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ABSTRACT 

The kinetic energy density, k, and lifetime, t, of a 
turbulent eddy, volume V, are shown to be related to a 
characteristic length scale, 2, by: 

13 =vk= c2/3e2/3 t-C 1/312/3 

where c is the energy dissipation rate. A self similar cascade of 
discrete eddy sizes is derived, each size related to the next 
larger by: 

P 22 CC i+l i 

where C= 81'2. With some simple assumptions as to the turbulent 
production process the mean logarithmic velocity profile is 
derived. The relationship between the friction velocity and 
Reynolds stress is explained in terms of the large eddy 
intermittency, n. Below a critical free stream velocity, U', n is 
proportional to the free stream velocity. The dissipation rate, e, 
is then constant and given by: 

e U'3/N3L 

where N is the number of discrete eddy sizes in the boundary 
layer. When the boundary layer has reached the surface N- 11. The 
observed turbulent spectral characteristics are derived from the 
eddy equations without using dimensional reasoning and an 
explanation of the mechanism behind surface layer similarity 
scaling is proposed. 

An experiment was carried out in the North Sea to test the 
model predictions. Correlations showed that, except at slack 
water, the largest eddies were approximately cubic, occupying the 
whole flow depth, and were advected with the mean flow. Frequency 
spectra provided evidence that the cascade formulation was 
correct. The turbulent intermittency was proportional to the 
current speed and the value of c, calculated by several methods, 
was found to be constant with a value: 

C=0.3 cm2/s3 

The characteristics of the largest eddies were isolated using 
a spectral cropping technique and plotted as a phase portrait of 
the turbulent strange attractor. This demonstrated that the 
boundary layer sat at preferred, discrete energy levels. The 
levels observed could be related to the discete cascade model. A 
computer code based on the model equations was tested against a 
series of large scale oil and dye releases in the North Sea. The 
observed intermittency, meandering, and dispersion were well 
simulated with the value of c given above. 
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CHAPTER 1 INTRODUCTION 

This thesis was driven by the need to quantify the mechanisms 
involved in contaminant dispersion in the surface layers of 

estuaries and shallow seas. This need is significant since most 

contaminant releases have their environmental effects in such 

areas. Buoyant contaminants necessarily remain in the surface 
layers, and neutrally buoyant contaminants released near the 

surface may mix downwards comparatively slowly allowing the 

near-surface mixing mechanisms to be effective for a significant 
time. 

Four mechanisms are important in their effect on the temporal 

evolution of the concentration of a contaminant: 

1. Advection. A contaminant is carried along by the mean 
current in which it finds itself. Such mean currents may be 

tidally or density driven, generated by a wave field or driven by 

a wind stress on the surface. Secondary currents, which may be 
thought of as large semi-permanent swirls or eddies are -often 
caused by coastal topography. In this thesis the expression "mean 

current" is avoided wherever possible, the expression "bulk flow" 
being more descriptive of the macroscopic water motions. Such bulk 
flows are commonly approximated by two-dimensional, depth 

averaged, numerical models; the detail available being limited by 

computational efficiency and grid size. Here the assumption is 

made that such bulk flows can be predicted sufficiently well that 

an improvement in accuracy of mixing models can be achieved by the 
inclusion of the more detailed fluid motions. 

2. Turbulent mixing. All tidally driven flows are turbulent 
over a large part of the tidal cycle. The significant 
characteristic of a turbulent flow is its ability to mix and 
disperse a contaminant effectively. Three mechanisms generate such 
turbulent mixing, these are illustrated in Figure 1. 

a. Large, essentially two-dimensional eddies are generated by 
side boundaries. in an estuary these often occupy the whole width 
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Figure 1. Turbulent mixing mechanisms. 



of the flow and are advected for considerable distances before 
dissipating. Their scale makes them impossible to distinguish from 

secondary bulk flows and their prediction is thus a function of 
the accuracy of the bulk flow model and is outside the scope of 
this thesis. 

b. Bottom generated, rough turbulent boundary layers often 'reach 
to the surface in shallow seas and generate active mixing. This 
thesis is concerned with predicting and modelling these turbulent 

effects. - 

c. Wind generated surface waves both transport contaminants in the 

surface layers and generate turbulence and its associated mixing, 
especially when they break. 

3. Molecular diffusion. Molecular diffusion is an essential 
mechanism for smoothing out the large concentration gradients 
produced by the turbulent mixing and in converting turbulent 
kinetic energy into heat. In the- flows considered here the 
dispersive effect of molecular diffusion- will be insignificant 

when compared to that of the turbulence although `molecular 
influences are essential to the determination of turbulent mixing 
parameters. 

4. Contaminant Interactions. Some contaminants degrade in 

sea-water through biological or chemical reaction. For example 
radionuclides decay as they disperse. Many contaminants react with 
the suspended solids in the flow and are dispersed with them 
rather than following the motions of the fluid. Drying banks 

retain contaminants which may be re-suspended on the following 
tide. Oil slicks behave as a collection of droplets- but exhibit 
colloidal and surface tension effects. 

Previous work on turbulent mixing has followed. two main 
streams, neither of which has proved entirely satisfactory. The 
first originated before powerful computers became readily 
available and predicts concentrations in an Eulerian frame. In 
recognition of the fact that turbulent dispersion is, not a 
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property of the contaminant or of its local concentration, the 
diffusion coefficients are replaced by . "apparent eddy 
diffusivities" which are made functions of both space and time. 
Csanady. (1972) noted that this leads to a mismatch between the 
formulation and the physical processes taking place. 

Often the mean shear, itself a product of the turbulent 

structure, is modelled separately in an attempt to represent the 
large scale flow structure, diffusion then representing-the 
smaller scales. Unfortunately there are few adequate correlations 
for predicting the eddy diffusivities as a tidally driven flow 
develops (Smith, 1982). Mean shear measurements also show 'a wide 
variation which limits the efficacy of shear diffusion modelling. 
Further progress in quantifying the mixing mechanisms demands a 
more physically realistic method of modelling the turbulence 
itself. 

The second technique employed has been to predict the 
Lagrangian paths of particles dispersing in a turbulent flow 
field. Either particle velocity or acceleration is treated as a 
random walk process, the magnitude and time scales of the random 
steps being coupled to the turbulence. 

Durbin (1983) showed that a simple random walk of fixed step 
length equates to a diffusion model with constant diffusivity and 
suffers from the same physical unrealism. Langevin models, in 

which some past velocity history is recalled at each time step, 
are more successful since they go, some way to acknowledging the 
longer term influences of the large scale motions in the flow. 
Again turbulent accelerations at a point are not a local property 
and have to be predicted from a model of the mean turbulent 
characteristics or measured in the field. 

Much work has been carried out in trying to predict the mean 
properties of turbulent flows. This is because almost all 
engineering flows are turbulent, indeed they are almost always 
designed to be fully turbulent so that their characteristics can 
be empirically predicted. Turbulent flows can be represented by 
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the Navier Stokes equations but these equations cannot be solved 

analytically because they are non-linear. If they were linear, 

then the dispersion problem would be solved since the passive 

contaminant would be transported as a marked fluid packet moving 

in the flow. The resolution of the dispersion would then be 

determined by the grid size and the numerical integration 

technique. 

Information can be gained from a study of the time averaged 

equations if time averaged quantities are regarded as 

characteristic of the fluid properties. The continuity and 

Navier-Stokes equations, decomposed into mean and fluctuating 

parts for a constant density fluid are given by Tritton (1977): 

a (U +u /ax, =0 (1.1) 

Averaging this equation (the processes of averaging and 

differentiation are interchangeable in order) shows that: 

avi/axi =0 and oui/axi =0 (1.2) 

The same division applied to the Navier Stokes equation yields: 

ujaul/axi --1/p aP/axi + va2ui/ex12 -a(uýu ) /axj (i. 3) 

for steady flow. This equation for the mean velocity U differs 

from the laminar flow equations by the addition of the last term 

which arises from the non-linearity of the Navier Stokes equation. 
The tensor: 

-p(uiu 

is called the Reynolds stress. 

(3.. 4) 

A similar equation can be derived for the transport of 
turbulent kinetic energy, q= 1/2 (uiui), giving, in the absence 
of buoyancy effects: 
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vkaq/axk=-u1ukaui/axx-v (aui/exk) 2-a/axk(1/2 üuiu paq/axk+Pük/p) 

(1) (Z) (3) 

The terms represent: 

(1) advection by the mean flow 

(2) production of q by mean strain 
(3) viscous dissipation 

(4) diffusive transport (P2=1/2 p112) 

(4) (1.5) 

If this turbulent kinetic energy equation is written for a 

pure shear flow (u1 in the streamwise direction) in the absence of 

buoyancy effects, then the entire production occurs in the 

equation for u12/2 and the equations for u22/2 and u32/2 have no 

production terms since there is no shear perpendicular to the 2 

and 3 axes. The u2 and u3 components must therefore receive their 

energy from the pressure interaction terms. 

Because the sum of the pressure terms is zero, the pressure 
terms exchange energy between components without changing the 

total amount of energy. Also if the 2 and 3 terms are to maintain 
themselves despite dissipative losses, pau2/axe and pOu3/8x3 must 
be positive and paus/axI must be negative. This can only be the 

case if the turbulence is not isotropic. In most shear flows this 

is indeed found to be the case with the r. m. s streamwise component 
being roughly twice as large as the vertical (Raudkivi and 
Callander, 1975). 

The turbulent energy equation shows that the Reynolds 

stresses work against the mean velocity gradient to remove energy 
from the mean flow and provide energy for the turbulence. In order 
to calculate the development of the mean flow schemes that predict 
the Reynolds stresses. have been devised. The simplest (writing in 

2D for clarity, U and u being mean and fluctuating velocities in 

the x direction, v being the, fluctuating velocity in the y 
direction) are: 
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-uv m vTau/ay (1.6) 

where vT, the eddy viscosity, can be taken as a constant or a 

function of position derived from a model of the turbulence or 

empirically determined (Boussinesq, 1877). Unfortunately since 
turbulence involves large scale coherent motions, the Reynolds 

stresses at any point depend on the whole velocity profile and not 
just on the local gradient. 

Prantle's momentum transfer hypothesis (Prantle, 1925) better 

reflects these larger scale motions by allowing an appropriate 
length scale to be applied to the geometry. Here: 

-üv = e2av/ay lau/aye (1.7) 

where Q, the mixing length, must be specified. 

The mixing length theory suffers from the same theoretical 

limitations as above. To its credit, however, if t is taken as 

proportional to the distance from a solid boundary then a 
logarithmic velocity profile is predicted (Landahl and 
Mollo-Christensen, 1987). Much of the literature is concerned with 
fitting coefficients to this logarithmic profile which is widely 
held to be representative of turbulent shear flows, although 

striking departures from the logarithmic form are often reported 
(Soulsby, 1983). Tennekes and Lumley (1972), while rejecting the 

mixing length hypothesis, show by dimensional reasoning that a 
logarithmic profile should exist over some part of a boundary 

layer. 

A higher level model recognises that the Reynolds stresses 
must be related to the turbulent kinetic energy level and its 

dissipation rate, c. It is possible to derive an exact equation 
for e from the Navier Stokes equations (Jones, 1971). 
Unfortunately this is again difficult to solve except in the 

simplest restricted geometries. Having solved for, or proscribed, 
q and c, the expression: 
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=q3/2/1 (1.8) 

gives t, where -E is a `length scale characterising the energy 

containing motions (Launder et al., 1972). The Reynolds stresses 

are then predicted using Q and the Prantle-Kolmogoroff expression 
(Prantle, 1945) : 

-uu cl q1/2 e aui/ax (1.9) 

or that : 

= Qi/2 t(1.10 ) 

where C1 is a constant. The length t may be directly specified, 

thus saving the need to solve an equation for c. This has the 

advantage that vT can reflect transport processes but in complex 
flows t is difficult to specify. An alternate form (Jones and 

Launder, 1972) gives the eddy viscosity directly from: 

Vý a C2g2/E (1.11) 
where the constant C now has to be found from experiment or 

z 
specified. 

