
Bangor University

DOCTOR OF PHILOSOPHY

Study of the Fly Algorithm for 2-D and 3-D Image Reconstruction

Abbood, Zainab

Award date:
2017

Awarding institution:
Bangor University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Apr. 2024

https://research.bangor.ac.uk/portal/en/theses/study-of-the-fly-algorithm-for-2d-and-3d-image-reconstruction(97fc0202-c054-425b-9688-bff5c23d38fe).html

School of Computer Science
College of Physical & Applied Sciences

Study of the Fly Algorithm for 2-D and
3-D Image Reconstruction

Zainab Ali Abbood

Submitted in partial satisfaction of the requirements for the
Degree of Doctor of Philosophy

in Computer Science

Supervisor Dr. Franck P. Vidal

June 2017

Acknowledgements

First and foremost I would like to thank so much my supervisor Dr. Franck Vidal who

made this thesis possible. I appreciate all his contributions of time, ideas to make my

PhD experience productive and stimulating and for his corrections of this thesis. His

positive outlook and confidence in my research inspired me and gave me confidence.

He has taught me how can I grow as a researcher and be a good supervisor in the future.

I would also like to acknowledge the Ministry of Higher Education and Scientific

Research (MOHESR) of Iraq for generosity in funding my PhD study.

Great thanks to Basra University for supporting and helpingme duringmy undergraduate,

master, and PhD study.

Many Thanks to my wonderful husband Jassim Al-Autbi his understanding and support

during the research time. Without his encouragement, I would not be able to finish my

PhD research.

A sweet thank to my kids Ahmed and Amenah to make my life during the study full

with happiness and hope without despair.

I would like to many thanks my special and lovely dad who always his spirit surround

and inspire me to pass the difficulties of the study.

I also would like to thank all my family in Iraq: beautiful mom, sisters, brothers, brothers

in law, sisters in law, nephews and nieces to support my during my undergraduate,

master, and PhD study. I am thankful to have such a lovely family.

Many thanks go to all the friends I met during these years, who made me and my

family stay happy and enjoyable at Bangor. Last, but not least, I would like to thank

all the staffs of School of Computer Science to help me a lot during these years and

HPC Wales (http://www.hpcwales.co.uk/) for providing some of the computing

facilities used in this study.

http://www.hpcwales.co.uk/

Statement of Originality

The work presented in this thesis/dissertation is entirely from the studies
of the individual student, except where otherwise stated. Where derivations are
presented and the origin of the work is either wholly or in part from other sources,
then full reference is given to the original author. This work has not been presented
previously for any degree, nor is it at present under consideration by any other
degree awarding body.

Student:

Zainab Ali Abbood

Statement of Availability

I hereby acknowledge the availability of any part of this thesis/dissertation for
viewing, photocopying or incorporation into future studies, providing that full
reference is given to the origins of any information contained herein. I further give
permission for a copy of this work to be deposited with the Bangor University
Institutional Digital Repository, the British Library ETHOS system, and/or in any
other repository authorised for use by Bangor University and where necessary have
gained the required permissions for the use of third party material. I acknowledge
that Bangor University may make the title and a summary of this thesis/dissertation
freely available.

Student:

Zainab Ali Abbood

Abstract

The aim of this study is to investigate the behaviour and application of an evolutionary

algorithm (EA) based on a particular approach of cooperative co-evolution algorithm

(CCEA), the Parisian Approach. It evolves and keeps an entire population as an optimal

solution to the problem instead of keeping only the best individual in classical EAs.

The CCEA we selected is called the “Fly algorithm”. It is named after flies, because the

individuals are extremely primitive and correspond to three-dimensional (3-D) points.

This algorithm has been relatively overlooked despite showing promising results in

real-time robotic and image reconstruction in tomography. Our focus in this study is on

two types of applications: medical imaging and digital art.

i) In the medical application, we aim to improve quantitative results in 3-D reconstructed

volumes in positron emission tomography (PET). We investigate the use of density fields,

based on Metaballs and on Gaussian functions respectively, to obtain a realistic output.

We also investigate how to exploit individuals’ fitness to modulate their individual

footprint in the final reconstructed volume. An individual’s fitness can be seen as

a level of confidence in its 3-D position. The resulting volumes are compared with

previous work in terms of normalised-cross correlation. In our test cases, data fidelity

increases by more than 10% when density fields are used instead of using a naive

approach. Our method also provides reconstructions comparable to those obtained

using well-established techniques used in medicine (e.g., filtered back-projection (FBP)

and ordered subset expectation-maximization (OSEM)).

Our algorithm relies heavily on the mutation operator. We propose 4 different fully

adaptive mutation operators: basic mutation, adaptive mutation variance, dual mutation

and directed mutation. Their impact on the algorithm efficiency is analysed and validated

on PET reconstruction.

ii) In the digital art application, we present the first application of the Fly algorithm

in digital art. This branch of digital art is called “evolutionary art”. The motivation

is to evaluate the algorithm with a much more complex structure of flies. They are

still defined as simplistic primitives (3-D points) but with colours, sizes and rotations.

Different visual effects were investigated, such as mosaic-like images and spray paint

rendering. An online survey (including 41 participates) was conducted to validate

our approach. Participants compared our results with similar ones generated with

open-source software (GIMP). Again, our method shows promising results.

In conclusion, our investigations confirm that the Fly algorithm works well with a

complex search space. We demonstrate a fast and accurate solution to optimise a set of

parameters in both applications. The Fly algorithm can improve reconstructed image

quality compared to FBP and OSEM in medical application and to GIMP in digital art

application.

Contents

1 Introduction 12
1.1 Context . 12
1.2 Hypothesis . 13
1.3 Objectives . 14
1.4 List of publications . 14
1.5 Contributions . 15
1.6 Outline . 17

2 Background: Scientific Context 18
2.1 Introduction . 18
2.2 Imaging . 19
2.3 Computer vision . 21
2.4 3-D Tomographic reconstruction in nuclear medicine 21
2.5 Mosaics-like and Painterly Rendering 25

3 Background: Evolutionary Approaches 30
3.1 Introduction . 30
3.2 Evolutionary algorithms . 32

3.2.1 Solution encoding and initialisation 34
3.2.2 Evaluation (Fitness function) 36
3.2.3 Selection operator . 36
3.2.4 Crossover operator . 38
3.2.5 Mutation operator . 38
3.2.6 Termination . 40

3.3 Evolutionary algorithms and their applications to image processing . . 42
3.3.1 Image enhancement . 42
3.3.2 Image segmentation . 45
3.3.3 Image reconstruction . 49

3.4 Challenges with evolutionary algorithms 53

4 Background: Parisian Evolution 56
4.1 Cooperative co-evolution algorithms 56
4.2 Parisian approach . 57
4.3 Overview of the Fly algorithm and its applications 58

4.3.1 Stereo vision . 61

1

4.3.2 3-D tomographic reconstruction in nuclear medicine 63
4.4 Novelty . 65

5 PET Reconstruction 66
5.1 Introduction . 66
5.2 Early evolutionary reconstruction . 69
5.3 Extraction of the solution . 73
5.4 Voxelisation using implicit modelling 78

5.4.1 Definition . 78
5.4.2 Voxelisation using Metaball as density field function 82
5.4.3 Adaptive Gaussian kernels to exploit the fly’s individual knowledge 84

5.5 Evaluation and comparative study 86
5.5.1 Hot rode phantoms (ideal case) 87
5.5.2 Hot rode phantoms (low number of projections & noise) . . . 89
5.5.3 Cardiac phantoms (with noise) 91

5.6 Conclusion . 91

6 Mutation Operators 98
6.1 Introduction . 98
6.2 Varying mutation operators in the Fly algorithm 99

6.2.1 Basic mutation . 101
6.2.2 Adaptive mutation variance 104
6.2.3 Dual mutation . 105
6.2.4 Directed mutation . 106

6.3 Results . 108
6.3.1 Without noise in the input data 109
6.3.2 With noise in the input data 114

6.4 Conclusion . 117

7 Digital Arts 119
7.1 Introduction . 119
7.2 Methodology . 120

7.2.1 Fly algorithm paradigm . 120
7.2.2 Evolutionary image reconstruction 121

7.3 Results . 125
7.3.1 Initial Experiments . 125
7.3.2 Background Colour . 132
7.3.3 Edge Preservation . 134
7.3.4 Final User-study . 134

7.4 Conclusion . 138

8 Conclusions and Future Work 141
8.1 Introduction . 141

CONTENTS 2

8.2 Overview . 141
8.3 Contributions . 143
8.4 Limitations . 145
8.5 Future work . 145

Acronyms 147

References 152

A GPU 171
A.1 Introduction . 171
A.2 The Graphics pipeline . 172
A.3 GPU environments . 174

A.3.1 OpenGL and the fixed rendering pipeline 174
A.3.2 GLSL . 175
A.3.3 OpenCL . 177
A.3.4 Discussion . 177

B Shader programs 179

CONTENTS 3

List of Figures

1.1 Pictures submitted to ‘Art & Science in Evolutionary Computation’
organised by the EA2017 conference and Galerie Louchard, Paris. . . . 15

2.1 An example of the digital image processing of grey-scale image: (a)
energy source, (b) item of an image, (c) imaging system, (d) projection of
the scene onto the image plane and (e) digitised image(Image from [67],
courtesy of Gonzalez). 19

2.2 PET-CT examination of a cancer patient: CT provides anatomical
information, while PET provides physiological information (data
available on The Cancer Imaging Archive (TCIA) at https://public.
cancerimagingarchive.net/). 22

2.3 Principle of tomography . 23
2.4 Steps in iterative algorithms. 24
2.5 Mosaic classification: (a) crystallisation mosaic, (b) ancient mosaic,

(c) photo mosaic and (d) puzzle image mosaic. (a) courtesy of
DoBashi [47], (b &c) from the open images dataset (https://github.
com/openimages/dataset) under the CC BY 4.0 license, and (d)
courtesy of Gallo [22]. 26

3.1 Growth of the use of artificial evolution in imaging and computer vision. 32
3.2 General layout of EA . 33
3.3 Examples of individual encoding. 35
3.4 Different techniques of the crossover operator. 39
3.5 Different techniques of the mutation operator. 41
3.6 Enhancement image process using Histogram Equalisation (HE). 43
3.7 Results of different enhancement techniques: (a) original, (b) Hoseini et

al. method, (c) histogram equalisation, (d) linear contrast stretching, (e)
fuzzy method (Image from [78], courtesy of Pourya Hoseini). 45

3.8 Results of genetic algorithms and the region growing method for
segmentation MRI (Image from [172], courtesy of Zanaty). 48

3.9 . Stereo pairs (right and left images) from the Multiview Image Database,
University of Tsukuba and the disparity map of them (images from [60],
courtesy of Andrea Fusiello). 51

3.10 Epipolar geometry of a binocular stereo system (image from [70], courtesy
of Hafezi). 52

4

https://public.cancerimagingarchive.net/).
https://public.cancerimagingarchive.net/).
https://github.com/openimages/dataset
https://github.com/openimages/dataset

4.1 Principles of the Parisian approach (including the Fly algorithm). 57
4.2 Cooperative co-evolution principles in the Fly algorithm (images

from [106], courtesy of Jean Louchet). 62
4.3 Detecting objects using the Fly algorithm (images from [106], courtesy

of Jean Louchet). 63

5.1 Evolutionary reconstruction using the Fly algorithm. The real radioactive
concentration (f) is unknown. P is a projection operator. The
projections of f are the known observations (Y = P [f]). Individuals of
the evolutionary algorithm correspond to 3-D points. The population
corresponds to an estimated radioactive concentration

(
f̂
)
. Each

individual has its own projection data. Together, they produce simulate
projections

(
Ŷ = P

[
f̂
])
. The position of individuals is iteratively

optimised using genetic operators to minimise E
(
Y, Ŷ

)
the difference

between Y and Ŷ . After convergence the concentration of individuals is
an estimate of the radioactive concentration. 67

5.2 The Fly algorithm is an iterative method (as described in Figure 2.4). Here
genetic operators (new blood and mutations) are applied to correct the
position of flies and minimise the error between the known observations
(P [f]) and the projection data (P

[
f̂
]
) generated by the population of

flies (f̂). After convergence the concentration of flies is an estimate of
the radioactive concentration. 69

5.3 From a population of flies (f̂) to an estimated sinogram
(
P

[
f̂
])
. Each fly

has its own projection data at different angles. Put together, they produce
the estimated sinogram. 70

5.4 Sinograms with 185 pixels per projection, 1st angle: 0°, angular step: 1°,
and last angle: 179°. Corresponding radioactive concentrations are given
in Figure 5.5. The geometrical relationship link between the simulated
sinogram

(
P

[
f̂
])

from the position of flies (f̂) is given in Figure 5.3. . 74
5.5 Tomographic reconstruction using 12,800 flies. Corresponding sinograms

are given in Figure 5.4. The geometrical relationship link between the
position of flies (f̂) and the simulated sinogram (P

[
f̂
]
) is illustrated in

Figure 5.3. 75
5.6 Similarity metrics (NCC) between the ground-truth (f) and the images of

the fly population (f̂ and f̂ +) using the binning method for voxelisation.
Due to the stochastic nature of the evolutionary reconstruction, the
reconstruction is performed 15 times to produce statistically meaningful
results. 75

5.7 Intensity profiles corresponding to the white lines in Figures 5.5a, 5.5b
and 5.5c. 77

LIST OF FIGURES 5

5.8 3-D density field using 15 points as control primitives using Eq. 5.9.
When the particles are in close proximity, their density fields are joining
each other smoothly without discontinuity. (a) and (c): cross-sections of
the density field at different heights. (b) and (d) corresponding isolines.
See Figure 5.9 for corresponding 3-D isosurfaces. 79

5.9 Implicit surfaces corresponding to the density field defined with the
15 metaballs of Figure 5.8. Triangle meshes are extracted from the density
field using the Marching Cubes algorithm [101] with various threshold
(t) values. 80

5.10 Density field control functions from Eqs. 5.8 and 5.9. Parameters a and
b are used to control the height and the width of the curve. For a given
value of b, the shape of the curve can be more or less wide depending on
the density field function used. 81

5.11 Decomposition of f (r) from Eq. 5.9 with a = 1 and b = 3. Eq. 5.9 is a
piecewise function with 3 sub-functions that join each other in b/3 and b
to produce a smooth falling curve. 82

5.12 Voxelisation of the fly population (f̂) using 12,800 metaballs (NCC with
ground-truth: 89.69%) (see Figure 5.5a for the corresponding ground-
truth). The same fly population as in Figure 5.5b was used. 83

5.13 Intensity profiles corresponding to the white lines in Figures 5.5a, 5.5b
and 5.12. 83

5.14 Similarity metrics (NCC) between the ground-truth (f) and the images of
the fly population using the binning method and Metaballs for voxelisation. 84

5.15 Voxelisation of the fly population (f̂) using 12,800 gaussian kernels
(NCC with ground-truth: 92.79%) (see Figure 5.5a for the corresponding
ground-truth). The same fly population as in Figures 5.5b and 5.12 was
used. 85

5.16 Intensity profiles corresponding to the white lines in Figures 5.5a, 5.5b
and 5.15. 86

5.17 Similarity metrics (NCC) between the ground-truth (f) and the images
of the fly population using the binning method, Metaballs and Gaussian
kernels for voxelisation. 87

5.18 Evolutionary reconstructions of Figure 5.4a at successive resolutions
(with N the number of flies and TS the time-stamp in minutes) using an
Intel Xeon Westmere X5650 @ 2.67 GHz processor. 88

5.19 Sinograms from Figure 5.20a corresponding to the hot rode phantom with
a low resolution and with noise. Images with 185 pixels per projection,
1st angle: 0°, angular step: 5°, and last angle: 175°. 89

5.20 Tomographic reconstructions of the sinogram in Figure 5.19a
corresponding to the hot rod example with a low number of angles
and noise (see Figure 5.5a for the corresponding ground-truth). 89

LIST OF FIGURES 6

5.21 Hot rode phantoms (low number of projections & noise): Evolution of
the NCC values between the ground-truth and images reconstructed at
successive iterations of the OSEM method. 90

5.22 Evolutionary reconstructions of Figure 5.19a at successive resolutions. . 92
5.23 Tomographic reconstructions of the sinogram in Figure 5.24a

corresponding to the cardiac example, i.e. a more anatomically realistic
sinogram with noise. 93

5.24 Sinograms of the cardiac example from Figure 5.23a. Images with
185 pixels per projection, 1st angle: 0°, angular step: 1°, and last angle:
179° . 94

5.25 Cardiac example: Evolution of the NCC values between the ground-truth
and images reconstructed at successive iterations of the OSEM method. 94

5.26 Evolutionary reconstructions of Figure 5.24a at successive resolutions. . 95

6.1 Directed Mutation Principle. 108
6.2 Test case using the Jaszczak phantom with hot rods. 108
6.3 Similar test case as Figure 6.2 but with noise. 109
6.4 Performance comparison of the different combinations of mutation

operators. Highlighted in green and blue-violet are the combinations
whose NCC is less than 1% smaller than the best combination. 110

6.5 Performance of mutation operators. In red is highlighted the performance
of our initial implementation with dual mutation only as in [155]. In
green is highlighted the performance of the combination of the dual and
directed mutation operators. 112

6.6 Average and standard deviation of NCC and duration (without noise in
the input data). 113

6.7 Performance comparison of the different combinations of mutation
operators in the presence of noise in the input data. Highlighted in
green and blue-violet are the better halves of combinations for the flies as
finite points and as Gaussian kernels respectively. 115

6.8 Performance of mutation operators with noise in the input data. In red
is highlighted the performance of our initial implementation with dual
mutation only as in [155]. In green is highlighted the performance of the
combination of the dual and directed mutation operators. 116

6.9 Average and standard deviation of NCC and duration (with noise in the
input data). 117

7.1 Structure of the fly data. 122
7.2 Random initial population. 122
7.3 Computation of the marginal fitness on GPU for two images using

Open Graphics Library Shading Language (GLSL) shaders and Open
Computing Language (OpenCL), (see the yellow and green respectively). 124

LIST OF FIGURES 7

7.4 Overview of the Fly algorithm for digital art, (∗ see Figure 7.5a for details
on m−local and the select fly function). 126

7.5 Sub-functions of Figure 7.4. 127
7.6 Rendering of the same flies using different masks and shader programs. 129
7.7 Mutation rates. 130
7.8 Evolutionary art using schemes of Table 7.1. The woman image (Fatima)

is from the artist Lubna Ashrafis. Other test images are from the Open
Images Dataset (https://github.com/openimages/dataset) under CC BY
4.0 license. 131

7.9 Evolution of the global fitness with 4 restarts. Images were computed
using a Macbook Laptop with a 2.6 GHz Intel Core i5 CPU with an Intel
Iris 5100 GPU. 132

7.10 The colour histogram in RGB colour space of Bird image. 132
7.11 Examples of reconstructed Bird image using different background colours.133
7.12 Examples of reconstructed Bird image using different number of flies.

Top row: reconstructed images with a blue background. Bottom row:
replacing the blue background by grey in the reconstructed images. . . 133

7.13 Edge and depth detection: (a and b) Image reconstructed using our
method (evolving colours); (c and d) Image reconstructed using our
method (without evolving colours); (e and f) Image reconstructed using
GIMPressionist. 135

7.14 Examples of tile templates. 136
7.15 More appealing visual effects using different masks and shader programs. 137
7.16 Upload different mask using different fragment shaders. 138
7.17 Images for online study survey. 139
7.18 Example of images produced with GIMP’s filter (GIMPressionist). . . . 139

A.1 The modern graphic hardware pipeline 173
A.2 The Open Graphics Library (OpenGL) architecture pipeline 175

LIST OF FIGURES 8

List of Tables

5.1 Image and profile comparison between the ground-truth (Figure 5.5a)
and the evolutionary reconstructions (Figures 5.5b, 5.5c, 5.12, and 5.15).
Numerical values in bold characters are the ones closest to the ground-truth. 77

5.2 NCC between the ground-truth (Figure 5.5a) and the reconstructions of
Figure 5.20. Numerical values in bold characters are the ones closest to
the ground-truth. 90

5.3 NCC between the ground-truth and the reconstructions in the case of the
cardiac example (Figure 5.23). Numerical values in bold characters are
the ones closest to the ground-truth. 94

6.1 The combinations of mutation operators. 109
6.2 Performance comparison in terms of NCC of Combination 0101 with all

the other combinations of mutation operators with all flies as Gaussian
kernel for the reconstructions with/without noise in the input data.
Combinations with p-value higher than 0.05 for both without noise
and with noise are highlighted in pink. Other p-values higher than 0.05
for one of the test case only are highlighted in green. 113

6.3 Performance comparison in terms of Duration of all the combinations of
mutation operators with all flies as Gaussian kernel for the reconstructions
with/without noise in the input data. p-value between each entry with
Combination 0101. Possible good combinations in term of NCC for both
without noise and with noise are highlighted in pink (see Table 6.2). . . 114

7.1 Summary of all the possible configurations used in Figure 7.8. 128
7.2 Parameters used to generate the images in Figure 7.8. 129
7.3 Vote results (25 participants voted for their preferred image for each

column in Figure 7.8). 130
7.4 Absolute category rating of the images of Figure 7.17 138

9

List of Algorithms

1 Overview of a possible implementation of a generational Fly algorithm 60

2 Overview of a possible implementation of a steady-state Fly algorithm 61

3 Simplified evolutionary loop focusing on the mutation operators . . . 101

4 Procedure mutate . 103

5 Procedure getAdpativeMutationRate 105

6 Procedure getDualMutationRate . 106

7 Procedure updateDualMutationData 106

8 Procedure updateDualMutationRate 107

9 Z-buffering algorithm . 174

10

Listings

A.1 Fragment shader . 176

A.2 Vertex shader . 176

B.1 Shader program that is suitable for producing a set of stripes or a circle

effect. 179

B.2 Shader program that is suitable for producing a fly shape with black

edge or a flower shape with black edge effect using mask 7.14d. 180

B.3 Shader program that is suitable for producing a spray painting effect

using mask 7.14a. 180

B.4 Shader program that is suitable for producing a square or a sold flower

effect. 181

B.5 Shader program that is suitable for producing a triangle effect. 181

11

Chapter 1

Introduction

1.1 Context

Computer vision (CV) is a “mature” discipline that is related to different subjects e.g.

artificial intelligence (AI), signal processing, image processing, computer graphics

(CG), etc. In the past few years, a number of academic researches have worked out

in CV, with a focus on pattern recognition for autonomous vehicles. It is beginning

to become practical and successful. Since its earliest days, CV has shown progress

in traditional applications, such as robotics and medical imaging. Today, CV keeps

growing to produce non-traditional applications such as scientific analysis, art and

many more [171, 147]. In general, CV relates to processing, analysing, reconstructing

and understanding digital images. In this thesis, we focus on the applications of CV

that are related to image-based, three-dimensional (3-D) reconstructions in medicine

(see Chapter 5) and two-dimensional (2-D) reconstructions in digital arts, which can

be found in Chapter 7. The image reconstruction topic has been well studied and the

earliest example was reported in the earliest days of machine vision. In recent years, due

to dramatic improvements in computational power and the increased ability of digital

imaging technology, the reconstruction of shapes has received interest as a practical

application. Image based reconstruction is an ill-posed inverse problem. This problem

can be solved as an optimisation problem [156]. In this thesis, we use evolutionary

algorithm (EA), in particular the Fly algorithm [102], which offers a solution to our

reconstruction problems. As a result, the Fly algorithm works on complex problems,

directly takes into account the imaging geometry and can be considered as an intrinsic

parallelism algorithm. However, the big challenge is to find methods to tune EA

parameters to work with complex data. This will be one of the focuses of this thesis.

12

1.2 Hypothesis

Evolutionary computation is a branch of research in mathematical optimisation. It is

useful for solving complex (ill-posed) problems that have ambiguity in the shape of

search space (e.g. it is unknown or extremely irregular) as well as when you do not

want (or cannot make) too many unreasonable assumptions. Because of the stochastic

nature of EAs, they can adapt to various problems. However, there might be difficulty

to express the optimisation problem in an evolutionary framework in terms of defining

a suitable individual encoding, selection method, genetic operators, and fitness function.

Choosing an appropriate EA technique may be a challenge in imaging and CV, and

it is a growing research topic in itself. Most people are familiar with simple genetic

algorithms (binary encoding of individuals) and real-valued genetic algorithms used

as black-box optimisation tools. Consider an optimisation problem that consists in

finding the best possible 3-D position of N points. The search space has 3N-dimensions.

When a black-box genetic algorithm is considered, there will be k individuals in the

population, with N genes per individual. When is N is large, this approach will fail

due to the computing time that will be required. A more recent class of algorithms is

cooperative co-evolution algorithm (CCEA). Using this framework, it may be possible

to only require N individuals, with 3 genes per individual. The hypothesis of this thesis

tries to demonstrate it and open the door for a rather new EA algorithm for the scientific

communities.

A relatively overlooked algorithm (Fly algorithm) can provide a

competitive alternative (e.g. in term of accuracy, ease of use 1) to some of

the most traditional approaches used in image (2-D or 3-D) reconstruction

when considered as an inverse problem.

This thesis is an investigation of this hypothesis in the context of tomography

reconstruction in nuclear medicine and digital arts.

1One of themain problemswith the reconstructionmethods based onmaximum-likelihood expectation-
maximization is the lack of clear stopping criteria (see Figures 5.25 and 5.21 for an illustration).

Introduction 13

1.3 Objectives

To investigate this hypothesis, the main aim of this thesis will be to examine the impact

of the Fly algorithm in order to produce a high quality image reconstruction in both

medical and art applications. Therefore, the objectives of the study are as follows:

1. The study tries to improve the Fly algorithm for positron emission tomography

(PET) in [156] specifically in the voxelisation stage.

2. To examine the Fly algorithm results using different mutation operators.

3. To investigate the use of the Fly algorithm in a new application dedicated to

artistic rendering.

4. To examine different structures of flies from simple to complex structures.

5. To compare whether the Fly application performs better than some traditional

methods.

1.4 List of publications

Below is a list of published articles that present some parts of the work.

1. Z. Ali Abbood, J.-M. Rocchisani and F. P. Vidal, Visualisation of PET data in

the Fly algorithm, in Eurographics Workshop on Visual Computing for Biology

and Medicine, 2015, pp. 211–212.

2. Z. A. Abbood, O. Amlal and F. P. Vidal, Evolutionary art using the Fly

algorithm, in Applications of Evolutionary Computation: 20th European

Conference, EvoApplications 2017, Amsterdam, The Netherlands, April 19-

21, 2017, Proceedings, Part I, G. Squillero and K. Sim, Eds. Cham: Springer

International Publishing, 2017, pp. 455–470, ISBN: 978-3-319-55849-3. DOI:

10.1007/978-3-319-55849-3_30.

Introduction 14

http://dx.doi.org/10.1007/978-3-319-55849-3_30

3. Z. Ali Abbood, J. Lavauzelle, É. Lutton, J.-M. Rocchisani, J. Louchet and F. P.

Vidal, Voxelisation in the 3-D Fly algorithm for PET, Swarm and Evolutionary

Computation, 2017, issn: 2210-6502. doi:10.1016/j.swevo.2017.04.001. In

Press.

4. Z. A. Abbood and F. P. Vidal, Basic, Dual, Adaptive, and Directed Mutation

Operators in the Fly Algorithm, Proceedings of Artificial Evolution, 2017. In

Press.

5. Z. A. Abbood and F. P. Vidal, Fly4Arts: Evolutionary Digital Art with the Fly

Algorithm. Art and Science. Submitted.

In addition, three pictures (see Figure 1.1) have been submitted to Art & Science

in Evolutionary Computation, a join side event for EA2017 conference with Galerie

Louchard in Paris.

Figure 1.1: Pictures submitted to ‘Art & Science in Evolutionary Computation’ organised by
the EA2017 conference and Galerie Louchard, Paris.

1.5 Contributions

The main contribution of this thesis is to reduce the computing cost and produce

2-D/3-D reconstructed datasets while retaining the required quality. The methods are

based on the co-evolution strategy (also called the Fly algorithm). It will focus on the

major contribution of this work:

Extraction of the solution in the Fly algorithm for PET . Over the last decade, PET

has had a potential impact in cancer management. However, there are still

Introduction 15

limitations to using traditional reconstruction methods, such as filtered back-

projection (FBP) and ordered subset expectation-maximization (OSEM) (with

different levels of noise and poor resolutions). We develop a 3-D reconstruction

method to solve the problem as an optimisation problem. Our proposed method

shows promising results when comparedwith traditionalmethods (see Section 5.5).

This work can be found in publication no. 3.

Improving medical imagery accuracy in voxelisation . We investigate the use of

density fields to obtain more realistic outputs for PET data reconstructed using the

Fly algorithm. It is CG techniques that we adapt to limit the noise in PET volume

data (see Section 5.4.1). This work can be found in publication no. 1 and 3.

Different EA mutation operators . We propose four different fully adaptive mutation

operators: basic mutation, adaptive mutation variance, dual mutation, and directed

mutation. We address their impact on the algorithm’s efficiency, which is analysed

and validated on PET reconstruction. Our algorithm is a self-adaptation algorithm

that controls the setting of the EA parameters themselves, embedding them into

an individual’s structure (genome) and evolving them. This work can be found in

publication no. 4.

Digital art model . We propose a technique to generate artistic images. This method

draws from CG, EA (in particular, the Parisian evolution approach and the Fly

algorithm) and scientific computing. Our implementation produces several visual

artistic effects by taking advantage of using the Open Graphics Library Shading

Language (GLSL) to avoid the limitation of the fixed graphics rendering pipeline

and to benefit from programmable graphics hardware. It is possible to update the

content of the 2-D texture in real time to change the texture of the flies. We use

the high-level programming language GLSL to take control over critical stages

of the graphics rendering pipeline. This work can be found in publication no. 2

and 5.

Introduction 16

1.6 Outline

This thesis investigates the EAs, particularly the Parisian evolution approach (Fly

algorithm). This thesis is organised into eight chapters. The first chapter gives

information of this research, including motivations; it highlights the main contributions

of this study and gives a list of published papers. Chapter 2 presents the scientific

context related to this work and the main applications that have been used in this

thesis. Chapter 3 provides a brief overview of EAs. A review of the previous work

focusing on EAs and their applications to image processing is also presented. The

chapter ends by introducing the challenges of working with EAs. The following chapter

presents a special type of CCEA, which is the Parisian approach (specifically the Fly

algorithm). The most common applications based on the Fly algorithm are indicated.

The implementation of the Fly algorithm to reconstruct a 3-D image of PET scanner is

shown in Chapter 5. We investigate the use of density fields for the first time with the

Fly algorithm, based on metaballs and on Gaussian functions respectively, to obtain a

realistic visualisation output. The results of our algorithm show that the performance of

using density fields is competitive compared with those of FBP and OSEM, which are

traditionally used in nuclear medicine. Chapter 6 proposes four different fully adaptive

mutation operators: Basic Mutation, Adaptive Mutation Variance, Dual Mutation

and Directed Mutation, and it addresses their impacts on the algorithm’s efficiency.

Chapter 7 produces a new implementation, digital arts, working for the first time

with the Fly algorithm. This chapter adds different ideas that have been used with

previous applications of the Fly algorithm. Our technique inherited from CG, artificial

evolution, and scientific computing. The last chapter discusses the work carried out and

provides some possible directions for future work. Further, Appendix A gives details

of the programming frameworks implemented on graphic processing unit (GPU). The

appendix focuses on the most common GPU programming language used in this thesis

(see Section A.3). Shader programs used in Chapter 7 are presented in Appendix B.

Introduction 17

Chapter 2

Background: Scientific Context

2.1 Introduction

Digital image processing has been widely used in different scientific areas, including

medicine, aerospace, and chemistry, to name a few. Although it has been established

for a long time, it is still a fast-growing topic that takes advantage of new developments

in computer processors and mass storage devices. Digital image processing can greatly

benefitmore traditional fields, such asmedicine, video production, photography, painting,

etc. by also taking advantage of new developments in CV, AI, and machine learning

(ML). As a result, computing gives new opportunities to examine and process massive

amounts of digital image data every day [25, 96]. Computer-aided diagnosis (CAD)

is a very active research topic, with well-established annual conferences, including

Medical Image Understanding and Analysis (MIUA). More recently, the Eurographics

Association launched an annual Workshop on Intelligent Cinematography and Editing

(WICED) [1].

Image processing is a broad scientific area that includes subfields such as image

enhancement, feature detection, image segmentation, image classification, image

registration, and 2-D or 3-D image reconstruction [4]. All of these fields include

complex methods that may fail due to disturbances in the data such as noise. In this

thesis, we will focus on image reconstruction. It is often an inverse (ill-posed) problem:

the solution of inverse problem if it exists may not be stable, or unique. Inverse problems

can be tackled using optimisation algorithms such as artificial evolution (AE) [156],

simulated annealing (SA) [97], local search algorithms, etc. This chapter presents the

general application context related to this thesis, beginning with a brief introduction

18

on image processing and CV followed by a definition of the main applications, which

include tomographic reconstruction in nuclear medicine and mosaic art.

2.2 Imaging

Digital imaging can be described as the application of some operations to process digital

images in order to enhance or extract useful information from them. Ideally, this is done

by computers, with little or no human intervention [59].

Most images are the result of a measurement of some physical phenomena, such as

light, heat, distance, or energy. Measurements can be recorded in any digital format. A

digital image is considered a 2-D discrete-space signal. An image is made of a limited

number of cells, which are usually called picture elements (pixels). Each pixel has a

spatial position and at least one numerical quantity (e.g., an intensity) associated to it.

The most classical representation of a digital image is a 2-D grid (f (x, y)), in which

an image’s pixels are identified by a pair of coordinates (x, y) and a value. This value

often corresponds to the light intensity (or brightness), that is, the light density of a tiny

region of the image. Figure 2.1 models the light density to pixel value conversion [59,

67].

Figure 2.1: An example of the digital image processing of grey-scale image: (a) energy source,
(b) item of an image, (c) imaging system, (d) projection of the scene onto the image plane and
(e) digitised image(Image from [67], courtesy of Gonzalez).

Background: Scientific Context 19

We considered the simplest model in Figure 2.1: digital greyscale images. However,

a colour image quantifies the light components and assigns a colour to each pixel. In

this case, a pixel is a vector of a mix of colour elements. There are different models to

represent colour images, including the red-green-blue (RGB), the cyan-magenta-yellow

(CMY), the cyan-magenta-yellow-black (CMYK) and hue, saturation, intensity (HSI)

colour models. RGB is a colour space that maps the emittance of light. RGB is an

additive colour spectrum, and when all the primary colours are combined, it forms

white, which is the emission of all primary colours. Most electronic displays (computers,

phones, media players, televisions, etc.) are RGB models, since they use the emittance

of light to create colours (i.e., the pixels have little sub-pixels that show only red, green

or blue). However, devices like printers and copiers do not emit light. They absorb it

and print colour using the CMYK model (the colour spectrum known as subtractive

colours). When all the primary colours are combined, they form black, which is the

absorption of all light [67].

After an image has been acquired, either in greyscale or colour, digital image processing

can be used to enhance and/or analyse it using a computer. In their famous book [67],

Gonzalez and Woods classify three levels of the imaging process: low, mid and

high levels. The first corresponds to filtering. It takes an image as an input and

returns an image as an output. It is mainly used for image enhancement, noise

removal, restoration and compression. However, mid-level processing focuses on the

extraction of information for different implementations, including image segmentation,

registration, matching and classification (recognition). Obviously, these applications

are characterised by images in the input phase, but the outputs are features that are

extracted from these images. Finally, high-level processing is associated with extracting

semantic meaning from images. It relies on advanced techniques using AI and ML. The

input is an image or a set of images, and the output is the analysis of the input. Object

detection, recognition, shape analysis and tracking [67, 30] are the aims of CV.

Background: Scientific Context 20

2.3 Computer vision

The aim of CV is to develop a computerised system that is able to analyse and understand

the real world by processing one or several 2-D images. In other words, it is the science

of building a computer system that has humanlike perception [165, 164]. Typical CV

applications include motion estimation, 2-D or 3-D reconstruction, object segmentation,

etc. They provide the computer with natural skills, such as self-improvement, learning,

reliability and controlling results to gain optimal solutions. The ultimate goal is to

allow the computer to make a decision without any human intervention. From the

point of view of computing, it is important to mimic high-level intelligence and skills

algorithmically. Some CV applications rely on mathematical optimisation to solve

complex and ill-posed inverse problems using global optimisation methods. Those

inspired by evolutionary processes observed in nature (such as reproduction, mutation,

recombination and selection) are not unusual in CV [30]. A CV system requires a high

rate of processing and may rely on a large database of information in terms of digital

images. In addition, challenges arise in handling the noise in the image signal itself [151,

165]. Thus, from a software development point of view, dealing with CV requires a

combination of several sophisticated techniques, such as object-oriented programming,

image processing, parallelism, ML (also known as pattern recognition), AI, etc.

From the above definitions, CV heavily relies on image processing, in particular, the

high-level stage of image processing [151]. The next chapter surveys the application of

image processing in each processing level as well as that of CV, in which EAs are given.

2.4 3-D Tomographic reconstruction in nuclear

medicine

The first application of our project is 3-D tomographic reconstruction in nuclearmedicine.

