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SUMMARY 

Bacterial abundances and production, and the size distribution of oxygen metabolism and 

chlorophyll a concentration were followed through two seasonal cycles in the Menai Strait 

(North Wales, U. K. ) and during austral summer in the Southern Ocean. In the Menai Strait, 

spring blooms were characterised by a diatom to Phaeocystis succession. In both the Menai 

Strait and the Southern Ocean, meso- and microphytoplankton dominated phytoplankton 

production and biomass during diatom blooms. Nanophytoplankton predominated when 

production and biomass were low, i. e. during the summer in the Menai Strait, in waters near 
the Polar Front, and in some samples from the Weddell Sea. 

In both ecosystems substantial respiration resided in the bacterial (< 0.8 gm) size-fraction. 
Consequently during the Menai Strait temporal study, phasing of respiration in relation to 

photosynthesis was strongly influenced by bacterial metabolism and abundance changes. 
The respiration maximum occurred 1-2 weeks after the Phaeocystis abundance maximum. 
An explanation for this temporal lag was sought by considering the time scales of flow of 
organic material between the phytoplankton and the bacteria. The observations were 
consistent with routes via a slowly cycling pool, such as polymeric organic material. This 

pool would function as a reservoir and result in microheterotrophic respiration persisting 
after the decline of photosynthesis, causing a positive to negative temporal sequence in net 
community production. 

There was no evidence for differences in any measure of microbial biomass between the 

Southern Ocean and the Menai Strait. General relationships could be derived for both 

ecosystems: (a) the biomass quotient (< 20 µm phytoplankton / unfractionated 

phytoplankton) generally increased sharply as unfractionated phytoplankton biomass 

decreased, (b) bacterial biomass generally increased as phytoplankton biomass increased, 

(c) the biomass quotient of bacteria to unfractionated phytoplankton increased sharply as 

unfractionated phytoplankton biomass decreased. 

Different relationships were derived for the oxygen fluxes in terms of phytoplankton 

biomass for the Southern Ocean and Menai Strait observations. In these relationships, the 

oxygen fluxes were generally relatively (relative to the explanatory variable: phytoplankton 

biomass) higher in the Menai Strait. In contrast, a single relationship for DCR in terms of 

GCP was fitted for both data sets. This difference is consistent with a temperature effect on 

the oxygen fluxes, with GCP and DCR similarly suppressed at lower temperatures. 
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CHAPTER 1: INTRODUCTION 

Within the evolutionary pathway of life on earth, aerobic respiration may have pre-dated 

oxygenic photosynthesis (Castresana et at. 1993). In the proterozoic aeon (2 500 - 540 

million years ago), microbial plankton oxidation of organic matter in the upper layers of 

the ocean may have been virtually complete (Logan et al. 1995). Consequently the oceans 
depths would have been largely stagnant with low levels of dissolved oxygen. Only when 

metazoans with faecal pellet producing guts evolved, was transport of organic matter to the 

sea floor possible (Logan et al. 1995). This would have allowed oxygen to build up in the 

overlying waters and could have contributed to the Cambrian radiation (Logan et al. 1995). 

All this suggests plankton respiration is a very ancient metabolic process of considerable 

evolutionary interest. 

Despite its ancient roots, respiration has been largely overlooked in studies of plankton, and 

even today measurements of respiration in many parts of the global ocean are sparse 
(Williams 1984). However, even though there has been a paucity of observations, respiration 

measurements have been influential in the development of our knowledge of plankton 
foodwebs. 

1.1. A BRIEF HISTORY OF PLANKTON FOODWEB STUDIES 

In 1927 Gaarder and Gran reporting on an attempt to size fractionate plankton community 

respiration concluded, `it is quite evident that the auto-oxidation of dissolved and 

suspended organic matter, and the bacterial oxidation are very important factors in relation 

to the respiration of phytoplankton. ' This early indication that bacterial respiration may be 

substantial was not immediately followed up and until relatively recently bacteria were not 

considered important in the transfer of organic material to higher trophic levels. The 

aquatic food web was still essentially considered to be a simple chain. For example Hart 

(1934), in a report of his Southern Ocean plankton studies, stated, 'Thus we have here one 

of the simplest food chains possible, the building up of the vast body of the whale being 

only one stage removed from the organic fixation of the radiant energy of the sun by the 

diatoms'. 

AI Diatoms I I. -I Krill i -1--I Whales 

B Netphytoplankton ý. - 
Crustacean 

no Fish Zooplankton 

Figure 1.1. The classical aquatic foodchain. (A) denotes the simplified foodchain for the Southern 
Ocean, (B) the simplified foodchain for other oceans. 

This view of a simple chain for the Southern Ocean' food web (Figure 1.1A) essentially 

prevailed for all oceans (Figure 1.1B) into the early 1970's (e. g. Steele 1974). In this 
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`classical' model, net phytoplankton were thought to be the major primary producers, and 
their production was presumed to be closely cropped by crustacean zooplankton. 
Organisms smaller than the net phytoplankton, termed `nannoplankton', were largely 
ignored. 

Some forty odd years after Gaarder and Gran's pioneering fractionated respiration 
measurements, Pomeroy and Johannes (1966,1968) from work with plankton concentrates, 
reported that most of the total plankton respiration in various marine waters was accounted 
for by ultraplankton (organisms S 10 gm). From these observations, Pomeroy (1974) 
hypothesised that the classical model was only responsible for a small part of the flow of 
energy and he presented a new, revolutionary paradigm for the Ocean's foodweb (Figure 
1.2). 

In his paper Pomeroy made several important points: 
1. Size fractionated measurements of photosynthesis showed the importance of 

nannophytoplankton (note Pomeroy defines nannoplankton as the < 60 gm size- 
fraction) and led him to state: `far from being the grasses of the sea, net plankton 
appear to be Sequoias...... 

2. from his respiration measurements, estimates of microorganism (bacteria and protozoa) 
abundance made by other workers, and the inverse relationship between size and 
metabolic rate, he inferred that microorganisms are major consumers of energy in the 

sea 
3. he emphasised the importance of the dissolved organic matter pool, with bacteria as 

major consumers and protozoa as potential bacteriovores. 

Pomeroy's seminal paper was followed by the development of new techniques for 

bacterioplankton studies in the late 1970's and early 1980's (Hobbie et at. 1977, Coleman 

1980, Fuhnnan and Azam 1980, Porter and Feig 1980), and the introduction of an size- 
based organisational framework for plankton (Sieburth et al. 1978). This terminology is 

used throughout this thesis, wherein, picoplankton denotes organisms between 0.2 and 2 gm 
in size, nanoplankton denotes organisms between 2 and 20 µm, microplankton denotes 

organisms between 20 and 200 µm, mesoplankton denotes organisms between 0.2 and 20 

mm, and macroplankton denotes organisms between 2 and 20 cm. 

These developments and measurements of plankton respiration in unconcentrated filtrates, 
both in freshwater (Straskrabovä 1979) and sea water (Williams 198la), led to wide ranging 

corroboration of Pomeroy's model. The new increased estimates of bacterial biomass and 

production made the observed high respiration rates in the smallest size fractions (- <1 

µm) metabolically justifiable and so the argument gelled (Williams pers. comm. ). Support 

for Pomeroy's paradigm was notably provided by the review of Williams (1981b). In the 

subsequent review by Azam et al. (1983), the protozoans in Williams' decomposer pathway 

were specified as flagellates and microzooplankton, and the phrase 'microbial loop' was 
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used to describe the bacteria-flagellates-microzooplankton pathway. This phraseology 

stuck. 
Faeces and Excreta 

Particulate Organic Matter 

Dissolved Organic Matter Net Zooplankton 

Bacteria 

Protozoa 

Net Phytoplankton 

Nannoplankton 

Mucus Net Makers 

Fishes 

Top Carnivores 

Figure 1.2. Pomeroy's model. The 'classical' model of the ocean's food web is shown in simplified 
form within the circle. The new pathways are outside the circle. The figure is redrawn from Pomeroy 
1974. 

Following the establishment of the existence of the microbial loop, questions focused on its 

function. Pomeroy (1974) had already noted that the bacterial role had two extremes: they 

could 'channel into higher trophic levels... energy', or might act as `a major shunt of high 

grade organic energy to heat'. These extreme states formed part of the `link or sink' 

question (Ducklow et al. 1986, Ducklow et al. 1987, Sherr et al. 1987). The `link' greatest 

when there was high efficiency in the conversion of dissolved organic material to bacterial 

biomass, bacterial biomass to protozoan biomass, and protozoan biomass to 

mesozooplankton biomass. The `sink' largest when dissolved organic matter taken up by 

the bacteria was largely dissipated by bacterial and protozoan respiration. This dichotomy 

in the perceived role of the microbial loop has subsequently been largely abandoned. 

Instead the `classical' model and microbial loop are viewed to collectively form a web that 

supports the higher trophic groups (e. g. Sherr and Sherr 1988, Figure 1.3). 

The major routes of organic matter transfer within the microbial web are largely dictated by 

the cell size of the predominant phytoplankters. This is because important factors are size- 

related, for example: 
1. the sinking rate of a cell increases with cell size (e. g. Kiorboe 1993) 

2. the smallest size of phytoplankton cells that crustacean meso- and macroplankton can 
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effectively graze is approximately 5 pm (see references in Cushing 1989). This 

constraint is reflected in the model of Sherr and Shen (1988, Figure 1.3). 

This influence of phytoplankton cell size on trophic pathways can be demonstrated by 

considering the extreme states: a phytoplankton assemblage dominated by larger (> 5 µm) 

or smaller (< 5 pm) cells. The archetypal example of predomination by large 

phytoplankters is the irradiance-govemed diatom bloom of weakly stratified waters (e. g. 
Legendre 1990). Examples of this bloom type, where excess nitrate is initially present, are 
the spring and autumn outbursts of temperate waters, and outbursts in upwelling areas 
(Cushing 1989). Although the microbial loop is present, organic matter transfer during 

these blooms is thought to be largely via the `classical pathway', and often there is a large 

degree of uncoupling between the increase in primary production and grazing by 

crustacean zooplankton (Cushing 1989). The great fisheries of the world are founded upon 
this zooplankton grazing of late-stage bloom phytoplankters (Cushing 1989), although a 

substantial proportion of the phytoplankton production is often lost through cell sinking 
(Legendre 1990). Consequently, little recycling or retention of production is considered to 

take place during and immediately after these blooms (Legendre 1990). 

< 5µm > 5µm Sinking 

Algae Algae 

2-30µm 
0.1 -2 µm flagellates METAZOA 
Bacteria 

DOM 8- 100µm 
& Ciliates 

POM 

Figure 1.3. A microbial food-web model. * denotes grazing within the trophic box. Adapted from Sherr 
and Sherr (1988) 

Where phytoplankton production is dominated by smaller phytoplankters, for example in 

the strongly stratified waters of the ocean gyres and the mixed layer of temperate seas in the 

summer, phytoplankton sinking losses are often negligible (e. g. Legendre 1990). Organic 

matter transfer is largely mediated by microbes. The phytoplankton are predominantly 
grazed by nano- and microzooplankton, with these predators forming important 

components of the omnivorous diet of the crustacean meso- and macroplankton (e. g. 
Cushing 1989). This addition of microbial zooplankton and the small sedimentation losses 
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result in a higher degree of recycling or retention (e. g. Cushing 1989, Legendre 1990). 
Because the competitive advantage of smaller cells is further enhanced by a temperature 
increase, this `high retention' microbial foodweb is argued to be best adapted to warm- 
water ecosystems (Lenz 1992). Consequently, this `advantage' would be least in polar 
pelagic ecosystems. The low water temperatures characteristic of the polar oceans are also 
suggested to suppress heterotrophic microbial activity (Sorokin 1971,1972). Similarly, in 
the seasonally cold waters of high northern latitudes, low-temperature suppression of 
bacterial activity, relative to photosynthesis, has been reported (Pomeroy and Diebel 1986). 
These authors viewed the microbial loop as a metabolic sink, consequently the bacterial 

suppression was suggested to lead to more organic matter transfer via the classical pathway. 
This was considered to explain the apparent high metazoan productivity in this cold water 
environment (Pomeroy and Diebel 1986). 

1.2. FACTORS AFFECTING PLANKTON METABOLISM 

Organism size 

The maximum metabolic rates (respiration, growth, photosynthesis etc. ) of single-celled 

organisms vary inversely with the size of the cell: 

rate = aW° 
where W is a measure of the mass of the organism, and a and b are constants (e. g. Joint 

1991 and references therein). As the exponent (b) is negative and less than one, smaller 

cells have higher specific growth rates than larger ones. 

Physiological State: Resource quantity and quality 

Tilman (1982) defined resources as all things consumed by an organism; they can be 

regarded as quantities that can be reduced by the activity of organisms (Begon et al. 1990). 

The availability and quality of resources usually constrains the rate of metabolism (Button 

1985) and ultimately limits the extent of community growth (Tempest and Neijssel 1978). 

As the level of limiting resource decreases, metabolism decreases until growth ceases 

entirely (Button 1985). However, during non-growth conditions, maintenance metabolism 
(respiration) persists (Button 1985), and can reach a minimum under long-term starvation 

conditions (e. g. Kjelleberg et al. 1993). Consequently, biomass-specific metabolic rates can 

range widely depending on the resource levels present (e. g. Amy et al. 1983). 

Temperature 

Light absorption, excitation energy transfer, and photochemistry are temperature 
independent (Raven and Geider 1988). The rates of all other physico-chemical reactions are 
ultimately controlled by temperature. Consequently, temperature is an important 

environmental parameter in any ecosystem. An equation to describe the effects of 
temperature on chemical reactions was first derived by Van't Hoff (1884) and Arrhenius 
(1889): 
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-E K=AexpRT 

where K is the reaction rate, R is the gas constant, T is the absolute temperature, E the 

activation energy and Aa constant. This equation has become generally known as the 
Arrhenius law, and the plot of log. of the reaction rate against the inverse of absolute 
temperature, the Arrhenius plot. Catalysed reactions, including those involving enzymes, can 
also be described by the Arrhenius equation, although the effect of temperature on a 
catalysed reaction is less than that for an uncatalysed reaction (Raven and Geider 1988). 
However, enzyme function is sensitive to extremes of temperatures, thus the Arrhenius law is 

only applicable over a limited temperature range. 

All organisms have minimum, optimum, and maximum temperatures (so-called cardinal 
temperatures) for metabolic rates. Microbiologists have used the Arrhenius law (substituting 

metabolic rate for reaction rate and a temperature characteristic for activation energy) to 

model the temperature-dependence of biomass-specific metabolic rates over a large range 
of sub-optimum temperatures (e. g. Mohr and Krawiec 1980). From this equation the 
temperature coefficient (Qo) can be estimated (Clarke 1983). This term denotes the increase 
in rate (expressed as a multiple of the initial rate) produced by raising the temperature 10C, 

and for biological processes usually has a value of between two and three (e. g. Clarke 1983, 

Hirche 1984, Caron et at. 1986, Raven and Geider 1988, Sherr et al. 1988). 

A poikilotherm (exotherm) is an organism whose body temperature varies according to the 
temperature of its surroundings (Allarby 1994). For poikilotherms in general, the optimum 
temperatures for metabolic rates are higher than ambient temperature (e. g. bacterial growth 
rate: McMeekin and Franzmann 1988); phytoplankton growth rate: Jacques 1983, Fiala and 
Oriol 1990; photosynthesis: Neori and Holm-Hansen 1982, Chapin 1983, Jacques 1983, Li 

et al. 1984, Li 1985, Li and Dickie 1987, Palmisano et al. 1987, Kottmeier and Sullivan 
1988, Michel et al. 1989, Lefevre et al. 1994; respiration: Robinson and Williams 1993, 
Leff vre et al. 1994; 'H-label amino acid /glucose / thymidine uptake: Li and Dickie 1984, 

Joint and Pomroy 1987, Li and Dickie 1987, Kottmeier and Sullivan 1988) and may covary 

with temperature over the seasonal cycle (Li and Dickie 1987, Lefi vre et al. 1994). 

Poikilotherms have adapted to living in cold environments by usually having cardinal 
temperatures lower than those exhibited by inhabitants of warmer areas. Thus whereas 
psychrophile optimum temperatures for growth are usually less than 10 °C (e. g. Herbert 

and Bell 1977), those of hyperthermophiles are between 80 and 110 °C (Stetter et al. 1990). 

Other forms of adaptation to low temperatures may include: 
1. molecular changes in catalysts or lipids that enhance their ability to bring about the 

appropriate chemical change at lower temperature (Raven and Geider 1988), 
2. reallocation of resources such that the relative concentrations of the more temperature- 

dependent components are increased (Raven and Geider 1988). 
Reallocation of resources (higher concentrations of ribulose bisphosphate carboxylase, 
RUBISCO) apparently enables arctic terrestrial plants to maintain in situ growth rates 

comparable to or higher than those of temperate plants despite a 15 to 20 °C difference in 
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average air temperature (Chapin 1983). In contrast, arctic phytoplankton do not appear to 

have adapted to low temperature by increased levels of RUBISCO (Smith and Platt 1985), 

consequently their assimilation numbers are smaller than those of temperate plankton. The 

reason for this difference is unclear. Li et al. (1984) considered that large increases in 

enzymes at low temperatures might be energetically cost ineffective, and Raven and Geider 

(1988) suggest that there is only scope for reallocation provided a constant environment 

can be guaranteed. 

The inability of arctic phytoplankton to maintain assimilation numbers comparable to those 

of temperate phytoplankton is one example of a general phenomenon for microorganisms 
(Figure 1.4). Given this apparent non-compensation (Clarke 1983) to low temperatures, 

there is potential for a fundamental difference between polar and temperate plankton 
foodwebs. 
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Figure 1.4. Specific growth rate versus absolute temperature for ph'toplankton (Eppley 1972) and 
bacteria (Ingraham 1958). Lenz's (1992) contention that the allometric advantage of small cells is 
enhanced by temperature increase can be seen. Thus in polar environments, the maximum specific growth 
rates of phytoplankton and bacteria are at there closest 
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Aims and Questions 

This thesis is a study of microbial plankton metabolism, especially respiration, in two 

contrasting environments (the Southern Ocean and a temperate coastal ecosystem). The 
Menai Strait was used as a test bed for methodology and allowed temporal aspects of 
microbial plankton to be studied during the spring bloom succession. The experience and 
knowledge gained from working in the Menai Strait was applied in the Southern Ocean 

study. As temperature has such an important influence on life processes, this factor was 
selected as the focus for the synthesis of the two studies. The following key questions were 
identified: 

1) Is there a difference between temperate and polar waters in microbial biomass? If so, can 
this difference be related to temperature? 

2) Is there a difference between temperate and polar waters in microbial metabolism? If so, 

can this difference be related to temperature? 
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CHAPTER 2: METHODS 

2.1. FIELDWORK: DESCRIPTION OF STUDY SITES AND SAMPLING 
PROTOCOLS 

2.1.1. The Southern Ocean 

Study Site Descriptions 

All fieldwork was carried out onboard the RRS James Clark Ross during the Predator / Prey 

cruise (JR06, Jan. to Mar. 1994) of the British Antarctic Survey. Essentially, there were two 

study locations on this cruise: Willis Islands (South Georgia) and the Polar Frontal Zone 

(Figure 2.1). During the final part of the cruise, opportunistic studies from the pumped 

non-toxic sea water supply were carried out over a wide-ranging area of the Weddell Sea 

(Figure 2.1). 

South Georgia is a relatively large sub-Antarctic island in the northern Scotia Sea, and is 

surrounded by an extensive and deep continental shelf. The large-scale hydrography of the 

area is characterised by Antarctic surface water to the north and west of South Georgia, and 
Weddell Sea water to the south and east. The Willis Islands are situated at the north western 

tip of South Georgia. The study site (53°42' S, 38°15' W, Figure 2.1) was selected for an 

investigation of the biomass size-spectrum in a krill-dominated plankton community. It was 

centred on a sea-mount at the shelf edge and was occupied for approximately six days. 

Samples for microbial studies were taken from a fixed station a few kilometres downcurrent 

from the sea-mount, in a water depth of approximately 300 m. As part of the physical 

characterisation of the site, two north to south transects were worked and microbial 

production was measured at an offshore and an onshore station (Figure 2.2). Water column 

structure at the Willis Islands site was typical for the region: relatively cool Antarctic surface 

water (approximately 200 m thick) overlying warmer, saltier and nutrient-rich circumpolar 

deep water (e. g. Priddle et al. 1995). Also present was the austral summer seasonal mixed 

layer (depth roughly 50 m) of less-dense surface water. This layer results largely from ice 

melt and surface run off and is underlain by a strong seasonal halocline (Priddle et al. 
1995). The surface temperatures also exhibited the characteristic seasonal signal: a warmer 

mixed layer with a thermocline of several degrees (e. g. Priddle et al. 1995). This gave rise 

to a temperature inversion pattern within the Antarctic surface water. 

The Antarctic Polar Frontal Zone is a complex, circumpolar transition region between 

Antarctic and sub-Antarctic surface waters and is characterised by the presence of eddies 

and meanders (Gordon et al. 1977). The front lies within the zone of strongest westerly 

winds and although its exact position and width varies is typically found at approximately 
50 'S in the Atlantic and Indian sectors and 55 - 60 'S in the Pacific sector and Drake 

Passage (Whitworth 1988). With the exception of the Kerguelen plateau, the front lies over 
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Figure 2.1. Map showing where samples were taken in the Southern Ocean during cruise JR06 of the 
RRS James Clark Ross 
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deep water. At the polar front, Antarctic surface waters submerge northwards under the sub- 
Antarctic surface waters, at layers deeper than 500 m, nutrient-rich warm water crosses the 

polar front southwards and near the sea bed cold Antarctic bottom water creeps northwards 

(Whitworth 1988). Thus deep water from low latitudes constitute the major flux of nutrients 
into the Southern Ocean; this contrasts with the mediterranean Arctic ocean, where nutrients 

are chiefly derived from the surrounding land masses (Codispoti et al. 1991). Because of its 

steep temperature gradient, the polar front is considered to be an important biogeographical 

boundary (Deacon 1982). 

The polar front study site (49°48' S, 37°26' W, Figure 2.1) was chosen to investigate the 

biomass size spectrum in an ecosystem where squid and myctophids were abundant. The 

site was located just north of the front. Physical characterisation of the area indicated 

substantial mesoscale variability with vertical interleaving of the main water types (Rodhouse 

et al. 1996). The site was occupied for approximately six days and samples were again 

taken from a fixed station. During the later physical characterisation of the site, two 

sampling points (events 349 and 374, Figure 2.2) were undertaken in the zone just south of 

the polar front. 

Sampling Protocol 

A rosette sampler fitted with twelve 10 dm3 Niskin water bottles was deployed to collect the 

water, except for the Weddell Sea study where samples were taken from the ship's non-toxic 

pumped seawater supply (nominal depth 6 m). Samples for chlorophyll a were taken 

directly from each Niskin to provide vertical profiles. For the depths from which oxygen 

incubations were to be performed, the remaining water was drained through silicon tubing 

into 10 dm3 aspirators. Care was taken to exclude trapped air bubbles. Larger volumes were 

required for size fractionation studies: in these cases eight Niskin bottles were triggered at 
10 m, six of these were used to fill a 50 dm' aspirator and one was used to fill a 10 dm' 

aspirator. The 10 dm3 aspirator was used for unfractionated sample incubations and the 50 

dm3 aspirator for the < 200, < 20, < 2, and < 0.8 gm size-fraction incubations. The size- 
fraction chlorophyll a concentrations were determined using water remaining in aspirators 

once the oxygen bottles had been filled. 

Two gravity driven reverse flow filtration systems were used in parallel to prepare all the size 
fractions. All fractionations were performed at 3 to 4 °C in a constant temperature room and 

were completed within two hours of the water coming on board. The oxygen incubations 

were performed in light and dark deck incubators with near in situ temperature maintained 
by circulating surface sea water through the incubators. The irradiance in the light 

incubator was attenuated to 60 % of total incident solar radiation by a neutral density mesh. 
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Figure 2.2. Map showing the location of sampling points around the two main study sites (Willis 
Islands and Polar Front). Where the label is a number, this denotes the event number 

2.1.2. The Menai Strait 

Study Site Description 

The Menai Strait is a shallow turbulent stretch of water separating the island of Anglesey 
from the mainland of North Wales (Figure 2.3). The Strait is some 20 km long and has a 
mean width of 800 m. Sampling was undertaken from St. George's pier, Menai Bridge, 

where the water is considered to be generally representative of mid-stream Strait water 
(Harvey 1972). However, the period of slack water between the north-east and south-west 

going tidal currents does continue for longer periods at the pier, and back eddies can 
become established (Harvey 1972). This can lead to temperature changes due to advective 

effects being dampened at the pier (Harvey 1972). 

Maximum velocities within the Strait during the north-east tidal flow are approximately 80 

cm s" (Harvey 1968, Simpson et al. 1972). For the south-westerly tidal flow, the maximum 
velocity is roughly 150 cm s" (Harvey 1968, Simpson et al. 1971). Consequently, the Strait 

is characterised by a residual flow to the south-west, with an average velocity of 15 cm s'' 
(Harvey 1968). This residual flow is greatest at spring tides and least at neap tides (Harvey 
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1968). At spring tides, under normal weather conditions, the tidal excursion towards the 

north-east is not sufficient to reach Menai Bridge pier (Harvey 1972). Thus the plankton 

sampled from Menai Bridge largely originates from the adjacent coastal waters of Liverpool 

Bay; the advected plankton residing in the Strait for approximately two days (Harvey 

1968). Only during periods of strong winds from a southerly or westerly quarter is there a 
possibility of Caernarvon Bay water penetrating to Menai Bridge pier (Harvey 1972). 

A density discontinuity isolates Liverpool Bay and fluvial inputs lead to nutrient build-up 

during the winter months (Foster et al. 1982a, b). Maximum winter concentrations of 

nitrate, silicate, and phosphate in the Strait are approximately 15 mg m-', 8 mg m 3, and 1 

mg M-3 respectively (Ewins and Spencer 1967). 

Figure 2.3. Map showing location of Menai Strait 

Sampling Protocol 

Water was collected between March 1993 and June 1994 inclusive. Water (100 - 150 dm3) 

was drawn through a 200 gm mesh from a depth of one metre using a hand bilge pump (5 

dm' min-') and collected in 50 dm3 opalescent polypropylene aspirators. During 1993 

sampling was undertaken before dawn and within two hours of high water at 14 day 

intervals during the spring and summer months and at 28 to 42 day intervals during the 

months of autumn and winter. In 1994 samples were collected before noon and within two 
hours of high water every 6 to 13 days. Additionally in 1994 unfiltered samples were 
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obtained by immersing and filling a 10 dm' opalescent polypropylene aspirator avoiding 
the surface microfilm. 

The gravity driven reverse flow filtration systems were used to perform most of the 1993 

and all of the 1994 fractionations. During the 1993 Phaeocystis bloom a cross-flow 
filtration unit (Amicon, USA) was used to prepare the < 0.8 gm size-fraction. All 

fractionations were performed outdoors, shielded from direct sunlight, and were completed 

within four hours of sampling. The oxygen incubations were performed in outdoor light 

and dark incubators. These were cooled with running tap water such that the incubation 

temperature was not greater than 3 °C above in situ water temperature. The light intensity in 

the light incubator was attenuated to 60 % of total incident solar radiation by a neutral 

density mesh. 

