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Abstract 
Accurately quantifying land-atmosphere exchanges is essential at every spatial scale, from 

aiding a better understanding of climate change globally to informing land management 

decisions at the smallest scale (e.g. agricultural land management). This quantification may 

be dealt with relatively easily for homogeneous land surfaces, but in the real world, 

landscapes are spatially heterogeneous and simple approaches are often inadequate. This 

thesis uses mathematically advanced methods and/or models to find robust solutions to land-

atmosphere exchange problems that accommodate spatial heterogeneity.  

A two-stage sampling strategy (2SS) was developed to reduce the uncertainties in the 

estimation of chamber-based GHG fluxes when sample size is inadequate to fully capture 

spatial heterogeneity. A Monte Carlo simulation showed that 2SS improves the estimation of 

soil GHG fluxes in all but the most homogeneous situations, with the improvement being 

directly related to the amount of spatial heterogeneity present. 

EC-based measurements of GHG fluxes invariably contain data gaps that require filling to 

generate long-term cumulative fluxes, i.e. integrating over a temporally heterogeneous time-

series. Gap-filling methods introduce uncertainty. A robust method based on image 

inpainting is introduced to fill gaps via a two-dimensional representation of a one-

dimensional data, i.e. the flux fingerprint. Results show that this unsupervised method, using 

a more compact and simple form, compares favourably with a widely-used traditional method 

and can outperform it when applied to de-noised data. 

The most robust measurements of surface carbon fluxes will be generated when using two 

independent measurement methods simultaneously. To investigate CO2 and CH4 fluxes from 

a heterogeneous fen, EC- and chamber-based measurements of surface carbon fluxes were 

implemented from 2013 to 2015. To implement a direct comparison between these 

measurements made at differing scales, the chamber-measured data were up-scaled, both 

temporally by model-based interpolations and spatially by flux footprint modelling. Results 

show a good linear correlation in CO2 flux and a near zero correlation in CH4 flux between 

methods. Further analysis on CH4 flux, however, show that the two differed only by a 

Gaussian distribution, implying the existence of white noise in the signal. The cumulative 

CO2 flux for the whole season measured by chambers was -376.5 g/m2, 33% higher than the 

estimated measured by EC (-281.8 g/m2). Similarly, the final cumulative CH4 flux was 4.01 

g/m2 by chamber-based estimates, 43% more than EC (2.81 g/m2). 
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The final part of this study investigates the surface flux of momentum in a structured 

heterogeneous land surface. A logarithmic normal distribution was developed to model the 

wind speed reduction around a tree-based windbreak. The model showed an excellent fit to 

field observations made at a real-world windbreak on farm land. A graphical method that 

describes a 3-d space of wind-chill temperature vs. ambient temperature and wind speed was 

created to quantify the potential thermal benefits gained by introducing windbreaks and 

reducing wind speed. The wind-chill thermal tolerance (WTT) of sheep was estimated and 

compared for a lowland and an upland site. Distinct differences to reduced wind speed were 

found between the sites, with greater thermal benefits at the upland site. 

The methods and models generated and developed in this study contribute to an improved 

quantification of land-atmosphere exchanges, and have potential to be applied to surface 

fluxes generally, either of mass (GHGs) or energy (heat, momentum), and to landscapes other 

than those dominated by vegetation. For example, the statistical idea of the two-stage 

sampling approach provides a generic solution to sample size deficiency in heterogeneous 

land surfaces; The inpainting-based gap-filling method, as an image processing technique, 

may be applicable to any signals that can be represented as an image, i.e. a two-dimensional 

space in which individual locations (pixels) have numerical attributes that can be used as 

RGB values; The WTT plot/analysis, used here in the context of sheep in upland sites, 

provides an intuitive and powerful scheme for analysing the thermal tolerance of any animal 

in any energetically heterogeneous landscape.  
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Ch 1. General introduction 

1.1 Why land-atmosphere exchanges matter 

For more than 200 years it has been understood that the land surface exchanges energy, water 

and carbon with the atmosphere (Sellers, 1997). These exchanges constitute the highly 

complex climate system and interactions between these two components determine the 

climate at various spatial and temporal scales. At large scales, for example, there is a major 

effort to understand the mechanism(s) behind increasing atmospheric carbon dioxide 

concentration during the last century (Jones et al., 1999) and, critically, how the earth system 

will respond to this change, both biologically and physically, in the short and medium term  

(Bonan, 2008; Falkowski et al., 2000). Researchers are particularly interested in the climatic 

sensitivity of water, carbon and energy exchange to extreme events and anomalies (e.g. Ciais 

et al., 2005; Zhao & Running, 2010) and how and why land–atmosphere exchanges vary as 

ecosystems recover from past disturbance (Goulden et al., 2006) . 

At smaller scales, there are questions about the impact of urbanization on climate change 

(Kalnay and Cai, 2003), and questions about agricultural (e.g. vegetation and fertility) and 

horticultural sensitivity to climate change (Howden et al., 2007) and air pollution (Unsworth 

and Ormrod, 2013), and questions about the social, economic and political aspects of climate 

change (Adger et al., 2009; Stern, 2007). All of these questions require that we can measure 

and understand land-atmosphere exchanges, as a fundamental component of a quantitative 

understanding of all aspects of climate change, and this has focussed attention on the 

interaction between the disciplines of atmospheric science, agriculture, ecology, biology and 

social science.  

In physics, exchanges are termed by fluxes; a vectorised quantity that has both magnitude and 

direction, in contrast to a scalar, such as concentration, that has only magnitude. In particular, 

land-atmosphere exchanges often refer to the generally vertical fluxes of energy, water and 

carbon. By convention, a positive flux means an exchange from land to atmosphere (i.e. the 

land is the source) and conversely for a negative flux (i.e. the land is a sink). In the context of 

this thesis, the two terms, exchanges and fluxes may appear concurrently and are 

interchangeable. 
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1.2 Micrometeorology and land surface heterogeneity 

Micrometeorology, or microscale meteorology, deals with atmospheric phenomena and 

observations at the smallest scales of time and space, normally shorter than a day and smaller 

than 1 km2 (AMS Glossary, 2016). Micrometeorology naturally inherits most of its 

theoretical basis from hydrodynamic and meteorological studies, such as theories of 

turbulence, gas transportation and thermal dynamics. However, because near-ground 

microscale events often interact with the underlying land surface (such as plant-dominated 

ecosystems and water bodies), micrometeorology is a highly interdisciplinary topic involving 

physics, biology, ecology, hydrology, and geography. 

At the early stage of micrometeorological measurements in the 1950s, field experiments were 

conducted in quasi-homogeneous sites using, for example, the profile approach used in the 

ground-breaking O’Neill experiment in 1953 (Lettau and Davidson, 1957). The eddy 

covariance (EC) method, as a direct measure of turbulent fluxes, emerged almost at the same 

time, along with the development of sonic anemometers (Leclerc et al., 2014). Between 

1960s and 1980s, both the EC method and sonic anemometers had gone through a series of 

improvements in their theoretical basis and practical designs (Kaimal and Businger, 1963; 

Moncrieff, 2004), but it was not until the late 1980s that micrometeorological experiments 

became feasible for larger and more complex surfaces. In 1987s the first ISLSCP 

(International Satellite Land Surface Climatology Project) field experiment (FIFE) was 

conducted on the Konza Prairie in Kansas, looking at several homogeneous field-scale areas 

that together made up a heterogeneous landscape study area of 15*15 km (Sellers et al., 

1988), and soon afterwards, in 1990, a similar experiment was developed and conducted in 

southwest France over a non-homogeneous forest system (André et al., 1990). Since the late 

80s, as a result of the significant progress made in computer technology, studies looking at 

numerical solutions for the equations of fluid dynamics have become increasingly active (Cai 

and Leclerc, 2007; Gash, 1986; Schmidt and Schumann, 1989). More recently, further 

developments in informatics (data science) and parallel computing have enabled us to retrieve 

unprecedented levels of information from big data sets using, for instance, artificial neural 

network and image processing (Dengel et al., 2013; He and Rayment, 2016; Papale et al., 

2006). The modern era of micrometeorology integrated with advanced computer techniques 

and data science has begun. 
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Nonetheless, making measurements and developing process understanding of interactions in 

heterogeneous land surfaces are still challenging and large uncertainties remain (Hollinger 

and Richardson, 2005; Moncrieff et al., 1996; Wohlfahrt et al., 2008). Land surfaces are 

heterogeneous in many ways affecting local climate and land-atmosphere exchanges through 

a variety of mechanisms, but it is always the surface properties (e.g. surface roughness, 

canopy height and other obstacles) that determine the near-surface atmospheric processes (e.g. 

greenhouse gas exchange). The impact of some types of heterogeneity can be illustrated 

relatively simply using the change in the vertical profile of wind speed (momentum) as 

shown in Fig. (1.1). Over a perfectly homogeneous field (Fig. 1.1a), the wind profile at each 

patch will be identical (at least when averaged over a timescale longer than the dominant 

characteristic turbulent frequency). In contrast, wind profiles over an irregularly 

heterogeneous field (Fig. 1.1b) will be diverse, reflecting the different surface properties for 

each patch, and therefore the overall wind profile, considered as an integration of all patches, 

differs significantly from the patch profiles at each patch of a heterogeneous field. Surface 

heterogeneity may be quasi-random and natural (i.e. patches of different vegetation reflecting 

natural succession dynamics) but may also be artificially introduced and structured. Fig. (1.1c) 

shows a homogeneous land surface with a line of trees as a windbreak, where the wind 

profile varies systematically around the windbreak. We may call this a quasi-heterogeneous 

land surface, somewhere between (a) and (b). Estimate land-atmosphere exchanges in a 

heterogeneous landscape requires an understanding of the spatial variation of fluxes, 

significantly increasing both the theoretical and experimental difficulties. 
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Figure 1.1. Wind profiles for different types of land surface. (a) Wind profile is constant across a 
homogeneous land surface. (b) Wind profile varies with different patches across a heterogeneous land 
surface. (c) Wind profile shows systematic variations across a quasi-heterogeneous land surface (i.e. 
a homogeneous surface with a windbreak). Image produced by Y. He on 21 Sep. 2016. 

 

1.3 Eddy covariance- and chamber-based measurements 

For the sake of compactness, here I review the two most commonly used methods of 

environmental gas flux measurement, eddy covariance (EC) and chamber-based methods. 

Both methods require measurements of other environmental driving variables (e.g. solar 

irradiance, air and soil temperature, wind speed and direction, water content, heat etc.) to 

form a complete observation system of land-atmosphere exchanges, but because such 

ancillary measurements are usually observations made using direct sensors, they are thus 

more reliable and less controversial than gas flux measurement which is, in fact, a derived 

product of multiple direct measurements. This derivation requires certain assumptions and 

thus inevitably introduces more uncertainties. This will become clearer in the details of flux 

measurements following below. 

EC and chambers have been used to measure gas exchange between the atmosphere and land 

surface for decades (Baldocchi, 2003; Davidson et al., 2002). Each of these two independent 

measurement techniques, built on distinct theoretical bases, has advantages, as well as 

limitations, making each more or less suited to specific situations. Here we shall start with a 

brief retrospective of the chamber-based technique, a traditional tool (at least from the 
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perspective of the EC community) which can be traced back to early-stage soil science in 

1920s (Lundegårdh, 1927). 

The idea of chamber-based measurements, or enclosure-based measurements (Livingston and 

Hutchinson, 1995), is very straightforward. A cube or cylinder box is placed directly onto the 

target area, trapping a small amount of vegetation and air in the box, forming a closed space. 

A gas analyser is then connected to the box, sucking in air and measuring the changing 

concentration of gas (e.g. CO2 and CH4) over time. An example of a cubic chamber system is 

shown in Fig. (1.2). Chambers are easy to deploy and operate, reasonably adaptable to 

ecosystem type, and costs are relatively low compared with a EC-based system. Because 

chambers are predominately manually operated in situ, they have good controllability in real-

time, bettered only by lab conditions. Moreover, the small area sampled makes chamber-

based observations relatively homogeneous (i.e. there is negligible spatial variation within a 

chamber). 

A number of drawbacks and limitations of this method are noteworthy. First, it can be very 

difficult to access certain field sites, such as wetlands and plateaus. Second, chambers have 

poor continuity in both spatial and temporal sampling. The spatial variation of fluxes at a 

field scale can only be interpolated based on a limited number of scattered, discrete 

observations. Similar issues occur in capturing temporal variation and model-based 

estimation is necessary for obtaining full temporal coverage and calculating long-term 

budgets. Thirdly, operating such system requires considerable and intensive labour efforts, 

further disturbing the ambient environment and introducing artificial uncertainties (Davidson 

et al., 2002; Rayment, 2000). 
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Figure 1.2. An example of chamber-based measurements using a cube at Cors Erddreiniog national 
nature reserve, Anglesey. Photo by Yufeng He on 17 Dec 2013. 

 

EC-based measurement of gas exchanges is a micro-meteorology technique, and is 

fundamentally different from chamber-based technique. Here the term “eddy” refers to the 

smallest structure of turbulence and “covariance” means, loosely speaking, the statistical 

covariance between vertical wind speed and gas concentration1. A detailed definition of eddy 

covariance has been frequently reviewed elsewhere (Baldocchi, 2003; Baldocchi et al., 1988; 

Massman and Lee, 2002). Here I shall only have a quick description and deduction on the 

theoretical basis of eddy covariance. For given air mass density (r) and vertical wind speed 

(𝑤), we may write the vertical transport rate (𝑉) as, 

𝑉 = $%&
$'

    (1.1) 

where 𝑧 is height above land surface. 

                                                
1 Using vertical wind speed is simply because we concerned primarily with the vertical flux. A similar 
process can be applied to estimating fluxes for any directions. 
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Using the Reynolds decomposition, for a certain period (e.g. 30 minutes) Eq. (1.1) can then 

be written as, 

𝑉 = $ %)%* (&)&*)
$'

    (1.2) 

where 𝜌 and 𝑤 are the average density and wind speed during the given period. 𝜌. and 𝑤. are 

the instantaneous fluctuations of density and wind speed against the averages respectively. Eq. 

(1.2) can be simplified by assuming negligible mean density and speed (i.e. 𝜌 = 0,𝑤 = 0), 

𝑉 = $%*&*

$'
    (1.3) 

The  simply indicates that we take the average value over the entire period. The vertical 

flux (𝐹) can then be calculated by the integral of 𝑉 from the land surface to the measurement 

height (ℎ), 

𝐹 = $%*&*

$'
	dz6

'78 = 𝜌.𝑤. ℎ − 𝜌.𝑤. 0     (1.4) 

Since the transportation at surface layer is negligible in comparison to the flux at the 

measurement height, Eq. (1.4) becomes, 

𝐹 = 𝜌.𝑤.    (1.5) 

Eq. (1.5) can also be interpreted as the covariance between mass density and vertical wind 

speed, which are measured by a gas analyser and an anemometer respectively in an EC-based 

observation system. 

A typical EC-based system (Fig. 1.3) consists of an open path CO2/H2O analyser (LI-COR 

LI-7500), an open path CH4 analyser (LI-COR LI-7700), a 3-D anemometer for measuring 

wind flow (Campbell CSAT3), a radiation sensor (LI-COR LI-190R), a data logger 

(Campbell CR3000) and power supplies. The height of the tower may vary with vegetation 

types and the area of land surface, where sufficient turbulence mixing and fetch of flux 

footprint need to be ensured. An orientation of the anemometer towards the dominant wind 

direction at the given geographical region is preferable so that the turbulence distortion effect 

is minimized. 

After an initial set up of software and hardware, this system can be almost autonomous, 

requiring little maintenance and minimizing interference with ambient conditions. Most 

systems will take samples continuously at a high sampling frequency (e.g. 20 Hz) for a long 
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term (e.g. years), this being a major advantage over chamber-based techniques. Such systems 

thus provide a powerful tool towards a comprehensive understanding of the temporal 

variation of land-atmosphere exchanges (Baldocchi et al., 2001). A second major advantage 

compared to chambers is that EC is a relatively direct measure of fluxes at a field scale, 

obviating the need for the spatial interpolation and integration required by chamber methods. 

 

Figure 1.3. A typical system of EC-based measurements at Cors Erddreiniog. Photo by Yingying Xuan 
on 9 Feb 2016, edited by Yufeng He. 

 

Although an EC-based system has significant advantages, drawbacks and limitations are still 

noteworthy. Importantly, for EC to work, several micrometeorological conditions must be 

met (Burba and Anderson, 2010), namely: 

• Incoming air flow is sufficiently turbulent 

• Measurements are taken within the boundary layer 

• Effective fetch (i.e. flux footprint) is adequate – fluxes are measured only at area of 

interest 
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• Terrain is horizontal and uniform2 

Interestingly, none of these assumptions apply to a chamber-based system. Therefore, it is 

fair to say that neither EC nor chambers are inherently better than the other, and the use of 

two independent and complementary methods observing the same phenomenon can increase 

the confidence in our estimations of gas fluxes and oftentimes both methods are implemented 

concurrently in practice, Indeed, such an approach represents the most rigorous application of 

the scientific method. 

1.4 Difficulties in quantifying exchanges at heterogeneous land surfaces  

A heterogeneous land surface creates a flux source field with a significant degree of spatial 

variation, and capturing this is one of the main challenges for both chamber- and EC-based 

measurements. Emission factors for GHG fluxes generated from the quantification of total or 

mean GHG emissions from specific land use categories are typically based on chamber 

measurements that are relatively sparse in time and space, and any errors or uncertainty in the 

quantified emissions are directly and linearly propagated into national accounts (IPCC, 2000). 

What confidence do we have in the accuracy of our estimates? Very little, especially for CH4 

and N2O where uncertainty spans orders of magnitude (Maljanen et al., 2010; Rayment and 

Jarvis, 2000; Rochette and Eriksen-Hamel, 2008; Venterea et al., 2009), and limited sample 

size inhibits a robust estimation of flux by chamber-based measurements (He et al., 2016). In 

some systems, particularly agricultural ones, intensive soil management has the effect of 

reducing spatial heterogeneity to manageable levels, thereby reducing the number of 

measurements required to capture population variance accurately, however this is not 

generally true. In most systems, spatial heterogeneity combined with limited sample size 

presents considerable opportunity for biases to enter into our measurements such that even 

when attempts are made to stratify sampling according to known sources of variance, 

uncertainty estimates remain large (Raupach et al., 2005). 

While EC-based measurements at the whole ecosystem or canopy-scale have the advantage 

(compared to chambers) of integrating over the entire area (Baldocchi, 2003), this integration 

makes observations less spatially explicit in terms of describing fluxes at any given point on 

the heterogeneous land surface. An EC-measurement signal consists of superposition of 

partial signals from a large area, the analysis of which is not problematic given a 
                                                
2 Uniformity, in fact, is only a requirement for idealised situations. With the flux footprint models, we 
can stretch this idea to include patchiness and address non-uniform problems. 
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homogeneous source field3. In a heterogeneous land surface, however, where the flux source 

exhibits large spatial variation, the integrated signal becomes more difficult to interpret. 

Specifically, this requires advanced inverse modelling techniques to decompose a point signal 

(from the met tower) back into its component sources, commonly known as the flux footprint. 

This process is particularly necessary for (a)- estimating accurately the total flux budget from 

the whole region and (b) comparing flux estimates between EC- and chamber measurements. 

The former (a) is simply because the EC-measured signal samples the area directly upwind 

and therefore tends to focus on the area determined by the prevailing wind direction therefore 

to derive an explicit map of the entire flux source are we need to separate out and estimate 

emissions for areas that are not covered by the prevailing wind. The latter (b) is the result of 

the mismatch in the spatial extent of EC- and chamber-based measurements. A direct 

comparison of methods is only feasible when this spatial representation gap is bridged. Flux 

footprint models are the main tools used to address both these problems. 

1.5 Flux footprint models 

The initial development of flux footprint models actually had little to do with GHG fluxes, 

but was motivated by a practical interest in the dispersion of atmospheric pollutants and the 

exchange of momentum, heat and water vapour in the atmospheric boundary layer (Pasquill, 

1972). In Pasquill’s paper, the concept of effective fetch was introduced for the first time to 

address the problem of surface inhomogeneity. Since then there have been a number of 

developments in modifying footprint models to describe transfer processes over 

heterogeneous land-surfaces (Schmid, 2002; Schuepp and Leclerc, 1990), where the spatial 

representativeness of flux measurement (i.e. both horizontal and vertical variations) needs to 

be considered and estimated. The source area is the fraction of the surface (predominantly 

upwind) that contains effective sources and sinks contributing to measurements at any given 

point (Kljun et al., 2002). The term “footprint” can then be defined as the relative 

contribution of each element of the source area to the measured vertical flux or concentration 

(Kljun et al., 2002). In application, footprints is typically described as a 2-D probability 

distribution function of the contribution from each element, called the footprint function or 

the source weight function (Schmid, 1994). More specifically, the footprint function f is 

implicitly given by the integral equation over the entire source area (Schmid, 2002): 

                                                
3 The problem of sample size deficiency for chamber-based measurements is also trivial in a 
homogeneous source field. 
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𝜂 𝑟 = 𝑄= 𝑟 + 𝑟.ℜ 𝑓 𝑟, 𝑟. 𝑑𝑟.  (1.1) 

where 𝜂 is the measured concentration or flux at the sensor location 𝑟. 𝑄=  is the emission 

rate 4  at the position 𝑟 + 𝑟′ . f is the flux footprint function satisfying the relation, 

𝑓 𝑟, 𝑟. 𝑑𝑟. = 1ℜ . 

Again, f (dimensionless) represents the probability distribution over the source area and can 

be seen as the weights attached to the emission rate 𝑄= . An estimation of the footprint 

function f is not straightforward and several theoretical approaches have been developed over 

the past decades. There are four types of footprint models in general (Vesala et al., 2008): (i) 

analytical models, (ii) Lagrangian stochastic particle dispersion models, (iii) large-eddy 

simulations (LES) and (iv) ensemble-averaged closure models. Readers are referred to a wide 

range of literature (Foken and Leclerc, 2004; Kljun et al., 2004b; Schmid, 2002; Vesala et al., 

2008) for details on the description and validation of these models. 

For the practical purposes of understanding EC measurements at the field-scale, stochastic 

particle dispersion models provide the most tractable and computationally-efficient approach, 

and in chapter 4, a parameterised two-dimensional flux footprint model (Kljun et al., 2015, 

2004a) is used for footprint simulations over a heterogeneous fen/peatland in the UK.  

1.6 Modelling methodology 

1.6.1 Modelling and gap filling CO2 & CH4 flux 

Inferential modelling is a general term that covers both prediction (i.e. extrapolation, saying 

something about the future) and data gap filling (i.e. interpolation, saying something about 

the past) These two purposes are exactly the two main motives that have stimulated 

developments of GHG flux models and gap filling strategies. In particular, an inference is 

normally conducted on the temporal variation in flux values, i.e. interpolation and/or 

extrapolation of a time series. Samples of chamber-based measurement, for instance, are 

often sparse in time (e.g. monthly) and regression models against some environmental driving 

variables are used to generate a flux series with a better temporal resolution (e.g. half-hourly). 

