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Abstract 

In recent years, advances in crystal growth techniques have made it possible to fab- 

ricate semiconductor microstructures, which are so small that their electronic and 
optical properties deviate substantially from those of bulk materials. In these mi- 
crostructures the electrons and holes energies are confined in one or more directions 
to a region, which is still considerably larger than the lattice constant but so small 
that the electron envelope wavefunctions become quantised. 

Quantum dots (QD's) are nanometer-scale structures that provide carrier confine- 
ment in all three spatial dimensions. In these structures the carrier momentum is 

also quantised in all three directions and hence a carrier confined within a QD can 
only occupy certain discrete energy levels, which depend on various factors like the 

potential barrier depth or the shape of the structure. It is the discrete nature of these 

energy states that make quantum dots highly attractive for quantum computation 
and optoelectronic devices. 

In this thesis the quantum energy levels of single and coupled quantum dots of 
different shapes are investigated. Coupled QD systems, which may be considered as 
'artificial molecules' have been investigated for their possible application in quantum 
computing. An understanding of how dots couple in quantum dot molecules is 
needed. We use the linear combination of quantum dot states approximation in 
order to obtain the two lowest energy levels of the system and then been able to 
study the coupling between dots when the potential and the separation between 
dots are varied. 

This coupling can be used as a quantum gate, which is a key to building a quantum 
processor. This gate is achieve using the coupling between QD's and a mechanism 
which make it possible to switch this coupling on and off. The time required for the 
'switching' needs to be long enough for the operation to be performed coherently. 

In the last chapter we study a possible source of decoherence due to the LO-phonon 
interaction in self-assembled quantum dots (SAD's). We calculate single electron 
capture-escape rates due to LO-phonon interaction for single SAD and coupled 
SAD's systems. 
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1.1 Mesoscopic semiconductors structures 

It is now possible to fabricate semiconductor microstructures, which are small 

enough so that quantum effects alter the electronic properties from those of bulk 

material. In these microstructures, carriers are confined in one or more directions to 

a region of length L, larger than the lattice constant, but so small that the allowed 

carriers energies become quantised. Structures of this size are called mesoscopic. 
A Quantum Dot (QD) is an example of such mesoscopic semiconductor, where the 

electrons are confined in three space dimensions. 

To understand the fundamental concepts of these semiconductors, which cannot be 

explained using classical mechanics, quantum mechanics must be applied to solid 

state theory. In this chapter we introduce the concepts of quantum mechanics, which 
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Chapter I. Introduction 

give the background to calculate the electronic structure of QD's. The electronic 

state information will be used to investigate the suitability of QD's for semicon- 

ductor laser applications and for use in quantum computing. So in the remaining 

part of this chapter the background theory of quantum dot lasers and quantum 

computing will be studied. 

1.1.1 Schrödinger Equation for electrons 

In order to discuss electrons in semiconductors we must understand the equations 

which determine the state of an electron within a semiconductor. 

In the beginning of the twentieth century quantum mechanics emerged in order to 

describe certain problems Newtonian mechanics or classical electromagnetic theory 

could not explain. These problems include the photoelectric effect, blackbody spec- 

trum and the rather complex radiation from an excited hydrogen gas[t]. These and 

other experimental observations lead to the concepts of quantisation of light into 

photons, the particle-wave duality, the de Broglie wavelength and the fundamental 

equation describing quantum mechanics, namely the Schrödinger equation. 

1.1.2 The mechanics of waves 

In quantum mechanics, the properties and motion of particles are defined in terms 

of a wave (or state) function, which depends on the momentum. De Broglie stated 

that a particle of momentum p has an associated wave of wavelength A given by the 

following [2] 

p (1.1) 
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Chapter 1. Introduction 

Therefore, an electron in a vacuum at a position r, away from the influence of any 

electromagnetic potentials, could be described by a state function which is of the 

form of a wave, i. e. 

7P = 
i(kr-wt) (1.2) 

where t is the time, w the angular frequency and the modulus of the wave vector, 

k, is given by: 

1ý =kI- 
21r 
A 

(1.3) 

The quantum mechanical momentum has been deduced to be a linear operator 

acting upon the wavefunction 0, with the momentum p arising as an eigenvalue, 

i. e. 

-ihiv'b = Po (1.4) 

where 

aa+ak 
X1.5} 

lox 
+ äy 8z 

which when operating on the electron vacuum wavefunction in Equation 1.2 would 

give the following: 

-ihVe'(k--wt) = pe'(k-wt) (1.6) 

and therefore 

ai+aj+ak 
ei( ýx+ yy+ zz-wt) = pei(k-wt) (1.7) 

äX äy äz 

-ih 
(iic1 

+ ik j+ ikzk) el( xx+kyy+kzz-wt) = pei(k-wt) (1.8) 

Therefore the eigenvalue: 

p=i 
(kI + kyj + kzk) = fick (1.9) 
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Chapter 1. Introduction 

which may be manipulated (p = hk = (h/2-7r) (27r/. A)) to reproduce de Broglie's 

relationship in Equation 1.1. 

Following on from this, classical mechanics gives the kinetic energy of a particle of 

mass m as[2] 

T=2mv2= 
(mv)2 

2m 
p2 
2m (1.10) 

Therefore it may be expected that the quantum mechanical analogy can also be 

represented by an eigenvalue equation with an operator: 

(_ihV)2V = To (1.11) 
2m 

where T is the kinetic energy eigenvalue. 

When acting upon the electron vacuum wavefunction, i. e. 

_ 
_2 

V2ei(kr-wt) = Tei(kr-wt) (1.12 
2m 

then 

h2 

2m 
(kX2 

+k2+ kz2)ei(kr-wt) = Te'(Kr-wt) (1.13) - 

Then the kinetic energy eigenvalue is given by: 

ji2k2 

(1.14) 7' = 2m 

For an electron in a vacuum away from the influence of electromagnetic fields, then 

the total energy E is just the kinetic energy T. Therefore the dispersion or energy 

versus momentum (which is proportional to the wave vector k) curves are parabolic, 
just as for classical free particles, as illustrated in Figure 1.1. 

In summary, the equation describing the total energy of a particle in this wave 
description is called the time-independent Schrödinger Equation and for this case 
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Chapter 1. Introduction 

Figure 1.1: The energy versus wavevector curve for an electron in a vacuum. 

with only a kinetic energy contribution can be summarised as follows: 

2 

_- V27p = Eß 2m 
(1.15) 

A corresponding equation also exists which includes the time-dependency explicitly; 

this is obtained by operating on the wave function by the linear operator ihi8/8t, 

i. e. 

ih 
ao= 

iii(-iw)ei T-wt) (1.16 
at 

i. e. 

iha0_hwo (1.17) 
at 

This eigenvalue luv is also the total energy but in a form usually associated with 

waves, e. g. a photon. These two operations on the wavefunction represent the two 

complimentary descriptions associated with wave-particle duality. Therefore the 

time-dependent Schrödinger equation is given by the following 

. ih 
a 
at = Eo (1.18) 
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Chapter 1. Introduction 

1.2 Semiconductor band structure 

1.2.1 Electrons in a semiconductor laser 

Electrons in semiconductors are different from those in a gas because electrons are 

bounded to the ions in the ground state and in excited states they can move freely. 

Electrons in semiconductors are organised in allowed energy bands of states, known 

as valence (low energy) and conduction bands. An isolated atom has a discrete set 

of energy levels. In a semiconductor crystal, where atoms interact with each other, 

the initial atomic energy levels are split into as many sub-levels as atoms in the 

system. These sub-levels are grouped forming continuous bands of energy, where 

the highest occupied band is called valence band and the lower unoccupied is called 

conduction band. These energy bands are separated by a forbidden gap called the 

bandgap, which depends on the material of the semiconductor (see Figure 1.2). 

In the absence of thermal or other excitation, the system is in equilibrium and the 

electron distribution probability is given by the Fermi-Dirac distribution: 

f (E) =1 E-EF 
1+e KBT 

(1.19) 

where E is the energy of the electron and EF is known as the Fermi energy level, 

and is defined as the energy at which, for zero temperature, all energy states below 

it are occupied and all above are empty. Moreover, at a finite temperature T, EF 

represents the energy at which the occupation probability is f (EF) = 1/2. 

When an electron is excited from the valence into the conduction band, an absence of 

electron within the valence band is created. This empty state is treated as a carrier, 

known as hole. Taking the energy of the electron/hole zero at the bottom/top of 

the conduction/ valence band and the energy sign is positive into the band, as seen 

in Figure 1.3a), the electron/hole distribution probability in the conduction/ valence 

7 



Chapter 1. Introduction 

Figure 1.2: Schematic representation of the energy bands within a semiconductor where 

the difference between bands is called the bandgap labelled as Egap. In an 

equilibrium situation the Fermi level, EF, represents the energy at which, 

for zero temperature, all energy states below it are occupied and all above 

are empty. 
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Chapter 1. Introduction 

band in an equilibrium state is given by 

ý+ 
_ JC(Le) =1 Ee_EF 

(1.20) 

1+e KBT 
1 

h_EF 

(1.21) IV (Eh) 
=E 

1+e KBT 

where the Fermi level is the same for electrons and holes. 

Under carrier injection, a non-equilibrium state is formed, where electrons/holes are 

injected into the conduction/valence band. Now the electron and hole distribution 

probability in the conduction and valence bands, f, and f� respectively, are given 

by 

. 
fc(E'e) - E1 e-EFc 

(1.22) 
1+e KBT 

1 

JV 
(Eh) 

= Eh-EFV 
(1.23) 

1+e KBT 

where EF, and EFT, are called the quasi-Fermi levels and are defined as the energies 

at which, for zero temperature, all energy states below them are occupied and all 

above are empty, within the conduction and valence bands respectively, as can be 

seen in Figure 1.3b). 

1.2.2 Effective mass approximation 

Each electron (or hole) within the crystal has associated a spatial wavefunction 

which defines the motion and the total energy. The electron wavefunction within 

the valence or the conduction band, 41, may be obtained solving the Schrödinger 

equation where the Hamiltonian, ft, and its energy are related as 
2 

HxF =p+V (r) T= ET (1.24) 
[2m 
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Chapter 1. Introduction 

a) 

b) 

"lai 
Constant 
electrical 
injection 
of electrons 

..........: .:.:. E 
valence : FV 
band 

00 

E 
h 

10 electron 
Q hole 

ol 
000 

Constant 
electrical 
injection 
of holes 

Figure 1.3: Schematic representation of the energy bands within a semiconductor in 

a)an equilibrium situation. b)a non-equilibrium situation. Electrons/holes 

are injected into the conduction/valence band. This process creates the 

'Quasi-Fermi' levels, EF, and EFv, which represent the energy at which, for 

zero temperature, all energy states below them are occupied and all above 

are empty within the conduction (electrons) and valence (holes) bands re- 

spectively. It has taken zero energy of the electrons/holes at the bottom/top 

of the conduction/valence band and the energy sign positive into the band 
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Chapter 1. Introduction 

where r is the position vector, p is the the momentum operator, m is the electron 

mass and V (r) is the potential the electron experiences due to the periodic array of 

atoms. 

Due to the complexity of the potential V, the above equation is very difficult to solve. 

This problem may be simplified using the so-called 'effective mass approximation' 

which approximates the potential to a constant by introducing an empirical fitting 

parameter called the effective mass, W. Then the Schrödinger equation can be 

written as follows 

2 

2m* 
EIF (1.25) 

or 

h2 
2m* 

V2* = EIF (1.26) 

where the general solution for ' may be written as the sum of two counter propa- 

gating plane waves 

= Aeikr + Be-ikr (1.27) 

Therefore the solution for the energy E is given by 

E= 
h2k 2 
2m* 

(1.28) 

Figure 1.4 represents the energy bands structure against the modulus of the k- 

vector, where the valence band is inverted, i. e. lowest energy hole states are at the 

top of the band. The convention is to put the zero of the energy at the top of the 

valence band. 

11 



Chapter 1. Introduction 

Figure 1.4: The energy versus wave vector curves for an electron in the conduction band 

and a hole in the valence band of a typical semiconductor. 

1.2.3 Density of states 

A carrier may occupy one of the allowed energy level states within the band struc- 

ture. In order to obtain the number of electrons within a band, it is necessary to 

determine the number of allowed states an electron can occupy within the energy 

distribution. On using the effective mass approximation, the electron wavefunction 

within a bulk semiconductor may be described by Equation 1.27. Considering the 

crystal formed by units cells of side (Li, Ly, L, i), the wavefunction must display 

periodicity within the lattice. Therefore 

O(x, y, z) =b(x+Lx, y+Ly, z+Lz) (1.29) 

Writing the normalised wavefunction as 0= 1/Se'k'' leads to 

)(x, y, z) =1 ei(kxx+kvy+kzz)ei(kxLx+kyLy+kzLz) (1.30) 
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Chapter 1. Introduction 

Taking into account the periodicity condition leads to 

ei(kxL+kyLy+kzL4) =1 

which implies that 

k 2n k= 2"n k =2' n x= z - Lx y Ly yzL,, 

where nom, ny, n, z are integers. 

(1.31) 

(1.32) 

Therefore, each set of values (kr, ky, kz) defines a unique state that an electron 

within a bulk semiconductor crystal is allowed to occupy. The volume of k-space 

occupied by a state is (2ir)3/(L., LyL, z). 

The density of states (DOS) is defined as the number of states per energy per unit 

volume of the cell [2] : 

P(E) = 
dN 
dE 

(1.33) 

where N in k-space is equal to the volume of the sphere of radius IkI divided by the 

volume occupied by one state (2ir)3/(L,; LyLz) and divided again by the cell volume 

V= LXLyLz. Note that a factor 2 has to be included in order to take account of 

the spin. 

N= 24,7rk 
331 

(1.34) 
3 (27r) /V V 

=2 
47rk 33 

(1.35) 
3(27r) 

Returning to Equation 1.33 the density of states may be written as 

P(E) = 
dN dk 
dk dE 

(1.36) 

Making use of Equation 1.28 leads to 

dk 2m* 1/2 E-1/2 

dE t12 2 
(1.37) 

13 



Chapter 1. Introduction 

and therefore the density of states of states in bulk semiconductor per unit energy 

and volume may be written as 

1 12m* 3/2 
P(E) = 2712 hie 

E"2 (1.38) 

1.3 Semiconductor laser 

In order to obtain lasing action from a semiconductor three things are required 

" Gain medium. A semiconductor region where stimulated emission occurs. 
Examples in modern semiconductor lasers are quantum wells, wires or dots. 

" Optical resonant cavity. It provides photon confinement in order to allow 
the number of photons created by stimulated emission to exceed all other 

mechanisms. It can be achieved by bounding the gain medium in a resonator. 
Hence photons created by stimulated emission can reflect back and forward, 

creating more recombinations events. 

" Population inversion. A mechanism to pump electrons into the conduction 
band is needed in order to obtain more electrons in upper bands and holes in 

lower bands which increases the number of stimulated emission processes. A 

forward biased p-n junction structure is the most commonly used method to 

achieved this. 

1.3.1 Optical transitions in a semiconductor 

So far, the electronic distribution of a semiconductor has been described by a two- 

level energy band structure composed of a conduction and a valence band. This 

14 



Chapter 1. Introduction 

simple model will be used in order to describe optical transitions in a semiconductor 

although in reality the energy distribution structure is more complicated. 

a) 
E 

Ecýe= 

Ev 
jt7lE 

C) 
E 

Ee0 
f byah AA/-&. 

bý 
E 

Ec --T-j 80 
hti- hv 

Eý 

Eb 

10 Electron 

Hole 

Eý e Io =E 
b 

nM-%ý Photon 

/Vv 

0 

Figure 1.5: Schematic representation of the three types of band to band optical transi- 

tions. a)Stimulated absorption. A photon is absorbed by a valence electron, 

which gains the energy of the photon, hvab, and is pumped into the con- 

duction band. b)Stimulated emission. An electron within the conduction 

band is stimulated by a photon of energy hvab, then is recombined with a 

hole within the valence hole emiting an photon of energy hvab, identical to 

the incident. c)Spontaneous emission. An electron with energy Ea within 

the conduction band recombines with a hole of energy Eb within the valence 

band emitting a photon hvab. 

In the absence of thermal or other energy pumping processes, the conduction band 

appears empty, while the valence band remains full of electrons. If an electron 

within the valence band absorbs a photon of light and the energy of the photon, 

hvab, is larger than the bandgap (EC - EV), it is excited into the empty conduction 

band to a state of energy Ea creating a hole in the valence band of energy Eb where 

15 



Chapter 1. Introduction 

Ea + Eb + Egap = hvab, as can be seen in Figure 1.5a). 

As the total momentum must be conserved, the difference between an electron's 

initial and final momentum is the same as the photon momentum. 

pik f- hikk _ ikphoton (1.39) 

But as the photon momentum is neglectable compared to the carrier momentum, 
kphoton « kcarrier, only carrier transitions involving electronic states with the same 

k are allowed 

htk f= hki 

which is called k-selection. 

(1.40) 

Downward transitions can also occur. An electron of energy Ea, within the con- 

duction recombines with a hole of energy Eb within the valence band as a result of 

the presence of a photon of energy hvab where the electron-hole pair energies have 

to satisfy Ea, + Eb + Egap = hvab. This recombination process generates another 

photon identical to the incident, as can be seen in Figure 1.5b). This process is 

called stimulated emission. 

Another downward transition is spontaneous emission where an electron of energy 

Ea within the conduction band recombines with a valence band hole of energy Eb 

generating a photon of energy hvab = Ea + Eb + Ega, p as can be seen in Figure 1.5c). 

This process can occur with no inducement of a radiation field. 

1.3.2 Gain and absorption 

Taking into account the processes studied in the last section, stimulated and spon- 

taneous emission rates, called Rff and R 
b°IIt respectively, are proportional to the 
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Chapter 1. Introduction 

probability of finding an electron at energy level E. in the conduction band and a 
hole (unoccupied state) at Eb in the valence band. The absorption rate is propor- 

tional to the probability of finding an electron and a hole at the energy levels Eb in 

the valence and at Ea, in the conduction band, respectively. As explained in Section 

1.2.1, the electron and hole distribution probability in the conduction and valence 
band, respectively, at T are given by Fermi distribution 

JC(Ee) - E1 e-EF_ 

(1.41) 

1+e KBT 

f1 (1.42) f, (Eh) 
- Eh-EFv 

1+ eKBT 

Within the valence/conduction band an electron/hole can be seen as an absence 

of a hole/electron. Then the probability of finding an electron/hole with energy E 

within the valence/conduction band at temperature T is given by 

fe1ectron (E) 

fhole(E) 

Then the absorption and emission rates are given by 

Rbaabsor a felectron(Eb)fcbole(Eal = [1 
- . 

fv(Eb)][l - . 
fc(Ea)] 

Rabin a fc(Ea) fv(Eb) 

RsPont a fc(Ea)fv(Eb) 

(1.43) 

(1.44) 

(1.45) 

(1.46) 

(1.47) 

In the case of stimulated emission and absorption the presence of a photon is also 

required. Calling Pphot (hUab) the photon density of the optical mode of energy hva 

last rates can be rewritten as: 

Raäsor a (electron(Eb)(hole(Ea)Pphot(huab) (1.48) 

Rasbm a fc(Ea)fv(Eb)Pphot(hVab) (1.49) 

Rsappont a 
. 
fc(E'a)fv(E'b) 1.50) 
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It has to be underlined that Reim and R tx; °r are competing processes as R "m gener- 

ates a photon, while R'm takes it away, hence another rate needs to be mentioned, 

i. e. the netba given by 

absor stim netba = Rba - Rab (1.51) 

Hence, the absorption of photons into the mode hvab in a semiconductor material 

can be described as [3] 

a(tLVab) - 
netab 

(1.52) 
pphot (hV,, 

b) 

and the gain of the semiconductor is the negative absorption. 

1.3.3 Threshold gain 

As it has been underlined before, population inversion is required in order to obtain 

lasing which can be achieved by pumping. A carrier current is applied which injects 

electrons and holes to any allowed energy state within the bands according to their 

density of states. Electrons populate higher energy levels, and they can be excited by 

photons and undergo a downward transition producing photons. It is also necessary 

to have a resonator, consisting of two parallel mirrors separated by a distance L in 

order to enforce the propagating field to traverse repeatedly the amplifying medium. 

This cavity causes optical losses, which have to be added to the losses due to the 

absorption. 

The gain necessary to overcome the cavity losses is known as the threshold gain. 

It is also defined as threshold current the necessary current to reach the threshold 

gain. Hence, lasing appears when the value of the gain of the cavity is bigger than 

the threshold gain, as can be seen in Figure 1.6. It can also be seen that at low 

injection levels the spectra shows the device is absorbing at all energies above the 
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band-edge but at higher injection levels there is gain at energies near the band-edge. 

Increased carrier 
injection 

Absorption 

T 
0 

1 
gain 

Energy 

Figure 1.6: The typical absorption spectra of a bulk semiconductor shown for increasing 

carrier injection. 

1.3.4 p-n junction 

A p-n junction is formed by bringing a p-type and n-type semiconductors (doped 

with acceptors and donors respectively) together. The Fermi level changes when a 

material is doped. In the case of a p-type, the Fermi level is below the undoped 

Fermi level and the n-type is above it, as can be seen in Figure 1.7a). Once both 

materials are brought together, electrons from n-type diffuse to p-type material 

whereas holes do the opposite diffusing to n-type material. Due to this process a 
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depletion zone is created in the vicinity of the junction between the two materials. 

The positively and negatively charged n-side and p-side, respectively, generate an 

electric field which opposes further diffusion of carriers. Once a steady state is 

reached, a chemical potential (Fermi level) is established which is independent of 

position in the structure achieving a thermal equilibrium, which results in a bending 

of the energy bands as can be seen in Figure 1.7b). 

a) 
...... . ......... ... ... .................... ........... .... ................ ........ ........ ....... ........... ... .... 

undoped material Fermi level 
----------------------------------------- . ..................................................... 

EF 

WIM, OR 

N-type 

b) 

P-type 

E 
C 

................................................................................................ " 

E 
V 

Figure 1.7: a)n- and p-type semiconductor before bringing them together. In the case 

of n-type(p-type), the Fermi level is above(below) the undoped Fermi level. 

b) Bringing both materials together results in a bending of the energy bands 

so that the Fermi level can remain flat through the junction. 

An externally applied voltage may be used to control the diffusion of carriers. In 

forward bias, where the positive voltage is applied to the p-side of the junction, the 
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built-in potential is reduced allowing further diffusion and narrowing the depletion 

region. In reverse bias, the positive voltage is applied to the n-side of the junction 

increasing the opposition to diffusion and widening the depletion region. Electron 

and holes can recombine in this region to produce photons with the same energy as 

the band gap of the material. For a sufficiently high voltage, a population inversion 

can be achieved and optical gain can be produced. 

A pn-junction made with the same material is called a homojunction. This kind 

of structures are not very successful due to the fact they do not provide carrier 

confinement in the region where the gain occurs. 

1.3.5 Hetero junctions 

Within the effective mass approximation, the Schrödinger equation has been found 

to be as follows: 

L2 a2 

2m* az2 
(z) = Er(z) (1.53) 

When two different materials are brought together to form a heterojunction, taking 

into account that the effective mass could be a function of position, last equation is 

valid within each. However the bandgaps of the materials can also be different, see 

Figure 1.8. 

The discontinuity in either the conduction or the valence band can be represented 
by a constant potential term. Therefore the Schrödinger equation for any one of 

the bands, taking the effective mass to be the same in each material, would be 

generalised to 

h2 a2 
2m* az2 

(z) + V(z)O(z) = Er(z) (1.54) 
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. oie`' 
ý -a 

Z 

Figure 1.8: Two semiconductors with different bandgaps joined to form a heterojunc- 

tion; the curves represent the unrestricted motion parallel to the interface. 

In the above example, the one-dimensional V (z) representing the band discontinu- 

ities at the heterojunction would have the form shown in Figure 1.9, noting that 

increasing hole energy in the valence band is measured downwards. 

1.3.6 Heterostructures 

Multiple heterojunctions joined together create heterostructures. One type of these 

structures is the double heterojunction, where a narrower-bandgap material 'A' say, 

is sandwiched between two layers of a wider-bandgap 'B', as illustrated in Figure 

1.10. If the layer 'A' thickness is of the order of the de Broglie wavelength (is 

sufficiently thin for quantum properties to be exhibited), then such a band alignment 

is called a single quantum well, where a carrier inside this structure is said to be 

confined in the perpendicular direction to the heterojunction. When confinement 

is applied in other directions leads to create quantum wires or quantum dots which 
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V 

conduction 
band 

Z 

V 

Figure 1.9: The one-dimensional potentials V (z) in the conduction and valence band as 

might occur at a heterojunction (marked with a dashed line) between two 

different materials. 

have two and three direction confinements respectively. 

1.4 Quantum Well 

Quantum wells are formed in semiconductors by having a material, like GaAs sand- 

wiched between two layers of a material with a wider bandgap, like AlAs. Improve- 

ments in semiconductor growth technology allow control of the layer thickness and 

hence where the population inversion occurs down to such dimensions that a carrier 

in this region is confined within the growth direction and it is only allowed to move 

within the perpendicular plane. 
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conduction 
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Figure 1.10: The orte-dimensional potentials V (z) in the conduction and valence band 

as might occur at a heterojunction (marked with a dashed line) between 

two different materials. 
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1.4.1 Quantisation effects 

When the size of one or more dimension of a semiconductor is of the order of the 

de Broglie wavelength of carriers in the material quantum effects are observed. The 

de Broglie wavelength is a manifestation of the wave-particle duality of matter, the 

empirical formulation of which is given by 

A_ 
h 

3mk T 
(1.55) 

where h is the Planck's constant, m is the mass of the particle, kB is Boltzmann's 

constant and T is the temperature of the system. 

1.4.2 DOS for a quantum well 

A reduction in size of one or more dimensions of a semiconductor crystal significantly 

alters its density of states. Following the same approach described in Section 1.2.3 

for a bulk semiconductor, the DOS in quantum wells can be calculated taking into 

account that an electron has free movement within a two dimensional k-space. 

Hence the total number of states, N2D, per energy and area is given by the area of 

a circle of radius k divided by the area occupied by each state and multiply by a 

factor of 2 due to the spin. Considering that the confinement is in z direction the 

DOS can by written as 

N2D = 21rk2 
11 

(27r)2/(L., Ly) LýLy 
(1.56) 

In analogy to the bulk three-dimensional case, the quantum well DOS is given by 

p2D(E) _ 
dN2D 

_ 
dN2D dk 

(1.57) 
dE dk dE 

m* 
_ 

7r h2 
(1.58) 

The quantum well DOS is illustrated in Figure 1.11b). 
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E 

Figure 1.11: Density of states for a)Bulk material. b)Quantum Well. c)Quantum Dot. 