Throughout the study the water temperature at the time of sampling was measured using a 
digital thermometer (Digitron Instrumentation, UK) and the air temperature obtained from 

the nearest meteorological station (Valley, Figure 2.3). Also in 1994 a Secchi disc was used 
to estimate the vertical attenuation coefficient for downward irradiance (kd) and the 

relationship kdZ. = 1.45, where Z., denotes Secchi depth used to calculate k, (Walker 1980). 

2.2. BIOMASS ESTIMATORS 

2.2.1. Chlorophyll a 

The fluorometric determination of chlorophyll a concentration (Holm-Hansen et al. 1965) 
is a widely used simple chemical method for estimating phytoplankton biomass. 

In the Menai Strait study, subsamples (250 - 750 cm') were filtered onto 47 mm Whatman 
GF/F filters. These filters (either immediately or after storage at -20 °C) were placed in 

stoppered plastic centrifuge tubes. Using a Gilson P5000 pipette, neutralised 90 % acetone 
solution (8 cm', Tett 1987) was added and the tubes stored upright in a refrigerator at 4 °C 

for 24 to 48 h. Phytopigment concentrations were then estimated using a Turner 10 Designs 
fluorometer in accordance with the recommendations of Tett (1987), the equations used to 

estimate phytopigment concentrations were as follows: 

10 (Jo -Jo(b) 
R 

'= (fa -Ja(b) 
R 

[C] = 
kr(fa-fa)E 

v 
[P] _ 

kf(Hf fo)E 

v 
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where, f; and f; denote the recorded fluorescence of the sample before and after 

acidification respectively, f, 
(b) and f, (b) the recorded fluorescence of the blank before and 

after acidification respectively, R the range factor, E the extract volume, V the filtered 

volume, [C] the chlorophyll a concentration (mg m'3), [P] the phaeopigment concentration 

(mg m'3), and Hf and k. are specific fluorometric constants. 

2.2.2. Direct Estimation of Bacterial Abundance by Epifluoresence Microscopy 

Hobbie et al. (1977) were the first to report use of epifluoresence microscopy to estimate 
bacterioplankton abundance in marine samples. These authors used the fluorochrome 

acridine orange (AO). This binds to both DNA and RNA and fluoresces apple-green when 
excited with blue light. The use of another fluorochrome 4'-6-diamidino-2-phenylidole 
(DAPI) was reported by Coleman (1980) and Porter and Feig (1980). This fluorochrome 

specifically binds to double stranded DNA and fluoresces blue upon excitation with 
ultraviolet light. The DAPI fluorochrome has possible advantages over AO: its fluorescence 
fades less rapidly and it also does not fluoresce when non-specifically bound to detritus. 
However, recent studies have highlighted uncertainties over the use of both fluorochromes. 

Suzuki et al. (1993) reported that estimates of bacterioplankton abundance using DAPI 

staining were less than those using AO. Similarly they reported bacterioplankton biovolume 

estimates were also lower using DAPI staining than AO staining. The combination of these 
lower abundance and biovolume estimates was that DAPI-determined total biovolume 

estimates ranged from 25 % to 61 % of biovolume estimates using AO. Consequently these 

authors recommended that DAPI staining be used with caution for estimating 
bacterioplankton standing stock parameters. However, in a subsequent study, Zweifel and 
Hagström (1995) introduced marine ecologists to biochemical literature describing the poor 
binding of DAPI to DNA at high salt concentrations (Wilson et al. 1990). Using this 
knowledge, these authors reduced the salinity of their samples by dilution with freshwater 

prior to DAPI staining, without prior formaldehyde fixing, and were thus able to stain 

nucleoid containing bacterial cells (NUCC) only. They found only a minor fraction (2-32 

%) of the standard DAPI total count contained nucleoids. The other bacteria-like particles 
in the total counts were attributed to be cell residues of virus-lysed bacteria (ghosts) or 

remains of protozoan grazing wherein the DAPI was binding to reactive bacterial surfaces 

created by the formaldehyde fixing. 

Experimental Procedure 

1. Prior to sampling, glutaraldehyde solution (50 %) was dispensed (0.5 cm3, final conc. 
0.5 %) using a Gilson P1000 pipette into clean glass 50 cm3 medical bottles and the 
bottles placed in the refrigerator. 

2. Subsamples (-50 cm) were drained from aspirators into the bottom of the glass bottles 

using silicon tubing and the bottles replaced in the refrigerator. 
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3. Within 24 hours, 3-5 cm' of each subsample was dispensed into a 15 cm' filter funnel 

using a Gilson P5000 pipette. The DNA stain DAPI (Sigma, USA) was then added with 

a Gilson P1000 pipette (0.25 cm3, final conc. 1.25 gg-cm") and the subsample left in 

the dark for six minutes. 
4. The subsample was filtered down onto 0.2 pm polycarbonate filters (Poretics Inc., 

Livermore, CA, USA; measured active diameter equals 16.3 nm), the filter mounted on a 

glass microscope slide, and the slide stored at -20 °C until counted. 
5. Measurements of bacterial numbers were made with a Leitz Orthoplan fluorescence 

microscope at x1250 magnification using a Patterson Globe and Circle NG1 graticule 
(Figure 2.4, minimum of 400 cells or 30 grids counted). 

25 
" 

0° 
25 

a 

Ib 
Figure 2.4. The Patterson Globe and Circle NG1 graticule. Only two of the series of ten circles located 
above and below the grid are shown. At x1250 magnification, a= 47.5 µm, b= 21.4 µm. 

6. Given the active area of the filter equals 208.9 mm2, the area of the graticule grid equals 

1009 µm2 and the number of bacterioplankton in the grid equals x, then the total 

number of bacterioplankton (y) on the filter surface was calculated as follows: 

x 
y_1009.4 x(2.08672x108) 

Thus for a subsample of volume v cm' the abundance of bacterioplankton (Z) in the 

sample was 

Z=y cells cm' 
v 

2.2.3. Microplankton Counts 

Fixation of protozoa can lead to cell shrinkage (e. g. Choi and Stoecker 1989). Acidified 

Lugol's solution is a widely used fixative. It has the disadvantages that it dissolves 

coccoliths; silica may also dissolve with long storage time (Throndsen 1978). Fixation, 

incomplete settling and detrital shielding all contribute to a likely underestimate of cell 

abundances using the inverted microscope technique. 
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Experimental Procedure 

1. Prior to sampling, acidified Lugol's solution (Throndsen 1978) was dispensed using a1 
cm' glass pipette (4-8 drops, final conc. approx. 0.5 %) into clean glass 50 - 100 cm' 
medical bottles. 

2. Subsamples (50 - 100 cm) were drained from aspirators into the bottom of the glass 
bottles using silicon tubing and the bottles stored in a refrigerator. 

3. Prior to counting, a bottle was removed from the refrigerator and left to stand for an 
hour. The bottle was then gently inverted a few times and part of its contents (10-50 

cm') poured into settling chambers. 
4. The chambers were left for 24 hours to allow for the sedimentation of particles. 

Transects were made of the glass base of the settlement chambers using the inverted 

microscope, and the settled cells counted and sized according to basic steriometrical 
formulae (Edler 1979). 

2.3. METABOLIC RATE ESTIMATORS 

2.3.1. Oxygen Flux 

Borosilicate glass bottles (50 - 150 cm') were used to perform light and dark bottle 

incubations (Gaarder and Gran 1927) for 24 ± 0.5 hours. Dissolved oxygen concentrations 

were determined by Winkler titration at the start and end of the incubation periods. 
Additionally in the Menai Strait study, intermediate time points (every 2-4 h) were 

measured on two separate occasions to follow the time course of respiration. Community 

rates of production and respiration were calculated as follows: 

Gross Community Production (GCP) = [Light O2] - [Dark O2] 

Net Community Production (NCP) = [Light 02] - [Zero OZ] 

Dark Community Respiration (DCR) = [Dark 02] - [Zero02] 

Where, [Light O2] = the mean oxygen concentration in the light bottles, [Dark O2] = the 

mean oxygen concentration in the dark bottles, and [Zero 02] = the mean oxygen 

concentration at time zero. The conventional assumption that respiration is the same in the 
light and dark is made. 

The Winkler titrations were performed using a PC-based system with a photometric 
endpoint detector (Williams and Jenkinson 1982). The reagents were prepared according to 
the recommendations of Carritt and Carpenter (1966) except manganese (II) sulphate 
(MnSO4.4H20,450 g dm') and stronger concentrations of sodium thiosulphate (0.09 - 0.26 
M) were used. 

Experimental Procedure 

1. Small volumes of the sea water sample were dispensed from a raised aspirator via silicon 
tubing into borosilicate glass bottles (three sets of 3-6 replicates) and the bottles 
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shaken, then emptied. The bottles were then over-filled (with an overflow of one to two 
bottle volumes) and stoppered, such that no air bubbles were enclosed. 

2. One set of bottles was placed in both the light and dark incubators. 
3. The stoppers of the remaining set of bottles (the time zero's) were removed and the 

temperature of the sea water inside them determined using a digital thermometer 
(Digitron Instrumentation, UK). Volumes (1 cm) of manganese (II) sulphate and 
alkaline iodide solutions were added in sequence with a multipipette (BCL 8000 with 15 

cm3 syringes) and the stoppers replaced. The bottles were immediately shaken until their 
contents appeared homogeneous, and were then stored underwater. 

4. After 24 hours the bottles in the light and dark incubators were fixed as in step 3. These 
bottles were stored until at least the upper third of their contents were free from 

precipitate. 
5. Bottles were titrated in a strict sequence (1 zero, 1 dark, I light). 
6. The stopper was removed from the bottle to be titrated and carefully 1 cm3 of sulphuric 

acid added. A small magnetic stirring bar was then gently slid to the bottom of the 
bottle and the bottle placed in the light beam of the photometric detector. 

7. The microcomputer controlled titration was then initiated. 

Standardisation of the thiosulphate 

Three borosilicate glass bottles were half filled with distilled water. Into each bottle, 1 cm3 of 
the sulphuric acid and alkaline iodide reagents were added in sequence. A known volume of 

potassium iodate standard was then added with a Knudsen pipette, and the iodine liberation 

allowed to proceed for a couple of minutes (out of direct sunlight). The bottle contents were 
then titrated and the molarity of the thiosulphate calculated as follows: 

2I03+12H*+10I- -a6I2+6H20 
612- 2+ 12S2O3- -412I-+6S4O 

: M=6M, 
V 

'` Vt 

Where, M, denotes molarity of thiosulphate, M; denotes molarity of iodate, V, denotes 

volume of iodate and V, denotes volume of thiosulphate. 

Calculation for estimates of oxygen flux per unit area 

To estimate dark community respiration per unit area, the volumetric dark community 

respiration rate was multiplied by the depth of the water column (Menai Strait) or the mixed 

layer depth (Southern Ocean). The gross community production rate per unit area was 

estimated by numerical integration. This calculation was structured as follows: 

1. the base of the euphotic zone (E, I% isolume) was estimated using the equation 

Is = lo exp(-kdz), 
2. GCP integrated to the 1% isolume (P, ) was estimated using the equation 

P, =f 
Po 

exp(-kdz)dz. 
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The net community production rate per unit area was calculated by subtracting the dark 

community respiration rate per unit area from the gross community production rate per 
unit area. 

2.3.2. Tritiated Deoxythymidine Incorporation 

['H-methyl]deoxythymidine (hereafter referred to as thymidine) incorporation into DNA is 

probably the most widely used technique for estimating heterotrophic bacterial production 
in aquatic environments (Moriarty 1990, Robarts and Zohary 1993). The method was first 
described by Fuhrman and Azam (1980) and its specificity for heterotrophic bacteria is 
based upon biochemical differences. Firstly, heterotrophic bacteria can sequester organic 
substrates more rapidly and more efficiently than photoautotrophs and heterotrophic 

eukaryotes (e. g. Moriarty 1990). And secondly, cyanobacteria and many eukaryote 
microorganisms lack the enzyme thymidine kinase that is required for thymidine to be 
incorporated into DNA (Moriarty 1990, Robarts and Zohary 1993). 

Conversion factors are needed to convert measurements of rates of DNA synthesis to 
bacterial growth rates. Fuhrman and Azam (1980) used a theoretical conversion factor 
based on the assumptions that under their assay conditions the bacteria utilised exogenous 
thymidine only for growth and that bacterial DNA comprises 25% thymidine. These 

assumptions, when combined with empirical observations that bacterial cells contain 7.47 x 
10-16 to 4.82 x 107" g of DNA, yielded a theoretical conversion factor of 2x 10" to 1.3 x 
1018 cells per mole of thymidine incorporated. Most studies now utilise empirical conversion 
factors (e. g. Robarts and Zohary 1993). These factors relate the observed rates of thymidine 
incorporation to concurrent estimates of net bacterial growth. Therefore flux through the 
dTTP biosynthetic pathway, recalcitrant bacteria and variability in cellular DNA levels 

should all be accounted for (Robarts and Zohary 1993). Net bacterial growth is most 
commonly measured by following the increase in bacterial numbers within a nominally 
bacterivore free sample (e. g. < 0.8 or <1 gm fractions) diluted with 0.2 µm filtered water 
(e. g. Robarts and Zohary 1993). Two such conversion factor experiments were performed 
in the Menai Strait study. 

Experimental Procedure 

Thymidine (Amersham, specific activity 84 Ci (3.11 TBq) mmol-1, final concentration 5 

nM) was added to subsamples (10cm3,1 fornialin-killed blank and 2 replicates) in sterile 
tissue culture tubes and 1h incubations performed. Additional time course experiments 
were occasionally performed. Thymidine incorporation was always found to be linear over 
at least 2 h. Thymidine incorporation was halted by addition of formaldehyde (0.5 cm3,1% 
final concentration) and within 12 hours macromolecular material precipitated by adding 
Icm3 of ice-cold 20 % TCA. The samples were then left to stand on ice for 15 min (Wicks 

and Robarts 1987). The precipitates were collected on 0.2 µm polycarbonate filters 
(Ducklow et al. 1992; Poretics Inc. ), washed twice with 1 cm' of ice-cold 5% TCA and once 

with 5 cm' of ice-cold 80 % ethanol to remove unincorporated label. The filters were 
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dissolved in 4 cm3 of Optiphase scintillation cocktail in minivials and counted with a 
Packard Tricarb series scintillation counter. The obtained counts were converted to 
disintegrations by the external standard method. 

The specific activity of the thymidine on the day of counting was determined using the 
following calculation: 
1. N denotes the number of radioactive atoms at time t. then the decrease in N with time 

can be written as: 
dN 

=ý1 dl 

2. Integrating with respect to time: 

N, d? V 
-J Af dt 

No No 

[-1nN] N, 

In 
N. 

=pit Nt 

3. For N: = 
No 

_ 
In 2 

2 

.. as 'H ti = 4537days, A, =1.53x10-4days"1 
4. Therefore the specific activity on day y of ['Hmethyl]thymidine with a specific activity 

S on day x of the same year is 

S 
Specific activity = 

exp[1.5278 x 10-4(y - x)] 

33.3. Changes in Bacterial Abundance 

In the Menai Strait study of 1994, some bacterial numbers were determined for 

unfractionated and < 0.8 µm fraction samples at both the beginning and the end of the 
oxygen flux incubations. Intermediate counts during the incubation at intervals of 4 hours 

were performed in the Menai Strait study on day 159 during the respiration time course 
experiment. For all incubations, subsamples for bacterial counts were taken from dark 
bottles. Daily growth rates (µ) were estimated using a linear (µ = N, - No) growth model 
(Wright and Coffin 1984) where (Na) and (N) are the bacterial abundances after 0 and 24 
hours respectively. For day 159 daily growth rates were estimated by least squares linear 

regression of bacterial density versus time. 
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3.4. SIZE FRACTIONATION 

3.4.1. Size Fractionation 

Theory 

Size separations of plankton assemblages are not 100 % efficient, as some cells small 
enough to pass through a screen (mesh or membrane) will, after collision be retained. Cell 

retention by a screen is also a function of the sticking coefficients of the plankton cells or 

colonies, and this `stickiness' is greatest in flocculent and chain-forming species (Logan et 

al. 1994). Because cell stickiness can vary with growth phase, changes in the size 
fractionation properties of a plankton assemblage may not be attributable to changes in its 

size distribution. 

Experimental Procedure 

Custom made, gravity driven, large diameter (142 mm) reverse flow filtration systems 
(Figure 2.5) were used to perform almost all of the size-fractionations. Nylon meshes were 

used for separating the < 200 pm, < 53 pm and < 20 pm fractions; polycarbonate filters 

(Poretics Inc., California, USA) for the < 0.8 pm fraction. 

B 

2r 

1.0.1 

Figure 2.5. A schematic diagram of the reverse flow filtration system 

The method of fractionation was as follows: 

1. All outlets were initially open. Outlet 1 was connected via silicon tubing to a raised 
aspirator, outlet 2 drained into an aspirator. 

2. Water flowed under gravity from the raised aspirator (0.5 to 1 m) into the base of the 
fractionator (1). 

3. Outlet A was closed once water has passed through the filter and all trapped air bubbles 
had been removed. 

4. Outlet 2 was closed once trapped air bubbles in its silicon tubing were dispersed. 

5. The water level was allowed to rise to the approximate level shown, then outlets B closed 
and 2 opened simultaneously. 
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6. From outlet 2, a small volume of water (0.25 - 0.5 dm') was allowed to drain into the 
base of an aspirator. Outlets 1 and 2 were then closed, the aspirator shaken, emptied and 
then replaced. 

7. Outlets 1 and 2 were again opened and the fractionated water collected in the aspirator. 

3.5. STATISTICS 

Least squares linear regression analysis (Model I, i. e. errors confined to y) was performed to 

examine hypothetical cause-and-effect relationships (Sokal and Rohlf 1995). In all cases 
this analysis was carried out on the untransformed data, i. e. the best fit straight line is y=a+ 
bx. In addition, a second regression was performed on transformed data. The nature of the 

transformation used was dependent upon the explanatory variable. 

When absolute temperature (T) was the explanatory variable, the Arrhenius relationship (y = 
A exp(-E. /RT) was considered, i. e. the best fit straight line is In y= In A-E, /RT. If the slope 
(-EJR) of the line of best fit was significantly different from zero, an apparent Q, o was 

estimated from the equation E. = (1/t)RTZ In (Q10) (Raven and Geider, 1988), where E, = 
activation energy (J mol''), t= temperature span over which the temperature coefficient is 

defined, i. e. for a Q, o t is 10 °C, r= gas constant (8.31 J mol-' K'') and T= mean absolute 
temperature (K). 

For all other explanatory variables, a log-log transformation was performed, i. e. y= a4 °, thus 
the line of best fit is log y= log a+b log x. As these explanatory variables have errors, the 

slope was also estimated using a model II regression (geometric mean, Sokal and Rohlf 
1995). 
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CHAPTER 3: SOUTHERN OCEAN RESULTS 

The results from the measurements (oxygen fluxes, thymidine uptake rates, chlorophyll a 

concentrations, and bacterioplankton abundances) undertaken during the Southern Ocean 

cruise are presented in three sections: Willis Islands (South Georgia), the polar front zone, 

and the Weddell Sea. In both the Willis Islands and polar front zone sections, the first results 
shown are those from the central station time series study within the mixed layer. These are 
then followed by the results from two vertical profiles. The Willis Islands section closes with 
the results from an offshore - onshore transect, whereas the polar front section finishes with 

results from two fractionations performed immediately southwards of the front. 

3.1. WILLIS ISLANDS (SOUTH GEORGIA) 

Central Station: parameters within the mixed layer 

The mixed layer at the central station was roughly 50 m deep, with a gradual temperature 

gradient to 100 m. The temperature in the mixed layer at the start of the study (day 11) was 
2.7 °C, decreasing to 1 °C at the base of the pycnocline. The initial mixed layer depth of 50 

m shallowed to 30 to 40 m on day 12, and then increased, following a storm on day 15, to 
60 m on days 16 and 17 (Figure 3.1A). The water temperature in the mixed layer increased 

to 3 °C by day 14 with evidence of surface warming, and remained at this level for the rest 
of the occupation of the site (Figure 3.1A). A simple calculation estimated that warming of 
40 m of water by 0.3 K in three days required a heat input of the order of 100 MJ M-2, or an 
average daily heating rate of about 580 W m'2 (assuming a 16 h day). As averaged absorbed 

solar radiation in the summer at the latitude of South Georgia is c. 300 W M-2 (Campbell 

and Vonder Haar 1980), this suggests that at least part of the apparent surface warming may 
have been through advection of warmer water into the study area, rather than local warming. 

Inorganic nutrient concentrations within the mixed layer, measured in a profile on day 11 
(M. Whitehouse pers. comm. ) were approximately 10 mmol m3 NO3,15 mmol M-3 S'03, and 
1.75 mmol m'3 PO.. Concentrations increased through the pycnocline to 30,35 and 2.25 

mmol m'3 respectively. There was a strong peak in ammonium concentration in the 

pycnocline, reaching 1.75 mmol m'3 at 60 m depth. The oxygen saturation of water 
sampled from a depth of 10 m exhibited a maximum of 107 % on day 12 (Figure MA). 

Phytoplankton biomass was high - up to 19 mg m'3 chlorophyll a in the mixed layer 
(Figure 3.1B). Microscopy showed colonial, mostly large-celled diatoms to predominate. 
Dominant genera were: Chaetoceros, Corethron, Eucampia, Odontella, and Trichotoxon. 
All size fractionations reflected this dominance, with little (10 - 14 %) particulate 
chlorophyll a in the < 20 pm size fraction (Figure 3.1B). The contribution of the < 200 µm 
fraction was 32 % on day 14 and 48 % on day 17 (Figure 3.1B). 
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Figure 3.1 (See Facing Page). Variables (10 m samples) versus day of year for the Willis Islands 
study site. (A) shows temperature (Q), mixed layer depth (MLD, 9), and oxygen % saturation (0). (B) 
shows size-fraction chlorophyll a concentrations: unfractionated (Q), < 200 µm ( ), < 20 µm (0), and < 
2 µm (9). (C) shows size-fraction gross community production (GCP): unfractionated (Q), < 200 µm 
( ), < 20 µm (0), and <2 µm (. ). (D) shows size-fraction dark community respiration (DCR): 
unfractionated (Q), < 200 µm ( ), < 20 pm (0), <2 µm (9), and < 0.8 pm. (E) shows size-fraction net 
community production (NCP): unfractionated (Q), < 200 µm ( ), < 20 pm (0), and <2 µm (. ). (F) 
shows bacterial abundance (Q) and tritiated thymidine incorporation rate (s) 

The unfractionated sample particulate chlorophyll a concentration generally decreased 
during the study (Figure 3.1B). Its value on day 17 of 6.5 mg m'3 corresponded to 34 % of 
the day 11 value (19.3 mg m'3). This decline in phytoplankton biomass could not have 

arisen as a result of dilution by wind-induced deepening of the mixed layer - alone this 

would have reduced chlorophyll concentrations only to 10 to 12 mg m"3 - so other loss 

mechanisms are implicated. 

The GCP of the unfractionated sample was greatest on day 12 (33.4 mmol 02m-' d'') and 
least on day 16 (17.1 mmol 02 m'3 d", Figure 3.1C). Size fractionation showed the 

contribution of the < 200 pm fraction was 38 % on day 14 and 50 % on day 17 (Figure 
3.1C). As for chlorophyll a, only a small percentage (< 12 %) of unfractionated GCP was 
isolated in the < 20 pm fraction. Unfractionated DCR followed the same trend as GCP 

(Figure 3.1D). However, size fractionation showed the contribution of the smaller size 
fractions to be greater than that observed for GCP, and this contribution decreased with time 
(Figure 3.1D). For the < 20 µm fraction, the contribution was 62 % on day 14 and 38 % on 
day 17; whilst that of the < 0.8 µm fraction was 61 % on day 14,31 % on day 16, and 18 % 

on day 17. Unfractionated NCP also followed GCP (Figure 3.1E). Size fractionation showed 
little net production in the smaller fractions (Figure 3.1E). The < 20 µm fraction was 
characterised by net consumption on day 14 (-2.63 mmol 02 m"3 d"') and little net 
production on day 17 (1.57 mmol 02 m' d-'). 

The abundance of bacterioplankton was essentially constant (approximately 1.2 x 1012 cells 

m'3) throughout the study (Figure 3.1F). Bacterial production, however, was 6- to 7-fold 
higher on day's 11 and 12 than on day's 16 and 17 (Figure 3.1F). The estimates of cell- 
specific bacterial production showed a similar trend (Figure 3.2). Bacterial cell-specific 
respiration (estimated from the < 0.8 gm fraction) was first estimated on day 14. This rate 
was again higher, 2-3 fold, than the day 16 and day 17 rates (Figure 3.2). 
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Figure 3.2. Estimates of bacterial cell-specific respiration (a) and tritiated thymidine incorporation rates 
(0) versus day of year for the Willis Islands study site 

In order to calculate critical depth values for the Willis Islands main station, the attenuation 
coefficient (Kd) was estimated, GCP was integrated to the I% isolume (see methods), and 
mixed layer DCR was calculated (volumetric rate x mixed layer depth). The attenuation 
coefficient was estimated using the equation Kd = KO + K, [Chl] for the South Georgia region 
(K0 = 0.0577, K. = 0.00989; Fenton et al. 1994): where KO = the attenuation due to all 
factors other than chlorophyll, and K, = attenuation coefficient per unit chlorophyll. The 

results are shown in figure 3.3. 
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Figure 3.3. Mixed layer depth and estimated critical depth versus day of year for the Willis Islands 
central station. Symbols are: . mixed layer depth and 0 critical depth 

Central Station: Vertical Profiles 

Two vertical profiles were undertaken at the Willis Islands site (day's 11 and 16). The first 

showed the mixed layer (50 m deep) unfractionated chlorophyll a concentration and DCR 

rate to be approximately 19 mg m3 and 3 mmol 02 m'3 d" respectively (Figure 3.4A). 
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Almost 90 % of the chlorophyll a was accounted for by > 20 µm phytoplankters. Within the 

pycnocline, from a 70 m sample, the unfractionated chlorophyll a concentration and DCR 

rate decreased to 21 and 33 % of their respective mixed layer values. 

The second vertical profile conducted on day 16 showed the mixed layer to have deepened 

to 60 m, presumably a consequence of the previous days storm. Mixed layer unfractionated 

chlorophyll a concentration and DCR rate were approximately half their respective values 

on day 11 (Figure 3.4). This decrease coincided with a decline in micro- and 

mesophytoplankton abundance. Size fractionation showed the < 0.8 gm fraction to account 
for all and approximately 31 % of unfractionated DCR activity at 80 and 10 m respectively. 
The unfractionated TTI rate from 10 m was approximately 15 % of that measured for the 

first profile. 
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Offshore-Onshore Transect 

Size fractionations were performed at an offshore and onshore site on day 13. At the 

offshore site the mixed layer depth was approximately 50 m, whereas the water column was 

completely mixed for the onshore station (water column depth 113 m). Measurements 

showed the chlorophyll a concentration and GCP to be greater in all size fractions for the 

offshore site (Figure 3.5) - values were less than half of those encountered at the main 
Willis Islands site on day 11. Although unfractionated DCR was slightly greater for the 

offshore site, for both the < 200 µm and < 20 gm size fractions DCR was greater onshore 
(Figure 3.5). Consequently, there was a net autotrophic nanoplankton community present 

offshore and a net heterotrophic nanoplankton community onshore. 
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Figure 3.5. Size-fraction variables for the offshore and onshore sites near Willis islands, South 
Georgia. The hatched column denotes the offshore observation, and the open column the onshore 
observation. (A) shows chlorophyll a, (B) gross community production (GCP), (C) dark community 
respiration (DCR), and (D) net community production (NCP) 
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3.2. POLAR FRONTAL ZONE 

Central Station: parameters within the mixed layer 

The mixed layer depth was smallest on day 39 (40 m) and greatest on day 41 (65 m, Figure 

3.6A). Water temperature within the mixed layer was approximately 6.5 °C throughout the 

study (Figure 3.6A). The oxygen % saturation of water from a depth of 10 m showed no 
undersaturation (Figure 3.6A). 

