathways (Yin Y. et al, 2004).  

 

 

 

 

 

 

 

                                                     [437] 



On the basis of this observed phenomenon, it is hypothetically conceivable that different 

phosphoisoforms of the S. pombe full-length Rad9 protein and truncated “Rad9-S”, “Rad9-VS” 

and “Rad9-T”  variants could participate in C-terminal tail domain interactions with the promoter 

region of the S. pombe rad9 gene, in which they act as active transcriptional inducers and/or 

suppressors in a “feedback” mechanism which also serve to regulate the expressed levels and 

functional activities of specific S. pombe Rad9 isoforms. 

 

In addition, these potential S. pombe Rad9 phospho-isoforms could also function as transcriptional 

inducers and/or suppressors of other target genes, via associative C-terminal tail domain-gene 

promoter type interactions, which may encode checkpoint proteins (including kinases and 

phosphatases), gene transcriptional and translational modification proteins (including RNA 

chaperones, RNA stabilisers, and RNA helicases), COP9 signalosome components and/or 

metacaspases – which could also be implicated in the “feed-back” regulation of expressed levels 

and functional activities of specific S. pombe Rad9 isoforms (Fig 4.34, p.439). 

 

It is also conceivable that a complex network of different regulatory cross-talk pathways between 

cell cycle checkpoints may exist, which are mediated via phosphatase and kinase interactions with 

the full-length Rad9 protein and the truncated “Rad9-S”, “Rad9-VS”, “Rad9-T” variants and 

possibly other Rad9 isoforms, for the co-ordinated selection and initiation of appropriate 

cytological responses to specific types of genotoxic and environmental stresses. 
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Fig 4.34: Rad9 Isoformic-Modulated “Feed-Back” Expression Model 
 

 
 

A detailed explanation of this hypothetical model is provided in the text (pp.435-438). 
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        Functional Viability Assessment of the 

          Engineered S. pombe Rad9 Proteins           
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5.1 Introduction 
 

The human Rad9A protein is known to possess several independent functions that operate outside 

of the canonical Rad9-Rad1-Hus1 (“9-1-1”) complex and are implicated in the modulation of 

nucleotide biosynthesis and apoptotic signalling pathways (Broustas C.G. and Lieberman H.B., 

2012). 

 

Four truncated isoforms of the full-length human Rad9B paralogue have been identified (discussed 

previously in Chapter 1) whose respective functions are unknown.  

 

Comparative in silico analyses and 2D PAGE-coupled Western blot assays also indicated that three 

novel truncated Rad9 isoforms were expressed within S. pombe cells, which may be equivalent 

functional homologues of the truncated human Rad9B isoforms (discussed previously in Chapter 

4).  

 

Several experimental approaches were therefore undertaken in order to determine whether or not 

the full-length S. pombe Rad9 protein and/or any of its truncated isoforms had any novel, “9-1-1” 

complex-independent functional capabilities, notably; 

 

(i) In silico assessment of the functional viability of the “cre-lox”-engineered full-length and    

     truncated S. pombe Rad9 protein variants via comparative modelling and structural 

     motif analyses of  their respective amino acid sequences (Section 5.2, pp.442-454). 

 

(ii) Comparative in vivo assessment of the relative cytotoxic sensitivities of S. pombe strains,  

      whose cells were “cre-lox”-engineered for the exclusive expression of specific full-length 

      and truncated Rad9 protein variants (discussed previously in Chapter 3), to different types 

      of induced genotoxic and environmental cytological stresses (Section 5.3, pp.455- 470). 
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5.2 Comparative In Silico Functional Viability Analyses of the 

Engineered Full-Length and Truncated S. pombe Rad9 Protein 

Variants 

 

Whilst the expressed truncated “Rad9-S” protein (NΔ49-Rad9) and “Rad9-VS” variants (NΔ74-

Rad9) would lack the first 49 N-terminal amino acids and 74 N-terminal amino acids respectively, 

in silico comparative modelling analyses indicated that they may still retain the capability to form 

alternative “Rad9-S-“Rad1-Hus1 and “Rad9-VS”-Rad1-Hus1 heterotrimeric DNA sliding-clamp  

complexes, as a consequence of conserved interfacial Hus1 and Rad1 associative domains within 

their respective structures (Fig 5.1, p.446). 

 

In silico comparative modelling  analyses combined with multiple sequence alignment analyses of 

the full-length H.sapiens Rad9B protein, the full-length S. pombe Rad9 protein and the potential 

exonuclease domain within the human Rad9A protein (identified by Bessho T. and Sancar A., 

2000)  indicated that the S. pombe full-length Rad9 protein and the truncated “Rad9-S” variant 

may also contain a functionally homologous exonuclease motif (Fig 5.1, p.446) 

 

These in silico comparative modelling data also revealed that the truncated “Rad9-VS” variant 

would not contain the identified exonuclease domain and therefore may not be implicated in the 

functional mediation and/or regulation of  DNA repair pathway activities, in contrast with the full-

length Rad9 protein and the truncated “Rad9-S” variant (Fig 5.1, p.446) 

 

Comparative in silico eukaryotic linear motif sequence analyses of the S. pombe full-length Rad9 

protein and truncated “Rad9-S” and “Rad9-VS” protein variants, performed with the on-line 

bioinformatics software tool ELM, indicated that they all contained a variety of cytosol-, 

endoplasmic reticulum- golgi apparatus-, nucleus- and plasma membrane- associated types of 

functional protein motifs (Fig 5.2, p.447; Table 5.1, pp.448-450; Fig 5.3, p.451). 
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These in silico data analyses also revealed that the full-length S. pombe Rad9 protein and the 

truncated “Rad9-S” and “Rad9-VS” protein variants contained equivalent proportions of the 

identified endoplasmic reticulum- and golgi apparatus- associated types of functional protein 

motifs (Fig 5.3, p.451). 

 

 

The truncated S. pombe “Rad9-S” and “Rad9-VS” protein variants also contained equivalent 

proportions of the identified cytosol-, nucleus- and plasma membrane- associated types of 

functional protein motifs, which were found in higher proportions within the full-length S. pombe 

Rad9 protein (Fig 5.3, p.451). 

 

In silico analysis of the full-length S. pombe Rad9 sequence with the on-line NetPhos 

bioinformatics software tools revealed that the full-length Rad9 protein and truncated “Rad9-S” 

and “Rad9-VS” isoforms all contained distinctive serine, threonine and tyrosine residues which 

were assigned phosphorylation high-probability scores (Fig 5.4, p.452; Table 5.2, p.453; Table 5.3, 

p.453; Fig 5.5, p.454). 

 

These in silico data analyses also indicated these proteins may undergo transient post-translational 

phosphorylation and dephosphorylation modifications, mediated by specific checkpoint kinase and 

phosphatases, which alter their functional activities (Fig 5.4, p.452; Table 5.2, p.453; Table 5.3, 

p.453; Fig 5.5, p.454). 

 

Taken together, these in silico data indicated that the full-length S. pombe Rad9 protein and the 

truncated “Rad9-S” and “ Rad9-VS” may elicit different types of functional checkpoint responses 

to genotoxic and/or environmental cytological stresses. 
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In silico comparative modelling indicated that the amino acid sequences of the truncated NΔ311-

Rad9, NΔ312-Rad9 and NΔ357-Rad9 protein variants were progressively smaller fragments of the 

C-terminal tail domain (Fig 5.1, p.446). 

 

Comparative in silico eukaryotic linear motif sequence analyses of  the truncated NΔ311-Rad9, 

NΔ312-Rad9 and NΔ357-Rad9 proteins, performed with the on-line bioinformatics software tool 

ELM, indicated that they contained only very low equivalent proportions of cytosol-type 

associated functional protein motifs and relatively low proportions of nucleus-type associated 

functional protein motifs which were approximately 4 fold more abundant than the identified 

cytosol-type associated functional protein motifs  (Fig 5.2, p.447; Table 5.1, pp.448-450; Fig 5.3, 

p.451). 

 

In silico analysis of the full-length S. pombe Rad9 sequence with the on-line NetPhos 

bioinformatics software tools revealed that these truncated NΔ311-Rad9, NΔ312-Rad9 and 

NΔ357-Rad9 proteins  all contained significantly less numbers of distinctive serine and threonine 

residues which were assigned phosphorylation high-probability scores and a notable absence of 

phosphorylated tyrosine residues (Fig 5.4, p.452; Table 5.2, pp.453; Table 5.3, p.453; Fig 5.5, 

p.454). 

 

The NΔ311-Rad9, NΔ312-Rad9 and NΔ357-Rad9  truncated protein variants may still retain some 

capacity to elicit checkpoint responses to environmental and genotoxic cytological stresses due to 

the adaptive structural nature of their respective C-terminal tail domain segments which may 

undergo transient kinase- and /or phosphatase- mediated post-translational phosphorylation and 

dephosphorylation modifications which enable them to engage with and modulate the functional 

activities of proteins implicated in the maintenance of genomic integrity. 
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However, the feasibility of this speculative hypothesis is highly improbable as a consequence of 

the experimental data acquired from comparative in silico assessment analyses of the relative 

stability of the NΔ311-Rad9, NΔ312-Rad9 and NΔ357-Rad9  truncated protein variants that 

indicated a predominant intrinsic structural disorder propensity and a significant lack of protease 

resistant type motifs within their supramolecular architectures which would render them  

functionally non-viable and highly susceptible to ubiquitination- and/or sumoylation- post-

translation modification-targeted proteasomal degradation (discussed previously in Chapter 3, 

Section 3.4, pp.314-357).                                 

 

 

This may also account for the absence of detected expression of the NΔ311-Rad9-c3xHA and 

NΔ357-Rad9-C3xHA  truncated isoforms in comparative Western blot analyses of TCA-

precipitated total protein samples prepared from the cell cultures of the appropriate S. pombe 

strains which were cre-lox – engineered for the exclusively expression of these  proteins (discussed 

previously in Chapter 3, Section 3.3, pp.308-313; Fig 3.15, p.313). 
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       Fig 5.1: Comparative Modelling of Engineered Rad9 Isoforms 
 

 
 

In silico comparative modelling of the engineered full-length and truncated S. pombe Rad9 protein 

variants within the X-ray crystallographic resolved structure of the human Rad9-Rad1-Hus complex 

(PDB file: 3G65) was accomplished via utilisation of the on-line bioinformatics software tool RasMol 

and the molecular graphics were generated via utilisation of the on-line PolyView3D software tool. 
 

The relative positions of N-terminal methionine residues at the start of each respective protein 

sequence are indicated in light blue and the M1–M50 region is highlighted in blue. 
 

The approximate location of the highly mobile C-terminal tail is indicated in purple and the potential 

exonuclease domain in S. pombe Rad9 is indicated in white, determined via  comparative sequence 

alignment analyses of the human RadA exonuclease domain with the full-length human Rad9B 

paralogue (Isoform 5) and  S. pombe Rad9 protein, performed with the on-line bioinformatics 

software tools EMBOSS, JEMBOSS and PSI-BLAST.      
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Fig 5.2: Eukaryotic Linear Motif (ELM) Analysis of S. pombe Rad9 
 

                              

A: In silico prediction of potential functional protein motifs within the full-length S. pombe Rad9 protein and 

       truncated Rad9  isoforms via amino acid sequence analysis with the on-line bioinformatics software tool 

       ELM (the secondary structure motifs are listed on the left of the data plot and their functional  

       characteristics are summarised in Table 5.1, pp.448-450) 
   
      The top of the data plot indicates the regions of intrinsic structural order and disorder, identified by the 

       integrated programs GlobProt and IUPRED. 
 

      The relative amino acid position (residue number) is provided at the bottom of the data blot and the 

      N-terminal methionines that correspond to the translation start sites of the S. pombe full-length Rad9 

      protein and truncated variants are indicated in orange. 

 

B: In silico comparative modelling of the ELM-identified functional motif sites and relative positions of  

      the N-terminal methionines that correspond to the translation start sites of the S. pombe full-length Rad9 

      protein and truncated variants within the X-ray crustallographic structure of the human Rad9-Rad1-Hus1 

      heterotrimeric DNA sliding clamp complex (PDB file: 3G65) was performed via utilisation of the on-line 

      bioinformatics tool RasMol anD the structural graphic generated via utilisation of the on-line software tool  

      PolyView3D. 
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Table 5.1(i): ELM-Identified Functional Sequences in S. pombe Rad9 
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Table 5.1(ii): ELM-Identified Functional Sequences in S. pombe Rad9 

(continued) 
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Table 5.1(iii): ELM-Identified Functional Sequences in S. pombe 

 Rad9 (continued) 
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Fig 5.3: Comparative Analyses of the Relative Abundance of 

Localised Functional Protein Motif Types Within the Full-Length 

and Truncated S. pombe Rad9 Protein Variants 
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  Fig 5.4: Phosphorylation Site Analysis of the S. pombe Rad9 Protein 

 

 
 

The relative positions of the N-terminal methionines which correspond to the translational 

start sites of  the amino acid sequences of the engineered S. pombe full length Rad9 and 

truncated Rad9 isoforms are indicated (X-axis on the NetPhos data plot). 

 

Phosphorylation site probability scores (Y-axis on the NetPhos data plot) above the threshold 

value of 0.5 (represented by grey line on the NetPhos data plot) are significant. 
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Table 5.2: Potential Number of Kinase Target Sites in Rad9 Variants  

 

 
 

 

 

 

 

Table 5.3: Predicted Number of Kinase Target Sites in Rad9 Variants  
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Fig 5.5: Relative Numbers of Potential Kinase Sites in Rad9 Variants 
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5.3 Exclusive Expression of the Engineered Truncated Rad9 Variants  

Enhances Cellular Sensitivity to Various Types of  Induced Genotoxic 

 and Environmental Stresses  
 

Comparative in silico data analyses of the full-length and truncated S. pombe Rad9 isoforms 

provided some hypothetical insights into their functional viabilities (Section 5.2, pp.442-454).  

 

The “cre-lox” – engineered full-length S. pombe Rad9 protein variants were predicted to function 

in a similar manner to that of that of the wild-type S. pombe Rad9 protein and would elicit 

appropriate checkpoint point responses to genotoxic and environmental cytological stresses via 

Rad3 kinase-mediated activation of   “9-1-1” complex DNA sliding-clamp type signalling events 

(Fig 5.6A and Fig 5.6B, p.460) and perhaps elicit other independent functional responses to these 

stresses (Fig 5.6B, p.460).  

 

The “cre-lox” – engineered NΔ49-Rad9-c3xHA (“Rad9-S”) and  NΔ73-Rad9-c3xHA (“Rad9-VS”) 

truncated protein variants were predicted to form “closed-ring” or “open-ring” alternative 

heterotrimeric “9-1-1” DNA sliding-clamp complexes, or form heterodimeric DNA sliding-clamp 

complexes with Hus1, which mau participate in Rad3 kinase-activated checkpoint responses to 

genotoxic and environmental cytological stresses (Fig 5.6A, Fig 5.6C and Fig 5.6D, p.460). 

 

Since the smaller ring configurations of these alternative complexes may cause them to become 

sterically stalled at bulky DNA lesion sites, it was predicted therefore these proteins may also elicit 

independent functional responses to these stresses (Fig 5.6C and Fig 5.6D, p.460). 
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The “cre-lox”-engineered NΔ311-Rad9-c3xHA and NΔ358-Rad9-c3xHA truncated protein 

variants were predicted to be either functionally non-viable and unable to elicit checkpoint 

responses to genotoxic and environmental cytological stresses or may retain some partial C-

terminal domain functions which enable them to engage with some proteins and elicit sub-optimal 

checkpoint signalling responses (Fig 5.6E, p.460) 

 

In order to ascertain the validity of these functional predictions, comparative acute survival assays 

were performed with YEA cultures of the cre-lox–engineered S. pombe strains rad9, rad9-c3xHA, 

rad9-(Δintron 1)-c3xHA, rad9-(M50L)-c3xHA, NΔ49-rad9-c3xHA, NΔ73-rad9-c3xHA, NΔ311-

rad9-c3xHA and NΔ311-rad9-c3xHA exposed to a variety of induced different types of genotoxic 

and environmental cytological stresses (pp.461-470) 

 

A “wild-type” S .pombe strain and the rad9-deleted “cre-lox” base-strain (Δrad9) were also 

utilised as comparative positive and negative controls for these acute survival assays (pp.461-470). 

 

 

These induced stresses were cold shock (16˚C), heat shock (37˚C), osmotic stress (1M sorbitol), 

oxidative stress (hydrogen peroxide, menadione, sodium nitroprusside and tert-

butylhydroperoxide), PI3-kinase inhibition (caffeine), ribonucleotide biosynthesis inhibition 

(hydroxyurea), mitotic inhibition (thiabendazole), DNA cleavage/cross-linking/adduct-forming 

agent exposure (methylmethane sulphonate, mitomycin C, 4-methyl-N’-nitro-N-nitrosoguanidine, 

4-nitroquinoline-1-oxide, phleomycin, U.V. irradiation) and topoisomerase inhibition 

(camptothecin, ellipticine, etoposide) – Figs 5.7-5.12, pp.461-468. 
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Acute exposure to ethanol (1% v/v), DMSO (1% v/v) and ethanol:DMSO (1% v/v)  had no adverse 

effect on the growth and cell survival of all the S. pombe strains tested and served as experimental 

controls for confirmation that their presence in the YEA broth cultures elicited no cytotoxic effects  

in addition to the test agents utilised in the acute survival assays (Fig 5.7, p.461). 

 

The control acute survival assays were necessary as these solvents were utilised to prepare some of 

the test compound stock solutions. 

 

S. pombe strains whose cells were “cre-lox”–engineered for expression of full-length Rad9 protein 

variants (ie rad9, rad9-c3xHA, rad9-Δintron1-c3xHA, rad9-(M50A)-c3xHA and rad9-(M50L)-

c3xHA) were resistant to all the genotoxic and environmental stress conditions tested (Figs 5.7-

5.12, pp.461-468). 

 

Acute exposure to cold-shock (16˚C), heat-shock (37˚C), osmotic shock (1M sorbitol), PI3 kinase 

inhibition (10mM caffeine) and mitotic inhibition (40µM thiabendazole) also had no adverse effect 

on the growth and cell survival of any of the S. pombe strains tested (Fig 5.8, p.462 and Fig 5.12, 

p.468).                                               

                                                     

Acute exposure to hydrogen peroxide, menadione, sodium nitroprusside and tert-

butylhydroperoxide, hydroxyurea, methylmethane sulphonate, mitomycin C, 4-methyl-N’-nitro-N-

nitrosoguanidine, 4-nitroquinoline-1-oxide, phleomycin, U.V. irradiation, camptothecin, ellipticine, 

and etoposide adversely affected the growth and cell survival of S. pombe strains whose cells were 

cre-lox engineered for the exclusive expression of truncated Rad9 protein variants (ie NΔ49-rad9-

c3xHA, NΔ73-rad9-c3xHA, NΔ311-rad9-c3xHA and NΔ357-rad9-c3xHA) – Fig 5.9, p.463; Fig 

5.10(i), p.464; Fig 5.10(ii), p.465, Fig 5.11(ii), p.467; Fig 5.12, p.468.  
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The acquired experimental data indicated a general trend of increasing sensitivity to these 

genotoxic agents correlated with decreasing length of the truncated Rad9 protein variant 

exclusively expressed within the cells of the “cre-lox” – engineered S. pombe strain (Fig 5.13, 

pp.469-470) – which may be defined in the order of decreasing cell survival as; 

NΔ49-rad9-c3xHA > NΔ73-rad9-c3xHA > NΔ311-rad9-c3xHA > NΔ357-rad9-c3xHA > Δrad9 

 

The NΔ311-rad9-c3xHA and NΔ357-rad9-c3xHA S. pombe strains were also less sensitive to the 

genotoxic effects of the test compounds camptothecin, hydrogen peroxide, hydroxyurea and 4-

nitroquinoline-1-oxide than the rad9-deleted base strain (Δrad9), but equally sensitive to the 

genotoxic effects of menadione, tert-butylhydroperoxide, ellipticine, etoposide, 4-methyl-N’-nitro-

N-nitrosoguanidine, 4-nitroquinoline-1-oxide, methylmethane sulphonate, mitomycin C, 

phleomycin and U.V. irradiation (Fig 5.13, pp.469-470). 

 

These experimental observations may be indicative of retention of some potential “9-1-1” 

complex-independent Rad9 C-terminal tail domain functional activities within the NΔ311-rad9-

c3xHA and NΔ357-rad9-c3xHA S. pombe strains, which may elicit partial checkpoint responses to 

specific types of genotoxic stress induced by camptothecin, hydrogen peroxide, hydroxyurea and 

4-nitroquinoline-1-oxide.  

 

Initial acute survival assays performed with the test compounds ellipticine and etoposide failed to 

kill the  S. pombe Δrad9 base-strain (negative control) as a consequence of the fact that they were 

unable to penetrate the cells (Fig 5.11(i), p.466). 

 

Lyticase pre-treatment of the  S. pombe strains, prior to performing acute cell survival assays with 

ellipticine and etoposide, enabled these genotoxic compounds to penetrate the cells as a 

consequence of their weakened cell walls and resulted in  rapid killing of the S. pombe Δrad9 base-

strain culture (negative control) – Fig 5.11(ii), p.467. 
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The NΔ49-rad9-c3xHA, NΔ73-rad9-c3xHA, NΔ311-rad9-c3xHA, NΔ357-rad9-c3xHA and Δrad9  

S. pombe strains also exhibited an equivalent level of sensitivity to the genotoxic effects of acute 

exposure to ellipticine and etoposide (Fig 5.11(ii), p.467; Fig 5.13, pp.469-470). 

 

The NΔ49-rad9-c3xHA, and NΔ73-rad9-c3xHA S. pombe strains were also equally sensitive, but 

more resilient to the genotoxic effects of acute exposure to U.V. irradiation than the S. pombe 

strains NΔ311-rad9-c3xHA, NΔ357-rad9-c3xHA and Δrad9 (Fig 5.13, pp.469-470).  

                                              

                                                 
S. pombe cells which were “cre-lox”–engineered for the exclusive expression of the truncated 

protein variant “Rad9-S” (NΔ49-rad9-c3xHA) also exhibited a distinctive partial resistance (~30% 

cell survival) and were significantly less sensitive to the genotoxic effects of acute exposure to 

camptothecin compared with the cells of the other S. pombe strains which were “cre-lox”–

engineered  for the exclusive expression of the NΔ73-rad9-c3xHA, NΔ311-rad9-c3xHA and 

NΔ357-rad9-c3xHA truncated Rad9 protein variants (Fig 5.13, pp.469-470). 

                                                        

These experimental data observations indicate that the truncated “Rad9-S” protein variant may be 

functionally-implicated in novel checkpoint signalling pathway responses (discussed in Chapter 6) 

and/or DNA repair pathways which are specific to camptothecin-induced DNA damage (discussed 

in Chapter 7). 
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Fig 5.6: Predictive Genotoxic Responsive Models for Rad9 Isoforms 
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       Fig 5.7: Comparative “Solvent Control” Acute Survival Assays 

 
 

[Acute cell survival assays were performed as per the methodology described in Chapter 2, 

 Section 2.9.2.2(ii), pp.239-241] 
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Fig 5.8: Comparative Heat and Osmotic Stress Acute Survival Assays 
 

 
 
 

[Acute cell survival assays were performed as per the methodology described in Chapter 2, 

 Section 2.9.2.2(ii), pp.239-241] 
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         Fig 5.9: Comparative Acute Oxidative Stress Survival Assays   

   

 
 

 

 

[Acute cell survival assays were performed as per the methodology described in Chapter 2, 

 Section 2.9.2.2(ii), pp.239-242] 
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 Fig 5.10(i): Acute Survival Assays with Adduct-Forming/Cross-Linking Agents 
 

 
 

 

[Acute cell survival assays were performed as per the methodologies described in Chapter 2, 

 Section 2.9.2.2(ii), pp.239-247] 
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 Fig 5.10(ii): Acute Survival Assays with Adduct-Forming/Cross-Linking 

Agents  

 

 

 
 

[Acute cell survival assays were performed as per the methodology described in Chapter 2, 

 Section 2.9.2.2(i), pp.236-238; Section 2.9.2.2(ii), pp.239-241 and p.243] 
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     Fig 5.11(i): Acute Survival Assays with Topoisomerase Inhibitors 
 

 
 
 

[Acute cell survival assays were performed as per the methodologies described in Chapter 2, 

 Section 2.9.2.2(ii), pp.239-241 and p.248] 
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     Fig 5.11(ii): Acute Survival Assays with Topoisomerase Inhibitors 
 

 
 

 

 

[Acute cell survival assays were performed as per the methodologies described in Chapter 2, 

 Section 2.9.2.2(ii), pp.239-241 and pp.249-251] 
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          Fig 5.12: Acute Survival Assays with Caffeine, HU and TBZ 
 

 
 
 

[Acute cell survival assays were performed as per the methodology described in Chapter 2, 

 Section 2.9.2.2(ii), pp.239-241 and p.252] 
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Fig 5.13: Comparative Analyses of the Relative Degree of Enhanced 

Sensitivity of S. pombe Strains, Engineered for the Exclusive 

Expression of Specific Truncated Rad9 Variants, to Different Types 

of Induced Genotoxic Stresses   

 

 
 

[Descriptive details are provided in the figure legend – p.470] 
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Figure Legend – Fig 5.13 
 

Figs A – C are comparative histogram plots of the relative cytotoxicity sensitivity of S. pombe 

strains, whose cells were “cre-lox” – engineered for the exclusive expression of the indicated 

truncated Rad9 variants and the Rad9 deleted (Δrad9) base-strain, to different types of acute 

genotoxic-induced stresses. 

 

S. pombe strains and genotoxic agents are indicated on the X-axis of the data plots, the 

average time (in minutes) equivalent to 50% cell survival is indicated on the Y-axis of the 

data plots and was determined from the acute survival survival assays performed on these 

strains with the indicated genotoxic agents. 

 

Oxidative Stress Inducers  

H2O2 = Hydrogen peroxide (400µM) 

MDN = Menadione (400µM) 

SNP = Sodium nitroprusside (400µM) 

TBH = t-Butylhydroperoxide (400µM) 

 

 

DNA Replication Enzyme Inhibitors  

CPT = Camptothecin (40µM) 

ELP = Ellipticine (40µM) 

ETP = Etoposide (40µM) 

 HU = Hydroxyurea (10mM) 

 

 

DNA Alkylator, Cross-Linking, Cleavage Agents 

 

Mit C = Mitomycin C (4 µM) 

MNNG = 4-Methyl-N’-Nitro-N-Nitrosoguanidine  

4-NQO = 4-Nitroquinoline-1-Oxide(4 µM) 

Phleo = Phleomycin (4 µM) 

 

 

Fig D is the comparative histogram plot of the relative cytotoxicity sensitivity of S. pombe 

strains, whose cells were “cre-lox” – engineered for the exclusive expression of the indicated 

truncated Rad9 variants and the Rad9 deleted (Δrad9) base-strain, to acute exposure to U.V. 

irradiation. 

 

S. pombe strains are indicated on the X-axis of the data plots, the average U.V. dose (J/M2) 

equivalent to 50% cell survival is indicated on the Y-axis of the data plots and was 

determined from the acute U.V. survival assays performed on these strains. 

   

Fig E is the comparative histogram plot of the relative cytotoxicity sensitivity of S. pombe 

strains, whose cells were “cre-lox” – engineered for the exclusive expression of the indicated 

truncated Rad9 variants and the Rad9 deleted (Δrad9) base-strain, to acute 

methylmethanesulphonate (MMS) exposure. 

 

S. pombe strains are indicated on the X-axis of the data plots, the average MMS dose (% v/v) 

equivalent to 50% cell survival is indicated on the Y-axis of the data plots and was 

determined from the acute MMS survival assays performed on these strains. 

 

Fig F is a graphical summary of the general cytotoxic sensitivity trend of the “cre-lox”-

engineered S. pombe strains to induced genotoxic stress. 
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5.4 Distinctive Phosphoisoform Profiles of the “Rad9-S” Truncated 

Protein Variant are Generated in Cellular Responses to Specific 

Types of Induced Genotoxic Stresses  

 

Comparative 2D-PAGE-coupled Western blot analyses of TCA-precipitated total protein extracts 

acquired from YEA broth cell cultures of the S. pombe strain NΔ49-rad9-c3xHA (“Rad9-S”), 

incubated in the presence of the genotoxic agents; camptothecin, ellipticine, etoposide, hydrogen 

peroxide and phleomycin, hydroxyurea and methylmethane sulphonate  revealed that the “Rad9-S” 

truncated protein exhibited differential phosphoisoform profiles for different types of induced  

DNA damage (Fig 5.14, p.473). 

 

Comparative 2D-PAGE-coupled Western blot analyses of TCA-precipitated total protein extracts 

acquired from YEA broth cell cultures of the S. pombe strain NΔ49-rad9-c3xHA (“Rad9-S”), in the 

presence of the DNA double-strand break (DSB) inducing genotoxic agents; camptothecin, 

ellipticine, etoposide, hydrogen peroxide and phleomycin, also revealed that the “Rad9-S” 

truncated protein exhibited differential phosphoisoform profiles for different types of induced 

DSBs (Fig 5.15A, p.474). 

 

Ellipticine induces DSBs  via inhibition of topoisomerase II, but unlike etoposide, it does not trap 

the enzyme on the DNA, whilst hydrogen peroxide induces free-radical DSB cleavage reactions – 

in both instances the respective compounds do not form bulky/sterically-hindered complexes with 

the DNA. 

 

In contrast, the topoisomerase inhibitors camptothecin and etoposide trap the respective 

topoisomerase I (CPT) and topoisomerase II (Etp) enzymes on the DNA in bulky,.sterically-

hindered complex at the replication fork. 
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The DSB-inducing agent phleomycin forms a redox-reactive Fe2+-organometallic type 

intercalating bulky, sterically-hindered complex with the DNA prior to duplex cleavage. 

 

The notable absence of hypophosphorylated “Rad9-S” protein isoforms towards the negative 

(pH10) terminus within the hydrogen peroxide and ellipticine 2D-PAGE expression profiles, 

which are present in the case of the camptothecin, etoposide and phleomycin 2D PAGE-coupled 

Western blot expression profiles may be indicative of a functional region within the truncated 

“Rad9-S” protein variant which is implicated in the detection of adverse genotoxin-induced 

alterations of DNA topological and/or chromatin supramolecular structural configurations (Fig 

5.15A and Fig 5.15C, p.474). 

 

With the exception of etoposide , the 2D PAGE-coupled Western blot expression profiles obtained 

for the other DSB-inducing DNA damaging agents contain hyperphosphorylated “Rad9-S” 

isoforms towards the positive (pH3) terminus which may be indicative of functional 

phosphorylated C-terminal tail domain-mediated DNA damage signalling responsive resions 

within the truncated “Rad9-S” protein variant (Fig 5.15A and Fig 5.15C, p.474).  

 

Comparative acute survival assays performed on YEA broth cell cultures of the NΔ49-rad9-c3xHA 

S. pombe strain with the different DSB-inducing DNA damaging agents indicate that the partial 

resistance of “Rad9-S” cells (~30% retained cell viability/cell survival) is an exclusive response to 

the topoisomerase I inhibitor camptothecin (Fig 5.15B, p.474).  

 

Taken together, these experimental data indicate that the truncated “Rad9-S” protein variant may 

associate with Hus1 and Rad1 to form an alternative heterotrimeric “Rad9-S”-Hus1-Rad1 DNA 

sliding-clamp complex which detects camptothecin-topoisomerase 1-DNA complex lesions and 

mediates appropriate signalling responses via C-terminal tail engagement with checkpoint proteins 

(eg kinases and  phosphatases) and/or DNA repair factors (Fig 5.15C, p.474).   
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 Fig 5.14: 2D-PAGE Data – Genotoxic Type “Rad9-S” Modifications  

       

                                
Individual 100mL YEA broth medium cell cultures of the “Cre-Lox” – constructed NΔ49-rad9-

c3xHA (“Rad9-S”) S. pombe strain were grown overnight (30˚C for  ~12 hour time period), then 

diluted to an optical density A595 = 0.25 with the appropriate volume of YEA medium and the 

resultant diluted cultures re-incubated at  30°C for a further time period of ~2.5 hours until they had 

attained an optical density value of A595 = 0.5, after which time they were incubated for a further 30 

minutes at 30°C in the absence or presence of the appropriate genotoxic agent. 

 

[In the case of ellipticine and etoposide cell cultures, the cells were pelleted after overnight incubation 

and pre-treated with lyticase, as per the protocol described in Ch.2, Section 2.9.2.2(ii), pp.248-251, 

prior to re-suspension in 100mL fresh YEA which contained 40µM of ellipticine or Etoposide] 

 

TCA-precipitated total protein extract samples were then prepared from the appropriate *calculated 

volumetric aliquot of each culture (*equivalent to 40 A595 optical density units) and utilised in 

comparative  2D-PAGE–coupled Western Blot analyses – probed with the primary “anti-HA” 

antibody. 

 

[Protein sample preparation, 2D PAGE and Western blot methodologies are described in 

Chapter 2, Section 2.8.3.1, pp.214-217; Section2.8.5.1, pp.225-230 and Section 2.8.6., pp.231-

233] 
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     Fig 5.15: Rad9-S Responses to Different Types of Induced DSBs 

 

 
 

A: Individual 100mL YEA broth medium cell cultures of the “Cre-Lox” – constructed NΔ49-rad9- c3xHA  

       (“Rad9-S”) S. pombe strain were grown overnight (30˚C for  ~12 hour time period), then  diluted to an 

       optical density A595 = 0.25 with the appropriate volume of YEA medium and the resultant diluted cultures 

       re-incubated at  30°C for a further time period of ~2.5 hours until they had attained an optical density  

       value of A595 = 0.5, after which time they were incubated for a further 30 minutes at 30°C in the absence or 

       presence of the appropriate genotoxic agent. 

 

       [In the case of Ellipticine and Etoposide cell cultures, the cells were pelleted after overnight incubation and 

        pre-treated with lyticase, as per the protocol described in Ch.2, Section 2.9.2.2(ii), pp.246-248, prior to re- 

        suspension in 100mL fresh YEA which contained 40µM of Elp or Etp] 

 

       TCA-precipitated total protein extract samples were then prepared from the appropriate *calculated 

       volumetric aliquot of each culture (*equivalent to 40 A595 optical density units) and utilised in comparative 

       2D-PAGE–coupled Western Blot analyses – probed with the primary “anti-HA” Antibody. 
       [Performed as per the methodologies described in Chapter 2, Section 2.8.3.1, pp.214-217; Section2.8.5.1, pp.225-230 and 

        Section 2.8.6., pp.231-233] 

 

B: Comparative acute cell survival assays performed with the genotoxic compounds camptothecin (CPT), 

       ellipticine (ELP), etoposide (ETP), hydrogen peroxide (H2O2) and phleomycin (Phleo) on the S. pombe 

       strain NΔ49-rad9- c3xHA (“Rad9-S”). 

       [Acute cell survival assays were performed as per the methodologies described in Chapter 2, Section 

        2.9.2.2(ii), pp.239-242 and pp.247-251] 

  

 C: Functional compartmentalisation model of co-ordinated DNA damage detection and checkpoint signal 

        initiation within the truncated “Rad9-S” sub-unit of an alternative “Rad9-S”:Hus1:Rad1 DNA sliding- 

        clamp complex. 
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5.5 The Identification of the M50 – M74 Domain as a Potential Key 

Functional Component of Protective “Rad9-S”-Mediated Cellular 

Responses Against Camptothecin-Induced DNA Damage 

 

Comparative acute cell survival assays revealed that the NΔ73-rad9-c3xHA, NΔ311-rad9-c3xHA 

and NΔ357-rad9-c3xHA S. pombe strains exhibited an equivalent genotoxic sensitivity to 

camptothecin-induced DNA damage, which was significantly higher than that of the rad9-c3xHA 

and NΔ49-rad9-c3xHA S. pombe strains (Fig 5.16A, p.479) - which may indicate that the S. pombe 

Rad9 protein contains a novel functional domain spanning residues M50 and M74 (Fig 5.16C, 

p.479). 

 

Comparative multiple sequence alignments of Rad9 proteins expressed in varaious yeasts, in 

conjunction with the full-length human Rad9A protein and full-length Rad9B paralogue and its 

four truncated  isoforms (via utilisation of on-line bioinformatics software tools COBALT, 

EMBOSS, JEMBOSS and PSI-BLAST) identified  this “M50 – M74”  sequence as a functional 

eukaryotic linear motif, in which two key positionally-equivalent conserved phenyalanine residues 

and two key positionally-equivalent Lysine residues were conserved amongst the Rad9 sequences 

of a variety of different yeast species (Fig 5.16D, p.479) – which may be critical for functional 

DNA-binding interactions of the Rad9 protein (Fig 5.16C, p.479). 

  

In Silico potential kinase phosphorylation-site prediction analyses, performed via utilisation of the 

bioinformatics software tool Netphos2.0, also indicated high phosphorylation probability scores 

for the T52 and Y61 residues situated within the identified novel M50-M74 domain (Fig 5.16C, 

p.479)  
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Comparative acute cell survival assays performed with YEA broth cultures of  the indicated “cre-

lox”– engineered S. pombe strains in the presence of 40µM Camptothecin revealed that the NΔ49-

rad9-(T52A)-c3xHA a similar degree of partial resistance to CPT-induced DNA damage, in 

contrast to the NΔ49-rad9-(Y61F)-c3xHA and NΔ49-rad9-(T52A;Y61F)-c3xHA cells which 

exhibited enhanced resistance to the genotoxic effects of camptothecin (Fig 5.16B, p.479). 

                                                

The un-phosphorylated form of the Tyrosine 61 residue, situated within the M50-M74 domain, 

may facilitate stronger associative binding of the Rad9 and/or “Rad9-S” proteins to DNA via 

intercalative Π-Π electron-stacking aromatic ring type interactions of Y61 with the duplex 

nucleobases. 

 

These DNA via intercalative Π-Π electron-stacking aromatic ring type interactions may be 

perturbed when Y61 is phosphorylated  as a consequence of the hydrophilic, negatively-charged 

ionic properties of the phosphate group which would be repelled by the negatively-charged duplex 

sugar-phosphate backbone and would also be incompatible with the hydrophobic nature of the 

DNA bases and result in modification of the Π-electron distribution within the aromatic Tyr 

phenolic ring that would perturb the Π-Π aromatic electron-stacking interactions with the duplex 

nucleobases (Fig 5.16C, p.479). 

 

In silico comparative molecular modelling and multiple alignment analyses also indicated that this 

identified DNA-binding M50 – M74 domain motif was situated in adjacent sequence overlap with 

the putative 3’-5’exonuclease domain motif and that this dual motif configuration within the S. 

pombe Rad9 protein exhibited significant homology to equivalent sequences identified within the 

H. sapiens Rad9A and Rad9B proteins (Fig 5.17, p.480). 

 

Taken together, these experimental data observations indicate that the truncated Rad9-S protein 

variant may have functional roles in the repair of camptothecin-induced DNA damage. 
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Comparative 2D PAGE-coupled Western blot analyses of the untreated and alkaline phosphatase 

treated soluble supernatant extracts (cytosolic protein localisation) indicated only minor subtle 

changes in the phosphoisoform profiles of the truncated Rad9-S protein variant in response to 

camptothecin-induced DNA damage (Fig 5.18A, p.481). 

 

Comparative 2D PAGE-coupled Western blot analyses of the untreated and alkaline phosphatase 

treated soluble supernatant extracts (cytosolic protein localisation) indicated only minor subtle 

changes in the phosphoisoform profiles of the truncated Rad9-S protein variant in response to 

camptothecin-induced DNA damage (Fig 5.18A, p.481). 

 

Comparative 2D PAGE-coupled Western blot analyses of the total soluble protein extract pellet 

(nuclear protein localisation) fractions revealed that the hyperphosphorylated form of the truncated 

“Rad9-S” protein variant is retained in the nucleus in both the absence and presence of 

camptothecin-induced damage (Fig 5.18B, p.481) – which may indicate that “Rad9-S” has 

constitutive “house-keeping” and inducible DNA damage responsive checkpoint signalling 

functions which are implicated in the maintenance of genomic integrity. 

 

These comparative 2D PAGE-coupled Western blot analyses also indicate subtle 

hypophosphorylation modifications of the truncated “Rad9-S” protein variant in response to 

camptothecin-induced DNA damage (Fig 5.18B, p.481) 

 

Hyperphosphorylation of “Rad9-S” in the absence of camptothecin-induced DNA damage may 

include the phosphotyrosine residue at position 61 within the identified M50 – M74 DNA binding 

domain and thus serve to prevent the truncated protein variant from binding to the DNA.   

 

 

 

 

                                                  [477] 



The 2D-PAGE data also indicate that expression of the “Rad9-VS” variant is suppressed in 

response to camptothecin-mediated DNA damage, but induced in the absence of camptothecin-

mediated DNA damage and retained exclusively in the nucleus (Fig 5.18A and Fig 5.18B, p.481). 

 

These experimental observations indicate that the truncated “Rad9-VS” protein variant may have a 

regulatory role in the suppression of inappropriate “Rad9-S” – mediated checkpoint signalling 

functions in the absence of camptothecin-induced DNA damage within the nucleus. 

 

In this hypothetical context, the truncated “Rad9-VS” protein variant may engage with protein 

phosphatases to competitively block dephosphorylation of the truncated “Rad9-S” protein variant 

to prevent it binding to DNA and eliciting inappropriate checkpoint signalling and.or DNA  repair 

mechanisms in the absence of camptothecin-induced genotoxicity. 