1.5 Quantum dots 

One of the most important features of low-dimensional semiconductor structures is 

the quantisation of energy spectrum of charge carriers. Three-dimensional confine- 

ment in QD's leads to a discrete (atomic-like) lower part of the energy spectrum. In 

order to predict novel physical phenomena and suggest new technical applications, 

researchers investigate manifestations of quantum-size effects in nanostructures both 

theoretically and experimentally. Recently, significant attention has been attracted 

to QD's due to their promise for applications as basic elements for semiconductor 

lasers, nonlinear transformers of light, computer memory, and elements of quantum 

logic gates. Some of the most effective methods of investigation of carrier energy 

spectra in QD's are optical ones. They include absorption of light, photolumines- 

cence excitation, Raman scattering, etc. The key problem in the investigation of 

optical properties of QD's is finding the energy spectrum of confined charge carriers 

and the corresponding wavefunctions. 

Coupled QD systems, which may be seen as 'molecules' have been investigated for 

their possible application in quantum computing. An understanding of how dots 

couple in quantum dot molecules is needed so that the possibilities for this system 

to be used as a quantum gate can be explored. 
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In parabolic, one-band, and infinite baxrier approximations for structures with sim- 

ple geometrical shapes (planax, cylindrical, spherical), the energy spectrum can be 

found from the general expression En 22 '- an/R ) where an (n = 11 21. are real 

numbers close to a corresponding integer number n, R is a characteristic dimen- 

sion of the system, e. g., thickness of the layer, radius of the cylinder, or radius of 

the sphere. The nonparabolicity of energy bands, degeneracy of valence bands and 

finiteness of potential barriers strongly complicate the structure of the size-quantised 

energy spectrum. In this case, the detailed solution of the Schr8dinger equation is 

needed even for spherical QD's. 

The crystal structure and the shape of QD's depends mainly on the growth con- 

ditions. For instance, colloidal CdSe QD's with hexagonal crystallinity, as well as 

CdSe, CdS., Sel-,,, PbS, and PbSe QD's grown in glasses, have a neaxly spheri- 

cal shape. Electrochemically self-assembled CdS QD's in the A1203matrix have 

a quasi-cylindrical shape. InAs/GaAs QD's axe pyramidal with square base, and 

wurtzite GaN/AIN QD's are truncated hexagonaJ pyramids. Using colloidal growth 

technique it is possible to obtain both afloys and multilayer quantum-dot structures, 

where are formed as free paxticles in a liquid medium. 

1.5.1 Density of states 

Quantum dots axe nanometro-scale structures that provide carriers confinement in 

three spatial dimensions. In these structures the carrier momentum is also quantised 
in all three directions and therefore a carrier confined within a QD can only occupy 

certain discrete energy levels, which depend on various factors like the potential 

barrier depth or the shape of the structure. 

Figure 1.11c) shows the resulting density of states when 3D quantisation is achieved 

in semiconductor quantum dots. The density of states is now a delta function- 

27 



Chapter 1. Introduction 

like, and in fact should be referred to as number of states rather than density. 

The kinetic energy of the electrons (and holes) is quantised in all three spatial 

directions, producing discrete atom-like electronic states. Providing the dot size, 

and therefore the confinement potential is of the right order, very few confined 

states will be allowed in the dots. It is the discrete nature of these energy states 

what makes quantum dots highly attractive for quantum computation. In Chapter 

2, the electronic structure of a carrier within a quantum dot is calculated for different 

shapes of quantum dots. 

1.5.2 Gain in quantum dots 

As described previously, electron confinement within sufficiently narrow region of 

semiconductor material can significantly change the DOS and hence the energy 

spectrum. Quantum dots can provide much more favourable DOS from the point 

of view of lasing applications. In order to achieve lasing in a semiconductor, a 

current is applied to reach the population inversion. Electrons axe injected into the 

conduction band, whereas holes are injected into the valence band, being distributed 

according to the DOS. So the broader the DOS, the more spread the carriers are over 

the energy axis. As recombinations of all these carriers contribute to the threshold 

current, it means that energy levels which do not contribute to the gain, are also 

going to be occupied by carriers. 

Therefore, in order to construct an efficient lasing device it is necessary to collect 

a significant carrier density within limited energy interval. In the case of a QD, as 

the DOS is a delta-function like, the density of carriers accumulated at the energy 

of the working transition is significantly enhanced reducing the threshold current of 

the laser. 
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1.5.3 Fabrication of Quantum Dots 

Early attempts at fabricating quantum dot structures involved complicated growth 

and lithographic techniques and were largely unsuccessful [4]. However an important 

breakthrough came with the development of the self-assembled growth technique [5]- 

There are severaJ techniques for the epitaxiaJ growth of self-assembled quantum 

dots. A typical growth method known as the Stranski-Krastanov (SK) technique 

[6] relies on the growth of a highly strained epitaxial layer onto the surface of a 

semiconductor substrate. The strain between the substrate and the grown film 

leads to an instability which results in a transition from an uniform layer to clusters 

of material in order to minimise the energy of the system. These clusters are small 

enough to confine electrons in three dimensions if surrounded by a material of higher 

bandgap. 

The three dimensionaJ quantum confinement of carriers gives rise to discrete energy 

level analogous to an atom. The resulting discrete density of states gives rise to 

high gain in semiconductor devices using these structures. However, in contrast 

to atoms, quantum dots can be electrically pumped, giving rise to a wide range 

of applications for oPtoelectronic devices. Consequently, the use of quantum dots 

for semiconductor lasers is expected to have superior operational characteristics, in 

contrast to other less confined structures, such as quantum wells (1D confinement) 

and quantum wires (2D confinement)- 

The thin epitaxial layer used to form the quantum dots is called the wetting layer 

(WL) and itself acts as a quantum well to confine carriers in two dimensions. 

Quantum dots can also be produced by colloidal synthesis, which are very popular 

as fluorescent markers in biological imaging[7]. 
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1.5.4 Self-Assembled Quantum Dot Lasers 

Due to the improvements in their fabrication, the interest of self-assembled quantum 

dot lasers have been increased. The advantages of placing the quantum dots in a 

quantum well as in self-assembled quantum dot structures (SAD's) [8,9] has been 

investigated . 
Self-assembled In(Ga)As quantum dots can be formed via Stranski- 

Krastanov [6] epitaxial growth[10] on a single-crystaJ GaAs substrate. 

In this structure, the highly strained quantum well, known as the wetting layer, 

aids the capture of charge caxriers into the dot. Dots are grown on top of the 

wetting layer while the whole structure is covered by bulk material, as can be seen 

in Figure 1.12. The confining potential of the carriers in the wetting layer (of the 2D 

carriers) results from the different bandgaps between the wetting layer material and 

the surrounding bulk material. Initially, carriers diffuse in the lower-bandgap 2D 

wetting layer before either recombining or being captured by the SAD's, where they 

can either relax into lower energy levels or re-excited back to the wetting layer, where 

they can diffuse and be captured by other quantum dots within the ensemble. Hence 

the wetting layer supplies the quantum dots with carriers, appearing as a carrier 

reservoir. 

The role of the wetting layer 

As has been explained before, in order to achieve population inversion in semicon- 

ductor lasers, carriers are injected into the active region by the forward biasing of a 

pn-junction. Due to the discreteness of the energy levels, carriers need to gain/lose 

a discrete amount of energy to be captured into a quantum dot. In the case of a 

self-assembled quantum dot, the carriers first populate the layer and then they axe 

captured into the quantum dot, which make this process much faster. In this case 
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InGaAs-QW 

GaAs 

Figure 1.12: Illustration of a self-assembled quantum dot on top of the wetting layer, 

both embedded in bulk material. 

the wetting layer behaves like a reservoir supplying the quantum dots with carriers 

and determines the population statistics. One of the process which can generates 

electron captures into the quantum dot is the interaction with LO-phonons, which 

is studied in Chapter 5. 

In Section 2.5 this SAD model is studied and the electronic structure of an electron 

within a SAD is calculated under the adiabatic approximation. 

1.6 Quantum computation 

The interest in quantum dots for their possible application in quantum computing 

has been increased. In this thesis the electronic structure of two coupled quantum 

dots is studied. The coupling between dots has been proposed as a mechanism to 

create a quantum gate. 

A quantum computer is a device that can process quantum states coherently. Its 

memory is therefore a quantum system, which is usually thought of a collection 

of quantum two-level systems, named quantum bits, or qubits. In contrast to a 
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classical two-state system bit which can take the two values 0 and 1, a qubit can 

exist in any linear superposition of the basis states 10) and 11) 

10) = aIO) +ß11) (1.59) 

where a and 0 axe complex numbers which satisfy the normalisation condition 
ja 12 + 1,312 

=1 and the squares of the complex coefficients Ia 12 and 
1012 

represent 

the probabilities for finding the particle in the corresponding states. 

A simple quantum system is the two-level spin -1/2 particle. Its basis states, spin- 

down I ý) and spin-up I f), may represent the binary zero and one, i. e. 10) and 11) 

respectively. In the case of an electron within a coupled quantum dot system the 

localisation of the electron can be used as a qubit, i. e. 10) if the electron is localised 

in the first dot and 11) in the second one. 

Several qubits, say n, may be combined creating a2n states basis, called pure states. 

Therefore any state can be written as a linear combination of this basis elements. 
2"-l 

E aý x> 

X-o 
(1.60) 

where Ix) is the product basis vector defined by the binary representation of x. For 

example, in the case of n=2, state 13) = 111) = 11) 11). 

Roughly, a quantum computation works as follows 

e Initially, some product state jx) is prepared, e. g. 100) 

o Then, somehow each state element has to be able to be manipulated or inter- 

act with other elements. This is reached using the so called quantum gates. 

Combinations of one-bit and two-bit operations are sufficient to construct any 

unitary operation on a finite number of bits. The classical analogy for quantum 

gates are the boolean logic gates such as NOR (for a single qubit operation), 
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XOR, NAND, etc. During the period when an operation is performed, the 

quantum register will usually be in non-trivial quantum superpositions, and 

has therefore to stay phase coherent. 

e At the end of the computation, the finaJ state of the quantum register is 

measured by measuring each qubit one-by-one, i. e. each qubit is projected in 

the basis 10), 11). Hence, the outcome of the quantum computation consists 

of n classical bits. 

1.6.1 Requirements 

Five basic steps required for the physical realisation of quantum information 

processing[11]. 

e Quantum phase coherence needs to be maintained over a long time compared 
to the length of an elementary step in the computation, in order to allow for 

quantum error correction. 

As a further requirement, it has to be possible to couple pairs of qubits in a 

controlled manner in order to carry out elementary quantum logic. 

e The ability to initialise the state of the qubits to a simple fiducial state is 

required. 

Operations on single qubits need to be implemented, and at the end of a 

computation, the qubits have to be read out by performing a quantum mea- 

surement. 

The design of the quantum computer should be scalable to a large number of 

qubits. 
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1.6.2 Coherence 

In an ideal quantum system there is no external factor which can alter a regis- 

ter or an operation between them. In reality every quantum system is coupled to 

non-desirable external degrees of freedom which creates decoherence (loss of co- 

herence). In quantum computation what is aimed is having the qubits maximally 

coupled to each other, which enables one to entangle qubits, and minimally to the 

outside world. Hence, phase coherence is one of the vital ingredients for quantum 

computation. 

Therefore the coherence time is defined as the time over which the phase of a 

superposition of states is well defined and the modification of this phase by an 

external factor is called decoherence. 

In the case of a single qubit (e. g. a spin 1/2) one commonly describes decoherence by 

two times: T, describes how fast the spin is depolarised, while T2is the chaxacteristic 

time after which the phase information is lost. The main source of decoherence is 

the one with the smaller decoherence time, Td= min(TI, T2). 

In Chapter 5 the LO-phoiaon - carrier interaction is studied as a source of decoher- 

ence in coupled self-assembled quantum dot systems. 

1.6.3 Why semiconductor Quantum Dots? 

Semiconductor quantum dots axe structures where charge carriers are confined in all 

three spatial directions. Due to the fact that dots are of the order of the de Broglie 

wavelength, the carrier density of states is discrete. It is also possible to isolate a 

single carrier within a quantum dot and then use, for instance, its spin or orbital 

state to represent a qubit[12]. 
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One of the requirements for the realization of a quantum computer is the scalability 

which means that it is possible to increase the number of fundamental units of a 

device (e. g. the number of transistors on a chip) once it is known how a single 

unit can be fabricated. The use of ion traps for a complete quantum computer[13] 

has been proposed, but it is uncleax whether such atomic-physics implementations 

could ever be scaled up to do truly laxge-scale quantum computatioia[14]. 

The scalability of conventional electronic solid-state devices suggests that solid-state 

realizations of quantum computation have the potential for being scalable to large 

numbers of qubits, that makes quantum dots good candidates. 

The use of coupled quantum dots in quantum computation [15,14,16] where the 

coupling between dots plays an important rule in order to implement a quantum 

gate has been proposed . The aim of this thesis is not to propose a candidate for 

quantum computer model, but to study the coupling between dots (Chapter 4) and 

a possible source of decoherence due to LO-phonon interaction (Chapter 5). 
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2.1 Introduction 

As described in Chapter 1, quantum dots are nanometer-scale structures that pro- 

vide carrier confinement in three spatial dimensions. In these structures the carrier 

momentum is then also quantised in all three directions and hence a carrier confined 

within a QD can only occupy certain discrete energy levels, which depend on various 

factors like the potential barrier depth or the shape of the structure. 

The energy levels in QD structures may be obtained analytically if the potential 

barriers axe of infinite height and the structures have simple geometry such as cubes, 

cylinders or spheres. 

Before calculating phonon scattering and coupling between two QD's we need to 

determine their wavefunctions and energies, which satisfy the time-independent 

Schr6dinger equation ftT = ET. In order to study QD structures with spheri- 

cal. and cylindrical symmetry, the Schr6dinger equation in spherical and cylindrical 

coordinates is solved. 

In order to obtain the QD electronic structure, it is first introduced the Schr6dinger 

equation is first introduced and its solutions for a free particle moving in three di- 

rections. General properties are developed through examination of the free-particle 

problem. Then the energy levels and wavefunctions of colloidal quantum dots (us- 

ing spherical symmetry) and self assembled semiconductor quantum dots (using 

cylindrical symmetry) are calculated. 
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2.2 The free particle 

In order to calculate wavefunctions of quantum dots with spherical symmetry, the 

free-paxticle problem needs to be understood. The Hamiltonian of a free-paxticle of 

mass m in spherical coordinates (r, 0,0) is given by[l]: 

r 
L2 

p2 H=+ 
2m 2mT2 (2.1) 

where P, is the radial component of the particle's momentum and L the angular mo- 

mentum. Then 0 (r, 0,0), the solution of the time-independent Schr8dinger equation 

in spherical coordinates given by 

P2 
L2 

_ 2m pr + 
T2 

Eo (2.2) 

The expressions for operators P, and 2 are given by 

1ar (2.3) 

r ar 
_h2 

0 (Sijl 
0a)+1 a2 (2.4) [sin 

0 ao ao Si, 12 0 a02 
The eigenfunctions Ou. of the operator L2may obtained solving the following equa- 

tion 

L2V)lm 
= h2l(l + 1)V)lm (2.5) 

the solutions are called spherical harmonics and are universally denoted by the 

symbol Y, ' (0,0) 
- 

Ym(0,0)_ 
21+1(1-m)! 

1/2 

47r (1 + m)! 
Pim (cos 0) e (2.6) 

The first few normalised spherical harmonies can be seen in Table 2.1. 

As PI is a function only of r and _L2 
is a function only of the angle variables (0,0) 

it is assumed that the solution of equation 2.2 my be separated in two components 

01�, (r, 0,0) =R (r) Y, ' (0,0) (2.7) 
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Spherical Harmonics Functions 

yrn(0,0) =[ 21+1 (, _m)! 
] 1/2 

Pm (cos 0) eirno 1 41r (I+m)! 

Spherical Harmonics Legendre polynomials 
y 

Y, 0 

1 (21+1)! 
sin' Oe-'10 ý1-1! 4,7r 

Ou 

21+1 pI (COS 0) 1: Vi4 -7r: 
+1 

Y -M 1) m (YM) 

yo 
'r 0 

Yll 

i 10 l 

)1/2 
47r 

2 27r sin Oe" 
(. 1) 1/2 

COS 0 
7r 

Po =1 

p sin 0 I, 
plo Cos 0 

sin 0 Pý 
2 

Table 2.1: The first few normalised spherical haxmoinics and corresponding associated 

Legendre polynomials. 
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Substituting 01.. in Equation 2.2 leads to 

[(1d2r+ i(i + R, (r) = 
2mE Rjr (2.8) -r dr2 

) 

r2 h2 

where due to the dependence on the quantum number 1 the radial wavefunction 
R(r) -ý RI(r) is introduced. With the substitution 

E 
h2k 2 

(2.9) 
2m 

x kr (2.10) 

Equation 2.8 becomes the spherical Bessel differential equation 

d2R, (x) +2 
dR, (x) 

+ 
[l 

_ 
l(1 + 1) 

RI(x) =0 dX2 x dx X2 

1 

This equation for the radial function R, has two linearly independent solutions 

called spherical Bessel and Neumann functions and denoted by the symbols j, and 

yj respectively. Then R, is given by 

RI (x) = Aj, (x) + Byl (x) (2.12) 

where Table 2.2 shows the solutions j, and yl. 

As Figure 2.1 shows, only the spherical Bessel function J. I is finite at the origin. The 

spherical Neumann function yj is not a valid solution of the radial component. 

Due to the dependence of the radial wavefunction and the energy solution on the 

variable k, the subscript k is introduced, defining RI(r) -ý RkI(r) and El -ý EkI. 

Therefore the radial solution of the Schr8dinger equation may now be written as 

Rk, (r) = J, (kr) and the eigenvalues and eigenstates of the free-particle Hamiltonian 

in spherical coordinates axe 

'Oklm(r, 0,0) = Rki (r) Ylm (0,0) (2-13) 

Eki 
h2k 2 

(2.14) 
2m 
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Spherical Bessel and Neumann functions 

Equation 

it+ 2f +1 f=0 f 
X2 x+ 

Spherical Bessel Spherical Neumann 
(_11)1 (1 d (_r)l (1 d 

J, (kr) -)1 jo (kr) yj (kr) =T kr dr kr r)l yo(kr) 

j. o (kr) = sin(kr) yo(kr) cos(kr) 
kr kr 

Table 2.2: Properties of spherical Bessel and Neumann functions. 

. Jo , 'I 
YO(X) 

1.5 

1 

0.5 

0 

-0.5 

-1 

-1.5 

-2'-' 
-6 -4 -2 0246 

x 

Figure 2.1: Spherical Bessel and Neumann functions of first order. 
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2.3 Spherical Quantum Dot 

2.3.1 Infinite barrier potential 

Now that we have obtained the free particle solution of the Schr8dinger equation 

we are in a position to study the quantum confined energy levels of a quantum dot. 

A particle of effective mass m* is considered to be confined to the interior of a 

spherical infinite potential well of radius a with impenetrable walls. In the domain 

r>a the wavefunction vanishes. When r<a the particle behaves like a free- 

particle and the wavefunction may be obtained from Equation 2.13. Therefore the 

wavefunction within those two regions may be written as 

'@klm (rg 0,0) =ra (2.15) 
oklm r<a 

where0kim Rkl Y, 7n 
. 

The wavefunction must satisfy the boundary condition IIkIm(r = a) =0 which leads 

to 

Rkl =: Ji(ka) = (2.16) 

As can be seen in Figure 2.2 spherical Bessel functions have an infinite number of 

zeros. Denoting x,,, the n-th zero of jl(x), the allowed values of k are k=x, 11a. 

Note that the continuous spectrum of k values for the free particle in spherical 

coordinates translates to the discrete spectrum of the quantum number n, therefore 

the radial wavefunction RkI --+ Rn, is defined and the wavefunction 'OkIm -ý Onlm- 
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0.8 
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j1(x) 

x 20 
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x 
11 x 

10\ 

\x 

21 
x 

30 

-0.2 

10 -0.4 ' 
0 

Figure 2.2: Representation of Spherical Bessel functions jo (x) and j, (x). 

Energy levels 

E,,, (eV) n- 1 n= 2 n=3 

0 0.2555 1.0219 2.2992 

=1 0.5226 1.4547 3.0776 

Table 2.3: First energy levels of an electron of effective mass m* = 0.023mo within an 

infinite potential barrier spherical quantum dot of radius a=8 nm. Only 

I= 01 1 has been taken into account. 
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1 

0.8 

0.6 

o. 4 U) 

M 0.2 

CL 
(j) 0 

-0.2 

nA 

jo(k(E)a) 

j1 (k(E)a) 

20 

-------------------------- 

Elo Ell E 21 E 30 

0 0.5 1 

E (eV) 
1.5 2 2.5 

Figure 2.3: Representation of Spherical Bessel functions jo (k (E) a) and ii (k (E) a) versus 

E, which is the energy of an electron of effective mass m* = 0.023mo within 

an infinite potential barrier spherical QD of radius a=8 mn. 
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Now the eigenfunctions and eigenvalues for the spherical dot are then given by 

ýbnim (7'j 07 0) : -- Aramil Xinr ) Y'm (0,0) (2.17) (a 

h2X1n2 
En, -2 (2.18) 

2m*a 

where AnImis the normalisation factor given by 

00 W 27r 

(Anlm) -2 
fr2 

dr 
f 

sin OdO 
fI TnIm (? ') 0ý 0) 12 dO (2.19) 

000 

(Anim) -2 
-a 

[j, (kl,, a)] (2.20) 
2 

As TnIm is zero when r>a, the orthogonality is given by 

a 

drr 2j, ( Xlnr ) 
ii 

( Xln, r a3 [jl+I(Xin )]2 6nn' (2.21) faa2 

0 

In order to study the behaviour of j, with the energy we plot in Figure 2.3 the 

spherical Bessel functions of order 1=0,1 versus the energy of particle of an electron 

of effective mass m* = 0.023mo within a infinite potential spherical QD of radius 

a=8 nm. The radial equation R,,, has an infinite number of solutions, but only 

orders 1= 07 1 are plotted for convenience. The allowed energies, El,,,, are the 

ones which satisfy j", (ak(E)) = 0. These zeros axe cakulated applying the Newton- 

Raphson method [2]. Table 2.3 shows the first energies for 1= 07 1. Their associated 

radial wavefunctions R,,, are shown in Figure 2.4. 

2.3.2 Finite barrier potential 

The electronic structure of a particle within spherical structures with infinite con- 

finement may be obtained analytically as has been explained in the last section. 
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Figure 2.4: Representation of the first few radial wavefunctions of order I=0,1 of an 

electron of mass m* = 0.023mo within an infinite potential barrier spherical 

QD of radius a=8 nm. 

R11 
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Although in reality the barrier height is the energy difference between QD and 

surrounding material conduction /valence bands which is finite. 

To find the energy levels for a finite barrier potential the Schr6dinger equation 

must be solved satisfying the boundary conditions imposed by the geometry of the 

structure. It is assumed that the 3D quantum-confinement structure is spherical 

and the sphere radius is a. Therefore the time independent Schr6dinger equation in 

spherical coordinates for a particle of effective mass m* may be written as 

I 
pr2 + 

L2 

IF + V(r)'F = ET (2.22) 
2m* 

( 

T2 

) 

where V(r) is the potential barrier which is described in Figure 2.5. 

V(r) vo. 

r 0 10 a 

Figure 2.5: Finite barriers spherical potential of a spherical QD of radius a. The barrier 

depth is Vo. 

The confining potential is constant within the region 0<r<a and the region a<r, 

and a particle within these two regions behaves as a free-particle. As discussed in 

Section 2.2, the solution of the Schr6dinger Equation in spherical coordinates is 

Oklm (r7 09 0)- Rkl(r)YIM(0,0) (2.23) 

where Y, 7n (0,0) is the normalised spherical harmonics and RkI is the radial wave- 

function. The normalised spherical harmonics are given by 

Em(03 
21 +1 (1 - m)! 

1/2 

0) =[ 47r (1 + m)! 

] 
Pl' ( cos (0» e"o (2.24) 
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The confining potential only depends on r, therefore it can be assumed that the 

angular component of the wavefunction of our model is YI (0,0). The wavefunction 

is defined as 

IPI�, (r, 0,0) = R(r) Yl' (0,0) (2.25) 

where 

R(r) 
Rw r<a (2.26) 
RBr>a 

Substituting this spherical harmonies expression into Equation 2.22 gives 

h2 a2 
+ 

41 + 1) 
+ V(, r)] R(r) = ER(r) (2.27) 

2m* 
[- (r 

jqr2 r2 

Depending on the distance from the centre of the sphere, the potential takes two 

different values: 

,o r<a-+V(r)=0 

Equation 2.27 may be written as 

ji2 a2 i(i + 1) 

2m[- 

(r 

jqr2 
r) + 

r2 
Rw(r) = EIRW(r) (2.28) 

with the substitution 
h2k2 

Ei -w m (2.29) 
x= kwr 

equation 2.28 becomes the spherical Bessel differential equation 

d2 
-RW(x) ý2 

dRW (x) 
+ 1- 

l(1 - 1) 
Rw(x) =0 (2.30) dX2 x dx 

1x21 

and it can be solved analytically. 
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The genera. 1 solution is: 

Rw (x) = Awjl (x) + Bwy, (x) (2.31) 

where 1= 01 11 2,... is the angular momentum quantum number, j, (x) is the 

spherical Bessel function and yj (x) the spherical Neumann function (also called 

n, (x)). In this case the constant BW term must be zero because yj (0) -ý oc 

and Rw(x) must be finite when x=0. 

9r>a --* V(r) = Vo 

Equation 2.27 may be written as 
h2 1 192 1 (1 + 1) 

BB 

2m r i9r2 r2 
R (r) = -IVO - EIR (r) (2.32) 

with the substitution 
oi 2 1.2 

1Vo - EI -- iý -B 
2m (2.33) 

x= kBr 

the last equation becomes the modified spherical Bessel differential equatzon 

and the general solution is: 

1 Bkl(x) RB (X) = ABil(X) +B (2.34) 

The wavefunction. in this region must be conserved finite, therefore AB =0 

because the function ii(x) diverges when x -+ oc as can be seen in Figure 2.6. 