The particulate chlorophyll a concentration of the unfractionated sample showed little 

variability (Figure 3.6B): its value on day 38 was 0.7 mg m'3 and on day 42 was 0.8 mg m 3. 

Size fractionation showed all this chlorophyll a essentially resided in the < 20 gm size 
fraction (Figure 3.6B). Furthermore, approximately 40 % could be attributed to the <2 µm 
fraction. 

Unfractionated GCP followed a similar pattern to chlorophyll a, although the minimum on 

day 39 was more pronounced for GCP (Figure 3.6C). As for chlorophyll a, size 

fractionation showed that virtually all of the GCP resided in the < 20 pm fraction (Figure 

3.6C). However, unlike chlorophyll a, GCP in the <2 gm fraction was not significant. 

Unfractionated DCR generally increased throughout the study (Figure 3.6D). Fractionation 

also revealed all the DCR to be attributable to the < 20 pm fraction (Figure 3.6D). Unlike 

GCP, significant DCR (- 35 %) resided in the <2 pm fraction. No significant difference was 

observed between the <2 µm and the < 0.8 gm fraction DCR rates. Unfractionated NCP 

exhibited a minima on day 39 (Figure 3.6E). 
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Figure 3.6 (See Facing Page). Variables (10 m samples) versus day of year for the Polar Front 
study site. (A) shows temperature (Q), mixed layer depth (MLD, . ), and oxygen % saturation (0). (B) 
shows size-fraction chlorophyll a concentrations: unfractionated (Q), < 200 µm ("), < 20 µm (0), and < 
2 µm (9). (C) shows size-fraction gross community production (GCP): unfractionated (Q), < 200 µm 
(u), < 20 µm (0), and <2 µm (s). (D) shows size-fraction dark community respiration (DCR): 
unfractionated (Q), < 200 µm (. ), < 20 gm (0), <2 and < 0.8 pm (9). (E) shows size-fraction net 
community production (NCP): unfractionated (Q), < 200 µm ( ), < 20 gm (0), <2 µm (9). (F) shows 
bacterial abundance (Q) and tritiated thymidine incorporation rate (9) 

The abundance of bacterioplankton in the unfractionated sample was reasonably constant 

throughout the study (Figure 3.6F). The three consecutive TTI measurements (day's 38 - 
40) showed a decreasing pattern (Figure 3.6F). Estimation of bacterial cell-specific 

metabolic rates revealed little variation (Figure 3.7). 

0.5 

0.4 

vv 

0.3 

0.2 

O 

13 0 

" 

" 

37 38 39 40 41 42 43 

Day of Year 

1.8 

1.6; 

-v -Z 
1.4 V 

� z mw EF 

1.2 ... 

1 

Figure 3.7. Estimates of bacterial cell-specific respiration (9) and tritiated thymidine incorporation rates 
(0) versus day of year for the Polar Front study site 

To calculate critical depth values for the Polar Frontal Zone main station, the same 

calculation as described previously for the Willis Islands station was used. A different value, 

one more typical for an open ocean region, was used for Ka (0.025, Fenton et al. 1994). 

The results are shown in figure 3.8. 
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Figure 3.8. Mixed layer depth and estimated critical depth versus day of year for the Polar Front central 
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Central Station: vertical profiles 

Vertical profiles were undertaken on day's 39 and 41 (Figure 3.9) when the mixed layer 

depths were 45 m and 65 m respectively. For both profiles unfractionated DCR showed no 

significant variation within the mixed layer. On day 39, within the pycnocline at 70 m, DCR 

was below the limit of detection. Unfractionated chlorophyll a showed constancy with depth 

on day 39, but a decreasing trend with depth on day 41. Within the mixed layer, for both 

profiles, unfractionated bacterioplankton abundance showed no significant variation with 
depth; a decrease in abundance was observed on day 41, within the pycnocline at 70 m. 
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Figure 3.9. Depth profile variables for the Polar Front study site. (A) shows the day 39 profile, and 
(B) the day 41 profile. Symbols are: unfractionated dark community respiration (DCR; 13, error bars 
denote ±1 SE), Unfractionated chlorophyll a concentration (0), unfractionated bacterial abundance (0), 
and the arrow indicates the base of the mixed layer 

Fractionations Immediately South of Polar Front 

Two fractionations were undertaken where chlorophyll fluorescence was elevated. For both 

these fractionations the mixed layer depth and temperature were approximately 50 m and 
5.5 °C respectively. The particulate chlorophyll a concentration was slightly lower - 0.6 

mg m'3 - than at the main station northwards of the polar front. Again, phytoplankters 
greater than 20 µm accounted for virtually all of this chlorophyll a (Figure 3.10A). 
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Rates of GCP, NCP, and DCR were comparable to those at the main station, with GCP and 
NCP greatest for the second fractionation (day 46, Figure 3.10). The size fractionation 

similarly showed 30 - 40 % of DCR to be attributable to the <2 pm fraction (Figure 3.10C). 

However, this time a difference was observed between the <2 and < 0.8 gm rates, with only 
10 - 18 % of unfractionated DCR attributable to the < 0.8 µm fraction (Figure 3.1OD). 
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Figure 3.10. Size-fraction variables for the two fractionations performed immediately to the south of 
the Polar Front (events 349 and 374). The hatched columns denote event 349 (day 45) observations, and 
the open columns event 374 (day 46). (A) shows chlorophyll a, (B) gross community production 
(GCP), (C) dark community respiration (DCR), and (D) net community production (NCP). Note for the 
day 46 fractionation there are no < 20 µm GCP and DCR observations 

3.3. WEDDELL SEA 

Water temperature varied from -1.8 °C to 0.7 °C (results not shown). Oxygen % saturation 
values ranged between 96.4 and 106.2 % (Figure 3.11A). The highest value was recorded in 

the marginal ice zone (P4) and the lowest in P1. 

For the unfractionated samples, chlorophyll a concentrations varied between 0.2 and 2.2 

mg m'3 (Figure 3.11B). On average 57 % (range 16 - 88 %, n= 8) of this resided in the < 
20 gm size fraction. The contribution of this fraction was greatest in P8 and least in P2. The 

predominant diatoms for each sampling point are shown in table 3.1. 
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Figure 3.11 (See Facing Page). Weddell Sea observations. The X-axis P1 to P8 denotes the 
sample codes (see Figure 2.1 for their location). For all sub-plots except (C), the hatched column denotes 
the unfractionated observation and the open column the < 20 pm size-fraction. For (C) the hatched 
column denotes bacterial abundance, and the open column the rate of tritiated thymidine incorporation 
(TTI). (A) shows oxygen saturation (%); (B) chlorophyll a concentration; (C) bacterial abundance and 
Ti! rate; (D) gross community production (GCP); (E) dark community respiration (DCR); and (F) net 
community production (NCP) 

Table 3.1. The predominant diatoms for the Weddell Sea sampling points 

Sampling Point Predominant Diatoms 
P1 Nitzschia (Fragilariopsis) (69 %) 
P2 Nitzschia (Fragilariopsis) (40 %), Chaetoceros spp. (30 %) 
P3 Nitzschia (Fragilariopsis) (87 %) 
P4 Nitzschia (Fragilariopsis) (82 %) 
P5 Nitzschia (Fragilariopsis) (42 %), Chaetoceros spp. (15 %) 
P6 Nitzschia (Fragilariopsis) (41 %) 
P7 Thalassiosira spp. (30 %), Chaetoceros spp. (20 %) 
P8 Nitzschia Fra ilario sis (36 % Chaetoceros spp. (21 % 

Unfractionated gross community production ranged between 0.65 and 4.76 mmol 02 m"3 d" 

(Figure 3.11C). The mean contribution of the < 20 un fraction was 56 % (range 14 - 88 %, 

n= 8). This contribution was smallest in P5 and largest in P8. Unfractionated DCR varied 
from 0.36 to 1.24 mmol 02 m"' d" (Figure 3.11D). On average, the contribution of the < 20 

µm fraction was 56 % (range 15 - 97 %, n= 8). This contribution was maximal in P8 and 

minimal in PS. Unfractionated NCP ranged between -0.28 and 3.75 mmol 02 m-3 d-' (Figure 

3.11E). 

Bacterial abundances in the unfractionated samples varied from 1.2 x 10" to 4.0 x 10" cells 

m"3 (Figure 3.11F). The smallest abundance was measured in P8 and the largest in P7. The 

unfractionated tritiated thymidine incorporation rates ranged from 0.02 to 1.6 pmol dm-3 h'' 

(Figure 3.11F). 
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3.4. SUMMARY 

The Southern Ocean results are summarised in Table 3.2. 

Table 3.2. A summary of the Southern Ocean results. For each variable the mean value is reported; 
numbers in parentheses denote the range of values. Abbreviations used are: unfractionated (Unfrac. ); 
chlorophyll a (Chl a); bacterial abundance (Bact. No. ); tritiated thymidine incorporation rate (UI); gross 
community production (GCP); dark community respiration (DCR); net community production (NCP); 
and < 20 µm size-fraction (< 20 µm) 

Variable Weddell Polar Front South Georgia All South 

Temperature (°C) 0.4 (-1.8 - 0.7) 6.2 (5.4 - 6.6) 2.9 (2.3 - 3.5) -1.8-6.6 
Unfrac.. Chl a (mg m3) 1.2 (0.2 - 2.2) 0.7-0.82 6.5-19.6 0.2-19.6 

<20pm Chla(mgm) 0.7 (0.2 - 1.5) 0.59-0.81 0.9-2.1 0.2-1.5 

Bact. No. (1012 cells m) 0.3 (0.2 - 0.4) 1.1 (0.9 - 1.3) 1.2 (0.8 - 1.5) 0.2-1.5 

<0.8gm DCR(mmol02m3c1') - 0.2(0.1-0.4) 1.3 (0.4 - 3.1) 0.08-3.12 

TTI (nmol Tm3 h') 0.02-1.6 1.0 (0.8 - 1.3) 1.7 (0.2 - 2.8) 0.02-2.8 

Unfrac. GCP (mmol 02 m3 d') 2.8 (0.7 - 4.8) 2.2 (1.5 - 2.7 21.7 (9.4 - 33.4) 0.65-33.37 

Unfrac. DCR (mmol 02 m3 d') 0.8 (0.4 - 1.2) 0.7 (0.5 - 1.0) 3.3 (1.7 - 6.0) 0.48-6.04 

Unfrac. NCP (mmol 02 rri3 d-') 2.0 (-0.3 - 3.8) 1.4 (0.7.1.8) 18.5 (7.1 - 27.3) -0.28 - 27.33 

<20gm GCP(mmol0Zm'd'') 1.4(0.4-3.6) 2.0 (1.2 - 2.9) 1.2(0.5-2.3) 0.4-3.63 

<20tim DCR(mmol02cri3d'') 0.4 (0.1 - 1.2) 0.8 (0.6 - 1.0) 1.5 (0.8 - 3.2) 0.09-3.17 

< 20 µm NCP (mmo102 m' d'') 1.0 (0.1 - 2.4) 1.2 (0.6 - 1.9) -0.3 (-2.6 - 1.6) -2.63-2.43 
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CHAPTER 4: SOUTHERN OCEAN DISCUSSION 

Phytoplankton biomass 

Phytoplankton standing stock is the outcome of the balance between production and loss 

(respiration, grazing, and sedimentation) processes (Legendre 1990). Large-scale 

production patterns are generally related to nutrient input (Cullen 1991). High-nutrient, 

low-chlorophyll (HNLC) waters are atypical and indicate control of phytoplankton biomass 

by something other than the classical macronutrients: nitrate and phosphate (Cullen 1991). 

Because factors other than macronutrient supply control primary production, HNLC 

regions could potentially fix increased amounts of carbon dioxide (e. g. Priddle et al. 
1992). Consequently, given the current attention on climate change (the greenhouse effect), 
HNLC regions are of considerable biogeochemical interest (e. g. Priddle et al. 1992). One 

of the major HNLC areas is the Southern Ocean 

The Southern Ocean is characterised by a generally low standing crop of phytoplankton 
(0.1 -1 mg Chl a m'3, El-Sayed 1988). A variety of factors have been considered as rate 
limiting for Antarctic phytoplankton growth: e. g. light, turbulence, and temperature (e. g. 

Jacques 1983, Smith and Sakshaug 1990, Priddle et al. 1992). Macronutrient 

concentrations are almost always high and have never been directly demonstrated as 

limiting to phytoplankton growth (Smith and Nelson 1990); however, iron, a micronutrient, 

may be a limiting factor (de Baar et al. 1995). Phytoplankton blooms (> 1 mg m-' of Chl a; 

Sullivan et al. 1993) occur but are not evenly distributed. They arise primarily in: 1) coastal 

and continental shelf waters, and waters over shelf breaks and submarine mountain ranges 
(e. g. Hayes et al. 1984), 2) waters uncovered by the seasonal retreat of ice (the seasonal ice 

zone, Trdguer and Jacques 1992), 3) frontal areas, and 4) iron-rich waters downstream of 

continental masses (Sullivan et al. 1993, de Baar et al. 1995). The phytoplankton biomass 

(Chl a) observations obtained in this study and a broad subset of those reported in the 

literature are categorised in table 4.1. 

The finding of this study that large diatoms predominated near Willis Islands is consistent 

with previous observations in Antarctic coastal waters (e. g. Fiala and Delille 1992). Previous 

studies around South Georgia have reported the north western region as supporting higher 

phytoplankton biomass (Mordasova 1989, Priddle et al. 1986, Owens et al. 1991, Priddle et 

al. 1995); the cause of these elevated biomass values is considered to be favourable 

hydrological conditions: conspicuous cyclonic and anticyclonic eddies, minimal depth of 

the seasonal thermocline (35 - 75 m), and high water stability (Mordasova 1989, Priddle et 

al. 1986). Similar inferences have been made for other islands characterised by recurrent 

phytoplankton blooms (e. g. Prince Edward Archipelago, Perissinotto et al. 1990). The 

biomass of the diatom bloom encountered near Willis Islands is unusually large (Table 4.1), 

only Whitehouse et al. (1996) have reported higher values (Table 4.1). Interestingly, the 

1993/94 austral summer was a season characterised by low krill biomass around South 

Georgia (Brierley and Watkins 1996 and references therein), and under similar 
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circumstances, high biomass blooms have been observed previously Q. Priddle pers. 
comm. ). This suggests krill may be a key component of the ecosystem exerting top-down 

control (e. g. Eckemkemper et al. (1989). 

Table 4.1. Unfractionated and < 20 µm Chlorophyll a concentrations for different areas of the Southern 
Ocean. Numbers in parenthesis denote mean. The observations of the present study are highlighted in 
bold, and all observations have been grouped as either continental shelf or oceanic. Studies are: (a) Hayes 
et al. (1984); (b) Koike et al. (1986); (c) Spies (1987); (d) Weber and El-Sayed (1987); (e) Mordasova 
(1989); (f) Smith and Nelson (1990); (g) Owens et al. (1991); (h) Bak et al. (1992); (i) Fiala and Delille 
(1992); (j) Branduri (1993); (k) Lopukhin (1993, ' denotes < 15 µm size-fraction); (1) Figueiras et al. 
(1994); (m) Gleitz et al. (1994); (n) Priddle et at. (1995); (o) Dower et at. (1996); (p) Xiuren et al. (1996); 
(q) Whitehouse et al. (1996) 

Study Area Time of Unfrac. Chia < 20 Chi a< 20 
Year mg m` mg m" Chi a% 

CONTINENTAL SHELF 
Elephant Island° Nov. 0.1 - 0.8 (0.3) 58-98(83) 
Brans. St. / Drake Pass. ' Dec. 0.2-2.9 64 
S. Georgia' Dec. - Feb. 0.2 -6 
Willis Islands Jan. 6.5.19.6 (12.5) 0.9.2.1 (1.4) 10.15 (12) 
S. Georgia' Jan. 1-4 
South Georgia (western shelf)' Feb. 0.26 - 1.48 
South Georgia9 All Year 0.14-26.8 
Terre Adelie' Jan. 03 - 2.5 (1.2) 
Antarctic Peninsula' Jan. - May 0.79 ± 0.20 (11) 
King George Island! Feb. 0.1 - 1.5 
Eastern Weddell Seams Jan. - Feb. 0.1 - 0.8 
Eastern Weddell Sea" Feb. - Mar. 02-2.3 
OCEANIC 
Drake Passage" Dec. 0.65 0.33 
Drake Passage' Jan. - May 0.25 ± 0.23 
Atlantic sector' Dec. - Jan. <8 (2.25) 0.78 
Indian Sector (west of Prydz Bay)' Dec. Jan. < 0.5 (0.2) 0.08 
Indian Sector (east of Prydz Bay)' Mar. < 0.5 (0.2) 0.17 
Polar Front Feb. 0.7 - 0.8 (0.8) 0.6 - 0.8 (0.8) 99 - 100 
60 - 68 °S, 15 - 30 °W F eb. - Mar. < 0.1 - 0.4 (0.1) 73,34 - 95 
60 - 66 °S, 48 - 64 °W F eb. - Mar. < 0.1 - 0.8 (0.2) 60,24 - 86 
67-71 °S, 4-12°W° Apr. - May <0.35 (0.15) 
S. Georgia and Scotia Sea' Jan. - Mar. 0.2-1.8 
Scotia and Weddell Seas' Dec. - Jan. 0.3 - 2.8 (1.0) 
Scotia and Weddell Seas, Brans. Feb. - Mar. 0.3 - 1.1 (1.0) 
St" 
Scotia Sea" Jan. 0.1 - 1.9 
Scotia Sea' Jan. - May 1.19 ± 1.42 
Weddell Seat Nov. < 0.7 
Weddell Sea" Jan. - Apr. 0.19-0.55 23 - 56` 
Weddell Sea' Jan. - May 0.66 ± 0.77 
Weddell Sea" Jan. 0.2-0.8 
Weddell Sea° Feb. 0.9-3.1 
Weddell Sea` Mar. (> 3) 
Weddell Sea Mar. 0.2 - 2.2 (1.2) 0.2 - 1.5 (0.7) 16 - 88 

(57) 

The Polar Front Zone is of particular interest because cold Antarctic water sinks in this 

region and so carbon dioxide drawdown is possible (Trdguer and Jacques 1992). The 

chlorophyll a concentrations ( 0.55 mg m'3) measured in this study within the polar front 

(events 352 and 375) are similar to those recorded previously (e. g. Trdguer and Jacques 

1992). In the open ocean waters south of the front, the chlorophyll a concentration is 

reported to decrease (e. g. Trdguer and Jacques 1992). Thus, the front itself is a region of 

elevated biomass levels. The size-fractionation observations for the main station north of the 
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front showing essentially no phytoplankters > 20 µm are consistent with previous studies: 
for example Weber and El-Sayed (1987) reported the < 20 µm size-fraction to account for 

90 % of the total chlorophyll a in subantarctic waters. 

The chlorophyll a concentrations measured in this study in the Weddell Sea are similar to 
those reported previously (Table 4.1). Earlier studies have found phytoplankton blooms 

near to the edge of seasonally retreating pack-ice (e. g. Nelson et al. 1987), the most 
extensive and richest was composed of Thalassiosira tumida (large, colonial centric diatom) 

with chlorophyll a concentrations up to 190 mg m'3 (El-Sayed 1971). An ice-edge bloom 

was also found in this study, although the chlorophyll values were much smaller, (2.2 mg 
Chl a m'3, sample P4). 

The Willis Islands, Polar Front, and Weddell Sea samples showed considerable variability in 

the percentage of chlorophyll a residing in the < 20 µm size-fraction. Values ranged from 9 

to 19 % at Willis Islands, 16 to 88 % in the Weddell Sea, to approximately 100 % at the 

Polar Front. Thus the < 20 µm fraction can dominate the phytoplankton community, as 

reported by previous workers (e. g. von Bröckel 1981, Weber and El-Sayed 1987), but it can 

also play a minor role, especially during blooms (e. g. Fialla and Delille 1992). 
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Primary Production 

Primary productivity in the Southern Ocean generally follows the same distribution as 
phytoplankton standing crop (El-Sayed 1988). A very good correlation between gross 
community production and chlorophyll a concentration was found in this study (see 
Chapter 7). The lowest estimated rate (Polar Front, 0.48 gC m'2 d"') is higher than the 
typical value for open ocean regions estimated using the '4C technique (< 0.1 gC m'2 d". . El- 
Sayed 1988); however one is not comparing likes because, depending on the length of 
incubation, the "C technique can give results closer to net primary production (e. g. Mathot 

et al. 1992, Williams 1993). In the present study, the estimated highest value (1.9 gC m'2 d", 
Willis Islands) is comparable to those recorded for other high biomass blooms over 

continental shelf areas (1.56 - 3.62; Mandelli and Burkholder 1966, EI-Sayed 1968, Home 

et al. 1969, El-Sayed 1971, von Bröckel 1985). 

Table 4.2. Unfiactionated and < 20 µm primary production measurements for different areas of the 
Southern Ocean. The observations of the present study have been converted into units of carbon using a 
photosynthetic quotient of 1.2 (see Chapter 7, page 18, for justification of this value), and are highlighted 
in bold. Other studies have been converted into daily rates by multiplying the reported hourly rates by an 
estimated daylength (calculated from latitude using the equation in Kirk 1995). Studies are: (a) Hayes et 
al. (1984). (b) Weber and El-Sayed (1987); (c) Smith and Nelson (1990); (d) Mathot et al. (1992); (e) 
Jochem et al. (1995; note the size-fraction data is for the <2 µm size-fraction) 

Study Area Time o 
Year 

n rac. < 20 G 
(mg Cm's d'4 

n rac. ' 
(mg C m's d'`) 

< 
GCP (%) 

A 
Brans. St. / Drake Pass. (17 h)° Dec. 20 - 42 
Antarctic Peninsula (14 h) Jan. - May 20±5 
WIUls Islands Jan. 94.334 (217) S-23 2-12 
Eastern Weddell Sea Jan. - Feb. 400 - 1500 
Eastern Weddell Sea Feb. - Mar. <100 - 1000 
Enderby Land (14 h)° Feb. - Mar. 3-43 1-6 15 - 68 
Elephant Island (14 h)' Nov. 12-28(16) 

OCEANIC 
Drake Passage (14 h)' Jan. - May 7±6 
Polar Front Feb. 15 - 27 (22) 10-29 63-100 
Polar Front' Oct. - Nov. 10.45 
Atlantic sector / Weddell Sea* Oct. - Nov. 200 - 300 36 - 75 
Scotia Sea (14 by Jan. - May 53±74 
Scotia - Weddell Sea° Nov. - Jan. 130 - 2250 
Weddell See Nov. 170 - 980 (490) 
Weddell Sea (14 h) Jan. - May 25±39 
Weddell Sea° Mar. 30 - 270 (130) 
Weddell Sea Mar. 7.48(28) 4.36 14-88 
60-68°S, 15 - 30 °W (14 h)° Feb. - Mar. <9.9 
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Bacterial Abundance and Production 

The bacterial abundances estimated in this study are comparable to those measured 
previously in the Southern Ocean (Table 4.3). This study's Weddell Sea values and those 

reported for McMurdo Sound (Table 4.3) are at the low end of values reported for the 

global ocean (e. g. Cho and Azam 1990). The rates of tritiated thymidine incorporation and 
other estimates of bacterial production (Table 4.3) are also relatively low compared to 

estimates from other wanner localities (Ducklow and Carlson 1992). 

Table 4.3. Bacterial abundances (Bact. No. ), rates of tritiated thymidine incorporation (TTn, bacterial 
production (mg Cm3 d'), and calculated growth rate (µ, divisions d"') for different areas of the Southern 
Ocean. The observations of the present study are highlighted in bold. Other studies are: (a) Bak et a!. 
(1992); (b) Fuhrman and Azam (1980); (c) Rivkin (1991); (d) Cota et al. (1990); (e) Sullivan et al. 
(1990); (f) Gustafson et al. (1990); (g) Kim (1991); (h) Anderson et al. (1990, same study as Gustafson) 

Study Area Time of Bact No. TTI Production µ 
Year 1012 cells m'3 nmol m'3 h'' mg C m'3 d4 d-' 

CONTINENTAL SHELF 
Willis Islands Jan. 0.8 - 1.6 
Bransfield Straits Dec - Jan 0.01 - 0.16 
McMurdo Sound Oct - Nov < 0.35 < 0.1 - 1.4 
McMurdo Sound" 0.01 -0.06 0.1- 1.1 (0.6) 
McMurdo Soundb < 0.1 - 2.9 
McMurdo Sound` 0.5 - 1.1 

OCEANIC 
Polar Front Feb. 0.9 - 1.3 
Scotia Sea' Jan. 0.4-0.6 
Weddell Sea' Jan. 0.9-1.2 
Weddell Sea Mar. 0.2 - 0.4 
Weddell Sea MIZ° 0.2-1.3 
Weddell Sea` 1.2 - 17 
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Dark Community Respiration 

The rates of dark community respiration estimated in this study are comparable to those 

measured previously in the Southern Ocean (Table 4.4). The maximum value (6 mmol 02 

m'3 d'', Willis Islands) is the highest rate reported so far for the Antarctic region but is 

considerably lower than the maximum rates recorded for the Arctic (Table 4.4. ). Possible 

reasons for this difference, given the similar temperature regimes for both regions, are 

considered in the general discussion (Chapter 7). 

In this study, dark community respiration and chlorophyll a were found to be significantly 
related (see general discussion). Aristegui and Montero (1995) also reported a highly 

significant correlation between DCR and chlorophyll a, but no correlation between DCR 

and bacterial abundance, and came to the same conclusion as Karl (1991) that 

phytoplankton are responsible for much of the microbial metabolism in coastal Antarctic 

waters during spring and summer. The size-fraction observations of the present study 
suggest that bacteria at times can dominate (up to 61 % of total) microbial metabolism. 
However, the estimated range for the bacterial contribution to respiration (9 - 61 %) is at the 
lower end of values reported for temperate regions (also see chapter 7, page 39). 

Table 4.4. Plankton assemblage dark community respiration rates. (t) denotes temperature, (n) number 
of observations. The observations of the present study are highlighted in bold. Other studies are: (a) 
Pomeroy pers. comm. in Williams (1984); (b) Harrison (1986); (c) Platt et al. (1987), * over estimate, 
arising from the fact that respiration rates <4 have been entered as 4; (d) Robinson and Williams (1993); 
(e) Aristegui and Montero (1995); (f) Arlstegui et al. (1996), 10 m samples only. 