EC-based measurements, on the other hand, though having finer temporal resolution, often 

                                                
4 Conventionally, positive value of 𝑄= means an exchange from land to atmosphere (source) and 
negative value means the opposite direction (sink). 
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have a significant amount of data gaps to fill as the result of technical failure or 

meteorological conditions that do not meet underlying theoretical requirements. 

Traditional modelling and gap filling approaches typically take a linear perspective on data, 

either using data derived statistically from a moving window, or using a simple function 

based on a best-guess understanding of the processes driving exchange (Table 1-1). The 

former approach is limited in its ability to capture non-linear trends, and the latter is limited 

in situations where the flux response to driving variables is poorly understood or unknown 

(e.g. the response of gas exchange to, for example, water table depth in wetlands). The 

drawbacks of these methods are especially notable for complex processes, the mechanism of 

which is less understood, such as CH4 and N2O flux. Estimating CH4 emission events, for 

example, is much more complex than CO2. CH4 flux has a higher emission variability than 

CO2 flux, often involving multiple events (Dengel et al., 2013). For example, precipitation 

and water table can have a lagged effect on CH4 fluxes (Bubier et al., 1995), making its 

estimation unreliable if these effects were not considered. 
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Table 1-1 Modelling and gap filling methods for CO2 & CH4 flux from the literatures 

GHG 
Type CO2 (NEE) CH4 

Methods 

1. NEE partition: 

Daytime: 𝐹 =
−(D×FFGH×I

D×FFGH)I
− 𝑥) 

(Michaelis-Menten 
Equation) 

 

Night-time:		𝑅 =

𝑅L8𝑒
NO(

P
QRS.PUV

P
WXWO

)	     

(Lloyd and Taylor, 1994; 
Veenendaal et al., 2007) 

1. 𝐹YZ[ = 𝑎 ∗ 𝐹Y^_ + 𝑏	𝑜𝑟	𝐹YZ[ = 𝑒[b.cV
PQOOO
WdQeS     

(Hargreaves et al., 2001) 
 

2. 𝐹 = 𝑎 ∗ 𝑒g∗hijkl (Rinne et al., 2007; Yu et al., 
2013)	

3. 𝐹 = 𝛼 ∗ 𝛽(hVL8)/L8 (Long et al., 2010) 

2. Look-up tables (Falge et 
al., 2001) 

 

4. 𝐹YZ[ = 𝑎 ∗ 𝑏
WXWpqr

PO ∗ 𝑐(t∗Vt∗pqr) (Wille et al., 
2008) 

 

3. Marginal distribution 
sampling (MDS) 
(Reichstein et al., 2005) 

5. 𝐹YZ[ = 𝑎 ∗ 𝑇_ + 𝑏 ∗ 𝑇 + 𝑐 ,  T is air temp 
(Baker-Blocker et al., 2011) 

4. Mean diurnal variation 
(MDV) (Falge et al., 2001) 

 

6. log(FCH4+5)=a+b*ZWT
2+c*ZWT

3+d*Ts+e*ZWT*Ts 
log(FCH4+5)=a+b*ZWT+c*ZWT

2+d*ZWT
3+e*Ts  

(Olefeldt et al., 2013) 

5. Artificial neural network 
(Braswell et al., 2005; 
Papale and Valentini, 2003) 

7. Neural networks (Dengel et al., 2013) 

 

In chapter 3, we introduce a state of the art technique known as image inpainting to fill gaps 

in a two dimensional representation of the one-dimensional data, i.e. the flux fingerprint5. 

This has the advantage that any temporal structure (i.e. day to day covariance) is better 

incorporated into gaps in the flux signal without implying any particular functional response 

to driving environmental variables. In this way, data gaps are filled solely using information 

contained in robust, primary data.  

                                                
5 Note that flux fingerprint and flux footprint are in no way related 
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1.6.2 Regression methods 

Traditional regression methods, whether linear or non-linear, are typically based on ordinary 

least square (OLS). These methods make some assumptions about the underlying structure of 

variance which may not be appropriate in all cases. In chapter 4 we introduce two advanced 

regression methods that have distinct advantages over the traditional methods, and as these 

methods have received little attention in environmental science, it is worth taking a brief look 

at the basis. 

Regression methods (or regression analyses) are widely used in scientific research for 

establishing relationships between a dependent variable (y) and independent variables (xi). In 

terms of data analysis, regression is used in two common ways: 1) to measure the linear 

relationship between exactly two datasets (e.g. two sets of observations, two sets of 

modelling results, or one set of observations and one set of modelling results) by fitting the 

linear equation (𝑦L = 𝛼 ∙ 𝑦_ + 𝛽); or 2) to identify the relationship between a dependent 

variable and multiple independent variables, commonly known as multivariate regression. 

The orthogonal and Lasso regression methods shown below are related to 1) and 2) 

respectively. 

1.6.2.1 The orthogonal regression 

When two series of observations or estimations both contain random errors, traditional 

regression analysis based on the ordinary least square (OLS) is not strictly suitable for 

determining the nature of the correlation between these because errors in only one single 

direction (e.g. vertical = errors in the “dependent” variable) are considered, although errors 

also exist in other (orthogonal) direction (e.g. horizontal = errors in the “independent” 

variable). In chapter 4, The orthogonal regression (Leng et al., 2007) which is based on total 

least square (TLS) and minimises errors in both the vertical and horizontal directions is used 

to implement regression analyses of two independent estimations of NEE and of CH4 flux 

(Eq. 1.2). The regression coefficients can be easily calculated by using the principle 

components (Eq. 1.3): 

𝑦 = 𝛽L𝑥 + 𝛽8  (1.2) 

𝛽L =
xy
xz
	 , 𝛽8 = 𝑦 − 𝛽L𝑥  (1.3) 
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where (𝑣|, 𝑣}) is the first eigenvector of the 2*2 covariance matrix constructed from (x, y), a 

two column matrix made up of the time series of NEE and CH4 flux. 𝑥 and 𝑦 are the mean 

values of x and y respectively. Since the traditional way of calculating the coefficient of 

determination (r2) is not appropriate for TLS, the squared Pearson’s correlation coefficient is 

used to show the strength of the linear correlation between x and y. 

1.6.2.2 The Lasso regression 

Traditional regression methods (e.g. linear regression and stepwise regression) are based on 

least-square minimization, that is the regression coefficients are determined by minimizing 

the summation of squared residuals. Despite its simplicity, the estimation is prone to extreme 

values and more importantly, for the purpose of this study, to overfitting (e.g. stepwise 

regression) (Hastie et al., 2009). Moreover, in the process of multivariate analysis such as the 

stepwise regression, non-zero coefficients are not helpful to choose the trivial terms that we 

expect to remove. Previous studies have shown that the traditional regression methods based 

on the simple least square are unreliable to fulfil both needs (e.g. Tibshirani, 1996). The 

Lasso regression is thus developed to mitigate the drawbacks by regularizing the 

minimization of the least-square as follows (Hastie et al., 2009), 

min
IO,I

L
_�

𝑦� − 𝛽8 − 𝑥�h𝛽 _�
�7L + 𝜆 𝛽�

�
�7L   (1.4) 

where N is the number of samples. 𝑦� is the CH4 flux. 𝑥� is a combination of the normalized 

driven variables, a vector of p values at observation i. 𝜆 is a nonnegative regulation parameter. 

The parameters 𝛽8 and 𝛽 are regression coefficients to be determined by the minimization 

process. 5-fold cross validation6 was used to evaluate the model with different values of 𝜆. 

The Lasso tends to find a sparse solution by setting some coefficients to 0, which 

automatically “select” an optimized model based on its performance on the cross validation 

datasets. It is also more robust in terms of preventing overfitting because of the existence of 

the regulation term (i.e. bounded coefficients). 

                                                
6 In k-fold cross-validation, the original sample is randomly divided into k subsamples. Of the k 
subsamples, 1 subsample is used as the validation set, and the remaining k-1 subsamples are used as 
training set. The cross-validation process is repeated k times (the folds), with each of the k 
subsamples used exactly once as the validation set. The k results from the folds can then be averaged 
to produce a single estimation. 
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1.7 Thesis aims and structure 

Overall, this thesis aims to use advance mathematical techniques to improve the measurement 

of vectors (i.e. fluxes of scalar quantities) in the types of heterogeneous landscapes found in 

the real world. 

1. To develop generic methods for improving the estimates of gaseous carbon exchange at 

heterogeneous land surfaces. 

This thesis aims to reduce the estimation errors of gaseous carbon flux introduced by the two 

most commonly used methods, chamber and EC. In chapter 2, a two-stage sampling strategy 

is developed to improve the sampling accuracy of chamber-based measurements. In chapter 3, 

a robust method based on image inpainting is developed to gap-filling eddy covariance (EC) 

measurements and the uncertainty introduced by any gap-filling method is thoroughly 

investigated. 

2. To improve overall confidence in flux measurements by reconciling two independent 

methods of flux measurement 

Because the “true” surface flux is impossible to evaluate in practice, verification of fluxes is 

possible only through reconciling estimates based on multiple independent field-based 

estimates. In chapter 4, such a comparison is conducted for long-term measurements of CO2 

and CH4 fluxes at a heterogeneous UK fen. 

3. To characterise the transfer of momentum around structural landscape features  

The heterogeneity of fluxes across a landscape can have positive effects, for example where 

structural heterogeneity impacts wind-speed to the benefit of animal or plant micro-climate. 

In chapter 5, a simple model is developed and parameterised to characterise the wind-speed 

reduction around a windbreak, and how this impacts crop and sheep productivity through 

reduced wind-chill effects. 

This thesis is structured around a series of papers (chapters 2-5), each as submitted to the 

scientific press (but without journal-specific formatting), i.e. conclusions are necessarily 

concise. The methods developed among chapters are summarised as: 
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Figure 1.4 Thesis structure and methods generated/developed in the four main chapters. 

Although the whole thesis deals with land-atmosphere exchange, the study object is not 

directly equivalent between chapter 2-4 and chapter 5: the former studies surface carbon 

exchange, in the form of either CO2 flux or CH4 flux; the latter studies momentum exchange, 

in the form of wind speed affected by windbreaks. Carbon exchange is a special type of mass 

exchange, which is mainly driven by the energy exchange such as momentum. In fact, this 

relationship can be seen more clearly in the fundamentals of the eddy-covariance technique 

(Eq. 1.5), where the mass exchange is not a direct observation, but an estimated result from 

the momentum exchange. Therefore, surface heterogeneity would modify the local 

microclimate and energy exchange, which would ultimately determine the transport of any 

substances between the atmosphere and land surface. 

Publication status of each main chapter: 

• He, Y., Gibbons, J., Rayment, M., (2016) A two-stage sampling strategy improves 

chamber-based estimates of greenhouse gas fluxes, Agricultural and Forest 

Meteorology, doi: 10.1016/j.agrformet. 2016.06.015 

• He, Y. and Rayment, M. (2016) A robust gap-filling method for Net Ecosystem 

Exchange based on Cahn-Hilliard inpainting, Geosci. Model Dev. Discuss., 

doi:10.5194/gmd-2016-108, (In review) 
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• He, Y., Ridley, L., Brown, E., Callaghan, N., Rayment, M., (2016) Greenhouse gas 

exchange from a heterogeneous UK fen: Understanding the difference between eddy 

covariance and chamber measurements, JGR: Biogeoscience (In review) 

• He, Y., Jones, P., Rayment, M., (2016) A simple parameterisation of windbreak 

effects on wind speed, thermal microclimate, crop productivity and livestock welfare, 

Agriculture and forest meteorology (In review) 

1.8 The Defra project SP1210 

Aims 1 and 2 were completed within the framework of the Defra project SP1210: Lowland 

peatland systems in England and Wales – evaluating greenhouse gas fluxes and carbon 

balances. Lowland peatlands account for 15% (Joint Nature Conservation Committee, 2011) 

of the total peat area and 50% of the total GHG emissions from peat in the UK (Worrall et al., 

2005). The project aimed to address existing data and knowledge gaps through a 

comprehensive and integrated programme of measurements at a large number of 

representative sites across multiple lowland peat regions of England and Wales, ranging from 

conservation-managed fens and raised bogs under semi-natural vegetation, through sites 

under extensive and intensive agricultural grassland management, to highly drained and 

modified arable and peat extraction sites (Evans et al., 2016). The study shown in chapter 4 

focused on a heterogeneous high-nutrient fen at Cors Erddreiniog in Anglesey, Wales. This 

site comprises 85% of bogs, marshes, water fringed vegetation and fens, 13% of grassland 

and woodland and 2% of inland water bodies. Both chamber- and EC-based measurements 

were implemented from 2013 to 2015. Refer to Chapter 4 for a detailed description of the 

field site and flux measurements. 

1.9 Project: MULTI-LAND 

Aim 3 was completed within the framework of the MULTI-LAND project: Enhancing 

agricultural productivity and ecosystem service resilience in multifunctional landscapes. 

Intensively managed agricultural systems, such as on many livestock farms in Wales, can 

become less resilient to extreme events, such as drought or floods, as a result of the erosion of 

ecosystem functioning. In contrast, the presence of hedgerows and trees in pasture can 

increase livestock productivity through the provision of shelter, whilst creating a 

multifunctional landscape where synergies in agricultural or ecological niches may be 

exploited to sustainably intensify farming practices. With a partnership among Bangor 
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University, Aberystwyth University, CEH, Woodland Trust, National Trust, Natural 

Resources Wales, Coed Cymru and Snowdonia NPA, this project aims at promoting 

sustainable agricultural practices, exploiting potential synergies in tree-livestock-soil 

interactions in the landscape, developing understanding of ruminant behaviour and nutrition, 

and improving ecosystem service resilience. In this study, field experiments are implemented 

at the Henfaes Research Platform of Bangor University. Please refer to Chapter 5 for details 

on the site description. 
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Ch 2. A two-stage sampling strategy improves chamber-based 

estimates of greenhouse gas fluxes1 

2.1 Abstract 

Fluxes of greenhouse gases (GHG) are typically characterized by high spatial and temporal 

variability and large sample sizes (e.g. >30) are thus required to obtain a reliable estimate of 

the population mean and variance when using simple random sampling (SRS). Sample size, 

however, is often constrained by budget (time, labor) and therefore practical considerations 

induce significant (but unknown) measurement error and bias from sampling. In this paper 

we report a two-stage sampling strategy (2SS) by which the same level of sampling accuracy 

achievable by SRS can be achieved with significantly smaller sample sizes by optimizing 

sub-sample selection to retain the statistical characteristics of the sample population. 

Comparisons between 2SS and SRS were conducted using three datasets with low, medium 

and high coefficients of variance (CV). The size of the first (n’) and second (n) stage samples 

had significant effects on overall sample accuracy. Across all datasets, 2SS reduced RMSE of 

mean and variance by an average of 30%. The absolute reduction in RMSE of mean and 

variance was found to be nearly proportional to the value of CV, such that the dataset with the 

largest CV showed the largest benefit from 2SS. Logarithmic relationships were found 

between the difference in the RMSEs and the ratio, n’/ n, serving as a guide to allocate 

sampling resources in practice. Employing 2SS will aid accurate quantification of soil GHG 

fluxes in all but the most homogeneous situations. 

2.2 Introduction 

Chamber-based measurements of the flux of greenhouse gases (GHG) emissions from soils at 

local scales (less than 1 km2) are a pillar of Kyoto reporting, especially in agriculture and 

land use, land-use change and forestry (IPCC 2000). Emission factors generated from 

chamber-based measurements of total or mean GHG emissions from land use categories are 

typically based on relatively few measurements in time and space. Errors or uncertainty in the 

quantified emissions are directly and linearly propagated into the total national accounts. 

                                                
1 This chapter is based on: He, Y., Gibbons, J., & Rayment, M. (2016). A two-stage sampling strategy 
improves chamber-based estimates of greenhouse gas fluxes. Agricultural and Forest 
Meteorology, 228, 52-59. 
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What confidence do we have in the accuracy of our estimates? Very little, especially for CH4 

and N2O where uncertainty spans orders of magnitude (Maljanen et al. 2010; Rayment & 

Jarvis 2000; Rochette & Eriksen-Hamel 2008; Venterea et al. 2009). 

Comparisons of chamber measurements, scaled to the field scale, with eddy covariance (EC) 

measurements directly measuring at the field scale (i.e. two methods purporting to measure 

the same thing) often reveal large and unsystematic differences (Davidson et al., 2002; 

Goulden et al., 1996; Jones et al., 2011; Reth et al., 2005). However estimates of, for 

example, annual net fluxes are typically presented with uncertainty bounds so large as to 

suggest that the estimates are, in fact, in agreement. Without suggesting that either chamber-

based measurements or EC-based estimates are inherently better than the other, it is arguable 

that the EC community have confronted measurement uncertainty squarely and openly 

(Baldocchi 2003; Hollinger & Richardson 2005; Oren et al. 2006), and have produced 

methodologies for assessing and reporting uncertainties, directed towards the ultimate aim of 

reducing them (Baldocchi et al. 2000; Gu et al. 2012; Foken et al. 2004). On the other hand, 

the chamber-based measurement community, though revealing error sources from decades of 

experience has been slower to explore measurement uncertainty caused by sampling 

(Davidson et al. 2002).  

Amongst the literature there are many attempts to grapple with the surrounding chamber 

design and operation (Rochette & Eriksen-Hamel 2008; Fang et al. 1998; Pumpanen et al. 

2004; Rayment & Jarvis 1997), and methodological inter-comparison studies have attempted 

to harmonize the outputs from disparate methods for collecting and analyzing gas emissions 

from the soil surface (Butnor et al. 2005; Pumpanen et al. 2003). Similarly, effort has been 

made at the theoretical level to describe the relationship between fluxes and environmental 

variables such as soil temperature, moisture and management, allow the interpolation and/or 

stratification of fluxes, and reducing the sample size needed for measurements accordingly 

(Rochette et al. 1991; Xu & Qi 2001; Lin et al. 2011). Whilst these difficulties are not yet 

fully resolved, a complimentary approach is to develop a more efficient sampling strategy.  

In soil science generally there is a significant amount of statistical guidance on the design of 

field experiments and surveys (Cochran 2007; John 1998) and this has served us well in our 

analysis of the effects of manipulative interventions and soil inventories. In trying to quantify 

soil GHG emissions, however, we face the simple practical constraint of sample size. The 

limited number of chambers (or collars) that can be deployed, the amount of time required for 

a single measurement (especially for CH4 or N2O fluxes), the limited number of gas samples 
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that can be collected and analyzed (in off-line closed systems) or the limited number of 

chambers that can be multiplexed together (in open systems) all act to limit the number of 

locations that can realistically be sampled within any given project situation.  

In some soil systems, particularly agricultural ones, intensive management has the effect of 

reducing spatial heterogeneity to manageable levels, thereby reducing the number of 

measurements required to capture population variance accurately. This is not generally true 

and spatial heterogeneity combined with limited sample size presents considerable 

opportunity for bias to enter into our measurements such that even when attempts are made to 

stratify sampling according to known sources of variance, uncertainty estimates remain large 

(Raupach et al. 2005). 

A large number of samples are required to maintain the accuracy of measurements because of 

the high spatial variability of the GHG fluxes (Ambus & Christensen 1994; Dai et al. 2012; 

Rayment & Jarvis 2000; Rodeghiero & Cescatti 2008). For a finite population, the number of 

samples needed for a given error in the population mean can be derived by: 

𝑛 = �O�
�O)�VL

, 𝑛8 =
'QY�Q

NQ
  (2.1) 

Where N is the population size, z =1.96 (for 95% confidence), E (%) is half-length of the 

confidence interval as a fraction of the population mean and CV is the coefficient of variation 

of the population. In practice, a pilot study or an investigation of historical data is necessary 

to estimate the CV (or at least establish an upper limit). 

Constrained by several limitations such as labor effort, time and budget, the sample size 

required by simple randomized design is usually too large to apply in practice. Stratified 

sampling by vegetation or soil types (Fiener et al. 2012; Panosso et al. 2009; Schelde et al. 

2012; Kreba et al. 2013), or topography (Imer et al. 2013; Fang et al. 1998) is widely used to 

reduce overall variance by applying simple random sampling to each strata. These stratifying 

methods may become invalid when the spatial variability of the GHG fluxes is controlled 

(even partially) by an unknown driver, or dominated by factors such as soil temperature and 

moisture that vary at the finest scale, even within strata (Rochette et al., 1991; Stoyan et al., 

2000; Allaire et al., 2012). For these reasons, chambers have limited ability to measure 

accurately fluxes at such small scales and applying simple random sampling to each stratum 

may introduce large errors and biases in the estimate of population mean and variance.  
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With the aim of reducing measurement errors and biases associated with limited resources, 

here we present a staged approach to sampling that retains the essential characteristics of the 

population distribution within a small sample size. Related, but less effective approaches 

have been investigated previously (Folorunso & Rolston 1984; Rodeghiero & Cescatti 2008). 

Our method (see details below) expands the approach used in (Rodeghiero & Cescatti 2008), 

where a heterogeneous field was divided into sub-regions by a pre-sampling stage, which 

reduced the total variance of the whole region. There is an extent to which our method can be 

viewed as a mathematical stratification, leading to a completely general sampling method. 

Drawing on published datasets of soil GHG emissions across a range of spatial variability, we 

show that this sampling strategy reduces uncertainty in all cases compared with the simple 

random sampling, and particularly where sources of variance are large. 

2.3 Methods and Data 

Two sampling strategies were modeled using simulation: (1) simple random sampling (SRS); 

(2) a resampling or two-stage sampling (2SS). Staged sampling consisted of an initial survey 

where a relatively large number of samples were made. Two descriptive statistics (mean & 

variance) were calculated for this set of samples; the mean is of primary concern when 

quantifying total GHG flux and variance is the critical factor revealing spatial variability. A 

Monte Carlo method and a cost function were then used to select a sub-sample from the 1st-

stage sample such that the descriptive statistics of the sub-sample were closest to those of the 

1st-stage sample. Three datasets with low, medium and high variability or coefficient of 

variance (CV) were explored. Three analyses were made to compare 2SS with SRS and 

investigate the effects of sample size on the improvements: (1) the error distributions of the 

final-stage sample mean and variance; (2) the effects of the final sample size on the root-

mean-square errors (RMSEs) of the sample mean and variance; (3) the relation between the 

RMSEs and the initial and final sample size. 

2.3.1 Assumptions and sampling strategies 

For calculation purposes, we assume that the GHG emissions for a given area are discretized 

to a finite population size of N. For simple random sampling (SRS), n final samples are 

directly drawn randomly from N. The two-stage sampling (2SS) developed here invokes an 

extra initial sample set of size n’ between the population and the final samples (Fig. 2.1). The 

systematic/artificial errors between two independent measurements are assumed small 
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enough to be negligible compared to the errors caused by the sampling methods as shown by 

(Mathieu et al. 2006). 

 

 

Figure 2.1 Workflow of the two-stage sampling (2SS), compared with the simple random sampling 
(SRS). 

