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SUMMARY 

The invertebrate communities associated with intertidal mytilid mussel 
species were investigated on a variety of wave-exposed rocky shores around the 
coasts of the British Isles, Irish Republic (Mytilus edulis) and Chile, South America 
(Perumytilus purpuratus). A total of 192 different taxa were identified in Mytilus 
edulis beds at various rocky shore sites in the British Isles and Irish Republic, while 
35 taxa were identified to higher taxonomic levels in Perumytilus purpuratus beds in 
Chile, South America. 

Significant small-scale spatial variations in community structure were 
observed at two locations in Wales, while significant large-scale spatial variations in 
community structure were observed within mussel beds both in the British Isles and 
Irish Republic and in Chile. Additionally, the communities associated with M. edulis 
and P. purpuratus differed significantly, when compared at the same taxonomic 
levels. The structure of the invertebrate communities associated with M. edulis 
populations showed significant intra-annual variation, while those associated with M. 
edulis and P. putpuratus displayed significant inter-annual variation. 

The spatial and temporal variation observed in the structure of the 
invertebrate communities associated with intertidal mussel beds were deemed to be 
the result of a variety of natural processes, along with stochastic events. Variation in 
measured environmental factors in the mussel beds did not fully account for the 
observed variation in community structure, although some factors, such as mussel 
density were shown to have some structuring effect. 

It is concluded that the structure of the invertebrate communities associated 
with intertidal mussel on rocky shores are highly variable, both spatially and 
temporally. However, a small subset of taxa often display the same multivariate 
patterns as the entire data set; a phenomenon which could be utilised in any 
monitoring or impact studies involving mussel communities. 
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Chapter I 

General Introduction 



GENERAL INTRODUCTION 

Mussel biology and distribution 

Mytilid mussels, especially those belonging to the genus Mytilus, are amongst 

the most intensively researched marine organisms with entire books devoted solely 

to their study (e. g. Bayne, 1976; Stefano, 1990; Gosling, 1992). There are many 

reasons for such scientific interest; e. g. these mussels are widely distributed and 

exceedingly abundant throughout the world's oceans; they are important ecologically 

as dominant space-occupying organisms, particularly in coastal and estuarine waters 

(e. g. Seed and'Suchanek, 1992); they are important economically as food and 
fouling organisms (e. g. Hickman, 1992). In addition, from as early as 1976, when the 

Mussel Watch Monitoring Program was initiated, mussels have been widely used as 

sentinels or biomonitors of coastal water quality (e. g. Goldberg, 1986; Widdows and 
Donkin, 1992). Some species, such as the common blue mussel (Mytilus edulis 
Linnaeus), have also proved to be a model organisms in studies of physiology, 
biochemistry and population genetics (see relevant chapters in Gosling, 1992). 

Mussels of the genus Mytilus are widely distributed throughout the cooler 

waters of the northern and southern hemispheres, where they occur in a variety of 
shore habitats, ranging from sediment shores of unprotected bays to gravel or pebble 
shores in semi-exposed conditions, true rocky shores exposed to considerable wave 
action and sublittorally in natural sediment or attached to pier pilings etc. (Bayne, 
1976). Their success is most pronounced in exposed or moderately wave-exposed 
locations in temperate seas, particularly on horizontal or gently shelving rocky 
substrata, where they commonly dominate the communities of littoral and sub-littoral 
shores as the primary space occupier (Seed and Suchanek, 1992), often forming 
long-lived beds with discrete boundaries (Geesteranus, 1942; Kuenen, 1942; 
Verwey, 1952; Seed, 1976). In tropical and sub-tropical latitudes, this genus is 

replaced by other dominant zone-forming genera such as Pema and Septifer, while 
dense populations of highly specialised species have also been reported from cold- 
seep areas and sites of hydrothermal vent activity in the deep sea (e. g. Hessler et a/, 
1988; Jahnke et a/, 1995; Van Dover and Trask, 2000). Of the many factors that are 
responsible for the success of mytilid mussels, the evolution of the heteromyarian 
form associated with the neotenous retention of the byssus is of particular 
significance (Seed, 1983; Morton, 1992). The secretion of byssus threads by a 
special gland at the base of the foot provided an effective means of attachment onto 
hard surfaces and enabled various bivalve classes, including mussels, to become 
independent of the soft sediments inhabited by their ancestors. The broadly 
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triangular heteromyarian form of the 'typical' mussel coupled with secure byssal 

attachment throughout life enabled bivalves like epibyssate mussels to live in high 

population densities on hard or moderately consolidated substrata. Other factors 

contribute to the success of mytilid mussels, including their supreme efficiency as 
filter-feeding organisms (e. g. Shurnway, 1989) and high fecundity, producing large 

numbers of planktotrophic larvae which ensure rapid and widespread dispersal 

(further facilitated by bysso-pelagic drifting of juveniles) (e. g. Seed and Suchanek, 

1992). 

Several factors affect local distribution patterns of mussels, including 

predation and competition, along with physical factors such as exposure, substratum 
type and angle and tidal elevation (Sanders, 1968,1969). In general the upper 
distributional limits for Mytilus spp. are constant over long periods of time and set by 

physiological intolerance to extremes of temperature and desiccation (Suchanek, 
1985; Almada-Villela et a/, 1982; Tsuchiya, 1983; Seed and Suchanek, 1992). The 
lower distributional limits are under strong influence from biological factors such as 
competition with other sessile organisms (e. g. Suchanek, 1981) and predation, for 

example by predatory starfish and gastropods (e. g. Seed, 1969a; Kitching and 
Ebling, 1967; Menge, 1983; Paine, 1974; Paine, 1971; Paine et a/, 1985). Once 

established, mussels, by virtue of their competitive superiority, quickly become the 
dominant space-occupying members of the community, with the potential to 
completely eliminate most other sessile species. After larval settlement on the rock, 
a monolayer mussel bed is formed in the early stages of patch growth (Tsuchiya and 
Nishihira, 1986). With growth, mussels require more space for attachment, and 
some individuals on the periphery of the patch are pushed outward while some inside 
the patch are shifted upward, resulting in the formation of a double or multi-layered 
mussel bed. Mussel bed populations are among the most dense of all suspension- 
feeding bivalves, reaching densities of 21000 individuals. M-2 (Nixon et a/, 1971) and 
can range from a complete cover of mussels to a mosaic of patches or islands of 
different size (Seed, 1996). Seed (1958) stated that the highest densities of mussels 
tend to be associated with: 

1. Shores receiving moderate to severe wave action - probably a direct influence 
of the amount of water (and larval stages) passing over them; 
2. The lower levels of the shore; 
3. Slow draining, horizontal platforms, especially where surfaces are roughened or 
broken by discontinuities. 

It is clear that in the absence of adequate levels of disturbance, mussels as 
superior spatial competitors, can effectively monopolise large areas of the rocky 
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intertidal zone by denying access to the weaker more opportunistic species. Such 

loss of species richness, however, applies only to those species that compete for the 

primary resource - attachment space - on the rock surface. Aggregations of 

mussels can drastically modify the local environment through enhanced water 

retention, biodeposition of faecal and pseudofaecal material (= 'mussel mud'), and 
the provision of additional attachment surface and shelter by the mussel themselves 
(e. g. Bayne, 1976) - features which serve to encourage species enrichment in 

habitats wherever mussels are present in abundance. Mussels are thus keystone 

species within the rocky intertidal (Seed, 1996) and effective 'ecosystem engineers', 

a term used by Lawton and Jones (1995) to describe species that either directly or 
indirectly modulate the availability of resources to other species by causing physical 

state changes in biotic or abiotic materials, thereby modifying, maintaining and 

creating habitats. Levin and Paine (1974) suggested that it is appropriate to view 
communities of sessile biota, such as mussels, as being composed of a mosaic of 
small patches with differing species compositions and developmental histories. In 

addition, since such mussel patches are isolated from similar patches, they can be 
treated as islands for associated communities (Tsuchiya and Nishihira, 1985,1986). 

Invertebrate communities associated with mussel beds 
Mussel bed communities are extremely well delineated, bounded by the 

physical limits of the mussels, which, in the intertidal, are in turn restricted by physical 
and biological factors to a well definable zone (Suchanek, 1980). As structurally and 
functionally complex entities mussel patches provide refuge and suitable habitat for a 
broad suite of associated organisms, while the majority of taxa occurring in mussel 
beds cannot exist without the protection provided by the mussels, especially on 
wave-exposed shores (Tokeshi and Romero, 1995). Many authors have stated that 
the associates of mussel communities show a marked pattern of distribution 
throughout the matrix, derived from the microhabitat differences encountered by 
associated fauna (e. g. Tsuchiya and Bellan-Santini, 1989; Ong Che and Morton, 
1992; Lintas and Seed, 1994). The biota associated with mytilid beds can thus be 
divided into three major functional categories, with some of these organisms living 
attached to the mussel shells (epibiota), others typically living amongst the rich 
sediments and shell fragments which accumulate at the base of the bed (infauna) 
and mobile organisms roving freely through the complex matrix of shells and 
interconnecting byssus threads (Suchanek, 1985). Several authors have 
documented the communities associated with Mytilus edulis from a variety of 
habitats. For example, up to 96 taxa have been identified from Mytilus edulis beds 
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on rocky substrata at a variety of intertidal locations (e. g. Briggs, 1982; Tsuchlya and 
Nishihira, 1985,1986; Lintas and Seed, 1994; Svane and Setyobudiandi, 1996). In 

addition, similar numbers of taxa have been identified from Mytilus edulis beds on 

soft substrata at a variety of locations (e. g. Asmus, 1987; Commito, 1987; Dittman, 

1990). Other authors have investigated the communities associated with other 

mussel species; Suchanek (1980) identified 303 taxa from Mytilus cafifomianus beds 

on the Pacific coast of North America, up to 171 taxa have been identified from 

subtidal Modiolus modiolus beds in the UK (Brown and Seed, 1977; Witman, 1980), 

up to 52 from intertidal Septifer virgatus beds in Hong Kong (Ong Che and Morton, 

1992; Seed and Brotohadikus, 1994), 56 from intertidal Brachidontes rostratus beds 

in south-eastern Australia (Peake and Quinn, 1993) and 28 from deep-sea 

Bathymodiolus spp. at hydrothermal vents. 
A striking feature of many of these studies is that similar taxa, often from the 

same genus, regularly recur within these communities worldwide. Moreover, with the 

exception of Mytilus califomianus -a much larger bodied mussel, which forms thick 

multi-layered beds - the number of associated taxa is broadly comparable between 

species, with representatives from most of the main phyla. Such observations 
suggest that the pattern of parallel communities on rocky shores may be replicated 
on a much finer scale within mussel patches (Seed, 1996). Despite these high levels 

of diversity, mussel communities are typically dominated by a few very abundant 
species (e. g. Seed, 1996). For example, Ong Che and Morton (1992) demonstrated 
that Septifer virgatus beds in Hong Kong were dominated by three species, 
accounting for 75% of the total numbers. In the same mussel beds, more than 90% 
of the associated molluscan fauna was comprised of three bivalve species 
(Hormomya mutabilis, 37%; Isognomon legumen, 30%; Lasaea nipponica, - 27%) 
(Seed and Brotohadikusumo, 1994). Suchanek (1978,1980) found that in studies of 
Mytilus califomianus beds in western North America, in some cases, a single species 
dominated the sample by more than 50%. Many taxa associated with mussel beds 
often occur only occasionally and may be considered to be accidental or transient, 
rather than permanent members of the community (e. g. Seed and Brotohadikusumo, 
1994). 

Biodiversity 

Biodiversity has recently become an important issue, both in scientific 
(Wilson, 1988; Ehrlich and Wilson, 1991) and political (United Nations Environment 
Programme, 1992; World Resources Institute, 1993; Heywood and Watson, 1995) 
terms. Most scientists agree that biodiversity is of inestimable value and that its loss 
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or enforced change could invoke currently inestimable changes upon many aspects 

of the globe. In addition, sustained biodiversity plays a key role in ecosystem 
function and species that have co-evolved depend on functions of the ecosystem in 

which they live. Each species depends upon other species for its continued 

existence so that the removal of one or many species in an ecosystem may remove a 

vital ecological pathway that permanently alters ecosystem function and structure 
(Norton, 1986). 

There are generally considered to be three main components of biodiversity; 

genetic, specific or taxonomic and ecological or habitat diversity, along with a wide 

variety of definitions of the term, although in its most basic form, biodiversity refers to 

the numbers of species in different places (Ricklefs and Schulter, 1993). Wilson 

(1992) defined biodiversity as the variety of organisms considered at all levels, from 

genetic variants belonging to the same species through arrays of species, genera, 
families and still higher taxonomic levels, including the variety of ecosystems, which 
comprise both the communities of organisms within particular habitats and the 

physical conditions under which they live. This definition allows biodiversity to be 

considered at all levels from global (gamma diversity) to local (alpha diversity) and 
take into account species turnover between habitats (beta diversity) (Gaston, 1996). 

Many relationships have been investigated between biodiversity and latitude, 

climate, biological productivity, habitat heterogeneity, habitat complexity and 
disturbpnce. Any complete theory of species numbers must explain how the number 
of species in a particular area is regulated; how the species are formed; where they 
come from and how interactions between species set an upper limit to their number 
(Ricklefs, 1980). 

Aims of the current study 
Due to the small size and immobility of sessile invertebrate species of marine 

epifaunal communities, such, as mussels, these habitats are ideal for studying 
patterns of change in species composition and diversity (Osman, 1977). Since 
mussels, particularly of the genus Mytilus, occur throughout the cooler waters of the 
northern and southern hemispheres, in a variety of shore habitats (Bayne, 1976), 
these communities might prove to be ideal for investigating the effects of 
anthropogenic activities in coastal seas. However, it is clear from many recent 
empirical studies, that a complete understanding of the structure of any community is 
possible only when temporal variation is encompassed (Morris, 1990), Many authors 
have pointed out the difficulty, in studies of intertidal benthic communities, in 
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discriminating between community changes due to anthropogenic activities and 

those caused by natural variation (e. g. DelValls et a/, 1998). 

This thesis aims to provide a detailed description of the invertebrate 

communities associated with two intertidal mytilid mussel species on rocky shores; 
Mytilus edulis in the British Isles and Irish Republic and Perumytilus purpuratus in 

Chile, South America. Initially, it was necessary to. establish a suitable sampling 

protocol, including an appropriate sample size and methodology with which to 

investigate accurately the structure of these communities (Chapter 2). Habitat 

structure and heterogeneity are known to affect the structure of such communities, so 

Chapter 3 provides information on the size structure of all the mussel populations 

studied, along with information on the age structure and growth rates of Mytilus 

edulis and Perumytflus purpuratus. This information is used in later chapters, in an 

attempt to relate structure of the associated communities to the physical parameters 

of the mussel matrices themselves. Chapter 3 also provides a basic description of 
the communities associated with the two mussel species, at the different sites in this 

study. Chapter 4 will deal with the small-scale (intra-site) variation in the structure of 

communities associated with Mytilus edulis on two rocky shores on the coast of 
Anglesey, North Wales. The effects of tidal elevation, position within a mussel patch, 

angle of substratum and epifloral covering, on the structure of the associated 
invertebrate communities are investigated. Chapter 5 will deal with larger-scale 

spatial variations in the structure of the communities associated with Mytilus edulis 
and Perumytilus purpuratus on rocky shores at a variety of sites throughout the 
British Isles and Irish Republic and Chile, South America respectively. Inter-site 

variations in community structure are investigated for each mussel species, while 
larger, geographical comparisons are made between the communities associated 
with Mytilus edulis and Perumytilus purpuratus. Chapter 6 deals with the temporal 
(seasonal and annual) variation in the structure of the invertebrate community 
associated with Mytilus edulis on three rocky shores on the coast of North Wales. 
Chapter 7 involves an experimental investigation using panels of manipulated mussel 
density, to investigate the effect of mussel density and habitat heterogeneity on the 
structure of the invertebrate associates of Mytilus edulis on a rocky shore on 
Anglesey, North Wales, where the mussel species is already present in established 
beds. Attempts are made in each of the above investigations, to relate spatial and 
temporal variations in community structure to measured abiotic parameters of the 
mussel matrices. Finally, I discuss the results and iMplications of this work, with 
particular reference to the potential use of the invertebrate communities associated 
with intertidal mussel beds in monitoring the effect of anthropogenic activities in 
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coastal areas, In writing this thesis my intention was that each chapter should stand 

on its own, whilst attempting to avoid excessive repetition. 



Chapter 2 

General Methodology 



INTRODUCTION 

Many investigations have found that a prerequisite to precise estimates of the 

abundance of organisms in any habitat is a prior knowledge of the sampling 

variability (e. g. Elliot, 1977; Green, 1979; Vezina, 1988). Since most ecological 

communities are too large to be studied in their entirety, for practical and 

conservation purposes, representative samples must be taken (Weinberg, 1978). 

Various authors have pointed out the importance of both the size of the area sampled 
(quadrat) in any ecological study and the overall sample size (number of quadrats) 
(e. g. Greig-Smith, 1952; Wiegert, 1962). The optimal sample size should be large 

enough to include most or all of the species in the community, but as small as 

possible to reduce the time required for laboratory sorting (Hawkins and Hartnoll, 

1980). There are three basic formats for data collection in such species/area studies 
(Goodall, 1952), these are to collect: 
1. Random quadrats of different sizes within the community under study, and to 

determine the number of species within each quadrat. However, using this 
technique, the provision of satisfactory confidence limits of the organisms within 
each area would involve considerable time and labour. 

2. The smallest quadrat at random and then to add to it increasing contiguous areas 
in order to provide data from larger quadrats. The data gained might be quite 
atypical, and an assumption with this approach is that there is homogeneity in the 

community. 
3. A large number of small quadrats taken at random within the community, and 

combine the information from them in order to derive the species content of larger 

areas. 
The third approach was chosen in the present study because of the, practical and 
theoretical considerations, listed below: 

1. It is the most economical in the use of field and laboratory time. 
2. It permits an accurate description of the change of species number with sample 

size. 
3. It is practicable on very irregular terrain, and in areas of mixed communities 

whose boundaries are not evident, both of which are often typical of mussel beds. 
4. The data obtained in this way are also valuable for the determination of species 

abundance and confidence limits and species distribution patterns, much more so 
than data obtained by the other two sampling approaches mentioned. 

5. It is the least intrusive sampling method on the habitat, since only small samples 
are taken. 
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This chapter details the calculation of a suitable sample size, along with field 

and laboratory procedures undertaken in order to describe the temporal and small 

and large-scale spatial variation in the structure of invertebrate infaunal assemblages 

associated with intertidal mussel populations. Descriptions and photographs where 

available, are provided of the study sites within the British Isles, Irish Republic and 
Chile, South America, from which field samples were collected during the course of 

the study. Details are provided on the main statistical techniques and procedures 

utilised to describe both the biotic and environmental data in the present study. 

GENERAL METHODOLOGY 
Site Details 

During this study a number of rocky intertidal shores with extensive mussel 

communities, both in the British Isles and Irish Republic (Figure 1) and in Chile, 

South America (Figure 2), were investigated in order to study the temporal, spatial 

and small and large-scale geographical variation associated with mussel bed 

communities. The selection criteria for the shores were that they were subject to 

similar conditions of wave-exposure and that Mytilus edulis and Perumytilus 

purpuratus formed continuous beds on rocky substrata in the mid-shore area. 
Communities of M. edulis in the British Isles and Irish Republic and P. purpuratus in 

Chile, were chosen because of the mussels similar overall morphology and the fact 

that they formed similar multi-layered beds on each shore, such that, at each site the 

mussels and their associated communities could be compared using similar sampling 
techniques. A description of each site follows. 

Point Lynas. Anglesey (Wales) Position: 53'25.13'N 04"17.20'W 

A north-easterly facing headland on the north coast of Anglesey, exposed to 

moderate wave action. M. edifis occurs as tightly packed beds at this site, both on 

the sloping rocks of the headland and in crevices and gullies. For much of the year, 
the mussel shells themselves are covered by thick growths of ephemeral green 
algae, such as Ulva lactuca. The waters immediately surrounding this site were often 
observed to contain a large amount of suspended sediment, which during low tide 
settled out of suspension and covered parts of the shore. The mean tidal range at 
Amlwch, 3km to the west, is 6.3m during spring tides and 3.2m at neaps (Admiralty 
Tide Tables, 1999). 
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Figure I Map of the British Isles and Irish Republic showing the location of sample 
sites. 1= Point Lynas, 2= White Beach, 3= Criccieth, 4= Arisaig, 5= Kilkee, 6 
Doonbeg, 7= Robin Hood's Bay, 8= Filey Brigg. 
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Figure 2 Map of Chile, South America showing the location of sample sites. 
Geographical range of sites is indicated on large-scale map of South America, while 
distribution of sample sites are shown in maps of Chile and Concepcion area. 1= 
Las Cruces, 2= Cocholgue, 3 Desembocadura exposed site 1,4 = 
Desembocadura exposed site 2,5 Desembocadura sheltered site 1,6 = 
Desembocadura sheltered site 2,7 = Maule, 8= Coronel, 9= Valdivia. 
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Figure 3 Photographs of sample sites in the British Isles used in the present study. 
a) Point Lynas, Wales, b) White Beach, Wales, c) Criccieth, Wales, d) Robin Hood's 
Bay, England, e) Filey Brigg, England. (Note that photographs of sample sites in 
Scotland and the Irish Republic are not available). 
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c) Criccieth, Wales 
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d) Robin Hood's Bay, England 



e) Filey Brigg, England 
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Figure 4 Photographs of sample sites in Chile, South America used in the present 
study. a) Las Cruces, b) Cochoigue, ci) Desembocadura sheltered site, ch) 
Desembocadura exposed site, d) Maule, e) Coronel. (Note that photographs of 
sample sites in Scotland and the Irish Republic are not available). 



b) Cocholgue, VIII Region 
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a) Las Cruces, VI Region 



ci) Las Desembocadura, VIII Region 
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cii) Las Desembocadura, VIII Region 



d) Maule, Vill Region 

e) Coronel, Vill Region 
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White Beach, Anqlesev (Wales) Position: 53*19.05'N 04005.35'W 

A. northerly facing shore at the north-eastern corner of Anglesey, only 

exposed to moderate wave action. M. edulis forms solid, tightly packed beds, which 

extensively cover the gently sloping rock platforms present at this site. Mussels in 

the mid-shore are covered with epifloral species such as Ulva lactuca to varying 

degrees throughout the year, although to a lesser extent during the summer when 

bleaching occurs. This site is popular with local fishermen and it is possible that the 

mussels and their associated communities are subject to disturbance through 

trampling. The mean tidal range at Trwyn Dinmor, 2.5km to the east, is 6.6m during 

spring tides and 3.4m at neaps (Admiralty Tide Tables, 1999). 

Criccieth, Gwvnedd (Wales) Position: 53'54.58'N 04"14.00'W 

A south-westerly facing shore at the southern base of the Llyn Peninsula, in 

the far north-eastern corner of Porthmadog Bay. This site is subject to a 

considerable amount of fetch from Porthmadog Bay and is thus exposed to moderate 
to high wave action. M. edulis forms solid beds, coverings the large boulders, which 

are strewn across the middle and lower levels of the shore. Mussels also form 

patches higher on the shore on the vertical rocky cliffs, which border the shore. The 

mean tidal range at Criccieth, is 4.6m during spring tides and 1.6m at neaps 
(Admiralty Tide Tables, 1999). 

Arisaig, Ardnamurchan Peninsula (Scotland) Position: 56049.89'N 05046.51 IW 
An exposed site on the north coast of the Ardnamurchan Peninsula, on the 

West Coast of Scotland. Here mussels form tightly packed beds on the gently 
sloping rock platform, which descends into deep water. Despite being sheltered to a 
small extent, by offshore islands such as Eigg, the site is exposed to a high degree of 

wave action. The mean tidal range at Loch Moidart, 10km to the east, is 4.3m during 

spring tides and 1.9m at neaps (Admiralty Tide Tables, 1999). 

Kilkee. Co. Clare (Irish Republic) Position: 52041.01'N 09039.29'W 
A large, westerly facing bay on the West Coast of Ireland. Mussels form 

extensive beds covering the horizontal rock platforms, which surround the bay. The 
site is exposed to the full fetch of the Atlantic and thus a high degree of wave action. 
Samples were collected from a wave exposed location on the north-west end of the 
platform on the southern side of the bay. The mean tid6l range at Liscanor, 20km to 
the north, is 4.1rn during spring tides and 1.6m at neaps (Admiralty Tide Tables, 
1999). 
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Doonbeq, Co. Clare (Irish Republic) Position: 52044.47'N 09031.57'W 
A westerly facing 2km long sandy beach on the West Coast of Ireland. 

Mussels form thick, extensive beds on a large rocky platform at the far northern end 

of the Bay. The site is exposed to the full fetch of the Atlantic and thus a high degree 

of wave action. Mussel samples were collected from one of the many horizontal rock 

platforms, which surround the bay. The mean tidal range at Liscanor, 15km to the 

north, is 4.1m during spring tides and 1.6m at neaps (Admiralty Tide Tables, 1999). 

Robin Hoods Bay, Yorkshire (Enqland) Position: 54027.1 VN 00031.01'W 

A predominantly north-easterly facing shore, on the East Coast of England. 
Robin Hoods Bay extends from Old Peak, or South Cheek, about 6km to Ness Point, 

or North Cheek. Mussel samples and their associated infauna were collected from 

the far north end of the Bay, where they form solid, tightly packed beds, which 
extensively cover the horizontal wave cut shale platforms. The sampling area was 
beyond the main protected part of the Bay and thus was subject to a high degree of 
wave-action. The mean tidal range at Whitby, 7krn to the north-west, is 4.8m during 

spring tides and 2.4m at neaps (Admiralty Tide Tables, 1999). 

Filey Brigg, Yorkshire (England) Position: 54012.46'N 00015.02, W 
A northerly facing promontory, around 1krn long, at the far northern end of 

Filey Bay, on the east coast of England. The site is exposed to a high degree of 
wave action. Mussels form thick extensive beds over the entire lower levels of the 

stepped rocky platform on the exposed north side of the Brigg. This site is very 
popular with local fishermen and it is possible that the mussels and their associated 
communities might be subject to disturbance through trampling. The mean tidal 

range at Filey Bay, is 4.8m for springs and 2.5m for neaps (Admiralty Tide Tables, 
1999). 

Las Cruces, VI Reqion. Chile Position: 331: 129.30'S 71039.20'W 
A highly wave exposed westerly facing shore due west of Santiago. P. 

purpuratus forms thick beds on the sloping rock platforms and boulders of the middle 
and lower shore areas, where there is considerable surge and wave action. 

Cocholque, VIII Reqion. Chile Position: 361135.15'S 72058.30'W 
An enclosed, westerly facing fishing bay 20km north of Concepcion. P. 

purpuratus forms extensive beds on the horizontal rock platforms, which form the 
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substantial part of the middle to lower intertidal area. The rock surfaces are highly 

eroded and interspersed with many pools of varying sizes, along with surge gullies. 
The site is sheltered to some extent from the full force of the Pacific waves, since it 
lies within a protected bay. However, Ahe mussels are still exposed to a high degree 

of wave action at this site. 

Las Desembocadura, VIII Reqion, Chile Position: 361,48.20'S 73010.05'W 

A large circular sandy bay situated to the west of Concepcion, near the 

mouth of the River Bio Bio. The bay is interspersed with large rocky outcrops and 
lined by rock platforms to the north and south. P. purpuratus forms consolidated 
beds attaching to rocks in the mid and low shore levels. The large size of the bay 

and range of exposure conditions it encompasses, enabled mussel samples to be 

collected from a variety of habitats, ranging from highly wave-exposed rock platforms 
at the far north and south ends of the bay (Desembocadura exposed sites 1 and 2, 
respectively), to more sheltered locations within the bay itself, to the north 
(Desembocadura sheltered site 1) and south (Desembocadura sheltered site 2). 

Maule, Vill Reqion, Chile Position: 37001.25'S 73110.05'W 
A small enclosed, westerly facing bay, close to the site at Coronel (below). P. 

purpuratus forms extensive beds on the horizontal rock platforms that occur 
throughout the intertidal area of the shore. The site is sheltered to some extent from 
the full force of the Pacific waves, since it lies within a protected bay. However, the 
mussels are still exposed to a high degree of wave action at this site. 

Coronel, VIII Reqion, Chile Position: 37003.38'S 73009.50'W 

A large westerly facing 2km long sandy bay, 20km South of Concepcion. P. 

purpuratus forms beds on the gently sloping rocky platforms, extending into the lower 

shore area at the far northern end of the bay. The site is subject to a high degree of 
wave action. This site is located in the heart of the main coal producing area of Chile 
and coal dust and fragments are mixed in with the sand of the bay. In addition, the 
bay is a popular beach, lined with many bars and cafes and can be very crowded, 
particularly during the summer. 

Valdivia, X Reqion, Chile Position: 39051 -OO'S 73024.00'W 
A long, west facing 2km long sandy bay, lined by rock platforms to the north 

and south. Mussel samples were collected from the highly wave exposed rock 
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platforms at the south end of the bay, where P. purpuratus formed thick, tightly 

packed multilayered beds on the middle and lower shore areas. 

Field collection and processing of samples 
The selection criteria for all the sites in the British Isles, Irish Republic and 

Chile, from which samples were collected, were that M. edulis and P. purpuratus of 

similar overall size and shape, formed continuous beds on rocky substrata in the mid- 

shore area, such that the habitat provided by each mussel population for colonisation 
by infaunal invertebrates was broadly similar. Sites were selected such that as far as 

possible, conditions of wave-exposure were similar between all locations. More 

detailed descriptions of sampling procedures are provided, where necessary, in 

relevant chapters. On each occasion, eight replicate areas of 25cm2 were scraped 
from the rock surfaces using a paint scraper and placed in labelled containers. With 

the exception of the investigation of small-scale spatial variations in community 
structure, the quadrats were taken randomly from horizontal surfaces within the 

central areas of the mussel beds at mid shore level, thus ensuring that any spatial 

variation effects, due to differing topographies within each shore were minimised. On 

collection, samples were placed immediately in a cool box and returned to the 
laboratory. Where this was not possible (samples from England, Scotland and 
Ireland), samples were placed immediately in 7% formalin. 

Each sample of mussels and its associated macro- and meiofauna from the 

sites in the British Isles and Irish Republic, were sieved through a 63pm mesh, with 
63pm filtered seawater. All material passing through the sieve was retained and 
placed in containers to settle for 48 hours, after which the seawater was decanted 
and any remaining material (classed as fine sediment) dried to constant weight at 
600C for 48 hours. The mussels and their associated fauna retained on the sieve 
were then fixed in 7% formalin, placed in labelled containers, and stored in the 
laboratory to await sorting. Samples were placed in 7% formalin, in order that the 
organisms retained their true colour, which facilitated identification. Prior to sorting, 
samples were removed from their labelled containers and washed through a 63pm 
sieve with copious quantities of freshwater, in order to remove all traces of formalin. 
The material retained on the sieve was washed into a Bogorov tray and sorted under 
a dissecting microscope, while larger material, including mussels was sorted in Petri 
dishes. Samples from Chile and those taken in Wales as part of the study of 
temporal variation associated with the mussel communities, were not sieved or 
preserved in formalin, but were sorted immediately after collection by dividing into 
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smaller sub-samples in Petri dishes containing 63ltrn filtered seawater and examining 

under a dissecting microscope. 
All organisms, including small mussels (<5mm) present in the samples from 

the British Isles, Irish Republic and Chile were removed, identified to the lowest 

taxonomic category possible and counted. Where species did not conform to any 

available description or identification was not possible, the specimens were scale 
drawn, notes taken and each assigned to a morpho-species. Keys to most of the 

species in Chile were not available, while many of the species present in the samples 
had not been previously described. In addition, time was the limiting factor during 

this study, so to reduce sorting times and enable a greater volume of material to be 

processed; identification of organisms was generally only made to higher taxonomic 
levels. Polychaetes were identified to family level, while most other organisms were 
identified to class level. Others, such as nematodes and nemerteans were identified 

to phylum level. To reduce sorting time again, a measurement scale was assigned 
for the abundance of infauna. Taxa present in quadrats in numbers <25 were 
counted individually, while greater abundance were placed in various categories, as 
follows; 

approximately 25-50 individuals per quadrat = 25 

approximately 50-100 individuals per quadrat = 50 

greater than 100 individuals per quadrat = 100 
Where samples were collected at sites in the British Isles and Irish Republic to 

provide a comparison with samples collected in Chile, species identification and 
enumeration was conducted in the same way, in order to standardise methodologies 
as much as possible, for comparative purposes. 

Once all organisms had been removed from each of the samples from the 
British Isles and Irish Republic, all remaining material (small stones, shell fragments 

and byssal threads, classed as coarse sediment) was dried to constant weight at 
600C for 48 hours. This material was not collected from Chilean mussel samples. 
The sediment content of mussel samples collected in the investigation of small-scale 
variation in the structure of the communities was further subdivided into the following 
fractions, using graded sieves, and weighed; <63ýLm, 63-125[Lm, 125-250ltm, 250- 
50ORm and >50ORm. 

The length (anterior-posterior axis) of each mussel >5mm, was measured 
with vernier callipers, to the nearest O. 1mrn and length-frequency distributions 
constructed. The total volume of the mussels from each quadrat was measured by 
calculating their displacement in a 200ml measuring cylinder. Total biomass of 
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mussels in British samples only, was obtained by drying the mussels in an oven at 
600C for 48 hours and then weighing. Small mussels <5mm were not included in the 

size distributions, since these individuals are scaled to the same size as the rest of 
the associated fauna and thus play an interactive, rather than a structural, role at this 

stage in their life. 

Age structure of mussel populations 
In order to investigate the growth history of populations of M. edulis in the 

British Isles and P. purpuratus in Chile, samples of. the largest individuals were 

collected from the mid shore zones of mussel beds at several locations in each 

country. Mussels were collected from Point Lynas, White Beach and Criccieth in the 
British Isles, during July 1998 and Desembocadura exposed sites 1 and 2, 
Desembocadura sheltered site 2 and Coronel in Chile, during January 1997. Only 

shells with an intact periostracum were selected, since the analysis of external 
growth rings and internal growth bands is often difficult and frequently impossible in 

severely abraded shells or those damaged by the action of shell-boring algae. Since 
determination of the age of individual mussels by counting the number of surface 
growth rings was often difficult or impossible, it was necessary to study the internal 

microgrowth bands present in the prismatic layer of the shells. Mussels were boiled 
to remove all the flesh, whilst the external surfaces were scraped and scrubbed 
clean. One shell valve was then selected for embedding in Metaset resin (Buehler 
UK Ltd). All embedded shells were sectioned through the umbone, along the 
anterior-posterior axis, using a diamond saw. The cut surface of one section from 
each mussel was then ground smooth on increasingly finer grades of wet and dry 
paper, using a rotating table. The ground surface of each section was polished using 
household Brasso and washed in mild liquid detergent, before being placed in 1% 
Decal for 30 minutes, in order to etch the exposed surface of the mussel shell. 
Acetate peel replicas of the dry and etched shell sections were then prepared, by 
immersing replication material (Agar Scientific Ltd, UK) in. ethyl acetate solvent for a 
few seconds, before applying it to the etched surface of the shell section. Dry 
acetate peels were removed, trimmed and mounted onto glass microscope slides 
and viewed using a light microscope. Twenty M. edulis shells were prepared in this 
manner from each site in the British isles, whilst only ten P. purpuratus shells were 
prepared from each site in Chile, since these shells were highly eroded and numbers 
of shells with an intact periostracurn were limited. 

The annual growth and longevity of individual mussels was established by 
observing changes in the tidal microgrowth band patterns present in the middle 
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prismatic layer of each shell. Annual checks within each shell were identified by the 

narrow banding deposited during the winter (November to April in the British Isles, 

May to September in Chile). Each winter growth cessation was marked directly onto 
the acetate peel replica. The age of each mussel was noted and the distance 

between each successive check and the umbo measured to the nearest O. 1mrn 

using vernier callipers. Von Bertalariffy Growth (VBG) constants in the VBG equation 
Lt= Lmý. (11 -e-k) were determined from the measurements of size at age using the 

software package Fishparm, and fitted growth curves were subsequently generated 

and plotted for all mussel populations. (Lt = length at time (t); L,., = asymptotic 

growth maximum; k= the VBG constant and to = the estimated date of settlement 

when length is zero). 

Species data analyses 
Species data were analysed using the PRIMER 5 (Plymouth Routines in 

Multivariate Ecological Research) package for multivariate community data analysis. 
Various procedures within this package were utilised to describe both the biotic and 

environmental data. 

Univariate measures of mussel community structure 
The limitations of single-figure diversity indices for describing ecological data 

have been stated by many authors (e. g. Green, 1979); however their use in the 

present study is justified as a method to facilitate the comparison of equally sized 
samples between sites. Univariate measures calculated were: number of taxa, the 
total number of individuals and the following diversity indices: Shannon-Weiner 
diversity (H), Margalef's species richness (d) and Pielou's evenness (J). In order to 
compare infaunal communities over various temporal, spatial and geographical 
scales, each univariate measure was calculated for all eight replicate quadrats, 
comprising one complete sample. A one-way ANOVA/Mood's median test was used 
to test the significance of spatial or temporal differences in univariate measures of 
diversity. Where applicable, diversity indices were also calculated from pooled data 
across sample replicates. 

I nte r-relation ships between the measured environmental variables from each 
of the sample replicates and diversity indices were examined using Pearson product 
moment correlation coefficients. All environmental variables used in the analysis 
were first log transformed to reduce the characteristically skewed nature of such 
environmental data. 
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Multivariate measures of mussel community structure 
The two-stage approach advocated by Field et a/ (1982) for analysing 

multivariate data has been followed. This involves exploring the sample and species 
associations and then comparing the findings with the environmental information in 

order to search for an environmental interpretation of the community patterns. 
A range of non-parametric multivariate techniques included in the PRIMER 

V5 package was applied to the species/sample matrices in order to summarise the 
faunal community data at each of the sites in the British Isles, Irish Republic and 
Chile. This involved initially constructing a triangular similarity matrix from the biotic 
data matrix using the Bray-Curtis similarity coefficient. Species abundance in the 
data matrix was first subject to either a square-root transformation, where emphasis 
in the analysis is placed on abundant species, or a presence/absence transformation, 
which allows the rarer species to influence the analyses (Elliot, 1977). 

Similarity coefficients were then grouped using group average linkage cluster 
analysis, a hierarchical classification technique (Lance and Williams, 1967), and the 
results displayed as dendrograms. The Bray-Curtis similarity matrix was further 
employed to produce non-metric multidimensional scaling (MIDS) ordinations of inter- 
sample relationships (Kruskal and Wish, 1978). Such ordination methods serve to 
summarise community data by producing a "map" or configuration in a two- 
dimensional space in which similar samples are close together and dissimilar 
samples are further apart. The non-metric solution seeks for an ordination in as few 
dimensions as possible (preferably two) which minimises the stress value. A large 
stress value (>0.2) indicates that the configuration or "map" for a particular dimension 
poorly represents the sample dissimilarities. As such, stress values can be regarded 
as a measure of the goodness of fit of an ordination diagram in representing the 
similarity values (Clarke and Green, 1988). Ordinations produced using non-metric 
MIDS at each site were tested, where applicable, against ordinations showing cyclic 
patterns of seasonal change, seriation patterns indicating underlying gradients in the 
data, or against other independent similarity matrices. This was achieved by defining 
them in only one dimension, so that the correlation of their ranks can be used as a 
measure of their agreement. The RELATE routine achieves this by calculating 
Spearman rank correlation between each of the corresponding similarity matrices, 
the significance of which is then ascertained through a permutation procedure 
(Clarke and Ainsworth, 1993). 

The triangular similarity matrices were further utilised in the ANOSIM 
procedure to test for significant differences in community structure between samples. 
ANOSIM generates a value of R, which is scaled to lie between -1 and +11, a value 
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of zero representing the null hypothesis, such that there is no significant difference in 

community structure between samples. A value of +1 indicates significant 
differences, while a value of -1 indicates greater dissimilarity among replicate units 

within samples than occurs between samples (Chapman and Underwood, 1999). 

Similarity percentage analyses (SIMPER) were performed on the 

species/sample matrices to elucidate characteristic faunal groupings and to 

determine which species contribute to the Bray-Curtis dissimilarity between samples 
(Clarke, 1993). However, where a holistic approach was required to identify species 

contributing to sample differences, such as when community changes are occurring 

in a continuum, the BVSTEP procedure in PRIMER was used. This procedure 

undertakes a stepwise selection of species from the main biotic data matrix, in an 

attempt to search for a species subset which, when subject to ordination techniques, 

displays the same pattern as the entire data set. 

Analysis of environmental parameters in the mussel bed 

To search for initial relationships between environmental variables measured 
in the mussel beds and the infaunal communities, Pearson product moment 

correlation coefficients were calculated between all environmental variables and 

univariate measures of diversity. 
The second stage in analysing the multivariate data was to test whether the 

community patterns found at each site could be related to environmental gradients. 
Correlation-based principal components analysis (PCA) was used to ordinate the 

environmental variables, the data having previously undergone a log transformation. 
PC1 was then plotted against each of the univariate measures of community diversity 

at each of the three locations and Pearson product moment correlation coefficients 
calculated to search for any relationships. Triangular similarity matrices based on 
normalised Euclidean distance were constructed from the environmental data 

obtained from each of the mussel bed samples. These ordinations derived from 

environmental data and the averaged biotic data from each sample were then 
compared using the RELATE routine. 

Relationships between environmental measures and biological variation were 
further explored using the BIOENV procedure in PRIMER (Clarke and Ainsworth, 
1993). This approach detects patterns of variation in the species data, which can be 
"best", explained by the observed environmental variables, using rank correlation 
coefficients. Prior to inclusion in the BIOENV procedure, Pearson product moment 
correlation coefficients were calculated between all log-transformed environmental 
parameters at each site to establish whether any of them were co-linear. If any co- 
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linear relationships were seen to exist (r>0.95), a single variable was used as a 

representative of the correlated variables in the analysis. 

Sample size calculation 
A quadrat size of 25CM2 (5x5cm) was selected, since it has been shown 

previously that in communities, such as those associated with mussel beds, where 

species are patchily distributed, the combination of separate small areas will give a 
higher species count than a contiguous area of the same size (Pringle, 1984). 

There are various methods by which the data in the form of the species count 

of a number of random quadrats of equal size can be used to determine the species 
content of areas of larger size. The simplest of these is to order the samples 
randomly and then construct a straightforward cumulative species/area curve (Ursin, 
1960). However, these curves are irregular, and their shape is dependent on the 

position in the sequence of those quadrats containing numbers of the rarer species; a 
re-randomisation of the quadrats can totally change the curve. It was thus suggested 
by Ursin (1960) that totally independent samples at each size enabled improved 

statistical analysis. However, the number of samples required to construct such 
curves is very high, being 210 for one replicate for each point on the curve from one 
to twenty quadrats. In addition, irregular curves will still result for the same reasons 
described earlier. In an attempt to reduce the irregularities of the curve, Ursin (1960) 
suggested the construction of 'semi-cumulative' curves, where the mean number of 
species is determined for all mutually independent sets of quadrats taken 1,2,3,4 ... n 
at a time from the pool of n quadrats. However, this method can still lead to 
irregularities in the curve for sets of >n/2 quadrats, where only one mutually 
independent set can be drawn from the pool. Various methods using probability 
theory have been used in the derivation of species/ area curves, most of which are 
lengthy, cannot be extrapolated beyond the original sample size and make no 
compensation for species with zero counts in the original sample. Hawkins and 
Hartnoll (1980) suggested a method using the frequency of occurrence in random 
quadrats, which permits indefinite extrapolation beyond the original sample size and 
permits a partial compensation for zero counts. This method was used to calculate 
sample size in this study and is summarised as follows. 

Assume that N quadrats contain a total of S species, and that the ith species 
occurs in ni quadrats. The probability of the ith species occurring in a quadrat is nj/N, 
and the probability of it not appearing is 1-( ni/N). The probability of it not occurring in 
q quadrats is [1-( ný-N)]', and of it not occurring 1-[l-( ni/N)]q . Thus the number of 
species expected in q quadrats will be: 
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,I( 
This formula may be used to calculate the expected species number in any number 

of quadrats, either smaller or larger than N and would be expected to provide an 

acceptable prediction if the sample of N quadrats contained information on the 

frequency of all the species in the community. Some species will have a zero 
frequency in the sample, but have a finite probability of appearing in a sample of that 

size. The number of species with low probability of occurrence in a quadrat (i. e. of 

1/N or 2/N) will be underestimated. This will substantially affect the predicted species 

number at sample sizes up to N quadrats. The number of species with even lower 

probabilities, of less than 1/N, will not be indicated by the sample. Thus a correction 
factor must be applied to the formula to allow for rarer species within the community. 
The correction factor is as follows and is only necessary for those frequencies where; 

[1-(n. ýN)]N > 0.1 

No correction can be made with regard to species with a frequency of less than 1/N 

on the basis of information in the sample, although the effects of not doing so will be 
minimal for areas up to N quadrats. 
Thus for each value of. q an increment must be made to the predicted number of 
species in respect of each of the frequency classes where it is required. This is the 

probability of occurrence of one species of that frequency in q quadrats multiplied by 

the number of un-represented species as calculated above, namely: 

(I- [I- ýN 
11 

lil") 
x(I-- (WIN)IN. - 

In order to use this probability theory method to calculate the predicted 
species/area relationship for mussel bed communities, fifteen replicate 25CM2 
quadrats were collected from mussel patches at both Criccieth and White Beach and 
the resulting species abundance data entered into the model. 

