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SUMMARY 

A novel miRNA cluster within the circadian clock gene NPAS2 and the 

implications of rs1811399, an autism enriched single nucleotide 

polymorphism. 

This PhD investigated the role of the rs181399 single nucleotide polymorphism (A or C) in 

the maturation of a previously unknown microRNA. microRNA are potent regulators of gene 

expression and their expression is finely controlled. Canonically the microRNA processing 

machinery recognise hairpin-loops of single stranded RNA as a substrate for processing. 

Mutations, such as rs1811399 can disturb the hairpin leading to reduction in expression. 

The work presented in this thesis demonstrates that a novel microRNA cluster is located 

within intron 1 of NPAS2 which is independently transcribed of its host gene. Secondly, 

plasmid constructs were used to integrate versions of the novel microRNA hairpin containing 

either an A allele or a C into cell lines. Utilising this method the impact of the C allele was 

noted to be deleterious to microRNA maturation. 

RNA protection assays have demonstrated that both precursor microRNA and mature 

microRNA is constitutively expressed within a multitude of tissue types, seemingly 

independently of its host gene. 

The potential impact of the C allele on genetic regulation was analysed bioinformatically by 

analysing potential gene targets and the pathways they participate in. 
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1 Introduction: A novel miRNA cluster within the circadian 

clock gene NPAS2 and the implications of rs1811399, an autism 

enriched single nucleotide polymorphism. 

This body of work has been commissioned for the sole purpose of elucidating the impact of 

the rs1811399 SNP. We will hope to establish whether or not it interfere with miRNA 

biogenesis. On the way to answering this question it will also be possible to answer some 

tangential questions: 

 Does NPAS2 host a miRNA gene? 

 Is NPAS2 the host of a miRNA cluster? 

 Is the expression of any miRNA dependant on the expression of the host gene? 

 What is the expression profile of the miRNA? 

The answers to these questions will illuminate a relatively poorly understood field as very 

little has been published on the influence of SNP on a miRNA. Hopefully we will also be 

able to contribute to the debate of the host gene-miRNA relationship as this too is a field of 

much controversy. 

1.1 The Circadian Clock  

1.1.1 Core Circadian Clock 

The circadian rhythm machinery has evolved to ensure the synchronicity of life with regards 

to the Earth’s 24h cycle. There are several theories why a circadian clock has evolved using 

light as the main “zeitgeber”. One theory is based on the idea that early single cell organisms 

needed to avoid the UV in sun light which would have damaged their genetic information 
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(Ouyang et al, 1998). Another theory is linked with the uptake of mitochondria into early 

cells which would require coordination between DNA synthesis and mitochondrial activity. 

Mitochondria are the main source of free oxygen radicals which damage DNA, and the clock 

may allow cells to restrict DNA synthesis to phases of low oxygen production e.g. during the 

night. This theory is supported by experiments from Chen and McKnight (2007) in which 

they show that a more simpler clock, the metabolic clock of Saccharomyces cerevisae, limits 

DNA replication to periods of low oxidative stress (as noted by Tu et al, 2005). A hypothesis 

that mammalian cells are under a similar control is supported by the work of Unsal-Kacmaz 

and colleagues (2005) who note that the TIMELESS protein tightly regulates a cell’s 

progression in the cell cycle.  

According to Oster (2006) the core clock in mammals is located within the suprachiasmatic 

nucleus (SCN), a region of the hypothalamus, with the largest stimuli, or zeitgeber, being the 

light and dark cycle which acts upon the SCN via glutamate and pituitary adenylate cyclise-

activating peptide. Its activity is regulated by the cyclical nature of genes expressed and 

repressed within the cells of the SCN (see Figure 1.1).  
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  Figure 1.1: A schematic overview of the mammalian circadian clock. A schematic of 

the core circadian clock in humans reproduced from 

(http://2008.igem.org/Team:Michigan/Project Accessed 17/11/13)  

The negative feedback cycle of the circadian clock consists of several steps: Step 1) The 

BMAL/CLOCK heterodimer facilitate the expression of the PER and CRY genes thus 

allowing for levels of PER and CRY proteins to build up. Step 2) PER and CRY form a 

heterodimer to prevent their phosphorylation by CK1ε and ubiquitinylation. Step 3) In 

conjunction with CK1ε the PER-CRY heterodimer translocates into the nucleus and interferes 

with CLOCK-BMAL mediated transcription of clock-controlled genes such as Vasopressin. 

Oster (2006) then states that this leg of the cycle occurs during the night. The positive 

feedback cycle consists of the following steps:  Step 1) BMAL is translated and forms a 

heterodimer with CLOCK. Step 2) The BMAL-CLOCK heterodimer binds to the E-box 

upstream regulatory domain of the PER, CRY, RORα, REV-ERBα and other clock-controlled 
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genes such as vasopressin and prokineticin2 which go on to control/establish the circadian 

rhythm in other regions of the brain or tissues. The PER and CRY proteins are, as 

established, the negative regulators of the clock whilst RORα and REV-ERBα act as a 

stabilising force upon transcription of the BMAL gene (according to Jetten, Kurebayashi & 

Ueda (2001) whilst the gradual decay of PER-CRY over time is enough to restart the cycle. 

The presence of light will increase levels of compounds such as melatonin which binds to and 

activates RORα which in turn increases expression of the BMAL gene). 

1.1.2 Peripheral clock 

Circa 10% of all the genes expressed within a majority of tissues are expressed in a circadian 

pattern (Akhtar et al, 2002), with a paper by Storch et al (2002) going further to identify 

these genes as coding for proteins involved in rate limiting steps in many important metabolic 

pathways such as glycolysis and fatty acid metabolism. As these are not a part of the core 

clock they are referred to as a peripheral clock (Lamia et al, 2008). 

An example of a peripheral clock gene would be the D-element binding protein which is 

upregulated in the presence of BMAL and activates the transcription of hepatic enzymes such 

as steroid 15-hydroxylase and cournarin-7-hydroxylase (Lavery & Schibler, 1993). 

Further evidence for the importance of a peripheral clock can be seen in the vasculature of 

mammals such as mice in which much work has been done on the circadian control of aortic 

tissue gene expression. A paper published by Rudic et al (2005), for example, identify 307 

genes in mouse aorta that exhibit circadian oscillations. A separate review article (Reily, 

Westgate & FitzGerlad, 2007) identifies these genes as being important for protein folding, 

metabolism and protein breakdown. 
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1.1.3 NPAS2 

The NPAS2 gene covers a large genomic locus of 176.68kb and encodes for a final transcript 

of 4007bp and 824 amino acid residues (Ensembl).  

   

 

 

 

Figure 1.2: a) Organisation of the NPAS2 gene. Exons are visible as vertical lines, 

introns as horizontal lines and the read direction is highlighted with the black arrow. 

This image represents the NPAS2 transcript associated with the circadian clock. There 

are 12 other alternative transcripts which may or may not be biologically functional. 

Image downloaded from Ensembl (Accessed 17/11/13). 

b) Domain organisation of translated NPAS2. The green square represents the bHLH 

domain, red the two PAS domains and orange the PAC domain. 

The genes encodes for the NPAS2 protein or neural-PAS domain protein 2 (PAS being the 

acronym for Period, aryl-hydrocarbon and singleminded) and is a basic helix-loop helix-PAS 

(bHLH) transcription factor that is preferentially expressed within the mammalian forebrain 

and is known to have a role in memory development and the circadian clock (Franken et al, 

2006; Gilles-Gonzalez & Gonzalez, 2004).  

A 

B 

bHLH 

domain 

PAS domains PAC domain 
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According to Gonzalez & Gonzalez (2004) the PAS domain of the protein consists of two 

slightly conserved domains which only exhibit 12% homology with other members of the 

PAS family. It is however noted in the literature that all these domains are around 130 amino 

acid residues long and that proteins can include as many as six PAS domains. Whilst there is 

great variation in the structure of the PAS domains, their functions are mostly similar in that 

they respond to environmental stimuli and regulate gene expression accordingly (Rutter et al, 

2001); however it should be pointed out that not all PAS domain proteins are transcription 

factors with Dunham et al (2003) noting that a PAS protein in Bradyrhizobium japonicum is 

responsible for oxygen sensing.  

 

Figure 1.3: Crystallographic structure of the PAS domain of the bacterial oxygen sensor 

protein FixL. This image reproduced from the Protein Data Bank which demonstrates 

the two alpha helices integral to the function of the proteins.  

Rutter et al, (2001) describes that structurally the bHLH motif contains two alpha-helices 

joined together by a “loop” which is described as the bonding of two carbon atoms not 

currently engaged in an alpha helix or beta pleated sheet (refer to Figure 1.3). bHLH proteins 

are a group of proteins conserved across nature with the literature noting over 240 examples 

of bHLH proteins across many species including Drosophila, Homo sapiens and Xenopus. 
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They are known to play important roles in neural development and uptake of phosphates 

(Gonzalez & Gonzalez, 2004). Cavadini et al (2007) note that  bHLH-motif containing 

proteins are required to form a heterodimer before they are able to bind to DNA at a site 

known as the E-box (a pallendromic sequence of CACGTG). The heterodimer partner for 

NPAS2 is BMAL1 according to Rutter et al (2001). 

To complement the bHLH motif in DNA binding the NPAS2 protein also employs a heme 

group as co-factor (Dioum et al, 2002). The two heme groups in NPAS2 are postulated to 

play an important role in stabilising the bHLH motif and linking its ability to bind to DNA 

with the redox status of the cell. NPAS2 is able to assess the redox state of the cell as heme is 

able to bind carbon monoxide. If the redox state of the cell is strongly reducing then NPAS2 

is able to bind to DNA (Dioum et al, 2002)  

1.1.4 Roles of NPAS2 

The role of NPAS2 in the circadian rhythm is well established. The protein is involved in the 

activation of transcription of PER1, PER2, CRY1 and CRY2 genes. These proteins then act as 

a negative regulator of the NPAS2 gene, preventing further expression of the gene leading to 

eventual depletion of the cellular pool of NPAS2 protein via proteosomal degredation 

(Garfield & Schibler, 2007). This auto-regulatory cycle of NPAS2 expression is linked with 

sleep homeostasis as demonstrated in experiments in NPAS2-/- mice (Franken et al, 2006).  

The role of NPAS2 in memory was highlighted in an investigation carried out involving mice 

which had had their NPAS2 gene altered to remove the bHLH domain coding exon and 

instead produced an otherwise structurally faithful protein fused to the reporter protein LacZ 

(Garcia et al, 2000). The paper continues by noting the localisation of NPAS2 within the 

brain of the mice via use of beta-galactoside (LacZ) reporter. They noticed that the protein 

was located in areas associated with memory (i.e the mesolimbic pathway) and they also 
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noted that when submitted to a battery of memory tests the NPAS2-/- mice demonstrated no 

impaired short term memory but a deficient long term memory in contextual situations e.g. 

fear. 

1.2 Autism: A Brief introduction. 

Autism has a catalogued history dating to its naming by Dr Leo Kanner. Dr Kanner used the 

term infantile autism to describe eleven children who exhibited symptoms including: lack of 

social skills and a refusal to break from routine (Kanner 1968). However according to Kuhn 

& Cahn (2004) the term autism had been previously used to describe a collection of 

symptoms within schizophrenic patients by Dr Eugen Bleuler in 1910 who was a Swiss 

psychiatrist from whom Dr Hans Asperger borrowed the word in 1938 to describe the 

condition which later came to be named Asperger’s syndrome which exhibited symptoms 

similar to Dr Bleuler’s patients. 

Since the 1970s it was apparent that autism and Asperger’s were not isolated syndromes but 

indeed part of a wider spectrum of conditions all exhibiting similar symptoms with the 

Diagnostic and Statistical Manual of Mental Disorders (DSM)-4 listing three pervasive 

developmental disorders which includes autism, Asperger’s and PDD-NOS (pervasive 

developmental disorder not otherwise specified) (Johnson & Myers, 2007). 

It is estimated by Johnson & Myers (2007) that the prevalence of Autism Spectrum Disorders 

(ASD) in the European/American population is approximately 6 per 1000. We may also note 

that an important epidemiological fact of autism is its strong male disposition with a male to 

female ratio ranging from 2:1 to 6.5:1 (Johnson & Myers, 2007), with the usually quoted 

figure being 4:1. However when one focuses on severe autism the ratio leaps to 15:1 

(Johnson & Myers, 2007). 
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Unfortunately for both patients and clinicians, autism’s aetiology is not simple with many 

contributing factors (Muhle, Trentacoste & Rapin, 2004).  

A review by Muhle, Trentacoste & Rapin (2004) surmises over 30 years of twin studies and 

notices that concordance rates between monozygotic twins and dizygotic twins for severe 

autism to be 60% and 0% respectively. The rates for ASD however increase to 92% and 10% 

respectively. These statistics demonstrate the roles for genetic factors in autism but not a 

single gene. Epigenetic and environmental factors can contribute to the condition. Whilst the 

idea of a genetic cause of autism can raise hopes of a therapy for the disorder or potential 

screening, the vast spectrum of the disorder results in dozens if not hundreds of candidate 

genes or loci being identified as significant (Muhle, Trentacoste & Rapin, 2004).  

Recent efforts have focused on the role regulatory networks (Figure 1.4) have on leading to 

the phenotype. For example Wimpory et al (2002) and Hu et al (2010) who, respectively, 

questioned the roles of the circadian clock and miRNA regulatory networks in autism.  
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Figure 1.4: A network of related gene pathways with altered expression levels in autism. 

Genes in this figure have had their expression levels in autistic patients quantified using 

qPCR. Yellow denotes cellular processes, pink are genes identified as being part of the 

pathways, red are up-regulated genes, purple are overt disorders, green are small 

molecules. This diagram demonstrates the complicated nature of autism and the 

varying aetiologies which can give rise to the phenotype. It should be noted that 

incidence rates of all the conditions noted above within the autistic population is higher 

(Hu et al, 2009).  

1.2.1 Timing in Autism 

Among many of the named aetiological factors attributed to developing autism, the role of 

the circadian clock is perhaps the least understood. It has been hypothesised that one of the 
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facets of autism is the patient’s inability to synchronise their timing during conversations 

(Wimpory, Nicholas & Nash, 2002). This timing hypothesis is further strengthened when the 

importance of timing in healthy babies becomes apparent in their interactions between parent 

and child during, for example, pre-verbal games during which turn taking is established. 

These rhythms which begin at 1/900ms rapidly quicken to 1/500ms by the age of two months. 

Studies that adversely affected these rhythms (such as utilising video-links) caused distress to 

the young children and led to transient-autistic like behaviour (eye avoidance, inability to 

take part in events etc) which soon vanished under resumption of live socializing (Kubicek, 

1980). The extent of improper timing within autism is further demonstrated by an apparent 

inability to rapidly shift attention between various objects, admittedly this phenomena has 

also been linked to improper neuronal plasticity with glutamate being essential for correct 

plasticity but its absorption and metabolism do not fall under circadian control (Paul et al, 

2008). 

An experiment carried out by Konopka & Benzer (1971) utilising mutagenesis of 

a Drosophila melanogaster per gene during which three mutants were formed: short period, 

long period or arrhythmic period flies. These mutations not only caused discrepancies within 

the flies’ circadian rhythms but also affected the fruit fly’s courtship song. Thus the first link 

between social communications and the circadian clock were drawn. 

Many of the findings in autism correlate with a potential circadian cause when viewed in this 

context. Hu et al (2009) conducted a survey on lymphoblastic cell lines extracted from 116 

autistic patients who had been scored using the Autism Diagnostic Interview-Revised test 

(ADI-R) to identify such a link. Using the questionnaire she was able to segregate the 

populations into three categories: severe, mild and savant. From this study came an 

interesting result, a set of 15 genes (down-regulated: AANAT, BHLBH2, CRY1, NPAS2, 

PER3, RORA, NFIL3, CLOCK, PRGDS, PER1, CREM, BHLHB3 and DPYD. Up-regulated: 
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CRY1 and NR1D1) that regulate the circadian rhythm were found to be strongly linked (a 

false discovery rate (FDR) of <5%) with severe autism. 

Prior to this influential work being published, it had been noted by Nicholas et al (2008) that 

the circadian clock genes may be implicated in autism and had identified several mutations at 

single nucleotides within genes (single nucleotide polymorphisms or SNPs). However none 

of these SNPs were to be found in the exonic regions and were instead to be found in the 

intronic sequences of the genes. Such examples include rs1861972, rs1861973, rs1811399 

and rs885747 in Engrailed 2 (EN2) a gene which encodes for a transcription factor important 

in neural development, NPAS2 and PER1 (Nicholas et al, 2008), respectively. These four 

SNPs (rs1861972 and rs1861973 in EN2) were the subject of an in silico survey in an attempt 

to identify the significance of these mutations in causing the pathophysiology of autism 

(Nicholas et al, 2008).  

Rs1811399 has been demonstrated to be significantly associated (P<0.05) with autism 

however the exact mechanism of its interaction was unclear as the SNP does not interfere 

with protein coding due to its location within intron 1 of the NPAS2 gene (Nicholas et al 

2007).  

The SNP itself maps to co-ordinates 2:101479014 (Ensembl release 71) henceforth referred 

to as Ensembl) and is 42137 base pairs from the initiation of the intron and 42180 base pairs 

from the beginning of exon 2 and is noted with the ambiguity code ‘M’ denoting the allele 

can either be C or A (Figure 1.5). The C allele is recorded by Ensembl as being the ancestral 

allele. The ancestral allele is defined as an allele which is shared between human and 

chimpanzee (Sepncer et al, 2006). 
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Figure 1.5 Location of rs1811399 in NPAS2. 

1.3 Regulation of gene expression. 

Not every cell requires every protein all the time or indeed at all (Filipowicz et al, 2005). 

Several regulatory mechanisms have evolved to tightly control protein expression (Filipowicz 

et al, 2005). These can be divided into two categories: post-transcriptional and post-

translational (Filipowicz et al, 2005, Xu et al, 2012). Whilst post-translational regulation is 

beyond the scope of this thesis it is sufficient to note that it involves a variety of chemical 

modifications of proteins to alter their activity or mark them for degradation (Xu et al, 2012). 

Post-transcriptional regulation involves processes that occur to the mRNA of a gene and will 

be the focus of this thesis.  

RNA interference is a process by which gene expression is regulated in a post-transcriptional 

mechanism and was experimentally demonstrated in 1998 by Fire et al who showed that 

injecting double stranded RNA (dsRNA) molecules into the nematode Caenorhabditis 

elegans could induce gene silencing. Only dsRNA induced this silencing and anti-sense RNA 

was not sufficient. Prior to this publication several laboratories reported phenomena that they 

could not explain: for example Romano & Macino (1992) observed in Neurospora gene 

silencing when a homologous sequence of DNA was inserted into the fungus. They named 

the process quelling. A similar result was recorded two years previously by Napoli, Lemieux 

and Jorgensen who introduced a chimeric chalcone synthase gene into petunia flowers in an 

attempt to gain a darker coloured petal; instead the investigators noted the petals of the 
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transfected plants were white which implied that both the integrated gene and the endogenous 

gene were being silenced by an unknown mechanism they termed co-suppression. Melo and 

Fire shared the Nobel prize in 2006 for their achievement. 

There are two pathways by which gene silencing can occur via RNA molecules: small 

interfering RNA (siRNA) and micro RNA (miRNA). siRNA is modulated by the presence of 

endogenous (or exogenous) dsRNA identical to that described by Fire et al (1998) whilst 

miRNA are dependent on segments of RNA which contain secondary structural hairpins 

which then undergo post-transcriptional modification into small ~20 base pairs (bp) long 

RNA before they can induce silencing. Both pathways utilise the same end point protein 

complex, known as RISC, to induce silencing (Engels & Hutvagner 2006).  

1.3.1 Biogenesis of microRNA 

miRNA genes are widely dispersed throughout the human genome and can be found between 

genes (intergenic) or within protein coding genes (intragenic) (Altuvia et al, 2005). Of the 

intragenic miRNA genes approximately 40% of them are located within an intron with the 

remainder located within exons often on the opposite strand to the coding region (Rodriguez 

et al, 2004).  It was assumed that microRNA were located within protein coding genes to 

utilise the host’s promoter (Baskerville & Bartel, 2005) later however it was discovered that 

some 35% of intronic miRNA possess their own upstream promoter regions and are therefore 

potentially capable of their own transcription (Rodriguez et al, 2004).   

Zhou et al (2007) notes that most miRNA are transcribed by RNA Polymerase II and have 

proximal to their 5’ end a region where PolII and its accessory transcription factors can bind. 

This is accessorized in some cases with CpG islands (27%), PolIII promoters (1%) or CT 

repeats (100%) which all facilitate transcription.   
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miRNA that are co-expressed with their host gene often have a co-suppression role (e.g. miR-

26b) (Zhu et al, 2012). miR-26b is hosted within the CTDSP2 gene (which encodes for a 

protein which negatively regulates RNA polymerase II) and post-transcriptionally represses 

the expression of the gene (Zhu et al, 2012).  A second example would be miR-126 which is 

hosted within and down regulates the product of the EGFL7 gene, which is required for 

vascular differentiation (Musiyenko, Bitko & Barik 2008). Conversely it has also been 

demonstrated that hosted miRNA can improve the expression and function of their host genes 

by down regulating antagonistic elements of various pathways e.g. miR-338 which is located 

with the AATK gene (induces apoptosis in myeloid cells) and down regulates an AATK 

antagonist; NOVA (Barik 2008). 

 

Figure 1.6: miRNA biogenesis: Image reproduced from Shomron & Levy (2009). From 

this schematic we can see that there are two pathways for production of miRNAs; one 
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consists of a gene specific for the miRNA whilst the second involves the extraction of the 

pre-mRNA from intronic or otherwise non-coding sections of DNA.  

RNA polymerase II transcribes the microRNA gene, which at this initial stage can be several 

thousand kilobases long (Gregory, Chendrimada & Shiekhattar 2005). Initially it was 

assumed that it was RNA polymerase III which was responsible for the transcription of the 

interfering RNA due to its role in transcribing other non-coding RNA such as tRNA, however 

once a large amount of microRNA sequences became available it was apparent that several 

contained poly-T sequences which act as RNAPol III termination sequences (Lee et al, 

2002).  Once the transcription of the primary miRNA transcript (pri-miRNA) is completed it 

is capped as in a similar method to protein coding genes (Cai, Hagedorn, & Cullen 2004). A 

characteristic of these pri-miRNA transcripts is the prevalence of RNA hairpin loop 

secondary structures which form due to non-Watson Crick base pairing events (Sun et al, 

2012). It is these RNA hairpin loops that contain the mature miRNA sequence (Figure 1.5) 

(Sun et al, 2012). 

Considering the size of these pri-miRNA transcripts it isn’t surprising to note that each 

transcript might contain several mature miRNA forms. One of these miRNA clusters is the 

mir-17-92 cluster (Figure 1.7). Mir-17-92 has a length of 800bp and is found within intron 3 

of the gene C13orf25 and encodes for 6 mature miRNA and another potential 6 miR*, all of 

these are transcribed from a single promoter (Olive, Jiang & He 2010).  
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Figure 1.7: The miRNA cluster in C13orf25 gene. This figure reproduced from Ensembl 

(Accessed 17/11/13) demonstrates the structure of a miRNA gene cluster. All these 

miRNA genes (open boxes) are in the same orientation and are located close together. 

Some miRNA clusters can have >3kb between miRNA genes and are still said to be of 

the same cluster.  

Once capped the pri-miRNA transcript is processed by a protein complex called the 

microprocessor (Figure 1.8) (Han et al, 2006). A constituent of this microprocessor is 

DROSHA, a Class II RNase III like enzyme which selectively cleaves dsRNA hairpins (Han 

et al, 2006).  

In humans DROSHA is a 159kDa protein and contains two RNAse III domains which cleave 

dsRNA in a magnesium/manganese dependant reaction (the metal ions stabilize RNA 

secondary structure) leaving a dsRNA hairpin of approximately ~80bp (Han et al, 2006). 

Whilst DROSHA is known to have a dsRNA binding domain it only weakly binds to its RNA 

substrate and as such a second protein which in humans is DGCR8 is required (Han et al, 

2006). 
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Figure 1.8: Structure of the DROSHA protein. The RNAse III domains are coloured red 

(amino acids 876-1056 and 1107-1233 respectively) whilst the dsRNA binding domain 

(amino acids 1260-1334) is in green. The functionally essential domains are all located 

on the C-terminal side of the protein with only proline and arginine rich domains of no 

known functional significance located within the N-terminus.  

DGCR8 contains two dsRNA binding domains and requires heme as a cofactor to facilitate 

binding to the RNA molecule (Barr et al, 2011). The heme group however is not always 

required for a variant that is N-terminal deficient (where the heme binding domain is located) 

is sufficient for forming a complex with DROSHA (Han et al, 2006). Han et al (2006) have 

demonstrated that DGCR8 binds at the ssRNA-dsRNA junction of the pri-miRNA and 

measures ~11bp from the junction up the stem (Figure 1.9).  
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Figure 1.9 Schematic of DGCR8 binding to RNA. The green oval represents DGCR8 

and its binding location to RNA during miRNA biogenesis. Its presence at the ssRNA-

dsRNA junction allows the microprocessor complex to delineate the terminus of the 

stem loop RNA (dsRNA).   

Han et al (2006) have identified the canonical mechanism of DROSHA processing. Pri-

miRNA hairpins often have > 3 helical turns within their 3D structure. DROSHA recognises 

these turns and cleaves the hairpin at 2 helical turns away from the terminal loop and 1 

helical turn from the basal sections (Han et al, 2006). The terminal loop is not required for 

processing of pri-miRNA into pre-miRNA but the basal sections is essential (where the 

hairpin joins the remainder of the transcript). This has led to the ssRNA-dsRNA junction 

anchoring model of DROSHA activity. This model states that the cleavage location is ~11bp 

away from the ssRNA-dsRNA junction which corresponds to the locations of the helical 

turns and the area which DROSHA has marked for cutting (Figure 1.9) (Han et al, 2006).  

Characteristic of a DROSHA processed RNA hairpin (now called pre-miRNA) is the 

presence of a 2nt 3’ overhang which is essential for its recognition by the exportin complex 

(Figure 1.10). The pre-miRNA exporting complex contains two proteins: EXPORTIN-5 and 

RAN-GTP (Kohler & Hurt 2007). RAN-GTP is a member of the Ras superfamily of GTP 

binding proteins and is responsible through the RanGTP cycle for carrying the pre-miRNA 

across the nuclear envelope (Kohler & Hurt 2007). EXPORTIN-5 is understood to bind to the 
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dsRNA helix of the pre-miRNA allowing it to traverse the nuclear envelope without 

undergoing enzymatic degradation (Kohler & Hurt 2007). 

 

 

 

Figure 1.10: An example of a DROSHA processed pre-miRNA hairpin loop: Human 

miR let7a pre-miRNA. The processed hairpin has a 2nt overlap on its 3’ arm. This is 

used by the EXPORTIN complex as a recognition signal. This image has been made in 

Notepad using the sequence for the hairpin precursor found in MirBase v19. 

Upon export into the cytoplasm the pre-miRNA is processed by the DICER enzyme. DICER 

is the second RNAse III enzyme involved in the miRNA biogenesis pathway and cleaves the 

hairpin via an ATP and magnesium dependant mechanism (Park et al, 2011). The recognition 

site for DICER cleavage is not as well understood as that of DROSHA but it is known that 

the terminal hairpin loop structure is essential (Park et al, 2011). It has also been 

demonstrated to selectively bind to the 3’ arm of the hairpin and then to cleave away the 

hairpin loop thus leaving an imperfectly Watson-Crick base paired RNA duplex which 

consequently breaks apart into two separate RNA strands either of which can be used as a 

mature miRNA (Carthew and Sontheimer, 2009). 
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1.3.2 The RNA Induced Silencing Complex 

The mature miRNA strands lack any functional ability on their own and requires a protein 

complex known as the RNA Induced Silencing Complex (RISC) to facilitate gene silencing 

(Kawamata and Tomari, 2010). In humans this complex contains Argonaute 2 (AGO2), Vasa 

Intronic Gene (VIG), Fragile-X mental retardation protein (FMRP) and Tudor staphylococcal 

nuclease (T-SN).  

The Argonaute class of proteins are a family of evolutionary conserved proteins which 

encompass two families: Ago and PIWI both of which bind to small single stranded RNA 

molecules. Both classes have three domains in common (Kawamata and Tomari, 2010):-  

PIWI: Magnesium dependant endonuclease domain. 

MID: Responsible for anchoring the small RNA to the Ago protein via a 5’ phosphate 

found on the guide strand. 

 PAZ: Secures the 3’ end of the guide RNA strand to the protein. 

T-SN is a member of the highly conserved Tudor proteins, these proteins are distinguished by 

the presence of a Tudor domain (Ying and Chen, 2012). T-SN is known to bind to dsRNA 

facilitating the targeting of the miRNA to target mRNA (Ying and Chen, 2012). 

VIG is a known phospho-protein and has been demonstrated to be phosphorylated by Protein 

Kinase C (Ivanov et al, 2005). Its exact role within the RISC is unknown, however, a 

homolog of VIG (PAI-RBP-1) has been demonstrated to bind to AU-rich areas of RNA and 

has been demonstrated to regulate activity of the plasminogen activator inhibitor gene 

(Heaton et al, 2001). 
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FMRP is a ribonucleoprotein that binds to ssRNA via the presence of a KH-domain (Musco 

et al, 1997). The protein is known to associate with ribosomes and is demonstrated to have a 

role in nucleocytoplasmic shuttling of RNA (Eberhart et al, 1996). FRMP has been 

demonstrated to be a negative regulator of translation (Laggerbauer et al, 2001). FMRP has 

been shown to inhibit translation of mRNA both in vitrio and in vivo, the mechanism by 

which it regulates translation is thought to be due to its binding to mRNA and preventing the 

formation of a translation initiation complex (Laggerbauer et al, 2001). The role of FMRP 

within the RISC has been demonstrated by Muddashetty et al (2011) to be that of facilitating 

the interaction of the AGO-miRNA complex and the target mRNA. 

1.3.3 Mechanism of Action of the RISC 

 After the loading of the miRNA target strand, the RISC complex recognises a target mRNA 

via base pairing between the seed sequence of the miRNA (nucleotides 2-8) and a 

complementary region of at least 7 nucleotides in the messenger RNA (Lewis et al, 2005). 

Each miRNA seems to be capable of regulating hundreds of mRNA species (Wu, Fan and 

Belasco, 2006).  

Recent research has elucidated our understanding of miRNA mediated post-transcriptional 

repression and the variations between species; Arabidopsis for example employ direct 

cleavage of the mRNA species in its miRNA silencing whilst Homo sapiens silencing relies 

upon poly(A) de-adenylation resulting in mRNA destabilization (Figure 1.11) (Wu, Fan and 

Belasco, 2006).  

Polyadenylation is as essential feature of eukaryotic mRNA expression. Guhaniyogi & 

Brewer (2010) note that within mammals’ polyadenylation allows an mRNA transcript to 

escape the nucleus and not be enzymatically digested within the cytoplasm. It is also a 
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consensus site for the binding of Poly(A)-binding protein which recruits translation initiating 

proteins (Siddiqui et al, 2007). 

 

 Figure 1.11:  Schematic demonstrating the cross-species variability in miRNA induced 

gene silencing. A) Demonstrates the miRNA induced mRNA degradation in 

Arabidopsis. B) miRNA induced mRNA degradation in Human. 

A second factor believed to be important in the human repression pathway is the 

conformational changes inflicted upon the mRNA species by the process of de-adenylation 

which prevents ribosomal binding and thus translation (Guo et al, 2010). 

1.4 Circadian clock genes as miRNA hosts. 

As of June 2014 no evidence exists for a core circadian clock gene existing as a miRNA host. 

This is not to say they cannot be. Below I will introduce NPAS2, the host gene for the 

rs1811399 SNP and putative miRNA. 
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1.4.1 miRNA have a role in rhythmicity. 

The role that miRNA play in regulating the circadian cycle is recognised and some members 

of the network have been identified.  

Garfield et al (2009) identify the liver specific miR-122 as being integral for regulation of the 

clock within this tissue. miR-122 demonstrates a five-fold variance in expression dependant 

on the time of day and its expression is demonstrated to be reliant on REV-ERBα, a circadian 

clock protein. miR-122 has been shown to have complimentary recognition sites within the 3’ 

UTR of many genes that are expressed in a circadian fashion, with several verified (PPARβ, 

SMARCD1 and HIST1h1C) (Garfield et al, 2009). Of the gene products listed within the 

paper, several have roles within chromatin remodelling such as HIST1h1C, which could aid 

the circadian clock by allowing fine control over chromatin remodelling. Several others are 

directly linked with liver metabolism especially that of fatty acid metabolism (glycogen 

synthase 1). 

Two other miRNA species; miR-152 and miR-494, have been demonstrated to directly 

regulate the core circadian clock gene BMAL1.  Shende et al (2011) have identified that the 

two miRNA are expressed in a circadian fashion and are out of phase with the BMAL1 

protein. They are known to down-regulate expression of BMAL1 mRNA but it is not known if 

they are directly controlled by PERIOD gene products. miRNA-132 has been demonstrated  

to control the negative arm of the circadian clock (Alvarez-Saavedra et al, 2011). This 

miRNA is induced in the SCN in a light dependant manner via the MAPK pathway. Other 

genes are expressed by light and one of these is MECP2 which they have demonstrated to be 

a potent transcriptional activator of PERIOD1 and PERIOD2 (Alvarez-Saavedra et al, 2011). 

Intriguingly miR-132 has been shown to target MECP2, a transcription repressor protein, and 

down regulate its expression thus limiting translation of the PERIOD proteins. 
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1.4.2 NPAS2 as a miRNA host 

Hinske et al (2010) notes that the archetypal miRNA host gene are on average larger than 

non-miRNA host genes with the average host gene length measuring 84871bp against genes 

not hosting miRNA being 83747.5bp. They further stipulate that the intron numbers of these 

host genes is larger (13 as opposed to 10.5) and with significantly larger five 5’ introns. The 

paper also notes that there is a preponderance of miRNA hosted within regulatory, 

neurogenic, metabolism and genes in other signalling pathways such as MAPK.  

If we consult Figure 1.2 above we can conclude that the NPAS2 gene is sufficiently large to 

qualify as a putative host. We can also see that it has a large number of introns with the initial 

5’ introns being larger than the remainder.  The final point is of interest as NPAS2 is, as 

described above, part of signalling networks (circadian and oxygen sensing), plays a part 

within gene regulation (circadian clock) and is involved in neurogenic processes such as 

memory formation. 

