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Summary 

Beekeepers in Wales, like others across the northern hemisphere, continue to experience 

high overwintering colony losses.  Breeding for local adaptation has been recommended as 

part of the solution.  The West Wales Bee Breeding Program (WWBBP) was therefore 

established in an effort to improve, through selection, the resilience and production 

potential of a local bee stock.  Breeding for desired character traits began in 2011 and 

focused mainly on colony strength, varroa mite infestation, and temperament.  Foraging 

efficiency was also monitored when conditions allowed.  This thesis presents data from the 

first two rounds of selection.  Scant evidence indicating adaptive change due to selection 

was detected across this time frame, but a demonstrable reduction in the variance of colony 

strength was observed. 

 

The influence of selection across generations on population level genetic variation was also 

monitored.  Microsatellite loci were highly polymorphic in the source population, and great 

diversity was also observed at a custom csd marker.  Low frequency alleles at both marker 

types were lost across generations, and a significant difference in allelic richness was 

observed between the source population and each of the following two daughter 

generations.  The effects of various selection/breeding parameters on the rate of genetic 

depletion due to selection within a contemporary timeframe (5 generations) were 

simulated, and the possible consequence of long term genetic depletion on adaptive 

response was considered.  Simulations indicated that the number of breeder queens selected 

had the greatest influence on the rate of genetic depletion at both neutral loci and at the csd 

locus, across years.  

 

The WWBBP aims to enhance local suitability through selective breeding while 

concurrently preserving genetic diversity and adaptive potential in the simplest most 

practical way.  Hopefully, this thesis will help guide the future development of the 

program, and in addition, provide a basic transferable template for successful small-scale 

breeding.   
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Glossary 

 

Chalkbrood-           A fairly common fungal brood disease caused by the Ascosphaera apis.  Its 

effect on the majority of hives is only slight but it can adversely affect small 

colonies in the early spring. 

 

Grafting-             First performed by G.M. Doolittle, and described in his book Scientific 

Queen Rearing, published in 1888.  It is the process of artificially raising 

queens by removing larvae of appropriate age (from a colony of choice) and 

placing them in artificially made (beeswax or plastic) cell cups.  Many larvae 

can in this way be presented to a prepped queenless cell raising colony.  

Strong cell raising colonies can raise up to 100 or more cells under optimal 

conditions.  

  

Nucleus-               Nucleus colonies are small colonies that are created from larger colonies. The 

name is derived from the fact that a nuc hive is centered around a queen - the 

nucleus of the honey bee colony. 

 

Split-                    A term used to describe the process of ‘splitting’ a large colony into two or 

three separate colonies, each with equal amounts of brood and stores. The 

original will retain the queen, while the others may be left with brood and 

bees of appropriate age to raise a new queen.  A ‘walk-away’ split is one way 

beekeepers use to expand their operation.    

 

Spotty-brood-     This is a characteristic brood pattern that results from the removal of diploid 

drones by workers in a colony headed by a poorly mated queen.    

 

Supersedure-        This is the process of naturally replacing an existing queen.  Bees can sense 

when an old queen is failing and will raise a replacement.  
 

Queen Excluder-   A plastic or metal grid that allows workers to pass through but restricts the 

movement of drones and queens.  It is commonly used to prevent queens 

from moving vertically in the hive. 
 

 

 

 

 

 

 

 

 

Queenright- Colony has a queen 

 

 

 

 

 

csd Complementary sex determination 
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He Expected heterozygosity 

Ho Observed heterozygosity 

Me Effective mating success 

Nb Parental contribution from previous year 

Ne (chapter 2) Estimated mating success 

Ne (chapter 4) Effective population size 

No Observed mating frequency 

h
2
 heritability 

V Brood viability 

VP Phenotypic variance 

VG Variance due to genetic effects 

VE Variance due to environmental effects 

VA Variance due to additive genetic effects 
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1  Introduction 

 

The Western honeybee, Apis mellifera (Hymenoptera, Apidae) is an old and highly 

successful species.  The development of colony life relaxed environmental constraints 

allowing honeybees to expand across a broad range of climatic and ecological conditions 

(Moritz et al., 2005).  It adapted to arid sub-tropical conditions in the south, to cold 

temperate conditions in the north, and its range extends across Western Europe from the 

Atlantic coast of the Iberian Peninsula, to the Ural Mountains in the East.  Correspondingly 

diverse ecotypes evolved against this broad ecological background and there are currently 

24-26 recognized ecotypes or subspecies (De la Rua et al., 2001; Moritz et al., 2005).  

Morphological comparisons by F. Rutter, later supported by genetic analyses (Garnery et 

al., 1992; Franck et al., 1998), collapse these sub-species into four distinct lineages (M, O, 

A and C).  Recent analyses of whole genome data propose an alternative to the previously 

accepted hypothesis that the honey bee radiation initiated in Asia, suggesting instead, two 

possibly separate out of Africa expansions and subsequent radiations (Whitfield et al., 

2006). 

 

1.1 Ecological and Economic role  

Honeybees play a critical role as angiosperm pollinators, and are of vital economic and 

ecological importance (Genersch et al., 2010).  Certain aspects of their biology make them 

well suited for this purpose.  They are generalists, able to forage and thrive on a wide range 

of nectar and pollen sources, and to travel long distances to do so.  Bees employ complex 

communication behavior to pass information relating to location of nectar sources.  They 

are well suited to pollinate commercial crops.  Thirty five percent of the food consumed by 

people is pollinated by animals (Genersch et al., 2010), and the large-scale homogenized 

agriculture practiced in Europe and the US requires pollination services from managed 

honeybee apiaries.  California exported $2.3 billion worth of almonds in 2010 alone, a crop 

that is dependent upon the pollination services of honeybees.  It is also claimed that 

honeybees contribute between £200 million (British Beekeepers Association), and bees in 

general up to  £430 million pounds per annum (UK National Ecosystem Assessment) to the 

British economy.  Honeybees are responsible for pollinating a range of crops and are 

responsible for pollinating 90% of the UK’s apple crops.    
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1.2 Honeybee Health and Disease 

Honeybees live close social lives.  They not only associate intimately with other members 

of the colony, but are part of a community of organisms that may interact in beneficial, 

neutral or antagonistic ways.  They are susceptible to damage from a wide range of 

metazoan, microbial and viral pathogens.  Antagonists include: mites and beetles (Varroa 

and Acarapis mites, and small hive-beetle); Microsporidia (Nosema apis and N. ceranae) 

and other fungi; bacteria (American and European foulbrood); and viruses. 

The bee population dramatically crashed in America over the winter of 2006-2007.   These 

collapse events were characterized by the sudden disappearance of adult bees, and with 

apparent abandonment of hives, brood and food resources (vanEngelsdorp and Meixner, 

2009).  These symptoms collectively define colony collapse disorder (CCD), a newly 

described specific collapse syndrome.  Seasonal losses among managed colonies have 

remained high since 2008.  Preliminary survey results indicate that 31.1% of managed 

honey bee colonies in the United States were lost this winter (2012/2013) (vanEngelsdorp 

et al., 2013) and there was a critical shortage of bees for pollination on the almonds.  

Although bumper crops are still expected (estimated to be over 2 billion pounds) due to 

very good growing conditions, there is growing concern that ever diminishing bee numbers 

may provide a problem for growers in the future.   

Although CCD is recognized as a syndrome specific to North America, similar declines in 

bee colonies were experienced in Europe.  In France, the death rate was more than 60% 

and England lost 30% of its colonies over the winter of 2007-2008 (Aston, 2010).  No 

single causative agent has yet been found.  Worldwide incidents of unusually high levels of 

colony deaths or “disappearance diseases” have been periodically reported (Table 1.1).  

There have been 18 major episodes since 1869 (Underwood and vanEngelsdorp, 2007).  

An infamous epidemic occurred in Britain during the early years of the 20th century.  No 

causative agent for the ‘Isle of Wight disease’ was isolated during the outbreak, and by 

1919, Britain had lost 90% of its colonies.  The microsporidian, Nosema apis, was 

subsequently highlighted as a possible cause, as was the tracheal mite Acarapis woodi 

(Neumann and Carreck, 2010).  Chronic paralysis virus (CPV), identified in diseased Isle 

of Wight bee samples by Lesley Bailey in the 1950’s, is now considered to be the most 

likely cause of the outbreak (Allen and Ball, 1996; Bailey, 1964). 

Other ‘disappearance’ outbreaks occurred in United States and Canada around 1920, and 

again in the south and south western USA in the 1960’s (Underwood and vanEngelsdorp, 
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2007).  Outbreaks of so-called ‘disappearing syndrome’ occurred in Australia and 

‘disappearing disease’ in Mexico in 1975, with environmental factors determined to be 

likely causes.  Greater than average losses were reported in the United States during the 

end of the 1970’s and again in the mid 1990’s (Underwood and vanEngelsdrop, 2007).  

France experienced devastating losses between 1998 and 2000 with disease, stress due to 

poor nutrition and chemicals in the environment being presented as possible contributors.  

The cause is still not known. 

Table 1.1 Historical large-scale colony losses 
 

Year Location  

1868 Kentucky, Tennessee Anonymous, 1869 

1872 Australia Beuhne, 1910 

1906 Isle of Wight Bullamore, 1920 

1910 Australia Behune, 1910 

1915 Portland, Oregon Root and Root, 1923 

1915 Florida to California Tew, 2002 

1917 United States Root and Root, 1923 

1917 New Jersey, Canada Carr, 1918 

1960's Louisiana, Texas Williams and Kauffeld, 1974 

1963-64 Louisiana Oertel, 1965 

1964 California Foote, 1966 

1970 Mexico Mraz, 1977 

1970’s Seattle, Washington Thurber, 1976 

1974 Texas Kauffeld et al., 1976 

1975 Australia Olley, 1976 

1977 Mexico Kulinčević et al., 1984 

1978 Florida Kulinčević et al., 1982 

1995-96 Pennsylvania Finley, 1996 

1999-2000 France Faucon et al., 2002 

2002 Alabama Tew, 2002 

2002-2003 Sweden and Germany Svensson , 2003 

 

 

The honeybee is vulnerable to a wide range of threats including: habitat degradation, 

irresponsible pesticide use, genetic pollution, human-mediated pathogen translocation and 

climate change.  Synergistic interactions between two or more of these antagonists can 

overwhelm susceptible bee populations (Neumann and Carreck, 2010).  For example, the 

parasitic mite, Varroa destructor, has facilitated the decline of managed and native 

honeybee populations worldwide.  It has a relatively benign association with its native host 

Apis cerana, but has demonstrated greater virulence in A. mellifera.  Varroa destructor has 

been associated with viral transmission and immune system suppression in honeybees 
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(Cox-Foster, 2007).  The significance of the association between varroa and deformed 

wing virus (DWV), and its influence on virus prevalence, load, and diversity, was recently 

highlighted by Martin et al. (2012).  They investigated how varroa affected the spread of 

DWV in a newly colonized region (Hawaii in this case).  They showed how the arrival of a 

DWV strain that can replicate in varroa, led to the rapid spread and dramatic increase in 

viral loads across the island.  While the distribution and prevalence of other common 

viruses remained unaffected, varroa radically and rapidly shifted the DWV viral 

landscape.   

 

Table 1.2.  Approximate worldwide timeline for Varroa destructor (Acari: 

Varroidae) expansion 

Location    Detected 

Asia Soviet Union 1960  Hatcher and Batty, 2011 

 Philippines 1957  Navajas, 2010 

   

Europe Bulgaria 1972  Navajas, 2010 

 Romania 1975  Hatcher and Batty, 2011 

 

Britain 1992        “                “ 

   

North Africa Libya 1976  Hatcher and Batty, 2011 

 Tunisia 1975         “               “ 

   

South America Paraguay 1971  Hatcher and Batty, 2011 

 

Brazil 1975          “               “ 

   
North America United States 1987  Wenner and Bushing, 1996 

 

Hawaii 2007  Ramadan et al., 2007 

   
Africa South Africa 1997 Fazier et al., 2009 

 

Tanzania 2009        “ 

 Kenya 2009        “ 

New Zealand New Zealand 2000  Goodwin and Van Eton, 2001 

                      

 

1.2.1 Varroa 

Varroa destructor is an obligate ectoparasitic mite that has become a worldwide pest of the 

western honeybee, Apis mellifera (Gisder et al., 2009; Table 1.2).  It evolved in concert 

with its native Asian host, Apis cerana (Moritz et al., 2005), and was first observed on 

western honeybees, A. mellifera, in Singapore in 1951.  It  now infests colonies on all 
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continents other than Australia.  It was recently reported to be in East Africa, and is likely 

more widespread across the continent (Fazier et al., 2009).  By examining sequence 

variation within the cytochrome c oxidase subunit 1 mitochondrial region (CO-I sequence 

variation) and by using morphological comparisons of mites from around the world, 

Anderson and Trueman (2000) demonstrated that V. destructor is part of a two-species 

‘complex’ comprising of V. destructor and V. jabobsoni.  Varroa jacobsoni occurs on its 

native host A. cerana in Malaysia and Java, while V. destructor is found on A. cerana on 

the Asian mainland and on other A. mellifera subspecies worldwide (Zhang, 2000).  The 

Asian honeybee, Apis cerana, co-evolved with varroa and employs innate behavioral 

mechanisms (e.g., chewing out infested brood) to arrest colony infestations at manageable 

levels.  Additionally, mites cannot develop in A. cerana worker brood cells, and are limited 

to the longer developing drone cells (Spivak, 1996) while drones weakened by parasitism 

cannot emerge, hence both drone and mite die.  In contrast, naïve populations of Apis 

mellifera possessed no innate resistance to varroa and suffer alarming population declines 

on initial exposure. 

 

Varroa mites feed on the haemolymph of larvae, pupae and adult honeybees, during 

different times of development, and numbers can proliferate to colony-lethal levels if 

unchecked.  Chemical suppression has been commonly employed in America and parts of 

Europe.  While successful in the short term, beekeepers have had to constantly revise their 

chemical armory in response to chemical resistance developed by mites.  After 20 years of 

often haphazard chemical applications, mites in many countries have developed resistance 

to much of what was used against them (e.g. pyrethroids such fluvalinate).  Italian bees 

became resistant to this class of chemicals in only 4 years and resistance rapidly spread 

across Europe.  More dangerous chemicals such as the organophosphate coumaphos 

(Perizin
TM

 or Amitraz
TM

) are no longer effective in some places (USA, France).  Denmark, 

in contrast to most nations, employed a nationally concerted response when varroa was 

detected.  Their approach limited chemical use.  Apiaries were encouraged to remove 

drone cells in the spring (varroa prefer drone cells since the longer drone development 

time allows for better mite survival rates) and apply organic acids (formic and oxalic acid) 

a couple of times a year.  Sixty percent of Danish apiaries detected no varroa problems in 

2005 with an additional 25% reporting mild infestation of a colony or two (Vejsnæs, 

2005).  However, with this all said, varroa is still a threat to Danish bees.  Vejsnæs et al. 

(Vejsnæs et al., 2010) describe losses of 30% in approximately 12,000 hives over the 
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winter of 2007-8.  Favorable weather allowed varroa numbers to increase to lethal levels 

in many colonies that winter.  

 

1.2.2 Mite resistance in honeybees 

Experience has demonstrated that resistant mite populations proliferate under the selection 

advantage conferred on them by inappropriate chemical applications.  An alternative 

approach to the varroa problem has been the establishment of breeding programs selecting 

for various varroa-resistant behaviours (Spivak, 1996; Rinderer et al., 2000).  Marla 

Spivak breeds bees that exhibit hygienic behavior (HYG), a two-step disease resistance 

process performed by different bees within the colony.  Some bees uncap infected calls, 

while others remove the exposed (dead) brood from the hive (Gramachko and Spavik, 

2003).  Originally discovered as a response to American foulbrood, the behavior has 

demonstrated effectiveness against the varroa mite (Spivak, 1996).  Once considered to be 

a simple two locus (one controlling capping and the other removal) “on or off’ trait, the 

behavior is now recognized to be influenced by at least seven genes (Lapidge et al., 2002; 

Wilkes and Oldroyd, 2002).   Varroa sensitive hygiene (VSH) is a closely related behavior.  

Bees exhibiting VSH can detect mite infested brood and uncap the cell to remove the live 

brood, disturbing mite reproduction in the process (Boecking and Drescher, 1991; Rinderer 

et al., 2000; Harris, 2007).  The United States Department of Agriculture (USDA) has been 

working with varroa-resistant strains of A. mellifera that adapted in sympatry with varroa. 

European honeybees from the Ukraine were moved to the Primorsky region of Eastern 

Russia, approximately 100 years ago.  These bees adapted to varroa in a chemical free 

environment and were the precursors of the varroa-resistant strains released for 

commercial use in 2000 (Rinderer et al., 2000).  Differential gene transcription analyses of 

varroa-sensitive and non-sensitive bees indicated differences in olfactory and neural 

sensitivity-associated genes (Navajas et al., 2008).  Based on these observations, the 

authors suggest that resistance to varroa is mostly behavioral.   Identifying the location of 

relevant loci has proven to be a challenging task since behavior traits are often under the 

influence of multiple genes, and as previously noted, involves two separate behaviors 

carried out by two different bees.  Recent work from the Behaviour and Genetics of Social 

Insects Lab, University of Sydney (Oxley et al., 2010) identified six quantitative trace loci 

(QTL’s).   
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The South African experience is noteworthy since it has been postulated that the lack of 

chemical intervention and increased hygienic behavior resulted in the observed population 

rebound.  The varroa mite (Varroa destructor) was detected into South Africa in 1997.  

Although associated declines in native A. mellifera capensis and A. m. scutellata 

populations occurred, no chemical intervention was adopted.  After seven years of decline, 

population numbers began to rebound, and varroa resistant proliferated (Fazier et al., 

2009).  Losses due to varroa were recently described as incidental.  African bees have 

demonstrated naturally higher levels of hygienic behavior that other species of western 

honeybee, demonstrating shorter brood time and greater tendency to swarm.  Fries et al. 

(2006) attempted a controlled version of the above natural ‘live and let die’ experiment.  

They demonstrated co-adaption between host bees and mite over a six year period in an 

isolated bee population of 150 hives.  These hives were infested with varroa and left 

untreated.  Mite induced winter mortality dropped from 76% in the first year to 13 and 

19% in the fifth and sixth years.   

Some breeders also recognize the benefits of a more holistic approach to dealing with 

parasites and disease.  Continually medicating against varroa for example, can bolster and 

help propagate disease susceptible strains.  Population level tolerance can be enhanced by 

breeding from the more mite-tolerant colonies, but treatments must be controlled so that 

colonies with greater and lesser mite resistance can be distinguished.  Some regions in the 

northern hemisphere (e.g. Lleyn peninsula, Wales) are reporting limited mite mediated 

losses and a concurrent reduction in varroacide use.  Commercial beekeeping operations 

are therefore reducing the use of medication in the production part of their operation, and 

trying to eliminate treatment altogether in colonies selected for breeding.  Research 

indicates that a balance can develop in closed populations between mite virulence and bee 

tolerance (possibly due to the viruses they vector) in un-medicated populations (Fries, 

2009; Seeley, 2007).  Locally adapted bees have demonstrated superior survivorship under 

no-treatment regimes 

1.2.3 Nosema 

Microsporidia of the genus Nosema are specialized fungi that parasitize many kinds of 

animals.  Three species infect honeybees (Apis mellifera) and bumblebees (Bombus 

terrestris) in the U.K.: Nosema apis, N. ceranae, and N. bombis.  These parasites infect gut 

epithelial cells, weakening individuals and colonies.  Nosema apis causes dysentery.  

Several viruses can transfer between individuals via contact and fecal contamination, and 
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are likely to associate with Nosema infection.  These include: black queen-cell virus, bee 

virus Y, and filamentous DNA virus (Ribiére, 2007).  Nosema apis also causes disjointed 

wings, increased winter die off rates and slow down of spring build-up of colonies.  

Nosema ceranae was first observed in A. mellifera apiaries in Spain in 2006 (Higes et al., 

2006).  It appears to be the most damaging of the two species (Paxton et al., 2007), having 

the capacity to cause complete colony failure independent of any other infection (Higes et 

al., 2009).  Dysentery has not been reported as a symptom of N. ceranae infections (Fries, 

2009).  N. apis and N. ceranae are currently susceptible to treatment by fumagillin (Higes 

et al., 2009).  Although N. ceranae was statistically dismissed as a potential cause of 

colony collapse disorder (CCD) in the United States (Cox-Foster et al., 2007), it was later 

reiterated (Paxton, 2010) that the authors recognized that their study was not the best 

approach to determining the causes of CCD since it was a snap-shot view only, and could 

not track changes over time.  Studies tracking colonies through time (Higes et al., 2009; 

Martín-Hernanández et al., 2009) have reported mortalities resulting from N. ceranae 

infection.  Paxton (2010) also suggests that regional differences to sensitivity to nosema 

may be due to differences in virulence among different strains of the micosporidian.  It 

seems that the role of Nosema in CCD has not yet been clearly elucidated. 

 

1.2.4 Viruses   

Viruses are important bee pathogens of great concern and interest to beekeepers and 

researchers.  Over 18 viruses are known to infect bees (Baker and Schroeder, 2008).  Most 

of the common viruses have single strands of positive sense RNA (Table 1.3).  Colony life  

provides a good environment for viral transmission.   Viral transmission can occur 

horizontally and vertically, either passing directly between individuals or from parent to 

offspring in eggs and sperm (de Miranda and Genersch, 2010).  Viruses can maintain 

intergenerational host/parasite equilibriums through vertical transmission when hives are 

healthy.  Clinical signs of infection may be unobserved under such circumstances.   

Alternatively, viruses pass horizontally among hive members during periods of stress, 

passing into haemolymph after mite induced puncture, for example, or being ingested by 

feeding and grooming in unhealthy hives.  Nosema-induced dysentery may also aid the 

viral transmission of BQCV and other viruses.  Poor weather conditions can also aid viral 

replication since hygiene condition may deteriorate within the hive as bees may not be able 

to leave to defecate. 
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Viruses have been implicated in the several bee die-off and colony collapse incidences 

(Bailey, 1964; Cox-Foster, 2007), and are known to associate with other bee parasites. 

Black queen cell virus (BQCV) has been linked to Nosema, and deformed wing virus 

(DWV) to Varroa.  Paradoxically, DWV exhibits low virulence in Apis mellifera (de 

Miranda and Genersch, 2010).  More virulent bee viruses like chronic bee paralysis virus 

(CBPV), acute bee paralysis virus (ABPV), Kashmir bee virus (KBV), BQCV, sacbrood 

bee virus (SBV) may not be suitably vectored by varroa since they cause too rapid a 

demise of its host colony (de Miranda and Genersch, 2010), and don’t allow enough time 

for the mite to reproduce.  The ‘classic’ varroa-DWV model recognizes that the negative 

effects of DWV on bee health are a consequence of complex interactions between the mite, 

bees, and the transmission pattern and virulence of the virus.  Nevertheless, consistent 

overwinter colony mortality resulting from DWV infection in the absence of mites was 

recently reported (Highfield et al., 2009). 

Table 1.3  Common Bee Virus 

    
Virus   Family Genus RNA sense 

Acute Paralysis Virus APV Dicistroviridae Aparavirus ssRNA positive 

Israeli Acute Paralysis Virus IAPV Dicistroviridae Aparavirus ssRNA positive 

Kashmir Bee Virus KBV Dicistroviridae Cripavirus ssRNA positive 

Black Queen Cell Virus BQCV Dicistroviridae Cripavirus ssRNA positive 

Chronic Paralysis Virus CPV Unclassified  

  
Cloudy Wing Virus CWV Dicistroviridae   

  
Deformed Wing Virus DWV Iflaviridae Iflavirus ssRNA positive 

Sacbrood Virus SBV Iflaviridae Iflavirus ssRNA positive 

Kakugo Virus KV Iflaviridae Iflavirus ssRNA positive 

Varroa destructor Virus 1 VDV-1 Iflaviridae Iflavirus ssRNA positive 

Source material obtained from the European Commission project report; Virology and the honey bee,  2008 

(Ribière et al., 2008; Carter and Genersch, 2008). 

It is known that insect can tolerate viral pathogens without showing clinical signs of 

disease (viral accommodation); an observation that is not clearly understood.  Insects 

probably utilize an anti-viral mechanism termed RNA interference (RNAi).  RNAi is a 

form of post transcriptional gene silencing (PTGS) that was originally detected in flowers.  

It has since been also observed in insects and animals.  A revolution in RNAi based gene 

silencing technology has occurred over the last ten years.  The USDA is currently running 

clinical trials on a new RNAi based treatment for the honey bee virus Israeli Acute 

paralysis Virus (IAPV) (Maori et al., 2009).  Israeli bee paralysis virus was identified as a 

potential marker for colony collapse disorder (CCD) (Cox-Foster, 2007) and was a good 

candidate for RNAi.  Beeologics, a biotechnology company from Israel, have taken 
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advantage of the RNAi mechanism to develop anti-viral treatments for bees.  They claim to 

have developed a treatment that offers potent protection from the following bee viruses:  

Israeli acute paralysis virus (IAPV), Kashmir bee virus (KBV), black queen cell virus 

(BQCV) and deformed wing virus (DWV). 

The most common bee viruses are RNA-based (Table 1.3).  Polymerase Chain Reaction 

(PCR) technology allows for detection and quantification of viral activity in bees.  Bees 

can be screened for specific viral infection by applying reverse transcription of viral-

specific mRNA, followed by amplification and visualization of the resulting cDNA.  Baker 

and Schroeder (2008) demonstrated that the RNA dependent RNA polymerase (RdRp) 

gene can reliably distinguish between viruses within the Picornavirales, an order that 

includes many of the common bee viruses.  They also suggest that DWV, VDV-1 and KV 

from the genus Iflavirus, are variants of the same virus and that care should be given in 

using species-specific’ primer sets within that genus.  Real-time quantitative PCR 

technology allows viral loads to be quantified.  This procedure detects material that is only 

produced when the virus is actively replicating, indicating that an active infection is 

occurring.  The detection and quantification of replicated negative strand RNA would 

suggest a true infection is occurring as opposed to passive viral transmission (de Miranda 

and Generch, 2010; Gisder et al., 2009) 

 

1.2.5 Pesticide Threats 

Due to the nature of farming in Wales, local honeybees are not likely to be greatly affected 

by pesticides.  Nevertheless, bees are susceptible to pesticides and recent work on the 

honeybee genome has shown that relative to other insects, they have fewer genes coding 

for detoxifying enzymes (Claudianos et al., 2006).  Recent worldwide developments have 

also highlighted concern regarding the increasing use of neonicotinoids, a specific class of 

pesticides.  Neonicotinoid treated seeds offer systemic protection to the developing plant, 

and are now commonly applied to many commercially important crops (e.g. corn, oil seed 

rape, sunflowers) on an industrial scale.  All parts of the plant (including pollen and nectar) 

are pesticide laden.  A coalition of beekeepers and environmental groups recently sued the 

United States Environmental Protection Agency (EPA) for approving the registration of 

Clothianidin and Thiamethoxam, claiming that these neonicotinoids cause severe damage 

to bees and are the primary cause of colony collapse disorder (CCD).  Recent scientific 

publications have provided evidence supporting such claims.  A high profile paper by 
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Schneider et al. (2012) described how neonicotinoids induced CCD like symptoms 

(including a vacated and empty hive) in experimentally exposed colonies.  Neonicotinoids 

are acetylcholine receptor agonists that bind irreversibly causing hyper-stimulation of the 

nervous system.  These effects adversely affect the brain function and thought that foraging 

field bees become disoriented and fail to return to the hive.   

Another recent high impact paper claimed that field concentrations of neonicotinoid 

pesticides can detrimentally affect queen health and the development of bumble bee 

colonies under laboratory conditions (Whitehorn et al., 2012).  There is a growing body of 

evidence implicating pesticide use with pollinator loss, and on the April 29th 2013, the 

European Union responded by voting to enforce a 2 year ban on the use of three type of 

neonicotinoids on flowering plants, though eight (including the UK) of 27 member states 

voted against the ban, and four abstained.  Those doubting the ban claimed that scientific 

evidence is currently inconclusive and that a complete embargo is unwarranted.   

Opinions are similarly divided among the beekeeping community.  Some commercial 

operators have observed no adverse effect on their bees while foraging on neonicotinoid 

treated crops, and claim that lack of varroa mite control and poor forage quality due to 

shifts in climate patterns and agricultural practices are more impactful causes of colony 

loss.  Randy Oliver, a scientifically trained commercial beekeeper from California 

(scientificbeekeeping.com), recently wrote a critique of the Schneider et al. paper (Oliver, 

2012).  He questioned both the methodology used (which involved very high neonicotinoid 

loads presented to the experiment colonies) and their interpretation of results.  He suggests 

that the observed colony losses could have resulted from ineffective mite control, rather 

than from pesticide poisoning.  He presented these concerns in writing to the authors but 

has yet to receive a response.  A contrasting opinion is presented by another group of 

American commercial operators, some of whom lost up to 70% of their colonies this 

winter.  The journalist Dan Rather (2013) reported on the resulting shortage of bees for 

almond pollination in California this spring.  Neonicotinoid pesticides were considered by 

many to be a major contributing factor affecting declining bee health.   

Chemical treatment has also been the prescribed response by many to varroa mite 

infestation.  Varroa frequently developed resistance, necessitating the use of novel 

chemical treatments.  Some of these chemicals could accumulate in the hive with time and 
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have unwanted effects at the higher concentrations.  New treatments are developed in 

response.  The arms race continues in large scale bee operations. 

 

1.3 Bee Translocations  

The western honeybee evolved across a wide range of ecological and climatic conditions 

(Moritz et al., 2005).  Separate races or sub-species became regionally adapted, developing 

regionally specific phenotypic and behavioral characteristics suited to particular 

environments and conditions.  Technological developments allowed bees to be distributed 

away from their endemic ranges.  Moritz et al. (2005) describe three kinds of human 

mediated distributions: spread of A. mellifera within the ranges of other A. mellifera sub-

species (Europe, Western Asia and Africa); distribution of A. mellifera sub-species in 

regions where other species of the genera Apis were found (Asia); and translocations into 

areas not endemic to honeybees (Americas and Australia).  

 

Foreign ecotypes (sub-species) exhibiting ‘superior’ traits have been introduced into the 

UK over the years in an effort to enhance beekeeping productivity.  Queens under natural 

conditions mate on the wing some distance from the nest.  They can therefore come into 

contact with drones distant colonies.  Consequently, both the managed and wild British 

honeybees are probably of mixed genetic backgrounds.  The plight and condition of native 

bee populations is presently unclear.  The introduction of Varroa destructor was 

undoubtedly detrimental.  At worst, the combined effects of disease and the introgression 

of genes from introduced bees may have resulted in the extirpation of the native bee.  

Nevertheless, bee colonies are cryptic and hard to locate, and locally adapted wild bees that 

are in ‘balance’ with the parasite, may exist in some remoter parts (Jensen et al., 2005; 

Villa et al., 2008).   A number of regional bee breeding cooperatives are attempting to 

identify and conserve these bees. 

 

1.3.1 Translocation within the endemic A. mellifera range 

Beekeepers have moved bees around the world in an effort to enhance desired beekeeping 

traits.  Since bee reproduction is difficult to control, introgression of genes from introduced 

into native bee population can easily occur, resulting in the breakdown of locally adapted 

gene complexes.  In addition, areas can be flooded with managed queens of limited genetic 

variation.  Lack of genetic variation would weaken population level response to 

environmental threats, and result in poorly mated queens (mated with few individuals or 
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closely related individuals).  Hives with poorly mated queens have less resistance to 

pathogenic infection (Baer and Schmid-Hemple, 1999; Hughes and Boomsma, 2004; 

Seeley and Tarpy, 2007).  Although the integrity of regionally co-adapted gene complexes 

have been challenged by bee translocation, research suggests that autochthonous sub-

species can still be found in parts of Europe (De la Rua et al., 2001, 2002, 2003; Jensen et 

al., 2005; Strange et al., 2007).  In addition, notable efforts have been made to preserve 

native strains.  The Danish government implemented conservation measures to protect the 

endemic “black” honeybee on the island of Læsö.  Introgression of non-native genetic 

material has occurred as a result of illegal importation of other A. mellifera sub-species 

(Jenson et al., 2005).  

Two sub-species of A. mellifera are endemic to South Africa, A. m. capensis, and A. m. 

scutellata.  Translocation of A. m. capensis into the native range of A. m. scutellata for 

commercial beekeeping purposes resulted in rapid disappearance of the A. m. scutellata 

colonies (Neumann and Hepburn, 2002).  Apis mellifera capensis workers parasitized A.m. 

scutellata hives, superseding native queens, and took over colonies by becoming layers 

(Neumann and Hepburn, 2002; Moritz et al., 2005).  Commercial beekeepers suffered great 

losses, but native wild A.m.scutellata have to date been relatively unaffected 

1.3.2 Translocations of A. mellifera into the native range of other Apis 

Apis mellifera has become popular with Asian beekeepers, causing considerable decline in 

use of the native A. cerana (Moritz et al., 2005).  Hybridization can occur in both 

directions between the species (Moritz et al., 2005).  The negative consequences of 

hybridization have been well documented (Allendorf et al., 2001).  Hybridization between 

these two species results in reduced fitness since queens of either species will be poorly 

mated resulting in the waste of reproductive resources (Moritz et al., 2005).  The hybrid 

juveniles are inviable; hence locally adapted A. cerana gene complexes stay intact.  The 

transfer of the parasitic mite Varroa desctructor from its native host A. cerana, into naïve 

A. mellifera populations, initiated the most devastating plague of the western honeybee 

(Moritz et al., 2005).  Its spread has highlighted in a dramatic way the unintended 

consequence and dangers of ill-informed translocations.  Nosema ceranae is also thought 

to have recently transferred from A. cerana to A. mellifera and is expressing increased 

virulence in its new host (Fries, 2009).  Significant colony losses recently reported in Spain 

were attributed to N. ceranae parasitism. 
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1.3.3 Translocation of A. mellifera into regions with no indigenous Apis 

There are no honeybees endemic to the Americas and Australia.  The first American 

honeybees were probably British black bees (Apis mellifera mellifera) which landed in 

Jamestown in 1622 (Delaney et al., 2009).  Feral bees moved west across the continent to 

the eastern slopes of the Rockies.  No bees made it across the mountains.  The first 

honeybees to make west of the Rockies arrived in California by boat in the 1850’s.  Most 

honeybees (A. m. carnica and A.m. ligustica) were imported between 1859 and 1922.  

Importation of bees into the US was outlawed in 1922 in response to the ‘Isle of Wight’ 

disease that had decimated British bee stocks.  The ruling limited genetic variation in 

available breeding stocks.  It is thought that the progeny of all the commercial hives in the 

US were bred from only 500 breeder queens (Delaney et al., 2009).  Low levels of genetic 

diversity correlate with reduced disease resistance, colony strength and overall colony 

fitness in bees and other social insects (Tarpy, 2003).  In addition, genetically similar 

colonies are less buffered against disease transmission between colonies, and are at greater 

risk of high colony losses. 

  

1.4 Colony Life 

The type of advanced colonial structuring that is observed in honeybees is termed eusocial.  

It is characterized by cooperation between individuals in brood care and nest construction, 

overlapping generations, and reproductive division of labor (Wilson and Holldobler, 2005).  

A normally functioning honeybee colony may have 60,000 or more individuals, consisting 

mostly of female workers that perform within and outside hive tasks such as brood care 

(nursing), nest defense and foraging.  Workers also tend to the queen, the prolific egg-layer 

and mother of the colony, whose task it is to encourage colony growth and ultimately 

reproduction through swarming.  Each colony will also contain males (drones) at certain 

periods of the year.  Far fewer in number than workers, they are specifically adapted to 

detect, catch, and mate with queens during their nuptial flight(s).  Drones mate only once.  

Virgin queens undertake one to three mating flights within the first few weeks of life, 

mating with multiple males (drones), and storing the sperm for lifetime use and storage.  

The mean paternity frequency (i.e. actual number of matings) for A. mellifera is around 13 

(Cournet et al., 1986; Estoup et al., 1994).  Seeley and Tarpy (2007) demonstrated that 

colonies with higher levels of genetic variation (i.e. greater number of patrilines) were less 

affected by American Foulbrood inoculation than colonies formed by single mated queens.  

Baer and Schmid-Hempel (1999) reported similar results with bumblebees (Bombus 
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terrestris L.) with greater genetic variation correlating with reduced pathogen loads and 

better reproductive success (see also Hughes and Boomsma 2004; Palmer and Oldroyd, 

2003). 

 

Extreme polyandry (>2 matings per queen) is relatively rare among the highly eusocial 

insects (Tarpy and Page, 2000).  It occurs in a few wasps, ants and bee genera, and has 

been the topic of much debate, since it is not intuitively obvious what selective 

advantage(s) is confers.  Polyandry reduces the degree of relatedness among colony 

individuals and exposes the queen to environmental (predatory and pathogenic) threats 

(Tarpy and Page, 2001).  In addition, within hive genetic heterogeneity has been correlated 

with greater thermoregulation efficiency.  Controlled experiments demonstrated that 

genetically diverse colonies (greater number of patrilines) displayed greater thermal 

stability in response to environmental change that genetically poor ones (Jones et al., 

2004).   

1.5 Complementary sex determination gene csd 

Sexual development in Hymenoptera is directed by a specific genomic region (Sex 

Determination Locus; SDL) found on chromosome 3.   Within this locus resides the 

complementary sex determination gene (csd), whose protein product initiates the 

development of males (usually haploid) in the default state.  However, when the protein 

product of two functionally distinct alleles combine (i.e. in diploids), another gene within 

the SDL (fem) is switched and the process of feminization is triggered.  Feminization 

occurs only when csd alleles differ in diploids; homozygotes develop into sexually in-

viable diploid drones and are ‘cannibalized’ at an early developmental stage by workers.  

Strong frequency dependent selection and heterozygote advantage promote high gene 

variance at the locus.  High levels of polymorphism are observed due to these forces 

(balancing selection) since alleles tend to persist in evolutionary terms. 

The population dynamics of the csd is of relevance to the bee breeder since colonies with 

low brood viabilities due to unacceptably high levels of diploid drone production will be 

less productive.  Queens mate multiple times, and the probability that she will mate with a 

drone carrying an identical allele to one of the two she carries is      , where k = the 

number of alleles in the population (assuming each is present in equal proportions).  From 

this relationship Page and Marks (1982) deduced that the brood viability (V) of a queen 

that mates n times, with y of those drones carrying alleles that matched one of her own, is, 
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This relation assumes that each drone has an equal probability of mating and provides an 

equal amount of sperm.  In addition, the expected brood viability in a population closed to 

the influence of migration will be  

   
 

 
 

 The expected mean brood viability is therefore higher in population carrying higher 

numbers of distinct alleles since the probability of identical alleles matching in zygotes is 

reduced.  In addition, the mean population mating success (mean number of drones each 

queen mates with) affects the variance in population level brood viability, but not the mean 

itself (Cook and Crozier, 1995), with lower mating success resulting in greater variance in 

brood viability.  Number and frequency of distinct alleles (k) are important population 

level criteria affecting diploid drone production.  In general the industry considers brood 

viabilities of less than 85% as unacceptable (Page and Marks, 1982).  Beekeepers trying to 

direct adaptive change by selecting a limited number of breeders each year will limit the 

transfer of gene variation across generations, by they must concurrently maintain the 

number and frequency of sex alleles to maintain an acceptable levels of brood viability in 

the long term.   

The molecular mechanisms of single locus sex determination are not completely 

understood.   It is not yet known for example, how one csd allele differs from another.  A 

hypervariable region (HVR) located in region 3 of the gene most likely holds the key to 

unravelling this riddle (Cho et al., 2006).  The HVR can be described as a pseudo-

microsatellite since it is comprised of short repetitive sequences, bounded by an arginine 

and serine rich region on one side, and a proline rich region on the other.  These more 

conserved bordering regions were targeted by PCR in this study to investigate fragment 

length variation within the HVR.  One hypothesis suggests that the number of HVR 

sequence repeats characterize csd allele function, and that differing numbers of repeats at 

this coding region result in protein products of correspondingly differing lengths and 

possibly function (Cho et al., 2006).   

1.6 Bee Breeding 

 

1.6.1 Hybrid Breeding 
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Selective breeding methods have been adopted for centuries to improve agricultural strains 

of plants and animals.  More recently, the genetic influences underlying the beneficial 

effects of heterosis (hybrid vigour) have become better understood and recognized by plant 

and animal breeders (Shull, 1948).  Beekeepers have also realized the potential benefits of 

out-crossing and the method has been successfully applied to improve stock vigor (Cale 

and Gowen, 1956).  However, since hybrid breeding requires the long term and costly 

maintenance of pure inbreed lines, such efforts usually required the resources of large 

commercial operations or research facilities.  The Starline and Midnite bees were once 

popular commercial four line hybrids produced by Dadant and Sons, Inc. (United States); 

each was continually improved by the addition of new hybrid lines.  Advancements in 

Instrumental Insemination (II) methodologies (Laidlaw, 1944; Mackensen, 1947) allowed 

breeders to maintain and cross genetically isolated lines through artificial mating.  The 

technique continues to be used to control mating.  It does require some specialized 

equipment and training; hence it is mostly used by professional breeders and research 

establishments.    

 

1.6.2 Line Breeding 

A more commonly used approach is line breeding.  Line breeding has been used since the 

middle of the nineteenth century by European and American breeders.  Most famously in 

the UK, brother Adam of Buckfast Abbey developed the Buckfast line through many years 

of cross-breeding different lines of geographical sub-species.  He did this using open 

mating partly in response to colony losses from the Isle of Wight disease during the early 

part of the 20th century.  Contemporary breeders mostly use line breeding to strengthen 

honeybee stocks by encouraging the propagation of beneficial traits within the gene-pool.   

 

A model line breeding program (The Russian Bee Breeding Program) was established by 

the United States Department of Agriculture (USDA) in the 1990’s.  The program was 

transferred, with federal support, to the commercial sector and is currently maintained by 

the Russian Honeybee Breeders Association, Inc.  Seventeen lines, divided into three 

separate blocks A, B, and C, are currently maintained.   Blocks are comprised of a number 

of independent beekeepers, each maintaining no more than two lines.  An intricate 

breeding design (Fig1.1) has ensured that inbreeding effects are minimal, both within the 

program, and within the stock provided for commercial sale.   
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Figure 1.1.  Each year, members will select the best looking colonies from each of their 

lines as breeders.  Their daughter colonies will be mated by drones sourced by queens 

donated from the other two blocks.  For example, a beekeeper maintaining lines in block A 

will mate his virgin queens with drones produced by queens provided by all the members 

of block B and C.  A large number of daughter colonies are raised, and these are also 

distributed among the other blocks for monitoring different environmental conditions.  In 

order to limit detrimental  inbreeding effects, queens are made available for commercial 

sale from each block only every third year.   

 

 

Table 1.4 Bee breeding programs 

 Breeding Programs   

Conservation 

 Conserving  the Dark Bee in Europe http://www.gbbg.net/ 

Conserving the European Dark Bee, 

Germany http://www.apis-mellifera-mellifera.de/ 

Saving the Dark Bee in Switzerland  http://www.mellifera.ch/ 

Bee improvement in Cornwall http://www.westcornwallbka.org.uk/member/ 

Bee improvement and Breeders 

Association http://www.bibba.com/ 

  Disease Resistance Programs 
 Russian honey bee (Ontario, Canada) https://www.uoguelph.ca/ses/users/eguzman 

Minnesota Hygienics Program  http://www.glenn-apiaries.com/hygienic_italian_ 

Russian Honeybee Project (US Dep. 

Agri.) http://www.ars.usda.gov/Services/docs. 

Varroa-tolerance New Zealand  
http://www.biosecurity.govt.nz/publications/biosecurity-

magazine 

 

There are numerous programs adopting similar approaches worldwide (Table 1.4).  Some 

programs prioritize the enhancement of autochthonous phenotypes, believing that locally 

adapted bees are better suited to regionally specific environments.  For example, the 
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widely introduced Italian bee (A. m. ligustica) may not be well suited to forage and 

overwinter in temperate northern European climates 

 

1.6.3 Closed population breeding and selection  

Closed population breeding is the process of selecting for specific required traits from a 

closed population of bees.   Closed populations are genetically isolated, and can be thought 

of as a single line.  Populations can be large or small, and more or less closed (Kulinčević, 

1986), and various selection strategies (e.g. mass, random, within-family) can be employed 

to select breeders (Figure 1.2).   

 

 

 

 

 

 

 

 

Figure 1. 2.  Ten daughter colonies (red) are raised from each selected breeder (blue) in 

year 1.  The best performing daughter colony (green) from each breeder line (within 

family) is selected as a breeder  (fig 1.2a).  In contrast, year 2 breeders are selected without 

concern for family line in mass selection (fig 1.2b).  Expressed character traits and 

performance are the most significant considerations in this case.  Breeders can also be 

selected at random. 

 

1.6.4 The West Wales Bee Breeding Program 

The West Wales Bee Breeding Program (WWBBP) was set up as a collaborative enterprise 

between Bangor University and Tropical Forest Products; a commercial honey producing 

and bee related business based in north Dyfed.  Its formation was motivated in part by the 

gradual decline in bee health observed over recent years.  Colonies continue to succumb to 

the ravages of varroa and the bee-related viruses they carry.  In addition, the region has 

suffered a series of particularly poor summers; a climactic trend that has forced beekeepers 

to use increasing amounts of supplemental feed to avoid losing colonies to starvation.  

There is also concern that queens might be struggling to mate successfully and prematurely 

failing due to this persistently poor weather.  Beekeepers in other parts of the northern 

a) 
b)  a) 
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hemisphere have consistently stated prematurely failing queens as a main reason for 

overwintering losses (vanEngelsdrop et al., 2008, 2011, 2012).  Honeybee queens mate 

multiply on the wing, usually some distance from the nest, and will do so more 

successfully during good weather.  Young sufficiently mated queens tend to develop into 

healthier, more vigorous and longer lived individuals than less successfully mated queens.  

Queen mating success has been shown to influences the long term development and 

performance of colonies (Richard et al., 2007; Tarpy et al., 2012).   

 

Commercial beekeeping has become an increasingly risky proposition due to declining 

bee-health.  In response, some beekeepers have strived for sustainability by breeding from 

locally proven productive stocks, rather than relying on imports to replace losses.  Strange 

et al., (2007) showed how bees adapted to regionally specific nectar flows, are ill-prepared 

when moved to areas where peak nectar flows occurred at different times.  Much of the 

managed bee stock is now of mixed genetic heritage, and may therefore not be well suited 

to all regions.  Bees that evolved in northern climates for example, delay brood expansion 

until late spring.  Hybrids tend to expand earlier in the year and are more susceptible to 

starvation if weather conditions turn unexpectedly cold.  Hybrid queens cannot adjust their 

egg-laying in response to weather and their colonies may not be able to survive without 

supplemental feeding (Le Conte and Navajas, 2008).  Honeybees have evolved in a broad 

range of environments, and breeders hope to take advantage of this innate diversity 

(plasticity and genetic) to breed for local adaptation (Le Conte and Navajas, 2008). 

 

The challenge for the WWBBP was to design a purposeful breeding program that could be 

integrated into the management framework of an existing small commercial operation.   

Within this context, the aim was to start developing a breeding protocol that could 

maintain a self-sustaining and productive population over the long term.   There are no 

fixed or defined end points or goals; only a process that enhances the resilience of bees to 

be responsive to ever-shifting climate and disease challenges.  It is an applied long term 

project hoping to improve the commercial quality and regional specificity of a managed 

honeybee stock.   

 

The breeding program started in the spring of 2011.  Tropical Forest bees suffered high 

mortality over the 2010/11 winter and priority was given that summer to re-building 

colony numbers.  An estimated 43% of the Welsh colonies succumbed, with varroa mite 
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infestation deemed to be the major contributing factor.  Potential breeders were selected 

from overwintered survivors dispersed in apiaries up and down the Dyfi valley (mid-

Wales).  The situation offered a breeding opportunity since a large number of new colonies 

(n = 118) were needed to recoup losses.  This was a rather unusual situation, since this 

many replacement colonies are not normally required.  The business accommodates at 

most two hundred colonies in mid-Wales and experiences roughly 30% loss (60 colonies) 

each year.   

 

Beekeepers use various techniques to replace losses. Unfortunately, each method requires 

dividing (splitting-glossary) the resources of strong colonies, regressing their progress and 

future production potential in the process.  The ‘old’ reduced colony usually retains the 

original queen.  All ’new’ colonies require new queens which can be acquired through a 

number of different ways.  Queenless splits can be left unattended near the original hive 

with eggs and/or brood of appropriate age so that the bees can raise new queens (walk-

away split).  Alternatively, the splits can be relocated and provided with an already mated 

laying queen, or a ripe queen cell from which a virgin will imminently emerge.  None of 

these approaches provide immediate fixes since each new colony can take a season, if it 

survives, to mature into production size in the UK.  These are familiar beekeeping 

practices that have been used by beekeepers managing sustainable programs to replace 

expected seasonal losses.  But increasingly severe losses result in more strong production 

hives having to be sacrificed to make up colony numbers.  Managing bees for honey 

production has become increasingly difficult in the UK and is in danger of becoming 

commercially unsustainable. 

 

Having timely access to well-developed and genetically appropriate queens can provide 

commercial operators with greater management flexibly.  Replacement queens of reliable 

stock are not readily or cheaply available in the UK.  A limited number of sources do exist, 

but relying on availability, sometimes weather dependent, from second party producers 

complicates program planning.  Ripe queens are too sensitive to temperature shifts and 

movement to be easily shipped via mail and must usually be picked up in person at a pre-

arranged time for example.   Due to ease and convenience therefore, beekeepers frequently 

use walk-away splits to replace losses.  Reproductive swarm cells are thought to produce 

the best queens and can be removed from choice colonies as they prepare to swarm, but 

this approach is not normally practiced as beekeepers are keen to suppress the swarming 
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impulse. Otherwise beekeepers have little control over the replacement process as queens 

raised in emergency situations (as in walk-away split), particularly in dearth conditions 

will be of inferior quality due to lack of nutrition during development.  Nevertheless, this 

form of hive management is commonly practiced in the UK (Carreck and Neumann, 2010).  

As an alternative approach, the establishment of an independent in-house queen rearing 

programs can offer small scale commercial operations economic benefits through reducing 

costs and increased flexibility.  Periodical rounds of grafting and rearing could provide, 

with fairly minimal effort, a steady supply of replacement queens.  These benefits could 

help beekeepers better manage recovery from loss, and maintain a higher mean number of 

production size colonies.  In addition, failing queens could be replaced with queens raised 

from locally proven productive stock.  Successful programs have demonstrated that 

incremental progress towards a healthier more productive bee population is possible by 

continually breeding from only the best performing colonies.  But the process is continual 

and will take several generations since there are no defining end points on goals. 

 

Historically, the focus in apiculture has been directed toward selecting appropriate queens.  

Drones are often neglected as targets of selection.  This is due in part to the limited control 

of drone mating activity, and to the fact that most traditional selection characteristics are 

expressed by the queen.  Queens clearly have great influence over overall colony 

characteristics, but more attention could be directed toward drone selection.  Increased 

rates of queen failure (possibly due to poor mating success) have been reported in Wales 

over recent years.   

 

There could be differential rates of mating success among drones of different genetic 

backgrounds, and the potential influences of parasitism and disease need to be elucidated.  

In addition, climate cycles over recent years dictate that bees in Wales need to successfully 

mate during short periods of good weather.  Monitoring the cool weather flying behavior 

of queens and drones during these times might help us understand the influence of weather 

on the mating success of current bee stocks. 

 

1.7 Aims of this thesis  

Wales commonly experiences periods of low temperatures and high precipitation, but has 

recently suffered a series of particularly wet and cold summers.  Beekeepers in the region 

have coincidentally noted increased rates of premature queen failure and it is possible that 



24 
 

these suboptimal breeding conditions may have restricted mating.  I assess how well 

queens from this managed population mated under local conditions during the summer of 

2010, and recorded queen flight response to environmental challenge during this critical 

developmental period (Chapter 2).  Chapters 3 and 4 examine the phenotypic and genetic 

consequences of selection performed in 2011 and 2012.  In Chapter 5 I describe the 

development and use of Monte Carlo simulation models to investigate how various 

selection parameters (e.g., number of breeder queens, mating success, and population size) 

can influence genetic change (changes in allele frequencies) in a small honeybee 

population within a contemporary time frame.  Model predictions were compared to real 

population data when available  (two generations of selection), and simulated genetic 

change for 5 generations of selection in total.  Comparisons were made using two different 

models; one designed to accommodate neutral markers, and the other with a locus under 

selection (csd).  The final experimental Chapter (Chapter 6) investigates sex allele (csd) 

variation in the source population.  Although this locus is of special concern to bee 

breeders, its mechanism of function is not yet fully understood.  I briefly discuss this topic 

in relation to relevant data acquired from the test population. 
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Chapter 2 
 

The mating frequency and flight behaviour of honeybee queens on the edge of 

their natural distribution 

 

This chapter is formatted for journal publication 
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The mating frequency and flight behaviour of honeybee queens on the 

edge of their natural distribution 

 

Ian Williams, Anita Malhotra
  

Molecular Ecology Laboratory, Environment Center Wales, School of Biological Sciences, 

University of Bangor, UK, LL57 2NU  

 

Wales lies on the north-western margin of the natural range of the western honeybee (Apis 

mellifera).  The region commonly experiences periods of low temperatures and high 

precipitation due to profound northern maritime influences, but has recently suffered a 

series of particularly wet and cold summers.  Beekeepers in the region have coincidentally 

noted increased rates of premature queen failure and it is possible that these suboptimal 

breeding conditions may have restricted mating.  We assessed how well queens from a 

managed population mated under local conditions, and recorded queen flight response to 

environmental challenge during this critical developmental period.  The flight activity of 

thirty experimental queens, as well as relative environmental variables, was monitored 

during the 2010 breeding season.  Mating success was determined by sampling 

experimental queen brood and using seven microsatellite markers to reconstruct the 

number of sib-ships per colony sample.  Weather conditions were again 

uncharacteristically bad during the summer of 2010.  Only twenty of the thirty queens 

managed to establish mature colonies.  Mating frequencies ranged from 4 to 10 drones per 

queen and were below the accepted species mean of 13.  We discuss whether queens adjust 

their flight behavior in accordance with environmental cues and consider the effects on 

poor mating on ultimate colony health.  This work highlights a possible detrimental effect 

of long term shifts in climate patterns on the activity of managed pollinators. 

 

Introduction 

The new century heralded increased stress for honeybees (Apis mellifera) in the northern 

hemisphere.  Drastic declines in colony numbers have since been observed across Europe 

and North America [1].  Beekeepers and researchers have struggled to find sustainable 

solutions due to the multifactorial nature of the problem.  Synergy between contributing 

factors has further complicated diagnosis and treatment [2, 3].   Parasites (particularly 

varroa mites), viral, fungal and bacterial pathogens, lack of genetic diversity, pesticides, 
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and starvation, all detrimentally affect the health of honeybee colonies.  There is also 

increased concern about the longevity of commercially reared queens.  In a survey of 305 

beekeeping operations in the US [4], inferior queen quality was given as the main reason 

for colony loss during the 2007-2008 winter.  Similar reports were published in 2010 and 

2011 [5, 6].  Increased rates of premature queen failures have also been observed in 

managed colonies in parts of Wales (D. Wainwright, pers. comm.; Meirionnydd 

Beekeepers Association, pers. comm., 2012).  The UK’s Food and Environment Research 

Agency suspect disease as a possible cause, but poor mating due to prolonged periods of 

inclement weather could also be responsible.  Wales is located on the north-western fringe 

of the natural distribution of the honeybee and its climate is influenced by both North 

Atlantic weather fronts and the elevated topography of much of the country.  The region 

has also recently suffered a series of exceptionally wet and cool summers, a trend that in 

part reflects its location and elevation, but may also be due to permanent shifts in global 

climate patterns. 

 

Unacceptably high rates of queen failure are costly for small scale commercial operations.  

Colony failure results in loss of production potential and may require an additional 

expenditure of time and money to remedy.  Queen vitality is of critical importance to 

commercial beekeepers since colony health and productivity are closely related to the 

condition of the queen.  European bee-breeders have been selecting for commercially 

desirable traits (productivity, colony size, temperament,) as indicators of queen vitality 

since the end of the 19th century [7]. Popular subspecies (such as A. m. carnica and A. m. 

liguistica) have been moved extensively outside their native ranges in the process, and 

have hybridized with bees native to other regions, thus potentially introducing traits not 

adapted for the unpredictable weather conditions in more northern areas.  The genetic 

background of our experimental bees is unknown but is derived from a commercial stock 

that has been used for commercial bee-keeping in Wales for many years.  Jensen et al. [8] 

found evidence of genetic introgression of A. m. liguistica and A. m. carnica microsatellite 

alleles into putatively pure A. m. mellifera populations in Britain, indicating that British 

bees are commonly of mixed backgrounds.  Anecdotal morphological and behavioural 

evidence also suggest that these bees are of mixed genetic heritage.   

 

Independent of genetics, queen health and performance is also influenced by 

environmental variables experienced during development [9].  Queens must pass through 
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three early developmental phases: (pre-emergence, pre-mating, and post-mating) [10] on 

the path to egg laying and maturity.  Each is responsive to specific combinations of 

environmental variables.  For example, larvae develop into healthier bees if they are 

nourished by pollen from  diverse sources [11].  Abundant nectar flows are particularly 

important for all aspect of queen health [12] and high nurse bee densities are needed for 

optimal rearing.  Breeders can supplement larval needs, and have influence over rearing 

during this period.   

 

Western honeybees (A. mellifera sp.) are cavity nesters that can precisely buffer their nest 

environment against external influences such as climate [13].  While colony life offers 

shelter from environmental perturbations, individual bees are susceptible to inclement 

conditions outside the nest, and none more so than virgin queens during mating flights.  

Virgin queens emerge into a stable, protective environment, but must subsequently enter a 

treacherous 14-day developmental phase during which they are most receptive to mate [14, 

15].  Queens mate on the wing at drone congregation areas (DCA’s) commonly one km or 

so away from the colony.  Here they meet and mate with drones that fly in from 

surrounding colonies.  The behaviour of bees during the period surrounding this critical 

event has been extensively studied.  It is known that queens will leave for their first mating 

flight when 5-6 days old, and fly an average of 2-5 times [16].  There are two accepted 

types of queen flights; short flights lasting 1-10 minutes for local orientation, and longer 

mating flights, lasting up to 30 minutes.  Queen honeybees can mate within the first post-

emergent week [17] and will start laying on average six days after initiating mating flights 

[18].  These studies show that queens can start laying eggs within two weeks of 

emergence.  Similarly, an extensive review of 19 years of data from the Breeding 

Evaluation Center in Germany [10] determined a mean pre-oviposition (from emergence to 

egg-laying) period of approximately 16 days (range 6-34) from over 3500 A. m. carnica 

colonies.  Virgins need extended periods of dry sunny weather in order to mate well, and 

are vulnerable during this time since they need to leave the nest for prolonged periods.  

Beekeepers have limited control over their behaviour and fate during this time.  Queens 

mated within 14 days of emergence exhibit superior physiological development and 

ultimately enhance colony fitness [10], while older virgins tend to mate with fewer drones 

and have fewer sperm stored in their spermathacae [14, 15].  Increased rates of cell death 

were reported in the ovaries of queens that had delayed mating [19, 20].  This is a critical 
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developmental period since queens need high insemination success and mating numbers to 

acquire optimal mated ‘health’ [21].     

 

Polyandry in Apis  

There is a wide range in the degree of polyandry reported in honeybees (Apis) extending 

from a mean of 8 in A. florea, to 27 in A. dorsata [22].  A mating frequency of 12-13 is 

commonly reported for the western honeybee (Apis mellifera) [23], but there is evidence of 

variation among sub-species [24].  A review of studies that used molecular techniques for 

assessing paternity [25] reported mean values of 15.2 and 13.8 for A. m. mellifera and A. 

m. carnica, respectively (two sub-species considered well adapted to, and commonly 

managed in, northern European apiaries). 

 

Genetic variance and the benefits of multiple mating 

Mated queens fertilize their eggs with sperm acquired during nuptial flights.  Insemination 

quantity (and possibly mating number), also has a profound effect on the physiological 

development of post-mated queens [26].  Virgin, single-mated, and multi-mated queens 

have different queen pheromone and brain gene expression profiles that strongly influence 

colony behavior and fitness [26]. As the number of paternal contributors (i.e. number of 

matings) increases, the number of full-sister sub-families within the colony similarly 

increases.  Colonies with multiply mated queens have been shown to have greater adaptive 

fitness than colonies with lower levels of genetic diversity through  increased foraging 

efficiency in different environments, greater resistance to parasitic challenge [27-29], 

enhanced ability to buffer against environmental fluctuations [13], and higher brood 

viability due to reduced incidence of diploid male production [30-32].  Diploid drones 

result when identical complementary sex determination (csd) alleles match in diploids at 

the sex determination locus [33].  This occurs less frequently in population with lots of sex 

allele variation due to chance alone, but mating frequency is important since the variance 

in brood viability around the population mean is inversely related.  The variance in brood 

viability is therefore a function of both the number of alleles in the population and the 

mean number of mates each queen pairs with [30].  Most queens will have brood viabilities 

close to the population mean at higher mating frequencies.  

 

Weather and drone density/abundance  



30 
 

It is known that climate can influence mating frequency [34] and queens that as a result 

receive insufficient semen will eventually lay only drones and the colony dies.  Queens 

respond to environmental cues and remain confined to the hive during extended periods of 

cold, wet, and windy days.  Lensky and Demter [17] report reduced mating activity 

occurring below 20 ºC and when the wind speed is above 4-5 ms
-1

.   It is also commonly 

stated that drone abundance is an important criteria affecting mating frequency, although 

Neumann et al. [34] found no correlation between mating success and number of drone 

producing colonies at the mating yard.   

 

We studied the influence of climate on the flight behaviour of locally raised and managed 

queens, and assessed whether average mating success was constrained by environmental 

effects.  Specifically, we recorded flights times and compared the duration of putative non-

mating and confirmed mating flights; testing in so doing the hypothesis that mating flights 

would be of significantly longer duration.  We also assessed the influence of climate on 

flight duration, and tested the hypothesis that flight duration (hence mating opportunity) 

would be reduced when conditions were inclement.  We used genetic methodologies to 

determine the mating success of test queens, and tested for correlations between the 

numbers of paired matings observed, and the weather conditions recorded when mating 

flights occurred.  Multiple mating flight were expected in some cases, and we tested the 

hypothesis these queens will have greater mating success than queens who flew less 

frequently.   

 

Our results suggest that the cool and wet conditions experienced during the experimental 

breeding period (in summer 2010) adversely affected mating success, which was on 

average well below the accepted species mean.  These results possibly arise from both the 

region’s marginal location as well as recent climate shifts. The longer-term consequences 

of this remain to be seen. 

 

Result  

Two batches of fifteen virgin queens were raised using a standard Cloake board queen 

rearing method [35] during July and August 2010.  The first batch of day 10 queen cells 

was introduced to 6 frame nuclei on the 6
th

 of July, and the first queen was observed in an 

entrance cage six days later.  The first confirmed mating (visual observation of mating 
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sign) occurred on the 21
st
 of July, approximately two weeks post emergence from cell.  An 

additional five queens were mated two days later (Fig. 1).   

The second batch of cells was introduced to nuclei on the 21
st
 of July, and the first queen 

was observed in a caged entrance nine days later (July 30
th 

)
.
  The first confirmed mating 

flight by a queen from this batch occurred on the 7
th

 of August, approximately 16 days post 

emergence.  Additional mating flights were confirmed on the, 8
th

, 10
th

 and 14
th

 of August 

(n = 8, 5, and 3 respectively; Fig. 1).  

 

 

 

A total of 251 queen flights were observed (Fig. 2).  Most flights were of short duration 

(<5min), and not related to mating events (Fig. 2).  Due to a highly skewed distribution, the 

flight duration data were log transformed to conform with the assumption of normality (P 

< 0.001, Kolmogrov-Smirnov test statistics = 0.13 post transformation).  There was a 

significant correlation between flight duration and apiary (MYC) temperature (P = 0.002, 

Figure 1.  Climate and mating flight behavior at the mating apiary during summer 2010.   

Two batches (1 and 2) of ripe queen cells were introduced about two weeks apart into pre-

prepared nucleus hives.  Solid bars and line indicate the total daily rainfall (mm) and the 

mean peak flying period (afternoon) temperatures.  Striped bars and accompanying 

numbers indicate confirmed mating flights (visual confirmation of mating sign). 
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Pearson’s Correlation = 0.199, N = 243) and relative humidity   (P < 0.001 Pearson’s 

Correlation = -0.432, N = 243).  No correlation was observed between flight duration and 

windspeed at either MYC (Pearson’s Correlation = 0.102, P = 0.114) or the drone 

congregation area DCA (Pearson’s Correlation 0.068, P = 0.458, N = 119). 

Confirmed mating flights (N = 23) had a mean duration of 22.11 ± 5.48 min and were of 

significantly longer duration (Z= -3.41, P = 0.001, Wilcoxon signed rank test) than same 

day non-mating fights.  All flights above 18 minutes were therefore assumed to be putative 

mating flights.   Twenty three of the thirty putative mating flights could be confirmed by 

the presence of a mating sign.  There was a positive correlation between the number of 

putative mating flights and mating success (P = 0.012, Spearman’s rho = 0.51).  Ten 

queens started laying after only one mating flight, eight after two flights, and two after 

three flights.  Confirmed mating flights occurred at temperatures ranging from 17.1 to 21.2 

ºC. 

 

Figure 2.  There was a skewed distribution in flight duration.  A total of 251 flights were observed 

of which around 150 were of short duration (<5 minutes).  Mating was confirmed by the presence 

of a mating sign in the returning queen on 23 occasions.  The mean duration of mating flights was 

22.11± 5.48 minutes  

 

Twenty of the thirty (66%) experimental queens mated and developed self-sufficient 

colonies (A= 8/15; B = 12/15).  One colony failed in each batch (1 and 2) as the virgin did 

not emerge successfully.  Twenty eight virgins were therefore observed to undertake 

orientation flights.  Three queens from batch (1) were lost, and an additional three failed to 

mate (thus becoming drone layers).  Two queens from the second batch (2) failed to mate.  
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Of the queens that mated successfully, there was minimal difference in the observed (No) 

and estimated (Ne)  mating frequencies (means of 7.35 ± 2.06 and 7.34 ±2.22  respectively; 

Table 1) indicating that the sample size was  adequate to capture paternal contributions.  

The observed mating frequencies fell within the 95% confidence internal of the effective 

mating frequencies (mean me  =  6.50  ± 1.91; Table 1) in most cases, indicating that drone 

contibutions were of relatively equal proportions.  Colonies 3, 21, 29 and 30 were 

exceptions due to skewed drone contributions.   

 

The summer of 2010, was exceptionally cold and wet in Wales.  It rained on 28 out of the 

46 days of the experimental period at MYC and the total rainfall recorded was 229 mm.  It 

was wetter and slightly warmer during the first half of the experiment (1
st
 to 22

nd
 of July).  

Mean afternoon temperature was 18.9 ±1.78 ºC and a total rainfall was 153mm was 

recorded during this period.  The mean afternoon temperature and total recorded rainfall 

between July 23
rd

 and August 15
th

 was 17.30 ±1.44 degrees ºC and 67mm respectively 

(Fig. 1).   Our data revealed no correlation between mating success and temperature (P = 

0.127, Spearman’s rho = 0.35, N = 20)   

 

Table 1.  Mating Success of Experimental queens 

 
 

 

 

Colony 

ID 

 

 

 

Sample 

size 

 

Observed 

mating 

frequency 

(N0) 

 

Estimated 

mating 

frequency 

(Ne) 

 

Effective 

mating 

frequency 

(me) 

 

 

 

95% CI of 

me 

2 36 7 7.03 6.78 0.89 

3 32 5 5.00 3.36 0.58 

4 35 5 5.00 4.55 0.53 

7 40 10 10.16 9.30 1.42 

10 40 8 8.04 6.68 0.99 

11 37 9 9.12 8.39 1.30 

14 38 9 9.11 6.34 1.26 

15 37 10 10.23 9.04 1.55 

16 27 9 9.47 8.50 1.84 

17 37 9 9.12 8.62 1.30 

18 24 4 5.00 4.26 0.56 

21 36 5 5.00 3.69 0.51 

22 38 5 5.00 4.63 0.48 

23 36 5 5.00 5.57 0.51 

24 38 9 9.11 8.38 1.26 

26 31 6 6.02 5.97 0.81 

27 40 7 7.01 6.78 0.81 

28 38 9 9.11 8.20 1.23 

29 36 10 10.26 7.01 1.60 

30 38 6 6.01 4.86 0.65 

Mean 35.7 ± 4.2 7.35 ± 2.06 7.34 ± 2.22 6.50 ± 1.91 1.00 ± 0.4 
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The mating apiary (MYC) was located in a sheltered narrow valley.  The mean wind speed 

recorded at 15 m above the ground between the 24
th

 of July and the 12
th

 of August was 

0.31 ± 0.39 ms
-1

.  The mean wind speed recorded at the DCA (approx. 7 m above ground) 

during this same period was 1.85 ± 1.39 ms
-1

.  The DCA was in an open field and exposed 

to the prevailing south easterly winds.  Wind speeds were also generally higher during 

periods of dry sunny weather.  Queens mated when constant winds of 3.13 ms
-1

 were being 

recorded at the DCA.  Indeed, queens returned from mating flights when the DCA station 

was consistently recording winds of between 3.39 and 3.80 ms
-1

, and with gusts up to 5.28 

ms
-1

.   No correlation was detected between mating success and wind-speed at either the 

mating apiary (MYC) or the DCA (P = 0.369, and 0.366; Spearman’s rho = 0.22 and 0.31; 

N = 19 and 11 respectively).  The mean afternoon (1pm to 6pm) temperature at the mating 

yard was 18.09 ± 1.84 ºC.   

 

 

 

Figure 3.  A figurative representation of queen mating flight times and duration  in relation to wind 

speeds (logged at 5 minutes intervals) recorded at the mating apiary (MYC) and at local drone 

congregation area (DCA)  between 12:00 and 17:00 hrs. on August 8
th
, 2010.  Queen flight events 

are represented by the horizontal lines.  No correlation was detected between mating success and 

wind speed at either the DCA or mating apiary. 

 

Discussion 

Our data suggest that both mating behaviour and success were affected by the weather.    

Queens undertook many flights of short duration.  Confirmed mating flights were far less 

frequent and of significantly longer duration.  Favourable mating opportunities were brief 

and compressed by extended periods of rain and low temperatures.  Of the twenty-eight 
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queens that were observed flying, three did not return, and five failed to successfully mate.  

Our data detected no correlation between observed number of pairings (mating success) 

and the average temperature and wind speeds recorded  during the mating flight period. Of 

the queens that successfully mated, 90% initiated oviposition after only one or two flights, 

suggesting that they might have modulated their nuptial flight activity in response to 

climatic conditions.  A significant correlation was observed between mating success and 

number of confirmed mating flights undertaken.  Mating was also delayed in all cases, with 

queens mating on average with seven drones (range 4-10).  Similar mating frequencies 

were obtained by Krause et al. [36] who suggested that environmental conditions had 

limited the mating success (range 3-13) of A. m. carnica experimental queens.  Similarly, it 

was demonstrated that queens mated under island conditions have lower mating 

frequencies than those mated on the European mainland [35, 37].   Bees considered well 

adapted to northern climates (A.m. mellifera and  A.m. carnica) will commonly mate with 

15 or more drones when conditions allow [22]. 

 

Queens that undertook multiple mating flights were likely to have greater mating success.  

It is not clear if queens ‘decide’ to undertake additional flights based on the copulation 

success of previous flights.  Tarpy and Page [32] observed no difference in the mating 

success of queens that naturally started oviposition after one nuptial flight, and those that 

attempted but were prevented from taking a second flight, and in which oviposition was 

stimulated by CO2 anaesthesia.  They concluded that queens have little behavioural control 

over nuptial flight frequency.  In contrast, Schlüns et al. [38] found a significant difference 

in the mating success of similarly categorized experimental queens.  They concluded that 

queens can adjust their flight frequency based on the mating success of the previous flight, 

and that number of copulations stimulates oviposition.  They note that queens might have a 

variable ‘threshold’ that is responsive to environmental queues.  A lower threshold might 

be expected during periods of poor weather due to the additional risk involved.  Franck et 

al. [39] also suggest that queens might adjust their mating flight frequency in accordance to 

prevailing climatic conditions.   Our observations support this postulate as queens took 

numerous flights of short duration that were correlated with high humidity and low 

temperature.  Similar behaviour was described by Lensky and Demter [17] who noted that 

queens took more flights of short duration during colder temperatures (15-20 ºC) and wind 

speeds between 2.6 and 2.88 m/sec.  We found no correlation between flight duration and 

wind-speed, but queens mated successfully in constant winds up to 3.8 ms
-1

.  These 
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observations are also consistent with earlier research that suggests mating occurs only 

when wind speeds are less than 4-5 m/s [17].     

 

The mechanisms driving extreme polyandry in honeybees are not fully understood [36].  

At the colony level, genetic variance hypotheses are favoured , although little increase in 

intra-colony diversity occurs after six matings [22] suggesting minimal adaptive advantage 

at higher mating numbers.  Alternatively, the sperm limitation hypothesis proposes that 

queens must mate multiply to offset premature sperm deficiency [14].  Woyke  

demonstrated that the number of sperm stored in the spermatheca reaches capacity after 

8µl of semen is inseminated.  Work by Schlüns et al. [38] on sperm number and mating 

frequency in naturally mated queens corroborated Woyke’s earlier instrumental 

insemination work.  It appears that naturally mated queens need only mate with 10 or so 

drones to acquire a lifetime volume of sperm.   

 

Based on research by Woyke [14], and Zmarlicki and Morse [15], delayed mating is 

considered detrimental to queen vitality by beekeeping experts [9,10].  None of the 

experimental queens in this study managed to mate within this optimal 14 day window.  

The experimental period was characterized by long periods of cool overcast conditions, 

including periods of extended daily rainfall (hence high humidity) (Fig. 1).  The weather 

clearly delayed mating, with queens not mating until they were 17 days old on average 

(min 14 - max 23; note that this is an approximate age since actual date of emergence in 

the mating nuclei was not known).  Assuming time to oviposition was not delayed, our 

queens would have started laying approximately six days later [10] at an average age of 23 

days (range 17 -26 days), one week later than a recently reported species mean [10].  