For complex flows progress has been made by deriving 

equations for the transport of the Reynolds stresses themselves. 

Unfortunately if the unknown stresses are represented as dependent 

variables in conservation equations, higher order correlations 

appear. The level at which truncation of this process takes place 
is referred to as the level of "closure" of the modelling. Various 

closures have been developed with some success in predicting 
complex flows in relatively restricted geometry and scale 
(Bradshaw, Cebeci and Whitelaw, 1981). Computationally a 3D 

closure model of an estuary is expensive and a typical three 
dimensional estuarine model (Smith, 1982) scales the magnitude of 
the eddy viscosity on the depth-mean turbulence kinetic energy and 
a proscribed depth mean turbulence energy dissipation rate while 
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the vertical -structure - is described by a suitable, similarity 
function derived by experiment. 

To summarise: The temporal and spatial evolution of mean 
turbulent flows can only be calculated using prescribed functions 

which do little to reflect the underlying physics. In many simple 

cases they work adequately when the unknowns are. found. from 

experiment or trial and error, and any new model that-seeks to 

refine the turbulence modelling must give the same result as these 

proscriptions in the cases where they have been shown to work 

well. The varying temporal and spatial characteristics of the 

turbulence in a real flow cannot be predicted by these models 

except in the case of Reynolds stress closures in very simple 

geometries. The development of a real geophysical. flow, and the 

associated turbulent mixing cannot be quantified unless a more 

physical representation of the turbulence is modelled. As a , first 

step towards this it is necessary to discuss the concept of 

coherent turbulent=structures or "eddies". 

It appears from observations of turbulent wakes, plumes and 
flows, that turbulence has a structure and some universal 

characteristics. Coherent structures can be seen or extracted from 

records using statistical analysis techniques. These structures 
are known as eddies. Eddies of different "sizes" co-exist in the 

turbulent flow and appear to interact with each other, some eddies 
being of the same scale as the flow (the same "size" as-the width 
of a smoke plume or the diameter of a pipe), some being very much 
smaller (Tritton, 1977). 

Turbulence will decay in the absence of a continuing 

generating mechanism. It is thought that in three-dimensional 
flows large eddies which initially contain most of the turbulent 

energy break down or decay into smaller and smaller eddies until 
the very smallest eddies dissipate energy as heat by the effects 
of molecular diffusion (Tennekes and Lumley, 1972). There is a 
cascade of energy from the larger to the smaller scales. In 
largely two dimensional flows, for example in the atmospheric 
boundary layer, or the Gulf Stream, eddies are also observed-to 
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coalesce, transferring energy from smaller to larger scales, 

Either the most unstable mode of breakdown to turbulence is 

at the largest scale or the large eddies are produced by 

interactions from smaller scales. The theory of instability of 
laminar flows indicates, at least in two dimensions, that the 

earliest wave mode to go unstable is the one that occupies the 

whole flow (Malin, 1977). Unfortunately the theory is unable to 

deal with anything more complex than a singular instability in 

simple geometry. 

The growth of a boundary layer over a flat plate is a good 

example of a situation where the underlying mechanism appears to 

be different. Turbulent spots developing in the laminar boundary 

layer appear to be derived from the development and interaction of 
hairpin vortices revealed by numerical and flow visualisation 

experiments (Utami and Uemo, 1987). The implication is that the 

large eddies, occupying and defining the full thickness of the 

boundary layer, are generated by a mechanism which originates at 

small scales close to the plate. The resulting turbulent patch is 

then transported and decays until laminar flow is re-established 
(Raukivi and Callander, 1975). 

Fine scale velocity records in wakes and boundary layers show 
that turbulence is "intermittent" except in the region very close 
to a rough boundary (Csanady, 1972). Fluctuating portions of the 

record are separated by regions of smooth mean flow. All classical' 

models of turbulent flows ignore this intermittency which is still 

present at high Reynolds numbers. A similar intermittency is 

observed in records of dye concentrations, (Nakamura, Sakai and 
Miyata, 1987) showing that the mixing associated with the 
turbulence also occurs in a patchy fashion. If the turbulent flow 
is decomposed into eddies, each of which is being advected by the 

mean flow and by larger eddies, then this intermittency can be 

conceptualised. 

An eddy can be thought of as a volume in which local 
instability, overturning and mixing is taking place. Since 
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turbulence is dispersive so must be an eddy, implying that a line 

of marked fluid particles affected by the eddy motion must be 

stretched as well as deformed. In attempting to extract eddies 
from velocity records the assumption is made that in an eddy there 

is some form of organised structure and that the velocity of the 

particles in an eddy are in some way correlated to each other 
(Woods, 1977a) . 

Correlations extracted from records are often normalised with 

an appropriate r. m. s value and may be either space or time 

averages. Thus they may be the average product of, for example, 

velocity components measured at two different points in space or 

the average product of velocities measured at the same point at 
different time delays. The particular case of the product average 

of a velocity measured in the same direction at the same point 

after some time delay is, when normalised with the r. m. s value, 

called the autocorrelation (Tennekes and Lumley, 1972). The 
integral s, time -scale, is, -oftenregarded as a measure of the memory 
time over which particle velocities=are related to each other. 

Concentration, velocity or correlation records can be 

analysed to determine the proportion of the signal being received 

within a narrow frequency, band. if a measure of the signal 
strength is plotted against frequency this' is called a spectrum. 
Although only individual points can be derived from records, the 

magnitude of the contribution being averaged over the (small) 

bandwidth of the filter, continuous spectra are often derived and 

compared with those predicted theoretically. 

Frequency spectra can be converted to space spectra by 

associating the frequency band in which the contribution is 

measured with a "wave number", k, using Taylor's hypothesis 
(Tennekes and Lumley, 1972). This states that if a probe is moved 
through the turbulent field much faster than the field -changes 
then the time record from the probe is equivalent to a space 
record, taken over the distance that the probe has moved, at' a 
particular time. The frequency is then converted to a-wave number 
using the probe velocity. 
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Taylor's hypothesis is often applied to velocity, records 
taken at a fixed point as the turbulent flow passes. The criterion 
then is that the mean flow must be much larger than the turbulent 

fluctuation change rate. A , wave number is representative of a wave 

which exists in all space, whereas eddies are localised. The 
interpretation of wave number spectra in terms of their component 
eddies must recognise this. In this thesis the majority of spectra 
presented are raw frequency spectra, allowing their interpretation 

to be discussed case by case. 

Two dimensional wave number spectra can be measured directly 

at the sea surface and ensemble average spectra of horizontal 
variance of sea surface temperature exhibit a k-2 trend, (Woods, 
1977b). Local spectra however show wide fluctuations in slope and 
the temperature variance is concentrated into hills and ridges in 
the (x, k) plane. The kurtosis of horizontal temperature gradient 
ranges-up to 40, confirming that the temperature variations are 
distributed very intermittently. 

Woods (1977b) states that the patchy distribution of 
temperature variance reveals, by definition, the patterns 
associated with eddies, uncontaminated by internal waves. Vertical 
profiles of temperature microstructure show the same e-kurtosis of 
temperature gradient and the same intermittency and this leads to 

a picture of turbulent motion at the sea surface characterised by 
discrete eddies, distributed so that only a_selection of eddies is 

present at any given location at any instant. 

To, elucidate this process Kolmogorov (1941) predicted. the 

existence at sufficiently high Reynolds numbers of a universal 
equilibrium- range of eddy sizes where a transfer of energy 
proceeds towards smaller scales, of motion, each having increased 

statistical independence of the mean flow as the scale reduces. 
The rate of energy supply to this range is governed by, -and in 

equilibrium - with, its rate of- removal. The only 
, 
two parameters 

controlling this -process are c (the- rate of turbulent kinetic 

energy dissipation per unit mass) and v (the kinematic viscosity). 
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If the "energy containing'and dissipating scales are sufficiently 

well separated then energy transfer will occur with negligible 
dissipation. This is called the "inertial 'subrange" and 
dimensional analysis shows that the 3D energy spectrum, -E (k) , is 

given by (Tennekes and Lumley, 1972): 

E(k)-,, const. c213 k-513 (1.12) 

For isotropic turbulence the same authors-show that the 1D 

energy spectrum 4ý 
1(k) 

is given by: 

$1(k) Aa e2/3k-s/3 (1.13) 

where k is the radian wave number, A is a constant determined from 
considerations of isotropy and normally taken as 18/55 and a is 
1.44. The inertial subrange is only expected, to exist at 
sufficiently high Reynolds numbers and is well supported by 1D 

measurements in high Reynolds number flows if Taylor's hypothesis 
is used to transform records from time to space (Tennekes and 
Lumley, 1972). It should be noted that 1D spectra are only 
expected to follow the k'5/3 law if the turbulence is isotropic. 
Unfortunately a region of the spectrum exhibiting this 

relationship is often found when an inertial subrange should not 
exist on dimensional grounds (Turner, 1973) or when the turbulence 
is known to be anisotropic (Heathershaw, 1979). Ozmidov (1965) 

suggested that the k'5/3 dependence may, be' characteristic of the 
eddy cascade wherever energy is not being 'supplied to the 
turbulence. 

Tennekes and Lumley' (1972)`show that one dimensional spectra 
of 'velocity fluctuations plotted against a frequency, a, 
associated with the eddy timescale (or strain rate), are predicted 
to follow a vZ relationship in the inertial subrange although 
spectra of this kind have not been directly measured. Later in 
this thesis these dependencies will be shown to follow from the 

characteristic relationships derived for individual eddies in a 
cascade and time spectra will be presented. 
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The turbulent motions in a shear flow are never -isotropic, 
however the smaller scale motions should be randomly orientated 

since they have little statistical dependence on the large scale 
motion characterising the flow. At small scales therefore the 
isotropic assumption should be valid. This is called local 
isotropy (Tennekes and Lumley, 1972). If this assumption is made 
then the value of c can be calculated from measured 1D spectra. 
The dissipation rate may also be measured by assuming local 
isotropy and measuring the temporal derivative of the longitudinal 

velocity fluctuation (equation (1.5), term 3). Browne, Antonia and 
Shah (1987) made detailed studies in a low Reynolds number wake 
and showed that the assumption of local isotropy is unlikely to be 
true in any shear flow, even at high Reynolds numbers. The values 
of e achieved by assuming local isotropy were underestimated by 
factors of about 45% on a wake centreline and 80% at the edge, 
values verified by considering the turbulence kinetic energy 
budget. 

Heathershaw (1979) compared the value of c found from spectra 
with that calculated from the assumption that in a constant stress 
layer the production should equal dissipation, is: 

i/p 8U/ez =e (1.14) 

This is another common method for estimating c which assumes 
that the advection and diffusion are negligible. He found that c 
was anomalously high so that the budget did not balance. Also the 
ratio of the magnitudes of the longitudinal and transverse space 
spectra was S11(k)/S 

22 
(k) 1 instead of 4/3 as it should be for 

isotropy. Therefore there was only qualitative experimental 
support for the theory as it stands. 