 

Note that n’ > n; the filtering process from the initial sample to the final sample is performed 

by minimizing the cost or objective function: 

min			f = ��V�*

�*
+ ��V�*

�*
− ��V�*

�*
· ��V�

*

�*
,					i = 1,2,3, … , C�*

�   (2.2) 

Where µ’ and σ’ are the mean and standard deviation of initial samples, while µi and σi are 

the mean and standard deviation for each combination of n from n’ (C�*
� ). The aim of this 

process is to minimize f by finding the set of final samples that is most representative of the 

initial sample in terms of the errors of both mean and standard deviation. The choice of this 

cost function is pragmatic and may depend slightly on the subjective view of these statistics 

and purpose for which the data are collected. The function provided here selects a sample 

with a representative estimate of both the mean and standard deviation, the two most 

important sample features for atmospheric and biological modeling of GHG flux. Without 

suggesting that one is more important than the other, we assumed an equal weighting as 
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implied in Eq. (2.2), however, in some cases a larger weight could be assigned to the sample 

mean if total flux is considered a higher priority. The first two terms in the function guarantee 

the choice of a sub-sample with a minimum sum of errors in mean and standard deviation and 

the third product term avoids choosing a sample with an extreme disparity between the first 

two terms, where one is overwhelmingly larger than the other. Weighting the mean and 

variance equally, this minimization process can be seen as a generalization of the method 

from a previous study (Rodeghiero & Cescatti 2008) where a simple approximation was 

achieved by stratifying the data by mean and variance and then selecting sub-samples at 

random from each strata. 

In conventional two-stage sampling methods, the population is usually stratified into a 

sample of primary units from which a sample of secondary units is selected (Thompson 2012). 

While stratification is not explicit in 2SS, defining unequal strata and subsampling from these 

such that the sample represents the population would achieve similar results. The initial 

samples in 2SS can be considered as auxiliary information for improving the selection of the 

final samples, similar to the way in which double or two-phase sampling adopts auxiliary 

information to improve inference of the population (Thompson 2012). 

2.3.2 Datasets and statistics 

The 2SS approach is illustrated using a dataset extracted from Mathieu et al. (2006) where 36 

points were sampled at 3 m spacing on a 20 m × 20 m plot of a cultivated Gleyic luvisol 

located at Citeaux in the Saone river plain, near Dijon (Eastern France) in April 2003. We 

used these 36 samples as an adequate approximation of the population. The CO2 flux dataset 

was used in this study and the flux unit was converted from g C ha−1 d−1 to g C m−2 d−1. 

In order to create datasets representing different degrees of variability without altering the 

mean, the original dataset A was expanded according to the following linear mapping,  

	𝑦� = 𝑥� − 𝜇 ∙ 𝑐 + 𝜇, 𝑖 = 1,2,3, … , 36  (2.3) 

Where yi are the new data points and xi are the original ones. µ is the mean value of dataset 

A. The constant c (≥0) is an expanding factor. Two datasets with higher and lower CV were 

generated by setting c = 2 and c = 0.5 accordingly. 

Note that the normality assumption for the distributions of the sample statistics is not 

appropriate for small sample size where the central limit theory becomes invalid. Therefore, 
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here we simply employed the sample mean and variance as the estimators for the population 

mean and variance based on the method of moments (Feller 1968). 

RMSE was used as an evaluator for the goodness of the sampling strategies. For example, the 

RMSE of the mean is defined by 

𝑅𝑀𝑆𝐸	𝑜𝑓	𝑀𝑒𝑎𝑛 = |kV� Q�
k�P

�
  (2.4) 

Where µ is the mean of the population and 𝑥�  are means of samples. m is the sampling 

repetition and was set to 1000 in our simulations to get a sampling distribution. RMSE is the 

square root of the mean squared error (MSE), which is a risk function corresponding to the 

expected value of the squared (quadratic) error loss and measures the estimator’s bias. 

RMSE of variance was calculated similarly, replacing the terms of the mean in Eq. (2.4) with 

the terms of the population and sample variance. In the remainder of this paper, the RMSE of 

mean and variance are designated as RMSEs for clarity. 

2.4 Results 

2.4.1 Error distributions of the sample mean and variance 

We started with a simple case that a fixed initial sample size at 18 (n’=18) and a fixed final 

sample size at 6 (n=6) that are typically used per date. Distributions of the errors in the 

sample mean and variance were given in Fig. (2.2). Compared with SRS, application of 2SS 

resulted in general improvements in the accuracy of sample mean and variance for all 

datasets. A normally distributed error suggests a good sampling method and it was clear from 

the fitted normal curves (smooth lines in Fig. 2.2) that SRS error distributions were not 

normally distributed. This was confirmed by the Anderson-Darling (AD) test which showed 

that none of the error distributions from SRS should be accepted as normal (p<0.01) at the 5% 

significance level, highlighting the shortcomings of SRS in capturing the population’s 

features when the sample size was small (e.g. 6 in this case). In fact, assuming normality for 

the distributions of sample statistics in a Monte Carlo estimate is not appropriate when the 

sample size is small, and can lead to a biased or erroneous inference to the whole population. 

On the contrary, when using 2SS, the errors of the sample mean did not fall into the critical 

regions for any of the datasets (p = 0.9376, 0.5202 and 0.7426), implying more unbiased and 

accurate estimates of the population mean. Distributions of the errors in the sample variance 
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were non-normal for both methods, although clear improvements can be seen when 2SS was 

applied (Fig. 2.2d&e&f). 

Bias and variance of a statistic estimator are used to quantify the amount of improvements in 

the sampling error and RMSE which incorporates both these aspects (i.e. RMSE can be 

written as the sum of the variance of the estimator and the bias of the estimator) is thus an 

appropriate evaluator. As shown in Table (2-1), the absolute reduction in RMSEs increased as 

the CV of the datasets increased, suggesting that the gain from 2SS may be proportional to 

the heterogeneity of the underlying population. In fact, the improvement in the RMSE of 

mean and variance were nearly proportional to the CV and CV2 respectively (see below). 

Relative reductions in the two RMSEs were respectively around 55% and 58% for all datasets, 

demonstrating that the applying 2SS reduced the risk of getting unrepresentative samples by 

over 50% irrespective of the dataset’s variability. 

 

Figure 2.2 Error distributions of the sample mean and variance for the three datasets. The initial and 
final sample sizes were fixed at 18 and 6 respectively for 2SS. (a, b, c) Error distribution of the 
sample mean for dataset A, B and C. (d, e, f) Error distribution of the sample variance for dataset A, 
B and C. 
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Table 2-1. Improvements in RMSEs for the three datasets when using 2SS compared to SRS 

Datasets CV 
RMSE (mean) Absolute 

reduction 

Relative 

reduction 

RMSE 

(variance) Absolute 

reduction 

Relative 

reduction 
SRS 2SS SRS 2SS 

A 0.603 0.202 0.090 0.112 55.6% 0.167 0.070 0.097 58.0% 

B 1.205 0.420 0.199 0.221 52.5% 0.672 0.274 0.398 59.3% 

C 0.301 0.102 0.046 0.056 54.6% 0.040 0.017 0.023 57.8% 

 

2.4.2 Sample errors vs. the initial (n’) and final (n) sample size 

For a given initial sample size (n’), we can conduct a sensitivity analysis of the final sample 

size (n) to investigate how RMSEs vary with n. Without loss of generality, and to limit 

calculations to a manageable number in relation to the original dataset in Mathieu et al. 

(2006), n’ was set to 18 while n ranged from 2 to 17. We calculated the RMSEs for the three 

datasets using the two sampling methods separately. As might be expected, datasets with 

higher CV produced larger RMSEs as shown in Fig. (2.3a&2.3b). RMSEs decreased gradually 

as n increased for SRS (dotted lines in Fig. 2.3a&2.3b) while for 2SS (solid lines with 

markers in Fig. 2.3a&2.3b), RMSEs remained almost constant for all final sample sizes 

greater than 2. This indicates that by using 2SS many fewer samples (e.g. 3) can achieve the 

same expected level of accuracy as a large sample number (i.e. 18 in this case) because of the 

efficacy from the combination of a larger initial sample size and the selection function Eq. 

(2.2). Additionally, in terms of the absolute difference between the two methods, dataset B 

(with the largest CV) showed the greatest decrease in RMSEs while dataset C showed the 

least, suggesting that the more heterogeneous sample area, the greater the absolute benefit of 

using 2SS. This result demonstrated that for 2SS, RMSEs were mainly determined by the 

initial samples and the cost function Eq. (2.2) performed well in selecting a set of samples 

with a reliable mean and variance. 
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Figure 2.3 Sample errors vs. the initial (n’) and final (n) sample size. (a, b) RMSE of mean (a) and 
variance (b) for the three datasets when n’ = 18 and 2 ≤ n ≤ 17. (c, d) The RMSE of mean (c) and 
variance (d) for all combinations of the initial and final sample sizes for dataset A. The difference in 
the RMSEs between SRS and 2SS (SRS-2SS) are shown on the right of each subplot. Only half of the 
graphic areas (triangle areas) are filled because n is necessarily ≤ n’. (e, f) The difference in the 
RMSE of Mean (e) and Variance (f) against the ratio n’/n for the three datasets. Logarithmic curves, y 
= a * ln (x) + b, were fitted and the grey shaded area represents 95% confidence bounds for the 
parameters a and b. 
 

Recalculation of RMSEs was conducted for 2SS using every combination of n’ and n 

satisfying 2 ≤ n ≤ n’≤ 20 (resulting in 190 combinations in total) for each of the three datasets. 

Because the essential difference between the two methods is the filtering process represented 

by Eq. (2.2), SRS can thus be regarded as a quasi-two-stage sampling strategy without the 

filtering process, i.e. where the RMSEs will not vary with n’.  
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Unsurprisingly, except for the scale difference as indicated in Fig. (2.3a & 2.3b), the patterns 

of RMSEs were similar among the (related) datasets, therefore filled contours of RMSEs are 

only shown for dataset A in Fig. (2.3c & 2.3d). Compared to SRS, the RMSEs for 2SS were 

dominated by n’ rather than n as the clear horizontal gradients show. Again, this suggests that 

the cost function, Eq. (2.2) worked well for selecting final samples that were representative of 

the initial ones. In other words, obtaining better accuracy in the estimate of mean and 

variance by applying a small n was achievable as long as n’ and the cost function were 

chosen appropriately. 2SS worked to reduce RMSEs for nearly every combination of sample 

size as illustrated by the positive difference between SRS and 2SS (SRS-2SS) for all points 

on the plots. The average reduction in RMSEs was approximately 30% for all datasets.  

The largest improvements were found at the lower right corner where the ratio, n’/n was large 

and appeared to decrease as the ratio n’/n decreased, suggesting a potential positive relation 

between them. A scatter plot of the difference in RMSE of the mean and n’/n showed a 

logarithmic relation (y = a * ln (x) + b) for all datasets (Fig. 2.3e). The coefficient, a was 

found to be proportional to the dataset’s CV while b was close to zero, suggesting the 

following, 

Difference in the RMSE of the mean = km * CV * ln (n’/n)  (2.5) 

Where km is a constant number, e.g. 4.8 in this case. This provides us a good estimate of the 

gains obtainable by using 2SS and highlights that improvements increase proportionally with 

the variance of the population.  

A similar relation was found between the difference in the RMSE of variance and the ratio 

n’/n (Fig. 2.3f). The coefficient a, however, was found to be proportional to the square of the 

dataset’s CV, suggesting a similar function, 

Difference in the RMSE of the variance = kv * CV2 * ln (n’/n)  (2.6) 

Here kv is also a constant number, e.g. 3.2 in this case. Again, this result demonstrated that 

the improvement possible by employing 2SS rather than SRS can be quantified by basic 

functions, which can serve as guide to allocate limited measurement resources in practice. 

2.5 Discussions and conclusions 

Chamber-based measurement of GHG flux is straightforward and has many advantages 

compared to micrometeorological methods. In terms of capturing spatial variation, however, 
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it is easy to make unreliable inferences about the spatial average by accidentally using 

spatially unrepresentative samples, particularly when the sample size is small. In this study 

we have demonstrated the effectiveness of a new sampling strategy, 2SS, in reducing 

sampling error in both the sample mean and spatial variance. We have further demonstrated 

that the expected benefits of this approach increase with increasing spatial variability.  

By constructing an appropriate cost function (e.g. Eq. 2.2), it was much easier to obtain a 

small set of final samples that was nonetheless representative of the initial samples, and 

provided an accurate estimate of the population mean and variance. Depending on the sample 

size chosen for the two stages, improvements in the sample mean and variance averaged 30% 

for all three datasets used in this study. Compact relations were found between the potential 

benefits and the sample size ratio (n’/n), providing an easy guideline to allocate sampling 

resources (Fig. 2.3). Considering that the GHG flux datasets tend to be highly spatially 

heterogeneous as a result of diverse vegetation types, land-surface types and/or soil 

conditions (Reichstein 2003; Valentini 2003), SRS cannot be recommended (often) without a 

manageably large sample size. 2SS is a rather simple statistical method, leading to a more 

advanced sampling strategy that could contribute to improving GHG flux estimates 

irrespective of site or gas measured. In fact, the technique could be employed to reduce 

sample error in any situations where spatial variance is higher than a manageable sample 

number can effectively capture. The three datasets used in this study differed in their CV 

values, however, one should be aware that the CV alone as an index is not sufficient to 

completely characterize the heterogeneity of a source field, even though it has been the most 

widely-used and intuitive statistics (Buczko et al. 2015). 

In the agricultural example used here, a history of management interventions such as 

ploughing and fertilization may have tended towards homogenizing the soil properties and 

microbial communities which can eventually “rectify” any areas of particularly high or low 

carbon-cycling activity. As such, this case (represented by dataset C with the lowest CV 

value) possibly represents the minimum benefit that 2SS confers compared to SRS. In more 

natural and unmanaged ecosystems, heterogeneity is typically higher and furthermore 

increases with time. This is most clearly seen in forest/woodland systems where the 

development of soil properties is highly influenced by proximity to individual trees even at 

fine scales (e.g. 12.5 cm, Jackson & Caldwell 1993) and in grass/sedge systems which over 

time become increasingly dominated by tussocks, particularly when the water-table is 

seasonally close to the surface (Soussana et al. 2007; Reynolds et al. 1997). Such cases 
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represent a significant focus of GHG flux study and would particularly benefit from the use 

of 2SS. Similarly, even in highly managed systems, such as livestock grazing systems, where 

the soil is initially highly uniform, large heterogeneity is found in the fluxes of GHGs 

(primarily N2O and CH4) associated with inputs from animal excretion (Saggar et al. 2004). 

Accurate quantification of these would also benefit significantly from the use of 2SS. 

With the simple random sampling approach, the ideal sample size is always “as many as 

possible”, but the “optimal” sample size varies with many factors as mentioned previously, 

e.g. the financial and human labor capacity, the study site, etc. To our knowledge, the 

complexity of making such resource allocation decisions has not been discussed previously, 

and the method presented here provides a statistical view on a fundamental issue that is often 

glossed over. We provide as concrete and robust a methodology to address the problem of 

sample size deficiency as it is possible to provide without consideration of the specific project 

requirements that the audience may encounter. The same applies to all statistical methods. 

In 2SS, the increased effort spent in conducting a larger initial sampling at the beginning of 

the project becomes worthwhile in a long-term measurement through a significant reduction 

both in the likely sample error, and in the long-term effort required (e.g. fewer samples 

needed for accurate quantification). Nevertheless, this does raise a question about whether the 

second-stage sample remains the optimum sub-sample if the population changes with time. 

Fully understanding this requires new datasets with greater spatial and temporal resolution 

and is beyond the discussion of this paper, nevertheless, despite the assumption suggested in 

(Rodeghiero & Cescatti 2008) that GHG fluxes are temporally invariable over a specified 

period or maintain a relatively similar rate of change with time (e.g. high flux areas 

remaining high flux areas and vice versa), we suggest that a seasonal repetition of the initial 

survey should be conducted to ensure that longer-term temporal variations are captured. For 

example, it is well known that the day-to-day variation in CO2 flux is mainly driven by 

variations in light, temperature and water, but seasonal variation includes changes driven by, 

for instance, phenology. A few repetitions of the first stage sampling of 2SS at the critical 

stages of vegetation change (e.g. early and middle growing seasons) could update our choice 

of optimal sample location, thus increase the estimation confidence of flux. 

Finally, here we have focused on two statistics, mean and variance, as these are the primary 

descriptors of a population. Nevertheless, these alone may not completely capture the true 

spatial pattern of GHG flux (i.e. two datasets with the same mean and variance may have 

different spatial patterns). This is particularly the case where the flux hotspots exist (Stoyan 
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et al. 2000; Parkin 1987), especially for CH4 and N2O fluxes. Long-term spatial hotspots can 

increase the spatial heterogeneity significantly through microbial processes at microscale 

(less than 1m), such as denitrification (Farquharson & Baldock 2008; Groffman et al. 2009) 

and/or methanogenesis (Wachinger et al. 2000). SRS is likely to under sample events with 

low probability and thus is not recommended for capturing hotspots. With a large sample size 

at the initial stage, 2SS is more likely to catch rare events. The current form of 2SS can be 

further improved by including skewness or kurtosis in the cost function, which would allow 

the final sample to express similar population characteristics as the overall population. If this 

inclusion is found to be important, the most comprehensive spatial treatment would be to 

derive the variogram (Isaaks & Srivastava 1989) for the sample area, and select a sub-sample 

that expressed similar variogram parameters, i.e. consider the spatial autocorrelation of the 

datasets (Wang et al. 2012). This, however, would require a significantly larger and more 

detailed initial samples to extract a reliable variogram function, and we leave this task to the 

next-stage research.  

To conclude, SRS never outperforms 2SS, and 2SS always increases the sampling efficiency 

in the long term. Since it is a purely statistical model aimed at obtaining a better estimation of 

the population mean and variance, it can be easily applied to other datasets representing 

various types of land surfaces. Making the simplification that coefficient of variation (CV) is 

a reasonable measure of spatial heterogeneity, it is clear that the improvements gained 

through using 2SS are higher in more complex land surface types; the higher the CV, the 

higher the gain from using 2SS. Using a very simple form, the approach proposed here 

provides a statistical view on a very fundamental issue which should receive greater attention, 

and provides a concrete and robust methodology to address the problem of sample size 

deficiency.  
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Ch 3. A robust gap-filling method for Net Ecosystem Exchange 

based on Cahn-Hilliard inpainting1 

3.1 Abstract 

Traditional gap-filling approaches adopt a temporally linear perspective on data; whether 

synthesizing data statistically within a moving window, or using complex functions based on 

a “best-guess” understanding of the processes driving exchange. The former approach is 

limited in its ability to capture non-linear trends, and the latter is limited in situations where 

the flux response to driving variables is poorly understood or unknown (e.g. the response of 

gas exchange to water table depth in wetlands). Rearranging time-averaged half-hourly net 

ecosystem exchange (NEE) into a 48*N matrix has been used to visualize NEE as a “flux 

fingerprint” and suggests a different way of filling data gaps. In this paper, we introduce an 

image processing technique known as image inpainting to fill gaps in this two-dimensional 

representation of a one-dimensional data. This has the advantage that any short-term structure 

can be accommodated without expressly implying any particular functional response to 

driving environmental variables, and medium-term temporal structure (i.e. day-to-day 

covariance) can be incorporated into gaps in the flux signal. In this way, data gaps are filled 

solely using information contained in robust, primary data. This new method compares 

favorably with the marginal distribution sampling (MDS), when tested on twelve European-

Flux datasets with four types of artificial gaps. Furthermore, we show that how random 

structures or noise embedded in the signal affect the gap-filling performance, which can 

simply be improved through a de-noising procedure by using a Fourier transform algorithm. 

The inpainting-based gap-filling approach is more effective than MDS on the de-noised data. 

3.2 Introduction 

The eddy covariance (EC) technique used for measuring the fluxes of greenhouse gases 

(GHG) and energy has flourished over the past 25 years (Baldocchi, 2014). It is considered as 

the only method that provides a direct sense of the gas/energy exchange at the biosphere–

atmosphere interface at the canopy scale (Baldocchi et al., 1996; Baldocchi, 2003). Globally, 

more than 400 sites are equipped with gas sensors with high temporal resolution monitoring 
                                                
1 This chapter is based on: He, Y. and Rayment, M. (2016) A robust gap-filling method for Net 
Ecosystem Exchange based on CahnHilliard inpainting, Geosci. Model Dev. Discuss., 
doi:10.5194/gmd-2016-108, (In review) 
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gas exchange and dozens of groups have produced time-series spanning years and decades 

(Baldocchi, 2014). While the expansion in use of EC has greatly helped us in the 

understanding of land-atmosphere exchanges, the method does not yet provide perfectly 

reliable data on the magnitude and location of GHG sinks/sources as the result of several 

theoretical and practical limitations. Notably, the method is intrinsically limited to use in 

generally flat terrain with generally uniform vegetation and an adequate footprint area 

(Baldocchi, 2003; IPCC, 2000); such limitations are unassailable. Beyond this, however, data 

are lost by data rejection when theoretical requirements are not met, e.g. during low-

turbulence periods, by other data-quality controls, or often by partial or complete equipment 

failure (Aubinet et al., 1999; Foken and Leclerc, 2004; Goulden et al., 1996; Papale et al., 

2006). Such gaps can account for 20-60% of an annual dataset of the net ecosystem exchange 

(NEE) (Falge et al., 2001; Moffat et al., 2007). Thus, in spite of theoretical limitations, 

dataset incompleteness is a major hindrance to the impact of EC in the widespread 

quantification of GHG exchange. 

Despite their incompleteness, fragmented data sets may contain sufficient information for 

short-term (i.e. half-hourly) interpolation and for limited evaluation of process-based models, 

however intactness is a fundamental requirement for estimating annual carbon budgets and 

for comparison with other biometric measurements. Traditional approaches to tackling gap 

filling in NEE measurements are mainly based on the idea of correlating the flux with other 

driving environmental variables (e.g., temperature, global radiation, water vapour, etc.) where 

fewer gaps and more predictable (or at least, more well understood) temporal variation occurs. 

This has led to a fruitful development of gap-filling techniques, broadly classifiable into four 

categories: process-based modelling, non-linear regression, moving window average and 

artificial neural network (ANN). The first two methods, based on a certain level of 

understanding in biophysical and/or biogeochemical processes, are either pure mechanistic or 

semi-mechanistic/empirical. The former has a highly complex form and is generally 

applicable in certain theoretical assumptions and/or land surface types (Verbeeck et al., 2011; 

Zhang et al., 2013). In contrast, the latter is based on building simple relationships between 

the flux and the environmental driving variables and is thus the most commonly used method 

for gap-filling NEE (Gomez-Casanovas et al., 2013; Kunwor et al., 2017; Sonnentag et al., 

2010; Thomas et al., 2011). Unlike these two methods, the moving window average and 

ANN require minimal understanding of the system processes but construct variable 

relationships by learning data patterns. With the development of computational power, ANN 
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has become an active field of research in gap-filling the estimation of carbon flux (Dengel et 

al., 2013; Moffat et al., 2010; Papale and Valentini, 2003). 

