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Abstract 

World agriculture is challenged by the increasing demand on diminishing resources 

of fresh water. Climate change and salinity are both issues, resulting in a major 

international research effort to breed more resistant crops. The aim of this thesis is to 

contribute to this effort by determining how wheat varieties respond to salt stress. 

This study describes an analysis of three wheat varieties (Gamina and Bohoth 105, 

from Libya and of reported salt tolerance, and Hereward) representing different parts 

of a salt tolerance spectrum. The effect of induced salt stress on leaf growth rate and 

final length was investigated by analysing water and solute relations at single cell 

resolution, using Single Cell Sampling and Analysis (SiCSA). The parameters for the 

wheat were compared with those of the halophyte (salt tolerant plant) Sea Blight 

(Suaeda maritima), in order to determine which wheat variety showed the most 

similar response.   

All four plants showed rapid cell osmotic adjustment (leaf and root) under salt stress, 

and leaf turgor pressure was at control levels by 48 hours after salt stress in all wheat 

varieties. However, varietal differences were evident in terms of cation activity, 

cortical cell osmotic adjustment, and root turgor regulation, with Bohoth 105 most 

resembling Suaeda in each. 

An unexpected observation for wheat leaf cells was a continued increase in turgor 

pressure after control values had been reached at 48 h post stress, which was not 

accompanied by an increase in osmotic pressure. It is suggested that the epidermal 

apoplast played a turgor-control role, as suggested by earlier work at the Bangor 

laboratory. Through measuring cell volumetric modulus (εcell), it was also found that 

increased elasticity may be associated with increased salt tolerance, but no such 

association was indicated for hydraulic conductivity (Lp) or leaf plastochron index 

(PI).  

In conclusion, Bohoth 105 possesses water and solute-related responses that 

contribute to its relative salt tolerance. This may inform future breeding of more salt 

tolerant wheat varieties, or indeed any crop. 
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Chapter 1: Introduction and Literature Review 

1.1 Statistics   

1.1.1 The Global Context   

The availability of fresh water is very important for humankind. Agriculture is 

considered to be the sector that is the largest consumer of water. Worldwide 

agriculture used approximately 2.7 x 10
3
 km

3
 of water in 2000 (WRI, 2005), and 

about 276 million ha of crops are irrigated with water (FAOSTAT, 2006). According 

to the FAO (2002) and Pimentel et al. (2004), 1 m
3
 of fresh water is required for 

producing 1 kg of wheat. For 1 kg of rice, at least 1.2 m
3
 of water is needed. Water is 

necessary for plants to complete their life cycle. Generally, over 90 % of a plant’s 

water requirement is lost by transpiration (Morison et al., 2008). 

Globally, the area of land being irrigated is still increasing year on year, yet at a 

gradually slowing rate. From 1990 to 1994, the increase in the area of irrigated land 

worldwide was 4.2 million ha per year, but between 1999 and 2003 the annual 

increase had slowed to only 1.1 million ha (FAOSTAT, 2006). According to 

FAOSTAT (2006), in 2003 18 % of land worldwide was used for cropping, yet from 

this land, a significant 40-45% of the world’s food was produced (Döll & Siebert, 

2002). For this reason, the world’s food supply would clearly be affected by a 

decline in irrigated area. Conversely lowered agricultural demand for water use 

would lead to less water consumed; thus maintaining water resources over a longer 

period of time. In North Africa, Southern Africa and the Near East, where under 

2000 m
3
 of quality water is available per person per year, the three most important 
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agriculture problems are insufficient rainfall, high evaporation rate and continuous 

population increase (Wallace, 2000; FAO 2003).  

Fresh water demand is still increasing day-by-day due to the growth of the human 

population, as well as to increases in the number of other users (such as animals and 

plants). In many arid and semi-arid zones, the quality and quantity of the water 

supply is limited as the result of high competition between agriculture land extension 

and industry. In addition, salinisation and contamination of water resources, such as 

surface water and ground water, are serious problems (Khan et al., 2006). 

Climate predictions for the next 50 years forecast a 1
0
C to 2.5

0
C increase in the 

annual mean temperature, and the increase may even prove to be greater (IPCC, 

2007). This may lead to an increase in evapotranspiration in warmer regions. In 

addition, precipitation patterns in temperate environments are also changing, with 

milder, wetter winters and warmer, drier summers being predicted for many parts of 

Europe (IPCC, 2007). Moreover, Danielopol et al. (2003) show that increasing 

salinisation of coastal aquifers results from rises in sea-level. All of these challenges 

add substantially to the strong pressures placed upon water resources, resulting in an 

urgent need to focus on improved water use efficiency and development of crop 

varieties that are adaptive to drought and salinity.  

The Mediterranean climatic regions suffer from water supply problems, which 

restrict plant productivity. Irrigation is one of the main problems causing salinity in 

many parts of the Mediterranean (Turner, 2004). Soil or water salinity (or both) one 

pervasive threats to arid and semi-arid regions throughout the world, in that salinity 

substantially hampers crop growth and productivity. The FAO (2008a) reports that, 

taking into account both saline and sodic soils, at least 800 million ha across the 

globe are affected by salt. This is approximately 6 % of the world’s total land area. It 
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is estimated that, currently, 45 million ha of agricultural land out of 230 million 

under irrigation (20 %), is affected by salinity, and that 32 million ha (out of 1500 

million ha (2 %)) of dry land agriculture is similarly affected (FAO, 2008a). 

Generally, it is estimated that more than 3 ha of agricultural land around the world is 

lost every minute due to soil salinity (FAO, 2008a). At present, about 1.3 billion 

people have no access to sufficient supplies of fresh water, and 2 billion have no 

access to suitable sanitation. Some countries in the Middle East and North and 

Southern Africa have been experiencing severe water shortages and this is expected 

continue until at least 2025 (Rijsberman, 2006).  

 During a plant’s life cycle, its growth rate and development can be affected by 

salinity at any time. The severity of the impact depends on the degree of the salinity, 

the damage it causes and the differences between various plants and their 

developmental stages. Many researchers have reported that wheat growth and 

production are affected by irrigation water and soil salinity. Feizi et al. (2007) and 

Maas and Poss (1989) show that, in cereal crops, the flowering and the grain filling 

stages are less salt sensitive but that the vegetative and early reproductive stages are 

less tolerant of salinity, indicating that, different growth stages respond differently to 

salt stress. Zeng et al. (2002) have also found that some plant species, such as rice, 

are salt tolerant at different growth stages. 

Salinity affects the physiology of plants at the organ and cellular level, through both 

osmotic and ionic stress (Murphy et al., 2003). High Na
+
 accumulation in the leaf 

apoplast leads to a decrease in Pcell and dehydration, and finally to death of tissue 

cells (Marschner, 1995). This in turn leads to changes in the activity of several 

enzymes, and metabolism is thus affected (Lacerda et al., 2003). 
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Salt stress enhances the accumulation of NaCl in chloroplasts of higher plants, 

affects growth rate, and is often associated with decrease in photosynthetic electron 

transport activities (Kirst, 1990). In higher plants, salt stress promotes the 

accumulation of Na
+
 in chloroplasts.  Salinity results in a reduction of K

+
 and Ca

2+
 

concentrations, and an increased level of Na
+
 and Cl

-
, which forms its ionic effects. 

Impaired productivity can result, and wheat and cotton yields have been found to be 

reduced in both saline and sodic soil (Murtaza et al., 2006). In general, then, salt 

stress can be said to affect the uptake and subsequent transport of both water and 

solutes in a plant, leading to changes to the plant’s morphology through adaptation 

and/or impaired metabolism.  

1.1.2. Libya 

In this study, the country of Libya will be used as an example of the problems facing 

agriculture in an environment of water stress.  This is the author’s home country and 

will be the geographical context for the focus of the present research.   

Libya is a country in the southern Mediterranean area, on the North coast of Africa, 

and has 1900 km of shoreline. The majority of Libyans live in Tripoli the capital and 

Benghazi. At least 80% of agricultural land is situated in the eastern and western 

coastal regions (Sadeg & Karahanoglu, 2001). Around 2.15 million ha of Libyan 

agricultural and permanent pasture land is near the coastal areas. This is because 

most of Libya is desert or semi desert (FAO, 2005). Annual crops are cultivated on 

about 1.82 million ha and permanent crops on about 0.34 million ha. This represents 

1.2 % of the total area (FAO, 2005). There are many problems for the country’s 

farming, such as low water quality and low soil fertility. As a result, not enough 

cereal can be produced to meet local demand.  In 2002 a total of 253,050 metric tons 

was produced from 381,300 ha (FAO, 2005).  
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The primary cereals grown in Libya are maize, wheat and barley, but for the latter 

two, yields are lower than in other countries in the Mediterranean. It has been 

suggested from research at International Maize and Wheat Improvement Center 

(CIMMYT) that salinity affects between eight and ten percent of wheat crop areas in 

the country (Kazi & Leon, 2002). According to the FAO (2008b), in Libya the 

production of wheat was 27,189 metric tons in 1970; over a period of 10 years it 

increased to 140,500 metric tons by 1980, but then steadily decreased to 104,000 

metric tons by 2007 (Fig. 1.1).  

 

Fig. 1.1 Wheat production in Libya (FAO, 2008b) 

Since the oil revolution, there has been rapid development in many activities, 

including agriculture, and maintaining the supply of fresh water along with managing 

salt water pollution have become major issues. As a result of increased agriculture, 

water quality has decreased because of sea water contamination. For example, in 

2001 about 250 km
2
 of the country suffered sea water intrusion, affecting fresh water 

supplies 10 km inland from Tripoli (Fig. 1.2, Sadeg & Karahanoglu, 2001). It is 

estimated that water demand in Libya is about 4.3 × 10
9 

m
3 
per year (FOA, 2005). 

The country does not have a plan for how to meet rising future demand and so there 

is increased pressure on aquifers. However, many aquifers are salt contaminated so 

this water cannot be used. New ways in which agriculture can be advanced in such 
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salt-contaminated areas are currently being researched, including studies into salt-

tolerant crop varieties. The present study is an attempt to contribute to the 

advancement of knowledge in this area, with the aim of helping to improve Libyan 

agriculture. 

 

Fig. 1.2 Libyan wheat production and seawater intrusion around Tripoli (USDA, 2004).  

(http://www.fas.usda.gov/pecad/highlights/2004/05/libya/index.htm.)  

 

1.2 Salt Stress 

1.2.1 Why is NaCl damaging?    

The majority of crop plants are considered to be glycophytes (they grow better at low 

NaCl levels) and are sensitive to high levels of salt (Xiong & Zhu, 2002). Cereal is 

http://www.fas.usda.gov/pecad/highlights/2004/05/libya/index.htm
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an example of this type of salt-sensitive glycophyte
1
. Wheat is a moderately salt 

tolerant crop species; nonetheless it is less tolerant than grain barley and sorghum 

(Maas, 1986) and is adversely influenced by decreased soil water potential.  

Saqib et al. (2004) found that salt stress caused a reduction in gas exchange and 

photosynthesis in wheat, and affected the process of cell division and cell elongation.  

These changes contributed to a loss of turgor, and thus impaired the wheat’s growth. 

In salt sensitive glycophytes such as wheat, salinity causes general a reduction in 

growth, both vegetative and reproductive (Zhe et al., 2004). However, the strategies 

used by plants to ensure that glycophyte plant crops survive and produce under 

different levels (low to moderate: Ec 4 – 10 mmhos cm
-1

)
2
 of salinity is an important 

factor (Shannon, 1997).  

Salinity affects the growth of all plants, but for grain crops, an increase in salinity of 

irrigation resources results in a decrease in grain yield (Cakmak et al., 2005; Ragab 

et al., 2008).  

Salt in the root medium stunts plant growth in the following ways. In the first place, 

water stress, or an osmotic effect, is created, and this results in a decrease in the 

external ψext due to a high concentration of NaCl in the root medium of the plants 

and, consequently, limitation of water uptake by roots (Oliveira, 2013). This then 

causes a rapid decrease in growth rate, and several metabolic processes are also 

affected (Epstein, 1980), as are leaf growth, photosynthesis and stomatal 

conductance (West et al., 1986).  

                                                           
1
 Glycophyte plants exhibit various degrees of harm and decreased growth in the presence of Na

+
 salt 

typically higher than 0.01 % of salts in the soil (Dajic, 2006).  

2
 Figures related to maximum salt concentration that can be tolerated and to relative yield reduction. 

Plant crops can be further divided into sensitive, moderately sensitive, moderately tolerant and 

tolerant species (Maas, 1985). 
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Secondly, increasing amounts of salt entering the transpiration stream cause specific 

ion toxicities, the result being the harming of the cells in the transpiring leaves. This 

too may result in a reduction in the growth of the plant. Specific toxicity of Na
+
 has 

been found for wheat (Kingsbury & Epstein, 1986). Sodium and chloride 

accumulated in leaf cells up to toxic concentrations hamper the processes of 

metabolism in cytoplasm and reduce the growth and development of wheat (Francois 

& Maas, 1993).  

Thirdly, accumulation of specific ions under salt stress leads to disturbance in ionic 

ratios in cells. Salt stress thus induces nutritional imbalance (Hu & Schmidhalter, 

2005). The Na
+
 and K

+
 are found to be antagonistic in uptake (Jeschke & Nassery, 

1981). Salinity is therefore clearly a major issue which limits the growth and 

reproduction of glycophyte plants.  

Under salt stress, since, a non-halophyte’s leaves grow more slowly, this then 

increases the root:shoot ratio because root growth is less affected (Munns & Termaat, 

1986). This reduced growth and increased root:shoot ratio can be seen in different 

varieties of salt stressed wheat, for example Hereward (Brooks, 2006), and cultivars-

cv. Barkai (Botella et al., 1997) and Durhum (Carillo et al., 2005). 

In contrast, Halophytes naturally grow well in saline environments, and absorb 

relatively high levels of salts (mainly Na
+
 and Cl

-
) from the root medium (Greenway 

and Munns, 1980) to achieve osmotic adjustment.
3
 In the halophyte S. maritima (sea 

Blight), Flowers and Colmer (2008) have found Cl
-
 and Na

+
 concentrations of 400 

mM in leaves without any injury.  

                                                           
3
 An increase in πcell results in a decrease in ψext while maintaining Pcell. When plants grown under non 

salt stress are suddenly exposed to a relatively high osmotic pressure in their rooting media, osmotic 

adjustment occurs in a short period of time (Bernstein, 1963). A higher πcell can be achieved in three 

ways: by uptake of solutes absorbed from root media (such as Na
+
, Cl

-
 and K

+
), by synthesis of 

compatible organic solutes (such as sugars, amino acids) or by a loss of water (partial dehydration). 
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Salinity affects germination in both halophytes and glycophytes however (Pujol et 

al., 2000), although, in many halophytes, NaCl only induces seed dormancy (Debes 

et al., 2004), in glycophytes, seeds may become unviable under high salt 

concentrations. It has also been found that salinity can provoke seed dormancy in 

both types of plant (Jhamb & Sen, 1984). 

The responses of halophytes and glycophytes to salt stress differ, depending on the 

degree of salinity. Daoud (2008) reports that under low external Ψext, halophyte 

plants are able to complete their life cycle in solutions with concentrations of NaCl 

ranging between 100 mM and 200 mM. Studies demonstrate that halophytes grown 

in a saline environment accumulate levels of NaCl in the vacuole that differ in ionic 

compartmentation as compared to glycophytes grown in the same conditions 

(Shabala, 2013).  

The ability of halophytes to control the influx of Na
+
 into their roots is considered to 

be a significant mechanism for achieving lower Na
+
 accumulation under salt stress in 

comparison with glycophyte plants (Wang et al., 2006). In other words, many 

halophytes are Na
+
 includes, whereas glycophytes are often Na

+
 excluders (or K

+
 

includers). Halophytes transport the absorbed Na
+
 to the xylem, whilst this process is 

limited in glycophytes, for example in Plantago maritima (Kuiper, 1988). In 

glycophytes, it is partially the accumulation of NaCl in leaf apoplast under salt stress 

that causes growth to be impaired, as has been reported for rice (Flowers et al., 

1991).  

It is important for excess ions to be compartmentalised within the cell because 

otherwise they may accumulate in the cell wall (apoplast). If this happens, the 

concentration in the cell wall would rise disproportionately because of its small 

volume (5 % of the volume of the protoplast) and relatively low water content (30 - 
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35 %). This concentration gradient between the apoplast and the protoplast would 

then lead to cell imbalance and cause water to be drawn from the protoplast by 

osmosis to correct the imbalance. This would cause the cell to lose Pcell and 

experience water loss or dehydration, a situation known as Oertli’s hypothesis 

(Oertli, 1968). 

The rapid accumulation of salt in the apoplast or cytoplasm that occurs when the 

ability of the vacuole to accommodate salt influx has been reached may result in 

older leaves dying (Munns, 1993). Such a process has been observed in corn when 

exposed to elevated Na
+
 concentrations (Fortmeier & Schubert, 1995), and can be 

seen as a form of Na
+
 toxicity in leaves (Volkmar et al., 1998). Salt stress may also 

stimulate plasma membrane ATPase, similarly resulting in leaf apoplast Na
+
 

accumulation (Niu et al., 1995). 

Even in some halophytes, the accumulation that may occur as a result of excess Na
+ 

and/or Cl
- 
in the cell wall can lead to a loss of Pcell and dehydration (e.g. Clipson et 

al., 1985). Conversely, ion toxicity may result in cases in which excessive ions are 

held within the protoplast but not well compartmentalised. There is evidently a 

balance to be struck in regulating ion transport to the shoot, particularly because 

excessive exclusion of ions may negatively affect osmotic adjustment. 

1.2.2 Salt Tolerance of Plants 

Numerous crops either possess mechanisms for excluding Na
+
 from their tissue cells, 

or tolerate the Na
+
 accumulated within their cells. Parida and Das (2005) consider 

that plants have developed the ability to regulate ion transport into their cells in order 

to protect the actively growing region and the metabolising plant cells. Salinity can 

result in ionic imbalance (Munns & Tester, 2008), with excess Na
+
 and Cl

-
 ions both 

having a toxic effect on tissue cells (Serrano et al., 1999).  
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To understand salt tolerance mechanisms, it is important to understand the behaviour 

of naturally salt-tolerant plants, i.e. those that have adaptations that allow them to 

survive in saline environments. For example, most halophyte plants remain relatively 

unaffected, in terms of growth, when exposed to 200 mM NaCl (Flowers, 2008). 

This suggests that there is an important potential here for learning how to raise the 

salt tolerance of plants. Arzani (2008) notes that in numerous crop species, salt 

tolerance is considered to operate at the cell level. For example, halophytes are 

thought to have certain cellular mechanisms for salt tolerance. During salt stress, cell 

wall properties are responsible for the maintaining of cell growth (Iraki et al., 1989) 

and could be vital to salt tolerance (Seaman, 2004).  

The process of growth in a plant is closely related to positive Pcell and water uptake. 

When the cell wall prepares for growth, turgor falls and so cell water potential also 

decreases, which in turn causes an influx of water across the plasma membrane to 

revive the cell’s turgor. By this process, though, the cell’s solutes are diluted and 

must be restored by more ions being taken into the cell or synthesised. Certain 

parameters influence the speed at which the cell volume increases, which combine to 

give the wall yielding property of the cell: r = ɸ (P - Y), where r is the growth rate, ɸ 

is the wall plastic extensibility (how easily cells undergo irreversible expansion), and 

Y is the yield threshold (critical value of minimum turgor before the wall can 

expand) (Lockhart, 1965). 

Under salt stress, Pcell, cell wall extensibility, yield threshold or hydraulic 

conductance can be affected, so plants must either regulate their turgor (P) or adjust 

wall properties (ɸ and/or Y) to avoid a detrimental effect on growth. It has been 

noted that in the unicellular microalga Chlorella emersonii L, only partial turgor 

regulation occurs when the plant is exposed to high salt stress (Munns et al., 1983). 
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Begg and Turner (1976) have reported that osmotic adjustment happens in crops 

exposed to water deficit or salinity conditions. This process increases the osmotic 

pressure (πcell) in the protoplasts of the crop plants by the accumulation of solutes 

(mainly Na
+
, Cl

-
 and K

+
), and the synthesis of organic solutes (amino acids and 

sugars). This increases their Pcell, enabling them to maintain stomatal conductance 

and leaf growth under salt stress conditions.  

Under saline conditions, plants have developed different mechanisms to adjust 

osmotically to the large decrease in ψext, for example by controlling the transport of 

Na
+
 at the plasma membrane of the root cells and xylem Na

+ 
loading; by Na

+
 

recovery from the xylem; by extrusion of Na
+
 from the root; by Na

+
 intracellular 

compartmentation (vacuoles); and by excretion of Na
+ 

via salt glands (Zhang et al., 

2010). Seaman (2004) has noted that glycophytes have low selectivity of root 

membrane for Na
+
, Cl

-
 and Ca

2+
. The only way that leaf vacuole 

compartmentalisation of Na
+
 and Cl

-
 can be achieved is by their active transport into 

the vacuole. The tonoplast permeability to these ions is kept sufficiently low to 

maintain the gradients of ion concentration at an energy cost that can be continued 

for a significant amount of time (Seaman, 2004). Patch clamp investigations have 

shown that when unselective slow vacuolar ion channels open, this can result in 

higher plants’ tonoplast conductance increasing greatly (Maathius & Prins, 1990).  

However, the conductance of Na
+
 and Cl

-
 through the slow vacuolar channels must 

not be so great that it exceeds the ability of active transport to maintain the NaCl 

gradient, otherwise subsequent ‘leakage’ could lead to plant death (Maathius et al., 

1992). 

Glycophytes control the movement of ions which are toxic, such as Na
+
, into root 

cells and root xylem, in order to minimise their uptake from the soil and prevent their 
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transport into the shoot. The ability to do this is greater in glycophytes with higher 

salt tolerance, and these are also better able to maintain high K
+
 levels (e.g. Flowers 

& Hajibagheri, 2001). Allowing K
+
 influx into root cells is important as it promotes 

Na
+
 exclusion, so the two are related.  Therefore K

+
 uptake helps to minimise Na

+
 

being taken up and distributed within the plant (Jeschke, 1972). A low Na
+
:K

+
 ratio 

can be achieved by selectivity for K
+
 rather than Na

+
, both in the root and in the 

xylem, and also by intracellular compartmentalisation of toxic ions in the cell 

vacuole.   

Plant growth, in some cases (Luan et al., 2009), may match ion accumulation to 

maintain a balanced gradient, whilst in other species secretion is necessary, via salt 

glands, to remove excessive ion concentrations (Drennan & Pammenter, 1982). Since 

high Na
+
 levels present in the cytoplasm are toxic, Na

+
 has to be thus either 

compartmentalised in vacuoles or exported. The latter can be achieved via salt 

glands, as mentioned above, or bladder hairs. It can also occur through the cuticle or 

in the guttation fluid, or via phloem transport. Salt glands tend to be found on many 

aerial areas of the plant, especially the leaves, and are on, or recessed in the 

epidermis. Using the phloem, the plant can translocate problem ions to mature 

leaves, but this may be detrimental to young leaves as these are phloem sinks while 

they are still nascent. Alternatively, some plants have special adaptations that allow 

for efficient salt excretion, namely salt glands and salt hairs (bladders), whose 

presence is indicated by a salt crust visible on leaves and shoots. These mechanisms 

can effectively conduit salt out of the plant, to reduce the build-up of toxic 

concentrations (Popp, 1995).   

However, every one of these activities has high energy costs (Zhang et al., 2010). 

ATP is needed to transport the ions through the plasma membrane and the tonoplast 
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(Seaman, 2004) due to an ATPase-activity-derived proton motive force. A Na
+
/H

+
 

antiport results in the secondary active transport of Na
+
 from tissue cells. For 

example, in plants the Na
+
/H

+
 antiport has been noted at both plasma membranes and 

the tonoplast (Fig. 1.3) (Mansour et al., 2003). Apse and Blumwald (2002) found 

that in glycophytes and halophytes, Na
+
/H

+
 exchange activity is increased under low 

external Ψext. After H
+
 pumps have created a proton gradient, Na

+
/H

+
 antiporters, 

which are integral transport proteins, use the gradient to effect trans-membrane 

Na
+
/H

+
 exchange (Dupont, 1992 and Leigh, 1997).  

Using Na
+
/H

+
 antiporters to transport Na

+
 across the tonoplast into the vacuole from 

the cytoplasm is a key feature of salt tolerance. The antiports are driven by the H-

electrochemical potential gradient that is mainly created by H-ATPase and V-PPase 

(Blumwlad, 2000) (Fig 1.3). Such antiport activity at the tonoplast has been seen in 

Plantago maritima, a salt tolerant species, but is not evident in salt sensitive 

Plantago media (Staal et al., 1991) or barley (Garbarino et al., 1988)  

   

Fig. 1.3 Simple diagram representing “proton pumps and antiporters of plasma membrane and 

tonoplast. The primary active P-ATPase energizes the plasma membrane for secondary active 

transport of Na
+
 by Na

+
/H

+
 antiport to the apoplast, and the primary active V-ATPase and V-PPase 

energize the tonoplast for secondary active transport of Na
+
 by Na

+
/H

+
 into the vacuole” (Mansour et 

al., 2003).        
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In short, growth depends on a balance between K
+
 and the highly toxic Na

+
, and is 

promoted by high K
+
 and low Na

+
 (Luan et al., 2009). Maintenance of a high ratio of 

K
+
:Na

+
 in the protoplast requires Na

+
 extrusion and/or the compartmentalisation 

(mainly in the vacuole) of Na
+
 (Blumwald, 2000). Using the roots to exclude salt is 

anther mechanism to make sure that sodium concentrations in leaves do not become 

toxic (Munns & Tester, 2008). Salt tolerant plants use a variety of such mechanisms.   

 

1.3 Drought Tolerance in Plants    

Water stress can be defined as decreased availability of water. This can be created 

either by a scarcity of water, i.e. drought, and/or by osmotic stress caused by elevated 

concentrations of salt. The effects of water stress include decreased photosynthesis, 

reduced respiration and uptake of ions, impaired metabolism, altered patterns of 

growth, and may even cause the death of the plant itself (Jaleel et al., 2009).  

Generally, plants respond to low ψext, by ensuring that tissue ψcell and water content 

are kept above a minimum level (similar to the unstressed level) by increasing water 

uptake or by the limiting of the evapotranspiration process in order that the 

evapotranspiration rate and water uptake remain balanced. This occurs quickly due to 

stomatal closure (Verslues et al., 2006). Increases in the ratio of root:shoot, the 

tissue’s water storage capacity, cuticle thickness and water conductance, together 

with  changes in root and shoot growth, can be crucial as a longer term response 

(Verslues et al., 2006), but for crops, it is root growth that represents the most 

important adaptation, in order to improve water uptake into the plant.  Subjecting 

seedlings to low water potential (ψw) often results in preferential growth of roots 

rather than shoots, indicating that this is functioning as a salt stress response (Sharp 

et al., 1989; Spollen et al, 1993). Changes in root cell wall polysaccharide 
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biosynthesis have been seen in wheat cultivars of varied drought tolerance upon 

exposure to water stress (Piro et al., 2003).  

Moore et al. (2008) found that during dry spells, a number of plants under water 

deficit survive as drought-tolerant seeds (‘orthodox’ seeds) or spores, and complete 

their growth and development upon enough water becoming available. Another plant 

mechanism for avoiding water deficit (such as found in eucalypts) is to keep 

hydrated via extensive root systems by locating deep water sources (Moore et al., 

2008). Moore et al. (2008) found that some vegetative tissues can survive without 

adverse effects under various stages of drought. Indeed drought resistance, to varying 

degrees, can be seen in the vegetative tissue of certain crop cultivars and genotypes, 

such as those of wheat and maize. This has been achieved through a range of 

adaptive mechanisms to minimise water stress damage, including water use 

efficiency strategies and osmotic adjustment processes (Clifford et al., 1998; Iljin, 

1957).  

The cell wall also plays a significant part. It is a structure that causes a vulnerability 

to osmotic imbalance and plasmolysis, and therefore protoplasm damage. 

Maintaining correct Pcell is thus vital, as it is the mechanism that the plant cell uses in 

growth and division (Brett & Waldron, 1996). Turgor pressure prompts elastic 

(reversible) and plastic (irreversible/viscous) stretching. This in turn leads to cell 

growth (viscoelastic growth) (ibid). Osmotic adjustment results in Pcell maintenance 

and thus minimizes the physiological influence of water stress (Morgan, 1980). 

 Another aspect of plant adaption to environmental variation concerns the plant’s 

stomata (Zeiger et al., 1987). It is transpiration through the stomata that is the driving 

force for uptake and transport of water from root to shoot. Open stomata are also able 

to take in CO2. In times of drought, closing stomata minimises water loss, albeit at a 
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cost of cutting off CO2 uptake, and allows the plant to regulate water stress. 

However, repeated exposure to water stress causes a change in stomatal sensitivity, 

making them more sensitive to indicators that prompt closure, and vice versa 

(Aasamaa & Sober, 2011). 

Many examples exist showing how manipulation of the stomatal behaviour can 

contribute to cell performance under drought and related high-temperatures (Morison 

et al., 2008). Zeiger and colleagues, among others (Lu & Zeiger 1994 and Radin et 

al., 1994), found elevated stomatal conductance in high-yield Pima cotton cultivars, 

which had the effect of reducing leaf and canopy temperature. There is also a link 

between stomatal opening regulation and ion and water transport via channel proteins 

in the membranes of the plasma and the vacuole (Kim et al., 2010). The way in 

which the cells respond to the decrease in the ψext during periods of water deficit 

dictates the amount of water loss. The reducing of Pcell and loss of water and πcell 

until a new balance is set when cells are turgid is the most usual outcome. 

1.4 Osmotic Adjustment  

In response to salt stress, plants are able to decrease their cell ψcell and maintain 

positive Pcell, which is necessary to their continued growth (Tester & Davenport, 

2003). They can also, at the same time, increase water uptake by accumulating 

solutes in their cells. Studying plants under water stress in the field, Acevedo et al. 

(1979) found increased πcell in maize roots to maintain turgor. A similar observation 

was made by Michelena & Boyer (1982) in growing zones of maize leaves. Partial or 

complete turgor maintenance following salt stress has been studied in several 

species; some using indirect measurement for example in wheat (Termaat et al., 

1985), Acer pseudoplatanus (Pennarun & Maillot, 1988), and barley leaves (Munns 

& Passioura, 1984). Other studies have used the direct pressure probe technique to 
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measure Pcell (2.5 - 3 bar), for example in S. maritima leaves (Clipson et al., 1985) 

and barley leaves (Thiel et al., 1988). 

Turgor regulation in tissue cells has been studied in marine algae by Zimmermann 

(1978) and Kirst (1990), in brackish or euryhaline algae by Okazaki (1996), and in 

Spirogyra cells in fresh water by Iwata (2001). Frensch & Hsiao (1994) have 

reported that even minor osmotic stress leads to rapid turgor regulation. Shabala & 

Lew (2002) report that in epidermal cells of Arabidopsis, turgor recovery is 

completed within 40 to 50 minutes, through the accumulation of Na
+
, Cl

-
, and K

+
, 

with osmotic adjustment occurring within 2 to 10 minutes after recovery is started. 

Turgor regulation is achieved in marine algae by either absorbing solutes from 

external media or by organic solute synthesis (Kirst, 1990) and this is also the case in 

higher plants (Serrano, 1996). Osmotic adjustment is regarded as a significant 

mechanism for plants adapting to salt stress, because it is essential to the 

maintenance of the Pcell and the volume of cells. Chen and Jian-Guo (2010) have 

observed that Na
+
, K

+
, Cl

-
, and Ca

2+
 contribute to osmotic adjustment. Similarly, 

Flowers and Colmer (2008) have found that the uptake of solutes (predominately 

Na
+
, Cl

-
 and K

+
) contributes to osmotic adjustment in the shoot, and leads to the 

uptake of water.  