1.5 The Evolution and Sequence Diversification of microRNA. 

1.5.1 The role of mutations within miRNA 

miRNA are strongly conserved regulators of gene expression (Lehnert et al, 2011). As such it 

is possible to take a miRNA sequence from a basal species such as C.elegans and search for 

homologs in higher species (Wheeler et al, 2009). This has been the practise in detecting 

miRNA across the phyla and has proved effective in detecting miRNA genes.  

However genomes change over time and mutations arise; beneficial (Wheeler et al, 2009), 

negative (He et al, 2012) and neutral (Cuperus et al, 2011) mutations are described. On 

average every time a copy of the human genome is passed from parent to child it accumulates 



26 
 

between 100 and 200 novel mutations, a rate of 1 mutation per 30 million bases (Xue et al, 

2009). These novel mutations can be identified as follows:  

 Microsatellites: Also known as short sequencing repeats for which Whittaker et al 

(2003) define as sequences of DNA usually between 1bp-6bp which can be repeated 

in a single locus up to a 100 times. The majority of intra-species variation in 

microsatellite numbers results from replication slippage leading to an insertion or 

deletion event (Whittaker et al, 2003).  

 Copy number variation (CNV): Lee et al (2007) define CNVs as alteration to the 

genome which results in individuals having variance in the number of copies of 

sections of DNA. It is estimated that up to 12% of human genomic DNA is in 

actuality comprised of CNVs.  

 Single nucleotide polymorphisms (SNP): Barreiro et al (2008) give the definition of 

SNP as a genomic locus which between two members of a population has a single 

letter of DNA difference. For example person A has the sequence of ATATAT at a 

specific locus whilst person B has the sequence ATACAT (variation underlined). 

The three examples described above account for a significant percentage of intra-species 

variation but the list should not be treated as exhaustive. 

1.5.2 rs1811399: A SNP in intron 1 of NPAS2   

Rs1811399 is a single nucleotide polymorphism (SNP) within the human genome at which 

the DNA nucleotide can either be adenine (A) or cytosine (C) and is located at co-ordinates 

chr2:100845196 within the UCSC hg19 database or at 2:101479014 within the Ensembl 

database. These co-ordinates locate the SNP within the first intron of the NPAS2 gene.  



27 
 

As Fig.1.12 demonstrates; rs1811399 is located within intron 1. The mutation would 

therefore not interfere with the coding sequence for the final protein. Its location within the 

intron however could lead to dysregulation of downstream exons, a similar event can be seen 

in P53 where rs12947788T interferes with the expression of exons 8,9,10,11 and 12 (Sailaja 

et al, 2012) 

 

 

 

Figure 1.12: Schematic representing the intron-exon structure of the human NPAS2 

gene with an arrow highlighting the approximate location of the rs1811399 SNP (Blue 

lines denote coding exons and red lines are intronic regions). Being located in the intron 

the mutation would not be expected to interfere with protein structure/function.  

Upon its initial discovery it was not apparent as to how this SNP could be contributing to an 

autism phenotype. It was believed that the C/A SNP (rs1811399) interfered with miRNA 

processing. When a sequence proximal to rs1811399A was modelled for RNA folding a 

hairpin was present that would allow for DICER processing (See Figure 1.13 A). Upon 

substitution of the A allele for the C the hairpin structure vanishes (See Figure 1.13 B). Based 

on the role secondary structure plays in miRNA maturation this would negatively influence 

biogenesis of the miRNA (Park et al, 2011). 
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Figure 1.13: RNA folding structures of the rs1811399 locus. Each nucleotide is colour 

coded to reflect the probability that the nucleotide is base-paired to its partner. Purple 

is 0 (no base pairing) and red is 1 (certain base pairing). A) This panel demonstrates the 

presence of the A allele at the rs1811399 location and the stereotypical pre-miRNA 

hairpin loop that is formed. B) This panel demonstrates the ancestral (C) allele. It is 

apparent that a forked loop replaces the terminal hairpin. The sequence for the hairpin 

is given at the bottom, ambiguity code M (highlighted in red) is where the A>C 

substitution occurs. Produced using Vienna RNAfold on 17/11/13. 

The working hypothesis is that a cytosine nucleotide at rs1811399 interferes with maturation 

of a putative miRNA, possibly by interfering with DICER activity. This could result in no 

mature miRNA being produced leading to deregulation of downstream genes. Alternatively it 

could simply be a less effective substrate leading to less mature form being produced. 

1.5.3 Evolution of miRNA 

Whilst it is true that miRNA demonstrate high phylogenetic conservation it is also not the 

case that all miRNA exist unchanged in all life. Cnidarians, a phyla consisting of jellyfish, 

anemones and corals, have approximately half the number of miRNA species as do bilateral 

invertebrates (Grimson et al, 2008). This number is then greatly increased in vertebrates 

(Grimson et al, 2008). Current understanding identifies this increase in the number of 

miRNA species within an organism with increased morphological complexity (Grimson et al, 

2008).  

The mechanisms by which miRNA genes evolve are comparatively well understood and a 

summary will be given. 
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The first mechanism for miRNA propagation is the duplication of an existing miRNA gene. 

Evidence for the duplication of miRNA genes is extensive with there being several 

overarching miRNA families (e.g. Let7), which in humans contains 11 miRNA species, each 

exhibiting strong sequence homology with each other (Nozawa et al, 2010).  

 

Figure 1.14: ClustalIW alignment of human Let7 miRNA genes. 

This is expected to be a key feature in the evolution of the mammalian miRNA repertoire 

with a top end estimate of 151 novel miRNA families having evolved within this manner 

(Meunier et al¸ 2013). Gene duplication has been understood since the 1970s (Ohno, 1970) to 

be an evolutionary driver and occur more often than not from unequal crossing over of 

genetic material during meiosis. An accepted belief (Zhang, 2003) is that now the organism 

has two (or more) copies of the same gene it is able to accumulate mutations with greater 

tolerance within one copy of the gene thus, under positive evolutionary selection, can 

accumulate new functions. This last statement can account for the minor sequence differences 

exhibited within miRNA families. Within Arabidopsis one mechanism by which new miRNA 

families can arise is by the duplication of a protein coding gene which is inverted before 
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integration resulting in a strand of RNA which is anti-sense to the coding mRNA (Allen et al, 

2004). 

The de novo acquisition of new miRNA families is the second mechanism and requires 

greater explanation.  

Introns are regarded as the prime location for spontaneous miRNA formation. Primarily this 

is due to the sheer amount of genetic material present within introns thus requiring specific 

point mutations to create a hairpin structure which can be recognised by the miRNA 

processing pathways (Campo-Paysaa et al, 2011). As an example Pederson (2010) has 

demonstrated that certain miRNA have derived from tRNA genes. It has been described that 

in mammals, plants and birds intron based miRNA tend to be younger (Cuperus et al, 2011; 

Li et al, 2009 and Meunier et al, 2012).  

Hertel et al (2006) and Smalheiser &Torvik (2005) have conclusively demonstrated that 

transposable elements can form mature miRNA. Yuan et al (2011) have demonstrated that 

278 human miRNA genes are directly derived from DNA transposons or retrotransposons, 

again within introns or inter-genic regions. Junctions between such elements are also fertile 

ground for miRNA evolution (Zhang et al, 2009). 

1.5.4 Sequence diversification 

After a duplication or de novo evolution event, diversification of a miRNA gene sequence 

can set in. This takes the form of single nucleotide polymorphisms within the microRNA 

gene which can directly impact on either the mature form or the precursor. The functional 

unit of a mature miRNA is the seed sequence. This is a sequence of nucleotides from position 

2 to position 7 and is responsible for complimentary base pairing of RISC to target mRNA. A 
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single nucleotide polymorphism within this region can have dramatic effects with regards to 

target recognition and binding (see Figure 1.15 B) (Duan, Pek & Jin 2007).  

Other forms of mutation which occur within the precursor have an effect on the mature form. 

One of these is the altering of the hairpin so that DICER processing is altered, leading to seed 

shifting. The seed shifting phenomena is tied in to entities referred to as isomiRs (Figure 

1.15C). IsomiRs are mature miRNA that are produced from the same hairpin, but have 

varying sequences (Landgraf et al, 2007). It is noted that the majority of these isomiR have 

the same 5’ sequence but have varying 3’ termini. This is understood to be due to 

irregularities within processing and is not expected to influence the mature miRNA. However 

some evidence supports that they may have phenotypic impact within the fruit fly 

(Fernandez-Valverde, Taft & Mattick, 2010).  Aberrant processing however, can also lead to 

5’ isomiR and the seed shifting phenomena (Figure 1.15 D). 5’ isomiR are much less 

common with cells preferring the expression of one isomiR over another however it is 

interesting to note that this preference varies with species. For example D.melanogaster miR-

281 has a different seed sequence than that of Tribolium castaneum (Red flour beetle) miR-

281 which can be demonstrated to have undergone a seed shift (Marco et al, 2012). 

SNPs within miRNA genes can also make them susceptible to RNA editing (Sun et al, 2009).  

RNA editing is a well-established phenomenon in eukaryotes in which bases on the mRNA 

are modified so that the sequence differs from that of the genomic DNA. Within mammals 

there are two predominant forms of RNA editing: C to U and A to I (Brennicke, Marchfelder 

& Binder, 2006) .  

C to U RNA editing was first described in the case of the apoB mRNA. APOB-100 is a 

protein that plays a role within cholesterol and triglyceride transport and is produced within 

the liver for incorporation within low and very low density lipoproteins (Powell et al, 1987). 
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APOB-48 is a smaller isoform of APOB-100 and is produced within the intestines to aid in 

transportation of lipid across membranes (Powell et al, 1987). APOB-48 corresponds to the 

N-terminus of APOB-100 and it was long thought of as a product of alternative splicing 

(Powell et al, 1987). In 1987 however, APOB in humans was sequenced as was the cDNA of 

APOB-48 and 100. Intriguingly the mRNA for hepatic APOB-100 and intestinal APOB-48 

was identical bar a single base pair substitution at nucleotide 6,666; genomic DNA and the 

hepatic cDNA had a cytidine nucleotide, whereas the intestinal cDNA contained a thymidine 

(Powell et al, 1987). The implication of this substitution is the appearance of an in frame stop 

codon within the intestinal cDNA, thus resulting in a truncated protein variant (Powell et al, 

1987).  

The protein complex responsible for this is referred to as the editsome. The catalytic enzyme 

is APOBEC-1. APOBEC-1 is a 27kDa, zinc dependant cytidine deaminase which deaminases 

the cytidine base into a uridine base. In primates it is expressed in the intestines, whilst in 

rodents and other mammals it has wider expression pattern (Hadjiagapiou et al, 1994).  A 

study of its amino acid and cDNA sequence however led to the discovery of several 

homologous cytidine deaminases with a wider expression profile (Brennicke, Marchfelder & 

Binder, 2006).  

Adenosine deaminases that act on RNA, or ADAR, are the family of enzymes responsible for 

the second form of RNA editing which occurs within eukaryotes (Kim et al, 1996). A to I 

RNA editing is achieved when an ADAR enzyme (of which there are 2) deaminases 

adenosine at C6 to form inosine by using water as a nucleophile with requirements for 

magnesium and zinc as cofactors (Carter, 1998). 

 It is known that RNA hairpins are the preferred substrate for A to I RNA editing, thus a 

mutation might create an editsome consensus sequence that would then alter the precursor 
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(Luciano et al, 2004). This mechanism has been demonstrated within human miR-22 

(Luciano et al, 2004) (Figure 1.14 E). 

It was first described in the C.elegans (Griffiths-Jones et al, 2011) but has since been found 

in other phyla that arm switching leads to miRNA sequence diversity. As explained, once 

DICER processes the miRNA duplex, one strand is selected for use as a mature miRNA 

whilst for a long time the other was assumed to be discarded. What we now know is the 

second strand forms a second species of miRNA, miR 3’/5’ depending on which arm of the 

pre-miRNA hairpin it is expressed, which can be detected in much smaller quantities than the 

primary miRNA (Khvorova, Reynolds & Jayasena, 2003). The selection process of which 

strand to use is largely unknown however, the thermodynamic stability of the dsRNA duplex 

plays a role (Khvorova, Reynolds & Jayasena, 2003). Of note however is that certain miRNA 

species switch between arms dependant on the development of the organism (Ro et al, 2007). 

Griffiths-Jones et al (2011) also hint at a possible sequence dependant “tuning mechanism” 

that controls which arm is expressed. It should be noted that arm switching can lead to a 

permanent change in which mature miRNA is expressed, thus leading to diversification of 

expressed miRNA pool (de Wit et al, 2009) (Figure 1.15 F). 

A final mechanism by which sequence divergence can occur is hairpin shifting. This occurs 

when a mutation causes the hairpin structure, not the original sequence, to move up- or down-

stream. Whilst the hairpin motif is kept, and can thus be processed, the original sequences are 

lost and whole new sequences are expressed as mature miRNA (See Figure 1.15 G). 
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Figure 1.15: Series of panels depicting miRNA evolution. A) Schematic representation 

of the prototype miRNA precursor hairpin. Primary mature miRNA strand is 

highlighted in yellow with the seed region in blue. miR* strand is highlighted in red. 

B)Demonstrates a direct mutation within the seed site which then alters the specificity 

of the miRNA’s binding. C) Example of a seed shift event within a prototype miRNA 

hairpin. It is evident that the primary strand has moved “up” the hairpin (yellow) and 

this has had a knock on effect on the location of the seed region, thus changing its 

sequence. This phenomenon usually occurs due to a mutation within the precursor 

which alters miRNA processing via DICER or DROSHA. D) Example of human miR-

140 which has been revealed by deep sequencing to exhibit extensive seed shifting. The 

red box highlights the seed sequence for each isomiR with the canonical sequence listed 

first. E) RNA editing occurs via the interaction of an editsome with a suitable substrate. 

RNA editing can have multiple effects but in this schematic we have demonstrated it 

affecting the seed location. It can also affect the seed sequence directly by changing one 

of the nucleotides located there or can cause hairpin shifting or arm shifting. F) Arm 

shifting is a mechanism by which a precursor miRNA gene switches from which arm 

the mature form emanates from. This results in a mature miRNA with a completely 

different sequence. G) Hairpin shifting is a phenomenon where the hairpin motif 

migrates across a genomic region; this does not entail the movement of genetic 

sequence. As demonstrated within the schematic, the hairpin has moved upstream from 

its previous position, integrating a novel stretch of nucleotides into its hairpin. This has 

resulted in the previous 5’ arm sequence now residing on the 3’ arm and what was once 

on the 3’arm being moved out of the hairpin. 
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1.5.5 Change in expression patterns. 

It is understood that young miRNA have low expression levels when compared to ancient 

miRNA (Chen & Rajewsky, 2007); for example primate specific miRNA have a 30 fold 

lower average expression level than ancient miRNAs (Meunier et al, 2012). It is expected 

that, should the miRNA survive purifying selection pressures its expression level will 

increase to similar levels of ancient miRNA (Meunier et al, 2012).    

Meunier et al (2012) have demonstrated within mammals that miRNA genes tend to evolve 

with their target genes and in primates, a great number of the young miRNA species are 

preferentially expressed within two types of tissue: cerebellum and cortex. These new 

miRNA tend to target neuron specific genes. This second conclusion was reached on the 

basis that Zhang et al (2005) sequenced the cDNA of several nervous tissue genes and noted 

very large 3’UTR within mammals compared to other vertebrates, the region targeted by 

miRNA, with multiple target sites for old and new miRNA genes (Meunier et al, 2012). 

As introns are the likely birth place for new miRNA, it would be expected that they would 

share the same promoter, indeed this was the prevailing opinion for some time (Rodriguez et 

al, 2004). Recent work however has identified that many intronic miRNA are expressed from 

their own promoters (Zhou et al, 2007). This result gives added impetus to findings of He et 

al (2012), who has demonstrated that younger, intronic miRNA tend to demonstrate lower 

levels of expression with their host gene. The hypothesis being that younger forms are 

initially expressed by chance from “junk” transcripts, with weak promoters. Splicing events 

cause the host mRNA to be degraded after excision of the miRNA. If the miRNA by chance 

exhibits a positive influence in conjunction with the host gene, overtime the miRNA will then 

become embedded within the transcript of the host gene. He et al (2012) cites human miR-

338 which is co-expressed with AATK and is known to down-regulate AATK antagonists such 
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as NOVA. They postulate that long term survival of new miRNA is directly related to its 

ability to embed within its host gene’s transcription unit. 

1.6 Summary 

The circadian clock allows for the temporal control of gene expression in eukaryotic life 

(Oster, 2005). Most control is exercised via the binding of circadian expressed transcription 

factors binding to specific recognition sites in promoter regions such as E-box consensus 

sequences (Akhtar et al, 2002). This pre-transcriptional regulation of gene expression is 

predicted to influence approximately 10% of all gene expression within mammals (Akhtar et 

al, 2002).  

A further mechanism of regulating gene expression is post-transcriptionally via regulatory 

RNA. One form of regulatory RNA is known as microRNA (miRNA). miRNA are expressed 

from a intra- or inter-genic DNA and are processed in a two step mechanism by the Drosha 

and Dicer RNase enzymes to form a single stranded RNA molecule approximately 20 

nucleotides long (Zhou et al, 2007). The mature 20 nucleotide piece of RNA can then be 

loaded onto a protein complex known as the RNA Induced Silencing Complex (RISC) which 

downregulate mRNA species via poly-A de-tailing (Wu, Fan & Belasco 2006). miRNA have 

been shown to complement the activity of the genes in which they are hosted by 

downregulating any genes that are antagonistic to their host’s expression.  

There is currently no evidence within the literature to suggest that any circadian clock gene 

hosts a miRNA gene. Were a circadian clock gene, however, to host a miRNA gene it is 

possible that the gene that evolved within that specific locus would make use of the circadian 

gene’s oscillating pattern of expression. This would provide the circadian clock with a further 

mechanism for controlling gene expression within an oscillating pattern. Of note is the fact 

that some miRNA species have been identified, such as miR-152 and miR-494 (Shende et al, 
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2011), that oscillate in a circadian fashion and have been demonstrate to regulate clock 

controlled genes.   

Sequence variation has been shown to be integral in driving miRNA evolution but has also 

been implicated in disruption of expression of established miRNA (Duan, Pak and Jin 2007). 

Given that sequence polymorphisms are extremely common within the human genome and 

many have been associated with disease it is possible that single nucleotide polymorphisms 

may influence the risk of disease by interfering with miRNA expression or activity. Given 

that genome wide association studies often identify SNPs that have no functional bearing on 

gene function or expression as being associated with disease, it is tempting to theorise that 

several of these mutations may be in previously un-described miRNA genes.  

B.Nicholas et al (2007) linked the rs1811399 SNP, located within intron 1 of the NPAS2 gene 

with autism at confidence levels of p=0.018. The genomic locus surrounding the SNP does 

not appear to play a role in transcription of downstream exons but is co-located within a 

region predicted to form a hairpin loop that is the required substrate for the miRNA 

processing proteins. The role of dysregulated miRNA within autism is established as is the 

role of the circadian clock. It may be the case that a previously un-documented miRNA exists 

within a circadian clock gene, possibly in order to exhibit similar spatio-temporal expression 

patterns. If rs1811399 influences the maturation of a novel miRNA it would provide a 

mechanism by which an intronic SNP could lead to increased risk of developing a disease.    
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1.7 Working hypothesis 

Nicholas et al (2007) conducted a screen of circadian clock genes and demonstrated that 

rs1811399C is associated with autism at a confidence level of p=0.018. It is predicted that 

rs1811399C impacts upon the secondary structure of a novel miRNA gene impairing its 

biogenesis (Fig.1.13). 

This body of work has been commissioned for the purpose of elucidating the impact of the 

rs1811399 SNP. We hope to establish whether or not it interferes with miRNA biogenesis. 

The following will also be addressed: 

• Does NPAS2 host a miRNA gene? 

• Is NPAS2 the host of a miRNA cluster? 

• Is the expression of any miRNA dependant on the expression of the host gene? 

• What is the expression profile of the miRNA? 

The answers to these questions will illuminate a relatively poorly understood field as very 

little has been published on the influence of SNP on a miRNA biogenesis.  
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2. Materials and Methods. 

2.1 Cell culture Methods. 

The following cell lines were used during the course of the project: 

a. HeLa: An epithelial cell line extracted from the cervix of a 49 year old lady. 

The cell line is adherent and requires media supplemented with 5% foetal 

bovine serum. For the rs1811399 SNP the cell line was heterozygous A|C. 

b. SH-SY5Y: A neuroblastoma cell line extracted from the bone marrow of a 4 

year old girl. The cell line is adherent and requires media supplemented with 

5% foetal bovine serum. For the rs1811399 SNP the cell line was homozygous 

A|A. 

c. HEK-293: A human embryonic kidney cell line.  The cell line is adherent and 

requires media supplemented with 5% foetal bovine serum. For the rs1811399 

SNP the cell line was heterozygous A|C. 

d. HI2162: A lymphoblastic cell line extracted from an autistic patient. The cell 

line exists in suspension and requires media supplemented with 5% foetal 

bovine serum. The cells are homozygous A|A for the rs1811399 SNP. 

e. HI2437: A lymphoblastic cell line extracted from an autistic patient. The cell 

line exists in suspension and requires media supplemented with 5% foetal 

bovine serum. The cells are homozygous A|A for the rs1811399 SNP. 

f. HI2577: A lymphoblastic cell line extracted from an autistic patient. The cell 

line exists in suspension and requires media supplemented with 5% foetal 

bovine serum. The cells are heterozygous A|C for the rs1811399 SNP. 
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g. MEF: An embryonic mouse fibroblast cell line. The cell line is adherent in 

nature and requires media supplemented with 5% foetal bovine serum. The 

cell line did not contain an rs1811399 locus. 

h. DT40: A chicken lymphoblastic cell line. The cell line exists in suspension and 

requires media supplemented with 10% foetal bovine serum and 1% chicken 

serum. The cell line did not contain an rs1811399 locus. 

i. EB-176-J: A chimpanzee lymphoblastic cell line. The cell line exists in 

suspension and requires media supplemented with 5% foetal bovine serum. 

The cells are heterozygous A|C for the rs1811399 SNP. 

2.1.1 Adherent cell line maintenance. 

Adherent cell lines (HeLa, SH-SY5Y, MEF and HEK-293) were cultured on 60mm culture 

plates in 10ml of DMEM media supplemented with 10% FBS (Gibco) and 1% penicillin-

streptomycin (Gibco) in a humidified 37°C incubator with 5% CO2. Once cultures reached 

confluency (~9x106 cells) the media was removed and cells were trypsinised using a 

trypsin/EDTA solution (0.25% Trypsin, 0.2% EDTA) in order to detach the cells from the 

cell culture vessel. After incubation at 37°C cells were re-suspended in 10ml of fresh media 

and sub-cultured (or passaged) at a density of 2.5x106 cells/ml into fresh vessels. Upon 

reaching 25 passages a cell line was disposed of and replaced with a cell line from an earlier 

generation. 

Cell numbers were counted using an improved Neubauer haemocytometer. 

2.1.2 Suspension cell line maintenance. 

Suspension cell lines (HI2162, HI2437, HI2577, EB-176J and DT40) were cultured in T75 

flasks in 10ml of RMPI-1640 media supplemented with 10% FBS (Gibco) and 1% penicillin-
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streptomycin (Gibco) in a humidified 37°C incubator with 5% CO2. DT40 cell lines required 

further supplementation by 1% chicken serum (Gibco).  

Suspension cell lines were sub-cultured at cell densities of ~8x106 cells/ml into fresh flasks at 

an initial seeding density of  2x106 cells/ml. 

2.1.3 Cryo-storage of cells. 

Cells were aliquotted at initial seeding densities (see 2.1.1 and 2.1.2) in media supplemented 

with 10% DMSO (Gibco). Cells were gradually frozen before storage at -70°C. 

In order to awaken frozen cells, vials were gradually warmed up prior to being placed in pre-

warmed media. 

2.1.4 Serum shock. 

Serum shock was conducted in order to synchronise a cell line’s circadian gene expression. 

Cells were grown to confluence before serum enriched media was replaced with serum free 

media. Cells were incubated in serum free media for 12 hours before the media was replaced 

with serum rich media (DMEM and 50% FBS). When serum free media was replaced with 

serum rich media corresponds with time point 0h. 

2.1.5 Drug treatment of human cell lines. 

Cells were grown to confluency and their media removed and cells rinsed with PBS (Gibco). 

Media supplemented with the following drug concentrations was then added: 

 Camptothecin 4μM final concentration. 

 Cisplatin 5μg/ml final concentration. 

 Gemcitabine 100nM final concentration. 



45 
 

Samples were taken at the stated time points up to 24 hours after introduction of the cytotoxic 

drugs. 

2.1.6 Temperature Shock. 

Exponentially growing cells were inoculated at 2.2 × 106 cells mL into 60mm tissue culture 

dishes containing 10 mL of supplemented culture medium. The cultures were cultured at 37 

°C in a humidified 5% CO2 incubator for 24 hours and then transferred to an incubator at 

32°C. After 24 hours at the dishes were removed from the incubator and RNA extraction 

undertaken. 

2.2 Molecular Biology Methods.  

2.2.1 Polymerase chain reaction (PCR).  

PCR was performed for the specific amplification of DNA used to generate DNA for use in 

constructs as well as for the screening of cDNA libraries. PCR was performed in a final 

volume of 50 µl containing: template DNA (10-100ng), 1 x reaction buffer, 200µM of each 

dNTP, 1µM of each primer and 1U GoTaq-polymerase (NEB). The reaction was run in a 

thermocycler using the following program; After an initial denaturation step (95 °C, 3 min) 

35 cycles of denaturation (95 °C, 30 sec), primer annealing (50-60 °C, 30 sec) and fragment 

extension (72 °C, ~1 min/kb) were followed by a final extension (72 °C, 5 min) before the 

end of the PCR.  

For proof reading PCR (e.g. for studying miRNA sequences) we used Phusion DNA 

polymerase (NEB) to assure exact amplification. 
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2.2.2 Reverse transcription.  

RNA was isolated as described before and samples were digested with DNase to remove 

contaminating DNA. 1µg RNA was digested with 2 units DNase in a final volume of 10 µl 

(in 1 x RT buffer). Samples were incubated at room temperature for 15 min before 1 µl STOP 

mix was added and incubation was continued for 15min at 70 °C to inactivate the DNase. 

These samples were used to reverse transcribe the RNA pool with oligo dT primers and/or 

random hexamer primers into cDNA. Reverse transcription was carried out using the 

Optimax First Strand cDNA synthesis kit as per the manufacturer’s instructions: Mix 1μg of 

RNA, 1μl of primers and RNase-free water (up to 20μl) in a PCR tube. Incubation for 10 min 

at 65 °C and for 5 min at 4 °C was followed with the addition of the following: 1μl of 10mM 

dNTP mix, 1μl of RNaseOUT, 4μl of 10× RT buffer, 4μl of 0.1 M DTT, 8μl of 25mM 

MgCl2, and 1μl of Reverse Transcriptase. A final incubation for 60 min at 42 °C and for 5 

min at 85 °C to inactive of the reaction. RNAse treatment was then undertaken to prevent 

RNA contamination for further PCR. 

2.2.3 Plasmid DNA isolation from Escherichia coli cells.  

Plasmid DNA from E. coli was extracted from overnight cultures using the DNA extraction 

mini- or midi-prep kit (Qiagen) depending on the amount of DNA required. 

2.2.4 Genomic DNA isolation from Human Cell lines. 

Genomic DNA from cell lines was extracted from confluent cell lines using the Fermentas 

Genomic DNA extraction kit as per the manufacturer’s instructions.  

Concentration of genomic DNA was measured spectrophotometrically using wavelengths of 

260 and 320nm.  The concentration can then be calculated using the following equation: 

Concentration (µg/ml) = (A260 reading – A320 reading) × dilution factor × 50µg/ml 
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2.2.5 RNA isolation from Human Cell lines. 

Total RNA was extracted from confluent cell lines using the Ambion miRVana RNA 

isolation kit as per the manufacturer’s instructions. Total RNA was eluted in a final volume 

of 50μl of DEPC-treated water.  

Concentration of RNA was measured spectrophotometrically using a wavelength of 260nm.  

The concentration can then be calculated using the following equation: Concentration (µg/ml) 

=40(Extinction coefficient of RNA) x A260 

2.2.6 Small RNA enrichment of total RNA pool. 

The eluate from the total RNA extraction methodology above contains RNA of varying 

molecular weights. Large and abundant RNA species can bias the RT-PCR reaction and 

result in less amplification of smaller RNA species.  

Total RNA was produced using the miRVana isolation kit (Ambion) and underwent further 

purification steps using the miRVana isolation kit (Ambion) as per the manufacturer’s 

instructions.  This resulted in a pool of RNA molecules <250 nucleotides. 

2.2.7 Poly(A) cloning of small RNA.  

1μg of small RNAs extracted as above, 10μl of 5× E-PAP Buffer, 5μl of 25mM MnCl2, 5μl 

of 10mM ATP, 1μl(2 U) of E. coli Poly(A) Polymerase I and RNase-free water (up to 50μl) 

were mixed in RNAse free reaction tubes. The reaction was incubated at 37 °C for 1 hour 

prior to purification using the miRVana isolation column kit. Reverse transcription was then 

undertaken as described above with 1μg of purified tailed-RNA and using the miRTQ primer 

as opposed to random hexamer/poly-A primers.  
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Further cloning and PCR was undertaken as above with a gene specific primer and a primer 

specific to the miRTQ region. 

2.2.6 DNA restriction enzyme digest.  

Restriction enzymes were used to generate and verify plasmid constructs. 10 µg of DNA was 

cut with the appropriate amount of restriction enzyme (1U). Most digests were incubated at 

37 °C for 2 hours. Double digests were performed when possible in the appropriate buffer.  

The DNA was purified between successive digestions using the gel extraction.  

2.2.7 Agarose Gel Electrophoresis.  

Agarose gel electrophoresis was used to analyse DNA according to its molecular weight. To 

analyse plasmids were mixed with 1/10 vol of 10 x loading dye and run on a 1% (w/v) 

agarose (w/v). The gel was prepared with 1 x TAE buffer (40mM Tris, 1% (v/v) acetic acid, 

1mM EDTA, pH 8.0), which was also used to run the gel at 120 V for 45 minutes. For 

estimation of the size of DNA in the applied sample, a marker with defined fragment sizes 

and DNA amounts was run in parallel. Bands were visualized by UV-light as the gel 

contained ethidium bromide (1.5mg/L). 

miRNA PCR products were visualised and extracted from a 2% (w/v) agarose gel. 

2.2.8 DNA extraction from agarose gel.  

To extract DNA from agarose gels for further experiments, the required band was cut from 

the Ethidium bromide stained gel under UV-light with a scalpel. The gel slice was weighed 

and DNA was extracted using a Genelute gel extraction kit (Sigma), following the 

manufacturer’s instructions. DNA was eluted from the filter column with 25µl H2O.  
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2.2.9 DNA dephosphorylation.  

To prevent re-ligation of the vector backbone in ligation reactions, linearized plasmid DNA 

was 5’-dephosphorylated prior to ligation. Shrimp alkaline phosphatase was used (Roche) for 

de-phosphorylation according to the instructions of the manufacturer.  

2.2.10 Ligation.  

Vector backbones and the desired DNA fragments were ligated using T4-ligase (Roche). For 

a standard reaction 50ng of dephosphorylated vector DNA was incubated with a threefold 

molar excess of insert, 1x buffer and 1U of T4 ligase at 16 °C over-night. 

2.2.11 Heat shock transformation of Escherichia coli.  

A single fresh colony of E. coli TOP10 cells was inoculated into 50 ml LB medium and 

grown over night at 37 °C with shaking (250 rpm). 5ml of the starter culture was used to 

inoculate 500 ml of LB medium, which was grown at 37 °C, 220 rpm to an OD600 of ~0.4. 

After cooling on ice the cells were harvested by centrifugation (30 min, 4 °C, 2500 x g), the 

pellet was re-suspended in 250ml ice cold 100mM CaCl2, centrifuged again and then re-

suspended in 50ml 100mM CaCl2. After another centrifugation, cells were re-suspended in 5 

ml 100 mM CaCl2, 20% (w/v) glycerol and 50 µl aliquots were transferred into pre-chilled, 

sterile reaction tubes. Cells were frozen immediately in liquid nitrogen and stored at -70 °C 

until use.  

50µl of chemically competent TOP10 cells was thawed on ice and gently mixed with 10ng of 

DNA in chilled reaction tubes. After incubation on ice for 10 min, cells were incubated at 42 

°C for 1 min, suspended in 900 µl SOC-medium and incubated at 37 °C for 45 min to 
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recover. Afterwards cells were plated on selective media (LB + antibiotics) and incubated at 

37 °C over-night. Transformed colonies were picked the following day for sub-culturing. 

2.2.12 PCR-mediated site directed mutatagenesis. 

PCR primers were designed that incorporated the required mutation for both the sense and 

anti-sense strands. PCR is conducted using Phusion polymerase (NEB) and results in two 

amplicons, one with the mutation at the 3’ end and the second amplicon with the mutation at 

the 5’ end. Both amplicons have a region of homology with each other, conferred by the 

mutagenesis primers. The two amplicons can then be fused together and amplified using 

Phusion polymerase (NEB) as previously described.  

2.2.13 RNase Protection Assay. 

Using PCR reaction described above, a DNA amplicon of the target RNA region is produced. 

The DNA amplicon is then fused to a T7 promoter region using T4 ligase (Roche) as above. 

Once fused to the T7 promoter, the DNA is incubated with T7 polymerase (Ambion) under 

the following conditions: 2μl 10x transcription buffer, 1μl 10mM ATP, 1μl 10mM GTP, 1μl 

10mM UTP, 10 units of T7 polymerase, 8.5μl DEPC-H2O and 2.5μl of 10mM radiolabelled-

CTP. The reaction is incubated for 30 minutes at 37°C before DNase I is introduced to 

remove the template. 

The radiolabelled RNA probe is then purified on a 15% denaturing acrylamide gel (21g urea, 

12.5ml DEPC-H2O, 18.75ml acrylamide solution, 2.5ml 10xTBE, 400μl 10% APS and 40μl 

TEMED) running at 180V for 1.5 hours. The probe is excised using a sample and placed in 

300μl of Probe Elution Buffer (Ambion). 

The eluted probe is hybridised to the target RNA via over-night incubation at 42°C using the 

ribonuclease protection kit (Ambion) before the mix is digested with RNase A/T1 for 45 
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minutes at 37°C.  The digestion reaction is terminated by addition of 225μl of RNAse 

inactivation solution and 225μl of 100% ethanol. The solution is then precipitated for 2 hours 

at -20°C prior to centrifugation of 12000rpm at 4°C for 1.5 hours. The resulting pellet was 

then re-suspended in 10μl of gel loading buffer (Ambion) and rand on a 15% denaturing 

acrylamide gel. 

Imaging the reaction was conducted via exposure to chemi-luminescence film. 