Previous research by Szabo et al. [40] and Skowronek et al. [41] had reported mean age of 

oviposition as 10.6 and 10 days respectively, and the former suggest a relationship between 

max daily temperature and time of oviposition.  Guler and Alpay [12] reported a 

significantly longer pre-ovipositon period for A. m. carnica (15.04 ± 0.23 days) compared 

to five genotypes of A. m. liguistica and four regionally distinct groups of A. m. caucasica.  

They found no significant loss in production due to delayed mating.  Our data revealed no 

correlation between approximate age of first mating, and ultimate mating success and we 

cannot say whether delay in mating affected the ultimate mating success of our queens.   It 

is well known that instrumentally inseminated queens that are anesthetized by carbon 
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dioxide to stimulated egg-laying, take longer to start laying when compared to naturally 

mated queens.  No real difference in performance between these two groups is claimed [9]. 

 

Assessing the mated health of MYC queens 

As previously noted, colony relatedness decays only minimally above a queen mating 

frequency of six.  Accordingly, fourteen of our twenty experimental colonies should 

benefit from ‘adequate’ levels of intra-colony genetic variance.  However, since the semen 

from ten or so drones is required to fill a queen’s spermatheca to capacity with sperm, it 

appears that approximately half of our mated queens may be inadequately mated and have 

a shorter effective laying lifetime as a consequence.  No diploid drone production by 

experimental queens was noted.  We observed solid brood patterns which suggested that 

sufficient numbers of sex alleles were available in the population.   

 

Summary 

Our data suggest that queen flight behavior was influenced by environmental conditions 

and that queens might modulate mating flights according to environmental cues.  

Approximately twenty percent of our flying queens failed to mate, and most ‘successful’ 

queens undertook only one or two mating flights.  Mean mating success was accordingly 

low.  It is possible that these results are normal for the area and reflect the fact that Wales 

is on the fringe of the natural range of the western honeybee, and commonly experiences 

high rainfall and cool temperatures due to its geographic location and elevated topography.  

However, conditions during recent breeding seasons have been especially poor and the 

observed results might be due to combined effects of location and medium to long-term 

shifts in climate trends.  We cannot rule out the possibility that one of the main causes of 

premature failure of Welsh honeybee queens is suboptimal environmental conditions 

during the breeding period and consequently inadequate mating.   

 

Materials and Methods 

Queen rearing and experimental set-up                                                                                                                         

The Cloake board queen rearing method was used during July and August 2010.  Briefly, 

this involved grafting one day old larvae into artificial queen cells and introducing them to 

the top box of a two story colony.  The queen and unsealed brood are isolated in the 

bottom box and separated from the rest of the colony by a solid board (Cloake board).  The 

top box is supplied with pollen, nectar, and emerging brood and crowded with young nurse 
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bees.  These manipulations are designed to mimic natural queen rearing conditions.  Bees 

in the top cell raising box experience overcrowding (which induces swarming tendencies) 

and are missing a queen (which induces the colony to build emergency queen cells).  Two 

batches were raised in an effort to broaden the environmental variance, and to distribute 

the observation/recording load.  All experimental queens were grafted from the same 

mother hive to limit genetic variance influencing mating success. 

Each queen was allowed to emerge into a modified six-frame polystyrene nucleus hive 

located at the experiment apiary in Maes-y-Coed (MYC), Ceredigion, Wales. These nuclei 

incorporated a plexi-glass entrance tunnel gated at front and rear with a removable section 

of queen excluder.   The tunnels were designed to cover the hive entrances (approximate 

dimension 5 cm x 3 cm) and were approximately 15 cm long, 12 cm wide, and 10 cm deep.  

A queen exiting a hive was allowed access to the observation tunnel, but was prevented 

from undergoing flight by a gate at the front end of the tunnel.  When a queen was 

observed in the tunnel, a rear gate was inserted to essentially cage the her.  The front gate 

was then removed to allow access to the open environment and possible flight.  Departure 

and return times were recorded.  Returning queens would enter the entrance tunnel, and the 

front gate would be closed.  Access into the main hive body would still be restricted at this 

point by the in-place rear gate.  Return flights could then be confirmed, and queens could 

be visually checked for signs of mating before being allowed access into the hive.  The 

first batch of queens were monitored between the 12
th

 and 26
th

 of July, and the second 

batch between the 30
th

 of July and the 16
th

 of August.  Daily monitoring occurred between 

10:00 am 6:00 pm.   

Queens utilize visual cues to orient onto their home nest entrance.  To aid queen 

orientation and to reduce the likelihood of drifting, colonies of differing colours were 

paired and set side-by-side with entrances facing in opposite directions.  Colony pairs (N = 

7 per batch) were also spaced four to five feet apart and arranged into a square formation.  

Queens were introduced as ripe (10 day old) cells, and emerged within a day or two into 

the colony environment.  The post-emergence period is the most critical time affecting 

ultimate queen (and hence colony) success,  and colonies are particularly sensitive to 

disturbance during this time.  Consequently, the experimental colonies were not disturbed 

during this time, and queen were not individually marked. 
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Queens were allowed to take multiple flights.  Flight time and duration were noted and 

climatic conditions recorded using iROX PRO-X 2 weather stations.  Weather data, 

including temperature, rainfall, wind-speed and direction, were recorded every five 

minutes during the experimental period.   

A drone congregation area (DCA) just under 1km away from the mating yard was located 

during this period.  In contrast to the mating apiary, which was situated in a sheltered, 

shaded valley, the DCA was located in a field up off the valley floor and was exposed to 

all aspects of the prevailing weather.  A second similar recording unit was therefore 

installed at the local drone congregation area (DCA) before the August batch of queens 

emerged.   

Statistical Analyses of climate and mating success data  

We investigated the influence of apiary temperature and wind speed on flight duration, and 

tested the hypothesis that mating flights are significantly longer in duration than non-

mating localized flights.  The temperature data were normally distributed but the 

distribution of the flight duration data were visually skewed.  They were therefore log 

transformed and tested for normality using the Kolmogorov-Smirnov test. 

We also tested for a correlation between mating success and number of putative mating 

flights, apiary temperature, and wind speeds at both the mating apiary and DCA.   The 

mean temperatures and wind-speeds recorded during the flight periods (data logged every 

5 mins.) were used in these instances.  In addition, averages across number of flight were 

used when queens had undertaken multiple mating flights.   Non-parametric methods 

(Spearman’s) was preferentially used to investigate possible effects on mating success due 

to relatively low sample sizes.  Sampling and genotyping experimental brood 

Forty pupae per colony were sampled approximately six weeks after the queen cells were 

introduced to eliminate the possibility of “phantom” genotypes drifting in with worker bees 

from other colonies.  Sealed brood was sampled at the purple- or post purple-eye stage and 

individually stored in 100% ethanol.  DNA was extracted from equal volumes of pupal leg 

and thorax tissue using a modified version of the 96 well plate protocol described by 

Lagisz et al. [42].  The extraction protocol was performed in 1.5ml tubes and the reagent 

volumes adjusted accordingly.  The extracted DNA was quantified using a NanoDrop 

nd100 spectrophotometer and each sample was diluted to 50ng/µl for genotyping. 
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Genotyping                                                                                                                                                  

Seven microsatellite markers (Table 2) were amplified in a single multiplexed reaction and 

genotyped on an ABI 3130xl Genetic Analyzer.  Markers were amplified in a single 10ul 

multiplexed reaction consisting of 50 ng of DNA, 0.75 X Qiagen multiplex PCR solution, 

2.5 and 0.25 pM of reverse and forward primer mixes respectively, and 2.5pM of ABI 

Hex-, Pet- and Ned- and 5.0pM of Vic-labeled primer (Table 2). 

Table 2.  Microsatellite loci used in this study 

 

Locus 

Unified 

locus ID  

 

Authors 

Number 

of alleles 

 

Heterozygosity 

 

Label 

Accession 

number 

A7 Am005 Estoup et al. 1994 11 0.807 PET AJ509236 

A14 Am406 Solignac et al. 2003 14 0.825 VIC AJ509239 

A29 Am014 Solignac et al. 2003 22 0.917 VIC AJ509245 

A79 Am046 Baudry et al. 1998 12 0.801 FAM AJ509277 

A107 Am056 Solignac et al. 2003 24 0.922 FAM AJ509287 

A113 Am059 Estoup et al. 1995 11 0.800 NED AJ509290 

Ap14 Am068 Solignac et al 2003 11 0.8125 NED AJ509305 
  Mean 15±5.60 0.841±0.05   

 

Polymerase chain reactions were performed on a DNA engine Tetrad 2 thermocycler (BIO 

RAD) using the following cycling parameters:  95°C for 15 min, followed by 13 cycles of 

94°C for 45 sec, 55°C for 45 sec and 72°C for 45 sec, and then 25 cycles of 94°C for 45 

sec, 52°C for 45 sec and 72°C for 45 sec.  The profile was terminated with a 30 min 

extension at 60°C.  Reaction products were visualized on an ABI 3130xl Genetic Analyzer 

and the data were analyzed using Genemapper (ABI).   

Parentage analysis 

We used the program Colony 2.0 [43] to determine the number of full-sibships (equal to 

the number of contributing drones) in each colony.  We ran each data set up to five times 

with different seed numbers to ensure consistency of results.  The effectiveness of Colony 

can be limited by the availability of sufficiently informative unlinked loci since the 

probability of not detecting a unique paternal genotype decreases with increasing number 

and variability of markers (non-detection error).  Based on available population level allele 

frequency data derived from a broad sample (Table 1) we limited the non-detection error 

(  ) to 2.95 x 10
-6

 [44].  We made the assumption of equal sex-specific allele frequencies 

so that: 

 

    ∏(∑   
 )                                                  (1) 
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where     is the frequency of allele i at locus j.  Our markers provided sufficient power to 

detect patrilines hence it is unlikely that discrepancies due to sex-specific allele frequency 

differences would affect our results. 

 

The observed number of patrilines (No) in a finite sample can underestimate the actual 

number (Ne) due to non-sampling error.  We calculated the estimated number of patrilines 

(Ne) following procedure outlined by Schlüns et al. [38]: 

 

         [  (      )
 ]                               (2) 

 

where No = number of observed matings as determined by Colony, and n = the number of 

colony progeny sampled.  Ne = estimated number of matings and was determined by 

iterating    for (No).  The degree of discrepancy between the observed and estimated 

values provides an indication as to the adequacy of sampling.   This calculation assumes 

equal number of individuals per sub-family; an assumption that is unlikely to be true.  We 

therefore also present the 95% confidence interval around the effective paternity (me) as a 

method to account for sampling error [25].  Effective paternity was calculated using an 

unbiased estimator from Nielsen et al. [45] and provides a weighted value accounting for 

disproportional paternal contributions 
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3.1 Introduction 

An individual’s phenotype (its observable characteristics) depends upon both its genetic 

makeup and on the environment in which it is found (Futuyama, 1998).   Likewise, a 

population’s variance in phenotype depends upon the genetic makeup of the individuals 

within it and on the influence of its environment.   This relationship, for individuals and 

populations alike, can be expressed as; 

                                                      VP = VG + VE 

Literally we can say that phenotypic variation (VP) is equal to genetic variation (VG) plus 

environmental variation (VE ).  Genetic effects (VG) can be separated into three parts of 

which additive effects are the most important from a breeding perspective.  Additive 

genetic effects equal the sum of average effects of all the genes an individual carries 

(Rinderer, 1986).  The other two genetic influences are the non-additive interactions 

between different alleles at the same locus (dominance effects) and the effects on 

phenotype of interactions between different loci (epistasis).  Additive genetic influences 

are most important from a breeding perspective since they affect resemblance between 

relatives.   

 

Heritability (h
2
) is another important and related quantitative genetic property.  It is defined 

as the ratio of additive genetic variance to the total phenotypic variance, expressed 

mathematically as;   

                                                     h
2
 = VA/VP 

Heritability is important as it gives an indication of how responsive different characters are 

to selection, and is as such, the proportion of total phenotypic variance that is attributable 

to additive effects.  It not only depends upon the property of a specific character, but is also 

sensitive to the influence of specific population and environment characters (has VP in the 

denominator).  Heritability depends therefore on specific population parameters (e.g. size).  

This is relevant to breeding since small closed populations under selection will have lower 

heritability’s that larger randomly mating ones.   Also, populations with differing allele 

frequencies will respond differently to selection.   

 

Fecundity, industry, resistance to disease and temperament are commonly cited as primary 

performance qualities for managed populations of honeybees (Adam, 1987), and in 

general, these were the qualities targeted for improvement by the WWBBP.  Related 

character traits have all been shown to be heritable (Table 3.1).  The goal was to improve 
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the mean population phenotype by altering, through selection, the underlying related 

genetic makeup of the population.   

 

Table 3.1.  Published heritability’s (h
2
) for character traits relating to a) brood production 

b), honey foraging c), defensiveness d), and varroa resistance. 

 

 Character Trait h
2  

a) Brood (yearly average) 0.90 Banby, M. A. el, 1967 

 Brood (6 weeks before nectar flow) 0.30-0.41 Vesely and Siler, 1963 

 Brood (winter) 0.76 Soller and Bar-Cohen,1967 

 Brood (spring) 0.33 Soller and Bar-Cohen, 1967 

    

b) Total honey 0.57 Soller and Bar-Cohen, 1967 

 Honey yield 0.16-0.19 Vesely and Siler, 1963 

    

c) Time to react to Isopentyl Acetate 0.68 Collins, 1979 

 Time to react to Isopentyl Acetate 1.28 Collins et al., 1984 

 Time to react to moving target 0.69 Collins et al., 1984 

    

d) Grooming behaviour (African Honey Bee) 0.71 Moretto et al., 1993 

 Hygienic behaviour 0.65 Spivak. 1996 

 Mites per 100 bees 0.28 ± 0.56 Harbo and Harris 1999 

 Mites per 1000 bees 0.01 ± 0.46 Harbo and Harris 1999 

 

3.1.1 Breeding for Productivity 

As improving production potential (a heritable trait) was a key project objective, I tried to 

develop an approach that could be used to compare the foraging efficiency of colonies.  

This was not a straightforward endeavor since various complicating factors must be 

considered when comparing young (1st season) colonies.  These nucleus colonies were 

constructed under field conditions; hence they were not strictly standardized during 

construction.  There was likely variation in the amount and age of brood and bees used for 

example, or frames transferred during construction may have bees in some way diseased 

(e.g. carrying chalkbrood spores-glossary).  Such factors can influence the developmental 

rate of the colony.  Nevertheless, first season assessments were conducted on the heather 

and were designed to highlight colonies with potentially superior productive traits.    
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I considered comparing colonies for production potential as follows.  It seems 

hypothetically possible (assuming all other contributing factors to be equal) that a colony 

with fewer but more efficient foraging bees might weigh more than a colony with greater 

numbers of less industrious bees (i.e., less efficient at gathering nectar and pollen).   One 

might therefore observe a lack of correlation between colony strength and weight change 

during a nectar flow if a population has high variance in foraging efficiency. By recording 

weight change, one can eliminate confounding factors such as unequal weight of colony 

woodenware.   Another possible way to identify better producing colonies might be to 

regress the end of season colony weight on frames of bees.  If a correlation is observed (as 

might be expected) between these two variables, an expected curve can be generated.  

Colonies with above average weight, in relation to number of bees (i.e. above the curve) 

would be highlighted as better performing. 

 

3.1.2 Selecting for varroa mite resistance  

A conscious decision was made not to select for specific heritable mite resistant/tolerant 

behaviors (e.g. hygienic behaviour, varroa sensitive hygiene VSH, grooming).  Bee strains 

with enhanced VSH qualities have been developed by federally funded establishments in 

the USA, but such work is too demanding of time and effort (selecting for VSH 

particularly so) for small scale operations.  There is also a cost incurred by focusing only 

on a single resistance specific trait.  Overly vigorous VSH colonies can retard brood 

development and have reduced production potential, and may make them more susceptible 

to cold weather, for example.  Since so much goes unnoticed in the honeybee colony, it is 

likely that many subtle and currently unrecognized mechanisms confer varying degrees of 

colony level tolerance.  Independent bee operation can enhance these population traits by 

each year breeding only with the strongest treatment free survivors.   

 

3.1.3. Other considerations relevant to honeybees 

The eusocial structure of the honeybee colony complicates the process of selection and 

breeding.  For example, for certain traits (e.g. honey production) we are assessing the 

performance of an individual (queen) for breeding based on the performance and behavior 

of a collective group from a different caste (the workers).  Although queens and workers 

that are raised in the same colony are genetically similar, they develop in different 

environments. Similarly, we may select drone- producing colonies based on the hygienic 
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performance of the worker population.  In addition, the relatedness of individuals within a 

colony varies to a greater or lesser extend depending on the number of contributing 

patrilines.  Without artificially inseminating queens (Instrumental Insemination) one can 

never therefore be certain of the paternal source when selecting queens. 

 

Wales is on the north-western margin of the native distribution of the honeybee; hence 

consideration was given during breeder selection to regionally-appropriate characteristics.  

For example, the queen must be sensitive to environmental cues to control brood rearing 

since the region can experience prolonged periods of inclement weather at any-time of the 

year.  Colonies must be able to rapidly expand and forage efficiently during periods of 

good weather, and display frugality during periods of dearth.    The strongest of surviving 

overwintered colonies were compared in the spring 2011.  Potential breeders were assessed 

by comparing colony condition (strength and general health) and general organization of 

the brood nest.  Choice colonies had nests comprising of ample sealed and unsealed brood 

surrounded by consecutive arches of pollen and nectar/honey respectively.   

 

Apiary location can also greatly influence colony performance.  Factors such as elevation, 

aspect, shelter and availability of forage will all affect colony performance.  Breeders were 

therefore selected from different overwintering locations in an effort to accommodate for 

differences due to environmental influences.  The breeder daughter (test) colonies were 

similarly distributed to compare the performance of sister queens in different environments.                                                                                                                                                                                                        

Wales has recently experienced a series of poor summers, and accounting for confounding 

environmental effects on monitored traits was expected to be challenging in an applied 

setting.  I nevertheless expected some observable change due to selection in the population 

during the experimental period.  In particular, I expected greater uniformity as the number 

of breeders was effectively dropped from 8 to 4 between years.  That is, as genetic input 

was constrained across generations, I hypothesized a detectable and concurrent reduction in 

colony level phenotypic variance.  Of the characteristics I monitored, colony strength and 

temperament were considered to be more likely to adaptively respond to selection.  Mite 

counts per colony is not a strongly heritable trait, and detectable reductions in population 

level variance was considered less likely. 

 

3.2 Methods 
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3.2.1 Grafting and raising queen cells 

Frames with brood of appropriate age were removed from selected breeders, and marked 

with coloured press-pins in the field.  These were placed in nuc-boxes (with bees to help 

maintain brooding environment) for transportation back to the grafting shed. 

 

A variation on the Cloake board method was used for queen rearing.  A single cell raising 

unit consisted of two stacked Modified Dadant (MD) brood boxes.  Strong colonies were 

used as raisers since high bee density (particularly young nurse bees) is needed.  The 

colony queen was isolated in the bottom box along with unsealed brood, stores and empty 

frames.  The remaining brood, stores and empty drawn comb were placed in the top box 

which was separated from the one below by a queen excluder (glossary).  A single entrance 

located at the front of the bottom box is provided at this stage.  Each cell raiser was 

copiously fed with syrup and pollen, particularly in the absence of strong natural nectar 

flows, and left for up to eight days in preparation for receiving grafts.  By then, many 

young nurse bees would have emerged in the top box and any remaining brood in this part 

of the hive would be sealed.   

 

In preparing the colony to accept grafted larvae, all the top box frames were shaken of bees 

and checked for natural queen cells.  It is vital that no queens (virgin or mature) or queen 

cells be present in the cell raising box (top box in our method).  Any suspicious queen cell 

structures were removed.  I also ensured that the colony queen was still in the bottom box 

and had not accidently passed into the top.  The bottom box and entrance was then turned 

through 180°, and a solid board (the Cloake board) was placed on top before the top box 

was replaced.  A solid board now separated the two colony halves, isolating the bees above 

from the effects of the queen down below.  The board also provides a new front entrance 

into the top portion of the hive only.  Conditioned front oriented bees leaving the hive via 

the rear bottom box entrance would then return into the top.  These manipulations 

increased bee density in the top box in preparation for cell building.  

 

Theoretical modelling by Moritz (1984) suggested that inbreeding could be limited to 

acceptable levels for 10 generations if a minimum of 8 breeder queens per year were used.  

Eleven breeders were therefore selected in the spring of 2011 from a source population 

consisting of 2010 and older colonies (Table 3.1a).  The breeding program logistics proved 

challenging with this number of breeders.  In addition, some breeders were not well 
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represented in the final daughter cohort since the program could only establish a certain 

number of new colonies.  Consequently, the full genetic potential of some breeders was not 

well represented (exposed) in the next generation.  An executive decision was made by the 

company director to use only four breeders in 2012 (Table 3.1b).  Again each breeder from 

each year did not contribute equally to the following generation due to unequal 

survivorship of daughter queens.  Consequently, the ‘effective’ number of breeders used in 

2011 and 2012 was 8.3 and 3.5 respectively. 

 

Table 3.1a Selected breeders 2011 

Breeder ID Y.O.B Location Daughters Heather 

Anwen 1 2010 Galspwll 6 6 

Catrin 1 2010 Glaspwll 16 11 

Branwen 1 2009 Mathafarn 5 4 

Carys 1 2010 Abercegir 13 8 

Llinos 1 2010 Morben 13 9 

Marged 1 2010 Morben 6 1 

Nia 1 2010 Abercegir 20 10 

Gwenllian 1 2009 Pennal 12 2 

Dwynwen 1 2010 Abercegir 11 2 

Lucy29 1 2009 MYC 15 7 

Sioned 1 2009 Hendres. 1 1 

   Sum 118 61 

 

3.2.2 Making nuclei colonies                                                                                                                            

Nucleus colonies were made by taking ‘splits’ (see glossary) off strong survivor colonies.  

Each new split was provided with two frames of sealed brood placed in the middle of a six 

frame box.  A frame of (honey/pollen) and drawn or undrawn foundation was added to 

each side of the brood.  Additional bees were shaken into the box to ensure that developing 

brood, and the soon to be added queen cell, would be maintained at an adequate rearing 

temperature.  Entrances were closed during construction so that the colonies could be 

moved into one of two established mating apiaries in the isolated Glaspwll valley (an 

additional location was used in 2012).  The colonies were arranged in pairs on hive stands 

with their entrances oriented in different direction.  This arrangement helped the relocated 

bees orient onto their home colony after release.  The bees were released in the evening 

(post flying hours) after a single ten day old queen cell (day or so from emergence) had 
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been placed between the two brood containing frames.  Procedure time frame was 

determined by the developmental rate of the queen bee (Fig. 3.1). 

 

 

 

 

CALANDER    

June 1    

June 2  DAYS AFTER EGGS ARE LAID  

June 3 - 1-  

June 4 - 2-   

June 5 - 3- Eggs Hatch  DAYS 
AFTER 

GRAFTING 
June 6 - 4- Grafting (24-36hr old  larva) 

June 7 - 5- Check if bees have accepted and 
started building cells 

1 

June 8 - 6- 2 

June 9 - 7- 3 

June 10 - 8- 4 

June 12 - 9-  Cells capped 5 

June 13 - 10-  6 

June 14 - 11- 7 

June 15 - 12- 8 

June 16 - 13- Remove queen cells from 
starter/finisher colony 

9 

June 17 - 14- Add queen cells to pre-
prepared nucleus colonies   

10 

June 18 - 15-  11 

June 19 - 16- Queen emerges 12 

June 20    

June 21    

June 22    

 

 

Figure 3.1.  The rearing timeline is determined by the development biology of queens.  

Developing cells were normally removed from the building colonies nine days after 

grafting, and introduced to queenless nuclei within 24hrs.  They were incubated at 37˚C in 

the interim.  
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Table 3.1b Selected breeders 2012 

Breeder Y.O.B Daughters 

Anwen 2 2011 10 

Carys 2 2011 21 

Catrin 2 2011 9 

Llinos 2 2011 18 

 Sum 58 

 

The nucleus colonies were left undisturbed for a month to give successfully mated queens 

time to mature and start egg-laying.  Colonies are sensitive during this period since the 

post-emergent queens have entered the most precarious developmental phase.  They have 

only a brief window to successfully mate, and they must leave the safety of the hive to do 

so.  Mating on the wing they must navigate through unfamiliar territory and possibly brave 

poor weather and predation to do so. 

 

3.2.3 Measuring colony strength and foraging efficiency 

Various measurements gave an indication of colony strength.  Individual frames were 

visually inspected during colony development and scored for brood strength (Fig 3.2).   

Each side of a brood bearing frame was scored for brood density (range 1-4) so that a 

whole frame could receive a maximum score of 8.  Individual frame scores were tallied for 

an overall colony score.  The ‘frames with bees’ index was a simple description of how 

many frames the bees were actively occupying and utilizing.  A homemade portable scale 

was used to weigh single box hives in the field (Fig. 3.3).  

 

Comparative weight gains during periods of nectar flow were used in an effort to identify  

colonies with foraging with above average efficiency.  Colonies were weighed before and 

after periods of good weather while on the heather, and   measurements were taken in the 

evening when most of the flying bees were back in the hive.  The goal was to assess 

foraging efficiency by comparing colony strength to rate of weight gain during nectar 

flows.  Weather conditions on the heather moors were uncharacteristically poor during the 

2012 season.  Weight gain comparisons were not possible this season since the bees were 

not able to forage for suitably prolonged periods.  Heather quality was low and colonies 

weight began dropping towards the end of the season.   
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Digital Scale  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Brood (sealed and unsealed) was assessed by visual inspection.  Each side of a 

brood-frame was divided into four separate sections.  The half frame above was scored 2.5.  

A maximum frame score of 8 is theoretically possible 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 An image of the portable scale designed to weigh single box hives.  Force is 

applied to the diagonal bar (curved arrow) and the resistance required to raise the box is 

recorded on a digital scale.  This value is doubled to give an approximate colony weight.   
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3.2.4 Varroa mite counts 

The sugar shake method (Macedo and Ellis 2002) was used to monitor for varroa.  

Approximately 300 bees (approx. 150ml marked on clear jar) were shaken off a frame of 

brood (after ensuring that the colony queen was elsewhere) and placed into a jar covered 

with a woven wire 8 mesh cover lid.  Using a hive tool tip, approximately one table-spoon 

of dry powdered sugar was added, and the jar left for one minute.  The jar was then shaken 

vigorously over a white enamel bowl containing water.  The dark dislodged varroa would 

be visible floating on the water against the light background.   

 

3.2.5 Measuring colony temperament 

Temperament was assessed subjectively in 2011, and quantitatively in 2012.  Colonies 

were subjectively given a score (range 1—5) based on behavior.  Particularly defensive 

(i.e., quick to begin stinging) and ‘runny’ colonies were scored the lowest, and docile calm 

colonies the highest.  A more quantitative method was adopted in 2012 because the bees 

were defensive from the beginning of the season.  Although environmental conditions were 

particularly bad this season (possibly a significant contributing factor) there was concern 

that genetic influences due to breeding were affecting population temperament.  Colony 

temperament was investigated using similar methods to those described by Guzman-Novoa 

et al. (2004).  Immediately after opening the hive, a piece of black leather (5cm square) 

that was stapled to the end of a wooden wand was lowered to within approximately 10cm 

of the frames.  The leather antagonist was rhythmically lowered and raised once a second 

for 45 seconds.  The number of stingers in the leather was used as a quantitative 

assessment of colony defensiveness.  The temperament of all the experimental daughters 

were qualitatively assessed as described above after the colonies had matured and migrated 

to the heather.  All colonies were tested on the same day and under similar weather 

conditions.  A control apiary comprising of 2011 and older colonies from an unknown mix 

of breeders (N=26), representing the unselected background phenotype was also tested a 

few days later under similar weather conditions.    

 

3.2.6 Data analysis and colony comparisons 

A z-score index was used to compare colonies of different age (n = 3) classes in 2011, and 

a similar approach was used to compare the daughter colonies of different breeders (n = 2) 

in 2012.  Z-scores allow comparison among cohorts in units of standard deviations where: 
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Three traits were used in our initial colony comparisons, and separate trait scores were 

summed for an overall colony score.  The three factors were: varroa count, weight change 

of colony during a period of nectar flow (2011) or during the whole period on the heather 

(2012), and temperament (Table 3.2).  Each factor was prioritized and its influence on the 

final colony score accordingly weighted.  Production and temperament were given greater 

weight in this model.  Although varroa counts provide good indication of infestation rates, 

they provide no information about a colony’s behavior and expression of actual mite 

resistant traits.  Mite count is therefore only slightly heritable (Harbo and Harris, 1999) it 

was given reduced weight in my model (Table 3.2). 

 

Table 3.2.  This table presents an example of a final z-score calculation (2011).  A z-

score was calculated for character trait for each individual.   

 

 

Colony ID 

 Varroa 

Count 

Weight 

Change 

 

Temperament 

Final 

Score 

Anwen 1.1 Z-score* -1.02 -1.09 0.18  

 Weight
$ 

X -10 X +30 X +20  

 Score 10.20 -32.79 3.64 -18.96
#
 

 

*This score allows one to compare traits among cohorts in units of standard deviations 

where z = (colony score-mean cohort score/cohort SD).   
$
Each trait can then be weighted (negatively or positively) according to economic   

importance for example.   
*
Individual trait score are tallied for a final sum score   

 

I used qualitative data to investigate potential breeder (n=4) and grafting cohort (n=2) 

effects on the temperament and defensiveness of colonies in 2012.  These daughter colony 

queens were grafted from the same four breeders during two separate rounds of grafting.  

A Kruskal-Wallis test was used to test for difference in temperament between the two 

grafting cohorts; i.e., was there a difference in the defensive temperament of colonies 

headed by queens raised from the same four breeders, but mated at a different time, and 

more importantly, location.  All colonies were tested under similar weather conditions on 

the heather. 
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Preliminary assessments, standardizing for colony age (2011) and breeder (2012) using z-

scores, identified the thirty top performing hives each year.  These were moved into two 

overwintering apiaries in mid-Wales for possible selection as breeders the following year.  

Accumulated colony specific data were forwarded to the commercial partner. 

  

3.2.7 A comment on monitoring adaptive change 

The WWBBP is a long term project aiming to improve the resilience and production 

potential of its bee stock.  The program is in the early stages, having currently gone 

through two rounds of breeding.   It is a field operation exposed to the vagaries of the 

weather.  Environmental conditions have been uncharacteristically demanding during 

recent years, and demonstrable evidence that selection is having a positive effect on 

desired character traits is lacking.  A limitation of this field approach is the lack of suitable 

control populations, to which adaptive shifts in the test group could be compared.  In order 

to demonstrate an effect due to selection, I compare trait variances across generations, 

under the assumption that it should shrink due to greater genetic uniformity resulting from 

selection. 

 

A total of 118 new colonies were established in the spring of 2011 (Table 3.1a) and 

approximately seventy-five percent mating success was achieved.  The most promising 

looking colonies (N = 61; based on colony strength and condition at time of transfer from 

nucleus boxes into full bodied hives) were selected for a 60 mile migration to the heather 

moors during the first 2 weeks of August.  Each of the three age classes was represented by 

21, 28 and 12 colonies respectively.  

 

3.3 Results 

3.3.1 Season 2011 

Good weather between 23
rd

 and the 29
th

 of August allowed bees to forage on the heather.  

An average weight gain of 3.04 ± 1.96 kg was recorded and attributed to accumulation of 

stores (Figure 3.4).   
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Figure. 3.4 shows changes in hive weights recorded between the 23rd and 29th of August, 

2011.  Colonies are grouped into breeder daughter cohorts.  The error bars indicate one 

standard deviation of scale precision.  This was determined after conducting multiple trials 

using the scale on a known weight.   

 

The mean number of varroa counted, and frames of bees per colony on 1
st
 of October, was 

4.90 ± 7.22 and 6.29 ± 1.49 respectively. There was no correlation between weight change 

during the nectar flow that occurred between the 23
rd

 and 29
th

 of August and colony size at 

end of season (frames of bees on 1st of October; F= 0.47,   = 0.11, P = 0.49), but there 

was a highly significant correlation between colony weight and frames of bees on the 30
th

 

of September (P<0.001;   = 0.25; Fig 3.5).   There was also a significant correlation 

between weight change during the nectar flow and weight of colony approximately one 

month later (P < 0.001, R^2= 0.36).  The top 30 colonies were highlighted using a z-score 

index that accounted for difference in development age (Table 3.3).  
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Figure 3.5 The regression of colony weight on frames of bees (colony size) using data collected on 

the 30
th
 of September and the 1

st
 of October 2011 respectively.  Colonies above the linear curve (as 

predicted by the displayed regression equation) are  heavier in relation to the number of bees 

present, suggesting that bees from these colonies displayed greater foraging efficiency .  These 

better performing colonies are highlighted in Table 3.3, which outlines the top 30 colonies 

determined using a z-score index. 

  

 

3.3.2 2012 Season 

All successfully mated colonies (N=58) were taken to the heather in 2012.  Heather 

development was delayed due to poor weather and there were no prolonged periods of 

nectar flow suitable for assessing foraging efficiency.  Colonies gained a mean of 2.14 ± 

1.81 kg between the 8
th

 and 26
th

 of August, and a mean of 0.87 ± 3.8 kg between 26
th

 of 

August and the 6
th

 of September.  A mean weight change of -0.77 ± 1.31 kg was recorded 

between the 6
th

 and the 9
th

 of September.   

 

Colonies were monitored for varroa, number of frames with bees, and brood coverage, 

between 28
th

 August and 9
th

 of September.  The mean number of varroa, and frames of 

bees counted per colony was 12.18 ± 11.02 and 6.61 ± 0.94 respectively.  There was a 

significant negative correlation between the change in hive weight that occurred between 

the 6
th

 and 9
th

 of September, and frames of bees and amount of brood recorded during the 

monitoring period (  = -0.19 and -0.36, and P = 0.024 and 0.006 respectively).  There was 

no significant correlation between colony weight on the 8
th

 of September and colony size 

(frames of bees and brood score; P = 0.09 and 0.09, and    = 0.26 and 0.25 respectively).  

y = 1.02x + 22.16 
R² = 0.25 

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10 12

H
iv

e
 W

e
ig

h
t 

Frames of Bees 

Hive Weight

Linear (Hive Weight)



60 
 

Neither was there a significant correlation between weight change and weight of colony 

one month later (P = 0.46,    = 0.1).  The top 30 colonies were highlighted using z-score 

index to account for some difference in breeder group (Table 3.4).  

 

Table 3.3.  Table of 2011 daughters in order of performance on z-score analysis 

 

 

*Indicates individuals that were above trend line predicted by the regression equation 

(Figure 3.5)  

**Rejected by z-score analysis due to bad temperament 

*** Was above trend line but colony heavily infested with mites 

 

 

 

Putative Breeders  For Production 

Queen ID Score  Queen ID Score  

Catrin 1.7 76.61  Anwen 1.6 -4.47 

Carys 1.6 45.87  Anwen 1.5 -5.29 

Carys 1.5 41.59  Llinos 1.11 -6.75 

Catrin 1.3 38.41  Llinos 1.5 -8.90 

Catrin 1.9* 31.82  Anwen 1.1 -9.17 

Carys 1.3* 30.90  Branwen 1.1 -9.51 

Catrin 1.4* 29.59  Anwen 1.4 -11.18 

Anwen 1.2* 29.42  Catrin 1.15 -13.77 

Lucy29 1.13* 29.18  Lucy29 1.8 -14.33 

Marged 1.6 28.72  Nia 1.18** -15.34 

Llinos 1.6 24.30  Nia 1.15 -17.88 

Llinos 1.2 24.18  Carys 1.12 -19.54 

Lucy29 1.3* 21.52  Branwen 1.3 -20.04 

Carys 1.11 17.81  Dwynwen 1.9 -22.33 

Lucy29 1.1 15.57  Nia 1.5 -23.12 

Catrin 1.5* 15.01  Gwenllian 1.8 -23.31 

Catrin 1.8 12.84  Nia 1.14 -25.41 

Catrin 1.16 12.60  Lucy29 1.9 -25.92 

Carys 1.13* 12.49  Llinos 1.3 -28.02 

Anwen 1.3 8.88  Llinos 1.10 -28.44 

Sioned 1.1* 5.83  Dwynwen 1.6 -30.44 

Llinos 1.12* 5.63  Nia 1.1 -32.31 

Catrin 1.6* 0.88  Llinos 1.1 -34.91 

Catrin 1.11 -0.45  Nia 1.12 -35.13 

Carys 1.10 -0.55  Nia 1.3 -39.73 

Lucy29 1.6* -0.64  Nia 1.13 -46.54 

Llinos 1.7 -0.82  Carys 1.4 -52.31 

Catrin 1.10 -1.54  Lucy29 1.2*** -56.19 

Branwen 1.4* -2.82  Nia 1.20 -56.43 

Branwen 1.5 -3.64  Nia 1.17 -142.10 



61 
 

 

Table 3.4.  Table of 2012 daughters in order of performance on z-score analysis 

Putative Breeders  For Production 

Queen ID Score  Queen Id Score 

Llinos 2.4 42.57  Catrin 2.9 3.14 

Carys 2.8 35.41  Anwen 2.5 1.99 

Catrin 2.3 30.44  Anwen 2.6 1.61 

Llinos 2.10 30.23  Llinos 2.7 -0.97 

Carys 2.2 27.53  Llinos 2.17 -1.80 

Carys 2.5 26.10  Carys 2.3 -2.25 

Llinos 2.14 25.83  Llinos 2.13 -6.90 

Llinos 2.9 24.41  Carys 2.15 -7.18 

Carys 2.12 24.20  Carys 2.11 -7.44 

Anwen 2.2 21.75  Carys 2.17 -8.46 

Carys 2.6 17.47  Carys 2.20 -11.06 

Carys 2.4 17.38  Anwen 2.1 -12.97 

Anwen 2.4 16.87  Anwen 2.7 -13.72 

Llinos 2.6 16.50  Catrin 2.8 -15.37 

Anwen 2.9 16.37  Catrin 2.7 -16.24 

Carys 2.7 15.85  Llinos 2.15 -21.29 

Llinos 2.1 15.64  Anwen 2.8 -22.07 

Llinos 2.3 15.17  Llinos 2.19 -23.06 

Llinos 2.2 11.80  Catrin 2.5 -23.77 

Llinos 2.12 11.73  Carys 2.18 -25.59 

Llinos 2.5 11.01  Carys 2.19 -26.10 

Catrin 2.4   7.06  Llinos 2.8 -28.48 

Catrin 2.2  6.37  Llinos 2.16 -33.63 

Carys 2.16  5.80  Llinos 2.11 -48.28 

Anwen 

2.10 

 4.98  Carys 2.13 -49.74 

Anwen 2.3  4.68  Carys 2.10 -55.74 

Catrin 2.6   4.55  Carys 2.1 -82.28 

Catrin 2.1  3.92  Carys 2.21 -82.28 

Carys 2.14  3.55    

Carys 2.9  3.23    
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3.3.3 Testing for difference in variance between years 

3.3.3.1 Colony size 

Colony strength data (frames of bees and brood) were normally distributed.  A one-way 

analysis of variance (ANOVA) indicated that the mean frames of bees each year were not 

significantly different (F = 1.71 1,93, P = 0.195).  However, Levene’s statistic rejected the null 

hypothesis that variances were equal between years (F = 10.33,  P = 0.002).  I therefore re-

assed the assertion that mean colony size did not differ between years using a non-

parametric approach (Mann-Whiteny).  Again, the null of similar means could not be 

rejected (Z = -1.73, P = 0.08).  Simlarly, Levene’s statistic could not reject the null that the 

variance in amount of brood was equal between years (F = 12.35, P = 0.001).   

 

3.3.2.2 Varroa 

The mean number of varroa detected per colony increased drastically and significantly 

between seasons (Table 3.5), but it was less clear whether population level variance also 

differed between years.  The raw data were positively skewed hence analyses were 

conducted after log transforming the data.  Mean levels of colony infestation were 

significantly different across years (F 1, 87  = 21.57, P <  0.001), and Levene’s test could not 

reject the null hypothesis that variances were equal (F= 0.312,  P = 0.58; Table 3.6).  

  

3.3.4 Temperament 

The daughters of one 2011 breeder (Nia) produced colonies of consistently poor temper.  

Most of these hives scored a 1 (i.e., most unpleasant to work with) on my subjective 

scoring scale and were very defensive (Appendix i).  Quantitative sting tests were 

conducted on the 2012 daughter colonies, and on a control group consisting of only 2011 

queens (Table 3.5).  Again, the raw data were not normally distributed (positively skewed ) 

and were log transformation.  Analysis of variance indicated no statistical difference in 

temperament (mean number of stings) between the 2012 colonies and the control group. 

and Levene’s test indicated no difference in variance (Table 3.7). However, a significant 

difference in propensity to sting was indicated between the two 2012 breeding cohorts 

(Table 3.7).  A significant difference was also detected in the temperament of two of the 

four daughter groups (Llinos and Carys; Figure 3.6). 
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Table 3.5  Descriptive statistics comparing colony size, 

varroa infestation and temperament across 2011 and 2012 

Frames of Bees 2011 2012 

Mean 6.29 6.61 

Standard Deviation 1.49 0.94 

Sample Variance 2.21 0.88 

Count 38 57 

   

Brood count 

2011 

(Summer) 

2012 

(Autumn) 

Mean 14.43 11.12 

Standard Deviation 4.33 2.94 

Sample Variance 18.79 8.65 

Count 60 49 

   

Varroa 
  Mean 4.90 12.18 

Standard Deviation 7.22 11.02 

Sample Variance 52.09 121.52 

Count 50 39 

   

No Stings   

Mean 11.00 10.75 

Sample variance 105.68 170.26 

Standard Deviation 10.28 13.05 

Count 26.00 57.00 

 

 

  

Table 3.6 Comparing means and equality of variance in number of varroa detected per colony 

(2011-2012) 

 

 

 

 

 

 

  LnVarroa     t-test for 

Equality of 

Means 

 

Levene's Test for Equality of Variances 

 

 

F Sig. t df Sig. (2-tailed) 

Equal variances assumed 0.312 0.578 -4.645 87 0 

Equal variances not assumed 

  

-4.594 78.058 0 
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Table 3.7 Testing for differences in mean colony temperament between years (2011-

2012) and between the two 2012 breeding cohorts 

 

 

 

 

 

Breeder Anwen Cartin Carys Llinos 

Anwen   0.44 3.17 0.11 

Catrin 0.51   1.02 1.23 

Carys 0.08 0.31   6.23 

Llinos 0.74 0.27 0.01   

 

Figure  3.6  Pairwise comparisons for difference in temperament between the four 2012 

daughter colony cohorts.  The Kruskal-Wallis test statistic is  presented above the diagonal 

and the resulting P-value below.  Significant difference is indicated by the bold italic 

number. 

 

3.4 Discussion 

Some observable population level shifts were detected after two rounds of breeding.  

Colonies became more uniformed in appearance, and there was a detectable reduction in the 

variance of colony size.  The mean mite load carried per colony increased significantly 

during this time, but no significant difference in temperament was indicated between 

colonies headed by 2011 and 2012 raised queens.  There was no detectable difference in the 

variance of these two colony level traits across years.  It is possible that these two traits 

(mite load and temperament) were influenced by factors not specifically related to the 

genetics of colony specific queens, and were therefore less influenced by selection and the 

resulting reduction in genetic variation.  Factors such as mite virulence, environment (e.g., 

weather conditions) and uncertain paternal sources could have influenced the observed 

expression of these two traits.   

 

  Temperament     t-test for 

Equality of 

Means 

 

Levene's Test for Equality of Variances 

 

 

F Sig. t df Sig. (2-tailed) 

Between years (2011 and 2012) 2.159 0.145 -1.154 80 0.252 

Between 2012 cohorts 0.017 0.898 -2.103 53 0.032 
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Despite the frequently unfavorable weather conditions, each year approximately 75% of 

the newly established nuclei acquired a laying queen.  These results were at par with other 

sites with more favorable weather conditions (e.g. Shropshire) where the queen cells had 

been raised by a professional breeder.  Selection of low quality larvae (e.g. poorly 

nourished), or ones that are damaged during the grafting process, can affect the mating 

success and ultimate quality of the queens, and evidence of possible supersedure was 

observed in a small number of nuclei in 2012.  It is thought that supersedure occasionally 

occurs in colonies with immature queens since they can have a similar pheromone ‘signal’ 

to that of an aging or failing queen (limited brood pheromone in hive).  No evidence of 

inadequate mating as indicated by inferior brood patterns resulting from diploid drone 

production was observed.  Sixty one of 118 colonies were taken to the heather in 2011, and 

relatively good weather produced nectar flows that allowed the experimental colonies to 

expand.   

 

There was no correlation between weight change during this flow period, and the estimated 

strength of the colony.  This observation can be explained if there was a large variance in 

colony foraging efficiency; or in other words, that colonies of similar size tended to 

accumulate stores at different rates.  However, there was a correlation in 2011 between 

frames of bees and colony weight at end of the heather season.  Since increasing 

production potential is a main project goal, colonies displaying above expected weight gain 

(in relation to number of bees) were highlighted.  Fifteen colonies met these criteria of 

which thirteen were also highlighted by z-score analysis for further observation as potential 

breeder stock.  Weight gain during nectar flow (rather than weight at end of heather 

season) was the productivity criteria used in the z-score analysis, so it was reassuring to 

observe a general agreement between the two methods.  The two colonies with above 

average productivity, but rejected by z-score analysis either had bad temperament (Nia 

1.18), or very high varroa count (Lucy29 1.2). (see Appendix i).  The colony headed by 

queen Marged 1.6 was also a notable standout.  The colony recorded highest net weight-

gain during the nectar flow but failed to register above the mean expected weight at the end 

of the season.  Clearly, the production potential of this colony would be missed by relying 

on colony weight only. 

 

All matured nuclei were transferred to the heather for monitoring in 2012.  The inferior 

quality and short duration of the heather bloom, and the associated prolonged periods of 
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unsettled weather, provided little opportunity for strong nectar flows and foraging by bees 

this year.  Colonies did manage to expand and steadily gain weight during the first few 

weeks on the moor, but colony weights started diminishing as the heather flows began to 

shut down.  The rate of weight decline was negatively correlated with the amount of bees 

in the colony.  This makes sense as more bees need more food, and honey stores will 

deplete at a faster rate in larger colonies.  There were no specific periods of strong nectar 

flows on the heather in 2012; hence no attention was given to foraging efficiency when 

comparing colonies.  Overall weight gained during the whole period when some foraging 

was possible was therefore used, in relation to colony size, when comparing colonies.  

Generally though, conditions offered little opportunity to monitor productivity this season.   

 

The propagation of varroa tolerance was always a desirable project goal.  The need for 

increasing resistance was highlighted by the heavy losses, attributed to overwhelming 

varroa and associated virus pressures (DWV and parasitic mite syndrome) that were 

incurred across the winter of 2010/11.  Mite counts were taken each year while the hives 

were on the heather, just as brood production was beginning to slow down and as mite 

populations approached peak numbers.  Although it is known that mite count is only 

marginally heritable (Harbo and Harris, 1999) counts were taken in an effort to selectively 

direct the population towards tolerance.   

 

Counts were also conducted to monitor population level infestation rates.  Relatively low 

numbers were detected in the experimental colonies 2011, possibly as a result of the 

selective sweep the population incurred the previous winter.  Numbers increased the 

following year, (2012) and colonies were treated with an organic acid (3.5% oxalic acid 

dribble) after brood production had stopped.  The situation provided an apparent dilemma; 

how can one now select for tolerance to local mite parasitism after drastically interfering 

with host/pest interactions?   Commercial operations have limited time and resources to 

expend on demanding monitoring schedules.  Recommendations based on a German 

approach (Büchler  et al. 2010) for evaluating varroa mite tolerance in honeybees were 

recently proposed by the BEE DOC (Bees in Europe and the Decline Of honeybee 

Colonies) project.  The method suggests taking two varroa counts (one in the spring and 

the other later in the summer) to assess mite population growth rates.  The process seems 

well suited for use by well-resourced institutional breeding organizations, and less so by 
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small scale breeding programs trying to improve overall bee performance by merely 

selecting from the constantly strongest performing colonies 

 

Bee temperament was unusually bad during the spring of 2012, and although weather 

conditions were poor and known to influence temper (Villa, 1988), there was concern that 

the aberrant behaviour was due to breeding.  A distinct difference in propensity to sting 

was demonstrated among the 2012 experimental colonies.  However, overall, there was no 

significant difference between the 2012 experimental population and a control group 

comprising of 2011 and earlier colonies only.  Neither the mean number of stings per 

colony, nor the variance of the data was statistically different between groups. These 

assays were conducted after both groups had been migrated to the heather and under very 

similar weather conditions days apart.  These results seem to suggest that environmental 

conditions may have been the major contributing factor affecting colony temperaments 

earlier in the year.     

 

However, stinging response is known to have a genetic component (heritability).  For 

example, there are three known stinging behaviour QTL’s: sting-1, sting-2 and sting-3 

(Arechavaleta-Velasco, et al., 2003), with sting-1 being associated with actual stinging 

response and guarding.  Beekeepers commonly try to remedy unmanageable hives by 

replacing the queen.  The new queen mediates the transfer of both maternal (from her) and 

paternal (from the drones she mated with) sting genes into the next generation of diploid 

workers.  It is possible that colony defensiveness can be directly influenced by the colony 

queen genotype, or indirectly by the haplotypes of the drones she mated with. 

Two groups of daughter queens were grafted in the spring of 2012.  Each group comprised 

of daughter colonies raised from the same four breeders, but they were located in different 

mating apiaries.  There was a significant difference in the defensiveness of the two groups 

when possible maternal effects were ignored.  Overall, daughter colonies from the first 

grafting batch were statistically less defensive than the colonies from the second.  

Comparing within breeder groups showed that this overall difference was driven mainly by 

the highly significant difference observed between the two grafting sister-groups of one 

specific breeder (Llinos).  However, a general trend was obvious as there was an almost 

significant difference between grafting cohort for two of the other three breeders.  

Numerous environmental variables could have potentially differentially affected the 
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development and conditioning of the queen larva in these two grafted groups, but it is 

unknown if such non-inherited influences can affect the temperament of a queens progeny.  

Mating success is largely environment dependent and there may have differed between 

groups, but again there is no evidence that a correlation exists between mating success and 

progeny temperament.  Mating success is known to influence queen development and 

conditioning (Tarpy et al., 2012; Richard et al., 2007) which in turn affects her pheromone 

induced influence over colony behaviour.   

It is also possible (and probably most likely) that difference between grafting cohorts 

reflects a paternal genetic influence since drone contribution and conditions may have 

differed.  This explanation is very plausible since these two groups mated at different 

locations occupied by different drone contributing colonies.  Different colonies contributed 

drones to these two groups.  Guzman-Novoa et al. (2004) describe the influence of paternal 

gene transfer on colony level defensive response.  They conducted reciprocal cross 

experiments between honeybee colonies of European and African origin, and observed that 

hybrid colonies of African paternity were significantly more defensive.  They hypothesized 

that epigenetic influences might be down-regulating (silencing through methylation) major 

stinging alleles if inherited from the mother in order to reduce the cost associated with 

having an overly defensive and ‘unbalanced’ colony.  Many drones usually contribute to 

colony phenotype; hence major defensive alleles will by chance be inherited by a fraction 

of workers only.  Colonies might therefore have a more ‘balanced’ defensive response if 

the trait is inherited through the male line.  The authors hypothesized a gender specific 

silencing mechanism and suggest that major defense alleles may not be silenced when 

inherited from the father.    

 

Assuming the above hypothesis is true; bee-breeders may not be readily able to identify 

colonies producing drones carrying major defense allele, as these alleles will be silenced in 

workers when inherited from the queen.  But a high percentage of the drones produced by 

the queen will carry these alleles, and if they successfully mate, their effect will be 

expressed in the daughters; i.e. the workers in colonies headed the queens they mate with.  

Colonies headed by queens that mated with multiple drones carrying major defense alleles 

may become defensive and difficult to manage when. 
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Although 11 and 4 breeders were selected in 2011 and 2012 respectively, the effective 

number used each year approximated 8.3 and 3.5 due to unequal breeder representation in 

the daughter generation.  Greater selection pressure was therefore applied during the 

second round of breeding (2012).  There was consequently greater uniformity among the 

2012 colonies in both size and organization of the brood nest.  This noticeable trend was 

statistically supported since there was significantly less variance in the numbers of frames 

of bees occupied by bees at the end of the 2012 season, although there was no difference in 

means across years.  Reduced variance was also noted for brood amount in each nest.  

Means were also different in this case since comparisons were made using data collected at 

different times of the year (summer and autumn), and therefore during different colony 

development periods.  However, this trend towards uniformity was notable and suggests 

that the population as a whole is responding to selection pressure.    

  

One of the goals of the WWBBP is to develop a practical protocol that could help small 

breeding programs improve the quality of their bees.  Broadly, the ‘improved’ population 

will trend towards greater productivity, greater disease resistance and gentleness with time.  

The program has gone through two rounds of selection to date, and there is slim evidence 

of “improvement”.  Nevertheless, a trend towards uniformity is clearly indicated by 

observation and by a statistically significant reduced variance in colony characteristics.  

The program selected 11 breeders in 2011 and dropped this number to 4 in 2012.  Four 

breeders per generation is the current favored model, a number driven mostly by practical 

and logistical co considerations, since the program can only accommodate a limited 

number of new colonies a year (n ~ 80 to 100).    

 

Queen ‘rearing’ might aid beekeepers to treat the symptoms of poor bee-health (i.e. 

replacing losses), but it does not necessarily address the root cause of unacceptably high 

mortality.  At worst, an unconsidered approach to rearing could inadvertently exacerbate 

future overwintering losses and general bee-health (e.g. genetically constrained selection 

regime).  A basic understanding of bee mating biology and the genetic dynamics of bee 

populations might help avoid such pitfalls.  Research has consistently demonstrated a 

correlation between degree of genetic diversity and general health and fitness at both 

colony and population level.  Genetically depleted colonies or populations have been 

shown to express reduced vigor and increased susceptibility to disease.  Breeders must 

guard against genetic depletion by rearing queens from unrelated breeders.  
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Monitoring phenotypic change revealed three key points.  First, colony size responded to 

selection, becoming more uniformed as the population became more genetically 

constrained.  This observation was interpreted as a consequence of effective breeder 

number dropping to only four in 2012.  Secondly, the mean number of varroa mites 

detected per colony increased drastically between years.  The program suffered serious 

varroa attributed losses in 2011, hence these results demonstrate the value of monitoring as 

a tool to manage colony treatment.  Lastly, a difference in temperament between the two 

2012 breeding cohorts (each comprising of daughters raised from the same four breeders, 

but mated at different locations) suggest that paternal influences might be affecting overall 

temperament.  
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4.1 Introduction 

 

Line breeding is a common breeding design used by small scale breeders selecting and 

breeding from within a small closed population (the line).  Small operations, such as the 

West Wales Bee Breeding Program (WWBBP), can generally only resource a single line, 

within which a limited number of individual queen lines will be maintained.  Within-

family selection has been recommended when working with relatively small populations 

such as this (Moritz, 1986).  It is considered as the best approach for small scale operators 

wanting to improve stock quality while concurrently trying to maintain genetic diversity 

across generations.  The basic approach is to each year select and breed from the best 

performing colony in each breeder family.  In conjunction with queen selection, one can 

also simultaneously manipulate male mediated contributions by using the drones produced 

by sister queen cohorts that had been raised from strong and vigorous colonies the previous 

summer.  These drones would mediate the transfer of promising grandmother colony 

characteristics through the male line.  This approach has been loosely applied by the 

WWBBP to date. 

 

4.1.1 Avoiding inbreeding 

Charles Darwin (1876) was the first to formally describe the detrimental effects of 

inbreeding.  He demonstrated this by comparing the fitness effects of cross and self-

fertilization in numerous plant species.  Since then, innumerable studies on both wild and 

captive populations have demonstrated similar effects in sexually producing organisms.  

Crnokrak and Roff (1999) subsequently published a significant work suggesting that wild 

inbred individuals will on average suffer seven times more from the effects of inbreeding 

depression than similarly inbred captive individuals.  Inbreeding depression appeared to be 

expressed to a greater extent under stressful circumstances.  The increased rates of colony 

losses observed in the Northern hemisphere over recent years indicate that honeybees are 

experiencing a period of increased stress.  It is possible that the multifaceted nature of 

these challenges could render bees more susceptible to the expression of detrimental 

inbreeding effects.   

 

Inbreeding is an inevitable consequence of line-breeding (Harbo and Rinderer, 1980) since 

selection constricts the transfer of genetic material across generations.  Inbreeding will 

eventually be detrimental to breeding efforts since enhancing the expression of desired 
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characteristics becomes more difficult with each passing generation as selecting for 

desirable traits will be far less effective in inbred populations.  Colonies with inbred bees 

might also express reduced vigor and may have spotty brood pattern (glossary) due to 

homozygosity at the sex determination locus.  It is commonly argued that the social 

hymenoptera are particularly susceptible to inbreeding depression due to genetic load on 

the sex determination locus (csd) and to their usually low effective population sizes (Zayed 

and Packer, 2005) In reality, little is known about the effects of inbreeding in haplodiploid 

insects (Liautard and Sundström, 2005) and there seems to be limited evidence that it is a 

problem in large managed commercial beekeeping operations that use open mating 

(Oldroyd, 2012). 

 

Two hypotheses (dominance and over-dominance) are frequently evoked to explain the 

expression of inbreeding depression (Zayed, 2009). Firstly, diploid individuals randomly 

mating in a large population carrying lethal and non-lethal alleles at low frequency will be 

protected from the deleterious effects of rare maladapted alleles by the masking effect of 

dominant non-deleterious homologs (dominance).  The expression of inbreeding 

depression becomes more likely in small closed populations due to the increased likelihood 

that maladaptive alleles become paired due to mating between relatives.  In addition, 

random genetic drift in small populations reduces genetic diversity (since alleles are more 

likely to be lost in small populations) leading to increased homozygosity and increased 

likelihood of inbreeding depression (Lande, 1988).   The accumulated effect of numerous 

homozygous loci carrying maladapted genes results in general loss of vigor.  This in effect 

is inbreeding depression.  The second hypothesis relating to inbreeding is over-dominance, 

which suggests that inbreeding is caused by the tendency of homozygotes to have lower 

overall fitness than heterozygotes.   

4.1.2. Genetic variation in honeybee populations 

Honeybees have been managed by humans for thousands of years and extensively so in 

Europe and North America since the middle of the nineteenth century.  Domestication in 

general usually results in loss of genetic diversity (Wright et al., 2005; Zeder et al., 2006) 

and low levels of genetic diversity have been observed in several European and North 

American populations (Delaney, et al., 2009; Jaffé et al., 2010; Meixner et al., 2010).  In 

light of the very poor health of many contemporary managed populations (Cobey et al., 

2012; vanEngelsdorp and Meixner, 2009) these observations have raised concern that 
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historical bee management and breeding practices may have resulted in a depleted 

contemporary genetic pool.  Many studies have correlated increased diversity with superior 

colony robustness and vitality hence the maintenance of variation is important.  

 

However, honeybees are not strictly ‘domesticated’ and recent work  by Harpur, et al. 

(2012) indicates that managed admixed populations of honeybees in Europe have more 

genetic diversity than either of their two progenitor populations, i.e., the Western (M) and 

the Eastern (C) lineages (Franck et al., 1998; Garnery et al., 1992; Whitfield et al., 2006).  

Genetic and morphological methods indicate that honeybees spread out of Africa during 

two separate expansion events and that they were historically geographically isolated into 

North West and South East Europe.  The translocation of bees between these regions was 

begun by beekeepers and breeders during the middle of the nineteenth century and 

continues to this day (Meixner et al., 2010).  It appears that the constant input of imported 

stock and the somewhat novel mating biology of honeybees may have allowed diversity to 

be maintained despite the selection pressures that are applied due to management practices 

(Harpur et al., 2012; Oldroyd, 2012).  There is also evidence from large breeding 

operations using open mating that neutral genetic diversity is maintained (Oldroyd, 2012). 

 

4.1.3 Effective population size 

Population size (N) is a central tenet of evolutionary theory since it has a profound bearing 

on the response of populations to drift and selection, and on their susceptibility to 

inbreeding (Waples, 1989).   Simple counts or mark recapture methods can provide 

accurate populations estimates, but the census size can also differ greatly from its effective 

genetic size (Ne).  Ne can be defined as the number of individuals contributing genes to the 

next generation, but is more equivalent to the number of colonies within effective mating 

range for honeybees.  Consequently, numerous estimators utilizing molecular data from 

population samples have been developed.  These approaches have been used by wildlife 

managers concerned about the destiny of small populations since they can provide insight 

into potentially problematic demographic and genetic trends.  I employed these methods to 

investigate changes in population size in a managed honeybee population over a brief 

contemporary time scale due to selection. 

 

4.1.4 Microsatellite loci and the Complementary Sex Determination (csd) locus  
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I used a suite of selectively neutral markers and a single marker from a region under strong 

selection to assess how much genetic variation was in the baseline population.  

Microsatellite loci are generally assumed to reside in selectively neutral regions of no 

known function.  They are characterized as regions with high mutation rates comprising of 

two, three, or four base pair repeat sequence motifs bounded by more conserved regions of 

locus specific sequences.  These bordering regions provide primer access for fragment 

amplification using PCR.  Conversely, csd is a gene with a described sex-determination 

function that experiences balancing selection in response to diploid drone production.  

Bees that are homozygous at the csd locus develop into sterile diploid drones that can 

contribute nothing to the next generation. Low frequency csd alleles are therefore favored 

as they are less likely to match in a homozygous diploid state with zero fitness. 

 

In this chapter I investigate the rate of genetic change occurring in a breeding population 

under selection across two breeding cycles.  The population comprised mainly of bees that 

had been sourced, over a number of years, from a knowledgeable local bee breeder who 

had likely taken steps to avoid inbreeding.  In light of this knowledge, and of the recent 

work by Harpur et al. (2012) highlighting the increased genetic diversity found due to 

translocation in managed bee populations, I considered it likely that high levels of 

polymorphism would be found at both neutral microsatellite loci, and at the csd locus in 

this population.  I also hypothesized that there would be a detectable reduction as a result 

of selection in both genetic diversity and effective population size (Ne) across the 

monitoring period. 

 

4.2 Methods 

4.2.1. Population genetic data sampling 

Sampling was designed to investigate the rate of genetic change occurring in a breeding 

population under selection across two breeding cycles.  Samples were taken from the 

source population (G0) which was comprised of colonies that were established in 2010 or 

earlier.  Foraging workers were sampled from the entrance of sixty randomly selected 

colonies.  The 2011 (G1) and 2012 (G2) ‘cohort’ data were generated using worker 

samples taken from colonies headed by queens raised during the respective year.  The 

WWBBP selected eight effective breeders from the baseline population to supply queens 

for the 2011 cohort, and four breeders were selected from this cohort to supply queens for 
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2012.  The daughter colonies of the 2011 (G1) and 2012 (G2) breeders were sampled in a 

similar fashion to the baseline, with sixty foragers (colonies) sample each year.  All 

samples were stored in 98% ethanol at room temp for preservation and DNA extraction.   

 

4.2.2 DNA extraction 

DNA was extracted from equal volumes of leg or thorax tissue using a modified version of 

the 96 well plate protocol described by Lagisz et al.(2010). The extraction protocol was 

performed in 1.5ml tubes and the reagent volumes adjusted accordingly.  The cell lysis was 

conducted under moderate agitation at 37°C using a solution comprised of 50mM Tris (pH 

8.0), 0.4M NaCl, 0.5% SDS and 20mM EDTA.  Lysing was allowed to proceed for two or 

three days for higher yields.  Salt precipitation with 4M Ammonium Acetate was used to 

precipitate unwanted cell proteins.  The salt solution was added to the lysis mixture and 

centrifuged.  The DNA-containing supernatant was poured into anther tube, and 

precipitated out of solution with ethanol.  This tube was centrifuged for 30 minutes to 

pellet the DNA and the ethanol carefully poured off.  After a final wash step using 70% 

ethanol and a 12-15 min spin, the DNA pellet was left overnight on the bench to dry and 

rehydrates in 50µl of 1X TE.  The extracted DNA was quantified using a NanoDrop 

nd1000 spectrophotometer and each sample was diluted to 50ng/µl for genotyping. 

 

4.2.3 PCR Multiplex Systems 

I designed two multiplex reactions comprising of seven and three microsatellite primer 

pairs each (Table 4.1).  Each multiplex was amplified in a single 10µl multiplexed reaction 

consisting of 50 ng of DNA, 0.75 X Qiagen multiplex PCR solution, 2.5 and 0.25 pM of 

reverse and forward primer mixes respectively, and 2.5pM of ABI Fam-, Pet- and Ned- 

and 5.0pM of Vic-labeled primer.  Polymerase chain reactions were performed on a DNA 

engine Tetrad 2 thermocycler (BIO RAD) using the following cycling parameters:  95°C 

for 15 min, followed by 13 cycles of 94°C for 45 sec, 55°C for 45 sec and 72°C for 45 sec, 

and then 25 cycles of 94°C for 45 sec, 52°C for 45 sec, and 72°C for 45 sec.  The profile 

was terminated with a 30 min extension at 60°C.  Reaction products were visualized on an 

ABI 3130xl Genetic Analyzer and the data were analyzed using Genemapper (ABI).   
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Table 4.1.  Microsatellite markers    

Locus 

Unified 

Name Authors Label Accession  

Multiplex 1    

Ap43 Am098 Solignac et al. 2003 Pet AJ509329 

A14 Am406 Solignac et al. 2003 Vic AJ509239 

A29 Am014 Solignac et al. 2003 Vic AJ509245 

A79 Am046 Solignac et al. 2003 Fam AJ509277 

A107 Am056 Solignac et al. 2003 Fam AJ509287 

A113 Am059 Estoup et al. 1995 Ned AJ509290 

Ap14 Am068 Solignac al. 2010 Ned AJ509305 

Multiplex 2    

A7 Am005 Estoup et al. 1994 Pet AJ509236 

Ac1109 Am441 Solignac et al. 2003 Vic AJ 509672.1 

Ap80 Am124 Solignac et al. 2003 Fam AJ509355.1 

 

 

4.2.4 Csd-marker 

The csd gene contains a hyper-variable region that is characterized by an arginine-serine 

rich repeat region, bounded (in a similar way to microsatellites) by more conserved 

sequence regions.  I designed primers (Hypcsd F 5’-CGTTCAAGAGAACGAGAGC-3’ 

and Hypcsd R.1 5’-GTCCCATTGGTCTTGGTGG) to target the conserved regions 

(Discussed further in Chapter 6) to investigate how variation changes through generation 

of selective breeding.  The primers were designed to generate product fragments of 

approximately 450 base pairs long to facilitate standardization with the ABI Genescan500 

size standard.  I attached a tail to the 5’ end of the forward primer with a sequence 

complementary to an ABI Ned labeled tail for fragment visualization.  This marker was 

amplified independently of other markers as I had indifferent success incorporating it into 

an existing microsatellite multiplex system (i.e. multiplex 1 or 2). The marker was 

amplified in a single 10µl multiplexed reaction consisting of 50 ng of DNA, 0.75 X Qiagen 

multiplex PCR solution, 10.0 and 1.0 pM of reverse and forward primer mixes 

respectively, and 2.5pM of ABI Fam.  Same PCR profile was used as for microsatellite 

markers.   

4.3 Statistical Analysis 

4.3.1.Overlapping generations 

Data analysis and interpretation of results was potentially complicated by the overlapping 

nature of honeybee generations.  Honeybee generations can overlap since virgin queens 

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&term=AJ509323&doptcmdl=genbank
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&term=AJ509287&doptcmdl=genbank
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=nucleotide&term=AJ509305&doptcmdl=genbank
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can mate with drones produced by much older queens and drone-producing queens can 

persist for multiple years under natural circumstances. Samples taken from the source 

population were assumed to be a random sample of a single generation consisting of 2010 

and older queens. This sample set was inherently different to the samples subsequent taken 

from annually produced cohorts groups (G1 and G2).  I therefore compared the genetic 

signature of the source population to each of the cohort years separately, and to the two 

cohort years combined as a single ‘generation’.   

 

4.3.2 Genetic diversity 

Genetic diversity has been measured in a number of different ways.  Heterozygosity is a 

very commonly used index.  It is the expected probability that an individual carries 

different alleles (heterozygote) at a single locus, or at an assay of different loci, 
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where, pi is the frequency of the i
th

 of k alleles, and m is the number of loci.  The observed 

heterozygosity (Ho) in a population sample is frequently compared to that which would be 

expected (He) under conditions of random mating.  Significant deviations will indicate that 

the population is experiencing an external driver or evolutionary force such as selection or 

inbreeding.  Average heterozygosity is a measure of genetic diversity at the population 

scale and indicates the average proportion of individuals that are heterozygous for any 

given trait (locus).   

 

The mean number of alleles per locus (Allelic Richness) is another commonly reported 

diversity index.  It is very sensitive to sample size, and has the disadvantage that 

information is lost due to rarefaction.  Rarefaction is used to determine this index.  It 

allows number of allele estimates from samples of different sizes to be compared, but it 

does this by scaling from all samples data down to that of the lowest sample size.  

Nevertheless, the method is useful since it is more sensitive than changes in observed 
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heterozygosity to recent bottleneck events since it is more sensitive to the loss of low 

frequency alleles. 

 

Exact tests for Hardy Weinberg Equilibrium (HWE) for each locus and ‘population’, and 

genotypic linkage disequilibrium among loci pairs within each population, were computed 

in GENEPOP (on the web version 4.0.14), and Arlequin (version 3.5.1).  Arlequin was also 

used to investigate genetic structure over all loci between sampling years.  FSTAT was 

used to determine expected and observed heterozygozity and to determine the number of 

alleles per locus (Allelic Richness) per generation.   

Friedman’s test (SPSS v.19) was used to test for significant differences in allelic richness 

and expected heterozygozity across sampling years.  Each ‘population’ is ranked according 

to its diversity at a particular locus the average rank of each population across all loci is 

then calculated and the null hypothesis that the ranks do not differ from the expected value 

is tested using chi-square. 

4.3.3 Detecting bottlenecks  

The program Bottleneck version 1.2.02 (Cornuet and Luikart, 1996) was also used to try 

and detect recent reductions in effective population size.  Populations that undergo a 

bottleneck event suffer reductions in allele numbers and a corresponding, but delayed 

reduction, in observed heterozygozity.  That is, the heterozygosity observed immediately 

post bottleneck will be greater than that expected with the observed allele frequencies (for 

loci in mutation-drift equilibrium).   

 

Bottleneck runs a “sign test", a "standardized differences test" (Cornuet and Luikart, 1996), 

and a "Wilcoxon sign-rank test" to test for excess heterozygosity.  However, the 

standardized difference test was not appropriate since a minimum of 20 loci is 

recommended and it assumes normal distribution of heterozygosity across loci.  The 

Wilcoxon sign test does not assume a normal distribution and tests the hypothesis that the 

values of HE (expected heterozygosity) from the baseline and post selection cohorts (both 

separately and combined) were not different (Spencer et al., 2000).  The program returns 

heterozygosity values expected under mutation-drift equilibrium for the Infinite Allele 

Model (I.A.M), the Stepwise Mutation Model (S.M.M), and the Two Phase Model 

(T.M.P), and computes if these values are greater or less than would be expected for each 

model.  It provides a P -value for each observed heterozygosity.  I report results for all 
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models but place greater emphasis on the TMP since it is known to better model 

microsatellite evolution   (Valdes et al., 1993; Di Rienzo et al., 1994). 

 

The program Bottleneck also produces a “Mode-Shift” analysis (Luikart et al., 1998) as a 

bottleneck indicator.  Here, alleles from all typed loci are grouped into designated allele 

frequency classes (e.g. 0.1 to 0.9 in Bottleneck, but any class distinction can be used).  

Since most alleles occur at low frequency in stable populations, an allele distribution 

histogram creates an L-shaped in such populations.  Low frequency alleles are more likely 

to be lost during a bottleneck, hence a “mode shift” might be observed.  There might be 

fewer low frequency alleles in bottlenecked populations with a greater proportion of alleles 

occurring at moderate frequency.   

4.3.4 Estimating the effective population size (Ne) 

The effective population size (Ne) of a haplo-diploid population was described by Wright 

(1933) as, 

                                                           Ne = 
     

       
     

where Nf  is the number of breeding females and Nm is the number of contributing males. 

Wright also showed that Ne-haplodiploid = 0.75*Ne-diploid.  Diploid workers were 

sampled for this part of the study, and results were corrected to accommodate 

haplodiploidy where necessary.  

Numerous molecular methods have been developed to investigate changes in population 

size through time (Wang, 2009). These methods are retrospective in the sense that they use 

contemporary sample data to construct a hypothetical historical population. Authors have 

employed a variety of approaches relating to different temporal and special time scales to 

estimate effective population size (Luikart, et al., 2010).  Here, I investigate the effects of 

artificial selection applied over a very brief contemporary time scale on the effective 

population size of an experimental bee population.  Various genetic signatures (e.g. 

linkage-disequilibrium, heterozygote excess, sib-ship analyses) are used to infer how 

populations change in response to chance events, or as in this case, selection pressure.  

Each breeding generation in the experimental population can be extensively sampled, so 

observed allele frequency changes should be due mostly to selection and not to random 

noise introduced by inadequate sampling.     
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It must be noted that each estimate method assumes that the experimental population 

approximates a theoretical ideal (the Fisher-Wright population).  This ‘ideal’ population is 

closed to immigration, has discrete generations and equal sex ratios, experiences random 

mating, and has non-random variance in reproductive success (Hare et al., 2011).  Another 

important assumption (particularly for sib-ship analyses) is that samples are taken from a 

single cohort so that analyses are not confounded by misidentified parent offspring 

relationships (Wang, 2009).   

Clearly, there will be non-random variance in reproductive success in the experimental 

population since only selected breeders will contribute to the next generation. Fifty percent 

(N = 60) of our breeding population was sampled in 2011, while all (N = 60) colonies were 

sampled in 2012.   Again, any change in frequencies (inferred as changes in Ne) should 

therefore be due to selection and not drift due to sampling chance.  Directional selection 

due to commercial fishing has been recognized in wild fish populations.  Temporal shifts 

in allele frequencies indicated a reduction in Ne which likely caused by reduced variance in 

reproductive success (Hare et al., 2011).    

Honeybee populations also deviate from the ‘ideal’ model in two other obvious ways.  