Orsini et al. (2011) report that inorganic solutes have an important role in osmotic 

adjustment. They suggest that K
+
 contributes to osmotic adjustment by accumulating 

in tissue cells rather than being excreted, and thus plays an active and important role 

in leaf cell osmotic adjustment. Cuin and Shabala (2005) report that osmotic 

adjustment could be achieved by contributing osmolytes indirectly by regulating K
+
 

influx across the plasma membrane, and hence controlling NaCl-induced efflux of 
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these cations.
4
 Turgor regulation enables complete turgor recovery through osmotic 

adjustment within 24 hours in single-cells of maize roots (measured using the 

pressure probe) by using organic solutes rather than K
+
 and Cl

-
 (Pritchard et al., 

1996). In whole roots (grown in 200 mM mannitol), both turgor and growth recover 

fully (Pritchard and Tomos, 1993). Bisson and Kirst (1980) report that turgor 

regulation is achieved through the uptake of K
+
 and Cl

-
 in vacuoles of 

Lamprothamnium apulosum. Under osmotic stress, turgor recovery can be completed 

in mung beans (Vigna radiate) in six hours (Itoh et al., 1987). Hoffmann and Bisson 

(1990) have found that following both hypotonic and hypertonic stress, turgor 

regulation is completed within two days and between five to seven day, respectively 

in euryhaline giant-celled algae (Chara buckellii).  

1.4.1 Physical Osmotic Adjustment  

Volumetric elastic modulus is an important physiological parameter, particularly in 

our understanding of the responses of plant cells and tissues to water stress and salt 

stress (Patakas & Noitsakis, 1997; Tomos, 2000) to maintain Pcell (Tomos, 1988).  

It has been seen in species of wheat, olive and bean (Patakas & Noitsakis, 1997; 

Marshall et al., 1999) that increased elasticity of the cell wall may be related to the 

plant’s ability to maintain Pcell or symplast volume in response to water stress. Plants 

may also respond to dehydration by adjusting cell wall elasticity to shrink and thus 

reduce turgor-loss volume, in order to maintain Pcell and avoid a decrease in Ψw 

(Marshall et al., 1999). When Pcell decreases, this results in the plant making 

physiological and biochemical adjustments to correct it. Osmotic and elastic 

adjustments are thus important mechanisms (Schulte, 1992) since they contribute to 

                                                           
4 Ion flux and membrane potential were measured for 3-4 day old seedlings at the root elongation zone 

(around 3mm from tip). Noninvasive microelectrode ion flux measurements (MIFE technique) were 

taken of net fluxes of Na
+
, K

+
, H

+
 and Ca

2+
. 
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the maintenance of Pcell at lower tissue ψw. In this way, plasma membranes are 

protected from mechanical damage.  

Osmotic adjustment involves actively accumulating cell solutes, which results in an 

increase in πcell and encourages the absorption of water. Elastic adjustment occurs 

when the cell wall is made more elastic so that it can contract more readily in 

response to dehydration (Fan et al., 1994). Cell wall elasticity renders cells more 

resistant to temporary changes in water stress, meaning that water loss will not affect 

Pcell to the same extent and turgor will be more readily maintained (Zimmermann, 

1978). For plants with lower ability to effect osmotic adjustment, tissue elasticity is 

of particular importance (Pallardy, 2008). 

The value of εcell is an important parameter, and one which plays a major role in the 

relative proportion of Pcell and πcell changes in plants subject to external medium 

perturbations i.e. in the πcell process. It is also crucial to the regulation of water 

balance in cells (Philip, 1958). Cell volume and shape, Pcell, and wall structure all 

affect the value of εcell (Steudle et al., 1977; 1982). There is considerable evidence 

that εcell may be the first parameter influencing Pcell and osmotic adjustment under 

plant control. In addition, Zimmermann (1978) reported that εcell plays a significant 

part in the regulation of Pcell and the processes of extension growth. 

To estimate the volumetric elastic modulus (εcell), it is necessary to accurately 

measure instantaneous changes in cell volume ∆V and cell pressure ∆P 

(Zimmermann 1978;Tomos & Leigh 1999). Apparatus used in estimating the value 

of εcell has been improved by the development of the cell pressure probe, which 

allows a wider range of accuracy in the measurement of instantaneous changes in 

volume and pressure (Hüsken et al., 1978; Pritchard et al., 1989; Steudle, 1993; 

Tomos & Leigh, 1999; Tomos, 2000). This technique is not only used to measure 
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Pcell to an accuracy of approximately 0.05 bar in tissue cells, but can also be used to 

manipulate cell volume, allowing the calculation of εcell from the following equation 

(1.1) ( Zimmermann & Steudle, 1978). 

        
  

  
   

  

  
       (1.1)  

This definition of εcell indicates the proportional change in cell volume (∆V), related 

to the change in Pcell (∆P), and describes the slope of volume / Pcell curves of the cell 

plant (Zimmermann & Steudle, 1978; Tomos, 1988). 

This has facilitated the measurement of εcell in the single cells of a range of higher 

plants (Tomos et al., 1981; Cosgrove, 1985; Shackel, 1987; and Pritchard et al., 

1987) and in giant algal cells (Steudle & Zimmermann, 1971; Frey et al., 1988).  

Zimmermann (1978) showed that Pcell strongly affects the εcell of the cell wall, the 

former being often a linear function of Pcell at low pressure range but constant at a 

high pressure range. The εcell can be seen as a function of both Pcell and cell volume, 

and in a positive relationship with both (Hüsken et al., 1978, Zimmermann and 

Steudle 1975, Steudle and Zimmermann 1974, Steudle et al., 1977; and 

Zimmermann et al., 1976). Zimmermann and Steudle (1978) predicted a decrease in 

εcell with an increase in cell size in V. utricularis and M. crystallinum, these being 

more spherical cells. High values of εcell show a rigid cell wall or low extensibility, 

meaning that large changes in pressure lead to small changes in cell volume, whilst 

low values of εcell indicate greater cell wall extensibility.  

The instantaneous εcell (short–term elastic measurement) parameter (εcell(i)) is used to 

demonstrate rapid measurements of changes in pressure related to changes to volume 

(within 2 - 4 sec), while the stationary εcell (long-term elastic measurement)  

parameter (εcell(s)) is used to determine changes over a longer period (Zimmermann & 

Hüsken, 1980). Cosgrove and Steudle (1981) studied εcell in pea (Pisum sativum L.) 
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by using a pressure probe. The value varied from 12 - 200 bar (Pcell range 5 - 9 bar) 

for epidermal cells and from 6 - 215 bar (Pcell range 5 - 11 bar) for cortical cells. 

Hüsken et al. (1978) studied the water relations of tissue cells of Capsicum annuum. 

They found a volumetric elastic modulus value of between 8 - 25 bar, with εcell 

increasing with increasing Pcell, as well as a higher value in large cells.  

Attention has been focused on the role of εcell under osmotic stress conditions. 

According to Gerdenitsch (1979), in the single celled alga Eremosphaera viridis, the 

εcell values vary between 82 - 499 bar, related to pressure/volume curves. Frey et al. 

(1988) found similar results in the same alga cell, with εcell increasing in response to 

osmotic stress. In higher plants, Steudle and Zimmermann (1977) reported that εcell 

ranged between 5 - 100 bar (Pcell varied from 0 to 3 - 4 bar) for Crystallinum bladders 

epidermal cells, and Steudle (1980) found that in single cells of Kalanchoe 

daigremontiana, the εcell values varied between 12 - 128 bar (Pcell varied 0 to 3.4 bar).   

1.4.2 Biochemical Osmotic Adjustment 

Biochemical osmotic adjustment is an active process in response to a change in water 

potential, involving transporting or metabolically generating cell solutes to recover 

either the original πcell or the original Pcell (Tomos, 1988). Tomos (1988) describes 

the two types of active response as follows: 

1) Recovery of initial πcell by changing the Pcell to match the change in ψw, i.e. 

osmoregulation 

2) Recovery of initial Pcell by changing the πcell to match the change in the ψw, i.e. 

osmotic adjustment 
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1.4.2.1 Cell Wall/ Apoplast  

The apoplast plays an important role in cell water relationships, and to maintain 

turgor and facilitates turgor regulation, cells may be able to control apoplast ions 

activity (Leigh & Tomos, 1983; Clipson et al., 1985; Tomos & Wyn Jones, 1988; 

Tomos, 1988; Bell and Leigh, 1996). In beet taproot tissue, Turgor regulation is vital 

as high Pcell inhibits accumulation of sucrose (Wyse et al. (1986); Bell & Leigh 

1996). Turgor regulation in tissue of sugar beet and red beet is attributed to 

apoplastic ion adjustment. 

The apoplast is also critical to biochemical osmotic adjustment mechanisms (Tomos, 

1988). It is more effective to use apoplast πcell than protoplast πcell to regulate Pcell 

(Flowers & Yeo, 1986; 1988). Na
+
 and K

+
 are inorganic ions involved in this 

adjustment (Leigh & Tomos, 1983; Bell & Leigh, 1996), which results in continuing 

accumulation of sucrose by maintaining turgor at a low level (Leigh & Tomos, 1983; 

Tomos, 1988; Bell & Leigh, 1996; Lawrence, 1999).  

Dividing the flux rate into and out of any compartment by its volume will give the 

rate of solute concentration change for that compartment (Tomos, 1988). Since the 

volume of the cell wall is smaller than that of the protoplast, transport of solutes 

across the plasma membrane will affect πcell more rapidly than trans-protoplast 

transport. During the former, wall-osmotic pressure creates a differential that 

subsequently affects Pcell (Tomos, 1988).  

1.5 Whole Plant Response to Salt 

In most plant species, cell, tissue and organ development are affected by salinity (Hu 

et al., 2005), which thus reduces, alters or restricts growth. Salt stress is associated 

with ion toxicity, ion deficiency and ion imbalance (Cramer, 2002; Munns & Tester, 
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2008), and thus continuous increase in salt in the external root medium leads to a 

decrease in leaf size over time (Munns et al., 1988). Cell division rate, expansion rate 

and interval of expansion are also all affected by increasing the salinity of external 

medium.  

Salinity also can affect photosynthesis, synthesis of protein, and lipid metabolism 

and energy (Parida & Das, 2005). Munns and Sharp (1993) reported that in leaves 

and root, salt stress leads to reduced formation of the photosynthetic leaf area. This 

leads to a decrease in the influx of assimilation to the growing and meristematic 

zone, and also leads to decreased stomatal conductance in older leaves. Root growth 

however is often less affected than leaf growth, and after NaCl (or other osmotic) 

exposure, the rate of root elongation experiences faster recovery (Munns, 2002). It 

has been found that within one hour of exposure to up to 4 bar of mannitol, KCl, or 

NaCl, root recovery can be achieved (Frensch & Hsiao, 1994). Indeed, even 

exposure to concentrations of up to 150 mM of NaCl can take just a day to recover 

from (Munns, 2002). Unlike in leaves, full restoration of turgor is not necessary for 

recovery to be effected (Frensch & Hsiao, 1994).  

In barley, cell division of growing tissue in leaf 3 was not affected by 175 mM NaCl 

added to the external medium (Munns et al., 1988). In contrast, in sorghum grown in 

100 mM NaCl, leaf growth region and maximal growth rate were reduced (Bernstein 

et al., 1993). Delane et al., (1982) and Matsuda and Riazi (1981) found that salt 

stress (60 – 220 mM mM NaCl) reduced growth rate within minutes in leaves of 

barley
5
. 

                                                           
5 Growth of tips of leaves of 5-6 day old hydroponic plants was measured by interval photography 

(Rhodes & Matsuda, 1976). Stress was induced by changing to nutrient solutions of NaCl after 

seedlings had been in light for 4-6 hours. 
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1.6 Cell Compartmentation 

The ability of various species to be salt tolerant has been connected to a variety of 

physiological mechanisms, including exclusion and/or compartmentalising of Na
+
, 

osmotic adjustment, potassium selectivity, and organic solute accumulation (Yeo et 

al., 1990; Barret-Lennard et al., 1999). Compartmentation within the cell itself 

contributes to salt tolerance in a plant, and salt accumulation in aerial parts of 

halophytes indicates their ability to effectively sequester ions in the vacuole. This 

process is facilitated by the plant having both well-vacuolated cells and efficient 

tonoplast transport mechanisms to channel ions out of the cytoplasm, and such 

compartmentation in leaf and/or shoot cells is commonly found in dicotyledonous 

halophytic species. Other adaptive mechanisms also contribute, including water 

regime control and the ability to maintain metabolism in environments of low K
+
 

concentration (Flowers & Dalmond, 1992).  

Salt inclusion and compartmentation is therefore one mechanism for tolerating salt 

stress, in addition to the important role played by root exclusion, and occurs at the 

level of the cell, the tissue and/or the organ. Root Na
+
 can be transported into 

vacuoles or to the shoots. Sequestering inorganic ions, such as sodium, in the vacuole 

relieves the cytosol and allows water uptake to continue, but this must be 

accompanied by correcting the cytosol’s osmotic balance by synthesising appropriate 

solutes.  

1.7 Transpiration Tension  

One key process that affects both water transport and cell growth is transpiration.  

Transpiration at the shoot creates negative pressure (water tension), and this is 

usually the driving force that draws water into the root xylem (Steudle, 1995). The 
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process of transpiration can also cause changes in cell hydraulics or membrane 

transport, and this may result in changes to Pcell. The latter is commonly expressed 

not as an absolute value but as a value of hydrostatic pressure relative to atmospheric 

pressure. Studies into the correlation between transpiration and changes in Pcell have 

been conducted, for example using sugar beet taproot (Palta et al., 1987), and 

indicate a directly proportional relationship between the two, with Pcell decreasing as 

the transpiration rate increases.   

Research is increasingly suggesting that turgor regulation and maintenance, together 

with other plant cell water relations, rely on the active control of cell wall solutes 

(Leigh and Tomos, 1983; Clipson et al, 1985; Tomos and Wyn Jones, 1988; Tomos, 

1988; Bell and Leigh, 1996). In particular, the modulation of Pcell relies on πwall rather 

than that of the protoplast (Flowers and Yeo, 1986; 1988). Since it is the ratio of the 

flux rate to the compartment volume that dictates the rate of change of solute 

concentration (Tomos, 1988), then transporting solutes across the plasma membrane 

will have a more rapid effect on πwall due to the small relative size of the apoplast.  

Being able to maintain leaf Pcell is important as it means that transpiration can 

continue uninterrupted and thus that solute transport in the xylem is not inhibited 

(Marschner, 1995).  

Using a value for transpiration tension together with values for Pcell and πcell, the 

apoplast solute concentration can be calculated. There is a relationship between Pcell, 

πcell, πwall, and transpiration tension, i.e. the apoplast hydrostatic component (Pwall). 

Therefore, any disparity between Pcell and πcell is the result of πwall and/or Pwall. By 

means of using a pressure probe, Pcell in both transpiring and non-transpiring leaves 

can be measured to gauge the influence of Pwall (Hüsken et al., 1978). Several 
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researchers have measured the transpiration tension in S. maritima (Clipson et al., 

1985; Lawrence, 1999), in wheat (Arif, 1990), and in taproot (Tomos et al., 1992). 

1.8 Physiology and Life History of Wheat and S. maritima 

1.8.1 Wheat- a Glycophytes 

The harmful effect of salt on the growth of a non-halophyte is the result of a 

combination of factors and can be at the whole-plant level. An example would be a 

decline in growth rate. Leaves grow more slowly and there is an increase in 

root:shoot ratio (Blumwald et al., 2000). Many morphological, physiological and 

biochemical processes are affected by salinity, such as seed germination, plant 

growth, and water and nutrient uptake. However, investigations have confirmed that 

germination of wheat (Triticum aestivum L.) is retarded and lowered by low Ψext 

(Hao & Dejong, 1988) and high salinity (Zhao et al., 2007), as well as those factors 

combined (Willenborg et al., 2004). Zhao et al., (2007) reported that osmotic stress 

resulting from salinity causes mineral deficiencies and physiological and biochemical 

change to crop plants.  

Decreased wheat growth has also been seen under salt stress, related to turgor loss 

(Saqib et al., 2004). The latter, in turn, decreases photosynthesis and exchange of 

gases, and thus affects cell division and cell elongation processes.  

The barley (Hordeum vulgare L.) crop however is more saline-tolerant than durum or 

bread wheat, in spite of concentrations of leaf blade Na
+ 

similar to those of durum 

wheat (Genc et al., 2007). This indicates larger levels of tissue tolerance to Na
+ 

concentration. In contrast, wheat (Triticum aestivum L.) has only moderate salt 

tolerance (Maas & Hoffman, 1977). Even so, it will produce a yield, albeit reduced, 

in concentrations of 100 mM NaCl, where rice (Oryza sativa) will not survive to 
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maturity. Whilst barley has the highest tolerance of the cereal crops, even this cannot 

cope with sustained exposure to concentrations of salt above 250 mM (equivalent to 

50% seawater). There are differences between varieties, with bread wheat being 

more tolerant than Durum wheat (Triticum turgidum ssp. durum) (Maas & Hoffman, 

1977).  

Several authors, including Yeo et al., (1985) and Davenport et al., (2005), have 

found that many grasses can tolerate salt through accumulation of the ion Na
+ 

in the 

more mature leaves and the leaf sheaths, as well as by the compartmentalization of 

Na
+ 

at the whole-plant level. Moreover, Greenway and Munns (1980) reported that 

inducing K
+
 accumulation and uptake is also crucial for salt tolerance in growing 

tissues. In both monocot and dicot species, Plett and Moller (2010) reported that the 

highest concentrations of Na
+ 

accumulate in the oldest leaves of shoot biomass.  

Toxic concentrations of Na and Cl ions negatively affect not only cytoplasmic 

metabolism but also the general development of wheat. Salinity tolerance of crop 

plants is a function of three parameters; Na
+ 

exclusion; osmotic tolerance (achieved 

through changes to long-distance signalling, the allowing of cell expansion and the 

development of lateral buds, modifications to stomatal opening, and improvements to 

osmotic adjustment); and tissue tolerance to Na
+ 

concentration (Munns & Tester, 

2008). Salinity tolerance in many cereal species is noted to be positively associated 

with Na
+ 

exclusion, signifying that Na
+ 

exclusion from the tissue cells is an important 

constituent of salinity tolerance (Tester & Davenport, 2003). Notable differences in 

Na
+ 

exclusion has been noted in Triticum tauschii, where the level of Na
+ 

exclusion 

was related to salinity tolerance (Genc et al., 2007). Many studies have noted 

positive correlations between salinity tolerance and Na
+ 

exclusion in bread wheat 
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(Poustini and Siosemardeh, 2004) and Fricke et al. (1994a) found K
+
, Cl

-
 and NO3

-
 in 

leaf epidermal cells of barley. 

Osmotic and ion-specific effects result in the accumulation of Na
+
 and Cl

-
 in plants 

and lead to a decrease in crop growth and yield (Munns & Tester, 2008). Munns and 

Tester (2008) found that cell expansion, cell division and stomatal closure are 

affected by the osmotic effects of salinity stress. These occur after salt dosage and it 

is believed they continue for the period of exposure. Due to the various mechanisms 

which and salinity tolerance (Colmer et al., 2005), it is unsurprising that salinity 

stress is also a trait which is genetically complex. Some investigations have found 

that decrease in turgor leads to change in growth (Clipson et al., 1985 and Balnokin 

et al., 2005), resulting from significant levels of ions in the apoplast (Harvey et al., 

1981) or an adjustment in elasticity of cell wall (Touchette, 2006). Other effects 

probably depend on osmotic adjustment due to a lack of ability to accumulate and/or 

sufficient nutrient distribution; on the synthesis of sufficient organic solutes; on the 

ineffectual cycling of ions (Britto & Kronzucker, 2006); or on the energy demands of 

ion compartmentation (Yeo & Flowers, 1983).  

1.8.2 Suaeda maritima- A Halophyte 

Halophytes have developed various traits (physiological, morphological and 

biochemical) which allow them to tolerate high external salt concentration (Glenn et 

al., 1999). Flowers et al. (1986) consider that the ability to grow and reproduce when 

exposed to at least 200 mM NaCl defines halophytes. This condition is similar to that 

which may be faced in the natural environment (200 mM NaCl or more). Dubey 

(1999) has reported that S. maritima can continue growth in a saline environment of 

about 500 mM NaCl. However, its extracted enzymes it respond to a much lower 

level of NaCl (170 mM), indicating that in vivo conditions produce a lower 
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sensitivity to NaCl in soluble enzymes and enzymes of protein-synthesizing 

mechanisms than in vitro conditions do in enzymes that have been isolated.  

Yeo and Flowers (1980) found optimal growth for S. maritima in salt concentrations 

of about 150 mM NaCl in saline conditions. Hajibagheri and Flowers (1989) found 

that when S. maritima was growing in 200 mM NaCl (seedling grown in culture 

solution, root cut from 10-20 mm behind tips of seminal root and examined by X-ray 

microanalysis of freeze-substituted thin section), in the cytoplasm the concentration 

of Na
+ 

was 118 mM, in the vacuole it was 432 mM and in the cell wall 95 mM. 

When S. maritima was growing in external salinity of 340 mM NaCl (seeds were 

germinated at 170 and 340 mM NaCl, and grown in culture media based on soil; 

fresh and dry weights of healthy seedling were analysed), in the cytoplasm the Na
+
 

concentration was about 150 mM. In leaf slices suspended in 600 mM NaCl, the 

vacuole concentration was about 600 mM (Yeo, 1974). 

1.9 Objectives 

The main aim of this study was to look for potential factors conferring salt tolerance 

in wheat, in order to further inform agricultural science in Libya. This involved 

several subsidiary objectives.   

Firstly, the study sought to measure the effect of salt stress (created by adding NaCl 

to the growth medium) on three varieties of wheat, in terms of its impact on a range 

of growth parameters (final leaf and root length, leaf and root growth rate, and leaf 

plastochron index) as compared to a control. Three wheat varieties were chosen, 

which were expected to exhibit a range of salt tolerance. Two of the varieties, 

Gamina and Bohoth 105, are currently used in Libya, whilst the third, Hereward, is 

grown in the UK and known to be salt sensitive. 
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The second objective was to examine the cell water relations of the leaves and roots 

of the wheat varieties, in order to investigate how the cell biophysics of each variety 

responded to salt stress, and to assess any differences between leaf epidermal and 

root cortical cells. Cell water relations parameters were to include Pcell, πcell, cation 

concentrations, osmotic adjustment, volumetric elastic modulus, hydraulic 

conductivity and bulk leaf πcell and cations.  

Finally, the study then sought to compare the spectrum of salt tolerance and 

biophysical and biochemical features of the three wheat varieties with those of a 

model halophyte, S. maritima, in order to discover which variety behaved in the most 

similar way to the halophyte in response to salt stress. The hypothesis was that 

Bohoth 105 would exhibit characteristics that were more similar to those of S. 

maritima than the other two varieties were. 
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Chapter 2: Materials and Methods 

2.1. Materials and Growth Conditions 

Three varieties of wheat were used. They were Hereward, Bohoth 105 and Gamina. 

The Hereward seeds were harvested in the 2007 season at Bishops Farm, Oldberrow, 

Henley-in-Arden, Worcs (provided by Dr K.A. Steele). The local wheat variety, 

Hereward, is a UK commercial variety (and presumed to be relatively salt sensitive). 

Variety Bohoth 105 has been classified as a salt tolerant variety, and Gamina as less 

salt tolerant (Libyan Agriculture Research Centre, 2010). Both are Libyan varieties, 

and were provided by the Agriculture Research Centre in Tripoli, Libya. The seeds 

were stored at 5
0
C before germination. Seeds were soaked overnight in aerated tap 

water and then germinated on damp tissue paper in rectangular seed trays at 25
0
C in 

the dark. 

 S. maritima seeds were collected in 2009 from a site on the south coast of Anglesey 

(Plate 2.1), and then stored at 5
0
C before germination. It is an inter-tidal halophyte 

which has been used previously for salt tolerance research (Clipson et al., 1985). For 

S. maritima germination, the seeds were spread out on moistened 90 mm tissue filter 

paper (Fisher brand). The wet tissue filter paper was placed in a 250 ml glass 

crystallizing dish (Pyrex) at 25
0
C in the dark. After 5 - 7 days, the first signs of 

germination were observed. The wheat varieties and S. maritima seedlings were large 

enough to handle after 3 and 18 days respectively, and were transferred to 550 ml 

pots at this stage and grown hydroponically in aerated half-strength Long Ashton 

nutrient solution (Hoagland & Arnon, 1950) (Table 2.1) to allow access to the leaf 

and root systems. 
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 All subsequent growth was carried out in a growth chamber (Sanyo-Gallenkamp) 

(Plate 2.2) under controlled conditions. Temperature was maintained at 25
0
C during 

the light period and at 15
0
C during the dark. A photoperiod of 16 hours day/8 hours’ 

dark with 400µE.m
-2

 light at plant level and 70 % relative humidity was used. 

Four or five plants were used per treatment and 3 - 12 cells in each plant were 

examined to measure water relation parameters (turgor pressure (Pcell), volumetric 

elastic modulus (εcell), cell hydraulic conductance (Lp)), osmolality and solute 

concentration, as described below. 

 

Macronutrient 
Concentration 

(mM) 
Micronutrient 

Concentration 

(mM) 

K
+
 4.0 Si (as silicate) 0.05 

Ca
2+

 4.0 Fe
2+

 0.1 

Mg
2+

 1.5 Mn
2+

 0.01 

HPO4
2-

 1.3 Cu
2+

 0.001 

SO4
2-

 1.5 Zn
2+

 0.001 

NO3
-
 12.0 Na

+
 1.3 

- - BO3
-
 5 x 10

-5
 

- - MoO4
2-

 4 x 10
-4

 

Table 2.1 Composition of 100 % strength Long Ashton growth solution (Analar grade salts supplied 

by BDH). An equal volume of de-ionised water was added to a volume of the 100 % strength solution 

to make a 50 % strength medium. 
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Plate 2.1 S. maritima in its natural environment on the Isle of Anglesey, 2011 

 

Plate 2.2 Hydroponic system used for growth of wheat varieties and S. maritima plants in all 

experiments. Plant were grown in approximately 550 ml of aerated 50 % Long Ashton solution (± 

salt). Conditions were 16h day (400 µE.m
-2

)/8 h dark (25
0
C /15

0
C) 70 % RH. Nutrient solution was 

regularly replaced.  

Scale 1 mm = 5.2mm 
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2.2. Salt Treatment 

Control batches were grown in 50% Long Ashton for 22 - 23 days. During this time, 

salt (NaCl, BDH, grade 99.9%) was added to the test batch hydroponic solution in 

two stages.  On day 4 after germination, 30 mM of NaCl was added to the solution, 

and on day 5 this was made up to a final concentration of 60 mM.  The wheats were 

then grown on for 18-19 days.  

The concentration of 60 mM was chosen as it was thought to be high enough to have 

an effect on the plants, but not so high as to prevent their growth altogether or cause 

death.  According to a US Salinity Laboratory survey of salt tolerance, each of the 

crop and pasture species studied showed a ‘bent stick’ relationship between yield and 

salt concentration.  In other words, there was a threshold salinity at which the yields 

started to suffer, but at concentrations lower than this, there was no effect on yield.  

The typical threshold of wheat was found to be around 60 - 80 mM NaCl, so 60 mM 

was thought to be high enough to detect an effect on the plants. (Maas & Hoffman, 

1977; USDA-ARS, 2005).  

 Control S. maritima batches were grown in nutrient solution. Twenty two days after 

the first sign of germination for the test batch, 200 mM NaCl was added as two 

increments of 100 mM over two days. This concentration represents optimum 

conditions for S. maritima, which is able to grow at salinity levels which other plants 

cannot tolerate. A concentration of 200 mM has been used in previous studies on this 

species (Hajibagheri & Flowers, 1989; Maathuis et al., 1992; Lawrence, 1999).  

 2.3. Leaf and Root Growth (Wheat)  

Batches of 12 plants (wheat) were used for growth analyses. From each plant, 5 

leaves were measured starting from seed (zero line) every day (after emergence) by 
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using a ruler. The growth rate, final length and Plastochron index (the interval of 

time between two frequent successive events, for example leaf initiation) were 

determined for each leaf from these data as follows:  

The leaf growth rate was measured by the linear regression of the relationship 

between length of leaf and time, during the initial linear growth phase (that lasted 

some 2 – 3 days for each leaf). 

 Erickson and Michelini (1957) developed a numerical index of the developmental 

age of plants, which they termed the "plastochron index," abbreviated to PI.  This 

was proposed to be an indicator of plant age according to morphology, where a 

plastochron is the time interval between successive leaf initiations.  Later, this was 

extended to refer not just to leaf initiation but also to any discernable point of leaf 

development. 

Plastochron index was measured by the method as described for Xanthium by 

Maksymowych (1973), except that the cereal showed a linear rather than an 

exponential growth. As result, a linear rather than a log-linear equation was used. 

Root length was also measured daily as above. Maximum leaf and root length were 

determined at the point when elongation stopped. 
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Plate 2.3 Experimental setup for sampling single cell from leaf and root. Osmotic pressure is 

measured by picolitre osmometer: 1: Droplet samples (10 - 60 pl) are extracted directly from plant 

cells in situ; 2: stereomicroscope 3: sampling glass microcapillary with tip 1 μm (filled with AS 4 

silicon oil before sampling, capillary is manipulated into place above the copper stage, and now is 

ready to be used); 4: micromanipulator; 5: valve operated by foot switch; 6: osmometer hand set; 7: 

illuminator (fiber optics); 8: adjustment stage.  

 2.4. Leaf and Root Physiological Parameters 

The osmolality and inorganic cations at organ level were measured from sap 

extracted according to Gorham et al. (1984). Osmolality was measured using a 

picoliter osmometer (Malone et al., 1989; Tomos et al., 1994; Fricke, 2013) (Plate 

2.3) but using samples in the nl range. Inorganic cations were measured using 

capillary zone electrophoresis (CZE) (Bazzanella et al., 1998) (Plate 2.4).  
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Plate 2.4 Experimental setup for injection of the prepared epidermal and cortical sample (10 - 60 pl) 

into the CE column; 1: droplet samples are extracted directly from plant cells in situ; 2: buffer 

solution; 3: CE column; 4: stereomicroscope; 5: outlet buffer vial; 6: spectrophotometer; 7: high 

voltage power supply 30 KV; 8: anode (+): 9: cathode (-). 

2.5. Analytical Techniques for Single Cell Samples 

2.5.1. Turgor Pressure 

Single cell water relations [Turgor (Pcell), volumetric elastic modulus (εcell) (Fig. 2.1 

and 2.2) and hydraulic conductivity (Lp)] (Fig. 2.3) of leaf epidermal and root 

cortical cell were measured according to Hüsken et al. (1978). All these parameters 

were measured by pressure probe (Zimmermann & Steudle, 1978; Tomos & Leigh, 

1999) (Plate 2.5).  
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Plate 2.5 Experimental setup for measuring turgor pressure by pressure probe; 1: wheat plant in 

hydroponic solution; 2: pressure transducer (Druck Ltd); 3: valve operated by foot switch; 4: oil 

reservoir filled with silicone oil; 5: stereomicroscope; 6: glass microcapillary with tip 1 μm (filled 

with AS4 silicone oil before sampling) inserted in epidermal cell (Clarke Electromedical Instruments); 

7: Perspex chamber; 8: hand set; 9: micromanipulator; 10: illuminator (fiber optics); 11: solenoid 

valve 24 V DC (RS Components); 12: geared motor 6 V/12 V DC (RS Components). 

