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Summary 

The safe and effective treatment of biodegradable resources is increasingly being seen as a 

prerequisite for environmental protection in the context of preserving water quality, reducing 

greenhouse gas emissions and preventing the dispersal of human pathogens. One potential 

mechanism to meet this need is the treatment of organic resources by anaerobic digestion 

(AD), especially on-farm AD. The aim of this thesis was to place an economic value on the 

non-market environmental benefits of AD, above just being a source of renewable energy, 

through a combination of scientific and economic research. In chapter 4, digestate from 

manure subject to AD, undigested manure and synthetic fertilizer was applied to pasture 

(grass ± clover) grown in pots. It was found that there is potentially less leaching from 

digestate compared to synthetic fertilizer, with no negative impacts on yield. Chapter 5 was 

based on the same pot trial, and reports that the application of digestate affects the soil 

decomposer community in a similar way to that of synthetic fertilizer. Chapter 6 is the 

accumulation of a three year field trial comparing crop yield between synthetic fertilizers and 

digestate. Again, it was found that digestate application may replace synthetic fertilizer and 

maintain crop yields. Chapter 7 is an economic valuation of all the non-market benefits of on-

farm AD. The valuation highlights the economic benefits of implementing on-farm AD as a 

management tool for organic residues. This thesis is multidisciplinary in nature, 

encompassing microbiology, soil and environmental science, agronomy, and economics. An 

understanding of all these disciplines is imperative to properly value the benefits of AD both 

at a private level to the farmer, and at a public level to the wider community. The research 

indicates that AD is currently economically undervalued under the current renewable energy 

incentive (Feed-In-Tariffs; FIT) scheme run by the UK government and it is proposed that the 

FIT should be increased by £0.03 - 0.15 per kWh of electricity produced via AD. This would 

substantially increase the FIT rate to between £0.12 - 0.30 per kWh. Increasing the FIT to 

reflect all the non-market benefits that on-farm AD delivers would incentivise uptake of the 

technology and would facilitate the long-term viability of the industry. It would also 

rightfully reflect the fact that AD offers an effective pollution abatement technology as well 

as a source of renewable energy.  
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1.1 Funding body and aim of Funding 
 

The Knowledge Economy and Skills Scholarship (KESS), is a joint EU and Welsh 

Government scholarship, set up in 2009. The aim of the scholarship is to bridge the gap 

between academia and industry in regards to research. To this end, during this PhD there was 

collaboration between Bangor University, Calon Wen (Organic milk producers) and Fre-

Energy (Anaerobic Digestion (AD) plant manufacturers). The PhD specifically focussed on 

on-farm AD since this is the main portion of Fre-Energy’s commercial activity. As part of the 

KESS program, the PhD participant was obliged to work for the industrial co-sponsor 

company for approximately 4 weeks every year. As part of this work placement, an 

operations manual was written for Fre-Energy’s AD units. (Although the operations manual 

was present in the submitted copy of the thesis, it will not be submitted in the final version at 

the request of Fre-Energy due to commercial sensitivities.)  

Chapter 2 of the thesis comprehensively reviews the literature in regards to the current 

technical and scientific knowledge of AD. Chapter 3 details the methodology used in the 

experimental trials designed to answer important research questions on AD. Chapter 4 details 

a short pot trial experiment, designed to better understand the agronomic (grass yield) and 

environmental benefits (loss of nutrients through leaching) from the application of digestate 

relative to other organic and synthetic fertilizers. Chapter 5 reports on the effects of 

application of digestate on the soil decomposer community (bacteria and fungi) in a grass 

system. Chapter 6 reports on a three-year long field trial which aimed to determine the long-

term crop yield and feed value of a mixed ley pasture after the application of digestate. 

Chapter 7 is an economic valuation of all the non-market benefits brought about from the 

introduction of on-farm AD. This chapter extrapolated the findings from earlier chapters, as 

well as those from existing literature. The thesis ends with a short discussion, detailing how 

this body of work has furthered the knowledge of AD, and recommends areas for future 

research that both time and funding constraints failed to allow for during the course of the 

PhD. 

 

1.2 A brief history of AD  

Anaerobic digestion is a very old renewable energy technology, with reports that AD 

was used to heat bath water in Assyria during 10
th

 century BC. However, the first recorded 

report of the production of biogas directly related to the decomposition of organic material is 
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in 1776, by the Italian physicist, Volta. He observed how methane was generated from 

organic matter in the bottom sediments of ponds and streams (Kothari et al., 2010). The first 

evidence of the construction of an AD digester was at an Indian leper colony in 1859, but it 

was not until 1895 that AD first reached the UK, when recovered biogas was used to light 

street lamps in Exeter (Harris, 2013). However, despite AD probably being the oldest source 

of renewable energy in the world, the general public’s understanding of the technology 

appears to be somewhat lower than that of some other renewable energy technologies. 

 
 

1.3 What is Anaerobic Digestion? 

Anaerobic Digestion (AD) is the decomposition of organic matter by a microbial consortium 

in an oxygen-free environment (Pain & Hepard, 1985). This produces biogas (a methane-rich 

gas which can subsequently be burnt to produce heat and electricity) and digestate (organic 

matter which can be used as a biofertilizer). Figure 1 is a simple flow diagram of how the AD 

process converts organic material to energy and digestate. The feedstock can go through a 

pre-treatment process or be digested in its current state. Pre-treatment can involve 

pasteurisation (though this can also occur post-digestion), maceration of large feedstock, or 

mixing of different feedstock. Post-treatment usually involves the separation of digestate into 

a dry fibre and liquid fraction, and can also include pasteurisation (if not conducted pre-

digestion and the feedstock contains animal by-products). The use of pre- and post-treatment 

ultimately depends upon the design specification of the digester unit and feedstock. 

 

 

Figure 1.1: Flow diagram of Anaerobic Digestion 
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AD can convert almost all sources of biomass to biogas (Holm-Nielsen et al., 2009), 

with only strongly lignified organic products not being suitable (Weiland, 2010). However, 

the feedstocks (organic matter) that are most often used for AD include food waste, livestock 

manure) and purpose-grown crops such as maize. From here on manure incorporates both 

solid manures (stackable) and slurries (liquid). If manure, solid manure or slurry is referred to 

this is to refer to that specific type of livestock excretion. As a result, AD systems are 

particularly suitable on farms. Biogas is extracted from the volatile solids of the initial 

feedstock during digestion. The greater the proportion of volatile organic matter in AD 

feedstock, the greater the biogas production per unit volume of material (Nelson & Lamb, 

2002); and pre-treating feedstock (by maceration) to reduce the fibrous particle sizes can 

improve methane production by up to 20% (Angelidaki & Ahring, 2000). During digestion of 

cattle manure, approximately 25-40% of the organic dry mater is converted to methane and 

carbon dioxide (Klinger, 1998). The biogas produced typically comprises of 50-70% methane 

(CH4), 30-45% carbon dioxide (CO2), ~ 500 ppm hydrogen sulphide (H2S), and ~100 ppm 

Ammonia (NH3) (ADAS, 2012; Mohseni et al., 2012). The digestate produced can then be 

passed through a separator which separates the dry fibre fraction from the liquid fraction. 

Livestock manures are high in nitrogen and are thus a valuable crop nutrient, with cattle/pig, 
 
chicken and turkey manure having 6, 19 and 30 kg N per tonne (ADAS, 2001), and food 

waste approximately 7.5 kg N per tonne (Taylor et al., 2010). Processing of such on-farm 

resources via AD therefore generates digestate with a potentially high nutrient value. Studies 

suggest that AD does not alter the total quantity of nutrients in the feedstock, but alters it into 

a form that is more readily available for plant uptake just the form of that particular nutrient 

(Field et al., 1984; Masse et al., 2011). This potentially increases the appeal of AD systems 

on farms due to the increasing costs associated with buying synthetic fertilizers. The liquid 

fraction contains the majority of nitrogen and potassium (Moeller et al., 2010); while the dry 

fibre can be used as a soil conditioner, with low amounts of nitrogen and the majority of 

phosphorus (Bauer et al., 2009). 

 

1.4 The AD process  

There are four stages in the AD process: (1) Hydrolysis, (2) Acidogenesis, (3) 

Acetogenesis, and (4) Methanogenesis. During hydrolysis, carbohydrates, fats and proteins 

are broken down into sugars, fatty acids and amino acids, respectively. After hydrolysis, the 

process enters the second stage, acidogenesis, which is similar to fermentation. During 
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acidogenesis, sugars, fatty acids and amino acids are broken down to form carbonic acids, 

organic acids, alcohols, hydrogen, carbon dioxide and ammonia. The components from the 

acidogenesis stage are further broken down in the acetogenesis stage to produce hydrogen, 

carbon dioxide and acetic acid by acetogenic bacteria; which have a symbiotic relationship 

with methane forming bacteria. In the final stage of the digestion process, methanogens 

convert products from the intermediate process (acidogenesis and acetogenesis) into water, 

carbon dioxide and methane. Methane-forming bacteria are classified in the Archaebacteria 

domain and can be classified into three distinct groups: hydrogenotrophic methanogens, 

acetotrophic methanogens and methylotrophic methanogens. Hydrogenotrophic methanogens 

access hydrogen to convert CO2 to methane, while acetotrophic methanogens split acateate 

into CO2 and methane, and methylotrophic methanogens produce methane directly from 

methyl and not CO2 (Gerardi, 2003). 
 

A simple example of the microbial process can be seen in equation 1.1. Hydrolysis is 

the solubilisation of particulate organic compounds such as cellulose (1.1), and colloidal 

organic compounds such as proteins (1.2). These compounds are absorbed by bacterial cells, 
 
that lead to bacterial degradation which results in the production of volatile acids and 

alcohols (such as ethanol). The volatile acids are then converted to acetate and hydrogen gas. 

The degradation of acetate will lead to methane production (1.3) plus the reduction of CO2 by 

hydrogen gas (1.4) (Gerardi, 2003). 

 

Equation 1.1: Simple microbial action within a digester 

Source: (Gerardi, 2003) 

 

 

Due to AD being a biological process driven by microbes, there is a need to control a 

number of factors to provide successful and efficient digestion. The most important of these 

are heat, pH, and the carbon to nitrogen ratio (C:N). Microorganisms generally utilise carbon 

and nitrogen in the ratio of 25–30:1, and operators should aim to keep feedstock at this C:N 

level (Esposito et al., 2012). However, C:N ratios can be considerably lower and still provide 
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successful digestion, if careful monitoring of the digestion process is upheld. AD can be 

performed under one of three temperature ranges: psychrophilic (10–20 °C), mesophilic (25–

40 °C), or thermophilic (45–60 °C). Psychrophilic digestion is generally performed in large 

open lagoons, by letting natural process take over without any technical intervention other 

than filling the lagoon. This type of digestion is not commercially viable due to low biogas 

yield, therefore commercial on-farm AD is normally carried out under either mesophilic or 

thermophilic conditions. Mesophilic digestion of cattle manure requires approximately twice 

the retention time (the time needed for all the biogas to be extracted from the feedstock) of 

thermophilic digestion (typical retention time of mesophilic digestion is 20-25 days); 

however mesophilic digestion is still the preferred digestion temperature for on-farm AD. 

This is mainly due to the greater robustness of the bacterial community within mesophilic 

systems to temperature change (Gungor-Demirci & Demirer, 2004). Increasing the 

temperature of the digester to the thermophilic range will increase the rate of anaerobic    

conversion    and    consequently   the    overall    system    efficiency    (Manariotis    & 
 
Grigoropoulos, 2006; Zakkour et al., 2001) and potentially allows the operator to increase 

feedstock throughput (i.e. avoid the need to build a bigger digester). However, changing from 

mesophilic to thermophilic digestion should be done slowly (increasing by no more than 2 °C 

per day) so as to allow time for the microbial community to adapt; with a pseudo steady-state 

condition reached after a month and a final steady-state condition after 2 months (Cecchi et 

al., 1993). 
 

Feedstock must be heated from ambient temperature to the digester temperature. The 

heat needed depends on the feedstock and the digester operating temperature. The wetter the 

feedstock, the more heat that is required per m
3
 of biogas produced. The biogas is produced 

from the dry matter part of the feedstock, thus the operator needs to avoid heating water 

where possible. The digester can be heated either externally or internally. With external 

heating, the digestate is circulated through tubes in a heat exchanger. With internal heating, 

the digestate is heated by pipes or hot water heat exchangers within the digester. Somewhere 

between 10-33% of the biogas energy will be needed to heat a typical digester; representing 

the greatest running cost of the AD process (Warburton, 1997). The other main operating 

cost of a digester is the actual loading and unloading of the digester. The time and cost of this 

will heavily depend on the degree of system automation. 
 

On an on-farm AD unit, the digestate will be handled the same way as a farmer 

handled their manure before the implementation of a digester. The liquid digestate can be 
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stored in a lagoon (ideally with a cover so as to minimise rain ingress and loss of nitrogen 

through gaseous emissions) and the dry fraction can be piled and applied to land as required. 

Inclusion of an AD system on a livestock farm therefore poses comparatively little additional 

work to farmers and their manure management system. 

 

1.5 AD across the globe 

The UK has approximately 100 on-farm, working digesters (NNFCC, 2012) and the 

potential for up to 900 more, based on a combination of 200 on-farm and 700 municipal food 

waste fed digesters (ADAS, 2012). Germany in particular is at the forefront of AD 

internationally, boasting over 4000 plants (Wilkinson, 2011). There are approximately 15 in 

France and another 90 under construction (Peu et al., 2012). Despite the US being 

comparable to Europe in terms of population and landmass, the US has only 135 on-farm  
 
digesters (Parameswaran & Rittmann, 2012). China possesses over one million digesters 

(Wilkinson, 2011), however, most are very small household units, and would not be 

economically feasible in western countries. Meanwhile, a vast and developed country such as 

Australia has only one operational AD unit (Wilkinson, 2011). 
 

The reason for the large difference in the uptake of on-farm AD is twofold. Firstly, in 

environmentally aware countries such as Germany, the fact that AD is a clean renewable 

energy provides a catalyst for continued and future development. Secondly, to make AD 

economically feasible on-farm, there is a need for large amounts of livestock manure that can 

be easily collected or supplementation with other feedstocks such as maize or grass silage as 

well as locally sourced food waste. Due to the abundance of winter housing in the EU from 

generous construction grants over the last number of decades, vast amounts of stored animal 

manure are easily accessible. 

1.6 Conclusion 

The thesis brings together information that is of relevance to academia, industry, and 

policy-makers. This is achieved by bringing together a number of different disciplines 

relevant to on-farm AD. This should allow both experts and non-experts to gain a deeper 

understanding of the practical, scientific and economic issues pertaining on-farm AD.  The 

thesis starts in chapter 2 with an overview of the AD industry, a review of literature relevant 

to successfully running a digester, and the challenges to expanding the AD industry in the 

UK. Chapter 3 is a materials and methods chapter covering all aspects of the experimental 
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work that was undertaken during the course of the PhD and as reported individually in 

chapters 4, 5 and 6. Chapter 7 brings together the findings from those experiments as well as 

those from other studies, to try and place an economic value on the non-market benefits of 

on-farm AD; specifically the agronomic and environmental benefits. 

During the initial literature review, it became apparent that assigning such economic 

values was not possible for all the non-market benefits. For instance, although a number of 

studies stated that digestate is of agronomic value similar to synthetic fertilizer, there was a 

lack of fully replicated, scientific trials to verify such claims and this was the justification of 

the first experimental chapter (chapter 4). This pot trial also helped establish the potential for 

environmental damage through leaching of nitrate following the application of digestate and 

other organic and synthetic nutrient sources. This enabled an estimation of the potential of  

digestate to displace synthetic fertilizer and the pollution abatement this would bring. Chapter 

5 studied the response of the soil decomposer community to the same amendments, so as to 

aid the interpretation of results from the previous chapter (e.g. in terms of nutrient dynamics). 

Chapter 6 expanded upon the findings of the previous two chapters through conducting a 

field-scale assessment of the agronomic value of digestate over a three-year period in a 

mixed grassland ley. Chapter 7 bases economic values on the scientific findings. By 

combining the results from the experimental chapters detailed previously and those from 

other studies, it was possible to place a range of values on the potential pollution abatement 

values form the digestion of 1% of livestock manure in the UK. Calculating on a 1% value 

would facilitate the up-scaling of results to estimate the potential value from the digestion of 

greater volumes of livestock manure (5%, 10%, etc.). The findings were then used to 

question whether the UK FIT rate currently paid for electricity generated through AD 

adequately reflects the non-market benefits that on-farm AD brings.  

It is believed that this is the first attempt to place such non-market values on the 

pollution abatement benefits offered by on-farm AD. The large range in value per kWh of the 

proposed new FIT rate shows that a great deal more work is required to better qualify the true 

value of such non-market benefits. This work will help determine the added value that on-

farm AD brings relative to other sources of renewable energy; values that are currently not 

appreciated in economic terms (Yiridoe et al., 2009). This involves multidisciplinary work 

and this thesis alone is a fusion of findings from microbiology, soil science, agronomy and 

economics. The findings of the thesis should also help bridge the divide that may be evident 

between academic and industry in relation to anaerobic digestion systems, and inform 
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relevant policy-makers as to potential steps that may be taken to increase the uptake of on-

farm AD in the UK 
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Abstract 

Although numerous reviews exist on specific aspects of anaerobic digestion (AD), this article 

brings together information from published literature on the operation, optimisation, and the 

agronomic and environmental benefits of AD. The review revealed notable gaps in current 

literature including the role of micronutrients for successful AD, and the relationship between 

microbial populations and digestion performance. In addition, it was apparent that procedures 

to deal with the problem of sodium toxicity within a digester are quite limited, thus 

potentially rejecting a great deal of useful biodegradable feedstock from the AD process, 

namely material from the seafood industry.  

 

Keywords: Agriculture, Biogas, Greenhouse gases, Renewable energy, Waste management. 
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2.1 Introduction  

2.1.1 Alternatives to anaerobic digestion 

AD is a renewable energy technology with little public resistance (not to be confused 

with local resistance) due to its ability to turn a “waste” material into a source of clean energy 

(Anderson et al., 2013; Poeschl et al., 2010). There is also growing interest in AD due to its 

potential benefit for recycling nutrients back to agricultural land (Fricke et al., 2007; 

Salminen et al., 2001). AD also represents an alternative to landfill (Frigon & Guiot, 2010; 

Karagiannidis & Perkoulidis, 2009; Mata-Alvarez et al., 2000), thereby reducing greenhouse 

gas (GHG) emissions from the decomposition of biodegradable material (Braber, 1995).  

The main alternatives to AD for dealing with organic waste material (e.g. food waste) 

include landfill, incineration and composting. Of these, landfill is the most undesirable option 

as typically there is no (or limited) energy recovery and the nutrients in the biodegradable 

material are not recovered for application back to land. Older landfill sites are potent sources 

of GHG emissions and were estimated to produce 36% of England’s methane emissions in 

2011 (DECC, 2012); and whilst the construction of new sites with gas collection systems 

reduce GHG emissions, these are costly to build. Similarly, although incineration can be used 

as a source of energy, and is used in some countries as a method to deal with poultry litter, 

the valuable crop nutrients N and S within the biomass are lost to volatilization at the high 

temperatures required. Although P and K are retained in the ash and can be applied back to 

land, the ash may include prohibitive levels of heavy metals. Hence, incineration results in 

the loss of valuable nutrients that farmers have to purchase in the form of synthetic fertilizer. 

During composting, a considerable proportion of the nutrients are lost from the initial 

feedstock as gaseous NH3 and in leachate, and the process is a net user of energy. 

Subsequently, the total potential energy in the biomass is never recovered (Walker et al., 

2009) and a commodity-rich product is not being extracted (i.e. biogas). Therefore, as a waste 

management strategy, AD could be considered a better option for its cleaner operation and 

better product range than composting (Kothari et al., 2010).  

 

 

2.1.2 Types of digester 

The different types of digesters typically in use today include: fixed dome plant, up-

flow anaerobic filter (UAF), fixed-film reactor, anaerobic rotating biological reactor, 
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continuously stirred tank reactor (CSTR), attached-film bioreactor, batch reactors, up-flow 

anaerobic sludge blanket (UASB), temperature-phased anaerobic digestion (TPAD), and an 

anaerobic hybrid reactor (AHR).  Furthermore, there are numerous mixing systems; ranging 

from gas, jet, propeller or paddle. The most suitable type of digester depends upon the 

feedstock. The dry matter (DM) content of the feedstock determines whether the digestion is 

classified as dry or wet digestion. Any feedstock below 15% DM is considered wet digestion 

and above 15% as dry digestion. Considerable variations in dry matter can also occur within 

what may firstly be seen as similar feedstocks, e.g., swine, cattle and poultry manure (Moller 

et al., 2004).  

The AD process can be carried out in either one or two stages. In single-stage AD, all 

four microbial metabolisms (hydrolysis, acidogenesis, acetogensis, and methanogenesis) 

occur concurrently within the one tank (Coats et al., 2012). Although this system offers the 

benefits of simplicity in design, the inefficient synchronization of the AD metabolisms within 

a single stage tank often leaves high-value organic matter undigested (Coats et al., 2012). 

Two-stage AD was developed, in part, to remedy single-stage metabolism inefficiencies 

(Ghosh, 1987), where hydrolysis, acidogenesis and acetogensis occur in one tank, and 

methanogenesis ensues in a second tank. In two-stage digestion, volatile fatty acid rich 

supernatant is transferred from the acidogenesis/acetogensis stage to the second stage, 

methanogenesis digester. Two-stage digestion allows for semi-optimization of each metabolic 

process thereby potentially enhancing methane production (Coats et al., 2012); although this 

does come at greater capital cost than a single-stage system. Using cattle manure as the only 

feedstock in the thermophilic range, Gannoun et al. (2007) reported increasing methane 

yields of 6-8% when two-stage digestion was introduced compared to one-stage digestion. A 

more important aspect for operators is to ensure that maximum biogas can be obtained from 

the feedstock after digestion.  

 

2.1.3 Co-digestion as part of on-farm AD 

Co-digestion of feedstocks is often carried out to control for factors such as the required 

pH level, C:N ratio, dilution of potential toxic compounds and increasing the biodegradable 

material content of the feedstock (Esposito et al., 2012). It became apparent in the late 1970s 

and early 1980s that many carbohydrate-rich feedstocks were found to require co-digestion 

with other feedstocks (Hills & Roberts, 1982; Knol et al., 1978). Co-digestion can increase 
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biogas yield and improve the payback on investment in on-farm AD (Cavinato et al., 2010). 

For example, the digestion of cattle manure and sludge from the waste water industry has 

been shown to increase biogas yield by approximately 2.19 times from that of manure alone 

(Corton et al., 2013). Despite comparatively low yields of methane when digested alone, 

cattle manure is an excellent substrate to enable digestion of mixed feedstocks due to its 

balanced nutrient content and buffering capacity (Castrillon et al., 2013; Corton et al., 2013). 

The high fibrous fraction (solid manure) and high water content (slurry) of cattle manure is 

the reason for the low biogas yield, plus the fact that much of the methane production from 

the original feedstock has occurred within the cow rumen during digestion (Angelidaki & 

Ellegaard, 2003). Co-digestion improves the methane yield for a number of reasons including 

providing bacterial diversity and may supply missing nutrients by the co-substrates, leading 

to a more balanced nutritional composition (Jha et al., 2011; Kaparaju et al., 2008), plus the 

environmental and economic benefit of recycling valuable crop nutrients back to land.  

A large number of substrates have been used alongside animal manure for co-digestion; 

including waste fruits and vegetables (Knol et al., 1978; Romano & Zhang, 2011); seafood 

resources (Ferreira et al., 2012); municipal solid waste (Hartmann & Ahring, 2005); brewery 

resources (Zupancic et al., 2012); fats, oils and grease (Long et al., 2012); and crop residues 

(Kavacik & Topaloglu, 2010). Food waste is potentially high in energy because of the rich 

organic material present in the feedstock (Digman & Kim, 2008). According to Bailey 

(2007), the co-digestion of fats oils and grease at a rate of 10–30% of feedstock caused a 30–

80% increase in biogas. Callaghan et al. (2002) recommended that the best co-substrates for 

cattle manure were fruit and vegetable resources, chicken manure, and fish offal. 

Slaughterhouse and meat resources have been shown to prove very successful in co-

digestion, resulting in high biogas yields (Alvarez & Liden, 2008; Buendia et al., 2009; 

Cuetos et al., 2008), although land-application of the resulting digestate within the EU would 

be subject to the Animal By-Products Regulations (i.e. potentially preventing land spreading). 

In Germany, maize silage is the dominant feedstock for on-farm AD (McEniry & O'Kiely, 

2013). In the UK, approximately 67% of the utilised agricultural area is under permanent 

grassland (Eurostat, 2011), with some of the highest grass yields per hectare in Europe 

produced in the UK and Ireland (McEniry & O'Kiely, 2013). Grass silage is known to be a 

useful feedstock for AD, however, a late harvest will decrease digestibility and increase fibre 

component which will have a negative effect on biogas production (McEniry & O'Kiely, 

2013).  
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New research into crude glycerine from the biodiesel industry (Astals et al., 2011; 

Castrillon et al., 2013) has provided some very promising results as a co-substrate for AD. 

Each year, millions of tonnes of crude glycerine biomass resources are produced by the 

biodiesel industry, exceeding the present commercial demand for such a commodity (Siles 

Lopez et al., 2009).  Crude glycerine is easily storable over long periods of time, is readily 

digestible (Robra et al., 2010), and easily transportable. There would be a number of benefits 

to the co-digestion of crude glycerine, above increasing the biogas yield.  The biodiesel 

industry is often associated with negative aspects; in particular that biodiesel production 

requires productive agriculture land (thus raises the issue of whether land is used for 

production of food or fuel). Co-digestion of crude glycerine would improve the 

environmental benefits of biodiesel by further reducing GHG emissions from fossil fuels, 

with the additional benefit of returning nutrients back to land.   

 

 

2.2 Controlling factors in successful digestion 

2.2.1 pH  

Along with temperature and C:N ratio of the feedstock, pH is the most important 

variable for successful AD, with a pH of < 6.1 or > 8.3 resulting in inefficiency, and even 

failure of a digester (Esposito et al., 2012; Lay et al., 1997). Changes in pH affect the 

digestion process because the hydrogen ion concentration has a direct influence on microbial 

growth (Jha et al., 2011) therefore the optimal pH range for AD varies for each metabolic 

stages. For instance, the optimum pH for hydrolysis and acidogenesis ranges from 5.5 to 6.5 

(Arshad et al., 2011); while the ideal pH for the methanogenesis ranges from 6.8 to 7.6 as 

methanogen growth rate is greatly reduced below pH 6.6 (Mosey & Fernandes, 1989). Rapid 

hydrolysis of high volatile solids (VS) feedstocks may lead to acidification of a digester and 

the consequent inhibition of methanogenesis (Ward et al., 2008). Naturally acidic or basic 

feedstock can affect pH, and high concentrations of volatile fatty acids (VFAs) will lower pH 

(Jha et al., 2011). Co-digestion and sourcing homogeneous material on a regular basis may 

help to control pH and avoid sudden changes. The addition of an alkaline buffer will also 

help ensure stable performance (Hills & Roberts, 1982; Knol et al., 1978).   
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2.2.2 Ammonia 

Ammonia is essential for the microorganisms involved in the AD process, as well as 

contributing to the stabilization of pH within a digester (De la Rubia et al., 2010). Ammonical 

nitrogen exists in two forms, ammonia ions (NH4
+
) and free ammonia nitrogen (NH3). The 

formation of NH3 is a result of the degradation of proteins and amino acids present in the 

initial feedstock (Bayr et al., 2012; Rao et al., 2008). Higher temperatures produce higher 

concentration of free ammonia (Angelidaki et al., 1993; Bayr et al., 2012). A major factor in 

preventing digester failure is avoiding ammonia inhibition, which endangers the process 

stability (Desloover et al., 2012). Ammonia inhibition leads to reduced methane yields (Borja 

et al., 1996; Nielsen & Angelidaki, 2008; Sossa et al., 2004) by as much as 50% with 

concentrations of ammonia above 5 g N per litre (El Hadj et al., 2009). Conversely, excess 

ammonia has a negative effect on the hydrolysis stage of digestion (PoggiVaraldo et al., 

1997) and free ammonia is highly toxic to methanogens (De la Rubia et al., 2010).  