Therefore the radial wavefunction may be expressed as 

w 

R, 
Rl' (r) Awjl (kwr) r <a 

(2-35) 
RIB(r) BBkl(kBr) r >a 

The RadiaJ wavefunction is required to satisfy the following boundary conditions 

R, (a) Rw (a) (2.36) 

dRIB 
(2.37) 

dr 
r=a 

dr 
r=. 
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Figure 2.6: Modified Spherical Bessel functions of the first kind ii (x) and second kind 

kl (x) for 1=0,1. 
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Then the equation giving the eigenvalues of energy is found to be 

j, (kw a) k; (kBa) 
- 

kw (2.38) 
.1 J, (kw a) k, (kBa) kB 

where ft' Of' 
Or 

'Rewriting as 

F, (E) = 
kB ji(kv,, a)kl(kBa) (2-39) 
kwjl'(kwa)kl(kBa) 

the confined allowed energies will be given with 

FI(E) =0 (2.40) 

which can be solved using the Newton-Raphson method [2]. Figure 2.7 plots func- 

tions F, (E) for 1=0,1. 

Equation 2.40 may give more than one solution, therefore each state will be char- 

acterised. by its energy &I and wavefunction qlnlm(r), being the quantum number 

n= 17 2... the n-th zero of Equation 2.39 for a given 1. The constants Aw and BB 

may be obtained from boundary conditions, Equations 2.36-2.37, and normalisation 

condition 

oc 

R, 2, (r)r 2 dr (2.41) 

Now, for a given allowed energy &I and using the boundary condition described in 

Eq. 2.36, AW can be written as 

Aw = BB kl(kBa) (2.42) 
ii(kwa) 

and applying normalisation condition leads to 

(B, o) 
k 12 (kBa) ar212 

(kwr)dr + 
00 

r2k 12 (kBr)dr (2.43) 
j12 (kwa) 

fo fa 
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Figure 2.7: Functions F, (E) for 1=0,1. Points where F1 (E) =0 are the allowed confined 

energy levels of a particle of mass effective m* = 0.023mo within a finite 

potential barrier (VO =1 eV) spherical QD of radius a=8 mn. En, is the 

n-th zero of Fi(E). 
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Figure 2.8: Radial wavefunctions of an electron of mass effective m* = 0.023mo within 

a finite potential (VO =1 eV) spherical QD of radius a=8 nm. 
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2.3.3 An example of the energy levels calculation. Finite 

barrier SQD. 

Our model consists of an electron of mass m* = 0.023mo within a spherical QD 

of radius a=8 nm. The potential barrier height is Vo =1 eV. This model has 

five allowed energies shown in Table 2.4. Their corresponding radial wavefunctions 

Energy levels 

E,, I(eV) 11=0 1=1 1=2 1=3 

0.188 0.381 0.618 0.893 

0.719 

Table 2.4: Allowed confined Energy levels of a finite potential (VO =I eV) spherical QD 

of radius a=8 nrn. 

Pt,,, I(r) can be seen in Figure 2.8. 

2.3.4 Colloidal Quantum Dot. Capped Quantum Dots. 

Semiconductor nanocrystal quantum dots have been the subject of great scientific 

and technological interest, with promising applications such as biological tagging 

materials[3]. The colloidal synthesis of QD's is well suited to the fabrication of 

engineered heterostructure nanoparticles such as CdSe/ZnS (core/shell)[4]. Over- 

coating nanocystallites with higher band gap inorganic materials has been shown to 

improve the photoluminescence quantum yields by passivating surface non-radiative 

recombination sites. 
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We now illustrate the calculation of the electronic structure of a capped spherical 

quantum dot. The understanding of this model is necessary in order to investigate 

the coupling between two capped colloidal QD's, which will be studied later in 

Chapter 4. 

Model 

In this model it is assumed that the QD consists of a spherical CdSe core surrounded 
by a concentric shell of ZnS where the band offsets are such that the conduction 
band of the shell is of higher energy than that of the core. As a result, a carrier is 

mostly confined in the core. 

V(r)' 

r 

Figure 2.9: a)Schematic picture of a core-shell quantum dot and b)the band-edge po- 

tential where region 1 corresponds to the core of the dot (CdSe), region 11 

to the capping layer (ZnS) and region III to the surrounding material 

Figure 2.9a) shows the picture of a CdSe/ZnS core-shell quantum dot with core 

radius a, and shell thickness t, = a2- a,. The confining potential of the dot is 

represented in spherical coordinates in Figure 2.9b). The energy levels of a spher- 

ical QD with finite barriers potential may be obtained by solving the Schr6dinger 
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Equation: 

HT = ET (2.44) 

Due to the spherical symmetry of the QD, and following Section 2.3.2 the spatial 

wavefunction T= (rlT) may be written as 

IP (r, 0,0) = &l (r) Yl' (0,0) (2.45) 

where Ym(0,0) are the normalised spherical harmonics given in Table 2.1 and R,,, 

is the radial wavefunction which may be expressed in terms of J, (zi) and ki (yi), 

which are the spherical Bessel functions and modified spherical Bessel functions of 
first(second) order, respectively. 

Assuming that E is an eigenfunction of the Hamiltonian in Equation 2.44, the radial 

component may be expressed as 

o IfO<E<Vs 

&I ý 

o IfVs<E<Vo 

Alj, (Kir) region I 
A2il(K2r)+ B2kj(K2r) region 11 
B3kj(K3r) 

Aiji(Kir) 

region III 

region I 
A2jl (K2r) + B2y, (K2r) region Il 
B3k, (K3r) 

region III 

(2.46) 

(2.47) 

,v IV where K, = -, F2ýiiýE/6' K2 2 El/67 K3= v/2m* I -Vo- E1 /6 and A, 
7 
A21 

B2and B3are parameters which can be obtained satisfying the boundary conditions 
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given by 

&I(al-) = Ra(al+) 

&I (a2-) 
= 11, a 

(a2+) 

R, ', I(al-) R',, (al+) 

R' -) R, ',, (a2+) 
nl(a2 

(2.48) 

In region II, coefficients A2 and B2 are non zero for the case 0<E<V, and 
V, <E< VO, respectively because spherical Bessel functions i, and yj are finite 

within the interval. We substitute R,,, in Equation system 2.48, where the energy 
0<E<V, giving 

Aiji(Kial) = A2it(K2a, ) + B2k, (K2a, ) 

A, Kljl(Kial) = A2K2ii(K2a, ) + B2K2k, (K2a, ) 

B3k, (K3a2) = 
A2ii(K2a2)+ B2k, (K2a2) 

B3K3k, (K3a2) = 
A2K2il(K2a2)+ B2K2k, (K2a2) 

then 

Aijil - 
A2i2l 

- 
B2k2l 0 

0 A, Klj'll - 
A2K2'121 

- 
B2K2k2l 

A2i22 + B2k22 
- 

B3k32 =0 

A2K2'122 + B2K2k22 
- 

B3K3k32 =0 11 

(2.49) 

(2.50) 

where fij = fl(Kiaj) and fi'j = fl'(Kiaj) 
, where f, = ij, ijkj- Last system of 

equations (Equations 2.50) may be written in terms of matrices as 

ill i2l 
-k2l 0 A, 

Klj'l K2i'l 12 -K2k'l 2 0 A2 

=0 (2.51) 
0 Z22 k22 

-k32 B2 

0 K2'122 K2k22 
- 

I K3k' 32 B 3 

or 

MC=O (2.52) 
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The only non-trivial solution of the last expression occurs when the determinant of 

the matrix M is zero. Therefore 

det(M) = 

ill i2l 
-k2l 

Klj'l K2i'l -K2k'l 0 122 
0 i22 k22 

-k32 
=0 (2.53) 

0 K2'122 K2k' -K3k' 22 32 

This last equation may be solved using the Newton-Raphson method [2] to give the 

allowed energies of the system. 

2.3.5 An example of the energy levels calculation. Capped 

SQD. 

Equation 2.53 is solved and the energy levels of a electron of mass m* = 0.1mo within 

a CdSe/ZnS core/shell QD of radius a, =3 nm and shell thickness a2-al = t, = 0.5 

nm obtained, where mo is the electron resting mass. We set the potential inside the 

CdSe core V=0. The band offset between core and shell is V, = 0.9 eV and between 

core and surrounding material (liquid) is VO =3 eV as is represented in Figure 2.9b). 

All the parameters have been taken from [5,4]. The energy values obtained within 

the range 0<E<V, are Elo = 0.303 eV and Ell = 0.616 eV, as can be seen 
in Figure 2.10. Figure 2.11 shows their corresponding radial wavefunctions RIO 

and RII. These calculations will be used later in Chapter 4 in order to study the 

electronic structure of coupled capped colloidals QD's. 
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12 

Figure 2.10: Two lowest energy levels of an electron within a CdSe/CdS core/shell col- 

loidal QD and representation of its potential V(r) where V, = 0.9 eV and 

Vo =3 eV. 

2.4 Cylindrical Quantum Dot 

Cylindrical QD's are studied because they provide a basis to investigate the elec- 

tronic structure of self-assembled semiconductor quantum dots with cylindrical sym- 

metry, which will be described later in Section 2.5. This symmetry will be used in 

the full diagonalisation of the system Hamiltonian method, studied in Chapter 3. 

2.4.1 Free particle in Cylindrical coordinates 

As for the earlier case of the spherical QD, first we need to solve the Schr6dinger 

equation for a free particle, but in this case in cylindrical coordinates. These results 

will then be used to study confined structures with cylindrical symmetry. 
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Figure 2.11: Two lowest radial wavefunctions of an electron of mass m* = 0.1mo within 

a CdSe/ZnSe core/shell colloidal QD where the core radius is a, =3 n-M 

and the shell thickness is a2 - a, = 0.3 nm. 
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Employing the Hamiltonian 

h2 (2.54) 
2M 

written in cylindrical coordinates, the Schri5dinger equation for a free particle of 

mass M is given by 

I a2 1a1 a2 a2 
2 

-+--+--+-+k T=O (2.55) 
a, 02 p 19P p2 a02 jqZ2 

I 

where 

h2ýý 
=E (2.56) 

2M 

is the energy of the particle. With the separation of variables 

e(p, 0, z) = R(p)(D(0)Z(z) (2-57) 

the Schr8dinger equation 2.55 becomes 

1 (a2 R1 aR) 1 a2 (p 1 a2 Z2=0 

--+ -- +-+--+k (2-58) 
R ao2 p 19P p2 (D (0) 1902 Z jqZ2 

and it follows that 

1d 2Z 

= constant -kz 
2 (2.59) 

Z dZ2 

1d2 (p 

(D d02 = constant Tn2 (2.60) 

Taking into account that (D(O) = (D(O + 27r), components Z(z) and (D(O) may be 

written as 

Z(z) = Ae"z' + Be-iký z (2.61) 

(D (0) = Ce"0 (2.62) 

where A, B are constants, m= 07 ±17 ±27 ... and C= 1/v/2-7r is the angular compo- 

nent normalisation constant. 
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Substituting Equations 2.59 and 2.60 into 2.58 and denoting prime as the differen- 

tiation with respect to p lead to 

1 
(pý)? " + pk) + ý2(k 2- kz 2) 

M2 (2.63) 
R 

Now, labelling 

k2-k z2 =K2 (2.64) 

xa Kp (2.65) 

leads to 

x 21el + xR'+ (x 2_m2 )R=O (2-66) 

which is known as Bessel's equation. General solutions to this equation are given 

by 

R (x) = C, J�, (x) + C2Y�, (x) (2.67) 

where C, and C2 axe constants and J,,., (x) and Y,,, (x) axe called Bessel and Neumann 

(also called N,,, (x)) functions of the first kind, respectively. Figure 2.12 shows 

functions J1=0 (x) and Yj=O (x) 
. 

2.4.2 Infinite barrier potential 

First the energy levels and wavefunctions of an infinite cylindrical barrier are cal- 

culated which provides a useful introduction to the coordinate system before inves- 

tigating more complicated cylindrical structures. The results of the infinite barrier 

calculation will also be used in the Rill DiagonaJisation of the system Hamiltonian 

method explained in Chapter 3. 
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Figure 2.12: Bessel functions of the first kind of the first order (I = 0). 
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In the model it is considered the case of a particle of massm* confined to a cylindrical 
box of radius a and length L. Expressed in cylindrical coordinates, the potential of 
this configuration is given by 

V(P, 0, Z) =0p<aA0<z<L (2.68) 
oc outside the cylinder 

Applying the potential given by 2.68, the solution of the z-component Z(z), given 

by Equation 2.59, is 

Z (z) =A sin k, z 
ký, L = n, 7r 

where n., = 17 2,... and A= V21L is the normalisation constant. 

The general solution of the radial component R(p) is given by Equation 2.67 

R(x) = C, J,,, (x) + C2Y,,, (x) 

(2.69) 

(2.70) 

(2-71) 

As can be seen in Figure 2.12, Y,,, (O) -4 -oo, therefore this term is omitted. The 

remaining boundary conditions gives 

R(p = a) =0= CIJ,,, (aK) (2-72) 

Denoting x, the s-th zero of J,,, (x) leads to 

K ,:::: xms/a (2.73) 

Therefore the eigenenergies axe given by 

h2k 2-h22 
2) 

= 

ji2 
2+ (nz7r)21 E=- -(K +kz 

[K 
(2.74) 

2m* 2m* 2m* L 

substituting K=x,,, Ia the last equation becomes 

h2 XMS 2+ (n,, 7r)2] 
E=- (2-75) 

2m* 
[( 

aL 
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and the corresponding eigenfunctions are given by 

Ims 
I 

sin 
n,, ir 

z e'mO (2.76) Onz 
m, 

(A 0, Z) = Am, Jm ( 

a2 
P) 

(L) 

Orthogonality of the Bessel functions is given by 

a 

px"") 
", 

(px,,,,, ) 
=a2 

[jm+1 (xm. 
3)]2j, 

f 
dppJm J, 

2 
(2.77) 

0 

The normalisation constant A,, is given by 

rns)-2 =irL[aJn'(Kn, 
a)]2 (2-78) 

2 

2.5 Self-assembled Quantum Dot (SAD) 

In Chapter 1 the growth of self-assembled semiconductor quantum dots was dis- 

cussed. The self-assembled dot studied in this section is composed of a dot formed 

on a quantum well wetting layer of thickness t, and modelled as a part of an ellip- 

soid of a short a, )ds of length h (height) and two long axis of length R (radius) as can 

be seen in Figure 2.13. Electrons (holes) axe confined in the narrow wetting-layer 

quantum well due to the step in the conduction (valence)-band edge at the interface, 

and they are further localised in the area of the dot due to the increased thickness 

of the layer. 

Following [6], the parameters of the two materials that make up the QD and the 

barrier appear in the model through the effective units of energy and length, R* and Y 
aB respectively, which take into account all the effects due to stress, discontinuity 

of the effective mass and dielectric constant at the interface, etc. 

e2 Ry 2caB* 
=1 (2.79) 

aB fh2 
2= 

(2-80) 
rn*e 
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We use a three-dimensional potential V (p, z), which has the same geometry as a 

SAD (Figure 2.14), that acts on the electrons (holes) confined within the dot. Thus 

carriers localised inside the dot must satisfy the Schr6dinger Equation (cylindrical 

coordinates): 

[Hý, () + Hp'90 + V(p, z)]qP = C4P (2.81) 

where 

H 
zo 

a2 
(2-82) 

aZ2 

Hpoo 
(P apa+ a2 (2.83) 

p2 ap ap 1902 

t 

h 

R 

Figure 2.13: Schematic representation of a self-assembled quantum dot, where the wet- 

ting layer thickness is t,,, and the dot is a semi-ellipsoidal of height h and 

radius R. 

2.5.1 Wave function and energy within the quantum dot 

A carrier inside the QD is confined in all directions by the potential V shown in 

Figure 2.14 and described by: 

v0 
inside the SAD 

(2.84) 
VO outside the SAD 
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where Vo is the difference between the conduction (valence) -band energies in the two 

materials, including the effect of strain. Due to the cylindrical symmetry of the QD 

and the fact that the radius is much bigger than its height, the Hamiltonian may 
be solved using the adiabatic approximation. This method takes advantage of the 

fact that the carrier wavefunctions are strongly confined to the lowest sub-band in 

the narrow wetting-layer quantum well [6]. Thus we can write: 

e (p, 0, Z) = 
eimo 

gnp (Z) fm (P) (2.85) V2-7r 

where gnp(z) is a slowly varying function of p. 

I 

Figure 2.14: Schematic picture of the SAD effective potential in cylindrical coordinates, 

V(p, z). The potential inside the SAD is V=0, whereas outside is V= VO. 

In the subspace of functions with integer angular momentum m, functions g,, p and 

f,,, need to satisfy the system of equations: 
02 

[--+V (Z 
3 P) ] gnp (Z) 

-z::: 
En(JO)gnp(Z) (2.86) 

(9Z2 

_ _p_ _ 7, n2) +E 
n 

(P)] fm (p) =: ED fm (p) 1- 
p2 

(Pap 
op 

(2-87) 

where E,, (p), n=1, - .., is the effective lateral confining potential. In order to solve 

Equations 2.86 and 2.87 numerical methods need to be used. 
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The z component (finite potential Quantum Well) 

v 
PýZ) 

VO 
r 

ii! I: III 

-_OE 
Lz 

Figure 2.15: Schematic representation of quantum well potential with finite barriers. 

The z component of the Hamiltonian, Equation 2.86, describes the finite potential 

well in a one dimension problem, shown in Figure 2.15. Due to the fact that the dot 

radius is much bigger than the height, the width of the well, L, (p), varies slowly 

with p, as can be seen in Figure 2.16a), satisfying: 

Lz =hI- 
(ipiy 

+ twet (2.88) 

This is simply the classic problem of quantum mechanical confinement by a finite 

potential in one dimension. Following [1], the ground state energy (in effective units) 

is given by: 

k, tan(k, L., (p)12) = kjj (2-89) 

where 

L., (p) = t,,, +h V/1 - (p1R 2) (2.90) 

describes the shape of the SAD and 

k2E (2.91) 

k2 I, Vo -E (2.92) 
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Equation 2.89 may be solved numerically and it gives several solutions for the energy 

E,,. The corresponding wavefunction is given by: 

Ap cos(k, L., /2)e kliz region 11 

gn=lp(Z) Ap cos(kl(z - Lz/2)) region 1 (2.93) 

Ap cos(kLz/2)e -kii (z-L, 
region III 

f0oc JgIP12 where the normalisation condition ' dz =I determines the constant Ap. 

a) 
h+ t,, 

tw 
O=Sosl 

b) 

V( 

N n/2 "": K 4.40. 
Sn =2R 

p 
O=Sosl 

Figure 2.16: a)SAD height versus radius in cylindrical coordinates. 

Schr6dinger equation effective potential Veff - 

N 
n/2 -": K 

n =2R 

b)Radial 
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Radial component 

We can now insert the energy E,, (p) into the radial Schr8dinger Equation 2.87 as an 

effective potential. Taking into account that the electron wavefunctions are strongly 

confined to the lowest sub-band in the narrow wetting-layer quantum well, we can 

assume that this effective potential is En=, (p). 

Substituting this potential into 2.87 leads to 

[-1 (P 0pa-m)+ 
Ei (p) ] f�, (p) = Ef�, (p) (2.94) 

p2 ap ap 

This equation is solved numerically separately within each subspace with a fixed 

value of angular momentum. In order to solve this equation, the potential is ap- 

proximated by a n-step function El (p) = Vff (p) = vi if si <p< si+,, where 

vj+j > vi, si is a vector of n+1 values from so =0 to sn = 2R and sj+j > si as can 

be seen in Figure 2.16b). Due to the fact that the radial wavefunction practically 

vanishes for p> 2R, the element s,, = 2R has been chosen as the p axis limit. 

The wavefunction that corresponds to the energy E and angular momentum m can 

be written as 

f,,, (r) = AiF(kir) + BiG(kir) (2-95) 

if si :5r< si+ I where ki' =IE- vi I and (F, G) is the appropriate pair of cylindrical 

Bessel functions: (J,,,, Y,,, ) for E> vi and (K, I,,, ) for E< vi. The wavefunctions 

must be continuous and smooth at each interface: 

Aj-, Fý + Bi jGL = AjFR+ B-0 (2.96) 
2-i2%I 

Ai-, VFiL + Bi-, VGL = AiVFiR+ BiVG R (2.97) ii 

In the above equations we use the followings notation: 

p. L P(ki-isi) VPjL ki-, P'(ki-isi) 
1 (2.98) 

PiR P(kisi) VPjR kiP'(kisi) 
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where P=F, G. The coefficients (A, B) are related to the transfer matrix Tj by 

Aj 
T- 

Aj-, 
(2.99) 

3 Bj Bj-, 

where Tj may be written as 
-1 

Pý C Fý GL 
Ti -333i (2.100) 

Fj VG., VFL VGL -(VRR), 

) 

Solving the system of equations 2.96-2.97 is equivalent to finding the total transfer 

matrix T, defined as 

An n Ao 
T 

Ao 
(2.101) rl Ti 

Bn Bo Bo 

The wavefunctions and derivatives must be finite in the centre of the dot, hence this 

condition must be met by 

The energies of the bound states Eb axe obtained from the condition that the wave- 
functions vanish in the limit of infinite radius. This additional condition 

B=O 

is equivalent to the vanishing of the corresponding element of the total transfer 

matrix, 

T21(Eb ) 

Bo =0 (2.102) 

(2.103) 

(2.104) 

for the discrete set of energies Eb. This condition may give more than one solution, 

therefore we include a subscript, 1=1,2,. 
. ., to denote that E,,,, is the I-th allowed 

energy associated to the quantum number m. Therefore the eigenfunction of the 

Hamiltonian may be written as: 

, IPI�ü (P, 0, e'mO 
glp(z)f", I(P) 

Nr2--i 
(2.105) 
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2.5.2 An example of the energy levels calculation. SAD. 

Our model consists of a InAs self-assembled ellipsoidal QD whose height h=2 nm, 

radius R=8 nm and wetting layer thickness t,,,, = 0.5520 nm surrounded by GaAs 

(taken from [7]). We want to obtain the electronic structure of an electron of mass 

m* = 0.023mo within the SAD. The barrier potential height for the electron is set 

to Vo =1 eV and E= UE0. All the parameters have been taken from [8]. 

The allowed confined energies, E,, a, we obtain are 

Eol = 0.706 eV 

Ell = 0.876 eV 

Their associated wavefunctions, the ground state Viol and the first excited state 
T11, may be seen in Figure 2.17 and Figure 2.18, respectively. 

2.6 Summary 

In this chapter the Schr6dinger equation has been solved for an electron within 

different shaped semiconductor QD's applying the effective mass approximation. 

First, the free particle problem has been solved in spherical coordinates and the 

results used to obtain the solution for spherical symmetric step-like potentials. Both 

finite and infinite potential barriers have been considered. The solution of the 

Schr6dinger equation for a capped QD has been also obtained, where the QD is 

capped by a layer of higher bandgap material. The Schr6dinger equation for a free 

particle in cylindrical coordinates has been solved analytically in order to obtain 

the solution of an infinite step-like barrier potential QD. These results will be used 

Chapter 3. Due to the cylindrical symmetry of the SAD's we study in this 
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Figure 2.17: SAD ground state wavefunction xPlol. 
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Figure 2.18: SAD first excited state wavefunction I IF 111 1. 
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thesis, these results will be used in Chapter 5 where the LO-phonon interaction 

in SAD's is investigated. Finally the Schr6dinger equation is solved for a self- 

assembled quantum dot applying an adiabatic method. This kind of quantum dots 

will be studied later in Chapters 4 and 5. 

This chapter has described the calculation of energy levels and wavefunctions of sev- 

eral QD geometries. This work forms the basis for the investigation of the numerical 

method proposed in Chapter 3, the coupling between QD's in Chapter 4 and the 

electron scattering due to LO-phonon in Chapter 5. Special consideration has been 

taken of cylindrical symmetry structures, due to the fact that the SAD's have been 

modelled as semi-ellipsoids. The SAD wavefunctions obtained in this chapter will 
be used in order to calculate the scattering processes studied in Chapter 5. 
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3.1 Introduction 

In the previous chapter we have calculated the electronic energy levels and wavefunc- 

tions for quantum dots with simple geometric shapes. In this chapter we introduce 

two methods for solving the electronic energy levels and wavefunctions for quantum 

dots with cylindrical symmetry. The first method involves the diagonalisation of the 

discretised system Hamiltonian and the second is the well known finite difference 

method. We check the validity of these two methods by comparison with the exact 

solution of a finite potential sphericaJ quantum dot. 

3.2 Cylindrical structures 

In order to calculate the energy levels for a 3D quantum-confinement structure 

with finite barrier height, the Schr8dinger equation must be solved satisfying the 

boundary conditions imposed by the geometry of the structure. These solutions may 

be obtained analytically only for spherical structures. In all other cases, numerical 

methods must be applied. 

In this chapter we solve the Schr6dinger equation for finite barrier potentials with 

cylindrical symmetry, such as cylinder, sphere and ellipsoid, by diagonalasing the 
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system Hamiltonian expanded in a chosen basis. This method may be applied 

to other structures, but assuming a cylindrical symmetry model reduces the three 

dimensions problem into two dimensional and requires less computational time. 

3.2.1 Full diagonalisation of the system Hamiltonian method 

First we introduce the method by solving the energy levels and wavefunctions of 

a simple structure, such as a cylinder, as represented in Figure 3.1a). We assume 

that the QD is a cylinder of radius a and height h. The Hamiltonian of a particle 

of effective mass m* is given by: 

-=-2V 

2m* 
+v = fto+v (3.1) 

where V is the band-edge energy described by: 

V(r) 
0 inside the QD 

(3.2) 
VO outside the QD 

and shown in Figure 3.1 a). 

a) b) (o. z). o <a 

Figure 3-1: a)Cylindrical quantum dot of radius a and height h. b)Schematic represen- 

tation of the band-edge potential. 
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The Schr6dinger equation for a finite barrier potential with cylindrical symmetry 

cannot be solved analytically and therefore must be solved by applying numerical 

methods. Let the space of eigenfunctions of the Hamiltonian ft be called JF), the set 

of functions 

93 = f1pil 

be a basis of b and jEjj their corresponding eigenvalues which satisfy 

H'Fi = EiTi (3.3) 

In this method each function ýVj is expanded in terms of a complete orthonormal 

set of functions. This set of functions, jOjj has to be able to generate the space of 

eigenfunctions S5. 

aijOj (3.4) 

The set of functions we consider are the eigenfunctions of the Hamiltonian of an 

infinite potential with similar symmetry as the model we are studying. Similar 

methods have been proposed expressing the solutions as series of periodic functions 

like sine and cosine [1,2]. In this case the Hamiltonian is expanded in terms of a 

set of functions 0=0,; OyO_,. where 01 = sin(ki, l), 1=x, y, z and 1i 11) 12 
... , 

1ni 

creating a Hamiltonian of dimension nxnynz. In the case nx = ny n., =n the 

dimension is n3- 

In this chapter, cylindrical symmetric structures are treated and the Hamiltonian 

is expanded in terms of a set of functions V) = 0,., Op, O, which a-re the eigenfunctions 

of the Hamiltonian of a paxticle within an infinite barrier cylindrical potential. The 

components of the expanded Hamiltonian ft are easier to calculate using this set of 

functions due to the cylindrical symmetry of the QD. 
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Calling the space of eigenfunctions of the Hamiltonian ft"O described by 

Hc* = Ho + Voc (3.5) 

where the potential V' is an infinite barrier cylinder of radius R and height L 

'larger' than the QD (wavefunctions should be zero at the boundaries of this cylin- 

der) 
, as it can be seen in Figure 3.2a). The potential V`O is represented in Figure 

3.2b) for values of p<R and is written as 

V'(r) = 

Let the set of functions 

be called a basis of S500. 

a) 

Rj 

L v- (p, z), p <R 

(3.6) 

Figure 3.2: a)QD inside the infinite potential cylinder. b) Representation of the poten- 

tial VI for values of p<R. 