A recently comprehensive comparison (Moffat et al., 2007) of fifteen gap-filling methods 

based on 10 benchmark datasets showed that different techniques performed almost equally 

well, with ANN slightly (but not significantly) better because it is better able to replicate 

underlying patterns in the data. The reason why 15 independent methods resulted in similar 

performance however, remained unexplained. A plausible explanation is that the gap-filling 

efficiency was ultimately limited by the noise in the signal. Here “noise” represents stochastic, 

unstructured variation, unrelated to known environmental drivers (see details below).  As 

noise becomes larger relative to the “real” signal, it becomes harder for any gap-filling 

algorithm to distinguish the real information that needs to be replicated. Thus, irrespective of 

gap-filling method, the estimation variance may be primarily a reflection of the variance in 

signal noise rather than the efficiency of the method itself. 

Introducing auxiliary information from secondary environmental variables can assist in re-

construction of the flux time-series but this is limited in two situations. Firstly, the flux 

response to driving variables may be poorly understood or unknown (e.g. the response of gas 

exchange to, for example, water table depth in wetlands), not least because of any non-

linearity of the system (i.e. simple regression functions are not capable of capturing all 

variations in the system) (Lasslop et al., 2010). The form and parameters of regressions and 

look-up tables are site-specific, hindering progress in standardising the estimation of carbon 

exchange and reducing biases among sites (Reichstein et al., 2005). Secondly, any 

uncertainties or errors in environmental variables that are used in regressions or to train ANN 

propagate into the final NEE estimation. A further limitation in using ANN is that their 

intricately integrated structure makes it difficult to track the effect of, and noise introduced by, 

input variables, some of which may have limited predictive power and may even be 

redundant in terms of contributing to the real signal (Tu, 1996). 

Rearranging a half-hourly time-series of NEE into a 48 * N matrix (where the rows represent 

the time of day (i.e. 48 half-hourly periods) and the N columns represent the day of year) 

provides us a way of visualising the time-series in two dimensions, commonly known as the 

flux fingerprint figure. In this paper, we present a gap-filling method of NEE based on a 

technique known as image inpainting (Bertalmio et al., 2000) which has become mature in 

fixing corrupted 2-dimensional images but not been used in tackling the gap-filling in time-

series. This method has the advantage that any temporal structure (e.g. daily and half-hourly 
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covariance) is better incorporated into gaps in the flux signal without implying any particular 

functional response to driving environmental variables. Similar to the principle behind ANN-

based machine learning, the image inpainting technique can sense any underlying structure in 

the time-series by iteratively and smoothly propagating information (see the methodology 

section for details). Moreover, compared with traditional methods such as the two 

standardized ones adopted by Carboeurope and FLUXNET (Papale et al., 2006) where many 

inputs (e.g. temperature, radiation, u*, VPD, etc.) and complex functions are needed, data 

gaps are filled solely using information contained in the flux data themselves, largely 

simplifying the gap-filling process and avoiding potential uncertainties introduced by 

auxiliary information (e.g. poor quality of auxiliary information and over-fitting). 

3.3 Materials and methods 

3.3.1 Data description 

A total of twelve (12) years of data from 6 European sites were selected for conducting the 

comparisons of the gap-filling performance. The Level-3 NEE products (see code and data 

availability) were used for implementing the inpainting-based gap filling and the required 

driving environmental variables were added to run the Marginal Distribution Sampling (MDS) 

gap filling procedure. In this study, datasets from the process of quality control (QC) (e.g. u* 

criterion, spike detection, Steady state tests) (Foken et al., 2004) were used for simulation. 

The gap percentage varied among sites and years, from 29.5% up to 56.7% (see Table 3-1).  

 

Table 3-1 Description of the datasets from the European fluxes database. The gap percentage was 
calculated by counting the half-hourly data missing of a whole year (i.e. 17520 of data records for 
365 days). 

Site-ID Location Vegetation Type Lat/Long Year Gap(%) Post-QC 
Gap(%) PI 

UKAMo Scotland Peatland -3.23°, 
55.79° 2010 9.9% 30.2% Marc Sutton 

UKEBu Scotland Grassland -3.20°, 
55.86° 2010 26.4% 44.8% Marc Sutton 

DEGeb Germany Cropland 10.91°, 
51.10° 2010 43.1% 55.9% 

Olaf Kolle, 
Mathias 
Herbst 

DEGri Germany Grassland 13.51°, 
50.95° 

2010 9.9% 31.1% 
Christian 
Bernhofer 

2011 17.9% 37.2% 
2012 11.0% 29.5% 

ITRo3 Italy Cropland 11.92°, 2011 23.6% 50.1% Dario Papale 
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42.38° 2012 22.0% 48.4% 
2013 7.1% 42.7% 

ITRo4 Italy Savannah 11.92°, 
42.37° 

2011 27.7% 56.7% 

Dario Papale 
2012 19.1% 47.8% 

2013 23.4% 52.2% 

 

3.3.2 Gap filling methods and artificial gap type 

MDS – Marginal Distribution Sampling (MDS) is a moving window average method where 

both NEE and several driving environmental variables including heat flux, solar radiation, 

soil or air temperature, friction velocity and relative humidity are required as inputs for the 

algorithm (Reichstein et al., 2005). The R Package called REddyProc (Reichstein and Moffat, 

2015) is used to implement MDS. 

IIP – Image Inpainting (IIP), a fourth-order partial differential equation called the Cahn–

Hilliard Equation is solved numerically to propagate information smoothly from outside the 

data-missing region into it (Burger et al., 2009; Schönlieb, 2015). The inpainted image can be 

considered as a highly smoothness estimator of the original image and the “smoothness” was 

solved gradually until a stable state is reached. A simple example is given below (Fig. 3.1), 

showing the reconstruction of corrupted images using IIP. Similarly, the fingerprint figure of 

NEE is converted to a grayscale image and the gaps are then filled by the inpainting 

algorithm based on the code from the MATLAB Central File Exchange (Schönlieb, 2011). 

Since IIP does not require any inputs from environmental drivers, rare events such as heat 

wave and extremely dry or wet conditions may not be captured by this method. 

 

 
Figure 3.1 Examples of the Image Inpainting. (a) A simple structure with an artificial square gap 
represented by the white area (left) and its reconstruction (right); (b) A real photo corrupted with 
gaps (i.e. white stripes) (left) and its reconstruction (right). 
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In order to evaluate the performance of the gap-filling methods on the data points where real 

values exist, short and long artificial gaps amounting to about 10% of each dataset are 

considered in the simulations. Concretely, for the short type, half-hourly gaps are added 

uniformly randomly to the original NEE signal, while gaps with length of 3-day, 7-day and 

14-day are added respectively (Fig. 3.2). 

 

Figure 3.2 Four gap types generated are (a) random gaps; (b) 3-day; (c) 7-day; (d) 14-day. White 
strips represent the gap positions. Number of gaps for each gap type was about 10% of the whole year 
(i.e. ~1752 data points). 

 

3.3.3 Noise reduction 

To start with, we need to clarify what “noise” means in the context here. For a given signal, it 

can be partitioned into two parts: the trend part and the stochastic part. The trend part is 

called the de-noised signal and the stochastic part is referred as the noise. The noise 

characterized the randomness of a signal. As there is no general rule for reducing the noise 

from a NEE signal, the following assumptions are made for validating a de-noise method: 

1. Noise has zero mean and symmetric/unbiased distribution; 

2. Covariance between the noise and the de-noised signal is negligible (close to zero); 
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3. The difference between the before and after de-noising are small in the cumulative 

temperature and NEE. 

Points 1 and 2 are used to show that the noise part was similar to a stochastic, unstructured 

and non-correlated signal. Since the underlying pattern of NEE is unknown, the cumulative 

and average temperature and NEE are used to show that the important information still 

remains after the de-noising process (see details in Results). 

A simple method based on the Fourier transform of an entire time-series is used to reduce 

noise in the NEE and temperature signals. This process is illustrated by the block diagram: 

𝑥(𝑛) → ℱ 𝑥 𝑛 →	 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑:	𝑥 𝑘 = 𝑔 ∙ ℱ 𝑥 → ℱVL 𝑥 𝑘 → 𝑦(𝑛) 

where x(n) is the original “noisy” signal in the time domain (n), with any gaps initialized with 

the mean value of the rest of the signal. F and F -1 are the fast Fourier transform and its 

inverse respectively. 𝑥 𝑘  is the filtered signal at frequency (k) and y(n) stands for the de-

noised signal. The threshold step was carried out using a simple binary function: 

𝑔 𝑎 = 0, 𝑎 ≤ 𝑇
			1, 𝑎 > 𝑇			  (3.1) 

Two more sophisticated noise reduction techniques, the short-time Fourier transform and 

wavelets (each using various sized windows) were also tested in our study, but did not show 

distinct advantages over the simple Fourier transform, and the results are not presented here.  

A dimensionless quantity is used to measure how much noise has been removed by the de-

noising process. In image processing, the quality of a signal can be expressed quantitatively 

as the signal-to-noise ratio (SNR) (Schowengerdt, 2006), denoted as: 

𝑆𝑁𝑅 = ¦ik§¨©l
¦¨jkiq

		  (3.2) 

where 𝜎«�¬�­®  and 𝜎�¯�«°  are the standard deviation of post-filter signal and the standard 

deviation of the filter-out signal (noise) amplitude in the Fourier domain, respectively. 

3.3.4 Measures of gap-filling uncertainty 

To measure the gap-filling uncertainty in a more defensible way, three more quantities were 
included in addition to the commonly used root mean square error (RMSE). Following 
(Hanna, 1993) they are defined below: 

𝐹𝐵 = 𝑋8 − 𝑋� / 0.5 𝑋8 + 𝑋�     (3.3) 

𝐹𝐴𝐶2 = 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛	𝑜𝑓	𝑑𝑎𝑡𝑎	𝑓𝑜𝑟	𝑤ℎ𝑖𝑐ℎ	0.5 ≤ 𝑋�/𝑋8 ≤ 2    (3.4) 
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𝑉𝐺 = 𝑒 ®�¸OV®�¸¹
Q
     (3.5) 

where FB is the fractional bias, FAC2 is the fraction within a factor of two and VG is the 

geometric mean variance. X0 is an observed quantity and Xp is the corresponding modelled 

quantity. 

3.3.5 Analysis 

The two gap-filling methods were applied to the original and the noise-reduced NEE data 

from 12 years of measurements at 6 European sites respectively. Following Moffat et al. 

(2007), we assumed that the differences between the traditional methods are negligible, and 

therefore comparisons were only conducted between IIP and MDS. Initially, we applied the 

two methods to the original NEE datasets and measure their performance on four types of 

artificial gaps, including short random gaps and long gaps up to 14 days. Further simulations 

were then conducted to show how noise or random structures in the signal may affect the 

gap-filling performance by partitioning the original signal using Fourier transform. 

Evaluating the gap filling performance on artificial gaps is more of a mathematical validation 

than a biophysical one, therefore we conducted comparisons of gap filled data against 

environmental driving variables (i.e. temperature and PPFD) to further demonstrate the 

validity of IIP based on biophysical meanings (i.e. temperature and light responses).  

3.4 Results 

3.4.1 Gap filling the NEE data with artificial gaps 

Figure (3.3) shows an example of the comparison of the gap-filling performance between IIP 

and MDS on the post-QC NEE data with artificial gaps at site DEGri 2012. The general 

temporal patterns revealed by the two gap-filling methods are very similar across all four gap 

types. Clear diurnal and seasonal variations were well captured by both methods. In contrast 

to MDS, contour structures and boundaries generated by IIP are smoother or less “noisy”. 

This can be seen mostly clearly from a large gap (~ 2 weeks) in the middle of the year. 

Effects of gap type on the gap-filling performance were minimum and can hardly be noticed 

from the contour plots, which may suggest that IIP was able to reconstruct the signal even 

with the occurrence of the long-gap type up to 14 days.  
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Figure 3.3 Image inpainting vs Marginal Distribution Sampling for the four gap types at site DEGri 
2012. The middle column (i.e. (b), (e), (h) and (k)) are the original NEE data with random, 3-day, 7-
day and 14-day artificial gaps respectively. The left (i.e. (a), (d), (g) and (j)) and right (i.e. (c), (f), (i) 
and (l)) column represent the gap-filling results from IIP and MDS accordingly. 

 

The difference of gap-filling outcomes between the two methods shown on the finger-prints 

plots, however, are not sufficient to determine their performance quantitatively. The 

difference was further evaluated for all twelve datasets at the data points of artificial gaps 

where the true NEE values were available. The gap filling error was simply calculated by 

taking the difference of the estimated and real values at those data points. The error 

distributions represented by the error bar plot (Fig. 3.4) showed that there was little difference 

between methods, i.e. comparable means and variances in the gap-filling error, even though 

we see different levels of smoothness from the contour plots. Mean values close to zero 

suggests that both methods provided nearly unbiased estimations for the NEE signal. 

Combining all twelve datasets categorized by gap types and using a single metric for errors 

(i.e. RMSE, FB, FAC2 and VG), we again found that the two methods were hardly 

distinguishable from each other (Table 3-2). As might have been expected, gap-filling error 

tended to increase as gap length increased for both methods. One should notice, however, the 

increase amount was relatively small, with a difference of ~1.2 in RMSE between the random 
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and 14-day gap types (i.e. the two extremes). The facts above implied that, 1) Smoothly 

filling the gaps (by IIP) did not necessarily performed less well in terms of the estimation 

accuracy; 2) Large gaps did not significantly affect the gap-filling performance for either 

method. In fact, this result is consistent with a previous study (Falge et al., 2001) where the 

gap-filling residuals were not distinguishable by ANOVA. Both implications seem counter-

intuitive, however, the simple way of understanding this is to recognise that both gap-filling 

methods “failed” to recover the missing signals. This happens if a signal contains a 

significant amount of noise/randomness which would be impossible for any method to 

recover. 

 
Figure 3.4 Comparisons of the gap-filling error between IIP and MDS for the four gap types, i.e. (a) 
Random gaps; (b)3-day gaps; (c) 7-day gaps; (d) 14-day gaps. Unit of the error values are in µmol m-

2 s-1. Error bar plot with mean ± one standard deviation of the absolute errors for each dataset. 

 

Table 3-2 Overall statistics of the gap-filling error for all datasets for the four gap types. 

Gap types Random 3-Day 7-Day 14-Day 

Gap-filling methods IIP MDS IIP MDS IIP MDS IIP MDS 

Sample size 11817 11817 11493 11493 10593 10593 13416 13416 
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RMSE 3.15 3.19 4.10 3.81 3.67 3.51 4.38 4.51 

FB -0.021 0.016 -0.0047 0.1231 0.24 0.10 0.11 0.03 

FAC2 0.72 0.73 0.63 0.68 0.56 0.64 0.58 0.62 

VG 1.75 1.68 2.46 1.88 2.47 2.12 2.37 2.25 

 

In addition to the observation above, in Fig. (3.4), the gap-filling error showed the most 

variation at site ITRo3 2013, while it had the least variation at site UKAMo 2010 irrespective 

of gap types. This raises the question of where do the variations among datasets originate 

from? In other words, why were the estimations from some datasets always better than the 

others? The estimation confidence represented by one standard deviation (i.e. the span of the 

error bar) should be nearly zero for an ideally clean, noise-free image. As noise increases, the 

span becomes wider. We will address this problem in the next part by demonstrating that the 

variation of the gap-filling error originates from some random structures in the signal. 

3.4.2 Random structures/noise affect the gap-filling performance 

To start with, the temperature and the NEE signals were partitioned into two components 

respectively. To check that the de-noising procedure did not introduce bias, the average and 

cumulative temperature and NEE were compared before and after the signal de-noising 

process. An example of the de-noising is shown in Fig. (3.5&3.6) at site UKAMo in 2010. 

The mean and cumulative temperature signals are almost identical (Fig. 3.5a), suggesting that 

the system energetics remain the same even though some structures of randomness has been 

removed from the time series of temperature. The distribution of the removed part of 

temperature or the residual distribution shows a significantly good agreement with the normal 

distribution (not shown here), implying a Gaussian-structured/white noise embedded in the 

original temperature signal. Fig. (3.5b & 3.5d) show the fingerprint plots for the raw and de-

noised temperature signals respectively. It is clear that the de-noising process smoothed out 

some variations from the raw signal, resulting in a much cleaner image. 
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Figure 3.5 An example of a highly de-noised temperature data at site UKAMo for year 2010. Raw and 
de-noised half-hourly (a) and cumulative (c) temperature. 2-d visualizations (fingerprints) of raw and 
de-noised temperature in (b) and (d) respectively. 

 

Figure 3.6 An example of a highly de-noised NEE data at site UKAMo for year 2010. Raw and de-
noised half-hourly (a) and cumulative (c) NEE. 2-d visualizations (fingerprints) of raw and de-noised 
NEE in (b) and (d) respectively. 

 

A similar result can be found in the de-noised NEE (Fig. 3.6) even though the SNR (~1.2) is 

much lower than that of temperature, suggesting that the NEE is initially noisier than the 

temperature. The value of SNR is determined by the thresholding step (Eq. 3.1) and for de-
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noising the NEE signal, 1.2 of SNR was found to be approximately a lower limit of the noise 

removal in order to maintain a clear diurnal and seasonal variation (Fig. 3.6d). We show this 

largely smoothed NEE to demonstrate that the average and cumulative NEE after the de-

noising are still good approximates to the original ones and for any less smoothed NEE with 

higher SNR values (see Fig 3.7) the cumulative NEE fits even better. Unrealistic fluctuations 

of the original NEE appear mostly at night-time and the de-noising method seems to fix this, 

as a traditional regression method would work, by replacing the night-time NEE with some 

simple variations (Fig. 3.6a), which might be the main cause for the discrepancy found in the 

accumulative de-noised NEE from the original (Fig. 3.6c). Intuitively this abnormality in the 

NEE signal at night-time supports our speculation about the existence of noise, which would 

affect the gap-filling performance by introducing the error variations. The distribution of the 

noise part of NEE, however, is not a good fit to the normal distribution but a rather steep, 

symmetry shape around 0, which is more like to be a t-distribution. This may suggest that the 

noise type embedded in the NEE, as shall be expected, is more complicated and different 

from the Gaussian-distributed noise found in the temperature. The covariance between the 

noise part and the de-noised part are very close to zero (~10-16) for both the temperature and 

NEE. A further investigation on the statistical feature of the noise is beyond the discussion of 

this study, however, this result has already provided an evidence that the noise parts removed 

from the original signals have some nice statistical feature that satisfies the criteria as 

proposed previously, i.e. it has zero means, symmetric distributions and negligible 

correlations/covariance with the real signal. Moreover, both the temperature and NEE remain 

almost unchanged in their average and cumulative quantities, enhancing the robustness and 

validity of this de-noise method.  
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Figure 3.7 Data from UKAMo_2010. De-noising the NEE dataset and its gap filling. NEE ft is the de-
noised NEE by Fourier transform. NEE AGaps stands for the post-denoise NEE with artificial gaps 
and real gaps. SNR levels are (a) 2.34, (b) 1.68, (c) 1.30, (d) 1.17. The unit for the colour bars is 
µmol m-2 s-1. 

 

Two sites, the UKAMo 2010 and ITRo3 2013 (see Table 3-1) were selected, as two extreme 

examples of the gap-filling error variation, for a further investigation on how the noise 

embedded in the signal affects the gap-filling performance as shown in Fig. (3.4) where the 

gap-filling error was found to be various among sites. We adjusted the threshold (Eq. 3.1) so 

that an increasing amount of noise can be gradually removed from the original signal until a 

highly smoothed one was reached (Fig. 3.6d). Only the cases with the random artificial gap 

type are presented here as it has been shown from the previous part that the gap type has little 

impact on the performance. Four of the de-noising states for the two sites are shown in Figs. 

3.7 & 3.8 respectively. The NEE fingerprints become smoother as the SNR value decreases 

(i.e. more structures are removed from the original signal), with more visible periodic 

variations showing up. Because the inpainting method is a high-order PDE algorithm that 

pursues the smooth solutions, it produces a near-perfect reconstruction of the NEE images 

when the data are highly de-noised, clearly outweighing MDS (see Fig. 3.7d & 3.8d). 

Noticing that the starting value of SNR for ITRo3 2013 is significantly larger than that for 
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UKAMo 2010; it seems that more noise needs to be removed from ITRo3 2013 to reach a 

similar level of smoothness as UKAMo 2010. This further suggests that the larger variation 

of the gap-filling error found in ITRo3 2013 comes from an initially higher noise level 

embedded in the signal, which supports our speculation that the gap-filling performance is 

largely affected by the noise within a signal (Fig. 3.3). Because of the existence of these 

random structures, the gap-filling performance was found to be so similar between the two 

gap-filling methods (Fig. 3.4).  

 
Figure 3.8 Site: ITRo3_2013.  De-nosing the NEE dataset and its gap filling. NEE ft is the de-noised 
NEE by Fourier transform. NEE AGaps stands for the post-denoise NEE with artificial gaps and real 
gaps. SNR levels are (a) 24.87, (b) 1.90, (c) 1.50, (d) 1.35. The unit for the colour bars is µmol m-2 s-1. 

 

The response of the gap-filling error to the value of SNR can be seen most clearly in Fig. 

(3.9). Although the error decreases as expected for both methods as the SNR value decreases, 

the improvement gained from IIP is faster and better than that from MDS. Moreover, the 

uncertainty of estimation (i.e. error bar in Fig. 3.9) for IIP shows a trend to converge to zero 

as what an ideal performance should be for a noise-free image, compared with a converged 

constant significantly larger than zero for MDS. Although small in magnitude, this flux error 

could be accumulated and propagated into a large one in an annual flux estimate. To 
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summarize the two gap-filling methods, MDS, being based on a moving-window average 

algorithm, is a lower-order approximation to a time series, while IIP, being based on a higher-

order non-linear equation, can sense and integrate more information in the process of gap-

filling. 

 
Figure 3.9 Gap-filling errors response to the ratio of energy remaining after de-noising (SNR). (a) 
Site: UKAMo_2010; (b) Site: ITRo3_2013. The gap-filling error simply refers to the difference 
between the gap-filling values and the real value at artificial gaps. Error bar plot stands for the mean 
± one standard deviation of the errors. 

3.4.3 Compare gap filled data against environmental drivers 
Fig. 3.10 a&b show the raw and gap-filled NEE data against air temperature and light (i.e. 

PPFD) respectively at site UKAMo of year 2010. NEE data were separated into daytime and 

nighttime samples according to the solar radiation measurements, where nighttime NEE were 

plotted against air temperature to indicate the pattern of vegetation respiration. There is little 

difference on the gap-filled nighttime NEE between IIP and MDS, both of which captured the 

main variation of the raw NEE data. This suggests that the gap-filled NEE by IIP can 

effectively represent the pattern of the temperature response of respiration. Similarly, in Fig. 

3.10b the daytime NEE were plotted against PPFD to examine the light response of the gap-

filled NEE and little difference was found among the three types of NEE data. Both gap-filled 

NEE can be well fitted by using the commonly used hyperbolic function or light response 

function (Results omitted from here). It seems that there is a separation in the daytime NEE 

because of the seasonal variation in the vegetation physiology at this site. 
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Figure 3.10 Relationships between NEE and environmental drivers. a) Raw, IIP and MDS 

gap-filled Nighttime NEE vs. air temperature at site UKAMo of year 2010. b) The three 

series of daytime NEE vs. PPFD. 