Various tomography techniques exist in medicine, most of which have modalities using

radiation. This include computed tomography (CT), cone-beam computed tomography

(CBCT), single-photon emission computed tomography (SPECT) and PET. CT is

Background: Scientific Context 21

(a) CT (b) PET and CT (c) PET (d) Visualisation

Figure 2.2: PET-CT examination of a cancer patient: CT provides anatomical information,
while PET provides physiological information (data available on The Cancer Imaging Archive
(TCIA) at https://public.cancerimagingarchive.net/).

intensively used in radiology departments to examine any part of the body. CBCT is

a more recent 3-D technique that provides a high spatial resolution this is useful for

head examinations in dentistry or radiotherapy. SPECT and PET are specifically used

in nuclear medicine departments (see Fig. 2.2).

CT and CBCT are forms of transmission tomography, in which the source of radiation

is located outside the patient. The reconstruction provides high resolution anatomical

data. SPECT and PET are forms of emission tomography (ET), in which the source

is made of radioactive molecules injected in or inhaled/ingested by the patient. Both,

therefore, occur within the patient. The reconstruction aims to provide an estimation of

the radioactive distribution within a patient in relation to the uptake of these radioactive

molecules depending on a physiological process (e.g., tumour gross or bone fracture).

The images reconstructed by SPECT and PET have a much lower resolution and poorer

signal-to-noise ratio (SNR) than CT or CBCT.

X-ray photons are used in both CT and CBCT. γ-rays are used in SPECT, and positrons

(β+ or e+) are used in PET. When a β+ particle combines with an electron (e− or β−), it

may result in an annihilation reaction, producing two photons of 511 keV in opposite

directions. Detected pairs of photons are used during the reconstruction process in PET.

Tomography is a multi-angular data acquisition process followed by mathematical

reconstruction (see Fig. 2.3). The data acquisition consists of obtaining many projections

from different angles. The image produced by the concatenation of the successive

Background: Scientific Context 22

https://public.cancerimagingarchive.net/).

Unknown data

Build the acquired data Y
from the unknown f(x,y)

Sinogram or
Projection data

Estimated data

(f (x, y))

Model

(Y = P (f))

r

θ

Model-1

from the projection Y
Build the estimate f̂

(
f̂ (x, y)

)

Figure 2.3: Principle of tomography .

projections is usually called a sinogram (see the middle image in Fig. 2.3). The

projections correspond to integral quantities along straight lines from the source to

the detector. The reconstruction process is a mathematical routine that consists of

back-projecting the measurement data into the object’s space. This process is an inverse

problem, with ill-conditioned data due to the photonic noise (Poisson noise) affecting the

data. Noise is a major concern in ET as well as in CT in low-dose conditions conducted

to minimise patient irradiation. The computational speed of image reconstruction is

another factor to be studied in order to improve the throughput of examinations. Some

drawbacks in image quality need to be corrected, such as streak artefacts in CT [153] or

the scattering of photons. Although effective and fast methods have been developed to

solve 2-D reconstruction problems (that is, to compute a single planar slice), solving

3-D reconstruction problems (as in CBCT or C-arm tomography) is still challenging

and computationally expensive. A practical way to solve 3-D reconstruction problems

is to consider them as set of 2-D problems.

It is usual to describe two classes of reconstruction algorithms: 1) analytic reconstruction

methods, and 2) iterative reconstruction methods (including algebraic and statistical

based methods).

Analytic reconstruction methods are used in CT, while statistical reconstruction methods

are used in ET. Analytic reconstruction methods are based on continuous modelling.

Reconstruction consists of the inversion of measurement equations (such as the Radon

transform). The most frequently used is the FBP algorithm. The sinogram, which is

the observed measure, is built from a set of planar projections at successive angles.

Tomographic reconstruction consists of estimating the original object from this sinogram.

Analytic methods inverse the Radon transform using the Fourier slice theorem, in which

the 1D Fourier transform of a projection is equal to a slice of the 2-D Fourier transform

Background: Scientific Context 23

Figure 2.4: Steps in iterative algorithms.

of the original image. The complete 2-D Fourier transform of the image is reconstructed

from these 1D Fourier transforms. Then, the image is obtained by inverting its Fourier

transform.

Iterative reconstruction techniques are based on iterative correction algorithms. They

follow a general scheme that consists of estimating a new image at a certain step by

combining 1) the image estimated at the previous step and 2) the data generated from

this estimate (see Fig. 2.4). This process is repeated until a given criterion is satisfied.

The algebraic reconstruction technique (ART) was one of the most commonly used

iterative algorithms at the start of transmission tomography [68] and is again used in

combination with some statistical models thanks to the power of recent computers. It

consists of updating the reconstructed volume for each measurement pixel location ray

by ray. There are many other iterative techniques, including the simultaneous algebraic

reconstruction technique (SART), the multiple algebraic reconstruction technique

(MART), simultaneous iterative reconstruction technique (SIRT). For more information

about tomographic reconstruction, refer to the literature [10, 13, 63]. Note that, in PET,

raw list-mode data can be rebinned into sinograms to take advantage of conventional

reconstruction algorithms [53], although better images can be reconstructed using

dedicated codes [85, 100, 148].

In SPECT and PET, maximum-likelihood expectation-maximization (MLEM) [140]

and its derivatives are now more popular than the previous methods [131]. The main

reason is that they take into account Poisson noise in the measured photon count. OSEM

has become the standard reconstruction method in PET for this reason [81]. Its principle

is to reduce the amount of projections used at each iteration of the EM algorithm by

subdividing the projections into K sub-groups. The projections of a sub-group are

Background: Scientific Context 24

uniformly distributed around the volume to reconstruct. One of the main problems

of MLEM and its derivatives, including OSEM, is the difficulty of choosing a good

stopping criterion [21]. MLEM initially converges towards an acceptable estimation of

tracer distribution. Then, when the number of iterations increases, the reconstruction

becomes noisy.

In this thesis, we are interested in ET in nuclear medicine because of its poor spatial

resolution and relatively high noise, making reconstruction an ill-posed inverse problem.

We propose to solve it as an optimisation problem using evolutionary computing. In

particular, we focus on tomography reconstruction in PET, which is taking over SPECT

in clinical practice.

2.5 Mosaics-like and Painterly Rendering

Medicine is not the only field that benefits from technological advances in digital

imaging and computer vision. For example, the boundaries between artists and computer

scientists may become thinner as technology becomes more and more ubiquitous. A

relatively new field of CG is non-photorealistic rendering (NPR). One of the main

goals of NPR is to produce “digital art” that can benefit the artistic community as well

as the scientific community, for example, in scientific and medical visualisation [83].

Rendering algorithms have been proposed to simulate multiple forms of traditional art,

including digital watercolours [45], line art [98], expressive painting [39] and Celtic

art [86]. This thesis focuses on the most ancient of classical art forms, mosaics, and

painterly rendering. This thesis also includes other arts forms like spray graffiti.

A digital mosaic aims to provide artistic touches to a source image by covering it by tens,

hundreds, or thousands of small-coloured square tiles in a way that resembles ancient

mosaics or stained-glass windows. To design a mosaic, an artist needs to precisely

decompose the original image into tiles with different sizes, colours and orientations.

The artist requires a large area to fit the tiles together like a jigsaw in order to form an

image (i.e., it is not unusual for mosaics to encompass over several square metres) [51,

Background: Scientific Context 25

(a) (b) (c) (d)

Figure 2.5: Mosaic classification: (a) crystallisation mosaic, (b) ancient mosaic, (c) photo
mosaic and (d) puzzle image mosaic. (a) courtesy of DoBashi [47], (b &c) from the open
images dataset (https://github.com/openimages/dataset) under the CC BY 4.0 license,
and (d) courtesy of Gallo [22].

16]. The main goal of digital mosaic is automatically to generate a discrete coloured

image that still gives the same impression as the real image.

In image processing and computer vision, the approach consists of building an algorithm

that automatically produces an image with mosaic effects that has as little user

intervention as possible. The produced mosaic image should replicate the features of the

real image [56]. One of the difficulties in digital mosaic generation is that the original

image may be visualised into various mosaics. Therefore, choosing the appropriate

tile data set (including tile number, position, size, colour and rotation) allows for an

appropriate final mosaic.

Figure 2.5 shows that mosaic images can be categorised into one of four types: 1) a

crystallisation mosaic, 2) an ancient mosaic, 3) a photo mosaic or 4) a puzzle image

mosaic. The first two types are traditional reconstructions of real images using small

tiles. Although traditional mosaics use square tiles, in digital mosaics more complex

shapes can be used. The last two are obtained by decomposing an original image using

multiple small images.

To our knowledge Haeberli is the first researcher who worked on digital mosaic [69].

He created attractive images using an ordered collection of brush strokes to create

mosaic and paint effects. He generated images by regulating the colour, shape, size,

and orientation of individual brush strokes. To control the mosaic effect his method

heavily relies on Voronoi diagrams. One of the main limitations of his algorithm at the

time is that it took several hours to produce a satisfactory image. However, much less

time should be required with today’s “massively parallel processors”. This is actually

the approach followed by Hoff and his colleagues to overcome the limitation mentioned

Background: Scientific Context 26

https://github.com/openimages/dataset

above. They presented an implementation to compute discrete Voronoi diagrams on

GPUs [76]. The method starts with a set of random points representing various sites in

the image. They are used as the basis to create polygonal meshes that can be rendered

in OpenGL to create the Voronoi diagrams. Their approach relies on a metrics based on

the Euclidean distance for each site, which computes the distance from any point to that

site. Each site has a unique colour.

Hausner improved Hoff’s method to use regular and square tiles only. The aim is to

create images that have an effect similar to actual mosaics [74]. Each tile may have a

different size, colour, and orientation based on the image considered. This approach

relies on Centroidal Voronoi diagrams, which usually order points in regular hexagonal

grids. Instead of using the Euclidean distance as a metrics, the Manhattan distance is

preferred to place the tiles in different orientation following the edges of the original

image.

Lai et al. [93] extended Hausner’s work by trying to place mosaic tiles on a surface. The

tiles are located over a mesh model that is created using a Centroidal Voronoi diagram

and the Manhattan distance. The size of tiles is regular, i.e all the tiles have the same

shape (rectangle) and size. The orientation of tiles depends on a vector field, which is

interpolated over the surface based on control vectors. The algorithm is sensitive to

sharp creases, open boundaries, and boundaries between regions of different colours,

which may affect the orientation of tiles.

Lu et al. presented a hybrid method that combines Centroidal Voronoi Tessellation

(CVT) and Monte Carlo with minimisation (MCM). CVT places the tiles on a mesh

surface. Because of local minima, MCM is applied to optimise the result of CVT on a

global basis, which improves the final results [107].

In 2015, Hu and his colleagues presented an algorithm for the reconstruction of

digital surface mosaics based on irregularly shaped tiles [80]. They use a hybrid

optimisation paradigm, which includes continuous configuration optimisation and

discrete combinatorial optimisation. In the continuous configuration optimisation

scheme, the tiles are adjusted using iterative relaxation. The aim is to adapt their

position, orientation, and scale to fit onto approximated Voronoi regions. The aims of

Background: Scientific Context 27

the discrete combinatorial optimisation are to reduce the amount of overlapping tiles

and to increase the surface coverage.

Nguyen et al. [116] produced digital images using an EA based on multi-dimensional

archive of phenotypic elites (MAP-Elites). Their aimwas to demonstrate that deep neural

networks (DNNs) can be easily fooled. Their implementation evolves a population to

produce a tremendous diversity of images with a strong chance that DNN can classify

the objects correctly.

Kim and Pellacini [90] presented a new kind of mosaic that they called jigsaw image

mosaics (JIM). The aim of JIM is to create an output image from an input image and

images of small objects (e.g. sweets and shells). The images of small objects are the

tiles. Each tile has it own polygonal shape and pattern. The authors rely on a general

energy-based framework, which extends existing algorithms such as Photomosaics and

Simulated Decorative Mosaics, to minimise the error between the reference image and

JIM. Centroidal Voronoi diagramss (CVds) are used to maximise the alignment of the

shape borders.

An extension of this research topic is called “Painterly Rendering”. Painterly styles

are different from photographs and photorealistic rendering. In Painterly Rendering an

algorithm places brush strokes on specific image regions and provides the perception of

depth by changing the colour, size, shape and position of strokes [75].

In 2009, Zeng and his colleagues presented a stroke-based painterly rendering algorithm.

The algorithm places the strokes depending of the segmentation of the reference image

using recent image parsing techniques from CV. These techniques recognise object

categories (e.g. people, clothes, sky, trees, etc.) and decompose an original image into a

hierarchy of segmentation components in a parse tree representation. Then, the brushes

are placed on the canvas guided by the image semantics included in the parse tree. The

colour of stroke is recovered from the reference image [173].

Another approach in painterly rendering is the use of Evolutionary art [42]. In this

context, an EA somehow generates images by placing brush strokes. Artificial evolution

is used to modify the size and position of brush strokes by mutation and recombination.

The colour of stroke is recovered from the reference image. Evolutionary art is often an

Background: Scientific Context 28

interactive task where the user/artist plays the role of a selection operator. Our work

follows the Evolutionary art paradigm. We provide a method without the need of any

user interaction, without constraints such as the requirement to generate a Voronoi

diagram, and limit the amount of a priori knowledge to the input image.

In this thesis, we revisit digital mosaic-like image generation. Our method is suitable

for several stylistic effects such as spray paint. Image generation is considered an

optimisation problem; we propose to solve it using AE, in particular, CCEA. Our

method relies on the Fly algorithm [102].

Background: Scientific Context 29

Chapter 3

Background: Evolutionary

Approaches

3.1 Introduction

Artificial evolution describes a wide class of unbiased optimisation and search methods.

It has been initially developed as a general purpose optimisation method. It is used to

explore a search space, whatever it may look like, and find the best possible solution

to the corresponding optimisation problem. Artificial evolution relies on Darwin’s

principles to mimic complex natural behaviours, which are stochastic in nature [14].

AEs have many advantages over traditional methods in image processing and computer

vision applications: they require less domain-specific information, are easy to use, work

on complex problems, directly take into account the imaging system geometry, and can

be easily implemented to take advantage of parallelism on a set of solutions due to the

intrinsic nature of the algorithm. Also, they may need less human interaction.

EAs have been utilised as adaptive meta-heuristic random search methods to find

an optimal solution toward final solution [33]. They can be problem-independent

and implemented as black-box optimisation tools. These algorithms are used in both

homogeneous and heterogeneous systems, e.g. with fixed or variable numbers of genes

on each individual respectively [71]. Equally important, it is a convenient technique in

problems with a large search space and in unreliable environments (e.g. with noisy and

incomplete data). EAs may work when some classical (deterministic) algorithms fail

(e.g. gradient descent). In [157], an EA is used to tune a complex mathematical model

of respiration and its results are compared with those obtained with downhill simplex

30

and conjugate gradient descent methods. As mentioned previously, artificial evolution

can be used as black-box optimisation; however, most successful EAs depend strongly

on parameter settings [64, 31, 170, 30], which is frequently problem-dependent.

In Figure 3.1, we use Google Scholar to assess the number of publications in “image

processiong” OR “computer vision” and howmany of them use evolutionary computing.

Every bar in the chart represents a two-year period. The last time period considered

is the last possible one to-date, i.e. 2014-2016. It can be seen that a rapid growth

occur from the early 70s to the early 90s in imaging, then a plateau. Over the past two

decades, AE has played a growing role in imaging and computer vision, thanks to the

advantages mentioned above and to technological advances in computer hardware. AE

can be classified as a general-purpose optimisation method and has been applied in a

wide area of scientific fields. A good illustration of this is the European Conference on

the Applications of Evolutionary Computations (EVOApplications), which covers

a variety of scientific applications where EAs can be used. EVOApplications

introduces several tracks, each concentrating on an area of application of genetic

and evolutionary computation and other related computational intelligence fields.

These include: Natural Computing Methods in Business Analytics and Finance

(EvoBAFIN), Evolutionary Computation, Machine Learning and Data Mining in

Computational Biology (EvoBIO), Nature-inspired Techniques for Communication

Networks and other Parallel and Distributed Systems (EvoCOMNET), Evolutionary

Algorithms and Complex Systems (EvoCOMPLEX), Evolutionary Algorithms in

Energy Applications (EvoENERGY), Bio-inspired Algorithms in Games (EvoGAMES),

Evolutionary Computation in ImageAnalysis, Signal Processing and Pattern Recognition

(EvoIASP), Evolutionary and Bio-Inspired Computational Techniques within Real-

World Industrial and Commercial Environments (EvoINDUSTRY), Knowledge

Incorporation in Evolutionary Computation (EvoKNOW), Bio-inspired algorithms for

continuous parameter optimisation (EvoNUM), Parallel Architectures and Distributed

Infrastructures (EvoPAR), Nature-inspired algorithms in Software Engineering and

Testing (EvoSET), Evolutionary Robotics (EvoROBOT), Evolutionary Algorithms in

Stochastic and Dynamic Environments (EvoSTOC), Genetic Programming (EuroGP),

Evolutionary Computation in Combinatorial Optimisation (EvoCOP), Computational

Intelligence in Music, Sound, Art and Design (EvoMUSART). The longest running

of all EVOApplications tracks is EvoIASP, which began in 1999 [11]. Our paper on

Background: Evolutionary Approaches 31

 0

 5000

 10000

 15000

 20000

 1970 1974 1978 1982 1986 1990 1994 1998 2002 2006 2010 2014

Number of publications referenced in Google Scholar

"image processing" OR "computer vision"
("image processing" OR "computer vision") AND

 ("genetic algorithm" OR "artificial evolution" OR "evolutionary computing")

Figure 3.1: Growth of the use of artificial evolution in imaging and computer vision.

“Evolutionary Art using the Fly Algorithm” has been accepted for the 17thEvoIASP

although it was also suited for EvoMUSART (see Chapter 7).

This chapter includes a comprehensive reference list and summarises the important work

and latest achievements in the AE field and their application in imaging and computer

vision. It is organised as follows: Section 3.2 reviews in detail how EAs can be built.

Section 3.3 focuses on AE applied to image processing applications such as image

segmentation, image enhancement, image stereo matching, and image reconstruction.

The chapter ends with a conclusion and highlights the current and future challenges in

this domain.

3.2 Evolutionary algorithms

Evolutionary algorithms have been well studied, both empirically and analytically, and

it has been demonstrated that there are different stochastic optimisation methods based

on Evolutionary algorithms depending on how the EA represents the problem to solve.

Background: Evolutionary Approaches 32

Figure 3.2: General layout of EA

This section introduces the concepts of EA needed for the understanding of the CCEA

on which this thesis relies, namely the Fly algorithm initially proposed by Dr. Jean

Louchet in 1999 [104]. More details on the Fly algorithm are available in Chapter 4.

The basic rules of EA were first introduced by Holland at the University of Michigan in

the 1970s [92, 17, 24]. However, the origins of this algorithm can be traced back to the

end of the 1950s but it was not a recognised scientific field by then due to the lack of

sturdy computers at that time [71]. Obviously, EAs follow Darwin’s theory and mimic

the natural evolution of a “population” through generations [146, 64]. A population

includes a given number of individuals. Each individual is characterised by a sequence

of genes. Traditionally, an individual is a candidate solution of the optimisation problem

(we will see in Chapter 4 that this is not true in the case of Parisian Evolution). The

population evolves toward a better adaptation to its environment (the search space)

using the principles of natural selection. It is worth pointing out that the inspiration for

this algorithm comes from the phenomenon called “the survival of the fittest”. Thus,

the individuals are evaluated: the stronger individuals are more likely to survive and

transmit their genes to their offspring, whereas the weaker individuals will slake (die

out). This evaluation is based on a fitness function (sometimes called a cost function).

Each individual is associated with a fitness value that affects the selection mechanism

to ensure the survival of the fittest individuals in a competitive environment [146].

Note that mutations of genes can occur to preserve the diversity of the population to

better explore the search space. Figure 3.2 illustrates how most traditional EAs can be

modelled [30]. The main steps of an EA are described in the subsections below.

There are different ways to implement an EA:

Background: Evolutionary Approaches 33

Simple genetic algorithm (non-overlapping population): Non-overlapping

population is used in simple genetic algorithms. This is the “generational”

implementation, which is the traditional approach, where the whole population is

changed by new individuals. The evolution of the genetic algorithm relies on the

genetic operators (selection, crossover, mutation). In its naive form the

generational approach does not guarantee that the best individual in one

generation is present in the next generation. To address this deficiency, “elitism”

may be added (the best individuals of a generation are replicated in the next

generation). The algorithm may quickly converge due to the operation of

maintaining the best individual(s) during the evolution. To avoid premature

convergence toward a local optimum, diversity mechanisms are required to cover

the entire search space of a problem.

Steady-state genetic algorithm (overlapping population): There is no proper notion

of generation in steady-state genetic algorithms. At each iteration of this algorithm,

a portion of the population is replaced by newly generated individuals (some

of the worst parents by the best offspring). The steady-state genetic algorithm

follows the principle of overlapping population. The algorithm replaces a few

individuals of the population on each iteration. The key again is how to select the

optimal genetic operators suitable for the specific problem. For example, if the

selection operator favours the best individuals, premature convergence may also

occur.

3.2.1 Solution encoding and initialisation

EAs rely on randomised operators that work on a set of candidate possible solutions

(individuals) in the search space [71]. These individuals correspond to a set of

prospective solutions called a “population”. Individuals may be encoded in various

ways depending on the problem to be solved [146, 163, 17, 91]:

Binary String and Gray Encoding: Every individual is represented as sequence of

0s and 1s. This is the model used in the traditional “genetic algorithm”.

Background: Evolutionary Approaches 34

Value Encoding: Each individual is symbolised as a sequence of diverse values such

as integer, real, char and object, which depends on the specific problem.

Real (floating-point) Encoding: Every gene of an individual has a real value, e.g. 0.1,

1.9,. . . , etc. EAs using this model are called “real-valued genetic algorithm”.

Permutation or Integer Encoding: In these encoding models, each individual is

symbolised as sequence of integer numbers. However, permutation encoding

represents a position in a sequence. It is useful with ordering problems such as

the travelling salesman problem (TSP).

Tree encoding: Every individual is a tree of objects. It is primarily used with problems

that need to utilise genetic programming [66, 65, 110, 113].

Figure 3.3 shows the above five generic encoding schemes for EAs.

Individual 1 1 1 0 0 1 0

Individual 2 1 0 0 1 1 0

Individual 1 1 5 3 2 6 4

Individual 2 8 3 6 7 2 9

Individual 1 2.9 1.2 1.0 2.3 0.5 4.1

Individual 2 8.0 1.3 6.1 7.9 0.2 1.9

Individual 1 1.23 2.12 3.14 0.34 4.62 6.00

Individual 2 ABDJ EIFJ DHDD LDFL FEGT ZAEC

Individual 3 (Back) (Right) (Forward) (Right) (Left) (Back)

 +

x /

5 y

(a) Binary encoding (b) Integer encoding

(c) Real encoding

(d) Value encoding

(e) Tree encoding of Individual (+ x (/5 y))

Figure 3.3: Examples of individual encoding.

Background: Evolutionary Approaches 35

3.2.2 Evaluation (Fitness function)

A fitness function is problem-dependent. The fitness function is used to evaluate the

individuals. This is probably the most significant step in EAs. Fundamentally, the fitness

function measures the quality of the solutions [64]. It helps to maintain the population

of individuals [146, 172] as it is utilised during the selection step to determine whether

an individual will more likely survive or die [92]. The fitness function does not have a

closed mathematical expression and it may have many forms. For example, it may be

given by the simulation of a real physical system [31]. In this case, it can be used to

minimise an error between the target and the values outputted by the individuals during

the generations [38, 158].

3.2.3 Selection operator

There are various selection schemes. They are used to filter the individuals (parents)

in order to reproduce (breed) for selective parents and generate new offspring for the

next generation [146]. The most popular selection methods are discussed below [92].

Although the selection can be performed in many different ways, it is usually guaranteed

to select the best individuals, which have an elevated probability of selection. The

selection process relies heavily on the use of the fitness function [71, 30]. If maximisation

is considered, then individuals with the highest fitness will be more likely to be selected.

If minimisation is considered, then the ones with the lowest fitness will be more likely

to be selected.

Proportional selection or roulette wheel selection is a way to randomly select any

individuals. It is the simplest and most common technique. The motivation of

this approach is that individuals with the highest fitness values have the greatest

chance to survive and be selected as parents [113]. The probability of selection

of individual i is:

P(i) =
f itness(i)α∑n

k=1 f itness(k)α
(3.1)

Background: Evolutionary Approaches 36

with n the population size (i.e. the number of individuals in the population), with

α a control parameter. The algorithm below shows the main principles of this

selection:

1. Calculate the fitness value of all the individuals of the population and store

them in vector A of n elements.

2. Compute a new vector B of n elements, where each element is the

accumulative summation of fitness values of symmetric elements and

all previous ones in vector A.

3. Generate a random number x from the given population interval (the range

of values in B).

4. Select an individual i when x is in the range of Bi, where i = 1, . . . , n.

Rank-based selection: This technique sorts the individuals in the population into a list

which displays the individuals from the best to worst depending on their fitness

values. Each individual is associated with a certain rank. Therefore, the selection

mechanism is based on the rank of individuals rather than alteration in fitness

values. The rank of the best individuals have a higher probability to be selected

than those of the worse individuals.

Tournament selection: This method relies on holding a competition of randomly

chosen individuals. The number of individuals involved in each selection iteration

is called the “tournament size”. The best individual (in term of fitness) among

them will be the selected individual.

Elitist strategy: This is an addition to other EA selection methods. This heuristic

method forces EAs to carry forward a fixed number of the best individuals of the

current population into the next generation [33].

Background: Evolutionary Approaches 37

3.2.4 Crossover operator

This is an important operator in EAs. Its probability to occur (Pc) usually ranges

between 0.6 to 1.0 [17]. Pairs of individuals are randomly selected to produce two

new individuals. The two parents swap some of their genes depending on crossover

points. To determined these points, there are several types of crossover mechanism [5].

Figure 3.4 presents different types of crossover operator.

Single-point crossover (1x): In this operator, one position between the pairs of

individuals is randomly chosen. Then, all genes after that position are exchanged

between the individuals. The selected position can be among any gene position

from the first through the last gene. This operator is very fast, but it has the

problem of decreasing diversity especially when some individuals are similar in

the population.

Two-points crossover (2x): In this operator, two crossover sites are chosen randomly.

After that, the sequence of genes between them are swapped.

Uniform crossover (Ux): This is different from above crossover operators, since the

Ux does not use crossover sites, but randomly shuffles the genes of the parents,

by the probability (Pc) of exchanging genes, in order to create two children [111].

Tree-encoding crossover: This is similar to a single point crossover in terms of

selecting a random crossover point somewhere in the tree of the parents. On the

other hand, this type of crossover exchanges the part of tree below the crossover

point between the parents to produce new children [113].

3.2.5 Mutation operator

This is used to randomly change one or more gene values on an individual. The

number of alternative genes depends on the mutation rate (Pm), which is ordinarily

between 0.001 to 0.05 [17]. Basically, mutation influences the whole population due to

boosting the diversity within it. This is done by generating new individuals through the

Background: Evolutionary Approaches 38

Parent 1

…… a7 a6 a5 a4 a3 a2 a1

Offspring 1

…… b7 b6 b5 a4 a3 a2 a1

Parent 2

….. b7 b6 b5 b4 b3 b2 b1

Offspring 2

…… a7 a6 a5 b4 b3 b2 b1

Offspring 1

…… a7 a6 b5 b4 b3 a2 a1

Parent 1

…… a7 a6 a5 a4 a3 a2 a1

Offspring 2

…… b7 b6 a5 a4 a3 b2 b1
Parent 2

…… b7 b6 b5 b4 b3 b2 b1

Parent 1

…… a7 a6 a5 a4 a3 a2 a1

Prob. Cross

…… Rn<
Pc

Rn<
Pc

Rn>
Pc

Rn<
Pc

Rn>
Pc

Rn>
Pc

Rn<
Pc

Parent 2
…… b7 b6 b5 b4 b3 b2 b1

Offspring 1

…… a7 a6 b5 a4 b3 b2 a1

Offspring 2

…… b7 b6 a5 b4 a3 a2 b1

(a) Single-point crossover

(b) Two-point crossover

(c) Uniform crossover

a a1

a2 a

a a

a3

a4 a5

a b1

b2 a

a a

b3

b4 b5

a a1

a2 a

a a

b3

b4 b5

a b1

b2 a

a a

a3

a4 a5

(d) Tree encoding crossover

Parent 1 Parent 2 Offspring 1 Offspring 2

Denote to crossover point.

Figure 3.4: Different techniques of the crossover operator.

Background: Evolutionary Approaches 39

generations. Therefore, it prevents stagnation in the convergence of the optimisation

technique. There are different types of mutation operator (see Figure 3.5) [5]:

Flip Bit (Single-point) mutation: A single gene value in the individual at a selected

mutation point is changed into other value in the range of this gene. When the

gene has a binary encoding, the value is flipped from “1” to “0” and vice versa.

Uniform mutation: This is a classic technique in which each gene of an individual

has an equal likelihood to be mutated by any value in the solution space [44].

Boundary mutation: This is a special case of uniform mutation. It is used only with

floating-point encoding. The newly generated allele zi is either the upper bound

(UB) or the lower bound (LB) of the domain, with equal probability [99]. i.e.,

zi =


UB i f x > 0.5.

LB i f x ≤ 0.5.
(3.2)

Where x is a random number between 0 and 1.

Tree encoding mutation: This mutates selected nodes of the tree, with a new sub tree,

to create new offspring [113].

3.2.6 Termination

EAs repeatedly execute the operators presented above on each iteration (generation) to

produce a new generation. The iterative nature of this algorithm helps to increase the

fitness of the best individuals in each generation towards the global optimum [17]. The

termination of EAs relies on different possible stopping conditions:

• Determining a fixed number of generations.

• Extracting the problem solution: the individual with the best fitness value (or

proximity to certain conditions, e.g. a threshold, which serves minimum criteria).

Background: Evolutionary Approaches 40

Parent

…… a7 a6 a5 a4 a3 a2 a1

Offspring

…… a7 a6 a5 b4 a3 a2 a1

Parent

…… a7 a6 a5 a4 a3 a2 a1

Offspring

…… b7 a6 a5 b4 a3 a2 b1

(a) Single-point mutation

(b) Uniform mutation

 a1

a3

a4 a5

a2

b2

b1

b3

a2

a1

b1

b2 b3

Parent New generated subtree Offspring

(c) Tree encoding mutation

Denote to mutation point.

Figure 3.5: Different techniques of the mutation operator.

Background: Evolutionary Approaches 41

• “Allocated budget (computation time/money)” that should not be exceeded.

• Manual monitoring or recording the level of similarity in the population of

individuals. i.e., a vast number of individuals have congruous values at most

positions [146, 92].

3.3 Evolutionary algorithms and their applications to

image processing

This section reviews the application of EAs in image processing. The section is divided

into three parts. The first subsection is about image enhancement, which acts as a

pre-processing of image data before any application of image processing using EAs.

The second subsection discusses different approaches to image segmentation using

AE. Subsection 3.3.3 presents a method used in 3-D imaging: stereo vision and 3-D

tomographic reconstruction in nuclear medicine.

3.3.1 Image enhancement

Image enhancement is the process of improving image quality with compatible

features [112]. It enhances images to provide a better understanding and visual

perception [130] , reveal the implicit data on the images and change image attributes to

make them more appropriate for other automated image processing applications [77,

142]. Image enhancement is strongly required due to the limitations of the hardware used

to captured the images, dynamic light conditions and changing captured environments.

It is used in different fields such as computer vision, remote sensing, robot navigation,

medical image analysis and satellite image analysis.

Histogram equalisation (HE) is one of the most simple, effective and popular approaches

to enhancing image quality [67, 73, 142, 3]. The objective behind this method is

to display a uniformly distributed histogram as a result of computing the cumulative

intensity function of the input image. It is used to increase the global contrast of numerous

Background: Evolutionary Approaches 42

(a) An unequalized image (b) Corresponding histogram (red) and
cumulative histogram (black)

(c) The same image after histogram
equalization

(d) Corresponding histogram (red) and
cumulative histogram (black)

Figure 3.6: Enhancement image process using Histogram Equalisation (HE).

images. This method tries to distribute intensity image values almost equally across the

range of an image [35]. Figure 3.6 shows improving an image’s contrast. Many HE

methods have been proposed, such as Global Histogram Equalisation (GHE) [88], Local

Histogram Equalisation (LHE) [73], Adaptive Histogram Equalisation (AHE) [149],

Minimum Mean Brightness Error Bi- Histogram Equalisation [35] and multi-peak

Generalised Histogram Equalisation (multi-peak GHE) [36](see [142, 73] for other

versions of HE).

Although there are many HE approaches, to date no particular method suitable for

all problems has been found. It takes a long time on a complex search space [115,

114], since most classical approaches depend on statistical techniques [78, 20]. For

this reason, EAs have been receiving great interest to tackle this as an optimisation

problem in order to achieve natural contrast images with lower processing time [125],

unlike the traditional enhancement methods in which the user spends a lot of time in

the supervision of each image [114]. Below we briefly introduce the diverse types of

image enhancement approaches based on EAs.

Background: Evolutionary Approaches 43

Munteanu and his colleagues [114] integrate a local enhanced method with a genetic

algorithm (GA). They use AHE as an example of a local enhancement method where

each pixel is assigned a value according to a histogram equalisation transform performed

in the n × n neighbourhood of that pixel. They use the GA to tune the parameters

that control the contrast of the images, relying on the unique fitness function of their

GA. This function exploits the idea that a good contrast image has a high number of

“edgels”, which means pixels centralised on a edge. Therefore, the Sobel edge detector

is boosted in their fitness function. A new mutation (Principal Components Analysis

mutation (PCA-mutation)) is adopted. Principal Components Analysis (PCA) is used to

highlight what components are important and which ones are negligible. The mutation

is favouring the homogeneity of the components to ensure the diversity in the genetics

of the population.

In a similar contribution to Munteanu, Hashemi and his colleagues [73] present a

contrast enhancement method based on a GA. They also use a Sobel edge detector in

their fitness function. Low dynamic-range grey and colour images are used in their

experiments. The structure of each individual is a vector of random integer numbers

(between 0 and 2n-1) sorted in ascending order. The length n of the vector depends on

the number of grey levels in the input image. This structure is utilised for remapping

the grey level values in the input image for the sake of boosting the convergence speed

in order to get to the optimum solution. Roulette wheel selection, two point crossover,

and single point mutation are used.

Naoum and Al-sabbah [115] apply steady-state genetic algorithm (SSGA) to enhance

colour images. The rely on the HSI colour model. Tournament and Roulette Wheel

selection, two point crossover, and one point mutation are used with SSGA. The fitness

function combines Mean absolute error (MAE) and Peak signal-to-noise ratio (PSNR).

The setting of (Pc) and (Pm) are tuned automatically through the evolution. The final

testing phase makes use of both Dice Similarity Coefficient (DSC) and partial Hausdorff

distance for evaluating the performance of their enhancement algorithm.

Since now, hybridisation among various optimisation methods have been widely applied

in visual image enhancement field. Hoseini and Shayesteh [78] propose a hybrid

method working in parallel to achieve high disparity and naturality of gray scale images.

Background: Evolutionary Approaches 44

(a) (b) (c) (d) (e)

Figure 3.7: Results of different enhancement techniques: (a) original, (b) Hoseini et al. method,
(c) histogram equalisation, (d) linear contrast stretching, (e) fuzzy method (Image from [78],
courtesy of Pourya Hoseini).

These methods are Ant Colony Optimisation (ACO), GA, and SA. The ACO is used to

modelling a transfer function which generally relies on global intensity transformation.

Then, GA is utilised to tune the ACO parameters. For this purpose, their paper depends

on a fitness function that includes three components, which are the global standard

deviation of intensities, the global entropy of gray level, and Sobel edge detection. They

use SA to increase convergence time of ACO. Their results are compared with other

popular image enhancement (IE) methods such as linear contrast stretching, HE, and

fuzzy logic. As a result, the proposed technique shows improvement according to a

human observer. Figure 3.7 shows the efficiency of the proposed method that applies

on images with lower resolution.

Enhancing a retrieved watermark image, which is embedded within an original image,

based on GA was introduced by Shih et al. [141]. To solve the problem, they start

with random initial population of individuals. Each individual consists of 64 genes of

binary number. The individuals are evaluated with fitness function fi that computes

the summation of the absolute difference between the embedded, Watermarkαi , and

extracted, Watermark βi , watermarks. For reproduction individuals, The authors apply

both one-point and two-points crossover and a mutation operator.

3.3.2 Image segmentation

Image segmentation (discrimination) is the process of subdividing an image into

multiple, non-overlapping regions or objects that are considered homogeneous portions,

having attributes of either a similar texture or colour. The task of image segmentation

Background: Evolutionary Approaches 45

is still one of the most difficult (“ill-defined”) and unsolved problems in the image

processing field [67, 139, 19]. Image segmentation is an essential task in many imagery

applications, including object detection, feature extraction, object recognition and object

classification [176]. So far, many segmentation methods have been proposed but none

has satisfactory partition results: There is no general and unique method found across

the different types of digital image processing techniques. Generally, each segmentation

method is based on a set of control parameters, which are difficult, if not impossible, to

tune in some imagery applications even if these parameters are fit for another particular

application with a specific type of images [174, 176]. Therefore, EAs can be used

to optimise the relevant parameters in certain existing segmentation algorithms [20]

in both grey levels and multi-component images, which was verified practically by

Chabrier et al. [32]. In addition, the interaction of EAs toward the application of image

segmentation can be categorised into two main groups:

1. Hybrid (adaptive) image segmentation applications where the genetic algorithm

aims to tune the parameters of segmentation methods to improve the final results

of such a segmentation method [32], and

2. GA-based segmentation where AE plays a major role in labeling growing image’s

regions by using the principle behind pixel-level segmentation [55].