Location Depth 
(m) 

t 
('C) 

Chi a 
(mg m'') (mmol 

mean (n) 

DCR 
O, m3 d'') 

Ran se 
S. Georgia 10 2.3 - 3.5 6.5 19.6 3.3 (7) 1.7 - 6.0 
Polar Front 10 6.6 0.7 - 0.8 0.7 (5) 0.5 - 1.0 
Weddell Sea 10 . 1.8 - 0.7 0.2 - 2.2 0.8 (8) 0.4 - 1.2 
Antarctic Ocean' 0-100 0.1 (47) 0.0-0.5 
S. Georgia° 0-100 0-6 1.9 (30) 0.3-3.7 
Bransfield Str' 10 -0.5 -0 0.5 -3 1.3 (23) 0.2-4.1 
Antarctic Peninsula 1-45 -0.3 - 1.8 0.8-5.0 2.4 (4) 0.4-5.2 
Baffin Bay, Arctic' 0.5 - 9.8 5.6 (10) 1.6 - 133 
Baffin Ba, Arctic' 0-25 - -21.9 1.17* 10 1 <3- 25.7 

4-6 



CHAPTER 5: MENAI STRAIT RESULTS 
There are very few multi-seasonal data sets on both primary and bacterial productivity and 
total system respiration in the same ecosystem. This chapter presents the results of a study 
that has produced one of these rare data sets for a temperate coastal ecosystem: the Menai 
Strait. My part of the study was undertaken over two consecutive years (1993-94). During 
1993, sampling was carried out over a large part of the annual cycle. In 1994, sampling was 
restricted to the spring and early summer, such that the microbial-plankton-bloom 
temporal-sequence could be studied in more detail. 

The results of the 1993-94 study presented in this chapter were obtained by a team of 
workers. The roles of various colleagues in obtaining these data are listed in the 

acknowledgements. My contribution was as follows: 
1993. Assisted with sampling, undertook all size-fractionations, filled and fixed all oxygen 

bottles, titrated 50 - 100 % of the oxygen bottles, estimated all chlorophyll a 

concentrations on the fluorometer, processed most of the tritiated thymidine incorporation 

rate measurements, and undertook all microplankton counts, 

1994. Assisted with sampling, undertook all size-fractionations, filled and fixed all oxygen 
bottles, titrated all oxygen bottles, estimated all chlorophyll a concentrations on the 
fluorometer, processed most of the tritiated thymidine incorporation rate measurements, 
and undertook all bacterial and microplankton counts. 

For the results of a more scaled-down study (gross and net community production, dark 

community respiration, chlorophyll a, and temperature) undertaken by another worker 
(John Rowlands) in the Menai Strait during 1992, the reader is referred to the paper of 
Blight et al. 1995. 

5.1. TEMPERATURE 

The 1993 and 1994 spring and early summer water temperatures were similar to the pattern 

of monthly mean water temperatures at Menai Bridge pier between the years 1955 and 
1968 (Harvey 1972). The measured temperature range for 1993 was 6.4 to 15.6 'C and for 

1994 was 3.6 to 13.6 C. 

5.2. THE 1993 SEASONAL PATTERN 

The < 200 µm fraction chlorophyll a (Figure 5.2A) exhibited 2 peaks over the spring 

period. The first peak (diatomaceous) was recorded on day 117. The second, constituting 

the annual maximum, was measured on day 146 and comprised predominantly of 
Phaeocystis cells. After this maximum, chlorophyll a concentrations then remained low, 

near 1 mg M-3, through July and August until a late summer diatom bloom (Guinardia 

flaccida, 3.4 x 10' µm3 dm 3) was observed on day 237. This bloom declined over the 

course of two weeks and chlorophyll a remained low, approximately 1 mg m-1, for the rest 
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of the year. During the diatom blooms, the contribution of the < 20 µm fraction of 
chlorophyll a relative to the < 200 pm fraction was 20 to 25 %. During the Phaeocystis 
bloom this contribution increased to approximately 50 % and in July, when phytoplankton 
biomass was low, roughly 70 % of the measured chlorophyll a was attributable to the < 20 

M fraction. 
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Figure 5.1. Spring and early summer trends for (A) water temperature in the Menai Strait and (B) air 
temperature at Valley (Anglesey, North Wales) during 1993 and 1994. The solid lines denote the mean 
monthly temperatures between the years 1955 and 1968 (Harvey 1972) 
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The seasonal pattern of gross community production and its size distribution was similar to 

that exhibited by the chlorophyll a concentration (Figure 5.2B). The < 200 pm fraction 

dark community respiration rate was characterised by a smooth curve peaking on day 160 

(Figure 5.2C). Maximal rates were exhibited for all size fractions (except the < 0.8 µm 
fraction) on day 160. The respiration rate of the < 0.8 gm size fraction appeared to peak a 
fortnight earlier (day 146), when the < 0.8 gm rate was significantly greater than the < 200 

pm DCR rate (student sampled paired t test, P<0.01, n= 3). The < 0.8 µm fraction on 

average accounted for 69 % (range 28-131, n= 10) of the < 200 gm fraction DCR rate and 

this contribution was smallest on day 178. The < 200 µm fraction net community 

production exhibited three peaks during the year (Figure 5.2D). Each of these peaks 

coincided with a phytoplankton bloom. Following the Phaeocystis bloom the net 

autotrophic community was succeeded by a net heterotrophic one and this phase lasted for 

approximately one month. 

The tritiated thymidine incorporation rate exhibited a number of peaks over the course of 
the year with the annual maximum occurring on day 146 (Figure 5.2E). The conversion 
factor experiment performed on day 260 yielded a factor of 12.5 x 1018 cells mol' 
(calculated by dividing the increase in bacterial numbers over the incubation period by the 
integrated thymidine incorporation, as recommended by Bell 1988). 
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Figure 5.2 (See Facing Page). The 1993 seasonal patterns in the Menai Strait for the < 200 µm 
fraction and where available the < 53, < 20 and < 0.8 pm fractions. The parameters shown are (A) 
chlorophyll a (chl a), (B) gross community02 production (GCP), (C) dark community 02 respiration 
(DCR), (D) net community 02 production (NCP), and (E) tritiated thymidine incorporation (UI) rate 

5.2. THE 1994 SPRING BLOOM PATTERN 

The spring bloom was characterised by three chlorophyll a peaks (Figure 5.3A). The first 

peak was comprised of mixed diatoms (day 116) with Asterionella glacialis and Ditylum 
brightwelli dominating numbers and biovolume respectively. These cells and most of the 
detritus largely disappeared from the water column by day 123. The second chlorophyll a 
peak (day 130) was again predominantly diatomaceous with Rhizosolenia delicatula 
(3.5x105 cells dm-') as the major diatom, although Phaeocystis bladders (first observed on 
day 129) were also present. The third peak occurred on day 145 when Rhizosolenia 
delicatula (4.5x10' cells dm") was still abundant and the measured Phaeocystis maximum 

occurred (approximately 1x103 bladders dm'' and 5x106 cells dm'3, Figure 5.3B). The 
Phaeocystis cell counts had decreased dramatically by day 159, whereas high numbers of 
Rhizosolenia delicatula persisted until day 168. Both Rhizosolenia delicatula and 
Phaeocystis bladders were absent from the water column by day 181. Size fractionation of 
the chlorophyll a during the diatom blooms showed only 20 % of the unfractionated 
chlorophyll a to reside in the < 20 pm fraction. This contribution increased to 34 to 44 % 
during the Phaeocystis - Rhizosolenia delicatula bloom and after the decline of this bloom 
increased to 87 %. 

Three peaks in ciliate numbers and biovolume were observed over the phytoplankton 
blooms period (Figure 5.3B, C).. The first two of these coincided with the first two 
chlorophyll a peaks. The third and largest ciliate peak occurred approximately 1 week after 
the Phaeocystis maximum when aloricate choreotrichs approximately 20 gm in diameter 

predominated. Dinoflagellates (predominantly Gyrodinium spp. ) also increased during the 
decline of the Phaeocystis with the maximal abundance and biovolume occurring on day 
169 (Figure 5.3B, Q. Mesozooplankton were not effectively sampled in this study, but their 
larvae were present in the sample bottles in small numbers (maximal abundance very 
approximately 100 larvae dm'3). 

Bacteria numbers showed a gradual increase from 3x105 cells cm" on day 52 to 4.5x106 

cells cm-' on day 137 (Figure 5.3D). A second more protracted peak (> 3x106 cells cm"3) 

occurred between days 153 and 168 and numbers then declined to 1.5 to 2x106 cells cm'3. 
On average 61 % (45-92 %l n= 14) of the unfractionated bacterioplankton assemblage was 
isolated in the < 0.8 pm fraction and this fraction had no significant eucaryote abundances. 
Although bacterial cell sizing was not undertaken, those that were sized were mostly 0.4 to 
0.5 µm diameter cocci. 
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Figure 5.3 (See Facing Page). The 1994 spring and early summer patterns in the Menai Strait for 
the unfractionated plankton assemblage (Unfractionated) and where available the < 200, <53, < 20, and < 
0.8 pm fractions. The parameters shown are (A) chlorophyll a (chl a), (B) diatom, Phaeocystis (Phaeo. ), 
ciliate and dinoflagellate (dino. ) cell counts, (C) diatom, ciliate and dinoflagellate (dino. ) biovolumes, (D) 
bacterial abundance (Bact. No. ), bacterial net growth rate (Net growth), bacterial growth rate (Growth), and 
tritiated thymidine incorporation rate (TTI) using a conversion factor of 2.76 x 1016 cells mo1' 

The thymidine conversion factor experiment performed on day 130 yielded a factor of 
2.76 x 1018 cells mol' (calculated by dividing the increase in bacterial numbers over the 
incubation period by the integrated thymidine incorporation). Using this factor the 

estimates of growth from TM and changes in cell numbers in the < 0.8 µm fraction were 

similar, with no significant growth before day 130 (Figure 5.3D). The estimates of net 

growth, from changes in cell numbers in the unfractionated sample, similarly showed no 

significant net growth before day 130 (Figure 5.3D). There were two peaks in positive net 

growth, days 130 and 145, and 2 periods of negative net growth, day 137 and days 153 to 

168. 

Unfractionated GCP followed the same trend as the chlorophyll a concentration although 

the second two peaks were less well defined (Figure 5.4B). Size fractionation showed that 

during the mixed diatom and Rhizosolenia delicatula blooms approximately 20 % of the 

unfractionated GCP was accounted for by the < 20 pm fraction. This percentage 

contribution continued to remain low, 16 to 20 % of the unfractionated value, during the 

Phaeocystis-Rhizosolenia delicatula bloom. Two peaks were observed in DCR (Figure 

5.4C) over the spring period. Respiration was largely attributable to the smallest size 

fractions. The < 0.8 µm fraction on average accounted for 49 % (range 21-101 %, n= 13) 

of unfractionated DCR. This contribution was highest (> 70 %) during the early phases of 

the Rhizosolenia delicatula and the Phaeocystis blooms. Unfractionated NCP exhibited two 

peaks (Figure 5.4D). The second of these, the Phaeocystis-Rhizosolenia bloom, was 

succeeded by a net heterotrophic phase lasting approximately 12 days. 
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Figure 5.4 (See Facing Page). The 1994 spring and early summer patterns in the Menai Strait for 
the unfractionated plankton assemblage (Unfractionated) and where available the < 200, <53, < 20, and < 
0.8 tm fractions. The parameters shown are (A) chlorophyll a (chi a), (B) gross community 02 
production (GCP), (C) daiic community 01 respiration (DCR), and (D) net community 02 production 
(NCP) 

The < 0.8 pm size-fraction DCR and unfractionated TTI rates were combined with their 

respective bacterial counts in order to estimate bacterial cell-specific metabolic rates (Figure 
5.5A). Over the spring blooms period, there were three distinct peaks in both cell-specific 
DCR and TTI (Figure 5.5A). The cell-specific DCR peaks are concurrent with the 

chlorophyll a peaks. Because not all of the bacteria were usually isolated in the < 0.8 pm 
size-fraction, the cell-specific DCR rates from this fraction were multiplied by the total 
bacterial abundance in order to estimate the bacterial contribution to unfractionated 
metabolism (Figure 5.5B). This showed bacteria to be the dominant respirers and identified 

4 sampling points (days 116,130,145 and 153) as having substantial non-bacterial 

components. 
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Figure 5.5. Bacterial metabolism during the spring blooms period in the Menai Strait in 1994. 
showing (A) cell-specific respiration (DCR cell-') and tritiated thymidine incorporation (TTI cell") rates, 
and (B) the bacterial contribution (bacteria) to unfractionated plankton assemblage (Unfractionated) 
respiration. This contribution is estimated by dividing the < 0.8 µm fraction respiration rate by the 
fraction of the unfractionated bacterial assemblage isolated in the < 0.8 pm fraction 
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The < 53 µm size-fraction parameters for this last sampling point (day 153) are shown in 

figure 5.6. As significant reduction in both Phaeocystis cell abundance and DCR activity 

occurred when making this fractionation, Phaeocystis may have accounted for some of the 

non-bacterial respiration. 
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Figure 5.6. Parameters for the < 53 µm fraction on day 153 of 1994 as percentages of the 
unfractionated plankton assemblage parameters 

Area budget for net community production over the 1994 bloom period 

An area budget for NCP over the bloom period was estimated for a representative 1 m2 

cross-section of the Menai Strait (Figure 5.7). 
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Figure 5.7. A simplified cross-section of the Menai Strait near Carreg Ginnog under mean tidal 
conditions. The numbers denote length or depth in metres 

For this calculation, secchi disc depths were used to estimate k� and assumptions were made 

that GCP was proportional to light and DCR constant with depth. Thus NCP for the cross- 

section equals the numerically integrated GCP minus the integrated DCR, and this value was 
divided by the cross-sectional width to derive the average NCP per unit area (Figure 5.8). 

See methods (Chapter 2) for the integrated GCP calculation. 
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Time-course experiments for dark community respiration 

Two time-course experiments for dark community respiration were undertaken to check for 

linearity. Respiration was found to linear with time for both experiments. Estimates of 
bacterial abundance were also made during the second time-course experiment (day 159 of 
1994) and the results are shown in figure 5.9. This shows no obvious increase in bacterial 

abundance in the unfractionated sample, but a marked increase in abundance in the < 0.8 

tm size-fraction. 
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CHAPTER 6: MENAI STRAIT DISCUSSION 

This chapter discusses the results of the measurements in which the author was substantially 
involved in, in the Menai Strait, during the years 1993 and 1994. The interested reader is 

also referred to the paper of Blight et al. (1995) which not only discusses the results of the 
present study, but also considers the results of concomitant nutrient analyses and a wide- 
ranging 1992 data set. 

Pattern of Succession 

The general patterns of chlorophyll a concentrations during the spring bloom periods of 
the two years of this study conformed to the succession typical for the area: a mixed diatom 
bloom in March and April followed by blooms of diatoms and Phaeocystis in May and 
June (Jones 1968, Jones and Haq 1963, Jones and Spencer 1970, Al-Hasan et al. 1975, 

Foster et al. 1982b and 1983, Voltalina et al. 1986). For both years the annual chlorophyll 

a maximum coincided with the presence of Phaeocystis in the Strait. This shift in 

predominance from diatoms to Phaeocystis has been suggested to be linked with the 

exhaustion of silicate: silicate limitation causes the demise of the diatoms leaving 

Phaeocystis to bloom and utilise the remaining nitrogen and phosphate reserves (Ewins and 
Spencer 1967, Foster et al. 1982b, 1983). Silicon limitation of diatoms has also been 

suggested to arise in the coastal waters of the German Bight (S. North Sea) where a similar 
diatom-Phaeocystis succession occurs (van Bennekom et al. 1975, Bätje and Michaelis 
1986). The diatom-Phaeocystis succession is one example of the general diatom-flagellate 

bloom succession that appears to be typical for man-induced eutrophicated coastal waters 
(Smayda 1990). 

For the first chlorophyll a maximum (days 116-123) of 1994, the contribution of small 

colonial diatoms to total diatom numbers was greater than 80 %. Previous studies in the 
Strait have also recorded these small diatoms, especially Skeletonema costatum, to 

predominate in the early spring period. These diatoms possess high surface area to volume 

ratios and maximal growth rates and characterize the first stage of the typical succession 
(Margalef 1958). The biovolume contribution of the small diatoms was only 40 %, the 

larger diatom Ditylum brightwelli accounted for a further 35 to 40 %. The Ditylum 

brightwelli, the small diatoms and the obvious detrital loading largely disappeared from the 

water column over the course of a week (days 123-130) suggesting advection or sinking 
losses to be important. This is consistent with previous studies of coastal diatom blooms 

(Kiorboe 1993). 

The second chlorophyll a maximum (day 130) of 1994 corresponded to a Rhizosolenia 

delicatula (a medium-sized stage two diatom, Margalef 1958) bloom in its mid-late 

exponential phase. The increases in bacterioplankton and ciliate numbers associated with 
this exponential phase, is in keeping with a very close coupling between the autotrophs and 

microheterotrophs. This Rhizosolenia delicatula bloom persisted for a further 30 days 

overlapping with the Phaeocystis bloom that reached its maximum abundance on day 145, 
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the day of the third chlorophyll a maximum. The morphology of unfixed bladders best 

fitted Phaeocystis globosa characteristics as described by Baumann et al. (1994), and the 

maximum Phaeocystis cell count of approximately 5x 106 cells dm-3 falls at the lower end 

of the range previously recorded for the Strait (1.4 - 100 x 106 cells dm-' ; Jones 1968, 

Tyler 1977, Lennox 1979). For this bloom, the autotroph-heterotroph coupling appeared 
looser, with a delay of approximately 1 week between the Phaeocystis maximum and the 
following bacterioplankton and ciliate increase; similar delays have been documented for 

Phaeocystis blooms in the coastal waters of the German Bight (Billen. and Fontigny 1987, 

Laanbroek et al. 1985, van Boekel et al. 1992). The dinoflagellate assemblage also 

exhibited a distinct maximum (day 168) after the Phaeocystis bloom when chlorophyll a 

and gross community production were very low, suggesting this assemblage to have an 
important heterotrophic component. The spring bloom succession finished with an 

autotroph assemblage dominated in numbers by small cryptophytes. 

After the spring bloom in 1993 phytoplankton biomass generally remained low. The 1993 

late-summer diatom bloom was essentially mono-specific, and this is in accordance with 
Jones and Spencer (1970). In Liverpool Bay the breakdown of the density discontinuity in 

late-summer or early-autumn influences the timing of later diatom blooms (Voltalina et al. 
1986) and blooms in the Strait may be similarly influenced. 
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Figure 6.1. The results of previous "C studies in the Menai Strait. (A) shows the results of Al-Hasan 
(1976); (B) the results of Bajpai (1980) 

Metabolic Rates 

The general patterns and scales of GCP were similar over the two years and are in broad 

agreement with previous "C (Figure 6.1; Al-Hasan 1976, Bajpai 1980) and oxygen flux 

(see 1992 study reported in Blight et al. 1995) studies in the Menai Strait. Although the 
1974 data of Al-Hasan does differ in that it shows elevated rates of production throughout 

the summer and early autumn. The present study's results are also comparable to those 

reported for Liverpool Bay in the spring (4 - 141 mmol C m'2 d'', Savidge and Kain 1990). 

Respiration has not been measured previously in the area, but the measurements are 

comparable to those reported during the spring bloom period in the German Bight 

(Laanbroek et al. 1985). 
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During the spring bloom period of 1994, the fractionations revealed micro- and 
mesophytoplankton to dominate autotroph production and biomass and this is typical for 

temperate coastal spring blooms (Kiorboe 1993). However, although the 

nanophytoplankton contribution to total GCP during this bloom period was small (20 %), 

respiration by the organisms in this size range was substantial, accounting for approximately 
70 % of the total DCR. This differential effect of size fractionation on GCP and DCR has 
been reported previously for diatom bloom communities (e. g. Williams 1981a, Harrison 
1986, Smith et al. 1986). The results of the 0.8 µm fractionations showed this effect to be 
largely attributable to the activity of the bacterioplankton in accordance with earlier studies 
(Williams 1981a, Harrison 1986). Similarly, the only previous study of size-fractionated 
respiration during a diatom-Phaeocystis sucession (in Dutch coastal waters) reported 
bacteria to account for roughly 50 % of total pelagic respiration (Laanbroek et al. 1985). 
In the present study, the dominance of respiration by the < 0.8 gm size-fraction is consistent 
with a minor benthic contribution (via resuspension) to overall respiration; even though 
Menai Strait waters are generally characterised by high suspended matter loading (e. g. 
Buchan et al. 1967). 

The estimated range for bacterial cell-specific respiration rates (0.4 - 6.8 fmol 02 cell"' d") 

overlaps with the range reported for exponentially growing batch cultures of marine 
bacteria (2 - 28.7 fmol 02 cell"' d''; Christensen et al. 1980) and is similar to that estimated 
by Biddanda et al. (1994) for the <1 gm fraction in Louisiana shelf waters: 2.4 - 8.7 fmol 
OZ cell" d''. The three distinct peaks in the cell-specific respiration rates coincident with the 
three phytoplankton blooms is consistent with a very close coupling between bacterial cell 
respiration and phytoplankton production and biomass. The estimate of the bacterial 

contribution to unfractionated DCR showed the bacteria to be the major respirers, but also 
identified four sampling points (days 116,130,145 and 153) as having substantial non- 
bacterial components. The days 116,130 and 145 correspond to the three chlorophyll a 
maxima, suggesting that autotroph dark respiration may have been significant. This is in 

agreement with previous studies (e. g. Iriarte et al. 1991). The sampling point on day 153, 

corresponds to the distinct maximum in ciliate abundance concomitant with the declining 
Phaeocystis, and this suggests these microheterotrophs may be significant respirers. 
However, an upper limit on the ciliate respiration contribution for day 153 can be estimated 
from the ciliate respiration rates reported in Fenchel and Finlay (1983). This suggests 
ciliates could have accounted for a maximum of 25 % of the non-bacterial respiration. 
Other major microhetereotrophic respirers may have included nano- and picoflagellates, a 
group that unfortunately were not enumerated in this study and mesozooplankton larvae. 
The biomass and metabolism parameters for the < 53 µ. m fraction also showed that an 
increase in the dark respiration of Phaeocystis cannot be excluded. Indeed Phaeocystis cells 
face new energetic demands during the blooms' senescent phase, e. g. flagella synthesis 
(Rousseau et al. 1994), and the reassimilation of colonial matrix components (Lancelot and 
Mathot 1985, Vcldhuis and Admiraal 1985) may be able to support increased respiration as 
photosynthesis declines. 
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Figure 6.2. Phase plots of gross community production (GCP) versus dark community respiration (DCR) in the Menai Strait for 1993 (A) and 1994 (B). Arrows indicate the temporal sequence, D denotes a diatom maximum, and P denotes a Phaeocystis maximum 

The phasing of GCP and DCR can be considered by plotting the two parameters against 
one another and this is done in Figure 6.2. The separation of GCP and DCR maxima in time 
for the Phaeocystis bloom is similar to the pattern observed in space for an autotroph- 
heterotroph succession along a river length (Odum 1956). In our study the phasing of GCP 
and DCR consisted of periods of positive production relaxing into negative production and 
this temporal succession is similar to the longitudinal (i. e. time-dependent) succession 
reported for the Peruvian upwelling zone (Vinogradov and Shushkina 1978). Evidence for 
the generality of this positive- to negative-production temporal sequence for Phaeocystis 
blooms comes from studies in the German Bight. Bätje and Michaelis (1986) reported that 
very high rates of respiration may occur at the breakdown of a Phaeocystis bloom with 
oxygen saturation falling to as low as 60 %. Elevated rates of respiration were also reported 
by Laanbroek et al. (1985) concurrent with both spring diatom and Phaeocystis blooms. 
The value of their respiration maximum during the Phaeocystis bloom (22 - 24 mmol 02 m' 
3 d'') is comparable to this study's 1994 maximum (29.4 mmol 02 m'3 da), and a 
comparison of the magnitudes of their measured rates of primary production and 

P Autotrophy 

D Heterotrophy 

0.2 0.4 0.6 0.8 
DCR (fraction of GCP maximum) 

T 

6-5 

0.0 0.2 0.4 0.6 0.8 1.0 



respiration suggests a heterotrophic phase followed on from the Phaeocystis bloom. 

Simple calculations of volume-based rates of NCP are misleading because of the difference 
in the depth distribution of GCP and NCP in mixed water. Area normalised rates are more 
meaningful. The estimates of area NCP integrated for the bloom period in 1994 suggest 
that metabolism within the water column approximately balanced. Although use of the 
Secchi depth to estimate kd is not ideal (Kirk 1994), previous work in the Strait has shown 
this depth is well correlated with kd (D. Bowers pers. com. ). 

Phasing Considerations 

The phasing of GCP and DCR for the diatom blooms was different to that for Phaeocystis; 
i. e. the absence of an obvious DCR maxima in association with the mixed diatom blooms, 

and the distinct DCR maxima in phase with the rise of the Rhizosolenia delicatula in 1994. 
The basis of this phasing and the possible mechanisms involved is considered below. 

As the heterotrophic bacterioplankton have been identified as major contributors to overall 
community repiration, the time scales of the different routes by which autotroph organic 
matter becomes available to the bacterioplankton will be critical in explaining the phasing 
of GCP and DCR over the bloom periods. These routes are now considered in an effort to 

explain the different DCR responses for the three bloom types: the mixed diatom blooms, 

the Rhizosolenia delicatula bloom, and the Phaeocystis blooms. 

There are a number of possible pathways of organic matter transfer between phytoplankton 
and bacterioplankton. The following section is an attempt to ascribe broad time scales (e. g. 
1 day, 1 week, 1 month) to these various steps, using where possible, data from similar 
ecosystems and similar times of the year. The principal routes linking microbial 
photosynthetic and respiratory activity are shown in a simplified diagram (Figure 6.3). The 
key assumptions in this scheme are as follows: 
1. Phytoplankton exudation is closely associated with photosynthesis and biomass and 

largely produces LMW material (Bjomsen 1988) (pathway I). 
2. The pool of LMW material is readily assimilable by bacteria and is turned over on a 

time scale of 51 day (e. g. Fuhrman 1987) (pathway II). 
3. LMW material comprises a small amount of the total organic material present in a 

phytoplankton cell (e. g. Smith and Geider 1985), so cell lysis (self or viral) and 
breakage (sloppy feeding) largely introduces high molecular weight (HMW) material 
into the water column (pathway III). 

4. The HMW material arising from these sources must be hydrolysed by ectoenzymes 
before it can be assimilated by the bacterioplankton (Chr6st 1990a). The derepression 

and induction of these enzymes is a rapid process (< 1 day, Chröst 1990b), and their 

activity results in the HMW pool turning over every few days to a week (e. g. Billen 
1990) (pathway IV). 

5. Nano- and microzooplankton maximal generation times (< I day) are similar to those 

of the phytoplankton and their potential grazing activity is proportional to their 
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biomass. A significant fraction of their organic intake is egested concurrently, with the 
assimilation efficiency inversely proportional to grazing rate (Nagata and Kirchman 
1992) (pathway V). 

6. Mesozooplankton generation times (>_ 1 month, e. g. Klein Breteler et al. 1982) are 

much longer than those of the nano- and microzooplankton so they show no numerical 

response during a phytoplankton bloom, however, their larvae can exhibit abundance 

pulses during a bloom. Mesozooplankton potential grazing activity is proportional to 
their biomass and a significant proportion of their organic intake is egested and 

excreted concurrently (Jumars et al. 1989, Kiorboe 1993) (pathway VI). 