Firstly, laying queens can persist for more than one year under natural circumstances, so 

that generations can overlap.  Most Ne estimators are designed to generate discrete 

generation estimates, but will provide a related parameter, Nb, when samples are taken from 

a single cohort of a population with overlapping generations.  The parameter, Nb, is the 

effective number of breeders contributing to that year (Hare et al., 2011), and is such that 

Ne > Nb = generation time * Nb.  My baseline samples were selected from all the colonies 

that were raised 2010 or earlier, and should represent a random sample of the ‘complete’ 

pre-selection generation.  Contrastingly, the 2011 and 2012 cohorts were sampled from 

same-aged queens raised that year.  Single sample cohort analyses should therefore provide 

an indication of the number of contributing breeders (Nb) and should be less than the 

effective size of the whole population. 

Secondly, the haplodiploid nature of bees and the polyandrous nature of the queen further 

complicate the situation since they result in unequal sex ratios (many more drones than 

queens).  The Colony program accommodates haplo-diploidy, otherwise results need to be 

weighted by a factor of 0.75.  {i.e. Ne-haplodiploid = 0.75* Ne-diploid}.  
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Finally, the relatively short nature of this study limits the precision of the two samples for 

estimating Ne methods described below.  For precision, it is recommended that a sample-

span of two or more generations be used with these methods.  I include a discussion and 

report results on their use below of completeness, but will concentrate single sample results 

which generally report Ne on the previous generation.  

4.3.4a Estimating Ne using single sample approaches 

These methods are appealing since only one sample from the monitored population is 

required.  One does not have to wait for generations and a second round of sampling.  They 

estimate Ne by using genetic signatures observed in the one sample data using patterns 

related to various genetic parameters including linkage among alleles from different loci, 

heterozygosity and patterns of relatedness among sampled individuals.  Recent 

developments have benefited from recent advances in computing capacity and have shown 

promising results with these approaches (Hare et al., 2011).  For example, Waples and Cho 

(2008) recently published LDNE which has a bias correction for estimates of (Ne) based on 

linkage disequilibrium data, and Wang (2009) developed the sib-ship assignment (SA) 

method for estimating Ne from single generation samples.  The method is implemented in 

the program Colony (Jones and Wang, 2010) and relies on the fact that individuals from 

the same cohort are more likely to be related (as-sibs) in small populations.  Individuals are 

more likely to share a common parent or parents when the parental cohort is small.  All Ne 

estimates make assumptions about the sampling protocols and populations.  The SA 

method is most sensitive to deviations from single cohort sampling since individuals from 

different cohorts could be parent-offspring and mistakenly assigned as sibs. Such false 

assignments would mistakenly lower Ne.   

 

4.3.4b  Estimating Ne using temporally based methods 

Temporally based methods utilize changes in allele frequencies across generations and 

hence require at least two different temporal samples from the population of interest.  The 

methods work best when the degree of change due to drift or (as in our case) selection is 

large since the disruptive effects of changes due to random drift are drowned out of the 

“signal”.  These methods should therefore be applicable to a selective breeding situation 

since we should be imposing enough selection to impose an adaptive response from out 

population.  We can also accommodate large and very accessible sample numbers (large 

numbers of bees in a colony) in relation to relatively small population sizes.  Returned 
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values should therefore indicate changes due to selection as opposed to random drift due to 

sampling effect.  Additionally, sampling more loci enhances precision (Waples, 1989). 

 

4.3.5 Moment-based temporal methods 

Moment-based methods utilize the relationship between Wright’s F statistic (1951) and 

genetic drift.  One formulation of F utilizes the expected variance in allele frequency (pt) 

between time 0 and t, when adjusted for its starting frequency [p0 (1- p0)], and is given as, 

   (  )

  (    )
 = 
 (     )

 

  (    )
   

 

   
 

when ( 
 

   
 ) is less than 0.15 (Nei and Tajima, 1981).  The expectation of F can therefore 

be estimated from the observed variance in allele frequencies across samples since this 

result can be converted to give an estimate of Ne.  

It is thought that these methods tend to upwardly bias the estimator when low frequency 

alleles are encountered.  Highly variable microsatellite markers are susceptible to this 

source of bias since they might carry numerous alleles at low frequency.  Bias is also 

introduced if drift (or selection in our case) is strong enough to result in loss of alleles 

between samples (Waples, 1989).  Precision improves and bias due to overlapping 

generations decreases with increasing number of breeding cycles between sampling  

(Waples and Yokota, 2007). 

  

4.3.5a Coalescent based temporal method (TM3) 

I also used the program TM3 (Berthier et al., 2002).  This approach applies the coalescent 

model in a temporal method framework.  The model is based on the higher expected rates 

of coalescence when historical populations are small.  The convers will also apply, and 

lower rates of coalescence should occur between the recent and historic samples when 

historic populations are large.  Coalescence based estimators can more readily 

accommodates continuously reproducing (overlapping generations) populations rather than 

models based on discrete-generation Wright-Fisher populations (Anderson, 2005).  I ran 

this method multiple times to ensure consistent results. 

 

4.4 Results 

4.4.1 Microsatellites (neutral markers) 
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Some alleles at locus A29 could not be confidently resolved due to the nature of the marker 

signature and this locus was dropped for the analysis reported here.  In addition, pairwise 

comparisons for linkage disequilibrium suggested a non-random association between 

alleles at locus A7 and A14.  Significant test-results (P<0.002) were observed across all 

three sampling years.  Locus A14 was removed from population structure analyses.  No 

significant deviations from expected Hardy-Weinberg proportions were detected at any 

locus in any sampling group (χ
2 

(60) = 86.68, p =0.014> 0.006 after Bonferonni 

corrections).  No deviations from Hardy-Weinberg expectations (HWE) was observed 

when the 2011 (G1) and the 2012 (G2) cohort groups were combined (χ
2 

(16) = 15.91, p 

=0.328).   

 

The total number of alleles sampled at each locus across the sampling period ranged from 

7 (A441) to 26 (A107).  In the baseline population (G0), the number of alleles per locus 

(allelic richness) ranged between 6.7 (A441) and 22.9 (A107).  In the 2011 (G1) and 2012 

(G2) populations, the numbers of alleles per locus ranged from 5.0 and 4.0 (A441) to 17.9 

and 18.3 (A107) respectively (Table 4.2).   

The mean expected heterozygosity (all loci) for G0, G1 and G2 were 0.786, 0.789 and 

0.777, and the mean observed heterozygosity values were 0.783, 0.800 and 0.798 

respectively (Table 4.3). 

Table 4.2 Allelic Richness 

Locus Go G1 G2 
A7 9.60 9.61 7.99 

Ap43 9.60 8.88 7.87 

A14 12.22 11.70 13.64 

A29 21.37 18.97 21.14 

A441 6.74 5.00 4.00 

A79 11.49 9.61 9.85 

A107 22.94 17.93 18.33 

A113 10.58 7.85 8.73 

Ap14 9.84 9.7 7.98 

CSD 31.82 27.71 24.57 

Mean 14.62 12.69 12.41 

 

Friedman’s test for repeated measures revealed a statistically significant difference in 

allelic richness, χ
2 

(2) = 8.00, p = 0.018.  Post-hoc analyses using Wilcoxon-signed-rank 

tests (SPSSv 19) was therefore conducted, and Bonferroni corrections were applied to 

correct the significance level for multiple tests (p < 0.05/3).  Allelic richness in the 2011 

and 2012 samples were both significantly different to the baseline (2010) (Z = -2.20, p = 

0.028, and Z = -2.37, p = 0.018 respectively).  A significant difference in allelic richness 
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was also detected between the source population and the two cohort sample groups 

combined (Z = -2.028, P = 0.022 1-tailed).  There was no significant difference in allelic 

richness between the 2011 and 2012 samples (Z= -1.352, p = 0.176) and no statistically 

significant difference in expected heterozygosity (χ
2 

(2) = 1.143, p = 0.565) between any of 

the sampling periods. 

 

4.4.2 Complementary sex determination (csd) 

A total of 44 different fragment lengths were detected in the hyper-variable region of the 

csd gene.  These fragments ranged in size from 407 to 493 base pairs long, with 33, 28 and 

25 ‘alleles’ detected in G0, G1 and G2 respectively.  There was a consistent decline in 

number of alleles detected each year at this locus, and a corresponding drop in allelic 

richness at this locus across the sampling period (Table 4.2).  Since this locus experiences 

strong selection, and will behave differently to microsatellites in evolutionary terms, it was 

removed from further analysis. 

 

Table 4.3.  Expected and observed 

heterozygosities at all markers 
Locus G0 G1 G2 

Expected    

A7  0.73 0.79 0.79 

Ap43 0.79 0.84 0.82 

A14 0.80 0.82 0.86 

A29 0.90 0.91 0.90 

A441 0.65 0.54 0.56 

A79 0.80 0.79 0.79 

A107 0.93 0.92 0.91 

A113 0.77 0.81 0.75 

Ap14 0.79 0.80 0.7 

CSD 0.93 0.94 0.94 

Mean 0.81 0.82 0.81 

    

Observed    

A7  0.72 0.72 0.84 

Ap43 0.85 0.88 0.78 

A14 0.78 0.84 0.85 

A29 0.86 0.92 0.87 

A441 0.60 0.62 0.62 

A79 0.81 0.81 0.83 

A107 0.87 0.92 0.89 

A113 0.76 0.72 0.74 

Ap14 0.84 0.89 0.85 

CSD 0.86 0.92 0.90 

Mean 0.79 0.83 0.82 
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4.4.3. Bottleneck  

All sample groups had significant heterozygote excess under the IAM.  Significant P-

values were also returned by the Wilcoxon-signed-rank test for the 2011 and 2012 samples 

under the T.M.P model and by the sign rank tests in the 2012 samples under S.M.M (Table 

4.4a).  Similarly, Bottleneck detected significant heterozygote excess when both cohort 

years were combined as one.  Again, the Wilcoxon signed rank test indicated significant 

heterozygote excess under the T.M.P model (Table 4.4b).  Normal L-shaped distributions 

were described for each sampling year’s allele frequency distribution (Fig. 4.1a) and when 

cohort groups were combined (Fig 4.1b).  Nevertheless, a progressive shift towards alleles 

of moderate frequency was observed across years, with alleles of low frequency becoming 

less prevalent in each successive sampling year. 

 

 Table 4.4. Testing for excess heterozygosity with Bottleneck 

 

  Test IAM TMP* SMM 

a) G0 Sign 0.028 0.295 0.002 

  Wilcoxon one tail for HE 0.004 0.961    1.000 

 G1 Sign 0.028 0.415 0.312 

  Wilcoxon one tail for HE 0.004 0.039 0.961 

 G2 Sign 0.026 0.148 0.021 

  Wilcoxon one tail for HE 0.004 0.012 0.973 

b) G0 Sign 0.031 0.103 0.002 

  Wilcoxon one tailed for HE 0.004 0.961 1.000 

 G1+G2 Sign 0.023 0.152 0.022 

  Wilcoxon one tailed for HE 0.004 0.019 0.992 

  

IAM Infinite Allele Model 

*The TMP (model is the most appropriate for use with microsatellites SMM 

Stepwise Mutation Model 

HE Heterozygote Excess 

Bold and italicised p-values are significant 
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a) 

 

b) 

 

Figure 4.1  The program Bottleneck designates 10 allele frequency categories.  This means 

that the proportion of the total number of alleles across all loci that occur at frequencies < 

0.1 are indicated in category 1.  Similarly, the proportion of the total number of alleles 

across all loci that occur at frequencies  ≥ 0.1 and < 0.2 are indicated in category 2 etc.  

Most alleles will occur at low frequencies (category 1; <0.1), but a shift towards higher 

frequency categories (category 2 and 3) is observed each generation when  low frequency 

alleles are lost due to selection.  Such ‘mode shifts’ are observed in bottlenecked 

populations.  Similar results were observed when generations G1 and G2 were considered 

independent (a) or when combined (b).    

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

P
ro

p
o

rt
io

n
 o

f 
al

le
le

s 

Allele Frequency Categories 

G0

G1+2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

P
ro

p
o

rt
io

n
 o

f 
al

le
le

s 

Allele Frequency Categories 

G0

G1

G2



88 
 

 

 

 

 

 

 

 

 

 

 

 

* COLONY readily accommodates haplodiploid data.  Other estimators assume diploidy (d), hence the estimate is adjusted as Ne-

hapoldiploid (hd) = 0.75 *Ne-diploid (d).  The numbers in brackets indicate 95% confidence intervals. 
¥
 Single sample estimations of number of contributing individuals (colonies) from the previous generation Ne or previous year Nb 

 € 
Temporal estimators provide a mean population size between samples G0 = source population, G1 = 2011 daughter colonies, G2 = 

2012 daughter colonies and G1+2 = 2011 and 2012 daughter colonies combined. 
 

 

 

Table 4.5. Ne estimates generated by two single sample and two temporal method estimators using diploid co-

dominant markers 

Method Program Ne - G0 Nb - G1 Nb - G2 Ne - (G1+2) 

a) LDNE (d) 60   (38-115) 46     (31-77) 36.1 (25.2 - 55.5) 55.1 (41.0 - 76.6) 
Single 

sample¥ 

 LDNE (hd) 45   (28.5-86.3) 34.5 (23.3- 57.8) 27.1   (18.9 -41.6) 41.3   (30.8 -57.5) 

      

 

COLONY* 46   (30-72) 38     (24-61) 26     (12 - 34) 46      (23 - 51) 

      

      

  Ne - (G0-G2) Nb - (G0-G1) Nb - (G1- G2) Ne - (G0 - G 1+2) 

b) TM3 (d) 68.1   (34.7-100) 37.9    (16.8-71.3) 29.7   (16.7 - 52.1)  38.9 (19.6 - 82.9) 
Temporal€ 

 TM3 (hd) 51.1   (26.0 - 75.0) 28.4  (12.6 - 53.5) 22.3  (12.5 - 39.1) 29.2  (14.7 - 62.2) 

 

Moments Based (d) 88.9   (43.3-259) 39.4  (20.0 - 100.4) 32.2   (16.7 - 81.5)  52.4 (26.9 - 130) 

 

Moments Based (hd) 66.7 (32.5 - 194) 29.6  (15 - 75.3) 24.2  (13.3 - 61.1) 39.3 (20.1 - 98) 
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4.4.4 Assessing Effective Population Size (Ne) 

4.4.4a Single sample methods 

The program Colony can accommodate single sample diploid (worker) data within a 

haplo-diploid context and returned Ne = 46 (Table 4.5a) for my baseline (assumed to be a 

random sample of a single generation) samples.  LDNE accommodates single sample 

diploid data and returned Ne.d (diploid) = 60 or Ne.hd  (haplodiploid)  = 45 [as Ne.hd= 0.75 Ne.d] for 

this baseline sample data set. Colony returned Ne’s of 38 and 26 for the 2011 and 2012 

cohort’s respectively, while LDNE returned Ne ’s of 34.5 and 27.1 for these data after 

correcting for haplodiploidy (Table 4.5a). Finally, Ne of 46 and 41.3 were determined by 

Colony and LDNE respectively after pooling the 2011 and 2012 data as one ‘generation’. 

 

4.4.4b Two sample temporal methods 

TM3 returned values of 28.4, 22.3 and 29.2 for sample sets (G0 - G1), (G1- G2), and [G0 

– (G1+ G2)] respectively when corrected for haplo-diploidy.  Similarly, the same data 

combinations using the Moments Based approach gave Ne’s of 29.6, 24.2 and 39.3 

respectively (Table 4.5b).  Two sample analyses with the programs TM3 and Moments 

Based of the baseline (G0) and 2011 (G1) cohort data retuned values of 37.9 and 39.4.  

Values of 29.7 and 33.2 were returned when the using the 2011 and 2012 sample datasets. 

 

4.5 Discussion  

The test population was genetically diverse.  Most of the microsatellite loci were highly 

polymorphic, and the csd locus was extremely so.  These results were not unexpected, and 

I hypothesize that much of this observed diversity originates from the sourcing stock 

which is a managed stock of likely mixed genetic heritage.  In addition, monitoring 

demonstrated how low frequency alleles were lost across generations, and allelic richness 

decreased significantly due to the selection pressure applied.  There was also relative 

congruence among a suite of estimators indicating (as expected) that the effective 

population size was decreasing as population level diversity dropped. 

Although these data suggest that ample variation is present within this population, broader 

genome-wide variation is not necessarily inferred since correlations between phenotypic 

variation and variation observed at a small number microsatellite markers are generally 

weak (Coltman and Slate, 2003).  Indeed, these authors suggest that many markers of this 

type (~600) are needed to powerfully detect inbreeding on life history traits.   

Nevertheless, my observations were encouraging, as it appears that historical management 

practices have not diminished variation and adaptive potential in this population.  Indeed, 
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the opposite might apply as it is now assumed that managed bee populations might carry 

higher levels of genetic diversity than previously thought   This new paradigm is based on 

research showing that admixture between the two post-expansion (out of Africa) 

progenitor lineages in Europe has enhanced the overall diversity of this group (Harpur et 

al., 2012).  Although my investigation of genome level variation was not extensive, I see 

no lack of diversity in this managed population.  This conclusion is supported by 

sequencing data of putative csd variation (chapter 6). 

The WWBBP breeding model developed in part around available resources, and was 

tailored to fit into an already established busy commercial beekeeping season.  Since the 

program suffered severe losses over the 2010/11 winter, approximately 110 replacement 

colonies were raised.  Approximately 8 effective breeders were selected from the 

surviving colonies to contribute to this cohort.  Only 60 replacement colonies were 

successfully raised in 2012, and queens were raised from only four breeders (effective 

number was 3.5) selected from the 2011 survivors.  The drone producing colonies were 

derived from the remainder of the previous year’s queens, and from older breeder 

colonies.  Drones from field apiaries might also contribute as no effort is made to remove 

then when mating nucleus colonies (glossary) are being constructed in the field.  Drones 

from production colonies are brought back to the mating apiary where they could mate 

with the test queens.  What genetic effect could monitoring detect to date, and what clues 

might these results provide concerning the long term sustainability of this population if the 

breeding strategy was maintained? 

There was an obvious and significant decline in allelic richness (loss of diversity) at both 

marker types following the first round of selection.  There was a significant difference 

between the baseline source ‘generation’ and the first cohort (2011) group in the mean 

number of alleles per locus detected.  Similar comparisons between the baseline and the 

2012 cohort demonstrated significant difference in allelic richness, but no significant 

difference was indicated between 2011 and 2012.   

Allelic richness was also significantly lower when the data from the two cohorts were 

combined and compared to the source.  These data seems to indicate that the initial round 

of breeder selection reduced allelic richness in the 2
nd

 generation.  Honeybees have 

overlapping generations and combining the separate cohort data might better represent a 

single generation frequency distribution.  The resulting dataset should therefore provide a 

more compatible sample for comparison with the source population which was assumed to 

be a random sample of 2010 and older queens.  
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Analysis of heterozygote excess (HE) in the source population and two cohort groups with 

Bottleneck support this interpretation since significant HE was indicated in both the post-

selection cohort groups, but not in the source (2010 and older queens) under the two phase 

model (T.M.P), the most appropriate model for microsatellite evolutions used in the 

program Bottleneck.  This trend was also observed when the cohort groups were 

combined.  These results are consistent and indicate that a reduction in effective 

population size has likely occurred due an imposed bottleneck (selection) event.     

I explored the influence of selective breeding on the effective size (Ne) of this managed 

honeybee population.  Selective breeding potentially limits the transfer of genetic material 

across generations, and might therefore result in a reduction in Ne with time.  Small 

populations also tend to lose genetic diversity more rapidly than population of larger 

effective size so that rate of genetic depletion might also accelerate with time.  The 

combined effects of selection and ever increasing pressures due to reduction in population 

size might be of concern in the long term.   

There was general congruence between the estimates provided by the programs LDNE and 

Colony with both methods indicating a gradual but consistent reduction in population size 

with each round of breeding.  Single sample estimates such as these generally report the 

estimated population size of the previous generation (Hare, 2011), but interpretation of the 

results in this case is complicated by the differing composition of the samples.  The source 

population (G0) was a random sample from a multi-age structured population, while the 

G1 and G2 cohorts comprised of daughter queens raised selected set of breeders.  I tried to 

address this potential issue by combining the G1 (2011) and G2 (2012) daughter cohort 

data into a single ‘generation’, which I considered to be two years in this case.  A 

reduction in Ne was observed using LDNE but not with the program Colony when the 

source population was compared to the cohort years combined, although the 95% CI was 

smaller in the latter group in both cases.   It is also possible that I am overcomplicating 

this issue, and that for simplicity’s sake, samples could readily be considered as separate 

generations.  Although drones from a small number of productive established colonies had 

access to cohort queens each year, many of the drone producing colonies were produced 

the same time as the breeder colonies now providing the next generation of queens.  

Incoming drones picked up during nucleus colony making will likely introduce most 

uncertainty into the equation   

I therefore also considered G1 and G2 separately as single cohorts, and used LDNE and 

Colony to estimate the effective number of parents contributing to each Nb.  Four breeders 
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were used to parent G2, so that a minimum Nb of 32 might be expected if each mated with 

7 drones (4 queens + 28 drones = 32).  This number compares favorably with the single 

sample estimates of 27 and 26 determined by LDNE and Colony respectively.  Twice as 

many breeders contributed to G1, hence the number of contributing parents should be 

twice as much as G1 (N = 64).  Both Nb estimate generated by LDNE and Colony (34.5 

and 38 respectively) were lower than expected.    

Temporal method estimates must be interpreted differently, and provide instead 

information that is relevant across the temporal period.  They also tend to work better for 

populations with discrete generations (Wang, 2005).  Probabilistic methods have been 

shown to have higher accuracy and precision that moments based approaches (Berthier et 

al., 2002; Tallmon et al., 2004)  which tend to overestimate Ne when genetic drift is strong 

(or selection in this case) and when markers with high allelic diversity are used (Wang, 

2005).  These limitations might explain the higher estimate values generated by the 

moment based approach in this study.  These methods display greater precision with 

increasing temporal separation between samples, and might be handicapped here since 

there is not much generational separation between samples.  While the accuracy of the 

estimates might therefore be questionable, a general decline in population size was again 

observed.   

No concrete inferences can be made based on these results, partly because the unusual 

nature of honeybee genetics complicates the interpretation of Ne estimates for both simple 

sample and temporal approaches.  Nevertheless, a consistent trend across all methods is 

evident.  It seems plausible to suggest, particularly if one ignores the potential influence of 

overlapping generations, that based on all the genetic evidence presented here, diversity 

was eroded across generations and that the effective population size was trending down 

with each round of selection.   

Genetic monitoring revealed two main points.  First, the source population displayed high 

levels of genetic diversity at microsatellite loci, and at the hyper-variable region of the csd 

locus.  From a practical perspective, this diversity suggests that the population might hold 

adaptive potential, that can be targeted by selection  Secondly, the current selection regime 

seems to be an eroding force on this diversity.  Results indicate that low frequency alleles 

are being lost, and the effective population size is diminishing, but it is not clear if the 

current rate of genetic depletion significantly dampens the adaptive potential of this 

population. In the next chapter, I investigated the potential short term consequences of this 

selection regime by modelling changes across five generations.  
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5.1 Introduction 

Predicting the genetic (and hence in part the phenotypic) consequences of selective 

breeding in a population of honeybees is complicated by the nature of haplodiploid 

genetics, and by the multiple mating behaviour of queens.  In order to better understand 

the processes involved, honeybee researchers have used computer simulations to model 

different closed population breeding scenarios (Page and Laidlaw, 1982a, 1982b; Page 

and Marks, 1982; Moritz, 1984, 1986; Omholt and Ådnöy, 1996; Gupta et al., 2012).  

Page and Marks (1982) and Page and Laidlaw (1982a, 1982b) were the first to use 

computer simulation models to investigate the effects of random mating in a closed 

haplodiploid population.  They specifically investigated the effects of inbreeding and drift 

on the population genetics of sex alleles in genetically isolated artificial populations that 

were maintained by instrumental insemination (II).  By altering their selection criteria and 

population sizes, they used their simulation model to estimate the rate of decay in brood 

viability due loss of sex alleles over 40 generations.       

Selection and inbreeding not only affects the sex locus, but will also reduce fitness due to 

inbreeding depression.  Moritz (1984) developed a mathematical model relating 

inbreeding depression (quantified as an inbreeding coefficient) to population size, and 

illustrated how inbreeding effects depend upon the number of queens selected each year, 

and on the number of generations since selection started.  This theoretical study also 

estimated genetic progress by using published data from ‘real’ populations, and illustrates 

how different maximum improvement limits exist for populations of different sizes.  

Smaller populations will have lower maximum improvement limits (reduced adaptive 

potential), and take fewer generations of selection to reach them. 

Simulations have also been used to compare the effects of different selection methods.  

Moritz (1986) and Omholt and Ådnöy (1996) compared within-family selection (selecting 

the daughter queen with the highest phenotypic value for each breeder queen) and mass 

selection (selecting the new breeder queens ignoring familial relationships designs), and 

concluded that under most circumstances, mass selection provides the greatest 

improvement, although it may be wise to select from within families when population size 

is small, and when inbreeding is more of a concern (Moritz, 1986).   

A universal assumption made by these closed population simulations, and one that may 

not apply in practice (discussed below), is that each generation of test daughter queens 

mate only with drones produced by the same group of breeder mothers, and that the 

semen from all the selected breeder drones can be pooled and homogenized before being 
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used to inseminate the test queen population.  In this way, the models simulate population 

situations where Instrumental Insemination (II) is used to maintain isolation.  They also 

run simulations for up to forty generations with earlier studies using relatively low 

numbers of iterations (20-100).  Few breeding programs last this long, so that information 

on contemporary scale is lacking.  All these simulations generally assume relatively large 

population sizes, with number of breeders selected each generation ranging from 10-50, 

though Moritz (1986) did run simulations comparing a range of breeder numbers ranging 

from a low of 1 to a high of 50, and mathematically modelled the effects of inbreeding on 

genetic improvement over 40 generations selecting 2-19 breeders each generation.  

Maximum character improvement was much lower and is reached more quickly when 

lower breeders numbers are used.  

5.1.1 My model designs 

These models were designed to provide practical guidance for small scale breeding 

programs wanting to improve stock quality through open mating and adaptive selection.  

The basic model structure assumes a single closed population from which a determined 

number of breeder queens are selected each generation.  A specified number of daughter 

colonies are then raised from these breeders each year and these in turn provide breeders 

and drones for the next generation.  The methodology here deviates from the closed 

population modelling structure applied by earlier research (described above), and does so 

to better simulate the approach adopted by the West Wales Bee Breeding Program 

(WWBBP).   Here, drones from all daughter colonies raised the previous year can 

contribute to the next generation.    

I developed simulation models in MATLAB, using a Monte Carlo sampling approach 

(codes in Appendix iii and iv).   The Monte Carlo method was originally conceived by 

Stan Ulam in 1943, and became widely applied in later years with the advent of 

computing technology (Eckhardt, 1987).  Monte Carlo simulations can accommodate 

multiple variables and repeatedly sample probability distributions to come up with many 

possible answers.  When repeated frequently enough, the results can provide a level of 

confidence or uncertainty about the possible real outcome of the model.  I use total allele 

frequency variance per locus (sum of the variance of all alleles at a single locus) as a 

model indicator to test for differences between parameter variables.    

I developed two models to track genetic change due to selection in a closed haplo-diploid 

population.  The first model simulates population level changes in allele frequencies at 
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selectively neutral co-dominant loci (one locus at a time).  It can accommodate up to 12 

alleles of specified frequencies, assumes a closed population, and includes a suite of 

variable parameters: number of breeders selected each year, number of daughter queens 

raised, and mean number of drones that each of these daughter queens mates with.  To 

accommodate the overlapping nature of honeybee generations (in this managed situation), 

the model also assumes that these daughter queens mate randomly with drones from the 

previous year’s colonies.  The model runs for 5 breeding cycles and simulates changes 

due to breeding on a contemporary scale.  Simulated results were compared with observed 

allele frequency distributions as determined through genetic monitoring.  One of the aims 

of modelling was to investigate the relative influence of various breeding parameters 

(both within the control of, and independent of breeder intervention) on the rate of allele 

frequency shifts and genetic depletion, for this specific small scale breeding approach.  

Logic dictates that population level diversity will be constricted if only a selected set of 

individuals (males and females) taken from the population (of a certain size) is allowed to 

reproduce each year.  Parameters were adjusted in an effort to optimize the outcome.  

From an applied beekeeping and breeding perspective, this means optimizing the input of 

effort (the amount of time, effort and money required to select breeders and raise new 

colonies) for maximum output gain (maintaining adaptive diversity).    

The second simulation examined the influence of selection parameters on the maintenance 

of csd diversity within a closed breeding population.  Unlike selectively neutral 

microsatellites loci, csd experiences balancing selection as alleles of low frequency are 

preferred due to a lower probability of being matched (in a homozygote state) by chance 

in diploids (Charlesworth, 2004).  Homozygotes were therefore continually purged from 

this simulation; otherwise it was similar in principal and construction to the neutral 

marker model.  It models a closed population, assumes random mating, and drone alleles 

are generated by queens from the previous year.  Input parameters included: number of 

new daughter colonies (queens) started per year, and mean number of contributing drones 

per queen.   The final version accommodates up to 11 alleles of designated frequency, and 

the number of breeders selected for each separate round of breeding can be individually 

set.  In addition, for each breeding cycle, I calculated the probability that alleles identical 

by descent would match at random in a diploid individual.  For a specific sex allele, this 

probability was assumed to equal the product of its frequency in the randomly selected 

breeder pool, and its frequency in the drone producer colonies from the previous 
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generation.  The ‘probability of homozygosity’ was then simply converted into expected 

mean population brood viability as follows: 

 

% brood viability = 1 – (probability of homozygosity) 

 

The reciprocal of the probability of homozygosity (or 1- brood viability at csd) is equal to 

the effective number of alleles in the population (Yokoyama and Nei, 1979).  The brood 

viability output provided by simulation was easily converted to provide an indication of 

change in effective number of sex alleles through time.  These three population level 

parameters are related as homozygosity becomes more likely, and mean brood viability 

decreases, if the number of sex alleles carried becomes diminished due chance or 

selection.   

 

A number variables were modelled in these simulations (e.g. number of breeder queens, 

population size, and number of drones each daughter queen mates with).  Of these, I expect 

the number of queens used/selected each year to have the greatest bearing on genetic 

preservation across generations.  In addition, genetic monitoring had indicated that the 

WWBBP population was losing diversity under the current breeding protocol.  I modelled the 

WWBBP’s current protocol, and expected significant increase (indicating loss of genetic 

diversity) in allele frequency variances across generations at both neutral markers and at the 

csd.  In the latter case, I also expected modelling to illustrate that mean brood viability per 

colony could not be maintained above 85% in the long term using only four breeders per 

year.  

 

5.2 Methods 

5.2.1 Microsatellite methodology 

Observed source population data gathered at four microsatellite markers (A7, A79, A441, 

and Ap43) were entered into the neutral model (Table 5.1).  Initial runs simulated the 

breeding program protocols that the WWBBP used during the first two selection cycles; 

i.e., eight breeders were selected at random from a simulated source population (G0), and 

four were selected from the resulting generation (G1).  One hundred new queens were 

raised each year, and each was assumed to have mated with seven drones.  I initially ran 

each simulation between 1000 and 5000 times.  The higher number of model iterations 

took very much longer to run and no significant advantage in precision (difference in 

standard deviations) of the results was gained.  Simulations were therefore run 1500 times 
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and I chose 1 standard deviation as a measure of model predictive precision.  That is, I 

assessed whether the observed allele specific data acquired through genotyping a 

population sample were within one standard deviation of the simulated mean.   

I then adjusted the model breeding parameters to independently assess their influence on 

the genetic stability of the population through five simulated selection cycles.  For each 

locus, a frequency variance was calculated for each simulated allele frequency 

distribution, and these were then totalled to give total variance per locus.  I initially 

compared total variance when 4 and 30 breeders were selected, and when 100 or 1000 

colonies were raised each year 

As there is evidence suggesting inferior mating success in this region, I also adjusted the 

mean mating success of queens in the population with all other parameters fixed and 

replicating the WWBBP protocols.  The mean number of drones mating per queen was set 

at 7 and 15.  Non-parametric tests (Friedman’s or Wilcoxon signed rank tests) were used 

to test for significant differences in total variance between these treatments 

Table 5.1. Allele frequencies observed at microsatellite loci through two rounds of selective 

breeding 

 

 

Locus Alleles G0* G1 G2  

 

Locus Alleles G0* G1 G2 
 

A7 
     

 

A441 
    

 123 1.82 0.91    141 0.91   

 125 7.27 10.91 13.46   147 5.45 6.25  

 129 45.45 35.45 36.54   149 10.91 11.46 12.04 

 131 0.91 5.45 4.81   151 29.09 14.58 23.15 

 135 19.09 21.82 19.23   153 50.91 64.58 61.11 

 137 4.55 11.82 5.77   155 2.73 3.13 3.70 

 139 12.73 4.55 12.50       

 155 0.91         

 183 7.27 7.27 5.77       

           

Ap43      A79     

 154 15.45 18.52 22.73   110 34.55 27.27 22.73 

 156 30.91 24.07 24.55   115 3.64 0.91 0.91 
 158 0.93     117 4.55 0.91 2.73 

 160 0.91 5.56 0.91   119 11.82 27.27 6.36 

 162 11.82 16.67 10.00   121 20.91 22.73 35.45 
 164 26.36 15.74 20.91   123 10.91 10.91 10.91 

 166 1.82 5.56 6.36   125 5.45 3.64 11.82 

 168 3.64 3.70 3.64   127 4.55 0.91 1.82 
 192 0.91     129 0.91 2.73 4.55 

 195 7.27 9.26 10.91   131 0.91   

 208 0.91     133 0.91 2.73 2.73 
       135 0.91   

                 * Source population (G0) allele frequencies used for Monte Carlo simulation input.    
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5.2.2 csd methodology 

The csd hyper-variable region (HVR) was genotyped (chapter 4) in all the samples (N= 55 

per generation) collected for genetic monitoring.  Results revealed 44 separate fragment 

lengths, far more than the minimum number of sex alleles required to maintain a bee 

population (Carvalho, 2001), and beyond the range of 10-20 being commonly accepted 

and published as expected norms (Cook and Crozier, 1995).  It is very unlikely that each 

fragment represents a functionally unique “allele”. 

 

Therefore, to run my model, and working under the hypothesis that number of repeat units 

in the csd HVR might have an influence on function, I pooled fragment sizes into 11 

classes (‘alleles’) (Table. 5.2), and calculated the observed frequency of each class for 

each generation.  Division of fragment sizes into classes was arbitrary, and the resulting 

number of alleles and corresponding frequencies may not truly reflect actual sex allele 

frequencies in the population.  Nevertheless, the model should provide an idea of how a 

population with this specific sex allele frequency configuration might respond to different 

selection and breeding protocols.    

 

As in the selectively neutral model, I first ran the five generation model using a selection 

criteria similar to the one currently adopted by the WWBBP.  I then assessed the influence 

of breeder numbers on the contemporary evolution of csd in the population.  The number 

of randomly selected breeders was raised to eight, twelve, and twenty breeders per year, 

although it is unlikely that operations of comparable size to WWBBP have the resources 

to support more than twelve breeders each year.   There is also a limit to the number of 

new colonies that a small breeding operation can sustain each year.  The WWBBP 

currently uses four breeders per year, and using 20 daughter queens from each to start 60 

or so (assuming ~75% mating success) new colonies.  This number may be required to 

replace annual loss, since beekeepers have experienced above average losses over recent 

years.  In 2012, a colony loss survey in the USA reported the fifth consecutive year of 

losses close to, or above 30% (vanEngelsdorp et al., 2012).  Similar losses have been 

experienced locally (e.g., the WWBBP lost 42% of it bees over the 2010/11 winter).  The 

program in Wales may on average need 60 new colonies per year to maintain bee 

numbers.   

 

As for the selectively neutral model, a frequency variance was calculated for each 

simulated csd allele frequency distribution.  For each selection scenario, the individual 
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allele frequency variances were totalled to give ‘total sample variance’ at the csd for each 

selection (breeding model) scenario.  Total variance was calculated and compared when 4, 

8, 12 and 20 breeders were used, and when 100 colonies were raised each year. 

 

5.3 Simulation Results 

5.3.1 Microsatellites  

The model parameters were initially set to reflect current WWBBP protocols.  The 

frequency shifts of 38 alleles from four selectively neutral loci (A7, A441, Ap43 and A79) 

were simulated and compared to observed allele frequencies after two breeding cycles.  

Observed frequencies were within one standard deviation of simulated means in twenty 

nine of thirty eight cases (Table 5.3).  The simulated median allele frequency value 

dropped to below 0 when initial alleles frequency was low (~<0.1).  By this measure, 

eighteen of the original 38 alleles were potentially lost due to chance as allele frequency 

variance increased across selection cycles (Fig 5.1).   
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Table 5.2 Indicating how eleven allele classes were arbitrarily assigned 

    G0       G1       G2   

 

  

 

Total 

   

Total 

   

Total 

Allele Size Count count 

 

Size Count count 

 

Size Count count 

1 407 1 4 

 

407 1 4 

 

407 2 2 

 

415 3 

  

415 3 

     2 420 1 8 

 

419 2 9 

 

422 7 15 

 

422 2 

  

422 5 

  

423 8 

 

 

423 5 

  

423 1 

     

 

      

 

425 1   

 

      

3 428 1 13 

 
  

13 

 

428 2 13 

 

429 6 

  

429 9 

  

429 7 

 

     

431 2 

  

431 1 

 

         

433 2 

 

 

435 6 

  

435 2 

  

435 1 

 4 437 5 8 

 

437 2 10 

 

437 3 6 

     

438 4 

     

 

439 3   

 

439 4   

 

439 3   

5 

  

12 

   

15 

 

443 2 28 

 

446 3 

         

 

447 1 

      

447 8 

 

         

448 1 

 

     

449 2 

  

449 4 

 

 

450 1 

  

450 4 

  

450 4 

 

 

452 3 

  

452 8 

     

 

453 2 

  

453 1 

  

453 3 

 

 

454 2 

      

454 3 

 

         

456 3 

 6 457 3 7 

 

457 2 5 

 

    2 

 

458 4   

 

458 3   

 

458 2   

7 461 22 30 

 

461 11 21 

 

461 15 23 

 

463 1 

         

 

464 7 
 

 

464 10 
 

 

464 8 
 

8 466 8 13 

 

466 4 23 

 

466 5 17 

 

467 3 

  

467 13 

  

467 7 

 

 

469 1 

  

468 2 

     

     

469 1 

  

469 1 

 

 

470 1   

 

470 3   

 

470 4   

9 472 4 7 

 

472 5 6 

 
  

0 

 

475 1 

  

476 1 

     

 

476 1 

         

 

478 1 
 

 
   

 
   

10 480 1   

 

    0 

 

    0 

 

485 1 3 

        

 

486 1   

 

      

 

      

11 493 1 1   493 2 2       0 

 
 

106 106 

  

108 108 

  

106 106 
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Table 5.3.  Observed vs Simulated allele frequency means at 4 Msat loci  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 *  The simulated frequency was more than 1 standard deviation (based on 1500 iterations) from the   

frequency observed in the real population 

 

Locus Allele Observed 

Simulated 

Mean SD 

A79 1 0.227 0.343 0.114* 

 
2 0.009 0.037 0.045 

 
3 0.027 0.047 0.051 

 
4 0.064 0.116 0.073 

 
5 0.355 0.209 0.098* 

 
6 0.109 0.112 0.076 

 
7 0.118 0.055 0.054 

 
8 0.018 0.045 0.048 

 
9 0.046 0.009 0.022 

 
10 0.000 0.009 0.022 

 
11 0.027 0.010 0.024 

 
12 0.000 0.009 0.021 

     A441 1 0.000 0.009 0.006* 

 
2 0.000 0.055 0.014* 

 
3 0.120 0.109 0.020 

 
4 0.232 0.289 0.028* 

 
5 0.611 0.510 0.031* 

 
6 0.037 0.028 0.010 

     A7 1 0.000 0.020 0.034 

 
2 0.135 0.075 0.062 

 
3 0.365 0.448 0.118 

 
4 0.048 0.010 0.022* 

 
5 0.192 0.189 0.095 

 
6 0.058 0.047 0.050 

 
7 0.125 0.128 0.080 

 
8 0.000 0.010 0.023 

 
9 0.058 0.074 0.061 

     Ap43 1 0.227 0.160 0.089 

 
2 0.246 0.305 0.107 

 
3 0.009 0.010 0.024 

 
4 0.100 0.117 0.077 

 

5 0.209 0.262 0.104 

 
6 0.066 0.018 0.032* 

 

7 0.039 0.036 0.043 

 

8 0.000 0.010 0.024 

 
9 0.109 0.071 0.059 

 
10 0.000 0.010 0.024 
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No significant difference was detected in total allele frequency variance when the size of 

the simulated population was reduced from 1000 to 100 individuals when 30 breeders 

were used per breeding cycle (Table 5.4 and Fig 5.2).  Contrastingly, there was a 

significant difference in total variance if the population level was similarly reduced (from 

1000 to 100) and only 4 or so breeders were used (Table 5.4 and Fig 5.2).  There was a 

significant difference in the variance of the allele frequencies generated by the use of 

either 4 or 30 breeders per cycle regardless of the simulated population’s size (100 or 

1000 colonies each year; Table 5.4).  Finally, the mean mating success of the simulated 

population queens had no statistically significant effect on total allele frequency variance 

(Z = -1.153, P = 0.249; Fig 5.2) when all other variables were held constant.   
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Figure 5.1.  These figures (a-d) present box-plot representation of simulated changes in allele 

frequencies through five rounds of selection at four microsatellite loci.  Model parameters 

were set to reflect the selection parameters currently employed by the WWBBP.  The red bar 

across box indicates median value.  The top and bottom margins of the box mark the 75 and 

25 percentile, so that 50% of the results (1000-1500 iterations) fell within the box.  If outliers 

are ignored, the remaining 50% of the results fall outside the box, but within the upper and 

lower limits of the overall range, as indicated by the dotted line. 
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5.3.2 Simulating csd  (under WWBBP protocols) 

Observed allele frequency means for ten of the 11 source population  allele classes were 

within one standard deviation of simulated means (Fig 5.3a), and eight of the 11 observed 

allele frequencies means were within one standard deviation of G1 and G2 simulated 

means (Fig.’s 5.3b and 5.3c).  Total sample variance increased with each round of 

selection (Fig. 5.4) and comparisons using Wilcoxon sign-rank tests indicated statistically 

significant differences in allele frequency variance between all paired generations 

(breeding cycle) (Z = -2.934, p = 0.003 in all cases).  The probability of homozygosity 

increased to a maximum of 0.184 after five generations of selection (Fig 5.5) suggesting 

that a mean brood viability of 82% could be expected after 5 years.  The effective number 

of sex alleles decreased from 7.68 to 5.44 over the same 5 cycle period.  The simulation 

also predicts that several low frequency alleles (~ < 0.05) will be lost from this population 

(Fig 5.6).  The median allele frequency value (bar across box) dropped below or close to 0 

for three low frequency alleles (Alleles 1, 10, and 11).  These alleles were lost due to 

chance more often than not during simulation runs. 

 

Table 5.4.  Table indicating statistical differences in total allele frequency variance at neutral 

loci between different simulation treatments 

 

No Daughters 
Å
 

 

No Breeders
€
 

 

Drones 

 

Z 

 

P-value 

 

Fig 5.3 

 

1000 vs 100
 Å

 

 

 

30 

 

7 

 

-1.153 
 

0.249 

 

c and d 

1000 vs 100
 Å

 4 7 -2.210 0.028* a and b 

      

1000 (8)4 vs 30
€
 7 -1.992 0.046* a and d 

      

100 (8)4 vs 30
€
 7 -2.210 0.028* b and c 

      

100 (8) 4 7 vs 15˚ -1.153 0.249 b and e 

 

Å
 Tests for statistical difference in total allele frequency variance with daughter population sizes of either 1000 

or 100 colonies were conducted when 30 or 4 breeders were used each generation.     
€
 The statistical influences of different breeder numbers ((8) 4 and 30) on total frequency variance was tested in 

populations of size 100 and 1000 colonies.  (8)4 indicate that eight breeders were initially selected from a 

source population, and four for each subsequent generation (as implemented by the WWBBP). 

*Indicates a statistically significant difference.  

˚The potential influence of mean mating success on the total frequency variance under WWBBP protocols was 

considered.    
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Figure 5.2 Shows change in variance at neutral autosomal loci with each selection cycle for different 

selection protocol (a through e).  Legend indicates number of new daughter queens raised (1000 or 100), 

number of breeders selected each year (8 first years followed by 4 in each subsequent year; 8,4, or 30 each 

year) and number of drones each queen mates with (7 or 15).  There was an increase in rate of change of 

variance when number of breeders changed from 8 to 4 (compare slopes of solid and dotted lines).  Table 

5.4 indicates statistically significant differences between treatments 

 

 

 

 

a b 

c 
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5.3.3 Additional modelling of csd 

The variance in the allele frequency data generated by Monte Carlo sampling decreased as 

the number of breeders selected each year increased (Fig 5.4).  There was a statistically 

significant difference between the variance observed after five simulated generations 

using WWBBP selection criteria, and when either 12 or 20 breeders per year were used 

(Wilcoxon sign rank test; Z= - 2.197, P = 0.028 in both cases).  The likelihood that sex 

alleles were lost due to chance correspondingly decreased as more breeders per year were 

used (Figures 5.4 and 5.6).   

 

The predicted probability of homozygosity after five rounds of selection was significantly 

influenced by the number of breeders used, and ranged from a high of 0.183, to a low of 

0.129 when either four or twenty breeders per year were used respectively (Fig 5.5).  This 

translates into a mean brood viability of 82% after 5 rounds of selection when only four 

breeders are used.   Regardless of mean mating success, the effective number of alleles in 

the population dropped from 7.4 to 5.6 over 5 years when only 4 breeders are used, and 

dropped to 6.6 and 7.1 over the same time period when 8 and 12 breeders were used 

respectively.  No drop in the effective number of sex alleles was observed when 20 

breeders per year were used (Table 5.5). 

 

Figure 5.4 indicates the influence of breeder number on the allele frequency variance through six 

generations of selection.  Simulations a and e indicate the protocol used by West Wales Bee Breeding 

Program (i.e., 8 breeders and 100 new queens from G0, followed by 4 breeders and 60 new queens for 

subsequent generations).  Each new queen hypothetically mates with 7 or 15 drones.  Simulations b, c and d 

produce 100 new queens a year and select 8, 12 and 20 breeders each year respectively.  Each queen is 

assumed to mate with 7 drones.  The figure demonstrates how increasing breeder number results in reduced 

allele frequency variance, and a genetically more stable population 
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Figure 5.5 indicates how the probability of homozygosity at the csd 

increases as number of breeders (20, 12, 8, WWBBP) selected each 

year decreases.  Increased homozygosity results in decreased brood 

viability (V) since V = 1 –  (probability of homozygosity).     

 

 

 

 

 

 

 

 

 

Figure 5.6. A visual representation of a csd dataset created using a simulation model (2500 

iterations).  Allele frequency variance is tracked through six successive rounds of selection 

(separate box-plot for each round of selection per allele) and the model parameters were set to 

reflect the breeding protocols currently being proposed by the WWBBP.  Eight effective breeders 

were initially selected from a source population, and 100 or so new colonies formed.  Four 

breeders and only 60 new colonies were formed for the remaining rounds of selection.  Each new 

colony queen was mated with seven drones.  The simulation predicts that three low frequency 

alleles (<0.05) will be lost from this population since the median allele frequency value (bar 

across box) dropped below or close to 0 (Alleles 1, 10, and 11).  These alleles were lost due to 

chance more often than not during simulation runs.  It is also noticeable that the allele 7 rapidly 

drops in frequency for the first four rounds of selection.  Balancing selection at csd purges high 

frequency alleles as they occur more often than low frequency alleles in a homozygote state. 
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Table 5.5  Change in effective number of csd alleles through successive rounds of 

selection in relation to number of breeders used 

                                      No of Breeders 

 4 8  12 20 

G0 7.69 7.68 7.70 7.70 

G1 7.32 7.36 7.63 7.87 

G2 6.42 7.05 7.45 7.82 

G3 5.88 6.77 7.28 7.79 

G4 5.48 6.55 7.13 7.75 

G5 5.42 6.51 7.12 7.76 

     

 

 

5.4 Discussion 

As expected, the number of breeders used each year had the most significant influence 

over the rate of loss of genetic diversity.  Modelling also supported observed data showing 

that low frequency alleles are being lost form the WWBBP population.  A significant 

increase in total allele frequency variance was observed when the WWBBP protocol was 

modelled in simulation trials, suggesting that this population might lose genetic diversity 

in the long term when only four breeders per year are used.  These results concur with 

observed data acquired through genetic monitoring.  In addition, modelling of population 

level dynamics at the csd (although only hypothetical in nature since actual csd allele 

frequencies are unknown) suggested that brood viability could potentially drop to below 

85% within five years if current breeding protocols are maintained. 

 

Earlier simulation work on closed population breeding considered various selection 

scenarios (e.g. within family, mass, and random), but in each case, only selected breeding 

colonies (queens) contributed towards the next generation.  They were theoretical in 

nature, advocated the use of II, and focused mainly on simulating loss of sex alleles 

through time (up to 40 generations).  In this study, I model small scale breeding utilizing 

open mating, and compare simulated results with real observed data at neutral autosomal 

markers.  The same breeding/selection model is then applied to the sex locus model, 

though the input data used in this case was more theoretical in nature.  These models 

simulated a small operation utilizing open mating with a contemporary timescale. 
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5.4.1 Selectively neutral markers 

There was relatively strong congruence between the simulated and observed allele 

frequency means at three of the four selectively neutral loci modelled, with both 

approaches indicating that low frequency (neutral) alleles have been lost due to chance 

under the current WWBBP selection regime.  The breeding program used approximately 

eight effective breeders during the first year of selection, and reduced this to four the 

second season.  Data generated through simulation reveal a marked increase in allele 

frequency variance when breeder number was reduced to four.  Increasing variance with 

each breeding cycle is also illustrated by box-plot presentations of data generated through 

Monte Carlo simulation.  These figures also show median allele frequencies consistently 

dropping with each breeding round when only four breeders per cycle were used.  The 

simulated populations lost genetic variation due to selection, and suggest that real 

populations might suffer a similar fate under like circumstances.   

 

These simulations demonstrated that number of breeders per breeding cycle is the 

parameter that has the greatest influence on allele frequency variance at selectively neutral 

loci.  Allele frequency variance is significantly reduced (stability increased) when number 

of breeders is increased.  The genetic significance of differing numbers of colonies in the 

population is diminished in comparison.  For example, no statistical difference in total 

variance was observed when either 100 or 1000 colonies were raised from 30 breeders 

each year.  A difference in total variance was observed between these population sizes 

when only four breeder queens were used each year.  This significant difference was 

possibly due to increased influence of male mediated input resulting from the increased 

number of queens being mated.  Drones may have a more significant influence on 

population level genetic variation when queen breeder numbers are low and number of 

daughter queens is large.  Using a small number of breeders resulted in increased variance 

(due to chance loss of low frequency alleles) and significantly greater genetic uncertainty, 

regardless of the number of colonies raised.  This leads to a reduction in effective 

population size, possibly an inevitable consequence for small closed breeding populations 

 

Moritz (1984), used previously published data to regress inbreeding depression on 

inbreeding coefficient, and then related this mathematically to population size.  Using this 

approach, he determined that inbreeding effects can essentially be ignored until the 

inbreeding coefficient (F) reaches a critical value (he estimated this to be F = 0.25).  How 
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rapidly a population reaches this value depends on its size, and is reached earlier in 

smaller populations.  Moritz estimated that this critical value will be reached in 10 years 

when eight new queens each year are selected.  However, his model assumed II with each 

selected breeder only contributing drones and queens to the next generation.  This 

scenario differs from the open mating protocols being adopted by the WWBBP.  Here, 

surviving daughters from the previous generation’s breeder queens contribute most of the 

drones, and the current set of selected mother colonies (the breeders) makes no drone 

contribution.  Nevertheless, both the observed and simulated results indicate that the 

genetic diversity is being lost.   

 

Mating success had little effect on population level total allele frequency variance, and 

should therefore not significantly affect the genetic makeup of each generation.  These 

simulations model open mating scenarios in which all drones from the previous year’s 

daughter colonies have an equal chance at mating.  This aspect of the model reflects the 

current approach being adopted by WWBBP, but may not truly reflect the situation in 

many breeding operations.  Large scale worldwide breeding operations can raise 

thousands of queens per week from twenty or so breeders.  Most raise daughter queens 

from selected colonies for use as drone contributors the following year.  This way, the 

adaptive transfer of specific desired colony characteristics  is mediated through the male 

as well as the female line.  Isolated mating areas (with apiaries holding mating nuclei with 

virgin daughters of selected breeder queens) can then be flooded with these ‘selected’ 

drones so that breeding is directed from both male and female lines.  Such an approach 

increases adaptive influence, but might be logistically demanding from smaller scale 

operations.  Aiding adaptive change through drone influence will be less stringently 

controlled in such cases (as with the WWBBP).  Allowing virgins uncontrolled access to 

drones from any number of successfully overwintered colonies might be a more practical 

for small scale breeders.  From a breeding perspective, this approach offers limited control 

and lacks scientific rigor, but is advocated as a more holistic approach by some 

commercial beekeepers since it allows the bees be naturally selected for local adaptation.  

The assumption here is that drones from locally adapted queen lines with have a fitness 

advantage over drones from less vigorous disease prone lines, so that locally beneficial 

traits will be enhanced in the population.   

5.4.2 CSD modelling 
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The csd simulation evolved as a progression from the selectively neutral model and was 

designed to simulate population level shifts in brood viability resulting from diploid male 

production (csd model).  This model is complicated by the fact that no diploids can be 

homozygous at that locus so that all simulated diploid individuals must to be continually 

purged. 

 

It is unclear how my model relates to the actual WWBBP experimental population with 

regards to the frequency dynamics of functionally specific csd alleles.  Great variation in 

fragment length was detected in the HVR, a region thought to possibly confer 

functionality at csd.  It is unclear how one functional allele differs from another, but based 

on these data, it seems unlikely that length is the determining factor.   There are estimated 

to be 19 or so distinct csd alleles (Adams, 1977), but twice as many HVR fragment 

lengths were found in this small population alone.  Replication errors might possible lead 

to high mutation rates at the repetitive HVR sequences, and variants are maintained over 

time by balancing selection acting on functional determining characteristics (e.g. non-

synonymous single nucleotide mutations).    

 

The HVR range in fragment sizes were arbitrarily assigned into the eleven designated 

‘allele classes’.  Consequently, the frequency distribution entered into the model is purely 

hypothetical in nature.  Nevertheless, there was relative congruence between simulated 

and observed means through two rounds of selection.  Both approaches indicated that csd 

‘alleles’ at frequencies below 0.05 are vulnerable to loss due to chance under current 

WWBBP selection protocols.  Observed data (genotyping) indicated that three low 

frequency fragment size categories (arbitrary alleles) were lost due to chance after two 

rounds of selection.    

 

Simulating progression through an additional three breeding cycles using current 

WWBBP protocols shows that the median values for alleles found at frequencies less than 

0.1 in the source population, continued to fall with each successive round of selective 

breeding.  This result suggests that a population with this specific csd allele frequency 

distribution would be genetically unstable at this locus for a few years under these 

particular selection parameters.  Probability of homozygosity at csd increases, and the 

effective number of alleles in the population decreases as genetic diversity is lost to 

chance.  However, there is evidence that an equilibrium state might be achieved within a 

few cycles.  The rate of change in allele frequency variance decreases after five breeding 
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cycles, and there is a corresponding levelling off in probability of homzygosity and 

number of effective alleles in the population     

 

Page and Laidlaw (1985) present simulation data indicating a similar trend.  Starting with 

a large population, and raising large numbers of colonies each year, they graphed the 

probability that brood viability would be greater than 85% against number of generations 

for differing numbers of selected queens each year.  Ten was the smallest number of 

breeders they simulated.  In this case, the probability that brood viability would be over 

85% rapidly dropped from near 1.0 to 0.2 in five generations.  Thereafter the rate of 

change declined with each generation.  Similar trends are observed for each scenario they 

simulated, and in general, selecting more breeders reduced the inevitable decline in brood 

viability.  They also report that at least 50 breeders must be selected from each generation 

to maintain a 95% probability of at least 85% brood viability after 20 generations.   

 

A progression towards an apparent equilibrium state within five generations is similarly 

observed in my simulations.  As equilibrium is approached, allele frequency variance and 

probability of homozygosity decrease as the numbers of breeders used increases.  This 

trend towards equilibrium is highlighted by the observable shifts in the median allele 

frequency values across generations.  High frequency allele medians (e.g. allele 7) drop as 

homozygotes carrying these alleles are purged from successive generations.  Lower 

frequency alleles are then favoured and tend to increase in frequency.  The model results 

reflect balancing selection on the csd locus, and highlight the influence of breeder 

numbers on the amount of variation that a population can maintain.  Populations can 

maintain higher effective numbers of alleles when more breeders are used.  This makes 

sense as effective population size is defined by number of breeders contributing to next 

generation.  More breeders result in larger effective population sizes which can maintain 

more genetic variation.   

 

5.4.3 Summary/Recommendations 

Small bee breeding operations have more control over number of breeders used than any 

other breeding parameter.  Number of new colonies established each year is limited by 

resource availability, and the mean mating success of daughter queens is largely weather 

dependent.  The WWBBP can generally start no more the 100 new colonies a year in 

Wales; they used 4 breeder queens last year, and tried to raise 20 daughter queens from 

each one.  In addition, mating success may have been sub-optimal over recent years due to 
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persistent and prolonged periods of poor weather.  I modelled the various parameters and 

adjusted the number of contributing breeder queens to investigate its influence on 

population level diversity at both selectively neutral loci and at the csd.  The simulations 

illustrate that number of breeder queens used is the parameter that has the greatest 

influence over the genetic makeup of future generations.  Both the observed and the 

simulated results suggest that limiting breeder queen number to only four per year results 

in genetic depletion over time.  Loss of diversity within a contemporary framework was 

observed at both selectively neutral loci, and at loci under the influence of selective 

forces.  This suggests that loss of adaptive potential due to chance loss of adaptively 

significant quantitative trait loci could be expected within a contemporary time frame.  

There are practical implications for bee-breeders since selecting for adaptive ‘progress’ 

becomes less effective as population level genetic diversity drops.   Consistently and 

stringently limiting genetic transfer across generations by using low numbers of breeder 

queens will dampen the long term vigour and health of the population.  Breeders must 

keep this in mind when designing a breeding program. 

 

Sex allele diversity has been a concern for breeders for many years, and particularly for 

those working with small populations.  My model parameters were hypothetical in terms 

of numbers and frequencies of alleles.  I modelled eleven alleles in total (an expected 

population number) thought the effective number was closer to 8 when accounting for 

differential frequencies.  There were consistent drops in median allele frequencies at both 

the csd and at microsatellite loci when only four breeders were used, and <85% brood 

viability brood viability was attained after 5 generations.  Median allele frequency 

dropped less with eight, and less again with twelve breeders.  Median values stabilized 

when 20 breeders per year were used, suggesting that the genetic population size would be 

sufficiently large to maintain that many alleles over time.  From a practical perspective, 

this whole debate boils down to one question; how many breeders should be (or can be) 

selected?  Twenty is more than most want to manage; the results presented in this chapter 

suggest that a compromise of between 10-12 breeders may be feasible.   

 

Bee breeders have ultimate control over the number of breeder queens selected each year, 

and modelling illustrates that of all possible variables, the number selected has the most 

significant influence over the long term genetic stability of a population.  Simulations 

suggest that the WWBBP could benefit from increasing breeder numbers in order to limit 

the loss of low frequency alleles.  Increasing the number of breeders (queen lines) would 
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help maintain adaptive potential, and limit the production of diploid drone production due 

to homozygosity at the csd in the long term.  Evidence suggests that small scale programs 

should aim to maintain eight breeding queen lines in order to reduce the likelihood of 

rapidly losing diversity due to chance. 
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 Chapter 6 

Investigating population level csd variation  
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6.1-Introduction 

All Hymenoptera (bees, wasps, ants and sawflies) lack sex chromosomes (as seen in 

Drosophila) and employ instead a haplo-diploid sex determination system.  Sexual 

development in this case is directed by a specific region of chromosome 3 (the Sex 

Determination Locus - SDL), and specifically, by the complementary sex determination 

gene (csd) found within it (Beye et al., 2003).  The csd genes translate into atypical forms 

of SR- proteins, an important class of gene expression regulators (Long and Caceres, 

2009).  SR proteins classically have a serine “S” and arginine “R” rich region (RS domain) 

and can mediate the splicing of precursor messenger RNA (pre-mRNA) into mRNA (after 

cutting out introns).  They also typically have RNA binding sites, but these are lacking in 

csd (Evans et al., 2004).  These SR-type proteins are known to interact with RNA in other 

ways (Long and Caceres, 2009).  RS domains are frequently involved in protein-protein 

interaction, hence it is thought that functionally different csd proteins combine to form an 

active RNA splicing product that can activate a downstream response in another gene 

within the SDL (fem) to produce female specific mRNA (Gempe et al., 2009).  Otherwise, 

default male specific fem mRNA is produced.  Only individuals that are heterozygous at 

csd develop into females.   

 

The csd gene comprises of nine exons distributed across a 9 kb region within the SDL.  

These combine to generate a 1.4kb transcript (Heimpel and de Boer, 2008) that contains a 

number of regions with distinct amino acid sequence characteristics (Figure 4.1).  The 

region rich in arginine (R) and serine (S) spans exons 5–7, and a hyper-variable region 

(HVR) comprising mostly of asparagine (N) and tyrosine (Y) is located across exons 7 and 

8.  It is characterized by an {(N)1-4Y}n repeat rich region, and is bordered by a proline-rich 

(P) C-terminus (Gempe et al., 2009). 

 

The basis of the difference between functional alleles is not yet understood, but the 

repetitive repeat region within the HVR is the prime candidate location for conferring 

(Beye et al., 2003; Hasselmann and Beye, 2004; Cho et al., 2006; Gempe et al., 2009) or at 

least adding to (Hasselmann et al., 2008) the specificity of alleles.  Specificity could be 

due to single amino acid differences in the HVR.  It is also known that repeat sequence 

polymorphism within amino acid coding regions can bestow allele specificity (Fondon and 

Garner, 2004), hence specificity might also be conferred by differing numbers of {(N1-

4)Y}x repeats within the HVR.   Such amino acid repeat sequences are commonly found 

within eukaryotic proteins (Mularoni et al., 2010) and are usually encoded by tri-repeats in 
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regions of high mutation rates that probably result from replication slippage (Mularoni et 

al., 2010), or maybe unequal cross-over during recombination.  There is also the 

possibility that both single amino acid differences and repeat polymorphism work in 

combination to confer specificity.  A great deal of repeat sequence variation has been 

observed at the putatively ‘functional’ HVR, and it is currently thought that different 

alleles differ greatly in sequence.  Hasselmann and Beye (2004) sampled four Apis 

mellifera populations (one each in Germay, South Africa, United States and Brazil) and 

detected 15 separate csd lineages, each one differing by 3% in sequence variation.  

Around19 different forms of csd are thought to occur in Apis mellifera as a whole (Adams, 

1977).   

Figure 6.1 The csd gene has nine exons combine to produce a 1.4Kb transcript B.  The 

hyper-variable region is found in region 3, and area that incorporates exons 6-9. 
(From Cho et al., 2006) 

 

6.1.1 Implication for breeders 

Drones develop from unfertilized eggs and receive their full genetic complement 

exclusively from their mother.  They are haploid and carry only one copy of the csd gene.  

Females in contrast develop from fertilized eggs, but will only do so successfully when the 

paternal and maternal csd alleles are different.  Individuals developing from eggs fertilized 

by sperm carrying functionally identical csd alleles will develop as sexually inviable 

diploid (hemizygous) males.  Diploid drones constitute a resource drain, and are sacrificed 

by colony workers.  The population dynamics of csd can influence genetic health at the 

individual, colony and population level, and is therefore of imperative importance to the 

bee breeder.  Genetically depleted populations can have reduced mean colony level brood 

viability (less productive) due to increased diploid drone production.  Line breeding (in the 

strictest sense) is especially prone to genetic depletion as diversity is lost from closed 

populations due to chance.  It would be of benefit to breeders to monitor csd variation, and 

to then use breeder queens of different csd lineages in their program.  This cannot be 

easily done, since we still don’t definitively know what differentiates one allele from 

another.   
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6.1.2 Population screening  

 I explored three methods to possibly assay a population for csd variation, and assumed in 

doing so that the HVR confers allelic specificity.  In Chapter 4 I described a method for 

screening for HVR size variation, and mention the methodology and results again briefly 

below.  In this chapter I present HVR population level haploid data.  Drones carry only 

one copy of the csd gene, and hence provide easy access to allele specific sequences, and a 

possible way to monitor population level variation.  Finally, I attempted to use denaturing 

gradient gel electrophoresis (DGGE) to separate HVR csd fragments amplified in workers.  

Diploid derived alleles are most commonly separated by cloning individual allele 

fragments into plasmid DNA.  The process is time consuming and expensive.  DGGE 

offers an alternative inexpensive approach to visualize allele specific differences amplified 

in diploids, and offers an alternative approach to population screening.  The process uses 

electrophoresis to separate products based on sequence differences rather than on fragment 

size.  The goal was to separate fragments so that they could be excised from the gel and 

sequenced, but I failed to get sufficient resolution to identify individual fragments 

(methods in Appendix v).  I therefore attempted improve fragment resolution by running 

out the pre DGGE PCR product  on low agarose melting gels, and excising the target 

product.  Unfortunately, too much DNA was lost in the recovery process to warrant 

proceeding further.  Although I failed to develop a working protocol, the approach does 

show promise, and further development work is warranted.    

 

Genotyping previously demonstrated extreme population level fragment length diversity 

across the csd HVR.  I explored the nature of this variation by sequencing the HVR in 

haploid males, and hypothesized that deferring numbers and combinations of (N)1-4Y 

repeats would be the most likely source of the observed diversity.  I also compared my 

sequence results with previously reported data (Hasselmann and Beye, 2004; Cho et al., 

2006; Liu et al., 2011) and used a Neighbour-Joining approach to investigate how local 

sequences (i.e. from the WWBBP population) clustered in relation to putative functional 

allele sequences derived from individuals that had been sampled from a broad geographic 

distribution.  I expected that most putative allele sequence lineages to be represented in the 

local population.  

 

6.2 Methods 

6.2.1 Sequencing haploids 
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Drones were sampled during a single event at a local drone congregation area (situated 

900 metres from the mating apiary at Glaspwll) for a related study.  It is not clear how 

representative such a sample is of actual population diversity, but results should at least 

provide an indication of the minimum amount of local variation.  Ninety three drones were 

sequenced using primer pairs previously used by (Hasselmann et al., 2010) genoRfw 5’- 

AGACRATATGAAAAATTACACAATGA-3’, and conscsdrev 5’-

TCATCTCATWTTTCATTATTCAAT-3’. These primers amplified a 750 bp (approx) 

fragment of coding and non-coding DNA bridging the HVR (Fig 6.1).  Bi-directional 

sequencing was initially performed, but as extremely good sequence coverage was 

possible sequencing in one direction only, most samples were only sequenced in one 

direction.   

 

6.2.2 Definition of csd alleles 

Nucleotide sequence alignments were performed with ClustalX version1.8 in Mega5 

(Tamura et al., 2007) and alignment results were also adjusted manually for obvious 

alignment errors. I also used MEGA5 to compare the drone derived csd sequences using a 

Neighbour-Joining (NJ) approach (Saitou and Nei, 1987).  The NJ method seemed 

appropriate since no phylogenetic inference was intended.  In a similar way to Hasselman 

and Beye (2004), and Liu et al., (2011) (who investigated possible founder effects by 

examining csd region3 variation in an island population of a related species, A. dorsata), a 

representative sample from each resulting sequence lineage (cluster) was considered as a 

distinct allele and compared to the coding region sequences of previously published 

putative alleles (Hasselmann and Beye, 2004).  These authors sampled 200–300 embryos 

from two to three A. mellifera colonies from four geographical locations: Davis (CA), 

Berlin, Stellenbosch (South Africa), and Ribeirão Preto (Brazil).  They had a 

geographically diverse sample set, and although only a few colonies were sampled, the 

samples were expected to be genetically diverse due to polyandry.  That is, these samples 

carried the genetic contribution of many different fathers (Palmer and Oldroyd, 2001).   

The coding regions were determined by consulting the A. mellifera csd gene sequence 

reported by Hasselmann and Beye (2004) and Cho et al. (2006), and cDNA sequences of 

the A. mellifera csd gene reported by Beye et al. (2003).  The coding frame (no stop 

codons) was also confirmed using the alignment program CodonCode Aligner.   I used 

Arlequin (v3.5.1.3; Excoffier and Lischer, 2010) to assess haplotype variability and to 

assess degree of gene diversity in the population.  This measure is defined as the average 
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number of nucleotide differences per site between any two DNA sequences chosen 

randomly from the sample population, and is denoted by π. 

  

I also used NJ to compare haploid derived fragments of known length to see if they 

clustered into separate sequence-based lineages.  If so, then screening for population level 

HVR fragment size variation as determined by genotyping (can use easily sampled 

diploids for this) could indicate how much csd variation the population is carrying. 

 

6.2.3 Genotyping 

I used genotyping methodology (as described in Chapter 4) to investigated csd-HVR 

fragment length polymorphism.  A primer pair was developed to target conserved regions 

on either side of the HVR, and designed so that fragment lengths would be approximately 

450 base pairs (bp) long to facilitate standardizing with  the ABI Genescan500 size 

standard.  The methodology could be applied to both diploid and haploid individuals (see 

below), and was used to track genetic change due selective breeding in managed a bee 

population. 

 

6.2.4 Sequencing diploids 

Worker samples were taken from each of three generations for monitoring purposes, and a 

number of individuals were found to carry HVR fragments of equal lengths.  These 

individuals became the focus of additional attention since a difference in the number of 

(N1-4)Y repeats at the HVR (resulting in difference in size) is a proposed mechanism of 

conferring csd allele specificity.  The detection of csd heterozygous individuals with HVR 

fragments of equal lengths could be explained in one of two ways; either the two HVR 

‘allele’ sequences were in some way different, or alternatively, if the separate allele 

sequences are identical, the HVR performs no functionally specific task during sex 

determination.  Simply sequencing genomic DNA from ‘homozygous’ (in terms of 

fragment size) individuals might shed light on this question 

 

In order to expand sequence coverage either side of the HVR, I then amplified the HVR of 

diploids previously determined to have identical fragment lengths using my genotyping 

primers (approx.450 bp coverage), with the primer pair used by Hasselman et al., (2010).  

These primers provided approximately 750bp of coverage across the region.  Constructing 

allele specific sequences from heterozygotes using genomic DNA can be problematic 

since both alleles will be amplified, and resolving which base goes with which variant 
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problematic.  This was not an issue here as I was only interested at this stage in whether 

there were sequence differences at the HVR between allele variants, and not in 

reconstructing specific allele sequences.  I used CodonCode Aligner to align sequences 

and preserve coding frame. MEGA5 was also used for aligning noncoding sequence and 

for analysing the data.  

 

6.3 Results 

Thirty-four different sequence haplotypes were identified from 95 drones sampled at local 

congregation areas.  Thirty-three distinct haplotypes remained when the HVR was 

removed from the analysis. Approximately 750 base pairs of useful sequence were 

obtained using single direction sequencing.  This amplified fragment comprised of coding 

and non-coding regions spanning either side of the csd HVR.  The gene diversity per locus 

(π), across this whole sequence, was 0.05 ± 0.02, and Neighbour–Joining (NJ) clustering 

of sequence data revealed around 20 distinct lineages (Fig 6.2).  Very similar clustering 

trends were observed when the HVR (region with multiple gaps) was removed from the 

analysis. Representative samples from each lineage were aligned at the csd-HVR region 

(Fig 6. 3).  The HVR coding regions ranged in size from 69 to 90 amino acid residues and 

demonstrated comparable variation to those published by Hasselman and Beye (2004) (Fig 

6.4).     

 

Genotyping revealed twelve diploid workers carrying HVR ‘alleles’ of equal lengths.  

Sequences were found to be different between alleles in all cases and markedly so in 

eleven of the twelve cases (sequence electropherograms were unintelligible in these cases).  

Contrastingly, one individual (esg3312) carried two very similar coding region sequences 

at the HVR.  Only six single base pair differences were observed across the 454 bases 

spanning the HVR coding region.  Three of these differences were synonymous, and two 

of the remaining three non-synonymous trasversions were located within the HVR (Figure 

6.4).  One of these single nucleotide substitutions (G<->T) was located in RS domain and 

resulted in a Threonine (T) to Arginine (R) amino acid mutation at position 302 (Cho et 

al., 2006).  Of all the haploid individuals sequenced (~100), this R variant was uniquely 

observed.  The other two mutation were A<-> T trasversions, found within the HVR.  The 

resulting amino acid sequences had either an Asparagine (N) or Lysine (K) at position 340, 

and an N or Tyrosine (Y) at position 347 (Cho et al., 2006). 
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Figure 6.2.  Around twenty distinct lineages (1-20) were identified by Neighbour-Joining clustering. Lineage 

designation generally correlated with genotyped fragment size, though this relationship was not exclusive.  For 

example, lineage 8 is comprised of a single individual with a genotyped fragment size of 458 bp’s.  An 

individual (sample 1-38) of the same size clustered into lineage 14.  Similarly, individual 1-72 also clustered 

into lineage 17 but is of similar size to lineage 11 (i.e.467).  The apparent relationship between fragment size 

and lineage suggests that an indication of population level csd variation might be gleened by simply screening 

randomly sampled drones for size variation across the HVR.  The amino acid sequences of  representative 

individuals taken from each of the twenty lineages (blue box and ***) were compared to data previously 

published by Hasselman and Beye (2004; see Fig. 6.4).  Remarkable variation was demonstrated in this 

population.  The evolutionary history was inferred using the Neighbor-Joining method (Saito and Nei, 1987). 

The optimal tree with the sum of branch length = 0.48389041 is shown. The evolutionary distances were 

computed using the Kimura 2-parameter method (Kimura, 1980) and are in the units of the number of base 

substitutions per site (bootstrapped 2000 times). The analysis involved 92 nucleotide sequences. All positions 

containing gaps and missing data were eliminated. There were a total of 187 positions in the final dataset. 