The ensemble mean dissipation rate, e, should lie somewhere 
in the range of values measured at small scales. Published values 
of e show a wide scatter and Woods (1975a) noted that the actual 
dissipation rate within a turbulent patch should be related to 
by the intermittency factor of the turbulence. Heathershaw (1979) 
and Woods (1977a) both reviewed published values of e for 
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VALUE 04 ~S LOCAT ION 

0.02 1m above the sea bed in a stratified estuary 

s 1.02 The surface layers of a tidal flow 

0.08 The upper layers of the ocean 

0.14 - 0.32 Tidally averaged estuary values 

0.10 Patches in the equatorial undercurrent 

Table, I., Summary of published values. of the energy dissipation 

rate. 



comparison with their own measurements. These are summarised in 

Table 1 in units of cm2/s3: 

it is important to achieve some quantitative results for the 

extent of the range of turbulent eddy sizes. Let us first consider 

the dissipative scales. Heathershaw used his estimate for c (0.6 

cm2/s3) to estimate the Kolmogorov microscales at which eddies 

with unity Reynolds number are able to dissipate kinetic energy 

into heat and noted that a typical dissipation wave number will be 

a couple of orders of magnitude larger than any that can be 

measured. These estimates were: 

. 04 cm the dissipative length scale, 

i . 14 s the dissipative timescale 

1a . 30 cm/s a characteristic velocity in the dissipative eddies 

At the largest scales the formation of seabed sand dunes can 
be described in terms of the action of the large scale turbulent 

eddies in the flow (Yalin, 1977). This argument is particularly 

revealing. it is a significant empirical fact that the dune 

wavelength is very directly correlated with the, water depth (h).. 

The build up of the dunes is described 
,. 
in terms of the ringing in 

the autocorrelation of the horizontal velocity which has a 

wavelength 1/h. The theory predicts dunes of wavelength A-2i1h 

which is very close to the field measurements. The. implication is 

that the driving velocity must have a narrow spectrum centred 

around 1/h or that the, size of the energy containing eddies must 
be centered around h, this being the average length scale over 

which horizontal velocities are just correlated., 

Although the probabilistic characteristics of u vary with 
depth, the characteristics of the largest eddies, those with the 

lowest'spectral frequencies, remain remarkably constant over the 

majority of the channel depth (Heathershaw, 1979), implying again 
that the large scale eddies have the same length scale as the 

flow. Sand dunes undoubtedly form and thus the presence of energy 

containing eddies of the same scale as the, flow must be taken as 

established. These eddies are similar to those scaling with the 
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outer dimensions of a boundary layer- and it, is, a reasonable 

assumption that the largest eddies occupy the whole depth when the 
boundary layer does, as is the case in many sea areas within an 
hour or two of slack water (Soulsby, 1983). 

Contributions to the Reynolds stress are large , and 
intermittent both in laboratory and geophysical shear flows 
(Heathershaw, 1979). At sea the strength of the contributions is 

not known more than 2m from the bed although they are of constant 

strength within that layer (Bowden and Ferguson, 1980). In the 

laboratory there is little variation over the flow depth (Anwar, 

1981). These contributions are believed to have causal similarity 
to bursting phenomena observed in laboratory shear flows where .a 
well ordered sequence has been established: 

w>O, u<0 Ejection 

w<0, u>0 Sweep 

w>O, u>0 Outward interaction 

w<O, u<0 Inward, interaction 

Ejections and sweeps make large negative contributions to the 
Reynolds stresses, interactions make weak positive contributions. 

Whereas u and w are distributed normally around their means, üw is 

skewed and kurtosed. For large values of the kurtosis K(üw)- 3/r 

where 7 is an indicator of the time in a total record length for 

which the signal is effectively "switched on" (Heathershaw, 1979). 
If the quantity being examined is intermittent the kurtosis will 
take on large values. Applying this criterion to the Reynolds 

stress he showed that the signal was typically "on" for 25 -30% of 
the time and that the mean period between bursts, TP, remained 
fairly constant across the boundary layer and could be scaled with 
the outer flow parameters : 

Tp = const. d/U0 (1.15) 

The specification of the boundary layer depth, d, is fairly 
arbitrary except where the boundary layer has grown to occupy the 
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whole flow. Uo is the free stream velocity. The correlation time 

for the events (their average duration), Td, is related to the 

period between bursts and the intermittency calculated from the 

kurtosis of the signal by: 

Td/Tp =7 (1.16) 

showing that the Reynolds stresses are mainly associated with the 

large eddies which occupy the whole flow. Reynolds stresses are 

associated with anisotropy (Tritton, 1977) so that these large 

eddies are anisotropic. 

It has been shown that there exists a range of eddy scales 
from the largest size equal to the major dimensions of the 
turbulent flow down to the smallest, dissipative size where 
kinetic energy is irreversibly turned into heat. The main spectral 
characteristics of the inertial subrange seem to apply outside the 

range of scales for which they are predicted, leading to the hope 

that if some general characteristics of turbulent eddies can be 
found, both in space and time, then a more effective modelling of 
the turbulence can be made. 

All turbulent flow dispersion experiments exhibit meandering 
in the early stages after release. The plume from a chimney, oil 
slick or dye release wanders so that the meandering is much 
greater than the plume dimensions. The averaged properties of the 

plume as a whole are described by "absolute" diffusion theory and 
the spreading of the plume relative to its centre of gravity by 
"relative" diffusion theory. These theories are described in 
detail by Csanady (1972) and are illustrated in Figure 2. They are 
particularly applicable to the dispersion of some toxic chemicals 
where a threshold level is hazardous. Some extra mathematical 
derivations are given here since they will be used later in the 
thesis. 

Absolute diffusion theory (Csanady, 1972) predicts the 
ensemble averaged properties of a diffusing cloud or plume in a 
constant mean flow. The ensemble average concentration 
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Figure 2. Absolute and relative dispersion. 



distribution is assumed to be Gaussian and no account is taken of 
intermittency or velocity shear. Fick's law provides a 

relationship between the spatial distribution of concentration and 

flux provided that the continuum approach to the density 

distribution is valid and that the `flight time' of a particle is 

small compared to the time step under consideration. Mathematical 

closure using the equation of continuity results in the diffusion 

equation for the concentration, x: 

ax/at + U. VX . Dv2X (1.17) 

where D is the "diffusivity", a material quantity. For a constant 
diffusivity and in one dimension, a point source diffusing under 
this relationship exhibits a Gaussian concentration distribution 

with the variance cr2 = 2Dt so that o- increases with the square 
root of time. In the turbulent diffusion approximation this is 

replaced by the eddy diffusivity which must be related to the 
turbulence. Csanady showed that the spreading of an, initially 

concentrated cloud can be related to the Lagrangian 

autocorrelation, R(T), of the stationary velocity field by 

Taylor's theorem (Taylor 1922). This is: 

o (t) 2 u2 
t 

(t -'t) R(t) 'dz (1,18) 
0 

The predicted dispersion is relatively insensitive to the 

form of the Lagrangian autocorrelation. Two examples show this. If 

dispersion in stationary, homogeneous turbulence is a Markov 

process then Durbin (1983) showed that: 

R(t) = exp (-s/tL) (1.19) 

where tL is a timescale associated with the largest turbulent 

eddies. There is laboratory evidence for a Lagrangian 

autocorrelation of this form although it is known to be incorrect 

at the origin. Substituting and integrating gives: 

012 -2 U2tL t-2 U2 tL (1"eXp (-t/ tL)) (1.20) 
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which for t» tL implies that: 

c2=2 u2 tL(t - tL) (1.21) 

Thus the standard deviation tends to grow with the square root of 
time from an origin at tL. 

if an alternate extreme form of R(T) is chosen to reflect the 

spatial distribution of eddies so that: 

R (t) = 1, ttL 

R(t) = 0, t> tL (1.22) 

then integration gives: 

a, 
2=2 

u2tL (t - tL / 2ý (1.23) 

and once again the standard deviation grows with the square root 
of time, here from an origin at tL/2. In practice this would be 
indistinguishable from the first formulation at times greater than 

t. 
L 

If dispersion is modelled as a simple random walk, step 
length utL occurring every tL, then after many steps the particle 
distribution approaches the Gaussian with variance: 

0r2 = u2tLt (1,24 ) 

and the standard deviation grows with the square root of time as 
before. This demonstrates that a random walk model with constant 
step length is the equivalent of a diffusion model with constant 
diffusivity (Durbin, 1983). An isotropic two dimensional random 
walk in x and y, although at large times Gaussian in x and y, 
approaches a Rayleigh distribution for r, the dispersion distance 
from the moving origin (Bartlett, 1978). Thus: 

r2(t) - x2(t) + y2(t) 
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fr (t) _ (2r/u2tLt) exp (- r2/4u2tLt) 

with a-mean 
r 

now increasing as: 

, fi (t) = (, 2, tLt/4) 1/2 

and variance given by: 

(1,25) 

aar2 (t) - (1 - it/4) u2tLt (1.26) 

The mean and standard deviation of r increase with the square root 

of time as before. 

Real plumes meander (Bowden and Lewis, 1973). An ensemble 
average concentration distribution in a fixed frame at a certain 
distance x downstream from the source will show a wider and lower 

profile than that achieved by averaging in a moving frame of 
reference centred on the realised centre of gravity of the plume 
at each traverse. Accepting that the averaged, centred, 
concentration distribution will be Gaussian, whatever- the 
fluctuation concentration distribution at a point, provided that 

at each point the fluctuation distribution profile is the same 
(Bartlett, 1978) it is instructive to study 'spreading in a-moving 
frame. Indeed when making dispersion measurements in the sea 
relative diffusion measurements are often the only ones that it is 

practicable to make. 

If the initial dispersion of a point source cloud relative to 
its centre of gravity is governed by the action of turbulent 

eddies in the inertial subrange, Batchelor (1950,1952) predicted 

on dimensional grounds: 

uZ (t) s2/3 
2/3 

c a1 

tR (t) - a2si/3e-1/3 

(1.27) 

(1.28) 

where c is the energy dissipation rate, s the standard deviation 

of the cloud concentration about its centroid, al and a2 constants 
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of order unity and tR a Lagrangian time scale, for relative 

diffusion. Assuming a Gaussian concentration distribution and 

defining a standard deviation relative to the centroid, s(t), 

Batchelor (1952) showed that: 

tu 2 (t) 2 (t' ) tR(t') dt' (1.29) 
0 

so that substituting (1.27) and (1.28) into (1.29) gives: 

s (t) _ (2a2. a2/3) 3/2c1/2 t3/2 (1.30) 

when the cloud is initially concentrated at a point. The standard 
deviation relative to the centroid should grow with t'5. There is 

much evidence that this is a good representative model (Csanady, 
1972). As in the spectral evidence already discussed, however, the 
tl's growth is found over a much wider range of physical scales 
than those for which inertial subrange eddies could possibly 
account (Okubo, 1971). Attempts to explain this discrepancy invoke 

shear dispersion, a recognition in itself that the mean 

characteristics of the large eddies in the flow exhibit the same 
dispersive characteristics as the smaller ones. 

The discrepancy between theory and observation could also be 

explained if the constants ai and az in (1.27) and (1.28) were 

significantly less than unity. The scales over which meandering is 

observed (until relative and absolute diffusion are equal) would 
then be extended. Batchelor's (1952) argument assumed a continuous 
distribution of eddy sizes in the inertial subrange. There would 

always therefore be an eddy size available to`spread the patch 

efficiently (eddies much smaller or larger than the patch being 

ineffective in causing spreading). The constants can only be 

reduced if the distribution of eddies is itself patchy, so that 

some of the possible sizes are absent, A distribution where some 

sizes are preferred may be termed a "discrete" distribution. 

The statistical characteristics of such discrete eddy 

cascades have been examined previously (Yaglom, 1966) but have not 
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been related'to practical turbulence models. Mandelbrot (1974) has 

clearly pointed out-the dependence of measured parameters on the 

measuring technique when one dimensional, eulerian, measurements 

are taken of an intermittent and three-dimensional process. He has 

introduced the concept of fractional dimension, a self similarity 
dimension for geometrical constructions that-need not be integer. 