In this method we assume that any wavefunction T which belongs to Sj may be 

expanded in terms of the new basis 93110 

inside the cylinder 

outside the cylinder 

93 00 = I'Fn'lml 

Ean 
Im lp 

noci)m (3.7) 
Tam 
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or, equivalently, 

E a,,,,,, I n1m) 
nim 

where In1m) = 1, Fnocl)m). 

(3.8) 

The solution of the Schr6dinger equation for an infinite cylindrical barrier can be 

obtained analytically as has been explained in Section 2.4.2. The wavefunction can 

be split in z and (p, 0) components. Energy levels and wavefunctions solution of 
ft"0*110 = E'T' are given by: 

h2 
22 Eoc -(k +k nIm 2M* n Im 

-V IPOO )�. (z) 
m>. 

('o) e'10 
nIm n 

01 

Expressing the wavefunction components as: 

z component 

oc)O(z) = V1j' sin(knZ) nL 

rn kn 7L 

n 11 2j... 

e component 

, 01 �, 0, (P, 0) =x im (p) e'10 
%72 7r 

where 

X' (p) = A,,,, J, (kl,,, p) Im 

klm = xjm/R 

and 
I 

(Xim) 
+I 

(Xlm)) 2 a2 (jý 
(Alm)-2 822 

J1 

1- 
Jl (Xim)] 

2 

07 17 27... 

17 27 3... 

(3-9) 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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where J, is the Bessel function or order 1 and xl,,, is its m-th zero. 

Now we expand the Hamiltonian ft in terms of the basis of functions 93" =II n1m) 1, 

which may be written as: 

kBoo =E In'l'rn')(ft' + V)(nlTri 
nlm 

n'llml 

Adding a null term V' - V' to the Hamiltonian leads to 

E In'l'm')(fto +V+ V" - V)(nlTnl (3.15) 
nim 

n'llml 

E [In'l'm)(ft'+ V')(nlml + In'l'm')(V - V')(nlml] (3.16) 
nim 

n'llml 
Elnlm)En", 

m(nlml+ 
E In'l'm')Mnn'li'mml(nlml (3-17) 

nim nim 
n', I', m' 

whereMnn'111mm' = (n1m I (V - V"O) I OW) and may be obtained solving the integral 

Mnn'111mm' : --': 1100 (V - V")dr (3-18) 
n1m n Ni, Foc) rx lim cylinder 

over the infinite potential barrier cylinder. 

Taking into account that VO" 

=0 within the cylinder leads to 

00 
, Vdr Mnn'II'mm' 

N 
i*noolm i*xp 

n 111m 

cylinder 

Substituting T, ',, and Equation 3.19 may be wTitten as n1m n 

MnnIII'mm' p[7p'X' ]*VO'X' dzdp 

27r 

01' - 00 ff 

n Im nt I'm 
f2 

do (3.20) 

cylinder 0 

)OOXOO P[V)Ooxoo 1*VV 611, 
ff 

n Im n/ im, dzdp (3.21) 

cylinder 
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Therefore elementMnn'111mm' is nonzero when 1= 1'. Taking into account that 0' n 

and XIm axe real functions and suppressing the index 1', the last equation may be IM 
written as 

00 00 Oo 00 (n1m I (V - Vc'o) I n'lm') -ý 
Mnn'Imm' ý 

ff 
POn XlmV'On/Xl, m, 

dzdp (3.22) 

cylinder 

therefore 

(nlm I (V - Voo) I n'lm') = (n'lm'l (V - Vw) I n1m) (3.23) 

Substituting into Equation 3.17 leads to 

E JnlTn) En",, 
n 

(n ITnj +E lnllTnl)Mnnllmm' (nlTnl (3.24) 
nim nim 

n1ml 

and hence we can say that ft is a symmetric matrix. With this representation, the 

Hamiltonian is written as a block matrix, where each block has the same quantum 

number 1. 

Hj=o 00... 

ftmoo 0 Hj=j 0 ... (3.25) 
00 HI=2 

... 

The eigenvalues may be obtained diagonalasing this matrix block by block, giving 

our model energy levels E0, E, ..... 
Eo o0... 

j1D 
-0E, 

0 ... (3.26) 
00 E2 

... 

Due to the fact the matrix k8- is symmetric, all the diagonal elements in the 

diagonalised Hamiltonian ft' have to be real, but we only consider energies below 

the potential barrier, Ei < VO, which correspond to confined states. 
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We have approximated the energy levels of a cylindrically symmetric QD expanding 

the Hamiltonian in terms of 93' JT; ý 1, which is the basis of space of functions 
n1m 

S5' and whose dimension is infinite. However realistically we must use a finite set 

of functions 

1 Nn, Ni1, Nm 
= {mlrn)in, 

j, mi, o, i 

and write the Hamiltonian as 
N, Ni-lNm NNi-INm 

00 lnlm)E. c',, 
m, 

(nlml + In'lTn')Mnn'imm' (nlTnl 
nlm nim 

n1ml 

(3.27) 

(3.28) 

where n= 11 2,..., Nn, I=0,2,..., NI-1 and Tn = 1,2, ... ' Nn. Later in this chapter 

we study examples of structures where this technique is applied and we determine 

the number of elements in the expansion, N= NnNNn, which gives sufficiently 

accurate results. 

3.2.2 Matrix M 

In this section we calculate the elements of the matrix M given by: 

Mnn'Imm' = 00 
nim n m, 

Vdr (3.29) Ni*oo i*xp it cylinder 

Adding the term Vo - VO to the potential, the last equation may be written as 

00 00 Mnn imm::: ý n1m nllm'V'dr 
+ Vo 

n1m nlim, 
dr (3-30) Nivoo i*ýv NixFoo i*xp 

cylinder cylinder 

where W(r) = V(r) - Vo. 

As may be seen in Figure 3.3, the value of VI within the limits of the cylinder 

is zero outside the QD and -VO inside it, therefore the limits of the first term in 
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cylinder 

QD 

V (p, z),, p<a 

-V 0 

Figure 3.3: Potential V'(p, z) = V(p, z) - Vo for p<a. 

Equation 3.30 are given by the structure of the QD. The second term is zero unless 

nlrn = n'lm'. Therefore Equation 3.30 may be written as 

00 Mnn'lmm' VO 6nn 6mm/ 
nlm nlim, 

dr 
Nixpoc) i*xF 

QD 

Substituting the expression of Tý', in cylindrical coordinates from Equation 3.10 n1m 

F 00 
2 e"O 

nIm = Výj sin (knz)AlnJ, (kinp) - V 27r 

and denoting 
6nn/mm' 

- 
6nn6mm' 

(3.32) 
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leads to 

Mnn'Imm' VOJnn'mml 
-Almm, 

L+h 
2 

f 
dz sin (k,, z) sin (k,,, z) x 

2 

a 
f 

J, (kl,,,, p) J, (kl,,, p)dpp (3-33) 

IP 

where A, ..... = 9v--OAI,,, A,,,,,. The integral Ip may be written as L 

e 

IP =k2ak2 [kl,,,, Jl(kl,,, a)J, '(kl,,,, a) - kl,,, Jl(kl,,,, a)J, (ki,, a)] (3-34) 
Im I'm 

e kl,,, = kl,,,, 

IP 
=a2 [[J, '(kl,,, a)]2 + (1 

_2 

12 

2) 
[JI (kl,,, a)]2] (3-35) 

2 klma 

and the integral I,, may be easily solved applying 

sin A sin B=I [cos(A - B) - cos(A + B)] (3.36) 
2 

Calling k' = k,, ± k,,, and L' = (L ± h)/2, the integral I,, may be written as 

e kn = kni 
L+ 

Iz 
1- cos(2k,, z) dz (3.37) 

2 

2k,, h - cos(2k,, L+) + cos(2k,, L-) 
(3.38) 

4 

o k,, :ý 
kn' 

L+ 

iz 
f [cos(k-z) 

2 
cos(k+z) dz (3.39) 

L- 
sin(k-L+) - sin(k-L-) sin(k+L+) - sin(k+L-) (3.40) 

2k- 2k+ 
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3.3 Cylindrical symmetry structures 

The method explained in the last section takes into account the cylindrical symme- 

try, thus it may be applied to any structure or cluster of dots which preserve this 

symmetry. 

First we will test and check the basis set by calculating the eigenvalues of a finite 

barrier potential spherical quantum dot Hamiltonian; an example we have studied 

in Section 2.3.2 and may be solved analytically. 

3.3.1 Spherical Quantum Dot 

Spherical Quantum Dots have cylindrical symmetry, and therefore their energy levels 

can be estimated using the FDH method described in the last section. 

V(r) 

vo 

0 

a) I b) 

Figure 3.4: Schematic representation of the finite barrier potential of a spherical QD, 

a)in spherical coordinates b)in cylindrical coordinates. 

Our model consists of a spherical quantum dot of radius a within a finite potential 
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barrier height. Proceeding as in the previous section, following Equation 3.28, we 

expand the Hamiltonian in terms of the functions of a given by Equation 3.27. The 

Hamiltonian may be written as: 

NI-1 NI-1 

E lnlm)E; L(nlml + 1: 

n, m=l n, m=l 
1=0 ni, mi=l 

1=0 

Inliml)m,,,,, I, n, n, 
(nlml 

where the matrix element M,,,,,, ...... is given by equation 3.19 

Mnn'lmm' N 
cylinder 

and potential V is given by 

V(r) = 
0 

00 ['Fn"olm]*Tnilm'Vdr 

inside the QD 

VO outside the QD 

(3.41) 

(3.42) 

(3.43) 

Adding a null term VO - VO to the potential V the matrix M may be expressed as: 

w 00 1100 ]** I, V'dr + Vo jm, dr (3.44) Mnn'lmm': 
-- n1m nm n1m n Nix NiFoc) i*lkp 

cylinder cylinder 

where V'(r) = V(r) - VO. Now, taking into account that potential V is constant 

inside and outside the dot, last equation may be written as 

00 1100 
, Ar (3.45) Mnn'lmm' 

--"::: 
VO 6nn'6mm N 11 nim nm 

QD 

Substituting the expression of in cylindrical coordinates from Equation 3.10 
n1m 

100 
2 e"O 

nim L sin (k,, z) A,,,, J, (kl,,, p) 
vý -2 -7r 

and denoting 
6nn/mm' :::: Jnn'Jmm' 

(3.46) 
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lead to 
L+h 

2 

Mnn'lmm' V06nnlmm' 
- Aimm, f dz siirl(knz) sin(kn/ Z) X 

L-h 
2 

(Z) 
f 

Jl(kMfp)JI(kimp)dpp (3.47) 

N, "P(Z) 

where A, ..... = ý-V'O Al,,, A,,,,, and f (z) describes the the spherical quantum dot surface L 
in cylindrical coordinates as shown in Figure 3.5. 

f(z) 

a 

0 L/2 L 

z 

Figure 3.5: Spherical QD surface equation in cylindrical coordinates. 

(Z) V7a2 -(z - L/2)2 

Again the integral Ip(z) may be solved giving: 

o kl,,, :ý kl,,,, 

Iz - L/21 <a 

Iz - L/21 >a 

Ip(u) =u 
kl��Ji(kl�, u)Jj(kl��u) - kl�, Ji(kl��u)J, (kl,., u) 

k2-k2 Im I'm 

" kirn = ki'm 

2 
lp (U) [[J, '(kl,,, u) k2 

12 

U2 
)[JI(ki, u) 

]2] 

Im 

(3.48) 

(3.49) 

(3.50) 
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where u= 

Therefore matrix M is given by 

Mnnllmm' ý V06nn/mm' 
-Almm' 

L+h 
2 

f 
dz sin (k,, z) sin (k,, z) Ip (z) 

L-h 
2 

(3-51) 

and this integral may be solved numerically. 

3.3.2 An example of the energy levels calculation. Spherical 

QD 

As we have explained in Section 2.3.2, energy levels of a Spherical QD with finite 

barrier potentials can be calculated analytically. This allows us to verify the FDH 

method. In this section we compare the exact ground and first excited state energy 

level with the ones obtained using the FDH method. 

R=4a 

I 

z 

0L 

Figure 3.6: Spherical QD within an infinite barrier potential cylinder. 

Our model consists in a spherical QD of radius a=3-9 nm. The QD is composed 

of InAs and the surrounding material is GaAs. The potential barrier depth is VO =I 
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eV and m=0.023mo is the electron effective mass. In order to make a qualitative 

study of the method we have taken those parameters from [3] for self-assembled 

quantum dots. The radius of the infinite cylinder is R= 4a and the height L= 8a 

as can be seen in Figure 3.6. 

In this model we expand the Hamiltonian in terms of the basis 93' = ITnoolml, but 

only t aking a finite numb er of functions , 1. e. n=11 2) ---; Nn 71=0,1, ..., N, -1 and 
m 17 2, 

..., 
Nm. If jajjj=o,..., 

N, -j is this finite set of functions, where each 

tal 
I'Fcnýolm}n=l,..., 

Nn, m=l,..., N,,, is a subset of functions, the Hamiltonian is given by 
N,,, N,,, 

N,, Nm N,, Nm 
NI-1 NI-I 

ft, 3 
=Y 

., 
In1 rn) E, ', In (n Im+ 

n, m=l n, m=l 
1=0 ni, mt=l 

1=0 

InilMI)Mnn'lmm' (nlml (3.52) 

This Hamiltonian is a matrix of dimension N=N,, NIN,,, and for this case we take 

N,, = 50, N, =I and N,,, = 25. 

The Hamiltonian is 1-number block diagonal, as expressed in Equation 3.25, thus 

blocks do not interfere with each other. Therefore the addition of more I-blocks 

in the Hamiltonian may give more eigenvalues or increase the degeneracy of them, 

but does not make the eigenvalues more accurate. We discuss later the inclusion of 

more 1-blocks and why we assume that H1=0 is the block which makes the results 

more accurate. 

We express the Hamiltonian eigenfunctions as series of functions of a. These func- 

tions) TOO 0,, (z), O' (p, 0), may be split in z and (p, 0) components. Therefore, n1m :: -- 17n 

we have a finite set of functions in z-direction, Onoo (z), and another finite set of func- 

tions in the plane (p, 0), V)lomo (pý 0) to generate the spatial function T in cylindrical 

coordinates, where n= 11 27-7 Nn = 50 and m= 17 ... 7 Nm = 25. 

For a given 1, we define a finite set of functions , 3t =IIk, 1)}k=l,..., N, where N= NIN,,, 

95 



f -IL 
Chapter 3. Full diagonalisation of the System Hamiltonian 

and 

Ik = (n - 1)N,,, + m, 1) = In1m) 

or equivalently 

nOol m 

(3.53) 

(3.54) 

In order to expand the Hamiltonian we need N, sets of functions. In our case we 

only need one, but for 1-blocks of 1>1 the process is the same. Then a 1-block 

Hamiltonian, fti, expanded in terms of a, may be written as 
N 

H -, 31 E lil)aijl(jll 
ij=l 

or as a matrix of dimension N= 50 x 25 = 1250. 

I 
all 
a2l 

aNl 

1 1 a12 
... 

alN 

I I a22 
... 

a2N 

aN2 
... 

aNN 

(3-55) 

(3-56) 

In our case N, =1 and only 1=0 is taking into account, thus a=& and the 

Hamiltonian is composed of one 1-block Hamiltonian, HII = H"ý' Therefore the 1=0* 
Hamiltonian expanded in terms of function of a is given by 

aO, 1 ao ... 12 ao IN 

ao 21 ao ... 22 ao 2N 

AI N A2... N A NN 

where elements A are obtained from Equation 3.41. 
%J 

(3-57) 

We want to obtain the eigenvalues and eigenfunctions of matrix ft, 3, which obey 

fll'% = Ei*i (3.58) 
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where Ej is an energy level, Ti is its associated wavefunction and i=0ý-*IN-1. 
The eigenfunctions are given by 

N 
E cii ljo) (3.59) 

j=l 

or changing notation IN >-+ In1m > where k=N,,, (n - 1) +m 
Nn, N,,, 

E 
Ci(N,,, (n-l)+m) InOm) (3.60) 

n, m=l 

In order to obtain the eigenvalues and eigenfunctions of the Hamiltonian, we use 
NAG-library mathematical software, where the time taken by the routine is approx- 

imately proportional to NI[4]. 

Applying these numerical libraries to the Hamiltonian of a spherical QD of radius 

a=9 nm, we obtain the eigenvalues, Ej, and the coefficients cij for i=0, N-1, J= 

17 N. Only energy values below the potential barrier, Ej < Vo, are the allowed 

confined energies. 

We compaxe the results obtained from the FDH method with the analytical solution 

calculated in Section 2.3.2. Figure 3.7 shows the two first energy levels against QD's 

radius. The error is the order of 0.01 %. Therefore the set of functions we have 

taken is good enough to estimate the energy levels. 

Assuming that the energies are sorted increasingly, the eigenfunction associated 

with the lowest energy, Eo, is given by: 

, po 

=Z coi ijo) 
j=l 

or 

(3.61) 

Nn, N, 

Apo = 00 E 
CO((n-l)Nn+yn)lllnom (3.62) 

n=m=l 
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Functions are given by Equation 3.10 in cylindrical coordinates. n1m 

IF 00 (3.63) 
nlm = On' (Z) OI'm (P) 

V2-7r 

Substituting these functions into Equation 3.62 gives the ground state wavefunction 

in cylindrical coordinates, which can be seen in Figure 3.8. 

(D 
E 

C» 16- 

Figure 3.7: Two first energy levels of a Spherical QD calculated analytically and using 

the FDH method versus QD radius. 
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10 

16 

0 14 

0 
r 12 
0 

10 

cc 8 

6 
cc 

4 

2 

0o 
I. - 0 

-2 
80 

z (nm) 00p 
(nm) 

40 

Figure 3.8: Spherical QD ground state wavefunction, To (p, z), expressed in cylindrical 

coordinates. 

99 

20 
10 



CL hapter 3. Ftffl diagonalisation of the System Hamiltonian 

Choosing the set of functions a 

We have estimated the ground state energy expanding the Hamiltonian in terms of 

,a= a'O, where only functions with 1=0 have been taken into account. Now, in 

order to demonstrate that the accuracy of the solution does not change including 

more subsets of functions & we take 

falll=0,112,3 

a, =f Ik, 1)lk=l,..., N 

(3.64) 

(3.65) 

where Ik = (n - I)N,,, + m, 1) = In1m) and 1=0,1,2,3, N= NnN,,,, Nn = 50 and 

N.. = 25. 

Expanding the Hamiltonian in terms of 'a leads to 

ft,; p ooo 
0 fif 00 

(3.66) 
000 

000 ft2t' 

Proceeding as described in the previous section we calculate the eigenvalues and 

eigenfunctions of each block H, '&. In Table 3.1 we compaxe the lowest eigenvalues 

of each block with the energies calculated analytically. 

ý (1 -- 0) of dimension Table 3.1 shows that the eigenvalues of the matrix A ao 

N= 1250 reproduce with good accuracy all the energies calculated analytically. 

Obtaining the eigenvalues of other 1-blocks, 1= 11 27 3, gives accurate energies but 

only for energies where the spherical m-number is non-zero, like Ell, E12 and E13, 

as seen in Table 3.1. The reason for this is that the analytical solution wavefunc- 

tions for m=0, are non-zero at the origin R,,,,,, =O(O) :A0, as can be seen in Figure 

3.9. Therefore for 1 :ý0, the set of functions fijjjj, ýo7 cannot solely be used as a 
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Energy (eV) 

E,, m AnalyticaJly 

Elo Ell E12 E20 E13 

0.153440 0.311839 0.508806 0.596511 0.739963 

50 x 50 FDH 

0 0.153484 0.311963 0.508968 0.596678 0.740050 

1 0.311905 0.508993 0.740335 0.874207 0.999456 

2 0.508891 0.740157 0.999349 1.036726 1.046420 

1 3 0.740069 0.999162 1.055364 1.064734 1.080549 

25 x 50 

0 0.153558 0.312015 0.509145 0.596969 0.740335 

1 0.312106 0.509148 0.740563 0.874724 0.999820 

1 2 0.509248 0.740446 0.999672 1.036733 1.046420 

1 --3 0.740560 0.999600 1.055364 1.064735 1.080550 

12 x 24 

1 =0 0.154517 0.313882 0.513045 0.601627 0.748319 

1 =1 0.314182 0.511881 0.746244 0.882448 1.009234 

1 =2 0.512249 0.744700 1.005995 1.036801 1.046421 

1 =3 0.745881 1.005966 1.055365 1.064742 1.080551 

Table 3.1: Energies levels of an electron of mass m=0.023mo within a finite potential 

barrier (Vo =1 eV) spherical QD of radius a=9 mn calculated analytically 

and using the FDH method. Analytical results E,, m are ordered increasingly. 

The FDH method has been applied to each Hamiltonian block, H, ' , for I 

0,1,2,3 and with different matrix dimensions N=2 500, N- 12 50 and 

N= 300. 
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valid basis to calculate the system wavefunctions which are not zero at the origin 
(0) =A 0) because all the functions of the set vanish at the origin, IF, ', n134-0m(o) = 0- 

0.3 

0.25- 

0.2- 

0.15- 

0.1 - 

0.05- 

0 

-0.05- 

-0.1 0246 10 12 14 16 18 

r (nm) 

Figure 3.9: Spherical radial wavefunctions, &,,, (r), of the five lowest energy levels of a 

spherical QD of radius a=9 nm obtained analytically. 

In order to obtain the eigenvalues of the Hamiltonian, the set of functions falli>o 

only contribute to increase the degeneracy of the energies obtained using & and 

not increasing the accuracy due to the fact that functions with different 1 number 

do not interfere with each other within the Hamiltonian ft, ý. Therefore choosing 

Ij = 30 gives the method a good accuracy in order to calculate the energy levels. 

We also calculate the eigenvalues of different Hamiltonian matrix sizes. Increasing 

the dimension of the Hamiltonian makes the result more accurate, but also requires 

more computational time. Therefore we want to demonstrate that the dimension 

10 
R 

20 

R 
12 

R 
13 

12 14 16 
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we have taken (N = 1250) gives accurate energies without using big matrixes. We 

calculate the relative energy error of the ground state and two first excited states, 

which is shown in Table 3.2. The relative error in all the cases is very small. 

Using fortran NAG-numerical libraries on a SUNW, UltraSPARC-III+, 900 MHz 

machine takes about 2 minutes to obtain the eigenvalues and eigenfunctions of a 

symmetric matrix of dimension 1250, which we consider gives enough accuracy for 

the computational time required. 

H&miltonian 

Dimension 

Error (%) 

EO El E2 

2500 0.02 0.04 0.03 

1250 0.07 0.06 0.07 

300 0.7 0.7 0.8 

Table 3.2: Energy levels error of a spherical quantum dot calculated using the FDH 

method. 

3.3.3 Spherical capped Colloidal QD 

The energy levels and wavefunctions of spherical capped colloidal QD's have been 

calculated previously in Chapter 2. Again we study the FDH method by checking 

against an analytic solution in order to study the accuracy of the method. 

A capped core/shell colloidal QD of radius a, and shell thickness t, is 'inserted' 

within an infinite barrier cylinder of radius R= 4a, and height L= 8aj. As before, 

following Equation 3.28, we expand the Hamiltonian in terms of the functions of 
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R=4aý 

I 

z 

0 L 

Figure 3.10: Capped Colloidal QD of core radius a, and shell thickness t, within an 
infinite barrier potential cylinder of radius R= 4a, and height L= 8aj. 

a= I lnlml. 

1: lnlm)E, ",,,,, (nlml +E In'lm')M,,,,,, 
..... 

(nlml (3.67) 
n1m n1m 

nlm' 

where n, n' = 17 ... 7 Nn; m, m' = 1,... , Nm; 1=0,... 
, N, -1 and the matrix 

elementMnn'lmm' is given by Equation 3.19 

00 Mnn'lmm' 
n1m nilm'Vdr 

(3.68) NixFoo i*, F 
cylinder 

where the potential V is given by 

0 inside the core 
V V, inside the shell (3-69) 

VO outside the QD 

Adding a null term VO - VO to the potential V the matrix M may be expressed as: 

00 Mnn'lmm':: ý ]*AF2T, Ar +q, V'dr (3.70) nim nm n1m nm vo N ivoc, NixFoo i*AF 
cylinder cylinder 
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where W(r) = V(r) - VO. Taking into account that the potential V is constant 

within aJI the regions, the last equation may be written as 

00 Mnnllmm' V06nnl6mm' - VO 
nim n'jm, 

dr Niývoo i*ýv 
core 

00 (VO 
- VS) 

n1m n'jn, 
dr (3.71) Niývoo i** 

shell 

Substituting the expression of *nIjm in cylindrical coordinates 

Vo VF2 siii(knz)A, mJ, 
(kjnp) e"O (3-72) 

n1m 
vý-2-7-r 

and denoting 

6nnimm, ý Jnn'6m7n' 

leads to 
L+al+2t, g 

2 

Mnn'Imm' ý V06nn'mm' - Almm, 
f 

dz sin (kn Z) sin (kn'Z) X 

L-al -2tq 
2 

f-, ý (Z) f. (Z) 
Vo 

1 
Ji(k, M, p)Ji(kimp)dpp+V, 

1 
Ji(kim, p)Ji(kimp)dpp (3.73) 

fr (Z) i 

where A, ...... =I Al,,, A,,,,, and f, (z) (f, (z)) describes the surface of the QD core (shell) L 
in cYlindrical coordinates, as can be seen in Figure 3.11. 

fc (Z) 

fs (Z) 

The integraJ 

Va 2_ (z - L/2)2 Iz - L/21 < a, 1 
0 Iz - L/21 

a, + t, )2 - (z - L/2)2 a, < Iz - L/21 < a, + t, 

0 Iz - L/21 ý! a, + t, 

u 

Ip (U) 
f 

J, (ki,,,, p) J, (kl,,, p) dpp 

again may be solved analytically giving: 

(3.74) 

(3.75) 

(3.76) 
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+ 

Figure 3.11: Shape of core, f, (z), and shell, f, (z), boundaries. 

e kl,,, :ý kl,,,, 

Ip(u) =u 
kl,,,, Jl(kl, -,, u)J, '(kl,,,, u) - kl,,, Jl(kl,,, u)J, (kl,,, u) (3.77) 

k2-k2 Im 11M 

o kl,,, = kl,,,, 

u2 
[[J, (kl,,, u)]2 + (1 

12 
[Ji (kl,,, u)]2] (3.78) lp (U) 

2k2 U2 lm 

Substituting Ip(u) into Equation 3.71 leads to 

L+a 1 +2t, 9 
2 

Mnn'Imm' VO6nnlmm' - Almml 1 
dz sin (knZ) sin (knZ) X 

L-al -2t, 9 
2 

[VO IP (fe (Z» + VS IIP (f s (Z» - Ip (fc (Z» 11 (3-79) 

This expression may be calculated numerically. 