2.6 Cell Dimension Measurements  

2.6.1 Root 

To determine cell length and radius, a section 4 – 6 cm from the root tip was selected 

from 3 - 6 plants for each treatment for wheat and S. maritima on day 8. This region 

of the root was chosen for several reasons. Firstly, the cells here are outside the 

elongation zone, and are relatively large and so more practical for sampling with the 

chosen technique. Secondly, choosing a defined distance from the tip increases the 
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reproducibility of the results, which is important in terms of comparing 

measurements across varieties. Thirdly, this is a region which responds to salt, as 

seen in our results.   

A plastic embedding technique (Feder & O’Brien, 1968) was used for preparing 

longitudinal and transverse sections. The root tissues were cut into small pieces (1 - 2 

mm) and fixed in 3 % glutaraldehyde in 50 mM sodium
 
cocodylate buffer under 

vacuum for 24 h at room temperature. Tissue samples were dehydrated in varying 

grades of ethanol solution (25, 50, 75 and 100 %) for 12 h each, and then 

subsequently transferred to ethanol and LKB (1:1 ratio) infiltration solution (LKB 

AB, Bromma, Sweden) on a rotator overnight. Pure LKB infiltration solution was 

substituted instead of bath solution and left for 4 days on the rotator. Tissue samples 

were placed in plastic moulds and then covered for 3 h with LKB embedding at room 

temperature to polymerise. The solidified resin blocks were taken out from the 

moulds and then placed on blocks. Tissue samples were cut to 4 µm thick using a 

microtome device (Supercut 2050; Reichert-Jung, Gmbh D6907, Nbloch, Germany). 

Samples was placed on slides and then stained with 0.05 % (w/v) toluidine blue 

benzoate buffer for a few minutes, mounted in distilled water. Length (l) and radius 

(r) were measured on a photograph taken of the slide by the microscope computer’s 

digital camera. The surface area (A) and cell volume (V) of the cylindrical shaped 

cells were calculated using equation 2.1 for area and equation 2.2 for volume, as 

below. 

Surface area = [2 П r l) + 2[П r
2
]    (2.1) 

Volume = П r
2
l     (2.2) 

Where, r radius (μm), l length (μm), and П = 3.14     
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2.6.2 Leaf  

Longitudinal sections of the plant leaves (leaf 1) were cut by hand into small pieces 

(1 – 2 cm). The length (l) and radius (r) of the epidermal cells were determined using 

a stereomicroscope at 400-fold magnification. Surface area and volume were 

calculated using equations 2.1 and 2.2, as above. 

2.7 Measurement of Volumetric Elastic Modulus 

The cell pressure probe, as described by Hüsken et al. (1978), allows the continuous 

measurement of Pcell and also the manipulation of the volume of the cell and its 

turgor. The Pcell is transferred through glass microcapillary with a tip (1 – 3 μm) 

filled with silicone oil (AS4; Wacker-chemie Gmbh D-81737 München Burghausen) 

to a pressure transducer fixed in a plexiglass block (Plate 2.5). The oil/sap meniscus 

was controlled electronically by a handset. Turgor pressure in leaf epidermal (except 

S. maritima) cells and cortical root cells of wheat and S. maritima were measured (as 

detailed in Chapter 3, 4, 5 and 6). Pcell of the plant roots was measured while the roots 

were bathed in external solution. Pcell of wheat leaves were measured in air. 

Instantaneous εcell was obtained by the change in volume of the cell (∆V), which 

leads to changes in cell turgor (∆P) (Figs 2.2 and 2.3). V, ∆V and ∆P
 
represent actual 

cell volume. The εcell was calculated by using the equation (2.3) below (Philip, 1958; 

Zimmermann and Steudle, 1978). 

 εcell = V 
  

  
   (2.3)    

The silicone oil-cell sap meniscus was manipulated quickly. By moving the 

meniscus, the cell volume (V) and turgor (Pcell) changed and then returned to their 

original position. Software (Clarity Lite Chromatography, Supplied by Data Apex, 

Prague) was used to process the results of pressure change (∆P) as charts on a 
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computer screen. The change in volume was measured from the range of movement 

of the silicone oil/cell sap meniscus. The cell length and radius were measured using 

an eye-piece graticule in the stereomicroscope. Equation 2.2 was used to calculate 

cell volume, with the leaf cell being assumed to be of a cylindrical shape, where = r 

cell radius and l = cell length. 

 

Fig. 2.1 An example of the raw data for determining volume elastic modulus (εcell). A ∆P/∆V curve of 

the leaf epidermal cell for Gamina variety as obtained by pressure probe. A pressure pulse ΔP was 

applied to individual cells and the resulting change in volume (ΔV) measured (The sigmoidal shape of 

the curve is due to water flow across the cell membrane during the experiment). The dp/dv used is that 

extrapolated to ΔV = 0) see fitted line. All observations were taken from one cell. 
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Fig. 2.2 Typical example of rapid changes in pressure to measure the volume elastic modulus (εcell). 

Change in pressure of the leaf epidermal cell are for Gamina variety as obtained by pressure probe. 

The probe mmeasure ∆P directly and calculates ∆V from the changes in meniscus position. All peaks 

were obtained from one cell. 

2.8 Hydraulic Conductivity  

Hydraulic conductivity (Lp) was measured using hydrostatic pressure relaxation (as 

described by exponential P(t) curve equation 2.4). The change in cell volume created 

by moving the metal rod (linked to an electric motor) to push the oil/sap meniscus to 

a new position leads to rapidly increased or decreased Pcell (Fig. 2.3). The changes in 

Pcell (∆P) lead to outflow of water from the cell or inflow into the cell, with Pcell 

finally relaxing back to a magnitude close to the original position. Data was collected 

using clarity life software and then individual exponential curves were retro-fitted by 

eye to the pressure relaxation in order to estimate the half time (T1/2) for the water 

exchange rate across the cell membrane using Equation 2.4 below. T1/2 was 

calculated by the difference between Pcell(A) and Pcell(E) (Equation. 2.4). 

P(t) = Pcell(E) + (Pcell(A) – Pcell(E)). exp(-kw.t).      (2.4) 
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Where Pcell(A) is the maximum value of Pcell; Pcell(E) is the end value of Pcell; and Kw is 

the rate constant of the water flow, which is the inverse of the time constant.  

The πcell was measured, as described in Chapters 3, 4, 5 and 6. The LP was calculated 

using measurements of V, A, εcell and πcell, as in Equation 2.5 below. ∆P/∆V and T1/2 

were obtained for the same cell, but V and A were obtained using different cells on 

day 8. 

     
 

 
  

   

  
 

 

             
                           (2.5) 

Fig. 2.3 An example of the raw data for determining Lp pressure–relaxation curves from single root 

cortical cells of Hereward wheat, as determined by the cell pressure probe. Endosmotic (a, c) and 

exosmotic (b, d) water flow were changing, induced by rapidly changing Pcell(0) to an initial Pcell(A). P 

exponentially relaxes back to Pcell(E). Half time was measured by fitting an individual exponential 

curve to the pressure relaxation. The T1/2 of water exchange was used to estimate the Lp. 

2.9 Single Cell Sampling and Analysis (SiCSA)                       

Cell sap of single epidermal cells of leaf and cortical cells of root in intact plants in 

situ was extracted directly by using the single cell sampling and analysis performed 

by Tomos et al. (1994) and Fricke (2013) (Plate 2.6). Osmotic pressure was 

measured according to the picolitre osmometry method of Malone et al. (1989); 

Tomos et al. (1994) and Fricke (2013). Cations (Na
+
, K

+
, Ca

2+
 and Mg

2+
) were 

measured using the CZE system of Bazzanella et al. (1998) (Plate 2.4).  
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Plate 2.6 Experimental setup for sampling single cell; 1: wheat plant in hydroponic solution (sap 

extracted from leaf and root cells in air and under solution); 2: stereomicroscope; 3: sampling glass 

microcapillary with tip 1 μm (filled with AS4 silicon oil before sampling), 4: micromanipulator; 5: 

tubing; 6: valve operated by foot switch; 7: syringe; 8: slide with ring filed with saturated paraffin oil; 

9: illuminator (fiber optics); 10: output on computer screen.  
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2.10 Data Analyses 

Data analyses were performed through IBM SPSS Statistics version 20 for Windows. 

Results includes the means and the standard deviations. A statistical analysis of the 

data was carried out on the assumption of normal distribution and homogeneity of 

variance. Normality was tested using the Kolmogorov-Smirnov test. Treatment 

effects were tested using analyses of variance and Tukey multiple comparison was 

performed. At single individual cell level, water relation parameters were analysed 

by two-way ANOVA, with repeated measurements on the various experimental time 

periods. The significance level was set at P=0.05.  

Growth parameters for different plants were compared when different treatment 

(control and salt) were used over the various time periods. At whole plant level, πcell 

and solutes were compared in the first three leaves for each of the three wheat 

varieties, using univariate ANOVA. The differences between the control and salt 

treatments for Pcell and πcell showed an exponential relationship for all three varieties. 

However, when the log of the difference was plotted against time, the relationship 

was shown to be linear. 
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Chapter 3: Plant Growth Parameters of Wheat 

Varieties and their Responses to NaCl Stress  

 

3.1 Introduction 

Salinity conditions result in the accumulation in plants of Na
+
 and Cl

-
, and in water 

being uptaken together with solutes (K
+
 and Ca

2+
) (Hu & Schmidhalter, 1997).  

Salinity has detrimental effects on the plant, which can include decreased leaf 

elongation rate, lower maximum leaf length, and altered plastochron index (e.g. 

Beatriz et al., 2001). Shoot growth is also impaired, resulting in a lower leaf area and 

shoot stunting (Läuchli & Epstein, 1990). This is because the final size of leaves 

depends on the rates of cell division and elongation, and these are affected by 

salinity. Salinity also retards the growth and development of the whole plant as well 

as of certain organs. Changes in the final leaf size and leaf growth rate are aspects of 

leaf growth that have been studied in many plants, including wheat (Auld et al., 

1978). 

From the wide range of wheat varieties available, three were chosen to represent a 

range of salt tolerances. The objectives of this chapter are to describe the responses 

of the three to the application of salt stress, grown using the hydroponic growth 

system available. The first five leaves and the longest seminal roots of each seedling 

of three wheat varieties (Hereward, Gamina and Bohoth 105) were used to measure 

basic growth parameters following salt stress, and to investigate the mechanism by 

which growth is reduced under salt stress. Growth rate, final length and leaf 

Plastochron Index were compared by measuring leaf (1 - 5) and root length every 
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day (Figs. 3.1 to 3.3; Tables 3.1 and 3.2). These measurements continued to a 

maximum of 21 days, in both control and 60 mM NaCl treatments. Plants were 

grown in hydroponic medium under controlled conditions (see Materials and 

Methods).  

3.2 Leaf Growth 

For all leaves, significant differences were seen in final leaf length between the three 

varieties (P = 0.00) under both control and treatment conditions (Table 3.1). The 

statistical different between varieties and treatment effects was also significant (P = 

0.00) (Table 3.1). Salinity decreased the final leaf lengths of both Hereward and 

Gamina by 21 - 32 % and 10 % - 22 % respectively (Fig. 3.1 to 3.3). In contrast, this 

parameter in Bohoth 105 was not affected by NaCl. Concomitantly, salinity 

significantly inhibited the leaf growth rate of both Hereward and Gamina varieties in 

the range of 22 - 33 % and 8.3 - 17 % respectively. Again, the growth of Bohoth 105 

was not affected by NaCl (Table 3.2).  
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Fig. 3.1 Time course of length of leaves 1 and 2 of Hereward (a - b), Gamina (c - d) and Bohoth 105 

(e - f) for 0 mM control and following application of 60 mM NaCl. Salt was added in two 30 mM 

doses over two days (the days are numbered at the first addition). Leaf one and two was measured 

using a ruler. Differences in mean final leaf length of both Hereward and Gamina varieties between 

treatments (control and salt) were significant, whereas differences in final leaf length of Bohoth 

variety between treatments (control and salt) were non-significant. Each point is the mean ± SD of 12 

leaves taken from 12 individual plants. From the graph, salt stress had a strong, a moderate and no 

effect on final leaf length of Hereward, Gamina, and Bohoth 105 wheat varieties respectively. 
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Fig. 3.2 Time course of leaf 3 and 4 length of Hereward (a - b), Gamina (c - d) and Bohoth 105 (e - f) 

for 0mM control and following application of 60 mM NaCl. Other details as for Fig 3.1. 
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Fig. 3.3 Time course of leaf 5 length and roots of Hereward (a - b), Gamina (c - d) and Bohoth 105 (e 

- f) for 0 mM control and following application of 60 mM NaCl. Other details as for Fig 3.1. 
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Final leaf length 

Plant NaCl Hereward Gamina Bohoth 105 

organs (mM) (cm) 

R
ed

u
ct

io
n

 

%
 

(cm) 

R
ed

u
ct

io
n

 

%
 

(cm) 

R
ed

u
ct

io
n

 

%
 

Leaf 1 
0 18.1 ± 0.8a 

32 
17.5 ± 1.2c 

10 
15 ± 1.3e 

0 
60 12.4 ± 0.5b 15.8 ± 1.3d 15 ± 1.6e 

Leaf 2 
0 23.7 ± 1.8a 

25 
24.8± 1.7c 

17 
19 ± 1.6e 

0 
60 17.8 ± 1.4b 20.6 ± 1.2d 19 ± 1.7e 

Leaf 3 
0 22.2 ± 1.7a 

29 
25.4 ± 1.5c 

22 
20.8 ± 1.7e 

2 
60 15.6 ± 1.3b 19.9 ± 1.3d 20.4 ± 1.4e 

Leaf 4 
0 27.5 ± 1.3a 

21 
32.5 ± 1.9c 

17 
25.5 ± 1.9e 

2 
60 21.8 ± 1.8b 26.9 ± 1.4d 25.1 ±1.7e 

Leaf 5 
0 26.9 ± 1.5a 

24 
26.1 ± 1.8c 

21 
27.8 ± 1.9e 

0.4 
60 20.5 ± 1.3b 20.7 ± 1d 27.5 ± 0.5e 

Root 
0 35.9 ± 1.6a 

0 
29.2 ± 2c 

0.4 
39.2 ± 1.5e 

10.3 
60 35.6 ± 1.7a 30.1 ± 1c 32.2 ± 1.8f 

Table 3.1 Final length of leaves 1 to 5 and root of Hereward, Gamina and Bohoth 105 for 0 mM 

control and following application of 60 mM NaCl (from Figs 3.1 - 3.3). From the table, salt stress had 

a strong, a moderate and no effect (all roots) on final leaf length of Hereward, Gamina and Bohoth 

105 wheat varieties respectively. The letters a, b, c, d, e and f are comparing between treatments. 

Means followed by the same letters are not significantly different at P >0.05. (n = 12 in all cases). 

  
Leaf growth rate 

Plant NaCl Hereward Gamina Bohoth 105 

organs (mM) cm day -1 

R
ed

u
ct

io
n

 

%
 

cm day -1 

R
ed

u
ct

io
n

 

%
 

cm day -1 

R
ed

u
ct

io
n

 

%
 

Leaf 1 
0 3.6 ± 0.5a 

31 
3.5 ± 0.5c 

17 
3.1 ± 0.4e 

3.2 
60 2.5 ± 0.4b 2.9 ± 0.4d 3.0 ± 0.4e 

Leaf 2 
0 3.6 ± 0.4a 

28 
3.8 ± 0.5c 

11 
3.5 ± 0.4e 

0 
60 2.6 ± 0.4b 3.1 ± 0.4d 3.5 ± 0.4e 

Leaf 3 
0 4 ± 0.6a 

33 
4.2 ± 0.6c 

17 
3.2 ± 0.6e 

0 
60 2.7 ± 0.5b 3.5 ± 0.5d 3.7 ± 0.5e 

Leaf 4 
0 4.1 ± 0.6a 

22 
3.6 ± 0.5c 

8.3 
3.3 ± 0.6e 

0 
60 3.2 ± 0.5b 3.3 ± 0.5d 3.6 ± 0.5e 

Leaf 5 
0 4.7 ± 7.1a 

28 
4.1 ± 0.7c 

15 
3.3 ± 7.1e 

6.1 
60 3.4 ± 0.7b 3.5 ± 0.5d 3.1 ± 0.7e 

Root 
0 3 ± 1.6a 

0 
2.4 ± 2.1c 

4.1 
2.3 ± 1.7e 

9 
60 2.9 ± 1.7a 2.3 ± 1.9c 2.1 ± 1.9e 

Table 3.2 Growth rate of leaves 1 to 5 and roots of Hereward, Gamina and Bohoth 105 for 0 mM 

control and following application of 60 mM NaCl (from Figs 3.1 - 3.6). The leaf growth rate (cm day 
-

1
) was measured from the daily measurements of leaf length as the slope of the linear regression 

during the linear leaf growth phase (see Figs 3.4 – 3.6). From the table, salt stress had a strong, 

moderate and no effect (all roots) on the leaf growth rate of Hereward, Gamina and Bohoth 105 wheat 

varieties respectively. The letters a, b, c, d, e and f are comparing between treatments. Means followed 

by the same letters are not significantly different at P < 0.05 (n = 12 in all cases). 
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3.3 Root Growth       

Salt stress did not affect final root length of either Hereward and Gamina, nor the root 

growth rate of any of the three varieties. However, there was a significant difference in 

the final root length of Bohoth 105, although not in root growth rate.  

A significant difference between varieties in final root length under both control and salt 

treatments was observed. The statistical interaction between varieties and treatment 

effects was also significantly different (Table 3.1 and 3.2).  

3.4 Effect of 60 mM NaCl on Leaf Plastochron Index  

The relations between leaf length and time were calculated using linear regression 

analysis. The growth pattern of each leaf of the some plant is compared in the plots 

Fig. 3.4 to 3.6. These show the same data as Fig. 3.1 – 3.3, but with only the linear 

section of the growth phase included. In each variety, a reference length for all the 

examined leaves (the mean of all the final half-lengths) was calculated by Equation 

3.1. 

Lref. = 
 

 
∑

  

 

 
    ,    (3.1)  

Where Lref. is reference length of leaves, n is number of leaves, L is final leaf length, 

i = 1, 2, 3,……n.  n = 5  

Using this equation (3.1), in control and salt treatments respectively, reference 

lengths (Lref.) were 11.84 cm and 8.81 cm (Hereward), 12.63 cm and 10.39 cm 

(Gamina) and 10.81cm and 10.7 cm (Bohoth 105). The linear fit for each leaf-length 

time course and the reference length (Fig. 3.4 to 3.6) was used to estimate the 

Plastochron Index (PI). Erickson (1976) described PI as the period between the 

initiations of sequential pairs of leaves.  
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For the three varieties, no significant differences were noticed in PI between control 

and salt treatments (P= 0.988). The interactions between varieties and treatments 

were also not significant (P= 0.958). However, the PI values were highest in the 

control and salt treatments of Gamina, and the lowest values were in Bohoth 105.  

Leaves 

Plastochron Index (d) 

Hereward Gamina Bohoth 105 

C
o

n
tr
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S
al
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l 

S
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o
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l 

S
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Leaf 1 and leaf 2 1.60 1.40 2.31 2.64 1.82 1.94 

Leaf 2 and leaf 3 2.80 3.06 3.31 3.83 2.4 2.73 

Leaf 3 and leaf 4 3.86 4.06 4.61 4.62 3.55 3.59 

Leaf 4 and leaf 5 3.84 3.37 4.16 3.95 3.39 2.53 

Mean ± SD 3.03 ± 1.1
a
 3 ± 1.1

a
 3.6 ± 1

c
 3.8 ± 0.8

c
 2.8 ± 0.8

e
 2.7 ± 0.7

e
 

Table 3.3 Plastochron Index of leaves 1 to 5 of Hereward, Gamina and Bohoth 105 for the 0 mM 

control treatment and following application of 60 mM NaCl. The letters a, b, c, d, e and f are 

comparing between treatments in the same variety. Means followed by the same letters are not 

significantly different at P >0.05. 
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Fig. 3.4 Time course of lengths of successive leaves 1 to 5 of Hereward for 0 mM control and 

following application of 60 mM NaCl. Each curve applies to a single leaf. The date are those from 

Figs. 3.1a – b to 3.3 a - b but, only the points on the linear phase of the growth curve are included. 

(Note: Erickson (1976) used a logarithmic transformation for this. In current work, this was found to 

give a poor fit of the data and was not used). Fig. 3.1a – b, Fig. 3.2a – b and Fig.3.3a are plotted 

against time in Fig. 3.4. The growth rate values (slope) for leaves are given in Table 3.2. The 

equations for the period of linear growth for each line with R
2
 values are included. Each point is the 

mean ± SD of 12 leaves taken from 12 individual plants. A perpendicular dashed line between two 

successive leaves represent the time point used to estimate the leaf Plastochron Index. The horizontal 

line is the Lref.. The mean leaf Plastochron Index in both control  and salt stressed plants is 3 ± 1 days 

(Table
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Fig. 3.5 Time course of lengths of successive leaves 1 to 5 of Gamina for 0 mM control and following 

application of 60 mM NaCl. Each growth curve applies to a single leaf. Leaves length in Fig. 3.1c- d, 

Fig. 3.2c – d and Fig. 3.3c plotted against time in Fig. 3.5. The mean leaf Plastochron Index in control 

was 3.6 ± 1 and in salt stressed 3.8 ± 0.8 (Table 3.3). Details as in Fig. 3.4. 
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 Fig. 3.6 Time course of lengths of successive leaves 1 to 5 of Bohoth 105 for control and following 

application of 60 mM NaCl. Each growth curve applies to a single leaf. Leaves length in Fig.3.1e – f, 

Fig.3.2e – f and Fig.3.3e are plotted against time in Fig. 3.6. The mean Plastochron index in control is 

2.8 ± 0.8 and a salt treatment is 2.7 ± 0.7 (Table 3.3). Details as in Fig. 3.4). 
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3.5 Discussion 

Our results show that NaCl had an adverse effect on final leaf length and growth rate 

of all varieties of wheat except Bohoth 105. The parameters were significantly 

reduced by salt stress in both Hereward and Gamina, but Hereward suffered the 

largest reduction (Table 3.1 and 3.2), indicating that the growth inhibitory effect of 

salt stress was stronger in Hereward as compared to Gamina. In contrast, the 

parameters of Bohoth 105 were not affected by salt stress (Table 3.1 and 3.2), 

suggesting that Bohoth 105 is the most salt tolerant, with Hereward the most salt 

sensitive and Gamina in the middle.  

However, for all three varieties, neither root growth rate nor leaf Plastochron Index 

were affected by salt stress (Table 3.1 and 3.2). Final root length, was not affected by 

salt stress in Hereward or Gamina, but there was a noticeable effect in Bohoth 105.  

Salt leads to growth reduction across crop species along a spectrum of responses 

(Brady & Weil, 1996). The cause of the reduction in final leaf length and leaf growth 

rate may be related to the toxic ion effect of salt and the imbalance of nutrient 

quantities in wheat. Chinnusamy et al. (2005) attribute retarded plant growth 

predominantly to toxic concentrations of ions rather than osmotic stress. There are, 

however, genetic differences in how well different species and genotypes respond 

and adapt to increased salinity (Wahid et al., 1997). 

The effect of salt stress has been investigated on the growth of sorghum by Bernstein 

et al. (1993) , Pinus pinaster (-3 bar) by Triboulot et al. (1995), barley by Fricke and 

Peters (2002), maize by de Zevedo et al. (2004), and wheat by James et al. (2008).  

Sattar et al. (2010) found that growth reduction results from high levels of NaCl due 
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to either decreased plant ability to uptake water as a result of osmotic stress, or plant 

nutrient imbalance, or both.  

The response of three wheat varieties to NaCl stress was also examined in order to 

evaluate the relative contribution of the different biochemical parameters. The results 

are reported in Chapter 4.   
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Chapter 4: Turgor, Osmolality and Cations in 

Wheat Leaves, and their Response to Salt      

4.1 Introduction                

Different plant varieties exhibit varying abilities to adapt to saline conditions, and 

there are a range of mechanisms for sustaining growth under salt stress. Crop 

maintenance in unfavorable conditions is of particular interest. Many studies have 

found great variety in salt resistance in different species and varieties of plants 

(Wahid et al., 1997; Ashraf & Foolad, 2007). Salt tolerance is the term used to refer 

to a plant’s ability to sustain growth in saline environments, but this can be achieved 

through a range of different specific mechanisms (Munns & Tester, 2008), including 

osmotic adjustment, preferential uptake of sodium or potassium ions, the exclusion 

of salt, and the compartmentalising of solutes.  

There can also be a difference in the way that parts of the plant respond, with a 

possible variation in water relation parameters between mature regions compared to 

growing regions of the plant. In wheat, for example, Pritchard et al. (1989) found 

lower cortex Pcell in mature root cells than in the growing region. Elsewhere, growing 

zone cells have been found to have lower ψw than older regions (Westgate & Boyer, 

1985). This imbalance between ψw in differently-aged parts of the plant and between 

the growing zone and the vascular system could indicate a water potential gradient 

used for water supply.  

Having established in Chapter 3 that the three varieties of wheat under investigation 

exhibit a demonstrable range of responses to salt stress (from Hereward, the most salt 

sensitive, to Bohoth 105, the least), the bulk of the work on wheat involved analysing 
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details of their water and solute relations. The hope was to discover differences or 

similarities that would indicate underlying mechanisms. In this chapter, the responses 

to salt stress of turgor (Pcell), osmolality (πcell) and cations were analysed in wheat 

leaves. A cell pressure probe, associated with single cell sampling and analysis 

(SiCSA) [picoliter osmometer (freezing point depression), and capillary zone 

electrophoresis (CZE)], was used to measure these parameters in single epidermal 

cells (abaxial). The varieties Hereward, Gamina and Bohoth 105 were used. The first 

leaf to emerge from intact plants in situ was studied at 2 - 8 days after NaCl (60 mM) 

addition, and at 2, 5 and 8 days for the control (0 mM NaCl) treatment. Plants were 

grown in a hydroponic medium under controlled conditions. All methods are given in 

Chapter 2.  

4.2 Turgor Pressure in Epidermal Cells  

Figure 4.1a - c illustrates changes in Pcell values in response to 0 mM and 60 mM 

NaCl, for the period 48 hours after addition. Table 4.1 provides the values for turgor 

at key points in these graphs. Notably, all three varieties had similar Pcell values 

under control the condition (7.5 ± 1 bar for Hereward, 7 ± 0.03 bar for Gamina and 

8.1 ± 0.8 bar for Bohoth 105).  However, the effect of 60 mM NaCl on Pcell was 

significantly different at the 5 % level in cells of each variety. The amount of 

increase varied from 8.7 ± 1.7 bar for Hereward (Fig. 4.1a) to only 2.7 ± 0.6 bar for 

Gamina (Fig. 4.1b).  
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Fig.4.1 Time course of leaf epidermal (mature) cell turgor pressure (Pcell) and osmotic pressure (πcell) 

of Hereward (a and d), Gamina (b and e) and Bohoth 105 (c and f) for 0 mM control and following 

application of 60 mM NaCl. Salt was added in two 30 mM doses over two days (the days are 

numbered after the first addition). Cell turgor pressure was measured using a cell pressure probe. Cell 

osmotic pressure was measured using single cell sampling, and picolitre osmometer (P= 0.000 two 

way ANOVA of day 2, 5 and 8). Each point is the mean ± SD of 3 to 12 cells taken from 3- 6 

individual plants. 

4.3 Osmotic Pressure in Epidermal Cells 

Under the control condition, each variety maintained a constant πcell. When salt was 

added, πcell rapidly increased in all varieties. By the end of the 48 hour period of 

addition, this change was complete and no further change in πcell was seen. Table 4.2 
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and Fig. 4.1d - f show mean πcell values at 2 and 8 days after the 48 hour NaCl 

addition (0 mM and 60 mM NaCl). For the controls, the values were 14.4 ± 0.3 bar 

for Hereward, 13.6 ± 0.3 bar for Gamina, and 17.5 ± 0.3 bar for Bohoth 105.  

The values of πcell for the three varieties were significantly different under salt stress 

in comparison to the control treatment. For example, πcell values for 0 mM and 60 

mM NaCl at day 2 in Bohoth 105 were 17.5 ± 0.3 bar and 20.5 ± 0.4 bar respectively 

(P ≤ 0.05). This difference of 1.3 – 4.1 bar (Table 4.2) is of similar magnitude to the 

increase in π of the external root medium (60 mM NaCl ≈ 3 bar). The effects of salt 

stress on πcell were also significantly different between Hereward, Gamina and 

Bohoth 105 (Table 4.2).  

For Hereward, the difference in πcell value between the two treatments (Δπcell) was 

slightly higher (3.7 - 4.1 bar) than for the other two varieties, and for Gamina the 

difference was the smallest (1.3 – 2.1 bar) (Table 4.2). Hereward and Bohoth 105 

cells, therefore, had accumulated more solutes than Gamina both by day 2 and by 

day 8. This difference between varieties (P ≤ 0.05) may indicate that they have 

different capacities for the accumulation of solutes. 

Variety 
Pcell (bar) 

0 mM (2 – 8 days) 60 mM (day 5) 60 mM (day 8) 

Hereward 
7.3 ± 1.3

ax
 14 ± 1

bx
 16 ± 2

cx
 

Gamina 
7 ± 0.6

ax
 9 ± 0.7

by
 9.7 ± 0.6

by
 

Bohoth 105 
7.6 ± 1

ax
 8.6 ± 1.5

by
 10.6 ± 1

cz
 

Table 4.1 Mean turgor pressure (Pcell) in epidermal cells (leaf 1) of Hereward, Gamina and Bohoth 

105 seedling grown in 0 mM and 60 mM NaCl. Values are for 5 and 8 day for 60 mM and as average 

of day 2, 5 and 8 values for 0 mM. Turgor pressure was measured by a cell pressure probe. Results are 

given as means ± SD, n is 3 – 12 cells. Letters a, b and c are comparing the treatment where x, y, z are 

comparing variety level. Means followed by the same letters are not significantly different at P>0.05. 
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variety 

πcell ∆πcell 

(bar) 

0 mM 
60 mM (day 2) 60 mM (day8) (day 0 -2) (day 0 - 8) 

(2 – 8 days) 

Hereward 14.4 ± 0.3
ax

 18.1 ± 0.7
bx

 18.5 ± 0.2
bx

 3.7 4.1 

Gamina 13.6 ± 0.3
ay

 14.9 ± 0.1
by

 15.7 ± 0.5
cy

 1.3 2.1 

Bohoth 105 17.5 ± 0.3
az

 20.5 ± 0.4
bz

 20.9 ± 0.2
bz

 3 3.4 

 Table 4.2 Mean osmotic pressure (πcell) for 0 mM (days 2 - 8) and 60 mM (day 2 and 8) in epidermal 

cells (leaf 1) of Hereward, Gamina and Bohoth 105. Osmotic pressure (πcell) was measured using 

single cell sampling, and a picolitre osmometer. Results are given as means ± SD, n is 3 - 12 cells. 

(P= 0.000 ANOVA of day 2, 5 and 8). Letters a, b and c compare the treatment level and x, y and z 

compare variety level. Means followed by the same letters are not significantly different at (P>0.05).   

4.4 Transpiration Tension in the Apoplast  

The increase in Pcell was only 1.5 bar, but if hydrostatic tension were an important 

part of the water potential of the cell wall, then the Pcell would be expected to be 

much higher. This unexpected lack of correspondence between Pcell and πcell could be 

due to a change in transpiration tension in the epidermal apoplast. To test this, the 

effect of such apoplast (cell wall) transpiration tension on Pcell was studied at day 8 

after 60 mM NaCl addition, compared to a control of 0 mM NaCl addition (Fig. 4.2). 