If the concentration of free ammonia is above a critical level, the operator can induce a 

drop in temperature which will have a positive net result; likewise if ammonia levels are low, 

then an increase in temperature can be induced (Angelidaki & Ahring, 1994). Ammonia 

inhibition is not really an issue with digesters fed cattle manure only. Nevertheless, it can be 

of major concern if co-digesting manure with feedstocks containing high levels of nitrogen, 

such as chicken manure.  If possible, the best option for dealing with feedstock with ammonia 

levels above 5 g N per litre is co-digestion with feedstock of high carbon and low nitrogen, 

e.g. chicken manure with paper waste. If co-digestion is not possible there are a number of 

options available for stripping nitrogen to reduce overall levels (Mousavi et al., 2012) 

including: air stripping (Rao et al., 2008), ultrasound (Wang et al., 2008), electrochemical 

conversion (Lei & Maekawa, 2007), biological denitrification (Wett & Rauch, 2003), and 

microwave radiation (Lin et al., 2009).  

 

2.2.3 Sodium  

Although sodium is essential for bacterial growth (Dimroth & Thomer, 1989), high 

sodium concentrations increase osmotic stress that can result in decreased cell activity and 

cell plasmolysis (Uygur, 2006), leading to inhibition of AD. Research is abundant on the AD 

of high saline feedstocks ranging from tannery industries (Lefebvre et al., 2006), seafood 

processing (Omil et al., 1995) and oil and gas production (Ji et al., 2009). Still, solutions to 
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the problem of inhibitory high levels of sodium are limited, with the addition of grass 

residues shown to be the most cost-effective (and environmentally-friendly) material to 

decrease sodium toxicity (Suwannoppadol et al., 2012). The lack of methods to deal with 

high levels of sodium in certain feedstocks mean that large volumes of methane-rich 

biodegradable resource from the seafood industry is largely unavailable for AD at present due 

to the high saline content, meaning it is disposed of via less efficient ways. 

 

2.2.4 Micronutrients 

The control of the macronutrients carbon, nitrogen, phosphorus and sulphur is widely 

considered essential for efficient digestion. However, there is far less of an appreciation of 

the significance of micronutrients, such as iron, nickel, cobalt, selenium and tungsten. These 

micronutrients are critical for the microorganisms involved in digestion (Takashima & 

Speece, 1990). As of yet, no specific optimal concentrations of micronutrients have been 

determined for efficient digestion and figures quoted in the literature are highly variable 

(Table 2.1). 

 

Table 2.1: Micronutrient requirements for anaerobic digestion. Figures with the units mg/l 

are expressed in terms of wet weight, while quantities with mg/l* are on a dry weight basis. 

Micronutrient Recommended quantity Reference 

Cobalt 0.15 to 0.58 mg/l Lo et al. (2012)  

 3 mg/l* Kayhanian & Rich (1995) 

Nickel 0.801 to 5.4 mg/l Lo et al. (2012)  

 5 to 25 mg/l* Kayhanian & Rich (1995) 

Selenium > 0.1 mg/l* Kayhanian & Rich (1995) 

Tungsten > 0.1 mg/l* Kayhanian & Rich (1995) 

Iron 1000 to 5000 mg/l* Takashima & Speece (1990) 

 

Although microbial populations within AD systems have been well-characterized 

(Nettmann et al., 2008), the relationship between microbial populations and digestion 

performance have not yet been well established (Yue et al., 2013). Whilst manure-fed 

digesters are often very successful, there are a number of problems in relation to the digestion 

of the biodegradable fraction of municipal solid waste due to high protein and fat content, as 

well as possible nutrient deficiencies. One possible explanation may be that although all the 
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macronutrients are present; the micronutrients that exist in manure could well be absent (De 

la Rubia et al., 2010; Banks et al., 2008).  

2.3 Benefits of on-farm anaerobic digestion   

2.3.1 Destruction of weed seeds  

Certain weed seeds are consumed by animals and are then excreted by the animal or are 

spread when raw manure is applied to land. Weeds are a problem for farmers because they 

take up available nutrients that are intended for crops, restrict the growth of the desired crop, 

and have reduced (or no) feed value. Most farmers control weeds through the application of 

chemicals, however, organic farmers are unable to deal with the problem of weeds by 

herbicide application. It has been demonstrated that a number of weed seeds are killed during 

AD (Jeyanayagam & Collins, 1984); especially at thermophilic temperatures (Westerman et 

al., 2012b). 

Digester type is also significant in regards to weed seed destruction, with greater 

survival probability of Abutilon theophrasti (velvet weed) and Malva neglecta (common 

mallow) in batch digesters, while Persicaria lapathifolium (Polygonum) (curlytop knotweed) 

survives better in CSTR digesters (Westerman et al., 2012a).  Greater survival of weed 

species (above 50%) are seen with hard seeds during mesophilic digestion compared to those 

that lack a water-impermeable layer and freshly harvested seeds (Westerman et al., 2012b). 

Studies have shown Rumex obtusifolius (broad leaf dock) and Lycopersicon lycoperscium 

(tomato) seeds to be completely destroyed after 14 days o thermophilic digestion (Engeli et 

al., 1993). Westerman et al. (2012a) reported seed destruction after 2 days for Abutilon 

theophrasti (velvetleaf), 5.8 days for Malva neglecta (common mallow), 19.7 days for 

Chenopodium album (fat hen) and 1.2–9.1 days for Fallopia convolvulus (wild buckweed) 

during AD.  

 

2.3.2 Valuable by-products  

Land-application of digestate helps close the nutrient cycle and decrease dependency on 

synthetic fertilizer. However, it is not always possible to apply digestate to land within the 

vicinity of the AD unit.  A number of factors may hinder the application of digestate to land, 

ranging from the feedstock (e.g. slaughterhouse waste) to environmental regulations (e.g. 

nitrate vulnerable zones).  
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If digestate cannot be applied to local land, the best economic and environmental use of 

digestate should be encouraged. Separation of the digestate is paramount, as it is easier to 

develop a market for the separated products, liquid digestate and dry fibre digestate. Liquid 

digestate is the most nutrient-rich component of the digestate and can be successfully used as 

a nutrient growth medium for algae, which may then be used for biofuel production in 

specialised set-ups (Chen et al., 2012; Wilkie & Mulbry, 2002). However, finding a market 

for the dry fibre fraction, with its lower nutrient value, can be difficult. Some current 

examples are for animal bedding to replace straw or as a peat replacement; however, the 

economic returns on these can be very low. New research has forecast both an interesting and 

potentially profitable market in the conversion of dry fibre for use in ethanol production 

(Teater et al., 2011). Digested AD fibre has more cellulose (32%) and less hemicelluloses 

(11%) than undigested cattle manure (Yue et al., 2010), making it very useful product for 

ethanol production. Yue et al. (2010) illustrated that the 109 million dry tonnes of solid cattle 

manure available annually in the US could generate 57 million tonnes of AD dry fibre and 

produce more than 6.32 billion litres of ethanol, which would equate to approximately 111 

litres of ethanol per tonne of dry fibre. If these figures are applied to the 35 million dry tonnes 

of solid cattle manure produced yearly in the UK, there is the potential for 1,844 million litres 

of ethanol.  

 

2.3.3 Greenhouse gas reduction  

The AD of animal manure has been shown to reduce GHG emissions as it replaces 

fossil fuels for energy conversion (De Vries et al., 2012) and the production of synthetic 

fertilizer. If off-farm biodegradable material is to be imported onto farm AD systems, such 

economic and environmental benefits must be weighed against costs (e.g. emissions from 

transport of feedstock) so that there is a total net reduction in GHG emissions. For a 1 MW 

digester, it was found that with high energy efficiency and resource recovery, an operating 

distance of 192 km could yield a 35% carbon dioxide (CO2) saving, and a 50% CO2 saving 

was possible at a radius of 70 km (Capponi et al., 2012). In addition, there is a possible 90% 

resource saving when comparing bio-based energy to conventionally produced electricity (De 

Meester et al., 2012), again best case scenario.  
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2.4 Issues that hinder the uptake of Anaerobic Digestion 

2.4.1 Lignin  

If lignocelluloses-abundant materials (such as straw from cereal production) could be 

digested, this would dramatically increase the potential feedstock to AD units (Zeng et al., 

2007). However, a high lignin concentration reduces the biodegradability of certain types of 

biomass, slowing the hydrolysis step of AD and limiting the production of methane (Frigon 

& Guiot, 2010). The complex lignocelluloses structure limits the accessibility of the sugars in 

cellulose and hemicelluloses, impacting on the methanogenesis stage (Nkemka & Murto, 

2013). Hence, pre-treatment of lignin material is needed to gain access to the sugars bound in 

lignocelluloses-abundant feedstocks (Alvira et al., 2010). One method used to extract these 

sugars is steam pre-treatment in the presence of dilute acid, which results in efficient 

lignocelluloses hydrolysis and sterilisation; however, the building and operation of a steam 

pre-treatment unit is expensive (Nkemka & Murto, 2013). A vast majority of the excess heat 

is dumped from on-farm AD units, due to no use for the heat. Therefore if this dumped heat 

was used for steam pre-treatment this would substantially reduce the energy input 

requirement (Ljunggren & Zacchi, 2010).  

 

2.4.2 Hydrogen sulphide (H2S) within biogas 

 Sulphur is an important nutrient for successful AD, and the correct carbon to sulphur 

ratio (C:S) should be around 40:1, to help limit the concentration of H2S in raw biogas (Peu et 

al., 2012). Hydrogen sulphide is pungent as well as toxic, and can damage equipment such as 

combined heat and power engines by causing corrosion. To prolong the working life of such 

machinery, the H2S concentration of biogas is recommended to be lower than 500 ppm (Bayr 

et al., 2012; Peu et al., 2012; Ryckebosch et al., 2011). There are numerous measures to 

lower H2S in biogas. One such method is the addition of chemical compounds such as metal 

ions, while another is the introduction of inhibitor producing microorganisms, or sulphide 

scavengers (Bayr et al., 2012; Isa & Anderson, 2005). Alternative approaches to chemicals 

include the creation of micro-aerobic conditions in the gas storage facility by adding 2–6% 

air to the biogas (Peu et al., 2012).  Oxygen will encourage the growth of chemoautotroph 

microorganisms, which oxidises H2S into elemental S and SO4
2-

 (Diaz et al., 2010). Another 

option is to allow small amounts of oxygen under controlled conditions into the roof of the 

digester (i.e. still keeping the digester anaerobic), thus as the H2S converts to S and SO4
2-

, it 
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will fall back into the tank and be extracted with the digestate, allowing the sulphate to be 

applied to land. The amount of oxygen added to the biogas should be carefully controlled and 

limited to prevent explosive gas mixtures and biogas dilution to ensure satisfactory biogas 

combustion (Rahmouni et al., 2003).  

 

2.4.3 Problems with the uptake of on-farm Anaerobic Digestion   

In a recent study of UK farmers, it was stated that the most common barrier to uptake 

and operation of on-farm AD besides capital funding and planning permission, were fears 

about technical problems such as generators and feedstock pumps not working properly 

(Bywater, 2011). Planning permission can be difficult to obtain due to public perception, 

legal barriers about biomass resources allowable for digestion etc. Further consultation 

between farmers groups, AD industry and planning authorities is required to make this part of 

the AD process less problematic. Unlike other renewable energies, AD is a live biological 

process and thus not simply a “plug in and wait” technology. Other issues that are of concern 

to farmers is an increase in vermin due to storage of organic material, but this can be reduced 

dramatically with proper management, and is only of real concern if biodegradable material 

(particularly food waste) is brought onto the farm for digestion. From discussion with farmers 

who have applied and/or installed an AD unit, they report that the two main concerns they 

faced from the local community were in relation to gas explosion and excess road traffic. 

 

2.5 Private and public investment in AD  

2.5.1 Farmer’s decision to invest in AD 

Farmers considering investing in AD must be aware of the returns from the digestion of 

different feedstock.  Sourcing adequate amounts of the right feedstock/s is paramount. Table 

2.2 reports the potential biogas yield from the manure of different farm animals and the 

amount of animals required to produce a tonne of manure for digestion. Anaerobic digestion 

is an expensive technology and therefore farmers must know what the rate of return on the 

investment will be before proceeding with a project. 
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Table 2.2: Potential biogas output from biomass resources generated by livestock agriculture. 

Source: (EPA, 2002) 

Feedstock No. of animals to 

produce 1 tonne/day 

Biogas yield  

(m
3
/tonne) 

Energy value  

(MJ/m
3
 biogas) 

Cattle manure 20-40 25 23-25 

Pig manure 250-300 26 21-25 

Laying hen litter 8,000-9,000 90-150 23-27 

Broiler manure 10,000-15,000 50-100 21-23 

Note: Figures should be regarded as indicative values only  

 

As well as revenue from energy sales, AD offers additional private savings that are 

often overlooked by farmers in their investment decision and are neither well represented in 

current literature. Figure 2.1 provides a visual representation of the private benefits that a 

farmer may receive from the introduction of AD to their farming system. Digestate has the 

potential to reduce the quantity of synthetic fertilizer required due to higher crop yields 

following application of digestate compared to undigested manure (Walsh et al., 2012); and 

the AD process kills weed seeds (Westerman et al., 2012a; Westerman et al., 2012b) hence 

may reduce the costs of herbicide use. Labour cost is the only factor that has a negative 

economic effect for a farmer who adopts AD technology in that it will require frequent (or if 

large, continuous) labour for running and upkeep of the digesters; however many modern 

systems work to a high degree of automation.  

 

 

 

 

 

 

 

 

 



27 

 

 

Figure 2.1: Private benefits of on-farm AD to the farmer. 

 

2.5.2 Government investment in anaerobic digestion 

Like all renewable energy technologies, AD is supported by the UK government via a 

Feed-In-Tariff (FIT) or Renewable Obligation Certificates (ROC) payment for the production 

of renewable electricity on top of what the suppler may receive from a utility company for the 

sale of electricity to the grid. A similar model is applied in over 75 jurisdictions around the 

world (Kim & Lee, 2012). However, from an environmental economics standpoint the 

government incentive should theoretically cover all the non-market or social benefits brought 

about by the introduction of the technology that is being subsidised. Non-market simply 

means that the benefits are not traded in a conventional market place, with buyers and sellers. 

Like all industries, livestock agriculture suffers from negative externalities associated with 

milk and meat production. If AD can reduce these negatives it should be financially 

supported for the additional benefits above replacement of fossil fuel.  

Figure 2.2 separates the reported environmental benefits of AD into water and GHG 

benefits, with the baseline being no pollution. Anaerobic digestion effectively destroys 

pathogens (Sahlstrom, 2003; Saunders et al., 2012) and hence if greater volumes of livestock 

biomass resources were treated via AD, this may lead to reduced numbers of water-borne 

infections and the associated costs to the economy. Recent research suggests that there may 

be less potential for NO3
-
 leaching from the land-application of liquid digestate compared to 

synthetic fertilizer (Walsh et al., 2012). BOD and chemical oxygen demand (COD) are 
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dramatically reduced during digestion (Anon, 2003; Clemens et al., 2006), thus even if 

digestate were to contaminate waterways, the effects of BOD and COD would be reduced.  

 

 

Figure 2.2: Social benefits of AD to farmers and the wider community 

 

The other main environmental positive externality associated with the introduction of 

AD is the reduction in GHG emissions from livestock sector of agriculture. As can be seen in 

Fig 2.2, there are four variables affected in relation to the reduction of GHG: methane (CH4) 

from cattle, renewable energy, CO2 from fertilizer manufacture, and reduced use of 

chemicals. CH4 is produced in the rumen of ruminants as they digest their food. Dairy cattle 

are the largest emitters of methane, emitting approximately 100 kg CH4 via enteric processes 

and 15.9 kg CH4 through manure management per annum, with non-dairy cattle producing 

approximately half that (Hynes et al., 2009). As methane has 21 times the global warming 

potential of CO2 (IPCC, 2007) any reduction can have significant positive impacts. During 

AD, the methane in the manure is captured and thus is prevented from escaping to the 

atmosphere, under normal storage conditions. The extra bonus of this is the second box of the 

nest, “Renewable Energy”. The methane that is captured is used as a source of electricity and 

heat production, displacing fossil fuels. Further, if AD is implemented on-farm and crop 

yields are higher than undigested manure, the decreased need for synthetic fertilizer to meet 

crop requirements and herbicide application discussed previously would reduce the GHG 

emissions that occur during the production of such products.  
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2.6 Conclusions 

AD of any biodegradable material is considered an effective and environmentally 

friendly way to obtain the maximum use value from biodegradable commodities that may 

often otherwise be deemed as waste products with limited value. However, AD is an 

inherently complex biological process. As such, there is a need to increase our understanding 

of the factors that govern its effectiveness; be they biological, chemical, or technical 

parameters. This review has highlighted some of the knowledge gaps that need to be 

addressed. It has also highlighted the need for farmers and policy-makers to consider the 

wider non-market environmental benefits of AD both to the farmer at a private level, and the 

general public at a social level. This suggests that AD may at present be an undervalued 

technology that should be prioritised for development. 
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3.1 Experimental design of the agronomic trials  

3.1.1 Chapters 4 and 6 

There are two agronomy-based chapters in this thesis, chapters 4 and 6. Chapter 4 was a 

controlled greenhouse pot experiment, while chapter 6 was a three year field trial experiment. 

In both cases, liquid digestate (LD), undigested slurry (US), and two types of synthetic 

fertilizer (N and NPK) were applied to pots and field plots, respectively, at a rate equivalent 

to 100 kg N ha
-1

 of each fertilizer type. To represent farmer practice, the first harvest was 

undertaken six weeks after the initial application. A second fertilizer addition of 50 kg N ha
-1

 

was then applied one week post the first harvest of that year. The application rate for each 

was normalised for nitrogen, based on mineral N (ammonium N) values and total nitrogen 

content for the synthetic fertilizers. There were three harvests in total over one growing 

season in the work detailed in chapter 4; while chapter 6 had two harvests every year for 

three years. 

For the pot trial experiment (chapter 4 and 5) soil (Eutric Cambisol) was collected from 

a pasture-based system at a conventional (non-organic) farm (CS) (Bangor University’s 

Henfaes Research Station; 53°14’05’’N, 4°00’50’’W) and an organic farm (OS) (Wrexham; 

53°08’16”N, 2°90’48”W). The soil was collected to a depth of 10 cm, passed through an 8 

mm sieve and analysed in the laboratory within 24 h of collection. OS was collected from an 

organic dairy farm (for the past 12 years) under permanent pasture (Lolium perenne L., 

Trifolium repens L.). CS was collected from a conventionally managed sheep farm under 

permanent pasture. The experimental field site was located on the same farm as the 

conventional soil used in the pot trial (Bangor University’s Henfaes Research Station; 

53°14’05’’N, 4°00’50’’W). The sward contained a mixture of perennial rye grass (Lolium 

perenne L.) and white clover (Trifolium repens, L.) and was previously subject to sheep 

grazing (ca. 15 ewes ha
-1

).  

For both experimental chapters, undigested slurry (US) was collected from an organic 

dairy farm from cows fed 50% grass silage and 50% whole crop silage (barley and peas). 

Added to the silage in concentrated form was rolled wheat, rolled beans, maize flour and soya 

expeller (concentrate to silage ratio was 20:80 on a dry matter basis). Digestate, in liquid 

form (LD) and dry fibre form (DFD) was collected from the AD unit on the same farm. The 

AD unit is a 1000 m
3
 mesophilic (38 °C) system, continually stirred digester with a retention 

time of 25 days and fed with mainly cow slurry, and the US was bedded on a mixture of 
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paper and sawdust. The digestate was separated mechanically after leaving the digester and 

only the liquid fraction was used in the pot trial experiment, will both LD and DFD were used 

in the field trial. All samples were analysed within 24 h of collection. 

US, and LD generated from AD of the slurry were collected from a dairy farm located 

in Wrexham, NE Wales. The US was collected directly from a cattle housing shed while the 

LD was collected from a 1000 m
3
 mesophilic (38 °C), continually-stirred tank reactor 

(CSTR) with a retention time of 25 d. Mainly on-farm cattle slurry had been fed as feedstock 

into the CSTR for the previous six months. After digestion, the digestate was mechanically 

separated into liquid and dry fibre fractions, of which only the liquid fraction was collected 

for use in the experiment.  

 

3.1.2 Pot Trial (chapter 4 and 5) 

A fully randomized pot trial experiment (n = 100) was set up in a greenhouse under 

controlled conditions with mean weekly temperature of 23 ± 3 °C. Pots of average size for 

pot experiments were used (150 mm diameter; 1.2 l volume), and were filled with 1.3 kg of 

either OS or CS (dry bulk density, OS: 0.87 g cm
-1

 and CS: 0.85 g cm
-1

) and fitted with 

Rhizon® suction samplers (Rhizosphere Research Products, Wageningen, The Netherlands) 

at approximately 100 mm depth for collection of soil solution. Soil moisture was maintained 

at 70% field capacity throughout the experiment by watering up to a known weight for each 

pot. Half the pots for each soil type were seeded with perennial ryegrass only (Lolium 

perenne L.), and the other half with a mixture of perennial ryegrass and white clover 

(Trifolium repens L.) at a rate equivalent to 40 kg of grass ha
-1

 and 12 kg of clover ha
-1

 

(Emorsgate Seeds, Norfolk, UK). The final setup therefore consisted of four sub-groups (a) 

organic soil Lolium perenne, (b) organic soil Lolium perenne-Trifolium repens mix (c) 

conventional soil Lolium perenne, (d) conventional soil Lolium perenne-Trifolium repens 

mix, with five fertilizer treatments and five replicates for each treatment (totalling 4 × 5 × 5 = 

100 pots). The five fertilizer treatments consisted of (i) an unamended control (C), (ii) 

undigested slurry (US), (iii) liquid digestate (LD), (iv) mineral N (NH4NO3) fertilizer 

(GrowHow Ltd., Cheshire, UK), and (v) a mineral NPK fertilizer (N:P:K = 21:8:11) (Yara 

Ltd., Lincolnshire, UK). Pots were regularly re-randomized during the trial.  

After the grass and grass/clover mix had established (4 weeks after planting), 100 kg N 

ha
-1 

was applied to all treatments except the control, and this event defined the initiation of 
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the experiment (time = 0). After 5 weeks (W5) the first herbage harvest was taken as well as 

soil samples for analysis of the decomposer community. One week later, a further 50 kg N ha
-

1
 was applied, and on week 11 (W11) the second herbage harvest was taken and soil collected 

for analyses. The final herbage harvest and soil samples were collected on week 16 (W16). 

At the time of each harvest, soil samples were collected from the top 5 cm of three randomly 

selected pots. These samples were homogenised and combined to a composite sample that 

was used to estimate bacterial and fungal growth. For logistical reasons, four randomly 

selected replicates out of the total five were used for the microbial analyses at week 16.  

 

3.1.3 Field Trial (chapter 6) 

Five different fertilizer treatments were applied to 2 × 2 m plots (n = 4), organised in a 

randomized design. These included: a no fertilizer control (C); undigested cow slurry (US); 

the liquid fraction of anaerobically digested cow slurry (liquid digestate, LD); the dry fibre 

fraction of anaerobically digested cow slurry (dry fibre digestate, DFD); synthetic N 34.5% 

fertilizer (N; ammonium nitrate) and a synthetic NPK 21.8.11 (NPK) compound fertilizer. 

Over a three year period, six above-ground vegetation harvests were performed on the plots 

with two harvests taken per year (May-June and August-September). Weather patterns were 

recorded over the trial period and total monthly rainfall and mean monthly temperature. 

With the exception of the first harvest, the harvested material was manually separated 

to determine the proportion of grass and clover in the sward. Only the plant biomass within 

the central 1 m
2
 of the plots was quantitatively evaluated to avoid potential edge effects. Soil 

samples were taken from each plot at the very beginning of the experiment, after the third 

harvest and again at the end of the final harvest in year 3. All harvested plant material was 

weighed wet, and then a 300 g subsample was removed, dried at 85 °C for 48 h, and 

reweighed. Crop nutrient analysis was undertaken in both harvests in year three of the trial to 

determine shoot total nitrogen and carbon content. Protein content was calculated by 

multiplying the nitrogen reading by 6.25, which is the industry standard, however, this tends 

to overestimate the true protein of feedstocks (Sriperm et al., 2011). Digestibility was 

calculated using the MAD fibre content of each sample (Yara, 2013). 
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3.1.3.1 Soil and fertilizer nutrient analysis 

The same methods were practiced throughout the duration of the experiments for all 

nutrient analyses of soil and organic fertilizer. These methods are proven over many years 

and are the ones employed by the whole lab group. Moisture content was determined after 

drying samples at 105 °C for 24 h. Nutrients from soil and fertilizer were extracted in 

deionised water at a ratio of 1:5 (w/v). Although KCl extraction is often used for extraction of 

soil samples, deionised water was used at the very start of the research work for all extraction 

and this was done throughout for consistency. Samples were shaken (250 rev min
-1

, 1 h, 20 

°C), centrifuged for 15 min (4,000 g), filtered (Whatman no. 42), and the supernatant 

recovered for analysis. NO3
-
 NH4

+
 and P were determined colorimetrically (BioTek®, 

Vermont, NE) using the methods of Mulvaney (1996), Miranda et al. (2001), and Murphy & 

Riley (1962), respectively. Major cations (K
+
, Na

+
 and Ca

2+
) were analysed using a model 

410 flame photometer (Sherwood Scientific, Cambridge, UK). Total organic carbon and 

nitrogen were measured using a CHN2000 elemental analyzer (Leco Corp., St Joseph, MI) 

and dissolved organic carbon and dissolved nitrogen were measured using a TOC-V CHS 

analyzer (Shimadzu Corp., Kyoto, Japan). Undiluted slurry and digestate were used for the 

determination of electrical conductivity (EC; Jenway 4010 EC meter) and pH (Hanna 

Instruments pH 209 pH meter) whereas a 1:5 (soil: water, w/v) extract was used for soil.  

 

3.1.3.2 Nutrient levels in soil solution 

Sterile vacuum tubes were attached for 24 h to the Rhizon® samplers at weekly 

intervals throughout the experiment, one hour after a watering event. Volumes of soil 

solution collected were subsequently measured and concentrations of NO3
-
, NH4

+
 and P 

determined. Nutrient sampling was stopped ten weeks post the first fertilizer application as 

after this time quantities of NO3
-
, NH4

+
 and P in soil solution were all below detection levels 

(< 0.1 mg l
-1

). These data were pooled so that mean concentrations of nutrients in soil 

solution could be determined. 

 



44 

 

3.2 Microbial analyses (chapter 5) 

3.2.1 Bacterial growth 

Bacterial growth was estimated using leucine (Leu; Kirchman et al., 1985) 

incorporation in bacteria extracted from soil using the homogenization / centrifugation 

technique  (Bååth, 1994) with modifications (Rousk & Baath, 2011) (Bååth et al., 2001). 

Briefly, 2 µl of radiolabelled Leu ([
3
H]Leu, 37 MBq ml

-1
, 5.74 TBq mmol

-1
, Perkin Elmer, 

UK) combined with non-labelled Leu was added to each tube, resulting in 275 nM Leu in the 

bacterial suspensions. The amount of Leu incorporated into extracted bacteria per h and g soil 

was used as a measure of bacterial growth. Although this is a relatively new way of 

determining bacterial growth in terrestrial systems, Dr. Johannes Rousk has co-authored 

numerous published papers on the method. We had the chance to work with Dr. Rousk in this 

area and capitalize on the novel opportunity to apply this method into this subject area. 

 

3.2.2 Fungal growth and biomass 

Fungal growth was assessed using the acetate incorporation into ergosterol method 

(Newell and Fallon 1991) adapted for soil (Bååth, 2001) with modifications (Rousk & Baath, 

2011; Rousk et al., 2009). Briefly, 1-[
14

C]acetic acid (sodium salt, 7.4 MBq ml
-1

,
 
2.04 GBq 

mmol
-1

, Perkin Elmer, UK) combined with unlabelled sodium acetate resulting in a final 

acetate concentration of 220 µM was added to a soil solution and incubated for 4 h at 22 °C 

without light. Ergosterol was then extracted, separated and quantified using HPLC equipped 

with a UV detector (Rousk & Baath, 2007). The fungal biomass was estimated assuming 5 

mg ergosterol g
-1

 fungal biomass (Joergensen, 2000) (Ruzicka et al., 2000). The eluent 

containing the ergosterol peak was collected and the amount of incorporated radioactivity 

determined. The amount of acetate (Ac) incorporated into fungal ergosterol (pmol h
-1 

g
-1

 soil) 

was used as a measure of fungal growth. Again, Dr. Rousk is well renowned in the literature 

for his research using this technique to look at fungal growth and has proven its validity 

through the publication of over 30 research papers.  
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3.3 Plant yield and GHG analysis 

3.3.1 Plant yield analysis (chapter 3 and 6) 

In the pot trial, three herbage harvests were taken at weeks 5, 11 and 16 after the first 

application of fertilizer. The shoots were harvested to 2 cm above the soil surface. After 

harvesting, all samples were weighed fresh, dried for 48 hours at 85 °C, and then reweighed. 