RESULTS 
Table 1 details the number of taxa encountered in increasing numbers of 

25CM2 quadrats at White Beach and Criccieth, while Table 2 provides information '6n 
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Table 1 Observed taxa/area relationship of infaunal communities associated with 
mussel beds at a) White Beach, Anglesey and b) Criccieth, Gwynedd. 

a) White Beach 

Quadrat 
No. 

No. Taxa Cumulative Area 

_(cm 
2) 

Cumulative Taxa % Increase 
(Taxa) 

1 8 25 8 100.0 
2 11 50 12 50.0 
3 7 75 15 25.0 
4 7 100 16 6.7 
5 9 125 20 25.0 
6 12 150 25 25.0 
7 12 175 28 12.0 
8 5 200 28 0.0 
9 5 225 30 7.1 

10 5 250 30 0.0 
11 11 275 32 6.7 
12 9 300 33 3.1 
13 6 325 33 0.0 
14 6 350 34 3.0 
15 10 375 34 0.0 

b) Criccieth 

Quadrat 
No. 

No. Taxa Cumulative Area 

____(cm 
2) 

Cumulative Taxa % Increase 
(Taxa) 

1 14 25 14 100.0 
2 12 50 21 50.0 
3 10 75 24 14.3 
4 13 100 29 20.8 
5 5 125 29 0.0 
6 4 150 29 0.0 
7 10 175 32 10.3 
8 4 200 32 0.0 
9 6 225 33 3.1 

10 3 250 33 0.0 
11 11 275 33 0.0 
12 15 300 33 0.0 
13 10 325 33 3.0 
14 11 350 34 2.9 
15 6 375 35 nn 
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calculated values of the probability of occurrence of each of these taxa in a quadrat. 
These data were then entered into the probability theory model described earlier, and 
resulting taxa/area curves plotted for each location (Figure 3). At both sites, the 

model predicts that eight to nine 25cm2 quadrats should be taken in order to sample 

adequately the communities associated with the mussel populations. As such, in 

studies of the temporal, spatial and geographical variation in the structure of 
invertebrate communities associated with M. edulis in the British Isles and Irish 

R- epublic and P. purpuratus in Chile, eight replicate 25CM2 quadrats were taken from 

mussel beds. 
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Chapter 3 

Size structure and growth rate of 
Mytilus edulis and Perumytilus purpuratus populations 

together with a brief note on their 
associated invertebrate communities 
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ABSTRACT 

The size structure and growth rates of Mytilus edulis and Perumytilus purpuratus 

were investigated at a variety of locations throughout the British Isles, Irish Republic 

and Chile, South America. Investigations showed inter-site differences in the size 

structure of M. edulis populations throughout the British Isles and Irish Republic 

during the summer of 1999, although smaller (<10mm) mussels dominated most of 

the mussel populations. The maximum length attained was 33mm, at Criccieth and 
White Beach, North Wales and Filey Brigg, NE England while few individuals larger 

than 25mm were found at any of the other sites. Mussel density varied between 55 

and 176 individuals per 25CM2, while mussel volume and biomass also showed 

significant inter-site variations. P. purpuratus populations in Chile showed 

considerable inter-site variations in size structure. The maximum size attained was 
37mm at Desembacadura exposed site 1, although mussels greater than 20mm were 

common at all sites. These mussel populations contained fewer small individuals 

than their British and Irish counterparts. - Mussel density did not vary significantly 
between sites, with around 20-30 individuals per 25cm2 at all sites. The size 

structure of mussel populations in North Wales, along with mussel density, volume 
and biomass showed some seasonal variation, while M. edulis and P. purpuratus 
populations both showed annual variations in size structure. M. edulis showed 
significantly different growth rates at three different sites in North Wales, while the 

growth rate of P. purpuratus also showed significant inter-site variation. M. edulis 
displayed a significantly faster growth rate than Perumytilus purpuratus, although P. 

purpuratus attained a greater maximum age. A total of 182 taxa were identified from 
the M. edulis communities in the British Isles and Ireland, while substantially fewer 

were identified to higher taxonomic levels, from the P. purpuratus beds in Chile. 
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INTRODUCTION 

Structural complexity of the environment has often been considered an 

important determinant of biotic diversity and biologists have long held the view that 

structurally complex habitats support more species than structurally simple ones 

(Smith, 1972; Kohn and Leviten, 1976). The notion that the number of species able 

to survive in any one habitat is directly proportional to the number of microhabitats 

has been quantified for a variety of communities including rocky intertidal shores 

(Archambault and Bourget, 1996), subtidal reefs (Pimm, 1994), groups of birds 

(MacArthur, 1972), chydorid cladocerans (Whiteside and Harmsworth, 1967), 

gastropods of the genus Conus (Kohn, 1967; Kohn and Leviten, 1976) and lizards 

(Pianka, 1966). Harner and Harper (1976) illustrated in a study of plant species 

diversity that environmental heterogeneity was strongly correlated with species 

diversity and accounted for 84% of the variation in species numbers. Thus, in this 

study of mussel community structure, any variation in the density and size 

distributions of the mussels might result in changes in the diversity of the associated 

invertebrate communities. 

Size-frequency distributions within some bivalve populations are 

characteristically polymodal, each mode representing an individual year class 
(Richardson et a/, 1995). In many mussel populations however, size classes may 

overlap to such an extent that while size-frequency distributions provide information 

on the heterogeneity of the habitat provided by the mussels, they are of limited value 
for estimating population growth rate (e. g. Kautsky, 1982; Richardson et a/, 1990). 

Growth in Mytilus has been extensively documented. The growth history of each 
mussel is permanently recorded in the shell, either as a series of annual checks in 

the periostracum (Seed, 1969a; Davenport et a/, 1984) and/or inner nacreous layers 

(Lutz, 1976; Kautsky, 1982), or as microgrowth bands present in the middle prismatic 
layer (Richardson, 1989; Richardson et a/, 1990). Surface growth rings produced 
during periods of suspended shell growth have previously been used to determine 

the age of individual M. edulis (Seed and Richardson, 1990). However, periods of 
suspended shell growth may also be associated with seasonal changes in 
temperature or food availability, prolonged stormy weather, or even with the annual 
reproductive cycle and cannot therefore be assumed to be of annual origin (Seed, 
1976). 

Several authors have demonstrated that mussel growth rates and population 
structure vary according to environmental conditions, such as temperature 
(Richardson et a/, 1990; Sukhotin and Kulakowski, 1992), food supply (Incze et a/, 
1980; Page and Ricard, 1990) and aerial exposure (Rodhouse et a/, 1984; Sukhotin 
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and Maximovich, 1994). Longevity of mussels in areas of rapid growth has been 

shown to be considerably less than in those areas where they display slow growth 
(Seed, 1968). Sanders (1968) concluded that, with increasing habitat age and 

prolonged habitat stability, diversity increases and the community evolves into a set 

of species that are biologically accommodated. In contrast, young communities, 

which are controlled primarily by physical factors, have eurytopic species, wide 

population fluctuations and many opportunistic species. Thus, the age structure of 
the mussel populations might also affect community diversity and as such, has been 

determined in this study for some of the mussel populations from the British Isles and 

Irish Republic and Chile. 

Details of the size distribution of mussel populations at all of the sample sites 
in both the British Isles, Irish Republic and in Chile, South America are provided in 

this chapter. Growth rates of M. edulis and P. purpuratus have been determined, by 

examination of the tidal microgrowth bands present in the prismatic layer of the 

shells. A brief summary of the suite of species associated with these mussel beds is 

also provided. 

METHODOLOGY 

Details of the methodology for this work are provided in Chapter 2. 

RESULTS 

Size structure of mussel populations 
Sites in the Btitish Isles and Irish Repub 

The mussel populations from eight study sites in the British Isles and Irish 
Republic did not exhibit polymodal size distributions (Figure 1). The populations at 
Arisaig, Kilkee, Filey Brigg and Robin Hood's Bay were dominated by smaller 
mussels with a shell length of between 5mm and 10mm and had relatively few large 

mussels. Populations at Point Lynas, Criccieth and Doonbeg were dominated by 

medium sized mussels (12mm to 20mm) with few small mussels. The population at 
White Beach, however, was exceptional in having a relatively uniform distribution of 
mussel sizes. The maximum size observed was 33mm, at White Beach, Criccieth 
and Filey Brigg. Mussel density (per 25CM2) was highly variable between each 
location, with highest densities at Filey Brigg and lowest densities at White Beach 
(Table 1). Mussel volume and biomass per unit area were highest at White Beach 
and Filey Brigg and lowest at Point Lynas and Doonbeg. 

Little seasonal variation in size structure of the mussel populations at Point 
Lynas and White Beach was apparent between January 1998 and November 1998 
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Figure I Size distributions of Mytilus edulis from eight sites in the British Isles and Irish Republic, in July 1999. Distributions are based on a mussel bed sample area of 200cM2. 
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Table I Mean density, volume and biomass of mussels per 25CM2 area of mussel 
bed at eight sites in the British Isles and Irish Republic. 95% confidence intervals are 
marked, such that significant differences (p<0.05) are represented by non- 
overlapping intervals. 

Site Mussel 
Density 

Mussel 
Volume (ml) 

Mussel 
Biomass (g) 

Point Lynas, Wales 64±11 19.1±3.0 11.64±2.24 

White Beach, Wales 55±3 34.3±1.7 25.30±1.33 

Criccieth, Wales 96±7 24.5±2.0 19.83+9.24 

Arisaig, Scotland 163±9 19.4±2.4 19.67±1.26 

Kilkee, Irish Republic 87±8 19.8±2.7 14.48+-+0.97 

Doonbeg, Irish Republic 79±5 19.1±0.9 14.46+-+0.64 

Robin Hood's Bay, England 149±8 27.9±2.1 17.34±1.29 

Filey Brigg, England 176±10 31.5±3.3 22.49±1.73 
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(Figure 2 and 3), although slight variations were observed in the frequency of 

mussels at the smaller end of the size range (5 to 10mm). The mean density of 

mussels at the two locations, particularly White Beach, showed little seasonal 

variation, while mussel volume and biomass per unit area displayed slight monthly 
fluctuations, although with little consistency between sites or seasons (Table 2). By 

contrast, however, the mussel population at Criccieth showed considerable seasonal 

variation in size structure between January 1998 and November 1998, notably with 

an absence of large mussels (>24mm) in July and small mussels (<16mm) in 

September (Figure 4). The modal size increased gradually throughout the year, from 

12mm in January to 30mm in November. Mussel density also showed considerable 

seasonal fluctuations, with higher values during the summer months (May and July) 

than in the winter months (November and January) (Table 2). By contrast, mussel 

volume and biomass were greater during the winter months than the summer. These 

seasonal patterns in mussel density, volume and biomass were similar between 1998 

and 1999. The size structure of the populations at Point Lynas and White Beach 

remained relatively stable between 1998 and 1999 (Figure 5). However, the 

population at Criccieth fluctuated in density, particularly between summer and winter, 
while there was an overall trend towards increasing maximum size between July 
1998 and January 1999. 

Sites in Chile 

Mussel populations from the Chilean sites did not display any apparent 
polymodal size distributions (Figure 6). The populations at Las Cruces, 
Desembocadura sheltered site 1, Cocholgue and Valdivia were generally dominated 
by large mussels (16mm to 27m), with few small mussels. Populations at 
Desembocadura (exposed sites), along with Maule and Coronel had much more 
uniform size distributions. The largest mussels occurred at the Desembocadura 

exposed sites, where they reached a maximum length of 37mm. 
Mussel density did not vary greatly between the nine sites (Figure 7). 

However, there was a great deal of within site variation in the density of mussels 
within mussel beds at each of the locations, with the exception of Desembocadura 

exposed site 1. The size structure of the mussel populations at the three sites at 
Desembocadura and Coronel showed slight annual differences between 1997 and 
2000 (Figure 8), whilst mean mussel density did not vary significantly (Figure 9). 

The size structure of the mussel populations in the UK and Chile did not differ 
greatly. However, mussel beds in the British Isles and Irish Republic generally had 
more small, juvenile mussels, while the density of P. purpuratus in the Chilean 
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Table 2 Mean density, volume and biomass of mussels per 25CM2 in mussel beds 
from Point Lynas, White Beach and Criccieth, Wales at intervals between January 
1998 and July 1999.95% confidence intervals are marked, such that significant 
differences (p<0.05) are represented by non-overiappin'g intervals. 

Site Date Mussel Density Mussel Volume 
(MI) 

Mussel Biomass 
(g) 

Point Lynas January 1998 96±7 23.4±2.2 22.72±1.55 

March 1998 78±5 17.5±1.5 11.97±2.53 

May 1998 84±9 28.3±0.7 16.54±0.86 

July 1998 100±12 17.0±1.3 15.91±0.92 

September 1998 102±8 25.4±2.2 21.38±1.48 

November 1998 93±9 23.6±3.1 19.57±1.32 

January 1999 92±14 19.1±2.2 13.55±1.91 

July 1999 64±11 19.1±3.0 11.64±2.24 

White Beach January 1998 79±6 51.9±4.2 46.8±4.09 

March 1998 60±4 45.5±3.9 42.72±4.12 

May 1998 63±6 36.0±3.3 35.27±2.69 

July 1998 62±7 35.1±2.2 26.71±1.96 

September 1998 59±4 35.0±4.0 34.58±4.00 

November 1998 72±6 31.5±2.5 31.90±1.67 

January 1999 67±5 33.5±2.0 28.83±1.70 

July 1999 55±3 34.3±1.7 25.30±1.33 

Criccieth January 1998 35±3 26.1±2.5 22.75±2.58 

March 1998 35±3 25.2±1.2 26.06±1.31 

May 1998 79±10 24.8±2.8 19.64±1.25 

July 1998 76±8 19.38±2.1 12.07±0.37 

September 1998 39±2 20.5±1.6 20.83±1.06 

No vember 1998 31±2 38.3±3.3 28.77±1.26 

January 1999 35±4 42.9±2.0 40.16±1.75 

July 1999 96±7 24.5±2.0 19.83±2.24 
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Figure 6 Size distributions of Perumytilus PUrPUratus from nine sites in Chile, South 
America. All mussels were collected in January 1999, with the exception of Valdivia, 
where mussels were collected in January 1998. Distributions are based on a mussel 
bed sample area of 200CM2. 
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mussel beds was substantially less than that of M. edulis in the British Isles and Irish 

Republic. 

Age structure of the mussel populations 
When viewed under the light microscope, acetate peel replicas of polished 

and etched M. edulis and P. purpuratus shells revealed three shell layers; 1) a thin 

outer periostracum, 2) a middle prismatic layer and 3) an inner nacreous layer. A 

series of growth increments separated by distinct narrow growth bands were 

observed in the prismatic layer (Figure 10). The width of the bands varied seasonally 

with wider increments deposited during the summer (May to September in the British 

Isles and October to April in Chile) and narrow bands during the winter.. Table 3 

contains size at age data for M. edulis from three sites in the British Isles and P. 

purpuratus from four sites in Chile. 

Sites in the British Isles 

The mussels from Point Lynas reached a maximum age of 3 years and a 
shell length of 19.5±0.2mm (Table 3), whilst mussels at White Beach reached a 

maximum age of 6 years at a length of 24.6±0.5mm and those from Criccieth 

reached a maximum age of 5 years and a length of 24.0±0. Omm. Regression 

analysis performed using the general linear model, after log gamma transformation, 
revealed that the growth rates of mussels at each of the three locations differed 

significantly (Table 4). Growth rate was fastest in mussels at Point Lynas and 
slowest at White Beach, while the growth rate of mussels at Criccieth was 
intermediate between the two. 

Sites in Chile 

The mussels from Desembocadura exposed site 1 reached a maximum age 
of 8 years and a shell length of 25.2±0.8mm, while mussels at Desembocadura 

exposed site 2 attained a greater maximum age of 10 years at a length of 
27.1±0.3mm (Table 3). Mussels at both Desembocadura sheltered site 1 and 
Coronel reached a maximum age of 9 years at lengths of 24.3±0. Omm and 
22.3±0. Omm, respectively. Regression analysis performed using the General Linear 
Model, after log gamma transformation, revealed that the growth rates of mussels at 
Desembocadura exposed I site were growing at a significantly faster rate than at 
each of the other locations (Table 4). Mussels at Desembocadura sheltered site 1 
and Coronel had a significantly slower growth rate than Mussels at the other two 
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Figure 10 a), b) Photographs of Mytilus edulis and Perumytilus purpuratus shells, c) 
Photomicrograph of an acetate peel replica of M. edulis and P. purpuratus shell 
sections, e) Schematic diagram of a mussel shell section to illustrate the layers of the 
shell: p, periostracum; pl, prismatic layer, n, nacreous layer, u, umbo, f) position of a 
winter growth check (arrow) in the shell of M. edulis. 



a) Mytilus edulis shell 

e) Schematic diagram 
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b) Perumytilus purpuratus shell 

c) Mytilus edulis section d) Perumytilus purpuratus section 

f) Position of winter growth check 
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sites, while the growth rate of mussels at Desembocadura exposed site 2 was 
intermediate between the other sites. Regression analysis performed using the 

general linear model, revealed that growth rates of M. edulis at locations in the UK 

were significantly greater than for P. purpuratus at locations in Chile (Table 5). 

Species composition of communities associated with mussel populations 
Sites in the British Isles and Irish Republic 

Between January 1998 and July 1999, a total of 87 taxa were identified from 

mussel beds at Point Lynas, with 94 at White Beach and 94 at Criccieth (Table 6). At 

Point Lynas, the most numerically abundant taxa were nematodes, nemerteans, 

mites, Clunio sp. larvae, bivalves (predominantly juvenile mussels) and various small 

species of gastropods. At White Beach the dominant taxa were nematodes, Clunio 

sp. larvae, bivalves (predominantly small mussels) and various crustaceans including 

ostracods, barnacles, isopods, amphipods, tanaids and crabs. The community at 
Criccieth was characterised by nematodes, Clunio sp. larvae, isopods, barnacles, 

bivalves (predominantly small mussels) and various polychaete species. A more 
detailed analysis of the invertebrate communities associated with each of the mussel 

populations is provided in later chapters. 
During the summer of 1999 (June and July), 29 taxa were associated with the 

mussel population at Arisaig, with 43 at Kilkee, 35 at Doonbeg, 52 at Robin Hood's 

Bay and 46 at Filey Brigg (Table 6). During the summer of 1999 at the three main 
study sites in Wales, 36 taxa were identified at Point Lynas, 28 at White Beach and 
39 at Criccieth during July 1999. The invertebrate communities associated with 
mussel populations at the different locations in the UK were dominated to varying 
degrees, by taxa including nematodes, bivalves, gastropods, insects (mainly Clunio 

sp. larvae) and mites (Figure 11). Bivalves (mainly juvenile mussels) dominated 

mussel communities from all sites, while many of the dominant taxa varied in 

abundance and identity between sites (e. g. ostracods, isopods, and insects). Other 

taxa, such as nemerteans, gastropods and mites were found in consistently high 

numbers at all or most of the sites. 

Sites in Chile 

Identification of infaunal associates of P. purpuratus was only carried out to 
relatively broad taxonomic categories, since taxonomic keys to most of the species 
were not available, and many of the species present in the samples had not been 
previously described. In addition, time was a limiting factor during this study, so to 
reduce sorting times and enable a greater volume of material to be processed; 
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Table 5 a) ANOVA performed between regression slopes for the growth rates of 
Mytilus edulis at 3 sites in the British Isles (Point Lynas, White Beach and Criccieth) 
and Perumytilus purpuratus at four sites in Chile (Desembocadura exposed site 1, 
Desembocadura exposed site 2, Desembocadura sheltered site 1 and Coronel), 
using the general linear model; b) the departure of single regression slopes, 
representing growth rates, from the average slope. 

a) 

Source DF Ss ms Fp 
Age 1 5847.4 5847.4 3283.57 <0.05 
Site 6 90.1 15.0 8.43 <0.05 
Age*Site 6 801.2 133.5 74.99 <0.05 
Error 36 64.1 1.8 
Total 49 

b) 

Country Term of regression Coefficient Standard t-value p 
deviation 

Constant -5.7937 0.4834 -11-99 <0.05 
Age 9.3105 0.1625 57.30 <0.05 
Age*Site 

British Isles Point Lynas 6.0541 0.8139 7.44 <0.05 
White Beach 0.2336 0.3148 0.74 >0.05 
Criccieth 4.1502 0.3919 10.59 <0.05 

Chile Desembocadura -1.5392 0.2381 -6.49 <0.05 
exposed 1 
Desembocadura -2.4185 0.2045 -11.83 <0.05 
exposed 2 
Desembocadura -3-0134 0.2182 -13.81 <0.05 
sheltered site 1 
Coronel -3.4668 0.2182 -15.89 <0.05 
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Table 6 List of taxa identified from mussel beds at each of the study sites in the 
British Isles and Irish Republic. throughout the entire study period (PL, Point Lynas; 
WB, White Beach, C, Cricciethý A, Arisaig, K, Kilkee: D. Doonbeg; RHB, Robin 
Hood's Bay; FB, Filey Brigg). Taxa are listed alphabetically within main taxonomic 
groupings. Taxa at Point Lynas, White Beach and Criccieth marked *, were present 
in samples collected during July 1999, as part of the study of large-scale spatial 
variation in the structure of mussel communities. 

TAXA I'L WB AK 1) RHB I- H 
FORAMINIFERANS 

Foraminifera indet. 0 0 

ANEMONES 

Actinia equina 0 0 

Actinia fragacea 0 

Anthopleura balli 0 
Stomphia coccinea 0 
White anemone 

PLATYHELMINTHES 

Platyhelminthe indet- 0 
NEMATODES 

Nernatoda. indet. 00 

NEMERTEANS 

Nernertea indet. 

Amphiporidae indet. 

Cephalothricidae indet. 0 0 
Emplectonernatidae indet. 
Lineidae indet. 
Tetrastemmatidae indet. 
Tubulanidae indet. 0 0 
POLYCHAETES 

Alentia gelatinosa 0 
Amblyosyllis formosa 

Anaitides maculata 

Aphelochaeta marioni 

Brania pusilla 0 0 
Capitella capitata 0 
Capitella sp. 0 
Cirratulus cirratus 0 0 000 
Cirratulus filiformis 0 0 0 
Cirriformia tentaculata 0 0 0 
Drilonereis filum 0 0 000 
EvIalia viridis 0 0 000 
Eumidia sanguinea 0 
Eunicid sp. 1 0 
Eunicid sp. 2 0 
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Eusyllis blonistianai 

Fabricia stellaris 

Harmothoe sp. 

Harmothoe extenuata 

Lepidontus clava 

Lepidontus squamata 

Lumbrinens spp. 

Malclaniclae spp. 

Neanthes furcata 

Nepthys hombergii 

Nepthys sp. 

Odontosyllis sp. 

Ophelia bicomis 

Ophelia rathkei 

Paralaeospira malardi 

Perinereis cultrifera 

Pherusa plumosa 

Pholoe inoculata 

Pholoe inomata 

Phylloclocid sp. 

Polydora ciliata 

Polychaete indet. 

Polychaete larvae indet. 
Pomatoceros triqueter 

Scolelepis squamata 

Scoloplos armiger 40 
Spirorbis spirorbis 

Syllid sp. 1 
Syllid sp. 2 

Typosyllis profifera 
Typosyllis sp. 
OLIGOCHAETES 

Oligochaeta inclet. 

SIPHUNCULIDS 

Golfingia vulgaris 
OSTRACODS 

Heterocythere albomaculata 
Leptocythere pellucida 
Semicytherura nigrescens 
Ostracod sp. 4 



TAXA A 
BARNACLES 

Chthamalus montagui 

Elminius modestus 

Sernibalantis balanoides 

Juvenile barnacles indet. 

TANAIDS 

Tanais dulongii 0 0 
ISOPODS 

Idotea baltica 0 0 0 
Idotea chelipes 0 0 

Idotea emarginata 

Idotea granolosa 0 
Idotea finearis 

Idotea neglecta 
Idotea pelagica 0 
Jaera aibifrons 

Jaera marina 

Jaera nordmanni 

Janira maculosa 

Janiropsis breviremis 

AMPHIPODS 

Abludomelita obtusata 

Atylus swammerdami 
Calliopius laeviusculus 

Echinogammarus mannus 

Ericthonius punctatus 

Hyale prevostli 

lphimedia minuta 
lphimedia obesa 

Jassa falcata 

Orchestia gammarellus 

Parajassa pelagica 

Pontocrates altamannUS 

Stenothoe monocuioides 

Sunamphitoe pelagica 

DECAPODS 

RIM 

" 

" " " " 

" 

. S S 

S 

L, cflluef fjdyufu. -, 0 
Carcinus maenas 

Crab larvae inclet. 

Necora puber 

Pilumnus hirfellus 

Pinnotheres pisum 

0 
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I AXA Ill. H A KI kIIH IB 
MITES 

Mite sp. 1 0 

Mite sp. 2 0 

Mite sp. 3 0 

Mite sp 4 0 

Mite sp. 5 0 

Mite sp. 6 

Mite sp. 7 

Mite sp. 8 0 0 0 

Mite sp. 9 0 

Mite sp. 10 0 0 

Mite sp. 11 0 0 0 

Mite sp, 12 0 

INSECTS 

Clunio sp. larvae indet. 0 0 0 
Dipteran larvae indet. 0 

Anurida mantima 

Petrobius marinus 

CHITONS 

Acanthochitona crinata 

Lepidochitona asellus 

Lepidochitona cinerea 

Acanthocardia echinata 

BIVALVES 

Angulus tenuis 

Arca tetragona 

Chlamys varia 

Epilepton clarkiae 

Hiatella arctica 

Lasaea adansoni 

Modiolufa phaseolina 

Mytilus edulis 

Telfina spp. 

Turtonia minuta 

Venerupis rhomboides 

Venerupis saxatilis 

Venerupis senegalensis 

GASTROPODS 

Alvania beam 

Alvania punctura 

Barleeia unifasciata 

Brachystomia scalaris 0 

00 



FAXA AK I RIM Ili 
Buccinum undatum 

Cerithiopsis tubercularis 

Chauvetia brunnea 

Chrysallida interstincta 

Cingula cingullus 

Coriandria fulgida a 0 
Eatonina fulgida 

Epitonium clathrus 

Eulimella laevis 

Gibbula magus 

Hydrobia ulvae 

Juvenile gastropods indet. 

Lacuna pallidula 

Lacuna parva 

Lacuna vincta 

Limapontia depressa 

Littonna littorea 

Littorina mariae 

Littorina neglecta 

Littorina obtusata 

Littorina rudis 

Manzonia crassa 

Nucella lapillus 

Obtusella intersecta 

Ocinebrina edwardsi 

Omalogyra atomus 

Ondina diaphina 

Onoba semicostata 

Patella ulyssiponensis 
Patella vulgata 

Propilidium exiguum 

Rissoa membranacea 

Rissoa parva 

Rissoa violacea 

Rissoella opalina 

Skenea serpuloides 

Skeneopsis pianorbis 

Tectura testudinahs 

Tricolia pullus 

ECHINODERMS 

Amphjura chiajei 

Ophiothrix fragilis 

TOTALTAXA Q4 94 43 "1 5 40 
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Figure 11 Abundance of main taxa in the mussel beds at eight sites in the British 
Isles and Irish Republic during the summer of . 1999. Taxa, are restricted to those 
contributing to >5% of individuals present in the community at at least one of the 
eight sites. 
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identification of organisms was generally only made to higher taxonomic levels. A 

total of 21 taxa were identified from the mussel beds at Las Cruces, with 24 at Maule, 

between 19 and 29 at the four sites at Desembocadura, 22 at Coronel, 20 at 
Cocholgue and 21 at Valdivia (Table 7). Invertebrate communities associated with 
the mussel populations at the different locations in Chile were dominated to varying 
degrees, by a variety of taxa, including nematodes, nemerteans, various polychaete 
families, oligochaetes, barnacles, isopods, amphipods, crabs, gastropods and 
juvenile mussels (Figure 12). The dominant taxonomic groups varied greatly 
between sites; gastropods were the most abundant taxonomic group (excluding 

juvenile mussels) in mussel populations at Las Cruces, Desembocadura exposed 

site 1 and sheltered site 2, while polychaetes were the most abundant group at 
Maule and Desembocadura sheltered site 1. Nematodes dominated the mussel 

community at Desembocadura exposed site 2, while barnacles dominated 

numerically at Coronel, Cocholgue and Valdivia. 
In summary, intersite differences were observed in the size structure and 

growth rate of both M. edulis in the British Isles and Irish Republic and P. purpuratus 
in Chile. M. edulis beds contained a higher proportion of smaller mussels than P. 

purpuratus beds, which were dominated by larger individuals. Chilean mussels 
attained a greater maximum length and age than British and Irish mussels, while M. 

edulis had a faster growth rate. Both mussel beds supported diverse infaunal 

communities. 

DISCUSSION 
Size structure of mussel populations 

The mussel populations from study sites in the British Isles and Irish Republic 

and Chile did not show clear polymodal size distributions, but were either dominated 
by small or larger mussels or had a fairly even representation of all size classes. 
Such distributions presumably reflect the extended period of recruitment and/or 
variable individual growth rates of mussels, which lead to the merging or overlap of 
successive year classes (Seed, 1976; Kautsky, 1982). In addition, in localities where 
the life expectancy of mussels is increased due to the absence of predators, a high 
incidence of old individuals occurs, whereas in populations in which the mussel 
turnover is more rapid there is a preponderance of relatively young mussels (Seed, 
1968). Despite some intersite differences, the size-frequency distributions of M. 
edulis and P. purpuratus were broadly similar across all sites within the British Isles 
and Irish Republic and in Chile, respectively. It would thus appear that, in terms of 
size structure alone, mussel populations within the British Isles and Irish Republic 
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Table 7 List of taxa identified from mussel beds at each of the study sites in Chile 
throughout the entire study period (LC, Las Cruces; M, Maule; DE1, Desembocadura 
Exposed site 1; DE2, Desembocadura Exposed site; DS1, Desembocadura 
Sheltered site 1; DS2, Desembocadura Sheltered site 2; C, Coronel; CH, Cocholgue; 
V, Valdivia). 

TAXA MDF1 DF. 2 DSI DS2 C (Ji 
Anemones indet. 0 0 0 0 0 0 0 
Turbellaria indet. 0 
Nemertea inclet. a 
Nematoda indet. 0 
Aphroditidae polychaetes 
Cirratuliclae polychaetes 0 
Eunicidae polychaetes 0 
Hesioniclae polychaetes 
Nepthydae polychaetes 
Nereidae polychaetes 0 
Ophelidae polychaetes 
Orbiniclae polychaetes 
Phyllodocidae 
polychaetes 
Spioniclae polychaetes 
Syllidae polychaetes 
Terebelliclae polychaetes 
Spirorbidae polychaetes 
Oligochaeta indet. 
Ostracoda inclet. 
Barnacles inclet. 0 0 
Tanais sp. 0 0 
Isopoda inclet. 0 0 
Amphipoda inclet. 0 0 
Crabs 0 0 
Spiders 0 
M ites 0 
Sea spiders 0 
Chironomiclae larvae 0 
Insects indet. 

Chitons 

Limpets 9 
Gastropoda inclet. 

Juvenile mussels 
Bivalves indet. 

Ophiuroids 

Total Taxa 21 24 29 2N, 22 20 21 
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Figure 12 Abundance of main taxa in the mussel beds at nine sites Chile during the 
Austral summer of 1999. Taxa are restricted to those contributing to >5% of 
individuals present in the community at at least one of the nine sites. 
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and Chile, provide a habitat similar in structural complexity for species colonisation at 
all sites. 

P. purpuratus occurred in lower population densities at study sites in Chile 

than M. edulis at sites in the British Isles and Irish Republic. Mussel populations in 

Chile contained a higher proportion of larger mussels (>20mm) than those in the 
British Isles and Irish Republic, with very few smaller mussels, despite large 

interstitial spaces. McQuaid and Lindsay (2000) found in studies of populations of 
Pema perna around the South African coastline, that wave-exposed shores 

supported larger mussels and had higher mortality rates than sheltered shores. 
Seed (1968) noted that the highest densities of mussels tended to be associated with 

shores receiving moderate to severe wave action, probably as a direct influence of 
the amount of water (and larval stages) passing over them and slow draining, 

horizontal platforms. However, effort was made during the selection of study sites, to 

standardise conditions of wave-exposure. It is unlikely that population density 

differences between mussels in the British Isles and Irish Republic, and Chile were 
due to differences in wave-exposure. The different size-frequency distributions of 

mussels from the British Isles and Irish Republic, and Chile might be reflected in the 
diversity of the associated infaunal communities, since structural complexity of the 

environment is an important determinant of biotic diversity (e. g. Kohn and Leviten, 

1976; Pimm, 1994; Archambault and Bourget, 1996). This hypothesis will be tested 
in relation to communities associated with mussel beds in greater detail in 

subsequent chapters. 

Age structure of mussel populations 
Examination of the prismatic layer of the shells of both M. edulis and P. 

purpuratus revealed a series of microgrowth bands and increments. Various factors, 
including human disturbance and attacks by predators, as well as spawning breaks 

and algal blooms are known to be recorded as growth checks within the shell 
structure of bivalves (Richardson et al, 1990; Richardson, 1993). It might however, 
be expected that such factors would produce random, irregular checks in the shells; 
the observed checks in the mussel shells in this study occurred in regular patterns. 
These checks correspond to the slowing of growth during winter seasons, due to 
reduced temperatures and food supply and were used to estimate the age of these 
mussels. 

At the three sites in the British Isles, shell growth rates were fastest in 

mussels from Point Lynas and slowest in White Beach mussels, while the growth rate 
of mussels at Criccieth was intermediate. In Chile, mussels at Desembocadura. 
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(sheltered site 1) and Coronel had a significantly slower growth rate than mussels at 
the other two sites, while the growth rate of mussels at Desembocadura (exposed 

site 2) was intermediate between the other sites. Overall the mussels in Chile had 

significantly slower growth rates than those from the British Isles. Seed (1976) 

pointed out that mussel growth rate varies, not only between localities but also within 

similar size and age groups in the same population; even mussels grown under 

apparently identical conditions can exhibit widely different rates. M. edulis can reach 
lengths of 60-70mm in a twelve to eighteen month period (Mason, 1969,1972), while 

other authors have measured much slower growth rates in less favourable 

conditions, of only 20-30mm in 15 to 20 years (e. g. Pike, 1971). 

Various factors are important in affecting growth rates in bivalves, and are 

such that, in temperate waters, growth is rapid during the spring and summer and 

slight or absent during the colder winter months (Dare, 1969, Mason, 1969). Food 

supply is thought to be the single most important factor influencing growth in mussels 
(Wallace, 1980; Loo and Rosenberg, 1983; Rodhouse et al, 1984; Page and Ricard, 

1990). Although other factors are also known to be important in controlling growth 

rate in mussels, including temperature (Sukhotin et al, 1992; Tomalin, 1995; Babarro 

et al, 2000) and light (Seed, 1969b), it is unlikely that any of these factors varied 
between the 3 Welsh sites on a large enough scale to produce the observed 
differences in growth rate. Similarly in Chile, the four sites were all located within 10- 
15 miles of each other. It is possible that differences in food supply, temperature or 
light might contribute to the faster growth rates of M. edulis in the British Isles and P. 

purpuratus in Chile. Various authors have shown that tidal height and wave- 
exposure can influence the growth rate of mussels (e. g. van Erkorn Schurink and 
Griffiths, 1993; Richardson et al, 1995; Gray et al, 1997; McQuaid and Lindsay, 
2000). However, conditions of wave-exposure and tidal height from which samples 
were collected were standardised across all study sites, these factors are unlikely to 
be the cause of the observed growth rate differences. 

Longevity of mussels was greater in Chile than in the British Isles as well as 
growth rate being slower. Similarly, Gray et al (1997) found, in populations of M. 

edulis chilensis in the Falkland Islands, that the longer living individuals also 
exhibited the lowest growth rates. It has been suggested that faster growing mussels 
may be shorter-lived because they will attain the size limit imposed by the 
environment much more rapidly than those living in habitats where growth rates are 
much slower (Seed and Suchanek, 1992). Seed (1969b) found that in populations of 
M. edulis from the east coast of England, the absence of major predators in the 
upper shore resulted in enhanced survival and therefore the occurrence of relatively 
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old individuals. P. purpuratus populations in Chile might be subject to lower levels of 
predation than M. edulis in the British Isles and Irish Republic, although the 

communities associated with the sampled mussel populations in Chile were diverse 

and contained several species, including crabs, which might be predatory on mussels 
(see later chapters). 

The difference in growth rate between P. purpuratus in Chile and M. edulis in 

the British Isles is the result of a combination of various physical, biological or 
environmental factors. Without studying the growth of the two mussel species in 
identical physical and environmental conditions, it would be impossible to deduce 

exact causes for the observed differences in growth rate between P. purpuratus and 
M. edulis. Mussels in Chile are slower growing and longer lived than their British 

counterparts, thus, it might be expected that the Chilean mussel beds would support 
a more diverse associated fauna, since Sanders (1968) concluded that, with 
increasing age and prolonged habitat stability; diversity increases. 

Species composition of communities associated with mussel populations 
Mussel populations at all sites, both in the British Isles and Irish Republic and 

in Chile supported diverse invertebrate assemblages. Numerous studies have 
described the diverse infaunal assemblages associated with intertidal mussel beds 
(e. g. Suchanek, 1979; Tsuchiya and Nishihira, 1985,1986; Lintas and Seed, 1994; 
Seed, 1996). In the present study, 182 different invertebrate taxa, were identified 
over the course of several months from Mytilus edulis beds at various locations in the 
British Isles and Irish Republic, while in Perumytilus purpuratus beds in Chile, around 
35 different taxa were identified, although identification was to higher taxonomic 
levels and did not cover as wide a temporal period as the studies of M. edulis. Over 
a twelve-month period, a total of 79 taxa were identified from mussel beds at Point 
Lynas, with 92 at White Beach and 85 at Criccieth. These figures exceed those of 
previous studies of the communities associated with M. edulis beds on rocky shores. 
For example, Briggs (1982) identified 34 taxa associated with mussel beds in Loch 
Foyle, Northern Irish Republic, while Lintas and Seed (1994) found representatives 
from 59 taxa in mussel beds on a wave-exposed rocky shore on Anglesey. Tsuchiya 
and Nishihira (1985,1986) identified 69 species from 8 phyla in mussel beds in 
Japan. Similar results have been obtained in studies of the communities associated 
with populations of different mussel species. For example, Ong Che and Morton 
(1992) found 52 macro-invertebrate species in Septifer Virgatus beds in Hong Kong, 
while Seed and Brotohadikusumo (1994) identified 29 molluscan taxa from the same 
mussel beds. Peake and Quinn (1993) identified 56 macroinvertebrate species, from 
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8 phyla in Brachidontes rostratus beds in south-eastern Australia. In addition, similar 

numbers of taxa have been reported to be associated with M. edulis on soft 

sediments in the Wadden Sea (Dittman, 1990) and subtidal Modiolus modidlus beds 

(Brown and Seed, 1976). Thus, more taxa, were associated with mussel beds on 

rocky substrata in this study than have been previously reported, with the exception 

of M. califomianus, a much larger-bodied mussel which forms particularly thick 

multilayered beds which have been shown to support around 270 invertebrate taxa. 

(Suchanek, 1979). 
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Chapter 4 

Small-scale spatial variations 
in the structure of the invertebrate communities 

associated with Mytilus edulis 

F., 

70 



ABSTRACT 

Small-scale spatial, or intra-site variation 
* 
in the structure of the invertebrate 

community associated with Mytilus edulis beds was investigated on two rocky shores 

on the coast of Anglesey, North Wales. Communities associated with M. edulis 

showed significant small-scale spatial variation at the two study sites. Intra-site 

variations were more pronounced when data were analysed at the multivariate level, 

although many of the univariate measures of diversity did differ significantly between 

habitats. Multivariate differences in mussel bed community structure at both sites 

were the result of differences in abundance of around 16 of the more common 

members of the communities. The identity of many of these taxa were the same at 

each site, for example, juvenile M. edulis, mites, ostracods and oligochaetes, while 

others were restricted to one site or the other. When emphasis was removed from 

taxa abundance, clear intra-site differences still emerged between mussel 
communities, with many more taxa contributing to the dissimilarities between 
habitats. Some taxa appeared ubiquitous to all habitats at both sites, while others 
were site or habitat specific in their occurrence and abundance. Environmental 

parameters measured in the mussel bed showed some significant small-scale spatial 
variation within each site, although differences in individual parameters between 
habitats were not always consistent at the two sites. Multivariate analysis of the 

abiotic data showed a clear separation of mussel beds from each of the habitats at 
the two sites. However, the abiotic data did not show a high degree of correlation 
with the biotic data at either site. It was concluded that most of the intra-site 

variations in the structure of the M. edulis communities were the complex result of 
many different processes, together with stochastic events. 
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INTRODUCTION 
Several studies have described the diverse infaunal assemblages associated 

with intertidal mussel beds (e. g. Suchanek, 1979; Tsuchiya and Nishihira, 1985, 

1986; Lintas and Seed, 1994; Seed, 1996). Mussel beds represent an extremely well 
delineated community, bounded by the physical limits of the mussels, which in the 

intertidal, are in turn restricted by physical and biological factors to a clearly definable 

zone (Suchanek, 1980). In addition, due to the small size and immobility of sessile 
invertebrate species of marine epifaunal communities, these habitats are ideal for 

studying patterns of change in species composition and diversity (Osman, 1977). 

Many workers have described the natural variability in patterns in intertidal 

communities (e. g. Lewis, 1964; Stephenson and Stephenson, 1972; Paine, -1974; 
Underwood and Chapman, 1996,1998). Many of these studies have been very 

general, while patterns of structure of specific intertidal assemblages have usually 
been described from one sample, in a very restricted spatial scale of sampling (e. g. 
Foster, 1990; Warwick and Clarke, 1993). A complete understanding of the structure 

of any community can only be possible, when small-scale spatial variation is 

encompassed (Morris, 1990). In addition, Underwood and Chapman (1998) stated 
that understanding processes in complex assemblages depends on a clear 

understanding of spatial and temporal patterns of structure at various spatial scales. 
Other studies have stressed the importance of documenting spatial patterns in 

species abundance, in order to understand scales at which organisms interact with 
one another or with their environment, and the relative importance of different 

ecological processes which may determine these patterns (e. g. Underwood, 1991a; 
Underwood, 1992; Underwood and Chapman, 1996). 

Spatial variation in species distributions can operate over a wide range of 
scales, from small-scale patchiness on shores to pan-continental variation and as 
such, multi-scale investigations should be carried out in community studies since 
different scales may influence community characteristics differently (Levin, 1992). 
Several investigations have been carried out into spatial variations, on a variety of 
scales, in the structure of marine assemblages. For example, Menge (1983) studied 
small-scale spatial patterns'in tropical intertidal assemblages, while Underwood and 
Chapman (1998) studied small-scale spatial variation in sheltered rocky shore 
assemblages in south-eastern Australia. Archambault and Bourget (1986), Bergeron 
and Bourget (1986) and Bourget et al (1994) undertook several studies of coastal 
heterogeneity and benthic intertidal species richness, diversity and abundance in the 
intertidal zone on a variety of spatial scales. Hopner and Wonneberger (1985) have 
investigated patchiness in the epi-phytobenthos on intertidal flats, while Morrisey et al 
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(1992) studied spatial variation in soft-sediment benthos in Australia and Hixon and 
Beets (1993) studied small-scale spatial variability in coral reef assemblages. 

Small-scale spatial variations in the structure of communities associated with 
intertidal mussel beds have been studied in some detail in the past. Many studies 
have investigated the effect of various factors, which show small-scale, or intra-site 

spatial variations, on the structure of invertebrate assemblages associated with 
intertidal mussel populations. The factors investigated have included mussel patch 

size (Suchanek, 1979; Tsuchiya and Nishihira, 1985,1986; Peake and Ouinn, 1993), 

mussel patch thickness (Tsuchiya and Nishihira, 1985,1986; Svane and Ompi, 

1993), position within the mussel patch (Okamura, 1986; Tsuchiya and Nishihira, 

1986; Dittman, 1990); Lintas and Seed, 1994), inclination of the rock surface (Lintas 

and Seed, 1994), elevation on the shore (Suchanek, 1979,1980; Tsuchiya and 
Nishihira, 1985; Jacobi, 1987a; Tsuchiya and Bellan-Santini, 1989, Untas and Seed, 

1994; Seed and Brotohadikusumo, 1994). However, most of these studies have 

considered only univariate techniques in the analysis of the effects of such sources of 
spatial variation on the structure of mussel bed communities. Efficient description of 

overall sample patterns require multivariate analyses of the community as a whole, 

rather than simple, univariate studies, which can often fail to identify, or oversimplify, 

patterns in data sets (Clarke, 1999). 
In this chapter a range of univariate and multivariate techniques are used to 

investigate the small-scale spatial variations, or intra-shore variations, amongst the 
fauna associated with Mytifus edulis from several physically contrasting habitats at 
two different sites on Anglesey, North Wales. Taxa are investigated for evidence of 
positive or negative associations. Hypotheses for possible causes of spatial 
variations in community structure are suggested. 

METHODS 

Samples, each comprising of eight replicate 25CM2 quadrats, were collected 
from M. edulis beds at Point Lynas and White Beach during two consecutive spring 
tides in July 1999, from each of the following habitats; 

1) Low shore area within the mussel zone, flat surface, middle of the mussel patch, 
2) Mid shore area within the mussel zone, flat surface, middle of the mussel patch, 
2) High shore area within the mussel zone, flat surface, middle of the mussel patch, 
4) Mid shore area within the mussel zone, flat surface, edge of the mussel patch, 
5) Mid shore area within the mussel zone, vertical surface, middle of the mussel 
patch, 
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6) Mid shore, flat surface, middle of the mussel patch, covered with epiflora (Point 

Lynas only, since epifloral covering did not occur on mussel beds at White Beach). 