To achieve this, the entire seedling was immersed for 30 minutes under the 

hydroponic medium and the turgor was measured under medium. The data in Table 

4.3 show values for Pcell in transpiring and non-transpiring epidermal cells at day 8. 

After immersion, the Pcell was seen to have risen. It was assumed that this 

corresponded to the relaxation of the transpiration tension. However, all varieties 

showed a significant difference in Pcell between transpiration and non-transpiration in 

all treatments (Table 4.3). All varieties in both treatments appear to show a 

transpiration tension of approximately 1.5 bar.   
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Fig.4.2 Mean turgor pressure (Pcell) in transpiring and non-transpiring single epidermal cells (leaf 1) of 

Hereward (a and b), Gamina (c and d) and Bohoth 105 (e and f) at day 8 after salt addition. Seedlings 

were grown in 0 mM and 60 mM NaCl. Turgor pressure was measured in air and under a liquid 

bathing medium (hydroponic root medium) every 10 minutes for 120 minutes for each treatment and 

each situation. Turgor was measured before and after immersion, using a cell pressure probe. Cells 

taken from 3 - 6 individual cells.   
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Variety 
NaCl 

(mM) 

Pcell (bar) at day 8 ∆Pcell 

Transpiring Non-transpiring (bar) 

Hereward 

0 6.9 ± 0.7
a
 8.3 ± 0.6

b
 1.4 

60 10.2 ± 0.7
a
 11.7 ± 1

b
 1.5 

Gamina 

0 6.6 ± 0.6
a
 8.2 ± 0.4

b
 1.6 

60 9.5 ± 0.6
a
 11.2 ± 1.2

b
 1.7 

Bohoth 105 

0 7.3 ± 1
a
 8.8 ± 1

b
 1.5 

60 10.2 ± 1
a
 11.6 ± 0.6

b
 1.4 

Table 4.3 Mean turgor pressure (Pcell) in transpiring and non-transpiring epidermal cells (leaf 1) of 

Hereward, Gamina and Bohoth 105. Seedlings were grown in 0 mM and 60 mM NaCl. Turgor 

pressure was measured in air and under a liquid bathing medium (hydroponic root medium) every 10 

minutes for 120 minutes for both treatments. Turgor was measured before and after immersion by 

using a cell pressure probe (see Fig. 4.2). The letters a and b indicate a statistical difference (P>0.05) 

between transpiring and non-transpiring conditions, for each variety and each treatment. Means 

followed by the same letters (not present here) are not significantly different.    
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4. 5 Cations in Epidermal Cells  

The change in πcell reported in Section 4. 2 must be due to a change in cell solutes. In 

order to investigate the nature of the cations contributing to osmotic adjustment, 

capillary zone electrophoresis (CZE) was performed on cell samples (Table 4.4).  

4.5.1 Na
+
 Concentration 

 Notably, all three varieties had a Na
+
 control concentration of approximately 14 mM 

(Fig. 4.3). As expected from the πcell data (Fig. 4.1f), Bohoth 105 was observed to 

have accumulated significantly (P≤0.05) higher Na
+
 concentration by 2 days after 

salt addition. This then remained more or less at 140 mM for the remaining 

experimental period. Hereward had low concentrations under salt stress of around 30 

mM whereas in Gamina, Na
+
 concentration level increased gradually with time, 

reaching 68 ± 4 mM by day 8. 

The comparison of Na
+
 concentration was obtained from single cells and bulk leaves. 

The results show that similar Na
+
 concentrations were found in single cells and bulk 

leaves of Hereward and Gamina, but in Bohoth 105 Na
+
 concentration in single cells 

was less than in bulk leaves (Fig. 4.3 and 4.8).   
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Fig.4.3 Na
+
 concentration in epidermal cell sap of Hereward (a), Gamina (b) and Bohoth 105 (c) 

leaves. The first leaf was analysed the first day after NaCl addition. Salt was added in two 30 mM 

doses over two days (the days are numbered after first addition). Sodium concentration was measured 

using capillary zone electrophoresis (CZE). Each observation is the mean of 3 - 12 cells taken from 3 - 

6 individual plants (P= 0.000 ANOVA of day 2, 5 and 8). Results are given as means ± SD. Bohoth 

105 accumulated more Na
+ 

in cells. Na
+
 uptake had the highest contribution to osmotic adjustment in 

Bohoth 105. 
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4.5.2 K
+
 Concentration   

Generally, in the control plants, K
+
 concentrations were found to be the highest as 

compared with other ions (Fig. 4.4). The concentration was found to be around 270 

mM in both Hereward and Gamina, and higher in Bohoth 105 (around 315 mM).  

However, when NaCl was added to root media, whilst K
+
 concentration increased in 

Hereward to approximately 322 mM (significant difference P=0.00, days 2, 5 and 8), 

in Bohoth 105 it had decreased by day 2 (significant difference P= 0.000) and then 

remained more or less constant (at approximately 277 mM) for the rest of the 

experimental period. Under salt stress, K
+ 

was significantly accumulated only in 

epidermal cells of Hereward (Fig. 4.4). Hereward inhibits Na
+
 uptake to the leaf cells 

(i.e. through Na
+
 exclusion) and maintains high selectivity of K

+
 over Na

+
 (Fig. 4.3 - 

4.4). In Gamina, K
+
 concentration immediately increased after stress, reaching 286 ± 

4 mM by day 4. It then gradually decreased for the remaining experimental period. 

These results show that Hereward absorbed more K
+
 under salt stress (60 mM NaCl) 

in leaf epidermal cells in comparison to the other two varieties.  

Fig. 4.4 K
+
 concentration in epidermal cell sap of Hereward (a), Gamina (b) and Bohoth 105 (c) 

leaves. Details as in Fig. 4.3 (except for K
+
). Potassium uptake had a higher contribution to osmotic 

adjustment in Hereward (58 mM) and had a partial contribution in the Gamina (5 mM) variety.  
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4.5.3 Ca
2+

 Concentration  

In general, in Gamina and Bohoth 105 varieties, salt stress resulted in a significant 

reduction (P=0.000) in Ca
2+ 

concentration level. In contrast, salt stress did not affect 

Ca
2+

 concentrations in epidermal cells of Hereward (P=0.770) (Fig. 4.5).  

Fig. 4.5 Ca
2+

 concentration in epidermal cell sap of Hereward (a), Gamina (b) and Bohoth 105 (c) 

leaves. Details as in Fig. 4.3 (except for Ca
2+

).  
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4.5.4 Mg
2+ 

Concentration 

Magnesium concentration was measured and was observed to be nearly identical 

(less than 6 mM) in all varieties after salt addition throughout the experimental 

period (Fig 4.6). Salt stress resulted in a slight reduction in Mg
2+

 concentration in 

Hereward (P= 0.024) and Bohoth 105 (P=0.044), but not in Gamina P=0.868). The 

cell level of Mg
2+

 in control conditions was less than 2 mM in Hereward, while in 

Gamina and Bohoth 105 it reached around 7 mM and 14 mM respectively. Under 

control conditions of 0 mM NaCl addition, Na
+
, Ca

2+
and Mg

2+
 were available in 

small amounts, whereas K
+
 was the main osmotica.  

 

Fig. 4.6 Mg
2+

 concentration in epidermal cell sap of Hereward (a), Gamina (b) and Bohoth 105 (c) 

leaves. Details as in Fig. 4.3 (except for Mg
2+

).  
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V
ar

ie
ty

 

Time 

after 

NaCl 

addition 

(d) 

Solute concentrations (mM) 

∑solutes (mM) ∑charge cations (mEq) 
Osmolality 

(mOsmol.kg-1) πtotal/γ ∑anions (mM) 
Average charge of 

anions 
Na

+
 K

+
 Ca

2+
 Mg

2+
 

Control 
Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 

H
er

ew
ar

d
 

2 14 ± 3 29 ± 4 268 ± 6 320 ± 9 22 ± 11 21 ± 4 2 ± 1 3 ± 1 306 373 330 396 565 ± 6 729 ± 10 606 782 300 410 1.1 1.0 

3 
 

18 ± 2 
 

326 ± 7 
 

8 ± 4 
 

2 ± 1 
 

354 
 

363 
 

707 ± 3 
 

759 
 

405 
 

0.9 

4 
 

41 ± 2 
 

307 ± 5 
 

12 ± 4 
 

2 ± 0 
 

362 
 

376 
 

727 ± 10 
 

780 
 

418 
 

0.9 

5 7 ± 1 27 ± 5 274 ± 15 335 ± 7 12 ± 3 9 ± 7 2 ± 1 4 ± 3 295 375 309 387 582 ± 10 709 ± 8 624 761 329 386 0.9 1.0 

6 
 

20 ± 2 
 

317 ± 26 
 

4 ± 2 
 

2 ± 0 
 

343 
 

348 
 

712 ± 18 
 

764 
 

421 
 

0.8 

7 
 

31 ± 4 
 

319 ± 10 
 

11 ± 10 
 

3 ± 2 
 

364 
 

378 
 

746 ± 9 
 

800 
 

436 
 

0.9 

8 2 ± 1 40 ± 4 270 ± 18 327 ± 3 6 ± 2 11 ± 10 0.5 ± 0 3 ± 1 279 381 285 394 575 ± 10 738 ± 7 617 792 338 411 0.8 1.0 

G
am

in
a 

2 2 ± 1 10 ± 1 264 ± 2 285 ± 4 9 ± 1 4 ± 2 1 ± 0.3 1 ± 0.4 276 300 285 304 536 ± 13 595 ± 9 575 638 300 339 1.0 0.9 

3 
 

15 ± 7 
 

287 ± 12 
 

1 ± 2 
 

2 ± 3 
 

305 
 

307 
 

609 ± 13 
 

653 
 

349 
 

0.9 

4 
 

10 ± .4 
 

286 ± 4 
 

2 ± 0.3 
 

1 ± 0.1 
 

298 
 

300 
 

600 ± 8 
 

644 
 

346 
 

0.9 

5 0.5 ± 1 16 ± .5 273 ± 4 277 ± 3 16 ± 4 1 ± 1 3 ± 0.4 1 ± 1 293 295 312 297 540 ± 10 615 ± 3 579 660 287 365 1.1 0.8 

6 
 

32 ± .3 
 

273 ± 10 
 

4 ± 2 
 

1 ± .3 
 

310 
 

315 
 

629 ± 19 
 

675 
 

365 
 

0.9 

7 
 

39 ± 1 
 

271 ± 9 
 

4 ± 10 
 

2 ± 2 
 

316 
 

321 
 

607 ± 16 
 

651 
 

336 
 

1.0 

8 2 ± 2 68 ± 3.6 268 ± 3 230 ± 4 30 ± 3 10 ± 2 7.5 ± 0.4 2 ± 0.4 307 310 343 322 550 ± 13 627 ± 7 590 673 284 363 1.2 0.9 

B
o

h
o

th
 1

0
5
 

2 8 ± 2 140 ± 10 318 ± 9 263 ± 8 21 ± 5 17 ±9 7.5 ± 1 2 ± 1 355 419 383 435 695 ± 4 818 ± 17 746 878 391 459 1.0 1.0 

3 
 

149 ± 8 
 

280 ± 10 
 

14 ± 7 
 

2 ± 1 
 

445 
 

460 
 

850 ± 16 
 

912 
 

468 
 

1.0 

4 
 

117 ± 3 
 

296 ±8 
 

4 ± 1 
 

0.5 ± 0 
 

418 
 

423 
 

837 ± 9 
 

898 
 

480 
 

0.9 

5 1 ± 0 143 ±7 314 ± 5 272 ± 3 27 ± 1 10 ± 13 14 ± 1 3.5 ± 2 356 428 396 441 697 ± 3 820 ± 14 748 880 392 452 1.0 1.0 

6 
 

150 ± 9 
 

274 ± 14 
 

11 ± 5 
 

2.5 ± 1 
 

438 
 

451 
 

841 ± 13 
 

902 
 

465 
 

1.0 

7 
 

140 ±27 
 

270 ± 16 
 

7 ± 10 
 

2 ± 5 
 

419 
 

429 
 

857 ± 13 
 

920 
 

500 
 

0.9 

8 3 ± 1 130 ± 8 314 ± 12 279 ± 14 35 ± 3 12 ± 3 7.5 ± 1 6 ± 1 359 427 401 445 702 ± 2 837 ± 3 753 898 394 471 1.0 0.9 

Table 4.4 Cation concentrations and osmolality of the same sap of single epidermal cells of Hereward, Gamina and Bohoth 105 leaves respectively. Epidermal cells 

(n = 3 - 12) were sampled from the first leaves of three to six individual plants. Cell sap was analysed every day during the salt treatment and three times during the 

7 days of the control treatment. Calculations of the contribution of cations to the cell osmotic pressure (πcell) were made by multiplying the sum of the 

concentrations by the osmotic coefficient (γ) of 0.93 of NaCl (Robinson & Stokes, 2002). The values of ≈ 1.0 for the average anion charge suggest monovalent ions 

(Cl
-
 or NO3

-
). Results are given as means ± SD. 
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4.6 Cations in Epidermal Cells of three Varieties 

The results clearly demonstrate that the contribution of cations to osmotic adjustment 

under stress mainly took the form of accumulations of K
+
 in Hereward and Na

+
 in 

Gamina and Bohoth 105. 

4.7 Estimate of the Anion Condition and its Valency  

Table 4.4 shows the distribution of cation (Na
+
, K

+
, Ca

2+
, Mg

2+
) concentrations 

contributing to πcell in single epidermal cells.  

The relationship (and its implications) between the sum of the cations and the 

measured πcell of samples is also shown in Table 4.4.  Although anions were not 

measured explicitly, this relationship allows an estimate of their concentration and 

valency (mean ionic charge). This is based in two factors. First, the sum of positive 

charges must equal the sum of negative charges.  

 ∑ [monovalent cations] + 2 ∑ [divalent cations] = 
∑      

                     
                (4.1) 

Second, the total πcell must be a function of the sum of individual solutes.  

πtotal =  

∑cations*γ cations + ∑anions*γ anions + ∑uncharged solutes*γ uncharged solutes.                                                                                                                                                     

(4.2) 

Where omega (γ) is the solute osmotic coefficient.  

 

While the first factor is fairly straightforward, the second is not. This has been 

simplified by assuming that there are no interactions between solutes, and by using 

molar rather than molal concentrations of the individual solutes. A value of 0.932 has 

also been assumed as the same representative γ for all solutes. This is actually the 

value for NaCl given by Robinson and Stokes (2002).  
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This results in the following relationship: 

 πtotal = γ (∑ [cations] + 
∑[                ]   ∑[                ] 

                     
  ∑[         ])  (4.3) 

Average anions charge = 
∑[                ]      ∑[                ] 

        

 
  ∑[       ]  ∑[         ]

                           (4.4) 

It can be seen that the higher the concentration of (unmeasured) neutral solutes, the 

higher will be the apparent average anion charge (Z). The closer the value 

approaches unity, the lower the expected concentration of uncharged or multi-

charged anionic solutes. In Table 4.4, in order to calculate the value for Z, it was 

assumed that there are no significant unchanged osmotica. Previous SiCSA analyses 

of barley epidermis have shown that it contains negligible sugars (Koroleva et al., 

1997).
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V
ar

ie
ty

 

Leaves 

Cations concentrations (mM) 

∑
so

lu
te

s 

(m
M

) 

∑
ch

ar
g
e 

ca
ti

o
n

s 

(m
E

q
) 

O
sm

o
la

li
ty

 

(m
O

sm
o

l.
k

g
-1

) 

π
to

ta
l /

γ 

∑
an

io
n

s 

(m
M

) 

A
v

er
ag

e 

ch
ar

g
e 

o
f 

an
io

n
s 

Na+ K+ 
 

Ca2+ Mg2+ 

Control 
Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 

H
er

ew
ar

d
 

Young 24 ± 3 33 ± 2 214 ± 2 320 ± 3 2 ± 1 2 ± 8 3 ± 3 6.5 ± 4 243 362 248 370 474 ± 21 711 ± 26 509 763 266 401 0.9 0.9 

Middle 17 ± 2 44 ± 10 230 ± 2 317 ± 3 6 ± 1 6 ± 7 6.5 ± 3 13.5 ± 5 259 380 271 399 498 ± 27 724 ± 14 534 777 275 397 1.0 1.0 

Old 17 ± 11 46 ± 13 250 ± 8 271 ± 13 7 ± 2 4 ± 6 7 ± 5 7 ± 5 281 328 295 339 534 ± 21 627 ± 14 573 673 292 345 1.0 1.0 

G
am

in
a
 

Young 5 ± 6 31 ± 11 230 ± 6 252 ± 11 2 ± 1 1.5 ± 8 3 ± .5 3 ± 3 240 289 245 295 468 ± 16 565 ± 12 502 606 262 317 0.9 0.9 

Middle 8 ± 5 46 ± 2 255 ± 6 237 ± 3 8 ± 2 3 ± 1 5.5 ± 4 5 ± 4 277 292 290 300 544 ± 11 573 ± 19 584 615 307 323 0.9 0.9 

Old 0 ± 0 82 ± 23 269 ± 4 200 ± 21 16 ± 10 5 ± 4 7 ± 5 7 ± 3 292 297 315 329 585 ± 15 600 ± 20 595 644 303 327 1.0 1.0 

B
o
h
o
th

 

Young 21 ± 16 72 ± 4 140 ± 16 175 ± 2 2 ± 1 1 ± 0 2 ± 1 2 ± 1 165 250 169 253 319 ± 22 491 ± 6 342 527 177 277 1 0.9 

Middle 23 ± 8 132 ± 7 210 ± 12 126 ± 5 6.5 ± 3 2 ± 2 4 ± 1 2.5 ± 2 243 263 253 268 483 ± 13 518 ± 13 518 556 275 293 0.9 0.9 

Old 30 ± 16 200 ± 5 240 ± 18 104 ± 7 13 ± 4 3.5 ± 1 5 ± 3 3 ± 2 288 310 306 316 582 ± 13 621 ± 19 624 666 336 356 0.9 0.9 

Table 4.5 Cation concentrations and osmolality of sap from bulk leaves of Hereward, Gamina and Bohoth 105. Wheat varieties were grown in hydroponic solution. 

Salt was added in two 30 mM doses over two days (the days were numbered after first addition). Samples were prepared from the young (L3), middle (L2) and old 

leaves (L1) of 12 individual plants. Cell sap was analysed at day 8 in control and salt treatments. Calculation of the contribution of cations to the cell osmotic 

pressure (πcell) was calculated by multiplying the sum of the concentrations by the osmotic coefficient (γ) of 0.932 of NaCl (Robinson & Stokes, 2002). The values 

of ≈ 1.0 for charge suggest monovalent ions (Cl
-
 or NO3

-
). Results are given as means ± SD. Note: the SiCSA data in the table 4.4 refer to the old leaf (L1) in this 

table. 
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4.8 Osmotic Pressure in Bulk Plant 

The picoliter osmometer was used to measure the osmotic pressure (πplant) of the sap 

taken from the young (L3), middle (L2) and old (L1) bulk leaf of Hereward, Gamina 

and Bohoth 105 varieties. The data in Table 4.5 show mean πplant values in L1, L2 

and L3, 7 days after NaCl addition. 

Under the control condition, the πplant value increased with age of the leaf for each 

variety (Fig. 4.7). Under salt stress, a similar pattern was found in both Gamina and 

Bohoth 105, whereas Hereward showed the opposite trend.  

Under the control condition, there was no significant difference in πplant values of old 

leaf between Hereward and Gamina. However, a significant difference was observed 

in old leaf between Bohoth 105 and the other two varieties. Nevertheless, generally, 

the three varieties had similar πplant values for old leaf within same treatment and 

under both conditions  

 

Fig.4.7 Osmotic pressure (bar) was measured using picolitre osmometry of bulk leaf extracts from 

Hereward (a), Gamina (b) and Bohoth 105 (c) varieties, grown in hydroponic solution. Plants were 

exposed to salt stress (60 mM NaCl) for 7 days. NaCl was added in two 30 mM doses over two days 

(the days are numbered after first addition). Young (L3), middle (L2) and old (L1) leaf sap samples 

were analysed at day 8 after NaCl addition. Results are given as means ± SD, n is 12 plants. with a 

and b comparing between 0 mM and 60mM treatment in the same leaf and variety, and x, y and z 

comparing between varieties for the same treatment and same age of leaf. Means followed by the 

same letters are not significantly different (P>0.05).  
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4.9 Cation Concentration in Bulk Plant Samples                

Capillary zone electrophoresis was performed to examine the inorganic cation 

concentration of the sap samples obtained from bulk young, middle and old leaves of 

wheat (Hereward, Gamina and Bohoth 105) after 0 mM and 60 mM NaCl addition. 

The data in Table 4.5 show the distribution of inorganic cations (Na
+
, K

+
, Ca

2+
 and 

Mg
2+

) and their relationship to osmotic adjustment in the three varieties’ bulk leaves.  
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4.9.1 Na
+
 Concentration  

The three varieties all had similar Na
+
 concentration (less than 30 mM) values for 

young, middle and old leaf under the control condition (Fig. 4.8). In all varieties, salt 

stress significantly increased Na
+
 accumulation for all ages of leaf (Table 4.6). As 

with the single cell samples, Bohoth 105 was found to accumulate the highest Na
+ 

concentration, and Hereward was observed to accumulate the lowest, in its youngest 

leaves. In general, in all varieties the lowest Na
+
 concentration was found in the 

younger leaves and the highest Na
+
 concentration was found in older leaf. Following 

salt stress, Na
+
 concentration contributes considerably to the osmotic pressure in bulk 

leaf of the three varieties (Table 4.6).  

 
Variety 

Leaves Hereward Gamina Bohoth 105 

Young (L3) 27 % 84 % 71 % 

Middle (L2) 61 % 83 % 83 % 

Old (L1) 63 % 100 % 85 % 

Table 4.6 Na
+
 concentration (%) and monovalent anions of bulk osmotic pressure in young, middle 

and old leaf of Hereward, Gamina and Bohoth 105 following addition of 60 mM NaCl. Fig. 4.8 Na
+
 

concentration was measured using capillary zone electrophoresis (CZE) of bulk leaf extracts of 

Hereward (a), Gamina (b) and Bohoth 105 (c) varieties, grown in hydroponic solution. Plants were 

exposed to salt stress for 7 days (salt treatment) (Details as in Fig. 4.7). 

 

Fig.4.8 Na
+
 concentration was measured using capillary zone electrophoresis (CZE) of bulk leaf 

extracts of Hereward (a), Gamina (b) and Bohoth 105 (c) varieties, grown in hydroponic solution. 

Plants were exposed to salt stress for 7 days (salt treatment). (Details as in Fig. 4.7). 
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4.9.2 K
+
 Concentration        

In the control plants, K
+
 concentration was found to be highest in Gamina (whether 

young, middle and old leaf) (Fig. 4.9). The highest K
+
 concentration was found in the 

oldest leaf and the lowest K
+
 concentration was found in the youngest leaf of each 

variety. However, under salt stress, the pattern was completely different, the highest 

K
+
 concentration was found in the youngest leaf of each variety and the lowest K

+
 

concentration was found in oldest leaf of Gamina and Bohoth 105. The influence of 

NaCl on K
+
 concentration varied according to the varieties. In Hereward, for 

example, K
+
 concentration increased significantly in all leaves whereas in Gamina 

and Bohoth 105 it increased only in the youngest leaves, and, in contrast, decreased 

in middle and oldest leaf.  Furthermore, the increase in K
+
 concentration contributed 

to an increased πplant in young, middle and old leaves of Hereward by 33 %, 27 % and  

8 % respectively. Potassium increased only in young leaves of Gamina and Bohoth 

105, here by 9 % and 17 % respectively.  

 

Fig.4.9 K
+
 concentration was measured using capillary zone electrophoresis (CZE) of bulk leaf 

extracts of Hereward (a), Gamina (b) and Bohoth 105 (c) varieties, grown in hydroponic solution. 

Plants were exposed to salt stress for 7 days (salt treatment). (Details as in Fig. 4.7). 
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4.9.3 Ca
2+

 Concentration  

The effect of NaCl on the Ca
2+

 concentration in all leaves is similar in each of the 

three varieties (Fig. 4.10). In both treatments, Ca
2+

 concentration was lowest in 

youngest leaf but highest in old leaf. Salt stress induces decreases (P<0.05) in Ca
2+

 

concentration in all ages of leaf in Gamina and Bohoth 105, but only in old leaf in 

Hereward.  

 

Fig. 4.10 Ca
2+

 concentration was measured using capillary zone electrophoresis (CZE) of bulk leaf 

extracts of Hereward (a), Gamina (b) and Bohoth 105 (c) varieties, grown in hydroponic solution. 

Plants were exposed to salt stress for 7 days (salt treatment). (Details as in Fig. 4.7). 
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4.9.4 Mg
2+

 Concentration  

Mg
2+

 concentration followed a similar pattern to that of Ca
2+

,
 
with the lowest values 

being found in the youngest leaf and the highest values in the oldest leaf, for each 

variety and under both treatment conditions. The three varieties also had similar 

Mg
2+

 concentration values under the control condition (less than 7 mM) while the 

effect of salt stress varied between different leaf ages and varieties (up to 15 mM 

variation). 

Fig. 4.11 Mg
2+

 concentration was measured using capillary zone electrophoresis (CZE) of bulk leaf 

extracts of Hereward (a), Gamina (b) and Bohoth 105 (c) varieties, grown in hydroponic solution. 

Plants were exposed to salt stress for 7 days (salt treatment). (Details as in Fig. 4.7). 

4.10 Comparison of Solute Concentration and Osmotic Pressure in 

both Single Epidermal Cells and Bulk Leaf at Day 8. 

In both cell and plant experiments, the sums of cation concentrations and the osmotic 

pressures in bulk old leaf (L1) for the three varieties were the same or lower than the 

corresponding values for single epidermal cells, with the exception of Gamina under 

control conditions (Table 4.7). Sodium concentration is higher in the bulk leaf than in 

the epidermis, while K
+
 concentrations are the reverse: higher in the epidermis than 

in the bulk leaf. Therefore, there is discrimination between Na
+
 and K

+
, thereby 
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reducing the influx of Na
+
 into the epidermis while K

+
 is selectively taken up into the 

epidermis (Table 4.4 and 4.5). 

Variety 

∑Cations (bar) Osmotic pressure (bar) 

Control Salt stressed Control Salt stressed 

Single 

cell 

Bulk 

leaf 

Single 

cell 

Bulk 

leaf 

Single 

cell 

Bulk 

leaf 

Single 

cell 

Bulk 

leaf 

Hereward 13 13.1 17.8 15.3 14.4 13.4 18.1 15.7 

Gamina 14.3 13.6 14.4 13.8 13.6 14.6 15.3 15 

Bohoth 

105 
16.7 13.4 19.8 14.4 17.5 14.6 20.1 15.5 

Table 4.7 Cation concentrations (expressed as osmotic pressure of a monovalent salt with γ of 0.932) 

and osmotic pressure in single epidermal cells and bulk old leaf (L1) for Hereward, Gamina and 

Bohoth 105 by day 8, following the addition of 60 mM NaCl.  

4.11 Discussion               

The objective of the experiments described in this chapter was to evaluate the effects 

of the addition of 60 mM NaCl on the Pcell, πcell and cation responses of the three 

wheat varieties. In each variety, a noticeable increase in πcell was seen by day 2, 

without any change in Pcell. Thus the cell water potential (ψcell) dropped. This drop 

was of a similar order of magnitude to the salt stress applied (60 mM is 

approximately equal to 3 bar). The ψcell of Hereward, Gamina and Bohoth 105 

decreased by 4.1, ≥ 1.3, and 3 bar respectively Under the salt condition, Pcell values 

found in the epidermal cells (see Fig. 4.1a–c) were very similar to those reported for 
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the two Amaranth genotypes (A. tricolor and A. cruentus) exposed to 100 mM NaCl 

in a greenhouse environment by Omami (2005). In contrast, however, the data 

contradict aspects of the findings of Arif (1990) regarding the effect of salt 

concentration (25, 50, 75, 100, 125 and 150 mM) on wheat seedlings. In the latter 

study, direct measurements of Pcell did not change with time but remained constant, 

with osmotic pressure change in the growth zone or mature zone of the leaf.  

Osmotic adjustment helps the maintenance of cell turgor and volume, and is 

therefore seen as an important adaption of plants to saline conditions. In light of this, 

let us consider each variety in turn. 

4.11.1 Hereward      

4.11.1.1 Control  

The osmotic pressure of control epidermal cells was 14.4 bar (Fig. 4.1d and Table 

4.2). This πcell value corresponds to reports on epidermal cell of wheat (13.9 bar) 

found by (Malone et al., 1991), barley by (Fricke et al., 1994a), (up to 12.5 bar) by 

(Koroleva et al., 2002), and (14.5 bar) by (Cuin et al., 2003). This also compares 

well with values for the sum of the estimated solute content. The sum of Na
+
 and K

+
 

equates to 278 mM, with an additional 13 mM for Ca
2+

 and 2 mM for Mg
2+

 (Table 

4.4, Fig. 4.3a - 4.6a). The total cation equivalence sums to 308 mEq. If this is 

associated with monovalent anions, such as Cl
-
 or NO3

- 
(Fricke et al., 1994a), the 

expected πcell would be approximately 574 mOsmol.kg
-1 

if the mean osmotic 

coefficient were 0.932 (Robinson & Stokes, 2002) for NaCl. This is equivalent to a 

πcell of 14.6 bar. 

For a Pcell of 7.3 bar, the ψcell of control epidermal cells in transpiring plants was -7.1 

bar (Fig. 4.1a–d, Tables 4.1 and 4.2, and Fig. 4.12a). This low ψcell corresponds to 
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reports of water potentials of maize (–8.1 to –9.6 bar), sorghum (-11 to -13.8 bar and 

-8 to -10 bar) (Neumann et al., 1974, Jones & Turner, 1978) respectively, barley (-6 

to -8 bar) (Matsuda and Riazi, 1981), salt sensitive wheat (-7.1 to -13.8 bar), salt 

tolerant wheat (-5.6 to -10.7 bar) (Kingsbury et al., 1984), and potato (-5.3 to -8.5 

bar) (Liu et al., 2006). The ψcell of the control nutrient solution is approximately -0.5 

bar (for further details see section on Materials and Methods). The ψcell gradient 

between the medium and the epidermal cell, therefore, is 6.6 bar. One explanation for 

this is that it is due to transpiration tension derived from stomatal evaporation. 

An attempt was made to quantify the level of transpiration tension by stopping 

transpiration using the technique of Clipson et al. (1985) and Arif (1990) of 

immersing the entire plant in its nutrient medium. This resulted in an increase of Pcell, 

and hence ψcell, of 1.5 bar (Fig. 4.2a – b and Table 4.3). This is interpreted as 

indicating of 1.5 bar. Clipson et al. (1985) suggested that the residual ψcell might be 

due to osmotic solutes in the apoplast surrounding the epidermal cells being probed. 

In this case, wall solutes would have a value of 5.6 bar, equivalent to 224 

mOsmol.kg
-1

. In contrast, Arif (1990) measured a control wheat leaf epidermis ψcell 

of -1 bar under similar transpiration conditions. However, he did find a control ψcell 

of -6 bar in the growing zone of wheat seedlings, which can be seen as indicating that 

there are different water relation parameters in mature zone cells compared with 

growing zone cells.  

4.11.1.2 Response to Salt    

4.11.1.2.1 Phase I (0 – 2 days) 

As noted above, the addition of salt solution to the root decreased the ψcell of the 

epidermal cells and apoplast to -11.2 bar when measured 24 hours after the second 
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salt addition (Fig.4.12a). This represents a decrease in ψcell of 4.1 bar, which, 

corresponds moderately well with the 3 bar stress applied. Despite this change in 

apoplast ψcell, Pcell at this point is unchanged from the control due to an increase of 

πcell (decrease of ψcell) of the protoplasts of 4.1 bar. This is an example of full turgor 

regulation.  