The first harvest was ground to determine shoot total nitrogen and carbon content; protein 

content was calculated by multiplying the nitrogen reading by 6.25 and digestibility was 

tested as described in Omed et al. (1989). In the field experiment, two harvests were taken 

every year; samples were over dried as in the pot trial. For analysis, all harvests from harvest 

2 onwards were manually separated into grass and clover contingent, and a 300 g subsample 

was oven dried for further analysis. C and N were analysed in the same manner as soil and 

fertilizer, while in the final year digestibility was determined using the MAD approach (Yara, 

2013). 

3.3.2 Predicted ammonia emissions and nitrate leaching (chapter 6) 

Fertilizer application rate in tonnes, dry matter content, total nitrogen and total NH4
+
 of 

the undigested slurry, liquid digestate and dry fibre digestate were inputted into the computer 

programme MANNER v4.0 (Chambers et al., 1999). MANNER is a software application that 

allows the user to determine the potential N volatilisation and leaching of organic fertilizer 

for different regions of the UK. A 3-year average of the fertilizer value (nutrient content) was 

used (rather than three individual years) to determine what the potential ammonia emission 

reduction and leaching may have been from all three organic fertilizers over the experimental 

period.  

 

3.4 Statistical analyses 

3.4.1 Chapter 4, 5 and 6 

There were two statistical analyses programs used in this thesis. Treatment differences 

in the microbial variables and the plant yield data were compared by 3-way ANOVAs (JMP 

7.0 for Mac, SAS Institute Inc., Cary, NC, USA), using soil (organic or conventional), crop 

(grass or grass/clover) and fertilizer (control, US, LD, N, and NPK) as fixed factors. Tukey’s 

HSD pair-wise comparisons (p < 0.05) were used to determine differences between fertilizer 

responses, in chapter 5, as Dr. Rousk was not familiar with SPSS v. 18 and thus a statistical 
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package was chosen that all authors were comfortable with. In all other chapters, SPSS v. 18 

(IBM UK Ltd., Hampshire, UK) was used. A homoscedastic two-tailed T-test was used to 

determine differences between soils and between the two organic fertilizers for nutrient 

content. For analysis of crop yield data, total yield from all three harvests was used and 

subject firstly to a one-way ANOVA to determine differences within each sub-group, with 

treatment as the factor. Then a 3-way ANOVA was performed, using soil (organic or 

conventional), crop (grass or grass/clover) and fertilizer (control, US, LD, N, and NPK) as 

fixed factors, to determine if results were continuous for all and individual subgroups. The 

same analysis was used for nutrients in soil solution with data for mean weekly 

concentrations of nutrients, for a 10 week period. Nutrients in soil solution were also subject 

to repeated measures ANOVA to determine if difference existed in potential nutrient loss on 

a weekly basis. Post-hoc tests were carried out on all ANOVAs using Tukey HSD test at the 

level p < 0.05. For the crop yield data in chapter 6, total yield from all harvests were used and 

subject firstly to a one-way ANOVA to determine differences within each sub-group, with 

treatment as the factor. The same analysis was used for carbon, nitrogen and digestibility 

tests. Post-hoc tests were carried out on all ANOVAs using Tukey HSD test at the level (p < 

0.05).  

 

3.5 Economic valuation (chapter 7) 

There are a number of economic tools that may be used for valuing environmental non-

market benefits. These range from hedonic valuation, travel cost method, willingness to pay 

and contingent valuation.  Hedonic valuation is mainly used for odour valuation, and is where 

homes in a certain region with the same attributes (i.e. number of bathrooms etc.) are 

compared in price, with the only difference being the presence of foul odour at one of the 

locations. Travel cost method, is best explained by an example. If a person travels 1 hour to 

go fishing, then the cost of fuel and potentially lost wages etc. can be added together to work 

out the value of a clean lake/river with fish. Contingent valuation or as often referred to, 

stated preference, is probably the most controversial of all techniques as the researcher asks 

the participant how much something is worth to them in monetary value; and these valuations 

may be skewed by people’s perceptions and ideologies.  

Economic valuations are increasingly used as a way of elucidating the relative weight 

of different ecosystem services. It allows the relative benefits (economic generation or 
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savings) and disbenefits (costs) to be weighed so that the net benefits of a system can be 

valued economically. In the context of AD, although the technology has often been proposed 

to offer a number of benefits, these have not seemingly been quantified economically. As a 

result, AD may thus be undervalued and the full potential of the technology unrecognised. 

The work carried out in chapter 7 attempted for the first time to collate data from different 

studies that have used the aforementioned valuation tools to estimate the value that on-farm 

AD offers. In difference to conventional approaches, the chapter took a wide angle by 

attempting to value the wider non-market benefits of the technology and extrapolate country-

wide. It was felt that this approach would help determine whether government incentives for 

AD systems are proportionate to the benefits that AD could deliver.   

 

3.5.1 Valuation tools used 

There were seven variables valued in this thesis: GHG reduction; synthetic fertilizer 

replacement; nutrient leaching; biological and chemical oxygen demand reduction; pathogen 

reduction and odour. The feedstock was limited to livestock manure so as to focus on on-farm 

AD. A number of different valuation tools were used to arrive at the final non-market value. 

In each section, the non-market benefit of AD was reviewed and the available data used to 

estimate its value. Data were predominantly obtained from peer-reviewed sources, with 

additional UK-specific data from government organisations. The economic value was 

estimated for each per m
3
 of livestock manure digested (as is standard in agriculture, 1 m

3
 of 

manure/digestate was treated as equivalent to 1 tonne), relative to land-spreading that manure 

in undigested form on fields, which is the current practice. Where possible, we break down 

the non-market benefits from the introduction of AD to an increase in the current FIT rate per 

kWh of electricity produced. GHG reduction can be valued using carbon market prices, such 

as the European Union Emissions Trading Scheme (EU ETS), abatement costs, or the 

estimated social damage cost of emitting CO2. The average EU ETS C prices for 2011 was 

£13 per tonne, with marginal abatement cost for the UK estimated to be £52 per tonne of C 

abated (DECC, 2011). This is below the mean of approximately £60 per tonne reported by 

Tol (2005) from peer-reviewed journals (February 2013 exchange rate). As there are three 

figures for per tonne of CO2e, the highest (£60; Tol, 2005) and lowest (£13 EU ETS) figures 

were both applied to the available scientific data to give a range of values. All figures for 

GHG emissions were arrived at using either the Tol (2005) or EU ETS values.  
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To determine the montary beneftis from potential reduction in leaching, Pretty et al. 

(2003) estimates were used. They determined that the annual cost of N leaching to waterways 

in the UK is between $105m – $160m. Included in this valuation is $7.17m – $11.19m for 

GHG associated with eutrophication, though in order to prevent double counting, the GHG 

associated figure was subtracted, thus giving a new value of $98 – $148m. At the exchange 

rate that Pretty (2003) used, and converting to today’s values, £90 – £134m (2012 £) was the 

cost attributed to N leaching. For damage to waterways, cost analysis are the most favourable 

tool for valuation, with the most up to date available source for the UK being O'Neill (2007). 

Biological oxygen demand reductions were determined from O’Neill (2007), who estimated 

that between £4m – £5m (in 2012 £) in damage costs can be attributed to BOD in UK 

waterways. The rationale behind these values are not clear and for the analysis in chapter 7, 

⅓ of the damage cost associated with “informal recreation from poor water quality” from 

O'Neill (2007) were used for assumed damage caused by BOD.  

To place values on potential pathogen reduction, contingent valuation modelling was 

used. Eftec (2002) reported a total UK value of £79m (2012 £) for a 1% chance of each 

person avoiding stomach upset due to poor bathing water quality from faecal contamination. 

Due to uncertainty of what percentage of pathogens to waterways are caused by animal 

manure, a low value of 50% of pathogens in bathing water emanating from animal manure 

and a high value of 90% were chosen.  

Finally, odour reduction required the development of an equation to place values on 

odour reduction. The equation used for this can be seen below. 

 

Equation 3.1 The increased value per household by the introduction of AD to reduce the 

odour from animal manure stores.   

 

Eq 1         increased value = (D-1) × H ×X × Y 

Where  

D = average number of households in area equal to ½ mile radius from farm minus the 

farmer’s property as an increase in the farmer’s property is a private benefit, and not a public 

benefit. 

H = average house prices within the locality of the manure storage facility.  

X = the percentage drop in house prices associated with odour 

Y = the percentage drop in odour 



49 

 

3.6 References 

Bååth, E. 1994. Measurement of protein-synthesis by soil bacterial assemblages with the 

leucine incorporation technique. Biology and Fertility of Soils, 17(2), 147-153. 

Bååth, E. 2001. Estimation of fungal growth rates in soil using C-14-acetate incorporation 

into ergosterol. Soil Biology & Biochemistry, 33(14), 2011-2018. 

Bååth, E., Pettersson, M., Söderberg, K.H. 2001. Adaptation of a rapid and economical 

microcentrifugation method to measure thymidine and leucine incorporation by soil 

bacteria. Biology & Biochemistry, 33(11), 1571-1574. 

Chambers, B.J., Lord, E.I., Nicholson, F.A., Smith, K.A. 1999. Predicting nitrogen 

avaliability and losses following application of organic manures to arable land: 

MANNER, Soil Use and Management, 15, 137-143. 

DECC. 2011. A brief guide to the carbon valuation methodology for UK policy apprisal, 

(Ed.) pp. 7. 

Eftec. 2002. Valuation of Benefits to Engladn and Wales of a revised bathing water Quality 

directive and other beach characteristics using the choice experiment methology. in: 

by: Econoimics fro the environment Consultancy Ltd, (Ed.) F.a.R.A. Department for 

Environment. London, pp. 97. 

Joergensen, R.G. 2000. Ergosterol and microbial biomass in the rhizosphere of grassland 

soils. Soil Biology & Biochemistry, 32(5), 647-652. 

Miranda, K.M., Espey, M.G., Wink, D.A. 2001. A rapid, simple spectrophotometric method 

for simultaneous detection of nitrate and nitrite. Nitric Oxide-Biology and Chemistry, 

5(1), 62-71. 

Mulvaney, R.L. 1996. Nitrogen - inorganic forms. In Methods of Soil Analysis. Part 3. 

Chemical Methods (D.L. Sparks Ed.). SSSA, Madison, WI, USA, pp. 1123-1184. 

Murphy, J., Riley, I.P. 1962. A modified single solution method for the determination of 

phosphate in natural waters, Vol. 27, Anal. Chim. Acta., pp. 31-36. 

Newell, S.Y., Fallon, R.D. 1991. Towards a method for measuring instantaneous fungal 

growth-rates in field samples. Ecology, 72(5), 1547-1559. 

O'Neill, D. 2007. The Total External Environmental Costs and Benefits of Agriculture in the 

Uk.   http://www.environment-agency.gov.uk/static/documents/Research/costs_ 

            benefitapr07_1749472.pdf  

http://www.environment-agency.gov.uk/static/documents/Research/costs_


50 

 

Omed, H.M., Axford, R.F.E., Chamberlain, A.G., Givens, D.I. 1989. A comparsion of 3 

laboratory techniques for the extimation of the digestibility of feedstuffs for 

ruminants. Journal of Agricultural Science, 113, 35-39. 

Pretty, J.N., Mason, C.F., Nedwell, D.B., Hine, R.E., Leaf, S., Dils, R. 2003. Environmental 

costs of freshwater eutrophication in England and Wales. Environmental Science & 

Technology, 37(2), 201-208. 

Rousk, J., Baath, E. 2007. Fungal and bacterial growth in soil with plant materials of different 

C/N ratios. FEMS Microbiology Ecology, 62(3), 258-267. 

Rousk, J., Baath, E. 2011. Growth of saprotrophic fungi and bacteria in soil. FEMS 

Microbiology Ecology, 78(1), 17-30. 

Rousk, J., Brookes, P.C., Baath, E. 2009. Contrasting Soil pH Effects on Fungal and Bacterial 

Growth Suggest Functional Redundancy in Carbon Mineralization. Applied and 

Environmental Microbiology, 75(6), 1589-1596. 

Ruzicka, S., Edgerton, D., Norman, M., Hill, T. 2000. The utility of ergosterol as a 

bioindicator for fungi in temperate soils. Soil Biology & Biochemistry, 32(7), 989-1005. 

Sriperm, N., Pesti, G.M., Tillman, P.B. 2011. Evaluation of the fixed nitrogen-to-protein 

(N:P) conversion factor (6.25) versus ingredient specific N:P conversion factors in 

feedstuffs. Journal of the Science of Food and Agriculture, 91(7), 1182-1186. 

Tol, R.S.J. 2005. The marginal damage costs of carbon dioxide emissions: an assessment of 

the uncertainties. Energy Policy, 33(16), 2064-2074. 

Yara UK Limited, 2013.  Harvest House, Europarc, Grimsby, N E Lincolnshire, DN37 9TZ. 

 

 

 

 

 

 



51 

 

 

 

Chapter 4 
 

 

 

 

Replacing inorganic fertilizer with anaerobic digestate can 

maintain agricultural productivity at less environmental 

cost 

 

 

 

J.J. Walsh, D.L. Jones, G. Edwards-Jones, A.P. Williams
* 

School of Environment, Natural Resources & Geography, College of Natural Sciences, 

Bangor University, Gwynedd, LL57 2UW, UK 

 

* Corresponding author. Tel.: +441248 382637; fax: +44 1248 354997. 

E-mail address: prysor.williams@bangor.ac.uk (A.P. Williams) 

 

 

 

 

 

 

 

 



52 

 

 

 

 

Author contribution 

 

Replacing inorganic fertilizer with anaerobic digestate 

may maintain agricultural productivity at less 

environmental cost 
 

 

 

Published: Walsh, J.J., Jones, D.L., 
†
Edwards-Jones, G., Williams, A.P., 2012. Replacing 

inorganic fertilizer with anaerobic digestate may maintain agricultural productivity at less 

environmental cost. Journal of Plant Nutrition and Soil Science 175, 840-845. 

 

 

 

Notes on authorship: J.J. Walsh, D.L Jones, A.P. Williams and G. Edwards-Jones planned 

the research. J.J. Walsh carried out the experimental work. J.J. Walsh and A.P. Williams 

wrote the manuscript, with revisions by Jones, D.L., Edwards-Jones,. 

 
†
G. Edwards-Jones was involved in the original grant proposal and conceptual design of this 

PhD and therefore is credited posthumously. 

 

 



53 

 

Abstract 

On-farm Anaerobic Digestion (AD) is considered by both industry and policy-makers to be 

an effective way of converting biodegradable resource material into two commodities: 

methane that can be burnt to generate renewable energy, and digestate which can be applied 

onto land as an alternative for synthetic fertilizer, similar to undigested animal manure. 

However, few studies have assessed both the agronomic and environmental benefits of 

replacing synthetic fertilizer with digestate. Here, we compare the yield of grass grown in a 

greenhouse under controlled conditions following applications of either digestate generated 

from slurry, undigested slurry, synthetic N (ammonium nitrate) or synthetic NPK compound 

fertilizer. Soil solution was also collected to compare the potential loss of key nutrients 

through leaching. Soils from an organic and conventional farm were sown with commercial 

grassland mixtures comprising either a grass or a grass-clover mix, and the different types of 

amendments were applied. Application rates were normalised in terms of nitrogen and were 

equivalent to 150 kg dissolved N ha
-1

. Crop yield from swards applied digestate was found to 

be equal to those applied synthetic NPK, and were significantly better than those applied 

straight synthetic N or undigested slurry. Protein levels were significantly greater in grass 

applied synthetic N, however there were no differences in digestibility between treatments. 

The potential for leaching of nitrate and ammonium was significantly greater in soils applied 

synthetic fertilizer than from soils applied undigested slurry or digestate; however, there were 

no significant differences for phosphate. The results indicate that the application of digestate 

rather than synthetic fertilizer can maintain grassland productivity but with less impact on the 

environment.  

 

Keywords: Biogas, Digestibility, Legume, Water pollution 
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4.1 Introduction 

Agricultural demand for synthetic fertilizers is likely to increase due to the need to feed 

a growing global population. However, synthetic fertilizers are increasingly expensive due to 

the energy-intensive nature of their production, and their use is also responsible for a 

significant proportion of the greenhouse gas (GHG) emissions and water pollution incidences 

from agriculture. Spreading organic resources (e.g. animal slurries) can reduce dependency 

on synthetic fertilizers; however, this too can lead to nitrate and phosphate pollution of 

groundwater (Fraters et al., 1998; Strebel et al., 1989) and the storage and application of 

slurry also emits GHGs (Banks et al., 2007). There is therefore both a need to reduce the 

amount of synthetic fertilizers utilized and to improve the management of organic resources 

to reduce the environmental impact of agriculture.  

Anaerobic digestion (AD) is increasingly utilized worldwide as a management strategy 

for organic resources. AD generates two products: methane which can subsequently be burnt 

to generate renewable energy (Wilkinson, 2011), and digestate, which can be separated into a 

dry and liquid fraction suitable for land application. AD can also bring other benefits such as 

reducing both the odour (Smet et al., 1999) and pathogen load (Lund et al., 1996; Sahlstrom, 

2003) of wastes and improve weed seed kill (Engeli et al., 1993). AD of cattle slurries has 

also been shown to reduce the biological oxygen demand by 55% (Anon, 2003) and chemical 

oxygen demand by up to 45% (Clemens et al., 2006); reducing the risk to aquatic ecology 

following spreading. AD is particularly appealing to livestock systems as the resources 

generated (manure) are suitable for digestion and hence can provide an additional source of 

income and reduce costs (Demirer & Chen, 2005).  

In agricultural systems, nitrogen is the most frequent limiting factor for crop growth, 

especially on organic farms where synthetic fertilizer cannot be applied (Berry et al., 2002). 

During the AD process, the ammonium (NH4
+
) content of manure increases; digestate 

therefore has a higher content of directly available N than undigested manure (Field et al., 

1984; Gutser et al., 2005). This ultimately increases in potential plant nitrogen uptake 

following spreading (Vanotti et al., 2009), meaning that AD could help farmers maximise the 

nutrient returns from manure and therefore reduce reliance on synthetic fertilizer. There is, 

however, some paucity of information on the agronomic effects of applying digestate as a 

replacement for undigested manure and synthetic fertilizer. Although Pain and Hepherd, 

(1985) and Tafdrup, (1995) are extensively cited, the evidence they provide on the positive 
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benefits of digestate application on crop yield is highly subjective and lack scientific rigour. 

Some ambiguity also exists as to whether the application of digestate, relative to undigested 

manure, leads to greater or less potential for leaching of nutrients. For instance, Möller et al. 

(2008) found that there was less leaching of nitrate when slurry were digested; whereas 

Sänger et al. (2010; 2011) reported higher levels of leaching from digestate compared to 

undigested slurry, in fallow soil. Furthermore, there are no available data comparing leaching 

from pasture systems to which digestate has been applied relative to synthetic fertilizer.  

The objectives of this study were to compare how the application of liquid digestate 

generated from digested cattle slurry, undigested (raw) cattle slurry, and two types of 

synthetic fertilizer (N and NPK) to different leys affected (i) crop yield; (ii) ley protein and 

digestibility values; and (iii) potential for leaching of nutrients in soils from both an organic 

and conventional farm.  

 

4.2 Materials and methods  

4.2.1 Soil and fertilizer collection and characterization 

Soil (Eutric Cambisol) was collected from a pasture-based system at a conventional 

(non-organic) farm (CS) (Bangor University’s Henfaes Research Station; 53°14’05’’N, 

4°00’50’’W) and an organic farm (OS) (Wrexham; 53°08’16”N, 2°90’48”W). The soil was 

collected to a depth of 10 cm, passed through an 8 mm sieve and analysed in the laboratory 

within 24 h of collection.  

Undigested slurry (US) was collected from an organic dairy farm from cows fed 50% 

grass silage and 50% whole crop silage (barley and peas). Added to the silage in concentrated 

form was rolled wheat, rolled beans, maize flour and soya expeller (concentrate to silage ratio 

was 20:80 on a dry matter basis). Liquid digestate (LD) was collected from the AD unit on 

the same farm. The AD unit is a 1000 m
3
 mesophilic (38 °C) system, continually stirred 

digester with a retention time of 25 days and fed with cow manure only. The digestate was 

separated mechanically after leaving the digester and only the liquid fraction was collected. 

Samples were analysed within 24 h of collection.  

Moisture content was determined after drying samples at 105 °C for 24 h. Nutrients 

from soil, US and LD were extracted in deionised water at a ratio of 1:5 (w/v). Samples were 

shaken (250 rev min
-1

, 1 h, 20 °C), centrifuged for 15 min (4,000 g), filtered (Whatman no. 

42), and the supernatant recovered for analysis. NO3
-
, NH4

+
 and P were determined 
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colorimetrically (BioTek®, Vermont, NE) using the methods of Mulvaney (1996), Miranda 

et al., (2001) and Murphy et al., (1962), respectively; and K, Na and Ca were measured using 

a Sherwood Scientific 410 flame Photometer (Sherwood Scientific, Cambridge, UK). Total 

organic carbon and nitrogen were measured using a CHN2000 elemental analyzer (Leco 

Corp., St Joseph, MI) and dissolved organic carbon and dissolved nitrogen were measured 

using a TOC-V CHS analyzer (Shimadzu Corp., Kyoto, Japan). Undiluted slurry and 

digestate were used for the determination of electrical conductivity (EC; Jenway 4010 EC 

meter) and pH (Hanna Instruments pH 209 pH meter) whereas a 1:5 (soil: water, w/v) extract 

was used for soil.  

 

4.2.2 Experimental design 

A fully randomized pot trial experiment (n = 100) was set up in a greenhouse under 

controlled conditions. Pots (150 mm diameter; 1.2 l volume) were filled with 1.3 kg of either 

OS or CS (dry bulk density, OS: 0.87 g cm
-1

 and CS: 0.85 g cm
-1

) and fitted with Rhizon® 

suction samplers (Rhizosphere Research Products, Wageningen, The Netherlands), one per 

pot at approximately 100 mm depth for collection of soil solution. Soil moisture was 

maintained at 70% field capacity throughout the experiment by watering up to a known 

weight for each pot. Half the pots for each soil type were seeded with perennial ryegrass only 

(Lolium perenne L.), and the other half with a mixture of perennial ryegrass and white clover 

(Trifolium repens L.) at a rate equivalent to 40 kg of grass ha
-1

 and 12 kg of clover ha
-1

 

(Emorsgate Seeds, Norfolk, UK). The final experimental design therefore consisted of four 

sub-groups, namely (1) OS, grass only; (2) OS, grass-clover mix; (3) CS, grass only; and (4) 

CS, grass-clover mix. These were subsequently split into sub-groups of five treatments (n = 5 

of each), to which the following were applied: US, LD, commercial straight ammonium 

nitrate (34.5% N) fertilizer (N) (GrowHow, Cheshire, UK), a commercial compound (21.8.11 

NPK) fertilizer blend (NPK) (Yara, Lincolnshire, UK), or no amendment controls (C); for 

both soil types. The application rate for each was normalised for nitrogen, based on mineral 

N (ammonium N) values and total nitrogen content for the synthetic fertilizers. Nutrients 

were surface applied in two stages, with an equivalent of 100 kg N ha
-1

 applied four weeks 

following seeding, and the equivalent of 50 kg N ha
-1

 applied thereafter, one week after the 

first harvest (see below). Pots were regularly re-randomized during the trial. Pictures 4.1 to 
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4.4 were taken to show how soil was collected from the field and how the pots were set up in 

the greenhouse. 

 

 

Picture 4.2: Soil taken from field, used in pots 

 

 

Picture 4.3: Pots in the greenhouse, with grass growing 
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Picture 4.3: Pots with Rhizon® samples and vacuum tubes attached from nutrient analysis 

 

 

Picture 4.4: Pots after harvesting 
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4.2.3 Yield analysis 

In total, three herbage harvests were taken at weeks 5, 11 and 16 after the first 

application of fertilizer. The shoots were harvested to 2 cm above the soil surface. After 

harvesting, all samples were weighed fresh, dried for 48 hours at 85 °C, and then reweighed. 

The first harvest was ground to determine shoot total nitrogen and carbon content; protein 

content was calculated by multiplying the nitrogen reading by 6.25 and digestibility was 

tested as described in Omed et al. (1989).  

 

4.2.4 Nutrient levels in soil solution 

Sterile vacuum tubes were attached for 24 h to the Rhizon® samplers at weekly 

intervals throughout the experiment, one hour after a watering event. Volumes of soil 

solution collected were subsequently measured and concentrations of NO3
-
, NH4

+
 and P 

determined. Nutrient sampling was stopped ten weeks post the first fertilizer application as 

after this time quantities of NO3
-
, NH4

+
 and P in soil solution were all below detection levels 

(< 0.1 mg l
-1

). These data were pooled so that mean concentrations of nutrients in soil 

solution could be determined. 

 

4.2.5 Statistical analysis 

Statistical analysis was performed using SPSS v.18. A homoscedastic two-tailed T-test 

was used to determine differences between soils and between the two organic fertilizers for 

nutrient content. For analysis of crop yield data, total yield from all three harvests was used 

and subject firstly to a one-way ANOVA to determine differences within each sub-group, 

with treatment as the factor. Then a 3-way ANOVA was performed, using soil (organically 

farmed soil or conventionally farmed), crop (grass or grass/clover) and fertilizer (control, US, 

LD, N, and NPK) as fixed factors, to determine if results were continuous for all and 

individual subgroups. The same analysis was used for nutrients in soil solution with data for 

mean weekly concentrations of nutrients, for a 10 week period. Nutrients in soil solution were 

also subject to repeated measures ANOVA to determine if differences existed in potential 

nutrient loss on a weekly basis. Post-hoc tests were carried out on all ANOVAs using Tukey 

HSD test at the level p < 0.05.  
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4.3 Results 

4.3.1 Soil analysis 

Soil pH values differed significantly (p < 0.05) between the two soils (Table 3.1). In 

addition, DOC levels were approximately three times greater in the organic farmed soil. In 

contrast however, the conventionally farmed soil had higher levels of total N and C (p < 

0.05). There was no difference (p > 0.05) in the concentrations of NO3
-
 or NH4

+
 between the 

two soils; however, levels of P and all base cations (K, Ca and Na) were significantly greater 

in the conventionally farmed soil (p < 0.05).   

 

Table 4.1: Physico-chemical properties of both soils used in the study. Values represent 

means ± SEM (n = 3) and are expressed in terms of dry weight.  

 Organic farmed soil  Conventionally farmed soil  

pH 5.30 ± 0.04 5.45 ± 0.02 

EC (µS cm
-1

) 51.2 ± 3.6 44.4 ± 5.4 

Dry matter (%) 80.6 ± 0.1 78.3 ± 0.2 

Total C (mg g
-1

) 20.3 ± 0.4 29.1 ± 0.5 

Total N (mg g
-1

) 2.02 ± 0.02 3.11 ± 0.07 

C:N 10 ± 0.02 9 ± 0.13 

DOC (mg g
-1

) 0.35 ± 0.02 0.11 ± 0.01 

NO3
- 
(μg g

-1
) 12 ± 2.1 20 ± 1.2 

NH4
+ 

(μg g
-1

) 10 ± 3.4 9 ±1.3 

P
 
(μg g

-1
) 16 ± 2 90 ± 5 

K (μg g
-1

) 13 ± 4 30 ± 4 

Ca (μg g
-1

) 23 ± 2 36 ± 3 

Na (μg g
-1

) 40 ± 3 65 ± 6 

 

4.3.2 Fertilizer analysis 

Liquid digestate had a higher pH than undigested slurry (p < 0.05) (Table 4.2). Total C 

levels were greater in undigested slurry (p < 0.05); and although there were no differences 

between total N, NH4
+
 levels were over three times greater in the digestate (p < 0.05). NO3

-
 

was also slightly higher in the digestate although this did not prove statistically significant (p 

> 0.05). Conversely, the undigested slurry had approximately ten times greater levels of P in 
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comparison to the digestate (p < 0.05). There was no statistical difference in the 

concentrations of base cations between either organic fertilizer types. 

 

Table 4.2: Physico-chemical properties of the undigested slurry (US) and liquid digestate 

(LD) used in the study. Values represent means ± SEM (n = 3) and are expressed in terms of 

dry weight. 