 

Camptothecin-induced genotoxic stress may trigger checkpoint signalling responses which 

suppress expression of the  “Rad9-VS” truncated protein variant, enabling the truncated “Rad9-S” 

protein variant to engage with phosphatases which dephosphorylate the tyrosine 61 residue within 

the M50 – M74 domain, thus facilitating Rad9-S:DNA binding interactions which initiate 

appropriate checkpoint signalling and/or DNA repair pathways. 

 

In this respect, Rad9-S –initiated checkpoint signalling responses to camptothecin-induced DNA 

damage may also be implicated in regulatory “feed-back” mechanisms of co-ordinated suppressed 

and induced expression of the truncated “Rad9-VS” protein. 

 

These “feed-back” mechanisms may function as regulatory switches to prevent catastrophic 

uncontrolled and/or prolonged “Rad9-S” –initiated checkpoint signalling and/or DNA repair 

pathway activities which may compromise genomic integrity. 
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      Fig 5.16: Identification of a Novel Functional Domain in Rad9 
 

 
 

   [An explanatory discussion of the experimental data is provided in the text – pp.475-476]   
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Fig 5.17: Comparative Modelling of the M50 – M74 Functional 

Domain Within the Full-Length S. pombe Rad9 Protein  
 

 
 

In silico comparative modelling of the M50 –M74 functional domain in the full-lengthS. pombe Rad9 

protein within the X-ray crystallographic resolved structure of the human Rad9-Rad1-Hus 

complex (PDB file: 3G65) was accomplished via utilisation of the on-line bioinformatics 

software tool RasMol and the molecular graphics were generated via utilisation of the on-line 

PolyView3D software tool. 

 

The relative positions of  the M50 and M74 methionine residues which span the identified 

DNA binding domain motif  and the adjacent overlapping 3’-5’ exonuclease motif are 

indicated. 

 

The conserved, homologous-equivalent “overlap-configured” DNA binding and 3’-5’ 

exonuclease functional motif sequences contained within the H. sapiens Rad9A, Rad9B and S. 

pombe Rad9 proteins were identified via comparative multiple alignment analyses with the 

on-line bioinformatics software tools COBALT, EMBOSS, JEMBOSS and PSI-BLAST. 
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   Fig 5.18: 2D-PAGE Data – Localisation of Rad9-S Phosphoisoforms 
 

 
Individual 100mL YEA broth medium cell cultures of the “Cre-Lox” – constructed NΔ49-rad9-c3xHA (“Rad9-

S”) S. pombe strain were grown overnight (30˚C for  ~12 hour time period), then diluted to an optical density 

A595 = 0.25 with the appropriate volume of YEA medium and the resultant diluted cultures re-incubated at  

30°C for a further time period of ~2.5 hours until they had attained an optical density value of A595 = 0.5, after 

which time they were incubated for a further 30 minutes at 30°C in the absence or presence of 40µM 

camptothecin. 
 

Soluble total protein extract samples were then prepared from the appropriate *calculated volumetric aliquot 

of each culture (*equivalent to 40 A595 optical density units) and utilised for preparation of  of untreated  and 

treated alkaline phosphatase-digested 2D-PAGE analyses – as per the methodology described in Chapter 2, 

Section 2.8.3.2, pp.218-222. 
 

TCA-precipitated total protein extracts were also prepared from the nuclear fraction pellets (treated as per 

stage ix onwards in the protocol described in Chapter 2, Section 2.8.3.1, pp.215-217), acquired from the initial 

preparation of the soluble total protein extract supernatant samples, for comparative 2D-PAGE analyses. 
 

A: Comparative 2D PAGE-coupled Western blot analyses of the un-treated and alkaline phosphatase-treated 

       soluble protein supernatant extracts (cytosolic protein localisation). 
 

B: Comparative 2D PAGE-coupled Western blot analyses of the total soluble protein extract pellet fractions  

      (nuclear protein localisation).     

    *Subtle shifts within the phosphoisoform profiles of the Rad9-S protein  

        Detected expression of the truncated “Rad9-VS” isoform← 

 

            HYPERPHOS = Hyperphosphorylation 

                                                  [481] 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

          Chapter 6 

 

  Genetic and Biochemical “Deciphering” of 

  Differential “Rad9-S”-Initiated Checkpoint 

  Responses to Camptothecin-Induced DNA 

  Damage and Hyperthermic Stress 

  

       

       

     

  
 

 

 

 

 

 

 

 

 

 

                                                  [482] 



Introduction 
 

Camptothecin is a topoisomerase I inhibitor type compound, isolated from bark extracts from 

Chinese “Tree of Joy” Camptotheca accuminata, which was discovered to possess potent cytotoxic 

activity against tumour cells (Fig 6.1, p.484). 

 

The cytotoxicity of camptothecin (CPT) is mediated via the formation of a “DNA-CPT-TopI” type 

complex, which traps the topoisomerase I enzyme on the DNA and inhibits its catalytic re-ligation 

activity with consequential induction of one-sided single-stranded DNA breaks at the stalled DNA 

replication fork during the S-phase of the first round of the cell cycle in which the drug is 

encountered (Fig 6.1, p.484). 

 

Subsequent DNA replication fork collisions with the  “DNA-CPT-TopI” ternary complex-stalled 

replication fork, during successive rounds of the cell cycle, results in the conversion of the one-

sided single-stranded DNA breaks into one-sided double-stranded DNA breakages with 

consequential  abrogation of viable functional genomic integrity and resultant cell death (Fig 6.1, 

p.484). 

 

The first round of the cell cycle proceeds through the initial camptothecin-induced ssDNA breaks 

in S-Phase, which are propagated into the second round of the cell cycle at S-phase with 

consequential formation of one-sided double-stranded breaks which trigger a cytological G2/M 

phasic cell cycle arrest DNA damage signal response in both mammalian and yeast cells – 

including those of H.sapiens (discussed in detail previously in Chapter 1, Section 1.2.2, p.57) and 

S. pombe (discussed summarily in Section 6.2, pp.489-490; Fig 6.4, p.492). 
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    Fig 6.1: Summarised Cytotoxic Mode of Action of Camptothecin 
 

      [Compiled via Collated Information Adapted From: Chhatriwala H. et al, 2006; 

                                                                                                         Nakagawa H. et al, 2006;  

                                                                                                         He X. et al, 2007] 
 

     
 

     A: Unwinding of the DNA duplex during replication in cell cycle S-phase results in negative and positive  

           Supercoiled duplex torsional strain, which if unrectified would result in “supramolecular 

           tangling/knotting” of the DNA which would stall the replication fork and inhibit mitotic progression. 
 

 

   B: Topoisomerase I alleviates torsional supercoiled duplex strain during DNA replication in the cell cycle 

           S-phase via cleavage of the phosphodiester backbone and passage of one strand through the site of the  

           cleaved strand, mediated via formation of a covalent phospho-tyrosine linkage, followed by subsequent  

           re-ligation of the cleaved DNA strand site (He X. et al, 2007) . 

 
 

   C: S-(+)-camptothecin, initially isolated from the tree bark of Camptotheca accuminata, was discovered to 

           be a potent topoisomerase I Inhibitor type compound which was cytotoxically-active against tumour 

           cells. 

 

           Synthetic derivativised analogues of camptothecin, designed for improved pharamacokinetics and  

           anti-neoplastic pharmacological efficacy with reduced toxicological side-effects are currently in 

           development – examples of two such drugs, recently approved for clinical use are topotecan and 

           irinotecan. 
 

 

 D: Camptothecin (CPT) forms a stable, cleavable covalent topoisomerase I-CPT-DNA-trapped transition- 

        state intermediary complex via associative interaction between topoisomerase I and DNA within the 

        enzymatic active site and specifically inhibits the re-ligation reaction, with resultant collision of  

        replication forks during the cell cycle S-phase and consequential conversion of the initial stabilised 

        topoisomerase I-induced single-stranded DNA breaks into one-sided double-stranded DNA breaks  

        respectively (Nakagawa H. et al, 2006). 
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6.1 The top1 Gene is Not Suppressed Within Engineered S. pombe 

Cells that Exclusively Express the Truncated Rad9-S Protein Variant   
 

The observed partial resistance of S. pombe cells “Cre-Lox”– engineered for the exclusive 

expression of the truncated “Rad9-S” protein variant (NΔ49-rad9-c3xHA) to acute camptothecin-

induced DNA damage (discussed previously in Chapter 5, Section 5.3, pp.455-470; Section 5.4, 

pp.471-474) could be indicative of a true novel signalling response pathway which functions 

outside of the canonical Rad9-Rad1-Hus1 complex or a manifested “experimental artefact” as a 

consequence of “inadvertently-engineered” suppressed expression and activity of the 

topoisomerase I enzyme within the NΔ49-rad9-c3xHA S. pombe strain. 

 

Therefore the NΔ49-rad9-c3xHA S.pombe strain was cross-mated with a Δtop1 (top1-deleted) 

S. pombe strain to generate the NΔ49-rad9-c3xHA Δtop1 double-mutant S. pombe strain which was 

then utilised in comparative acute camptothecin cell survival assays (Fig 6.3, p.488). 

 

The NΔ49-rad9-c3xHA Δtop1 double-mutant S. pombe strain was also “back-cross”-mated with a 

“wild-type” S. pombe strain and the resultant colonies replica-plated onto YEA-HU and EMM 

minus leucine plates for the selection of  the resolved “wild-type”, NΔ49-rad9-c3xHA, Δtop1 and  

NΔ49-rad9-c3xHA Δtop1 S. pombe strains (Fig 6.2, p.487) – which were then also utilised in 

comparative acute camptothecin cell survival assays (Fig 6.3, p.488). 

 

The acquired comparative acute camptothecin cell survival assay data indicated that the initial 

generated NΔ49-rad9-c3xHA Δtop1 double-mutant S. pombe strain and the “back-crossed”-

resolved NΔ49-rad9-c3xHA Δtop1 double-mutant S. pombe strain exhibited a significantly higher 

cytotoxic resistance to CPT-induced DNA damage than that of the initial generated and “back-

cross”-resolved Δtop1 and “wild-type” S. pombe strain) – Fig 6.3, p.488 
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Whilst the initial generated NΔ49-rad9-c3xHA S. pombe strain and NΔ49-rad9-c3xHA S. pombe 

strain which was “back-cross”-resolved from the NΔ49-rad9-c3xHA Δtop1 double-mutant  

S. pombe strain both exhibited a similar partial resistance to acute CPT-induced genotoxic 

exposure (retained cell viability ~30%) – Fig 6.3, p.488. 

 

Taken collectively, these acute survival assay data revealed that the observed partial resistance of 

NΔ49-rad9-c3xHA (“Rad9-S”) S. pombe cells to camptothecin-induced DNA damage  is  unlikely 

to be a consequence of “inadvertently-engineered” top1 gene suppression and thus indicated the 

potential existence of a novel “rad9-S”-mediated DNA damage response signalling pathway which 

functioned independently of the Rad9-Rad1-Hus1 heterotrimeric toroidal DNA sliding-clamp 

complex. 
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Fig 6.2: rad9-S Δtop1 x “Wild-Type” Back-Crossed Strain Isolation 
 

              

    
The NΔ49-rad9-c3xHA Δtop1 S. pombe strain was “cross-mated” into a “wild-type” S. pombe 

strain and the resultant colonies replica-plated onto YEA agar plates which contained 4mM 

hydroxyurea and EMM agar plates in which leucine was omitted from the minimal medium 

for selection of the “back-crossed”-resolved “wild-type”, Δtop1,  NΔ49-rad9-c3xHA (“rad9-S-

c3xHA) and NΔ49-rad9-c3xHA Δtop1 S. pombe  strains. 
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      Fig 6.3: Comparative rad9-S Δtop1 Acute CPT Survival Assays  
 

 
 

Four colonies of each “back-crossed”-resolved strain were then selected and utilised in 

comparative acute cell survival assays with camptothecin. 

 

[Acute cell survival assays were performed as per the methodology described in Chapter 2, 

 Section 2.9.2.2(ii), pp.239-241] 
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 6.2 Component G2-M Cell Cycle Checkpoint Pathway Inputs 
 

The full-length Rad9 protein interacts with the proteins Rad1 and Hus1 to form the associative 

heterotrimeric toroidal PCNA-like DNA sliding-clamp “9-1-1” complex which functions as both 

an initial DNA damage sensor and recruitment platform for a variety of other interactive proteins 

involved in DNA damage/repair response pathways – in which the C-terminal domain of the Rad9 

protrudes out from the “9-1-1” complex, contains ATM and ATR kinase target motifs and 

participates in a variety of kinase/phosphatase-mediated transitional protein-protein allosteric 

regulatory interactions which alter the activity of particular proteins respectively. 

 

[The “9-1-1”  complex is loaded onto RPA protein-coated single-stranded sites of DNA damage 

via the loading complex comprised of the proteins Rad17 and the RFC sub-units Rfc2, Rfc3, Rfc4 

and Rfc5 respectively]  

 

A. priori two critical determinant checkpoint response pathways are initially triggered, dependent 

upon the nature and severity  of the DNA damage encountered in conjunction with the transitional 

stage of the cell cycle when DNA damage occurs, with resultant downstream activation of 

complex  signalling cascades – comprised of various interactive proteins in the form of damage 

sensors, mediators, primary transducers, secondary transducers and effectors which cumulatively 

result in paused cell cycle delay and/or DNA damage repair or programmed cell death (apoptosis) . 

 

The ATR pathway is activated in response to camptothecin-induced disruption of DNA replication 

fork progression in the cell cycle S-phase  -  in which ATR co-functional associative recruitment 

with ATRIP results in subsequent formation of the ATR/ATRIP complex leads to activation of 

Chk2 which phosphorylates and thereby inactivates cyclin Cdc25 phosphatases with consequential 

downstream inactivation of Cdk/Cyclin complexes with induction of cell cycle arrest and/or DNA 

repair. 
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The overall biochemical functional objective of the ATR pathway is the “safe-guarded” prevention 

of catastrophic mitotic cytological events, as a consequence of inaccurate and/or incomplete DNA 

replication during the cell cycle S phase, via induction of high fidelity homologous recombination 

DNA repair pathways. 

 

[Equivalent functional homologue proteins in the experimental S.pombe eukaryotic model system 

are Rad3/Rad26, Cds1, Cdc25 and Cdc2/cyclinB – Fig 6.4, p.492] 

 

The ATM pathway may also be activated in response to camptothecin-induced double-stranded 

DNA breaks in the cell cycle S phase – with consequential activation of Chk2-triggered 

proteosome-mediated degradation of Cdc25A accompanied by resultant downstream perturbance 

of active cyclin/Cdk2 complexes and thus inhibited DNA synthesis respectively. 

 

[Equivalent functional homologue proteins in the experimental S. pombe eukaryotic model system 

are Tel1, Cds1, Cdc25 and Cdc2/cyclin respectively] 

 

Since the “Cre-Lox”– engineered truncated “Rad9-S” protein variant (NΔ49-Rad9-c3xHA) retains 

the Rad1- and Hus1- interacting domains (Chapter 5, Section 5.2, pp.442-454; Fig 5.1, p.446), it 

was speculated that formation of an alternative  “Rad9-S”:Hus1:Rad1 type heterotrimeric complex 

may function in a similar manner to that of the canonical Rad9-Rad1-Hus1 heterotrimeric complex 

with regard to mediation of a G2/M type phasic cell cycle checkpoint signal arrest response to 

camptothecin-induced DNA damage (Fig 6.4, p.492). 
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In order to test this hypothetical postulation, the NΔ49-rad9-c3xHA S. pombe  strain was cross-

mated with various single deleted/inactivated G2/M-associated checkpoint type gene 

deleted/inactivated type S. pombe strains Δrad1, Δhus1, Δrad17, Δrad3, Δrad26, Δtel1 rad4.116 

(temperature sensitive gene inactive mutant), Δcrb2, Δmrc1, Δchk1, Δcds1, cds1-(T8A;T11A) 

(autophosphorylation site-inactivated Cds1 kinase mutant), cdc25.22 (temperature sensitive gene 

inactive mutant)  and Δrad24 (Fig 6.4, p.492). 

 

These generated NΔ49-rad9-c3xHA “checkpoint gene knock-out double-mutant” strains were then 

utilised in comparative acute camptothecin cell survival assays in order to determine which G2/M 

checkpoint-associated proteins were likely to be implicated in the observed “Rad9-S” partial 

resistance signal response to camptothecin-induced DNA damage. 

 

The acquired experimental data and summarised inferences are discussed within Sections 6.2.1-

6.2.6, pp.493-555. 
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      Fig 6.4: Overview of the S. pombe G2/M Checkpoint Pathway  
 

         [Compiled via Collated Information From: Christmann M. et al, 2003;  

                                                                                                    Collura A. et al, 2005 

                                                                                                    Ellison V. and Stillman B.,2003;  

                                                                                                    Furuya K. and Carr A.M., 2003;  

                                                                                                    Harrison J.C. and Haber J.E., 2006;  

                                                                                                    Lieberman H.B. et al, 1996;  

                                                                                                    Melo J. and Toczyski D., 2002;  

                                                                                                    Niida H. and Nakanishi M., 2006; 

                                                                                                    Nyberg K.A. et al, 2002; 

                                                                                                    Volkmer E. and Karnitz L., 1998 

                                                                                                    http://www-rfc.usc.edu/~forsburg/cclecture.html] 

 
 

Homologous proteins, which perform equivalent functions within the S. pombe G2/M 

checkpoint pathway, are indicated (the mammalian G2/M checkpoint was discussed in detail 

previously in Chapter 1, Section 1.2.2, p.59). 
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6.2.1 Hus1 is a Critical Clamp Protein Sub-Unit Component of the 

“Rad9-S”–Mediated Checkpoint Response to Camptothecin-Induced 

DNA Damage, in Which Rad1 and Rad17 are Not Implicated  
 

In silico comparative model mapping of the full-length S. pombe Rad9 protein onto the X-ray 

crystallographically-resolved human Rad9-Rad1-Hus1 heterotrimeric DNA sliding-clamp complex 

structure (Doré A.S. et al, 2009; PDB file I.D.: 3G65) indicated that the “cre-lox”–engineered 

“Rad9-S” truncated protein variant (NΔ49-Rad9-c3xHA) may retain the capability to associate 

with the Rad1 and Hus1 sub-units to form an alternative, functional “Rad9-S”:Rad1:Hus1 

heterotrimeric complex (discussed in detail previously in Chapter 5, Section 5.5, pp.471-481). 

 

On the basis of these in silico data predictions, it was postulated that the alternative heterotrimeric 

Rad9-S:Rad1:Hus1 toroidal complex may be loaded onto localised sites of DNA damage within 

the chromatin, via the Rad17:Rfc2-5 clamp-loader complex and initiate checkpoint arrest and/or 

DNA repair responses to camptothecin-top1-DNA complex- induced stalled replication forks and 

double-stranded breaks (Fig 6.1, p.484). 

 

In order to test this hypothesis, comparative acute cell survival assays were performed with YEA 

broth cultures of the  “double-mutant” S. pombe strains NΔ49-rad9-c3xHA Δrad1, NΔ49-rad9-

c3xHA Δhus1 and NΔ49-rad9-c3xHA Δrad17 which were incubated at 30˚C in the presence of 

40µM camptothecin (CPT) – Fig 6.5, p.505. 

        

The acquired experimental data revealed that deletion of rad1 within an exclusively expressed 

“Rad9-S” genetic background had no effect on the cytotoxic sensitivity of the cells to CPT-

induced genotoxicity – indicative that the Rad1 protein was not implicated in the “Rad9-S” 

mediated checkpoint signalling response to CPT-induced DNA damage (Fig 6.5A, p.505). 
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The NΔ49-rad9-c3xHA Δrad17 “double-mutant” S. pombe strain exhibited hypersensitivity to 

camptothecin and was more sensitive to CPT-induced genotoxicity than either the “Rad9-S” 

(NΔ49-rad9-c3xHA) or the Δrad17 single mutant S. pombe strains (Fig 6.5C, p.505) which was 

indicative that the truncated “Rad9-S” protein variant  and the Rad17 clamp-loader complex sub-

unit protein probably function in separate parallel checkpoint signalling pathways. 

 

Whilst deletion of hus1 within an exclusively expressed “Rad9-S” genetic background enhanced 

the cytotoxic sensitivity of the cells to CPT-induced genotoxicity (Fig 6.5B, p.505) – indicative 

that the Hus1 protein was implicated in the “Rad9-S” mediated checkpoint signalling response to 

CPT-induced DNA damage. 

 

Comparative Western blot analyses performed on TCA-precipitated total protein extracts acquired 

from 30˚C YEA broth cell cultures of the S. pombe strains hus1-c13xMyc, rad9-c3xHA hus1-

c13xMyc and rad9-(M50L)-c3xHA hus1-c13xMyc, probed with the anti-Myc primary antibody, 

confirmed previous experimental observations that the S. pombe Hus1 protein exists in 4 main 

isoforms – termed “Hus1-A”, “Hus1-B”, “Hus1-C” and “Hus1-D” (Fig 6.6A, pp.506-507), as 

reported by Caspari T. et al, 2000b. 

 

These could originate from alternative translational expression of the hus1 gene, which contains 5 

potential AUG initiation-site methionine codons (Fig 6.6B, pp.506-507), possibly with post-

translational phosphorylation, sumoylation and/or ubiquitinylation type isoformic modifications. 

 

Comparative Western blot analyses of  TCA-precipitated total protein extracts prepared from 30˚C 

YEA broth cell cultures of the S. pombe strains NΔ49-rad9-c3xHA hus1-c13xMyc and NΔ73-rad9-

c3xHA hus1-c13xMyc double-mutant S. pombe strains, probed with the anti-Myc primary antibody, 

revealed a notable absence of expressed “Hus1-C” isoform in the case of the NΔ73-rad9-c3xHA 

hus1-c13xMyc protein sample (Fig 6.6A, p.506-507). 
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Two additional Hus1 protein bands were also detected in the prepared total protein extracts from 

the NΔ49-rad9-c3xHA hus1-c13xMyc and NΔ73-rad9-c3xHA hus1-c13xMyc double-mutant S. 

pombe strains, which may be indicative of discrete non-phosphorylated and limited-

phosphorylation isoforms of the “Hus1-C” protein isoform – in which case the “Hus1-C” isoform 

band detected in the all analysed protein samples, with the notable exception of  NΔ73-rad9-

c3xHA hus1-c13xMyc, could be a hyperphosphorylated post-translational modification variant of 

the “Hus1-C” isoform (Fig 6.6A, pp.506-507). 

 

Consistent with this hypothesis, comparative in silico sequence alignment analyses (performed 

with the on-line software tools EMBOSS and JEMBOSS) also identified a potential tyrosine 

kinase target motif (identified via comparative analyses performed with the on-line NetPhos 

software tools) of significant homology in both the “Rad9-S” and “Hus1-C” protein isoforms (Fig 

6.6C, pp.506-507). 

 

An alternative possibility is that these smaller bands are proteolytic degradation products of the 

“Hus1-C” isoform – which may be relatively unstable in its free, un-complexed form (which is 

stabilised in complex-association with the full-length Rad9 protein and/or “Rad9-S” truncated 

protein variant) – Fig 6.6A, pp.506-507. 

 

In this hypothetical context, S. pombe cells which were “cre-lox”-engineered for the exclusive 

expression of the NΔ73-Rad9-c3xHA (“M74”/”Rad9-VS”) truncated protein variant may have 

suppressed levels of the “Hus1-C” isoform as a consequence of the fact that “Rad9-VS” lacks the 

M50-M74 DNA-binding domain which prevents assembly of a “Rad9-VS”:“Hus1-C”-DNA 

complex and thus results in the predominant expression of the free, unbound form of the “Hus1-C” 

protein isoform which may be relatively unstable and rapidly targeted for sumoylation- and/or 

ubiqutinylation- post-translational modification-mediated proteasomal  degradation. 
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Comparative Western Blot analyses of HPLC-SEC fractionated samples of soluble total protein 

extracts acquired from 30˚C YEA broth cell cultures of the S. pombe strains rad9- c3xHA hus1-

c13xMyc and N-Δ49-rad9-c3xHA (“rad9-S-c3xHA) hus1-c13xMyc, which utilised either the anti-

HA or anti-Myc primary anti-body probes indicated distinctively different  protein complex 

fractionation profiles (Fig 6.7A, p.508). 

 

Detected full-length Rad9-c3xHA protein bands in fractions 11-13 correlated with the mass of the 

canonical Rad9-Rad1-Hus1 heterotrimeric complex, whilst no  NΔ49-Rad9-c3xHA protein bands 

were detected in these eluted fractions – indicative that the “Rad9-S” truncated protein variant was 

unlikely to form an alternative “Rad9-S”:Rad1-Hus1 complex (Fig 6.7A, p.508). 

 

 

Both the “Rad9-S” truncated protein variant and the “Hus1-C” protein isoform were detected in 

fraction 8, whilst neither the full-length Rad9 protein or Hus1 protein isoforms were present in this 

fraction – indicative that “Rad9-S” and the “Hus1-C” isoform may form part of a distinctive high 

molecular weight complex (~700 kDa) – Fig 6.7A, p.508. 

 

Both the “Rad9-S” truncated protein variant and “Hus1-C” isoform were also detected in both anti-

HA and anti-Myc anti-body probe-primed comparative co-immunoprecipitation “pull-down” 

analyses performed with a total soluble protein extract acquired from the 30˚C YEA broth cell 

culture of the S. pombe N-Δ49-rad9-c3xHA  hus1-c13xMyc strain, which may be indicative of an 

associative interaction between both proteins (Fig 6.7B, p.508).  

 

In silico analytical predictions also revealed that the “Rad9-S” truncated protein variant would 

contain the M50 – M74 DNA binding domain identified in this work (discussed previously in 

Chapter 5, Section 5.5, pp.471-481), whilst the S. pombe Hus1 sub-unit may contain a nucleobase-

binding pocket functionally homologous to that identified within the human Hus1 sub-unit (Doré 

et al, 2009) – Fig 6.8, p.509. 
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Both human Rad9 and Hus1, but not Rad1, proteins also contain PIP (PCNA-interacting protein) 

box motif binding sites (Doré A.S. et al, 2009), which may be implicated in the associative “9-1-1” 

complex-mediated recruitment of various repair factors and checkpoint proteins that possess these  

motifs to localised DNA damage lesion sites within the chromatin (Fig 6.8, 509).  

 

 

Taken together, these experimental data indicated that the truncated “Rad9-S” protein variant may 

associate with the “Hus1-C” isoform to form a novel “open-ring”/“C-clamp” type  heterodimeric 

“Rad9-S”:“Hus1-C” complex, that acts outside of the canonical full-length Rad9-Rad1-Hus1 

heterotrimeric DNA sliding clamp. 

 

This “Rad9-S”:“Hus1-C”  heterodimeric clamp may be able to detect and bind directly to localised 

sites of DNA damage within chromatin, independently of the Rad17:Rfc2-5 clamp-loader complex, 

after which the complex may engage with specific checkpoint signalling proteins and possibly 

DNA repair factors in response to camptothecin-induced genotoxicity.      

 

In silico comparative modelling of the postulated S. pombe heterodimeric “Rad9-S”:“Hus1-C” 

“open-ring/C-clamp” complex, identified potential homologous functionally-equivalent PIP-box 

binding motifs in both of the respective sub-units and a potential homologous functionally-

equivalent nucleobase-binding pocket within the “Hus1-C” sub-unit (Fig 6.8, p.509). 

 

These in silico data analyses also indicated that the leucine residue at residue position 196 may be 

critical for stabilisation of the “Rad9-S”:“Hus1-C” interface and also identified three tyrosine 

residues (via analyses with the NetPhos software tools) whose transient post-translational 

phosphorylation and/or dephosphorylation may be implicated in the regulation of the functional 

activities of the hetereodimeric complex – notably; 61Y and 111Y within the Rad9 sub-unit and 62Y 

within the Hus1 sub-unit (Fig 6.8, p.509). 
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Comparative acute cell survival assays were performed on YEA broth cultures of the experimental 

S. pombe strains which were “Cre-Lox”–engineered for the expression of L196P site-directed 

mutagenised variants of the full-length Rad9 proteins Rad9-(L196P)-c3xHA and Rad9-M50L-

(L196P)-c3xHA and the truncated “Rad9-S” protein variant NΔ49-Rad9-(L196P)-c3xHA 

incubated at 30˚C in the presence of  40µM camptothecin(CPT) or 10mM hydroxyurea (HU). 

 

Site-directed mutagenic substitution of leucine for proline (a cyclic imino acid which acts as a 

steric supramolecular structural “helix-breaker” within the S. pombe Rad9 protein) results in the 

functional perturbance of  Rad9:Hus1-type associative interactions at the N-C interface (Fig 6.8, 

p.509) 

 

The acute hydroxyurea (HU) survival assay data indicated that all three “L196P” mutant strains 

exhibited enhanced cytotoxic sensitivity to HU-induced inhibition of deoxyribonucleotide 

synthesis (Fig 6.9B, p.510). 

 

The acute camptothecin survival assay data revealed that the full-length Rad9 “L196P” and 

“M50L;L196P” mutant strains exhibited enhanced cytotoxic sensitivity to CPT-induced DNA 

damage, whilst the truncated “Rad9-S-L147P” mutant strain exhibited enhanced resistance to 

CPT-induced genotoxicity – indicative that the postulated “Rad9-S”:“Hus1-C” “open-ring/C-

clamp” complex may function as a negative regulator of a particular DNA damage checkpoint 

response to CPT-induced perturbance of DNA replication (Fig 6.9A, p.510). 

 

Comparative 2D PAGE-coupled Western blot analyses of TCA-precipitated total protein extracts 

acquired from 30˚C YEA broth cell cultures of the NΔ49-rad9-c3xHA,  S. pombe strains revealed 

that the tel1-deleted phosphoisoform profile is identical to that of the L196P site-directed 

mutagenized phosphoisoform profile, whilst the identical hus1-deleted and hydroxyurea-treatment 

phosphoisoform profiles are  hyper-phosphorylation-shifted nearer to the anode (Fig 6.9D, p.510). 
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Both the  tel1-deleted and  L196P site-mutagenised strains were also camptothecin-resistant – 

indicative that both the Tel1 kinase and the free form of the truncated “Rad9-S” protein variant 

may be implicated in a separate Hus1-independent signalling pathway (Fig 6.9A and Fig 6.9C, 

p.510). 

 

 

Comparative acute cell survival assays performed with YEA broth cultures of  the indicated “cre-

lox”– engineered S. pombe strains in the presence of 40µM camptothecin revealed that the NΔ49-

rad9-(T52A)-c3xHA a similar degree of partial resistance to CPT-induced DNA damage, in 

contrast to the NΔ49-rad9-(Y61F)-c3xHA and NΔ49-rad9-(T52A;Y61F)-c3xHA cells which 

exhibited enhanced resistance to the genotoxic effects of camptothecin (Fig 6.10B, p.511). 

 

Comparative 2D PAGE-coupled Western blot analyses of TCA total protein extracts, prepared 

from 30˚C YEA broth cultures of the S. pombe strains NΔ49-rad9(Y61F)-c3xHA and NΔ49-

rad9(Y111F)-c3xHA also indicated distinctive hypophosphorylation shift patterns within the “rad9-

S” phosphoisoformic profile – thus providing biochemical evidence that these tyrosines are 

phosphorylated within this truncated protein variant (Fig 6.10D, p.511). 

 

The un-phosphorylated form of the Tyrosine 61 residue, situated within the M50-M74 domain, 

may facilitate stronger associative binding of the Rad9 and/or “Rad9-S” proteins to DNA via 

intercalative Π-Π electron-stacking aromatic ring type interactions of Y61 with the duplex 

nucleobases (discussed in detail previously in Chapter 5, Section 5.5, pp.471-481). 

  

Comparative acute cell survival assays revealed that the NΔ49-rad9(Y111F)-c3xHA S. pombe 

strain exhibited significantly higher cytototoxic sensitivity to CPT-induced DNA damage than the 

NΔ49-rad9-c3xHA strain – indicative that phosphorylation of the Y111 residue is critical to the 

functional activity of the “Rad9-S” protein (Fig 6.10C, p.511). 
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Kinase-mediated phosphorylation of the Y111 residue, which is situated in close proximity to the 

M50-M74 DNA-binding domain (Fig 6.6A and Fig 6.6B, p.506; Fig 6.8, p.509),  may induce 

supramolecular configurational changes within the “Rad9-S” protein which facilitate and/or 

stabilise associative engagement of the M50-M74 domain with the duplex. 

 

In silico predictive phosphorylation propensity analyses of the S. pombe Rad9 61Y and 111Y and 

Hus1 62Y, performed via utilisation of the Netphos2.0 and NetPhosK bioinformatics software tools, 

indicated that these three residues had significant phosphoryation probability scores and may be 

substrate targets of the Mph1 kinase (Fig 6.11A, p.512). 

 

 

Comparative HPLC-SEC fractionation-coupled Western blot analyses, performed on total soluble 

protein extract samples, acquired from 30˚C YEA broth cell cultures of the S. pombe strains rad9-

S-c3xHA mph1-c13xmyc and rad9-S-c3xHA hus1-c13xmyc, detected the presence of “Rad9-S”, 

“Hus1-C” and Mph1 proteins in fraction 9 (Fig 6.11B, p.512). 

 
        

Taken together, these experimental data indicate that specific transient differential Mph1 kinase-

mediated post-translational phosphorylation modifications of the “Rad9-S” and “Hus1-C” sub-

units may be implicated in the regulation of the functional activities of the heterodimeric “Rad9-

S”:“Hus1-C” “open-ring/C-clamp” complex. 

 

Comparative Western blot assays performed with total soluble extract protein supernatant   

(cytosolic) and  pellet (nuclear) fractions, acquired from YEA broth cultures incubated at 30˚C in 

the absence or presence of 40µM camptothecin for 30 minutes or incubated at 37˚C for 30 minutes, 

indicated that translocation of the “Rad9-S” protein variant from the cytosol to the nucleus 

occurred under conditions of induced heat shock (37˚C) or CPT-induced DNA damage (Fig 6.12, 

p.513) . 
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Intriguingly, these data indicated that under hyperthermic conditions the unphosphorylated form of 

the truncated “Rad9-S” protein variant was translocated to the nucleus, in contrast with the nuclear 

translocation of the phosphorylated form of “Rad9-S” under conditions of camptothecin-induced 

DNA damage (Fig 6.12, p.513) and thus constituted supportive experimental evidence for 

differential checkpoint signalling pathways that may be mediated by the protein in response to 

specific types of genotoxic and/or environmental stresses which may impinge adversely on various 

biochemical processes implicated in the cytological maintenance of genomic integrity. 

 

 

The experimental data also revealed that perturbance of the “Rad9-S”:“Hus1-C” interactions, via 

site-directed L147P or Y62F mutagenesis within the truncated Rad9-S protein variant, deletion of 

hus1 within an exclusively expressed “rad9-S”-c3xHA genetic background or a functional loss of 

the M50-M74 DNA-binding domain (in the case of the truncated protein variant NΔ73-Rad9-

c3xHA = “Rad9-VS”)  inhibited translocation of the protein into the nucleus (Fig 6.12, p.513). 

 

Surprisingly, deletion of rad17 within an exclusively expressed “rad9-S”-c3xHA genetic 

background was also found to inhibit translocation of the protein into the nucleus (Fig 6.12, p.513), 

which was  unexpected in the context of the comparative acute survival assay data which indicated 

that rad17 and rad9-S most likely function in separate parallel pathways in response to 

camptothecin-induced DNA damage (discussed previously on p.494). 

 

Furthermore, comparative 2D PAGE-coupled Western blot analyses indicated that deletion of 

rad17 within an exclusively expressed “rad9-S”-c3xHA genetic background resulted in the loss of 

several“rad9-S”-c3xHA phosphoisoforms, which may be indicative that Rad17 stabilises 

associative kinase interactions with the heterodimeric “Rad9-S”:“Hus1-C” open ring/C-clamp 

complex. (Fig 6.11D, p.512) 
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These contradictory experimental observations may be explained by the fact that three of the 

Rad17:(Rfc2-5) clamp-loader complex sub-units (Rfc2, Rfc3 and Rfc4) associate with the Hus1 

sub-unit (Fig 6.14B, p.515) such that whilst the Rad17 protein may not be implicated in the “Rad9-

S”–mediated checkpoint signalling response to camptothecin-induced DNA damage, it may be 

required to stabilise the Hus1 protein and/or its isoforms to enable the cytosolic formation and 

translocation of the heterodimeric “Rad9-S”:“Hus1-C” “open-ring/C-clamp” to the nucleus. 

 

 

Comparative 2D-PAGE analyses of un-treated and alkaline phosphatase-treated soluble protein 

supernatant extracts (cytosolic protein localisation) indicate only very subtle changes in the 

phosphoisoform patterns of the truncated “Rad9- S” protein variant in response to CPT-induced 

DNA damage (Fig 6.13A, p.514). 

 

 

Comparative 2D PAGE-coupled Western blot analyses of the total soluble protein extract pellet 

fractions (nuclear protein localisation) indicate that the hyperphosphorylated form of the truncated 

“Rad9-S” is exclusively retained in the nucleus in both the absence and present of CPT-induced 

DNA damage (Fig 6.13B, p.514).  

 

 

The 2D PAGE-coupled Western blot data also indicate that expression of the “Rad9-VS” variant is 

suppressed in response to CPT-induced DNA damage but induced in the absence of CPT-induced 

DNA damage and retained exclusively in the nucleus – which may indicate that the truncated 

“Rad9-VS” protein variant has a regulatory role with regard to suppression of inappropriate 

“Rad9-S” signalling/functional responses in the absence of CPT-induced DNA damage within the 

 nucleus (discussed previously in detail in Chapter 5, Section 5.5, pp.471-481). 
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Taking all the experimental data into consideration, a hypothetical model was formulated for the 

functional roles of the heterodimeric “Rad9-S”:“Hus1-C” “open-ring/C-clamp” complex which 

may be implicated in novel checkpoint and/or DNA repair pathway responses to camptothecin-

induced DNA damage (Fig 6.14A, p.515). 

 

In response to camptothecin-induced genotoxicity, Mph1 and/or other kinase-mediated 

phosphorylated post-translational modification of the truncated “Rad9-S” protein variant at 

tyrosine 62 and the “Hus1-C” isoform at tyrosine 62 may induce transient configurational changes 

within the supramolecular architecture of the two protein sub-units that thermodynamically 

promote the associative formation of the heterodimeric “Rad9-S”:“Hus1-C” complex (Fig 6.14A, 

p.515). 

 

 

The Rad17:(Rfc2-5) complex may have functional roles in both the stabilisation of the “Hus1-C” 

isoform and/or the heterodimeric “Rad9-S”:“Hus1-C” “Rad9-S”:“Hus1-C” “open-ring/C-clamp” 

complex and its translocation ot the nucleus (Fig 6.14B, p.515). 

 

The “Rad9-S” M50-M74 DNA-binding and “Hus1-C” nucleobase-binding domains within the 

heterodimeric “Rad9-S”:“Hus1-C” “open-ring/C-clamp” complex may mediate its duplex 

association and recognition of the CPT-Top1-DNA ternary complex-stalled replication forks 

and/or CPT-induced DSBs within the chromatin supramolecular architecture (Fig 6.14A, p.515). 

 

Subsequent phasic cell cycle arrest and repair of the CPT-induced DNA damage lesions is initiated 

via “Rad9-S”:“Hus1-C” complex-mediated recruitment and/or functional activity modulation of 

the appropriate proteins that are implicated in the mediation of checkpoint signalling and DNA 

repair pathways (Fig 6.14A, p.515). 

 

 

 

                                                    [503] 



During these processes, Mph1 and/or other other kinase-mediated phosphorylated post-

translational modification at tyrosine 12 within the “Rad9-S” sub-unit may induce transient 

configurational changes within the supramolecular architecture of the heterodimeric Rad9-

S :Hus1-C complex which facilitate the access of the repairsome machinery to the CPT-induced 

DNA damage lesion site to enable rectification of DSBs, stalled replication fork recovery in co-

ordination with secondary checkpoint signalling processes which terminate cell cycle arrest and  

re-initiate DNA replication (Fig 6.14A, p.515). 

 

These secondary checkpoint signalling processes may also initiate phosphatase-targeted  post-

translational dephosphorylated modification of  phosphotyrosine 62 within the  “Rad9-S” sub-unit 

and phosphotyrosine 62 within the “Hus1-C” sub-unit which induces transient configurational 

alterations within the supramolecular architecture of the “Rad9-S”:“Hus1-C” heterodimeric 

complex which promote its dissociation after DNA repair has been accomplished (Fig 6.14A, 

p.515). 

 

 

Checkpoint phosphatase post-translational dephosphorylated modification-mediated chromatin 

dissociation of the heterodimeric “Rad9-S”:“Hus1-C” “open-ring/C-clamp complex” also enables 

unhindered re-initiation of DNA replication after repairosome-instigated CPT-induced stalled 

replication fork recovery and  rectification of CPT-induced DSBs has been accomplished (Fig 

6.14A, p.515). 