3.3.4 An example of the energy levels calculation. Spherical 

capped QD 

The colloidal quantum dots most often used to date in fundamental or applied 

studies are spherical nanocrystals with core sizes that vary between 1.5 and 12 

nm in diameter. For this example we consider a core-shell (CdSe/ZnS) spherical 
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quajitum dot, where the core radius is a, = 1.5 - 2.0 nm and the shell thickness is 

t, = 0.3 nm[5]. We calculate the two lowest energy levels of an electron of effective 

mass m=0.1mo within the QD. The band offset between the core and shell is 

V, = 0.9 eV and between the core and surrounding material (liquid) is Vo 3 eV[6]. 
The infinite potential cylinder radius and height axe R= 12 nm and L 24 nm, 

respectively. 

In this model we expand the Ha; rniltonian in terms of the finite set of functions 

,a=II n1m) I where n=1,2, Nn, 1=0,1, 
..., N, -1 and m=1,2,... 7 N,,,. The 

dimension of a is given by N N,, NN,, and for our case we take Nn = 50, Nj =1 

and N,,, = 25, thus a -- ao. Expanding the Hamiltonian using this basis set creates 

a symmetric matrix of dimension N= 50 x 25 -- 1250. In order to diagonalise the 

Hamiltonian of the system we use NAG-libraxy routines. 

We calculate the ground and first state energy levels for different core radii a, = 

1.5 -2 nm and the results are shown in Figure 3.12. These are compared with the 

analytical solutions, obtained in Section 2.3.4. It can be seen that energy levels 

obtained using the FDH method agree very well with the analytical solution. 

The ground state wavefunction may be obtained calculating the eigenfunction asso- 

ciated with the lowest energy level. Figure 3.13 shows the ground state wavefunc- 

tion, *0 (p, z), in cylindrical coordinates. This wavefunction vector will be used in 

order to calculate the electronic structure of coupled colloidal QD's in Section 4.5.3. 

We have tested the FDH method against the analytical solution for spherical QD's 

and capped spherical QD's. In both cases the approximation agrees well with an- 

alytical solution, making the FDH method a good candidate for use with other 

structures with cylindrical symmetry, such as ellipsoidal QD's, as will be studied in 

Section 3.3.5. 
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Figure 3.12: Ground and first excited state of an electron within a CdSe/ZnS spherical 

QD of radius a, = 1.5 - 2.0 inm. Solid line corresponds to the results 

obtained using the FDH method and circles lines to the analytical solution. 
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Figure 3.13: Ground state wavefunction, To (p, z), in cylindrical coordinates of an elec- 

tron of mass m=O. 1mo within a capped spherical QD of radius a, =3 mn 

and capping layer thickness t, = 0.3 nm. Energy band offsets are Vo =3 

eV and V, = 0.9 eV[6]. 
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3.3.5 Ellipsoidal Quantum Dot 

In last section electronic structure of a CdSe/ZnS type spherical QD was studied. 
The 11-VI semiconductor nanocrystals are well characterised structurally and several 

studies have shown that CdSe crystallites are elongated along the unique wurtzite 

axis[7], in our case the z axis. It has also been shown that electronic and optic 

properties can be strongly dependent on nanocrystal shape, as well as on size[8]. In 

this section we apply the full diagonalisation of the system Hamiltonian method to 

ellipsoidal QD's. 

A.. R 
a) ( II 

III' III 

(PIO f 0) 

b) 

II 

av 
0 

vs 

Rp p 

Figure 3.14: a)Schematic picture of a core-shell ellipsoidal quantum dot. 

b) Representation of the QD potential in cylindrical coordinates at 

z=O. 

The eigenfunctions of an ellipsoidal QD Hamiltonian, Figure 3.14a) , cannot be ex- 

pressed in spherical coordinates, therefore they must be obtained using other meth- 

ods. In this section we obtain the energy levels using the full diagonalisation of the 
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effective mass Hamiltonian ft 

h2 
+v= fto +v (3.80) 

2, rn* 

where V is the band-edge energy described by Figure 3.14b). 

0 inside the QD core 
V(r) V, inside the QD shell (3.81) 

vo elsewhere 

As before, we insert our QD within an infinite barrier potential cylinder (see Figure 

3.15) and we expand the Hamiltonian in terms of basis 93' functions. 

EI nTrn) (ft' + V) (nlTn 
nim 

n'llml 

where In1m) are the eigeirifunctions of the Hamiltonian of the empty infinite barrier 

potential cylinder ft' described by Equation 3.5. Potential V is given by 

0 inside the core 
V(r) V, inside the shell (3.82) 

VO outside the QD 

Proceeding as in Section 3.3.3 for a capped spherical QD, the Hamiltonian 

may be written as: 

ftmoo =E lnlrn)Enolon(nlml +E In'lm')Mnn,,,,,,,,, (nlml (3-83) 
nim nim 

n1ml 

where the matrix element Mnnllmm' is given by Equation 3.71 

cc Mnn'lmm' VOJnnJmm' 
- 

VO 
nlm nilm, 

dr Nilpc)o i*, F 
core 

Oo 

(VO - v9) N [Too ]*IF , Ar (3-84) nim nm 

shell 
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Chapter 3. Full diagonalisation of the System Hamiltonian 

Ak 

R= 12 run 

z 

0L 

Figure 3.15: Ellipsoidal capped QD inside infinite barrier potential cylinder. 

Substituting the expression of in cylindrical coordinates n1m 

4100 
ý2- 

sin (k,, z) Aln J, (kimp) e"P (3-85) 
nlm L -v/ 2-7 

and denoting 
6nn/mm' :::::::: 6nnl6mml 

lead to 

Mnn'lmm' 
- 

V06nn/mm'-Almm' 

L+RZ+2ts 
2 

f 
dz sin(k,, z) sin(k,,, z) x 

L-Rx -2t,, 
2 

f' (Z) f, (Z) 
Vo 

1 
J, (kl�� p) J, (kl��o) doo + V, J, (k, MIo) J, (kimp) doo (3.86) 

L01 

where 
Almm' :::::::: 

2 AlnA,, n, is the normalisation constant and fc(z)(f, (z)) describes 11 
the surface of the QD core(shell) in cylindrical coordinates, as can be seen in Figure 
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3.16. 

pý, Rz f, (Z) 
R_( (z L/2) )2 Iz - L/21 < Rz 

(3.87) 
0 Iz - L/21 >& 

1-( 
(z-L/2) )2&< Iz - L/21 < Rz + ts f' (Z) = 

(Rp + ts) 

0 
Rz 

Iz - L/21 ýý al + ts 
(3.88) 

Rp+ t. 

R 
p 

Figure 3.16: Surface equation of the core, f, (z), and the shell, f, (z), in cylindrical coor- 

dinates, where the core is an ellipsoidal of short radial axis, Rp and a long 

axis R, along z direction. The shell thickness is t, 

The integral 

u 

Ip (U) 
f 

J, (kl,,,, p) J, (kl,,, p) dpp (3.89) 

has been calculated in Section 3.3-3. Then substituting this expression into Equation 

3.86 leads to 
L+Rz+2ts 

2 

Mnn'Imm' VO6nnlmml 
-Almml 

1 
dz sin(knZ)sin(knl Z) X 

L-Rz -2ts 
2 

[VO IP (fe (Z» + vs [IP (f 8 (Z» - Ip (fc (Z» j1 (3.90) 

and this expression may be calculated numerically. 
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3.3.6 An example of the energy levels calculation. Ellip- 

soidc-d capped QD 

In this case we consider a core-shell (CdSe/ZnS) ellipsoidal quantum dot, where the 

core is elongated along the z axis. We consider ellipsoids of ellipticity p=R, lRp - 17 

with long axis R_, =1-5-2.0 nm, short axis Rp = 1.5 nm and shell thickness ts = 0.3 

nm. 

We calculate the two lowest energy levels of an electron of effective massm = O. Imo 

within the QD. The band offset between core and shell is V, = 0.9 eV and between 

core and surrounding material (liquid) is Vo =3 eV[6]. The infinite potential cylinder 

radius and height are R= 12 nm and L= 24 nm, respectively. 

We expand the Hamiltonian in terms of the finite set of functions 11YnOO, I where n1m 

n= 17 2,..., N, 1= 0) 17 _7 N, -1 and m= 17 2, ..., Nm. The dimension of the set of 

functions is given by N=N,, NNm and for our case we take Nn = 507N, =1 and 

Nm = 25. Expanding the Hamiltonian in terms of a creates a symmetric matrix 

of dimension N= 50 x 25 = 1250. In order to diagonalise the Hamiltonian we use 

NAG-library routines. 

We calculate ground and first state energy levels for different core long radii R, = 

1.5 - 2.0 nm and short radius RP = 15 nm diagonalising the Hamiltonian, as shown 

in Figure 3.17. These energies are compared with energies obtained in Section 3.3.3 

for a capped spherical QD, where the radius R=R,. 

Again, the ground state wavefunction may be obtained calculating the eigenfunc- 

tion associated with the lowest energy level. Figure 3.18 shows the ground state 

wavefunction7 TO (p7 z), in cylindrical coordinates. This wavefunction vector will be 

used in order to calculate the electronic structure of coupled colloidal ellipsoidal 

QD's in Section 4.5.4. 
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Figure 3.17: Ground and first excited state of an electron within a CdSe/ZnS ellipsoidal 

QD versus long radius R,, = 1.5 - 2.0 nm. Solid lines corresponds to the 

ellipsoidal QD of short radius Rp = 1.5 nm and circles lines corresponds to 

a spherical QD of radius R=R,. 
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Figure 3.18: Ground state wavefunction, To (p, z), in cylindrical coordinates of an elec- 

tron of mass m=0.1mo within a capped ellipsoidal QD of long radius 

Rz =2 nm, short radius Rp = 1.5 nm and capping layer thickness t, = 0.3 

nm. Energy band offsets are VO =3 eV and V, - 0.9 eV. 
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3.4 The Finite Difference Method 

We have calculated analytically the Schr6dinger equation for spherical structures 

and used the FDH method for cylindrical structures. Both methods have been 

compared solving the system for spherical QD's. Here we introduce the Finite 

Difference method (FD) as another technique for solving the Schr8dinger equation. 

We explain how to calculate the energy levels of any cylindrical QD using this 

method and we calculate the energy levels of a finite barrier potential spherical QD 

and compare these results with the analytical solution and the FDH method. 

3.4.1 Finite Difference Method 

Methods involving difference quotient approximations for derivatives can be used for 

solving certain second-order boundary value problems, like the Schr8dinger equa- 

tion. 

h2 
2m* 

V2T + VT 

where V is the potential of a cylindrical structure. 

(3.91) 

Due to the cylindrical shape of the potential, we have symmetry about the z-axis, 

thus the value of 0 does not vary and we can write T(p, 0, z) as the following: 

,p (P, 0, Z) =0 Z) 
1 

e'm0 
-, 72-7r 

(3.92) 

Taking the expression for a free particle, studied in Section 2.4.1, the Schr8dinger 

equation of a particle of effective mass M written in cylindrical coordinates is given 

by 

h2 a2 

2m* 
li9p2 la m 

p ap pl 
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The three-dimensional problem has now been reduced to a much more simple two- 

dimensional problem. This solution can be solved using the finite difference method. 

This method of solving paxtial differential equations only appro)dmates the govern- 
ing equations at a discrete number of points and not throughout the whole region. 
As a result, the whole domain is covered by a mesh of points. The first step in our 

solution is to define this domain. We use Np and N, number of points to describe 

p and z axis, respectively. 

p 0= Pl, P2, ---, PNp = Ana. where h= pj - pj-l 
Z Zmin = ZI i Z2 7 ... 7 ZN, = Zmax where k= zj - zj-l 

where h and k are the increments in p and z respectively. 

We denote the value of the wavefunction V)(p, z) and the potential V(p, z) at these 

points as: 

oij = O(pi, zj) (3.94) 

vij = V(pi, zj) (3.95) 

where i=1,... , 
Np and j=1, 

.. -, 
N-,,. 

Now, replacing the partial derivatives with finite difference quotients and neglecting 

second order terms give [9]: 
0,0 

, 9p (pi, zj) 
a2,0 

jqp2 (pi, zj) 
a2,0 

aZ2 
(pi, zj) 

2h 
V)i+,, j - 20ij + V)i-,, j 

h2 

2, oij + oij+l 
k2 

Substituting the above quotients into the Schri5dinger equation leads to: 

2V)ij + V)ij-l 
+ 

Oi+lj - oij-1 
+ k2 pih 

V)i+lj - 2V)ij + V)i-lj 
h2 
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or rearranging last equation 

11] 

+v oi_ij 
[h2 

- )ij 
[- 22m 2MVij] 

+ 2hpi V h2 p2 h2 i 

Oi+lj + oij-, + oij+l Eoij (3.100) 
[h2 

2hpi k2k2 

Due to the fact that the wavefunction must be zero at infinity and defined within 
the range (i = 1, ..., Np, j=1, ..., N, ) the following elements are zero: V)jO = 
Oi(Ný, 

+1) = ý)Oi ý V)(Np+1)j = 0- 

Substituting for aJI values of i and j, we can arrange the Schr8dinger equation as a 

system of linear equations and produce a (N, N) matrix, where N= NpN,. 

Lets denote the column vector (P as 

4D 
( 

Oll 012 
... 

Ol N, 021 022 
--- 

ONp N, 
) 

The system of linear equations may be written as 

A(P = E(D 

where A is the matrix described as 

All A12 
... 

AINp 

A21 A22 
... 

A2Np 

ANp, AN,, 
2 ... 

ANp 
Np 

where each element Aij is another matrix defined as 

a(Ni+, )(Nj+, ) a(Ni+, )(N, +2) ... a (Ni + i) (Nj + N,, ) 

Aij 
a(Ni+2)(Nj+l) a(Ni+2)(Nj+2) a(Ni+2)(Nj+N,, ) 

a(Ni+N,, )(Nj+, ) a(N, +N. )(Nj+2) ... a (N, + N. ý) (Nj + N;, ) 

(3-101) 

(3.102) 

(3-103) 

(3.104) 
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with Ni = Np(z- - 1) and Nj = Np(j - 

Substituting the Equations 3.100 into the matrix A leads to 

ANp 
Np 

All A12 00 

A21 A22 A23 0 

0 A32 A33 A34 

00 A43 A44 
(3-105) 
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V_ 
For a given i the non-zero elements of matrix A axe: 

1 0 0 0 
0 1 0 0 

Aii Ai-ii 
[h 

2 2hpil 0 0 1 0 

0 0 0 ... 1 

1 0 0 ... 0 

0 1 0 ... 0 

Aii+l Ai+li 12+1 1h 
2hpi 

0 0 1 
... 

0 

0 0 0 ... 1 

io o ... o 

01 0 ... 0 

Aii 22 Tnj 

22i kh 
00 1 

... 0 

00 0 ... 1 

vi, oo... o 
0 Vi2 0 

... 
0 

2M 
h2 

00 Vi3 
... 

0 

000... Vi N;, 

o o 
0 

0 0 

0 0 0 

where Ajo = Aoi = A(N, +I)o = 
AO(N, 

+, ) = 

(3-106) 

(3-107) 

(3-108) 
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We have shown that A is a band symmetric matrix of order N. This matrix depends 

on the axial number m, therefore we include this number as an upper-script of the 

matrix A -ý Am. Using NAG-mathematical libraries, we obtain the eigenvalues, 
El, and eigenfunctions, TI, of A which are the energy levels and wavefunctions of 

the equation 

'T, a = E,, a 

t 
'CIO mm 

Oml '0211 7P227ni 12 INý, Nj, Nz 

In order to obtain the two-dimensional wavefunction T,, a (p, z) we use the transfor- 

mation 

where 

I (pi, zj) = oij, 23 

3.4.2 

(3.109) 

(3.110) 

(3.111) 

An example of the energy levels calculation. Spherical 

QD 

We calculate the energy levels of a finite barrier potential spherical QD. We take the 

same parameters as before: a spherical QD of radius R=9 nm, potential barrier 

depth VO =1 eV and the effective mass of the electron m=0.023mo. 

Taking different number of partitions in z and p directions as, Np and N., respec- 

tively, we obtain the first few energies shown in Table 3.3. We compare the results 

with the analytic solution. 

We calculate the energies using (Np = 25, N, = 50) and (Np = 50, N_, = 100) 

number of partitions in p and z axis. We create the matrix A for rn = 0,1. The 
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Energy (eV) 

Eo El E2 E3 E4 

E,, m Elo 

0.153440 

Analytically 

Ell E12 E20 

0.311839 0.508806 0.596511 

E13 

0.739963 

FD 

Np = 25, N, = 50 

m=O 0.164311 0.316626 0.508831 0.636302 0.737222 

m=1 0.341018 0.532979 0.752368 0.938908 1.000180 

Np = 50, N, = 100 

m=0 0.158954 0.319300 0.517377 0.615271 0.754053 

m=1 0.324407 0.526052 0.756434 0.902336 1.019230 

Table 3.3: Energy levels of an electron of mass m=0.023mo within a finite potential 

baxrier (Vo =1 eV) spherical QD of radius R=9 nm calculated analytically 

and using the Fl) method. Analytical results E,, m are ordered increasingly. 

The Fl) method has been applied for different axial numbers m=0,1 and 

using two different dimension matrixes: N= NpN,, = 25 X 50 and N 

NpN., = 50 x 100. 
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Figure 3.19: Ground state wavefunction of a finite potential barrier spherical QD calcu- 

lated using the FD method. 
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range of z axis we have taken into account is [Zrnin) Zmax] = [-36,36] nm, and the 

range of p [Pmin 
i Pmax] = [0; 18] nm. 

As shown in Table 3.3, using functions with axial number m=0, TO, to generate 

the matrix A gives more accurate results for the energy levels. As it happens in 

the FDH method, functions of axial number m>1 vanish at the origin, thus they 

cannot reproduce any wavefunction which is not zero at the origin, which is the case 

of the ground state of our model, shown in Figure 3.19. 

3.4.3 Comparison between FDH and FD for a spherical QD 

We have calculated the energy levels of a finite spherical quantum dot analytically 

in Section 2.3.2 and using two different numerical methods: the full diagonalisation 

of the system Hamiltonian, Section 3.3-1, and the finite difference method, Section 

3.4.2. 

In both methods the aim is to create the Hamiltonian of the system and then cal- 

culate its eigenvalues and eigenfunctions. We compare both methods constructing 

equal size Hamiltonians and we use numerical libraries in order to obtain the eigen- 

functions and eigenvalues. 

Table 3.4 shows the five lowest energies obtained analyticafly and using both meth- 

ods for a spherical QD of radius a=9 nm. Both methods have been used to 

solve cylindrically symmetric structures, where the three-dimensional Hamiltonian 

is reduced to two dimensions. Then comparing energies in Table 3.4 we can state 

that the results obtained using the FDH method are more accurate than the ones 

obtained using FD, making the former technique a good candidate to caJculate the 

energy levels of cylinder symmetric QD's. 

125 



CL hapter 3. FVII diagonalisation of the System Hamiltonian 

Energy (eV) 

Eo E, E2 E3 E4 

Analytically 

0.153440 0.311839 0.508806 0.596511 0.739963 

FDH 

N= 1250 10.153484 0.311963 0.508968 0.596678 0.740050 

FD 

N= 1250 10.164311 0.316626 0.508831 0.636302 0.737222 

Table 3.4: Energies levels of an electron of mass m=0.023mo within a finite potential 

barrier (VO =1 eV) spherical QD of radius R=9 nm calculated analytically 

and using the FDH and the Fl) numerical methods. Analytical results E,,,, 

are ordered increasingly. In both numerical methods a matrix of dimension 

N= 25 x 50 = 1250 has been used in order to write the Hamiltonian. 
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3.5 Summary 

In this chapter the Schr8dinger equation has been solved for an electron within a 

cylindrical symmetric quantum dot. For QD structures the anaJytical solution is 

only available for certain cases like spheres or infinite potential cylinders. In other 

cases numerical methods must be applied. The full diagonalisation of the system 

Hamiltonian method has been used in order to obtain the electronic structure and 

the wavefunctions of the particle. 

Firstly, the FDH method has been explained and applied for a spherical QD and a 

spherical capped colloidal QD. In both cases the results have been checked against 

the anaJytical solution caJculated in Chapter 2. Using the example of a spherical 

QD we estimate the size of the basis set which is used to expand the Hamiltonian 

in order to determine accurate results for structures where the analyticaJ solution 

is not possible to obtain. Therefore, using the same basis as for the spherical QD, 

the solution is obtained for an ellipsoidaJ QD and an ellipsoidal capped QD. 

Another numerical method, the finite difference method, is studied and applied for 

the case of a spherical QD. This method is checked against the solutions obtained 

analytically and using the FDH method. It has been found that the FDH method 

is much faster and accurate than the Fl) method. 
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4.1 Introduction 

Coupled QD systems have been investigated for their possible application in quan- 

tum computing. In [1] the spin degree of freedom of the electrons within a coupled 
QD has been used to describe a qubit. In contrast, [2] proposes to use the individual 

carrier localisation within a pair of vertically aJigned SAD's to define a qubit. In 

both cases the coupling between QD's is used to create a quantum gate, which is 

the key to building a quantum processor. A mechanism which makes it possible to 

switch the coupling on and off is aJso required. 

Verticafly coupled quantum dots in multilayer self-assembled structures have also 

attracted large interest for device application as light emitters. Self-assembled QD's 

are structures which have well-defined excited state transitions, but a blue-shift 

or red-shift of the fundamental transition energy can be observed under different 

coupling conditions[3]. It has also been demonstrated that stacks of SAD's can 

increase the gain in the active region[4]. 

Therefore an understanding of how dots couple in quantum dot molecules is needed 

so that the possibilities for the use of coupled QD's as quantum gates can be ex- 

plored. In this chapter it the electronic structure of coupled QD's for two types of 

dots will be studied: SAD's and colloidal QD's. For simplicity in terms of compu- 

tation time, only systems with cylindrical symmetry have been taken into account. 
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In order to calculate the lowest energy level, the linear combination of QD states 

approximation (LCQDSA) method is used and it is compared with the full diago- 

nalisation of the system Hamiltonian (FDH) method explained in Section 3.2, which 

can solve systems with cylindrical symmetry but requires more computational time. 

The coupling between dots will be studied varying the shape of the dots, the inter- 

dot distance and the potential barrier. 

4.2 Linear combination of QD states approxima- 

tion 

The linear combination of QD states approximation (LCQDSA) method is employed 
to estimate the states of a coupled quantum dot system. This method uses linear 

combination of isolated QD states and has been applied to estimate the states of a 

molecule in terms of a linear combination of quantum states of isolated constituent 

atoms [5]. 

This method estimates the confined energy levels of a single charge carrier within 

two coupled QD systems. In this present analysis the LCQDSA method is employed 

with the potential shown in Figure 4.1c), which is a one-dimensional representation 

of two aligned spherical QD's, where each well should represent the spherical-shape 

potential of each QD (the system is of course solved full in 3-D). 

The electronic structure of an isolated spherical QD has been calculated previously 

in Section 2.3. Therefore the normalised wavefunctions and the energy of each 

isolated QD may be obtained, being 1,01) (102)) the wavefunction and El (E2) the 

energy of the left(right) QD. Using the effective mass Hamiltonian those functions 
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a) 

b) 

c) 

d 
I& R2 

0z 

Figure 4.1: Schematic representation of the potentials of a)isolated QD 2, b)isolated 

QD 1 and c)two coupled QD's. d) Representation of two QD's of radius R, 

and R2 separated by a distance d between surfaces. 
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have to satisfy 

(fto + V, (r)) 1,01) = El 101) (4.1) 

(fto + V2 (r)) 102) = E2102) (4.2) 

where ftO =- 
42 

V' is the free charge effective mass Hamiltonian and Vl(r) and 2m* 

V2(r) are the confining potential of QD 1 and QD 2, respectively, which axe shown 
in Figure 4.1a) and 4.1b) and described by: 

0 inside QD i 
vi = (4-3) 

VO outside QDi 

The LCQDSA method is applied to the potential V (r) = V, (r) + V2(r) - Vo. Then 

the system Hamiltonian is given by: 
h2 

--V2 + VI(r) + V2(r) 
- 

Vo 

2m* 
(4.4) 

In order to estimate the ground-state of the system, the ground-state wavefunction 

will be approximated to a linear combination of 101) and 1'02) : 

10) ý CIIOI) + c2102) (4.5) 

where C, and C2 are constants. Therefore 10) must obey the Hamiltonian H1, O) 

EIV)). 