In Hereward, this increase in protoplast πcell is due to the accumulation of 22 mEq of 

Na
+
 and 52 mEq of K

+
 (Table 4.4, Fig.4.3a and 4.4a). There is a small loss of Ca

2+
. 

The measured increase of πcell indicated that accompanying anions are monovalent 

(Cl
-
 or NO3

-
). It is interesting to note that this osmotic adjustment is brought about 

predominantly by potassium salts, despite the fact that the stress is being applied via 

sodium. This indicates either a preferential absorption of potassium from the medium 

following stress, or mobilisation (Wolf et al., 1991) of an internal potassium depot 

during this phase of turgor regulation. 

4.11.1.2.2 Phase II (2- 4 days) 

The subsequent phase, from 24 to 96 hours after the second addition of NaCl, sees no 

further increase in πcell. During this period, there is no change in the Na
+
 or K

+
 

concentrations. However, it is accompanied by an increase in Pcell (Fig. 4.1a–d, 4.3a 

and 4.4a). 

4.11.1.2.3 Phase III (after day 4) 

After 96 hours after the second addition of NaCl, the Pcell, Na
+ 

and K
+ 

concentrations 

(Fig. 4.1a, 4.3a and 4.4a) stabilise and ψcell remains at about -3.4 bar (Fig. 4.12a). The 

immersion procedure indicates that this includes a hydrostatic tension component of -

1.5 bar and a possible apoplast solute concentration of 1.9 bar or 76 mOsmol.kg
-1

. 

(Note that under these immersed conditions ψcell of the leaf is higher than the π of the 
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external medium, and suggests that the water may be drawn out of the plant through 

the roots in these artificial non-transpiring conditions. This would result in a decrease 

in the pressure of the seedlings cells. Unfortunately, the immersion experiment was 

not run for sufficient time to determine whether this occurred.) 

4.11.2 Gamina 

4.11.2.1 Control 

The osmotic pressure of control epidermal cells was 13.6 bar (Fig. 4.1e and Table 

4.2). This πcell is similar to the situation in Hereward. This again compares well with 

the sum of the estimated solute content, the total cation equivalence of which sums to 

314 mEq
 
(Table 4.4, Fig.4.3b - 4.6b). If this is associated with monovalent anions, 

such as Cl
-1

 or NO3
-
, the expected πcell would be approximately 585 mOsmol.kg

-1 
if 

the osmotic coefficient were 0.932 (Robinson & Stokes, 2002). This is equivalent to 

a πcell of 14.6 bar. 

For a Pcell of 7 bar, the ψcell of control epidermal cells was approximately -6.6 bar 

(Fig. 4.12b). The ψcell gradient between the medium and the epidermal cell, therefore, 

is 6.1 bar. Again, an attempt was made to quantify the level of transpiration tension 

by stopping transpiration (Fig. 4.2). This again, suggested a transpiration tension of 

1.5 bar and an πcell in the apoplast surrounding the epidermal cells of 5.1 bar, 

equivalent to 204 mOsmol.kg
-1

. 

4.11.2.2 Response to Salt 

4.11.2.2.1 Phase I (0 – 2 days) 

Again, addition of salt solution to the root decreased the ψcell of the epidermal cell 

and apoplast, this time to -7.9 bar when measured 24 hours after the second salt 
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addition. This represents a decrease in ψcell of 1.3 bar (Fig. 4.1b–e and Fig. 4.12b). 

This does seem significantly less than the 3 bar applied. As in Hereward, there 

appears to be full turgor regulation. However, the pattern of the solute involved in 

this osmotic adjustment is different from that of Hereward.   

In Gamina, the increase in protoplast osmotic pressure is due to the accumulation of 

25 mEq of Na
+
 and 5 mEq of K

+
.
 
However, there is a loss of 22 mEq of Ca

2+ 
and of 5 

mEq of Mg
2+ 

(Table 4.4 and Fig.4.3b – 4.6b). For monovalent anions, these changes 

correspond to an increase in πcell of 1.5 bar. This corresponds very well with the 

change in π cell measured directly. It is interesting to note that in contrast to 

Hereward, this osmotic adjustment is brought about predominantly by sodium ions, 

which indicates that Na
+
 is taken up from the external medium during this phase of 

turgor regulation.  

4.11.2.2.2 Phase II (2- 4 days) 

As with Hereward, the subsequent phase, from 24 to 96 hours after the second 

addition of NaCl, sees no further increase in πcell and is accompanied by an increase 

in Pcell. During this period, there is no change in the concentrations of Na
+
, K

+
, Ca

2+
 

and Mg
2+

 (Table 4.4, Fig.4.1b – e and 4.3b–4.6b). 

4.11.2.2.3 Phase III (after day 4) 

After 96 hours after the second addition of NaCl, the Pcell, Na
+
 and K

+ 
(Fig.4.1b, 4.3b 

and 4.4b) concentrations stabilise and ψcell remains at about -6 bar (Fig.4.12b). As 

with Hereward, the immersion procedure at 168 hours indicates a hydrostatic tension 

component of 1.5 bar, resulting in a possible apoplast solute concentration of 4.5 bar 

or 180 mOsmol.kg
-1

.  



 
 

88 

 

4.11.3 Bohoth 105 

4.11.3.1 Control 

For Bohoth 105, the πcell of control epidermal cells was 17.5 bar (Fig.4.1f and Table 

4.2). This πcell is significantly higher than for Hereward and Gamina. However, it 

compares very well with the sum of the estimated solute content, with the sum of 

measured cations and estimated monovalent anions (Table 4.4 and Fig.4.3c - 4.6c), 

corresponding to a πcell of approximately 735 mOsmol.kg
-1 

if the osmotic coefficient 

were 0.932 (Robinson & Stokes 2002). This is equivalent to a πcell of 18.4 bar. 

For a Pcell of 7.6 bar (Fig.4.1c and Table 4.1), the ψcell of control epidermal cells was 

approximately -9.9 bar (Fig.4.12c). The ψcell gradient between the medium and the 

epidermal cell, therefore, is 9.4 bar. Once more, as in Hereward and Gamina, there 

appears to be a hydrostatic tension of 1.5 bar (Fig.4.2e–f) and an apoplast osmotic 

pressure of 8.4 bar, equivalent to 336 mOsmol.kg
-1

.  

4.11.3.2 Response to Salt 

4.11.3.2.1 Phase I (0 – 2 days) 

Addition of salt solution to the root decreased the ψcell of the epidermal cell and 

apoplast to -12.9 bar when measured 24 hours after the second salt addition. This 

represents a decrease in ψcell of 3 bar (Fig.4.12c). Like Hereward, but possibly unlike 

Gamina, this corresponds well with the 3 bar stress applied. Again, despite this 

change in ψcell, Pcell at this point is unchanged, due to an increase in the πcell of the 

protoplasts of 3 bar. Again, we see full turgor regulation.  

Once more, the solute pattern seems to be different however. In Bohoth 105, the 

increase in protoplast osmotic pressure is due to the accumulation of 134 mEq of Na
+
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and a loss of 39 mEq of K
+
, of 33 mEq of Ca

2+
and of 14 mEq Mg

2+
(Table 4.4 and 

Fig 4.3c–4.6c) .  

With monovalent anions, this corresponds to an increase in πcell of 2.4 bar. This 

corresponds well with the change in πcell measured directly. It is interesting to note 

that this osmotic adjustment is brought about predominantly by sodium ions. 

Accumulations of Na
+
 in epidermal cells induced by an increase in πext enables a 

plant to maintain a ψcell which is lower than that of the external medium. 

4.11.3.2.2 Phase II (2- 4 days) 

As in both previous varieties, the subsequent phase, from 24 to 96 hours after the 

second addition of NaCl, sees no further increase in πcell but is accompanied by an 

increase in Pcell. During this period, there is no change in concentrations of Na
+
, K

+
, 

Ca
2+

 and Mg
2+ 

(Fig.4.1c – f and 4.3c – 4.6c). 

4.11.3.2.3 Phase III (after day 4) 

After 96 hours after the second addition of NaCl, the Pcell, Na
+
,
 
K

+
, Ca

2+ 
and Mg

2+
 

concentrations (Fig. 4.1c, 4.3c - 4.6c) stabilised, and ψcell (Fig. 4.12c) reached around  

–10.3 bar. The immersion procedure indicates, again, that this includes a hydrostatic 

tension component of -1.5 bar, indicating a possible apoplast solute concentration of  

8.8 bar, or 352 mOsmol.kg
-1

.  
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Fig. 4.12 Water potential (ψcell) change in epidermal cell of Hereward (a), Gamina (b) and Bohoth 105 

(c) following addition of 60 mM NaCl. (The trajectory of the fitted curve for first 48 h is only 

approximate.). Ψcell = Pcell - πcell 

4.11.4 Three Varieties 

The most important solutes under the control condition in the three varieties were 

found to be K
+
 and monovalent anions (presumably Cl

-
 and/or NO3

-
) (Table 4.4). 

This is in agreement with previous studies, showing that under control conditions 

osmotic regulation and charge balance are achieved by inorganic solutes (mainly K
+
, 

Cl
-
 and NO3

-
) in plant cells (Marschner, 1986). Potassium concentrations were found 

to be 270 – 315 mM in three varieties (Fig.4.4). This K
+
 value corresponds well with 

studies of barley leaf [249 mM found by Fricke et al. (1996); 290 mM found by Cuin 

et al. (2003]. Under salt conditions, K
+ 

concentration was highest in Hereward 

compared with other varieties. It was found to be around 322 mM (Fig 4.4a). A 

similar result was reported by Fricke et al. (1994a, 1996) and Koroleva et al. (2002) 

for barley. In contrast, lowest Na
+
 concentration was seen in Hereward by day 8 (Fig. 
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4.3a). The low Na
+
 concentration could be related to the characteristic of Na

+ 

exclusion by the root system (Marschner, 1995). Highest Na
+
 was in Bohoth 105 

over the rest of period. It found to be between 117 – 149 mM (Fig. 4.3c). A similar 

result was reported by Fricke et al. (1996) for barley. Gamina and Bohoth 105 had 

lower K
+
 concentration compared with Hereward (Fig. 4.4). Low K

+
 concentration 

could be due to a competition between Na
+
 and K

+
 regarding their uptake. 

In each variety, salt stress significantly lowered the leaf ψcell (to increasingly negative 

values) (Fig. 4.12). This reduction in ψcell was due to the accumulation of cations 

(mainly Na
+
 and K

+
) and monovalent anions (Cl

-
 and/or NO3

-
) (Table 4.4). As shown 

in Fig. 4.12, Gamina maintained its original ψcell values better than both Hereward 

and Bohoth 105 under the salt condition. The lowest ψcell was observed in Bohoth 

105 and Hereward. The osmotic adjustment in epidermal cells was achieved by 

increased accumulation of various inorganic cations (and anions). Fricke (2004) and 

Munns et al. (2006) reported that wheat genotypes accumulate inorganic cations, 

mainly Na
+
 and K

+
. Salt stressed wheat genotypes could adjust to high salt levels by 

decreasing tissue ψπ. In Hereward, this was mainly related to K
+
 (Hereward has 

higher cell capacity to keep K
+
 under salt stress) and Cl

-
. In Gamina it was mainly 

Na
+
, and in Bohoth 105, mainly Na

+
, during this period. In Bohoth 105, the 

accumulation of Na
+
 in epidermal vacuoles during the osmotic adjustment might 

enable the leaf epidermis to maintain high πcell while concomitantly exporting K
+
. 

Salt stress induced a progressive absorption of Na
+
 from the external medium to the 

cells. Such patterns of accumulation of toxic ions has previous been observed in 

plant crops, and is referred to as salt accumulation (Turan et al., 2010). Atwell et al. 

(1999) reported that osmotic adjustment was largely achieved by an accumulation of 

Na
+
 and Cl

-
 (such as in halophytes).   
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Our results with combined Pcell and πcell (a change in ψext leads to a change in ψw in 

epidermal cells, see Fig. 4.12) indicate that solutes were accumulated and adjusted in 

both the protoplast and adjacent apoplast (Pwall) at the same time. This suggests that 

wheat uses the apoplast as a dynamic osmotic controlled compartment. In this way, 

any changes in Pcell/πext trigger a chain of events that ultimately result in osmotic 

adjustment (protoplastic and/or apoplastic) and turgor regulation. 

High Na
+
 concentrations in Bohoth 105 and Gamina is caused by high Na

+
 ion 

uptake in order to build up πcell (Fig. 4.3c). Akhtar et al. (2005), for example, found 

that high Na
+
 concentration in shoots could be the result of high uptake of Na

+
 ions 

by the plant to increase osmotic pressure in the shoots. Then, the reduction of the K
+
 

concentration in cells of Bohoth 105 (Table 4.4 and Fig. 4.4c) could be the result of a 

partial substitution of K
+
 by Na

+
 (Rodriguez-Navarro & Rubio, 2006; Wakeel et al., 

2010). Fricke (2004) has shown that Na
+
 increasingly replaced K

+
 as the major 

inorganic cation counterbalancing Cl
-
 in barley. Turan et al. (2010) also reported a 

reduction in K
+
 in epidermal cells following stress. They interpreted this as a 

consequence of competition between K
+
 and Na

+
.
 

Thus, in agreement with 

Abdelmalek and Khaled (2011), salt tolerant genotypes display considerably higher 

shoot Na
+
 concentration than salt sensitive ones. Salt tolerance is generally 

associated with high Na
+
 accumulation in leaves of cotton plants (Leidi and Saiz, 

1997; Ashraf & Ahmad, 2000). In contrast, Leidi & Saiz (1997) found high K
+
 

concentration in shoots of salt sensitive genotypes.  

If these characteristics are reliable indications of salt tolerance, then the findings 

suggest that Bohoth 105 is the most salt tolerant variety of wheat, while Gamina 

could be moderately so, and Hereward interpreted as the most salt sensitive of the 

three varieties studied. However, these finding are in contrast to those of Schachtman 
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and Munns (1992), who argued that in wheat genotypes Na
+
 exclusion was a 

common characteristic of salt tolerance. Ashraf (2004) reported that glycophytes are 

able to exclude Na
+
 from shoots, while Na

+
 accumulation in the shoot is an important 

characteristic of halophytes. Also, Gorham et al. (1990), in a laboratory, and 

Dubcovsky et al. (1996), in a greenhouse, each found that the maintenance of a high 

K
+
 concentration and a low Na

+
 concentration in the cytoplasm could be an 

important physiological mechanism response to salt stress in plants (as reported in 

Tester & Davenport, 2003). This mechanism may be what is occurring in Hereward.  

Chen et al. (2009) reported that turfgrasses Diamond (Zoysia matrella (L.) Merr.) 

and Z080 (Z. japonica Steud.) could have decreased accumulation of Na
+
 in the 

shoots due to salt secretion from salt glands. In contrast, variety Adalayed excluded 

Na
+
 from shoots but also accumulated K

+
. Salt tolerance has been associated with the 

regulation of Na
+ 

concentration in shoots (Taleisnik & Grunberg, 1994) and to 

selectivity for K
+
/Na

+
 ratio (Cuartero et al., 1992). Plants may therefore have 

different behaviors to prevent Na
+
 from reaching to the leaves, for example by 

governing influx of Na
+
 through the root plasmalemma (Jacoby & Hanson, 1985); by 

sequestering Na
+
 in parenchyma cells of the root and lower stem part (Johanson and 

Cheeseman, 1983); or by the accumulation of  Na
+
 in roots after translocation from 

shoots via phloem (Jacoby, 1979). It could be argued that Hereward also has a salt 

tolerance strategy that would be different to that of Bohoth 105. Nevertheless, as 

seen in Chapter 3, Hereward is clearly less tolerant than Bohoth 105.  

4.11.5 Bulk Leaves 

Under control and salt treatments, bulk leaf πplant (except salt Hereward) all ages had 

similar patterns in the three varieties (Fig 4.7). Generally, under both control and 

stressed conditions, πplant increased with leaf age. In the three varieties, πplant 



 
 

94 

 

increased following salt stress (similar results in single cell Fig 4.d - f). The 

differences in the sum of cations and osmotic pressure (Table 4.8) between bulk 

leaves and single cells are due to the former including all cell types, while the latter 

only relates to the epidermis. Clearly, the distribution of cations between leaves was 

dependent on the leaf development state. In the three varieties, bulk leaf Na
+
 in a 

similar pattern to πplant was increased with leaf age. Old leaf had progressively higher 

Na
+
 concentration than young leaf (Fig. 4.7). This indicates that the capability of 

plant to control the Na
+
 transport rate to the leaf was increasing with time.  

A similar result was found for barley by Jeschke and Wolf (1985). They measured 

Na
+ 

transport into successive leaves under salt conditions, and noted that the 

accumulation rate declined in developing leaves, and that in young leaf it was low. 

This was also found in barley by Rawson et al. (1988). Again, similar findings for 

wheat by Wolf et al. (1991) and Santa-Maria and Epstein (2001) suggest that barley 

can tolerate salinity, and also that it has the ability to keep Na
+
 in mature leaf and to 

limit transport of Na
+
 into young leaf.  In barley, the use of ion export has been 

demonstrated by Munns et al. (1986), where the phloem is used as a conduit to 

transport ions from shoots to roots.  

Comparison of K
+
 between treatments in bulk leaf of Gamina and Bohoth 105 

showed that K
+
 concentration increases with leaf development state under the control 

condition, whereas the reverse was true under salt stress (Fig. 4.9b - c). Taleisnik and 

Grunberg (1994) reported that K
+
 is essential for the enlargement of cells, 

particularly in young leaf. Maathuis and Sanders (1996) and Elumalai et al. (2002) 

reported that K
+
 is regards highly mobile within plant tissue and transported in both 

the xylem and phloem between roots and shoots. In contrast, bulk leaf K
+
 of 

Hereward changed in the opposite direction. Under the control condition, the low K
+
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concentration in youngest leaf of Hereward could indicate its relative inability to 

mobilise K
+
 from mature to young leaves (Fig 4.9a). Though accumulation of Ca

2+ 

decreased in old leaves of three varieties under salt stress (Fig. 4.10), the highest 

Ca
2+

 concentration was found in older leaves and the lowest in the younger. Low 

Ca
2+

 concentration in new leaves could be due to the limited ability of xylem to 

provide Ca
2+

 for growing tissues (Marschner, 1995).  

4.11.6 Comparison of Single Cell and Bulk Leaf Data  

 When measuring the sums of cation concentrations and the osmotic pressures in 

bulk old leaf (L1) for the three varieties, the values were found to be the same or 

lower than the corresponding values for single epidermal cells.  The only exception 

to this trend was with Gamina’s value for bulk leaf osmotic pressure under control 

conditions, which was slightly higher than the value obtained for single epidermal 

cell (Table 4.7). For some varieties and treatments, the values of sum cation 

concentration and osmotic pressure showed very little difference between single cell 

and bulk leaf measurements, whereas in others, the value for bulk leaf was lower for 

these two parameters. This may be because bulk leaf measurements include cells and 

tissues such as xylem and phloem, which may affect the measurement by having 

more dilute solutes, thus lowering the average value.  

However, when analysing particular cation concentrations, a different pattern was 

found.  For sodium, this was more concentrated in bulk leaf than epidermal cells, for 

all varieties under salt stress, whereas potassium was consistently more concentrated 

in the epidermis than in bulk leaf. This possibly relates to Na
+
/K

+
 discrimination, 

where potassium is selectively taken up into the epidermis, while sodium is excluded 

(Table 4.4 and 4.5). 
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Chapter 5: Osmolality and Cations in Leaves of 

S. maritima in Response to NaCl Stress  

5.1 Introduction 

For the wheat varieties in this study, osmotic adjustment was achieved using 

different cations. In Gamina and Bohoth 105, the uptake and accumulation of sodium 

ions into the vacuole of epidermal leaf cells was used, whereas in Hereward, 

potassium was the main cation accumulated in epidermal protoplast, with only a 

small concentration of sodium uptaken.   

Having seen this potential variety between the wheat varieties, this chapter describes 

the corresponding parameters of the model halophyte S. maritima. It was decided to 

compare the three wheats to a known halophyte in order to investigate whether there 

were any similarities between the profiles of the most salt tolerant wheats and the 

profile of a species that grows in saline conditions. It was hoped that such a 

comparison would help illuminate which parameters in the wheats were aiding or 

most associated with salt tolerance, and could therefore contribute towards future 

wheat breeding programmes. Single cell sampling and analysis (SiCSA) was used to 

measure osmolality and cation concentrations in single epidermal leaf cells of the 

halophyte S. maritima (see description of Materials and Methods in Chapter 2).   

Salt-sensitive plants have their growth limited by salt in their environment, yet the 

growth of halophytes is, in contrast, actually promoted by salinity, even at high 

concentrations (Greenway & Munns, 1980). Correspondingly, πcell in halophytes is, 

although variable, frequently noticeably higher than in glycophytes (Cram, 1976). 
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Salt marshes are an example of a highly saline environment, to which some species 

are specially adapted. The dicotyledonous halophyte S. maritima is one such species 

(Flowers et al., 1986). In order to cope with the low external water potential 

associated with such conditions, plants need to accumulate enough ions (Na
+
 and Cl

-
) 

to ensure that water potential in the leaves is lower than in the soil (Clipson, et al., 

1985). This accumulation needs to occur in the vacuole, in order to keep toxic ion 

concentrations away from the cytoplasm, which is sensitive to salt (Flowers et al., 

1986).  

S. maritima can accumulate ions in high concentrations in leaves in order to tolerate 

salinity (Clipson, et al., 1985), and in fact experiences optimum growth at levels in 

the region of 200 mM, although concentrations higher than this may impair growth.  

Indeed, non-saline growth media can be considered as nutrient deficient for 

halophytes (Yeo and flowers, 1980). This profile is similar to other dicotyledonous 

halophytes (Munns et al., 1983).  

In terms of the measurement of parameters, whilst halophyte πcell can be found in the 

literature (Waisel, 1972), it is hard to accurately measure water potential and Pcell. In 

Chapter 4, which reported the behavior of wheat turgor pressure, Pcell was described. 

Turgor pressure in epidermal cells increased under salt stress in all varieties, but the 

patterns of increase varied. However, Pcell for S. maritima proved to be too low to 

measure consistently (Clipson, et al., 1985).  

To understand the water relations of halophytes, the apoplast and symplast need to be 

understood in terms of their osmotic and hydrostatic aspects. However, for S. 

maritima, these components are not well understood, and it is not known why its leaf 

Pcell is kept so low. Leaf epidermal Pcell of S. maritima has been found to be much 
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lower than expected from its πcell (Clipson, et al., 1985). The authors found that in an 

external medium of 20 bar NaCl, transpiring cells had πcell of 25 bar but Pcell of only 

around 1 bar. In non-transpiration conditions, i.e. when Pwall is decreased, there was 

an increase in Pcell of only one more bar. This indicates that the low Pcell is related to 

the high πwall (20 - 30 bar), and that the apoplast plays an important role in terms of 

the πcell gradients. Indeed, Cram (1976) has noted that using the apoplast to control 

Pcell can be more efficient than using the protoplast.  

Mature leaf of S. maritima has been found to have lower Pcell in vivo than the 1 - 7 

bar found in other higher plants (when measured using a pressure probe, Tomos et 

al., 1981 and Steudle et al., 1983). This can be compared with other examples of 

halophytes, such as epidermal bladder cells of Mesembryanthemum crystallinum, 

which was found by Steudle et al. (1975) to have Pcell of 0.5 - 2.5 bar, or 

Chenopodium rubrum, found by Buchner et al. (1980) to have corresponding values 

of 1.7 - 4.1 bar. Another reason for the low Pcell could be that plant growth in 

moderate salt conditions is driven by increased solute transport, which does not 

increase Pcell. Since these points are not fully understood, it is important to 

investigate the differences between halophytes and glycophytes in terms of salinity 

resistance.   

In this study, the halophyte S. maritima was chosen. The first leaf after the 

cotyledons (pair 1) to emerge from the intact plant was studied in situ every day from 

day 2 to day 8 after the addition of 200 mM NaCl. The same was done for the control 

treatment (0 mM NaCl addition), but at days 2, 5 and 8. It should be noted that 

although 0 mM NaCl was used as a control for the wheat varieties, for the halophyte, 

as mentioned above, this control treatment could actually be described as a type of 

growth stress, but was nevertheless applied in order to be consistent with the wheat 
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treatments. All plants tested were grown in hydroponic medium (see description of 

Materials and Methods in Chapter 2).  

5.2 Osmotic Pressure in Epidermal Cells 

For 0 mM NaCl (control) leaves, πcell values were found to be 17 ± 0.5 bar (665 

mOsmol.kg
-1

), and remained more or less stable for the whole of the experimental 

period (see Table 5.1 and Fig.5.1). However, when 200 mM salt was added to the 

root media, πcell after 2 days increased and then remained more or less stable for the 

rest of the experimental duration at 22 ± 0.4 bar (892 mOsmol.kg
-1

). For balancing 

osmotic adjustment, we expected that πcell would increase by about 400 mOsmol.kg
-1

. 

Table 5.1 and Fig. 5.1 show that the increase in πcell was found to be 230 - 279 

mOsmol.kg
-1 

(around 65 %).  



 
 

100 

 

 

T
im

e 
af

te
r 

N
aC

l 
ad

d
it

io
n

 (
d

) 

Cation concentrations (mM) 

∑
ca

ti
o

n
s 

(m
M

) 

∑
ch

ar
g

e 
ca

ti
o

n
s 

(m
E

q
) 

O
sm

o
la

li
ty

  
m

ea
su

re
d

 

(m
O

sm
o

l.
k

g
-1

) 

π
to

ta
l/
γ 

∑
an

io
n

s 
(m

E
q

) 

A
v

er
ag

e 
ch

ar
g

e 
o

f 
an

io
n

s 

Na+ K+ Ca2+ Mg2+ 
C

o
n

tr
o

l 

S
al

t 
st

re
ss

ed
 

C
o

n
tr

o
l 

S
al

t 
st

re
ss

ed
 

C
o

n
tr

o
l 

S
al

t 
st

re
ss

ed
 

C
o

n
tr

o
l 

S
al

t 
st

re
ss

ed
 

C
o

n
tr

o
l 

S
al

t 
st

re
ss

ed
 

C
o

n
tr

o
l 

S
al

t 
st

re
ss

ed
 

C
o

n
tr

o
l 

S
al

t 
st

re
ss

ed
 

C
o

n
tr

o
l 

S
al

t 
st

re
ss

ed
 

C
o

n
tr

o
l 

S
al

t 
st

re
ss

ed
 

C
o

n
tr

o
l 

S
al

t 
st

re
ss

ed
 

2 57 ± 5 232 ± 18 256 ± 4 213± 8 1 ± 0.7 0.1 ± 0.2 24 ± 7 18 ± 5 339 463 364 481 665 ± 8 895 ± 15 714 960 375 497 1.0 1.0 

3 
 

230 ± 5 
 

215 ± 2 
 

0.2 ± 0.1 
 

13 ± 19 
 

458 
 

471 
 

824 ± 10 
 

884 
 

426 
 

1.1 

4 
 

248 ± 9 
 

196 ± 3 
 

0.1 ± 0.0 
 

17 ±3 
 

461 
 

478 
 

841 ± 5 
 

902 
 

441 
 

1.1 

5 49 ± 5 250 ± 3 262 ± 8 195 ± 3 0.1 ± 0.1 0.1 ± 0.1 31 ± 9 17 ± 4 343 462 374 479 660 ± 6 872 ± 19 708 936 366 474 1.0 1.0 

6 
 

263 ± 3 
 

187 ± 1 
 

0.1 ± 0.1 
 

17 ±2 
 

467 
 

484 
 

941 ± 13 
 

1010 
 

543 
 

0.9 

7 
 

302 ± 11 
 

144 ± 9 
 

0.0 ± 0.0 
 

26 ± 3 
 

472 
 

498 
 

921 ± 14 
 

988 
 

516 
 

1.0 

8 48 ± 1 354 ± 4 266 ± 8 100 ± 1 0.3 ± 0.04 0.0 ± 0.0 33 ± 11 22 ± 3 348 476 382 498 670 ± 7 949 ± 15 719 1018 371 542 1.0 0.9 

 
Table 5.1 Cation concentrations, osmolality, and calculated charge of the sap of single epidermal cells of S. maritima leaves. Epidermal cells (n=3 - 12) were 

sampled from the first leaves after the cotyledons (pair 1) of individual plants. Cell sap was analysed every day during the salt treatment and three times during the 

7 days of the control treatment. Calculations of the contribution of cations to the cell osmotic pressure (πcell) were made by multiplying the sum of the 

concentrations by the osmotic coefficient (γ) of 0.93 of NaCl (Robinson & Stokes, 2002). The values of ≈ 1.0 for the average anion charge suggest monovalent ions 

(Cl
-
 and/or NO3

-
). Results are given as means ± SD.  
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Fig. 5.1 Time course of leaf (pair 1 after the cotyledons) epidermal cell osmotic pressure (πcell) of S. 

maritima for 0 mM control and following the application of 200 mM NaCl. Salt was added in two 100 

mM doses over two days (the days were measured after the first addition). Osmotic pressure was 

measured using a picolitre osmometer. Each point is the mean ± SD of 3 - 12 cells taken from 3 - 6 

individual plants. 

5.3 Cation Concentrations in Epidermal Cells  

To determine the identity of the inorganic cations contributing to osmotic adjustment, 

CZE (capillary zone electrophoresis) was performed to measure the individual cation 

concentrations of the sap sample obtained from epidermal cells. It showed that the 

solutes accumulated in the leaf epidermal cells from the plant under salt stress were 

largely Na
+ 

salts (Table 5.1). 
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5.3.1 Na
+
 Concentration 

The Na
+
 concentration in the control plant cells was about 50 mM (Na

+
 concentration in 

medium 1.3 mM see Table 2.1) throughout the experimental period (Fig. 5.2). In 

contrast, for the salt treatment, S. maritima was observed to have accumulated a 

considerable amount of Na
+
 salt over the 2 days following NaCl addition to the medium 

(Fig. 5.2). After day 2, however, Na
+ 

concentration increased more gradually in cells. It 

reached 354 ± 4 mM by day 8 (Fig. 5.2). This Na
+
 concentration was found to be the 

highest value of the whole experimental period, compared with other ions (Table 5.1). It 

this plays the main role in increasing πcell under salt stress. By day 8, Na
+
 concentration 

was contributing to osmotic adjustment in cells of S. maritima in the order of 306 mEq 

(100 %) (Fig. 5.1) . 

 

Fig. 5.2 Na
+
 concentration in epidermal cell (mature) sap of S. maritima leaves. The first leaf (pair 1 after 

the cotyledons) was analysed the first day after NaCl addition. Salt was added in two 100mM doses over 

two days (the days were numbered after the first addition). Sodium concentration was measured using 

capillary zone electrophoresis (CZE). Each observation is the mean of 3 - 12 cells taken from 3 - 12 

individual plants. Results are given as means ± SD. Sodium gradually increased (P=0.000 for day 2, 5 and 

8 ANOVA) with time in response to salt stress. This was particularly rapid during the first 24 hours. 
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5.3.2 K
+
 Concentration 

Under control conditions, K
+
 was the dominant cation during the whole experimental 

period. It was found to remain at a concentration of 261 ± 0.7 mM (Fig. 5.3). In contrast, 

when 200 mM NaCl was added to root media, K
+
 concentration was significantly 

reduced (P= 0.000 day 2, 5 and 8 ANOVA). Potassium concentration in epidermal cells 

was measured as 213 ± 8 mM at day 2, and then gradually decreased for the whole 

experimental period. It reached 100 ± 1 mM by day 8.  