 

 US  LD  

pH 7.55 ± 0.12 8.59 ± 0.01 

EC (mS cm
-1

) 9.01 ± 0.14 12.2 ± 0.1 

Dry matter (%) 14.3 ± 0.26 5.2 ± 0.3 

Total C (mg g
-1

) 393 ± 8 274 ± 6 

Total N (mg g
-1

) 21 ± 0.4 21 ± 1 

C:N 18 ± 0.3 13 ± 0.1 

DOC (mg g
-1

) 35.3 ± 0.2 30.0 ± 0.9 

DON (mg g
-1

) 11.6 ± 0.1 27.4 ± 1.3 

NO3
- 
(mg g

-1
) 0.31 ± 0.15 0.51 ± 0.04 

NH4
+ 

(mg g
-1

)  6.54 ± 0.25 20.35 ± 0.53 

P
 
(mg g

-1
) 10.6 ± 0.8 1.0 ± 0.2 

K (mg g
-1

) 9.1 ± 0.1 16.5 ± 0.0 

Ca (mg g
-1

) 13.9 ± 0.1 19.5 ± 0.1 

Na (mg g
-1

) 3.6 ± 0.1 7.2 ± 0.2 

 

 

4.3.3 Crop yield  

Using the one-way ANOVA, all treatments gave significantly greater yields (p < 0.05) 

than the unamended control for both grass grown in the organic farmed and conventionally 

farmed soil and grass-clover grown in the organic farmed soil (Fig. 4.1A-4.1C). In grass 

grown in the organic farmed soil (Fig. 4.1A), greatest yields were recovered in pots to which 

LD or NPK had been applied. A similar trend was also evident in the organic farmed grass-

clover sub-group (Fig.4.1B) and the grass grown in conventionally farmed soil (Fig. 4.1C); 

though there was no significant difference between N and NPK in the latter. However, in 
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conventionally farmed soil, the grass-clover yield (Fig. 4.1D) showed very different results 

with no significant difference (p > 0.05) between control and the synthetic fertilizers; but 

significantly greater yields (p < 0.05) from pots to which LD or US had been applied. When 

the 3-way ANOVA was applied, LD had the highest crop yield of all treatments and was 

significantly different from all other treatments (p < 0.05). There were highly significant 

differences (p < 0.001) between soil and treatments for all three harvests. All treatments were 

significantly greater than control (p < 0.05) throughout the experiment.   
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Figure 4.1: Comparison of crop yield in each of the four sub-groups: organic grass (A), organic grass-clover 

(B), conventionally farmed grass (C), and conventionally farmed grass-clover (D) after the application of 

different fertilizer types: control (C), undigested slurry (US), liquid digestate (LD), mineral nitrogen (N) and 

mineral NPK (NPK). Values represent the mean ± SEM (n = 5). Letters within graphs denote differences (p < 

0.05) between treatments within that sub-group for the total yield.  
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4.3.4 Protein and digestibility  

There were significant differences in protein levels between (p < 0.001) and within (p < 

0.05) treatments (Fig.4.2). Protein levels were not significantly different to controls in any of 

the treatments with organic fertilizer (p > 0.05); however, levels were significantly higher for 

grass applied straight N for both grass and grass-clover (p > 0.05). In grass grown in 

conventionally farmed soil, again there was no difference (p > 0.05) between control and the 

organic fertilizers, with grass applied straight N having the highest level of protein (p < 0.05). 

In contrast though, conventionally farmed grass-clover there was no difference (p > 0.05) 

between control and the synthetic fertilizers, whereas there were greater levels of protein 

when organic fertilizer was applied (p < 0.05). There were no significant differences in 

digestibility between treatments (p > 0.05) and within treatments (p > 0.05) (data not shown).  
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Figure 4.2: Mean protein content in leys grown in either an organically (A) or conventionally 

(B) managed soil after the application of different fertilizer types: control (C), undigested 

slurry (US), liquid digestate (LD), mineral nitrogen (N) and mineral NPK (NPK).  Results are 

for the first harvest only (five weeks post-application). Values represent the mean ± SEM (n 

= 5). Letters within each graph denote significant differences (p < 0.05) between treatments 

of the same soil and vegetation cover type. 
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4.3.5 Nutrient levels in soil solution  

4.3.5.1 Nitrate  

Within the soil solution extracted from the organic farmed soil in which grass was 

grown, there were no differences (p > 0.05) in nitrate levels between the control, organic 

fertilizers and NPK treatments; but concentrations were significantly greater when straight N 

was applied (p < 0.05). From soil solution in the organic farmed grass-clover treatments (Fig. 

4.3A), significantly greater mean concentrations of nitrate were found in soil solution when 

both synthetic fertilizers had been applied (p < 0.05). The same pattern was followed for soil 

solution in both conventionally farmed grass and grass-clover pots (Fig. 4.3B) with both 

synthetic fertilizers being different (p < 0.05) from control and the organic fertilizers (p < 

0.05). When the data was analysed in a 3-way ANOVA, no differences in soil types (p > 

0.05) emerged for either form of nitrogen, however, there was a difference in seed type (p < 

0.05), with nitrate levels greatest where clover was also present. The interaction between seed 

type and treatment was also significant (p < 0.05). Throughout the experiment, no differences 

in nutrient levels in soil solution emerged between C pots and those applied US and LD; all 

of which were significantly lower than synthetic fertilizer (p < 0.05). There were no 

significant differences between the synthetic fertilizers (p > 0.05), but levels were 

significantly greater in comparison to the control and organic treatments (p < 0.05).  
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Figure 4.3: Mean soil solution NO3
- 

concentrations after the application of organic and 

synthetic fertilizers to either an organically (A) or conventionally (B) managed soil. Capital 

letters represent the unamended control (C) and those applied the following fertilizers: 

undigested slurry (US), liquid digestate (LD), mineral nitrogen (N) and mineral NPK (NPK). 

Values represent the mean ± SEM (n = 5). Letters within each graph denote significant 

differences (p < 0.05) between treatments of the same soil and ley type. 

 

4.3.5.2 Ammonium  

Within the organic soil, mean concentrations of ammonium found in soil solution were 

only significantly greater than controls (p < 0.05) when pots had N applied, for both ley types 

(Fig. 3.4A). A similar pattern was seen with solutions extracted from the conventionally 

farmed soils, although application of either N or NPK to pots led to significantly raised levels 

of ammonium in soil solution (p < 0.05), particularly when a grass-clover ley was grown 

(Fig. 4.4B). When data was analysed in a 3-way ANOVA, differences emerged within and 

between seed and treatment (p < 0.001 for both). The 3-way ANOVA for ammonium was the 

same as nitrate, i.e. with no difference between C, US and LD, and there was no difference 

between the synthetic fertilizers (p < 0.05). However, levels within controls and those applied 

organic fertilizers were significantly lower than those applied synthetic fertilizers (p < 0.05). 
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Figure 4.4: Mean soil solution NH4
+ 

concentrations after the application of organic and 

synthetic fertilizers to either an organically (A) or conventionally (B) managed soil. Capital 

letters represent the unamended control (C) and those applied the following fertilizers: 

undigested slurry (US), liquid digestate (LD), mineral nitrogen (N) and mineral NPK (NPK). 

Values represent the mean ± SEM (n = 5). Letters within each graph denote significant 

differences (p < 0.05) between treatments of the same soil and ley type. 

 

4.3.5.3 Phosphate  

There was much less variability in the levels of phosphate recovered in soil solution 

between treatments (Fig. 4.5). In organic farmed soil, levels of P in solution were only 

significantly higher than controls (p < 0.05) when NPK was applied to a grass-clover ley 

(Fig. 4.5A). For solutions in conventionally farmed soil sown with grass, P concentrations 

were actually significantly greater in control samples (p < 0.05) than in all treatments; 

however no statistical difference existed when a grass-clover ley was grown (Fig 4.5B). 

When the data was analysed in a 3-way ANOVA, differences emerged with soil and seed (p 

< 0.05); as well as between soil and seed type, and soil and treatment (p < 0.05). Controls had 

higher levels of P in soil solution than any treatment (p < 0.05). Levels in pots applied N, US, 

and LD were not significantly different (p > 0.05) from each other. Overall, phosphate levels 

in those applied NPK were higher than other treatments, though still lower than the controls 

(p < 0.05).  
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Figure 4.5: Mean soil solution P
 
concentrations after the application of organic and synthetic 

fertilizers to either an organically (A) or conventionally (B) managed soil. Capital letters 

represent the unamended control (C) and those applied the following fertilizers: undigested 

slurry (US), liquid digestate (LD), mineral nitrogen (N) and mineral NPK (NPK). Values 

represent the mean ± SEM (n = 5). Letters within each graph denote significant differences (p 

< 0.05) between treatments of the same soil and ley type. 

 

4.4 Discussion  

4.4.1 Crop yield 

Grasslands dominate livestock systems and the agricultural industry is increasingly 

seeking to maximise returns achievable through better utilization of grass with lesser inputs. 

Relevant to this point, this study found that grasses applied LD gave similar or better yield 

than those receiving either N or NPK synthetic fertilizers. This pattern was also evident when 

comparing LD and US in all but one case. The results concur with previous studies that 

implied that anaerobic digestion of organic fertilizers enhances plant uptake of nutrients and 

hence crop yield thereafter (de Boer, 2008; Holm-Nielsen et al., 2009; Rubaek et al., 1996).  

The lower overall yield from swards applied US may in part be due to the fact that all 

fertilizers were surface applied. Approximately 95% of manure in the UK is surface applied 

(DEFRA, 2010) and the application method used in this study is therefore representative of 

typical agricultural practices. However, the thicker texture of US meant that a notable 
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proportion remained on the surface of the soil and hence may be subject to loss of ammonia 

(and therefore N) through volatilization (Sommer & Hutchings, 2001); whereas the LD was 

readily absorbed into the soil. It may be deduced that the higher yield from leys applied LD 

compared to N in all sub-groups is at least in part due to LD incorporating other nutrients key 

for plant growth (e.g. P and K), as LD performed as well as NPK in three of the four 

treatments. Our results are in accordance with others such as Dahlberg et al., (1988) who 

found that digestate was as effective as synthetic fertilizer when comparing dry matter 

content from grain yields and Liedl et al., (2006) who found digested poultry litter performed 

as well as synthetic N fertilizers.  

This study was conducted over a period equating to approximately one growing season 

under a simulated intensive grazing or cropping system. Mineralisation of N is relatively slow 

in organic manures, thus with repeated application of organic fertilizers, residual levels of N 

increases in soils, as shown in long-term field trials (Schroder et al., 2007; Sorensen, 2004). 

However, the results from the current study show that application of digestate can be 

effective in increasing yield of pasture in the short-term. It is acknowledged that yield 

response may differ with other crop types; however, it has been noted that crops with a short 

and intensive uptake of nitrogen may benefit most from the application of digestate 

(Svensson et al., 2004). Application of inorganic, rather than organic fertilizer is also known 

to suppress clover growth and hence reduce the amount of nitrogen fixed by legume roots 

(Nesheim et al., 1990). Although the yield of clover wasn’t directly measured in this trial, 

visual observation suggests that there was more clover in pots applied LD than in those 

receiving synthetic fertilizers. This may also explain why yields were greater when LD was 

applied; although further work at field-scale is needed to validate this.  

 

4.4.2 Protein and digestibility  

The addition of synthetic fertilizers had a greater effect on grass protein levels in the 

organic farmed, rather than the conventionally farmed soil. This may partially be due to the 

former lacking nutrients over the years due to restrictions on fertilizer application (Table 4.1). 

With the conventionally farmed grass-clover ley, application of either organic fertilizer led to 

significantly greater levels of protein, which is of note to agricultural systems. However, this 

increase in protein may be due to the higher percentage of clover in the ley, as discussed 

previously.  
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No differences emerged in digestibility between different leys or on the type of 

fertilizer applied. This is plausibly due to the relatively short-term nature of the trial before 

digestibility decreased in any treatment. Conducting a trial over a longer growing period may 

therefore be needed to establish if any differences become apparent over time.  

 

4.4.3 Nutrients in soil solution 

The loss of nitrogen from soil is a major agricultural and environmental problem due to 

the cost of nitrogen and its impact on water quality and the atmosphere (Fangmeier et al., 

1994; Schulze et al., 1989; Stark & Richards, 2008). Nutrient loss due to overland flow 

following application of manure and synthetic fertilizer has been the focus of numerous 

studies (Turtola & Yli-Halla, 1999; Uusi-Kamppa & Mattila, 2010). This current study 

focused on the potential for leaching of nutrients through the soil. Our findings in relation to 

potential nutrient loss concur with field trials that found there were no significant differences 

in levels of N leaching from digestate and undigested manure (Lukehurst et al., 2010). 

Schroder et al., (2010) implied that the degree of nitrogen leaching from grassland was 

unaffected by whether the source of nitrogen was synthetic fertilizer or cattle manure; but 

rather the dominant factor was the balance of supply and crop demand. Nevertheless, our 

results indicate that application of synthetic fertilizer, rather than organic fertilizer, could lead 

to far greater potential leaching of nitrogen. In addition to the environmental cost (impact) of 

nitrate leaching, this has important economic significance due to the cost associated with 

fertilizers and clean-up. Phosphate is also a major cause of eutrophication in waterways and 

minimising leaching of P is of considerable interest. This trial indicates that the potential for 

loss of P through leaching is low when LD is applied. Whilst this may be expected due to 

much lower levels of P relative to synthetic NPK fertilizer, the fact that LD application led to 

enhanced grass yields would also have facilitated efficient uptake of phosphate and hence 

reduce the possibility of loss due to leaching.  

 

4.5. Conclusions 

This glasshouse-based study was performed with one common agricultural soil type 

and with two ley compositions that are frequently used for livestock grazing. Although the 

findings should not be extrapolated to all soil types and management systems, the results do 

add further evidence as to the potential value of AD over conventional agronomic practices. 
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The agricultural industry is under pressure to reduce its greenhouse gas emissions and the 

loss of nutrients into waters, whilst at the same time improving the efficiency of production. 

This study indicates that replacing synthetic fertilizers with liquid digestate can maintain or 

improve yields from grassland systems and concurrently reduce the potential for losses of 

nutrients to the environment. This may ultimately reduce agricultural dependence on 

synthetic fertilizer and the energy and economic costs associated with their use. AD should 

therefore not only be considered a source of renewable energy and waste management 

system, but also a pollution abatement technology.  
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Abstract  

How land-application of digestate sourced from anaerobic digestion (AD) of animal 

resources influences the functioning of a mixed pasture agroecosystem is not well 

characterised, particularly with regard to the response of the actively growing microbial 

community. We studied the impact of the liquid AD digestate on the decomposer community 

in two different soils, seeded with two different common grassland crops; a mixture of either 

grass or grass-clover in a greenhouse experiment. We studied bacterial (Leucine 

incorporation into bacteria) and fungal (Acetate incorporation into ergosterol) growth-

responses to AD cattle slurry digestate, undigested cattle slurry, mineral fertilizer (NPK and 

N) added at a rate equivalent to 150 kg N ha
-1

,
 
and a no-fertilizer control treatment. 

Differences in fungal and bacterial growth were evident between the soil and sward types. 

However, the fertilizers consistently stimulated a higher bacterial growth than the no-

fertilizer control, and liquid digestate resulted in a level of bacterial growth higher or equal to 

that of mineral fertilizer, while undigested slurry resulted in lower bacterial growth. These 

fertilizer effects on bacterial growth mirrored the effects on plant growth. In contrast, the 

fungal community responded only marginally to fertilizer treatments. We conclude that the 

application of digestate stimulates the bacterial decomposer community in a similar way to 

that of mineral fertilizers. Our results suggest that mineral fertilizer can be exchanged for 

liquid digestate with limited impact on the actively growing soil microbial community that in 

turn regulate important soil processes including nutrient cycling in agricultural soils. 

 

Keywords: Animal resources; Biogas; Grassland; Decomposer ecology; Green fertilizer;  

Legume; Microbial Ecology; Plant nutrition; Soil fertility 
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5.1 Introduction 

Pre-treatment of livestock manure by anaerobic digestion (AD) can reduce the negative 

side-effects of manure that are used as organic fertilizers. For instance, the AD process 

reduces odour (Smet et al., 1999) and the net global warming potential (GWP) of manure 

(Collins et al., 2011), kills weed seeds (Engeli et al., 1993) and reduces pathogen loads (Lund 

et al., 1996; Sahlstrom, 2003; Kunte et al., 2004). It is for these reasons that AD is becoming 

increasingly popular on farms for the treatment of manure (Pain and Hepard, 1985; 

Wilkinson, 2011). The AD process has direct advantages beyond these, however, foremost of 

which is biogas production for renewable energy, and the enrichment of mineral fractions of 

N and P during digestion (Field et al., 1984; Masse et al., 2011), resulting in a higher 

concentration of plant-available nutrients compared with undigested manure and a 

subsequently elevated plant growth promotion ability, suggested to be similar to mineral 

fertilizers (Dahlberg et al., 1988; Gutser et al., 2005; Liedl et al., 2006).  

The amount and type of organic and mineral fertilizer added to soil is known to directly 

and indirectly influence the size, activity and structure of the soil microbial community. For 

example, organic resources can provide a labile substrate, promoting the rapid growth of soil 

microorganisms whilst sometimes suppressing the growth of others (e.g. mycorrhiza; 

Egerton-Warburton et al., 2007). Further, increasing the N load to soil, by e.g. fertilizer 

addition, typically stimulates plant growth, leading to an increase in below ground C inputs 

via root turnover and exudation, which in turn stimulates fungal and bacterial growth (Knorr 

et al., 2005; Liu and Greaver, 2010). Consequently, in pasture systems where the majority of 

top soil is rhizosphere soil, a large impact on the soil microbial community is expected to 

follow fertilizer applications. Additionally, the relationship between plant productivity and 

the microbial community is reciprocal in that the balance between fungal and bacterial 

contribution to decomposition has been linked to an ecosystem’s ability to sequester C 

(Strickland and Rousk, 2010). This has implications for plant nutrition since the cycling of 

macronutrients, including e.g. C and N, is linked (Liu and Greaver, 2010), and e.g. increases 

in C sequestration will also result in reduced nutrient availability and thus affect soil fertility. 

Consequently, to determine the long-term effects of fertilizers, it is important to determine 

how they influence the active and growing soil microbial decomposer community.  

Organic farmers are prohibited from applying chemical fertilizers to soil, relying 

largely on the incorporation of legumes into cropping systems or the application of organic 
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resources to supply plant nutrients (Zemenchik et al., 2001). While the benefits of organic 

farming practices on many aspects of soil health have been studied, the direct impact of AD 

digestate on actively growing bacteria and fungi communities, particularly in comparison to 

conventional fertilizers, remains unassessed. In this work, we evaluated the responses of the 

actively growing soil microbial community to the application of different fertilizer treatments 

in a 16 week green-house experiment: comparing liquid digestate from an AD unit against 

mineral fertilizer and undigested slurry and a no-fertilizer control in two different pasture 

soils with two different common crop mixes.  

 

5.2 Materials and methods  

5.2.1 Soil and fertilizer collection 

Two soils, both Eutric Cambisols (FAO 1989), were used for experimentation. Rather 

than comparing different soil management per se, two soils were included in the study to 

increase the statistical power of the fertilizer assessment; if reproducible results could be 

shown in two independent soils, observed effects are likely general. Moreover, from an 

applied perspective, both farms were interested in the implementation of AD practise. The 

first soil was collected from an organic dairy farm (for the past 12 years) under permanent 

pasture (Lolium perenne L., Trifolium repens L.) located at Wrexham, NE Wales 

(53°08’16”N, 2°90’48”W); hereafter termed “organic farmed soil”. The second soil was 

collected from a conventionally farmed (non-organic) managed sheep farm under permanent 

pasture located at Abergwyngregyn, NW Wales (53°14’05’’N, 4°00’50’’W); hereafter 

termed “conventionally farmed soil”. Fresh soil was sieved through an 8 mm sieve and 

analysed within 24 h of collection, in early May 2010. Undigested slurry (US) and liquid 

digestate (LD), generated from AD of the slurry were collected from a dairy farm located in 

Wrexham, NE Wales. The US was collected directly from a cattle housing shed while the LD 

was collected from a 1000 m
3
 mesophilic (38 °C), continually-stirred tank reactor (CSTR) 

with a retention time of 25 d. Mainly on-farm cattle manure had been fed as feedstock into 

the CSTR for the previous six months. After digestion, the digestate was mechanically 

separated into liquid and dry fibre fractions, of which only the liquid fraction was collected 

for use in the experiment.  
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5.2.2 Experimental design   

The greenhouse experiment was designed to investigate the influence of the fertilizer 

treatments in soils with various management systems (different crop seed mixes in differently 

farmed soils). This is a powerful design to assess the universal effects of the fertilizer 

treatments, but it should be noted that it cannot be used to reliably assess differences in 

farming practices, since it lacks replication for this. A randomised pot trial experiment was 

set up in a greenhouse with a mean weekly temperature of 23 ± 3 °C. The plastic pots had a 

diameter of 150 mm and were filled with 1.3 kg of soil. Two different seed types were 

applied to each of the two soils, both commonly used in the UK: Lolium perenne L. was 

sown in half the pots at a rate of 40 kg of grass ha
-1

 and a Lolium perenne L. and Trifolium 

repens mix was sown in the other half, at a seeding rate equivalent to 40 kg of grass ha
-1

 and 

12 kg of clover ha
-1

 (Emorsgate seeds, Norfolk, UK). This separated the trial up into four 

distinct groups, namely (a) organic farmed soil Lolium perenne, (b) organic farmed soil 

Lolium perenne-Trifolium repens mix (c) conventionally farmed soil Lolium perenne, (d) 

conventionally farmed soil Lolium perenne-Trifolium repens mix, with five fertilizer 

treatments and five replicates for each treatment (totalling 4 × 5 × 5 = 100 pots). The five 

fertilizer treatments consisted of (i) an unamended control (C), (ii) undigested slurry (US), 

(iii) liquid digestate (LD), (iv) mineral N (NH4NO3) fertilizer (GrowHow Ltd., Cheshire, 

UK), and (v) a mineral NPK fertilizer (N:P:K = 21:8:11) (Yara Ltd., Lincolnshire, UK). 

Application of fertilizer was normalised for total soluble N. While it is not trivial to 

standardise synthetic and organic fertilizer additions, using total dissolved N would be more 

appropriate than total N. In total, an equivalent of 150 kg N ha
-1

 of an available form was 

applied to all pots except the control treatment. Soil moisture was maintained at 70% field 

capacity throughout the experiment (monitored gravimetrically, and adjusted as needed). 

Chemistry and nutrient concentrations of soil and organic fertilizers are provided in Tables 

5.1 and 5.2. 

After the grass and grass/clover mix had established (4 weeks after planting), 100 kg N 

ha
-1 

was applied to all treatments except control, and this event defined the initiation of the 

experiment (time = 0). After 5 weeks (W5) the first herbage harvest was taken as well as soil 

samples for analysis of the decomposer community. One week later, a further 50 kg N ha
-1

 

was applied, and on week 11 (W11) the second herbage harvest was taken and soil collected 

for analyses. The final herbage harvest and soil samples were collected on week 16 (W16). 

At the time of each harvest, three randomly selected soil samples were collected from each 
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pot within the top 5 cm. These samples were homogenised and combined to a composite 

sample that was used to estimate bacterial and fungal growth. For logistical reasons, four 

randomly selected replicates out of the total five were used for the microbial analyses at week 

16.  

5.2.3 Plant yield analysis 

The herbage was cut approximately 2 cm above the soil surface and subsequently dried 

at 85 °C for 48 h to determine dry weight. These data were reported in a parallel study 

(Walsh et al., 2012). 

 

Table 5.1: Physico-chemical properties of both soils used in the study. Values represent 

means ± SE (n = 3) and are expressed in terms of dry weight where applicable. 

 

 Organic farmed soil Conventionally farmed soil 

pH 5.3 ± 0.04 5.5 ± 0.02 

EC(μS cm
-1

) 51.0 ± 3.7 44 ± 5.5 

Water content (%) 19.5 ± 0.11 21.8 ± 0.27 

Total C (mg g
-1

) 20.4 ± 0.4 29.2 ± 0.5 

Total N (mg g
-1

) 2.0 ± 0.02 3.1 ± 0.07 

C:N 10 ± 0.02 9 ± 0.13 

DOC (mg g
-1

) 0.35 ± 0.02 0.11 ± 0.01 

NO3
- 
(µg g

-1
)
 

12 ± 2.12 20 ± 1.21 

NH4
+ 

(µg g
-1

) 10 ± 3.41 9 ±1.34 

P
 
(µg g

-1
) 16 ± 2.2 90 ± 5.41 

K (µg g
-1

) 14 ± 4.5 30 ± 4.12 

Ca (µg g
-1

) 24 ± 2.2 36 ± 3.31 

Na (µg g
-1

) 40 ± 3.1 65 ± 6.03 
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Table 5.2: Physico-chemical properties of the undigested slurry (US) and liquid digestate 

(LD) used in the study. Values represent means ± SE (n = 3) and are expressed in terms of 

dry weight where applicable. 

 Undigested slurry Liquid digestate 

pH 7.6 ± 0.12 8.6 ± 0.01 

EC (mS cm
-1

) 9.0 ± 0.14 12.2 ± 0.10 

Water content (%) 85.7 ± 0.26 94.8 ± 0.37 

Total C (mg g
-1

) 394 ± 8 274 ± 6 

Total N (mg g
-1

) 22 ± 0.4 22 ± 0.8 

C:N 18.1 ± 0.26 13.1 ± 0.07 

DOC (mg g
-1

) 35 ± 0.2 30 ± 1.0 

DON (mg g
-1

) 12 ± 0.14 27 ± 1.3 

NO3
- 
(mg g

-1
) 0.31 ± 0.15 0.51 ± 0.04 

NH4
+ 

(mg g
-1

) 6.5 ± 0.25 20.4 ± 0.53 

P
 
(mg g

-1
) 11 ± 0.8 1.0 ± 0.28 

K (mg g
-1

) 9 ± 0.01 17 ± 0.08 

Ca (mg g
-1

) 14 ± 0.13 20 ± 0.10 

Na (mg g
-1

) 3.6 ± 0.01 7.3 ± 0.21 

 

 

5.3 Microbial analyses 

5.3.1 Bacterial growth 

Bacterial growth was estimated using leucine (Leu; Kirchman et al., 1985) 

incorporation in bacteria extracted from soil using the homogenization / centrifugation 

technique (Bååth, 1994) with modifications (Bååth et al., 2001; Rousk and Bååth, 2011). 

Briefly, 2 µl of radiolabelled Leu ([
3
H]Leu, 37 MBq ml

-1
, 5.74 TBq mmol

-1
, Perkin Elmer, 

UK) combined with non-labelled Leu was added to each tube, resulting in 275 nM Leu in the 

bacterial suspensions. The amount of Leu incorporated into extracted bacteria per h and g soil 

was used as a measure of bacterial growth. 
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5.3.2 Fungal growth and biomass 

Fungal growth was assessed using the acetate incorporation into ergosterol method 

(Newell and Fallon 1991) adapted for soil (Bååth, 2001) with modifications (Rousk et al., 

2009; Rousk and Bååth, 2011). Briefly, 1-[
14

C]acetic acid (sodium salt, 7.4 MBq ml
-1

,
 
2.04 

GBq mmol
-1

, Perkin Elmer, UK) combined with unlabelled sodium acetate resulting in a final 

acetate concentration of 220 µM was added to a soil solution and incubated for 4 h at 22 °C 

without light. Ergosterol was then extracted, separated and quantified using HPLC equipped 

with a UV detector (Rousk and Bååth, 2007). The fungal biomass was estimated assuming 5 

mg ergosterol g
-1

 fungal biomass (Joergensen, 2000; Ruzicka et al., 2000). The eluent 

containing the ergosterol peak was collected and the amount of incorporated radioactivity 

determined. The amount of acetate (Ac) incorporated into fungal ergosterol (pmol h
-1 

g
-1

 soil) 

was used as a measure of fungal growth.  

 

5.3.3 Soil and fertilizer analysis 

Soil and organic fertilizer samples were extracted in deionised water 1:5 (w/v), shaken 

(250 rev min
-1

, 1 h, 20°C), centrifuged (4000 g, 15 min), and the supernatant filtered 

(Whatman No. 42). K, Na and Ca were analysed using a model 410 flame photometer 

(Sherwood Scientific, Cambridge, UK) while nitrate, ammonium and phosphate were 

determined using the colorimetric methods of Mulvaney, (1996), Miranda et al., (2001) and 

Murphy et al., (1962), respectively. Total dissolved N (TDN) and dissolved organic N (DON) 

were determined using a TCN-V analyzer (Shimadzu Corp., Kyoto, Japan) and total C and N 

were analysed using a CHN2000 elemental analyzer. Samples were oven dried at 105 °C for 

24 h to determine gravimetric water content. Electrical conductivity (EC) and soil pH were 

determined using standard electrodes (EC, Jenway 4010 EC meter; pH, Hanna Instruments 

pH 209 pH meter), using undiluted samples for US and LD and 1:5 (w/v) distilled water 

extract for soil.  

 

5.3.4 Statistical analysis  

Treatment differences in the microbial variables and the plant yield data were compared 

by 3-way ANOVAs (JMP 7.0 for Mac, SAS Institute Inc., Cary, NC, USA), using soil 

(organic farmed or conventionally farmed), crop (grass or grass/clover) and fertilizer (control, 
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US, LD, N, and NPK) as fixed factors. Tukey’s HSD pair-wise comparisons (p < 0.05) were 

used to determine differences between fertilizer responses. 