In both groups, the image is segmented according to various criteria (e.g., grey level,

colour, or texture on an image) [132].

Ramos andMuge [132] present an adaptive segmentation method that combines k-means

(an unsupervised clustering approach) with a GA. Their motivation is to detect the

optimal colour cluster regions in a complex colour feature space image, which has

different types of textures, such as ornamental stones, human skin marks and colour

maps, by minimising the internal feature distinction among the same colour clusters.

However, maximising the feature variances between various colour clusters was taken

into consideration.

In another example where GAs are significantly used, Bhanu et al. [19] apply an adaptive

technique using a GA to improve the performance of partition criteria in outdoor colour

imagery. They employ an algorithm to adjust 14 control parameters of the Phoenix

Background: Evolutionary Approaches 46

segmentation procedure. This is done to be valid for many images with different

characteristics as well as various scenes of CV applications, such as instance image

classification and image recognition. Hence, the authors design the hybrid segmentation

method to be a part of the image recognition stages.

Another fundamental work in which GA is used in a region growing segmentation

approach is by Feitosa and colleagues [57]. They employ a supervised segmentation

method. This method attempts to adjust the segmentation parameters according to

comparing the similarity degree of the segmentation regions’ results with a template of

the image segmentation objects supplied by the user. In particular, they try to minimise

a fitness function that scales the weighted heterogeneity of merging reference objects

with the segmentation results through the large intersection space.

Zanaty and Ghiduk [172] proposed an innovative segmentation technique to solve the

same problem (region growing segmentation technique). Their method combines a

classical GA with a seed region growing method to overcome the over-segmentation

problem. Figure 3.8 shows the accuracy of the segmentation results when their algorithm

is applied to magnetic resonance image (MRI) images. It is worth pointing out that the

contributions of this article are:

1. It presents a new method that specifically works on 3-D medical images, MRI

datasets with weak boundaries.

2. Their algorithm starts with a random population distributed all over the image.

3. The structure of a chromosome contains three parts: control genes, grey-level

genes, and position genes.

4. Chromosomes are represented in binary forms of 0s and 1s.

5. It hands out a new objective function and individuals’ representation that are

aimed to improve the image segmentation.

6. It evaluates and compares the final results of this work with the fuzzy C-means

clustering (FCM) method.

Background: Evolutionary Approaches 47

Figure 3.8: Results of genetic algorithms and the region growing method for segmentation MRI
(Image from [172], courtesy of Zanaty).

As a result, the proposed technique provides results better than the FCM method.

Another fundamental approach of using GA for 3-D image segmentation was

aforementioned by Zanaty et al.; Pignalberi and his colleagues [129] concentrated

on range images (RIs). Such images are coloured according to the distance from the

sensor that scans the image. In fact, each pixel in a RI indicates the value of the distance

from the sensor to the foreground object point. They attempt to optimise a collection

of parameters that are often utilised with a RI segmentation algorithm in order to

distinguish the outside surfaces of 3-D objects.

In an implementation of pixel-level unsupervised segmentation, Peng et al. [127]

propose a novel hierarchical distributed genetic algorithm, which produces a parallel

image segmentation without a prior hypothesis of references of segmentation images

excluding the number of partition districts. It is important to note that the researchers

work on gray-scale images for segmentation purposes.

As a part of the unsupervised paradigm and far away from any manual segmentation

intervention, Gong and Yang [65] applied an unsupervised segmentation system that

is more complex for colour images. They use a hybrid framework that integrates

a neighbourhood-based segmentation method and GA. In fact, they used the final

algorithm in a two-pass process. In the first pass, GA is used to minimise a fitness

function, which is produced using the Markov Random Fields (MRFs) method. The

aim of this stage is to find the histogram of the original image. The advantage of

the histogram is to find the location of peaks, which is necessary to detect the cluster

information. Therefore, GA comes to optimise the results of labelling the pixels in

which the closest cluster belongs. This is done by using the Euclidean distance as a

fitness function of GA. Second, GA was utilised to optimise the final segmentation.

It is important to note, for this implementation, that the researchers use a quad-trees

structure to represent the individuals of the GA population.

Background: Evolutionary Approaches 48

Zingaretti et al. [176] propose a method similar to Gong and Yong’s idea of defining a

two-pass GA. However, they generally rely on a histogram-based thresholding algorithm

(instead of the neighbourhood-based segmentation method) after the system has divided

the input images into two “chromatic and achromatic” regions and processed each one

separately.

Cheng and Gong [37] propose a more robust adaptive algorithm that combines three

approaches: the FCM method, ACO and GA, which are strong procedures in the image

segmentation and combinatorial optimisation field. In the first part of this hybrid

method, the FCM aims to find the shortest path from various image patterns to a cluster

centre in order to cut off the images. After that, ACO and GAwork in parallel to improve

the “efficiency of clustering”, accelerate the convergence of clustering, and escape from

entrapment in local minima. As a result, this method provides a high accuracy level on

image segmentation, especially on detecting “fuzzy and exiguous edges”.

For more reviews on unsupervised image segmentation methods, Zhang et al. [174]

present a useful survey paper that demonstrates and discusses an analytical point of

view on various numbers of the popular image segmentation mechanisms.

3.3.3 Image reconstruction

Image reconstruction is widely used in medicine for 3-D tomography reconstruction

(in CT, CBCT, SPECT, PET, MRI, and 3D-ultrasound (US)) [52, 155, 156] (see

Section 4.3.2), computer vision (stereo vision and 3-D reconstruction from multiple

images) [70], robotics (simultaneous localisation and mapping (SLAM)) [103], etc.

Image reconstruction is an inverse problem: an unknown image has to be produced

form a set of known projections. The nature of the unknown image and of the

projections is problem-dependent (see Figures 5.4 and 5.5 for examples of projections

and reconstruction in tomography). Image reconstruction is often ill-posed in real

applications: a solution does not necessarily exist (e.g. in case of excessive noise),

and the solution may not be unique. This problem can be solved as an optimisation

problem, and in such cases, evolutionary algorithms have been shown to be generally

efficient [161].

Background: Evolutionary Approaches 49

In this section, we will consider stereo vision systems based on a classical EA. In the

next chapter, we will discuss stereo vision systems based on the Fly algorithm and a

more recent application (3-D PET reconstruction in nuclear medicine).

In stereo vision systems, the main task corresponds to producing a 3-D model of a scene

given pairs of 2-D images: right and left images (see Figure 3.9a and 3.9b). It is a

difficult and important problem in CV. The stereo vision problem has become an active

subject in different image application areas, such as object recognition, inspection,

manipulation, stereo sequence coding, intermediate view generation, robotics, virtual

reality, motion estimation, and entertainment [144, 71, 168]. In fact, such systems aim to

mimic the human visual system (HVS), which is automatically capable of finding out the

depth information from a 3-D constructional information. This information is received

by a pair of eyes, which distinguishes little variations in the image of each eye due to

their distinct positions (see Figure 3.10). A stereo vision system accomplishes such

simulation of HVS by using two or more cameras and a computer. The main objective

of this system is to reconstruct the depth of the objects and define a smooth disparity

map of the 2-D world in order to determine corresponding points among images using

the stereo matching technique. In particular, this method aims to address the explicit

inequalities among the images to all common points. It relies on the principle that the

corresponding points in the different images are projected on the same point in the

3-D scene. The disparity map, (see Figure 3.9c), is formed as a result of two or more

images [66, 71, 84, 70], which have slight differences aside from the many common

features, by using either of the following two techniques:

1. Using two or more digitally calibrated cameras, which are separated by a known

aligned distance between each other.

2. Using only one camera to capture different images from several positions [128,

168, 43].

Figure 3.10 shows the epipolar geometry of a stereo vision system or binocular stereo

method. In [71], more detail about the epipolar geometry of the stereo vision system is

provided.

Background: Evolutionary Approaches 50

(a) Right image. (b) Left image. (c) Disparity map.

Figure 3.9: . Stereo pairs (right and left images) from the Multiview Image Database, University
of Tsukuba and the disparity map of them (images from [60], courtesy of Andrea Fusiello).

L is the distance between the two cameras on the baseline; x is the depth, which is

calculated using equation 3.3, f is the focal length of the camera; and dl + dr is the

disparity map of the corresponding points.

x =
f (L + dl + dr)

dl + dr
=

f L
dl + dr

+ f (3.3)

Up to now, many stereo matching techniques have been introduced. Generally, the

present approaches belong to two main classes: either feature-based methods or area-

based methods. The former rely on revealing features in the first image and then

attempting to identify and match these features in the second image. Such methods

depend on calculating features, such as zero-crossing points, edges, corners and line

segments. This method estimates the depth information accurately, but it needs a

complex interpolation process to get a complete disparity map. Area or intensity-based

approaches work on computing a disparity map for each pixel in the image. The core

of this algorithm is that match neighbouring pixel value within a window, which is

a block of n × n pixels, between images. The intensity-based methods evaluate the

disparity of the pixel according to local neighbouring information. Therefore, this

method is based on two facts. First, it is based on the disparity of the pixel influence

by the disparity of its neighbouring pixels. Thus, the window’s size has a big role in

finding the corresponding points. The optimal window size should be estimated in

order to avert disparity variation with a large window and to include as much intensity

variation as possible for reliable matching with a small enough window size. Second,

the intensity-based methods need additional techniques, which are used to compute

local information and are categorised as follows: cross-correlation, least-squares region,

etc. [71, 43, 135, 66].

Background: Evolutionary Approaches 51

Figure 3.10: Epipolar geometry of a binocular stereo system (image from [70], courtesy of
Hafezi).

Most of the existing stereo matching methods aim to match the points that have the

same neighbourhood attributes in both images [46]. Estimating the disparity map of

each image pixel leads to an expensive run time in such methods. GAs appear to be

competitive candidates to tackle this problem; a large amount of data (pixels in the

images) to find a global minimum disparity map at each pixel position. Thus, the stereo

matching problem can be formalised as an optimisation problem [168, 102, 66, 137],

and GAs can be applied to solve it in the context of a stereo vision system. As reported

by Saito and Mori [135], each pixel has many candidate values of disparity based on

various window sizes. They rely on the sum of squared differences (SSD) for a specific

window size to calculate the disparity map between a pair of images. Then, the GA is

utilised to evaluate each block, determining the optimal disparity map in each pixel.

The fitness function is designed to find the possible smallest error between the images.

It relies on the similarities between corresponding points and the continuity of the

disparity map. This presumption may not encompass the noisy images or the part of

the view that has plain colour [66]. In the same way as Saito and Mori, Dai and two

other researchers apply adaptive GA to stereo matching on different databases, which

Background: Evolutionary Approaches 52

are represented by Tsukuba stereo images [43]. In contrast, Han et al. [71] depend on

a fixed window size to calculate the stereo correspondence problem. Before that, the

modified nonlinear Laplace (MNL) filter is applied to extract the region parts from

the reference images. This filter is greatly affected by the generation of the disparity

map. Next, GA is used with unique representation of individuals that use a 2-D block

structure instead of a one-dimensional (1-D) to find out the best disparity map between

the images. Using the same main ideas as Han’s paper, Hafezi et al. [70] propose a new

stereo correspondence system structure with a fixed-size window. This structure uses

GA with respect to implementing SSD as a fitness function. However, it relies on rank

transform to produce the initial disparity map for each single pixel. Another study by

Gong and Yang [66] uses GA to solve the problem of stereo matching, inspiring their

idea of using MRFs to shape the fitness function. Moreover, the researchers depend on a

cooperative genetic algorithm, which takes into consideration not only the pixels on an

image but also the neighbours. Therefore, they adapt the genetic algorithm to include

the cooperative principle. This is done by using a quad-tree structure, which ensures the

inclusion of the pixels and their neighbours for each individual of the initial population.

For this special representation of individuals, they depend on a different crossover

operator, which is called graft crossover, as well as three methods of a mutation operator,

which are named splitting, merging and alteration. In 2009, Zhang et al. [175] combine

pyramid division, GA, and propagation stratagem to generate a final disparity map in

a robust stereo vision matching algorithm. Other studies have considered different

techniques of capturing the stereo images by using one camera and a laser beam instead

of using two cameras to achieve the stereo correspondence problem, such as in [46,

168].

3.4 Challenges with evolutionary algorithms

As a matter of fact, finding an optimal solution is difficult in image processing

applications due to several factors. Such problems are often ill-posed inverse problems.

They can be affected, for example, by poor spatial resolution, changing environmental

conditions (e.g., lighting), and image format (i.e., images of the same captured view

will look different because they may be taken using different cameras, various angles,

Background: Evolutionary Approaches 53

distances and sensor sensitivities). This chapter has highlighted various research papers

in evolutionary computing and its applications. Focus has been given to imaging

applications. We saw that artificial evolution can be used as a black-box optimisation

tool, however, problem-dependent implementations provide better results [125]. Thus,

it is difficult to develop a universal and robust method that adapts to all the problems in

imaging.

EAs have a significant impact on solving complicated problems as optimisation problems

due to their unsupervised nature. EAs can be used when little is known about the

problem to optimise [157]. It is usually not a good strategy to consider EA as a “blind"

method because one may lose the chance to adapt to the problem. It is indeed possible

to adapt the evolutionary mechanisms to the specificities of the problem [157] or to

rely on domain-specific knowledge [166]. It helps to improve the efficiency of the

algorithm and reduce its computation time. Complicated problems will help to compare

customised EAs to “pure” classical and black-box optimisation methods to assess the

advantages provided by the “intelligence” set in the genetic operators [157].

Although EA is a search method that easily adapts to complex search problems because

of the parallel exploration of the search space, EAs are faced with different challenges

in image processing applications. These challenges are [124]:

1. Many researchers consider EA to be a slow black-box optimisation method, which

does not use relevant domain knowledge. However, it has been demonstrated

many times that this judgement is ill-conceived. EA can be implemented more

cleverly to include domain knowledge, and it can be extremely competitive when

solving hard problems.

2. EAs may require a lot of computer resources to run simulations each time a

fitness function is calculated. The final result may depend on the parameters

of the algorithm, such as the number of individuals, probability of the genetic

operators and the type of selection. However, to reduce the pressure on computer’s

resources, the user must observe and decide how changing these parameters will

affect the final results of the problem. Note that varying population sizes and

self-adaptations can be used to tackle this issue [155].

Background: Evolutionary Approaches 54

3. Another fault of EA is that an optimal solution is not guaranteed in a finite time.

It completely falls into the category called “Generate-and-Test”. This affects the

user’s decision of what the best and worst case scenarios are through the constant

optimisation run times. A possible solution is to boost computer processing

power as well as parallelise the implementation of the EA. Note that this is the

case of most optimisation methods anyway.

4. Occasionally, due to the random nature of the method, to find a solution through

evolution, the method may hardly converge toward an optimal solution (e.g., if

the parameters of the genetic operators are not well set).

5. EAs fall in the local optimal point; they are less likely to stop at the local optima

than classical deterministic optimisation methods, which may not have the ability

to reach to the global optimal point [157]. This is because they rely on the

crossover operator, which decreases the genetic diversity of the population. The

solution is more likely to use the mutation operator to increase the diversity of the

individuals. Other diversity mechanisms (such as “new blood” or “immigratiom”)

can also be introduced. The difficulty is to choose or design all these genetic

operators that lead to a global optima is a minimum of time.

Background: Evolutionary Approaches 55

Chapter 4

Background: Parisian Evolution

In this chapter we present an overview of a special type of CCEAs based on the Parisian

approach: the Fly algorithm. The main differences between CCEA and classical EA

are explained. We present various applications of the Fly algorithm. We explicit the

novelty of the proposed in this thesis with respect to the previous implementations of

the Fly algorithm.

4.1 Cooperative co-evolution algorithms

A CCEA is a specific form of EA. Over the last few decades, CCEAs have been

designed to emulate a natural population that establishes a solution by a collection of

individuals working together. For example, CCEAs can be used to simplify a complex

search space by splitting it into a number of smaller sub-spaces [162]. Co-evolutionary

techniques provide an effective manner to deal with large, complex problems using

the “divide-and-conquer” strategy. This technique can be implemented to find a global

solution by gathering the partial solutions of individuals on behalf of the best individual,

i.e. each and every individual is treated as a part of the problem solution [136, 126,

123, 29]. Based on this concept CCEAs are formulated from EAs in terms of using the

rules of artificial Darwinism, i.e. classical evolution-style genetic operators, such as

selection, crossover and mutation. However, the former type of algorithm adopts this

cooperative principle by building a fitness function that considers each individual and its

neighbourhood [26, 167]. Instead of using one fitness function to assess an individual,

as in the traditional EA algorithm, two fitness functions can be used in CCEA:

56

Figure 4.1: Principles of the Parisian approach (including the Fly algorithm).

• local fitness, which evaluates an individual from the population as a part of the

solution, and

• global fitness, which assesses the whole group of individuals obtain the final joint

solution of the problem (see Figure 4.1) [136, 156, 123, 30].

In [29], each individual is evaluated based on its collaborators. One of the main

objectives behind a CCEA algorithms is to reduce the computational pressure of the

genetic search process by applying parallel EAs to find an optimal solution [136, 167].

4.2 Parisian approach

An example of a CCEA is the Parisian EA. The solution of this algorithm is embedded

within a set of individuals instead of one, as in classical AE. Individuals assemble

together to build a significant solution to the problem, driving the whole population

into attractive areas of the search space, where an ideal solution is likely to be found.

This approach has the benefit of co-evolution approaches: a population works together,

no matter whether the individuals are identical to or distinct from each other. The

Parisian scheme tries to maintain the diversity of the population, which makes such an

algorithm slightly more complex than the traditional evolutionary algorithm. However,

Background: Parisian Evolution 57

the intrinsic parallelism of the Parisian approach reduces the computational waste

occurring in classical EA by keeping the whole population as the optimisation problem

solution rather than just the best individual [26, 103].

The main challenge is to design a fitness function that keeps a set of individuals working

together to raise up the solution of an optimisation problem to the global solution. Thus,

the Parisian approach contains the features of traditional components of EA, but it has

the following unique features.

• Twofitness functions: “global” fitness, which is computed on thewhole population,

and “local” fitness, which is computed to assess the contributions of each individual

to the global solution. Global fitness may be the sum (or a complex combination)

of local fitnesses. The local fitness function is used during the selection process.

The global fitness function is the function that the algorithm will maximise (or

minimise). However, it may not be explicitly used during the evolution phase but

it can be used as a stopping criteria when stagnation is detected.

• The use of a diversity mechanism, such as a sharing scheme, to prevent the

solution from falling in a specific localised area and to ensure that it has distinct

individuals.

The Parisian approach has been successfully used in different applications, such as

stereovision [27, 26], photogrammerty [49] and medical imaging [159, 160, 8]. Most

of the applications mentioned previously rely on a Parisian algorithm called the Fly

algorithm [102].

4.3 Overview of the Fly algorithm and its applications

The Fly algorithm was initially developed as a fast EA in stereovision for robotic

applications, such as obstacle detection [105] and SLAM [103]. The Fly algorithm

heavily relies on the Parisian approach. One of its main characteristic is that individuals

correspond to extremely simple primitives: flies. Each fly is a 3-D point. Each fly

is projected onto one or several image planes depending on the optimisation problem

Background: Parisian Evolution 58

considered. Removing an old fly and adding a new one has to be a fast process to allow

it use in real-time applications.

In its original implementation, the fly is projected onto the image planes that correspond

to a pair of stereo images (see Section 4.3.1 for further details). The position, orientation,

and lens of the cameras are known. The pixel value corresponding to a projected fly is

extracted from the pair of stereo images. For robustness, pixel neighbourhoods are used

rather than single pixels. The fitness function is proportional to the differences among

the pixel values between the neighbourhoods of the projected point in both images. A

fly is on the surface of an obstacle, e.g. a wall, if the corresponding points on both

images have little disparity between the neighbourhoods. The flies evolve using the

typical steps of EAs. As a consequence, the flies will eventually gather on the surfaces

of the obstacles. Detecting objects is important in SLAM as it allows autonomous

robots to avoid collisions.

The first version of the algorithm is generational. In the first generation, the flies are

randomly generated, forming the population of parents. Then, at the next sequential

generation, the parents reproduce according to the genetic operators (selection, mutation,

new blood, etc.) to generate a whole population of new individuals: the offspring. Note

that crossover is not commonly used in the Fly algorithm as two good flies on different

objects would lead to a bad one in between. During the selection process, the flies are

evaluated based on their local fitness function(s). In turn, the offspring become parents,

and the cycle continues.

Algorithm 1 shows the classical generational Fly algorithm [136] when the local fitness

function needs to be maximised. The Fly algorithm can be implemented following the

steady-state EA paradigm. Our implementation follows this principle. In each iteration

of this algorithm, a set of individuals is replaced by newly generated individuals, i.e. a

few of the worst parents are replaced by a few of the best offspring.

Algorithm 2 shows the steady-state Fly Algorithm [136]. We have used the steady-state

Fly algorithm instead of the generational Fly algorithm because the former algorithm

works well with complex search space, and we do not need to wait long to find the

best offspring from mutated parents. The offspring are added directly to the previous

Background: Parisian Evolution 59

Algorithm 1 Overview of a possible implementation of a generational Fly algorithm
repeat
for i = 0 to pop do

Select genetic operator
if Genetic operator is new blood then

Add a randomly generated fly to population of offspring
else

if Genetic operator is mutation then
Select randomly two flies f1 and f2 from the population of parents
Compute local fitness for f1 and f2
if fitness(f1) < fitness(f2) then

add mutation(f2) to population of offspring
else

add mutation(f1) to population of offspring
end if

end if
end if
Offspring become parents

end for
Compute Global fitness for all population

until algorithm is convergence
Where:
pop: population size (numbers of flies).
f1 : fly f1.
f2 : fly f2.
fitness(f1): local fitness of fly f1.
fitness(f2): local fitness of fly f2.
mutation(f1): new fly created by mutation of fly f1.
mutation(f2): new fly created by mutation of fly f2.

population to start next the iteration. However, in the generational Fly algorithm, we

need to wait to mutate all parents to get a new population of offspring which will be

passed to start a new iteration. Hence, the generational Fly algorithm is computationally

expensive.

Following its success in robotics, as shown in [27], the Fly algorithm has been adapted

for ET in nuclear medicine, in SPECT [28], and in PET [155] and it has been used in

the Lamp problem [150]. The next subsections show some typical applications of the

Fly algorithm.

Background: Parisian Evolution 60

Algorithm 2 Overview of a possible implementation of a steady-state Fly algorithm
repeat
Select randomly two flies f1 and f2 from the population of parents
Compute local fitness for f1 and f2
Select genetic operator
if Genetic operator is new blood then

if fitness(f1) <fitness(f2) then
f1← randomly generated fly

else
f2← randomly generated fly

end if
else

if Genetic operator is mutation then
if fitness(f1) < fitness(f2) then

f1← mutation(f2)
else

f2← mutation(f1)
end if

end if
end if
Compute Global fitness for all population

until algorithm is convergence

4.3.1 Stereo vision

A description of the stereo vision system can be found in Section 3.3.3. Here, a review

is presented regarding the design of the Fly algorithm for reconstructing and detecting

an object using pairs of stereo images to create a tool for mobile robot vision. The

major aim of the Fly algorithm is to optimise a population of 3-D points (flies) with

coordinates (x,y,z), which are randomly generated between the intersection of the two

cameras’ (i.e. the left and right cameras) fields of view (Figure 4.2a) [27, 103].

For illustration purposes, let us consider the 2-D case only. These coordinates are

projected from both coordinates (xL,yL) and (xR,yR) of images given by the left and

right cameras, respectively. The Fly algorithm was designed to detect opaque objects

in a 3-D scene. Figure 4.2b demonstrates that if Fly B is on an object’s surface, the

projections will have similar neighbourhoods, N , in both images, i.e. the corresponding

pixels in both images will usually have the same grey or colour levels. However, if Fly A

is not on an object’s surface, its close neighbourhoods will usually be poorly correlated

because of the asymmetry of corresponding pixels and their neighbourhoods in terms

Background: Parisian Evolution 61

(a) Fly positions. (b) Camera setup with two objects.

Figure 4.2: Cooperative co-evolution principles in the Fly algorithm (images from [106],
courtesy of Jean Louchet).

of their illumination. This evaluation is controlled by implementing the fitness function

of Equation 4.1. The fitness function measures the similarity of the corresponding

projected pixels and their neighbourhoods in the two images. Thus, the highest fitness

of a fly (f itness(f ly)) means that the fly is lying on the surface of an object [26, 103,

102].

f itness(f ly) =
1∑

colours

∑
(i, j)∈N[L(xL + i, yL + j) − R(xR + i, yR + j)]2

(4.1)

where (xL, yL) and (xR, yR) are the pixel coordinates of the left and right projections of

the current individual in the pair of stereo images; L(xL + i, yL + j) is the grey value of

the left image at pixel (xL + i, yL + j), similarly with R for the right image.

Some studies have used the standard Fly algorithm that is described above to find

out the obstacles in a 3-D scene using static images, such as those in [102, 136]. To

get better reconstruction results, some researchers in [126] and [128] added a simple

modulation to the traditional fitness function of the Fly algorithm (turning Equation 4.1

into Equation 4.2). The latter equation includes Sobel gradient norms on the left and

right projections of the fly, which is intended to penalise flies that are settled on uniform

regions, i.e. the less significant flies. Sobel is a first derivative gradient filter used in

image processing and in computer vision as an edge detector [67]. From an input image

it outputs a new image with low values for homogeneous regions in the input image and

high values for the details (such as object boundaries and noise). In [26], [27] and [106],

2-D sharing has been used to speed up algorithm convergence. Sharing prevents flies

from concentrating in a small, crowded region by reducing the fitness value of the flies

located in this area. Figure 4.3 demonstrates the results of applying the Fly algorithm

on the synthetic “money” pair of stereo images. It shows improved results due to the

Background: Parisian Evolution 62

(a) “Money” image, left (b) “Money” image, right

(c) Without sharing (d) With sharing

Figure 4.3: Detecting objects using the Fly algorithm (images from [106], courtesy of Jean
Louchet).

use of sharing (see Figure 4.3d) [106]. Furthermore, some articles have presented the

idea of reconstructing an object in a 3-D scene as well as implementing stereo image

sequences to innovate real-time mobile robot navigation systems [26, 102, 103, 106].

f itness(f ly) =
|5(ML)| · |5(MR)|∑

colours
∑
(i, j)∈N [L(xL + i, yL + j) − R(xR + i, yR + j)]2

(4.2)

where (xL, yL) and (xR, yR) are the coordinates of the left and right projections of the

current individual, respectively; L(xL + i, yL + j) is the grey value at the left image

at pixel (xL + i, yL + j), similarly with R for the right image; N is a neighbourhood;

|5(ML)| and |5(MR)| are Sobel gradient norms for the left and right projections of the

fly.

4.3.2 3-D tomographic reconstruction in nuclear medicine

As mentioned above, EAs have been frequently used to solve inverse problems,

introducing a promising result for image processing in general and for medical imaging

in particular. However, combining EAs with the tomographic reconstruction is not

Background: Parisian Evolution 63

trivial. A proof-of-concept has been developed in 3-D tomographic reconstruction for

SPECT and PET using the Fly algorithm [28, 152, 154, 155, 156]. Each fly corresponds

to a 3-D point that emits photons. An EA is then used to optimise the position of the

flies. Each fly has its own image pattern. The flies cooperate to create an image pattern

for the whole population. The EA will minimise the discrepancies between the input

data and this image pattern. After convergence, a group of flies will correspond to the

reconstructed volume. Due to the complex nature of the tomographic reconstruction

problem, new genetic operators (new fitness functions, selection, mitosis, and mutations)

had to be specially developed for the Fly algorithm.

In 2008, Bousquet et al. introduced a new method of reconstructing the 3-D radioactive

concentration in nuclear medicine imaging using the Parisian (Fly) algorithm instead

of the traditional expectation-maximization (EM) method. Each fly is a 3-D point in

search space and serves as a photon emitter. They validated their method using real

SPECT images. They initially used a relatively straightforward fitness function (a fly

would receive a bonus (+1) for every of its projections that is on an object and -1 when

it is not). However they discovered that small objects of low intensity disappeared

with this fitness function. They addressed this problem with a new fitness function

called “marginal fitness”. It follows the principle of “leave-one-out cross-validation”. It

computes the difference between the original and two estimated images. The marginal

fitness is computed as follows:

Local f itness(i) = ξrror(population \ {i}) − ξrror(population) (4.3)

ξrror(population) is an error function on the image produced by the whole population.

It is the distance between the total illumination pattern created by all the flies, to the

actual image. It is the value that the algorithm is minimising. ξrror(population \ {i})

is the same error function computed on the image produced by the population without

Fly i. Local f itness(i) is the marginal fitness, which is a quality measurement that

should be maximised. If Local f itness(i) is negative, then Fly i is a bad fly that

negatively contribute to the population. If it is positive, then it is a good fly. This

paper shows promising 3-D reconstruction results for both simplified synthetic data and

real stenographic images in terms of its improved detection of smaller objects [28]. A

generational Fly algorithm was used.

Background: Parisian Evolution 64

Following Bousquet et al. in the using marginal fitness in [28], Vidal and his colleagues

(2010) posited a method of reconstructing 3-D images that takes advantage of both a

steady-state Fly algorithm and PET [159]. Based on the contribution of each fly, the

authors used a threshold selection in the selection stage of the algorithm instead of using

classical selection operators, such as ranking, roulette wheel and tournament. That is,

a fly whose fitness is positive is a good candidate for reproduction, and a fly with a

negative fitness can be discarded. It makes the algorithm work faster and reduces the

pressure at the selection stage. The selection process gradually eliminates flies with a

negative fitness. It provides an excellent stopping criteria when the number of negative

(bad) fly becomes too low. This article shows encouraging results for synthetic data.

4.4 Novelty

We can define the novelty that has been added in this thesis to the Fly algorithm for

both tomography and digital arts applications as a follow:

Tomography. Our implementation focuses on aggregation part (see Figure 4.1). This

include: 1) determining which flies are assigned to be in a final solution; 2)

exploring a further step to exploit individual’s fitness as a level of confidence; 3)

voxelising the point cloud of data from a density field using implicit modelling

such asMetaballs and Gaussian kernels; and 4) proposing a newmutation operator

which is Directed mutation to speed-up the convergence.

Digital arts. For the first time, we apply the Fly algorithm with digital arts application.

This implementation added some changes to the Fly algorithm which are: 1)

changing the structure of a fly from a simple primitive (x, y, z) into a more

complex structure, a vector of nine elements (x, y, z, r, g, b, α, w, h); 2) adding

a texture to the Flies; and 3) investigate the benefit of a restart operator in this

context.

Background: Parisian Evolution 65

Chapter 5

PET Reconstruction

Parts of this chapter have been exploited in two research articles published in the

proceedings of the Eurographics Workshop on Visual Computing for Biology and

Medicine (VCBM) and in the journal on Swarm and Evolutionary Computation

respectively (see Section 1.4) [8, 7].

5.1 Introduction

This research deals with tomographic reconstruction in nuclear medicine, more

particularly PET. An unknown radioactive concentration (f) is recovered from known

observations (Y = P [f], with P a projection operator) by solving an ill-posed inverse

problem (see Figure 5.1). Y can be represented by a ‘sinogram’, which is the type of

image that can be used as input data in tomographic reconstruction (see Figures 5.4c,

5.19 and 5.24 for examples of sinogram). The result of the reconstruction is f̂ , an

estimate of f . In this chapter, we exploit the output of a CCEA, the Fly Algorithm,

to improve quantitative results in reconstructed images. The Fly Algorithm evolves a

population of ‘flies’, according to the Evolutionary Strategy paradigm. A fly is a 3-D

point in the object space. Each fly is used to create projection data (the way this data is

generated is problem dependant). Here the flies generate a ‘simulated sinogram’ (P
[

f̂
]
,

see Figure 5.3). The fitness value of each fly, i.e. a quality measurement optimised by

the algorithm, is based on the consistency of its calculated projections in the images.

This approach has been extended to 3-D tomographic reconstruction in medical imaging

(‘medical flies’) [28, 152, 154, 155].

66

NO

YES

(tomographic reconstruction)

Fly algorithm

f̂(x, y)Y = P [f]

(known)
Observations(unknown)

f(x, y)

Real concentration

(voxelisation)

of the solution

Extraction

Binning/Bucketing

Implicit modelling

Stop?

Ŷ = P
[
f̂
]

(simulated data)
Estimation

Figure 5.1: Evolutionary reconstruction using the Fly algorithm. The real radioactive
concentration (f) is unknown. P is a projection operator. The projections of f are the
known observations (Y = P [f]). Individuals of the evolutionary algorithm correspond to
3-D points. The population corresponds to an estimated radioactive concentration

(
f̂
)
. Each

individual has its own projection data. Together, they produce simulate projections
(
Ŷ = P

[
f̂
])
.

The position of individuals is iteratively optimised using genetic operators to minimise E
(
Y, Ŷ

)
the difference between Y and Ŷ . After convergence the concentration of individuals is an
estimate of the radioactive concentration.

The problem we address in this chapter is related to the extraction of the solution for

PET reconstruction using the Fly algorithm (see the last main step in Figure 5.1). The

chapter particularly focuses on how to voxelise and display the point cloud generated by

the final fly population to produce quantatively accurate results. This step is necessary

as most medical imaging software use this data representation to store and process

tomographic volumes. The voxelisation problem has been overlooked in the previous

work mentioned above. The 3-D space was discretised into a regular grid of volume

elements (voxels). The intensity of each voxel was proportional to the number of flies

located into them. To produce sharper images, only good flies were considered during

the voxelisation. In this chapter, we study the collective impact of including ‘marginally

negative’ individuals in the final solution and compare evolutionary reconstructions with

those obtained using classical algorithms. The aim is to formally determine which flies

are necessary in the final solution to produce a volume that is more similar to the real

radioactive concentration. We also investigate and compare methods based on implicit

modelling to display the fly population in order to properly minimise the difference

between the reconstructed pattern (f̂) and the ground-truth (f), and get visually realistic

rendering. Our method takes advantage of the Fly Algorithm’s internal data to efficiently

PET Reconstruction 67

employ implicit modelling. In particular, we investigate how to take advantage of the

individual knowledge of each fly after the evolution process to modulate their own

appearance in the final image of the whole population. It is implemented using the

local fitness as a level of confidence in the fly’s position. The aim is to reduce the

noise level and to retain edges between regions. To ascertain the validity of our new

approach, evolutionary reconstructions on two numerical phantoms are compared with

those obtained using two of the most popular tomographic reconstruction algorithms

in nuclear medicine research, namely FBP and OSEM. FBP is only used for historical

reasons. It has been supplanted in clinical routine by MLEM and its derivative OSEM.

However finding suitable stopping criteria for MLEM-based methods in PET is an

open research question [61]. Reconstructions improve after an unspecified number of

iterations, then deteriorate.

Note that the ground-truth image f is never used during the reconstruction as it is

considered unknown. However, as controlled test cases are used in this chapter, it is

possible to use it for validation purposes. Qualitative validation corresponds to a visual

comparison between the ground-truth image f and the corresponding reconstructions

f̂ (the estimated radioactive concentration, i.e. a volume produced using the final

population of flies). In quantitative validation, the numerical difference or similarity

between f and f̂ are measured. Quantitative imaging is the aim of the research

community in tomography reconstruction in nuclear medicine. In oncology, when

PET scans are performed over a large period of time, quantitative imaging allows the

clinician to assess the response of tumours to the treatment as it makes it possible to

measure the variation in tumour volume at different stages of the disease. Quantitative

validation is therefore preferred over qualitative validation in this research community.

We follow this approach in this chapter.

For more background information of classical tomography reconstruction (see

Section 2.4) and Parisian Evolution (see Section 4.1). The next section presents

the early work on evolutionary reconstruction (see Section 5.2). Section 5.3 studies

how to extract the solution of the optimisation problem in this co-operative co-evolution

scheme, i.e. which individuals should be considered during the voxelisation. Section 5.4

focuses on a technique called Implicit Modelling. An overview is given in Section 5.4.1.

Section 5.4.2 shows how to apply this technique during the voxelisation and Section 5.4.3

PET Reconstruction 68

Current

Population

Initial

population

Aggregate

solution
Stagnation? Enough flies?

Extract

solution

Yes

Mitosis

 Yes

 No

 No

Select

genetic operator

Replace bad fly

by random fly

New blood

Mutation

Copy good fly

into bad fly

Random

alteration of

new fly

Global

fitness

Kill bad fly

Select

bad fly

Local

fitness

Select

good fly

Local

fitness

START

END

Voxelisation

Figure 5.2: The Fly algorithm is an iterative method (as described in Figure 2.4). Here genetic
operators (new blood and mutations) are applied to correct the position of flies and minimise
the error between the known observations (P [f]) and the projection data (P

[
f̂
]
) generated by

the population of flies (f̂). After convergence the concentration of flies is an estimate of the
radioactive concentration.

shows how to exploit the marginal fitness of each fly during the final voxelisation to

produce high fidelity reconstructed volumes. In Section 5.5, we analyse the results

obtained using controlled test cases of increasing complexity. The final section provides

a discussion and concluding remarks.

5.2 Early evolutionary reconstruction

The Fly algorithm has been extended more recently to 3-D reconstruction in medical

imaging (‘medical flies’) [28, 152, 154, 155]. Figure 5.2 illustrates how the Fly

algorithm works in this case. Here, each fly emulates a radioactive emitter and has its

own illumination pattern. The projection data they create can be stored as a sinogram.