The energy expectation value is defined as (E) which is the average value of the 

Hwniltonian ft in an axbitrary normalised state I (P). In Dirac notation this equation 

appears as 
f 

(D*(r)ft(D(r)dr = (4.6) 

Following [5], the energy expectation value (E) in any normalised state 14t), is 

stationary and is minimum in the ground state. Then 

(E)minimum (EG) ý 
((I)GJIýIMýG) 

(4.7) (OGIOG) 
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Therefore minimising the energy expected value in the state 1,0) leads to: 

(E) (4.8) 

where the normalisation condition is included. Substituting Equation 4.5 into last 

expression leads to: 

(E) 
-C1 

2H 
11 +C22 H22 + CIC2(HI2 +H21) 

(4.9) 
C2 +C2+CC (S + S*) 

1212 

where S, which is the overlap integral between IV), ) and 102), and Hij axe given by 

S (01102) (4.10) 

Hij (0i I ft I V)j) (4.11) 

Elements H11, H221 H12 and H21 may be obtained using Equation 4.4. QD's with 

cylindrical symmetry, whose ground state spatial wavefunctions are real vectors, are 

going to be investigated. Therefore it can be assumed that S= S* and H12 =H21- 

The expression for HII is 

Hi 

(7pjjfto+Vj(r)+V2(r)-Vojoj) 

(0,1 fil 
- 

Vo 101) + (01 1 V2 (r) 101) 

(EI - Vo) + (ý), 1 V2 (r) 101) 

Proceeding in the same way for H22, H12 and H21 leads to 

0 H21=H12 (E2 
- VO) S+ (01 1 vl 102) 

0 H22 (E2 
- 

VO) + (02 1 V1 102) 

Hil = (Elo-Vo)+(, OIV2 IV), ) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

(4.17) 

then the average energy may be written as 

(E)= 
C, 2 Hil + C22H22 + 2CIGH12 

(4.18) 
C2+C 2 

12+ 2CIC2S 
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Now the condition which minimises (E) over a variable u is a(E)lau = 0. In this 

case it is wanted to obtain which values of C, and C2minimise the energy. Therefore 

the conditions which minimise (E) over C, and C2 are the followings: 

i9(E) c9(E) 0 
19cl 19C2 

Developing the first condition leads to 

i9(E) (2CIHI I+ 
2C2HI2) (C 

12+C22+ 
2CIC2S) 

i9c, (Cl2 +C22+ 2CIC2S)2 

(CJ2 HI, +C22 H22+ 2CIC2HI2)(2C, + 2C2S) 

(C2 +C2 12+ 
2CIC2S)2 

2 
ClHll + C2H22 

-(E) (Cl + C2S) 
0 

C12 +C22+ 2CIC2S 

Then 

ClHll + c2H22 - (E)(Cl + C2S) =0 (4.20) 

Developing the derivative with respect to C2 in a similar way leads to: 

C, (Hi I- (E)) + C2 (H12 - (E) S) =0 (4.21) 
Cl (H12 -(E) S) + C2(Hi 1- (E)) =0 

With C representing a column vector with components (CI, C2), the preceding equa- 

tions may be written in the matrix form RC = 0, where R is the implied coefficient 

matrix. 

Rc 

Hil - (E) H12 
-(E)S C, 0 (4.22) 

H12 
-(E) S H22 

-(E) 
C2 0) 

Solving this matrix equation leads to C=0 unless both equations are linear- 

dependent. Therefore a nontrivial solution occurs when Equations 4.21 axe lineax- 
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dependent, which is the same as saying det R=0, 

Hil - (E) H12 
-(E)S (4.23) 

H12 
-(E) S H22 

-(E) 

which gives 

(E)± = -b --F vlb--2-4 ac (4.24) 
2a 

where a=1_ S2 
Ib= 2Hl2S- Hil - 

H22 and C= HllH22- Hil 2. The normalised 

eigenfunctions IV)±) which corresponds to the energy levels (E)± are 

0±) ý 
A± (Cl 

± 
101) + C2± 1 V)2)) 

where 

Cl± = (E)±S - 
H12 

C2± 
= Hil - 

(A=ý) -2 = (C 
2± 

)2 + (C 
1:, 

)2 + 2C2±C, ±S 

4.3 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

Two Finite Potential Identical Spherical QD's 

In this section we study the ground and first excited states of two identical coupled 

spherical QD's applying the LCQDSA method. This is an ideal system to illustrate 

the technique to the reader. 

The model is composed of two identical spherical QD's of radius a separated by a 

distance d as shown in Figure 4.2. 

Finite potential spherical QD's have been studied previously in Section 2.3.2. Ener- 

gies and wavefunctions of isolated spherical QD's are obtained solving the effective 
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p 

Figure 4.2: Two identical spherical quantum dots aligned in z direction and separated 

by a distanced. 

mass Hamiltonian described in Equation 2.22. The wavefunction of a particle con- 

fined within a finite potential isolated spherical QD is given by Equation 2.23 

%P�i (r) = &l (r) Yl' (0,0) (4.29) 

where the ground state wavefunction is given by 

Tooo(r) 
Cl: 

Roo(r) (4.30) 
47 

being Pt,,,, (r) the radial solution of the Schr6dinger equation in spherical coordinates 

for a spherical finite barrier potential given in Section 2.3.2 by Equation 2.35. 

R, 
Ajl(kwr) r<a kw vl"-2-m-E/h (4-31) 
Bkj (kBr) r>a kB V2m(Vo - E)lh 

where a is the QD radius and A, B are parameters which can be obtained from 

Equations 2.42 and 2.43. 

The potential of an isolated QD has spherical symmetry V(r) = V(r), but once 

another QD is added, the system symmetry changes to cylindrical (Figure 4-3). It 

will be convenience to express the wavefunctions in cylindrical coordinates 

taking z coordinate parallel to the axis which joins both QD's. The wavefunctions 

may be written as 

ll'nlm(P3 01 Z) ::: -- &, (v7z-2 + p2)YI'(arctan(p/z), 0) (4.32) 
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The ground state wavefunction, TOOO, only depends on the modulus of the position 

vector r, then it may be expressed as 

/ýý 2 4- ý 
,0 

e000 Gog Z) &O(V 2+ 02) Äiý7r (4.33) 

QD's 1 and 2 are referred as the lower and the upper dot respectively. The ground 

state wavefunction of each isolated QD in cylindrical coordinates are: 

01 (P3 Z) ý 'Pooo (P3 Z+ ZO) (4.34) 

e2 (A Z) ý TOOO (Pi Z- ZO) (4.35) 

where zo = (d+a)/2 is the distance from each QD centre to the origin of coordinates 
(03 07 0). 

V(Pf 

Figure 4-3: Two spherical QD potential in cylindrical coordinates. 

Now, the LCQDSA method explained in Section 4.2 is applied in order to estimate 

the two lowest energies of two identical QD's. Taking the ground-state energy of 

an isolated QD from Equation 2.38, EO = E,,. 0,1=0, and solving Equation 4.22 

taking into account that H11 = H22, the approximated solution for the energies and 
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wavefunctions of the system may be written as 

A± (01± 02) (4.36) 
vl-2- 

E± 
Hil H12 

(4.37) 
1s 

where 

A- ý±rs= (4.38) 7M 
S ('01 102) (4.39) 

Hij (0i I ft Ioj) (4.40) 

4.3.1 Calculation of the overlap S and Hij elements 

The expression for the overlap between states 1,01) and 1,02), which is given by 

Equation 4.39, can be obtained solving the integral 

00 00 27r 

S- dz dppo, 02 (01 102) fff 
do (4.41) 

00 00 
00 00 

27r 
f 

dz 
f 

dppV)102 (4.42) 

00 0 

where wavefunctions 01 and 02 axe given by Equations 4.34 and 4.35 respectively. 
The last integral may be calculated using the trapezoidal rule. The fact that both 

dots are identical spheres leads to H1, = 
H22- Using Equations 4.15 and 4.17, 

elements H12 and H22 can be expressed as: 
00 00 

H12 =-- H21 = (Elo - Vo)S + 27r dz dpp, 01 (p, (4.43) 111 Z) Vl (P3 Z)'02 (P3 Z) 

00 0 
00 00 

H22= Hil = (E20 - Vo) + 27r 
1 

dz 
1 dPP02 (Pi Z) Vl (P3 Z)'02 (, 01 Z) (4.44) 

00 0 
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where Eo is the ground state energy level of isolated dots 1 and 2. Potential V, (p, z) 
is the potential of the isolated dot I described in cylindrical coordinates as: 

Vi (P, Z) = vo 

p2<a2- (Z + Zo)2 

p2>a2_ (Z + Zo)2 

(inside dot 1) 

(outside dot 1) 
(4.45) 

Discretising V, and taking the discrete representation of V)j, all those integraJs may 
be calculated using the trapezoidal rule. 

4.3.2 Ground and first excited estate 

Once S and Hij are calculated, the ground and first excited energy state can be 

obtained. The energy difference between odd and even state energies, E+ and E- 

respectively, is 

AE = E- - E+ =2 
SH1, - 

H12 

J-S2 
(4.46) 

In this section the two lowest energy levels are calculated for different dot radii 

a=3-8 nm and for different potential baxriers VO =1- 10 eV. The electron 

effective mass m* used is m* = 0.023mo. Parameters for InAs/GaAs self-assembled 

quantum dots have been taken from [6]. Self-assembled QD's axe not spheres, but 

the aim of this section is to introduce this technique to the reader and more realistic 

models will be presented later in other sections. 

Figure 4.4 shows the energy values and the shape of the wavefunctions for the ground 

and first excited state for a fixed radius and varying the distance between dots. The 

plot reveals that E+ is the ground-state energy, thus the ground-state wavefunction 
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Inter-dot distance (nm) 
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Figure 4.4: Ground and first excited states of an electron of effective mass m* = 0.023mo 

within two identical coupled spherical quantum dots of radius a=8 nm 

where the confinement potential barrier VO =1 eV. The ground state T+ is 

a symmetric function whereas the first excited state T- is antisymmetric. 
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is T+. 

111G ý 'I'+ 

EG = E+ 

8 

> 

(4.47) 

LCQDSA 
FDH 

7 

6 

a) 
g5 

im 
c 
;m 

2 

1 

0.5 1.5 2 2.5 3 3.5 4 

Inter-dot distance (nm) 
0 

Figure 4.5: Splitting energy of an electron of effective mass m* = 0.023mo within two 

identical coupled spherical quantum dots of radius 8 nm where the confine- 

ment potential barrier VO =1 eV. The results obtained using the LCQDSA 

method has been contrasted with the values obtained applying the full di- 

agonalisation of the system Hamiltonian method to the coupled system. 

In order to compare the method with another one, the energy splitting between 
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the ground and first excited states is calculated applying the FDH method to the 

coupled system and both results are shown in Figure 4.5. The model consists of 

two spheres which possess cylindrical symmetry with respect to the z axis, as is 

shown in Figure 4.2. Energies has been calculated for an electron of effective mass 

m* = 0.023mo, the potential barrier VO =1 eV and the QD's radius a=8 nm. As 

can be seen in Figure 4.5 both methods agree. However, the LCQDSA method will 
be used because it requires less computational time than the FDH method. 

In the LCQDSA method, first energies and wavefunctions of both isolated QD's 

are calculated using the FDH method and those results will be used to obtain the 

solution for any inter-dot distance. The time required to solve the LCQDSA method 
is proportional to the time that is required to perform a double integral in z, p 

variables, therefore proportional to -F - NpN, (per time unit), where Np and N_, are 
the dimensions of the discretised wavefunctions in p and z directions, respectively 
(in this chapter Np =281 Ný, = 210). In the FDH method the computational time is 

the same as required to diagonalise a matrix of dimension N, which is proportional 

to Tr- N1. Taking into account that in last chapter it was taken N= 1250 -eld 210, 

the time required to solve the system using the FDH method isT -2 30 
, whereas 

for the LCQDSA is T- 2 18 
. Therefore using the LCQDSA method requires less 

time than using the FDH method if the former method is applied more than two 

times (the LCQDSA method uses the FDH method twice in order to obtain the 

isolated QD energies and wavefunctions). The calculations have been realized on 

a SUNW, U1traSPARC-HI+, 900 MHz machine and the time required to apply the 

FDH method is one minute, whereas the time required to apply the LCQDSA 

method (after calculating the energy and the wavefunctions of isolated QD's) is a 

second. 

For inter-dot distances much greater than the QD radius, the difference between 

energies tends to zero. In this case the ground state is doubly degenerate. Bring- 
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ing the QD's in close proximity makes tunnelling possible between the dots and 

removes the degeneracy. Figure 4.4 shows how the degenerate ground state splits 
into two different energies, where the lowest value (E+) corresponds to the even 
(symmetric) state (T+) and the first excited energy level (E-) corresponds to an 

odd (antisymmetric) state (T-). 
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Figure 4.6: a)Splitting energy when the inter-dot distance is d=1 inm for different dot 

radii changing the barrier potential VO. b)Splitting energy for different dot 

radii changing the inter-dot distance when the potential barrier is VO =1 

eV. 
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Figure 4.6a) shows the splitting energy between the ground and first excited states 
for different potential barriers, VO. Due to charge tunneling, which increases when 

the dot radius is decreased, the coupling between dots (splitting energy) at the 

same inter-dot distance decreases when the dot radius is increased, as can be seen 

in Figure 4.6b). 

4.3.3 Consequences for Quantum Computation 

There is significant interest in quantum information processing using coupled quan- 

tum dots [2,1,7], where the coupling between dots plays an important role in 

order to create a quantum gate. An understanding of the behaviour of the elec- 

tronic structure is needed in order to use this system as a mechanism to control the 

coupling between dots. 

This coupling may be controlled choosing an appropriate inter-dot distance or chang- 

ing the potential barrier between dots by applying an electric field. These mecha- 

nisms may be used to 'tune' the splitting energy (AE), for example, to avoid ther- 

mal perturbations. The free electron thermal energy at temperature T is E= KBT, 

where kB is the Boltzmann constant, therefore choosing AE > KBT thermal per- 

turbations may be avoided. 

4.4 Two vertically aligned SAD's 

Vertically ordered quantum dots in multi-layer InAs/GaAs structures have attracted 

large interest for device application as light emitters and for their possible applica- 

tion in quantum computing. 
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In [1,8] the spin of a single electron confined in a QD has been proposed as a qubit, 

and coupled self-assembled QD's as candidates to perform quantum operations. It 

has also been proposed the localisation of a carrier within a two SAD system as a 

qubit and the coupling between QD's as a mechanism to perform quantum operation 
[2]. These results have opened the possibility of using coupled SAD's for quantum 

information applications. 

t; w 
I 

Figure 4.7: Representation of two vertically aligned elliptical SAD's. The dot is repre- 

sented by a semi-ellipsoid of height h and radius at the base R. The wetting 

layer thickness is represented by t,, and d is the distance between wetting 
layers tops. 

The electronic structure of vertically stacked self-assembled quantum disks[6] and 

pyramidal-shape quantum dots[3] has been studied. In this section the coupling 

between two ellipsoidal-shaped SAD's is studied and how this coupling changes is 

investigated when the inter-dot distance, the confining potential and the dimensions 

of the dots axe varied. 

The model consists of two vertically stacked ellipsoidal-shaped InAs/GaAs SAD's 

as is shown in Figure 4.7. Each dot is formed on a wetting layer of thickness t" and 

covered by GaAs barrier material. Both QD's have the same height h and radius 

R and they are separated by a distance d, which is the distance between the top 

of both wetting layers, resulting in a QD tunneling barrier of thickness d-h- t"" 

at p=0 (see Figure 4.8). The difference in the conduction band offsets for the 
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QD(InAs) and surrounding material(GaAs) gives rise to the confining potential VO. 

4.4.1 Energies and Wavefunctions 

The simplest model to illustrate the QD system is an envelope function approxima- 
tion using a Hamiltonian with constant effective masses, and a three-dimensional 

potential that has the same geometrical shape of two coupled SAD's. In order to 

calculate the two lowest energy levels, the linear combination of QD's states approx- 
imation method explained before is used. In order to obtain the ground energy and 

wavefunction of each isolated SAD, the adiabatic approximation method is used. 
Dots 1 and 2 are referred as the dot at the bottom and the top respectively. The 

material parameters of quantum dot and wetting layers appears through the follow- 

ing effective units of energy and length: Rydberg ER= m, e 4 /2162 h2and the effective 
Bohr radius, aB= Eh2/m, e 2; where m, = 0.023m07 mo and f= 13EO are the effective 

mass of an electron, the electron rest mass and the dielectric constant, respectively. 

The ground wavefunctions of the isolated dots 1 and 2; T, andT2 respectively, may 
be obtained from Equation 2.85. 

IPD (P3 07 Z) .e 
imo 

gnp (Z) fm (P) (4.48) 

Due to the shape of the SAD, 01 andV)2 have cylindrical symmetry and may be 

expressed in cylindrical coordinates. 

, oi (P, 0, Z) = 01 (P, Z) = 
gn=Op (Z + Z-0)fm=O(P) (4.49) 

v/2-7r 
02 (Pg 09 Z) = '02 (Pg Z) = 

gn=Op (Z - ZO)fm=O(P) (4.50) 
v'2-7r 

where zo = (d + t,,,, + h) /2. Two vertically aligned SAD's have cylindrical symmetry, 

therefore the potential may be expressed in cylindrical coordinates as is illustrated 

in Figure 4.8. 
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Figure 4.8: Schematic representation of the potential of two vertically aligned SAD's of 

radius R, height h and the wetting layers tops are separated by a distance 

d. 

v(P, Z) = vo 

inside both SAD's 

outside them 
(4.51) 

Due to SAD's cylindrical symmetry, the potential V does not depend upon the 

angular variable 0. Therefore V (p, 0, z) =V (p, z) - Introducing V, and V2 as the 

confining potential of isolated SAD 1 and SAD 2 respectively, V(p, z) may be ex- 

pressed as V -- V, + V2- VO. Now using the LCQDSA method and following Equation 

4.25, the ground and first excited, T+ and IF- respectively, may be written as: 

A+ (Cl+Ol + C2+02) (4.52) 

A-(CI-01+ C2-02) (4-53) 

where Cl+, C2+ and A± are given by Equations 4.26-4.28 and their energies are 

given by Equation 4.24 

-b :F , 
/-P-ý, 4fa-c 
2a 

where a=1_ 
S2 

,b= 2H12S - Hil - 
H22 and c= HIIH22- Hil 2- 

(4.54) 
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4.4.2 Two identical SAD's 

In this case, although both SAD's are identical, due to the fact that neither the 

potential V(p, z) nor the wavefunctions 01 and 02 are y-axis symmetric, H11 and 
H22are not equal. Also T+ and T- are no longer strictly even and odd functions as 
they were in the case of two spherical QD's. But we use this notation to emphasise 
that T+ is an addition and T- a subtraction of functions V), and '02- Parameters 

a, b and c are given by a=1_ S2 
,b= 2H12S- H11 - 

H22 and c= H11H22- Hil 2- 

Once again V), and '02 are real functions thus H21 
= 

H12 and S= S*. Elements Hij 

may be obtained from Equations 4.15-4.17 which leads to 
00 

Hil = (Ei - Vo) + 27r 
1 

00 
00 

H22 (E2 - Vo) + 27r 
1 

00 
00 

H12 ý (Ei - Vo) + 27r 
1 

00 

00 

dz 
1 

dppV, (p, z) 01'(p, z) 
0 
00 

dz 
1 

dppV2(p, Z)02 
2 (P2 Z) 

0 

00 

dz 
1 

dopV2(, o, z)0, (p, Z) 02 (, 03 Z) 

0 

(4.55) 

(4.56) 

(4-57) 

The overlap between 01 and 02, S (01 102) Js given by 
00 00 

S= 27r 
1 

dz 
1 

dppo, (jo, Z) 02 (Pi Z) 

w0 

(4.58) 

Once all the parameters have been described, the ground and first excited energy 

levels can be calculated. Figure 4.9 shows the dependence of the electronic states on 

the inter-dot distance d for two identical SAD's of radius R=8 nm, height h=2 

nm, wetting layer thickness t,,, = 0.552 nm and potential barrier height Vo =1 eV. 

All the parameters have been taken from [6]. It is important to remark that at 

small inter-dot distances, i. e. d=3 nm, the energy level of the first excited state 

is higher than the confinement barrier potential, E- > V0. In these cases the first 

excited state is not considered to be confined to the SAD. 
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Figure 4.9: Energy levels evolution of an electron within two identical vertically aligned 

SAD's against inter-dot distanced. The radius and the height of the SAD 

are R=8 mn and h -- 2 nrn, respectively; the wetting layer thickness 

t,, = 0.552 nm and potential barrier height VO =I eV. 
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The wavefunctions associated with energies E± are given by Equation 4.25 

T± : -- A± (C, ±V)l+ 
C2±'02) (4.59) 

where parameters Cl±, C2±, A± may be obtained by substituting Hij, S into Equa- 

tions 4.26,4.27 and 4.28. 

Figure 4.10b) shows the z-component of T±(p, z) when p=0 and the inter-dot 

distance is d=4 nm. Due to the fact that the potential is not strictly symmetrical, 

T± which are linear combination of 01 and 02, shown in Figure 4.10a), are not 

y-axis symmetric. Minctions T± are non-zero in the region IzI < d/2, therefore 

tunnelling between dots is possible. As the coupling between the dots is related 

to the splitting energy JE- - E+1 we have a measure of the coupling as the dot 

separation d is varied. 

Figure 4.11 shows the evolution of the two first energy levels splitting energy with 

the potential barrier depth. We have calculated the splitting energy for different 

distances between SAD's, d=3- 12 nm. At potentials around V=I-2 eV and 

for certain inter-dot distances the first excited state become unconfined because its 

energy level is larger than the confinement potential E- > Vo. That is why the 

splitting energy at 3 nm of inter-dot distance in Figure 4.11 is shown starting from 

VO e-10 2 eV. Therefore these plots represent the splitting energy between two confined 

states, and can be observed that the splitting energy decreases with VO. 

Taking QD heights as constants, h, = h2= h=2 nm, the energies axe calculated 

varying the radius. In Figure 4.12a) the splitting energy is plotted versus the dis- 

tance for different QD radii, R=8-9 nm, and it can be seen that the variations are 

minimal. Also plotting the splitting energy versus QD radius for different distances 

d=3- 13 nm, as can be seen in Figure 4.12b), which shows that the splitting 

energy is more or less constant. Widening both SAD's radii changes the energy 

level Eo and expands wavefunctions 01 and 02within the lateral direction. This 
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Figure 4.10: a)z-projection of 01 and 02 wavefunctions for p=0. Dots I and 2 are 

separated by a distance d=4 nm. b)z-projection of T+ and T-. 
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slightly alters the overlap S, which mainly depends on the vertical component of 

01 andV)2. Therefore the coupling between two vertically aligned SAD's remains 

almost invariable under changes on the lateral size of both of them. 

4.4.3 Two different SAD's 

The process of SAD fabrication is still not very precise and although the distance 

between layers can be controlled, both dots cannot be considered as identical. Ref- 

erence to [31 reveals that QD's size slightly increases as we move to the upper layers, 

as can be seen in Figure 4.13. Therefore it is interesting to investigate the influence 

of QD shape in the electronic structure of the considered model. 

Figure 4.13: Structure consisting of 5 embedded layers of InAs QD's, separated by 10- 

nm thick GaAs spacers (taken from [3]). 

In [6] the electronic structure of two different radius vertically stacked self-assembled 

quantum disks is studied. In order to compare the model with that described in 

reference [3] we calculate the two lowest energies of two different radius ellipsoidal 

SAD's taking as parameters the same height and radius that appears in [6]: QD's 
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height hi = h2= 2 nm and QD's radius R, =8 and R2= 8.5 nm. 
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Figure 4.14: Two lowest energy levels for two vertically aligned ellipsoidal SAD's and 

self-assembled quantum disks of different radius at the base, R, =8 and 

R2 = 8.5 (taken from [6]), versus wetting layer distance. 

Figure 4.14 shows the comparison between the two models. The volume of the 

ellipsoidal structure is smaller than the volume of the disk and hence a particle 

within the ellipsoid is more confined and has higher energies. But apart from that 

there is no significant difference between both models. 

Unlike the case of identical QD's, the splitting energy of two different QD's, AE, is 
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not the same as the difference between first excited state and ground state energies 
E_ - E+ - Figure 4.15 shows the ground states of isolated dot 1 and 2 (solid lines), 

El and E2 respectively. Once the inter-dot distance becomes small and both dots 

are coupled, the ground state energy of the system, E+, splits from the lowest energy 
E2 (the lowest isolated energy) and the first excited state energy, E-, from El (the 

highest isolated energy). The difference between both energy levels is 

E- - E+ = JE2- Ei l+ AE+ + AE- (4.60) 

but the energy involved in the coupling is the splitting energy 

AE =, AE- +, AE+ = E- - E+ - JE2-Ell 

Splitting Energy AE= AE_+AE+ 

JE17E, 

Figure 4.15: Ground state energy level of isolated dot 1 and 2 (solid lines) and coupled 

QD system two first energy levels (dashed lines). 

The evolution in splitting energy will now be calculated as the upper QD radius is 

varied but keeping the QD heights constant at, h=2 nm, and lower QD radius, 

R=8 nm. Figure 4.16a) shows that the splitting energy changes slowly with the 

upper QD radius. Only for short distances, d= 3-5 nm, there is a marked decrease, 

as can be seen in Figure 4.16b). 
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The splitting energy dependence upon changes in the upper QD height is shown 
in Figure 4.17a). It shows that the system is more sensitive to changes in the 

height than in the radius of one dot. It is because tunneling between dots occurs 

vertically and the vertical confinement plays a more important role than the lateral 

confinement. 

4.5 Two coupled colloidal QD's 

The assembly of two or more colloidal quantum dots has been achieved using protein 

molecules[9,10]. As it has been studied before, when the inter-dot distance becomes 

small, coupling between dots appears. 

The liquid nature of the surrounding material makes this system less likely to in- 

teract with external factors such as carriers or phonons. This opens the possibility 

of using of coupled colloidaJ quantum dots for quantum information applications. 

In this section we will calculate the coupling between two colloidal quantum dots 

in order to assess their suitability for use in quantum information applications. 

A simple method is presented here to calculate the shift between the ground and 

first excited energy levels of two coupled colloidal QD's using the lineax combina- 

tion of QD state approximation (LCQDSA) method explained in Section 4.2, where 

single colloidal QD states have been obtained solving the effective mass approxi- 

mation Hamiltonian. The spin effects have not been taken into account. There 

are more sophisticated theoretical approaches to calculate the energy levels of small 

colloidal QD's like tight-binding method [11], but the aim of this section is to make 

a qualitative study of the QD's. 
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4.5.1 Model 

The system is composed of two core-shell spherical quantum dots (Figure 4.18). 

Both dots are formed by a core of CdSe of radii R, and R2 (15-20 A) covered by 

a3A layer of ZnS. The difference in the conduction band offsets of the core and 
the shell gives rise to a confining potential V, = 0.9 eV. We assume that the dots 

are linked by a protein, which behaves as an insulator and hence they have a high 

confining potential V0. However a probability exists that the electron will tunnel 

from one dot to another. We take VO =3 eV which is representative of typical 

values for organic materials[12]. The effective mass Hamiltonian of the system may 
be written as 

h2 
__V2 +V 

2m* 
(4.62) 

where the light electron effective mass is m* -- 0.1mo (mo is the electron resting 

mass), the potential V(r) is V=0 inside the core, V=V, inside the shell and 

V= VO within the surrounding material. 

d2 

Figure 4.18: Picture of two coupled colloidal QD's where d is the distance between 

surfaces. 