2.2.14 In vitro Dicer assay. 

 An un-radiolabelled RNA probe was produced and purified as above.  

HeLa cells were grown to confluency and were lysed with 500μl of subcellular fractionation 

buffer (250mM Sucrose, 20mM HEPES (pH7.4), 10mM KCl, 1.5mM MgCl2, 1mM EDTA, 

1mM EGTA, make up to 50ml with sterile water), the plates were scraped and the lysate 

collected and passed through a 25Ga needle. After incubation on ice for 10 minutes the 

nuclear fraction was extracted with centrifugation at 3000rpm for 5 minutes. The remaining 

supernatant is the cytosolic fraction.  Protein yield can be calculated using the Bradford 

assay. 

Prior to the assay the protein extract is treated with RNase 1 (Ambion) for 1 hour and then 

inactivated by RNase A/TI inactivation solution (Ambion). 

10μg of cytoplasmic protein is mixed with 60ng of RNA probe in 50ul of Dicer assay buffer 

(20mM Tris-HCl pH7.5, 250mM NaCl and 2.5mM MgCl2) and incubated for 1 hour at 37°C 

before running on a 2% agarose gel. 
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2.2.15 In vitro RNA editing.  

10μg of nuclear protein extract and 100ng of RNA probe are produced as described above. 

These are incubated together in a final volume of 50μl of RNA editing buffer (2U RNasin, 

0.25mM DTT, 50mM EDTA, 50mM KCl, 10% glycerol and 10mM HEPES (pH7.9)). The 

solution is then incubated for 3 hours at 30°C prior to poly(A) small RNA cloning noted 

above. 

2.2.16 Electrophoretic Mobility Shift Assay (Panomics). 

The electrophoretic mobility shift assay can demonstrate protein binding to specific regions 

of DNA via the retardation of DNA on a gel. Using PCR DNA probes of a 150b.p region  

centred on rs1811399 were created, one for each allele whilst a nuclear extract was made 

from HeLa cells. 

A reaction buffer was prepared as per the manufacturer’s instructions (3.6ml 50% glycerol, 

360ul 1M HEPES (pH 7.9), 120μl 1M Tris-HCl (pH 8.0), 60μl 0.5M EDTA (pH 8.0), 150μl 

100mM DTT and 10.7ml H2O) and 12μl of this buffer was incubated with 3μl of BSA 

(1μg/μl), 2μl of 0.5μg/μl Poly(dI-dC), 3μl of nuclear extract (1μg/μl) and 3μl H2O. This 

mixture was incubated at room temperature for 20 minutes prior to the addition of the DNA 

probe (1μg) and was further incubated at room temperature for 20 minutes.  

The mixture was then ran on a 2% agarose gel and imaged with ethidium bromide staining. 

2.2.17 TOPO-TA Cloning. 

TOPO-TA cloning (Invitrogen) was used to make cDNA libraries for sequencing of miRNA 

sequences.  
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The vector used for the cloning was pCR-DNA3 with topoisomerase-I covalently bound to an 

overhanging thymidine nucleotide located on the linearized vector.   

Taq polymerase has a template-independent terminal transferase function that places an 

adenine nucleotide on the 3’ end of all PCR products. The unbound hydroxyl group on the 5’ 

end of the PCR amplicon then attacks the covalent bond between the topoisomerase-I and 

overhanging thymidine residue resulting in instant ligation of the amplicon to the vector. 

4µl of DNA amplicon produced as described above was incubated with 1µl of linearized 

vector and 1µl of salt solution (200mM NaCl, 10mM MgCl2) at room temperature for 5 

minutes. Upon completion of the incubation the vector was transformed into TOP-10 

competent E.coli as previously described.  

Sequencing of inserts can be undertaken using universal M13 primers. 

2.2.18 Primers. 

NPAS2  F-TGGGAACCTCAGGCTATGAC  R-AGTCTGCAGCCAGATCCACT 

CLOCK F-CCAGAAGGGGAACATTCAGA  R-TGGCTCCTTTGGGTCTATTG 

PER1 F-AGGTACCTGGAGAGCTGCAA  R-TTCTTGGTCCCCACAGAGAC 

PER2 F-TCCAGTGGACATGAGACCAA  R-CGCTACTGCAGCCACTTGTA 

CRY1 F-CAGGTTGTAGCAGCAGTGGA  R-GACTAGGACGTTTCCCACCA 

rs1811399 F-CTTTTCTAGTCTACTGAGGAAGG  R-CAAATCAAGGGCTGGTATTAAC 

nmiR-1273 F-GGCATGAGAATCGCCTGAAC R-GAGATGGAGTCTCGCTCTG 

pre-miR-122 F-CAATGGTGGAATGTGGAGGT  R-CATTTATCGAGGGAAGGATT 
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β-ACTIN  F-CGTCATACTCCTGCTTGCTGATCC  

R-GAGCGCGGGTACAGCTTCACC 

Promoter construct F-AAGCTTACACAAGCTTACCATGACC    

  R- CTCATGCCCCCATAACGAAAGGGAACACACAGCAAGTGTTT  

GAPDH  F-AACCTGCCAAATATGATGAC R-ATACCAGGAAATGAGCTTGA 

HPRT1 F-TGACACTGGCAAAACAATGCA R-GGTCCTTTTCACCAGCAAGCT 

miRTQ 

CGAATTCTAGAGCTCGAGGCAGGCGACATGGCTGGCTAGTTAAGCTTGGTACCG

AGCTCGGATCCACTAGTCCTTTTTTTTTTTTTTTTTTTTTTTTT 

1273a GGGCGACAAAGCAAGACTCTTTCTT  

92a AGGTTGGGATCGGTTGCAATGCT  

191 CAACGGAATCCCAAAAGCAGCTG  

106b TAAAGTGCTGACAGTGCAGAT  

21 TAGCTTATCAGACTGATGTTGA  

miR6725-3p GGGAAGCTCTGGGCAGTGACTG  

miR6725-5p CATGCCCTGACCTCCAGACCTG  

miR1273h GGTTCAGGCGATTCTCATGCCT  

Let7a TGAGGTAGTAGGTTGTATAG  

RTQ-UNIr CGAATTCTAGAGCTCGAGGCAGG  
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2.3 Plasmid constructs. 

The following plasmids were used during this work: 

a. pBSK+/KS-: A standard vectors for the sub-cloning of PCR products to facilitate their 

specific excision with restriction enzymes. An ampicillin resistance cassette and a 

multiple cloning site which is located in the LacZ gene allow for blue/whiteselection 

of positive transformants on plates with X-Gal and IPTG. The vector was kindly 

provided by J.Eykelenbloom of University of Galway. 

b. pJE28: A vector designed and provided by J.Eykelenbloom of University of Galway. 

The vector contains sequences of homology with the chicken ovalbumin locus which 

allows for integration of genetic material. The vector contains a puromycin cassette 

for selection in DT40 cell lines. 

c. pcDNA3.1 puro+: A vector designed for the expression of genetic material in 

eukaryotic cell lines. Expression is driven by a promoter extracted from 

cytomegalovirus (CMV). A vector with the puromycin resistance cassette was kindly 

provided by T.Dantes and J.Eykelenbloom of University of Galway. 

d. psi-RNA: A vector for the expression of short-hairpin RNA sequences. Expression of 

shRNA is driven by a h7sk promoter and eukaryotic cell selection is undertaken via 

zeocin selection. The vector was purchased from Invivogen.  

e. pCR3.1-TOPO: A vector that allows for rapid integration of Taq polymerase PCR 

products. This vector was used in the cloning of small RNA cDNA libraries and 

sequencing. An ampicillin resistance cassette and a cloning site which is located in the 

LacZ gene allow for blue/white selection of positive transformants on plates 

containing X-Gal. 
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2.4 Bioinformatics. 

2.4.1 Sequence, Structure and Conservation (SSC) profiler. 

SSCProfiler was developed by Oulas et al (2009) to detect putative miRNA sequences within 

genomic DNA regions. The server was hosted by the Computational Biology Lab at the 

Institute of Molecular Biology and Biotechnology of Heraklion University and can be found 

at http://mirna.imbb.forth.gr/SSCprofiler.html. 

SSCProfiler utilizes a probabilistic approach based upon Profile Hidden Markov Models 

(HMM) mathematics to identify miRNA precursor hairpin loops. The software package 

parses genomic DNA between two stated co-ordinates (UCSC hg17) less than 1kb apart into 

104nt segments and moves across the genomic DNA in 11nt windows. The software then 

filters its results based on eight categories: number of hairpins, number of nucleotides 

situated in bulges, number of nucleotides situated in loops, asymmetry, number of 

nucleotides located within bulges and loops, length of hairpin, minimum free energy and 

conservation of nucleotides.  

2.4.2 Vienna RNAFold. 

The RNAFold server was used to predict the secondary structures of single stranded RNA 

molecules. The software was located at: http://rna.tbi.univie.ac.at/cgi-bin/RNAfold.cgi 

The algorithm developed by Zuker et al (1981) utilises the total free energy given the 

nucleotide sequence, the final structure of an RNA molecule is the secondary structure that 

consists the minimum of free energy. RNA secondary structures can be categorised as loops 

and of duplexed RNA nucleotides external to the loop. As described by Zuker et al (1981): 

“The loop-based model categorises the free energy F(s) of an RNA secondary structure s as 

the sum of the contributing free energies FL of the loops L contained in s. According to the 
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chosen energy parameter set and a given temperature (defaults to 37 °C) the secondary 

structure s that minimizes F(s) is computed.” 

The software could compute structures for RNA molecules up-to 7.5kb, unless otherwise 

stated the sequence size used for this project was ~150 nt.  

2.4.3 In silico Drosha processing. 

For in silico prediction of Drosha processing a software package developed by Helvik et al 

(2007) was utilised. The software can be located at: https://demo1.interagon.com/miRNA/ 

The software runs a support vector machine (SVM) algorithm that has been designed to 

consider the following variables in identifying Drosha processing sites; Precursor length and 

loop size, distance from the 5’ processing site to the loop start, nucleotide occurrences and 

frequencies at each position in the 24 nt regions of the precursor 5’ and 3’ arms, total number 

and identity of each base-pair in the 24 nt at the precursor base, nucleotide occurrences at 

each position in the 50 nt of the 5’ and 3’ flanking regions outside the precursor. 

The algorithm can distinguish between random hairpins and those of pri-miRNA in ~80% of 

cases and in those miRNA shown to be a true positive the algorithm correctly identifies that 

cutting site in ~90% of the cases. 

A sequence of <108nt was required by the software for analysis. Sequences were selected 

based upon their secondary structures as described using the RNAFold service described 

above.  

Scoring is based on a positive predictive value (PPV) system with a value ranging from -0.5-

1.0 demonstrating a favourable likelihood of a true result. 

 

https://demo1.interagon.com/miRNA/
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2.4.4 In silico Dicer processing. 

In silico Dicer is software designed by Tippman et al (2005) to determine Dicer cutting sites 

in RNA hairpins.   

The program can be located at http://bibiserv.techfak.uni-

bielefeld.de/insilicodicer/webstart.html 

The software compares inputted sequence against known miRNA sequences and estimates 

Dicer cutting sites based on sequence conservation between the query sequence and known 

miRNA molecules. The software also compares the primary and secondary structure of the 

RNA sequence against known targets of Arabidopsis RNase III enzymes to increase result 

confidence. 

2.4.5 Ensembl Genome Browser. 

Ensembl is a repository of DNA sequences of multiple species. It was possible using the 

browser to identify SNPs and assess their population distribution using data published by, 

amongst others, the 1000Genomes project. 

Given that the database was continually updated during this project, efforts were made to 

ensure that only the most relevant database was utilised (version 71). 

For the purposes of this work the following functions of the browser were utilised: 

 Genomic context 

 Population genetics 

 Individual genotypes 

 Linkage disequilibrium 

 Phylogenetic context 

http://bibiserv.techfak.uni-bielefeld.de/insilicodicer/webstart.html
http://bibiserv.techfak.uni-bielefeld.de/insilicodicer/webstart.html
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All searches were conducted for SNP rs1811399. 

2.4.6 UCSC Genome Browser. 

Similar to Ensembl above, the University of California, Santa Cruz (UCSC) browser allows 

access to genome information.  

For the purpose of this work the following non-default tracks were utilised on the browser: 

 Switchgear TSS:  This identifies the location of transcription start sites (TSS) 

throughout the human genome based on experimental evidence. 

 TFBS Conserved: This track contains the score of transcription factor binding sites 

conserved across human/mouse and rat. A binding site is conserved across the species 

when the score meets the threshold for its binding matrix across all 3 species. The 

Transfac Matrix Database is responsible for collating all the requisite scores. 

 CSHL Small RNA-seq: The Cold Spring Harbor Lab (CSHL) small RNA track 

demonstrate short total RNA sequencing data from various cell lines that can be 

individually selected. 

 ENC TF Binding: Demonstrate ChIP-seq evidence for transcription factor binding in 

a specified locus. 

Data was exported directly from the website using their Table Browser functionality. 

2.4.7 TargetScan. 

TargetScan was designed and maintained by the Bartel laboratory (Bartel et al, 2005)  

(TargetScan (version 6.2) was accessed via http://www.targetscan.org/ .  

TargetScan is a tool for predicting potential mRNA targets for mature miRNA. Targets are 

http://www.targetscan.org/
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identified via base-pairing sequence homology of the miRNA’s seed region and a gene’s  

3’UTR. Predictions are scored on the predicted efficacy of targeting as calculated using  

the context+ scores of the sites. The context+ score is calculated via: location in 3’UTR of  

target site, local AU nucleotide makeup, site-type scoring and 3’ pairing of nucleotides from  

outside the seed sequence.  

In order to input seed sequences of novel miRNA the TargetScan Custom  

(http://www.targetscan.org/vert_50/seedmatch.html) program was utilised. Seed sequences 

of 7-8nt can be inputted into the software and targets detected using the same methodology as  

the regular TargetScan.  

2.4.8 gProfiler. 

gProfiler allows the construction of protein interaction networks and can be accessed at 

http://biit.cs.ut.ee/gprofiler/ .  

gProfiler makes use of publicly available data produced by the Gene Ontology network who 

have ascertained the relationship between many proteins and the pathways in which they 

have a role (via KEGG annotations). Inputting a variety of genes into the software will allow 

the program to deduce any relationship the expressed proteins will have with each other, this 

includes: member of protein complexes, transcription factor required to drive expression of 

target gene or a shared localisation pattern. 

Gene information can be inputted into gProfiler from a variety of sources, however gene data 

extracted from the TargetScan software noted above has been used for this thesis.  

 

http://www.targetscan.org/vert_50/seedmatch.html
http://biit.cs.ut.ee/gprofiler/
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2.4.9 ImageJ. 

In the absence of quantitative data, it was possible to utilise ImageJ to semi-quantitatively 

analysis PCR products ran on an agarose gel. ImageJ is an open source software package 

produced by the National Institutes for Health (NIH) and version 1.48 was downloaded from: 

http://imagej.nih.gov/ij/download.html . 

Briefly, agarose lanes can be defined using a selection tool and the background subtracted 

reducing the image to the PCR amplicons. The intensity of these bands is then reported by the 

software package allowing relative semi-quantification to be conducted.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://imagej.nih.gov/ij/download.html
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3. NPAS2 is inducible in a wide variety of cell lines. 

The work presented below has identified the mechanisms of NPAS2 transcriptional induction. 

Brief serum starvation induces circadian clock oscillation within HeLa and SH-SY5Y cell 

lines. Heat and DNA damage is also demonstrated to induce expression of NPAS2. This will 

be important in establishing the relationship between the host gene (NPAS2) and the miRNA.  

The experiments herein are also designed to identify the differences in expression of the 

circadian clock genes within various tissue types. 

3.1 Expression of Core Circadian Clock genes in asynchronous cells 

When cells are removed from an organism they lose the ability to synchronise their core 

clock (Olofsson & McDonald, 2010). They are then referred to as being asynchronous. Each 

cell lines had 1μg of total cellular RNA extracted and reverse transcribed to cDNA in order to 

assess the expression of the clock genes. The negative control had Rnase A added to remove 

the RNA before reverse transcription. The Rnase reaction was performed to ensure that the 

PCR fragment amplified is a genuine product of RNA reverse transcription, each primer pair 

was also designed to cross exon-exon boundaries to ensure only a spliced mRNA product 

would be amplified. 

Fig.3.1 below demonstrates that CLOCK is expressed across 3 cell lines (HI2162 being the 

exception) with NPAS2 being absent in the 4 cell lines. PER2 is expressed in both SH-SY5Y 

and HeLA and weakly in HI2162 and absent in EB176. CRY1 was only detectable in SH-

SY5Y cell line. 
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A 

 

 

 

 

 

 

B 

 Cell Line    

Gene SH-SY5Y HI2162 HeLa EB176 

β-Actin 26881.01 27797.29 30993.98 31001.12 

CLOCK 1355.487 101.87 150.02 2020.326 

NPAS2 15.254 19.254 20.177 19.645 

PER2 1126.284 97.216 1301.897 0 

CRY1 988.564 0 0 0 

 

Figure 3.1: Expression of core circadian clock genes within four cell lines plus Rnase A 

treated control. A) RNA was extracted from each of the cell lines and reverse 

transcribed using random hexamer primers. The cDNA was then subjected to PCR 

using the following primers: CLOCK-F+CLOCK-R, B-ACTIN-F+B-ACTIN-R, 

NPAS2-F+NPAS2-R, PER2-F+PER2-R and CRY1-F+CRY1-R. For the negative 

control the RNA was treated with RNase A prior to reverse transcription. Panel B 

demonstrates the relative intensity of each PCR band. In the absence of quantitative 

data, ImageJ was used to provide data on the relative amounts of product in each gel 

β-ACTIN 

CLOCK 

NPAS2 

SH-SY5Y HI2162 

 150bp 

100 bp 

HeLa EB176 Rnase 

PER2 

CRY1 150 bp 

150bp 

200 bp 
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based on the intensity of each band when stained with ethidium bromide and viewed 

under UV. 

Not all cell lines expressed the circadian clock genes, which either implies the absence of 

expression of these genes within those cell lines or the number of cells expressing these genes 

at the time of RNA extraction was too low thus limiting the amount of the specific miRNA 

within the pool of total RNA.  

According to the literature (Baskerville et al, 2005) miRNA are often co-expressed with their 

host gene. In asynchronous cells it was attempted to reset the phase of the circadian cycle in 

order to detect both the host gene (NPAS2) and the miRNA.  

3.2 Serum starvation of cell lines 

In order to circumvent the asynchronous nature of normal tissue culture conditions there are 

several mechanisms for synchronising the circadian cycle. In a whole organism the 

mechanisms for synchronisation would include light entrainment or nutritional uptake, as the 

cells have no light sensitive regions, a modified version of the second is required. Briefly 

cells are incubated within a protein free media before being subjected to a high protein 

environment. The resultant serum shock then induces expression of circadian genes 

(Balsalobre et al, 1998). 

Figures 3.2 and 3.3 demonstrate that serum shock is able to synchronise the circadian clock in 

HeLa and SH-SY5Y cell lines. Two cell lines were tested demonstrated an initiation of 

expression of the core circadian clock. Initial expression of the positive transcription clock 

genes (CLOCK and/or NPAS2) and the silencing of the repressing arm (PER2 and CRY1). 

NPAS2 or CLOCK proteins are required to activate the transcription of PER2 and CRY1. 
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Figures 3.2 and 3.3 demonstrate that NPAS2 and CLOCK expression begins at 4h whilst 

PER2 and CRY1 only begin around 24h. 
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 Time (h)       

Gene 0 4 8 12 16 20 24 

β-Actin 30186.46 30543.92 30980.92 30482.13 30832.04 31001.2 30997.15 

CLOCK 0 0 0 0 0 0 0 

NPAS2 145.647 288.877 620.033 650.489 0 0 0 

PER2 150.632 0 0 0 0 0 557.366 

CRY1 0 0 0 0 0 0 575.654 
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Figure 3.2: HeLa Serum Shock circadian clock expression profile. A) HeLa cells were 

grown to 80% confluency and incubated in zero serum media for 12h prior to the 

experiment. At point 0h the serum free media was replaced with serum rich media 

(50% FBS). RNA was extracted at each of the time points and reverse transcribed using 

random hexamer primers. The cDNA was then subjected to PCR using the following 

primers: CLOCK-F+CLOCK-R, B-ACTIN-F+B-ACTIN-R, NPAS2-F+NPAS2-R, 

PER2-F+PER2-R and CRY1-F+CRY1-R. Panel B demonstrates the relative intensity of 

each PCR band. In the absence of quantitative data, ImageJ was used to provide data 

on the relative amounts of product in each gel based on the intensity of each band when 

stained with ethidium bromide and viewed under UV. 

After the serum shock NPAS2 was detectable for 12 hours. After this point its expression 

declined. PER2 and CRY1 became detectable 24h after the initiation of the experiment.  This 

observation is consistent with the model of PER2 and CRY1 expression being dependant on 

the initial expression of genes such as NPAS2 or CLOCK which constitute part of the positive 

arm of the circadian clock.  
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Figure 3.3: SH-SY5Y Cell line circadian clock expression profile. SH-SY5Y cells were 

grown to 80% confluency and incubated in zero serum media for 12h prior to the 

experiment. At point 0h the serum free media was replaced with serum rich media 

(50% FBS). RNA was extracted at each of the time points and reverse transcribed using 

random hexamer primers. The cDNA was then subjected to PCR using the following 

primers: CLOCK-F+CLOCK-R, B-ACTIN-F+B-ACTIN-R, NPAS2-F+NPAS2-R, 

PER2-F+PER2-R and CRY1-F+CRY1-R. 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Lymphoblastic cell line circadian clock expression profile. It was not 

possible to induce circadian clock expression in HI2162 lymphoblastic cell lines. HI2162 

cells were grown to 80% confluency and incubated in zero serum media for 12h prior to 

the experiment. At point 0h the serum free media was replaced with serum rich media 
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(50% FBS). RNA was extracted at each of the time points and reverse transcribed using 

random hexamer primers. The cDNA was then subjected to PCR using the following 

primers: CLOCK-F+CLOCK-R, B-ACTIN-F+B-ACTIN-R, NPAS2-F+NPAS2-R, 

PER2-F+PER2-R and CRY1-F+CRY1-R.  The genes were present within genomic DNA 

as it was possible to clone them using standard PCR but were not transcribed into 

mRNA.  

3.3 High temperature induces expression of circadian clock. 

Serum shock is not the only mechanism of inducing circadian expression. Several other 

techniques are described within the literature including heat. The involvement of heat in 

regulation of circadian clock oscillation has been established as far back as 1996 (Rensing & 

Monnerjahn, 1996) who noted the circadian rhythmicity of heat shock proteins within the 

prokaryote Synechocystis. Although no evidence was reported of a similar effect of heat in 

human cells, it is well established that biochemical reactions respond to temperature to 

compensate their kinetics (Brown and Webb, 1948). 

As the core human body temperature is 370C, any temperature above can induce a heat shock 

response (Abravaya, Phillips and Morimoto, 1991). For this experiment cells were incubated 

for 1 hour at 420C  prior to restoration to 370C . Total RNA was harvested at the specified 

time points upon return to 370C.. 

Fig.3.5 below demonstrates the potential role of heat in inducing the expression of NPAS2 

and PER2.  
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Figure 3.5: Heat induction of circadian clock within HeLa cells. For this experiment 

HeLa cells grown to 80% confluency and were incubated at 420C for 1 hour before 

RNA was extracted. Once extracted the RNA was reverse transcribed using random 

hexamer primers. The cDNA was then subjected to PCR using the following primers: B-

ACTIN-F+B-ACTIN-R, NPAS2-F+NPAS2-R and PER2-F+PER2-R.  

If we compare the results in this figure with those in Fig. 3.1 (asynchronous), we see an 

induction in the circadian clock genes. Of note is the appearance of two bands for PER2 at 

24h post induction. Recent work within the group has identified several smaller circadian 

clock protein isoforms that are expressed in response to stress.  

Several core circadian clock genes (PER2, CLOCK and BMAL1) have been demonstrated to 

have heat shock element consensus sequences within their promoter regions with the PER2 

sequence being directly proximal to the E-box transcription factor sequence (Tamaru et al, 
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2011). Given the presence of a heat shock element in the 5’ UTR promoter, this seems to also 

be the case for NPAS2 as Fig3.6 below demonstrates. 

chr2:101,396,546-101,397,485 

 

 

 

 

 

 

Figure 3.6: Map of the 5’ upstream promoter region of the circadian clock gene NPAS2. 

The region mapping to chr2:101,397,288-101,397,543 (256bp) has the canonical 

sequence of a heat shock element (nnCnnGAAnnTCCn) which will allow the binding of 

HIF-1, a heat inducible transcription factor.  

The finding that heat can stimulate the expression of NPAS2 is of importance as it is known 

that NPAS2 has a role in DNA damage repair whilst heat has been demonstrated to cause 

DNA damage in vivo (Hoffman et al, 2008; Purschke et al, 2010). 

3.4 Low temperatures do not induce circadian expression 

It has been noted within the literature that low temperatures can dampen the oscillation of in 

situ circadian clocks (Hopfer & Sunderman, 1988).  This phenomenon is much more 

pronounced within ectothermal animals such as the ruin lizard (Podarcis sicula) that are 

dependent on outside temperatures to regulate their core body temperature (Magnone et al, 

2005). Endothermic animals that can self-regulate body temperature are able to limit the 
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impact of this phenomenon, but if a rat becomes hypothermic it can take upwards of 80h for 

normal rhythms to be restored (Hopfer & Sunderman, 1988).  

For this experiment cells were incubated for 1 hour at 300C prior to restoration to 370C. Total 

RNA was harvested at the specified time points upon return to 370C. 

In contrast to the findings of Fig.3.5 above, it does not seem that low temperatures can induce 

expression of certain circadian clock genes (Fig.3.7). 

 

 

 

 

 

 

 

Figure 3.7: Influence of low temperature (30 degrees Celsius) on circadian clock 

expression within HeLa cell lines. HeLa cells were grown to 80% confluency and 

incubated at 300C for 1 hour. After incubation total RNA was extracted and reverse 

transcribed using random hexamer primers. The cDNA was then subjected to PCR 

using the following primers: B-ACTIN-F+B-ACTIN-R, NPAS2-F+NPAS2-R and PER2-

F+PER2-R.  The above figure was produced using data from HeLa cells as they proved 

more resilient to the prolonged exposure to low temperature required. Whilst the genes 

were not expressed there does seem to be some down-regulation of their expression.  
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Having explored the effects of temperature and nutrition on the clock it was possible to 

investigate the influence of other forms of stress on induction. 

3.5 DNA damage induces NPAS2 transcription. 

A specific mutation within NPAS2 at position 394 in which threonine replaces alanine 

(A394T) significantly increases the risk of developing non-Hodgkins lymphoma (Zhu et al, 

2007). The polymorphism causes a structural change which causes improper DNA binding 

leading to immune dysregulation. In a further paper the role of NPAS2 in the DNA damage 

repair pathway is identified (Hoffman et al 2008).  

MCF-7 cell lines were treated with siRNA against the NPAS2 and then exposed to mutagenic 

chemicals. In comparison with a control group, there was a significant variation in cell 

populations at various stages in the cell cycle upon down regulation of NPAS2 as opposed to 

normal cells indicating a checkpoint defect. Hoffman et al (2008) also discovered that not 

only does NPAS2 have a role in cell cycle checkpoints, but that it is also involved in DNA 

damage repair. A comet assay, which detects broken DNA, revealed an increase in damaged 

DNA in cells lacking NPAS2 upon treatment with a mutagen (Hoffman et al, 2008). 

To replicate the findings HeLa cells were treated with camptothecin and gemcitabine before 

RNA extraction. The cytotoxic agents were incorporated into the medium and cells incubated 

until removed at the stated time points for RNA extraction. 

Figures 3.8 and 3.9 demonstrate how DNA damage can induce expression of two circadian 

clock genes within cultured cells. 
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Figure 3.8: Treatment of HeLa cells with 4uM camptothecin (CPT) until RNA 

extraction. 4uM of CPT was included within the standard media of 80% confluent 

HeLa cells. At the stated time points the media was removed, the cells rinsed with PBS 

and the total RNA was extracted. Once extracted the RNA was reverse transcribed 

using random hexamer primers. The cDNA was then subjected to PCR using the 

following primers: B-ACTIN-F+B-ACTIN-R, NPAS2-F+NPAS2-R and PER2-F+PER2-

R.   After incubation with CPT PER2 expression is induced by 16h. This is not matched 

by a decrease in NPAS2 expression which is expected given the increase in PER2. 

NPAS2 is induced within 4h and remains expressed over the 24h investigated. Indeed 

multiple bands of NPAS2 appear in the PCR which are visible in the figure. These 

inducible isoforms of NPAS2 and PER2 are consistent with other findings within the 

group. 
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Camptothecin is a potent agent of DNA damage and acts by stabilizing the DNA-

topoisomerase I complex (Efferth et al, 2007). This stable complex forms an obstacle for 

advancing replication forks which break when they collide with the immobilised complex 

(Pommier, 2006)  

 

 

 

 

 

 

 

Figure 3.9: Treatment of HeLa cells with 100nM Gemcitabine until RNA extraction. 

100nM of Gemcitabine was included within the standard media of 80% confluent HeLa 

cells. At the stated time points the media was removed, the cells rinsed with PBS and the 

total RNA was extracted. Once extracted the RNA was reverse transcribed using 

random hexamer primers. The cDNA was then subjected to PCR using the following 

primers: B-ACTIN-F+B-ACTIN-R, NPAS2-F+NPAS2-R and PER2-F+PER2-R. A 

similar result to that of CPT above (Fig, 3.8) including the expression of NPAS2 

isoforms. 

Gemcitabine is a nucleoside analogue which impacts upon DNA synthesis via its recognition 

by DNA polymerase as a cytidine nucleotide. Once incorporated however no other nucleotide 
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can be attached thus terminating DNA synthesis and inducing cell death in cells which are 

deficient for repair (Cerqueira, Fernandes and Ramos, 2007). 

NPAS2 has been implicated with the DNA damage response (Hoffman et al 2008). The 

above two figures demonstrate that NPAS2 is induced in response to DNA damage and is 

maintained whilst PER2 expression is also induced. 

3.6 siRNA attenuates NPAS2 expression. 

siRNA are artificially generated interfering RNA duplexes which have been designed to 

complimentary bind to regions of a gene’s mRNA. Once bound the siRNA then allows for 

translational repression and degradation of mRNA transcript (Bartlett and Davis, 2006). 

Cells will be treated with a siRNA before being serum shocked to synchronise its circadian 

clock gene expression.  

HeLa cells were subjected to serum shock for synchronous induction of circadian rhythm 

genes. In order to produce the siRNA molecule primers NPAS2-F and NPAS2-R were used 

to clone a region complementary to the mRNA, this sequence was then cloned into a siRNA 

expressing plasmid called psiRNA. The plasmid was introduced into HeLa using LyoVec 

chemical transfection. Prior to transfection 2x106 cells were seeded onto a plate and the 

LyoVec-vector conjugate introduced into the media. 

Fig 3.10 below demonstrates that silencing the expression of NPAS2 using siRNA does not 

attenuate the expression of PER2. 
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Figure 3.10: siRNA treatment of HeLa. 24h after transfection with siRNA. In the plus 

siRNA samples NPAS2 expression is attenuated but with no apparent impact on PER2 

expression. This implies that normal circadian function is continued even with only 

minimal NPAS2. Panel B demonstrates the relative intensity of each PCR band. In the 
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absence of quantitative data, ImageJ was used to provide data on the relative amounts 

of product in each gel based on the intensity of each band when illuminated with UV. 

The siRNA used was not wholly effective in down-regulating NPAS2 completely but there 

was a decrease in level. The minimum levels of NPAS2 however were sufficient, in 

conjunction with CLOCK to facilitate a circadian clock.    

As several non-human cell lines will be used in the course of the work it is important to 

understand the clock within them. 

3.7 Ascertaining NPAS2 and PER2 expression in other vertebrate models. 

As covered in the introduction, the circadian clock is ubiquitous in life. It should be possible 

to induce the expression of the circadian clock in a similar fashion. There are three species 

represented in this set of experiments: mouse, chimpanzee and chicken. Each of the three cell 

lines will be subjected to serum shock as in the human cells and their RNA extracted and 

reverse transcribed. 

Figures 3.11, 3.12 and 3.13 demonstrate attempts at inducing circadian cycle synchronicity in 

EB176, MEF3T3 and DT40 cell lines respectively.  

The EB176JC cell line is a lymphoblastic cell line extracted from a chimpanzee which has 

been transformed by the Epstein-Barr virus. Cells were grown to 80% confluency and 

incubated in zero serum media for 12h prior to the experiment. At point 0h the serum free 

media was replaced with serum rich media (50% FBS).At the stated time points the media 

was removed, the cells rinsed with PBS and the total RNA was extracted. Once extracted the 

RNA was reverse transcribed using random hexamer primers. The cDNA was then subjected 

to PCR using the following primers: B-ACTIN-F+B-ACTIN-R, NPAS2-F+NPAS2-R and 

PER2-F+PER2-R.   
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Figure 3.11: Serum Shock of EB176JC (Pan troglodytes) cell line. The circadian clock is 

inducible as in human cells with the exception that levels of NPAS2 expression persist 

for longer.  

MEF 3T3 is a fibroblastic cell line extracted from a mouse embryo. Cells were grown to 80% 

confluency and incubated in zero serum media for 12h prior to the experiment. At point 0h 

the serum free media was replaced with serum rich media (50% FBS).At the stated time 

points the media was removed, the cells rinsed with PBS and the total RNA was extracted. 

Once extracted the RNA was reverse transcribed using random hexamer primers. The cDNA 

was then subjected to PCR using the following primers: B-ACTIN-F+B-ACTIN-R, NPAS2-

F+NPAS2-R and PER2-F+PER2-R. 
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Figure 3.12: Serum shock of MEF 3T3 (Mus musculus) cell line.  NPAS2 is inducible 

and expression persists for 12h. PER2 however seems constitutively expressed at low 

levels. This could be an artefact of the peculiar nature of the cells such as high levels of 

chromosome instability (Todaro & Green, 1963). Conceivably this could have placed 

PER2 under a different promoter.  

DT40 cells are b-lymphoblastic cells extracted from the White-leghorn species of chicken. 