It is 2-D image made of a set of 1-D projections at successive angles. Figure 5.3

shows how the flies are orthogonally projected to generate parts of a sinogram. The

data created by all the flies
(

f̂
)
is aggregated to build the sinogram simulated by the

population
(
P

[
f̂
])
. It is used to compute a metrics useful in the calculation of the

fitness functions. At the start of the reconstruction, flies are randomly scattered in the

search space. The evolutionary algorithm optimises their positions to minimise the

PET Reconstruction 69

Fly 3

Fly 2
Fly 1

Angle

r

Projection, 0◦

Projection, 179◦

Projection, 135◦

Projection, 90◦

Projection, 45◦

Sinogram/Projections

90◦

179◦

0◦

45◦

135◦

Figure 5.3: From a population of flies (f̂) to an estimated sinogram
(
P

[
f̂
])
. Each fly has its

own projection data at different angles. Put together, they produce the estimated sinogram.

global fitness function. After convergence, P
[

f̂
]
(the sum of illumination patterns of

all the flies) closely matches the input data (P [f]) and the final population of flies (f̂)

gives an estimate of the unknown radioactive concentration (f).

To optimise the flies’ position, our algorithm relies on mutation and new blood operators.

Again, no cross-over is used as it is not particularly useful in the Fly algorithm for image

reconstruction. Let us consider two flies that are well positioned. If there are in two

separate areas, then it does not make sense to create a new fly in between as it would

probably lead to a bad fly. The new blood operator aims at maintaining some diversity

in the population. This is particularly important at the early stages of the reconstruction

to make sure no small object of low intensity are missed. Its principle is relatively

simple:

1. A bad fly is randomly selected using our Threshold selection (see below for an

explanation)

PET Reconstruction 70

2. Its projections are removed from P
[

f̂
]

3. The fly is replaced by a new fly randomly positioned in the search space, and

4. The projections of the new fly are added to P
[

f̂
]
.

See the next chapter for more information on mutation.

To evaluate the performance of successive populations toward more realistic images,

we use a distance measurement (E) between global images
(
P

[
f̂
])

resulting from

the photon emissions of the population of flies
(

f̂
)
and the real images (Y = P [f])

obtained from the sensors. It is the global fitness of the population:

f itness = E
(

f̂
)
=

1
w × h

Y − P
[

f̂
]

2

2 (5.1)

with E based on the `2-norm (also known as the Euclidean distance) between the

observations (Y) and the data simulated
(
P

[
f̂
])

by the flies; w and h the number of

pixels in Y and P
[

f̂
]
along the horizontal and vertical axis respectively; f̂ the fly

population (i.e. an estimate of the unknown f), which corresponds to the population of

flies; P is the projection operator, which projects flies to simulate an estimate of Y . The

algorithm minimises the fitness as follows:

f̂ = arg min
f ∈R2

(
1

w × h

Y − P
[

f̂
]

2

2

)
(5.2)

E measures the discrepancies between the observations and the data simulated from

flies. Lower values of E correspond to lower errors in the data simulated by the flies,

i.e. an image of the population f̂ that better matches the observations.

The fitness of each individual fly is calculated as its (positive or negative) contribution to

the collective fitness of the population (which is called ‘marginal fitness evaluation’) [28].

It is based on the “leave-one-out-cross-validation” principle. In practice, we measure

the population’s performance twice: once taking into account all the individuals (i.e. the

global fitness); and once without the fly (i) that is being assessed. The two values are

PET Reconstruction 71

then compared. This way, we know if a fly helps the population improve its performance

or not:

Fm(i) = E
(

f̂ \ {i}
)
− E

(
f̂
)

(5.3)

where: Fm(i) the marginal fitness of Fly i,
(

f̂ \ {i}
)
is the population without Fly i. The

marginal fitness makes it possible to detect if a fly is positively or negatively contributing

to the population’s performance:

• If the local fitness is positive, then the fly improves the population;

• If it is negative, then the fly reduces the population’s performance;

• If it is null, then the fly has no impact on the population’s performance.

Fm is a measure that is maximised by the algorithm. Note that due to the cooperation

between individuals, the Fly algorithm is able to minimise the global fitness. It is

computed in Fm only. During the evolution process, the number of flies whose fitness

is negative decreases; and the number of flies whose fitness is positive increases. The

Threshold Selection will get stuck when the algorithm converges (‘stagnation’). This

provides an excellent stopping criterion.

We are using this feature to introduce progressive multi-resolution processing [155].

The evolution starts with a relatively low number of flies. Each time stagnation is

detected, evolution is paused and a mitosis process is launched. Similar to biological

mitosis, for each fly a new fly is created by mutation and added to the population: This

doubles the population size. Evolution eventually resumes after the mitosis. The whole

evolution-mitosis process is stopped when after two successive mitosis the global fitness

does not improve anymore.

Once the optimisation loop ends, the solution has to be extracted and encoded. Contrary

to mainstream tomographic reconstruction algorithms whose output is a 3-D rectilinear

grid of voxels, our Fly-based approach delivers a set of 3-D points as an output. Deciding

which type of representation is more legible to the user is another story. Authors in

[143] shows the advantages of a representation based on discrete 3-D points. In order

to enable a genuine (/trusty) comparison between the outputs of the Fly algorithms and

PET Reconstruction 72

mainstream methods, we show in this research how to do the opposite way and build a

continuous representation of the Fly output. It also makes it possible to use a multitude

of image processing and visualisation tools developed for voxelised data.

To date, only the sub-population of flies with a positive fitness
(

f̂ +
)
was taken into

account to build the final estimate of the distribution of 3-D points [154]. It is sampled

into voxels. Data binning, also called bucketing, has been used so far to produce the

voxel map. The 3-D space is divided into a regular grid. Each element of the grid

is called a voxel. With data binning, the value of a voxel is given by the number of

flies that it contains. In this chapter, we study which flies have to be included in the

final result to improve accuracy, and how to best voxelise the fly data using implicit

modelling to further improve quantitative results.

5.3 Extraction of the solution

Traditionally, the answer to an optimisation problem modelled using artificial evolution

is the best individual of the whole population after convergence. Using the cooperative

co-evolution scheme of the Fly algorithm, the solution of the optimisation problem

is embedded within the population [102]. We use tomographic reconstruction as an

application example of the Fly algorithm but other applications could be considered. As

a proof-of-concept, below we will consider the 2-D case only. However, note that the

algorithm is actually developed for 3-D and the notations can be extended to account

for the Z-dimension.

Figure 5.4a shows the input data. It is the known observations stored as a sinogram. The

projection operator P is designed to project the population of flies
(

f̂
)
in order to simulate

the sinogram
(
P

[
f̂
])

according to the illustration in Figure 5.3. Figure 5.4c shows the

corresponding simulated sinogram after convergence of 12,800 flies. Figure 5.4b shows

the sinogram generated by flies
(

f̂ +
)
with a positive fitness only. We can observe that

the sinogram produced by all the flies is visually closer to the ground-truth than the

sinogram simulated by good flies only.

PET Reconstruction 73

(a) Known observations
(Y = P[f]).

(b) Estimation with the good
flies only

(
P
[

f̂ +
])

(NCC
with (a): 90.97%).

(c) Estimation with all the
flies

(
P
[

f̂
])

(NCC with (a):
99.19%).

Figure 5.4: Sinograms with 185 pixels per projection, 1st angle: 0°, angular step: 1°, and last
angle: 179°. Corresponding radioactive concentrations are given in Figure 5.5. The geometrical
relationship link between the simulated sinogram

(
P

[
f̂
])

from the position of flies (f̂) is given
in Figure 5.3.

To measure the level of similarity between two images I1 and I2 of m × n pixels, we use

the normalised cross-correlation (NCC):

NCC(I1, I2) =
1

m × n

i<m∑
i=0

j<n∑
j=0

(
I1(i, j) − Ī1

) (
I2(i, j) − Ī2

)
σ1σ2

(5.4)

with Ī1 and Ī2 the average values of all the pixels in I1 and I2 respectively, such as

Ī =
1

m × n

i<m∑
i=0

j<n∑
j=0
|I(i, j)| (5.5)

and σ1 and σ2 the standard deviations of all the pixel values in I1 and I2 respectively,

such as:

σ =

√√√√
1

m × n

i<m∑
i=0

j<n∑
j=0

[
I(i, j) − Ī

]2 (5.6)

Due to the stochastic nature of the algorithm, 15 evolutionary reconstructions have

been performed in total to provide statistically meaningful results. The image simulated

using both good and bad flies leads to a NCC of 99.27% ±0.06%. The image simulated

by the good flies only has a NCC of 91.40% ±0.75%. In other words, keeping the flies

with a negative fitness leads to more accurate and more stable results.

The concentration of flies is then sampled into voxels to generate the tomography volume.

For data binning, we considered a fly as a Dirac delta function (δ): The value of each

PET Reconstruction 74

(a) Ground-truth (f).
It is unknown.

(b) Concentration
estimation with all the
flies

(
f̂
)
(NCC with

(a): 82.74%).

(c) Concentration
estimation with
the good flies only(

f̂ +
)
(NCC with (a):

82.24%).

Figure 5.5: Tomographic reconstruction using 12,800 flies. Corresponding sinograms are
given in Figure 5.4. The geometrical relationship link between the position of flies (f̂) and the
simulated sinogram (P

[
f̂
]
) is illustrated in Figure 5.3.

82

84

86

88

90

92

94

δ
(all the flies)

δ
(good flies only)

N
C
C

(i
n
%
)

Figure 5.6: Similarity metrics (NCC) between the ground-truth (f) and the images of the fly
population (f̂ and f̂ +) using the binning method for voxelisation. Due to the stochastic nature of
the evolutionary reconstruction, the reconstruction is performed 15 times to produce statistically
meaningful results.

voxel is incremented for each fly it contains. Figure 5.5 shows the ground-truth image

and the corresponding reconstructions (qualitative or visual validation). Figure 5.6

presents the NCC between the ground-truth and the reconstructed images (quantitative

validation). Both figures complement each other and show that reconstructions including

flies with negative fitness generally produce images that are visually and numerically

closer to the ground-truth. In past papers, we usually kept good flies only as it resulted

into visually sharper reconstructed images.

PET Reconstruction 75

In order to measure how sharp images are, we compute the sum of gradient magnitudes

for each reconstruction:

Sharpness(I) =
w−1∑
i=0

h−1∑
j=0
|∇I | (i, j) (5.7)

It is 4120 ±320 with good flies only; 4088 ±497 with all the flies. Removing negative

flies leads to sharper reconstructions. Note that we use other metrics below to ascertain

this assumption as Eq. 5.7 is sensitive to noise.

Removing all the flies with a negative fitness is not appropriate as the Fly algorithm

is based on a co-operative scheme. When a fly is killed, i) its contribution to the

population is removed, ii) the global fitness changes, iii) which also modifies the local

fitness of every other fly. In other words, when any fly is killed, a good fly may become

bad, and vice versa, a bad fly may become good. Because of this phenomenon, we can

eventually say that bad flies have to be included in the final solution. This is why the

NCC of the whole population (including bad and good flies) is better on average than

the sub-population of good flies only.

Figure 5.7 corresponds to profiles (also known as intensity profiles) extracted from

white lines in Figure 5.5. In the imaging context, a profile corresponds to a set of

intensity values taken from regularly spaced points along an arbitrary line segment

within the image. It is often plotted as a 1-D function. We quantify how steep edges

are using the rise time from 10% to 90% and fall time from 90% to 10%. They are

useful metrics used in electronics and signal processing to quantify the time taken by

an approximation of a step function to change from a specified extremum to another

specified extremum [9]. In our context, we can consider the profiles as a succession of

step functions. Here these metrics assess how many pixels are required to change from

the minimum (background: no radioactivity) to maximum (hot rodes: radioactivity)

and vice versa. In the ideal case, they are perfect step functions, and the rise time and

fall time should be close to 1 pixel. In real application such as PET reconstruction,

there is blur: the values are likely to be greater than 1. There is also noise in real data,

which could add a bias in the numerical value. To account for noise, only the samples

within 10% to 90% of the whole interval of the signal are considered. The values for

each edge of every profile are summarised in Table 5.1. Edges are usually steeper

PET Reconstruction 76

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

P
ix
el

in
te
ns
it
y

Distance (pixels)

Ground-truth
Reconstruction (all the flies)

Reconstruction (good flies only)

Figure 5.7: Intensity profiles corresponding to the white lines in Figures 5.5a, 5.5b and 5.5c.

Table 5.1: Image and profile comparison between the ground-truth (Figure 5.5a) and the
evolutionary reconstructions (Figures 5.5b, 5.5c, 5.12, and 5.15). Numerical values in bold
characters are the ones closest to the ground-truth.

NCC Sharpness Rise time Fall time
∑

Profile
Ground-truth N/A% 9443 2.22 2.35 29.33
All the flies 82.74% 3857 4.17 3.44 32.13

Good flies only 82.24% 3931 3.15 3.08 14.34
Metaballs 89.69% 5150 3.90 3.90 31.96
Gaussian 92.79% 6303 3.57 3.36 31.63

for the ground-truth and the reconstruction using the good flies only. The transition

from extreme values is twice as large for the reconstruction with all the flies than the

ground-truth.

In addition we check the total sum of values of each profile. It is: 29.33 for the ground-

truth; 29.09 ±4.34 for all the flies; 21.88 ±4.34 for the good flies only. It indicates that

there is approximately as much information in the profiles of the ground-truth and all

the flies, and some information is missing in the profile of the good flies only.

The results above can be summarised as follows:

1. Edges are much more blurred when bad flies are included.

PET Reconstruction 77

2. Gaps appear when bad flies are not included.

It could be seen as a dilemma,

• Bad flies should be excluded to preserve edges;

• Bad flies should be included to avoid holes in the data.

In the next section of this chapter, we demonstrate how to solve this dilemma: Including

bad flies to produce a more accurate image, whilst still retaining its sharpness.

5.4 Voxelisation using implicit modelling

We saw in the previous section that the solution that is extracted should contain all the

flies, including the ones with a negative marginal fitness. Previously the contribution

of each fly in the final volume was one and it was assigned to a single voxel. It could

lead to noise. It is not uncommon to post-process tomographic images with a low-pass

convolution filter. However, with our pixel/voxel-less approach it is possible to use the

internal data of the Fly algorithm, here the flies’ position, to remove the need for a

smoothing filter. Below we demonstrate how to spread this contribution over several

voxels using implicit modelling.

5.4.1 Definition

Implicit modelling is a CG technique used to define the surface of geometric objects

using control primitives (e.g. points or line segments) and a few equations [23]. Blobby

Molecules, Metaballs and Soft Objects are well known types of implicit modelling

techniques. In computer graphics, it consists of the steps below:

1. Positioning control primitives (usually points or line segments) in the 3-D space;

PET Reconstruction 78

0

2

4

6

8

(a)

1 1 1 1 1

1 1 1 1 1

1 1 1 1 1

0

0.2

0.4

0.6

0.8

1

(b)

0

2

4

6

8

(c)

1
1

1

1
1

1 1 1 1 1

1 1 1 1

3

3

3 3

3

3 3

3

3 3

3

3 3

3

35

5

5 5

5

5 5

5

5 5

5

5 5

5

5

7 7 7 7 7

7 7 7 7 7

7 7 7 7 7

9 9 9 9 9

9 9 9 9 9

9 9 9 9 9

0

2

4

6

8

(d)

Figure 5.8: 3-D density field using 15 points as control primitives using Eq. 5.9. When the
particles are in close proximity, their density fields are joining each other smoothly without
discontinuity. (a) and (c): cross-sections of the density field at different heights. (b) and (d)
corresponding isolines. See Figure 5.9 for corresponding 3-D isosurfaces.

2. Computing the corresponding density field using a given equation (e.g. Eqs. 5.8

or 5.9) (see Figures 5.8a and 5.8c);

3. Selecting a threshold value (see Figures 5.8b and 5.8d);

4. Reconstructing the isosurface corresponding to the threshold using either

raycasting [95] or marching cubes [101] (see Figure 5.9).

Blobby Molecules [23] uses the electron density distribution of the hydrogen atoms

(Gaussian Distribution):

f (r) = ae−br2
(5.8)

b is related to the standard deviation of a Gaussian curve, a is the height of the curve,

and r is the distance to the atom centre (see Figure 5.10).

PET Reconstruction 79

(a) t = 1 (b) t = 1.5 (c) t = 3

(d) t = 5 (e) t = 7 (f) t = 9

Figure 5.9: Implicit surfaces corresponding to the density field defined with the 15 metaballs
of Figure 5.8. Triangle meshes are extracted from the density field using the Marching Cubes
algorithm [101] with various threshold (t) values.

For Metaballs [118], the density field is modelled using a piecewise function:

f (r) =


a

(
1 − 3r2

b2

)
∀r ∈ [0; b/3]

3a
2

(
1 − r

b

)2 ∀r ∈ [b/3; b]

0 otherwise

(5.9)

Figure 5.11 illustrates how the three sub-functions from Eq. 5.9 are combined to produce

a smooth falling curve. The influence of the parameters a and b are presented in Fig 5.10.

a is a scaling factor, and b is the maximum distance that a control primitive contributes

to the field.

The value of the density field at a any point [x, y, z] is given by:

F(x, y, z) =
N∑

i=1
f (

√
(x − xi)

2 + (y − yi)
2 + (z − zi)

2) (5.10)

with N the number of control points and [xi, yi, zi] the position of the i-th control point.

When two particles are close to each other, their density fields are merging in a smooth

manner (see Figure 5.8c). When they are sufficiently far apart, their density fields stay

separated. Evaluating F(x, y, z) becomes computationally expensive when the number

of control primitives increases. To limit this effect, the field function in Eq. 5.9 does

not make use of the exponential and it is bounded as f (r) does not contribute much to

PET Reconstruction 80

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5

f(
r)

r

Blobby molecules, b = 1
Blobby molecules, b = 3

Metaballs, b = 1
Metaballs, b = 3

(a) With a = 1.

0

0.5

1

1.5

2

2.5

3

0 0.5 1 1.5 2 2.5 3 3.5

f(
r)

r

Blobby molecules, a = 1
Blobby molecules, a = 3

Metaballs, a = 1
Metaballs, a = 3

(b) With b = 3.

Figure 5.10: Density field control functions from Eqs. 5.8 and 5.9. Parameters a and b are used
to control the height and the width of the curve. For a given value of b, the shape of the curve
can be more or less wide depending on the density field function used.

PET Reconstruction 81

2a/3

a

−0.5

0

0.5

1.5

b/3 b0 0.5 1.5 2 2.5 3.5 4

a
(
1− 3r2

b2

)

3a
2

(
1− r

b

)2

0

Figure 5.11: Decomposition of f (r) from Eq. 5.9 with a = 1 and b = 3. Eq. 5.9 is a piecewise
function with 3 sub-functions that join each other in b/3 and b to produce a smooth falling
curve.

the field when r increases. It makes density fields using Metaballs faster to compute

than those with Blobby molecules.

Other field functions, such as Soft Objects [169], are of course possible but will not

be investigated in this research. We focus here on Blobby Molecules as they rely on

Gaussian kernels; and on Metaballs as they are well known in the CG community.

5.4.2 Voxelisation using Metaball as density field function

The stochastic nature of the evolutionary algorithm leads to noisy PET volumes (see

Figures 5.5 and 5.7). To limit noise, i) voxelised volume could be post-processed by a

low-pass filter, it would lead to a loss of information, or ii) more flies can be used in the

reconstruction, the computing time will significantly increase.

The aim of the Fly algorithm is to estimate the radioactive concentration. As an output

it produces a ‘point cloud’. This point cloud can be described as a density field. Instead

of the δ function, an implicit function (f (r)) is used: Here, a fly corresponds to a

particle surrounded by a density field. Using Equations 5.9 and 5.10, the influence of

the particle decreases with the distance from the particle location.

PET Reconstruction 82

Figure 5.12: Voxelisation of the fly population (f̂) using 12,800 metaballs (NCC with ground-
truth: 89.69%) (see Figure 5.5a for the corresponding ground-truth). The same fly population
as in Figure 5.5b was used.

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

P
ix
el

in
te
ns
it
y

Distance (pixels)

Ground-truth
Reconstruction (all the flies)

Metaballs (all the flies)

Figure 5.13: Intensity profiles corresponding to the white lines in Figures 5.5a, 5.5b and 5.12.

Figure 5.12 shows the reconstruction results when Metaballs are used. The NCC with

the ground-truth is 89.69% in this case. Profiles corresponding to the ground-truth,

all the flies, and the Metaballs are shown in Figure 5.13. The total sum of values of

the profile for metaballs is 31.76 ±3.44, which is relatively close to the corresponding

value in the ground-truth (29.33). The average rise time and fall time between 10% and

90% are both 3.9 pixels. It indicates that the sharpness around large objects is still not

well recovered. It is because a fly is spread over several voxels. As a consequence, flies

leak at edges, which leads to unsharpness. However, the overall sharpness metrics (see

Eq. 5.7) is 4964 ±429. This is because smaller structures are recovered. In Figure 5.14,

we can see that the reconstructions are consistent during 15 different runs. The NCC

PET Reconstruction 83

82

84

86

88

90

92

94

δ
(all the flies)

δ
(good flies only)

Metaballs
(all the flies)

N
C
C

(i
n
%
)

Figure 5.14: Similarity metrics (NCC) between the ground-truth (f) and the images of the fly
population using the binning method and Metaballs for voxelisation.

with 12,800 flies to generate a density field is much better than using our previous

voxelisation method based on binning.

5.4.3 Adaptive Gaussian kernels to exploit the fly’s individual

knowledge

Although the images produced using Metaballs are quantitatively much better than

using a naïve approach based on binning (e.g. noise reduction), the final output could

be better if edges between areas of different concentrations could be preserved. In this

section, we will use Gaussian kernels instead of Metaballs. For each fly, the spread of

the Gaussian function will depend on the fly’s marginal fitness. This is because we can

consider this numerical value as a level of confidence in the fly’s position. We chose

Gaussian kernels as the Gaussian function is very well known and it is used for Blobby

Molecules [23] (see Eq. 5.8).

The total contribution of every fly to the final volume is 1. When we were using (δ),

each fly was embedded into one voxel only. Using metaballs, it was spread over several

voxels. In this case it is not straightforward to normalise the fly’s contribution to account

for its performance by modulating a and b in Eq. 5.9 depending on Fm. It would require

to compute for each fly: ∫ b

0
f (r) dr ∀ a & b (5.11)

PET Reconstruction 84

As an alternative, we consider each fly as a Gaussian kernel whose standard deviation is

linearly proportional to Fm. The greater Fm, the more accurate the fly position. The

lower Fm, the lower the trust in the fly position.

fi(r) in Eq. 5.10 becomes:

fi(x, y, z, σi) =
1
Vi

exp

(
−

(
(x − xi)

2

2σ2
i

+
(y − yi)

2

2σ2
i

+
(z − zi)

2

2σ2
i

))
(5.12)

with

Vi = 2πσ3
i ×
√

2π (5.13)

and

σi =σm + (σM − σm) ×

(
1 −

Fm(i) −min(Fm)

max(Fm) −min(Fm)

)
(5.14)

where (x, y, z) is the position of the voxel in the object space, (xi, yi, zi) is the position

of Fly i in the object space, σi is the standard deviation for Fly i, σm and σM are the

lowest and largest possible standard deviations, and min(Fm) and max(Fm) the smallest

and biggest marginal fitness of flies. Vi is used to ensure that the total contribution of

each fly to the final volume is 1.

We can see the corresponding reconstruction in Figure 5.15. In this case the NCC with

the ground-truth is 92.79%. It looks visually closer to the ground-truth than any of the

previous reconstructions. The average rise time and fall time in the profile are 3.57 and

3.36 pixels respectively (see Figure 5.16). The overall sharpness metrics is 5710 ±309,

which is better than any of the previous values. The total sum of values of the profile

Figure 5.15: Voxelisation of the fly population (f̂) using 12,800 gaussian kernels (NCC with
ground-truth: 92.79%) (see Figure 5.5a for the corresponding ground-truth). The same fly
population as in Figures 5.5b and 5.12 was used.

PET Reconstruction 85

0

0.5

1

1.5

2

0 10 20 30 40 50 60 70

P
ix
el

in
te
ns
it
y

Distance (pixels)

Ground-truth
Reconstruction (all the flies)

Gaussian (all the flies)

Figure 5.16: Intensity profiles corresponding to the white lines in Figures 5.5a, 5.5b and 5.15.

for Gaussian kernels is 32.18 ±2.36, which is also close to the corresponding value in

the ground-truth. Figure 5.17 shows that the NCC for 15 reconstructions between the

new reconstruction and the ground-truth is further improved. Results are consistent and

the NCC is 10% higher than our previous method based on binning.

One of our main aims in this chapter was to demonstrate that more sophisticated

voxelisation in the Fly algorithm could lead to better reconstructions. In the test-case

considered so far, the final reconstruction is closer to the ground-truth and edges have

been preserved. The fly population is now considered as a density field. The spread

of Gaussian kernels is individually modulated depending on the marginal fitness of

each fly. The outcome is a resolution-free model that is truly scalable, e.g. for a given

reconstruction the noise level does not increase with the number of voxels.

5.5 Evaluation and comparative study

In this section, we evaluate our method using controlled test-case of increasing

complexity. We also compare our reconstructions with those obtained with FBP and

OSEM. The first step is to compare our various voxelisation methods in term of speed

PET Reconstruction 86

82

84

86

88

90

92

94

δ
(all the flies)

δ
(good flies only)

Metaballs
(all the flies)

Gaussian kernels
(all the flies)

N
C
C

(i
n
%
)

Figure 5.17: Similarity metrics (NCC) between the ground-truth (f) and the images of the fly
population using the binning method, Metaballs and Gaussian kernels for voxelisation.

and accuracy (see Section 5.5.1). The second step is to reconstruct volumes using a

degraded sinogram from the same phantom to increase the problem’s complexity (see

Section 5.5.2). Finally, we try the reconstruction methods on a more anatomically

realistic phantom (see Section 5.5.3).

5.5.1 Hot rode phantoms (ideal case)

Figure 5.18 is an illustration of the reconstructions obtained at different stages of the

algorithm with the sampling techniques presented above. It can be seen that using the

local fitness to adapt the width and height of Gaussian kernels for each fly provide

the most visually realistic results and also the most accurate results in term of NCC.

Computations were performed on HPC Wales’ supercomputer using a single node with

an Intel Xeon Westmere X5650 @ 2.67 GHz processor [79, 82]. A quick succession of

mitosis happens in less than 5 minutes, when the NCC reaches a threshold. Optimal

results were obtained in 8:41 minutes using 6,400 flies (NCC of 92.76%). More

processing time did not yield to better results. In fact, using 12,800 flies (17:57 minutes)

leads to results that are comparable to using 3,200 flies (4:50 minutes): NCC of 91.67%

and 91.33% respectively. Also, it shows the benefit of implicit modelling over binning.

About 18 minutes are required to reach a NCC of 80% with binning, only 2 with implicit

modelling.

PET Reconstruction 87

All the flies Good flies only Metaballs Gaussians

N=50
TS=00:02 NCC=4.5% NCC=4.5% NCC=6.5% NCC=4.7%

N=100
TS=00:06 NCC=16.29% NCC=16.57% NCC=23.37% NCC=17.57%

N=200
TS=00:13 NCC=16.9% NCC=17.63% NCC=24.16% NCC=22.79%

N=400
TS=00:31 NCC=27.68% NCC=30.92% NCC=40.78% NCC=41.17%

N=800
TS=00:52 NCC=42.62% NCC=54.72% NCC=64.45% NCC=68.9%

N=1600
TS=02:12 NCC=60.69% NCC=75.23% NCC=81.17% NCC=85.93%

N=3200
TS=04:50 NCC=71.95% NCC=85.78% NCC=88.52% NCC=91.67%

N=6400
TS=08:41 NCC=78.27% NCC=84.75% NCC=90.39% NCC=92.76%

N=12800
TS=17:57 NCC=79.43% NCC=82.59% NCC=88.33% NCC=91.33%

Figure 5.18: Evolutionary reconstructions of Figure 5.4a at successive resolutions (with N the
number of flies and TS the time-stamp in minutes) using an Intel Xeon Westmere X5650 @
2.67 GHz processor.

PET Reconstruction 88

Using our naive approach as in [155, 154], the NCC would have been limited to 78.27%

or 84.75% only. By exploiting the local fitness of flies to adapt Gaussian kernels, the

image quality improves by about 10%. At similar levels of quality, the computing time is

significantly reduced. For example, with our initial voxelisation method 17:57 minutes

were required to obtain 82.59%. Only 2:12 minutes are needed to reach an even better

NCC with adaptive Gaussian kernels.

5.5.2 Hot rode phantoms (low number of projections & noise)

(a) Observations (known
data).

(b) Estimation (data
simulated with all the flies)
(NCC with (a): 99.63%).

Figure 5.19: Sinograms from Figure 5.20a corresponding to the hot rode phantom with a low
resolution and with noise. Images with 185 pixels per projection, 1st angle: 0°, angular step: 5°,
and last angle: 175°.

(a) Actual noisy
phantom (NCC
with ground-truth:
73.97%).

(b) Reconstruction
with Gaussians
(NCC with ground-
truth: 85.92%).

(c) Reconstruction
with FBP (NCC
with ground-truth:
72.39%).

(d) Reconstruction
with OSEM using
18 iterations and
2 subsets (NCC
with ground-truth:
78.50%).

Figure 5.20: Tomographic reconstructions of the sinogram in Figure 5.19a corresponding to the
hot rod example with a low number of angles and noise (see Figure 5.5a for the corresponding
ground-truth).

To assess the algorithm in more difficult conditions, the number of angles in the sinogram

is lowered and noise is included (see Figures 5.19 and 5.20a). The initial sinogram

in Figure 5.4a was made of 180 rows with an angular step of 1°. The new sinogram

contains 37 rows and the angular step is 5°. The sinogram estimated by the final

population of flies (Figure 5.19b) is almost perfect (NCC of 99.63%). Reconstructions

with FBP and OSEM are also considered as this test case is more realistic due to the

noise in the input sinogram. Figure 5.20 shows the corresponding reconstructions. Our

PET Reconstruction 89

Table 5.2: NCC between the ground-truth (Figure 5.5a) and the reconstructions of Figure 5.20.
Numerical values in bold characters are the ones closest to the ground-truth.

Reconstruction type NCC
All flies 79.79% ± 1.13%

Good flies only 78.94% ± 1.26%
Metaballs 83.82% ± 1.06%
Gaussian 85.92% ± 0.60%

FBP 72.39%
OSEM 78.50%

40

50

60

70

80

90

100

20 40 60 80 100 120

N
C

C
(i

n
%

)

Iteration

One subset
Two subsets
Four subsets

Figure 5.21: Hot rode phantoms (low number of projections & noise): Evolution of the NCC
values between the ground-truth and images reconstructed at successive iterations of the OSEM
method.

evolutionary reconstruction combined with our voxelisation method based on implicit

modelling seem to provide more visually accurate results in this case than FBP and

OSEM.

For a quantitative evaluation, Table 5.2 summarises the NCC values between the ground-

truth (see Figure 5.5a) and the reconstructions of Figure 5.20. It shows that the Fly

algorithm with density fields, both with Metaballs and Gaussian kernels, outperforms

the traditional FBP and OSEM algorithms when the input data is of low resolution and

noisy. One of the reasons of the outstanding performance of the Fly algorithm in the

presence of noise is the stochastic nature of artificial evolution.

Figure 5.21 shows the NCC values between the ground-truth and images reconstructed

using the OSEM algorithms with 1, 2, and 4 subsets for 128 successive iterations.

PET Reconstruction 90

The NCC quickly increases then slowly decreases. Automatically determining how to

stop the OSEM algorithm is still an open research question. Figure 5.22 presents our

evolutionary reconstructions at successive resolutions for this test case. It shows the

same pattern as previously observed. The algorithm is relatively quick to converge, then

it slows done and stagnate. Only 40 seconds are required to reach a NCC of 80% with

implicit modelling. In 7 minutes this threshold is not reached with binning.

5.5.3 Cardiac phantoms (with noise)

In Figure 5.23a, we use another numerical phantom that is more anatomically realistic.

It corresponds to cardiac PET data. Noise is included in the phantom (see Figure 5.23b)

to produce the sinogram of Figure 5.24a. Again, the sinogram estimated by the final

population of flies (Figure 5.24b) is almost perfect (NCC of 99.87%). FBP, OSEM and

an evolutionary reconstruction are given in Figure 5.23. In this test case, the NCCs of

all the reconstructions are within less that 2% from each other (see Table 5.3).

We also assess reconstructions generated using the OSEM algorithms with 1, 2, and 4

subsets for 128 successive iterations (see Figure 5.25). The NCC between the ground-

truth and images reconstructed with OSEM quickly increases then slowly decreases.

Figure 5.26 presents our evolutionary reconstructions at successive resolutions for this

test case. It shows again the same pattern as previously observed. The algorithm is

relatively quick to converge, then it slows done and stagnate. 3 minutes are needed to

reach a NCC of 90% with implicit modelling; 28 minutes with binning.

5.6 Conclusion

In the research presented here, we addressed the complex problem of medical

tomographic reconstruction using evolutionary computing, by transposing the Fly

Algorithm technique originally developed in a stereo-vision context for robotics. In

classical EAs at the end of the algorithm the best individual is extracted and considered

the solution of the optimisation problem, while all the rest of the population is discarded.

PET Reconstruction 91

Number
All the flies Good flies only Metaballs Gaussians

Time-stamp
of flies (in MM:SS)

50 00:01

NCC=8.82% NCC=8.82% NCC=11.83% NCC=7.39%

100 00:02

NCC=9.97% NCC=9.97% NCC=15.10% NCC=13.93%

200 00:06

NCC=17.34% NCC=18.37% NCC=25.24% NCC=22.98%

400
00:12

NCC=29.92% NCC=35.13% NCC=4.14% NCC=37.49%

800 00:24

NCC=45.71% NCC=58.52% NCC=67.77% NCC=64.56%

1600 00:42

NCC=60.05% NCC=74.57% NCC=80.55% NCC=81.13%

3200 01:24

NCC=68.65% NCC=80.16% NCC=84.27% NCC=86.00%

6400 03:21

NCC=71.90% NCC=79.88% NCC=84.13% NCC=86.73%

12800 06:51

NCC=74.40% NCC=77.73% NCC=83.42% NCC=86.94%

Figure 5.22: Evolutionary reconstructions of Figure 5.19a at successive resolutions.

PET Reconstruction 92

(a) Ground-truth. (b) Actual noisy
phantom (NCC with (a):
91.12%).

(c) Binning with all the
flies (NCC with (a):
91.44%).

(d) Reconstruction with
Gaussians (NCC with
(a): 96.14%).

(e) Reconstruction with
FBP (NCC with (a):
96.81%).

(f) Reconstruction
with OSEM using
7 iterations and
4 subsets (NCC with
(a): 97.07%).

Figure 5.23: Tomographic reconstructions of the sinogram in Figure 5.24a corresponding to
the cardiac example, i.e. a more anatomically realistic sinogram with noise.

The Fly Algorithm, which is a cooperative co-evolution algorithm relies on a different

philosophy, where each individual is a part of the solution. An individual corresponds to

a 3-D point. The whole population is a representation of the reconstructed tomographic

images. The evaluation of the performance of each individual is performed using a

fitness function based on the leave-one-out-cross-validation method. If the fitness is

positive, then the fly is improving the performance of the population; if it is negative, it

is deteriorating the performance of the population. In the nuclear medicine context, the

concentration of flies will be an estimation of the radioactive concentration.

In our previous developments we were only keeping the flies with a positive fitness.

Binning (also call ‘bucketing’) was used to convert this point cloud into a discrete 3-D

volume made of voxels: The space was divided in a regular 3-D grid and the voxel

intensity corresponded to the number of good flies located into it. The local fitness

of flies was not exploited during the voxelisation. No or very little comparison with

traditional tomographic reconstruction algorithms in nuclear medicine was provided.

PET Reconstruction 93

Table 5.3: NCC between the ground-truth and the reconstructions in the case of the cardiac
example (Figure 5.23). Numerical values in bold characters are the ones closest to the
ground-truth.

Reconstruction type NCC
All flies 90.75% ± 0.92%

Good flies only 86.78% ± 1.63%
Metaballs 93.97% ± 0.68%
Gaussian 95.39% ± 0.45%

FBP 96.81%
OSEM 97.07%

(a) Observations (known data). (b) Estimation (data simulated with all
the flies) (NCC with (a): 99.87%).

Figure 5.24: Sinograms of the cardiac example from Figure 5.23a. Images with 185 pixels per
projection, 1st angle: 0°, angular step: 1°, and last angle: 179°

40

50

60

70

80

90

100

20 40 60 80 100 120

N
C

C
(i

n
%

)

Iteration

One subset
Two subsets
Four subsets

Figure 5.25: Cardiac example: Evolution of the NCC values between the ground-truth and
images reconstructed at successive iterations of the OSEM method.

PET Reconstruction 94

Number
All the flies Good flies only Metaballs Gaussians

Time-stamp
of flies (in MM:SS)

50 00:03

NCC=21.18% NCC=22.94% NCC=34.03% NCC=23.64%

100 00:10

NCC=36.01% NCC=37.40% NCC=52.24% NCC=43.52%

200 00:21

NCC=44.11% NCC=48.59% NCC=64.38% NCC=58.84%

400
00:46

NCC=56.42% NCC=63.89% NCC=76.35% NCC=73.65%

800 01:29

NCC=72.45% NCC=77.55% NCC=87.58% NCC=86.88%

1600 03:10

NCC=78.80% NCC=82.07% NCC=90.47% NCC=91.03%

3200 07:25

NCC=86.80% NCC=78.38% NCC=92.54% NCC=93.47%

6400 16:30

NCC=89.36% NCC=78.20% NCC=92.99% NCC=94.57%

12800 28:06

NCC=90.14% NCC=81.31% NCC=93.47% NCC=95.94%

Figure 5.26: Evolutionary reconstructions of Figure 5.24a at successive resolutions.