 

5.4 Results 

5.4.1 Crop yield 

Total cumulative crop yield at the end of the trial from the three harvests combined 

showed that there were significant effects (p < 0.001) of the factors soil, crop and fertilizers 

(Table 5.3). There was approximately twice the crop yield in the conventionally farmed soil 

as in the organic farmed soil, and about 25% greater yield in grass-clover than grass 

treatments. All fertilizer treatments to the soils resulted in higher yield than the control 

treatment with no differences apparent between the mineral fertilizers and US. In contrast, the 

LD treatment had the greatest cumulative crop yield and was significantly higher than the 

other fertilizer treatments (p < 0.05). Significant differences occurred between soil (p < 

0.001) and fertilizer treatments (p < 0.001) for all three harvests, however, differences 

between seed types were only apparent on W5 (p < 0.001) and on W11 (p <0.05). At W5 

there was approximately 100% greater crop yield from the conventionally farmed soil 

compared to the organic farmed soil, with about a 70% greater crop yield from grass-clover 

than from grass. There were differences in yield between fertilizer treatments for all harvests 

(p < 0.05), however, these differences were less pronounced by W16 with both organic and 

mineral fertilizers still being greater than the control, but with no differences apparent 

between the fertilizer treatments. These results are provided in greater detail in Walsh et al. 

(2012). 
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Table 5.3: Mean crop yield for each harvest, values represent means ± SE (n = 5) and are 

expressed in terms of dry weight, where fertilizer types are control (C), undigested slurry 

(US), liquid digestate (LD), mineral N and mineral NPK added at a rate of 150 kg N ha
-1

. 

Values are from Walsh et al., (2012). 

Plant dry weight (g DW pot
-1

) 

                                   Week 5          Week 11          Week 16   Total cumulative 

Organic farmed        

Grass            

    C 0.14 ± 0.01  0.15 ± 0.01  0.22 ± 0.02  0.51 ±0.02 

    US 0.87 ± 0.07  0.66 ± 0.05  0.74 ± 0.10  2.27 ±0.13 

    LD 1.79 ± 0.05  1.48 ± 0.07  0.68 ± 0.06  3.96 ±0.13 

    N 1.65 ± 0.03  0.82 ± 0.03  0.50 ± 0.05  2.98 ±0.05 

    NPK 2.29 ± 0.19  1.35 ± 0.26  0.69 ± 0.07  4.33 ±0.46 

Clover            

    C 0.09 ± 0.01  0.14 ± 0.01  0.33 ± 0.15  0.56 ±0.15 

    US 0.84 ± 0.11  0.58 ± 0.04  0.61 ± 0.04  2.03 ±0.16 

    LD 2.07 ± 0.03  1.59 ± 0.05  0.79 ± 0.12  4.46 ±0.13 

    N 1.43 ± 0.04  0.81 ± 0.06  0.86 ± 0.19  3.10 ±0.18 

    NPK 2.11 ± 0.08   1.10 ± 0.06   0.73 ± 0.07   3.93 ±0.16 

Conventionally farmed  
  

   

Grass            

    C 0.15 ± 0.03  0.23 ± 0.02  0.57 ± 0.10  0.95 ±0.11 

    US 0.95 ± 0.09  0.66 ± 0.04  0.73 ± 0.06  2.34 ±0.16 

    LD 2.55 ± 0.22  1.76 ± 0.05  0.75 ± 0.06  5.05 ±0.27 

    N 2.15 ± 0.10  0.82 ± 0.07  0.95 ± 0.06  3.91 ±0.14 

    NPK 2.64 ± 0.17  1.08 ± 0.08  0.79 ± 0.08  4.50 ±0.30 

Clover            

    C 2.44 ± 0.08  0.78 ± 0.23  0.79 ± 0.18  4.01 ±0.22 

    US 4.34 ± 0.27  2.39 ± 0.48  1.13 ± 0.05  7.86 ±0.48 

    LD 5.12 ± 0.36  2.02 ± 0.14  0.89 ± 0.11  8.01 ±0.64 

    N 3.26 ± 0.32  0.94 ± 0.39  0.66 ± 0.09  4.86 ±0.71 

    NPK 3.41 ± 0.06   0.89 ± 0.02   0.82 ± 0.06   5.09 ±0.08 

Values represent means ± SEM (n = 5). 

5.4.2 Bacterial growth 

Bacterial growth in the control treatment decreased in both soils over time. In one soil 

(organic farmed) at W5, bacterial growth was about 300 pmol Leu g
-1 

h
-1 

(Fig. 5.1A), 

decreasing to about 150 pmol Leu g
-1 

h
-1 

(Fig. 4.1B) by W11, and remaining at this level until 

W16 (Fig. 5.1C), a 50% drop in bacterial growth over time. At W5, the bacterial growth in 

the other soil  (conventionally farmed) was about 200 pmol Leu g
-1 

h
-1 

(Fig. 4.1A), decreasing 
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to about 100 pmol Leu g
-1 

h
-1 

by W11 (Fig. 4.1B) and to approximately 30 pmol Leu g
-1 

h
-1 

at 

W16 (Fig. 5.1C), a decrease in bacterial growth of about 90% from W5 to W16.  

At W5, significant differences emerged between bacterial growth in soils treated with 

the different fertilizer treatments (p < 0.001). LD and mineral fertilizers applied to soil all 

induced higher bacterial growth than the control treatment, while there were no differences 

between the control and US treatments to the soils. LD fertilizer application to soils induced a 

bacterial growth 175% greater than US where bacterial growth was lowest (Fig. 5.1A). There 

were also minor differences in the two other factors of the experiment, soil and crop type. 

There were different levels of bacterial growth in the two soils (p < 0.001), and between crop 

types (p < 0.001).   

The second and third harvests indicated a similar pattern to that observed at the first 

harvest, only with decreasing overall effect sizes from fertilizer treatments over time.  Both 

for weeks 11 and 16, there were significant effects from the fertilizer treatments (p < 0.001) 

(Fig. 5.1B, C), with the change that the smaller effect sizes of the fertilizers led to reduced 

differences and only the differences between soils amended with LD and the control 

treatments remained significant. Soil type still had an effect on the level of bacterial growth 

throughout the experiment (p < 0.001), while differences between the crop types were no 

longer discernable at week 11 and barely discernable at week 16 (p < 0.05). 

The effect size of the fertilizer treatments consistently decreased over time (Fig. 4.1), as 

exemplified by the difference between LD and the control starting at more than 100% 

increase at W5, to about 25% differences at W16, demonstrating an expected strong 

interaction between time and response to the studied factors. 
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Fig. 5.1: Bacterial growth (leucine incorporation into extracted bacteria) following fertilizer 

application (150 kg N ha
-1

): no-fertilizer control (C), undigested slurry (US), liquid digestate (LD), 

mineral N and mineral NPK in organically and conventionally farmed soils, with grass, or grass 

/clover crop at three sampling times (Week 5, Panel A; Week 11, Panel B; Week 16, Panel C) post-

application. Values represent means with error bars indicating the SE (n = 5 for W5 and W11, and n = 

4 for W16). Note difference in y-scales. 
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5.4.3 Fungal growth 

The fertilizer effects on fungal growth were small but detectable throughout the 

experiment (Fig. 4.2; p < 0.05), however, there were no influence of the factors soil type or 

crop. At week 5, NPK had the highest fungal growth of all treatments, having about 25% 

greater fungal growth than control (Fig. 5.2A), and was the only treatment to be different 

from the unamended control treatment (p < 0.05), while at W16, the LD treatment to soils 

induced the highest growth approximately 20% higher than control (Fig. 5.2B). Although 

there were no statistically significant differences between the soils treated with organic or 

mineral fertilizers, the soils treated with organic fertilizers tended to be higher.  
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Fig. 5.2. Fungal growth (acetate incorporation into ergosterol) following fertilizer application 

(150 kg N ha
-1

): no-fertilizer control (C), undigested slurry (US), liquid digestate (LD), 

mineral N and mineral NPK in organically and conventionally farmed soils, with grass, or 

grass /clover crop at two sampling times (Week 5, Panel A; Week 16, Panel B) post-

application.  

 

 

5.4.4 Fungal biomass 

There was no change in fungal biomass in the control treatment of one soil (organic 

farmed) over the duration of the experiment with fungal biomass remaining stable at about 35 



89 

 

µg g
-1 

(Fig. 5.3A, B). However, the fungal biomass decreased over time in the other soil 

(conventionally farmed) with a 40% decrease in the control treatment between W5 to W16, 

decreasing from 70 µg g
-1 

to 40 µg g
-1

. 

The fertilizer treatments affected fungal biomass concentrations at week 5 (p < 0.001 

Fig. 5.3A), with LD and NPK both higher than the control (p < 0.05), but differences 

disappeared by week 16 (Fig. 5.3B). The different soils harboured different concentrations of 

fungi throughout the experiment (p < 0.05; Fig. 3A). While there were no differences 

between crop types at W5, by W16, differences did emerge (p < 0.05). 
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Fig. 5.3. Fungal biomass (ergosterol concentration) following fertilizer application (150 kg N 

ha
-1

): no-fertilizer control (C), undigested slurry (US), liquid digestate (LD), mineral N and 

mineral NPK in organically and conventionally farmed soils, with grass, or grass /clover crop 

at two sampling times (Week 5, Panel A; Week 16, Panel B) post-application. Values 

represent means with error bars indicating the SE (n = 5 for W5 and n = 4 for W16).  

 

5.4.5 Fungal:bacterial growth ratio 

While effects were small, the fungal-to-bacterial (F:B) growth ratio was affected by fertilizers 

(p < 0.001), and different soils and different crops also harboured different F:B ratios 

throughout the experiment (all p < 0.05).  
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Fig. 5.4: The ratio between fungal and bacterial growth, as an index for the relative 

dominance of bacteria, following the fertilizer application (150 kg N ha
-1

): no-fertilizer 

control (C), undigested slurry (US), liquid digestate (LD), mineral N and mineral NPK in 

organically and conventionally farmed soils, with grass, or grass /clover crop at two sampling 

times (Week 5, Panel A; Week 16, Panel B) post-application. Values represent the mean with 

error bars indicating the SE (n = 5 for W5, and n = 4 for W16). Fertilizer was added at a rate 

of 150 kg ha
-1 

over two applications. 

 

5.5 Discussion 

As previously reported, the addition of fertilizer increased plant yield in all treatments 

compared to the unamended control, with greatest yield seen where LD had been applied 

(Walsh et al., 2012). While crop yields were very different in the two soils, this may be due to 
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the higher fertility of one soil (conventionally farmed) at the onset of the experiment (Table 

5.1). Grass-clover had a greater yield than grass, which is economically beneficial to the 

agricultural sector.  

 We found a general trend for an increase in the bacterial growth with the addition of N 

fertilizer, which is in line with work by previous studies investigating manure addition 

(Böhme et al., 2005; Marschner et al., 2003; Peacock et al., 2001). In the present study, 

bacterial growth, a more direct measure of the bacterial contribution to resource use and thus 

to decomposition, responded similarly from LD application as from the mineral fertilizer; 

while the response to the addition of US was similar to that of the no fertilizer control. This is 

in contrast to previous studies (Bittman et al., 2005; Sakamoto and Oba, 1994) where 

evidence for stimulation of bacterial biomass by the application of organic manure compared 

to mineral fertilizer or no fertilizer has been reported.  

A more comprehensive comparison (i.e. replicated) between the history of organically 

or conventionally farmed (see e.g. Joergensen et al., 2010) is needed before we can assign 

differences to management type rather than simply differences between individual farms. 

Therefore, we necessarily need to constrain our conclusions to what we have statistical power 

to assess, and conclude that the bacterial community reacted differently in different farmed 

soils, a context dependence that is not surprising. However, with respect to the sown crop, an 

unanticipated response was the elevated level of bacterial growth in grass compared with 

grass-clover. This contrasts with previous suggestions that have indicated that N-rich plant 

materials would tend to stimulate bacterial growth more than N-poor materials (Strickland 

and Rousk, 2010). However, a previous plant material amendment study suggested that the 

bacterial growth response following plant material amendment was less related to N richness 

than the C quality (Rousk and Bååth, 2007).  

Crop or soil types were not found to influence fungal growth, differences between 

fertilizer treatments were subtle and we found no evidence to support the tenet that the fungal 

community differed between organic or mineral fertilizers over the duration of the 

experiment. It should be noted that the agricultural soils studied here are typically associated 

with a bacterial dominated community (Strickland and Rousk, 2010), and it could therefore 

be argued that the fungal community show only small effect sizes and thus may be relatively 

poorly resolved. However, this argument would not be supported by the literature since, in 

other studies of similar agricultural (Rousk et al., 2009; 2010) and grassland (Rousk et al., 
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2011) soils, there has been evidence for relatively high fungal growth, and subsequent 

pronounced responses.  

Another possible explanation for the lack of fungal responses to the added fertilizers is 

a potential interaction between the nutrient effect and a change of the soil pH. Both of the 

organic fertilizers were slightly alkaline (Table 5.2) and it is possible that this changed the pH 

of the soil, and favoured bacterial growth while reducing the competitive ability of the fungal 

community (Rousk et al. 2009; 2010). Soil pH was again measured at the termination of the 

experiment and remained unchanged in comparison to the initial values. While speculative, a 

hypothesis yet to explore that could partly explain the observed small fungal responses could 

be a pH increase (upon application of fertilizer) that would be of a transient nature (not 

detectable after 16 weeks), which would be consistent with the equally transient microbial 

responses to the fertilizer additions.  

No major changes in fungal growth were apparent throughout the experiment within 

vegetation cover type, but differences in fungal biomass concentration did emerge; grass had 

approximately 30% greater fungal biomass than grass-clover in W16. This is in line with 

work by de Vries et al., (2006) who found that fungal biomass in grass was almost twice as 

high as in grass-clover. It is surprising that fungal biomass increased over time despite that 

fungal growth rate was not elevated over the course of the experiment. This discrepancy 

between fungal biomass and growth could be related to predation. Since we did not assess the 

level of fungal predation in the present experiment, additional work is needed to verify this 

hypothesis.  

Previous work in soil systems has indicated that there is a large potential for interaction 

between the major decomposer groups (Rousk et al., 2008; 2010). Furthermore, evidence is 

accumulating to suggest that bacteria tend to dominate the ecological interactions between 

these groups, so that fungi grow when conditions are unfavourable for bacteria, while 

bacteria out compete fungi in conditions of rich resources (Rousk and Bååth, 2011). In line 

with this, the US treatment, where resources were added in a relatively unavailable form, and 

where plant growth, and consequently labile rhizodeposits from the plant community, were 

likely to have been lower, the bacterial community was not favoured, and fungi could freely 

exploit the available resources. The US introduced higher amounts of C than any other 

fertilizer treatment and this low-rate addition of a low-quality, fungal promoting resource 

may provide an explanation as to the increase in fungal biomass over the duration of the 

experiment in the US treatment.  
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In general, the highest crop yields also induced the highest overall microbial growth (as 

a result of unchanging fungi and stimulated bacteria), suggesting that the rhizosphere effect 

was important in the studied system. Further, plant growth-induced changes in higher 

quantity and quality of root exudates has also been found to generate shifts in the F:B ratio 

(Grayston et al., 2001; Mawdsley and Bardgett, 1997). However, previous studies explicitly 

focused on the influence of concentration of root exudates on the balance of fungal and 

bacterial decomposers have suggested that higher rates were associated with a shift toward 

fungi (Griffiths et al., 1999). The lack of systematic pattern highlighted by the inconsistency 

of these reports suggest that higher crop growth and associated rhizodeposition and its 

connection bacterial decomposer dominance needs more systematic research attention and 

that singling out factors for individual study, e.g. type and loading rate of rhizodeposition 

(e.g. Paterson et al., 2007), are useful paths. 

 

5.6 Conclusions 

This trial provides evidence that liquid digestate affected the fungal and bacterial 

growth in a very similar way to application of mineral fertilizers at comparable rates. 

Digestate induced a pronounced shift toward a bacterial dominated microbial decomposer 

community, similar to the effect of mineral fertilizer applications, and effects were consistent 

in different soils and different sward types. These results can extend work comparing the 

plant growth promotion of LD vs. mineral fertilizer applications and suggest that mineral 

fertilizer may be exchanged for LD without affecting plant growth promotion or the actively 

growing microbial decomposer community. With the microbial decomposer community 

being the primary providers of functions for plant nutrition and C sequestration in agricultural 

systems, it is likely that minimal effects on them will translate for equally small effects on 

soil functioning, although this remains to be explicitly tested. All the above provides 

increased evidence that AD acts similarly to mineral fertilizer and should be considered as 

such in its application to land. 
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Abstract  

On-farm anaerobic digestion (AD) has gained increasing popularity as a means of generating 

renewable energy. Another product of AD is digestate, which is spread onto land as a soil 

amendment. Limited field trial data exists on the effect of applying digestate to mixed pasture 

leys in temperate climates, particularly over more than one growing season. Here we 

compared yields and forage quality (protein and digestibility) from a field trial of a mixed 

pasture ley (ryegrass and clover), following the application of five different fertilizer types 

(liquid digestate generated from anaerobically digested slurry, dry fibre digestate, undigested 

slurry, ammonium nitrate and a NPK compound fertilizer) in comparison to a no-fertilizer 

control. Application rates were normalised in terms of dissolved nitrogen (N) and were added 

as a split dose with 100 kg N ha
-1

 added prior to the first harvest and an additional 50 kg N 

ha
-1

 supplied after the first harvest, every year for three years. Overall, our results showed 

that both forms of digestate matched the crop performance obtained with synthetic fertilizers, 

however, both digestate fertilizers produced greater, although not statistically so, clover 

yields. No differences were found with regards to digestibility or protein between any 

treatments. Although the trial was conducted only at one site, the results indicate that 

synthetic fertilizers can potentially be replaced by digestate without compromising grassland 

productivity. 

  

Keywords: Animal manure, Biogas, Feed value, Greenhouse gas emissions, Livestock  
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6.1 Introduction 

 As global demand for food and energy continue to increase, there is a need to utilize 

nutrient sources more efficiently. This greater nutrient input is largely provided in the form of 

synthetic fertilizer. This reliance on synthetic fertilizer usage has an associated increase in 

energy consumption and greenhouse gas emissions as, during manufacturing, it typically 

releases 4.96, 1.86 and 0.99 kg of CO2e per kg of synthetic N, P and K fertilizer, respectively 

(Econivent, 2007). Due to these economic and environmental concerns, as well as the EU 

Renewable Energy Directive 2009/28/EC, there is an increasing interest in the use of 

livestock manure as an alternative source of renewable energy (Demirer & Chen, 2005). 

Anaerobic digestion (AD) is one such technology that may help increase crop yield without 

the need for extra synthetic fertilizer, in addition to being both a source of renewable energy 

and a pollution abatement technology (Walsh et al., 2012a). AD is the decomposition of 

biologically derived resources in the absence of oxygen (Pain & Hepard, 1985). The products 

from the AD process include biogas (~70% methane) and a digestate fertilizer which is 

enriched in N and P relative to the feedstock material (Chadwick et al., 2011; Field et al., 

1984; Larsen, 1986; Masse et al., 2007). The biogas can be used as a source of renewable 

energy to replace fossil fuel, while the digestate is an organic fertilizer which can be applied 

back to the land. AD may be particularly appealing to livestock farmers as they produce large 

quantities of animal manures, which are suitable feedstock for AD, and can also provide 

additional sources of revenue (Demirer & Chen, 2005). Currently there are approximately 

100 food- and animal-waste fed AD units in operation in the UK (NNFCC, 2012)’ although 

there is potenital for considerably more (ADAS, 2012). Co-digestion will lead to a greater 

quantity of organic manures being treated prior to land disposal (Moeller et al., 2011). 

Although synthetic fertilizers are often considered to represent a more effective and 

controllable source of plant nutrients, organic fertilizers offer extra benefits above which 

synthetic fertilizers are able to provide. These can include: enhancing the microbial activity 

and biomass of the soil (Garcia-Gil et al., 2000; Powlson et al., 1987); enhancing soil organic 

matter and consequently improving soil structure, porosity and drainage (Choudhary et al., 

1996); and supplying nutrients in a more bioavailable form (Odlare et al., 2011). In addition, 

compared to undigested animal manures, digestate possesses a relatively low carbon-to-

nitrogen ratio, reduced biological and chemical oxygen demand, elevated pH values, higher 

ammonium (NH4
+
) as a percentage of total nitrogen, and reduced viscosities (Chantigny et 
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al., 2007; Masse et al., 2011; Möller et al., 2008). After digestion, the digestate can be 

separated into liquid and dry fibre portions, with the dry fibre having a similar texture to 

compost and a dry matter (DM) content of ~20%. The liquid digestate will have a DM 

between 4-6%, and is characterized by low P and high N and K contents (Moeller et al., 

2010). Thus, the N, P and K are partitioned according to the separated liquid and dry fibre 

digestate (Bauer et al., 2009; Liedl et al., 2006; Möller et al., 2008). 

 Although a plethora of information exists in regard to the benefits of biogas from AD 

(Cavinato et al., 2010; DeVuyst et al., 2011), the agronomic benefits of digestate are less well 

documented with many contradictory reports present within the literature. Some studies have 

reported higher crop yields following digestate application (de Boer, 2008; Garg et al., 2005; 

Pathak et al., 1992; Rubaek et al., 1996; Svensson et al., 2004), while others have reported no 

difference (Loria & Sawyer, 2005; Möller et al., 2008). Others report the same crop yield as 

when synthetic fertilizer is applied (Liedl et al., 2006; Walsh et al., 2012a), though some 

studies witnessed a lower yield than synthetic fertilizer (Quakernack et al., 2012). A search of 

the literature however, failed to find studies that have investigated the effect of digestate 

application on forage quality (e.g. protein content and digestibility); even though such 

information would be useful for efficient grazing management.  

 The aim of this study was to determine the effects of the repeated application of 

different fertilizers, including AD digestate, on a mixed pasture ley over three growing 

seasons. The key indicators used to evaluate treatment performance were dry matter yield, 

shifts in pasture composition, forage protein and digestibility.  

  

6.2 Materials and methods 

6.2.1 Experimental design 

 The experimental field site was located on freely draining agricultural grassland 

located in Abergwyngregyn, Gwynedd, North Wales (53°14’05’’N, 4°00’50’’W). The sward 

contained a mixture of perennial rye grass (Lolium perenne L.) and white clover (Trifolium 

repens, L.) and was previously subject to sheep grazing (ca. 15 ewes ha
-1

). The soil has a 

clay-loam texture and is classified as a Eutric Cambisol (of the ‘Denbigh’ series) and is 

derived from mixed glacial till.  

Five different fertilizer treatments were applied to 2 × 2 m plots (n = 4), organised in a 

randomised design. These included: a no fertilizer control (C); undigested cow slurry(US); 
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the liquid fraction of anaerobically digested cow slurry (liquid digestate, LD); the dry fibre 

fraction of anaerobically digested cow slurry (dry fibre digestate, DFD); synthetic N 34.5% 

fertilizer (N; ammonium nitrate) and a synthetic NPK 21.8.11 (NPK) compound fertilizer. 

Over a three year period, six above-ground vegetation harvests were performed on the plots 

with two harvests taken per year (May-June and August-September). Weather patterns were 

recorded over the trial period and total monthly rainfall and mean monthly temperature are 

reported (Figure 6.1).  
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Figure 6.1: Total monthly rainfall and mean monthly temperature over the trial period, with 

rain in the left column and temperature in the right. 

 

To represent farmer practice, the first harvest was undertaken six weeks after the initial 

application of 100 kg N ha
-1

 of each fertilizer type. A second fertilizer addition of 50 kg N ha
-
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1
 was then applied one week post-harvest and after an additional six weeks, the final harvest 

of that year was taken. The application rate for each was normalised for nitrogen, based on 

mineral N (ammonium N) values and total nitrogen content for the synthetic fertilizers. With 

the exception of the first harvest, the harvested material was manually separated to determine 

the proportion of grass and clover in the sword. Only the plant biomass within the central 1 

m
2
 of the plots was quantitatively evaluated to avoid potential edge effects. Soil samples at a 

depth of 150 mm were taken from each plot at the very beginning of the experiment, after the 

third harvest and again at the end of the final harvest in year 3. All harvested plant material 

was weighed wet, and then a 300 g subsample was removed, dried at 85 °C for 48 h, and 

reweighed. Crop nutrient analysis was undertaken in both harvests in year three of the trial to 

determine total nitrogen and carbon content of the shoots. Protein content was calculated by 

multiplying the nitrogen reading by 6.25, which is the industry standard, however, this tends 

to overestimate the true protein of feedstocks (Sriperm et al., 2011). Digestibility was 

calculated using the MAD fibre content of each sample (Yara, 2013). The harvesting and 

drying of the crop can be seen from pictures 6.1 to 6.4. 

 

Picture 6.1: Field trial one day before harvesting  
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Picture 6.2: Field trial with edge effect waste disregarded, to allow for treatment collection 

 

 

Picture 6.3: Field trial with treatment harvests in bags for transport to the lab 
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Picture 6.4: Wet samples (each 300 g from one meter squared plot), dried for further analysis 

 

6.2.2 Soil and fertilizer characterization 

 Soil (0-15 cm) and organic fertilizer were extracted with deionised water 1:5 (w/v), 

shaken (250 rev min
-1

, 1
 
h, 20 °C), centrifuged (4000 g, 15 min) and the supernatant filtered 

(Whatman no. 42). Major cations (K
+
, Na

+
 and Ca

2+
) were analysed using a model 410 flame 

photometer (Sherwood Scientific, Cambridge, UK) whilst NO3
-
, NH4

+
 and P were determined 

colorimetrically (Synergy® Microplate Reader; BioTek US, Winooski, VT) using the 

methods of Mulvaney (1996), Miranda et al. (2001) and Murphy and Riley (1962), 

respectively. Total dissolved N (TDN) and dissolved organic N (DON) were determined 

using a TCN-V analyser (Shimadzu Corp., Kyoto, Japan) and total C and N were analysed 

using a TruSpec® elemental analyser (Leco Corp., St Joseph, MI). Samples were oven dried 

at 105 °C for 24 h to determine gravimetric water content. Electrical conductivity (EC) and 

soil pH were determined using standard electrodes in 1:5 (w/v) distilled water extracts.  

 

6.2.3 Predicted ammonia emissions and nitrate leaching 

 Fertilizer application rate, dry matter content, total nitrogen and total NH4
+
 of the 

undigested slurry, liquid digestate and dry fibre digestate were inputted into the computer 

programme MANNER v4.0 (Chambers et al., 1999). MANNER is a software application that 
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allows the user to determine the potential N volatilisation and leaching of organic fertilizer 

for different regions of the UK. A 3-year average of the fertilizer value (nutrient content) was 

used (rather than three individual years) to determine what the potential greenhouse gas 

emission reduction and leaching may have been from all three organic fertilizers over the 

experimental period.  

 

6.2.4 Statistical analysis 

 Statistical analysis was performed using SPSS v.18 (IBM UK Ltd., Hampshire, UK). 

For analysis of crop yield data, total yield from all harvests were used and subject firstly to a 

one-way ANOVA to determine differences within each sub-group, with treatment as the 

factor. The same analysis was used for carbon, nitrogen and digestibility tests. Post-hoc tests 

were carried out on all ANOVAs using Tukey HSD test at the level (p < 0.05).  

 

6.3 Results 

5.3.1 Soil and fertilizer characterization 

Tables 6.1-6.3 report the physico-chemical properties of the three fertilizers used over 

the duration of the field trial, undigested slurry (US), liquid digestate (LD) and dry fibre 

digestate (DFD), for each individual year.  
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Table 6.1: Physico-chemical properties of the organic fertilizers used in year 1 (2010) of the 

field trial, undigested slurry (US), liquid digestate (LD) and dry fibre digestate (DFD). Values 

represent means ± SEM (n = 3) and are expressed in terms of dry weight where applicable. 

 

Fertilizer 

  US  LD  DFD 

pH  7.55 ± 0.12  8.59 ± 0.11  9.08 ± 0.21 

EC (mS cm
-1

)  9.01 ± 0.14  12.2 ± 0.1  20.20 ± 1.47 

Dry matter (%)  14.3 ± 0.26  5.2 ± 0.3  22.42 ± 0.31 

DOC (mg g
-1

)  35.3 ± 0.2  30.0 ± 0.9  23.04 ± 1.61 

DON (mg g
-1

)  11.6 ± 0.1  27.4 ± 1.3  8.67 ± 0.58 

NO3
- 
(mg g

-1
)  0.31 ± 0.15  0.51 ± 0.04  0.34 ± 0.11 

NH4
+ 

(mg g
-1

)   6.54 ± 0.25  20.35 ± 0.53  23.55 ± 0.25 

P
 
(mg g

-1
)  10.6 ± 0.8  1.0 ± 0.2  4.49 ± 0.76 

K (mg g
-1

)  9.1 ± 0.1  16.5 ± 0.0  19.49 ± 4.01 

Ca (mg g
-1

)  13.9 ± 0.1  19.5 ± 0.1  2.34 ± 0.64 

Na (mg g
-1

)  3.6 ± 0.1  7.2 ± 0.2  7.81 ± 1.39 
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Table 6.2: Physico-chemical properties of the organic fertilizers used in year 2 (2011) of the 

field trial, undigested slurry (US), liquid digestate (LD) and dry fibre digestate (DFD). Values 

represent means ± SEM (n = 3) and are expressed in terms of dry weight where applicable. 