GCP 

VI 
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I III 
II Mesozooplankton ýjýf HMW 
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Nano-& \ Viii(iii) 
esozooplankto 
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(< 1 day) 

II 

Bacteria 
(< 1 day) 

"'DCR 
Figure 6.3. Pathways linking gross community production (GCP) and dark community respiration 
(DCR) within a microbial foodweb. LMW: low molecular weight organic matter; HMW: high molecular 
weight organic matter; I: phytoplankton exudation; II: bacterial uptake; III: phytoplankton lysis; IV: 
ectoenzyme catalysed hydrolysis; V: microzooplankton grazing; VI: mesozooplankton grazing; VIIa: 
phytoplankton sedimentation; VIIb: detritus resuspension; VIII release of hydrolysate derived from 
epiphytic bacterial activity. Numbers in parentheses indicate secondary pathways. Values in parentheses 
within the boxes are estimates of doubling times (biomasses) and turnover times (non-living materials) 

For the first bloom type, the mixed diatom blooms, an increase in bacterial cell-specific 

respiration was observed in phase with GCP in 1994, but low bacterial biomass meant this 

was not paralleled by an obvious unfractionated sample DCR response. Bacterial growth rate 

estimates (TTI and changes in cell numbers over 24 h) also indicated low bacterial activity. 
These observations suggest that the passage of organic matter from the diatoms to the 

bacterioplankton was minimal and sufficient for maintenance of the bacterioplankton 

community only; although the substrate concentration required for bacterial cell growth 

may have been higher during this phytoplankton bloom than the following ones, because of 

the lower water temperature (Wiebe et al. 1993). Given the high GCP for the bloom, it is 

evident that much of the production was lost elsewhere. If mesozooplankton grazing was the 
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predominant loss factor, the flux of organic matter to the bacterioplankton should have 
been more substantial (see point 6). By elimination this suggests physical losses (e. g. 

pathway Vila with no significant immediate resuspension) most likely predominated and 
this is in agreement with previous studies for coastal spring diatom blooms (Kiorboe 1993). 

The second bloom type, the exponential phase of the Rhizosolenia delicatula bloom (e. g. 
circa day 130), was characterized by a large concurrent increase in bacterial cell-specific 
respiration and growth rates, increasing bacterial abundance and a distinct ciliate biovolume 

maximum. Community bacterial growth rate estimates (TTI and changes in cell numbers 
over 24 h) also indicated high bacterial activity and net growth. The bacterial abundance 
maximum was observed the following week (day 137) when both cell-specific respiration 

and growth rates had decreased. Consideration of the most probable pathways of organic 

matter transfer to the bacteria, given this very close coupling, suggests the main routes to be 

phytoplankton exudation (I) and the LMW forks of the grazing pathways (V and VI). 
Significant flux to the bacterioplankton via phytoplankton exudation during the 

exponential growth phase of phytoplankton blooms has been reported previously (e. g. 
Chr6st 1990b). Indeed, flux through the phytoplankton exudation pathway, whether this 

pathway is an overflow response (Fogg 1983), or a passive loss process (Bjprnsen 1988), 

will be more substantial during this bloom than the earlier mixed diatom bloom. 

Finally the third bloom type, the Phaeocystis bloom maximum (e. g. circa day 145), that 

was characterized by large concurrent increases in bacterial cell-specific respiration and 
growth rates, and increasing bacterial and ciliate abundance. Community bacterial growth 
rate estimates (TTI and changes in cell numbers over 24 h) also indicated high bacterial 

activity and net growth. Maximal bacterial and ciliate abundances were observed the 
following week (day 153) when the bacterial cell-specific respiration rate was still elevated. 
This continuation of elevated bacterial cell-specific respiration rates contrasts with the 
Rhizosolenia delicatula bloom observations and is the major explanation for the delay 
between the GCP and DCR maxima. A possible explanation for this persistence of bacterial 

cell respiration is a change in the major pathway of organic matter transfer to the 
bacterioplankton from those directly feeding into the LMW pool to those producing HMW 

material (e. g. phytoplankton lysis (IV) and the HMW forks of the grazing pathways (V and 
VI)). Our observations of an elevated rate of cell-specific respiration persisting, whilst the 
bacterial cell-specific tritiated thymidine incorporation rate decreased (i. e. growth efficiency 
decreased), are consistent with increased bacterial utilization of nitrogen deficient organic 

material (e. g. carbohydrates). Indeed, very high concentrations of polysaccharides have 
been reported during Phaeocystis blooms (e. g. Eberlain et al. 1985). Bacterial colonization 
of Phaeocystis bladders was also observed in the sample taken on day 159. Similar 

colonization has been reported previously (Putt et al. 1994). Epiphytic bacteria are reported 
as net releasers of hydrolysate during the decline of a diatom bloom (Middelboe et al. 
1995, Smith et al. 1995) and thus their activity may have contributed to the LMW pool. 
Significant flux via a HMW pool during a Phaeocystis bloom has previously been inferred 
by Billen and Fontigny (1987). The flux of organic matter through the grazing activity of 
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the mesozooplankton during the Phaeocystis bloom was probably small, as only low 

copepod grazing rates (< 1.5 % d-`) on Phaeocystis have been reported for Liverpool Bay 

(Claustre et al. 1990) and the Southern Bight (Hansen and van Boekel 1991). 

In summary, the observations over the 1994 spring bloom period are consistent with three 
distinct phases. An initial mixed diatom bloom with limited transfer of organic material to 
the bacteria, a Rhizosolenia delicatula bloom with flux of material to the bacteria via a 
LMW pool and finally a Phaeocystis bloom with transfer of material predominantly via a 
HMW pool. This HMW pool and other temporary storages of non-living organic material 
(Williams 1995) may support microheterotroph metabolism after the decline of 
photosynthesis resulting in a temporal positive-negative sequence of net community 

production. 
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CHAPTER 7: GENERAL DISCUSSION 

Within any ecosystem, production is controlled by both resource availability and by factors 

affecting metabolic rates (Tilzer et al. 1986). Temperature is a major if not the most 
important factor controlling poikilotherm metabolic rates (Tilzer et al. 1986, Begon et al. 
1990). For terrestrial habitats in general, primary production is highest in tropical rain 
forests and decreases progressively toward the poles; consequently temperature can be used 
to predict primary productivity (e. g. Krebs 1994). However for aquatic habitats, there is a 

reverse gradient of productivity from the poles towards the equator, because nutrients rather 
than temperature, limit primary production in tropical and subtropical seas (e. g. Krebs 

1994). Only under circumstances where nutrients and light are not limiting, for example in 

algal cultures, is photosynthesis positively related to temperature (e. g. Eppley 1972, 

Goldman and Carpenter 1974, Suzuki and Takahashi 1995). 

Extreme high and low temperatures are lethal (e. g. White et al. 1984). Between these limits, 

temperature affects non-photochemical stages of all metabolic processes (e. g. White et al. 
1984, Raven and Geider 1988) setting an upper limit for their rates. Where this limit is not 

reached, i. e. other factors come into play, there is no systematic effect of temperature on 

metabolic rate unless temperature covaries with the limiting factor or factors. During the 

spring bloom sequence in temperate waters, temperature covaries with a number of 

parameters and so isolation of a `temperature effect' is difficult. 

In this study, measurements of biomass and metabolic rates have been undertaken in three 

areas of the Southern Ocean and a temperate coastal ecosystem (the Menai Strait). The 

upper limit for water temperature in the Southern Ocean study (6.6 °C) was almost 

contiguous with the lower limit for the Menai Strait (7.3 °C), the combined temperature 

range was -1.8 °C to 13.6 °C. The discussion that follows uses this temperature range to 

provide a context for the exploration of any differences in microbial biomass and 

metabolism over the Southern Ocean and Menai Strait studies. This discussion is structured, 

using the questions highlighted at the end of the introduction; these questions are reiterated 
below for convenience: 

1) Is there a difference between temperate and polar waters in microbial biomass? If so, can 
this difference be related to temperature? 

2) Is there a difference between temperate and polar waters in microbial metabolism? If so, 

can this difference be related to temperature? 
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When justifiable, in order to facilitate comparisons, both biomass and metabolic rates were 
converted into units of carbon using appropriate conversion factors. In order to reduce any 
bias in the answering of these questions due to covariation of temperature with other 

parameters during the Menai spring bloom sequence and to generate a degree of generality, 
data from other ecosystems (extracted from the literature) are contrasted with the present 
observations. For two of these literature studies - Bellingshausen Sea (Boyd et al. 1995), 

and Baffin Bay, Arctic (Harrison 1986) - temperature was not reported and had to be 

approximated. For the Bellingshausen Sea study (Boyd et al. 1995) temperature was 

estimated to be roughly -1 'C from another report on the same cruise (Turner and Owens 
1995). For the Arctic study of Harrison (1986), temperature was estimated to be 

approximately 0 'C, as this is close to the midpoint of the range (-0.75 - 0.5 C) reported by 
Platt et al. (1987) for the same area at a similar time of the year. 

Conventional least squares linear regression analysis was used to examine the data for 

hypothetical relationships. In such regressions, values of Y with corresponding deviant 

values of X (deviant from their mean) are given greater weight in determining the linear fit. 

Consequently the analysis gives particular emphasis to data sets containing the extreme 

values of X. For this study, because of the greater number of observations in the Southern 

Ocean data set, the mean temperature is nearer to the Southern Ocean extreme value. Thus 

the tail-end of the Menai Strait succession constitutes the region of highest influence on the 

regression with temperature. The representativeness of this tail-end is uncertain because it 

exhibited important differences, e. g. no measurable nitrate and distinct bacterial abundance 

maxima (in response to phytoplankton blooms, not temperature) were observed. In view of 

these differences, it was decided that, in order to have confidence in an apparent general 

temperature relationship, it had to be robust to the removal of the tail-end of the Menai 

Strait succession. So that this tail-end (day 130 of 1994 onwards) could be distinguished it 

was given the appellation `Menai-2', and is represented by a different symbol in the figures 

that follow. 

Before analysing the data for hypothetical relationships with temperature, a property with a 
known temperature relationship (that with oxygen concentration) was tested. Oxygen 

concentration is largely determined by its solubility in water (e. g. Chester 1990). Thus 

concentrations are greater in cold high-latitude waters than in those from warmer temperate 

regions (e. g. Chester 1990). In addition to this latitudinal (temperature) trend, oxygen 
concentration can be supplemented and diminished by photosynthesis and respiration 
respcctively. 

When the data were plotted (Figure 7.1), the expected decrease in oxygen concentration 
with increasing temperature was generally observed, although marked variations in oxygen 
concentration were associated with the Menai Strait spring bloom's succession. Such 
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variability is typical for coastal environments (e. g. Taylor and Howes 1994). This biological 

'noise' (seen in the data from day 108 onwards) has strong influence (high standardised 

residuals and leverage coefficients, Appendix Figure A. 1) on the regression fit. When they 

are removed, a very good linear fit (Y = 2379 - 7.39T, r2 = 0.88) with temperature can be 

derived (dotted line in Figure 6.1, Appendix Figure A. 2), and this fit is reasonably close to 
the predicted curvilinear relationship for the saturation concentration of oxygen (Benson 

and Krause 1984). Importantly, for this fit there was an overlap between the Southern 

Ocean and Menai Strait data points as oxygen concentration was measured in the Menai 

Strait during a cold February (3.6 °C, T. Bentley pers. comm. ). The finding of the expected 
trend with temperature for oxygen concentration lends confidence in the experimental 

procedure used in this study and gives a basis for the analysis of hypothetical temperature 

relationships. 
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Figure 7.1. Oxygen concentration versus absolute temperature for the Southern Ocean and Menai Strait 
data sets. Symbols are: 0 `Menai-1'; " `Menai-2'; + Polar Front; O South Georgia; and   Weddell Sea. 
The solid line denotes the regression fit (Y = 1700 - 5. OT, r2 = 0.47) for all data; the dotted line the 
regression fit (Y = 2400 - 7.4T, r2 = 0.88) for all data except the Menai Strait observations from day 108 
onwards; and the dashed line the equation of Benson and Krause (1984) for the oxygen saturation 
concentration in sea water as a function of temperature and salinity. For the Menai Strait observations 
salinity was estimated using monthly averages from previous studies (Jones and Spencer 1970, Tyler 
1977, Lennox 1979). The Y-axis intercepts the T-axis at 273.16 K (0 °C) 
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7.1. IS THERE A DIFFERENCE BETWEEN TEMPERATE AND POLAR WATERS IN 
MICROBIAL BIOMASS? IF SO, CAN THIS DIFFERENCE BE RELATED TO 
TEMPERATURE? 

7.1.1 Phytoplankton Biomass 

In the course of the discussion it has been necessary to convert data from one form to 

another. It is important that these conversion factors are clear and justified. 

Conversion Factor Just cation 

Phytoplankton biomass can be estimated from chlorophyll a concentration by applying a 
Carbon : Chlorophyll a (C: Chl) conversion factor. A value of 50 was selected for this factor 

as this is probably the modal value for this ratio in the literature (Harris 1986). However, 

this ratio is a function of both environmental conditions and growth rate (Harris 1986), so is 

not constant. This variation may cause bias in phytoplankton biomass relationships with 
temperature if the conversion factor exhibited a trend with water temperature. 

There might be an expectation of an increased C: Chl ratio at lower water temperatures. This 
is because, in contrast to the photochemical reaction (i. e. the chlorophyll dependent part of 
the ratio), as temperature decreases, more enzymes (i. e. the carbon-dependent part) are 

required to sustain a given growth rate (Raven and Geider 1988). Consequently, use of a 

constant C: Chl ratio might underestimate phytoplankton carbon biomass in the Southern 
Ocean. Indeed, in diatom cultures, C: Chl ratios have been reported to decrease 

exponentially with temperature (Yoder 1979, Verity 1982) and high C: Chl ratios (up to 
240) for phytoplankton have been reported for the Southern Ocean (Hewes et al. 1990, 

Nöthig et al. 1991, Mikaelyan and Belyaeva 1995). 

The study of Mikaelyan and Belyaeva (1995) showed high C: Chl values may be related to 

species composition. They found that high C: Chl values coincided with dominance by 

Dactyliosolen, a diatom not abundant in this study's Southern Ocean samples. In contrast, 
those samples where flagellates or diatoms from the genera Chaetoceros, Nitzschia 

(Fragilariopsis) and Corethron dominated, genera more typical for this study's samples, the 

C: Chl ratios ranged from 37 to 69; similar to values reported for warmer ecosystems (20 to 

100, Kirk 1994). Given this similarity, use of a constant C: Chl quotient seems to be 

justified. However, I have tested the constant quotient against an empirical model relating 
the Chl: C ratio to temperature, light, and nutrients, which has been derived from algal 

culture studies (Cloern et al. 1995). 

Cloern et al. (1995) calculated the empirical equation: 
Chl: C = 0.003 + 0.0154 exp(0.050t) exp(-0.0591) µ' 

where the variables are: temperature t (°C), daily irradiance I (mol quanta m"2 d'), and 

nutrient-limited growth rate µ' (growth rate normalised to the maximum rate at non-limiting 
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nutrient concentrations). To use this equation, the temperature effect had to be isolated. 

This aim was achieved by estimating daily irradiance for the deck incubations to be roughly 
10 mol quanta m"2 d" and assuming nutrients to be non-limiting so that u'= 1. Although 

this assumption obviously breaks down for the 'Menai-2' data points when nitrate was 

exhausted, it would be justifiable because these points are always removed in the regression 

analysis to check for robustness. Thus the equation becomes: 

Ch1: C = 0.003 + 0.0085 exp(0.050t), 

and can be used to provide a second estimate for phytoplankton biomass (Figure 7.2). 
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Figure 7.2. Unfractionated phytoplankton biomass (Unfrac. Phyto) estimated using ChI: C = 0.003 + 
0.0085 exp(0.0501) versus unfractionated phytoplankton biomass calculated using C: Chl = 50. Symbols 
for the different study sites are: 0 `Menai-1'; " `Menai-2'; + Polar Front; Q South Georgia; and 
  Weddell Sea. The solid line shows the line of equivalence 

From figure 7.2, it can be seen that the temperature-dependent C: ChI relationship yields 

higher estimates for phytoplankton biomass and that this increase is most marked for the 

South Georgia observations. Linear regression analysis showed the two phytoplankton 

biomass estimates to be very highly correlated (slope = 1.41, r2 = 0.97), and as expected, the 

fit was improved and approached the line of equivalence by removal of the South Georgia 

data points (slope = 1.12, rz = 0.99). 

In view of the high degree of correlation for estimates of phytoplankton biomass derived 

from the two different C: ChI conversion factors, Occam's principle was applied and the 

constant C: Chl quotient used in the analysis of the data. Where the observations of the 

present study are contrasted with some in the literature, this constant C: ChI quotient was also 

applied to the literature observations. 
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Data Analysis 

Unfractionated phytoplankton biomass was not obviously related to temperature (Figure 
7.3A). Regression analysis yielded a very low coefficient of determination (r2 S 0.01; Table 
7.1, pages 6-7, rows 1,2) with no significant regression coefficient (P > 0.05). Consequently, 

unfractionated phytoplankton biomass was not considered to be related to temperature. This 

poor relationship was expected because phytoplankton blooms (biomass > 500 mg C m'3) 
featured in both the Southern Ocean and Menai Strait data sets. 
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Figure 7.3. Phytoplankton biomass versus absolute temperature. For both plots the Y-axes intercept 
the T-axes at 273.16 K (0 °C) 
(A) shows this study's unfractionated phytoplankton (Unfrac. Phyto. ) biomass observations. Symbols 
are: 0 'Menai-1'; " 'Menai-2'; + Polar Front; 13 South Georgia; and 0 Weddell Sea. 

(B) shows unfractionated phytoplankton (Unfrac. Phyto. ) biomass observations from this study and from 
other polar and temperate studies in the literature. Symbols are: 0 this study; O Baffin Bay, Arctic 
(Harrison 1986); X Baffin Bay, Arctic (Platt et al. 1987);   English Channel and North Sea (Iriarte et al. 
1991); " Bellingshausen Sea, Antarctic (Boyd et at. 1995); + Antarctic Peninsula (Aristegui et al. 1996) 

A plot contrasting this study's data points with other polar and temperate observations from 

the literature (Figure 7.3B) showed maximum bloom biomass values to be similar between 

the polar and temperate data. Thus at least for this limited comparison, there is no 
discernible temperature-dependent upper-envelope for phytoplankton bloom biomass; 
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other factors are probably more important. 

For the < 20 µm phytoplankton size-fraction (Figure 7.4), regression analysis yielded a 
regression coefficient of low significance (P < 0.05), with up to 13 % of the variation in the 
< 20 pm phytoplankton biomass apparently related to temperature (Table 7.1, pages 6-7, 
rows 3,5). However, analysis of the standardised residuals and leverage coefficients 
(Appendix Figure A. 3) suggested some `Menai-2' observations may have undue influence 
upon the slope. When the `Menai-2' data points were removed, the regression coefficient 
became non-significant (Table 7.1, pages 6-7, rows 4,6). Consequently, < 20 pm 
phytoplankton biomass was also considered not to be obviously related to temperature. 
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Figure 7.4. Size-fraction (<20 µm) phytoplankton biomass observations versus absolute temperature 
for the Southern Ocean and Menai Strait data sets. The Y-axis intercepts the T-axis at 273.16 K (0 °C). 
The symbols are: 0 `Menai-1'; " `Menai-2'; + Polar Front; E3 South Georgia; and   Weddell Sea. The 
solid line denotes the least squares linear regression fit (equation shown on plot) 

Phytoplankton biomass in the < 20 gm size-fraction exhibited less variation (7 - 160 mg C 

m-) than unfractionated phytoplankton biomass (9 - 980 mg C m'3). This smaller variation 
in the `microbial' phytoplankton component seems to be a general phenomenon in marine 

plankton ecosystems (Cushing 1989, Legendre 1990, Kiorboe 1993). When this microbial 

component is plotted as a quotient (< 20 gm phytoplankton / unfractionated 

phytoplankton) a trend is seen (Figure 7.5A): the fraction decreases sharply as total 

phytoplankton biomass increases. This pattern is consistent with the general phenomenon in 

marine plankton ecosystems that phytoplankton blooms are usually composed of larger 

phytoplankters (Cushing 1989, Legendre 1990, Kiorboe 1993). The dominance of this 

trend over any temperature relationship is illustrated by figure 7.5B. Thus, as for the 
individual phytoplankton biomass variables, the fraction of biomass in the < 20 µm size- 
fraction is considered not to be obviously related to temperature. 
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Figure 7.5. Plots of the quotient of fractionated (< 20 µm) to unfractionated phytoplankton biomass 
against unfractionated phytoplankton biomass and absolute temperature. Note, because all the biomass at 
the Polar Front site was essentially < 20 µm, and the estimation of chlorophyll a concentration is not 
without error, values slightly greater than 1 were sometimes derived for the biomass quotient. 
(A) shows the biomass quotient versus unfractionated phytoplankton (Unfrac. Phyto. ) biomass. Symbols 
are: 0 'Menai-1'; " 'Menai-2'; + Polar Front; O South Georgia; U Weddell Sea; X Baffin Bay, Arctic (< 
35 µm size-fraction; Harrison 1986) 
(B) shows the biomass quotient versus absolute temperature; symbols as in (A). The Y-axis intercepts 
the T-axis at 273.16 K (0 °C) 
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7.1.2 Bacterial Biomass 

Conversion Factor Just cation 

Bacterial biomass can be estimated from bacterial abundance by estimating cell-size and 

applying a biovolume to biomass conversion factor. Although systematic bacterial cell- 

sizing of the Southern Ocean and Menai Strait samples was not undertaken, modal cell-sizes 

was estimated from representative fields of view. In both studies, the modal cells were cocci 

with diameters of roughly 0.4 - 0.5 µm, and cells of this size are within the range studied by 

Lee and Fuhrman (1987). As these workers found the per-cell carbon biomass to be 

relatively constant in assemblages from Long Island (New York, USA), their average value 

(20 fg C cell") is used to estimate bacterial biomass; but see Joint and Pomroy (1987) for an 

argument that this value may be too high. 

Data Analysis 

At first glance, a difference for bacterial biomass with temperature is suggested between the 

Southern Ocean and Menai Strait data sets (Figure 7.6A). The smallest bacterial biomass 

was found at the lowest temperatures (Weddell Sea) and the greatest bacterial biomass 

occurred at the highest temperatures (Menai Strait). Linear regression analysis suggested 

that a major part (58% for y=a+ bt and 73% for In y= In a-b/ 7) of the variation in 

bacterial biomass could be explained by the variation in temperature (Table 7.1, pages 6-7, 

rows 7 and 10; Figure 7.6A for the log. -transformed relationship). Examination of the 

residuals and leverage coefficients suggested that some `Menai-2' observations may have 

undue influence upon the slope (Appendix Figure A. 4). When the 'Menai-2' data points 

were removed, the regression coefficient remained highly significant, but this significance 

was solely due to the lower bacterial abundances of the Weddell Sea subset (Table 7.2, pages 
6-7, rows 8-9,11-12). No obvious trend with temperature was apparent for the South 

Georgia, Polar Front and 'Menai-1' observations. Consequently, the relationship between 

bacterial biomass and temperature was considered to be misleading. 

Strong evidence that the apparent relationship between bacterial biomass and temperature 

arises from incomplete temporal coverage of the bloom sequence in the Southern Ocean 

comes from the study of Priddle et al. (1995) on the South Georgia shelf during the Austral 

summer (Figure 7.6B). These authors reported finding a microplankton community 

characteristic of post-bloom conditions, and the bacterial abundances they measured are 

comparable to those observed during post-bloom conditions in the Menai Strait, e. g. 
`Menai-2'. The study of Layboum-Parry et al. (1996) of an Antarctic eutrophic lake is 

included in figure 7.6B to show that very high bacterial biomasses can develop at low 

temperatures. Consequently, the upper-envelope for bacterial biomass on a plot against 
temperature is probably largely dictated by trophic status. The other temperate studies 

shown in figure 7.6B are from estuaries (Chesapeake Bay and the Gulf of Bothnia). These 

estuarine studies are examples of ecosystems where temperature apparently regulates 
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bacterial parameters, including abundance. Shiah and Ducklow (1994) postulate that this 

relationship originates primarily through temperature limitation of bacterial-specific growth 

rate during non-summer seasons; substrate supply, and possibly other factors limit bacterial 

abundance and production during summer. From figure 7.6B it can be seen that most of 
the estuarine data points lie above the relationship derived in the present study. If one 

considers that substrate supply generally limited bacterial abundance in the present study, 
then the higher abundances in both estuaries are expected because they have significant 

allochthonous inputs of organic matter. 
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Figure 7.6. Bacterial biomass versus absolute temperature. For both plots, the Y-axis intercepts the T- 
axis at 273.16 K (0 °C). Note, the scales for both axes are different in (A) and (B). 

(A) shows bacterial biomass for the Southern Ocean and Menai Strait data sets; symbols are: 0 `Menai- 
1'; " `Menai-2'; + Polar Front; Q South Georgia; and   Weddell Sea. The solid line denotes the back- 
transformed least squares linear regression fit. 

(B) shows bacterial biomass from the literature for various ecosystems; biomasses were estimated from 
abundances by assuming an average cell carbon mass of 20 fg (Lee and Fuhrman 1987). 
Symbols are: + Bransfield Strait, Antarctica (maximum abundances of Bird and Karl 1991; temperature 
estimated from Niiler et al. 1991); " Subarctic estuary (Gulf of Bothnia, Baltic Sea; Heinänen 1992); 
O Chesapeake Bay, USA (North Bay; Shiah and Ducklow 1994); X South Georgia (Priddle et al. 1995); 
Q Eutrophic maritime Antarctic lake (Heywood Lake, Signy Island, South Orkneys; Laybourn-Parry et al. 
1996). The solid line denotes the back-transformed regression fit for this study's observations 
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7.1.3 Bacterial and Phytoplankton Biomass Relationships 

In this study, the variation in bacterial biomass (4 - 94 mg C m"3) was similar to that for < 20 

µm phytoplankton (7 - 160 mg C m"), but substantially lower than that for unfractionated 
phytoplankton (9 - 980 mg C m-3). This is consistent with many previous studies that report 
the `microbial' component of the pelagic foodweb to exist in a quasi-steady state (e. g. 
Cushing 1989). 

No obvious relationship between bacterial biomass and unfractionated phytoplankton 
biomass was apparent (Figure 7.7A, Table 7.1, pages 6-7, row 13). Linear regression 
analysis of the log-transformed data suggested a positive relationship of low significance (P 
< 0.05) between bacterial biomass and unfractionated phytoplankton biomass (Table 7.1, 

pages 6-7, row 14, Figure 7.7A). Surprisingly it was remarkably similar to that estimated by 
Simon et al. (1992, Table 7.1, pages 6-7, row 17). However, the degree of scatter was high 
(r2 = 0.13) and inspection of the residuals showed the Menai-2 and Weddell Sea data sets to 
be poorly fitted (Appendix Figure A. 5). Removal of the Menai-2 data increased the 
coefficient of determination slightly (0.19) but did not alter the slope (Table 7.1, pages 6-7, 
row 15). Whereas removal of both the Menai-2 and Weddell Sea data improved the r2 value 
(0.20) but decreased the slope (Table 7.1, pages 6-7, row 16). In view of this latter 

observation, and the low coefficients of determination for this study's regressions, the 
similarity of the regression slope with that of Simon et al. (1992) is not considered to be 

robust. For the sake of completeness, regressions for the present study's raw data (bacterial 

abundance and chlorophyll a) were also compared with those in the literature (Table 7.1, 

pages 6-7, rows 18 to 22, Bird and Kalff 1984, Cole et at. 1988). 