 

The truncated protein isoform NΔ73-Rad9 (“Rad9-VS”) may regulate these heterodimeric “Rad9-

S”:“Hus1-C” complex co-ordinated cell cycle checkpoint arrest, DNA repair, replication fork 

recovery and re-initation of DNA repair processes via competing with the “Rad9-S” and “Hus1-C” 

sub-units for associative interactions with the checkpoint kinases and phosphatases which modify 

key tyrosine residues within these two proteins to modulate the specific functional activities of the 

“Rad9-S”:“Hus1-C” “open-ring/C-clamp” (Fig 6.14A, p.515). 
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  Fig 6.5: CPT Survival Assays – Clamp & Clamp-Loader Sub Units 

 

                        
 

[Acute cell survival assays were performed as per the methodology described in Chapter 2, 

 Section 2.9.2.2(ii), pp.239-241] 
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    Fig 6.6: Comparative Rad9 and Hus1 Isoformic Protein Analyses 
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Figure Legend – Fig 6.6 
 

A: Individual 50mL YEA broth medium cell cultures of the “cre-lox” – constructed  

      S. pombe strain rad9-c3xHA were incubated at 30˚C over a 12 hour time period, then 

      diluted to an optical density A595 = 0.25 with the appropriate volume of YEA medium 

      and the resultant diluted cultures re-incubated at  30˚C for a further time period of ~2.5  

      hours until they had attained an optical density value of A595 = 0.5 – after which time the 

      resultant cultures of actively cycling cells were re-incubated at 30˚C for a further 30  

      minutes. 

 

      TCA-precipitated total protein extract samples were then prepared from the appropriate 

      *calculated volumetric aliquot of each culture (*equivalent to 10 A595 optical density 

       units) of which 20μL aliquots were resolved on 10% SDS-PAGE gels which were then 

      utilised in comparative Western blot analyses probed with either the anti-HA primary 

      antibody or the anti-Myc primary antibody. 

 

      The red circle indicates the absence of the “Hus1-C”  protein isoform, which was not 

      detected in the TCA-precipitated total protein extract acquired from the 30˚C YEA  

      culture of the NΔ73-rad9-c3xHA S. pombe strain. 

 

      [Protein sample preparation, SDS-PAGE resolution and Western blot methodologies are 

       detailed in Section 2.8.1, pp.200-202; Section 2.8.4, pp.223-224 and Section 2.8.6, pp.231- 

       233] 
 

 

 

B: The S. pombe Hus1 protein sequence contains 6 potential alterantive methionine AUG 

       codon-start translation sites, in addition to the primary AUG codon start-site at 

       methionine 1 (the relative positions of the four introns of the hus1  gene are indicated  

       via the grey vertical bars). 

 

       The “Hus1-C” protein isoform is postulated to be an alternative translational product 

       generated via initiated ribosomal scanning at the AUG codon-start site at methionine 46. 

 

 

 

C: In silico comparative sequence alignment analyses of the S. pombe “Rad9-S”  and Hus1 

       proteins, performed via utilisation of the on-line BLAST-PSI, EMBOSS and JEMBOSS 

       bioinformatics software tools 

 

      Conserved positional equivalent tyrosines at Y12 within “Rad9-S” truncated protein 

      variant  (Y61 in the full-length Rad9 protein) and Y62 within the “Hus1-C” isoform.  
 

      In silico predictive phosphorylation propensity analyses of these two tyrosines was 

      performed via utilisation of the on-line software tool Netphos2.0 (probability scores 

      are indicated – values above the 0.5 threshold are significant) 
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      Fig 6.7: Comparative Analyses of “Rad9-S”:Hus1 Interactions   
 

       
 

A: Comparative Western blot analyses of HPLC-SEC fractionated samples of soluble total 

       protein extracts acquired from 30˚C YEA broth cell cultures of the S. pombe strains 

       rad9-c3xHA hus1-c13xMyc and N-Δ49-rad9-c3xHA (“rad9-S-c3xHA) hus1-c13xMyc, 

       probed with the anti-HA and  anti-Myc primary anti-bodies. 

 

       Note: These data sets were acquired by Ms. Amber Maltby, working under the practical 

                  supervision of the author 

               

       [Protein sample preparation, HPLC-SEC, SDS-PAGE and Western blot methodologies 

        described in detail previously in Chapter 2, Section 2.8.2, pp.203-205; Section 2.8.2.2, 

        pp.209-210; Section 2.8.4, pp. 223-224 and Section 2.8.6, pp.231-233] 
 

 

B: Anti-HA and anti-Myc anti-body probe-primed comparative co-immunoprecipitation 

       “pull-down” analyses performed with a total soluble protein extract acquired from a 

       30˚C YEA broth cell culture of the S. pombe N-Δ49-rad9-c3xHA  hus1-c13xMyc strain. 

       [Protein sample preparation, “Pull-Down” Co-IPs, SDS-PAGE and Western blot 

        Methodologies described in detail previously in Chapter 2, Section 2.8.2, pp.203-205; 

        Section 2.8.2.3, pp.211-213; Section 2.8.4, pp. 223-224 and Section 2.8.6, pp.231-233]   
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Fig 6.8: Functional Domain Map of the “Rad9-S”:“Hus1-C” Complex  
 

 

 
 

 In silico comparative sequence alignment analyses of the identified functional M50-M74 domain,  

 situated in the S. pombe Rad9 protein, with the Human Rad9A  protein, in conjunction with    

 comparative modelling of the X-ray crystallographic-resolved Human Rad9A-Rad1-Hus1 

 complex – PDB I.D.:3G65 (Doré A.S. et al, 2009) with the heterodimeric “Rad9-S”:“Hus1-C” clamp. 
 

 Comparative sequence alignment analyses were performed with the on-line bioinformatics software   

  tools EMBOSS, JEMBOSS and PSI-BLAST. 
 

 Comparative modelling analyses was performed with the on-line bioinformatics software tool  

 RasMol. 
 

 The structural graphic was produced via utilisation of the on-line software tool PolyView3D. 
 

 The critical L196 residue within the Rad9:Hus1 N/C associative interface, the residues which are 

 critical to the DNA-binding function of the Rad9 M50 – M74 domain and the critical residues within 

 Hus1 nucleobase binding pocket are indicated. 
 

 Potential PIP-box motif-binding site residues and key tyrosine residues identified as potential kinase 

 substrate targets (via sequence analyses with the on-line NetPhos software tools)  are also indicated. 
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  Fig 6.9: CPT, HU and 2D-PAGE Assays – “Hus1-Binding” Mutants 
 

 
 

A: Comparative acute cell survival assays were performed on YEA broth cultures of the 

       experimental S. pombe strains which were “cre-lox”–engineered for the expression of 

       L196P site-directed mutagenised variants of the full-length Rad9 proteins Rad9-(L196P)- 

       c3xHA and Rad9-M50L-(L196P)-c3xHA and the truncated “Rad9-S” protein variant 

      NΔ49-Rad9-(L196P)-c3xHA incubated at 30˚C in the presence of 40µM camptothecin 

      (CPT) for a total time period of 4 hours. 
 

B: Comparative acute cell survival assays were performed on YEA broth cultures of the 

       experimental S. pombe strains which were “cre-lox”–engineered for the expression of 

       L196P site-directed mutagenised variants of the full-length Rad9 proteins Rad9-(L196P)- 

       c3xHA and Rad9-M50L-(L196P)-c3xHA and the truncated “Rad9-S” protein variant 

      NΔ49-Rad9-(L196P)-c3xHA incubated at 30˚C in the presence of 10mM hydroxyurea 

      (HU) for a total time period of 4 hours. 
 

C: Comparative acute cell survival assays were  performed on YEA broth cultures of the 

       indicated S. pombe tel1-deletion strains, incubated at 30˚C in the presence of 40µM 

       camptothecin (CPT) for a total time period of 4 hours. 
 

[Acute cell survival assays were performed as per the methodology described in Chapter 2, 

 Section 2.9.2.2(ii), pp.239-241] 
 

 

D: Comparative 2D PAGE-coupled Western blot analyses of TCA-precipitated total protein 

      extracts acquired from 30˚C YEA broth cell cultures of the indicated S. pombe strains 

      (key hyper- and hypo- phosphorylation events are indicated by red asterices). 

      [Methodologies as described previously in detail in Chapter 2, Section 2.8.3.1, pp.214- 

       217; Section 2.8.5, pp.225-230 and Section 2.8.6, pp.231-233] 
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Fig 6.10: CPT and 2D-PAGE Assays – “Hus1-Binding” Mutants and 

“DNA-Binding Phosphorylation Site Knock-Out” Mutants 
 

 

                        

A: Comparative acute cell survival assays were performed on YEA broth cultures of the 

       experimental S. pombe strains which were “cre-lox”–engineered for the expression of 

       L196P site-directed mutagenised variants of the full-length Rad9 proteins Rad9-(L196P)- 

       c3xHA and Rad9-M50L-(L196P)-c3xHA and the truncated “Rad9-S” protein variant 

       NΔ49-Rad9-(L196P)-c3xHA incubated at 30˚C in the presence of 40µM camptothecin 

       (CPT). 
 

B: Comparative acute cell survival assays were  performed on YEA broth cultures of the 

       indicated S. pombe  kinase site mutant strains (T52A, Y61F and T52A;Y61F) incubated 

       at 30˚C in the presence of 40µM camptothecin (CPT) for a total time period of 4 hours. 

 

C: Comparative acute cell survival assays were  performed on YEA broth cultures of the 

       indicated S. pombe kinase site mutant strains (T52A, Y61F and T52A;Y61F) incubated 

       at 30˚C in the presence of 40µM camptothecin (CPT) for a total time period of 4 hours. 

 

[Acute cell survival assays were performed as per the methodology described in Chapter 2, 

 Section 2.9.2.2(ii), pp.239-241] 

 
 

D: Comparative 2D PAGE-coupled Western blot analyses of TCA-precipitated total protein 

      extracts acquired from YEA broth cell cultures of the indicated S. pombe strains 

      (conserved “neutral” isoformic species are indicated via the red asterices within the red 

       box). 

       [Methodologies as described previously in detail in Chapter 2, Section 2.8.3.1, pp.214- 

       217; Section 2.8.5, pp.225-230 and Section 2.8.6, pp.231-233] 
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Fig 6.11: Evidence for Novel “Rad9-S”, Hus1-C & Mph1 Interactions 

 

 
 

A: In silico comparative sequence alignment analyses of the S. pombe “Rad9-S”  and Hus1 

      proteins, performed via utilisation of the on-line bioinformatics software tools EMBOSS, 

      JEMBOSS and PSI-BLAST. 

 

     Conserved positional equivalent tyrosines at Y12 within “Rad9-S” truncated protein 

     variant  (Y61 in the full-length Rad9 protein) and Y62 within the Hus1-C isoform.  
 

     In silico predictive phosphorylation propensity analyses of these two tyrosines was 

     performed via utilisation of the on-line software tool Netphos2.0 (probability scores 

     are indicated – values above the 0.5 threshold are significant). 

 
        

B: Comparative Western Blot analyses of HPLC-SEC fractionated samples of soluble total 

       protein extracts acquired from 30˚C YEA broth cell cultures of the S. pombe strains 

       N-Δ49-rad9-c3xHA (“rad9-S-c3xHA”) hus1-c13xMyc and N-Δ49-rad9-c3xHA mph1- 

       c13xMyc probed with the anti-HA and  anti-Myc primary anti-bodies. 

 

       Note: The  rad9-S-c3xHA hus1-c13xMyc data set was acquired by Ms. Amber Maltby, 

                  working under the practical supervision of the author  

              

 [Protein sample preparation, HPLC-SEC, SDS-PAGE and Western blot methodologies 

  described in detail previously in Chapter 2, Section 2.8.2, pp.203-205; Section 2.8.2.2, 

  pp.209-210; Section 2.8.4, pp. 223-224 and Section 2.8.6, pp.231-233] 
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Fig 6.12: Rad9-S Mutant - Comparative Cellular Localisation Assays 

 
Comparative  Western blot assays performed with total soluble extract protein supernatant  “supnt” (cytosolic) 

and “Ppt” pellet (nuclear) fractions acquired from YEA broth cultures incubated at 30˚C in the absence or 

presence of 40µM Camptothecin for 30 minutes or incubated at 37˚C for 30 minutes, indicated that 

translocation of the “Rad9-S” protein variant from the cytosol to the nucleus occurred under conditions of 

induced heat shock (37˚C) or CPT-induced DNA damage . 

Precipitated genomic DNA extractions were also performed with the supernatant and pellet fractions and the 

resultant samples run on 1% 1xTBE agarose gels which contained 0.5µg/mL ethidium bromide) – the data 

indicate the DNA is only present in the pellet fractions, thus confirming that these are the nucleus-associated 

protein fractions. 

[Methodologies as described in detail previously in Chapter 2 Section 2.8.2, pp.203-305; Section 2.8.2.1, pp.206-

208, Section 2.8.4, pp.223-224 and Section 2.8.6, pp.231-233] 

[Phos = Phosphorylated Protein Isoform]       [513] 



   Fig 6.13: Differential Phosphoisoformic Localisation of “Rad9-S” 

 

  
Individual 100mL YEA broth medium cell cultures of the “Cre-Lox” – constructed NΔ49-rad9-c3xHA (“Rad9-

S”) S. pombe strain were grown overnight (30˚C for  ~12 hour time period), then diluted to an optical density 

A595 = 0.25 with the appropriate volume of YEA medium and the resultant diluted cultures re-incubated at  

30°C for a further time period of ~2.5 hours until they had attained an optical density value of A595 = 0.5, after 

which time they were incubated for a further 30 minutes at 30°C in the absence or presence of 40µM 

camptothecin. 
 

Soluble total protein extract samples were then prepared from the appropriate *calculated volumetric aliquot 

of each culture (*equivalent to 40 A595 optical density units) and utilised for preparation of  of untreated  and 

treated alkaline phosphatase-digested 2D-PAGE analyses – as per the methodology described in Chapter 2, 

Section 2.8.3.2, pp.218-222. 
 

TCA-precipitated total protein extracts were also prepared from the nuclear fraction pellets (treated as per 

stage ix onwards in the protocol described in Chapter 2, Section 2.8.3.1, pp.215-217), acquired from the initial 

preparation of the soluble total protein extract supernatant samples, for comparative 2D PAGE-coupled 

Western blot analyses (methodologies as decribed in detail previously in Chapter 2, Section 2.8.5, pp.225-230 

and Section 2.8.6, pp.231-233).. 
 

A: Comparative 2D PAGE-coupled Western blot analyses of the un-treated and alkaline phosphatase-treated 

       soluble protein supernatant extracts (cytosolic protein localisation). 
 

B: Comparative 2D PAGE-coupled Western blot analyses of the total soluble protein extract pellet fractions  

      (nuclear protein localisation).     

    *Subtle shifts within the phosphoisoform profiles of the Rad9-S protein  

        Detected expression of the truncated “Rad9-VS” isoform← 

 

            HYPERPHOS = Hyperphosphorylation 
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       Fig 6.14: Functional Model for the Rad9-S:Hus1 Heterodimer       

 
[An explanatory discussion of the hypothetical model concepts is provided in the text – 

pp.503-504]   
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6.2.2 The Rad3:Rad26 Heterodimeric DNA-Associated Complex is a 

Critical Functional Component of the “Rad9-S”–Initiated 

Checkpoint Response to Camptothecin-Induced Genotoxicity 
 

In order to ascertain whether the primary (proximal) checkpoint kinases Rad3 and Tel1 could be 

functionally implicated in the “Rad9-S”-initiated checkpoint signalling response to camptothecin-

induced DNA damage, comparative acute cell survival assays performed with YEA broth cultures 

of the S. pombe strains NΔ49-rad9-c3xHA Δrad3,  NΔ49-rad9-c3xHA Δrad26 and  NΔ49-rad9-

c3xHA Δtel1, incubated at 30˚C in the presence of 40µM camptothecin (CPT) – Fig 6.15, p.523. 

 

The experimental data revealed that the primary (proximal) transducer cell cycle checkpoint kinase 

Rad3, in association with its interactive protein partner Rad26, is an essential component of both 

the full-length Rad9 protein- and truncated “Rad9-S” protein variant- mediated signalling 

responses to CPT-induced DNA damage (Fig 6.15A and Fig 6.15B, p.523). 

 

Comparative 2D-PAGE-coupled Western blot analyses of TCA-precipitated total protein extracts, 

acquired from YEA broth cell cultures of the appropriate S. pombe strains revealed that deletion of 

the rad3 and rad26 genes produced similar  hypo-phosphorylated shift profiles for the truncated 

“Rad9-S” protein variant – indicative that the Rad3 kinase, in association with its component 

protein partner Rad26, may interact with and phosphorylate “Rad9-S” (Fig 6.15D, p.523). 

 

In contrast, the acute CPT cell survival assay data indicated that the primary (proximal) transducer 

checkpoint kinase Tel1 is a non-essential component of either the full-length Rad9 protein- and 

truncated “Rad9-S” protein variant- mediated signalling responses to CPT-induced DNA damage 

(Fig 6.15C, p.523). 
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Comparative 2D-PAGE-coupled Western Blot analyses of TCA-precipitated total protein extracts, 

acquired from YEA broth cell cultures of the S. pombe strains NΔ49-rad9-c3xHA and NΔ49-rad9-

c3xHA Δtel1 revealed that deletion of tel1 produces a hypo-phosphorylated shift profile which is 

distinctive from those of the rad3 and rad26 gene deletions – indicative that the Tel1 kinase may 

also interact with and phosphorylate “Rad9-S” (Fig 6.15D, p.523). 

 

 

Taken together, these experimental data indicate that Rad26-associated Rad3 kinase-mediated 

phosphorylation of the truncated “Rad9-S” protein variant is a component of the signal pathway 

response to CPT-induced DNA damage, in which Tel1 kinase-mediated phosphorylation of “Rad9-

S” is not implicated. 

 

However, Tel1 kinase-mediated phosphorylation of “Rad9-S” may be implicated in other cell 

cycle regulatory functions of the truncated protein variant – which remain to be elucidated. 

 

Previous experimental studies with S. pombe have indicated that Rad3 kinase-mediated 

phosphorylation of the residues threonine 225, threonine 412 and serine 423 within the full-length 

Rad9 protein, in which phosphorylation of threonine 225 is a critical priming pre-requisite for the 

heterotrimeric Rad9-Rad1-Hus1” PCNA-like DNA sliding-clamp complex-orchestrated template-

switching in DNA repair pathways, are essential post-translational modifications which enable the 

Rad9 C-terminal domain (that protrudes outside of the “9-1-1”  complex) to interact with and/or 

modulate the activity of a variety of proteins in order to initiate the G2 checkpoint arrest in 

response to camptothecin-induced genotoxic stress (Furuya K. et al, 2004; Furuya K. et al, 2010; 

Jansen J.G. et al, 2007; Kai M. et al, 2007). 
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In this context, it was postulated that phosphorylation of the equivalent residues (ie threonine 176, 

threonine 363 and serine 374) within the truncated “Rad9-S”  protein variant may also be an 

essential post-translational modification pre-requisite for the heterodimeric “Rad9-S”:“Hus1-C” 

“open-ring/C-clamp”-initiated functional checkpoint signalling response to camptothecin-induced 

DNA damage and stalled replication forks. 

 

In order to test this hypothesis, comparative acute cell survival assays were performed with YEA 

broth cultures of the S. pombe phosphorylation “knock-out” type site-directed mutagenised strains 

NΔ49-rad9-(T225A)-c3xHA, NΔ49-rad9-(T412A)-c3xHA and NΔ49-rad9-(S423A)-c3xHA and the 

S. pombe phosphomimetic type site-directed mutagenised strains NΔ49-rad9-(T225E)-c3xHA, 

NΔ49-rad9-(T412E)-c3xHA and NΔ49-rad9-(S423E)-c3xHA incubated at 30˚C in the presence of 

40µM camptothecin (CPT) – Fig 6.16, p.524 and Fig 6.17, pp.525-526. 

 

The experimental data indicate that these positional equivalent Rad3 kinase-targeted 

phosphorylation sites (at T176, T363 and S374) are a critical post-translational modification pre-

requisite for the truncated “Rad9-S” protein variant-mediated checkpoint pathway signal response 

to CPT-induced DNA damage – as a consequence of the fact that the alanine point mutations 

enhanced the sensitivity of the cells to camptothecin, whilst no significant reduction in 

camptothecin resistance was observed in the glutamate mutants (Fig 6.17, pp.525-526) 

 

The acute survival assay data also indicated that the NΔ49-rad9-(T176A)-c3xHA (Fig 6.16B, 

p.524) mutant was significantly more sensitive to camptothecin-induced genotoxicity than that of 

the the NΔ49-rad9-(T363A)-c3xHA (Fig C) and NΔ49-rad9-(S374A)-c3xHA (Fig D) mutants (Fig 

6.16, p.524) – which may be indicative that Rad3 kinase-mediated phosphorylation of 176T within 

the truncated “Rad9-S” protein variant may be a critical functional pre-requisite which induces 

conformational changes within its supramolecular structure to enable subsequent Rad3 kinase-

mediated phosphorylation of the C-terminal tail domain at 363T and 374S (Fig 6.16, p.524) 
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These genetic data interpretations were also supported by biochemical evidence acquired from 

comparative 2D-PAGE-coupled Western Blot analyses of TCA-precipitated total protein extracts, 

prepared from 30˚C YEA broth cell cultures of Rad3 kinase site-directed mutagenised “rad9-S-

c3xHA"-type S. pombe strains produced distinctive hypophosphorylation-shifted isoform profiles 

for the “Rad9-S” protein for each respective site-directed phosphorylation “knock-out” alanine 

mutagenised Rad3 kinase-targeted amino acid residue and distinctive hyperphosphorylation-

shifted isoform profiles for the “Rad9-S” protein for each respective phosphomimetic type site-

directed glutamate mutagenised Rad3 kinase-targeted amino acid residue (Fig 6.17E, pp.525-526). 

 

Taking all the experimental data into consideration, a hypothetical model was formulated for the 

sequential Rad3 kinase-mediated post-translational phosphorylated-activation of the heterodimeric 

“Rad9-S”:“Hus1-C” “open-ring/C-clamp” complex which may be implicated in the initiation of  

novel checkpoint and/or DNA repair pathway responses to camptothecin-induced DNA damage 

(Fig 6.18, p.527). 

 

In response to detected camptothecin-induced DNA damage lesion sites, initial Rad26-associated 

Rad3 kinase-mediated phosphorylation of “Rad9-S” at T176 induces supramolecular 

configurational changes within the truncated protein variant which enable Rad26/Rad3 kinase-

mediated phosphorylation of the T363 and S374 residues – which are situated within its C-terminal 

tail  domain (Fig 6.18, p.527). 

 

Subsequent Rad26/Rad3 kinase-mediated phosphorylation of the T363 and S374 residues induces 

further supramolecular configurational changes within the C-terminal tail domain of the “Rad9-S” 

truncated protein variant, that protrudes out from the heterodimeric “Rad9-S”:“Hus1-C” “open-

ring/C-clamp” complex bound to the duplex, which may then enable it to engage with and/or 

modulate the functional activity of specific checkpoint-signalling and DNA repair proteins in 

response to camptothecin-induced genotoxic events (Fig 6.18, p.527). 
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Surprisingly, these data also revealed that the Rad3 kinase-mediated phosphorylation of the 

positional equivalent 225T, 412T and 423S residues are non-essential for the checkpoint signalling 

response pathway to CPT-induced DNA damage in the case of the full-length S. pombe Rad9 

protein – as a consequence of the fact that the alanine site-directed point mutations did not enhance 

the sensitivity of the cells to camptothecin (Fig 6.16, p.524). 

 

Comparative Western blot analyses of TCA-precipitated total protein extracts acquired from YEA 

broth cell cultures of the full-length Rad9 and truncated “Rad9-S” phosphorylation site “knock-

out” mutant S. pombe strains, incubated at 30˚C in the absence or presence of 40µM camptothecin 

(CPT),  indicate that both the full-length Rad9 protein and “Rad9-S” truncated protein variant are 

phosphorylated by the primary (proximal) transducer Rad3 checkpoint kinase at the equivalent 

positional residues T225, T412 and S423 in response to CPT-induced DNA damage (Fig 6.19, 

pp.528-529). 

 

Intriguingly, the data also reveal that deletion of the rad3 gene within an exclusive full-length rad9 

expression type genetic background (ie rad9-M50L-c3xHA Δrad3) resulted in the generation of 

another protein isoform that was independent of the CPT-induced DNA damage response, which 

may be indicative of alternative kinase-mediated post-translational phosphorylated modifications 

of the full-length Rad9 protein which are suppressed in the presence of the truncated “Rad9-S” 

protein variant (Fig 6.19, pp.528-529). 

 

 

 

 

 

 

 

 

 

                                                                      [520]      



These experimental data may also indicate that the truncated “Rad9-VS” protein variant engages 

with and modulates the activity of  Tel1 and/or other alternative checkpoint kinases which give rise 

to the postulated alternative post-translational phosphorylated modifications of the full-length 

Rad9 protein that alter its functional properties which could initiate other specific checkpoint and 

DNA repair pathway responses to different types of genotoxic and/or environmental stresses  that 

impinge adversely on a variety of different biochemical processes implicated in the cytological 

propagation of genomic integrity (Fig 6.19, pp.528-529). 

 

Comparative mitotic checkpoint time-course assays were performed on cell cycle G2 phase-

isolated cells of a “wild-type” S. Pombe strain, in parallel with those of the “cre-lox”–constructed 

rad9-deleted (Δrad9), full-length rad9  (rad9-c3xHA and rad9-(M50L)-c3xHA) and truncated rad9 

variant (NΔ49-rad9-c3xHA and NΔ73-rad9-c3xHA) S. pombe strains, released into YEA broth 

medium that contained 200µM camptothecin (CPT), incubated at 30˚C over a total time period of 

400 minutes, in order to ascertain whether or not alternative checkpoint signalling pathway 

responses could be elicited by the “cre-lox”–engineered full-length and truncated S. pombe Rad9 

protein variants (Fig 6.20, pp.530-531).  

 

 

The experimental data indicated  that  the “wild-type” and full-length Rad9 protein-expressing 

strains initiated a G2/M checkpoint response to CPT-induced DNA damage which elicited entry 

into mitosis during the second round of the cell cycle, whilst rad9-deleted cells and the NΔ73-rad-

c3xHA strains were defective in DNA damage signalling and therefore did not elicit a G2/M arrest 

response, as anticipated (Fig 6.20, pp.530-531). 
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Intriguingly, the data also revealed rad9-M50L-c3xHA cells (which cannot  express  the truncated 

“Rad9-S” protein variant) elicited a distinctively different delayed cell cycle arrest which may be a 

consequence of an alternative switching pathway elicited via alternative kinase-mediated 

phosphorylation events in the full-length Rad9 protein which are suppressed in the presence of the 

truncated” Rad9-S”protein variant – discussed previously on p.501 (Fig 6.20, pp.530-531). 

 

In the case of the “cre-lox”-engineered S. pombe cells that exclusively expressed the NΔ49-Rad9-

c3HA  (“Rad9-S”), the experimental data revealed that induction of a G2/M-type cell cycle arrest 

in response to camptothecin-induced DNA damage did not occur – which may be indicative of a 

checkpoint suppressor function of  the protein (Fig 6.20, pp.530-531). 

 

 

Taken together, these respective experimental observations indicate that the full-length Rad9 

protein and truncated “Rad9-S” protein variant channel differential signalling responses to 

camptothecin-induced DNA damage within distinctive cell cycle checkpoint pathways. 
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 Fig 6.15: Acute CPT Survival Assays – Proximal Transducer Kinases 
 

 
 

Figs A, B and C: Comparative acute cell survival assays performed with YEA broth  

                                       cultures of the indicated S. pombe strains, incubated at 30˚C in the 

                                       presence of 40µM camptothecin (CPT) – Figs A, B and C. 

 

                                       [Acute cell survival assays were performed as per the methodology 

                                        described in Chapter 2, Section 2.9.2.2(ii), pp.239-241] 

 
 

  

 

Fig D: Individual 100mL YEA broth medium cell cultures of the indicated S. pombe 

                strains were grown overnight (30˚C for  ~12 hour time period), then diluted to  

                an optical density A595 = 0.25 with the appropriate volume of YEA medium and 

                the resultant diluted cultures re-incubated at  30°C for a further time period of  

                ~2.5 hours until they had attained an optical density value of A595 = 0.5. 
        

               TCA-precipitated total protein extract samples were then prepared from the 

               appropriate *calculated volumetric aliquot of each culture (*equivalent to 40 A595  

               optical density units) and utilised in comparative 2D PAGE–coupled Western blot  

               analyses – probed with the primary “anti-HA” antibody. 

 

              [Performed as per the methodologies described in Chapter 2, Section 2.8.3.1, pp.214- 

               217; Section2.8.5.1, pp.225-230 and Section 2.8.6., pp.231-233] 
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Fig 6.16: CPT Assays – Rad3 Kinase Ala “Knock-Out” Point Mutants 
 

 
 

Comparative acute cell survival assays performed with YEA broth cultures of the indicated S. 

pombe strains, incubated at 30˚C in the presence of 40µM camptothecin (CPT) 
 

[Acute cell survival assays were performed as per the methodology described in Chapter 2, 

Section 2.9.2.2(ii), pp.239-241] 
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Fig 6.17: CPT Assays – Ala and Glu Rad3 Kinase-Site Point Mutants 
 

 
 

 

[See Figure Legend, p.526, for a full description of the experimental data] 
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Figure Legend: Fig 6.17 
 

Figs A, B, C and D: Comparative acute cell survival assays performed with YEA broth  

                                              cultures of the indicated S. pombe strains, incubated at 30˚C in the 

                                              presence of 40µM camptothecin (CPT) – Figs A, B and C. 

 

                                             [Acute cell survival assays were performed as per the methodology 

                                               described in Chapter 2, Section 2.9.2.2(ii), pp.239-241] 

 

 

Fig E: Individual 100mL YEA broth medium cell cultures of the indicated S. pombe strains 

               were grown overnight (30˚C for  ~12 hour time period), then diluted to an optical 

               density A595 = 0.25 with the appropriate volume of YEA medium and the resultant 

               diluted cultures re-incubated at  30°C for a further time period of ~2.5 hours until  

               they had attained an optical density value of A595 = 0.5. 

        

               TCA-precipitated total protein extract samples were then prepared from the 

               appropriate *calculated volumetric aliquot of each culture (*equivalent to 40 A595  

               optical density units) and utilised in comparative 2D PAGE–coupled Western blot  

               analyses – probed with the primary “anti-HA” antibody. 

 

              [Performed as per the methodologies described in Chapter 2, Section 2.8.3.1, pp.214- 

               217; Section2.8.5.1, pp.225-230 and Section 2.8.6., pp.231-233] 

 

Note: The rad9-S-(T176E)-c3xHA 2D PAGE-coupled Western Blot phosphorylation profile 

           was acquired by the trainee MSc. project student Ms. Anna Isermann, under the 

           supervision of the author. 
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  Fig 6.18: Rad3 Kinase-Initiated T176 Target-Site “Priming” Model 
             

 
 

Rad3 kinase-mediated sequential phosphorylation of the equivalent residues (T176, T363 

and S374) within the “Rad9-S” sub-unit of the heterodimeric “Rad9-S”:“Hus1-C” “open-

ring/C-clamp” complex, bound at camptothecin-induced DNA damage lesion sites within 

chromatin, enables the C-terminal tail domain to engage and/or modulated the functional 

activities of specific proteins implicated in the appropriate initiation of particular checkpoint 

and DNA repair pathways (discussed in detail in the text on p.518). 
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Fig 6.19: Comparative Western Blot Analyses of Full-Length Rad9 

and Truncated “Rad9-S” Isoform Expression in the Absence and 

Presence of CPT-Induced DNA Damage with rad3 and rad26 Gene 

Deletions  

  
 

[See Figure Legend, p.529, for a full description of the experimental data] 
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Figure Legend – Fig 6.19 
 

Individual 50mL YEA broth medium cell cultures of the indicated S. pombe strains were 

incubated at 30˚C over a 12 hour time period, then diluted to an optical density A595 = 0.25 

with the appropriate volume of YEA medium and the resultant diluted cultures re-incubated 

at  30˚C for a further time period of ~2.5 hours until they had attained an optical density 

value of A595 = 0.5 – after which time the resultant cultures of actively cycling cells were re-

incubated at 30˚C for a further 30 minutes in YEA in the absence (-CPT) and presence 

(+CPT) of 40µM camptothecin. 

 

TCA-precipitated total protein extract samples were then prepared from the appropriate 

*calculated volumetric aliquot of each culture (*equivalent to 10 A595 optical density units) of 

which 20μL aliquots were resolved on 10% SDS-PAGE gels which were then utilised in 

comparative Western blot analyses probed with the anti-HA primary antibody. 

 

[Protein sample preparation, SDS-PAGE resolution and Western blot methodologies are 

detailed in Section 2.8.1, pp.200-202; Section 2.8.4, pp.223-224 and Section 2.8.6, pp.231-233] 
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            Fig 6.20: Comparative Lactose Synchronisation Assays 
 

 
 

 

[See Figure Legend, p.531, for a full description of the experimental data] 
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Figure Legend – Fig 6.20 
 

Individual 100mL YEA broth medium cell cultures of the indicated S. pombe strains were 

incubated at 30˚C over a 12 hour time period, then diluted to an optical density A595 = 0.25 

with the appropriate volume of YEA medium and the resultant diluted cultures re-incubated 

at  30˚C for a further time period of ~2.5 hours until they had attained an optical density 

value of A595 = 0.5 

 

 5 x 108 actively cycling cells were taken from each resultant culture and were synchronised 

in G2, via the utilisation of lactose density gradient centrifugation, after which time mitotic 

checkpoint time-course assays were performed on the G2-isolated cells released into 50mL of 

YEA broth medium that contained 200µM camptothecin (CPT), incubated at 30˚C over a 

total time period of 400 minutes. 

 

[The assay methodology is described in detail in Chapter 2, Section 2.9.3, pp.253-257]  

 

The S. pombe cell cycle G1 phase is relatively short such that the septation index (mitotic 

index on the Y-axis) correlates with the cell cycle S-phase (Collura A. et al, 2005). 
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6.2.3 Mrc1 is a Critical Mediator Component of the “Rad9-S” – 

Initiated Checkpoint Response to Camptothecin-Induced DNA 

Damage in Which Neither Crb2 or Rad4 are Implicated 
 

In mammalian cells, the mediator ring-protein Claspin is functionally implicated in the initiation of 

the ATR→Chk1 checkpoint pathway which elicits a G2/M phasic cell cycle arrest in response to 

camptothecin-induced genotoxicity (Liu S. et al, 2012) – discussed previously in Chapter 1, 

Section 1.2.2, pp.33-65. 

 

Other mediator/scaffold proteins which are implicated in the activation of this checkpoint pathway 

are BRCA1 and TopBP1 (discussed previously in Chapter 1, Section 1.2.2, pp.33-65).  

 

Recent experimental studies have also indicated that the conserved functionality of the C-terminus 

domain of Claspin interacts with the Rad9 protein to promote rapid activation of the secondary 

(distal) checkpoint kinase Chk1 (Liu S. et al, 2012).   

 

In S. pombe, the functionally-equivalent homolog of Claspin is Mrc1, which initiates the Rad3Sp 

(ATRHs)→Chk1Sp (Chk1Hs) pathway that elicts a G2/M phasic cell cycle arrest in response to 

camptothecin-induced DNA damage and stalled replication forks (discussed in detail previously on 

pp.489-490). 

 

The other functionally-equivalent S. pombe mediator/scaffold protein homologs which are 

implicated in the activation of the Rad3→Chk1 pathway are Crb2Sp (functional homologue 

equivalent of 53BP1 Hs and BRCA1Hs) and Rad4Sp (functional homologue equivalent of 

TopBP1Hs) – depicted summarily and discussed in detail in Fig 6.21, pp.535-537. 

 

Functionally-equivalent conserved C-terminal domain interactions between Mrc1 and Rad9 may 

also elicit rapid activation of the Chk1 kinase in S. pombe cells (Nitani N. et al, 2006; Shikata M. 

et al, 2007; Yasuhira S. et al, 2009; Yin L. et al, 2008; Zhao H. et al, 2003).  
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In order to ascertain whether scaffold/mediator proteins could be functionally implicated in the 

“Rad9-S”-initiated checkpoint signalling response to camptothecin-induced DNA damage, 

comparative acute survival assays were performed on 30˚C YEA broth cultures of the double-

mutant S. pombe strains NΔ49-rad9-c3xHA Δcrb2, NΔ49-rad9-c3xHA Δmrc1 and NΔ49-rad9-

c3xHA rad4.116 in the presence of 40µM camptothecin for a total incubation time of 4 hours (Fig 

6.22A, p.538). 

 

The acquired experimental data revealed that functional perturbance of the rad4 gene (rad4.116) 

and deletion of the crb2 gene within an exclusively expressed “rad9-S” genetic background, had 

negligible effect of the sensitivity of the cells to CPT-induced DNA damage (Fig 6.22A and Fig 

6.22C, p.538) – indicative that the respective proteins are non-essential to the “Rad9-S” truncated 

protein variant-mediated checkpoint signalling response to CPT-induced genotoxicity. 

 

In contrast, deletion of  mrc1 within an exclusively expressed “rad9-S” genetic background, 

resulted in the significant enhancement of the sensitivity of the cells to CPT-induced genotoxicity 

– indicative that the adapter protein is a key functional component within the “Rad9-S” truncated 

protein variant-mediated checkpoint signalling response to CPT-induced DNA damage (Fig 6.22B, 

p.538). 

 

Comparative 2D PAGE-coupled Western Blot analyses, performed on TCA-precipitated total 

protein extracts acquired from YEA broth cultures of the NΔ49-rad9-c3xHA  and NΔ49-rad9-

c3xHA  Δmrc1 S. pombe strains revealed that deletion of mrc1 results in a hypo-phosphorylated 

shift phosphoisoform profile for the “Rad9-S” truncated protein variant – indicative that Mrc1 may 

be functionally implicated in “Rad9-S”–mediated checkpoint signalling responses to genotoxic 

and/or environmental stresses which impinge adversely on various biochemical processes involved 

in the cytological preservation of genomic integrity (Fig 6.22D, p.538). 
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Experimental data acquired in this Ph.D. project also indicated that both the Tel1 and Rad3 

primary (proximal) transducer checkpoint kinases may be implicated in the differential 

phosphorylation of the truncated “Rad9-S” protein variant (discussed in detail previously in 

Section 6.2.2, pp.516-531). 

 

Differential phosphorylation of Mrc1 by Tel1 and Rad3 kinases has also been observed in previous 

experimental studies (Zhao H. et al, 2003).  

 

 

Taking all the experimental observations into consideration, a hypothetical model was formulated 

for the Rad3 and Tel1 kinase-mediated post-translational differential phosphorylated modulation 

of functional Mrc1-“Rad-S” activities within the heterodimeric “Rad9-S”:“Hus1-C” “open-ring/C-

clamp” complex which may be influential in the selective initiation of specific checkpoint 

signalling and/or DNA repair pathway responses to particular types of genotoxic and/or 

environmental stresses which impinge adversely on biochemical processes implicated in the 

cytological propagation of genomic integrity (Section 6.2.4, pp.539-546; Fig 6.25, p.545-546). 

 

Comparative lactose synchronisation assay experimental data, acquired in this Ph.D. project, also 

revealed that S. pombe cells which were “cre-lox”–engineered for the exclusive expression of the 

truncated NΔ49-Rad9-c3xHA variant did not elicit a G2/M phasic cell cycle arrest in response to 

camptothecin-induced genotoxicity (discussed previously in detail in Section 6.2.2, pp.521-522; 

Fig 6.20, pp.530-531). 

 

Taking this experimental observation into consideration with the hypothetical model, the “Rad9-S” 

sub-unit, together with Mrc1, Rad3 and/or Tel1 interactions may be functionally implicated in a 

heterodimeric “Rad9-S”:“Hus1-C” “open-ring/C-clamp” complex-mediated checkpoint signalling 

pathway which suppresses Chk1 activation in response to camptothecin-induced DNA damage 

(discussed in detail later in Section 6.2.4, pp.539-546; Fig 6.25, pp.545-546). 
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Fig 6.21: Functional Roles of the S. pombe Scaffold/Mediator Proteins 

Crb2, Mrc1 and Rad4 in Chk1 Activation-Mediated Checkpoint 

Signalling Responses to DNA Damage   
 

[Compiled Via Collated Information Adapted From: Alcasabas A.A. et al, 2001;  

                                                                                           Lin S.J. et al, 2012; 

                                                                                           Nitani N. et al, 2006; 

                                                                                           Qu M. et al, 2012; 

                                                                                           Shikata M. et al, 2007; 

                                                                                           Yasuhira S. et al, 2009; 

                                                                                           Yin L. et al, 2008; 

                                                                                           Zhao H. et al, 2003] 

                                                                                            

 
 

[See Figure Legend, pp.536-537, for a full description of the mechanistic pathways illustrated 

summarily above] 
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Figure Legend – Fig 6.21 

 

In the absence of DNA damage, constitutive activation of SpRad3HsATR maintains a basal 

level of the active primary (proximal) transducer kinase which may be required for the 

initiation of a variety of signalling pathways that modulate the appropriate selection and 

functions of specific biochemical “house-keeping” processes implicated in propagation of 

cytological and/or genomic integrity Lin S.J. et al, 2012; Nitani N. et al, 2006; Smits V.A. et al, 

2010; Qu M. et al, 2012; Yin L. et al, 2008). 

 

DNA damage-induced activation of Rad3 proceeds via differential checkpoint pathways 

which are coupled to the activation of Chk1-initiated checkpoint signalling responses to 

genotoxic stress mediated via “Rad9 C-terminal tail domain:Rad4” (Rad9-c:Rad4) 

interactions within the heterotrimeric, toroidal Rad9-Rad1-Hus1 PCNA-like DNA sliding-

clamp  complex that is loaded onto  chromatin at DNA lesion sites via the Rad17:(Rfc2-5) 

clamp-loader complex (Lin S.J. et al, 2012; Qu M. et al, 2012). 