 

Fig. 5.3 K
+
 concentration in epidermal cell sap of S. maritima leaves. The first leaf (pair 1 after the 

cotyledons) was analysed the first day after NaCl addition. Conditions as for Fig. 5.2, except for 

potassium. Potassium
 
concentration decreased from the onset of stress initiation. Potassium

 
concentration 

decreased significantly from day 2 - 8 (P= 0.000).  
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5.3.3 Ca
2+ 

Concentration  

In both treatments, Ca
2+

 was present at a low concentration (Fig. 4.5). No obvious 

changes were detected under salt stress during the experimental period. Epidermal cells 

of plant grown in both 0 mM and 200 mM NaCl had negligible (< 1 mM) amounts of 

Ca
2+ 

in the cells.  

 

Fig. 5.4 Ca
2+

 concentration in epidermal cell sap of S. maritima leaves. The first leaf (pair 1 after the 

cotyledons) was analysed the second day after NaCl addition. Conditions as for Fig. 5.2 except for 

calcium. 
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5.3.4 Mg
2+ 

Concentration 

The cell level of Mg
2+

 under control conditions (0mM NaCl addition) increased from 24 

± 7 mM on day 2 to 33 ± 11 mM by day 8 (Fig. 5.5). In contrast, after salt stress, Mg
2+

 

concentration remained constant. It was 18 ± 5 mM on day 2 and 22 ± 3 mM by day 8. 

 

Fig. 5.5 Mg
2+

 concentration in epidermal cell sap of S. maritima leaves. The first leaf (pair 1 after the 

cotyledons) was analysed the first day after NaCl addition. Condition as for Fig. 5.2 except for 

magnesium. Magnesium concentration decreased significantly (P= 0.000).  

5.4 Estimate of the Anion Concentration and its Valency 

The relationship (and its implications) between the sum of the cations and the measured 

πcell of samples is shown in Table 5.1 (see Section 4.7).  Cations are associated with 

anions, and Table 5.1 shows that to balance πcell and net charge, this relationship 

corresponds to 375 mEq, 366 mEq and 371 mEq (day 2, 5 and 8) anions of mean charge 

0

5

10

15

20

25

30

35

40

45

50

55

60

0 1 2 3 4 5 6 7 8

m
M

 

Time after NaCl addition (d) 

control salt stressed



 
 

106 
 

1.0 under the control condition. While under the salt condition, this corresponds to 797 

mEq, 474 mEq and 542 mEq (for example day 2, 5 and 8) anions of mean charge 1.0. 

The charge balance was close to 1.0 (Table 5.1), suggesting monovalent anions, for 

instance Cl
-
 or NO3

-
. In Table 5.1, in order to calculate the value for Z, it was assumed 

that these was no significant unchanged osmotica. (As in Chapter 4, the concentration of 

uncharged solutes was assumed to be negligible). 

5.5 Inter-Relationship of Cations Na
+
 and K

+
  

When 200 mM NaCl was added to root media, Na
+
 increased within 48 hours (from 57 

to 232 mM). Its increase then slowed to only gradual rise (from 232 to 353 mM) with 

time. Potassium began to decrease (From 253 to 213 mM), at an increasing rate rapid 

with time (from 213 to 100 mM) (Fig. 5.2 and 5.3). A 1:1 linear relation was found 

between Na
+
 and K

+
 concentration (Fig. 5.6). In summary, sodium concentration 

increased from 57 mM to 232 mM while K
+
 decreased from 256 mM to 213 mM. These 

changes at day 8 are due to an accumulation of 306 mEq of Na
+
 and a loss of 166 mEq 

of K
+
(Fig. 5.2 and 5.3). During this period, osmotic adjustment was mainly achieved by 

the accumulation of Na
+
 and the loss of K

+
. After 2 - 3 days following NaCl addition, 

the linear exchange of Na
+
 for K

+
 started. Concomitantly, πcell remained unchanged with 

time (Fig. 5.2 and 5.3). 



 
 

107 
 

Fig. 5.6 Relationship between Na
+
 and K

+ 
concentration in epidermal cell sap of S. maritima leaves. 

Sodium concentration increased gradually from the onset of stress initiation and during the rest of the 

experimental period. In contrast, K
+
 concentration decreased gradually with time.  

5.6 Discussion  

The objective of this study was to compare the response of wheat varieties of varying 

salt tolerance to the impact of 200 mM NaCl with the responses in epidermal cells of the 

halophyte S. maritima. Unfortunately, S. maritima has a very low Pcell (Clipson et al., 

1985,  Lawrence, 1999), which was hard to measure, so data from the literature were 

used to complete the comparison. Problems in measuring Pcell were due to the older cells 

having very low Pcell and also to the fact that the tip of the capillary of the pressure probe 

is frequently blocked or broken by the leaf cuticle being thickened and waxy 

(Hajibagheri et al., 1983). 

 On addition of NaCl, leaf epidermal πcell increased in S. maritima. Since Pcell << πcell, 

water potential (ψcell) approximates πcell. This approximation is used in the following 

discussion.  

y = -0.9338x + 429.23; R² = 0.9974 

0

50

100

150

200

250

200 220 240 260 280 300 320 340 360 380

N
a+

 (
m

M
) 

K+ (mM) 



 
 

108 
 

As with the three varieties of wheat, the epidermal ψcell dropped on salt stress. In this 

case it fell by approximately 5.8 bar, which is less than the order of magnitude of the salt 

stress applied, since 200 mM is approximately equal to 10 bar (Clipson et al., 1985; 

Lawrence, 1999). The πcell of S. maritima control epidermal cells was 16.6 bar (Table 

5.1 and Fig. 5.1), which is similar to that of Bohoth 105 (about 17.4 bar) and to previous 

reports on epidermal cells of S. maritima (15 bar, see Clipson et al., 1985 and Lawrence, 

1999).  

The πcell of control epidermal cells compares well with the sum of the estimated cation 

content, where 51 mM of Na
+
, 268 mM of K

+
, 0.5 mM of Ca

2+
, and 30 mM of Mg

2+
 

were found (equivalent to 342 mM) (Table 5.1, Fig. 5.2-5.5). The total cation 

equivalence sums to 373 mEq, and for electrical balance, this must be accompanied by 

373 mEq of anions. If we assume that neutral solute concentrations are negligible 

(Malone et al., 1991), then the sum of anions and cations must correspond to the 

measured πcell (multiplied by a suitable osmotic coefficient). In this case, πcell = 665 

mOsmol.kg
-1

, meaning that 714 mM of this 343 mM are cations, leaving 371 mEq of 

anions. The charges are these 373 mM to balance the cations. The average ionic charge 

is 373/371 = 1.0. This corresponds well to the presence of Cl
-
 or NO3

-
. 

 If we assume the Pcell << πcell, ψcell corresponds to πcell. The ψcell of control epidermal 

cells was -16.6 bar (Fig. 5.7), which is much lower (>1.5 times more negative) than in 

epidermal cells of wheat (see Section 4.3). Using the same control nutrient solution as 

for the wheat, the ψcell gradient between medium and epidermal cell is 16.1 bar, which is 

about double that found with wheat. Transpiration tension was only 1.5 bar (Clipson et 

al., 1985, Lawrence, 1999), and the residual ψcell could be related to osmotic solutes in 
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the apoplast surrounding the epidermal cells (Clipson et al., 1985). The residual value is 

15.1 bar, which is equal to 604 mOsmol.kg
-1

. Clipson et al. (1985) and Lawrence (1999) 

measured a control leaf epidermis ψcell in the same plant of approximately -14.7 bar. 

The addition of 200 NaCl to the root medium decreased the ψcell of the epidermal 

apoplast to about -22 bar when measured 24 - 196 hours after the second salt addition 

(Fig. 5.7). A similar finding has been reported in the literature (Clipson et al., 1985). 

This change in apoplast ψcell is maintained for the rest of the experimental period (Fig. 

5.7). This increase in protoplast osmotic pressure is caused by an accumulation of 217 

mEq Na
+
, and a loss of 82 mEq K

+ 
and 22 mEq of Mg

2+
 (Table 5.1, Fig. 5.2, 5.3, 5.5 and 

5.6). For monovalent anions, this corresponds to an increase of 5.6 bar, which is 

identical to the change in πcell as measured directly. It is interesting to note that this 

osmotic adjustment is brought about by sodium uptake but is also a linked function of 

K
+
 loss (cf. Bohoth 105 and Gamina in Chapter 4). This indicates preferential absorption 

of Na
+
 from the medium following stress during turgor regulation. 

Solutes were accumulated and adjustment occurred in both protoplast and the adjacent 

apoplast at the same time. Similar results were found in the three wheat varieties (see 

Chapter 4). Fig. 5.6 indicates a rapid flooding of the leaf epidermis with 160 mM Na
+
 

salt (presumably Cl
-
) during the first 24 – 48 h. This was achieved with little change in 

epidermal K
+
. After 48 h however, starting slowly but later accelerating, K

+
 was lost in a 

1:1 ratio with Na
+
 uptake. By day 8, 60 % of the initial K

+
 was lost. (the trajectory of the 

fitted curve for first 48 h.) (Fig. 5.7). A comparison of this figure with Fig 4.12 

illustrates the difference between wheat and S. maritima, but shows that of the wheat 

varieties, Bohoth 105 is the most similar. 
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Fig. 5.7 Water potential in epidermal cell of S. maritima following addition of 200 mM NaCl. Ψcell = Pcell - 

πcell.  
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Chapter 6: Turgor, Osmolality and Cations in 

Roots of the Wheat Varieties and their Response 

to NaCl Stress  

6.1 Introduction 

Root growth in plants is essentially in competition with leaf growth in terms of nutrition 

(i.e. photosynthetic products, water, and nutrients). However, the growth of each organ 

takes place in a coordinated way, with this dynamic balance varying according to 

changes in environmental conditions. The relative sizes of roots and leaves can thus 

respond to external conditions in order to optimize the whole plant’s resource use 

(Wilson, 1988).  

While saline conditions generally impede growth in plants due to nutritional disorders 

created by salt toxicity (Niu et al., 1995), roots have been found to be more salt-tolerant 

than leaves (Munns & Tester, 2008), despite being the first parts of the plant to be 

affected. The precise reasons for this are as yet unclear, but could be related to a 

reduction in leaf growth relative to root growth in order to minimize water needs (ibid.).  

Indeed it has been seen for both wheat and barley that root pressurisation induces 

changes to leaf water potential, which in turn alters leaf elongation rate (Passioura & 

Munns, 2000). Salinity-induced water stress results in reduced water potential and thus 

low cell turgor in root cells. Since the roots are then less able to uptake water, plant 

growth is slowed (Greenway & Munns, 1980). 
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Under conditions of high salinity, however, ion imbalance or toxicity can require more 

specific response mechanisms. Osmotic adjustment is one, involving the regulation of 

solute levels in tissues (Greenway & Munns, 1980), commonly Na
+
. Sodium ions are 

actively transported across the tonoplast and accumulated in the vacuole in order to 

protect the cytoplasm (Yokoi et al., 2002). Such salt sequestration lowers the leaf 

osmotic potential and thus increases turgor potential, allowing leaf growth and stomatal 

conductance to continue (Beeg & Turner, 1976). In short, plants respond to salt stress in 

a variety of ways, both with specific response mechanisms, but also with physiological 

changes to the relative growth of different parts of the plant, i.e. roots and leaves. 

In the present study, having completed the analysis of the leaves, the equivalent analysis 

was then conducted in the root cells, starting with wheat. The cell pressure probe and its 

associated single cell sampling and analysis (SiCSA) were used to measure Pcell, 

osmolality and cation concentrations in single cortical cells of three wheat varieties 

[Hereward, Gamina and Bohoth 105 (see Materials and Methods)] following salt stress.  

6.2 Turgor Pressure in Cortical Cells  

Cells four to six cm away (see Chapter 2.6.1 for explanation) from the root tip of intact 

plants were studied in situ every day from day 2 to day 8, 14 and 21 after the addition of 

60 mM NaCl, and at 2, 5, 8, 14 and 21 days for the control treatment (0 mM NaCl 

addition). All three varieties had similar Pcell values under control conditions (5.4 ± 0.8 

bar for Hereward, 5.2 ± 0.5 for Gamina and 4.6 ± 0.5 for Bohoth 105; n = 3 - 12). In 

each variety, after 2 days following salt addition, Pcell decreased rapidly. After that, there 

was an exponential increase with time until a new stationary state was reached (Fig. 6.1a 

- c).  
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When salt was added to root media, it is believed (from previous experience) that the 

Pcell dropped immediately by about 2 - 3 bar (according to Vant’t Hoff’s law). Pcell 

regulation was subsequently achieved, by cell osmotic adjustment (Fig. 6.1d – f) to 

preserve a constant difference in the πcell between cortical cells and the external medium. 

The regulation (recovery) rate varied between different varieties. However, complete 

Pcell recovery was achieved by day 8 with a T1/2 of 6.3 days in Hereward, 7.9 days in 

Gamina and 1.7 days in Bohoth 105. It was lowest in Bohoth 105 and highest in Gamina 

(Table 6.2).  

In control plant roots, the magnitude (approximately 6 bar) of the πcell is reflected by the 

Pcell (Fig. 6.1a - f). A significant difference in Pcell (T1/2) at day 2 - 8 between the control 

and salt treatments was observed for all varieties. The three wheat varieties studied 

presented the biphasic response (fast Pcell decrease and slower Pcell recovery) after 60 

mM NaCl addition. Ultimately, the Pcell increase reflected the solute uptake rate or/and 

synthesis in single cortical cells. In the first phase of the biphasic response, Pcell could 

followed the loss of water of the cortical cells to the external medium. In second phase, 

it was likely to be due to an increase in πcell of single cells as result of transport, 

synthesis of solutes, or both. In addition, this result suggests that Bohoth 105 shows 

more rapid recovery of Pcell (within 1.7 days) than either Hereward (6.7 days) or Gamina 

(7.9 days) during the course of the 7 day experimental period. 
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Fig. 6.1 Time course of root cortical cell turgor pressure (Pcell) and osmotic pressure (πcell) of Hereward (a 

and d), Gamina (b and e) and Bohoth 105 (c and f) for control and following application of 60 mM NaCl. 

Salt was added in two 30 mM doses over two days (the days are numbered after the first addition). 

Cortical cells were prepared 4 - 6 cm from the root tip of individual plants. Cell turgor pressure was 

measured using a cell pressure probe. Cell osmotic pressure was measured using a single cell sampling, 

and picolitre osmometer. Difference in means for Pcell and πcell between treatments were always highly 

significant (P = 0.000). Each point is the mean ± SD of 3 - 12 cells taken from 3 - 6 individual plants. 
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(d
) 

Cations concentrations (mM) 
∑solutes (mM) 

∑charge cations 

(mEq) 

Osmolality 

(mOsmol.kg-1) πtotal/γ ∑anions (mM) 
Average charge of 

anions Na+ 
 

K+ 
 

Ca2+ 
 

Mg2+ 
 

Control 
Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 
Control 

Salt 

stressed 

H
er

ew
ar

d
 

2 9 ± 3 46 ± 7 113 ± 4 97 ± 4 5 ± 4 2 ± 2 5 ± 1 6 ± 0.4 132 151 142 159 242 ± 25 280 ± 24 260 300 128 149 1.112 1.064 

3 
 

90 ± 12 
 

56 ± 5 
 

4 ± 1 
 

5 ± 0.6 
 

155 
 

164 
 

288 ± 11 
 

309 
 

154 
 

1.065 

4 
 

107 ± 10 
 

48 ± 3 
 

2.5 ± 2 
 

5 ± 0.3 
 

163 
 

170 
 

300 ± 10 
 

322 
 

159 
 

1.067 

5 17 ± 2 126 ± 7 108 ± 5 30 ± 8 10 ± 11 7 ± 4 9 ± 1 4 ± 0.4 144 167 163 178 247 ± 33 312 ± 18 265 335 121 168 1.347 1.061 

6 
 

124 ± 13 
 

36 ± 10 
 

5 ± 1 
 

5 ± 0.7 
 

170 
 

180 
 

320 ± 10 
 

343 
 

173 
 

1.038 

7 
 

130 ± 11 
 

32 ± 5 
 

1.5 ± .4 
 

5 ± 0.3 
 

169 
 

175 
 

324 ± 13 
 

348 
 

179 
 

0.977 

8 17 ± 3 149 ± 10 104 ± 2 27 ± 8 9 ± 12 14 ± 0.4 9 ± 2 8  ± 0.4 139 198 157 220 240 ± 28 352 ± 20 258 378 119 180 1.325 1.224 

G
am

in
a 

2 3 ± 3 49 ± 7 103 ± 7 85 ± 13 2 ± 3 13 ± 8 5 ± 2 6 ± 1 113 152 120 171 211 ± 12 264 ± 4 226 283 113 131 1.065 1.303 

3 
 

79 ± 9 
 

63 ± 9 
 

24 ± 9 
 

7 ± 2 
 

172 
 

203 
 

280 ± 22 
 

300 
 

128 
 

1.585 

4 
 

70 ± 20 
 

74 ± 12 
 

5 ± 4 
 

6 ± 3 
 

156 
 

167 
 

288 ± 21 
 

309 
 

153 
 

1.089 

5 4 ± 3 96 ± 33 104 ± 9 56 ± 17 2 ± 3 11 ± 5 5 ± 2 7 ± 5 115 170 122 188 200 ± 17 300 ± 30 215 322 100 151 1.216 1.244 

6 
 

123 ± 18 
 

30 ± 6 
 

25 ± 21 
 

11 ± 17 
 

189 
 

226 
 

316 ± 16 
 

339 
 

150 
 

1.506 

7 
 

130 ± 10 
 

32 ± 2 
 

23 ± 8 
 

5 ± 1 
 

190 
 

218 
 

320 ± 17 
 

343 
 

154 
 

1.421 

8 5 ± 3 133 ± 6 115 ± 11 32 ± 2 3 ± 3 17 ± 0.2 6 ± 2 1  ± 1 129 183 138 201 
213 ±  

28 
328 ± 16 229 352 99 169 1.395 1.185 

B
o
h
o
th

 1
0
5
 

2 8 ± 2.2 51 ± 7 109 ± 11 72 ± 15 3 ± 4 5 ± 4 9 ± 3 4 ± 1 129 132 141 142 224 ± 20 248 ± 17 240 266 112 134 1.265 1.057 

3 
 

61 ± 16 
 

76 ± 18 
 

3 ± 2 
 

10 ± 2 
 

150 
 

163 
 

276 ± 15 
 

296 
 

146 
 

1.114 

4 
 

94 ± 4 
 

63 ± 6 
 

3 ± 1 
 

7 ± 0.3 
 

168 
 

179 
 

312 ± 16 
 

335 
 

167 
 

1.072 

5 3 ± .2 94 ± 8 125 ± 9 81 ± 6 2 ± 0.3 6 ± 3 7 ± 0.3 11 ± 1 136 193 144 211 238 ± 20 348 ± 9 255 373 119 180 1.207 1.172 

6 
 

106 ± 5 
 

73 ± 4 
 

4 ± 1 
 

11 ± 1 
 

194 
 

208 
 

356 ± 7 
 

382 
 

188 
 

1.109 

7 
 

109 ± 5 
 

72 ± 4 
 

3 ± 1 
 

10 ± 0.8 
 

194 
 

207 
 

360 ± 11 
 

386 
 

192 
 

1.075 

8 6 ± 0.3 112 ± 8 118 ± 8 71 ± 6 3 ± 0.5 2 ± 1 6 ± 0.5 9  ± 2 131 194 138 205 241 ± 14 360 ± 14 259 386 128 192 1.077 1.066 

 

Table 6. 1 Cation concentrations and osmolality of the sap of single cortical cells of Hereward, Gamina and Bohoth 105 root. Cortical cells (n = 3 - 12) 

were selected from 4 - 6 cm away from the root tip of 3 - 6 individual plants. Cell sap was analysed every day during the salt treatment and three times 

during the 7 days of the control treatment. The relationship is between the osmolality of cations obtained by picoliter osmometer and molarity obtained 

by capillary zone electrophoresis (CZE). Calculations of the contribution of cations to the cell osmotic pressure (πcell) were made by multiplying the 

sum of the concentrations by the osmotic coefficient (γ) of NaCl 0.932 (Robinson & Stokes, 2002). 

 

 



 
 

116 
 

6.3 Osmotic Pressure in Cortical Cells 

Single cell sampling and a picoliter osmometer were used to measure the πcell of the 

sap taken from similar single root cortical cells of the three wheat varieties. Figs. 

6.1d - f demonstrates mean πcell in root cortical cells in response to 0 mM and 60 mM 

NaCl in root medium. Notably, all three varieties had similar πcell values under the 

control condition (5.9 ± 0.7 bar for Hereward, 5.2 ± 0.5 for Gamina and 5.9 ± 0.5 for 

Bohoth 105; n = 3 - 12) (Fig. 6.1 d - f).  

When salt was added to the root media, πcell increased continuously with time starting 

from 7 ±  0.6 bar, 6.6 ±  0.1 bar and  6.2 ± 0.4 bar at day 2 (for Hereward, Gamina 

and Bohoth 105), and then reaching 8.8 ± 0.5, 8.2 ±  0.4 and 9 ± 0.4 by the end of the 

experimental period. The difference in πcell between the control and salt treatment at 

day 8 is approximately 3 bar, which reflect the πcell of the external root medium (60 

mM NaCl). In salt treated plants, by day 8, T1/2 of πcell was found to be 4.6 days in 

Hereward, 4.3 days in Gamina and 2.1 days in Bohoth 105. A statistically significant 

difference in T1/2 between varieties was observed only in Bohoth 105 (Table 6.3). 
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Fig. 6.2 Log plot of the time course of root cortical cell turgor pressure (Pcell) during turgor recovery 

following salt stress of Hereward (a), Gamina (b) and Bohoth 105 (c). See Fig. 6.1 for details of cells. 

The difference between control and salt turgor pressure in Fig.6.1a – c is plotted logarithmically 

log(PNaCl – Pmean control) against time in Fig. 6.2. Half time (T1/2) calculated from log(2)/slope. The 

equations for the curves for each variety together with R
2
 values are included. 

 
Hereward Gamina Bohoth 105 

T1/2 (days) 6.3
a
 7.9

b
 1.7

c
 

R
2
 0.75 0.29 0.78 

Table 6.2 Half time (T1/2) of root cortical cell turgor pressure (Pcell) on day 2 to 8 of Hereward, 

Gamina and Bohoth 105 for the control treatment and following application of 60 mM NaCl. The 

difference between the control and salt turgor pressure in Fig.6.1a – c is plotted logarithmically 

(log(πNaCl – πmean control) against time in Fig. 6.2. Half time (T1/2) calculated from log(2)/slope, the 

equations for the period of liner curve for each variety with R
2
 values in Fig. 6.2. Letters, a, b and c 

comparing between varieties. Means followed by the same letters are not significantly different at P > 

0.05. 
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Fig. 6.3 Log plot of the time course of root cortical cell osmotic pressure (πcell) of Hereward (a), 

Gamina (b) and Bohoth 105 (c) at day 2 to 8 control treatment and following application of 60 mM 

NaCl. Each curve applies to osmotic pressure. Log(πNaCl – πmean control) in Fig.6.1d – f is plotted against 

time in Fig. 6.3. Half time (T1/2) estimated from log(2)/slope; the equations for the curves for each 

variety together with R
2
 values is included.  

 

 
2 to 8 (days) 

 
Hereward Gamina Bohoth 105 

T1/2 (days) 4.6
a
 4.3

a
 2.1

b
 

R
2
 0.97 0.96 0.74 

Table 6.3 Half time (T1/2) of root cortical cell osmotic pressure (πcell) of Hereward, Gamina and 

Bohoth 105 at day 2 to 8 for the control treatment and following application of 60 mM NaCl. The 

difference between control and salt osmotic pressure in Fig.6.1d – f is plotted logarithmically against 

time in Fig. 6.3. Half time (T1/2) estimated from log(2)/slope, with the equations for the curves for 

each variety together with R
2
 values in Fig 6.3. Letters, a and b compare between varieties. Means 

followed by the same letters are not significantly different at P>0.05. 
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6.4  Osmotic Adjustment 

Data in Fig. 6.1d - f show osmotic adjustment had begun by 2 days after NaCl 

addition by the accumulation of solutes in the cells. However, complete osmotic 

adjustment was only achieved by day 8, with a T1/2 of 4.6 days in Hereward, 4.3 days 

in Gamina, and 2.1 days in Bohoth (Fig. 6.1d – f and Table 6.3). Cell osmotic 

pressure (πcell) increased as a consequence of net solute accumulation. That in turn 

led to water uptake into the cell, which maintains Pcell. The data presented is 

considered to be supporting evidence that turgor recovery in the three varieties was 

due to equivalent changes in πcell by building up osmotically-active solutes in the 

protoplast via osmotic adjustment.  

6.5 Cation Concentrations in Cortical Cells  

To determine the inorganic cations contributing to osmotic adjustment, CZE was 

performed on sap samples obtained from single cortical cells of wheat root in 0 mM 

and 60 mM NaCl (Fig. 6.4 – 6.7). Table 6.1 demonstrates the distribution of cation 

(Na
+
, K

+
, Ca

2+
, Mg

2+
) concentrations in the three examined varieties of wheat. CZE 

confirmed that the solutes accumulated in the root cortical cells of all varieties under 

salt stress were largely Na
+ 

salts. 
 
This accumulation resulted in the observed increase 

in πcell. 
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6.5.1 Na
+
 Concentration 

All three varieties had Na
+
 concentrations in control roots of less than 17 mM (Fig 

6.4). The NaCl addition increased root Na
+
 concentrations in Hereward, Gamina and 

Bohoth 105 at day 8 by 149 ± 1.3 mM, 133 ± 14 mM and 122 ± 8 mM respectively. 

Na
+
 concentration significantly increased with time (P = 0.000, ANOVA of day 2, 5 

and 8) after 2 days following salt addition in the three varieties (Fig. 6.4). In all three 

varieties of salt-treated plants, Na
+
 concentration and πcell followed the same patterns. 

In salt-treated plants, Na
+
 concentration was found to be the highest throughout the 

whole experimental period, as compared with other ions. In addition, data in Table 6. 

1 demonstrate that Na
+
 concentration contributed to the πcell in cortical cells by 5.6 

bar for Hereward, 5.8 bar for Gamina and 6 bar mM for Bohoth 105 at day 8. 

 

Fig. 6.4 Na
+
 concentration in root cortical cell sap of Hereward (a), Gamina (b) and Bohoth 105 (c). 

Root cortical cells 4 - 6 cm from the root tip of individual plants was analysed on the first day after 

NaCl addition. Salt was added in two 30 mM doses over two days (the days were numbered after the 

first addition). Sodium concentration was measured using CZE. Each observation is the mean of 3 - 

12 cells taken from 3 – 6 individual plants. Difference in means Na
+
 concentration between treatments 

were always highly significant (P = 0.000 ANOVA of day 2, 5 and 8). Results are given as means ± 

SD. The three varieties accumulated Na
+ 

in their cells. 
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6.5.2 K
+
 Concentration   

In control plants, K
+
 concentration was found to be dominant cations (Fig. 6.5), in 

the range of 100 - 130 mM. However, when NaCl was added to root media, the K
+
 

concentration values had decreased by 2 days after NaCl addition (highly significant 

difference P = 0.000 between treatments). By the end of the experimental period, K
+
 

in Hereward and Gamina varieties had reached 27 ± 8.3 mM and 32 ± 3.1 mM 

respectively. In these two varieties of salt treated plants, K
+
 concentration followed 

the same patterns. However, in Bohoth 105, K
+
 concentration values had decreased 

by 2 days after NaCl addition (highly significant difference P = 0.000 between 

treatments), but then remained more or less (approximately 73 mM) constant for the 

rest of the experimental period.  

 

 

Fig. 6.5 K
+
 concentration in root cortical cell sap of Hereward (a), Gamina (b) and Bohoth 105 (c). 

Details as for Fig. 6.4, except for K
+
. Difference in means K

+
 concentration between treatments were 

always highly significant (P=0.000). Results are given as means ± SD. Potassium concentration 

decreased significantly (P= 0.000) in the three wheat varieties. 

6.5.3 Ca
2+ 

Concentration  

In Gamina, salt stress caused a significant increase in Ca
2+

 concentration (P = 0.007), 

which it was found to be average 20 mM for the whole experimental period (Fig. 
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6.6). In contrast, salt stress did not appear to affect Ca
2+

 concentrations in cortical 

cells of Hereward and Bohoth 105 varieties (Fig. 6.6). 

 

 

Fig. 6.6 Ca
2+

 concentration in root cortical cell sap of Hereward (a), Gamina (b) and Bohoth 105 (c). 

Details as for Fig. 6.4, except for Ca
2+
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6.5.4 Mg
2+ 

Concentration  

In Hereward variety, salt stress caused a decrease in Mg
2+

 concentration between day 

3 and 7 (P = 0.027) (Fig. 6.7). It was found to be as average of 5 mM for the whole 

experimental period. However, Mg
2+

 concentration values in Bohoth 105 variety 

statistically increased (P = 0.034), and had an average of 9 mM. In contrast, no 

statistically significant differences were found in Mg
2+

 concentration for Gamina. 

 

Fig. 6.7 Mg
2+

 concentration in root cortical cell sap of Hereward (a), Gamina (b) and Bohoth 105 (c). 

Details as for Fig. 6.4, except for Mg
2+

. 

6.5 Estimate of the Anion Concentration and its Valency 

The relationship between the sum of the cations measured and πcell is shown in Table 

6.1. As in previous chapters, anions were not measured. However some attempt can 

be made to describe them. The total cations are associated with anions. Table 6.1 

shows that to balance both πcell and net charge, this relationship corresponds to 

around 110 mEq of all the varieties anions of mean charge 1.06 - 1.39 under control 

condition (see explanation of calculation in Section 4.7). Under the salt condition, 

this corresponds to average of 161 mEq, 148 mEq and 171 mEq anions of mean 

0

4

8

12

16

20

0 1 2 3 4 5 6 7 8

m
M

 

a) 

0

4

8

12

16

20

0 1 2 3 4 5 6 7 8

Time after NaCl 

addition (d) 

b) 

0

4

8

12

16

20

0 1 2 3 4 5 6 7 8

Control Salt stressed

c) 

  



 
 

124 
 

charge 0.977 - 1.585 for Hereward, Gamina and Bohoth 105 respectively. In the 

three varieties, the charge balance up to 1.6 (Table 6.1). The high value of Z 

indicates either the presence of uncharged solutes and/or multivalent anions such as 

malate (as well as monovalent).  In Table 6.1, in order to calculate the value for Z, it 

was assumed that there were no significant unchanged osmotica. Previous SiCSA 

analyses of barley epidermis have shown that it contains negligible sugars (Koroleva 

et al., 1997). 

 6.7 Inter-Relationship of Cations (Na
+
 and K

+
) and Osmotic 

Pressure.  

Fig. 6.8 shows the relationship between Na
+ 

and K
+ 

concentration in root cortical 

cells of wheat. When NaCl was added to root media, Na
+
 concentration increased 

with time in all varieties (Fig. 6.2). Potassium concentration showed the opposite 

pattern under salt stress. However, in Bohoth 105, K
+
 concentration initially 

decreased after salt stress and then became more or less constant for the whole 

experimental period (Fig. 6.3). From Fig. 6.8, the relationship between Na
+
 and K

+
 

concentration can be seen to be linear in Hereward and Gamina, but not in Bohoth. 
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Fig. 6.8 Relationship between Na
+
 and K

+
 concentration in root cortical cell sap in Hereward (a), 

Gamina (b) and Bohoth 105 (c). (Data from Fig. 6.4 and 6.5). 