DT40 demonstrates substantial in vivo genetic recombination and is therefore a model 

vertebrate system. Cells were grown to 80% confluency and incubated in zero serum media 

(including no chicken serum) for 12h prior to the experiment. At point 0h the serum free 

media was replaced with serum rich media (50% FBS).At the stated time points the media 

was removed, the cells rinsed with PBS and the total RNA was extracted. Once extracted the 

RNA was reverse transcribed using random hexamer primers. The cDNA was then subjected 

to PCR using the following primers: B-ACTIN-F+B-ACTIN-R, gNPAS2-F+gNPAS2-R and 

gCLOCK-F+gCLOCK-R.    
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Figure 3.13: Serum shock of DT40 (Gallus gallus) cell line. Unfortunately the sequence 

for PER2 or CRY1 had not been deduced for chicken at the time of the experiment and 

only NPAS2 and CLOCK were utilised. The cell line however proved impossible to 

induce. 

Of the three non-human vertebrate cell lines tested it proved relatively easy to induce 

circadian rhythmicity within the mammalian cell lines. The DT40 clones however proved 

recalcitrant to serum shocking (Fig. 3.14). DT40 cell lines were tested from three different 

sources and no clone expressed rhythmicity via serum shocking.  
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4 Identification of potential novel microRNA cluster within intron 

1 of NPAS2. 

Initially it was thought that introns had no function, hence the sobriquet “junk DNA”. 

Attitudes have changed since several useful functions for introns have been discovered, 

including as hosts for microRNA (Ambros et al, 2003). Initially it was understood that 

intronic miRNA shared the same promoter as the host gene (Baskerville and Bartel, 2005); 

however more recent work has established that ~35% of all intronic miRNA have their own 

promoter regions (Monteys et al, 2010). These promoter regions have much in common with 

regular promoter regions including transcription factor binding regions, RNApol II 

recognition sites and DNA methylation sites (Monteyes et al, 2010). 

 The aim of this chapter is to correlate the transcription of the host gene with the expression 

profile of the novel miRNA identified in silico by B.Nicholas et al (2008). The same author 

also described the appearance ~3.2kb upstream of the rs1811399 of a sequence which 

resembled a novel member of the miR-1273 family (Figure 4.2). Fig4.1 below demonstrates 

the relative locations of both proposed miRNA hairpins. 

 

Figure 4.1: Schematic representation of NPAS2 intron 1. The intron (orange line) 

contains at least two detected novel miRNA. The haipin labelled A represents the novel 

A 

~3kB 

B 
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miR-1273 whilst hairpin B is that of rs1811399. Both these hairpins are approximately 

3Kb away from each other. 

4.1 Identification of novel miRNA within intron 1 of NPAS2 

The miR-1273 family was first detected by a mass screening of human embryonic stem cells 

(Morin et al, 2008). There are 7 separate mature miRNA within the miR-1273 family: miR-

1273a, miR-1273d, miR-1273e, miR-1273f, miR-1273g, miR-4430 and miR-4459.     

 

 

 

Figure 4.2: The DNA in region chr2:101477345-101477628 is predicted to form a 

miRNA hairpin similar to the miR1273 family. This figure demonstrates the predicted 

RNA folding structures of A) novel miR 1273 clone, B) hsa-miR 1273 and C) hsa-

miR1273-e. This figure was produced using Vienna RNAfold. Scoring for each 

nucleotide (as denoted by the colour scheme) is based on the probability of each 

nucleotide base-pairing at this location as calculated using the McCaskill algorithm 

(McCaskill 2004), a score of 1 is more likely to base-pair with its opposite nucleotide.  

A B C 
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miR 1273a is found on chromosome 8 while miR-1273e is located on chromosome 17 based 

on a BLAT search.  

Separate miRNA can be said to be a part of a specific miRNA family based on its sequence. 

Each member of a miRNA family has high sequence homology with each other as 

demonstrated in Fig.4.3.  

 

 

Figure 4.3: Alignment of known miR1273 family members against novel variant. A) 

Seed sequences are first 5-8 nt on 5’ side. As evident, sequence conformity within the 
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mature form is low within the miR1273 family.  This is in line with our understanding 

of miRNA evolution of sequence duplication and then diversification. Period and 

asterisks under the blat alignment denote locations of conserved nucleotides (asterisks) 

or locations containing nucleotides of broadly similar properties (periods).    B) This 

series of alignments demonstrates the sequence homology between the hairpin 

sequences of all miR1273 homologue and the sequence of the novel homologue. The 

expect value (E-value) for each alignment is also given. The E-value is a parameter that 

describes the number of results that would appear by chance when searching the 

human genome database. It decreases exponentially the as the confidence within the 

search increases, so the lower the E-value, or the closer it is to zero, the more significant 

the match is.   

The novel variant of miR-1273 identified above has a high E-value which identifies it as part 

of the family.  

The appearance of two miRNA (novel miR-1273 and the rs1811399 miRNA) so close to each 

other implies (Fig.4.1) the presence of a cluster that either requires NPAS2 for its 

spatiotemporal expression or has simply evolved within the locus by chance.    

Tools exist to allow the genome to be parsed and analysed for hairpin loops which could form 

putative miRNAs, one such tool is the SSCprofiler (Oulas et al, 2009). 

By entering a set of co-ordinates centred on rs1811399 and setting the HMM score to 3 

(scores of 1-3 increase sensitivity) we are provided with two potential results (Figure 4.4). A 

HMM score as shown in Fig.4.4 below provides a sensitivity of 85.96% and a specificity of 

88.02% for the proposed hairpins.  
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Figure 4.4: SSCProfiler results for 1kb region of genomic DNA centred on rs1811399. 

Note, co-ordinates within this figure vary to those given in text due to SSCProfiler 

operating on an older version of the UCSC database (hg17). This thesis is written with 

Ensembl v71 or UCSC hg19, which are now synchronised with regards to 

nomenclature.  

The first putative miRNA identified is the rs18113999 miRNA. It is given the genomic co-

ordinates chr2:101,478,974-101,479,077 and is shown to have the genomic sequence of: 

AGAAGGCTGTGGTCAGGTCTGGAGGTCAGGGCATGGTGATA>CCAGCGGCTGCC

TGACAGTCACTGCCCAGAGCTTCCCTTACCATAACCTTCCTCAGTAGACTAG  

The second miRNA predicted to lie within the 1kb region on the positive strand is given the 

genomic coordinates chr2:101,479,337-101,479,443; it is predicted to lay 270 base pairs 

downstream of the rs1811399 miRNA. The sequence provided is as follows: 

ACGTATGTGAGTGACCCTCTTCTTACCCTGCCTTTTGGCAGCATTAATAACAGCT

ATGTATGGAR(G>A)CTGTTAGTGAAATGGTGTTGTCGGGTCAGGAAGGAGTAAG

CT 

Of note is the presence of a SNP within this proposed miRNA (rs74734518). The G allele is 

predominant (98%) whilst there are no recorded homozygous A, only heterozygous G|A (2% 

according to Ensembl). This would imply that the A allele is deleterious to some extent, or a 

recent mutation. The impact of rs74734518 on predicted RNA folding does not produce a 

dramatic de-stabilisation of the hairpin loop similar to that created by rs1811399 (Figure 4.5). 
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Figure 4.5: Hairpin loop from chr2: 100937865-100937968 which is predicted by 

SSCProfiler. The locus has a SNP (rs74734518) A>G with the following effects on the 

hairpin. This figure was produced using Vienna RNAfold. 

If we take the regulatory region upstream of the novel miR1273 clone as the defining edge of 

our presumptive miRNA cluster (chr2:101,473,826-101,484,225) and work downstream in 

1kb sections, using both SSCProfiler and a homology search (BLASTing against known 

miRNA sequences), we arrive at a total of at least five predicted miRNA precursors. These 

are: 

 chr2:101,475,627-101,475,726 (novel miR-1273) 

AGGCATGAGAATCGCCTGAACCCGAGAGGCGGAGGTTGCAGTGAGCCGAG 

ATCATGCTACTGCGCTCCAGCCTGGGTGACAGAGCGAGACTCCATCTCAA 

 chr2:101,475,817-101,475,910 

CCTTTATTCCAGAAAATATGCTTCAGCCCTGGGAATTGAAAGTGAGGAAA 

ACAAGTCAAACCCAGAGCTCATAGAATAGTGGGATAGATGGGCA 

A allele 

hairpin

G allele 

hairpin
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 chr2:101,477,368-101,477,460 (a second novel miR-1273 family gene located within 

EST T59368) 

GTTTTGAGACAGGGTCTTGCTCTTTTGCCCAAGCTGGAGTACAGTGGCTC 

ATTGCAGCCTGGAACTCCAGGGCTCAAGCGATCCTCTCACCTC 

 chr2:101,478,974-101,479,077 (rs1811399 containing hairpin) 

AGAAGGCTGTGGTCAGGTCTGGAGGTCAGGGCATGGTGATCCAGCGGCTG

CCTGACAGTCACTGCCCAGAGCTTCCCTTACCATAACCTTCCTCAGTAGAC

TAG 

 chr2:101,479,347-101,479,450 

AGGCATGAGAATCGCCTGAACCCGAGAGGCGGAGGTTGCAGTGAGCCGA

GATCATGCTACTGCGCTCCAGCCTGGGTGACAGAGCGAGACTCCATCTCA

A 

Of these all have correct hairpin structures (Figure 4.6) and all have practicable DROSHA 

processing sites (Figure 4.7) 
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Figure 4.6: Hairpin loop structures of three previously un-described miRNA precursors 

located within intron 1 of NPAS2. Each has the characteristic terminal loop required for 

processing. This figure was produced using Vienna RNAfold. 
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Figure 4.7: DROSHA cutting site prediction. Using support vector machinery 

algorithms (Helvik et al, 2007), it is possible to calculate where DROSHA will cut on the 

hairpin.  The prediction is based on distance from terminal loop and from the basal 

level.  

The fact that each of these sequences forms a hairpin, has a predicted DROSHA cutting site 

and has been calculated (via SSCProfiler) as hosting probable miRNA strengthens the case 

for a miRNA cluster. It is therefore important to experimentally validate as many of them as 

possible. However, caution must be used with reference to the third hairpin 

(chr2:101,477,368-101,477,460) given the low PPV associated with the result. The PPV for 

the rs1811399 hairpin was described as 0.38 in Nicholas et al (2008). 
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4.2 Expression of precursor is not tissue specific 

It is known that several miRNA are expressed in a tissue specific manner and can play a key 

developmental and functional role within that tissue (Wen & Friedman, 2012). miR-122 is an 

example of such as miRNA and so far has only been isolated from hepatic tissue, where it has 

a role in fatty acid metabolism (Wen & Friedman, 2012).  

A second example of a tissue specific miRNA would be miR-9.  miR-9 has been 

demonstrated to be an important neuron determinant. Shibata et al (2008) expands on this by 

describing the homology of miR-9 between invertebrates and vertebrates as 100%. It is 

preferentially expressed in the mammalian cortex, where it has been shown to regulate the 

FOXG protein, which is a potent repressor of neural cell differentiation (Shibata et al, 2008).  

FOXG protein is essential for repressing the formation of Cajal–Retzius cells (Shibata et al, 

2008), which are amongst the earliest neural cell to mature and is responsible for providing 

the REELIN network for further cell migration and maturation (Bar, Lambert & Goffinet 

2000).  

Having established a precedent for the tissue specificity of microRNA, it was only logical to 

assess whether our two novel miRNA; nmiR-1273 and nmiR-rs1811399 exhibited similar 

pattern of specificity. To assess this, a selection of cell lines were grown to confluency and 

the small RNA pool was extracted via column elution. This small RNA fraction was then 

reverse transcribed to produce cDNA which was then subjected to PCR using hairpin specific 

primers.  

To assess for genomic DNA contamination a test PCR using miR-122 (which is only 

expressed within the liver) primers was carried out on tissue RNA and one genomic DNA as 

a positive control. For the reasons specified in the above a positive band was found only in 

the genomic DNA pool due to its lack of transcription within tissues other than liver. We can 
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conclude that genomic DNA contamination at the sensitivity of this assay is minimal. As a 

positive test of cDNA pool Let7a was chosen. Let7a is ubiquitously expressed in human 

tissues and as such provides an excellent positive control to test for a positive reverse 

transcription reaction. 

 

 

 

 

 

 

 

 Cell line       

Gene 
HeLa 
gDNA 

HeLa 
smRNA SHYS5Y HEK293 HI2162 Placenta MEF 

Let7a 13000.911 12509.11 12505.24 12059.53 12105.26 12001.97 12435.36 

rs1811399 2087.285 2175.65 2009.788 2078.203 2080.007 1999.711 1980.083 

nmIR1273 2103.215 2150.017 2127.398 2199.077 2203.179 1589.071 1998.278 

 

Figure 4.8: As demonstrated by this PCR reaction the precursor of the novel rs1811399 

and nmiR-1273 locus miRNA did not exhibit any tissue specificity. A) Each of the cell 

lines was grown to confluency prior to total RNA extraction. The total RNA pool was 

then enriched so that only small RNA molecules (<500nt) remained. The smRNA was 

then reverse transcribed using random hexamer primers. The primers used to test the 

smRNA cDNA pool were MIR122-F+MIR122-R, LET7-F+LET7-R, ‘399-F+’399-R and 

N1273-F+N1273-R.  mIR-122 was used as a negative control due to its absence in most 
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tissue types whilst Let-7a was a positive control due to its ubiquitous expression. This 

follows an established pattern in the miR-1273 family of miRNA which have an 

extensive expression range across tissues. B) ImageJ semi-quantitative analysis of band 

intensity for miRNA precursor expression. 

From Fig.4.8A and B, we can demonstrate that both microRNAs in intron 1 of NPAS2 exhibit 

similar expression profiles with nmiR-1273 expressed weakly in the placental cell line.  

4.3 Expression of mature forms has identical expression profile as 

precursor 

It is not uncommon for miRNA to exhibit a universal expression for their precursor 

molecules but to have tissue specific maturation (Yu et al, 2012). The next process will be 

assessing the cells for the mature product. 

Evidence for this tissue specific maturation is available in the case of miR-9 which as is 

expressed within neurones (Yu et al, 2012). Its precursor however is expressed within 

Schwann cells; the cells chiefly responsible for the production of myelin, but not its mature 

form. This implies a post-transcriptional regulation of the maturation miRNA precursors 

(Thomson et al, 2006).  

A manner by which miRNA maturation is regulated is by the activity of RNA binding 

proteins such as hnRNP A1 which is known to play a role in up-regulating expression of 

miR-18 (Guil & Cáceres, 2007). miR-18 is a part of the miR-17-92 cluster of miRNA and 

should therefore be expected to be expressed at a similar level to the other miRNA within the 

cluster. This however is not the case (Guil & Cáceres, 2007). The hnRNP A1 protein has 

been shown to preferentially bind to a consensus region within the pre-miR-18 and to 

facilitate the recruitment of DROSHA protein, thereby promoting the maturation of the 
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precursor. The expression of miR-18 is therefore several times greater than that of the 

remainder of the cluster (Guil & Cáceres, 2007). 

 

 

 

 

 

 

 

Figure 4.9: RNA hairpin of pre-miR-18. The area highlighted with black lines 

corresponds to the region of hairpin selectively associated with the hnRNP A1 protein. 

Not only does the protein encourage the recruitment of DROSHA but it might also have 

a role in preventing the formation of inhibitory secondary structures and also have a 

role in exporting the Drosha’ed fragment from the nucleus into the cytoplasm. This 

figure was produced using Vienna RNAfold. 

RNA protection assays allow us to identify the presence of small single stranded RNA 

molecules by hybdrizing them to a radiolabelled complimentary RNA probe. The hybridized 

mix is then digested by an RNAse A and RNAse T1 mix (a mix is used to maximise RNA 

degredation) to remove all the single stranded RNA leaving only the duplexed RNA which is 

protected from cleavage.  
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Figure 4.10: The above figure demonstrates a typical gel of a successful protection 

assay. Note the probe is significantly larger than the target miRNA and as such in a 

probe only control well runs much slower. To demonstrate its single stranded nature in 

the second well we have included the RNAse A/T1 mix which has completely digested 

the ssRNA probe. The third and fourth well contains smRNA extracted from HeLa 

which was duplexed with probe before enzymatic treatment.  

The protection assay was conducted on asynchronous RNA extracted from 4 cell lines and 1 

control RNA provided in the Ambion kit. 
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Figure 4.11: Autoradiograph of mature forms of two novel miRNA. Probes were 

produced using the primers ‘399-F+’399-R and N1273-F+N1273-R. A T7 promoter 

region was then ligated onto the DNA for transcription by T7 polymerase. Detection 

was made by the presence of radiolabelled cytidine within the RNA probe. The 

following asynchronous RNA pools were used: A) HeLa including miR-16 control (miR-

16 is ubiquitously expressed; therefore probes complimentary to miR-16 can be used as 

a positive control) B) HeLa (Human cervical epithelium) C) HI2162 (human 

lymphoblastic) D) SH-SY5Y (human neuroblastoma) E) HEK293 (human embryonic 

kidney) F) Placental RNA.  

As evident from these two autoradiograph films, there seems to be an identical expression 

pattern of the mature forms; implying that maturation of the miRNA is allowed to progress in 

all cell types investigated (Fig. 4.11). The functional implication of this on the miRNA is that 

the mature miRNA fulfil some essential housekeeping duty within human cells.  

It is also possible from the data in Fig.4.11 to conclude that the product detected for 

rs1811399 miRNA and novel miR-1273 are the same size as a mature miRNA. This can be 

concluded from the fact that it runs at the same level as the miR-16 control which is designed 

to give a 22bp duplexed product. 
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The RNA used in this experiment was from asynchronous cells and the same RNA was used 

to conduct the experiment described in Figure 3.1. As the miRNA is expressed regardless of 

expression of its host gene, do factors which induce the host gene influence its expression? 

 4.4 Expression is constant regardless of exogenous factors. 

Due to the implicit role miRNA play in regulating several functions of cellular behaviour 

such as activating responses to genotoxic stress, regulating response to energy levels and 

regulating cell division, one would expect several miRNA‘s expression to alternate dependant 

on the conditions prevalent in the local environment.  

In Humans, heat and cold shock are demonstrated regulators of miRNA expression. miR-1, 

miR-21 and miR-24 are all up-regulated in response to heat shock whilst cold shock domain 

proteins have been demonstrated to remodel pre-miR let7g, thus regulating its expression 

(Yin, Wang & Kukreja, 2008: Mayr et al, 2012). The mechanism for this temperature control 

is thought to be a synergistic combination of conformational change brought about by 

changes in local kinetic energy within the RNA secondary structure and global transcription 

factor change (Mayr et al, 2012).  

The phenomenon of conformational change is well established with regards to protein amino 

acid structure when exposed to heat (Voellmy & Boellmann, 2007). There is also a body of 

evidence which suggests that mRNA conformation is essential to facilitate translation (Kozak 

2005). Conformation can for example prevent capping of mRNA due to increased secondary 

structures (Furuichi and Shatkin, 2000). 

A bioinformatics survey of the pre-miR of nmiR173 demonstrates the structural variance 

which varying temperatures can induce. 
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Figure 4.12: Thermodynamic stability of novel pre-miR-1273. Panel A demonstrates the 

predicted structure of the hairpin at 37 degrees Celsius (using Vienna RNAfold) whilst 

B and C show the predicted structure (using mfold) at 30 and 42 degrees Celsius 

respectively.  

It is apparent that if we follow the expected model of miRNA biogenesis such conformational 

variances would hinder the expression of the mature form.  

HeLa cells were cultured as before in both heat shock and hypothermic conditions (420C for 

1 hour for heat shock, 300C for 1 hour for cold shock), RNA was extracted and reverse 

transcribed for analysis.  
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Figure 4.13: miRNA response to temperature variation. HeLa cells were grown to 

confluency prior to temperature shock. One plate was incubated at 370C for an hour 

prior to extraction of total RNA whilst a second plate was incubated at 300C or 420C for 

an hour. The total RNA pool was then enriched so that only small RNA molecules 

(<500nt) remained. The smRNA was then reverse transcribed using random hexamer 

primers. (A) Poly(A) cloning of mature miRNA. A pool of RNA enriched for small RNA 

(<500nt) is poly-adenylated before linker ligation. This ensures the molecule is of 

sufficient size in order to clone once a reverse transcription reaction has occurred. The 

linker sequence allows its use as a primer for probing the cDNA pool to detect mature 

miRNA. (B) demonstrates the response of the precursor miRNA hairpin to 

temperature. Primers used to probe the cDNA pool were β-ACTIN-F+β-ACTIN-R,  

‘399-F+’399-R and N1273-F+N1273-R. (C) Demonstrates the response of the mature 

form as detected by Poly(A) linker PCR. It is evident that temperature does not 

influence either the expression of the precursor molecule or its maturation into its final 

form. The primers used for (C) were RTQ-UNI+mLET7, RTQ-UNI+m399 and RTQ-

UNI+mn1273. 

As shown in Fig.4.13 we can demonstrate that neither heat nor cold shock has an appreciable 

effect on the expression of the pre-miR in either case, again furthering the notion that the key 

targeted genes of these miRNA are of routine, housekeeping genes. 

The fact that the mature form of both miRNA is expressed would imply that within the 

structure of the precursor molecule lays a consensus sequence for chaperone proteins (Mayr 

et al, 2012). However as these sequences are poorly understood it is unfeasible to ascertain 

which sequences these would be. 

DNA damage was a further method of induction and its influence should be investigated.  
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4.5 Expression of miRNA in response to DNA damage. 

As previously described, cells were incubated in the presence of genotoxic stress in order to 

induce DNA damage. If the novel miRNA being investigated have a role in modulating the 

DNA damage response there should be a difference in expression patterns.  

 

 

 

 

 

 

 

 

 

Figure 4.14: miRNA response to DNA damaging agents. 4uM of CPT and 100nM of 

Gemcitabine was included within the standard media of 80% confluent HeLa cells. 

After incubation with the drugs for 24h, the cells were rinsed with PBS and the total 

RNA was extracted. For the data in (B) the small RNA pool was poly-adenylated prior 

to linker ligation. Finally it was reverse transcribed into cDNA. (A) Demonstrates the 

response of the precursor miRNA hairpin to DNA damaging agents. Primers used to 

probe the cDNA pool were β-ACTIN-F+β-ACTIN-R, ‘399-F+’399-R and N1273-

F+N1273-R. (B) Demonstrates the response of the mature form as detected by Poly(A) 
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linker PCR. The primers used for (B) were RTQ-UNI+mLET7, RTQ-UNI+m399 and 

RTQ-UNI+mn1273. 

Figure 4.14 above identifies that there is no significant difference in expression between the 

precursor and mature forms of the miRNA in the presence of DNA damaging drugs. This 

would imply that the mature form of the miRNA is responsible for maintaining some 

essential housekeeping genes not involved within the DNA damage pathways.  

4.6 Cell density’s impact on miRNA expression. 

Mori et al (2014) have demonstrated that cell-cell contact is essential for the activation of 

expression of many miRNA. It is therefore important to know if the novel miRNA within 

NPAS2 fits into this category. 
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Figure 4.15: miRNA response to cell-cell contact.  HeLa cells were grown to varying 

density before their RNA was extracted and analysed for expression. At the stated 

confluency total RNA was extracted. Once extracted the RNA either instantly reverse 

transcribed using random hexamer primers or using poly-adenylation linker PCR. (A) 

Response of the precursor miRNA hairpin to cell density. Primers used to probe the 

cDNA pool were β-ACTIN-F+β-ACTIN-R, ‘399-F+’399-R and N1273-F+N1273-R. (B) 

Demonstrates the response of the mature form as detected by Poly(A) linker PCR to cell 

density. The primers used for (B) were RTQ-UNI+mLET7, RTQ-UNI+m399 and RTQ-

UNI+mn1273. 

Figure 4.15 identifies that the novel variants within NPAS2 are not linked to cell density. This 

supports the idea that the miRNA are involved in essential cellular processes. 
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4.7 Expression of novel miRNA does not require transcription of host-gene. 

The expression of many miRNA is linked to the expression of its host gene. Baskerville & 

Bartel (2005) identified that miRNA are dependent on their host gene for their promoter 

regions. As the novel miRNA exhibited expression within asynchronous cells (Fig.4.8) it is 

reasonable to assess their expression in cycling cells. As before, cells were submitted to a 

serum shock and RNA was extracted at the noted time intervals for reverse transcription.  
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Figure 4.16: Expression of both precursor and mature forms is non-circadian cycle 

dependant. A) HeLa cells were subjected to serum shock assay before RNA was 

extracted at certain time points. RNA was then subjected to RT for precursor detection 

and Poly(A) linker RT-PCR for mature forms, the unequal addition of adenine to the 

pool of mature miRNA has led to a slight variation in size for all the miRNA bands. 

Experiment was repeated with HEK-293, lymphoblastic and SH-SY5Y with identical 

result. Primers used to probe the cDNA pool were β-ACTIN-F+β-ACTIN-R, ‘399-

F+’399-R and N1273-F+N1273-R. For the detection of the mature form by Poly(A) 

linker PCR the primers used were RTQ-UNI+mLET7, RTQ-UNI+m399 and RTQ-

UNI+mn1273. B) Panel B demonstrates the relative intensity of each band as per the 

ImageJ semi-quantitative analysis.  

Figure 4.16 suggests that the expression profile for the host gene and the novel miRNA was 

different given that NPAS2 was not expressed. Whilst the expression of NPAS2 increases for 

the first 12h before disappearing, the level of precursor is constant at an average of 4502.138 

intensity for miR-1273 and 4816.571 for rs1811399 (in comparison to Let7a at 12958.42). 

This implied that the miRNA cluster within intron 1 might have an independent mechanism 

for its expression which should be detectable. 

 Time (h)       

Gene 0 4 8 12 16 20 24 

β-actin 23662.037 21933.886 22100.381 23111.24 22330.41 22223.04 22000.21 

NPAS2 3377.861 4923.369 6159.473 9580.296 0 0 0 

Let7a 13100.217 12589.811 13405.276 12059.95 12113.07 14005.28 13435.35 

miR-1273 5235.062 4195.477 5335.098 4078.456 4198.812 4117.85 4354.21 

rs1811399 5912.073 4708.267 4699.627 4503.254 4777.911 4693.277 4421.588 

mat-1273 2005.58 2101.369 2100.397 2378.125 2789.27 2309.288 2273.374 

mat-399 2981.101 2890.3 2902.366 3125.745 2977.664 2907.367 2807.354 

B 
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4.8 Role of locus in potential regulation of NPAS2 

Utilising the UCSC browser it is possible to identify regions of active transcription, promoter 

binding or other signs of “active” DNA. The browser utilises data produced by the ENCODE 

project. 

The figures presented below will identify if the region has a role in allowing the continuation 

of transcription for downstream exons. It will be possible to identify any splice sites, 

transcription factor binding sites, methylation zones or any other marker of active DNA 

through which the rs1811399 SNP may interfere.  

Referring to Figure 4.17 were the region to be one with an essential role within regulation of 

the NPAS2 gene it would have regions of transcription factor binding. One mechanism by 

which the UCSC browser detects potential transcription factor binding is by utilising the 

Biobase algorithm which calculates a weighted average consensus sequence for each 

transcription factor based on multiple experiments in human, mouse and rat. With this matrix 

it is then possible to scan a genome and allocate potential binding sites.
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Figure 4.17: Transcription facilitators’ prediction. The UCSC uses a mathematical algorithm to detect sequences in the genomic 

DNA which are conserved transcription factor binding sites. Rs1811399 SNP is denoted by the red line, each transcription factor 

binding is noted with a black line and labelled. Conserved within the region (chr2:101,476,509-101,481,509) is the recognition 

sequences for: XBP-1, C/EBPbeta, EVI-1, AREB6, CDC5 and ER-alpha. None of these transcription factors have been 

demonstrated to bind to the region in ChIP-seq experiments on the database. 
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Figure 4.17 demonstrates a potential for 7 transcription factor binding sites within this 5kb 

locus: 

• XBP-1: chr2:101,480,119-101,480,135 

• ER-alpha: chr2:101,480,036-101,480,054 

• C/EBP alpha: chr2:101,479,217-101,479,229 

• Cdc5: chr2:101,478,930-101,478,941 

• AREB6: chr2:101,478,838-101,478,846 

• Evi-1: chr2:101,477,027-101,477,041 

• C/EBP beta: chr2:101477009-101477022 

Of these predicted transcription factor binding sites, none are associated with any SNP. Of 

the listed transcription factors, two have been implicated in neurological conditions such as 

schizophrenia; XBP-1 (Chen et al, 2004) and ER-alpha (Weicker et al, 2008), AREB6 has 

been demonstrated to be associated with Alzheimer’s disease (Grupe et al, 2010) 

When correlated with the ChIP-seq data (Lee et al, 2012) for the locus none of these 

predicted transcription factors was found to bind to the locus across many different tissue 

types. Of all the tissue types and transcription factors assayed by Lee et al (2012), only the 

transcription factor CTCF in the human lymphoblastic cell line GM13976 was demonstrated 

to bind within the locus (chr2: 101,477,408-101,477,585). These co-ordinates would place 

the transcription factor binding site 1.4kb upstream of the SNP. There are no SNPs with 

which rs1811399 is in linkage with within the site.  
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When one compares the DNase I hypersensitivity sites described in Figure 4.18 one can 

detect a broader consensus as the DNase sites are conserved within a further 18 cell line types 

(out of a total of 125).  

4.9 Chromatin State 

A further indicator of any potential role the region might have with regards to regulation can 

be deduced, dependant on the state of chromatin at that location. Chromatin is the collective 

term for DNA tightly bound to its storage proteins: histones (Dame, 2005). Chromatin can 

either be described as open for transcription (euchromatin) or closed for transcription 

(heterochromatin). Neither of these states is absolute and transition between them is 

dependent on the requirements of the cell.  

Ernst et al (2011) have mapped the complete status of human chromatin within nine cell 

types by using a combination of chromatin immune-precipitation and DNA sequencing to 

identify regions that are actively transcribed within each cell type. Below is data from their 

publication centred on the rs1811399 locus.   

The figure below represents data collated from ChIP-seq experiments and placed on the 

UCSC browser. This represents an attempt to identify regions of chromatin which exist in 

varying states with regards to transcription of DNA. This variance in regulation between cell 

lines may reflect the expression of NPAS2 across the varying tissues in humans. K562 is a 

lymphoblastic cell line in which transcription of NPAS2 is repressed (according to the 

ENCODE data), this would replicate our findings with HI2162 in which NPAS2 was not 

detected (Fig 3.1 and Fig.3.4). The other cell lines are all fibroblastic in nature and express 

the region and NPAS2 as observed in Fig 3.1, Fig.3.2 and Fig.3.3. 
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Intriguingly rs1811399 is located towards the 3’ end of a weak transcription enhancer region 

and the 5’ end of a transcribed region within the normal human lung fibroblast (NHLF) cell 

line. It is noted within the literature (Taka et al, 2011) that a SNP within such a region can 

contribute to altered expression of downstream exons.  

 

Figure 4.18: Figure demonstrating the correlation between the H3K27me3 mark and 

predicted chromatin structure of the rs1811399 locus across varying cell lines. The 

rs1811399 SNP is denoted by the red line whilst the blue triangle represents the novel 

miR-1273 species. A) The blue block represents a transcription insulator region 

(chr2:101,477,569-101,478,168) whilst the yellow block represents an area of 

transcription enhancement (chr2:101,478,169-101,478,768). The purple blocks represent 

areas of H3K27 methylation that identify regions of low transcription. B) The green 

block (chr2:101,472,569-101,476,168) within the HEK cell line is an area of active DNA 
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that is transcribed. C) The orange block (chr2:101,472,569-101,476,168 represents an 

area of transcriptional activity as in HEK cells.  

Intriguingly the above datasets (Fig 4.19) may point to the region having a role within 

regulating gene expression. An H3K27me3 mark was detected by O'Geen, Echipare and 

Farnham (2011), which is a histone modification often found within silenced regions of 

chromatin. Hagarman et al (2013) have demonstrated that methylation of DNA, a mark of its 

transcriptional activity, halts the placing of methyl groups on histones. Areas of high 

transcription would therefore have low levels of H3K27me3. 

4.10 Expressed Sequencing Tags  

Perhaps a simple way of noting the transcriptional activity of the locus is by the detection of 

expressed sequencing tags (EST). ESTs are cDNA copies of short (~500bp) fragments of 

expressed genes and are indicative of active DNA regions.  

 

Figure 4.19: rs1811399 locus with known ESTs highlighted. Sequences that have been 

cloned are present as coloured blocks: T59368 (red block) and BI033160 (green block).  

ESTs are registered with several databases such as GenBank. It is therefore possible to search 

for curated sequences and map them to a region of interest. Using the UCSC browser it was 

possible to detect 2 recorded EST within 5kb of rs1811399. 
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EST T59368 is 342 base pairs long and was isolated from RNA extracted from the ovary of a 

49 year old female and exhibits 97.4% homology with the reference genome. The residual 

2.6% variance is not contiguous with any known SNP and is caused by the insertion of 4 

guanine residues at locations 237, 264, 272 and 298. These mutations can be account for by 

either de novo mutations or sequencing error as they do not appear in any SNP catalogue of 

healthy individuals to date. 

T59368 is of interest as this EST contains the precursor for the novel miR-1273 miRNA 

detected and analysed during the course of this work. 

EST BI033160 is a 284bp fragment of which no providence is known bar that it is from an 

adult human. It has 96.5% homology with the reference genome and appears to be of the 

reverse strand. rs117623721, rs143817583, rs192325412, rs76376883, rs183699561 and two 

de novo or sequencing errors would account for the sequence variance. 

BI033160 may also be of interest as it contains a region of high homology with miR-297 (E-

value of 4x10-4). 

4.11 Repeating elements within rs1811399 locus 

Repeating elements are sequences of DNA which are found in multiple copies across the 

genome. They are known to constitute around half of the human genome (Lander et al, 2001). 

Repeating elements are important evolutionary drivers and dozens of protein coding genes 

have derived from them (Lander et al, 2001).  Repeat elements are involved with gene 

expression regulation so it is important to review their location relevant to rs1811399, and 

whether rs1811399 may reside in one. 
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Figure 4.20: Repeating elements within genome locus of rs1811399 within UCSC hg19.  

Sequencing has identified the following: AluJR: chr2:101477345-101477628 (yellow 

box), L1MC4: chr2:101476248-101477314 (green box), L2b: chr2:101477645-101478106 

(gray box), Trigger11a: chr2:101478136-101478417 (orange box), (TATG)n: 

chr2:101478431-101478478 (purple box) and chr2:101479780-101479816 (blue box) and 

Charlie 1b: chr2:101481195-101481655 (pink box). 

Rs1811399 does not in itself directly impinge upon any predicted repeating elements as 

recorded by the UCSC.  

Whilst bioinformatics has identified the rs1811399 SNP as not being involved with the 

regulator machinery in NPAS2 it is important to test experimentally as much as possible. 

4.12 Rs1811399 hairpin locus does not appear to bind transcription factor 

and its binding ability is not allele dependant. 