When the two dots are far apart, the solutions of each isolated quantum dot are 

eigenvalues of the system Hamiltonian. When the inter-dot distance becomes small, 

tunneling between dots appears and the energy levels of the system becomes inter- 

dot distance-dependent. 
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In this section it is shown how the coupling between QD's changes with the inter-dot 

distance for spherical QD's. It is noted that increasing the distance is physically 

equivalent to raising the inter-dot potential barrier, which can be achieved experi- 

mentally by e. g. applying a gate voltage between the dots [1]. Therefore the effect 

of such gate voltages is described in the model simply by a change of the inter-dot 

distance d. 

4.5.2 Energies and Wavefunctions 

As before for the two vertically aligned SAD's, a Hamiltonian with constant effective 

masses and a three dimensional potential that has the same geometry as the two 

coupled colloidal QD's will be used. The potential is represented schematically in 

Figure 4.19d). In order to calculate the two lowest energy levels we use the LCQDSA 

method described previously. We will also use the FDH method explained in Section 

3.3.3 in order to obtain the ground-state energy and wavefunction of each isolated 

QD. 

Referring to dot 1 and dot 2 as the left and right dot respectively (Figure 4.18), the 

ground state energy of each isolated QD is denoted as El and E2 and their wave- 

function 01 andV)2 can be obtained from Equation 2.45. Now using the LCQDSA 

method and following Equation 4.25, the ground and first excited, T+ and T- 

respectively, may be written as: 

A+ (CI+V)l + C2+02) (4.63) 

A-(C, 
-V)I+ 

C2-02) (4-64) 

where Cl+, C2+ and A± are given by Equations 4.26-4.28 and their energies are 

given by Equation 4.24 

-b:: F vFb'! - --4ia-c 
(4-65) 

2a 
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a) 

b) 

c) 
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Figure 4.19: a), b)Sc-hematic representation of isolated colloidal QD potentials. 

c)Coupled QD potential. d) Representation of two coupled colloidal QD's 

aligned in z direction. 
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4.5.3 Two identical spherical QD's 

In the case of two identical QD's (H1, = 
H22) energies and wavefunctions of ground 

and first excited states are given by 

I-11 I- Ill 2 A- (IV E- = I-S T2 )1) 02)) 

(4.66) 
E= II11+HI2 A±(IV 

+ I+S vf2- 
)1) + 1'02)) 

where (E)- corresponds to the odd wavefunction (Cl = -C2) and (E)+ to the even 

wavefunction (Cl = C2). The normalisation constants axe given by 

(4.67) 
-1 -±s 

The difference between energies is 

AE = E+ - E- =2 
H12-SH11 

(4-68) 
J-S2 

The last equation gives AE > 0, therefore the ground-state wavefunction and energy 

are 

J4'G) = 

EG = E+ 
(4.69) 

For inter-dot distances much greater than the dot radius the difference between 

energies tends to zero. In this case the ground state is doubly degenerate. Bringing 

the QD's in close proximity makes tunnelling possible between the dots and removes 

this degeneracy. Figure 4.20 shows how the degenerate ground state splits into two 

different values, where the lowest vaJue correspond to the even state (E+). Therefore 

the distance between layers might be used to "tune" the coupling of the dots. For 

low distances7 d -, A, choosing a temperature T such that the splitting energy is 

bigger than the energy KBT avoids thermal perturbations. 
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Figure 4.20: Energy difference between the first excited and the ground state of two 

identical spherical QD's. The QD core radius is R= 15 A and the thickness 

of the layer RL =3A. The plus dot line shows the splitting energy obtained 

using the full diagonalisation of effective mass system Hamiltonian method. 
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This model has cylindrical symmetry, thus the full diagonalisation of the effective 

mass system Hamiltonian explained in Section 3.3 may be used in order to calculate 

the splitting energy between two lowest energy levels. The crosses in Figure 4.20 

shows the splitting energy using the FDH method. As can be seen, both methods 

give very similar results. 

4.5.4 Two identical ellipsoidal QD's 

As explained in Section 3.3.5, CdSe nanocrystals are slightly elongated along the 

z axis. The splitting energy of the two lowest energy levels of two ellipsoids of 

ellipticity p= RzIRO -1 is presented where the long axis is defined as having length 

R, and the two short axes as having length Ro. Figure 4.21 shows the difference 

between energy levels for a coupled spherical QD's and a coupled ellipsoidal QD's 

prolate along the z axis. In this model, the ellipsoids present a ellipticity Pcore = 

0.066 and although the energy levels difference between ellipsoids and spheres is 

substantial (see inset Figure 4.21), the splitting energy changes slowly. Therefore it 

is concluded that small vaxiations on the size of both QD's do not create big changes 

on the coupling between dots. 

4.5.5 Variations in the shape 

In this section small changes in the shape of the dots axe simulated. Expanding a 

spherical QD z axis turns it into an ellipsoid. Now the splitting energy is studied 

varying the z dimension of the right QD, R, for two different shapes for the left QD: 

a sphere and an ellipsoid, as can be seen in Figures 4.22a), b). In order to calculate 

the two first energy levels the LCQDSA method is used, where the ground state of 

each isolated QD has been obtained using the FDH method described previously. 

167 



C 11 
1hapter 4. Couphng between two QD's 

25 

20 

15 

2) 

cm 
10 

CL 
Cl) 

5 

n 

a) 
d 

-40, Z 

d 
b 

R 

910 

a) 
900- 

E, 890 

880 

w 870- 

860 
051.0 1'5 2.0 

OD layer distance (A) 

%J 

2468 10 12 14 16 18 20 
OD layer distance (A) 

Figure 4.21: Difference between first excited and ground state energy levels of a)a cou- 

pled spherical QD's of radius R, = 15 A, and b)a coupled ellipsoidal QD's 

of long axis R_, = 16 A and two short axes RO = 15 A (Acore = 0.066). In 

both cases the size of the capping layer is 3A and the QD's are aligned 

along the z axis. In the inset the ground and the first excited states are 

plotted for a)a coupled spherical QD's and b)a coupled ellipsoidal QD's. 
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Figure 4.22: Exchange energy with inter-dot distance d=2A where the core of the 

right dot is expanded in z axis. The left remains invariable and the shape 

of this dot is a)a sphere of radius RO = 15 A and b)an ellipsoid of two 

short axis RO = 15 A and long axis Rz = 16 A. 
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Figure 4.22 shows the exchange energy AE expanding the core of the dot in z 
direction remaining constant the distance between surfaces d=2A. Taking E+ 

and E- as the ground and first excited states respectively, the exchange energy is 

defined as 

AE = E- - E+ - JEO'- Eol (4.70) 

where JE-O' and E2 are the ground state of the left and right QD's respectively when 0 
they are isolated. For the case of two spheres, Figure 4.22a), it is shown that AE 

decays exponentially when the right QD is expanded. In the case of two ellipsoids 
it is shown that there is a maximum in the coupling when both dots have the same 

shape, experimenting an exponential decay with the expansion of the right dot. 

4.5.6 Two coupled colloidal QD's in Quantum Computation 

It has been proposed that coupled QD's could be used as qubits for Quantum 

Computation [8,2,7] due to the discovery of new principles of computation based 

on quantum mechanics [13]. In [8] the electron spin S is considered as the qubit 
(where the qubit is the basic unit of information in the quantum computer). By 

contrast, [2,7] consider the localisation of an individuaJ charge (in one dot or in 

the other) as a basis for qubit states. In both cases the coupling between dots is a 
key to prepaxing a quantum gate, which plays an important role as a mechanism to 

control a source of entanglement [14]. 

It is essential that during a quantum computational process, phase coherence of the 

qubits must be preserved. In a GaAs coupled SAD's system, the dephasing time of 

real spin can be on the order of microseconds [15], whereas the charge dephasing 

time can be of the order of nanoseconds [16], where electron-phonon scattering is 

known to be the primary source of dephasing [17]. 
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Using colloidal QD systems this source of decoherence is avoided because due to 
the liquid nature of the surrounding material of a colloidal dot in suspension, an 

electron within this model has no interaction with phonons. 

Using this two coupled colloidal QD's model, at distances between layers around 
2-4 A, the exchange energy is of the order of 10 meV which prevents thermal per- 
turbations at temperatures around T, 100 K. Due to the liquid nature of the 

surrounding material of a colloidal dot in suspension, an electron within this model 
has no interaction with phonons, hence there is no dephasing time due to phonons. 

4.6 Summary 

In this chapter the coupling between two coupled quantum dots has been studied 

and its application to quantum computation discussed. The linear combination of 

quantum dot states approximation has been outlined and used in order to obtain the 

electronic structure of an electron within the coupled system. This method has been 

checked against the FDH method for an electron within two identical coupled QD's, 

showing that both methods agree. Due to the fact that the LQDSA method requires 

less computational time than the FDH method, it is used to calculate the two lowest 

energy levels of an electron within two spherical QD, two vertically aligned SAD 

and two colloidal QD systems. 

e Two spherical QD's. The LCQDSA has been applied to two spherical QD's 

to illustrate the technique to the reader. The coupling between dots, described 

as the splitting energy between the first and ground state energy levels, has 

been calculated varying the inter-dot distance and the potential barrier show- 

ing that controlling one of these two parameters, thermal perturbations can 

be avoided. 
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0 Two vertically aligned SAD's. The coupling between two ellipsoidal- 

shaped SAD's has been studied and the variation with the inter-dot distance, 

the confining potential and the dot dimensions investigated. Varying these pa- 

rameters the coupling changes, which makes this model a good candidate to 

be used in quantum computation. For two identical SAD's it has been shown 
that changing the dot radius at the base does not alter the coupling signif- 
icantly. In the case of two different SAD's the splitting energy dependence 

upon changes in the upper QD has been shown. Again the coupling remains 

nearly constant under changes on the radius, whereas it decreases when the 

upper dot height is increased. 

o Two colloidal QD's. The coupling between two colloidal QD's has been 

studied in order to assess their suitability for use in quantum information 

applications. The model is composed of two spherical core-shell (CdSe-ZnS) 

QD's of radius around 15-20 A and layer thickness 3 A. The coupling has 

been calculated for two identical QD's varying the inter-dot distance obtain- 
ing similax results as with the FDH method. As CdSe nanocrystals axe slightly 

prolate along the z axis, the case of two vertically aligned ellipsoidal capped 
QD's is investigated and compared with the two spherical QD's model. Only 

changes in the QD z axis has been considered in order to preserve the cylindri- 

cal symmetry. It has been found that increasing the z axis in both QD's, while 

the sepaxation is constant, decreases the coupling between them. For the case 

of two ellipsoidal QD's, we found that the coupling reaches a maximum when 

both QD's have the same size. 

The two-level electronic structure of the system is calculated within the effective 

mass approximation. The inter-dot distance affects the coupling between dots, 

therefore varying the separation of QD's may tune the coupling, giving a mechanism 

to switch it 'on' and 'off'. We observe that choosing the appropriate inter-dot 
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distance, the model may avoid thermal perturbations. In the case of two coupled 
SAD's, the exchange energy between dots is insensitive to small variations in the 

shape of both dots within the xy-axis. Small variations are observed changing the 

upper QD radius at the base. In contrast the exchange energy experiences large 

changes when the height of a single SAD is vaxied. We have also investigated 

the case of two aligned colloidaJs QD's (z-aJigned in the case of ellipsoidal QD's) 

varying their shape. We find that without changing the sepaxation between QD's, a 

maximum coupling is reached when both QD's have identical dimension and shape. 

Due the liquid nature of the surrounding material, the main source of decoherence, 

the charge-phonon scattering, can be neglected, making it a good candidate for use 

in quantum computation applications. 
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5.1 Introduction 

Carrier transitions between different dimensionality confinement states are of rele- 

vance in a variety of modern semiconductor nanostructures. For example in devices 

with self-assembled quantum dots, carriers are generated in the two-dimensional 

wetting layer (WL) and they are then scattered into the zero-dimensional dot 

states. This capture process is very important in lasing devices, since it injects 

electron/holes into the QD conduction/valence band, therefore enhancing the pop- 

ulation of QD states which improves laser performance. But, as discussed in the 

previous chapter, decoherence due to the scattering of carriers is major problem in 

semiconductor implementations of qubits. In this chapter the scattering rates of 

carriers in quantum dots due to lattice phonons are calculated in order to assess 
their use in optoelectronic devices and for quantum computing applications. The 

capture of carriers into the quantum dot from the quantum well wetting layer due 

to emission or absorption of a longitudinal optical (LO) phonon is investigated. 

Calculations are based on the Fr6lich carrier - LO-phonon coupling, which is the 

interaction between a carrier and a LO-phonon, and the capture rate probability is 

calculated using Fermi's Golden Rule. 

5.2 Fermi's Golden Rule 

A charge carrier moving within a perfect crystal lattice free of defects and with all 

atoms stationary will continue ad infiniturn. However this situation is not realistic 

since there are many factors that can change its state- a process which is known as 

scattering. 

Quantum Mechanical scattering is usually summarised in terms of Fermis Golden 
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Rule which states the following: if an electron (or hole) in a state 1i) of energy Ei 

subjects a time-dependent perturbation 1-i which could scatter (transfer) it into any 

one of the final states If) of energy Ef, then the lifetime of the carrier in state 1i) 

is given by: 
1- ý7r 

(f Ijili) ý J(Ef - Ej) 
Ti h 

if) 

where fi is the Fr8lich Hamiltonian. 

In this chapter we will study the case of two-dimensional carrier capture scattering 

process into a zero-dimensionaJ state, due to LO-phonon interaction. 

5.3 Phonons 

The atoms that constitute semiconductor crystals are connected together by chem- 

ical bonds which are nominally covalent. These atoms are always in a state of 

continual motion, which because of the definite crystaJ lattice structure, is vibra- 

tionaJ around an equilibrium position. In some ways, the vibrations of these in- 

terconnected quantum paxticles resembles a classical system of a series of masses 

connected by springs. There axe basicafly four different modes of vibration, as 

illustrated in Figures 5.1 and 5.2. 

The acoustic modes shown in Figure 5.1 are chaxacterised by the neighbouring atoms 

being in phase. In the longitudinal mode the atomic displacements are in the same 

direction as the direction of energy transfer, while in the transverse mode the atomic 

displacements axe perpendicular to this direction. 

The longitudinal and transverse definitions also apply to the two types of optic 

phonon modes as illustrated in Figure 5.2. However, in this type of lattice vibration 

the displacements of neighbouring atoms are in opposite phase. 
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LA 0 

b)'FA 

Figure 5.1: Schematic illustrations of the atomic displacements in a)longitudinal acous- 

tic (LA) and b)transverse acoustic (TA) phonon modes. 

Figure 5.2: Schematic illustrations of the atomic displacements in a)longitudinal optic 

(LO) and b)transverse optic (TO) phonon modes. 
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The wave-like nature of the lattice vibrations allows them to be described by an 

angular frequency w and a wave vector q. Therefore the energy of a phonon is hw 

and the momentum of a phonon is said to be quantised and of value q. Furthermore, 

phonons are diffracted by the crystal lattice just like electrons and holes, and thus 

a Brillouin zone type summary of the energy-momentum curves can be employed, 

as can be seen in Figure 5.3. 

(I. ' 

Figure 5.3: Phonon energy, hw, versus momentum, K, curves for a typical semiconduc- 

tor. 

As the phonons themselves represent the motion of atoms which are centres of 

electric charge, they also represent time-dependent perturbations 'h of the crystal 

potential and can therefore scatter charge carriers. 
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5.3.1 Carrier - LO-phonon coupling. 

The models we study axe heterostructures made from compound semiconductors. 
These materials are polar as the different electronegativites of the constituent atoms 
lead to a degree of ionicity in the chemical bonds. In such materials, the dominant 

electron-phonon interaction (scattering) is with the longitudinal optic phonon[l]. 

In the model studied in this chapter, only phonons in bulk material are considered. 
The LO-phonon dispersion curve, see Figure 5.3, is relatively flat, and hence it is 

possible to approximate it as being dispersionless, approximating the LO-phonon 

energy as 4WLO. Then, following reference [1], the normalised wave function of a 

single dispersionless LO-phonon is given by: 

OLO 
fiWLOP e-iqr 

(5.2) 
21q12 I V'2 

where q is the phonon wave vector and P is a factor 

(5.3) 
e00 CO 

where c,,,, and co are the high- and low-frequency permittivities of the material. 

The total phonon interaction is thus obtained by summing over all phonon wave 
vectors, i. e. 

OLO (5.4) 

and therefore the phononiDteraction term may be writteDas 

[hWLopl 1/2 e-'q' (5.5) 
q 

2q2 VI/2 
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5.4 Two dimensional carrier capture into a SAD 

due to LO-phonon interaction 

One of the key concerns regaxding the speed and efficiency of QD lasers is the rate 

of carrier relaxation from the baxrier states to the QD states. In this section we 

study the capture of carriers from the wetting layer which are scattered into the QD 

emitting or absorbing a LO-phonon. Only bulk phonons will be taken into account. 
The relative importance of these processes depends on temperature, caxrier density 

within the wetting layer and the structuraJ paxameters of the QD's such as size, 

shape and electron and hole potential depths. At elevated temperatures, thermal 

escape of carriers from the QD's may aJso contribute to the dynamics. 

Once in the dot, the caxriers relax to their respective ground states. Due to the 

discrete nature of the carrier density of states in a quantum dot, the relaxation 
due to the interaction with a single LO-phonon is not allowed unless the energy 

difference between levels is exactly the energy necessaxy to emit/absorb a LO-phon, 

hWLO, which is very improbable. What is possible is the carrier relaxation due to a 

multiphonon interaction[2], which could be considered as further work. 

The carrier capture probability from any possible state in the WL emitting or ab- 

sorbing a bulk LO-phonon can be calculated using Fermi's Golden Rule: 

1_ 2ýý El(flÜli)1 d(Ef - Ei) 
7 

(5.6) 

where I Z') is the initial carrier state, If) is the final carrier state. 'h is the interaction 

between an electron and a LO-phonon, also called the Fr8lich electron - LO-phonon 

coupling. 

In a capture process, ji) is a two dimensional (21)) state which corresponds to 

a carrier confined to the wetting layer lowest subband energy and Ij) is a zero 
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dimension (OD) state which corresponds to a carrier confined within the SAD. 

Phonons are bosons, and therefore the occupancy number per unit volume is given 
by Bose-Einstein statistics: 

No =I eriwlKT 
(5.7) 

In the case of a LO-phonon emission or absorption, the capture probability of a 

carrier from any 2D state ji) to a OD state 1j) state is given by: 
2 

zqr 1 2-7r e hWLOP 1 [4P(r)] *e(r) Z e- dr b(Ef - Ei) (5.8) 
h 2V q kw 

where kw is the wave vector of a carrier initial state inside the wetting layer. For 

convenience we have introduced P as: 

(NO + 1/2:: F 1/2) (5-9) (600 
90 i) = IPW (r) 

I j) =V (r) 

where (No + 1/2 :: F 1/2) represents the phonon density within the crystal. The 

upper sign of the zF represents absorption while the lower sign represents emission 

of a phonon. 

Now we need to consider the wavefunctions of the initial and final states. The initial 

state corresponds to a carrier confined to the lowest subband of the wetting layer 

quantum well and the final states is one of the SAD confined states. 

5.4.1 SAD model 

Self-assembled quantum dots have been studied in Section 2.5. The model is com- 

posed of a QD formed on a narrow wetting layer of thickness t, and modelled as 
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a semi-ellipsoid of height h and radius R at the base. Thus, carriers are confined 
in the naxrow wetting-layer quantum well due to the step in the conduction-band 

edge at the interface, and they are further localised in the area of the dot due to 

the increase in thickness of the layer. 

Therefore, a single carrier of effective mass m* localised inside the SAD must satisfy 

the Schr8dinger Equation described in Section 2.5: 

[Hý, o + Hpo +V (z 
, p) ] IIP =eV (5.12) 

Using the adiabatic approximation and taking into account that the carriers are 

strongly confined to the lowest sub-band in the narrow wetting-layer quantum well, 

the eigenstates of last expression are given by Equation 2.85 

ýP., 0, Z) = 
e'm0 

gop(Z)f-(p) (5-13) 
. \/2-7r 

and eigenvalues, E,,,,, may be estimated as described in Chapter 2. 

5.4.2 Wave function and energy within the wetting layer 

Carriers within the wetting layer are strongly confined in the z-direction, therefore 

their wave functions can be approximated as the product of an envelope along 

the growth axis and an in-plane travelling wave. The solutions of the Schr6dinger 

equation aJong the confined direction produce discrete states of energy E while W 
n 

within xy-plane there is a continuous range of aflowed energies, fwxy. These energy 

domains associated with confined levels are referred to as 'sub-bands'. Therefore 

the effect of z-direction confinement is to remove a degree of freedom, restricting 

the momentum of the charge carrier from three-dimensions to two. The energy, 01, 
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can be expressed as a summation of z and xy-plane components [1]- 

41W(r, kW) = 
-ik'ýY r 

5ýv ey 0- (Z) 
A1/2 

Mv + e, w-- 
n xy 

(5.14) 

(5.15) Eyv = 

where 

wW2 
exy kxy I (5-16) 

represents the continuous range of allowed energies associated with the xy-plane. 
The magnitude of the xy-plane wave vector is: 

xy 
w-- = VýCwxy (5-17) 

The confined z-component wavefunctions, 1ý'(z), and the associated confined energy Vn 

levels, Eln, may be obtained solving the finite potential quantum well problem [3]. 

The Schri5dinger equation has finite number of eigenstates for energies VO >E>0. 

Due to the symmetry of the potential, the solution of this system gives states with 

even and odd parity, where the even parity eigenstates are given by: 

A cos(kra)e 
kjj (z+a) 

region II 

A cos(kjz) region I V; 
'w' (Z) = 

A cos(k, a) e -kil(z-a) region III 

and odd parity eigenstates axe given by 

B sin(k, a)e 
ki 1 (z +a) region Il 

(Z) B sin (kr z) region I 

-B sin(k, a)e -kii region III 

where the normalisation condition f' 
.I ýý (z) I'dz = I determines constants A, B 

and ki, kil are given by k, and ki-I = V-E- --Vo in effective units. 

k, tan kja = kIl (5.18) 

k, cot kja = -kjj (5.19) 
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Continuum 

unbound-state 
energies 

Discrete 
bound-state 
energies 

Figure 5.4: Finite potential quantum well. Discrete bound-state energies correspond 

to energies such VO >E>0, whereas continuum unbound-state energies 

correspond to E> VO. 
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5.5 Capture rate 

The carrier capture rate will be calculated from the lowest QW sub-band into a 

confined QD state. Therefore the summation over the QW wave vector, kw, is con- 
verted into a summation over ký' and 0 components. Suppressing the summation xy 
over OV in Equation 5.8 gives: z 

27r 
Ze2 hWLOP e -zqr 

2 

[qP (r) 'PW dr 6 (Ef -Ei) (5.20) 
-F h 

k% 
2V 

Carriers within a QW sub-band are distributed as a 2D gas and hence, as Fermions, 

occupy a 2D Fermi-Dirac distribution. 

fD (6) (5.21) 
eKT +1 

where 

7rr, 2 N 
eKT= emKT (5.22) 

and N is the carrier density within the wetting layer. 

Assuming a thermal equilibrium, the Fermi-Dirac distribution function can be in- 

cluded in Equation 5.20 as: 
2 

21r e2 hWLOP e -tqr 
Ei) (5.23) 

h 
Yý fD (6ýy) 

2V 
4P(r)*e(r) Eq dr d(Ef 

k% q 

Substituting Tw(r) from Equation 5.14 into Equation 5.23 leads to: 

1 27r 
E 

e2 hWLOP EI [e(r)]*Z(z) e -i(q+le, )r 

dr 

2 

d(Ef - Ei) wEfD(w XY) 2V 

(5.24) 
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Now, the integral over all space, specified by dr, can be expressed as a form factor, 

G (k,, ky 
7 k-,, ); 

1- 27r e2 hWLOP vG (ký' + q, kw, + q, q, )2 

'Z 
fD (lyy) i: d(Ef - Ei) (5.25) 

h 2VA q k% q 

where the form factor expression is: 

00 

(kw + q, kyw + qy, q (z) e dxdydz 
q 

(5.26) 

Converting the summation over the phonon wave vector to an integral introduces a 
factor of L/21r per dimension from the density of states [1]. 

'y 27r e2 hWLOP EfD (Cýy) 
v 

dq 
G (ký + q) 

h 2VA 
k'ýy 

(21r)3 

xä(Ef - Ei) (5.27) 

In a similar manner, the summation over V! can also be converted into an integral xy 
introducing a factor of A/(27r) 2. 

.l_ 
e2 hWLOP V1 

d27y 
G(k17y + q) 

2 

T 2h (27r) 7 ý, y 
fD (e 

y) 
1 

dq 
q 

x d(Ef -Ei) (5.28) 

Proceeding as Paul Harrison in [1], p. 256, it will be supposed that the result de- 

pend on the 'integral of a square' rather than 'a squaxe of an integral'. It can be 

achieved adding a 6-function which only gives a contribution when q= q'. Us- 

ing this approach simplifies the capture rate expression and therefore requires less 

computational time. Rearranging the last equation leads to 
w 

W) f G(ký,; 
y + IF" 

f 
dOxy fD (fxy 

q 
G* (ký'y + «) 

dqdq'Ö(Ef - Ei) (5.29) 
1 

qI 
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where 
e2 hWLOP V 

2h (27r) 7 

Now applying Harrison's approximation: 
1= 

dkw 
G (Icý'y + q) 

7» ,: yfD(Eýy) 

1q 

x 
(27r )3 1G* (ký'y + qý) Ö(q - «) dqd«d(Ef -Ei) (5.30) 

L 

In order to satisfy dimensionality a factor 27r/L is introduced per dimension integral. 

Performing the integration over q' first and writing the constant prefactor IF' as 

IF' = IF"(27r)3/V gives; 

1= 
F' 

( 
dkw-- fD (e. -wý, ry) 

11G (ký'y + q) 12 
dqö(Ef - Ei) (5.31) 

Ti xy q2 

5.5.1 Energy conservation 

As studied in Section 2.5, a SAD is composed of a dot formed on a quantum well 

wetting layer of thickness t,, = 0.55 nm, and in this thesis is modelled as a semi- 

ellipsoid of a short axis of length h=2 nm (height) and two long axis of length 

R=5- 10 nm (radius), as can be seen in Figure 2.13. The dot (InGaAs-QD) is 

grown on top of the wetting layer (InGaAs-QW), both embedded in bulk material 

(GaAs). The confinement potential of the carriers within the dot or the wetting 

layer results from the different bandgaps between them and the bulk material. The 

composition of the dot and the wetting layer is usually slightly different therefore 

with different bandgaps. For simplicity this difference is neglected. 