Mandelbrot (1973) calls this fractional dimension &and shows that 

for a spatially intermittent set of such figures, it is necessary 
for A to be less than 3 and suggests that: 

1/3 A> t-2 (1.31) 

The advantage of a fractional dimension is that it allows-the 
mathematics to be performed without the necessity for the geometry 
of the self-similar structure to be known. As a concept it removes 
a traditional constraint, that of being able to mentally visualise 
the geometric form under consideration. In this thesis the 
dissipative cascade of eddies will be shown to necessarily have a 
fractal dimension within the Mandelbrot limits given above. 

More recently the evolving understanding of non-linear 
dynamics, generically termed "Chaos Theory", has demonstrated that 
many natural phenomena may be', described without resorting to 
statistical methods. Since by their very nature non-linear systems 
of equations are mathematically intractable, computer simulations 
are used, to track particles moving in. a non-linear-fashion at each 
time step. This is similar to Langevin modelling but without the 
random input at each step. Applications to dispersion are rare and 
the non-linear equations'' are often not derived--from physical 
principles. it has been shown, for example, - (Okubo, Andreasen and 
Mitchell, 1984) that particles moving under an amplified 
climbing-sinenmodel-of the form: 

Xt+l Xt +a (XtIp sin Xt (1.32) 

exhibit a rate of. growth of displacement variance which is faster 
than linear in time, rather like the explosive phase of cloud 
growth in relative diffusion: Other work has shown (for example 
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Cox, "Darzin, Ryrie and' Slater, 1990) that particle paths can be 

chaotic in simple systems of perturbed irrotational cellular flows 

or in irrotational flows containing simple, but non-linear, wave 
fields. The development of turbulence and its dispersive 

properties are both governed by the ' non-linear 'Navier . Stokes 

equations. Even simplified versions of these are' intractable to 

analysis. It appears, however, that such" families of equations 

exhibit solutions which, although unstable, - are structured. A 
fuller understanding of these structures may be the only way to 

link fundamental dynamical theory to'the phenomenum of turbulence. 

This would restore randomness to its natural position of modelling 
the motion of the super-molecular fluid packets and the 

statistical description to its position as the 'target against 
which models are run. To summarise the introduction, an improved 
model of turbulent eddies must: 

a. Recognise the spatial- distribution of eddies and the 
intermittency of the turbulence. 

b. Give-the'mean velocity distributions found by observation. -- 

C. Give the correct frequency and wave number spectral 
characteristics, possibly over a wider range than those "derived 
for the inertial subrange. 

d. Give values for parameters such, as c which are within the band 

of values measured by experiment. 

e. Predict dispersion which agrees with the measurements of 
relative and absolute dispersion, meandering and intermittency. 

f. Model the Reynolds stresses and justify the models currently in 

use for their prediction. 

g. Give eddy characteristics which are derived from the 
fundamental equations of motion, so that the physics, of the 
turbulent process is made more clear. 
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CHAPTER 2. THE EDDY ENERGY CASCADE IN THE ABSENCE OF`BOUNDARIES. 

An isolated eddy 
Let us consider how an isolated eddy might behave. Clearly 

the eddy has to be spatially limited and we shall define its 

volume V as C3, where V may vary during the existence of the eddy 

and f is a representative length scale. V is chosen to be big 

enough to encompass 'the fluid motions' induced, by the eddy but 

small in comparison with the total 'volume of fluid in which the 

eddy is embedded. - Clearly V contains vorticity or the eddy would 

not exist. 

Consider now an infinite volume of=stationary irrotational 

fluid into which the eddy is placed at time t=0. There is an 
immediate dilemma. Any motion involving fluid shear -dissipates 
kinetic energy by the action of viscosity, and the presence of 
vorticity implies the presence of velocity gradients and energy 
dissipation. Lamb (1932) shows, however,, that the total kinetic 

energy of this system should remain invariant. How can this be? 
The implication is that the flow structure should arrange itself 

so that the induced velocities, within V are such that the average 
gain in kinetic energy exactly balances the loss. To see the 
implications of this we now need to consider vorticity dynamics in 

some detail. 

The equation of motion for a fluid at any point can be 

written in the form known as the "vorticity equation" (Batchelor, 
1967) : 

-V/at =- (u. V)w + (w. V)u +vv2w (2.1) 

Alternatively, following 
, 
the, motion of, a marked fluid packet: 

Dw/Dt, ' (w. V) u+ iV2w (2.2) 

The advantage of describing the flow field in terms of vorticity 
is that the pressure terms are absent from the equations of 
motion. Vorticity is a mathematical property of the fluid motion 
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and not a property of the fluid itself, however if the behaviour 

of the vorticity distribution can be characterised then the motion 

as a whole is defined. 

A line in the fluid whose tangent is everwhere parallel to 
the local vorticity is termed a "vortex line" and a useful result 
(Batchelor, 1967) is that the vorticity vector behaves like a 

material line element coinciding instantaneously with the vortex 
line, even in a real fluid. Batchelor (1967) showed that as a 
result the flux of vorticity across a material surface element 
changes only as a result of diffusion. There are two consequences 
to this for our postulated isolated eddy. First, although V might 
change radically in shape while the eddy exists, it will change in 

size only as a result of vorticity diffusing under the 'action of 
viscosity. Secondly if V is allowed to encompass all the 
rotational flow, then the total "amount" of vorticity in V will 
remain invariant. Defining an "amount"' of w as the square of the 
magnitude of the vector w. w or w2 and 02 as the total "amount" of 
vorticity in the eddy: 

V 

JL)Z 
=2 dV'constant 00 (2.3) 

Defining the average amount of vorticity per unit volume as wi 
then: 

wi n2/V (2.4) 

Locally, within the eddy, the vortical regions will be being 
deformed. Raudkivi and Callender (1975) noted that the deformation 

will involve an overall stretching of fluid elements because of 
the dispersive nature of turbulence. Batchelor (1967) showed that 
vorticity when stretched concentrates into lines or sheets (a 
sheet can be considered as being made up of a set of adjacent 
vortex lines). Solutions exist in simple geometries and we 
consider here the dynamics of a small element of vortex sheet to 
illustrate the" main effects of stretching. The-geometry is 
illustrated in Figure 3. 
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The solution for a sheet which is being stretched in one 

direction only is given by Batchelor (1967). The sheet exists in 

the x, z plane and the stretching is in the x direction such that 

u(x)=(3x. If all the resulting contraction is in the y direction 

then the vorticity is ultimately concentrated into a Gaussian 

distribution about y=0 thus: 

w (Y) = (is exp (-(3y2/2v) (2.5) 

where w is now the amount of vorticity per unit area of the 

elemental sheet. The standard deviation, a, of the Gaussian 

vorticity distribution is given by: 

0= (V/j3) 1. /2 (2.6) 

and 95% of the vorticity will be found within a layer 4c thick, 
98% in a layer 8o- thick. This steady solution (time does not 

appear in the equation) exists because the diffusion of vorticity 
away from the y=0 plane is exactly balanced by the inward flux of 
fluid necessary for continuity within the control volume under 

consideration. 

If the vorticity vector was originally wholly-in . the direction 

of the stretching, so that : 

M (WXý Oro) 

then the concentration will result in 

within a control volume containing the 

vortex stretching (Tennekes and Lumly, 

can find an equation for w in these 
that the vorticity is concentrated ii 

vorticity equation becomes, following 

element: 

I ý',. (2.7) 

an increase of vorticity 

sheet. This is known as 
1972; Batchelor, 1967). We 

circumstances by assuming 

nto the (x, z) plane. The 

the motion of the small 

acv /Dt =w au /ax + Va2w /8x2 
Xxxx (2.8) 

and ignoring diffusion in the direction of stretching the solution 
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is: 

wX'=-const. exp(ßt) (2.9) 

which increases-exponentially. The sheet element has enlarged 
because. of the, stretching since, there is no contraction in the z 
direction. Thus, calling the sheet area z: 

DL /Dt = ßD1 (2.10) 

and: 

A= const. exp (ßt) (2.11) 

The vorticity per unit area, w= wx/m, therefore remains constant 
as expected from the steady state solution given above. 

If the original vortex vector is wholly in the z direction, 
so that: 

M (0,0, wz)-' (2.12) 

the Gaussian solution still applies since the vorticity diffuses 
in the same manner and the stretching and influx are the same. `The 
value of wf may be obtained as before by considering the vorticity 
equation with all the vorticity concentrated into the x, z plane. 
Thus: 

Dwz/Dt =v ö2wz/äx2- (2.13) 

and ignoring viscous diffusion in the direction of stretching this 
becomes, following the motion of a 'fluid packet: 

Dw/Dt =0 (2.14) 

therefore wz remains constant and w decreases exponentially with 
time as the'-sheet stretches normal to the vortex lines. 
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The formulation implies that if j3 is negative so that the 

sheet is being compressed, then ws should increase exponentially. 

In practice this does not occur since the sheet can only thicken 

by diffusion and a consequential stretching in the z direction 

would have to be induced. Rogers and Moin (1987) found that on 

compression a vortex sheet buckles or folds and, since a perturbed 

sheet is unstable (Batchelor, 1967), the folding becomes 

increasingly complex as compression continues, without thickening 

the sheet. 

Batchelor (1967) and Raudikvi and Callender (1975) showed 
that the vorticity equation implies that the increase in one 
component of the vorticity of a fluid packet is at the expense of 
the other components without a reduction in the total amount of 
vorticity. This is because the pressure terms in the turbulent 
kinetic energy equation transfer energy between components without 
loss and the local vorticity vector moves instantaneously with the 
fluid. If w is neither parallel to nor normal to the direction of 
stretching then it will tend to turn to align itself with the 
stretching axis since downstream fluid particles instantaneously 

coincident with the vortex line are moving faster than upstream 
ones. 

Suppose that the instantaneous vorticity distribution within 
V can be approximated by a large number of small vortex sheet 
elements, each of which is being stretched. If the many elements 
are examined at an instant in time then the central limit theorem 
(Bartlett, 1978) tells us that an ensemble average of the 

vorticity distribution across each element will be Gaussian. If 
the sheet elements are chosen to be small enough so that each is 
two-dimensional then Batchelor (1967) gives for the kinetic energy 
dissipation rate per unit area of such an element: 

(8KE/at) 
per unit area 

vw (Y) 2dY (2 
. 

15) 

-oo 

00 

Substituting the Gaussian vorticity distribution, (2.5), into the 
integral gives (Dwight 1961): 
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(aKE/at) 
per unit area 

_ -v (w 
") 

2 (nv/ß) 2/2 (2.16) 

If we define the element thickness, S, as So- so that almost all 
the vorticity is contained in the sheet then, using (2.6): 

6= 8a, =8 (v/j3)1/2 (2.17) 

The average kinetic energy dissipation rate per unit volume within 
the element is given by: 

OKE/at)per unit volume 
a ý1/a) ýaKE/öt)per 

unit araa 
t2 18) 

and substituting from (2.16) and (2.17) into (2.18) gives: 

(aKE/at) 
per unit volume 

52 _U (w") 2ir 1/2/8 (2.19) 

which is independent of element thickness. 

The total kinetic energy dissipation rate within the eddy is 
found by summing the dissipation within each elemental volume dV', 
thus: 

aKE/at aZ (w; ) 2dVI (2.20) 

and since by summing over all the vortical elements we account for 
all the vorticity within the eddy, we can use (2.3) to give: 

8KE / at a -v n2 (2.21) 

If the vorticity distribution within V can be approximated by 
a suitable selection of elemental Gaussian sheets then it is also 
valid to consider the Gaussian as a distribution function whose 
properties reflect the average manner in which the vorticity is 
diffusing and therefore of the manner in which the boundary of V 
is increasing by diffusion. 
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The representative length scale twill therefore increase 

with time as: 
e2= 2v (t+to) (2.22) 

where to reflects the finite size of t at t=0. Since V is equal to 
r3 

. 