6.8 Discussion 

In the three varieties, the Pcell of the root cortical cells dropped rapidly within 48 

hours by ≤ 3 bar, and turgor recovery occurred after 48 - 72 hours (Fig. 6.1a - c). In a 

similar pattern to Pcell, πcell also rapidly increased following salt stress and then 

increased gradually with time before remaining constant at about 3 bar by 144 - 169 

hours which reflect the change in the external medium (about 3 bar NaCl in 

medium). Clearly, Pcell recovery varied between the different varieties. Fig. 6.1a - c 

shows that half time (T1/2) took at least 6.3 days for Hereward, 7.9 days for Gamina 

and 1.7 days for Bohoth 105 for the Pcell to reach the stable adjusted level (Table 

6.2).  However, also a lower osmotic pressure T1/2 (2.1 days) was found in Bohoth 

105 than in the others (Table 6.3). Cortical cells of Bohoth 105 had faster osmotic 

adjustment and rapid πcell than change the other varieties (Table 6.2 and 6.3). 

The total contribution of ion uptake in the cortical cell osmotic adjustment is 

according to van t’Hoff law (see Shabala et al., 2000), about 3 bar and hence changes 

in πcell caused by salt stress would be achieved by the uptake of Na
+
 (Table 6.1 and 
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Fig. 6.2). This means that osmotic adjustment depended on the uptake of Na
+
 and the 

loss (mainly) of K
+
. In the three varieties, the πcell of control cortical cells was about 

5.7 bar (Table 6.1 and Fig.4.1d - f). This πcell agrees with a report on cortical cells of 

barley (7.1 bar) by Pritchard (1996), and compares well with the overall estimated 

solute content. The overall cations equal about 131 mM and sum to 140 mEq. If this 

was associated with monovalent anions, for instance as Cl
-
 or NO3

-
 (Chapters 4 and 

5), we expected πcell would be about 6.5 bar (approximately 260 mOmol.kg
-1

).     

For a Pcell value of about 5 bar in the three varieties (Fig 6.1), the ψcell of control 

cortical cells was about -1 bar, shows much higher values than that of epidermal leaf 

cells (Chapter 4). This ψcell is equivalent to reports of that of cortical cells of maize (-

2 bar) by Pritchard et al. (1996). And of Pinus pinaster (-3 bar) by Triboulot et al. 

(1995). 

In all three varieties, addition of salt to the root medium dropped the ψcell of the root 

cortical protoplast by about 4 - 4.7 bar during the whole experimental period (Fig 

6.9). These changes could be due to πcell changes and, hence, it reflected the 3 bar 

stress applied. This change represents an increase of πcell (decline of ψcell) of the 

cortical protoplast.  

The contribution of ions to the cortical protoplast osmotic pressure was found to be 

132 mEq of Na
+

, 10 mEq of Ca
2+

and a loss of 79 mEq of other cations (K
+ 

and Mg
2+

) 

for Hereward; 128 mEq of Na
+
, 28 mEq of Ca

2+
 and a loss of 93 mEq of other 

cations for Gamina; and 106 mEq of Na
+
 and a loss of 55 mEq of other cations for 

Bohoth 105 by day 8 (Table 6.1 and Fig. 6.2 - 6.5). In all varieties, this corresponds 

to an increase of 3.5 bar of monovalent anions.  
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Potassium concentration in Hereward and Gamina was decreased significantly by 

salt stress with time compared with control plants. A similar finding was found by 

Tavakkoli et al. (2010) in barley. While K
+
 concentration was increased within 24 h 

and remained unchanged with time. The conclusion is that Na
+
 salt was found to be 

predominant and that similar amounts were found in cortical cells of three varieties 

(Fig. 6.4). In Bohoth 105 cells, turgor recovery was found to be faster than in 

Hereward and Gamina. However, osmotic recovery (T1/2 = 1.7 days) was found to be 

faster in Bohoth 105 as compared with other varieties (Table 6.2), suggesting that 

Bohoth 105 is the more salt tolerant plant.  

The condition of the mature root cells in the samples in this study was affected by the 

fact that they were grown hydroponically. The mature cells were being used for 

transport, and not redundant, meaning that they needed to be kept alive by the plant. 

For this, they had to be able to effect osmotic adjustment in response to osmotic 

stress, and maintain Pcell. While root endodermal cells actively exclude sodium, to 

prevent its translocation, mature root cells use Na
+
 for osmotic adjustment.  Different 

parts of the root therefore play different roles. The findings in this study were 

specifically for mature cortical cells, which were chosen for pragmatic reasons. 

Having considered root turgor, osmolality and cations for the three wheat varieties in 

the above, the next chapter will consider the same parameters for the halophyte S. 

maritima.  
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Fig. 6.9 Water potential in root cortical cell of Hereward (a), Gamina (b)and Bohoth 105 (c) following 

addition of 60 mM NaCl. Ψcell = Pcell - πcell.  
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Chapter 7: Turgor, Osmolality and Cations in 

Roots of S. maritima 

7.1 Introduction 

As mentioned earlier in the introduction, this study uses the known halophyte S. 

maritima as a comparison to the wheat varieties in order to investigate the extent to 

which their parameters are similar. This chapter therefore turns to the water and 

solute relations of S. maritima roots.  

Cells four to six cm from the root tip of intact plants were studied with regards Pcell, 

πcell and cations in situ every day from days 2 to 8 (salt πcell), plus days 14 and 21 

(salt Pcell) after the addition of 200 mM NaCl. They were also studied at day 2, 5 and 

8 (control πcell), plus at days 14 and 21 for the control treatment Pcell (0 mM NaCl).  

7.2 Turgor Pressure in Root Cortical Cells  

After application of NaCl, Pcell of root cortical cells changed exponentially increased 

with time until a new (nearly) stationary state was reached (Fig. 7.1a). Cells had Pcell 

values under the control condition of 6.4 ± 1.1 bar (n = 3 – 12). A significant 

difference (P = 0.000) in the Pcell of the cells was found between 0 mM and 200 mM 

NaCl treatments.  

When salt was added to the root medium, Pcell decreased by 5.3 bar and then 

increased gradually until it reached 6.7 bar by day 21 (Fig. 7.1a). Turgor pressure 

recovery had started by 48 h from stress initiation. Cortical Pcell was restored over 

some 8 days, with a T1/2 of 3.2 days (Fig7.1a). This result shows the biphasic 

response (fast Pcell decrease and slower Pcell recovery) after 200 mM NaCl addition. 
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The turgor pressure increase reflected the solute uptake rate and/or synthesis in the 

root cortical cells. The first phase of the biphasic Pcell relaxation is due to the loss of 

water of the cortical cells to the external medium, whilst the second phase is due to 

an increase in πcell of the cells as result of transport, of synthesis of solutes, or of 

both.  

 
Fig. 7.1 Time course of root cortical cell turgor pressure (Pcell) and osmotic pressure (πcell) of S. 

maritima for 0 mM control and following application of 200 mM NaCl. Salt was added in two 100 

mM doses over two days (the days are numbered first addition). Root cortical cells were prepared 4 - 

6 cm from the root tip, for 3 - 12 cells taken from 3 - 6 individual plants. Cell turgor pressure was 

measured using a cell pressure probe. Cell osmotic pressure was measured using single cell sampling, 

and a picolitre osmometer. Difference in means Pcell and πcell between treatments were always highly 

significant (P= 0.000 ANOVA of day 2, 5 and 8). Each point is the mean ± SD.  
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 Fig. 7.2 Water potential in root cortical cell of S. maritima following addition of 200 mM NaCl. Ψcell 

= Pcell - πcell. 
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2 30 ± 5 125 ± 18 69 ± 4 60 ± 8 21 ± 0.7 1 ± 0.2 10 ± 7 2 ± 5 130 188 161 191 292 ± 26 360 ±  23 313 386 183 198 0.9 1 

3 
 

161 ± 5 
 

53 ± 2 
 

2 ± 0.1 
 

3 ± 

19  
219 

 
224 

 
450 ± 26 

 
483 

 
264 

 
0.8 

4 
 

166 ± 9 
 

50 ± 3 
 

3 ± 0.0 
 

3 ± 3 
 

222 
 

228 
 

490 ± 20 
 

526 
 

304 
 

0.8 

5 25 ± 5 155 ± 3 86 ± 8 52 ± 3 13 ± 0.1 4 ± 0.1 9 ± 9 3 ± 4 133 214 155 221 284 ± 13 528 ± 27 305 567 172 353 0.9 0.6 

6 
 

187 ± 3 
 

50 ± 1 
 

4 ± 0.1 
 

4 ± 2 
 

245 
 

253 
 

543 ± 20 
 

583 
 

338 
 

0.7 

7 
 

220 ± 11 
 

39 ± 9 
 

5 ± 0.0 
 

6 ± 3 
 

270 
 

281 
 

558 ± 31 
 

599 
 

329 
 

0.9 

8 15 ± 1 240 ± 4 99 ± 8 18 ± 1 9 ± 0.04 1 ± 0.0 6 ± 11 6 ± 3 129 265 144 272 292 ± 19 543 ± 25 313 583 184 318 0.8 0.9 

Table 7. 1 Cation concentrations and osmolality of the sap of single cortical cell of S. maritima root. Cortical cells (n = 3 - 12) were selected 4 - 6 cm from the root 

tip individual plants. Cell sap was analysed every day during the salt treatment and three times during the 7 days of the control treatment. The relationship between 

the osmolality of cations was obtained by picoliter osmometer and molarity was obtained by capillary zone electrophoresis (CZE). Calculations of the contribution 

of cations to the cell osmotic pressure (πcell) were made by multiplying the sum of the concentrations by the osmotic coefficient (γ) of NaCl 0.932 (Robinson & 

Stokes, 2002). The values of ≈ 1.0 for the average anion charge suggest monovalent ions (Cl
-
 or/or NO3

-
). Results are given as means ± SD. 
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Fig. 7.3 Log plot of the time course of root cortical cell turgor pressure (a) and osmotic pressure (b) 

during turgor recovery following salt stress of S. maritima. See Fig. 7.1 for details of cells. The 

difference between control and salt turgor pressure in Fig.7.1a plotted logarithmically (log(PNaCl – 

Pmean Control) against time in Fig. 7.3. Half time (T1/2) calculated from log(2)/slope. The equations for 

the curves for each variety together with R
2
 values are included. 

 

7.3 Osmotic Pressure in Cortical Cells 

Cells had similar πcell values of 7.1 ± 0.5 bar (n = 3 - 12) under control conditions 

during the whole experimental period. When salt was added to the root medium, πcell 

increased gradually over the subsequent days and reached 13.6 bar for the rest of the 

experimental period (Fig. 7.1b). Significant differences between treatments were 

observed at the 5 % level (Fig. 7.1b). The difference in πcell between control and salt 

treatment is around 6.3 bar by day 8, which reflects the increased πcell of the external 

root medium in the 200 mM NaCl treatment. These data (Fig. 7.1) show that the 

magnitude (approximately 7.1 bar) of the πcell in control root cells is reflected by the 

Pcell.  
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7.4 Osmotic Adjustment 

Data in Fig. 7.1b shows osmotic adjustment had started by day 2 after NaCl addition, 

by accumulation of solutes in the cells. Root πcell increased as a consequence of net 

solute accumulation. It is possible that this, in turn, led to water uptake into the cell, 

thus maintaining Pcell. In root cortical cells, turgor recovery was followed by 

equivalent changes in πcell by building up solutes in the protoplast by osmotic 

adjustment. 

7.5 Cation Concentrations in Single Cortical Cells  

To determine the inorganic cations contributing to osmotic adjustment, CZE was 

performed to examine the mean of cation concentration of the sap sample obtained 

from the single cortical cells. Table 7.1 demonstrates the distribution of cation (Na
+
, 

K
+
, Ca

2+
, Mg

2+
) concentrations contributing to osmotic adjustment. The results show 

that the cations corresponded to the osmotic adjustment in the cells. The solutes 

accumulated in the root cortical cells of S. maritima under salt stress were largely 

Na
+ 

salts.
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7.5.1 Na
+
 Concentration 

Cells had Na
+
 concentration in the control (0 mM NaCl) of less than 30 mM (Fig. 

7.4). Root cortical cells accumulated significantly higher Na
+
 concentration (P≤ 0.05) 

by 2 days after salt addition. The concentration increased gradually during the whole 

experimental period until it reached 240 ± 15 mM (Table 7.1 and Fig. 7.4). 

Potassium and Na
+
 concentrations were found to have the highest values in both the 

control and salt treatments during the whole experimental period as compared with 

other ions (Fig.7.4 and 7.5). Under salt stress, Na
+
 concentration contributed to the 

πcell of cortical cells of plant roots by 225 mEq at day 8.  

 

Fig. 7.4 Na
+
 concentration in cortical cell sap of S. maritima roots. Cortical cells from 4 - 6 cm away 

from the root tip of individual plants were analysed at the first day after NaCl addition. Salt was added 

in two 100 mM doses over two days (the days are numbered after first addition). Na
+
 concentration 

was measured using capillary zone electrophoresis (CZE). Each observation is the mean of 3 - 12 cells 

taken from 3 - 6 individual plants. Difference in means Na
+
 concentration between treatments were 

always highly significant (P = 0.000 at 5 % level).Results are given as means ± SD. From the graph, 

plants accumulated more Na
+ 

in root cells under stress. Sodium uptake played a major contribution to 

osmotic adjustment. 

 

0

40

80

120

160

200

240

280

0 1 2 3 4 5 6 7 8

m
M

 

Time after NaCl addition (d) 

Control Salt stressed



 

136 
 

7.5.2 K
+
 Concentration  

Generally, in 0 mM NaCl plants, K
+
 concentration increased with time and was 

found to have the highest values for the rest of the experimental period as compared 

with other ions (Table 7.1). Potassium concentrations ranged from 69 ± 3 mM at day 

2 to 99 ± 10 mM at day 8. When 200 mM NaCl was added to root media, K
+
 

concentration decreased from 60 ± 3 mM at day 2 to 18 ± 3 mM at day 8 (Fig. 7.5). 

Potassium was found in the reverse pattern to Na
+
.  

 

Fig. 7.5. K
+
 concentration in cortical cell sap of S. maritima roots. Details as in Fig. 7.3 
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7.5.3 Ca
2+ 

Concentration  

Under the control condition the Ca
2+

 concentration was less than 21 ± 1.6 mM, and 

decreased with time (Fig. 7.6). Salt stress caused a significant reduction in Ca
2+ 

concentration, but with a small subsequent recovery.  

 

Fig. 7.6 Ca
2+

 concentration in cortical cell sap of S. maritima roots. Details as in Fig. 7.3. 
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7.5.4 Mg
2+

Concentration 

The cell level of Mg
2+

 in control conditions (0 mM NaCl addition) was less than 10 

mM (Fig. 7.7).  Salt stress caused a reduction in Mg
2+

 concentration for the rest of 

the experimental period, although with a small recovery. Magnesium control and salt 

treatment plants had similar patterns to Ca
2+.

 

 

Fig. 7.7 Mg
2+

 concentration in cortical cell sap of S. maritima roots. Details as in Fig. 7.3. 
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7.6 Estimate of the Anion Concentration and its Valency 

The relationship (and its implications) between the sum of the cations and the 

measured πcell of samples is shown in Table 7.1. The calculated charges for the 

anions indicate monovalent ions, presumably chloride (see Section 4.7) if no 

uncharged solutes are present. In Table 7.1, in order to calculate the value for Z, it 

was assumed that there were no significant unchanged osmotica. Previous SiCSA 

analyses of barley epidermis have shown that it contains negligible sugars (Koroleva 

et al., 1997). 

7.7 Inter-Relationship of Cations (Na
+
 and K

+
) and Osmotic 

Pressure.  

When 200 mM NaCl was added to root media, cell Na
+
 concentration increased with 

time (Fig. 7.4). Potassium however, showed the opposite pattern (Fig. 7.5). Fig. 7.8 

shows that a 3:1 linear relationship is found between the two ions.  

   

Fig. 7.8 Relationship between Na
+
 and K

+
 concentration in root cortical cell sap in S. maritima. 
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7.8 Discussion                 

The aim of this work was to compare the response of wheat varieties of varying salt 

tolerance with the impact of 200 mM NaCl on the πcell and cation responses in root 

cortical cells of the halophyte S. maritima. The osmotic pressure of cortical cells 

increased with time in S. maritima. At the same time, Pcell decreased rapidly by about 

5.3 bar, this drop was of half the order of the 200 mM (≈10 bar) NaCl applied. The 

change in πcell was followed the change in Pcell. Turgor pressure recovery started to 

increase within 48 hours, and the half time (T1/2) took at least 3.2 days for the turgor 

to reach that stable adjusted level, while T1/2 in πcell was found after 1.3 days (Fig. 

7.3).  

Out of the three wheat varieties, the most similar results to this were obtained for 

Bohoth 105 (Chapter 6), which had a half time for Pcell of 1.7 days and for πcell of 2.1 

days, suggesting that Bohoth 105 and S. maritima had the most similar behaviour 

response to salt stress. 

The osmotic pressure for control root cortical cells of S. maritima was 7.1 bar, the 

Pcell was 6.4 bar, ψcell of was -0.8 bar (Fig.7.2). These findings were similar to those 

obtained for cortical cells of wheat (Chapter 6). Total cations were equal to 129 mM 

by day 8. This value is equivalent to a sum of 144 mEq. If this is associated with 

anions (monovalent), for instance as Cl
-
 or NO3

-
 (Chapter 4, 5 and 6) (Fricke et al., 

1994a and b), we anticipate πcell could be about 268 mOsml.kg
-1 

(6.7 bar). 

When salt was added to the root medium, ψcell of cortical apoplast decreased by -7.7 

bar (decrease in ψcell) after the second addition of salt, and then remained stable 

around -8.8 bar over the remaining period of the experiment (Fig. 7.2). These are 
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similar results to those observed for leaf epidermal cells of Gamina (Chapter 4), and 

double that of root cortical wheat cells. This change could be due to the change in 

πcell, which is equivalent to the change in the external medium of the root (200 mM 

NaCl ≈ 10 bar). 

The increase in πcell is due to the accumulation of 225 mEq of Na
+
 and the loss of 97 

mEq of both K
+
 and Ca

2+
 (Table 7.1). For monovalent anions, this is equivalent to an 

increase of 6.4 bar (Table 7.1). The total contribution of ions accumulated during the 

osmotic adjustments of the cells was 6.4 bar (256 mOmol.Kg
-1

). This change in πcell 

due to salt stress would be achieved by the accumulated Na
+
 salt (Table 7.1 and Fig. 

7.3). Sodium accumulated in cortical S. maritima was twice as high as in cortical 

cells of wheat. This result is in agreement with previous studies (Mori et al., 2010). It 

has been found that Na
+
 is the main inorganic cation in tissues of S. salsa 

contributing to the maintenance of osmotic pressure under salt stress. However, in S. 

maritima osmotic adjustment was accomplished by both Na
+
 uptake and loss of K

+
 

and Ca
2+ 

(Table 7.1 and Fig. 7.3 – 7.5). 

In the above chapters, the parameters of turgor pressure, osmotic pressure and 

cations have been considered, for both leaves and roots. The next chapter will turn to 

the biomechanical parameter of cell wall elasticity and to the hydraulic conductivity 

of the cell membrane. 
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Chapter 8: Volumetric Elastic Modulus, Half 

Time and Hydraulic Conductivity in Wheat and 

S. maritima  

8.1 Introduction 

Turgor and osmotic pressure are not the only water relations parameters that could 

contribute to salt tolerance. In this final chapter, we look to several other such 

parameters (Zimmermann & Steudle 1978) for evidence of their potential 

contribution to salt tolerance in wheat and S. maritima. 

Volumetric elastic modulus (ԑcell) is a biomechanical parameter that contributes to the 

plant’s response to changing water potential in the external environment by affecting 

the balance of turgor regulation and osmotic adjustment processes. Indeed, it is 

considered that when under stress conditions, changing the ԑcell is the first response of 

plant cells in the series of adjustments made to minimize the effects of osmotic stress 

(Tomos, 1988). By increasing the cell wall elasticity with the onset of stress, the 

decrease in cell volume maintains turgor pressure (Hsiao & Jing, 1987). An 

alternative strategy is to decrease elasticity in order to lower leaf water potential and 

thus decrease water loss (Kramer and Boyer, 1995; Navarro et al., 2007). Whilst it is 

clear that cell wall elasticity is an important mechanism, the ways in which it is used 

in different species is not completely understood (De Diego et al., 2013).  

Having more rigid cell walls may indeed have benefits, despite their inability to 

maintain turgor. One is that they may help successful rehydration when stress is 

removed, in terms of preserving the integrity of the physiology of a plant, which has 
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adjusted osmotically by accumulating solutes. Another is that they may be better than 

elastic walls at maintaining low Ψcell and thus increasing water potential gradient 

(Bowman & Roberts, 1985).  

A second important parameter to consider is hydraulic conductivity. Under saline 

conditions, both the ionic balance and water relations are affected, but the latter is a 

more immediate response than the former. Hydraulic conductivity (Lp) controls the 

process of changing the cell water potential.  Indeed, physically, cereals can be seen 

as hydraulic conductors that profit from the natural water potential gradient between 

soil and atmosphere to upwardly conduct both water and solute nutrients (Knipfer 

and Fricke, 2010). 

Water flow through all parts of a plant is limited by hydraulic resistance.  An analogy 

can be drawn with Ohm’s Law (Frensch, 1997). However, it is the root hydraulic 

conductivity that is a particularly important parameter that controls flow rate 

(Steudle, 2000), and root water movement can be seen as an osmotic pressure.  Root 

membranes are therefore a key part of this process (Knipfer and Fricke, 2010), since 

root structures are determinants of their physical characteristics and must be 

understood in this context (Steudle, 2000; Steudle and Peterson, 1998). A 

membrane’s hydraulic conductivity and osmotic water permeability are 

proportionally related, and its ability to transport water depends on these gradients 

(Steudle and Henzler, 1995). 

In order to identify any trend that might be related to the ability of the plant to 

withstand salt stress, the response to salt stress of single cell volumetric elastic 

modulus (εcell), half time (T1/2) and hydraulic conductivity (Lp) were analysed in 

wheat and S. maritima leaves and roots. The cell pressure probe (see Chapter 2) was 
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applied to the same cell types exposed to the same treatment as described in Chapters 

3 - 7.  

V
ar

ie
ty

 

T
re

at
m

en
t 

(m
M

 N
aC

l)
 

A V ∆P/∆V T1/2 Π εcell Lp x 10
6
 

(mm
2
) (pl) (bar/pl) (s) (bar) (bar) (cm.s

-1
bar

-1
) 

H
er

ew
ar

d
 

0 0.0134 108 1.8 ± 0.1 2.4 ± 0.3a 14.4 ± 0.3 177 ± 20a 1.02 ± 0.02a 

60 0.0133 107 1.7 ± 0.3 2.8 ± 0.6a 18.5 ± 0.2 198 ± 19b 1.04 ± 0.24a 

G
am

in
a 0 0.0137 111 1.6 ± 0.2 2.8 ± 0.4a 13.6 ± 0.3 181 ± 23c 1.16 ± .015a 

60 0.0136 110 1.5 ± 0.3 3.3 ± 0.9a 15.7 ± 0.5 167 ± 28c 1.11 ± 0.03a 

B
o

h
o

th
 1

0
5
 

0 0.0136 109 1.4 ± 0.2 2.8 ± 0.5a 17.5 ± 0.3 182 ± 31e 1.13 ± 0.04a 

60 0.0131 103 1.7 ± 0.3 3 ± 0.4a 20.9 ± 0.2 156 ± 35f 1.21 ± 0.02a 

Table 8.1 Cell water relations parameters of leaf epidermal cells of control and salt treated Hereward, 

Gamina and Bohoth 105 (60 mM NaCl). Change of turgor pressure per change in volume (∆P/∆V), 

half time for water exchange (T½), osmotic pressure (πcell), and volumetric elastic modulus [εcell 

values have been calculated using several cell volume taken from living cells (see Chapter 2)] and Lp 

values of the cell membrane. Results are given as means ± SD. Letters a, b, c, d, e and f are comparing 

between control and salt treatments. Means followed by the same latters are not significantly different 

at P>0.05.  

8.2 Volumetric Elastic Modulus of Wheat Leaf Epidermal Cells  

Examples of ΔP/ΔV curves for each of the wheat varieties are shown in Fig. 2.2. 

Mean cell volumes determined from longitudinal sections were used (Chapter 2). 

Salt stress significantly increased the εcell in Hereward (Table 8.1) and significantly 

decreased the εcell in Bohoth 105, while there was not a difference between the 

control and salt treatment in Gamina (Table 8.1). 

8.3 Half-Time of Water Exchange and Hydraulic Conductivity of 

Wheat Leaf Epidermal Cells  

Pressure-relaxation curves for exosmotic and endosmotic water flows from 

epidermal cells revealed rapid equilibrium. The pressure-relaxation curves were 
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fitted by eye (Fig. 8.3 – 8.5). It can be seen from the figures that the nature of the raw 

data makes a precise estimate of T1/2 very difficult. The value of Lp derived can only 

be approximate. All three varieties showed no significant changes in T1/2 water 

exchange in response to salt stress throughout the experimental period (Table 8.1). 

The εcell and the T1/2 value, together with average value for cell volume (V), and 

surface area (A) were used to calculate Lp (see Chapter 2 for detail). The cells chosen 

for Pcell
 
and elasticity measurements were cylindrically shaped to improve the 

estimates of V and A. The cell volumes were similar between treatments and varieties 

(Table 8.1).  

8.4 Volumetric Elastic Modulus in Root Cortical Cells of Wheat and 

S. maritima.  

Examples of ΔP/ΔV curves for each of the wheat varieties and for S. maritima are 

shown in Figs. 8.1 and 8.2. Mean cell volumes were determined from root 

longitudinal and transverse sections (Chapter 2). Salt stress significantly decreased 

the εcell in all plants (Table 8.2). The εcell decreased in root cortical cell by 26 %, 

43 %, 33 % and 54 % in Hereward, Gamina, Bohoth 105 and S. maritima 

respectively (Table 8.2). In both Hereward and Gamina, εcell decreased after salt 

addition by day 2 and then started to recover its value reaching 192 bar and 158 bar 

by day 8 respectively. In contrast, in Bohoth 105 and S. maritima, εcell was decreased 

after salt addition by day 2 and then remained unchanged (Table 8.2). 
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Fig. 8.1 ∆P/∆V curves for root cortical cells of Hereward (a), Gamina (b) and Bohoth 105 (c) varieties 

as obtained by pressure probe (cell wall elasticity measurements). A pressure pulse ΔP is applied to 

individual cells and the resulting change in volume (ΔV) is measured (The sigmoidal shape of the 

curve is due to water flow across the cell membrane during the experiment). The dp/dv used is that 

extrapolated to ΔV = 0). 

 

Fig. 8.2 ∆P/∆V curve for S. maritima root cortical cells. Details as in Fig. 8.1. 

 

8.5 Hydraulic Conductivity in Root Cortical Cells of Wheat and S. 

maritima.  

Pressure-relaxation curves for exosmotic and endosmotic water flows from root 

cortical cells revealed rapid equilibrium (Table 8.2). The cortical cell volume for 
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both the control and the salt treatment was broadly similar for the three varieties. In 

S. maritima, a higher cell volume was found for the salt condition as compared to the 

control.  Cell volume in Bohoth 105 most closely resembled this, whilst Hereward 

and Gamina had similar values to each other.  No significant change in water 

exchange (Lp) was seen in any of the varieties.  

 

Fig. 8.3. Pressure – relaxation curves from root cortical cells of Hereward wheat determined by the 

cell pressure probe. Details as in Fig. 8.2. 

 

Fig. 8.4 Pressure – relaxation curves from root cortical cells of Gamina wheat determined by the cell 

pressure probe (Chapter 2). Details as in Fig. 8.2. 
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Fig. 8.5 Pressure – relaxation curves from root cortical cells of Bohoth 105, as determined by the cell 

pressure probe Details as in Fig. 8.2 

  

c) 
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t Time A V ∆p/∆v T1/2 πcell εcell Average εcell Lp x 106 

Average Lp 

x 106 

(d) (mm2) (pl) (bar/pl) (s) (bar) (bar) (bar) (cm s-1 bar-1) (cm s-1 bar-1) 

H
er

ew
ar

d
 

0 2 to 8 0.03 270 
0.5 ± 0. 2.3  

0.5 
6 135 135 ± 62a 1.7 1.7a 

4 

 

2 

  
0.36 ± 0.1 

2.2  

0.6 
7 

99 

 

2.3 

 

 
3 

  
0.29 ± 0.1 - 7.2 80 

 
- 

 

 
4 

  
0.4 ± 0.1 

2.9  

0.7 
7.5 110 

 
1.6 

 

60 5 0.04 275 0.26 ± 0.1 
2.6  

0.9 
7.8 71 95 ± 35b 2.7 2.0a 

 
6 

  
0.4 ± 0.1 

2.8  

0.9 
8 110 

 
1.6 

 

 
7 

  
0.3 ± 0.1 

2.6  

0.9 
6.8 82 

 
2.3 

 

 
8 

  
0.4 ± 0.2 

2.5  

1.1 
8.1 110 

 
1.8 

 

G
am
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0 2 to 8 0.03 279 0.68 ± 0.2 
2.7  

2.7 
5.3 190 190 ± 54c 1.1 1.1b 

 

2 

  
0.3 ± 0.2 

2.3  

0.2 
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2.8 

 

 
3 

  
0.3 ± 0.1 

2.9  

0.1 
7 79 

 
2.2 

 

 
4 

  
0.4 ± 0.01 

2.6  

0.6 
7.2 105 

 
1.9 

 

60 5 0.03 263 0.6 ± 0.3 
2.8  
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7.5 158 109 ± 33d 1.2 1.9b 
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0.6 ± 0.2 

2.5  

0.9 
7.9 158 

 
1.3 

 

 
7 

  
0.3 ± 0.01 

2.5  

0.7 
8 79 

 
2.5 

 

 
8 

  
0.4 ± 0.1 3 8.2 105 

 
1.6 
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0 2 to 8 0.01 229 0.65 ± 0.3 
2.3  

0.4 
6 149 149 ± 50e 1.6 1.6a 
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0.5 ± 0.1 

2.1  

0.4 
6.2 
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2.4 

 

 
3 

  
0.3 ± 0.1 

2.1  

0.3 
6.9 65 

 
3.8 
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0.4 ± 0.1 

2.1  

0.1 
7.8 87 

 
2.9 

 

60 5 0.01 218 0.5 ± 0.1 
2.4  

0.3 
8.7 109 100 ± 20f 2.1 1.9a 

 
6 

  
0.5 ± 0.1 

2.7  

0.3 
8.9 109 

 
1.8 

 

 
7 

  
0.4 ± 0.2 

2.4  

0.6 
9.0 87 

 
2.5 

 

 

 
8 

  
0.6 ± 0.8 

2.7  

0.3 
9.0 131 

 
1.5 

 

S
. 

m
a
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m

a
 

0 2 to 8 0.01 242 1.1 ± 0.4 
5.2  

0.8 
7.3 267 267 ± 79g 3.5 0.35a 

 

2 

  
0.4 ± 0.1 

4.1  

1.2 
9 

110 

 

0.53 

 

 
3 

  
0.4 ± 0.1 

2.6  

0.7 
11.3 110 

 
0.83 

 

 
4 

  
0.4 ± 0.2 

2.8  

0.3 
12.3 110 

 
0.76 

 

200 5 0.01 275 0.5 ± 0.2 
2.6   

0.5 
13.2 137 122 ± 14h 0.67 0.76a 

 
6 

  
0.5 ± 0.3 

1.8  

0.3 
13.6 137 

 
0.96 

 

 
7 

  
0.5 ± 0.1 - 13.9 137 

 
- 

 

 
8 

  
0.4 ± 0.1 

2.8  

0.1 
13.6 110 

 
0.76 

 

Table 8.2 Cell water relations parameters of root cortical cells of control and salt treated Hereward, 

Gamina, Bohoth 105 (60 mM NaCl) and S. maritima (200 mM NaCl). Change of turgor pressure per 

change in volume (∆P/∆V), half time for water exchange (T½), osmotic pressure (πcell), volumetric 

elastic modulus. V and A determination was from fixed and sectional material. Results are given as 

means ± SD. Letters a, b, c, d, e, f, g and h compare between control and salt treatments. Means 

followed by the same letters are not significantly different at P>0.05.  
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8.6 Discussion  

In terms of our results for volumetric elastic modulus, the values for all varieties of 

wheat under control conditions were comparable to those found in epidermal cells of 

Tradescantia virginiana (Zimmermann et al., 1980) and in Avicennia germinans (L) 

(Suarez et al., 1998). In the salt condition, for Hereward, εcell was 198 bar, as 

compared to 177 bar in the control (Table 8.1).  Elsewhere, it has been found that 

elastic modulus increases in salt stress conditions for shoot bulk in Alternantherap 

hiloxeroides (Mart.) Griseb, due to the higher concentrations of solutes (Bolanos & 

Longstreth, 1984), and in three species from mangrove ecosystems (Rada et al., 

1989).  