Figure 5.5 shows a schematic of the confining potential. In order to differentiate 

the wetting layer from the dot a gap between them has been included in the figure 

(although it does not exist). 
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A carrier confined in the wetting-layer has freedom of movement in two-dimensions 

(21) state), whereas the motion of a carrier confined in the dot is restricted in all 

three dimensions (OD state). In this model only captures of carriers confined to the 

lowest subband of the wetting layer will be taken into account. 

LO-phonon 

/000ný 

Wetting Quantum 
layer Dot 

Figure 5.5: A carrier is captured from the wetting layer (QW) into a quantum dot 

confined state emitting a LO-phonon. 

Carrier energies within the WL and QD are E'W and E" respectively, where OV may 

be written as 

ýov =C+ 2m 
(5.32) 

Assuming the initial state corresponds to a carrier within the wetting layer and 

the final state corresponds to a carrier within the QD emitting or absorbing an 

LO-phonon we may write the initial and final energies, Ej and Ef, as 

Ei = Eý_v + (5.33) 
n 2m 

Ef Ei) : ý: lýWLO (5-34) 

'ýWLO term accounts for scattering processes involving where the upper sign in the ýýO 

the emission of a phonon and the lower sign represents absorption. 

190 



Chapter 5. LO-phonon - carrier capture scattering in SAD's 

Emission and absorption processes are only allowed within an energy range deter- 

mined by the WL sub-band energy C. Taking into account that the carrier kinetic 

energy inside the WL (c'! ) must be positive, the energy range which make possible xy 
a LO-phonon emission or absorption is described in Table 5.1 and represented in 

Figure 5.6. 

w 0< En < 
-8D - 

hWLO 

-ýD - 
hWLO < EWn < 

-ýD 
+ hWLO 

10) + hWLO < EW n 

emission+ absorption 

-ý emission 

-+ none 

Table 5.1: Energy range where a LO-phonon absorption and/or emission is allowed. 

Energy values may be substituted into Equation 5.31 obtaining: 

h2kW 2 1 IG(k' 12 
xy 

= F' 
1 

dk7y fig (e7Y) 
1 

ý, y + q) dqd A- (5.35) 
7 q2 2m 

) 

where 

A=9± hWLO - en (5.36) 

Using 6(ax) = 6(x)la, then: 

y+ 
qxy) 12 2Tn v 

IG(q, klý 2mA_kW2) 

IF' 
h2f 

dVxyfl) dqJ 
xy 

(5.37) 
q2 h2 Y) 

f 

The term inside the J-function can be factorised as: 

2mA 
_kW2 J((a- k 

xwy) 
(a + kwxy)) (5-38) 

h2 xy 
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a) 

QD 

b) 

c) 

tie) 
LO 

Figure 5.6: a)A carrier in the subband Eý. V with no kinetic energy 'Exy =0 can be scat- 01 

tered into the QD state of energy E,,, -,, = EW- + hWLO or E,,,,, = EWX - hWLO 00 

absorbing or emitting a LO-phonon respectively. The scattering process into 

lower energies than E,,,, = Eý. V-hwLo is not allowed. b)Capture into the QD 0 

state of energy e is allowed emitting or absorbing a LO-phonon. c)Capture 

into the QD state of energy e is allowed only emitting a LO-phonon. 
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where a= V2-mA/li2. Around the solution k'-- = a, the factor (a + kw-- ) is a xy xy 
constant, and vice-versa, therefore [1]: 

6(Ce2 V26 (a - kýy') J (a + kýyl) 
xy 

) - kv- + (5.39) 
a+ kff a- kyy 

xy 

The magnitude of the wave number must be positive therefore only the term J(a - 
k'ff )/(a + PY) gives a contribution when PY = V2-mA/h2. Then substituting xy xy xy 
Equation 5.39 into Equation 5.37 we obtain: 

1 JG(kýw 2 
f 

dIP y+ q) k%) ]PI 
2m 

y 
fl) (c--' 7:, dq6(o (5.40) 

T h2 Y) 
f 

q2 a+ k% 

Now the two-dimensional integral over the Cartesian carrier wave number, as de- 

noted by dk'ýý, can be changed into polar coordinates. Changing the order of inte- xy 
gration gives: 

C* 7r 00 www 12 

r, 
2m dq f 

d6W 
fD(iExy)kxylG(kxy + q) 6(a - kýyr) 

h2 2yfdk. W,; 
y 

(5.41) 
Tfqa+ k'fy 

Oo -7r 0 

Performing the integral over PxYY gives: 
00 7r 

I 

_rf 
dq fd 

6Mýy a sin(dw )12 (5.42) 
.,; y 

IG (a cos (6iw 
T 

-00 

q2 
-7r 

, Y) + q. + qy, qz 

where 

r= me 2 WLOPfD 
(5.43) 

2h2(27r) 4 

fD = fD 
h2 a2 (5.44) 

( 
2m 

) 

5.5.2 An example of capture rate calculation. SAD. 

Using the same parameters as in Section 2.5, the model consists of a InAs self- 

assembled ellipsoidal QD whose height is h=2 nm, the radii varies between R= 

5- 11 nm and wetting layer thickness t,,, = 0.552 nm surrounded by GaAs. 
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The capture rate of an electron of mass m=0.023mo from the wetting layer into a 

SAD due to bulk LO-phonon interaction is calculated. The electron barrier potential 

is set to VO =1 eV, the electron density within the wetting layer is N, = 1014 1/M2 

and the temperature T= 300 K. 

An LO-phonon is absorbed (emitted) if an electron within the wetting layer 

gains(loses) enough energy, ýIWLO, to scatter into a confined QD energy level. This 

process is possible if the wetting layer subband energy is lower than the QD energy 

level plus(less) the LO-phonon energy: EWO < JV - hWLO( EWo < EQD + hwLo). 

Figure 5.7a) shows the capture rate into the first four QD energy levels emitting a 

LO-phonon. It is found that over the range of dot radius where the capture into 

the first excited state (of energy Ell, also called 1P) is energetically possible, the 

capture rate varies from 1IT11 = 0.6 x 109 11s (Ell = 850 meV) toTil =2x 109 

11s (Ell = 815 meV). Ferreira et al [4] calculate the electron capture rate using 

a slightly different SAD model and different electron mass and confined poten- 

tial. For an orbital 1P (Ell in the model used in this section) when the setting 

layer is occupied by 1014 1 /M 2 electrons at temperature T= 300 K, he obtained 

nlp --, 11-r11 = 2.5 x 1010-8.5x 1010 1/s within the capture allowed dot size radius. 

Those results are more than an order of magnitude higher, but it has to be taken 

into account that Ferrera's model uses different QD shape and parameters than in 

this thesis. 

Due to the naxrow wetting layer, the subband energy level in the quantum well 

wetting layer is higher than most of the confined energy levels within the QD, as 

can be seen in Figure 5.7b). Increasing the QD radius decreases the energy levels 

within the QD and new levels appeax. Electron capture into a QD energy level, 

E,, M, emitting a LO-phonon is possible if E,, m > Eow - hWLO. Therefore within some 

radius ranges the capture process is not allowed due to the energy conservation and 

when it is allowed, only it occurs in the highest levels. Within the radius range 
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considered, R=5- 11 nm, the ground state energy level E10 never reaches the 

energy of the subband, making the capture into this state impossible. 

A capture process absorbing an LO-phonon is possible if E,,,,, > EOW + hwLo. As 

can be seen in Figure 5.7b), none of the QD energy levels, reaches this value and 
hence the absorption of a LO-phonon is not allowed. 

In order to study how the capture rate changes with the wetting layer thickness, it 

is calculated the capture rates again for a wetting layer of thickness t, " = 1.1 nm. 

The capture rates can be seen in Figure 5.8b). It can be observed that there axe 

no remarkable differences between Figure 5.7a) and 5.8a). The subband energies 

within the wetting layer axe Eow = 0.957 eV and Eow = 0.851 eV for t, ', = 0.552 

nm and t,,, = 1.104 nm, respectively. The energy decreases with the increase of the 

thickness, but this also affects the QD energy levels, which also decrease, as can 

be seen comparing Figures 5.7b) and 5.8b). Only the QD radius range where the 

capture into the state of energy E20 experiences an increase, but the capture rates 

remain constant with the wetting layer thickness. 

Within the wetting layer, the carrier distributions are described by Fermi-Dirac 

statistics, defined by the temperature of the system. We calculate the capture 

rate into the QD states of energy Ell, E12 and E20, varying the temperature and 

plot the results in Figure 5.9. The Fermi-Dirac distribution of this electron is also 

plotted, which is the only factor in the capture rate expression (Equation 5.42) 

which depends on the temperature. 

W The energy, cxy) which a carrier within the wetting layer requires to be captured 

into a QD confined state, increases with the separation between the energy level of 

the QD state, Enmj and the wetting layer subband energy, Ewo. The Fermi-Dirac 

distribution gives the probability of finding a carrier with energy E'ý!. In Figures 
xy 

5.9d), e), f) this probability is plotted for capture into different QD states at different 

195 



rill 
Chapter 5. LO-phonon - carrier capture scattering in SAD's 

10 
10 

-.. o 

lo 

10 

CL 
cu 

10 
7 

1 PC 

1 PC 
20 

1 Pr 
12 

I 

a) 

01U 
OD radius (nm) 

1100 

E 
1000 

W > 900 

800 

c 700 

Ew +E 
E0 ýo E 20 

0 I- lam 

EW-E 
0 Lp E .. IE 12 

10 

b) 

89 10 

OD radius (nm) 

Figure 5.7: a)Capture rate of an electron from the wetting layer into the QD energy level 

E,,,,, due to LO-phonon scattering. The wetting layer thickness considered 

is t,, = 0.552 nm. b)QD energy levels versus radius. The capture into 

a QD energy level E,,,,, is allowed if E,,,,,, > EOW - hWLO emiting a LO- 

phonon. Absorption of a LO-phonon is not allowed because the condition is 

W E,,,,, > EO' + hwLO and none of the energy levels reach this level. 
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temperatures. The energy levels of these QD states decrease with the QD radius. 
W This increases the energy Exy of the carrier to be captured in the quantum well 

wetting layer and therefore the probability of finding a carrier with this energy 

within the subband decreases. 

This probability also depends on the temperature. At low temperatures, the prob- 

ability of finding carriers with low energy is higher than at high temperatures, and 
finding a carrier at high temperature with high energy within the subband is more 

probable than at low temperature. This explains the crossing of the capture rates 

at different temperatures in Figures 5.9a), b), c). This behaviour, though with two 

orders of magnitude lower results, agrees with calculations obtained by Ferreira et 

al in [5]. 

5.6 Capture/escape into two coupled SAD's 

In Section 4.4.2 two vertically coupled SAD's have been studied and the possible 

application in quantum computation discussed. 

When two dots are coupled and an electron is inserted, the system behaves as a 

single dot, and the electron occupies one of the discrete energy states, which have 

been calculated in Section 4.4. When the coupling between two identical dots is 

weak, the energy levels are degenerate and an electron within the QD system is 

localised in one of the QD's. Once the coupling becomes strong the energy level 

degeneracy is removed producing new delocalised states. 

Only the two lowest energy levels are considered, the ground and first excited states, 

I+) and I-), which possess even and odd parity, respectively, as can be seen in Figure 

5.10. 
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temperatures. The energy levels of these QD states decrease with the QD radius. 
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This probability also depends on the temperature. At low temperatures, the prob- 

ability of finding carriers with low energy is higher than at high temperatures, and 

finding a carrier at high temperature with high energy within the subband is more 

probable than at low temperature. This explains the crossing of the capture rates 

at different temperatures in Figures 5.9a), b), c). This behaviour, though with two 

orders of magnitude lower results, agrees with calculations obtained by Ferreira et 

al in [5]. 

5.6 Capture/escape into two coupled SAD's 

In Section 4.4.2 two vertically coupled SAD's have been studied and the possible 

application in quantum computation discussed. 

When two dots are coupled and an electron is inserted, the system behaves as a 

single dot, and the electron occupies one of the discrete energy states, which have 

been calculated in Section 4.4. When the coupling between two identical dots is 

weak, the energy levels are degenerate and an electron within the QD system is 

localised in one of the QD's. Once the coupling becomes strong the energy level 

degeneracy is removed producing new delocalised states. 

Only the two lowest energy levels axe considered, the ground and first excited states, 

I+) and I-), which possess even and odd parity, respectively, as can be seen in Figure 
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Coupled SAD system 

Figure 5.10: Schematic representation of the ground and first excited state wavefunc- 

tions, 1+) and I-), of a carrier inserted within a two vertically coupled 

SAD system. The system behaves like a single dot, where the two lowest 

energy levels are E+ and E- - 
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Using the LCQDSA method, studied in Section 4.2, states 1+) and I-) have been 

approximated as a superposition of each isolated QD ground states. The electron 
localisation within the coupled system has been proposed as a qubit in [6]. The 

principal source of quantum states decoherence is the capture/escape process due to 
LO-phonon interaction, where a carrier confined within the coupled system escapes 
to the wetting layer absorbing or emitting a single LO-phonon. 

In this section the capture/escape rate of an electron within a coupled dot system 

considering only the two lowest energy states J+) and I-) is calculated. It is also 

assumed that only one electron is present within the coupled quantum dots. The 

model is composed of two SAD's of height h=2 nm and radius R=6 nm separated 
by a distance d, where potential barrier is set to VO =1 eV, the electron effective 

mass is m* = 0.023mo and the density of electrons within the wetting layer is 

N= 1014rn-2. C 

It is calculated these energies varying the distance between SAD's as can be seen in 

Figure 5.11b). The ground state energy level, E+, never reaches the required energy 
for the carrier to escape from the QD system to the wetting layer (E+ > EWO - hWLO) - 
Therefore an electron confined within the system cannot be scattered from the 

ground state to the wetting layer due to the interaction of a single LO-phonon. In 

the case of the first excited estate, the escape is allowed within the inter-dot 

distance range d=1.6 - 2.2 nm. 

The capture rate is given by Equation 5.42 

where 

00 7r 

r 
dq f 

dd.: W,; 
y 

IG (a cos (6 Wý,; 
y) + q,,,, a sin (dw 12 

Tf q2 ,; Y) + qy, qz) (5.45) 

00 -7r 

r= me 2 WLOPfD (5.46) 
2h2(27r)4 

fD = fD 
( ji2 a 

2) 
(5.47) 

2m 
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In the escape process, the Fermi-Dirac term gives the probability of finding an 
Unfilled state within the wetting layer, which is 1- fD. It has to be taken into 

account that the carrier escapes from the QD emitting an LO-phonon. In both 

processes the constant IF is given by 

Fcapture Tne 2 U)LOP+fD 
(5.48) 2h2(27r)4 

Fescape me 2 WLOP- (1 - fD) 
(5.49) 

2h2(27r)4 

where 

P± (No + 1/2 
-+ 

1/2) (5-50) 
( 

IE00 EO 

) 

Figure 5.1 1a) shows the electron escape rate from the SAD into the wetting layer due 

to the absorption of a LO-phonon, while Figure 5.11b) shows the electron capture 

rate from the wetting layer into the SAD state due to the emission of a LO-phonon. 

As can be observed, the escape rate from state I-) is higher than the capture rate to 

the same state. The difference between rates can be modified changing the Fermi- 

Dirac distribution, i. e. altering the number of carriers within the wetting layer, N, 

as illustrated in Figures 5.12a), b). 

It can also be observed that capture/escapes processes are allowed within the inter- 

dot distance range d=1.6 - 2.2 nm, thus those processes could be avoided choosing 

inter-dot distances of d>2.2 nm and therefore, they would not cause any dephasing 

to a carrier within the system. 

As can be seen in Figure 5.12b), the escape rate is higher for low electron densities, 

which is the order of 11-r P-_, 109 1/s, which means that the state I-) decoherence 

time due to the interaction with a single LO-phonon is the order of the nanosecond. 

The capture process is a source of decoherence for the two-level model, but choosing 

low carrier densities it can be neglected. 
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5.7 Summary 

The process of an electron capture(escape) from the wetting layer(QD) into the 

QD(wetting layer) for a single SAD and two vertically aligned coupled SAD's due 

to emission or absorption of a single LO-phonon has been studied. Due to the fact 

that LO-phonon interaction with carriers is dominant[l], interactions with other 

phonons, like longitudinal acoustic and transversal phonons, have been neglected. 

Multiphonon processes have not been taken into account. Calculations have been 

based on the Fr8lich carrier - LO-coupling and capture and escape rates probability 

have been calculated using Fermi's Golden Rule. In the capture processes studied in 

this section a carrier is captured from the wetting layer into a SAD confined state. 

A SAD model has been studied and its confined energy levels and wavefunctions 

have been obtained using the adiabatic approximation method. 

Starting from the Fermi's Golden Rule and applying the energy conservation, an 

expression for the capture rate has been obtained. Then the electron capture rate 

from the wetting layer into allowed confined SAD states has been calculated. We 

observe that changing the dot radius, only the capture process is allowed into cer- 

tain QD confined states. It has also been observed that vaxying the wetting layer 

thickness does not increase/decrease significantly the capture rates. It has also been 

compared capture rates changing the temperature. Due to the discrete nature of the 

caxrier states in a quantum dot, the relaxation due to the interaction with a single 

LO-phonon is not allowed. However the carrier relaxation due to multiphonon inter- 

action may be possible, which is considered as further work. Carrier escape/capture 

rates from/into two vertically aligned SAD system lowest energy levels have been 

calculated. Two vertically aligned SAD's have been proposed for use as a quantum 

gate in quantum computation. In this section those escape/capture processes are 

proposed as a possible source of decoherence when both dots are coupled. 
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We find that escape/capture processes axe not allowed from/into the QD system 

ground state. We also observed that the escape and capture processes are permit- 

ted within a range of inter-dot distance, where the escape process is the fastest 

process for low electron densities (within the wetting layer) which is the order of 

the nanosecond. Therefore the decoherence time due to carrier - single LO-phonon 

scattering could be reduce to nanoseconds at low wetting layer carrier densities or 

it could be avoided choosing the right inter-dot distance. 
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Chapter6 

Conclusions and further work 

6.1 Conclusions 

In this thesis the electronic structure and wavefunctions of quantum dots of differ- 

ent shapes have been calculated: spherical geometry, for colloidal QD's and ellip- 

soidal/cylindrical geometry for SAD's and elongated colloidal QD's. These results 

are also the basis to investigate the coupling between QD's. The coupling of two 

SAD's and two colloidal QD's are studied and their possible application in quantum 

computation discussed. Carrier - LO-phonon interaction has been investigated as a 

source of decoherence in coupled SAD's systems. 

In Chapter 2 the Schr8dinger equation has been solved for an electron within dif- 

ferent geometry potentials using the effective mass approximation. In order to 

obtain the solution for spherical and cylindrical QD's the free particle problem has 

been solved in spherical and cylindrical coordinates and then they have been used 

to obtain the solution for step-like potentials. Finite potential barriers has been 

considered for spheres and infinite potential barriers for spheres and cylinders. In 
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order to study the colloidal QD model, the solution of the Schr6dinger equation 
for a capped spherical QD has been also obtained, where the QD is capped by a 
layer of higher bandgap material. Finally the Schr8dinger equation is solved for a 

self-assembled quantum dot applying an adiabatic method. 

In Chapter 3a numerical method to solve QD structures with cylinder symmetric 

models is introduced, the Full Diagonalisation of the system Hamiltonian (FDH) 

method. In this chapter the Schr6dinger equation is solved for an electron within 

a cylindrical symmetric quantum dot. For these structures the analytical solution 
is only available for certain cases like spheres or infinite potential cylinders. In 

other cases numerical methods must be applied. Firstly, the FDH method has been 

explained and applied for a spherical QD and a spherical capped colloidal QD. In 

both cases the results have been checked against the analytical solution calculated in 

Chapter 2. This example is also used to estimate the dimension of the basis set which 
is used to expand the Hamiltonian, where the analytical solution is not possible to 

obtain. Therefore, using the same basis as for the spherical QD, the solution is 

obtained for an ellipsoidal QD and an ellipsoidal capped QD- Another numerical 

method, the finite difference method, is also studied and applied to the case of a 

spherical QD. This method is checked against the solutions obtained analytically and 

using the FDH method. We find that the FDH method is much faster and accurate 

than the FD method making the former one a good candidate to determine the 

electronic structure of cylindric symmetry structures. 

In Chapter 4 the coupling between two coupled dots has been studied and its appli- 

cation to quantum computation discussed. The linear combination of quantum dot 

states approximation has been outlined and used in order to obtain the electronic 

structure of an electron within the coupled system. This method has been verified 

by comparison with the FDH method for an electron within two identical coupled 

QD's. Due to the fact that the LQDSA method requires less computational time 

209 



CL hapter 6. Conclusions and further work 

than the FDH method, it is used to calculate the two lowest energy levels of an 

electron within two spherical QD, two vertically aligned SAD and two colloidal QD 

systems. 

* Two spherical QD's. The LCQDSA method has been applied to two spher- 
ical QD's to illustrate the technique to the reader. The coupling between dots, 

described as the splitting energy between the first and ground state energy 
levels, has been calculated varying the inter-dot distance and the potential 
barrier showing that controlling one of these two parameters, thermal pertur- 
bations can be avoided. 

* Two vertically aligned SAD's. The coupling between two ellipsoidal- 

shaped SAD's has been studied and the variation with the inter-dot distance, 

the confining potential and the dot dimensions investigated. Varying these pa- 

rameters the coupling changes, which makes this model a good candidate to 

be used in quantum computation. For two identical SAD's it has been shown 

that changing the QD radius at the base does not alter the coupling signif- 
icantly. In the case of two different SAD's the splitting energy dependence 

upon changes in the upper QD has been shown. Again the coupling remains 

nearly constant under changes on the radius, whereas it decreases when the 

upper dot height is increased. 

e Two colloidal QD's. The coupling between two colloidal QD's has been 

studied in order to assess their suitability for use in quantum information 

applications. The model is composed of two spherical core-shell (CdSe-ZnS) 

QD's of radius around 15-20 A and layer thickness 3 A. The coupling has 

been calculated for two identical QD's varying the inter-dot distance obtain- 

ing similar results as with the FDH method. As CdSe nanocrystals are slightly 

elongated along the z axis, the case of two vertically aligned ellipsoidal capped 

QD's is investigated and compared with the two spherical QD's model. Only 
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changes in the QD z axis has been considered in order to preserve the cylindri- 

cal symmetry. It has been found that increasing the z axis in both QD's, while 
the separation is constant, decreases the coupling between them. For the case 

of two ellipsoidal QD's, we found that the coupling reaches a ma, -6mum with 
both QD's have the same dimensions. 

The two-level electronic structure of the system is calculated within the effective 

mass approximation. The inter-dot distance affects the coupling between dots, 

therefore varying the separation of QD's may tune the coupling, giving a mechanism 
to switch it 'on' and 'off'. We observe that choosing the appropriate inter-dot 

distance, the model may avoid thermal perturbations. In the case of two coupled 
SAD's, the exchange energy between dots is insensitive to small variations in the 

shape of both dots within the xy-axis. SmaJl variations are observed changing the 

upper QD radius at the base. In contrast, the exchange energy experiences large 

changes when the height of a single SAD is varied. We have also investigated 

the case of two aligned colloidaJs QD's (z-aJigned in the case of ellipsoidal QD's) 

varying their shape. We find that without changing the separation between QD's, a 

maximum coupling is reached when both QD's have identical dimension and shape. 

Due the liquid nature of the surrounding material, the main source of decoherence, 

the charge-phonon scattering, can be neglected, making it a good candidate for use 

in quantum computation applications. 

In order to study a source of the decoherence time, in Chapter 5 the electron cap- 

ture(escape) process from the wetting layer(QD) into the QD(wetting layer) for a 

single SAD and two vertically aligned coupled SAD's due to emission or absorp- 

tion of a single LO-phonons has been investigated. Calculations have been based 

on the Fr8lich carrier - LO-coupling and capture and escape rates probability have 

been calculated using Fermi's Golden Rule. Then the electron capture rate from 

the wetting layer into allowed SAD confined states have been calculated. Changing 
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the dot radius it has been observed that the capture process is only allowed into 

certain QD states. We observe that varying the wetting layer thickness does not 
increase/decrease significantly the capture rates. It has been aJso compared cap- 
ture rates changing the temperature. Carrier escape/capture rates from/into two 

vertically aligned SAD system lowest energy levels have been calculated. Two ver- 
ticafly aligned SAD's have been proposed to be used as a quantum gate in quantum 

computation. In this thesis these escape/capture processes are studied as a possible 

source of decoherence when both dots axe coupled. Using the model proposed it has 

been found that escape/capture processes are not allowed from/into the QD system 

ground state. It has been also observed that the escape and capture processes are 

permitted within a range of inter-dot distance, where escape process is faster than 

the capture for WL low electron densities which is the order of the nanosecond. 
Therefore the decoherence time due to carrier - single LO-phonon scattering could 
be reduce to nanoseconds at low wetting layer carrier densities or could be avoided 

choosing the right inter-dot distance. 

6.2 ]Further work 

e The use of tight binding method for colloidal QD's. In this thesis 

colloidal QD's of diameter -3-4 nm have been studied. For such dimensions 

the effective mass approximation is not an accurate method to obtain the 

electronic structure and the use of other numerical methods is needed in order 

to be more precise. As the aim of this thesis is to provide a qualitative study 

of coupled colloidal QD's, the effective mass approximation has been applied. 

In order to obtain more accurate results, the use of tight-binding method for 

small colloidal QD's will be considered in further work. 

Adding a second electron to the system. All the calculations have been 
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made taking into account that only a single electron was confined within the 

model. Once another electron is added, the electronic structure change due to 

coulomb interaction. Including this effect in the model would lead to a more 

accurate study of the coupling between dots when each dot is populated by 

an electron. 

Relaxation rates. Due to the discreteness nature of the carrier density of 

states in a quantum dot, the relaxation due to the interaction with a single 
LO-phonon is not allowed unless the energy difference between levels is ex- 

actly the energy necessary to emit/absorb an LO-phonon, hwLo, which is very 
improbable. What is allowed is the carrier relaxation to lower energy levels 

due to multiphonon interaction, which is left as further work. It is also left 

as further work the inclusion in the model carrier-carrier scattering processes 

which also causes the relaxation of a carrier within the QD. 

Study DiVincenzo conditions for coupled colloidal QD's. We have 

studied the coupling of colloidal QD's, but in order be a serious candidate 

for the implementation in quantum computing the model has to satisfy the 

DiVincenzo conditions (explained in Section 1.6.1). This would also make 

interesting future work. 
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