 

Fertilizer 

  US  LD  DF 

pH  6.82 ± 0.02  8.21 ± 0.03  8.94 ± 0.02 

EC (mS cm
-1

)  3.6 ± 0.85  3.8 ± 0.60  2.4 ± 0.80 

Dry matter (%)  17.36± 0.35  3.74 ± 0.05  23.39 ± 0.71 

DOC (mg g
-1

)  58.75 ± 0.57  34.81 ± 3.91  23.90 ± 0.24 

DON (mg g
-1

)  13.34 ± 0.07  18.79 ± 0.15  7.98 ± 0.02 

NO3
- 
(mg g

-1
)  0.48 ± 0.01  0.28 ± 0.02  0.14 ± 0.03 

NH4
+ 

(mg g
-1

)   17.2± 3  37.3 ± 13  23.2 ± 17 

P
 
(mg g

-1
)  16.1 ± 0.79  5.8 ± 0.16  8.18 ± 0.5 

K (mg g
-1

)  19.17 ± 0.12  13.93± 0.32  12.53 ± 0.59 

Ca (mg g
-1

)  5 ± 0.11  3.33 ± 0.21  3.45 ± 0.48 

Na (mg g
-1

)  1.17± 0.01  3.34 ± 0.17  5.37 ± 0.15 
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Table 6.3: Physico-chemical properties of the organic fertilizers used in year 3 (2012) of the 

field trial, undigested slurry (US), liquid digestate (LD) and dry fibre digestate (DFD). Values 

represent means ± SEM (n = 3) and are expressed in terms of dry weight where applicable. 

 

Fertilizer 

  US  LD  DF 

pH  6.83 ± 0.32  8.51 ± 0.02  8.64 ± 0.10 

EC (mS cm
-1

)  4.44 ± 0.76  3.72 ± 0.06  1.76± 0.14 

Dry matter (%)  11.66± 0.06  5.84± 0.23  26.95±2.78 

DOC (mg g
-1

)  80.41 ± 1.87  76.84 ± 0.44  40.54 ± 0.87 

DON (mg g
-1

)  14.62 ± 0.21  35.62 ± 0.32  13.72 ± 0.24 

NO3
- 
(mg g

-1
)  0.54 ± 0.03  0.26 ± 0.03  12.24± 0.07  

NH4
+ 

(mg g
-1

)   22.42± 0.83  48.01±2.74  23.99±1.56 

P
 
(mg g

-1
)  8.41 ± 0.05  4.28 ± 0.13  5.81 ± 0.09 

K (mg g
-1

)  9.31± 0.47  9.81± 0.77  6.18± 0.51 

Ca (mg g
-1

)  2.55± 0.10  1.94 ± 0.10  1.22 ± 0.02 

Na (mg g
-1

)  3.82 ± 0.04  13.81± 0.21  10.22± 0.16 

 

Tables 6.4-6.6 report the physico-chemical properties from the soil where the field 

trials took place. Table 6.4 is a mean of soil characteristics from a range of plots before any 

fertilizer was applied. Tables 6.5 and 6.6 are subdivided into the different treatments, control, 

pasture applied undigested manure (US), pasture applied liquid digestate (LD), pasture 

applied dry fibre digestate (DFD), and pasture applied synthetic nitrogen fertilizer as either 

NPK, or straight N.  
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Table 6.4: Physico-chemical properties of soil used in the study in year 1 (2010). Values 

represent means ± SEM (n = 3) and are expressed in terms of dry weight where applicable.  

  Soil  

pH 5.45 ± 0.02 

EC (µS cm
-1

) 44.4 ± 5.4 

Dry matter (%) 78.3 ± 0.2 

Total C (mg g
-1

) 29.1 ± 0.5 

Total N (mg g
-1

) 3.11 ± 0.07 

C:N 9 ± 0.13 

DOC (mg g
-1

) 0.11 ± 0.01 

NO3
- 
(μg g

-1
) 20 ± 1.2 

NH4
+ 

(μg g
-1

) 9 ±1.3 

P
 
(μg g

-1
) 90 ± 5 

K (μg g
-1

) 30 ± 4 

Ca (μg g
-1

) 36 ± 3 

Na (μg g
-1

) 65 ± 6 

 

Table 6.5: Physico-chemical properties of soil used in the study in year 2 (2011). Values 

represent means ± SEM (n = 3) and are expressed in terms of dry weight where applicable.  

Fertilizer 

 C US LD DFD NPK N 
pH 7.11 ± 0.02 6.96 ± 0.19 6.81 ± 0.23 6.66 ± 0.02 6.52 ± 0.02 6.57 ± 0.18 

EC (µS cm
-1

) 82.7 ± 18.5 91.4 ± 15.3 70.1 ± 8.6 128.9 ±12.4 73.2 ±13.3 63.9 ± 3.2 

Dry matter 

(%) 

79.18± 

0.76 

80.27± 0.58 79.31± 0.55 78.91± 0.91 78.96± 0.56 78.63± 0.34 

NO3
- 
(μg g

-1
) 17.87±2.54 16.12±1.52 17.96±1.65 23.86±1.85 14.71±1.01 23.05 ±1.39 

NH4
+  

(μg g
-1

) 16.02± 

0.74 

13.08± 0.56 16.42±2.16 16.45± 0.55 14.71± 0.08. 14.35 ±3.78 

P
 
(μg g

-1
) 84.58±5.99 92.62±3.1 96.35±7.27 90.81±5.6 100.74±10 113.02±9.8 

K (μg g
-1

) 27 ± 4.12 39.6 ±5.65 52.2 ± 4.97 84.6±10.4 28.8 ±4.47 23.4 ± 3.01 

Ca (μg g
-1

) 7.2 ± 1.55 23.4 ±2.66 23.4 ± 3.45 50.4 ±3.81 5.4 ± 2.46 5.4 ± 1.97 

Na (μg g
-1

) 36 ± 6.38 37.8±4.91 72 ± 10.63 68.4 ±6.03 37.8 ±2.74 34.2 ± 1.98 
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Table 6.6: Physico-chemical properties of soil used in the study in year 3 (2012). Values 

represent means ± SEM (n = 3) and are expressed in terms of dry weight where applicable.  

soil 

 C US LD DFD NPK N 
pH 6.40 ± 0.23 6.82 ± 0.18 6.86 ± 0.48 7.34 ± 0.03 6.52 ± 0.14 6.49 ± 0.19 

EC (µS cm
-1

) 57 ± 7.87 78.07±9.64 77.26±9.01 92.12±4.49 53.53±5.08 48.12±2.61 

Dry matter (%) 78.17± 0.65 76.97± 0.19 72.28±1.31 80.68±4.75 77.21± 0.75 74.87±2.38 

NO3
-  

(μg g
-1

) 4.75 ± 0.44 6.19 ± 0.51 5.67 ± 0.81 5.31 ± 0.72 5.65± 0.47 5.72 ± 0.45 

NH4
+  

(μg g
-1

) 1.48 ± 0.13 1.15 ± 0.04 1.62 ± 0.12 0.91 ± 0.02 1.04 ± 0.04 1.08 ± 0.05 

P
 
(μg g

-1
) 24.66± 0.91 16.56± 0.45 24.48± 0.51 47.88± 0.49 9.36 ± 0.12 7.28 ± 0.11 

K (μg g
-1

) 5.85 ± 1.63 8.92 ± 1.89 10.69±1.91 8.73 ± 0.57 3.27 ± 0.72 3.18± 0.66 

Ca (μg g
-1

) 5.42 ± 0.91 8.44 ± 1.13 9.57 ± 1.11 13.24± 0.64 6.03 ± 0.84 5.53± 0.33 

Na (μg g
-1

) 7.31± 0.74 10.84± 0.67 11.03± 0.88 11.02± 0.83 8.84± 0.43 7.68 ± 0.54 

 

6.3.1 Cumulative forage yields 

 The cumulative forage crop yield across all six harvests showed that plots applied 

liquid digestate (LD) had the greatest yield; however, it was not significantly different (p > 

0.05) from pasture applied undigested slurry (US), digestate fibre (DFD) or standard NPK 

fertilizer treatments. There was no significant difference (p > 0.05) between the two synthetic 

fertilizer treatments, and pasture applied synthetic N was not statistically different from the 

zero amendment (control), which had the lowest overall yield; the reason for which may be 

due to the greater quantity of clover in the control treatment. 

 When comparing individual years, there were statistically significant differences 

between treatments (p < 0.001) and harvest times, except for pasture applied synthetic N. 

Within the control treatment, year three had the greatest yield in comparison to years 1 and 2 

(p < 0.05) which did not differ significantly. Similar results were reported for pasture applied 

US and LD. Pasture applied synthetic N and DFD yielded most in year three (p < 0.05) and 

both treatments had their lowest yield in year 2. The crop yield was different in all years (p < 

0.05) for NPK, with year two having the lowest yield and year three having the greatest. One 

constant throughout was that year three had the greatest yield of all treatments above other 

years harvests.  
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6.3.2 Impact of fertilizer treatment on sward composition 

 From harvest 2 onwards, all treatments were separated into grass and clover. A 

cumulative total from harvest 2 to 6 showed that pasture applied LD had the greatest yield of 

grass; however, it was not significantly different (p > 0.05) from pasture applied US, DFD or 

NPK treatments (Fig. 6.2). Similarly, there was no significant difference in grass yield 

between both synthetic fertilizers, while the control treatment had the lowest yield but was 

not significantly different (p > 0.05) from synthetic N. When the cumulative biomass of 

clover from harvests 2 to 6 was analysed, pasture applied US produced the greatest clover 

yield of all treatments. However, pasture applied US when compared to other treatments, was 

only significantly different (p < 0.05) than swards amended with synthetic N, and no 

difference emerged between other treatments. An individual observation of each year can be 

seen in Fig 6.4 where both harvests from each year were accumulated to show total crop yield 

in that year. All years followed the same statistical pattern as individual harvests within that 

year and thus there are no statistical differences shown in Fig. 6.3.  
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Figure 6.2: Proportion of grass and clover in swards after treatment with fertilizer regimes. 

Treatments are no-fertilizer control (C), undigested slurry (US), liquid digestate (LD), dry 

fibre digestate (DFD), mineral nitrogen (N) and mineral NPK (NPK). Values represent the 

mean ± SEM (n = 4). Lowercase letters within graphs denote differences (p < 0.05) between 

treatments within the same sub-group, for grass and yield quantity in that harvest 
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Figure 6.3: Total yearly crop yield after the application of different fertilizer types over three 

years with two harvests per year: no-fertilizer control (C), undigested slurry (US), liquid 

digestate (LD), dry fibre digestate (DFD), mineral nitrogen (N) and mineral NPK (NPK).
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As a total of the three years harvests, the unamended control had the greatest proportion 

of clover (of total yield), and was significantly greater (p < 0.05) from all other treatments 

(Table 6.7). Pasture applied FS had the greatest percentage of clover of all treatments applied 

fertilizer, and was significantly different (p < 0.05) from the synthetic fertilizers and DFD. 

However, no significant difference was revealed between US and LD (p > 0.05). After the 

accumulation of three years’ harvests, there were no differences in clover percentage between 

pasture applied LD and DFD and that applied the two synthetic fertilizers (p > 0.05). 

 

Table 6.7: Percentage of clover from total of 5 harvests, values are in dry matter yield per m
2
. 

 

Treatment  Total yield  

(g m
-2

) 

Grass yield  

(g m
-2

) 

Clover yield 

(g m
-2

)  

Clover 

(%) 

Control 1849.7 ±108.5 1075.77 ±70.05 644.74 ±85.39 34.9 

US 2571.6 ±38.01 1748.38 ±111.39 755 ±101.62 27.2 

LD 2661.4 ±75.53 1902.54 ±71.25 587.28 ±88.74 22.1 

DFD 2372 ±38.82 1848.65 ±61.37 524.55 ±24.11 22.1 

N (34.5%) 2042.7 ±67.94 1413.41 ±86.10 453.91 ±38.13 22.2 

NPK  2342.1 ±83.83 1609.2 ±62.67 506.36 ±39.10 21.6 

 

6.3.3 Impact of fertilizer treatment on sward N content  

 At harvest 5, there were significant differences between foliar nitrogen levels amongst 

treatments in both separated grass and separated clover (p < 0.001). Within grass, all 

treatments had greater levels of nitrogen (p < 0.05) than control, but there were no differences 

between any of the other fertilizer treatments (p > 0.05). With respect to clover, the DFD 

treatment possessed the greatest amount of nitrogen of all treatments, being significantly 

different from the synthetic N and NPK treatments which possessed the lowest N levels (p < 

0.05). Again there was no statistical difference (p > 0.05) between the other treatments.  

 At harvest 6, differences were also apparent in foliar nitrogen content between the 

different grass treatments (p < 0.05), with the control and DFD treatments showing the lowest 

levels of nitrogen and being significantly different (p < 0.05) from the synthetic N which had 

the greatest levels of nitrogen. No differences emerged between any other treatments. Again 

with clover, the synthetic N treatment had the lowest level of leaf nitrogen, being 

significantly different from pasture applied LD and DFD (p < 0.05) which had the greatest 
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foliar N concentrations whilst no significant differences emerged between any other 

treatments.  

 

6.3.4 Forage digestibility  

 Digestibility of the above-ground foliage was analysed from all treatments for the 

final two harvests (year three only). Typically, digestibility ranged from 60-70%. LD had the 

lowest digestibility of all treatments at 60% while all other treatments reported a value of 

62%; however, none of these differences were statistically significant (p > 0.05).  

 

6.3.5 Prediction of potential N leaching and N volatilisation  

 The MANNER programme predicted treatment response in relation to NH3 emissions 

and NO3
-
 leaching from the application of organic fertilizers. The results indicated that US 

had the lowest potential for leaching at 14 kg N ha
-1

, and a volatilization rate of 5 kg N ha
-1

. 

With digestate, LD reporting the greatest potential to leach at 29 kg N ha
-1

, and a 

volatilization rate of 7 kg N ha
-1

, while DFD had a leaching potential of 22 kg N ha
-1 

and a 

volatilisation rate of 8 kg N ha
-1

. 

 

6.4 Discussion 

6.4.1 Crop yield and sward composition 

 The results presented here show that, cumulatively, organic fertilizers derived from 

anaerobic digestion gave the same forage yield as that provided by synthetic fertilizers over a 

(medium-term) three year period. This contrasts with results obtained from some previous 

trials (Möller and Müller, 2012) but supports the findings of others (Morris & Lathwell, 

2004). A cause of the disparity in the yield results can be expected due to forage type, and 

whether the experiment was a field- or pot-scale trial. Generally, pot-scale experiments have 

reported higher yields, ranging from 10-25% from the application of digestate compared to 

undigested fertilizer (Bougnom et al., 2012; Morris & Lathwell, 2004; Walsh et al., 2012a). 

In contrast, field trials rarely demonstrate the same positive growth response (Möller & 

Müller, 2012), with positive effects from the application of digestate reported in some years, 

and not in others. However, studies from field trials consisting of more than one growing 

season are uncommon. A possible explanation for the differences in the field and pot trials 
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may be due to the application method of the fertilizer, being surface applied rather than 

incorporated within the soil profile (Möller & Müller, 2012), or that pot trials are often set 

under controlled conditions. In field trials over a longer harvesting period, the extra rooting 

volume of crops compared to pots may lead to the acquisition of mineralised organic nitrogen 

from manures by crops (Morris & Lathwell, 2004; Möller et al., 2008; Svensson et al., 2004). 

In comparison with straight N synthetic fertilizer, organic fertilizers provide additional 

nutrients in the form of phosphorus and potassium; which may explain the lower yields from 

pasture applied the former (Fig. 6.2). In the longer term, digestate application, relative to 

synthetic fertilizer may also increase soil organic matter and hence the retention of nutrients 

and improve overall soil quality.  

 The application of nitrogen is frequently reported to suppress clover growth (Hakala 

et al., 2012; Nesheim et al., 1990). However, Bougnom et al. (2012) reported greater 

percentage of legumes in soil treated with undigested manure rather than digestate, which 

corroborates our results (Fig. 6.2C). After three years there is often a decrease in the clover 

content of a mixed grass clover ley (Mela, 2003). Hakala et al. (2012) reported that at the end 

of a three year field trial, differences between synthetic and organic fertilizer in clover yield 

were minimal, but in general clover plants were higher in organic fertilizer compared to 

synthetic fertilizer, again similar results were seen in this study. At the end of this study, 

control plots had the greatest percentage of clover, followed by pasture applied with US, 

which were both higher than all other fertilized treatments (Table 6.7). Thus, although 

digestate is an organic fertilizer, it may restrict clover growth over time in a similar way to 

synthetic fertilizer, possible due to the higher amount of plant available nitrogen in digestate 

fertilizer compared to US. This may further support the concept that LD affects nutrient 

dynamics within the soil in a similar way to that of synthetic fertilizer (Walsh et al., 2012b).   

 

6.4.2 Forage carbon, nitrogen/protein and digestibility 

Foliar nitrogen content correlates with leaf protein at a ratio of 6.25:1 and is the 

industry standard for converting nitrogen to protein (Sriperm et al., 2011). Protein content is 

an important parameter of feed value and was calculated in this study. After three years of 

fertilizer application, little difference in N/protein content was seen between all five fertilizer 

treatments. However, there was a (statistically insignificant) trend within clover for higher 

nitrogen levels from organic fertilizers. If further work revealed this to be true, this may 
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prove important for farmers as a means of reducing reliance on synthetic fertilizer, and the 

importation of concentrate for animals.  

 In this study, no difference in relation to digestibility between treatments was 

reported. Digestibility of plant tissue typically increases with N fertilization (Johnson et al., 

2001; Messman et al., 1992; Prine & Burton, 1956). The fact that all harvest were taken 

within 6 weeks of fertilizer application, before digestibility would start to decrease, may 

explain the lack of treatment effect. It would be beneficial to have a longer harvesting time to 

determine if differences in digestibility would occur after an additional 2-3 weeks growth.  

 

6.4.3 Gaseous N emissions  

 With greenhouse gas (GHG) emissions gaining greater prominence in the agriculture 

sector, it is important to understand the GHG emissions from the application of all fertilizers 

(organic and inorganic). Methane (CH4) loss from manure management ranges from 12-41% 

of total CH4 emissions from agriculture worldwide (Chadwick et al., 2011), and AD has the 

potential to reduce the CH4 losses from manure during storage and application (Sommer & 

Moller, 2000). During the digestion process, the volatile solids in manures are reduced; this 

has a knock-on effect of lowering the risk of nitrous oxide (N2O) emissions from digestate 

applied to land due to the decrease in microbial demand for oxygen (Chadwick et al., 2011; 

Petersen et al., 1996). However, digestate has a higher NH4
+
 concentration and a higher pH 

than undigested manure, and this can lead to greater levels of ammonia losses from digestate 

compared to undigested manure (Gericke et al., 2012; Möller et al., 2008). However, 

digestate has a low DM content and facilitates slurry injection, which itself reduces ammonia 

volatilization by between 47-72% compared to surface application (Rubaek et al., 1996). 

Results from MANNER show that pasture applied LD and DFD had greater potential levels 

of N leaching and volatilization than pasture applied US, although the programme is 

restricted in the GHG emissions it calculates. When all GHG emissions are accounted for, 

studies have reported that there is approximately a 60% reduction in total GHG emissions per 

m
3
 of cattle manure digested during storage and application compared to US (Amon et al., 

2006).  
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6.5 Conclusion 

 Although this research was conducted on one crop and soil type and at one 

geographical location, it demonstrates the potential value of digestate as a fertilizer source for 

pasture systems. The process of AD appears to increase the agronomic value of manure. 

Further, the study implies that application of digestate, although an organic fertilizer leads to 

similar responses in pasture yield as when synthetic fertilizer is applied. Any agronomic 

benefits of replacing synthetic fertilizer use with digestate should be viewed alongside the 

long-term wider environmental benefits (e.g. in reducing GHG or loss of N to freshwater). 

Further work is needed at the field scale to fully explore the agronomic value of digestate 

under different environmental conditions, and soil and crop types. 
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Abstract  

Anaerobic Digestion (AD) is seen primarily as a source of low-carbon renewable energy. 

However, the introduction of AD can generate a number of additional positive environmental 

externalities above those provided by other forms of renewable energy, including greenhouse 

gas reduction from livestock production systems, closing the nutrient cycle within 

agriculture; as well as offering an effective replacement for synthetic fertilizer; reducing 

leaching of nutrients to waterways; reducing the biological and chemical oxygen demand of 

wastes; pathogen loads; and malodour. This study synthesises the scientific and economic 

literature on AD to estimate the value of these benefits. We estimate the total environmental 

non-market benefits from AD of livestock waste to range from £1-5m for each 1% of 

livestock waste anaerobically digested in the UK, equivalent to £0.03 - £0.15 per kWh of 

electricity generated from AD. If these non-market benefits were appropriately valued by 

policy, the UK government’s incentive for renewable energy, the Feed-In-Tariffs (FIT) rate 

should increase to £0.12 - £0.30 per kWh. The findings indicate that current incentives for 

renewable energy undervalue AD and that energy subsidies should be better aligned to 

include these wider environmental benefits. The results provide a great deal of variability in 

valuation, this goes to highlight the current lack of understanding as to the actual level of 

environmental benefits from the introduction of on-farm AD.  

 

Keywords: Biogas, Biomass, Digestate, Greenhouse gas abatement, Positive externalities, 

Renewable energy  
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7.1 Introduction  

Anaerobic digestion (AD) is the microbial decomposition of organic material in an 

oxygen-free environment leading to the production of biogas, predominantly composed of 

methane (CH4) to be used as an energy source, and a nutrient-rich digestate (Pain & Hepard, 

1985). The biogas produced by AD can be used to replace fossil fuels in energy production, 

and applying the digestate to land helps close the nutrient cycle, and reduce demand for 

synthetic fertilizers. AD is particularly suitable for use on livestock farms, due to the large 

amounts of waste produced. Indeed, approximately 1.5 billion tonnes of animal manure is 

produced in the EU 27 on a yearly basis (Holm-Nielsen et al., 2009). However, the majority 

of this manure is currently applied directly to land, meaning that a potentially valuable 

commodity is not being used to its full potential. AD can add value to animal manure by 

producing renewable energy, in the form of heat and electricity. The biogas can also be 

upgraded and used as a transport fuel (Patterson et al., 2011a), allowing AD to contribute to 

targets set out in the EU Renewable Energy Directive 2009/28/EC and the Fuel Quality 

Directive 2009/30/EC.  

Although the market benefits of AD, i.e. energy from biogas combustion (Capponi et 

al., 2012; Cavinato et al., 2010; DeVuyst et al., 2011; Moller et al., 2004) and digestate 

(Masse et al., 2011; Morse et al., 1996) are well reviewed in the literature, values for non-

market benefits associated with on-farm AD (i.e. the reduction in negative environmental 

externalities associated with agriculture) have yet to be fully elucidated. Yiridoe et al. (2009) 

valued the non-market benefits from AD to the farmer but not to the wider society. Although 

values were placed on GHG reduction from the displacement of fossil fuels that would be 

used in the production of electricity, the study did not value the reduction in GHG emissions 

from applying digestate instead of undigested manure to land. Similarly, Capponi et al. 

(2012) provide a comprehensive estimate of the carbon dioxide (CO2) savings from AD, but 

did not consider other environmental benefits.  

In the UK, approximately 20m tonnes of food waste (Defra, 2009) and 85m tonnes of 

livestock manure is produced per annum (Defra, 2011), suggesting that a sizable quantity of 

animal manure and other organic feedstocks could be available for AD. ADAS (2012) 

estimate that there is the potential for 700 food waste and 200 livestock manure fed digesters 

in the UK. However, despite financial incentives for renewable energy (Feed-In-Tariffs 

(FIT), Renewable Obligation Certificates (ROC), and Renewable Heat Incentives (RHI)) the 

uptake of AD remains low in the UK when compared to its European counterparts: 
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approximately 4,000 digesters exist in Germany (Wilkinson, 2011), compared to 

approximately 100 in the UK (NNFCC, 2012). Proper valuation of all the externalities from 

the introduction of AD and comparison with the level of financial incentives provided by the 

UK government to renewable energy technologies is therefore timely.  

We provide an economic valuation of the non-market environmental benefits of on-

farm AD and identify knowledge gaps in the scientific and economic literature. This study 

values the benefits of on-farm AD for every 1% of livestock manure being digested per 

annum in the UK. We also estimate a value per kWh of electricity produced from the AD of 

livestock waste in the UK to allow comparison with current environmental subsidies. 

Percentage of livestock waste is used as it allows policy-makers to determine what a certain 

percentage target will provide in additional environmental benefits.  

7.2 Anaerobic Digestion  

7.2.1 Benefits from anaerobic digestion 

AD produces two commodities, biogas and digestate; which can be further processed to 

four saleable commodities: electricity and heat (biogas), and liquid and dry fibre (digestate) 

(Figure.6.1). The liquid and dry fibre digestate can be applied to land, while the heat and 

electricity will be used on farm or sold. 

 

 

Figure7. 1: Flow diagram of anaerobic digestion (AD) process, showing the organic inputs 

on the left and the four commodity outputs: electricity, heat, liquid digestate and dry fibre 

digestate. 
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The biogas produced from the AD process typically comprises of 50-70% CH4, 30-45% 

carbon dioxide (CO2), ~ 500 ppm hydrogen sulphide (H2S), and ~100 ppm Ammonia (NH3) 

(ADAS, 2012; Mohseni et al., 2012; Probiogas, 2007; Rasi et al., 2007). CH4 recovery from 

swine, cattle and poultry manure range from 0.2–0.4, 0.2–0.3 and 0.35–0.6 L CH4 g
-1

 volatile 

solids (the part of the feedstock that the microbes get energy from to produce bio-gas), 

respectively (Masse et al., 2011). Although not considered for valuation in this chapter, food 

waste biomass is often added to livestock manure for co-digestion, due to its fertilizer value, 

and its CH4 potential which ranges from 0.32 – 0.49 CH4 L g
-1

 of volatile solids (Curry & 

Pillay, 2012), with approximately 2 kWh of electricity produced per m
3
 of biogas (Cuellar & 

Webber, 2008). On-farm digesters that take in food waste would bring about a further saving 

of 365 kg CO2e per tonne of food waste that is diverted from landfill per year (ADAS, 2012). 

The by-products from the burning of CH4 are water (H2O) and CO2. The CO2 may be 

considered carbon neutral (Caruana & Olesen, 2011; Mohseni et al., 2012) as the crops 

consumed by the animals absorbed CO2 during growth, and the nutrients are recycled back to 

land, whereas specially grown biomass crops have recently been shown to be incorrectly 

considered carbon neutral (Haberl et al., 2012). The global warming potential of CH4 is 25 

times that of CO2 (IPCC, 2007) and every kg of CH4 burned will produce ~ 2.75 kg of CO2. 

Therefore, just flaring the CH4 (without energy recovery) results in a net reduction of 22.25 

kg CO2e for every kg of CH4 burned instead of being released into the atmosphere from 

undigested cattle manure.   

After digestion, the digestate has an enriched mineral fraction of N and P compared to 

undigested animal manures, increasing nutrient availability to plants (Field et al., 1984; 

Masse et al., 2011). Digestate can therefore be used more effectively as a substitute for 

synthetic fertilizer than undigested cattle slurry (Walsh et al., 2012b).  

Table 7.1 is a simplified comparison of the environmental and social benefits from the 

introduction of various renewable energy technologies, and where AD provides extra 

benefits. There are three main headings with subgroups below each heading illustrating the 

extra benefits of each renewable energy technology, above the displacement of fossil fuels in 

energy conversion. The first of these headings is compatibility, which simply relates to the 

energy source and its compatibility to electricity demand, broken into two sections: energy 

storage and dispatchability. Pollution abatement is the environmental benefits that renewable 

energy technologies can offer above carbon reduction in the replacement of fossil fuel during 

energy conversion. Finally the last major heading is health and social benefits, which have 
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the sub headings relating to pathogens causing human illness, and odour nuisance. In section 

3, all of the extra benefits outlined in Table 7.1 are discussed in detail. Purpose grown energy 

crops are not considered in this paper for AD, therefore the AD valued does not require 

additional land which could be used for food production.   