For the Y-intercept, the similarity with Simon et al. (1992) was reinforced by the 
comparisons with other data sets (Table 7.1, pages 6-7, rows 14 - 22, Bird and Kalff 1984, 
Cole et al. 1988). However, all the Weddell Sea abundances were smaller than the Y- 
intercept value (Appendix Figure A. 5). This non-applicability of the largely temperate- 
derived cross-ecosystem relationships (Bird and Kalff 1984, Cole et al. 1988, Simon et al. 
1992) to the Weddell Sea has been discussed previously by Cota et al. 1990. Their 

regression equation and another for sub-zero Antarctic waters (McMurdo Sound, Putt et al. 
1994) have smaller slopes and intercepts (Table 7.1, pages 6-7, rows 23-25) and are better 
describers of the present study's Weddell Sea observations (comparison not shown). 

7-13 



100 

75 

ö 

_Q 50 

Ei 
1 

25 

0 

"A 

" 

"" 

p0 " 

pp Y=7.2XQ2', r2=0.13 

0 200 400 600 800 
Unfrac. Phyto. Biomass (mg C m'3) 

1000 

100 

75 
h 
N 
CO 

= V50 

Ei 

14 25 

0 

"B 

" 
" 

"" 

+ 
EI o Y=3.2X0479r20.23 

O0 

      

0 20 40 60 80 100 120 140 160 180 

< 20 tm Phyto. Biomass (mg C m'3) 

Figure 7.7. Bacterial biomass versus phytoplankton biomass parameters for the Southern Ocean and 
Menai Strait data sets. Note the scales for the X-axes are different for plots (A) and (B) 

(A) shows bacterial biomass versus unfractionated phytoplankton biomass; symbols are: 0 `Menai-1'; 
" `Menai-2'; + Polar Front; D South Georgia; and   Weddell Sea. The solid line denotes the back 
transformed least squares linear regression fit. 
(B) shows bacterial biomass versus < 20 µm phytoplankton biomass; symbols as for (A). The solid line 
denotes the back-transformed least squares linear regression fit 

No obvious relationship between bacterial biomass and < 20 pm phytoplankton biomass was 

apparent (Figure 7.7B). Although again there was a high degree of scatter (r2 S 0.36), linear 

regression analysis of the log-transformed data showed a weak positive (slope « 1) 

relationship between bacterial biomass and < 20 µm phytoplankton biomass (Table 7.1, 

pages 6-7, rows 26 to 29). This relationship was significant (P < 0.05), and the slope 

apparently slightly higher than that for unfractionated phytoplankton biomass. The 

increased slope is weak evidence that bacterial biomass is more responsive to changes in < 

20 gm phytoplankton biomass than to changes in unfractionated phytoplankton biomass. 
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Figure 7.8. Plots of the quotient of bacterial to unfractionated phytoplankton biomass against 
unfractionated phytoplankton biomass and absolute temperature. 

(A) shows the biomass quotient (Bact. / UPhyto. ) versus unfractionated phytoplankton (Unfrac. Phyto. ) 
biomass. Symbols for the different study sites are: 0 'Menai-1'; " 'Menai-2'; + Polar Front; D South 
Georgia; and 0 Weddell Sea. 

(B) shows the biomass quotient versus absolute temperature. The Y-axis intercepts the T-axis at 273.16 
K(0°C) 

The range of values estimated for the bacterial biomass to unfractionated phytoplankton 
biomass quotient (0.02 to 7.3) is similar to that reported by Simon et al. (1992); 0.03 - 
10.5. This quotient, when plotted against unfractionated phytoplankton biomass can be seen 
to decrease strongly with increasing phytoplankton biomass (Figure 7.8A); below 25 mg C 

m'3, the quotient was independent of phytoplankton biomass, and above 250 mg C m'' the 
quotient remained below 0.5. This pattern agrees with the work of Simon et al. (1992). 
From their analysis of different ecosystem (marine and limnetic) data sets, these workers 
concluded that the pattern results from a fundamental difference in the food-web structure 
of oligotrophic and eutrophic systems. They found high bacterial to phytoplankton 
biomass quotients in oligotrophic ecosystems and suggested these were indicative of 
increasing dominance of heterotrophs, and small organisms, and the microbial loop. In 

contrast, the low bacterial to phytoplankton biomass quotients found in eutrophic 
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ecosystems were suggested to indicate a decreased importance of heterotrophs and small 

organisms and a greater role for the grazer (classical) food-chain. 

In this study, the out-of-phase bacterial biomass peaks observed in `Menai-2' (Blight et al. 
1995) comprise one component of the higher biomass quotients at low phytoplankton 
biomass values and this phase difference was not considered by Simon et al. (1990). 

Overall, the similarity in the observed pattern for the biomass quotient with Simon et al. 
(1990), and the overlap of the Menai Strait and Southern Ocean variables in this pattern, 

suggest no differences in this quotient between the temperate and polar data sets; except for 

the Weddell Sea. The bacterial abundances in this latter study were distinctly low, 

corresponding to the lower threshold for bacterial abundance in the oceans euphotic zone 
(Cho and Azam 1990). The biomass quotient (bacterial : unfractionated phytoplankton) 

was also plotted against temperature (Figure 7.8B). No obvious relationship could be seen. 

The biomass quotient of bacterial biomass to < 20 gm phytoplankton when plotted against 
< 20 pm phytoplankton biomass (Figure 7.9A) generally decreased as phytoplankton 
biomass increased, although there were some distinct outliers from 'Menai-2'. The same 
quotient was also plotted against temperature and a positive relationship suggested (Figure 
7.9B, Table 7.1, pages 6-7, rows 30,31). Analysis of the standardised residuals and leverage 

coefficients suggested excessive influence by some 'Menai-2' observations (Appendix 
Figure A. 6). Removal of the 'Menai-2' subset decreased the regression coefficient but it 

remained significant (Table 7.1, pages 6-7, row 32). However, significance was lost with the 
further removal of the Weddell Sea observations (Table 7.1, pages 6-7, row 33). In view of 
this, and the generally low coefficients of determination, the evidence for a temperature 
relationship was regarded to be weak. 
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phytoplankton biomass and temperature for the Southern Ocean and Menai Strait data sets. 
(A) shows the biomass quotient (Bact. /< 20 µm Phyto. ) versus < 20 gm phytoplankton (<20 µm 
Phyto. ) biomass; symbols for the different study sites are: 0 `Menai-1'; " `Menai-2'; + Polar Front; 
O South Georgia; and 0 Weddell Sea. 

(B) shows the biomass quotient versus absolute temperature; symbols as for (A). Tthe solid line denotes 
the back-transformed least squares linear regression (Arrhenius relationship). The Y-axis intercepts the T- 
axis at 273.16 K (0 °C) 

7.1.4. Summary for Biomass Observations 

1. There was no strong evidence for differences in any measure of microbial biomass. 
2. General relationships could be derived for both ecosystems: 

a) the biomass quotient (< 20 gm phytoplankton / unfractionated phytoplankton) 
generally increased sharply as unfractionated phytoplankton biomass decreased, 

b) bacterial biomass generally increased as phytoplankton biomass increased, 

c) the biomass quotient of bacteria to unfractionated phytoplankton increased sharply as 

unfractionated phytoplankton biomass decreased. 
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7.2. IS THERE A DIFFERENCE BETWEEN TEMPERATE AND POLAR WATERS IN 

MICROBIAL METABOLISM? IF SO, CAN THIS DIFFERENCE BE RELATED TO 

TEMPERATURE? 

7.2.1. Gross Community Production (GCP) 

Conversion Factor Just cation 

The photosynthetic quotient (PQ) is the molar ratio of the rate of oxygen production to that 

of carbon assimilation (Williams and Robertson 1991). In order to convert the measured 

rates of gross community production in this study from oxygen to carbon units, a value for 

the PQ needs to be assumed. Williams and Robertson (1991) calculated this quotient to 

range from 1.0 to 1.36 for a typical algal cell utilising ammonium and nitrate respectively. 
Studies suggest phytoplankton exhibit a `preference' for the energetically less-expensive 

ammonium (e. g. Flynn 1991 and references therein). Although present data is sparse 
(Smith and Sakshaug 1990), results suggest that polar phytoplankton do not have nitrogen 
uptake properties different (other than the temperature-dependent V,,, ) from those found 
in other oceans (Smith and Harrison 1991). Consequently, the use of a constant value for 

the PQ seems justified. As Williams and Robertson (1991) reported that essentially all 
empirically estimated values for the PQ were contained within their calculated range (1.0 - 
1.36), a value of 1.2, close to the mid-point of this range was selected. 

Throughout this discussion, the observations of the present study are contrasted with some 
in the literature. Some of these studies (Holligan et al. 1984, Harrison 1986, Platt et al. 
1987, and Iriarte et al. 1991) reported oxygen fluxes as hourly rates. Daily gross 
community production was estimated from the hourly GCP rate by multiplying by the 
calculated daylength; this calculation was performed using the equation of Kirk (1995) for 
daylength as a function of latitude and time of year. Daily dark community respiration was 
estimated from the hourly DCR rate by multiplying by 24. The difference between the daily 
estimates of GCP and DCR (i. e. GCP '- DCR) was used to calculate Daily net community 
production. 

Data Analysis 

No obvious relationship between unfractionated gross community production and 
temperature could be seen. Linear regression analysis suggested a positive relationship (P < 
0.01, r2 = 0.21; Figure 7.10A, Table 7.2, pages 20-21, row 1), but inspection of the 

standardised residuals and leverage coefficients suggested undue influence upon the slope 
by some `Menai-2' observations (Appendix Figure A. 7). When the 'Menai-2' data points 

were removed, the regression coefficient became non-significant (Table 7.2, pages 20-21, 

row 2). In view of this non-robustness, unfractionated GCP, was not considered to be 

obviously related to temperature. A similar conclusion was arrived at for unfractionated 

phytoplankton biomass earlier on in this discussion (page 8). When contrasted with polar 

and temperate observations from the literature, maximal values for biomass were found to 
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be similar between the two environments (Figure 7.3B). However for the GCP observations 
from the same literature studies a difference is seen (Figure 7.10B): maximal polar values 

are substantially smaller than the temperate maxima. The quotient of maximum GCP values 

(temperate / polar) is 1.7 with a temperature difference of 11 °C. This difference is 

consistent with a temperature effect. 
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Figure 7.10. Unfractionated gross community production versus absolute temperature. For both plots 
the Y-axes intercept the T-axis at 273.16 K (0 °C). 

(A) shows this study's unfractionated gross community production (Unfrac. GCP) observations. 
Symbols are: 0 `Menai-1'; " `Menai-2'; + Polar Front; Q South Georgia; and   Weddell Sea, and the 
solid line denotes the least squares linear regression fit. 

(B) shows unfractionated gross community production (Unfrac. GCP) observations from this study and 
from other polar and temperate studies in the literature. Symbols are: 0 this study; Q Baffin Bay, Arctic 
(Harrison 1986); X Baffin Bay, Arctic (Platt et al. 1987);   English Channel and North Sea (Iriarte et al. 
1991); " Bellingshausen Sea, Antarctic (Boyd et al. 1995); + Antarctic Peninsula (Arfstegui et al. 1996) 
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Analysis of the < 20 µm GCP rates also suggested a positive relationship (P < 0.01, r2 = 
0.30) with temperature (Figure 7.11, Table 7.2, pages 20-21, row 5). Inspection of the 

standardised residuals and leverage coefficients indicated excessive influence on the slope 
by a `Menai-2' observation (Appendix Figure A. 8). When the `Menai-2' data points were 
removed, the relationship was weakened but low significance persisted (Table 7.2, pages 20- 
21, row 6). However, this was not considered convincing because this time the `Menai- l' 

spring diatom bloom observations (the 2 open circles above the least squares linear 

regression line in Figure 7.1IA) exerted undue influence on the slope. The pattern for the 

rest of the observations did not suggest a slope. In view of these observations, < 20 µm GCP, 

as for the unfractionated rate, was not considered to be obviously related to temperature. 
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Figure 7.11. Size-fraction (< 20 µm) gross community production versus absolute temperature for the 
Southern Ocean and Menai Strait data sets. The symbols are: 0 `Menai-1'; " `Menai-2'; + Polar Front; 
O South Georgia; and   Weddell Sea. The solid line denotes the least squares linear regression fit (equation on plot). The Y-axis intercepts the T-axis at 273.16 K (0 °C) 

Gross community production for the < 20 µm size-fraction exhibited less variation (1.0 - 
294 mg Cm3 d") than unfractionated GCP (7 - 695 mg C m"3 d"). This is consistent with 
the smaller variation reported earlier on in this discussion for < 20 µm phytoplankton 
biomass, and seems to be a general characteristic of marine plankton communities (Kiorboe 
1993). 

When the quotient (< 20 gm GCP / unfractionated GCP) is plotted (Figure 7.12) a pattern 
similar to that exhibited by the equivalent biomass quotient (Figure 7.5, page 10) is seen: 
the quotient decreases sharply as the explanatory variable increases. However, there is a 
difference between the two plots in the distribution of polar and temperate observations with 
high explanatory variable values. Whereas the highest unfractionated biomass values were of 
polar (Willis Islands) origin, the corresponding GCP observations are temperate. This 
difference is once again consistent with a temperature effect for GCP. 
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Figure 7.12. Quotient of < 20 gm GCP to unfractionated GCP against unfractionated GCP. Symbols 
are: 0 `Menai-1'; " `Menai-2'; + Polar Front; O South Georgia; 0 Weddell Sea; X Baffin Bay, Arctic (< 
35 µm size-fraction; Harrison 1986) 

The similarity in patterns observed for the biomass and GCP observations suggests that if 

the quotients were plotted against each other, the majority of observations should reside 

around the line of unity. In making this plot, in order to contrast this study's observations 

with the model of Tremblay and Legendre (1994), the numerator for both quotients was 

changed to the > 20 pm size-fraction (Figure 7.13). 
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Figure 7.13. Plot of the quotient of > 20 µm GCP to total GCP (GCPL / GCP? ) against the quotient 
of > 20 µm phytoplankton biomass to total phytoplankton biomass (BL / BT). Symbols are: 0 `Menai- 
1'; " `Menai-2'; + Weddell Sea; Q South Georgia; and   Polar Front. The numbers beside the Menai 
Strait symbols indicate the temporal sequence, bold numbers denote phytoplankton biomass (chlorophyll 
a) maxima. The solid grey lines represent the boundaries of ecological domains defused by Tremblay and 
Legendre (1994): domain (a) consists of oceanic North Atlantic observations, and domain (b) upwelling 
and coastal northwest Atlantic blooms 

Most of the observations can be seen to be around the line of unity or above it, with the 
Southern Ocean data points characterised by a wide range of quotient values (Figure 7.13). 

The Tremblay and Legendre (1994) model relates the position on the production-biomass 

diagram to potential export. For observations on the line of equivalence, large cells are lost 
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in the same proportion as their production; whereas the export of large cells is greater or 
lower than their share of production for observations above and below the line respectively. 
Thus observations below the diagonal should correspond to the first phase of blooms, and 
those above the line correspond to postbloom situations. The observations of the present 
study offer some support for their model in as much that all of the post-mixed-diatom 
spring-bloom data points (6 - 10) are above the line of equivalence. However two further 

phytoplankton biomass peaks (7 and 9) were observed during this period (Blight et al. 
1995), and observation (4) - the first phase of the mixed diatom bloom - is not below the 
line. 

From the preceding discussion on quotients, gross community production is expected to be 

positively related to phytoplankton biomass. This could be seen immediately when 
unfractionated gross community production was plotted against unfractionated 
phytoplankton biomass (Figure 7.14A). 

The Southern Ocean and Menai Strait data sets appeared to be characterised by two 
different relationships and these were explored using linear regression on the log- 

transformed observations. The analysis supported this contention (Table 7.2, pages 20-21, 

rows 11,12, Figure 7.14A). For both data sets, greater than 90 % of the variation in GCP 

was apparently explained by variation in biomass (Table 7.2, pages 20-21, rows 11,12); 
inspection of the standardised residuals and leverage coefficients did not suggest undue 
influence for any observations (Appendix Figures A. 9 and A. 10). Interestingly, the slopes 
of the two log-transformed fits were very similar, suggesting GCP to be always relatively 
higher in the Menai Strait. But a closer look, shows the lowest biomass `Menai-1' 
observation (the first of the Menai Strait 1994 study) to actually reside close to the Southern 
Ocean regression fit. This pattern of Menai Strait observations diverging from the Southern 
Ocean relationship before the first mixed-diatom spring bloom will be returned to further 

on in the discussion. 
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Figure 7.14. Unfractionated gross community production (Unfrac. GCP) versus unfractionated 
phytoplankton biomass (Unfrac. Phyto. biomass) for the Southern Ocean and Menai Strait data sets. 

(A) shows log, transformed observations; symbols are: 0 `Menai-l'; " 'Menai-2'; + Polar Front; 
O South Georgia; and 0 Weddell Sea. The solid and dotted lines denote the least squares linear regression 
fits (equations shown on plot) for the Southern Ocean and Menai Strait observations respectively. 

(B) shows observations; symbols as in (A). The solid and dotted lines denote the back-transformed least 
squares linear regression fits for the Southern Ocean and Menai Strait observations respectively 

7-25 



The < 20 gm GCP and biomass variables were also positively related (Figure 7.15). As for 
the unfractionated parameters, the least squares linear regression fits (log-log 
transformations) for the Menai Strait and Southern Ocean observations were different 
(Figure 7.15, Table 7.2, pages 20-21, rows 17 and 19). Inspection of the residuals and 
leverage coeeficients showed the Southern Ocean regression to be led by the Weddell Sea 

observations (Appendix Figure A. 11, Table 7.2, pages 20-21, row 18). Thus the equation 
really describes this localitie's observations rather than the Southern Ocean in general. For 

the Menai Strait study, the lowest biomass ̀ Menai-2' observation was suggested as having 

undue influence on the regression slope (Appendix Figure A. 12). When this observation 
was removed and the regression recalculated (Table 7.2, pages 20-21, row 20), the 

regression coefficient was slightly reduced and remained highly significant (P < 0.001). 
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Figure 7.15. < 20 pm gross community production (< 20 GCP) versus < 20 µm phytoplankton 
biomass (< 20 Phyto biomass) for the Southern Ocean and Menai Strait data sets. 
(A) shows log-transformed parameters; symbols are: 0 `Menai-1'; " `Menai-2'; + Polar Front; 13 South 
Georgia; and   Weddell Sea. The solid and dotted lines denote the least squares linear regression fits 
(equations shown on plot) for the Southern Ocean and Menai Strait observations respectively. 
(B) shows untransformed parameters; symbols as in (A). The solid and dotted lines denote the back- 
transformed least squares linear regression fits for the Southern Ocean and Menai Strait observations 
respectively 
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The regression fits for unfractionated samples from the Menai Strait and the Southern 

Ocean were compared with data from the literature for various ecosystems (Figure 7.16). 

Similar comparisons follow. further on in the discussion for other parameters (DCR and 
NCP versus phytoplankton biomass, DCR and NCP versus GCP). Because these comparisons 

are best discussed as a whole, only brief descriptions of the comparisons are presented along 

side each figure. All the figures are then discussed as a whole at the end. 
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Figure 7.16 (See Facing Page). Log-log transformation of unfractionated gross community 
production (Unfrac. GCP) versus unfractionated phytoplankton (Unfrac. Phyto. ) biomass for this study's 
data and data from the literature. 

(A) shows all data; symbols are 0 polar (this study's Southern Ocean data; Harrison 1986; Platt et at. 
1987; Boyd et al. 1995; Arfstegui et al. 1996); " temperate (this study's Menai Strait data; Holligan et 
al. 1984; Iriarte et al. 1991; ); and + tropical (Williams and Purdie, 1991). The solid and dotted lines 
denote the least squares linear regression fits for this study's Southern Ocean (log Y= -0.02 + 0.86 log 
X, r2 = 0.94) and Menai Strait (log Y=0.30 + 0.91 log X, r2 = 0.91) data sets respectively; the dashod 
line denotes the least squares linear regression fit (log Y=0.28 + 0.81 log X, r2 = 0.70) for all the data 
(this study's and that from the literature). 

(B) shows this study's Southern Ocean data and polar literature data; symbols are: Q South Georgia; + 
Polar Front;   Weddell Sea; 0 Baffin Bay, Arctic (Harrison 1986); X Baffin Bay, Arctic (Platt et al. 
1987); - Bellingshausen Sea, Antarctic (Boyd et al. 1995); and " Antarctic Peninsula (Arfstegui et al. 
1996). The solid and dotted lines denote the least squares linear regression fits for this study's Southern 
Ocean and Menai Strait data sets respectively; the dashed line denotes the least squares linear regression fit 
(log Y=0.13 + 0.77 log X, r2 = 0.78) for all the polar data (this study's and that from the literature). 

(C) shows this study's Menai Strait data, and northern temperate and tropical literature data; symbols are. 
O 'Menai-1'; " `Menai-2'; A western English Channel summer (Holligan et al. 1984); 13 southern North 
Sea Phaeocystis bloom and spring diatom data (Iriarte et al. 1991);   southern North Sea senescent 
Phaeocystis bloom and North Sea July data (Iriarte et al. 1991); - English Channel summer Gyrodinium 
bloom (Iriarte et al. 1991); X North Sea October Rhizosolenia assemblage and North Sea July data (Iriarte 
et al. 1991); and + tropical Pacific (Williams and Purdie, 1991). The solid and dotted lines denote the 
least squares linear regression fits for this study's Southern Ocean and Menai Strait data sets respectively; 
the dashed line denotes the least squares linear regression fit (log Y=0.48 + 0.81 log X, r2 = 0.81) for all 
the temperate data (this study's and that from the literature) 

The other data compared favourably with the regressions derived in this study. The 

Antarctic observations of Boyd et al. (1995) and Arfstegui et al. (1996), and the Arctic data 

points of Harrison (1986) and Platt et al. (1987) were generally scattered around the 

Southern Ocean regression line. Consequently the least squares linear regression fit for all 

the log-transformed polar data is very similar to the fit estimated from this study's Southern 

Ocean observations (Figure 7.16B, Table 7.2, pages 20-21, rows 11,15). 

The English channel data points of Holligan et al. (1984), and the English Channel and 

North Sea observations of Iriarte et al. (1991), were all above the Southern Ocean fit and in 

parts very close to the Menai Strait regression line. As a result, the least squares linear 

regression fit for all temperate data is very similar to the fit estimated from this study's 

Menai Strait observations (Figure 7.16C, Table 7.2, pages 20-21, rows 12,16). 

The general regression equation for all the data (temperate, tropical and polar) was 

characterised by quite a high coefficient of determination (0.70, Table 7.2, pages 20-21, 

row 14). The majority of the temperate and polar observations were above and below the 

regression line respectively: only three polar data points were located above the regression 

line. Thus it can be seen that GCP is generally higher in temperate than in polar 

environments. 

Tö address whether the difference in the GCP versus biomass relationships for the Southern 

Ocean and Menai Strait data sets could be explained by temperature, phytoplankton 

biomass-specific GCP (i. e. an over estimate of growth rate) was plotted against temperature 

(Figure 7.17). 
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Figure 7.17. Unfractionated phytoplankton biomass-specific gross community production (Unfrac. 
Phyto. Specific-GCP) versus absolute temperature for the Southern Ocean and Menai Strait data sets. 
Symbols are: 0 `Menai-1'; " `Menai-2'; + Polar Front; O South Georgia; and   Weddell Sea, solid line 
denotes back-transformed regression fit. The Y-axis intercepts the T-axis at 273.16 K (0 °C) 

Linear regression analysis using the Arrhenius relationship (Figure 7.18; Table 7.2, pages 
20-21, row 21) suggested 61 % of the variation in phytoplankton biomass-specific GCP was 
explained by the variation in temperature. Inspection of the residuals and leverage 

coefficients identified the highest temperature 'Menai-2' observation as possibly having 

excessive influence on the regression slope (Figure 7.18). However, when this point was 
removed and the regression recalculated the slope and intercept remained unchanged 
(Table 7.2, pages 20-21, row 22). The Q10 estimated (see methods for calculation 
procedure) from the slope was 2.7; this lies within the range, 2 to 3, normally reported for 

metabolic processes (e. g. Clarke 1983, Raven and Geider 1988). 

The relationship between unfractionated phytoplankton biomass-specific GCP and 
temperature was compared to other data extracted from the literature (Figure 7.19). 
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Figure 7.19 (See Facing Page). Unfractionated phytoplankton biomass-specific gross community 
production (Unfrac. Phyto. Specific-GCP) versus absolute temperature for this study's data and data 
extracted from the literature. For all plots the solid line denotes the back-transformed regression fit for this 
study's observations (back-transformation of In Specific-GCP = 28 - 7800 / T, r2 = 0.61), and the dotted 
line denotes the equation of Eppley (1972) for maximum phytoplankton growth rate. Note the axes of 
plot (B) are scaled differently. All Y-axes intercept the T-axes at 273.16 K (0 °C). 
(A) shows literature data; symbols are 0 polar (Harrison 1986; Platt et a!. 1987; Boyd et al. 1995; 
Aristegui et al. 1996); " temperate (Holligan et al. 1984; Iriarte et al. 1991); and tropical (Williams and 
Purdie 1991). 

(B) shows this study's Southern Ocean data and polar literature data; symbols are: Q South Georgia; 
+ Polar Front; I Weddell Sea; 0 Baffin Bay, Arctic (Harrison 1986); X Baffin Bay, Arctic (Platt et al. 
1987); -Bellingshausen Sea, Antarctic (Boyd et al. 1995); and " Antarctic Peninsula (Arfstegui et al. 
1996). 

(C) shows this study's Menai Strait data, and northern temperate and tropical literature data; symbols are. 
O 'Menai-1'; S `Menai-2'; A western English Channel summer data (Holligan et al. 1984; Q southern 
North Sea Phaeocystis bloom and spring diatom data (Iriarte et a!. 1991);   southern North Sea senescent 
Phaeocystis bloom and summer data (Iriarte et al. 1991); - English Channel summer Gyrodinium bloom 
(Iriarte et al. 1991); X North Sea October Rhizosolenia assemblage (Iriarte et al. 1991); and + tropical 
Pacific (Williams and Purdie, 1991) 

Similar estimates of phytoplankton growth rate for the Southern Ocean have been reported: 
0.2 to 0.9 d"' (southern Drake Passage, Tilzer and Dubinsky 1987); 0.02 to 0.75 d" 

(Weddell Sea, Smith and Nelson 1990); 0.17 to 0.72 d"' (Weddell and Scotia Seas, Figueiras 

et al. 1994). 