Evolutionary analyses were conducted in MEGA5 (Tamura et al, 2007).
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#1-DCA151           HIKMRILIEN RETSKERSRD RKEQERSKEP KIISSLSNKT IHNNNNYNNN YNNYNNNYKY NYNNYKKLQY -YNINYIEQI PVPIPVPVYC G 

#2-DCA178-464       HIKMKENIEN RETSKERSRD RTERERSREP KIISSLSNKT IHNNNNYKYN YNNNNNNYKN YNNY-KKLYY --NINYIEQI PVPVPV--YY G 

#3-DCA150-472       HIKMRILIEN RETSKERSRD RTERERSKEP KIISSLSNKT IHNNNNYKYN YNNNYNNNHY NNNY-KKLQY -YNIINIEQI PVPVPVPIYC G 

#4-DCA101-470       RIKMKKNIEN RETSKERSRD RTERERSREP KIISSLSNKT IHNNNNYKYN YNNKYNYNNN NYN--KKLYY KNYIINIEQI PVPVPV--YY G 

#5-DAC135-466       HIKMRILIEN RETSRERSRD RRERERSKEP KIISSLSNKT IHNNNNYKNY NNYNNNNYKN YNY--KKLYY --NIINIEQI PVPVPVPVYC G 

#6-DCA117-457       HIKMRILIEN RETSKERSRD RTERERSKEP KIISSLSNNY NYNNNNYNNY NNNYNNYNNN YN---KKLYY --NINYIEQI PVPVPI--YC G 

#7-DCA204-457       RIKMKILIEN RETSKERSRD RTERERSREP KIISSLSNKT IHNNNNYNNN NYNNYNNNYN NY---KKLYY --NIINIEQI PVPVPVPIYC G 

#8-DCA138-458       HIKMKENIEN RETSKERSRD RTERERSREP KIISSLSNKT IHNNNNYKYN YNNNNYKNYN NY---KKLYY --NINYIEQI PVPVPV--YY G 

#9-DCA111-461       HIKMRILIEN RETSRERSRD RTERERSKER KIISSLSNNY NYSNYNNYNN NNNYNNNNYN Y----KKLYY --NINYIEQI PVPVPVPIYC G 

#10-DCA105-458      HIKMRILIEN RETSKERSRD RKERERSKEP KIISSLSNNY KYSNYNNYNN YNNNNYNNYN -----KKLYY KNYIINIEQI PVPVPI--YC G 

#11-DCA161-454      HIKMRILIEN RETSKERSQD RTERERSKEP KIISSLSNNT IHNNNYKYNY NNNNYNNNYN -----KKLYY KNYIINIEQI PVPVPV--YY V 

#12-DCA123-450      HIKMRILIEN RETSKERSRD RTERERSREP KIISSLSNKT IHNNNNYKYN YNNNYNNNS- -----KKLYY --NINYIEQI PVPVPI--YC G 

#13-DCA116-455      RIKMKENIEN RETSKELSQD RTERETSKEP KIISSLSKNT IHNNNYKYNY NNNNYNNS-- -----KKLYY --NINYIEQI PVPVPVPIYC G 

#14-DCA174-452      RIKMKENIEN RETSKERSRD RMERERSKEP KIISSLSNKT IHNNNNYNNN NYNNYNN--- -----KKLYY --NINYIEQI PVPVPVPIYY G 

#15-DCA141-437      RIKMKENIEN RETSKERSRD RRERKRSREP KIISSLSNHY NYNNNKYNNY NNDY------ -----KKLYY --NINYIEQI PIPVPI--YC G 

#16-DCA175-439      HIKMRILIEN RETSKERSRD RTERERSREP KIISSLSNNY KYSNYNNNNY NNNS------ -----KKLYY --NINYIEQI PIPIPVPIYC G 

#17-DCA126-         HIKMRILIEN RETSRERSRD RKER-RSKER KIISSLSNNY ISNISNYNNN NNS------- -----KKLYY --NINYIEQI PVPIPVPVYC G 

#18-DCA177-419      HIKMKILIEN RETSKERSRD RRERERSKES KIISSLSNNY NYNNCNYKHN ---------- ------KLYY --NIINIEQI PVPVPI--YC G 

#19-DCA103-423      RIKMKILIEN RKTSKERSRD RTERERSKEP KIISSLSNNY NYSNYNNNNY ---------- -----KQLCY --NINYIEQI PVPVPV--YY G 

#20-DCA122-415      RIKMKENIEN RETSKERSRD RTERERSKEP KIISSLSNNT IHNNNYN--- ---------- -----KKLYY --NINYIEQI PIPVPV--YY G 

#21-esg3312he_1-415 RIKMKENIEN RERSKERSRD RTERERSKEP KIISSLSNKT IHNNNNY--- ---------- -----KKLYY --NINYIEQI PIPVPV--YY G 

#22-eSg3312he_2-415 RIKMKENIEN RETSKERSRD RTERERSKEP KIISSLSNNT IHNNNYN--- ---------- -----KKLYY --NINYIEQI PIPVPV--YY G 

 
Figure 6.3.   Aligned (samples # 1-20) are hypervariable region (HVR) amino acid sequences obtained from haploid drones randomly sampled in the test 

population.  Each sequence is a representative of a separate lineage identified by NJ clustering (blue boxes in Fig 6.2).  The figure reveals the source of 

much of the size variation observed by genotyping.  Samples #21 and 22 are putative allele sequences from a diploid individual (esg3312).  Nearly 

identical sequences were obtained, but electropherogram data indicated heterozygozity (double peaks) resulting in non-synonomous substitutions at three 

locations.  These substitutions (T, N and Y variants highlighted) were arbitrarily assigned to sequence 2.  The three digit numbers associated with sample 

identification indicate genotyped fragment size when available.   Red and blue regions indicate the location of the SR domain and the Proline rich region 

bounding the HVR respectively.
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#1  B1-4                       EPKIIS---S LSNKTIHNNN NYKYNYNNNN YNNNNYNNNY NNNCKKL-YY N--IINIEQ- --P 

#2  DCA151-                    EPKIIS---S LSNKTIHNNN NYNNNYNNYN NNYKYNYNNY ----KKLQYY N--INYIEQI PVP 

#3  DCA178-463.6               EPKIIS---S LSNKTIHNNN NYKYNYNNNN NNYKNYNNY- ----KKL-YY N--INYIEQI PVP 

#4  DCA101-470                 EPKIIS---S LSNKTIHNNN NYKYNYNNKY NYNNNNYN-- ----KKL-YY KNYIINIEQI PVP 

#5  DCA135-466.7               EPKIIS---S LSNKTIHNNN NYKNYNNYNN NNYKNYNY-- ----KKL-YY N--IINIEQI PVP 

#6  DCA204-456.5               EPKIIS---S LSNKTIHNNN NYNNNNYNNY NNNYNNY--- ----KKL-YY N--IINIEQI PVP 

#7  DCA138-458                 EPKIIS---S LSNKTIHNNN NYKYNYNNNN YKNYNNY--- ----KKL-YY N--INYIEQI PVP 

#8  DCA123-449.5               EPKIIS---S LSNKTIHNNN NYKYNYNNNY NNNS------ ----KKL-YY N--INYIEQI PVP 

#9  DCA161-454                 EPKIIS---S LSNNTIHNNN -YKYNYNNNN YNNNYN---- ----KKL-YY KNYIINIEQI PVP 

#10 DCA116-454.6               EPKIIS---S LSKNTIHNNN -YKYNYNNNN YNNS------ ----KKL-YY N--INYIEQI PVP 

#11 DCA174-452                 EPKIIS---S LSNKTIHNNN NYNNNNYNNY NN-------- ----KKL-YY N--INYIEQI PVP 

#12 DCA122-415                 EPKIIS---S LSNNTIHNNN YN-------- ---------- ----KKL-YY N--INYIEQI PIP 

#13 esg3312_seq1 415           EPKIIS---S LSNKTIHNNN NY-------- ---------- ----KKL-YY N--INYIEQI PIP 

#14 esg3312_seq2 415           EPKIIS---S LSNNTIHNNN YN-------- ---------- ----KKL-YY N--INYIEQI PIP 

#15 S7-58                      EPKIIS---S LSNNTIHNNN YN-------- ---------- ----KKL-YY N--IINIEQ- --P 

#16 B2-25                      EPKIIS---S LLNNTIHNNN NY-------- ---------- ----KKL-QY YN-INYIEQ- --P 

#17 A1-18                      EPKIIS---S LSNKTIHNNN NYNNYNN--- ---------- ----KKL-YY N--INYIEQ- --P 

#18 A-58                       EPKIIS---S LSLKTIHNNN NYKNYN---- ---------- ----KKL-YY N--IINIEQ- --P 

#19 DCA126-                    ERKIIS---S LSNNYISNIS NYNNNNNS-- ---------- ----KKL-YY N--INYIEQI PVP 

#20 DCA111-461.3               ERKIIS---S LSNNYNYSNY NNYNNNNNYN NNNYNY---- ----KKL-YY N--INYIEQI PVP 

#21 DCA117-457                 EPKIIS---S LSNNYNYNNN NYNNYNNNYN NYNNNYN--- ----KKL-YY N--INYIEQI PVP 

#22 A2-88                      EPKIIS---S LSNNYNYNNN NYKYNYNNYN ---------- ----KKL-YY KNYIINIEQ- --P 

#23 A1-28                      EPKIISNNNS LSNNYNYNNN YNNYNKHNYN ---------- -----KL-YY N--INYIEQ- --P 

#24 DCA141-436.7               EPKIIS---S LSNHYNYNNN KYNNYNNDY- ---------- ----KKL-YY N--INYIEQI PIP 

#25 DCA177-419                 ESKIIS---S LSNNYNYNNC NYKHN----- ---------- -----KL-YY N--IINIEQI PVP 

#26 DCA103-423                 EPKIIS---S LSNNYNYSNY NNNNY----- ---------- ----KQL-CY N--INYIEQI PVP 

#27 D2-38                      EPKIIS---S LSNNYNYNNY NNNY------ ---------- ----LPL-HY N--INYIEQ- --P 

#28 S2-31                      EPKIIS---S LSNNYNYNNY NNNY------ ---------- ----KPL-YY N--IIYIEQ- --P 

#29 D1-22                      EPKIIS---S LSNNYKYSNY NNYNNYNNNN YNHYN----- ----KKL-YY KNYIINIEQ- --P 

#30 S2-33                      EPKIIS---S --NNYNYKNY NNNYNS---- ---------- ----KKL-YY N--IINIEQ- --P 

#31 D1-18                      EPKIIS---S LSNNYKYSNY NNYNNNYNNY NNYNNNYNNN Y----KL-YY N--INYIEQ- --P 

#32 DCA105-458                 EPKIIS---S LSNNYKYSNY NNYNNYNNNN YNNYN----- ----KKL-YY KNYIINIEQI PVP 

#33 DCA175-439                 EPKIIS---S LSNNYKYSNY NNNNYNNNS- ---------- ----KKL-YY N--INYIEQI PIP 

#34 S7-16                      EPKIIS---S LSNSCNYSNN YYNNNNY--- ---------- ----KKL-YN N--INYIEQ- --P                       

 

Figure 6.4. Comparing the hypervariable region (HVR) amino acid sequences of representative drones sampled from the WWBBP population (black) with 

representative alleles obtained from geographically broad sources previously published by Hasselman and Beye, (2004) (in red).  Sequences were 

manually aligned and an attempt was made to group similar sequences.  No identical matches were found.
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6.4 Discussion 

Sequencing showed that the HVR fragment size variation (revealed by genotyping) 

is mostly due to differing combinations and numbers of (N1-4) Y repeats.  Substantial 

single nucleotide variation was also revealed by sequencing, both within and around 

the HVR.  Comparisons between representative sequences taken from the WWBBP 

population and previously published data sourced from a broad geographic 

distribution, suggest that the local population is genetically diverse.  Although a 

degree of diversity was expected, the extent of these population level observations 

are surprising.   

 

This region (exons 6-9) of the csd gene is known to have elevated rates of both 

synonymous and non-synonymous differences (Hasselman and Beye, 2004; Cho et 

al., 2006).  The gene as a whole has been demonstrated to have a level of 

polymorphism five to 10 times that of neutral regions, and functionally distinct new 

alleles experience positive selection.  Heterozygotes have a selective advantage and 

low frequency functional alleles are preferentially selected.  These are recognized as 

the two main forces driving balancing selection at the locus.  

 

Approximately twenty different csd lineages were indicated by Neighbour-Joining 

analysis in the WWBBP sample.  Clustering trends demonstrate an apparent 

correlation between lineage and fragment length, though due to the nature of the data 

(nominal and ordinal/nominal?) the relationship was not statistically tested.  The 

relationship was not exclusive since some fragment lengths (e.g. 466 and 458) were 

observed to have quite different sequences and clustered into different lineages.  

Nevertheless, fragment size diversity does provide a general indication of lineage 

diversity, and possibly of csd allele variation since the HVR is the prime candidate 

area thought to convey allele function.  Screening fragment size variation in a 

representative sample of diploid worker might therefore provide an indication of sex 

allele diversity at the population level.  

 

A representative sample was selected from each the above lineages. The csd-HVR 

amino acid sequences were compared to each other, and to sequence information 

previously published by Hasselman and Beye (2004).  The conserved regions on 

either side of the HVR repeat region were easily aligned by hand, but phylogenetic 
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comparisons were not meaningful due to sequence gaps and large differences within 

the HVR.  Nevertheless, visual comparisons suggest that this population is currently 

rich in csd diversity.  The above mentioned authors had sampled colonies of A. 

mellifera from geographically and genetically diverse backgrounds: Davis (CA), 

Berlin, Stellenbosch (South Africa), and Ribeirão Preto (Brazil).  Comparable 

diversity was observed in our single population.  These results seem surprising, but 

might reflect the mixed nature of and genetic heritage of British managed bees 

(Harpur et al., 2012).  In addition, this population of bees was primarily sourced over 

a number of years from a reputable and knowledgeable breeder who may have 

intentionally designed his program to maintain a genetically diverse population of 

commercially viable bees.   

 

The diverse genetic background of these bees was revealed by a Neighbour-Joining 

analysis of genetic diversity of coding and non-coding sequence around the HVR.  I 

conducted the analysis with the HVR region both included and excluded, and in both 

cases 13 separate lineages (two or more sequences) clustered, and another seven 

sequences were independent.  These results are again comparable to previously 

published work by Hasselman and Beye (2004).  They identified 15 separate csd 

lineages when comparing variation within the coding region variants of the gene.  

Approximately 19 alleles are thought to exist worldwide (Adam 1977). 

 

It is currently unclear how sequence difference translates into functional variation.  I 

explored the possibility that alleles might differ in number of (N1-4 )Y repeats found 

within the HVR by sequencing diploid workers that were identified by genotyping to 

have inherited csd fragments of equal lengths from either parent.  Adopting a 

rudimentary approach, I sequenced genomic DNA, and serendipitously found 

evidence that variation within and around the HVR might be of functional 

significance.  The sequence data from heterozygote individuals were unreadable in 

eleven of twelve cases, indicating that the allelic variants inherited from either parent 

were significantly different.  In contrast, very similar (six nucleotide differences) 

sequences were found in one individual, with only three non-synonymous 

differences detected.  All were in, or around, the HVR.  One of these single 

nucleotide mutations resulted in an amino acid (T to R) variant in the SR domain.  

Such regions are known to direct protein-protein interactions, and could possibly 
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influence the formation of allelic heterodimers.  The R site variant occurs at low 

frequency as it was detected only in this one individual.  The other two non-

synonymous differences were within the HVR. 

These data suggest that if the HVR is functionally relevant, then specific alleles do 

not need to differ in number of amino acid residues within the HVR.  Differences at 

a small number of relevant nucleotide locations might be sufficient to release sexual 

development out of the default male mode, but the high number of observed 

fragment sizes suggests that other forces (number of repeats in conjunction with 

specific nucleotide differences) might also drive the specificity of alleles.   

From a practical perspective, investigating sequence diversity at the csd revealed 

encouraging results.  Broad potentially relevant (i.e., functionally discrete  lineages) 

diversity was indicated by the presence of differing numbers and combinations of 

repeats across the HVR.  In addition, an apparent relationship between genetic 

lineage and size was revealed.  This indicates that one could possible screen for 

population level csd diversity by investigating the degree of fragment size variation 

across the HVR in the population.   Although the specific mechanism (and hence the 

source DNA sequence) of csd function is undefined, the degree of variation indicated 

in this population suggests that likelihood of diploid drone formation should be low. 
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Chapter 7 
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Final Discussion 

One of the aims of this thesis was to assist in the design of a small breeding program, 

and although limited by available time, and by difficulties imposed by poor weather, 

the results do have value for the purpose of small scale breeders.  Results relating to 

local queen mating success will be of interest to all beekeepers in the region.  Genetic 

monitoring of this specific breeding population provided an indication of the amount 

of genetic diversity carried by the source population, and monitoring of post selection 

generations revealed how these genetic signatures changed through time.  Modelling 

and simulation work predicted how this population might genetically change through 

time if current breeding protocols are maintained.  Hopefully, these results will be of 

value to beekeepers hoping to establish a breeding program, and provide guidance for 

integrating selection and breeding into an existing honey production operation.   

 

7.1 Mating success 

I investigated queen mating success at the West Wales Bee Breeding Program 

(WWBBP) during the summer of 2010.  Although some queens managed to mate 

with sufficient numbers of drones (10 was the max), mating success was on average 

(7) well below the accepted species mean of 13 pairings per queen.  The semen from 

ten or so drones is required to fill a queen’s spermatheca to capacity with sperm, so it 

appears that approximately half of the WWBBP’s queens were inadequately mated 

and may have had a shorter effective laying lifetime as a consequence. 

Nevertheless, queens did manage to mate and establish mature colonies in 75% of 

cases in 2010.  Similar rates of success were observed in 2011 and 2012, even though 

weather conditions were poor during both summers, and were particularly bad in 

2012.  There was variance in the 2010 mating success experiment, but overall the 

results suggests that queens (and drones) can usually find sufficiently prolonged 

periods of good mating weather.  Since there is a heritable component to mating 

success, it might be targeted by breeding from locally strong colonies headed by 

second year or third year (long-lived) queens.  Wales is located towards the northern 

limit of the honeybee’s natural distribution and can experience periods of cold wet 

weather at any time of the year, and the WWBBP would benefit from bees that 

possess the qualities needed to adequately mate under marginal conditions.  
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7.2 Monitoring 

 

7.2.1 Varroa 

The WWBBP experienced substantial varroa attributed losses over the 2010/11 

winter.  Infestation levels were subsequently monitored in newly established colonies 

during 2011 and 2012, and a significant increase in mean number of mites was 

observed across years.  Counts were taken to monitor population-wide seasonal 

trends, but also as an indicator of possible tolerance in young colonies.  But since 

colony mite count is only marginally heritable, and these colonies were yet to fully 

mature, the program could benefit from a more rigorous screen.  Recently 

recommended approaches that might lead to more rapid improvement in tolerance 

include testing for above average expression of hygienic behaviour, as well as 

identifying colonies with low mite reproduction rates (Fries, 2012).  Screening for 

hygienic behaviour is demanding of both time and effort (and must be repeated for 

consistent results) for the small scale commercial operator to seriously consider.  The 

latter of these two tests (i.e., lower mite reproduction rates) would provide a better 

benefit return, and is simpler and most practical.   

Programs intent on directing population adaptation through purposeful selection 

should consider screening colonies with second year queens for low rates of mite 

population growth.  The methodology accounts for differences in initial infestation 

between colonies and are applied to mature colonies with actively laying queens only.  

Early and late season counts are needed, so that the rate of mite reproduction can be 

determined (Büchler et al., 2010; Lee 2010; Fries, 2012).  Following 

recommendations by Büchler et al. (2010), the first data point is acquired by counting 

the natural mite drop (number of mites falling out of the hive) over the first 3-4 weeks 

of brood production in the spring (standardized by being carried out during the Salix 

bloom).  The second data point demands a little more effort, and is acquired by 

counting the number of mites infecting a sample of 300 bees taken from the honey 

combs in the uppermost box.  Since varroa reproduce in honeybee brood cells, counts 

are usually determined by taking nurse bees off the brood nest Fries (2012), a 

potentially time consuming operation since the queen must first be located and 

secured.  However, bees from a honey-box are thought to have a more uniform 

infestation (Büchler et al., 2010) and can be sampled without having to access the 
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brood and locating the queen.  Relatively inexperienced but competent personnel can 

perform varroa counts this way.  Nevertheless, if counts are taken at strategically 

convenient times (e.g., before and after the early summer nectar flows) the approach 

should be considered by suitably resourced programs.   

7.2.2 Locating the Queen 

Locating queens (the hardest part of sampling from the brood-nest) is much easier if 

they are marked, but most commercial operation do not go to the trouble of marking 

queens destined for production colonies.  Young mated queens are easier to find in 

small colonies, and can most conveniently be marked during the transition from the 

smaller mating hives into full sized colony box.  Mature colonies that have 

experienced a supercedure or swarming events, both performance relevant data, are 

easier to identify if the queen is marked and any new (unmarked) queens must be 

marked for the system to practical in the long term.  Clearly, such work is an added 

management burden for beekeepers, and an efficient record keeping program must be 

implemented (and maintained) for maximum benefit.  Many European countries offer 

small scale breeders federal assistance and support, but this level of organization is 

not currently available in the UK.  Small scale breeding programs need to be self-

sufficient and allocate their own resources accordingly. 

 

7.2.3 Production and colony strength 

Colony strength was estimated by visual assessment using a standardized approach.  

Although this method provided only approximate estimates, it allowed colony 

strength to be efficiently assessed during a single monitoring event.  Digital methods 

for assessing the amount of brood on a frame have been developed.  These were 

considered, but were rejected for the following reasons.  It was recommended that all 

bees should be shaken off brood-frames for digitalized programs to work.  Such 

treatment was considered too disruptive and not conducive to colony wellbeing.  

Nevertheless, attempts were made to photograph frames in the field with bees still 

attached.  Attempts were made to standardize methodology, but this proved difficult 

in the field setting where colonies were spread out across the moor on wooden pallets.  

Studies utilizing digital assessments have used camera tripods and frame holders at 

fixed distances (on level ground) to standardize image quality between frames.  Each 

monitoring sweep would also require approximately 720 images, or 12 images per 
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colony on the heather.  The visual method was adopted after a frank cost benefit 

analysis.   

 

Colonies of known size gained weight at different rates as they foraged on heather 

nectar and pollen in 2011.  Conditions allowed for the foraging efficiency of bees 

from different colonies to be compared.  Analysis revealed no statistical correlation 

between colony size (frames of bees) and weight-gained during a nectar flow that 

year.  These results suggested that there was variance in foraging efficiency, possibly 

due to genetic (hence heritable) variation in the population.  Conditions were poor on 

the heather in 2012 and did not allow for such comparisons. Colonies gained weight 

initially (partly due to increased number of hatching adults bees) but colony weights 

declined after all available nectar flows ceased.  Nevertheless, a number of choice 

colonies stood out due to superior size and weight at the end of the season.  There 

was a statistically significant reduction in the variance of colony size (frames of bees 

and amount of brood) between 2011 and 2012 daughter colonies.  The 2012 colonies 

were also visibly uniform on inspection, with consistent layout of brood nest and 

stores.  This increased uniformity is likely due to the selective pressures being applied 

across generations.   

   

7.3 Genetic monitoring and modelling 

Genetic monitoring revealed ample variation at both neutral microsatellite loci, and 

within the hyper-variable region of the csd in the source population.  Broader 

genome-wide variation is not necessarily inferred by these results since correlations 

between phenotypic variation, and variation observed at a small number 

microsatellite, markers are generally weak.  Nevertheless, these observations do 

suggest that the Tropical Forest source population might contain adaptive potential, 

and should be responsive to selective breeding applied by the WWBBP.  

  

Monitoring also revealed that low frequency alleles were being lost due to chance, 

with significant differences in allelic richness being observed between the source 

population and subsequent generations.  There was also a general consensus among 

various effective population size estimators indicating a slight declines in population 

size was occurring with each round of breeding.  Loss of genetic diversity is an 

inevitable consequence of closed population line breeding, but it must be limited 
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since adaptive selection is less effective when diversity low.  Maintaining population 

level diversity will provide fitness benefits at the colony level since it has been 

demonstrated that genetically diverse colonies are more resistant to environmental 

and disease related perturbations.  It is also known that a genetically diverse work-

force can maintain a more balanced nest environment than a genetically limited 

workforce (Jones et al., 2004). 

7.4 Breeding 

Within family selection has been recommended for programs that can only maintain a 

limited number of queen lines, and is the approach currently adopted by the WWBBP 

(Moritz, 1986). Approximately 150 colonies are currently maintained and it is 

proposed that new colony production will be limited to approximately 60 queens 

from 4 breeders each year (12-20 daughter queens per line).  My csd model suggested 

that a population of this effective size can only maintain 5 to 6 sex (csd) alleles, and 

diploid drone production could increase before stabilizing at 17-18% per colony, and 

it is possible (depending on the current number and frequency of sex alleles in the 

population) that the mean colony brood viability could drop to 85% within 5 years.   

 

It is unlikely that the WWBBP’s bee population will suffer from the effects of genetic 

depletion, at least in the short term, but indications are that diversity could become 

limiting if current program protocols are maintained.  This population might therefore 

reach its maximum improvement potential within a relatively short time frame, and 

program managers might consider increasing the number of queen lines it maintains 

in order to maintain adaptive potential within the population. This might be achieved 

by staggering queen lines, so that each line is only bred from every other year.  By 

staggering this way, it is probably feasible for programs the size of the WWBBP to 

maintain eight queen lines in total.  Four queen breeders (one each from a different 

line) could be selected one year, and the best colony from each of the other four lines 

the following year.  Staggering breeding lines might allow genetic diversity could be 

maintained, and daughter colonies can be monitored for two full seasons (and 

winters) before becoming eligible for breeder selection. One disadvantage of this 

approach might be that uncontrolled environmental effects could complicate colony 

comparisons.  All non-breeder colonies will be part of the production population, and 
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will be located in different apiaries and exposed to differing environmental 

conditions.   

There was a statistically significant difference in allelic richness between the source 

population and both the 2011 and 2012 daughter populations, but not between the two 

daughter (2011 and 2012) populations.  It is possible that genetic differentiation may 

have been is dampened by a potentially broader drone contribution in 2012.  Two 

daughter colony groups were raised in 2012 and each was mated at different locations 

and exposed to drones of different sources. Such an approach could possibly be 

adopted to limit potential genetic depletion due limiting number of breeders.  

However, it would be worth considering the origin of the male contribution as there is 

evidence that the difference in drone input could have influenced the temperament of 

the 2012 bees.    

Bee mating behaviour is inherently uncertain since queens must pair on the wing with 

multiple drones (of potentially unknown origin) some distance from the nest.  The 

process is assumed to be random as little is known about queen mate choice, though 

drones from disease resistant colonies might have a breeding advantage due to better 

conditioning.  Breeders can influence the transfer of desirable traits via male lines by 

flooding mating areas with drones mothered by daughters of colonies displaying the 

characteristics of choice.  The process remains vulnerable to the vagaries of the 

weather, and ultimately, breeders have little control over the number or the origin of 

the drones their selected queens mate with. 

Contrastingly, breeders have complete control over the number and origin of the 

queen lines they select, and the number of daughter colonies they establish each year.  

Modelling showed that the number of breeders has the most influence over the 

change in allele frequency variance, and the change in population genetic diversity 

across generations.  For breeders employing open mating, breeder selection is the key 

component affecting progressive adaptation.   

The WWBBP used eight effective breeders, selected from a source population of 

approximately 150 colonies in 2011.  Approximately 100 daughter colonies were 

raised that summer, and the top 30 performing colonies (based on foraging ability, 

varroa infestation and temperament), including representatives from each queen line, 

were highlighted as potential breeding stock. Four breeders, each from a different 
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queen line, were selected from this stock the following year and 60 or so new 

colonies established.  Not all breeders had equal representation in the daughter 

population, which comprised of two groups grafted from the same four breeders.  

These two daughter cohorts were openly mated at different locations and were 

subjected to differing drone mediated influences.  No significant genetic 

differentiation was detected between the colonies mated at different locations in 

2012; hence they were pooled for analysis. There was, however, an apparent 

difference in the temper of the bees mated at the two locations.  The behavioral 

difference could possibly be attributed to the expression of different drone-mediated 

defense alleles.   

7.5 Considerations for breeders 

Declining honeybee health has made commercial beekeeping an increasingly labour 

intensive occupation.  Selectively breeding for local adaptation can be part of the 

solution since it can enhance, at the population level, those heritable characteristics 

that allow colonies to be productive and disease tolerant under local conditions, thus 

reducing the need for supplemental feeding and medication.  However, breeding 

protocols must be simple to be of practical use to small-scale breeders, and should 

provide a timely return (improvement in the population within a few generations) for 

invested effort.  Breeders must concurrently guard against depleting genetic diversity, 

and the resulting detrimental expression of inbreeding effects (such as diploid drone 

production).  Integrating the logistics of a breeding program into an already busy 

honey-production schedule is part of the challenge, and these are further complicated 

when production colonies are migrated (to the heather for example). The challenge of 

this project was to enhance local suitability while concurrently preserving genetic 

diversity and adaptive potential in the simplest most practical way. A major goal of 

this project was to develop a transferable template for successful small-scale 

breeding.  Recognizing that individual businesses must be managed independently, 

certain considerations should be universally addressed by all seriously considering 

selective breeding.  Amount of effort and focus directed to any one will depend on 

the specific circumstances. 

 

7.5.1 Consideration for small scale breeders 
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a) Tracking colony/queen performance. Traditionally done using a paper spreadsheet 

or sometimes relevant information is written directly onto a hive label.   Data is often 

transferred onto a computer based system at a later date.  Online applications are 

becoming increasingly available (Beetight, Hivetrack), and some offer online access 

to a personal database via a cellphone application.  Whatever the adopted approach, 

the process needs to be simple and practical in the field.  Regardless, one needs an 

organized and disciplined approach.  Possibly allocate days for assessing colony 

performances only as relevant data can easily go unrecorded during the hustle and 

bustle of a regular beekeeping day (e.g. while splitting colonies, removing honey-

crops).  This might not be possible as out-yards are frequently widely distributed, and 

not frequently visited.  The adopted method will depend in part upon the resources 

available, and on management style. 

   

b) Marking queens helps to identify colonies that have recently experienced a 

supercedure or swarming event. Un-marked queens are easier to find in when 

colonies are small.  Young mated/laying queens could be most conveniently marked 

sometime before her colony expands to full size. 

 

c) Colonies/queen performance should preferably be monitored for a minimum of 2 

years (survive 2 winters) before being considered for breeding stock.  If selecting for 

mite resistance, then monitoring should compare mite reproduction rates among 

established colonies (probably during the second season).  Mite numbers can still be 

knocked down with a soft treatment ((e.g.3.5% oxalic acid) if loads threaten 

overwintering survival (generally over 10% infestation), without affecting rate of mite 

population growth during the summer season.  If resources are limited (e.g. lack of 

skilled personnel) and monitoring impractical (same applies in part to a), then select 

for tolerance by selecting the healthiest best performing colonies. 

 

d) Genetically depleted populations do not effectively adapt in response to selective 

breeding. Protect against genetic depletion by breeding from multiple queen lines.  

Models suggest that a closed population can be maintained with minimal loss if 12 

breeders are used and a 100 or so new colonies raised each year.  Smaller outfits 

could probably maintain adequate long term diversity with 8 breeders, as long as 

each was from a different queen-line (and possibly stagger so that each line is only 

used every other year). Diploid drone production is also more likely to occur in 

populations lacking genetic diversity and mean brood viability may drop to 

unacceptable levels if too many sex alleles are lost due to chance.  Effective 

population size depends on the number of breeders (male and female) contributing to 

the next generation, and it in turn affects the number of sex-alleles the population can 

maintain.  

 

e) Breeders have greater ‘control’ over drone contribution when mating yards are 

isolated.  One approach might be to use the daughter colonies of the previous year’s 

breeders as drone mothers.  This way the breeding characteristics of the selected 

‘grandmother’ colonies will be propagated through the male (grandson) line. 

 

f) Account for environmental effects by dispersing colonies from each queen specific 

line into different locations.     
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7.6 A final thought 

 

Small-scale breeding programs are handicapped by scale.  Few can afford to sacrifice 

the time and labour, or have the resources necessary to produce and monitor 

(performing varroa counts for example) large numbers of colonies.  Collaborative 

efforts have proven successful, where the burden of maintaining sufficient numbers 

of queen lines to offset potential inbreeding effects, and raising sufficient numbers of 

new daughter colonies per line to expose desired (and undesired) adaptive 

characteristics, is shared.  Independent small-scale breeders must also maintain 

multiple queen lines to offset inbreeding, but each line will contribute relatively few 

daughters (to the next generation) in comparison to that of large scale programs, and 

adaptive ‘progress’ will be slower.  Key recommendations include: 

 

 Pick as many of your best colonies as you can for breeding, and raise as many queens 

from each as possible to capture as much adaptive potential as possible.   

 Use all these daughter colonies as drone produces the following year and consider 

screening for low rates of mite reproduction.   

 To increase number of queen lines maintained, consider breeding from best line 

colony each every other year  

 Don’t let temperamental colonies breed (re-queen if you can), or be drone sources.  

 

7.7 Further work 

The honeybee genome sequence was published in 2006 (Whitfield et al., 2006).  

Since then, genome level sequencing and screening technologies have continued to 

advance.  Geneticists now have available powerful tools to investigate genome level 

variation among groups of individuals, and these advances offer beneficial 

opportunities for breeding.  For example, being able to associate specific genetic 

signatures (markers) with particular behaviours (phenotypes) would aid marker 

assisted selection; that is the selection of breeding individuals based on identifiable 

genetic characteristics.  Recent research has shown that the honeybee has a small 

genome and a high recombination rate, properties that make the use of quantitative 

trait loci (QTL’s) particularly suitable for detecting genomic regions with behavioral 

significance and influence.   
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Some progress has been made. QTL’s that influence hygienic and defensive 

behaviour are now available, though none of this knowledge has yet had much 

practical implication.  Finding QTL’s or genes influencing other colony level traits 

such as honey production and swarming will require additional advanced molecular 

and statistical work, as well as large sample sizes to confirm results.  It would require 

the combined expertise of a well-funded and equipped genetics facility along with a 

proficient and sizable beekeeping program with demonstrable variance in the trait of 

interest within its bee population.  Assisted marker selection in honeybees is still an 

emerging field, and our understanding of the process rudimentary.  Finding genetic 

locations correlating with trait-specific significance would be a start, but much work 

would still remain to understand how to effectively proliferate the desired character 

through crossbreeding.   

Since drone ‘performance’ has little or no tangible influence on desired colony traits, 

they have historically received little attention by breeders.  Nevertheless, the haploid 

state of drones (males) could aid selection in honeybees since it allows for the direct 

testing of individual level traits.  For example, selecting drones expressing notable 

disease (e.g. virus) resistance could help improve tolerance at the colony level. 

Testing traits at the colony level is more complicated since queen honeybees mate 

with multiple males and the observed characteristics can result from interactions 

between a complex mix of genetic backgrounds.  This has been a major barrier to 

breeding improvement in bees.  Consequently, little progress utilizing available 

genomic level information of practical significance has yet been made.  

Agricultural practices have become increasingly mechanized across the developed 

world over recent decades.  These developments have challenged honeybees due to 

loss of suitably diverse forage, and increased pesticide exposure.  Worldwide research 

and debate continue about the possible detrimental influences of pesticides on 

honeybee health and productivity, and concern is frequently expressed about the 

environment in general.  From a regional perspective, the topographical nature of the 

landscape in North and mid-Wales has limited industrialization.  The region could 

therefore be a viable control area (in relation to other areas where more mechanized 

forms of farming are practiced) for experimental work designed to investigate how 

pesticides affect (e.g. neonicotinoids) bees under field conditions.  
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The distribution of Apis mellifera expanded in concert with human expansion out of 

Europe during the latter centuries of the last millennium.  They thrived in many areas 

and colonies can now be found globally within a belt that extends approximately 60° 

north and south of the equator.  Bees became crucial for the production of 

economically important commercial agricultural crops in many regions.  However, as 

the recent declines due to varroa and associated viruses demonstrate, bees can be 

susceptible to novel pest and disease threats.  Because of this, regulations have 

periodically been implemented to limit the movement of bees across international 

borders.   The United States has imposed a decade’s long ban restricting the 

importation of bees from Europe in response to the catastrophic losses observed in 

Britain during the early part of the century.  Bees can currently be imported from 

Canada and New Zealand only.  Australia has restricted imports from all sources 

since 2008, but ten choice queens were recently allowed entry from Canada under 

strict quarantine (Thistelton, 2013).  These queens were sought in efforts to boost 

disease resistance and vitality in isolated populations of Australian bees.  Similar 

concerns have been expressed concerning the limited genetic resources (due to 

historical import restrictions) available in North America.  In response, fresh genetic 

stocks (queens and sperm of A .m. caucasica) have recently been sourced under 

quarantine from Turkey and Georgia (Sheppard, 2013).   

My studies revealed high levels of genetic and phenotypic variation (possibly due in 

part to a mixed genetic heritage) within a small managed population in Wales.  By 

characterizing and isolating lines with specific colony-level traits, (e.g. good 

temperament, production, frugality etc.) this population could provide a genetic 

reservoir for other regions in Britain.  A broader geographic perspective could also be 

considered.  Although the importation of live bees from Britain into many countries is 

restricted (and likely to remain so) the movement of germplasm (sperm and eggs) 

across international borders is possible (Hopkins et al., 2012), and permitted with 

certain precautions.  The transportation of fertilized eggs is probably preferable since 

they are far easier to collect and carry a complete (male and female) genetic package.  

Queens can then be raised from eggs selected from chosen colonies at destination.  

Small scale European bee-breeding operations (such the WWBBP) could be genetic 

reservoirs for global regions suffering declining production and health due to genetic 

depletion.   
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Bee breeding could also benefit if we understood how separate csd alleles differ.  It is 

known that region 3 csd sequences consistently cluster into separate lineages, and each 

cluster is currently considered to be a functionally distinct allele class.  Using this 

approach, Hasselmann et al., (2008) and Yong Liu et al., (2012) report that putatively 

neutral variants from the same class of csd sequences had the same repeat structure in 

the HVR.  Individuals carrying alleles from the same class should therefore develop 

into diploid drones. Controlled mating experiments could provide insight into the 

appropriateness of this classification measure.  For example, by utilizing instrumental 

insemination (II), virgin queen of known csd lineage could be singly mated with sperm 

taken from a drone carrying a functionally similar csd allele.  The matching of 

functionally identical alleles would result in a 50% brood viability since half the brood 

would develop as diploid drones and would be removed by the colony worker-force.  

With time, a concrete picture illustrating of how separate alleles are functionally 

related could be constructed.
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Appendix i: Table A1. 2011 colony data

 

Date Date Date Date Date

QueenID QueenID Score

312 Anwen 1.1 21.6.11 22.7.11 18/+ 16.8.11 13.24 26.48 21.8.11 15.10 30.20 23.8.11 18.18 36.36 29.8.11 19.65 39.30 30.9.11 12.76 25.52 01.10.11 1 9 H+ Ok 3

327 Anwen 1.2 21.6.11 22.7.11 18/0 16.8.11 15.84 31.68 21.8.11 18.72 37.44 23.8.11 22.94 45.88 29.8.11 24.20 48.40 30.9.11 15.75 31.5 01.10.11 6 9 H Calm 2

317 Anwen 1.3 21.6.11 22.7.11 18/+ 16.8.11 14.00 28.00 21.8.11 16.02 32.04 23.8.11 18.08 36.16 29.8.11 20.45 40.90 30.9.11 14.78 29.56 01.10.11 3 8 P and H Ok 3

320 Anwen 1.4 21.6.11 22.7.11 18/0 16.8.11 12.77 25.54 21.8.11 13.00 26.00 23.8.11 16.08 32.16 29.8.11 17.45 34.90 30.9.11 12.7 25.4 01.10.11 2 5 No stores Ok 3 MYC mutt

316 Anwen 1.5 21.6.11 22.7.11 13/0 16.8.11 14.64 29.28 21.8.11 15.67 31.34 23.8.11 19.90 39.80 29.8.11 21.78 43.56 30.9.11 13.54 27.08 01.10.11 4 8 No stores Ok 3 MYC mutt

324 Anwen 1.6 21.6.11 22.7.11 15/0 16.8.11 13.02 26.04 21.8.11 20.30 40.60 23.8.11 23.72 47.44 29.8.11 24.47 48.94 30.9.11 17.36 34.72 01.10.11

319 Catrin 1.3 21.6.11 22.7.11 18/0 16.8.11 16.24 32.48 21.8.11 18.30 36.60 23.8.11 22.02 44.04 29.8.11 24.04 48.08 30.9.11 17.24 34.48 01.10.11 0 P + H Ok 3

325 Catrin 1.4 21.6.11 22.7.11 21/+ 16.8.11 13.56 27.12 21.8.11 16.14 32.28 23.8.11 22.04 44.08 29.8.11 23.80 47.60 30.9.11 16.52 33.04 01.10.11 1 8 H + P Ok 3 Darker 

332 Catrin 1.5 21.6.11 22.7.11 10/o 16.8.11 14.38 28.76 21.8.11 16.28 32.56 23.8.11 19.68 39.36 29.8.11 21.43 42.86 30.9.11 15.24 30.48 01.10.11 2 5 H and P Ok 3 Darker 

331 Catrin 1.6 21.6.11 22.7.11 7/o 16.8.11 15.86 31.72 21.8.11 16.93 33.86 23.8.11 20.66 41.32 29.8.11 20.83 41.66 30.9.11 15.7 31.4 01.10.11 5 8 H P++ Irritated 2 Bigger queen

330 Catrin 1.7 21.6.11 22.7.11 17/0 16.8.11 15.22 30.44 21.8.11 18.20 36.40 23.8.11 19.30 38.60 29.8.11 21.78 43.56 30.9.11 21.08 42.16 01.10.11 1 ? H++ Ok 3 MYC mutt

328 Catrin 1.8 21.6.11 22.7.11 15/- 16.8.11 14.26 28.52 21.8.11 16.20 32.40 23.8.11 19.66 39.32 29.8.11 21.35 42.70 30.9.11 14.76 29.52 01.10.11 0 8 H and P Ok 3 MYC mutt

322 Catrin 1.9 21.6.11 22.7.11 19/+ 16.8.11 16.40 32.80 21.8.11 18.71 37.42 23.8.11 23.06 46.12 29.8.11 24.56 49.12 30.9.11 17.14 34.28 01.10.11 4 9 H and P Ok 3 ??

329 Catrin 1.10 21.6.11 22.7.11 17/0 16.8.11 13.02 26.04 21.8.11 15.20 30.40 23.8.11 18.28 36.56 29.8.11 19.50 39.00 30.9.11 13.5 27 01.10.11 1 Darker 

326 Catrin 1.11 21.6.11 22.7.11 11/- 16.8.11 13.32 26.64 21.8.11 13.30 26.60 23.8.11 13.88 27.76 29.8.11 15.17 30.34 30.9.11 14.01 28.02 01.10.11 4 6 H and P Ok 3 MYC mutt

318 Catrin 1.15 25.6.11 22.7.11 11/o 16.8.11 15.20 30.40 21.8.11 16.22 32.44 23.8.11 19.94 39.88 29.8.11 21.56 43.12 30.9.11 15.84 31.68 01.10.11 6 ?? ?? V. defensive 1 ??

311 Catrin 1.16 25.6.11 22.7.11 14/+ 16.8.11 19.76 39.52 21.8.11 16.93 33.86 23.8.11 21.56 43.12 29.8.11 23.32 46.64 30.9.11 15.41 30.82 01.10.11 5 6 H and P Ok 3 Light with black tip

313 Branwen 1.1 25.6.11 10.8.11 12/o 16.8.11 12.70 25.40 21.8.11 13.22 26.44 23.8.11 18.12 36.24 29.8.11 19.65 39.30 30.9.11 13.4 26.8 01.10.11 6 6 H and P Ok 3 Beautifull

289 Branwen 1.3 25.6.11 10.8.11 ??? 16.8.11 12.38 24.76 21.8.11 12.42 24.84 23.8.11 11.28 22.56 29.8.11 12.76 25.52 30.9.11 11.84 23.68 01.10.11 2 5 H and P Ok 3 Nice darker 

315 Branwen 1.4 25.6.11 10.8.11 12/o 16.8.11 12.34 24.68 21.8.11 13.96 27.92 23.8.11 16.72 33.44 29.8.11 18.18 36.36 30.9.11 13.78 27.56 01.10.11 4 5 H and  P and Brood Ok 3 MYC mutt

309 Branwen 1.5 25.6.11 22.7.11 11/o 16.8.11 12.10 24.20 21.8.11 13.02 26.04 23.8.11 17.34 34.68 29.8.11 19.40 38.80 30.9.11 13.7 27.4 01.10.11 4 5 H and P Ok 3 MYC mutt

266 Carys 1.3 1.7.11 10.8.11 17/+ 16.8.11 15.56 31.12 21.8.11 16.88 33.76 23.18.11 20.06 40.12 23.18.11 22.80 45.60 30.9.11 17.32 34.64 01.10.11 6 ? H and P ok 3 Smallish Dark 

261 Carys 1.4 1.7.11 10.8.11 13/+ 16.8.11 11.90 23.80 21.8.11 12.74 25.48 23.8.11 13.20 26.40 29.8.11 13.87 27.74 30.9.11 12.72 25.44 01.10.11

276 Carys 1.5 1.7.11 10.8.11 23/+ 16.8.11 12.88 25.76 21.8.11 14.32 28.64 23.8.11 18.00 36.00 29.8.11 19.55 39.10 30.9.11 15.1 30.2 01.10.11 3 8 H and P Very V. calm 5 Dark queen

271 Carys 1.6 1.7.11 10.8.11 20/+ 16.8.11 16.66 33.32 21.8.11 18.22 36.44 23.8.11 23.12 46.24 29.8.11 25.40 50.80 30.9.11 19.66 39.32 01.10.11 2 Irritated 2

279 Carys 1.10 1.7.11 10.8.11 11/+ 16.8.11 11.50 23.00 21.8.11 12.18 24.36 23.8.11 14.70 29.40 29.8.11 16.24 32.48 30.9.11 14 28 01.10.11 4 7 H and P Ok 3 Darker 

264 Carys 1.11 1.7.11 10.8.11 13/++ 16.8.11 14.22 28.44 21.8.11 15.22 30.44 23.8.11 19.10 38.20 29.8.11 21.60 43.20 30.9.11 13.95 27.9 01.10.11 1 7 H and P very . Calm 4 Mutt

270 Carys 1.12 1.7.11 10.8.11 11/+ 16.8.11 12.86 25.72 21.8.11 13.48 26.96 23.8.11 16.86 33.72 29.8.11 18.70 37.40 30.9.11 13.18 26.36 01.10.11 1 Irritated 2

275 Carys 1.13 1.7.11 10.8.11 6+ lots bs 16.8.11 16.36 32.72 21.8.11 16.12 32.24 23.8.11 14.38 28.76 29.8.11 15.69 31.38 30.9.11 15.4 30.8 01.10.11 5 6 H+ Ok 3

Weight 

Measured

Weight 

Measured

Hive Weight 

Kg

Nuc to hive 

transfer dateDate of Birth

Colony 

Strength

Weight 

Measured

Hive 

Weight 

Kg Stores Temperament Queen/brood/disease

Hive 

Weight Kg

Weight 

Measured

Hive Weight 

Kg

Weight 

Measured

Hive 

Weight Kg Date

Varroa 

Count

Frames w 

bees



159 
 

Appendix i continued.  2011 Colony data

 

Date Date Date Date Date

QueenID QueenID Score

282 Llinos 1.1 30.6.11 10.8.11 19/+ 16.8.11 12.38 24.76 21.8.11 13.08 26.16 23.8.11 16.20 32.40 29.8.11 17.50 35.00 30.9.11 11.88 23.76 01.10.11 13 4 H and P ok 3

281 Llinos 1.2 30.6.11 10.8.11 21/+ 16.8.11 14.02 28.04 21.8.11 15.24 30.48 23.8.11 18.06 36.12 29.8.11 20.11 40.22 30.9.11 15.86 31.72 01.10.11 0 9 H and P Ok 3

310 Llinos 1.3 30.6.11 10.8.11 8/- 16.8.11 12.90 25.80 21.8.11 13.66 27.32 23.8.11 11.96 23.92 29.8.11 12.72 25.44 30.9.11 11.74 23.48 01.10.11 7 5 Small amount of H ok 3

283 Llinos 1.5 30.6.11 10.8.11 15/0 16.8.11 12.90 25.80 21.8.11 13.36 26.72 23.8.11 15.60 31.20 29.8.11 17.45 34.90 30.9.11 13.46 26.92 01.10.11 6 6 Some brood, H- ok 3

285 Llinos 1.6 30.6.11 10.8.11 15/++ 16.8.11 14.94 29.88 21.8.11 16.60 33.20 23.8.11 19.28 38.56 29.8.11 20.80 41.60 30.9.11 16.68 33.36 01.10.11 6 H + and P+ Ok 3

280 Llinos 1.7 30.6.11 10.8.11 15/+ 16.8.11 14.78 29.56 21.8.11 16.00 32.00 23.8.11 19.14 38.28 29.8.11 19.68 39.36 30.9.11 15.4 30.8 01.10.11 4 H+ Irritated 2

284 Llinos 1.10 30.6.11 10.8.11 8/o 16.8.11 10.14 20.28 21.8.11 11.60 23.20 23.8.11 11.54 23.08 29.8.11 12.30 24.60 30.9.11 11.16 22.32 01.10.11 3 6 Some H and P Ok 3

286 Llinos 1.11 30.6.11 10.8.11 8/o 16.8.11 12.66 25.32 21.8.11 12.04 24.08 23.8.11 12.48 24.96 29.8.11 13.58 27.16 30.9.11 12.86 25.72 01.10.11 ? small Ok 3

297 Llinos 1.12 30.6.11 10.8.11 11/+ 16.8.11 11.54 23.08 21.8.11 13.58 27.16 23.8.11 18.48 36.96 29.8.11 20.20 40.40 30.9.11 14.6 29.2 01.10.11 4 6 H+ Ok 3

287 Marged 1.6 10.8.11 13/0 16.8.11 12.02 24.04 21.8.11 12.74 25.48 23.8.11 16.84 33.68 29.8.11 22.18 44.36 30.9.11 16.3 32.6 01.10.11 ? small amount of H Ok 3

298 Nia 1.1 07/01/2011 10.8.11 8/+ 16.8.11 14.12 28.24 21.8.11 14.8 29.60 23.8.11 17.52 35.04 29.8.11 19.35 38.70 30.9.11 14.66 29.32 01.10.11

290 Nia 1.3 07/01/2011 10.8.11 9/+ 16.8.11 14.1 28.20 21.8.11 14.02 28.04 23.8.11 17.56 35.12 29.8.11 18.78 37.56 30.9.11 13.94 27.88 01.10.11

300 Nia 1.5 07/01/2011 10.8.11 15/+ 16.8.11 11.14 22.28 21.8.11 12.64 25.28 23.8.11 17.2 34.40 29.8.11 21.07 42.14 30.9.11 14.26 28.52 01.10.11 1 V.V.defensive 1

294 Nia 1.12 07/01/2011 10.8.11 15/+ 16.8.11 13.06 26.12 21.8.11 13.32 26.64 23.8.11 19.66 39.32 29.8.11 17.28 34.56 30.9.11 12.96 25.92 01.10.11 V.V.defensive 1

291 Nia 1.13 07/01/2011 10.8.11 21/+ 16.8.11 12.9 25.80 21.8.11 14.12 28.24 23.8.11 17.24 34.48 29.8.11 19.74 39.48 30.9.11 13.28 26.56 01.10.11

292 Nia 1.14 07/01/2011 10.8.11 15/+ 16.8.11 11.22 22.44 21.8.11 12.88 25.76 23.8.11 17.14 34.28 29.8.11 19.34 38.68 30.9.11 12.88 25.76 01.10.11 3 V. defensive 2

295 Nia 1.15 07/01/2011 10.8.11 7/o 16.8.11 14.66 29.32 21.8.11 13.65 27.30 23.8.11 11.78 23.56 29.8.11 12.29 24.58 30.9.11 11.78 23.56 01.10.11 ? Very weak ok 3

303 Nia 1.17 07/01/2011 10.8.11 11/+ 16.8.11 13.04 26.08 21.8.11 13.2 26.40 23.8.11 14.7 29.40 29.8.11 16.04 32.08 30.9.11 ?? 01.10.11 2 6 H+ Ok 3

323 Nia 1.18 07/01/2011 10.8.11 14/+ 16.8.11 16.68 33.36 21.8.11 16.74 33.48 23.8.11 19.68 39.36 29.8.11 20.5 41.00 30.9.11 14.8 29.6 01.10.11 10 7 H and P V. defensive 2

314 Nia 1.20 07/01/2011 10.8.11 8/+ 16.8.11 14.34 28.68 21.8.11 14.1 28.20 23.8.11 17.32 34.64 29.8.11 18.1 36.20 30.9.11 12.32 24.64 01.10.11

518 Gwenllian 1.8 07/08/2011 17.8.11 17/0 21.8.11 11.96 23.92 23.8.11 15.81 31.62 29.8.11 17.05 34.10 30.9.11 12.68 25.36 01.10.11 V, Defensive 2

267 Gwenllian 1.10 07/08/2011 17.8.11 17/+ 21.8.11 12.46 24.92 23.8.11 15.56 31.12 29.8.11 17.7 35.40 30.9.11 13.16 26.32 01.10.11 5 4 H and P Ok 3

515 Lucy29 1.1 07/08/2011 17.8.11 21/+ Not 21.8.11 13.24 26.48 23.8.11 18.06 36.12 29.8.11 19.87 39.74 30.9.11 15.16 30.32 01.10.11 1 6 H and P ok 3

511 Lucy29 1.2 07/08/2011 17.8.11 19/++ 21.8.11 14.02 28.04 23.8.11 20.26 40.52 29.8.11 21.3 42.60 30.9.11 14.8 29.6 01.10.11 50 6 H and P ok 3

259 Lucy29 1.3 07/08/2011 17.8.11 19/0 on 21.8.11 17.4 34.80 23.8.11 19.74 39.48 29.8.11 21.5 43.00 30.9.11 16.68 33.36 01.10.11 8 6 H and P Ok 3

272 Lucy29 1.6 07/08/2011 17.8.11 19/0 21.8.11 13.7 27.40 23.8.11 18.66 37.32 29.8.11 21.2 42.40 30.9.11 14.8 29.6 01.10.11 10 5 H and P ok 3

269 Lucy29 1.8 07/08/2011 17.8.11 16/+ Heather 21.8.11 14.84 29.68 23.8.11 21.6 43.20 29.8.11 21.4 42.80 30.9.11 13.82 27.64 01.10.11 2 5 H++ and p Defensive 2

273 Lucy29 1.9 07/08/2011 17.8.11 20/+ 21.8.11 13.16 26.32 23.8.11 16.36 32.72 29.8.11 17.2 34.40 30.9.11 13.1 26.2 01.10.11 5 Defensive 2

274 Lucy29 1.13 07/08/2011 17.8.11 19/0 21.8.11 15.84 31.68 23.8.11 19.02 38.04 29.8.11 20.67 41.34 30.9.11 16.48 32.96 01.10.11 1 6 H and P ok 3

260 Dwynwen 1.6 07/08/2011 17.8.11 10/+ yet 21.8.11 12.84 25.68 23.8.11 12.18 24.36 29.8.11 12.7 25.40 30.9.11 11.64 23.28 01.10.11 8 5 H and p ok 3

277 Dwynwen 1.9 07/08/2011 17.8.11 13/0 21.8.11 11.16 22.32 23.8.11 12.1 24.20 29.8.11 13.64 27.28 30.9.11 13.1 26.2 01.10.11 13 4 H and P ok 3

263 Sioned 1.1 07/08/2011 17.8.11 11/+ 21.8.11 14.46 28.92 23.8.11 18.26 36.52 29.8.11 19.22 38.44 30.9.11 14.08 28.16 01.10.11 0 5 SOME STORES ok 3
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Appendix ii.  Table A2.  2012 colony data 

 

MotherID ColonyID Date

Weight 

Measured

Hive 

Weight Kg Date

Weight 

Measured

Hive 

Weight Kg Date

Weight 

Measured

Hive Weight 

Kg

Weight change 

26/8-6/9 Date

Weight 

Measured Hive Weight Kg Date

Varroa 

Count

Frames w 

bees

Frames w 

brood brood

Temperament 

LLandegla 

4/9/12

Anwen 2.1 1 08/08/2012 13.72 27.44 26/08/2012 16.28 32.56 06/09/2012 17.30 34.60 2.04 08/09/2012 16.74 33.48 08/09/2012 11 6 3 10 15

Anwen 2.2 369 08/08/2012 14.78 29.56 26/08/2012 16.90 33.80 06/09/2012 16.12 32.24 -1.56 08/09/2012 16.09 32.18 28/08/2012 2 7 4 15 2

Anwen 2.3 287 08/08/2012 12.74 25.48 26/08/2012 15.30 30.60 06/09/2012 18.78 37.56 6.96 08/09/2012 16.52 33.04 28/08/2012 19 6 3 13 15

Anwen 2.4 9 08/08/2012 17.02 34.04 26/08/2012 19.08 38.16 06/09/2012 19.98 39.96 1.80 08/09/2012 19.28 38.56 28/08/2012 8 3.5

Anwen 2.5 419 08/08/2012 16.48 32.96 26/08/2012 18.04 36.08 06/09/2012 20.68 41.36 5.28 08/09/2012 20.98 41.96 28/08/2012 10 6 4 11 16

Anwen 2.6 13 08/08/2012 15.30 30.60 26/08/2012 18.04 36.08 06/09/2012 18.60 37.20 1.12 08/09/2012 18.24 36.48 28/08/2012 5 6 2 9 1

Anwen 2.7 26 08/08/2012 18.50 37.00 26/08/2012 19.90 39.80 06/09/2012 20.76 41.52 1.72 08/09/2012 20.42 40.84 02/09/2012 22

Anwen 2.8 47 26/08/2012 16.50 33.00 06/09/2012 16.50 33.00 0.00 30 6 3 13 0

Anwen 2.9 48 26/08/2012 18.60 37.20 06/09/2012 18.48 36.96 -0.24 1 6 4 0

Anwen 2.10 49 26/08/2012 17.50 35.00 06/09/2012 17.50 35.00 0.00 9 6 3 0

Carys 2.1 2 08/08/2012 22.30 44.60 26/08/2012 17.88 35.76 06/09/2012 9.52 19.04 -8.84 08/09/2012 0.00 08/09/2012 35 6 4 11 33

Carys 2.2 4 08/08/2012 22.40 44.80 26/08/2012 25.06 50.12 06/09/2012 25.50 51.00 0.88 08/09/2012 24.88 49.76 28/08/2012 12 7 4 18 0

Carys 2.3 8 08/08/2012 16.48 32.96 26/08/2012 17.14 34.28 06/09/2012 17.46 34.92 0.64 08/09/2012 17.50 35.00 28/08/2012

Carys 2.4 12 08/08/2012 12.08 24.16 26/08/2012 16.40 32.80 06/09/2012 19.98 39.96 7.16 08/09/2012 19.06 38.12 28/08/2012 8 6 2.5 10 19

Carys 2.5 14 08/08/2012 17.08 34.16 26/08/2012 20.38 40.76 06/09/2012 21.53 43.06 2.30 08/09/2012 21.72 43.44 02/09/2012 0 7 4 15 1

Carys 2.6 17 08/08/2012 14.40 28.80 26/08/2012 17.88 35.76 06/09/2012 19.60 39.20 3.44 08/09/2012 19.68 39.36 02/09/2012 5 6 4 9 0

Carys 2.7 376 08/08/2012 16.64 33.28 26/08/2012 16.38 32.76 06/09/2012 17.86 35.72 2.96 08/09/2012 17.50 35.00 02/09/2012 12 6 4 12 0

Carys 2.8 18 08/08/2012 16.50 33.00 26/08/2012 18.70 37.40 06/09/2012 21.40 42.80 5.40 08/09/2012 20.18 40.36 02/09/2012 3 6 3 12 2

Carys 2.9 20 08/08/2012 20.40 40.80 26/08/2012 15.28 30.56 06/09/2012 17.30 34.60 4.04 08/09/2012 18.18 36.36 02/09/2012 4 2 10 21

Carys 2.10 21 08/08/2012 16.72 33.44 26/08/2012 17.14 34.28 06/09/2012 17.34 34.68 0.40 08/09/2012 18.22 36.44 02/09/2012 25 5 2 7 44

Carys 2.11 372 08/08/2012 20.44 40.88 26/08/2012 21.90 43.80 06/09/2012 21.38 42.76 -1.04 08/09/2012 21.65 43.30 02/09/2012 13

Carys 2.12 378 08/08/2012 17.30 34.60 26/08/2012 18.08 36.16 06/09/2012 20.04 40.08 3.92 08/09/2012 20.10 40.20 02/09/2012 6 3 13 3

Carys 2.13 421 08/08/2012 18.22 36.44 26/08/2012 19.06 38.12 06/09/2012 18.49 36.98 -1.14 08/09/2012 18.54 37.08 02/09/2012 25

Carys 2.14 31 08/08/2012 16.66 33.32 26/08/2012 20.38 40.76 06/09/2012 18.28 36.56 -4.20 08/09/2012 0.00 03/09/2012 8 5 15

Carys 2.15 38 08/08/2012 16.38 32.76 26/08/2012 18.02 36.04 06/09/2012 16.54 33.08 -2.96 08/09/2012 16.46 32.92 03/09/2012 3 6 4 8 2

Carys 2.16 336 08/08/2012 18.1 36.20 26/08/2012 18.28 36.56 06/09/2012 17.5 35.00 -1.56 08/09/2012 17.22 34.44 03/09/2012 4 7 4 13 12

Carys 2.17 39 08/08/2012 16.8 33.60 26/08/2012 17.5 35.00 06/09/2012 16.5 33.00 -2.00 08/09/2012 15.44 30.88 03/09/2012 7 4 10 6

Carys 2.18 40 08/08/2012 18.7 37.40 26/08/2012 21.3 42.60 06/09/2012 20.45 40.90 -1.70 08/09/2012 20.15 40.30 03/09/2012 12 7 4 10 28

Carys 2.19 42 08/08/2012 17.78 35.56 26/08/2012 18.16 36.32 06/09/2012 17.66 35.32 -1.00 08/09/2012 16.10 32.20 03/09/2012 7 5 3 9 38

Carys 2.20 43 08/08/2012 15.6 31.20 26/08/2012 17.65 35.30 06/09/2012 19.42 38.84 3.54 08/09/2012 19.54 39.08 03/09/2012 7 4 10 40

Carys 2.21 50 0.00 26/08/2012 22.3 44.60 06/09/2012 17.88 35.76 -8.84 08/09/2012 18.70 37.40 03/09/2012 35 6 4 11 33
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Appendix ii continued.  2012 colony data
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Appendix III;  Matlab code for Microsatellite simulation model 

 

%Microsat model input allele frequencies 
nqueens = 100; 
queenalleles=2; 
nobreeders1=8; 
nobreeders2=4; 
nobreeders3=4; 
nobreeders4=4; 
nobreeders5=4; 
nodrones=7; 
a = 1000; %number of iterations  
for freqallele1=(1:a); 
     freqallele2=(1:a); 
         freqallele3=(1:a); 
             freqallele4=(1:a); 
                freqallele5=(1:a); 
                    freqallele6=(1:a); 
                        freqallele7=(1:a); 
                            freqallele8=(1:a); 
                                 freqallele9=(1:a); 
                                     freqallele10=(1:a); 
                                        freqallele11=(1:a); 
                                           freqallele12=(1:a); 

 

% ENTER ALLELE FREQUENCY DISTRIBUTION HERE 

 

Distributiond=rand(nqueens,nodrones); 
allele1d_0=(Distributiond>0) & (Distributiond<0.038); 
allele2d_0=(Distributiond>=0.038) & (Distributiond<0.113); 
allele3d_0=(Distributiond>=0.113) & (Distributiond<0.236); 
allele4d_0=(Distributiond>=0.236) & (Distributiond<0.311); 
allele5d_0=(Distributiond>=0.311) & (Distributiond<0.425); 
allele6d_0=(Distributiond>=0.425) & (Distributiond<0.491); 
allele7d_0=(Distributiond>=0.491) & (Distributiond<0.774); 
allele8d_0=(Distributiond>=0.774) & (Distributiond<0.896); 
allele9d_0=(Distributiond>=0.896) & (Distributiond<0.962); 
allele10d_0=(Distributiond>=0.962) & (Distributiond<0.991); 
allele11d_0=(Distributiond>=0.991) & (Distributiond<1); 
allele12d_0=(Distributiond>=1) & (Distributiond<1); 

  
count_allele1d=sum(allele1d_0); 
count_allele2d=sum(allele2d_0); 
count_allele3d=sum(allele3d_0); 
count_allele4d=sum(allele4d_0); 
count_allele5d=sum(allele5d_0); 
count_allele6d=sum(allele6d_0); 
count_allele7d=sum(allele7d_0); 
count_allele8d=sum(allele8d_0); 
count_allele9d=sum(allele9d_0); 
count_allele10d=sum(allele10d_0); 
count_allele11d=sum(allele11d_0); 
count_allele12d=sum(allele12d_0); 



163 
 
 

  
freqallele1d_0=sum(count_allele1d)/(nqueens*nodrones); 
freqallele2d_0=sum(count_allele2d)/(nqueens*nodrones); 
freqallele3d_0=sum(count_allele3d)/(nqueens*nodrones); 
freqallele4d_0=sum(count_allele4d)/(nqueens*nodrones); 
freqallele5d_0=sum(count_allele5d)/(nqueens*nodrones); 
freqallele6d_0=sum(count_allele6d)/(nqueens*nodrones); 
freqallele7d_0=sum(count_allele7d)/(nqueens*nodrones); 
freqallele8d_0=sum(count_allele8d)/(nqueens*nodrones); 
freqallele9d_0=sum(count_allele9d)/(nqueens*nodrones); 
freqallele10d_0=sum(count_allele10d)/(nqueens*nodrones); 
freqallele11d_0=sum(count_allele11d)/(nqueens*nodrones); 
freqallele12d_0=sum(count_allele12d)/(nqueens*nodrones); 

  

  
%Describe baseline queen allele frequency dist 

  
Distribution=rand(nqueens,queenalleles); 

  
allele1q_0=(Distribution>0) & (Distribution<0.038); 
allele2q_0=(Distribution>=0.038) & (Distribution<0.113); 
allele3q_0=(Distribution>=0.113) & (Distribution<0.236); 
allele4q_0=(Distribution>=0.236) & (Distribution<0.311); 
allele5q_0=(Distribution>=0.311) & (Distribution<0.425); 
allele6q_0=(Distribution>=0.425) & (Distribution<0.491); 
allele7q_0=(Distribution>=0.491) & (Distribution<0.774); 
allele8q_0=(Distribution>=0.774) & (Distribution<0.896); 
allele9q_0=(Distribution>=0.896) & (Distribution<0.962); 
allele10q_0=(Distribution>=0.962) & (Distribution<0.991); 
allele11q_0=(Distribution>=0.991) & (Distribution<1); 
allele12q_0=(Distribution>=1) & (Distribution<1); 

  
count_allele1q_0=sum(allele1q_0); 
count_allele2q_0=sum(allele2q_0); 
count_allele3q_0=sum(allele3q_0); 
count_allele4q_0=sum(allele4q_0); 
count_allele5q_0=sum(allele5q_0); 
count_allele6q_0=sum(allele6q_0); 
count_allele7q_0=sum(allele7q_0); 
count_allele8q_0=sum(allele8q_0); 
count_allele9q_0=sum(allele9q_0); 
count_allele10q_0=sum(allele10q_0); 
count_allele11q_0=sum(allele11q_0); 
count_allele12q_0=sum(allele12q_0); 

  
freqallele1q_0=sum(count_allele1q_0)/(nqueens*queenalleles); 
freqallele2q_0=sum(count_allele2q_0)/(nqueens*queenalleles); 
freqallele3q_0=sum(count_allele3q_0)/(nqueens*queenalleles); 
freqallele4q_0=sum(count_allele4q_0)/(nqueens*queenalleles); 
freqallele5q_0=sum(count_allele5q_0)/(nqueens*queenalleles); 
freqallele6q_0=sum(count_allele6q_0)/(nqueens*queenalleles); 
freqallele7q_0=sum(count_allele7q_0)/(nqueens*queenalleles); 
freqallele8q_0=sum(count_allele8q_0)/(nqueens*queenalleles); 
freqallele9q_0=sum(count_allele9q_0)/(nqueens*queenalleles); 
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freqallele10q_0=sum(count_allele10q_0)/(nqueens*queenalleles); 
freqallele11q_0=sum(count_allele11q_0)/(nqueens*queenalleles); 
freqallele12q_0=sum(count_allele12q_0)/(nqueens*queenalleles); 

  
%generate overall simulated population level gene distribution by adding 
%the weighted values of drone and queen derived alleles 

  
freqallele1_0=((2*freqallele1d_0+freqallele1q_0)/3) 
freqallele2_0=((2*freqallele2d_0+freqallele2q_0)/3) 
freqallele3_0=((2*freqallele3d_0+freqallele3q_0)/3) 
freqallele4_0=((2*freqallele4d_0+freqallele4q_0)/3) 
freqallele5_0=((2*freqallele5d_0+freqallele5q_0)/3) 
freqallele6_0=((2*freqallele6d_0+freqallele6q_0)/3) 
freqallele7_0=((2*freqallele7d_0+freqallele7q_0)/3) 
freqallele8_0=((2*freqallele8d_0+freqallele8q_0)/3) 
freqallele9_0=((2*freqallele9d_0+freqallele9q_0)/3) 
freqallele10_0=((2*freqallele10d_0+freqallele10q_0)/3) 
freqallele11_0=((2*freqallele11d_0+freqallele11q_0)/3) 
freqallele12_0=((2*freqallele12d_0+freqallele12q_0)/3) 

  

  

  
mat1_G0(freqallele1)=freqallele1_0 
mat2_G0(freqallele1)=freqallele2_0 
mat3_G0(freqallele1)=freqallele3_0 
mat4_G0(freqallele1)=freqallele4_0 
mat5_G0(freqallele1)=freqallele5_0 
mat6_G0(freqallele1)=freqallele6_0 
mat7_G0(freqallele1)=freqallele7_0 
mat8_G0(freqallele1)=freqallele8_0 
mat9_G0(freqallele1)=freqallele9_0 
mat10_G0(freqallele1)=freqallele10_0 
mat11_G0(freqallele1)=freqallele11_0 
mat12_G0(freqallele1)=freqallele12_0 

  
Breeders1=datasample(Distribution,nobreeders1); 

 
allele1q_1=(Breeders1>0) & (Breeders1<freqallele1_0); 
allele2q_1=(Breeders1>=freqallele1_0) & 

(Breeders1<(freqallele1_0+freqallele2_0)); 
allele3q_1=(Breeders1>=(freqallele1_0+freqallele2_0)) & 

(Breeders1<(freqallele1_0+freqallele2_0+freqallele3_0)); 
allele4q_1=(Breeders1>=(freqallele1_0+freqallele2_0+freqallele3_0)) & 

(Breeders1<(freqallele1_0+freqallele2_0+freqallele3_0+freqallele4_0)); 
allele5q_1=(Breeders1>=(freqallele1_0+freqallele2_0+freqallele3_0+freqalle

le4_0)) & 

(Breeders1<(freqallele1_0+freqallele2_0+freqallele3_0+freqallele4_0+freqal

lele5_0)); 
allele6q_1=(Breeders1>=(freqallele1_0+freqallele2_0+freqallele3_0+freqalle

le4_0+freqallele5_0)) & 

(Breeders1<(freqallele1_0+freqallele2_0+freqallele3_0+freqallele4_0+freqal

lele5_0+freqallele6_0)); 
allele7q_1=(Breeders1>=(freqallele1_0+freqallele2_0+freqallele3_0+freqalle

le4_0+freqallele5_0+freqallele6_0)) & 
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(Breeders1<(freqallele1_0+freqallele2_0+freqallele3_0+freqallele4_0+freqal

lele5_0+freqallele6_0+freqallele7_0)); 
allele8q_1=(Breeders1>=(freqallele1_0+freqallele2_0+freqallele3_0+freqalle

le4_0+freqallele5_0+freqallele6_0+freqallele7_0)) & 

(Breeders1<(freqallele1_0+freqallele2_0+freqallele3_0+freqallele4_0+freqal

lele5_0+freqallele6_0+freqallele7_0+freqallele8_0)); 
allele9q_1=(Breeders1>=(freqallele1_0+freqallele2_0+freqallele3_0+freqalle

le4_0+freqallele5_0+freqallele6_0+freqallele7_0+freqallele8_0)) & 

(Breeders1<(freqallele1_0+freqallele2_0+freqallele3_0+freqallele4_0+freqal

lele5_0+freqallele6_0+freqallele7_0+freqallele8_0+freqallele9_0)); 
allele10q_1=(Breeders1>=(freqallele1_0+freqallele2_0+freqallele3_0+freqall

ele4_0+freqallele5_0+freqallele6_0+freqallele7_0+freqallele8_0+freqallele9

_0)) & 

(Breeders1<(freqallele1_0+freqallele2_0+freqallele3_0+freqallele4_0+freqal

lele5_0+freqallele6_0+freqallele7_0+freqallele8_0+freqallele9_0+freqallele

10_0)); 
allele11q_1=(Breeders1>=(freqallele1_0+freqallele2_0+freqallele3_0+freqall

ele4_0+freqallele5_0+freqallele6_0+freqallele7_0+freqallele8_0+freqallele9

_0+freqallele10_0)) & 

(Breeders1<(freqallele1_0+freqallele2_0+freqallele3_0+freqallele4_0+freqal

lele5_0+freqallele6_0+freqallele7_0+freqallele8_0+freqallele9_0+freqallele

10_0+freqallele11_0)); 
allele12q_1=(Breeders1>=(freqallele1_0+freqallele2_0+freqallele3_0+freqall

ele4_0+freqallele5_0+freqallele6_0+freqallele7_0+freqallele8_0+freqallele9

_0+freqallele10_0+freqallele11_0)) & (Breeders1<1.0); 

  
count_allele1q_1=sum(allele1q_1); 
count_allele2q_1=sum(allele2q_1); 
count_allele3q_1=sum(allele3q_1); 
count_allele4q_1=sum(allele4q_1); 
count_allele5q_1=sum(allele5q_1); 
count_allele6q_1=sum(allele6q_1); 
count_allele7q_1=sum(allele7q_1); 
count_allele8q_1=sum(allele8q_1); 
count_allele9q_1=sum(allele9q_1); 
count_allele10q_1=sum(allele10q_1); 
count_allele11q_1=sum(allele11q_1); 
count_allele12q_1=sum(allele12q_1); 