 

Table 7.1:  Benefits from the introduction of renewable energy technologies  

 

Note 1: superscripts denote references; 1. Evans et al. (2009), 2. Dalton et al. (2010), 3. Chen et al. (2010), 4. 

Payne et al. (2007) 

Note 2: wave energy is still firmly in the development stage and therefore we cannot be sure of all its benefits or 

disadvantages, for further information refer to Dalton et al. (2010, 2012) 

Note 3: Energy storage is defined as natural storage as part of the process, not secondary (e.g. hydro with wind). 

All renewable energies reduce acidification caused by the burning of fossil fuels; therefore it is not mentioned in 

the table. 

 

7.2.2 Disadvantages of anaerobic digestion 

 Although on-farm AD is beneficial to both the farmer and the wider environment, 

there are a number of factors that hinder its uptake. Unlike other forms of renewable energy, 

AD is a live biological process that requires careful management or the bacterial community 

may be killed or impeded, resulting in low biogas yields. Consequently, AD is not simply a 

“plug and wait” technology. There may be traffic nuisance and greenhouse gas emissions if 
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feedstock is transported to the farm (Patterson et al., 2011b). If off-farm waste is co-digested, 

land application of digestate may be affected by heavy metal build up and/or contaminates 

(e.g. plastic/glass) in feedstock.  

Excess odour from the importation of food waste biomass can be a major social and 

economic issue. Odour can be eliminated from the importation of food waste if a ‘hub and 

pod’ system is used, in which the food waste biomass first goes to a central collection point, 

is macerated and pasteurised and sold to farms that have AD plants. Due to the fact that the 

biomass is in liquid form it can be pumped into the digester or a separate sealed storage unit 

on the farm, thus eliminating odour and vermin issues.  

As with all renewable energy technologies, AD systems have drawbacks. Table 7.2 

provides an overview of the disadvantages associated with renewable energy technologies, 

divided up into 10 main headings. Where a tick is present under a heading, this is associated 

to be a negative externality of that particular renewable energy technology. The negative 

externalities associated with each technology range from minor to major issues associated 

with that particular renewable energy technology, and the majority are self-explanatory.  

 

Table 7.2: Negative environmental and social impacts associated with the introduction of 

renewable energy technologies. 

  

Note 1: superscripts dénotes references; 1. Abbasi & Abbasi (2000), 2. Evans et al. (2009), 3. García-Olivares et 

al. (2012), 4. Candelise et al. (2011), 5 Pasqualetti (2011), 6. Upreti (2004), 7. Khan (2004), 8. Patterson et al. 

(2011b), 9. Mahmudi & Flynn (2006), 10. Reid et al. (2005), 11. Hand et al. (2010) 

Note 2: NIMBY is an acronym for “not in my back yard” which is often used to describe the negative feelings 

by residents local to the development and which leads to opposition during the planning stage of renewable 

energy projects  
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7.3 Valuing the non-market environmental benefits of AD  

In each of the following sections, each non-market benefit of AD is reviewed and the 

available data used to estimate its value. Data has predominantly been obtained from peer-

reviewed sources with additional UK-specific data from government organisations. We 

estimate the net benefit of livestock manure AD with electricity generation (spreading 

digestate to fields), relative to spreading the same quantity of manure in undigested form, 

which is the current practice. Results are presented per m
3
 of livestock manure digested

1
 and 

as a total for each 1% of livestock manure potentially anaerobically digested in the UK. We 

assume that benefits scale linearly with manure quantity. While this is likely to be true for 

greenhouse gas abatement, local pollution abatement (water, odour) is likely to be strongly 

scale and context dependent, however, there is little or no evidence on the form of these 

relationships. Where possible, we also express the non-market benefits of AD per kWh of 

electricity produced, to permit comparison with environmental subsidies currently paid to AD 

(e.g. through the UK’s FIT). All values are presented in 2012 pounds Sterling: where 

necessary, estimates from earlier years were inflated using the UK’s Consumer Prices Index 

(Whatsthecost, 2012) and those in other currencies were first converted using annual average 

exchange rates from Oanda (2012) 

GHG reduction can be valued using carbon market prices, such as the European Union 

Emissions Trading Scheme (EU ETS), marginal abatement costs, or the estimated social 

damage cost of emitting CO2. The average EU ETS CO2 prices for 2011 was £13 per tonne, 

while marginal abatement costs for the UK in 2010 were estimated to be £52 per tonne of 

CO2e abated (DECC, 2011). These are below the mean social damage costs reported by Tol 

(2005) from peer-reviewed journals of approximately £60 per tonne (February 2013 

exchange rate). As there are three figures for per tonne of CO2e we take the highest (£60; Tol, 

2005) and lowest (£13 EU ETS) figures and apply both to the available scientific data to give 

a range of values. 

 

7.3.1 GHG reductions from the AD of cattle waste  

Cattle manure produces the lowest biogas yields of all livestock waste (Masse et al., 

2011), producing in the region of 25 m
3
 of biogas per tonne (Poeschl et al., 2010; Weiland, 

                                                           
1
 As is standard in agriculture, we treat 1 m

3
 of manure/digestate as equivalent to 1 tonne 
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2010). Approximately 2 kWh of electricity will be produced per m
3
 of biogas generated, 

depending on conversion efficiency (Cuellar & Webber, 2008) and this can be used to 

displace electricity generated from other sources. Therefore, approximately 50 kWh (25 × 2) 

of electricity will be produced per tonne of cattle manure. Electricity production from the 

current mix of technologies in the UK produces approximately 0.547 kg CO2e per kWh, and 

as much as 1 kg CO2e per kWh for coal (Defra, 2012a). The precise effect of electricity 

production from AD on GHG emissions is complex, and depends on UK and international 

energy market conditions (price elasticity of supply and demand) and government energy 

policies. We consider only domestic emissions and simply assume that AD displaces existing 

energy generation (thus excluding rebound effects). Assuming that AD displaces the current 

mix of electricity generation, a reduction implies a reduction of CO2e of 27.35 (0.527 × 50) 

per m
3
 of manure; for coal-fired electricity production, this equates to 50 (1 × 50) kg CO2e 

per m
3
 of manure. This is worth £354 – 1,641 for the current mix and £605 – 3,000 per kg 

CO2e for coal (EU ETS and Tol (2005), respectively). All renewable energies provide a 

reduction in CO2e from displacement of fossil fuel; however the current FIT rate is not paid 

in relation to CO2e reductions, and thus the values above are not considered in our final 

calculations of additional pollution abatement brought about by the introduction of AD above 

other renewable energy technologies.  

AD of cattle manure with electricity generation brings an extra reduction in GHG 

emissions above other renewable energies as it harnesses and uses CH4 that would otherwise 

be emitted during storage and application of cattle manure (Amon et al., 2006; Collins et al., 

2011). Within cattle production, dairy cows are the largest producers of CH4; each producing 

~16 kg from manure management and ~100 kg through enteric fermentation per year, with 

non-dairy cattle producing approximately half these amounts (Hynes et al., 2009). Depending 

on the season, dairy cows in the UK are housed a minimum for four months of the year, 

making it feasible to collect approximately ⅓ of the manure for AD. CH4 emissions could 

therefore be reduced by at least 5% ((16/116))* ⅓), and more if animals are housed for 

longer.  

On-farm AD will also affect other farm GHG emissions. The effect on nitrous oxide 

(N2O) and ammonia (NH3) emissions during storage and application of digestate compared to 

undigested manure remains uncertain, with some authors reporting an increase (Amon et al., 

2006; Clemens et al., 2006; Thomsen et al., 2010), while others have reported lower levels of 
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N2O from digestate applied to soils than undigested manure (Bhandral et al., 2009; Petersen, 

1999). When all GHG emissions, (CO2, N2O, NH3 and CH4) associated with the storage and 

application of manure have been accounted for, there is approximately a 60% reduction in 

total GHG emissions (54.52 kg CO2e per m
3
 of cattle manure digested) during storage and 

application, compared to undigested cattle slurry (Amon et al., 2006). Although studies have 

looked at GHG emissions from different storage systems of pig (Petersen et al., 2013; 

Prapaspongsa et al., 2010) and poultry (Moore et al., 2011) manure; no studies could be 

found on the difference in GHG emissions between digested and undigested pig and chicken 

manure post land-application. Hence pig and poultry wastes were excluded in the evaluation 

of GHG reductions brought about by the AD of livestock wastes. 

In 2010 (latest figures available) 74 m tonnes of solid cattle manure and slurry were 

produced in the UK (Defra, 2011). Therefore, for every 1% of cattle manure digested in the 

UK (~740,000 t) there will be a total GHG saving of 38,864 t equivalent to a value of 

between £505,242 (38,864 × £13; based on EU ETS) and £2,331,840 (38,864 × £60; based 

on Tol (2005)). 

 

7.3.2 Displacement of synthetic fertilizer  

 AD increases the availability of macro-nutrients (nitrogen and phosphorous) to crops 

(Field et al., 1984; Masse et al., 2011) and digestate has been found to either increase crop 

yields (Holm-Nielsen et al., 2009; Rubaek et al., 1996; Tafdrup, 1995), or to have no negative 

effect (Chantigny et al., 2008; Loria & Sawyer 2005; Möller et al., 2008; Petersen, 1999; 

Thomsen et al., 2010) relative to the equivalent quantity of undigested manure. Those studies 

that report an increase in crop yield witnessed 10 – 25% greater yields when digestate was 

applied rather than undigested manure (Bougnom et al., 2012; Morris & Lathwell, 2004; 

Walsh et al., 2012b). The variability in the results may be due to a number of factors, 

including different crop and soil types used, plus the timing and method of application and 

whether it was a pot or field trial experiment.  Together, these results imply that AD of 

manure prior to application has the potential to reduce synthetic fertiliser required to meet 

crop yields, while maintaining yields constant. The rate of substitution between digestate and 

synthetic fertilizer can be estimated from studies comparing crop yields. Chantigny et al. 

(2008), Dahlberg et al. (1988), Liedl et al. (2006) and Walsh et al. (2012b) all report no 

difference in crop yield between digestate and synthetic fertiliser at varying levels of nitrogen 
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application. Although there is a discrepancy in regards to crop yield from digestate trials, 

there are no reports of application of digestate leading a lower crop yield than undigested or 

green manure (Gunnarsson et al., 2011; Stinner et al., 2008).  

Displacing synthetic fertilizer would lead to an associated reduction of CO2e (from the 

reduced manufacture of synthetic fertilizer) of 4.96, 1.86 and 0.99 kg CO2e per kg of N, P 

and K displaced, respectively (Econivent, 2007). To provide a range of the potential 

replacement of synthetic fertilizer demand brought about by the introduction of AD of 

livestock manure, we chose to use low (10%) and high (25%) estimates from literature 

reduction in synthetic fertilizer use from the introduction of AD. As digestate has been shown 

to match crop yield of individual synthetic N and mixed NPK synthetic fertilizer (Walsh et 

al., 2012b) we give a value for a reduction for all three nutrient types (Table 7.3). 

Approximately 85 million tonnes of livestock manure are produced and applied to land in the 

UK every year (Defra, 2011b). Additionally, 1,029,000, 192,000 and 283,000 tonnes of N, P 

and K in the form of synthetic fertilizer are applied per year in the UK (Defra, 2011). 

Adopting the low value mentioned previously, a 10% increase in crop yield from the 

application of digestate above undigested manure applied vis-à-vis would lead to a 10% 

reduction in the need and thus application of synthetic fertilizer. The rationale behind this 

assumption is that farmers require a specific nutrient load to produce a total net agricultural 

crop per year. The nutrient load is achieved through the application of purchased synthetic 

fertilizers and livestock manures. As the fertilizer market is a free market (with the only 

restriction on the market being NVZ areas), it can be assumed that total nutrient load is being 

reached to meet total crop yield demanded by the market. Therefore an increase in crop yield 

from the digestion of livestock manure, will vis-à-vis lead to an associated reduction in the 

demand for synthetic fertilizer of the same percentage. The associated benefits from the 

reduction in demand and manufacture of synthetic fertilizer, and the reduction in CO2e for 

every 1% of animal manure being anaerobically digested and applied to land in the UK can 

be seen in Table 7.3. 
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Table 7.3: Value of reductions in synthetic fertilizer demand and associated CO2e decrease in 

the production of synthetic N, P and K due to the AD of 1% of livestock manure in the UK, 

using EU ETS and Tol (2005) carbon prices. 

Fertilizer   Synthetic manure 

replacement 

(t) 

 Amount of C 

reduction (t) 

 EU 

ETS 

£ 13 

 Tol  

£ 60 

  Low 10% 

N  1,029  5,104  66,352  306,240 

P  192  357  4,641  21,420 

K  283  280  3,642  16,800 

  High 25% 

N  7,718  35,568  462,384  2,134,080 

P  1,440  2,678  34,814  160,680 

K  2,123  2,102  27,326  126,120 

Note 1: The same rational described for a 10% reduction in synthetic fertilizer demand was applied to a 25% 

reduction.  

Note 2: A 10% reduction in demand for the 1,029,000, 192,000 and 283,000 t of synthetic N, P and K 

respectively, currently being used in the UK would equate to a 102,900, 19,200 and 28,300 t reduction if all the 

85 million tonnes of livestock manure in the UK was anaerobically digested. More realistically, if 1% of this 

animal manure would be digested, this would equate to 1029, 192, and 283 tonnes of N, P and K synthetic 

fertilizer, respectively.  

 

7.3.3 Leaching of nutrients to waterways  

 Modern agricultural practices have resulted in excess N and P being leached to 

groundwaters, leading to eutrophication of marine and surface waters (Holman et al., 2010; 

Howden & Burt, 2009; Weatherhead & Howden, 2009); resulting in fish mortality and 

plankton build up. During 2010, English rivers had 51% and 32% higher than the 

recommended level of phosphate and nitrate present, respectively (EA, 2011); with an 

estimated 60% of all N in inland waterways in England and Wales originating from 

agriculture (EA, May 2002; Hunt et al., 2004). The hydrological process of nutrient leaching 

is complex and difficult to quantify, and is dependent upon a number of factors including: 

soil type, climate, hydrology, topography, land use and time of manure application (Beckwith 

et al., 1998; Burt et al., 1993; Chalmers, 2001; Chambers et al., 2000; Howden et al., 2011; 
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Weatherhead & Howden, 2009; Yan et al., 2002). Studies to determine differences in nutrient 

loss through leaching between organic and synthetic fertilizers have provided mixed results. 

Some studies have found greater levels of leaching from organic compared to synthetic 

sources of N (Bakhsh et al., 2005; Basso & Ritchie, 2005; Bergstrom & Kirchmann, 2006), 

while Bittman et al. (2005) and Di et al. (1999) found the opposite, with Tarkalson et al. 

(2006) reporting no difference.  

Experiments dealing with digestate specifically where normalisation of N took place 

have also provided mixed results, with Goberna et al. (2011) and Sänger et al. (2010; 2011) 

reporting higher levels of NO3
-
 leaching from digestate compared to undigested manure. 

These results conflict with those of Möller (2009) who found less leaching of N from 

digestate, and Lukehurst et al. (2010) and Walsh et al. (2012b) who report no difference 

between undigested cattle manure and digestate in the volume of N in soil solution after 

application. Differences in the type of digestion, time of application, whether separated or un-

separated digestate is applied, rate of application and the chemical properties of the residue 

may underlie the conflicting results in the literature (Goberna et al., 2011). In addition, 

whether nutrient sources were applied to fallow or cropped soils and the root depth of the 

crop trialled would affect the results. Walsh et al. (2012b) reported that there was 

approximately 20% less NO3
-
 in soil solution from digestate compared to synthetic N 

fertilizer, the only figures available comparing leaching differences between digestate and 

synthetic fertilizer attainable at time of writing. There was not enough literature comparing 

the loss of phosphate from digestate and synthetic fertilizer to enable a scientific or economic 

valuation, therefore it is not considered in this work. 

 Although we go on to value potential leaching reductions from the application of 

digestate compared to synthetic fertilizer, the final value must be considered indicative only 

as there is very little information in relation to potential leaching of nutrients between 

digestate and synthetic fertilizer, thus why a large range is provided. Further, the only values 

available for valuation are for nutrients recovered in soil solution from within the rooting 

zone of a pot trial by Walsh et al. (2012), and therefore should not be considered leaching per 

se.  

Literature on the costs associated with excess NO3
-
 in UK waterways is scarce; 

however, Pretty et al. (2003) estimated that the annual cost of N leaching to waterways in the 

UK is between £90 - £134m (2012 £). Replacement of synthetic fertilizer with digestate 

would reduce N leaching to waterways and hence have a positive environmental and 
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economic benefit in a similar way that a reduction in CO2e is valued per individual tonne of 

reduced pollutant. 

 The total amount of N applied to land in the UK in 2011 was approximately 

1,709,000 t; 60% of which (1,029,000 t) was from synthetic fertilizer, and 40% (680,000 t) 

was from organic sources (Defra, 2012b; Defra, 2011). For valuation purposes, we assume 

that 60% of N pollution in UK waters from agricultural sources is caused by the application 

of synthetic N. Due to the fact that 60% of N applied to land is synthetic N, we take 60% of 

the Pretty et al. (2003) figure (£90 - £134m), resulting in a cost associated with N leaching 

from synthetic fertilizer to be £54m - 80m. From Table 7.4, it can be seen what the synthetic 

N replacement may potentially be from the digestion of 1% of livestock manure in the UK 

(1,029 - 7,718 t of synthetic N). Table 7.4 reports the high and low values are from the 

potential reduced leaching for every 1% of animal manure digested and applied to land in the 

UK, and the associated economic savings. As we only have one study in relation to N 

leaching differences between digestate and synthetic fertilizer, we are restricted to using the 

Walsh et al. (2012b) 20% figure.  

Table 7.4: Value of 20% reduction of N leaching from 1% of animal manure in the UK being 

anaerobically digested and subsequently displacing synthetic fertilizer 

 Tonne of reduced N 

from introduction of 

AD 

20% of total N 

reduced in tonne 

Price per tonne of N 

leaching  

   £52.48 

 low 

£77.75  

high 

Low 1,029 206 £10,811 £16,017 

High 7,718 1,544 £81,029 £120,046 

Note 1: Walsh et al. (2012b) was a pot trial on one crop type under controlled conditions with shallow roots, and 

further trials on different crops in different conditions with different root depths will provide varied results. It is 

expected that Walsh et al. (2012b) will be at the very upper end of leaching differences for this specific reason. 

Note 2: Synthetic N has an associated leaching cost per tonne of £52.48 (£54m /1,029,000 t synthetic N; low 

value) and £77.75 (£80m/1,029,000 t synthetic N; high value). By incorporating the high and low values from 

Table 7.4 (1,029 t low and 7,718 t high).  

Note 3: Pretty et al. (2003) estimated that the annual cost of N leaching to waterways in the UK is between 

$105m – $160m. Included in this valuation is $7.17m – $11.19m for GHG associated with eutrophication, 

though in order to prevent double counting we subtracted the GHG associated figure, thus giving a new value of 

$98 – $148m. At the exchange rate that Pretty (2003) used, and converting to today’s values, £90 - £134m 

(2012£) is the cost attributed to N leaching. It can be assumed that all these costs are attributed to agriculture, as 

Pretty et al. (2003) valued nutrients to waterways from sewage works separately.  
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7.3.4 Reduction in biological and chemical oxygen demand  

 Biological oxygen demand (BOD) in waterways refers to the amount of dissolved 

oxygen required by aerobic microorganisms to break down organic material; the higher the 

organic pollution the greater the BOD requirement. This reduction of oxygen in the water 

starves higher organisms, leading to biodiversity loss. The same rationale applies for 

chemical oxygen demand (COD), and both are often measured as total oxygen demand 

(TOD). As part of the microbial action during anaerobic digestion, the volatile solids part of 

the feedstock are converted to CH4, by so doing there is an associated reduction in the TOD 

of the digestate compared to undigested manure. The reduction in BOD of animal manure 

during digestion ranges from 55 to 82% (Anon, 2003; Clemens & Huschka, 2001; Clemens et 

al., 2006) and a similar COD reduction by between 45 and 90% (Clemens et al., 2006; 

Canada, 2002).  

Livestock manure as well as human and industrial sewage contribute to the majority of 

BOD in waterways. Sewage treatment and disposal is more highly regulated than that of 

livestock manure, implying that the latter potentially poses a greater risk of increasing BOD 

levels to waterways. The main potential organic materials associated with BOD from 

agriculture include milk, silage effluent and manure. Over the last few decades, government 

intervention and better farm practices have seen farmers install collection pits to capture 

silage runoff from farms and milk is only very rarely applied to land (e.g. during protests). It 

is therefore assumed that the majority of BOD associated with agriculture comes from the 

application of manure to land.  

For this type of analysis, damage costs are the most favourable tool for valuation, with 

the most up to date available source for the UK being O’Neill (2007), who estimated that 

between £4m and £5m (in 2012 £) in damage costs can be attributed to BOD in UK 

waterways. Table 7.5 provides a summation of the sensitivity analysis, combining both the 

variability in the scientific and economic understanding of the associated value of BOD 

decrease to UK waters from the AD of livestock wastes. We were unable to obtain any useful 

economic values for a COD reduction, thus it is not valued here.  
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Table7.5: The associated BOD reductions if 1 % of animal manure in the UK were to be 

digested 

  Reduction in BOD 

Low and 

high  

Quantity 

digested (m
3
) 

 

55% 

 

74% 

 

82% 

     

Low £4m  850,000 £22,000 £29,600 £32,800 

     

High £5m 850,000 £27,500 £37,000 £41,000 
Note: BOD values are obtained by dividing the total damage cost to waterways (£4m; O’Neill, 2007) by the 

approximate amount of livestock manure produced in the UK (85m t per year). This figure was then multiplied 

by 1% of manure (850,000 tonnes), thus (£4m/85m tonnes) × (850,000). This value was multiplied by 55%, 

74% or 82% (BOD reductions, various references). The same rationale was repeated for the high value of £5m. 

Note 2: The rationale behind O’Neill (2007) values is not clear and for our analysis 1/3 of the damage cost 

associated with “informal recreation from poor water quality” from O'Neill (2007) were used for assumed 

damage caused by BOD. The other ⅔ of the sub heading in O'Neill (2007) “informal recreation from poor water 

quality” are attributed to N
 
and P and have already been valued in Section 7.4.3. 

 

7.3.5 Pathogen reduction 

 Pathogens from agriculture are a problem for both human and animal health. AD has 

been shown to destroy viral, bacterial and protozoan pathogens (Cabirol et al., 2002; Lund et 

al., 1996; Sahlstrom, 2003; Saunders et al., 2012). For example during digestion, coliforms 

are reduced by 99.9 % (Martin, 2003). This is conditional on a number of factors including: 

feedstock; temperature; organic matter content; retention time of the manure in the digester; 

pH and NH4
+
 concentration (Kearney et al., 1993; Ottoson et al., 2008; Sahlstrom, 2003). 

Temperature is the most important factor in pathogen destruction (Dumontet et al., 1999; 

Gibbs et al., 1995; Kearney et al., 1993), with Salmonella spp. and M. paratuberculosis being 

inactivated within 24 hours at thermophilic temperatures (Olsen et al., 1985; Plymforshell, 

1995). Pathogen destruction is also enhanced in multi-stage digestion (Kunte et al., 2004; 

Sahlstrom, 2003) and during pasteurisation (e.g. pre- or post-digestion). At 70 °C, 

Salmonella, E. coli O157 and Cryptosporidium are destroyed in less than 1 h (D'Aoust et al., 

1988; Mitscherlich & Marth, 1984; Rose, 1997; Ward et al., 2008). It has also been reported 

that there were fewer pathogens and bacteria found in soil to which digestate was applied 

than soils applied undigested manure (Goberna et al., 2011; Saunders et al., 2012). In general, 

on-farm AD is mesophilic and associated with lower pathogen destruction. However, 

Salmonella spp., E. coli and Cryptosporidium parvum oocysts have been inactivated in 

mesophilic digestion (Gadre et al., 1986; Kato et al., 2003; Olsen & Larsen, 1987). Although 
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the digestion process kills pathogens, there is the potential for fresh colonisation during 

storage post-digestion (Clements, 1983; Keller, 1983; Pepper et al., 2006; Sahlstrom, 2003; 

Sidhu et al., 2001). Therefore proper covered storage post-digestion is advisable to prevent 

re-inoculation of pathogens; this has the secondary benefits of abating fugitive GHG 

emissions from storage of the digestate. However, to be certain of pathogen destruction, 

pasteurisation is recommended. 

 Although agriculture is associated with pathogen inputs to bathing water, sewage and 

wildlife also play a part. The impact from wildlife is limited unless large flocks of birds 

congregate in one small area, and the sewage industry is heavily regulated to prevent 

contamination of waterways. Therefore we assume that the vast majority of pathogen 

infection of bathing waters is related to livestock agriculture. The benefit of pathogen 

destruction from AD will only arise from a reduction of infections contracted from pathogens 

contained in bathing water or possibly from recreational users on farmland. Mains drinking 

water is treated by utility companies thus even if all farm manure in the UK was digested, 

utility companies would still need to treat water for pathogens that may arise from other 

sources. For this reason, only costs attributed to pathogen infection for bathing waters are 

considered. Literature on the cost of pathogens from agriculture to waterways is scarce, with 

most focussing on specific cases with large outbreaks (e.g. Cowden et al., 2001; Grant et al., 

2008; Hrudey et al., 2003; Roberts et al., 2000).  

Using contingent valuation modelling, Eftec (2002) reported a total UK value of £79m 

(2012 £) for a 1% chance of each person avoiding stomach upset due to poor bathing water 

quality from faecal contamination. Due to uncertainty of what percentage of pathogens to 

waterways are caused by animal manure, we chose a low value of 50% of pathogens in 

bathing water emanating from animal manure and a high value of 90%. Thus for every 1% 

(850,000 tonnes) of animal manure in the UK that is digested and pathogens eliminated, the 

values of reduced pathogen infections range from £380,000 ((£79m×1% livestock manure) × 

(50% pathogen reduction)) for 50% and £684,000 for 90%. 

 

7.3.6 Odour reduction 

 A negative externality of livestock agriculture is odour from the storage and handling 

of manure. The presence of foul odours has a direct effect on quality of life of local residents 

and an associated negative effect on real estate values within the vicinity of the odour 
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nuisance. There is the potential for the odour problem to worsen due to the increasing 

densities of livestock (DEFRA, 2010a). AD is a proven and effective technology for reducing 

odour, especially from animal manure (Lukehurst et al., 2010; Smet et al., 1999; Welsh et al., 

1977). However, the reported reduction in odour after manure is digested varies considerably, 

ranging from 50 - 90% (Lusk, 1998; Pain et al., 1990; Powers et al., 1999). From hedonic 

valuation studies carried out in Canada and the US, it has been shown that there is a drop in 

property prices by 4 - 9% within a half mile of a livestock unit due to odour (Herriges et al., 

2005; Kim & Goldsmith, 2009; Palmquist et al., 1997; Ready & Abdalla, 2005) regardless of 

prevailing wind direction (Kim & Goldsmith, 2009).  

 In this study, to estimate the effect that odour may have on house prices, an average 

UK house price of £188,640 (index, 2012) is used. Whilst it is acknowledged that house 

prices vary between regions, this valuation indicates the possible increases in the average 

house price within a ½ mile radius of a manure storage facility for the UK as a whole 

(Equation 7.1).  

 

Equation 7.1 The increased value per household by the introduction of AD to reduce the 

odour from animal manure stores.   

 

Eq 1         increased value = (D-1) × H ×X × Y 

 

Where  

D = average number of households in area equal to ½ mile radius from farm minus the 

farmer’s property as an increase in the farmer’s property is a private benefit, and not a public 

benefit. 

H = average house prices within the locality of the manure storage facility.  

X = the percentage drop in house prices associated with odour 

Y = the percentage drop in odour 

Table 7.6 illustrates the reduction in house prices due to odour from animal manure 

storage without AD, odour reduction due to manure being digested and finally the house 

price increase due to the implementation of AD.   
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Table 7.6: A sensitivity analysis of the average house price in the UK under different odour 

reduction levels and effected drop in property price due to odour.  

Average house 

price UK 

Effect of 

odour on 

property 

price 

 

% drop in 

property 

price due 

to odour 

 

Reduction in 

odour by the 

introduction 

of AD 

 

Price increase 

per property 

from the 

introduction of 

AD 

£188,640 

 

4% 

 

2% 50% 

 

£3,772 

 

£188,640 

 

 2.8% 

 

70% 

 

£5,282 

 

£188,640 

 

 3.6% 

 

90% 

 

£6,791 

 

     

£188,640 

 

9% 

 

4.5% 

 

50% 

 

£8,489 

 

£188,640 

 

 6.3% 

 

70% 

 

£11,884 

 

£188,640 

 

 8.1% 

 

90% 

 

£15,279 

 

 

With a potential total of 200 farm waste plants in the UK ADAS (2012), we 

conservatively assume that at least one house on average per AD unit will increase in value 

(not the farmer’s private residence). At the very lowest possible increase in value of £3,772 

and the highest value of £15,279 this gives values ranging from £744,400 (£3,722 × 200) and 

£3,055,800 (£15,279 × 200) low and high respectively.  