Figure 7.19 shows the polar data and the spring to early-summer data (280 to 287 K) of 
Iriarte et al. (1991) to be generally similar to the regression fit, although there were some 
distinct outliers greater than the Eppley (1972) threshold. However, the data sets are not 
directly comparable to Eppley's relationship because respiration and exudation losses are 

not accounted for in the biomass specific-GCP estimates of growth rate. The cloud of data 

below the projected regression line from Iriarte and co-workers for higher temperatures 

(287 to 291 K) is to some extent expected, because for these summer observations nutrients 

rather than temperature were presumably limiting. The data of Williams and Purdie (1991) 

from the central north Pacific gyre also sit below the projected regression, but this is also 

expected because again nutrients not temperature were almost certainly limiting 

phytoplankton growth. 
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7.2.2 Dark Community Respiration (DCR) 

The respiratory quotient (RQ) is the molar ratio of the rate of carbon dioxide production to 

that of oxygen consumption. In order to convert the measured rates of dark community 

respiration in this study from oxygen to carbon, a value for the RQ needs to be assumed. 
There are few direct estimations of this quotient in pelagic environments and there is no 

evidence for a difference in the RQ for polar and temperate environments. Hopkinson 

(1985) reported an average RQ of 1.02 for an estuarine plume in the Georgia Bight (USA), 

and values assumed by other workers for the RQ range from 0.8 (e. g. Smith et al. 1986) to 

1.0 (e. g. Chin-Leo and Benner 1992, Coffin et al. 1993). These assumptions and 
Hopkinson's observations do not promote the choice of any particular value for the RQ. 

Consequently, a median value for the respiratory quotient of 1.0 was used to convert the 

measured rates of oxygen consumption into estimated rates of carbon dioxide production. 

Data Analysis 

No obvious relationship between unfractionated dark community respiration and 
temperature could be seen. Linear regression analysis (Arrhenius transformation) suggested 
a positive relationship (r2 = 0.42, P<0.0001; Figure 7.20A, Table 7.2, pages 20-21, row 
24), but inspection of the standardised residuals and leverage coefficients suggested undue 
influence upon the slope by a `Menai-2' observation (Appendix Figure A. 13). When the 
`Menai-2' data points were removed, the regression coefficient became non-significant 
(Table 7.2, pages 20-21, row 25). In view of this non-robustness, unfractionated DCR was 

not considered to be obviously related to temperature. 

When contrasted with polar and temperate observations from the literature, the maximum 

values for DCR were found to be similar between the two environments (Figure 7.20B). The 

quotient of maximum DCR values (temperate / polar) is 1.1 with a temperature difference of 

12 °C. This contrasts with the equivalent quotient for maximum GCP values which was 1.7 

for a temperature difference of 11 °C. Whilst this is not consistent with a temperature effect 

on maximum DCR rates, the equivalent temperate to Southern Ocean quotient is: 4.9 for a 

temperature difference of 10 °C. This difference will be elaborated on further on in the 

discussion. 
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Figure 7.20. Unf actionated dark community respiration versus absolute temperature. For both plots 
the Y-axes intercept the T-axis at 273.16 K (0 °C). 

(A) shows this study's unfractionated dark community respiration (Unfrac. DCR) observations. Symbols 
are: 0 `Menai-1'; " `Menai-2'; + Polar Front; Q South Georgia; and   Weddell Sea, and the solid line 
denotes the back-transformed (Arrhenius relationship) least squares linear regression fit. 

(B) shows unfractionated dark community respiration (Unfrac. DCR) observations from this study and 
from other polar and temperate studies in the literature. Symbols are: 0 this study; O Baffin Bay, Arctic 
(Harrison 1986); X Baffin Bay, Arctic (Platt et al. 1987);   English Channel and North Sea (Iriarte et a!. 
1991); " Bellingshausen Sea, Antarctic (Boyd et al. 1995); + Antarctic Peninsula (Aristegui et al. 1996) 

Analysis of the < 20 pm DCR rates also suggested a positive relationship (r2 = 0.68, P< 
0.0001) with temperature (Figure 7.21, Table 7.2, pages 20-21, rows 26,27). Inspection of 
the residuals and leverage coeffcients did not suggest excessive influence upon the 

regression slope by the `Menai-2' observations (Appendix Figure A. 14). Consequently, 

there are no criteria for rejection of this apparent temperature relationship. The pre-bloom 
`Menai-1' and the polar front observations were noticeably below the regression fit (Figure 

7.21), and this is consistent with their limitation by substrate supply. , 
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Figure 7.21. Size-fraction (< 20 µm) dark community respiration versus absolute temperature for the 
Southern Ocean and Menai Strait data sets. For both plots the Y-axis intercepts the T-axis at 273.16 K (0 
°L) 

(A) shows log-transformed observations. symbols are: 0 'Menai-1'; " `Menai-2'; +" Polar Front; 
Q South Georgia; and   Weddell Sea. The solid line denotes the least squares linear regression fit 
(equation shown on plot). 
(B) shows observations, symbols as in (A). The solid line denotes the back-transformed least squares 
linear regression fit 

When unfractionated dark community respiration was plotted against unfractionated 
phytoplankton biomass a positive relationship could be seen immediately (Figure 7.22). 

The Southern Ocean and Menai Strait data sets appeared to be characterised by two 
different relationships and these were explored using linear regression on log-transformed 

observations. For the Southern Ocean data, the analysis showed 71 % of the variation in 

DCR to be apparently explained by biomass (Table 7.2, pages 20-21, row 31; Figure 7.22). 
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Figure 7.22. Unfractionated dark community respiration (Unfrac. DCR) versus unfractionated 
phytoplankton biomass (UPhyto biomass) for the Southern Ocean and Menai Strait data sets. 
(A) shows the log-log transformed data; symbols are: 0 `Menai-1'; " 'Menai-2'; + Polar Front; 
O South Georgia; and " Weddell Sea; the solid line denotes the regression fit for the Southern Ocean data 
(log Unfrac. DCR = 0.20 + 0.50 log Unfrac. Phyto., r2 = 0.71; and the dotted line the regression fit for 
the Menai Strait data (except days 168 and 181; log Unfrac. DCR = -0.5 + 1.0 log Unfrac. Phyto., rz = 
0.80). 
(B) shows the untransformed data, symbols are as for (A), the solid line denotes the back-transformed 
regression fit for the Southern Ocean data, and the dotted line the back-transformed regression fit for the 
Menai Strait data (except days 168 and 181) 

The relationship in the case of the Menai Strait data set was far weaker (Table 7.2 row 32), 

but inspection of the residuals and leverage coefficients suggested the fit could be improved 

by removing the last two `Menai-2' observations; the recalculated regression suggested 80 

% of the variation in DCR could be explained by variation in phytoplankton biomass (Table 
7.2 row 33, Figure 7.22). However it should be noted that the degrees of freedom are low. 

For the Menai Strait and the Southern Ocean regression fits, inspection of the standardised 

residuals and leverage coefficients did not suggest undue influence for any observations 
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(Appendix Figure A. 15, A. 16). The regressions showed a pattern similar to that for GCP 

versus phytoplankton biomass: a divergence in early spring with higher DCR relative to 

phytoplankton biomass for the Menai Strait. 
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Figure 7.23. Size-fraction (< 20 pm) dark community respiration versus < 20 µm phytoplankton 
biomass (< 20 Phyto biomass) for the Southern Ocean and Menai Strait data sets. 
(A) shows log-transformed parameters; symbols are: 0 `Menai-1'; " `Menai-2'; + Polar Front; O South 
Georgia; and U Weddell Sea. The solid and dotted lines denote the least squares linear regression fits for 
the Southern Ocean (log < 20 DCR = -0.28 + 0.76 log < 20 Phyto., r2 = 0.39) and Menai Strait 
observations (except days 123 and 168; log < 20 DCR = -1.04 + 1.43 log < 20 Phyto., r2 = 0.88) 
respectively. 
(B) shows untransformed parameters; symbols as in (A). The solid and dotted lines denote the back- 
transformed least squares linear regression fits for the Southern Ocean and Menai Strait observations 
respectively 

The < 20 tm DCR rates were also positively related to temperature (Figure 7.23). As for the 

unfractionated parameters the least squares linear regression fits (log-log transformations 
for the Menai Strait and Southern Ocean data sets were different (Figure 7.23, Table 7.2, 

pages 20-21, rows 38,40). Inspection of the residuals and leverage coefficients showed the 
Southern Ocean regression to be led by the Weddell Sea observations (Appendix Figure 

A. 17, Table 7.2, pages 20-21, row 39). Thus the equation really describes, with quite a low 
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coefficient of determination (r2 = 0.39), the Weddell Sea observations only. For all the 
Menai Strait observations, the regression fit was not significant (Table 7.2, pages 20-21, row 
40). However, if the two largest outliers (days 123 and 168; both post-bloom samples with 
relatively low phytoplankton biomass) are removed, a significant regression fit can be 
derived (Appendic Figure A. 18, Table 7.2, pages 20-21, row 41). This Menai Strait 

regression fit diverges from the Weddell Sea relationship from early-spring (Figure 7.23). 

When the quotient (< 20 pm DCR / unfractionated DCR) is plotted (Figure 7.24) a pattern 
different from those exhibited by the equivalent phytoplankton biomass (Figure 7.5, page 
10) and GCP (Figure 7.12, page 23) quotients is seen. The DCR quotients estimated for the 
Menai Strait can be seen to generally decrease with increasing unfractionated DCR, with the 

quotient having a lower threshold of approximately 0.4. Thus in the Menai Strait, at least 40 
% of the DCR is attributable to the < 20 pm size-fraction, and these small respirers are 
mainly bacteria (Blight et al. 1995). However, for the Southern Ocean DCR quotients, the 
lower threshold is approximately 0.15. Whilst this may suggest that small respirers can be 
less important in the Southern Ocean than in temperate environments, it should be 

remembered that the Menai Strait is a turbid coastal ecosystem. In such an ecosystem, 
heterotrophic metabolism, especially bacterial, may be stimulated by resuspended marine 
sediments (Wainwright 1987). The only station sampled in the Southern Ocean where such 
`stimulation' may have been present (event 134, onshore site at Willis Islands, see chapter 
3), is above the Menai Strait threshold (actual value is - 0.5). 
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Figure 7.24. Quotient of < 20 µm DCR to unfractionated DCR against unfractionated DCR. Symbols 
are: 0 `Menai-1'; " `Menai-2'; + Polar Front; 13 South Georgia;   Weddell Sea; and x Baffin Bay, 
Arctic (< 35 µm size-fraction, Harrison 1986) 

The regressions for unfractionated dark community respiration and unfractionated 

phytoplankton biomass derived in the present study were contrasted with other data in the 
literature from various ecosystems (Figure 7.25). 
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Figure 7.25 (See Facing Page). Unfractionated dark community respiration (Unfrac. DCR) versus 
unfractionated phytoplankton biomass (Unfrac. Phyto. biomass) for this study's data and data from the 
literature. 

(A) shows all data; symbols are 0 polar (this study's Southern Ocean data, Harrison 1986; Platt et al. 
1987; Boyd et al. 1995; Aristegui et al. 1996); " temperate (this study's Menai Strait data; Holligan et 
al. 1984; Iriarte et al. 1991); and + tropical (Williams and Purdie 1991). The solid and dotted lines denote 
the least squares linear regression fits for this study's Southern Ocean (log Unfrac. DCR = 0.20 + 0.50 
log Unfrac. Phyto., r2 = 0.71) and Menai Strait (except day's 168 and 181, log Unfrac. DCR = -0.5 + 
1.02 log Unfrac. Phyto., r2 = 0.80) data sets respectively; the dashed line denotes the least squares linear 
regression fit for all the data (this study's and that from the literature, log Unfrac. DCR = 0.47 + 0.56 log 
Unfrac. Phyto., r2 = 0.44). 

(B) shows this study's Southern Ocean data and polar literature data; symbols are: Q South Georgia; 
+ Polar Front;   Weddell Sea; 0 Baffm Bay, Arctic (Harrison 1986); X Baffin Bay, Arctic (Platt et al. 
1987); - Bellingshausen Sea, Antarctic (Boyd et al. 1995); " Antarctic Peninsula (Arfstegui et al. 
1996). The solid and dotted lines denote the least squares linear regression fits for this study's Southern 
Ocean and Menai Strait data sets respectively; the dashed line denotes the least squares linear regression fit 
for all the polar data (this study's and that from the literature, log Unfrac. DCR = 0.31 + 0.55 log Unfrac. 
Phyto., r2 = 0.37). 

(C) shows this study's Menai Strait data, and northern temperate and tropical literature data; symbols are: 
O `Menai-1'; " 'Menai-2'; f western English Channel summer (Holligan et al. 1984); 0 southern 
North Sea Phaeocystis bloom and spring diatom data (Iriarte et a!. 1991); 0 southern North Sea senescent 
Phaeocystis bloom and summer data (Iriarte et al. 1991); - English Channel summer Gyrodinium bloom 
(Iriarte et al. 1991); X North Sea October Rhizosolenia assemblage; and + tropical Pacific (Williams and 
Purdie 1991). The solid and dotted lines denote the least squares linear regression fits for this study's 
Southern Ocean and Menai Strait data sets respectively; the dashed line denotes the least squares linear 
regression fit for all the temperate data (this study's and that from the literature, log Unfrac. DCR = 0.71 
+ 0.50 log Unfrac. Phyto., r2 = 0.47) 

The polar literature data exhibited a high degree of scatter and were not well described by 

this study's Southern Ocean regression fit. Consequently the regression fit for all the polar 
data had a low coefficient of determination (0.37, Table 7.2, pages 20-21, row 35). The 

scatter was essentially located above this study's Southern Ocean regression fit and arose 

largely through the Arctic observations (Harrison 1986, Platt et al. 1987) and the Antarctic 

ice edge observation (station I) of Boyd et al. (1995). When these observations were 

removed, the regression for the reduced Antarctic data set yielded a much higher coefficient 

of determination (r2 = 0.68, Table 7.2, pages 20-21, row 36). The reason for this scatter is 

discussed later on; the station I (ice edge) observation of Boyd et al. (1995) is interesting 

because according to Turner and Owens (1995) this station was most closely equivalent to 

the temperate pre-bloom situation. However, relative to phytoplankton biomass, this 

observation has the highest rate of dark community respiration for all Southern Ocean 

observations, and is comparable to Arctic post-bloom data points (Figure 7.25B). The 

reason for this anomaly is unclear: both microzooplankton biomass (Burkill et al. 1995) 

and suspended particulate material (Robins et al. 1995) were relatively low. 

The temperate literature data also appeared to be poorly described by the reduced Menai 

Strait regression fit. However, the most comparable data, the spring data of Iriarte et al. 

1991 (open squares) were reasonably evenly scattered around both sides of the regression 

fit. 

The general regression equation for all the data (temperate, tropical and polar) was 

characterised by a lower coefficient of determination (0.44) than that estimated for GCP 

versus phytoplankton biomass (0.70), although the regression coefficient was still highly 

significant (P < 0.0001, Table 7.2, pages 20-21, row 37). The majority of polar observations 
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were located below the regression line and to see if this difference could be explained by 

temperature, phytoplankton biomass specific-DCR was plotted against temperature (Figure 

7.26). 
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Figure 7.26. Log-log transformed observations for unfractionated phytoplankton biomass-specific dark 
community respiration (UPhyto specific-DCR) versus absolute temperature for the Southern Ocean and 
Menai Strait data sets and for data extracted from the literature. For both plots, the Y-axis intercepts the 
T-axis at 273.16 K (0 °C). 

(A) shows this study's data, symbols are: 0 'Menai-1'; " `Menai-2'; + Polar Front; Q South Georgia; 
and 0 Weddell Sea, the solid line denotes the least squares linear regression fit from the Arrhenius plot On 
Specific-DCR - 40.1 -11600 / T, r2 = 0.36). 
(B) shows data from the literature; symbols are: X Holligan et al. 1984; 0 Harrison 1986; Q Platt et al. 
1987; + Iriarte et al. 1991;   Williams and Purdie 1991; - Boyd et al. 1995; " Aristegui et al. 1996. 
The solid line denotes the linear regression fit (from the Arrhenius plot) for this study's Southern Ocean 
and Menai Strait data sets 

Linear regression analysis (Arrhenius relationship) yielded a significant positive relationship 
between phytoplankton biomass-specific DCR and temperature (Figure 7.26A, Table 7.2, 

pages 20-21, row 42). Inspection of the residuals and leverage coefficients (Appendix 

Figure A. 19) suggested undue influence on the slope by the two last observations of the 
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Menai Strait study. When these were removed, the coefficient of determination and the 

significance of the regression coefficient both decreased but low significance was retained 
(Table 7.2, pages 20-21, row 43). 

The regression fit derived from this study's Southern Ocean and Menai Strait observations 

was compared with data from the literature (Figure 7.26B). This showed the literature 

observations to exhibit a high degree of scatter, especially at the lowest temperatures. Some 

of the respiration rates from the Arctic studies and that from the Bellingshausen Sea ice- 

edge (station I, Boyd et al. 1995) were exceptionally high suggesting substantial 
heterotrophic respiration. 
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7.2.3 Net Community Production 

Net community production is the balance between gross community production and dark 

community respiration. Because gross community production is nearly always substantially 

greater than dark community respiration, the photosynthetic quotient value (1.2) selected 

earlier on in this discussion was used to convert the measured NCP oxygen flux to an 

estimated NCP carbon flux. 

Data Analysis 

No obvious relationship between unfractionated gross community production and 

temperature could be seen, although linear regression analysis suggested a positive 

relationship (r2 = 0.15, P<0.05; Figure 7.27A, Table 7.2, pages 20-21, row 44). Although 

inspection of the leverage coefficients did not give reason for rejection, the distribution of 

the residuals was considered to exhibit polarisation (Appendix Figure A. 20). Consequently, 

unfractionated NCP was not considered to be related to temperature. 

When contrasted with polar and temperate observations from the literature, the maximum 

polar values for NCP were found to be substantially smaller than the temperate maxima 
(Figure 7.27B). The quotient of maximum NCP values (temperate / polar) is 1.9 with a 

temperature difference of 8 °C. This is similar to the equivalent quotient for maximum GCP 

values which was 1.7 for a temperature difference of 11 °C, but larger than the equivalent 
DCR quotient (1.1 for a temperature difference of 12 °C) . This is consistent with a 

temperature limitation on maximum NCP rates. 
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Figure 7.27. Unfractionated net community production versus absolute temperature. For both plots the 
Y-axes intercept the T-axis at 273.16 K (0 C). 

(A) shows this study's unfractionated net community production (Unfrac. NCP) observations. Symbols 
are: 0 `Menai-1'; " 'Mena -2'; + Polar Front; 0 South Georgia; and   Weddell Sea, and the solid line 
denotes the least squares linear regression fit. 

(B) shows unfractionated net community production (Unfrac. NCP) observations from this study and 
from other polar and temperate studies in the literature. Symbols are: 0 this study; 0 Baffin Bay, Arctic 
(Harrison 1986); X Baffin Bay, Arctic (Platt et al. 1987); U English Channel and North Sea (Iriarte et al. 
1991); " Bellingshausen Sea, Antarctic (Boyd et al. 1995); + Antarctic Peninsula (Arfstegui et al. 1996) 

Analysis of the < 20 µm NCP rates suggested no significant (r2 < 0.1) relationship with 
temperature (Figure 7.28). 
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Figure 7.28. Size-fraction (< 20 µm) net community production versus absolute temperature. Symbols 
are: 0 `Menai-1'; " `Menai-2'; + Polar Front; Q South Georgia; and   Weddell Sea, The Y-axis 
intercepts the T-axis at 273.16 K (0 °C) 

When unfractionated net community production was plotted against unfractionated 
phytoplankton biomass a positive relationship could immediately be seen (Figure 7.29). 
The Southern Ocean and Menai Strait data sets appeared to be characterised by two 
different relationships and these were explored using linear regression on the log- 

transformed positive observations. It should be noted that use of the log-log transformation 
excludes negative rates. However, there were only two negative NCP measurements recorded 
in this study; these data points, because of their heterotrophic domination, would be outliers 
in an NCP relationship with phytoplankton biomass. 

The analysis yielded two different relationships (Table 7.2, pages 20-21, rows 38,39, Figure 

7.29A). For both data sets, greater than 88 % of the variation in NCP was apparently 

explained by variation in biomass (Table 7.2, pages 20-21, rows 46,47). Inspection of the 

standardised residuals and leverage coefficients did not suggest undue influence for any 

observations (Appendix Figures A. 21 and A. 22). 
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Figure 7.29. Unfiactionated net community production (Unfrac. NCP, positive rates only) versus 
unfractionated phytoplankton biomass (UPhyto biomass) for the Southern Ocean and Menai Strait data 
sets. 
(A) shows the log-transformed observations. Symbols are: 0 'Menai-1'; " `Menai-2'; + Polar Front; 
Q South Georgia; and 0 Weddell Sea. The solid and dotted lines denote the least squares linear regression 
fits for the Southern Ocean (log Unfrac. NCP = -0.32 + 0.96 log Unfrac. Phyto., r2 = 0.93) and Menai 
Strait (log Unfrac. NCP = 0.0 + 0.98 log Unfrac. Phyto., r2 = 0.88) observations respectively. 
(B) shows the observations. Symbols are as for (A), the solid line and dotted lines denotes the back- 
transformed least squares linear regression fits for the Southern Ocean and Menai Strait observations 
respectively 

The regression fits for the Menai Strait data and the Southern Ocean data sets were 

compared with data from the literature for various ecosystems (Figure 7.30). 
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Figure 7.30 (See Facing Page). Log-log transformation of unfractionated net community 
production (Unfrac. NCP, positive rates only) versus unfractionated phytoplankton biomass (Unfrac. 
Phyto biomass) for this study's data and data extracted from the literature. 

(A) shows all positive NCP data; symbols are 0 polar (this study's Southern Ocean data; Harrison 
1986; Platt et al. 1987; Boyd et al. 1995; Arfstegui et al. 1996); " temperate (this study's Menai Strait 
data; Holligan et al. 1984; Iriarte et al. 1991); and tropical (Williams and Purdie 1991). The solid and 
dotted lines denote the least squares linear regression fits for this study's Southern Ocean (1og Unfrac. 
NCP = -0.32 + 0.96 log X, r2 = 0.93) and Menai Strait (log Unfrac. NCP = 0.0 + 0.98 log X, ?=0.88) 
data sets respectively; the dashed line denotes the least squares linear regression fit for all the data (this 
study's and that from the literature; log Unfrac. NCP = -0.13 + 0.92 log X, r2 = 0.70). 

(B) shows positive NCP rates from this study's Southern Ocean data and polar literature data; symbols 
are: Q South Georgia; + Polar Front;   Weddell Sea; 0 Baffin Bay, Arctic (Harrison 1986); and x 
Baffin Bay, Arctic (Platt et al. 1987); - Bellingshausen Sea, Antarctic (Boyd et al. 1995), " Arlstegui et 
al. (1996). The solid and dotted lines denote the least squares linear regression fits for this study's 
Southern Ocean and Menai Strait data sets respectively; the dashed line denotes the least squares linear 
regression fit for all the polar data (this study's and that from the literature; log Unfrac. NCP = -0.10 + 
0.81 log X, r2 = 0.82). 

(C) shows positive NCP rates from this study's Menai Strait data, and northern temperate and tropical 
literature data; symbols are: 0 'Menai-1'; " `Menai-2'; X western English Channel summer (Holligan et 
al. 1984); Q southern North Sea Phaeocystis bloom and spring diatom data (Iriarte et al. 1991);   North 
Sea summer data (Iriarte et al. 1991); - English Channel summer Gyrodinium bloom (Iriarte et al. 
1991); X North Sea October Rhizosolenia assemblage (Iriarte et al. 1991); and + tropical Pacific 
(Williams and Purdie 1991). The solid and dotted lines denote the least squares linear regression fits for 
this study's Southern Ocean and Menai Strait data sets respectively; the dashed line denotes the least 
squares linear regression fit for all the temperate data (this study's and that from the literature; log Unfrac. 
NCP = 0.0 + 0.93 log X, r2=0.66) 

The other data compared favourably with the regressions derived in this study. The 

Antarctic observations of Boyd et at. (1995) and Arfstegui et at. (1996), and the Arctic data 

points of Harrison (1986) and Platt et al. (1987) were generally scattered around the 
Southern Ocean regression line. Consequently the least squares linear regression fit for all 
the log-transformed polar data is similar to the fit estimated from this study's Southern 

Ocean observations (Figure 7.30B, Table 7.2, pages 20-21, rows 46,49). 

The English channel data points of Holligan et al. (1984), and the English Channel and 
North Sea observations of Iriarte et al. (1991), were in parts very close to the Menai Strait 

regression line. As a result, the least squares linear regression fit for all temperate data is 

similar to the fit estimated from this study's Menai Strait observations (Figure 7.30C, Table 

7.2, pages 20-21, rows 47,50). 

The general regression equation for all the data (temperate, tropical and polar) was 

characterised by quite a high coefficient of determination (r' = 0.70, Table 7.2, pages 20- 

21, row 48). The majority of the temperate and polar observations were above and below 

the regression line respectively. 

To address whether the difference in the NCP versus biomass relationships for the Southern 

Ocean and Menai Strait data sets could be explained by temperature, phytoplankton 

biomass-specific NCP was plotted against temperature (Figure 7.31). 
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Figure 7.31. Log-log transformed observations for unfractionated C-specific net community production 
(C-specific NCP) versus absolute temperature for the Southern Ocean and Menai Strait data sets and for 
data extracted from the literature. For both plots, the Y-axis intercepts the T-axis at 273.16 K (0 °C). 
Note the temperature axes are scaled differently 
(A) shows this study's data; symbols are: 0 'Menai-1'; " 'Menai-2'; + Polar Front; Q South Georgia; 
and U Weddell Sea). The solid line denotes the least squares linear regression fit from the Arrhenius Plot 
(B) shows data from the literature; symbols are: X Holligan et at. 1984; 0 Harrison, 1986; Q Platt el at. 
1987; + Iriarte el al. 1991;   Williams and Purdie 1991; - Boyd et al. 1995; and " Arfstegui et al. 
1996. The solid line denotes the linear regression fit from the Arrhenius plot for this study's Southern 
Ocean and Menai Strait data sets 

Linear regression analysis (Arrhenius relationship) yielded a significant positive relationship 
between phytoplankton biomass-specific NCP and temperature (Figure 7.31A, Table 7.2, 

pages 20-21, row 51). Inspection of the standardised residuals and leverage coefficients did 

not suggest undue influence upon the slope by any observations. However, the relationship 
does not look convincing as there is no obvious gradient within the two ecosystems. 
Consequently, the relationship is rejected, but phytoplankton biomass-specific NCP does 

appear to be generally higher in the Menai Strait. 

The regression fit derived from this study's Southern Ocean and Menai Strait observations 
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was compared with data from the literature (Figure 7.31B). This showed the literature 

observations to exhibit a high degree of scatter. 