Samples were processed and sorted according to the methodologies described in 

Chapter 2. 

RESULTS 

The mussel populations and environmental factors 

A total of 8908 mussels were collected and measured from the shores at 

Point Lynas and White Beach during this investigation. The relative abundance, size, 

volume and biomass of mussels from each of these habitats, together with the weight 

of each of the sediment fractions associated with these mussels are presented for 

both sites in Table 1. At Point Lynas, the population density, volume, biomass and 

mean length of M. edulis showed little variation with habitat, although values in the 

high-shore were slightly, although not always significantly, reduced. The two finest 

sediment fractions were significantly reduced in mussel beds on the low-shore and 

on vertical surfaces, compared to elsewhere, while the larger sediment fractions were 

similar in mussel beds from all habitats, except for those covered with epiflora, where 

quantities were elevated. The amounts of very coarse sediment and shell fragments 

were similar in mussel beds from all habitats. At White Beach, mussel population 
density decreased significantly with increasing tidal elevation, while mean mussel 
length, by contrast, increased with tidal elevation. The volume and biomass of 
mussels did not differ significantly across habitats. The weight of sediment fractions 

were generally elevated in mussel beds on vertical surfaces and the middle of 
patches on the mid shore and lower elsewhere. The weight of shell fragments and 
very coarse sediment was greatest in the high-shore mussel beds. 

The Associated Fauna 

A total of 47459 individual organisms were collected and identified from the 

mussel beds at Point Lynas, while 19708 specimens were collected from those at 
White Beach. At Point Lynas, each of the univariate measures of community 
diversity showed some significant. variation in mussel beds across habitats (Table 
2a). The total number of taxa, along with Margalef's richness were significantly lower 
in the middle of the mussel beds in the mid shore than elsewhere (Figure 1). Values 

of Shannon's diversity and Pielou's evenness were significantly elevated in mussel 
beds on vertical surfaces compared to other habitats. At White Beach, the total 

number of taxa, individuals and Margalef's richness showed significant variation in 

mussel beds from different habitats, while other univariate measures of community 
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Table 2 One-way ANOVA/Moods median tests between univariate measures of 
diversity for mussel beds from six different habitats at Point Lynas, Anglesey and five 
different habitats at White Beach, Anglesey. Significant differences are indicated by 
(P<0.05). 

Univariate Measure 
Point Lynas 

F-value x2 -value 

White Beach 
F-value 2_value 

Total taxa 14.25* - 9.11* 

Total individuals - 12.00* - 13.00* 

Margalef's richness 16.91 *- 5.32* - 

Shannon diversity 8.47* 2.35 

Pielou's evenness 5.89* 0.55 

76 



CL 
w 

LLJ 

. C2 
cu 

1: 
= 

n 

-j 

cl 
LLJ 

LLI 

-J 

0. 
LU 

:i 
-J 

> 

Z: e 

-j 

Cl. 
LU 

LLJ 

c -0 

G) (D 
" c» 2-0 

ýö ui 

x 
in w 
EE 

4- (0 
CL 

E 

(n 0 
.F (n 
mm 
E 
E 

M0 

:3 -0 ý 

(n "0 0 

U) 

-i= mc 

42 E 

oo 0) M r. -- 

m 
--1 

c: Z 
-. i in 

0 

-0>' em 4i 
Z (1) 
cm e) o'-, 

iz i- M 

N 
N 

LO v C4) C, 4 ý 
x8pul SJOIRBievy 

co (D Nt C\l C) d ci dd 

SSiDUUaA3 s. nOlald 

sienplAIPUl *ON 

C, 4 LQ -. Lo 
.a C: ) 

XGPUluouuetls 

Cl) 04 
"Pl 'ON 



diversity did not vary significantly (Table 2). The total number of taxa were 

significantly lower in the middle and on the edge of mid shore mussel patches than in 

other habitats (Figure 2), while the total number of individuals was reduced on the 

edge of mid shore patches. Margalef's index of richness was greatest in mussel 
beds on the low shore. However, the majority of the univariate measures of 

community diversity did show significant intra-site variation in mussel beds at either 
Point Lynas or White Beach. 

Correlation coefficients calculated between abundance values for taxa at both 

sites, from all habitats, showed high levels of a positive correlation between some 
taxa, for example between the limpet Tectura testudinalis and the crab Hyas areneas 

and between the polychaete Drilonereis filum and Cancer pagurus (Appendix 1). 

Such correlation did not necessarily suggest a relationship between the two species, 
but was probably a reflection of the fact that many of the members of the mussel 
community were rare, or transient in nature. Other more common taxa, such as 
turbellarians and the polychaete Brania pusilla and the polychaetes Tharyx marioni 
and Lagisca extenuata showed more intermediate levels of significantly positive 
correlation. 

Cluster analysis of square-root transformed infaunal data from mussel beds at 
Point Lynas revealed a clear separation of samples from each of the six different 
habitats (Figure 3). The same analysis performed with a presence/absence 
transformation revealed a less clear separation of samples (Figure 4). The 

separation of samples from each of the five habitats at White Beach was relatively 
clear with both transformations, when cluster analysis was performed (Figure 5 and 
6). MIDS ordination of square-root transformed infaunal abundance at Point Lynas 
illustrated a clear separation of mussel bed samples from each of the six habitats 
(Figure 7ai). A one-way ANOSIM test and pairwise comparisons performed on the 
data confirmed that the community structure of mussel beds in each of the' six 
habitats were significantly different (R=0.641, p<0.05) (Table 3ai). MIDS ordination of 
presence/absence transformed infaunal abundance revealed a less distinct 
separation, with samples from each of the six habitats, except for those from the 
middle of mussel patches on the mid shore, showing a high degree of overlap (Figure 
7aii). However, a one-way ANOSIM test and pairwise comparisons performed on the 
data showed that the community structure of mussel beds in each of the six locations 
did differ significantly (R=0.580, p<0.05) (Table 3aii). MIDS ordination of square-root 
transformed infaunal abundance at White Beach illustrated a separation of mussel 
bed samples from the five habitats (Figure 7bi). A one-way ANOSIM test and 
pairwise comparisons performed on the data confirmed that the structure of the 
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i) Stress = 0.20 
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Figure 7 MIDS ordination of Bray-Curtis similarity matrix of i) square-root and ii) 
presence/absence transformed taxa abundance data from mussel beds from a) six 
different habitats on the shore at Point Lynas, Anglesey and b) five different habitats 
on the shore at White Beach, Anglesey. (L = Low shore, mid patch; M Mid shore, 
mid patch; H= High shore, mid patch; E= Edge of patch, mid shore; V Vertical 
surface, mid shore; Ep = Epifloral covering, mid patch, mid shore). 
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Table 3 Global R-valubs for ANOSIM pairwise comparisons between samples of 
mussel bed communities from a) six different habitats Point Lynas, Anglesey and b) 
five different habitats at White Beach, Anglesey, based on i) square-root 
transformations and ii) presence/absence transformations of taxa abundance. 
Unless stated otherwise, samples were collected from the mid shore, from the middle 
of mussel patches and from horizontal rock surfaces. Significant differences in 
community structure are indicated by bold type. 

a) 

Low shore Mid shore High shore Edge of Vertical 
patch surface 

Mid shore 0.912 
High shore 0.803 0.845. 
Edge of patch 0.568 0.774 0.712 
Vertical surface 0.751 0.841 0.287 0.496 
Epifforal 0.550 0.706 0.612 0.348 0.654 
covering 

Low shore Mid shore High shore Edge of Vertical 
patch surface 

Mid shore 0.993 - 
High shore 0.644 0.926 
Edge of patch 0.315 0.906 0.592 
Vertical surface 0.496 0.919 0.169 0.372 
Epit7oral 0.397 0.975 0.664 0.294 0.528 
covering 

b) 

Low shore Mid shore High Edge of 
shore patch 

Mid shore 0.491 
High shore 0.756 0.671 
Edge of patch 0.706 0.103 0.875 
Vertical surface 0.578 0.374 0.686 0.716 

Low shore Mid shore High Edge of 
shore patch 

Mid shore 0.607 
High shore 0.684 0.629 
Edge of patch 0.352 0.123 0.633 
Vertical surface 0.581 0.499 0.482 0.554 
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mussel communities differed significantly between all habitats, except for in the 

middle and on the edge of mussel patches on the mid shore (R=0.570, p<0.05) 
(Table 3bi). The same pattern was revealed when MIDS ordination was performed on 

presence/absence transformed infaunal abundance (Figure 7bii), along with a one- 

way ANOSIM test and pairwise comparisons (R=0.491, p<0.05) (Table 3bii). 
Similarity percentage analysis (SIMPER), performed with a square-root 

transformation, revealed that a small number of taxa, namely small mussels, 
nematodes, mites, ostracods, oligochaetes, and chironomid larvae accounted for a 
large degree of the dissimilarity between habitats at the two shores (Table 4 and 5). 

The abundance of other taxa appeared to consistently characterise certain habitats. 

For example, the tanaid, Tanais dulongii and the ostracod, Heterocythereis 

albomaculata were present in elevated numbers in mussel beds in the high shore at 
the two shores, while Fabricia stellaris was abundant in the low shore at both sites 
and Idotea pelagica was consistently found in mid shore mussel patches. SIMPER 

analysis performed on data from the two shores, with a presence/absence 
transformation revealed many more taxa were responsible for habitat differences in 

community composition at both sites, when abundance was not taken into account 
(Table 6 and 7). Differences in taxa composition between habitats was much less 

clear, as the majority of taxa were present in all habitats. 

Biotic and envir-onmental relationships 
Univariate measures of the diversity of the mussel bed community at the two 

shores failed to show any high degree of correlation with any of the measured 
environmental factors in the mussel beds, although some of the relationships were 
significant (Table 8). 

Determination of correlation coefficients between environmental variables 
measured in mussel beds at Point Lynas and White Beach failed to reveal any strong 
relationships (r>0.95) , although there was some significant correlation (Table 9). As 
such, all environmental factors measured in the mussel beds were entered into the 
BIOENV procedure. This analysis revealed that square-root and presence/absence 
transformed biotic data at Point Lynas showed little correlation with environmental 
variables in the mussel matrix (Table 10a). Biotic 

' 
data at White Beach showed a 

higher degree of correlation with a combination of increasing values of mussel 
density, length and coarse sediment content of the mussel matrix (Table 10b). 
Ordination by PCA of the environmental data from mussel samples showed that 
samples from each of the different habitats did not separate out as clearly as the 
biotic data from Point Lynas and White Beach (Figure 8). RELATE analysis between 
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Table 8 Correlation coefficients between environmental variables and univariate 
measures of diversity in mussel beds from a) six different habitats on the shore at 
Point Lynas, Anglesey and b) five different habitats on the shore at White Beach, 
Anglesey. NT number of taxa, NI number of individuals, d Margalef's species 
richness, HI Shannon-Weiner diversity, J Pielou's evenness. Values in bold indicate 
significant correlation. 

a) 
NT NI d H' i 

Imussels 0.043 -0.022 0.018 -0,088 -0.112 

Mass mussels -0.255 -0.219 -0.233 -0.351 -0.188 

Volume mussels -0.272 -0.268 -0.231 -0.300 -0.125 

Mean mussel size -0.163 -0.414 -0.031 -0.228 -0.138 

Mass <63ýLrn sediment 0.070 0.156 0.006 -0.297 -0.352 

Mass 63-125ýLrn sediment 0.247 0.192 0.191 -0.193 -0.367 

Mass 1125-250ýtrn sediment 0.084 0.061 0.077 -0.285 -0.371 

Mass 250-500ýtrn sediment 0.167 0.005 0.174 -0.137 -0.242 

Mass >500ýtrn sediment -0.073 0.364 -0.197 -0.100 -0.042 

NT Ni d H' 
Emussels 

Mass mussels 

Volume mussels 

Mean mussel size 

Mass <63ýtrn sediment 

Mass 63-125ýtrn sediment 

Mass 125-250ýLm sediment 

Mass 250-500ýLrn sediment 

0.384 0.340 0.326 0.136 -0.172 

0.000 -0.001 0.015 -0.174 -0.259 

-0.028 -0.063 0.010 -0.186 -0.251 

-0.454 -0.470 -0.349 -0.235 0.089 

-0.103 -0-008 -0.132 -0.207 -0.168 

0.067 -0.158 0.129 -0.003 -0.068 

0.202 0.213 0.138 -0.034 -0.209 

0.372 0.368 0.284 0.070 -0.216 

Mass >500ýtrn sediment 0.250 0.392 0.129 0.307' 0.190 
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Figure 8 Ordination by PCA, using normalised Euclidean distance, of environmental 
variables measured in mussel beds from a) six different habitats on the shore at 
Point Lynas, Anglesey and b) five different habitats on the shore at White Beach, 
Anglesey. (L = Low shore, mid patch; M= Mid shore, mid patch; H= High shore, mid 
patch; E= Edge of patch, mid shore', V= Vertical surface, mid shore; Ep = Epifloral 
covering, mid patch, mid shore). 
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the Point Lynas environmental data similarity matrix, produced using normalised 
Euclidean distance and the biotic data similarity matrix, produced using Bray-Curtis 

similarity with a square-root transformation showed the two to be significantly 
different (R=0.253, p<0.05). The same analysis performed between the 

environmental data matrix and the biotic data matrix produced using a presence/ 

absence transformation revealed that the two were significantly correlated (R=0.037, 

p>0.05). RELATE analysis between the White Beach environmental data similarity 

matrix, produced using normalised Euclidean distance and the biotic data similarity 

matrices, produced using Bray-Curtis similarity with a square-root and 

presence/absence transformation showed significant differences (R=0.344, p<0.05; 
R=0.431, p<0.05). 

In summary, communities associated with M. edulis showed significant small- 

scale spatial variation at two sites on Anglesey, both at the univariate and 
multivariate level. Differences in the abundance of around 16 of the more common 
members of the community were responsible for intra-site variation at both Point 
Lynas and White Beach. When data were analysed at the presence/absence level, 

clear intra-site differences still emerged. Environmental factors measured in the 

mussel beds did not fully account for the observed variations in community structure. 

DISCUSSION 

Small-scale spatial variations amongst the fauna associated with M. edulis on 
a wave-exposed rocky shore in North Wales, similar to those described in this study 
have been described elsewhere. For example, Lintas and Seed (1994) observed 
marked intersite variations both in the abundance and distribution of the mussel and 
its associated fauna; the highest diversity was found in mussel patches on the low 
shore. Similarly, Tsuchiya and Nishihira (1985,1986) reported significant small-scale 
variations in the structure of invertebrate communities associated with M. edulis on 
rocky shores in Japan whilst Jacobi (1987a) noted small-scale variations in the 
distribution of amphipods in intertidal Pema pema beds in Brazil. Ong Che and 
Morton (1992) found that a large degree of local patchiness occurred in the 
communities associated with Septifer virgatus on wave-exposed rocky shores in 
Hong Kong. Seed and Brotohadikusumo (1994) found marked small-scale spatial 
variations in the abundance and distribution of the molluscan faunal associates of the 
same mussel populations. Tokeshi (1995), found significant spatial variations in the 
polychaete assemblages associated with PerumYtilUS purpuratus beds On a Pacific 
South American shore. 
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Mussel communities at Point Lynas and White Beach were diverse, but were 
dominated by a, small number of taxa, some of which were common to the two 

locations, for example, small mussels, nematodes, mites, ostracods, oligochaetes 

and chironomid larvae. Other were specific to one shore or the other, for example, 
barnacles were much more prevalent at Point Lynas than White beach, which in turn 

supported a greater number of isopods and amphipods. These same taxa were 

. 
those primarily responsible for small-scale variations in community structure, both 

between different habitats on the shores and between replicates within habitats. 

Similarly, Underwood and Chapman (1998) found, in a study of the spatial variation 
in rocky intertidal assemblages in south-eastern Australia, that few species 

characterised the assemblages, while even fewer discriminated between different 

levels on a shore. Although, Peake and Quinn (1993) found a total of 56 

macroinvertebrates species associated with clumps of Brachidontes rostratus in 

south-eastern Australia, they found that the mussel community was dominated by a 
few every abundant species, namely the bivalves, Lasaea australis and Xenostrobus 

pulex, the barnacle Chthamalus antennatus, and the gastropod Nodolittorina 

unifasciata. Ong Che and Morton (1992) recorded at least 52 macroinvertebrate 

species associated with the mussel Septifer virgatus at a wave-exposed site in Hong 
Kong. They found that 75% of the individuals present comprised of three species, 
namely, Lasaea nipponica, Chthamalus sinensis and Hyale sp, The same pattern 
was found in communities associated with deep-sea hydrothermal vent mussels, with 
large numbers of individuals from a small number of species (Van Dover and Trask,. 
2000). 

Since the data are of an observational nature, it is not possible to explain the 
spatial variations in the structure of the assemblages associated with mussels at 
Point Lynas and White Beach, in terms of specific ecological mechanisms. However, 
it is possible to hypothesise about some potential causes. Bowers and Brown (1982) 

stated that local communities are non-random assemblies of those available and 
patterns of local assembly are predictable in the context of microhabitat variation. In 
addition, Tokeshi (1995) stated that spatial dispersion patterns are considered to 
reflect the behavioural response of organisms to a range of biotic/abiotic 
environmental factors, often mediated by some stochasticity in dispersal patterns. 

Mussel patches are isolated from similar patches on rocky shores and as 
such can be treated as islands for their associated communities, so that many of the 
species-area theories developed using island ecosystems can be applied to mussel 
bed communities (Tsuchiya and Nishihira, 1985). It is generally accepted that larger 
islands support more species (MacArthur and Wilson, 1967; MacArthur, 1972). 
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Tsuchiya and Nishihira (1985) demonstrated that increasing mussel patch size 

significantly increased the diversity of the community associated with M. edulis and 

concluded that this effect was probably due to the increased environmental 

heterogeneity and favourable conditions in larger patches. However, in the present 

study, samples were collected from mussel patches of a similar size in order to 

reduce such effects of patch size. It is unlikely therefore that the observed small- 

scale variations in mussel community structure were due to different patch sizes. In 

addition, during their study of patch size effects on mussel bed diversity, Tsuchiya 

and Nishihira (1985) did not consider the effects of tidal level on community structure. 

Svane and Setyobudiandi (1996) concluded that species diversity, abundance and 

distribution of the organisms associated with M. edulis in Danish fjords were not 

correlated with patch size. 
Environmental heterogeneity has often been suggested as a possible cause 

for spatial variations in community structure and it has been shown to be the case for 

a variety of marine communities, including those of subtidal reefs (Pimm, 1994), and 
temperate rocky intertidal shores (Bergeron and Bourget, 1986; Bourget et a/, 1994; 

Archambault and Bourget, 1996; Thompson et a/, 1996). In addition, studies have 

demonstrated that the rocky substratum can influence the structure of assemblages 
(e. g. McGuiness, 1988,1990; Underwood and Chapman, 1998). However, in the 

present study, geological differences cannot be used as an explanation for the 

differences in assemblage structure, since the two shores were both characterised by. 

the same igneous rock-type. However, small-scale topographical heterogeneity 

provided by interstices and crevices underlying the mussel matrix might in part 
account for the observed spatial variations in community structure, since other 
studies have demonstrated 

, 
the positive effects of such features on diversity of 

communities in the intertidal environment (Emson and Faller-Fritsch, 1976; Raffaelli 

and Hughes, 1978; Menge, 1983, Archambault and Bourget, 1996). Some significant 
spatial variation was observed in the measured environmental variables in the 

present study, such as sediment fractions and mussel density, biomass and volume, 
which appeared to account to some extent, for variations in community structure in 
the mussel assemblages. Correlation's calculated between the environmental 
variables measured and the biotic data in the BIOENV procedure were not 
exceptionally high, although there did appear to be Some correlation between 
increasing mussel density and length and sediment content and the structure of the 
associated community. Similarly, Svane and Ompi (1993) reported differential size 
distributions of mussels related to position within a patch, which might account for 
variations in the associated community. In addition, Svane and Setyobudiandi (1996) 
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concluded that in mussel beds in Danish fjords, the dominant taxa were associated 

with the organically enriched sediment (faeces or pseudofaeces) found between the 

mussels. Jacobi (1987a) concluded that spatial differences in the amphipods 

associated with Pema pema in Brazil were due mainly to differences in the sediment 

content of the mussel beds. The author concluded that a certain amount of fine 

sediment appeared to enhance diversity while an excess had the opposite effect, by 

hampering the settlement of some species and clogging respiratory or feeding 

structures. In the present study, fine sediments in the mussel bed probably result in 

increased abundance of infaunal taxa such as nemerteans and nematodes. 

Tsuchiya and Nishihira (1985) demonstrated that the position in the mussel 

patch had a significant effect on the diversity of the associated community. The 

authors found that species richness and equitability were greater in central portions 

of the mussel bed than around the periphery. This, they concluded was a reflection 

of the increased amounts of sediment, shell fragments and byssal threads in the 

central, older, more stable portion of the bed. In the present study, peripheral areas 

of the mussel beds had lower coarse sediment contents than other areas, and this 

might have accounted for the observed reduced values of univariate measures of 

community diversity. In addition, lower diversity in the peripheral areas of the mussel 
beds probably reflected a reduction in protection from extremes of light, temperature 

and wave action provided on the perimeter of patches compared to the central 

portion (Suchanek, 1980; Seed and Brotohadikusumo, 1994). 

Many patch dynamic models describe processes occurring within patches 

and successional mechanisms of species replacement, including stochastic 

processes (Connell, 1978; Connell and Keough, 1985; Sousa, 1984). Svane and 
Setyobudiandi (1996) concluded that the observed differences in the numbers and 
abundance of species in mussel beds in Danish fjords could largely be explained by 

differences in food and seston dynamics throughout the mussel bed. However, in 

mussel beds the food resource for the associated fauna is complex and competitive 
abilities of the individual species are difficult to quantify and thus difficult to link to 

assemblage structure. Underwood and Chapman (1998) suggested that differences 
in the recruitment of various conspicuous species might be the cause of spatial 
variations in the structure of intertidal communities at different sites on a sheltered 
rocky shore in south-eastern Australia. These investigations concluded that some 
sites had received more recruits of a particular species than at other sites on the 
same shore. Such variations in larval recruitment are a possible cause for the 

observed spatial differences in mussel community structure in the present study and 
would require further investigation. Behavioural differences in the species present in 
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the mussel beds might account in part for the observed spatial differences in 

community structure. Such a phenomenon was observed on rocky shores in south- 

eastern Australia, where the gastropods Nerita atramentosa and Morula marginalba 

were crevice bound during inclement weather, but foraged when they could, creating 

patchiness in the surrounding fauna (Fairweather, 1988; Underwood and Chapman, 

1998). In mussel beds in the present study, foraging behaviours of many of the 

mobile taxa such as Nucella lapillus, Hyale pr'evostfi, Idotea pelagica and nemerteans 
for example, probably account for some of the observed spatial distributions. 

Many workers have documented positive and negative species associations 

within intertidal assemblages. Hacker and Gaines (1997) stated that they are 

generally accepted as important processes in communities and are most common in 

environments with relatively high levels of physical disturbance, stress or predation. 
In a study of spatial variations in the structure of intertidal assemblages in south- 
eastern Australia, Underwood and Chapman (1998) found that many of the species 
showed large interactions between sites. The authors went on to conclude that given 
these species were those ones contributing most to differences among assemblages, 
the whole assemblages were also likely to be interacting. The community structure 
in any place was largely an outcome of the interactions among components of an 
assemblage that happen to be present or numerous in different places. Hacker and 
Gaines (1997) demonstrated a number of species interactions, in an experimental 
study of species interactions in a salt marsh habitat in New England, North America. 
Several interactions were observed between taxa in the present study, the strongest 
of which were all positive associations, for example, between the two polychaete 
species Tharyx marioni and Lagisca extenuata and turbellarians and the polychaete 
Brania pusilla. Since data were all of an observational nature, it is not possible to 
conclude whether the presence of one taxa encouraged the presence of another, or if 
both were simply present due to mutually favourable environmental conditions. 

The present study demonstrates the importance of using a small-scale 
resolution to measure biodiversity in assemblages such as those associated with 
mussel beds. The results demonstrate the great natural variability in patterns of 
intertidal assemblages. Although there was a subset of taxa that tended to 
characterise and/or differentiate mussel communities in habitats within each of the 
shores, the results generally support the view that assemblages on rocky shores are 
spatially dynamic in composition. Despite a few general features, most of the taxa' 
are present or absent independently of the cor)struction of the assemblage. This is 
consistent with the findings of many other studies of rocky shore communities, for 
example, in California (Foster, 1990), New South Wales, Australia (Kennelly and 
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Underwood, 1992; Underwood and Chapman, 1998) and Canada (Bourget et a/, 
1994; Archambault and Bourget, 1996). 
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Chapter 5 

Large-scale spatial variation in the structure of the 
invertebrate communities associated with 
Mytilus edulis and Perumytilus purpuratus 
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ABSTRACT 

Communities associated with Mytilus edulis and Penimytilus purpuratus. 

purpuratus showed significant inter-site variation, when analysed using both 

univariate and multivariate techniques. Inter-site differences in community structure 

were partially the result of differences in the suite of taxa present and partially the 

result of differences in the abundance of taxa common to all sites. The mussel 
communities at different sites were often characterised by quite different 

assemblages, although some taxa such as nematodes, nemerteans, larvae of the 
insect genus Clunio, mites, juvenile mussels and the isopod Jaera albifrons in M. 

edulis beds and nematodes, juvenile mussels, nereid polychaetes and anemones in 

P. purpuratus beds, were consistently present, often in similar numbers, at all or most 

sites. Other taxa were present in mussel beds only at certain sites. Some of the 

measured environmental factors of the mussel beds also showed significant inter-site 

variations, although analysis failed to reveal any strong relationships between the 

abiotic and biotic parameters of the mussel beds. When analysed at higher 
taxonomic levels, the structure of the communities associated with M. edulis and P. 

purpuratus showed significant differences. Univariate measures of community 
structure diversity were greater in M. edulis beds, although dominance curves for the 
two species were remarkably similar. Multivariate analysis revealed significant 
differences in community structure and showed that M. edulis beds were 
characterised by an abundance of nematodes, nemerteans, juvenile mussels, insect 
larvae, mites, isopods and gastropods, while P. purpuratus beds were characterised 
by nematodes, oligochaetes, juvenile mussels, barnacles, amphipods and syllid and 
nereid polychaetes. Environmental factors measured in the mussel beds failed to 
account for all of the observed large-scale spatial variation in the structure of these 
mussel communities. It is thus likely that in the present study, the geographic 
differences in community structure at each of the sites in the British Isles, Irish 
Republic and Chile are due to many different processes, together with stochastic 
events. 
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INTRODUCTION 

Mussels, particularly of the genus Mytilus, occur throughout the cooler waters 

of the northern and southern hemispheres, along a variety of shore habitats (Bayne, 

1976). Several studies have described the diverse infaunal assemblages associated 

with such intertidal mussel beds (e. g. Suchanek, 1979; Tsuchiya and Nishihira, 1985, 

1986; Lintas and Seed, 1994; Seed, 1996). Due to the small size and immobility of 

sessile invertebrate species of marine epifaunal communities, such as those 

associated with mussel beds, these habitats are ideal for studying patterns of change 

in species composition and diversity (Osman, 1977). In addition, intertidal mussels 

form very similar matrices on wave-exposed rocky shores throughout the world, 

providing a similar habitat for colonisation by a suite of species (Seed and Suchanek, 

1992; Seed et a/, 2000). Thus, the infaunal communities associated with intertidal 

mussel beds offer an ideal opportunity to study variations in community structure 

across a wide geographical range. 
The analysis of spatial patterns in species abundance is an essential basis for 

understanding scales at which organisms interact with one another or with their 

environment, and the relative importance of different ecological processes which may 
determine these patterns (Underwood and Chapman, 1996). Thus a complete 

understanding of the structure of any community can only be possible when 

geographical variation is encompassed (Morris, 1990). However in the past, small- 

scale patterns of community structure have been erroneously extrapolated to 
landscape and geographic scales (Murdoch and Aronson, 1999), although 

geographical variation in the structure of communities has been noted in a wide 
variety of habitats, including ant communities in Costa Rica (Longino, 1989); 

amphibian communities in Bomeo forests (Inger and Voris, 1993) and freshwater fish 
in the Wet Tropics of Queensland, Australia (Pusey and Kennard, 1996). This 

phenomenon has also been documented for various intertidal marine habitats, such 
as temperate and tropical intertidal flats in Australia (Dittman, 1990; 1995), rocky 
shore communities in New England (Menge, 1991a), intertidal sediments in the 
northern Wadden Sea (Reise et a/, 1994), intertidal rocky shore communities in New 
South Wales, (Underwood and Chapman; 1996) and brackish water fauna (Cognetti 
and Maltagliati, 2000). 

Information regarding the geographical variation in the diverse invertebrate 
communities associated with intertidal mussel beds is somewhat lacking, although a 
number of studies describing these infaunal assemblages have been undertaken in 
various geographical locations for example, in North America (Suchanek, 1979), 
Japan (Tsuchiya and Nishihira, 1985,1986) and the UK (Lintas and Seed, 1994). 
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Kanter (1980) did conduct a study of patterns in the structure of communities 

associated with Mytilus califomianus from the southern Californian Bight. However, 

none of these studies of mussel bed communities investigated patterns of change 

across a range of locations, thus encompassing a variety of environmental 

conditions. In addition, very different sampling protocols were employed for each of 

the studies. Many authors have highlighted the importance of standardised sampling 

procedures in comparative ecological studies. For example, Underwood (1992) 

pointed out, that in studies of community structure, an appropriate combination of 

replicated sampling, at appropriate scales is absolutely mandatory before any 

attempt to determine potential impact is likely to succeed. Similarly, other authors 

have stated that simple decisions about sampling approach in ecological field studies 

can influence species abundance estimates significantly (e. g. Green, 1979; Hurlbert, 

1984; Andrew and Mapstone, 1987; Eberhardt and Thomas, 1991; Miller and 

Ambrose, 2000). In addition, the infaunal communities associated with mussel beds 

have been shown to vary temporally. Briggs (1982) reported significant seasonal 

variation in the fauna associated with M. edulis in Loch Foyle, Ireland, while Tsuchiya 

and Nishihira (1985) found similar patterns in associates of the same mussel species 
in Japan. Peake and Quinn (1993) have reported seasonal variations in the infaunal 

associates of Brachidontes rostratus in Australia, while Jacobi (1987a) found 

seasonal differences in the abundance of amphipod associates of mussel beds from 

the Bay of Santos, Brazil. Similarly, Tokeshi (1995) reported significant differences in 

the abundance of polychaetes associated with mussel beds on South American 

shores. Thus, comparisons of the structure of the infaunal communities associated 

with mussel beds, based on the results of individual studies in different locations, 

should be undertaken with caution, since temporal variation or differences due to 
inconsistent sampling or sorting protocols might confound any geographical variation 
in community structure. It is clear that any investigation of the geographical variation 
associated with the structure of mussel bed communities must eliminate such 
possible sources of variation. 

In this chapter the variation in the invertebrate communities associated with 
Mytilus edulis and Penimytilus purpuratus on eight rocky shores around the coast of 
the British Isles (England, Wales and Scotland) and Irish Republic and nine along the 
coastline of Chile, South America, is investigated, using both a univariate and a 
multivariate approach. Comparisons are made between sites in each country, to 
investigate geographical patterns of variation in community structure, on a similar 
temporal scale. The extent to which various environmental parameters of the mussel 
beds influence community structure, such as mussel density and the volume and 
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mass of sediment fractions, together with conditions of wave-exposure, is also 
investigated in the UK. In addition, inter-continental variation in mussel community 

structure is investigated, by comparing mussel communities in the UK and Chile. 

METHODS 

Samples were collected on spring tides from M. edulis beds at eight sites in 

the British Isles and Ireland during June and July 1999 and from P. purpuratus beds 

at nine sites in Chile, South America during January 1999, with the exception of 

samples at Valdivia, which were collected during January 1998. Details of each of 

these sites are provided in Chapter 2. Samples were processed and sorted 

according to the methodology described in Chapter 2. 

RESULTS 
Large-scale spatial variation in the community associated with M. eduhs 

A total of 45339 infaunal organisms representing 168 different taxa were 

collected and identified from mussel beds at the eight locations within the UK. All of 
the univariate measures of community diversity, i. e., total number of taxa, total 

number of individuals, Margalef's Index of richness, Shannon's Index of diversity and 
Pielou's evenness showed significant variation between the eight sites (Table 1). 
Significantly more taxa were present in mussel beds at sites in England, Ireland and 
Criccieth than at Point Lynas, White Beach and Arisaig in Scotland (Figure 1). A 

similar pattern was observed for the total number of individuals present in the mussel 
beds, with significantly fewer individuals at Point Lynas and White Beach than at all 
the other sites. Margalef's index of richness was greatest for mussel bed 
communities from the Irish sites and Robin Hood's Bay and lowest at Point Lynas, 
White Beach and Arisaig. Similarly, Shannon's index of diversity was greatest at the 
Irish sites and Robin Hood's Bay and lowest at Point Lynas, White Beach and Filey 
Brigg. Pielou's Eveness was similar at all sites, except for a particularly low value at 
Filey Brigg. 

Cluster analysis of square-root transformed infauna abundance showed clear 
differences in community structure between the eight locations, in terms of the more 
dominant taxa in the community (Figure 2). Similar clear differences in community 
structure emerged between the eight locations when cluster analysis was performed 
with a presence/absence transformation, thus. removing emphasis from taxa 
abundance (Figure 3). MIDS ordination of square-root transformed infaunal 
abundance illustrated a clear separation of mussel bed communities at each of the 
eight locations, in terms of the more dominant taxa in the community (Figure 4a). 
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Table 1 One-way ANOVA/Mood median tests between univariate measures of 
diversity calculated for mussel bed communities at eight locations in the British Isles 
and Irish Republic. Significant differences are indicated by * (p<0.05). 

Univariate F- value value 
Measure 

Total taxa 7.24* 

Total individuals 32.00* 

Margalef's richness 4.28* 

Shannon's diversity 29,00* 

Pielou's evenness 9.89* 
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Figure 4 Ordination by MIDS based on Bray-Curtis similarity, of square-root 
transformed taxa abundance data from mussel beds at a) eight different locations in 
the British Isles and' Irish Republic (50 most important taxa), b) Point Lynas and 
White Beach (all taxa), c) Criccieth, Robin Hood's Bay and Filey Brigg (all taxa) and 
d) Arisaig, Kilkee and Doonbeg (all taxa). (P = Point Lynas, Wales; W= White 
Beach, Wales; C= Criccieth, Wales; A= Arisaig, Scotland; K= Kilkee, Irish Republic; 
D= Doonbeg, Irish Republic; R= Robin. Hood's Bay, England; F= Filey,, Brigg, 
England). 
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The high stress value of the MDS plot (0.21) reflected the difficulty of condensing 

such a large data set into two dimensions, despite only the 50 most important taxa (in 

terms of contribution to site differences) in the community being used in the analysis. 
Different sites were grouped according to clustering patterns in the original plot and 

re-plotted using the complete data set, for increased accuracy of interpretation 

(Figure 4b-d). A one-way ANOSIM test performed on the data confirmed that there 

were significant inter-site differences in community structure (R=0.951, p<0.05). 
ANOSIM pairwise comparisons revealed that the structure of the mussel community 
differed significantly between all of the eight sites (Table 2a). However, RELATE 

analysis showed that there was no significant pattern of seriation, or gradient 

underlying the MDS ordination of data (R=0.382, p<0.05). 
MDS ordination performed with a presence/absence transformation on the 50 

most important taxa abundance indicated similar patterns (Figure 5a), with replicates 
from each of the eight locations clustering together. Again, the plot had a high 

associated stress value (0.23), so sites were grouped together and re-plotted using 
the complete taxa data set (Figure 5b-d). A one-way ANOSIM test performed on the 
data confirmed that there were significant differences in community structure 
between some of the sites (R=0.893, p<0.05). Pairwise comparisons revealed that 

the structure of the mussel community was significantly different at all of the eight 

sites (Table 2b). RELATE analysis showed that there was no significant pattern of 

seriation, or gradient underlying the MIDS ordination of data (R=0.487, p<0.05). 
MIDS ordination performed on square-root transformed biotic data did, 

however, show that sites generally clustered out into groups supplied by the same 

surface water currents (for surface water current details, see MAFF, 1981). Mussel 

communities at the sites on the west coast of the Irish Republic and Arisaig in 
Scotland cluster together, while Point Lynas and White Beach on Anglesey and 
Robin Hood's Bay and Filey Brigg on the NE coast of England form two groups; 
Criccieth remains quite distinct. Such pattems correspond closely to patterns of 
surface water movement around the coast of the British Isles. MIDS ordination 
performed on presence/absence transformed biotic data does not correlate so 
closely with surface water patterns (Figure 5). 

Similarity Percentage analysis (SIMPER), performed with a square-root 
transformation indicated that mussel bed communities at each of the eight sites in the 
UK were characterised by a quite different assemblage of numerically dominant taxa. 
However, some taxa were consistently dominant members of the ý infaunal 
communities at most or all sites, namely, nematodes, juvenile Mytilus edulis, Mite sp. 
1, Clunio sp. ' larvae, nemerteans, and the isopod Jaera albifrons. Table 3 provides 
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details of the taxa, contributing to differences in mussel bed community composition 
between sites. Similarity Percentage analysis (SIMPER), performed with a 

presence/absence transformation indicated that the mussel bed communities at each 
of the eight sites in the UK were characterised by quite different sets of taxa. 

However, some taxa were consistently present in mussel bed communities at most or 

all sites, namely, juvenile M. edulis, Clunio sp. larvae, Mite sp. 1, nemerteans, 

nematodes, the isopod Jaera albifrons and the amphipod Hyale prevostfi. Table 4 

provides details of the taxa contributing to differences in mussel bed community 

composition between sites. Mussel beds at the more sheltered locations (Point 

Lynas, White Beach and Criccieth) were dominated by meiofaunal taxa associated 

with the sediment portion of the mussel matrix (nematodes, nemerteans, Clunio sp. 
larvae and various mites). At the other, more wave-exposed locations, macrofaunal 

and mobile taxa such as Jaera albifrons, Lasaea adansoni, Hyale prevostii and 
Omalgyra atomus were much more abundant with meiofaunal taxa proportionally 
less abundant. 

Many of the environmental variables measured in the mussel beds showed 
significant variation both within and across the eight sites (Figure 6). Mussel density 

was greater at Robin Hood's Bay, Filey Brigg and Arisaig than at all other sites. The 

mass and volume of mussels, per unit area of mussel bed was lower at Point Lynas 
than sites on the NE coast of England and White Beach, while between other sites, 
these variables did not differ significantly. The mean length of mussels at each site 
was similar at all sites, except at White Beach where mussels were slightly larger. 
The fine sediment content of the mussel beds was generally greater in mussel beds 

at the more sheltered locations. A subset of taxa, randomly selected, such that 
epibiotic, mobile and infaunal organisms were represented, were tested for 
relationships between their abundance and various environmental parameters of the 
mussel beds. Various relationships were found, of which the most obvious was the 
finding that the abundance of all the taxa tested was negatively correlated with the 
mean size of mussels in the patch (Table 5). However, although significant, none of 
these relationships was highly correlated. 

Univariate measures of the diversity of mussel bed communities did not show 
a high degree of correlation with many of the environmental variables measured 
within the mussel beds (Table 6b-i) when data at each site were tested separately. 
However, when data from all sites were pooled, 

, 
coarse sediment content was shown 

to be an important factor influencing univariate measures of community diversity 
(Table 6a), while other factors were seen to have varying effects. 
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Table 5 Correlation coefficients calculated between the abundance of selected a) 
infaunal, b) mobile and c) epibiotic taxa and environmental variables deemed 
relevant to their lifestyle, in mussel beds at eight locations in the British Isles and 
Irish Republic. Significant correlation is indicated by bold type. 

a) Infaunal taxa 
Mass <63ýtrn 

sediment 
Mass >63ýtm 

sediment 
Platyhelminthe inclet. 0.197 0.231 
Nernatoda inclet. 0.235 0.386 
Nemertea inclet. 0.081 0.061 
Oligochaeta inclet. 0.101 0.169 
Brania pusilla 0.037 -0.254 
Heterocythere albomaculata 0.113 0.123 
Pholoe inornata 0.008 0.427 
Clunio sp. larvae 0.220 0.223 
Mite sp. 1 0.155 0.034 
Juvenile gastropoda inclet. 0.080 -0.026 
Foraminifera inclet. 0.039 -0.064 

b) Mobile taxa 
No Mussels Mean Size 

Mussels 
Mass >63ýLrn 

sediment 
Ciffatulus ciffatus -0.240 -0.008 -0.072 Eulalia viridis -0.091 -0.204 -0.097 Pholde inomata 0.474 -0.248 0.427 
Oligochaeta inclet. 0.069 -0.169 0.169 
Heterocythere albomaculata 0.051 -0.009 0.123 
Tanais dulongii -0.001 -0.087 -0.187 Idotea pelagica 0.241 -0.057 0.117 
Jaera albifrons 0.014 -0.056 0.052 
Hyale prevostfi 0.354 -0.245 -0.051 Carcinus maenas -0.305 0.52G -0.030 Mite sp. 1 -0.020 -0.164 0.034 
Clunio sp. larvae 0.126 -0.205 0.223 
Lasaea adanson! -0.003 -0.141 -0.363 Modiolula phaseofina 0.264 -0.203 0.205 
Brachystomia scalaris 0.408 -0.200 0.443 
Coriandria fulgida -0.178 0.026 -0.065 Juvenile gastropoda inclet. -0.166 -0.030 -0.026 Littorina rudis -0.146 -0.028 -0.050 Skenea serpuloides -0.063 -0.002 0.070 

c) Epibiotic taxa 
No. Mussels Mean Siz-e 

Mussels 
Elminius modestus -0.047 -0.022 Semibalanus balanoides 0.287 -0.223 Chthamalus montagui 0.010 -0.068 
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Table 6 Correlation coefficients calculated between environmental variables and 
univariate measures of diversity in mussel beds at a) Point Lynas, b) White Beach, c) 
Criccieth, d) Arisaig, e) Kilkee, 0 Doonbeg, g) Robin Hood's Bay and h) Filey Brigg. 
(NT=Number of taxa, NI=Number of individuals, d=Margalef s index, H=Shannon's 
diyersity, J=Pielou's evenness). Values in bold indicate significant correlation 
(p<0.05). 



a) Point Lynas, Wales 
NT NI d H' i 

Imussels 0.404 0.442 0.297 0.003 -0.290 
Mussel mass 0.436 0.628 0.287 -0.517 -0.703 
Mussel volume 0.415 0.605 0,264 -0.467 -0.628 
Mean mussel size 0.195 0.352 0.102 -0.724 -0.659 
Mean size*7 mussels 0.464 0.516 0.345 -0.130 -0.428 
Mass fine sediment -0.411 -0.462 -0.328 -0.063 0.314 

Mass coarse sediment 0.577 0.780 0.467 -0.280 -0.807 

b) White Beach. Wales 
NT NI d H' i 

ymussels -0.187 0.502 -0.334 0.183 0.199 

Mussel mass -0.505 0.650 -0.739 -0.324 -0.070 
Mussel volume -0.387 0.758 -0.644 -0.333 -0.137 
Mean mussel size -0.538 0.198 -0.586 -0.540 -0.216 
Mean size*y mussels -0.381 0.616 -0.557 0.007 0.135 
Mass fine sediment -0.399 -0.125 -0.259 0.704 0.801 
Mass coarse sediment 0.009 -0.684 0.290 0.422 0.398 

Criccieth. Wales 
NT NI d H' i 

Ymussels -0.642 0.297 -0.648 -0.365 -0.097 
Mussel mass 0.383 0.308 0.132 0.694 0.583 
Mussel volume 0.481 0.199 0.263 0.713 0.558 
Mean mussel size 0.610 -0.358 0.618 0.541 0.309 
Mean size*Z mussels -0.629 0.185 -0.603 -0.272 0.002 
Mass fine sediment 0.568 0.166 0.444 -0.261 -0.574 
Mass coarse sediment 0.275 -0.428 0.483 -0.433 -0.615 

Adsaia. Scotland 

Emussels 

Mussel mass 
Mussel volume 
Mean mussel size 
Mean size*Z mussels 
Mass fine sediment 
Mass coarse sediment 

NT NI d H' i 

-0.207 -0.831 -O. o47 -0.433 -0.286 
0.154 -0.345 0.229 0.128 -0.053 

-0.203 -0.379 -0.117 -0.268 -0.171 
0.521 0.479 0.433 0.715 0.296 
0.047 -0.886 0.221 -0.139 -0.210 

0.243 0.654 0.113 0.362 0.144 
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e) Kilkee, Irish Republic 
I NT N1 d H' 

Zmussels -0.501 -0.617 -0.437 -0.332 -0.171 
Mussel mass -0.246 -0.005 -0.329 -0.171 -0.087 
Mussel volume -0.157 -0.025 -0.201 -0.160 -0.124 
Mean mussel size 0.651 0.808 0.556 0.391 0.157 

Mean size*2: mussels -0,467 -0.494 -0.442 -0.280 -0.120 
Mass fine sediment -0.056 -0.222 0.010 0.114 0.178 

Mass coarse sediment 0.910 0.682 0.936 0.588 0.239 

Doonbeg, Irish Republic 
I NT NI d H' J 

Ymussels 0.459 0.438 0.306 -0.796 -0.631 
Mussel mass 0.127 -0.013 0.190 -0.553 -0.308 
Mussel volume 0.074 -0.010 0.137 -0.645 -0.322 
Mean mussel size -0.238 -0.323 -0.113 0.732 0.491 

Mean size*j: mussels 0.468 0.449 0.308 -0.779 -0.625 
Mass fine sediment 0.251 0.487 0.038 -0.395 -0.326 
Mass coarse sediment 0.194 0,210 0.124 -0.271 -0.265 

g) Robin Hood's Bay, England 
NT NI d H' j 

7mussels 0.135 0.500 0.069 0.124 -0.087 
Mussel mass 0.059 0.112 0.052 -0.210 -0.187 
Mussel volume 0.002 0.148 -0.018 -0.358 -0.159 
Mean mussel size 0.179 -0.073 0.196 -0.372 -0.365 
Mean size*Z mussels 0.205 0.514 0.140 0.049 -0.199 
Mass fine sediment 0.303 -0.204 0.362 0.319 -0.185 
Mass coarse sediment 0.472 -0.093 0.526 0.298 -0.368 

hl Filev Briaa. Enaland 
NT NI d H' 

Emussels 0.061 -0.323 0.174 -0.409 -0.519 
Mussel mass 0.031 -0.234 0.110 -0.346 -0.415 
Mussel volume 0.017 -0.562 0.216 -0.585 -0.664 
Mean mussel size -0.341 -0.411 -0.237 -0.591 -0.459 
Mean size*Z mussels -0.037 -0.400 0.092 -0.537 -0.600 
Mass fine sediment -0.327 -0.211 -0.325 0.179 0.401 
Mass coarse sediment 0.446 0.280 0.362 0.597 0.435 
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Ordination by PCA of the environmental data from the mussel samples 

(Figure 7) showed that replicate samples from each of the eight sites did not cluster 

out as distinctly as ordinations using biotic data (Figures 4 and 5). This may be due 

in part to the high degree of intra-site variation in measurements of each of these 

variables (Figure 6). Over 90% of the geographical variability in the environmental 

data was accounted for by the first three Principal Components, while the first two 

Principal Components accounted for 72% of the variability. PC1 was seen to be a 

linear combination of the environmental parameters, with increasing values of all 

variables, except for mean mussel size. 