3.5 Discussions and conclusions 

We have seen that the inpainting-based gap-filling method (IIP) is highly comparable with 

the widely-used Marginal Distribution Sampling (MDS) in all simulation cases proposed in 

this study (Fig. 3.4 & Table 3-2). Evidence from the blurriness in the finger-print figures of 

NEE (e.g. Fig. 3.3), the unrealistic patterns at night-time (Fig. 3.6) and the gap-filling error 

variations (Fig. 3.4) pointed out the existence of noise in the signal, therefore we speculated 

that some random structures in the signal affect the gap-filling performance and contribute to 

the error variation. When the NEE data were de-noised by the simple Fourier transform, 

though both methods showed better accuracy of estimation, IIP was more effective in terms 

of capturing the smoothness (Fig. 3.9).  

Nevertheless, a natural and fundamental question is, did we discard noise or real signal 

through the de-nosing process? To our knowledge, there is no definite answers to this 

question because the noise and signal are not distinguishable unless we know precisely and 

ahead of time what we are looking at. In contrast to de-noising an image or searching for 

objects from echo soundings, for instance, establishing criteria for identifying a noise-free 
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NEE signal is currently impossible because we do not, in fact, understand the underlying, 

process-based structure of NEE clearly. Our simplified de-noise algorithm based on the 

Fourier transform was capable of extracting the dominant variations in the signal while 

maintaining the average and cumulative quantities. Moreover, the removed parts from the 

original signals, or the so-called noise here, showed some good statistical features (Fig. 3.6), 

i.e. zero-mean, unstructured and non-correlated random structures. It is not, however, 

sufficient for providing a general rule for de-noising NEE (or other driving variables) because 

the performance of de-noising procedure depends on the amount of real signal underlying the 

time-series and the criteria used to distinguish real signal from noise. Taking the most 

conservative view (i.e. assuming that the NEE data are noise free after quality control), IIP, 

MDS and even other gap-filling methods are nearly equally good (Moffat et al., 2007). This 

suggests that these seemingly independent methods are simply alternative information 

processing machines, achieving the same level of approximation of a time series. In turn, this 

raises the prospect of unifying these gap-filling methods and adopting the most parsimonious. 

In inpainting, only the target signal is needed to drive the gap-filling process. This simplicity 

is a distinct advantage of IIP because its internal coherence prevents potential biases being 

introduced from errors/incomplete auxiliary data and/or best-guess functions relating 

auxiliary data to NEE. Similarly robust methods are also found in other signal-processing 

techniques used to reconstruct noisy signals, i.e. singular spectrum analysis (Buttlar et al., 

2014) and the discrete cosine transform (Garcia, 2010), however the utility of these methods 

for gap-filling NEE datasets remain untested. 

While IIP shows some clear advantages over the traditional methods, some noteworthy 

limitations of this method need to be indicated. Firstly, IIP performed less well for long gaps 

where the information density is low (i.e. diameters of the gaps are big). This is especially 

true where extrapolation into long gaps at the beginning or the end of a time series is needed. 

In analogous situations where IIP is used to reconstruct missing areas in images, techniques 

based on finding and copying similar texture structure from other patches can be further 

explored (Bertalmio et al., 2003). Applying a similar approach to gap-filling NEE would 

require a hybrid of IIP for texture rendering and process-based understanding ecosystem 

dynamics (Knorr and Kattge, 2005) for texture mapping. Secondly, as IIP tends to find a 

smooth solution to a corrupted signal without incorporating information from environmental 

drivers, it would be difficult to detect rare/extreme events such as a pulse of gas exchange. 

Such pulses, however, may need careful examinations for any gap-filling techniques. An 
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environmental variable related regression model, for instance, would be better capturing a 

pulse if such anomaly also appeared in the driving variables. In some occasions, the anomaly 

may only be observed in the flux measurements (e.g. machinery faults of gas sensors). The 

type of pulse source is thus critical for determining the performance of a gap-filling technique. 

Besides, the uncertainties caused by pulses may become negligible in an estimation of the 

long-term flux budget. Thirdly, IIP is a purely numerical algorithm and cannot yet explain 

any system function. Notwithstanding this, however, the accuracy of IIP as an unsupervised 

process for filling artificial gaps, particularly when coupled with a de-noising algorithm, may 

contribute to bringing into focus underlying ecological and meteorological mechanisms not 

identifiable a priori.  

In this paper, we show that the image inpainting (IIP) is a simple, compact and robust 

approach for gap-filling NEE, that it performs at least as well as a more complex gap-filling 

method, and we conclude that IIP should be added to the group of gap-filling methods for 

further research on gap-filling NEE. Evidence has been shown that the signal noise ultimately 

limits the gap-filling accuracy and de-noising the signal before the gap-filling procedure 

improves accuracy of estimation without introducing bias. 

3.6 Code and data availability 

The R Package called REddyProc for implementing MDS can be obtained either from R-

Forge (https://r-forge.r-project.org/projects/reddyproc/) or the CRAN repository. The 

MATLAB code for implementing image inpainting is available from the MATLAB Central 

File Exchange (http://uk.mathworks.com/matlabcentral/fileexchange/34356-higher-order-

total-variation-inpainting). In particular, the M-file called bvnegh_inpainting_convs.m was 

used for implementing the IIP-based gap filling. 

All datasets used in this paper can be directly requested from the European Fluxes Database 

Cluster (http://www.europe- fluxdata.eu/). Please also refers to the details of data information 

from the request. 
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Ch 4. Surface carbon fluxes to and from a heterogeneous UK fen: 

Understanding the difference between eddy covariance and 

chamber measurements1 

4.1 Abstract 

Wetlands are known to be significant sources and sinks of atmospheric carbon, both in the 

form of carbon dioxide (CO2) and methane (CH4). Quantifying the fluxes of these gases, and 

understanding the processes that control them, is therefore a priority task. This paper reports 

the simultaneous measurement of these fluxes at a heterogeneous fen on Anglesey, UK, using 

two independent methods, and describes the extent to which the flux estimates agree and 

differ. Static chamber and eddy covariance (EC) technique were used to estimate the net 

ecosystem exchange (NEE) and CH4 flux during 2013 to 2015. Chamber samples for the two 

dominant vegetation types were interpolated and up-scaled using models to match the 

temporal and spatial scales represented by the EC-based measurements. Chamber 

measurements of NEE were interpolated using well-established functions driven by 

environmental variables, and were integrated to the plot scale using a two-dimensional flux 

footprint model. Regression analysis between the integrated and EC-based fluxes based on a 

6-month observation period covering the growing season of 2014 showed a reasonable 

agreement for NEE (r2=0.71, p<0.01), albeit with a significant bias - cumulative NEE during 

the whole season was -376.5 g/m2 measured by chambers, 33% higher the EC-based 

estimates (-281.8 g/m2). By contrast, using a similar approach generated poor agreement 

between the two CH4 flux measurements, in part because the environmental variables driving 

the fluxes are poorly understood. We describe a novel method to interpolate chamber 

measurements using a parsimonious and unsupervised data fitting algorithm based on the 

Lasso regression. A significant improvement was made in reconciling the two estimates 

leaving a residual that resembled white noise (i.e. Gaussian distribution). The final 

cumulative CH4 flux was 4.01 g/m2 by chamber-based estimates, 43% more than that of EC-

based estimates (2.81 g/m2). This study contributes to an improved understanding of the two 

techniques of flux measurement in heterogeneous land surfaces. 

                                                
1 This chapter is based on: He, Y., Ridley, L., Brown, E., Callaghan, N., Rayment, M., (2016) 
Greenhouse gas exchange from a heterogeneous UK fen: Understanding the difference between eddy 
covariance and chamber measurements, JGR (In review) 
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4.2 Introduction 

Measurements based on eddy covariance (EC) and static chambers are the two most common 

methods for quantifying carbon flux exchanges between the atmosphere and ecosystems. 

Because of the spatial complexity of most terrestrial ecosystems and the inherent limitations 

of the measurement techniques, estimates typically include significant uncertainties (Goulden 

et al., 1996; Hollinger and Richardson, 2005; Longdoz et al., 2000; Wohlfahrt et al., 2008). 

Without access to either the “true” flux values or to a fully understanding of the dynamics of 

the underlying biological and physical processes, it is difficult to evaluate precisely the data 

collected or validate the measurements without bias. In order to understand and improve the 

confidence of carbon estimation then, methods are needed to draw inferences about the “true” 

fluxes based on the error-containing data collected (i.e. experimental samples). A commonly 

used method is to subject data to some form of quality control using statistical techniques 

such as regression analysis, however a major drawback of using such analysis on data 

collected via a single sampling technique is that any systematic biases/errors are difficult or 

impossible to track (e.g. inherently faulty machinery). Where sufficient baseline data are 

available, it is possible to compare observed with expected values, but more rigorous science 

is possible where we have access to two independent methods of observing the same object 

(e.g. CO2 and CH4 flux), allowing a more robust approach to comparing observation with 

underlying (but ultimately inaccessible) reality. Comparison of independent methods assists 

not only in the evaluation of each method individually, but also identifies data “abnormalities” 

that might be discarded as artefacts when observed by a single method alone. 

A number of studies have focused on the comparison of independent flux measurements from 

homogeneous source fields, where the spatial variation is negligible (Dore et al., 2003; 

Speckman et al., 2015; K. Wang et al., 2013) and any minimal discrepancy caused by spatial 

variation is within the uncertainty associated with individual data. The difficulty of making 

such a comparison in a heterogeneous source field, however, is that data sampled by the two 

techniques are seldom directly comparable because of the mismatch in their spatial 

distributions. Data collected by the EC-based system represent the field (sometimes termed 

ecosystem) scale, ranging from 102 – 104 m2, significantly larger than a plot scale (10-2 – 100 

m2) sampled by the chamber-based system (Fox et al., 2008). Therefore, in addition to the 

difference in temporal resolution between the two methods (which can normally be bridged 

by interpolation using regression models (e.g. Veenendaal et al., 2007; Wille et al., 2008)), 
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spatially-explicit downscaling of the EC data or upscaling of the chamber data is necessary 

before the actual comparison is feasible and justifiable. 

In an EC-based system, micro-meteorological sensors are deployed to take measurements that 

reflect the turbulent exchange from a definable upwind area (at least in principle) of the 

underlying land surface. The effective fetch is the source field, commonly known as the flux 

footprint, which fluxes contributes to the sensors (Schmid, 2002). Importantly, the overall 

flux observed is not the simple average across the flux footprint area, but rather a probability 

density function describes how the fluxes emanating from each point upwind of the sensor is 

weighted in the integrated flux, depending on surface characteristics and the prevailing 

micrometeorological conditions which together determine the physical transfer of air from 

land surface to sensor. Thus, complex flux footprint modeling and a spatially explicit 

description of surface characteristics are needed to integrate across any heterogeneity within 

the observation area. Finally, in order to evaluate the EC and chamber observations they need 

to be articulated at the same spatial scale, so either a decomposition of the EC signals or an 

integration of the chamber signals is necessary. Four approaches for implementing footprint 

modelling have been widely used (Vesala et al., 2008): (1) analytical models, (2) Lagrangian 

stochastic particle dispersion models, (3) large-eddy simulations, and (4) closure models. 

Footprint models simulate particle (or flux) transportation where a key step is to determine 

the probability density function of flux contribution across the source area. For a 

heterogeneous field where the magnitude of the flux source varies spatially, the plot-scale 

chamber measurements can be mapped onto the field scale (as measured by EC) once they 

have been weighted by the footprint function. Several studies have used this concept to 

compare the EC and chamber measurements from landscapes including agricultural land (K. 

Wang et al., 2013), arctic tundra (Fox et al., 2008) and forestry (Dore et al., 2003). To our 

knowledge, no studies have been reported for semi-natural lowland peatlands where 

greenhouse gas emissions are highly heterogeneous both in space and time, and play a 

potentially important role in the current and future global carbon cycle (Blodau, 2002; Evans 

et al., 2016; Freeman et al., 1992).  

In this paper, we compare EC and chamber measurements of surface carbon fluxes (i.e. NEE 

and CH4 flux) from a heterogeneous UK fen during the 6-month growing season of 2014. 

Monthly chamber records spanning 30 months were modelled to generate half-hourly NEE 

estimates for two dominant vegetation types. The flux footprint for each half hour was then 

estimated using a two-dimensional footprint model, and the chamber-based NEE and CH4 
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flux were up-scaled by integrating the half-hourly series weighted by the footprint functions. 

Chamber- and EC-based half-hourly fluxes were compared through regression analysis. A 

long-term carbon budget for this site was estimated and a comparison was made between the 

two independent methods. 

4.3 Materials and Methods 

4.3.1 Study site 

The chamber- and EC-based measurements were made at the Cors Erddreiniog, a national 

nature reserve on the Isle of Anglesey, UK. This whole site is highly heterogeneous and 

comprises 85% of bogs, marshes, water fringed vegetation and fens, 13% of grassland and 

woodland and 2% of inland water bodies (JNCC, 2016). Our measurements in this study were 

conducted at a fen area as part of the reserve. 

Based on the vegetation classification map provided by Natural Resources Wales (NRW), the 

whole fen area was classified into two groups according to the dominant vegetation species, 

denoted by PM (Phragmites australis) and CD (Cladium mariscus). Three replicated 

chambers were placed to measure each vegetation type at the locations (PM and CD) as 

shown on the map (Fig. 4.1), with a micro-meteorology tower placed at the eastern side (EC). 

An automatic weather station managed by NRW (not shown here) was situated at 30 m north 

to our EC tower, providing hourly records of wind speed, wind direction and radiation for the 

simulations in this study. 
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Figure 4.1Geo-information of the study site Cors Erddreiniog, a National Nature Reserve on the Isle 
of Anglesey, UK. Two classes of vegetation type measured by chambers are labelled with CD and PM. 
EC shows the location of the micro-meteorology tower. Image reproduced from the meta information 
of vegetation classification, courtesy of Natural Resources Wales. 

 

4.3.2 Chamber-based measurements of NEE and CH4 flux 

4.3.2.1 NEE partition 

Chamber data availability covered 30 months at the site, from March 2013 to October 2015. 

Data were collected between 9am to 4pm on the day once per month. Static flux chambers 

were custom built in a cubic shape with a bottom area of 60 cm x 60 cm (Evans et al., 2016). 

They were modular to accommodate different vegetation heights (with a volume of either 

0.342 or 0.522 m3) and included fans inside to keep air well-mixed. Gas samples were 

analysed in situ by the Los Gatos ultraportable greenhouse gas analyser (UGGA). 

Transparent and opaque chambers were used to measure CO2 fluxes; net ecosystem exchange 

(NEE) and respiration (RE) respectively. CH4 fluxes were measured concurrently. 

To estimate half-hourly NEE from discrete chamber measurements, NEE was partitioned as: 

𝑁𝐸𝐸 = −𝐺𝑃𝑃 + 𝑅𝐸  (4.1) 
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where GPP is the gross primary production and RE is the ecosystem respiration. Without 

considering the effects of water table, RE can be modelled using the classic exponential 

relation (Lloyd and Taylor, 1994). In this case, the sample area experienced significant 

seasonal variation in water table, therefore a two-degree polynomial was used to describe RE 

as follows (Howard and Howard, 1993), 

ln	(𝑅𝐸) = 𝛽8 + 𝛽L𝑇«¯�® + 𝛽_𝑊𝑇 + 𝛽½𝑇«¯�®_ + 𝛽[𝑊𝑇_  (4.2) 

where 𝛽� are the coefficients fitted by linear regression. Tsoil and WT are the soil temperature 

(°C) at 10 cm below the nominal soil surface and the depth of water table (cm) below to the 

nominal soil surface respectively, thus higher absolute value of WT reflects a lower water 

table and a drier environment.  

GPP is mainly driven by photosynthetic photon flux density (PPFD) while temperature plays 

a role in determining the rate of photosynthetic enzyme activity. Therefore, we modified the 

Michaelis–Menten function (Falge et al., 2001) by including a temperature term: 

𝐺𝑃𝑃 = ­∗°¾∗W∗¿ÀÀÁÂ∗Ã
­∗°¾∗W∗¿ÀÀÁÂ)Ã

   (4.3) 

where T is the soil temperature (°C) at 10 cm below the nominal soil surface and QPPFD is the 

PPFD, here approximated by 1.8 times the solar irradiance (W/m2). Coefficients a, b and c 

are fitted by nonlinear least square minimization. 

4.3.2.2 Lasso regression for modelling CH4 flux 

Estimating half-hourly CH4 flux is less convenient than NEE because widely applicable 

generic formulae such as Eqs. (4.1-4.3) have not yet been developed. As suggested in other 

studies (e.g. Olefeldt et al., 2013; Turetsky et al., 2014), we considered soil temperature and 

water table as the dominant variables driving CH4 variation and therefore used multivariate 

regression analysis to create a function between CH4 flux and environmental driving 

variables. By including in this model all other plausible potential driving variables (i.e. 

relative humidity, wind speed, friction velocity (u*), net radiation and PPFD), we found that 

including PPFD improved the goodness of fit significantly by increasing r2 by 18%. 

Statistical outliers were removed according to the Tukey boxplot (i.e. valid data lies within 

the 1.5*IQR (Interquartile range) of the upper and lower quartiles), which resulted in data 

availability of the two vegetation types of PM: N=40 (out of 48 measurements) and CD: 

N=29 (out of 32). The regression function included all combinations of the three driving 

variables, up to three degrees in total, giving 19 terms overall including a constant term. We 
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wanted to remove trivial terms and to prevent the regression from overfitting, and in these 

respects the traditional regression methods based on simple least square are of limited use 

(Tibshirani, 1996). Thus the Lasso regression was used to regularize the minimization of the 

least-square regression as follows (Hastie et al., 2009), 

min
IO,I

L
_�

𝑦� − 𝛽8 − 𝑥�h𝛽 _�
�7L + 𝜆 𝛽�

�
�7L   (4.4) 

where N is the number of samples. 𝑦� is the CH4 flux. 𝑥� is a combination of the normalized 

driven variables (a vector of p values at observation i). 𝜆  is a nonnegative regulation 

parameter. The parameters 𝛽8 and 𝛽 are regression coefficients which are determined by the 

minimization process. 5-fold cross validation was used to evaluate the model with different 

values of 𝜆. The Lasso method tends to find a sparse solution by setting some coefficients to 

0, and “select” an optimized model based on its performance on the cross validation datasets. 

We used the Lasso function in MATLAB to implement the regression, a similar package is 

also available in R called “Glmnet”. 

4.3.3 Micro-meteorology measurements and flux footprint modeling 

The flux tower, deployed in Oct 2012, included an open path CO2/H2O analyzer (LI-COR LI-

7500A), an open path CH4 analyzer (LI-COR LI-7700), a 3-D sonic anemometer (Campbell 

CSAT3), a net radiation sensor (LI-190R) and a data logger (Campbell CR3000). 

Other environmental sensors used were two self-calibrating soil heat flux plates (HFP01SC) 

and both manual and automated dip wells positioned to measure water tables both above and 

below the nominal soil surface (Evans et al., 2016). 

The raw data (at 20Hz) were processed using the software (LI-COR EddyPro) to generate 

half-hourly NEE and CH4 flux data, which were then corrected for flux storage terms. Gaps 

of NEE were filled by the marginal distribution sampling method (Reichstein et al., 2005). 

We attempted to fill the gaps of CH4 flux by following existed parametric formulae (Olefeldt 

et al., 2013; Wille et al., 2008), but the goodness of fit was incredibly poor (r2 ≈ 0) suggesting 

no significant relationship between CH4 flux and potential environmental driving variables. 

Instead, the gaps were filled objectively by using Fourier transform and its inverse (He and 

Rayment, 2016). 

The flux footprint was estimated for each half-hour by using a two-dimensional flux footprint 

prediction (FFP) model (Kljun et al., 2015). Compared to other footprint models, FFP is of 

high computational efficiency and has been validated for real-case applications of a wide 
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range of boundary layer conditions. Half-hourly wind speed and direction were used to 

determine the size and orientation of the footprint area and the relative contributions of areas 

within it. Aerodynamic roughness length (z0) was used as an input parameter and only data 

that satisfied the relation 12.5*z0>zm were used in the final computation, where zm (=2.33 m) 

is the sensor measurement height above the zero-plane displacement height.  

4.3.4 Spatially upscaling chamber measurements 

To contain computing capacity to manageable proportions, the half-hourly data from the 

period March 1st to September 16th 2014 (roughly the growing period) were used for 

comparing the EC and up-scaled chamber measurements. With the modelled half-hourly 

NEE/CH4 flux for each vegetation type and the half-hourly footprint function ready, the 

chamber data were then up-scaled by spatially integrating the NEE/CH4 flux according to: 

𝑁𝐸𝐸��Ä = 𝑓� ∗ 𝑁𝐸𝐸��
�7L   (4.5) 

where NEEint is the spatially integrated NEE for the whole region, fi is the flux footprint and 

NEEi is the NEE value from chamber measurements at the ith position. Since only two 

vegetation types were considered in this study, NEEi took two values representing either PM 

or CD for each given half-hour. Simply replacing NEE with CH4 in Eq. (4.5) gives us the 

upscaling function for CH4 flux. 

4.3.5 Analysis: orthogonal regression 

With no a priori basis for supposing that either method is less error prone than the other, both 

the integrated and EC-based NEE/CH4 estimates should be assumed to contain equal amounts 

of random errors. A normal regression based on ordinary least square (OLS) is thus not 

suitable for a regression analysis of the two NEE/CH4 estimations because OLS considers 

only one direction of error (i.e. whatever is considered as the dependent variable). In this 

study, orthogonal regression (Leng et al., 2007) based on total least square (TLS) (i.e.  

considering the errors in both the x- and y-axis variables) was used to implement a regression 

analysis of the agreement between NEE and CH4 flux estimations (Eq. 4.6). The regression 

coefficients are conveniently estimated by using the principle components (Eq. 4.7): 

𝑦 = 𝛽L𝑥 + 𝛽8  (4.6) 

𝛽L =
xy
xz
	 , 𝛽8 = 𝑦 − 𝛽L𝑥  (4.7) 
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where (𝑣|, 𝑣}) is the first eigenvector of the 2*2 covariance matrix constructed from (x, y), a 

two column matrix made up by the time series of NEE or CH4 flux. 𝑥 and 𝑦 are the mean 

values of x and y respectively. Since the traditional way of calculating the coefficient of 

determination (r2) is not appropriate for TLS, we simply adopted the squared Pearson’s 

correlation coefficient to show the linearity between x and y. 

4.4 Results 

4.4.1 Modelling NEE and CH4 flux from chamber measurements 

Measured soil temperature and CO2 fluxes from dark chambers were fitted to the two-degree 

polynomial (Eq. 4.2) for the two vegetation types, PM and CD independently. Both 

vegetation types showed good performance with r2 over 0.72 (Fig. 4.2a&4.2b), compared 

with r2 of 0.67 when using the Lloyd and Taylor’s exponential equation only. In both cases, 

respiration rate initially increased exponentially with temperature and then decreased as the 

system becomes drier (i.e. larger absolute value of WT). The optimal depth of water table for 

respiration was slightly different between vegetation, -14 cm for CD and -16 cm for PM. The 

fitted surface for CD was flatter than that for PM, suggesting that CD was more adaptable to 

extreme conditions (i.e. it still retained a significant amount of respiration even in a very dry 

or wet condition). 