PET Reconstruction 95

We saw in this chapter that keeping the good flies only does not necessarily lead to

the best quantitative results: Retaining the flies with a negative fitness yields more

accurate results. The natural output of the Fly algorithm is a population of 3-D points.

Here, we also exploit the point cloud one step further and use implicit modelling to

voxelise the data from a density field. To this end, this research has investigated the

use of Metaballs and Gaussian kernels - where the height and width of each Gaussian

is computed to take into account the corresponding fly’s performance. During the

evolution, flies are discrete (from a numerical point of view) particle emitters: Flies

are trying to replicate the observed data (what actually happened). At the end of the

reconstruction, i.e. after convergence and during the extraction of the solution, each fly

is considered as a given realisation of a stochastic process: A fly is an approximation

of a random variable and, as such, can be modelled as a density field. It is actually

intuitive to prefer implicit modelling over data binning as this is these stochastic events

that we are actually trying to estimate. The marginal fitness can be considered as a

confidence level in the fly’s position. We demonstrate here that it is possible to take

advantage of the fitness of each individual after the optimisation process to modulate

the spread of flies depending on their respective performance. It improves quantitative

results in all our test-cases by more than 10% in term of NCC compared to binning. A

more accurate reconstruction is also achieved using less computational power. In this

chapter, our reconstructions are also compared with those of FBP and OSEM, which are

traditionally used in nuclear medicine. Using implicit modelling is used for voxelisation,

more accurate results can be achieved in a much smaller amount of time than using

binning in all our test-cases. Results show that density fields using Gaussian kernels

lead to similar or better reconstructions than OSEM in term of numerical accuracy

depending on the input data.

One key benefit of our method is its reliability: When an optimum solution has been

found, increasing the computing time does not alter the reconstruction accuracy in a

negative way as in OSEM. However, more work is needed to fully evaluate the method

to better understand its limitations and how they compare with OSEM. More clinically

realistic data would be required. The behaviour of the algorithm with respect to different

amount of noise levels needs also to be evaluated. Future work will also include

investigating the use of the latest advances in signal processing such as compressed

sensing (also known as compressive sensing, compressive sampling, or sparse sampling).

PET Reconstruction 96

The aim would be to increase the accuracy (reducing noise in the reconstructed images,

whilst preserving edges), and also to reduce the computing time. The use of implicit

modelling has also the potential to increase the pixel resolution of reconstructed images.

Indeed, the sampling rate can be altered in Eq. 5.10 to increase the number of voxels

in the output without introducing noise. Although it would need to be validated and

compared with similar reconstructions by OSEM.

PET Reconstruction 97

Chapter 6

Mutation Operators

6.1 Introduction

This chapter builds on the previous chapter. Our work is based on a Cooperative

Co-evolution Algorithm – the Fly algorithm – in which individuals correspond to 3-D

points. The Fly algorithm relies on mutation operators and a new blood operator to

ensure diversity in the population. Our method heavily relies on the selection process,

mutation operators and a diversity mechanism to find the best individuals’ position.

A large mutation variance is often initially used to avoid local maxima, and then

progressively reduced to refine the results. Another approach is the use of adaptive

operators. However, very little research on adaptive operators in the Fly algorithm

has been conducted. We address this deficiency and propose 4 different fully adaptive

mutation operators in the Fly algorithm: Basic Mutation, Adaptive Mutation Variance,

Dual Mutation, and Directed Mutation. Due to the complex nature of the search space

(kN-dimensions, with k the number of genes per individuals and N the number of

individuals in the population), we favour operators with a low maintenance cost in term

of computations. Their impact on the algorithm efficiency is analysed and validated on

PET reconstruction.

We favour self-adaptive schemes keeping in mind that one of the main requirements is

to minimise the administration cost in term of calculation. In this chapter, we study

the behaviour of various mutation operators in our CCEA based on the Fly algorithm

in PET reconstruction. The general principles of the evolutionary reconstruction for

PET reconstruction is given in Section 2.4. The study includes a new operator called

Directed Mutation. Section 6.2 defines the mutation operators, which are used in

98

our implementation. The results of these operators are analysed in Section 6.3 using

two controlled test cases: with/without noise. The chapter ends with a conclusion in

Section 6.4.

6.2 Varying mutation operators in the Fly algorithm

Our implementation relies on mutation to create better flies. The aim of the mutation

operators is to create new flies in the neighbourhood of good flies. Note that new blood

is also used to preserve a minimum level of diversity in the population. The following

steps are necessary to use a mutation operator:

1. A bad fly is selected using the Threshold Selection.

2. Its projections are removed from
(
P
[

f̂
])
.

3. A good fly is selected using the Threshold Selection.

4. The bad fly is replaced by the good fly.

5. The position of the newly created fly is altered by random changes.

6. The projections of the mutated fly are computed.

7. These projections are added to
(
P
[

f̂
])
.

The only step which is different, depending on the mutation operator used, is 5. Ideally,

the amount of random change needs first to be set to a large value to better explore

the search space. However, a constant large mutation variance will lead to blurred

reconstructed volumes. As a consequence, the mutation variance has to be gradually

reduced. The usefulness of adaptive mutations in evolutionary algorithms is a well

established [12, 34, 50, 119]. Such techniques have been proven effective in various

cases, depending on the fitness function and the genetic engine used. However, complex

schemes for the adaptivity of the mutation operator have a computational cost that

may not be negligible. More simplistic schemes can actually perform better due to

Mutation Operators 99

lower computational needs [41]. Our main motivation is to investigate the use of such

operators in the Fly algorithm. The aim is to determine which sets of operators are the

best in term of accuracy of the results, and amongst them which one is the best in term

of computational cost. Destroying a bad fly and creating new and better ones has to be a

fast process because it is performed at a much higher rate in the Parisian approach than

in classical EAs. This is because the solution to the optimisation problem in our case is

the whole population [7] rather than the best individual as in classical EAs. Using the

best set of mutation operators to create new flies is therefore important.

In Vidal et al initial implementation, only the Dual mutation was used [155]. We added

three other adaptive mutation operators that are automatically tuned without any human

intervention. An iteration of the evolution loop is given in Algorithm 3. An individual

has 9 genes:

1. x, the fly’s position along the x-axis,

2. y, the fly’s position along the y-axis,

3. z, the fly’s position along the z-axis,

4. PbasicMut , the probability of the basic mutation operator,

5. PadaptiveMut , the probability of the adaptive mutation operator,

6. PdualMut , the probability of the dual mutation operator,

7. PdirectedMut , the probability of the directed mutation operator,

8. Pnew_blood , the probability of the immigration/new blood operator,

9. σ, the mutation rate associated with the fly (it is used by the basic and directed

mutation operators).

The mutation operators are described below. They share the same procedure to apply

the actual random changes (see Algorithm 4).

Mutation Operators 100

6.2.1 Basic mutation

The mutation variance can be subject to an adaptive pressure itself and be self-

adapted [12]. In our implementation the probability of all the operators (PbasicMut ,

PadaptiveMut , PdualMut , PdirectedMut , and Pnew_blood) is encoded in the genome of each

individual (see Algorithm 4 for the Procedure mutate). The mutation variance (σ) is

too. The probabilities and the variance are then subject to random mutations as well.

The major advantage of this scheme is to provide a fully automatic method to adapt the

mutation variance, whilst keeping the administration cost null.

Algorithm 3 Simplified evolutionary loop focusing on the mutation operators
Initialisation of internal states
N ← population size
σmin ← 1%, σmax ← 20%
k ← 21/3

period ← N
σhigh ← 10%, σlow ← σhigh/k
counter_σhigh ← counter_σlow ← ∆σhigh ← ∆σlow ← 0

Evolutionary loop
repeat

Get the min/max local fitness values
f itmin ← min local fitness of population
f itmax ← max local fitness of population

Create N new individuals
for i = 0 to N do

old_global_ f itness← Compute the global fitness

Find a bad fly (f ly−) and a good fly (f ly+)
f ly− ← Select randomly a fly from the population. f ly−’s local fitness must

be negative
f ly+ ← Select randomly a fly from the population. f ly+’s local fitness must

be positive

Kill f ly− # Remove its contribution from simulated_image

genetic_operator ← Choose a random number between 0 and 1

Mutation Operators 101

Use genetic operator probabilities provided by f ly+

Dual mutation
if genetic_operator ≤ f ly+.PdualMut then

new_ f ly ← mutation(f ly+, getDualMutationRate(σlow, σhigh,
counter_σlow, counter_σhigh), FALSE, σmin, σmax)

Basic mutation
else if genetic_operator ≤ (f ly+.PdualMut + f ly+.PbasicMut) then

new_ f ly ← mutation(f ly+, f ly+.σ, FALSE, σmin, σmax)

Adaptive mutation
else if genetic_operator ≤ (f ly+.PdualMut + f ly+.PbasicMut +

f ly+.PadaptiveMut) then
new_ f ly ←mutation(f ly+, getAdpativeMutationRate(f ly+.localFitness(),

f itmin, f itmax , σmin, σmax), FALSE, σmin, σmax)

Directed mutation
else if genetic_operator ≤ (f ly+.PdualMut + f ly+.PbasicMut +

f ly+.PadaptiveMut + f ly+.PdirectedMut) then
new_ f ly ← mutation(f ly+, f ly+.σ, TRUE, σmin, σmax)

New blood / Immigration
else if genetic_operator ≤ (f ly+.PdualMut + f ly+.PbasicMut +

f ly+.PadaptiveMut + f ly+.PdirectedMut + f ly+.Pnew_blood) then
new_ f ly ← randomIndividual()

end if

checkGeneRange(new_ f ly) #Make sure the gene values of the new fly are valid

Replace f ly− by new_ f ly #Add new_ f ly’s contribution to simulated_image

new_global_ f itness← Compute the global fitness

Update some states for dual mutation if needed
if genetic_operator ≤ f ly+.PdualMut then

Record the performance of σhigh or σlow on the global fitness
Call updateDualMutationData(old_global_ f itness, new_global_ f itness,

counter_σlow, counter_σhigh, ∆σlow, ∆σhigh)

Update σhigh and σlow if needed
Call updateDualMutationRate(k, period, σlow, σhigh, counter_σlow,

counter_σhigh, ∆σlow, ∆σhigh)
end if

end for
until Stopping criteria met
simulated_image: the image simulated by the whole population.

Mutation Operators 102

Algorithm 4 Procedure mutate
Input: f ly+ # The good fly on which new_ f ly will be based
Input: σ # The σ value to use for small random alterations
Input: use_dir_mut #A boolean flag
Input: σmin # The min possible value of σ
Input: σmax # The max possible value of σ
Output: new_ f ly # The fly create by mutation of f ly+

new_ f ly.parentFm = f ly+.Fm #Record the parent’s fitness

if use_dir_mut is FALSE then #NOT Directed-Mutation
Use random directions
new_ f ly.dir [0] ← sign(rand(−1.0, 1.0))
new_ f ly.dir [1] ← sign(rand(−1.0, 1.0))
new_ f ly.dir [2] ← sign(rand(−1.0, 1.0))
new_ f ly.dir [3] ← sign(rand(−1.0, 1.0))
new_ f ly.dir [4] ← sign(rand(−1.0, 1.0))
new_ f ly.dir [5] ← sign(rand(−1.0, 1.0))
new_ f ly.dir [6] ← sign(rand(−1.0, 1.0))
new_ f ly.dir [7] ← sign(rand(−1.0, 1.0))
new_ f ly.dir [8] ← sign(rand(−1.0, 1.0))

else # Use Directed-Mutation
if f ly+.Fm > f ly+.parentFm then
Parent better than grand-parent
α← 1 # use the same directions as the parent

else # Grand-parent better than parent
α← −1 # Use the opposite directions as the parent

end if
Use (opposite) directions of f ly+

new_ f ly.dir [0] ← α × f ly+.dir [0]
new_ f ly.dir [1] ← α × f ly+.dir [1]
new_ f ly.dir [2] ← α × f ly+.dir [2]
new_ f ly.dir [3] ← α × f ly+.dir [3]
new_ f ly.dir [4] ← α × f ly+.dir [4]
new_ f ly.dir [5] ← α × f ly+.dir [5]
new_ f ly.dir [6] ← α × f ly+.dir [6]
new_ f ly.dir [7] ← α × f ly+.dir [7]
new_ f ly.dir [8] ← α × f ly+.dir [8]

end if
Add small random changes in the chosen directions
new_ f ly.x ← f ly+.x + new_ f ly.dir [0] × rand(0.0, 0.5) × σ × rangex
new_ f ly.y ← f ly+.y + new_ f ly.dir [1] × rand(0.0, 0.5) × σ × rangey
new_ f ly.z ← f ly+.z + new_ f ly.dir [2] × rand(0.0, 0.5) × σ × rangez
new_ f ly.PdualMut ← f ly+.PdualMut + new_ f ly.dir [3] × rand(0.0, 0.5) × σ
new_ f ly.PbasicMut ← f ly+.PbasicMut + new_ f ly.dir [4] × rand(0.0, 0.5) × σ
new_ f ly.PadaptiveMut ← f ly+.PadaptiveMut + new_ f ly.dir [5] × rand(0.0, 0.5) × σ
new_ f ly.PdirectedMut ← f ly+.PdirectedMut + new_ f ly.dir [6] × rand(0.0, 0.5) × σ
new_ f ly.Pnew_blood ← f ly+.Pnew_blood + new_ f ly.dir [7] × rand(0.0, 0.5) × σ
new_ f ly.σ ← f ly+.σ + new_ f ly.dir [8] × rand(0.0, 0.5) × σ × (σmax − σmin)

Mutation Operators 103

6.2.2 Adaptive mutation variance

The mutation variance can be directly adapted to local measurements, like fitness [120]

or local regularity [108]. Another approach, called Rechenberg’s rule, is to modulate the

mutation variance based on the success/failure rate of the current mutation variance [133,

18]. It relies on the notion of “evolution window”: Increase the mutation variance

to speed-up the search-space exploration, or decrease it to refine the results. For this

purpose, the algorithm must keep track of the success rate, which has an obvious

computational cost. To reduce the administration cost of the algorithm, in [158] the

variance is bigger when fitness is high and smaller when fitness is low. The evolutionary

algorithm was used to minimise an error function. The idea was to favour large

exploration around the weakest individuals, whilst performing fine tuning in the vicinity

of good individuals. In our case, we want to maximise the marginal fitness of flies: The

higher the marginal fitness (Fm), the lower the variance, and vice versa. We define the

mutation variance here as a piecewise-defined function of Fm:

σ (Fm) =


σmax, Fm < f itmin

σmin, Fm > f itmax

σmin + (σmax − σmin) ×
cos

(
π×

(
Fm− f itmin

f itmax− f itmin

))
+1.0

2.0 , otherwise

Fm corresponds to the fitness of the individual who will undergo a mutation. σ(Fm)

smoothly varies between the smaller (f itmin) and the larger (f itmax) fitness thresholds

respectively. If Fm is smaller than f itmin, σ is then σmax; if the individual’s fitness

is greater than f itmax , σ is then σmin (with σmin and σmax two constant values set

by the user). The major advantage of this scheme is similar to the previous one. It

provides a fully automatic method to adapt the mutation variance, whilst keeping the

administration cost of the algorithm negligible (see Algorithm 5 for the corresponding

procedure).

Mutation Operators 104

Algorithm 5 Procedure getAdpativeMutationRate
Input: Fm # The local fitness function (measure to maximise)
Input: f itmin
Input: f itmax
Input: σmin
Input: σmax
Output: σ

if Fm < f itmin then# Use the higher value of σ for very bad flies
σ ← σmax

else if Fm > f itmax then#Use the lower value of σ for very good flies
σ ← σmin

else # Use the compute value of σ for intermediate flies

σ ← σmin + (σmax − σmin) ×
cos

(
π×

(
Fm− f itmin

f itmax− f itmin

))
+1.0

2.0
end if

6.2.3 Dual mutation

The variance can be tuned depending on some success measurement. This category

includes the well-known 1/5th rule proposed by Schewefel [138, 18]. A single σ value

is used. It is updated at regular intervals. It records the number of successful and

unsuccessful mutations over a given number of mutations. If the rate of successful

mutation is greater than 1/5, then increase σ; if it is lower, decrease σ.

In [155], Vidal et al. proposed theDual mutation operator. Our main goal was to provide

a self-adaptive operator to limit the level of human input. It is based on the concurrent

testing of two alternative variance values (σlow and σhigh, with kσlow = σhigh). Its

pseudocode is available in Algorithms 6 and 7. The update rule is multiplicative as

for the 1/5th rule. If mutations with σhigh provide the best results during the previous

period iterations, then both mutation variances are multiplied by a predefined factor

(p f , with p f > 1) (see Algorithm 8). If mutations with σlow provide the best results

during the previous period iterations, then both mutation variances are divided by p f .

For every Dual mutation, we check the global fitness before and after the mutation. Note

that these numbers are pre-computed in any case during the selection of individuals.

Therefore, we can not affect their computation to the administration cost of this mutation

operator. Using two accumulators, we can assess which variance amongst σlow and

σhigh is the best. This scheme is also providing a method with a very limited number

of user inputs. The administration cost of the algorithm is sightly increased but still

Mutation Operators 105

Algorithm 6 Procedure getDualMutationRate
Input: σlow
Input: σhigh
Input: counter_σlow
Input: counter_σhigh
Output: σ

if counter_σhigh ≤ counter_σlow then
Use the higher value of σ
σ ← σhigh

else # Use the lower value of σ
σ ← σlow

end if

Algorithm 7 Procedure updateDualMutationData
Input: old_global_ f itness #Global fitness before dual-mutation
Input: new_global_ f itness #Global fitness after dual-mutation
Input/Output: counter_σlow
Input/Output: counter_σhigh
Input/Output: ∆σlow
Input/Output: ∆σhigh

∆← new_global_ f itness − old_global_ f itness

if counter_σhigh ≤ counter_σlow then
Use the higher value of σ
∆σhigh ← ∆σhigh + ∆

counter_σhigh ← counter_σhigh + 1
else # Use the lower value of σ
∆σlow ← ∆σlow + ∆

counter_σlow ← counter_σlow + 1
end if

relatively light. Also, the dual mutation does not need to make any assumption on the

ideal success rate of the mutation as in the 1/5th rule.

6.2.4 Directed mutation

We introduce here a new operator, the Directed Mutation. It is related to the evolution

path in CMA-ES [72] Its objective is to lead new individuals toward areas of the search

space that have been previously defined as “interesting” by older flies. This principle

follows well the fundamentals of CCEAs as new individuals have to cooperate with

older and wiser ones to benefit from their knowledge to locate areas of interest.

Mutation Operators 106

Algorithm 8 Procedure updateDualMutationRate
Input: k
Input: period
Input/Output: σlow
Input/Output: σhigh
Input/Output: counter_σlow
Input/Output: counter_σhigh
Input/Output: ∆σlow
Input/Output: ∆σhigh

Update needed
if period ≥ (counter_σhigh + counter_σlow then

Compute the average score for each σ values
score_σhigh ← ∆σhigh/counter_σhigh
score_σlow ← ∆σlow/counter_σlow

if score_σhigh > score_σlow then
The lowest parameter provides the best results
σhigh ← σlow
σlow ← σlow/k

else # The highest parameter provides the best results
σlow ← σhigh
σhigh ← σhigh × k

end if

Reset states to initial value
counter_σhigh ← 0
counter_σlow ← 0
∆σhigh ← 0
∆σlow ← 0

end if

Mutation Operators 107

Fly1

Fly2

Fly3

(a) Fly1 better than Fly2.

Fly1

Fly3

Fly2

(b) Fly2 better than Fly1.

Figure 6.1: Directed Mutation Principle.

To illustrate how our implementation works, let us consider the case as follows: A

fly (Fly2) has been created by mutation of another fly (Fly1). We are now going to

create a new fly (Fly3) by mutation of Fly2. The position of the new fly will be biased

toward the position of the best fly among Fly1 and Fly2. If Fly1 is better than Fly2,

we will look for a new Fly3 from the location of Fly2 in the direction toward Fly1

(see Fig. 6.1a); if Fly2 is better than Fly1, we will look for Fly3 from the location of

Fly2 in the direction away from Fly1 (see Fig. 6.1b). For any fly created by any kind

of mutation, we record its parent’s fitness and in which direction the new fly has been

moved with respect to its parent (see Algorithm 4). This is the main administration cost

of our new operator. This is required due to the steady state nature of the algorithm.

When Fly3 is created, it is possible that Fly1 has already been replaced by another fly.

6.3 Results

(a) Ground-truth. (b) Measured projections.

Figure 6.2: Test case using the Jaszczak phantom with hot rods.

For testing purposes, we consider the Jaszczak phantom with hot rods without and

with noise (see Figures 6.2 and 6.3 respectively). We test the algorithm with all

the possible combinations of mutation operators. There are 4 mutation operators,

Mutation Operators 108

(a) Simulated phantom. (b) Measured projections.

Figure 6.3: Similar test case as Figure 6.2 but with noise.

therefore there are 24 possible configurations (see Tab. 6.1). Due to the stochastic nature

Table 6.1: The combinations of mutation operators.

Type Operators Type Operators
0000 no mutation 1000 basic
0001 directed 1001 basic + directed
0010 adaptive 1010 basic + adaptive
0011 adaptive + directed 1011 basic + adaptive + directed
0100 dual 1100 basic + dual
0101 dual + directed 1101 basic + dual + directed
0110 dual + adaptive 1110 basic + dual + adaptive
0111 dual + adaptive + directed 1111 basic + dual + adaptive + directed

of artificial evolution, 15 reconstructions per configuration are performed to gather

statistically meaningful results. It leads to 240 reconstructions per test case, which

means that 480 evolutionary reconstructions in total have been performed. For each

reconstruction, we record i) the NCC (see Equation 5.4) between the ground-truth (I1)

and the reconstructed volume (I2), and ii) the reconstruction time. The NCC is 100% if

the two images are perfectly correlated. It is 0% is they are totally uncorrelated. It is

-100% if there is a negative correlation (also called anticorrelation or inverse correlation)

between them.

6.3.1 Without noise in the input data

Figure 6.4 shows the median results in term of performance for duration and NCC for

each mutation operator combination. We can see that the dual mutation combined with

the directed mutation (see Configuration Type 0101 in Table 6.1) is apparently effective.

Mutation Operators 109

Type/mm
#rank

Dirac
#rank

Gaussian
#rank

Type/mm
#rank

Dirac
#rank

Gaussian
#rank

0000/14.53
#1

(68.77%)
#16

(84.38%)
#16

1000/15.40
#3

(85.29%)
#9

(92.14%)
#12

0001/15.67
#5

(86.25%)
#2

(92.56%)
#10

1001/15.67
#5

(86.06%)
#3

(92.17%)
#11

0010/14.53
#1

(74.28%)
#15

(88.67%)
#15

1010/16.00
#8

(85.59%)
#7

(92.81%)
#3

0011/18.93
#16

(84.56%)
#12

(92.65%)
#7

1011/17.80
#14

(86.01%)
#4

(92.99%)
#1

0100/15.67
#5

(77.42%)
#13

(90.05%)
#13

1100/16.73
#11

(85.76%)
#6

(92.60%)
#8

0101/16.40
#10

(86.28%)
#1

(92.96%)
#2

1101/16.73
#11

(85.77%)
#5

(92.73%)
#5

0110/15.40
#3

(74.41%)
#14

(88.71%)
#14

1110/16.13
#9

(84.68%)
#11

(92.57%)
#9

0111/16.87
#13

(84.79%)
#10

(92.68%)
#6

1111/17.87
#15

(85.42%)
#8

(92.80%)
#4

Figure 6.4: Performance comparison of the different combinations of mutation operators.
Highlighted in green and blue-violet are the combinations whose NCC is less than 1% smaller
than the best combination.

Mutation Operators 110

The dual mutation only (0100) as in [155] is not so good. In green and blue-violet are

highlighted in the figure the combinations whose NCC is less than 1% smaller than the

best combination. We can see that all of the combinations using the directed mutation

are doing quite well. Only combinations that are shown in both green and blue-violet

should be considered (i.e. Configuration 0001, 0101, 1000, 1001, 1010, 1011, 1100,

1101 and 1111). Ideally, the ones with a short run-time should be favoured.

However, it is still not trivial to determine which configuration is the best one. A

configuration can be considered good if it has a relatively large NCC, a small duration,

and small standard deviations over the 15 runs for both NCC and duration. Quantitative

results for each configuration are presented in Figure 6.5 using boxplots. The dark

turquoise and purple configurations of Figure 6.5a shows the NCC between the ground-

truth and the reconstructions using all flies as a finite point (or Dirac) and all flies using

Gaussian kernel, respectively. The experiments with the dual and directed mutation

operator (0101) (green circle) seem to provide best results (86.28 ±0.71) and (92.96

±0.67) in terms of NCC in both configurations. It is much better than with the Dual

mutation only (0100) (red circle) when we use all flies as finite points (77.42% ±2.41)

as in [155] and all flies as Gaussian kernels (90.05 ±0.89). However it is still hard to

assess which configuration is the best in term of reconstruction speed (see Figure 6.5b).

For a more reliable visual interpretation, we consider the average and standard deviation

for NCC and duration for all the combinations of operators. The data is plotted in

Figure 6.6a and 6.6b using ellipses. Each ellipse corresponds to a combination of

operators. They are centred on their respective average of NCC and duration. Their

radii correspond to the standard deviations. The best combination corresponds to an

ellipse with small radii and that is located in the top left corner of the figure. This

validates our initial assumption that the dual and directed mutation (0101) is one of

the best combinations in term of NCC and acceptable in terms of computation time

(16.4 minutes ± 2.29).

From our visual observations, Configuration 0101 seems to be good. It actually has

the highest average NCC and its standard deviation is small. Our hypothesis is that

0101 is the best combination of operators. To validate this hypothesis, we apply a

non-parametric statistical hypothesis test (Wilcoxon signed-rank test) and presents the

Mutation Operators 111

 60

 65

 70

 75

 80

 85

 90

 95

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

NCC between ground truth and reconstruction

(a) NCC for all flies as a finite point (in blue) and all flies as Gaussian kernel (in magenta) [7].

 10

 15

 20

 25

 30

 35

 40

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Duration in minutes

(b) Duration.

Figure 6.5: Performance of mutation operators. In red is highlighted the performance of
our initial implementation with dual mutation only as in [155]. In green is highlighted the
performance of the combination of the dual and directed mutation operators.

Mutation Operators 112

12 14 16 18 20 22 24 26
65

70

75

80

85

90

95

Duration

N
C

C

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

(a) All the flies

12 14 16 18 20 22 24 26
82

84

86

88

90

92

94

Duration

N
C

C

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

(b) All the flies with Gaussian kernel

Figure 6.6: Average and standard deviation of NCC and duration (without noise in the input
data).

Table 6.2: Performance comparison in terms of NCC of Combination 0101 with all the other
combinations of mutation operators with all flies as Gaussian kernel for the reconstructions
with/without noise in the input data. Combinations with p-value higher than 0.05 for both
without noise and with noise are highlighted in pink. Other p-values higher than 0.05 for one of
the test case only are highlighted in green.

Gaussian without noise Gaussian with noise
Combination type NCC (in %) Wilcoxon (p-value) NCC (in %) Wilcoxon (p-value)

0000 84.38 ±1.07 0.00064 81.53 ±0.84 0.00064
0001 92.556 ±0.65 0.11184 83.30 ±0.93 0.39532
0010 88.67 ±0.64 0.00064 80.76 ±0.56 0.00064
0011 92.65 ±0.55 0.2113 83.45 ±0.94 0.56868
0100 90.05 ±0.89 0.0008 82.94 ±0.53 0.00634
0101 92.96 ±0.67 N/A 83.56 ±0.58 N/A
0110 88.71 ±0.36 0.00064 81.09 ±0.50 0.00064
0111 92.68 ±0.7 0.17384 83.42 ±0.91 0.9124
1000 92.14±0.54 0.00758 82.78 ±0.75 0.00452
1001 92.17 ±0.61 0.00634 83.07 ±0.69 0.08914
1010 92.81 ±0.32 0.36282 81.48 ±0.91 0.00064
1011 92.99 ±0.58 0.9124 83.15 ±0.60 0.03078
1100 92.6 ±0.5 0.14706 82.84 ±0.27 0.0008
1101 92.73 ±0.53 0.23404 82.74 ±0.67 0.00758
1110 92.5 ±0.71 0.17384 83.18 ±0.21 0.04136
1111 92.8 ±0.6 0.23404 83.29 ±0.58 0.33204

results in term of p-values. The aim is to identify all other combinations that may be

statistically relatively similar in term of NCC result as 0101 (see Tab. 6.2). Here we only

consider the voxelisation using Gaussian kernels as we already know it provides the

most accurate reconstructions. Note that the emphasis is on NCC rather than duration

as quantitative imaging (i.e. producing the most accurate reconstruction as possible) is

the goal in PET. However, we also apply the Wilcoxon signed-rank test on duration (see

Tab. 6.3). The idea is to identify which possible good combination provides accurate

results the quickest. The p-value is used to compare the performance of Configuration

Mutation Operators 113

Table 6.3: Performance comparison in terms of Duration of all the combinations of mutation
operators with all flies as Gaussian kernel for the reconstructions with/without noise in the input
data. p-value between each entry with Combination 0101. Possible good combinations in term
of NCC for both without noise and with noise are highlighted in pink (see Table 6.2).

Gaussian without noise Gaussian with noise
Combination Duration Wilcoxon Duration Wilcoxon

type (in minutes) (p-value) (in minutes) (p-value)
0000 14.53 ±1.88 0.0164 14.33 ±1.35 0.0096
0001 15.67±2.02 0.4593 15.47±2.47 0.5287
0010 14.53 ±1.19 0.05614 15.87 ±1.55 0.89656
0011 18.93 ±6.18 0.37886 17.8 ±2.62 0.20766
0100 15.67 ±1.35 0.29834 17.2 ±5.47 0.81034
0101 16.4 ±2.29 N/A 16.47 ±3.31 N/A
0110 15.4 ±1.64 0.09102 14.93 ±1.71 0.0455
0111 16.87 ±3.14 0.75656 16.00 ±2.42 0.67448
1000 15.4 ±1.76 0.25428 15.73 ±2.31 0.32708
1001 15.67 ±2.66 0.29834 15.73 ±2.52 0.75656
1010 16 ±2.42 0.4965 13.93±2.55 0.02642
1011 17.8 ±2.91 0.13104 15.80 ±2.18 0.75656
1100 16.73 ±3.03 0.77948 16.47 ±0.83 0.50926
1101 16.73 ±1.79 0.6818 17.13 ±1.68 0.29372
1110 16.13 ±2.64 0.75656 17.71±3.18 0.27134
1111 17.87 ±3.38 0.29372 18.47 ±2.97 0.101

0101 with other combinations. The size of the samples is 15. For each entry in the table,

if the p-value is less than the alpha level of 0.05, then Configuration 0101 is statistically

significantly different, and as it has the highest average NCC, we can conclude that

0101 is better. If p-value is greater than 0.05, then there is little evidence to consider

0101 better as they are not significantly different. As a consequence, combinations with

p-values higher than 0.05 should also be considered as good candidates. It includes

0001, 0011, 0111, 1010, 1011, 1100, 1101, 1110 and 1111. When considering the

duration, all the configurations highlighted in pink or green for this test case have

p-values higher than 0.05. It is therefore impossible to objectively distinguish them.

6.3.2 With noise in the input data

The corresponding experiments have been performed with the noisy input data. We can

see in Figures 6.7 and 6.8 that the result again proves that the combination of dual and

directed mutation operators (0101) seem to show best results (83.56 ±0.58) in terms

of NCC in both configurations. It provides better result than the Dual mutation only

(0100), which is 82.94 ±0.53. Again, Configurations 0001 and 1001 are also attractive.

Mutation Operators 114

Type/mm
#rank

Dirac
#rank

Gaussian
#rank

Type/mm
#rank

Dirac
#rank

Gaussian
#rank

0000/14.33
#2

(68.94%)
#14

(81.53%)
#13

1000/15.73
#5

(76.12%)
#4

(82.78%)
#11

0001/15.47
#4

(77.17%)
#1

(83.30%)
#4

1001/15.73
#5

(76.58%)
#3

(83.07%)
#8

0010/15.87
#8

(67.38%)
#16

(80.75%)
#16

1010/13.93
#1

(74.69%)
#12

(81.48%)
#14

0011/17.80
#15

(75.38%)
#7

(83.45%)
#2

1011/15.80
#7

(75.02%)
#8

(83.15%)
#7

0100/17.20
#13

(71.18%)
#13

(82.94%)
#9

1100/16.47
#10

(74.94%)
#11

(82.84%)
#10

0101/16.47
#10

(76.65%)
#2

(83.56%)
#1

1101/17.13
#12

(75.76%)
#6

(82.74%)
#12

0110/14.93
#3

(67.74%)
#15

(81.09%)
#15

1110/17.67
#14

(75.01%)
#9

(83.18%)
#6

0111/16.00
#9

(74.98%)
#10

(83.43%)
#3

1111/18.47
#16

(76.02%)
#5

(83.29%)
#5

Figure 6.7: Performance comparison of the different combinations of mutation operators in the
presence of noise in the input data. Highlighted in green and blue-violet are the better halves of
combinations for the flies as finite points and as Gaussian kernels respectively.

Mutation Operators 115

 60

 65

 70

 75

 80

 85

 90

 95

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

NCC between ground truth and reconstruction

(a) NCC for all flies as a finite point (dark turquoise) and all flies as Gaussian kernel (in
purple) [7].

 10

 15

 20

 25

 30

 35

 40

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

Duration in minutes

(b) Duration.

Figure 6.8: Performance of mutation operators with noise in the input data. In red is highlighted
the performance of our initial implementation with dual mutation only as in [155]. In green is
highlighted the performance of the combination of the dual and directed mutation operators.

Mutation Operators 116

10 12 14 16 18 20 22 24
66

68

70

72

74

76

78

Duration

N
C

C

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

(a) All the flies

10 12 14 16 18 20 22 24
80

80.5

81

81.5

82

82.5

83

83.5

84

84.5

Duration

N
C

C

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

(b) All the flies with Gaussian kernel

Figure 6.9: Average and standard deviation of NCC and duration (with noise in the input data).

Figures 6.9a and 6.9b show the ellipse visualisation of the results with noisy input

data. Results are consistent with our previous observations. The combination of dual

and directed mutations (0101) is one of the best in term of NCC (83.56 ±0.58) and

computationally acceptable in terms of duration (16.47 minutes ± 3.31).

The Wilcoxon signed-rank test for NCC and duration is also used for this test case (see

Tables 6.2 and 6.3 respectively). Again, 0101 has the highest average NCC and it is

used as the reference in the test. Only a few configurations have p-values for the NCC

that are above 0.05, including 0001, 0011, 0111, 1001, and 1111. Again we cannot

conclude that one of these combinations is better in terms of duration.

6.4 Conclusion

The Fly algorithm heavily relies on the mutation operator to find the best positions.

In its initial implementation for PET reconstruction by Vidal et al [155], only the

Dual Mutation operator was used to self-tune the mutation variance. In this chapter

we complete the implementation with three other adaptive mutation operators. The

probability of the genetic operators are now part of the individuals’ genome. It includes

a basic mutation operator whose mutation variance is also encoded in the genome.

There is also a mutation operator whose variance is a function of the fitness of the

individual to mutate. Finally we introduced a new operator, the Directed Mutation, that

looks at the history of the individual that is going to be mutated to guide its mutations in

Mutation Operators 117

a direction that is likely to be worth exploring based on the experience of the individual’s

ancestors.

We demonstrate using two test cases (one without noise; one with noise) that this

approach and this new operator lead to better results in term of accuracy (improvement

of NCC by ∼10%) without sacrificing the reconstruction speed. We also studied all the

possible combinations of mutation operators to determine if one is better than the others.

For all the possible combinations, 15 reconstructions have been performed for each test

cases. It is 42 × 2× 15 = 480 reconstructions in total. The Wilcoxon signed-rank test for

NCC and duration shows that Combinations 0001, 0101, 0011, 0111, and 1111 perform

well in both test cases. For these selection of combinations, the directed mutation is

used 5 times, the adaptive mutation 3 times, the dual mutation 3 times, and the basic

mutation once. These results show the benefit of our new operators and the benefit to

combine several types of mutations in the evolutionary loop.

Further research is needed to evaluate our new operator with other reconstruction data.

The operator can also be used in other cooperative co-evolution schemes to improve the

cooperation between individuals.

Mutation Operators 118

Chapter 7

Digital Arts

The aim of this chapter is to demonstrate how the Fly algorithm can be used in

different applications such as digital art. Part of this chapter has been presented at the

20th European Conference on the Applications of Evolutionary Computation, in the

track on Evolutionary Computation in Image Analysis, Signal Processing and Pattern

Recognition (see Section 1.4) [2].

7.1 Introduction

This chapter is about Evolutionary art such as digital mosaics and painterly rendering.

The most common techniques to generate a digital mosaic effect heavily rely on

Centroidal Voronoi diagrams. Our method generates artistic images as an optimisation

problem without the introduction of any a priori knowledge or constraint other than

the input image. We adapt the Fly algorithm to produce artistic visual effects from

an input image (e.g. a photograph). The primary usage of the Fly algorithm is in

computer vision, especially stereo-vision in robotics. It has also been used in image

reconstruction for tomography. Until now the individuals correspond to simplistic

primitives: Infinitely small 3-D points. In this study, the individuals have a much

more complex representation and represent tiles in a mosaic-like image. They have

their own position, size, colour, and rotation angle. We take advantage of graphics

processing units (GPUs) (see Appendix A) to generate the images using the modern

Open Graphics Library Shading Language. Different types of tiles are implemented,

some with transparency, to generate different visual effects, such as digital mosaic and

spray paint.