Determination of correlation coefficients for all environmental variables 

measured in the mussel beds at each of the eight sites failed to reveal any high 

levels of correlation between any of the variables (r>0.95), although some 

correlation's were significant (Table 7). As such, all the measured environmental 

variables were entered into BIOENV analysis, to identify the most appropriate 

combinations of variables explaining the square-root and presence/absence 
transformed biotic data. BIOENV analysis failed to identify any high levels of 

correlation between any environmental parameters and square-root or 

presence/absence transformed biotic data (Table 8). The BIOENV procedure was 

repeated, using only the important site-characterising taxa identified under each 
transformation by SIMPER, and with taxa present at greater than 50% of sites, since 
the original data set was so large that any patterns in the data might be masked. 
However, this procedure did not increase the correlation between environmental and 

either square-root or presence/absence transformed biotic data. 

RELATE analysis between the environmental data similarity matrix, produced 
using normalised Euclidean distance and the biotic data similarity matrices, produced 
using Bray-Curtis similarity with a square-root and a presence/absence 
transformation showed significant differences (R=0.296, p<0.05; R=0.321, p<0.05). 
Thus, the physical and environmental factors measured in mussel beds at each of 
the eight locations in this study were not solely responsible for producing the 

observed differences in community structure between locations. 

An arbitrary, ranked scale of wave-exposure was applied to each of the eight 
sites in the present study, which were then overlaid onto the averaged MIDS 

ordination of square-root and presence/absence transformed infauna abundance, 
which revealed clear patterns in the data (Figure 8). In addition, the univariate 
measures of diversity were generally greater at the more exposed sites (Figure 1). 
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Figure 7 Ordination by PCA, using normalised Euclidean distance, of environmental 
variables measured in mussel beds at each of the eight locations in the British Isles 
and Irish Republic. (P = Point Lynas, Wales; W= White Beach, Wales; C= Criccieth, 
Wales; A= Arisaig, Scotland; K= Kilkee, Irish Republic; D= Doonbeg, Irish Republic; 
R= Robin Hood's Bay, England; F= Filey Brigg, England). 
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Table 7 Correlation coefficients calculated between various environmental variables 
measured in mussel beds at eight locations in the British Isles and Irish Republic. 
Significant correlation (p<0.05) is indicated by bold type. 

No. Mussel Mussel Mean Mean Mass 
mussels Volume mass size size *No. fine 

mussels mussels sediment 
Mussel volume 0.255 

Mussel mass 0.307 0.851 

Mean size mussels -0.684 0.356 0.353 

Mean size*No. mussels 0.974 0.419 0.471 -0.526 

Mass fine sediment -0.256 -0.120 -0.268 0.023 -0.297 

Mass coarse sediment 0.359 0.054 0.011 -0.341 0.325 0.295 
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Table 8 Results of BIOENV analysis, comparing environmental variables with biotic 
data in mussel beds at the eight locations in the British Isles and Irish Republic. 
'Best' variable combinations are based on Spearman rank correlation's between a) 
square-root and b) presence/absence transformed biotic data and environmental 
parameters are given. For each transformation, the entire biotic data set is used in 
the analysis, along with data sets comprising of taxa identified by SIMPER analysis 
as important in characterising the communities and taxa present at >50% locations. 

a) 
Biotic data set Best variable combination Correlation 

Full data set Total number of mussels 0.277 
Mussel volume 
Mean size*total number of mussels 
Mass course sediment 

SIMPER taxa only Total number of mussels 0.273 
Mussel volume 
Mean size of mussels 
Mean size*total number of mussels 
Mass course sediment 

Taxa present at >50% locations only Total number of mussels 0.271 
Mussel volume 
Mean size of mussels 
Mean size*total number of mussels 
Mass course sediment 

b) 
Biotic data set Best variable combination Coffelation 

Full data set Total number of mussels 0.341 
Mussel volume 
Mean size*total number of mussels 
Mass fine sediment 

SIMPER taxa only Total number of mussels 0.309 
Mussel volume 
Mean size of mussels 
Mean size*total number of mussels 
Mass fine sediment 

Taxa present at >50% locations only Total number of mussels 0.358 
Mussel volume 
Mean size of mussels 
Mean size*total number of mussels 
Mass fine sediment 
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Figure 8 Ordination by IVIDS based on Bray-Curtis similarity, of a) square-root and 
b) presence absence transformed average taxa abundance data from the mussel 
beds at eight locations in the British Isles and Irish Republic. (P = Point Lynas, 
Wales; W= White Beach, Wales; C= Criccieth, Wales; A= Arisaig, -Scotland; K= 
Kilkee, Irish Republic; D= Doonbeg, Irish Republic; R= Robin Hood's Bay, England; 
F= Filey Brigg, England). Superimposed circles are scaled in size to represent the 
relative values of degree of wave exposure at each of the locations. 
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Large-scale spatial variation in the community associated with P. purpuratus 

All of the univariate measures of community diversity, i. e., total number of 

taxa, total number of individuals, Margalef's index of richness, Shannon's index of 

diversity and Pielou's evenness showed significant variation between the nine 

sample sites. With few exceptions, univariate measures of diversity were greater at 

Valdivia, Maule and the exposed locations at Desembocadura and lower at the 

sheltered Desembocadura locations (Figure 9). Values at the other sites were 

intermediate. 

Cluster analysis of square-root transformed infauna abundance illustrated 

clear differences in community structure between the nine different sites, in terms of 

the more dominant taxa in the community (Figure 10). Similar clear differences in 

community structure emerged between the nine sites when cluster analysis was 

performed with a presence/absence transformation, thus removing emphasis from 

taxa abundance (Figure 11). MDS ordination of square-root transformed infaunal 

abundance illustrated a clear separation of mussel communities at each of the nine 
locations, in terms of the more dominant taxa in the community (Figure 12a). The 
high stress value of the original MIDS plot (0.22) reflects the difficulty in condensing a 
large data set into two dimdnsions, so sites were re-grouped according to general 
cluster patterns and re-plotted to increase the accuracy of interpretation (Figure 12b- 

e). A one-way ANOSIM performed on the data confirmed that there were significant 
differences in community structure between some of the sites (R=0.742, p<0.05). 
ANOSIM pairwise comparisons revealed that the structure of the community 
associated with P. purpuratus was significantly different between each of the nine 
sites (Table 9a). RELATE analysis showed that there was no significant pattern of 
seriation, or gradient, underlying the MIDS ordination of data (R=0.349, p<0.05). 

IVIDS ordination performed with a presencelabsence transformation illustrated 

a less clear separation of communities at each of the nine sites (Figure 13a). The 

plot had a high stress value (0.23), so sites were grouped together and re-plotted to 
facilitate the accuracy of interpretation. In general, the communities associated with 
P. purpuratus at each of the nine locations appeared less dissimilar when emphasis 
was removed from abundance of taxa (Figure 13b-e). However, a one-way ANOSIM 
test revealed that community structure was significantly different between at least 
some of the sites (R=0.531, p<0.05). Pairwise comparisons showed that the 
structure of the mussel community was significantly different at all of the nine sites, 
although R-values were generally lower than those obtained using a square-root 
transformation, indicating less pronounced differences (Table 9b). RELATE analysis 
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Figure 12 Ordination by MIDS based on Bray-Curtis similarity, of square-root 
transformed taxa abundance data from mussel beds at a) nine locations in Chile, 
South America and b), c), d), e) at selected locations for ease of interpretation. (LC = 
Las Cruces; CH = Cochoigue; DE1 Desembocadura exposed site 1; DE2 = 
Desembocadura exposed site 2; DS1 Desembocadura sheltered site 1; DS2 = 
Desembocadura sheltered site 2; M= Maule; C= Coronel; V= Valdivia). 
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Figure 13 Ordination by MIDS based on Bray-Curtis similarity, of presence/absence 
transformed taxa abundance data from mussel beds at a) nine locations in Chile, 
South America and b), c), d), e) at selected locations for ease of interpretation. (LC 
Las Cruces; CH = Cocholgue; DE1 Desembocadura exposed site 1; DE2 
Desembocadura exposed site 2; IDS1 Desembocadura sheltered site 1; DS2 
Desembocadura sheltered site 2; M= Maule; C= Coronel; V= Valdivia). 
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showed that there was no significant pattern of seriation, or gradient, underlying the 

MIDS ordination of data (R=0.244, p<0.05). 
Similarity Percentage analysis (SIMPER), performed with a square-root 

transformation indicated that many of the taxa characterising the mussel bed 

communities were the same across each of the nine sites in Chile, such as 

nematodes, juvenile mussels, nereid polychaetes and anemones. Other dominant 

taxa were site-specific, such as sea spiders, isopods and various polychaete families. 

Table 10 provides details of the taxa contributing to differences in mussel bed 

community composition across sites. SIMPER analysis performed with a 

presence/absence transformation indicated that the mussel bed communities at each 

of the nine sites throughout Chile were characterised by quite different taxa, with few 

taxa consistently present in mussel beds at all sites (Table 11). Given the highly 

variable structure of the communities, it was difficult to ascertain any pattern in the 
data. However in general, most taxa were found in greater abundance at the more 
wave-exposed sites (e. g. Valdivia and Desembocadura exposed sites), than the 

sheltered (Desembocadura sheltered sites and at Las Cruces), with the exception of 
a few selected taxa, including anemones, isopods and nereid and hesionid 

polychaetes. Such mobile taxa might be excluded from the more exposed locations, 

as a result of 'flushing' by severe wave action, while anemones might not be able to 
feed effectively in such conditions. 

The population density of mussels in the beds has been shown not to vary 
significantly between each of the nine Chilean sites (see ANOVA, Chapter 3). It was 
thus unlikely, statistically, that the observed differences in community diversity 
between each of the nine sites were a reflection of mussel density and no further 
analysis was performed on the data. 

Comparison of the communities associated with M. eduliS and P. Purpuratus 
Values of all the univariate 'measures of community diversity, with the 

exception of Shannon's index, showed significant differences between mussel -beds 
in the British Isles and Irish Republic and Chile, when data were pooled for each of 
the two geographical areas and compared at the same taxonomic level (Table 12). 
The total number of taxa and individuals present in the mussel beds, along with 
Margalef's index of richness were all higher in British and Irish mussel beds than their 
counterparts in Chile. In contrast, Pielou's evenness was greater in P. putpuratus 
beds (refer to Figures 1& 9). 

Infaunal abundance data from P. purpuratus and M. edulis communities were 
plotted as k-dominance plots, based on the ranking of taxa in decreasing order of 
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Table 12 T-tests performed between univariate measures of diversity calculated for 
pooled data from mussel bed communities at eight sites in the British Isles and Irish 
Republic and eight in Chile, South America. Mean values of each univariate 
measure per 25CM2 quadrat are given. Significant differences are marked * (p<0.05). 

Univariate Measure British Isles and Chile t 
Idsh Republic 

Total taxa 19 12 -9.60* 

Total individuals 708 193 -9.35* 

Margalef's richness 2.780 2.235 -5.03* 

Shannon's diversity 1.770 1.806 0.63 

Pielou's evenness 0.610 0.726 6.96* 
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their importance in terms of biomass. The k-dominance plot for mussel communities 
in both Chile and the British Isles and Irish Republic were very similar, such that, 

although the specific taxa present in each of the mussel communities may be very 
different, the patterns of dominance in each were remarkably similar (Figure 14). 

MIDS ordination of square-root transformed infaunal taxa abundance 
illustrated a clear separation of mussel communities from Chile and the British Isles 

and Irish Republic, in terms of the more dominant taxa in the community (Figure 
15a). A one-way ANOSIM test performed between the pooled data for each 

geographical area confirmed that the structure of the infaunal community associated 

with P. purpuratus was significantly different from the M. edulis community (R 

0.680, p<0.05). Additionally, when sites in Chile were tested individually against sites 
in the British Isles and Irish Republic, a one-way ANOSIM test confirmed that there 

were significant inter-site differences in community structure (R = 0.847, p<0.05). 
ANOSIM pairwise comparisons revealed that the structure of the mussel community 
was significantly different between all the sites in Chile and those in the British Isles 
and Irish Republic (Table 13a). MIDS ordination performed with a presence/absence 
transformation on the same data set showed a slightly less clear, but still distinct, 

separation of sites from Chile and the British Isles and Irish Republic (Figure 15b). A 
one-way ANOSIM test performed between the pooled data for each of the two 
geographical areas confirmed that the structure of the infaunal community associated 
with P. purpuratus was significantly different from the M. edulis community (R = 
0.723, p<0.05). Additionally, when sites in Chile were tested individually against sites 
in the British Isles and Irish Republic, a one-way ANOSIM test confirmed that there 
were significant differences in community structure between some of the sites (R = 
0.783, p<0.05). ANOSIM pairwise comparisons revealed that the structure of the 
mussel community was significantly different between all the sites in Chile and those 
in the British Isles and Irish Republic (Table 13b). 

Prior to Similarity Percentage analysis (SIMPER), samples from each 
geographical area were spilt so that data from only 50% of the replicate samples 
from each site were used in the analysis, so that unbiased statistical tests could be 
performed on the remaining 50% of the data. SIMPER analysis performed with a 
square-root transformation indicated that communities associated with M. edulis were 
characterised predominantly by juvenile mussels and other bivalves, nematodes, 
nemerteans, chironomids, mites, isopods and various gastropod taxa. Communities 
associated with P. purpuratus were characterised mainly by juvenile mussels, 
nematodes, barnacles, limpets, amphipods, oligochaetes and syllid and nereid 
polychaetes. Table 14 indicates those taxa contributing to differences between 
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Figure 14 k-dominante curves for taxa abundance in Mytilus edulis beds in the 
British Isles and Irish Republic (-) and Perumjdilus purpuratus beds in Chile, South 
America ( .... ). 
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a) Square-root transformation 
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Figure 15 Ordination by MIDS based on Bray-Curtis similarity, of averaged 
abundance of infauna from mussel beds at eight locations in the British Isles and 
Irish Republic; Point Lynas (P), White Beach (W), Criccieth (CR), Arisaig (A), Kilkee 
(K), Doonbeg (D) Robin Hood's Bay (R) and Filey (F) and eight locations in Chile, 
South America; Las Cruces (LC), Cocholgue (CH), Desembocadura exposed site 1 
(DE1), Desembocadura exposed site 2 (DE2), Desembocadura sheltered site 1 
(DSI), Maule (M), Coronel (C) and Valdivia (V), using a) square-root transformation 
and b) presence/absence transformation. 
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Table 14 Taxa identified by similarity percentage analysis (SIMPER) performed on 
square-root and presence/absence transformed abundance as those contributing to 
differences in community structure between mussel beds in the British Isles and Irish 
Republic and Chile, South America. SIMPER analysis has been performed on only 
50% of samples from each location. The remaining 50% of samples have been 
entered into statistical analyses to test for abundance differences between locations. 
Significant differences in abundance (p<0.05) are indicated by * next to taxa. 

Taxa 
Mean abundance per 25cm" quadrat 

British Isles and Irish Republic Chile 

Anemones* 0.06 5.97 

Nemerteans 10.00 3.06 

Nematodes* 68.22 23.19 

Nereidae polychaetes* 0.00 4.09 

Spionidae polychaetes* 0.69 7.03. 

Syllidae polychaetes* 1.28 3.97 

Oligochaetes* 3.47 5.44 

Chironomid larvae* 30.44 4.47 

Mites* 31.13 2.91 

Barnacles* 7.56 27.56 

Amphipods* 9.16 13.47 

Isopods* 11.41 2.59 

Crabs 1.41 1.03 

Juvenile mussels* 79.69 40.69 

Other bivalves* 44.78 3.03 

Limpets* 0.28 7.28 

Predatory gastropods 0.72 0.00 

Other gastropods* 17.91 0.34 

Opisthobranchs* 5.25 0.00 
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communities associated with P. purpuratus and M. edulis, as identified by SIMPER 

analysis using both a square-root and presence/absence transformation. Data from 

the remaining 50% of replicate samples from each of the sites in both the British Isles 

and Irish Republic and Chile were pooled and the abundance of each of the taxa 

identified by SIMPER analysis tested for significant differences between countries. 

Results of these analyses are indicated in Table 14. 

The density of mussels in the P. purpuratus beds was significantly lower than 

the density of mussels in the M. edulis beds (t-test; t= 16.22, p<0.05) (for details of 

mussel densities,. see Chapter 3). The total number of taxa within mussel beds in the 

British Isles and Chile was significantly correlated with mussel density (r = 0.503), 

although none of the other univariate measures of community diversity showed 

significant correlation with this variable. Mean values of mussel density at each of 

the sites in Chile and the British Isles and Irish Republic were overlaid onto the MDS 

plot obtained from square-root transformed biotic data analysis to illustrate the 

influence of, mussel density on the multivariate data set (Figure 16). BIOENV 

analysis revealed low levels of correlation between mussel density and the square- 

root and presence/absence transformed data derived from the mussel bed infauna 

(0.374,0.384, respectively). 
In summary, communities associated with both M. edulis and P. purpuratus 

showed significant intersite, large-scale spatial variation. Such intersite differences 

within the British Isles and Irish Republic and in Chile were observed when data were 
analysed at a presence/absence level and when species abundance was taken into 

account, although different species accounted for these differences in each case. 
When analysed at the same high taxonomic level, the communities associated with 
M. edulis and P. purpuratus displayed significant differences; M. edulis beds 

supported a greater number of rneiofaunal species, while P. purpuratus beds were 
characterised by macrofaunal species. Although some of the environmental 
parameters of the mussel beds did correlate with the biotic data, they failed to fully 

account for the observed large-scale spatial variation. 

DISCUSSION 

M. edulis and P. purpuratus both supported diverse invertebrate communities 
at a variety of locations in the British Isles and Irish Republic and Chile, South 
America. The communities were characterised by a diversity of macrofaunal and 
meiofaunal taxa such as nematodes, nemerteans, Polychaetes, gastropods, 
anemones and bivalves. Such communities compare with those described for M. 
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Figure 16 Ordination by MIDS based on Bray-Curtis similarity, of averaged 
abundance of infauna from mussel beds at eight locations in the British Isles and Irish 
Republic Chile and eight locations in South America, using a square root 
transformation. Superimposed circles are scaled in size to represent the density of 
mussels in beds at each of the sites (i. e., the larger the circle diameter, the higher the 
mussel density per unit area). (LC = Las Cruces; CH = Cocholgue; DE1 = 
Desembocadura exposed site 1; DE2 = Desembocadura exposed site 2; DS1 = 
Desembocadura sheltered site 1; M= Maule; C= Coronel; V= Valdivia; P= Point 
Lynas; W= White Beach; CR = Criccieth; A= Arisaig; K= Kilkee; D= Doonbeg; R 
Robin Hood's Bay; F= Filey Brigg). 
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edulis, by other authors (e. g. Lintas and Seed, 1994; Tsuchiya and Nishihira, 1985, 

1986) and P. purpuratus (e. g. Amesti, 1994; Tokeshi, 1995). 
Communities associated with the mussel beds in the British Isles and Irish 

Republic showed significant large-scale spatial variation between the eight locations 

in the present study. In addition, the invertebrate community associated with P. 

purpuratus showed significant large-scale spatial variation, at a number of sites along 
the coastline of Chile. Kanter (1980) similarly reported significant differences in the 

structure of the invertebrate community associated with Mytilus califomianus across 

various sites in the southern Californian Bight. In addition, various studies have 

reported large-scale spatial variation in the structure of a variety of marine intertidal 

communities, such as intertidal flats in Australia (Dittman, 1990; 1995); rocky shore 
communities in New England (Menge, 1991a) and rocky shore communities in New 

South Wales, Australia (Underwood and Chapman, 1996). 
Mussel beds at all locations in the British Isles and Irish Republic and Chile in 

the present study were dominated by a few very abundant taxa. In the British Isles 

and Irish Republic, these taxa included nematodes, nemerteans, juvenile mussels, 
Clunio, sp. larvae, the isopod Jaera albifrons and the opisthobranch Brachystomia 

scalaris, while in Chile, polychaetes, gastropods, bivalves and anemones were 
dominant. Such dominance of mussel communities by a few very abundant taxa is 

well documented in the literature and many authors have observed similar 
dominance patterns in mussel beds at various geographical locations. For example, 
Ong Che and Morton (1992) demonstrated that Septifer vifgatus beds in Hong Kong 

were dominated by three infaunal species, accounting for 75% of the total numbers. 
In studies of the same mussel beds, Seed and Brotohadikusumo (1994) found that 
more than 90% of the molluscan fauna associated with the mussels was comprised 
of three bivalve species (Hormomya mutabilis, Isognomon legumen and Lasaea 
nipponica). Suchanek (1979,1980) found that in Mytilus califomianus beds on the 
north-west coast of America, a single species dominated the sample by more than 
50%, in some cases, although the identity of this species did vary with location. 
Mussel beds at hydrothermal vents have been seen to share this attribute of very 
uneven distributions, with a large number of individuals reported from a small number 
of species (Van Dover and Trask, 2000). Similar phenomena have been reported in 
other marine benthic communities. For example, Reise et a/ (1994) reported that the 
most common species in subtidal sandy habitats, in Konigshafen in the northern 
Wadden Sea were also the most common species elsewhere in the Wadden Sea. 
Kanter (1980) reported the presence of several ubiquitous species in mussel beds 
throughout the southern California Bight. 
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Analysis showed that variations in numbers of many of the most abundant 
taxa already listed above, characterised mussel bed communities at each of the sites 
in the British Isles and Irish Republic and Chile. Kanter (1980) found similar results 
from analysis of communities associated with Mytilus califomianus at sites 
throughout the southern Californian Bight. Similarly, Reise et a/ (1994) reported 

significant regional differences in the structure of benthic communities in the Wadden 

Sea, in terms of the more abundant species; the numerical abundance of Hydrobia 

ulvae at northern sites was an order of magnitude higher than at western sites, while 
Arenicola marina abundance was particularly high in the north. 

Many taxa encountered in the present study occurred only at some sites and 
in the past, such taxa have been considered to be either accidental or transient, 

rather than permanent members of the community (e. g. Seed and Brotohadikusumo, 

1994). However, multivariate analyses, particularly when performed with a 
presence/absence transformation, indicate that these transient taxa may be 
important in defining large-scale spatial differences in the structure of such 
communities, along with the more numedcally abundant taxa. For example, certain 
taxa were only encountered in mussel beds at selected locations, probably as a 

result of their limited geographical range (e. g. in the British Isles and Irish Republic, 

the gastropod Tricolia pullus, Hayward and Ryland, 1990). 

Explanations forlarge-scale spatial variation 
It is well known that biological substrata, such as mussel beds are affected by 

both biotic and abiotic factors, and that this will modify the composition of the faunal 
associates (Hagermann, 1966; Crooks, 1998; Crooks and Khim, 1999). Several 
authors have attempted to explain such large-scale spatial variations in community 
structure, and relate them to various biological and environmental factors; such 
factors include: 

Larval recruitment and dispersal 

Dispersal of planktonic larvae by currents and water masses is a hypothesis 
often put forth to explain biogeographic patterns of species distribution (MacArthur 
and Wilson, 1967; Johnson, 1975). Many authors have suggested that the supply of 
larval recruits to benthic marine habitats are subject to considerable variation in time 
and space and have a major influence on the structure and dynamics of local 
populations (e. g. Roughgarden et a/, 1985; Underwood and Fairweather, 1989; Caley 
et a/, 1996; Hughes et a/, 2000). Most mussel community members reproduce either 
by releasing gametes into the surrounding waters where external fertilisation and 
larval development occurs, or by releasing larvae after partial development in an egg 
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capsule or within the adults (Kanter, 1980). These planktonic larvae drift with 

prevailing currents and water masses. Passive drifting ends when the larva has 

matured sufficiently to seek out an appropriate substratum. Settlement and 

metamorphosis, however, can only occur when this substratum is within the 
behavioural and physiological tolerances of the larva. Larvae may drift a 

considerable distance (up to hundreds of kilometres) from source areas prior to 

settlement (Scheltema, 1974). Kanter (1980) stated that mussel community 

similarities at various sites in the southern Californian might have been the result of 

receiving larval recruits from similar source waters (source parental stock). Such 

species distribution patterns corresponded in part to known patterns of current flow. 

Analysis of data in the present study, particularly in the British Isles and Irish 

Republic, suggests that the structure of the mussel bed communities, in terms of the 

more abundant, dominant taxa, was determined by the supply of larval recruits. 
Mussel beds receiving larval recruits from the same source waters had more similar 
community structures than those sites with different source waters. Main surface 
currents and source waters appear to dictate. the presence or absence of the rarer, 
more transient members of the communities to a lesser extent, while other biotic and 
abiotic factors, or stochastic events were also important. 

For most intertidal species, which disperse via a planktonic larval stage but 

which have limited adult mobility, variations in recruitment and mortality will lead to 
variations in abundance from one shore to another i. e. at a scale of kilometres 
(Dayton, 1971; Underwood and Denley, 1984; Menge et a/; 1985). Spatial and 
temporal variations in the densities of populations of marine invertebrates can be 
expected to be large in those species which produce dispersing larvae (Underwood, 
1979). Menge (1991b) postulated that recruitment limitation has been advocated as 
a major cause of community structure on rocky shores and that, particularly when 
low, recruitment density is a very important factor in influencing the structure of these 
communities. Similarly, Underwood and Fairweather (1989) and Raimondi (1990) 
noted that the stochastic nature of settlement and mortality that often typifies many 
marine species should be fully recognised when considering global patterns of 
marine biodiversity. A wide variety of stimuli may be involved in the selection of a 
suitable substratum on which to settle. The spatial patterns of settlement shown by 
larvae of intertidal marine invertebrates follows the scheme outlined by Underwood 
(1976): 

1) completely random spatial settlement over the entire area of the shore, with 
subsequent mortality in, or migration from, unfavourable areas; - 
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2) responses to physical, chemical or biochemical cues which attract larvae to a 

particular habitat; these cues cause spatial variations in the number of larvae 

settling; 
3) responses to physical, chemical or biochemical cues from adults of their own or 

of closely related species, which result in larvae settling in areas occupied, or 

previously occupied, by adults; 
4) species, which have no pelagic dispersal larvae and reproduce by direct 

development in benthic egg capsules, or by viviparity usually produce juveniles 

within the normal habitat of the adults. 
Underwood and Chapman (1996) similarly, concluded that variations in the 

structure of rocky shore communities at various sites in New South Wales, Australia 

were due to differences in recruitment and/or mortality, which, in turn were 
determined by processes that vary between sites. 

Species Interactions 
Many authors have emphasised the importance of post-juvenile factors such 

as predation and competition, as causes of variation in survival of post-settled 
benthic, as well as adult stages, thus having the potential to structure rocky shore 
communities (Underwood and Denley, 1984; Watanabe, 1984; Caffey, 1985; Gaines 
and Roughgarden, 1985; Sutherland and Ortega, 1986; Sutherland, 1990). In 
addition, in a study of the geographical variation in the structure of rocky shore 
communities on the coast of New England, Menge (1991a) suggested that between 
site variation was due to site differences in the relative importance of predation and 
competition, along with physical disturbance. It is likely that such factors play a 
structuring role, to a certain extent, in the mussel communities in the present study, 
but are not the sole cause of the large-scale spatial variation. 

Habitat heteroqeneity 

Habitat structure has long been considered an important determinant of the 
number, identity and abundance of species present in many biological communities 
(e. g. MacArthur and Wilson, 1967; Abele, 1974; Menge and Sutherland, 1976; 
McGuiness and Underwood, 1986; Archambault and Bourget, 1996). Suchanek 
(1979,1980) stated that the structural complexity and heterogeneity of a mussel bed 
is the most important factor promoting biodiversity and depends on two factors; the 
size of mussels and the number of mussels within the matrix. These in turn, are a 
function of tidal elevation, age of the mussel bed and the relative degree of wave 
exposure. As the structural complexity of mussel beds increases, the number of 
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microhabitats under, between and around the mussels also increases, producing 

structurally complex entities capable of harbouring a diverse assemblage of 

associated fauna (Newcombe, 1935; Kanter, 1980). 

The abundance of some of the taxa inhabiting mussel beds in the present 

study showed significant correlation with various environmental parameters of the 

mussel matrix. However, data analysis, using a multivariate approach, failed to 

identify any strong relationships between the heterogeneity of the mussel beds at 

each of the sites within the British Isles and Irish Reýublic and the structure of the 

infaunal communities. However, positive and negative correlation, did occur between 

various environmental and biotic components of the mussel beds in the British Isles 

and Irish Republic and Chile. The various measurements of substratum 
heterogeneity varied between sites within each of the two geographical locations, 

although differences were often not significant. As such, mussels at each of the sites 

within the British Isles and Irish Republic and within Chile were generally of similar 

size, shape and packing densities and provided a similar habitat with substratum 
heterogeneity for colonisation by a suite of taxa. These taxa were generally similar in 

mussel beds within the British Isles and Irish Republic and Chile, but probably varied 

according to local physical and biological factors acting on the mussel bed. 

Behavioural responses to habitat can account for community variations on a small 
spatial scale (tens of metres), but other processes probably account for larger-scale 

variations (Underwood, 1976; Underwood and Denley, 1984; Chapman and 
Underwood, 1994; Underwood and Chapman, 1996). 

Patch size 
Patch size has been suggested as an important factor affecting biodiversity in 

mussel beds. Tsuchiya and Nishihira (1985) demonstrated that the number of 
species per unit area in M. edulis beds in Japan decreased with patch size, possibly 
because species endemic to larger patches might suppress other animals via 
predation or competition, or create unsuitable physico-chemical environments for 

other species. In another study of the same mussel beds, Tsuchiya and Nishihira 
(1986) found that species richness was greatest in larger beds. Similarly, Lintas and 
Seed (1994) found species diversity and richness to be greater in larger, more 
extensive (and presumably more spatially complex) areas of M. edulis beds on 
Anglesey, North Wales. Positive species-area relationships have also been reported 
for the macro-invertebrate fauna within clumps of Brachidontes rostratus in Australia 
(Peake and Quinn, 1993). However, since mussel patches were of similar size on 
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shores at each of the sites in the present study, it is unlikely that the observed 

differences in community structure were due to differences in patch size. 

Wave exposure 
Suchanek (1979) demonstrated that the diversity of communities associated 

with M. califomianus increased with wave exposure, despite wave forces being 

greatly diminished inside the mussel bed due to the wave-buffering role played by the 

matrix itself. In extremely wave-exposed habitats, mussel beds become perturbed at 

a more frequent rate and thus may not reach full diversity potential (Suchanek, 

1980). Many other authors have stressed the important structuring role that water 

motion produced by breaking waves plays in structuring intertidal communities (e. g. 
Lewis, 1964; Dayton, 1971; Levin and Paine, 1974; Lubchenco and Menge, 1978; 

Paine and Levin, 1981; Sousa, 1985, Gaylord, 1999). In intertidal regions, species 

assemblages and the rates of turnover of both plants and animals may be influenced 

as much by the level of wave exposure typical of a site as by biological factors such 
as predation or competition (Lewis, 1964; Paine, 1979; McQuaid and Branch, 1985). 
Alternatively, wave action may interact critically with biological features to affect the 

persistence of organisms; for example by limiting the activity or distribution of 
important grazers and predators (Lubchenco and Menge, 1978; Menge, 1978; 
Underwood and Jemakoff, 1984). Attempts were made to standardise the conditions 
of wave-exposure at the sites in the present study. However, some sites were 
subject to slightly different degrees of wave-exposure, and univariate and multivariate 
analyses of community structure suggested this was an important factor in structuring 
these communities in the British Isles and Irish Republic. Certain species, such as 
Hyale prevostfi, juvenile Mytilus edulis, Lasaea adansoni and Omalgyra atomus, 
were present in elevated abundance at the more exposed locations, such as sites on 
the west coast of Ireland, while the abundance of most taxa varied with exposure. 
Similarly, Jacobi (1987a) stated that in mussel beds in the Bay of Santos, Brazil, 
certain amphipod species only occurred at more wave-exposed sites. The author 
went on to state that at mussel beds in sheltered locations, large quantities of 
sediment filled interstitial cavities and produced a tight arrangement, while exposed 
mussel beds showed a loose multi-layered structure with large, abundant interstices 
and little sediment. Suchanek (1979,1980) suggested that since the amount of 
sediment, which accumulates on a mussel bed, is dependent on' the degree of wave 
exposure, differences in mussel bed community structure between exposed, and 
sheltered locations might be in part, a result of sediments. , Hagermann (1966) 
showed that the number of nematodes associated with seaweed fronds increased 
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with increased sedimentation, while the number of creeping and clinging animals 

decreased. The amount of sedimentation was in turn affected by the amount of 

water movement, or wave action. Various authors have highlighted the importance 

of fine sediments on the abundance and diversity of benthic community structure in 

estuaries (Chester et a/, 1983; Flint and Kalke, 1985; Mannino and Montagna, 1997). 

Similarly, Boesch (1973) found that sediment composition was responsible for 

species distribution and diversity in Chesapeake Bay. Mussel beds at the more 

wave-exposed locations in the British Isles and Irish Republic, such as those on the 

east coast of England and the west coast of Ireland, in the present study had lower 

fine and coarse sediment contents than the more sheltered locations, such as those 

on Anglesey. However, univariate and multivariate analyses failed to identify strong 

relationships between sediment content of the mussel beds and the associated 

communities. Thus, differences in community structure due to wave-exposure are 

not simply due to differences in sediment content, although the exact mechanisms 
behind the structuring role that wave exposure plays on mussel bed communities in 

the present study is unclear. 

Climatic differences 

Various authors have proposed that climatic differences might explain 

variations in diversity in different parts of-the world (e. g. Fischer, 1960; Pianka, 

1966). Underwood (1979) stated that the temperature regime of an area can affect 
distributions of species, since it can affect gametogenesis, spawning and larval or 

embryonic survival, such that species have geographical boundaries. It is unlikely 
that such a factor would cause the observed differences in diversity of mussel bed 

communities at each of the eight sites in the British Isles and Irish Republic or 
between the nine sites in Chile, since the locations did not cover a sufficiently wide 
geographical range to encounter significant differences in climatic conditions or 
stability. Few of the taxa encountered in mussel beds were present only at some 
sites and absent at others, probably as a result of limited geographical range, with 
the possible exception of the gastropod, Tricolia pullus, which has a distribution 
limited to the west coasts of Scotland and Ireland (Hayward and Ryland, 1990). 

Latitudinal differences 

Latitudinal gradients in diversity were unlikely to contribute to the observed 
large-scale spatial differences in mussel community structure at sites within the 
British Isles and Irish Republic. However, such factors may affect the structure of the 
P. purpuratus community, since Chile is 4329 km long, extending from 18oS to 560S 
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and the present study encompassed sites from Region VI in the north, to Region X in 

the south of Chile, ranging from 331S to 390S, a distance of approximately 10OOkm. 

Latitudinal gradients in biodiversity are well documented and are commonly 

associated with environmental gradients related to solar energy and temperature 

(e. g. Gee and Warwick, 1996; Lambshead et a/, 2000). In nearly all groups of 

organisms, the number of species within a given area increases markedly towards 

the equator, reaching a maximum in tropical latitudes and decreasing both northward 

and southward towards the poles (e. g. Fischer, 1960; Stehli, 1968; Ricklefs, 1993; 

Blackburn and Gaston, 1996). This phenomenon has been demonstrated in many 

taxa, for example, polychaetes (Sanders, 1968), bivalves (Stehli et a/, 1967) and 

according to Thorson (1957) is most pronounced in epifaunal communities. As such, 

geographical differences in mussel community structure in the present study might 
be a reflection of latitudinal gradients in diversity. Lancellotti and Vasquez (2000) 

noted, in a study of the zoogeography of benthic macroinvertebrates of the Chilean 

coast that biodiversity showed a mild but progressive increase along the latitudinal 

gradient from north to south. Within the limits of the study, univariate measures of 
diversity were greater at southern Chilean sites than those further north, so latitudinal 

gradients in diversity appeared to exist in the data, but these appear to contradict the 

more usual trend of increased diversity towards the equator (e. g. Blackburn and 
Gaston, 1996). 

Stochastic factors and unpredictable events 
While many of the aforementioned biotic and abiotic factors are probably 

important in structuring the communities associated with mussel beds in the British 
Isles and Irish Republic and Chile, it is likely that much of the large-scale spatial 
variation is not accounted for by such predictable processes. A large amount of the 
intersite variation is probably due to stochastic factors and unpredictable events, 
such as random variation in the order of larval arrival or predation pressure. Kiorboe 
(1979) concluded that although the structure of subtidal benthic communities on 
mixed sediment substrata in Holbaek Fjord, Denmark was influenced by both biotic 
and abiotic conditions, it was not exactly predictable, due to environmental and 
demographic stochasticity. Hughes and Jackson (1992) concluded that geographical 
differences in reef fish species along the Caribbean coast of Panama were unlikely to 
be the result of high 

' 
sensitivitY-to local conditions, but were more likely to have a 

stochastic and historical basis. --Other authors have emphasised the importance of 
unpredictable- events forrthe structure of benthic commuhities (e. g., Lewis,,, 1964; 
Eagle, 1974; Gutt, 2000)., '-, ' - ý' ý' ý" r ý' '.. 
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Comparison of the communities associated with mussel beds in the British Isles and 
Irish Republic and in Chile 

General predictions of species distribution patterns in the sea are relatively 

easy, in comparison to terrestrial patterns (MacArthur and Connell, 1966). The 

general circulation in the oceans carries heat away from the equator in the western 

parts of the oceans (along the eastern shores of the continents), so that tropical 

marine organisms are found up to about 30ON and S latitude. In contrast, the colder 

waters from high latitude flows towards the equator along the western shores of the 

continents, and tropical organisms, such as coral reefs, extend to only 100 or 150N 

and S latitude. In the present study, mussel beds in the British Isles and Irish 

Republic and Chile all occurred on rocky shores at temperate latitudes. In addition, 

although the size, age and packing densities of P. purpuratus and M. edulis did show 

slight differences, the habitat provided for colonisation by infaunal taxa by the two 

mussels are very similar in nature, in terms of habitat structure and environmental 

conditions. Thus, it might be expected that the invertebrate communities associated 
with P. purpuratus and M. edulis would be very similar, particularly at higher 

taxonomic levels. This phenomenon of 'parallel communities', due to convergent 

evolution, has been observed in a variety of habitats, for example, crab fauna of 
mangrove areas in Florida and Australia (McIvor and Smith, 1995), coral 
assemblages in the Atlantic and Indo-Pacific (Karlson and Cornell, 1998,1999), 
Atlantic asteroids (Price et al, 1999), deep-sea nematodes across the North Atlantic 
(Lambshead et a/, 2000) and brackish water fauna (Cognetti and Maltagliati, 2000). 

At the species level, the faunal associates of P. purpuratus and M. edulis are 
quite distinct, as might be expected, given that the assemblages occurred on 
different continents. Myers (1994) stated that the proximate cause of pan-continental 
scale patterns of species richness and diversity is origination through speciation, 
balanced by global extinction and TECO (tectonic, eustatic, climatic and 
oceanographic) events and is thus largely caused by processes operating through 
historical time. High species richness is promoted by high rates of origination, either 
through in situ speciation or through colonisation, or alternatively by low rates of 
extinction or a combination of both. In contrast, small-scale spatial differences are 
defined by recent ecological processes such as competition and predation (e. g. 
Underwood and Denley, 1984; Gaines and Roughgarden, 1985; Sutherland, 1990). 

When plotted graphically, the' patterns of dominance in mussel bed 
communities in the British Isles and Irish Republic and Chile are remarkably similar; 
both are dominated by a few common taxa. Such a, phenomenon has previously 
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been documented in communities associated with intertidal mussel species (e. g. 
Lintas and Seed, 1992; Ong Che and Morton, 1992). Furthermore, Seed and 
Brotohadikusumo (1994) noted that in the case of Septifer virgatus in Hong Kong, 

this dominance pattern applied not only to the total fauna associated with this 

mussel, but also the molluscan fauna when this was considered separately. Seed 

(1996) noted that while data from previous studies of communities associated with 
different intertidal mussel species around the world (e. g. Tsuchiya and Nishihira, 

1985,1986; Peake and Quinn, 1993; Lintas and Seed, 1994) could not be scaled for 

sampling effort, it appeared that the number of associated taxa is broadly 

comparable between mussel species. Moreover, Seed (1996) went on to note that 

functionally similar taxa, often within the same genus (e. g. Lasaea, Hyale, and 
Typosyllis) regularly recurred in mytilid communities worldwide. Similar 

biogeographic observations have been made in other communities, such as decapod 

crustacean fauna in the Southeast Atlantic (MacPherson, 1991), asteroid taxa across 
the Atlantic (Price et a/, 1999) and the fauna of brackish water habitats (Cognetti and 
Maltagliati, 2000). The results of the present study agree, to some extent, with these 
findings, although significant differences were observed between communities 
associated with the two mussel species. When analyses were carried out at higher 

taxonomic levels, clear differences were observed in the structure of the invertebrate 

communities associated with P. purpuratus in Chile and M. edulis in the British Isles 

and Irish Republic, both at a univariate and multivariate level. British and Irish 

mussel beds tended to be dominated by many meiofaunal taxa, such as nematodes, 
nemerteans, mites and chironomids, probably as a result of the increased sediment 
content, while Chilean mussel beds had a much greater proportion of macrofaunal 
taxa, particularly anemones, polychaetes, barnacles and limpets. However, many of 
the differences in community composition between the two mussel species were due 
to variability in the proportional abundance of mutually occurring taxa. Thus, to a 
certain extent, the invertebrate assemblages associated with P. purpuratus and M. 
edulis populations appeared to be examples of 'parallel communities', showing 
similar patterns of dominance. However, - in many cases, the identity of dominant 
taxa was very different from one mussel species to the other or even from one 
location to another, within populations of the same mussel species. 

Differences in the structure of communities associated with P. purpuratus and 
M. edulis might have been, in part, due to different size, age and packing densities of 
the mussels. Many studies, have highlighted the relationship between mussel 
packing density and the diversity of the associated infaunal communities. Various 
studies have shown that the abundance of associated fauna in mussel beds is often 
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positively correlated with density of mussels (Commito, 1987; Seed and Suchanek, 

1992). Commito and Boncavage (1989) demonstrated that oligochaete abundance 
in M. edulis beds in New England was positively correlated with mussel density. 

However, in studies of mussel beds in the northern Wadden Sea, Asmus (1987) 

failed to find any correlation between M. edulis density and the biomass of 

associated invertebrates. In addition, Seed and Brotohadikusumo (1994) found no 

significant correlation between the density of mussels and that of the associated 
fauna in Septifer virgatus beds in Hong Kong. P. purpuratus occurred in lower 

densities and achieved a generally greater size and age than M. edulis; P. 

purpuratus beds also contained a lower proportion of juvenile mussels than beds of 
M. edulis. The present study found that univariate measures of diversity were 

greater in British and Irish mussel beds than those in Chile, when compared at the 

same taxonomic level. The small interstitial spaces provided by M. edulis beds 

would favour greater numbers of meiofaunal taxa, which were observed here in 

significantly greater numbers. In addition, the increased packing density and greater 
proportion of smaller mussel in British and Irish mussel beds might help to reduce 
water flow and favour the retention of sediments within the mussel bed (Theisen, 
1968; Dittman, 1987). Mussels in Chilean beds were more loosely packed, such that 

water movement would prevent any sediment retention and as such, sediment 
content was negligible. This factor might account for the lower abundance of 
meiofaunal and deposit feeding taxa such as nematodes, nemerteans and mites, 
which were abundant in British and Irish mussel beds. The greater interstitial space 
in P. purpuratus beds, given the larger size of mussels and lower packing densities, 

would favour the presence of larger bodied and mobile taxa,, such as nereid 
polychaetes, limpets, barnacles and anemones, which were observed in much higher 

abundance here. The lack of small mussels in P. purpuratus beds might be due to a 
high degree of predation pressure, since Navarette and Castilla (1988) documented 

a high predation pressure on small P. purpuratus (3-6mm shell length) by the 

carnivorous intertidal crabs Acanthocyclus gayi (Milne-Edwards et Lucas) and A. 
hassled (Rathbun). In addition, Mendez and Cancino (1990) and Dye (1991) 

reported a strong selection for small P. purpuratus, <10mm, by juveniles of the 
muricid gastropod Concholepas concholepas, another key intertidal predator on 
Chilean rocky shores (Castilla et a/, 1979; Guisado and Castilla, 1983; Moreno et a/, 
1986; Alvarado and Castilla, 1996). Alternatively, the lack of juvenile mussels could 
simply reflect the timing of settlement periods. 