Introns play an important role in regulating gene expression and are home to many regulatory 

regions (Scohy et al, 2010) and it has recently been discerned that SNP and other mutations 

can cause aberrant transcription factor binding which influence the expression of downstream 

exons, such as those in p53 response elements which interfere with p53 binding (Bandele et 

al, 2011). As the rs1811399 SNP has been associated with a phenotype (Nicholas et al, 2008) 

and when combined with the finding that expression of clock genes are disturbed within the 
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phenotype in question raises the possibility of the mutation impacting on expression (Hu et 

al, 2009).   

In order to test if a region of DNA can bind a transcription factor electrophoretic mobility 

shift assay can be used. This was achieved by producing DNA sequences and incubating 

them with a protein extract. Once the DNA-protein complex has been formed it can be ran on 

a gel and if the DNA has bound any protein its progression down the gel will be retarded. As 

a positive control a region of known transcription factor activity will be incubated with 

protein extract parallel to the main experiment, this will be the cytomegalo virus promoter 

(CMV) which is routinely used in human expression vectors to drive expression of a DNA 

sequence (Barrow, Campo and Ward, 2006) 

 

 

 

 

 

 

Figure 4.21: Electrophoretic mobility shift assay performed on nucleoprotein agarose 

separation. For positive control CMV was excised from pcDNA3.1 (Mfe1 and Nhe1 

digest) to give a 600bp band.  The hairpin region was cloned using fusion-PCR to 

provide a hairpin per allele. The hairpin was then incubated with nuclear protein 

extracted from HeLa cells. If the DNA actively binds transcription factor its progress 

down the agarose gel would be retarded. 
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transcription factor 
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Figure 4.22 suggested that the rs1811399 locus does not bind a transcription factor protein 

regardless of the allele. This informs us that the region might not be part of the transcriptional 

regulatory machinery of NPAS2 and whatever influence rs1811399 has on causing a 

phenotype might have nothing to do with aberrant protein expression. 

4.13 Identification of novel transcription start site. 

As the above evidence has demonstrated the rs1811399 miRNA and novel 1273 miRNA 

variants can be expressed without the host gene, NPAS2, being transcribed. It should be 

possible to detect its transcription start site. 

 

 

Figure 4.22: Upstream region of novel miR1273 (chr2:101,473,696-101,475,303). Novel 

1273 genomic locus is identified by the arrow. 600 base pairs upstream is a ~1kb region 

of established histone3k27 acetylation. Further evidence for this locus being important 

for some transcriptional activity within the gene was the presence of bound 

transcription factors as ascertained by ChIP-sequencing collated by the ENCODE 

group. 
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Figure 4.23 identifies a potential region of transcriptional regulation in the UCSC browser. 

Of the transcription factors which have been detected at the locus, all three are of interest 

when viewed in the context of autism: GATA-2 is implicated in negative regulation of 

neuronal precursor cells, GR is a hormone induced transcription factor of significance in 

central nervous system development and c-Fos is involved in neuronal action potentials 

(Wakil et al, 2006; Maletic et al, 2007 and Dragunow & Faull, 1989). 

PCR primers for a region upstream and downstream of the predicted region were designed in 

order to experimentally validate the transcriptional activity of the region. 

 

 

 

 

 

Figure 4.23: PCR was undertaken using primers specific for regions downstream and 

upstream of the promoter region. Control reaction was undertaken on genomic DNA 

using primers upstream of the putative promoter whilst the test PCR were undertaken 

on HeLa cDNA. 

Whilst Figure 4.24 implies that only a region downstream of the area is actively transcribed it 

does not conclusively prove that the region is an active promoter.  
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4.14 Functional assessment of putative promoter region 

A common method of assessing the functionality of any proposed mammalian promoter 

region is as follows. A plasmid vector, minus mammalian promoter, is cut with restriction 

enzymes and the sequence of the proposed promoter region is inserted. Downstream of this 

promoter a second piece of DNA is inserted, for example GFP. It is then possible to note if 

the initial DNA sequence is sufficient to drive the expression of a downstream gene by 

transfecting the construct into a human cell line and noting the expression pattern of the gene. 

 

 

 

 

 

Figure 4.24: A) Schematic of plasmid construct. Putative promoter was cloned into 

pBluescript (blue triangle). Downstream of new promoter construct was cloned miR-

122 from genomic DNA. B) As miR-122 has a hepatic expression pattern it is not 

detectable in HeLa cDNA as evident in the non-transfected cDNA. When the cells were 

transfected with the plasmid construct however a band appeared in the PCR. Potential 

genomic DNA contamination was disproven by the application of an DNAse treatment 

step to RNA prior to reverse transcription.  

Using this system it was possible to demonstrate that chr2:101,473,696-101,475,303 can 

indeed drive the expression of a gene and may act as a potential transcription start site for the 

miRNA cluster. 
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4.15 Sequencing of rs1811399 miRNA and novel miRNA-1273 in intron 1 of 

NPAS2 

Without using deep sequencing technology, identifying the sequence of a miRNA is very 

difficult. Primarily this is due to the short length of a mature miRNA (<25nt). In order to 

circumvent this, it is possible to increase the size of small RNA using a poly(A) polymerase 

enzyme to add a string of adenine to each RNA molecule. Reverse transcription can then be 

carried out and the miRNA are extended in size to 80-120nt. These can then be cloned and 

sequenced.  

 

 

 

 

 

 

 

 

Figure 4.25: Sequence of mature rs1811399 miRNA. Elucidated via sequencing of 

Poly(A) linker cDNA pool. This figure was produced using Vienna RNAfold. 

Figure 4.26 identifies the sequence of a small miRNA mapped to the hairpin precursor. The 

sequence is on the 3’ arm of the hairpin and does not include rs1811399. The significance of 

Rs1811399 SNP 

Site of mature form 
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this will be explored later. The sequence of the mature rs1811399 miRNA is 

CAGUCACUGCCCAGAGCUUCCC .  

The same procedure was used to identify the novel miR-1273. 

 

 

 

 

 

 

 

 

 

Figure 4.26: Sequence of mature novel miR1273 miRNA. Elucidated via sequencing of 

Poly(A) linker cDNA pool. This figure was produced using Vienna RNAfold.  

The sequence for the mature form of novel miR-1273 was 

AGGCAUGAGAAUCGCCUGAACC. 

With both miRNA sequenced it was possible to identify potential targets. This was important 

to understand any role the miRNA may have in any pathologies. 
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4.16 miRNA on both arms of rs1811399 hairpin. 

All known miRNA are released from the DICER complex as a dsRNA duplex. One of these 

arms is then “selected” for use as the guide arm in the silencing complex. This would appear 

wasteful as half of the potential siRNA is discarded. Recent studies have however identified 

occasions when a miRNA is utilised from both arms of the dsRNA duplex (Allen et al, 2004).   

Primers were designed for the region on the opposite arm of the hairpin and RT-PCR was 

conducted on a poly(A) treated cDNA pool.  

  

 

 

 

 

Figure 4.27: Agarose gel image of ootential miR located on opposite arm of rs1811399 

miRNA precursor hairpin. HeLa cells were grown to 80% confluency under standard 

conditions. RNA was extracted from the cells and enriched for small RNA. The small 

RNA pool was then poly-adenylated prior to linker ligation. The poly-adenylated pool 

was then probed using RTQ-UNI+m399 (lane A), RTQ-UNI+m-399b (lane B), RTQ-

UNI+m399c (lane C) and RTQ-UNI+m399d (lane D).   

From the Poly(A) linker PCR methodology used to extract this information we know the 

sequence of the second miRNA to be: CAGGUCUGGAGGUCAGGGCAUG 
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The appearance of a second miRNA from the rs1811399 hairpin is interesting. Rajagopalan et 

al (2006) identifies young miRNA as being most likely to express two or more forms of 

miRNA from a single hairpin. This is believed to be because the function of the mature 

form(s) has not been fixed into routine processes.  

4.17 Target prediction. 

By downloading the 3’ UTR sequences from GenBank, it is possible to code a program using 

PERL which will analyse the UTR sequence and search for regions complimentary to a 

miRNA seed sequence. Compiled code was downloaded from the TargetScan website 

(Lewis, Burge & Bartel, 2005) and ran on Perl Package Manager.  

TargetScan was selected as the primary target searching algorithm as its many citations 

increase the confidence that can be attributed to the results. Further, it was decided that more 

emphasis would be given to target genes with more than one target sequence within the 

3’UTR. It is noted within the literature that a gene which contains multiple target sites for a 

single miRNA species is much more likely to be regulated by that miRNA (Fang & 

Rajewsky, 2011).  

Once a set of gene targets had been identified it was possible to assign each gene to a protein 

interaction network using gProfiler (Reimand, Arak & Vilo, 2011). gProfiler assigned each 

query gene to a particular network based on established gene ontologies. If a protein was not 

known to take part in a particular network the software would analyse the protein’s sequence 

and place it with proteins of a similar sequence. Each grouping was awarded a P-value, the 

lower the value the more significant the grouping and the less likely that the association was 

random. This further analysis allowed the author to investigate further potential downstream 

implications of the putative miRNA.   
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The targets which are identified may not be regulated by the miRNA in question as by 

definition, the program only searches for sequence matches. In vivo several processes would 

regulate if a miRNA regulates a specific gene. 

4.17.1 Novel miR-1273 miRNA target candidates. 

The seed sequence of the experimentally validated miR1273 homologue was entered into the 

PERL script and a potential 148 targeted genes were shown. Of the two (PTGER3 and 

USP47) have more than one complimentary site within their UTR, raising the possibility of 

them being bona fide targets.  57 others have full base pairing between the seed region and 

one locale within their UTR. Of the remaining 89 only an imprecise match up of 7 

nucleotides is evident.  

PTGER3 is a member of the prostaglandin receptor family and has been implicated in autism 

(Nava et al, 2013) whilst USP47 is a ubiquitin peptidase and has not been implicated in any 

specific neurodevelopmental disorder. 

Table 4.1 below summarises the pathways that all the proposed targets are involved in.  
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Pathway in 

which target 

gene is active 

Name of target gene P value of 

grouping 

Nervous 

system 

development 

ATP7A,BMI1,ELAVL3,GABRB2,NEURL,ONECUT2,OP

RM1,PRICKLE2,PRKCA,PTCH1,SOX4,TIAM1,UBE3A,

ARHGEF2,CACNB1,CELSR2,NAV2,PEX5,DCX,LMO4,

MYH10,PAX6,PLXNA2,PRKCI,RPS6KA3,SEMA6B,SO

X11,TIMP3 

2.10E-02 

Central 

nervous 

system 

development 

ATP7A,BMI1,PRKCA,PTCH1,SOX4,UBE3A,NAV2,PE

X5,DCX,LMO4,MYH10,PAX6,PLXNA2,RPS6KA3,SOX

11,TIMP3 

3.05E-02 

Central 

nervous 

system neuron 

differentiation 

ATP7A,PRKCA,SOX4,PEX5,DCX,LMO4,PAX6 3.24E-02 

 

Table 4.1: Predicted targets of novel miR-1273-1 and the pathways in which they are 

involved. Majority of targets are seemingly involved with embryonic development, 

especially central nervous system development. 

 Intriguingly, several of the proteins targeted by the miRNA might have an impact on the 

function of circadian rhythmicity. For example; STC2 (a glycoprotein growth hormone 

(Chang & Reddel 1998), CELSR2 (a neuronally expressed growth factor receptor (Vincent, 

Skaug and Scherer, 2001) and ZNF346 (a dsRNA binding zinc finger protein Yang, May and 
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Ito, 1999)) are implicated within pathways with BHLHE40. BHLHE40 is a basic loop helix 

protein which selectively binds to E-box regions and represses transcription. If the novel 

miR-1273-1 were able to influence the activity of this gene, it would allow NPAS2 to bind to 

the E-box and commence transcription. Intriguingly BHLHE40 is also known to directly bind 

to ARNTL possibly inhibiting its action. This is of importance as ARNTL forms a 

heterodimer with NPAS2 which is required for its transcription factor activity. 

 

Figure 4.28: Protein interaction network of novel miR-1273-1 targets. Gene names in 

black are mRNA species that might be putative targets based on in silico analysis by 

novel miR-1273-1, red and black circles are circadian clock genes input as reference, 

and small grey circles are intermediary proteins.  
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Novel miR-1273-1 also appears to play a role in regulating a neuronal development circuit.  

 

 

Figure 4.29: Neural development circuit putatively targeted by novel miR-1273 based 

on in silico analysis. Gene names in black are mRNA species putatively targeted by 

novel miR-1273-1, red and black circles are circadian clock genes input as reference.  

This development network is important as it provides an insight into an expanded role for 

NPAS2 in neurodevelopment. Whilst NPAS2’s role as a transcription factor and clock gene is 

well known, the fact it hosts miRNA genes allows it to have greater influence on genetic 

regulation via the influence that novel miR-1273-1 might have on other gene regulation 

pathways. 
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4.17.2 Rs1811399 5’ arm miRNA target prediction. 

This miRNA’s seed sequence is predicted to target 121 transcripts. 6 of these transcripts have 

two sites within their 3’ UTR (SENP5, HIC2, METAP1, MLL, SOX11 and ZFHX4), 27 have 

perfect 8nt seed recognition and the remainder have 7nt recognition.  

Of the genes with two binding sites within their UTR SOX11 and MLL are implicated in 

neurodevelopment disorders such as autism or schizophrenia (Lo-Castro et al, 2009 and   

Huang et al, 2007). 

This miRNA perhaps has the more interesting predicted targets of the cluster. For example it 

is predicted to regulate DROSHA, DICER, DGCR8 and even AGO protein expression. 
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Figure 4.30: Putative targets of Rs1811399 5’ include components of the microprocessor 

complex. Genes in black circles are directly targeted by the miRNA; genes in small grey 

circles are indirectly targeted (expression of gene is dependant on gene that is directly 

targeted by the miRNA) . Panel A describes the potential regulatory effect of the 

miRNA on DROSHA as well as the targeting of other genes within the Drosha pathway. 

Roles for MEST and METAP1 are unknown; however some role as transcription 

initiators of DROSHA may be possible. METAP1 however also has a metal binding 

activity which is essential for the microprocessor. SP1 on the other hand is known to 

have a direct interaction with Drosha via pulldown experiments (Gunther, Laithier & 

Brison, 2010). Panel B implies the indirect regulation of DGCR8. HIC2 is a zinc ion 

binding protein and has a role in the repression of transcription in a DNA binding 

dependant manner (Deltour et al, 2010). HMGXB4 is part of a developmental signalling 

A B 
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pathway and has sequence similarity with the HMG-box transcription factor family of 

which SRY is a member of.  

 

Figure 4.31: 5’ arm rs1811399 miRNA’s potential role in regulating miRNA processing. 

Whilst the miRNA might not directly regulate DICER mRNA it does appear to regulate 

DROSHA which is responsible for initial processing of the pri-miRNA into a DICER 

suitable substrate. The miRNA also targets EIF2C2 which is a synonym for AGO 2, a 

key component of the RISC. PTPN11 is a key regulator of cranio-facial development 

and is co-expressed with DICER protein (Johnson et al, 2003). The FBXW7 gene 

encodes for a protein which again is developmentally linked and highly expressed 

within brain tissue (Li et al, 2002). 

The potential role this locus could have on a developmental disorder of the brain could be 

explained from Fig. 4.31 and Fig, 4.32. Whilst none of the genes listed in the two figures are 
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implicated in autism at the time of writing. It should be noted that the impact could be 

amplified as the effects progress down their networks. 

4.17.3 Rs1811399 novel miRNA 3’ arm. 

The 186 genes potentially targeted by this particular miRNA are involved in over 100 

different categories of function, vastly more than any of the other cluster miRNA. The true 

figure of pathways involved is obviously higher as each of these categories is a group of 

similar processes.  

Of the targets; nine have two binding sites within their 3’UTR. They are: C15orf57 

C18orf34, KCTD10 (constituent of an ubiquitin ligase complex; Wang et al, 2005), 

KIAA2022 (a protein of unknown function found on the X chromosome implicated in autism; 

Van Maldergem et al, 2013), ATRX (a ATPase/helicase implicated in X-linked mental 

retardation; Leung et al, 2013), KLHL2 (an actin binding protein expressed in the brain; 

Williams et al, 2005), MKLN1 (inhibitor of cell migration; Adams et al, 1998), CENTG1 

(complements the anti-apoptopic effect of nerve growth factor; Cai et al, 2012) and PVRL4 (a 

cell-cell adhesion molecule; Mühlebach et al, 2011).  

The presence of two binding sites in KIAA2022 and ATRX is interesting given their 

association with autism. KIAA2022 has been demonstrated to reduce neurite outgrowth 

causing malformed dendrites and axons, although the mechanism by which this occurs is 

currently unknown (Van Maldergem et al, 2013). ATRX was first implicated in X-linked 

Alpha thalassaemia-mental retardation in 2006 by Gibbons et al. Gong et al (2006) 

demonstrated that female relatives of many autism patients who had aberrant X-inactivation 

had mutations within the ATRX gene. 
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Name of 

pathway in 

which targeted 

genes 

participate. 

Name of target gene P value of 

association 

Regulation of 

synaptic 

plasticity 

SNCA,VGF,EGR1,MAP1B,NEUROD2,RELN,CNTN2 1.71E-02 

Behaviour SNCA,ADAM17,EGR1,ETV1,GIGYF2,GNAO1,HMGCR,HO

XD9,LEP,NAV2,NEUROD2,NR4A3,RELN,SLC12A5,CNTN

2,FOXP2,SCN2A 

1.18E-03 

Adult behaviour SNCA,GIGYF2,HOXD9,LEP,NR4A3,CNTN2,SCN2A 2.37E-02 

Regulation of 

inner ear receptor 

cell 

differentiation 

HES1,HES5,DLL1 7.26E-03 

Negative 

regulation of 

mechanoreceptor 

differentiation 

HES1,HES5,DLL1 7.35E-04 

Regulation of 

developmental 

process 

CDC42SE1,SEMA4F,TCF4,CFL1,CTNNB1,DDIT3,DPYSL2

,EGR1,FOXG1,HES1,HES5,HMGCR,LEP,MAP1B,MAPK1

4,MYST3,NEUROD2,RELN,SMAD4,SMAD5,SP7,SPEN,SU

FU,ALOX12,BRWD1,CNTN2,DLL1,FOXP2,SOCS5 

8.45E-03 
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Gene expression AFF4,HNRNPUL1,RRM2,SNCA,TCF4,WIBG,ADAR,ANKR

D49,BAZ2A,CTNNB1,DDIT3,DDX3X,DDX58,EDA,EGLN2,

EGR1,EID1,EIF5A2,EPC2,ESRRG,ETV1,FOXG1,FXR1,GA

LNT2,HES1,HES2,HES5,HOXD9,JHDM1D,LEP,MAN1C1,

MAPK14,MBNL1,MED29,MNX1,MRPL42,MYST3,NCK1,N

DST1,NEUROD2,NR4A3,PAPOLA,PDCD7,RBBP5,RELN,R

NF141,SMAD4,SMAD5,SP7,SPEN,SUFU,WTAP,ZBTB34,Z

MIZ1,ZNF618,ZXDC,ALOX12,BRWD1,CNTN2,CREBZF,D

LL1,FOXP2,GABPA,GMCL1,HNRNPA1,MYT1L 

3.59E-03 

 

Table 4.3: Selection of pathways in which the 3’ arm rs1811399 miRNA might be 

involved within. Whilst the miRNA is also involved in a range of metabolic and 

synthetic pathways (see appendix 1) these chosen categories can illuminate the potential 

role this miRNA within the autism phenotype. Several of these target genes are directly 

involved with foetal development including cranio-facial development (FOXP2 and 

NEUROD2, for example). Intriguingly FOXP2 has been implicated with severe 

language and speech disorders (Lai et al, 2001), which can be a feature of autism 

spectrum disorders. Aberrant synpatic plasticity is one of the many hypothesis within 

the scientific community as to an aetiology for autism and the presence of REELIN, 

CNTN2 (an axonal isoform of contactin) and NEUROD2 might imply a role for this 

miRNA in regulating this process.  

It should be noted that each gene listed here is only a predicted target, experimental 

validation would need to be carried out on each and every one to be sure of the interaction. 
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4.18 Phylogenetic conservation 

miRNA genes are broadly conserved across phyla, this is mainly due to the routine nature of 

most tasks expected of them. There are cases however of miRNA evolution, especially in 

higher eukaryotes (Altuvia et al, 2005). This set of experiments aims to ascertain whether this 

miRNA cluster is widely conserved or is it a relatively young microRNA cluster. 

  

 

 

 

 

 

 

 

Figure 4.32: Broad conservation of expression (both precursor and mature form) is 

detectable across primates but not in mouse. Cells were grown to confluency then total 

RNA was extracted. Once extracted RNA was reverse transcribed using random 

hexamer primers or using poly-adenylation linker PCR. Primers used to probe the 

cDNA pool were β-ACTIN-F+β-ACTIN-R,  ‘399-F+’399-R and N1273-F+N1273-R. The 

mature form was detected by Poly(A) linker PCR using primers: RTQ-UNI+mLET7, 

RTQ-UNI+m399 and RTQ-UNI+mn1273. The primers noted above were utilised in an 

attempt to isolate both the precursor and mature forms from across the phyla. Given 

Mouse Chimp Human 

Actin 

Precursor 

rs1811399 145 bp 

500 bp 

Precursor Novel 

miR1273 
145 bp 

Mature 

miR1273  

Mature 

rs1811399

miR 

120 bp 

120 bp 
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the high sequence conservation of miRNA across the species the primers originally 

designed for human DNA could be expected to identify a conserved region in both 

mouse and chimpanzee. 

The presence of the precursor in human and chimpanzee should not be surprising considering 

the levels of homology between the two genomes. It also implies a role for the miRNA which 

may be important in higher primates.  

 

 

 

 

 

Figure 4.33: Neither miR1273 nor rs1811399 precursor is detectable in chicken DT40 

cells. 

The absence in chicken of either of the novel miRNA is explained by Fig. 4.35 below. 

 

 

 

 

 

 

NPAS2 mRNA 

HeLa DT40 

Rs1811399 

precursor 

Novel miR1273 
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Figure 4.34: BLAST alignment of two novel miRNA sequences across mouse, human, 

chimp and chicken genomes. Panel A describes a BLAST alignment performed with the 

novel miR 1273 sequence which resulted in no hits for mouse or chicken with the top 

scoring chimp alignment (panel B) being in the same locus as the human gene. Panel C, 

D and E describe a similar BLAST undertaken with the rs1811399 hairpin. As evident 

there are no hits in mouse and chicken and only one hit in chimp, again in the NPAS2 

B 

C 

D 

E 

A 
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locus. The one nucleotide discrepancy between the human and chimp sequence can be 

attributed to the rs1811399 SNP. 

Fig 4.36 demonstrate that the rs1811399 miRNA can only be detected within primates. This 

raises the possibility of the miRNA being a new, primate specific miRNA. 

4.19 miRNA cluster is conserved across primates 

The detection of the rs1811399 miRNA and miR1273 within the chimpanzee cell line leads 

us to believe that the cluster may be conserved across the primates. Below is a review of our 

in silico data which hopes to elucidate the relationship. 

4.19.1 Genomic location of NPAS2 across phyla. 

Initially genomic co-ordinates of the NPAS2 gene were extracted from the Ensembl database 

(Table 4.4). Results proved negative for mouse, dog and chicken.  

Table 4.4 below demonstrates the location of NPAS2 across several species. This was 

required in order to conduct synteny testing (Fig4.36) to assess the presence of the miRNA 

cluster within a similar genetic locus across the species. Synteny testing is a mechanism by 

which a gene or chromosome can be compared across species to detect conservation. 
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Table 4.4: Demonstrates the genomic locus of the NPAS2 gene in several mammals and 

chicken. This data was extracted so that synteny testing could be conducted. The region 

that was queried ran from the end of the proposed promoter region down to the end of 

the rs1811399 miRNA sequence, a region of ~14kb. 

Synteny testing was then carried out on positive results (plus mouse) to ensure the loci were 

conserved in a wider context.

Species Genomic location of NPAS2 

Human  2: 101,436,614-101,613,291 

Chimpanzee 2A:101095425-101285563:1 

Orangutan 2a:8518713-8702232:1 

Gorilla 2a:98256242-98441206:1 

Macaque 13:100833971-100928573:1 

Mouse 1:39193731-39363234:1 

Dog 10:41847885-41998014:-1 

Chicken 1:132655000-132723188:1 

http://www.ensembl.org/Homo_sapiens/Location/View?db=core;g=ENSG00000170485;r=2:101436614-101613291
http://www.ensembl.org/Pan_troglodytes/Location/View?g=ENSPTRG00000012287;r=2A:101095425-101285563:1
http://www.ensembl.org/Pongo_abelii/Location/View?g=ENSPPYG00000012101;r=2a:8518713-8702232:1
http://www.ensembl.org/Gorilla_gorilla/Location/View?g=ENSGGOG00000006420;r=2a:98256242-98441206:1
http://www.ensembl.org/Macaca_mulatta/Location/View?g=ENSMMUG00000009871;r=13:100833971-100928573:1
http://www.ensembl.org/Mus_musculus/Location/View?g=ENSMUSG00000026077;r=1:39193731-39363234:1
http://www.ensembl.org/Canis_familiaris/Location/View?g=ENSCAFG00000002223;r=10:41847885-41998014:-1
http://www.ensembl.org/Gallus_gallus/Location/View?g=ENSGALG00000016774;r=1:132655000-132723188:1
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Figure 4.35: Synteny testing carried out using Ensembl data and browser. In each case 

the human chromosome 2 is situated within the middle of each panel and the 

corresponding chromosomes which contribute to human chromosome 2 are located on 

the outsides. The coloured blocks demonstrate the localisation of specific sections of 

human chromosome 2 onto the respective chromosome of the second species. 

The synteny data reveals that human chromosome 2 is a fusion product of two smaller 

primate chromosomes. This is further revealed by the presence of telomere like repeats close 

to the fusion site (chr2:114,359,542-114,362,512) demonstrated in Figure 4.37 below. 

 

 

 

 

 

 

 

 

Figure 4.36: Bioinformatic survey of the fusion site within human chromosome 2 

chr2:114,359,542-114,362,512. From this data we can see that within human 

chromosome 2 are two TAR1 repeats which are usually only associated with telomeres. 

The evidence for this being a fusion site is further strengthened by a region of 

TTAGGG CCCTAA inverted repeats which cover an area of approximately 800bp. The 

coloured bars within the bottom of the diagram represent synteny experiments. These 
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demonstrate the regions flanking the archaic telomere site within human chromosome 2 

are homologous to two separate chromosomes in non-human primates. 

4.20 Sequence of novel miR-1273 is highly conserved. 

A BLAST query of the novel miR1273 locus revealed strong homologies. Below are the 

alignments of the query primates and the impacts any variants may have on RNA folding. 
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A

 

B 

 

 

 

 

 

 

Figure 4.37: Panel A demonstrates the high levels of conservation between primate 

species for the novel miR-1273 locus. Panel B demonstrates the variations within the 

RNA structure that each variation could be expected to have on the hairpin. Panel B 

was produced using Vienna RNAfold. 

 

 

Human Gorilla Chimp Orang-utan 
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4.21 rs1811399 sequence is conserved. 

A similar experiment was conducted but with the rs1811399 locus. 

A)  

 

B)  

 

 

 

 

 

 

 

Figure 4.38: Panel A demonstrates alignment of human rs1811399 locus with that of 

other primates. Chimp is identical to human rs1811399C sequence whilst gorilla has one 

Human Chimp Gorilla Orang-utan 
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extra variation. Orangutan is the species with the lowest conservation of the hairpin. 

Panel B demonstrates the RNA folding of the locus in each of the species. This figure 

was produced using Vienna RNAfold. 

As the miRNA precursors’ sequences are conserved across the primates it should be possible 

to produce a tree identifying the divergence and evolutionary history of the region.  

4.22 Phylogenetic evolution of the two miRNA precursors. 

Utilising Dereeper et al (2008)’s phylogenetic tree software it is possible to construct an 

evolutionary pathway for each of the miRNA precursors. This will allows us to deduce when 

each species diverged from the other in terms of this miRNA cluster. 

 

 

Figure 4.39: From both trees (novel 1273 top tree, rs1811399 bottom tree) we can see 

that orangutan has diverged from the same path as the three other primates whilst they 

have followed similar evolutionary paths. This is reflected in the larger branch lengths 

for the orange-tan line which symbolises a greater rate of genetic diversity. 

The above results are in keeping with our understanding of primate evolution. 
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5. Impact of SNP rs1811399 which may be linked with 

autism.  

Previous work has identified the SNP rs1811399 as a variant possibly linked with the autism 

phenotype (Nicholas et al, 2008). In this study the circadian clock genes (NPAS2, CLOCK, 

BMAL, CRY1, CRY2, PER1, PER2, PER3, TIMELESS, CK1 and DBP) of 110 autistic 

patients including their parents were sequenced. Two SNP were found to be significantly 

associated with autism in PER1 (rs885747 and rs6416892) and one in NPAS2 (rs1811399). 

The mechanism by which this single nucleotide polymorphism contributes to the phenotype 

is currently unknown.  Unlike the SNP rs2305160 in NPAS2, which causes the substitution of 

threonine for alanine which causes an increased risk of non-Hodgkins lymphoma and breast 

cancer (Zhu et al, 2007: Yi et al, 2010), the SNP rs1811399 is intronic. 

5.1 Population statistics. 

SNP allele frequencies are known to vary from population to population. The cause of such 

variance can be due to numerous factors: human migrations, natural disaster resulting in 

small surviving population or even as a positive adaption to the environment. Xin Yi et al 

(2010) for example note that within high altitude populations (Tibetan) positive selection has 

introduced and maintained SNP within the EPAS1 gene which increases red blood cell 

production. Two key databases will be mined to extract population statistics for the 

rs1811399 SNP: 1000 genomes project and the HapMap project (Fig 5.1).  

Population legend is as follows:  
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Population 

Code 
Population Description 

Super 

Population 

Code 

Population 

Code 
Population Description 

Super 

Population 

Code 

Population 

Code 
Population Description 

Super 

Population 

Code 

CHB 
Han Chinese in Bejing, 

China 
ASN KHV 

Kinh in Ho Chi Minh 

City, Vietnam 
ASN STU 

Sri Lankan Tamil from the 

UK 
SAN 

JPT 
Japanese in Tokyo, 

Japan 
ASN CEU 

Utah Residents (CEPH) 

with Northern and 
EUR ITU Indian Telugu from the UK SAN 

CHS Southern Han Chinese ASN  
Western European 

ancestry 
 BEB Bengali from Bangladesh SAN 

CDX 
Chinese Dai in 

Xishuangbanna, China 
ASN TSI Toscani in Italia EUR PUR 

Puerto Ricans from Puerto 

Rico 
AMR 

GWD 

Gambian in Western 

Divisons in The 

Gambia 

AFR FIN Finnish in Finland EUR CLM 
Colombians from Medellin, 

Colombia 
AMR 

MSL 

 
Mende in Sierra Leone 

AFR 

 
GBR 

British in England and 

Scotland 
EUR GIH 

Gujarati Indian from 

Houston, Texas 
SAN 

ESN Esan in Nigera AFR IBS 
Iberian population in 

Spain 
EUR PJL 

Punjabi from Lahore, 

Pakistan 
SAN 

ASW 
Americans of African 

Ancestry in SW USA 
AFR YRI Yoruba in Ibadan, Nigera AFR 

ACB 
African Carribbeans in 

Barbados 
AFR LWK Luhya in Webuye, Kenya AFR 

MXL 
Mexican Ancestry from 

Los Angeles USA 
AMR PEL 

Peruvians from Lima, 

Peru 
AMR 
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 Figure 5.1: Allele frequencies for rs1811399 extracted from two genomic population 

statistic databases. The databases were 1000 Genomes Project phase 3 

(http://www.1000genomes.org/) and HapMap3 (http://hapmap.ncbi.nlm.nih.gov/). 

The hypothesis that rs1811399C>A can solely lead to autism is not supported by the allele 

frequencies. By collating all the data from both surveys one can reach the conclusion that 

globally approximately 29% of all alleles will be C (Figure 5.1). Because the C allele has a 

reduced frequency in autistic children (17.89%) compared to their parents (22.94%) 
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(Nicholas et al., 2007), it is likely that the C allele exerts a protective function. Hence the 

reduced maturation of the micro RNA caused by the C nucleotide (rs1811399) may have a 

beneficial effect. Figure 5.2 clearly indicates the bias away from homozygous C|C genotypes 

in the general population. 

  

Figure 5.2: Genotype figures for varying populations. 
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There is also a slight sexual dichotomy with regards to prevalence of the homozygous C 

genotype: 7.6% of males and 10.2% of females. The significance of this however is doubtful 

and nowhere near as apparent as the dichotomy in autism incidence rates as referenced in the 

introduction. 

The ancestral allele at the rs1811399 locus was C. The A allele has since replaced the C allele 

in the majority of cases (Fig.5.1) and cases of homozygous C|C are rare (Fig.5.2). It is 

postulated that the A allele confers some selective advantage and has begun to replace the C 

allele. Nicholas et al (2008) postulates that the C allele is in itself detrimental and that 

selection pressure is favouring towards the A allele.  That the C allele is also under 

transmitted from parents to offspring might also be evidence towards negative selection 

pressure against the C allele. 

There exists the possibility that rs1811399 is linked with a second genetic variation (such as 

SNPs in linkage disequilibrium) which can contribute to its effect. It is possible to identify 

these linked SNP and perform similar analyses as have been done for rs1811399. 

5.2 Linkage disequilibrium. 

Linkage disequilibrium is the association of alleles at more than one loci in a non-random 

manner (Knight, 2009).  