GPP calculated from Eq. (4.1) were fitted to soil temperature and PPFD using Eq. (4.3). A 

very good performance (r2=0.8, p<0.01) was found in the goodness of fit for PM, compared 

with a moderate one for CD (r2=0.58, p<0.01). The fitted surfaces shown in Fig. (4.2c&4.2d) 

revealed a similar dependence of GPP on the environmental variables for both vegetation 

types, i.e. as PPFD increased, GPP increased asymptotically towards a saturation of level of 

photosynthetic uptake, the value of which increased as temperature increased. Similarly as for 

respiration, the fitted surface of GPP was flatter for CD in terms of temperature, which 

suggested that CD was again more adaptable to cold conditions but less effective in 

photosynthesis than PM under warm conditions. As evergreen vegetation, CD can 

photosynthesise year-round, which is also implied from the non-zero edge of the surface 

where the temperature was low (i.e. winter time). 

Fig. (4.2e&4.2f) show the goodness of fit between the modelled and measured NEE against 

the 1:1 straight line. For both vegetation types, modelled NEE were a reasonably good fit to 
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the measured NEE, although r2 was about 30% higher for PM than for CD, largely as a 

consequence of the fit for GPP. 

 

Figure 4.2 Modeling respiration (RE) (a&b), GPP (c&d) and NEE (e&f) for the two vegetation types, 
PM and CD. 

 

For the Lasso regression, CH4 flux was correlated with three variables (dimensions), namely 

soil temperature, water table and PPFD, a summary of which is thus not possible to be 

illustrated on a 2-D plane. The final performance of the multivariate regression is shown in 

Fig. (4.3). The modelled CH4 flux showed good agreement with the measured flux for both 

vegetation types, with r2 ≥ 0.5 (p<0.01). Although the regression method is empirical, this 

level of r2 suggested that the model is a good interpretation of the measured flux data. It 

should be noted that without including PPFD as a variable in the regression, the r2 values 

were only 0.39 and 0.36 for PM and CD respectively, significantly smaller than the proposed 

model. Thus it is clear that PPFD contributes to the variation of CH4 flux statistically, 

suggesting either a causative relationship, through some photochemical processes as 

proposed by previous researchers (Keppler et al., 2006; Vigano et al., 2008), or through 

autocorrelation between PPFD and another, unidentified driving variable, for example 

friction velocity (U*). Table (4-1) shows the coefficients estimated by the Lasso regression 

for the two vegetation types. Some of the coefficients were precisely assigned to zero in the 

model, meaning that those terms were removed from the model, preventing the overfitting 
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that might occur through an unsupervised fitting process. In this way the model structure was 

largely simplified by retaining a small amount of significant terms only. Please find 

Appendix 1 for more details on how to choose an appropriate value of the regulation 

coefficient 𝜆 in Eq. (4.4). It should also be noticed that some combined factors such as soil 

temperature and water table showed high contributions to the modelled flux variation, 

suggesting a high autocorrelation between the two driving variables. In fact, the correlation 

coefficients between soil temperature and water table were significant for both vegetation 

types, i.e. 0.7 and 0.65 for PM and CD respectively. 

 

Figure 4.3 Modelled (by the Lasso) vs. measured CH4 flux for vegetation PM (a) and CD (b). 
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Table 4-1 Lasso regression coefficients of modeling CH4 flux for the two vegetation types. 𝑥L,	𝑥_ and 
𝑥½ are normalized soil temperature, PPFD and water table respectively. 

Terms 𝛽� (PM) 𝛽� (CD) 
Intercept -2.43 -0.56 
𝑥L 4.72 0.09 
𝑥_ 0 5.59 
𝑥½ 1.21 -0.83 
𝑥L𝑥_ 5.95 0 
𝑥L𝑥½ 0 0 
𝑥_𝑥½ 0 -0.93 
𝑥L_ 0 3.68 
𝑥__ -0.74 -7.57 
𝑥½_ 0 0.22 
𝑥L𝑥__ 0 6.22 
𝑥L𝑥½_ 0 0 
𝑥_𝑥½_ 0 0 
𝑥_𝑥L_ 0 -5.44 
𝑥½𝑥L_ -2.75 -0.79 
𝑥½𝑥__ 1.72 1.51 
𝑥L½ -0.64 0 
𝑥_½ -3.89 0 
𝑥½½ 0 0 

 

4.4.2 Flux footprint modelling 

The prevailing wind at the study site came from southwest sector (Fig. 4.4a), and accounted 

for 46% of the total data during the study period, from March 1st to September 16th 2014. The 

average wind speed for this period was 3.1 ± 2.0 m/s (i.e. mean ± 1*std) with a maximum 

speed of 11.1 m/s. A significant second largest portion, about 30% of the wind, came from 

northeast sector and was characterized by low wind speeds. The average wind speed for the 

whole season was 2.5 ± 1.9 m/s.  

53% of the total data satisfying the relation 12.5*z0>zm and a few other criteria required to 

ensure effective surface transport (Kljun et al., 2015) were used for the footprint calculation. 

For each half hour, a 2-D spatial footprint was estimated on a 300m*300m square centred at 

the position of the micrometeorology tower. A contour map of the average footprint for the 

whole season is shown in Fig. 4b. The overall footprint area was determined by the wind rose 

shown on the left, and extended approximately 100-150m around the tower, with a maximum 

upwind distance of contribution typically ca. 25 m (yellow hotspots in the figure). Over the 

whole period, the net probability of contribution from the area to the sensors was 0.70 ± 0.12 

for PM and 0.10 ± 0.12 for CD, which suggested that PM made the major contribution to the 
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fluxes measured by the tower. The total contribution from the area was thus 0.80 ± 0.06, 

meaning that about 20% of the flux signal measured by the sensor was sourced from the area 

outside the square. The vegetation types outside this area were much more diverse and could 

not be properly classified by using PM and CD only. 

  

Figure 4.4 Wind rose (a) and flux footprint (b) at the study site, Cors Erddreiniog. The origin 
represented the location of the micro-meteorological tower. The shape of footprint in (b) was clearly 
determined by the wind distribution (a), with the dominant direction from south-west at the site. See 
Appendix 2 for an illustration on how to calculate the compass wind direction from CSAT3. 

 

4.4.3 Comparing the Chamber-based and EC-based fluxes 

Time series of the half-hourly NEE and CH4 flux are shown in Fig. (4.5a&4.5b) respectively, 

zoomed in for a short period window in Fig. (4.5c&4.5d). NEE from chamber measurements 

integrated spatially over the area of interest using Eq. (4.5) showed a good agreement with 

the EC-based NEE in terms of temporal variation. As expected, there was a strong linear 

relation between the two estimates of NEE with a Pearson’s correlation coefficient of 0.84 

(p<0.01). An orthogonal regression of the two NEE estimates also showed a good linear 

relationship (r2=0.71, p<0.01), but diverging slightly from the ideal 1:1 line (Fig. 4.5d) by a 

slope of 20%. This suggests that on average, for any given half hour, the estimation of NEE 

by chamber was about 20% higher than EC. By separating the daytime and nighttime NEE 

according to solar irradiance, similar to the whole NEE, the daytime NEE estimated by 

chamber was found to be similarly higher as shown by the green lines in Fig. (4.4d). 

Nighttime NEE estimates were less scattered than daytime NEE and the two estimates 
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showed a high degree of coherence (r2≈0.6, p<0.01). In contrast, the CH4 flux estimated by 

the two methods showed little similarity except in the range of values observed. The time 

series of CH4 flux shown in Fig. (4.5b&4.5d) suggests a poor relation between the integrated 

and EC-based CH4 flux. This is further confirmed by the orthogonal regression in Fig. (4.5f), 

where the points were too scattered to suggest any coherent relation between the two 

estimates except randomness. 

As indicated by the values of the regressed coefficients in Table (4-2), nighttime NEE 

(respiration) was higher as estimated by the integrated chamber measurements with a 23% 

larger slope than the whole day. Considering the significant larger interception (-0.78 µmol 

m-2s-1) and the small range of nighttime NEE values observed, however, the larger slope did 

not result in a significant difference between the two estimates of nighttime NEE; further 

evidenced in the cumulative nighttime NEE shown below. Nevertheless, since the night-time 

chamber measurements were implemented during daytime, environmental conditions such as 

temperature and turbulence would be higher. This may ultimately limit the model efficiency 

because we have not measured the night-time flux at night. The uncertainty in the estimation 

of night-time NEE could also occur in EC measurements when there was not enough 

turbulence for a well-mixed boundary layer, which, however, has been partly compensated by 

the flux storage correction. 

Compared to the good fit (r2 =0.71) found in NEE, the value of r2 was nearly zero for CH4 

flux; again suggesting a poor correlation between the two estimates of CH4 flux. This 

profound mismatch between two ostensibly effective flux measurement methods may 

undermine our confidence in any attempt to measure CH4 flux; the elliptical outline pattern of 

CH4 flux (Fig. 4.5f) indicating large and random differences between the two methods.  
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Figure 4.5 Comparison of NEE and CH4 flux between the EC- and chamber-based measurements. 
Times series of NEE (a) and CH4 flux (b), zoomed in respectively in (c) and (d). Orthogonal 
regression analysis of NEE (e) and CH4 flux (f), where NEE was further separated by day and night. 
 

Table 4-2 Linear relation between the integrated and EC-based NEE and CH4 flux as indicated by the 
orthogonal regression. 

Orthogonal regression 
model 𝑌��Ä = 𝛽L ∗ 𝑌NY + 𝛽8 

GHG type NEE CH4 
                         
                        Periods 
 
Regression coefs  
 

All Daytime Nighttime All 

𝛽L 1.22  
(1.21, 1.24) 

1.19  
(1.17, 1.21) 

1.50  
(1.46, 1.53) 

0.12  
(0.11,0.13) 

𝛽8 
-0.15 
(-0.17, -0.14) 

-0.30 
(-0.32, -0.28) 

-0.78 
(-0.82, -0.75) 

0.77  
(0.75,0.78) 

r2 0.71 
(p<0.01) 

0.58 (p<0.01) 0.60 (p<0.01) 0.02 (p<0.01) 
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Further analysis was conducted on the CH4 flux to investigate the nature of the relationship 

between the two estimates. The raw and unfiltered CH4 flux measure by EC is shown by the 

red line and dots in Fig. (4.6a). The range of values returned was extremely large, and greater 

than a plausible range of between -10 and 10 mg m-2 h-1. The signal was de-noised by 

conducting a Fourier transform on the raw data series, and then conducting an inverse Fourier 

transform. These procedures filtered-out outliers and reconstructed/filled introduced data 

gaps respectively and resulted in a cleaned dataset where the highest and lowest values fell 

within a plausible range (the black line in Fig. 4.6a). This process of data cleaning preserved 

the mean value (Fig. 4.6b), as well as the cumulative trend (not shown here). The half-hourly 

interpolated chamber-based half-hourly CH4 fluxes, derived from the output of the regression 

model, showed a narrower value range than that shown by the raw EC data, however the raw 

chamber measurements showed large variation, the average of which seemed to be larger 

than that of the EC signal. A t-test (p<0.01) showed that the mean value of the integrated 

chamber series (0.84 ± 0.76 mg m-2 h-1) was indeed significantly larger than that of the EC-

based series (0.59 ± 1.28 mg m-2 h-1). The distribution of the residuals between the integrated 

and EC-based CH4 flux was very close to the normal distribution (Fig. 4.6c) with a mean 

value slightly larger than zero (the green dashed line in Fig. 4.6c). Shifting the residuals by 

substracting the mean value resulted in a zero-mean normal distribution as confirmed by a t-

test (p=1), meaning that apart from a constant systematic difference by a constant (i.e. the 

mean value difference), the two methods of measurement differed only by a Gaussian random 

structure (i.e. noise).  
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Figure 4.6 Raw and modeled/filtered EC- and chamber-based CH4 flux (a). Boxplots of the four 
measured/modeled data series (b). Distribution of the residuals between the filtered EC and 
integrated chamber CH4 flux (c). 

 

Cumulative NEE and CH4 flux over the 6-month period were shown in Fig. (4.7). The study 

fen was clearly a sink for CO2 (i.e. NEE is negative) and a source for CH4 flux, as indicated 

by both methods of measurement. From a reference perspective of EC-based measurements, 

chamber measurements overestimated both CO2 and CH4 flux. Cumulative NEE was -281.8 

g/m2 as estimated by the EC-based measurements, compared with -376.5 g/m2 as estimated 

by the integrated chamber-based measurements. The average amount of overestimation by 

chamber was about 49.8 ± 45.3 g/m2, namely 17.7% ± 16.1% of the EC estimates. Equally, 

this can also be interpreted as EC underestimating NEE by about 13% ± 12% compared to 

chamber estimates. We further noticed that this difference derives mainly from the 

cumulative daytime NEE (green lines in Fig. 4.7), while the cumulative nighttime NEE 

(orange lines in Fig. 4.7) agreed well between methods. 

CH4 flux was two orders of magnitude lower than NEE when measured in units of g C/m2. 

The cumulative CH4 flux estimated by EC was 2.81 g/m2 and 4.01 g/m2 (43% higher) when 

estimated by chamber. From the reference perspective of EC-based measurements, this 

overestimation was not consistent over the whole period. Compared to EC, chambers 

underestimated CH4 flux in the first half of the year (between DoY 60-180), and 

overestimated afterwards. The average over/underestimation was 0.13 ± 0.60 g/m2, about 4.8% 

± 21.3% of EC estimates, a significantly smaller percentage than that seen in NEE. In 

comparison with the chamber-based estimations, there was a clear drop in the cumulative 

CH4 flux during 180-200 DoY (blue solid line in Fig. 4.7), suggesting a CH4 sink during that 
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period. Nevertheless, both methods identified the study site as a CH4 source overall.

 

Figure 4.7 Cumulative NEE and CH4 flux over the 6-month period. Daytime (green) and nighttime 
(orange) NEE were also shown in the figure. 

 

4.5 Discussions and conclusions 

4.5.1 Comparisons between EC and chamber measurements 

The significance of comparing the EC- and chamber-based measurements is undoubted, 

considering that these two methods are used to estimate the same quantity (e.g. scalar flux) 

but we have no access to the “real” values that would allow a direct validation of the 

measurements. Making such comparisons, however, is not straightforward due to the fact that 

the two methods are very different in terms of their temporal and spatial representations. In 

this study, we chose the direction of converting monthly, plot-scale data from chambers into 

half-hourly, regional-scale estimates to compare with EC-based measurements (the opposite 

direction is less convenient to work with unless multiple EC towers are available). This 

requires two steps. First, a half-hourly time series of fluxes are estimated by modeling the 

chamber-measured fluxes against other environmental driving variables (e.g. regression 

models); Second, the chamber measurements are scaled up spatially by integrating the 

modeled half-hourly series for each vegetation type weighted by footprint functions (see Eq. 
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4.5). The second step is particularly important for heterogeneous landscapes where fluxes 

have a considerable spatial variation.  

In this study, we made such comparison for two types of carbon flux, CO2 flux (NEE) and 

CH4 flux. Although the same techniques were used in the comparison, the results differed 

greatly between the two gases. For NEE, a strong linear relation was found between the 

integrated chamber- and EC-based estimations (r2 =0.71; p<0.01), suggesting that the major 

variation of NEE was well captured by both methods. This level of agreement not only boosts 

our confidence in both measurement techniques, but also justified the proposed response of 

NEE to environmental variables, and the up-scaling scheme and flux footprint modelling. 

Applying the same method to CH4 flux, however, did not generate a good agreement between 

the two estimations (see Fig. 4.5) as expected, nor have we found such agreement in any 

recent researches on methane emissions (Jackowicz-Korczynski et al., 2010; Schrier-Uijl et 

al., 2010; J. M. Wang et al., 2013). This disagreement implies that EC- and chamber-

measured CH4 flux were highly independent. The seemingly unstructured difference between 

the two methods, however, was found to be very close or identical to a Gaussian random 

structure as shown by the residual analysis (Fig. 4.6), suggesting that agreement between the 

flux estimates may be masked by random error and, importantly, the models have captured all 

the structured variation in CH4 flux except for stochastic variation. 

4.5.2 Chamber/EC over-/under- estimated fluxes 

From the perspective of EC-based measurements, an overestimation by chamber 

measurements was found for both GHG fluxes. Based on the cumulative quantities (Fig. 4.7), 

the two estimates of cumulative NEE differed by an average of 49.8 ± 45.3 g/m2 over the 

entire growing season, suggesting a systematic overestimation by chamber (i.e. true carbon 

sink was smaller than that measured) or equally speaking, an underestimation of NEE by EC 

(i.e. the true carbon sink was higher than that measured). Similarly, despite the fact that the 

ecosystem was found to be a source of CH4 flux by both methods, chambers overestimated 

the cumulative CH4 flux by about 4.8% ± 21.3%. At current stage of our research, no 

preference should be made in favour of either method since the “true” value is not, and 

cannot be, known.  

The difference in the estimation of NEE between methods primarily originated from the 

daytime NEE (Table 4-1). This can be seen more clearly when the cumulative NEE was 

separated by day and night (Fig. 4.7), although it should be acknowledged that a small 
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systematic error will accumulate into a large one when we consider a long-term carbon 

budget. This result is comparable to some previous studies. EC measurements were reported 

to underestimate CO2 fluxes by 10 – 30% over a grassland (Twine et al., 2000). Marushchak 

et al. (2013) found that the up-scaled chamber measurements overestimated the cumulative 

NEE by 2-30% during the growing season over a subarctic tundra. Dore et al. (2003) also 

found that the integrated chamber measurements were 10% higher (i.e. overestimated) than 

EC for half-hourly NEE, the same order of magnitude to the number found here (13% ± 12%) 

even though the types of underlying ecosystems are very different. Schrier-Uijl et al. (2010) 

reported a difference between methods from 16.5% to 31.0% for CO2 flux and from 13.0% to 

55.1% for CH4 flux at a heterogeneous grassland on peat. Similarly, Fox et al. (2008) 

reported an overestimation of CO2 uptake (i.e., more negative NEE) from up-scaled chamber 

measurements and further speculated that this might be a general issue for any type of 

ecosystem. 

4.5.3 Potential causes for the difference between techniques 

Although we have captured the major variations in both CO2 and CH4 flux through the 

techniques proposed in this paper, the cause for the systematic difference between the two 

methods of measurement is still unclear. Potential causes could be: (1) Errors introduced in 

interpolating NEE and CH4 flux from chamber measurements; (2) Incongruence between the 

flux footprint model and the chamber integrated source area; (3) Known intrinsic 

uncertainties attached to each measurement technique; (4) Unknown error sources. (1) The 

regression models used for NEE and CH4 worked well (see Fig. 4.2&4.3) but not perfectly. In 

particular, a less good fitting performance (r2=0.42) was found in the model describing 

chamber measurement of GPP for vegetation CD, uncertainties of which were likely to be 

propagated into the major discrepancy found in the daytime NEE. This may imply that the 

use of the rectangular hyperbola function (Eq. 4.3) was not sufficient to capture all the 

variation of GPP for this vegetation type, possibly because some variation is driven by factors 

other than temperature and light. The flux contribution from this vegetation type, however, 

accounted for only 10% ± 12% of the total flux, which in this case will mitigate the effects on 

the overall NEE estimation. A comprehensive investigation on the reliability of the regression 

models for NEE and CH4 flux is needed in further research. 2) The flux footprint model used 

in this study has been validated against other models and wind tunnel experiments, however 

in practical, biases can still be considerable and multiple towers are thus recommended 

(Schmid and Lloyd, 1999) as a more rigorous treatment. It should also be noted that the total 
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flux contribution was about 80% of the actual total, implying that 20% of the footprint 

incorporated other unspecified sources which would be embedded in EC data, but ignored 

from the integration process of chamber signals (Eq. 4.5). This part of contribution to the 

fluxes would be significant if the un-sampled (by chambers) areas produce a significant 

amount of NEE and/or CH4 flux.  

3) Intrinsic uncertainties from measurement techniques. Although both the chamber and EC 

techniques are fairly mature with many years of methodological refinement (Oren et al., 2006; 

Parkin et al., 2012; Rayment and Jarvis, 1997), recognising the strict technical requirements 

for applying them in practice does not always translate into artefact-free measurements. 4) 

Unknown error sources. Even if we assume that all uncertainties above are small enough to 

be ignored, the possibility remains that there are yet other sources of error that are currently 

unidentified. The curve fitting performance for the NEE of vegetation PM, for instance, 

whilst good (r2 = 0.73) leaves more than 20% of variance unexplained. This residual is 

normally considered as unsystematic random errors, but is it? Is there a technical limit to our 

capability of estimating NEE and CH4 flux? Are the simple functions of GPP and RE 

response to light and temperature over-simplified in a complex system? Use of simple 

functions seems very likely to over-simplified a complex system. The cloudy scatter points 

found for CH4 flux (Fig. 4.5f) and the disagreement between methods also suggested the 

existence of knowledge gaps in our understanding of the flux mechanism itself, potentially 

highlighting the role of stochastic processes such as ebullition or pumping by fluctuating 

atmospheric pressure.   

4.5.4 Implications from the Lasso regression of CH4 flux 

As shown in Table (4-1), some of the coefficients were automatically assigned to zero by the 

regression process. This result suggested the following: 1) Some terms were neglected from 

the model for one vegetation, but not necessarily for the other, highlighting the distinction 

between vegetation type; 2) Only six terms were non-zero for both species, namely the 

intercept, Tsoil, WT, PPFD2, WT*Tsoil
2 and WT*PPFD2. This could help shed light on the 

mechanism of underlying processes of CH4 production and emission, and serves as a guide to 

constructing a generic model of CH4 flux that suits different types of vegetation. Therefore, 

an investigation into the biophysical meaning of these terms would be a sensible follow-up 

study. Traditional regression analysis without regularization (e.g. stepwise regression) is 

limited in its fundamentals, particularly unreliable for multivariate analysis (Flom and Cassell, 
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2007). We thus highly recommend further investigations on the use of the Lasso and its 

equivalents in data mining of complex systems such as CH4 flux. 

4.5.5 Summary 

A good linear correlation was found for NEE estimations based on the two completely 

independent measurement techniques, while a reasonable agreement was found for the 

estimations of CH4 flux once random noise was considered. This result increases our 

confidence in quantifying surface carbon flux using either of these two methods in the sense 

that they were generally linearly correlated, even though the integrated chamber-based 

estimation was consistently higher than EC for both GHG fluxes. The cause of the systematic 

difference between methods remains unclear. The study fen was a NEE sink and a CH4 

source as indicated by both methods. Both methods indicated that the study fen was a CO2 

sink and a small CH4 source, and was, overall, a small carbon sink. 
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Ch 5. A Simple parameterisation of windbreak effects on wind 

speed, thermal microclimate and sheep welfare1 

5.1 Abstract 

It is well known that windbreaks can provide favourable conditions for livestock and may 

increase agricultural productivity, however, establishing a windbreak incurs both a direct cost 

(of materials and time), and an indirect cost in terms of competition for resources between the 

windbreak and the pasture. Determining the cost vs. benefit of any given windbreak system 

first requires that the impact of the windbreak on the wind microclimate is characterized, but 

in practice, modelling wind flow around obstacles is complex and computationally intensive. 