Va (v (t+t0)) 3/2 (2.23) 

and: 

V= V0 (1+vt/V013) 3/2 (2.24) 

where V0 is the volume at t=0. Now the kinematic viscosity of 

water is very small. The value varies with temperature and 

salinity but is of the order of 10-2 cm2/s (Batchelor (1967), 

Appendix 1). If V0 was1 m3then it would take 16 hours for the eddy 
to increase in volume by 10%. A 40 m eddy (Vo=64000 m3) will 
increase its volume by 3% in one hour. A1 cm eddy might double 

its volume in 100 s. Turbulence decays in much shorter timescales 

than these (Tennekes and Lumley, 1972) and it is therefore safe to 

assume, to a high level of approximation, that V is constant over 
the lifetime of the eddy. The same argument applies to the shape 

of V. Since V is constant, I is a constant and is the average 

magnitude of a vector stretching from the centroid of V to the 

surface at any point. Defining this vector as (ex, Qy, Ps) then if 

l'x , say, is increasing then Cy and t can reduce at any rate to 

conserve volume but dP/dt can never become greater than the rate 
of diffusion of vorticity in the x direction. Thus: 

(dex/dt) 
Max a v1/2 (ttt0) , 1/2 (2.25) 

so that soon after the eddy is established we would expect its 

shape to stabilise. 

The average kinetic energy dissipation rate in the eddy, c, 
is constant since 002 is constant and V is constant. From (2.21): 
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eV = dKE/dt a -v 
Q2 

and c is constant. 

(2.26) 

This dissipation has to be accounted for by an increase in 

the kinetic energy in V so that the total kinetic energy remains 
invariant. This can only be achieved as a result of the vorticity 
re-arranging itself to amplify certain components by vortex 

stretching so that net circulations are increased around certain 

closed loops within the eddy. The vorticity distribution must 
dynamically order itself such that the average kinetic energy due 

to the self induced motions increases thus: 

(dKE/dt) 
induced = const. v 02 (2.27) 

0 

and a representative averaged kinetic energy density for the 
induced velocities, k, varies as: 

dk/dt - const .v Q2/V (2.28) 

which is a constant since 002 and V are constant. Thus: 

k(t)- const. v 02 (t+to) /V (2.29) 

where to again reflects the initial conditions. Since at te0 there 
has been no dissipation and k(t) reflects the additional induced 

energy required to compensate for subsequent dissipation, equation 
(2.4) gives: 

k(t) = const. v wit (2.30) 

and if an averaged induced velocity in the eddy is defined as u(t) 
so that : 

u(t)2= k(t) (2.31) 

then: 
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u (t) a wl (vt)1J2 (2.32) 

At some time the induced kinetic energy must equal the total 

original kinetic energy of the eddy. It certainly cannot exceed it 

since there is then no kinetic energy to be dissipated. Calling 

the invariant total kinetic energy KE0 then at some time, tmax: 

and: 

KEo = const. v net 
x 

(2.33) 

tX a KEo / vS2ö (2.34) 

giving, from equation (2.30): 

2k (tX) av witx a KEp/V (2.35) 

The fact that there must be a maximum time for which the 

motion can proceed can also be demonstrated as follows; the 
induced velocities can only increase if the vorticity in one 
direction is being amplified and vortex lines do not induce 

velocities in the direction of the vorticity vector (Batchelor, 

1967). When all the original vorticity has aligned itself into one 
component, say wX, there is maximum circulation around the x axis 
and none around the y or z. It is not possible then to induce 

stretching in the x direction. With no stretching the vorticity 
will diffuse away from the x axis and kinetic energy will be lost. 
This cannot occur in this system. At some point before this 

maximum level of organisation can take place the eddying motion 
must change in character. Since it cannot suddenly get larger, it 

must break-down in such a way as to produce smaller eddies which 
are able to sustain themselves. In this break-down the total 
kinetic energy and amount of vorticity in the system should be 

preserved. 

in time t,. 
X 

an average particle within the eddy will be 
transported by a distance i such that, using (2.32): 
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Y= 
tmax 

u (t) dt a wIv1/2tVAX3/2 
0 

(2.36) 

and since the particle must remain within V, X must be proportional 

to Q. Thus we can write equation (2.36) in terms of e: 

tMax a V-1 /3 w-z/s £213 (2.37) 

and: 

k (tax) a vwitmax (2.38) 

At tmax, k (t 
max) 

is equal to the invariant average kinetic 

energy density of the eddy. Calling this ke and calling tmax the 

mean eddy lifetime, tt: 

k/tE a vwi (2.40) 

and from (2.26) we can identify this value as c, the constant 
energy dissipation rate within the eddy. There follows: 

kQ= e2/3 Q2/3 (2.41) 

to =E 
1/3 P2/3 (2.42) 

ea vw2 (2.43) 

These formulae often appear in turbulence models. Tennekes 

and Lumley (1972) give for the lifetime, T, of the dissipation 

eddies: 

i= C-1/3A2/3 (2.45) 

For all eddies in the inertial subrange Woods (1975) gives: 

t_ (Ete3) 1/2 
(2.46) 

both of which are the same formulation as (2.42). Woods (1975a) 
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gives for eddies at the beginning of the buoyancy range with 
T-1=N, N being the buoyancy frequency: 

tN ""N3) 1/2 (2.47) 

which again has the same form as (2.42). 

The turbulence theory (k/c) model described in the 
introduction uses, rewriting equation (1.8): 

k= (ce) 2/3 (2.48) 

which is the same as (2.41). If the Prantle-Kolmogorovland Jones 
and Launder expressions for eddy viscocity, (1.10) and (1.11), are 
equated then: 

k1/2t = k2/e 

which is the same as (2.41). 

(2.49) 

Tennekes and Lumley (1972) give, for high Reynolds number 
flows: 

eAv wiwi (2.50) 

which has the same form as (2.43). In the absence of knowledge of 
wl we can use (2.31) to write: 

uE2= Ice (2.51) 

and (2.41) to give: 

uI3/P (2.52) 

Tennekes and Lumley (1972) give this expression as an 
approximation for e when a length scale is known. 

The value of c determines the time for which kinetic energy 
can exist at a particular scale. The value depends on the 

43 



kinematic viscosity and the square of the vorticity per unit 
volume in the eddy. One would expect, therefore, that c will be 

the same for similar fluids and for eddies with the same value of 

w2. If an eddy breaks down into smaller ones then they must occupy 
the same volume of fluid as the large eddy since V can only grow 
(slowly) by the diffusion of vorticity and the breakdown is 

assumed to occur instantaneously. Therefore there can be no loss 

of total kinetic energy due to the breakdown itself, nor can there 
be a change in 02. Since V is constant and Rö is constant, w2 
remains constant. Thus c is the same just after the breakdown has 

taken place. This must be true for each subsequent breakdown and e 
is independent of scale. The implication is that eddies of all 
scales have the same fundamental energy and time characteristics 
(given by (2.41) and (2.42)) as the large eddy producing them. 

This assertion is normally made in the literature. In 
deriving the dimensional characteristics of eddies breaking down 
in the inertial Subrange, for example, (Tennekes and Lumley, 
1972), c is taken as independent of wave number, or eddy size. The 

same authors show that large eddies contain smaller ones. On 

average, therefore, the amount of vorticity per unit volume within 
the smaller eddies must be the same as that of the larger ones 
containing them, producing the same result. 

It is now necessary to consider how the various possible 
scales are related. It has been shown in the introduction that for 

meandering to be observable there cannot be a smooth distribution 

of eddy sizes and since c remains constant there must be some 
common relationship between possible sizes at each stage of the 
breakdown. Taking the scales, C, as discrete, and ei as a typical 
scale: 

Qi-1 ° (f1) (2.53) 

Qi_a =f (C1-1) (2.54) 

where f(1) is the same function each time since the mechanism 
causing the breakdown has the same characteristics at each stage. 
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Although each individual eddy will be physically different, 

when the average characteristics of a breakdown is considered all 

the available smaller sizes must be allowed to appear. The 

smallest eddy which can be created will be taken at the Kolmogorov 

dissipation scale A (Tennekes and Lumley, 1972). Here the smallest 

eddies are irreversibly converting energy, and vorticity, into 

heat. 

When the next size down breaks down, some time later, the 

smaller eddy sizes should have the same distribution as for the 

first breakdown since c is constant and f(C) is the same function 

at each stage. Now to conserve kinetic energy at the first 
breakdown (V is constant, c is constant and therefore Rö is 

already being preserved): 

L"1 
kL b2k (2.55) 

where L is the size of the largest eddy and the summation is taken 

over all the smaller sizes down to A. When the next largest size 
breaks down: 

L-2 
kL-i ý* 

') k (2.56) 

where k 
L-1 

is the kinetic energy density in the largest eddy size 
created by the first breakdown. For a consistent model this must 
be true all the way down the cascade to A. Reverting to the 
largest eddy and the first breakdown, substituting (2.53) and 
(2.41) into (2.55) : 

L 

c2/3e2/3. c2/3L2/3 (2.57) 

and since c is constant: 

!L 
2/3 L2/3 

ý 
(2.58) 

45 



For the subsequent breakdown: 

f(f(L)) 

e2/s= (f (L) ) 2/3 (2.59) 

and subtracting the second series from the first retains only the 

top term so that: 

f (L) 2/3 
a L2/s _ (f (L) ) 2/3 

and so on for every step. Thus from equation (2.60): 

2f (C ) 2/3 
= (Qi) 2/3 

for every step. The only way for this to be possible is for: 

= 23/2 e i+l i 

(2.60) 

(2.61) 

(2.62) 

This states that the discrete scales are logarithmically 

distributed as first suggested by Kolmogorov (1941) from 

dimensional reasoning. He did not, however, consider the cascade 

as discrete. The proposition that the eddies are related by a 

constant C such that t=C ei and: 

C 81/2 2.83 (2.63) 

is original to this thesis. This scaling factor is within 
the limits that Mandelbrot (1974) suggested as appropriate for the 
turbulent cascade (equation (1.31)). Taking C- 81/2 gives: 

ki+l =2 k1 (2.64) 

and: 

(2.65) ti+1 'o 2 ti 

A temporal view of the energy cascade is given in Figure 4. 
This represents the eddy sizes on the vertical axis which will on 
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Figure 4. Temporal view of the dissipation cascade. 



average be present at a point, time being the horizontal axis. It 

shows that each size exists in total for precisely half the time 

that the largest eddy exists. If we define the (one dimensional) 

probability that a large eddy exists as nL, then the probability 

that a smaller eddy will be found at any particular location and 

time is nL/2. All the energy in an eddy size L will dissipate into 

heat in time tL, preserving the physical nature of c as both an 

energy dissipation rate and as a factor which determines how long 

energy can remain in an eddy at a particular scale. 

Since it is possible for the small eddies from a previous 
large eddy breakdown to be contained in a newly forming large 

eddy, it is possible for turbulence to become fully developed. 

This is illustrated in Figure 5 for nL-0.5 and nL=l. The large 

eddy production process will be discussed in the next chapter. 

If nL is equal to 1 then Figure 5 shows that the average 
turbulent kinetic energy present in the flow, q, is given by: 

q (3/2) kL (2.66) 

since the kinetic energy from a breakdown at L is dissipated at a 
constant rate over tL. 