119

To validate our results, a user study has been conducted. It is used to ascertain

which version of our algorithm produces the most visually appealing results. We also

demonstrate the ability of the algorithm to preserve edges and compared some of our

results with similar ones produced with GNU Image Manipulation Program (GIMP)

(http://www.gimp.org/), an open-source software for image editing.

This chapter is organised as follows. Section 7.2 describes our approach. It explains how

the Fly algorithm can be adapted from robotic applications and medical tomography

reconstruction into an evolutionary art generator. The penultimate section presents our

results. Several images have been generated with different versions of the algorithm.

We initially conducted an experiment with 25 participants to judge some these results. It

allowed us to determine which version was the most popular amongst the participants. In

a subsequent experiment, we ask 41 participants to judge the visual quality of individual

images. Some were generated with our approach, others were corresponding images

generated with a famous open-source software. Concluding remarks are given in the

last section.

7.2 Methodology

7.2.1 Fly algorithm paradigm

We saw in the Section 2.5 there are various approaches to translate an input image into

a digital mosaic. The problem can be defined as follows [74]:

Given a rectangular region I2 in the plane R2, a dataset of N tiles, a set of

constraints, and a vector field φ(x, y) defined on that region, find N sites

Pi(xi, yi) in I2 to place the N tiles, one at each site Pi, such that all tiles are

disjoint, the area they cover is maximized and the constraints are verified

as much as possible.

In this context, image generation can be studied as a special case of the set cover

problem, which is NP-complete [87]. It can be solved as an optimisation problem [74,

Digital Arts 120

http://www.gimp.org/

16]: Find the best set of tiles to generate a rectangular region to approximate a coloured

image. Each tile has a colour that represents the specific part of the image it covers. For

more realistic reconstruction, the tiles can rotate at a given angle φ(x, y) following the

direction field for that region and may have sightly different sizes. If there are N tiles to

place, as each tile has 9 parameters (3-D position, 3 colour components, width, height,

and rotation angle), the search space has 9 × N dimensions.

In addition to being a difficult optimisation problem to solve, the digital mosaic

generation is also related to topics in computer graphics and visualisation. In particular

we saw in Section 2.5 that most of the mosaic synthesis methods are based on Centroidal

Voronoi diagrams. In this study, we propose to solve such a problem without the use

of any Voronoi diagram. We also consider painterly rendering. Instead we rely on an

unsupervised EA based on cooperative co-evolution algorithm principles. The approach

we follow is called “Parisian evolution”.

7.2.2 Evolutionary image reconstruction

The individuals correspond to extremely simple primitives: The flies. To date, the

Fly algorithm has been used to find 3-D positions only. In this study we propose to

give flies a finite size so that they now correspond to rectangular tiles. This is because

hand-crafted mosaics tend to use such a shape and also because paint brush strokes

could be represented using patterned rectangles. Each fly is a vector of 9 elements (see

Figure 7.1):

Position is a 3-D point with coordinates (x, y, z), which are randomly generated

between 0 and width − 1, 0 and height − 1, and 1 and -1 respectively (with

width and height the number of pixels in the image along the x- and y-axes). An

example of an image generated by an initial population is shown in Figure 7.2.

Colour has three components (r , g, b) (for red, green and blue), which are randomly

generated between 0 and 1. This is to ensure diversity at the start of the

optimisation. Tile colours are evolved rather than assigned deterministically. It

leads to better results in term of sharpness when tiles are located at edges between

Digital Arts 121

different regions of the image (see the difference between Figures 7.13a and 7.13b,

when tile colours are evolved, and Figures 7.13c and 7.13d, when the tile colours

are not evolved).

Rotation Angle is randomly generated between 0 and 360.

Scaling factor has two components (w, h), which control the size of the tile along its

horizontal and vertical axes.

Local fitness measures its marginal contribution toward the global solution.

Position

Colour

Rotation Angle

Scaling factor

Local fitness

x

y

z

r
g

b

w
h

Fly

Figure 7.1: Structure of the fly data.

The initial scaling factors are set to make sure the tiles could cover the totality of the

image [74]. If there are N individuals, the scaling factors are:

d = 0.8
√
(width × height)/N (7.1)

Due to the randomness in the initial tile positions, tiles overlap. It creates holes in

Figure 7.2. We also allow tiles to have different sizes by modifying Eq. 7.1 and adding

random variations using the scaling factors w and h. Holes progressively disappear

during the evolution process, which aims to optimise the 9 parameters (position, colour,

scale, and rotation) of all the N individuals. To achieve this, the algorithm minimises

Figure 7.2: Random initial population.

Digital Arts 122

the global fitness function. To assess how good the population is, we compare the input

image (re f) with the image generated using the tiles corresponding to the population

(pop). We use the sum of absolute errors (SAE) (also known as Manhattan distance) to

quantify the error between re f and the computed image pop:

SAE(pop, re f) =
∑

i

∑
j

|re f (i, j) − pop(i, j)| (7.2)

We favour this metrics as it is fast to compute. Overlapping tiles are not taken into

account in the fitness function during the evolutionary process to reduce computational

costs.

To improve the population’s performance, we need a large proportion of good individuals.

The performance of a single fly is evaluated using the local fitness function, which is

used during the selection process. In our context, the local fitness is called “marginal

fitness”, Fm) (see Eq. 7.3). It measures the impact of the selected fly on the global

performance of the population. To measure how good or bad the contribution of Fly i

is, we use the SAE metrics with the leave-one-out cross-validation method:

Fm(i) = SAE(pop \ {i} , re f) − SAE(pop, re f)) (7.3)

with pop \ {i} the image computed with all individuals but Fly i. The numerical value

of Fm(i) can be easily interpreted by looking at its sign:

• If the error is greater with Fly i than without, sgn(Fm(i)) < 0, then Fly i damages

the performance of the population.

• If the error is smaller with Fly i than without, sgn(Fm(i)) > 0, then Fly i has a

positive impact on the performance of the population.

• If the error is the same, sgn(Fm(i)) = 0, then Fly i is not beneficial nor detrimental.

It may happen when Fly i is covering similar flies.

We use this principle in our Threshold selection operator [161]. To find a fly to kill,

pick a random number i between 0 and N − 1. If Fm(i) ≤ 0, then Fly i can be killed, if

not pick another random number i until Fm(i) ≤ 0. To find a fly to reproduce, find one

Digital Arts 123

Figure 7.3: Computation of the marginal fitness on GPU for two images using GLSL shaders
and Open Computing Language (OpenCL), (see the yellow and green respectively).

whose fitness Fm(i) is strictly positive. During the evolution process, the number of

flies whose fitness is negative or null will decrease. There will be more and more good

flies; and fewer and fewer bad flies.

Computing the marginal fitness for the problem considered here is time consuming on a

central processing unit (CPU). Therefore, all the computations to generate images are

performed on a GPU using the GLSL (see Figure 7.3). The image is stored in a 2-D

texture using a Framebuffer (FBO). A texture is how a N-D image is stored in a GPU

using OpenGL (with 1 ≤ N ≤ 3). The texture is then passed to a shader program to

compute the pixel-wise absolute error between re f and pop (see Section A.3.2). The

sum is also performed on the GPU using the OpenCL implementation of the reduction

operator in Boost.Compute [109, 62]. It provides the SAE in an effective manner.

Our implementation is based on a steady state evolutionary strategy (see Figure 4.1).

At each iteration of the optimisation process, a bad fly is selected for death and replaced

with another one. We use a mutation operator to produce a new fly that is slightly

different from the selected good fly. The aim is to create a new fly in the vicinity of a

good fly. In this way the new fly is likely to be a good one too. Crossover is not used: If

we consider two good flies located at the opposite corners of the image, a new fly in

between is very likely to be bad.

The algorithm stops when a stopping criterion is met, e.g. maximum number of iterations,

when the evolution process does not improve the performance of the whole population,

or when the Threshold selection becomes too slow to find bad flies. A restart mechanism

is eventually used to further improve the results. It allows the algorithm to leave a

local minimum (see Figure 7.9). Figures 7.4 and 7.5 describe the flowchart that has

Digital Arts 124

been implemented. Restart is implemented by re-launching the optimisation process

from scratch using the last best population [58]. It is often used to escape a local

minima/maxima.

7.3 Results

In this section we evaluate our method using the results obtained with five test images

of increasing complexity (see Row 0 in Figure 7.8). Various tests are performed on

these images. In Section 7.3.1, we evaluate 12 different schemes on all the images to

determine which scheme provides the ‘best’ results according to 25 participants. Once a

scheme has been selected, we can use it in other experiments. In Section 7.3.2 we study

the impact of the background colour. In Section 7.3.3 edge preservation is assessed. A

user study comparing our evolutionary art with corresponding images produced with

GIMP is presented in Section 7.3.4.

7.3.1 Initial Experiments

We consider the image reconstruction with 12 different schemes (see Table 7.1) using:

• Different image sizes: 256 × 256 or 512 × 512;

• Different colour quantisations: 60 colours or full RGB colours (i.e. 224);

• Different types of tiles: square with a border (Figure 7.14c), square without a

border, set of lines (Figure 7.14b), or flower (Figure 7.14a);

• With or without restart mechanism.

For each test image, evolutionary reconstructions are obtained with these schemes:

• As a feasibility study, the first two images (Star and Yin & Yang) are relatively

simple and have a relatively low resolution. 6 schemes of Table 7.1 are used.

Digital Arts 125

Figure 7.4: Overview of the Fly algorithm for digital art, (∗ see Figure 7.5a for details on
m−local and the select fly function).

Digital Arts 126

(a) (b)

(c)

Figure 7.5: Sub-functions of Figure 7.4.

Digital Arts 127

Table 7.1: Summary of all the possible configurations used in Figure 7.8.

256 × 256 512 × 512 60 colours Full colour One shader Two shaders Restart
1 X X X
2 X X X
3 X X X
4 X X X
5 X X X
6 X X X
7 X X X
8 X X X
9 X X X X X
10 X X X X X
11 X X X X X
12 X X X X X

• Three other test images are more complex. They are used to evaluate the

12 schemes.

Schemes 1 to 4 use the algorithm presented in Figure 4.1. The flies correspond to

uniform rectangles (see “one shader” in Table 7.1). Schemes 5 to 8 use the algorithm

presented in Figure 4.1 twice, with one restart between the two runs. The initial

population of the first run is random (as in Figure 7.2). The initial population of the

second run is the best population of the first run. The flies correspond to complex shapes

(see “two shaders” in Table 7.1). Examples of template shapes are given in Figure 7.14.

Different shader programs, (see Appendix B), can be used to generate different effects

depending on the pixel colour/intensity of the templates. Figure 7.6 shows examples of

rendering of the same fly population using different shader programs. Schemes 9 to 12

are almost similar to Schemes 5 to 8. The only difference is that the flies are uniform

rectangles during the first run and complex shapes during the second run. The aim is to

speed-up computations.

The algorithm is tested with two sets of parameters (see Table 7.2), one with a 22500-D

search space, and the other one with a 45000-D search space. We fix the mutation

probability to 100% because, as we saw previously, crossover is not suitable in our

case. In this implementation, we rely on a mutation rate starting with 0.1 and gradually

decrease with the iterations of the algorithm. Figure 7.7 shows the mutation rate for

each iteration (in this case the final iteration is 100000). In practice, the parameters

chosen by the user are the image (and its size) and the number of individuals. The initial

size of tiles is computed depending on the images size and the number of individuals

Digital Arts 128

(a) Mask: Flower
(Figure 7.14a).

(b) Mask: Set of lines
(Figure 7.14b).

(c) Mask: square
(Figure 7.14c).

(d) Mask: Flower
(Figure 7.14d).

(e) Mask: Circle
(Figure 7.14e).

(f) Mask: Triangle
(Figure 7.14f).

Figure 7.6: Rendering of the same flies using different masks and shader programs.

(see Eq. 7.1). Note that the sizes will then undergo evolution. A constraint can be set to

restrict their scale to a given interval. We empirically estimated suitable population

sizes for different image resolutions. We balanced the number of flies and image size to

avoid a premature convergence that would slow down the entire process.

Table 7.2: Parameters used to generate the images in Figure 7.8.

Image size 256 × 256 512 × 512
Number of flies 2500 5000

Number of generations 40000 40000
Probability of mutation 100 % 100 %
Probability of crossover 0.0 % 0.0 %
Corresponding scheme 1, 2, 5, 6, 9 and 10 3, 4, 7, 8, 11 and 12
Number of unknowns 9 × 2, 500 = 22, 500 9 × 5, 000 = 45, 000

To assess which scheme from Table 7.1 is the most suitable one in term of visual

appeal for the end user, Figure 7.8 was printed on A3 paper and we individually asked

25 participants to indicate which image in each column they prefer. Table 7.3 shows the

results in percentages. Strategies 11 and 12 are particularly popular among participants.

To a lesser extent, the 10th scheme is also popular, the 3rd and 9th also received some

votes. The other schemes did not. Schemes 10, 11, and 12 use two shader programs

Digital Arts 129

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 20000 40000 60000 80000 100000

mutation rate

Figure 7.7: Mutation rates.

Table 7.3: Vote results (25 participants voted for their preferred image for each column in
Figure 7.8).

Scheme # Star Yin Yang Glasses Bird Woman
3 0% 12% 20% 0% 0%
4 0% 0% 0% 0% 4%
9 12% 4% 8% 24% 4%
10 0% 0% 20% 32% 0%
11 88% 84% 36% 20% 48%
12 0% 0% 16% 24% 44%

and a restart mechanism. Scheme 11 uses full-colour in the original image, Scheme 12

did not.

Figure 7.9 shows the evolution of global fitness with and without restart. It is well

known that restart is useful in classical evolutionary algorithms where the solution of

the optimisation problem is the best individual of the population. However, very little

has been done for the cooperative co-evolution scheme of the Fly algorithm. In [161] a

mitosis operator is used to double the size of the population. Here we keep the size

of the population constant. When restart is not used, the evolution reaches a plateau

then stagnates (see purple curve). After the first restart, the global fitness decreases

(see green curve). After the global minimum is found, it is possible that the global

fitness increases. A similar phenomenon is observed for the subsequent restarts (see

blue, yellow, and orange curves). This experiment demonstrates the benefit of a few

restarts in the Fly algorithm.

Digital Arts 130

Scheme # Star Yin Yang Glasses Bird Woman

0

1

2 N/A N/A

3

4 N/A N/A

5

6 N/A N/A

7

8 N/A N/A

9

10 N/A N/A

11

12 N/A N/A

Figure 7.8: Evolutionary art using schemes of Table 7.1. The woman image (Fatima)
is from the artist Lubna Ashrafis. Other test images are from the Open Images Dataset
(https://github.com/openimages/dataset) under CC BY 4.0 license.

Digital Arts 131

 0

 5x106

 1x107

 1.5x107

 2x107

 2.5x107

 3x107

 3.5x107

 4x107

00:00
00:10

00:20
00:30

00:40
00:50

01:00
01:10

01:20
01:30

G
lo

ba
l fi

tn
es

s

Time

Figure 7.9: Evolution of the global fitness with 4 restarts. Images were computed using a
Macbook Laptop with a 2.6 GHz Intel Core i5 CPU with an Intel Iris 5100 GPU.

Figure 7.10: The colour histogram in RGB colour space of Bird image.

7.3.2 Background Colour

As overlapping tiles and the area coverage are not directly taken into account in the

global fitness (Eq. 7.2), it is important to compensate for them in one way or another.

It can be done by choosing a background colour that is not present in the original

image. For example, the histogram of the Bird image (see Figure 7.10) illustrates that

an appropriate background is when we used white (RGB: 255, 255, 255). Figure 7.11

demonstrates that the quality of reconstructed image using white background visually

gives more details and similar colours to the reference image comparing with other

colour backgrounds. The experiments show that the initial background colour of the

reconstructed image has a major impact on the quality of the reconstruction visualisation.

Digital Arts 132

(a) White background (b) Red background

(c) Green background (d) Blue background

Figure 7.11: Examples of reconstructed Bird image using different background colours.

(a) 750 Flies (b) 1250 Flies (c) 1750 Flies (d) 2250 Flies

(e) Postprocess of (a) (f) Postprocess of (b) (g) Postprocess of (c) (h) Postprocess of (d)

Figure 7.12: Examples of reconstructed Bird image using different number of flies. Top row:
reconstructed images with a blue background. Bottom row: replacing the blue background by
grey in the reconstructed images.

Digital Arts 133

Figure 7.12 shows different experiments with different number of tiles and when

a constraint is added on d (Eq. 7.1) and the scaling factors w and h so that the

population cannot cover all the image: There will be gaps between tiles. To get a better

reconstruction and to widely spread the tiles over the whole image, we choose the blue

background as blue (RGB: 0, 0, 255) does not exist in a reference image. As a blue

background may not be visually appealing, we can replace corresponding pixels with a

more suitable colour.

7.3.3 Edge Preservation

During the generation of the images, tiles can be located at different depth to determine

the colour of the closest (visible) tile. It is efficiently implemented using OpenGL’s

Z-buffer. Depending on the properties of the regions of the image, black tiles may be

located behind red tiles, or vice versa. The algorithm picks up the discriminated edge

between the black and red regions, no matter how small the regions are in the original

image compared to the minimum size of a tile. For example, in Figure 7.13b red tiles

are over black tiles that are larger than the actual region in the original image. It also

shows that our evolutionary algorithm chooses the right rotation angle to follow the

curvature of the edges in the original image when colours are evolved. This is not as

accurate when colours are picked up directly from the original image as in Figure 7.13d.

Edges are even blurrier in images generated using GIMP’s filter called GIMPressionist

(see Figure 7.13f). This filter implements an Haeberli-like algorithm.

7.3.4 Final User-study

In the following examples, five shapes (or masks) (see Figure 7.14) have been used to

generate tiles: Square, flower, stripes, circle and triangle. Figure 7.15 shows the results

using the toucan as a test image. The shader program to generate the images can be

altered to create different visual effects. The aim is to generate more appealing images.

Figures 7.15a and 7.15b have been produced using the same mask (Figure 7.14a) but

with slightly different shader programs. Figures 7.15c and 7.15d have been generated

using Figure 7.14b as mask, but with a much bigger size and without considering the

Digital Arts 134

(a) (b) ROI of (a).

(c) (d) ROI of (c).

(e) (f) ROI of (e).

Figure 7.13: Edge and depth detection: (a and b) Image reconstructed using our method
(evolving colours); (c and d) Image reconstructed using our method (without evolving colours);
(e and f) Image reconstructed using GIMPressionist.

rotation angle of the tiles in the second image. Figures 7.15g has been generated using

Figure 7.14e as mask. The masks used in Figures 7.15e, 7.15f and 7.15h include an

edge. Figure 7.16 shows the process of fitting a tile with certain mask which produce

different visual effects by using different fragment shaders. More results are available

as videos on YouTube at http://tinyurl.com/ho5kfvb.

To demonstrate the usefulness of our approach, further comparison examples have been

done between the proposed algorithm and GIMP using two types of mask: Flower

and stripe (see Figures 7.15d, 7.15f and 7.18). It can be visually observed that our

method leads to better reconstructions in term of edges and colours (brightness). We

Digital Arts 135

http://tinyurl.com/ho5kfvb

(a) (b) (c) (d) (e) (f)

Figure 7.14: Examples of tile templates.

conducted an online study, which is designed using ‘Google form’ to create the survey

sheets. In this study, 18 images (9 created using our method, 9 using GIMP) of different

categories, which are Glasses, Bird and Woman (see Figure 7.17), have been used.

Each category considers three various masks, which are square, flower and stripes

(see Figure 7.14). The images are presented in a random order in the survey. For

each image, we ask the participants to rate its quality in terms of visual appearance.

41 participants answered the questionnaire. The results show that our proposed method

produces better reconstructed images than GIMP. A Mean opinion score (MOS) metrics

has been used to evaluate the results. The rating scale that has been used for evaluating

is the Absolute Category Rating scale, which maps ratings between bad and excellent to

numbers between 1 and 5, (see table 7.4). The table demonstrates how many times each

label was selected for images of our method and for GIMP. For each image, MOS is

calculated by Equation 7.4.

MOS =
∑N

n=0 Rn

N
(7.4)

where R are the individual ratings for a given stimulus by N participants.

Figure 7.17 shows the MOS for each image of all participants). The MOS values of

the images of our proposed method are higher than the MOS of GIMP one. The MOS

values are ranked for all images. It shows that the images of our proposed method are

mostly in the beginning of the list (1, 2, 3, 4, 6, 8 and 9). While, the images of GIMP

are in the end of the list (11, 12, 13, 14, 15, 16, 17 and 18). Except the rank of glasses

image of GIMP with the flower mask which is 5. However, the MOS value of that

image is 3.1 which is less than the same image of proposed method which is 3.4.

Digital Arts 136

(a) Mask: Flower (Figure 7.14a). (b) Mask: Flower (Figure 7.14a).

(c) Set of lines (Figure 7.14b). (d) Set of lines (Figure 7.14b).

(e) Mask: square (Figure 7.14c).
(f) Mask: Flower (Figure 7.14d).

(g) Mask: Circle (Figure 7.14e). (h) Mask: Circle (Figure 7.14e).

Figure 7.15: More appealing visual effects using different masks and shader programs.

Digital Arts 137

Figure 7.16: Upload different mask using different fragment shaders.

Table 7.4: Absolute category rating of the images of Figure 7.17

.

Rating Label Count of proposed method Count of GIMP
5 Excellent 32 7
4 Good 86 50
3 Fair 110 78
2 Poor 71 125
1 Bad 19 59

7.4 Conclusion

The problem tackled here lies within the field of Evolutionary art. Our method relies on

techniques inherited from CG, AE and scientific computing. We used an AE strategy

based on the Fly algorithm for creating visual effects on an image in a fully-automatic

fashion. The algorithm optimises the location of tiles in the 3-D space to approximate

an input image. We used real-time CG rendering to generate the image data, and GPU

computing to calculate the fitness functions. The algorithm can be modified to introduce

multiple artistic visual effects. Different templates are used (square, flower, stripes, etc.)

to define the shape of tiles.

This chapter has shown that the structure of Flies are more complex with a lot more

properties than ever. However, all applications with the Fly algorithm that show the

simple notion for Flies as 3-D points (see Chapter 5 as an example). Indeed, complex

search space e.g. 45000-D, if not more, has been considered. Wemanage to significantly

enhance the performance of the Fly algorithm. A restarting operator is proposed so as to

achieve a better global exploration of the solution space. For more a robust evaluation,

an online comparison study (user evaluation survey) has been done, including 18 images

Digital Arts 138

Masks Images of proposed method Images of GIMP

Glasses Bird Woman Glasses Bird Woman

Square

MOS 2.9 3.3 2.8 2.5 2.6 2.5

Rank 6 4 9 12 11 13

Flower

MOS 3.4 3.6 2.9 3.1 2.4 2.5

Rank 3 1 6 5 15 14

Stripes

MOS 2.8 3.4 2.8 2.1 2.0 2.4

Rank 9 2 8 17 18 16

Figure 7.17: Images for online study survey.

(a) Mask: Set of lines. (b) Mask: Flower.

Figure 7.18: Example of images produced with GIMP’s filter (GIMPressionist).

Digital Arts 139

(see Figure 7.17), amongst which 9 were generated by our proposed method and 9 using

GIMP. According to the participants, our proposed method produces better images in

terms of visual appearance.

Our initial proof-of-concept shows that the Fly algorithm can be used in Evolutionary

Arts. Our implementation could be refined to take advantage of more advanced genetic

operators, for example to speed-up computations, and to recover fine details. A friendly

graphical user interface (GUI) will be added to introduce an optional level of user

interaction. It will allow the user to control some parameters of the output image,

e.g. shape of tiles, number of tiles, etc. A plugin for an image manipulation program,

such as GIMP, will be released to make it available to potential users.

Digital Arts 140

Chapter 8

Conclusions and Future Work

8.1 Introduction

This chapter provides evidence of our attempts to validate our initial hypothesis. It also

recaps all the experiments that we have conducted and discusses the most important

results. Functionalities and limitations are also identified. This chapter ends by

providing recommendations for future work to further improve the Fly algorithm in

both medical and digital art applications.

8.2 Overview

Our initial hypothesis was:

A relatively overlooked algorithm (Fly algorithm) can provide a

competitive alternative (e.g. in term of accuracy, ease of use) to some of

the most traditional approaches used in image (2-D or 3-D) reconstruction

when considered as an inverse problem.

To verify this hypothesis, this thesis focused on the Parisian approach (in particular

the Fly algorithm) in the field of imaging. While the Fly algorithm has been shown

to be promising for solving some complex imaging problem, it still remains relatively

unknown as a tool for image processing in the evolutionary computing community.

Chapter 3 presented an overview of the principles and applications of EA in image

processing. Often AE is used as a blackbox optimisation tool relying on classical

141

EAs. It is however known as a fact that blackbox optimisation is not the most efficient

way to tackle such complex problems. As noted in Chapter 4, only a few studies

have investigated the Fly algorithm. It has been demonstrated that it works well in

some real-world problems (autonomous robots and tomography reconstruction). In

this thesis, we investigated the Fly algorithm by focusing on two main applications:

tomographic in nuclear medicine and digital arts. For this purpose, we improved the

algorithm (developed new operators and post-processing methods), and we compared

its performance to existing techniques. The result have been published in a high ranking

journal and in conference proceedings.

In Chapter 7, the first version of evolutionary art using an AE approach based on the Fly

algorithm was proposed. In a fully-automatic fashion, our method has benefited from

CG and GPU computing to generate visual effects. CG rendering is used to produce the

simulated image and GPU computing is used to compute the local and global fitness

functions. Initially, the image is computed to approximate an input image by replacing

it using a set of discrete square tiles (as in ancient mosaics). This can be considered to

be an image reconstruction problem. We then extended our method to produce multiple

artistic visual effects by modifying the shape of tiles using different masks (templates),

such as a square, a flower, stripes, a circle, a triangle, etc. The structure of the tiles

(flies) is more complex and consists of nine parameters, including position, colour,

scale and rotation angle. It is important to note that each image is reconstructed either

using 2500 or 4500 flies, or even more flies depending on the image size. Therefore,

2500 × 9 or 4500 × 9 unknown values must be found. Using classical EAs or any other

traditional optimisation method would be computationally too expensive. This is why

we propose to solve this problem using the Fly algorithm. The results are compared

with images created using a well-known open-source image manipulation software.

Our reconstructed images were better in terms of brightness and finding the fine edges

between the different areas. The results were evaluated using an online study and a user

evaluation survey that included 18 images. The participants gave our images a higher

rating in terms of visual appearance.

In Chapter 5, the Fly algorithm is used to solve the complex problem of medical

tomographic reconstruction in PET. Here, a structure of individuals (flies) corresponds

to a simple primitive (3-D point). The performance of the flies is evaluated using a

Conclusions and Future Work 142

“marginal” fitness function. Based on a value of fitness function and using threshold

selection, a fly is kept if the fitness is positive. However, a fly is removed if the fitness

is negative. The experiment presented in this chapter disproves the hypothesis of our

previous implementation in which only flies with a positive fitness were kept. Here,

keeping the flies with a negative fitness leads to better the quality results. For more

accurate visualisation results, our development investigates the use of implicit modelling

to further exploit the point cloud of the final flies step to produce the best quantitative

results. The experiment shows that using Gaussian kernels leads to a better reconstructed

image than using Metaballs. The spread of Gaussian kernels depends on the local

fitness of the flies. Our proposed method is compared with two traditional methods

used in nuclear medicine: FBP and OSEM. The experimental results showed that our

method provides similar or better reconstructions than OSEM in term of numerical

accuracy depending on the input data.

In Chapter 6, four mutation operators are proposed: basic mutation, adaptive mutation

variance, dual mutation and directed mutation. The combination of these operators is

investigated in order to improve the quality of the reconstructed images in PET. The

experiment shows that the configuration of the dual mutation and the directed mutation

lead to better results in term of accuracy with an acceptable reconstruction speed time.

However, our initial implementation where the dual mutation was used to self-tune the

mutation variance.

8.3 Contributions

The work carried out through this research and its results successfully achieved the

objectives of this study. Chapters 7, 5 and 6 presented the main contributions of this

work for the Fly algorithm in digital arts and tomography reconstruction in nuclear

medicine. This includes:

Improving the accuracy of medical imaging (visualisation). The philosophy of

applying the initial version of the Fly algorithm has been updated to improve

the accuracy of medical imagery. This includes: 1) changing in the concept

Conclusions and Future Work 143

in which individuals (flies) are allocated to be in the final population. In the

first implementation, the reconstruction solution only relies on positive fitness.

However, our updated version proves that the result will be accurate if both

positive and negative fitness configurations are included; and 2) a further step has

been added to the algorithm to exploit the point cloud using implicit modelling

to voxelise the data from a density field using Metaballs and Gaussian kernels.

The weight of each fly in the final volume is still 1. However, its local fitness

function is considered to be the confidence level in the fly’s position. Its footprint

is spread over several voxels based on its local fitness function.

Different mutation operators. Four different mutation operators, basic mutation,

adaptive mutation variance, dual mutation and directed mutation, are proposed.

The operators are fully automated and relatively lightweight in terms of

computational maintenance. The operators are investigated in PET reconstruction.

The algorithm determines the best configuration, which is the combination of

dual and directed mutation that has the most impact on the results in terms of

producing accurate results with an acceptable computational processing time.

Proposing a flexible evolutionary art algorithm. The first version of our

evolutionary art using the Fly algorithm has been introduced to generate

mosaics-like and painterly rendering images. While many previous studies have

produced a digital mosaic and painterly rendering using Centroidal Voronoi

diagrams, our study uses an algorithm to generate artistic images as an

optimisation problem without user intervention so as not to introduce any a

priori knowledge or constraint other than the input image. Our model takes full

advantage of modern GPU. The algorithm relies on a multi-pass algorithm

implemented based on FBO to generate image data, GLSL and OpenCL to

compute the fitness function. Our algorithm has been extended to generate

different visual artistic effects. The algorithm is based on GLSL to update the

texture of the flies at different stages of the algorithm. Therefore, different shader

programmes are implemented to meet this purpose.

Conclusions and Future Work 144

8.4 Limitations

Some limitations exist in this study due to time and resource constraints. Although the

Fly algorithm for PET reconstruction can still be improved, it is now mature. Before this

study, it was in its infancy. Now we have demonstrated that it can compete with MLEM

and OSEM in term of accuracy. The digital art application is at a preliminary stage

as a proof-of-concept. First, the reconstruction speed is slow, especially if a reference

image contains a lot of details and many colours. The computation time takes about 1-4

hours. However, the speed issue is solved in the tomography application by adding the

parallel functionalities to the code to link and execute our implementation with high

performance computer (HPC) Wales. Another limitation is that the algorithm is unable

to recover fine details of the images. Using a large reference image dimension might

solve the issue, but it will also increase the reconstruction time.

8.5 Future work

Different adaptations, tests and experiments still need to be implemented and evaluated.

Therefore, some of the ideas and questions that arose during this research still need to

be added and answered in the future. Future work will include:

• Clinically, in relation to PET, our method needs to be tested using more realistic

data and the use of the latest advances in signal processing such as compressed

sensing (also known as compressive sensing, compressive sampling, or sparse

sampling) need to be investigated.

• Making it easier to use our method in digital arts by adding a friendly GUI that

allows a user to directly interact with the algorithm and control some parameters

of the output image, such as the shape of the tiles, the number of tiles, etc.

• A plugin of digital art algorithm for an image manipulation programme, such as

GIMP, will be released to make it available to potential users.

Conclusions and Future Work 145

• Evaluating our newmutation operator, directedmutation, with other reconstruction

data. The operator can also be used in other cooperative co-evolution schemes to

improve the cooperation between individuals.

• Our implementation could be refined to take advantage of more advanced genetic

operators, for example to speed-up computations, and to recover fine details.

• A hybrid approach should be developed that combines the Fly algorithm with a

segmentation method to reconstruct the edges between the distinguished areas

with a smaller flies size or to automatically select the region of interests (ROIs) in

the reconstructed image to focus the computations on the areas of importance

(e.g. those with fine details).

• A progressive resolution approach could be introduce in the digital arts application

to decrease the computation time using a “mitosis” operator. Its potential in the

tomography implementation (i.e. the reconstruction starts with a small number

of flies and the population size increases gradually until the population reaches

its maximum size) has been previously demonstrated.

Conclusions and Future Work 146

Acronyms

1-D one-dimensional

2-D two-dimensional

3-D three-dimensional

ACO Ant Colony Optimisation

AE artificial evolution

AHE Adaptive Histogram Equalisation

AI artificial intelligence

API application programming interface

ART algebraic reconstruction technique

CAD Computer-aided diagnosis

CBCT cone-beam computed tomography

CCEA cooperative co-evolution algorithm

CG computer graphics

CMY cyan-magenta-yellow

CMYK cyan-magenta-yellow-black

CPU central processing unit

CT computed tomography

CUDA compute unified device architecture

CV computer vision

CVd Centroidal Voronoi diagrams

CVT Centroidal Voronoi Tessellation

DNN deep neural network

147

DSC Dice Similarity Coefficient

EA evolutionary algorithm

EM expectation-maximization

ET emission tomography

EuroGP Genetic Programming

EVOApplication European Conference on the Applications of

Evolutionary Computation

EvoBAFIN Natural ComputingMethods inBusinessAnalytics

and Finance

EvoBIO Evolutionary Computation, Machine Learning

and Data Mining in Computational Biology

EvoCOMNET Nature-inspired Techniques for Communication

Networks and other Parallel and Distributed

Systems

EvoCOMPLEX Evolutionary Algorithms and Complex Systems

EvoCOP Evolutionary Computation in Combinatorial

Optimisation

EvoENERGY Evolutionary Algorithms in Energy Applications

EvoGAMES Bio-inspired Algorithms in Games

EvoIASP Evolutionary Computation in Image Analysis,

Signal Processing and Pattern Recognition

EvoINDUSTRY Evolutionary and Bio-Inspired Computational

Techniques within Real-World Industrial and

Commercial Environments

EvoKNOW Knowledge Incorporation in Evolutionary

Computation

EvoMUSART Computational Intelligence in Music, Sound, Art

and Design

EvoNUM Bio-inspired algorithms for continuous parameter

optimisation

EvoPAR Parallel Architectures and Distributed

Infrastructures

Acronyms 148

EvoROBOT Evolutionary Robotics

EvoSET Nature-inspired algorithms in Software

Engineering and Testing

EvoSTOC Evolutionary Algorithms in Stochastic and

Dynamic Environments

FBO Framebuffer

FBP filtered back-projection

FCM fuzzy C-means clustering

GA genetic algorithm

GHE Global Histogram Equalisation

GIMP GNU Image Manipulation Program

GLGPU general-purpose computing on graphics

processing units

GLSL Open Graphics Library Shading Language

GLU OpenGL utility library

GLUT OpenGL utility toolkit

GPU graphic processing unit

GUI graphical user interface

HE Histogram Equalisation

HLSL high level shader language

HPC high performance computer

HSI hue, saturation, intensity

HVS human visual system

IE image enhancement

JIM jigsaw image mosaics

Acronyms 149

LB lower bound

LHE Local Histogram Equalisation

MAE Mean absolute error

MAP-Elites multi-dimensional archive of phenotypic elites

MART multiple algebraic reconstruction technique

MCM Monte Carlo with minimisation

MIUA Medical Image Understanding and Analysis

ML machine learning

MLEM maximum-likelihood expectation-maximization

MMBEBHE Minimum Mean Brightness Error Bi- Histogram

Equalisation

MNL modified nonlinear Laplace

MOS Mean opinion score

MRF Markov Random Field

MRI magnetic resonance image

multi-peak GHE multi-peak Generalised Histogram Equalisation

NCC normalised cross-correlation

NPR non-photorealistic rendering

OpenCL Open Computing Language

OpenGL Open Graphics Library

OSEM ordered subset expectation-maximization

PCA Principal Components Analysis

PCA-mutation Principal Components Analysis mutation

PET positron emission tomography

pixel picture element

PSNR Peak signal-to-noise ratio

PTX parallel thread execution

Acronyms 150

RGB red-green-blue

RI range image

ROI region of interest

SA simulated annealing

SAE sum of absolute errors

SART simultaneous algebraic reconstruction technique

SIMD single instruction multiple data

SIRT simultaneous iterative reconstruction technique

SLAM simultaneous localisation and mapping

SNR signal-to-noise ratio

SPECT single-photon emission computed tomography

SSD sum of squared differences

SSGA steady-state genetic algorithm

STDEV standard deviation

TSP travelling salesman problem

UB upper bound

US ultrasound

voxel volume element

WICED Workshop on Intelligent Cinematography and

Editing

Acronyms 151

References

[1] https://www.eg.org/index.php/events/working-groups-events/

107-wge/378-intelligent-cinematography-and-editing, Accessed:

2017-03-07 (p. 18).

[2] Z. A. Abbood, O. Amlal and F. P. Vidal, ‘Evolutionary art using the fly

algorithm’, in Applications of Evolutionary Computation: 20th European

Conference, EvoApplications 2017, Amsterdam, The Netherlands, April 19-21,

2017, Proceedings, Part I, G. Squillero and K. Sim, Eds. Cham: Springer

International Publishing, 2017, pp. 455–470, isbn: 978-3-319-55849-3. doi:

10.1007/978-3-319-55849-3_30 (p. 119).