  

  
freqallele1q_1=sum(count_allele1q_1)/(nobreeders1*queenalleles); 
freqallele2q_1=sum(count_allele2q_1)/(nobreeders1*queenalleles); 
freqallele3q_1=sum(count_allele3q_1)/(nobreeders1*queenalleles); 
freqallele4q_1=sum(count_allele4q_1)/(nobreeders1*queenalleles); 
freqallele5q_1=sum(count_allele5q_1)/(nobreeders1*queenalleles); 
freqallele6q_1=sum(count_allele6q_1)/(nobreeders1*queenalleles); 
freqallele7q_1=sum(count_allele7q_1)/(nobreeders1*queenalleles); 
freqallele8q_1=sum(count_allele8q_1)/(nobreeders1*queenalleles); 
freqallele9q_1=sum(count_allele9q_1)/(nobreeders1*queenalleles); 
freqallele10q_1=sum(count_allele10q_1)/(nobreeders1*queenalleles); 
freqallele11q_1=sum(count_allele11q_1)/(nobreeders1*queenalleles); 
freqallele12q_1=sum(count_allele12q_1)/(nobreeders1*queenalleles); 

  
Ballelefreq1_G1=(2*freqallele1q_1+freqallele1d_0)/3 
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Ballelefreq2_G1=(2*freqallele2q_1+freqallele2d_0)/3 
Ballelefreq3_G1=(2*freqallele3q_1+freqallele3d_0)/3 
Ballelefreq4_G1=(2*freqallele4q_1+freqallele4d_0)/3 
Ballelefreq5_G1=(2*freqallele5q_1+freqallele5d_0)/3 
Ballelefreq6_G1=(2*freqallele6q_1+freqallele6d_0)/3 
Ballelefreq7_G1=(2*freqallele7q_1+freqallele7d_0)/3 
Ballelefreq8_G1=(2*freqallele8q_1+freqallele8d_0)/3 
Ballelefreq9_G1=(2*freqallele9q_1+freqallele9d_0)/3 
Ballelefreq10_G1=(2*freqallele10q_1+freqallele10d_0)/3 
Ballelefreq11_G1=(2*freqallele11q_1+freqallele11d_0)/3 
Ballelefreq12_G1=(2*freqallele12q_1+freqallele12d_0)/3 

  

 

 
%GENERATE 100 QUEENS WITH ABOVE DISTRIBUTION 
DistGen1Q=rand(nqueens,queenalleles) ; 

  
allele1q_1=(DistGen1Q>0) & (DistGen1Q<Ballelefreq1_G1); 
allele2q_1=(DistGen1Q>=Ballelefreq1_G1) & 

(DistGen1Q<(Ballelefreq1_G1+Ballelefreq2_G1)); 
allele3q_1=(DistGen1Q>=(Ballelefreq1_G1+Ballelefreq2_G1)) & 

(DistGen1Q<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1)); 
allele4q_1=(DistGen1Q>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1)) 

& 

(DistGen1Q<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4_G

1)); 
allele5q_1=(DistGen1Q>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ba

llelefreq4_G1)) & 

(DistGen1Q<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4_G

1+Ballelefreq5_G1)); 
allele6q_1=(DistGen1Q>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ba

llelefreq4_G1+Ballelefreq5_G1)) & 

(DistGen1Q<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4_G

1+Ballelefreq5_G1+Ballelefreq6_G1)); 
allele7q_1=(DistGen1Q>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ba

llelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1)) & 

(DistGen1Q<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4_G

1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1)); 
allele8q_1=(DistGen1Q>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ba

llelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1)) & 

(DistGen1Q<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4_G

1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1)); 
allele9q_1=(DistGen1Q>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ba

llelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8

_G1)) & 

(DistGen1Q<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4_G

1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1+Ballelef

req9_G1)); 
allele10q_1=(DistGen1Q>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+B

allelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq

8_G1+Ballelefreq9_G1)) & 

(DistGen1Q<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4_G

1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1+Ballelef

req9_G1+Ballelefreq10_G1)); 
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allele11q_1=(DistGen1Q>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+B

allelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq

8_G1+Ballelefreq9_G1+Ballelefreq10_G1)) & 

(DistGen1Q<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4_G

1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1+Ballelef

req9_G1+Ballelefreq10_G1+Ballelefreq11_G1)); 
allele12q_1=(DistGen1Q>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+B

allelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq

8_G1+Ballelefreq9_G1+Ballelefreq10_G1+Ballelefreq11_G1)) & (DistGen1Q<1); 

  
count_allele1q_1=sum(allele1q_1); 
count_allele2q_1=sum(allele2q_1); 
count_allele3q_1=sum(allele3q_1); 
count_allele4q_1=sum(allele4q_1); 
count_allele5q_1=sum(allele5q_1); 
count_allele6q_1=sum(allele6q_1); 
count_allele7q_1=sum(allele7q_1); 
count_allele8q_1=sum(allele8q_1); 
count_allele9q_1=sum(allele9q_1); 
count_allele10q_1=sum(allele10q_1); 
count_allele11q_1=sum(allele11q_1); 
count_allele12q_1=sum(allele12q_1); 

  
freqallele1q_1=sum(count_allele1q_1)/(nqueens*queenalleles) 
freqallele2q_1=sum(count_allele2q_1)/(nqueens*queenalleles) 
freqallele3q_1=sum(count_allele3q_1)/(nqueens*queenalleles) 
freqallele4q_1=sum(count_allele4q_1)/(nqueens*queenalleles) 
freqallele5q_1=sum(count_allele5q_1)/(nqueens*queenalleles) 
freqallele6q_1=sum(count_allele6q_1)/(nqueens*queenalleles) 
freqallele7q_1=sum(count_allele7q_1)/(nqueens*queenalleles) 
freqallele8q_1=sum(count_allele8q_1)/(nqueens*queenalleles) 
freqallele9q_1=sum(count_allele9q_1)/(nqueens*queenalleles) 
freqallele10q_1=sum(count_allele10q_1)/(nqueens*queenalleles) 
freqallele11q_1=sum(count_allele11q_1)/(nqueens*queenalleles) 
freqallele12q_1=sum(count_allele12q_1)/(nqueens*queenalleles) 

  
freqallele1_1=((2*freqallele1q_1+freqallele1d_0)/3) 
freqallele2_1=((2*freqallele2q_1+freqallele2d_0)/3) 
freqallele3_1=((2*freqallele3q_1+freqallele3d_0)/3) 
freqallele4_1=((2*freqallele4q_1+freqallele4d_0)/3) 
freqallele5_1=((2*freqallele5q_1+freqallele5d_0)/3) 
freqallele6_1=((2*freqallele6q_1+freqallele6d_0)/3) 
freqallele7_1=((2*freqallele7q_1+freqallele7d_0)/3) 
freqallele8_1=((2*freqallele8q_1+freqallele8d_0)/3) 
freqallele9_1=((2*freqallele9q_1+freqallele9d_0)/3) 
freqallele10_1=((2*freqallele10q_1+freqallele10d_0)/3) 
freqallele11_1=((2*freqallele11q_1+freqallele11d_0)/3) 
freqallele12_1=((2*freqallele12q_1+freqallele12d_0)/3) 

  
mat1_G1(freqallele1)=freqallele1_1 
mat2_G1(freqallele1)=freqallele2_1 
mat3_G1(freqallele1)=freqallele3_1 
mat4_G1(freqallele1)=freqallele4_1 
mat5_G1(freqallele1)=freqallele5_1 
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mat6_G1(freqallele1)=freqallele6_1 
mat7_G1(freqallele1)=freqallele7_1 
mat8_G1(freqallele1)=freqallele8_1 
mat9_G1(freqallele1)=freqallele9_1 
mat10_G1(freqallele1)=freqallele10_1 
mat11_G1(freqallele1)=freqallele11_1 
mat12_G1(freqallele1)=freqallele12_1 

  
 

Breeders2=datasample(Distribution,nobreeders2); 

 
allele1q_2=(Breeders2>0) & (Breeders2<freqallele1_1); 
allele2q_2=(Breeders2>=freqallele1_1) & 

(Breeders2<(freqallele1_1+freqallele2_1)); 
allele3q_2=(Breeders2>=(freqallele1_1+freqallele2_1)) & 

(Breeders2<(freqallele1_1+freqallele2_1+freqallele3_1)); 
allele4q_2=(Breeders2>=(freqallele1_1+freqallele2_1+freqallele3_1)) & 

(Breeders2<(freqallele1_1+freqallele2_1+freqallele3_1+freqallele4_1)); 
allele5q_2=(Breeders2>=(freqallele1_1+freqallele2_1+freqallele3_1+freqalle

le4_1)) & 

(Breeders2<(freqallele1_1+freqallele2_1+freqallele3_1+freqallele4_1+freqal

lele5_1)); 
allele6q_2=(Breeders2>=(freqallele1_1+freqallele2_1+freqallele3_1+freqalle

le4_1+freqallele5_1)) & 

(Breeders2<(freqallele1_1+freqallele2_1+freqallele3_1+freqallele4_1+freqal

lele5_1+freqallele6_1)); 
allele7q_2=(Breeders2>=(freqallele1_1+freqallele2_1+freqallele3_1+freqalle

le4_1+freqallele5_1+freqallele6_1)) & 

(Breeders2<(freqallele1_1+freqallele2_1+freqallele3_1+freqallele4_1+freqal

lele5_1+freqallele6_1+freqallele7_1)); 
allele8q_2=(Breeders2>=(freqallele1_1+freqallele2_1+freqallele3_1+freqalle

le4_1+freqallele5_1+freqallele6_1+freqallele7_1)) & 

(Breeders2<(freqallele1_1+freqallele2_1+freqallele3_1+freqallele4_1+freqal

lele5_1+freqallele6_1+freqallele7_1+freqallele8_1)); 
allele9q_2=(Breeders2>=(freqallele1_1+freqallele2_1+freqallele3_1+freqalle

le4_1+freqallele5_1+freqallele6_1+freqallele7_1+freqallele8_1)) & 

(Breeders2<(freqallele1_1+freqallele2_1+freqallele3_1+freqallele4_1+freqal

lele5_1+freqallele6_1+freqallele7_1+freqallele8_1+freqallele9_1)); 
allele10q_2=(Breeders2>=(freqallele1_1+freqallele2_1+freqallele3_1+freqall

ele4_1+freqallele5_1+freqallele6_1+freqallele7_1+freqallele8_1+freqallele9

_1)) & 

(Breeders2<(freqallele1_1+freqallele2_1+freqallele3_1+freqallele4_1+freqal

lele5_1+freqallele6_1+freqallele7_1+freqallele8_1+freqallele9_1+freqallele

10_1)); 
allele11q_2=(Breeders2>=(freqallele1_1+freqallele2_1+freqallele3_1+freqall

ele4_1+freqallele5_1+freqallele6_1+freqallele7_1+freqallele8_1+freqallele9

_1+freqallele10_1)) & 

(Breeders2<(freqallele1_1+freqallele2_1+freqallele3_1+freqallele4_1+freqal

lele5_1+freqallele6_1+freqallele7_1+freqallele8_1+freqallele9_1+freqallele

10_1+freqallele11_1)); 
allele12q_2=(Breeders2>=(freqallele1_1+freqallele2_1+freqallele3_1+freqall

ele4_1+freqallele5_1+freqallele6_1+freqallele7_1+freqallele8_1+freqallele9

_1+freqallele10_1+freqallele11_1)) & (Breeders2<1.0); 
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count_allele1q_2=sum(allele1q_2); 
count_allele2q_2=sum(allele2q_2); 
count_allele3q_2=sum(allele3q_2); 
count_allele4q_2=sum(allele4q_2); 
count_allele5q_2=sum(allele5q_2); 
count_allele6q_2=sum(allele6q_2); 
count_allele7q_2=sum(allele7q_2); 
count_allele8q_2=sum(allele8q_2); 
count_allele9q_2=sum(allele9q_2); 
count_allele10q_2=sum(allele10q_2); 
count_allele11q_2=sum(allele11q_2); 
count_allele12q_2=sum(allele12q_2); 

  
freqallele1q_2=sum(count_allele1q_2)/(nobreeders2*queenalleles); 
freqallele2q_2=sum(count_allele2q_2)/(nobreeders2*queenalleles); 
freqallele3q_2=sum(count_allele3q_2)/(nobreeders2*queenalleles); 
freqallele4q_2=sum(count_allele4q_2)/(nobreeders2*queenalleles); 
freqallele5q_2=sum(count_allele5q_2)/(nobreeders2*queenalleles); 
freqallele6q_2=sum(count_allele6q_2)/(nobreeders2*queenalleles); 
freqallele7q_2=sum(count_allele7q_2)/(nobreeders2*queenalleles); 
freqallele8q_2=sum(count_allele8q_2)/(nobreeders2*queenalleles); 
freqallele9q_2=sum(count_allele9q_2)/(nobreeders2*queenalleles); 
freqallele10q_2=sum(count_allele10q_2)/(nobreeders2*queenalleles); 
freqallele11q_2=sum(count_allele11q_2)/(nobreeders2*queenalleles); 
freqallele12q_2=sum(count_allele12q_2)/(nobreeders2*queenalleles); 

  
Ballelefreq1_G2=(2*freqallele1q_2+freqallele1q_1)/3 
Ballelefreq2_G2=(2*freqallele2q_2+freqallele2q_1)/3 
Ballelefreq3_G2=(2*freqallele3q_2+freqallele3q_1)/3 
Ballelefreq4_G2=(2*freqallele4q_2+freqallele4q_1)/3 
Ballelefreq5_G2=(2*freqallele5q_2+freqallele5q_1)/3 
Ballelefreq6_G2=(2*freqallele6q_2+freqallele6q_1)/3 
Ballelefreq7_G2=(2*freqallele7q_2+freqallele7q_1)/3 
Ballelefreq8_G2=(2*freqallele8q_2+freqallele8q_1)/3 
Ballelefreq9_G2=(2*freqallele9q_2+freqallele9q_1)/3 
Ballelefreq10_G2=(2*freqallele10q_2+freqallele10q_1)/3 
Ballelefreq11_G2=(2*freqallele11q_2+freqallele11q_1)/3 
Ballelefreq12_G2=(2*freqallele12q_2+freqallele12q_1)/3 

  
%GENERATE 100 NEW QUEEN GENOTYPES FROM THIS FREQUENCY DISTRIBUTION 

  
DistGen2Q=rand(nqueens,queenalleles); 

  
allele1q_2=(DistGen2Q>0) & (DistGen2Q<Ballelefreq1_G2); 
allele2q_2=(DistGen2Q>=Ballelefreq1_G2) & 

(DistGen2Q<(Ballelefreq1_G2+Ballelefreq2_G2)); 
allele3q_2=(DistGen2Q>=(Ballelefreq1_G2+Ballelefreq2_G2)) & 

(DistGen2Q<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2)); 
allele4q_2=(DistGen2Q>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2)) 

& 

(DistGen2Q<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G

2)); 
allele5q_2=(DistGen2Q>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ba

llelefreq4_G2)) & 
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(DistGen2Q<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G

2+Ballelefreq5_G2)); 
allele6q_2=(DistGen2Q>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ba

llelefreq4_G2+Ballelefreq5_G2)) & 

(DistGen2Q<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G

2+Ballelefreq5_G2+Ballelefreq6_G2)); 
allele7q_2=(DistGen2Q>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ba

llelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2)) & 

(DistGen2Q<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G

2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2)); 
allele8q_2=(DistGen2Q>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ba

llelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2)) & 

(DistGen2Q<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G

2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2)); 
allele9q_2=(DistGen2Q>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ba

llelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8

_G2)) & 

(DistGen2Q<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G

2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2+Ballelef

req9_G2)); 
allele10q_2=(DistGen2Q>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+B

allelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq

8_G2+Ballelefreq9_G2)) & 

(DistGen2Q<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G

2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2+Ballelef

req9_G2+Ballelefreq10_G2)); 
allele11q_2=(DistGen2Q>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+B

allelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq

8_G2+Ballelefreq9_G2+Ballelefreq10_G2)) & 

(DistGen2Q<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G

2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2+Ballelef

req9_G2+Ballelefreq10_G2+Ballelefreq11_G2)); 
allele12q_2=(DistGen2Q>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+B

allelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq

8_G2+Ballelefreq9_G2+Ballelefreq10_G2+Ballelefreq11_G2)) & (DistGen2Q<1); 

  
count_allele1q_2=sum(allele1q_2); 
count_allele2q_2=sum(allele2q_2); 
count_allele3q_2=sum(allele3q_2); 
count_allele4q_2=sum(allele4q_2); 
count_allele5q_2=sum(allele5q_2); 
count_allele6q_2=sum(allele6q_2); 
count_allele7q_2=sum(allele7q_2); 
count_allele8q_2=sum(allele8q_2); 
count_allele9q_2=sum(allele9q_2); 
count_allele10q_2=sum(allele10q_2); 
count_allele11q_2=sum(allele11q_2); 
count_allele12q_2=sum(allele12q_2); 

  
freqallele1q_2=sum(count_allele1q_2)/(nqueens*queenalleles); 
freqallele2q_2=sum(count_allele2q_2)/(nqueens*queenalleles); 
freqallele3q_2=sum(count_allele3q_2)/(nqueens*queenalleles); 
freqallele4q_2=sum(count_allele4q_2)/(nqueens*queenalleles); 
freqallele5q_2=sum(count_allele5q_2)/(nqueens*queenalleles); 
freqallele6q_2=sum(count_allele6q_2)/(nqueens*queenalleles); 
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freqallele7q_2=sum(count_allele7q_2)/(nqueens*queenalleles); 
freqallele8q_2=sum(count_allele8q_2)/(nqueens*queenalleles); 
freqallele9q_2=sum(count_allele9q_2)/(nqueens*queenalleles); 
freqallele10q_2=sum(count_allele10q_2)/(nqueens*queenalleles); 
freqallele11q_2=sum(count_allele11q_2)/(nqueens*queenalleles); 
freqallele12q_2=sum(count_allele12q_2)/(nqueens*queenalleles); 

  

  
freqallele1_2=((2*freqallele1q_2+freqallele1q_1)/3) 
freqallele2_2=((2*freqallele2q_2+freqallele2q_1)/3) 
freqallele3_2=((2*freqallele3q_2+freqallele3q_1)/3) 
freqallele4_2=((2*freqallele4q_2+freqallele4q_1)/3) 
freqallele5_2=((2*freqallele5q_2+freqallele5q_1)/3) 
freqallele6_2=((2*freqallele6q_2+freqallele6q_1)/3) 
freqallele7_2=((2*freqallele7q_2+freqallele7q_1)/3) 
freqallele8_2=((2*freqallele8q_2+freqallele8q_1)/3) 
freqallele9_2=((2*freqallele9q_2+freqallele9q_1)/3) 
freqallele10_2=((2*freqallele10q_2+freqallele10q_1)/3) 
freqallele11_2=((2*freqallele11q_2+freqallele11q_1)/3) 
freqallele12_2=((2*freqallele12q_2+freqallele12q_1)/3)                               

  
mat1_G2(freqallele1)=freqallele1_2 
mat2_G2(freqallele1)=freqallele2_2 
mat3_G2(freqallele1)=freqallele3_2 
mat4_G2(freqallele1)=freqallele4_2 
mat5_G2(freqallele1)=freqallele5_2 
mat6_G2(freqallele1)=freqallele6_2 
mat7_G2(freqallele1)=freqallele7_2 
mat8_G2(freqallele1)=freqallele8_2 
mat9_G2(freqallele1)=freqallele9_2 
mat10_G2(freqallele1)=freqallele10_2 
mat11_G2(freqallele1)=freqallele11_2 
mat12_G2(freqallele1)=freqallele12_2 

  
Breeders3=datasample(Distribution,nobreeders3); 
allele1q_3=(Breeders3>0) & (Breeders3<freqallele1_2); 
allele2q_3=(Breeders3>=freqallele1_2) & 

(Breeders3<(freqallele1_2+freqallele2_2)); 
allele3q_3=(Breeders3>=(freqallele1_2+freqallele2_2)) & 

(Breeders3<(freqallele1_2+freqallele2_2+freqallele3_2)); 
allele4q_3=(Breeders3>=(freqallele1_2+freqallele2_2+freqallele3_2)) & 

(Breeders3<(freqallele1_2+freqallele2_2+freqallele3_2+freqallele4_2)); 
allele5q_3=(Breeders3>=(freqallele1_2+freqallele2_2+freqallele3_2+freqalle

le4_2)) & 

(Breeders3<(freqallele1_2+freqallele2_2+freqallele3_2+freqallele4_2+freqal

lele5_2)); 
allele6q_3=(Breeders3>=(freqallele1_2+freqallele2_2+freqallele3_2+freqalle

le4_2+freqallele5_2)) & 

(Breeders3<(freqallele1_2+freqallele2_2+freqallele3_2+freqallele4_2+freqal

lele5_2+freqallele6_2)); 
allele7q_3=(Breeders3>=(freqallele1_2+freqallele2_2+freqallele3_2+freqalle

le4_2+freqallele5_2+freqallele6_2)) & 

(Breeders3<(freqallele1_2+freqallele2_2+freqallele3_2+freqallele4_2+freqal

lele5_2+freqallele6_2+freqallele7_2)); 
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allele8q_3=(Breeders3>=(freqallele1_2+freqallele2_2+freqallele3_2+freqalle

le4_2+freqallele5_2+freqallele6_2+freqallele7_2)) & 

(Breeders3<(freqallele1_2+freqallele2_2+freqallele3_2+freqallele4_2+freqal

lele5_2+freqallele6_2+freqallele7_2+freqallele8_2)); 
allele9q_3=(Breeders3>=(freqallele1_2+freqallele2_2+freqallele3_2+freqalle

le4_2+freqallele5_2+freqallele6_2+freqallele7_2+freqallele8_2)) & 

(Breeders3<(freqallele1_2+freqallele2_2+freqallele3_2+freqallele4_2+freqal

lele5_2+freqallele6_2+freqallele7_2+freqallele8_2+freqallele9_2)); 
allele10q_3=(Breeders3>=(freqallele1_2+freqallele2_2+freqallele3_2+freqall

ele4_2+freqallele5_2+freqallele6_2+freqallele7_2+freqallele8_2+freqallele9

_2)) & 

(Breeders3<(freqallele1_2+freqallele2_2+freqallele3_2+freqallele4_2+freqal

lele5_2+freqallele6_2+freqallele7_2+freqallele8_2+freqallele9_2+freqallele

10_2)); 
allele11q_3=(Breeders3>=(freqallele1_2+freqallele2_2+freqallele3_2+freqall

ele4_2+freqallele5_2+freqallele6_2+freqallele7_2+freqallele8_2+freqallele9

_2+freqallele10_2)) & 

(Breeders3<(freqallele1_2+freqallele2_2+freqallele3_2+freqallele4_2+freqal

lele5_2+freqallele6_2+freqallele7_2+freqallele8_2+freqallele9_2+freqallele

10_2+freqallele11_2)); 
allele12q_3=(Breeders3>=(freqallele1_2+freqallele2_2+freqallele3_2+freqall

ele4_2+freqallele5_2+freqallele6_2+freqallele7_2+freqallele8_2+freqallele9

_2+freqallele10_2+freqallele11_2)) & (Breeders3<1.0); 

  

  
count_allele1q_3=sum(allele1q_3); 
count_allele2q_3=sum(allele2q_3); 
count_allele3q_3=sum(allele3q_3); 
count_allele4q_3=sum(allele4q_3); 
count_allele5q_3=sum(allele5q_3); 
count_allele6q_3=sum(allele6q_3); 
count_allele7q_3=sum(allele7q_3); 
count_allele8q_3=sum(allele8q_3); 
count_allele9q_3=sum(allele9q_3); 
count_allele10q_3=sum(allele10q_3); 
count_allele11q_3=sum(allele11q_3); 
count_allele12q_3=sum(allele12q_3); 

  
freqallele1q_3=sum(count_allele1q_3)/(nobreeders3*queenalleles); 
freqallele2q_3=sum(count_allele2q_3)/(nobreeders3*queenalleles); 
freqallele3q_3=sum(count_allele3q_3)/(nobreeders3*queenalleles); 
freqallele4q_3=sum(count_allele4q_3)/(nobreeders3*queenalleles); 
freqallele5q_3=sum(count_allele5q_3)/(nobreeders3*queenalleles); 
freqallele6q_3=sum(count_allele6q_3)/(nobreeders3*queenalleles); 
freqallele7q_3=sum(count_allele7q_3)/(nobreeders3*queenalleles); 
freqallele8q_3=sum(count_allele8q_3)/(nobreeders3*queenalleles); 
freqallele9q_3=sum(count_allele9q_3)/(nobreeders3*queenalleles); 
freqallele10q_3=sum(count_allele10q_3)/(nobreeders3*queenalleles); 
freqallele11q_3=sum(count_allele11q_3)/(nobreeders3*queenalleles); 
freqallele12q_3=sum(count_allele12q_3)/(nobreeders3*queenalleles); 

  
Ballelefreq1_G3=(2*freqallele1q_3+freqallele1q_2)/3 
Ballelefreq2_G3=(2*freqallele2q_3+freqallele2q_2)/3 
Ballelefreq3_G3=(2*freqallele3q_3+freqallele3q_2)/3 
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Ballelefreq4_G3=(2*freqallele4q_3+freqallele4q_2)/3 
Ballelefreq5_G3=(2*freqallele5q_3+freqallele5q_2)/3 
Ballelefreq6_G3=(2*freqallele6q_3+freqallele6q_2)/3 
Ballelefreq7_G3=(2*freqallele7q_3+freqallele7q_2)/3 
Ballelefreq8_G3=(2*freqallele8q_3+freqallele8q_2)/3 
Ballelefreq9_G3=(2*freqallele9q_3+freqallele9q_2)/3 
Ballelefreq10_G3=(2*freqallele10q_3+freqallele10q_2)/3 
Ballelefreq11_G3=(2*freqallele11q_3+freqallele11q_2)/3 
Ballelefreq12_G3=(2*freqallele12q_3+freqallele12q_2)/3 

  
%GENERATE 100 QUEENS 
DistGen3Q=rand(nqueens,queenalleles); 

  
allele1q_3=(DistGen3Q>0) & (DistGen3Q<Ballelefreq1_G3); 
allele2q_3=(DistGen3Q>=Ballelefreq1_G3) & 

(DistGen3Q<(Ballelefreq1_G3+Ballelefreq2_G3)); 
allele3q_3=(DistGen3Q>=(Ballelefreq1_G3+Ballelefreq2_G3)) & 

(DistGen3Q<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3)); 
allele4q_3=(DistGen3Q>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3)) 

& 

(DistGen3Q<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4_G

3)); 
allele5q_3=(DistGen3Q>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ba

llelefreq4_G3)) & 

(DistGen3Q<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4_G

3+Ballelefreq5_G3)); 
allele6q_3=(DistGen3Q>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ba

llelefreq4_G3+Ballelefreq5_G3)) & 

(DistGen3Q<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4_G

3+Ballelefreq5_G3+Ballelefreq6_G3)); 
allele7q_3=(DistGen3Q>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ba

llelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3)) & 

(DistGen3Q<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4_G

3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3)); 
allele8q_3=(DistGen3Q>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ba

llelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3)) & 

(DistGen3Q<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4_G

3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq8_G3)); 
allele9q_3=(DistGen3Q>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ba

llelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq8

_G3)) & 

(DistGen3Q<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4_G

3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq8_G3+Ballelef

req9_G3)); 
allele10q_3=(DistGen3Q>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+B

allelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq

8_G3+Ballelefreq9_G3)) & 

(DistGen3Q<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4_G

3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq8_G3+Ballelef

req9_G3+Ballelefreq10_G3)); 
allele11q_3=(DistGen3Q>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+B

allelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq

8_G3+Ballelefreq9_G3+Ballelefreq10_G3)) & 

(DistGen3Q<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4_G
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3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq8_G3+Ballelef

req9_G3+Ballelefreq10_G3+Ballelefreq11_G3)); 
allele12q_3=(DistGen3Q>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+B

allelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq

8_G3+Ballelefreq9_G3+Ballelefreq10_G3+Ballelefreq11_G3)) & (DistGen3Q<1); 

  
count_allele1q_3=sum(allele1q_3); 
count_allele2q_3=sum(allele2q_3); 
count_allele3q_3=sum(allele3q_3); 
count_allele4q_3=sum(allele4q_3); 
count_allele5q_3=sum(allele5q_3); 
count_allele6q_3=sum(allele6q_3); 
count_allele7q_3=sum(allele7q_3); 
count_allele8q_3=sum(allele8q_3); 
count_allele9q_3=sum(allele9q_3); 
count_allele10q_3=sum(allele10q_3); 
count_allele11q_3=sum(allele11q_3); 
count_allele12q_3=sum(allele12q_3); 

  
freqallele1q_3=sum(count_allele1q_3)/(nqueens*queenalleles); 
freqallele2q_3=sum(count_allele2q_3)/(nqueens*queenalleles); 
freqallele3q_3=sum(count_allele3q_3)/(nqueens*queenalleles); 
freqallele4q_3=sum(count_allele4q_3)/(nqueens*queenalleles); 
freqallele5q_3=sum(count_allele5q_3)/(nqueens*queenalleles); 
freqallele6q_3=sum(count_allele6q_3)/(nqueens*queenalleles); 
freqallele7q_3=sum(count_allele7q_3)/(nqueens*queenalleles); 
freqallele8q_3=sum(count_allele8q_3)/(nqueens*queenalleles); 
freqallele9q_3=sum(count_allele9q_3)/(nqueens*queenalleles); 
freqallele10q_3=sum(count_allele10q_3)/(nqueens*queenalleles); 
freqallele11q_3=sum(count_allele11q_3)/(nqueens*queenalleles); 
freqallele12q_3=sum(count_allele12q_3)/(nqueens*queenalleles); 

  
freqallele1_3=((2*freqallele1q_3+freqallele1q_2)/3) 
freqallele2_3=((2*freqallele2q_3+freqallele2q_2)/3) 
freqallele3_3=((2*freqallele3q_3+freqallele3q_2)/3) 
freqallele4_3=((2*freqallele4q_3+freqallele4q_2)/3) 
freqallele5_3=((2*freqallele5q_3+freqallele5q_2)/3) 
freqallele6_3=((2*freqallele6q_3+freqallele6q_2)/3) 
freqallele7_3=((2*freqallele7q_3+freqallele7q_2)/3) 
freqallele8_3=((2*freqallele8q_3+freqallele8q_2)/3) 
freqallele9_3=((2*freqallele9q_3+freqallele9q_2)/3) 
freqallele10_3=((2*freqallele10q_3+freqallele10q_2)/3) 
freqallele11_3=((2*freqallele11q_3+freqallele11q_2)/3) 
freqallele12_3=((2*freqallele12q_3+freqallele12q_2)/3) 

  
mat1_G3(freqallele1)=freqallele1_3 
mat2_G3(freqallele1)=freqallele2_3 
mat3_G3(freqallele1)=freqallele3_3 
mat4_G3(freqallele1)=freqallele4_3 
mat5_G3(freqallele1)=freqallele5_3 
mat6_G3(freqallele1)=freqallele6_3 
mat7_G3(freqallele1)=freqallele7_3 
mat8_G3(freqallele1)=freqallele8_3 
mat9_G3(freqallele1)=freqallele9_3 
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mat10_G3(freqallele1)=freqallele10_3 
mat11_G3(freqallele1)=freqallele11_3 
mat12_G3(freqallele1)=freqallele12_3 

  

  
Breeders4=datasample(Distribution,nobreeders4); 

 
%allele frequencies in queen generation (G4) 
allele1q_4=(Breeders4>0) & (Breeders4<freqallele1_3); 
allele2q_4=(Breeders4>=freqallele1_3) & 

(Breeders4<(freqallele1_3+freqallele2_3)); 
allele3q_4=(Breeders4>=(freqallele1_3+freqallele2_3)) & 

(Breeders4<(freqallele1_3+freqallele2_3+freqallele3_3)); 
allele4q_4=(Breeders4>=(freqallele1_3+freqallele2_3+freqallele3_3)) & 

(Breeders4<(freqallele1_3+freqallele2_3+freqallele3_3+freqallele4_3)); 
allele5q_4=(Breeders4>=(freqallele1_3+freqallele2_3+freqallele3_3+freqalle

le4_3)) & 

(Breeders4<(freqallele1_3+freqallele2_3+freqallele3_3+freqallele4_3+freqal

lele5_3)); 
allele6q_4=(Breeders4>=(freqallele1_3+freqallele2_3+freqallele3_3+freqalle

le4_3+freqallele5_3)) & 

(Breeders4<(freqallele1_3+freqallele2_3+freqallele3_3+freqallele4_3+freqal

lele5_3+freqallele6_3)); 
allele7q_4=(Breeders4>=(freqallele1_3+freqallele2_3+freqallele3_3+freqalle

le4_3+freqallele5_3+freqallele6_3)) & 

(Breeders4<(freqallele1_3+freqallele2_3+freqallele3_3+freqallele4_3+freqal

lele5_3+freqallele6_3+freqallele7_3)); 
allele8q_4=(Breeders4>=(freqallele1_3+freqallele2_3+freqallele3_3+freqalle

le4_3+freqallele5_3+freqallele6_3+freqallele7_3)) & 

(Breeders4<(freqallele1_3+freqallele2_3+freqallele3_3+freqallele4_3+freqal

lele5_3+freqallele6_3+freqallele7_3+freqallele8_3)); 
allele9q_4=(Breeders4>=(freqallele1_3+freqallele2_3+freqallele3_3+freqalle

le4_3+freqallele5_3+freqallele6_3+freqallele7_3+freqallele8_3)) & 

(Breeders4<(freqallele1_3+freqallele2_3+freqallele3_3+freqallele4_3+freqal

lele5_3+freqallele6_3+freqallele7_3+freqallele8_3+freqallele9_3)); 
allele10q_4=(Breeders4>=(freqallele1_3+freqallele2_3+freqallele3_3+freqall

ele4_3+freqallele5_3+freqallele6_3+freqallele7_3+freqallele8_3+freqallele9

_3)) & 

(Breeders4<(freqallele1_3+freqallele2_3+freqallele3_3+freqallele4_3+freqal

lele5_3+freqallele6_3+freqallele7_3+freqallele8_3+freqallele9_3+freqallele

10_3)); 
allele11q_4=(Breeders4>=(freqallele1_3+freqallele2_3+freqallele3_3+freqall

ele4_3+freqallele5_3+freqallele6_3+freqallele7_3+freqallele8_3+freqallele9

_3+freqallele10_3)) & 

(Breeders4<(freqallele1_3+freqallele2_3+freqallele3_3+freqallele4_3+freqal

lele5_3+freqallele6_3+freqallele7_3+freqallele8_3+freqallele9_3+freqallele

10_3+freqallele11_3)); 
allele12q_4=(Breeders4>=(freqallele1_3+freqallele2_3+freqallele3_3+freqall

ele4_3+freqallele5_3+freqallele6_3+freqallele7_3+freqallele8_3+freqallele9

_3+freqallele10_3+freqallele11_3)) & (Breeders4<1.0); 

  

  
count_allele1q_4=sum(allele1q_4); 
count_allele2q_4=sum(allele2q_4); 
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count_allele3q_4=sum(allele3q_4); 
count_allele4q_4=sum(allele4q_4); 
count_allele5q_4=sum(allele5q_4); 
count_allele6q_4=sum(allele6q_4); 
count_allele7q_4=sum(allele7q_4); 
count_allele8q_4=sum(allele8q_4); 
count_allele9q_4=sum(allele9q_4); 
count_allele10q_4=sum(allele10q_4); 
count_allele11q_4=sum(allele11q_4); 
count_allele12q_4=sum(allele12q_4); 

  
freqallele1q_4=sum(count_allele1q_4)/(nobreeders4*queenalleles); 
freqallele2q_4=sum(count_allele2q_4)/(nobreeders4*queenalleles); 
freqallele3q_4=sum(count_allele3q_4)/(nobreeders4*queenalleles); 
freqallele4q_4=sum(count_allele4q_4)/(nobreeders4*queenalleles); 
freqallele5q_4=sum(count_allele5q_4)/(nobreeders4*queenalleles); 
freqallele6q_4=sum(count_allele6q_4)/(nobreeders4*queenalleles); 
freqallele7q_4=sum(count_allele7q_4)/(nobreeders4*queenalleles); 
freqallele8q_4=sum(count_allele8q_4)/(nobreeders4*queenalleles); 
freqallele9q_4=sum(count_allele9q_4)/(nobreeders4*queenalleles); 
freqallele10q_4=sum(count_allele10q_4)/(nobreeders4*queenalleles); 
freqallele11q_4=sum(count_allele11q_4)/(nobreeders4*queenalleles); 
freqallele12q_4=sum(count_allele12q_4)/(nobreeders4*queenalleles); 

  
Ballelefreq1_G4=(2*freqallele1q_4+freqallele1q_3)/3 
Ballelefreq2_G4=(2*freqallele2q_4+freqallele2q_3)/3 
Ballelefreq3_G4=(2*freqallele3q_4+freqallele3q_3)/3 
Ballelefreq4_G4=(2*freqallele4q_4+freqallele4q_3)/3 
Ballelefreq5_G4=(2*freqallele5q_4+freqallele5q_3)/3 
Ballelefreq6_G4=(2*freqallele6q_4+freqallele6q_3)/3 
Ballelefreq7_G4=(2*freqallele7q_4+freqallele7q_3)/3 
Ballelefreq8_G4=(2*freqallele8q_4+freqallele8q_3)/3 
Ballelefreq9_G4=(2*freqallele9q_4+freqallele9q_3)/3 
Ballelefreq10_G4=(2*freqallele10q_4+freqallele10q_3)/3 
Ballelefreq11_G4=(2*freqallele11q_4+freqallele11q_3)/3 
Ballelefreq12_G4=(2*freqallele12q_4+freqallele12q_3)/3 

  
%GENERATE 100 QUEENS 
DistGen4Q=rand(nqueens,queenalleles); 

  
allele1q_4=(DistGen4Q>0) & (DistGen4Q<Ballelefreq1_G4); 
allele2q_4=(DistGen4Q>=Ballelefreq1_G4) & 

(DistGen4Q<(Ballelefreq1_G4+Ballelefreq2_G4)); 
allele3q_4=(DistGen4Q>=(Ballelefreq1_G4+Ballelefreq2_G4)) & 

(DistGen4Q<(Ballelefreq1_G4+Ballelefreq2_G4+Ballelefreq3_G4)); 
allele4q_4=(DistGen4Q>=(Ballelefreq1_G4+Ballelefreq2_G4+Ballelefreq3_G4)) 

& 

(DistGen4Q<(Ballelefreq1_G4+Ballelefreq2_G4+Ballelefreq3_G4+Ballelefreq4_G

4)); 
allele5q_4=(DistGen4Q>=(Ballelefreq1_G4+Ballelefreq2_G4+Ballelefreq3_G4+Ba

llelefreq4_G4)) & 

(DistGen4Q<(Ballelefreq1_G4+Ballelefreq2_G4+Ballelefreq3_G4+Ballelefreq4_G

4+Ballelefreq5_G4)); 
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allele6q_4=(DistGen4Q>=(Ballelefreq1_G4+Ballelefreq2_G4+Ballelefreq3_G4+Ba

llelefreq4_G4+Ballelefreq5_G4)) & 

(DistGen4Q<(Ballelefreq1_G4+Ballelefreq2_G4+Ballelefreq3_G4+Ballelefreq4_G

4+Ballelefreq5_G4+Ballelefreq6_G4)); 
allele7q_4=(DistGen4Q>=(Ballelefreq1_G4+Ballelefreq2_G4+Ballelefreq3_G4+Ba

llelefreq4_G4+Ballelefreq5_G4+Ballelefreq6_G4)) & 

(DistGen4Q<(Ballelefreq1_G4+Ballelefreq2_G4+Ballelefreq3_G4+Ballelefreq4_G

4+Ballelefreq5_G4+Ballelefreq6_G4+Ballelefreq7_G4)); 
allele8q_4=(DistGen4Q>=(Ballelefreq1_G4+Ballelefreq2_G4+Ballelefreq3_G4+Ba

llelefreq4_G4+Ballelefreq5_G4+Ballelefreq6_G4+Ballelefreq7_G4)) & 

(DistGen4Q<(Ballelefreq1_G4+Ballelefreq2_G4+Ballelefreq3_G4+Ballelefreq4_G

4+Ballelefreq5_G4+Ballelefreq6_G4+Ballelefreq7_G4+Ballelefreq8_G4)); 
allele9q_4=(DistGen4Q>=(Ballelefreq1_G4+Ballelefreq2_G4+Ballelefreq3_G4+Ba

llelefreq4_G4+Ballelefreq5_G4+Ballelefreq6_G4+Ballelefreq7_G4+Ballelefreq8

_G4)) & 

(DistGen4Q<(Ballelefreq1_G4+Ballelefreq2_G4+Ballelefreq3_G4+Ballelefreq4_G

4+Ballelefreq5_G4+Ballelefreq6_G4+Ballelefreq7_G4+Ballelefreq8_G4+Ballelef

req9_G4)); 
allele10q_4=(DistGen4Q>=(Ballelefreq1_G4+Ballelefreq2_G4+Ballelefreq3_G4+B

allelefreq4_G4+Ballelefreq5_G4+Ballelefreq6_G4+Ballelefreq7_G4+Ballelefreq

8_G4+Ballelefreq9_G4)) & 

(DistGen4Q<(Ballelefreq1_G4+Ballelefreq2_G4+Ballelefreq3_G4+Ballelefreq4_G

4+Ballelefreq5_G4+Ballelefreq6_G4+Ballelefreq7_G4+Ballelefreq8_G4+Ballelef

req9_G4+Ballelefreq10_G4)); 
allele11q_4=(DistGen4Q>=(Ballelefreq1_G4+Ballelefreq2_G4+Ballelefreq3_G4+B

allelefreq4_G4+Ballelefreq5_G4+Ballelefreq6_G4+Ballelefreq7_G4+Ballelefreq

8_G4+Ballelefreq9_G4+Ballelefreq10_G4)) & 

(DistGen4Q<(Ballelefreq1_G4+Ballelefreq2_G4+Ballelefreq3_G4+Ballelefreq4_G

4+Ballelefreq5_G4+Ballelefreq6_G4+Ballelefreq7_G4+Ballelefreq8_G4+Ballelef

req9_G4+Ballelefreq10_G4+Ballelefreq11_G4)); 
allele12q_4=(DistGen4Q>=(Ballelefreq1_G4+Ballelefreq2_G4+Ballelefreq3_G4+B

allelefreq4_G4+Ballelefreq5_G4+Ballelefreq6_G4+Ballelefreq7_G4+Ballelefreq

8_G4+Ballelefreq9_G4+Ballelefreq10_G4+Ballelefreq11_G4)) & (DistGen4Q<1); 

  
count_allele1q_4=sum(allele1q_4); 
count_allele2q_4=sum(allele2q_4); 
count_allele3q_4=sum(allele3q_4); 
count_allele4q_4=sum(allele4q_4); 
count_allele5q_4=sum(allele5q_4); 
count_allele6q_4=sum(allele6q_4); 
count_allele7q_4=sum(allele7q_4); 
count_allele8q_4=sum(allele8q_4); 
count_allele9q_4=sum(allele9q_4); 
count_allele10q_4=sum(allele10q_4); 
count_allele11q_4=sum(allele11q_4); 
count_allele12q_4=sum(allele12q_4); 

  
freqallele1q_4=sum(count_allele1q_4)/(nqueens*queenalleles); 
freqallele2q_4=sum(count_allele2q_4)/(nqueens*queenalleles); 
freqallele3q_4=sum(count_allele3q_4)/(nqueens*queenalleles); 
freqallele4q_4=sum(count_allele4q_4)/(nqueens*queenalleles); 
freqallele5q_4=sum(count_allele5q_4)/(nqueens*queenalleles); 
freqallele6q_4=sum(count_allele6q_4)/(nqueens*queenalleles); 
freqallele7q_4=sum(count_allele7q_4)/(nqueens*queenalleles); 
freqallele8q_4=sum(count_allele8q_4)/(nqueens*queenalleles); 
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freqallele9q_4=sum(count_allele9q_4)/(nqueens*queenalleles); 
freqallele10q_4=sum(count_allele10q_4)/(nqueens*queenalleles); 
freqallele11q_4=sum(count_allele11q_4)/(nqueens*queenalleles); 
freqallele12q_4=sum(count_allele12q_4)/(nqueens*queenalleles); 

  
freqallele1_4=((2*freqallele1q_4+freqallele1q_3)/3) 
freqallele2_4=((2*freqallele2q_4+freqallele2q_3)/3) 
freqallele3_4=((2*freqallele3q_4+freqallele3q_3)/3) 
freqallele4_4=((2*freqallele4q_4+freqallele4q_3)/3) 
freqallele5_4=((2*freqallele5q_4+freqallele5q_3)/3) 
freqallele6_4=((2*freqallele6q_4+freqallele6q_3)/3) 
freqallele7_4=((2*freqallele7q_4+freqallele7q_3)/3) 
freqallele8_4=((2*freqallele8q_4+freqallele8q_3)/3) 
freqallele9_4=((2*freqallele9q_4+freqallele9q_3)/3) 
freqallele10_4=((2*freqallele10q_4+freqallele10q_3)/3) 
freqallele11_4=((2*freqallele11q_4+freqallele11q_3)/3) 
freqallele12_4=((2*freqallele12q_4+freqallele12q_3)/3) 

  
mat1_G4(freqallele1)=freqallele1_4 
mat2_G4(freqallele1)=freqallele2_4 
mat3_G4(freqallele1)=freqallele3_4 
mat4_G4(freqallele1)=freqallele4_4 
mat5_G4(freqallele1)=freqallele5_4 
mat6_G4(freqallele1)=freqallele6_4 
mat7_G4(freqallele1)=freqallele7_4 
mat8_G4(freqallele1)=freqallele8_4 
mat9_G4(freqallele1)=freqallele9_4 
mat10_G4(freqallele1)=freqallele10_4 
mat11_G4(freqallele1)=freqallele11_4 
mat12_G4(freqallele1)=freqallele12_4 

  

  
Breeders5=datasample(Distribution,nobreeders5); 

 
%allele frequencies in queen generation (G5) 

  

  

  
allele1q_5=(Breeders5>0) & (Breeders5<freqallele1_4); 
allele2q_5=(Breeders5>=freqallele1_4) & 

(Breeders5<(freqallele1_4+freqallele2_4)); 
allele3q_5=(Breeders5>=(freqallele1_4+freqallele2_4)) & 

(Breeders5<(freqallele1_4+freqallele2_4+freqallele3_4)); 
allele4q_5=(Breeders5>=(freqallele1_4+freqallele2_4+freqallele3_4)) & 

(Breeders5<(freqallele1_4+freqallele2_4+freqallele3_4+freqallele4_4)); 
allele5q_5=(Breeders5>=(freqallele1_4+freqallele2_4+freqallele3_4+freqalle

le4_4)) & 

(Breeders5<(freqallele1_4+freqallele2_4+freqallele3_4+freqallele4_4+freqal

lele5_4)); 
allele6q_5=(Breeders5>=(freqallele1_4+freqallele2_4+freqallele3_4+freqalle

le4_4+freqallele5_4)) & 

(Breeders5<(freqallele1_4+freqallele2_4+freqallele3_4+freqallele4_4+freqal

lele5_4+freqallele6_4)); 
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allele7q_5=(Breeders5>=(freqallele1_4+freqallele2_4+freqallele3_4+freqalle

le4_4+freqallele5_4+freqallele6_4)) & 

(Breeders5<(freqallele1_4+freqallele2_4+freqallele3_4+freqallele4_4+freqal

lele5_4+freqallele6_4+freqallele7_4)); 
allele8q_5=(Breeders5>=(freqallele1_4+freqallele2_4+freqallele3_4+freqalle

le4_4+freqallele5_4+freqallele6_4+freqallele7_4)) & 

(Breeders5<(freqallele1_4+freqallele2_4+freqallele3_4+freqallele4_4+freqal

lele5_4+freqallele6_4+freqallele7_4+freqallele8_4)); 
allele9q_5=(Breeders5>=(freqallele1_4+freqallele2_4+freqallele3_4+freqalle

le4_4+freqallele5_4+freqallele6_4+freqallele7_4+freqallele8_4)) & 

(Breeders5<(freqallele1_4+freqallele2_4+freqallele3_4+freqallele4_4+freqal

lele5_4+freqallele6_4+freqallele7_4+freqallele8_4+freqallele9_4)); 
allele10q_5=(Breeders5>=(freqallele1_4+freqallele2_4+freqallele3_4+freqall

ele4_4+freqallele5_4+freqallele6_4+freqallele7_4+freqallele8_4+freqallele9

_4)) & 

(Breeders5<(freqallele1_4+freqallele2_4+freqallele3_4+freqallele4_4+freqal

lele5_4+freqallele6_4+freqallele7_4+freqallele8_4+freqallele9_4+freqallele

10_4)); 
allele11q_5=(Breeders5>=(freqallele1_4+freqallele2_4+freqallele3_4+freqall

ele4_4+freqallele5_4+freqallele6_4+freqallele7_4+freqallele8_4+freqallele9

_4+freqallele10_4)) & 

(Breeders5<(freqallele1_4+freqallele2_4+freqallele3_4+freqallele4_4+freqal

lele5_4+freqallele6_4+freqallele7_4+freqallele8_4+freqallele9_4+freqallele

10_4+freqallele11_4)); 
allele12q_5=(Breeders5>=(freqallele1_4+freqallele2_4+freqallele3_4+freqall

ele4_4+freqallele5_4+freqallele6_4+freqallele7_4+freqallele8_4+freqallele9

_4+freqallele10_4+freqallele11_4)) & (Breeders5<1.0); 

  

  
count_allele1q_5=sum(allele1q_5); 
count_allele2q_5=sum(allele2q_5); 
count_allele3q_5=sum(allele3q_5); 
count_allele4q_5=sum(allele4q_5); 
count_allele5q_5=sum(allele5q_5); 
count_allele6q_5=sum(allele6q_5); 
count_allele7q_5=sum(allele7q_5); 
count_allele8q_5=sum(allele8q_5); 
count_allele9q_5=sum(allele9q_5); 
count_allele10q_5=sum(allele10q_5); 
count_allele11q_5=sum(allele11q_5); 
count_allele12q_5=sum(allele12q_5); 

  
freqallele1q_5=sum(count_allele1q_5)/(nobreeders5*queenalleles); 
freqallele2q_5=sum(count_allele2q_5)/(nobreeders5*queenalleles); 
freqallele3q_5=sum(count_allele3q_5)/(nobreeders5*queenalleles); 
freqallele4q_5=sum(count_allele4q_5)/(nobreeders5*queenalleles); 
freqallele5q_5=sum(count_allele5q_5)/(nobreeders5*queenalleles); 
freqallele6q_5=sum(count_allele6q_5)/(nobreeders5*queenalleles); 
freqallele7q_5=sum(count_allele7q_5)/(nobreeders5*queenalleles); 
freqallele8q_5=sum(count_allele8q_5)/(nobreeders5*queenalleles); 
freqallele9q_5=sum(count_allele9q_5)/(nobreeders5*queenalleles); 
freqallele10q_5=sum(count_allele10q_5)/(nobreeders5*queenalleles); 
freqallele11q_5=sum(count_allele11q_5)/(nobreeders5*queenalleles); 
freqallele12q_5=sum(count_allele12q_5)/(nobreeders5*queenalleles); 
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Ballelefreq1_G5=(2*freqallele1q_5+freqallele1q_4)/3 
Ballelefreq2_G5=(2*freqallele2q_5+freqallele2q_4)/3 
Ballelefreq3_G5=(2*freqallele3q_5+freqallele3q_4)/3 
Ballelefreq4_G5=(2*freqallele4q_5+freqallele4q_4)/3 
Ballelefreq5_G5=(2*freqallele5q_5+freqallele5q_4)/3 
Ballelefreq6_G5=(2*freqallele6q_5+freqallele6q_4)/3 
Ballelefreq7_G5=(2*freqallele7q_5+freqallele7q_4)/3 
Ballelefreq8_G5=(2*freqallele8q_5+freqallele8q_4)/3 
Ballelefreq9_G5=(2*freqallele9q_5+freqallele9q_4)/3 
Ballelefreq10_G5=(2*freqallele10q_5+freqallele10q_4)/3 
Ballelefreq11_G5=(2*freqallele11q_5+freqallele11q_4)/3 
Ballelefreq12_G5=(2*freqallele12q_5+freqallele12q_4)/3 

  
%GENERATE 100 QUEENS 
DistGen5Q=rand(nqueens,queenalleles); 

  
allele1q_5=(DistGen5Q>0) & (DistGen5Q<Ballelefreq1_G5); 
allele2q_5=(DistGen5Q>=Ballelefreq1_G5) & 

(DistGen5Q<(Ballelefreq1_G5+Ballelefreq2_G5)); 
allele3q_5=(DistGen5Q>=(Ballelefreq1_G5+Ballelefreq2_G5)) & 

(DistGen5Q<(Ballelefreq1_G5+Ballelefreq2_G5+Ballelefreq3_G5)); 
allele4q_5=(DistGen5Q>=(Ballelefreq1_G5+Ballelefreq2_G5+Ballelefreq3_G5)) 

& 

(DistGen5Q<(Ballelefreq1_G5+Ballelefreq2_G5+Ballelefreq3_G5+Ballelefreq4_G

5)); 
allele5q_5=(DistGen5Q>=(Ballelefreq1_G5+Ballelefreq2_G5+Ballelefreq3_G5+Ba

llelefreq4_G5)) & 

(DistGen5Q<(Ballelefreq1_G5+Ballelefreq2_G5+Ballelefreq3_G5+Ballelefreq4_G

5+Ballelefreq5_G5)); 
allele6q_5=(DistGen5Q>=(Ballelefreq1_G5+Ballelefreq2_G5+Ballelefreq3_G5+Ba

llelefreq4_G5+Ballelefreq5_G5)) & 

(DistGen5Q<(Ballelefreq1_G5+Ballelefreq2_G5+Ballelefreq3_G5+Ballelefreq4_G

5+Ballelefreq5_G5+Ballelefreq6_G5)); 
allele7q_5=(DistGen5Q>=(Ballelefreq1_G5+Ballelefreq2_G5+Ballelefreq3_G5+Ba

llelefreq4_G5+Ballelefreq5_G5+Ballelefreq6_G5)) & 

(DistGen5Q<(Ballelefreq1_G5+Ballelefreq2_G5+Ballelefreq3_G5+Ballelefreq4_G

5+Ballelefreq5_G5+Ballelefreq6_G5+Ballelefreq7_G5)); 
allele8q_5=(DistGen5Q>=(Ballelefreq1_G5+Ballelefreq2_G5+Ballelefreq3_G5+Ba

llelefreq4_G5+Ballelefreq5_G5+Ballelefreq6_G5+Ballelefreq7_G5)) & 

(DistGen5Q<(Ballelefreq1_G5+Ballelefreq2_G5+Ballelefreq3_G5+Ballelefreq4_G

5+Ballelefreq5_G5+Ballelefreq6_G5+Ballelefreq7_G5+Ballelefreq8_G5)); 
allele9q_5=(DistGen5Q>=(Ballelefreq1_G5+Ballelefreq2_G5+Ballelefreq3_G5+Ba

llelefreq4_G5+Ballelefreq5_G5+Ballelefreq6_G5+Ballelefreq7_G5+Ballelefreq8

_G5)) & 

(DistGen5Q<(Ballelefreq1_G5+Ballelefreq2_G5+Ballelefreq3_G5+Ballelefreq4_G

5+Ballelefreq5_G5+Ballelefreq6_G5+Ballelefreq7_G5+Ballelefreq8_G5+Ballelef

req9_G5)); 
allele10q_5=(DistGen5Q>=(Ballelefreq1_G5+Ballelefreq2_G5+Ballelefreq3_G5+B

allelefreq4_G5+Ballelefreq5_G5+Ballelefreq6_G5+Ballelefreq7_G5+Ballelefreq

8_G5+Ballelefreq9_G5)) & 

(DistGen5Q<(Ballelefreq1_G5+Ballelefreq2_G5+Ballelefreq3_G5+Ballelefreq4_G

5+Ballelefreq5_G5+Ballelefreq6_G5+Ballelefreq7_G5+Ballelefreq8_G5+Ballelef

req9_G5+Ballelefreq10_G5)); 
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allele11q_5=(DistGen5Q>=(Ballelefreq1_G5+Ballelefreq2_G5+Ballelefreq3_G5+B

allelefreq4_G5+Ballelefreq5_G5+Ballelefreq6_G5+Ballelefreq7_G5+Ballelefreq

8_G5+Ballelefreq9_G5+Ballelefreq10_G5)) & 

(DistGen5Q<(Ballelefreq1_G5+Ballelefreq2_G5+Ballelefreq3_G5+Ballelefreq4_G

5+Ballelefreq5_G5+Ballelefreq6_G5+Ballelefreq7_G5+Ballelefreq8_G5+Ballelef

req9_G5+Ballelefreq10_G5+Ballelefreq11_G5)); 
allele12q_5=(DistGen5Q>=(Ballelefreq1_G5+Ballelefreq2_G5+Ballelefreq3_G5+B

allelefreq4_G5+Ballelefreq5_G5+Ballelefreq6_G5+Ballelefreq7_G5+Ballelefreq

8_G5+Ballelefreq9_G5+Ballelefreq10_G5+Ballelefreq11_G5)) & (DistGen5Q<1); 

  
count_allele1q_5=sum(allele1q_5); 
count_allele2q_5=sum(allele2q_5); 
count_allele3q_5=sum(allele3q_5); 
count_allele4q_5=sum(allele4q_5); 
count_allele5q_5=sum(allele5q_5); 
count_allele6q_5=sum(allele6q_5); 
count_allele7q_5=sum(allele7q_5); 
count_allele8q_5=sum(allele8q_5); 
count_allele9q_5=sum(allele9q_5); 
count_allele10q_5=sum(allele10q_5); 
count_allele11q_5=sum(allele11q_5); 
count_allele12q_5=sum(allele12q_5); 

  
freqallele1q_5=sum(count_allele1q_5)/(nqueens*queenalleles); 
freqallele2q_5=sum(count_allele2q_5)/(nqueens*queenalleles); 
freqallele3q_5=sum(count_allele3q_5)/(nqueens*queenalleles); 
freqallele4q_5=sum(count_allele4q_5)/(nqueens*queenalleles); 
freqallele5q_5=sum(count_allele5q_5)/(nqueens*queenalleles); 
freqallele6q_5=sum(count_allele6q_5)/(nqueens*queenalleles); 
freqallele7q_5=sum(count_allele7q_5)/(nqueens*queenalleles); 
freqallele8q_5=sum(count_allele8q_5)/(nqueens*queenalleles); 
freqallele9q_5=sum(count_allele9q_5)/(nqueens*queenalleles); 
freqallele10q_5=sum(count_allele10q_5)/(nqueens*queenalleles); 
freqallele11q_5=sum(count_allele11q_5)/(nqueens*queenalleles); 
freqallele12q_5=sum(count_allele12q_5)/(nqueens*queenalleles); 

  
freqallele1_5=((2*freqallele1q_5+freqallele1q_4)/3) 
freqallele2_5=((2*freqallele2q_5+freqallele2q_4)/3) 
freqallele3_5=((2*freqallele3q_5+freqallele3q_4)/3) 
freqallele4_5=((2*freqallele4q_5+freqallele4q_4)/3) 
freqallele5_5=((2*freqallele5q_5+freqallele5q_4)/3) 
freqallele6_5=((2*freqallele6q_5+freqallele6q_4)/3) 
freqallele7_5=((2*freqallele7q_5+freqallele7q_4)/3) 
freqallele8_5=((2*freqallele8q_5+freqallele8q_4)/3) 
freqallele9_5=((2*freqallele9q_5+freqallele9q_4)/3) 
freqallele10_5=((2*freqallele10q_5+freqallele10q_4)/3) 
freqallele11_5=((2*freqallele11q_5+freqallele11q_4)/3) 
freqallele12_5=((2*freqallele12q_5+freqallele12q_4)/3) 

  
mat1_G5(freqallele1)=freqallele1_5 
mat2_G5(freqallele1)=freqallele2_5 
mat3_G5(freqallele1)=freqallele3_5 
mat4_G5(freqallele1)=freqallele4_5 
mat5_G5(freqallele1)=freqallele5_5 
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mat6_G5(freqallele1)=freqallele6_5 
mat7_G5(freqallele1)=freqallele7_5 
mat8_G5(freqallele1)=freqallele8_5 
mat9_G5(freqallele1)=freqallele9_5 
mat10_G5(freqallele1)=freqallele10_5 
mat11_G5(freqallele1)=freqallele11_5 
mat12_G5(freqallele1)=freqallele12_5 
end 

  

  
Matallele1=[mat1_G0; mat1_G1; mat1_G2; mat1_G3; mat1_G4; mat1_G5] 
Matallele2=[mat2_G0; mat2_G1; mat2_G2; mat2_G3; mat2_G4; mat2_G5] 
Matallele3=[mat3_G0; mat3_G1; mat3_G2; mat3_G3; mat3_G4; mat3_G5] 
Matallele4=[mat4_G0; mat4_G1; mat4_G2; mat4_G3; mat4_G4; mat4_G5] 
Matallele5=[mat5_G0; mat5_G1; mat5_G2; mat5_G3; mat5_G4; mat5_G5] 
Matallele6=[mat6_G0; mat6_G1; mat6_G2; mat6_G3; mat6_G4; mat6_G5] 
Matallele7=[mat7_G0; mat7_G1; mat7_G2; mat7_G3; mat7_G4; mat7_G5] 
Matallele8=[mat8_G0; mat8_G1; mat8_G2; mat8_G3; mat8_G4; mat8_G5] 
Matallele9=[mat9_G0; mat9_G1; mat9_G2; mat9_G3; mat9_G4; mat9_G5] 
Matallele10=[mat10_G0; mat10_G1; mat10_G2; mat10_G3; mat10_G4; mat10_G5] 
Matallele11=[mat11_G0; mat11_G1; mat11_G2; mat11_G3; mat11_G4; mat11_G5] 
Matallele12=[mat12_G0; mat12_G1; mat12_G2; mat12_G3; mat12_G4; mat12_G5] 

  
Alldata=[Matallele1; Matallele2; Matallele3; Matallele4; Matallele5; 

Matallele6; Matallele7; Matallele8; Matallele9; Matallele10; Matallele11; 

Matallele12] 
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Appendix iv.  CSD Simulation model (3 generations only) 

%input allele frequencies 
nqueens = 100;  
queenalleles=2;  
nobreeders1=8;  
nobreeders2=4; 
nobreeders3=4 ; 
nodrones=7; 
a =1000;  %number of iterations 
%1 GENERATE A BASELINE DRONE AND QUEEN DERIVED FREQUENCY DIST 
for freqallele1=(1:a); 
     freqallele2=(1:a) ; 
         freqallele3=(1:a) ; 
             freqallele4=(1:a) ; 
                freqallele5=(1:a) ; 
                    freqallele6=(1:a) ; 
                        freqallele7=(1:a);  
                            freqallele8=(1:a) ; 
                                freqallele9=(1:a) ; 
                                    freqallele10=(1:a) ; 
                                        freqallele11=(1:a);  
%G0 DRONES  

  
DistG0drones=rand(nqueens,nodrones);  
allele1d_0=(DistG0drones>0) & (DistG0drones<0.038); 
allele2d_0=(DistG0drones>=0.038) & (DistG0drones<0.113);  
allele3d_0=(DistG0drones>=0.113) & (DistG0drones<0.236); 
allele4d_0=(DistG0drones>=0.236) & (DistG0drones<0.311); 
allele5d_0=(DistG0drones>=0.311) & (DistG0drones<0.425); 
allele6d_0=(DistG0drones>=0.425) & (DistG0drones<0.491);  
allele7d_0=(DistG0drones>=0.491) & (DistG0drones<0.774); 
allele8d_0=(DistG0drones>=0.774) & (DistG0drones<0.896);  
allele9d_0=(DistG0drones>=0.896) & (DistG0drones<0.962);  
allele10d_0=(DistG0drones>=0.962) & (DistG0drones<0.991); 
allele11d_0=(DistG0drones>=0.991) & (DistG0drones<1);  

  
count_allele1d_0=sum(allele1d_0);  
count_allele2d_0=sum(allele2d_0); 
count_allele3d_0=sum(allele3d_0);  
count_allele4d_0=sum(allele4d_0); 
count_allele5d_0=sum(allele5d_0);  
count_allele6d_0=sum(allele6d_0);  
count_allele7d_0=sum(allele7d_0);  
count_allele8d_0=sum(allele8d_0);  
count_allele9d_0=sum(allele9d_0);  
count_allele10d_0=sum(allele10d_0);  
count_allele11d_0=sum(allele11d_0); 

  
freqallele1d_G0=sum(count_allele1d_0)/(nqueens*nodrones); 
freqallele2d_G0=sum(count_allele2d_0)/(nqueens*nodrones);  
freqallele3d_G0=sum(count_allele3d_0)/(nqueens*nodrones);  
freqallele4d_G0=sum(count_allele4d_0)/(nqueens*nodrones);  
freqallele5d_G0=sum(count_allele5d_0)/(nqueens*nodrones);  
freqallele6d_G0=sum(count_allele6d_0)/(nqueens*nodrones); 
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freqallele7d_G0=sum(count_allele7d_0)/(nqueens*nodrones); 
freqallele8d_G0=sum(count_allele8d_0)/(nqueens*nodrones); 
freqallele9d_G0=sum(count_allele9d_0)/(nqueens*nodrones); 
freqallele10d_G0=sum(count_allele10d_0)/(nqueens*nodrones) ; 
freqallele11d_G0=sum(count_allele11d_0)/(nqueens*nodrones) ; 
%GO QUEENS 

  
DistG0queens=rand(nqueens,2) ; 

  
allele1q_0_mat1=(DistG0queens>0) & (DistG0queens<0.038) ; 
allele2q_0_mat1=(DistG0queens>=0.038) & (DistG0queens<0.113) ; 
allele3q_0_mat1=(DistG0queens>=0.113) & (DistG0queens<0.236) ; 
allele4q_0_mat1=(DistG0queens>=0.236) & (DistG0queens<0.311) ; 
allele5q_0_mat1=(DistG0queens>=0.311) & (DistG0queens<0.425) ; 
allele6q_0_mat1=(DistG0queens>=0.425) & (DistG0queens<0.491) ; 
allele7q_0_mat1=(DistG0queens>=0.491) & (DistG0queens<0.774) ; 
allele8q_0_mat1=(DistG0queens>=0.774) & (DistG0queens<0.896) ; 
allele9q_0_mat1=(DistG0queens>=0.896) & (DistG0queens<0.962) ; 
allele10q_0_mat1=(DistG0queens>=0.962) & (DistG0queens<0.991) ; 
allele11q_0_mat1=(DistG0queens>=0.991) & (DistG0queens<1) ; 

  
%DELETES HOMOZYGOTES 
allele1q_0_mat1(all(allele1q_0_mat1==1,2),:)=[];  
allele2q_0_mat1(all(allele2q_0_mat1==1,2),:)=[]; 
allele3q_0_mat1(all(allele3q_0_mat1==1,2),:)=[];  
allele4q_0_mat1(all(allele4q_0_mat1==1,2),:)=[];  
allele5q_0_mat1(all(allele5q_0_mat1==1,2),:)=[];  
allele6q_0_mat1(all(allele6q_0_mat1==1,2),:)=[];  
allele7q_0_mat1(all(allele7q_0_mat1==1,2),:)=[];  
allele8q_0_mat1(all(allele8q_0_mat1==1,2),:)=[];  
allele9q_0_mat1(all(allele9q_0_mat1==1,2),:)=[];  
allele10q_0_mat1(all(allele10q_0_mat1==1,2),:)=[];  
allele11q_0_mat1(all(allele11q_0_mat1==1,2),:)=[]; 

  
% HOW MANY ROWS DELETED PER ALLELE CLASS   

  
rows1=nqueens-length(allele1q_0_mat1(:,1));  
rows2=nqueens-length(allele2q_0_mat1(:,1));  
rows3=nqueens-length(allele3q_0_mat1(:,1));  
rows4=nqueens-length(allele4q_0_mat1(:,1));  
rows5=nqueens-length(allele5q_0_mat1(:,1));  
rows6=nqueens-length(allele6q_0_mat1(:,1));  
rows7=nqueens-length(allele7q_0_mat1(:,1));  
rows8=nqueens-length(allele8q_0_mat1(:,1));  
rows9=nqueens-length(allele9q_0_mat1(:,1));  
rows10=nqueens-length(allele10q_0_mat1(:,1));  
rows11=nqueens-length(allele11q_0_mat1(:,1)); 

  
% TOTAL NUMBER OF ROWS DELETED   
G0totalrows1=(rows1+rows2+rows3+rows4+rows5+rows6+rows7+rows8+rows9+rows10

+rows11); 

  
Count_allele1q_0_mat1=sum(allele1q_0_mat1); 
Count_allele2q_0_mat1=sum(allele2q_0_mat1);  
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Count_allele3q_0_mat1=sum(allele3q_0_mat1);  
Count_allele4q_0_mat1=sum(allele4q_0_mat1);  
Count_allele5q_0_mat1=sum(allele5q_0_mat1);  
Count_allele6q_0_mat1=sum(allele6q_0_mat1);  
Count_allele7q_0_mat1=sum(allele7q_0_mat1);  
Count_allele8q_0_mat1=sum(allele8q_0_mat1);  
Count_allele9q_0_mat1=sum(allele9q_0_mat1);  
Count_allele10q_0_mat1=sum(allele10q_0_mat1);  
Count_allele11q_0_mat1=sum(allele11q_0_mat1);  

  
freqallele1q_0_mat1=sum(Count_allele1q_0_mat1)/(nqueens*2) ; 
freqallele2q_0_mat1=sum(Count_allele2q_0_mat1)/(nqueens*2); 
freqallele3q_0_mat1=sum(Count_allele3q_0_mat1)/(nqueens*2) ; 
freqallele4q_0_mat1=sum(Count_allele4q_0_mat1)/(nqueens*2) ; 
freqallele5q_0_mat1=sum(Count_allele5q_0_mat1)/(nqueens*2) ; 
freqallele6q_0_mat1=sum(Count_allele6q_0_mat1)/(nqueens*2) ; 
freqallele7q_0_mat1=sum(Count_allele7q_0_mat1)/(nqueens*2) ; 
freqallele8q_0_mat1=sum(Count_allele8q_0_mat1)/(nqueens*2) ; 
freqallele9q_0_mat1=sum(Count_allele9q_0_mat1)/(nqueens*2) ; 
freqallele10q_0_mat1=sum(Count_allele10q_0_mat1)/(nqueens*2) ; 
freqallele11q_0_mat1=sum(Count_allele11q_0_mat1)/(nqueens*2) ; 

  
%GENERATE NEW ARRAY EQUALIN SIZE TO RELACE REMOVED ROWS ABOVE 

  
dist1= rand(G0totalrows1,2) ; 

  
allele1q_0_mat2=(dist1>0) & (dist1<0.038);  
allele2q_0_mat2=(dist1>=0.038) & (dist1<0.113);  
allele3q_0_mat2=(dist1>=0.113) & (dist1<0.236);  
allele4q_0_mat2=(dist1>=0.236) & (dist1<0.311);  
allele5q_0_mat2=(dist1>0.311) & (dist1<0.425) ; 
allele6q_0_mat2=(dist1>=0.425) & (dist1<0.491);  
allele7q_0_mat2=(dist1>=0.491) & (dist1<0.774);  
allele8q_0_mat2=(dist1>=0.774) & (dist1<0.896) ; 
allele9q_0_mat2=(dist1>=0.896) & (dist1<0.962);  
allele10q_0_mat2=(dist1>=0.962) & (dist1<0.991);  
allele11q_0_mat2=(dist1>=0.991) & (dist1<1) ; 

  
%PURGE FOR HOMO AGAIN 
allele1q_0_mat2(all(allele1q_0_mat2==1,2),:)=[];  
allele2q_0_mat2(all(allele2q_0_mat2==1,2),:)=[] ; 
allele3q_0_mat2(all(allele3q_0_mat2==1,2),:)=[] ; 
allele4q_0_mat2(all(allele4q_0_mat2==1,2),:)=[] ; 
allele5q_0_mat2(all(allele5q_0_mat2==1,2),:)=[];  
allele6q_0_mat2(all(allele6q_0_mat2==1,2),:)=[];  
allele7q_0_mat2(all(allele7q_0_mat2==1,2),:)=[];  
allele8q_0_mat2(all(allele8q_0_mat2==1,2),:)=[];  
allele9q_0_mat2(all(allele9q_0_mat2==1,2),:)=[];  
allele10q_0_mat2(all(allele10q_0_mat2==1,2),:)=[];  
allele11q_0_mat2(all(allele11q_0_mat2==1,2),:)=[];  

  
rows12=G0totalrows1-length(allele1q_0_mat2(:,1));  %allele1 in matrix2 
rows13=G0totalrows1-length(allele2q_0_mat2(:,1));  %allele2 in matrix2 
rows14=G0totalrows1-length(allele3q_0_mat2(:,1));   
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rows15=G0totalrows1-length(allele4q_0_mat2(:,1));  
rows16=G0totalrows1-length(allele5q_0_mat2(:,1));   
rows17=G0totalrows1-length(allele6q_0_mat2(:,1));   
rows18=G0totalrows1-length(allele7q_0_mat2(:,1));   
rows19=G0totalrows1-length(allele8q_0_mat2(:,1));  
rows20=G0totalrows1-length(allele9q_0_mat2(:,1));   
rows21=G0totalrows1-length(allele10q_0_mat2(:,1));   
rows22=G0totalrows1-length(allele11q_0_mat2(:,1));  

  
%TOTAL NUMBER OF ALLELES REMOVED FROM MATRIX 2 
G0totalrows2=(rows12+rows13+rows14+rows15+rows16+rows17+rows18+rows19+rows

20+rows21+rows22); 