Rs1811399 in the general population is known to be in linkage with 23 other SNP within a 

50kb locus (Table 5.1). None of these linked SNPs have been directly implicated with any 

phenotype. Linked SNPs can be given two statistical measures to describe their linkage: D’ 

that is a measure of dependency (a figure of 1 implies you will always find one SNP if you 

have the second present) and R squared, which demonstrates the closeness of fit of the data 

with linear regression curve of available data. 
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Variation Location 

Distance 

(bp) 

r2 D' 

rs1118509 2:101476892 2122 0.849471 1 

rs11904563 2:101494480 15466 0.968868 1 

rs12472319 2:101487457 8443 0.827519 1 

rs12472321 2:101487468 8454 0.827519 1 

rs13011414 2:101495624 16610 0.827519 1 

rs13032665 2:101483815 4801 0.820203 0.969714 

rs13034472 2:101481119 2105 0.849471 1 

rs1369481 2:101511959 32945 0.874064 0.955196 

rs1435511 2:101478658 356 0.875137 0.999999 

rs2043534 2:101480885 1871 0.849471 1 

rs2082816 2:101477085 1929 0.849471 1 

rs2871389 2:101495174 16160 0.827519 1 

rs34873464 2:101486641 7627 0.827519 1 

rs4081946 2:101500089 21075 0.830929 0.911553 

rs6542996 2:101485827 6813 0.875137 0.999999 

rs6718451 2:101493549 14535 0.875137 0.999999 

rs6750976 2:101496109 17095 0.827519 1 

rs6759386 2:101483372 4358 0.875137 0.999999 

rs7564936 2:101491972 12958 0.957981 0.999999 

rs7582455 2:101471707 7307 0.875137 0.999999 

rs7590391 2:101483103 4089 1 1 

rs930309 2:101484534 5520 1 1 

rs983287 2:101480401 1387 0.875137 0.999999 

http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs1118509;vdb=variation;vf=882559
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs1118509;vdb=variation;vf=882559
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs11904563;vdb=variation;vf=8207517
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs11904563;vdb=variation;vf=8207517
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs12472319;vdb=variation;vf=8753413
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs12472319;vdb=variation;vf=8753413
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs12472321;vdb=variation;vf=8753418
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs12472321;vdb=variation;vf=8753418
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs13011414;vdb=variation;vf=9243242
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs13011414;vdb=variation;vf=9243242
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs13032665;vdb=variation;vf=9262696
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs13032665;vdb=variation;vf=9262696
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs13034472;vdb=variation;vf=9264327
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs13034472;vdb=variation;vf=9264327
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs1369481;vdb=variation;vf=1039435
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs1369481;vdb=variation;vf=1039435
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs1435511;vdb=variation;vf=1099382
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs1435511;vdb=variation;vf=1099382
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs2043534;vdb=variation;vf=1617660
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs2043534;vdb=variation;vf=1617660
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs2082816;vdb=variation;vf=1655879
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs2082816;vdb=variation;vf=1655879
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs2871389;vdb=variation;vf=2502590
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs2871389;vdb=variation;vf=2502590
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs34873464;vdb=variation;vf=11284634
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs34873464;vdb=variation;vf=11284634
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs4081946;vdb=variation;vf=3142774
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs4081946;vdb=variation;vf=3142774
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs6542996;vdb=variation;vf=4416238
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs6542996;vdb=variation;vf=4416238
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs6718451;vdb=variation;vf=4570730
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs6718451;vdb=variation;vf=4570730
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs6750976;vdb=variation;vf=4602921
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs6750976;vdb=variation;vf=4602921
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs6759386;vdb=variation;vf=4612276
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs6759386;vdb=variation;vf=4612276
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs7564936;vdb=variation;vf=5310503
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs7564936;vdb=variation;vf=5310503
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs7582455;vdb=variation;vf=5327772
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs7582455;vdb=variation;vf=5327772
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs7590391;vdb=variation;vf=5335750
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs7590391;vdb=variation;vf=5335750
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs930309;vdb=variation;vf=733614
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs930309;vdb=variation;vf=733614
http://www.ensembl.org/Homo_sapiens/Variation/Summary?db=core;r=2:101478514-101479514;v=rs983287;vdb=variation;vf=780944
http://www.ensembl.org/Homo_sapiens/Location/View?db=core;r=2:101478514-101479514;v=rs983287;vdb=variation;vf=780944
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Table 5.1: SNPs that are within linkage disequilibrium with rs1811399 within a 50kb 

locus. D is a measure of dependency, the closer the figure is to 1 the greater the 

possibility of finding one allele within a sample if the second exists. R squared is the 

coefficient of determination or simply put how close the data fits the linear regression 

curve of data. Both R squared and D are different ways of identifying how likely you 

are to discover one allele at a particular locus if you have another at a different locus. 

Of the 23 other SNPs, 6 are registered as occurring within regulatory regions (Table 5.2). 
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Variation 

Name 

Chr Position on 

Chromosome 

(bp) 

Regulatory 

Feature 

Stable ID 

Regulatory 

Feature 

Allele 

String 

Regulatory Feature 

Consequence Type 

rs12472319 2 101487457 ENSR0000

1544767 

C/T Regulatory_region_variant 

rs12472321 2 101487468 ENSR0000

1544767 

C/T Regulatory_region_variant 

rs13011414 2 101495624 ENSR0000

0595332 

C/A Regulatory_region_variant 

rs4081946 2 101500089 ENSR0000

0595335 

A/G Regulatory_region_variant 

rs6750976 2 101496109 ENSR0000

0595332 

C/T Regulatory_region_variant 

rs7564936 2 101491972 ENSR0000

1544768 

T/G Regulatory_region_variant 

 

Table 5.2: Table demonstrating potential significant linked SNPs. All 6 of these are 

variant alleles which are located within regulatory regions of the NPAS2 gene.   

 

http://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs12472319
http://www.ensembl.org/Homo_sapiens/mapview?chr=2
http://www.ensembl.org/Homo_sapiens/contigview?c=2:101487457;w=1000
http://www.ensembl.org/Homo_sapiens/Regulation/Details?fdb=funcgen;rf=ENSR00001544767
http://www.ensembl.org/Homo_sapiens/Regulation/Details?fdb=funcgen;rf=ENSR00001544767
http://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs12472321
http://www.ensembl.org/Homo_sapiens/mapview?chr=2
http://www.ensembl.org/Homo_sapiens/contigview?c=2:101487468;w=1000
http://www.ensembl.org/Homo_sapiens/Regulation/Details?fdb=funcgen;rf=ENSR00001544767
http://www.ensembl.org/Homo_sapiens/Regulation/Details?fdb=funcgen;rf=ENSR00001544767
http://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs13011414
http://www.ensembl.org/Homo_sapiens/mapview?chr=2
http://www.ensembl.org/Homo_sapiens/contigview?c=2:101495624;w=1000
http://www.ensembl.org/Homo_sapiens/Regulation/Details?fdb=funcgen;rf=ENSR00000595332
http://www.ensembl.org/Homo_sapiens/Regulation/Details?fdb=funcgen;rf=ENSR00000595332
http://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs4081946
http://www.ensembl.org/Homo_sapiens/mapview?chr=2
http://www.ensembl.org/Homo_sapiens/contigview?c=2:101500089;w=1000
http://www.ensembl.org/Homo_sapiens/Regulation/Details?fdb=funcgen;rf=ENSR00000595335
http://www.ensembl.org/Homo_sapiens/Regulation/Details?fdb=funcgen;rf=ENSR00000595335
http://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs6750976
http://www.ensembl.org/Homo_sapiens/mapview?chr=2
http://www.ensembl.org/Homo_sapiens/contigview?c=2:101496109;w=1000
http://www.ensembl.org/Homo_sapiens/Regulation/Details?fdb=funcgen;rf=ENSR00000595332
http://www.ensembl.org/Homo_sapiens/Regulation/Details?fdb=funcgen;rf=ENSR00000595332
http://www.ensembl.org/Homo_sapiens/Variation/Summary?v=rs7564936
http://www.ensembl.org/Homo_sapiens/mapview?chr=2
http://www.ensembl.org/Homo_sapiens/contigview?c=2:101491972;w=1000
http://www.ensembl.org/Homo_sapiens/Regulation/Details?fdb=funcgen;rf=ENSR00001544768
http://www.ensembl.org/Homo_sapiens/Regulation/Details?fdb=funcgen;rf=ENSR00001544768
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Figure 5.3: Genomic context of all linked SNPs. A) rs12472319 and rs12472321 SNP 

with overlapping transcription factor binding sites. This locus has a particularly dense 

collection of experimentally proven transcription factor binding sites (Encode ChIP-

seq) but neither of the SNPs negatively impacts any of these factor binding sites. B) 

rs13011414 is embedded in an open chromatin region marked by histone3k027 

acetylation. Impacts of SNPs in such loci are difficult to determine. The greatest 

potential impact it could have on the chromatin state would be if it were part of a CpG 

island but this is not the case. C) rs4081946 again is overlapping a proven transcription 

factor binding site but is not predicted to have any influence on the binding. D) 

rs6750976 is located within the binding sites of two transcription factors and an area of 

high chromatin open-ness. It does not seem to affect the loci however. E)  rs7564936 

cannot be demonstrated to interact with the TCF4 binding.  

All we can conclude from this exercise is that none of the linked SNPs are directly involved 

with any aberrant transcription factor binding which might cause a phenotype. Thus our focus 

must shift to viewing rs1811399 as the contributing factor to a phenotype. 

5.3 SNP impact on miRNA processing. 

It is established within the literature that SNP can have dramatic impact upon processing of 

miRNA (Duan, Pack and Jin, 2007). The mechanism by which SNP can influence maturation 

of a miRNA is twofold: Either Drosha processing at the stem loop-ssRNA junction is 

influenced (Duan, Pack and Jin, 2007) or Dicer processing is (Sun et al, 2009).  It has also 

been reported that the converse is also true and that SNPs in miRNA genes can increase 

efficiency of biogenesis such as the case of a G>A substitution at nucleotide 4 within miR-

510 (Sun et al, 2009). 
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In order to assess the viability of this theory with regards to our novel NPAS2 rs1811399 

miRNA in vivo assays will be performed. 

5.3.1 In vitro analysis of SNP impact on miRNA processing 

As the DT40 cell lines had been demonstrated to not express the precursor under 

investigation, it was decided to use the cells as a model for studying the influence of the SNP 

in vivo.  

The hairpin sequence was initially cloned from HeLa genomic DNA before using fusion-PCR 

to produce two hairpins, one for each allele. Each hairpin was then cloned into the pJE28 

plasmid supplied by Dr John Eykelenboom. The pJE28 vector has been designed to integrate 

genetic material into the chicken Ovalbumin gene which is not expressed in DT40. The 

targeting of the construct to the Ovalbumin locus is achieved by the presence in the construct 

of two targeting arms, which are homologous with regions in the genomic region. In order to 

drive expression of the hairpin, the human H1 promoter was excised from pSuperior and 

integrated upstream of the hairpin sequence. In order to control the expression of the hairpins 

a tetracycline responsive element was implemented into the construct; when co-transfected 

with a Tet-on plasmid, this will allow for the expression of the precursor to be switched on. 

Constructs of both alleles were then transfected into wild type DT40 cells using 

electroporation or chemical transfection and expression of processing was detected using 

protection assay and PCR. 

Figure 5.4 below illustrates the cloning strategy utilised in these experiments. 
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Figure 5.4: Schematic of cloning strategy. Targeting plasmid pJE28 was kindly 

provided by Dr John Eykelenboom from the University of Galway. To this plasmid a 

human H1 promoter region (blue triangle) with two tet-response elements (orange 

circles) was cloned into the Nhe1 site, fused to this was the rs1811399 hairpin (red 

rectangle). 

The initial strategy called for a tetracycline inducible miRNA however upon transfection it 

was noted that incubation with tetracycline complete cell death was achieved. Initially it was 

assumed that the miRNA was inducing this lethality however a serendipitous finding by Dr 

Ellen Vernon who was working on the same cell line discovered that prior to our receiving 

the cell line a TET-OFF system had been integrated into the cell and upon induction with 

tetracycline several important housekeeping genes were silenced. Knowing this, the system 

was redesigned around the pcDNA3.1 plasmid. 

A pcDNA 3.1 puromycin vector was received from colleagues at University of Galway. This 

plasmid allowed for positive selection of transfected clones using 1mg/ml of puromycin. In 

order to transfect the cells 1x107 DT40 cells centrifuged and suspended in 1ml of PBS. The 

construct was then incubated with the suspended cells on ice prior to electro-transfection at 

400V. Cells were rested for 24h before plating on 96 wells with puromycin antibiotic for 

selection of positive clones. 

 

     

Yellow: Ovalbumin locus targeting arms. 

Orange: Tetracycline response elements 

Blue: Human H1 promoter 

Red: miRNA hairpin 
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Figure 5.5: DT40 in vitro method of detecting SNP impact on miRNA biogenesis.  (A) 

Demonstrates the absence of any visible precursor in both genomic DNA and cDNA 

library of un-transfected DT40 cells. After transfection it is possible to isolate the 

precursor from cDNA (lane D and E panel A). (B) Demonstrates the impact of 

maturation the rs1811399 SNP has on miRNA biogenesis via Poly(A) linker PCR. (C) 

demonstrates the maturation of the rs1811399 hairpin in a Poly(A) linker PCR during 

which 5ug of total RNA was used as starting material as opposed to 1ug,  Size variation 

in (C) lanes D and E could arise due to the incorrect processing of the hairpin. Semi-

quantitative image analysis demonstrate relative intensity of 86108.352 for lane D in 

panel C and an intensity of 9525.087 for the mature form in lane E. 
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It is suggested in Fig.5.5 that the rs1811399 C appears to interfere with maturation of the 

mature form in vivo. However, a repeat experiment (Fig 5.6 below) suggests that the levels of 

the mature form present in the C sample might have been too low to be detected.  

Whilst the miRNA processing machinery is the same in chickens as it is in humans it is 

important to test this result in human cells. 

5.3.2 In vitro analysis in human (HeLa) cell lines. 

Current experimental studies have gone some way to addressing the mechanism by which the 

rs1811399 C could be contributing to a disease phenotype. To increase the relevance of the 

experimentation hitherto carried out it was decided to continue the work established within 

the DT40 cell line in HeLa cells.  

The hairpin sequence was initially cloned from HeLa genomic DNA before using fusion-PCR 

to produce two hairpins, one for each allele. The psi-RNA plasmid is a commercial product 

which utilises an h7sk promoter to drive expression of siRNA. The hairpins are cloned into 

the vector using blunt end cloning. This vector allowed for selective transfection using zeocin 

to produce stable clones (Fig 5.6A). 
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Figure 5.6: RT-PCR and Poly(A) linker PCR analysis of impact of rs1811399 SNP on 

maturation within human cell line. (A) A schematic of the psiRNA plasmid used in the 

human cell lines. The blue box represents the h7sk promoter, green arrow is the 

precursor hairpin and the yellow oval is the zeocin resistance cassette. (B) Demonstrates 

the relative difference in amount of precursor that is detectable in cells pre-transfection 
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(lane B) and post-transfection (lane C and D). Semi-quantitative analysis of the gel was 

carried out using ImageJ. The relative intensity of the precursor band in untransfected 

cells was 12352.66 whilst the intensity of bands post-transfection was 21618.246 

21703.296 for lanes C and D respectively.  This trend is continued in (C) where Poly(A) 

linker PCR data is shown. Note the relative abundance of PCR product in lane C 

(rs1811399 A vector) versus product in lane D (rs1811399 C vector).  Semi-quantitative 

analysis of panel C reveals an intensity of 8543.903 for the mature form in un-

transfected cells against an intensity reading of 26713.602 and 24687.773 for lanes C 

and D respectively.   

From Fig5.6C it appears that rs1811399 C may be under-processed. Caution should be used 

when interpreting these results given that the variance may arise due to copy number 

variations during transfection.   

5.4 RNA Editing 

Whilst the structural requirements for the editing site varies between the type of editing in 

question and the enzyme responsible, one factor is universal, the requirement for dsRNA. As 

we know that the locus surrounding rs1811399 forms a double stranded helix and that a 

cluster of 9 A to I editing has been discovered downstream of the SNP (chr2:101,493,692-

101,493,860) it was decided to investigate the potential impact that the SNP might have on 

RNA editing. 

Current understanding of post-transcriptional regulation of miRNA maturation demonstrates 

the presence of a regulatory network in which several factors may be responsible for 

regulation of specific mature miRNA (Thomson et al, 2006). One mechanism by which cells 

may regulate miRNA expression is by RNA editing (Luciano et al, 2004). As covered in 
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section 1.4.4 RNA editing is undertaken by deaminase enzymes, which modify nucleotides in 

an RNA sequence so that they differ from the genomic sequence. In the scope of miRNA 

biogenesis, a polymorphism or nucleotide substitution can lead to a conformational change 

resulting in impaired biogenesis by DICER processing (Fig. 1.13). This mechanism is 

implicated in the regulation of miR-151. 

miR151 is known to undergo RNA editing at nucleotides 45 and 48 (numbered from 5’ end). 

Editing at either one of the two sites is enough to impair processing by DICER even though 

no substantial conformational change occurs to the terminal hairpin loop. 
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Figure 5.7: A change in energy within the terminal loop of both single edited hairpins is 

noticeable. It is only however when the hairpin is edited at both sites that processing by 

DICER is fully prevented. In the presence of both sites being edited there is a 

conformational change in the hairpin loop and a significant change in entropy around 

the loop. This figure was produced using Vienna RNAfold. 
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5.4.1 Rs1811399 is not an in vivo candidate for RNA editing. 

Demonstrating that a sequence of RNA is edited in vivo is relatively simple. It involves 

sequencing the genomic DNA and a cDNA copy of a particular area and then comparing the 

two sequences. If there is any discrepancy then editing may have taken place. This will be 

performed for 6 human cell lines. 

Table 5.3 below identifies the nucleotide present at the rs1811399 locus using both genomic 

DNA and sequence derived from transcribed RNA. 

Name of Cell Line Genomic DNA sequence of 

rs1811399 

cDNA sequence of 

rs1811399 

HeLa AC AC 

SH-SY5Y AC AC 

HI2162 AA AA 

HI2577 AC AC 

HEK293 AC AC 

HI2477 AA AA 

 

Table 5.3: Genomic DNA was isolated from the following cell lines: HeLa (Cervix), SH-

SY5Y (neuroblastoma), HI2162, HI2477 and HI2577 (human lymphoblast) and HEK-

293 (kidney). This was genotyped at the rs1811399 locus and the sequence compared 

against cDNA from all cell lines. 

RNA editing had not happened at rs1811399 within the cells (Table 5.3). If there had been a 

discrepancy then it would raise interesting questions for RNA editing control of miRNA 

expression.  
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It may be possible that the miR-1273 hairpin is RNA edited and this was investigated in the 

next section. 

5.4.2 Novel miR1273 hairpin is not an in vivo candidate for RNA editing. 

Similar to the above, genomic DNA and cDNA for the nmiR-1273 was sequenced for 

discrepancies.  

 

Figure 5.8: Alignment of gDNA and cDNA for the nmiR-1273 locus. No RNA editing 

can be said to have occurred as there is no sequence discrepancy. 

Both Table.5.3 and Fig. 5.8 demonstrate that in the cell no RNA editing takes place on these 

hairpins. There exists the possibility that editing of these hairpins is regulated and therefore 

an in vitro experiment was performed to see if the hairpin is a satisfactory substrate. 

5.4.3 Rs1811399 hairpin is not an in vitro candidate for RNA editing. 

RNA editing occurs on hairpin substrates (Tian et al, 2011). In order to see if the rs1811399 

hairpins (A and C alleles) are adequate substrates RNA probes will be produced using T7 

polymerase. These RNA molecules were then incubated with protein extract and reverse 

transcribed. The precursor was then amplified using PCR and sequenced.  
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Figure 5.9: A RNA molecule of the rs1811399 hairpin was produced with the C variant. 

After incubation with cell extract as previously described, RNA was reverse transcribed 

and sequenced. Comparison with reference genome in bottom panel highlights 

rs1811399 variant locus and no change with regards to any potential RNA editing. 
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Figure 5.10: A RNA molecule of the rs1811399 hairpin was produced with the A 

variant. After incubation with cell extract as previously described RNA was reverse 

transcribed and sequenced. Comparison with reference genome in bottom panel 

highlights rs1811399 variant locus and no change with regards to any potential RNA 

editing. 

As Figures 5.9 and 5.10 demonstrate, none of the hairpins is an adequate substrate for RNA 

editing. It also demonstrates that the RNA editing locus within intron 1 of NPAS2 does not 

extend this far upstream.  
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5.4.4 Novel miR1273 hairpin is not an in vitro candidate for RNA editing. 

In order to see if the nmiR-1273 is an adequate substrate, RNA probes will be produced using 

T7 polymerase. This RNA molecule will then be incubated with protein extract and reverse 

transcribed. The precursor will then be amplified using PCR and sequenced. 

 

Figure 5.11: Sequence gained after in vitro RNA editing experiment. Bottom panel 

demonstrates alignment between sample (top row) and reference genotype (bottom 

row). 

Figure 5.11 demonstrates that nmiR-1273 is not a candidate substrate for RNA editing.  
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6. Discussion 

6.1 Summary of main findings 

In summary, this PhD has established the possibility that rs1811399 SNP may influence the 

rate of maturation of a previously unknown miRNA gene (Fig. 5.5) thus leading to aberrant 

regulation of downstream genes, thus potentially contributing to a disease phenotype.  

This work has further identified novel miRNA genes within intron 1 of NPAS2 including one 

which shares sequence homology with an established miRNA family (miR-1273). We have 

also identified both miRNA species are expressed independently of the host gene and have 

tentatively identified the promoter region responsible for driving its expression. 

6.2 Rs1811399 has been linked with the autism phenotype. 

Nicholas et al (2007) conducted a screen of circadian clock genes and demonstrated that 

rs1811399 is associated with autism at a confidence level of p=0.018. As the frequency of CC 

homozygous individual across the globe is on average around 9% (Fig. 5.1), it is not 

immediately apparent that it would have a deleterious impact on health. Given the higher 

frequency of the A allele in autistic children (Nicholas et al., 2007), CC homozygous 

individuals may actually benefit from the ancestral allele which reduces the maturation of the 

rs1811399 mircoRNA. One needs to consider however that phenotypes such as autism are 

inherently complex and any impact a single SNP could have in regards to causing it needs to 

be vigorously analysed, especially one which happens to be located within an intron. 

One factor which has become apparent since the advent of large scale sequencing is the 

linkages between SNPs, for example rs2954041 and rs3924999 located in the NRG1 gene 

(Yang et al, 2003). This should be borne in mind, for it is possible that another SNP that it is 
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in linkage with rs1811399 that might give rise to a phenotype. An attempt at disproving this 

linkage was made by Nicholas et al (2007) via the repeated sequencing of the whole NPAS2 

gene for each positive sample. However, since the release of this paper, a mass of sequencing 

data has been made available increasing the number of SNPs known to be in linkage with 

rs1811399. Rs1811399 is now known to be in linkage with at least 20 variant SNPs of which 

5 (rs12472319, rs12472321, rs13011414, rs4081946 and rs6750976) are associated with 

regulatory regions. It is currently unknown if any of these SNP impart a functional deficit, 

however, in silico analysis indicates any impact would be minimal to non-existent (Table 

5.2). None of the linked SNPs were picked up upon in the initial genome screen carried out 

by Nicholas et al (2007) and none currently have an attributed phenotype.   

It is possible that the rs1811399 SNP may contribute to increased risk of developing autism 

in a certain subset of population due to its location within a miRNA precursor. What was not 

clear from the initial study, as it was beyond its scope, was the other analysed mutations that 

were present across the genome with which the SNP might interact. The SNP itself cannot be 

fully responsible for causing a phenotype as the variant CC homozygous genotype can be 

found in up to 21% of certain populations (1000 Genomes Mexican ancestry from Los 

Angeles), thus if this SNP were responsible for causing a certain phenotype of autism one 

would expect 21% of the Mexican population in Los Angeles to have a form of autism. As 

this is not the case and because the A allele is more frequently found in autistic children 

(Nicholas et al., 2007), CC homozygous individuals may be protected by having a reduced 

maturation rate of the rs11399 microRNA.` This statement is supported by twin studies 

quoted above (Muhle, Trentacoste & Rapin, 2004), which demonstrate monozygotic twins 

have a concordance rate of only 60%. This implies a conjunction between genetic mutation 

and environmental factors in the aetiology of autism. 
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The remainder of this thesis will attempt to elucidate the method by which rs1811399 could 

contribute to a phenotype. 

6.3 Rs1811399 A>C does not influence regulatory region. 

There are several established mechanisms by which a SNP could induce aberrant protein 

expression which could potential lead to a phenotype.  

As established in the introduction, RNA editing plays a pivotal role in tissue specific 

expression of several genes. It was not unreasonable to assess a role for rs1811399 in such a 

pathway. This hypothesis was given further potential impetus by the presence of a confirmed 

RNA editing site at 10 separate locations within the NPAS2 gene, all of which are in intron 1 

and are located within an area associated with the transcription of exon 2 (Kim et al, 2004). 

To ascertain the answer, cDNA and gDNA were sequenced at the locus for several tissue 

types and none demonstrated any variance at the SNP locus (Table 5.3). This was further 

confirmed with an in vitro editing assay which, suggested that the RNA hairpin encoded by 

the locus might not be a suitable substrate for RNA editing (Fig.5.10). This finding suggests 

that whilst NPAS2 might be regulated by RNA editing there does not appear to be a role for 

rs1811399 within this mechanism.  

Neither does it seem that the SNP has a role in interfering with transcription factor binding. 

Were the SNP to influence binding (either in a positive or negative fashion) it would potential 

lead to an explanation of the association between rs1811399 and the autism phenotype as 

described by Nicholas et al (2007). Albers et al (2012) demonstrated that within the RBM8A 

gene, a SNP can dramatically influence the expression of the mature gene within platelets 

resulting in thrombocytopenia with absent radius (TAR syndrome). As we were not in 

possession of a homozygous CC cell line, contrary to efforts to purchase one through AGRE, 

we resorted to an in vitro assay to measure binding affinity of the locus to transcription 
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factors. An in silico study carried out in preparation for this experiment did not reveal any 

active transcription factor binding regions in the region of rs1811399 so anticipation that this 

was the mechanism by which the SNP can contribute to a phenotype was low. Indeed 

experimental evidence demonstrated that the SNP does not seem to influence protein binding 

(Fig4.23).  

The only regulatory method that went untested was CpG island methylation. This was 

attempted in a previous project by B.Nicholas (unpublished) and demonstrated that the region 

was not the focus of a methylation event.  

Taken together these findings exclude the possibility of rs1811399; as a target for RNA 

editing, is in a transcription factor binding locus and is in a CpG island. These would suggest 

that the region around the SNP is not directly involved with expression of downstream exons 

and as such a different mechanism must be established as to why a phenotype is associated 

with the SNP. 

6.4 A putative miRNA cluster in the first intron of NPAS2. 

NPAS2 is a well characterised transcription factor which regulates the expression of genes in 

a circadian manner via its affinity for binding to E-box sequences. A hitherto unknown 

mechanism by which NPAS2 might regulate gene expression has been investigated in this 

thesis: intron 1 of NPAS2 contains a putative miRNA cluster.  

NPAS2 is an ideal candidate for hosting miRNA genes in that it matches the generalised 

description of an archetypal miRNA host gene: it contains a large intron which acts as a 

repository for the miRNA (Zhou & Lin, 2006), and is a large gene of 176.7kb. Golan et al, 

2010 noted that the average host gene is 177kb, Hinske et al (2009) elucidates further by 

stipulating that the majority of intronic miRNA genes are located within 5’ introns.  
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The first miRNA precursor within NPAS2 was tentatively identified by Nicholas et al (2008) 

during an investigation into the link between rs1811399 and the autism phenotype. In silico 

studies revealed that the SNP was located within the midst of a hairpin loop secondary 

structure, which was predicted to be suitable for DROSHA processing. The same author 

(unpublished) was also able to identify a homologue of the miR-1273 family upstream of the 

rs1811399 locus. Experimental evidence of the existence of these two miRNA, miR-1273h 

and miR-6275 according to naming convention, has been suggested within this body of work.  

Notably a third miRNA has been described in this thesis which originates from the same 

precursor as the new miR-6725. This miRNA, again following precedent, will be known as 

miR-6725-3p whilst the original will be known as miR-6725-5p.  

The sequences for each miRNA are (seed highlighted):  

miR1273h: AGGCAUGAGAAUCGCCUGAACC 

miR6725-5p: CAGGUCUGGAGGUCAGGGCAUG 

miR6725-3p: CAGUCACUGCCCAGAGCUUCCC 

Further in silico studies have identified several other potential miRNA precursors. The 

precursors have been experimentally validated, however the mature forms proved 

intransigent.  This would suggest either a form of post-transcriptional repression of certain 

miRNA genes within the cluster or that the larger hairpin sequences that can be cloned are 

elements of the larger cluster transcript and are not further processed. The fact that these 

structures form hairpin structures but do not encode for mature forms would stipulate that 

either these were miRNA genes which have lost their functions or might someday become 

functional miRNA genes through a gain of function mutation. This phenomenon may even be 

occurring within the hairpin located at co-ordinates >chr2: 101,479,347-101,479,450. Within 
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this region exists two SNPs, one of which (rs137918055 G>A) causes the hairpin structure to 

attain a standard hairpin configuration. The incidence of this SNP within populations, as 

scanned by the 1000genomes project, is low (A allele only accounts for 0.5% of all alleles 

within the Chinese population with the A|G genotype accounting for 1% and G|G 99%) 

which implies either a negative selection pressure upon the locus or that it is a de novo 

mutation which arose within the Chinese population. 

A search of EST libraries and other cDNA datasets identifies EST BF761854 with the region 

coding for our novel miR1273 variant. Interestingly a second, downstream (chr2: 

101,477,169-101,477,511) EST T59368 also contains regions of strong homology with the 

miR1273 family. This second EST is found on the junction of two repeating elements: an Alu 

repeat and a L1MC4 repeat. These junctions between two repeating elements are an 

established “breeding ground” for miRNA and are prime drivers in miRNA evolution 

(Borchert et al, 2011).  A consortium led by CSHL has performed a deep sequencing of the 

small RNA transcriptome and have identified at chr2:101478987-101479018 a region of 

small RNA that was expressed within a breast carcinoma cell line. This region is contiguous 

with the 5’ arm mature miRNA of the rs1811399 locus.   

 Thus this could give rise to a miRNA cluster of at least 4 mature miRNA, two of which share 

the same precursor and two others of distinct but related precursors.  

6.5 Evolution of a primate specific miRNA cluster within the NPAS2 gene. 

The reason for why a cluster should have integrated or evolved within the NPAS2 gene is 

difficult to answer. Our initial assumption was that either the cluster was expressed within a 

circadian fashion with its host gene or that it required the same spatial expression pattern as 

exhibited by NPAS2. These two hypotheses were based on the co-expression of miRNA 

genes and their host genes (Baskerville & Bartel, 2005). However, experimental evidence 
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disclosed that two of the precursor molecules and the three detectable mature miRNA genes 

did not share a similar expression pattern (see Figure 4.16).  

The fact that our information demonstrates the arising of regions of high homology within 

intron 1 of NPAS2 within higher primates indicate that the region is relatively young, having 

arisen after the split of old world monkeys from non-human apes at around 25 million years 

ago.  The mechanisms by which such regions arise can include genome duplication, retro-

transposon activity or chromosomal translocation to name but three.  

Upon closer examination of the sequence and gene structure of the chromosomes, it becomes 

apparent that NPAS2, within primates, is within the same genetic context i.e. regions of 

synteny with human chromosome 2. The close evolutionary history of the primate 

chromosomes is suggested by the fact that the homology search for the mouse homologous 

regions returns no result. An intriguing fact to note is that the human chromosome 2 is the 

fusion of two primate chromosomes: 2A and 2B (Ventura et al, 2012). This is further evident 

by regions of homology within the chromosome (approximately chr2: 114360201-

114361000) to known telomere regions.  

Whilst the events on a karyotypic level might have been large scale with the regards to the 

rearrangement, the sequence within the locus of the NPAS2 gene appear to have been 

constant. Across human, gorilla and chimp the NPAS2 locus consists of 20 coding exons and 

21 introns, each of approximately similar length. Downstream of the NPAS2 gene in each 

case is a region on the reverse strand encoding for TBC1D8. Within humans and gorilla 

genomes RPL31, a ribonucleoprotein, is also annotated. The corresponding sequence 

however is also present within chimp but no gene has been annotated to the location within 

the Ensembl or UCSC databases.   
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Within intron 1 of NPAS2, the proposed miRNA cluster, however much has seemingly 

changed from when gorilla branched from the Pan-Homo genus. The novel miR-1273 locus 

is completely conserved across human and chimp, within gorilla however exists a SNP 

(chr2a:  98295758 A>G) which does not seem to interfere with folding of the pre-cursor 

miRNA. It does however influence the terminal loop, rendering it smaller than in the human 

gene. Interpreting this in light of Tsutsumi et al (2011) which states that terminal loops 

should contain at least 7 unbound nucleotides to maximise cleavage by Dicer efficiency it 

would appear that expression of gorilla novel miR1273 would not be as efficient as human or 

chimp novel miR1273. 

 Chimpanzees are in, according to Ensembl, possession of the mutant rs1811399 C allele; 

however I found a chimp cell line to be heterozygous (Section 2.1.1.j). This is reflected by 

the fact that in the EB-176J cell line, the mature form of the rs1811399 miRNA is 

identifiable.  Gorilla also contain the rs1811399C allele, however they possess a second 

mutation within the hairpin (chr2a: 98299086) a G is substituted for an A. This has the 

intriguing property of, in the case of homozygous rs1811399C, reinstating the correct hairpin 

structure. Neither of these point mutations impacts upon the sequences of the mature miRNA. 

It would seem therefore that the cluster had arisen in a functional form by the time the 

hominine genus had arisen as it is present in both chimp and gorilla which separated 10 

million years ago. Since this split, gorillas have accrued a SNP in both novel miR1273 and 

the rs1811399 miRNA gene with the former potentially reducing expression level and the 

later restoring the canonical hairpin. This would imply that the cluster is part of the evolution 

of the hominids and play a role in regulatory pathways essential for higher primates. 

 



175 
 

6.6 Expression of the NPAS2 intron 1 miRNA cluster is not dependent on 

host gene expression. 

In the beginning it was assumed that miRNA genes which were located within the introns of 

protein coding genes were located so to make use of the protein coding gene’s promoter 

region. Whilst this is indeed the case in certain examples it is not true for every miRNA.  

Located as they are within the intron of a circadian clock gene one would assume that this 

would be the case to make use of the rhythmicity of the host gene’s expression. The author 

undertook to ascertain whether a link was present by synchronising the circadian cycle of 

cells growing in culture and analysing the expression profile of both NPAS2 and the miRNA 

genes. Whilst quantitative PCR was inconclusive, probably due to the short nature of the 

target transcript with regards to the miRNA, it was apparent utilising standard PCR to gain a 

qualitative answer as to the link between expression of host and miRNA.  

Referring back to Figure 4.16 we have demonstrated that there is no requirement for 

expression of host gene mRNA for there to be expression of the miRNA cluster. This 

requirement was assessed utilising primers specific for several isoforms of NPAS2 but no 

overall link was detected. To cite an example, in asynchronous cells very little NPAS2 

expression was detectable whilst levels of miRNA precursor were consistent (Fig. 4.16). The 

next hypothesis to test was whether the precursor was consistently converted into mature 

form of miRNA or whether some form of post-transcriptional regulation was being inflicted. 