 

The Rad4 mediator protein sub-unit of the ternary Rad9-c:Rad4-Rad1-Hus1 complex also 

contains a homologous functionally-equivalent ATR activation domain (AAD) which 

interacts with an allosteric site within the Rad3 primary (proximal) transducer kinase and 

induces supramolecular conformational changes within the enzyme whih enhance its 

catalytic activity under specific conditions of genotoxic-induced cytologic stress (Lin S.J. et al, 

2012; Qu M. et al, 2012). 

 

Initial Rad4 AAD domain-independent activation of Rad3 proceeds via a primary ssDNA 

pathway in which the Rad9 sub-unit of the Rad9-Rad1-Hus1 (“9-1-1”) complex contains an 

“HFD-like” motif that also interacts with an allosteric site within the Rad3 primary 

(proximal) transducer kinase and induces supramolecular conformational changes within 

the enzyme which enhance its catalytic activity (Lin S.J. et al, 2012; Navadgi-Patil V.M. and 

Burgers P.M., 2009; Qu M. et al, 2012). 

 

Subsequent Rad3-mediated sequential post-translational phosphorylation-type modifications 

of the Rad9 sub-unit within the “9-1-1” complex (at residues T225, T412 and S423), induces 

supramolecular conformational changes with the Rad9 C-terminal tail domain which enable 

it to associate with either the Crb2 or Mrc1 scaffold/mediator proteins – dependent upon the 

type of DNA lesion encountered (Lin S.J. et al, 2012; Qu M. et al, 2012). 

 

“9-1-1” complex-mediated recruitment of Crb2 occurs at detected double-stranded breakage 

(DSB) sites, whilst detected stalled replication forks and/or branched DNA structural 

anomalies result in “9-1-1” complex-mediated recruitment of Mrc1 (Lin S.J. et al, 2012; Qu 

M. et al, 2012). 

 

“9-1-1” complex-orchestrated recruitment of Crb2 or Mrc1 to specific DNA lesion sites, 

brings the respective scaffold/mediator protein into close proximity to the primary 

(proximal) transducer kinase Rad3 (Lin S.J. et al, 2012; Qu M. et al, 2012). 

 

Subsequent Rad3-mediated post-translational phosphorylation-type modifications of Crb2 

(at T73 and T80), or Mrc1 (at S604 and S645), induces supramolecular configurational 

changes within the respective scaffold/mediator protein which enable it to engage with the 

secondary (distal) transducer checkpoint kinase Chk1 (Lin S.J. et al, 2012; Qu M. et al, 2012). 
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Subsequent Rad3-mediated post-translational phosphorylation-type modifications of Chk1 

induce supramolecular conformational changes within the secondary (distal) checkpoint 

kinase which result in its catalytic activation and promote its thermodynamic dissociation 

from the respective scaffold/mediator protein  (Lin S.J. et al, 2012; Qu M. et al, 2012). 

 

The liberated, functionally-active Chk1 kinase then initiates “down-stream” biochemical 

signalling cascades which trigger a G(2)/M phasic cell cycle arrest in response to DNA 

damage (Lin S.J. et al, 2012; Qu M. et al, 2012). 

 

Rad4 AAD domain-dependent activation of Rad3 proceeds via an alternative pathway which 

is G1/S cell cycle phase-specific and enables amplification of the Rad3→Chk1 checkpoint 

signal response to genotoxic stress under cytological conditions in which low levels of ssDNA,  

within the chromatin supramolecular architecture, may hinder “9-1-1” complex recruitment 

to DNA damage lesion sites (Lin S.J. et al, 2012; Qu M. et al, 2012). 

 

This secondary pathway involves the exclusive recruitment of the Crb2 scaffold/mediator 

protein to DSB sites via Rad9-c:(Rad4:Crb2)-Rad1-Hus1 ternary complex formation and 

Crb2:nucleosomal interactions in which the tudor domain of Crb2 is in direct association 

with the H4 nucleosomal sub-unit (via a specific dimethylated lysine 20 residue within H4) 

and the BRCT domains of Crb2 are in direct association with the phosphorylated γH2A 

nucleosomal sub-unit (Lin S.J. et al, 2012; Qu M. et al, 2012). 
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    Fig 6.22: Acute CPT Survival Assays – Scaffold Proteins/Mediators  
 

 
 

Figs A, B and C: Comparative acute cell survival assays performed with YEA broth  

                                       cultures of the indicated S. pombe strains, incubated at 30˚C in the 

                                       presence of 40µM camptothecin (CPT) – Figs A, B and C. 

 

                                       [Acute cell survival assays were performed as per the methodology 

                                        described in Chapter 2, Section 2.9.2.2(ii), pp.239-241] 

 
 

  

 

Fig D: Individual 100mL YEA broth medium cell cultures of the indicated S. pombe 

                strains were grown overnight (30˚C for  ~12 hour time period), then diluted to  

                an optical density A595 = 0.25 with the appropriate volume of YEA medium and 

                the resultant diluted cultures re-incubated at  30°C for a further time period of  

                ~2.5 hours until they had attained an optical density value of A595 = 0.5. 
        

               TCA-precipitated total protein extract samples were then prepared from the 

               appropriate *calculated volumetric aliquot of each culture (*equivalent to 40 A595  

               optical density units) and utilised in comparative 2D PAGE–coupled Western blot  

               analyses – probed with the primary “anti-HA” antibody. 

 

              [Performed as per the methodologies described in Chapter 2, Section 2.8.3.1, pp.214- 

               217; Section2.8.5.1, pp.225-230 and Section 2.8.6., pp.231-233] 
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6.2.4 Cds1 is a Critical Secondary (Distal) Transducer/Effector 

Kinase Component of the “Rad9-S”–Mediated Checkpoint Response 

to Camptothecin-Induced DNA Damage, in Which the Suppression of 

Chk1 Functional Activity May Be Implicated 
 

Comparative lactose synchronisation assay experimental data, acquired in this Ph.D. project, also 

revealed that S. pombe cells which were “cre-lox”–engineered for the exclusive expression of the 

truncated NΔ49-Rad9-c3xHA variant did not elicit a G2/M phasic cell cycle arrest in response to 

camptothecin-induced genotoxicity – which may be indicative that “Rad9-S” elicits a novel 

checkpoint pathway which suppresses the functional activation of the Chk1 secondary (distal) 

transducer kinase in response to CPT-induced DNA damage (discussed previously in detail in 

Section 6.2.3, pp.514-516). 

 

It was therefore postulated that the truncated “Rad9-S” protein variant, acting within the 

heterodimeric “Rad9-S”:“Hus1-C” “open-ring/C-clamp” complex, may initiate an alternative 

checkpoint signal via activation of the Cds1 secondary (distal) transducer kinase in response to 

CPT-induced genotoxicity. 

 

In order to test these hypotheses, comparative acute cell survival assays were performed on 30˚C 

YEA broth cultures of the S. pombe double-mutant strains NΔ49-rad9-c3xHA Δcds1 and NΔ49-

rad9-c3xHA Δchk1  and the side-directed mutagenized inactive Cds1 kinase double-mutant strain 

NΔ49-rad9-c3xHA cds1-(T8A;T11A) – Fig 6.23, p.543.  
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The acquired experimental data revealed that deletion of cds1 within an exclusively expressed 

“rad9-S” genetic background, resulted in the significant enhancement of the sensitivity of the cells 

to CPT-induced DNA damage (Fig 6.23B, p.543), whilst perturbed autophosphorylated activation 

of Cds1 – ie site-directed mutagenized expression of cds1-(T8A;T11A) within an exclusively 

expressed “rad9-S” genetic background had negligible effect on the sensitivity of the cells to  

CPT-induced DNA damage (Fig 6.23C, p.543).                                                     

 

Taken together, these acute survival assay data indicated that although Cds1 kinase activity may be 

a key signalling component of the “Rad9-S”-mediated checkpoint pathway response to 

camptothecin genotoxicity, the activation of the Cds1 kinase protein is unlikely to proceed via the 

conventional autophosphorylation mechanism by which the individual monomeric Cds1 sub-units 

within a homodimeric (Cds1)2 complex activate each other’s catalytic sites (Nitani N. et al, 2006; 

Xu X.J. et al, 2006; Xu X.J. and Kelly T.J., 2009). 

 

 

In contrast, the acute survival assay data also revealed that deletion of chk1 within an exclusively 

expressed “rad9-S” genetic background had negligible effect on the sensitivity of the cells to CPT-

induced damage – indicative that functional Chk1 activity is not implicated in the truncated “Rad9-

S” protein variant-mediated checkpoint signalling pathway response to CPT-induced DNA damage 

(Fig 6.23A, p.543). 

 

Comparative 2D PAGE-coupled Western blot analyses of TCA-precipitated total protein extracts 

acquired from YEA broth cultures of the appropriate S. pombe strains revealed that deletion of 

chk1 and perturbed Cds1 autophosphorylated-activation (ie the “rad9-S” cds1-T8A;T11A double-

mutant) yield similar “static” phosphoisoform profiles, whilst deletion of rad3, mrc1 and cds1 

yield hypo-phosphorylation profiles – indicative that Rad3, Mrc1 and Cds1 may be implicated in 

“Rad9-S”–mediated checkpoint signalling responses, in which Cds1 activation proceeds via an 

alternative mechanism (Fig 6.23D, p.543). 
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Comparative 2D-PAGE-coupled Western Blot analyses were also performed on TCA-precipitated 

total extracts acquired from YEA broth cultures of the NΔ49-rad9-c3xHA cds1-c13xMyc strain 

incubated at 30˚C in the absence and presence of 40µM camptothecin (CPT) for 30 minutes – 

which utilised the anti-HA and anti-Myc  primary anti-body probes (Fig 6.24, p.544). 

 

The acquired data indicated a hypo-phosphorylation shift within the phosphoisoform profile of 

“Rad9-S” in the absence and presence of CPT which may be due to perturbance of the C-terminal 

domain Cds1-Rad-S interactions as a consequence of steric hindrance influences extered via the C-

terminal HA- and Myc- epitope tags on the two respective proteins (Fig 6.24, p.544). 

 

The acquired experimental data also indicate that three isoforms of Cds1 are expressed, in which 

the “Cds1” phosphoisoform profile undergoes a hyperphosphorylation shift in the presence of CPT, 

whilst two spots are absent in the phosphoisoform profile of “Cds1-VS” in the presence of CPT 

(Fig 6.24, p.544).  

 

The notable exception the phosphoisoform profile of the “Cds1-S” protein, which remained 

unaltered in the presence of CPT and may be implicated in the regulation of the functional 

activities of the “Cds1” and “Cds1-VS” isoforms (Fig 6.24, p.544). 

 

Taken together, these experimental observations indicate that the truncated “Rad9-S” protein 

variant may suppress the functional activity of Chk1 and initiate an alternative checkpoint 

signalling pathway, via a novel mechanism of Cds1 activation, in response to camptothecin-

induced DNA damage (Fig 6.25, pp.545-546). 
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In this hypothetical context, the “Cds1”, “Cds1-S” and “Cds1-VS” isoforms may also interact with 

the two alternative truncated Rad9 isoforms identified in this Ph.D research project (discussed 

previously in detail in Chapter 4) – notably; “Rad9-VS” (NΔ73-Rad9), “Rad9-T” (NΔ117-Rad9) 

as part of a mechanism which could be implicated in the differential regulation of the full-length 

Rad9-mediated and truncated Rad9-S protein variant-mediated cell cycle checkpoint signalling 

pathway responses to CPT-induced damage (Fig 6.25, pp.545-546). 
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    Fig 6.23: Acute CPT Survival Assays – Distal Transducer Kinases 
 

 
 

 

Figs A, B and C: Comparative acute cell survival assays performed with YEA broth  

                                       cultures of the indicated S. pombe strains, incubated at 30˚C in the 

                                       presence of 40µM camptothecin (CPT) – Figs A, B and C. 

 

                                       [Acute cell survival assays were performed as per the methodology 

                                        described in Chapter 2, Section 2.9.2.2(ii), pp.239-241] 

 
 

  

 

Fig D: Individual 100mL YEA broth medium cell cultures of the indicated S. pombe 

                strains were grown overnight (30˚C for  ~12 hour time period), then diluted to  

                an optical density A595 = 0.25 with the appropriate volume of YEA medium and 

                the resultant diluted cultures re-incubated at  30°C for a further time period of  

                ~2.5 hours until they had attained an optical density value of A595 = 0.5. 
        

               TCA-precipitated total protein extract samples were then prepared from the 

               appropriate *calculated volumetric aliquot of each culture (*equivalent to 40 A595  

               optical density units) and utilised in comparative 2D PAGE–coupled Western blot  

               analyses – probed with the primary “anti-HA” antibody. 

 

              [Performed as per the methodologies described in Chapter 2, Section 2.8.3.1, pp.214- 

               217; Section2.8.5.1, pp.225-230 and Section 2.8.6., pp.231-233] 
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 Fig 6.24: 2D-PAGE Analyses of Potential Rad9-S – Cds1 Interactions 
 

 
 

Individual 100mL YEA broth medium cell cultures of the indicated S. pombe strains were 

grown overnight (30˚C for  ~12 hour time period), then diluted to  an optical density A595 = 

0.25 with the appropriate volume of YEA medium and the resultant diluted cultures re-

incubated at  30°C for a further time period of  ~2.5 hours until they had attained an optical 

density value of A595 = 0.5. 

 

The resultant S. pombe strain cultures of actively cycling cells were then incubated in YEA 

medium at 30˚C in the absence (-CPT) or presence (+CPT) of 40µM camptothecin for a 

further 30 minutes.  
        

TCA-precipitated total protein extract samples were then prepared from the appropriate 

*calculated volumetric aliquot of each culture (*equivalent to 40 A595 optical density units) 

and utilised in comparative 2D PAGE–coupled Western blot analyses – probed with the 

primary “anti-HA” antibody. 

 

[Performed as per the methodologies described in Chapter 2, Section 2.8.3.1, pp.214-217; 

Section2.8.5.1, pp.225-230 and Section 2.8.6., pp.231-233] 
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Fig 6.25: Hypothetical Model of Rad3- and Tel1- Differential 

Phosphorylation-Mediated Modulation of Functional Mrc1-“Rad9-S” 

Interactive Activities Which May Influence Specific Checkpoint 

Pathway Selective Activation Initiated Via the Hetereodimeric 

“Rad9-S”:“Hus1-C” “Open-Ring/C-clamp” Complex  
 

 
Mph1 and/or other checkpoint kinase-mediated phosphorylation of Y12 and Y62 within the 

“Rad9-S” protein and Y62 within the “Hus1-C” protein initiates complex formation and 

chromatin-association of the heterodimeric “Rad9-S”: “Hus1-C” “open-ring/C-clamp” in 

response to camptothecin (CPT)-induced genotoxicity. 

 

In response to detected CPT-induced DNA damage lesion sites, initial Rad26-associated 

Rad3 kinase-mediated phosphorylation of “Rad9-S” at T176 induces supramolecular 

configurational changes within the truncated protein variant which enable Rad26/Rad3 

kinase-mediated phosphorylation of the T363 and S374 residues – which are situated within 

its C-terminal tail  domain. 

 

Subsequent Rad26/Rad3 kinase-mediated phosphorylation of the T363 and S374 residues 

induces supramolecular configurational changes within the C-terminal tail domain of the 

“Rad9-S” truncated protein variant which may then enable it to engage with another 

checkpoint protein kinase “X” 

 

Rad26/Rad3 kinase-mediated phosphorylation of Mrc1, at residues, enables the mediator 

protein to recruit the monomeric form of Cds1 kinase. 
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Mrc1-mediated recruitment Cds1 monomer, orientates the catalytic C-terminal domain of 

the protein in to close proximity with the “Rad9-S”-bound protein kinase “X” at the C-tail 

terminal domain to enable interactions between the Cds1 and protein “X” which may 

activate the Cds1 kinase via phosphorylation of  T254, Y322 and S353 within the catalytic C-

terminal domain of the Cds1 kinase. 

 

Subsequent Cds1 kinase-mediated phosphorylation of residues within the the catalytic C-

terminal domain of the protein kinase “X” may modulate its activity in other checkpoint 

signalling pathways. 

 

The identified isoforms “Rad9-VS”, “Rad9 T”, “Cds1-S” and “Cds1-VS” may act as 

competitive-binding type inducers or suppressors within a regulatory mechanism which 

modulates the functional activities of the “Rad9-S” – Mrc1-co-ordinated Cds1-protein kinase 

“X” activated signalling responses. 
 

Differential phosphorylation of Mrc1 by Tel1 and Rad3 kinases may be implicated in 

“switching-modulation” of the functional activities of the “Rad9-S”-Mrc1 co-ordinated 

activation of Cds1 and protein kinase “X” which could be associated with specific Hus1-

dependent and Hus1-independent “Rad9-S”-mediated signalling pathways in response to 

camptothecin-induced DNA damage and/or environmental stresses that impinge adversely 

upon DNA replication, such as heat shock. 
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6.2.5 Hhp1 is a Critical Effector Kinase Component Which May be 

Implicated in the Temporal Cell Cycle Phasic Co-Ordination and 

Functional Activity Regulation of the “Rad9-S”-Initiated Checkpoint 

Response to Camptothecin-Induced Genotoxicity  
 

Comparative temporal protein expression analyses revealed that camptothecin-induced DNA 

damage results in the phosphorylation of both the full-length Rad9 protein and truncated “Rad9-S” 

protein variant between 60-90 minutes exposure to camptothecin and that CPT-mediated 

topisomerase I inhibition does not induce expression of the truncated “Rad9-S” protein variant (Fig 

6.26A, pp.549-550). 

 

These experimental data also indicated that prolonged exposure to camptothecin induces 

expression of the “Rad9-VS” isoform with consequential suppressed phosphorylation and/or 

induced phosphatase-targeted dephosphorylation of  “Rad9-S” within a 5 – 6 hour elapsed time 

period – which may constitute a functional role of the truncated “Rad9-VS” isoform in the 

regulation of “Rad9-S”-mediated  checkpoint signalling activities (Fig 6.26A, pp.549-550). 

 

Previous experimental studies have demonstrated that casein kinase I (of which Hhp1 is the S. 

pombe functional homolog) is implicated in the regulation of the circadian clock (Agostino P.V. et 

al, 2008) and Hhp1 is also implicated in DNA repair pathways (Dhillon N. and Hoekstra M.F., 

1994). 

 

In order to ascertain whether or not Hhp1 kinase may be implicated in the temporal regulation of 

the functional activities of the truncated “Rad9-S” protein variant associated with the phasic cell 

cycle co-ordination of camptothecin-induced checkpoint signalling arrest and subsequent DNA 

repair, comparative acute CPT survival assays were performed with the double-mutant S. pombe 

strain NΔ49-rad9-c3xHA Δhhp1 (Fig 6.25B, pp.549-550). 
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The acquired  experimental data indicated that deletion of the hhp1 gene (which encodes a Casein 

Kinase 1 type homolog) within an exclusively expressed “rad9-S” genetic background, increased 

of the sensitivity of the cells to camptothecin-induced DNA damage (Fig 6.26B, pp.549-550) – 

indicative that the protein is an essential component of the “Rad9-S” truncated protein variant-

initiated checkpoint signalling pathway implicated in a “9-1-1” complex-independent response to 

CPT-induced DNA damage. 

 

Comparative 2D-PAGE-coupled Western blot analyses also revealed that deletion of hhp1 within 

an exclusively expressed  “rad9-S” genetic background results in a hypo-phosphorylation shift 

within the phosphoisoform profile of the “Rad9-S” truncated protein variant (Fig 6.26C, pp.549-

550) –  indicative that Hhp1 kinase-mediated phosphorylation of “Rad9-S” may be implicated in 

the functional activity of its initiated checkpoint response to camptothecin-induced genotoxicity. 

 

Taken together, these experimental data may indicate that the functional activity of “Rad9-S” in 

the checkpoint signalling response to CPT-induced DNA damage is temporally regulated and/or 

may be sequentially cell cycle phase co-ordinated with DNA repair and reinitiation of DNA 

replication, via a mechanism in which the truncated “Rad-VS” isoform and Hhp1 Kinase may be 

implicated.  

     

 

                                                                    

 

 

 

 

 

 

 

 

 

 

 

                                                                   [548] 



Fig 6.26: Evidence for Potential Roles of the Truncated “Rad9-VS” 

Isoform and Hhp1 Kinase in the Temporal Regulation of Functional 

“Rad9-S” Activities 
 

 
 

[See Figure Legend, p.550, for a full description of the experimental data] 
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Figure Legend – Fig 6.26 
 

A: 150mL YEA broth medium cell cultures of the “Cre-Lox” – constructed rad9-c3xHA and  

       NΔ49-rad9-c3xHA S. pombe strains were grown overnight to  (30˚C for  ~12 hour time 

       period), then diluted to an optical density A595 = 0.5 with the appropriate volume of YEA  

       medium and the resultant diluted cultures re-incubated at 30˚C in the presence of 40µM 

       camptothecin (CPT) for a total time period of 4 hours. 

 

      TCA-precipitated total protein extract samples were then prepared from the appropriate 

      *calculated volumetric aliquots of the respective cultures (*equivalent to 10 A595 optical 

       density units) which were takent regular 30 minute time intervals. 

 

       20µL aliquots of the prepared samples were resolved on a 10% SDS-PAGE gels which  

       were then subjected to Western blot analyses – probed with the primary “anti-HA” 

       antibody. 

 

       [Protein sample preparation, SDS-PAGE resolution and Western blot methodologies are 

        detailed in Section 2.8.1, pp.200-202; Section 2.8.4, pp.223-224 and Section 2.8.6, pp.231- 

       233] 

 

 

 

B: Comparative acute cell survival assays performed on YEA broth cultures of the indicated 

      S. pombe strains, incubated at 30˚C in the presence of 40µM camptothecin for a total time 

      period of 4 hours. 
         

        [Acute cell survival assays were performed as per the methodology described in Chapter 

        2, Section 2.9.2.2(ii), pp.239-241] 

 

 

 

C: Individual 100mL YEA broth medium cell cultures of the indicated S. pombe strains 

       were grown overnight (30˚C for  ~12 hour time period), then diluted to an optical density  

       of A595 = 0.25 with the appropriate volume of YEA medium and the resultant diluted 

       cultures re-incubated at  30°C for a further time period of  ~2.5 hours until they had 

       attained an optical density value of A595 = 0.5. 
        

      TCA-precipitated total protein extract samples were then prepared from the appropriate 

       *calculated volumetric aliquot of each culture (*equivalent to 40 A595 optical density 

       units) and utilised in comparative 2D PAGE–coupled Western blot analyses – probed 

       with the primary “anti-HA” antibody. 

 

      [Performed as per the methodologies described in Chapter 2, Section 2.8.3.1, pp.214-217; 

       Section2.8.5.1, pp.225-230 and Section 2.8.6., pp.231-233] 
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6.2.6 Cdc25 and Rad24 May Modulate the Phosphoisoform-Specific 

Functional Activities of the Truncated “Rad9-S” Protein 
 

The Cdc25 phosphatase protein mediates the post-translational dephosphorylated modification-

initiated activation of the Cdc2 checkpoint kinase, whilst the Rad24 protein targets the Cds1-

phosphorylated Cdc25 phosphatase for cytosolic sequestration and proteasomal degradation 

thereby regulating the functional activity of the Cdc2  protein kinase (Lopez-Gerona A. et al, 1999; 

Zeng Y. et al,1998). 

 

In order to ascertain whether Cdc25 and Rad24 could be implicated in the regulation of Cdc2 

kinase-mediated post-translational phosphorylated-modulation of the truncated “Rad9-S” protein 

variant-initiated checkpoint response to camptothecin-induced DNA damage, in which Cds1 is 

implicated (discussed previously in Section 6.2.4, pp.539-546), comparative acute cell survival 

assays were performed on YEA broth cultures of the S. pombe strains NΔ49-rad9-c3xHA cdc25.22 

(a functionally-impaired phosphatase mutant) and NΔ49-rad9-c3xHA Δrad24 (rad24 deletion 

mutant) – Fig 6.27A and Fig 6.27B, pp.554-555. 

 

The acquired experimental data revealed that functional perturbance of the cdc25 gene (ie the 

cdc25.22 mutant) and deletion of the rad24 gene within an exclusively expressed “rad9-S” genetic 

background, had negligible effect on the sensitivity of the cells to CPT-induced DNA damage (Fig 

6.27A and Fig 6.27B, pp.554-555). 

 

 

Comparative 2D-PAGE-coupled Western blot analyses indicate that perturbance of the functional 

activity of the Cdc25 phosphatase (ie the cdc25.22 mutant) within an exclusively expressed  “rad9-

S” genetic background results in a hypo-phosphorylation shift within the phosphoisoform profile 

of the “Rad9-S” truncated protein variant (Fig 6.27C, pp.554-555) – which may be indicative that 

Cdc25 phosphatase-initiated Cdc2-kinase-mediated phosphorylation of “Rad9-S” is implicated in 

the checkpoint signalling response to CPT-induced genotoxicity 
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Comparative 2D-PAGE-coupled Western blot analyses indicate that deletion of rad24 within an 

exclusively expressed  “rad9-S” genetic background results in a hyper-phosphorylation shift within 

the phosphoisoform profile of the “Rad9-S” truncated protein variant (Fig 6.27C, pp.554-555) – 

which may due to enhanced Cdc25 phosphatase-activation of the Cdc2 kinase and subsequent 

enhanced Cdc2 kinase-mediated phosphorylation of  “Rad9-S” as a consequence of perturbed 

Rad24-mediated sequestration and proteolytic targeted degradation of the Cdc25 phosphatase. 

 

Comparative 2D-PAGE-coupled Western blot analyses indicate that deletion of rad24 within an 

exclusively expressed  “rad9-S” genetic background results in a hyper-phosphorylation shift within 

the phosphoisoform profile of the “Rad9-S” truncated protein variant (Fig 6.27D, pp.554-555) – 

which may due to enhanced Cdc25 phosphatase-activation of the Cdc2 kinase and subsequent 

enhanced Cdc2 kinase-mediated phosphorylation of  “Rad9-S” as a consequence of perturbed 

Rad24-mediated sequestration and proteolytic targeted degradation of the Cdc25 phosphatase. 

 

Comparative 2D-PAGE-coupled Western blot analyses indicate that deletion of hhp1 within an 

exclusively expressed  “rad9-S” genetic background results in a hypo-phosphorylation shift within 

the phosphoisoform profile of the “Rad9-S” truncated protein variant, similar in pattern to the 

“Rad9-S” phosphoisoform profile of the NΔ49-rad9-c3xHA cdc25.22 double mutant (Fig 6.27C, 

  pp.554-555).  

 

Comparative acute survival assays indicated that deletion of hhp1, within an exclusively expressed 

“rad9-S” genetic background enhanced the sensitivity of the S. pombe cells to camptothecin-

induced DNA damage (discussed in detail previously in Section 6.2.5., pp.547-550). 
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Cds1 kinase phosphorylates and inactivates Wee1 kinase, whilst Cds1 kinase-mediated 

phosphorylation of Cdc25 primes this phosphatase for associative Rad24-mediated cytosolic 

sequestration and proteasomal degradation (Blasina A. et al, 1999; Furnani B. et al,1999). 

 

Comparative acute survival assays indicated that deletion of cds1 within an exclusively expressed 

“rad9-S” genetic background enhanced the sensitivity of the S.pombe cells to camptothecin-

induced DNA damage (discussed in detail previously in Section 6.2.4, pp.539-546). 

 

Comparative 2D-PAGE-coupled Western blot analyses indicate that deletion of cds1 within an 

exclusively expressed  “rad9-S” genetic background results in a hypo-phosphorylation shift within 

the phosphoisoform profile of the “Rad9-S” truncated protein variant, similar in pattern to the 

“Rad9-S” phosphoisoform profile of the NΔ49-rad9-c3xHA cdc25.22 double-mutant – with the 

notable exception of a short hyperphosphorylated tail towards the anode (Fig 6.27C, pp.554-555).  

 

Taken together, these experimental observations indicate that the functional activity of “Rad9-S” 

in the checkpoint signalling response to CPT-induced DNA damage may be the initiation of a 

Cds1 kinase-mediated checkpoint response, which may be temporally regulated and co-ordinated 

with DNA repair pathways via an Hhp1 kinase-mediated signalling mechanism and involving 

Cdc2 kinase-mediated post-translational phosphorylated modulation of the truncated “Rad9-S” 

protein variant functional activities. 

 

In this hypothetical context, the “Cds1-S” and “Cds1-VS” isoforms (discussed previously in 

Section 6.2.4, pp.539-546) may also interact with the two alternative truncated Rad9 isoforms 

identified in this Ph.D research project (discussed previously in detail in Chapter 4) – notably; 

“Rad9-VS” (NΔ73-Rad9) and “Rad9-T” (NΔ117-Rad9), as part of a mechanism which could be 

implicated in the regulation of the truncated Rad9-S protein variant-mediated cell cycle checkpoint 

signalling pathway responses to CPT-induced damage. 
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Fig 6.27: Comparative Acute CPT Survival Assays and 2D PAGE- 

Coupled Western Blot Analyses –  Effectors and Regulators 
 

                          
 

                [See Figure Legend, p.555, for a full description of the experimental data] 
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Figure Legend – Fig 6.27 
 

Fig A and Fig B: Comparative acute cell survival assays performed on YEA broth 

                                       cultures of the indicated S. pombe strains, incubated at 30˚C in 

                                       the presence of 40µM camptothecin for a total time period of 4 hours. 
         

[Acute cell survival assays were performed as per the methodology described in Chapter 2, 

  Section 2.9.2.2(ii), pp.239-241] 

 

 

 

Fig C: Individual 100mL YEA broth medium cell cultures of the indicated S. pombe strains 

               were grown overnight (30˚C for  ~12 hour time period), then diluted to an optical  

               density of A595 = 0.25 with the appropriate volume of YEA medium and the  

               resultant diluted cultures re-incubated at  30°C for a further time period of  ~2.5  

               hours until they had attained an optical density value of A595 = 0.5. 
        

               TCA-precipitated total protein extract samples were then prepared from the 

               appropriate *calculated volumetric aliquot of each culture (*equivalent to 40 A595 

                      optical density units) and utilised in comparative 2D PAGE–coupled Western blot  

               analyses – probed with the primary “anti-HA” antibody. 

 

[Performed as per the methodologies described in Chapter 2, Section 2.8.3.1, pp.214-217; 

  Section 2.8.5.1, pp.225-230 and Section 2.8.6., pp.231-233] 
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 6.3 Component MAP Kinase Cell Cycle Checkpoint Pathway Inputs 
 

 In silico comparative sequence alignments of the S. pombe Sty1 kinase and Rad9 proteins, via 

utilisation of the JemBOSS and PSI-BLAST bioinformatics software tools, indicated that the Rad9 

protein contained a Wis1-like kinase target site motif 110GYGSESASR118 ,with similar homology 

to the site found in Sty1 – in which Y111 (equivalent to to Y62 within the truncated “Rad9-S” 

protein variant) may be phosphorylated by the Wis1 kinase (Fig 6.29D, p.564)  

 

In order to determine whether the MAP Kinase pathway was implicated in the “Rad9-S”-mediated 

signalling response to camptothecin-induced DNA damage the NΔ49-rad9-c3xHA S. pombe strain 

was cross-mated with the MAP kinase checkpoint-associated  type gene deleted type S. pombe 

strains Δwis and Δsty1 which were then utilised in comparative acute assays with camptothecin 

(Fig 6.29, p.564). 

 

The data identified that the Sty1 kinase, but not Wis kinase, was a putative component of the 

“Rad9-S”-mediated checkpoint signalling pathway response to camptothecin-induced DNA 

damage and therefore indicated that Wis1 kinase-mediated phosphorylation of Y62 within the 

“Rad9-S” truncated protein variant was not implicated (Fig 6.29, p.564).  

 

Comparative acute and chronic (drop-plate) heat-shock and camptothecin survival assays were also 

performed with the S. pombe strains Δrad9, rad9-c3xHA, rad9-(M50L)-c3xHA and NΔ49-rad9-

c3xHA (“Rad9-S”)  in the absence and presence of 1M sorbitol (induced osmotic shock) – Fig 6.31, 

p.566 and Fig 6.32, p.567. 
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In S. pombe cells, osmotic shock has also been demonstrated to initiate a MAP kinase-mediated 

cell cycle stress checkpoint signalling response that triggers activation of the Atf1 transcription 

factor protein (Fig 6.28, p.563) which then targets the promoter of the gpd1 gene and induces 

expression of the glycerol-3-phosphate dehydrogenase enzyme (Degols G. et al, 1996). 

 

Consequential induction of elevated glycerol-3-dehydrogenase enzymatic activity results in 

increased levels of intracellular glycerol to counter-act the extracellular osmotic stress environment 

(Degols G. et al, 1996). 

  
                                                   
The data acquired from heat shock (at 37˚C) and camptothecin (40µM CPT) acute and chronic cell 

survival assays performed under osmotic stress conditions (1M Sorbitol), with S. pombe cells 

“Cre-Lox”- engineered for the exclusive expression of  the truncated “Rad9-S” protein variant, 

indicated enhanced sensitivity of the cells to CPT-induced DNA damage, but enhanced resistance 

of the cells to thermal stress (Fig 6.31, p.566, Fig 6.32, p.567). 

 

Osmotic stress-induced elevation of intracellular glycerol levels may increase levels of 

diacylglycerol with consequential activation of the metacaspase pathway, in which the Rad9 

protein has been implicated in S. pombe cells (Low C.P. et al, 2008) – discussed previously in 

Chapter 4.  

 

Comparative in Silico analyses, which involved bioinformatics-based caspase/metacaspase 

substrate target motif sequence alignments, identified a putative target cleavage site within the  

regional sequence  110GY111 GSESASR118  of the S. pombe Rad9 protein (discussed previously in 

Chapter 4) – that also contains the identified Wis1-like kinase target site motif with similar 

homology to the site found in Sty1 (Fig 6.29D, p.564). 
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Although the acquired acute camptothecin survival assay data indicate that Wis1 kinase-mediated 

phosphorylation of Rad9-S at Y62  (the equivalent Y111 site in the full-length Rad9 protein) within 

this motif is not implicated in the “Rad9-S”-mediated signalling response to CPT-induced DNA 

damage (Fig 6.29A, p.564), this tyrosine residue may be a putative phosphorylation target for the 

mitotic spindle checkpoint kinase Mph1 (discussed later in Section 6.4, pp.568-583). 

 

Recent experimental studies have indicated that kinase-mediated phosphorylation of adjacent 

amino acid residues flanking caspase-type target site sequences induces supramolecular 

configurational changes within their structural motifs which protects them against proteolytic 

cleavage by the respective caspase enzymes in various cell cycle checkpoint signalling networks 

that are implicated in the regulatory control of apoptotic pathways (Filhol O. et al, 2011; Turowec 

J.P. et al, 2011). 

 

Two putative interactive-motifs have been identified within the S. cerevisiae Ddc1 protein (Rad9Sp, 

Rad9Hs) – which associate with the Mec1 kinase (Rad3Sp, ATRHs) and induce supramolecular 

configurational changes within the protein that enhance its catalytic activity (Navadgi-Patil V.M. 

and Burgers P.M., 2009). 

 

In silico comparative sequence alignments of the S. pombe Sty1 kinase, Wis1 kinase, Rad9  and 

“Rad9-S” proteins with these two Mec1 interactive motifs, via utilisation of the JemBOSS and 

PSI-BLAST bioinformatics software tools, identified equivalent putative equivalent motifs, with 

two conserved tyrosine residues, which may interact with and enhance the activity of the Rad3 

kinase (Fig 6.29F, p.564). 

 

In the case of the Sty1 kinase, these two conserved tyrosine residues were also situated within its 

Wis1-like kinase target site motif (Fig 6.29F, p.564). 
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Taken together, these experimental observations indicate that the truncated the “Rad9-S” protein 

variant may be implicated in the modulation of two distinctive pathways with regard to differential 

signalling responses to heat shock and camptothecin-induced DNA damage respectively. 

 

Hyperosmotic conditions have been demonstrated experimentally to alter the topology of DNA 

from the A or B conformers, to the more slender Z conformer (Lee J. et al, 2010) and can also 

induce superhelical torsional configurations within the duplex (Aoki K. and Murayama K., 2012; 

Choi J. and Majima T., 2011; Dickerson R.E. et al, 1982; Drew H. et al, 1980; Hansen P.L. et al, 

2001; Lee D.J. et al, 2010; McClellan J.A. et al, 1990; Bi Bhriain N. et al, 1989; Podgomik R. et al, 

1995;  Tan Z.J. and Chen S.J., 2006; Yarmola E.G. et al, 1985; Zakrzewska K. et al, 1980).  

 

Recent “follow-up” research work by Caspari T. and co-works has indicated that a novel heat-

shock checkpoint response pathway may be mediated via an alternative heterotrimeric, toroidal 

“Rad9-S”:Rad1:Hus1 DNA sliding-clamp complex (Janes S. et al, 2012, Journal of Cell Science, 

publication “in press” – see Appendix 6.1, pp.626-663). 

 

The “Rad9-S” sub-unit lacks the first 49 amino acids which could enforce tighter steric constraints 

of the alternative “Rad9-S”:Rad1:Hus1 DNA sliding-clamp complex around the DNA, thus 

hyperosmotic stress-induced conversion of the duplex topology to the more slender Z-conformer 

may increase the mobility of this heterotrimeric complex and facilitate initiation of the checkpoint 

signalling response to hyperthermic stress with consequential enhanced cytological resistance to 

heat shock. 

 

In contrast, hyperosmotic stress-induced conversion of the duplex topology to the more slender Z-

conformer may abrogate associative “Rad9-S”:“Hus1-C” “open-ring/C-clamp” complex-DNA 

interactions with consequential enhanced cytological sensitivity to camptothecin-induced 

genotoxic stress. 

                                                    [559] 
 



Osmotic stress may also modulate chromatin supramolecular architecture, via local and/or global 

alteration of DNA supercoiling topological configuration (McClellan J.A. et al, 1990; Ni Bhriain 

N. et al, 1989), which may hinder and/or facilitate access of transcriptional and translational 

ribosomal complexes to specific gene loci and thus influence their expression and cytological 

levels of the respective encoded proteins. 

 

In this context, hyperosmotic stress-induced potentiation of the cytotoxic sensitivity of the Δrad9 

and NΔ49-rad9-c3xHA S. pombe strains to camptothecin (CPT)-induced DNA damage may be a 

consequence of elevated topoisomerase I expression and/or abrogated expression of one or more 

genes which encode critical checkpoint proteins that orchestrate the G(2)/M phasic cell cycle arrest 

response to  CPT-induced genotoxicity (Fig 6.31, p.566; Fig 6.32, p.567). 

 

Whilst hyperosmotic stress-induced resilience of the Δrad9, rad9-c3xHA, rad9-(M50L)-c3xHA and  

NΔ49-rad9-c3xHA S. pombe strains to hyperthermic stress may be a consequence of elevated 

expression of one or more genes which encode critical MAP kinase checkpoint proteins (Fig 6.31, 

p.566; Fig 6.32, p.567).  

 

Experimental studies have also demonstrated that the specific geometric conformational topology 

of duplex supercoiling can have profound influence on the catalytic DNA cleavage activity of 

human topoisomerase I (Gentry A.C. et al, 2011) 

 

Taking this phenomenon into consideration, another plausible hypothesis is that hyperosmotic 

stress-induced alteration of the chromatin supramolecular architecture may also affect the 

geometry of supercoiled topology in the DNA which may elevate the catalytic DNA cleavage 

activity of topisomerase I with consequential potentiation of camptothecin-induced cytotoxicity. 
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A Sty1 kinase differential activity-based switching mechanism, that is based upon its ability to 

interact with and induce the activity of the Rad3 kinase in conjunction with “Rad9-S”, may also be 

implicated in the specific selection of the “Rad9-S” truncated protein-mediated signalling 

responses to thermal stress or camptothecin-induced damage. 

 

Osmotic shock induction of the MAP kinase cell cycle stress pathway may trigger elevation of  

intracellular glycerol levels (that initiate the metacaspase pathway) and also initiate Wis 1 kinase-

mediated phosphorylation of Sty1 kinase which induces supramolecular conformational changes 

within the protein that render it unable to interact with and activate the Rad3 kinase. 

 

 

The observed osmotic stress-enhanced camptothecin (CPT) sensitivity of S. pombe cells, which 

were “cre-lox”-engineered for the exclusive expression of the truncated “Rad9-S” protein variant,  

may be due to Wis 1 kinase-suppression of co-operative Sty1 kinase-mediated Rad3 kinase 

activation, which would suppress Rad3 kinase-mediated phosphorylation of the “Rad9-S” 

truncated protein variant with consequential suppression of the “Rad9-S”-mediated checkpoint 

signalling response to CPT-induced DNA damage. 

 

Whilst the observed osmotic stress-enhanced heat shock resistance of S. pombe cells, which were 

“Cre-Lox”-engineered for the exclusive expression of the truncated “Rad9-S” protein variant, may 

be an independent function of the metacaspase cleavage-generated “Rad9-T” protein variant – 

whose functional activities are regulated by the postulated metacaspase cleavage-generated  

NΔ49-Rad9-CΔ118-426 and NΔ73-Rad9-CΔ118-426  proteins (discussed previously in Chapter 4). 

 

                                                   
The truncated “Rad9-T” isoform may be functional and elicit appropriate checkpoint signal 

responses to heat-induced damage to DNA and/or other cytological components via associative 

protein-interactions within its C-Terminal domain, under conditions of elevated thermal stress 

which would result in heat-denatured inactivation of the “Rad9-S” protein. 
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Comparative 2D PAGE-coupled Western blot analyses also revealed that deletion of wis1, but not 

sty1 or rad3, within an exclusively expressed “rad9-S” genetic background induces the expression 

of the “Rad9-VS” and “Rad9-T” isoforms, whilst site-directed mutagenesis of tyrosine 62 to 

phenyalanine within the “Rad9-S” truncated protein only induces expression of the “Rad9-VS” 

isoform (Fig 6.30, p.565). 