  
Count_allele1q_0_mat2=sum(allele1q_0_mat2) ; 
Count_allele2q_0_mat2=sum(allele2q_0_mat2);  
Count_allele3q_0_mat2=sum(allele3q_0_mat2);  
Count_allele4q_0_mat2=sum(allele4q_0_mat2);  
Count_allele5q_0_mat2=sum(allele5q_0_mat2);  
Count_allele6q_0_mat2=sum(allele6q_0_mat2) ; 
Count_allele7q_0_mat2=sum(allele7q_0_mat2);  
Count_allele8q_0_mat2=sum(allele8q_0_mat2);  
Count_allele9q_0_mat2=sum(allele9q_0_mat2) ; 
Count_allele10q_0_mat2=sum(allele10q_0_mat2);  
Count_allele11q_0_mat2=sum(allele11q_0_mat2); 

  
freqallele1q_0_mat2=sum(Count_allele1q_0_mat2)/(nqueens*2);  
freqallele2q_0_mat2=sum(Count_allele2q_0_mat2)/(nqueens*2) ; 
freqallele3q_0_mat2=sum(Count_allele3q_0_mat2)/(nqueens*2);  
freqallele4q_0_mat2=sum(Count_allele4q_0_mat2)/(nqueens*2);  
freqallele5q_0_mat2=sum(Count_allele5q_0_mat2)/(nqueens*2);  
freqallele6q_0_mat2=sum(Count_allele6q_0_mat2)/(nqueens*2);  
freqallele7q_0_mat2=sum(Count_allele7q_0_mat2)/(nqueens*2);  
freqallele8q_0_mat2=sum(Count_allele8q_0_mat2)/(nqueens*2);  
freqallele9q_0_mat2=sum(Count_allele9q_0_mat2)/(nqueens*2);  
freqallele10q_0_mat2=sum(Count_allele10q_0_mat2)/(nqueens*2);  
freqallele11q_0_mat2=sum(Count_allele11q_0_mat2)/(nqueens*2);  
dist2= rand(G0totalrows2,2) ; 

  
allele1q_0_mat3=(dist2>0) & (dist2<0.038) ; 
allele2q_0_mat3=(dist2>=0.038) & (dist2<0.113);  
allele3q_0_mat3=(dist2>=0.113) & (dist2<0.236);  
allele4q_0_mat3=(dist2>=0.236) & (dist2<0.311);  
allele5q_0_mat3=(dist2>0.311) & (dist2<0.425) ; 
allele6q_0_mat3=(dist2>=0.425) & (dist2<0.491);  
allele7q_0_mat3=(dist2>=0.491) & (dist2<0.774); 
allele8q_0_mat3=(dist2>=0.774) & (dist2<0.896) ; 
allele9q_0_mat3=(dist2>=0.896) & (dist2<0.962);  
allele10q_0_mat3=(dist2>=0.962) & (dist2<0.991); 
allele11q_0_mat3=(dist2>=0.991) & (dist2<1) ; 

  
allele1q_0_mat3(all(allele1q_0_mat3==1,2),:)=[] ; 
allele2q_0_mat3(all(allele2q_0_mat3==1,2),:)=[] ; 
allele3q_0_mat3(all(allele3q_0_mat3==1,2),:)=[] ; 
allele4q_0_mat3(all(allele4q_0_mat3==1,2),:)=[] ; 
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allele5q_0_mat3(all(allele5q_0_mat3==1,2),:)=[] ; 
allele6q_0_mat3(all(allele6q_0_mat3==1,2),:)=[] ; 
allele7q_0_mat3(all(allele7q_0_mat3==1,2),:)=[];  
allele8q_0_mat3(all(allele8q_0_mat3==1,2),:)=[] ; 
allele9q_0_mat3(all(allele9q_0_mat3==1,2),:)=[] ; 
allele10q_0_mat3(all(allele10q_0_mat3==1,2),:)=[];  
allele11q_0_mat3(all(allele11q_0_mat3==1,2),:)=[] ; 

  
rows23=G0totalrows2-length(allele1q_0_mat3(:,1));  
rows24=G0totalrows2-length(allele2q_0_mat3(:,1)) ; 
rows25=G0totalrows2-length(allele3q_0_mat3(:,1)) ; 
rows26=G0totalrows2-length(allele4q_0_mat3(:,1)) ; 
rows27=G0totalrows2-length(allele5q_0_mat3(:,1)) ; 
rows28=G0totalrows2-length(allele6q_0_mat3(:,1)) ; 
rows29=G0totalrows2-length(allele7q_0_mat3(:,1)) ; 
rows30=G0totalrows2-length(allele8q_0_mat3(:,1)) ; 
rows31=G0totalrows2-length(allele9q_0_mat3(:,1)) ; 
rows32=G0totalrows2-length(allele10q_0_mat3(:,1)) ; 
rows33=G0totalrows2-length(allele11q_0_mat3(:,1)) ; 

  
G0totalrows3=(rows23+rows24+rows25+rows26+rows27+rows28+rows29+rows30+rows

31+rows32+rows33); 

  
Count_allele1q_0_mat3=sum(allele1q_0_mat3);  
Count_allele2q_0_mat3=sum(allele2q_0_mat3) ; 
Count_allele3q_0_mat3=sum(allele3q_0_mat3);  
Count_allele4q_0_mat3=sum(allele4q_0_mat3); 
Count_allele5q_0_mat3=sum(allele5q_0_mat3) ; 
Count_allele6q_0_mat3=sum(allele6q_0_mat3) ; 
Count_allele7q_0_mat3=sum(allele7q_0_mat3) ; 
Count_allele8q_0_mat3=sum(allele8q_0_mat3) ; 
Count_allele9q_0_mat3=sum(allele9q_0_mat3) ; 
Count_allele10q_0_mat3=sum(allele10q_0_mat3) ; 
Count_allele11q_0_mat3=sum(allele11q_0_mat3) ; 

  
freqallele1q_0_mat3=sum(Count_allele1q_0_mat3)/(nqueens*2); 
freqallele2q_0_mat3=sum(Count_allele2q_0_mat3)/(nqueens*2);  
freqallele3q_0_mat3=sum(Count_allele3q_0_mat3)/(nqueens*2);  
freqallele4q_0_mat3=sum(Count_allele4q_0_mat3)/(nqueens*2);  
freqallele5q_0_mat3=sum(Count_allele5q_0_mat3)/(nqueens*2);  
freqallele6q_0_mat3=sum(Count_allele6q_0_mat3)/(nqueens*2) ; 
freqallele7q_0_mat3=sum(Count_allele7q_0_mat3)/(nqueens*2) ; 
freqallele8q_0_mat3=sum(Count_allele8q_0_mat3)/(nqueens*2); 
freqallele9q_0_mat3=sum(Count_allele9q_0_mat3)/(nqueens*2) ; 
freqallele10q_0_mat3=sum(Count_allele10q_0_mat3)/(nqueens*2) ; 
freqallele11q_0_mat3=sum(Count_allele11q_0_mat3)/(nqueens*2); 

  
dist3=rand(G0totalrows3,2); 

  
allele1q_0_mat4=(dist3>0) & (dist3<0.038) ; 
allele2q_0_mat4=(dist3>=0.038) & (dist3<0.113) ; 
allele3q_0_mat4=(dist3>=0.113) & (dist3<0.236) ; 
allele4q_0_mat4=(dist3>=0.236) & (dist3<0.311) ; 
allele5q_0_mat4=(dist3>0.311) & (dist3<0.425) ; 
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allele6q_0_mat4=(dist3>=0.425) & (dist3<0.491) ; 
allele7q_0_mat4=(dist3>=0.491) & (dist3<0.774);  
allele8q_0_mat4=(dist3>=0.774) & (dist3<0.896) ; 
allele9q_0_mat4=(dist3>=0.896) & (dist3<0.962) ; 
allele10q_0_mat4=(dist3>=0.962) & (dist3<0.991);  
allele11q_0_mat4=(dist3>=0.991) & (dist3<1) ; 

  
allele1q_0_mat4(all(allele1q_0_mat4==1,2),:)=[] ; 
allele2q_0_mat4(all(allele2q_0_mat4==1,2),:)=[] ; 
allele3q_0_mat4(all(allele3q_0_mat4==1,2),:)=[];  
allele4q_0_mat4(all(allele4q_0_mat4==1,2),:)=[];  
allele5q_0_mat4(all(allele5q_0_mat4==1,2),:)=[];  
allele6q_0_mat4(all(allele6q_0_mat4==1,2),:)=[];  
allele7q_0_mat4(all(allele7q_0_mat4==1,2),:)=[];  
allele8q_0_mat4(all(allele8q_0_mat4==1,2),:)=[]; 
allele9q_0_mat4(all(allele9q_0_mat4==1,2),:)=[];  
allele10q_0_mat4(all(allele10q_0_mat4==1,2),:)=[];  
allele11q_0_mat4(all(allele11q_0_mat4==1,2),:)=[]; 

  
rows34=G0totalrows3-length(allele1q_0_mat4(:,1));  
rows35=G0totalrows3-length(allele2q_0_mat4(:,1));  
rows36=G0totalrows3-length(allele3q_0_mat4(:,1));  
rows37=G0totalrows3-length(allele4q_0_mat4(:,1));  
rows38=G0totalrows3-length(allele5q_0_mat4(:,1));  
rows39=G0totalrows3-length(allele6q_0_mat4(:,1));  
rows40=G0totalrows3-length(allele7q_0_mat4(:,1));  
rows41=G0totalrows3-length(allele8q_0_mat4(:,1));  
rows42=G0totalrows3-length(allele9q_0_mat4(:,1));  
rows43=G0totalrows3-length(allele10q_0_mat4(:,1));  
rows44=G0totalrows3-length(allele11q_0_mat4(:,1));  

  
G0totalrows4=(rows34+rows35+rows36+rows37+rows38+rows39+rows40+rows41+rows

42+rows43+rows44); 

  
Count_allele1q_0_mat4=sum(allele1q_0_mat4);  
Count_allele2q_0_mat4=sum(allele2q_0_mat4) ; 
Count_allele3q_0_mat4=sum(allele3q_0_mat4);  
Count_allele4q_0_mat4=sum(allele4q_0_mat4); 
Count_allele5q_0_mat4=sum(allele5q_0_mat4) ; 
Count_allele6q_0_mat4=sum(allele6q_0_mat4);  
Count_allele7q_0_mat4=sum(allele7q_0_mat4);  
Count_allele8q_0_mat4=sum(allele8q_0_mat4);  
Count_allele9q_0_mat4=sum(allele9q_0_mat4);  
Count_allele10q_0_mat4=sum(allele10q_0_mat4);  
Count_allele11q_0_mat4=sum(allele11q_0_mat4);  

  
freqallele1q_0_mat4=sum(Count_allele1q_0_mat4)/(nqueens*2) ; 
freqallele2q_0_mat4=sum(Count_allele2q_0_mat4)/(nqueens*2);  
freqallele3q_0_mat4=sum(Count_allele3q_0_mat4)/(nqueens*2);  
freqallele4q_0_mat4=sum(Count_allele4q_0_mat4)/(nqueens*2);  
freqallele5q_0_mat4=sum(Count_allele5q_0_mat4)/(nqueens*2);  
freqallele6q_0_mat4=sum(Count_allele6q_0_mat4)/(nqueens*2);  
freqallele7q_0_mat4=sum(Count_allele7q_0_mat4)/(nqueens*2);  
freqallele8q_0_mat4=sum(Count_allele8q_0_mat4)/(nqueens*2); 
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freqallele9q_0_mat4=sum(Count_allele9q_0_mat4)/(nqueens*2);  
freqallele10q_0_mat4=sum(Count_allele10q_0_mat4)/(nqueens*2);  
freqallele11q_0_mat4=sum(Count_allele11q_0_mat4)/(nqueens*2); 

  
dist4=rand(G0totalrows4,2) ; 

  
allele1q_0_mat5=(dist4>0) & (dist4<0.038) ; 
allele2q_0_mat5=(dist4>=0.038) & (dist4<0.113) ; 
allele3q_0_mat5=(dist4>=0.113) & (dist4<0.236) ; 
allele4q_0_mat5=(dist4>=0.236) & (dist4<0.311) ; 
allele5q_0_mat5=(dist4>0.311) & (dist4<0.425) ; 
allele6q_0_mat5=(dist4>=0.425) & (dist4<0.491) ; 
allele7q_0_mat5=(dist4>=0.491) & (dist4<0.774);  
allele8q_0_mat5=(dist4>=0.774) & (dist4<0.896) ; 
allele9q_0_mat5=(dist4>=0.896) & (dist4<0.962) ; 
allele10q_0_mat5=(dist4>=0.962) & (dist4<0.991);  
allele11q_0_mat5=(dist4>=0.991) & (dist4<1) ; 

  
allele1q_0_mat5(all(allele1q_0_mat5==1,2),:)=[] ; 
allele2q_0_mat5(all(allele2q_0_mat5==1,2),:)=[];  
allele3q_0_mat5(all(allele3q_0_mat5==1,2),:)=[];  
allele4q_0_mat5(all(allele4q_0_mat5==1,2),:)=[];  
allele5q_0_mat5(all(allele5q_0_mat5==1,2),:)=[];  
allele6q_0_mat5(all(allele6q_0_mat5==1,2),:)=[]; 
allele7q_0_mat5(all(allele7q_0_mat5==1,2),:)=[];  
allele8q_0_mat5(all(allele8q_0_mat5==1,2),:)=[] ; 
allele9q_0_mat5(all(allele9q_0_mat5==1,2),:)=[]; 
allele10q_0_mat5(all(allele10q_0_mat5==1,2),:)=[];  
allele11q_0_mat5(all(allele11q_0_mat5==1,2),:)=[] ; 

  
rows45=G0totalrows4-length(allele1q_0_mat5(:,1)) ; 
rows46=G0totalrows4-length(allele2q_0_mat5(:,1)) ; 
rows47=G0totalrows4-length(allele3q_0_mat5(:,1)) ; 
rows48=G0totalrows4-length(allele4q_0_mat5(:,1)) ; 
rows49=G0totalrows4-length(allele5q_0_mat5(:,1)); 
rows50=G0totalrows4-length(allele6q_0_mat5(:,1)); 
rows51=G0totalrows4-length(allele7q_0_mat5(:,1)) ; 
rows52=G0totalrows4-length(allele8q_0_mat5(:,1)) ; 
rows53=G0totalrows4-length(allele9q_0_mat5(:,1)); 
rows54=G0totalrows4-length(allele10q_0_mat5(:,1)) ; 
rows55=G0totalrows4-length(allele11q_0_mat5(:,1)) ; 

  
G0totalrows5=(rows45+rows46+rows47+rows48+rows49+rows50+rows51+rows52+rows

53+rows54+rows55); 

  
Count_allele1q_0_mat5=sum(allele1q_0_mat5) ; 
Count_allele2q_0_mat5=sum(allele2q_0_mat5) ; 
Count_allele3q_0_mat5=sum(allele3q_0_mat5) ; 
Count_allele4q_0_mat5=sum(allele4q_0_mat5) ; 
Count_allele5q_0_mat5=sum(allele5q_0_mat5) ; 
Count_allele6q_0_mat5=sum(allele6q_0_mat5) ; 
Count_allele7q_0_mat5=sum(allele7q_0_mat5) ; 
Count_allele8q_0_mat5=sum(allele8q_0_mat5) ; 
Count_allele9q_0_mat5=sum(allele9q_0_mat5) ; 
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Count_allele10q_0_mat5=sum(allele10q_0_mat5) ; 
Count_allele11q_0_mat5=sum(allele11q_0_mat5) ; 

  
freqallele1q_0_mat5=sum(Count_allele1q_0_mat5)/(nqueens*2) ; 
freqallele2q_0_mat5=sum(Count_allele2q_0_mat5)/(nqueens*2) ; 
freqallele3q_0_mat5=sum(Count_allele3q_0_mat5)/(nqueens*2) ; 
freqallele4q_0_mat5=sum(Count_allele4q_0_mat5)/(nqueens*2) ; 
freqallele5q_0_mat5=sum(Count_allele5q_0_mat5)/(nqueens*2) ; 
freqallele6q_0_mat5=sum(Count_allele6q_0_mat5)/(nqueens*2) ; 
freqallele7q_0_mat5=sum(Count_allele7q_0_mat5)/(nqueens*2) ; 
freqallele8q_0_mat5=sum(Count_allele8q_0_mat5)/(nqueens*2) ; 
freqallele9q_0_mat5=sum(Count_allele9q_0_mat5)/(nqueens*2) ; 
freqallele10q_0_mat5=sum(Count_allele10q_0_mat5)/(nqueens*2) ; 
freqallele11q_0_mat5=sum(Count_allele11q_0_mat5)/(nqueens*2) ; 

  
freqallele1q_G0=freqallele1q_0_mat1+freqallele1q_0_mat2+freqallele1q_0_mat

3+freqallele1q_0_mat4+freqallele1q_0_mat5; 
freqallele2q_G0=freqallele2q_0_mat1+freqallele2q_0_mat2+freqallele2q_0_mat

3+freqallele2q_0_mat4+freqallele2q_0_mat5; 
freqallele3q_G0=freqallele3q_0_mat1+freqallele3q_0_mat2+freqallele3q_0_mat

3+freqallele3q_0_mat4+freqallele3q_0_mat5; 
freqallele4q_G0=freqallele4q_0_mat1+freqallele4q_0_mat2+freqallele4q_0_mat

3+freqallele4q_0_mat4+freqallele4q_0_mat5; 
freqallele5q_G0=freqallele5q_0_mat1+freqallele5q_0_mat2+freqallele5q_0_mat

3+freqallele5q_0_mat4+freqallele5q_0_mat5; 
freqallele6q_G0=freqallele6q_0_mat1+freqallele6q_0_mat2+freqallele6q_0_mat

3+freqallele6q_0_mat4+freqallele6q_0_mat5; 
freqallele7q_G0=freqallele7q_0_mat1+freqallele7q_0_mat2+freqallele7q_0_mat

3+freqallele7q_0_mat4+freqallele7q_0_mat5; 
freqallele8q_G0=freqallele8q_0_mat1+freqallele8q_0_mat2+freqallele8q_0_mat

3+freqallele8q_0_mat4+freqallele8q_0_mat5; 
freqallele9q_G0=freqallele9q_0_mat1+freqallele9q_0_mat2+freqallele9q_0_mat

3+freqallele9q_0_mat4+freqallele9q_0_mat5; 
freqallele10q_G0=freqallele10q_0_mat1+freqallele10q_0_mat2+freqallele10q_0

_mat3+freqallele10q_0_mat4+freqallele10q_0_mat5; 
freqallele11q_G0=freqallele11q_0_mat1+freqallele11q_0_mat2+freqallele11q_0

_mat3+freqallele11q_0_mat4+freqallele11q_0_mat5; 

  
%FREQUENCY OF ALLELES IN SIMULATED GENERTION GO 
freqallele1_G0=((2*freqallele1q_G0+freqallele1d_G0)/3); 
freqallele2_G0=((2*freqallele2q_G0+freqallele2d_G0)/3); 
freqallele3_G0=((2*freqallele3q_G0+freqallele3d_G0)/3); 
freqallele4_G0=((2*freqallele4q_G0+freqallele4d_G0)/3); 
freqallele5_G0=((2*freqallele5q_G0+freqallele5d_G0)/3); 
freqallele6_G0=((2*freqallele6q_G0+freqallele6d_G0)/3); 
freqallele7_G0=((2*freqallele7q_G0+freqallele7d_G0)/3); 
freqallele8_G0=((2*freqallele8q_G0+freqallele8d_G0)/3); 
freqallele9_G0=((2*freqallele9q_G0+freqallele9d_G0)/3); 
freqallele10_G0=((2*freqallele10q_G0+freqallele10d_G0)/3); 
freqallele11_G0=((2*freqallele11q_G0+freqallele11d_G0)/3); 

  
mat1_G0(freqallele1)=freqallele1_G0; 
mat2_G0(freqallele1)=freqallele2_G0; 
mat3_G0(freqallele1)=freqallele3_G0; 
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mat4_G0(freqallele1)=freqallele4_G0; 
mat5_G0(freqallele1)=freqallele5_G0; 
mat6_G0(freqallele1)=freqallele6_G0; 
mat7_G0(freqallele1)=freqallele7_G0; 
mat8_G0(freqallele1)=freqallele8_G0; 
mat9_G0(freqallele1)=freqallele9_G0; 
mat10_G0(freqallele1)=freqallele10_G0; 
mat11_G0(freqallele1)=freqallele11_G0; 

  

  

  

  

  
%NOW DETERMINE ALLELE FREQ IN SELECTED BREEDERS 1 

  
Distribution=rand(nqueens,2); 
Breeders1=datasample(Distribution,nobreeders1); 

  
allele1q_b1_mat1=(Breeders1>0) & (Breeders1<freqallele1_G0); 
allele2q_b1_mat1=(Breeders1>=freqallele1_G0) & 

(Breeders1<(freqallele1_G0+freqallele2_G0)); 
allele3q_b1_mat1=(Breeders1>=(freqallele1_G0+freqallele2_G0)) & 

(Breeders1<(freqallele1_G0+freqallele2_G0+freqallele3_G0)); 
allele4q_b1_mat1=(Breeders1>=(freqallele1_G0+freqallele2_G0+freqallele3_G0

)) & 

(Breeders1<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0)); 
allele5q_b1_mat1=(Breeders1>=(freqallele1_G0+freqallele2_G0+freqallele3_G0

+freqallele4_G0)) & 

(Breeders1<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+fr

eqallele5_G0)); 
allele6q_b1_mat1=(Breeders1>=(freqallele1_G0+freqallele2_G0+freqallele3_G0

+freqallele4_G0+freqallele5_G0)) & 

(Breeders1<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+fr

eqallele5_G0+freqallele6_G0)); 
allele7q_b1_mat1=(Breeders1>=(freqallele1_G0+freqallele2_G0+freqallele3_G0

+freqallele4_G0+freqallele5_G0+freqallele6_G0)) & 

(Breeders1<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+fr

eqallele5_G0+freqallele6_G0+ freqallele7_G0)); 
allele8q_b1_mat1=(Breeders1>=(freqallele1_G0+freqallele2_G0+freqallele3_G0

+freqallele4_G0+freqallele5_G0+freqallele6_G0+ freqallele7_G0)) & 

(Breeders1<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+fr

eqallele5_G0+freqallele6_G0+ freqallele7_G0+freqallele8_G0)); 
allele9q_b1_mat1=(Breeders1>=(freqallele1_G0+freqallele2_G0+freqallele3_G0

+freqallele4_G0+freqallele5_G0+freqallele6_G0+ 

freqallele7_G0+freqallele8_G0)) & 

(Breeders1<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+fr

eqallele5_G0+freqallele6_G0+ 

freqallele7_G0+freqallele8_G0+freqallele9_G0)); 
allele10q_b1_mat1=(Breeders1>=(freqallele1_G0+freqallele2_G0+freqallele3_G

0+freqallele4_G0+freqallele5_G0+freqallele6_G0+ 

freqallele7_G0+freqallele8_G0+freqallele9_G0)) & 

(Breeders1<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+fr

eqallele5_G0+freqallele6_G0+ 

freqallele7_G0+freqallele8_G0+freqallele9_G0+freqallele10_G0)); 
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allele11q_b1_mat1=(Breeders1>=(freqallele1_G0+freqallele2_G0+freqallele3_G

0+freqallele4_G0+freqallele5_G0+freqallele6_G0+ 

freqallele7_G0+freqallele8_G0+freqallele9_G0+freqallele10_G0)) & 

(Breeders1<1); 

  
%PURGE HOMOZYGOTES SELECTED AT RANDOM 
allele1q_b1_mat1(all(allele1q_b1_mat1==1,2),:)=[] ; 
allele2q_b1_mat1(all(allele2q_b1_mat1==1,2),:)=[] ; 
allele3q_b1_mat1(all(allele3q_b1_mat1==1,2),:)=[] ; 
allele4q_b1_mat1(all(allele4q_b1_mat1==1,2),:)=[] ; 
allele5q_b1_mat1(all(allele5q_b1_mat1==1,2),:)=[] ; 
allele6q_b1_mat1(all(allele6q_b1_mat1==1,2),:)=[] ; 
allele7q_b1_mat1(all(allele7q_b1_mat1==1,2),:)=[] ; 
allele8q_b1_mat1(all(allele8q_b1_mat1==1,2),:)=[] ; 
allele9q_b1_mat1(all(allele9q_b1_mat1==1,2),:)=[] ; 
allele10q_b1_mat1(all(allele10q_b1_mat1==1,2),:)=[]; 
allele11q_b1_mat1(all(allele11q_b1_mat1==1,2),:)=[]; 

  

  
rows1=nobreeders1-length(allele1q_b1_mat1(:,1)); 
rows2=nobreeders1-length(allele2q_b1_mat1(:,1)); 
rows3=nobreeders1-length(allele3q_b1_mat1(:,1)); 
rows4=nobreeders1-length(allele4q_b1_mat1(:,1)); 
rows5=nobreeders1-length(allele5q_b1_mat1(:,1)); 
rows6=nobreeders1-length(allele6q_b1_mat1(:,1)); 
rows7=nobreeders1-length(allele7q_b1_mat1(:,1)); 
rows8=nobreeders1-length(allele8q_b1_mat1(:,1)); 
rows9=nobreeders1-length(allele9q_b1_mat1(:,1)); 
rows10=nobreeders1-length(allele10q_b1_mat1(:,1)); 
rows11=nobreeders1-length(allele11q_b1_mat1(:,1)); 

  
G0totalrowsbreeders1=(rows1+rows2+rows3+rows4+rows5+rows6+rows7+rows8+rows

9+rows10+rows11); 

  
count_allele1q_b1_mat1=sum(allele1q_b1_mat1); 
count_allele2q_b1_mat1=sum(allele2q_b1_mat1); 
count_allele3q_b1_mat1=sum(allele3q_b1_mat1); 
count_allele4q_b1_mat1=sum(allele4q_b1_mat1); 
count_allele5q_b1_mat1=sum(allele5q_b1_mat1); 
count_allele6q_b1_mat1=sum(allele6q_b1_mat1); 
count_allele7q_b1_mat1=sum(allele7q_b1_mat1); 
count_allele8q_b1_mat1=sum(allele8q_b1_mat1); 
count_allele9q_b1_mat1=sum(allele9q_b1_mat1); 
count_allele10q_b1_mat1=sum(allele10q_b1_mat1); 
count_allele11q_b1_mat1=sum(allele11q_b1_mat1); 

  
freqallele1q_b1_mat1=sum(count_allele1q_b1_mat1)/(nobreeders1*2); 
freqallele2q_b1_mat1=sum(count_allele2q_b1_mat1)/(nobreeders1*2); 
freqallele3q_b1_mat1=sum(count_allele3q_b1_mat1)/(nobreeders1*2); 
freqallele4q_b1_mat1=sum(count_allele4q_b1_mat1)/(nobreeders1*2); 
freqallele5q_b1_mat1=sum(count_allele5q_b1_mat1)/(nobreeders1*2); 
freqallele6q_b1_mat1=sum(count_allele6q_b1_mat1)/(nobreeders1*2); 
freqallele7q_b1_mat1=sum(count_allele7q_b1_mat1)/(nobreeders1*2); 
freqallele8q_b1_mat1=sum(count_allele8q_b1_mat1)/(nobreeders1*2); 
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freqallele9q_b1_mat1=sum(count_allele9q_b1_mat1)/(nobreeders1*2); 
freqallele10q_b1_mat1=sum(count_allele10q_b1_mat1)/(nobreeders1*2); 
freqallele11q_b1_mat1=sum(count_allele11q_b1_mat1)/(nobreeders1*2); 

  
dist1=rand(G0totalrowsbreeders1,2); 

  
allele1q_b1_mat2=(dist1>0) & (dist1<freqallele1_G0); 
allele2q_b1_mat2=(dist1>=freqallele1_G0) & 

(dist1<(freqallele1_G0+freqallele2_G0)); 
allele3q_b1_mat2=(dist1>=(freqallele1_G0+freqallele2_G0)) & 

(dist1<(freqallele1_G0+freqallele2_G0+freqallele3_G0)); 
allele4q_b1_mat2=(dist1>=(freqallele1_G0+freqallele2_G0+freqallele3_G0)) & 

(dist1<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0)); 
allele5q_b1_mat2=(dist1>=(freqallele1_G0+freqallele2_G0+freqallele3_G0+fre

qallele4_G0)) & 

(dist1<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+freqal

lele5_G0)); 
allele6q_b1_mat2=(dist1>=(freqallele1_G0+freqallele2_G0+freqallele3_G0+fre

qallele4_G0+freqallele5_G0)) & 

(dist1<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+freqal

lele5_G0+freqallele6_G0)); 
allele7q_b1_mat2=(dist1>=(freqallele1_G0+freqallele2_G0+freqallele3_G0+fre

qallele4_G0+freqallele5_G0+freqallele6_G0)) & 

(dist1<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+freqal

lele5_G0+freqallele6_G0+ freqallele7_G0)); 
allele8q_b1_mat2=(dist1>=(freqallele1_G0+freqallele2_G0+freqallele3_G0+fre

qallele4_G0+freqallele5_G0+freqallele6_G0+ freqallele7_G0)) & 

(dist1<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+freqal

lele5_G0+freqallele6_G0+ freqallele7_G0+freqallele8_G0)); 
allele9q_b1_mat2=(dist1>=(freqallele1_G0+freqallele2_G0+freqallele3_G0+fre

qallele4_G0+freqallele5_G0+freqallele6_G0+ freqallele7_G0+freqallele8_G0)) 

& 

(dist1<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+freqal

lele5_G0+freqallele6_G0+ freqallele7_G0+freqallele8_G0+freqallele9_G0)); 
allele10q_b1_mat2=(dist1>=(freqallele1_G0+freqallele2_G0+freqallele3_G0+fr

eqallele4_G0+freqallele5_G0+freqallele6_G0+ 

freqallele7_G0+freqallele8_G0+freqallele9_G0)) & 

(dist1<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+freqal

lele5_G0+freqallele6_G0+ 

freqallele7_G0+freqallele8_G0+freqallele9_G0+freqallele10_G0)); 
allele11q_b1_mat2=(dist1>=(freqallele1_G0+freqallele2_G0+freqallele3_G0+fr

eqallele4_G0+freqallele5_G0+freqallele6_G0+ 

freqallele7_G0+freqallele8_G0+freqallele9_G0+freqallele10_G0)) & 

(dist1<1); 

  
allele1q_b1_mat2(all(allele1q_b1_mat2==1,2),:)=[] ; 
allele2q_b1_mat2(all(allele2q_b1_mat2==1,2),:)=[] ; 
allele3q_b1_mat2(all(allele3q_b1_mat2==1,2),:)=[] ; 
allele4q_b1_mat2(all(allele4q_b1_mat2==1,2),:)=[] ; 
allele5q_b1_mat2(all(allele5q_b1_mat2==1,2),:)=[] ; 
allele6q_b1_mat2(all(allele6q_b1_mat2==1,2),:)=[] ; 
allele7q_b1_mat2(all(allele7q_b1_mat2==1,2),:)=[] ; 
allele8q_b1_mat2(all(allele8q_b1_mat2==1,2),:)=[] ; 
allele9q_b1_mat2(all(allele9q_b1_mat2==1,2),:)=[] ; 
allele10q_b1_mat2(all(allele10q_b1_mat2==1,2),:)=[] ; 
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allele11q_b1_mat2(all(allele11q_b1_mat2==1,2),:)=[] ; 

  
rows12=G0totalrowsbreeders1-length(allele1q_b1_mat2(:,1)); 
rows13=G0totalrowsbreeders1-length(allele2q_b1_mat2(:,1)); 
rows14=G0totalrowsbreeders1-length(allele3q_b1_mat2(:,1)); 
rows15=G0totalrowsbreeders1-length(allele4q_b1_mat2(:,1)); 
rows16=G0totalrowsbreeders1-length(allele5q_b1_mat2(:,1)); 
rows17=G0totalrowsbreeders1-length(allele6q_b1_mat2(:,1)); 
rows18=G0totalrowsbreeders1-length(allele7q_b1_mat2(:,1)); 
rows19=G0totalrowsbreeders1-length(allele8q_b1_mat2(:,1)); 
rows20=G0totalrowsbreeders1-length(allele9q_b1_mat2(:,1)); 
rows21=G0totalrowsbreeders1-length(allele10q_b1_mat2(:,1)); 
rows22=G0totalrowsbreeders1-length(allele11q_b1_mat2(:,1)); 

  
G0totalrowsbreeders2=(rows12+rows13+rows14+rows15+rows16+rows17+rows18+row

s19+rows20+rows21+rows22); 

  
count_allele1q_b1_mat2=sum(allele1q_b1_mat2); 
count_allele2q_b1_mat2=sum(allele2q_b1_mat2); 
count_allele3q_b1_mat2=sum(allele3q_b1_mat2); 
count_allele4q_b1_mat2=sum(allele4q_b1_mat2); 
count_allele5q_b1_mat2=sum(allele5q_b1_mat2); 
count_allele6q_b1_mat2=sum(allele6q_b1_mat2); 
count_allele7q_b1_mat2=sum(allele7q_b1_mat2); 
count_allele8q_b1_mat2=sum(allele8q_b1_mat2); 
count_allele9q_b1_mat2=sum(allele9q_b1_mat2); 
count_allele10q_b1_mat2=sum(allele10q_b1_mat2); 
count_allele11q_b1_mat2=sum(allele11q_b1_mat2); 

  
freqallele1q_b1_mat2=sum(count_allele1q_b1_mat2)/(nobreeders1*2); 
freqallele2q_b1_mat2=sum(count_allele2q_b1_mat2)/(nobreeders1*2); 
freqallele3q_b1_mat2=sum(count_allele3q_b1_mat2)/(nobreeders1*2); 
freqallele4q_b1_mat2=sum(count_allele4q_b1_mat2)/(nobreeders1*2); 
freqallele5q_b1_mat2=sum(count_allele5q_b1_mat2)/(nobreeders1*2); 
freqallele6q_b1_mat2=sum(count_allele6q_b1_mat2)/(nobreeders1*2); 
freqallele7q_b1_mat2=sum(count_allele7q_b1_mat2)/(nobreeders1*2); 
freqallele8q_b1_mat2=sum(count_allele8q_b1_mat2)/(nobreeders1*2); 
freqallele9q_b1_mat2=sum(count_allele9q_b1_mat2)/(nobreeders1*2); 
freqallele10q_b1_mat2=sum(count_allele10q_b1_mat2)/(nobreeders1*2); 
freqallele11q_b1_mat2=sum(count_allele11q_b1_mat2)/(nobreeders1*2); 

  
dist2=rand(G0totalrowsbreeders2,2); 

  
allele1q_b1_mat3=(dist2>0) & (dist2<freqallele1_G0); 
allele2q_b1_mat3=(dist2>=freqallele1_G0) & 

(dist2<(freqallele1_G0+freqallele2_G0)); 
allele3q_b1_mat3=(dist2>=(freqallele1_G0+freqallele2_G0)) & 

(dist2<(freqallele1_G0+freqallele2_G0+freqallele3_G0)); 
allele4q_b1_mat3=(dist2>=(freqallele1_G0+freqallele2_G0+freqallele3_G0)) & 

(dist2<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0)); 
allele5q_b1_mat3=(dist2>=(freqallele1_G0+freqallele2_G0+freqallele3_G0+fre

qallele4_G0)) & 

(dist2<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+freqal

lele5_G0)); 
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allele6q_b1_mat3=(dist2>=(freqallele1_G0+freqallele2_G0+freqallele3_G0+fre

qallele4_G0+freqallele5_G0)) & 

(dist2<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+freqal

lele5_G0+freqallele6_G0)); 
allele7q_b1_mat3=(dist2>=(freqallele1_G0+freqallele2_G0+freqallele3_G0+fre

qallele4_G0+freqallele5_G0+freqallele6_G0)) & 

(dist2<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+freqal

lele5_G0+freqallele6_G0+ freqallele7_G0)); 
allele8q_b1_mat3=(dist2>=(freqallele1_G0+freqallele2_G0+freqallele3_G0+fre

qallele4_G0+freqallele5_G0+freqallele6_G0+ freqallele7_G0)) & 

(dist2<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+freqal

lele5_G0+freqallele6_G0+ freqallele7_G0+freqallele8_G0)); 
allele9q_b1_mat3=(dist2>=(freqallele1_G0+freqallele2_G0+freqallele3_G0+fre

qallele4_G0+freqallele5_G0+freqallele6_G0+ freqallele7_G0+freqallele8_G0)) 

& 

(dist2<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+freqal

lele5_G0+freqallele6_G0+ freqallele7_G0+freqallele8_G0+freqallele9_G0)); 
allele10q_b1_mat3=(dist2>=(freqallele1_G0+freqallele2_G0+freqallele3_G0+fr

eqallele4_G0+freqallele5_G0+freqallele6_G0+ 

freqallele7_G0+freqallele8_G0+freqallele9_G0)) & 

(dist2<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+freqal

lele5_G0+freqallele6_G0+ 

freqallele7_G0+freqallele8_G0+freqallele9_G0+freqallele10_G0)); 
allele11q_b1_mat3=(dist2>=(freqallele1_G0+freqallele2_G0+freqallele3_G0+fr

eqallele4_G0+freqallele5_G0+freqallele6_G0+ 

freqallele7_G0+freqallele8_G0+freqallele9_G0+freqallele10_G0)) & 

(dist2<1); 

  
allele1q_b1_mat3(all(allele1q_b1_mat3==1,2),:)=[] ; 
allele2q_b1_mat3(all(allele2q_b1_mat3==1,2),:)=[] ; 
allele3q_b1_mat3(all(allele3q_b1_mat3==1,2),:)=[] ; 
allele4q_b1_mat3(all(allele4q_b1_mat3==1,2),:)=[] ; 
allele5q_b1_mat3(all(allele5q_b1_mat3==1,2),:)=[] ; 
allele6q_b1_mat3(all(allele6q_b1_mat3==1,2),:)=[] ; 
allele7q_b1_mat3(all(allele7q_b1_mat3==1,2),:)=[] ; 
allele8q_b1_mat3(all(allele8q_b1_mat3==1,2),:)=[] ; 
allele9q_b1_mat3(all(allele9q_b1_mat3==1,2),:)=[] ; 
allele10q_b1_mat3(all(allele10q_b1_mat3==1,2),:)=[] ; 
allele11q_b1_mat3(all(allele11q_b1_mat3==1,2),:)=[] ; 

  
rows23=G0totalrowsbreeders2-length(allele1q_b1_mat3(:,1)) ; 
rows24=G0totalrowsbreeders2-length(allele2q_b1_mat3(:,1)) ; 
rows25=G0totalrowsbreeders2-length(allele3q_b1_mat3(:,1)) ; 
rows26=G0totalrowsbreeders2-length(allele4q_b1_mat3(:,1)) ; 
rows27=G0totalrowsbreeders2-length(allele5q_b1_mat3(:,1)) ; 
rows28=G0totalrowsbreeders2-length(allele6q_b1_mat3(:,1)) ; 
rows29=G0totalrowsbreeders2-length(allele7q_b1_mat3(:,1)) ; 
rows30=G0totalrowsbreeders2-length(allele8q_b1_mat3(:,1)) ; 
rows31=G0totalrowsbreeders2-length(allele9q_b1_mat3(:,1)) ; 
rows32=G0totalrowsbreeders2-length(allele10q_b1_mat3(:,1)) ; 
rows33=G0totalrowsbreeders2-length(allele11q_b1_mat3(:,1)) ; 

  
G0totalrowsbreeders3=(rows23+rows24+rows25+rows26+rows27+rows28+rows29+row

s30+rows31+rows32+rows33); 
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count_allele1q_b1_mat3=sum(allele1q_b1_mat3) ; 
count_allele2q_b1_mat3=sum(allele2q_b1_mat3) ; 
count_allele3q_b1_mat3=sum(allele3q_b1_mat3) ; 
count_allele4q_b1_mat3=sum(allele4q_b1_mat3) ; 
count_allele5q_b1_mat3=sum(allele5q_b1_mat3) ; 
count_allele6q_b1_mat3=sum(allele6q_b1_mat3) ; 
count_allele7q_b1_mat3=sum(allele7q_b1_mat3) ; 
count_allele8q_b1_mat3=sum(allele8q_b1_mat3) ; 
count_allele9q_b1_mat3=sum(allele9q_b1_mat3) ; 
count_allele10q_b1_mat3=sum(allele10q_b1_mat3) ; 
count_allele11q_b1_mat3=sum(allele11q_b1_mat3) ; 

  
freqallele1q_b1_mat3=sum(count_allele1q_b1_mat3)/(nobreeders1*2) ; 
freqallele2q_b1_mat3=sum(count_allele2q_b1_mat3)/(nobreeders1*2) ; 
freqallele3q_b1_mat3=sum(count_allele3q_b1_mat3)/(nobreeders1*2) ; 
freqallele4q_b1_mat3=sum(count_allele4q_b1_mat3)/(nobreeders1*2) ; 
freqallele5q_b1_mat3=sum(count_allele5q_b1_mat3)/(nobreeders1*2) ; 
freqallele6q_b1_mat3=sum(count_allele6q_b1_mat3)/(nobreeders1*2) ; 
freqallele7q_b1_mat3=sum(count_allele7q_b1_mat3)/(nobreeders1*2) ; 
freqallele8q_b1_mat3=sum(count_allele8q_b1_mat3)/(nobreeders1*2) ; 
freqallele9q_b1_mat3=sum(count_allele9q_b1_mat3)/(nobreeders1*2) ; 
freqallele10q_b1_mat3=sum(count_allele10q_b1_mat3)/(nobreeders1*2) ; 
freqallele11q_b1_mat3=sum(count_allele11q_b1_mat3)/(nobreeders1*2) ; 

  
dist3=rand(G0totalrowsbreeders3,2); 

  
allele1q_b1_mat4=(dist3>0) & (dist3<freqallele1_G0); 
allele2q_b1_mat4=(dist3>=freqallele1_G0) & 

(dist3<(freqallele1_G0+freqallele2_G0)); 
allele3q_b1_mat4=(dist3>=(freqallele1_G0+freqallele2_G0)) & 

(dist3<(freqallele1_G0+freqallele2_G0+freqallele3_G0)); 
allele4q_b1_mat4=(dist3>=(freqallele1_G0+freqallele2_G0+freqallele3_G0)) & 

(dist3<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0)); 
allele5q_b1_mat4=(dist3>=(freqallele1_G0+freqallele2_G0+freqallele3_G0+fre

qallele4_G0)) & 

(dist3<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+freqal

lele5_G0)); 
allele6q_b1_mat4=(dist3>=(freqallele1_G0+freqallele2_G0+freqallele3_G0+fre

qallele4_G0+freqallele5_G0)) & 

(dist3<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+freqal

lele5_G0+freqallele6_G0)); 
allele7q_b1_mat4=(dist3>=(freqallele1_G0+freqallele2_G0+freqallele3_G0+fre

qallele4_G0+freqallele5_G0+freqallele6_G0)) & 

(dist3<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+freqal

lele5_G0+freqallele6_G0+ freqallele7_G0)); 
allele8q_b1_mat4=(dist3>=(freqallele1_G0+freqallele2_G0+freqallele3_G0+fre

qallele4_G0+freqallele5_G0+freqallele6_G0+ freqallele7_G0)) & 

(dist3<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+freqal

lele5_G0+freqallele6_G0+ freqallele7_G0+freqallele8_G0)); 
allele9q_b1_mat4=(dist3>=(freqallele1_G0+freqallele2_G0+freqallele3_G0+fre

qallele4_G0+freqallele5_G0+freqallele6_G0+ freqallele7_G0+freqallele8_G0)) 

& 
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(dist3<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+freqal

lele5_G0+freqallele6_G0+ freqallele7_G0+freqallele8_G0+freqallele9_G0)); 
allele10q_b1_mat4=(dist3>=(freqallele1_G0+freqallele2_G0+freqallele3_G0+fr

eqallele4_G0+freqallele5_G0+freqallele6_G0+ 

freqallele7_G0+freqallele8_G0+freqallele9_G0)) & 

(dist3<(freqallele1_G0+freqallele2_G0+freqallele3_G0+freqallele4_G0+freqal

lele5_G0+freqallele6_G0+ 

freqallele7_G0+freqallele8_G0+freqallele9_G0+freqallele10_G0)); 
allele11q_b1_mat4=(dist3>=(freqallele1_G0+freqallele2_G0+freqallele3_G0+fr

eqallele4_G0+freqallele5_G0+freqallele6_G0+ 

freqallele7_G0+freqallele8_G0+freqallele9_G0+freqallele10_G0)) & 

(dist3<1); 

  
allele1q_b1_mat4(all(allele1q_b1_mat4==1,2),:)=[] ; 
allele2q_b1_mat4(all(allele2q_b1_mat4==1,2),:)=[] ; 
allele3q_b1_mat4(all(allele3q_b1_mat4==1,2),:)=[] ; 
allele4q_b1_mat4(all(allele4q_b1_mat4==1,2),:)=[] ; 
allele5q_b1_mat4(all(allele5q_b1_mat4==1,2),:)=[] ; 
allele6q_b1_mat4(all(allele6q_b1_mat4==1,2),:)=[] ; 
allele7q_b1_mat4(all(allele7q_b1_mat4==1,2),:)=[] ; 
allele8q_b1_mat4(all(allele8q_b1_mat4==1,2),:)=[] ; 
allele9q_b1_mat4(all(allele9q_b1_mat4==1,2),:)=[] ; 
allele10q_b1_mat4(all(allele10q_b1_mat4==1,2),:)=[] ; 
allele11q_b1_mat4(all(allele11q_b1_mat4==1,2),:)=[] ; 

  
rows34=G0totalrowsbreeders3-length(allele1q_b1_mat4(:,1)) ; 
rows35=G0totalrowsbreeders3-length(allele2q_b1_mat4(:,1)) ; 
rows36=G0totalrowsbreeders3-length(allele3q_b1_mat4(:,1)) ; 
rows37=G0totalrowsbreeders3-length(allele4q_b1_mat4(:,1)) ; 
rows38=G0totalrowsbreeders3-length(allele5q_b1_mat4(:,1)) ; 
rows39=G0totalrowsbreeders3-length(allele6q_b1_mat4(:,1)) ; 
rows40=G0totalrowsbreeders3-length(allele7q_b1_mat4(:,1)) ; 
rows41=G0totalrowsbreeders3-length(allele8q_b1_mat4(:,1)) ; 
rows42=G0totalrowsbreeders3-length(allele9q_b1_mat4(:,1)) ; 
rows43=G0totalrowsbreeders3-length(allele10q_b1_mat4(:,1)) ; 
rows44=G0totalrowsbreeders3-length(allele11q_b1_mat4(:,1)) ;  

  
G0totalrowsbreeders3=(rows34+rows35+rows36+rows37+rows38+rows39+rows40+row

s41+rows42+rows43+rows44); 

  
count_allele1q_b1_mat4=sum(allele1q_b1_mat4) ; 
count_allele2q_b1_mat4=sum(allele2q_b1_mat4) ; 
count_allele3q_b1_mat4=sum(allele3q_b1_mat4) ; 
count_allele4q_b1_mat4=sum(allele4q_b1_mat4) ; 
count_allele5q_b1_mat4=sum(allele5q_b1_mat4) ; 
count_allele6q_b1_mat4=sum(allele6q_b1_mat4) ; 
count_allele7q_b1_mat4=sum(allele7q_b1_mat4) ; 
count_allele8q_b1_mat4=sum(allele8q_b1_mat4) ; 
count_allele9q_b1_mat4=sum(allele9q_b1_mat4) ; 
count_allele10q_b1_mat4=sum(allele10q_b1_mat4) ; 
count_allele11q_b1_mat4=sum(allele11q_b1_mat4) ; 

  
freqallele1q_b1_mat4=sum(count_allele1q_b1_mat4)/(nobreeders1*2) ; 
freqallele2q_b1_mat4=sum(count_allele2q_b1_mat4)/(nobreeders1*2) ; 
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freqallele3q_b1_mat4=sum(count_allele3q_b1_mat4)/(nobreeders1*2) ; 
freqallele4q_b1_mat4=sum(count_allele4q_b1_mat4)/(nobreeders1*2) ; 
freqallele5q_b1_mat4=sum(count_allele5q_b1_mat4)/(nobreeders1*2) ; 
freqallele6q_b1_mat4=sum(count_allele6q_b1_mat4)/(nobreeders1*2) ; 
freqallele7q_b1_mat4=sum(count_allele7q_b1_mat4)/(nobreeders1*2) ; 
freqallele8q_b1_mat4=sum(count_allele8q_b1_mat4)/(nobreeders1*2) ; 
freqallele9q_b1_mat4=sum(count_allele9q_b1_mat4)/(nobreeders1*2) ; 
freqallele10q_b1_mat4=sum(count_allele10q_b1_mat4)/(nobreeders1*2) ; 
freqallele11q_b1_mat4=sum(count_allele11q_b1_mat4)/(nobreeders1*2) ; 

  
freqallele1q_b1=freqallele1q_b1_mat1+freqallele1q_b1_mat2+freqallele1q_b1_

mat3+freqallele1q_b1_mat4; 
freqallele2q_b1=freqallele2q_b1_mat1+freqallele2q_b1_mat2+freqallele2q_b1_

mat3+freqallele2q_b1_mat4; 
freqallele3q_b1=freqallele3q_b1_mat1+freqallele3q_b1_mat2+freqallele3q_b1_

mat3+freqallele3q_b1_mat4; 
freqallele4q_b1=freqallele4q_b1_mat1+freqallele4q_b1_mat2+freqallele4q_b1_

mat3+freqallele4q_b1_mat4; 
freqallele5q_b1=freqallele5q_b1_mat1+freqallele5q_b1_mat2+freqallele5q_b1_

mat3+freqallele5q_b1_mat4; 
freqallele6q_b1=freqallele6q_b1_mat1+freqallele6q_b1_mat2+freqallele6q_b1_

mat3+freqallele6q_b1_mat4; 
freqallele7q_b1=freqallele7q_b1_mat1+freqallele7q_b1_mat2+freqallele7q_b1_

mat3+freqallele7q_b1_mat4; 
freqallele8q_b1=freqallele8q_b1_mat1+freqallele8q_b1_mat2+freqallele8q_b1_

mat3+freqallele8q_b1_mat4; 
freqallele9q_b1=freqallele9q_b1_mat1+freqallele9q_b1_mat2+freqallele9q_b1_

mat3+freqallele9q_b1_mat4; 
freqallele10q_b1=freqallele10q_b1_mat1+freqallele10q_b1_mat2+freqallele10q

_b1_mat3+freqallele10q_b1_mat4; 
freqallele11q_b1=freqallele11q_b1_mat1+freqallele11q_b1_mat2+freqallele11q

_b1_mat3+freqallele11q_b1_mat4; 
%These (this) queen genotype(s) had mated with (n) drones in last 

generation 
%Hence breeder contribution is  

  
Ballelefreq1_G1=(2*freqallele1q_b1+freqallele1d_G0)/3 
Ballelefreq2_G1=(2*freqallele2q_b1+freqallele2d_G0)/3 
Ballelefreq3_G1=(2*freqallele3q_b1+freqallele3d_G0)/3 
Ballelefreq4_G1=(2*freqallele4q_b1+freqallele4d_G0)/3 
Ballelefreq5_G1=(2*freqallele5q_b1+freqallele5d_G0)/3 
Ballelefreq6_G1=(2*freqallele6q_b1+freqallele6d_G0)/3 
Ballelefreq7_G1=(2*freqallele7q_b1+freqallele7d_G0)/3 
Ballelefreq8_G1=(2*freqallele8q_b1+freqallele8d_G0)/3 
Ballelefreq9_G1=(2*freqallele9q_b1+freqallele9d_G0)/3 
Ballelefreq10_G1=(2*freqallele10q_b1+freqallele10d_G0)/3 
Ballelefreq11_G1=(2*freqallele11q_b1+freqallele11d_G0)/3 

  

  

  
%GENERATE 100 QUEENS WITH ABOVE DISTRIBUTION 
DistGen1Q=rand(nqueens,2) ; 

  
allele1q_G1_mat1=(DistGen1Q>0) & (DistGen1Q<Ballelefreq1_G1); 
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allele2q_G1_mat1=(DistGen1Q>=Ballelefreq1_G1) & 

(DistGen1Q<(Ballelefreq1_G1+Ballelefreq2_G1)); 
allele3q_G1_mat1=(DistGen1Q>=(Ballelefreq1_G1+Ballelefreq2_G1)) & 

(DistGen1Q<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1)); 
allele4q_G1_mat1=(DistGen1Q>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3

_G1)) & 

(DistGen1Q<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4_G

1)); 
allele5q_G1_mat1=(DistGen1Q>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3

_G1+Ballelefreq4_G1)) & 

(DistGen1Q<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4_G

1+Ballelefreq5_G1)); 
allele6q_G1_mat1=(DistGen1Q>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3

_G1+Ballelefreq4_G1+Ballelefreq5_G1)) & 

(DistGen1Q<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4_G

1+Ballelefreq5_G1+Ballelefreq6_G1)); 
allele7q_G1_mat1=(DistGen1Q>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3

_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1)) & 

(DistGen1Q<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4_G

1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1)); 
allele8q_G1_mat1=(DistGen1Q>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3

_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1)) & 

(DistGen1Q<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4_G

1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1)); 
allele9q_G1_mat1=(DistGen1Q>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3

_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballel

efreq8_G1)) & 

(DistGen1Q<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4_G

1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1+Ballelef

req9_G1)); 
allele10q_G1_mat1=(DistGen1Q>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq

3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Balle

lefreq8_G1+Ballelefreq9_G1)) & 

(DistGen1Q<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4_G

1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1+Ballelef

req9_G1+Ballelefreq10_G1)); 
allele11q_G1_mat1=(DistGen1Q>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq

3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Balle

lefreq8_G1+Ballelefreq9_G1+Ballelefreq10_G1)) & (DistGen1Q<1); 

  
allele1q_G1_mat1(all(allele1q_G1_mat1==1,2),:)=[]; 
allele2q_G1_mat1(all(allele2q_G1_mat1==1,2),:)=[]; 
allele3q_G1_mat1(all(allele3q_G1_mat1==1,2),:)=[]; 
allele4q_G1_mat1(all(allele4q_G1_mat1==1,2),:)=[]; 
allele5q_G1_mat1(all(allele5q_G1_mat1==1,2),:)=[]; 
allele6q_G1_mat1(all(allele6q_G1_mat1==1,2),:)=[]; 
allele7q_G1_mat1(all(allele7q_G1_mat1==1,2),:)=[]; 
allele8q_G1_mat1(all(allele8q_G1_mat1==1,2),:)=[]; 
allele9q_G1_mat1(all(allele9q_G1_mat1==1,2),:)=[]; 
allele10q_G1_mat1(all(allele10q_G1_mat1==1,2),:)=[]; 
allele11q_G1_mat1(all(allele11q_G1_mat1==1,2),:)=[]; 

  
rows1=nqueens-length(allele1q_G1_mat1(:,1)); 
rows2=nqueens-length(allele2q_G1_mat1(:,1)); 
rows3=nqueens-length(allele3q_G1_mat1(:,1)); 
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rows4=nqueens-length(allele4q_G1_mat1(:,1)); 
rows5=nqueens-length(allele5q_G1_mat1(:,1)); 
rows6=nqueens-length(allele6q_G1_mat1(:,1)); 
rows7=nqueens-length(allele7q_G1_mat1(:,1)); 
rows8=nqueens-length(allele8q_G1_mat1(:,1)); 
rows9=nqueens-length(allele9q_G1_mat1(:,1)); 
rows10=nqueens-length(allele10q_G1_mat1(:,1)); 
rows11=nqueens-length(allele11q_G1_mat1(:,1)); 

  
totalrows1=(rows1+rows2+rows3+rows4+rows5+rows6+rows7+rows8+rows9+rows10+r

ows11); 

  
count_allele1q_G1_mat1=sum(allele1q_G1_mat1) ; 
count_allele2q_G1_mat1=sum(allele2q_G1_mat1) ; 
count_allele3q_G1_mat1=sum(allele3q_G1_mat1) ; 
count_allele4q_G1_mat1=sum(allele4q_G1_mat1) ; 
count_allele5q_G1_mat1=sum(allele5q_G1_mat1) ; 
count_allele6q_G1_mat1=sum(allele6q_G1_mat1) ; 
count_allele7q_G1_mat1=sum(allele7q_G1_mat1) ; 
count_allele8q_G1_mat1=sum(allele8q_G1_mat1) ; 
count_allele9q_G1_mat1=sum(allele9q_G1_mat1) ; 
count_allele10q_G1_mat1=sum(allele10q_G1_mat1) ; 
count_allele11q_G1_mat1=sum(allele11q_G1_mat1) ; 

  
freqallele1q_G1_mat1=sum(count_allele1q_G1_mat1)/(nqueens*2); 
freqallele2q_G1_mat1=sum(count_allele2q_G1_mat1)/(nqueens*2); 
freqallele3q_G1_mat1=sum(count_allele3q_G1_mat1)/(nqueens*2); 
freqallele4q_G1_mat1=sum(count_allele4q_G1_mat1)/(nqueens*2); 
freqallele5q_G1_mat1=sum(count_allele5q_G1_mat1)/(nqueens*2); 
freqallele6q_G1_mat1=sum(count_allele6q_G1_mat1)/(nqueens*2); 
freqallele7q_G1_mat1=sum(count_allele7q_G1_mat1)/(nqueens*2); 
freqallele8q_G1_mat1=sum(count_allele8q_G1_mat1)/(nqueens*2); 
freqallele9q_G1_mat1=sum(count_allele9q_G1_mat1)/(nqueens*2); 
freqallele10q_G1_mat1=sum(count_allele10q_G1_mat1)/(nqueens*2); 
freqallele11q_G1_mat1=sum(count_allele11q_G1_mat1)/(nqueens*2); 

  
DistGen1Q_2=rand(totalrows1,2) ; 

  
allele1q_G1_mat2=(DistGen1Q_2>0) & (DistGen1Q_2<Ballelefreq1_G1); 
allele2q_G1_mat2=(DistGen1Q_2>=Ballelefreq1_G1) & 

(DistGen1Q_2<(Ballelefreq1_G1+Ballelefreq2_G1)); 
allele3q_G1_mat2=(DistGen1Q_2>=(Ballelefreq1_G1+Ballelefreq2_G1)) & 

(DistGen1Q_2<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1)); 
allele4q_G1_mat2=(DistGen1Q_2>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1)) & 

(DistGen1Q_2<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1)); 
allele5q_G1_mat2=(DistGen1Q_2>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1+Ballelefreq4_G1)) & 

(DistGen1Q_2<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1)); 
allele6q_G1_mat2=(DistGen1Q_2>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1+Ballelefreq4_G1+Ballelefreq5_G1)) & 
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(DistGen1Q_2<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1+Ballelefreq6_G1)); 
allele7q_G1_mat2=(DistGen1Q_2>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1)) & 

(DistGen1Q_2<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1)); 
allele8q_G1_mat2=(DistGen1Q_2>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1)) & 

(DistGen1Q_2<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1)); 
allele9q_G1_mat2=(DistGen1Q_2>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ball

elefreq8_G1)) & 

(DistGen1Q_2<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1+Ballel

efreq9_G1)); 
allele10q_G1_mat2=(DistGen1Q_2>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefr

eq3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Bal

lelefreq8_G1+Ballelefreq9_G1)) & 

(DistGen1Q_2<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1+Ballel

efreq9_G1+Ballelefreq10_G1)); 
allele11q_G1_mat2=(DistGen1Q_2>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefr

eq3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Bal

lelefreq8_G1+Ballelefreq9_G1+Ballelefreq10_G1)) & (DistGen1Q_2<1); 

  
allele1q_G1_mat2(all(allele1q_G1_mat2==1,2),:)=[] ; 
allele2q_G1_mat2(all(allele2q_G1_mat2==1,2),:)=[] ; 
allele3q_G1_mat2(all(allele3q_G1_mat2==1,2),:)=[] ; 
allele4q_G1_mat2(all(allele4q_G1_mat2==1,2),:)=[] ; 
allele5q_G1_mat2(all(allele5q_G1_mat2==1,2),:)=[] ; 
allele6q_G1_mat2(all(allele6q_G1_mat2==1,2),:)=[] ; 
allele7q_G1_mat2(all(allele7q_G1_mat2==1,2),:)=[] ; 
allele8q_G1_mat2(all(allele8q_G1_mat2==1,2),:)=[] ; 
allele9q_G1_mat2(all(allele9q_G1_mat2==1,2),:)=[] ; 
allele10q_G1_mat2(all(allele10q_G1_mat2==1,2),:)=[] ; 
allele11q_G1_mat2(all(allele11q_G1_mat2==1,2),:)=[] ; 

  
rows12=totalrows1-length(allele1q_G1_mat2(:,1)); 
rows13=totalrows1-length(allele2q_G1_mat2(:,1)); 
rows14=totalrows1-length(allele3q_G1_mat2(:,1)); 
rows15=totalrows1-length(allele4q_G1_mat2(:,1)); 
rows16=totalrows1-length(allele5q_G1_mat2(:,1)); 
rows17=totalrows1-length(allele6q_G1_mat2(:,1)); 
rows18=totalrows1-length(allele7q_G1_mat2(:,1)); 
rows19=totalrows1-length(allele8q_G1_mat2(:,1)); 
rows20=totalrows1-length(allele9q_G1_mat2(:,1)); 
rows21=totalrows1-length(allele10q_G1_mat2(:,1)); 
rows22=totalrows1-length(allele11q_G1_mat2(:,1)); 

  
totalrows2=(rows12+rows13+rows14+rows15+rows16+rows17+rows18+rows19+rows20

+rows21+rows22); 

  
count_allele1q_G1_mat2=sum(allele1q_G1_mat2) ; 
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count_allele2q_G1_mat2=sum(allele2q_G1_mat2) ; 
count_allele3q_G1_mat2=sum(allele3q_G1_mat2) ; 
count_allele4q_G1_mat2=sum(allele4q_G1_mat2) ; 
count_allele5q_G1_mat2=sum(allele5q_G1_mat2) ; 
count_allele6q_G1_mat2=sum(allele6q_G1_mat2) ; 
count_allele7q_G1_mat2=sum(allele7q_G1_mat2) ; 
count_allele8q_G1_mat2=sum(allele8q_G1_mat2) ; 
count_allele9q_G1_mat2=sum(allele9q_G1_mat2) ; 
count_allele10q_G1_mat2=sum(allele10q_G1_mat2) ; 
count_allele11q_G1_mat2=sum(allele11q_G1_mat2) ; 

  
freqallele1q_G1_mat2=sum(count_allele1q_G1_mat2)/(nqueens*2); 
freqallele2q_G1_mat2=sum(count_allele2q_G1_mat2)/(nqueens*2); 
freqallele3q_G1_mat2=sum(count_allele3q_G1_mat2)/(nqueens*2); 
freqallele4q_G1_mat2=sum(count_allele4q_G1_mat2)/(nqueens*2); 
freqallele5q_G1_mat2=sum(count_allele5q_G1_mat2)/(nqueens*2); 
freqallele6q_G1_mat2=sum(count_allele6q_G1_mat2)/(nqueens*2); 
freqallele7q_G1_mat2=sum(count_allele7q_G1_mat2)/(nqueens*2); 
freqallele8q_G1_mat2=sum(count_allele8q_G1_mat2)/(nqueens*2); 
freqallele9q_G1_mat2=sum(count_allele9q_G1_mat2)/(nqueens*2); 
freqallele10q_G1_mat2=sum(count_allele10q_G1_mat2)/(nqueens*2); 
freqallele11q_G1_mat2=sum(count_allele11q_G1_mat2)/(nqueens*2); 

  
DistGen1Q_3=rand(totalrows2,2); 

  
allele1q_G1_mat3=(DistGen1Q_3>0) & (DistGen1Q_3<Ballelefreq1_G1); 
allele2q_G1_mat3=(DistGen1Q_3>=Ballelefreq1_G1) & 

(DistGen1Q_3<(Ballelefreq1_G1+Ballelefreq2_G1)); 
allele3q_G1_mat3=(DistGen1Q_3>=(Ballelefreq1_G1+Ballelefreq2_G1)) & 

(DistGen1Q_3<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1)); 
allele4q_G1_mat3=(DistGen1Q_3>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1)) & 

(DistGen1Q_3<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1)); 
allele5q_G1_mat3=(DistGen1Q_3>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1+Ballelefreq4_G1)) & 

(DistGen1Q_3<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1)); 
allele6q_G1_mat3=(DistGen1Q_3>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1+Ballelefreq4_G1+Ballelefreq5_G1)) & 

(DistGen1Q_3<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1+Ballelefreq6_G1)); 
allele7q_G1_mat3=(DistGen1Q_3>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1)) & 

(DistGen1Q_3<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1)); 
allele8q_G1_mat3=(DistGen1Q_3>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1)) & 

(DistGen1Q_3<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1)); 
allele9q_G1_mat3=(DistGen1Q_3>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ball

elefreq8_G1)) & 

(DistGen1Q_3<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4
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_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1+Ballel

efreq9_G1)); 
allele10q_G1_mat3=(DistGen1Q_3>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefr

eq3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Bal

lelefreq8_G1+Ballelefreq9_G1)) & 

(DistGen1Q_3<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1+Ballel

efreq9_G1+Ballelefreq10_G1)); 
allele11q_G1_mat3=(DistGen1Q_3>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefr

eq3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Bal

lelefreq8_G1+Ballelefreq9_G1+Ballelefreq10_G1)) & (DistGen1Q_3<1); 

  
allele1q_G1_mat3(all(allele1q_G1_mat3==1,2),:)=[]; 
allele2q_G1_mat3(all(allele2q_G1_mat3==1,2),:)=[]; 
allele3q_G1_mat3(all(allele3q_G1_mat3==1,2),:)=[]; 
allele4q_G1_mat3(all(allele4q_G1_mat3==1,2),:)=[];  
allele5q_G1_mat3(all(allele5q_G1_mat3==1,2),:)=[];  
allele6q_G1_mat3(all(allele6q_G1_mat3==1,2),:)=[]; 
allele7q_G1_mat3(all(allele7q_G1_mat3==1,2),:)=[];  
allele8q_G1_mat3(all(allele8q_G1_mat3==1,2),:)=[]; 
allele9q_G1_mat3(all(allele9q_G1_mat3==1,2),:)=[]; 
allele10q_G1_mat3(all(allele10q_G1_mat3==1,2),:)=[];  
allele11q_G1_mat3(all(allele11q_G1_mat3==1,2),:)=[]; 

  
rows23=totalrows2-length(allele1q_G1_mat3(:,1)) ; 
rows24=totalrows2-length(allele2q_G1_mat3(:,1)) ; 
rows25=totalrows2-length(allele3q_G1_mat3(:,1)) ; 
rows26=totalrows2-length(allele4q_G1_mat3(:,1)) ; 
rows27=totalrows2-length(allele5q_G1_mat3(:,1)) ; 
rows28=totalrows2-length(allele6q_G1_mat3(:,1)) ; 
rows29=totalrows2-length(allele7q_G1_mat3(:,1)) ; 
rows30=totalrows2-length(allele8q_G1_mat3(:,1)) ; 
rows31=totalrows2-length(allele9q_G1_mat3(:,1)) ; 
rows32=totalrows2-length(allele10q_G1_mat3(:,1)) ; 
rows33=totalrows2-length(allele11q_G1_mat3(:,1)) ; 

  
totalrows3=(rows23+rows24+rows25+rows26+rows27+rows28+rows29+rows30+rows31

+rows32+rows33); 

  
count_allele1q_G1_mat3=sum(allele1q_G1_mat3) ; 
count_allele2q_G1_mat3=sum(allele2q_G1_mat3) ; 
count_allele3q_G1_mat3=sum(allele3q_G1_mat3) ; 
count_allele4q_G1_mat3=sum(allele4q_G1_mat3) ; 
count_allele5q_G1_mat3=sum(allele5q_G1_mat3);  
count_allele6q_G1_mat3=sum(allele6q_G1_mat3) ; 
count_allele7q_G1_mat3=sum(allele7q_G1_mat3) ; 
count_allele8q_G1_mat3=sum(allele8q_G1_mat3) ; 
count_allele9q_G1_mat3=sum(allele9q_G1_mat3) ; 
count_allele10q_G1_mat3=sum(allele10q_G1_mat3) ; 
count_allele11q_G1_mat3=sum(allele11q_G1_mat3) ; 

  
freqallele1q_G1_mat3=sum(count_allele1q_G1_mat3)/(nqueens*2) ; 
freqallele2q_G1_mat3=sum(count_allele2q_G1_mat3)/(nqueens*2) ; 
freqallele3q_G1_mat3=sum(count_allele3q_G1_mat3)/(nqueens*2) ; 
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freqallele4q_G1_mat3=sum(count_allele4q_G1_mat3)/(nqueens*2) ; 
freqallele5q_G1_mat3=sum(count_allele5q_G1_mat3)/(nqueens*2) ; 
freqallele6q_G1_mat3=sum(count_allele6q_G1_mat3)/(nqueens*2) ; 
freqallele7q_G1_mat3=sum(count_allele7q_G1_mat3)/(nqueens*2) ; 
freqallele8q_G1_mat3=sum(count_allele8q_G1_mat3)/(nqueens*2) ; 
freqallele9q_G1_mat3=sum(count_allele9q_G1_mat3)/(nqueens*2) ; 
freqallele10q_G1_mat3=sum(count_allele10q_G1_mat3)/(nqueens*2) ; 
freqallele11q_G1_mat3=sum(count_allele11q_G1_mat3)/(nqueens*2) ; 

  
DistGen1Q_4=rand(totalrows3,2); 

  
allele1q_G1_mat4=(DistGen1Q_4>0) & (DistGen1Q_4<Ballelefreq1_G1); 
allele2q_G1_mat4=(DistGen1Q_4>=Ballelefreq1_G1) & 

(DistGen1Q_4<(Ballelefreq1_G1+Ballelefreq2_G1)); 
allele3q_G1_mat4=(DistGen1Q_4>=(Ballelefreq1_G1+Ballelefreq2_G1)) & 

(DistGen1Q_4<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1)); 
allele4q_G1_mat4=(DistGen1Q_4>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1)) & 

(DistGen1Q_4<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1)); 
allele5q_G1_mat4=(DistGen1Q_4>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1+Ballelefreq4_G1)) & 

(DistGen1Q_4<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1)); 
allele6q_G1_mat4=(DistGen1Q_4>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1+Ballelefreq4_G1+Ballelefreq5_G1)) & 

(DistGen1Q_4<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1+Ballelefreq6_G1)); 
allele7q_G1_mat4=(DistGen1Q_4>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1)) & 

(DistGen1Q_4<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1)); 
allele8q_G1_mat4=(DistGen1Q_4>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1)) & 

(DistGen1Q_4<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1)); 
allele9q_G1_mat4=(DistGen1Q_4>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ball

elefreq8_G1)) & 

(DistGen1Q_4<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1+Ballel

efreq9_G1)); 
allele10q_G1_mat4=(DistGen1Q_4>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefr

eq3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Bal

lelefreq8_G1+Ballelefreq9_G1)) & 

(DistGen1Q_4<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1+Ballel

efreq9_G1+Ballelefreq10_G1)); 
allele11q_G1_mat4=(DistGen1Q_4>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefr

eq3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Bal

lelefreq8_G1+Ballelefreq9_G1+Ballelefreq10_G1)) & (DistGen1Q_4<1); 

  

  
allele1q_G1_mat4(all(allele1q_G1_mat4==1,2),:)=[] ; 
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allele2q_G1_mat4(all(allele2q_G1_mat4==1,2),:)=[] ; 
allele3q_G1_mat4(all(allele3q_G1_mat4==1,2),:)=[] ; 
allele4q_G1_mat4(all(allele4q_G1_mat4==1,2),:)=[] ; 
allele5q_G1_mat4(all(allele5q_G1_mat4==1,2),:)=[] ; 
allele6q_G1_mat4(all(allele6q_G1_mat4==1,2),:)=[] ; 
allele7q_G1_mat4(all(allele7q_G1_mat4==1,2),:)=[] ; 
allele8q_G1_mat4(all(allele8q_G1_mat4==1,2),:)=[] ; 
allele9q_G1_mat4(all(allele9q_G1_mat4==1,2),:)=[] ; 
allele10q_G1_mat4(all(allele10q_G1_mat4==1,2),:)=[] ; 
allele11q_G1_mat4(all(allele11q_G1_mat4==1,2),:)=[] ; 

  
rows34=totalrows3-length(allele1q_G1_mat4(:,1)) ; 
rows35=totalrows3-length(allele2q_G1_mat4(:,1)) ; 
rows36=totalrows3-length(allele3q_G1_mat4(:,1)) ; 
rows37=totalrows3-length(allele4q_G1_mat4(:,1)) ; 
rows38=totalrows3-length(allele5q_G1_mat4(:,1)) ; 
rows39=totalrows3-length(allele6q_G1_mat4(:,1)) ; 
rows40=totalrows3-length(allele7q_G1_mat4(:,1)) ; 
rows41=totalrows3-length(allele8q_G1_mat4(:,1)) ; 
rows42=totalrows3-length(allele9q_G1_mat4(:,1)) ; 
rows43=totalrows3-length(allele10q_G1_mat4(:,1)) ; 
rows44=totalrows3-length(allele11q_G1_mat4(:,1)); 

  
totalrows4=(rows34+rows35+rows36+rows37+rows38+rows39+rows40+rows41+rows42

+rows43+rows44); 

  
count_allele1q_G1_mat4=sum(allele1q_G1_mat4) ; 
count_allele2q_G1_mat4=sum(allele2q_G1_mat4) ; 
count_allele3q_G1_mat4=sum(allele3q_G1_mat4) ; 
count_allele4q_G1_mat4=sum(allele4q_G1_mat4) ; 
count_allele5q_G1_mat4=sum(allele5q_G1_mat4) ; 
count_allele6q_G1_mat4=sum(allele6q_G1_mat4) ; 
count_allele7q_G1_mat4=sum(allele7q_G1_mat4) ; 
count_allele8q_G1_mat4=sum(allele8q_G1_mat4) ; 
count_allele9q_G1_mat4=sum(allele9q_G1_mat4) ; 
count_allele10q_G1_mat4=sum(allele10q_G1_mat4) ; 
count_allele11q_G1_mat4=sum(allele11q_G1_mat4) ; 

  
freqallele1q_G1_mat4=sum(count_allele1q_G1_mat4)/(nqueens*2) ; 
freqallele2q_G1_mat4=sum(count_allele2q_G1_mat4)/(nqueens*2) ; 
freqallele3q_G1_mat4=sum(count_allele3q_G1_mat4)/(nqueens*2) ; 
freqallele4q_G1_mat4=sum(count_allele4q_G1_mat4)/(nqueens*2) ; 
freqallele5q_G1_mat4=sum(count_allele5q_G1_mat4)/(nqueens*2) ; 
freqallele6q_G1_mat4=sum(count_allele6q_G1_mat4)/(nqueens*2) ; 
freqallele7q_G1_mat4=sum(count_allele7q_G1_mat4)/(nqueens*2) ; 
freqallele8q_G1_mat4=sum(count_allele8q_G1_mat4)/(nqueens*2) ; 
freqallele9q_G1_mat4=sum(count_allele9q_G1_mat4)/(nqueens*2) ; 
freqallele10q_G1_mat4=sum(count_allele10q_G1_mat4)/(nqueens*2) ; 
freqallele11q_G1_mat4=sum(count_allele11q_G1_mat4)/(nqueens*2) ; 