We report a simple parameterized model to estimate the wind speed reduction around a 

windbreak. Analytically, model parameters showed close links to the real-world attributes 

that characterize windbreaks. The model was validated with field measurements on farmland 

in the UK; a Monte Carlo simulation was used to measure model parameter uncertainties. 

Results showed that the model produced an excellent fit to the relative wind speed (i.e. 

normalized by ambient wind speed) with RMSE value of 4%±0.5%. The model was further 

applied to literature data to characterise the dependence of the relative wind speed on 

windbreak porosity. A field-scale simulation of a sheep grazing system, including an explicit 

description of wind-chill effects, was conducted to estimate the net gain associated with 

including a windbreak in sheep productivity. The maximum productivity gain (27%) was 

found at a porosity of 0.5 and a wind speed of 12 m/s. Wind-chill effects were further 

simulated for lowland and upland environments, and related to ovine-specific thermal 

tolerance limits. Results showed a distinct response to reduced wind speeds between sites, 

indicating different levels of thermal risk to livestock and different, microclimate-specific, 

windbreak benefits for each location. The simplified models proposed in this study provides a 

generic framework for an efficient and precise quantification of windbreak effects and 

optimising the design of windbreak systems. 

5.2 Introduction  

Windbreaks or shelter belts have been used in the agricultural landscape for centuries, and are 

considered to have a generally positive effect on livestock productivity (Gregory, 1995). In 
                                                
1 This chapter is based on: He, Y., Jones, P., Rayment, M. (2016). A simple parameterization of 
windbreak effects on wind speed, thermal microclimate, crop productivity and livestock 
welfare. Agricultural and Forest Meteorology (In review). 
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livestock production systems, animals benefit not only from the direct physical protection 

from a stressful environment (Cleugh, 1998) (e.g. rain, wind and sun), but also because their 

immediate microclimatic conditions determine their energy balance. Energy generated by 

metabolism over and above requirement for vital processes, is, in agricultural systems ideally 

apportioned to weight gain (i.e. production), but in cold conditions is utilized in meeting the 

increased demands thermoregulation. When exposed to a cold and windy environment, the 

insulating boundary layer formed by fur, hair or fleece is diminished and heat conduction 

between the body and surrounding air is thus increased. This is commonly known as the 

wind-chill effect, meaning that the apparent temperature experienced by the animal under 

windy conditions is lower than the ambient temperature. Low-wind microclimates provided 

by windbreaks reduce heat loss and increase overall productivity (Ames and Insley, 1975; 

McArthur and Monteith, 1980) as well as lowering lamb mortality (Pollard, 2006). 

In the literature there have been many attempts to grapple with numerical simulations of the 

equations that govern windbreak aerodynamics (e.g. Bitog et al., 2012; Bourdin and Wilson, 

2008; Speckart and Pardyjak, 2014; Torita and Satou, 2007; Wang and Takle, 1995; Yusaiyin 

and Tanaka, 2009). In addition to the technical problems of solving these partial differential 

equations (e.g. how to choose a discretized scheme and a proper grid size), a fundamental 

obstacle to using these models is that they are typically derived from wind tunnel experiments 

are necessarily simplified and unrealistic given the complexity of a real windbreak (i.e. one 

made up of flexible and irregular shaped trees and leaves). It is also for this reason that 

previous studies using fences as field measurements to validate numerical simulations 

(Wilson, 1987; Wilson and Flesch, 2003; Wilson and Yee, 2003), despite their significance in 

theoretical understanding, may also be unsuitable for a windbreak consisting of green 

infrastructures. Moreover, the procedure of implementing such simulations is computational 

intensive and is cumbersome to apply to any real-world scenario. In short, there is a need for 

a simple parameterized model, based on real-world observations, that would provide not only 

a computationally-efficient estimation of the wind speed reduction around a real windbreak, 

but also the follow-up quantification of the effects of that windbreak on livestock 

productivity. Several previous researchers have tried to build and/or apply a parameterized 

model to estimating the wind speed reduction around a windbreak. Vigiak et al. (2003) used a 

function with five parameters (analogous to the sum of two normal distributions) and 

Stredova et al. (2012) suggested a 2-degree polynomial with six parameters, to describe the 

wind speed reduction against distance and optical porosity. In both of these cases, however, 
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crucial information is missing in terms of how or whether these parameters have any physical 

meaning or any relation to attributes of windbreaks that might be measured in the field.  

Critically, only three parameters are required to characterize wind speed reduction around a 

windbreak (Heisler and Dewalle, 1988; Wang and Takle, 1997; Yusaiyin and Tanaka, 2009); 

These are illustrated in Fig. (5.1): L20, xmin and ymin, where L20 is the distance between which 

the wind speed reduction is 20% (i.e. wind speed is 80% of ambient wind speed), xmin is the 

distance downwind of the windbreak at which wind speed is at its lowest, and ymin is the 

minimum wind speed (i.e. the wind speed at xmin). Consequently, a simple parameterisation of 

the wind speed around a windbreak is achievable in principle because 1) just three parameters 

should be sufficient to uniquely determine the trend of wind speed; 2) further downwind of 

the windbreak, the wind speed asymptotically approaches the ambient wind speed (i.e. zero 

reduction). 

 

Figure 5.1 Characteristic trend of wind speed reduction around a windbreak and parameters 
required to define this. 

 

In this study we use a simple parameterized model in the form of the probability density 

function of a single logarithmic normal distribution with three parameters, the physical 

meanings of which can be explicitly expressed in terms of L20, xmin and ymin. The estimation 

error and the parameter uncertainty are analysed thoroughly with field measurements and we 

further extended this model to literature datasets so that the dependence on porosity can be 

estimated and analysed. The wind-chill temperature (WCT) is modelled by using a sigmoid 
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function fitted to a published dataset relating to adult sheep (3-6cm fleece depth). The wind 

attenuation and WCT models are then combined to evaluate the impacts of wind shelter on 

sheep productivity. Last but by no means least, we simulate the response of the thermal 

benefits to the wind speed reduction by using historical climate datasets measured at a 

lowland and an upland. 

5.3 Data and Methods 

5.3.1 Site description and measurements of wind speed 

Field measurements were made at the Bangor University Research farm at Henfaes in 

Llanfairfechan, Wales, UK. Five sonic anemometers (four Gill WindSonic-2D and one 

Campbell CSAT3-3D) were positioned along a transect running perpendicular to a linear tree 

barrier forming a windbreak. The windbreak was of mixed species composition, including 

sycamore, alder, hazel and oak. Physically, the windbreak had an average height (H) of 10m 

and ran in a southeast – northwest orientation, such that the prevailing wind (from the 

southwest) meant that the anemometers were situated in the downwind region for most of 

time. Fig. (5.2) shows the distance (in H) of each anemometer downwind of the windbreak, 

namely 1H, 2.5H, 5H, 7.5H and 15H. 
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Figure 5.2 Site map at Henfaes and downwind locations (in barrier height H) of the five sonic 
anemometers. Photo taken by Y. He on 2 Aug. 2016, reproduced by Y. Xuan. Map credit: Google 
Earth. 
 

In total, fourteen days of 10-min averages were collected between 8-22 August 2016. Only 

data when wind direction was from the southwest sector (180°-270°) were included in the 

simulation. Because southwest is the dominant wind direction for this region, 1353 samples 

out of 2031 (67%) were included. 

We assumed that the wind speed measured by the furthest anemometer at 15H was ambient 

wind speed and the relative wind speed at each position downwind was calculated as a 

proportion of the wind speed at 15H. Calculating the proportion at each data point 

exacerbated noise resulting from stochastic events, because the fraction can be significantly 

impacted by a small change in the numerator and/or denominator, especially when their 

values are small. For example, an error of 0.1 in the numerator contributes much more to a 

fraction of 0.5/1 (i.e. 50% attenuation) than 5/10 (again 50% attenuation). 
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Therefore, to minimize such errors/uncertainties, the proportion was estimated by taking the 

slope of the linear regression between wind speed measured by paired anemometers. 

5.3.2 Model development and error estimation 

Previous attempts to approximate the wind speed reduction around a windbreak have used a 

single, or the sum of two, normal distributions (Hipsey, 2003; Schwartz et al., 1995; Vigiak et 

al., 2003). In this study, we modified the density function of a single normal distribution by 

taking the logarithm of the downwind distance. The relative wind speed (𝑢/𝑢8 ) at any 

distance from a windbreak (i.e. from −10𝐻 windward and up to 40𝐻 leeward) can thus be 

calculated as: 

𝑦 = t
tO
= 1 − 𝑎 ∗ 𝑒Vg∗ É� |Ê)L8 VÃ Q  (5.1) 

where 𝑥Z  is the distance from the barrier normalized by the barrier’s height H. 𝑢 is the wind 

speed at 𝑥Z and 𝑢8 is the incoming ambient wind speed. Fig. (5.1) shows a typical picture of 

the relative wind speed around a windbreak. The general characteristics of this curve can be 

expressed by the following, 1) It is asymptotic towards 1 at both ends; 2) It has a single 

minimum point; 3) The shelter distance (L20) is defined as the distance between which the 

wind speed reduction is at least 20%. Coefficients 𝑎, 𝑏, 𝑐 in Eq. (1) are closely related to the 

minimum point and L20, 

𝑥��� = 𝑒Ã − 10  (5.2) 

𝑦��� = 1 − 𝑎    (5.3) 
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g
)    (5.4) 

where xmin represents the downwind location where the minimum wind speed (ymin) is reached. 

This formulation clearly points out the potential physical meanings of the coefficients in Eq. 

(1). a is related to the maximum wind speed reduction, b is related to the initial deceleration 

and acceleration of airflow and c is related to the downwind position of xmin. In the discussion 

below, we speculate on how these parameters are related to the physical characteristics of the 

windbreak.  
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5.3.3 Model error estimation 

In order to determine the robustness of the model, we quantified parameter errors by splitting 

our dataset randomly into two parts; a training set (70%) and a validation set (30%). The 

training set was used to estimate the parameters in Eq. (5.1) and the validation set was used to 

calculate model error that was evaluated by the root mean square error (RMSE). This process 

was repeated 500 times using a Monte Carlo method to generate independent training and 

validation sets so that all variation (uncertainty) in the estimations of the coefficients was 

captured. Note that here we do not require a cross-validation set and test set as used to test an 

artificial neural network (ANN) procedure. ANNs optimise parameters by iteration and 

require evaluations on independent cross-validation sets to update coefficient estimates in 

real time. Our goal, however, is simply to measure the model prediction error through Monte 

Carlo sampling. In fact, statistically the confidence interval (CI) estimated by this method is 

more reliable than that associated with an ANN because even poor parameter estimations will 

be included in the CI estimates. 

5.3.4 Literature data and windbreak porosity 

Neglecting atmospheric stability, the three parameters (i.e. xmin, ymin and L20) uniquely define 

airflow modified by any given windbreak. Despite the fact that a windbreak has a plethora of 

characteristics (e.g. tree species, leaf shape, density and distribution), optical porosity alone 

has often been used to describe windbreak aerodynamics and distinguish between windbreak 

type (e.g. Stredova et al., 2012; Vigiak et al., 2003; Wang and Takle, 1997). In order to build 

a function of porosity against the parameters in Eq. (5.1), we applied the model to two 

published data sets as shown in Fig. (5.3). For the sake of simplicity, we call the dataset 

extracted from Heisler and Dewalle (1988) dataset 1 and that extracted from Wang and Takle 

(1997) dataset 2. Dataset 1 was obtained from field observations of five types of windbreak 

(Fig. 5.3a) and dataset 2 was the result from numerical simulations of a boundary-layer 

turbulence model (Fig. 5.3b). By fitting Eq. (5.1) to each data set, we estimated the 

parameters which could then be correlated to reported values of porosity. It should be noted, 

however, that dataset 1 did not represent porosity numerically, so for the sake of this 

simulation we assigned values of 0.2, 0.4, 0.5, 0.6 and 0.7 to the data reported for very dense, 

dense, medium, loose and very loose respectively. Despite this setting was purely empirical 

and we have simulated different combinations of values, it appeared to be the most reliable 
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one when we interpolated the wind speed reduction at other porosities by regression for this 

dataset. 

 

Figure 5.3 Digitized data extracted from (a) Fig. 2a in (Heisler and Dewalle, 1988); (b) Fig. 2 in 
(Wang and Takle, 1997). 
 

5.3.5 Wind-chill effects and heat loss from sheep 

Barnes (1974) measured the wind-chill temperature (WCT) for sheep with three types of 

fleece: shorn, medium (3-6 cm) and full (>6 cm). In the experimental setting, wind speed 

varied from 0 m/s up to 18 m/s, and temperature varied from -15 °C to 20 °C. Whilst initially 

considered, the equation developed by (Osczevski and Bluestein, 2005) for wind chill effect 

in humans, 𝑊𝐶𝑇	 = 	35.74	 + 	0.6215 ∗ 𝑇	– 	35.75 ∗ 𝑉8.LÒ 	+ 	0.4275 ∗ 𝑇𝑉8.LÒ, is unsuitable 

for the purposes of this study physiologically: the insulative properties and proportions of 

ovines somewhat different to those of a human. Instead, we used a sigmoid function to fit the 

data of medium fleece sheep as follows, 

𝑊𝐶𝑇 = −39 + 𝑇 + ½Ô
L)°O.QR∗(ÕXPQ.PQ)

  (5.5) 

where WCT is the wind-chill temperature. T and V signify ambient temperature and ambient 

wind speed respectively. The goodness of fit was great with 𝑅_ = 0.98	 𝑝 < 0.01  and 

RMSE=2.44. The value 39 represents sheep core body temperature and the other two values 

were obtained by curve fitting: 0.28 shows the heat conductance rate and 12.12 is the wind 

speed above which the wind-chill effect starts to slow down asymptotically. Heat loss (in 

W/m2) was determined from the WCT (see below). 
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As endothermic homeotherms, ovines defend internal homeostasis, with a mean core thermal 

set-point of 39°C (with a typical range of 37.9-39.8°C (Bligh et al., 1965)). Within a narrow 

range of environmental temperature (thermo-comfort zone: TCZ, A-A’ in Fig. 5.4), metabolic 

heat production is sufficient to balance energetic flux between animal and microclimate 

without requiring the initiation of additional thermoregulatory strategies, however with an 

increasing thermal gradient between core body temperature and the environment, behavioural 

then physiological responses must be initiated, necessitating an increasing energetic cost. 

Animals experiencing temperatures outside the TCZ, but within thermo-neutral zone (TNZ; 

Fig. 5.4) cease feeding and seek shelter or shade; beyond the limits of TNZ, physiological 

changes to the animal’s insulative properties and intensification of metabolic heat production, 

catabolism of tissue and shivering thermogenesis (cold temperature) or increase in 

evaporative heat loss occur to meet the energetic cost of thermal stress. Once outside lower or 

upper critical temperature limits (LCT, UCT), probability of death to hypo or hyperthermia is 

a direct product of time and temperature. Thermal limits for an adult sheep are detailed in Fig. 

(5.4). 
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Figure 5.4 Zones of thermal comfort (TCZ), neutrality (TNZ) and critical thermal limits illustrated 
graphically with equivalent temperatures for a temperate acclimatised adult ewe on maintenance diet 
with 50mm of fleece shown below. Graph adapted from: (Bianca, 1968); Temperature source: 
(Bianca, 1971, 1968; Blaxter, 1962; CAgM report, 1989). 
 

When ambient temperature is below the lower limits of TNZ, metabolic heat production 

increases linearly with decreasing ambient temperature (Alexander, 1974) (until outside 

critical limits and suffering hypothermia), i.e. ∆𝑄 = 𝑘 ∗ ∆𝑇. For a new-born lamb in still air, 

𝑘 ≈ Lc
Û
	𝑊	𝑚V_	℃VL. This value will be lower for a medium fleeced adult sheep because of 

better insulation and lower surface area: volume ratio.   

The reduction of heat loss (PQ) due to reduced wind-chill effects was calculated as, 

𝑃¿ = 1 − Þ∗ hVßYh
Þ∗ hVßYhO

= 1 − hVßYh
hVßYhO

  (5.6) 
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where T is ambient temperature. WCT and WCT0 are the wind-chill temperature with and 

without windbreak effects. PQ is always positive as 𝑊𝐶𝑇 ≤ 𝑇. 

The thermal limits described above have been defined in conditions of negligible wind-chill. 

Thus, Alexander (1974) observed the effect of wind upon critical temperature limits, noting 

that limits appeared to increase as wind speed increased. This effect is a product of the 

chilling effect of the wind lowering the effective temperature felt by the animal. Whilst the 

animal’s thermal tolerance does not alter (so long as insulation and physical properties 

remain constant), change in heat loss is proportional to both ambient temperature and wind 

speed (i.e. wind chill).  

5.3.6 Historical climate data 

In order to simulate real-world environments, we used historical datasets from two 

meteorological stations in North Wales, namely the Llanberis station (53.1180° N, 4.1275° W) 

and the Clogwyn station (53.0642° N, 4.0864° W). The former site is located in a lowland 

area with an elevation of about 130m and the latter in an upland area with an elevation of 

about 700m. Therefore, the climatic condition at Clogwyn is generally more extreme (i.e. 

higher wind speed and wider temperature range) than Llanberis. Hourly wind speed and 

temperature datasets were directly retrieved from the data archives: 

(http://www.fhc.co.uk/weather/archive/main.asp). data availability from both sites covered 

more than 10 years, i.e. from July 1998 to April 2011 for Clogwyn and from July 1999 to 

September 2015 for Llanberis.  

Hourly data were plotted on a graph of wind speed and ambient temperature and a boundary, 

shown by a polygon, was then drawn to include all data points (excluding obvious data 

errors). This represents the environmental envelope experienced by livestock at these sites. 

Please see results, Fig. (5.9) for graphical details. 

5.3.7 The metric for the total benefit 

Because our goal is to measure the impact of windbreaks on the heat loss from sheep (PQ), a 

single metric representing the total benefit spatially is helpful. We propose the following 

equation to estimate the total benefit (B), which is simply the average of the integration of PQ 

over the leeward distance, 

𝐵 = L
|PV|O

𝑃¿ 𝑑𝑥
|P
|O

  (5.7) 
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𝑥L and 𝑥8 are the start and end points for the integration. 

5.4 Results 

5.4.1 Model uncertainty of wind speed reduction 

The time series of our measurements showed clear and consistent separations among, but 

good correlation between, the five anemometers (Fig. 5.5a). As expected, wind speed 

increased further away from the windbreak. Fig. (5.5b) shows the model fit against the 

observations located at five downwind positions (i.e. 1H, 2.5H, 5H, 7.5H and 15H). It is clear 

that the log-normal function (Eq. 5.1) captured the trend of wind speed at downwind 

locations, with only small discrepancies (RMSE = 0.06). The model uncertainty including 

parameter variation and validation error was further estimated by the 500-repetition Monte 

Carlo simulation (Fig. 5.6). The variations in the three parameters of Eq. (5.1) were almost 

negligible with standard deviations less than 1% of the respective mean values for all three 

parameters (Fig. 5.6a, 5.6b&5.6c). Similarly, the validation error (RMSE) was between 3.5% 

and 4.5%, that is to say, the estimation by the model of the relative wind speed (u/u0) had an 

average error of 4%. In summary, despite its simple form, the proposed model was capable of 

capturing most variation in wind speed downwind of the windbreak.  
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Figure 5.5 (a) Time series of wind speed observed by five anemometers downwind, (b) Time series of 

wind direction between 180 and 270 degree and (c) modelled wind speed reduction against the 

observations. 
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Figure 5.6 Distributions of the estimation of the coefficients and the model error (RMSE) estimated 

on the 500 validation datasets generated by the Monte Carlo method. 

 

5.4.2 Modelling literature data and porosity dependence 

By applying a similar method to the two literature datasets, a sensitivity analysis was 

conducted to determine how windbreak porosity affected model parameters and RMSE 

(Table 5-1). Model performance was consistently good with R2 values over 0.92 for all cases, 

once again illustrating the robustness of this simple model. RMSE values ranged from 0.01 to 

0.08, meaning that the average estimation error of u/u0 was between 1% and 8%. There was a 

simple dependence of RMSE on porosity: as porosity increased, RMSE decreased, suggesting 

that the model resulted in smaller uncertainties for looser windbreaks. This result can also be 

observed in the dependence of the estimation of coefficients a and b on porosity where the 

error bars tended to decrease in size as porosity increased. Uncertainties of the coefficient c, 

however, were constantly small for all cases, with the standard deviation of 0.02.  
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The relationships between porosity and the coefficients themselves was built empirically by 

fitting the quadratic function (𝑦 = 𝑚𝑥_ + 𝑛𝑥 + 𝑙) as shown in Fig. (5.7). The fit performance 

was generally good with R2 over 0.85 for all cases (Fig. 5.7a & 5.7b). Relative wind speed 

was estimated for windbreaks of different porosity as shown in Fig. (5.7c & 5.7d). As 

porosity increased, the wind attenuation effects of the windbreak diminished and the point of 

minimum wind speed tended to move downwind. Although the wind speed curves agreed 

well between the two literature datasets at a medium porosity of 0.5, the two estimations of 

wind speed differed significantly for other porosities, especially so for the lowest porosity. 

The windbreak used in our field experiments was clearly very dense (see photos in Fig. 5.1). 

Fig. (5.7e) showed that the wind speed curve estimated from our measurements was close to 

the 0.1 and 0.2 porosity curves from dataset 2, suggesting that the porosity of the 

experimental windbreak observed was between 0.1 and 0.2 as defined in dataset 2.  
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Table 5-1 Fitting the model to the two literature datasets. The codes for dataset 1, XD, D, M, L and 
XL, represent very dense, dense, medium, loose and very loose respectively. The last column with 
porosity 1 represents an open area without windbreak, simply used as a boundary condition for 
parameter a (i.e. a=0 when porosity=1). The values for the rest parameters, however, were undefined 
(ND). 