The cascade formulation can now be applied to a simple 

geometry. Define the largest size present at any instant as L' and 
the associated time as t with t=O at the first breakdown. It may 
be seen from Figure 4 that: 

t= tL - tLi (2.67) 

where tL, is the lifetime at L'. If (2.42) is substituted 
into (2.67) there results: 

Lº _ 2/3 _ e1/3 t) 3/2 
(2.68) 

If the decaying eddies are being transported with a mean 
velocity U and their properties measured at x such that: 
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t x/U 

then: 

Ll = (L2/3 - c1/3X/U) 
3/2 

(2.69) 

" (2.70) 

These conditions approximate to wind tunnel turbulence for which 
Tennekes and Lumley (1972) derive from dimensional reasoning 
(writing L' as their "integral length scale"): 

L' = const. (x/U) 1/2 (L' uL, ) 1/2 (2.71) 

so that, using (2.52): 

L' - const. (x/U) 1/2 L' 112 Es. 
/6 L' 116 (2.72) 

giving: 

L' = const. c1/2 (x/U) 3/2 (2.73) 

which has the same form as (2.70) . Since the integral scale must 
be related to the largest eddies present, the model formulation 

agrees well with Tennekes and Lumley's theory for the decay of 
(isotropic) wind tunnel turbulence for which they quote 
experimental support. 

it is also possible to construct a model of how such a 
cascade might disperse a contaminant. To do this we consider each 
particle in an eddy to be moved randomly by a simple random walk 
step length uett for each period tc equal to the lifetime of the 
eddy. The step length will have to be modified dependant on the 
geometry under consideration. For example at the surface, when the 
vertical velocity component is supressed (Brumley and Jirka, 
1987) : 

u2/2 + V2/2 = U2 (2.74) 

so that if the surface turbulent velocities are isotropic: 
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us ue (2.75) 

For three dimensional isotropic mixing: 

3u2/2 = uQ (2.76) 

and: 

u (2/3) 1/2 ue (2.77) 

The dispersion of a concentrated patch of contaminant from a 
homogeneous and stationary field of such eddies is given by 

(1.24). Putting u=u,, so that surface dispersion is being 

modelled (equation (2.74)) : 

C'2 = ut 
2t 

ft (2.78) 

If the eddy size is intermittent, so that the step occurs with a 
probability nE then: 

a' = n, ue2ttt (2.79) 

This is equivalent to diffusion with a constant diffusion 

coefficient, DE, given by: 

DQ neu2t, /2 (2.80) 

The dispersion from a superposition of such eddy fields is given 
by adding the diffusion coefficients (Csanady 1972), thus: 

cr2 (Enýu2, t, ) t (2.81) 

Summing the geometric series from A to L, using 11+1 -C ei, and 
using nL/2 for eddies smaller than L, then, keeping £ constant, 
the summation is (Dwight, 1961) : 
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2 
nLu2tLt fn tLu2t/6 

_ (7/6) nLu2tLt (2.82) 

when L»A. This represents absolute diffusion when the cascade 
is as described. 

In the explosive phase of cloud growth (representing the 

early stages of relative diffusion) then following Batchelor's 

argument given in the introduction (equation (1.29)): 

ds2/dt =2 (nL/2) 
: 

u2t@ (2.83) 

since eddies of dimension Q>s will move the patch as a whole 

rather than causing individual particles to separate. Summing as 

before: 

ds2/dt = (1/3)nLu2ta (2.84) 

Substituting (2.51), (2.41) and (2.42) into (2.84) gives: 

2/dt = (nL/3) £lýs 
4/3 ds a (2.85) 

Integrating (2.85) we achieve: 

s= (nL/9) 3/2c1/2(t - t0) 312 (2.86) 

where to reflects the finite size of the patch at ts0. For a point 
source release, the cascade model predicts relative diffusion at 
the surface by: 

s 0.037 n3/ 2e1/2t3/2 (2.87) L 

The same argument for the isotropic three dimensional case where u 
(2/3)1/2u@ gives: 

s (2n 
L/9) 

3/2 c1/2t3/2 (2.88) 
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Recalling (1.30), Batchelor's (1952) result for the 3D isotropic 

case given in the introduction: 

s= (2a1a2/3) 3/2c1/2t3/2 (1.30) 

we see that the model gives nL/3 for the product of the 

non-dimensional constants al and a2. Knowledge of this value is 

necessary to relate c to measured relative dispersion. Using the 

model results we would expect absolute and relative diffusion to 

be the same when s -- a, so that from (2.82) and (2.87) : 

0.037n3/2 E1/2t3/2 z 1.08nL1/2c1/6 L2/3 t1/2 (2.89) 

which gives: 

0.034n c1/3 t= L2/3 
L 

(2.90) 

If the maximum time for which meandering will be observable is 

defined as 2, then substituting (2.42) into (2.90) gives: 

TZ = 29.4 tL/nL (2.91) 

With L= 45 m, c=0.3 cm2/s3 and nL a1 meandering should occur 
for a period of about 12000 s from the release. In a mean flow of 
1 m/s then the meandering of a plume should extend over about 
12000 m from the release point. The figures here have been chosen 
to reflect oil and dye release experiments reported in Chapter 8 

where meandering over such distances is observed. 

Csanady (1972) relates absolute dispersion (characterised by 

its standard deviation o), relative dispersion (characterised by 

s) and the standard deviation of the meandering, in, by: 

17 
2=m2+s2 

(2.92) 

This equation gives for the explosive phase, from (2.82) and 
(2.87) : 
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m2 = 1.17nLe1/3 L4/3t - 0.0012 n3 c t3 (2.93) 

There should be a period where the equation simplifies. This 
is when the relative diffusion is not "explosive" and the 

spreading is being caused by all sizes up to and including L/C, 

the meandering being caused by the large eddies L only. Then the 

model gives: 

m2 = nLu2tLt (2.94) 
L 

or, substituting for uL and tL as before: 

m2 =nL e113L413t (2.95) 

Equating (2.93) and (2.95) we would expect (2.95) to be dominant 

after a time, i, given by: 

T1 = 11.9 C-1/3L 2/3 /nL (2.96) 

which can be rewritten in terms of the large eddy lifetime, tL, 

giving: 

T= 11.9tL/nL (2.97) 

Csanady (1972), without a model for the non-dimensional 
constants aland a2 in (1.30), predicted that the explosive phase 
would end at T. tL. Were this the case then meandering on the 

scale reported in Chapter 8 would not be observed. By substituting 
the values used above for L, c and nL into (2.96), then the 

meandering should follow (2.94) from about 5000 m from the release 
point. During this second phase s2 is found by substituting (2.82) 
and (2.95) into (2.92) giving: 

sz = (1/6)nLc1/3L4/3t (2.98) 

or: 
8 0.4 n1/2e1/6L2/3t1/2 (2.99) 

L 
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The model has predicted two phases in the development of the 

relative diffusion. In the first phase the growth is explosive, 

following a t312 relationship as larger eddy sizes contribute to 

the growth of the patch. In the second phase the growth slows to 

follow a t1"2 relationship because of the wide gap between the 

eddy sizes at L/C and L. Two distinct phases of growth are 

reported in Chapter 8 and provide evidence that this formulation 

is correct. From (2.91) and (2.97): 

Tz2.5 T 
si 

and from (2.82) : 

0 1.08 n1/2c116L2/3t1/2 
L 

so that during the second phase, using (2.99): 

s 0.4 oa 

(2.100) 

(2.101) 

(2.102) 

so that the development of the absolute and relative dispersion 

can be approximated by: 

T -- 2.5 Tl 

s 0.03 v3/L2 0<t<71 

s -- 0.4 a- Tl< t< T2 

s o- t>72 (2.103) 
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CHAPTER 3. EDDIES IN THE BOTTOM BOUNDARY LAYER 

Aim. 

The structure of the eddies in a turbulent boundary layer 

must reflect the turbulent production process as well as the 

dissipation cascade. The mean eulerian velocity profile reflects 

the passage of the turbulent eddies past the sensing point. If 

the mean velocity profile can be associated with the turbulence 

then it should be possible to relate the amount of turbulence 

present, and its dispersive effect, with some easily measurable 

quantity such as the surface velocity U0. That is the aim of this 

chapter. 

When the boundary conditions are changing slowly (for example 
if the channel width and depth are constant) the average velocity 

of the eulerian profile, Um, will equal the bulk flow, Ub. The 

bulk flow is a measure of the average streamwise Lagrangian 

velocity since the turbulent mixing will cause fluid packets to 

sample all positions within the boundary layer if their motion is 

followed for long enough. The distinction is made since the 

variation in the "mean" velocity profile during the eddy 

production process will be discussed. 

In the following derivations the logarithms 

are to the base e. The size of the eddies in 

cascade is characterised as a geometric series w 
sf8. Since log 

Cx 
= 1.034 log x, the natural 

sufficiently good approximation to the cascade 
derivations below. 

(written as log) 

the dissipation 

hose base is C 

logarithm is a 
for use in the 

General considerations. 
If an eddy V is placed into a uniform bulk flow Ub , then 

Lamb (1932) shows that since the pressure forces exerted on the 

surface of V are equal to the forces exerted in the fluid at all 
points just outside V, the eddy will move with the fluid at Ub. 
Small eddies existing within bigger ones will be transported by 
the larger eddy velocities. Since none of the fluid particles 
within a large eddy leave its volume V during its lifetime, a 
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small eddy finding itself within a larger one will remain within 
it. 

if an eddy V is placed into a shearing bulk flow then the 

same argument implies that the volume V must distort with the mean 

shear. Batchelor (1967) showed that any velocity field may be 

represented as the superposition of a symmetrical expansion, two 

simple shearing motions and a rigid rotation. Further, he showed 
that each simple shearing motion may be regarded as a 

superposition of a pure straining motion (with zero rate of 

expansion) and a rigid rotation. Since V is constant throughout 

eddy lifetime (Chapter 2), it is reasonable to characterise its 

distortion as the resultant of two pure straining motions, which 

are equivalent to a single pure straining motion. It will also 
rotate as a rigid body. 

As far as the characteristics of V are concerned (which are 

encompassed in the value of c) rigid body rotation will have no 

effect since all the vorticity components within V will rotate in 

the same manner. To consider the effect of straining by shear it 

is convenient to give some two dimensional examples. If the only 

velocity is in the x direction and is sheared such that U(y) 

f (y) then putting: 

DU/Dy - f' (y) a constant (3.1) 

characterises a local mean shear on an eddy if I (the 

characteristic eddy dimension) is of order Ay. The total 
derivative is used since we are following the translational and 
rotational motion of V. Batchelor gives the maximum rate of 
extension of a unit element in V as: 

DP/Dt -At (3.2) 

where: 

A (DU/Dy) / (21/2) (3.3) 
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If the eddy lifetime is characterised by (2.42): 

tE = C-1/3 £2/3 (2.42) 

and a representative value of c is in the higher regions of those 

found in the sea, 0.3 cm2/s3, then for: 

Q=1m 

DU/Dy = 0.03 s"1 

which represents a small eddy in the bulk of a geophysical stream 
30 m deep and whose free surface velocity is about 1 m/s; the 

maximum extension of t due to the shear is 2% in te. For: 

1= 10 cm 

DU/Dy = 10 s1 

which is an extreme case of a small eddy in a high shear layer of 

the same dimensions as the eddy (a situation which might occur at 

a solid boundary), then in to the maximum extension of e is about 
20%. The value of c for large eddies in a weak shear should 

therefore remain substantially unaffected by the shear. The value 

may increase for small eddies in a high shear layer near a 
boundary. 

Summary of the production process. 
The details of the process by which the large eddies are 

produced are unclear (Landahl and Mollo-Christensen (1988) give a 

recent review) but in a flow moving over a solid boundary it is 

the no-slip condition at the surface which generates vorticity and 
this is the source of vorticity for the turbulent eddies since 
vorticity cannot be created within the fluid (Batchelor, 1967). 