  
DistGen1Q_5=rand(totalrows4,2); 

  
allele1q_G1_mat5=(DistGen1Q_5>0) & (DistGen1Q_5<Ballelefreq1_G1); 
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allele2q_G1_mat5=(DistGen1Q_5>=Ballelefreq1_G1) & 

(DistGen1Q_5<(Ballelefreq1_G1+Ballelefreq2_G1)); 
allele3q_G1_mat5=(DistGen1Q_5>=(Ballelefreq1_G1+Ballelefreq2_G1)) & 

(DistGen1Q_5<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1)); 
allele4q_G1_mat5=(DistGen1Q_5>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1)) & 

(DistGen1Q_5<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1)); 
allele5q_G1_mat5=(DistGen1Q_5>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1+Ballelefreq4_G1)) & 

(DistGen1Q_5<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1)); 
allele6q_G1_mat5=(DistGen1Q_5>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1+Ballelefreq4_G1+Ballelefreq5_G1)) & 

(DistGen1Q_5<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1+Ballelefreq6_G1)); 
allele7q_G1_mat5=(DistGen1Q_5>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1)) & 

(DistGen1Q_5<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1)); 
allele8q_G1_mat5=(DistGen1Q_5>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1)) & 

(DistGen1Q_5<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1)); 
allele9q_G1_mat5=(DistGen1Q_5>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefre

q3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ball

elefreq8_G1)) & 

(DistGen1Q_5<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1+Ballel

efreq9_G1)); 
allele10q_G1_mat5=(DistGen1Q_5>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefr

eq3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Bal

lelefreq8_G1+Ballelefreq9_G1)) & 

(DistGen1Q_5<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq4

_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1+Ballel

efreq9_G1+Ballelefreq10_G1)); 
allele11q_G1_mat5=(DistGen1Q_5>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefr

eq3_G1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Bal

lelefreq8_G1+Ballelefreq9_G1+Ballelefreq10_G1)) & (DistGen1Q_5<1); 

  

  
allele1q_G1_mat5(all(allele1q_G1_mat5==1,2),:)=[]; 
allele2q_G1_mat5(all(allele2q_G1_mat5==1,2),:)=[]; 
allele3q_G1_mat5(all(allele3q_G1_mat5==1,2),:)=[]; 
allele4q_G1_mat5(all(allele4q_G1_mat5==1,2),:)=[]; 
allele5q_G1_mat5(all(allele5q_G1_mat5==1,2),:)=[]; 
allele6q_G1_mat5(all(allele6q_G1_mat5==1,2),:)=[]; 
allele7q_G1_mat5(all(allele7q_G1_mat5==1,2),:)=[]; 
allele8q_G1_mat5(all(allele8q_G1_mat5==1,2),:)=[]; 
allele9q_G1_mat5(all(allele9q_G1_mat5==1,2),:)=[]; 
allele10q_G1_mat5(all(allele10q_G1_mat5==1,2),:)=[]; 
allele11q_G1_mat5(all(allele11q_G1_mat5==1,2),:)=[]; 

  
rows45=totalrows4-length(allele1q_G1_mat5(:,1)); 
rows46=totalrows4-length(allele2q_G1_mat5(:,1)); 
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rows47=totalrows4-length(allele3q_G1_mat5(:,1)); 
rows48=totalrows4-length(allele4q_G1_mat5(:,1)); 
rows49=totalrows4-length(allele5q_G1_mat5(:,1)); 
rows50=totalrows4-length(allele6q_G1_mat5(:,1)); 
rows51=totalrows4-length(allele7q_G1_mat5(:,1)); 
rows52=totalrows4-length(allele8q_G1_mat5(:,1)); 
rows53=totalrows4-length(allele9q_G1_mat5(:,1)); 
rows54=totalrows4-length(allele10q_G1_mat5(:,1)); 
rows55=totalrows4-length(allele11q_G1_mat5(:,1)); 

  
totalrows5=(rows45+rows46+rows47+rows48+rows49+rows50+rows51+rows52+rows53

+rows54+rows55); 

  
count_allele1q_G1_mat5=sum(allele1q_G1_mat5); 
count_allele2q_G1_mat5=sum(allele2q_G1_mat5); 
count_allele3q_G1_mat5=sum(allele3q_G1_mat5); 
count_allele4q_G1_mat5=sum(allele4q_G1_mat5); 
count_allele5q_G1_mat5=sum(allele5q_G1_mat5); 
count_allele6q_G1_mat5=sum(allele6q_G1_mat5); 
count_allele7q_G1_mat5=sum(allele7q_G1_mat5); 
count_allele8q_G1_mat5=sum(allele8q_G1_mat5); 
count_allele9q_G1_mat5=sum(allele9q_G1_mat5); 
count_allele10q_G1_mat5=sum(allele10q_G1_mat5); 
count_allele11q_G1_mat5=sum(allele11q_G1_mat5); 

  
freqallele1q_G1_mat5=sum(count_allele1q_G1_mat5)/(nqueens*2); 
freqallele2q_G1_mat5=sum(count_allele2q_G1_mat5)/(nqueens*2); 
freqallele3q_G1_mat5=sum(count_allele3q_G1_mat5)/(nqueens*2); 
freqallele4q_G1_mat5=sum(count_allele4q_G1_mat5)/(nqueens*2); 
freqallele5q_G1_mat5=sum(count_allele5q_G1_mat5)/(nqueens*2); 
freqallele6q_G1_mat5=sum(count_allele6q_G1_mat5)/(nqueens*2); 
freqallele7q_G1_mat5=sum(count_allele7q_G1_mat5)/(nqueens*2); 
freqallele8q_G1_mat5=sum(count_allele8q_G1_mat5)/(nqueens*2); 
freqallele9q_G1_mat5=sum(count_allele9q_G1_mat5)/(nqueens*2); 
freqallele10q_G1_mat5=sum(count_allele10q_G1_mat5)/(nqueens*2); 
freqallele11q_G1_mat5=sum(count_allele11q_G1_mat5)/(nqueens*2); 

  
freqallele1q_G1=freqallele1q_G1_mat1+freqallele1q_G1_mat2+freqallele1q_G1_

mat3+freqallele1q_G1_mat4+freqallele1q_G1_mat5; 
freqallele2q_G1=freqallele2q_G1_mat1+freqallele2q_G1_mat2+freqallele2q_G1_

mat3+freqallele2q_G1_mat4+freqallele2q_G1_mat5; 
freqallele3q_G1=freqallele3q_G1_mat1+freqallele3q_G1_mat2+freqallele3q_G1_

mat3+freqallele3q_G1_mat4+freqallele3q_G1_mat5; 
freqallele4q_G1=freqallele4q_G1_mat1+freqallele4q_G1_mat2+freqallele4q_G1_

mat3+freqallele4q_G1_mat4+freqallele4q_G1_mat5; 
freqallele5q_G1=freqallele5q_G1_mat1+freqallele5q_G1_mat2+freqallele5q_G1_

mat3+freqallele5q_G1_mat4+freqallele5q_G1_mat5; 
freqallele6q_G1=freqallele6q_G1_mat1+freqallele6q_G1_mat2+freqallele6q_G1_

mat3+freqallele6q_G1_mat4+freqallele6q_G1_mat5; 
freqallele7q_G1=freqallele7q_G1_mat1+freqallele7q_G1_mat2+freqallele7q_G1_

mat3+freqallele7q_G1_mat4+freqallele7q_G1_mat5; 
freqallele8q_G1=freqallele8q_G1_mat1+freqallele8q_G1_mat2+freqallele8q_G1_

mat3+freqallele8q_G1_mat4+freqallele8q_G1_mat5; 
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freqallele9q_G1=freqallele9q_G1_mat1+freqallele9q_G1_mat2+freqallele9q_G1_

mat3+freqallele9q_G1_mat4+freqallele9q_G1_mat5; 
freqallele10q_G1=freqallele10q_G1_mat1+freqallele10q_G1_mat2+freqallele10q

_G1_mat3+freqallele10q_G1_mat4+freqallele10q_G1_mat5; 
freqallele11q_G1=freqallele11q_G1_mat1+freqallele11q_G1_mat2+freqallele11q

_G1_mat3+freqallele11q_G1_mat4+freqallele11q_G1_mat5; 

  
freqallele1_G1=(2*freqallele1q_G1+freqallele1d_G0)/3; 
freqallele2_G1=(2*freqallele2q_G1+freqallele2d_G0)/3; 
freqallele3_G1=(2*freqallele3q_G1+freqallele3d_G0)/3; 
freqallele4_G1=(2*freqallele4q_G1+freqallele4d_G0)/3; 
freqallele5_G1=(2*freqallele5q_G1+freqallele5d_G0)/3; 
freqallele6_G1=(2*freqallele6q_G1+freqallele6d_G0)/3; 
freqallele7_G1=(2*freqallele7q_G1+freqallele7d_G0)/3; 
freqallele8_G1=(2*freqallele8q_G1+freqallele8d_G0)/3; 
freqallele9_G1=(2*freqallele9q_G1+freqallele9d_G0)/3; 
freqallele10_G1=(2*freqallele10q_G1+freqallele10d_G0)/3; 
freqallele11_G1=(2*freqallele11q_G1+freqallele11d_G0)/3; 

  

  

  
mat1_G1(freqallele1)=freqallele1_G1; 
mat2_G1(freqallele1)=freqallele2_G1; 
mat3_G1(freqallele1)=freqallele3_G1; 
mat4_G1(freqallele1)=freqallele4_G1; 
mat5_G1(freqallele1)=freqallele5_G1; 
mat6_G1(freqallele1)=freqallele6_G1; 
mat7_G1(freqallele1)=freqallele7_G1; 
mat8_G1(freqallele1)=freqallele8_G1; 
mat9_G1(freqallele1)=freqallele9_G1; 
mat10_G1(freqallele1)=freqallele10_G1; 
mat11_G1(freqallele1)=freqallele11_G1; 

  
%OKOKOKOK 

  

 
%SECOND GENERATION SIMULTION 
%ALLELE FREQUENCIES CARRIED BY DRONES CONTRIBUTING TO NEXT GENERATION 

COMES 
%FROM QUEENS SELECTED AS BREEDERS LAST YEAR ie Ballelefreqx_G1 

  
DistG1drones=rand(nqueens,nodrones)  

  

  
allele1d_1=(DistG1drones>0) & (DistG1drones<Ballelefreq1_G1); 
allele2d_1=(DistG1drones>=Ballelefreq1_G1) & 

(DistG1drones<(Ballelefreq1_G1+Ballelefreq2_G1)); 
allele3d_1=(DistG1drones>=(Ballelefreq1_G1+Ballelefreq2_G1)) & 

(DistG1drones<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1)); 
allele4d_1=(DistG1drones>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1

)) & 

(DistG1drones<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq

4_G1)); 
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allele5d_1=(DistG1drones>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1

+Ballelefreq4_G1)) & 

(DistG1drones<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq

4_G1+Ballelefreq5_G1)); 
allele6d_1=(DistG1drones>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1

+Ballelefreq4_G1+Ballelefreq5_G1)) & 

(DistG1drones<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq

4_G1+Ballelefreq5_G1+Ballelefreq6_G1)); 
allele7d_1=(DistG1drones>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1

+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1)) & 

(DistG1drones<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq

4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1)); 
allele8d_1=(DistG1drones>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1

+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1)) & 

(DistG1drones<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq

4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1)); 
allele9d_1=(DistG1drones>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1

+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefr

eq8_G1)) & 

(DistG1drones<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq

4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1+Balle

lefreq9_G1)); 
allele10d_1=(DistG1drones>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G

1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelef

req8_G1+Ballelefreq9_G1)) & 

(DistG1drones<(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G1+Ballelefreq

4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelefreq8_G1+Balle

lefreq9_G1+Ballelefreq10_G1)); 
allele11d_1=(DistG1drones>=(Ballelefreq1_G1+Ballelefreq2_G1+Ballelefreq3_G

1+Ballelefreq4_G1+Ballelefreq5_G1+Ballelefreq6_G1+Ballelefreq7_G1+Ballelef

req8_G1+Ballelefreq9_G1+Ballelefreq10_G1)) & (DistG1drones<1); 

  
count_allele1d_1=sum(allele1d_1)  
count_allele2d_1=sum(allele2d_1)  
count_allele3d_1=sum(allele3d_1)  
count_allele4d_1=sum(allele4d_1)  
count_allele5d_1=sum(allele5d_1)  
count_allele6d_1=sum(allele6d_1)  
count_allele7d_1=sum(allele7d_1)  
count_allele8d_1=sum(allele8d_1)  
count_allele9d_1=sum(allele9d_1)  
count_allele10d_1=sum(allele10d_1)  
count_allele11d_1=sum(allele11d_1)  

  
freqallele1d_G1=sum(count_allele1d_1)/(nqueens*nodrones) 
freqallele2d_G1=sum(count_allele2d_1)/(nqueens*nodrones) 
freqallele3d_G1=sum(count_allele3d_1)/(nqueens*nodrones) 
freqallele4d_G1=sum(count_allele4d_1)/(nqueens*nodrones) 
freqallele5d_G1=sum(count_allele5d_1)/(nqueens*nodrones) 
freqallele6d_G1=sum(count_allele6d_1)/(nqueens*nodrones) 
freqallele7d_G1=sum(count_allele7d_1)/(nqueens*nodrones) 
freqallele8d_G1=sum(count_allele8d_1)/(nqueens*nodrones) 
freqallele9d_G1=sum(count_allele9d_1)/(nqueens*nodrones) 
freqallele10d_G1=sum(count_allele10d_1)/(nqueens*nodrones) 
freqallele11d_G1=sum(count_allele11d_1)/(nqueens*nodrones) 
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%SELECT BREEDERS FROM THE G1 DISTRIBUTION 
DistG1=rand(nqueens,2) ; 
Breeders2=datasample(DistG1,nobreeders2) ; 

  
allele1q_b2_mat1=(Breeders2>0) & (Breeders2<freqallele1_G1) ; 
allele2q_b2_mat1=(Breeders2>=freqallele1_G1) & 

(Breeders2<(freqallele1_G1+freqallele2_G1)) ; 
allele3q_b2_mat1=(Breeders2>=(freqallele1_G1+freqallele2_G1)) & 

(Breeders2<(freqallele1_G1+freqallele2_G1+freqallele3_G1)) ; 
allele4q_b2_mat1=(Breeders2>=(freqallele1_G1+freqallele2_G1+freqallele3_G1

)) & 

(Breeders2<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1)) 

; 
allele5q_b2_mat1=(Breeders2>=(freqallele1_G1+freqallele2_G1+freqallele3_G1

+freqallele4_G1)) & 

(Breeders2<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+fr

eqallele5_G1)) ; 
allele6q_b2_mat1=(Breeders2>=(freqallele1_G1+freqallele2_G1+freqallele3_G1

+freqallele4_G1+freqallele5_G1)) & 

(Breeders2<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+fr

eqallele5_G1+freqallele6_G1)) ; 
allele7q_b2_mat1=(Breeders2>=(freqallele1_G1+freqallele2_G1+freqallele3_G1

+freqallele4_G1+freqallele5_G1+freqallele6_G1)) & 

(Breeders2<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+fr

eqallele5_G1+freqallele6_G1+freqallele7_G1)) ; 
allele8q_b2_mat1=(Breeders2>=(freqallele1_G1+freqallele2_G1+freqallele3_G1

+freqallele4_G1+freqallele5_G1+freqallele6_G1+freqallele7_G1)) & 

(Breeders2<freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+fre

qallele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_G1) ; 
allele9q_b2_mat1=(Breeders2>=(freqallele1_G1+freqallele2_G1+freqallele3_G1

+freqallele4_G1+freqallele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_G

1)) & 

(Breeders2<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+fr

eqallele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_G1+freqallele9_G1)) 

; 
allele10q_b2_mat1=(Breeders2>=(freqallele1_G1+freqallele2_G1+freqallele3_G

1+freqallele4_G1+freqallele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_

G1+freqallele9_G1)) & 

(Breeders2<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+fr

eqallele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_G1+freqallele9_G1+f

reqallele10_G1)) ; 
allele11q_b2_mat1=(Breeders2>=(freqallele1_G1+freqallele2_G1+freqallele3_G

1+freqallele4_G1+freqallele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_

G1+freqallele9_G1+freqallele10_G1)) & (Breeders2<1) ; 

  
allele1q_b2_mat1(all(allele1q_b2_mat1==1,2),:)=[]; 
allele2q_b2_mat1(all(allele2q_b2_mat1==1,2),:)=[]; 
allele3q_b2_mat1(all(allele3q_b2_mat1==1,2),:)=[]; 
allele4q_b2_mat1(all(allele4q_b2_mat1==1,2),:)=[]; 
allele5q_b2_mat1(all(allele5q_b2_mat1==1,2),:)=[]; 
allele6q_b2_mat1(all(allele6q_b2_mat1==1,2),:)=[]; 
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allele7q_b2_mat1(all(allele7q_b2_mat1==1,2),:)=[]; 
allele8q_b2_mat1(all(allele8q_b2_mat1==1,2),:)=[]; 
allele9q_b2_mat1(all(allele9q_b2_mat1==1,2),:)=[]; 
allele10q_b2_mat1(all(allele10q_b2_mat1==1,2),:)=[]; 
allele11q_b2_mat1(all(allele11q_b2_mat1==1,2),:)=[]; 

  
rows1=nobreeders2-length(allele1q_b2_mat1(:,1)); 
rows2=nobreeders2-length(allele2q_b2_mat1(:,1)); 
rows3=nobreeders2-length(allele3q_b2_mat1(:,1)); 
rows4=nobreeders2-length(allele4q_b2_mat1(:,1)); 
rows5=nobreeders2-length(allele5q_b2_mat1(:,1)); 
rows6=nobreeders2-length(allele6q_b2_mat1(:,1)); 
rows7=nobreeders2-length(allele7q_b2_mat1(:,1)); 
rows8=nobreeders2-length(allele8q_b2_mat1(:,1)); 
rows9=nobreeders2-length(allele9q_b2_mat1(:,1)); 
rows10=nobreeders2-length(allele10q_b2_mat1(:,1)); 
rows11=nobreeders2-length(allele11q_b2_mat1(:,1)); 

  
totalrowsb1=(rows1+rows2+rows3+rows4+rows5+rows6+rows7+rows8+rows9+rows10+

rows11); 

  
count_allele1q_b2_mat1=sum(allele1q_b2_mat1); 
count_allele2q_b2_mat1=sum(allele2q_b2_mat1); 
count_allele3q_b2_mat1=sum(allele3q_b2_mat1); 
count_allele4q_b2_mat1=sum(allele4q_b2_mat1); 
count_allele5q_b2_mat1=sum(allele5q_b2_mat1); 
count_allele6q_b2_mat1=sum(allele6q_b2_mat1); 
count_allele7q_b2_mat1=sum(allele7q_b2_mat1); 
count_allele8q_b2_mat1=sum(allele8q_b2_mat1); 
count_allele9q_b2_mat1=sum(allele9q_b2_mat1); 
count_allele10q_b2_mat1=sum(allele10q_b2_mat1); 
count_allele11q_b2_mat1=sum(allele11q_b2_mat1); 

  
freqallele1q_b2_mat1=sum(count_allele1q_b2_mat1)/(nobreeders2*2); 
freqallele2q_b2_mat1=sum(count_allele2q_b2_mat1)/(nobreeders2*2); 
freqallele3q_b2_mat1=sum(count_allele3q_b2_mat1)/(nobreeders2*2); 
freqallele4q_b2_mat1=sum(count_allele4q_b2_mat1)/(nobreeders2*2); 
freqallele5q_b2_mat1=sum(count_allele5q_b2_mat1)/(nobreeders2*2); 
freqallele6q_b2_mat1=sum(count_allele6q_b2_mat1)/(nobreeders2*2); 
freqallele7q_b2_mat1=sum(count_allele7q_b2_mat1)/(nobreeders2*2); 
freqallele8q_b2_mat1=sum(count_allele8q_b2_mat1)/(nobreeders2*2); 
freqallele9q_b2_mat1=sum(count_allele9q_b2_mat1)/(nobreeders2*2); 
freqallele10q_b2_mat1=sum(count_allele10q_b2_mat1)/(nobreeders2*2); 
freqallele11q_b2_mat1=sum(count_allele11q_b2_mat1)/(nobreeders2*2); 

  
dist1=rand(totalrowsb1,2) ; 

  
allele1q_b2_mat2=(dist1>0) & (dist1<freqallele1_G1) ; 
allele2q_b2_mat2=(dist1>=freqallele1_G1) & 

(dist1<(freqallele1_G1+freqallele2_G1)) ; 
allele3q_b2_mat2=(dist1>=(freqallele1_G1+freqallele2_G1)) & 

(dist1<(freqallele1_G1+freqallele2_G1+freqallele3_G1)) ; 
allele4q_b2_mat2=(dist1>=(freqallele1_G1+freqallele2_G1+freqallele3_G1)) & 

(dist1<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1)) ; 
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allele5q_b2_mat2=(dist1>=(freqallele1_G1+freqallele2_G1+freqallele3_G1+fre

qallele4_G1)) & 

(dist1<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+freqal

lele5_G1)) ; 
allele6q_b2_mat2=(dist1>=(freqallele1_G1+freqallele2_G1+freqallele3_G1+fre

qallele4_G1+freqallele5_G1)) & 

(dist1<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+freqal

lele5_G1+freqallele6_G1)) ; 
allele7q_b2_mat2=(dist1>=(freqallele1_G1+freqallele2_G1+freqallele3_G1+fre

qallele4_G1+freqallele5_G1+freqallele6_G1)) & 

(dist1<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+freqal

lele5_G1+freqallele6_G1+freqallele7_G1)) ; 
allele8q_b2_mat2=(dist1>=(freqallele1_G1+freqallele2_G1+freqallele3_G1+fre

qallele4_G1+freqallele5_G1+freqallele6_G1+freqallele7_G1)) & 

(dist1<freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+freqall

ele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_G1) ; 
allele9q_b2_mat2=(dist1>=(freqallele1_G1+freqallele2_G1+freqallele3_G1+fre

qallele4_G1+freqallele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_G1)) 

& 

(dist1<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+freqal

lele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_G1+freqallele9_G1)) ; 
allele10q_b2_mat2=(dist1>=(freqallele1_G1+freqallele2_G1+freqallele3_G1+fr

eqallele4_G1+freqallele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_G1+f

reqallele9_G1)) & 

(dist1<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+freqal

lele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_G1+freqallele9_G1+freqa

llele10_G1)) ; 
allele11q_b2_mat2=(dist1>=(freqallele1_G1+freqallele2_G1+freqallele3_G1+fr

eqallele4_G1+freqallele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_G1+f

reqallele9_G1+freqallele10_G1)) & (dist1<1) ; 

  
allele1q_b2_mat2(all(allele1q_b2_mat2==1,2),:)=[] ; 
allele2q_b2_mat2(all(allele2q_b2_mat2==1,2),:)=[] ; 
allele3q_b2_mat2(all(allele3q_b2_mat2==1,2),:)=[] ; 
allele4q_b2_mat2(all(allele4q_b2_mat2==1,2),:)=[] ; 
allele5q_b2_mat2(all(allele5q_b2_mat2==1,2),:)=[] ; 
allele6q_b2_mat2(all(allele6q_b2_mat2==1,2),:)=[] ; 
allele7q_b2_mat2(all(allele7q_b2_mat2==1,2),:)=[] ; 
allele8q_b2_mat2(all(allele8q_b2_mat2==1,2),:)=[] ; 
allele9q_b2_mat2(all(allele9q_b2_mat2==1,2),:)=[] ; 
allele10q_b2_mat2(all(allele10q_b2_mat2==1,2),:)=[] ; 
allele11q_b2_mat2(all(allele11q_b2_mat2==1,2),:)=[] ; 

  
rows12=totalrowsb1-length(allele1q_b2_mat2(:,1)) ; 
rows13=totalrowsb1-length(allele2q_b2_mat2(:,1)) ; 
rows14=totalrowsb1-length(allele3q_b2_mat2(:,1));  
rows15=totalrowsb1-length(allele4q_b2_mat2(:,1));  
rows16=totalrowsb1-length(allele5q_b2_mat2(:,1)) ; 
rows17=totalrowsb1-length(allele6q_b2_mat2(:,1)) ; 
rows18=totalrowsb1-length(allele7q_b2_mat2(:,1)) ; 
rows19=totalrowsb1-length(allele8q_b2_mat2(:,1)) ; 
rows20=totalrowsb1-length(allele9q_b2_mat2(:,1)) ; 
rows21=totalrowsb1-length(allele10q_b2_mat2(:,1)) ; 
rows22=totalrowsb1-length(allele11q_b2_mat2(:,1)) ; 

  



213 
 
 

totalrowsb2=(rows12+rows13+rows14+rows15+rows16+rows17+rows18+rows19+rows2

0+rows21+rows22); 

  
count_allele1q_b2_mat2=sum(allele1q_b2_mat2) ; 
count_allele2q_b2_mat2=sum(allele2q_b2_mat2) ; 
count_allele3q_b2_mat2=sum(allele3q_b2_mat2) ; 
count_allele4q_b2_mat2=sum(allele4q_b2_mat2) ; 
count_allele5q_b2_mat2=sum(allele5q_b2_mat2) ; 
count_allele6q_b2_mat2=sum(allele6q_b2_mat2) ; 
count_allele7q_b2_mat2=sum(allele7q_b2_mat2) ; 
count_allele8q_b2_mat2=sum(allele8q_b2_mat2) ; 
count_allele9q_b2_mat2=sum(allele9q_b2_mat2) ; 
count_allele10q_b2_mat2=sum(allele10q_b2_mat2) ; 
count_allele11q_b2_mat2=sum(allele11q_b2_mat2) ; 

  
freqallele1q_b2_mat2=sum(count_allele1q_b2_mat2)/(nobreeders2*2) ; 
freqallele2q_b2_mat2=sum(count_allele2q_b2_mat2)/(nobreeders2*2) ; 
freqallele3q_b2_mat2=sum(count_allele3q_b2_mat2)/(nobreeders2*2) ; 
freqallele4q_b2_mat2=sum(count_allele4q_b2_mat2)/(nobreeders2*2) ; 
freqallele5q_b2_mat2=sum(count_allele5q_b2_mat2)/(nobreeders2*2) ; 
freqallele6q_b2_mat2=sum(count_allele6q_b2_mat2)/(nobreeders2*2) ; 
freqallele7q_b2_mat2=sum(count_allele7q_b2_mat2)/(nobreeders2*2) ; 
freqallele8q_b2_mat2=sum(count_allele8q_b2_mat2)/(nobreeders2*2) ; 
freqallele9q_b2_mat2=sum(count_allele9q_b2_mat2)/(nobreeders2*2) ; 
freqallele10q_b2_mat2=sum(count_allele10q_b2_mat2)/(nobreeders2*2) ; 
freqallele11q_b2_mat2=sum(count_allele11q_b2_mat2)/(nobreeders2*2) ; 

  
dist2=rand(totalrowsb2,2) ; 

  
allele1q_b2_mat3=(dist2>0) & (dist2<freqallele1_G1) ; 
allele2q_b2_mat3=(dist2>=freqallele1_G1) & 

(dist2<(freqallele1_G1+freqallele2_G1)) ; 
allele3q_b2_mat3=(dist2>=(freqallele1_G1+freqallele2_G1)) & 

(dist2<(freqallele1_G1+freqallele2_G1+freqallele3_G1)) ; 
allele4q_b2_mat3=(dist2>=(freqallele1_G1+freqallele2_G1+freqallele3_G1)) & 

(dist2<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1));  
allele5q_b2_mat3=(dist2>=(freqallele1_G1+freqallele2_G1+freqallele3_G1+fre

qallele4_G1)) & 

(dist2<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+freqal

lele5_G1)) ; 
allele6q_b2_mat3=(dist2>=(freqallele1_G1+freqallele2_G1+freqallele3_G1+fre

qallele4_G1+freqallele5_G1)) & 

(dist2<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+freqal

lele5_G1+freqallele6_G1)) ; 
allele7q_b2_mat3=(dist2>=(freqallele1_G1+freqallele2_G1+freqallele3_G1+fre

qallele4_G1+freqallele5_G1+freqallele6_G1)) & 

(dist2<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+freqal

lele5_G1+freqallele6_G1+freqallele7_G1));  
allele8q_b2_mat3=(dist2>=(freqallele1_G1+freqallele2_G1+freqallele3_G1+fre

qallele4_G1+freqallele5_G1+freqallele6_G1+freqallele7_G1)) & 

(dist2<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+freqal

lele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_G1)) ; 
allele9q_b2_mat3=(dist2>=(freqallele1_G1+freqallele2_G1+freqallele3_G1+fre

qallele4_G1+freqallele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_G1)) 
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& 

(dist2<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+freqal

lele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_G1+freqallele9_G1)) ; 
allele10q_b2_mat3=(dist2>=(freqallele1_G1+freqallele2_G1+freqallele3_G1+fr

eqallele4_G1+freqallele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_G1+f

reqallele9_G1)) & 

(dist2<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+freqal

lele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_G1+freqallele9_G1+freqa

llele10_G1));  
allele11q_b2_mat3=(dist2>=(freqallele1_G1+freqallele2_G1+freqallele3_G1+fr

eqallele4_G1+freqallele5_G1+freqallele6_G1++freqallele7_G1+freqallele8_G1+

freqallele9_G1+freqallele10_G1)) & (dist2<1) ; 

  
allele1q_b2_mat3(all(allele1q_b2_mat3==1,2),:)=[] ; 
allele2q_b2_mat3(all(allele2q_b2_mat3==1,2),:)=[] ; 
allele3q_b2_mat3(all(allele3q_b2_mat3==1,2),:)=[] ; 
allele4q_b2_mat3(all(allele4q_b2_mat3==1,2),:)=[] ; 
allele5q_b2_mat3(all(allele5q_b2_mat3==1,2),:)=[] ; 
allele6q_b2_mat3(all(allele6q_b2_mat3==1,2),:)=[] ; 
allele7q_b2_mat3(all(allele7q_b2_mat3==1,2),:)=[] ; 
allele8q_b2_mat3(all(allele8q_b2_mat3==1,2),:)=[] ; 
allele9q_b2_mat3(all(allele9q_b2_mat3==1,2),:)=[] ; 
allele10q_b2_mat3(all(allele10q_b2_mat3==1,2),:)=[] ; 
allele11q_b2_mat3(all(allele11q_b2_mat3==1,2),:)=[] ; 

  
rows23=totalrowsb2-length(allele1q_b2_mat3(:,1)) ; 
rows24=totalrowsb2-length(allele2q_b2_mat3(:,1));  
rows25=totalrowsb2-length(allele3q_b2_mat3(:,1));  
rows26=totalrowsb2-length(allele4q_b2_mat3(:,1));  
rows27=totalrowsb2-length(allele5q_b2_mat3(:,1));  
rows28=totalrowsb2-length(allele6q_b2_mat3(:,1));  
rows29=totalrowsb2-length(allele7q_b2_mat3(:,1)); 
rows30=totalrowsb2-length(allele8q_b2_mat3(:,1)); 
rows31=totalrowsb2-length(allele9q_b2_mat3(:,1));  
rows32=totalrowsb2-length(allele10q_b2_mat3(:,1)); 
rows33=totalrowsb2-length(allele11q_b2_mat3(:,1)); 

  
totalrowsb3=(rows23+rows24+rows25+rows26+rows27+rows28+rows29+rows30+rows3

1+rows32+rows33); 

  
count_allele1q_b2_mat3=sum(allele1q_b2_mat3); 
count_allele2q_b2_mat3=sum(allele2q_b2_mat3); 
count_allele3q_b2_mat3=sum(allele3q_b2_mat3);  
count_allele4q_b2_mat3=sum(allele4q_b2_mat3);  
count_allele5q_b2_mat3=sum(allele5q_b2_mat3); 
count_allele6q_b2_mat3=sum(allele6q_b2_mat3); 
count_allele7q_b2_mat3=sum(allele7q_b2_mat3); 
count_allele8q_b2_mat3=sum(allele8q_b2_mat3); 
count_allele9q_b2_mat3=sum(allele9q_b2_mat3); 
count_allele10q_b2_mat3=sum(allele10q_b2_mat3); 
count_allele11q_b2_mat3=sum(allele11q_b2_mat3); 

  
freqallele1q_b2_mat3=sum(count_allele1q_b2_mat3)/(nobreeders2*2) ; 
freqallele2q_b2_mat3=sum(count_allele2q_b2_mat3)/(nobreeders2*2) ; 
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freqallele3q_b2_mat3=sum(count_allele3q_b2_mat3)/(nobreeders2*2) ; 
freqallele4q_b2_mat3=sum(count_allele4q_b2_mat3)/(nobreeders2*2) ; 
freqallele5q_b2_mat3=sum(count_allele5q_b2_mat3)/(nobreeders2*2) ; 
freqallele6q_b2_mat3=sum(count_allele6q_b2_mat3)/(nobreeders2*2) ; 
freqallele7q_b2_mat3=sum(count_allele7q_b2_mat3)/(nobreeders2*2) ; 
freqallele8q_b2_mat3=sum(count_allele8q_b2_mat3)/(nobreeders2*2) ; 
freqallele9q_b2_mat3=sum(count_allele9q_b2_mat3)/(nobreeders2*2) ; 
freqallele10q_b2_mat3=sum(count_allele10q_b2_mat3)/(nobreeders2*2) ; 
freqallele11q_b2_mat3=sum(count_allele11q_b2_mat3)/(nobreeders2*2) ; 

  

  
dist3=rand(totalrowsb3,2) ; 

  
allele1q_b2_mat4=(dist3>0) & (dist3<freqallele1_G1) ; 
allele2q_b2_mat4=(dist3>=freqallele1_G1) & 

(dist3<(freqallele1_G1+freqallele2_G1)) ; 
allele3q_b2_mat4=(dist3>=(freqallele1_G1+freqallele2_G1)) & 

(dist3<(freqallele1_G1+freqallele2_G1+freqallele3_G1)) ; 
allele4q_b2_mat4=(dist3>=(freqallele1_G1+freqallele2_G1+freqallele3_G1)) & 

(dist3<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1));  
allele5q_b2_mat4=(dist3>=(freqallele1_G1+freqallele2_G1+freqallele3_G1+fre

qallele4_G1)) & 

(dist3<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+freqal

lele5_G1)) ; 
allele6q_b2_mat4=(dist3>=(freqallele1_G1+freqallele2_G1+freqallele3_G1+fre

qallele4_G1+freqallele5_G1)) & 

(dist3<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+freqal

lele5_G1+freqallele6_G1)) ; 
allele7q_b2_mat4=(dist3>=(freqallele1_G1+freqallele2_G1+freqallele3_G1+fre

qallele4_G1+freqallele5_G1+freqallele6_G1)) & 

(dist3<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+freqal

lele5_G1+freqallele6_G1+freqallele7_G1));  
allele8q_b2_mat4=(dist3>=(freqallele1_G1+freqallele2_G1+freqallele3_G1+fre

qallele4_G1+freqallele5_G1+freqallele6_G1+freqallele7_G1)) & 

(dist3<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+freqal

lele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_G1)) ; 
allele9q_b2_mat4=(dist3>=(freqallele1_G1+freqallele2_G1+freqallele3_G1+fre

qallele4_G1+freqallele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_G1)) 

& 

(dist3<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+freqal

lele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_G1+freqallele9_G1)) ; 
allele10q_b2_mat4=(dist3>=(freqallele1_G1+freqallele2_G1+freqallele3_G1+fr

eqallele4_G1+freqallele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_G1+f

reqallele9_G1)) & 

(dist3<(freqallele1_G1+freqallele2_G1+freqallele3_G1+freqallele4_G1+freqal

lele5_G1+freqallele6_G1+freqallele7_G1+freqallele8_G1+freqallele9_G1+freqa

llele10_G1));  
allele11q_b2_mat4=(dist3>=(freqallele1_G1+freqallele2_G1+freqallele3_G1+fr

eqallele4_G1+freqallele5_G1+freqallele6_G1++freqallele7_G1+freqallele8_G1+

freqallele9_G1+freqallele10_G1)) & (dist3<1) ; 

  
allele1q_b2_mat4(all(allele1q_b2_mat4==1,2),:)=[]; 
allele2q_b2_mat4(all(allele2q_b2_mat4==1,2),:)=[];  
allele3q_b2_mat4(all(allele3q_b2_mat4==1,2),:)=[];  



216 
 
 

allele4q_b2_mat4(all(allele4q_b2_mat4==1,2),:)=[];  
allele5q_b2_mat4(all(allele5q_b2_mat4==1,2),:)=[];  
allele6q_b2_mat4(all(allele6q_b2_mat4==1,2),:)=[];  
allele7q_b2_mat4(all(allele7q_b2_mat4==1,2),:)=[]; 
allele8q_b2_mat4(all(allele8q_b2_mat4==1,2),:)=[];  
allele9q_b2_mat4(all(allele9q_b2_mat4==1,2),:)=[];  
allele10q_b2_mat4(all(allele10q_b2_mat4==1,2),:)=[]; 
allele11q_b2_mat4(all(allele11q_b2_mat4==1,2),:)=[];  

  
rows34=totalrowsb3-length(allele1q_b2_mat4(:,1)) ; 
rows35=totalrowsb3-length(allele2q_b2_mat4(:,1)) ; 
rows36=totalrowsb3-length(allele3q_b2_mat4(:,1)) ; 
rows37=totalrowsb3-length(allele4q_b2_mat4(:,1)) ; 
rows38=totalrowsb3-length(allele5q_b2_mat4(:,1)) ; 
rows39=totalrowsb3-length(allele6q_b2_mat4(:,1)) ; 
rows40=totalrowsb3-length(allele7q_b2_mat4(:,1)) ; 
rows41=totalrowsb3-length(allele8q_b2_mat4(:,1));  
rows42=totalrowsb3-length(allele9q_b2_mat4(:,1)) ; 
rows43=totalrowsb3-length(allele10q_b2_mat4(:,1)) ; 
rows44=totalrowsb3-length(allele11q_b2_mat4(:,1));  

  
totalrowsb4=(rows34+rows35+rows36+rows37+rows38+rows39+rows40+rows41+rows4

2+rows43+rows44); 

  
count_allele1q_b2_mat4=sum(allele1q_b2_mat4) ; 
count_allele2q_b2_mat4=sum(allele2q_b2_mat4) ; 
count_allele3q_b2_mat4=sum(allele3q_b2_mat4) ; 
count_allele4q_b2_mat4=sum(allele4q_b2_mat4) ; 
count_allele5q_b2_mat4=sum(allele5q_b2_mat4) ; 
count_allele6q_b2_mat4=sum(allele6q_b2_mat4) ; 
count_allele7q_b2_mat4=sum(allele7q_b2_mat4) ; 
count_allele8q_b2_mat4=sum(allele8q_b2_mat4) ; 
count_allele9q_b2_mat4=sum(allele9q_b2_mat4) ; 
count_allele10q_b2_mat4=sum(allele10q_b2_mat4) ; 
count_allele11q_b2_mat4=sum(allele11q_b2_mat4) ; 

  
freqallele1q_b2_mat4=sum(count_allele1q_b2_mat4)/(nobreeders2*2);  
freqallele2q_b2_mat4=sum(count_allele2q_b2_mat4)/(nobreeders2*2);  
freqallele3q_b2_mat4=sum(count_allele3q_b2_mat4)/(nobreeders2*2) ; 
freqallele4q_b2_mat4=sum(count_allele4q_b2_mat4)/(nobreeders2*2) ; 
freqallele5q_b2_mat4=sum(count_allele5q_b2_mat4)/(nobreeders2*2) ; 
freqallele6q_b2_mat4=sum(count_allele6q_b2_mat4)/(nobreeders2*2) ; 
freqallele7q_b2_mat4=sum(count_allele7q_b2_mat4)/(nobreeders2*2) ; 
freqallele8q_b2_mat4=sum(count_allele8q_b2_mat4)/(nobreeders2*2) ; 
freqallele9q_b2_mat4=sum(count_allele9q_b2_mat4)/(nobreeders2*2) ; 
freqallele10q_b2_mat4=sum(count_allele10q_b2_mat4)/(nobreeders2*2) ; 
freqallele11q_b2_mat4=sum(count_allele11q_b2_mat4)/(nobreeders2*2) ; 

  
freqallele1q_b2=freqallele1q_b2_mat1+freqallele1q_b2_mat2+freqallele1q_b2_

mat3+freqallele1q_b2_mat4 ; 
freqallele2q_b2=freqallele2q_b2_mat1+freqallele2q_b2_mat2+freqallele2q_b2_

mat3+freqallele2q_b2_mat4 ; 
freqallele3q_b2=freqallele3q_b2_mat1+freqallele3q_b2_mat2+freqallele3q_b2_

mat3+freqallele3q_b2_mat4 ; 
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freqallele4q_b2=freqallele4q_b2_mat1+freqallele4q_b2_mat2+freqallele4q_b2_

mat3+freqallele4q_b2_mat4 ; 
freqallele5q_b2=freqallele5q_b2_mat1+freqallele5q_b2_mat2+freqallele5q_b2_

mat3+freqallele6q_b2_mat4 ; 
freqallele6q_b2=freqallele6q_b2_mat1+freqallele6q_b2_mat2+freqallele6q_b2_

mat3+freqallele7q_b2_mat4 ; 
freqallele7q_b2=freqallele7q_b2_mat1+freqallele7q_b2_mat2+freqallele7q_b2_

mat3+freqallele7q_b2_mat4 ; 
freqallele8q_b2=freqallele8q_b2_mat1+freqallele8q_b2_mat2+freqallele8q_b2_

mat3+freqallele8q_b2_mat4 ; 
freqallele9q_b2=freqallele9q_b2_mat1+freqallele9q_b2_mat2+freqallele9q_b2_

mat3+freqallele9q_b2_mat4 ; 
freqallele10q_b2=freqallele10q_b2_mat1+freqallele10q_b2_mat2+freqallele10q

_b2_mat3+freqallele10q_b2_mat4 ; 
freqallele11q_b2=freqallele11q_b2_mat1+freqallele11q_b2_mat2+freqallele11q

_b2_mat3+freqallele11q_b2_mat4 ; 

  
%Frequency of breeder contributions to next generation includes the drones 
%they mate with  

  
%These (this) queen genotype(s) had mated with (n) drones in last 

generation 
%Hence breeder contribution is  

  
Ballelefreq1_G2=(2*freqallele1q_b2+freqallele1d_G1)/3 
Ballelefreq2_G2=(2*freqallele2q_b2+freqallele2d_G1)/3 
Ballelefreq3_G2=(2*freqallele3q_b2+freqallele3d_G1)/3 
Ballelefreq4_G2=(2*freqallele4q_b2+freqallele4d_G1)/3 
Ballelefreq5_G2=(2*freqallele5q_b2+freqallele5d_G1)/3 
Ballelefreq6_G2=(2*freqallele6q_b2+freqallele6d_G1)/3 
Ballelefreq7_G2=(2*freqallele7q_b2+freqallele7d_G1)/3 
Ballelefreq8_G2=(2*freqallele8q_b2+freqallele8d_G1)/3 
Ballelefreq9_G2=(2*freqallele9q_b2+freqallele9d_G1)/3 
Ballelefreq10_G2=(2*freqallele10q_b2+freqallele10d_G1)/3 
Ballelefreq11_G2=(2*freqallele11q_b2+freqallele11d_G1)/3 

  
%NOW USE ABOVE DISTRIBUTION TO GENERATE 100 QUEEN FREQUENY DIST. AND 
%COMBINE WITH DRONE FREQUENCIES FROM BREEDER 1 TO CREATE G2 DIST 

  
DistGen2Q=rand(nqueens,2); 

  
allele1q_G2_mat1=(DistGen2Q>0) & (DistGen2Q<Ballelefreq1_G2); 
allele2q_G2_mat1=(DistGen2Q>=Ballelefreq1_G2) & 

(DistGen2Q<(Ballelefreq1_G2+Ballelefreq2_G2)); 
allele3q_G2_mat1=(DistGen2Q>=(Ballelefreq1_G2+Ballelefreq2_G2)) & 

(DistGen2Q<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2)); 
allele4q_G2_mat1=(DistGen2Q>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3

_G2)) & 

(DistGen2Q<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G

2)); 
allele5q_G2_mat1=(DistGen2Q>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3

_G2+Ballelefreq4_G2)) & 

(DistGen2Q<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G

2+Ballelefreq5_G2)); 
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allele6q_G2_mat1=(DistGen2Q>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3

_G2+Ballelefreq4_G2+Ballelefreq5_G2)) & 

(DistGen2Q<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G

2+Ballelefreq5_G2+Ballelefreq6_G2)); 
allele7q_G2_mat1=(DistGen2Q>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3

_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2)) & 

(DistGen2Q<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G

2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2)); 
allele8q_G2_mat1=(DistGen2Q>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3

_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2)) & 

(DistGen2Q<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G

2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2)); 
allele9q_G2_mat1=(DistGen2Q>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3

_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballel

efreq8_G2)) & 

(DistGen2Q<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G

2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2+Ballelef

req9_G2)); 
allele10q_G2_mat1=(DistGen2Q>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq

3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Balle

lefreq8_G2+Ballelefreq9_G2)) & 

(DistGen2Q<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G

2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2+Ballelef

req9_G2+Ballelefreq10_G2)); 
allele11q_G2_mat1=(DistGen2Q>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq

3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Balle

lefreq8_G2+Ballelefreq9_G2+Ballelefreq10_G2)) & (DistGen2Q<1); 

  
allele1q_G2_mat1(all(allele1q_G2_mat1==1,2),:)=[] ; 
allele2q_G2_mat1(all(allele2q_G2_mat1==1,2),:)=[] ; 
allele3q_G2_mat1(all(allele3q_G2_mat1==1,2),:)=[] ; 
allele4q_G2_mat1(all(allele4q_G2_mat1==1,2),:)=[] ; 
allele5q_G2_mat1(all(allele5q_G2_mat1==1,2),:)=[] ; 
allele6q_G2_mat1(all(allele6q_G2_mat1==1,2),:)=[] ; 
allele7q_G2_mat1(all(allele7q_G2_mat1==1,2),:)=[] ; 
allele8q_G2_mat1(all(allele8q_G2_mat1==1,2),:)=[] ; 
allele9q_G2_mat1(all(allele9q_G2_mat1==1,2),:)=[] ; 
allele10q_G2_mat1(all(allele10q_G2_mat1==1,2),:)=[] ; 
allele11q_G2_mat1(all(allele11q_G2_mat1==1,2),:)=[] ; 

  
rows1=nqueens-length(allele1q_G2_mat1(:,1)) ; 
rows2=nqueens-length(allele2q_G2_mat1(:,1)) ; 
rows3=nqueens-length(allele3q_G2_mat1(:,1)) ; 
rows4=nqueens-length(allele4q_G2_mat1(:,1)) ; 
rows5=nqueens-length(allele5q_G2_mat1(:,1)) ; 
rows6=nqueens-length(allele6q_G2_mat1(:,1)) ; 
rows7=nqueens-length(allele7q_G2_mat1(:,1)) ; 
rows8=nqueens-length(allele8q_G2_mat1(:,1))  ; 
rows9=nqueens-length(allele9q_G2_mat1(:,1)) ; 
rows10=nqueens-length(allele10q_G2_mat1(:,1)) ; 
rows11=nqueens-length(allele11q_G2_mat1(:,1))  ; 

  
totalrows=(rows1+rows2+rows3+rows4+rows5+rows6+rows7+rows8+rows9+rows10+ro

ws11); 
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count_allele1q_G2_mat1=sum(allele1q_G2_mat1) ; 
count_allele2q_G2_mat1=sum(allele2q_G2_mat1) ; 
count_allele3q_G2_mat1=sum(allele3q_G2_mat1) ; 
count_allele4q_G2_mat1=sum(allele4q_G2_mat1) ; 
count_allele5q_G2_mat1=sum(allele5q_G2_mat1) ; 
count_allele6q_G2_mat1=sum(allele6q_G2_mat1) ; 
count_allele7q_G2_mat1=sum(allele7q_G2_mat1) ; 
count_allele8q_G2_mat1=sum(allele8q_G2_mat1) ; 
count_allele9q_G2_mat1=sum(allele9q_G2_mat1) ; 
count_allele10q_G2_mat1=sum(allele10q_G2_mat1) ; 
count_allele11q_G2_mat1=sum(allele11q_G2_mat1) ; 

  
freqallele1q_G2_mat1=sum(count_allele1q_G2_mat1)/(nqueens*2) ; 
freqallele2q_G2_mat1=sum(count_allele2q_G2_mat1)/(nqueens*2) ; 
freqallele3q_G2_mat1=sum(count_allele3q_G2_mat1)/(nqueens*2) ; 
freqallele4q_G2_mat1=sum(count_allele4q_G2_mat1)/(nqueens*2) ; 
freqallele5q_G2_mat1=sum(count_allele5q_G2_mat1)/(nqueens*2) ; 
freqallele6q_G2_mat1=sum(count_allele6q_G2_mat1)/(nqueens*2) ; 
freqallele7q_G2_mat1=sum(count_allele7q_G2_mat1)/(nqueens*2) ; 
freqallele8q_G2_mat1=sum(count_allele8q_G2_mat1)/(nqueens*2) ; 
freqallele9q_G2_mat1=sum(count_allele9q_G2_mat1)/(nqueens*2) ; 
freqallele10q_G2_mat1=sum(count_allele10q_G2_mat1)/(nqueens*2) ; 
freqallele11q_G2_mat1=sum(count_allele11q_G2_mat1)/(nqueens*2) ; 

  
DistGen2Q_2=rand(totalrows,2) ; 

  
allele1q_G2_mat2=(DistGen2Q_2>0) & (DistGen2Q_2<Ballelefreq1_G2); 
allele2q_G2_mat2=(DistGen2Q_2>=Ballelefreq1_G2) & 

(DistGen2Q_2<(Ballelefreq1_G2+Ballelefreq2_G2)); 
allele3q_G2_mat2=(DistGen2Q_2>=(Ballelefreq1_G2+Ballelefreq2_G2)) & 

(DistGen2Q_2<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2)); 
allele4q_G2_mat2=(DistGen2Q_2>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2)) & 

(DistGen2Q_2<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2)); 
allele5q_G2_mat2=(DistGen2Q_2>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2+Ballelefreq4_G2)) & 

(DistGen2Q_2<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2)); 
allele6q_G2_mat2=(DistGen2Q_2>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2+Ballelefreq4_G2+Ballelefreq5_G2)) & 

(DistGen2Q_2<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2+Ballelefreq6_G2)); 
allele7q_G2_mat2=(DistGen2Q_2>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2)) & 

(DistGen2Q_2<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2)); 
allele8q_G2_mat2=(DistGen2Q_2>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2)) & 

(DistGen2Q_2<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2)); 
allele9q_G2_mat2=(DistGen2Q_2>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ball
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elefreq8_G2)) & 

(DistGen2Q_2<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2+Ballel

efreq9_G2)); 
allele10q_G2_mat2=(DistGen2Q_2>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefr

eq3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Bal

lelefreq8_G2+Ballelefreq9_G2)) & 

(DistGen2Q_2<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2+Ballel

efreq9_G2+Ballelefreq10_G2)); 
allele11q_G2_mat2=(DistGen2Q_2>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefr

eq3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Bal

lelefreq8_G2+Ballelefreq9_G2+Ballelefreq10_G2)) & (DistGen2Q_2<1); 

  
allele1q_G2_mat2(all(allele1q_G2_mat2==1,2),:)=[] ; 
allele2q_G2_mat2(all(allele2q_G2_mat2==1,2),:)=[] ; 
allele3q_G2_mat2(all(allele3q_G2_mat2==1,2),:)=[] ; 
allele4q_G2_mat2(all(allele4q_G2_mat2==1,2),:)=[] ; 
allele5q_G2_mat2(all(allele5q_G2_mat2==1,2),:)=[] ; 
allele6q_G2_mat2(all(allele6q_G2_mat2==1,2),:)=[] ; 
allele7q_G2_mat2(all(allele7q_G2_mat2==1,2),:)=[] ; 
allele8q_G2_mat2(all(allele8q_G2_mat2==1,2),:)=[] ; 
allele9q_G2_mat2(all(allele9q_G2_mat2==1,2),:)=[] ; 
allele10q_G2_mat2(all(allele10q_G2_mat2==1,2),:)=[] ; 
allele11q_G2_mat2(all(allele11q_G2_mat2==1,2),:)=[] ; 

  
rows12=totalrows-length(allele1q_G2_mat2(:,1)) ; 
rows13=totalrows-length(allele2q_G2_mat2(:,1)) ; 
rows14=totalrows-length(allele3q_G2_mat2(:,1)) ; 
rows15=totalrows-length(allele4q_G2_mat2(:,1)) ; 
rows16=totalrows-length(allele5q_G2_mat2(:,1)) ; 
rows17=totalrows-length(allele6q_G2_mat2(:,1)) ; 
rows18=totalrows-length(allele7q_G2_mat2(:,1)) ; 
rows19=totalrows-length(allele8q_G2_mat2(:,1))  ; 
rows20=totalrows-length(allele9q_G2_mat2(:,1)) ; 
rows21=totalrows-length(allele10q_G2_mat2(:,1)) ; 
rows22=totalrows-length(allele11q_G2_mat2(:,1))  ; 

  
totalrows2=(rows12+rows13+rows14+rows15+rows16+rows17+rows18+rows19+rows20

+rows21+rows22); 

  
count_allele1q_G2_mat2=sum(allele1q_G2_mat2) ; 
count_allele2q_G2_mat2=sum(allele2q_G2_mat2) ; 
count_allele3q_G2_mat2=sum(allele3q_G2_mat2) ; 
count_allele4q_G2_mat2=sum(allele4q_G2_mat2) ; 
count_allele5q_G2_mat2=sum(allele5q_G2_mat2) ; 
count_allele6q_G2_mat2=sum(allele6q_G2_mat2) ; 
count_allele7q_G2_mat2=sum(allele7q_G2_mat2) ; 
count_allele8q_G2_mat2=sum(allele8q_G2_mat2) ; 
count_allele9q_G2_mat2=sum(allele9q_G2_mat2) ; 
count_allele10q_G2_mat2=sum(allele10q_G2_mat2) ; 
count_allele11q_G2_mat2=sum(allele11q_G2_mat2) ; 

  
freqallele1q_G2_mat2=sum(count_allele1q_G2_mat2)/(nqueens*2) ; 
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freqallele2q_G2_mat2=sum(count_allele2q_G2_mat2)/(nqueens*2) ; 
freqallele3q_G2_mat2=sum(count_allele3q_G2_mat2)/(nqueens*2) ; 
freqallele4q_G2_mat2=sum(count_allele4q_G2_mat2)/(nqueens*2) ; 
freqallele5q_G2_mat2=sum(count_allele5q_G2_mat2)/(nqueens*2) ; 
freqallele6q_G2_mat2=sum(count_allele6q_G2_mat2)/(nqueens*2) ; 
freqallele7q_G2_mat2=sum(count_allele7q_G2_mat2)/(nqueens*2) ; 
freqallele8q_G2_mat2=sum(count_allele8q_G2_mat2)/(nqueens*2) ; 
freqallele9q_G2_mat2=sum(count_allele9q_G2_mat2)/(nqueens*2) ; 
freqallele10q_G2_mat2=sum(count_allele10q_G2_mat2)/(nqueens*2) ; 
freqallele11q_G2_mat2=sum(count_allele11q_G2_mat2)/(nqueens*2) ; 

  
DistGen2Q_3=rand(totalrows2,2); 

  
allele1q_G2_mat3=(DistGen2Q_3>0) & (DistGen2Q_3<Ballelefreq1_G2); 
allele2q_G2_mat3=(DistGen2Q_3>=Ballelefreq1_G2) & 

(DistGen2Q_3<(Ballelefreq1_G2+Ballelefreq2_G2)); 
allele3q_G2_mat3=(DistGen2Q_3>=(Ballelefreq1_G2+Ballelefreq2_G2)) & 

(DistGen2Q_3<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2)); 
allele4q_G2_mat3=(DistGen2Q_3>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2)) & 

(DistGen2Q_3<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2)); 
allele5q_G2_mat3=(DistGen2Q_3>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2+Ballelefreq4_G2)) & 

(DistGen2Q_3<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2)); 
allele6q_G2_mat3=(DistGen2Q_3>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2+Ballelefreq4_G2+Ballelefreq5_G2)) & 

(DistGen2Q_3<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2+Ballelefreq6_G2)); 
allele7q_G2_mat3=(DistGen2Q_3>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2)) & 

(DistGen2Q_3<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2)); 
allele8q_G2_mat3=(DistGen2Q_3>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2)) & 

(DistGen2Q_3<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2)); 
allele9q_G2_mat3=(DistGen2Q_3>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ball

elefreq8_G2)) & 

(DistGen2Q_3<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2+Ballel

efreq9_G2)); 
allele10q_G2_mat3=(DistGen2Q_3>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefr

eq3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Bal

lelefreq8_G2+Ballelefreq9_G2)) & 

(DistGen2Q_3<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2+Ballel

efreq9_G2+Ballelefreq10_G2)); 
allele11q_G2_mat3=(DistGen2Q_3>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefr

eq3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Bal

lelefreq8_G2+Ballelefreq9_G2+Ballelefreq10_G2)) & (DistGen2Q_3<1); 

  
allele1q_G2_mat3(all(allele1q_G2_mat3==1,2),:)=[] ; 
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allele2q_G2_mat3(all(allele2q_G2_mat3==1,2),:)=[] ; 
allele3q_G2_mat3(all(allele3q_G2_mat3==1,2),:)=[] ; 
allele4q_G2_mat3(all(allele4q_G2_mat3==1,2),:)=[] ; 
allele5q_G2_mat3(all(allele5q_G2_mat3==1,2),:)=[] ; 
allele6q_G2_mat3(all(allele6q_G2_mat3==1,2),:)=[] ; 
allele7q_G2_mat3(all(allele7q_G2_mat3==1,2),:)=[] ; 
allele8q_G2_mat3(all(allele8q_G2_mat3==1,2),:)=[] ; 
allele9q_G2_mat3(all(allele9q_G2_mat3==1,2),:)=[] ; 
allele10q_G2_mat3(all(allele10q_G2_mat3==1,2),:)=[] ; 
allele11q_G2_mat3(all(allele11q_G2_mat3==1,2),:)=[] ; 

  
rows23=totalrows2-length(allele1q_G2_mat3(:,1)) ; 
rows24=totalrows2-length(allele2q_G2_mat3(:,1)) ; 
rows25=totalrows2-length(allele3q_G2_mat3(:,1)) ; 
rows26=totalrows2-length(allele4q_G2_mat3(:,1)) ; 
rows27=totalrows2-length(allele5q_G2_mat3(:,1)) ; 
rows28=totalrows2-length(allele6q_G2_mat3(:,1)) ; 
rows29=totalrows2-length(allele7q_G2_mat3(:,1)) ; 
rows30=totalrows2-length(allele8q_G2_mat3(:,1))  ; 
rows31=totalrows2-length(allele9q_G2_mat3(:,1)) ; 
rows32=totalrows2-length(allele10q_G2_mat3(:,1)) ; 
rows33=totalrows2-length(allele11q_G2_mat3(:,1))  ; 

  
totalrows3=(rows23+rows24+rows25+rows26+rows27+rows28+rows29+rows30+rows31

+rows32+rows33); 

  
count_allele1q_G2_mat3=sum(allele1q_G2_mat3) ; 
count_allele2q_G2_mat3=sum(allele2q_G2_mat3) ; 
count_allele3q_G2_mat3=sum(allele3q_G2_mat3) ; 
count_allele4q_G2_mat3=sum(allele4q_G2_mat3) ; 
count_allele5q_G2_mat3=sum(allele5q_G2_mat3) ; 
count_allele6q_G2_mat3=sum(allele6q_G2_mat3) ; 
count_allele7q_G2_mat3=sum(allele7q_G2_mat3) ; 
count_allele8q_G2_mat3=sum(allele8q_G2_mat3) ; 
count_allele9q_G2_mat3=sum(allele9q_G2_mat3) ; 
count_allele10q_G2_mat3=sum(allele10q_G2_mat3) ; 
count_allele11q_G2_mat3=sum(allele11q_G2_mat3) ; 

  
freqallele1q_G2_mat3=sum(count_allele1q_G2_mat3)/(nqueens*2) ; 
freqallele2q_G2_mat3=sum(count_allele2q_G2_mat3)/(nqueens*2) ; 
freqallele3q_G2_mat3=sum(count_allele3q_G2_mat3)/(nqueens*2) ; 
freqallele4q_G2_mat3=sum(count_allele4q_G2_mat3)/(nqueens*2) ; 
freqallele5q_G2_mat3=sum(count_allele5q_G2_mat3)/(nqueens*2) ; 
freqallele6q_G2_mat3=sum(count_allele6q_G2_mat3)/(nqueens*2) ; 
freqallele7q_G2_mat3=sum(count_allele7q_G2_mat3)/(nqueens*2) ; 
freqallele8q_G2_mat3=sum(count_allele8q_G2_mat3)/(nqueens*2) ; 
freqallele9q_G2_mat3=sum(count_allele9q_G2_mat3)/(nqueens*2) ; 
freqallele10q_G2_mat3=sum(count_allele10q_G2_mat3)/(nqueens*2) ; 
freqallele11q_G2_mat3=sum(count_allele11q_G2_mat3)/(nqueens*2) ; 

  
DistGen2Q_4=rand(totalrows3,2) ; 

  
allele1q_G2_mat4=(DistGen2Q_4>0) & (DistGen2Q_4<Ballelefreq1_G2); 
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allele2q_G2_mat4=(DistGen2Q_4>=Ballelefreq1_G2) & 

(DistGen2Q_4<(Ballelefreq1_G2+Ballelefreq2_G2)); 
allele3q_G2_mat4=(DistGen2Q_4>=(Ballelefreq1_G2+Ballelefreq2_G2)) & 

(DistGen2Q_4<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2)); 
allele4q_G2_mat4=(DistGen2Q_4>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2)) & 

(DistGen2Q_4<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2)); 
allele5q_G2_mat4=(DistGen2Q_4>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2+Ballelefreq4_G2)) & 

(DistGen2Q_4<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2)); 
allele6q_G2_mat4=(DistGen2Q_4>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2+Ballelefreq4_G2+Ballelefreq5_G2)) & 

(DistGen2Q_4<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2+Ballelefreq6_G2)); 
allele7q_G2_mat4=(DistGen2Q_4>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2)) & 

(DistGen2Q_4<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2)); 
allele8q_G2_mat4=(DistGen2Q_4>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2)) & 

(DistGen2Q_4<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2)); 
allele9q_G2_mat4=(DistGen2Q_4>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ball

elefreq8_G2)) & 

(DistGen2Q_4<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2+Ballel

efreq9_G2)); 
allele10q_G2_mat4=(DistGen2Q_4>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefr

eq3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Bal

lelefreq8_G2+Ballelefreq9_G2)) & 

(DistGen2Q_4<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2+Ballel

efreq9_G2+Ballelefreq10_G2)); 
allele11q_G2_mat4=(DistGen2Q_4>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefr

eq3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Bal

lelefreq8_G2+Ballelefreq9_G2+Ballelefreq10_G2)) & (DistGen2Q_4<1); 

  
allele1q_G2_mat4(all(allele1q_G2_mat4==1,2),:)=[] ; 
allele2q_G2_mat4(all(allele2q_G2_mat4==1,2),:)=[] ; 
allele3q_G2_mat4(all(allele3q_G2_mat4==1,2),:)=[] ; 
allele4q_G2_mat4(all(allele4q_G2_mat4==1,2),:)=[] ; 
allele5q_G2_mat4(all(allele5q_G2_mat4==1,2),:)=[] ; 
allele6q_G2_mat4(all(allele6q_G2_mat4==1,2),:)=[] ; 
allele7q_G2_mat4(all(allele7q_G2_mat4==1,2),:)=[] ; 
allele8q_G2_mat4(all(allele8q_G2_mat4==1,2),:)=[] ; 
allele9q_G2_mat4(all(allele9q_G2_mat4==1,2),:)=[] ; 
allele10q_G2_mat4(all(allele10q_G2_mat4==1,2),:)=[] ; 
allele11q_G2_mat4(all(allele11q_G2_mat4==1,2),:)=[] ; 

  
rows34=totalrows3-length(allele1q_G2_mat4(:,1)) ; 
rows35=totalrows3-length(allele2q_G2_mat4(:,1)) ; 
rows36=totalrows3-length(allele3q_G2_mat4(:,1)) ; 
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rows37=totalrows3-length(allele4q_G2_mat4(:,1)) ; 
rows38=totalrows3-length(allele5q_G2_mat4(:,1)) ; 
rows39=totalrows3-length(allele6q_G2_mat4(:,1)) ; 
rows40=totalrows3-length(allele7q_G2_mat4(:,1)) ; 
rows41=totalrows3-length(allele8q_G2_mat4(:,1)) ; 
rows42=totalrows3-length(allele9q_G2_mat4(:,1)) ; 
rows43=totalrows3-length(allele10q_G2_mat4(:,1)) ; 
rows44=totalrows3-length(allele11q_G2_mat4(:,1)) ; 

  
totalrows4=(rows34+rows35+rows36+rows37+rows38+rows39+rows40+rows41+rows42

+rows43+rows44); 

  

  
count_allele1q_G2_mat4=sum(allele1q_G2_mat4) ; 
count_allele2q_G2_mat4=sum(allele2q_G2_mat4) ; 
count_allele3q_G2_mat4=sum(allele3q_G2_mat4) ; 
count_allele4q_G2_mat4=sum(allele4q_G2_mat4) ; 
count_allele5q_G2_mat4=sum(allele5q_G2_mat4) ; 
count_allele6q_G2_mat4=sum(allele6q_G2_mat4) ; 
count_allele7q_G2_mat4=sum(allele7q_G2_mat4) ; 
count_allele8q_G2_mat4=sum(allele8q_G2_mat4) ; 
count_allele9q_G2_mat4=sum(allele9q_G2_mat4) ; 
count_allele10q_G2_mat4=sum(allele10q_G2_mat4) ; 
count_allele11q_G2_mat4=sum(allele11q_G2_mat4) ; 

  
freqallele1q_G2_mat4=sum(count_allele1q_G2_mat4)/(nqueens*2) ; 
freqallele2q_G2_mat4=sum(count_allele2q_G2_mat4)/(nqueens*2) ; 
freqallele3q_G2_mat4=sum(count_allele3q_G2_mat4)/(nqueens*2) ; 
freqallele4q_G2_mat4=sum(count_allele4q_G2_mat4)/(nqueens*2) ; 
freqallele5q_G2_mat4=sum(count_allele5q_G2_mat4)/(nqueens*2) ; 
freqallele6q_G2_mat4=sum(count_allele6q_G2_mat4)/(nqueens*2) ; 
freqallele7q_G2_mat4=sum(count_allele7q_G2_mat4)/(nqueens*2) ; 
freqallele8q_G2_mat4=sum(count_allele8q_G2_mat4)/(nqueens*2) ; 
freqallele9q_G2_mat4=sum(count_allele9q_G2_mat4)/(nqueens*2) ; 
freqallele10q_G2_mat4=sum(count_allele10q_G2_mat4)/(nqueens*2) ; 
freqallele11q_G2_mat4=sum(count_allele11q_G2_mat4)/(nqueens*2) ; 

  
DistGen2Q_5=rand(totalrows4,2) ; 

  
allele1q_G2_mat5=(DistGen2Q_5>0) & (DistGen2Q_5<Ballelefreq1_G2); 
allele2q_G2_mat5=(DistGen2Q_5>=Ballelefreq1_G2) & 

(DistGen2Q_5<(Ballelefreq1_G2+Ballelefreq2_G2)); 
allele3q_G2_mat5=(DistGen2Q_5>=(Ballelefreq1_G2+Ballelefreq2_G2)) & 

(DistGen2Q_5<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2)); 
allele4q_G2_mat5=(DistGen2Q_5>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2)) & 

(DistGen2Q_5<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2)); 
allele5q_G2_mat5=(DistGen2Q_5>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2+Ballelefreq4_G2)) & 

(DistGen2Q_5<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2)); 
allele6q_G2_mat5=(DistGen2Q_5>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2+Ballelefreq4_G2+Ballelefreq5_G2)) & 
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(DistGen2Q_5<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2+Ballelefreq6_G2)); 
allele7q_G2_mat5=(DistGen2Q_5>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2)) & 

(DistGen2Q_5<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2)); 
allele8q_G2_mat5=(DistGen2Q_5>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2)) & 

(DistGen2Q_5<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2)); 
allele9q_G2_mat5=(DistGen2Q_5>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefre

q3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ball

elefreq8_G2)) & 

(DistGen2Q_5<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2+Ballel

efreq9_G2)); 
allele10q_G2_mat5=(DistGen2Q_5>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefr

eq3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Bal

lelefreq8_G2+Ballelefreq9_G2)) & 

(DistGen2Q_5<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4

_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2+Ballel

efreq9_G2+Ballelefreq10_G2)); 
allele11q_G2_mat5=(DistGen2Q_5>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefr

eq3_G2+Ballelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Bal

lelefreq8_G2+Ballelefreq9_G2+Ballelefreq10_G2)) & (DistGen2Q_5<1); 

  
allele1q_G2_mat5(all(allele1q_G2_mat5==1,2),:)=[] ; 
allele2q_G2_mat5(all(allele2q_G2_mat5==1,2),:)=[] ; 
allele3q_G2_mat5(all(allele3q_G2_mat5==1,2),:)=[] ; 
allele4q_G2_mat5(all(allele4q_G2_mat5==1,2),:)=[] ; 
allele5q_G2_mat5(all(allele5q_G2_mat5==1,2),:)=[] ; 
allele6q_G2_mat5(all(allele6q_G2_mat5==1,2),:)=[] ; 
allele7q_G2_mat5(all(allele7q_G2_mat5==1,2),:)=[] ; 
allele8q_G2_mat5(all(allele8q_G2_mat5==1,2),:)=[] ; 
allele9q_G2_mat5(all(allele9q_G2_mat5==1,2),:)=[] ; 
allele10q_G2_mat5(all(allele10q_G2_mat5==1,2),:)=[] ; 
allele11q_G2_mat5(all(allele11q_G2_mat5==1,2),:)=[] ; 

  
rows45=totalrows4-length(allele1q_G2_mat5(:,1)) ; 
rows46=totalrows4-length(allele2q_G2_mat5(:,1)) ; 
rows47=totalrows4-length(allele3q_G2_mat5(:,1)) ; 
rows48=totalrows4-length(allele4q_G2_mat5(:,1)) ; 
rows49=totalrows4-length(allele5q_G2_mat5(:,1)) ; 
rows50=totalrows4-length(allele6q_G2_mat5(:,1)) ; 
rows51=totalrows4-length(allele7q_G2_mat5(:,1)) ; 
rows52=totalrows4-length(allele8q_G2_mat5(:,1)) ; 
rows53=totalrows4-length(allele9q_G2_mat5(:,1)) ; 
rows54=totalrows4-length(allele10q_G2_mat5(:,1)) ; 
rows55=totalrows4-length(allele11q_G2_mat5(:,1)) ; 

  
totalrows5=(rows45+rows46+rows47+rows48+rows49+rows50+rows51+rows52+rows53

+rows54+rows55); 

  
count_allele1q_G2_mat5=sum(allele1q_G2_mat5) ; 
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count_allele2q_G2_mat5=sum(allele2q_G2_mat5) ; 
count_allele3q_G2_mat5=sum(allele3q_G2_mat5) ; 
count_allele4q_G2_mat5=sum(allele4q_G2_mat5) ; 
count_allele5q_G2_mat5=sum(allele5q_G2_mat5) ; 
count_allele6q_G2_mat5=sum(allele6q_G2_mat5) ; 
count_allele7q_G2_mat5=sum(allele7q_G2_mat5) ; 
count_allele8q_G2_mat5=sum(allele8q_G2_mat5) ; 
count_allele9q_G2_mat5=sum(allele9q_G2_mat5) ; 
count_allele10q_G2_mat5=sum(allele10q_G2_mat5) ; 
count_allele11q_G2_mat5=sum(allele11q_G2_mat5) ; 

  
freqallele1q_G2_mat5=sum(count_allele1q_G2_mat5)/(nqueens*2) ; 
freqallele2q_G2_mat5=sum(count_allele2q_G2_mat5)/(nqueens*2) ; 
freqallele3q_G2_mat5=sum(count_allele3q_G2_mat5)/(nqueens*2) ; 
freqallele4q_G2_mat5=sum(count_allele4q_G2_mat5)/(nqueens*2) ; 
freqallele5q_G2_mat5=sum(count_allele5q_G2_mat5)/(nqueens*2) ; 
freqallele6q_G2_mat5=sum(count_allele6q_G2_mat5)/(nqueens*2) ; 
freqallele7q_G2_mat5=sum(count_allele7q_G2_mat5)/(nqueens*2) ; 
freqallele8q_G2_mat5=sum(count_allele8q_G2_mat5)/(nqueens*2) ; 
freqallele9q_G2_mat5=sum(count_allele9q_G2_mat5)/(nqueens*2) ; 
freqallele10q_G2_mat5=sum(count_allele10q_G2_mat5)/(nqueens*2) ; 
freqallele11q_G2_mat5=sum(count_allele11q_G2_mat5)/(nqueens*2) ; 

  
freqallele1q_G2=freqallele1q_G2_mat1+freqallele1q_G2_mat2+freqallele1q_G2_

mat3+freqallele1q_G2_mat4+freqallele1q_G2_mat5; 
freqallele2q_G2=freqallele2q_G2_mat1+freqallele2q_G2_mat2+freqallele2q_G2_

mat3+freqallele2q_G2_mat4+freqallele2q_G2_mat5; 
freqallele3q_G2=freqallele3q_G2_mat1+freqallele3q_G2_mat2+freqallele3q_G2_

mat3+freqallele3q_G2_mat4+freqallele3q_G2_mat5; 
freqallele4q_G2=freqallele4q_G2_mat1+freqallele4q_G2_mat2+freqallele4q_G2_

mat3+freqallele4q_G2_mat4+freqallele4q_G2_mat5; 
freqallele5q_G2=freqallele5q_G2_mat1+freqallele5q_G2_mat2+freqallele5q_G2_

mat3+freqallele5q_G2_mat4+freqallele5q_G2_mat5; 
freqallele6q_G2=freqallele6q_G2_mat1+freqallele6q_G2_mat2+freqallele6q_G2_

mat3+freqallele6q_G2_mat4+freqallele6q_G2_mat5; 
freqallele7q_G2=freqallele7q_G2_mat1+freqallele7q_G2_mat2+freqallele7q_G2_

mat3+freqallele7q_G2_mat4+freqallele7q_G2_mat5; 
freqallele8q_G2=freqallele8q_G2_mat1+freqallele8q_G2_mat2+freqallele8q_G2_

mat3+freqallele8q_G2_mat4+freqallele8q_G2_mat5; 
freqallele9q_G2=freqallele9q_G2_mat1+freqallele9q_G2_mat2+freqallele9q_G2_

mat3+freqallele9q_G2_mat4+freqallele9q_G2_mat5; 
freqallele10q_G2=freqallele10q_G2_mat1+freqallele10q_G2_mat2+freqallele10q