Meanwhile, Bohoth 105 leaf had increased cell wall elasticity in the salt condition 

(lower εcell ) (Table 8.1). This can be interpreted as a salt-adaptive mechanism. 

Similar changes have been seen in Gutierrezia sarothrae (Wan et al., 1998) and in 

Avicennia germinans (Suarez et al., 1998). In Gamina, however, salt stress did not 

result in a change in cell wall elasticity.  

A decrease in εcell together with an increase in solute concentration can help plants 

cope with hypersalinity, as seen in H. vulgare seedlings (Perez-Lopez et al., 2010),  

by aiding turgor maintenance and water uptake. Additionally, the risk of damage to 

cells is minimized (Ruiz-Sanchez et al., 1997).  

For S. maritima, the values of εcell for cortical root cells under salt stress were around 

half of those obtained in the control plants (control, 267 ± 79 bar; NaCl-treated, 122 

± 14 bar). These findings indicate a more rigid cell wall for S. maritima, which then 

tended to become more elastic under salt stress. In comparison with the three wheat 

varieties, under control conditions cortical root cells in S. maritima had a 
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significantly higher εcell than the wheat controls (Table 8.2), again suggesting more 

rigid cells. A similar decrease in εcell under salt stress has been observed in field 

beans (Elston et al., 1976) and two genotypes of wheat (Rasico et al., 1988). For all 

plants, the values for ԑcell in control root cortical cells were comparable to values that 

have been found in control barley cortical cells (Steudle & Jeschke, 1983).  

In terms of hydraulic conductivity, for all plants the Lp values of leaf epidermal cells 

and root cortical cells showed no significant difference between the salt and control 

treatments (Table 8.1 and 8.2).  
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Chapter 9: Final Discussion 

9.1 Context                      

In this study, we investigated in two plants (three varieties of wheat and S. maritima) 

differing in their tolerance to salt, the water relations of single cells and the 

biophysical parameters controlling plant growth under salt stress. We also looked at 

the cation accumulation that may contribute to salt tolerance and at which parameters 

and cations contribute to the osmotic adjustment that occurs under salt stress. The 

main finding was that one of the varieties of wheat – Bohoth 105 – behaved under 

salt stress in a way that was noticeably more similar to the halophyte (S. maritima) 

than the other two varieties. 

Data presented in the previous chapters of this study show that all plants grown in 

low external water potential can regulate leaf epidermal and root cortical cell turgor 

and complete their osmotic adjustment to adapt to change in the external medium. It 

is well known that several plants accumulate solutes in leaves and roots in response 

to a decrease in external water potential by using osmotic adjustment mechanisms. 

Examples of these are Thinopyrum bessarabicum (Gorham et al., 1985), S. maritima 

(Clipson et al., 1985 and Reimann, 1992), Atriplex canescens  (Glenn et al., 1996) 

and Chenopodium quinoa Wild (Orsini et al., 2011). All of these plants used Na
+
, Cl

-
 

and K
+
 to achieve osmotic adjustment and maintain Pcell. 

The data in the previous chapters (Chapters 4, 5, 6 and 7) indicate that osmotic 

adjustment in epidermal and cortical cells is an important component of the salt 

tolerance mechanisms of both wheat and S. maritima. This conclusion is based on 

several observations. For example, for in the three wheat varieties under salt stress, 
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turgor regulation was achieved by solute uptake in plant cells. As has elsewhere been 

suggested (Wyn Jones & Pritchard, 1989; Bohnert et al., 1995), changes in solute 

uptake in response to low external water potential provide rapid (within a few 

minutes) osmotic adjustment and maintain turgor. The response in the cortical root of 

the three wheat varieties studied after 60 mM NaCl addition was biphase (a rapid 

decrease in Pcell, followed by slower Pcell recovery), which was as expected, i.e. an 

initial passive response followed by active osmotic adjustment.  

In the present study, turgor pressure was measured starting from 48h after the first 

salt addition, i.e. 24h following the second salt addition.  No measurement was taken 

before this point, so it is not possible to report on the speed of the response to the 

initial onset of salt stress.  However, many other studies have tracked turgor pressure 

response immediately following salt addition to the external medium. Arif (1990), 

for example, used the same techniques and species as this study, and found wheat 

leaf turgor pressure dropped within a space of 15-20 minutes after the application of 

NaCl. Also, the magnitude of the decrease was found to be roughly proportional to 

the concentration of salt applied.  

Comparably rapid responses in turgor pressure have been found in barley under salt 

stress (Thiel et al., 1988) and in soybean under water stress (Nonami & Boyer, 

1989).  For roots, Itoh et al. (1987), using the same technique, found a drop in turgor 

pressure in mung bean root within between 10 and 20 minutes, depending on the 

concentration of salt in the external medium.  

In this study, turgor regulation in leaf epidermal cells of wheat (varieties Hereward, 

Gamina and Bohoth 105) and S. maritima was achieved within 24 h after the second 

salt addition. The regulation was completed by the adjustment of solutes in both the 
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epidermal protoplast and epidermal apoplast. Similar turgor recovery has been found 

by Arif (1990) under similar conditions and using the same technique in mature leaf 

region of wheat, where recovery was complete after 24 and 48 - 72 h after addition of 

salt (low and high concentrations respectively). He considered that turgor recovery 

occurs due to osmotic adjustment, which is in turn caused by solute accumulation in 

tissue cells (Flowers et al., 1991). Several researchers have studied the role of solutes 

in the apoplast in the water relations of plant cells (Leigh & Tomos, 1983; Clipson et 

al., 1985; Tomos, 1988; Tomos & Wyn Jones, 1988; & Bell and Leigh, 1996). 

Nonami and Boyer (1989) found similar results in the mature region of soybean 

stems, using the same methods. Turgor recovery occurred after 45 h when plants 

were exposed to 2.85 bar NaCl. Dracup and Greenway (1988) similarly show that 

Na
+ 

and/or Cl
-
 content contributes to turgor regulation in tobacco cells. Plants were 

exposed to 82 mM or 150 mM of NaCl in the medium culture, and ion accumulation 

occurred faster in plants under salt stress in relation to the control plants. The authors 

suggest a solute accumulation rate is a system for regulating turgor.  

9.2 Transpiration Tension 

The pressure probe (Hüsken et al., 1978) is considered the most powerful technique 

so far for measuring many parameters in plant cells, including transpiration tension 

in the apoplast, and is a tool that is particularly well exploited within Bangor 

University laboratories. Changes in cell osmotic pressure (πcell), apoplast osmotic 

pressure (πwall), and also the apoplast hydrostatic component (Pwall) (transpiration 

tension) can cause changes in Pcell, all of which can be measured directly or 

indirectly with the pressure probe. 
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Hydrostatic pressure is one component of water potential in a plant (Dainty, 1963, 

Nobel, 1991), and transpiration tension plays a central role in the governance of cell 

water potential. It can be seen that differences between Pcell and πcell are not 

correlated to the Pwall (Tomos, 1988). Our results, in Section 4.4, show that for both 

the control and the salt conditions, this parameter was -1.5 bar. Clipson et al. (1985) 

researched S. maritima leaves at day 28, using a similar technique to that employed 

in this study, to measure transpiration tension. The plants were immersed for several 

hours in hydroponic solution, and it was found that the transpiration tension was 1 to 

2 bar. Arif (1990) similarly measured transpiration tension in leaf of wheat plant in 

the growing and mature region.  When immersed in hydroponic root medium for 1 h, 

an increase in Pcell of 1 bar was found.  

These studies suggest that, proportionally, Pwall does not have a major impact on the 

Pcell, decreasing the Pcell by about 20 %. This agrees with previous results, for 

example Nonami and Boyer (1987) used isopiestic psychometry to measure apoplast 

water potential in the elongating zone of stems in intact plant of soybean, and found 

it was 1.5 to 3 bar. They claimed that growth induced water potential gradient, not 

transpiration tension, was responsible for this. 

  9.3 The Effect of Turgor on Growth Parameters 

The results in Section 4.2 indicate that Pcell in epidermal cells increased gradually 

over the 2 – 3 days subsequent to salt stress in all three varieties of wheat (Fig. 4.1a – 

c). In contrast, final leaf length and growth rate in both Hereward and Gamina 

significantly decreased over the rest of the experiment period under salt stress. No 

significant effect was found for the same parameter in Bohoth 105 (Table 3.1 and 

3.2).  
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Due to the difference between the mature leaf cells measured and the unmeasured 

growing cells of the plant, no clear direct relationship between turgor and growth can 

be inferred. The relationship could perhaps be related to other water relation 

parameters (such as volumetric elastic modulus and/or hydraulic conductivity) or 

growth could have been decreased due to salts as a consequence of the osmotic effect 

and imbalance of ions (Grattan et al., 1999; Muranaka et al., 2002) and the 

accumulation of large Na
+
 and Cl

-
 ions due to the primary toxicity of specific ions 

(Chinnusamy et al., 2005).   

Several authors have found no correlation between turgor and decrease in growth. 

For instance, Arif and Tomos (1993) reported this for wheat exposed to a range of 

salt stress, as did Fricke et al. (1997) for barley under N-limitation. Each of them 

measured Pcell in single cells. Termaat et al. (1985) used a pressure bomb on the 

entire leaf and suggested that in plants under stress, turgor does not constrain growth. 

However, it should be noted that the pressure bomb technique does not allow 

differentiation between cell types. i.e. between the mature zone and the growing 

zone. Matsuda and Riazi (1981) and Michelena and Boyer (1982) found similar 

results, i.e. that turgor does not change, in barley and maize respectively.  

Other researchers have also observed a reduction in growth related to cell wall 

properties. For instance, Thomas et al. (1989) reported that in leaves of Lolium 

temulentum at low temperature, turgor does not change, and growth reduction is 

caused by cell wall behaviour. Several studies have been reported that show that the 

reduction in growth can be attributed to changes in cell wall properties, such as cell 

extensibility and yield threshold (Cramer & Bowman, 1991; for reviews see Barlow, 

1986; Hsiao & Xu, 2000). Cosgrove and Sovonick-Dunford (1989) investigated pea 

stem elongation as affected by gibberellins. They suggest that the reduction in 
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growth is the consequence of a reduction in cell wall extensibility and an increase in 

the yield threshold.  

9.4 Solutes Used for Osmotic Adjustment 

The results of this study show that control epidermal cells of all plants had a higher 

K
+
 concentration compared with other ions (Table 4.1 and 5.1, Fig. 4.4 and 5.3). 

Similar results were found in leaf cells for sorghum by De Lacerda et al. (2003).  

Schachtman and Munns (1992) also point out that wheat genotypes excluded Na
+
. 

This is considered a common characteristic of salt tolerance. Salt tolerant plants 

accumulated larger Na
+
 concentrations than sensitive genotypes. In general, osmotic 

adjustment of salt tolerant genotypes is achieved by maintaining a distribution of Na
+
 

and Cl
-
 between the vacuole and cytoplasm, with a higher concentration of these ions 

in the former.  

The concentrations of K
+
 found here in epidermal cells of the three wheat varieties 

under both control and salt conditions were in the same range as those found in 

epidermal cells of barley grown under salt stress (0 and 100 mM NaCl) by Fricke et 

al., 2006. Specifically, in Hereward, salt stress results in an increase in πcell in 

epidermal cells, with 57 mEq of K
+
 and 38 mEq of Na

+ 
contributing to osmotic 

adjustment, alongside a loss of other ions. Therefore, the main solute used by 

Hereward for osmotic adjustment is K
+
. This is in agreement with results for maize 

leaves (Premachandra et al., 1992; Erdei & Taleisnik, 1993). Erdei and Taleisnik 

(1993) indicated that higher accumulation of K
+
 and lower accumulation of Na

+
 in 

leaves of sorghum under salt stress could be related to a characteristic associated 

with superior performance of the plant. In general, solute content changes are 

important for osmotic adjustment. For example, Fricke et al. (2004) found that in 

growing leaf 3 of barley, there were changes in osmotic pressure in epidermal cells 
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and in entire leaf after 20 h exposure to stress (100 mM NaCl), with osmotic pressure 

increasing by around 2 bar in leaf mature zone. The increase of osmotic pressure in 

the growing zone is the result of osmotic adjustment caused by an increase in solute 

content. It is also interesting that potassium seems to be often taken up, where 

available, in greater quantities than necessary, a phenomenon known as ‘luxury 

consumption’ (Leigh & Wyn Jones, 1984). 

For the plants in this study, osmotic pressure increased in epidermal cells of Gamina, 

Bohoth 105 and S. maritima by the accumulation of 66 mEq, 127 mEq and 306 mEq 

respectively of Na
+
 by day 8, which contributed to osmotic adjustment. This increase 

in Na
+
 concentration is similar to previous results for wheat leaves (Gorham et al., 

1985), barley leaves (Delane et al., 1982), rice (Yeo & Flowers, 1986), S. maritima 

(Yeo, 1981, Gorham & Jones, 1983), perennial Triticeae leaves (Gorham et al., 1985 

, Gorham et al., 1986), in barley (Perez-Lopez et al., 2010) and in Quinoa 

(chenopodium quinoa Wild.) leaves (Eisa et al., 2012). Although this Na
+
 

accumulation evidently contributes to the maintenance of turgor, it is still important 

for leaf cells to maintain a level of K
+
, since this is essential for plant metabolism 

(Marschner, 1995).   

In the present study, under control conditions, epidermal and cortical cell Ca
2+

 

concentrations were found to be low in all plants. Davenport et al. (1997), Kinraide 

(1999), and Reid and Smith (2000) reported that plants need only a low 

concentration of around 2 to 3 mM Ca
2+

 for optimum growth and for control of tissue 

Na
+
 uptake in cases of low external water potential. Similar results to this study for 

all ions have been previously found by Boughalleb et al. (2012). They studied the 

effect of salt stress on a xero-halophyte plant (Nitraria retusa L.) and found that 

osmotic pressure and Na
+
 and Cl

-
 concentrations noticeably increased, but that K

+
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and Ca
2+

 decreased, whilst Mg
2+

 was only slightly affected. This indicates that the 

plant had a high capacity for osmotic adjustment. Under the salt condition, Ca
2+

 

epidermal cell concentration decreased or was not affected in wheat and S. maritima. 

Ca
2+

 concentration in root cortical cells increased only in Gamina and S. maritima 

(end of experimental period). For many plant species, high levels of external Na
+
 

result in lower K
+
 and Ca

2+
 tissue concentrations (Hu & Schmidhalter 1997). There 

are several possible explanations for this reduction in K
+
 concentration in plant 

tissue, such as the competition between Na
+
 and K

+
 at sites of root uptake, the 

subsequent impact of Na
+
 on the transport of K

+
 into the xylem (Lynch & Lauchli 

1984), or inhibited uptake mechanisms (Suhayda et al., 1990).            

Control epidermal and cortical cell Mg
2+

 concentrations were found to be small in all 

plants (Table 4.4, 5.1, 6.1 and 7.1, and Fig. 4.6, 5.5, 6.7 and 7.5). Hinde (1994) found 

similar results, with Mg
2+

 concentration in leaves of barley ranging from 5 - 10 mM. 

In all plants under the salt condition, Mg
2+

 decreased or was not affected, with the 

exception of root cortical cells in Bohoth 105.  

Munns et al. (2006) stated that osmotic adjustment under salt stress occurs mostly by 

an increased uptake by cells of both Na
+
 and Cl

-
. Such large ion accumulation in 

leaves leads to recovery of elongation growth following stress, as reported in barley 

by Fricke and Peters (2002), Fricke (2004), Fricke et al. (2006), and Matsuda and 

Riazi (1981), and in maize under water stress by Premachandra et al. (1992).  

In terms of osmotic adjustment, all wheat varieties in this study showed similar 

behaviour, completing adjustment in epidermal cells during 48 h after salt addition. 

Over this initial 2 day period, Pcell remained unchanged, but after that it increased. In 

contrast, πcell increased 48 h after salt addition, but then stabilized and remained 

unchanged over the whole of the rest of the period. An interpretation of this is that 
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over the first 48 hours, solutes are accumulated both in epidermal protoplasts and in 

the cell wall (apoplast) in similar proportions. Subsequently, the solutes appear to be 

removed from the apoplast and the cell turgor increases. 

Several studies have similarly shown osmotic adjustment achieved by solute 

accumulation in the apoplast in leaves of S. maritima (Clipson et al., 1985; 

Lawrence, 1999), wheat leaves (Arif, 1990) and sugar beet (Lawrence, 1999). This 

suggests that epidermal cells of Gamina, Bohoth 105 and S. maritima compartmented 

Na
+
 in vacuoles and in the apoplast to protect the toxicity of the cytoplasm. Läuchli 

and Grattan (2007) documented that, under salt stress in growing leaves, osmotic 

adjustment was achieved by the accumulation of Na
+
, since if the Na

+
 is firstly 

compartmentalised in leaf cell vacuoles, the cytoplasm cannot be affected. Since 

most of a cell’s volume is occupied by the vacuole, it is a suitable compartment for 

the role of solute storage (including of toxic substances) (Canut et al., 1993; 

Andreev, 2001) and for keeping nutrients available to the cytosol (Conn & Gilliham, 

2010). High Na
+
 accumulation while keeping a balance of ions is believed to be an 

important tolerance mechanism in durum wheat and barley (Genc et al., 2007).      

Halophytes successfully achieve osmotic adjustment to salt stress by accumulating a 

large amount of ions, for instance Na
+
 and Cl

-
, in tissue cells. As a consequence, they 

are able to take up water under high salt stress conditions. Similarly, high uptake of 

Na
+
 in leaves and roots of S. maritima could be one of the key mechanisms by which 

the cells decrease their ψcell. Our findings show that S. maritima was capable of 

uptaking water by keeping a high osmotic pressure in its cells due to the uptake of 

inorganic solutes, mainly Na
+
 (Table 5.1, 7.1 and Fig. 5.2 and 7.2). For Hereward, 

although both K
+
 and Na

+
 were used for adjustment, K

+
 was the main ion used, 

accumulated in the protoplast under salt stress.    
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Under the control condition, K
+
 salt was predominantly found in epidermal and 

cortical cells in all plants. However, under the salt condition K
+
 was consistently 

found in an inverse pattern to Na
+
, with Na

+
 increasing and K

+
 decreasing. Similar 

findings have been noted by Husain et al. (2004) and Lȁuchli et al. (2008).   

The data showed a different response in plant root cells (Chapters 6 and 7). In roots, 

turgor rapidly decreased within 48 h after salt addition to the external medium, then 

recovered over 72 h (Fig.6.1a – c and 7.1a). Turgor recovery was observed in all 

plants. Root cortical Pcell recovery was completed by day 8, with a T1/2 of 6.3 days in 

Hereward, 7.9 days in Gamina, 1.7 days in Bohoth 105, and 3.2 days in S. maritima 

(Chapter 6 and 7). Osmotic adjustment was observed to be faster in Bohoth 105 and 

S. maritima. This indicates that these plants are able to use osmotic adjustment 

mechanisms to maintain turgor and continued growth under low external water 

potential.  

Bisson et al. (1995) noticed that in the salt tolerant alga of Chara longifolia, turgor 

was fully regulated within 72 h. Since this study is the first ever to comprehensively 

investigate the roots of S. maritima, no previous data is available to which to 

compare our results for this plant. Hoffmann and Bisson (1990), however, have 

found that following hypotonic stress and hypertonic stress, turgor regulation is 

completed within two days and between five to seven days, respectively, in 

euryhaline giant-celled algae (Chara buckellii).  

In all plants, root cortical cells had accumulated Na
+
 salt in response to external 

lower water potential by day 8 (Table 6.1, 7.1 and Fig. 6.2 and 7.2). Lauchli et al. 

(2008) studied the response of root cortex of durum wheat to 50 mM NaCl by using 

scanning electron microscopy, and found similar results for Na
+
 and K

+
 to our results 

for wheat (Table 6.1). Sodium concentrations of leaf epidermal cells were 71 % and 
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48 % lower than in root cortical cells of Hereward and Gamina by day 8 respectively. 

Similar results have been found for wheat genotypes by Abdelmalek and Khaled 

(2011). In contrast, Bohoth 105 had higher Na
+
 concentration in leaf epidermal cell 

than root cortical cells, similar to S. maritima. Sodium concentration in epidermal 

cells was 17 % and 26 % higher than in cortical cells for Bohoth 105 and S. maritima 

respectively by day 8.     

In glycophytes, the maintenance of Na
+
 within roots is considered as a Na

+
 tolerance 

mechanism that allow them to increase their turgor and continue to grow against an 

increasingly low external water potential (Munns & Tester, 2008). However, Flowers 

and Hajibagheri (2001) and Lȁuchli et al. (2008) found that sensitive varieties of 

barley and wheat accumulate more Na
+ 

in their roots compared with other varieties 

(tolerant varieties). It is clear then that for plant roots, Na
+ 

is a critical part of the 

response to salt stress. 

Comparing the response of single epidermal cells to that of the whole plant, in both 

experimental conditions, salt and control, values for osmotic pressure and cation 

concentration in single cells was always identical to or in excess of corresponding 

values for bulk leaf in the three varieties (Table 4.7). In bulk measurements of all 

wheat varieties, Na
+
 in younger leaves increased statistically following salt stress, as 

compared to the non-salt treatment. It was observed in all wheat varieties that Na
+
 

concentration increased in young leaves less than in old leaves, and so proportionally 

more Na
+
 accumulated in the old leaves. Strikingly, in Bohoth 105, the bulk leaf 

accumulation of Na
+
 was much higher than in the other two varieties, for all leaves. 

This again shows that this variety behaves differently under salt stress. 
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 In contrast, K
+ 

was inversely accumulated (Table 4.6 and Fig. 4.8 and 4.9). These 

findings are similar to the findings of Khelil et al. ( 2007), who suggested that for 

tomato (Solanum lycopersicum cv. Volgogradskij), the decreased Na
+
 concentration 

uptake was associated with improved maintenance of K
+
 concentration in young 

leaves compared to older ones. Plants have a mechanism to compartmentalise Na
+
 in 

basal old leaves, which is thought to protect the young leaves from the effects of ions 

(Khelil et al., 2007) and ultimately the plants sacrifice the old leaves for the young 

(Cheeseman, 1988). In cotton plants, Khan et al. (2004) similarly found that lower 

Na
+
 concentration accumulates in younger leaves compared with older leaves. In 

contrast, however, S. maritima has been found to give opposite results. 

Having measured the cations (Na
+
, K

+
, Ca

2+
 and Mg

2+
), it was possible to estimate 

the anions. We found a net charge of 1.0, and interpreted that the anions are Cl
-
 

and/or NO
-
3. However, this involved the assumption of no uncharged solutes. This 

may be justifiable for cereal leaves (Koroleva et al., 1997), but may not be so for S. 

maritima as no equivalent data is available.    

In terms of growth, final leaf length and growth rate were reduced by salt stress 

(Table 3.1 and 3.2). This decrease in leaf length and growth was in spite of a clear 

increase in turgor (in the later stages, following an initial period of no change) and an 

initial increase in osmotic pressure (after 48 h) (Fig 4.1a, b, d and e) in epidermal 

cells of Hereward and Gamina, indicating no positive relation between these 

parameters. The increase in turgor occurs with the accumulation of Na
+
 and K

+
 in 

Hereward and Na
+
 in Gamina. 

 This observation is difficult to account for, but raises the possibility that it is the 

decreased growth that in fact causes the increased turgor, related to the surplus of 
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imported solutes. Similar results found by Pritchard et al. (2004) showed that in 

maize root exposed to 5 mM D-galactose in the external medium, growth decreased 

in both the growing zone and mature zone, while both turgor and water potential 

initially increased, but later did not change. The authors suggested that this was 

related to certain behavior, such as feedback regulation of ion influx into the cell, or 

the rise of osmotic level, by outflow, or one of either respiration or polymerisation.   

9.5 Summary and Conclusion     

In the plants studied, epidermal cells in the leaves and cortical cells in the root both 

adjusted to increased external osmotic pressure through increases in the osmotic 

pressure of cells. Under the salt condition, root turgor recovery was noted in all 

plants, with Pcell recovery being completed by day 8. This was achieved by 

increasing solute loads. Under all conditions and for all plants, inorganic solutes (K
+
 

and/or Na
+
) in leaves and roots contributed significantly to the osmotic pressure of 

the epidermal and cortical cells studied. Under the control condition, K
+
 was the 

main ion found in leaf epidermal and root cortical cells in all plants and varieties. 

However, under salt stress, osmotic adjustment was achieved mainly by the uptake 

and accumulation of sodium ions in the vacuole in each of Gamina, Bohoth 105 and 

the halophyte S. maritima.  

Interestingly, the concentration of sodium accumulated in Bohoth 105 was noticeably 

closer to that of S. maritima than was Gamina’s. In contrast, Hereward used a 

different strategy, by primarily accumulating even more potassium in the protoplast 

to achieve osmotic adjustment, with sodium being uptaken in only a smaller 

concentration. These results indicate that epidermal leaf cells were able to use both 

the apoplast (compartment) as an osmoticum and the protoplast to build up osmotic 
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pressure. In contrast, root cortical cells of all plants accumulated inorganic cations 

(Na
+
 rather than K

+
) in the protoplast only.   

The varieties each behaved slightly differently. For example, root cortical cells of 

Hereward preferentially accumulated more Na
+
 in order to protect the leaves and to 

encourage leaf K
+
 uptake, since this is essential to maintain Pcell and continued 

growth. However, a similarity between Bohoth 105 and S. maritima was consistently 

noted. For instance, recovery was observed to be faster in both Bohoth 105 and S. 

maritima, suggesting that these plants are able to effectively employ osmotic 

adjustment mechanisms to maintain turgor and continued growth under low external 

water potential conditions. Another difference between Bohoth 105 and S. maritima, 

on the one hand and the other two wheat varieties on the other, relates to the relative 

distribution of sodium between the leaves and the roots. In Hereward and Gamina, 

sodium concentrations of leaf epidermal cells were lower than those in root cortical 

cells.  In contrast, Bohoth 105 and S. maritima both had higher Na
+
 concentrations in 

leaf epidermal cells compared with root cortical cells, i.e. the inverse of the other two 

wheat varieties. Finally, the response of the Hereward wheat variety to salt stress 

reduced the final length and growth rate, whereas the Gamina variety had a more 

moderate response to the salt condition. In contrast, the response of the Bohoth 105 

variety in terms of final length and growth rate was to remain unaffected, being the 

same as the control.  

To conclude, the focus of this study was to compare the physiological characteristics 

of wheat and of a halophyte (S. maritima), with the aim of identifying novel features 

that could be usefully bred into future wheat crops, using either conventional or 

molecular genetics methods. The hypothesis was that Bohoth 105 would be the 

variety most similar to the halophyte, and Hereward the least, with Gamina 
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somewhere in the middle. Taken together, the above results indicate that Bohoth 105 

is indeed the wheat variety that is most similar to the model – S. maritima – and is 

therefore the most salt tolerant of the three, while Gamina has moderate tolerance 

and Hereward is salt sensitive. This means that the initial hypothesis of this study is 

supported by the data collected.  

It would appear then that Bohoth 105 would be a useful variety to study further in 

relation to developing stress-resistant wheat varieties for agriculture. By focusing on 

the parameters related to the plant’s water relations, and using conventional and/or 

molecular genetics techniques, it may be possible to improve the response of wheat 

to salt stress and thus enable a greater geographical range for this crop worldwide. 

Such research could usefully contribute to the aim of minimizing global food 

shortage. 

9.6 Future Work 

Although some ancestral varieties of crops have some salt tolerant features, a past 

focus within conventional breeding and selection on yield improvement has meant 

that modern cultivars have lost the ability to tolerate stresses. Current renewed 

interest within conventional breeding in encouraging salt tolerance has led to some 

successes, such as the salt resistant bread wheat (Triticum aestivum L.) cultivars S24 

and KRL1-4 (Ashraf & Akram, 2009). However, conventional methods have been 

limited by the low natural gene pool diversity, the reproductive barriers when using 

wild relatives, and also the risk of introducing undesirable genes. In addition, this 

method does not directly contribute to an understanding of the underlying 

mechanisms and pathways associated with salt tolerance (ibid.). 
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As a result, the search for a genetic connection between physiological traits and salt 

tolerance has taken precedence. Although the multigene aspect of the salt tolerance 

trait makes genetic research complex, geneticists have been focusing on identifying 

genes which encode certain specific features involved in salt resistance, such as ion 

transport proteins (ibid.). Our research showed that the wheat variety most similar to 

the halophyte – Bohoth 105 – accumulated more Na
+ 

in the vacuole than the other 

wheat varieties, indicating that this is an important feature of salt tolerance. This 

suggests that genetic modification targeted at altering Na+ transport could be worth 

investigating. Indeed, Xue et al. (2004) studied this possibility by over-expressing 

the gene for vacuolar Na
+
/H

+
 antiporters (AtNHX1), sourced from A. thaliana L., in 

wheat (Triticum aestivum L.). They found that this resulted in better germination, 

improved biomass production, improved yield, higher K
+
 accumulation, and lower 

leaf Na+. This study was unusual in two ways; firstly, it took account of yield as well 

as growth, and secondly it used both greenhouse and field conditions. 

Studies such as this represent a way forward in efforts to improve agriculture in a 

time of water stress. It would be interesting to continue in this vein, testing genes for 

other aspects, such as Na
+
 exclusion (even though Genc et al. (2007) found no clear 

relationship between this and salt tolerance).  Other avenues include looking at more 

phases of wheat’s life cycle, to see whether the cultivars show beneficial effects 

through to maturity; conducting studies using salts other than NaCl (since this is not 

always the only salt found in soils); or investigating the performance of salt resistant 

cultivars on normal soils (Ashraf & Akram, 2009).   

In general, more studies of this type need to be conducted for food crop plants, not 

just cash crops, such as tobacco, and there needs to also be a continued focus on 

yield in addition to just salt tolerance. Also, field testing must become more 
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commonplace, as field conditions cannot be fully replicated in the lab or in 

greenhouses. At the same time, our understanding of plant stress response needs to 

carry on being developed, in order to better inform genetics programs.   

Looking to the future, it is likely that continued developments in genetics techniques 

will aid studies on multigenic traits, such as salt tolerance, rather than being 

restricted to focusing on single genes. This will make it easier to feed knowledge of 

salt tolerance mechanisms into genetics research. 
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