Differences in packing densities and sediment content of mussel beds in 
Chile and the British Isles and Irish Republic might be a function of wave exposure in 

I 
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the two geographical locations. Attempts were made to select sites in each location 

with similar wave exposure and the majority of sites, with the possible exception of 
those on Anglesey were deemed to conform to this requirement. Previous studies 
have shown that the highest densities of mussels tend to be associated with shores 
receiving moderate to severe wave action, probably a direct influence of the amount 
of water (and larval stages) passing over them and slow draining, horizontal 

platforms, especially where surfaces are roughened or broken by discontinuities 

(Seed, 1968). Jacobi (1987a, 1987b) demonstrated that mussel beds protected from 

wave action, on the coast of Brazil retained large quantities of sediment which 

obliterated cavities and produced a tight arrangement, while those in more exposed 

conditions showed a loose multilayered structure with large, abundant interstices and 
little sediment. 

In conclusion, while the invertebrate communities associated with P. 

purpuratus in Chile and M. edulis in the British Isles and Irish Republic show similar 

general patterns of dominance by a few common taxa, the identity of many of these 

more dominant taxa differs between the British Isles and Irish Republic and Chile. 
Other taxa are commonly found in mussel beds in each of the two main geographical 
locations. Chilean mussel beds are dominated by mobile, macrofaunal taxa, while 
British and Irish mussel beds have a higher abundance of meiofaunal taxa. Such 
differences might be attributed in part, to the very different packing densities and 
sediment content of the two mussel species, which in turn, may be a function of the 
degree of wave exposure. However, a full understanding of the dynamics of mussel 
communities and their biogeographical variation, requires the integration of local 

ecological perspective with large-scale phenomena. 
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Chapter 6 

Temporal variation in the structure of the invertebrate 
communities associated with 

Mytilus eduffs and Perumytilus purpuratus 
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ABSTRACT 

The invertebrate communities associated with Mytilus edulis at all three 

locations in Wales showed significant temporal variation, which was much more 

pronounced when data were analysed using multivariate techniques, than when 

using a univariate approach; the latter often failing to show any significant 
differences. The structure of the mussel communities at each of the sites showed 

significant intra-annual multivariate changes, although these differences were not 

always of a cyclic, progressional nature. The mussel bed communities at each site 

also showed significant inter-annual variation, such that community structures 

differed both between different months in a yearly cycle and between the same 

month from year to year. The invertebrate communities associated with Perumytilus 

purpuratus in Chile also showed significant inter-annual variations at the four study 

sites. Temporal differences in the structure of the invertebrate communities 

associated with M. edulis and P. purpuratus were generally the result of differences 

in the abundance of less than 10 common taxa, when emphasis was placed on taxa 

abundance in the analysis. The identity of many of these, numerically dominant taxa 

was the same at each site, for example, in the Welsh sites, juvenile M. edulis, 
nematodes, mites, larvae of the insect genus Clunio and various nemertean families 

and in the Chilean sites, juvenile P. purpuratus, nematodes, barnacles and 

nemerteans. Clear differences in community structure wete also seen, when data 

were analysed with a presence/absence transformation, although many more taxa 

contributed to such temporal differences. Some taxa were temporally ubiquitous, 

while others appeared to be only transient members of the communities. Many of the 

measured environmental factors of the mussel beds at each of the study sites 
showed significant temporal variation, but did not show a high degree of correlation 
with the biotic data, either on a univariate or multivariate level. It is concluded that 
the intra- and inter-annual variation in the structure of the mussel communities both 
in Wales and Chile, are the result of complex interactions between many different 

processes, together with stochastic events. 
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INTRODUCTION 

Many studies have demonstrated temporal variation, both seasonal and 

annual, in various benthic marine communities. Beukema (1974) reported 

considerable seasonal variation in the abundance of macrobenthos on a tidal flat 

area in the Dutch Wadden Sea, while Persson (1983) showed significant within year 
differences in the structure of coastal macrobenthic assemblages in the southern 
Baltic. During a twelve-month study, Nickell and Sayer (1998) found significant 

seasonal variation in the occurrence of mobile macrofauna on a sublittoral reef on the 

West Coast of Scotland. A significantly higher abundance of macro-crustacean 

species was recorded on algal plants in the tropics between wet and dry seasons 

(Stoner, 1985). In a study of the fauna associated with a Brazilian intertidal 

mangrove forest, Barletta et a/ (2000) found that although total fish densities did not 
differ significantly with time, total biomass did show significant seasonal variation. 
Maurer et a/ (1979) reported significant seasonal differences in coastal benthic 

assemblages on the East Coast of America, which were found to be so marked, that 
the authors suggested these seasonal differences should be taken into account in 

environmental impact studies of such communities. In studies of tropical rocky 
intertidal communities in the Bay of Panama, Lubchenco et a/ (1984) found that 

seasonal changes in community structure were small or lacking, whilst annual 
changes were larger, but still small in comparison to those communities in temperate 

regions. By contrast, Buchanan et a/ (1978) demonstrated that benthic macrofaunal 
communities off the south Northumberland coast remained essentially stable for 

more than a decade, although seasonal variations within years were observed. 
Estacio et a/ (1999) detected significant temporal changes in species abundance, 
diversity and evenness in estuarine benthic communities in southern Spain, whilst 
Keough and Butler (1983) demonstrated that the number of epifaunal species on 
individual Pinna bicolor shells in South Australia showed large temporal fluctuations. 

Temporal changes in the structure of communities can result in the 
occurrence of taxonomically related species at different times, such that seasonal or 
annual variations only become apparent at more refined taxonomic levels. For 
example, Jarvis and Seed (1996) demonstrated that the abundance of meiofaunal 
species 

' 
on epiphytes of the intertidal macroalga, Ascophyllum nodosum, displayed 

little temporal variation at high taxonomic levels, whereas seasonal changes were 
apparent at the species level. Thus, it is important in any studies of temporal (and 
spatial) variation in invertebrate communities to identify organisms in the community 
to the lowest possible taxonomic category. 
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Temporal variation in mussel bed communities is somewhat less extensively 

covered in the literature. ' Briggs (1982) observed significant seasonal variation in the 

fauna associated with M. edulis in Loch Foyle, while Tsuchiya and Nishihira (1985) 

found similar patterns in associates of this mussel species in Japan. Peake and 
Quinn (1993) have reported seasonal variations in the infaunal associates of 
Brachidontes rosttatus in Australia, while Jacobi (1987a) found seasonal differences 

in the abundance of amphipod associates of mussel beds from the Bay of Santos, 

Brazil. Similarly, Tokeshi (1995) reported significant differences in abundance of 

polychaetes associated with mussel beds on South American shores, while Ong Che 

and Morton (1992), reported significant seasonal and annual variation in the 

invertebrate communities associated with the mussel Septifer virgatus on the Hong 

Kong coast. 
In this chapter the seasonal and annual variation associated with mussel bed 

communities at three contrasting rocky shore sites on the coast of North Wales and 
four sites in Chile, South America is investigated, using both a univariate and a 
multivariate approach. Comparisons are made within and between sites to 
investigate patterns of seasonal and annual variation in community structure. The 

extent to which various environmental parameters of the mussel bed, such as mussel 
density and volume and mass of sediment fractions affect community structure over 
the course of the study is also investigated. 

METHODS 
Samples of M. edulis and their associated fauna were collected during spring 

tides between January and November 1998 at bimonthly intervals from the mussel 
beds at each of three study sites in North Wales. Each site was visited on 
consecutive days within a three-day period, in order to reduce the possibility of small- 
scale temporal variations between sites. Such variations might occur due to factors 

such as strong onshore winds, or invasions by predators such as Asterias rubens or 
Nucella lapillus. Further samples were collected from each of the three sites during 
January and July 1999 to allow inter-annual comparisons to be made. Samples of P. 
purpuratus were collected each January between 1997 and 2000, from four sites in 
Chile. Samples were processed and sorted according to the methodology described 
in Chapter 2. 
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RESULTS 

Temporal variation in communities associated with Mytilus edulis 
For ease of interpretation of the data and statistical analysis, each site in the 

UK is dealt with separately in this section, while at the end of the section there is an 

overall analysis of the data. 

Point Lynas 

Over the twelve-month sampling period a total of 14210 infaunal organisms 

representing 79 different taxa were collected and identified from mussel beds at Point 

Lynas. These included representatives from 10 phyla, 16 classes, 31 orders and 54 

different families. None of the univariate measures of diversity, i. e. number of taxa 

(NT), number of individuals (NI), Margalef's richness (d), Shannon's diversity (H') and 

Pielou's evenness (J) showed any significant variation over the twelve-month 

sampling period. However, the variability associated with total taxa and richness was 

greater among replicates during the winter months (November and January) than the 

rest of the year. The variability associated with Shannon's diversity and Pielou's 

evenness was similar among replicates at all times of the year (Figure 1). 

Cluster analysis of square-root transformed infaunal data revealed three 

major groups, with March and May clustered together, July, September and 
November as another group and January as a distinct group on its own (Figure 2a). 

When cluster analysis was performed on presence/absence transformed infaunal 
data, the bimonthly samples clustered as two main groups, representing 
spring/summer (March to July) samples and autumn/winter (September to January) 

samples (Figure 2b). MIDS ordination of square-root transformed infauna abundance 
illustrated a change in community structure over the twelve-month period, in terms of 
the more dominant taxa in the community (Figure 3a). A one-way ANOSIM test 

performed on the data confirmed that significant differences in community structure 
did exist between some of the bimonthly samples (R=0.315, p<0.05). Pairwise 

comparisons revealed that the structure of the mussel community was significantly 
different between all months, with the exception of January/November and 
July/September (Table 1a). When tested using the RELATE procedure this seasonal 
progression in community structure was seen to be of a cyclic nature (R=0.454, 

p>0.05). MIDS ordination and an ANOSIM performed with a presence/absence 
transformation on taxa abundance indicated there were also significant seasonal 
differences in the mussel bed community, with regard to the rarer members of the 

community (ANOSIM, R=0.246, p<0.05) (Figure 3b). Pairwise comparisons of 
monthly samples showed that differences were less pronounced than when analysis 
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Figure 2 Dendrograms for group average clustering of Bray-Curtis similarities based 
on a) square-root transformed and b) presence/absence transformed biotic data from 
mussel beds at Point Lynas, Anglesey at bimonthly intervals between January and 
November 1998. 
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Table 1 Global R-values for ANOSIM pairwise comparisons between bimonthly 
samples of the mussel bed communities at Point Lynas, Anglesey based on a) 
square-root transformation of species abundance and b) presence/absence 
transformation of species abundance. Significant differences in community structure 
(p<0.05) are indicated by bold type. 

a) 

January March May Ju/Y September 
March 0.164 

May 0.41 0.199 

Ju/y 0.175 0.332 0.503 

September 0.256 0.57 0797.0.126 

November 0.136 0.262 0.407 0.145 0.296 

b) 

January March May Ju/y September 
March 0.249 

May 0.354 0.396 

July 0.096 0.224 0.263 

September 0.129 0.436 0.488 0.177 

November 0.137 0.206 0.125 0.299 0.238 
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places emphasis on the more numerically abundant members of the community 
(Table 1b). RELATE analysis showed that there was also a significant pattern of 

cyclic seasonal progression in the less common constituents of the mussel 

community(R = 0.745, p>0.05). 
Similarity percentage analysis (SIMPER), performed with a square-root 

transformation (Table 2), highlighted the more abundant taxa principally responsible 
for structuring each of the bimonthly sample groupings illustrated in Figure 3a. It can 
be seen that similarities within replicates for each bimonthly sample were primarily 

caused by changes in the abundance of 7 dominant taxa throughout the year, 

namely small mussels, mite sp. 1, nematodes, Clunio sp. larvae, nemertean families, 

the ostracod Heterocythereis albomaculata and the bivalve Lasaea adansoni. Many 

of these taxa were the most numerically abundant over the twelve-month study 

period. SIMPER analysis performed on presence/absence transformed data 

illustrated that many more taxa (up to 15) contributed to similarities within replicates 
for each of the bimonthly samples when emphasis was removed from taxa 

abundance (Table 3). Some of the taxa contributing to these similarities were the 

same as those identified using the square-root transformation, while many of the less 

numerically abundant taxa such as the crab, Pflumnus hirtellus, and the gastropods, 
Onoba semicostata, Rissoa parva and Coriandria fulgida, also contributed. 

Since the pattern in the biotic data was of a cyclic, seasonal nature, it can be 

assumed that the community changes in structure were occurring in a continuum. 
Thus a holistic approach was required to identify taxa contributing to these 
differences, rather than pairwise comparisons between sample groups. BVSTEP 

analysis was performed on the data using a square-root transformation to identify 
which predominant taxa contributed to the observed cyclic seasonal progression in 
community structure (Figure 3a). Analysis revealed a subset of 15 taxa; small 
mussels, platyhelminthes, nematodes, tubulanid nemerteans, lineid nemerteans, 
tetrastemmatid nemerteans, Cirratulds cirTatus, Drilonereis filum, Heterocythereis 

albomaculata, mite sp. 1, Clunio sp. larvae, Cingula trifasciata, Coriandria fulgida, 
Nucella lapillus and Brachystomia scalafis. Changes in abundance of this subset of 
taxa over the twelve-month study period are illustrated in Figure 4. Second-stage 
BVSTEP analysis performed on the data set, with these 15 taxa excluded failed to 
identify any further taxa subsets, which explained the seasonal pattern, observed in 
community structure. Thus, there was a great deal of structural redundancy within 
the data patterns of the mussel infaunal community; many of the taxa present did not 
react to any, seasonal gradients. When BVSTEP analysis was repeated with a 
presence/absence transformation, to search for patterns in the rarer members'of the 
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3 Nernatoda inclet. 11 Clunjo sp. larvae 
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7 Cirratulus cirratus 15 Brachystomia scalaris 
8 Drilonereis filum 

Figure 4 Bimonthly log mean abundance per 25cmý' quadrat, of taxa identified by 
BVSTEP analysis as those contributing to the seasonal patterns of diversity in the 
mussel beds at Point Lynas, Anglesey. 
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mussel community, a subset of 35 taxa from the 79 present was identified. The 

seasonal pattern observed in Figure 3b cannot be attributed to a small subset of 
taxa, but was the result of changes in the presence or absence of many taxa 

throughout the course of the year. Many of the taxa identified by this analysis were 

also identified as important taxa when emphasis is placed on numerical abundance. 
The total number of infaunal organisms within the mussel bed was positively 

correlated with mussel density (Table 4). Fine (<63ýtm) and coarse (>63ýtm) 

sediment content of the mussel bed were also important factors affecting certain 

univariate measures of diversity. Both environmental parameters were positively 

correlated with the total number of infaunal taxa and individuals. Coarse sediment 

content of the mussel bed was positively correlated with Margalef's richness (d) and 
Shannon's diversity (H). RELATE analysis of the similarity matrix produced using 
normalised Euclidean distance indicated that the environmental factors measured in 
the mussel bed show a cyclic seasonal pattern (R = -0.11, p>0.05). RELATE 

analysis showed that this ordination pattern for environmental parameters was the 

same as the ordination described for both square-root (R = 0.089, p>0.05) and 
presence/absence (R = -0.084, p>0.05) transformed biotic data (Figure 3). 
Ordination by PCA of the environmental data from seasonal samples, as illustrated in 
Figure 3c showed that 83% of the seasonal variability in the data was accounted for 
by the first three Principal Components, with PC1 accounting for 37% of the total. 
PC1 was seen to be a linear combination of the environmental parameters, with 
increasing values of all parameters, except mean mussel size. When PC1 was 
plotted against each of the univariate measures of community diversity the calculated 
correlation coefficients revealed no significant relationships (Figure 5). 

Determination of correlation coefficients for all environmental variables 
measured bimonthly in the mussel bed during the twelve-month period failed to 
reveal any high levels of correlation between any of the variables (r>0.95). As such, 
all the measured environmental variables were entered into BIOENV analysis, to 
identify the most appropriate combinations of variables explaining the square-root 
and presence/absence transformed biotic data. The BIOENV procedure revealed 
that the highest correlation of square-root transformed infauna data was only 0.178, 
with the mass of coarse sediment. A similarly low correlation of 0.199 was obtained 
for presence/absence transformed infauna data, with a combination of the mass of 
coarse and fine sediment. 

It can be concluded that at this particular site, the physical and environmental 
factors measured in the mussel bed did not have a significant structuring effect on 
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Table 4 Correlation coefficients calculated between environmental variables and 
univariate measures of diversity in the mussel beds at Point Lynas, Anglesey. 
Values in bold indicate significant correlation (p<0.05). 

NT NI d H' T 

7mussels 0.141 0.302 0.083 0.006 -0.142 
Mussel mass 0.262 0.166 0.247 -0.033 -0.216 
Mussel volume -0.079 -0.025 -0.103 -0.263 -0.177 

Mean mussel size 0.093 -0.208 0.162 0.083 0.080 

Mean size*j: mussels 0.203 0.263 0.162 0.020 - -0.161 
Mass fine sediment 0.302 0.403 0.225 0.166 -0.030 
Mass coarse sediment 0.454 0.555 0.360 0.326 0.039 

NT Number of taxa 
NI Number of individuals 
d Margalef's index 
H' Shannon's diversity 
i Pielou's evenness 

194 



Figure 5 Principal Component 1 (PC1) plotted against each of the univariate 
measures of mussel bed community structure at Point Lynas, Anglesey. Correlation 
coefficients (r) and significance levels between the variables are shown. 



20- 

to 
15- 

x 
10- 

04- 

-4 

500 

in 400 
m 
:2 300 

200 

100 

0 4.. 

-3 -2 0 

PCI 

3 
2.5 

2 

1.5 

Pci 

23 

2 3' 

1.7. 
1.65. 

1.55- 
1.5, 

1.45- 
1.4- 

1.35- 

-3 -2 0 

PCI 

0.63 
IA 0.62 

0.61 

0.6 

0 
0.58- 

0.57- 

-3 -2 023 

Pei 

'r = -0.503 
p>0.05 

r= -0.319 
p>0.05 

r= -0.661 
p>0.05 

-0.202 
P>0.05 

0.280 
p>0.05 

195 

-2 0 

Pcl 



the multivariate characteristics of the associated community. Although some of the 

environmental variables measured did significantly affect the structure and diversity 

of the mussel bed community at Point Lynas, their main effects were masked by the 

stronger influencing factor of seasonal variation, which underlies the data. 

White Beach 

Over the twelve month sampling period a total of 16169 infaunal organisms 

from 93 different taxa were collected and identified from mussel beds at White 

Beach. These taxa included representatives from 10 phyla, 15 classes, 30 orders 

and 59 different families. The univariate measures of diversity i. e., number of taxa 

(NT), number of individuals (NI) and Shannon's diversity (H') showed no significant 

variation over the twelve month study period. Margalef's richness (d) was 

significantly greater in July than in March, while Pielou's evenness (J) was 

significantly lower in November than in either March or September (Figure 6). The 

variability associated with all univariate measures of community diversity varied 

greatly amongst replicate quadrats throughout the year. 
Cluster analysis of square-root transformed infaunal data revealed only one 

major grouping, between autumn/winter (September to January) samples (Figure 

7a). The other bimonthly samples remained separate. Almost identical results were 

obtained when cluster analysis was performed on presence/absence transformed 
infaunal data (Figure 7b). MIDS ordination of square-root transformed infaunal 

abundance illustrated, in terms of the more dominant taxa in the community, a 
change in community structure during the twelve-r-rionth period (Figure 8a). A one- 
way ANOSIM test performed on the data confirmed that significant differences 

existed in community structure between some of the bimonthly samples (R=0.61 1, 
p<0.05), whilst pairwise comparisons revealed that the structure of the mussel 
community was significantly different between all months (Table 5a). When tested 

using the RELATE procedure no seasonality was apparent in community structure, 
(R=0.363, p<0.05). MIDS ordination and ANOSIM performed with a 
presence/absence transformation on taxa abundance indicated there were also 
significant seasonal differences in the mussel bed community, with regard to the less 
dominant members of the community (ANOSIM, R=0.523, P<0.05) (Figure 8b). 
Pairwise comparisons of the bimonthly samples revealed that the community 
structure was significantly different between all months when emphasis was placed 
on the less common members of the community (Table 5b). However, RELATE 
analysis showed that there was no significant seasonality in the less common 
constituents of the mussel community (R = 0.476, P<0.05). 
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a) Square-root transformation 
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Figure 7 Dendrograms for group average clustering of Bray-Curtis similarities based 
on a) square-root transformed and b) presence/absence transformed biotic data from 
White Beach, Anglesey at bimonthly intervals between January and November 1998. 
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Table 5 Global R-values for- ANOSIM pairwise comparisons between bimonthly 
samples of the mussel bed communities at White Beach based on a) square-root 
transformation of species abundance and b) presence/absence transformation of 
species abundance. Significant differences in community structure (p<0.05) are 
indicated by bold type (all differences are significant). 

a) 

January March May July September 
March 0.456 

May 0.497 0.591 

July 0.756 0.862 0.576 

September 0.788 0.939 0.460 0.830 

November 0.469 0.800 0.296 0.645 0.327 

b) 

January March May July September 
March 0.278 

May 0.613 0.500 

July 0.711 0.724 0.805 

September 0.355 0.298 0.646 0.811 

November 0.183 0.195 0.624 0.756 0.267 
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Similarity percentage analysis (SIMPER), performed with a square-root 
transformation (Table 6), highlighted the more abundant taxa principally responsible 
for structuring each of the bimonthly sample groupings illustrated in Figure 8a. 

Changes in the abundance of 4 dominant taxa throughout the year; small mussels, 

mite sp. 1, nematodes and Clunio sp. larvae were primarily responsible for 

similarities within replicates of each bimonthly sample. Other taxa including Jaera 

albifrons, Orchestia gammarellus, the ostracod Heterocytherais albomaculata and 

nemertean families were also important to varying extents throughout the year. 
Many of these taxa were the most numerically abundant at all times of the year. 

SIMPER analysis performed on presence/absence transformed data illustrated that 

many more taxa (up to 15) contributed to similarities within replicates for each of the 

bimonthly samples when emphasis was removed from overall abundance of taxa, 

(Table 7). Some of the taxa contributing to these similarities were the same as those 

identified using a square-root transformation. However, many of the less numerically 
abundant taxa such as the ostracod Leptocythere pellucida, mite sp. 3 and various 
polychaete taxa also contributed to differences between the bimonthly samples. 

BVSTEP analysis using a square-root transformation revealed a subset of 14 

taxa explaining differences in community structure throughout the year; small 
mussels, platyhelminthes, nematodes, Cephalothricidae nemerteans, oligochaetes, 
Clunio sp. larvae, and small arthropods, e. g. Heterocythereis albomaculata, 
Leptocythere pellucida, Elminius modestus, Idotea pelagica, Stenothoe 

monoculoides, Carcinus maenas, mite sp. 1 and mite sp. 3. Changes in the 

abundance of this taxa subset throughout the year are illustrated in Figure 9. Second 

stage BVSTEP analysis performed on the data set with these 14 taxa excluded failed 
to identify any further taxa subsets, which might have explained the seasonal pattern 
observed in the community structure. BVSTEP analysis performed on the same 
data, with a presence/absence transformation, to search for patterns in the rarer 
members of the community identified a subset of 37 taxa from the 93 present. 
Second stage BVSTEP analysis failed to identify any further subsets of taxa 
explaining the seasonal pattern in biotic data. The seasonal pattern observed in 
Figure 8b cannot be attributed to a small subset of taxa, but was the result of 
changes in the presence or absence of many different taxa throughout the year. 
Many of the taxa identified by this analysis were also identified as important taxa 
when emphasis was placed on numerical abundance. 

The total number of infaunal taxa and individuals within the mussel bed were 
negatively correlated with the mean size Of mussels, while the total number of 
individuals was also positively correlated with mussel density (Table 8). None of the 
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Figure 9 Bimonthly log mean abundance per 25CM2 quadrat, of taxa identified by 
BVSTEP analysis as those contributing to seasonal patterns of diversity in the 
mussel beds at White Beach, Anglesey. 
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Table 8 Correlation coefficients calculated between environmental variables and 
univariate measures of diversity in the mussel beds at White Beach, Anglesey. 
Values in bold indicate significant correlation (p<0.05). 

NT NI d H' i 

Zmussels 0.276 0.384 0.168 0.092 -0.099 

Mussel mass -0.127 -0.119 -0.101 0.139 0.245 

Mussel volume -0.015 -0.078 0.006 0.168 0.188 

Mean mussel size -0.351 -0.425 -0.223 -0.040 0.213 

Mean size*7 mussels 0.046 0.180 -0.009 0.045 0.016 

Mass fine sediment 0.123 0.192 0.066 -0.050 -0.150 

Mass coarse sediment 0.048 0.178 -0.036 -0.211 -0.270 

NT Number of taxa 
NI Number of individuals 
d Margalef's index 
H' Shannon's diversity 
i Pielou's evenness 
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other environmental variables measured had a significant effect on any of the 

univariate measures of community diversity. RELATE analysis on the similarity 

matrix produced using normalised Euclidean distance indicated that the 

environmental factors measured in the mussel bed showed a cyclic seasonal 

progression (R = 0.209, p>0.05). RELATE analysis showed that the ordination 

pattern for the environmental parameters was the same as the ordination described 

for both square-root (R = -0.493, p>0.05) and presence/absence (R = -0.046, p>0.05) 

transformed biotic data (Figure 8). Ordination by PCA of the environmental data from 

seasonal samples, as illustrated in Figure 8c, showed that 82% of this seasonal 

variability in the data could be accounted for by the first three Principal Components, 

with PC1 accounting for 42% of the total. PCI was seen to be a linear combination 

of the environmental parameters, with increasing values of all parameters, except 

mean mussel size. When PC1 was plotted against each of the univariate measures 

of community diversity the correlation coefficients revealed no significant 

relationships (Figure 10). 
Determination of correlation coefficients for all environmental variables 

measured bimonthly in the mussel bed during the twelve-month period failed to 

reveal any high levels of correlation between any of the variables (r>0.95). As such, 
all the measured environmental variables were entered into BIOENV analysis, to 
identify the most appropriate combinations of variables explaining the square-root 
and presence/absence transformed biotic data. The BIOENV procedure revealed 
that the highest correlation of square-root transformed data was only 0.287, with the 

mass of fine and coarse sediments. A similarly low correlation of 0.117 was obtained 
between the presence/absence transformed infauna data and the mass of fine and 
coarse sediments. 

Thus, it appears that, like the mussel beds at Point Lynas, the strongest 
influencing force on the structure of the infaunal communities at White Beach was 
season. Although there. was no significant seasonality in the data, there was a clear 
difference in the structure of the communities throughout the year. Some of the 
environmental variables measured correlated with certain univariate measures of 
community diversity, although any influencing effect they might have had on the 
multivariate data was probably being masked by the strong seasonal effect 
underlying the data. 

Criccieth 

Over the twelve-month sampling period a total of 9576 infaunal organisms 
from 85 different taxa were collected and identified from mussel beds at Criccieth. 
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Figure 10 Principal Component 1 (PC1) plotted against each of the univadate 
measures of community structure at White Beach, Anglesey. Correlation coefficients 
(r) and significance levels between the variables are shown. 
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These taxa included representatives from 10 phyla, 16 classes, 30 orders and 51 

different families. Values of Shannon's diversity index (H') showed no significant 

variation during the twelve-month study period. However, all other univariate 

measures of diversity; number of taxa (NT), number of individuals (NI), Margalef's 

richness (d) and Pielou's evenness (J) did show significant variation over the twelve- 

month period. Values of these indices showed an oscillation throughout the year, 

with peaks in March and November and troughs in May/July (Figure 11). 

Cluster analysis of square-root transformed infaunal data revealed three 

major groups, representing spring (January and March), summer (May and July) and 

autumn/winter (September and November) samples (Figure 12a). At a slightly lower 

level of similarity (55%), the autumn/winter and spring groups merged such that two 

main groups remained. A similar pattern was revealed when cluster analysis was 

performed on the same data, with a presence/absence transformation, in that the 

same three main groups of samples separated out (Figure 12b). However, at a lower 

similarity level (55%), the spring and summer groups merged, leaving a distinct 

autumn/winter group. 
MIDS ordination of square-root transformed infaunal abundance illustrated a 

change in community structure over the twelve-month period, in terms of the more 
dominant members of the community (Figure 13a) and the clear separation of three 

main groups, as identified by cluster analysis. A one-way ANOSIM test performed on 
the data confirmed that during the twelve-months, there were significant differences 

in community structure (R=0.372, p<0.05). Pairwise compadsons revealed that the 

structure of the mussel community was significantly different between all months, 
with the exception of January/March, January/July and May/July (Table 9a). When 
tested using the RELATE procedure this seasonal progression in community 
structure was seen to be cyclic (R=0.18, p>0.05). MIDS ordination and ANOSIM 

performed with a presence/absence transformation indicated that the seasonal 
differences in community structure were also apparent at Criccieth, when emphasis 
was removed from abundant taxa (ANOSIM, R=0.437, p<0.05) (Figure 13b). 
Pairwise comparisons revealed that differences between monthly samples were 
more pronounced than when abundance was taken into account, with all but 
May/July showing significant differences (Table 9b). RELATE analysis showed that 
there Was a significant pattern of cyclic seasonal progression in community structure 
throughout the year. 

Similarity percentage analysis (SIMPER) performed with a 'square-root 
transformation (Table 10) highlighted the dominant taxa principally responsible for 
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a) Square-root transformation 
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Figure 12 Dendrograms for group average clustering of Bray-Curtis similarities 
based on a) square-root transformed and b) presencelabsence transformed biotic 
data from mussel beds at Criccieth, Gwynedd at bimonthly intervals between January 
and November 1998. - 
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Table 9 Global R-values for ANOSIM pairwise comparisons between bimonthly 
samples of the mussel bed communities at Criccieth, Gwynedd, based on a) square- 
root transformation of species abundance and b) presence/absence transformation of 
species abundance. Significant differences in community structure (p<0.05) are 
indicated by bold type. 

a) 

Januafy March May Ju/Y September 
March 0.104 

May 0.256 0.425 

July -0.004 0.245 0.134 

September 0.362 0.46 0.85 0.513 

November 0.406 0.468 0.796 0.513 0.295 

b) 

January March May Ju/y September 
March 0.243 

May 0.404 0.285 

Ju/y 0.134 0.269 0.099 

September 0.574 0.776 0.842 0.542 

November 0.491 0.587 0.619 0.462 0.33 
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structuring each of the bimonthly sample groupings illustrated in Figure 13a. 

Similarities within replicates for each bimonthly sample were primarily caused by 

changes in abundance of 4 dominant taxa throughout the year; small mussels, 

nematodes, the barnacle Elminius modestus and the chironomid Clunio sp. larvae, 

with further contributions from less abundant taxa. When the same analysis was 

repeated with a presence/absence transformation, thus removing the emphasis from 

abundance similar taxa were seen to contribute to group similarities (Tablel 1). 

BVSTEP analyses was performed on the data to identify which members of 

the community were predominantly contributing to the cyclic progression of 

community structure over the year. When emphasis was placed on taxa abundance 

with a square-root transformation, a subset of 14 taxa; small mussels, 

platyhelminthes, nematodes, lineid nemerteans, emplectonematid nemerteans, the 

polychaetes, Lepidontus clava, Harrnothoe sp., Capitella capitata, Cirr-atulus cirratus, 

Scolelepis squamata, the arthropods Heter-ocythereis albomaculata, Elminius 

modestus, Clunio sp. larvae and the gastropod, Brachystomia scalaris. Changes in 

the abundance of this taxa subset throughout the year are illustrated in Figure 14.. 

Second stage BVSTEP analysis performed on the same data set, with the exclusion 

of these 14 taxa, failed to identify any further taxa subsets, which adequately 

explained the seasonal variation in community structure. Thus, many members of 

the mussel community at Criccieth did not respond to any seasonal gradients. 

BVSTEP analysis performed with presence/absence transformation identified a 

subset of 32 taxa from the 85 present, explaining the seasonal variation observed 

(Figure 13b). Thus the community patterns observed are the result in changes in the 

presence or absence of many taxa in the mussel bed. 

The total number of taxa present in the mussel bed was positively correlated 

with both the mass and volume of mussels. (Table 12). Margalef's (d) and 

Shannon's (H) indices were also positively correlated with the total volume of 

mussels. The total number of individual organisms present is negatively correlated 

with the mean size of mussels*mussel density. RELATE analysis of the similarity 

matrix produced using normalised Euclidean distance indicated that the 

environmental factors measured in the mussel bed did not show any seasonality 
(R=0.498, p<0.05). RELATE analysis showed that this ordination pattern for 

environmental parameters was significantly different to the ordination described for 
both square-root (R = 0.568, p<0.05) and presence/absence (R = 0.756, p<0.05) 
transformed biotic data (Figure 13). Ordination by PCA of the environmental data, as 
illustrated in Figure 13c showed that 83% of the seasonal variability in the data was 
accounted for by the first three Principal Components, with PCI accounting for 38% 
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Figure 14 Bimonthly log mean abundance per 25CM2 quadrat, of taxa identified by 
BVSTEP analysis as those contributing to the seasonal patterns of diversity in the 
mussel beds at Criccieth, Gwynedd. 
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Table 12 Correlation coefficients calculated between environmental variables and 
univariate measures of diversity in the mussel beds at Criccieth, Gwynedd. Values in 
bold indicate significant correlation (p<0.05). 

I NT NI 

7mussels 
. 

Mussel mass 

Mussel volume 

Mean mussel size 

Mean size*7 mussels 

Mass fine sediment 

Mass coarse sediment 

-0.201 -0.216 -0.144 0.172 0.258 

0.302 0.206 0.258 0.083 -0.037 

0.323 0.000 0.301 0.308 0.163 

0.179 0.007 0.204 0.024 -0.046 

-0.184 -0.286 -0.111 0.185 0.253 

0.212 0.119 0.111 -0.033 -0.170 

0.150 0.058 0.109 0.021 -0.081 

NT Number of taxa 
NI Number of individuals 
d Margalef's index 
H' Shannon's diversity 
i Pielou's evenness 
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of the total. PC1 was seen to be a linear combination of the environmental factors, 

with increasing values of all parameters. When PC1 was plotted against each of the 

univariate measures of community diversity the correlation coefficients revealed no 

significant relationships (Figure 15). 

Determination of correlation coefficients for all environmental variables 

measured bimonthly in the mussel bed during the twelve-month period failed to 

reveal any high levels of correlation between any of the variables (r>0.95). As such, 

all the measured environmental variables were entered into BIOENV analysis, to 

identify the most appropriate combinations of variables explaining the square-root 

and presence/absence transformed biotic data. The BIOENV procedure revealed 

that the highest correlation of square-root transformed data was 0.232, with a 

combination of mussel density, mass and mean size and the mass of fine sediments. 
A correlation of 0.334 was obtained between the presence/absence transformed 

biotic data and the mean size of mussels and the mass of fine sediments. 
Thus, the physical and environmental parameters measured in the mussel 

bed appear to have some effect on the structure of the mussel bed community. 
Although some of the environmental variables measured do significantly affect the 

structure and diversity of the mussel bed community at Criccieth, as indicated by 

comparisons with univariate measures of diversity, they are not wholly responsible 
for producing the seasonal progression in multivariate community structure observed. 

MIDS ordination of the data collected from the mussel beds at Point Lynas 
during the summer and winter in two consecutive years failed to illustrate any clear 
annual patterns in community structure, either with a square-root or a 
presence/absence transformation (Figure 16a). This was also the case for similar 
data collected at White Beach (Figure 16b) and Criccieth (Figure 16c). ANOSIM 
tests performed on the data confirmed differences between the summer and winter of 
consecutive years' samples were significant at all locations (Table 13). Thus, whilst 
there was an annual cyclic progression in community structure during 1998 and 
1999, the structure of the communities at each of the locations were quite different 
from one year to the next. 

SIMPER analysis, performed with a square-root transformation revealed that 
the taxa responsible for the annual differences in community structure at all three 
sites were the same taxa characterising the structure of the mussel bed throughout 
the year (see Table 2&3,6 &7 and 10 & 11). Thus, annual changes at the three 
sites were not caused by the appearance of new taxa, but changes in the abundance 
of those that were already common. Similar results were found when SIMPER 
analysis was performed with a presence/absence transformation, although 
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Figure 15 Principal Component 1 (PC1) plotted against each of the univariate 
measures of mussel bed community structure at Criccieth, Gwynedd. Correlation 
coefficients (r) and significance levels between the variables are shown. 
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Figure 16 Ordination by MIDS of averaged abundance of infauna from the mussel 
beds during the summer and winter in two consecutive years (1998 and 1999) at a) 
Point Lynas, Anglesey, b) White Beach, Anglesey and c) Criccieth, Gwynedd, based 
on square-root and presence/absence transformations. Stress values for all plots 
0.0 



a) Point Lynas 
Square-root transformed data 

1999 1 

summer 
1998 

vArder 
1998 

vArder 
1999 

Presence/absence transformation 

summer summer 
1998 1999 

winter 
1999 

winter 
1998 

b) White Beach 
Square-root transformed data Presence/absence transformation 

summer 
1999 summer summer 

summer 1998 1999 

1998 

wl rte r 
1999 

wirter 
1999 

winter vArter 
1998 1998 

c) Criccieth 

Square-root transformation Presence/absence transformation 

summer 
1998 wirter 

1999 

summer 
1999 

wirter 
1998 

winter 
1999 

summer 1 
1998 

summer 
1999 

vAnter 
1998 



Table 13 ANOSIM pairwise comparisons between the mussel bed communities 
during the summer and winter in two consecutive years (1998 and 1999) at Point 
Lynas and White Beach, Anglesey and Criccieth, Gwynedd, based on square-root 
and presence/absence (italicised values in brackets) transformations. Significant 
differences in community structure (p<0.05) are indicated by bold type (all differences 
are significant). 

Summer 1998/1999 Winter 1998/1999 

Point Lynas 0.513 0.417 
(0.563) (0.513) 

White Beach 0.283 0.765 
(0.388) (0.740) 

Criccieth 0.958 0.634 
(0.781) (0.585) 
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differences here were also due in part, to the appearance of new taxa in the mussel 
bed, since emphasis was removed from abundance in this analysis. Foraminifera, 

ostracods, oligochaetes, Brania pusilla and Modiolula phaseolina were common at all 

sites in the 1999 samples at all sites, but virtually absent from the 1998 samples. 

Temporal variation in communities associated with P. purpuratus 
Several of the univariate measures of community diversity showed significant 

annual variation at each of the four sites (Table 14). At Coronel and Desembocadura 

sheltered site 1, univariate measures were generally lower during 1999 than other 

years (Figure 17). At the two exposed sites at Desembocadura, for many of the 

measures, this pattern was reversed. At each of the sites, measures for 1999 were 

often quite different to values during 1997 and 2000. 

MIDS ordination of the data collected from P. purpuratus beds at the four sites 

illustrated a clear separation of samples taken in 1997,1999 and 2000, when 
performed with both a square-root and a presence/absence transformation (Figure 
18 & 19). A one-way ANOSIM test confirmed that at each of the sites, there was 
significant annual variation in community structure, both in terms of the more 
common and rarer members of the community (Table 15). ANOSIM pairwise 
comparisons revealed that annual variation was significant at all sites, between all 
years, with both transformations. 

Similarity percentage analysis (SIMPER), performed with a square-root 
transformation on inter-annual data from each site, indicated that the dominant taxa 

characterising the mussel bed communities at the sites were the same from year to 

year. The mussel community at Coronel was mainly characterised by an abundance 
of anemones, nematodes, barnacles, small mussels and other bivalves. The mussel 
community at Desembocadura exposed site 1 was characterised predominantly by 

nematodes, small mussels and barnacles, while Desembocadura exposed site 2 was 
characterised by these taxa along with anemones and various polychaete families. 
The mussel community at Desembocadura sheltered site 1 was characterised mainly 
by small mussels, barnacles, spionid polychaetes and nematodes. Inter-annual 
differences in community structure at each of the sites were due mainly to variations 
in the abundance of these main dominant taxa (Table 16). Similar results were 
obtained when SIMPER analysis was performed on the same data, with a 
presence/absence transformation, to remove the emphasis from numerical 
abundance of taxa (Table 17). Thus, the same taxa were seen to characterise each 
site whether emphasis was placed on numerical abundance or simply just presence. 
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Table - 14 One-way ANOVA tests between univariate measures of diversity 
calculated for mussel bed communities in Chile during January 1997,1999 and 2000 
at a) Coronel, b) Desembocadura exposed site 1, c) Desembocadura exposed site 2 
and Desembocadura sheltered site 1. Significant differences are marked * (p<0.05). 

Coronel Des. Exp. 1 Des. Exp. 2 Des. Shelt. 1 
Univariate Measure F F F F 

Total taxa 10.56* 9.23* 6.12* 8.95* 

Total individuals 0.17 8.75* 13.00* 54,60* 

Margalef's richness 4.96* 5.73* 8.63* 19.10* 

Shannon's diversity 3.36 2.98 13.74* 20.59* 

Pielou's evenness 1.05 1.49 8.48* 11.53* 

4 
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Figure 18 Ordination by MDS based on Bray-Curtis similarity, of square-root 
transformed abundance of taxa from the mussel beds at a) Coronel, b) 
Desembocadura exposed site 1, c) Desembocadura exposed site 2 and d) 
Desembocadura sheltered site 1, in January 1997,1999 and 2000. 
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Figure 19 Ordination by MDS based on Bray-Curtis similarity, of presence/absence 
transformed abundance of taxa from the mussel beds at a) Coronel, b) 
Desembocadura exposed site 1, c) Desembocadura exposed site 2 and d) 
Desembocadura sheltered site 1, in January 1997,1999 and 2000. 
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Table 15 ' Global R-values for ANOSIM tests and pairwise comparisons between 
mussel bed communities in January 1997,1999 and 2000 at Coronel, 
Desembocadura exposed site 1, Desembocadura exposed site 2 and 
Desembocadura sheltered site 1, based on a) square-root and b) presence/absence 
transformations of taxa abundance. Significant differences in community structure 
pairwise comparisons are indicated by bold type (all differences are significant). 

a) 
All sites ANOSIM 

b) 

site Global R-value P 
Coronel 0.521 <0.05 
Desembocadura 0.691 <0.05 
exposed site 1 
Desembocadura 0.744 <0.05 
exposed site 2 
Desembocadura 0.917 <0.05 
sheltered site I 

ANOSIM Pairwise Comparisons 
Coronel 

site Global R-value P 
Coronel 0.453 <0.05 
Desembocadura 0.430 <0.05 
exposed site 1 
Desembocadura 0.359 <0.05 
exposed site 2 
Desembocadura 0.358 <0.05 
sheltered site 1 

1997 1999 1997 1999 
1999 0.680 1999 0.707 
2000 0.293 0.676 2000 0.280 0.439 

Desembocadura ex posed site 1 

1997 1999 1997 1999 
1.999 0.824 1999 0.568 

. 
2000 0.725 0.520 2000 0.492 0.210 

Desembocadura ex posed site 2 

1997 1999 1997 1999 
1999 0.714 1999 0.388 
2000 0.867 0.656 2000 0.484 0.378 

Desembocadura sheltered site 1 

1997 1999 1997 1999 
1999 0.996 199.9 0.508 
2000 0.920 0.815 2000 0.450 0.162 
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The density of mussel populations did not vary significantly at each of the four 

sites in Chile, between 1997 and 2000 (see Chapter 2). Thus, it was statistically 

unlikely that the observed annual differences in community diversity between each of 
the sites were a reflection of mussel density and no further analysis was performed 

on the data. 

Overall, these data show that the invertebrate communities associated with 
M. edulis display significant intra- and inter-annual variations, while those associated 

with P. purpuratus also display significant inter-annual variation. Temporal 

differences in community structure of both mussel species were generally the result 

of changes in the abundance of no more than 10 of the most common taxa, while 

many more taxa contributed to temporal differences when data were analysed using 

a presence/absence transformation. Such temporal differences did not correlate with 
differences in the measured environmental parameters of the mussel beds. 

DISCUSSION 

At each of the sites around the coast of North Wales and Chile, M. edulis and 
P. purpuratus remained the dominant primary space occupiers during this study. 
Thus, in terms of the main space occupiers, these rocky shore communities exhibit a 
strong temporal consistency. Many earlier studies documenting the major 
components of rocky shore communities have found similar temporal patterns. For 

example, Berlow and Navarrete (1997) found in studies of the main primary space 
occupiers in rocky intertidal communities on the west coast of America, that patterns 
of community structure remained virtually unchanged from early 1990 through the 

early spring of 1993. Other authors, including Dayton (1971) and Paine (1974) have 

obtained similar results in studies of rocky shore communities. However, when these 
mussel bed communities were studied in greater detail, by examining associations 
between infaunal and epifaunal taxa and the primary space occupiers, seasonal 
differences in community structure did emerge. 