[3] R. R. Ahirwal, R. N. Pathak and Y. Jain, ‘Contrast enhancement of HDR images

using genetic algorithm with efficient fitness value’, International Journal of

Computer Science Issues, vol. 10, no. 6, pp. 70–79, 2013 (p. 42).

[4] T. Ahonen, A. Hadid and M. Pietikäinen, ‘Face description with local binary

patterns: Application to face recognition’, IEEETransactions onPattern Analysis

and Machine Intelligence, vol. 28, no. 12, pp. 2037–2041, 2006, issn: 01628828.

doi: 10.1109/TPAMI.2006.244 (p. 18).

[5] F. Alabsi and R. Naoum, ‘Comparison of selection methods and crossover

operations using steady state genetic based intrusion detection system’, Journal

of Emerging Trends in Computing and Information Sciences, vol. 3, no. 7,

pp. 1053–1058, 2012 (pp. 38, 40).

[6] W. Alan, 3D computer graphics, Third Edit. Addison-Wesley, 2000, isbn:

0201398559 (p. 173).

[7] Z. Ali Abbood, J. Lavauzelle, É. Lutton, J.-M. Rocchisani, J. Louchet and

F. P. Vidal, ‘Voxelisation in the 3-D Fly algorithm for PET’, Swarm and

Evolutionary Computation, 2017, issn: 2210-6502. doi: 10.1016/j.swevo.

2017.04.001 (pp. 66, 100, 112, 116).

152

https://www.eg.org/index.php/events/working-groups-events/107-wge/378-intelligent-cinematography-and-editing
https://www.eg.org/index.php/events/working-groups-events/107-wge/378-intelligent-cinematography-and-editing
https://doi.org/10.1007/978-3-319-55849-3_30
https://doi.org/10.1109/TPAMI.2006.244
https://doi.org/10.1016/j.swevo.2017.04.001
https://doi.org/10.1016/j.swevo.2017.04.001

[8] Z. Ali Abbood, J.-M. Rocchisani and F. P. Vidal, ‘Visualisation of PET data

in the Fly algorithm’, in Eurographics Workshop Vis Comput Biomed, 2015,

pp. 211–212, isbn: 978-3-905674-82-8. doi: 10.2312/vcbm.20151227

(pp. 58, 66).

[9] Alliance for Telecommunications Industry Solutions, ATIS telecom glossary,

Accessed: 2017-08-11, 2001. [Online]. Available: http://www.atis.org/

glossary/definition.aspx?id=2014 (p. 76).

[10] A. Andersen and A. Kak, ‘Simultaneous algebraic reconstruction technique

(SART): A superior implementation of the ART algorithm’,Ultrasonic Imaging,

vol. 6, no. 1, pp. 81–94, 1984, issn: 0161-7346. doi: 10.1016/0161-7346(84)

90008-7 (p. 24).

[11] Applications of evolutionary computation. [Online]. Available: http://www.

evostar.org/2017/cfp_evoapps.php (visited on 2nd Feb. 2017) (p. 31).

[12] T. Bäck, ‘Self-adaptation in genetic algorithms’, in Proc 1st European Conf

Artif Life, MIT Press, 1992, pp. 263–271 (pp. 99, 101).

[13] C. Badea and R. Gordon, ‘Experiments with the nonlinear and chaotic behaviour

of the multiplicative algebraic reconstruction technique (MART) algorithm

for computed tomography’, Physics in Medicine and Biology, vol. 49, no. 8,

p. 1455, 2004. doi: 10.1088/0031-9155/49/8/006 (p. 24).

[14] T. Baeck, D. B. Fogel and Z. Michalewicz, Eds., Evolutionary Computation

1: Basic Algorithms and Operators. Taylor & Francis, 2000, ISBN: 978-

0750306645 (p. 30).

[15] N. Baek and H. Lee, ‘OpenGL ES 1.1 implementation based on OpenGL’,

Springer Science+Business Media, vol. 57, no. December 2010, pp. 669–685,

2012. doi: 10.1007/s11042-010-0662-4 (p. 175).

[16] S. Battiato, G. D. Blasi, G. M. Farinella and G. Gallo, ‘Digital Mosaic

Frameworks - An Overview’, Comput Graph Forum, vol. 26, no. 4, pp. 794–812,

2007. doi: 10.1111/j.1467-8659.2007.01021.x (pp. 26, 121).

[17] D. Beasley, D. R. Bull and M. R. R., ‘An overview of genetic algorithms: Part 1

, fundamentals 1 introduction 2 basic principles’, University Computing, vol. 15,

no. 2, pp. 58–69, 1993 (pp. 33, 34, 38, 40).

[18] H. G. Beyer and H. P. Schwefel, ‘Evolution strategies - a comprehensive

introduction’, Nat Comput, vol. 1, no. 1, pp. 3–52, 2002. doi: 10.1023/A:

1015059928466 (pp. 104, 105).

REFERENCES 153

https://doi.org/10.2312/vcbm.20151227
http://www.atis.org/glossary/definition.aspx?id=2014
http://www.atis.org/glossary/definition.aspx?id=2014
https://doi.org/10.1016/0161-7346(84)90008-7
https://doi.org/10.1016/0161-7346(84)90008-7
http://www.evostar.org/2017/cfp_evoapps.php
http://www.evostar.org/2017/cfp_evoapps.php
https://doi.org/10.1088/0031-9155/49/8/006
https://doi.org/10.1007/s11042-010-0662-4
https://doi.org/10.1111/j.1467-8659.2007.01021.x
https://doi.org/10.1023/A:1015059928466
https://doi.org/10.1023/A:1015059928466

[19] B. Bhanu, S. Lee and J. Ming, ‘Adaptive image segmentation using a genetic

algorithm’, IEEE transactions on systems, man, and cybernetics, vol. 25, no. 12,

pp. 1543–1567, 1995. doi: 10.1109/21.478444 (p. 46).

[20] S. Bhattacharyya, ‘A brief survey of color image preprocessing and segmentation

techniques’, Journal of Pattern Recognition Research, vol. 1, pp. 120–129,

2011. doi: doi:10.13176/11.191 (pp. 43, 46).

[21] N. Bissantz, B. A. Mair and A. Munk, ‘A statistical stopping rule for MLEM

reconstructions in PET’, in IEEE Nuclear Science Symposium Conference

Record, Oct. 2008, pp. 4198–4200. doi: 10.1109/NSSMIC.2008.4774207

(p. 25).

[22] G. D. Blasi, G. Gallo, U. Catania, V. A. Doria and M. Petralia, ‘Puzzle image

mosaic’, in IASTED/VIIP 2005, 2005, pp. 33–37 (p. 26).

[23] J. F. Blinn, ‘A generalization of algebraic surface drawing’, ACM Trans. Graph.,

vol. 1, no. 3, pp. 235–256, Jul. 1982, issn: 0730-0301. doi: 10.1145/357306.

357310 (pp. 78, 79, 84).

[24] L. B. Booker, D. E. Goldberg and J. H. Holland, ‘Classifier systems and genetic

algorithms’, Artificial Intelligence, vol. 40, no. 1-3, pp. 235–282, Sep. 1989,

issn: 00043702. doi: 10.1016/0004-3702(89)90050-7 (p. 33).

[25] M. V. Borkar and B. Kurhade, ‘A novel approach for face recognition by using

near set theory’, Global Journal of Engineering Science and Researches, vol. 2,

no. July, pp. 94–103, 2015 (p. 18).

[26] A. M. Boumaza and J. Louchet, ‘Dynamic flies: Using real-time parisian

evolution in robotic’, Applications of Evolutionary Computing (2001),

EVOIASP2001. Lecture Notes in Computer Science, vol. 2037, pp. 288–297,

2001 (pp. 56, 58, 62, 63).

[27] ——, ‘Mobile robot sensor fusion using flies’, S. Cagnoni et al. (Eds),

Evoworkshops 2003. Lecture Notes in Computer Science, vol. 2611, pp. 357–367,

2003 (pp. 58, 60–62).

[28] A. Bousquet, J. Louchet and J.-M. Rocchisani, ‘Fully three-dimensional

tomographic evolutionary reconstruction in nuclear medicine’, in Proceedings

of the Evolution Artificielle, 8th International Conference on Artificial Evolution,

ser. EA’07, Tours, France: Springer-Verlag, 2008, pp. 231–242, isbn: 3-540-

79304-6. doi: 10.1007/978- 3- 540- 79305- 2_20 (pp. 60, 64–66, 69,

71).

REFERENCES 154

https://doi.org/10.1109/21.478444
https://doi.org/doi:10.13176/11.191
https://doi.org/10.1109/NSSMIC.2008.4774207
https://doi.org/10.1145/357306.357310
https://doi.org/10.1145/357306.357310
https://doi.org/10.1016/0004-3702(89)90050-7
https://doi.org/10.1007/978-3-540-79305-2_20

[29] A. Bucci and B. Pollack J., ‘On identifying global optima in cooperative

coevolution’, inProceedings of the 2005 conference onGenetic and evolutionary

computation - GECCO ’05, New York, New York, USA: ACM Press, 2005,

isbn: 1595930108. doi: 10.1145/1068009.1068098 (pp. 56, 57).

[30] S. Cagnoni, E. Lutton and G. Olague, Genetic and Evolutionary Computation

for Image Processing and Analysis. 410 Park Avenue, 15th Floor, #287 pmb,

New York, NY 10022, USA: Hindawi Publishing Corporation, 2007, isbn:

9789774540011 (pp. 20, 21, 31, 33, 36, 57).

[31] S. Cavuoti, M. Garofalo, M. Brescia, M. Paolillo, a. Pescape’, G. Longo

and G. Ventre, ‘Astrophysical data mining with GPU. a case study: Genetic

classification of globular clusters’, New Astronomy, vol. 26, pp. 12–22, Jan.

2014, issn: 13841076. doi: 10.1016/j.newast.2013.04.004 (pp. 31, 36).

[32] S. Chabrier, C. Rosenberger, B. Emile and H. Laurent, ‘Optimization-based

image segmentation by genetic algorithms’, EURASIP Journal on Video and

Image Processing, pp. 1–23, 2008, issn: 1687-5176. doi: 10.1155/2008/

842029 (p. 46).

[33] W.Chainate, P. Thapatsuwan and P. Pongcharoen, ‘A new heuristic for improving

the performance of genetic algorithm’,World Academy of Science, Engineering

and Technology, vol. 65000, pp. 217–220, 2007 (pp. 30, 37).

[34] K. Chellapilla, ‘Combining mutation operators in evolutionary programming’,

IEEE T Evolut Comput, vol. 2, no. 3, pp. 91–96, 1998. doi: 10.1109/4235.

735431 (p. 99).

[35] S.-D. Chen and A. Ramli, ‘Contrast enhancement using recursive mean-separate

histogram equalisation for scalable brightness preservation’, IEEE Transactions

on Consumer Electronics, vol. 49, no. 4, pp. 1301–1309, Nov. 2003, issn:

0098-3063. doi: 10.1109/TCE.2003.1261233 (p. 43).

[36] H. Cheng and X. Shi, ‘A simple and effective histogram equalisation approach

to image enhancement’, Digital Signal Processing, vol. 14, no. 2, pp. 158–170,

Mar. 2004, issn: 10512004. doi: 10.1016/j.dsp.2003.07.002 (p. 43).

[37] X. Cheng and X. Gong, ‘An image segmentation of fuzzy C-means clustering

based on the combination of improved ant colony algorithm and genetic

algorithm’, 2008 International Workshop on Education Technology and

Training & 2008 International Workshop on Geoscience and Remote Sensing,

pp. 804–808, Dec. 2008. doi: 10.1109/ETTandGRS.2008.408 (p. 49).

REFERENCES 155

https://doi.org/10.1145/1068009.1068098
https://doi.org/10.1016/j.newast.2013.04.004
https://doi.org/10.1155/2008/842029
https://doi.org/10.1155/2008/842029
https://doi.org/10.1109/4235.735431
https://doi.org/10.1109/4235.735431
https://doi.org/10.1109/TCE.2003.1261233
https://doi.org/10.1016/j.dsp.2003.07.002
https://doi.org/10.1109/ETTandGRS.2008.408

[38] S.-y. Cho and Z. Chi, ‘Genetic evolution processing of data structures for image

classification’, IEEE Transactions on Knowledge and Data Engineering, vol. 17,

no. 2, pp. 216–231, Feb. 2005, issn: 1041-4347. doi: 10.1109/TKDE.2005.28

(p. 36).

[39] N. S. H. Chu and C. L. Tai, ‘Real-time painting with an expressive virtual

Chinese brush’, IEEE Comput Graph, vol. 24, no. 5, pp. 76–85, 2004, issn:

02721716. doi: 10.1109/MCG.2004.37 (p. 25).

[40] G. Colin de Verdière, ‘Introduction au GPGPU, aspects matériels et logiciels’,

Comptes Rendus -Mecanique, vol. 339, no. 2-3, pp. 78–89, 2011, issn: 16310721.

doi: 10.1016/j.crme.2010.11.003 (p. 174).

[41] P. Collet, E. Lutton and J. Louchet, ‘Issues on the optimisation of evolutionary

algorithm code’, in IEEE C Evol Computat, 2002. doi: 10.1109/CEC.2002.

1004397 (p. 100).

[42] J. Collomosse, ‘Evolutionary search for the artistic rendering of photographs’,

in The Art of Artificial Evolution: A Handbook on Evolutionary Art and

Music, J. Romero and P. Machado, Eds., Springer, 2007, pp. 39–62. doi:

10.1007/978-3-540-72877-1_2 (p. 28).

[43] C. Dai, X. Wu and J. Liu, ‘Stereo matching using adaptive genetic algorithm’,

IEEE, International Conference on Audio, Language and Image Processing.

ICALIP ., pp. 1225–1228, 2008 (pp. 50, 51, 53).

[44] D. Devaraj and B. Yegnanarayana, ‘Genetic-algorithm-based optimal power

flow for security enhancement’, in IEE Proceedings - Generation, Transmission

and Distribution, IET, 2005, pp. 899–905. doi: 10.1049/ip-gtd:20045234

(p. 40).

[45] F. Devinck and L. Spillmann, ‘The watercolor effect : Spacing constraints’,

Vision Res, vol. 49, no. 24, pp. 2911–2917, 2009, issn: 0042-6989. doi:

10.1016/j.visres.2009.09.008 (p. 25).

[46] A. Dipanda, S. Woo, F. Marzani and J. Bilbault, ‘3-D shape reconstruction in

an active stereo vision system using genetic algorithms’, Pattern Recognition,

vol. 36, pp. 2143–2159, 2003. doi: doi.org/10.1016/S0031-3203(03)

00049-9 (pp. 52, 53).

[47] Y. Dobashi and H. Johan, ‘A method for creating mosaic images using Voronoi

diagrams’, in Eurographics 2002, 2002, pp. 341–348 (p. 26).

REFERENCES 156

https://doi.org/10.1109/TKDE.2005.28
https://doi.org/10.1109/MCG.2004.37
https://doi.org/10.1016/j.crme.2010.11.003
https://doi.org/10.1109/CEC.2002.1004397
https://doi.org/10.1109/CEC.2002.1004397
https://doi.org/10.1007/978-3-540-72877-1_2
https://doi.org/10.1049/ip-gtd:20045234
https://doi.org/10.1016/j.visres.2009.09.008
https://doi.org/doi.org/10.1016/S0031-3203(03)00049-9
https://doi.org/doi.org/10.1016/S0031-3203(03)00049-9

[48] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson and J. Dongarra, ‘From

CUDA to OpenCL: Towards a performance-portable solution for multi-platform

GPU programming’, Parallel Computing, vol. 38, no. 8, pp. 391–407, 2012,

issn: 01678191. doi: 10.1016/j.parco.2011.10.002 (p. 174).

[49] E. Dunn, G. Olague and E. Lutton, ‘Automated photogrammetric network

design using the parisian approach’, Applications of Evolutionary Computing,

pp. 356–365, 2005, issn: 03029743. doi: 10.1007/978-3-540-32003-6_36

(p. 58).

[50] A. E. Eiben, R. Hinterding and Z. Michalewicz, ‘Parameter control in

evolutionary algorithms’, IEEE T Evolut Comput, vol. 3, no. 2, pp. 124–141,

1999 (p. 99).

[51] G. Elber and G.Wolberg, ‘Rendering traditional mosaics’, The Visual Computer,

vol. 19, no. 1, pp. 67–78, 2003. doi: 10.1007/s00371-002-0175-x (p. 25).

[52] K. Erlandsson, P. Esser, S.-E. Strand and R. V. Heertum, ‘3D reconstruction

for a multi-ring PET scanner’, 1993 IEEE Conference Record Nuclear Science

Symposium and Medical Imaging Conference, pp. 1562–1566, 1993. doi:

10.1109/NSSMIC.1993.373552 (p. 49).

[53] F. H. Fahey, ‘Data acquisition in PET imaging’, Journal of Nuclear Medicine

Technology, vol. 30, no. 2, pp. 39–49, 2002, issn: 1535-5675 (p. 24).

[54] J. Fang,A. L.Varbanescu,X. Liao andH. Sips, ‘Evaluating vector data type usage

in OpenCL kernels’, Concurrency and Computation: Practice and Experience,

vol. 27, no. October 2014, pp. 4586–4602, 2015. doi: 10.1002/cpe (p. 177).

[55] M. E. Farmer and D. Shugars, ‘Application of genetic algorithms for wrapper-

based image segmentation and classification’, IEEE Congress on Evolutionary

Computation, pp. 1300–1307, 2006. doi: 10.1109/CEC.2006.1688459

(p. 46).

[56] G. M. Faustino and L. H. De Figueiredo, ‘Simple adaptive mosaic effects’,

in Brazilian Symposium of Computer Graphic and Image Processing, 2005,

pp. 315–322, isbn: 0769523897. doi: 10.1109/SIBGRAPI.2005.46 (p. 26).

[57] R. Q. Feitosa, G. A. O. P. Costa, T. B. Cazes and B. Feijo, ‘A genetic approach

for the automatic adaptation of segmentation parameters’, in proc. OBIA06,

2006 (p. 47).

[58] A. S. Fukunaga, ‘Restart scheduling for genetic algorithms’, in Parallel Problem

Solving from Nature — PPSN V: 5th International Conference Amsterdam,

REFERENCES 157

https://doi.org/10.1016/j.parco.2011.10.002
https://doi.org/10.1007/978-3-540-32003-6_36
https://doi.org/10.1007/s00371-002-0175-x
https://doi.org/10.1109/NSSMIC.1993.373552
https://doi.org/10.1002/cpe
https://doi.org/10.1109/CEC.2006.1688459
https://doi.org/10.1109/SIBGRAPI.2005.46

The Netherlands September 27–30, 1998 Proceedings. Berlin, Heidelberg:

Springer Berlin Heidelberg, 1998, pp. 357–366, isbn: 978-3-540-49672-4. doi:

10.1007/BFb0056878 (p. 125).

[59] J. J. Furtado, Z. Cai and L. Xiaobo, ‘Digital image processing: Supervised

classification using genetic algorithm in Matlab toolbox’, Report and Opinion,

vol. 2, no. 6, pp. 53–61, 2010 (p. 19).

[60] A. Fusiello, U. Castellani, V. Murino and D. Informatica, ‘Relaxing symmetric

multiple windows stereo using Markov random fields’, Springer, Lecture Notes

in Computer Science, vol. 2134, pp. 91–105, 2001 (p. 51).

[61] A. Gaitanis, G. Kontaxakis, G. Spyrou, G. Panayiotakis and G. Tzanakos,

‘PET image reconstruction: A stopping rule for the MLEM algorithm based on

properties of the updating coefficients’, Computerized Medical Imaging and

Graphics, vol. 34, no. 2, pp. 131–141, 2010, issn: 0895-6111. doi: 10.1016/j.

compmedimag.2009.07.006 (p. 68).

[62] B. Gaster, L. Howes, D. R. Kaeli, P. Mistry and D. Schaa, Heterogeneous

Computing with OpenCL, 1st. Morgan Kaufmann, 2011, isbn: 0123877660

(p. 124).

[63] P. Gilbert, ‘Iterative methods for the three-dimensional reconstruction of

an object from projections’, Journal of Theoretical Biology, vol. 36, no. 1,

pp. 105–117, 1972, issn: 0022-5193. doi: 10.1016/0022-5193(72)90180-4

(p. 24).

[64] Z. Gkoutioudi K. and D. Karatza H., ‘Multi-criteria job scheduling in grid using

an accelerated genetic algorithm’, Journal of Grid Computing, vol. 10, no. 2,

pp. 311–323, Mar. 2012, issn: 1570-7873. doi: 10.1007/s10723-012-9210-

y (pp. 31, 33, 36).

[65] M. Gong and Y.-H. Yang, ‘Genetic-based multiresolution color image

segmentation’, in proc Vision Interface, pp. 141–148, 2001 (pp. 35, 48).

[66] M.Gong andY.Y-H., ‘Multi-resolution stereomatching using genetic algorithm’,

Proceedings IEEEWorkshop on Stereo and Multi-Baseline Vision (SMBV 2001),

pp. 21–29, 2001. doi: 10.1109/SMBV.2001.988759 (pp. 35, 50–53).

[67] R. C. Gonzalez and R. E. Woods, Digital Image Processing, Third Edit. Pearson

Education, 2010, p. 976, isbn: 0-13-234563-3 (pp. 19, 20, 42, 46, 62).

[68] R. Gordon, R. Bender and G. T. Herman, ‘Algebraic reconstruction techniques

(ART) for three-dimensional electron microscopy and X-ray photography’,

REFERENCES 158

https://doi.org/10.1007/BFb0056878
https://doi.org/10.1016/j.compmedimag.2009.07.006
https://doi.org/10.1016/j.compmedimag.2009.07.006
https://doi.org/10.1016/0022-5193(72)90180-4
https://doi.org/10.1007/s10723-012-9210-y
https://doi.org/10.1007/s10723-012-9210-y
https://doi.org/10.1109/SMBV.2001.988759

Journal of Theoretical Biology, vol. 29, no. 3, pp. 471–481, 1970, issn: 0022-

5193. doi: 10.1016/0022-5193(70)90109-8 (p. 24).

[69] P. Haeberli, ‘Paint by Numbers: Abstract Image Representations’, SIGGRAPH

Comput. Graph., vol. 24, no. 4, pp. 207–214, Sep. 1990. doi: 10.1145/97880.

97902 (p. 26).

[70] R. Hafezi, A. Keshavarz and V. Moshfegh, ‘A new algorithm to stereo

correspondence using rank transform and morphology based on genetic

algorithm’, World Academy of science, Engineering and Technology, vol. 6,

pp. 1064–1067, 2012 (pp. 49, 50, 52, 53).

[71] K.-P. Han, K.-W. Song, E.-Y. Chung, S.-J. Cho and Y.-H. Ha, ‘Stereo matching

using genetic algorithm with adaptive chromosomes’, Pattern Recognition,

vol. 34, no. 9, pp. 1729–1740, Sep. 2001, issn: 00313203. doi: 10.1016/S0031-

3203(00)00114-X (pp. 30, 33, 34, 36, 50, 51, 53).

[72] N. Hansen, S. D. Müller and P. Koumoutsakos, ‘Reducing the time complexity

of the derandomized evolution strategy with covariance matrix adaptation

(CMA-ES)’, Evolutionary Computation, vol. 11, no. 1, pp. 1–18, 2003. doi:

10.1162/106365603321828970 (p. 106).

[73] S. Hashemi, S. Kiani, N. Noroozi and M. E. Moghaddam, ‘An image contrast

enhancement method based on genetic algorithm’, Pattern Recognition Letters,

vol. 31, no. 13, pp. 1816–1824, Oct. 2010, issn: 01678655. doi: 10.1016/j.

patrec.2009.12.006 (pp. 42–44).

[74] A. Hausner, ‘Simulating decorative mosaics’, in Proceedings of SIGGRAPH

’01, 2001, pp. 573–580. doi: 10.1145/383259.383327 (pp. 27, 120, 122).

[75] S. Hegde, C. Gatzidis and F. Tian, ‘Painterly rendering techniques: A state-of-

the-art review of current approaches’, Computer Animation and Virtual Worlds,

vol. 24, no. 1, pp. 43–64, 2013, issn: 1546-427X. doi: 10.1002/cav.1435

(p. 28).

[76] K. E. Hoff III, J. Keyser, M. Lin, D. Manocha and T. Culver, ‘Fast computation

of generalized Voronoi diagrams using graphics hardware’, in Proceedings of

SIGGRAPH ’99, 1999, pp. 277–286. doi: 10.1145/311535.311567 (p. 27).

[77] K. R. Hole, V. S. Gulhane and N. D. Shellokar, ‘Application of genetic algorithm

for image enhancement and segmentation’, International Journal of Advanced

Research in Computer Engineering & Technology (IJARCET), vol. 2, no. 4,

pp. 1342–1346, 2013 (p. 42).

REFERENCES 159

https://doi.org/10.1016/0022-5193(70)90109-8
https://doi.org/10.1145/97880.97902
https://doi.org/10.1145/97880.97902
https://doi.org/10.1016/S0031-3203(00)00114-X
https://doi.org/10.1016/S0031-3203(00)00114-X
https://doi.org/10.1162/106365603321828970
https://doi.org/10.1016/j.patrec.2009.12.006
https://doi.org/10.1016/j.patrec.2009.12.006
https://doi.org/10.1145/383259.383327
https://doi.org/10.1002/cav.1435
https://doi.org/10.1145/311535.311567

[78] P. Hoseini andM. G. Shayesteh, ‘Efficient contrast enhancement of images using

hybrid ant colony optimisation, genetic algorithm, and simulated annealing’,

Digital Signal Processing, vol. 23, no. 3, pp. 879–893,May 2013, issn: 10512004.

doi: 10.1016/j.dsp.2012.12.011 (pp. 43–45).

[79] HPC Wales, The Tier-1 Infrastructure at Aberystwyth, Bangor, and Glamorgan,

Accessed: 2017-08-11, 2015. [Online]. Available: https : / / portal .

hpcwales.co.uk/docs/userguide/chapter8.html (p. 87).

[80] W. Hu, Z. Chen, H. Pan, Y. Yu, E. Grinspun and W. Wang, ‘Surface Mosaic

Synthesis with Irregular Tiles’, IEEE T Vis Comput Gr, vol. 2626, no. c,

pp. 1–13, 2015. doi: 10.1109/TVCG.2015.2498620 (p. 27).

[81] H.M. Hudson and R. S. Larkin, ‘Accelerated image reconstruction using ordered

subsets of projection data’, IEEE Transactions on Medical Imaging, vol. 13,

no. 4, pp. 601–609, Dec. 1994, issn: 0278-0062. doi: 10.1109/42.363108

(p. 24).

[82] Intel Corporation, Intel Xeon processor X5650, Accessed: 2017-08-11. [Online].

Available: http://ark.intel.com/products/47922/Intel- Xeon-

Processor- X5650- 12M- Cache- 2_66- GHz- 6_40- GTs- Intel- QPI

(p. 87).

[83] T. Isenberg, ‘Visualization and processing of higher order descriptors for multi-

valued data’, in. Springer, 2015, ch. A Survey of Illustrative Visualization

Techniques for Diffusion-Weighted MRI Tractography, pp. 235–256, isbn:

978-3-319-15090-1. doi: 10.1007/978-3-319-15090-1_12 (p. 25).

[84] R. Jain, R. Kasturi and B. G. Schunck,Machine Vision. MC Graw-Hill, 1995,

isbn: 0-07-032018-7 (p. 50).

[85] D. J. Kadrmas,M. E. Casey,M.Conti, B.W. Jakoby, C. Lois andD.W.Townsend,

‘Impact of time-of-flight on PET tumor detection’, Journal of Nuclear Medicine,

vol. 50, no. 8, pp. 1315–1323, 2009. doi: 10.2967/jnumed.109.063016

(p. 24).

[86] M. Kaplan and E. Cohen, ‘Computer Generated Celtic Design’, Proceedings of

the 14th Eurographics Workshop on Rendering 2003, vol. 44, pp. 9–19, 2003.

doi: 10.1145/882404.882406 (p. 25).

[87] R. M. Karp, ‘Complexity of computer computations’, in. Springer, 1972,

ch. Reducibility among Combinatorial Problems, pp. 85–103, isbn: 978-1-4684-

2001-2. doi: 10.1007/978-1-4684-2001-2_9 (p. 120).

REFERENCES 160

https://doi.org/10.1016/j.dsp.2012.12.011
https://portal.hpcwales.co.uk/docs/userguide/chapter8.html
https://portal.hpcwales.co.uk/docs/userguide/chapter8.html
https://doi.org/10.1109/TVCG.2015.2498620
https://doi.org/10.1109/42.363108
http://ark.intel.com/products/47922/Intel-Xeon-Processor-X5650-12M-Cache-2_66-GHz-6_40-GTs-Intel-QPI
http://ark.intel.com/products/47922/Intel-Xeon-Processor-X5650-12M-Cache-2_66-GHz-6_40-GTs-Intel-QPI
https://doi.org/10.1007/978-3-319-15090-1_12
https://doi.org/10.2967/jnumed.109.063016
https://doi.org/10.1145/882404.882406
https://doi.org/10.1007/978-1-4684-2001-2_9

[88] D. J. Ketcham, R. W. Lowe and J. W. Weber, ‘Image enhancement techniques

for cockpit displays’, Hughes Aircraft Company, Tech. Rep. AD-AO14 928,

Dec. 1974 (p. 43).

[89] M. J. Kilgard, The OpenGL Utility Toolkit (GLUT) Program- ming Interface:

API Version 3. Silicon Graphics, Inc., 1996 (p. 175).

[90] J. Kim and F. Pellacini, ‘Jigsaw image mosaics’, ACM Transactions on Graphics,

vol. 21, no. 3, pp. 657–664, 2002 (p. 28).

[91] A. Kumar, ‘Encoding schemes in genetic algorithm’, International Journal of

Advanced Research in IT and Engineering, vol. 2, no. 3, pp. 1–7, 2013 (p. 34).

[92] M. Kumar, M. Husian, N. Upreti and D. Gupta, ‘Genetic algorith: Review and

application’, International Journal of Information Technology and Knowledge

Management, vol. 2, no. 2, pp. 451–454, 2010 (pp. 33, 36, 42).

[93] Y.-K. Lai, S.-M. Hu and R. R. Martin, ‘Surface mosaics’, Visual Comput,

vol. 22, no. 9, pp. 604–611, 2006, issn: 1432-2315 (p. 27).

[94] S. Le Grand, A. W. Götz and R. C. Walker, ‘SPFP: Speed without compromise -

a mixed precision model for GPU accelerated molecular dynamics simulations’,

Computer Physics Communications, vol. 184, no. 2, pp. 374–380, 2013. doi:

10.1016/j.cpc.2012.09.022 (p. 174).

[95] M. Levoy, ‘Efficient ray tracing of volume data’, ACM Trans. Graph., vol. 9,

no. 3, pp. 245–261, Jul. 1990, issn: 0730-0301. doi: 10.1145/78964.78965

(p. 79).

[96] J. Li, L. Yao, E. Hendriks and J. Z.Wang, ‘Rhythmic brushstrokes distinguish van

gogh from his contemporaries : Findings via automated brushstroke extraction’,

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI),

vol. 34, no. 6, pp. 1159–1176, 2012. doi: 10.1109/TPAMI.2011.203 (p. 18).

[97] M. M. Li, W. Guo, B. Verma, K. Tickle and J. O’Connor, ‘Intelligent methods

for solving inverse problems of backscattering spectra with noise: A comparison

between neural networks and simulated annealing’, Neural Computing and

Applications, vol. 18, no. 5, pp. 423–430, 2009, issn: 09410643. doi: 10.1007/

s00521-008-0219-x (p. 18).

[98] Z. Li, S. Qin, X. Jin, Z. Yu and J. Lin, ‘Skeleton-enhanced line drawings for 3D

models’, Graphical Models, vol. 76, no. 6, pp. 620–632, 2014, issn: 1524-0703.

doi: 10.1016/j.gmod.2014.07.002 (p. 25).

REFERENCES 161

https://doi.org/10.1016/j.cpc.2012.09.022
https://doi.org/10.1145/78964.78965
https://doi.org/10.1109/TPAMI.2011.203
https://doi.org/10.1007/s00521-008-0219-x
https://doi.org/10.1007/s00521-008-0219-x
https://doi.org/10.1016/j.gmod.2014.07.002

[99] C.-h. Lim, Y.-s. Yoon and J.-h. Kim, ‘Genetic algorithm in mix proportioning of

high-performance concrete’,Cement and Concrete Research, vol. 34, no. August

2003, pp. 409–420, 2004. doi: 10.1016/j.cemconres.2003.08.018 (p. 40).

[100] C. Lois, B. W. Jakoby, M. J. Long, K. F. Hubner, D. W. Barker, M. E. Casey,

M. Conti, V. Y. Panin, D. J. Kadrmas and D. W. Townsend, ‘An assessment

of the impact of incorporating time-of-flight information into clinical PET/CT

imaging’, Journal of Nuclear Medicine, vol. 51, no. 2, pp. 237–245, 2010. doi:

10.2967/jnumed.109.068098 (p. 24).

[101] W. E. Lorensen and H. E. Cline, ‘Marching cubes: A high resolution 3D

surface construction algorithm’, SIGGRAPH Comput. Graph., vol. 21, no. 4,

pp. 163–169, Aug. 1987, issn: 0097-8930. doi: 10.1145/37402.37422

(pp. 79, 80).

[102] J. Louchet, ‘Stereo analysis using individual evolution strategy’, in Pattern

Recognition, 2000. Proceedings. 15th International Conference on, vol. 1, 2000,

908–911 vol.1. doi: 10.1109/ICPR.2000.905580 (pp. 12, 29, 52, 58, 62, 63,

73).

[103] J. Louchet and E. Sapin, ‘Flies open a door to SLAM’, In EvoWorkshops. Lecture

Note in Computer Science, vol. 5484, pp. 385–394, 2009. doi: "10.1007/978-

3-642-01129-0_43", (pp. 49, 58, 61–63).

[104] J. Louchet, ‘FromHough to Darwin: An individual evolutionary strategy applied

to artificial vision’, in Artificial Evolution: 4th European Conference, AE’99,

Dunkerque, France, November 3-5, 1999. Selected Papers. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2000, pp. 145–161, isbn: 978-3-540-44908-9. doi:

10.1007/10721187_11 (p. 33).

[105] ——, ‘Stereo analysis using individual evolution strategy’, in Proc Int C Patt

Recog, vol. 1, 2000, pp. 908–911. doi: 10.1109/ICPR.2000.905580 (p. 58).

[106] J. Louchet, M. Guyon, M.-J. Lesot and A. Boumaza, ‘Dynamic flies: A

new pattern recognition tool applied to stereo sequence processing’, Pattern

Recognition Letters, vol. 23, no. 1–3, pp. 335–345, 2002. doi: 10.1016/S0167-

8655(01)00129-5 (pp. 62, 63).

[107] L. Lu, F. Sun, H. Pan and W. Wang, ‘Global optimization of Centroidal Voronoi

Tessellation with Monte Carlo approach’, Transactions On Visualization And

Computer Graphics, vol. 18, no. 11, pp. 1880–1890, 2012. doi: 10.1109/

TVCG.2012.28 (p. 27).

REFERENCES 162

https://doi.org/10.1016/j.cemconres.2003.08.018
https://doi.org/10.2967/jnumed.109.068098
https://doi.org/10.1145/37402.37422
https://doi.org/10.1109/ICPR.2000.905580
https://doi.org/"10.1007/978-3-642-01129-0_43",
https://doi.org/"10.1007/978-3-642-01129-0_43",
https://doi.org/10.1007/10721187_11
https://doi.org/10.1109/ICPR.2000.905580
https://doi.org/10.1016/S0167-8655(01)00129-5
https://doi.org/10.1016/S0167-8655(01)00129-5
https://doi.org/10.1109/TVCG.2012.28
https://doi.org/10.1109/TVCG.2012.28

[108] É. Lutton and J. Lévy Véhel, ‘Pointwise regularity of fitness landscapes and the

performance of a simple ES’, in IEEE Congress on Evolutionary Computation,

2006, pp. 16–21. doi: 10.1109/CEC.2006.1688344 (p. 104).

[109] K. Lutz, Boost.Compute, http : / / boostorg . github . io / compute/,

Accessed: 2016-10-26 (p. 124).

[110] J. F. A. Madeira, H. L. Pina and H. C. Rodrigues, ‘GA topology

optimization using random keys for tree encoding of structures’, Structural

and Multidisciplinary Optimization, vol. 40, pp. 227–240, Feb. 2010, issn:

1615-147X. doi: 10.1007/s00158-008-0353-1 (p. 35).

[111] J. Magalhães-mendes, ‘A comparative study of crossover operators for genetic

algorithms to solve the job shop scheduling problem’, WSEAS Transactions on

Computers, vol. 12, no. 4, pp. 164–173, 2013 (p. 38).

[112] R. Maini and H. Aggarwal, ‘A comprehensive review of image enhancement

techniques’, Journal of Computing, vol. 2, no. 3, pp. 8–13, 2010 (p. 42).

[113] R. Malhotra, N. Singh and Y. Singh, ‘Genetic algorithms : Concepts , design for

optimisation of process controllers’, Computer and Information Science, vol. 4,

no. 2, pp. 39–54, 2011 (pp. 35, 36, 38, 40).

[114] C. Munteanu and A. Rosa, ‘Towards automatic image enhancement using

genetic algorithms’, in proc of the Congress on Evolutionary Computation,

vol. 2, pp. 1535–1542, 2000. doi: 10.1109/CEC.2000.870836 (pp. 43, 44).