 

7.3.7 Total non-market benefits   

The lowest and highest values from each of the non-market benefits presented in the 

Results section are combined in Table 7.7. Where possible, a FIT value per kWh of electricity 

produced is reported. Farmers that anaerobically digest livestock manure on their farm 

currently receive a FIT payment for the electricity produced. This review has shown that AD 

of livestock manure delivers non-market monetary benefits above the sole value of providing 

a source of renewable energy; these benefits are currently not valued in the FIT payment. FIT 

payments are currently issued in 75 jurisdictions around the world (Kim & Lee, 2012), and 

valuing on a kWh basis will allow for easier extrapolation outside of the UK, as well as 

highlighting the current undervaluation of electricity produced from the AD of livestock 
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manure. The digestion of 1% of livestock manure in the UK and the potential quantity of 

biogas produced was used to determine the amount of kWh of electricity produced. Cattle 

manure was chosen to represent biogas yield and not all animal manure, as it is the most 

likely form of manure that will be digested in the UK due to its quantity (comprising 87% of 

total livestock manure; Defra (2010b)). To determine a low and high FIT rate, the total low 

and high values in Table 7.7 were divided by the total kWh of electricity produced from 1% 

of cattle manure in the UK being anaerobically digested, yielding 37,000,000 kWh electricity 

((25 m
3 

× 740,000) × (2 kWh)).  It can be seen from Table 7.7 that if non-market benefits 

were taken into account, the current FIT rate of £0.09 - £0.15 per kWh for AD should be 

increased by between £0.0272 - 0.1520 per kWh of electricity produced. If cattle manure is 

not digested (i.e. pig or poultry manure digestion only) there will be no decrease in GHG 

emissions from cattle and thus the environmental benefits are reduced dramatically, reflected 

in a lower FIT payment of £0.0136 - 0.0889 per kWh. Finally, Table 7.7 shows the 

continuous and one-off benefits from the introduction of on-farm AD. The only one-off 

benefit is odour reduction as house prices will be increased once, when the on-farm AD 

system is implemented; whereas all other environmental benefits continue yearly. 
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Table 7.7: High and low non-market environmental benefits, with values broken down to a 

FIT rate, from 1% of livestock manure being AD in the UK 

Non-market benefits Total value in £ for 1%   Value in £ per  

kWh  

 Low 

EU ETS 

 High 

Tol 

(2005) 

 Low  High 

        

        

        

GHG from cattle manure 505,242  2,331,840  0.0137  0.0630 

Replacing synthetic fertilizer with 

digestate 

       

N 66,352  2,134,080  0.0018  0.0577 

P 4,641  160,680  0.0001  0.0043 

K 3,642  126,120  0.0001  0.0034 

Leaching of nutrients to waterways 10,811  120,046  0.0003  0.0032 

Biological oxygen demand reduction 22,000  41,000  0.0006  0.0011 

Pathogen reduction 395,000  711,000  0.0107  0.019 

Odour reduction 744,400  3,055,800  UR  UR 

        

Digestion of cattle manure        

Continuous yearly 1,007,688  5,624,766  0.0272  0.1520 

One off 744,400  3,055,800     

Total 1,752,088  8,680,566     

        

Digesting non-cattle manure        

Continuous yearly 502,446  3,292,926  0.0136  0.0889 

One off 744,400  3,055,800     

Total 1,246,846  6,348,726     
Note 1: UR (unattainable rate), represents where FIT values per kWh were unattainable for odour, as odour 

reduction will have a one off value of increasing house prices, not a continuously yearly benefit in reduced 

pollution.  

Note 2: FIT values are obtained by dividing the high and low values for 1% of cattle manure anaerobically 

digested in the UK by the potential quantity of electricity produced (37,000,000 kWh). 

 

 

7.4 Discussion 

More field-scale research on a wide variety of soil and crop types is required to 

determine the exact effects that digestate application will have on crop yield and nutrient 

leaching, as well as GHG changes between digested and undigested chicken and pig manure. 

Scientifically, it is a reasonable assumption to suggest there will be greater crop yield if 

livestock wastes are digested due to the increased mineralization of N and P during digestion 

(Field et al., 1984; Masse et al., 2011) and that the effects digestate has on the soil 



150 

 

decomposer community is similar to that of synthetic fertilizer (Walsh et al. 2012a). AD of 

farm manures would allow for better utilization of nutrients and help close the nutrient cycle; 

in contrast to purpose grown energy crops for biomass which results in the removal of 

nutrients from the land. AD has benefits above synthetic fertilizer even where crop growth is 

similar, in introducing carbon and humus to the soil. Average cattle herd size has increased as 

farmer’s marginal returns get smaller and they seek to capitalise on the economies of scale. 

This intensification will effectively concentrate pollution from agriculture and AD is a 

technology which can have a major impact on reducing this pollution.  

In the UK, approximately 44% of total CH4
 
emissions are attributed to agriculture 

(DECC, 2010). According to Bywater (2011), if all livestock manure in the UK were to be 

anaerobically digested and the CH4 utilized, this could potentially produce ~ 10 billion kWh 

of electricity per year. Electricity produced from AD in the UK currently receives a lower 

FIT payment (varying between 8.96 p and 14.7 p per kWh) than wind (4.48 p to 35.8 p per 

kWh) (Ofgem, 2013a), and photovoltaic (7.1 p to 15.44 p per kWh) (Ofgem 2013b), despite 

AD providing additional pollution abatement that other renewables are unable to provide 

(Table 7.1) which we estimate to be worth between 2.7-15 p/kWh.  

Energy storage is a problem that affects the economic viability of renewable energy 

providers. AD has excellent dispatchability due to the storability and instant conversion of 

biogas to electricity. Although photovoltaics, as heat (Madaeni et al., 2012), wind as 

compressed air (Denholm and Sioshansi, 2009) or pump-storage hydro systems (Sørensen, 

1981) can be considered energy storage, these incur extra development costs, and there will 

be an associated energy loss and/or cost during storage. Due to the low biogas yields solely 

from cattle manure, farms that do not import other wastes or do not grow crops for co-

digestion require large numbers of cattle to ensure sufficient returns on the investment; 

estimated to be >500 dairy cows in the UK (Fre-Energy, personal communication, 2012). If 

government financial incentives for AD were increased to take into account the other 

environmental benefits associated with digestion of cattle manure, this would encourage 

greater uptake of AD; indeed it is expected that doubling the FIT rate would increase the 

economic viability of AD plants 4-fold (Bywater, 2011).  

Although weed seed destruction during AD has been reported (Engeli et al., 1993; 

Engler et al., 1999; Jeyanavagam et al., 1984; Westerman et al., 2012a; Westerman et al., 

2012b), there was not enough scientific or economic data on weeds associated with UK 
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agriculture available to enable a valuation to take place, thus this area requires further 

research.  

With higher prices for electricity, farmers may sacrifice valuable agricultural land and 

harvest crops such as maize for digestion, similar to that seen on a large scale in other 

European countries. This introduces the ‘food vs. fuel’ debate, and should be avoided. The 

use of AD to process livestock wastes can bring about a number of environmental benefits in 

addition to reducing greenhouse gas (GHG) emissions, and AD should be considered a 

pollution abatement technology as much as a source of renewable energy (Walsh et al., 

2012b).  Figure 7.2 provides a graphical illustration as to the non-market benefits from the 

introduction of AD, treating livestock waste and the current value to the UK.  

 

 

 

Figure 7.2: Positive environmental externalities of AD and their value per kWh 

 

It may at first seem unusual to attach non-market benefits to a FIT value and not 

provide government assistance in some other form, such as a capital grant to help farmers 

reduce the initial cost of on-farm AD investment. There are a number of reasons why a 
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government incentive to aid the uptake of the AD of livestock manure should come in the 

form of an increase in the FIT payment. Firstly, farmers that have already invested in AD or 

any renewable energy technology currently receive a government payment per kWh of 

electricity they produce. Therefore, any change to a current payment to incentivise AD would 

be simple to implement (i.e. FIT). Secondly, this work has shown that for every tonne of 

livestock manure AD in the UK there is an environmental benefit. Therefore, if a capital 

grant was provided for the construction of an AD unit, there are two issues that may arise that 

would result in the intended environmental benefits not being achieved. This may happen for 

one of two of the following reasons, or both. Firstly, the farmer may build the AD unit and 

then decide that after he/she has made the capital repayment to meet the full cost of the 

construction, that he/she no longer wants the AD unit and may stop using it or may dismantle 

it and sell it on. There is no incentive to keep digesting livestock waste. The second point 

which could heavily influence the first is the fact that cattle manure produces such low biogas 

yield, and thus low electricity, compared to energy crops. If the farmer gets the capital grant 

he will be incentivised to obtain maximum returns on his investment which will mean highest 

biogas yields per tonne of biomass feedstock; incentivising farmers to deviate away from the 

digestion of livestock manure to higher yielding crops. This therefore opens the ‘fuel vs food’ 

debate and the associated negative socio-economic and environmental impacts.  

With farmers being paid for every kWh of electricity produced, it can easily be 

determined how much energy a farmer will produce on his/her farm. This can be done by 

multiplying the amount of manure a famer produces in a day, and then multiply this by the 

amount of days that the farmer will be able to collect manure for to determine the amount of 

electricity produced. If for example the figure was 100 kWh, the farmer would get paid the 

higher FIT rate with all pollution abatement benefits included, and after the farmer reaches 

the 100 kWh point they would receive the current lower FIT payment. Thus if a farmer 

produced 150 kWh total per year (the extra 50 kWh through energy crops), they would 

receive the higher FIT rate for 100 kWh and then a lower current FIT rate for the remaining 

50 kWh, in this example. This would eliminate the incentive to cheat as it would not be in 

their interest to replace livestock manure with energy crops as the economic returns would be 

the same. In addition, if the farmer was to indeed not digest livestock manure and use energy 

crops instead, they would have to give up land that they had set aside to feed their animals. In 

so doing, reducing the number of animals they are able to maintain, and thus reducing the 

income from one aspect of farming to another. FIT rates could also be adjusted depending on 
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the management of the AD system. For instance, a higher FIT payment could be paid if the 

farmer employs best practice, such as covering digestate lagoons (which would reduce 

volatilization of N) and the application of digestate through trailing shoe or injection.  

 

7.5 Conclusions 

Although there is uncertainty within the values we estimate, conservative values have 

been used throughout and ranges are given due to the lack of existing knowledge in available 

literature. This review has shown that for every 1% of UK livestock manure processed via 

AD, this would equate to non-market benefits worth £1,007,668 - 5,624,766. Further, there is 

a potential one-off benefit ranging from £744,400 - 3,055,800 through reduced odour. As the 

FIT payment does not take into account the value of these non-market benefits, it is estimated 

that they undervalue electricity generated by AD of livestock manure by £0.03 - 0.15 per 

kWh. As the AD of livestock manure provides the largest monetary value in terms of non-

market benefits, we propose that the current flat-rate FIT payments for AD do not reflect the 

environmental benefits that it delivers above e.g. AD of energy crops. FIT rates should 

therefore be re-structured to take such factors into account. In summary, the findings indicate 

that the FIT rate should be two-fold: a higher rate for electricity production from animal 

manure and a lower rate for other biomass feedstock. 

This valuation has revealed that more work is required to enable a full and accurate 

valuation of all the benefits that the AD of livestock manure offers. AD has the potential to 

turn a negative externality of agriculture (pollution from manure) into useful commodities, 

electricity and digestate. Unless all the environmental benefits are understood and valued, AD 

will continue to receive a disproportionately low government aid relative to the 

environmental positive externalities it offers above other renewable energy technologies.  
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8.1 AD: renewable energy or pollution abatement technology?  

Public awareness of AD ranks quite low in comparison to other renewable energies. 

Even academia is somewhat guilty of overlooking the technology. An example of such 

disregard is highlighted by research carried out by Diaz-Rainey and Ashton (2008) in relation 

to renewable energy in the UK, where AD technology was conspicuous in its absence. As the 

world continues to deplete non-renewable fossil fuel resources, the role of renewable energies 

becomes increasingly important, driving both national and international policy. Focused 

policy objectives such as the Renewable Energy Roadmap, composed by The European 

Commission, aspire to increase the gross domestic energy consumption from renewable 

energy sources. The roadmap includes the ambitious target of deriving 20% of energy 

consumption from renewable sources by 2020. Such aspirations are all the more challenging 

considering that just 12.4% of EU energy consumption was accounted for by renewables in 

2010 (Nkemka & Murto, 2013). Although AD can contribute significantly to the energy 

supply it is only a small fraction of the whole energy mix, with biomass (AD plus lignin 

biomass) currently only contributing between 3 - 13% of energy to industrialized nations (De 

Meester et al., 2012). Indeed, incineration and biodiesel cover most of this supply, whilst 

biogas from AD contributes only a small fraction (Braun et al., 2009).  

AD can be considered a unique technology through the multiple benefits it offers. The 

research carried out in this PhD study and elsewhere infers that, logically, AD should be 

considered a source of renewable energy and a pollution abatement technology; although to 

what extent depends upon the scale and type of feedstock and digester used. To emphasise 

this point, if a farmer builds an AD unit, and firstly digests cattle manure, the AD unit may be 

considered a source of income through generation of renewable energy, and a nutrient 

management regime and pollution abatement technology. However, if the farmer decides to 

expand the AD unit and import off-farm biodegradable material (e.g. food waste) from the 

local community, the environmental and economic benefits may be expanded to wider 

society.  

Figure. 8.1 shows how the positive external benefits from the introduction of on-farm 

AD can benefit society and how economists value such benefits, where the Y axis is the 

environmental cost of producing a litre/kg of milk/meat and the X axis is the quantity of 

milk/meat produced. Figure 8.1 is for illustrative purposes only, the exact movement along 

the marginal benefit (MB) line are not all known at this time. When the pollution abatement 

benefits of AD are fully accounted for, it can be seen that the production of more animal 
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manure is possible while at the same time reducing the social external cost of farming. Each 

pollution abatement attribute of AD moves along the MB curve, lowering the environmental 

cost (from p to p*) associated with increasing quantity of milk/meat produced from q to q*. In 

summary, greater uptake of on-farm AD would allow the agriculture sector to produce more 

milk/meat at less environmental cost. 

 

 

Figure 8.1: Individual environmental benefits from AD, US = undigested cattle manure, F = 

synthetic fertilizer replacement, B = BOD/COD reduction, O = odour reduction, P = pathogen 

reduction, M = methane reduction and MB is the marginal benefit the consumer obtains from 

the consumption of milk and meat. Lower case p and q represent price and quantity, 

respectfully. 

 

When all of the environmental benefits from Fig. 8.1 are grouped together, as in Fig. 

8.2, it can be clearly seen how the social marginal curve (SMC) shifts to the right. The SMC 

will shift by a large amount from SMC to SMC*, this is due to less pollution; lowering the 

environmental cost of milk/meat production from P1 to P2 and increasing the quantity at a 

lower social and private cost from Q1 to Q2. 
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Fig 8.2: Social and private marginal cost curve shifts, where Y is the environmental cost of 

producing a litre/kg of milk/meat and the X axis is the quantity of milk/meat produced.  SMC 

= the social marginal cost curve, PMC = the private marginal cost cure, and MB = marginal 

benefit. 

 

However, there are potentially negative environmental issues to consider prior to the 

installation of on-farm AD systems. Unless the AD unit is located near a main gas line so that 

the biogas can be directly fed into a gas network, the operator will either have to clean the gas 

for vehicle fuel or convert to on-site electricity production, which may require investment and 

disruption (e.g. three-phase transmission lines) by utility companies. Traffic nuisance may 

also be a problem if feedstock is transported on-farm (Patterson et al., 2011), while vermin 

may gather if feedstock and digestate are not stored properly. A number of concerns have 

been raised regarding the environmental and economic impact of growing crops (e.g. maize) 

specifically for use as feedstocks in on-farm AD systems, as is done in Germany. Heavy 

metal build up from certain feedstocks can also be an issue as well as contaminates in the 

feedstock, both chemical and physical (plastic/glass). Additionally, the presence of heavy 

metals may be a problem in the application of the digestate to land if feedstocks are sourced 
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from off-farm. Such potential negative impacts of on-farm AD must be taken into account 

when calculating the net environmental benefits of AD systems.  

 

 

8.2 Further research  

Although this work has furthered the knowledge of on-farm AD, the practical 

experiments were restricted to one digester and digestate type; and the economics chapter has 

also revealed knowledge gaps. The findings of the work cannot therefore be extrapolated too 

widely and there is a need for further research.  

During the course of the thesis, the aim was to value the non-market benefits of on-farm 

AD. However, it would be impossible to value all the benefits in the available timescale, 

therefore two rationales were chosen when deciding which non-market benefits to value. 

Firstly, that reputable peer-reviewed literature was available allowing for economic valuation 

of scientific data. Secondly, the largest sources of agricultural pollution that could be 

mitigated by the introduction of AD were valued first. Accurate valuation of renewable 

energy is difficult, not only because stated preference techniques are normally used, but rural 

and urban households place different values on renewable energy, dependent on the type of 

technology. For instance, urban residents have been seen to prefer large off-shore wind farms, 

whilst rural residents place importance on the creation of local jobs (Bergmann et al., 2008). 

Within the UK, 20-35% of people reported to be willing to pay a premium for green energy 

(Batley et al., 2001; Fouquet, 1998); although more up to date work is required to determine 

if this remains the case, and how society ranks different renewable technologies against each 

other.   

Important issues were not valued in this work due to lack of evidence; these being the 

value of reduced herbicide use (due to weed seed kill during AD), and particularly the 

economic benefits of heat. Although a combined heat and power (CHP) engine will provide 

the greatest energy recovery from biogas, one issue with on-farm AD is finding uses for the 

heat. Approximately 10-30% of heat is required for the digester, but this is minimal in the 

context of the total amount of heat produced. Innovative uses for the heat have been 

suggested including selling heat to a local school or swimming pool. However, such 

suggestions may not take into account that farms that have the economies of scale required 

for investment in on-farm AD are usually too far from households to sell the heat. More 



172 

 

practical uses include the use for heating washwater on dairy farms, for heating sheds on 

poultry units, or for offices. Innovative uses for heat that deserve further research include for 

greenhouses (where the CO2 from the CHP engine can also be used for the greenhouse), or 

evaporating a percentage of water from milk for further dairy processing, etc. Efficient use of 

heat may considerably aid the uptake of on-farm AD and would build upon payments recently 

introduced by the UK government for generation of heat (Renewable Heat Incentive).  

 

8.3 Considerations for the future of on-farm anaerobic digestion 

8.3.1 Benefits to farmers 

There is approximately 1,500 million tonnes of animal manure produced in the EU 27 

on a yearly basis and this provides the greatest potential non-crop feedstock source for AD 

(Holm-Nielsen et al., 2009). As marginal returns diminish in agriculture, farmers will need to 

increase efficiency of production and size or diversify into products with higher marginal 

returns. Blank (2001) has shown this to be the case in America, in that farmers have had to 

move up the value chain of farming, to higher revenue producing crops, while at the same 

time less marginal land is being farmed. AD may have the potential to increase the 

productivity of land as well as move farmers up the value chain. Farmers who adopt on-farm 

AD systems may be able to diversify into organic farming due to the weed seed kill and 

possible increased crop yield digestate offers above undigested manure.  

Farmers have to comply with increasing environmental regulations but may also 

purposefully reduce pollution so could use AD as a marketing tool to capitalise on 

environmentally-conscious consumers.  

Figure 8.3 illustrates how AD reduces the loss of methane, with the farmer dealing with 

the pollution on site. This has both social and private benefits, in energy security and less 

pollution, and the private benefit to farmers of a new revenue stream. Thus this helps farmers 

to internalize the externality of methane release in the production of milk and meat. 
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Figure 8.3: Vertical integration of pollution management (methane emissions) through on-

farm AD 

 

There is an abundance of winter housing units in the UK due to generous government 

and EU grants paid out over the last number of decades. The biodegradable commodity for 

on-farm AD, livestock manure, is already being stored in these winter housing units. Policy-

makers should consider this historic investment in both valuation and assistance provided to 

farmers for future investment in AD.   

 

8.3.2. Points of interest to the anaerobic digestion industry  

There are a number of steps that could easily be implemented to aid the uptake of on-

farm AD. Whilst the points made below aren’t exhaustive, they discuss important constraints 

to on-farm AD: technical challenges and the lack of information sharing.  

Many farmers appear to be hesitant in investing in AD systems due to a number of 

reasons, one of which is apprehension about the management required. AD companies should 

therefore include frequent site visits the norm, especially in the first 18 months after digester 

commissioning. However, remote monitoring through on-site internet connection enables off-

site monitoring and early detection of problems (pH, low gas yield, etc.) is now possible and 

has previously been shown to be successful (Esteves et al., 2000; Spanjers & van Lier, 2006). 

From the AD unit operator’s point of view, consistency and supply of feedstock is of utmost 
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importance; material should be less than 12 mm, be as homogeneous as possible, and should 

contain the right balance of macro and micro-nutrients, as discussed previously. Such 

concerns and lack of knowledge may be reduced through greater discussion. Operators, 

manufacturers and academia should be encouraged to participate in more information transfer 

(e.g. through online AD discussion boards and social media). This would allow greater 

sharing of expertise and the extended benefit of increasing social capital within the AD 

community. Industry bodies such as the Anaerobic Digestion and Biogas Association 

obviously have a role to play in knowledge-transfer between the public, industry, academia, 

and policy-makers. AD may also need rebranding: the term digestate needs to be replaced 

with ‘biofertilizer’ as the latter may portray a better image to the public, whereas digestate is 

meaningless. Secondly, the referral of feedstock as ‘waste’ should cease as it comes with 

negative connotations; instead it should be called either wet or dry biomass. Finally, AD is a 

source of renewable energy, however, it provides positive environmental externalities above 

its sole purpose of producing renewable energy, and these benefits should be reflected 

through a higher FIT rate paid for electricity generated via AD compared to other renewable 

energy sources.  

 

8.4 Future research required  

As a result of valuing the non-market benefits from the introduction of on-farm AD, 

this thesis has shown up a vast amount of gaps in the literature that need addressing. This 

would aid more accurate valuation. The main gaps are listed in subsections below. 

8.4.1 Uses for heat 

Energy in the form of heat is a major source of renewable energy that is often not used 

to its full potential within on-farm AD systems. Increasing financial returns could be obtained 

from heat (e.g. through the RHI) and this would mean that more farmers would cross the 

threshold of financial gains from investing in AD. The use of heat could further displace 

burning of fossil fuels and hence would enhance the non-market benefits delivered by on-

farm AD. 

8.4.2 Destruction of weed seeds 

There is insufficient information to evaluate the potential of on-farm AD as a 

mechanism to destroy weed seeds. Weeds such as docks (Rumex spp.) are problematic for the 
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dairy agricultural sector in particular and can considerably limit productivity. Studies 

aforementioned in this thesis (Chapter 7) have shown AD to destroy weeds, but it is as yet 

unclear what the critical parameters are within an AD unit to ensure complete destruction. 

Again, this may allow the non-market benefits of reduced herbicide use to be calculated. 

8.4.3 Feedstock 

There is a vast array of potential biomass feedstock present in the UK that is not being 

utilised; including large sectors such as the seafood and alcohol industries. There is very 

limited peer-reviewed literature in relation to the suitability of a number of wastes that are 

potentially suitable feedstocks for AD; either when digested alone or co-digested with other 

feedstocks, in addition to elucidating optimum particle size, etc. The co-digestion of waste 

biomass from industries outside of agriculture could increase biogas yields and help close the 

nutrient cycle further; plus increase the economic returns and hence investment in AD. 

Further work is therefore needed so that the potential is reached.  

8.4.4 Losses of nutrients from the application of digestate 

The loss of nutrients both above and below ground from the application of digestate is 

an area of research that requires further experimental research. Gaseous losses of N (e.g. in 

the form of N2O or volatilization of NH3) or via leaching (e.g. NO3
-
) represent a loss of 

valuable nutrients and also negative environmental impact. Further research into this area is 

required for the optimization of AD systems and for the proper valuation of on-farm AD. 

8.4.5 Anaerobic digestion of chicken manure 

Although beyond the scope of this thesis, the use of chicken manure as a feedstock for 

AD requires further research. Poultry farms tend to produce a lot of manure in a small area of 

land. If AD could help reduce the environmental impact of poultry farming, this would 

provide both an economic and environmental benefit to the farmer and community. Areas of 

research in relation to the digestion of chicken manure include best practice for controlling 

the C:N ratio and reducing GHG emissions.  

8.4.6 Knowledge of the British public in relation to AD 

AD is not a well-recognised renewable energy provider outside of those involved in the 

industry. It would be of benefit to determine what percentage of the British public and indeed 

farmers are aware of AD. This would help to determine how the British public value AD as a 
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renewable energy and pollution abatement technology. Further, it would help identify the 

social barriers that frequently impede AD developments, often based on misinformation (e.g. 

perceived health impacts) and NIMBYISM. The industry and policy-makers could then take 

positive steps to overcome such barriers.  

 

8.5 Conclusions  

One of the aims of this thesis was to narrow the divide that often exists between 

academia and industry in relation to research, as well as to progress the knowledge of AD. 

The thesis was written in such a manner that people involved in AD could understand the 

research, and people new to the area could obtain a good understanding of the benefits of AD, 

without requiring an in-depth knowledge of the system. Chapter 4 supports the limited 

number of other studies (Goberna et al., 2011; Möller et al., 2008; Sänger et al., 2011) that 

report on reduced leaching of nutrients after the application of digestate relative to other 

organic and synthetic nutrient sources. Chapter 5 has provided interesting findings as to the 

effects of applying digestate, undigested slurry and synthetic fertilizers has on the soil 

decomposer community. This showed that, with regards to soil microbial processes, digestate 

acts more like a synthetic fertilizer than undigested manure when applied to land. This may 

have implications for nutrient cycling and dynamics in agricultural systems. In addition to 

showing the improved agronomic value of digested, relative to undigested slurry, the three-

year field trial reported in Chapter 6 found that the application of separated digestate to a 

pasture crop provide the same crop yield as synthetic fertilizer. Digestate also restricted 

clover growth as synthetic fertilizers do, above that of undigested cattle manure. Chapter 7 is 

an attempt to value the non-market benefits of AD. It concluded that AD is undervalued by 

government schemes designed to incentivise the uptake of renewable energy technologies as 

payment rates do not reflect the added advantages that AD offers in terms of pollution 

abatement.  

This work ultimately discusses the economic benefits of on-farm AD in terms of FITs 

simply because the FIT is the mode by which the industry is paid by government for the 

generation of electricity and hence is the whole basis of growth. However, on-farm AD can 

deliver much more non-market benefits than what is measured through metering the units of 

electricity generated. Farmers are continually being forced to obtain higher revenues from 

less land and to reduce their environmental impact. AD has the ability to help farmers achieve 
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both. An increased FIT rate of up to £0.089 per kWh of electricity produced from the AD of 

livestock manure would be equivalent to the potential saving associated with pollution 

abatement from the introduction of on-farm AD. This increase in a FIT payment would 

dramatically increase the uptake of on-farm AD, providing both economic and environmental 

benefits to the UK and would reflect the non-market benefits that on-farm AD delivers.  

In addition, this work indicates that the FIT rate paid for the generation of electricity 

from AD is currently flawed. This is because to pay a flat-rate FIT to AD units regardless of 

the source of feedstock does not reflect the non-market benefits that units can offer. 

Specifically, it is proposed that those units which generate electricity from the digestion of 

feedstock sourced on-farm (e.g. manures) should receive a higher FIT rate than those AD 

units which digest purpose-grown crops (e.g. maize). This is because the former will deliver a 

host of other benefits (in the form of pollution abatement), that the latter will not. Indeed, it 

may be argued that to grow crops specifically for AD is environmentally unsustainable and 

hence this should be reflected in a lower FIT rate. We propose therefore that FITs should be 

thoroughly reviewed and amended accordingly.   

Although the findings of pot trials and a field trial with one crop and soil type cannot be 

extrapolated too widely, the experimental work completed do at least serve as a sound basis 

for further work or add to the body of knowledge on AD. The initial aim of this thesis was to 

apply values to the non-market benefits from the introduction of on-farm AD. This was made 

possible by dedicated experimental trials during the PhD and through drawing findings from 

other relevant studies. Although there can be great debate on the economic valuations from 

this work, it has generated a novel chapter which identifies knowledge gaps but also raises 

important questions to policy-makers as to the validity of current payment rates for renewable 

energy generation through AD.  
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