Mussel beds at each of the study sites in this investigation, both in the Wales 

and Chile were observed to support diverse infaunal communities, with 
representatives from most of the main animal phyla. Seasonal and annual 
differences in the abundance of many of the associated taxa, resulted in temporal 
patterns of community structure in each of the mussel beds. Seasonal differences in 
the structure of the infaunal communities associated with the M. edulis and P. 
purpuratus beds were much more evident when analysed using multivariate, rather 
than univariate techniques. In general, the total number of taxa and individuals 
present in the beds remained relatively constant with time, although the actual 
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species composition changed. In contrast to these findings, using graphical 
techniques Peake and Quinn (1993) to study of the invertebrate communities 
inhabiting clumps of the intertidal mussel, Brachidontes rostratus in Australia, found 

fewer species for a given area in autumn and summer compared with winter and 

spring. The equilibrium theory of MacArthur and Wilson (1967) states that the 

number of species in a patch of habitat should remain approximately constant, at its 

equilibrium value, although the identities of species should change with time. This 

phenomenon, referred to as species turnover, appears to apply to the mussel bed 

communities at each of the sites in the present study. It should be noted, however, 

that the application of general ecological models to new habitats is difficult, since 

ecological processes vary from one habitat to another (Crowe and Underwood, 

1999). It is likely that the total number of taxa and individuals present within the 

mussel patches, are more or less fixed by the availability of resources such as food 

and space. 
When the taxa composition of the mussel bed infaunal communities were 

analysed using multivariate techniques, a clear temporal variation was demonstrated 

at all sites. The structure of the communities at Point Lynas and Criccieth changed 
throughout the year in a cyclic progression, while the community at White Beach 

showed significant seasonal differences, although the progression of community 

change over the year did not appear to be cyclic. Significant annual variation was 
observed in the mussel communities in the UK and Chile. Such temporal variations 
at each of the sites were due mainly to fluctuations in the presence and abundance 
of taxa such as nematodes, nemerteans, platyhelminthes, juvenile mussels and 
various polychaete, gastropod and crustacean taxa. Other studies of mussel beds, 
based on a multivariate approach have demonstrated similar seasonal variations in 

community structure. For example, Jacobi (1987a) found amphipods in Brazilian 

mussel beds to be more abundant in summer, while Tokeshi (1995) found a general 
tendency towards reduced polychaete population densities in mussel beds on Pacific 
South American rocky shores in the austral winter. In addition, Ong Che and Morton 
(1992) found large temporal macro-invertebrate population fluctuations in Septifer 

virgatus beds in Hong Kong. 

Several authors have attempted to týxplain the development and change of 
marine epifaunal communities over time, and relate them to various biological and 
environmental factors, as detailed below. 
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Reproduction and Larval Recruitment 

The seasonality of the climate has a marked effect on the reproduction and 
growth of infaunal and epifaunal species, such that most species produce larvae over 
a limited period of time (Osman, 1977). Underwood and Fairweather (1989) have 

pointed out the stochastic nature of marine communities, emphasising the 

considerable temporal variation in recruitment of species with planktonic larval stages 
as a major cause. Many studies, have demonstrated that this seasonality in 

reproduction and immigration (settlement of larvae) causes a cycle in the equilibrium 

number of species present on or in a substratum (e. g. Osman, 1978). Schoener and 
Schoener (1981) concluded, in a study of the marine fouling communities on artificial 
panels, that settling species were somewhat dependent upon season. Osman 
(1977) concluded that seasonal fluctuations in larval abundance was an important 
factor in the development of a marine epifaunal community, since colonisation was 
directly dependent on the abundance of settling larvae, which in turn was a function 

of seasonality and selectivity and as such would be highly variable. Osman (1977) 
found that the peak abundance of larval production and settlement in rocky shore 
epifaunal communities on the East Coast of America occurred during the late 

summer. Following this, both the number of species reproducing and the number of 
larvae produced per species declined to a minimum level in the late winter. This 

resulted in a fluctuation in the number of species between a high point at the end of 
the summer and a low point at the end of the winter. Stoner (1985) suggested that 
priority of arrival as recruits might determine the species composition of crustaceans 
associated with calcareous green algae in Puerto Rico, in a similar manner to the 
lottery system proposed by Sale (1978) for reef fishes. 

Various intertidal marine benthic invertebrates have been shown to display 
seasonal patterns of reproduction, for example, gastropods (Underwood, 1979; 
Parry, 1982) and barnacles (Caffey, 1985; Raimondi, 1990). In addition, Hull (1997) 
demonstrated that several intertidal ostracod species (similar to taxa found in mussel 
beds in this study) reproduced in early spring. The reproductive cycle of M. edulis 
itself, exhibits marked seasonal patterns (Seed and Suchanek, 1992), which might 
explain the seasonal variation in juvenile mussel densities in each of the mussel 
beds. Spawning normally occurs in early spring and if environmental conditions are 
favourable, periods of redevelopment and spawning may occur throughout the 
summer (Dix and Ferguson, 1984; Gray et a/, 1997). Jarvis and Seed (1996) 
suggested that the seasonal pattern displayed by meiofaunal taxa, such as ostracods 
and nematodes, inhabiting epiphytic algae on Ascophyllurn nodosurn could be 
attributed to annual life cycles and reproductive activity. Colman (1940) and later 
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Kito (1982) drew similar conclusions in studies of the fauna inhabiting. intertidal 

seaweeds. 
Hughes et a/ (2000) have pointed out the importance of variable larval input in 

determining the size of local adult populations in marine benthic communities, 

although for most marine organisms, the spatial scale at which adult stocks and 

recruitment are coupled is unknown. In addition, Renaud et a/ (1999) suggested that 

post-settlement processes, such as predation, are also important in structuring 

marine benthic communities. Woodin (1976) predicted that successful larval 

recruitment might be rare in the presence of densely packed suspension-feeding 

bivalves, since the probability of successful larval settlement is reduced either due to 

ingestion or burial in faeces and pseudofaeces. Persson (1983) and Dittman (1990) 

agreed that adult populations of suspension- and deposit-feeders might consume or 
disturb any settling larvae, while Mileikovsky (1974) additionally stated that larvae 

that pass through the mussels alive, subsequently have little chance of survival in the 

mussel deposits. Thus, the arrival of settling pelagic larvae is probably not an 
important structuring factor in mussel bed communities. 

Various researchers have identified methods of reproduction adopted by 

infaunal taxa, which may affect their presence and abundance within mussel bed 

communities and produce seasonal patterns in community structure. Tokeshi (1995) 

and Tokeshi and Romero (1995) have suggested that temporal variations in diversity 

and abundance of macroi nve rteb rates associated with mussel patches probably 
reflect prolonged reproductive cycles, along with the stochastic nature of settlement 

and mortality that often typifies many marine species with planktonic larvae 
(Underwood and Fairweather (1989). Dittman (1990) noted that only infauna with a 
benthic larval development, rather than pelagic development successfully recruited 
and established populations in mussel beds in the Wadden Sea., For example, 

oligochaetes form cocoons from which juveniles emerge (Hunter and Arthur, 1978); 

some oligochaetes and polychaetes fragment asexually (Levinton and Stewart, 1982; 

Oliver, 1984); some polychaetes, bivalves and crustaceans brood their young 
(Pechenik, 1979); and many taxa disperse as larvae, juveniles and adults (Commito, 

1982; Ambrose, 1986). Best (1978) found that most brooding species were not 
adversely affected by densely packed populations of the clam, Mercenaria 

mercenaria. Amphipods, which brood their young and nematodes, which 
encapsulate their developing embryos, are abundant in mussel beds from several 
localities (Radziejewska, 1986; Tsuchiya and Nishihira 1986; Jacobi, 1987a). 
Commito (1987) suggested that the oligochaete Tubificoides benedeni was abundant 
in M. edulis beds because it produced cocoons, which liberate juvenile worms 
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directly into the community. Dean (1981) stated that gregarious settling behaviour 

might partially account for species abundance patterns on mussel beds. Such 

behaviour is generally mediated by chemical signals (Crisp, 1979) and responsible 
for aggregation of barnacles, serpulid polychaetes, hydroids, and a host of other 

sessile invertebrates (Buss, 1979). 

It is likely, therefore, that the main taxa contributing to seasonal differences in 

the mussel communities in the present study are those that reproduce by non-pelagic 

methods. 

Species Immigration and Emigration 

It has been suggested that the eventual competitive outcome and 
development of a marine epifaunal community will depend on which species have 

immigrated into the community (Osman, 1977). Similarly, Schoener and Schoener 

(1981) concluded that immigration-related processes were probably responsible over 
the short-term for initiating a relatively stable species-area relationship in marine 
fouling communities. Individual species may alter actual species counts. Thus, 

different functional groups of species might be replaced by others through time, yet 

stability in the species-area slope is maintained. Stoner (1985) stated that changes 
in species composition over time on the calcareous green alga, Penicillus capitatus, 

were indicative of some non-random effects, such as differential immigration and/or 

emigration rates, while Beukema (1974) concluded that the observed spring and 

summer increases in macrobenthos biomass on a tidal flat in the Dutch Wadden Sea 

were due mainly to species immigration. Keough and Butler (1983) noted that 

species of sessile invertebrates on the shells of the fan mussel, Pinna pinna in 
Australia were never gained and lost simultaneously and sometimes successive 
immigrations occurred by chance before corresponding extinction's occurred and 
vice versa. Persson (1983) concluded that the observed seasonal variations, 
repeated from year to year, in macrobenthic community structure in the Southern 
Baltic, might result from biological events such as reproduction and migration. In 

addition, Jarvis and Seed (1997) suggested that seasonal patterns in ostracod 
abundance on epiphytes of Ascophyllurn nodosurn in North Wales might be attributed 
to seasonal migrations into the sublittoral zone. 

The suggestion that seasonal changes in the mussel community at the three 
sites were due to species immigration and emigration would imply that the taxa 
present in the mussel beds were also present on other areas of the shore. However, 
several studies have shown that the presence Of mussel beds on rocky shores 
serves to encourage species enrichment through provision of a structurally complex 
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habitat (e. g. Bayne, 1976; Suchanek, 1979; Seed, 1996). Mussel beds thus 

represent an extremely well delineated community bounded by the physical limits of 
the mussels, which in the intertidal are in turn restricted to a clearly definable zone by 

physical and biological factors (Suchanek, 1985). It is unlikely that many of the taxa 

present in the mussel matrix could -survive elsewhere on the shore, without the 

protection provided by the mussels (Tokeshi and Romero, 1995). As such, 
immigration of taxa into the mussel beds in this study from elsewhere on the three 

rocky shores is highly unlikely to be causing the observed seasonal variations in 

community structure. 

Species Interactions 

The biological interactions within a species and between species may be 

important to the developing species composition, structure and the diversity of 
marine benthic communities (Osman, 1977). Haines and Maurer (1980) established 
that seasonal changes in faunal associates of the serpulid worm Hydroides dianthus 

were due to interactions of associates and predators. Similarly, Stoner (1985) 

concluded that changes in species composition over time of Penicillus capitatus may 
be due to species interactions, including displacement of certain taxa, positive or 
negative associations and differential susceptibility to predation. Various authors 
have suggested that seasonal decreases in abundance in various intertidal marine 
habitats might be the result of predation and spatial competition (Maurer et a/, 1979). 
Keough and Butler (1983) demonstrated that the actions of a few species of resident 
organisms and predators could be shown to influence fluctuations in the number of 
species residing on the shells of the bivalve Pinna bicolor, but were not sufficient to 
account for the observed seasonal fluctuations. They decided it was more likely that, 
rather than the interactions between adult organisms, the important sources of 
variation were those processes that involved the dispersive stages of these species. 

Little is known of species interactions within mussel beds, although many of 
the species show very close 

-relationships. 
For example, on M. edulis beds in the 

Broadkill Estuary, Delaware, the nudibranchs Doridella obscura and Cratena sp. 
were found almost exclusively on the bryozoan Mernbranipora tenuis and the hydroid 
Tubularia crocea, respectively (Dean, 1981). In the same study, the predatory 
flatworm, Stylochus ellipticus was always associated with barnacles. Dean (1981) 
found a positive correlation between mobile species richness and sessile species 
richness on M. edulis beds, while a negative relationship was noted between mobile 
species richness and sessile species dominance. Such dominance of the community 
by certain sessile species may be the result of sessile adults inhibiting settlement of 
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other species (both mobile and sessile) by engulfing potential larval propagules 
(Sutherland and Karlson, 1977). 

Environmental Factors 

Physical disturbance of marine epibenthic communities, with the resultant 
local extinction of their fauna is an important factor, which might result in seasonal 

changes in community structure (Osman, 1977). Other authors such as Shelford 

(1930) and Kawahara (1965) have emphasised the importance of seasonal and 

annual changes in the physical environment, in causing change in species 

composition. 
Buchanan et a/ (1978) found that benthic macrofaunal assemblages off the 

Northumberland coast showed significant seasonal and annual variation only when 
subject to an unstable temperature regime. Warmer winter water temperatures 

resulted in the replacement of larger bodied species (e. g. the polychaete, 
Chaetozone setosa) with species of a smaller body size (e. g. the polychaete, 
Paraonis gracilis). They concluded that different suites of species enjoyed 

competitive advantage at different points of the temporal range of temperature 

variability, which in turn allowed. the community to maximise its performance 
throughout a broad range of environmental variability. Similarly, Peake and Quinn 

(1993) concluded that the seasonal differences observed in clumps of the mussel, 
Brachidontes rostratus, in Australia were probably due to physical stress on shores in 

summer and autumn, when high temperatures often coincide with low tides in the 
middle of the day, thus resulting in reduced species numbers. 

Surface water temperatures for the North Wales coast over the temporal 

scale of this study ranged from 8. OOC at the beginning of the study, in March 1998 to 
17. OOC in August 1998 and back to 7.50C in January 1999. Temperatures in the 

following twelve months, covering the period of the annual study were virtually 
identical to these. Within a mussel bed, physical conditions can be very different to 

those outside the matrix, with less extreme temperatures and humidity (Seed and 
Suchanek, 1992; Lintas and Seed, 1994). - Suchanek (1980) found that on a sunny 
day, the temperature at the base of a 25cm thick Mytilus califomianus bed was 
between 50 to 130C cooler than at the surface. Thus, although M. edulis and P. 

purpuratus beds in this study would not provide the same protection from 
temperature fluctuations as the multi-layered M. califomianus beds in Suchanek's 
study, it is still unlikely that the observed temperature changes (7.50C to 17. OOC) 

would result in any major species extinctions. In addition, none of the environmental 
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parameters measured over the course of the study were seen to affect community 

structure patterns at any of the three sites in the UK. 

A possible cause of the observed temporal and spatial variation in the 

structure of the community associated with P. purpuratus was the El Nifio-Southerp 

Oscillation (ENSO), which occurs every four to seven years, with varying intensity 

(Philander, 1990). This phenomenon is characterised by a reduction in the amount 

of upwelling of nutrient-rich, cold waters along the eastern Pacific, caused by 

warmer, nutrient-poor surface waters flowing from the western Pacific. This results in 

a drastic decline in primary productivity, which adversely affects all levels of the food 

chain (NOAA, 2000). It is widely accepted that pelagic systems are physically driven 

by large-scale, low frequency events, such as El Niho and more recently, the 

importance of such large-scale processes in structuring benthic communities has 

been recognised (e. g. Gomez-Gutierrez et at, 1995; Hernandez-Trujillo, 1999; Davis, 

2000). Many authors have shown that temporal and spatial patterns of benthos at all 
latitudes are determined by primary productivity (e. g. Alongi, 1990), while it is 

suggested that coastal upwelling promotes enrichment of littoral communities due to 

increased nutrient supply (Camus and Andrade, 1999). El Niho has been observed 

to affect significantly larval recruitment, and thus the structure of kelp forest 

communities in California (Tegner et a/, 1997; Dayton et a/, 1999), rocky intertidal 

communities in California (Sagarin et a/, 1999), tide-pool fish assemblages in 

Southern California (Davis, 2000) and coral communities in the tropical eastern 
Pacific (Fong and Glynn, 2000). Since the El Nifio event in 1997-1998 was 

particularly strong (NOAA, 2000), the phenomenon would probably affect the 

structure of mussel communities over the course of the present study, by influencing 
the reproduction and recruitment of constituent taxa. 

In summary, the multivariate analysis of the structure of the infaunal 

communities associated with M. edulis beds at three sites on the North Wales coast 
and P. purpuratus at four sites on the coast of Chile, showed significant intra- and 
inter-annual variations. Such variations in community structure are clearly the result 
of complex biological interactions and processes within the mussel matrix. However, 
it is most likely that such variations are predominantly due to seasonal patterns of 
reproduction of infaunal species, leading to fluctuations in larval abundance and 
recruitment into the mussel bed. It is also probable that many of the taxa responsible 
for seasonal changes in community structure do not utilise pelagic larvae as a means 
of reproduction. Other influencing processes such as species immigration and 
emigration, species interactions or extinctions due to temperature fluctuations 
probably play minor roles in structuring the communities. Peake and Quinn (1993), 
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similarly, concluded that seasonal variation in the structure of infaunal communities 

associated with B. rostratus were the result of a combination of unpredictable 

seasonal recruitment patterns and mortality patterns. 
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Chapter 7 

Investigations into the effect of 
substratum heterogeneity on the invertebrate communities 

associated with Mytilus edulis 
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Abstract 

Artificial mussel patches of manipulated low and high mussel density were 

placed, in the middle of the mussel zone at a site already colonised by naturally 

occurring Mytilus edulis beds. During a three-month period on the shore, 

manipulated mussel patches were colonised by 46 invertebrate taxa. The 

communities associated with mussel patches of low and high density differed, 

although not significantly, at either a univariate or multivariate level. The community 

structure of low density mussel patches showed more variability than high density 

patches. Nine dominant taxa characterised the structure of the community 

associated with the artificial mussel patches; nematodes, nemerteans, juvenile M. 

edulis, Modiolula phaseolina, chironomid larvae, Carcinus maenas, Hyale prevostii, 
Idotea pelagica and Jaera albifrons. Mussel density and mussel mass were the only 

environmental variables measured, to show significant differences between low and 
high density patches. The total number of organisms present in patches showed 
significant correlation with mussel density, while the total number of taxa showed 
significant correlation with the mass of coarse sediment. Multivariate analysis 
suggested a high degree of correlation between the environmental characteristics of 
the mussel patches and the structure of the associated community. It was concluded 
that habitat heterogeneity did have a structuring effect on the community associated 
with mussel patches of manipulated low and high mussel density at a multivariate 
level. It is unlikely that the communities associated with the artificial mussel patches 
were at the final point of colonisation, since they were less diverse than mussel 
communities previously sampled from the shore at the same site, in terms of species 
richness. The structure of the communities was probably the result of those taxa 
who reproducing during the time of the experiment, along with mobile taxa who 
recruited as adults from neighbouring natural mussel beds. 
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INTRODUCTION 

Several studies have demonstrated the pervasive effects of habitat structure 

on community composition and diversity. Biologists have long held the view that 

physically complex habitats often contain more species than physically simple ones. 

This notion has been found to be true and quantified for a variety of marine habitats 

and communities, including intertidal boulder communities (McGuinness and 

Underwood, 1986), rocky intertidal shores (Bergeron and Bourget, 1986; Bourget et 

a/, 1994; Archambault and Bourget, 1996; Thompson et a/, 1996), subtidal reefs 

(Pimm, 1994), tropical intertidal habitats (Kohn and Leviten, 1976), the epifaunal 

associates of intertidal algae (Gee and Warwick, 1994; Jarvis and Seed, 1996) and 

intertidal rockpools (Willis and Roberts, 1996). In addition, several studies have 

highlighted the effect of substratum heterogeneity on the colonisation of various 

marine habitats following either natural or artificial defaunation. For example 

Beukema et al (1999) and Ford et a/ (1999) investigated such processes in the 

infaunal associates of sandy intertidal habitats, while Kim and DeWreede (1996) 

conducted studies of recolonisation in rocky intertidal habitats. Similar studies have 

been conducted into recolonisation of subtidal reefs (Airoldi, 2000), littoral rockpools 

(Benedetti-Cecchi and Cinelli, 1996; Benedetti-Cecchi, 2000a), intertidal oyster reefs 
in the south-eastern United States (Meyer and Townsend, 2000) and estuarine 
fouling assemblages in Botany Bay, Australia (Anderson and Underwood, 1994). 

The mechanisms driving recolonisation processes are poorly understood, but 

a complicating problem is that different sources of habitat structure can be 

confounded in both surveys and experiments (Berlow, 1997). Ecologists appreciate 
that many factors concurrently influence the distribution and abundance of organisms 
and that single factor analyses or experiments are insufficient to understand how 

populations, groups of species or communities are structured (Rotenberry* and 
Wiens, 1985). As such, field experiments have proven to be powerful tools used by 

ecologists to elucidate causal processes of community organisation (Paine, 1977; 

Hairston, 1989; Lubchenco and Real, 1991). However, field experiments can be 

difficult to interpret if the effects of spatial and temporal variation are unknown. The 

most effective experiments are therefore those designed and interpreted in the 

context of a well-known system (Polis et a/, 1997). Field experiments must deal with 
both chance chaotic changes and with large random or directional variation in factors 

and forces over scales from hours to decades (Rotenberry and Wiens, 1985). 
Various authors have demonstrated experimentally, the importance of 

substratum heterogeneity as a controlling factor in community diversity, through the 

colonisation of objects in marine areas (e. g. Anderson and Underwood, 1994; Jacobi 
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and Langevin, 1996; Pugh, 1996). A variety of artificially created substrata have 
been used to investigate the effects of substratum heterogeneity on colonisation and 
diversity, including artificial crevices (Kensler and Crisp, 1965), concrete blocks 

(Kawahara, 1965) and panels of various types (e. g. Turner et al, 1969; Haderlie, 

1971), while Petraitis (1990) demonstrated that surface rugosity (i. e., surface 
heterogeneity) played an important-role in enhancing mussel recruitment on rocky 

shores in Maine, USA. 

In this chapter, the influence of substratum heterogeneity on the 

establishment and diversity of the invertebrate communities associated with M. edulis 

is investigated experimentally, using panels to which are attached mussel patches of 

manipulated density. A univariate and multivariate approach is taken to compare the 

communities associated with mussel patches of low and high mussel density. The 

extent to which various environmental parameters of the mussel matrix such as 

mussel volume and the mass of fine and coarse sediment fractions, affect community 

structure, which themselves, might be a reflection of differences in mussel density 

are also investigated. 

METHODS 

Fourteen cages, of dimensions ; z, -lOOxlOOx2Omm were constructed using 

'Twiweld' 1 Omm 2 PVC-covered wire mesh. These cages were designed to enclose a 
100x1OOmm slate slotted into the base, thus creating a completely enclosed mesh 
box. Slate was chosen as it provided a substratum similar to the rock surface on the 

shore at Point Lynas. Slightly larger Perspex panels were constructed, such that the 

entire mesh cage and slate unit could be attached using screws and held in place on 
the panels. A month prior to the commencement of the experiment, during spring 
tides in May 2000, small patches of intertidal substratum at Point Lynas were cleared 
using a paint scraper of all biota, and washed with freshwater, Patches were cleared 
such that they were equally interspersed throughout the mid-shore area, on 
substratum already extensively colonised by beds of Mytilus edulis. The Perspex 

panels without mesh cages were cemented to the shore, using quic'k-setting cement 
and left for one month, in order to test their strength of attachment. 

Mussels (shell lengths >5mm) were collected from the shore at Point Lynas 
and cleaned and sorted into Imm-size categories in the laboratory. Each of the 
fourteen mesh cages were then filled with these Mussels, such that seven of the 
cages were packed with mussels (shell length 25-35mm), providing a low mussel 
density of restricted size. The remaining seven cages were filled with mussels from 
the available size range (shell length 5-35mm) and were thus packed at higher 
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densities, thereby providing greater structural complexity and substratum 
heterogeneity. Once the mesh cages had been filled with mussels, the slate base 

was slotted into place in the base of the mesh cage and the units placed in running 

seawater in the laboratory, to allow the mussels to lay down byssal attachments. 
During this time, the mussels were fed daily on a mixture of Tetraselmis suecica and 
Rhinomonas reticulata. After one month, the fourteen artificial mussel patches were 

placed in buckets of seawater, transported to the shore at Point Lynas and screwed 

onto the pre-cemented Perspex panels. These manipulated mussel patch densities 

were randomly allocated to the Perspex panels. The panels were then left, 

undisturbed for a period of three months, in order to allow colonisation to take place. 
After this time, each, containing its mussels and all associated organisms were 

removed from the panels and immediately returned to the laboratory for sorting. 
In the laboratory, the contents of each mesh cage, including the mussels and 

associated macro- and meiofauna were sieved through a 63pm mesh, with 63pm 
filtered seawater. All material passing through the sieve was retained, placed in 

containers* and allowed to settle for 48 hours, after which time the seawater was 
decanted and any remaining material dried in at oven at 600C for 48 hours, to 

calculate the"dry weight. The mussels and their associated fauna were then fixed in 
7% formalin, placed in labelled containers, and stored in the laboratory to await 
sorting. Samples were then washed and sorted and data analysed according to 
methods previously described. 

RESULTS 

A total of 6216 infaunal organisms representing 46 different taxa had 

colonised the artificially created mussel patches at Point Lynas, during a period of 
three months. None of the univariate measures of community diversity (total number 
of taxa, total number of individuals, Margalef's index of richness, Shannon's index of 
diversity and Pielou's evenness) was significantly different between the artificially 
created patches with manipulated low and high mussel densities. 

MIDS ordination of square-root transformed infaunal abundance indicated that 
there was a small degree of separation between the mussel bed communities from 
the artificially created patches of high and low packing densities (Figure 1a). The 
communities associated with the high density mussel patches were, in general, more 
similar to each other than those communities associated with the low density 
patches, implying a greater variability in community structure at low mussel packing 
densities. A one-way ANOSIM test performed on the data, however, revealed that 
there were no s ignificant differences in community structure between the mussel 
patches with high and low packing densities (R=-0.032, p>0.05). The negative R- 
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value indicates a high degree of variation in community structure between panels 

with the same packing density, as suggested by the pattern of ordination in Figure 

Ia. MIDS ordination performed using a presence/absence transformation on infaunal 

abundance failed to demonstrate any clear separation - of the mussel bed 

communities amongst the artificially created patches at high and low packing 
densities (Figure 1b). This was confirmed by a one-way ANOSIM performed on the 

data, which showed there were no significant differences between mussel patches at 
high and low packing densities (R=-0.148, p>0.05). As was the case for square-root 

transformed data, a negative R-value indicated a high degree of variation in 

community structure between panels of the same packing density, as suggested by 

the pattern of ordination in Figure I b. 

Similarity percentages analysis (SIMPER), performed with a square-root 

transformation indicated that the communities associated with the mussel patches of 
different density were characterised, to varying degrees, by the same nine dominant 

taxa (nematodes, nemerteans, juvenile M. edulis, Modiolula phaseolina, chironomid 
larvae, Carcinus maenas, Hyale prevostii, Idotea pelagica and Jaer-a albifrons). 
Variations in the abundance of these taxa between the mussel patches and their 

contribution to differences in community structure are shown in Table 1. A similar 

result was obtained when SIMPER analysis was performed using a 

presence/absence transformation, although more taxa characterised the mussel 
communities of each packing density. While some taxa were consistently present in 

mussel patches of high and low packing density, others appeared to have more 
restricted distributions. In particular, epifaunal organisms such as barnacles and 
anemones were present mainly in mussel beds at low packing density, while many 
infaunal organisms, such as oligochaetes, benthic Foraminifera and Lasaea 

adansoni were found at greater abundance in the high packing density mussel beds. 
A breakdown of the contributions of various taxa to differences in community 
structure between mussel beds of high and low packing densities is given in Table 2. 

The total number of mussels per unit area of mussel bed was significantly 
greater in mussel beds where there was a high packing density, while the mass of 
mussels was greater in the low density beds (Table 3). None of the other 
environmental variables showed significant variation at the two packing densities. 
Univariate measures of community diversity did not show a high degree of correlation 
with environmental factors measured in the mussel beds; many showed relatively 
constant values, regardless of changing environmental conditions (Figure 2). 
However, the total number of infaunal organisms. in the mussel beds did show 
significant positive correlation with the total number of mussels (r = 0.644). In 
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addition, the total number of taxa was significantly correlated with the mass of coarse 

sediment (r = 0.669). 

Ordination by PCA of the environmental data from the mussel samples 

(Figure 1c) showed that replicate samples from mussel beds of manipulated low 

packing density clustered more distinctly than those of manipulated high density. 

The first two Principal Components accounted for 78% of the variability in the 

environmental data. PCII was a linear combination of the environmental parameters, 

with increasing values of mussel density and sediment content and decreasing 

values of mussel mass and volume. 
Determination of correlation coefficients between environmental variables 

measured in the mussel beds of manipulated packing density failed to reveal any 
high levels of correlation (r>0.95), although there was some significant correlation 

between variables (Table 4). Subsequently, all environmental variables measured in 

the mussel beds were entered into the BIOENV procedure. However, this analysis 
failed to identify any high levels of correlation between environmental parameters 

and square-root or presence/absence transformed biotic data. The mass of coarse 

sediment was the most important factor -influencing the square-root transformed 

biotic data set (r,, =0.307), while the mass of mussels and the mass of coarse 

sediment gave the highest correlation with the presence/absence transformed data 

set (r, =0.032). 
RELATE analysis performed between the environmental data similarity 

matrix, produced using normalised Euclidean distance and the biotic data similarity 
matrices, produced using Bray-Curtis similarity, with a square-root and a 
presence/absence transformation failed to reveal significant differences (R=0.006, 
p>0.05; R=-0.356, p>0.05). Thus, there is a high degree of correlation between the 
combined physical and environmental characteristics of the mussel beds and the 

multivariate structure of the associated communities. 
These results indicate that although the communities, which had colonised 

panels of manipulated low and high density, did differ, such differences were not 
significant. The community associated with low density patches showed greater 
variability than high density patches. Multivariate analysis suggested a high degree 
of correlation between the environmental characteristics of the mussel patches and 
the structure of the associated community. 

DISCUSSION 

During the three-month period that the manipulated mussel patches of low 
and high density were present on the rocky shore at Point Lynas, both were 
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Table 4 Correlation coefficients calculated between environmental variables 
measured in mussel patches of manipulated low and high mussel density at Point 
Lynas, Anglesey. Figures in bold indicate significant correlation (p<0.05). 

Mass Mussels Volume Mass Coarse Mass Fine 
Mussels Sediment Sediment 

No. Mussels -0.682 -0.510 0.068 0.423 

Mass Mussels 

Volume Mussels 

Mass Coarse 
Sediment 

0.776 0.095 -0.265 

-0.001 -0.610 

0.166 
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successfully colonised by a wide variety of invertebrate taxa. Since intertidal 

environments are often dominated by physiologically 'robust' organisms, they might 
be expected to have relatively rapid rates of colonisation (Olsgard, 1999) and this 
has been demonstrated by a number of workers, in a variety of intertidal habitats. 
For example, in a study of faunal utilisation of artificially created intertidal oyster reefs 
in the south-eastern United States, Meyer and Townsend (2000) found that the reefs 
could quickly acquire functional ecological attributes of their natural counterparts and 
were rapidly colonised by infaunal species. Similarly, in a study of the recolonisation 

of a sandy, intertidal habitat in Florida, following a massive outbreak of red tide, 

Simon and Dauer (1994) found that the fauna made a rapid recovery in terms of 

species numbers and composition. They found that polychaetes weýe the most rapid 
colonists both in terms of the number of species and individuals, while other groups, 
such as molluscs and amphipods were slower to appear since they were significantly 
affected by seasonal patterns of reproduction, and thus dispersal. Within a mussel 
bed howeVer, physical conditions can be very different to those outside the matrix, 
with reduced wave action, less extreme temperatures and an increase in 

sedimentation and humidity (Lintas and Seed, 1994). As such, the species 
occupying the mussel beds might be less robust and may not be capable of such 
rapid rates of recolonisation. Several workers have shown that the recovery of 
mussel beds from disturbance is a long-term process and varies from one 
assemblage to another. For example, when Mytilus califomianus were removed from 
the rocky intertidal, complete recolonisation took around 60-80 months, although this 
figure refers to recolonisation by the mussels themselves, along with the associated 
community (Suchanek, 1979). Paine and Levin (1981) however, found that very 
small patches created in M. califomianus beds were colonised almost immediately 
due to a leaning response of the border mussels, in which surrounding mussels 
encroach into the space. However, both these studies relate to complete recovery of 
mussel communities from cleared bare rock, rather than recovery from defaunated 
intact mussel patches. In a study of the colonisation of artificial mussel patches, 
Suchanek (1979) demonstrated that within one year, an associated community 
equivalent to real mussel beds of qOmparable structural complexity had become 
established. It is likely therefore, that the communities in the present study were not 
at the final point of recolonisation, since they were less diverse than mussel 
communities previously sampled from the shore at Point Lynas, in terms of species 
richness (see Chapters 2-5). 

Analyses of the mussel bed communities, which had developed on the 
experimental panels, revealed that patches of low and high mussel density were 
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characterised by the same subset of around ten taxa. Such observations might 
simply reflect the availability of those taxa reproducing during the term of the 

experiment. Many authors have demonstrated that the nature of the recolonisation 
process in marine benthic communities, following disturbance or defaunation is 
dependent on the species present around the time of cessation of the disturbance. 
For example, Suchanek (1979) stated that when Mytilus califomianus populations 
were artificially or naturally disrupted, season was an important factor in determining 

the identity and timing of colonising fauna and flora that occupied the recovering 
disturbance gaps. In addition, Dean (1981) showed that species settling into a 

recovering Mytilus edulis community in the Broadkill Estuary, Delaware, displayed 

highly seasonal settlement patterns that determined much of the development 

sequence. Similarly, Kaehler and Williams (1998) and Willis and Roberts (1996) 
found that in colonisation studies on rocky shores in Hong Kong and New Zealand, 

respectively, the timing of liberation of rock space was important for the development 

of floral and faunal assemblages. Settlement and metamorphosis of pelagic larvae 

are generally considered the most critical phases in the development of marine 
benthic assemblages (Olsgard, 1999). Variation in the recruitment of benthic marine 
invertebrates is often attributed to the interaction between the supply of new 
individuals to a habitat and the availability of space for colonisation when they arrive 
(Minchinton, 1997). Also important in determining variation in recruitment is the 
response of the larvae to the characteristics of the habitat, since larvae of many 
benthic marine invertebrates show a high degree of specificity of requirements when 
selecting a habitat (e. g. Benedetti-Cecchi, 2000a; Downes et a/, 2000). 

Previous studies of patterns of recolonisation have demonstrated that 
variability in species recruitment at early stages of colonisation can dictate much of 
the subsequent dynamics in the system (e. g. Dayton, 1971; Menge, 1976; Osman, 
1977; Lubchenco and Menge, 1978; 

Lnedetti-Cecchi, 
2000b). In a study of the 

dynamics of space occupancy on a mussel-dominated shore in subtropical South 
America, Tokeshi and Romero (1995) demonstrated a clear trade-off between 
colonisation ability and competitive ability amongst many taxa, which affected 
community structure. For example, while the barnacle Jehlius cirratus showed much 
higher colonisation rates than the gallery-building Polychaete, Phragmatopoma 
moerchi, the latter species 'was competitively superior. Similarly, in a study of 
colonisation patterns on intertidal sand-flats, Thrush et a/ (1992) highlighted the 
importance of facilitatory interactions in macrofaunal recolonisation, with the 
presence of certain taxa affecting the abundance of others. Similar interactions have 
been observed on rocky shores in South Africa (Vanzyl and Robertson, 1991) and 

253 



Oregon, North America, where Farrell (1991) noted that both direct and indirect 

interactions between species determined community structure. 
It is highly probable in the present study, that some or all of these common 

taxa did not colonise the mussel patches as juveniles, but migrated as adults from 

the surrounding mussel beds. Peterson et a/ (1986) stated, that in mussel beds, only 
those species which can migrate to recently opened patches will be common in the 

community, whether they migrate from older patches or from areas that are not 
dominated by mussels. Similarly, Reed et a/ (1997) pointed out the importance of 

adult dispersal in the recovery of populations that have been locally disturbed and 
that many sessile species, which have limited dispersal potential, often rapidly 

colonise areas that have been recently disturbed. In the present study, many of the 

more common taxa, such as nemerteans, isopods, amphipods and gastropods 
probably recruited to the mussel patches in thi's manner, rather than as juveniles, 

since panels were placed on the shore in areas already colonised by mussels. 
The present study, conducted for only three months, was unable to identify 

any significant differences in community structure between the mussel patches of 
manipulated low and high density, with the same abundant taxa dominating both. 
Community recovery from pollution events, such as oil spills has been shown to 

proceed through a series of severe fluctuations of a few dominant interacting 

species, before diversity and equilibrium are restored (Southward, 1982). Thus, as 
previously suggested, it is possible that the mussel patches in the present study were 
at an early stage of community development and any differences in community 
structure due to substratum heterogeneity were masked by this factor. Therefore, 
had it been possible to leave the panels on the shore for a longer period of time, 
differences in community structure might have emerged. Analyses of the data did 
however, suggest that thete was some link between environmental parameters and 
the associated infaunal community. Many studies have demonstrated the important 
effects of substratum heterogeneity on the structure of a variety of benthic 
assemblages. For example, in studies of the diversity of colonising mobile epifauna 
on artificial panels, Jacobi and Langevin (1996) found that the effect of the original 
substratum complexity seemed to be restricted to the early stages of colonisation, 
since after this initial period, the substratum became modified by organisms 
themselves. Jones and Boulding (1999) demonstrated both with the use of natural 
and artificial substrata, that significantly more intertidal littorinid snails recruited to 
topographically complex microhabitats than less complex ones. In a study of the 
effect of artificial macrophyte beds of varying structure on fish assemblages in 
southern Australia, Jenkins and Sutherland (1997) concluded that the physical 
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structure of the habitat influenced fish assemblages beyond the simple presence or 

absence of structure. In addition, several workers have demonstrated the important 

effect of substratum heterogeneity on the communities associated with mussel beds. 

Suchanek (1980) concluded that the physical structure of the mussel matrix was the 

single most important factor in promoting biological diversity. In both Mytilus edulis 
and M. califomianus beds, species richness and diversity were shown to be positively 
correlated with age and structural complexity of the mussel matrix (Suchanek, 1979, 
1985; Tsuchiya and Nishihira, 1985,1986; Lintas and Seed, 1994). Possible 

mechanisms for this apparent positive effect of habitat heterogeneity on benthic 

community species diversity have been suggested and include; the provision of 

spatial refuges from predators or physical stress (Kohn and Leviten, 1976; 
Lubchenco and Menge, 1981) and reduction of competitive interactions, through the 

provision of a variety of substrata for feeding and shelter (Abele, 1974; Ricklefs, 
1980). In addition, Ricklefs (1980) stated that it is probable that the heterogeneity 

created by the presence of many species provides further opportunity for the 
diversification of life, i. e. that diversity tends to breed more diversity. 

In the present study, the mass of mussels, along with the mass of coarse 
sediment in the mussel patches were seen to be the two most important factors in 

structuring the community, with mussel density being a secondary, less important 
factor. Several workers have documented the positive effects of coarse sediments 
on diversity of rocky intertidal assemblages as a result of increased habitat diversity 
(e. g. Hicks, 1980; Gibbons, 1988). Using artificially constructed byssal mats, Crooks 
(1998) concluded that the presence of physical structure alone can produce several 
of the patterns observed in naturally occurring mussel beds and thus the presence of 
the mussels themselves was not an important factor. Similarly, Tsuchiya and 
Nishihira (1986) demonstrated that the observed lower species richness in 
monolayered M. edulis patches in Japan compared with multi-layered patches, was 
probably due to an increase in sediments and shell fragment contained within the 
latter. Thus, it would appear from these studies that the substratum provided by the 
sediments, byssal threads and shell fragments trapped within the mussel beds is 
more important than the structure provided by the mussels themselves, although 
these components are themselves dependent on the presence of mussels. 
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GENERAL DISCUSSION 

The preceding chapters clearly demonstrate that a wide variety of 

invertebrates inhabit intertidal mussel patches on rocky shores. The two mussel 

species in the present study; Mytilus edulis and Perumytilus purpuratus both formed 

similar, solid beds in the rocky intertidal zone in the British Isles and Irish Republic 

and Chile, respectively. Significant differences were, however, observed in the size 

and age structure of populations of the two mussel species (Chapter 3). M. edulis 

beds contained a higher overall density of mussels, with a greater number of small 

individuals, while P. purpuratus beds were more loosely packed and contained fewer 

small individuals. M. edulis had a faster growth rate than P. purpuratus, although P. 

purpuratus attained a greater maximum age. A total of 182 different invertebrate 

taxa were identified in intertidal M. edulis beds from various locations around the 

coasts of the British Isles and Irish Republic, while 61 different taxa were identified, to 

higher taxonomic levels, from the intertidal P. purpuratus beds in Chile, South 

America. The invertebrate communities associated with the two mussel species 

showed a high degree of variation over different spatial scales (Chapters 4 and 5), 

along with temporal variation (Chapter 6). This variation in the structure of the 

communities is the result both of changes in the abundance of the commoner taxa, 

along with more fundamental differences in the identify of taxa present. Since 

mussel bed communities occur in similar habitats, throughout the world, they might 

prove useful in monitoring studies. However, if they are to prove useful tools for 

monitoring the effects of anthropogenic activities in the marine environment, 

establishing the extent of natural variation in community structure is essential, 

encompassing both spatial and temporal scales. 
Aggregations of mussels drastically modify the local environment through 

enhanced water retention, biodeposition of faecal and pseudofaecal material 

('mussel mud'), and the provision of additional attachment surface and shelter by the 

mussels themselves - features which serve to encourage species enrichment in 

habitats wherever mussels are present in abundance, such that mussels are effective 
'ecosystem engineers' (Lawton and Jones, 1995; Seed et a/, 2000). Some of the 

organisms associated with intertidal mussel beds live attached to the mussel shells 
(epibiota), others typically live amongst the rich sediments and shell fragments which 

accumulate at the base of the bed (infauna), whilst mobile organisms rove freely 
through the complex matrix of shells and interconnecting byssus threads (Seed, 
1996). The relationship between the mussels and each of the associated species 
may, be negative, neutral or positive, while in general, infauna seem to be of 
negligible consequence to the health and well-being of the mussel beds, although 

257 



competitive abilities of the individual species are difficult to quantify (Svane and 
Setyobudiandi, 1996). Suchanek (1980) stated that some species are attracted to 

mussel beds by food resources, while others utilise the space as a refuge from 

physically imposed stresses (such as wave action or desiccation) or biological 

stresses (such as predation). As predators and scavengers locate these initial 

colonisers and other competitors enter the system, trophic links become more 

complex, thus increasing community stability (MacArthur, 1955; Paine, 1966). 

Various authors have stated that the increased species diversity on mussel beds 

produces a more complex food web, which in turn results in enhanced stability of the 

whole community (Brown and Seed, 1976; Dean and Hurd, 1980). 

Mussel patches thus undoubtedly increase biodiversity on rocky shores, 
through a variety of mechanisms and several studies have described the diverse 

infaunal assemblages associated with intertidal mussel beds (e. g. Suchanek, 1980; 

Tsuchiya and Nishihira, 1985,1986; Jacobi, 1987; Tsuchiya and Bellan-Santini, 

1989; Ong Che and Morton, 1992; Peake and Quinn, 1993; Lintas and Seed, 1994; 
Seed, 1996). The present study generally found intertidal mussel beds on rocky 
substrata to support a greater number of invertebrate taxa than has previously been 
described, with the possible exception of Mytilus califomianus on the west coast of 
North America (a larger bodied-mussel which forms particularly thick multi-layered 
beds). This might at least in part, be due to the fact that few of these previous 
studies have investigated spatial and temporal variability of these communities and 
have merely provided a spatially or temporally static description of the communities. 