 

Acute camptothecin cell survival assay data also indicated that Wis1 was not required for the 

“Rad9-S”-mediated response to CPT-induced DNA damage (Fig 6.29A, p.564). 

   

  
Taken together, these data indicate that Wis1 may also be implicated in regulatory control of 

“Rad9-T” isoform expression via suppression of the metacaspase pathway under normal “stress-

free” cytological conditions, whilst expression of the “Rad9-VS” isoform may be regulated via 

phosphorylation of Y62 and that “Rad9-VS” may possibly be implicated in the regulation of both 

“Rad9-S” and “Rad9-T” functional activities. 
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  Fig 6.28: Overview of DNA Damage & Cell Cycle Stress Responses 
 

  [Taken and Adapted From: Alao J.P. and Sunnerhagen P., 2008]  
 

                
 

Summarised equivalent functional protein homologs of  the DNA damage response and MAP kinase stress-

induced checkpoint pathways in DNA in S. pombe cells (Fig A) and those of mammalian cells (B) are  indicated, 

the respective pathways in mammalian cells were discussed previously in Chapter 1, Section 1.2.2, p.60. 

(to which the reader is referred). 

 

Note: In S. pombe cells activation of the Sty1 kinase accelerates the cell cycle, whilst in mammalian cells  

            activation of the equivalent functional protein homolog p38 MAP kinase induces a mitotic delay 

            (discussed in detail previously in Chapter 1, Section 1.2.2, p.60). 
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    Fig 6.29: Acute CPT Survival Assays – Mitogen-Activated Kinases 
 

 
 

Comparative acute Camptothecin (CPT) cell survival assays performed with YEA broth cultures of the S. 

pombe strains (indicated above), incubated at 30˚C in the presence of 40µM camptothecin indicate that Wis 1 is 

not implicated in the “Rad9-S”-mediated signal pathway response to CPT-induced DNA damage (Fig A). 

 

In contrast, the  acute CPT survival assay data indicate that the Rad3 and Sty1 Kinases and phosphorylation of 

the positional equivalent Y111 residual site within the truncated “Rad9-S” protein variant are all implicated in 

the CPT-induced DNA damage response signalling pathway (Fig B, Fig C and Fig E). 

 

Comparative In silico  functional homologous S .cerevisiae Mec1 kinase activation-type (ATRHs, Rad3Sp) 

sequence motif alignments (Navadgi-Patil V.M. and Burgers P.M., 2009), performed via utilisation of the PSI-

BLAST, EMBOSS Pair-WiseAlignment  and JemBOSS bioinformatics software tools, indicate the conservation 

of key equivalent Tyrosine residues in both the S. pombe Rad9 and Sty1 proteins (Fig F) which are also situated 

within S. pombe Wis1 kinase-equivalent phosphorylation substrate target motif sequences in both the S. pombe 

Sty1 and Rad9 proteins (Fig D and Fig F). 

 

The identified key aromatic tyrosine residues situated within the potential homologous equivalent Rad3 kinase-

activation functional motifs were found to be absent in comparative sequence alignments with the S. pombe  

Wis 1 MAP kinase. 
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  Fig 6.30: 2D-PAGE Analyses of Potential MAP Kinase Interactions 
    

 
 

Comparative 2D-PAGE-coupled Western blot analyses performed on TCA-precipitated total protein extracts 

acquired from 30˚C YEA broth cell cultures of the indicated S. pombe strains revealed that deletion of wis1, but 

not sty1 or rad3, within an exclusively expressed “rad9-S” genetic background induces the expression of the 

“Rad9-VS” and “Rad9-T” isoforms, whilst site-directed mutagenesis of tyrosine 62 to phenyalanine within the 

“Rad9-S” truncated protein only induces expression of the “Rad9-VS” isoform. 

 

The Δwis1 gene deletion yields a distinctively different “Rad9-S” phosphoisoform profile to that of the Δsty1 

and Δrad3 gene deletions. 

 

Phosphoisoform profiles of the “Rad9-S” protein for the Δwis1 gene deletion site-directed mutagenized Y62 

residue are similar, with the notable exception of the “Rad9-T” isoform – which is only expressed in the Δwis1 

gene deletion profile. 

 

[Key similarities and differences in the phosphoisoform profiles are indicated with red asterices] 
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  Fig 6.31: Osmotic Stress Responses I: Drop-Plate (Chronic) Assays 
 

    [Note: These data sets were acquired by Ms. Susan Davies, working under the practical 

               supervision of the author]               

      
 

A: The comparative Camptothecin (CPT)dose-response drop-plate assay data indicate that chronic exposure  

       of the Δrad9 (rad9 gene-deleted) and NΔ49-rad9-c3xHA S. pombe strains to CPT-induced DNA damage in 

       the presence of 1M Sorbitol (induced osmotic shock conditions) significantly enhances their cytotoxic 

       sensitivity to the genotoxic drug. 

 

B: In stark contrast, comparative heat-shock drop-plate assay data indicate that chronic exposure of the 

       NΔ49-rad9-c3xHA S. pombe strain to heat shock in the presence of 1M sorbitol (induced osmotic shock) 

       significantly enhances its resistance to thermal stress. 

 

Taken collectively, these experimental data are indicative that the truncated “Rad9-S” protein variant may be  

implicated in the mediation two different types of cell cycle regulatory signalling pathways.  
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    Fig 6.32: Osmotic Stress Responses II: Acute Cell Survival Assays 

 

 
 

Comparative acute camptothecin (CPT) cell survival assays performed with YEA broth cultures of the S. 

pombe strains (indicated above), incubated at 30˚C  in the absence and presence of 40µM CPT (Figs A and C) in 

the absence and presence of 1M Sorbitol (induced osmotic shock) – Figs B and D, are also indicative that 

osmotic shock causes enhances the sensitivity of  rad9 gene-deleted and NΔrad9-c3xHA cells to CPT-induced 

damage. 

 
Comparative cell survival assays performed with YEA broth cultures of the S. pombe strains (indicated above), 

incubated at 37˚C  in the absence and presence of 1M Sorbitol (induced osmotic shock) – Figs E and F, are also 

indicative that osmotic shock causes enhances the resistance all the S. pombe strains to elevated thermal stress. 

 

Thus, these experimental data correlate with the drop-plate assay data (Fig 6.31, p.566) – indicative that the 

truncated “Rad9-S” protein variant may be implicated in the mediation two different types of cell cycle 

regulatory signalling pathways whose selection is independent of chronic or acute exposure to CPT-induced 

damage or elevated thermal stress. 
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6.4 Component Spindle Checkpoint Inputs 
 

Comparative acute cell survival assay data indicated that the phosphorylation of Y62 within the 

truncated “Rad9-S” protein variant, which is functionally-implicated in its camptothecin-induced 

DNA damage signalling response, was not mediated via Wis1 kinase interactions (Section 6.3, 

pp.556-567; Fig 629., p.564). 

 

It was therefore postulated that the Y62 residue may be a phosphorylation target for the monopolar 

spindle checkpoint kinase Mph1. 

 

 

In order to determine whether the mitotic spindle checkpoint (discussed in detail previously in 

Chapter 1, Section 1.2.2, pp.63-65) was implicated in the “Rad9-S” truncated protein variant-

mediated signalling response to camptothecin-induced DNA damage, the NΔ49-rad9-c3xHA S. 

pombe strain was cross-mated with mitotic checkpoint-associated type gene deleted S. pombe 

strains Δbub1, Δmad2 and Δmph1 which were then utilised in comparative acute assays (Fig 6.33, 

p.575). 

 

Deletion of bub1 and mad2 within an exclusively expressed “rad9-S” genetic background did not 

enhance the sensitivity of the cells to Camptothecin (CPT) and thus indicated that the Bub1 and 

Mad2 proteins were not implicated in the “Rad9-S”-mediated signalling response to CPT-induced 

DNA damage (Fig 6.33A  and Fig 6.33B, p.575). 

 

Whilst deletion of mph1 within an exclusively expressed “rad9-S” genetic background increased 

the sensitivity of the cells to Camptothecin (CPT) and thus indicated that this monopolar spindle 

checkpoint kinase was implicated in the “Rad9-S” mediated response to CPT-induced DNA 

damage (Fig 6.33E, p.575). 
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Comparative acute survival assays performed with YEA broth cultures of the S. pombe strains 

NΔ49-rad9-c3xHA, NΔ49-rad9-c3xHA Δmph1, NΔ49-(Y111F)-rad9-c3xHA and NΔ49-(Y111F)-

rad9-c3xHA Δmph1, incubated at 30˚C in the presence of 40µM Camptothecin, revealed that the  

NΔ49-(Y111F)-rad9-c3xHA Δmph1 cells were more resistant than either the NΔ49-(Y111F)-rad9-

c3xHA or NΔ49-rad9-c3xHA Δmph1 cells to CPT-induced DNA damage (Fig 6.33F, p.575). 

 

Thus, these acute CPT survival assay data revealed an epistatic response of the “cre-lox”-

constructed “double-mutant” NΔ49-(Y111F)-rad9-c3xHA Δmph1 S. pombe cells – indicative that 

Mph1 kinase-mediated phosphorylation of the “Rad9-S” Y62 residue was implicated in the CPT-

induced DNA damage signalling response elicited by the truncated protein variant (Fig 6.33F, 

p.575). 

 

Comparative in silico predictive phosphorylation target-site analyses of the S. pombe full-length 

Rad9 protein and truncated “Rad9-S” protein variant sequences, via utilisation of the 

bioinformatics software packages NetPhos2.0 and NetPhosK, identified Tyrosine 61 (equivalent 

to tyrosine 12 in the truncated “Rad9-S” polypeptide amino acid sequence) as a very high 

 

probability kinase target site – possibly for the dual Tyr/Thr/Ser Monopolar Spindle Checkpoint 

 

Kinase – Mph1 (Fig 6.37, p.580). 

 

 

 

Comparative acute survival assays performed with YEA broth cultures of the S. pombe strains 

NΔ49-rad9-c3xHA, NΔ49-rad9-c3xHA Δmph1 and NΔ49-(Y61F)-rad9-c3xHA, incubated at 30˚C 

in the presence of 40µM camptothecin, revealed that the NΔ49-(Y61F)-rad9-c3xHA cells were 

more resistant than either the NΔ49-rad9-c3xHA or NΔ49-rad9-c3xHA Δmph1 cells to CPT-

induced DNA damage (Fig 6.36C and Fig 6.36E, p.579). 
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These data may indicate that Mph1-mediated phosphorylation of Y61 within the “Rad9-S” protein 

(Y12) may constitute part of mechanism which negatively regulates “Rad9-S”-mediated 

checkpoint signalling responses to CPT-induced DNA damage. 

 

This particular tyrosine residue (Y61 in full-length Rad9 and Y12 in “Rad9-S”) is also situated 
 

within the M50-M74 DNA-binding functional domain – which constitutes ~50% of the identified  

 

sequence of a potential “nuclease-binding/nuclease-active”motif (Fig 6.37, p.580). 

 

 

 

Mph1 kinase-mediated phosphorylation of Y12 within the identified DNA-binding domain of the  

 

“Rad9-S” protein would perturb aromatic ring duplex-intercalative type Π-Π electron-stacking 

interactions between the unphosphorylated tyrosine ring and nucleobases as a consequence of 

phosphate group-induced alteration of  ring electron configurations, whilst increased hydrophilicity 

of the phosphorylated tyrosine residue which would perturb Van der Waal’s-type associative 

interactions with the hydrophobic DNA bases and negative charge repulsion between the 

phosphate groups on  phosphorylated Y12 and the deoxyribose-phosphate “backbone” of the 

duplex would also block access of the tyrosine residue the “nucleobase-core” of the duplex . 

 

 

Taken together, these experimental observations may indicate that Mph1-phosphorylation of this 

tyrosine residue is a critical pre-requisite post-translational modification of the truncated “Rad9-S” 

protein variant which is implicated in the mechanism of functional activation of  the “nuclease-

like” M50-M74 domain (discussed in detail later in Chapter 7).  

 

In this context, Mph1-mediated phosphorylation of tyrosine 12 may be also be a pre-requisite for 

initiation of “Rad9-S” mediated suppression of specific checkpoint-initiated DNA repair activities, 

which may otherwise adversely interfere with the postulated M50-M74 nuclease-like domain-

mediated functional DNA repair activities (discussed in detail later in Chapter 7). 
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Comparative protein analyses of TCA-precipitated- and soluble- total protein extracts, acquired 

from 30˚C YEA broth cell cultures of the NΔ49-rad9-c3xHA, NΔ49-rad9-c3xHA Δmph1 and 

NΔ49-rad9-c3xHA mph1-c13xMyc S.pombe strains, incubated in the absence and presence of 

40µM camptothecin (CPT) for 30 minutes,  provided additional biochemical evidence that Mph1 

kinase-mediated phosphorylation of “Rad9-S” was implicated in the CPT-induced DNA damage 

signalling response elicited by the truncated protein variant (Fig 6.34, p.576; Fig 6.35, pp.577-578). 

 

                                                     
Comparative acute survival assays performed with YEA broth cultures of the S. pombe strains 

NΔ49-rad9-c3xHA, NΔ49-rad9-c3xHA Δmph1,  NΔ49-(Y111F)-rad9-c3xHA and NΔ49-(Y111F)-

rad9-c3xHA Δmph1, incubated at 30˚C in the presence of 40µM Thiabendazole (TBZ), revealed 

that all the cell types were resistant to TBZ-induced microtubule perturbance (Fig 6.33G, p.575) – 

indicative that functional Mph1 kinase interactions within the “Rad9-S”-mediated signalling 

response to CPT-induced DNA damage were distinctively independent from those of the mitotic 

spindle checkpoint. 

 

 

Comparative acute cell survival assays performed on YEA broth cultures of the indicated S. pombe 

strains revealed that deletion of cds1 within an exclusively expressed “rad9-S” genetic background, 

resulted in the significant enhancement of the sensitivity of the cells to CPT-induced DNA damage 

(Fig 6.38C, p.581), whilst perturbed autophosphorylated activation of Cds1 – ie site-directed 

mutagenized expression of Cds1-(T8A;T11A) within an exclusively expressed “rad9-S” genetic 

background had negligible effect on the sensitivity of the cells to  CPT-induced DNA damage (Fig  

6.38E, p.581) 

 

These survival assay data indicated that although Cds1 kinase activity may be a key signalling 

component of the “Rad9-S”-mediated checkpoint pathway response to camptothecin genotoxicity, 

the activation of the Cds1 kinase protein is unlikely to proceed via the conventional 

autophosphorylation mechanism. 
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Acute survival assay data also indicated that the Rad3 kinase and adaptor/mediator protein Mrc1  

were also implicated in the “Rad9-S”-mediated signalling response to camptothecin-induced DNA 

damage – as a consequence of the fact that deletion of rad3 and mrc1 within an exclusively 

expressed “Rad9-S” genetic background enhanced the sensitivity of the cells to CPT genotoxicity 

(Fig 6.38A and Fig 6.38B, p.581). 

 

Previous experimental studies have demonstrated that Rad3 kinase-mediated phosphorylation of 

Mrc1 induces supramolecular conformational changes within the adaptor protein which enable it to 

associatively-activate the Cds1 kinase, via an alternative mechanism to that of the conventional 

dimerisation-mediated autophosphorylated initiation of the catalytically-functional Cds1 kinase  

(Zhao H. et al, 2003). 

 

In Silico comparative sequence alignments of the C-Terminal catalytic active sites of the S. pombe 

Cds1 and Mph1 kinases with the equivalent functional H. sapiens homolog Mps1 (Kang J. et al, 

2007), performed via utilisation of the PSI-BLAST, EMBOSS PairWise Alignment and JemBOSS 

bioinformatics software tools, identified several key conserved features within the two proteins 

(Fig 6.38G, p.581) – notably; 

 

(i) A  conserved Mg2+-ATP-binding “DFG” motif, situated at D459 within the S. pombe Mph1 

     kinase and at D244 within the S. pombe Cds1 kinase. 

 

(ii) Three conserved equivalent potential phosphorylation sites situated at T254, Y322 and S353  

      within the S. pombe Cds1 kinase, correlated to T471, Y546 and T593 within the S. pombe 

      Mph1 kinase. 
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In Silico predictive phosphorylation analyses of these residues, via utilisation of the NetPhos2.0 

bioinformatics software tool, yielded high probability scores for all the identified residues – with 

the notable exception of T471, although this residue may still have a critical role in the 

autophosphorylated-activation of the Mph1 kinase]  

 

Acute survival assay data also indicated that both Cds1 kinase and Mph1 kinase were implicated in 

the “Rad9-S”-mediated signalling response to Camptothecin-induced DNA damage – as a 

consequence of the fact that deletion of cds1 and mph1 within an exclusively expressed “Rad9-S” 

genetic background enhanced the sensitivity of the cells to CPT genotoxicity (Fig 6.38C, p.581 and 

Fig 6.38E, p.581). 

 

Whilst comparative 2D PAGE-coupled Western Blot analyses of TCA-precipitated total protein 

extracts, acquired from 30˚C YEA broth cell cultures of the S. pombe strains NΔ49-rad9-c3xHA 

(“rad9-S”-c3xHA),  NΔ49-rad9-c3xHA Δcds1 and NΔ49-rad9-c3xHA Δmph1 yielded similar 

profiles for the  “Rad9-S” protein, with three conserved phosphoisoforms (Fig 6.38H, p.581). 

 

Comparative 2D PAGE-coupled Western Blot analyses of TCA-precipitated total protein extracts, 

acquired from 30˚C YEA broth cell cultures of the S. pombe strains NΔ49-rad9-c3xHA (“rad9-S”-

c3xHA), NΔ49-rad9-c3xHA cds1-c13xMyc and NΔ49-rad9-c3xHA mph1-c13xMyc, incubated in 

the absence or presence of 40µM camptothecin for 30 minutes, probed with the anti-HA and anti-

Myc primary anti-bodies, yielded a series of profiles for the “Rad9-S” protein which also exhibited 

these three conserved phosphoisoforms (Fig 6.39, p.582). 
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Acute survival assay data also revealed that the NΔ49-rad9-c3xHA mph1-c13xMyc S. pombe strain  

was very sensitive to camptothecin-induced DNA damage, in contrast to the S. pombe strains 

NΔ49-rad9-c3xHA and mph1-c13xMyc (Fig 6.38F, p.581) – indicative of HA and Myc epitope tag-

mediated perturbed functional interactions between C-Termini of the “Rad9-S” and Mph1 kinase 

proteins. 

 

Taken together, these experimental data observations indicate that “Rad9-S”-mediated recruitment 

of Mph1, in conjunction with Mrc1-mediated recruitment of Cds1, may comprise a co-operative 

functional complex in which the C-Termini of the Mph1 and Cds1 kinases are orientated for 

associative reciprocal phosphorylated-activation of their respect catalytic domains (Fig 6.40, 

p.583). 

 

Consequential kinase-mutual phosphorylation of these proteins may also promote dissociation of 

activated Cds1 kinase from Mrc1 and activated Mph1 kinase from the C-Terminal Tail domain of 

“Rad9-S” to enable the respective kinases to elicit “downstream” cell cycle checkpoint signalling 

responses to camptothecin-induced DNA damage and/or other replication stresses such as elevated 

thermal shock (Fig 6.40, p.583). 
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Fig 6.33: Acute CPT & TBZ Assays – Bub1, Mad2 & Mph1 Mutants 
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       Fig 6.34: 2D-PAGE Analysis of  “Rad9-S”:Mph1 Interactions 

  

    
      Comparative 2D-PAGE-coupled Western Blot analyses of TCA-precipitated total protein extracts acquired from YEA  

       broth cell cultures of  the indicated S. pombe strains, incubated at 30˚C in the absence and presence of 40µM  

       Camptothecin (CPT) for 30 minutes. 

 

       Deletion of mph1 (rad9-S-c3xHA Δmph1) results in loss of a phosphoisoform, compared with the “control” phosphoform  

       profile (rad9-S-c3xHA) – indicative that Mph1 kinase is implicated in the “Rad9-S”-mediated signalling responses to  

       DNA damage. 

 

       Comparison of the 2D-PAGE–resolved phosphoisoform profiles of the rad9-S-c3xHA mph1-C13xMyc S. pombe strain  

       (probed with the primary anti-HA and anti-Myc anti-bodies) indicate similar hypophosphorylation shifts of the  

       “native”/”control”  phosphoisoform profile rad9-S-c3xHA, in the absence or presence of CPT – which may be indicative 

       of HA- and Myc- epitope tag-mediated perturbance of associative  C-terminal domain interactions between “Rad9-S”  

       and Mph1. 

 

       These 2D-PAGE data indicate the expression of three isoforms of Mph1 – termed Mph1, “Mph1-S” and “Mph1-VS”. 

 

       The 2D data also reveal a discrete hyperphosphorylation shift in the phosphoisoform profile of the Mph1 isoform upon 

       treatment of the cells with camptothecin – indicative that the Mph1 isoform is phosphorylated in response to CPT- 

       induced DNA damage. 
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       Fig 6.35: HPLC-SEC and Co-Immunoprecipitation Analyses  
 

              
 

              [See Figure Legend, p.578, for a full description of the experimental data] 
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Figure Legend – Fig 6.33 
 

A: Comparative Western Blot analyses of HPLC-SEC fractionated samples of soluble total 

       protein extracts acquired from YEA broth cell cultures of the S. pombe strain mph1- 

       c13xMyc and N-Δ49-rad9-c3xHA (“rad9-S-c3xHA) mph1-c13xMyc, which utilised either 

      the anti-HA or anti-Myc primary anti-body probes reveal that Mph1 co-fractionates with 

      the truncated “Rad9-S” protein variant in fractions 8 and 9 – indicative that Mph1 may 

      be a functional interactive component of the large “Rad9-S”-associative complex 

      (~700kDa) indicated in Fraction 9. 

 

B: Both the “Rad9-S” truncated protein variant and Mph1 were detected in the anti-HA 

       anti-body probe-primed comparative co-immunoprecipitation “pull-down” (Co-IP) 

       analysis  performed with a total soluble protein extract acquired  from a YEA broth cell 

       culture of the S. pombe N-Δ49-rad9-c3xHA  mph1-c13xMyc strain – indicative of an 

        associative interaction between both proteins. 

        

       The lack of detection of the “Rad9-S” protein in the anti-Myc anti-body probe-primed 

       comparative Co-IP assay may be a consequence of multiple convergent associative 

       protein interactions at the “Rad9-S” C-Terminal Tail domain which sterically hinder  

       anti-HA anti-body interactions with the C-terminal HA epitope tag  and thus “mask” 

       detection of  the truncated “Rad9-S” protein variant. 

 

C: Comparative 1D SDS-PAGE-coupled Western Blot analyses HPLC-SEC fraction 9  

       samples acquired from total soluble extracts of the the mph1-c13xMyc and N-Δ49-rad9- 

       c3xHA  mph1-c13xMyc S. pombe strains indicate an exclusive  association between 

       “Rad9-S” and the Mph1 isoform (but not the “Mph1-S” or “Mph1-VS” isoforms). 
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Fig 6.36: Collated Genetic and Biochemical Evidence for “Rad9-S”-

Mph1-Hus1 Interactions 
 

 
 

Comparative acute Camptothecin cell survivals indicate that deletion of hus1 or mph1 within 

an exclusively expressed “rad9-S” genetic background enhances the sensitivity of the cells to 

CPT-induced DNA (Fig B and Fig C), whereas cells “cre-lox” –engineered for the exclusive 

expression of the Rad9-S-(Y12F)-c3xHA site-directed mutagenized protein variant (NΔ49-

rad9-(Y61F)-c3xHA exhibit enhanced resistance to CPT-induced genotoxicity. 

 

The data indicate that both Hus1 and Mph1 are implicated in the “Rad9-S”-mediated 

signalling pathway response to CPT-induced DNA damage, whilst the unphosphorylated Y12 

residue within “Rad9-S” may be implicated in associative DNA nucleobase-binding 

interactions which are perturbed via Mph1-mediated phosphorylation of Y12. 

 

Comparative HPLC-SEC analyses reveal that both Mph1 and Hus1 co-fractionate with 

“Rad9-S” within a complex of ~600kDa mass – indicative that both Mph1 and Hus1 are 

implicated in the “Rad9-S”-mediated signalling pathway responses to DNA damage  and 

replication stress (Fig D). 
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Fig 6.37 Collated In Silico and Biochemical Evidence for “Rad9-S”-

Mph1-Hus1 Interactions   
 

               
 

In silico comparative alignment of the amino sequence flanking the potential Mph1 kinase-

phosphorylated Y61 residue, situated within the identified M50 – M74 DNA binding domain of the S. 

pombe Rad9 protein, with the S. pombe Hus1 amino acid sequence indicates that Y62 within Hus1 

may also be a phosphorylation target for Mph1 kinase. 

 

Comparative 2D PAGE-coupled Western blot data indicate conserved phosphoisoforms within the 

four aligned profiles (indicated by the red box and asterices) – which may be indicative that Mph1 

phosphorylates both  “Rad9-S” (at Y12) and Hus1 (at Y62). 
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    Fig 6.38: Data Evidence for “Rad9-S”-Mph1-Cds1 Interactions 
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Fig 6.39: 2D-PAGE-Resolved Cds1 & Mph1 Phosphoisoform Profiles 
 

                         
              
Comparative 2D-PAGE-coupled Western Blot analyses were performed onTCA-precipitated total 

protein extracts acquired from YEA broth cell cultures of  the indicated S. pombe strains, incubated 

at 30˚C in the absence and presence of 40µM Camptothecin (CPT) for 30 minutes. 

 

Comparison of the resultant data reveal distinctive similarities within the acquired phosphoisoform 

profiles of the truncated “Rad-S” protein variant in  the rad9-S-c3xHA cds1-c13xMyc and rad9-S-

c3xHA mph1-c13xmyc S.pombe strains (indicated via red and purple asterices). 

 

Taken together, these data may be indicative of  co-ordinated synergistic interactions between the 

Cds1 and Mph1 kinases  within the “Rad9-S”-mediated signalling pathway response to CPT-induced 

DNA damage. 
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 Fig 6.40: Mph1–Cds1 Complementary Kinase-Site Activation Model 
 

 
 

In response to detected CPT-induced DNA damage lesion sites, initial Rad26-associated Rad3 kinase-mediated 

phosphorylation of “Rad9-S” at T176 induces supramolecular configurational changes within the truncated 

protein variant which enable Rad26/Rad3 kinase-mediated phosphorylation of the T363 and S374 residues – 

which are situated within its C-Terminal Tail  Domain. 

 

Subsequent Rad26/Rad3 kinase-mediated phosphorylation of the T363 and S374 residues induces 

supramolecular configurational changes within the C-Terminal Tail Domain of the “Rad9-S” truncated protein 

variant which may then enable it to engage with the monopolar spindle checkpoint kinase Mph1. 

 

Rad26/Rad3 kinase-mediated phosphorylation of Mrc1, at residues, enables the mediator protein to recruit the 

monomeric form of Cds1 kinase. 

 

Mrc1-mediated recruitment Cds1 monomer, orientates the catalytic C-terminal domain of the protein in to 

close proximity with the “Rad9-S”-bound Mph1 C-Tail terminal domain to enable mutal phosphorylation 

interactions between the two kinases. 

 

Cds1 kinase-mediated phosphorylation of residues T471, Y546 and T593 within the the catalytic C-terminal 

domain of Mph1 kinase and reciprocal Mph1 kinase-mediated phosphorylation of  T254, Y322 and S353 within 

the catalytic C-terminal domain of the Cds1 kinase (Fig 6.30, p.399), results in mutual activation of both kinases 

which may then be released and initiate various cell cycle checkpoint signalling responses to Camptotehcin-

induced DNA damage. 

 

The identified isoforms “Rad9-VS”, “Rad9 T”, “Mph1-S”, “Mph1-VS”, “Cds1-S” and “Cds1-VS” may act as 

competitive-binding type inducers or suppressors within a regulatory mechanism which modulates the 

functional activities of the “Rad9-S” – Mrc1-co-ordinated Cds1-Mph1 activated signalling responses. 

 

Differential phosphorylation of Mrc1 by Tel1 and Rad3 kinases has been observed in other experimental 

studies (Zhao H. et al, 2003) and may also be implicated in “switching-modulation” of the functional activities of 

the “Rad9-S”-Mrc1 co-ordinated activation of Cds1 and Mph1 kinases which could be associated with specific 

Hus1-dependent and Hus1-independent “Rad9-S”-mediated signalling pathways in response to camptothecin-

induced DNA damage and environmental stresses that impinge adversely upon DNA replication, such as heat 

shock.                                            [583] 



6.5 Component FEAR Network Pathway Inputs 
 

Experimental studies have demonstrated that the Cds1 kinase may be implicated in the nucleolar 

release of the Clp1 kinase within the FEAR (Cdc-Fourteen Early Anaphase Release) pathway 

(Diaz-Cuervo H. and Bueno A., 2008), whilst hypertonic osmotic stress has been implicated in 

activation of a Cdc14-mediated Mitotic Exit Network (MEN) pathway in S.cerevisisae (Reiser V. 

et al, 2006). 

 

Heat shock (at 37˚C) and camptothecin (40µM CPT) acute and chronic cell survival assays 

performed under osmotic stress conditions (1M Sorbitol), with S. pombe cells “cre-lox”- 

engineered for the exclusive expression of the truncated “Rad9-S” protein variant in this study (Fig 

6.31, p.566; Fig 6.32, p.567), also indicated enhanced sensitivity of the cells to CPT-induced DNA 

damage, but enhanced resistance of the cells to thermal stress (discussed previously in Section 6.3, 

pp.556-567). 

 

On the basis of these observed phenomena, it was postulated that “Rad9-S” truncated protein 

variant-mediated signalling responses to camptothecin-induced DNA damage and elevated thermal 

stress may converge at the “Rad9-S”-Hus1-C-Mph1-Cds1 functional ternary complex for the 

modulated release of the nucleolin homologue Gar2 and/or the Cdc14 phosphatase homologue 

Clp1 from the nucleolus – under the control of the Spo12 protein, which is a negative regulator 

that suppresses nucleolar translocation of Clp1 to the nucleus (Samuel J.M. et al, 2000). 

 

In human cells, one mechanism of resistance to camptothecin-induced DNA damage is nucleolin-

mediated translocation and sequestration of the topoisomerase I (Top1) enzyme to the nucleolus 

where its retention prevents the formation of the DNA-CPT-Top1 complexes at duplex replication 

forks (Edwards T.K. et al, 2000; Mi Y. et al, 2003 ).  
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“Rad9-S”-Hus1-C-Mph1-Cds1 functional ternary complex-activated Cds1-mediated 

translocational liberation of Gar2 from the nucleolus to the nucleus and subsequent formation of 

the Gar2-Top1 complex may likewise result in nucleolar sequestration of topoisomerase I to 

prevent formation of the DNA-CPT-Top1 complexes at DNA replication forks, with consequent 

suppression of camptothecin-induced DNA damage. 

 

“Rad9-S”-Hus1-C-Mph1-Cds1 functional ternary complex-activated Cds1-mediated 

translocational liberation of Gar2 from the nucleolus to the nucleus may also result in the 

subsequent formation of the Gar2-RPA complex with transient inhibition of DNA replication in 

response to both elevated thermal stress and CPT-induced DNA damage. 

 

Whilst “Rad9-S”-Hus1-C-Mph1-Cds1 functional ternary complex-activated Mph1 kinase-

mediated post-translational phosphorylated modification of the chromosomal passenger complex 

within the mitotic spindle checkpoint may be implicated in the nucleolar release of the Clp1 

phosphatase into the nucleus. 

 

In order to test this hypotheses, the NΔ49-rad9-c3xHA S. pombe  strain was cross-mated with 

various single deleted/inactivated G2/M-associated checkpoint type gene deleted/inactivated type S. 

pombe strains Δclp1 and spo12.B81. 

 

The generated NΔ49-rad9-c3xHA “gene knock-out” mutant strains were then utilised in 

comparative acute camptothecin (CPT) cell survival assays in order to determine whether Clp1 

and/or Spo12 were implicated in the “Rad9-S”-mediated checkpoint signalling response to CPT-

induced DNA damage (Fig 6.41, p.587). 
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The survival assay data indicated that deletion of clp1 within an exclusively expressed “rad9-S” 

genetic background did not enhance the cytotoxic sensitivity of the cells to Camptothecin-induced 

DNA damage (Fig 6.41B, p.587), whilst perturbance of Spo12 (ie spo12.B81 mutagenised inactive 

variant) within an exclusively expressed “rad9-S” genetic background potentiated the sensitivity of 

the cells to camptothecin-induced genotoxicity (Fig 6.41C, p.587). 

 

2D PAGE-coupled Western blot analyses performed on TCA-precipitated total protein extracts 

acquired from 30˚C YEA broth cell cultures of the S. pombe Δcds1, Δclp1 and spo12.B81 “rad9-

S”-c3xHA cross-strains and “rad9-S”-c3xHA strain revealed a distinctive set of correlated 

hypophosphorylation shifts within the four respective phosphoisoform profiles (Fig 6.41D, p.587). 

 

Taken together, the data indicate potential collaborative Cds1, Clp1 and Spo12 component 

functions, within the “Rad9-S” truncated protein variant-mediated response to CPT-induced 

damage, which may operate in novel roles that are independent of the FEAR network pathway. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                    [586] 



     Fig 6.41: Acute CPT Survival Assays – FEAR Network Mutants  
 

  
 

A: Comparative acute survival assays, performed on 30˚C YEA broth cultures of the indicated S. pombe  strains in the  

      presence of 40µM Camptothecin, revealed that deletion of cds1 within an exclusively expressed “rad9-S-c3xHA” genetic 

      backround enhanced the sensitivity of the cells to CPT-induced DNA damage. 

 

B: Comparative acute survival assays, performed on 30˚C YEA broth cultures of the indicated S. pombe strains in the 

      presence of 40µM Camptothecin, revealed that deletion of clp1 within an exclusively expressed “rad9-S-c3xHA” genetic 

      backround did not enhance the sensitivity of the cells to CPT-induced DNA damage. 

 

C: Comparative acute survival assays, performed on 30˚C YEA broth cultures of the indicated S. pombe strains in the  

      presence of 40µM Camptothecin, revealed that perturbed functional activity of the Spo12 protein (via utilisation of the 

      spo12.B81 mutant) within an exclusively expressed “rad9-S-c3xHA” genetic backround also enhanced the sensitivity of  

      the cells to CPT-induced DNA damage. 

 

D: Comparative 2D PAGE-coupled Western Blot analyses performed on TCA-precipitated total extracts acquired from 

      30˚C YEA broth cultures of the indicated S. pombe strains revealed conserved phosphoisformic shifts within the aligned  

      profiles of the “Rad9-S” truncated protein variant for the cds1-, clp1-, mph1- deleted and spo12.B81-mutated S. pombe  

      strains (indicated via the asterices within in the red boxes). 

 

E: Comparative acute survival assays, performed on 30˚C YEA broth cultures of the indicated S. pombe  strains in the  

      presence of 40µM Camptothecin, revealed that deletion of mph1 within an exclusively expressed “rad9-S-c3xHA” genetic 

      backround enhanced the sensitivity of the cells to CPT-induced DNA damage. 
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6.6 Differential Checkpoint Responses to Camptothecin-Induced 

DNA Damage and Hyperthermic Stress are Initiated by “Rad9-S” 

 
Taken together, the experimental data indicate the potential existence of two novel DNA damage 

checkpoint response pathways to camptothecin-induced/topoisomerase I-inhibitory types of DNA 

damage and heat shock, possibly in conjuction with other types of induced cytological stress (such 

as osmotic shock), which function exclusively outside of the canonical Rad9-Rad1-Hus1 complex 

– discussed summarily in Fig 6.42, pp.592-593  and Fig 6.43, pp.594-595. 

 

The hyper-phosphorylated form of the Rad9-S truncated protein may function as a dominant 

repressor of Chk1 activation in response to camptothecin-induced DNA damage. 

 

Whilst the unphosphorylated form of Rad9-S may elicit an extended G2/M phasic cell cycle arrest 

in response to heat shock (Janes S. et al, 2012, Journal of Cell Science, “in press” – see Appendix 

6.1, pp.626-663). 

 

Thermal stress may have indirect effects on the rectification of chromosomal catenanes via 

thermal-induced suppression of the functional activity of DNA Topoisomerase II within the G2-

decatenation checkpoint pathway in which human Rad9 is also functionally implicated together 

with the WRN protein (discussed previously in Chapter 1., Section 1.2.2 , p.60). 

 

Thermal stress could act as a “camptothecin-mimetic” via induction of “denaturation-trapped”  

topisomerase-DNA complexes which inhibit DNA replication and result in stalled fork collision 

events with  in consequential formation of one-sided double-stranded DNA breaks. 

 

Heat-induced denaturation of the Rad9-Rad1-Hus1 complex could prevent it from disengaging 

from the DNA and/or may also result in the dysfunctional activation of Chk-initiated cell cycle 

checkpoint signalling activities. 
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In this context, expression of the “9-1-1” clamp-independent truncated “Rad9-S” protein variant, 

which acts as a dominant suppressor of Chk1,  would  effectively “counter-act” these  potentially 

catastrophic dysfunctional Chk1  activities. 

 

The postulated DNA repair and Cds1-initiated G2/M arrest functional activities of the truncated 

“Rad9-S” protein variant may therefore serve as an auxilliary mechanism for the temporary 

maintenance of cytological genomic integrity until properly functioning Rad9-Rad1-Hus1 

complex-initiated Chk1 signalling has been restored. 

 

Thermally-induced pleiotropic effects instigate alterations in chromatin supramolecular 

architecture, in conjunction with structural damage at centrosomal sites and may also be implicated 

in associative heat shock factor Hsp90-Wee1 type modulation of functional cell cycle checkpoint 

activities (Aligue R. et al, 1994; Goes F.S. and Martin J., 2001; Laszlo A. and Fleischer I, 2009; 

Munoz M.J. et al, 1999; Munoz M.J.and Jimenez J., 1999). 

  

Associative human Rad9A-TPR2 interactions are also implicated in the modulation of the 

functional activities of the heat shock factor Hsp90/Hsp70-mediated protein chaperone pathway 

(discussed previously in Chapter 1, Section 1.2.4, pp.73-83) – which may also impinge on these 

Hsp90-Wee1 interactions. 

                                                    
Formation of the ATM-associative 53BP1-MDC1-H2AX and/or 53BP1-MDC1-BRCA1 type 

complexes, which are also implicated in the MRN complex-mediated processing repair of DNA 

double-stranded breaks within the G1/S, Intra-S and G2/M checkpoints (discussed previously in 

Chapter 1, Section 1.2.2, pp.54-57 and Chapter 1, Section 1.2.5, p.106) is also suppressed under 

cytological conditions of elevated thermal stress (Seno J.D. and Dynlacht J.R., 2004; Hunt C.R. et 

al, 2007; Kühl N.M. and Rensing L., 2000). 
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Thermal stress is also known to enhance the cytotoxic sensitivity of human tumour cells to 

radiotherapy-induced double-stranded DNA breaks via an as yet undefined pathway that involves 

switching of the ATM kinase from its normal DNA damage signalling function to a heat shock 

response, in conjunction with nuclear export of the Mre1-Rad50-Nbs1 (“MRN”) complex and 

consequential abrogation of MRN-mediated recruitment of ATM to damaged chromosomes (Seno 

J.D. and Dynlacht J.R., 2004; Hunt C.R. et al, 2007; Kühl N.M. and Rensing L., 2000). 

 

Whether or not an equivalent type of type switch operates in S. pombe cells to modulate the 

functional activity of Rad3 or Tel1 in a similar manner is unknown, but these kinases may be 

required for the initiation of a G2 type checkpoint arrest to enable time for the appropriate repair of 

heat-induced damage to proteins and other cytological structures. 

 

Tel1 and Rad3 kinases have been demonstrated to be implicated in the differential regulation of the 

functional activities of the Mrc1 adaptor/mediator protein (Zhao H. et al, 2003). 

 

Both Rad3 and Mrc1 have been identified as key functional components of the “Rad9-S” truncated 

protein variant-mediated signalling pathway response to camptothecin-induced DNA damage in 

this research work (Fig 6.42, pp.592-593). 

                                                    

Whilst Tel1 kinase phosphorylation of Mrc1 may be implicated in the selective switching of the 

truncated Rad9-S protein variant-initiated signalling pathways for mediation of the heat-shock 

checkpoint response (Fig 6.43, p.594-595). 
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Experimental data acquired in this Ph.D. project indicated that differential activation of the  Rad3 

 

kinase, via  Sty1-independent and  Sty1-co-operative type “Rad9-S” interactions, may also mediate 

 

selective switching of the checkpoint pathways  implicated in “Rad9-S” signalling response to 

 

camptothecin-induced damage (Fig 6.42, pp.592-593) and elevated thermal stress (Fig 6.43, 

pp.594-595) – Section 6.3, pp.556-567.  

 

 

 

These pathways may form part of a complex intricate network of full-length Rad9- and truncated 

Rad9 protein- mediated signalling responses to different types of genotoxic and cytological 

stresses, whose respective activities may be regulated via epigenetic and proteomic interactions 

with the truncated Rad9 variants (“Rad9-VS” and “Rad9-T” – discussed previously in Chapter 4) 

and their respective phosphoisoforms (Fig 6.44, p.596-597). 
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Fig 6.42: Model for the “Rad9-S” Signal Response to Camptothecin  

    

           
    

The truncated “Rad9-S” protein variant forms an associative complex with the Hus1-C 

isoform, in which the resultant “Rad9-S”:Hus1-C “open-ring” heterodimeric complex may 

act as a “sliding-clamp” DNA sensor for CPT-induced DNA damage and/or Top1-CPT-DNA 

ternary complex lesions at stalled replication forks. 