In the laboratory the vortical surface layer is observed to 

remain thin (Tennekes and Lumley, 1972) and a large part of the 
streamwise velocity shear can occur in this layer. The transport 
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of vorticity and momentum from this layer into the bulk of the 
flow results in the turbulent eddies and the mean velocity 
profile. 

Flow visualisation studies reported by Utami and Ueno (1987) 

and numerical simulations reported by Rogers and Moin (1987) show 
that the disruption to the vortical layer is characterised by the 

evolution of hairpin vortices which themselves interact in a 

complex manner. Such hairpin structures induce a fluid velocity 

within themselves which is counter to the streamwise velocity and 

away from the wall. This induced flow exhibits the characteristic 
correlation of the intermittent bursting event found when 
measuring Reynolds stress in the laboratory and at sea 
(Heathershaw, 1979). 

Kim, Kline, and Reynolds (1971) showed, in the laboratory, 
that much of the turbulence production was associated with the 
bursting events. Heathershaw (1979) has correlated the bursting 

events with large eddies in the sea and, since such events can 
transport vorticity away from the boundary, the burst of negative 
Reynolds stress must be an event characterising the production of 
the large eddies in the flow or their passage, once formed, past 
the sensing point. 

Kim, Kline and Reynolds (1971) also used high speed 
photographs of hydrogen bubbles to show that when an eddy from the 
turbulent flow outside the surface layer impinges on it, the eddy 
penetrates to the wall, disrupting the layer and causing a burst. 
The ejected low momentum fluid retards the fluid in its new 
surroundings, giving rise to a further eddy. To that extent when 
turbulence exists, it is self propagating. 

The implication is that the eddies in the flow are both 
responsible for the continued generation of eddies and for the 
subsequent transport of momentum and vorticity from the wall to 
the outer flow regions. Their disruptive effect on the wall layer 
is to scour vorticity away from the layer, keeping it thin. 
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Tennekes and Lumley (1972) showed that the amount of 
turbulence in a shear flow is determined by a strongly 
non-stationary dynamic process. In a geophysical flow the driving 

forces (primarily tidal) of the flow as a whole are continuously 
changing and the turbulence varies so that the resulting mean 
profile changes to match the boundary conditions. Here it is 
intended to highlight only those features of a steady, two 

dimensional, turbulent shear flow which the discrete eddy model is 

able to describe. 

Production and large eddies. 
If the boundary layer has thickness L, so that the largest 

eddies have characteristic size L. and if they are produced in a 

characteristic time, tP, then the average velocity at which 
vorticity moves vertically away from the boundary is equal to 
L/t 

P. 
This cannot be larger than the largest measured vertical 

velocities measured in the flow. Thus: 

L/tp < uL 

and: 

t> L/u 
p 

and since the average large eddy lifetime, tL, is given by: 

tL = L/u 

then: 

(3.4) 

(3.5) 

(3.6) 

tp > tL (3.7) 

The intermittency is related to these times since it is the 
probability that an eddy exists. Thus: 

nL = tL/tP (3.8) 

and (3.7) implies that: 
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nL s1 (3.9) 

Soulsby (1983) reported that the standard deviation of the 

vertical velocity fluctuations measured in boundary shear layers 

is characteristically 0.46-0.5 times the horizontal, and 0.66 

times the cross-stream. Writing, for the mean vertical velocity, w: 

(w/O. 5)2/2 + (w/0.66)2/2+ w2/2 = uQ (3.10) 

then repeating (3.5) - (3.8) gives: 

ns0.5 I. 
(3.11) 

implying that the turbulence in a shear flow may always be found 

to be significantly intermittent. 

The kinetic energy density of the largest eddies is kL and 
this is produced in t Thus the energy production rate is given 
by: 

D (KE) /Dtprod = nLkL/tL - nLe (3.12) 

which is equal to the dissipation rate, as it should be if the 

conditions are steady. In the mean the turbulent kinetic energy is 

produced and dissipated at a constant rate if the conditions are 
steady. 

Since the boundary of an eddy volume V can only move through 
the surrounding fluid at a (slow) diffusion velocity proportional 
to (vt) -1/2, then to maintain its identity throughout its lifetime 
tL, a large eddy L must move relative to the boundary without 
being substantially influenced by the vortical layer at the 
boundary surface even though the layer can be disturbed by its 
passage. The streamwise fluctuations in a large eddy L are 
proportional to uL and any mean shear within the large eddy can 
only be as a result of these fluctuations being more likely to be 
in the upstream direction than the down stream, or to the strain 
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induced in the eddy throughout its lifetime which we have seen to 
be small. Since uL is normally much less than Ub, the eddy volume 
V is moving with the flow relative to the boundary. Since small 

eddies within larger ones move with the larger ones, then it 

follows that in the mean and outside the surface layer, all the 

eddies are moving at Ub. 

Fluctuations in the bulk flow. 

The turbulence kinetic energy equation quoted in the 

introduction, shows that the turbulent kinetic energy is produced 

at the expense of the bulk flow. The mean flow, Ua is a constant 
in steady conditions but since the production of the large eddies 
is characterised by a burst, then, following the motion at Um, the 

bulk velocity Ub should show a negative fluctuation where eddies 

are being produced and a subsequent positive fluctuation so that 

Um has a steady value. For a single large eddy whose lifetime is 

tL then we should expect this variation to have a fundamental 

period equal to tL. If the fluctuation can be approximated by a 

sine wave then the maximum amplitude of the disturbance, AUmax, 

should be sufficient to supply all the kinetic energy of the large 

eddy size since the turbulent kinetic energy equation (equation 

(1.5))shows that the energy is initially supplied to the 

streamwise component. Thus, using (2.51) for uL: 

AU2 
X/2 

- kLmu2 (3.13) 
Ma L 

and: 

AU 
Max 

a (21/2)uL (3.14) 

so that the r. m. s value of the fluctuation is equal to uL. If the 
turbulence is intermittent then the fluctuation should have r. m. s. 
value nu. LL 

If the boundary layer has not occupied the full flow depth 
then we can define the free-stream velocity as Uo so that the bulk 
velocity, UU, within the boundary layer caused by the production 
process should be: 
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U (3.15) baU0 
nLUL 

If the turbulence is significantly developed, and especially 
if the boundary layer has grown to occupy the full depth of the 
flow, then the requirements of continuity dictate that a 
streamwise succession of eddies L should show similar fluctuations 
in Ub over a distance equal to UMtL indicating that approximately 
UmtL/L successive eddies will be at significantly correlated 

stages of their history. It will be shown in the next section that 

a significant spectral peak is found at a frequency equal to l/tL 

and of energy uL2. 

Derivation of the mean velocity profile. 
The mean flow does not exist as a separate entity from the 

turbulence and when measured by a fixed sensor is the time average 
of the velocities caused by the eddies passing that point 
superimposed on the bulk flow Ub. Since this cannot be measured 
until the mean profile is known, the most convenient velocity on 
which to base the derivation is the mean surface velocity, U0. A 
discrete cascade of eddies is assumed, with the largest eddies 
having size L and intermittency nL. A fixed eulerian sensor is 

situated at height h from the bottom boundary. 

For an eddy size P to disturb the vortical surface layer it 

must be in contact with it. It can exchange vorticity or momentum 
to a distance e from the boundary during its lifetime since uItt 
is equal to Q. The transported property may become part of the 

eddy, altering its characteristics, or may exist separately from 
the eddy which has disturbed the vortical layer. Here it is 

considered that such an eddy assumes different characteristics 
when in contact with the bottom, which simplifies the formulation. 

Let it be assumed that each eddy size in the dissipative 
cascade is equally likely to disturb fluid from the vortical layer 
at the boundary. Further, let it be assumed, crudely, that the 
disturbed low momentum fluid is instantaneously mixed throughout 
the eddy. The probability that a packet will be transported to a 
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distance greater than h from the surface, P(h), is then given by: 

P (h) = number of eddy sizes greater than h (3.16) 

total number of eddy sizes 

If the smallest eddy size in the dissipation cascade is 

defined as A. then we can define the largest size L as: 

La CN A (3.17) 

where N is an integer. By defining N in this fashion the cascade 

contains N+l distinct eddy sizes including the smallest at A. It 

will be shown that the value of N is an important parameter in 

characterising the boundary layer. Since logC z1 we can write: 

N log (L/A) (3.18a) 

If the sensor height, h, is chosen so that: 

C"A=h (3.19) 

then there are n+l eddy sizes smaller than h and (N-(n+l)) sizes 

greater than h. Putting these numbers into (3.16) gives: 

P(h) - (N-(n+1))/N (3.18b) 

The fluid packets carrying the momentum defect originate at 
the boundary where they are effectively stationary compared to U0. 
Thus on average we should expect the momentum exchange by the 

eddies to give a profile of the form: 

U (h) = U0 - U0 (N- (n+1)) /N (3.20) 

Since the eddies smaller than L extend to a distance L/C from the 
boundary, the surface velocity should extend down to h=L/C. 
Equation (3.20) gives, for h= L/C and n- N-1: 

U (L/C) = Uo - U0 (N- (N-1+1)) /N = U0 (3.21) 
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as expected. The velocity at h=A is given by: 

U (1) = U0 - U0 (N-1) IN = U0/N (3.22) 

This mean profile is stepped since (3.20) has only been 

calculated at discrete values of h and is illustrated in Figure 6. 

Near the bed when the discrete values of h are closely spaced the 

profile will appear logarithmic. From (3.19): 

n= log (h/a) (3.23) 

then using (3.18a) : 

(N-n+l) = log(L/h) +1 (3.24) 

so that (3.20) can be rewritten as: 

U (h) = Uo - (Uo/N) log (L/h) + U0/N (3.25) 

which is the profile in the velocity defect form (Tennekes and 

Lumley, 1972). Using equation (3.22) this may be written as: 

U (h) _ (Uo/N) log (h/A) + Uo/N (3.26) 

which is in the familiar logarithmic form. The criterion that h 

should be small is as given by Tennekes and Lumley (1972) who 

predict a logarithmic profile on dimensional grounds if L»h and 
huL » v, the latter condition being always valid in the sea where 

v is very small. A mean velocity profile of logarithmic form is 

usually found in the sea near the bed (Soulsby, 1983) and in the 

laboratory (Anwar, 1981). 

The mean value of the velocity profile, Um, is found by 
integrating (3.25) and is given by: 

Ufi = Uo - Uo/N (3.27) 

which is found at a height L/C or 0.353L. Prandle (1982) has found 
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from experiments in the sea that the mean velocity is measured at 

approximately 0.4 of the depth when the boundary layer has reached 
the surface. Since we are associating the mean profile with the 

production process we can equate (3.15) and (3.27) to write: 

U0/N = nLUL 

and the mean profile (3.26) as: 

(3.28) 

U (h) =nLuL log h/A +nLuL (3.29) 

Two formulae which are immediately derived from the above 

are, using (2.41) and (3.28) : 

UL = Uo/n N- c1/3L1/3 

so that using uLtL = L: 

C= U03 /n3N3L (3.30) 

nLNL =U0tL (3.31) 

Noting that each eddy size touching the bottom contributes an 

extra velocity defect over the sizes larger than it equal to nLULI 
it is a straight-forward proposition to generate a smooth profile 
by assuming that within each size the defect is distributed 
linearly. Writing the extra defect in a size t as: 

Aue (h) = (1-h/f) nLuL (3.32) 

when f>h. This models the fact that an eddy size t can only mix 
low momentum fluid a maximum distance t from the boundary during 
its lifetime t Summing over the sizes greater than h gives the 
profile: 

U (h) =nLuL log h/A + 1.5 nLuLh/L +nLuL (3.33) 

This profile is shown in Figure 7 together with the stepped 
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profile (equation (3.20)). It may be seen that both profiles are 
similar in the bottom half of the flow. In Chapter 7 an equation 

similar to (3.33) will be shown to accurately model the mean 

profile found at sea when the parameters nL and c are known. 