Many interacting and complex factors are probably responsible for the 
observed variation in the structure of the communities associated with intertidal 
mussel beds in the present study. Amongst them, mussel density is probably an 
important structuring factor (Chapter 7). However, understanding the dynamics of 
communities such as those associated with mussels requires integrating the local 
ecological perspective and traditional niche-based , notions, such as resource 
partitioning, with large-scale phenomena (Myers, 1994) and evolutionary history 
(Hugueny et a/, 1997, Karlson and Cornell, 1998,1999). Such integration will 
necessarily encompass multiple spatial and temporal scales (Karlson and Cornell, 
1999). Sagarin et a/ (1999) concluded that in studies of change in intertidal 
community structure, climatic warming drove the observed range-related community 
shifts. The authors concluded that habitat changes anthropogenic effects, indirect 
biological interactions, El Nifio-Southern Oscillation (ENSO) events and upwelling are 
considered to be less important than climate change. 
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Mussel beds in the present study were observed to support generally similar 

overall numbers of taxa, when studied on similar temporal scales. This phenomena 

is reflected in the literature, in studies of communities associated with mussel beds at 

different locations and even between intertidal beds of different mussel species (see 

Seed, 1996; Seed et a/, 2000 for reviews). Seed (1996) observed that in mussel 

beds of similar structural complexity and size, in different parts of the world, the total 

number of associated species and individuals are remarkably similar. To some 

extent the results of this work support this statement; the macroi nve rteb rate 

communities associated with rocky intertidal mussel patches particularly when these 

patches experience similar physical conditions and are of similar size and structural 

complexity, often exhibit a remarkable degree of conformity when compared using 

simple univariate statistics. Such observations suggest that when the associated 

communities are at, or near, equilibrium, mussel beds are occupied by taxonomically 

and functionally similar species. It seems therefore, that the pattern of parallel 

communities on rocky shores may be replicated to a certain extent, on a much finer 

scale within mussel patches (Seed, 1996). However, such univariate techniques, 

which collapse the full set of species counts into a single coefficient, tend to grossly 

oversimplify complex systems and reveal little about community organisation 
(Ricklefs and Schulter, 1993). Thus, although in many cases, the communities 

associated with intertidal mussel patches in the present study show little temporal or 

spatial variation in terms of their species richness, diversity and evenness, significant 
differences do emerge when multivariate techniques are applied to these same 

communities. The present study thus illustrates the importance of using a variety of 

resolutions to measure biodiversity. 
Sites in the present study have assumed their distinctive character by virtue 

of sufficient and consistent differences in emphasis between taxa. Those taxa 

contributing to spatial and temporal differences when emphasis was placed on 
abundance, were rarely the same as those contributing to differences based on 
presence alone, such that diagnostic taxa may or may not be dominant. Whether 

such differences reflect increasingly optimal conditions for each taxa, or whether 
what is perceived is a spatial mosaic built up and maintained by differential fecundity 

and dispersion tendencies of taxa and subject to flux is not clear. For the purposes 
of this summary of the data presented in the preceding chapters, it was appropriate 
to take a holistic approach to analysis, to search for influential subsets of taxa, whose 
among-sample relationships capture nearly the same multivariate pattern as the full 
taxa set. BVSTEP analysis performed on the data for this purpose (as described in 
Chapter 2) revealed that there is a great deal of structural redundancy in the 
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communities associated with intertidal mussel beds (Table 1 and 2). This 

phenomenon was particularly apparent in small-scale spatial, or intra-shore 

variations in the structure of mussel communities, where a very small subset of taxa 

captured the same multivariate pattern as the full taxa set. It is commonly held that 

samples closer together in space should be more similar to each other than those 
further apart because of responses of organisms to patchy habitats or other 
organisms (e. g., Brown, 1984; Palmer, 1988,1992; Carlile et a/, 1989, Underwood 

and Chapman, 1996). In contrast, BVSTEP failed to identify any small subsets of 
taxa capturing the temporal variation in the communities. This reflects the fact that 

these data sets encompass fluctuations in presence and abundance due to 

reproductive cycles, in all taxa present. It is clear that temporal differences at sites 
do occur, as a result of reproductive patterns of the taxa present and as such, any 
investigations of patterns in community structure should take both seasonal and 
annual variation into account. 

Analysis revealed a degree of consistency in the presence of certain taxa, 
such that intertidal M. edulis beds support a 'baseline' community characterised by a 
set of taxa, ubiquitous across spatial and temporal scales, namely nematodes, 
nemerteans, oligochaetes, cirratulid polychaetes and Fabricia stellaris, Clunio sp. 
larvae, mite sp. 1, the ostracods Heterocythereis albomaculata and Leptocythere 
pellucida, the isopods Idotea pelagica and Jaera albifrons, the amphipod Hyale 
nilssoni, the tanaid Tanais dulongfi, the decapod Carcinus maenas, the gastropods 
Rissoa parva, Skenea serpuloides and Brachystomia scalaris and the bivalve Lasaea 
adansonL Similar observations have been made in other marine assemblages, for 

example, Moore (1986) identified a set of amphipod species found in characteristic 
low or high abundance in kelp holdfast communities at northern British sites. Such 
ubiquitous taxa were often the most important in discriminating among assemblages 
across spatial and temporal scales. The same taxa were also important for 

measuring small-scale patchiness within each assemblage (i. e. between replicates 
on a shore). Similar results have been observed in other rocky shore habitats (e. g. 
Underwood and Chapman, 1998). Thus, investigations of this small subset of 
species, rather than the entire community structure, might prove to be a useful tool 
for future monitoring of these communities. In addition, since this study has shown 
that intertidal mussel beds of similar structure in different geographical locations 
support similar overall numbers of taxa and individuals, their overall diversity at 
comparable taxonomic levels might be monitored to reflect the quality of the 
environment. 
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Mussels have been used extensively as biomonitors of environmental water 
quality throughout the world (e. g. Phillips, 1980; Bourgoin, 1990). Populations of 
intertidal mussels possess a variety of attributes, which facilitate their use for such 
monitoring studies (Widdows and Donkin, 1992). They have a wide geographical 
distribution and are commonly the dominant primary space occupiers on 'rocky 

shores. In addition, mussel populations are relatively stable and can be sufficiently 
large for repeated sampling, thus providing data on short and long-term community 

changes- arising from anthropogenic activity. Since mussel populations are 

sedentary, their associated assemblages are therefore better than completely mobile 

species as integrators of anthropogenic activity in a given area. Mussels themselves 

are relatively tolerant of a wide - range of environmental conditions, including 

moderately high levels of many types of contaminants, so given that they are 
suspension-feeders that pump large volumes of water and concentrate many 
chemicals in their tissues, the measurement of contaminants in mussel tissues 

provides an assessment of biological availability. Additionally mussels have a low 
level of activity of those enzyme systems capable of metabolising organic 
contaminants and thus measurements of such compounds in mussel tissues 

accurately reflects the magnitude of environmental contamination. 
With the gradual acquisition of biological data on individual species along with 

communities, it becomes possible to understand patterns of distribution and to 
interpret community organisation. From such an understanding flows a capacity for 
prediction which is central to any baseline application (Lewis, 1980). Gross changes 
in the relative abundance of 'standard or indicator' species, or incursions by foreign 
species would suggest causes beyond those encompassed by such natural spatial or 
temporal variation, such as described here. Thus, although on initial investigation, 
the fauna inhabiting intertidal mussel beds might be considered intrinsically too 
complicated to play a useful role in surveillance and monitoring contexts, this study 
does suggest that a 'baseline' community occurs in relatively non-impacted mussel 
beds, many of which can be identified at higher taxonomic levels. In order to 
investigate whether this baseline community remains unaltered in mussel beds 
impacted from human activity, further investigations would be necessary. Thus, 
there appears to be a great deal of structural redundancy in the communities, such 
that when analyses are performed on the data, this small subset of the species data 
give a, similar result to that of the full species analysis. Other authors have 
documented similar findings in a variety of marine benthic habitats (e. g. Gray et a/, 
1988; Warwick, 1993; Clarke and Warwick, 1998). Furthermore, many of these 
studies, concentrating on the effect of anthropogenic activities on the structure of 
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these communities have highlighted the fact that clear differences in community 

structure can be seen at relatively high taxonomic levels, thus removing he need to 

identify all organisms to the species level. It is the author's opinion that some of 
these baseline members of the community might occur in reduced population density 

in such an impacted site and as indicator species would serve as a useful monitoring 
tool. The statement that there is always a need for experimental verification of field 

hypotheses (Underwood, 1986) would apply here. As biodiversity typically reflects 
the quality of habitats and communities, mussel patches could prove to be valuable 
bioindicators of coastal and estuarine water quality. These data provide a rationale 

for utilising the communities associated with intertidal mussel beds in future 

monitoring studies, for example in investigations into the effects of anthropogenic 

activities on coastal areas. They highlight the need to recognise the high degree of 
temporal and spatial variation in the structure of these communities in such studies. 
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Appendix 1: Pearson's correlation coefficients (r), calculated between the abundance's of 
the'118 taxa (number in italics) present in the mussel beds at Point Lynas and White Beach, 
during the study of small-scale spatial variation in community structure (see Chapter 4). The 
number code for taxa is given in the table following. Significant correlation's are marked in 
bold; * indicates one individual present only in samples. 

1 2 3 4 5 
2 -0.034 
3 0.062 -0.017 
4 0.039 -0.050 0.029 
5 0.158 -0.020 -0.031 0.205 
6 0.176 0.066 0.131 -0.090 -0.038 
7 0.294 -0.055 0.115 0.029 -0.050 
8 -0.034 -0.011 -0.017 -0.050 -0.020 
9 -0.034 -0.011 -0.017 -0.050 -0.020 
10 0.339 -0.011 -0.017 -0.050 -0.020 
11 0.327 -0.014 -0.021 -0.052 -0.024 
12 -0.046 -0.015 -0.024 -0.067 -0.027 
13 -0.079 -0.027 -0.041 -0.032 0.296 
14 -0.043 -0.015 -0.022 -0.063 0.162 
15 -0.034 -0.011 -0.017 -0.050 -0.020 
16 -0.074 -0.032 0.570 0.016 -0.040 
17 -0.042 -0.014 -0.022 -0.024 -0.025 
18 0.239 -0.030 -0.046 -0.131 -0.053 
19 -0.055 -0.019 -0.028 -0.040 -0.033 
20 -0.034 -0.011 -0.017 -0.050 -0.020 
21 -0.034 1.000 -0.017 -0.050 -0.020 
22 -0.034 -0.011 -0.017 -0.050 -0.020 
23 -0.034 -0.011 -0.017 -0.050 -0.020 
24 -0.034 -0.011 -0.017 -0.050 -0.020 
25 -0.065 -0.022 -0.034 -0.017 -0.039 
26 0.252 -0.019 -0.029 -0.078 -0.033 
27 0.339 -0.011 -0.017 -0.050 -0.020 
28 -0-034 -0.011 -0.017 -0.050 -0.020 
29 -0.046 -0.015 -0.024 -0.067 -0.027 
30 -0.048 -0.016 -0.025 0.036 -0.029 
31 -0-094 -0.032 -0.048 0.007 -0.056 32 -0.057 -0.019 -0.029 0.066 -0.034 
33 0.339 -0.011 -0.017 -0.035 -0.020 
34 0.272 -0.026 -0.039 -0.103 -0.045 
35 -0.050 -0.049 -0.064 -0.066 -0.065 36 0.312 -0.015 0.270 -0.020 -0.026 
37 -0.034 -0-011. ' -0.017 -0.050 -0.020 38 -0.043 -0.015 -0.022 0.100 -0.026 39 -0.034 -0-011 , -0.017 0.150 -0.020 40 -0.034 -0.011 -0.017 -0.050 0.571 
41 -0.114 -0.042, 0.029 0.095 0.070 
42 -0.069 -0.023 -0.036 0.010 0.260 
43 -0.034 -0-011', -0-017 0.020 -0.020 44 0.217 -0.016- -0.025 -0.064 -0.029 45 -0. '034 -0.011 -0.017 -0.050 -0.020 46 0.015 -0.010- -0.008 0.160 -0.034 47 -0.056 0. '073 0.058 0.061 0.178 
48 0.006 -0.072 0.315 0.122 0.082 
49 -0.054 -0.018 -0.028 -0.059 0.280 
50 0.027, 0.127, 0.678 0.174 0.016 
51 -0.072 -0.093 -0.041- 0.222, -0-003 52, -0.053 -0-018 -0.027- 0.542. 

- -0-031 53 -0.034' -0.011 -0.017 -, - 0.105 -, -0.020 54 -0.034 -0.011 -0.017 0.150 -0-020 

0.279 
-0.044 -0.050 

0.100 0.049 -0.011 
0.077 0.287 -0.011 
0.055 -0.094 -0.014 

-0.064 -0.128 -0.015 
0.003 0.120 -0.027 
0.336 -0.038 -0.015 
0.364 -0.001 -0.011 
0.161 0.173 -0.032 

-0.084 -0.042 -0.014 
0.025 -0.043 -0.030 
0.048 0.074 -0.019 

-0.077 -0.102 -0.011 
0.066 -0.055 -0.011 

-0.088 0.007 -0.011 
0.166 -0.007 -0.011 

-0.066 -0.092 -0.011 
-0.024 0.090 -0.022 
-0.031 -0.154 -0.019 

0.122 0.064 -0.011 
-0.066 70.092 -0.011 

0.070 0.050 -0.015 
-0.070 -0.057 -0.016 

0.084 0.012 -0.032 
-0.006 -0.060 -0.019 

0.166 0.042 -0.011 
0.00 -0.094 -0.026 

-0.167 -0.061 0.025 
0.053 0.297 -0.015 

-0.099 -0.095 -0.011 
0.011 0.003 -0.015 

-0.055 -0.094 -0.011 
-0.033 -0.118 -0.011 

0.079 0.168 -0.042 
-0.010 -0.062 -0.023 
-0.099 0.084 -0.011 

0.157 0.193 -0.016 
0.044 -0.025 -0.011 
0.239 0.254 -0.075 
0.167 0.003 -0.054 

-0.041 0.289 0.052 
-0.073 -0.059 -0.018 

0.235 0.176 -0.061 
-0.161 0.109 -0.005 
-0.149 0.074 -0.018 
-0.022 -0.136 -0.011 
-0.055 -0.094 -0.011 
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1 2 3 4 5 6 7 8 
55 -0.141 -0.029 0.147 0.144 0.012 0.144 -0.000 -0.051 56 -0.126 -0.018 -0.065 0.181 0.077 -0.134 -0-101 -0.047 57 -0.075 -0.027 0.404 0.085 0.011 0.218 0.339 -0.038 58 -0.035 -0.012 -0.018 -0.022 -0.021 -0.090 -0.110 0.036 
59 0.339 -0.011 -0.017 -0.045 -0.020 0.022 -0.092 -0.011 60 -0.043 -0.015 -0.022 -0.063 -0.026 -0.076 -0.061 -0.015 61 0.114 -0.046 -0.089 -0.133 -0.041 -0.216 -0.284 0.020 
62 -0.075 -0.039 -0.059 0.192 -0.043 -0.095 -0.104 -0.039 63 -0.034 -0.011 -0.017 -0.050 -0.020 0.044 -0.036 -0.011 64 -0.006 -0.022 -0.016 0.488 -0.012 -0.105 0.115 -0.022 65 -0.034 -0.011 -0.017 -0.040 -0.020 -0.066 0.099 -0.011 66 -0.010 0.093 -0.039 -0.111 -0.045 -0.026 -0.187 0.506 
67 -0.034 -0.011 -0.017 -0.050 -0.020 -0.055 -0.038 -0.011 68 -0.034 -0.011 -0.017 -0.050 -0.020 -0.088 -0.058 -0.011 69 -0.034 -0.011 -0.017 -0.050 -0.020 0.353 0.091 -0.011 70 -0.009 -0.036 -0.055 0.158 -0.063 -0.213 0.014 -0.036 71 0.339 -0.011 -0.017 -0.050 -0.020 -0.033 -0.081 -0.011 72 -0.043 -0.015 -0.022 -0.063 -0.026 -0.073 -0.038 -0.015 73 -0.128 -0.082 -0.054 0.189 -0.121 -0.301 0.081 0.149 
74 -0.048 -0.016 -0.025 -0.025 -0.029 -0.117 0.055 -0.016 75 0.071 0.036 0.329 0.074 0.003 0.444 0.470 -0.064 76 0.188 -0.025 0.187 -0.048 0.250 0.156 0.314 -0.025 77 0.029 -0.052 -0.004 -0.116 0.054 -0.032 0.148 -0.052 78 0.009 -0.032 -0.048 -0.069 0.436 -0.069 -0.105 -0.032 79 * 80 0.148 -0.030 0.316 -0.079 -0-053 0.182 0.432 -0.030 81 -0.034 -0.011 -0.017 -0.035 -0.020 -0.022 0.154 -0.011' 82 -0.056 -0.077 0.126 0.104 -0.085 0.195 0.214 -0.098 83 -0.019 0.103 0.413 0.326 0.130 0.399 0.304 -0.089 84 -0.041 -0.014 -0.021 0.065 -0.024 0.183 0.175 -0.014 85 0.084 -0.038 -0.058 -0.164 -0.067 0.269 0.063 0.114 86 0.339 -0.011 -0.017 -0.050 -0.020 -0.033 -0.081 -0.011 87 -0.069 -0.023 -0.036 -0.102 -0.041 -0.167 -0.181 -0.023 88 -0.048 -0.016 -0.025 -0.067 -0.029 -0.117 -0.089 -0.016 89 0.055 -0.044 -0.034 -0.067 0.049 0.040 0.058 -0.044 90 0.339 -0.011 -0.017 -0.035 -0.020 0.166 0.042 -0.011 91 -0.034 -0.011 -0.017 -0.045 -0.020 -0.088 -0.024 -0.011 92 -0.089 -0.030 -0.046 0.227 -0.053 -0.093 -0.096 -0.030 93 0.097 -0.033 0.110 0.128 0.096 0.045 -0.085 -0.033 94 -0.034 -0.011 -0.017 -0.035 -0.020 0.111 -0.040 -0.011 95 0.140 -0.031 -0.047 -0.124 -0.054 0.047 0.044 -0.031 96 -0.034 -0.011 -0.017 -0.050 -0.020 -0.077 -0.148 -0.011 97 -0.048 -0.016 -0.025 0.032 -0.029 -0.039 0.101 -0.016 98 -0.034 -0.011 -0.017 0.150 -0.020 -0.055 -0.094 -0.011 99 0.252 -0.019 -0.029 -0.064 -0.033 0.110 -0.008 -0.019 100 -0.048 -0.016 -0.025 -0.071 -0.029 0.204 0.142 -0.016 101 0.142 -0.044 -0.067 -0.090 -0.022 0.054 -0.050 -0.044 102 0.078 -0.053 0.113 -0.068 -0.031 -0.020 0.156 0.053 103 0.083 -0.044 -0.067 -0.148 -0.016 0.161 -0.022 -0.044 104 -0.122 -0.041 0.029 0.006 0.105 0.224 0.083 -0.041 105 -0.045 -0.015 -0.023 -0.067 -0.027 0.022 -0.125 -0.015 106 0.152 0.007 0.002 0.239 0.198 0.279 0.265 -0.144 107 0.076 -0.001 0.024 -0.026 0.027 0.212 0.288 -0.042 108 0.339 -0.011 -0.017 -0.050 -0.020 0.077 0.287 ý0.011' 109 -0.064 -0.033 -0.027 0.0ý7 0.257 -0.026 -0.192 -0.033 110 -0.034 -0.011 -0.017 -0.050 -0.020 0.000 0.017 -0.011, ill -0.034 -0.011 -0.017 -0.050 -0.020 -0.022 -0.118 -0.011 112 -0.047 -0.016 -0.024 -0.026 -0.028 -0.107 -0.114 -0.016 113 -0.034 -0.011 -0.017 -0.035 -0.020 -0.099 0.142 -0.011 114 -0.034 -0.011 -0.017 -0.050 -0.020 -0.022 -0.118 -0.011, 115 -0.034 -0.011 -0.017 -0.045 -0.020 -0.077 0.044 -0.011 116 0.22S -0.057 -0.069 -0.093 -0.101 0.154 0.126 -0-057 
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1 2 3 4 5 6 7 8 
117 0.112 -0.038 0.065 -0.030 0.063 0.055 0.192 -0.038 

9 10 11 12 13 14 15 16 
10 -0.011 
11 -0.014 -0.014 
12 -0.015 -0.015 -0.018 
13 -0.027 -0.027 -0.031 -0.036 
14 -0.015 -0.015 -0.017 -0.020 -0.034 
15 -0.011 -0.011 -0.014 -0.015 -0.027 0.948 
16 -0.032 -0.032 -0.027 -0.043 -0.059 -0.040 -0.032 
17 -0.014 -0.014 -0.017 -0.019 -0.033 -0.018 -0.014 0.245 
18 -0.030 -0.030 0.183 -0.041 -0.071 -0.039 -0.030 0.175 
19 -0.019 -0.019 -0.022 -0.025 -0.043 -0.024 -0.019 0.610 
20 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 
21 -0.011 -0.011 -0.014- -0.015 -0.027 -0.015 -0.011 -0.032 
22 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 
23 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 0.047 
24 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 
25 -0.022 -0.022 -0.026 -0.030 -0.051 -0.028 -0.022 0.324 
26 -0.019 -0.019 0.797 0.536 -0.044 -0.024 -0.019 -0.052 
27 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 
28 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 
29 -0.015 -0.015 -0.018 -0.021 0.492 -0.020 -0.015 -0.043 
30 -0.016 -0.016 -0.019 0.624 -0.038 -0.021 -0.016 -0.045 
31 -0.032 -0.032 -0.038 -0.043 -0.074 -0.040 -0.032 0.011 
32 -0.019 -0.019 -0.023 0.144 -0.045 -0.025 -0.019 -0.054 
33 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 ý-0.011 -0.032 
34 -0.026 -0.026 0.712 0.220 -0.023 -0.033 -0.026 -0.071 
35 -0.049 0.062 -0.058 0.567 0.094 -0.063 -0.049 -0.118 
36 -0.015 -0.015 -0.017 -0.020 -0.034 -0.019 -0.015 -0.040 
37 -0.011 -0.011 -0.014 0.439 -0.027 -0.015 -0.011 -0.032 
38 -0.015 -0.015 -0.017 -0.020 -0.034 -0.019 -0.015 -0.040 
39 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 
40 -0.011 -0.011 -0.014 -0.015 -0.027 0.306 -0.011 -0.032 
41 -0.012 -0.042 -0.050 -0.057 0.087 0.122 0.112 0.107 
42 -0.023 -0.023 -0.028 -0.032 0.245 -0.030 -0.023 -0.011 
43 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 
44 -0.016 -0.016 0.122 -0.022 -0.038 -0.021 -0.016 0.029 
45 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 
46 0.114 0.210 -0.061 -0.079 -0.044 0.062 0.085 -0.055 
47 -0.054 -0.037 -0.038 -0.068 -0.110 0.149 0.050 0.081 
48 -0.094 0.023 -0.062 -0.051 -0.074 0.054 -0.014 0.242 
49 -0.018 -0.018 -0.021 -0.025 -0.042 0.147 -0.018 -0.028 
50 -0.061 0.033 0.108 0.128 0.067 -0.011 0.009 0.471 
51 -0.093 -0.005 -0.054 0.286 0.0 41 0.089 0.104 -0.127 
52 -0.018 -0.018 -0.021 -0.024 -0.030 -0.023 -0.018 -0.047 
53 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 
54 -0.011 -0.011 -0.014' -0.015 -0.027 -0.015 -0.011 -0.032 
55 -0.051 -0.051 -0.060 -0.068 -0.114 0.382 0.361 0.128 
56 -0.039 -0.039 -0.055 -0.063 -0.081 0.168 0.110 0.149 
57 -0.027 -0.020 -0.044 -0.051 -0.087 0.060 0.035 0.309 
58 -0.012 -0.012 -0.014 -0.016 -0.028 -0.015 -0.012 -0.033 59 -0.011 -0.011 0.980 -0.015 -0.027 -0.015 -0.011 -0.032 60 -0.015 -0.015 -0.017 -0.020 -0.034 -0.019 -0.015 0.043 
61 -0.032 -0.006 0.387 0.253 0.014 -0.062 -0.059 -0.154 62 -0.061 -0.061 -0.071 0.454 0.165 -0.056 -0.039 -0.103 63 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 64 -0.011 -0.011 -0.026 -0.030 -0.041 -0.028 -0.022 -0.050 65 -0.011, -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 66 -0.026' -0.026 -0.030 0.019 -0.059 -0.032 -0.026 -0.066 67 -0.011 -0.011 -0.014 -0-015 -0.027 -0.015 -0.011 0.047 
68 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 
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9 10 11 12 13 14 15 16 
69 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 
70 -0.036 -0.036 0.218 0.309 -0.084 -0.046 -0.036 -0.038 
71 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 
72 -0.015 -0.015 -0.017 -0.020 -0.034 -0.019 -0.015 -0.040 
73 0.034 0.034 -0.089 -0.024 0.041 -0.079 -0.043 -0.027 
74 -0.016 -0.016 -0.019 -0.022 -0.038 -0.021 -0.016 -0.045 75 -0.006 0.003 -0.021 -0.037 -0.098 0.101 0.093 0.478 
76 -0.025 -0.025 -0.030 -0.034 -0.059 0.128 -0.025 0.069 
77 -0.052 0.196 -0.062 0.097 0.167 -0.066 -0.052 0.035 
78 -0.032 -0.032 -0.038 -0.043 0.143 0.138 -0.032 -0.081 79 
80 -0.030 -0.030 -0.036 -0.041 -0.071 -0.001 0.009 0.072 
81 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 82 0.175 0.049 -0.094 -0.037 0.119 -0.044 -0.014 0.115 
83 0.066 -0.067 -0.101 -0.075 -0.074 0.311 0.290 0.312 
84 -0.014 -0.014 -0.016 -0.019 -0.032 -0.018 -0.014 -0.001 85 -0.038 -0.038 -0.045 -0.051 0.089 -0.048 -0.038 -0.078 86 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 87 -0.023 -0.023 -0.028 -0.032 -0.054 -0.030 -0.023 0.095 
88 -0.016 -0.016 -0.019 -0.022 -0.038 -0.021 -0.016 -0.045 89 -0.044 0.100 0.004 0.328 -0.040 -0.010 -0.044 -0.047 90 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 91 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 92 -0.030 -0.030 -0.035 -0.040 -0.070 -0.038 -0.030 -0.083 93 -0.033 -0.033 -0.039 -0.044 -0.076 0.167 0.099 -0.077 94 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 95 -0.031 0.178 0.005 -0.042 -0.072 -0.039 -0.031 -0.026 96 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 97 -0.016 -0.016 -0.019 -0.022 0.101 -0.021 -0.016 -0.045 98 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 99 -0.019 -0.019 -0.022 -0.026 -0.044 -0.024 -0.019 -0.052 100 -0.016 -0.016 -0.019 -0.022 0.241 -0.021 -0.016 -0.045 101 -0.044 0.088 0.350 0.162 -0.044 -0.056 -0.044 -0.078 ý 102 0.053 -0.053 -0.063 -0.071 -0.082 -0.034 -0.053 

ý 0.021 
103 -0.044 0.061 0.331 -0.060 0.060 -0.023 -0.044 -0.105 104 -0.041 -0.041 -0.049 -0.056 -0.037 0.524 0.463 0.053 
105 -0.015 -0.015 -0.018 -0.021 -0.036 -0.020 -0.015 -0.042 106 -0.022 0.148 -0.065 0.034 0.092 -0.012 -0.010 -0.029 107 -0.001 -0.021 -0.079 -0.078 -0.080 -0.005 0.006 -0.053 108 -0.011 1.000 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 109 -0.029 -0.014 -0.031 -0.036 -0.071 0.155 -0.002 -0.036 110 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 0.125 
111 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 112 -0.016 -0.016 -0.019 -0.022 0.014 -0.020 -0.016 -0.044 113 -0.011 -0.011 -0.014 -0.015 0.169 -0.015 -0.011 -0.032 114 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 115 -0.011 -0.011 -0.014 -0.015 -0.027 -0.015 -0.011 -0.032 116 -0.057 0.244 0.125 0.173 0.357 -0.044 -0.027 -0.069 117 -0.056 0.109 0.082 0.106 0.518 -0.071 -0.056 0.094 

17 18 19 20 21 22 23 24 
is 0.400 
19 -0.023 0.251 
20 -0.014 -0.030 -0.019 21 -0.014 -0.030 -0.019 -0.011 22 -0.014 -0.030 -0.019 -0.011 -0.011 23 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 24 -0.014 0.192 -0.019 -0.011 -0.011 -0.011 -0.011 25 -0.028 -0.059 0.490 0.303 -0.022 -0.022 -0.022 -0.022 26 -0.024 0.134 -0.031 -0.019 -0.019 -0.019 -0.019 -0.0 19 
27 -0.014 0.638 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 29 -0.014 0.192 -0.019 -0.011 -0.011 -0.011 -0.011 1.000 
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17 18 19 20 21 22 23 24 
29 -0.019 0.059 -0.025 -0.015 -0.015 -0.015 -0.015 -0.015 
30 -0.020 -0.043 -0.026 -0.016 -0.016 -0.016 -0.016 -0.016 
31 0.051 -0.084 -0.051 -0.032 -0.032 -0.032 -0.032 -0.032 
32 -0.024 -0.051 -0.031 0.170 -0.019 -0.019 -0.019 -0.019 
33 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
34 -0.032 0.182 -0.042 -0.026 -0.026 -0.026 -0.026 -0.026 
35 -0.062 -0.122 -0.080 -0.049 -0.049 -0.049 0.025 -0.049 
36 -0.018 -0.039 -0.024 -0.015 -0.015 -0.015 -0.015 -0.015 
37 -0.014 -0.030 -01019 -0.011 -0.011 -0.011 -0.011 -0.011 
38 -0.018 -0.039 -0.024 -0.015 -0.015 -0.015 -0.015 -0.015 
39 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
40 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
41 -0.009 -0.092 0.006 -0.042 -0.042 -0.042 -0.042 -0.042 
42 -0.029 -0.062 -0.038 -0.023 -0.023 -0.023 0.491 -0.023 
43 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
44 -0.020 -0.043 -0.026 -0.016 -0.016 -0.016 -0.016 -0.016 
45 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
46 -0.031 -0.061 -0.059 -0.075 -0.010 0.129 0.062 -0.071 
47 -0.025 -0.117 0.013 -0.014 0.073 -0.054 -0.037 -0.048 
48 -0.046 -0.119 0.027 -0.021 -0.072 -0; 094 -0.079 -0.057 
49 -0.023 -0.048 -0.029 -0.018 -0.018 -0.018 -0.018 -0.018 
50 -0.014 -0.111 -0.061 -0.038 0.127 -0.061 -0.061 -0.061 
51 -0.056 -0.217 -0.127 -0.071 -0.093 -0.093 -0.027 -0.038 
52 0.038 -0.048 -0.029 0.003 -0.018 -0.018 -0.018 -0.018 
53 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
54 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
55 -0.017 -0.134 0.023 0.144 -0.029 -0.051 -0.051 -0.051 
56 -0.008 0.204 0.346 0.239 -0.018 -0.047 0.007 -0.043 
57 -0.047 -0.089 0.093 0.046 -0.027 -0.034 -0.038 -0.038 
58 -0.015 -0.032 -0.019 -0.012 -0.012 -0.012 -0.012 -0.012 
59 -0.014 0.192 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
60 -0.018 0.032 0.063 -0.015 -0.015 -0.015 -0.015 -0.015 
61 -0.069 -0.039 -0.091 -0.046 -0.046 -0.046 -0.046 -0.059 
62 -0.006 -0.122 -0.051 -0.061 -0.039 -0.061 -0.039 -0.039 
63 -0.014 0.192 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
64 -0.000 -0.052 -0.036 -0.022 -0.022 -0.022 0.082 -0.022 
65 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
66 -0.032 -0.054 -0.041 -0.026 0.093 -0.026' -0.026 0.034 
67 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
68 -0.014 -0.030 -0.019 -0.011 - 0.011 -0.011 -0.011 -0.011 
69 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
70 -0.045 -0.037 -0.059 -0.036 -0.036 -0.036 -0.036 -0.036 
71 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
72 -0.018 -0.039 -0.024 0.948 -0.015 -0.015 -0.015 -0.015 
73 0.008 0.021 -0. '039 -0.120 -0.082 0.034 -0.043' 0.111 
74 -0.020 -0.043 -0.026 -0.016 -0.016 -0.016 -0.016 -0.016 
75 -0.068 -0.057 0.279 0.053 0.036 -0.043 0.079 -0.045 
76 -0.026 -0.067 0.103 -0.025 -0.025 -0.025 -0.025 -0.025' 
77 -0.021 -0.111 0.050 -0.052 -0.052 -0.052 -0.052 -0.052 
78 -0.040 -0.084 -0.052 0.529 -0.032 -0.032 -0.032 -0.032 
79 
so -0.024 -0.080 -0.002 0.067 -0.030 -0.011 -0.030 -0.030 
81 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
82 -0.049 -0.041 0.035 -0.014 -0.077 -0.056 0.028 -0.035 
83 -0.092 -0.135 -0.045 0.010 0.103 -0.088 0.011 -0.063 84 -0.017 -0.037 -0.023 -0.014 -0.014 -0.014 -0.014 -0.014 85 0.027 0.302 -0.062 -0.038 -0.038 -0.038 -0.038 0.038 
86 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 87 -0.029 0.278 0.240, -0.023 -0.023 -0.023 -0.023 0.491 
88' -0.020 -0.043 -0.026 0'. 703 -0.016 -0.016 -0.016 -0.016 89 -0.036 -0.077 

' -0.033ý -0. '044 -0.044 -0.044 -0.044 -0.044 90 -0.014' -0 . 030 " -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
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17 is 19 20 21 22 23 24 
91 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
92 -0.038 -0.079 -0.049 -0.030 -0.030 0.300 -0.030 -0.030 
93 -0.041 0.174 -0.053 -0.033 -0.033 -0.033 -0.033 -0.033 
94 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
95 -0.039 -0.082 -0.050 -0.031 -0.031 -0.031 -0.031 -0.031 
96 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
97 -0.020 -0.043 -0.026 -0.016 -0.016 -0.016 -0.016 -0.016 
98 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
99 -0.024 0.501 -0.031 -0.019 -0.019 -0.019 -0.019 -0.019 
100 -0.020 -0.043 -0.026 -0.016 -0.016 -0.016 -0.016 -0.016 
101 -0.049 0.021 -0.021 -0.044 -0.044 -0.044 -0.025 -0.044 
102 0.057 -0.000 0.000 -0.053 -0.053 -0.053 -0.053 -0.053 
103 -0.055 0.011 -0.015 -0.044 -0.044 0.008 0.008 -0.044 
104 -0.052 -0.109 -0.067 -0.041 -0.041 -0.041 -0.041 -0.041 
105 -0.019 0.055 -0.025 -0.015 -0.015 -0.015 -0.015 0.420 
106 -0.090 -0.072 0.011 -0.058 0.007 -0.014 0.074 -0.181 
107 -0.083 0.019 -0.040 0.006 -0.001 -0.062 -0.062 -0.035 
108 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
109 -0.038 -0.075 -0.011 0.292 -0.033 -0-010 -0.029 -0.033 
110 0.166 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
111 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
112 -0.020 -0.043 -0.026 -0.016 -0.016 -0.016 -0.016 -0.016 
113 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
114 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011, 
115 -0.014 -0.030 -0.019 -0.011 -0.011 -0.011 -0.011 -0.011 
116 -0.014 -0.089 -0.052 -0.057 -0.057 -0.057 -0.042 -0.057 
117 0.007 -0.068 -0.027 -0.056 -0.038 -0.056 -0.056 -0.038 

25 26 27 28 29 30 31 32 
26 -0.037 
27 -0.022 -0.019 
28 -0.022 -0.019 -0.011 
29 -0.030 -0.026 -0.015 -0.015 
30 -0.031 0.270 -0.016 -0.016 -0.022 
31 -0.061 -0.052 -0.032 -0.032 -0.043 -0.045 
32 0.024 0.046 -0.019 -0.019 -0.026 0.242 -0.054 
33 -0.022 -0.019 -0.011 -0.011 -0.015 -0.016 -0.032 -0.019 
34 -0.050 0.814 -0.026 -0.026 0.050 -0.037 -0.071 -0.043 
35 0.024 0.255 -0.049 -0.049 0.067 0.564 -0.099 0.230 
36 -0.028 -0.024 -0.015 -0.015 -0.020 -0.021 -0.040 -0.025 
37 -0.022 0.398 -0.011 -0.011 -0.015 -0.016 -0.032 -0-019 
38 -0.028 -0.024 -0.015 -0.015 -0.020 -0.021 -0.040 0.879 
39 -0.022 -0.019 -0.011 -0.011 -0.015 -0.016 -0.032 -0.019 
40 -0.022 -0.019 -0.011 -0.011 -0.015 - -0.016 -0.032 -0.019 41 0.384 -0.070 -0.042 -0.042 -0.016 -0.060 0.146 0.137 
42 0.120 -0.039 -0.023 -0.023 -0.032 -0.033 -0.065 -0.040 
43 0.627 -0.019 -0-011 -0.011 -0.015 -0.016 -0.032 -0.019 
44 -0.031 -0.027 -0.016 -0.016 -0.022 -0.023 -0.045 -0.028 45 -0.022 -0.019 -0.011 -0.011 -0.015 -0.016 0.223 -0.019 
46 -0.063 -0.088 -0.021 -0.071 -0.021 -0.085 -0.067 0.156 
47 0.107 -0.087 -0.054 -0.048 -0.068 -0.065 0.176 -0.062 
48 -0.101 -0.100 -0.094 -0.057 -0.028 -0.092 0.050 -0.077 
49 -0.035 -0.030 -0.018 -0.018 -0.025 -0.026 -0.050 -0.031 
50 -0.050 0.160 -0.061 -0.061 0.065 0.046 0.155 -0ý064 
51 -0.009 0.095 -0.093 -0.038 0.037 0.172 0.057 0.044 
52 -0.028 -0.030 -0.018 -0.018 -0.005 -0.011 0.141 -0.022 
53 -0.022 -0.019 -0.011 -0.011 -0.015 -0.016 -0.032 -0.019 
54 -0.022 -0.019 -0.011 -0.011 -0.015 -0.016 -0.032 -0.019 
55 0.153 -0.084 -0.051 -0.051 -0.068 -0.057 0.012 -0.045 
56 0.043 -0.077 -0.047 -0.043 -0.063 -0.055 -0.007 0.016 
57 0.087 -0.062 -0.027 -0.038 -0.051 -0.053 0.147 -0-048 
58 -0.023 -0.020 -0.012 -0.012 -0.016 -0.017 -0.033 -0-020 
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25 26 27 28 29 30 31 32 
59 -0.022 0.815 -0.011 -0.011 -0.015 -0.016 -0.032 -0.019 
60 -0.028 -0.024 -0.015 -0.015 -0.020 -0.021 -0.040 -0.025 
61 -0.092 0.441 -0.059 -0.059 -0.032 0.170 0.017 0.042 
62 0.002 0.159 -0.061 -0.039 0.055 0.314 0.197 0.085 
63 -0.022 -0.019 -0.011 -0.011 0.439 -0.016 -0.032 -0.019 
64 -0.025 -0.037 -0.011 -0.022 -0.030 -0.032 0.180 -0.038 
65 -0.022 -0.019 -0.011 -0.011 -0.015 -0.016 -0.032 -0.019 
66 -0.049 0.007 -0.026 0.034 -0.034 -0.036 0.138 -0.021 
67 -0.022 -0.019 -0.011 -0.011 -0.015 -0.016 -0.032 -0.019 
68 -0.022 -0.019 -0.011 -0.011 -0.015 -0.016 -0.032 -0.019 
69 -0.022 -0.019 -0.011 -0.011 -0.015 -0.016 -0.032 -0.019 
70 -0.070 0.378 -0.036 -0.036 -0.049 0.137 0.167 -0.011 
71 -0.022 -0.019 -0.011 -0.011 -0.015 -0.016 -0.032 -0.019 
72 0.281 -0.024 -0.015 -0.015 -0.020 -0.021 -0.040 0.156 
73 -0.034 -0.071 -0.005 0.111 0.063 0.021 -0.004 -0.001 
74 -0.031 -0.027 -0.016 -0.016 -0.022 -0.023 -0.045 -0.028 
75 0.249 -0.049 0.021 -0.045 -0.056 -0.051 0.152 -0.053 
76 0.065 -0.042 -0.025 -0.025 -0.034 -0.036 0.131 -0.043 
77 -0.021 0.068 -0.052 -0.052 -0.070 -0.074 0.199 -0.088 
78 0.119 -0.053 -0.032 -0.032 -0.043 -0.045 -0.088 0.051 
79 
80 0.010 -0.050 -0.030 -0.030 -0.041 -0.043 0.245 -0.033 
81 -0.022 -0.019 -0.011 -0.011 -0.015 -0.016 -0.032 -0.019 
82 0.034 -0.092 0.070 -0.035 -0.028 0.175 0.015 0.072 
83 -0.063 -0.129 -0.027 -0.063 -0.081 -0.053 0.087. -0.036 
84 -0.027 -0.023 -0.014 -0.014 -0.019 -0.020 0.271 -0.024 
85 -0.073 -0.063 0.343 0.038 0.223 -0.054 -0.086 -0.064 
86 -0.022 -0.019 -0.011 -0.011 -0.015 -0.016 -0.032 -0.019 
87 -0.045 -0.039 -0.023 0.491 -0.032 -0.033 -0.065 -0.040 
88 0.430 -0.027 -0.016 -0.016 -0.022 -0.023 -0.045 0.107 
89 -0.073 0.164 -0.044 -0.044 -0.027 0.193 -0.068 0.060 
90 -0.022 -0.019 -0.011 -0.011 -0.015 -0.016 -0.032 -0.019 
91 0.303 -0.019 -0.011 -0.011 -0.015 -0.016 -0.032 -0.019 
92 -0.058 -0.050 -0.030 -0.030 -0.040 0.192 -0.083 0.011 
93 -0.021 -0.054 0.362 -0.033 -0.044 -0.047 -0.091 -0.056 
94 -0.022 -0.019 -0.011 -0.011 -0.015 -0.016 -0.032 -0.019 
95 -0.060 -0.051 -0.031 -0.031 -0.042 -0.044 0.125 -0.052 
96 -0.022 -0.019 -0.011 -0.011 -0.015 -0.016 -0.032 -0.019 
97 -0.031 -0.027 -0.016 -0.016 -0.022 -0.023 -0.045 0.647 
98 -0.022 -0.019 -0.011 -0.011 -0.015 -0.016 -0.032 -0.019 
99 -0.037 -0.031 0.815 -0.019 -0.026 -0.027 -0.052 -0.032 
100 -0.031 -0.027 -0.016 -0.016 -0.022 -0.023 -0.045 -0.028 
101 -0.061 0.365 -0.044 -0.044 0.017 0.099 0.259 0.021 
102 -0.102 -0-087 0.053 -0.053 -0.071 -0.075 0.200 0.209 
203 -0.085 0.23J. " -0.044 -0.044 -0.012 -0.026 0.076 -0.065 
104 -0.080 -0.068 -0.041 -0.041 -0.056 0.013 -0.114 0.044 
105 -0.030 -0.025 , -0.015 0.420 -0.021' -0.022 0.188 -0.026 
106 0.014 -0.038 0.006 -0.181 0.027 0.082 0.055 0.032 
107 0.021 -0.103 0.136- -0.035 -0.032 -0.108 0.002 -0.113 
108 -0.022' -0.019 -0.011 - -0.011 -0.015 -0.016 -0.032 -0.019 
109 0.065 -0.047 -0.033 -0.033 -0.045 -0.039 0.000 0.007 
110 -0.022 -0.019 -0,011" -0.011 -0.015 -0.016 0.477 -0.019 
ill -0.022 -0.019 -0: 011 -0-011 -0.015 -0.016 0.477 -0.019 
112 -0.031 -0.027 -0.016 -0.016 -0.022 -0.023 -0.045 -0.027 
113 -0.022 -0.019 -0.011 -0-011 -0.015 -0.016 -0.032 -0.019 114 -0.022 -0.019 -0.011 -0.011 -0-015 -0.016 0. '477 -0.019 115 -0.022 -0.019 -0.011 -0.011 -0.015 -0.016 -0.032 -0.019 116 -0.028 0.141 -0.057 -0.057 0.519 0.122 -0.037 0.211 
117 -0.091 0.120 -0.056 -0.038 0.652 0.025 0.136 0.105 
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34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
90 
91 
92 
93 
94 
95 

33 34 35 36 37 38 39 40 
0.163 

-0.049 0.021 
-0.015 -0.033 -0.027 
-0.011 0.541 0.173 -0.015 
-0.015 -0.033 0.079 -0.019 -0.015 
-0.011 -0.026 0.025 -0.015 -0.011 -0.015 
-0.011 -0.026 -0.049 -0.015 -0.011 -0.015 -0.011 
-0.042 0.009 -0.096 -0.005 -0.042 0.152 -0.042 0.050 
-0.023 -0.052 0.164 -0.030 -0.023 -0.030 0.491 -0.023 
-0.011 -0.026 -0.049 -0.015 -0.011 -0.015 -0.011 -0.011 
-0.016 -0.037 -0.070 -0.021 -0.016 -0.021 -0.016 -0.016 
-0.011 -0.026 -0.049 -0.015 -0.011 -0.015 -0.011 -0.011 
-0.071 -0.051 -0.088 0.056 -0.060 0.278 0.467 -0.058 
-0.002 -0.111 -0.038 -0.010 -0.054 -0.043 -0.048 0.320 