Summary for Oxygen-Flux Versus Phytoplankton Biomass Plots 

The initial (i. e. pre-spring mixed diatom bloom) Menai Strait observations (oxygen flux) 

were generally comparable to the Southern Ocean observations with similar explanatory 

variable (biomass) values. Post-spring mixed diatom bloom Menai Strait observations 
(oxygen flux) were generally higher than the Southern Ocean observations with similar 

explanatory variable (biomass) values. Consequently, the ecosystem-specific relationships 

exhibited a divergent pattern, and the Southern Ocean can be considered as most like the 

temperate pre- to spring bloom situation. 
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7.2.4 Plots of Oxygen Fluxes: using Unfractionated GCP as the Explanatory 

Variable 

DCR versus GCP 

Linear regression analysis suggested a positive relationship between DCR and GCP (r2 = 
0.65, P<0.0001; Figure 7.32A, Table 7.2, pages 20-21, row 52). Inspection of the 

standardised residuals and leverage coefficients suggested strong influence upon the slope 
by the `Menai-2' observations. The coefficient of determination was improved by 

removing P1 and the `Menai-2' observations (Table 7.2, pages 20-21 row 53). 
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Figure 7.32. Unfractionated dark community respiration (Unfrac. DCR) versus unfiactionated gross 
community production (Unfrac. GCP) for the Southern Ocean and Menai Strait data sets. 
(A) shows the un-transformed observations; symbols are: 0 `Menai-1'; " 'Menai-2'; + Polar Front; 
0 South Georgia; and R Weddell Sea. The solid line denotes the least squares linear regresion fit (Unfrac. 
DCR = 3.8 + 0.30 Unfrac. GCP, r2 = 0.65) 
(I3) shows the log-transformed observations; symbols as in (A), and the solid line denotes the least 
squares linear regression fit (log Unfrac. DCR = 0.04 + 0.68 log Unfrac. GCP, r2 = 0.77) for all the 
observations except P1 (Weddell Sea) and those of `Menai-2'. The dotted line denotes the line drawn 
through this study's observations with lowest relative DCR and can be considered as an overestimate of 
the algal contribution (under optimum conditions) to community respiration 
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In the plot of DCR versus GCP, observations with high DCR relative to GCP can be 

considered to represent assemblages with maximum heterotrophic activity; whereas those 

with low DCR relative to GCP correspond to communities with minimal heterotrophic 

activity. These latter communities are the closest to `pure algal' cultures that can be found 

in the oceans. In microalgae, the ratio of dark respiration to gross photosynthesis varies with 
different taxa, and increases under suboptimal conditions (Geider and Osborne 1989). The 

line drawn through this study's observations with lowest relative DCR can be considered as 

an overestimate of the algal contribution (under optimum conditions) to community 

respiration (grey dotted line in Figure 7.27B). The equation for this line is: 

GCP = 3.6 + 0.10 DCR - (i) 

Langdon (1993) states that the value of 0.1 for the ratio of dark respiration to gross 

photosynthesis is probably the most widely used, but that its use significantly underestimates 

the actual respiratory loss in all but a 'few situations'; for this study, 'few' is at least 13 °lo, 

and the 'situations' included all data subsets except 'Menai-2'. If the line denoting 

equation (i) is extrapolated to cover the entire range of GCP values, then the distance 

orthogonal to the GCP axis that an observation lies above this line can be considered as an 
index of heterotrophic activity. In order to make this index dimensionless, the distance was 
divided by the predicted DCR value using equation (i); the derived quotient was called the 
'heterotrophic index'. Thus nominal 'phytoplankton only' assemblages have a 
'heterotrophic index' of zero. For all the 'Menai-l' observations except day 123 (post 

spring diatom bloom sample), values for the 'heterotrophic index' were less than 0.6, the 

day 123 value was 5.5. The average 'heterotrophic index' for the 'Menai-2' observations 

was 5.6, with a distinct maximum on day 168 of 24. In contrast the Southern Ocean 

observations were all characterised by a 'heterotrophic index' of less than 2.4, the average 

value being 0.7. Thus for this study's observations the Southern Ocean can be described as 

generally 'hung-up' at the spring bloom stage, only moderate heterotrophic succession 
developing. 

This study's observations for unfractionated DCR and GCP were contrasted with other 

observations in the literature for various ecosystems (Figure 7.33). 
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Figure 7.33. See facing page for legend 

7-54 

3 

ALL DATA 
O 

O 

2.5 

6 
U2 
ao 
a 

1.5 

0.5 
0 

2.5 

X. % 
A0 2 
I, 
e 
ä 1.5 

A1 

U. 5 
b0 
O 

0 

3 

2.5 
I, 
a 
U2 
bo 
S 

1.5 
U 

.: 1 

0.5 
ec 0 

0 
3 3.5 

L 



Figure 7.33 (See Facing Page). Log-log transformation of unfractionated da± community 
respiration (Unfrac. DCR) versus unfractionated gross community production (Unfrac. GCP) for this 
study's data and data extracted from the literature. 

(A) shows all data; symbols are 0 polar (this study's Southern Ocean data; Harrison, 1986; Platt et at. 
1987; Boyd et a!. 1995; Aristegui et a!. 1996); " temperate (this study's Menai Strait data; Holligan et 
al. 1984; Iriarte et al. 1991); and tropical (Williams and Purdie 1991). The solid and dashed lines denote 
the least squares linear regression fits for this study's data (except P1 and 'Menai-2'; log Unfrac. DCR = 
0.04 + 0.68 log Unfrac. GCP, r2 = 0.77) and for all the data (this study's and that from the literature; log 
Unfrac. DCR = 0.35 + 0.63 log Unfrac. GCP, r2 = 0.47) respectively; the dotted line denotes the line of 
equivalence; the lightl cross-hatched line denotes the line drawn through the present study's observations 
with lowest relative DCR; the dark cross-hatched line denotes the line drawn through the literature 
observations with lowest relative DCR. 

(B) shows this study's Southern Ocean data and polar literature data; symbols are: D South Georgia; + 
Polar Front;   Weddell Sea; 0 Baffin Bay, Arctic (Harrison 1986); X Baffin Bay, Arctic (Platt et al. 
1987); -Bellingshausen Sea, Antarctic (Boyd et al. 1995); " Antarctic Peninsula (Arfstegui et al. 1996). 
The solid and dashed lines denote the least squares linear regression fits for this study's data (except PI and 
'Menai-2') and for all the polar data (this study's and that from the literature; log Unfrac. DCR = 0.39 + 
0.60 log Unfrac. GCP, r2 = 0.31) respectively; the dotted line denotes the line of equivalence. 
(C) shows this study's Menai Strait data, and northern temperate and tropical literature data; symbols are: 
O `Menai-1'; " `Menai-2'; X western English Channel summer (Holligan eta!. 1984); D southern North 
Sea Phaeocystis bloom and spring diatom data (Iriarte et a!. 1991);   southern North Sea senescent 
Phaeocystis bloom and temperate summer data (Iriarte et al. 1991); - English Channel summer 
Gyrodinium bloom (Iriarte et a!. 1991); X North Sea October Rhizosolenia assemblage (Iziarte et a!. 
1991); and + tropical Pacific (Williams and Purdie 1991). The solid and dashed lines denote the least 
squares linear regression fits for this study's data (except P1 and ̀ Menai-2') and for all the temperate data 
(this study's and that from the literature; log Unfrac. DCR = 0.50 + 0.57 log Unfrac. GCP, r2 = 0.41) 
respectively; the dotted line denotes the line of equivalence 

From the plot, the distribution of polar and temperate observations around the general 

regression line can be seen to be reasonably symmetric (Figure 7.33A). However, the polar 

observations only plot shows that the polar observations above the general regression line 

are mostly of arctic origin (Figure 7.33B). The Antarctic observations are in fact evenly 

scattered around this study's Southern Ocean regression fit. 

We can again use the line drawn through this study's observations with lowest relative DCR 

as a basis for the calculation of a `heterotrophic index' (lighter thick hatched line in 

7.33A). However, this line does not describe the lower envelope for DCR for the literature 

observations. A new line (heavier grey hatched line in Figure 7.33A) can be drawn through 

a tropical, two Southern Ocean and a temperate spring data point and the equation for this 

line is: 
DCR = 3.15 + 0.04 GCP 

The value of 0.04, which is an overestimate of algal respiration under optimal conditions, is 

lower than those generally estimated for algal cultures (Langdon 1993). 

Although the lower threshold for the DCR to GCP quotient is lower in the literature studies, 

the threshold derived from this study's observations can still be used to estimate the 
`heterotrophic quotient'. However, minimum values for this quotient will this time be less 

than zero (as low as -0.6). The calculation revealed the arctic range of quotient values (0.8 

to 40) to exceed that estimated for the Menai Strait (0 - 25). Thus the autotroph to 
heterotroph succession as seen in the Menai Strait also appears to be characteristic for the 

Arctic, with the magnitude of the extreme heterotrophic phase possibly actually exceeding 

that calculated for the Menai Strait despite the temperature difference. In contrast, the 

literature Antarctic observations ranged between -0.3 and 4.9. This is similar to that 
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calculated for this study's observations (0 - 2.4) and thus there are no Southern Ocean 

observations with a `heterotrophic index' value greater than 5. Does this mean that the 

extreme heterotrophic phase found in the Menai Strait and in the Arctic does not occur in 

the Southern Ocean? The current data set is too sparse to answer this question with a high 

degree of confidence. From the wide ranging temperate study of Iriarte et al. (1991), the 

maximum estimated heterotrophic index is 6.1 for a senescent Phaeocystis bloom sample, 

this is not so far above 4.9. Also using the GCP to phytoplankton biomass relationship 

calculated from the present study's observations, GCP can be estimated for station I of 

Boyd et al. (1995), and then inserted into equation (i). The heterotrophic quotient 

subsequently estimated has a value close to 7. Thus the extent of heterotrophic succession 

that can arise in the Southern Ocean appears to be comparable to that generally estimated 

for temperate post-bloom situations, but considerably less than the extreme states 

encountered in the Menai Strait and the Arctic. One possible explanation for the lack of a 

'heterotrophic climax' of compable magnitude to that observed in the Menai Strait and 

Arctic, is the mixed layer depths are shallower in the latter environments (10 -15 m, water 

column depth for Menai Strait; mixed layer for Arctic, Harrison 1986, Platt et al. 1987). 

Thus if the bias of considering volumetric rates is removed by calculating the 

'heterotrophic quotient' per unit area, then the Southern Ocean values would obviously 

become closer to those estimated for the shallower environments (Menai Strait and Arctic). 

A DCR and GCP quotient plot similar to the one presented earlier on for GCP and 

phytoplankton biomass was constructed (Figure 7.34). For observations on the line of 

equivalence, the size distribution of DCR is the same as that for GCP. Whereas for 

observations above the line, smaller cells are proportionately greater respirers than 

photosynthesizers. Thus it can be inferred that for the Weddell Sea and some Polar Front 

observations, organisms of similar size are responsible for both processes. This is somewhat 

atypical. The generally accepted phenomenon of smaller cells being proportionately greater 

respirers (e. g. Williams 1981a) is seen in the rest of the data (Figure 7.34) 
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Summary 

Different relationships were derived for the oxygen fluxes in terms of phytoplankton 
biomass for the Southern Ocean and Menai Strait observations. In these relationships, the 

oxygen fluxes were generally relatively (relative to the explanatory variable: phytoplankton 
biomass) higher in the Menai Strait. In contrast, a single relationship for DCR in terms of 
GCP was fitted for both data sets. This difference is consistent with a temperature effect on 
the oxygen fluxes, with GCP and DCR similarly suppressed at lower temperatures. 
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CHAPTER 8: CONCLUSIONS 
The aim of this study was to collect a body of data on microbial plankton metabolism, 

especially dark community respiration, in two contrasting environments: the Southern 

Ocean and a temperate ecosystem (the Menai Strait). These two environments obviously 
differ in their temperature regimes, and because temperature has such an important 

influence on life processes, this factor was selected as a focus for the study's synthesis. In 

the analysis of the data the following two questions were to be addressed: 

1. Is there a difference between temperate and polar waters in microbial biomass? If so, 

can this difference be related to temperature? 

2. Is there a difference between temperate and polar waters in microbial metabolism? If so, 

can this difference be related to temperature? 

An additional objective of the temperate ecosystem study was to determine the phasing of 

autotrophic and heterotrophic plankton metabolism during the temporal evolution of 

phytoplankton blooms. In the subsequent analysis of the data, the basis of this phasing was 

to be addressed. 

In both the Southern Ocean and Menai Strait study's the following variables were recorded: 

size-fractionated gross community production, net community production and dark 

community respiration; size-fractionated chlorophyll a concentration; bacterial and 

microplankton abundance; the tritiated thymidine incorporation rate; and water 

temperature. Sampling during the Southern Ocean cruise was composed of two week-long 

study's at fixed sites (Willis Islands, S. Georgia; and the Polar Front Zone), and a wide- 

ranging study of the Weddell-Scotia Sea. The Willis Islands site corresponded to a shelf 
location where the standing stock of phytoplankton biomass was elevated. In contrast, much 

lower standing stocks of phytoplankton were encountered at the oceanic Polar Front Zone 

study site. Consequently, the Southern Ocean microbial plankton biomass and metabolism 

data cover a range of phytoplankton standing stocks. The temperature range covered by 

this data was extended by the wide-ranging Weddell-Scotia Sea study enabling coverage of 

the entire range of Antarctic pelagial temperatures. 

The Menai Strait study was undertaken over two years: 1993 and 1994. During 1993, 

sampling intervals were two to six weeks, and microbial plankton biomass and metabolism 

data was obtained for a large part of the year. In 1994, the sampling intervals were roughly 

one week, and the temporal-coverage was restricted to the spring and early summer 

plankton bloom sequence. 

There are several constraints on the data and their analyses. First, the Menai Strait is a turbid 

coastal environment and so generally has high suspended matter loading. In such 

environments, the resuspended sediment may stimulate bacterial metabolism (Wainwright 

1987). High suspended matter levels were not present in the Southern Ocean samples. 

Therefore resuspended sediments and temperature are both possible causative factors for 
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higher rates of bacterial metabolism in the Menai Strait. Second, the gross community 
production measurements, because they were undertaken in deck-incubators, probably 
correspond more closely to physiological P,,, measurements than to ecological estimates of 
in situ photosynthesis. Consequently, the final analysis of the data (Chapter 7) was restricted 
to considerations of volumetric rates; although if the data could have supported it, use of 
rates per unit area would have been ecologically preferable. Thirdly, in the final analysis of 
the data, various conversion factors were resorted to. Whilst an attempt was made to justify 
the values chosen for these conversion factors, there use obviously adds some uncertainty to 
this study's inferences. 

The Southern Ocean specific conclusions are that an unusually large diatom bloom was 
encountered near Willis Islands when concurrent krill biomass was low krill. For this bloom, 

most of the standing stock and production was accounted for by large diatoms. In contrast 
to the Willis Islands site, phytoplankton standing stock and production in the Polar Front 
Zone was much smaller, with little contribution from phytoplankters greater than 20 µm. 
Similar levels of phytoplankton standing stocks and production were also encountered in 
the Weddell Sea, except at the ice-edge, where a small bloom was encountered. Considerable 

variability in the contribution of the < 20 pm size-fraction to phytoplankton standing stock 
and production was observed in the Weddell Sea samples: 16 - 88 %. Thus from this 
Southern Ocean study as a whole, it can be concluded that the < 20 p. m size-fraction can at 
times dominate the phytoplankton community (e. g. Polar Front Zone), but it can also play a 
minor role, especially during blooms (e. g. Willis Islands). 

Levels of bacterial abundance and production were comparable to those measured 

previously in the Southern Ocean, although they were at the low end of values reported for 

the global ocean. Rates of dark community respiration were also similar to those reported in 

earlier Southern Ocean studies. This study's maximum rate (6 mmol OZ m"3 d"') is the 
highest reported so far for the Antarctic region but is considerably lower than the maximum 
Arctic rates (25.7 mmol O= m'' d''; Platt et al. 1987). Size-fractionation of dark community 

respiration showed that at times bacteria can dominate (up to 61 % of the total) microbial 

respiration. However, the estimated range for the bacterial contribution to respiration (9 - 61 

%) is at the lower end of values reported for temperate regions. 

The Menal Strait specific conclusions are that the annual microbial cycle is composed of a 

mixed diatom bloom in late March or April followed by blooms of diatoms and 
Phaeocystis in May and June. This succession was followed by low phytoplankton biomass 

and production with intermittent smaller blooms. Size-fractionation showed that meso- and 

microphytoplankton dominated phytoplankton production and biomass over the spring 
bloom . period and nanophytoplankton dominated during summer when activity and 
biomass were low. Throughout the year, the bacteria assemblage was a major contributor to 

overall community respiration. Thus the phasing of gross community production and dark 

community respiration was strongly influenced by bacterial metabolism and abundance 

changes. 
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During 1994, three phytoplankton bloom types were identified: the mixed diatom bloom, 

the Rhizosolenia delicatula bloom, and the Phaeocystis bloom. For each of these bloom 

different dark community respiration responses were observed. The basis for these 

differences were addressed by considering the time sales of the different routes by which 

autotroph organic matter becomes available to the bacteria. For the mixed diatom bloom in 

both years, no obvious dark community response was observed. This lack of response was 

explained by considering there to be limited transfer of organic material to the bacteria 

because physical phytoplankton losses predominated. For the exponential phase of the 

Rhizosolenia delicatula bloom in 1994, unfractionated gross community production and 

dark community respiration were in phase; this very close coupling was attributed to the 

link between the phytoplankton and the bacteria occurring largely via the low molecular 

weight (LMW) pool. For the Phaeocystis bloom in both years, there was a delay of one to 

two weeks between the gross community production and dark community respiration 

maxima. This delay was attributed to the link between the phytoplankton and bacteria 

occurring largely via a high molecular weight (HMW) pool. The consequence of this shift 
in the partitioning of the dissolved organic matter pool (DOM) was that microheterotroph 

respiration persisted after the decline of photosynthesis and consequently net community 

production exhibited a positive-negative temporal sequence. 

The general conclusions of this thesis are that in both the Menai Strait and the Southern 

Ocean, meso- and microphytoplankton dominated phytoplankton production and biomass 

during diatom blooms. Whereas, nanophytoplankton predominated when production and 
biomass were low, i. e. during the summer in the Menai Strait, in waters near the Polar Front, 

and in some samples from the Weddell Sea. Generally, the microbial (bacteria and < 20 gm 

phytoplankton) component of the pelagic food web exhibited less variation than 

unfractionated phytoplankton. Consequently, the biomass quotients of < 20 gm 

phytoplankton to unfractionated phytoplankton, and bacteria to unfractionated 

phytoplankton, both decreased as unfractionated phytoplankton biomass increased. Similar 

patterns were also exhibited for the rate quotients of the < 20 µm size-fraction to the 

unfractionated sample for both GCP and DCR; although the quotients did exhibit 

differences in their lower threshold values. For example for the Menai Strait samples, the 

DCR quotient lower threshold (0.4) was higher than its GCP counterpart (0.1). Thus in the 

Menai Strait, at least 40 % of overall DCR was always attributable to the < 20 µ. m size- 

fraction. However, for the Southern Ocean samples, the lower threshold value for the DCR 

quotient was 0.15. This suggests that in the Southern Ocean, organisms within the < 20µm 

size-fraction may at times be less important respirers (but see `constraints on analysis' 

section). 

Different relationships for GCP, DCR and NCP in terms of phytoplankton standing stock 

were generated for the Menai Strait and Southern Ocean study's using log-log normalised 

least squares linear regression. In these relationships, the oxygen metabolic rates were 

always relatively (relative to phytoplankton biomass) higher in the Menai Strait, and this 
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difference was argued to be consistent with low temperature suppression of the Southern 

Ocean rates. This difference was also seen when data from the literature were used to 

produce more general relationships. When the analysis was repeated, this time to produce a 

relationship for GCP in terms of DCR, the Menai Strait and Southern Ocean data were 
described by a single relationship. This was argued to be consistent with a temperature 

effect on the two rates, with both GCP and DCR similarly suppressed at lower temperatures; 
data from the literature from both temperate and Southern Ocean environments were 

consistent with this inference. Thus this thesis does not lend support to the hypothesis of a 
differential response of gross community production and dark community respiration to 
low temperature. 

As already stated, in the analysis of the data, two questions in particular were to be 

addressed. Each of these questions will now be considered and the relevant pieces of 
evidence highlighted. The first question asked whether there is a difference between 
temperate and polar waters in microbial biomass, and if so can this be related to 
temperature? I conclude, for the variables considered in this study, that the answer to this 

question is no, with one possible exception: bacterial biomass. This answer ̀ no' is based on 
the following observations that were common to both environments. Firstly, phytoplankton 
blooms were composed of large (> 20 pm) cells or colonies; whereas the standing stocks of 
small (< 20 pm) phytoplankters and bacteria were more conservative. Second, bacterial 
biomass generally increased as phytoplankton biomass increased. Bacterial biomass was 
flagged as a possible exception, because it was unusually low in the Weddell Sea. This may 
be related to the low ambient temperature (e. g. temperature-limitation of bacterial-specific 

growth rate), but because high bacterial biomasses do occur in low-temperature eutrophic 
systems, other factors, such as trophic status, are probably more important. 

The second question asked is there a difference between temperate and polar waters in 

microbial metabolism, and if so can this be explained by temperature? I conclude, for the 

variables considered in this study, that relative to phytoplankton standing stock, the answer 
to this question is yes. The evidence supporting this answer is as follows. Firstly, although 
the maximum biomasses of phytoplankton blooms were comparable between polar and 
temperate environments, maximum gross and net community production rates were not; 
higher maximum rates were found in the temperate environments. Second, plots and 

regression analyses, for gross community production and net community production 
against phytoplankton biomass, clearly showed these metabolic rates to be relatively higher 

in temperate environments. The comparable plots and regressions for dark community 

respiration also showed these rates to be generally relatively higher in temperate 

environments than in the Southern Ocean. This pattern was less obvious for the Arctic data 

points because these contained a large subset of heterotrophic post-bloom observations. 

Having concluded that relative to phytoplankton standing stock, there is a difference in 

microbial metabolism between temperate and polar environments. The follow up question is 

can this difference be related to temperature? I conclude that the answer to this question is a 
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`cautious' yes. I have applied the qualifier `cautious' because this question was essentially 

addressed by seeing if the biomass-specific metabolic rates could be described by the 

Arrhenius model, and if so estimating a Q10. It turned out that these rates exhibited 

considerable scatter, consequently a reasonable Q,,, (r2 > 0.6) could only be estimated for 

gross community production. The estimated Q10 for this study's Southern Ocean and Menai 

Strait biomass-specific gross community production rates was 2.7. This lies within the range 

normally reported for metabolic processes. Evidence that dark community respiration rates 

may be similarly effected by temperature comes from the plots and regression analyses for 

gross community production against dark community respiration. These showed the 

temperate and Southern Ocean data points to occupy a similar space and to be described by 

a single regression equation. This is consistent with the two metabolic rates being similarly 

suppressed by the lower Southern Ocean temperatures. The Arctic data points were less well 

described by the single regression equation because many were heterotrophic post-bloom 

observations wherein dark community respiration is out of phase with gross community 

production. 

Future research in the Menai Strait should try and further our understanding of the 

partitioning of the dissolved organic matter pool. Differences in this partitioning were 

speculated in this study to be behind the observed phase differences in autotroph and 
heterotroph metabolism. A follow-up study should address this 'speculation' and monitor 

the quality and quantity of labile organic matter over the bloom sequence. It would be 

interesting to combine this with a study of viral infection in Phaeocystis. This is because 

lysis, not sedimentation or grazing, is probably the major pathway of organic matter transfer 

to the bacteria during the decline of Phaeocystis blooms' (e. g. van Boekel et al. 1992), and 

virus-infected Phaeocystis cells have been observed during a blooms decline (G. Bratbak, 

pers. comm. ). 

This study has also highlighted intriguing differences between the Arctic and Southern 

Oceans in the magnitude of microbial plankton respiration rates relative to phytoplankton 

standing stock and production. A follow-up study should aim to measure photosynthetic 

and respiration rates per unit area, because volumetric considerations are inherently biased 

due to the much shallower Arctic mixed layer depths. It would be interesting to 

concurrently measure the quality and quantity of labile organic matter, and to relate these 

variables to the observed plankton metabolism. Possible iron-limitation of bacterial 

metabolism in the open waters of the Southern Ocean could also be considered (see Tortell 

et al. 1996 and Pakulski et al. 1996). 

Questions concerning the phasing of autotroph and heterotroph metabolism at low 

temperatures can probably be most easily addressed in the Arctic, as both oxygen flux 

studies there (see chapter 7) have encountered marked heterotrophic climaxes. How 

phytoplankton blooms end presumably has consequences for the phasing of metabolism. In 

the Southern Ocean in particular, storm-deepening of the mixed layer and krill-grazing can 

both lead to the demise of Phytoplankton blooms. An understanding of how different 
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bloom endings effect the phasing of metabolism should be a major goal of future research. 
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APPENDIX A 
This appendix contains the scatter plots for the least squares linear regressions reported in 

chapter 7 (general discussion). The least squares linear regression analyses were performed 

using Microsoft Excel (version 5.0). The fitted lines generated by this software were 

analysed for outliers by examining leverage coefficients and standardised residuals (Sokal 

& Rohlf 1995). Leverage coefficients (diagonal elements of the hat matrix, Hoaglin and 
Welsch 1978) were estimated for each response variate Y, using the formula: 

hi =n+ 
(Xi-3Z)2 

Ix2 

where hi = the leverage coefficient, X; = the explanatory variate, and X= the mean 

s= the explanatory variate. Standardised residuals (residual dividing by s (1- h; ), where 

square root of the error mean square) were calculated using Microsoft Excel. Outliers, that 

may be influencing the regression slope unduly, were identified by having values of h; 

greater than 4/n (Hoaglin and Welsch 1978) and standardised residuals greater than 2. 
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Figure A. 20. Unfractionated net community production versus absolute temperature for the Southern 
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O Weddell Sea. The solid line denotes the least squares linear regression fit. (B) shows standardised 
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inverse of absolute temperature for the Southern Ocean and Menai Strait data sets. (A) is the Arrhenius 
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ABSTRACT: Plankton abundances, bacterial production. and the size distribution of oxygen metabo. 
lism and chlorophyll a concentration were determined through 3 seasonal cycles in the Menai Strait 
(North Wales, UK). Spring blooms were comprised of a diatom to Phaeocystis succession. Mesa and 
microphytoplankton dominated phytoplankton production and biomass during diatom blooms, and 
nanophytoplankton predominated during summer, when activity and biomass were low. Correlation 
analysis showed temperature to be the best predictor for chlorophyll a-specific gross community pro- 
duction. Bactenoplankton were implied to be the major respirers. Consequently the phasing of respi- 
ration in relation to photosynthesis was strongly influenced by bacterioplankton metabolism and abun" 
dance changes. The respiration maximum occurred I to 2 wk after the Phaeocystis abundance 
maximum. An explanation for this temporal lag was sought by considering the time scales of flow of 
organic material between the phytoplankton and the bactenoplankton. The observations were consis. 
tent with routes via a slowly cycling pool, such as polymeric organic material. This pool would function 
as a reservoir and result in microheterotrophic respiration persisting after the decline of photosynthe- 
sis, and causing a positive to negative temporal sequence in net community production. 
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Abstract 

Micro-organism community respiration and net community production rates and their response 
to temperature were determined as oxygen flux rates in the Menai Strait during a 6-month pe- 
riod including the spring and summer of 1993. The rates for gross community production were 
calculated from polynomial fits of community respiration and net community production data. 
The cardinal temperatures of gross community production %%-ere estimated from these equations. 
The optimal temperature was positively correlated to the in situ temperature. The natural popu- 
lation gave no evidence of being shocked due to experimental temperature manipulation. Fre- 
quency histograms of the temperature coefficients of community respiration and gross commu- 
nity production were distinct in this environment. G� values for respiration were greater than 
Q1� values for photosynthesis, in contrast to published observations from the Southern Ocean 
where they overlapped. It was argued that this was a consequence of the short-term tempera- 
ture variability of the environment. 
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