 

Upon detection of the DNA lesion, “Rad9-S” in conjunction with Sty1, may participate in the 

synergistic activation of the Rad3 kinase, mediated via associative interactions with their 

respective Rad3-interactive motifs. 

 

 “Rad9-S” is then phosphorylated by the Rad3 kinase, in association with its functional 

counter-part Rad26, at T176 which induces supramolecular conformational changes within 

the truncated protein variant that enable Rad3/Rad26-mediated phosphorylation of its C-

Terminal Tail Domain at the T363 and S374 residues. 

 

Rad3/Rad26-mediated phosphorylation of T363 and S374 induces supramolecular 

configurational changes within the “Rad9-S” C-Terminal Tail Domain which enable it to 

associate with the C-Terminus of the Mph1 spindle-checkpoint kinase. 
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Rad3/Rad26-mediated phosphorylation of Mrc1, induces supramolecular configurational 

changes within the adaptor protein which enables it to associatively interact with the Cds1 

kinase in close proximity to the C-Terminal catalytic domain of the  “Rad9-S” C-Tail 

Domain-bound Mph1 kinase. 

 

Tel1 kinase-mediated phosphorylated of Mrc1 may be implicated in the selective activation 

of the heat shock checkpoint pathway response (Fig 6.43, pp.594-595). 

 

Direct interactive C-terminal catalytic site phosphorylation events between the Mph1 and 

Cds1 kinases result in their mutual activation, after which Cds1 could elicit a G2/M arrest, 

whilst Mph1 kinase-mediated phosphorylation of Rad9-S induces supramolecular 

configurational changes within the truncated protein variant which enable it act as a 

dominant suppressor of Chk1 to prevent Chk1-initated Intra-S phase checkpoint-activated 

inhibition of the homologous recombinational repair of CPT-induced DSB’s. 

 

Other detected isoforms of the Rad9, Mph1 and Cds1 proteins may be implicated in 

transient competitive inhibiton and/or activation type regulation of the functional activities 

within the postulated mechanistic signalling pathway mediated by the truncated “Rad9-S” 

protein variant. 

 

Rad9-S interactions with the Spo12 protein, in conjunction with the activated Mph1 and 

Cds1 kinases may be also be implicated in the  regulated nucleolar release of the Clp1 

phosphatase and/or Gar2 for co-ordinated transient inhibition of DNA replication to allow 

repair of the CPT-induced DSB’s and subsequent re-initiation of DNA replication after DNA 

repair has been effected. 

 

Topoisomerase 1 (Top 1) may also associate with Gar2 with resultant translocation of the 

Top1:Gar2 heterodimer complex from the nucleus to the nucleolus. 

 

Sequestration of Top1 in the nucleolus, via Gar2-targeted translocation, would prevent 

camptothecin (CPT) association with Top1 in the nucleus and suppress the formation of the 

trapped CPT-Top1-DNA complexes, thereby serving as a protective mechanism of resistance 

against CPT-induced DNA damage. 

 

The Rad9-S-(Y12F) and Rad9-S-(L147P)  mutants may restore a Chk1-mediated G2/M 

checkpoint response to CPT-induced DNA damage as a consequence of perturbed “Rad9-S”-

mediated Chk1 suppression. 
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  Fig 6.43: Model for the “Rad-S” Signal Response to Thermal Stress  
 

 

            

Environmental stresses, trigger activation of the MAP kinase checkpoint pathway with 

consequential phosphorylation of Sty1 (mediated via Wis1 kinase in the case of osmotic stress 

and Pyp1 kinase in the case of heat shock) which induces supramolecular conformational 

changes within theprotein that prevent it from interacting and activating the Rad3 primary 

(proximal) transducer checkpoint kinase in synergistic concert with the “Rad9-S” truncated 

protein variant. 

 

In the absence of Sty1-associative Rad3 kinase activation, the truncated “Rad9-S” protein 

variant adopts a different supramolecular configuration which enables it to engage with the 

Rad26-associated Rad3 kinase – which phosphorylates “Rad9-S” at the T176, T363 and S374 

residues. 

 

Rad26/Rad3-kinase-mediated phosphorylation of the T363 and S374 residues induces 

supramolecular configurational changes within the C-Terminal Tail domain of “Rad9-S” 

which enable it to associate and engage with the adaptor/mediator protein Crb2. 

 

Formation of the resultant “Rad9-S”-Hus1-Rad1:Crb2 complex, induces co-operative 

supramolecular configurational changes within the proteins which enable the associative 

recruitment of the Cds1 kinase. 
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Normally, Rad26/Rad3-mediated phosphorylation of Mrc1 induces supramolecular 

configurational changes within the adaptor  protein which enable it to recruit the secondary 

(distal) transducer checkpoint kinase Chk1 which is then activated via phosphorylation by 

Rad26/Rad3 kinase which may then elicit a G2/M arrest (discussed previously in Chapter 1., 

Section 1.2.2, p.55) – but this signal response may be suppressed in response to thermal stress 

via Tel1-mediated phosphorylation of the Mrc1 adaptor  protein. 

 

In this case, chromatin-independent  “Rad9-S”:Hus1:Rad1:Rad3:Crb2 complex-mediated 

activation of Chk1 may initiate a novel checkpoint response which suppresses the functional 

mitotic activity of the spindle polar body (SPB) and initiates a G2 phasic cell cycle arrest in 

response to elevated thermal stress (Janes S. et al, 2012, Journal of Cell Science, “in press” – 

see Appendix 6.1, pp.626-663). 

 

The identified M50-M74 DNA-binding/Nuclease-Interactive motif within the truncated 

“Rad9-S” protein variant may also be implicated in  the repair of thermally-induced DNA 

damage. 

 

In response to heat shock,Tel1-mediated phosphorylation of Mrc1 induces supramolecular 

configurational changes within the adaptor protein which enables it to associatively interact 

with the Cds1 kinase in close proximity to the C-Terminal catalytic domain of the  “Rad9-S” 

C-Tail Domain-bound Cds1 kinase – which  triggers autophosphorylation-mediated 

activation of the Cds1 kinase. 

 

Cds1 kinase-mediated phosphorylation of the Wee1 kinase, induces supramolecular 

conformational changes within Wee1 which enable it interact with the Hsp90 chaperone 

protein which may then serve as a novel checkpoint signalling response which initiates 

homologous TPR2-type functions that modulate the activity the Hsp70/Hsp90 chaperone 

protein folding pathway (discussed previously in Chapter 1, Section 1.2.4, pp.73-83) to enable 

resolution of partially denatured proteins as a consequence of elevated thermal stress or 

osmotic stress, thereby preventing the occurrence of dysfunctional cytological processes due 

to incorrectly configured proteins. 

 

Human Rad9A has also been demonstrated to interact with and modulate the activity of the 

TPR2 protein (discussed previously in Chapter 1, Section 1.2.4, pp.73-83) and it is therefore 

conceivable that the truncated “Rad9-S” protein may also be implicated in the modulation of 

TPR2 activity in response to elevated thermal stress – which may impinge upon the 

associative Wee1-Hsp90 signalling interactions as part of a regulatory “feedback” 

mechanism for the co-ordination of a G2 phasic cycle cycle arrest with DNA repair processes 

and/or supramolecular conformational rectification of partially denatured/misfolded 

proteins. 

 

Other detected isoforms of the Rad9 and Cds1 proteins may be implicated in transient 

competitive inhibiton and/or activation type regulation of the functional activities within the 

postulated mechanistic signalling pathway mediated by the truncated “Rad9-S” protein 

variant. 
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     Fig 6.44: Epigenetic and Proteomic Differential Pathway Model  
 

 
 

Rad3 kinase-mediated phosphorylation of the C-Terminal Tail Domain within the full-length 

Rad9 protein, in conjunction with associative interactions with the Rad4 and Crb2 adaptor 

proteins, results in phosphorylated activation of Chk1 which elicits a G2/M arrest in 

response to Camptothecin-induced DNA damage. 

 

The full-length Rad9 protein may also target Chk1 outside of the “9-1-1” clamp, 

independently of Rad3 kinase-targeted Chk1 activation, in which an alternative Mad2-

mediated anaphase cell cycle arrest is initiated. 

 

“Rad9-S” initiates differential checkpoint responses to camptothecin genotoxic stress and 

hyperthermic stress which are mediated via formation of either the “Rad9-S”:Hus1 

heterodimeric complex or an alternative “Rad9-S”:Hus1:Rad1 heterotrimeric complex. 

  

In response to camptothecin-induced DNA damage, Sty1 and “Rad9-S” co-operatively 

interact with the Rad3 kinase and induce its catalytic activity for subsequent Rad3 kinase-

mediated phosphorylation of “Rad9-S” – which induces supramolecular conformational 

changes within the C-Terminal Tail domain of the protein that enable associative 

interactions with the Mph1 kinase with consequential suppression of the Chk1-mediated 

Mad2-dependent anaphase arrest. 
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The mechanism of expression of the full-length Rad9, Rad9-S and Rad9-VS truncated 

protein variants may comprise alternative translation at the alternative AUG start-codon 

sites at the respective Methionine 1 (M1), Methionine 50 (M50) and Methionine 74 (M74) 

situated within the mRNA of the transcribed S. pombe rad9 gene, in which leaky ribosomal 

scanning is implicated. 

 

Heat shock may increase the frequency of leaky ribosome scanning, via alterations of the 

secondary topological configuration of the rad9 mRNA, in which rad9 mRNA-protein 

associative interactions with heat-shock proteins, RNA chaperones and/or RNA stabilisers 

may also be  implicated – with consequential elevated expression of the Rad9-S protein. 

 

Heat shock also initiates the MAP kinase pathway, with resultant phosphorylation of Sty1 – 

which induces supramolecular configurational changes within the kinase which prevent it 

from engaging with and co-operatively activating Rad3 kinase, with Rad9-S. 
 

Thus, thermal stress initiates formation of the “Rad-S”:Hus1:Rad1:Crb2:Rad3 ternary 

complex which targets Chk1 for suppression of the functional mitotic activity of the Spindle 

Polar Body (SPB) with consequentional initiation of a G2 arrest to provide time for the 

repair of DNA, resolution of partially denatured proteins and other cytological structures 

(Janes S. et al, 2012, Journal of Cell Science, “in press” – see Appendix 6.1, pp.626-663). 

 

A variety of potential Rad9 phospho-isoforms may be implicated in various interactive 

“activity-modulatory feedback” mechanisms, in which they function as transcriptional 

and/or translational regulators of the expression of the full-length Rad9, NΔ49-Rad9 (“Rad9-

S”) and NΔ73-Rad9 (“Rad-VS”) proteins (discussed previously in Chapter 4) – which in turn 

may impinge upon the functional activities of the respective DNA damage/replication stress-

induced checkpoint pathways. 
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6.7 Caffeine Significantly Potentiates the Sensitivity of S. pombe Cells 

“Cre-Lox” Engineered for the Exclusive Expression of  the Truncated 

“Rad9-S” Variant to Camptothecin-Induced DNA Damage and 

Hyperthermic Stress: Potential Indications of Equivalent Novel 

Human Rad9B Functional Checkpoint Signalling Responses  
 

Caffeine is a xanthine-based analogous adenine mimetic which interacts competitively with 

different classes of adenosine receptor proteins to induce localised conformational changes within 

their respective supramolecular architectures which alter their specific functional activities that are 

coupled to the initiation and/or regulation of particular biochemical processes (Daly J.W. et al, 

1991; Daly J.W., 2007; Franco R., 2008; Gao Z.G. and Jacobson K.A., 2011; Loegering D. et al, 

2004; Nabetani A. et al, 2004). 

 

These “caffeine-adenosine receptor” interactions may result in the suppression of DNA damage 

checkpoint signalling pathways (via inhibition of transducer kinases such as ATM and ATR), 

impairment of nucleic acid metabolism and/or DNA repair pathways (via inhibition of DNA-PK, 

nucleases, ligases and polymerases), abrogation of innate and adaptive immune responses (via 

inhibition of cAMP phosphodiesterases), suppression of tumour multiple drug resistance (via 

inhibition of membrane-bound ATPase-driven drug transporter proteins) and inhibition of tumour 

metastatic progression via destabilisation of HIF1α, VEGF and IL-8 expression (Ding R. et al, 

2012; Gao Z.G. and Jacobson K.A., 2011; Pantelias G.E. and Terzoudi G.I., 2011; Sabisz M. and 

Skladanowski A., 2008; Sarkaria J.N. et al, 1999; You L.P. et al, 2011; Zhou B.B. et al, 2000). 

 

These pharmacodynamic properties of caffeine have been exploited clinically as a complementary 

adjuvant therapy which may potentiate the cytotoxic efficacy of particular polychemotherapeutic, 

radiotherapeutic and gene therapeutic regimens that are employed in the palliative management 

and treatment of aggressive, late-stage metastatic cancerous pathophysiological conditions (Asaad 

N.A. et al, 2000; Franco R. et al, 2008; Jones R.L. and Constantinidou A., 2012; Kawano Y. et al, 

2012; Niknafs B. et al, 2011; Saito Y. et al, 2003). 
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Somewhat paradoxically, caffeine may also attenuate the cytotoxic efficacy of DNA-intercalating 

classes of anti-cancer chemotherapeutics (such as berberine, camptothecin, chelerythrine, 

doxorubicin, ellipticine, sanguinarine and topotecan), via associative Л-Л non-covalent types of  

“caffeine-drug” interactions which compete with and suppress the formation of the respective 

drug-DNA complexes (Hill G.M. et al, 2011; Evstigneev M.P. et al, 2011). 

 

Human Rad9 is implicated in the initiation, selection and regulation of appropriate cell cycle 

checkpoint and/or DNA repair pathways in response to particular genotoxic and environmental 

cytological stresses, as well as alteration of immune responses via Rad9-mediated modulation of 

immunoglogulin class switching type V, D., J gene recombination events (Broustas C.G. and 

Lieberman H.B., 2012), all of which may also be perturbed via the inhibitory effects of caffeine on 

the specific adenosine receptor proteins that are implicated in the mediation of these biochemical 

processes (discussed on the previous page).  

 

A variety of experimental studies have also demonstrated that caffeine suppresses DNA damage 

checkpoint signalling pathways in the eukaryotic model organism S. pombe via inhibition of the 

functional activities of transducer kinases such as Rad3, Tel1, Wis1 and Sty1 (Benzo K. et al, 

1997; Calvo I.A. et al, 2009; Osman F. and McCready S., 1998). 

 

Experimental data acquired in this Ph.D. project indicated that differential activation of the Rad3 

kinase, via Sty1-independent and Sty1–co-operative type “Rad9-S” (NΔ49-Rad9), may be 

implicated in a selective switching mechanism between two distinctive novel checkpoint pathways 

(discussed previously in Section 6.3, pp.556-567) in response to camptothecin-induced genoxtoxic 

stress (Fig 6.42, pp.592-593) or hyperthermically-induced environmental  stress (Fig 6.43, pp.594-

595) – which might also be suppressed via caffeine-mediated inhibition of the transducer kinases.  
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In order to determine the effects of caffeine on these two novel “Rad9-S”-mediated checkpoint 

signalling pathways, comparative acute survival assays were performed on YEA broth cell cultures 

of the “cre-lox”–constructed Δrad9, rad9-c3xHA, rad9-(M50L)-c3xHA and NΔ49-rad9-c3xHA S. 

pombe strains incubated at 30°C in the absence and presence of 10mM caffeine and/or 40μM 

camptothecin (Fig 6.45, p.618), or at 37°C in the absence and presence of 10mM caffeine (Fig 6.46, 

p.619).  

 

The acquired acute cell survival assay data revealed that caffeine enhanced the sensitivity of all the 

S. pombe strains tested to camptothecin-induced genotoxic stress and hyperthermically-induced  

cytological stress (Fig 6.45, p.618 and Fig 6.46, p.619). 

 

The observed caffeine-potentiated cytotoxic sensitivity to camptothecin-induced DNA damage 

also indicated that potential associative Л-Л “caffeine-camptothecin” interactions did not attenuate 

the genotoxic mechanism of action of this topisomerase I inhibitor (discussed previously on p.599) 

in the case of the experimental S. pombe strains utilised in these acute survival assays (Fig 6.45, 

p.618). 

 

Taken together, these two experimental data sets indicated that the caffeine-potentiated cytotoxic 

sensitivity of the S. pombe strains to camptothecin-induced DNA damage and hyperthermically-

induced cytological stress is a consequence of inhibited transducer checkpoint kinases (Fig 6.45, 

p.618; Fig 6.46, p.619; Fig 6.48, p.623). 

 

Intriguingly, all the camptothecin acute cell survival assay data plots exhibited a partial lag phase 

of ~60 minutes duration that was initiated after ~90 minutes elapsed incubation time and 

terminated after ~150 minutes incubation time (Fig 6.45, p.618),  whilst no similar partial lag 

phase was observed in the heat shock acute cell survival assay data (Fig 6.46, p.619). 
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A plausible hypothetical explanation for these observed experimental phenomena may be that 

caffeine and/or  the “caffeine-camptothecin” complex interact with the nuclease-docking/DNA 

binding site within the “Rad9” and “Rad9-S” sub-units and/or nucleobase binding site within the 

Hus1 and/or “Hus1-C” sub-units of the respective full-length heterotrimeric Rad9-Rad1-Hus1 

“closed-ring” complex and the “Rad9-S”:”Hus1-C” “open-ring/C-clamp” which perturb detection 

and/or DNA repair of the camptothecin-induced ssDNA and dsDNA breaks, whilst initiating a 

checkpoint signalling response that is terminated prematurely by the inhibitory action of caffeine 

on transducer and effector kinases (Fig 6.48, p.623) – which could be responsible for the partial 

~60 minute lag-phase manifested in the acute camptothecin survival assay data (Fig 6.45, p.618). 

 

In this hypothetical context, lack of an observable partial lag phase in the acute heat shock survival 

assay data (Fig 6.46, p.619) may be a consequence of hyperthermically-induced disruption of 

associative non-covalent bond formation which are critical for the potential interactions of caffeine 

with the Rad9 and “Rad9-S” nuclease-docking/DNA binding site and Hus1 and/or “Hus1-C”  

nucleobase binding site (discussed in detail previously in Section 6.2.1, pp.493-515).     

 

Comparative 2D PAGE-coupled Western blot analyses of TCA-precipitated total protein extracts, 

acquired from 30˚C YEA broth cell cultures of the S. pombe strains NΔ49-rad9-c3xHA (“rad9-S”-

c3xHA), NΔ49-rad9-c3xHA Δrad3 and NΔ49-rad9-c3xHA Δsty1, incubated in the absence of 

camptothecin or caffeine for 30 minutes and YEA broth cell cultures of the S. pombe strain NΔ49-

rad9-c3xHA incubated at 30ºC in the absence or presence of 40μM camptothecin in the absence or 

presence of 10mM caffeine, or at 37ºC in the absence and presence of 10mM caffeine, probed with 

the anti-HA anti-body, were performed for biochemical verification that caffeine was implicated in 

the inhibition of checkpoint transducer kinases (Fig 6.47, pp.620-622). 
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The acquired data revealed a series of correlated phosphoisoformic profiles for the “Rad9-S” 

truncated variant that were specific to camptothecin-induced DNA damage and hyperthermic 

stress-induced checkpoint pathway signalling responses in which caffeine initiated distinctive 

hypophosphoisoformic shifts as a consequence of caffeine-mediated inhibition of the transducer 

kinases (Fig 6.47, pp.620-622). 

 

Commonly conserved phosphoisoformic traits within all the analysed 2D-PAGE protein samples 

(Fig 6.47A and Fig 6.47B, pp.620-622) and conserved phosphoisoformic traits specific to the 

camptothecin 2D-PAGE profile data set (Fig 6.47A, pp.620-622) and hypothermic stress 2D-

PAGE profile data set (Fig 6.47B, pp.620-622) were also found to correlate with distinctive 

phosphoisoforms in the 2D-PAGE profiles acquired from protein analyses of the 30ºC and 37ºC 

caffeine-treated S. pombe NΔ49-rad9-c3xHA YEA broth cultures,  NΔ49-rad9-c3xHA Δrad3 and 

NΔ49-rad9-c3xHA Δsty1 30ºC YEA broth cultures incubated in the absence of caffeine and 

camptothecin (Fig 6.47A and Fig 6.47B, pp.620-622). 

 

Taken together, these 2D-PAGE-coupled Western blot assay data (Fig 6.47, pp.620-622) provide 

additional biochemical evidence for the postulated  Sty1-independent and Sty1–co-operative type 

“Rad9-S” (NΔ49-Rad9), selective Rad3-activated switching mechanism between two distinctive 

novel checkpoint pathways (discussed previously in Section 6.3, pp.556-567) in response to 

camptothecin-induced genoxtoxic stress (Fig 6.42, pp.592-593) or hyperthermically-induced 

environmental  stress (Fig 6.43, pp.594-595) – which are suppressed via caffeine-mediated 

inhibition of the respective transducer kinases (Fig 6.48, p.623). 

 

In addition to abrogation of checkpoint transducer kinase functional activities, caffeine may also 

be implicated in the inhibition of other adenosine receptor-coupled biochemical processes which 

may potentiate the cytotoxic sensitivity of S. pombe cells to camptothecin-induced DNA damage 

and hyperthermically-induced cytological stresses (Fig 6.48, p.623). 
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Caffeine-mediated impairment of DNA repair pathways may occur as a consequence of its ability 

to interact with and inhibit the catalytic functional activities of specific adenosine receptors which 

are implicated, notably; kinases (eg DNA-PK), nucleases, ligases, polymerases and key enzymatic 

components of nucleotide biosynthesis (Gentner N.E. and Werner N.M., 1975; Kaufmann W.K. et 

al, 2003; Tempel K. and Zellinger C.,1997) – Fig 6.48, p.623. 

 

In the case of both the full-length Rad9 and truncated “Rad9-S”  S. pombe proteins, caffeine and/or 

the caffeine-camptothecin complex may also associate with the novel M50-M74 nuclease 

interactive/DNA-binding domain within these respective proteins (identified via experimental 

work performed in this Ph.D. project – discussed in detail previously in Chapter 5, Section 5.5, 

pp.475-481). 

 

These interactions may perturb the functional activities of the M50-74 domain within the Rad9 and 

“Rad9-S” proteins and/or block duplex access to the nucleobase binding pocket located within the 

Hus1 and “Hus1-C” proteins with consequential abrogation of the detection and/or repair of 

camptothecin- and/or  hyperthermically- induced DNA damage lesion sites within the chromatin 

supramolecular architecture, which would otherwise be mediated via the respective Rad9-Rad1-

Hus1, “Rad9-S”:Rad1:Hus1/”Hus1-C” and/or “Rad9-S”:“Hus1-C” clamp complexes. 

 

In the case of the truncated “Rad9-S” variant, caffeine-mediated inhibition of Mph1 kinase, Rad16 

nuclease and DNA ligase IV enzymes (all of which were identified as critical components of a 

novel DNA repair mechanism via experimental work performed in this Ph.D. project – discussed 

in detail in Chapter 7) could also render S. pombe cells “cre-lox”–engineered for the exclusive 

expression of the NΔ49-Rad9-c3xHA protein highly sensitive to the cytotoxic effects of 

camptothecin- and hyperthermically- induced DNA damage – Fig 6.48, p.623. 
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Caffeine-mediated inhibition of proton pump proteins, such as H+-ATPases and/or vacuolar 

ATPases (V-ATPases) found in both mammalian and S. pombe cells (Iwaki T. et al, 2004; Supino 

R. et al, 2009),  may also be implicated in the potentiation of the cytotoxic effects of 

hyperthermically-induced and/or camptothecin induced DNA damage – Fig 6.48, p.623. 

 

V-ATPases are also overexpressed in some tumour cell types, in which their elevated activities 

have been postulated to increase the pH level of intracellular microenvironments to protect the 

abnormally actively cycling cells from the deleterious effects of excessive proton production as a 

consequence of hypoxia-related hyperglycolytic metabolism, whilst promoting angiogenesis (via 

induced expression of genes that encode various angiogenesis factors – such as VEGF) which 

contributes to metastatic progression (Supino R. et al, 2009). 

 

In the case of the eukaryotic model organism S. pombe, caffeine-mediated inhibition of V-ATPases 

may increase cell wall and plasma membrane permeability and thereby facilitate the intracellular 

accumulation of camptothecin, in addition to enhancement of cellular sensitivity to the genotoxic 

effects of the drug ( Chardwiriyapreecha S. et al, 2009; Codlin S. et al, 2008; Dawson K. et al, 

2008) – Fig 6.48, p.623. 

 

The molecular structure of camptothecin (CPT) is comprised of 5 fused rings (designated A, B, C, 

D and E), in which the A, B, C and D rings constitute the indolizinoquinone functional group 

which enables the drug to intercalate with DNA and the lactone E ring which engages with the 

topoisomerase I enzyme and elicits the formation of DNA breakages within the resultant 

topoisomerase I-CPT-DNA ternary complex formed at the stalled duplex replication fork (Fan Y. 

et al, 1998; Giovanella B.C. et al, 2000; Kerrigan J.E. and Pilch D.S., 2001; Kohn K.W. and 

Pommier Y., 2000; Redinbo M.R. et al, 1998) – Fig 6.48, p.623. 
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Conversion of camptothecin to the inactive carboxylate species, via lactone E ring hydrolysis, 

predominates under conditions of high pH, whilst low pH environments favour the formation of 

the active lactone form of the drug (Beretta G.L. and Zunino F., 2007; Ivanova B. and Spiteller M., 

2012; Liu L.F. et al, 2000) – Fig 6.48, p.623. 

 

At the normal physiological pH value of pH7.4 the intracellular concentrations of carboxylate 

(inactive form) and lactone (active form) species of camptothecin are equivalent (Ivanova B. and 

Spiteller M., 2012; Liu L.F. et al, 2000). 

 

Caffeine-mediated inhibition of V-ATPases could result in a significant fall in intracellular pH 

which would favour predominant formation of the protonated, cytoxically-active lactone form of 

camptothecin, in which the positively charged nitrogen atoms within the B and C rings may also 

enhance the DNA-binding affinity of the drug via additional electrostatic interactions with the 

negatively charged phosphate groups of the duplex sugar-phosphate backbone. 

 

In S. pombe, Hal4 kinase is an essential regulator of major potassium ion transporters (such as 

Trk1 and Trk2) in which experimental studies have also demonstrated that abrogated Hal4 

functional activities result in membrane hyperpolarisation-mediated intracellular transport of 

various cationic species and may as a pleiotropic determinant of cellular hypersensitivity to the 

cytotoxic effects of a range of different types of chemotherapeutic agents which act as 

enviromental stress- or genotoxic- inducers (Thornton G. et al, 2005). 

 

Previous experimental studies have also revealed that Hal4 kinase may be implicated in the 

activation of the S. pombe Bfr1 protein, which is a functionally equivalent homologue of the 

mammalian ATPase-binding cassette P-glycoprotein class of multiple drug transporters (ABC-

MDRs), in which Bfr1 also mediates the induced expression of the Brf2 ABC-MDR protein 

homologue (Arioka M. et al, 1998; Thornton G. et al, 2005; Turi G. and Rose J.K., 1995). 
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It is therefore hypothetically conceivable that caffeine-mediated inhibition of Hal4 kinase, in 

conjunction with abrogated V-ATPase functional activities, may result in the cytological 

accumulation of high levels of the active, protonated form of camptothecin (CPT) with 

consequential potentiation of CPT-induced DNA damage which renders S. pombe cells 

hypersensitive to the cytotoxic effects of the drug (Fig 6.48, p.623). 

 

In S. pombe, Hal4 kinase-mediated activation of Brf1 may also impinge upon Brf1-mediated 

activation of the transcriptional factor Pap1 which is then translocated from the cytoplasm to the 

nucleus via the Ran nucleotide GDP/GTP exchange factor: Hba1 GTPase complex where Pap1 

then binds to its target promoters of the brf1/hba2, caf5 and pmd1 genes with consequential 

elevation of expressed cytological levels and associated up-regulated functional activities of the 

Hba2, Caf5 and Pmd1 proteins (Arioka M. et al, 1998; Calvo I.A. et al, 2009; Thornton G. et al, 

2005; Toone M.W. et al, 1998; Turi G. and Rose J.K., 1995) – Fig 6.48, p.623. 

 

Specific caffeine- and oxidative stress- induced cytological stress checkpoint signalling responses 

are also initiated via Sty1 kinase-mediated activation of the Pap1 transcription factor, which in turn 

up-regulates the activities of the Brf1/Hba2, Caf5 and Pmd1 proteins that are exported to the 

plasma membrane where they function as ATPase-driven pumps for the intracellular removal of 

caffeine, in which Hba2 is the major caffeine transporter  (Arioka M. et al, 1998; Calvo I.A. et al, 

2009; Thornton G. et al, 2005; Toda T. et al, 1991; Toone M.W. et al, 1998; Turi G. and Rose J.K., 

1995) – Fig 6.48, p.623. 

 

Experimental data acquired in this Ph.D project also indicated that Sty1-coupled “Rad9-S”-

mediated Rad3 activation may constitute a critical initiation component of a novel checkpoint 

response to camptothecin-induced DNA damage (discussed previously in Section 6.3, pp.556-567 

and in Fig 6.42, pp.592-593) which may impinge upon and modulate the functional activity of this 

Sty1 → Pap1 pathway. 
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Both the Brf1/Hba2 and Pmd1 proteins also act functionally-equivalent homologues of mammalian 

classes of P-glycoprotein ABC-MDR transporters, which may be implicated in the attenuation of 

the cytotoxicity of genotoxic- and stress- inducing agents (such as anti-cancer chemotherapeutics) 

via expediating their intracellular removal (Arioka M. et al, 1998; Calvo I.A. et al, 2009; Thornton 

G. et al, 2005; Toda T. et al, 1991; Toone M.W. et al, 1998; Turi G. and Rose J.K., 1995) – Fig 

6.48, p.623. 

 

The functional activity of the Pap1 transcription factor is regulated via the nuclear exportin protein 

Crm1, which translocates Pap1 from the nucleus to the cytoplasm (Calvo I.A. et al, 2009; Kumada 

K. et al, 1996; Toda T. et al, 1992; Toone W.M. et al, 1998) – Fig 6.48, p.623.  

 

Specific caffeine-adenosine receptor interactions may be implicated in the direct inhibition of the 

Brf1/Hba2, Pmd1 and Brf2 ATPase-driven protein transporters and abrogation of Pap1 

transcriptional activities via inhibition of the Sty1 transducer kinase and the Ran nucleotide 

GDP/GTP exchange factor: Hba1 GTPase complex nuclear transporter which would result in the 

cytosolic retention of Pap1 (Fig 6.48, p.623). 

 

The net effect of these inhibitory caffeine-adenosine receptor interactions would be the elevated 

cytological accumulation of intracellular caffeine and the active lactone form of camptothecin, in 

conjunction with the consequential enhanced caffeine-mediated suppression of DNA repair 

pathways and cell cycle checkpoint signalling responses (discussed previously – pp.600-606) 

which would potentiate the cytotoxic sensitivity of the S. pombe cells to hyperthermically-induced 

stress and camptothecin-induced DNA damage (Fig 6.48, p.623).  

 

Functionally-equivalent homologous components of these S. pombe caffeine-inhibited adenosine 

receptor proteins are also expressed in mammalian cells (Table 6.1, p.624).   
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Recent experimental studies have also indicated that ATR and JNK kinase-mediated post-

translational modifications of the human Rad9B C-terminal tail domain may enable it to interact 

with other signalling proteins which are implicated in novel G1/S cell cycle checkpoint pathways 

in response to nucleolar stress (Pérez-Castro A.J. and Freire R. et al, 2012). 

 

Both the ATR and JNK kinases are mammalian equivalent functional homologues of the S. pombe 

Rad3 and Pap1 kinases which may be implicated in caffeine-modulated checkpoint responsive 

pathways (Fig 6.48, p.623; Table 6.1, p.624) – discussed previously on pp.606-607. 

 

In silico multiple sequence alignment analyses of the S. pombe Rad9 protein with the human 

Rad9B paralogue and its truncated isoforms indicated significant conserved homology between the 

S. pombe “Rad9-S” variant, H. sapiens Rad9B isoform 2 (Uniprot ID: Q6WBX8-2) and H. sapiens 

Rad9B isoform 3 (Uniprot ID: Q6WBX8-3). 

 

Whilst comparative in silico multiple sequence analyses of the S. pombe full-length Rad9 protein 

and its novel truncated variants “Rad9-S”, “Rad9-VS” and “Rad9-T” with the full-length H. 

sapiens Rad9B protein and its truncated variants indicated significant conserved homology within 

the two alternative C-termini of the Rad9B isoforms. 

 

These bioinformatics-based analyses also revealed that the S. pombe full-length Rad9 and 

truncated “Rad9-S” proteins contained two conserved sequences of significant homology to the 

two alternative human Rad9B C-termini (discussed previously in Chapter 4, Section 4.9.2, pp.407-

417). 

 

The S. pombe “Rad9-VS”  C-terminus exhibited a significant degree of homology with the 

“GSFSIF” C-terminal sequence of the human Rad9B isoforms 1, 2 and 3, whilst the N-terminus of 

the S. pombe “Rad9-T” exhibited a significant degree of homology with the 

“VCCRKEFNGSDAKYFCII” C-terminal sequence of the human Rad9B isoforms 4 and 5. 
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These in silico data indicate the intriguing possibility that the identified S. pombe truncated Rad9 

isoforms; “Rad9-S”, “Rad9-VS” and “Rad9-T” may possess novel functions equivalent to those of 

the H. sapiens full-length Rad9B paralogue and its respective isoforms. 

 

Whether or not hyperthermically-induced expression of the Rad9B paralogue and/or its isoforms 

occurs in human cells remains to be elucidated. 

 

However taking into consideration the experimental data acquired in this Ph.D. project, which 

indicate two distinctive novel checkpoint pathways mediated by the truncated “Rad9-S” protein 

variant in response to camptothecin-induced DNA damage or heat shock that are suppressed by 

caffeine (discussed in detail previously in Section 6.6, pp.588-597), it is hypothetically 

conceivable that homologous equivalent functional pathways are elicited by the human Rad9B 

paralogue and/or its isoforms (Fig 6.49, p.625). 

 

The heat shock transcription factor, HSF1, is implicated in tumour metastatic progression and 

regulation of the relative expression, cytological levels and functional activities of Hsp27, Hsp70, 

Hsp90 and the hypoxia inducible factor, HIF1α  (Calderwood S.K., 2000; Calderwood S.K. and 

Gong J., 2011; Ciocca D.R. and Calderwood S.K., 2005; Gabai V.L. et al, 2012; Meng L. et al, 

2010; Meng L. et al, 2011) – Fig 6.49, p.625. 

 

Elevated cytosolic levels of Hsp27 and Hsp70 chaperone proteins are implicated in the suppression 

of malignant neoplastic transformation-induced apoptotic pathways, whilst Hsp90 mediates a 

range of dysfunctional proto-oncogenic activities via the induced transcription, translation and 

subsequent cytological accumulation of oncogenes and mutated oncoproteins (oncogeme), with 

consequential promotion of metastatic evolution  (Calderwood S.K., 2000) – Fig 6.49, p.625. 
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A variety of experimental studies have indicated that thermal stress responsive heat shock proteins, 

including Hsp27, Hsp70, Hsp72 and Hsp90, are implicated in the development of acquired 

multiple drug resistance in breast tumour cells (Burke A.R. et al, 2012; Calderwood S.K. et al, 

2010; Calderwood S.K. and Gong J., 2011; Ciocca D.R. and Calderwood S.K., 2005; Gabai V.L. 

et al, 2009; McDowell C.L. et al, 2009; Meng L. et al, 2011; Rylander M. et al, 2010; Vargas-Roig 

L.M. et al, 1998). 

 

Human Rad9A-TPR2 interactions (Xiang S.L. et al, 2001) may also modulate specific functional 

activities of the Hsp90/Hsp70-mediated chaperone protein-folding pathway which is implicated in 

the suppression of proteotoxic-induced carcinogenesis events (discussed in detail previously in 

Chapter 1, Section 1.2.4, pp.75-85).  

 

Human Rad9B-TPR2 interactions, may likewise be implicated in the functional activity 

modulation of the Hsp90/Hsp70-mediated chaperone protein-folding pathway for suppression of 

proteotoxic-induced impairment of cytological mechanisms which maintain genomic 

integrity/stability and act as a preventative “safe-guard” against the development of carcinogenesis 

(Neznanov N. et al, 2011; Sherman M.Y. et al, 2011; Xiang S-L. et al, 2001) – Fig 6.49, p.625. 

 

The Hsp90 protein may also modulate Wee1 kinase functions that trigger “down-stream” effector 

signalling-mediated pathways which are implicated in the initiation of  G2/M cell cycle checkpoint 

arrest responses to genotoxic stress“feedback-regulation” of Hsp90 functional activities within the 

Hsp90/Hsp70-mediated protein chaperone pathway (Aligue R. et al, 1994; Mollapour M. et al, 

2010; Tse A.N. et al, 2009) – Fig 6.49, p.625. 
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Post-translational phosphorylation-mediated activation of the Wee1 kinase is also mediated via the 

secondary (distal) checkpoint kinase, CHK2, which may be elicited via novel human Rad9-B-

initiated differential checkpoint signalling pathways in response to hypoxically- and 

hyperthermically-induced cytological stresses (via the Rad9-B:Rad1:Hus1/Hus1B heterotrimic 

clamp complex) or specific types of DNA damage (via the Rad9-B:Hus1/Hus1B heterodimeric 

complex) – Fig 6.49, p.625. 

 

These distinctive checkpoint pathways may be homologous functional equivalents of the two novel 

“Rad9-S”-mediated differential checkpoint responsive pathways which are initiated via 

hyperthermic stress and camptothecin-induced DNA damage and involve the heterotrimeric 

“Rad9-S”:Rad1:“Hus1-C”  clamp complex and the heterodimeric “Rad9-S”:“Hus1-C” clamp 

complex (discussed in detail previously in Section 6.6, pp.588-597) – Fig 6.49, p.625. 

 

In this hypothetical context, Rad9B:Rad1:Hus1/Hus1B-associative p38-MAPK, ATR/ATRIP, 

53BP1, BRCA1, Claspin ternary complex interactions may regulate the levels and activities of 

specific hypophosphorylated isoforms of the secondary (distal) transducer kinase CHK1 (Ikegami 

Y. et al, 2008; Lu Y.P. et al, 2011; Kim A.J. et al, 2011; Petermann E. et al, 2008; Rybaczek D. et 

al, 2011; Shiromizu T. et al, 2006),  which elicit a prolonged G2 arrest (via inhibition of spindle 

polar body functions that promote mitotic exit) and suppress catastrophic premature chromosomal 

condensation in response to hyperthermically-induced cytological stress (Fig 6.49, p.625). 

 

Whilst the Rad9B:Hus1/Hus1B-associative ATR/ATRIP, p38-MAPK, Mph1, CHK2, Claspin 

ternary complex interactions may suppress phosphorylated-activation of the secondary (distal) 

CHK1 transducer kinase and initiate mutual activation of Mph1 and CHK2 kinases which may 

elicit “down-stream” effects such as Cdc14-activation of DNA replication and nucleolin-mediated 

complex-sequestration regulation of DNA damage responsive proteins (discussed previously in 

Section 6.5, pp.584-587 and Section 6.6, pp.588-597) in response to genotoxically-induced DNA 

damage events (Fig 6.49, p.625). 
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“Phosphorylated conservation” of the Serine 317 residue may be a critical pre-requisite for the 

nuclear translocation of Chk1 in the case of the Rad9B:Rad1:Hus/Hus1-B-mediated checkpoint 

signalling responses to oxidative and hyperthermic stresses, which is suppressed in the case of the 

Rad9B:Hus1/Hus1-B-mediated checkpoint responses to genotoxic stresses and/or DNA damage 

events (Fig 6.49, p.625). 

 

 

Co-ordinated DNA replication, chromosomal condensation and anaphase entry cytological events 

are also orchestrated via both the Chk1 and Wee1 kinases (Fasulo B. et al, 2012), in which ATM 

and ATR primary (proximal) transducer checkpoint kinase-mediated post-translational 

phosphorylation-modification of Chk1 at Ser317 initiates a mitotic arrest that prevents catastrophic 

premature chromosomal condensation in response to dysfunctional S-phase events induced by 

genotoxic and/or environmental stresses (Rybaczek D. and Kowalewicz-Kulbat M., 2011). 

 

 

It is therefore hypothetically conceivable that Rad9B:Rad1:Hus/Hus1-B-mediated checkpoint 

signalling responses may also be implicated in the modulation of ATM and ATR primary 

(proximal) transducer checkpoint kinase-mediated post-translational phosphorylation-modification 

of Chk1 at Ser317 which serves as biochemical trigger for the initiation of a prolonged G2 arrest 

(ie blocked G2 exit into anaphase) which prevents premature chromosomal condensation-mediated 

propagation of detrimental genetic mutations under genotoxic and/or environmental types of 

cytological  stress conditions – Fig 6.49, p.625. 

 

 

Rad9B:Hus1/Hus1B-associative ATR/ATRIP, p38-MAPK, Mph1, CHK2, Claspin ternary 

complex interactions may also be implicated in the checkpoint – co-ordinated initiation of DNA 

repair processes via Mph1-mediated post-translational phosphorylated activation of a potential 

nuclease-interactive/DNA-binding site domain (discussed in detail previously in Chapter 5, 

Section 5.5, pp.475-481) within the Rad9B protein (discussed in detail in Chapter 7) – Fig 6.49, 

p.625. 