This does not seem to be the case as the mature form was identified from all stages of the 

circadian cycle and under various genotoxic conditions. A phenomenon of note; when NPAS2 

was induced via serum shock or genotoxic stress the level of expression of the precursor and 

mature forms did not alter. This was further proof of the independent nature of transcription 

of this cluster. 
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Consulting Monteys et al (2010) it was possible to begin an in silico examinations of 

upstream regions from the miRNA cluster to identify the promoter region. Utilising the 

UCSC genome browser it was possible to stipulate the conditions required for a putative 

transcription start region and by looking for histone methylation sites, DNase activity region, 

PolII binding sites and any other conserved transcription factor binding sites it was possible 

to identify a candidate region. Within this region, there was no CpG island detected by the 

ENCODE project. Monteys et al (2010) stipulate that this is the case in ~72% of all 

independently transcribed miRNA. Within the same region however existed a recognised 

PolII binding site (chr2:101474860-101474890 using hg19) and three transcription factor 

binding sites as described by the ENCODE project (these factors being GR at 

chr2:101473293-101473562, c-Fos at chr2:101474417-101474760 and GATA-2 at 

chr2:101474423-101474802 with all three coordinates using the hg19 system). Once 

identified it was possible to clone the region downstream of this promoter from a cDNA pool 

whereas the same was not possible for the area upstream of the predicted region. An 

assessment was undertaken of the putative transcription site by cloning it into a E.coli vector 

with the genomic sequence of miR-122, a miRNA with a strictly hepatic expression pattern, 

which allowed for expression of the miR within HeLa cells. Thus the promoter is clearly 

capable of driving expression of miRNA in vivo.  

6.7 Rs1811399 A>C Influences maturation of novel miRNA. 

In silico predictions have implied that a point mutation at rs1811399; C replacing A should 

distort the predicted secondary structure of a novel miRNA species. Interestingly whilst the 

initial in silico experimentation would seem to imply the mutation imbues an all or nothing 

type loss of function on the miRNA gene, the experimental work undertaken by the author 

(Figure 5.5) implies that even in the presence of the deleterious SNP some limited maturation 
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occurs. This finding is in keeping with other published works namely Harnprasopwat et al 

(2010) and Duan, Pak and Jin (2007) who discovered a SNP within pre-miR126 and pre-

miR125, respectively, that influenced maturation rates of the miRNA.  rs12976445 in pre-

miR-125 for example reduces the expression of the mature form by 85%(Lehman et al, 

2013). 

The proposed model by which this mutation influences miRNA biogenesis is as follows: 

 

 

 

 

 

 

 

 

 

 

 

>rs1811399A 

TGGTCAGGTCTGGAGGTCAGGGCATGGTGATACAGCGGCTGCCTGACAGTCACT

GCCCAGAGCTTCCCTTACC 

A allele C allele 
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>rs1811399C  

TGGTCAGGTCTGGAGGTCAGGGCATGGTGATCCAGCGGCTGCCTGACAGTCACT

GCCCAGAGCTTCCCTTACC 
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Figure 6.1: Three panels depicting influence of rs1811399 SNP on RNA secondary 

structure. (A) Demonstrates the average calculated structure of the rs1811399 locus’ 

hairpin and the influence the SNP can have on this average structure. (B) and (C) each 

describe the total number of calculated structures for the locus with each SNP, The 

algorithm utilised by the RNAShapes (Steffen et al, 2006) also allocates a probability 

that any hairpin can be found within a specific conformational configuration at any 

point in time. 

Figure 6.1 A demonstrates the average predicted structure for the given nucleotide sequences. 

To arrive at this structure the total Gibbs free energy of the nucleotide sequence is deduced, 

this free energy being a physical measure of the amount of “useable” energy available within 

the sequence which could be used to “do work”. When the algorithm has arrived at a number 

for the free energy given to the nucleotide sequence it then attempts to map a structure which 

amounts to the minimum possible free energy in order to satisfy the first and second laws of 

thermodynamics, briefly: the energy of the universe is always constant whilst the entropy 

(measure of order) is always increasing. The entropy of a system can be described as a 

measure of how close any system is to equilibrium (in thermodynamics equilibrium is a state 

at which no further change can occur) thus the lower the value of free energy within a given 

system is reflective of how likely the structure is to form. Using this knowledge we can see 

that the free energy for the A hairpin is -28.59 kcal/mol whilst that of the C hairpin is -27.60 

kcal/mol. When compared with the free energy of the human let7a miRNA precursor of -

35.15 kcal/mol or miR-24 at -26.79 kcal/mol and finally miR-29a at -25.16 kcal/mol we can 

note with satisfaction that both our hairpins match the free energy spectrum as required for 

miRNA precursors. We can therefore conclude that whilst the substitution of cytosine for 

adenine does influence the total free energy of the structure it does not remove it from the 

range at which miRNA precursors can spontaneously fold.  
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Steffen et al (2006) have devised a computer model which calculates all possible structural 

conformations for a given sequence and based upon their relative free energies can calculate 

the probability that you can find each sequence within a given secondary structure. Thus we 

can see with the A allele hairpin the greatest probability (~90%) is that of a hairpin structure 

(Fig.6.1B). The remaining 10% can be described as varied forked hairpin structures. With 

that of the C allele the picture is reversed. Circa 82% of all the structures can be described as 

forked hairpins with only ~17% being a plain hairpin (Fig.6.1C). Of interest is also the fact 

that the C allele hairpin has a greater number of alternate folding forms than that of the A 

allele. These facts are of significance when we consider the next step of the model. 

As established in the introduction, the secondary structure of a miRNA precursor is essential 

for its processing by both DROSHA and DICER. As the mutation is within the terminal loop 

region it is hypothesised that rs1811399C influences DICER binding and recognition which 

would explain the incomplete processing of the rs1811399 precursor in the chicken DT40 

cells (Fig.5.5). 

Much work has been undertaken to understand the efficacy of the DICER enzyme. Tsutsumi 

et al (2011) revealed that the terminal loop region of a miRNA precursor is essential for 

recognition by DICER and that this region is recognised and selectively bound via DICER’s 

helicase domain. Further binding is achieved via the PAZ domain which selects the 5’ end of 

the pre-miRNA for processing before it is cut via the RNAse III domain. Tsutsumi et al 

(2011) stipulate that whilst the shape of the terminal loop is not strictly essential for correct 

recognition by DICER, the enzyme does have a structural requirement of having to have ~7nt 

length of ssRNA within the terminal loop. Thus we may conclude that as the rs1811399 C 

mutation limits the amount of ssRNA within the terminal loop region of the hairpin that 

DICER activity in vivo is reduced, thus limiting the amount of final product that can be 

generated. 
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The impact of a reduced amount of mature form will obviously cause aberrant regulation of 

target genes. As we have two mature miRNA encoded from the single hairpin that is affected 

by rs1811399 we would do well to consider Table 2, 3 and 4 which identify these miRNA as 

having important roles in neural development, cellular signalling and even the miRNA 

processing pathway. Whilst each of these pathways is under much regulation and the 

influence of one deranged miRNA precursor is slight, it becomes apparent that as the 

networks become more complex additional errors can accumulate. The end stage of this 

accumulation would be a disease phenotype. Such multifactorial causes are common in 

neurodevelopmental disorders (Fanous et al 2012). 

6.8 Conclusion 

As a body of work this PhD has conclusively identified three putative novel miRNA within 

intron 1 of the NPAS2 gene. The project has also identified several hairpin structures, which 

may have been ancient miRNA or are miRNA within the process of evolving. The method of 

expressing this miRNA cluster has also been tested. Results suggest that miRNA within the 

region might be controlled by an intronic promoter region which allows for expression of the 

miRNA without requirement for host gene expression.  

This PhD has also examined the role rs1811399C within the autism phenotype. The 

hypothesis stated that the C allele would prevent expression of the mature form. Evidence 

suggests that the C allele might alter the rate at which mature form is produced. This would 

have downstream implications with gene regulation, an established phenomenon within 

autism.   
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Appendix 1 

Complete target list of NPAS2 intron 1 miRNA cluster. 

The author’s own efforts were correlated with the Target Scan web-software (Lewis, Burge and Bartel 

2005). Below are the tables containing all the targets for the miRNA along with the number of 

conserved sites within each target’s 3’ UTR. 

Rs1811399 5’ arm miRNA 

    Conserved sites 

Target gene Gene name total 8nt 7nt-

m8 

7nt-

1A 

HIC2 hypermethylated in cancer 2 2 0 2 0 

METAP1 methionyl aminopeptidase 1 2 0 2 0 

MLL myeloid/lymphoid or mixed-lineage leukemia 

(trithorax homolog, Drosophila) 

2 0 1 1 

SENP5 SUMO1/sentrin specific peptidase 5 2 2 0 0 

SOX11 SRY (sex determining region Y)-box 11 2 0 1 1 

ZFHX4 zinc finger homeobox 4 2 0 1 1 

ACTR1B ARP1 actin-related protein 1 homolog B, 

centractin beta (yeast) 

1 1 0 0 

ADAMTSL3 ADAMTS-like 3 1 0 0 1 

ADNP activity-dependent neuroprotector homeobox 1 0 0 1 

ARC activity-regulated cytoskeleton-associated protein 1 0 1 0 

ARID2 AT rich interactive domain 2 (ARID, RFX-like) 1 0 0 1 

ARL6IP5 ADP-ribosylation-like factor 6 interacting protein 

5 

1 1 0 0 

ATP13A3 ATPase type 13A3 1 1 0 0 

ATP1A2 ATPase, Na+/K+ transporting, alpha 2 (+) 

polypeptide 

1 0 0 1 
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ATXN7L3 ataxin 7-like 3 1 0 1 0 

B3GAT1 beta-1,3-glucuronyltransferase 1 

(glucuronosyltransferase P) 

1 0 1 0 

BBS4 Bardet-Biedl syndrome 4 1 0 1 0 

BCL2 B-cell CLL/lymphoma 2 1 0 1 0 

BCL2L2 BCL2-like 2 1 0 1 0 

BMF Bcl2 modifying factor 1 0 1 0 

BTNL3 butyrophilin-like 3 1 0 1 0 

C11orf47 chromosome 11 open reading frame 47 1 0 1 0 

C11orf58 chromosome 11 open reading frame 58 1 0 1 0 

C15orf27 chromosome 15 open reading frame 27 1 0 1 0 

CALN1 calneuron 1 1 0 1 0 

CASC3 cancer susceptibility candidate 3 1 0 1 0 

CDCA7L cell division cycle associated 7-like 1 0 1 0 

COL4A6 collagen, type IV, alpha 6 1 1 0 0 

CPEB4 cytoplasmic polyadenylation element binding 

protein 4 

1 0 1 0 

CREB5 cAMP responsive element binding protein 5 1 0 1 0 

CRKL v-crk sarcoma virus CT10 oncogene homolog 

(avian)-like 

1 1 0 0 

DAB1 disabled homolog 1 (Drosophila) 1 1 0 0 

DDIT4 DNA-damage-inducible transcript 4 1 0 0 1 

DNAJC6 DnaJ (Hsp40) homolog, subfamily C, member 6 1 0 1 0 

EIF2C2 eukaryotic translation initiation factor 2C, 2 1 0 1 0 

EIF4EBP2 eukaryotic translation initiation factor 4E binding 

protein 2 

1 1 0 0 

ENPEP glutamyl aminopeptidase (aminopeptidase A) 1 1 0 0 

FAM133A family with sequence similarity 133, member A 1 0 1 0 

FAT2 FAT tumor suppressor homolog 2 (Drosophila) 1 0 1 0 
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FBXW7 F-box and WD repeat domain containing 7 1 0 0 1 

FGF7 fibroblast growth factor 7 (keratinocyte growth 

factor) 

1 1 0 0 

FLRT2 fibronectin leucine rich transmembrane protein 2 1 0 0 1 

FOXD2 forkhead box D2 1 0 1 0 

FOXN3 forkhead box N3 1 1 0 0 

FOXO3 forkhead box O3 1 0 0 1 

FRMD4B FERM domain containing 4B 1 0 0 1 

GAL3ST3 galactose-3-O-sulfotransferase 3 1 1 0 0 

GAS2L1 growth arrest-specific 2 like 1 1 0 1 0 

GATAD2A GATA zinc finger domain containing 2A 1 0 0 1 

GCC2 GRIP and coiled-coil domain containing 2 1 1 0 0 

GDPD1 glycerophosphodiester phosphodiesterase domain 

containing 1 

1 0 0 1 

GLIS1 GLIS family zinc finger 1 1 0 1 0 

GRIK2 glutamate receptor, ionotropic, kainate 2 1 0 1 0 

GRIN2D glutamate receptor, ionotropic, N-methyl D-

aspartate 2D 

1 0 1 0 

GRLF1 glucocorticoid receptor DNA binding factor 1 1 0 1 0 

H3F3B H3 histone, family 3B (H3.3B) 1 0 1 0 

HMG2L1 high-mobility group protein 2-like 1 1 0 1 0 

HS2ST1 heparan sulfate 2-O-sulfotransferase 1 1 1 0 0 

IDS iduronate 2-sulfatase (Hunter syndrome) 1 0 1 0 

IGSF9 immunoglobulin superfamily, member 9 1 1 0 0 

INSIG1 insulin induced gene 1 1 1 0 0 

IPO9 importin 9 1 1 0 0 

ITGA5 integrin, alpha 5 (fibronectin receptor, alpha 

polypeptide) 

1 0 1 0 

JARID1C jumonji, AT rich interactive domain 1C 1 0 1 0 
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KCMF1 potassium channel modulatory factor 1 1 0 0 1 

KLF3 Kruppel-like factor 3 (basic) 1 1 0 0 

KPNA6 karyopherin alpha 6 (importin alpha 7) 1 0 1 0 

LPHN1 latrophilin 1 1 0 1 0 

LRRC59 leucine rich repeat containing 59 1 1 0 0 

LRRC7 leucine rich repeat containing 7 1 1 0 0 

MECP2 methyl CpG binding protein 2 (Rett syndrome) 1 0 0 1 

MEST mesoderm specific transcript homolog (mouse) 1 0 0 1 

MMP16 matrix metallopeptidase 16 (membrane-inserted) 1 0 1 0 

MRFAP1 Mof4 family associated protein 1 1 1 0 0 

NCAM1 neural cell adhesion molecule 1 1 0 1 0 

NFASC neurofascin homolog (chicken) 1 1 0 0 

NFYB nuclear transcription factor Y, beta 1 0 1 0 

NHLH1 nescient helix loop helix 1 1 0 1 0 

NRIP3 nuclear receptor interacting protein 3 1 0 1 0 

ONECUT2 one cut homeobox 2 1 0 1 0 

PCP4L1 Purkinje cell protein 4 like 1 1 1 0 0 

PDE4D phosphodiesterase 4D, cAMP-specific 

(phosphodiesterase E3 dunce homolog, 

Drosophila) 

1 0 1 0 

PHC3 polyhomeotic homolog 3 (Drosophila) 1 1 0 0 

PHF15 PHD finger protein 15 1 0 0 1 

PLXNA4 plexin A4 1 0 1 0 

POU2F2 POU class 2 homeobox 2 1 0 1 0 

PRELID2 PRELI domain containing 2 1 1 0 0 

PRKAG1 protein kinase, AMP-activated, gamma 1 non-

catalytic subunit 

1 0 1 0 
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PSMF1 proteasome (prosome, macropain) inhibitor 

subunit 1 (PI31) 

1 0 1 0 

PTAFR platelet-activating factor receptor 1 0 1 0 

PTPN11 protein tyrosine phosphatase, non-receptor type 

11 (Noonan syndrome 1) 

1 0 0 1 

PURB purine-rich element binding protein B 1 0 0 1 

PVRL2 poliovirus receptor-related 2 (herpesvirus entry 

mediator B) 

1 0 1 0 

RAB1A RAB1A, member RAS oncogene family 1 0 0 1 

RC3H1 ring finger and CCCH-type zinc finger domains 1 1 0 1 0 

RNASEN ribonuclease type III, nuclear 1 0 0 1 

RPS6KA2 ribosomal protein S6 kinase, 90kDa, polypeptide 

2 

1 0 1 0 

S1PR2 sphingosine-1-phosphate receptor 2 1 0 1 0 

SERTAD2 SERTA domain containing 2 1 0 1 0 

SLC22A17 solute carrier family 22, member 17 1 0 1 0 

SNAP29 synaptosomal-associated protein, 29kDa 1 1 0 0 

SNRPB small nuclear ribonucleoprotein polypeptides B 

and B1 

1 0 1 0 

SNX1 sorting nexin 1 1 0 0 1 

SP1 Sp1 transcription factor 1 0 1 0 

SRC v-src sarcoma (Schmidt-Ruppin A-2) viral 

oncogene homolog (avian) 

1 0 1 0 

SRPK2 SFRS protein kinase 2 1 0 1 0 

SSR1 signal sequence receptor, alpha (translocon-

associated protein alpha) 

1 0 0 1 

SUPT7L suppressor of Ty 7 (S. cerevisiae)-like 1 1 0 0 

TCF4 transcription factor 4 1 0 0 1 

TEF thyrotrophic embryonic factor 1 0 1 0 

TGOLN2 trans-golgi network protein 2 1 1 0 0 
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THAP6 THAP domain containing 6 1 0 0 1 

TNKS tankyrase, TRF1-interacting ankyrin-related 

ADP-ribose polymerase 

1 0 0 1 

TRPS1 trichorhinophalangeal syndrome I 1 0 0 1 

UBE2D3 ubiquitin-conjugating enzyme E2D 3 (UBC4/5 

homolog, yeast) 

1 0 1 0 

ZCCHC14 zinc finger, CCHC domain containing 14 1 0 1 0 

ZFAND5 zinc finger, AN1-type domain 5 1 0 1 0 

ZNF2 zinc finger protein 2 1 0 0 1 

ZNF706 zinc finger protein 706 1 0 1 0 

ZNF827 zinc finger protein 827 1 0 1 0 

ABCC5 ATP-binding cassette, sub-family C 

(CFTR/MRP), member 5 

1 0 0 1 

 

Rs1811399 3’ arm miRNA 

    Conserved sites 

Target gene Gene name total 8nt 7nt-

m8 

7nt-

1A 

ARMC8 armadillo repeat containing 8 2 1 1 0 

C6orf168 chromosome 6 open reading frame 168 2 1 0 1 

MTMR9 myotubularin related protein 9 2 0 2 0 

38412 membrane-associated ring finger (C3HC4) 5 1 0 1 0 

A2BP1 ataxin 2-binding protein 1 1 1 0 0 

ABHD2 abhydrolase domain containing 2 1 1 0 0 

ACSL4 acyl-CoA synthetase long-chain family member 4 1 0 1 0 

ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis 

factor, alpha, converting enzyme) 

1 0 1 0 

ADAR adenosine deaminase, RNA-specific 1 0 1 0 

ADCY6 adenylate cyclase 6 1 0 1 0 
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AFF4 AF4/FMR2 family, member 4 1 1 0 0 

AGPAT3 1-acylglycerol-3-phosphate O-acyltransferase 3 1 0 0 1 

ALOX12 arachidonate 12-lipoxygenase 1 0 0 1 

ANKRD28 ankyrin repeat domain 28 1 0 1 0 

ANKRD49 ankyrin repeat domain 49 1 0 1 0 

AP1G1 adaptor-related protein complex 1, gamma 1 subunit 1 1 0 0 

BAZ2A bromodomain adjacent to zinc finger domain, 2A 1 0 1 0 

BRPF3 bromodomain and PHD finger containing, 3 1 0 1 0 

BRWD1 bromodomain and WD repeat domain containing 1 1 0 0 1 

C15orf57 chromosome 15 open reading frame 57 1 0 1 0 

C18orf34 chromosome 18 open reading frame 34 1 0 1 0 

C1orf128 chromosome 1 open reading frame 128 1 0 0 1 

C6orf167 chromosome 6 open reading frame 167 1 0 1 0 

C7orf60 chromosome 7 open reading frame 60 1 0 1 0 

CALM1 calmodulin 1 (phosphorylase kinase, delta) 1 1 0 0 

CALM3 calmodulin 3 (phosphorylase kinase, delta) 1 1 0 0 

CCDC132 coiled-coil domain containing 132 1 0 0 1 

CCNE2 cyclin E2 1 0 0 1 

CDC2L6 cell division cycle 2-like 6 (CDK8-like) 1 1 0 0 

CDC42SE1 CDC42 small effector 1 1 1 0 0 

CECR2 cat eye syndrome chromosome region, candidate 2 1 1 0 0 

CFL1 cofilin 1 (non-muscle) 1 0 1 0 

CMIP c-Maf-inducing protein 1 0 1 0 

CNTN2 contactin 2 (axonal) 1 0 0 1 

COL7A1 collagen, type VII, alpha 1 (epidermolysis bullosa, 

dystrophic, dominant and recessive) 

1 0 1 0 

CREBZF CREB/ATF bZIP transcription factor 1 0 0 1 

CSNK1A1 casein kinase 1, alpha 1 1 1 0 0 
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CTNNB1 catenin (cadherin-associated protein), beta 1, 88kDa 1 0 1 0 

DAAM1 dishevelled associated activator of morphogenesis 1 1 1 0 0 

DCX doublecortex; lissencephaly, X-linked (doublecortin) 1 1 0 0 

DDIT3 DNA-damage-inducible transcript 3 1 0 1 0 

DDX3X DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-linked 1 0 1 0 

DDX3Y DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-linked 1 0 1 0 

DDX58 DEAD (Asp-Glu-Ala-Asp) box polypeptide 58 1 0 1 0 

DIP2B DIP2 disco-interacting protein 2 homolog B (Drosophila) 1 1 0 0 

DLL1 delta-like 1 (Drosophila) 1 0 0 1 

DPYSL2 dihydropyrimidinase-like 2 1 0 1 0 

EDA ectodysplasin A 1 0 1 0 

EGLN2 egl nine homolog 2 (C. elegans) 1 0 1 0 

EGR1 early growth response 1 1 0 1 0 

EID1 EP300 interacting inhibitor of differentiation 1 1 0 1 0 

EIF5A2 eukaryotic translation initiation factor 5A2 1 0 1 0 

EPB41 erythrocyte membrane protein band 4.1 (elliptocytosis 1, 

RH-linked) 

1 0 1 0 

EPC2 enhancer of polycomb homolog 2 (Drosophila) 1 0 1 0 

EPHA10 EPH receptor A10 1 0 1 0 

ESRRG estrogen-related receptor gamma 1 0 1 0 

ETV1 ets variant gene 1 1 0 1 0 

FAM152A family with sequence similarity 152, member A 1 0 1 0 

FAM168B family with sequence similarity 168, member B 1 0 1 0 

FAM38B family with sequence similarity 38, member B 1 0 1 0 

FBXL11 F-box and leucine-rich repeat protein 11 1 0 1 0 

FBXO41 F-box protein 41 1 1 0 0 

FGFBP3 fibroblast growth factor binding protein 3 1 1 0 0 

FLJ20309 hypothetical protein FLJ20309 1 0 1 0 
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FOXG1 forkhead box G1 1 0 1 0 

FOXP2 forkhead box P2 1 0 0 1 

FXR1 fragile X mental retardation, autosomal homolog 1 1 0 1 0 

GABBR2 gamma-aminobutyric acid (GABA) B receptor, 2 1 0 1 0 

GABPA GA binding protein transcription factor, alpha subunit 

60kDa 

1 0 0 1 

GABRE gamma-aminobutyric acid (GABA) A receptor, epsilon 1 0 1 0 

GALNT2 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-

acetylgalactosaminyltransferase 2 (GalNAc-T2) 

1 0 1 0 

GGNBP2 gametogenetin binding protein 2 1 0 1 0 

GIGYF2 GRB10 interacting GYF protein 2 1 0 1 0 

GMCL1 germ cell-less homolog 1 (Drosophila) 1 0 0 1 

GMFB glia maturation factor, beta 1 0 0 1 

GNAO1 guanine nucleotide binding protein (G protein), alpha 

activating activity polypeptide O 

1 0 1 0 

GPC4 glypican 4 1 0 1 0 

GTF2I general transcription factor II, i 1 0 1 0 

H3F3B H3 histone, family 3B (H3.3B) 1 0 1 0 

HCN3 hyperpolarization activated cyclic nucleotide-gated 

potassium channel 3 

1 0 1 0 

HES1 hairy and enhancer of split 1, (Drosophila) 1 0 1 0 

HES2 hairy and enhancer of split 2 (Drosophila) 1 0 1 0 

HES5 hairy and enhancer of split 5 (Drosophila) 1 0 1 0 

HMGCR 3-hydroxy-3-methylglutaryl-Coenzyme A reductase 1 0 1 0 

HNRNPA1 heterogeneous nuclear ribonucleoprotein A1 1 0 0 1 

HNRNPUL1 heterogeneous nuclear ribonucleoprotein U-like 1 1 1 0 0 

HOXD9 homeobox D9 1 0 1 0 

HRB HIV-1 Rev binding protein 1 0 1 0 

HSPC159 galectin-related protein 1 0 1 0 
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HTR3C 5-hydroxytryptamine (serotonin) receptor 3, family 

member C 

1 1 0 0 

IPO5 importin 5 1 0 1 0 

ITPR2 inositol 1,4,5-triphosphate receptor, type 2 1 0 0 1 

JHDM1D jumonji C domain containing histone demethylase 1 

homolog D (S. cerevisiae) 

1 0 1 0 

JPH1 junctophilin 1 1 0 0 1 

KCNC1 potassium voltage-gated channel, Shaw-related 

subfamily, member 1 

1 0 1 0 

KIAA0152 KIAA0152 1 0 1 0 

KIAA1045 KIAA1045 1 1 0 0 

KIAA2022 KIAA2022 1 0 1 0 

KIFAP3 kinesin-associated protein 3 1 1 0 0 

KLHL21 kelch-like 21 (Drosophila) 1 0 1 0 

LDLRAP1 low density lipoprotein receptor adaptor protein 1 1 0 1 0 

LEP leptin 1 0 1 0 

LMOD3 leiomodin 3 (fetal) 1 0 1 0 

LOC399947 similar to expressed sequence AI593442 1 1 0 0 

LOC402665 hCG1651476 1 0 1 0 

LOC440093 histone H3-like 1 0 1 0 

MAN1C1 mannosidase, alpha, class 1C, member 1 1 0 1 0 

MAP1B microtubule-associated protein 1B 1 0 1 0 

MAPK14 mitogen-activated protein kinase 14 1 0 1 0 

MAPT microtubule-associated protein tau 1 1 0 0 

MARCKS myristoylated alanine-rich protein kinase C substrate 1 0 0 1 

MBNL1 muscleblind-like (Drosophila) 1 0 1 0 

MCC mutated in colorectal cancers 1 0 0 1 

MED29 mediator complex subunit 29 1 0 1 0 

MNX1 motor neuron and pancreas homeobox 1 1 0 1 0 
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MON2 MON2 homolog (S. cerevisiae) 1 1 0 0 

MRPL42 mitochondrial ribosomal protein L42 1 0 1 0 

MYST3 MYST histone acetyltransferase (monocytic leukemia) 3 1 0 1 0 

MYT1L myelin transcription factor 1-like 1 0 0 1 

NAP1L1 nucleosome assembly protein 1-like 1 1 0 1 0 

NAV2 neuron navigator 2 1 0 1 0 

NCK1 NCK adaptor protein 1 1 0 1 0 

NCOA4 nuclear receptor coactivator 4 1 0 1 0 

NDST1 N-deacetylase/N-sulfotransferase (heparan 

glucosaminyl) 1 

1 0 1 0 

NEUROD2 neurogenic differentiation 2 1 0 1 0 

NOTUM notum pectinacetylesterase homolog (Drosophila) 1 0 1 0 

NR4A3 nuclear receptor subfamily 4, group A, member 3 1 0 1 0 

ORC4L origin recognition complex, subunit 4-like (yeast) 1 0 1 0 

OSBPL2 oxysterol binding protein-like 2 1 0 1 0 

PAPOLA poly(A) polymerase alpha 1 0 1 0 

PDCD7 programmed cell death 7 1 0 1 0 

PDK4 pyruvate dehydrogenase kinase, isozyme 4 1 0 0 1 

PGK1 phosphoglycerate kinase 1 1 1 0 0 

PHLPPL PH domain and leucine rich repeat protein phosphatase-

like 

1 0 1 0 

PNPO pyridoxamine 5'-phosphate oxidase 1 0 0 1 

PPP2R1B protein phosphatase 2 (formerly 2A), regulatory subunit 

A, beta isoform 

1 0 1 0 

PSMA2 proteasome (prosome, macropain) subunit, alpha type, 2 1 0 1 0 

RBBP5 retinoblastoma binding protein 5 1 0 1 0 

RBBP9 retinoblastoma binding protein 9 1 0 1 0 

RBM33 RNA binding motif protein 33 1 0 1 0 

RELN reelin 1 0 1 0 
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RNF141 ring finger protein 141 1 0 1 0 

RRM2 ribonucleotide reductase M2 polypeptide 1 1 0 0 

SCN1A sodium channel, voltage-gated, type I, alpha subunit 1 0 0 1 

SCN2A sodium channel, voltage-gated, type II, alpha subunit 1 0 0 1 

SDC4 syndecan 4 1 0 1 0 

SEMA4F sema domain, immunoglobulin domain (Ig), 

transmembrane domain (TM) and short cytoplasmic 

domain, (semaphorin) 4F 

1 1 0 0 

SGSM2 small G protein signaling modulator 2 1 0 1 0 

SLC12A5 solute carrier family 12, (potassium-chloride transporter) 

member 5 

1 0 1 0 

SLC22A3 solute carrier family 22 (extraneuronal monoamine 

transporter), member 3 

1 0 1 0 

SLC24A3 solute carrier family 24 (sodium/potassium/calcium 

exchanger), member 3 

1 0 1 0 

SLC27A4 solute carrier family 27 (fatty acid transporter), member 

4 

1 0 1 0 

SMAD4 SMAD family member 4 1 0 1 0 

SMAD5 SMAD family member 5 1 0 1 0 

SNCA synuclein, alpha (non A4 component of amyloid 

precursor) 

1 1 0 0 

SOCS5 suppressor of cytokine signaling 5 1 0 0 1 

SP7 Sp7 transcription factor 1 0 1 0 

SPEN spen homolog, transcriptional regulator (Drosophila) 1 0 1 0 

SPOPL speckle-type POZ protein-like 1 0 1 0 

STAG3L4 stromal antigen 3-like 4 1 1 0 0 

STX1A syntaxin 1A (brain) 1 0 1 0 

STXBP4 syntaxin binding protein 4 1 1 0 0 

STXBP5L syntaxin binding protein 5-like 1 0 0 1 

SUFU suppressor of fused homolog (Drosophila) 1 0 1 0 
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TCF4 transcription factor 4 1 1 0 0 

TMEM132B transmembrane protein 132B 1 0 1 0 

TMEM70 transmembrane protein 70 1 0 1 0 

TRAPPC3 trafficking protein particle complex 3 1 0 1 0 

TRIM9 tripartite motif-containing 9 1 0 1 0 

TSPYL5 TSPY-like 5 1 0 1 0 

UBR1 ubiquitin protein ligase E3 component n-recognin 1 1 0 1 0 

UNQ1887 signal peptide peptidase 3 1 0 1 0 

USP37 ubiquitin specific peptidase 37 1 0 1 0 

VGF VGF nerve growth factor inducible 1 1 0 0 

WDR45L WDR45-like 1 1 0 0 

WDR48 WD repeat domain 48 1 1 0 0 

WIBG within bgcn homolog (Drosophila) 1 1 0 0 

WTAP Wilms tumor 1 associated protein 1 0 1 0 

YOD1 YOD1 OTU deubiquinating enzyme 1 homolog (S. 

cerevisiae) 

1 0 1 0 

YPEL2 yippee-like 2 (Drosophila) 1 0 1 0 

ZBTB34 zinc finger and BTB domain containing 34 1 0 1 0 

ZCCHC4 zinc finger, CCHC domain containing 4 1 0 1 0 

ZDHHC20 zinc finger, DHHC-type containing 20 1 0 1 0 

ZMIZ1 zinc finger, MIZ-type containing 1 1 0 1 0 

ZNF618 zinc finger protein 618 1 0 1 0 

ZXDC ZXD family zinc finger C 1 0 1 0 

 

Novel miR-1273-1 miRNA  

Target gene Gene name Conserved sites 
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total 8nt 7nt-

m8 

7nt-

1A 

PTGER3 prostaglandin E receptor 3 (subtype EP3) 2 2 0 0 

USP47 ubiquitin specific peptidase 47 2 1 0 1 

ANKRD45 ankyrin repeat domain 45 1 1 0 0 

ANPEP alanyl (membrane) aminopeptidase 

(aminopeptidase N, aminopeptidase M, 

microsomal aminopeptidase, CD13, p150) 

1 1 0 0 

ARHGAP17 Rho GTPase activating protein 17 1 1 0 0 

ARID2 AT rich interactive domain 2 (ARID, RFX-like) 1 1 0 0 

ATP7A ATPase, Cu++ transporting, alpha polypeptide 

(Menkes syndrome) 

1 1 0 0 

ATXN7L3 ataxin 7-like 3 1 1 0 0 

BBS9 Bardet-Biedl syndrome 9 1 1 0 0 

BMI1 BMI1 polycomb ring finger oncogene 1 1 0 0 

C2orf71 chromosome 2 open reading frame 71 1 1 0 0 

C6orf89 chromosome 6 open reading frame 89 1 1 0 0 

CCBE1 collagen and calcium binding EGF domains 1 1 1 0 0 

CCDC117 coiled-coil domain containing 117 1 1 0 0 

CHP calcium binding protein P22 1 1 0 0 

CLDN12 claudin 12 1 1 0 0 
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CROP cisplatin resistance-associated overexpressed 

protein 

1 1 0 0 

DDX3X DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, X-

linked 

1 1 0 0 

EEA1 early endosome antigen 1 1 1 0 0 

EFNA4 ephrin-A4 1 1 0 0 

ELAVL3 ELAV (embryonic lethal, abnormal vision, 

Drosophila)-like 3 (Hu antigen C) 

1 1 0 0 

FAM126B family with sequence similarity 126, member B 1 1 0 0 

GABRB2 gamma-aminobutyric acid (GABA) A receptor, 

beta 2 

1 1 0 0 

GCS1 glucosidase I 1 1 0 0 

IPO9 importin 9 1 1 0 0 

KCMF1 potassium channel modulatory factor 1 1 1 0 0 

LDHD lactate dehydrogenase D 1 1 0 0 

MYO1D myosin ID 1 1 0 0 

NEURL neuralized homolog (Drosophila) 1 1 0 0 

ONECUT2 one cut homeobox 2 1 1 0 0 

OPRM1 opioid receptor, mu 1 1 1 0 0 

PAQR5 progestin and adipoQ receptor family member V 1 1 0 0 

PCNX pecanex homolog (Drosophila) 1 1 0 0 

PEG10 paternally expressed 10 1 1 0 0 

PRICKLE2 prickle homolog 2 (Drosophila) 1 1 0 0 

PRKCA protein kinase C, alpha 1 1 0 0 
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PSKH1 protein serine kinase H1 1 1 0 0 