0.023 -0.135 0.121 0.087 -0.028 -0.045 -0.079 0.212 
-0.018 -0.041 -0.074 -0.023 -0.018 -0.023 -0.018 0.516 
-0.014 0.082 0.055 -0.011 0.080 -0.078 -0.061 -0.061 
-0.027 -0.091 0.397 0.073 -0.022 0.002 0.055 -0.033 
-0.018 -0.040 -0.028 -0.023 -0.018 -0.023 -0.018 -0.018 
-0.011 -0.026 -0.049 -0.015 -0.011 -0.015 -0.011 -0.011 
-0.011 -0.026 0.025 -0.015 -0.011 -0.015 1.000 -0.011 
-0.051 -0.089 -0.153 -0.057 -0.051 -0.064 -0.051 0.122 
-0.047 -0.102 -0.147 -0.060 -0.047 -0.019 -0.018 0.197 
-0.038 -0.080 -0.147 0.087 -0.038 -0.046 -0.038 0.084 
-0.012 -0.027 -0.048 -0.015 -0.012 -0.015 -0.012 -0.012 
-0.011 0.730 -0.049 -0.015 -0.011 -0.015 -0.011 -0.011 
-0.015 -0.033 -0.063 -0.019 -0.015 -0.019 -0.015 -0.015 
-0.059 0.240 0.276 -0.075 -0.032 -0.033 -0.059 -0.019 
-0.039 -0.095 0.487 0.033 0.004 0.033 -0.039 -0.061 
-0.011 0.163 -0.049 -0.015 -0.011 -0.015 -0.011 -0.011 
-0.011 -0.048 -0.053 0.027 -0.022 -0.010 -0.022 -0.022 
-0.011 -0.026 -0.049 -0.015 -0.011 -0.015 -0.011 -0.011 
-0.026 0.009 -0.023 -0.032 0.093 -0.032 -0.026 -0.026 
-0.011 -0.026 -0.049 -0.015 -0.011 -0.015 -0.011 -0.011 
-0.011 -0.026 0.025 -0.015 -0.011 -0.015 -0.011 -0.011 
-0.011 -0.026 -0.012 -0.015 -0.011 -0.015 -0.011 -0.011 
-0.036 0.266 0.225 -0.046 0.229 -0.046 -0.036 -0.036 
-0.011 -0.026 0.025 -0.015 -0.011 -0.015 -0.011 -0.011 
-0.015 -0.033 -0.063 -0.019 -0.015 -0.019 -0.015 -0.015 
-0.005 -0.054 0.169 -0.104 0.034 0.079 -0.043 -0.120 
-0.016 -0.037 -0.070 -0.021 -0.016 -0.021 -0.016 -0.016 0.092 -0.041 -0.133 0.130 -0.046 -0.048 -0.058 0.039 
-0.025 -0.057 -0.082 0.645 -0.025 -0.032 -0.025 0.478 
-0.052 0.092 0.100 0.170 0.321 -0.066 -0.052 -0.052 0.249 -0.019 -0.044 -0.040 -0.032 -0.040 -0.032 0.529 

0.048 -0.050 -0.101 0.501 -0.030 -0.039 -0.030 -0.030 
-0.011 -0.026 -0.049 -0.015 -0.011 -0.015 -0.011 -0.011 
-0.056 -0.085 0.154 -0.004 -0.056 0.043 0.091 -0.098 
-0.061 -0.139 -0.195 0.240 -0.089 -0.000 0.027 0.110 
-0.014 -0.031 -0.060 -0.018 -0.014 -0.018 -0.014 -0.014 
-0.038 0.043 -0.091 -0.048 -0.038 -0.048 -0.038 -0.038 
-0.011 -0.026 0.025 -0.015 -0-011 -0.015 -0.011 -0.011 
-0.023 -0.052 -0.082 -0.030 -0.023 -0.030 -0.023 -0.023 
-0.016 -0.037 0.194 -0.021 -0.016 -0.021 -0.016 -0.016 0.207 0.062 0.155 -0.056 0.100 0.012 -0.008 0.100 

1.000 0.163 -0.049 -0.015 -0.011 -0.015 -0.011 -0.011'- 
-0.011 -0.026 0.322 -0.015 -0.011 -0.015 -0.011 -0.011 
-0.030 -0.067 -0.032 -0.038 -0.030 0.067 -0.030 -0.030 0.099 -0.049 -0.083 -0.042 -0.033 ý0.042 0.099 0.230 
-0.011 -0.026 -0.049 -0.015 -0.011 -0.015 -0.011 -0.011 0.388 0.009 -0.094 -0.039 -0.031 -0.039 -0.031 -0.031 
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33 34 35 36 37 38 39 40 
96 -0.011 -0.026 -0.049 -0.015 -0.011 -0.015 -0.011 -0.011 
97 -0.016 0.098 0.035 -0.021 -0.016 0.664 -0.016 -0.016 
98 -0.011 -0.026 0.025 -0.015 -0.011 -0.015 1.000 -0.011 
99 -0.019 -0.042 -0.081 -0.024 -0.019 -0.024 -0.019 -0.019 
100 -0.016 -0.037 0.062 -0.021 -0.016 -0.021 -0.016 -0.016 
101 0.013 0.258 0.024 -0.056 -0.006 0.004 -0.006 -0.044 
102 -0.053 -0.119 -0.025 0.437 -0.053 0.235 0.053 0.053 
103 0.061 0.344 -0.078 -0.056 -0.044 -0.056 0.008 0.061 
104 -0.041 -0.036 0.019 -0.052 -0.041 0.076 -0.041 0.262 
105 -0.015 -0.034 -0.066 -0.020 -0.015 -0.020 -0.015 -0.015 
106 -0.043 -0.056 0.094 0.025 -0.036 0.102 0.018 -0.008 
107 -0.021 -0.056 -0.209 0.164 -0.021 -0.038 -0.076 -0.035 
108 -0.011 -0.026 0.062 -0.015 -0.011 -0.015 -0.011 -0.011 
109 0.002 -0.056 -0.124 -0.022 -0.029 -0.042 -0.029 0.495 
110 -0.011 -0.026 -0.049 -0.015 -0.011 -0.015 -0.011 -0.011 
ill -0.011 -0.026 0.025 -0.015 -0.011 -0.015 -0.011 -0.011 
112 -0.016 -0.036 0.041 -0.020 -0.016 -0.020 -0.016 -0.016 
113 -0.011 0.163 -0.049 -0.015 -0.011 -0.015 -0.011 -0.011 
114 -0.011 -0.026 0.025 -0.015 -0.011 -0.015 -0.011 -0.011 
115 -0.011 -0.026 -0.049 -0.015 -0.011 -0.015 -0.011 -0.011 
116 0.455 0.122 0.235 -0.058 -0.012 0.190 -0.042 -0.057 
117 0.017 0.084 0.150 -0.054 0.128 0.110 0.036 -0.056 

41 42 43 44 45 46 47 48 
42 0.008 
43 0.575 -0.023 
44 -0.060 -0.033 -0.016 
45 -0.042 -0.023 -0.011 -0.016 46 0.085 0.218 0.027 -0.104 -0.033 
47 0.118 0.104 -0.031 0.050 -0.054 -0.133 48 0.001 -0.157 -0.072 0.115 -0.021 -0.219 0.265 
49 -0.018 -0.037 -0.018 -0.026 -0.018 -0.089 0.223 0.143 
50 0.267 -0.125 0.009 -0.021 -0.061 -0.005 0.194 0.320 
52 0.023 0.134 -0.011 -0.089 -0.055 -0.157 0.037 0.401 
52 -0.064 -0.037 -0.018 -0.026 -0.018 -0.060 -0.070 0.135 
53 -0.042 -0.023 -0.011 -0.016 -0.011 -0.069 0.620 0.052 
54 -0.042 0.491 -0-011 -0.016 -0.011 0.467 -0.048 -0.079 55 0.187 -0.070 0.079 -0-072 -0.051 -0.080 0.435 0.154 
. 56 -0.018 -0.045 -0.014 -0.061 -0.047 -0.047 0.111 0.102 
57 0.131 -0.075 -0.024 -0.053 -0.038 -0.105 0.502 0.394 
58 -0.044 -0.024 -0.012 -0.017 -0.012 -0.077 -0.028 -0.026 59 -0.042 -0.023 -0.011 -0.016 -0.011 -0.048 -0.054 -0.086 
60 -0.054 -0.030 -0.015 -0.021 -0.015 -0.087 -0.058 -0.036 
61 -0.135 -0.086 -0.032 -0.046 0.218 -0.189 -0.185 -0.154 
62 -0.033 -0.002 0.026 -0.086 0.199 -0.129 -0.037 -0.049 
63 0.050 -0.023 -0.011 -0.016 -0.011 0.089 -0.054 -0.079 
64 -0.069 0.031 -0.011 -0.007 -0.022 -0.013 -0.055 0.070 
65 -0.042 -0.023 -0.011 -0.016 -0.011 -0.023 -0.014 -0.014 66 -0.091 -0.052 -0.026 -0.036 -0.026 -0.143 -0.008 0.003 
67 -0.042 -0.023 -0.011 -0.016 -0.011 -0.069 -0.054 -0.064 68 -0.042 -0.023 -0.011 -0.016 -0.011 -0.073 -0.048 -0.079 69 -0.012 -0.023 -0.011 -0.016 -0.011 0.094 0.050 0.023 
70 -0.109 -0.074 -0.036 -0.051 -0.036 -0.188 -0.142 0.280 
71 -0.042 -0.023 -0.011 -0.016 -0.011 -0.075 -0.025 0.037 
72 -0.054 -0.030 -0.015 -0.021 -0.015 0.032 -0.030 -0.049 73 -0.033 -0.069 0.111' -0.089 -0.082 -0.046 -0.225 0.345 
74 -0.060 -0.033 -0.016' -0.023 -0.016 -0.034 -0.024 -0.071 75 0.313 -0.028 -0.002 0.037' -0.058 -0.000 0.350 0.322 
76 0.189 -0.051 -0.025 -0.036 -0.025 -0.017 0.340 0.277 
77 0.175 0.020 -0.052 -0.074 0.196 -0.079 0.033 0.187 
78 -0.015 0.078 -0.032- -0.045, ý 

-0.032 -0.072 0.297 0.095 
79 
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41 42 43 44 45 46 47 48 
80 0.031 -0.062 -0.030 -0.043 -0.030 -0.022 0.278 0.315 
81 -0.042 -0.023 -0.011 -0.016 -0.011 0.324 -0.037 0.001 
82 0.171 -0.028 -0.014 -0.139 0.259 0.228 0.177 -0.026 83 0.291 -0.043 -0.069 -0.076 -0.004 0.134 0.444 0.318 
84 0.429 -0.028 -0.014 -0.020 -0.014 -0.073 0.252 0.106 
85 -0.141 -0.078 -0.038 0.054 -0.038 0.090 -0.153 -0.183 86 -0.042 -0.023 -0.011 -0.016 -0.011 -0.075 -0.025 0.037 
87 -0.071 -0.048 -0.023 -0.033 -0.023 -0.096 -0.034 -0.020 88 -0.038 0.333 -0.016 -0.023 -0.016 -0.097 0.234 -0.081 89 -0.084 -0.053 -0.044 0.014 -0.044 0.172 0.267 0.075 
90 -0.042 -0.023 -0.011 -0.016 -0.011 -0.071 -0.002 0.023 
91 -0.012 0.491 -0.011 -0.016 -0.011 -0.062 0.344 -0.094 92 -0.060 -0.061 -0.030 -0.043 -0.030 0.022 0.478 0.041 
93 0.015 0.067 -0.033 -0.047 -0.033 -0.005 0.495 0.143 
94 -0.042 -0.023 -0.011 -0.016 -0.011 -0.075 0.332 0.059 
95 -0.114 -0.063 -0.031 0.105 -0.031 -0.115 -0.039 -0.014 96 -0.012 -0.023 -0.011 -0.016 -0.011 -0.050 0.044 -0.021 97 0.422 -0.033 -0.016 -0.023 -0.016 0.193 -0.061 -0.066 98 -0.042 0.491 -0.011 -0.016 -0.011 0.467 -0.048 -0.079 99 -0.070 -0.039 -0.019 -0.027 -0.019 -0.079 0.082 -0.064 100 -0.038 -0.033 -0.016 -0.023 -0.016 0.021 0.009 0.038 
101 -0.075 -0.061 -0.025 0.018 0.809 0.012 -0.046 -0.093 102 0.079 -0.054 -0.053 -0.075 -0.053 0.314 0.059 0.110 
103 -0.120 -0.037 -0.044 0.012 0.114 0.011 -0.072 -0.089 104 0.272 -0.084 -0.041 -0.059 -0.041 0.250 0.075 0.044 
105 -0.057 -0.031 -0.015 -0.022 -0.015 -0.083 0.029 -0.024 106 0.053 -0.056 0.098 -0.125 0.161 0.393 0.059 -0.106 107 -0.040 -0.127 0.033 -0.069 -0.049 0.369 -0.015 -0.127 108 -0.042 -0.023 -0.011 -0.016 -0.011 0.210 -0.037 0.023 
109 0.070 -0.064 -0.033 -0.025 -0.033 -0.140 0.651 0.142 
110 0.204 -0.023 -0.011 -0.016 -0.011 0.123 0.182 0.059, 
111 -0.012 -0.023 -0.011 -0.016 -0.011 -0.073 -0.037 -0.057 112 -0.051 -0.033 -0.016 -0.023 -0-016 -0.086 -0.041 -0.044 113 0.420 -0.023 -0.011 -0.016 -0.011 0.052 -0.048 -0.050 114 -0.012 -0.023 -0.011 -0.016 -0.011 -0.073 -0.037 -0.057 115 -0.042 -0.023 -0.011 -0.016 -0.011 -0.068 -0.025 0.001 
116 -0.014 -0.094 0.033 0.197 -0.057 -0.022 -0.056 -0.000 117 0.030 0.035 -0.038 0.273 -0.056 -0.004 0.043 0.128 

49 50 51 52 53 54 55 56 
50 -0.058 
51 -0-015 0.035 
52 -0.028 -0.058 0.450 
53 0.089 -0.061 -0.011 -0.018 
54 -0.018 -0.061 0.055 -0.018 -0.011 55 0.071 0.188 0.044 0.144 0.425 -0.051 56 0.087 -0.106 0.099 0.373 0.119 -0.018 0.462 
57 0.051 0.461 -0.084 -0.054 0.261 -0.038 0.501 0.026 
58 -0.019 -0.064 -0.049 -0.019 -0.012 -0.012 0.012 0.063, 
59 -0.018 0.103 -0.038 -0.018 -0.011 -0.011 -0.051 -0.047 60 -0.023 -0.056 -0.090 -0.023 -0.015 -0.015 -0.064 -0.037 61 -0.044 -0.084 0.107 -0.004 -0.059 -0.059 -0.200 -0.139 62 -0.091 0.054 0.411 0.376 -0.061 -0.039 -0.066 0.049 
63 -0.018 -0.061 -0.093 -0.018 -0.011 -0.011 -0.051 -0.047 64 -0.036 -0.081 0.315 0.898 -0.022 -0.022 0.025 0.293 
65 -0.018 -0.038 -0.033 -0.018 -0.011 -0.011 -0.051 -0.039 66 -0.040 -0.098 0.075 -0.040 -0.026 -0.026 -0.106 -0.096 67 -0.018 -0.061 -0.071 -0.018 -0.011 -0.011 -0.051 -0.030 68 -0.018 -0.061 -0-066 -0.018 -0.011 -0.011 -0.051 -0.047 69 -0.018 0.056 0.126 -0.018 -0.011 -0.011 -0.051 -0.043 70 -0.057 -0.033 0.352 0.364 -0.036 -0.036 -0.125 0.010 
71 -0.018 -0.061 -0.066 -0.018 -0.011 -0.011 -0.029 -0.047 
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49 50 51 52 53 54 55 56 
72 -0.023 -0.056 -0.097 -0.003 -0.015 -0.015 0.121 0.212 
73 -0.024 -0.118 0.355 0.430 -0.082 -0.043 -0.128 0.003 
74 -0.026 -0.021 0.070 -0.026 -0.016 -0.016 -0.057 -0.043 
75 0.036 0.506 -0.067 -0.077 -0.001 -0.058 0.285 -0.033 
76 0.226 0.120 0.025 -0.039 -0.025 -0.025 0.140 0.040 
77 -0.083 0.151 0.042 -0.061 -0.052 -0.052 -0.116 -0.142 
78 0.276 -0.073 0.002 -0.038 0.249 -0.032 0.196 0.213 
79 
so -0.026 0.255 -0.016 -0.044 0.028 -0.030 0.291 -0.040 
81 -0.018 -0.014 -0.082 -0.018 -0.011 -0.011 -0.051 -0.047 
82 -0.030 0.332 -0.107 -0.077 0.196 0.091 0.073 -0.111 
83 0.048 0.561 -0.009 -0.065 0.196 0.027 0.425 0.020 
84 -0.022 0.297 0.021 -0.022 -0.014 -0.014 0.075 -0.039 
85 -0.060 -0.121 -0.123 -0.053 -0.038 -0.038 -0.137 -0.148 
86 -0.018 -0.061 -0.066 -0.018 -0.011 -0.011 -0.029 -0.047 
87 -0.037 -0.113 -0.050 -0.037 -0.023 -0.023 -0.103 0.282 
88 -0.026 -0.071 0.098 -0.011 -0.016 -0.016 0.113 0.139 
89 0.112 0.092 0.063 -0.068 0.100 -0.008 -0.071 -0.036 
90 -0.018 -0.014 -0.027 -0.018 -0.011 -0.011 -0.051 -0.047 
91 -0.018 -0.061 0.208 , -0.018 -0.011 -0.011 0.014 -0.043 
92 0.022 -0.068 -0.105 -0.040 0.631 -0.030 0.221 0.011 
93 0.156 0.017 -0.030 -0.051 0.625 0.099 0.446 0.087 
94 -0.018 -0.014 -0.022 -0.018 -0.011 -0.011 -0.051 -0.047 
95 0.482 -0.068 -0-090 -0.048 -0.031 -0.031 -0.136 -0.113 
96 -0.018 -0.038 -0.082 -0.018 -0.011 -0.011 -0.051 -0.039 
97 -0.026 -0.054 0.039 -0.026 -0.016 -0.016 -0.057 -0.026 
98 -0.018 -0.061 0.055 -0.018 -0.011 1.000 -0.051 -0.018 
99 -0.030 -0.082 -0.106 -0.030 -0.019 -0.019 -0.057 -0.031 
loo -0.026 0.113 0.078 -0.026 -0.016 -0.016 -0.072 -0.064 
101 -0.044 0.003 -0.042 -0.068 0.050 -0.006 -0.116 -0.095 
102 -0.028 0.121 0.034 -0.003 -0.053 0.053 -0.016 0.055 
103 0.075 0.026 -0.015 -0.067 -0.044 0.008 -0.091 -0.135 
104 0.276 0.185 0.002 -0.062 -0.041 -0.041 0.261 0.089 
105 -0.024 -0.082 0.103 -0.024 -0.015 -0.015 -0.068 -0.057 
106 -0.003 0.312 -0.127 -0.107 -0.008 0.018 -0.031 -0.109 
107 -0.070 -0.024 -0.213 -0.078 -0.021 -0.076 -0.065 -0.141 
108 -0.018 0.033 -0.005 -0.018 -0.011 -0.011 -0.051 -0.039 
109 0.329 -0.037 -0.080 -0.042 0.691 -0.029 0.431 0.273 
110 -0.018 0.268 -0.016 -0.018 -0.011 -0.011 0.058 0.036 
ill -0.018 -0.014 0.049 -0.018 -0.011 -0.011 -0.051 -0.047 
112 -0.026 -0.035 -0.017 -0.025 -0.016 -0.016 -0.003 0.047 
113 -0-018 -0.014 0.038 -0.018 -0.011 -0.011 -0.029 -0.030 
114 -0.018 -0.014 0.049 -0.018 -0.011 -0.011 -0.051 -0. 

'047 
115 -0.018 0.080 0.274 -0.018 -0.011 -0.011 -0.051 -0.047 
116 -0.648- 0.121 0.162 -0.029 -0.012 -0.042 -0.165 -0.144 
117 -0.054 0.309 0.143 -0.001 -0.019 0.036 -0.097 -0.033 

57 58 59 60 61 62 63 64 
58 -0.039 
59 -0.038 -0.012 
60 -0.048 -0.015 -0.015 61 -0.143 -0.005 0.403 -0.058 62 -0.151 -0.062 -0.061 -0.015' 0.448 
63 -0.038 -0.012 -0-011 -0.015 -0.006 -0.061 64 -0.065 -0.023 -0.022 -0.028 -0.004 0.380 -0.022 65 -0.038 -0.012 -0.011, -0.015 0.007 -0.061 -0.011 -0.022 66 -0 082 -0.001 -0.026 0.024 0.088 -0.048 -0.026 -0.050 67. -0.038 -0.012 -Mli 0.948 -0.046' -0.017 -0.011 -0.022 68 -0.038 -0.012 -0.011, -0.015 ' - -0.019 -0.039 -0.011 -0.022 69 -0. '034- * -0.012_ -0-011 -0-015" -0.059 , 0.069 -0.011 0.001 
70 -0.117 -0.038" ' 0.229ý' 

' 
-0.0W 0.164 0.264 ' -0.036 0.446 

71 -0.038 -0.012 -0 . 011 -0.015 0'. 152 0.026 -0.011 -0.022 
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57 58 59 60 61 62 63 64 
72 0.033 -0.015 -0.015 -0.019 -0.049 -0.077 -0.015 -0.021 
73 -0.261 0.002 -0.082 0.067 -0.096 0.059 -0.005 0.266 
74 -0.053 -0.017 -0.016 -0.021 -0.037 -0.086 -0.016 -0.032 
75 0.721 -0.030 -0.027 -0.065 -0.211 -0.170 -0.030 -0.055 
76 0.423 -0.026 -0.025 -0.032 -0.108 -0.045 -0.025 -0.008 
77 -0.030 0.070 -0.052 -0.027 -0.039 0.060 -0.052 -0.072 
78 0.092 -0.033 -0.032 -0.040 0.016 0.042 -0.032 -0.049 
79 
80 0.719 0.007 -0.030 -0.039 -0.149 -0.065 -0.030 -0.024 
81 -0.038 -0.012 -0.011 -0.015 -0.006 -0.061 -0.011 0.001 
82 0.173 -0.018 -0.077 -0.091 -0.143 0.053 -0.035 -0.063 
83 0.602 -0.064 -0.092 -0.077 -0.276 -0.111 -0.054 -0.053 
84 0.382 -0.015 -0.014 -0.018 -0.071 -0.074 -0.014 -0.027 
85 -0.112 -0.033 -0.038 -0.048 -0.103 -0.129 -0.038 -0.054 
86 -0.038 -0.012 -0.011 -0.015 0.152 0.026 -0.011 -0.022 
87 -0.077 -0.024 -0.023 -0.030 0.129 0.009 -0.023 -0.046 
88 0.008 -0.017 -0.016 -0.021 -0. *074 0.022 -0.016 -0.007 
89 -0.041 -0.046 -0.008 -0.056 0.019 0.145 -0.044 -0.044 
90 -0.038 -0.012 -0.011 -0.015 -0.059 -0.039 -0.011 -0.011 
91 -0.034 -0.012 -0.011 -0.015 -0.059 0.091 -0.011 0.012 
92 0.148 -0.031 -0.030 -0.038 -0.089 -0.059 -0.030 -0.032 
93 0.343 -0.034 -0.033 -0.042 -0.151 -0.120 -0.033 -0.049 
94 0.011 -0.012 -0.011 -0.015 -0.032 0.069 -0.011 0.001 
95 -0.098 -0.032 -0.031 0.359 -0.120 -0.100 -0.031 -0.053 
96 -0.038 -0.012 -0.011 -0.015 -0.059 0.069 -0.011 -0.022 
97 -0.053 -0.017 -0.016 -0.021 -0.065 -0.025 -0.016 -0.032 
98 -0.038 -0.012 -0.011 -0.015 -0.059 -0.039 -0.011 -0.022 
99 -0.033 0.397 -0.019 -0.024 -0.064 -0.046 -0.019 -0.018 
100 -0.051 -0.017 -0.016 -0.021 -0.046 0.114 -0.016 -0.015 101 -0.104 0.010 0.354 0.016 0.331 0.226 0.013 -0.068 
102 -0.011 0.161 -0.053 0.269 -0.138 0-005 

" -0.053 -0.019 
103 -0.125 -0.046 0.325 0.011 0.088 -0.042 -0.044 -0.072 
104 0.015 0.058 -0.041 -0.052 -0.123 -0.109 -0.041 -0.049 
105 -0.050 -0.016 -0.015 -0.020 -0.055 -0.032 -0.015 -0.030 
206 0.069 -0.100 -0.056 -0.057 -0.065 0.176 -0.095 -0.032 
107 -0.001 -0.003 -0.076 0.164 -0.180 -0.147 0.068 -0.037 108 -0.020 -0.012 -0.011 -0.015 -0.006 -0.061 -0.011 -0.011 
109 0.299 0.317 -0.029 -0.022 -0.104 -0.138 -0.033 -0.056 
110 -0.038 -0.012 -0.011 -0.015 -0.046 0.091 -0.011 -0.022 
111 -0.038 -0.012 -0.011 -0-015 0.086 0.113 -0.011 -0.022', 112 -0.053 0.956 -0.016 -0.020 0.083 0.091 -0.016 -0.029 
113 -0.038 -0.012 -0.011 -0.015 -0.046 -0.061 -0.011 -0.022 114 -0.038 -0.012 -0.011 -0.015 0.086 0.113 -0.011 -0.022 115 -0.038 -0.012 -0.011 -0.015 -0.046 -0.017 -0.011 -0.022 116 -0.148 -0.060 0.078 -0.044 0.076 0.247 -0.057 -0.029 
117 -0.067 -0.058 0.054 -0.048 -0.012 0.209 -0.056 -0.005 

66 
67 
68 
69 
70 
71 
72 
73 
74 
75 
76 
77 
78 
79 

65 
-0.026 
-0.011 
-0.011 
-0.011 
-0.036 
-0.011 
-0.015 

0.072 
0.703 

-0.014 
-0.025 

0.196 
-0.032 

66 67 68 69 70 71 72 

0.034 
-0.026 -0.011 
-0.026 -0.011 -0.011 
-0.034 -0.036 -0.036 -0.036 

0.152 -0.011 -0.011 -0.011 -0.036 
-0.032 -0.015 -0.015 -0.015 -0.046 -0.015 

0.160 0.034 -0.082 -0.043 0.328 -0.043 -0.104 
-0.036 -0.016 -0.016 -0.016 -0.051 -0.016 -0.021 
-0.125 -0.049 -0.060 0.020 -0.093 -0.061 0.054 
-0.056 -0.025 -0.025 -0.025 -0.079 -0.025 -0.032 
-0.058 -0.052 -0.052 0.072 0.096 -0.052 -0.066 
-0.071 -0.032 -0.032 -0.032 -0.100 -0.032 0.493 
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65 66 67 68 6-9 70 71 72 
80 -0.030 -0.068 -0.030 -0.030 -0.030 -0.091 -0.030 0.054 
81 -0.011 -0.026 -0.011 -0.011 -0.011 -0.036 -0.011 -0.015 82 -0.056 -0.152 -0.077 -0.056 0.028 -0.175 -0.098 -0.031 83 -0.038 -0.039 -0.067 -0.091 0.001 -0.138 -0.098 -0.003 84 -0.014 -0.031 -0.014 -0.014 -0.014 -0.044 -0.014 -0.018 95 0.038 0.076 -0.038 -0.038 -0.038 -0.120 -0.038 -0.048 86 -0.011 0.152 -0.011 -0.011 -0.011 -0.036 1.000 -0.015 87 -0.023 0.038 -0.023 -0.023 -0.023 -0.074 -0.023 -0.030 88 -0.016 -0.036 -0.016 -0.016 -0.016 -0.051 -0.016 0.664 
89 -0.044 -0.079 -0.044 -0.044 -0.008 0.031 -0.044 -0.056 
90 -0.011 -0.026 -0.011 -0.011 -0.011 -0.036 -0.011 -0.015 91 -0.011 -0.026 -0.011 -0.011 -0.011 -0.036 -0.011 -0.015 92 0.300 -0.067 -0.030 -0.030 -0.030 -0.095 -0.030 -0.038 93 -0.033 -0.073 -0.033 -0.033 -0.033 -0.034 -0.033 -0.042 94 -0.011 -0.026 -0.011 -0.011 -0.011 -0.036 -0.011 -0.015 95 0.178 -0.044 0.388 -0.031 -0.031 -0.097 -0.031 -0.039 96 -0.011 -0.026 -0.011 -0.011 -0.011 -0.036 -0.011 -0.015 97 -0.016 -0.036 -0.016 -0.016 -0.016 -0.051 -0.016 -0.021 98 -0.011 -0.026 -0.011 -0.011 -0.011 -0.036 -0.011 -0.015 99 -0.019 -0.042 -0.019 -0.019 -0.019 -0.060 -0.019 -0.024 100 -0.016 -0.036 -0.016 -0.016 0.703 -0.051 -0.016 -0.021 101 0.050 -0.091 0.013 -0.044 0.013 0.074 -0.044 -0.056 102 -0.053 -0.025 0.265 -0.053 0.053 -0.083 -0.053 -0.034 103 -0.044 -0.092 -0.044 -0.044 -0.044 0.013 -0.044 -0.056 104 -0.041 -0.092 -0.041 -0.041 0.262 -0.130 -0.041 -0.052 105 -0.015 0.742 -0.015 -0.015 -0.015 -0.048 -0.015 -0.020 106 0.040 -0.203 -0.078 -0.142 0.157 -0.189 -0.014 -0.051 107 0.491 0.059 0.191 -0.076 0.081 -0.192 -0.049 0.088 
108 -0.011 -0.026 -0.011 -0.011 -0.011 -0.036 -0.011 -0.015 109 -0.018 -0.070 -0.022 -0.025 -0.025 -0.095 -0.033 0.270 
110 -0.011 -0.026 -0.011 -0.011 -0.011 -0.036 -0.011 -0.015 111 -0.011 -0.026 -0.011 -0.011 -0.011 0.229 -0.011 -0.015 112 -0.016 -0.036 -0.016 -0.016 -0.016 -0.051 -0.016 -0.020 113 -0.011 -0.026 -0.011 -0.011 -0.011 -0.036 -0.011 -0.015 114 -0.011 -0.026 -0.011 -0.011 -0.011 0.229 -0.011 -0.015 115 -0.011 -0.026 -0.011 -0.011 -0.011 -0.036 -0.011 -0.015 116 -0.012 -0.116 -0.027 -0.042 0.033 0.068 -0.042 -0.073 117 -0.038 -0.070 -0.038 -0.056 -0.001 0.074 -0.056 -0.071 

73, 74 75 76 77 78 79 80 74 0.048 
75 -0.232 -0.053 76 -0.223 -0.036 0.575 
77 0.163 0.102 0.168 0.231 
78 -0.184 -0.045 0.039- 0.209 -0.076 79 
so -0.197 -0.043 0.575 0.667 0.126 0.019 81 0.034 -0.016 -0.009 -0.025 -0.052 0.249 -0 011 82 -0 

' . 
140 

' 
-0.034 0.308' 0.094 0.240 0.050 . 

0 050 83 -0 189 : -0.05ý 0.629 0.388' 0.086 0.106 . 
0 379 84 146 -0 

> -0.020- 0.655 0.430 0.299 -0.039 
. 

0 262 85 0.007 
' 

-0.000 -0.067 -0.084 -0.155 -0.042 
. 

-0 092 86 -0.043 -0.016 -0.061- -0.025 -0.052 -0.032 
. 

-0 030 87 0.069 -0.033 -0.101 -0.051 0.210 -0.065' 
. 

-0 032 88 -0.116 -0.023 0.005 -0.036' -0.074 0.354 . 
0 026 89 -0.059 0.014 -0.028 -0.006 -0.046 0.296 . 

-0 037 90 -0.005 -0.016 0.092 -0.025 -0.052 0.249 . 
0 048 91 -0.043 -0.016 -0.047 -0.025 -0.052 -0.032 

. 
-0 030 92 0.025 0.192 -0.041 -0.056 -0.055 0.100 . 
-0 022 93 -0.109 -0.047 0.036 0.074 -0.133 0.310 . 

0 142 94 -0.082 -0.016 -0.033 0.004 -0.052 -0.032 
. 

0 009 95 0.043 0.105 -0.005 -0.068 0.014 0.030 . 0.019 
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73 74 75 76 77 78 79 80 
96 0.072 -0.016 -0.057 -0.025 0.445 -0.032 0.028 
97 -0.007 -0.023 -0.057 -0.036 -0.074 -0.045 -0.043 
98 -0.043 -0.016 -0.058 -0.025 -0.052 -0.032 -0.030 
99 -0.040 -0.027 -0.007 -0.029 -0.035 -0.053 -0.018 
100 -0.007 -0.023 -0.017 -0.036 0.279 -0.045 -0.043 
101 -0.107 0.018 -0.102 -0.086 0.262 -0.007 -0.051 
102 0.075 -0.000 0.023 0.368 0.202 0.000 0.343 
103 -0.091 0.012 -0.101 -0.043 0.058 0.126 -0.058 
104 -0.102 -0.059 0.122 0.060 -0.089 0.137 -0.066 
105 0.148 -0.022 -0.076 -0.034 -0.070 -0.043 -0.041 
106 -0.169 0.070 0.211 0.109 0.179 0.061 0.099 
107 -0.039 0.320 0.122 0.126 0.140 0.025 0.096 
108 0.034 -0.016 0.003 -0.025 0.196 -0.032 -0.030 
109 -0.204 -0.031 0.184 0.307 0.024 0.598 0.068 
110 0.072 -0.016 -0.025 0.004 0.196 -0.032 0.048 
ill 0.034 -0.016 -0.061 -0.025 -0.052 -0.032 -0.030 
112 -0.037 -0.023 -0.041 -0.035 0.046 0.054 -0.003, 
113 -0.043 -0.016 -0.041 -0.025 -0.052 -0.032 -0.030 
114 0.034 -0.016 -0.061 -0.025 -0.052 -0.032 -0.030 
115 -0.043 -0.016 -0.039 -0.025 -0.052 0.249 -0.011 
116 0.044 0.015 -0.056 -0.107 -0.029 0.146 -0.075 
117 0.082 -0.041 -0.047 -0.081 0.138 0.002 -0.025 

81 82 83 84 85 86 87 88 
82 0.259 
83 0.101 0.391 
84 -0.014 0.295 0.337 
85 -0.038 -0.032 -0.098 -0.046 
86 -0.011 -0.098 -0.098 -0.014 -0.038 
97 -0.023 -0.103 -0.126 -0.028 -0.039 -0.023 
88 -0.016 -0.064 -0.043 -0.020 -0.054 -0.016 -0.033 
89 0.674 0.282 0.070 -0.054 -0.119 -0.044 -0.035 -0.037 
90 -0.011 -0.056 -0.061 -0.014 -0.038 -0.011 -0.023 -0.016 
91 -0.011 -0.077 -0.071 -0.014 -0.038 -0.011 -0.023 0.703, 

_ 92 -0.030 0.218 0.179 -0.037 -0.075 -0.030 -0.061 -0.043 : 
93 0.099 0.117 0.250 -0.040 0.040 -0.033 -0.067 0.047_,. 
94 -0.011 0.133 0.042 -0.014 -0.038 -0.011 -0.023 -0.016 
95 -0.031 -0.111 -0.153 -0.038 -0.087 -0.031 -0.063 -0.044 
96 -0.011 0.007 -0.027 -0.014 -0.038 -0.011 0.491 -0.016 
97 -0.016 0.100 -0.026 -0.020 -0.054 -0.016 -0.033 -0.023' 
98 -0.011 0.091 0.027 -0.014 -0.038 -0.011 -0.023 -0.016 
99 -0.019 0.107 -0.030 -0.023 0.251 -0.019 -0.039 -0.027,, 
100 -0.016 0.294 0.049 -0.020 -0.054 -0.016 -0.033 -0.023 
101 0.164 0.254 -0.066 -0.036 -0.079 -0.044 0.035 -0.063 
102 0.159 0.067 0.064 -0.039 -0.032 -0.053 0.054 -0.075, ý 
103 0.114 0.141 -0.051 -0.054 0.131 -0.044 -0.010 -0.063 
104 0.262 0.316 0.365 -0.050 -0-137 -0.041 -0.084 -0.059 
105 -0.015 -0.046 0.045 -0.019 0.051 -0.015 0.190 -0.022 
106 0.253 0.582 0.321 0.122 0.067 -0.014 -0.136 -0.120 
107 0.368 0.167 0.173 0.051 0.319 -0.049 -0.081 -0.030 
108 -0.011 0.049 -0.067 -0.014 -0.038 -0.011 -0.023 -0.016 
109 -0.014 0.152 0.266 0.197 -0.094 -0.033 -0.054 0.184 
110 -0.011 -0.056 0.012 -0.014 -0.038 -0.011 -0.023 -0.016 
ill -0.011 -0.098 -0.076 -0.014 -0.038 -0.011 -0.023 -0.016 
112 -0.016 0.040 -0.077 -0.020 -0.033 -0.016 -0.033 -0.023, 
113 -0.011 0.091 -0.032 -0.014 -0.038 -0.011 -0.023 -0.016 
114 -0.011 -0.098 -0.076 -0.014 -0.038 -0.011 -0.023 -0.016 
115 -0.011 0.028 0.024 -0.014 0.191 -0.011 -0.023 -0.016 - 116 0.048 0.015 -0.164 -0.070 0.102 -0.042 -0.071 ,ý -0.071 
117 -0.019 -0.023 -0.066 -0.059 0.134 -0.056 0.026 -0.067 
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89 90 91 92 93 94 95 96 

90 0.207 
91 -0.008 -0.011 
92 0.154 -0.030 -0.030 
93 0.145 0.099 0.099 0.429 
94 0.494 -0.011 -0.011 0.300 -0.033 
95 0.119 0.388 -0.031 -0.012 -0.034 -0.031 
96 -0.008 -0.011 -0.011 -0.030 -0.033 -0.011 -0.031 
97 0.014 -0.016 -0.016 -0.043 -0.047 -0.016 -0.044 -0.016 
98 -0.008 -0.011 -0.011 -0.030 0.099 -0.011 -0.031 -0.011 
99 0.149 -0.019 -0.019 0.087 0.271 0.398 -0.051 -0.019 
100 -0.012 -0.016 -0.016 -0.043 -0.047 -0.016 -0.044 -0.016 
101 0.181 0.013 -0.044 -0.017 -0.023 -0.044 0.104 0.164 

102 0.120 -0.053 -0.053 -0.138 0.014 -0.053 -0.011 0.053 

103 0.129 0.061 -0.044 -0.064 -0.058 0.008 0.077 0.061 

104 0.207 - -0.041 -0.041 -0.009 0.092 -0.041 0.014 -0.041 
105 -0.059 -0.015 -0.015 -0.040 -0.044 -0.015 -0.041 -0.015 
106 0.254 -0.043 -0.111 0.069 -0.041 -0.021 -0.031 0.056 

107 0.144 -0.021 -0.049 0.112 0.008 -0.049 0.134 0.006 
108 0.100 -0.011 -0.011 -0.030 -0.033 -0.011 0.178 -0.011 
109 0.106 0.002 -0.033 0.407 0.527 -0.014 -0.029 -0.014 
110 0.064 -0.011 -0.011 -0.030 -0.033 -0.011 -0.031 -0.011 
ill -0.044 -0.011 -0.011 -0.030 -0.033 -0.011 -0.031 -0.011 
112 -0.037 -0.016 -0.016 -0.042 -0.046 -0.016 -0.043 -0.016 
113 -0.008 -0.011 -0.011 -0.030 -0.033 -0.011 -0.031 -0.011 
114 -0.044 -0.011 -0.011 -0.030 -0.033 -0.011 -0.031 -0.011 
115 0.028 -0.011 -0.011 -0.030 -0.033 -0.011 -0.031 -0.011 
116 0.300 0.455 -0.042 -0.076 -0.047 -0.012 0.242 -0.012 
117 0.151 0.017 -0.038 -0.063 -0.065 0.036 0.009 0.054 

97 98 99 100 101 102 103 104 
98 -0.016 
99 -0.027 -0.019 
100 -0.023 -0.016 -0.027 
101 0.018 -0.006 -0.050 -0.009 
102 0.151 0.053 0.087 -0.000 -0.026 
103 -0.026 0.008 -0.051 0.124 0.280 -0.044 
104 0.228 -0.041 -0.026 0.157 -0.023 0.095 -0.012 
105 -0.022 -0.015 -0.025 -0.022 -0.059 -0.071 -0.059 -0.055 
106 -0.018 0.018 -0.042 0.298 0.268 0.095 0.270 0.247 
107 -0.093 -0.076 0.092 0.150 0.037 0.172 -0.041 0.059 
108 -0.016 -0.011 -0.019 -0.016 0.088 -0.053 0.061 -0.041 
109 -0.036 -0.029 0.098 -0.039 -0.001 0.019 -0.035 0.120 
110 -0.016 -0.011 -0.019 -0.016 -0.006 0.583 -0.044 -0.041 
ill -0.016 -0.011 -0.019 -0.016 0.013 -0.053 0.167 -0.041 
112 -0.023 -0.016 0.375 -0.023 0.001 0.158 -0.021 0.084 
113 0.703 -0.011 -0.019 -0.016 0.013 -0.053 0.008 0.262 
114 -0.016 -0.011 -0.019 -0.016 0.013 -0.053 0.167 -0.041 
115 -0.016 -0-011' '-0.019 -0.016 0.013 0.053 0.378 -0.041 
116 0.165 -0.042 -0.076 0.058 0.130 -0.017 0.237 -0.047 
117 0.090 0.036 

-ý-0.055 
0.012 0.074 0.178 ý0.041 -0.081 

105 
' 

106 107 108' log 110 ill 112 
106 -0. 149 
107 0.102 0.375 
108 -0.015 0.148 ý-'-0.021 
109 -0.041 -0.023 -0.006 -0.014 
110 -0.015 0.022 -0'. 028 -0-011' '' -0.014 
ill -0.015 -0.062 -OA62, -0-011 '-'-0.029ý -0.011 112 -0.022 -0.027 -0.025 -0.016 0.294 -0.016 -0.016 113 -0.015 -0.074 -0.055' -0.011 - -', '-0.018 , -0.011 --0.011 -0.016 114 -0.015 -0.062 ' -0.062' -0-011 '-0.029: ý -0.011 1.000 -0.016 115 -0.015 0.127 -0.049 -0-011 -0.033 -0-011 -0.011 

, 0.072 
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. 
105 106 107 108 109 

116 -0.077 0.180 -0.124 0.244 -0.080 
117 -0.051 0.115 -0.165 0.109 -0.094 

113 114 115 116 
114 -0.011 
115 -0.011 -0.011 
116 0.018 0.063 0.184 
117 -0.001 -0.001 0.054 0.674 

TAXA KEY 

I White anemone 
indet. 

2 Sagartia ornata 
3 Podocoryne carnea 
4 Turbellaria indet. 

5 Polycladida indet. 
6 Nemertea indet. 

7 Nematoda indet. 
8 Lagisca extenuata 

9 Lepidontus clava 

10 Lepidontus 
squamata 

11 Harmothoe impar 
12 Harmothoe spp. 
13 Pholoe inomata 

14 Capitella Capitata 

15 Chaetozone setosa 

16 Cirratulus cirratus 

17 Cirratulus filiformis 

18 Cirriformia 
tentaculata 

19 Tharyx marioni 
20 Driloneris filum 
21 Marphysa 

sanguinea 
22 Hesionidae indet. 

23 Kefersteinia cirrata 

24 Nereimya punctata 
25 MaIdanidae indet. 

26 Ophelia rathkei 

27 Ophelia bicomis 
28 Orbiniidae indet. 

29 Scoloplos armiger 
30 Eteone picta 

31 Eulafia viridis 

32 Polydora cifiata 
33 Scolelepis foliosa 
34 Scolelepis 

squamata 
35 Brania pusilla 
36 Odontosyllis 

ctenostoma 
37 Odontosyllis gibba 
38 Pionosyllis 

divaricata 
39 Sphaerosyllis 

bulbosa 
40 Typosyllis prolifera 

41 Fabricia stellaris 
42 Fabriciola berkeleyi 
43 Oriopsis armandi 

44 Pomatoceros 
triqueter 

45 Paralaeospi . ra 
malardi 

46 Oligochaeta indet. 

47 Heterocythereis 
albomaculata 

48 Ostracod sp. 2 

49 Ostracod sp. 3 
50 Ostracod sp. 4 
51 Copepoda indet. 

52 Juvenile barnacles 
indet. 

53 Barnacle nauplii 

54 Balanus balanus 
, 55 Semibalanus 

balanoides 
56 Elminius modestus 

57 Tanais dulongii 
58 Idotea baltica 

59 Idotea granulosa 
60 Idotea neglecta 

110 111 112 
0.018 0.063 -0.005 
0.367 -0.001 -0.030 

61 Idotea pelagica 

62 Jaera albifrons 
63 Stenothoe spp. 
64 Hyale prevostii 

65 Hyale pontica 
66 Chaetogammarus 

marinus 
67 Gammarus locusta 
66 Sunamphitoe 

pelagica 
69 Caprella finearis 

70 Crab larvae Inclet. 

71 Hyas araneus 
72 Cancerpagurus 
73 Carcinus maenas 

74 Pinnotheres pisum 

75 Mite sp. 1 

76 Mite sp. 2 

77 Mite sp. 3 

78 Mite sp. 5 

79 Mite sp. 6 
80 Anurida maritima 
81 Petrobius maritimus 

82 Dipteran pupae 
inclet. 

83 Chironomid larvae 
indet. 

84 Ant 
85 Juvenile gastropods 

indet. 
86 Tectura tessulata 

87 Patella vulgata 
88 Patella 

ulyssiponensis 
89 Skenea serpuloides 
90 Lacuna vincta 
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91 Littorina obtusata 

92 Littonna manae 
93 Littorina rudis 
94 Cingula trifasciata 

95 Onoba semicostata 
96 Alvania semistriata 

97 Rissoa parva 
98 Barleeia unifasciata 

99 Coriandria fulgida 

100 Skeneopsis 
planorbis 

101 Rissoella opalina 
102 Nucella lapillus 
103 Brachystomis, 

scalaris 
104 Limapontia 

depressa 
105 Juvenile Bivalves 

inclet. 
106 Juvenile Mytilus 

edulis , 
107 Modioluta 

phaseolina 
108 Musculus discors 

109 Lasaea adansoni 
110 Tapes spp. 
111 Venerypis saxatilis 

112 Turtonia minuta 

113 Ophiolepidae indet. 

114 Ophiocomina nigra 
115 Ophiothrix fragilis 

116 Benthic foraminifera 
indet. ý- 

117 Foraminifera indet. 