 

 

The secondary (proximal) transducer kinase, CHK2, may also participitate in biochemical “cross-

talk” regulation of the respective differential checkpoint pathway responses – Fig 6.49, p.625.  

 

 

 

 

                                              [612] 



Experimental studies performed in this Ph.D. research work also indicated that both the truncated 

“Rad-S” protein variant and Hhp1 kinase may be implicated in the temporal regulation of a novel 

camptothecin-induced DNA damage checkpoint signalling (discussed previously in detail in  

Chapter 6, Section 6.2.5, pp.547-550), whilst induction of “Rad9-S” expression was an exclusive 

heat shock response which was limited to rapidly cycling cells within a ~20 minute period of 

hyperthermic exposure which coincided with the approximate duration of the G1/S phase of the S. 

pombe cell cycle (discussed previously in detail in Chapter 4, Section 4.6, pp.392-393 ).  

 

These observed phenomena may also correlate with experimental studies which have revealed that 

the human Rad9B paralogue initiates a novel checkpoint signalling response to nucleolar stress 

responses, via C-terminal tail domain interactions with both ATR and JNK kinases, which elicits a 

G1/S phasic cell cycle arrest (Pérez-Castro A.J., and Freire R., 2012). 

 

 

In mammalian cells,  Casein kinase 2 is implicated in the modulation of circadian checkpoints 

(Allada R. and Meissner R.A, 2005; Lee C.C., 2005; Olsen B.B. et al, 2012; Smith E.M. et al, 

2008; Yagita K. et al, 2009). 

 

Casein kinase 2 also regulates the human RadA C-terminal tail domain interactions with the 

TopBP1 mediator/scaffold protein via phosphorylation of human Rad9A at Ser341 and Ser387 – 

which is also phosphorylated by ATM (Takeishi Y. et al, 2010). 

 

These phosphorylation types of post-translational modifications of the human Rad9A protein 

enable the Rad9A:Rad1:Hus1 complex to engage with TopBP1 and other proteins to elicit 

differential cell cycle checkpoint responses to environmental and genotoxic stresses which 

adversely impinge upon the cytological propagation of genomic integrity (discussed previously in 

detail in Chapter 1, Section 1.2.2, pp.33-65). 
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In human tumour cell lines, topoisomerase I hyperphosphorylation-related cytotoxic sensitivity to 

camptothecin-based anti-neoplastic chemotherapeutic agents is also modulated via casein kinase 2 

(Bandyohyay K. and Gjerset R.A. 2011). 

 

Taken together, it is hypothetially conceivable that casein kinase 2- and ATM- mediated post-

translational phosphorylated modifications of the human Rad9B protein may be implicated in the 

temporal regulation of its mediated differential checkpoint signalling responses to oxidative, 

hyperthermic and genotoxic types of cytological stresses (Fig 6.49, p.625). 

 

These Rad9B post-translational modifications may also induce specific localised conformational 

changes within its supramolecular structure which enable it to enagage with other proteins which 

are implicated in the intiation and/or signal propagation of the differential checkpoint pathways 

(Fig 6.49, p.625).   

 

 

Casein kinase 2-mediated phosphorylated-modulation of the functional activities of the Hsp90 

protein impinge upon the  regulation the Hsp70/Hsp90 chaperone pathway and may also dictate 

the relative sensitivity of tumour cells to anti-neoplastic chemotherapeutic drug-induced 

proteoxtoxicity (Mollapour M. et al, 2011) – Fig 6.49, p.625. 

 

These differentially-orchestrated pathway interactions may also adversely impinge upon and 

negate the pharmacological efficacy of proteotoxic stress-targeted chemotherapeutic agents, such 

as Hsp90 inhibitors, which are utilised to combat the development of acquired tumour multiple 

drug resistance to genotoxic-inducing classes of anti-neoplastic drugs  (Neznanov N. et al, 2011; 

Sherman M.Y. et al, 2011a ; Sherman M.Y. et al, 2011b). 
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HIF1α  may also be implicated in the initiation of the p38-MAPK-mediated checkpoint pathways  

which in turn initiate induced expression of V-ATPases and activation of the bZip transcriptional 

protein kinase c-Jun, in response to oxidative and possibly hyperthermic cytological stresses.  

 

These HIF1α-initiated biochemical pathways could attenuate the pharmacological efficacy of 

various anti-cancer chemotherapeutic agents via deleterious V-ATPase-mediated intracellular 

compartmentalised pH alteration of their respective pharmodynamic and pharmacokinetic 

properties (as may be the case for camptothecin – discussed previously on pp.604-607) and c-Jun-

induced expression of different types of ATPase cassette-binding multiple drug transporters (ABC-

MDRs), including the P-glycoprotein superfamily, MRP1 = Mitoxantrone-Resistant Protein 1 and 

BCRP = Breast Cancer Resistant Protein (Rajendra R. et al, 2003; Schellens J.H.M. et al, 2000) – 

Fig 6.49, p.625. 

 

 

HIF1α-modulation of specific V-ATPase functional activities may protect abnormally actively 

cycling neoplastic cells from the deleterious effects of hypoxia-related hyperglycolytic metabolism 

and infer genotoxic-resistance to radiotherapy treatments (ie tumour radioresistance), as a 

consequence of removal and suppression of harmful intracellular accumulative levels of protons 

which are generated via ionising radiation-induced hydrolytic free radical reactions and elevated 

glycolysis (Supino R. et al, 2009). 

 

Anti- and pro- apoptotic signalling pathways within mitochondria (Zeng C.W. et al, 2012) may 

also be subject to biochemical modulation via combinatorial alterations of the relative sub-

compartmental levels of protons (ie pH microenvironments) within these organelles, which in turn 

may be “governed” via the functional activities of specific HIF1α–regulated V-ATPases that 

maybe implicated in the activation or inhibition of mortalin- and/or TRAP1- initiated apoptotic 

suppression (Calderwood S.K., 2010), with consequential promotion of metastatic tumour 

evolution and resistance to the cytotoxic effects of hyperthermically-potentiated anti-neoplastic 

polychemotherapeutic and radiotherapeutic treatment efficacies – Fig 6.49, p.625. 

                                                [615] 



HIF1α-enhanced V-ATPase functional activities may also promote angiogenesis, via induced 

expression of genes that encode various angiogenesis factors – such as VEGF, which could be a 

key biochemical factor in the promotion of tumour metastatic progression (Supino R. et al, 2009) – 

Fig 6.49, p.625. 

 

These pathways may adversely impinge upon and attenuate the pharmacological efficacy of 

camptothecin analogues, Hsp90 inhibitors and mTOR inhibitors which are utilised to suppress 

HIF1α-mediated biochemical mechanisms of hypoxic resistance of solid tumours to 

radiotherapeutic and polychemotherapeutic regimens employed in the clinical treatment and 

palliative manage of aggressive, malignant neoplastic pathophysiological conditions (Gabai V.L. et 

al, 2008; Gabai V.L. et al, 2009; Gabai V.L. et al, 2012; Li L. et al, 2011; Meng L. et al, 2010; 

Wilczynski J. et al, 2011). 

 

Both the ATM primary (proximal) transducer kinase ATM casein kinase 2 (CK2) are implicated in 

the post-translational phosphorylated-mediated modulation of cAMP response element co-

activators, such as the bZip protein CREB (Shanware T.P. et al, 2007). 

 

ATM and p38-MAPK-mediated checkpoint pathways are also implicated in the activation of the 

bZip transcriptional protein kinase c-Jun, in response to oxidative and possibly hyperthermic 

cytological stresses, which are inhibited by caffeine (Ravi D. et al, 2008) – Fig 6.49, p.625. 

 

The interaction of CKIP1 with the ATM, CK2α and c-Jun kinases may modulate their respective 

functional activities (Nie J. et al, 2012; Zhang L. et al, 2006), which may impinge upon the 

differential ATM- and ATR- mediated signalling pathways that elicit specific alterations of post-

translational phosphorylation profiles of the secondary (distal) transducer checkpoint kinase Chk1 

in response to hypoxically-induced cytological stresses (Kulkarni A. and Das K-C., 2008) – Fig 

6.49, p.625. 
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Both caffeine and hyperthermia may be utilised advantageously as potentiate adjuvants in the 

clinical treatment and palliative management of a variety of aggressive, malignant neoplastic 

pathophysiological conditions in order to enhance the efficacy of the wide range of employed 

polychemotherapeutic and radiotherapeutic regimens (Asaad N.A. et al, 2000; Belka C. et al, 

2006; Burke A.R. et al, 2012; de Anta J.M. et al, 2006; Farray D. et al, 2006; Franco R. et al, 

2008; Overgaard K. and Overgaard J., 1974; Horsman M.R. and Overgaard J., 2007; Le Page S. et 

al, 2006; Maskaleris T. et al, 1998; Miwa S. et al, 2010; Mohamed F. et al, 2003; Ng C.E. et al, 

1996; Niknafs B. et al, 2011; Nozoe T. et al, 2007; Palazzi M. et al, 2010; Pantazis P. et al, 1999; 

Sinn B. et al, 2010; Wang T.J. et al, 2010; Zagar T.M. et al, 2010). 

 

The clinical administration of these combinatorial adjuvant caffeine and/or hyperthermic 

chemotherapeutic and/or radiotherapeutic treatments to the cancer patient may also be conducted 

under rigorous, specific chronological dosing schedules in order to maximise their respective 

efficacies (Ahowesso C. et al, 2011; Ballesta A. et al, 2011; Garufi C. et al, 2011; Giacchetti S. et 

al, 2002; Giacchetti S. et al, 2012; Innominato P.F. et al, 2012; Lévi F. et al, 2011; Lévi F. and 

Okyar A., 2011; Kirichenko A.V. and Rich T.A., 1999; Kobayashi A. et al, 2002; Rich T.A. et al, 

2000; Rich T.A. et al, 2002; Savvidis C. and Koutsilieris M., 2012; Sukhina E.N. et al, 2012).  

 

The postulated novel checkpoint response pathway signalling pathway models, deduced 

hypothetically with regard to the potential formation and activities of the novel S. pombe “Rad9-S” 

equivalent functional human Rad9B:Rad1:Hus1/Hus1-B and Rad9B:Hus1/Hus1-B DNA clamp 

complex homologues (discussed in detail previously on pp.607-616), could also be implicated in 

novel cytotoxic attenuation mechanisms of metastatic tumour resistance to these anti-neoplastic 

clinical treatment regimens (Fig 6.49, p.625). 
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Fig 6.45: Acute Cell Survival Assays – Caffeine & Camptothecin      

 

Individual 25mL YEA broth medium cell cultures of the indicated S. pombe strains were 

incubated at 30˚C over a 12 hour time period, then diluted to an optical density A595 = 0.25 

with the appropriate volume of YEA medium and the resultant diluted cultures re-incubated 

at  30˚C for a further time period of ~2.5 hours until they had attained an optical density 

value of A595 = 0.5 – after which time the resultant cultures of actively cycling cells were re-

incubated at 30˚C for a further 60 minutes in YEA in the absence of caffeine or in the 

presence of 10mM caffeine. 

 

Comparative acute cell survival assays were then performed on the resultant YEA broth 

cultures of the indicated S. pombe strains over a total time period of 4 hours, in the absence 

or presence of 40μM camptothecin (CPT), as per the methodology described in Chapter 2, 

Section 2.9.2.2(ii), pp.239-241. 

 

 

A: Comparative control acute cell survival assays performed with the indicated S. pombe  

       strain cultures, which had no caffeine treatment, in the absence of camptothecin. 

 

B: Comparative acute cell survival assays performed with the indicated S. pombe strain 

       cultures incubated in 10mM caffeine, in the absence of camptothecin. 

 

C: Comparative control acute cell survival assays performed with the indicated S. pombe  

       strain cultures, which had no caffeine treatment, in the presence of 40μM camptothecin. 

 

D: Comparative acute cell survival assays peformed with the indicated S. pombe strain 

       cultures incubated in 10mM caffeine, in the presence of 40μM camptothecin. 
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     Fig 6.46: Acute Cell Survival Assays – Caffeine and Heat Shock 
 

 

 
Individual 25mL YEA broth medium cell cultures of the indicated S. pombe strains were 

incubated at 30˚C over a 12 hour time period, then diluted to an optical density A595 = 0.25 

with the appropriate volume of YEA medium and the resultant diluted cultures re-incubated 

at  30˚C for a further time period of ~2.5 hours until they had attained an optical density 

value of A595 = 0.5 – after which time the resultant cultures of actively cycling cells were re-

incubated at 30˚C for a further 60 minutes in YEA in the absence of caffeine or in the 

presence of 10mM caffeine. 

 

Comparative acute cell survival assays were then performed on the resultant YEA broth 

cultures of the indicated S. pombe strains over a total time period of 4 hours at either 30ºC or 

37ºC, as per the methodology described in Chapter 2, Section 2.9.2.2(ii), pp.239-241. 

 

 

A: Comparative control acute cell survival assays performed with the indicated S. pombe  

       strain cultures, which had no caffeine treatment, incubated at 30ºC. 

 

B: Comparative control acute cell survival assays performed with the indicated S. pombe 

       strain cultures, which had no caffeine treatment, incubated at 37ºC. 

 

C: Comparative acute cell survival assays performed with the indicated S. pombe strain 

       cultures, incubated in the presence of 10mM caffeine at 30ºC. 

 

D: Comparative acute cell survival assays performed with the indicated S. pombe strain 

       cultures, incubated in the presence of10mM caffeine at 37ºC. 
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Fig 6.47: Comparative 2D PAGE – Coupled Western Blot Analyses of 

Differential Phosphoisoform Modulation of the Truncated “Rad9-S” 

Protein Variant Implicated in Cytological Checkpoint Signalling 

Responses to Camptothecin-Induced Genotoxicity and Hyperthermic 

Stress  
 

 
 

A: Comparative “caffeine versus camptothecin” combinatorial analyses 

       (A detailed decription of these data analyses is  provided in the figure  

        legend on p.621) 

 

B:Comparative “caffeine versus heat shock” combinatorial analyses 

      (A detailed decription of these data analyses is  provided in the figure  

       legend on p.622) 

 

 

 

NOTE: Blue circles denote conserved phosphoisoforms which are common to both data sets. 

               

              Red boxes and circles denote conserved phosphoisoform differences and similarities 

              which are distinctive to each respective data set. 
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A: Comparative “Caffeine Versus Camptothecin” Combinatorial Analyses 
 

rad9-S-c3xHA,  rad9-S-c3xHA Δrad3 and rad9-S-c3xHA Δsty1 

    
Individual 100mL YEA broth medium cell cultures of the “Cre-Lox” – constructed S. pombe strains 

NΔ49-rad9-c3xHA (“Rad9-S”), NΔ49-rad9-c3xHA Δrad3 and NΔ49-rad9-c3xHA Δsty1, were grown 

overnight (30˚C for  ~12 hour time period), then diluted to an optical density of A595 = 0.25 with the 

appropriate volume of YEA medium and the resultant diluted cultures re-incubated at  30°C for a 

further time period of ~2.5 hours until they had attained an optical density value of A595 = 0.5. 

 

The resultant YEA broth cultures of actively cycling cells, were then incubated at 30ºC for a further 

30 minutes in the absence of 10mM caffeine and 40μM camptothecin.  

 

 

     

rad9-S-c3xHA + Caffeine and rad9-S-c3xHA + Camptothecin Analyses 

  

Individual 100mL YEA broth medium cell cultures of the “Cre-Lox” – constructed S. pombe strain 

NΔ49-rad9-c3xHA (“Rad9-S”) were grown overnight (30˚C for  ~12 hour time period), then diluted to 

an optical density of A595 = 0.25 with the appropriate volume of YEA medium and the resultant 

diluted cultures re-incubated at  30°C for a further time period of ~2.5 hours until they had attained 

an optical density value of A595 = 0.5. 

 

The resultant YEA broth cultures of actively cycling cells, were then incubated at 30ºC for a further 

30 minutes in the presence of either 10mM caffeine or 40μM camptothecin.  

 

 

 

rad9-S-c3xHA + Caffeine and Camptothecin 

 

An individual 100mL YEA broth medium cell culture of the “Cre-Lox” – constructed S. pombe strain 

NΔ49-rad9-c3xHA (“Rad9-S”) was grown overnight (30˚C for  ~12 hour time period), then diluted to 

an optical density of A595 = 0.25 with the appropriate volume of YEA medium and the resultant 

diluted culture re-incubated at  30°C for a further time period of ~2.5 hours until it had attained an 

optical density value of A595 = 0.5. 

 

The resultant YEA broth culture of actively cycling cells was then incubated with 10mM caffeine and 

40μM camptothecin for a further 30 minutes at 30ºC. 

 

 

     

TCA-precipitated total protein extract samples were then prepared from the appropriate  *calculated 

volumetric aliquot of each culture (*equivalent to 40 A595 optical density units) and utilised in 

comparative  2D-PAGE–coupled Western Blot analyses – probed with the  primary “anti-HA” 

antibody. 

 

[Protein sample preparation, 2D PAGE and Western blot methodologies are described in 

Chapter 2, Section 2.8.3.1, pp.214-217; Section2.8.5.1, pp.225-230 and Section 2.8.6., pp.231-

233] 
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B: Comparative “Caffeine Versus Heat Shock” Combinatorial Analyses 
 

rad9-S-c3xHA,  rad9-S-c3xHA Δrad3 and rad9-S-c3xHA Δsty1 

    
Individual 100mL YEA broth medium cell cultures of the “Cre-Lox” – constructed S. pombe strains 

NΔ49-rad9-c3xHA (“Rad9-S”), NΔ49-rad9-c3xHA Δrad3 and NΔ49-rad9-c3xHA Δsty1, were grown 

overnight (30˚C for  ~12 hour time period), then diluted to an optical density of A595 = 0.25 with the 

appropriate volume of YEA medium and the resultant diluted cultures re-incubated at  30°C for a 

further time period of ~2.5 hours until they had attained an optical density value of A595 = 0.5. 

 

The resultant YEA broth cultures of actively cycling cells, were then incubated at 30ºC for a further 

30 minutes in the absence of 10mM caffeine.  

 

 

     

rad9-S-c3xHA + Caffeine and rad9-S-c3xHA + Heat Shock  Analyses 

  

Individual 100mL YEA broth medium cell cultures of the “Cre-Lox” – constructed S. pombe strain 

NΔ49-rad9-c3xHA (“Rad9-S”) were grown overnight (30˚C for  ~12 hour time period), then diluted to 

an optical density of A595 = 0.25 with the appropriate volume of YEA medium and the resultant 

diluted cultures re-incubated at  30°C for a further time period of ~2.5 hours until they had attained 

an optical density value of A595 = 0.5. 

 

The resultant YEA broth cultures of actively cycling cells, were then incubated at 30ºC for a further 

30 minutes in the presence of 10mM caffeine or at 37ºC in the absence of caffeine. 

 

 

 

rad9-S-c3xHA + Caffeine and Heat Shock 

 

An individual 100mL YEA broth medium cell culture of the “Cre-Lox” – constructed S. pombe strain 

NΔ49-rad9-c3xHA (“Rad9-S”) was grown overnight (30˚C for  ~12 hour time period), then diluted to 

an optical density of A595 = 0.25 with the appropriate volume of YEA medium and the resultant 

diluted culture re-incubated at  30°C for a further time period of ~2.5 hours until it had attained an 

optical density value of A595 = 0.5. 

 

The resultant YEA broth culture of actively cycling cells was then incubated with 10mM caffeine and 

for a further 30 minutes at 37ºC. 

 

 

     

TCA-precipitated total protein extract samples were then prepared from the appropriate  *calculated 

volumetric aliquot of each culture (*equivalent to 40 A595 optical density units) and utilised in 

comparative  2D-PAGE–coupled Western Blot analyses – probed with the  primary “anti-HA” 

antibody. 

 

[Protein sample preparation, 2D PAGE and Western blot methodologies are described in 

Chapter 2, Section 2.8.3.1, pp.214-217; Section2.8.5.1, pp.225-230 and Section 2.8.6., pp.231-

233] 
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Fig 6.48: Potential Biochemical Targets Implicated in Caffeine-

Mediated Potentiation of the Cytotoxic Effects of Hyperthermic 

Stress and Camptothecin-Induced DNA Damage in S. pombe Cells 

“Cre-Lox”–Engineered for the Exclusive Expression of the “Rad9-S” 

Truncated Protein Variant 
 

           

         →= Functional Pathways    → and  ──┤= Potential Caffeine-Targeted Adenosine 

                                                                                          Receptor-Mediated Pathway Functions                                                                                 

      
       A detailed explanation of this hypothetical model is provided in the text (pp.600-607). 
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Table 6.1: Comparative Summary of Functionally-Equivalent 

Homologous Protein Targets in S. pombe and H. sapiens Implicated in 

Caffeine-Induced Potentiation of the Cytotoxic Effects of 

Hyperthermic Stress and Camptothecin-Induced DNA Damage 

 

[Compiled via Collated Information From:  

Arioka M. et al, 1998; Calvo I.A. et al, 2009; Castillo E.A. et al, 2003; Hirose E. et al, 2006;  

Kumada K. et al, 1996; Kudo N. et al, 1997; Nishi K. et al 1996a; Nishi K. et al, 1996b;  

Toda T. et al, 1991; Toda T. et al, 1992; Toone W.M. et al, 1998] 
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Fig 6.49: Hypothetical Human Rad9B-Mediated Checkpoint Pathway 

Signalling Models Which May be Implicated in the Development of 

Metastatic Tumour Resistance to the Combinatorial Adjuvant 

Hyperthermic- and Caffeine- Potentiated Anti-Neoplastic Cytototoxic 

Efficacy of Polychemotherapeutic and Radiotherapeutic Treatments 
 

 

 
A detailed explanation of these hypothetical models is provided in the text (pp.607-618). 
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           Figure 1: Heat Induction of Rad9-M50 
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     Figure 2: Analysis of rad9-HA Mutant Strains 
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Figure 3: Rad9-M50 Cannot Substitute for Full-Length 

Rad9 in the 9-1-1 Ring 
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Figure 4: Rad9-M50 is Required for an Extended G2/M 

Arrest at Elevated Temperatures 
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Figure 5: Heat-Induced G2 Arrest in DNA Damage 

Checkpoint Mutants 
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Figure 6: Rad9-M50 is Required for Heat Suppression 

of Chk1 Phosphorylation  
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7.1 Introduction 

Purified recombinant human Rad9A protein (hRad9A)  exhibited  3’→5’ exonuclease activity in 

which the postulated nuclease active site was mapped to a region between amino acid residues 51 

and 91 situated within the N-terminus of the protein respectively (Bessho T. and Sancar A., 2000) 

– Fig 7.1A, p.668. 

 

However, comparative in silico bioinformatics-based sequence analyses of the postulated nuclease 

active site region revealed no significant sequence homology between exonuclease I and the 

hRad9A protein (Bessho T. and Sancar A., 2000). 

 

Thus, the in vitro nuclease activity observed in the purified recombinant hRad9A protein could be 

attributed to co-purification of an exonuclease enzyme in an associative complex with hRad9A and 

thus the mapped nuclease motif within the N-terminus region of the protein may instead function 

as an interactive docking site for nuclease enzymes (Bessho T. and Sancar A., 2000). . 

 

Initial in silico bioinformatics comparative alignment-based analyses of the human Rad9A protein 

sequence with the S. pombe Rad9 sequence indicated that this postulated nuclease-

binding/nuclease-active domain may also be functional in the N-terminus of both the S.pombe  

full-length Rad9 protein and truncated “Rad9-S” (N-Δ49-Rad9) protein variant (Fig 7.1B, p.668). 

 

 

Approximately 50% of this nuclease-binding/nuclease-active motif sequence is situated within the 

 

potential M50 – M74 functional domain (identified and discussed previously in Chapter 5, Section 

 

 5.5, pp.475-481) – Fig 7.1C, p.668. 

 

 

This potential M50 – M74 functional domain  also contains a key tyrosine residue which may be  

 

the phosphorylation target for the dual Monopolar Spindle Checkpoint Kinase – Mph1 (discussed 

 

 previously in Chapter 6) – Fig 7.1C, p.668.  
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Comparative acute survival assays performed with YEA broth medium cell cultures of the 

 

“Cre-Lox”-engineered S. pombe strains Δrad9 (rad9-deleted “base-strain”), rad9-c3xHA,  

 

“rad9-S” (NΔ49-rad9-c3xHA) and “rad9-M74” (NΔ73-rad9-c3xHA), in the presence of  

  

40µM S-(+)-camptothecin (CPT), indicated that the “rad9-M74” strain was significantly 

 

 more sensitive to CPT-induced DNA damage than the “rad9-S” strain (Fig 7.1D, p.668). 

 
 

Taken together (Fig 7.1, p.668), these experimental data  may indicate a novel role for the  

 

identified potential M50 – M74 functional domain, within the S. pombe Rad9 protein, in which  

 

it may interact with nucleases and modulate their respective activities in the  repair of double- 

 

stranded DNA breaks (DSBs) – including those induced by the CPT topoisomerase I inhibitor. 

 

 

 

The potential “nuclease-like” motif,  identified within both the full-length S. pombe Rad9 protein 

 

 and S. pombe truncated “Rad9-S” protein variant (Fig 7.1B, p.668), could also possess its own 

 

 nuclease catalytic activity and may thus have a functional role in DSB repair pathways. 

 

 

 

Comparative acute survival assays performed with YEA broth medium cell cultures of the “Cre-

Lox”-engineered S. pombe strains Δrad9 (rad9-deleted “base-strain”), rad9-c3xHA,  

“rad9-S” (NΔ49-rad9-c3xHA) and “rad9-S-(Y12F)” (NΔ49-rad9-(Y61F)-c3xHA), in the presence 

40µM S-(+)-camptothecin (CPT), indicated that the “rad9-S-(Y12F)” mutant strain was 

significantly more sensitive to CPT-induced damage than the “rad9-S” strain (Fig 7.2C, p.669). 

 

 

Comparative in silico predictive phosphorylation target-site analyses of the S. pombe full-length 

Rad9 protein and truncated “Rad9-S” protein variant sequences, via utilisation of the 

bioinformatics software packages NetPhos2.0 and NetPhosK, identified tyrosine 61 (equivalent 

to Tyrosine 12 in the truncated “Rad9-S” polypeptide amino acid sequence) as a very high 

 

probability kinase target site – possibly for the dual Tyr/Thr/Ser Monopolar Spindle Checkpoint 

 

Kinase – Mph1 (Fig 7.1C, p.668  and Fig 7.2, p.669).  
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This particular tyrosine residue (Y61 in full-length Rad9 and Y12 in “Rad9-S”) is also situated 

 

within the M50-M74 functional domain – which constitutes ~50% of the identified sequence of 

 

the potential “nuclease-binding/nuclease-active” motif (Fig 7.2A and Fig 7.2B, p.669). 

 

 

 

Comparative acute survival assays performed with YEA broth medium cell cultures of the “Cre-

Lox”-engineered S. pombe strains Δrad9 (rad9-deleted “base-strain”), rad9-c3xHA,  

“rad9-S” (NΔ49-rad9-c3xHA) and “rad9-S Δmph1” (NΔ49-rad9-c3xHA Δmph1), in the presence 

40µM S-(+)-camptothecin (CPT), also indicated that the “rad9-S Δmph1” double-mutant strain 

was significantly more sensitive to CPT-induced damage than the “rad9-S” strain (discussed 

previously in Chapter 6, Section 6.4, pp.568-583). 

 

 

Taken together (Fig 7.2, p.669), these experimental data may indicate that Mph1-phosphorylation 

of this tyrosine residue is a critical pre-requisite post-translational modification of the truncated 

“Rad9-S” protein variant which is implicated in the mechanism of functional activation of  the 

“nuclease-like” domain. 

 

Thus, S. pombe cells “cre-lox”-engineered for the exclusive expression of the site-directed 

mutagenic “Rad9-S-(Y12F)” (NΔ49-Rad9-(Y61F)-c3xHA) truncated protein variant are very 

sensitive to CPT-induced cytotoxicity due to inhibited Mph1-mediated phosphorylated-activation 

of the “nuclease-binding/nuclease-active” domain and impairment of its functional roles in the 

repair of CPT-induced DNA double-stranded breaks with consequential cell death (Fig 7.2C, 

p.669) 
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 Fig 7.1: Data Evidence for a Nuclease-Like Domain in S. pombe Rad9  

 

 
 

A: The potential nuclease-like motif sequence identified within the Human Rad9A protein may possess 

      catalytic nuclease activity and/or interact with various nucleases – highly conserved amino residues  

      (*X) may be critical to the function of this potential domain (Bessho T. and Sancar A., 2000). 

 

 

B: In silico comparative sequence alignment analyses of the nuclease-like motif with the S. pombe Rad9  

     indicate that both the full-length and “Rad9-S” (NΔ49-Rad9) proteins may contain a similar  

     catalytic nuclease/nuclease-interactive motif with the identical, highly conserved amino acid residues 

     (*X) which may be critical to the function of this potential domain. 

 

      In the case of the “Rad9-M74”  (NΔ73-Rad9) truncated protein variant, approximately 50% of the  

      potential catalytic nuclease/nuclease-interactive motif sequence is missing, along with the absence  

      of ~50% of the highly conserved amino acid residues (*X). 

 

 

C: The potential M50 – M74 functional domain, identified within the S. pombe Rad9 protein in this 

      study (discussed in detail previously in Chapter 5, Section 5.5, pp.475-481 and Chapter 6, Section 6.4, 

      pp.568-583) contains three of the conserved potential nuclease-like motif amino acid residues (*X). 

 

     This M50 – M74 domain also contains an identified key Tyrosine residue (at position Y61 in the 

     full-length Rad9 protein, which corresponds to position Y12 in the “Rad9-S” truncated protein variant) 

     which has a high phosphorylation potential probability score and may be a novel target for the dual  

     Monopolar Spindle Checkpoint Kinase, Mph1 (discussed previously in Chapter 6, Section 6.4, pp.568-583). 

 

 

D: Comparative acute cell survival assays, performed with 40µM S-(+)-camptothecin (CPT), indicate  

      that the “Rad9-M74” truncated protein variant is significantly more sensitive to CPT-induced DNA 

      damage that either the full-length Rad9 protein or the Rad9-S truncated protein variant.  
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   Fig 7.2: Mph1-Activation of the “Rad9-S” “Nuclease-Like” Domain   
 

 
 

A: The potential nuclease-like motif sequence identified within the S pombe “Rad9-S” truncated protein 

      variant – highly conserved amino residues (*X) may be critical to the function of this potential  

      domain. 

 

 

B: The potential M50 – M74 functional domain, identified within the S. pombe Rad9 protein in this 

      study (discussed in detail previously in Chapter 5, Section 5.5, pp.475-481 and Chapter 6, Section 6.4, 

      pp.568-583) contains three of the conserved potential nuclease-like motif amino acid residues (*X) – which  

      correspond to the equivalent positional residues M1 – M24 in the “Rad9-S” truncated protein variant. 

 

     This novel functional domain also contains an identified key Tyrosine residue (at position Y61 in the 

     full-length Rad9 protein, which corresponds to position Y12 in the “Rad9-S” truncated protein variant) 

     which has a high phosphorylation potential probability score and may be a novel target for the dual  

     Monopolar Spindle Checkpoint Kinase, Mph1 – NetPhosK software prediction (discussed previously 

     in Chapter 6, Section 6.4, pp.568-583). 

 

 

C: Comparative acute cell survival assays, performed with 40µM S-(+)-Camptothecin (Methodology described 

      in Chapter 2, Section 2.9.2.2(ii), pp.239-241, p.248) indicate that the “Rad9-S-(Y12F)” mutant truncated  

      protein variant is significantly more sensitive to CPT-induced DNA damage that either the full-length Rad9 

      protein or the “Rad9-S” truncated protein variant.  

 

 

D: Postulated hypothetical “working model” for Mph1-mediated activation of the identified potential 

      “nuclease-like” functional domain within the S. pombe truncated “Rad9-S” protein variant. 

 

      Mph1-mediated phosphorylation of residue Y12 within the “Rad9-S” truncated protein variant 

      induces supramolecular configurational changes within its “nuclease-like” functional domain 

      which may expose a potential binding site for associative interactions with nuclease enzymes 

      implicated in double-stranded DNA (DSB) break repair pathways and/or expose a catalytic nuclease  

      active site for 3’-5’-exonuclease DNA degradation in proximity to DSB lesion site as part of a 

      co-ordinated DSB repair pathway in response to CPT-induced DNA damage. 
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7.2 Rad16 Endonuclease and DNA Ligase IV are Critical 

Components that are Functionally-Implicated in the DNA Repair 

Mechanism Mediated by the Heterodimeric “Rad9-S”:“Hus1-C” 

Complex in Response to Camptothecin-Induced Genotoxicity 

   
The topoisomerase I inhibitor S-(+)-camptothecin (CPT) forms a stable, cleavable covalent 

topoisomerase I-CPT-DNA-trapped transition-state intermediary complex via associative 

interactions between the topoisomerase I protein and the DNA substrate bound within the 

enzymatic active site and specifically inhibits the re-ligation reaction with consequential formation 

of single-stranded DNA breaks at the stalled replication fork during S-phase in the “first/initial” 

cell cycle (Fig 7.3, p.674). 

 

Propagated collision of these complex-stalled replication forks, during successive rounds of cell 

cycle S-phase, results in the conversion of these initial stabilised Topoisomerase I-induced single-

stranded DNA breaks into one-sided double-stranded DNA breaks (DSBs) respectively (Nakagawa 

H. et al, 2006) – Fig 7.3, p.674. 

 

The endonucleases Mus81-Eme1, Rad16-Swi10 and Mre11 (which functions within the “MRN”; 

Mre11-Rad50-Nbs1 complex – whose role in the repair of DSBs was discussed previously in 

Chapter 1, Section 1.2.5, p.106) are implicated in the rectification of CPT-induced DNA damage 

and act in parallel DNA repair pathway mechanisms (Deng C.C. et al, 2005; Liu C.Y. et al, 2002; 

Hartsuiker E. et al, 2009) – Fig 7.3, p.674. 

 

Whilst the enzyme tyrosyl-DNA-phosphodiesterase I (Tdp1) mediates the removal of the “CPT-

trapped” topoisomerase I-DNA complex type lesion at the stalled replication fork via catalyzed 

hydrolysis of the covalent phosphodiester bond between the 3’-end of the DNA and a key tyrosine 

residue situated within the active-site of the topoisomerase I enzyme (Deng C.C. et al, 2005; Liu 

C.Y. et al, 2002; Hartsuiker E. et al, 2009) – Fig 7.3, p.674. 
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The enzyme DNA ligase IV is also required for covalent annealing of the rectified DNA fragments, 

generated as a consequence of the “nuclease-processed” DSB termini, which is the critical final 

step in the respective repair mechanism (discussed previously in Chapter 1, Section 1.2.5, p.109). 

 

The experimental S. pombe  double-mutant strains; rad9-S Δlig IV, rad9-S Δmus81, rad9-S Δrad16, 

rad9-S Δtdp1 (where rad9-S = NΔ49-rad9-c3xHA), were constructed and utilised in comparative 

acute viable cell survival assays with 40µM S-(+)-camptothecin with the “cre-lox”-constructed  

S. pombe strains Δrad9 (“Cre-Lox” rad9-deleted base-strain), rad9-c3xHA and NΔ49-rad9-c3xHA 

in order to ascertain whether any of these enzymes were implicated in a novel “Rad9-S”-mediated 

mechanistic repair response to CPT-induced DNA damage – Fig 7.4 , p.675. 

 

The acquired experimental data revealed that deletion of rad16 or ligIV within an exclusively 

expressed “rad9-S” genetic background enhanced the sensitivity of the cells to camptothecin-

induced DNA damage, which indicated that both these enzymes may be functionally implicated in 

a novel DNA repair pathway instigated by the heterodimeric “Rad9-S”:“Hus1-C” “open-ring/C-

clamp” complex response to CPT-induced genotoxicity (Fig 7.4, p.675). 

 

In contrast, these acute survival assay data also revealed that deletion of Δmus81 and Δtdp1 within 

an exclusively expressed “rad9-S” genetic background, did not enhance the sensivity of the cells to 

camptothecin-induced DNA damages, which indicated that these enzymes were not functionally 

implicated in the DNA repair mechanism elicited by the heterodimeric “Rad9-S”:“Hus1-C” “open-

ring/C-clamp” complex response to CPT-induced genotoxicity (Fig 7.4, p.675). 

 

The mechanistic processes of DSB repair also involve the transient formation of DNA topological 

structures, such as D-loops (in the case of Homologous Recombination pathways) and/or the 

deletion and insertion of DNA fragments of variable base-pair length (in the case of NHEJ, MMEJ 

and SSA pathways) – discussed previously in Chapter 1, Section 1.2.5, p.109. 
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The U.V. Damage Endonuclease (UVDE) is a versatile enzyme implicated in DNA repair which 

recognises and excises specific types of DNA lesions – notably; abasic sites, mis-matched base-

pairs, short single-stranded loops and various U.V.–induced base-dimerised DNA adducts, 

including Cis-Syn, Trans-Syn-I, 6,4-Photoproducts and Dewar Types of  inter-strand and intra-

strand Thymidyl-dimeric cross-linked adduct species (Davey S. et al, 1998; Knaur B. and Doetsch 

P.W., 2000; Kunz C. and Fleck O., 2001; Ribar B. et al, 2004).  

 

 

Thus, the possibility was considered that novel UVDE–“Rad9-S” interactions may also be 

implicated in various DSB repair pathways, with respect to the removal of D-Loops in homologous 

recombination-mediated re-initiation of DNA replication in CPT-stalled replication forks. 

 

The experimental S. pombe  double-mutant strain; rad9-S Δuvde was constructed and utilised in 

comparative acute viable cell survival assays with 40µM S-(+)-camptothecin with the “cre-lox”-

constructed S. pombe strains Δrad9 (“Cre-Lox” rad9-deleted base-strain), rad9-c3xHA and NΔ49-

rad9-c3xHA  in order to ascertain whether this enzyme was functional component of a novel 

“Rad9-S”-mediated mechanistic repair response to CPT-induced DNA damage – Fig 7.4 , p.675. 

 

The acquired experimental data revealed that deletion of uvde within an exclusively expressed 

“rad9-S” genetic background did not enhnace the sensitivity of the cells to camptothecin-induced 

DNA damage, which indicated that the UVDE enzyme was not functionally implicated in a novel 

DNA repair pathway instigated by the heterodimeric “Rad9-S”:“Hus1-C” “open-ring/C-clamp” 

complex response to CPT-induced genotoxicity (Fig 7.4, p.675). 

 

In H. sapiens (Hs), the ATM  primary (proximal) transducer checkpoint kinase is the principle 

initiator of DNA damage signal responses that are implicated in the downstream activation of 

“MRN” complex-mediated DSB repair pathways (discussed previously in Ch.1, Section 1.2.2, 

pp.33-65) – in which ATM is also activated in checkpoint responses to transcription- and/or 

camptothecin- induced DSB formation (Sordet O. et al, 2009).                                                
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The equivalent ATM functional protein homolog in S. pombe (Sp) is the primary (proximal) 

transducer checkpoint kinase Tel1, whilst component functional homologs of the “MRN” complex 

are Rad32Sp (Mre11Hs), Rad50Sp (Rad50Hs) and Nbs1Sp (Nbs1Hs) respectively. 

   

 

Comparative acute survival assays performed with YEA broth cell cultures of the S. pombe strains 

Δrad9, rad9-c3xHA, rad9-S and rad9-S Δtel1, in the presence of 40µM CPT, indicated that both 

the rad9-S and rad9-S Δtel1 strains exhibited a similar degree of cytotoxic sensitivity to CPT such 

that Tel1 is unlikely to be implicated in the “Rad9-S”-mediated signal pathway response to CPT-

induced DNA damage (discussed previously in Chapter 6, Section 6.2.3, pp.516-531). 

 

 

On the basis of this experimental observation, in conjunction with the time constraints of the Ph.D. 

project and prioritised laboratory work, experimental construction and investigation of the relative 

CPT cytotoxic sensitivity of S. pombe rad9-S double-mutants with perturbed MRN complex 

activities – such as  rad9-S rad32D65N (catalytically-inactive Rad32 endonuclease mutant),  

rad9-S Δrad50, rad9-S rad50S (functionally-inactive Rad50 mutant) and rad9-S Δnbs1 was not 

undertaken (although this experimental work may yield potentially useful data in future research). 
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Fig 7.3: Key Proteins Implicated in the Repair of CPT-Induced DSBs 

[Figure Constructed via Collated Information From: Hartsuiker E. et al, 2009 

                                                                                                   He X. et al, 2007 

                                                                                                   Nakagawa H. et al, 2006 

                                                                                                   Perego P. et al, 2012 

                                                                                           Pommier Y., 2006 

                                                                                           Regairaz M. et al, 2011 

                                                                           

 
 

Unwinding of the DNA duplex during replication in S-phase results in negative and positive supercoiled 

torsional strain which is alleviated by the enzyme Topoisomerase I. 

 

Topoisomerase I catalyses the hydrolysis of phosphodiester backbone, via formation of a transient covalent 

phospho-tyrosine linkage between th 3’-terminus of the DNA strand and a critical Tyrosine residue within its 

active site,  prior to passage of the opposing strand through the gap site of the cleaved strand and subsequent 

re-ligation of the the cleavage site which is also performed by this enzyme (He X. et al, 2007) 

   

S-(+)-Camptothecin (CPT) binds to this transient covalent protein-DNA intermediate to form a stable, 

cleavable covalent Topoisomerase I-CPT-DNA-trapped transition-state intermediary complex via associative 

interaction between Topoisomerase I and DNA within the enzymatic active site and specifically inhibits the re-

ligation reaction, with resultant collision of replication forks during the cell cycle S-phase and consequential 

conversion of the initial stabilised Topoisomerase I-induced single-stranded DNA breaks into one-sided double-

stranded DNA breaks (DSBs) respectively (Nakagawa H. et al, 2006). 
 