[115] R. Naoum and A. AL-Sabbah, ‘Color image enhancement using steady state

genetic algorithm’, World of Computer Science and Information Technology

Journal (WCSIT), vol. 2, no. 6, pp. 184–192, 2012 (pp. 43, 44).

[116] A. Nguyen, J. Yosinski and J. Clune, ‘Deep neural networks are easily fooled:

High confidence predictions for unrecognizable images’, in IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 427–436. doi:

10.1109/CVPR.2015.7298640 (p. 28).

[117] J. Nickolls and W. J. Dally, ‘The GPU computing Era’, IEEE Computer Society,

vol. 30, pp. 56–69, 2010. doi: 10.1109/MM.2010.41 (p. 172).

[118] H. Nishimura, M. Hirai, T. Kawai, T. Kawata, I. Shirakawa and K. Omura,

‘Object modeling by distribution function and a method of image generation’,

Trans. Inst. Elect. Commun. Eng. Japan J68-D, vol. 4, pp. 718–725, 1985

(p. 80).

REFERENCES 163

https://doi.org/10.1109/CEC.2006.1688344
http://boostorg.github.io/compute/
https://doi.org/10.1007/s00158-008-0353-1
https://doi.org/10.1109/CEC.2000.870836
https://doi.org/10.1109/CVPR.2015.7298640
https://doi.org/10.1109/MM.2010.41

[119] G. Ochoa, ‘Setting the mutation rate: Scope and limitations of the 1/L heuristic’,

in Proc GECCO’02, 2002, pp. 495–502, isbn: 1-55860-878-8 (p. 99).

[120] T. Orlowska-Kowalska and J. Lis, ‘Application of evolutionary algorithms

with adaptive mutation to the identification of induction motor parameters at

standstill’, COMPEL, vol. 28, no. 6, pp. 1647–1661, 2009. doi: 10.1108/

03321640910999923 (p. 104).

[121] J. Owens and M. Houston, ‘GPU computing’, Proceedings of the IEEE, vol. 96,

no. 5, pp. 879–899, 2008, issn: 00189219. doi:10.1109/JPROC.2008.917757

(pp. 171, 172).

[122] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn and

T. J. Purcell, ‘A survey of general-purpose computation on graphics hardware’,

Computer Graphics Forum, vol. 26, no. 1, pp. 80–113, 2007, issn: 01677055.

doi: 10.1111/j.1467-8659.2007.01012.x (pp. 172–174).

[123] L. Panait, S. Luke and J. F. Harrison, ‘Archive-based cooperative coevolutionary

algorithms’, in GECCO ’06: Proceedings of the 8th annual conference on

Genetic and evolutionary computation, 2006, isbn: 1595931864 (pp. 56, 57).

[124] S. Pandian and V. Modrák, ‘Possibilities, obstacles and challenges of genetic

algorithm in manufacturing cell formation’, Advanced Logistic systems, vol. 3,

no. 1, pp. 63–70, 2009 (p. 54).

[125] M. Paulinas and A. Ušinskas, ‘A survey of genetic algorithms applications for

image enhancement and segmentation’, Information Technology and Control,

vol. 36, no. 3, pp. 278–284, 2007 (pp. 43, 54).

[126] O. Pauplin, J. Louchet, E. Lutton and M. Parent, ‘Applying evolutionary

optimisation to robot obstacle avoidance’, Journal of Advanced Computational

Intelligence and Intelligent Informatics, vol. 9, no. 6, pp. 622–629, 2005 (pp. 56,

62).

[127] H. Peng, F. Long, Z. Chi andW. Siu, ‘A hierarchical distributed genetic algorithm

for image segmentation’, in pros.2000 Congress on Evolutionary Computation,

vol. 1, no. 3, pp. 272–276, 2000. doi: 10.1109/CEC.2000.870306 (p. 48).

[128] M. Pérez-meza and R. Montúfar-chaveznava, ‘Partial 3D reconstruction

using evolutionary algorithms’,World Academy of science, Engineering and

Technology, vol. 18, no. 1, pp. 1001–1006, 2008 (pp. 50, 62).

[129] G. Pignalberi, R. Cucchiara, L. Cinque and S. Levialdi, ‘Tuning range image

segmentation by genetic algorithm’, EURASIP Journal on Applied Signal

REFERENCES 164

https://doi.org/10.1108/03321640910999923
https://doi.org/10.1108/03321640910999923
https://doi.org/10.1109/JPROC.2008.917757
https://doi.org/10.1111/j.1467-8659.2007.01012.x
https://doi.org/10.1109/CEC.2000.870306

Processing, vol. 1, pp. 780–790, 2003. doi: 10.1155/S1110865703303087

(p. 48).

[130] V. O. Prakash, P. Kumar, M. Hanmandlu and S. Chhabra, ‘High dynamic range

optimal fuzzy color image enhancement using artificial ant colony system’,

Applied Soft Computing Journal, vol. 12, no. 1, pp. 394–404, 2012, issn:

1568-4946. doi: 10.1016/j.asoc.2011.08.033 (p. 42).

[131] J. Qi and R.M. Leahy, ‘Iterative reconstruction techniques in emission computed

tomography’, Physics in Medicine and Biology, vol. 51, no. 15, R541, 2006.

doi: 10.1088/0031-9155/51/15/R01 (p. 24).

[132] V. Ramos and F. Muge, ‘Image colour segmentation by genetic algorithms’,

CoRR, vol. abs/cs/0412087, 2004 (p. 46).

[133] I. Rechenberg, Evolutionsstrategie: Optimierung technischer Systeme nach

Prinzipien der biologischen Evolution. Stuttgart: Frommann-Holzboog Verlag,

1973 (p. 104).

[134] R. J. Rost,OpenGL Shading Language, 2nd . AddisonWesley Professional, 2006,

isbn: 0-321-33489-2 (pp. 171, 176).

[135] H. Saito and M. Mori, ‘Application of genetic algorithms to stereo matching of

images in pixels’, Pattern Recognition Letters, vol. 16, pp. 815–821, 1995. doi:

doi.org/10.1016/0167-8655(95)00048-L (pp. 51, 52).

[136] E. Sapin, J. Louchet and E. Lutton, ‘The fly algorithm revisited - adaptation to

CMOS image sensors’, in IJCCI, 2009, pp. 224–229 (pp. 56, 57, 59, 62).

[137] D. Scharstein and R. Szeliski, ‘A taxonomy and evaluation of dense two-frame

stereo correspondence algorithms’, International Journal of Computer Vision,

vol. 47, no. 1-3, pp. 7–42, 2002 (p. 52).

[138] H.-P. Schwefel, Numerical optimization of computer models. Wiley, 1981

(p. 105).

[139] N. Senthilkumaran and R. Rajesh, ‘Edge detection techniques for image

segmentation – a survey of soft computing approaches’, International Journal

of Recent Trends in Engineering, vol. 1, no. 2, pp. 250–254, 2009 (p. 46).

[140] L. Shepp and Y. Vardi, ‘Maximum likelihood reconstruction for emission

tomography’, IEEE Transactions onMedical Imaging, vol. 1, no. 2, pp. 113–122,

Oct. 1982, issn: 0278-0062. doi: 10.1109/TMI.1982.4307558 (p. 24).

[141] F. Y. Shih and Y.-T. Wu, ‘Enhancement of image watermark retrieval

based on genetic algorithms’, Journal of Visual Communication and Image

REFERENCES 165

https://doi.org/10.1155/S1110865703303087
https://doi.org/10.1016/j.asoc.2011.08.033
https://doi.org/10.1088/0031-9155/51/15/R01
https://doi.org/doi.org/10.1016/0167-8655(95)00048-L
https://doi.org/10.1109/TMI.1982.4307558

Representation, vol. 16, no. 2, pp. 115–133, Apr. 2005, issn: 10473203. doi:

10.1016/j.jvcir.2004.05.002 (p. 45).

[142] G. M. Singh, M. S. Kohli and M. Diwakar, ‘A review of image enhancement

techniques in image processing’, HCTL Open Int. J. of Technology Innovations

and Research, vol. 5, pp. 1–13, 2013 (pp. 42, 43).

[143] A. Sitek, R. H. Huesman and G. T. Gullberg, ‘Tomographic reconstruction

using an adaptive tetrahedral mesh defined by a point cloud’, IEEE Transactions

on Medical Imaging, vol. 25, no. 9, pp. 1172–1179, Sep. 2006. doi: 10.1109/

TMI.2006.879319 (p. 72).

[144] G. Slabaugh, B. Culbertson and T. Malzbender, ‘A survey of methods for

volumetric scene reconstruction from photographs’, International Workshop

on Volume Graphics, vol. 2, no. 7, pp. 81–100, 2001. doi: 10.1007/978-3-

7091-6756-4_6 (p. 50).

[145] F. Soldado, F. Alexandre and H. Paulino, ‘Execution of compound multi-kernel

OpenCL computations in multi-CPU/multi-GPU environments’, Concurrency

and Computation: Practice and Experience, vol. 28, no. August 2015,

pp. 768–787, 2016. doi: 10.1002/cpe.3612 (p. 177).

[146] M. Srinivas and L. Patnaik, ‘Genetic algorithms: A survey’, Computer, vol. 27,

no. 6, pp. 17–26, Jun. 1994, issn: 0018-9162. doi: 10.1109/2.294849 (pp. 33,

34, 36, 42).

[147] D. G. Stork, ‘Computer vision and computer graphics analysis of paintings and

drawings : An introduction to the literature’, in Int. Conf. Computer Analysis

of Images and Patterns (LNCS 5702), Berlin: Springer-Verlag, 2009, pp. 9–24

(p. 12).

[148] S. Surti, J. Scheuermann, G. El Fakhri, M. E. Daube-Witherspoon, R. Lim,

N. Abi-Hatem, E. Moussallem, F. Benard, D. Mankoff and J. S. Karp, ‘Impact

of time-of-flight PET on whole-body oncologic studies: A human observer

lesion detection and localization study’, Journal of Nuclear Medicine, vol. 52,

no. 5, pp. 712–719, 2011. doi: 10.2967/jnumed.110.086678 (p. 24).

[149] T. L. Tan, K. S. Sim, C. P. Tso and a. K. Chong, ‘Contrast enhancement of

computed tomography images by adaptive histogram equalisation-application

for improved ischemic stroke detection’, International Journal of Imaging

Systems and Technology, vol. 22, no. 3, pp. 153–160, Sep. 2012, issn: 08999457.

doi: 10.1002/ima.22016 (p. 43).

REFERENCES 166

https://doi.org/10.1016/j.jvcir.2004.05.002
https://doi.org/10.1109/TMI.2006.879319
https://doi.org/10.1109/TMI.2006.879319
https://doi.org/10.1007/978-3-7091-6756-4_6
https://doi.org/10.1007/978-3-7091-6756-4_6
https://doi.org/10.1002/cpe.3612
https://doi.org/10.1109/2.294849
https://doi.org/10.2967/jnumed.110.086678
https://doi.org/10.1002/ima.22016

[150] A. Tonda, E. Lutton and G. Squillero, ‘Lamps: A test problem for cooperative

coevolution’, Studies in Computational Intelligence, vol. 387, pp. 101–120,

2011, issn: 1860949X. doi: 10.1007/978-3-642-24094-2_7 (p. 60).

[151] S. E. Umbaugh, Computer vision and image processing : a practical approach

using CVIP tools. Prentice Hall PTR, 1999, isbn: 0-13-264599-8 (p. 21).

[152] F. P. Vidal, D. Lazaro-Ponthus, S. Legoupil, J. Louchet, É. Lutton and J.

Rocchisani, ‘Artificial evolution for 3D PET reconstruction’, in Proceedings of

the 9th international conference on Artificial Evolution (EA’09), ser. Lecture

Notes in Computer Science, vol. 5975, Strasbourg, France: Springer, Heidelberg,

Oct. 2009, pp. 37–48. doi: 10.1007/978-3-642-14156-0_4 (pp. 64, 66,

69).

[153] F. P. Vidal, J. M. Létang, G. Peix and P. Clœtens, ‘Investigation of artefact

sources in synchrotron microtomography via virtual x-ray imaging’, Nuclear

Instruments and Methods in Physics Research B, vol. 234, no. 3, pp. 333–348,

Jun. 2005. doi: 10.1016/j.nimb.2005.02.003 (p. 23).

[154] F. P. Vidal, J. Louchet, J. Rocchisani and É. Lutton, ‘New genetic operators

in the Fly algorithm: Application to medical PET image reconstruction’, Lect

Notes Comput Sc, vol. 6024, pp. 292–301, 2010. doi: 10.1007/978-3-642-

12239-2_30 (pp. 64, 66, 69, 73, 89).

[155] F. P. Vidal, É. Lutton, J. Louchet and J. Rocchisani, ‘Threshold selection,

mitosis and dual mutation in cooperative coevolution: Application to medical

3D tomography’, in International Conference on Parallel Problem Solving From

Nature (PPSN’10), ser. Lecture Notes in Computer Science, vol. 6238, Krakow,

Poland: Springer, Heidelberg, Sep. 2010, pp. 414–423. doi: 10.1007/978-3-

642-15844-5_42 (pp. 49, 54, 60, 64, 66, 69, 72, 89, 100, 105, 111, 112, 116,

117).

[156] F. P. Vidal, Y. L. Pavia, J. Rocchisani, J. Louchet and É. Lutton, ‘Artificial

evolution strategy for PET reconstruction’, in International Conference on

Medical Imaging Using Bio-Inspired and Soft Computing (MIBISOC2013),

Brussels, Belgium, May 2013, pp. 39–46 (pp. 12, 14, 18, 49, 57, 64).

[157] F. P. Vidal, P. Villard and É. Lutton, ‘Tuning of patient specific deformable

models using an adaptive evolutionary optimization strategy’, IEEETransactions

on Biomedical Engineering, vol. 59, no. 10, pp. 2942–2949, 2012 (pp. 30, 54,

55).

REFERENCES 167

https://doi.org/10.1007/978-3-642-24094-2_7
https://doi.org/10.1007/978-3-642-14156-0_4
https://doi.org/10.1016/j.nimb.2005.02.003
https://doi.org/10.1007/978-3-642-12239-2_30
https://doi.org/10.1007/978-3-642-12239-2_30
https://doi.org/10.1007/978-3-642-15844-5_42
https://doi.org/10.1007/978-3-642-15844-5_42

[158] ——, ‘Tuning of patient specific deformable models using an adaptive

evolutionary optimization strategy’, IEEE T Bio-Med Eng, vol. 59, no. 10,

pp. 2942–2949, 2012. doi: 10.1109/TBME.2012.2213251 (pp. 36, 104).

[159] F. P. Vidal, D. Lazaro-Ponthus, S. Legoupil, J. Louchet, É. Lutton and J. M.

Rocchisani, ‘Artificial evolution for 3D PET reconstruction’, Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence

and Lecture Notes in Bioinformatics), vol. 5975 LNCS, pp. 37–48, 2010, issn:

03029743. doi: 10.1007/978-3-642-14156-0_4 (pp. 58, 65).

[160] F. P. Vidal and J.-M. Rocchisani, ‘Reconstruction in positron emission

tomography’, inGraphics Processing Unit-Based High Performance Computing

in Radiation Therapy, CRC Press, 2015, ch. 12, pp. 185–208 (p. 58).

[161] F. P. Vidal, J. Louchet, J.-M. Rocchisani and É. Lutton, ‘New genetic operators

in the Fly algorithm: Application to medical PET image reconstruction’,

in Applications of Evolutionary Computation: EvoApplicatons 2010, 2010,

pp. 292–301. doi: 10.1007/978-3-642-12239-2_30 (pp. 49, 123, 130).

[162] C. Vo, L. Panait and S. Luke, ‘Cooperative coevolution and univariate estimation

of distribution algorithms’, in Proceedings of the tenth ACM SIGEVO workshop

on Foundations of genetic algorithms - FOGA ’09, New York, New York,

USA: ACM Press, 2009, pp. 141–150, isbn: 9781605584140. doi: 10.1145/

1527125.1527144 (p. 56).

[163] R. P. Vushnu and V. M. Bhaskaran, ‘Performance analysis of multi clustered

parallel genetic algorithm with gray value’, American Journal of Applied

Sciences, vol. 9, no. 8, pp. 1268–1272, 2012 (p. 34).

[164] E. L. Walker, ‘Perspectives on fuzzy system in computer vision’, in Conference

of the North American Fuzzy Information Processing Society - NAFIPS, 1998,

pp. 296–300. doi: 10.1109/NAFIPS.1998.715592 (p. 21).

[165] C. Wang, N. Komodakis and N. Paragios, ‘Markov random field modeling,

inference & learning in computer vision & image understanding: A survey’,

Computer Vision and Image Understanding, vol. 117, pp. 1610–1627, 2013

(p. 21).

[166] D. Whitley, ‘An overview of evolutionary algorithms: Practical issues and

common pitfalls’, Information and Software Technology, vol. 43, pp. 817–831,

14 2001. doi: dx.doi.org/10.1016/S0950-5849(01)00188-4 (p. 54).

REFERENCES 168

https://doi.org/10.1109/TBME.2012.2213251
https://doi.org/10.1007/978-3-642-14156-0_4
https://doi.org/10.1007/978-3-642-12239-2_30
https://doi.org/10.1145/1527125.1527144
https://doi.org/10.1145/1527125.1527144
https://doi.org/10.1109/NAFIPS.1998.715592
https://doi.org/dx.doi.org/10.1016/S0950-5849(01)00188-4

[167] R. P. Wiegand and M. A. Potter, ‘Robustness in cooperative coevolution’,

in Proceedings of the 8th annual conference on Genetic and evolutionary

computation - GECCO ’06, New York, New York, USA: ACM Press, 2006,

pp. 215–224, isbn: 1595931864. doi: 10.1145/1143997.1144063 (pp. 56,

57).

[168] S. Woo and A. Dipanda, ‘Matching lines and points in an active stereo vision

systemusing genetic algorithms’, IEEE, 2000 InternationalConference on Image

Processing, vol. 3, pp. 332–335, 2000. doi: 10.1109/ICIP.2000.899382

(pp. 50, 52, 53).

[169] G. Wyvill, C. McPheeters and B. Wyvill, ‘Data structure forsoft objects’, The

Visual Computer, vol. 2, no. 4, pp. 227–234, issn: 1432-2315. doi: 10.1007/

BF01900346 (p. 82).

[170] G. Yiqiang, W. Yanbin, J. Zhengshan, W. Jun and Z. Luyan, ‘Remote

sensing image classification by the chaos genetic algorithm in monitoring

land use changes’, Mathematical and Computer Modelling, vol. 51, no. 11-12,

pp. 1408–1416, Jun. 2010, issn: 08957177. doi: 10.1016/j.mcm.2009.10.

023 (p. 31).

[171] A. L. Yuille, ‘Computer vision needs a core and foundations’, IMAVIS, vol. 30,

no. 8, pp. 469–471, 2012. doi: 10.1016/j.imavis.2011.12.013 (p. 12).

[172] E. Zanaty and A. Ghiduk, ‘A novel approach based on genetic algorithms and

region growing for magnetic resonance image (MRI) segmentation’, Computer

Science and Information Systems, vol. 10, no. 3, pp. 1319–1342, 2013, issn:

1820-0214. doi: 10.2298/CSIS120604050Z (pp. 36, 47, 48).

[173] K. Zeng, M. Zhao, C. Xiong and S.-C. Zhu, ‘From image parsing to painterly

rendering’, ACM Trans. Graph., vol. 29, no. 1, 2:1–2:11, Dec. 2009, issn:

0730-0301. doi: 10.1145/1640443.1640445 (p. 28).

[174] H. Zhang, J. E. Fritts and S. A. Goldman, ‘Image segmentation evaluation: A

survey of unsupervised methods’, Computer Vision and Image Understanding,

vol. 110, no. 2, pp. 260–280, May 2008, issn: 10773142. doi: 10.1016/j.

cviu.2007.08.003 (pp. 46, 49).

[175] Z. Zhang, C. Hou and J. Yang, ‘A stereo matching algorithm based on genetic

algorithm with propagation stratagem’, in International Workshop on Intelligent

Systems and Applications, 2009. ISA 2009., IEEE, 2009, pp. 1–4. doi: 10.

1109/IWISA.2009.5072678 (p. 53).

REFERENCES 169

https://doi.org/10.1145/1143997.1144063
https://doi.org/10.1109/ICIP.2000.899382
https://doi.org/10.1007/BF01900346
https://doi.org/10.1007/BF01900346
https://doi.org/10.1016/j.mcm.2009.10.023
https://doi.org/10.1016/j.mcm.2009.10.023
https://doi.org/10.1016/j.imavis.2011.12.013
https://doi.org/10.2298/CSIS120604050Z
https://doi.org/10.1145/1640443.1640445
https://doi.org/10.1016/j.cviu.2007.08.003
https://doi.org/10.1016/j.cviu.2007.08.003
https://doi.org/10.1109/IWISA.2009.5072678
https://doi.org/10.1109/IWISA.2009.5072678

[176] P. Zingaretti, G. Tascini and L. Regini, ‘Optimising the colour image

segmentation’, in proc. VII Convegno dell Associazione Italiana per Intelligenza

Artificiale, 2002 (pp. 46, 49).

REFERENCES 170

Appendix A

GPU

A.1 Introduction

At the present time, the GPU has become an inseparable part of most computer systems,

from laptops to super computers [121]. It is increasingly in demand in the computer

industry for several reasons. Over the past few years, modern GPUs have become

sturdy graphics engines because they are based on a highly parallel architecture, single

instruction multiple data (SIMD), which is very well suited for computer graphics [134].

The GPU also offers an environment for applications that need a powerful computational

engine [121]. Initially referred to as general-purpose computing on graphics processing

units (GLGPU), GPUs were developed when only graphics application programming

interfaces (APIs) were available for graphics hardware. APIs provided an interface

between a programming language and lower level utilities, such as DirectX and OpenGL.

With the introduction of general purpose computing APIs for GPUs (e.g. Nvidia’s

compute unified device architecture (CUDA), and OpenCL), the term GLGPU was

re-branded as “GPU computing”, and it is now well established in the HPC world.

GPUs are suitable for any application that satisfies the criteria below.

• Large problems that require a complex computational process: The driving

force for new developments in GPUs is still the video game industry. The main

purpose of any GPU is, therefore, to compute a series of complex images as

quickly as possible (millions of pixels per second) using a graphics API such as

DirectX or OpenGL. The input data correspond to geometrical objects which

are defined using polygon meshes and 2-D or 3-D images (known as textures).

Note that the data and the tasks performed by the GPU are well suited for the

171

SIMD architecture. Therefore, GPUs satisfy the requirement of such complex

applications by providing a massive amount of computational power [122, 121].

• Complex problems demanding a substantial level of parallelism: Some real-time

applications, e.g. image processing, are well-fitted for parallel computing. These

applications requiremany computing/computational units that can process vertices

and fragments at the same time. For example, most images contain millions of

pixels that require parallel processing [121, 117].

• Focusing on throughput rather than latency: The GPU cares about the quantity of

tasks processed per unit of time through the graphic pipeline rather than the time

consumed by processing hundreds to thousands of cycles following thousands of

primitives [121].

The evolution of the GPU began with a fixed-function special purpose processor (a

configuration graphics processor). At this time, the GPU used floating-point arithmetic

to calculate 3-D geometry and vertics. The GPU excelled at 3-D graphics with some

limitations. Then, the GPU evolved into a full-fledged programmable processor to

produce high-dynamic-range scenes by using floating-point arithmetic to configure

pixel lighting and colour values. The modern GPU focuses on programmable aspects

by simplifying the programmability of both APIs and hardware [121, 117].

A.2 The Graphics pipeline

The application of rendering high-resolution 3-D scenes requires high computation

rates with a high degree of inherent parallelism. So, it is important to build hardware

which is consistent with the inherent parallelism in an such application. This permits

higher performance in graphics applications than can be obtained with traditional

microprocessors [122, 117].

The graphic pipeline is well constructed, so it can achieve a high computation rate

through active parallel execution in hardware implementation [122]. Figure A.1 shows

the main stages of a graphics pipeline, including the following:

GPU 172

Figure A.1: The modern graphic hardware pipeline

• Primitive: In a 3-D coordinate system, the display picture is usually constructed

from a list of geometric primitives (which are often triangles). After passing

through different steps, these 3-D primitives are coloured and transferred onto

the 2-D screen.

• Vertex Processor: The geometric primitives are mapped from many vertices that

are transferred onto screen and shaded. The vertices are affected, and they interact

with the lights of the screen. This stage is heavy because of the independent

processing of many vertices.

• Rasterisation: This is a method of projecting each triangle onto the screen-space

pixel location to generate what is called a “fragment”.

• Fragment Processor: The final colour of each fragment is determined in this stage

using the colour information from the vertices and the texture that is projected

onto the surface. Lighting may also be applied at this stage.

At the end of the process, the image is assembled from various fragments with one colour

per pixel by keeping the fragment closest to the camera for each pixel location [122].

To speed up the processing, some algorithms may be encoded in the GPU chip. For

example, the algorithm used in Z-buffering was first developed by Edwin Catmull in

1974 [6]. The following pseudocode shows the main steps of the Z-buffering algorithm.

The basic idea is that the Z-buffer saves its “depth” at each pixel. That is, the algorithm

searches for every polygon in the scene, computes the z-value of each pixel on that

polygon and saves the smallest z-value corresponding to that pixel. The colour of that

pixel is saved in the frame buffer. The Z-buffer prevents a new polygon from being

hidden by a previously drawn polygon if the new one has a smaller z-value. The pixels

of the new polygon are those closest to the screen.

GPU 173

Algorithm 9 Z-buffering algorithm
Init Z-buffer with infinite depth
for all polygon p do

for all pixel(x, y) ∈ p do
if p.pixeldepth(x, y) <zbu f f er(x, y) then

zbu f f er(x, y) = p.pixeldepth(x, y)
f ramebu f f er(x, y) = p.pixelcolour(x, y)

end if
end for

end for

A.3 GPU environments

There are various of programming languages that allow us to run algorithms directly

on the graphics vertex and fragment processors using vertex and fragment programs

written in a shading language. Example include the C for graphics (Cg) language

by Nvidia, DirectX high level shader language (HLSL) by Microsoft and the Open

Graphics Library (OpenGL) shading language (GLSL or GLSLang) by the OpenGL

Architecture Review Board [122]. Recently, researchers have been trying to balance

the load between the development of hardware GPUs and high-level programming

interfaces without the need to know about graphics programming. This is to increase

the performance of the program execution as well as the flexibility and productivity

of the programmer. A variety of programming frameworks have been designed for

GPUs, such as parallel thread execution (PTX) assembly code [94], assembly language

oriented (CTM, CAL/IL), CUDA [40], OpenCL and DirectCompute [48]. We will

focus on the graphic programming frameworks shown below, which are used in this

thesis.

A.3.1 OpenGL and the fixed rendering pipeline

OpenGL is a set of functions designed for doing computer graphics. It is not a

programming language, so it falls under the category of APIs for computer graphics

programming. It is a software interface for the graphics hardware. OpenGL provides

two types of rendering: geometric and image primitives. Geometric primitives are

points, lines, polygons, spheres, cubes, quadric surfaces, etc. Image primitives are

GPU 174

Figure A.2: The OpenGL architecture pipeline

bitmaps and graphics images (e.g. the pixels of an image, which are entered into

a program). OpenGL links both types of primitive together using texture mapping.

Figure A.2 shows the OpenGL rendering programming pipeline [15].

OpenGL is supplied with environments that produce high-quality scenes. It includes

geometric operations (transformation, rotation and scaling), multiple light sources,

transparency, blending and the viewing of 3-D scenes using the the concept of a virtual

camera.

For the efficient use of OpenGL, two utility libraries have been developed to work

alongside with OpenGL. The libraries are OpenGL utility library (GLU) and OpenGL

utility toolkit (GLUT).

• GLU is a set of functions that work independently from the OpenGL package.

The GLU provides higher-level drawing routines to make the OpenGL more

productive. It is used to provide i) more complex primitives, such as curves,

sphere or cylinder, and ii) an easy map between screen and world coordinates.

• GLUT is a set of functions that manage the display window and handle the tools

to create GUIs for OpenGL. GLUT helps the user to input an action from the

mouse or the keyboard. More details can be found in [89].

A.3.2 GLSL

GLSL is a high-level programming language used only by the OpenGL graphics API. It

aims at the implementation of specific algorithms called shader programs. A shader

GPU 175

program is executed directly in the GPU. The program consists of i) a vertex shader

(vertex program) and ii) a fragment shader (fragment program). From this point, we

will use the term“shader” because we have implemented algorithms related to “shading”

in this thesis. Both types of shader substitute major parts of the vertex or (fragment)

operations of the tradtional fixed function of the geometry processing or (rasterisation)

unit, respectively [134]. The code in Listings A.1 and A.2 provide examples of the

fragment and vertex shader written in GLSL for OpenGL 2.0 to calculate the absolute

error between two images (img_1 and img_2).

Listing A.1: Fragment shader

#version 120

uniform sampler2D img_1;

uniform sampler2D img_2;

varying vec2 texcoord;

void main()

{

vec4 texcolor_1 = texture2D(img_1, texcoord);

vec4 texcolor_2 = texture2D(img_2, texcoord);

gl_FragColor = abs(texcolor_1 - texcolor_2);

}

Listing A.2: Vertex shader

#version 120

varying vec2 $texcoord$;

void main()

{

texcoord = gl_MultiTexCoord0.xy

}

GPU 176

A.3.3 OpenCL

OpenCL is an open source used to describe data-parallel kernels and write portable

software for a wide range of highly parallel processors that have flexible functionalities

working and executing across CPUs and GPUs. OpenCL reduces the complexity of

writing a code for GPUs, especially for the the difficulties that occur while adapting

general-purpose code to a graphics API. The OpenCL provides easy functions and a

wide set of programming APIs, which are based on the C language [145, 54].

A.3.4 Discussion

This chapter has explained the main tools used in this thesis for programming GPUs.

The objectives of using OpenGL are listed below:

• The first aim is to produce an interactive 3-D application. OpenGL provides

easy tools to map a 3-D object onto a screen. There are three different matrices,

model, view and projection, to move from world coordinate to camera coordinate

and then to object coordinate. 1) The model matrix defines the position (x,y,z)

coordinates of the primitives, i.e. where an object is drawn on the screen from

the site of the object that exists in the world, 2) The view matrix is functionally

equivalent to a camera. It defines the position, location and orientation of the

camera used for different matrices, i.e. transformation, rotation and scaling. It

is used to transform the vertices of a primitive from world to screen coordinate

systems. and 3) The projection matrix defines the characteristics of the camera,

such as the field of view or the projection method.

• The second aim is to render and visualise our data and results using the highest

quality graphics. OpenGL provides facility of flexibility moving across different

operating systems, Mac, Linux, and Windows, which are used in this thesis. That

makes our implementation portable and executable in most, if not all, recent

hardware.

GPU 177

• The third objective is to ensure that scenes are rendered in the same way as they

are in the real world in order to use the Z-buffer algorithm. The Z-buffer method

tests pixel depth and checks the current position (z-coordinate) against the history

of the data stored in that buffer. Thus, the algorithm shows the colour of the last

pixel, which expresses the last position of that pixel.

We used GLSL as a high-level shading language because its syntax is similar to the

C programming language. It can be directly compiled and run on graphic hardware.

This language takes advantage of GPUs, which are considerably parallel processors;

this makes our implementation work faster. GLSL provides the opportunity for the

programmers to modify pipeline shaders. Hence, we were able to build our own vertex

shader and fragment shader.

Open-source OpenCL is used to accelerate mathematical processes and provide a

comfortable floating point for implementation, e.g in a digital signal processing

application. We used OpenCL in our applications instead of CUDA for the following

reasons:

• OpenCL kernels can be used seamlessly in different platforms (CPUs and GPUs)

using various programming languages, such as C, C++, Java, Python, JavaScript,

Haskell, Perl, Ruby and so on.

• OpenCL supports many varieties of hardware, but CUDA is a closed Nvidia

framework. OpenCL makes our application easily portable on recently

manufactured hardware.

GPU 178

Appendix B

Shader programs

Listing B.1: Shader program that is suitable for producing a set of stripes or a circle effect.

#version 120

varying vec2 texcoord;

uniform sampler2D image;

uniform vec3 fly_colour;

uniform vec3 fly_concrete_colour;

void main()

{

vec4 texcolor = texture2D(image, texcoord);

if (texcolor.r == 1.0)

gl_FragColor = vec4(fly_colour ,1.0);

else if (texcolor.r > 0.4) and (texcolor.r < 0.4)

gl_FragColor = vec4(fly_concrete_colour ,1.0);

else

discard;

}

179

Listing B.2: Shader program that is suitable for producing a fly shape with black edge or a

flower shape with black edge effect using mask 7.14d.

#version 120

varying vec2 texcoord;

uniform sampler2D image;

uniform vec3 fly_colour;

uniform vec3 fly_concrete_colour;

void main()

{

vec4 texcolor = texture2D(image, texcoord);

if (texcolor.r == 1.0)

gl_FragColor = vec4(fly_colour ,1.0);

else if (texcolor.r > 0.4) and (texcolor.r < 0.6)

discard;

else

gl_FragColor = vec4(fly_concrete_colour ,1.0);

}

Listing B.3: Shader program that is suitable for producing a spray painting effect using

mask 7.14a.

#version 120

varying vec2 texcoord;

uniform sampler2D image;

uniform vec3 fly_colour;

uniform vec3 fly_concrete_colour;

void main()

{

vec4 texcolor = texture2D(image, texcoord);

if (texcolor.r < 0.5)

discard;

else

gl_FragColor = vec4(fly_colour ,1.0);

}

Shader programs 180

Listing B.4: Shader program that is suitable for producing a square or a sold flower effect.

#version 120

varying vec2 texcoord;

uniform sampler2D image;

uniform vec3 fly_colour;

uniform vec3 fly_concrete_colour;

const float offset = 0.5 / 255.0;

void main()

{

vec4 texcolor = texture2D(image, texcoord);

if (texcolor.r < offset)

discard;

else if (texcolor.r > 0.4) and (texcolor.r < 0.6)

gl_FragColor = vec4(fly_concrete_colour ,1.0);

else

gl_FragColor = vec4(fly_colour ,1.0);

}

Listing B.5: Shader program that is suitable for producing a triangle effect.

#version 120

varying vec2 texcoord;

uniform sampler2D image;

uniform vec3 fly_colour;

uniform vec3 fly_concrete_colour;

void main()

{

vec4 texcolor = texture2D(image, texcoord);

if (texcolor.r == 1.0)

gl_FragColor = vec4(fly_colour ,1.0);

else

discard;

}

Shader programs 181

	Title Page
	Statement of Originality & Availability
	Abstract
	1 Introduction
	1.1 Context
	1.2 Hypothesis
	1.3 Objectives
	1.4 List of publications
	1.5 Contributions
	1.6 Outline

	2 Background: Scientific Context
	2.1 Introduction
	2.2 Imaging
	2.3 Computer vision
	2.4 3-D Tomographic reconstruction in nuclear medicine
	2.5 Mosaics-like and Painterly Rendering

	3 Background: Evolutionary Approaches
	3.1 Introduction
	3.2 Evolutionary algorithms
	3.2.1 Solution encoding and initialisation
	3.2.2 Evaluation (Fitness function)
	3.2.3 Selection operator
	3.2.4 Crossover operator
	3.2.5 Mutation operator
	3.2.6 Termination

	3.3 Evolutionary algorithms and their applications to image processing
	3.3.1 Image enhancement
	3.3.2 Image segmentation
	3.3.3 Image reconstruction

	3.4 Challenges with evolutionary algorithms

	4 Background: Parisian Evolution
	4.1 Cooperative co-evolution algorithms
	4.2 Parisian approach
	4.3 Overview of the Fly algorithm and its applications
	4.3.1 Stereo vision
	4.3.2 3-D tomographic reconstruction in nuclear medicine

	4.4 Novelty

	5 PET Reconstruction
	5.1 Introduction
	5.2 Early evolutionary reconstruction
	5.3 Extraction of the solution
	5.4 Voxelisation using implicit modelling
	5.4.1 Definition
	5.4.2 Voxelisation using Metaball as density field function
	5.4.3 Adaptive Gaussian kernels to exploit the fly's individual knowledge

	5.5 Evaluation and comparative study
	5.5.1 Hot rode phantoms (ideal case)
	5.5.2 Hot rode phantoms (low number of projections & noise)
	5.5.3 Cardiac phantoms (with noise)

	5.6 Conclusion

	6 Mutation Operators
	6.1 Introduction
	6.2 Varying mutation operators in the Fly algorithm
	6.2.1 Basic mutation
	6.2.2 Adaptive mutation variance
	6.2.3 Dual mutation
	6.2.4 Directed mutation

	6.3 Results
	6.3.1 Without noise in the input data
	6.3.2 With noise in the input data

	6.4 Conclusion

	7 Digital Arts
	7.1 Introduction
	7.2 Methodology
	7.2.1 Fly algorithm paradigm
	7.2.2 Evolutionary image reconstruction

	7.3 Results
	7.3.1 Initial Experiments
	7.3.2 Background Colour
	7.3.3 Edge Preservation
	7.3.4 Final User-study

	7.4 Conclusion

	8 Conclusions and Future Work
	8.1 Introduction
	8.2 Overview
	8.3 Contributions
	8.4 Limitations
	8.5 Future work

	Acronyms
	References
	A GPU
	A.1 Introduction
	A.2 The Graphics pipeline
	A.3 GPU environments
	A.3.1 OpenGL and the fixed rendering pipeline
	A.3.2 GLSL
	A.3.3 OpenCL
	A.3.4 Discussion

	B Shader programs