PTCH1 patched homolog 1 (Drosophila) 1 1 0 0 

RNF130 ring finger protein 130 1 1 0 0 

RNF214 ring finger protein 214 1 1 0 0 

SELI selenoprotein I 1 1 0 0 

SH3GLB1 SH3-domain GRB2-like endophilin B1 1 1 0 0 

SOX4 SRY (sex determining region Y)-box 4 1 1 0 0 

SSX2IP synovial sarcoma, X breakpoint 2 interacting 

protein 

1 1 0 0 

STC2 stanniocalcin 2 1 1 0 0 

SUV420H1 suppressor of variegation 4-20 homolog 1 

(Drosophila) 

1 1 0 0 

TIAM1 T-cell lymphoma invasion and metastasis 1 1 1 0 0 

TMEM198 transmembrane protein 198 1 1 0 0 

TMEM87A transmembrane protein 87A 1 1 0 0 

TRPM3 transient receptor potential cation channel, 

subfamily M, member 3 

1 1 0 0 

UBE3A ubiquitin protein ligase E3A (human papilloma 

virus E6-associated protein, Angelman syndrome) 

1 1 0 0 

VAMP5 vesicle-associated membrane protein 5 

(myobrevin) 

1 1 0 0 

VEZF1 vascular endothelial zinc finger 1 1 1 0 0 

WAPAL wings apart-like homolog (Drosophila) 1 1 0 0 

WIZ widely interspaced zinc finger motifs 1 1 0 0 
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YTHDF3 YTH domain family, member 3 1 1 0 0 

ZBTB9 zinc finger and BTB domain containing 9 1 1 0 0 

ZNF664 zinc finger protein 664 1 1 0 0 

ZNF831 zinc finger protein 831 1 1 0 0 

ATRNL1 attractin-like 1 2 0 0 2 

ARHGAP24 Rho GTPase activating protein 24 1 0 1 0 

ARHGEF2 rho/rac guanine nucleotide exchange factor (GEF) 

2 

1 0 1 0 

C1orf149 chromosome 1 open reading frame 149 1 0 1 0 

CACNB1 calcium channel, voltage-dependent, beta 1 subunit 1 0 1 0 

CCDC6 coiled-coil domain containing 6 1 0 1 0 

CDR2L cerebellar degeneration-related protein 2-like 1 0 1 0 

CELSR2 cadherin, EGF LAG seven-pass G-type receptor 2 

(flamingo homolog, Drosophila) 

1 0 1 0 

CLPB ClpB caseinolytic peptidase B homolog (E. coli) 1 0 1 0 

CNOT6 CCR4-NOT transcription complex, subunit 6 1 0 1 0 

CUGBP2 CUG triplet repeat, RNA binding protein 2 1 0 1 0 

EIF4G2 eukaryotic translation initiation factor 4 gamma, 2 1 0 1 0 

FAM122A family with sequence similarity 122A 1 0 1 0 

FAM135B family with sequence similarity 135, member B 1 0 1 0 

FAM175B family with sequence similarity 175, member B 1 0 1 0 

FBRS fibrosin 1 0 1 0 
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FBXO34 F-box protein 34 1 0 1 0 

FOXN2 forkhead box N2 1 0 1 0 

GRIK2 glutamate receptor, ionotropic, kainate 2 1 0 1 0 

KCNA6 potassium voltage-gated channel, shaker-related 

subfamily, member 6 

1 0 1 0 

KIAA0515 KIAA0515 1 0 1 0 

KIAA1522 KIAA1522 1 0 1 0 

MTAP methylthioadenosine phosphorylase 1 0 1 0 

MYCBP c-myc binding protein 1 0 1 0 

NAV2 neuron navigator 2 1 0 1 0 

OSBPL6 oxysterol binding protein-like 6 1 0 1 0 

PEX5 peroxisomal biogenesis factor 5 1 0 1 0 

PTPRB protein tyrosine phosphatase, receptor type, B 1 0 1 0 

RP13-

102H20.1 

hypothetical protein FLJ30058 1 0 1 0 

SNX18 sorting nexin 18 1 0 1 0 

SP1 Sp1 transcription factor 1 0 1 0 

THRB thyroid hormone receptor, beta (erythroblastic 

leukemia viral (v-erb-a) oncogene homolog 2, 

avian) 

1 0 1 0 

TMEM185A transmembrane protein 185A 1 0 1 0 

VPRBP Vpr (HIV-1) binding protein 1 0 1 0 

XPO1 exportin 1 (CRM1 homolog, yeast) 1 0 1 0 
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YOD1 YOD1 OTU deubiquinating enzyme 1 homolog (S. 

cerevisiae) 

1 0 1 0 

ZADH2 zinc binding alcohol dehydrogenase domain 

containing 2 

1 0 1 0 

ZMAT3 zinc finger, matrin type 3 1 0 1 0 

ZNF322A zinc finger protein 322A 1 0 1 0 

ZNF346 zinc finger protein 346 1 0 1 0 

ABCA1 ATP-binding cassette, sub-family A (ABC1), 

member 1 

1 0 0 1 

AP1S3 adaptor-related protein complex 1, sigma 3 subunit 1 0 0 1 

CCDC4 coiled-coil domain containing 4 1 0 0 1 

CCDC92 coiled-coil domain containing 92 1 0 0 1 

CD164 CD164 molecule, sialomucin 1 0 0 1 

CEBPG CCAAT/enhancer binding protein (C/EBP), 

gamma 

1 0 0 1 

CPNE5 copine V 1 0 0 1 

DCX doublecortex; lissencephaly, X-linked 

(doublecortin) 

1 0 0 1 

DDX3Y DEAD (Asp-Glu-Ala-Asp) box polypeptide 3, Y-

linked 

1 0 0 1 

DGKI diacylglycerol kinase, iota 1 0 0 1 

KCNU1 potassium channel, subfamily U, member 1 1 0 0 1 

KCTD15 potassium channel tetramerisation domain 

containing 15 

1 0 0 1 

KIAA1324L KIAA1324-like 1 0 0 1 

LARP1 La ribonucleoprotein domain family, member 1 1 0 0 1 
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LIMCH1 LIM and calponin homology domains 1 1 0 0 1 

LIN28 lin-28 homolog (C. elegans) 1 0 0 1 

LMO4 LIM domain only 4 1 0 0 1 

MARCKS myristoylated alanine-rich protein kinase C 

substrate 

1 0 0 1 

MBOAT2 membrane bound O-acyltransferase domain 

containing 2 

1 0 0 1 

MYH10 myosin, heavy chain 10, non-muscle 1 0 0 1 

NFYA nuclear transcription factor Y, alpha 1 0 0 1 

NUP50 nucleoporin 50kDa 1 0 0 1 

PAX6 paired box 6 1 0 0 1 

PDE4D phosphodiesterase 4D, cAMP-specific 

(phosphodiesterase E3 dunce homolog, 

Drosophila) 

1 0 0 1 

PDE7B phosphodiesterase 7B 1 0 0 1 

PFN2 profilin 2 1 0 0 1 

PHF20L1 PHD finger protein 20-like 1 1 0 0 1 

PHF21A PHD finger protein 21A 1 0 0 1 

PLXNA2 plexin A2 1 0 0 1 

PRKCI protein kinase C, iota 1 0 0 1 

RALGPS1 Ral GEF with PH domain and SH3 binding motif 1 1 0 0 1 

RPS6KA3 ribosomal protein S6 kinase, 90kDa, polypeptide 3 1 0 0 1 

SAMD10 sterile alpha motif domain containing 10 1 0 0 1 
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SCYL2 SCY1-like 2 (S. cerevisiae) 1 0 0 1 

SEMA6B sema domain, transmembrane domain (TM), and 

cytoplasmic domain, (semaphorin) 6B 

1 0 0 1 

SMPD3 sphingomyelin phosphodiesterase 3, neutral 

membrane (neutral sphingomyelinase II) 

1 0 0 1 

SOX11 SRY (sex determining region Y)-box 11 1 0 0 1 

SRGAP3 SLIT-ROBO Rho GTPase activating protein 3 1 0 0 1 

TIMP3 TIMP metallopeptidase inhibitor 3 (Sorsby fundus 

dystrophy, pseudoinflammatory) 

1 0 0 1 

TMEM215 transmembrane protein 215 1 0 0 1 

TMEM86A transmembrane protein 86A 1 0 0 1 

TTBK1 tau tubulin kinase 1 1 0 0 1 

TTC9 tetratricopeptide repeat domain 9 1 0 0 1 

UBE2G1 ubiquitin-conjugating enzyme E2G 1 (UBC7 

homolog, yeast) 

1 0 0 1 

ZDHHC14 zinc finger, DHHC-type containing 14 1 0 0 1 

ZDHHC5 zinc finger, DHHC-type containing 5 1 0 0 1 

ZNF189 zinc finger protein 189 1 0 0 1 

ZNF207 zinc finger protein 207 1 0 0 1 

ZNF238 zinc finger protein 238 1 0 0 1 

 

Novel miR-1273-2 miRNA. 

 

Gene name Conserved sites 
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Target 

gene 

total 8nt 7nt-

m8 

7nt-

1A 

ARFIP2 ADP-ribosylation factor interacting protein 2 (arfaptin 2) 2 1 1 0 

ABHD4 abhydrolase domain containing 4 2 0 2 0 

CAMKV CaM kinase-like vesicle-associated 1 1 0 0 

CBX1 chromobox homolog 1 (HP1 beta homolog Drosophila ) 1 1 0 0 

CC2D1B coiled-coil and C2 domain containing 1B 1 1 0 0 

CNTFR ciliary neurotrophic factor receptor 1 1 0 0 

ENAH enabled homolog (Drosophila) 1 1 0 0 

FMR1 fragile X mental retardation 1 1 1 0 0 

FOXI2 forkhead box I2 1 1 0 0 

GJA4 gap junction protein, alpha 4, 37kDa 1 1 0 0 

GLT25D2 glycosyltransferase 25 domain containing 2 1 1 0 0 

GTPBP1 GTP binding protein 1 1 1 0 0 

INTS6 integrator complex subunit 6 1 1 0 0 

KIAA0247 KIAA0247 1 1 0 0 

LAG3 lymphocyte-activation gene 3 1 1 0 0 

LIMS3 LIM and senescent cell antigen-like domains 3 1 1 0 0 

LPIN3 lipin 3 1 1 0 0 

LRCH1 leucine-rich repeats and calponin homology (CH) domain containing 

1 

1 1 0 0 

LRFN2 leucine rich repeat and fibronectin type III domain containing 2 1 1 0 0 

LRRC8A leucine rich repeat containing 8 family, member A 1 1 0 0 

MAT2A methionine adenosyltransferase II, alpha 1 1 0 0 

MS4A15 membrane-spanning 4-domains, subfamily A, member 15 1 1 0 0 

OPN4 opsin 4 1 1 0 0 

OPN5 opsin 5 1 1 0 0 

PDE7B phosphodiesterase 7B 1 1 0 0 
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PEG10 paternally expressed 10 1 1 0 0 

RBPMS2 RNA binding protein with multiple splicing 2 1 1 0 0 

RP1-

21O18.1 

kazrin 1 1 0 0 

RPS6KL1 ribosomal protein S6 kinase-like 1 1 1 0 0 

SCMH1 sex comb on midleg homolog 1 (Drosophila) 1 1 0 0 

SIM2 single-minded homolog 2 (Drosophila) 1 1 0 0 

SLC39A13 solute carrier family 39 (zinc transporter), member 13 1 1 0 0 

STK40 serine/threonine kinase 40 1 1 0 0 

USP47 ubiquitin specific peptidase 47 1 1 0 0 

WFDC10A WAP four-disulfide core domain 10A 1 1 0 0 

AAK1 AP2 associated kinase 1 1 0 1 0 

ACVR2B activin A receptor, type IIB 1 0 1 0 

ACVRL1 activin A receptor type II-like 1 1 0 1 0 

APBB3 amyloid beta (A4) precursor protein-binding, family B, member 3 1 0 1 0 

BAZ2A bromodomain adjacent to zinc finger domain, 2A 1 0 1 0 

BCORL1 BCL6 co-repressor-like 1 1 0 1 0 

C14orf83 chromosome 14 open reading frame 83 1 0 1 0 

C1orf190 chromosome 1 open reading frame 190 1 0 1 0 

C9orf25 chromosome 9 open reading frame 25 1 0 1 0 

CNP 2',3'-cyclic nucleotide 3' phosphodiesterase 1 0 1 0 

CREBZF CREB/ATF bZIP transcription factor 1 0 1 0 

CSDC2 cold shock domain containing C2, RNA binding 1 0 1 0 

DCLRE1B DNA cross-link repair 1B (PSO2 homolog, S. cerevisiae) 1 0 1 0 

DMWD dystrophia myotonica, WD repeat containing 1 0 1 0 

DNAJC5G DnaJ (Hsp40) homolog, subfamily C, member 5 gamma 1 0 1 0 

EIF2C1 eukaryotic translation initiation factor 2C, 1 1 0 1 0 

GRHL2 grainyhead-like 2 (Drosophila) 1 0 1 0 
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HCRT hypocretin (orexin) neuropeptide precursor 1 0 1 0 

HMGB1 high-mobility group box 1 1 0 1 0 

JARID1A jumonji, AT rich interactive domain 1A 1 0 1 0 

KCND1 potassium voltage-gated channel, Shal-related subfamily, member 1 1 0 1 0 

KIAA1045 KIAA1045 1 0 1 0 

KIAA1539 KIAA1539 1 0 1 0 

KIF21B kinesin family member 21B 1 0 1 0 

LHFPL4 lipoma HMGIC fusion partner-like 4 1 0 1 0 

MARK4 MAP/microtubule affinity-regulating kinase 4 1 0 1 0 

MLL2 myeloid/lymphoid or mixed-lineage leukemia 2 1 0 1 0 

PPP1R9B protein phosphatase 1, regulatory (inhibitor) subunit 9B 1 0 1 0 

SEMA4G sema domain, immunoglobulin domain (Ig), transmembrane domain 

(TM) and short cytoplasmic domain, (semaphorin) 4G 

1 0 1 0 

SEMA6C sema domain, transmembrane domain (TM), and cytoplasmic domain, 

(semaphorin) 6C 

1 0 1 0 

SETX senataxin 1 0 1 0 

SIPA1L3 signal-induced proliferation-associated 1 like 3 1 0 1 0 

SMARCD1 SWI/SNF related, matrix associated, actin dependent regulator of 

chromatin, subfamily d, member 1 

1 0 1 0 

SMC1A structural maintenance of chromosomes 1A 1 0 1 0 

SOCS3 suppressor of cytokine signaling 3 1 0 1 0 

SOX10 SRY (sex determining region Y)-box 10 1 0 1 0 

ST8SIA3 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 3 1 0 1 0 

TMEM32 transmembrane protein 32 1 0 1 0 

TUBA1A tubulin, alpha 1a 1 0 1 0 

VWA3A von Willebrand factor A domain containing 3A 1 0 1 0 

WDR42A WD repeat domain 42A 1 0 1 0 

AKAP11 A kinase (PRKA) anchor protein 11 1 0 0 1 
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ATXN7L1 ataxin 7-like 1 1 0 0 1 

BMPR2 bone morphogenetic protein receptor, type II (serine/threonine kinase) 1 0 0 1 

BTBD9 BTB (POZ) domain containing 9 1 0 0 1 

C10orf104 chromosome 10 open reading frame 104 1 0 0 1 

C16orf5 chromosome 16 open reading frame 5 1 0 0 1 

C18orf62 chromosome 18 open reading frame 62 1 0 0 1 

CDC42BPB CDC42 binding protein kinase beta (DMPK-like) 1 0 0 1 

CDX2 caudal type homeobox 2 1 0 0 1 

CHIC1 cysteine-rich hydrophobic domain 1 1 0 0 1 

CNNM1 cyclin M1 1 0 0 1 

CUL5 cullin 5 1 0 0 1 

DBX2 developing brain homeobox 2 1 0 0 1 

DCUN1D3 DCN1, defective in cullin neddylation 1, domain containing 3 (S. 

cerevisiae) 

1 0 0 1 

ELAVL2 ELAV (embryonic lethal, abnormal vision, Drosophila)-like 2 (Hu 

antigen B) 

1 0 0 1 

FYCO1 FYVE and coiled-coil domain containing 1 1 0 0 1 

GABRB3 gamma-aminobutyric acid (GABA) A receptor, beta 3 1 0 0 1 

GSDML gasdermin-like 1 0 0 1 

HOXB3 homeobox B3 1 0 0 1 

HOXC8 homeobox C8 1 0 0 1 

KLF12 Kruppel-like factor 12 1 0 0 1 

LARP6 La ribonucleoprotein domain family, member 6 1 0 0 1 

LIN7A lin-7 homolog A (C. elegans) 1 0 0 1 

LOC116236 hypothetical protein LOC116236 1 0 0 1 

OPRL1 opiate receptor-like 1 1 0 0 1 

OTUB1 OTU domain, ubiquitin aldehyde binding 1 1 0 0 1 

OTUB2 OTU domain, ubiquitin aldehyde binding 2 1 0 0 1 
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PNMAL2 PNMA-like 2 1 0 0 1 

POLDIP2 polymerase (DNA-directed), delta interacting protein 2 1 0 0 1 

PPP1R15B protein phosphatase 1, regulatory (inhibitor) subunit 15B 1 0 0 1 

PRCD progressive rod-cone degeneration 1 0 0 1 

PRM1 protamine 1 1 0 0 1 

RAP2B RAP2B, member of RAS oncogene family 1 0 0 1 

RIC3 resistance to inhibitors of cholinesterase 3 homolog (C. elegans) 1 0 0 1 

RUSC1 RUN and SH3 domain containing 1 1 0 0 1 

SNIP SNAP25-interacting protein 1 0 0 1 

SOX4 SRY (sex determining region Y)-box 4 1 0 0 1 

STX17 syntaxin 17 1 0 0 1 

SUPT6H suppressor of Ty 6 homolog (S. cerevisiae) 1 0 0 1 

TARDBP TAR DNA binding protein 1 0 0 1 

TFAP2A transcription factor AP-2 alpha (activating enhancer binding protein 2 

alpha) 

1 0 0 1 

TMIGD1 transmembrane and immunoglobulin domain containing 1 1 0 0 1 

TPRG1 tumor protein p63 regulated 1 1 0 0 1 

TSPAN14 tetraspanin 14 1 0 0 1 

UNC84B unc-84 homolog B (C. elegans) 1 0 0 1 

USP25 ubiquitin specific peptidase 25 1 0 0 1 

VASP vasodilator-stimulated phosphoprotein 1 0 0 1 

ZBTB44 zinc finger and BTB domain containing 44 1 0 0 1 

ZIC1 Zic family member 1 (odd-paired homolog, Drosophila) 1 0 0 1 

ZNF687 zinc finger protein 687 1 0 0 1 
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Appendix 2 List of SNPs in linkage with rs1811399 

Variation 

Name 

Chro

moso

me 

Position on 

Chromosome 

(bp) 

Variant 

Alleles 

Clinical 

significan

ce 

Phenoty

pe name 

Associated 

variant risk 

allele 

rs73967685 2 101476598 T/A None N/A N/A 

rs187015324 2 101476699 A/G None N/A N/A 

rs189862993 2 101476794 C/T None N/A N/A 

rs181495383 2 101476795 G/A None N/A N/A 

rs12619609 2 101476824 G/A None N/A N/A 

rs34080732 2 101476835 -/T None N/A N/A 

rs59825425 2 101476874 C/T None N/A N/A 

rs1118509 2 101476892 T/C None N/A N/A 

rs114516729 2 101476903 T/G None N/A N/A 

rs139141368 2 101476918 C/A None N/A N/A 

rs72627422 2 101476971 G/T None N/A N/A 

rs185632116 2 101477071 A/G None N/A N/A 

rs2082816 2 101477085 C/T None N/A N/A 

rs76199684 2 101477159 G/A None N/A N/A 

rs189998798 2 101477225 G/A None N/A N/A 

rs74793064 2 101477237 C/T None N/A N/A 

rs75802064 2 101477238 G/A None N/A N/A 

rs3042733 2 101477499 -/TT None N/A N/A 

rs145456219 2 101477517 C/T None N/A N/A 

rs147680618 2 101477598 G/A None N/A N/A 
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rs59313264 2 101477679 T/C None N/A N/A 

rs142354778 2 101477745 G/T None N/A N/A 

rs182279589 2 101477856 G/C None N/A N/A 

rs144587893 2 101477904 G/A None N/A N/A 

rs75803056 2 101477912 C/T None N/A N/A 

rs145701823 2 101477961 G/A None N/A N/A 

rs149014911 2 101477975 A/G None N/A N/A 

rs185120643 2 101478034 C/A None N/A N/A 

rs60275557 2 101478230 G/A None N/A N/A 

rs117623721 2 101478360 C/T None N/A N/A 

rs34505682 2 101478415 -/C None N/A N/A 

rs143817583 2 101478453 A/G None N/A N/A 

rs192325412 2 101478518 A/C None N/A N/A 

rs76376883 2 101478530 G/A None N/A N/A 

rs183699561 2 101478598 C/T None N/A N/A 

rs79741991 2 101478644 C/T None N/A N/A 

rs1435511 2 101478658 A/G None N/A N/A 

rs78536120 2 101478682 C/G None N/A N/A 

rs188744318 2 101478736 T/C None N/A N/A 

rs192859484 2 101478744 G/A None N/A N/A 

rs57185786 2 101478749 A/G None N/A N/A 

rs148151442 2 101478803 T/C None N/A N/A 

rs183407056 2 101478820 T/G None N/A N/A 

rs74366569 2 101478827 T/G None N/A N/A 
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rs1811399 2 101479014 C/A None N/A N/A 

rs60386505 2 101479014 A/C None N/A N/A 

rs186974771 2 101479056 A/G None N/A N/A 

rs141328566 2 101479064 C/T None N/A N/A 

rs145350615 2 101479089 A/G None N/A N/A 

rs74734518 2 101479401 G/A None N/A N/A 

rs137918055 2 101479424 G/A None N/A N/A 

rs142441654 2 101479517 G/C None N/A N/A 

rs191470343 2 101479525 A/G None N/A N/A 

rs183636491 2 101479577 G/C None N/A N/A 

rs10196787 2 101479799 T/C None N/A N/A 

rs187996669 2 101480136 C/T None N/A N/A 

rs148884504 2 101480330 TC/- None N/A N/A 

rs193271178 2 101480400 C/T None N/A N/A 

rs983287 2 101480401 G/A None N/A N/A 

rs201415124 2 101480505 T/G None N/A N/A 

rs150516718 2 101480517 A/T None N/A N/A 

rs138379884 2 101480603 A/G None N/A N/A 

rs185454932 2 101480621 C/T None N/A N/A 

rs190362640 2 101480677 G/A None N/A N/A 

rs181686912 2 101480730 G/A None N/A N/A 

rs116473377 2 101480820 A/C None N/A N/A 

rs2043534 2 101480885 C/T None N/A N/A 



213 
 

TMP_ESP_

2_10148088

6 2 101480886 G/A None N/A N/A 

TMP_ESP_

2_10148092

2 2 101480922 T/C None N/A N/A 

rs149334280 2 101480953 A/T None N/A N/A 

rs13034472 2 101481119 G/C None N/A N/A 

rs184329763 2 101481274 A/G None N/A N/A 

rs76510652 2 101481333 A/G None N/A N/A 

rs13017728 2 101481348 T/G None N/A N/A 

rs188682724 2 101481355 A/C None N/A N/A 

rs181111795 2 101481395 C/T None N/A N/A 

rs74388834 2 101481397 T/C None N/A N/A 

rs185371416 2 101481448 G/A None N/A N/A 
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Appendix 3 

Quantitative PCR. 

Attempts were made to quantify the levels of transcript in an attempt to accurately determine the level 

of inhibition presented by rs1811399C. Unfortunately this proved not to be possible. Methodology 

used was from Ro & Yan (2010) and reads as follows:  

RNA isolation 

a. Harvest cells. 

b. Centrifuge at ~5,000 rpm for 2 min at room temperature. 

c. Remove PBS 

d. Add 600 μl of Lysis/Binding buffer  on ice. 

e. Vortex for 40 sec to mix. 

f. Add 1/10 volume of miRNA Homogenate Additive on ice and mix well by vortexing. 

g. Add an equal volume (660 μl) of Acid-Phenol: Chloroform 

h. Mix thoroughly by inverting the tubes several times. 

i. Centrifuge at 10,000 rpm for 5 min at RT. 

j. Recover the aqueous phase. 

k. Add 1/3 volume of 100% ethanol at RT to the recovered aqueous phase. 

l. Mix thoroughly. 

m. Transfer 700 μl of the mixture into a Filter Cartridge within a collection tube. 

n. Centrifuge at 10,000 rpm for 15 sec at RT. 

o. Collect the filtrate (the flow-through). 
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p. Add 2/3 volume of 100% ethanol at RT to the flow-through. 

q. Mix thoroughly. 

r. Transfer up to 700 μl of the mixture into a new Filter Cartridge. 

s. Centrifuge at 10,000 rpm for 15 sec at RT. 

t. Discard the flow-through, and repeat until all of the filtrate mixture is through the 

filter.  

u. Apply 700 μl of miRNA Wash Solution 1 to the filter. 

v. Centrifuge at 10,000 rpm for 15 sec at RT. 

w. Discard the flow-through. 

x. Apply 500 μl of miRNA Wash Solution 2/3 to the filter. 

y. Centrifuge at 10,000 rpm for 15 sec at RT. 

z. Discard the flow-through and repeat #27. 

aa. Centrifuge at 12,000 rpm for 1 min at RT. 

ab. Apply 100 μl of pre-heated (95 °C) Elution Solution to the centre of the filter, and close the cap. 

ac. Leave the filter tube for 1 min at RT. 

ad. Centrifuge at 12,000 rpm for 1 min at RT. 

ae. Store it at −20 °C until used. 

Polyadenylation 

a. Set up a reaction mixture with a total volume of 50 μl in a 0.5 ml tube containing 

100 ng-2 μg of small RNAs, 10 μl of 5× E-PAP Buffer, 5 μl of 25 mM MnCl2, 5 μl 
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of 10 mM ATP, 1 μl (2 U) of E. coli Poly(A) Polymerase I and RNase-free water 

(up to 50 μl). 

b. Mix well and spin the tube briefly. 

c. Incubate for 1.5 hr at 37 °C. 

Reverse Transcription 

a.Mix 2 μg of tailed RNAs, 1 μl (1 μg) of miRTQ primers, and RNase-free water (up to 21 

μl) in a PCR tube. 

b. Incubate for 10 min at 65 °C and for 5 min at 4 °C. 

c. Add 1 μl of 10 mM dNTP mix, 1 μl of RNaseOUT, 4 μl of 10× RT buffer, 4 μl of 

0.1 M DTT, 8 μl of 25 mM MgCl2, and 1 μl of Optimax Reverse Transcriptase to the mixture. 

d. Mix well and spin the tube briefly. 

e. Incubate for 60 min at 50 °C and for 5 min at 85 °C for inactivation of the reaction. 

f. Add 1 μl of RNase H to the mixture. 

g. Incubate for 20 min at 37 °C. 

h. Add 60 μl of nuclease-free water. 

qPCR 

a. Set a reaction with a total volume of 25 μl in a PCR tube containing 1 μ1 of small 

RNA cDNAs, 1 μl (5 pm) of a miRNA-specific primer, 1 μl (5uM) of RTQ-UNIr, 12.5 μl of BioRad 

SYBR qPCR Master Mix and 9.5 μl of nuclease-free water. 

b. Mix well and spin the tube briefly. 



217 
 

c. Start PCR or qPCR with the conditions: [at 95°C for 10 min, then 40 cycles (at 

95°C for 15 sec, and at 60°C for 1 min)]. 

4. Run 2 μl of the PCR or qPCR products along with a 100 bp DNA ladder on a 2% 

agarose gel. 

Analysis 

Whilst the method allowed me to clone and sequence the mature miRNA forms from a cDNA pool; it 

proved difficult to consistently accrue accurate qPCR results. Even using the Let7a primers suggested 

in the paper I was unable to gain a meaningful result. Upon running an aliquot of each reaction on a 

3% gel I was often confronted with the following:  

 

Figure App.1: Smearing and multiple bands visible on qPCR analysis of small RNA pool. 

Usually a symptom of the following: annealing temperature too low, insufficient salt 

concentration within solution, unspecific primers or in the case of reverse transcription too 

many secondary structures within the RNA.  

Each of the hypotheses above were tested as far as reasonably possible. Annealing temperatures were 

increased as was salt. The only one impervious to change was the sequence of the primer, what with 

Let7a only being 20nt long. As such primers for other miRNA were ordered but each exhibited a 

similar phenomenon. The primers were tested using melt curve analysis and found to be favourable. 
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Each step prior to the qPCR was then assayed to identify any contributing errors. 

RNA extraction was repeated carefully to avoid contamination or degradation. Some DNA 

contamination was present within the initial preparation but the utilisation of the specific miR-TQ 

primer would negate any influence the genomic DNA could have. Regardless, all RNA preps which 

were routinely treated with DNase were also now precipitated in lithium chloride. Upon re-suspension 

the purity was measured using spectrophotometry and any sample scoring below 1.8 was discarded.  

The whole process was again repeated culminating in the qPCR much to the same result; even with 

different parameters and different primers.  

There are many potential factors for the continued failure of this experiment: 

 Poly-adenylation’s random distribution of adenine on the small RNA result in various tail 

lengths which the qPCR detects. 

Let7a rs1811399 
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 RNA secondary structures inhibit efficient RT. As the original method calls for a RT reaction 

at 60 degrees C and our in lab enzyme at the time could only work between 37-42 might 

account for the failure of the qPCR. 
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Appendix 4  

A bioinformatics survey was conducted using the UCSC browser’s Table Browser to correlate all 

known miRNA which have SNPs located within their precursors.  
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Chro

m. 

Start 

Co-ords 

End 

Co-ords 

miRNA 

name 

SNP 

name 

Allel

es Allele Freqs SNP2 

Allel

es Allele Freq SNP 3 Alleles 

Allele 

Freq 

1 

1679678

97 

167967

964 

hsa-mir-

1255b-2 

rs79639

536 A,G, 

0.982633,0.0173

67,       

1 

1922356

4 

192236

42 

hsa-mir-

1290 

rs75705

742 A,G, 

0.016045,0.9839

55,       

1 

4122002

6 

412201

18 

hsa-mir-

30e 

rs11243

9044 C,T, 

0.989680,0.0103

20,       

1 

6709412

2 

670942

00 

hsa-mir-

3117 

rs12402

181 A,G, 

0.268304,0.7316

96,       

1 

1431637

49 

143163

822 

hsa-mir-

3118-2 

rs75563

322 A,G, 

0.453881,0.5461

19,       

1 

1701205

18 

170120

603 

hsa-mir-

3119-1 

rs58602

811 G,T, 

0.014155,0.9858

45,       

1 

1701205

18 

170120

603 

hsa-mir-

3119-2 

rs58602

811 G,T, 

0.014155,0.9858

45,       

1 

2412955

71 

241295

646 

hsa-mir-

3123 

rs78240

175 A,G, 

0.030356,0.9696

44,       

1 

2491205

75 

249120

642 

hsa-mir-

3124 

rs12081

872 C,T, 

0.989159,0.0108

41, rs115160731 A,C, 

0.012142,0.9

87858,    

1 

1505244

04 

150524

490 

hsa-mir-

4257 

rs74743

733 A,G, 

0.015178,0.9848

22,       

1 

2097967

88 

209796

855 

hsa-mir-

4260 

rs75449

76 G,T, 

0.986301,0.0136

99,       

1 

1515182

71 

151518

367 

hsa-mir-

554 

rs79661

940 G,T, 

0.023851,0.9761

49,       

1 

1683447

61 

168344

859 

hsa-mir-

557 

rs78825

966 C,T, 

0.933651,0.0663

49,       

1 

1176372

64 

117637

350 

hsa-mir-

942 

rs11537

2145 C,T, 

0.984389,0.0156

11,       

2 

1143405

35 

114340

673 

hsa-mir-

1302-3 

rs75893

28 C,T, 

0.662249,0.3377

51,       

2 

2081339

98 

208134

148 

hsa-mir-

1302-4 

rs11623

7969 A,T, 

0.971813,0.0281

87,       
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2 

2413954

17 

241395

506 

hsa-mir-

149 

rs71428

439 A,G, 

0.855059,0.1449

41, rs2292832 C,T, 

0.591793,0.4

08207,    

2 

5621608

4 

562161

94 

hsa-mir-

216a 

rs41291

179 A,T, 

0.934703,0.0652

97,       

2 

2076479

57 

207648

032 

hsa-mir-

3130-1 

rs22413

47 A,G, 

0.403285,0.5967

15, rs2241347 A,G, 

0.403285,0.5

96715, rs115772313 A,G, 

0.019948,

0.980052, 

2 

2076479

57 

207648

032 

hsa-mir-

3130-2 

rs11577

2313 A,G, 

0.019948,0.9800

52, rs2241347 A,G, 

0.403285,0.5

96715, rs2241347 A,G, 

0.403285,

0.596715, 

2 

2207712

22 

220771

286 

hsa-mir-

4268 

rs46744

70 C,T, 

0.204893,0.7951

07,       

2 

4760481

3 

476049

09 

hsa-mir-

559 

rs11480

3590 C,T, 

0.012576,0.9874

24, rs58450758 C,T, 

0.799726,0.2

00274,    

2 

1760323

60 

176032

437 

hsa-mir-

933 

rs79402

775 A,G, 

0.042466,0.9575

34,       

3 

1553774

5 

155378

15 

hsa-mir-

4270 

rs79922

312 A,G, 

0.988291,0.0117

09,       

3 

1244512

85 

124451

363 

hsa-mir-

544b 

rs10934

682 G,T, 

0.174825,0.8251

75,       

3 

4490337

9 

449034

73 

hsa-mir-

564 

rs11463

6202 A,G, 

0.982220,0.0177

80, rs2292181 C,G, 

0.061279,0.9

38721,    

3 

1708244

52 

170824

548 

hsa-mir-

569 

rs73037

390 A,C, 

0.986770,0.0132

30,       

3 

1954262

71 

195426

368 

hsa-mir-

570 

rs98606

55 C,T, 

0.055302,0.9446

98,       

3 

1974013

66 

197401

447 

hsa-mir-

922 

rs11481

4977 A,C, 

0.017780,0.9822

20,       

3 

1895477

10 

189547

798 

hsa-mir-

944 

rs75715

827 C,T, 

0.042009,0.9579

91,       

4 

1022514

58 

102251
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