Cleavage removal of the resultant Topoisomerase I-CPT-DNA-trapped transition state intermediate is effected 

via the enzyme Tyrosyl-DNA-Phosphodiesterase (Tdp1), which catalyzes the hydrolysis of the phospho-

Tyrosine linkage between the 3’-terminus of the DNA strand and a critical Tyrosine residue within the active 

site of Topoisomerase I, with consequential liberation of the enzyme from the stalled replication fork (Deng C.C. 

et al, 2005; Hartsuiker E. et al, 2009; Liu C.Y. et al, 2002; Perego P. et al, 2012). 

 

The endonuclease enzymes Mre11 – whose activities are co-ordinated within the  Mre11-Rad50-Nbs1 (“MRN”) 

complex), Mus81-Eme1 and Rad16-Swi10, are all implicated in the rectification of CPT-Induced DSBs and 

function in parallel DNA repair pathways (Deng C.C. et al, 2005; Hartsuiker E. et al, 2009; Liu C.Y. et al, 2002; 

Regairaz M. et al, 2011). 
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Fig 7.4 Acute CPT Survival Assays – Nuclease and Ligase IV Mutants 
 

 

[Acute cell survival assays were performed as per the methodology described in Chapter 2, 

 Section 2.9.2.2(ii), pp.239-241] 
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7.3 Rqh1 Helicase is Not Functionally-Implicated in the DNA Repair 

Mechanism Mediated by the Heterodimeric “Rad9-S”:“Hus1-C” 

Complex in Response to Camptothecin-Induced Genotoxicity 

 

In H. sapiens the DNA helicase BLM is implicated in the cell-cycle phase-dependent suppression 

or promotion of Homologous Recombinational Repair (HR) of double-stranded DNA breaks 

(DSBs) – discussed in detail in Fig 7.5, p.678. 

 

BLM also has associated functional roles in both the regression and recombination-mediated 

replication re-initiation of stalled DNA replication forks (Sun W. et al, 2008) – discussed in detail 

in Fig 7.6, p.679. 

 

The equivalent functional  protein homolog of BLM, implicated in the repair of DSBs in S.pombe, 

is the DNA helicase Rqh1 (Fig 7.5, p.678 and Fig 7.6, p.679). 

 

The experimental S. pombe  double-mutant strain; rad9-S Δrqh1 was constructed and utilised in 

comparative acute viable cell survival assays with 40µM S-(+)-camptothecin with the “cre-lox”-

constructed S. pombe strains Δrad9 (“Cre-Lox” rad9-deleted base-strain), rad9-c3xHA and NΔ49-

rad9-c3xHA  in order to ascertain whether this enzyme was a functional component of a novel 

“Rad9-S”-mediated mechanistic repair response to CPT-induced DNA damage – Fig 7.7 , p.680. 

 

The acquired experimental data revealed that deletion of rqh1 within an exclusively expressed 

“rad9-S” genetic background did not enhance the sensitivity of the cells to camptothecin-induced 

DNA damage, which indicated that this helicase was not functionally implicated in in a novel 

DNA repair pathway instigated by the heterodimeric “Rad9-S”:“Hus1-C” “open-ring/C-clamp” 

complex response to CPT-induced genotoxicity (Fig 7.7, p.680). 
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Whilst the acute survival assay data indicated that Rqh1 was unlikely to be required for the 

potential “Rad9-S”-mediated repair response to camptothecin-induced DNA damage, the 

possibility that other helicase such as Srs2Sp (RQHL5Hs) and/or Fbh1Sp (Laursen L.V. et al, 2003a; 

Laursen L.V. et al, 2003b; Osman F. et al, 2005) may be implicated cannot be ruled out – which 

may warrant further investigation in future experimental work.  
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 Fig 7.5: Pro- and Anti- Recombinant Functions of the Rqh1 Helicase 
 

 [Compiled via Collated Information From: Aylon Y. et al, 2004; Barlow J.H. et al, 2008; 

                                                                                    Finn K. et al, 2012; Goldwasser F. et al, 1996; 

                                                                                    Ira G. and Hastings P.J., 2012; Karran P., 2000; 

                                                                                    McGowan C.H. et al, 2003; Maki K. et al, 2011;  

                                                                                    Meister P. et al, 2005; Michel B. et al, 2007] 
 

                                                             
A: The ATR→Chk1-initiated Intra-S Phase Checkpoint Pathway (discussed previously in Chapter 1, Section  

       1.2.2, p.58) elicits  stalled DNA replication fork stabilization with consequential suppression of  

       recombination during DNA replication (in S .pombe this is the homologous equivalent Rad3→Chk1 

       pathway – discussed previously in Chapter 1, Section 1.2.2, p.59 and Chapter 6, Section 6.2, pp.489-492). 

 

B: DNA helicases such as BLM in H. Sapiens (equivalent functional homolog Rqh1 in S. pombe) possess the 

       capability to either suppress or induce DNA recombination events dependent upon the particular phase 

       of the cell cycle (Fig A). 
 

       These types of DNA helicases inhibit homologous recombination at stalled replication forks via perturbance 

       of Rad51 filaments and induction of alternative DNA repair pathways in which initial fork regression may  

       be implicated. 
 

       In the case of double-stranded DNA breaks (DSBs), these types of helicases may suppress homologous  

       recombination, via structural perturbance of Rad51 filaments and/or “D-Loop” formation, with 

       consequential induction of alternative DSB repair pathways in the S-phase of the cell cycle.  

        

       Whilst in the G2 cell cycle phase, these types of DNA helicases may engage the homologous recombination  

       repair pathway via promotional re-section of the DNA ends of the DSB lesion (in conjunction with 

       Exonuclease I) , prior to resolution of the double Holliday junctions (dHJ’s) via co-ordinated, associative  

       interactions with Topoisomerase IIIα (TopoIIIα).                                                                       
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Fig 7.6: Regression-Coupled Recombination-Initiated Fork Recovery  
 

[Taken and Adapted From: Ira G. and Hastings P.J., 2012; Sun W. et al, 2008] 
 

                                           
 

Formation of a CPT-trapped DNA-Topoisomerase I ternary complex type lesion on the leading strand template  

(Fig 7.3, p.674) during DNA replication inhibits fork progression with consequential uncoupling of DNA 

polymerases. 

 

Regression of the resultant stalled replication fork, mediated via DNA helicases such as BLM in H. Sapiens 

(equivalent functional homolog Rqh1 in S. pombe), facilitates transitionary template-switching transference 

from the damaged leading strand section to the “positional-equivalent” undamaged lagging strand to enable 

DNA lesion by-pass extension of the leading strand. 

 

The resultant “reversed replication fork” is then reset via exonuclease I-mediated double-stranded DNA end re-

section. 

 

Rad51-mediated strand invasion of the extended template DNA, ahead of the by-passed DNA lesion, results in 

the formation of transient D-Loop and dHJ structures, which are dissolved via DNA helicases such as BLM in 

H. Sapiens (equivalent functional homolog Rqh1 in S. pombe), prior to fork recovery and initiated replication 

re-start. 
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       Fig 7.7: Acute CPT Survival Assays rqh1-Deletion Mutants 
 

 

 
[Acute cell survival assays were performed as per the methodology described in Chapter 2, 

 Section 2.9.2.2(ii), pp.239-241] 
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7.4 The Heterodimeric “Rad9-S”:“Hus1-C” Complex May Elicit a 

Novel DNA Repair Pathway for the Rectification of Double-Stranded 

Breaks Induced by Camptothecin   
 

The potential 3’-5’ exonuclease catalytic activity of the “nuclease-like” motif domain, identified 

within the full-length Rad9 protein and “Rad9-S” truncated protein variant, remains to be 

confirmed experimentally in future research work.  

 

If this identified Rad9 “nuclease-like” motif domain does indeed possess 3’-5’ exonuclease 

catalytic activity, it may have functional interactive roles within the dsDNA end re-section phase 

of regression-coupled recombinant repair-mediated DNA replication re-initiation (Fig 7.5, p.678).  

 

Taken together, these experimental data may indicate the existence of a novel DNA repair pathway 

in which the associative activities of Rad16 (and possibly other endonucleases), in conjunction 

with DNA ligase IV, exonuclease 1 and/or the potential 3’-5’ exonuclease catalytic activity of the 

“nuclease-like” motif domain (situated within the “Rad9-S” truncated protein variant) engage in a 

co-ordinated recombination-mediated replication fork recovery/re-start mechanism which involves 

“template-switching”/TLS by-pass of the CPT-topoisomerase I-DNA complex type lesion, prior to 

repair of the CPT-induced one-sided double-stranded breaks (DSBs). 

 

Recent experimental research indicates that the human ubiquitin ligase Rad18, which is implicated 

in the ubiquitination of PCNA in “template-switching”/TLS DNA repair mechanisms (discussed 

previously in Chapter 1, Section 1.2.5, pp.112-116), also interacts with ubiquitylated chromatin 

proteins and is implicated in the targeted localisation of the human Rad9A protein to DSB lesion 

sites, mediated via associative “Rad9 – Rad18 RING/Zinc-Finger” type interactions (Inagaki A. et 

al, 2011). 
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Inagaki A. and co-workers (2011), also postulated that localisation of Rad18 to DSB lesion sites 

within the chromatin supramolecular structure proceeds via its associative interaction with 

ubiquitylated histone H2A sub-units, which facilitates Rad18-directed recruitment of human 

Rad9A to the DNA damage site.  

               

Taken together, these experimental observations provide evidence for a potential direct functional 

role of human Rad9A in DSB repair, which acts outside of the canonical “9-1-1” complex, in a 

novel pathway that is independent of the downstream activation of the secondary (distal) 

transducer  checkpoint kinases Chk1 and Chk2 respectively (Inagaki A. et al, 2011). 

 

As discussed previously (Chapter 6, Section , pp.), deletion of the chk1 gene in S. pombe cells 

engineered to exclusively express the “Rad9-S” truncated protein variant did not increase their 

cytotoxic sensitivity towards CPT-induced DNA damage in acute survival assays.  

 

The “Rad9-S”– mediated response to CPT-induced DNA damage may comprise a co-ordinated 

pathway in which suppression of secondary (distal) transducer Chk1 kinase-initiated cell cycle 

checkpoint responses results in the alternative activation of a mitotic spindle checkpoint arrest 

(discussed previously in Chapter 6, Section 6.2.4, pp.539-546), prior to template-switching by-pass 

of the CPT-trapped topoisomerase I-DNA lesion complex and repair of the CPT-induced one-sided 

double-stranded DNA breaks (discussed summarily in the postulated hypothetical pathway models 

depicted in Fig 7.8, p.687 and Fig 7.9, pp.688-689). 

 

It is possible that Rad18 and ubiquitylated H2A histone sub-units may also be implicated in the 

associative recruitment of “Rad9-S” to CPT-induced double-stranded break sites within the 

chromatin supramolecular structure, via a similar mechanism to that proposed recently by Inagaki 

A. et al, 2011. 
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Hsk1Sp  kinase (Cdc7Hs) –mediated phosphorylation of Rad9Sp has been postulated to be a critical 

pre-requisite for dissociation of the canonical Rad9-Rad1-Hus1 complex from chromatin, after 

initial DNA damage detection and subsequent initiation of the appropriate cell cycle checkpoint 

signal response, for the unhindered access of the DNA repair machinery to the lesion site (Furuya 

K. et al, 2010; Paek A.L. and Weinert T., 2010) – discussed previously in Chapter 1, Section 1.2.5, 

p.118. 

 

The Hsk1Sp  kinase, in conjunction with Cdc45, also has regulatory functions in the modulation of 

DNA replication stress-induced responses (discussed previously in Chapter 1, Section 1.2.2, pp.33-

65) – notably; the efficient initiation of DNA replication and activation of the Cds1Sp  (Chk2Hs) 

secondary (distal) transducer checkpoint kinase (Matsumoto S. et al, 2010; Vaziri C., 2010).   

 

Comparative acute survival assays performed with rad9-S (NΔ49-rad9-c3xHA) and rad9-S Δcds1 

S. pombe strains indicated that deletion of the cds1 gene within an exclusively expressed rad9-S 

genetic background significantly increased the sensitivity of the cells to CPT-induced DNA 

damage (discussed previously in Chapter 6, Section 6.2.4, pp.539-546). 

 

Numerous experimental attempts to construct the rad9-S Δhsk1 S. pombe strain, for utilisation in 

comparative acute CPT survival assays, resulted in the generation of non-viable/dead cells. 

 

Taken together, these experimental observations may be indicative that Hsk1 kinase-mediated 

phosphorylation of the “Rad9-S” protein is a critical functional requirement which enables the 

postulated Rad9-S–Hus1 heterodimeric complex to disengage from DNA, in order to provide 

unhindered access of the DNA repair machinery to the DSB lesion site(s) and/or modulate the 

Rad9-S–initiated mitotic spindle checkpoint pathway to enable re-initiation of DNA replication 

and cell cycle progression after DNA repair has been accomplished. 
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Alternatively, deletion of the hsk1 gene within an exclusively expressed NΔ49-rad9-c3xHA 

(“rad9-S”) genetic background may result in the generation of non-viable cells as a consequence of 

a dysfunctional “Rad9-S”–initiated mitotic spindle checkpoint pathway due to suppressed Cds1 

activation. 

 

Topoisomerase I is also implicated in the modulation of gene expression, in which the enzyme 

may mediate global and local alterations within the topological supercoiling configuration of the 

DNA that induce specific rearrangements within the chromatin supramolecular architecture 

(Durand-Dubief M. et al, 2010; Sun M. et al, 2000). 

 

These topoisomerase I-mediated chromatin supramolecular structural reorganisation events 

involve co-operative interactions with the ATP-dependent chromatin modeller Hrp1Sp (Chd1Hs) 

which elicits dissociation of localised nucleosomal sub-assemblies from the DNA without the loss 

of histones, in conjunction with alterations to the DNA linking number topology (Durand-Dubief 

M. et al, 2010; Sun M. et al, 2000). 

 

Recent studies have also indicated that topoisomerase I inhibitor-induced formation of Top1-Drug-

DNA ternary complexes occurs preferentially in genes which encode splicing factors (Solier S. et 

al, 2010). 

 

Taken these observed experimental phenomena into consideration, it is hypothetically conceivable 

that hyperthermic- and/or CPT- induced formation of trapped Top1-DNA ternary complexes and 

consequential generation of DSBs may result in rearrangements within the chromatin 

supramolecular architecture which may constitute a novel mechanism for the modulation of the 

expression, cytological levels and functional activities of the truncated “Rad9-S” and “Rad9-VS” 

protein isoforms that in turn may regulate the differential “Rad9-S”-mediated DNA damage 

checkpoint-coupled DNA repair responses to campothecin-induced genotoxic and/or 

hyperthermically-induced replication stresses (discussed previously in detail in Chapter 6, Section 

6.6, pp.588-597).  
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Thus, the possibility exists that the ATP-dependent chromatin modeller Hrp1Sp may be implicated 

in novel “Rad9-S”-mediated mechanisms that regulate topoisomerase I-mediated chromatin 

supramolecular structural rearrangements which modulate the expression of specific genes – which 

may warrant further investigation in future experimental work.  

 

Very recent experimental studies have also revealed that the heterotrimeric human Rad9A-Rad1-

Hus1 toroidal DNA sliding-clamp complex is implicated in the functional recognition of  

palindromic-repeat homopurine-homopyrimidine DNA sequences which adopt non-canonical 

secondary duplex structures (such as hairpin loops, triplexes and G-quadruplexes) that induce 

polar-orientated replication fork stallage (Liu G. et al, 2012).  

 

These experimental studies also revealed that the human Rad9A-Rad1-Hus1 toroidal DNA sliding-

clamp complex, in conjunction with replication protein A (RPA) and the primary (proximal) 

transducer kinase ATR, elicits the Chk1-mediated G2/M arrest in response to these duplex 

topological conformer-induced stalled replication fork events (Liu G. et al, 2012). 

 

This Chk1-mediated G2/M checkpoint arrest was suppressed via DNA repair nuclease-mediated 

excision of these palindromic-repeat homopurine-homopyrimidine DNA sequences (Liu G. et al, 

2012).  

 

These types of palindromic-repeat homopurine-homopyrimidine DNA sequences were also found 

to invoke constitutive phosphorylation-mediated activation Chk1 that effected by-pass of the G2/M 

arrest response and enable continued cellular growth with consequential cytological cumulative 

propagation of genomic mutations which are responsible for the progressive development of 

tumour metastatic checkpoint adaptation (Liu G. et al, 2012). 
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Whether or not the human Rad9B paralogue and/or its truncated isoforms are implicated in similar 

DNA repair-coupled checkpoint responses to palindromic-repeat homopurine-homopyrimidine 

duplex conformer-induced DNA replication fork stallage events is unknown. 

 

However, the postulated hypothetical models of “Rad9-S”–initiated checkpoint signalling and 

DNA repair responses to camptothecin-induced DNA damage (Fig 7.8, p. 687 and Fig 7.9, pp.688-

689) may be indicative of homologously-equivalent functional processes which are mediated by 

the human Rad9B  paralogue and/or its truncated isoforms. 

 

Further “in-depth” experimental investigation of these phenomena, in conjunction with the data 

acquired in this Ph.D. project, may provide useful insights for the future development of novel 

topoisomerase I inhibitor classes of anti-cancer chemotherapeutics (such as sequence-sepcific 

base-pair mimetics) with enhanced pharmacodynamic properties (Drawl M. et al, 2011; Pourquier 

P. and Langsiaux P., 2011; Vekhoff P. et al, 2012) and whose respective  anti-neoplastic cytotoxic 

efficacies are not attenuated via potential Rad9B-initiated metastatic tumour multi-drug resistance 

mechanisms. 
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   Fig 7.8: Model of Rad9-S “Nuclease-Mediated” Chk1 Suppression 
 

      
 

A: Full-length Rad9Sp (Rad9Hs) associates with the Hus1Sp (Hus1Hs) and Rad1Sp (Rad1Hs) proteins to form 

       the heterotrimeric PCNA-like toroidal  “9-1-1” sliding-clamp complex which detects the CPT-induced DNA 

       damage lesion site and initiates the Chk1Sp (Chk1Hs)-mediated G2/M checkpoint cycle cell arrest response 

       (discussed in further detail in Fig 7.9, pp.688-689). 
 

 

B: The truncated Rad9Sp protein variant “Rad9-SSp” lacks the first 49 N-Terminal amino acids, which 

       constitute the the major component of the PCNA-Like Domain I region that is implicated in associative 

       interactions with the Rad1Sp protein. 

        

       In this case “Rad9-SSp” forms an associative heterdimeric “partial open-ring” complex with Hus1Sp 

        (Hus1Hs) which interacts with the DNA at the CPT-induced DSB lesion site. 

 

       The “nuclease-like” domain, situated within the “Rad9-SSp” sub-unit of the resultant ternary DNA 

       complex (ie “Rad9-SSp”:Hus1Sp:DNA complex) may possess 3’-5’ exonuclease activity which degrades  

       the terminal end of the CPT induced DSB lesion in a novel mechanism of DSB repair (discussed in detail 

       in Fig 7.9, pp.688-689). 

 

       The “Rad9-SSp” truncated protein variant may also be implicated in suppression of the functional activities  

       of the secondary (distal) transducer checkpoint kinase Chk1Sp (Chk1Hs) in a novel response to CPT- 

       induced DNA damage which involves an “Rad9-SSp”-initiated mitotic spindle checkpoint arrest to enable 

       sufficient time for completion of a novel “Rad9-SSp”-co-ordinated mechanism of CPT-induced DSB lesion 

       repair (discussed in detail in Fig 7.9, pp.688-689). 
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   Fig 7.9: “Rad9-S” Co-Ordinated Chk1 Suppression & DNA Repair 

 

  
 

Full-length Rad9Sp (Rad9Hs) associates with the Hus1Sp (Hus1Hs) and Rad1Sp (Rad1Hs) 

proteins to form the heterotrimeric PCNA-like toroidal  “9-1-1” sliding-clamp complex 

which detects the CPT-induced DNA damage lesion site. 

 

Primary (proximal) transducer checkpoint Rad3Sp (ATRHs) kinase-mediated 

phosphorylation of the full-length Rad9Sp sub-unit (at residues T225, T412 and S423), within 

the 9-1-1 complex, induces supramolecular configurational changes within the protein which 

enable its C-Terminal Tail domain to interact associatively with the BRCT domains of the 

Rad4Sp (TopBP1Hs) mediator protein. 

 

“9-1-1” complex-mediated recruitment of the Rad4Sp (TopBP1Hs) protein to the detected 

CPT-induced DNA damage lesion site enables recruitment of the Crb2Sp (BRCA1Hs) protein 

via asscoaitive BRCT domain interactions with the SpRad9 sub-unit C-Terminal-bound 

Rad4 protein for activation of the secondary (distal) transducer checkpoint kinase Chk1 

which elicits a G2/M cell cycle arrest signal response – discussed previously in Chapter 1, 

Section 1.2.2, p.57. 

 

The SpRad9 truncated protein variant, “Rad9-SSp”, associates with Hus1Sp to form a 

heterodimeric “partial open-ring” DNA-binding complex at the CPT-induced DNA damage 

lesion site, prior to phosphorylation of the “Rad9-SSp” sub-unit by the Rad3 kinase (at the 

equivalent residue positions T176, T363 and S374) to induce supramolecular configurational 

changes within the protein that enable its C-Tail Terminal Domain to interact  associatively  

 

                                                     [688] 



with the Monopolar Spindle Checkpoint Effector Kinase Mph1Sp (Mps1Hs/TTKHs), in which 

the resultant ternary complex “primes” the “Rad9-SSp” “nuclease-like” domain for Mph1Sp 

kinase phosphorylation-mediated activation. 

 

Subsequent Mph1Sp kinase-mediated phosphorylation of “Rad9-SSp” (at residue Y12) 

induces further supramolecular configuration changes within the protein to expose its 

“nuclease-like” domain for facilitated interaction with nucleases,  such as Rad16Sp which are 

implicated in the repair of CPT-induced DSBs. 

 

Mph1Sp kinase mediated phosphorylation of “Rad-SSp” (at residue Y12) may also induce 

localised supramolecular changes within the  “nuclease-like” domain  of the protein that are 

required for initiation of its potential catalytic 3’-5’-exonuclease activity – which may be 

implicated in the associative repair of CPT-induced DSBs with endonucleases such as Rad16. 

 

The resultant phosphorylated form of the “Rad9-S” protein (ie phosphorylated at residues 

Y12, T176, T363, and S374) may also maintain the protein in a supramolecular configuration 

state which inhibits the functional activities of the secondary (distal) transducer checkpoint 

kinase SpChk1 and initiation of Mitotic Spindle Checkpoint type cell cycle arrest (discussed 

in detail previously in Chapter 6) to enable time for “Rad9-S”-mediated repair of the CPT-

induced DSB lesion in a novel mechanism that may involve the associative co-ordination of 

functional interactions of the potential “Rad9-SSp” catalytic 3’-5’ exonuclease activity, 

Rad16Sp and other endonucleases, DNA Lig IVSp, in conjunction with other protein  

factors – which remains to be elucidated. 
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8.1 Critical Appraisal of the Acquired Experimental Data 

The investigation of potential novel Rad9 isoforms and functions in this research work was 

accomplished via utilisation of “cre-lox”–generated experimental S. pombe strains whose cells 

were engineered for the excluded expression of the full-length Rad9 protein such that they were 

“pre-programmed” for “forced reliance” upon the adapative cytological employment of the 

trunctated Rad9 variants; “Rad9-S”, Rad9-VS” and “Rad9-T”. 

 

The relative levels and associated functions of these truncated Rad9 variants under cytological 

conditions of genotoxic and/or environmental stresses, in the presence of unhindered expression of 

the full-length Rad9 protein and full-length Rad9-Rad1-Hus1 complex formation, may therefore 

differ significantly from those identified in this Ph.D. project. 

 

Nevertheless, the acquired experimental data may be indicative of several adaptive compensatory 

truncated Rad9 isoform-mediated “auxiliary” checkpoint responses to gentotoxically- and 

thermally- induced cytological stresses in which expression of the full-length Rad9 protein and/or 

formation of the full-length Rad9-Rad1-Hus1 complex is perturbed – notably; 

 

(i) A novel checkpoint pathway whose signalling functions  are coupled and co-ordinated with the 

     specific functions of a novel DNA repair mechanism, via an “open-ring/C-clamp”-type  

     “Rad9-S”-Hus1 heterodimeric complex. 

 

(ii) A novel checkpoint signalling pathway in response to hyperthermically-induced cytological 

      stresses, mediated via an alternative “Rad9-S”-Rad1-Hus1 heterotrimeric complex which may 

      adopt distinctive functional “closed-ring clamp” and/or  “open-ring/split-washer clamp” type 

      supramolecular configurations. 
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(iii) “Rad9-S” phosphoisoformic-modulated expression of the novel truncated Rad9 protein 

         variants; “Rad9-VS” and “Rad9-T” – whose functions are unknown, but which may be 

         implicated in the regulation of various checkpoint protein activities, including those of 

         full-length Rad9 and “Rad9-S”. 

 

 

Future comparative experimental studies into the specific functional properties of the “Rad9-S”, 

“Rad9-VS” and “Rad9-T” truncated protein variants, under conditions of induced and suppressed 

full-length Rad9 protein activities in the absence and presence of particular types of genotoxic and 

environmental cytological stresses, may provide valuable insights into the roles of the full-length 

human Rad9B paralogue and its isoforms in the suppression, induction, promotion and progression 

of carcinogenesis. 
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8.2 Future Implications in the Clinical Management of Cancer  

The clinical management of cancerous diseases necessitates the employment of a range of 

systemic-based treatments that often encompass both radiotherapeutic and chemotherapeutic 

combinatorial treatment regimens as a consequence of the heterogeneic nature of the tumours 

whose respective composite cells exhibit differential cytotoxic sensitivities towards ionising 

radiation and specific classes/types of anti-neoplastic drugs (Larsen I.K. and Kastrup J.S., 2002; 

Pecorino L. et al, 2008). 

 

The majority of polychemotherapeutic regimens are anti-proliferative and consist of combinatorial 

classes of anti-neoplastic agents whose respective efficacious cytotoxic mechanisms of action are 

focused upon the induction of various genotoxic lesions or perturbance of replicative processes 

such that they are somewhat limited, pharmacologically, to the destruction of actively cycling cells 

(Larsen I.K. and Kastrup J.S., 2002; Pecorino L. et al, 2008). 

 

Quiescent tumour cells in the dormant Go phase of the cell cycle may evade the induced cytotoxic 

effects of radiotherapeutic and chemotherapeutic treatments as a consequence of the transient 

cessation of DNA replication and thus retain their proliferative viability (Larsen I.K. and Kastrup 

J.S., 2002; Pecorino L. et al, 2008; Sherman M.Y. et al, 2011; Weinberg R.A., 2006;). 

 

Regular clinical monitoring of cancer patients, typically over a 5 year remission period following 

apparently successful treatments, is therefore required for the early detection and appropriate 

management of relapse incidences in which the proliferative re-emergence of the dormant tumour 

cells results in the re-establishment of the neoplastic pathophysiological condition (Larsen I.K. and 

Kastrup J.S., 2002; Pecorino L. et al, 2008; Sherman M.Y. et al, 2001; Weinberg R.A., 2006). 
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The checkpoint protein, Rad9A, is also known to be implicated in the co-ordinated modulation of 

cell cycle checkpoint signalling pathways, DNA repair pathways and the maintenance of 

cytological senescence (Broustas C.G. and Lieberman H.B., 2012; Deshpande A.M. et al, 2011). 

 

The major cell cycle checkpoint functions of human Rad9A are the initation and/or  modulation of 

intra-S and G2/M arrest, which are mediated via TopBP1-dependent ATR activation interactions 

and are also dependent upon the activities of Chk1, Chk2, p53, p21  and H2AX  (Broustas C.G. 

and Lieberman H.B., 2012; Pérez-Castro A.J. and Freire R., 2012). 

 

Whilst recent experimental studies have indicated that the cell cycle checkpoint functions of the 

human Rad9B paralogue are the initiation and/or modulation of G1/S arrest in response to 

nucleolar stress, that are mediated via “downstream” ATR and JNK signal transduction pathways 

which do not involve TopBP1-dependent ATR activation interactions and are not dependent upon 

the activities of of Chk1, Chk2, p53, p21  and H2AX (Pérez-Castro A.J. and Freire R., 2012).   

 

Pharmacological modulation of these specific differential functions of the Rad9A and Rad9B 

checkpoint proteins may thus prove to be a useful future clinical approach to be implemented to 

enhance the cytotoxic sensitivity of tumour cells to particular radiotherapeutic and 

chemotherapeutic treatment regimens. 

 

Intriguingly, the experimental data acquired in this Ph.D. project indicated that the expression of 

the novel S. pombe truncated “Rad9-S” protein variant was an exclusive heat shock response 

which was restricted to actively cycling cells within a 20 minute time interval of hyperthermic 

exposure. 

 

Furthermore, these data indicated that this novel S. pombe “Rad9-S” truncated protein variant 

exhibited significant sequence homology to the H. sapiens Rad9B paralogue isoforms 2 and 3. 

 

                                                   [694] 



Whether or not expression of the H. sapiens Rad9B paralogue and/or its isoforms is also induced 

by hyperthermic stress is at present unknown, however taken together, these experimental data 

may be indicative of novel functions of the human Rad9B protein and/or its isoforms. 

 

Anti-cancer drug-induced hypersensitivity reactions are relatively rare phenomena, with the 

notable exception of specific classes and types of chemotherapeutic agents which may elicit 

adverse side effects, such as severe nausea, fever, elevated body temperature (pyrexia), flushing, 

pruritis, rashes, cardiac arrhythmias, blood pressure fluctuations, back pain, bronchospasm and 

dyspnea, as a consequence of non-immune cytotoxic-mediated release of histamine and cytokines 

(Ruhlmann C.H. and Hersteddt J., 2011; Shepherd G.M., 2003). 

 

Anti-neoplastic chemotherapeutic-induced hypersensitivity is a particularly common problem 

encountered with the clinical administration of the DNA alkylating agent procarbazine, the 

platinum complex-based DNA cross-linking agents cisplatin and carboplatin, the 

epipodophyllotoxin-derived topoisomerase II inhibitors etoposide and teniposide, the taxane-type 

mitotic inhibitor paclitaxel and asparaginase inhibitors (Ruhlmann C.H. and Hersteddt J., 2011; 

Shepherd G.M., 2003). 

 

Cytotoxically-induced afebrile neutropenia, in conjunction with other immunosuppressant 

complications associated with the administration of anti-cancer chemotherapeutics, may also 

promote the proliferation of opportunistic bacterial infections with consequential 

pathophysiological manifestation of elevated body temperature (pyrexia) and fever (Gafter-Gvili A. 

et al, 2012). 

 

These immunosuppressive-type toxicological side-effects may also be implicated in observed 

clinical cases of interstitial pneumonia-induced pyrexia in the treatment of aggressive cancerous 

conditions with camptothecin-based chemotherapeutics (Farray D. et al, 2006; Kuga Y. et al, 

2011; Verschraegen C.F. et al, 2000; Yokota M. et al, 2010).  
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If hyperthermic-induced expression of human Rad9B and/or its isoforms does take place, then it is 

also hypothetically conceivable that chemotherapeutic-induced pyrexia could result in the 

expression of elevated levels of Rad9B and/or its isoforms within tumour cells which may be 

implicated in novel checkpoint and/or DNA repair responses which attenuate the cytotoxic 

efficacy of the administered anti-cancer drugs. 

 

Current clinical management of anthracycline- and taxane- refractory metastatic breast cancer 

(ATRMBC) involves the administration of camptothecin-based topoisomerase I inhibitors and 

geldanamycin-based Hsp90 inhibitors (Dean-Columb W. and Esteva F.J., 2008). 

 

The exclusive elevated expression of Rad9, but neither Hus1 or Rad1, is also a distinctive 

genotypic trait of aggressive ATRMBC-type tumour cells (Chan V. et al, 2008; Cheng C.K. et al, 

2005). 

 

The elucidated S. pombe “Rad9-S”-mediated signalling pathway responses to camptothecin-

induced genotoxicity and thermal stress, in conjunction with identified potential roles of the 

truncated “Rad9-S” protein variant in the co-ordinated repair of camptothecin-induced DNA 

damage, may be implicated in the development and metastatic progression of refractory breast 

tumour cells which have acquired broad-spectrum multiple drug resistance. 

 

Taken together, in the context of the experimental data acquired in this Ph.D. project, heat shock 

induction of the human Rad9B protein and/or its isoforms may be implicated in novel biochemical 

mechanisms of acquired tumour resistance to polychemotherapeutic and radiotherapeutic regimens 

that could also impinge adversely upon the clinical application of hyperthermic adjuvant strategies 

which potentiate the cytotoxic efficacies of these treatments (discussed in detail previously in 

Chapter 6, Section 6.7, pp.598-625).  
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Progressive research into the initial “pilot data” acquired from this Ph.D. project may provide vital 

information for the future treatment of chronic breast cancer patients administered camptothecin-

derivatised agents to combat the metastatic spread of refractory tumours which have developed 

multiple drug resistance to the “conventional arsenal” of chemotherapeutic drugs utilised in 

standard clinical practice – such as taxols and anthracyclics.  
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REFERENCES – Utilised Internet Website Resources 

 

Bioinformatics Server Sites and Tools 

 
BETASCAN Server Site – http://groups.csail.mit.edu/cb/betascan/betascan.html 

cNLS Mapper Server Site – http://nls-mapper.ieb.keio.ac.jp/cgi-bin/NLS_Mapper_form.cgi 

COBALT – http://www.ncbi.nlm.nih.gov/tools/cobalt/cobalt.cgi?/link_loc=BlastHomeAd 

COILS (Coiled-Coil Predictor) – http://www.ch.embnet.org/software/COILS_form.html 

DisCon Server – http://biomine.ece.ualberta.ca/DisCon/ 

 

DisEMBL 1.5 Server – http://dis.emble.de/ 

 

DISOPRED – http://bioinf.cs.ucl.ac.uk/disopred 

 

DISpro – http://www.ics.uci.edu/~baldig/dispro.html 

 

DISProt (Data Base of Protein Disorder) – http://www.disprot.org/ 

 

EBI Bioinformatics Tools Server – http://www.ebi.ac.uk/Tools 

 

ELM (Protein Eukaryotic Linear Motif Database) Server – http://elm.eu.org/ 

 

EMBL Bioinformatic Tools Server – http://embl.org/ 

 

EMBOSS Pairwise Alignment Tool Server – http://artedi.ebc.uu.se/programs/pairwise.html 

 

ExPASy Proteomics Server – http://www.expasy.org/ 

 

GlobProt 2.3 Server – http://globprot.embl.de/ 

 

IUPred Server – http://www.iupred.enzym.hu/ 

 

Jemboss Alignment Editor – http://emboss.sourceforge.net/Jemboss/jae.html 

 

Kyte-Doolittle Hydropathy Plot Server – http://gcat.davidson.edu/rakarnik/kyte-doolittle.htm 

 

MARCOIL (Coiled-coil Predictor) – http://toolkit.tuebingen.mpg.de.marcoil 

 

metaPrDOS – http://prdoc.hgc.jp/cgi-bin/meta/top.cgi 

 

MultiCoil (Coiled-Coil Predictor) – http://groups.csail.mit.edu/cub/multicoil/cgi-bin/multicoil.cgi 

 

MultiCoil2 Server – http://groups.csail.mit.edu/cub/multicoil/cgi-bin/multicoil2.cgi 

 

Netphos 2.0 and 3.1b Server – http//:www.cbs.dtu.dk/services/Netphos 

 

NetphosK Server – http://www.cbs.dtu.dk/services/NetphosK 

 

PHOBIUS (Transmembrane-Spanning Domain Predictor) Server – http://phobius.sbc.su.se/ 

 

                                                    [786] 

http://www.iupred.enzym.hu/


Bioinformatics Server Sites and Tools (Continued) 
 

PolyView3D (Protein Structural Visualisation Software) – http://www.cchmc.org/polyview3d.html 

 

POODLE-S – http://mbs.cbrc.jp/poodle/poodle-s.html 

 

PrDOS Server – http://www.prdos.hgc.jp/cgi-bin/top.cgi 

 

PROFbval – http://www.rostlab.org/services/profbval 

 

Protein Calculator 3.3 (Scripps Institute) Server – http://www.scripps.edu/~cdputnam/putcalc.html 

 

Protein Secondary Structure  Tools Main Server – http://molbiol.tools.ca_secondary_structure.htm 

 

PSI-BLAST – http://www.ebi.ac.uk/Tools/sss/psiblast 

 

PSIPRED – http://www.bioinf.cs.ucl.ac.uk/psipred/ 

 

REAL-SPINE3 – http://www.sparks.informatics.iupui.edu/RealSPINE3.0/realspine3.0.html 

 

REPPER (Coiled-Coil Predictor) – http://toolkit.tuebingen.mpg.de/repper 

 

SPLIT 4.0 (Transmembrane-Spanning Domain Predictor) Server – http://split.pmfst.hr/split/4/ 

 

TANGO (Prediction of Potential Aggregation Regions/Sequences in Proteins) – http://tango.crg.es/ 

 

TMPred Server – http://www.ch.embnet/org/software/TMPRED_form.html 

 

TMRPres2D Server – http://bioinformatics.biol.uoa.gr/TMRpres2D 

 

Vienna RNA Secondary Structure Folding Server – http://rna.tbi.univie.ac.at/ 

 

YASPIN (Protein Coil, Helix, Strand Motif Content) – http://www.ibi.vu.nl/programs/yaspin/www 

 

ZYGGREGATOR Server – http://www-vendruscolo.ch.cam.ac.uk/zyggregator.php 
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Gene/Protein Sequence and Expression Profile Information 

 
GeneCards – http://www.genecards.org 

 

GeneDB – http://www.genedb.org/homepage 

 

Pombase – http://old.genedb.org/genedb/pombe 

 

Pombe Gene Index – http://www.genedb.org/genedb/pombe/index.jsp 

 

Pombe Gene Registry – http://www.genedb.org/genedb/pombe/geneRegistry.jsp 

 

RCSB PDB (Protein Structure Data Bank) – http://www.pdb.org/ 

 

Schizosaccharomyces Group Data-Base 

http:/www.broadinstitute.org/annotation/genome/schizosaccharomyces_group/MultiHome.html 

 

SRS (Sequence Retrieval Site) – http://www.srs.ebi.ac.uk 

 

TPR Motif Sequence – http://www.ncbi.nlm.nih.gov/structure/cdd/cddsrv.cgi?uid=194311 

 

Uniprot – http://www.uniprot.org/ 

 

Wellcome Trust Sanger Institute – http://www.sanger.ac.uk/resources 

 

 

 

 

 

Instrumentation Information  and Laboratory Service Suppliers 
 

ÄKTA™FPLC™ System Manual – http://www,medmicro.wisc.edu/labs/mcfall-ngai/manuals/ 

                                                          acktafplc_manual.pdf 

 

Applied Biosystems Life Technologies Inc. – http://www.appliedbiosystems.com 

 

Eurofins MWG Operon – http://www.eurofinsdna.com 
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Literature “Search Engine” Information  Data-Bases 
 

American Cancer Society – http://www.cancer.org/ 

 

International Agency for Research on Cancer (IARC) – http://www.iarc.fr/ 

 

ISI Web of Knowledge – http://wok.mimas.ac.uk 

 

Nobel Prize Award Records – http://www.nobelprize.org/nobel_prizes_medicine/laureates/2001 

 

PubCrawler – http://pubcrawler.gen.tcd.ie/ 

 

PubMed – http://www.ncbi.nlm.nih.gov/pubmed 

 

SciFinder – http://www.cas.org/SCIFINDER/SCHOLAR/index.html 

 

Scopus – http://www.scopus.com/home.url 

 

Web of Science – http://thomsonreuters.com/products_services/science/science-products/a-z/web- 

                             of-science 

 

World Health Organisation (WHO) – http://www.who/int/en/ 

 

 

 

 

 

Patents on Strategic Anti-Cancer Therapeutic Manipulation of Human Rad9 
 

http://www.freepatentsonline.com./7384761.html 

 

http://www.freshpatents.com/-dt20100701ptan20100168202.php 

 

 

 

 

 

Base Sequence-Predictive Secondary RNA Structure Modelling 
 

Nelson N. and Istrail S. (2012), “RNA Structure and Prediction”, Computational Molecular 

Biology (BIO502) Module Lecture Notes – http://tuvalu.edu/~pth.ma.html 
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S. pombe  Information: Experimental Protocols, Plasmids and Strain Libraries 

 
Bioneer Haploid and Diploid S. pombe Strain Libraries – http://pombe.bioneer.co.kr 

[http://eng.bioneer.com/products/spombe_home.html] 

                                                                              
Cold Spring Harbor Laboratory On-Line Protocols – http://cshprotocols.cshlp.org 

 

EUROSCARF – http://www.uni-frankfurt.de/fb15/mikro/euroscarf/ 

 

Forsburg S. S. pombe Information Site – http://www-rfc.edu/~forsberg/cclecture.html 

 

Nurse P. “Fission Yeast Handbook” – http://biosci.osu.edu/~nile/nurse_lab_manual.pdf 

 

PombeWeb – http://www-bcf.usc.edu/~forsberg/pombeweb.html  
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