_G2_mat3+freqallele10q_G2_mat4+freqallele10q_G2_mat5; 
freqallele11q_G2=freqallele11q_G2_mat1+freqallele11q_G2_mat2+freqallele11q

_G2_mat3+freqallele11q_G2_mat4+freqallele11q_G2_mat5; 

 

   
freqallele1_G2=(2*freqallele1q_G2+freqallele1d_G1)/3; 
freqallele2_G2=(2*freqallele2q_G2+freqallele2d_G1)/3; 
freqallele3_G2=(2*freqallele3q_G2+freqallele3d_G1)/3; 
freqallele4_G2=(2*freqallele4q_G2+freqallele4d_G1)/3; 
freqallele5_G2=(2*freqallele5q_G2+freqallele5d_G1)/3; 
freqallele6_G2=(2*freqallele6q_G2+freqallele6d_G1)/3; 
freqallele7_G2=(2*freqallele7q_G2+freqallele7d_G1)/3; 
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freqallele8_G2=(2*freqallele8q_G2+freqallele8d_G1)/3; 
freqallele9_G2=(2*freqallele9q_G2+freqallele9d_G1)/3; 
freqallele10_G2=(2*freqallele10q_G2+freqallele10d_G1)/3; 
freqallele11_G2=(2*freqallele11q_G2+freqallele11d_G1)/3; 

  
mat1_G2(freqallele1)=freqallele1_G2 
mat2_G2(freqallele1)=freqallele2_G2 
mat3_G2(freqallele1)=freqallele3_G2 
mat4_G2(freqallele1)=freqallele4_G2 
mat5_G2(freqallele1)=freqallele5_G2 
mat6_G2(freqallele1)=freqallele6_G2 
mat7_G2(freqallele1)=freqallele7_G2 
mat8_G2(freqallele1)=freqallele8_G2 
mat9_G2(freqallele1)=freqallele9_G2 
mat10_G2(freqallele1)=freqallele10_G2 
mat11_G2(freqallele1)=freqallele11_G2 

  
 

 

 

 

 

 

 

 

 

  
%THIRD GENERATION SIMULTION 
%ALLELE FREQUENCIES CARRIED BY DRONES CONTRIBUTING TO NEXT GENERATION 

COMES 
%FROM QUEENS SELECTED AS BREEDERS LAST YEAR ie Ballelefreqx_G2 

  

  
G2drones=rand(nqueens,nodrones) ; 

 

  
allele1d_2=(G2drones>0) & (G2drones<Ballelefreq1_G2); 
allele2d_2=(G2drones>=Ballelefreq1_G2) & 

(G2drones<(Ballelefreq1_G2+Ballelefreq2_G2)); 
allele3d_2=(G2drones>=(Ballelefreq1_G2+Ballelefreq2_G2)) & 

(G2drones<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2)); 
allele4d_2=(G2drones>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2)) & 

(G2drones<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G2

)); 
allele5d_2=(G2drones>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Bal

lelefreq4_G2)) & 

(G2drones<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G2

+Ballelefreq5_G2)); 
allele6d_2=(G2drones>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Bal

lelefreq4_G2+Ballelefreq5_G2)) & 

(G2drones<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G2

+Ballelefreq5_G2+Ballelefreq6_G2)); 
allele7d_2=(G2drones>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Bal

lelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2)) & 
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(G2drones<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G2

+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2)); 
allele8d_2=(G2drones>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Bal

lelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2)) & 

(G2drones<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G2

+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2)); 
allele9d_2=(G2drones>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Bal

lelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_

G2)) & 

(G2drones<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G2

+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2+Ballelefr

eq9_G2)); 
allele10d_2=(G2drones>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ba

llelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8

_G2+Ballelefreq9_G2)) & 

(G2drones<(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ballelefreq4_G2

+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8_G2+Ballelefr

eq9_G2+Ballelefreq10_G2)); 
allele11d_2=(G2drones>=(Ballelefreq1_G2+Ballelefreq2_G2+Ballelefreq3_G2+Ba

llelefreq4_G2+Ballelefreq5_G2+Ballelefreq6_G2+Ballelefreq7_G2+Ballelefreq8

_G2+Ballelefreq9_G2+Ballelefreq10_G2)) & (G2drones<1); 

  
count_allele1d_2=sum(allele1d_2) ; 
count_allele2d_2=sum(allele2d_2) ; 
count_allele3d_2=sum(allele3d_2) ; 
count_allele4d_2=sum(allele4d_2) ; 
count_allele5d_2=sum(allele5d_2) ; 
count_allele6d_2=sum(allele6d_2) ; 
count_allele7d_2=sum(allele7d_2) ; 
count_allele8d_2=sum(allele8d_2) ; 
count_allele9d_2=sum(allele9d_2) ; 
count_allele10d_2=sum(allele10d_2) ; 
count_allele11d_2=sum(allele11d_2) ; 

  
freqallele1d_G2=sum(count_allele1d_2)/(nqueens*nodrones); 
freqallele2d_G2=sum(count_allele2d_2)/(nqueens*nodrones); 
freqallele3d_G2=sum(count_allele3d_2)/(nqueens*nodrones); 
freqallele4d_G2=sum(count_allele4d_2)/(nqueens*nodrones); 
freqallele5d_G2=sum(count_allele5d_2)/(nqueens*nodrones); 
freqallele6d_G2=sum(count_allele6d_2)/(nqueens*nodrones); 
freqallele7d_G2=sum(count_allele7d_2)/(nqueens*nodrones); 
freqallele8d_G2=sum(count_allele8d_2)/(nqueens*nodrones); 
freqallele9d_G2=sum(count_allele9d_2)/(nqueens*nodrones); 
freqallele10d_G2=sum(count_allele10d_2)/(nqueens*nodrones); 
freqallele11d_G2=sum(count_allele11d_2)/(nqueens*nodrones); 

  

  

  

  
%SELECT BREEDERS FROM THE G2 DISTRIBUTION 
DistG2=rand(nqueens,2) ; 
Breeders3=datasample(DistG2,nobreeders3) ; 

  
allele1q_b3_mat1=(Breeders3>0) & (Breeders3<freqallele1_G2) ; 
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allele2q_b3_mat1=(Breeders3>=freqallele1_G2) & 

(Breeders3<(freqallele1_G2+freqallele2_G2)) ; 
allele3q_b3_mat1=(Breeders3>=(freqallele1_G2+freqallele2_G2)) & 

(Breeders3<(freqallele1_G2+freqallele2_G2+freqallele3_G2)) ; 
allele4q_b3_mat1=(Breeders3>=(freqallele1_G2+freqallele2_G2+freqallele3_G2

)) & 

(Breeders3<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2)) 

; 
allele5q_b3_mat1=(Breeders3>=(freqallele1_G2+freqallele2_G2+freqallele3_G2

+freqallele4_G2)) & 

(Breeders3<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+fr

eqallele5_G2)) ; 
allele6q_b3_mat1=(Breeders3>=(freqallele1_G2+freqallele2_G2+freqallele3_G2

+freqallele4_G2+freqallele5_G2)) & 

(Breeders3<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+fr

eqallele5_G2+freqallele6_G2)) ; 
allele7q_b3_mat1=(Breeders3>=(freqallele1_G2+freqallele2_G2+freqallele3_G2

+freqallele4_G2+freqallele5_G2+freqallele6_G2)) & 

(Breeders3<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+fr

eqallele5_G2+freqallele6_G2+freqallele7_G2)) ; 
allele8q_b3_mat1=(Breeders3>=(freqallele1_G2+freqallele2_G2+freqallele3_G2

+freqallele4_G2+freqallele5_G2+freqallele6_G2+freqallele7_G2)) & 

(Breeders3<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+fr

eqallele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G2)) ; 
allele9q_b3_mat1=(Breeders3>=(freqallele1_G2+freqallele2_G2+freqallele3_G2

+freqallele4_G2+freqallele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G

2)) & 

(Breeders3<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+fr

eqallele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G2+freqallele9_G2)) 

; 
allele10q_b3_mat1=(Breeders3>=(freqallele1_G2+freqallele2_G2+freqallele3_G

2+freqallele4_G2+freqallele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_

G2+freqallele9_G2)) & 

(Breeders3<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+fr

eqallele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G2+freqallele9_G2+f

reqallele10_G2)) ; 
allele11q_b3_mat1=(Breeders3>=(freqallele1_G2+freqallele2_G2+freqallele3_G

2+freqallele4_G2+freqallele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_

G2+freqallele9_G2+freqallele10_G2)) & (Breeders3<1) ; 

  
allele1q_b3_mat1(all(allele1q_b3_mat1==1,2),:)=[]; 
allele2q_b3_mat1(all(allele2q_b3_mat1==1,2),:)=[]; 
allele3q_b3_mat1(all(allele3q_b3_mat1==1,2),:)=[]; 
allele4q_b3_mat1(all(allele4q_b3_mat1==1,2),:)=[]; 
allele5q_b3_mat1(all(allele5q_b3_mat1==1,2),:)=[]; 
allele6q_b3_mat1(all(allele6q_b3_mat1==1,2),:)=[]; 
allele7q_b3_mat1(all(allele7q_b3_mat1==1,2),:)=[]; 
allele8q_b3_mat1(all(allele8q_b2_mat1==1,2),:)=[]; 
allele9q_b3_mat1(all(allele9q_b3_mat1==1,2),:)=[]; 
allele10q_b3_mat1(all(allele10q_b3_mat1==1,2),:)=[]; 
allele11q_b3_mat1(all(allele11q_b2_mat1==1,2),:)=[]; 

  
rows1=nobreeders3-length(allele1q_b3_mat1(:,1)); 
rows2=nobreeders3-length(allele2q_b3_mat1(:,1)); 
rows3=nobreeders3-length(allele3q_b3_mat1(:,1)); 
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rows4=nobreeders3-length(allele4q_b3_mat1(:,1)); 
rows5=nobreeders3-length(allele5q_b3_mat1(:,1)); 
rows6=nobreeders3-length(allele6q_b3_mat1(:,1)); 
rows7=nobreeders3-length(allele7q_b3_mat1(:,1)); 
rows8=nobreeders3-length(allele8q_b3_mat1(:,1)); 
rows9=nobreeders3-length(allele6q_b3_mat1(:,1)); 
rows10=nobreeders3-length(allele7q_b3_mat1(:,1)); 
rows11=nobreeders3-length(allele8q_b3_mat1(:,1)); 
totalrowsb1=(rows1+rows2+rows3+rows4+rows5+rows6+rows7+rows8+rows9+rows10+

rows11); 

  
count_allele1q_b3_mat1=sum(allele1q_b3_mat1); 
count_allele2q_b3_mat1=sum(allele2q_b3_mat1); 
count_allele3q_b3_mat1=sum(allele3q_b3_mat1); 
count_allele4q_b3_mat1=sum(allele4q_b3_mat1); 
count_allele5q_b3_mat1=sum(allele5q_b3_mat1); 
count_allele6q_b3_mat1=sum(allele6q_b3_mat1); 
count_allele7q_b3_mat1=sum(allele7q_b3_mat1); 
count_allele8q_b3_mat1=sum(allele8q_b3_mat1); 
count_allele9q_b3_mat1=sum(allele9q_b3_mat1); 
count_allele10q_b3_mat1=sum(allele10q_b3_mat1); 
count_allele11q_b3_mat1=sum(allele11q_b3_mat1); 

  
freqallele1q_b3_mat1=sum(count_allele1q_b3_mat1)/(nobreeders3*2); 
freqallele2q_b3_mat1=sum(count_allele2q_b3_mat1)/(nobreeders3*2); 
freqallele3q_b3_mat1=sum(count_allele3q_b3_mat1)/(nobreeders3*2); 
freqallele4q_b3_mat1=sum(count_allele4q_b3_mat1)/(nobreeders3*2); 
freqallele5q_b3_mat1=sum(count_allele5q_b3_mat1)/(nobreeders3*2); 
freqallele6q_b3_mat1=sum(count_allele6q_b3_mat1)/(nobreeders3*2); 
freqallele7q_b3_mat1=sum(count_allele7q_b3_mat1)/(nobreeders3*2); 
freqallele8q_b3_mat1=sum(count_allele8q_b3_mat1)/(nobreeders3*2); 
freqallele9q_b3_mat1=sum(count_allele9q_b3_mat1)/(nobreeders3*2); 
freqallele10q_b3_mat1=sum(count_allele10q_b3_mat1)/(nobreeders3*2); 
freqallele11q_b3_mat1=sum(count_allele11q_b3_mat1)/(nobreeders3*2); 

  
dist1=rand(totalrowsb1,2) ; 

  
allele1q_b3_mat2=(dist1>0) & (dist1<freqallele1_G2) ; 
allele2q_b3_mat2=(dist1>=freqallele1_G2) & 

(dist1<(freqallele1_G2+freqallele2_G2)) ; 
allele3q_b3_mat2=(dist1>=(freqallele1_G2+freqallele2_G2)) & 

(dist1<(freqallele1_G2+freqallele2_G2+freqallele3_G2)) ; 
allele4q_b3_mat2=(dist1>=(freqallele1_G2+freqallele2_G2+freqallele3_G2)) & 

(dist1<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2)) ; 
allele5q_b3_mat2=(dist1>=(freqallele1_G2+freqallele2_G2+freqallele3_G2+fre

qallele4_G2)) & 

(dist1<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+freqal

lele5_G2)) ; 
allele6q_b3_mat2=(dist1>=(freqallele1_G2+freqallele2_G2+freqallele3_G2+fre

qallele4_G2+freqallele5_G2)) & 

(dist1<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+freqal

lele5_G2+freqallele6_G2)) ; 
allele7q_b3_mat2=(dist1>=(freqallele1_G2+freqallele2_G2+freqallele3_G2+fre

qallele4_G2+freqallele5_G2+freqallele6_G2)) & 
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(dist1<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+freqal

lele5_G2+freqallele6_G2+freqallele7_G2)) ; 
allele8q_b3_mat2=(dist1>=(freqallele1_G2+freqallele2_G2+freqallele3_G2+fre

qallele4_G2+freqallele5_G2+freqallele6_G2+freqallele7_G2)) & 

(dist1<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+freqal

lele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G2)) ; 
allele9q_b3_mat2=(dist1>=(freqallele1_G2+freqallele2_G2+freqallele3_G2+fre

qallele4_G2+freqallele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G2)) 

& 

(dist1<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+freqal

lele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G2+freqallele9_G2)) ; 
allele10q_b3_mat2=(dist1>=(freqallele1_G2+freqallele2_G2+freqallele3_G2+fr

eqallele4_G2+freqallele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G2+f

reqallele9_G2)) & 

(dist1<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+freqal

lele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G2+freqallele9_G2+freqa

llele10_G2)) ; 
allele11q_b3_mat2=(dist1>=(freqallele1_G2+freqallele2_G2+freqallele3_G2+fr

eqallele4_G2+freqallele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G2+f

reqallele9_G2+freqallele10_G2)) & (dist1<1) ; 

  
allele1q_b3_mat2(all(allele1q_b3_mat2==1,2),:)=[] ; 
allele2q_b3_mat2(all(allele2q_b3_mat2==1,2),:)=[] ; 
allele3q_b3_mat2(all(allele3q_b3_mat2==1,2),:)=[] ; 
allele4q_b3_mat2(all(allele4q_b3_mat2==1,2),:)=[] ; 
allele5q_b3_mat2(all(allele5q_b3_mat2==1,2),:)=[] ; 
allele6q_b3_mat2(all(allele6q_b3_mat2==1,2),:)=[] ; 
allele7q_b3_mat2(all(allele7q_b3_mat2==1,2),:)=[] ; 
allele8q_b3_mat2(all(allele8q_b3_mat2==1,2),:)=[] ; 
allele9q_b3_mat2(all(allele8q_b3_mat2==1,2),:)=[] ; 
allele10q_b3_mat2(all(allele10q_b3_mat2==1,2),:)=[] ; 
allele11q_b3_mat2(all(allele11q_b3_mat2==1,2),:)=[] ; 

  
rows12=totalrowsb1-length(allele1q_b3_mat2(:,1)) ; 
rows13=totalrowsb1-length(allele2q_b3_mat2(:,1)) ; 
rows14=totalrowsb1-length(allele3q_b3_mat2(:,1));  
rows15=totalrowsb1-length(allele4q_b3_mat2(:,1));  
rows16=totalrowsb1-length(allele5q_b3_mat2(:,1)) ; 
rows17=totalrowsb1-length(allele6q_b3_mat2(:,1)) ; 
rows18=totalrowsb1-length(allele7q_b3_mat2(:,1)) ; 
rows19=totalrowsb1-length(allele8q_b3_mat2(:,1)) ; 
rows20=totalrowsb1-length(allele9q_b3_mat2(:,1)) ; 
rows21=totalrowsb1-length(allele10q_b3_mat2(:,1)) ; 
rows22=totalrowsb1-length(allele11q_b3_mat2(:,1)) ; 

  
totalrowsb2=(rows12+rows13+rows14+rows15+rows16+rows17+rows18+rows19+rows2

0+rows21+rows22); 

  
count_allele1q_b3_mat2=sum(allele1q_b3_mat2) ; 
count_allele2q_b3_mat2=sum(allele2q_b3_mat2) ; 
count_allele3q_b3_mat2=sum(allele3q_b3_mat2) ; 
count_allele4q_b3_mat2=sum(allele4q_b3_mat2) ; 
count_allele5q_b3_mat2=sum(allele5q_b3_mat2) ; 
count_allele6q_b3_mat2=sum(allele6q_b3_mat2) ; 
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count_allele7q_b3_mat2=sum(allele7q_b3_mat2) ; 
count_allele8q_b3_mat2=sum(allele8q_b3_mat2) ; 
count_allele9q_b3_mat2=sum(allele9q_b3_mat2) ; 
count_allele10q_b3_mat2=sum(allele10q_b3_mat2) ; 
count_allele11q_b3_mat2=sum(allele11q_b3_mat2) ; 

  
freqallele1q_b3_mat2=sum(count_allele1q_b3_mat2)/(nobreeders3*2) ; 
freqallele2q_b3_mat2=sum(count_allele2q_b3_mat2)/(nobreeders3*2) ; 
freqallele3q_b3_mat2=sum(count_allele3q_b3_mat2)/(nobreeders3*2) ; 
freqallele4q_b3_mat2=sum(count_allele4q_b3_mat2)/(nobreeders3*2) ; 
freqallele5q_b3_mat2=sum(count_allele5q_b3_mat2)/(nobreeders3*2) ; 
freqallele6q_b3_mat2=sum(count_allele6q_b3_mat2)/(nobreeders3*2) ; 
freqallele7q_b3_mat2=sum(count_allele7q_b3_mat2)/(nobreeders3*2) ; 
freqallele8q_b3_mat2=sum(count_allele8q_b3_mat2)/(nobreeders3*2) ; 
freqallele9q_b3_mat2=sum(count_allele9q_b3_mat2)/(nobreeders3*2) ; 
freqallele10q_b3_mat2=sum(count_allele10q_b3_mat2)/(nobreeders3*2) ; 
freqallele11q_b3_mat2=sum(count_allele11q_b3_mat2)/(nobreeders3*2) ; 

  
dist2=rand(totalrowsb2,2) ; 

  
allele1q_b3_mat3=(dist2>0) & (dist2<freqallele1_G2) ; 
allele2q_b3_mat3=(dist2>=freqallele1_G2) & 

(dist2<(freqallele1_G2+freqallele2_G2)) ; 
allele3q_b3_mat3=(dist2>=(freqallele1_G2+freqallele2_G2)) & 

(dist2<(freqallele1_G2+freqallele2_G2+freqallele3_G2)) ; 
allele4q_b3_mat3=(dist2>=(freqallele1_G2+freqallele2_G2+freqallele3_G2)) & 

(dist2<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2)) ; 
allele5q_b3_mat3=(dist2>=(freqallele1_G2+freqallele2_G2+freqallele3_G2+fre

qallele4_G2)) & 

(dist2<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+freqal

lele5_G2)) ; 
allele6q_b3_mat3=(dist2>=(freqallele1_G2+freqallele2_G2+freqallele3_G2+fre

qallele4_G2+freqallele5_G2)) & 

(dist2<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+freqal

lele5_G2+freqallele6_G2)) ; 
allele7q_b3_mat3=(dist2>=(freqallele1_G2+freqallele2_G2+freqallele3_G2+fre

qallele4_G2+freqallele5_G2+freqallele6_G2)) & 

(dist2<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+freqal

lele5_G2+freqallele6_G2+freqallele7_G2)) ; 
allele8q_b3_mat3=(dist2>=(freqallele1_G2+freqallele2_G2+freqallele3_G2+fre

qallele4_G2+freqallele5_G2+freqallele6_G2+freqallele7_G2)) & 

(dist2<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+freqal

lele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G2)) ; 
allele9q_b3_mat3=(dist2>=(freqallele1_G2+freqallele2_G2+freqallele3_G2+fre

qallele4_G2+freqallele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G2)) 

& 

(dist2<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+freqal

lele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G2+freqallele9_G2)) ; 
allele10q_b3_mat3=(dist2>=(freqallele1_G2+freqallele2_G2+freqallele3_G2+fr

eqallele4_G2+freqallele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G2+f

reqallele9_G2)) & 

(dist2<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+freqal

lele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G2+freqallele9_G2+freqa

llele10_G2)) ; 
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allele11q_b3_mat3=(dist2>=(freqallele1_G2+freqallele2_G2+freqallele3_G2+fr

eqallele4_G2+freqallele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G2+f

reqallele9_G2+freqallele10_G2)) & (dist2<1) ; 

  
allele1q_b3_mat3(all(allele1q_b3_mat3==1,2),:)=[] ; 
allele2q_b3_mat3(all(allele2q_b3_mat3==1,2),:)=[] ; 
allele3q_b3_mat3(all(allele3q_b3_mat3==1,2),:)=[] ; 
allele4q_b3_mat3(all(allele4q_b3_mat3==1,2),:)=[] ; 
allele5q_b3_mat3(all(allele5q_b3_mat3==1,2),:)=[] ; 
allele6q_b3_mat3(all(allele6q_b3_mat3==1,2),:)=[] ; 
allele7q_b3_mat3(all(allele7q_b3_mat3==1,2),:)=[] ; 
allele8q_b3_mat3(all(allele8q_b3_mat3==1,2),:)=[] ; 
allele9q_b3_mat3(all(allele6q_b3_mat3==1,2),:)=[] ; 
allele10q_b3_mat3(all(allele7q_b3_mat3==1,2),:)=[] ; 
allele11q_b3_mat3(all(allele8q_b3_mat3==1,2),:)=[] ; 

  
rows23=totalrowsb2-length(allele1q_b3_mat3(:,1)); 
rows24=totalrowsb2-length(allele2q_b3_mat3(:,1)); 
rows25=totalrowsb2-length(allele3q_b3_mat3(:,1)) ; 
rows26=totalrowsb2-length(allele4q_b3_mat3(:,1));  
rows27=totalrowsb2-length(allele5q_b3_mat3(:,1));  
rows28=totalrowsb2-length(allele6q_b3_mat3(:,1));  
rows29=totalrowsb2-length(allele7q_b3_mat3(:,1));  
rows30=totalrowsb2-length(allele8q_b3_mat3(:,1));  
rows31=totalrowsb2-length(allele9q_b3_mat3(:,1)); 
rows32=totalrowsb2-length(allele10q_b3_mat3(:,1)); 
rows33=totalrowsb2-length(allele11q_b3_mat3(:,1)); 

  
totalrowsb3=(rows23+rows24+rows25+rows26+rows27+rows28+rows29+rows30+rows3

1+rows32+rows33); 

  
count_allele1q_b3_mat3=sum(allele1q_b3_mat3) ; 
count_allele2q_b3_mat3=sum(allele2q_b3_mat3); 
count_allele3q_b3_mat3=sum(allele3q_b3_mat3);  
count_allele4q_b3_mat3=sum(allele4q_b3_mat3);  
count_allele5q_b3_mat3=sum(allele5q_b3_mat3) ; 
count_allele6q_b3_mat3=sum(allele6q_b3_mat3) ; 
count_allele7q_b3_mat3=sum(allele7q_b3_mat3) ; 
count_allele8q_b3_mat3=sum(allele8q_b3_mat3) ; 
count_allele9q_b3_mat3=sum(allele9q_b3_mat3) ; 
count_allele10q_b3_mat3=sum(allele10q_b3_mat3) ; 
count_allele11q_b3_mat3=sum(allele11q_b3_mat3) ; 

  
freqallele1q_b3_mat3=sum(count_allele1q_b3_mat3)/(nobreeders3*2) ; 
freqallele2q_b3_mat3=sum(count_allele2q_b3_mat3)/(nobreeders3*2) ; 
freqallele3q_b3_mat3=sum(count_allele3q_b3_mat3)/(nobreeders3*2) ; 
freqallele4q_b3_mat3=sum(count_allele4q_b3_mat3)/(nobreeders3*2) ; 
freqallele5q_b3_mat3=sum(count_allele5q_b3_mat3)/(nobreeders3*2) ; 
freqallele6q_b3_mat3=sum(count_allele6q_b3_mat3)/(nobreeders3*2) ; 
freqallele7q_b3_mat3=sum(count_allele7q_b3_mat3)/(nobreeders3*2) ; 
freqallele8q_b3_mat3=sum(count_allele8q_b3_mat3)/(nobreeders3*2) ; 
freqallele9q_b3_mat3=sum(count_allele9q_b3_mat3)/(nobreeders3*2) ; 
freqallele10q_b3_mat3=sum(count_allele10q_b3_mat3)/(nobreeders3*2) ; 
freqallele11q_b3_mat3=sum(count_allele11q_b3_mat3)/(nobreeders3*2) ; 
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dist3=rand(totalrowsb3,2) ; 

  
allele1q_b3_mat4=(dist3>0) & (dist3<freqallele1_G2) ; 
allele2q_b3_mat4=(dist3>=freqallele1_G2) & 

(dist3<(freqallele1_G2+freqallele2_G2)) ; 
allele3q_b3_mat4=(dist3>=(freqallele1_G2+freqallele2_G2)) & 

(dist3<(freqallele1_G2+freqallele2_G2+freqallele3_G2)) ; 
allele4q_b3_mat4=(dist3>=(freqallele1_G2+freqallele2_G2+freqallele3_G2)) & 

(dist3<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2)) ; 
allele5q_b3_mat4=(dist3>=(freqallele1_G2+freqallele2_G2+freqallele3_G2+fre

qallele4_G2)) & 

(dist3<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+freqal

lele5_G2)) ; 
allele6q_b3_mat4=(dist3>=(freqallele1_G2+freqallele2_G2+freqallele3_G2+fre

qallele4_G2+freqallele5_G2)) & 

(dist3<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+freqal

lele5_G2+freqallele6_G2)) ; 
allele7q_b3_mat4=(dist3>=(freqallele1_G2+freqallele2_G2+freqallele3_G2+fre

qallele4_G2+freqallele5_G2+freqallele6_G2)) & 

(dist3<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+freqal

lele5_G2+freqallele6_G2+freqallele7_G2)) ; 
allele8q_b3_mat4=(dist3>=(freqallele1_G2+freqallele2_G2+freqallele3_G2+fre

qallele4_G2+freqallele5_G2+freqallele6_G2+freqallele7_G2)) & 

(dist3<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+freqal

lele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G2)) ; 
allele9q_b3_mat4=(dist3>=(freqallele1_G2+freqallele2_G2+freqallele3_G2+fre

qallele4_G2+freqallele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G2)) 

& 

(dist3<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+freqal

lele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G2+freqallele9_G2)) ; 
allele10q_b3_mat4=(dist3>=(freqallele1_G2+freqallele2_G2+freqallele3_G2+fr

eqallele4_G2+freqallele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G2+f

reqallele9_G2)) & 

(dist3<(freqallele1_G2+freqallele2_G2+freqallele3_G2+freqallele4_G2+freqal

lele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G2+freqallele9_G2+freqa

llele10_G2)) ; 
allele11q_b3_mat4=(dist3>=(freqallele1_G2+freqallele2_G2+freqallele3_G2+fr

eqallele4_G2+freqallele5_G2+freqallele6_G2+freqallele7_G2+freqallele8_G2+f

reqallele9_G2+freqallele10_G2)) & (dist3<1) ; 

  
allele1q_b3_mat4(all(allele1q_b3_mat4==1,2),:)=[];  
allele2q_b3_mat4(all(allele2q_b3_mat4==1,2),:)=[];  
allele3q_b3_mat4(all(allele3q_b3_mat4==1,2),:)=[];  
allele4q_b3_mat4(all(allele4q_b3_mat4==1,2),:)=[];  
allele5q_b3_mat4(all(allele5q_b3_mat4==1,2),:)=[];  
allele6q_b3_mat4(all(allele6q_b3_mat4==1,2),:)=[];  
allele7q_b3_mat4(all(allele7q_b3_mat4==1,2),:)=[]; 
allele8q_b3_mat4(all(allele8q_b3_mat4==1,2),:)=[];  
allele9q_b3_mat4(all(allele9q_b3_mat4==1,2),:)=[];  
allele10q_b3_mat4(all(allele10q_b3_mat4==1,2),:)=[]; 
allele11q_b3_mat4(all(allele11q_b3_mat4==1,2),:)=[];  

  
rows34=totalrowsb3-length(allele1q_b3_mat4(:,1)) ; 
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rows35=totalrowsb3-length(allele2q_b3_mat4(:,1)) ; 
rows36=totalrowsb3-length(allele3q_b3_mat4(:,1)) ; 
rows37=totalrowsb3-length(allele4q_b3_mat4(:,1)) ; 
rows38=totalrowsb3-length(allele5q_b3_mat4(:,1)) ; 
rows39=totalrowsb3-length(allele6q_b3_mat4(:,1)) ; 
rows40=totalrowsb3-length(allele7q_b3_mat4(:,1)) ; 
rows41=totalrowsb3-length(allele8q_b3_mat4(:,1));  
rows42=totalrowsb3-length(allele9q_b3_mat4(:,1)) ; 
rows43=totalrowsb3-length(allele10q_b3_mat4(:,1)) ; 
rows44=totalrowsb3-length(allele11q_b3_mat4(:,1));  

  
totalrowsb4=(rows34+rows35+rows36+rows37+rows38+rows39+rows40+rows41+rows4

2+rows43+rows44); 

  
count_allele1q_b3_mat4=sum(allele1q_b3_mat4) ; 
count_allele2q_b3_mat4=sum(allele2q_b3_mat4) ; 
count_allele3q_b3_mat4=sum(allele3q_b3_mat4) ; 
count_allele4q_b3_mat4=sum(allele4q_b3_mat4) ; 
count_allele5q_b3_mat4=sum(allele5q_b3_mat4) ; 
count_allele6q_b3_mat4=sum(allele6q_b3_mat4) ; 
count_allele7q_b3_mat4=sum(allele7q_b3_mat4) ; 
count_allele8q_b3_mat4=sum(allele8q_b3_mat4) ; 
count_allele9q_b3_mat4=sum(allele9q_b3_mat4) ; 
count_allele10q_b3_mat4=sum(allele10q_b3_mat4) ; 
count_allele11q_b3_mat4=sum(allele11q_b3_mat4) ; 

  
freqallele1q_b3_mat4=sum(count_allele1q_b3_mat4)/(nobreeders3*2);  
freqallele2q_b3_mat4=sum(count_allele2q_b3_mat4)/(nobreeders3*2);  
freqallele3q_b3_mat4=sum(count_allele3q_b3_mat4)/(nobreeders3*2) ; 
freqallele4q_b3_mat4=sum(count_allele4q_b3_mat4)/(nobreeders3*2) ; 
freqallele5q_b3_mat4=sum(count_allele5q_b3_mat4)/(nobreeders3*2) ; 
freqallele6q_b3_mat4=sum(count_allele6q_b3_mat4)/(nobreeders3*2) ; 
freqallele7q_b3_mat4=sum(count_allele7q_b3_mat4)/(nobreeders3*2) ; 
freqallele8q_b3_mat4=sum(count_allele8q_b3_mat4)/(nobreeders3*2) ; 
freqallele9q_b3_mat4=sum(count_allele9q_b3_mat4)/(nobreeders3*2) ; 
freqallele10q_b3_mat4=sum(count_allele10q_b3_mat4)/(nobreeders3*2) ; 
freqallele11q_b3_mat4=sum(count_allele11q_b3_mat4)/(nobreeders3*2) ; 

  
freqallele1q_b3=freqallele1q_b3_mat1+freqallele1q_b3_mat2+freqallele1q_b3_

mat3+freqallele1q_b3_mat4; 
freqallele2q_b3=freqallele2q_b3_mat1+freqallele2q_b3_mat2+freqallele2q_b3_

mat3+freqallele2q_b3_mat4 ; 
freqallele3q_b3=freqallele3q_b3_mat1+freqallele3q_b3_mat2+freqallele3q_b3_

mat3+freqallele3q_b3_mat4 ; 
freqallele4q_b3=freqallele4q_b3_mat1+freqallele4q_b3_mat2+freqallele4q_b3_

mat3+freqallele4q_b3_mat4 ; 
freqallele5q_b3=freqallele5q_b3_mat1+freqallele5q_b3_mat2+freqallele5q_b3_

mat3+freqallele6q_b3_mat4 ; 
freqallele6q_b3=freqallele6q_b3_mat1+freqallele6q_b3_mat2+freqallele6q_b3_

mat3+freqallele7q_b3_mat4 ; 
freqallele7q_b3=freqallele7q_b3_mat1+freqallele7q_b3_mat2+freqallele7q_b3_

mat3+freqallele7q_b3_mat4; 
freqallele8q_b3=freqallele8q_b3_mat1+freqallele8q_b3_mat2+freqallele8q_b3_

mat3+freqallele8q_b3_mat4 ; 
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freqallele9q_b3=freqallele9q_b3_mat1+freqallele9q_b3_mat2+freqallele9q_b3_

mat3+freqallele9q_b3_mat4 ; 
freqallele10q_b3=freqallele10q_b3_mat1+freqallele10q_b3_mat2+freqallele10q

_b3_mat3+freqallele10q_b3_mat4; 
freqallele11q_b3=freqallele11q_b3_mat1+freqallele11q_b3_mat2+freqallele11q

_b3_mat3+freqallele11q_b3_mat4 ; 

  

  
%Frequency of breeder contributions to next generation includes the drones 
%they mate with  

  
%These (this) queen genotype(s) had mated with (n) drones in last 

generation 
%Hence breeder contribution is  

  
Ballelefreq1_G3=(2*freqallele1q_b3+freqallele1d_G2)/3; 
Ballelefreq2_G3=(2*freqallele2q_b3+freqallele2d_G2)/3; 
Ballelefreq3_G3=(2*freqallele3q_b3+freqallele3d_G2)/3; 
Ballelefreq4_G3=(2*freqallele4q_b3+freqallele4d_G2)/3; 
Ballelefreq5_G3=(2*freqallele5q_b3+freqallele5d_G2)/3; 
Ballelefreq6_G3=(2*freqallele6q_b3+freqallele6d_G2)/3; 
Ballelefreq7_G3=(2*freqallele7q_b3+freqallele7d_G2)/3; 
Ballelefreq8_G3=(2*freqallele8q_b3+freqallele8d_G2)/3; 
Ballelefreq9_G3=(2*freqallele9q_b3+freqallele9d_G2)/3; 
Ballelefreq10_G3=(2*freqallele10q_b3+freqallele10d_G2)/3; 
Ballelefreq11_G3=(2*freqallele11q_b3+freqallele11d_G2)/3; 
%NOW USE ABOVE DISTRIBUTION TO GENERATE 100 QUEEN FREQUENY DIST. AND 
%COMBINE WITH DRONE FREQUENCIES FROM BREEDERs 2 TO CREATE G3 DIST 

  
DistGen3Q=rand(nqueens,2); 

  
allele1q_G3_mat1=(DistGen3Q>0) & (DistGen3Q<Ballelefreq1_G3); 
allele2q_G3_mat1=(DistGen3Q>=Ballelefreq1_G3) & 

(DistGen3Q<(Ballelefreq1_G3+Ballelefreq2_G3)); 
allele3q_G3_mat1=(DistGen3Q>=(Ballelefreq1_G3+Ballelefreq2_G3)) & 

(DistGen3Q<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3)); 
allele4q_G3_mat1=(DistGen3Q>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3

_G3)) & 

(DistGen3Q<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4_G

3)); 
allele5q_G3_mat1=(DistGen3Q>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3

_G3+Ballelefreq4_G3)) & 

(DistGen3Q<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4_G

3+Ballelefreq5_G3)); 
allele6q_G3_mat1=(DistGen3Q>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3

_G3+Ballelefreq4_G3+Ballelefreq5_G3)) & 

(DistGen3Q<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4_G

3+Ballelefreq5_G3+Ballelefreq6_G3)); 
allele7q_G3_mat1=(DistGen3Q>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3

_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3)) & 

(DistGen3Q<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4_G

3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3)); 
allele8q_G3_mat1=(DistGen3Q>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3

_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3)) & 
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(DistGen3Q<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4_G

3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq8_G3)); 
allele9q_G3_mat1=(DistGen3Q>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3

_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballel

efreq8_G3)) & 

(DistGen3Q<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4_G

3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq8_G3+Ballelef

req9_G3)); 
allele10q_G3_mat1=(DistGen3Q>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq

3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Balle

lefreq8_G3+Ballelefreq9_G3)) & 

(DistGen3Q<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4_G

3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq8_G3+Ballelef

req9_G3+Ballelefreq10_G3)); 
allele11q_G3_mat1=(DistGen3Q>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq

3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Balle

lefreq8_G3+Ballelefreq9_G3+Ballelefreq10_G3)) & (DistGen3Q<1); 

  
allele1q_G3_mat1(all(allele1q_G3_mat1==1,2),:)=[] ; 
allele2q_G3_mat1(all(allele2q_G3_mat1==1,2),:)=[] ; 
allele3q_G3_mat1(all(allele3q_G3_mat1==1,2),:)=[] ; 
allele4q_G3_mat1(all(allele4q_G3_mat1==1,2),:)=[] ; 
allele5q_G3_mat1(all(allele5q_G3_mat1==1,2),:)=[] ; 
allele6q_G3_mat1(all(allele6q_G3_mat1==1,2),:)=[] ; 
allele7q_G3_mat1(all(allele7q_G3_mat1==1,2),:)=[] ; 
allele8q_G3_mat1(all(allele8q_G3_mat1==1,2),:)=[] ; 
allele9q_G3_mat1(all(allele9q_G3_mat1==1,2),:)=[] ; 
allele10q_G3_mat1(all(allele10q_G3_mat1==1,2),:)=[] ; 
allele11q_G3_mat1(all(allele11q_G3_mat1==1,2),:)=[] ; 

  
rows1=nqueens-length(allele1q_G3_mat1(:,1)) ; 
rows2=nqueens-length(allele2q_G3_mat1(:,1)) ; 
rows3=nqueens-length(allele3q_G3_mat1(:,1)) ; 
rows4=nqueens-length(allele4q_G3_mat1(:,1)) ; 
rows5=nqueens-length(allele5q_G3_mat1(:,1)) ; 
rows6=nqueens-length(allele6q_G3_mat1(:,1)) ; 
rows7=nqueens-length(allele7q_G3_mat1(:,1)) ; 
rows8=nqueens-length(allele8q_G3_mat1(:,1))  ; 
rows9=nqueens-length(allele9q_G3_mat1(:,1)) ; 
rows10=nqueens-length(allele10q_G3_mat1(:,1)) ; 
rows11=nqueens-length(allele11q_G3_mat1(:,1))  ; 

  
totalrows=(rows1+rows2+rows3+rows4+rows5+rows6+rows7+rows8+rows9+rows10+ro

ws11); 

  
count_allele1q_G3_mat1=sum(allele1q_G3_mat1) ; 
count_allele2q_G3_mat1=sum(allele2q_G3_mat1) ; 
count_allele3q_G3_mat1=sum(allele3q_G3_mat1) ; 
count_allele4q_G3_mat1=sum(allele4q_G3_mat1) ; 
count_allele5q_G3_mat1=sum(allele5q_G3_mat1) ; 
count_allele6q_G3_mat1=sum(allele6q_G3_mat1) ; 
count_allele7q_G3_mat1=sum(allele7q_G3_mat1) ; 
count_allele8q_G3_mat1=sum(allele8q_G3_mat1) ; 
count_allele9q_G3_mat1=sum(allele9q_G3_mat1) ; 
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count_allele10q_G3_mat1=sum(allele10q_G3_mat1) ; 
count_allele11q_G3_mat1=sum(allele11q_G3_mat1) ; 

  
freqallele1q_G3_mat1=sum(count_allele1q_G3_mat1)/(nqueens*2) ; 
freqallele2q_G3_mat1=sum(count_allele2q_G3_mat1)/(nqueens*2) ; 
freqallele3q_G3_mat1=sum(count_allele3q_G3_mat1)/(nqueens*2) ; 
freqallele4q_G3_mat1=sum(count_allele4q_G3_mat1)/(nqueens*2) ; 
freqallele5q_G3_mat1=sum(count_allele5q_G3_mat1)/(nqueens*2) ; 
freqallele6q_G3_mat1=sum(count_allele6q_G3_mat1)/(nqueens*2) ; 
freqallele7q_G3_mat1=sum(count_allele7q_G3_mat1)/(nqueens*2) ; 
freqallele8q_G3_mat1=sum(count_allele8q_G3_mat1)/(nqueens*2) ; 
freqallele9q_G3_mat1=sum(count_allele9q_G3_mat1)/(nqueens*2) ; 
freqallele10q_G3_mat1=sum(count_allele10q_G3_mat1)/(nqueens*2) ; 
freqallele11q_G3_mat1=sum(count_allele11q_G3_mat1)/(nqueens*2) ; 

  

  
DistGen3Q_2=rand(totalrows,2) ; 

  
allele1q_G3_mat2=(DistGen3Q_2>0) & (DistGen3Q_2<Ballelefreq1_G3); 
allele2q_G3_mat2=(DistGen3Q_2>=Ballelefreq1_G3) & 

(DistGen3Q_2<(Ballelefreq1_G3+Ballelefreq2_G3)); 
allele3q_G3_mat2=(DistGen3Q_2>=(Ballelefreq1_G3+Ballelefreq2_G3)) & 

(DistGen3Q_2<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3)); 
allele4q_G3_mat2=(DistGen3Q_2>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3)) & 

(DistGen3Q_2<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3)); 
allele5q_G3_mat2=(DistGen3Q_2>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3+Ballelefreq4_G3)) & 

(DistGen3Q_2<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3)); 
allele6q_G3_mat2=(DistGen3Q_2>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3+Ballelefreq4_G3+Ballelefreq5_G3)) & 

(DistGen3Q_2<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3+Ballelefreq6_G3)); 
allele7q_G3_mat2=(DistGen3Q_2>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3)) & 

(DistGen3Q_2<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3)); 
allele8q_G3_mat2=(DistGen3Q_2>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3)) & 

(DistGen3Q_2<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq8_G3)); 
allele9q_G3_mat2=(DistGen3Q_2>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ball

elefreq8_G3)) & 

(DistGen3Q_2<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq8_G3+Ballel

efreq9_G3)); 
allele10q_G3_mat2=(DistGen3Q_2>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefr

eq3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Bal

lelefreq8_G3+Ballelefreq9_G3)) & 

(DistGen3Q_2<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4
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_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq8_G3+Ballel

efreq9_G3+Ballelefreq10_G3)); 
allele11q_G3_mat2=(DistGen3Q_2>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefr

eq3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Bal

lelefreq8_G3+Ballelefreq9_G3+Ballelefreq10_G3)) & (DistGen3Q_2<1); 

  
allele1q_G3_mat2(all(allele1q_G3_mat2==1,2),:)=[] ; 
allele2q_G3_mat2(all(allele2q_G3_mat2==1,2),:)=[] ; 
allele3q_G3_mat2(all(allele3q_G3_mat2==1,2),:)=[] ; 
allele4q_G3_mat2(all(allele4q_G3_mat2==1,2),:)=[] ; 
allele5q_G3_mat2(all(allele5q_G3_mat2==1,2),:)=[] ; 
allele6q_G3_mat2(all(allele6q_G3_mat2==1,2),:)=[] ; 
allele7q_G3_mat2(all(allele7q_G3_mat2==1,2),:)=[] ; 
allele8q_G3_mat2(all(allele8q_G3_mat2==1,2),:)=[] ; 
allele9q_G3_mat2(all(allele9q_G3_mat2==1,2),:)=[] ; 
allele10q_G3_mat2(all(allele10q_G3_mat2==1,2),:)=[] ; 
allele11q_G3_mat2(all(allele11q_G3_mat2==1,2),:)=[] ; 

  
rows12=totalrows-length(allele1q_G3_mat2(:,1)) ; 
rows13=totalrows-length(allele2q_G3_mat2(:,1)) ; 
rows14=totalrows-length(allele3q_G3_mat2(:,1)) ; 
rows15=totalrows-length(allele4q_G3_mat2(:,1)) ; 
rows16=totalrows-length(allele5q_G3_mat2(:,1)) ; 
rows17=totalrows-length(allele6q_G3_mat2(:,1)) ; 
rows18=totalrows-length(allele7q_G3_mat2(:,1)) ; 
rows19=totalrows-length(allele8q_G3_mat2(:,1))  ; 
rows20=totalrows-length(allele9q_G3_mat2(:,1)) ; 
rows21=totalrows-length(allele10q_G3_mat2(:,1)) ; 
rows22=totalrows-length(allele11q_G3_mat2(:,1))  ; 

  
totalrows2=(rows12+rows13+rows14+rows15+rows16+rows17+rows18+rows19+rows20

+rows21+rows22); 

  
count_allele1q_G3_mat2=sum(allele1q_G3_mat2) ; 
count_allele2q_G3_mat2=sum(allele2q_G3_mat2) ; 
count_allele3q_G3_mat2=sum(allele3q_G3_mat2) ; 
count_allele4q_G3_mat2=sum(allele4q_G3_mat2) ; 
count_allele5q_G3_mat2=sum(allele5q_G3_mat2) ; 
count_allele6q_G3_mat2=sum(allele6q_G3_mat2) ; 
count_allele7q_G3_mat2=sum(allele7q_G3_mat2) ; 
count_allele8q_G3_mat2=sum(allele8q_G3_mat2) ; 
count_allele9q_G3_mat2=sum(allele9q_G3_mat2) ; 
count_allele10q_G3_mat2=sum(allele10q_G3_mat2) ; 
count_allele11q_G3_mat2=sum(allele11q_G3_mat2) ; 

  
freqallele1q_G3_mat2=sum(count_allele1q_G3_mat2)/(nqueens*2) ; 
freqallele2q_G3_mat2=sum(count_allele2q_G3_mat2)/(nqueens*2) ; 
freqallele3q_G3_mat2=sum(count_allele3q_G3_mat2)/(nqueens*2) ; 
freqallele4q_G3_mat2=sum(count_allele4q_G3_mat2)/(nqueens*2) ; 
freqallele5q_G3_mat2=sum(count_allele5q_G3_mat2)/(nqueens*2) ; 
freqallele6q_G3_mat2=sum(count_allele6q_G3_mat2)/(nqueens*2) ; 
freqallele7q_G3_mat2=sum(count_allele7q_G3_mat2)/(nqueens*2) ; 
freqallele8q_G3_mat2=sum(count_allele8q_G3_mat2)/(nqueens*2) ; 
freqallele9q_G3_mat2=sum(count_allele9q_G3_mat2)/(nqueens*2) ; 
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freqallele10q_G3_mat2=sum(count_allele10q_G3_mat2)/(nqueens*2) ; 
freqallele11q_G3_mat2=sum(count_allele11q_G3_mat2)/(nqueens*2) ; 

  
DistGen3Q_3=rand(totalrows2,2); 

  
allele1q_G3_mat3=(DistGen3Q_3>0) & (DistGen3Q_3<Ballelefreq1_G3); 
allele2q_G3_mat3=(DistGen3Q_3>=Ballelefreq1_G3) & 

(DistGen3Q_3<(Ballelefreq1_G3+Ballelefreq2_G3)); 
allele3q_G3_mat3=(DistGen3Q_3>=(Ballelefreq1_G3+Ballelefreq2_G3)) & 

(DistGen3Q_3<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3)); 
allele4q_G3_mat3=(DistGen3Q_3>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3)) & 

(DistGen3Q_3<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3)); 
allele5q_G3_mat3=(DistGen3Q_3>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3+Ballelefreq4_G3)) & 

(DistGen3Q_3<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3)); 
allele6q_G3_mat3=(DistGen3Q_3>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3+Ballelefreq4_G3+Ballelefreq5_G3)) & 

(DistGen3Q_3<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3+Ballelefreq6_G3)); 
allele7q_G3_mat3=(DistGen3Q_3>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3)) & 

(DistGen3Q_3<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3)); 
allele8q_G3_mat3=(DistGen3Q_3>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3)) & 

(DistGen3Q_3<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq8_G3)); 
allele9q_G3_mat3=(DistGen3Q_3>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ball

elefreq8_G3)) & 

(DistGen3Q_3<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq8_G3+Ballel

efreq9_G3)); 
allele10q_G3_mat3=(DistGen3Q_3>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefr

eq3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Bal

lelefreq8_G3+Ballelefreq9_G3)) & 

(DistGen3Q_3<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq8_G3+Ballel

efreq9_G3+Ballelefreq10_G3)); 
allele11q_G3_mat3=(DistGen3Q_3>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefr

eq3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Bal

lelefreq8_G3+Ballelefreq9_G3+Ballelefreq10_G3)) & (DistGen3Q_3<1); 

  
allele1q_G3_mat3(all(allele1q_G3_mat3==1,2),:)=[] ; 
allele2q_G3_mat3(all(allele2q_G3_mat3==1,2),:)=[] ; 
allele3q_G3_mat3(all(allele3q_G3_mat3==1,2),:)=[] ; 
allele4q_G3_mat3(all(allele4q_G3_mat3==1,2),:)=[] ; 
allele5q_G3_mat3(all(allele5q_G3_mat3==1,2),:)=[] ; 
allele6q_G3_mat3(all(allele6q_G3_mat3==1,2),:)=[] ; 
allele7q_G3_mat3(all(allele7q_G3_mat3==1,2),:)=[] ; 
allele8q_G3_mat3(all(allele8q_G3_mat3==1,2),:)=[] ; 
allele9q_G3_mat3(all(allele9q_G3_mat3==1,2),:)=[] ; 



241 
 
 

allele10q_G3_mat3(all(allele10q_G3_mat3==1,2),:)=[] ; 
allele11q_G3_mat3(all(allele11q_G3_mat3==1,2),:)=[] ; 

  
rows23=totalrows2-length(allele1q_G3_mat3(:,1)) ; 
rows24=totalrows2-length(allele2q_G3_mat3(:,1)) ; 
rows25=totalrows2-length(allele3q_G3_mat3(:,1)) ; 
rows26=totalrows2-length(allele4q_G3_mat3(:,1)) ; 
rows27=totalrows2-length(allele5q_G3_mat3(:,1)) ; 
rows28=totalrows2-length(allele6q_G3_mat3(:,1)) ; 
rows29=totalrows2-length(allele7q_G3_mat3(:,1)) ; 
rows30=totalrows2-length(allele8q_G3_mat3(:,1))  ; 
rows31=totalrows2-length(allele9q_G3_mat3(:,1)) ; 
rows32=totalrows2-length(allele10q_G3_mat3(:,1)) ; 
rows33=totalrows2-length(allele11q_G3_mat3(:,1))  ; 

  
totalrows3=(rows23+rows24+rows25+rows26+rows27+rows28+rows29+rows30+rows31

+rows32+rows33); 

  
count_allele1q_G3_mat3=sum(allele1q_G3_mat3) ; 
count_allele2q_G3_mat3=sum(allele2q_G3_mat3) ; 
count_allele3q_G3_mat3=sum(allele3q_G3_mat3) ; 
count_allele4q_G3_mat3=sum(allele4q_G3_mat3) ; 
count_allele5q_G3_mat3=sum(allele5q_G3_mat3) ; 
count_allele6q_G3_mat3=sum(allele6q_G3_mat3) ; 
count_allele7q_G3_mat3=sum(allele7q_G3_mat3) ; 
count_allele8q_G3_mat3=sum(allele8q_G3_mat3) ; 
count_allele9q_G3_mat3=sum(allele9q_G3_mat3) ; 
count_allele10q_G3_mat3=sum(allele10q_G3_mat3) ; 
count_allele11q_G3_mat3=sum(allele11q_G3_mat3) ; 

  
freqallele1q_G3_mat3=sum(count_allele1q_G3_mat3)/(nqueens*2) ; 
freqallele2q_G3_mat3=sum(count_allele2q_G3_mat3)/(nqueens*2) ; 
freqallele3q_G3_mat3=sum(count_allele3q_G3_mat3)/(nqueens*2) ; 
freqallele4q_G3_mat3=sum(count_allele4q_G3_mat3)/(nqueens*2) ; 
freqallele5q_G3_mat3=sum(count_allele5q_G3_mat3)/(nqueens*2) ; 
freqallele6q_G3_mat3=sum(count_allele6q_G3_mat3)/(nqueens*2) ; 
freqallele7q_G3_mat3=sum(count_allele7q_G3_mat3)/(nqueens*2) ; 
freqallele8q_G3_mat3=sum(count_allele8q_G3_mat3)/(nqueens*2) ; 
freqallele9q_G3_mat3=sum(count_allele9q_G3_mat3)/(nqueens*2) ; 
freqallele10q_G3_mat3=sum(count_allele10q_G3_mat3)/(nqueens*2) ; 
freqallele11q_G3_mat3=sum(count_allele11q_G3_mat3)/(nqueens*2) ; 

  
DistGen3Q_4=rand(totalrows3,2) ; 

  
allele1q_G3_mat4=(DistGen3Q_4>0) & (DistGen3Q_4<Ballelefreq1_G3); 
allele2q_G3_mat4=(DistGen3Q_4>=Ballelefreq1_G3) & 

(DistGen3Q_4<(Ballelefreq1_G3+Ballelefreq2_G3)); 
allele3q_G3_mat4=(DistGen3Q_4>=(Ballelefreq1_G3+Ballelefreq2_G3)) & 

(DistGen3Q_4<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3)); 
allele4q_G3_mat4=(DistGen3Q_4>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3)) & 

(DistGen3Q_4<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3)); 



242 
 
 

allele5q_G3_mat4=(DistGen3Q_4>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3+Ballelefreq4_G3)) & 

(DistGen3Q_4<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3)); 
allele6q_G3_mat4=(DistGen3Q_4>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3+Ballelefreq4_G3+Ballelefreq5_G3)) & 

(DistGen3Q_4<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3+Ballelefreq6_G3)); 
allele7q_G3_mat4=(DistGen3Q_4>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3)) & 

(DistGen3Q_4<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3)); 
allele8q_G3_mat4=(DistGen3Q_4>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3)) & 

(DistGen3Q_4<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq8_G3)); 
allele9q_G3_mat4=(DistGen3Q_4>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ball

elefreq8_G3)) & 

(DistGen3Q_4<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq8_G3+Ballel

efreq9_G3)); 
allele10q_G3_mat4=(DistGen3Q_4>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefr

eq3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Bal

lelefreq8_G3+Ballelefreq9_G3)) & 

(DistGen3Q_4<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq8_G3+Ballel

efreq9_G3+Ballelefreq10_G3)); 
allele11q_G3_mat4=(DistGen3Q_4>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefr

eq3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Bal

lelefreq8_G3+Ballelefreq9_G3+Ballelefreq10_G3)) & (DistGen3Q_4<1); 

  
allele1q_G3_mat4(all(allele1q_G3_mat4==1,2),:)=[] ; 
allele2q_G3_mat4(all(allele2q_G3_mat4==1,2),:)=[] ; 
allele3q_G3_mat4(all(allele3q_G3_mat4==1,2),:)=[] ; 
allele4q_G3_mat4(all(allele4q_G3_mat4==1,2),:)=[] ; 
allele5q_G3_mat4(all(allele5q_G3_mat4==1,2),:)=[] ; 
allele6q_G3_mat4(all(allele6q_G3_mat4==1,2),:)=[] ; 
allele7q_G3_mat4(all(allele7q_G3_mat4==1,2),:)=[] ; 
allele8q_G3_mat4(all(allele8q_G3_mat4==1,2),:)=[] ; 
allele9q_G3_mat4(all(allele9q_G3_mat4==1,2),:)=[] ; 
allele10q_G3_mat4(all(allele10q_G3_mat4==1,2),:)=[] ; 
allele11q_G3_mat4(all(allele11q_G3_mat4==1,2),:)=[] ; 

  
rows34=totalrows3-length(allele1q_G3_mat4(:,1)) ; 
rows35=totalrows3-length(allele2q_G3_mat4(:,1)) ; 
rows36=totalrows3-length(allele3q_G3_mat4(:,1)) ; 
rows37=totalrows3-length(allele4q_G3_mat4(:,1)) ; 
rows38=totalrows3-length(allele5q_G3_mat4(:,1)) ; 
rows39=totalrows3-length(allele6q_G3_mat4(:,1)) ; 
rows40=totalrows3-length(allele7q_G3_mat4(:,1)) ; 
rows41=totalrows3-length(allele8q_G3_mat4(:,1)) ; 
rows42=totalrows3-length(allele9q_G3_mat4(:,1)) ; 
rows43=totalrows3-length(allele10q_G3_mat4(:,1)) ; 
rows44=totalrows3-length(allele11q_G3_mat4(:,1)) ; 
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totalrows4=(rows34+rows35+rows36+rows37+rows38+rows39+rows40+rows41+rows42

+rows43+rows44); 

  
count_allele1q_G3_mat4=sum(allele1q_G3_mat4) ; 
count_allele2q_G3_mat4=sum(allele2q_G3_mat4) ; 
count_allele3q_G3_mat4=sum(allele3q_G3_mat4) ; 
count_allele4q_G3_mat4=sum(allele4q_G3_mat4) ; 
count_allele5q_G3_mat4=sum(allele5q_G3_mat4) ; 
count_allele6q_G3_mat4=sum(allele6q_G3_mat4) ; 
count_allele7q_G3_mat4=sum(allele7q_G3_mat4) ; 
count_allele8q_G3_mat4=sum(allele8q_G3_mat4) ; 
count_allele9q_G3_mat4=sum(allele9q_G3_mat4) ; 
count_allele10q_G3_mat4=sum(allele10q_G3_mat4) ; 
count_allele11q_G3_mat4=sum(allele11q_G3_mat4) ; 

  
freqallele1q_G3_mat4=sum(count_allele1q_G3_mat4)/(nqueens*2) ; 
freqallele2q_G3_mat4=sum(count_allele2q_G3_mat4)/(nqueens*2) ; 
freqallele3q_G3_mat4=sum(count_allele3q_G3_mat4)/(nqueens*2) ; 
freqallele4q_G3_mat4=sum(count_allele4q_G3_mat4)/(nqueens*2) ; 
freqallele5q_G3_mat4=sum(count_allele5q_G3_mat4)/(nqueens*2) ; 
freqallele6q_G3_mat4=sum(count_allele6q_G3_mat4)/(nqueens*2) ; 
freqallele7q_G3_mat4=sum(count_allele7q_G3_mat4)/(nqueens*2) ; 
freqallele8q_G3_mat4=sum(count_allele8q_G3_mat4)/(nqueens*2) ; 
freqallele9q_G3_mat4=sum(count_allele9q_G3_mat4)/(nqueens*2) ; 
freqallele10q_G3_mat4=sum(count_allele10q_G3_mat4)/(nqueens*2) ; 
freqallele11q_G3_mat4=sum(count_allele11q_G3_mat4)/(nqueens*2) ; 

  
DistGen3Q_5=rand(totalrows4,2) ; 

  
allele1q_G3_mat5=(DistGen3Q_5>0) & (DistGen3Q_5<Ballelefreq1_G3); 
allele2q_G3_mat5=(DistGen3Q_5>=Ballelefreq1_G3) & 

(DistGen3Q_5<(Ballelefreq1_G3+Ballelefreq2_G3)); 
allele3q_G3_mat5=(DistGen3Q_5>=(Ballelefreq1_G3+Ballelefreq2_G3)) & 

(DistGen3Q_5<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3)); 
allele4q_G3_mat5=(DistGen3Q_5>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3)) & 

(DistGen3Q_5<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3)); 
allele5q_G3_mat5=(DistGen3Q_5>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3+Ballelefreq4_G3)) & 

(DistGen3Q_5<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3)); 
allele6q_G3_mat5=(DistGen3Q_5>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3+Ballelefreq4_G3+Ballelefreq5_G3)) & 

(DistGen3Q_5<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3+Ballelefreq6_G3)); 
allele7q_G3_mat5=(DistGen3Q_5>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3)) & 

(DistGen3Q_5<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3)); 
allele8q_G3_mat5=(DistGen3Q_5>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3)) & 
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(DistGen3Q_5<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq8_G3)); 
allele9q_G3_mat5=(DistGen3Q_5>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefre

q3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ball

elefreq8_G3)) & 

(DistGen3Q_5<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq8_G3+Ballel

efreq9_G3)); 
allele10q_G3_mat5=(DistGen3Q_5>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefr

eq3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Bal

lelefreq8_G3+Ballelefreq9_G3)) & 

(DistGen3Q_5<(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefreq3_G3+Ballelefreq4

_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Ballelefreq8_G3+Ballel

efreq9_G3+Ballelefreq10_G3)); 
allele11q_G3_mat5=(DistGen3Q_5>=(Ballelefreq1_G3+Ballelefreq2_G3+Ballelefr

eq3_G3+Ballelefreq4_G3+Ballelefreq5_G3+Ballelefreq6_G3+Ballelefreq7_G3+Bal

lelefreq8_G3+Ballelefreq9_G3+Ballelefreq10_G3)) & (DistGen3Q_5<1); 

  
allele1q_G3_mat5(all(allele1q_G3_mat5==1,2),:)=[] ; 
allele2q_G3_mat5(all(allele2q_G3_mat5==1,2),:)=[] ; 
allele3q_G3_mat5(all(allele3q_G3_mat5==1,2),:)=[] ; 
allele4q_G3_mat5(all(allele4q_G3_mat5==1,2),:)=[] ; 
allele5q_G3_mat5(all(allele5q_G3_mat5==1,2),:)=[] ; 
allele6q_G3_mat5(all(allele6q_G3_mat5==1,2),:)=[] ; 
allele7q_G3_mat5(all(allele7q_G3_mat5==1,2),:)=[] ; 
allele8q_G3_mat5(all(allele8q_G3_mat5==1,2),:)=[] ; 
allele9q_G3_mat5(all(allele9q_G3_mat5==1,2),:)=[] ; 
allele10q_G3_mat5(all(allele10q_G3_mat5==1,2),:)=[] ; 
allele11q_G3_mat5(all(allele11q_G3_mat5==1,2),:)=[] ; 

  
rows45=totalrows4-length(allele1q_G3_mat5(:,1)) ; 
rows46=totalrows4-length(allele2q_G3_mat5(:,1)) ; 
rows47=totalrows4-length(allele3q_G2_mat5(:,1)) ; 
rows48=totalrows4-length(allele4q_G3_mat5(:,1)) ; 
rows49=totalrows4-length(allele5q_G3_mat5(:,1)) ; 
rows50=totalrows4-length(allele6q_G3_mat5(:,1)) ; 
rows51=totalrows4-length(allele7q_G3_mat5(:,1)) ; 
rows52=totalrows4-length(allele8q_G3_mat5(:,1)) ; 
rows53=totalrows4-length(allele9q_G3_mat5(:,1)) ; 
rows54=totalrows4-length(allele10q_G3_mat5(:,1)) ; 
rows55=totalrows4-length(allele11q_G3_mat5(:,1)) ; 

  
totalrows4=(rows45+rows46+rows47+rows48+rows49+rows50+rows51+rows52+rows53

+rows54+rows55); 

  
count_allele1q_G3_mat5=sum(allele1q_G3_mat5) ; 
count_allele2q_G3_mat5=sum(allele2q_G3_mat5) ; 
count_allele3q_G3_mat5=sum(allele3q_G3_mat5) ; 
count_allele4q_G3_mat5=sum(allele4q_G3_mat5) ; 
count_allele5q_G3_mat5=sum(allele5q_G3_mat5) ; 
count_allele6q_G3_mat5=sum(allele6q_G3_mat5) ; 
count_allele7q_G3_mat5=sum(allele7q_G3_mat5) ; 
count_allele8q_G3_mat5=sum(allele8q_G3_mat5) ; 
count_allele9q_G3_mat5=sum(allele9q_G3_mat5) ; 
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count_allele10q_G3_mat5=sum(allele10q_G3_mat5) ; 
count_allele11q_G3_mat5=sum(allele11q_G3_mat5) ; 

  
freqallele1q_G3_mat5=sum(count_allele1q_G3_mat5)/(nqueens*2) ; 
freqallele2q_G3_mat5=sum(count_allele2q_G3_mat5)/(nqueens*2) ; 
freqallele3q_G3_mat5=sum(count_allele3q_G3_mat5)/(nqueens*2) ; 
freqallele4q_G3_mat5=sum(count_allele4q_G3_mat5)/(nqueens*2) ; 
freqallele5q_G3_mat5=sum(count_allele5q_G3_mat5)/(nqueens*2) ; 
freqallele6q_G3_mat5=sum(count_allele6q_G3_mat5)/(nqueens*2) ; 
freqallele7q_G3_mat5=sum(count_allele7q_G3_mat5)/(nqueens*2) ; 
freqallele8q_G3_mat5=sum(count_allele8q_G3_mat5)/(nqueens*2) ; 
freqallele9q_G3_mat5=sum(count_allele9q_G3_mat5)/(nqueens*2) ; 
freqallele10q_G3_mat5=sum(count_allele10q_G3_mat5)/(nqueens*2) ; 
freqallele11q_G3_mat5=sum(count_allele11q_G3_mat5)/(nqueens*2) ; 

  
freqallele1q_G3=freqallele1q_G3_mat1+freqallele1q_G3_mat2+freqallele1q_G3_

mat3+freqallele1q_G3_mat4+freqallele1q_G3_mat5; 
freqallele2q_G3=freqallele2q_G3_mat1+freqallele2q_G3_mat2+freqallele2q_G3_

mat3+freqallele2q_G3_mat4+freqallele2q_G3_mat5; 
freqallele3q_G3=freqallele3q_G3_mat1+freqallele3q_G3_mat2+freqallele3q_G3_

mat3+freqallele3q_G3_mat4+freqallele3q_G3_mat5; 
freqallele4q_G3=freqallele4q_G3_mat1+freqallele4q_G3_mat2+freqallele4q_G3_

mat3+freqallele4q_G3_mat4+freqallele4q_G3_mat5; 
freqallele5q_G3=freqallele5q_G3_mat1+freqallele5q_G3_mat2+freqallele5q_G3_

mat3+freqallele5q_G3_mat4+freqallele5q_G3_mat5; 
freqallele6q_G3=freqallele6q_G3_mat1+freqallele6q_G3_mat2+freqallele6q_G3_

mat3+freqallele6q_G3_mat4+freqallele6q_G3_mat5; 
freqallele7q_G3=freqallele7q_G3_mat1+freqallele7q_G3_mat2+freqallele7q_G3_

mat3+freqallele7q_G3_mat4+freqallele7q_G3_mat5; 
freqallele8q_G3=freqallele8q_G3_mat1+freqallele8q_G3_mat2+freqallele8q_G3_

mat3+freqallele8q_G3_mat4+freqallele8q_G3_mat5; 
freqallele9q_G3=freqallele9q_G3_mat1+freqallele9q_G3_mat2+freqallele9q_G3_

mat3+freqallele9q_G3_mat4+freqallele9q_G3_mat5; 
freqallele10q_G3=freqallele10q_G3_mat1+freqallele10q_G3_mat2+freqallele10q

_G3_mat3+freqallele10q_G3_mat4+freqallele10q_G3_mat5; 
freqallele11q_G3=freqallele11q_G3_mat1+freqallele11q_G3_mat2+freqallele11q

_G3_mat3+freqallele11q_G3_mat4+freqallele11q_G3_mat5; 

  

  
freqallele1_G3=(2*freqallele1q_G3+freqallele1d_G2)/3 
freqallele2_G3=(2*freqallele2q_G3+freqallele2d_G2)/3 
freqallele3_G3=(2*freqallele3q_G3+freqallele3d_G2)/3 
freqallele4_G3=(2*freqallele4q_G3+freqallele4d_G2)/3 
freqallele5_G3=(2*freqallele5q_G3+freqallele5d_G2)/3 
freqallele6_G3=(2*freqallele6q_G3+freqallele6d_G2)/3 
freqallele7_G3=(2*freqallele7q_G3+freqallele7d_G2)/3 
freqallele8_G3=(2*freqallele8q_G3+freqallele8d_G2)/3 
freqallele9_G3=(2*freqallele9q_G3+freqallele9d_G2)/3 
freqallele10_G3=(2*freqallele10q_G3+freqallele10d_G2)/3 
freqallele11_G3=(2*freqallele11q_G3+freqallele11d_G2)/3 

  
mat1_G3(freqallele1)=freqallele1_G3 
mat2_G3(freqallele1)=freqallele2_G3 
mat3_G3(freqallele1)=freqallele3_G3 
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mat4_G3(freqallele1)=freqallele4_G3 
mat5_G3(freqallele1)=freqallele5_G3 
mat6_G3(freqallele1)=freqallele6_G3 
mat7_G3(freqallele1)=freqallele7_G3 
mat8_G3(freqallele1)=freqallele8_G3 
mat9_G3(freqallele1)=freqallele9_G3 
mat10_G3(freqallele1)=freqallele10_G3 
mat11_G3(freqallele1)=freqallele11_G3 

  
end 

  

  
Matallele1=[mat1_G0; mat1_G1; mat1_G2; mat1_G3] 
Matallele2=[mat2_G0; mat2_G1; mat2_G2; mat2_G3] 
Matallele3=[mat3_G0; mat3_G1; mat3_G2; mat3_G3] 
Matallele4=[mat4_G0; mat4_G1; mat4_G2; mat4_G3] 
Matallele5=[mat5_G0; mat5_G1; mat5_G2; mat5_G3] 
Matallele6=[mat6_G0; mat6_G1; mat6_G2; mat6_G3] 
Matallele7=[mat7_G0; mat7_G1; mat7_G2; mat7_G3] 
Matallele8=[mat8_G0; mat8_G1; mat8_G2; mat8_G3] 
Matallele9=[mat9_G0; mat9_G1; mat9_G2; mat9_G3] 
Matallele10=[mat10_G0; mat10_G1; mat10_G2; mat10_G3] 
Matallele11=[mat11_G0; mat11_G1; mat11_G2; mat11_G3] 

  
Alldata=[Matallele1; Matallele2; Matallele3; Matallele4; Matallele5; 

Matallele6; Matallele7; Matallele8; Matallele9; Matallele10; Matallele11] 
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Appendix v -  Denaturing Gel Gradient Electrophoresis (DGGE) methods  

 

V.1 PCR protocol 

The 30 µl mastermix for DGGE contained 2.5 mM MgCl2,  200 µM each dNTP, 10 nM of 

each primer genoRfw-GC (5’CGC CCG CCG CGC CCC GCG  GAC RAT ATG AAA 

AAT TAC ACA ATG A-3’) and conscsdrev 5’-(TCA TCT CAT WTT TCA TTA TTC 

AAT-3’) reactions with 6 µl 5X Colorless GoTaq® Reaction Buffer, and 1 U GoTaq® 

DNA Polymerase. 

 

V.2 Touchdown PCR   

Best results were obtained using the following protocol although non-specific products 

were amplified (Fig AV-1).  An initial denaturing step of 94° C for 5min, was followed 

by one cycle at 95°C for 1 min, annealing at 55°C for 1 min and extension at 72° for 1 

min.  For each subsequent cycle, a touchdown profile dropped the annealing temperature 

by 0.5°C per cycle to 47°C.  This was followed by 20 cycles of 95°C for 1 min, annealing 

at 47°C for 1 min and extension at 72°C for 1 min. After a final 10 min cycle at 72°C, the 

temperature was dropped by 1°C (-1°C) every 2 min for 20 cycles, then incubated at 4°C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig AV-1.  Non specific primimg and possible heterodimer products was an issue during PCR.  I 

adjusted the PCR profile (increased annealing temp on touchdown protocol) to try and improve on 

product specificity with little success.  I ran out this product type on a DGGE gel (see image below)  

Target band 

  Neg     D-52   D-78   D-35   D-17   D-38  D-05     

Non-specific 

product 
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V.3 Running the DGGE gel  

DGGE was conducted following the same protocol of  Muyzer et al. (1993) using an 

Ingeny PhorU Electrophoresis System (Ingeny, Goes, Netherlands).  DGGE gels 

contained 6% (w/v) polyacrylamide denaturing gradient gels with linear gradients from 

15% to 55% of denaturing agent (where 100% is 7M urea and 40% (v/v) formamide).  

Base on product intensity on 1% agarose gel, 10-50 ng  product was loaded onto the 

DGGE gel and run in 1 x TAE at 100V, 200ma at 60°C for 16 hours.  Gels were stained 

with 1X SYBR-Gold (Invitrogen, Carlsbad) solution in 1X TAE buffer (Fig. Av-2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig Av-2.  Image of DGGE gel using product amplified using the described above. 

Individual signatures were observed, but target fragments could not be isolated. 

 

 

    

An effort was then made to clean up the product by excising the desired band on a low melt 

agarose gel (Sigma).  Unfortunately, product yields were too low to perform DGGE (Fig. 

AV-3)  

 

 

 

 

 

 

 

 

                    Fig. Av-3.  Figure illustrates low post excision DNA yields 

500 base 

pairs 

Ld    D52    D78     D35     D17      D38     D05    D61    D78 
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