Dataset 1 

Porosity XD (0.2) D (0.4) M (0.5) L (0.6) XL (0.7) O (1) 
RMSE 0.080 0.047 0.018 0.025 0.014 ND 

a 0.76±0.05 0.69±0.05 0.63±0.01 0.57±0.02 0.35±0.01 0 
b 8.19±1.53 4.85±0.56 3.89±0.16 5.00±0.38 3.95±0.26 ND 
c 2.48±0.02 2.57±0.02 2.65±0.01 2.59±0.01 2.64±0.01 ND 

R2 0.92 0.96 0.99 0.99 0.99 ND 

Dataset 2 

Porosity 0.10 0.36 0.5 0.62 0.73 1 

RMSE 0.084 0.046 0.030 0.022 0.018 ND 
a 1.00±0.05 0.82±0.04 0.63±0.03 0.45±0.01 0.29±0.01 0 
b 6.81±1.04 5.07±0.54 3.84±0.35 3.27±0.28 2.92±0.28 ND 
c 2.50±0.02 2.62±0.02 2.67±0.02 2.71±0.02 2.75±0.02 ND 

R2 0.94 0.97 0.98 0.98 0.97 ND 

 

 
Figure 5.7 Fitted model parameters and porosity and the curve of relative wind speed for porosity 
values ranging from 0.1-0.9. (a, c) From dataset 1; (b, d) Dataset 2. (e) Field measurements 
compared with curves for porosity of 0.1 and 0.2 from dataset 2. 
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5.4.3 Estimated benefits in the heat loss of sheep 

Building upon the above results and combining equations (5.5-5.7), it was possible to apply 

the wind speed model to estimate potential climatic benefits due to reduced heat loss from 

sheep. Fig. (5.8a & 5.8b) shows heat loss reduction under a fixed ambient wind speed of 10 

m/s, an ambient temperature of 5 °C and a windbreak porosity of 0.2. The reductions in heat 

loss increased significantly at the locations near the windbreak because of decreased wind 

speed and wind-chill effect. In fact, for a given ambient temperature (e.g. 5 °C here), the heat 

loss reduction is highly correlated with the wind speed reduction through Eq. (5.6).  

Combining the benefits in crop growth and heat loss reduction using Eq. (5.7), we 

implemented a sensitivity analysis of the total gain against a range of porosity from 0.1-0.9 

and ambient wind speed from 1-30 m/s. This relationship is shown as a 2-D contour plot in 

Fig. (5.8c). When the air is nearly still (i.e. wind speed close to zero), the total gain is nearly 

null because of the absence of wind chill. As wind becomes stronger, reduced heat loss 

gradually increases, adding to the total productivity benefit, suggesting that greater 

advantages are conferred in windier conditions. The total benefit increased as the ambient 

wind speed increased for all porosities, but dependence on porosity was not monotonic. The 

total benefit starts to increase as porosity increases above zero, reaches a peak benefit of +27% 

at a porosity of 0.5 and a wind speed of 12 m/s, and then starts to fall as porosity approaches 

1. As wind speed increases above 12 m/s, the total benefit to productivity conferred by the 

windbreak asymptotically approached a constant because of diminishing wind-chill effects 

determined by Eq. (5.5). In physical terms, this can be understood as the gradual erosion of 

the surface boundary layer as the fleece is penetrated by high winds, leading ultimately to a 

point where conduction of heat through the endodermis, rather than through the surface 

boundary layer, limits heat loss. 
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Figure 5.8 (a)Effects of windbreak on wind speed reduction and heat loss gain. (b) The spatial total 
benefit against a range of porosity (0.1-0.9) and ambient wind speed (1-30 m/s). 
 

5.4.4 Wind-chill effects on a habitable thermal condition 

Based on historical climate data for two sites representative of upland and lowland 

environments inhabited by sheep, we related simulated wind-chill to sheep-specific limits of 

thermal comfort, neutrality and critical tolerance to determine the impact of a chilling wind 

on the physiology of livestock, and importantly, the influence of reducing wind speed to the 

physiological response to shown by livestock to the warmer temperature effectively 

experienced.  

Eq. (5.5) summarises the wind-chill temperature (WCT) as a function of ambient temperature 

and wind speed. Subtracting WCT from ambient temperature allows us to modify the six 

physiologically significant temperature points for sheep (-10°C, -3°C, 8°C, 18°C, 24°C, 32°C) 

in terms of temperature experienced, rather than ambient temperature (see details in Fig. 5.4). 

Each sector was assigned to a colour and the relation between critical temperature limits and 

ambient temperature and wind speed are illustrated by filled contour plots (Fig. 5.9a&5.9b), 

hereafter simply denoted by the term wind-chill thermal tolerance (WTT) plot. The ambient 

temperature scale from -40°C to 50°C and wind speed from 0 to 50 m/s represents a generic 

environment inclusive of most natural microclimates. Any individual location will experience 

only a sub-area of the WTT plot, corresponding to the environmental conditions experienced 

over any given time period. 
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The areas enclosed by the dotted white lines in Fig. (5.9a&5.9b) represented the 

environmental conditions in Llanberis and Clogwyn station respectively.  

As expected, the WTT plot suggested a more physiologically-stressful thermal environment 

at the upland in Clogwyn, with a large black area indicating the range of WCT temperatures 

in which a sheep’s environmental temperature falls below LCT and the sheep would 

eventually suffer fatal hypothermia. 

Without wind, the boundaries of each monochromatic area on the WTT plot would be 

mutually parallel (i.e. no dependence on wind speed), but because of the presence of wind-

chill effects, these boundaries bend towards higher temperature, creating a larger cold zone 

and a smaller warm zone. Consequently, the areas representing optimum conditions for 

livestock health and productivity denoted by the green ‘thermo-comfort’ zone (8-18°C, green 

area on Fig. 5.9a&5.9b) and the wider, sub-optimal but ‘thermo-neutral’ zones (indicated by 

light blue and yellow areas) become a smaller part of the total micro-climatic environment 

represented on the graph. As the boundary layer becomes eroded, further increases in wind 

lead to smaller and smaller increases in wind chill, until a point is reached at a wind speed of 

about 20m/s where the boundaries become parallel and vertical. 

The introduction of a windbreak, and the reduction in winds speed and chilling can be 

visualized on the WTT plot. Here, the probability of experiencing a given thermal 

environment can be estimated by the proportion of the area it represents (e.g. the proportion 

of green area shows the probability of having a thermo-comfortable temperature). Therefore, 

reducing ambient wind speed by a certain amount (e.g. moving the dashed horizontal lines in 

Fig. 5.9a&5.9b downwards), reduces the relative area of hypo/hyperthermy (black) and 

increases the relative areas of thermocomfort and thermoneutrality (green, yellow, light blue). 

We used the historical climate data to constrain our simulation to a real-world scenario (i.e. 

only the area within the polygon representing the actual climatic envelope was considered in 

the computation). Four coloured lines represented the changed probability of experiencing 

thermocomfort (green), thermoneutral (light blue) and thermostress (red) conditions when 

wind speeds were reduced by 5 to 95% for the Llanberis and Clogwyn sites respectively. As 

expected, the impact of reduced wind speeds differed significantly between sites. At 

Llanberis (Fig. 5.9c), the relative proportion of different thermal conditions remained nearly 

constant, suggesting that there is little benefit obtained by reducing wind speed. This is 

unsurprising because conditions at Llanberis are naturally above critical limits (i.e. little black 
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area was initially included). At Clogwyn (Fig. 5.9d), however, the probabilities of 

experiencing thermo-comfortable (green line) or thermo-neutral (blue line) conditions both 

increased significantly as the wind speed decreased. The probability of a thermally stressful 

condition (i.e. conditions requiring increased thermogenic compensation for heat loss) (red 

line) also increased but with a slighter gradient. Consequently, the probability of experiencing 

fatal (black line) conditions decreased greatly as wind speed decreased. Given a wind speed 

reduction of 60%, for instance, we can reduce the chance of experiencing fatal thermal 

conditions by 27%, whilst increasing the probability by 8% and 14% respectively of 

experiencing a thermo-comfortable (optimum for production) or thermo-neutral condition. 

 
Figure 5.9 (a, b) Contour plots of wind-chill thermal tolerance (WTT plot) for sheep. Wind-chill 
temperature (WCT) was grouped according to the thermal categories shown in Fig. (5.4). (c, d) The 
probability of experiencing a certain thermal condition against reduced wind speed. Line colour 
meaning:  Green: thermo-comfort; Blue: thermal-neutral; Red: thermo-stress; Black: fatal. 
 

5.5 Discussions and conclusions 

Although Eq. (5.1) was found to provide a good approximation to literature reports of wind 

speed reduction around windbreaks, real data was required to determine model parameters for 

a given windbreak. We have tried to correlate the parameters with a single driving variable 

(i.e. porosity), but the differences depicted by the two literature datasets suggest that porosity 

alone is not able to unify the two datasets. The concept of windbreak porosity has been 
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frequently used in the literature (Heisler and Dewalle, 1988; Torita and Satou, 2007; Wang 

and Takle, 1995), presumably because it is the most intuitive structural feature to characterise 

a windbreak.  

As an index to describe how much wind resistance different windbreaks introduce, porosity 

has not, to our knowledge, been properly defined mathematically and is thus not a very useful 

term to apply computationally. Optical porosity is well defined and can be calculated 

conveniently, however it may only be justifiable for 2-D windbreaks and may not work for 3-

D situations (Torita and Satou, 2007). Physically, porosity may represent a combination of 

several characteristics that reflect the complexity of a windbreak, such as tree and branch 

flexibility, leaf size, tortuosity, etc. In aerodynamics, drag force is often used to describe a 

windbreak (Guan et al., 2003; Wang and Takle, 1997), but similarly to porosity, this quantity 

is neither conveniently calculated or measured.  

The model parameters in Eq. (5.1) have explicit relations with the real-world parameters xmin, 

ymin and L20 as given by Eqs. (5.2-5.4) respectively. It is clear that coefficient c determines the 

downwind location where the minimum wind speed is reached. Similarly, coefficient a 

describes the percentage of wind speed at that location. Although coefficient b was found be 

connected with L20 through Eq. (5.4), the form of this equation was not clear enough to 

suggest an obvious physical meaning of b. In fact, the right-hand side of the formula also 

incorporates coefficients a and c, making the interpretation of this parameter even more 

difficult. The hyperbolic function shown in Eq. (5.4), however, may suggest some deep 

relationship between the coefficient b or L20 with some fundamental aerodynamic process 

(e.g. an analytical solution of the Navier-Stokes equation under certain conditions). It is well 

known that the solutions to some equations that describe ocean waves can be represented by 

hyperbolic functions (Majda, 2003). Further analytical exploration of Eq. (5.4) and its links to 

fluid dynamics may be a fertile area to follow-up. 

Similarly, the wind-chill effect estimated in this study represented the heat loss from sheep 

through convection only, and a fuller description of the energetics of the sheep body requires 

that consideration is also given to solar gain. Here incoming and outgoing radiation should be 

considered in the model given the fact that windbreaks can normally provide shade from 

sunlight. This shading effect may be positive during hot conditions or negative when solar 

gain may exceed wind-chill in still, cold conditions. Therefore, in addition to the spatial 

integration shown in this study, a temporal integration of heat loss benefit, over the full range 

of conditions experienced, should be made to obtain the total benefit over time. A companion 
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paper focusing on the measurement and modelling of tree shading effects on animal heat loss 

is expected soon. 

These approaches and models developed in this study, despite their simplicity, have shown 

great robustness. However, the model for the wind speed reduction was only validated by 

using our measurement at the farmland. The model for the sheep wind-chill was also derived 

based on a single measurement. More data that represent different types of windbreak and 

climate zones are needed to validate and apply these approaches to a broader range of 

conditions. 

The WTT plot (Fig. 5.9) is very helpful for an intuitive analysis of the wind-chill effects on 

the thermal stress or comfort experienced by a given organism in a given micro-climate. 

Generally, the climate conditions actually experienced by a particular location are a sub area 

of the WTT plot. In this study, we simulated two scenarios representing lowland (Llanberis) 

and upland (Clogwyn) thermal conditions. Results showed that there was little benefit to be 

gained by reducing wind speed at Llanberis, where the thermal condition was naturally within 

the thermo-neutral zone (or in rare cases just outside thermal critical limits) of sheep for the 

majority of time (Fig. 5.9a&5.9c). In contrast, significant benefits could be obtained at 

Clogwyn where the temperature range was much more extreme and often below the critical 

boundaries of cold tolerance for sheep (Fig. 5.9b&5.9d). The information to be extracted 

from this result is inspired: despite the benefits of windbreak practise in general, its 

effectiveness is dependent on regional micro-climate. A region with conditions which invoke 

a greater thermal stress as a result of being frequently beyond thermo-neutral and critical 

physiological limits (e.g. uplands) gains more benefit from using windbreak. In our 

simplified analysis, conditions inside the environmental envelope are considered equally 

probable. A more accurate quantification of the actual benefits of establishing a windbreak at 

a given location would require that each pair of wind speed and ambient temperature 

conditions is weighted by its frequency of occurrence. Nevertheless, the thermal/wind 

envelope of a particular location, superimposed on the WTT plot for a given organism, 

provides a useful and convenient tool of illustrating the response of livestock to wind-chill 

and to the effects introducing a windbreak. A follow-up study will focus on a spatial and 

temporal integration of the thermal benefits by combining the WTT plot and the windbreak 

model at a farm and landscape scale. 

In summary, a simple parameterised model was capable of capturing most of the variation in 

relative wind speed around a real-world windbreak. The model error was low, about 4%±0.5% 
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as estimated by a Monte Carlo simulation. Total microclimatic benefits of windbreaks were 

highest at a porosity of around 0.4 and an ambient wind speed of 15 m/s (Fig. 5.7). An 

organism-specific WTT plot (Fig. 5.9) has the potential to be applied to a wide range of real-

world situations and forms the framework for an efficient and precise quantification of 

windbreak effects on animal productivity. 
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Ch 6. General discussion and conclusion 

Defensible and accurate estimations of land-atmosphere exchanges are significant not only 

because of practical concerns (e.g. GHG estimation, climate change and agricultural 

applications), but also because answering existing uncertainties introduces scientific 

challenges that require new ideas and methods to solve them. This can be seen most clearly in 

real-world scenarios featuring heterogeneous land surfaces, where traditional experimental 

and theoretical methods are not directly applicable.  

Real world phenomena are typically imperfect compared to scientific expectation, but 

seeking precision (or, ultimately, perfection) is essential in order to identify and overcome 

limitations in understanding, and to make any substantial scientific progress. Even with 

today’s advanced techniques (e.g. high speed sensors and fast computers) most of the 

experimental and theoretical methods we have for measuring land-atmosphere exchanges are 

still restricted to homogeneous conditions. As shown in this thesis, any difficulty in 

quantifying exchange is amplified in the heterogeneous land surfaces that, in fact, represent 

the real-world situation.  

This thesis has sought to make a significant scientific contribution by developing/finding 

real-world solutions to improve our understanding of fluxes from heterogeneous land 

surfaces. 

Starting from the basics, this thesis considers some of the fundamentals of the two mostly 

used methods of observing land-atmospheric GHG fluxes, namely chamber- and EC-based 

measurements. The former often suffers from poor spatial representation of heterogeneous 

land surfaces because of sample size deficiency; The latter often contains a large amount of 

missing data points in what should be a continuous time series because of machinery failure 

and/or data quality control1. What is in common between these two problems is that they both 

require an inference/prediction of unknowns based on a limited amount of information. Even 

though it might be impossible to completely overcome these limitations (i.e. we must accept 

that resources will always limit sample size and technical failures will inevitably lead to 

missing data), improving estimation accuracy is not impossible if better strategies can be 

developed.  

                                                
1 This issue exists, in fact, irrespective of the heterogeneity of the underlying surface. 
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In chapter 2, a two-stage sampling strategy (2SS) was introduced to improve chamber-based 

measurements of GHG fluxes. The main idea is quite straightforward. When we have 

complete ignorance of the actual population (e.g. unknown population distribution, mean and 

variance), increasing sample size is the only way to improve sample-based estimations based 

on a randomization-based sampling strategy. In practice, however, we are always constrained 

by a limited number of chambers which are insufficient to obtain a complete sample across 

heterogeneous land surfaces. Combining these two points suggests a two stage sampling 

strategy: stage one: take an initial sample with a relatively large sample size to maximise 

spatial representation; stage two: select from this large sample a much smaller, but spatially 

representative, sub-sample for ongoing monitoring. Despite its limited sample size, the stage 

two sample inherits all the information from its more reliable predecessor and the estimation 

accuracy per unit sampling resource is thus improved. A Monte Carlo simulation showed that 

2SS can improve the estimation on population mean and variance by 30% ± 30%, the actual 

amount being dependent on the heterogeneity of the underlying land surface and the sample 

size settings for the two stages. 

Chapter 3 deals with missing-data imputation for EC-based measurements (or indeed any 

structured time series or signal), commonly known as gap-filling. Similar to the sampling 

problem above, dealing with the gap-filling problem also requires that we make an inference 

about something unknown (the behaviour of the system) based on an imperfect and 

incomplete data sample. The difference, however, is that the inference here is made about 

missing samples, instead of the population as a whole (e.g. we are not concerned with 

identifying the population mean or variance). An essential issue that limits the precision of 

any gap-filling methods is the existence of a stochastic component that can be found, almost 

without exception, in a natural signal. Mathematically, this means that a natural signal is a 

combination of a periodic/trend component and a noise component, the former deterministic 

and the latter stochastic. Therefore, any attempt to gap-fill a natural signal raises two 

immediate questions: 1) Without knowing the “true” values, can we still distinguish the 

deterministic and stochastic components of a signal? 2) Since it is neither possible (nor 

worthwhile) to recover a stochastic series2, are seemingly independent gap-filling methods 

just estimators of the best-guess non-stochastic component? In answer to question 2, we 

speculate that the existing gap-filling methods are not distinguishable in their performance 

                                                
2 What we observe/sample from a stochastic time series is only a realization of many possible paths 
over time, hence it is of little sense to try to recover a single realization. 
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(i.e. their performance is largely determined by the variation of noise), as found by 

comprehensive comparisons among methods (e.g. see CH3-Refs-Moffat et al., 2007). The 

inpainting-based gap-filling method proposed in this study, in addition to its simplicity and 

intuitive basis, it is as effective in gap filling signals with noise and is superior when applied 

to noise-reduced signals. Follow-up studies could focus on a signal and noise analysis of the 

EC-based measurements, aiming to answer question 1. 

Even if the above issues could be resolved to the extent that the individual flux estimate 

(chambers or EC) is considered robust in itself, how can one decide whether the measurement 

tells the “truth” without actually having the “real” values to compare it to? Clearly, when 

both measurements are in agreement we may be confident that both approximate the truth, 

but because the two have different spatial coverage, a direct comparison is not possible. This 

becomes particularly important for heterogeneous land surfaces (e.g. the two should give 

identical results for a perfectly homogeneous land surface; but not otherwise, except in the 

case where reported error bars are unhelpfully large). In order to improve the confidence in 

our estimations using both methods, an indirect comparison is possible if appropriate steps 

are taken to include spatial structure explicitly. Chapter 4 describes such a comparison 

between EC- and chamber-based measurements of CO2 and CH4 flux. Making this 

comparison is meaningful not only in the interests of enhancing the robustness of the final 

GHG and carbon balance estimates, but also because it prescribes a logical connection 

between a series of techniques (e.g. Lasso and orthogonal regression, the footprint model) to 

bridge the spatial and temporal discrepancies between methods. The comparison results were 

certainly encouraging: CO2 flux was highly linearly correlated between methods, whilst CH4 

flux differences followed a Gaussian distribution, suggesting that these differences were 

nothing more than noise and that, once again, it is of little sense to over analyse this data 

What’s more satisfying and important, is that the models, methods and techniques use to 

bridge these methods have the potential to be used across a wide range of topics because of 

their generality in mathematical forms. 

Between homogeneity and natural heterogeneity, there is an intermediate type of land-surface 

heterogeneity that might be called structured or quasi-heterogeneity. This can commonly be 

found in an agricultural land use system where artificial structures are often introduced, either 

increasing or reducing heterogeneity to benefit productivity. Chapter 5 focussed on a special 

type of land surface structured heterogeneity that has potential benefits for pasture and 

livestock, namely a windbreak system. By introducing structured heterogeneity into the 



Ch 6 General discussion and conclusion 117 

 

momentum flux field, a windbreak alters the local micro-climate, which may have a direct 

impact on productivity, especially in cold areas. Our simulations showed that the total 

benefits of crop and livestock productivity can reach up to 34%. Again, the methods and 

models (i.e. the sigmoid function, the log-normal function and the WTT plot) offer great 

potential to be further studied and applied to general cases. Perhaps most importantly, the 

simple parameterisation suggested here is easily realised computationally, and when 

combined with a spatially explicit map of current, or potential future windbreaks, could 

provide an effective tool for planning landscape features that enhance farm profitability.  

In short, the basic scientific idea of this thesis is that, even given existing constraints (e.g. 

sample size limitation, homogeneity assumption for EC, inevitable observation errors, etc.), 

mathematical modelling can help reduce/minimize uncertainties in environmental monitoring 

in the real world. Moreover, mathematical methods, combined with the computation power of 

modern computer, can be an effective tool for quantitatively understanding how the 

landscape works currently and enhancing landscape function in the future. 

List of potential (and feasible) follow-up studies: 

• Extend the two-stage sampling strategy to incorporate temporal variation of GHG flux. 

• Expand the second-stage sample selection to maintain spatial heterogeneity 

characteristics by selecting a data sub-sample that retains the variogram parameters of  

the initial sample. 

• Develop signal-specified de-noise techniques and estimate the upper-limit of gap-

filling EC-based signals. 

• Find out the source of the systematic difference between EC- and chamber-based 

measurements. 

• Analytically and numerically demonstrate the superiority and validity of the Lasso 

regression over traditional regressions (e.g. stepwise regression) by exemplifying in 

Environmental Science. 

• Develop process-based models to describe the crop productivity around windbreaks. 

Potentials processes include water-nutrient-light completion near windbreak, leaf 

absorbed radiation and convection. 

• Systematize the definition of the wind-chill thermal tolerance (WTT), including term 

definition, physical/thermal significance and applicability. 
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• Apply the analysis of WTT to different livestock production systems, integrating the 

windbreak benefits over time and space to account for impacts at the farm and 

landscape scales. 
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Appendix 1 
On the choice of 𝜆 for Lasso regression 

An important step in Lasso regression (Eq. 4.4) is to choose an appropriate value of 𝜆 such 

that: 1) The estimation error (MSE) on the cross-validation set is small; 2) while 1) is 

considered, 𝜆 should be as large as possible to have enough restrictions on the coefficients 

(i.e. preventing overfitting). In order to achieve this, we plot the MSE against a range of 𝜆 

values as: 

 

The green line shows the 𝜆 value with the minimum MSE and the blue line shows the largest 

𝜆 value such that MSE is within one standard error of the minimum. We chose the 𝜆 values 

indicated by the blue lines (i.e. 1*SE) for the regression analysis of CH4 flux for the two 

vegetation types, namely 𝜆 = 0.0129 for PM and 𝜆 = 0.0033 for CD. 
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Appendix 2 
Formula for determining the compass wind direction (i.e. 2-d wind direction) from CSAT3 

measurements 

As shown in the figure below, the direction that the transducers point at is –x direction under 

a standard right-handed coordinate system.  

                  

Given a compass direction of the direction (θ) that the transducers point at (i.e. this should be 

measured on site) and the wind speeds at x and y directions (denoted as Ux and Uy 

respectively), the actual compass wind direction can be calculated as: 

𝛼 = 𝜃 − arctan
𝑈𝑦
𝑈𝑥 ∗

180
𝜋 	𝑚𝑜𝑑	360 