The smallest eddy size. 
The smallest eddy size, A, may be identified with the 

Kolmogorov dissipation scale and is given by (Tennekes and Lumley, 

1972) : 

(v3/c) 1/4 

This is the only length scale which is of 

magnitude as the values of the roughness le 

Heathershaw (1979) and Soulsby (1983) f 

(approximately 0.03 cm). No other derivations 

to those found in the sea in these conditions. 

Using (3.30) and (3.34) gives: 

a4 = N3n3v3L/Uö 

so that using (3.17) we obtain: 

IlLN C4N/3 = U0L/v 

which is the Reynolds number. Taking typical values as: 

Lý30m 

Uo= 1 m/s for nL=1 

v-0.014 cm2/s 

gives: 

(3.35) 

(3.36) 

N= 11 (3.37) 
If the bed is rippled or strewn with substantial obstacles 

(3.34) 

the same order of 

igth, z0, given by 

r unrippled beds 

give results close 
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then the value of zo is dependent on the ripple wavelength or 

obstacle separation. Soulsby (1983) gives proscriptions from 

several workers if the bed structure is known. These suggest that 

z0 may be an order of magnitude larger in some conditions (0.3 - 
0.6 cm), equivalent to a change of 2 in the value of N. For all 
the results given by Heathershaw (1979) the value of N lies 

between 7 and 15 and the mean value of N= 11 agrees well with zo 

=A for the experiments where he has published the values of c. 

A length scale which may be more applicable to rippled or 

very rough beds, Al, can be derived from (3.22) and (3.28): 

U(X') = U0/N = nLUL (3.38) 

If the vorticity between h-0 and h-A is primarily 

cross-stream, then from the definition of e, (2.43) gives: 

e= vuL/7º' 2 (3.39) 

and: 

At = (VtL) 1/2 (3.40) 

which is the diffusion distance related to large eddy lifetime. 

With typical values of c, v and L, A' is 1-2 cm. 

A useful result is that taking mean velocity measurements at 
two heights, h1 and h2 and substituting into (3.33) : 

U (hl) = nLuL (log (hI/A) + (1.5h1/L) + 1) (3.41) 

U (h2) =nLuL (log (h2/a) + (1.5h2/L) + 1) (3.42) 

so that eliminating nLu: 
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h 
i1 =2 

U (h2) 
(log 

(hl /h2) + (1.5 (hl-h2) /L)) 
- 1.5h2 1 

eXP l 
U1 -U 2L 

(3.43) 

an equation which allows the calculation of A when other 

parameters are unknown. An increase in A implies that if the true 

value of A varies only with bottom conditions then L has 

decreased. This result, which does not invoke the intermittency 

nL, will be useful in analysing the results given' in Chapter 7 

where the boundary layer development is examined over a tidal 

cycle. 

We are now in a position to consider Yalin's result (Yalin 

(1977), see Introduction) that the wavelength of sand-dunes 
generated by turbulence is between 2n and 20 times the water 
depth. We would expect particles which are being transported by 

the large eddies occupying the whole depth to travel approximately 
ötL if they are suspended when the eddy is formed and settle when 
it breaks down. Equation (3.31) with nL equal to 1 (since no 
transport will occur if the eddy is not there): 

NL =U0tL (3.44) 

shows that the wavelength should be approximated by NL. The mean 
(11) and spread (7 - 15) for N derived from Heathershaw's (1979) 

results agree well with Yalin's sand-dune wavelength distribution 

of 2n <N< 20. 

Reynolds stress. 
The average level of Reynolds stress near the bed is defined 

in the literature as pu*2, where u* is the friction velocity. It 
is found to be roughly constant near the bed outside the vortical 
layer at the boundary (Soulsby, 1983). The Reynolds stresses are 
associated with the anisotropic eddies, those affected by the 
bottom which are creating the mean velocity profile. The 

67 



contribution to the averaged Reynolds stress from an eddy size e 

must be proportional to the product of the averaged eddy velocity 
components which make up the correlation. Using u*2(@) for the 

stress in an eddy size we can see that it must be proportional to 
the product of the streamwise velocity defect nLUL (which is the 

same for each eddy size) and the mean vertical transport velocity 

within the size which is proportional to nLue. Thus: 

u*2 (e) a n2uL ue (3.45) 

L 

and taking the constant of proportionality to be independent of 

eddy size, then summing as before over all the sizes greater than 
h: 

u*2 (h) = f3 n2 (uL-uLUh) (3.46) 

so that the stress is zero at L as we would expect. If h«L 

then: 

u*Z = ßn2u2 
LL (3.47) 

which is independent of h. Thus a constant stress layer will be 
found near the bottom of a geophysical flow. The model implies 
that the measured stress is proportional to the turbulent kinetic 

energy. Heathershaw (1979) states that over a wide range of 
conditions, the stress and measured turbulent kinetic energy, q, 
are related by: 

u*2 0.2 q (3.48) 

so that using (2.66): 

u*2z. 0.3 nL uL (3.49) 

Equations (3.47) and (3.49) indicate that the value of ß is 
approximately 0.3. Soulsby (1983) reported that on average, and 
under widely varying conditions the quadratic friction law holds 
so that: 
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u*2z 0.0025 Uö (3.50) 

For fixed L, (3.31) and (3.34) imply that if c is constant then nL 
is proportional to U0, so that u* is proportional to U. (equation 
(3.49)). Equation (3.48) can also be true if the turbulence is 

fully developed. It may be that the intermittency accounts for the 

wide scatter reported when measuring the Reynolds stress (Soulsby, 

1983). 

The mean velocity profile is normally characterised by u*/K 

where K is Von Karman's constant. Equating the two formulations 

for the log profile (equation (3.29)) : 

u*/K -nLuL 

and substituting (3.50) into (3.49) gives: 

K 5e (0.3) 1/2 
-- 0.5 

Von Karman's constant is found to be approximately 0.4 
friction velocity is fitted to logarithmic profiles 

(3.51) 

when the 

measured in 

the sea (Soulsby, 1983). Equating (3.49) and (3.50) gives: 

0.0025 U2 0.3 fl u2 (3.52) 

so that (3.28) gives: 

N 11 (3.53) 

The production term in the tubulence kinetic energy equation, 
(1.5), is given by u*28U/8y for a two dimensional boundary layer. 
The mean shear (8U/ey)h between h/C and h in the mean profile 
(3.33) is given by: 

L 
(3U/ay) 

h°1.5nLUL/L f' nLuL/h z 1.5 nLUL/L f nLUL/ (C-1) h 
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so that using (3.47) for the Reynolds stress with (3 = 0.3, summing 

over all sizes with nL =1 and equating production to dissipation 

gives: 

0.3 (u 2L 
- ui h) 

((uL/((C_1)h)+(1.5uL/L))h(1_1/C) Le (354) 

so that using (2.52) for c: 

0.1 ((N+1) -2.62) =1 (3.55) 

and : 

; zz 11 (3.56) N 

Direct substitution of (3.38) into the logarithmic profile gives: 

u*2 = const. uL h BU/8h (3.57) 

which is the Prantle-Kolmogorov expression for the Reynolds stress 

near a wall (equation (1.9)). Substituting again gives: 

u*2 = const. h2(aü/ah)2 (3.58) 

which is equivalent to the mixing length formulation (equation 

(1.7)). 

A crude model of the bursting sequence. 
We have shown that a smooth logarithmic profile (equation 

(3.33)) can be generated by the dissipation cascade of eddies if 

each size is assumed to have a linear velocity defect given by 

(3.32) additional to the defect induced by sizes larger than 
itself when the eddies are touching the bottom. Recalling: 

Au (h) - (1-h/t) nLu (3.32) 

U (h) = nLuL log h/l + 1.5 nLuLh/L +nyuL (3.33) 
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This is equivalent to each size containing an extra mean 

cross-stream vorticity equal to u/C. The production event takes 

place in tL/nL. Since the dissipative cascade only lasts for tL we 
shall initially assume that the production event takes place in tL 

and ignore the intermittency. 

The average extra vorticity associated with an eddy size f 

touching the bottom is uL/C, and the maximum vorticity that such 

an eddy can support is Uo/t (since the mean profile cannot be 

negative). Therefore the production event may be modelled as a 
sequence of N profiles, each lasting tL/N, and each reflecting a 
different eddy size ti which is carrying vorticity U0/ei. Since, 

using (3.28) : 

tL (uLIC) _ (tL/N) (NuL/Q) = (tLIN) (U0/e) (3.59) 

the average extra vorticity in each size is retained. The profile 
sequence is, for N profiles U1(h) each lasting tL/N: 

Ui (h) __ (U0h/Ci) h< 11 

m (U0) h> Q1 

ti =CiA 

i-1 .ºN (3.60) 

The intermittency is now included by assuming that each step takes 
tL/NnL so that the process is complete in the correct production 
time. Integrating over the sequence of increasing sizes over time 
gives the mean profile: 

U (h) - nLuLlog h/A + 1.5 nLuLh/L + 0.5nLuL (3.61) 

which is very similar to (3.33). 

The crude model of the bursting sequence simulates the time 
variation of the velocity profile at a fixed point. If the eddies 
are essentially cubic and pass the point in approximately L/Uo 
then since we have derived (equation (3.31)): 
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rýLNL eU0tL (3.31) 

each eddy will pass the measuring point in time: 

tpassage = L/U = tL/NnL (3.62) 
0 

so that each time interval in this model is equal to the 
individual eddy passage time. Modelling the bursting event as a 
sequence reflects the earlier result that a sequence of N eddies 
should be at co-ordinated stages of their lifetimes because of 

continuity. Such a group would give the correct mean velocity 
profile and reflect the production process into frequency spectra 
at a frequency of l/tL. It is the contention of Chapters 5-7 
that this is indeed the case. 

The, variation of intermittency with bulk velocity. 
The following equations are repeated from this chapter for 

ease of reference: 

Uo/N = nLuL 

e Uö/n3N3L 

ü (h) =nLuL log h/1+ 1.5n 
LuL 

h/L + ALuL 

_ (v 3/C) 1/4 

nLN C4N/3 = U0L/v 

(3.28) 

(3.30) 

(3.33) 

(3.34) 

(3.36) 

These equations simplify to a closed set if it is assumed that at 
some velocity, U1, nL is equal to 1 and that below this velocity 
nL varies linearly with current speed as implied by (3.49) and 
(3.50). Writing: 

nL `ý 0/U1 (3.63) 

then if nL can be determined and plotted against U0 the value of 
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U1 can be found (such a plot would verify (3.63)). Rewriting 

(3.36) using (3.63) : 

N C4N/3 = U1L/v (3.64) 

which implies that if the turbulent boundary layer has grown to 

fill the whole depth so that L is known, then N is constant below 

UV This implies, from (3.28) and (3.30) which can be written as: 

U1 IN =uL (3.65) 

e Ui/N3L (3.66) 

that the dissipation rate is also a constant. 

Forced turbulence. 

If the velocity exceeds the critical value U1, the 

turbulence, already being fully developed and still being 

constrained by the flow boundaries, can only change by an 

alteration in the value of c. Tennekes and Lumley (1972) reported 
that in laboratory experiments where L is constant an increase in 

Reynolds number decreases the size of the smallest eddies so that 

we would expect A to decrease and N to increase. Writing (3.34) 

and (3.66) for these conditions: 

A= (v3/c) 1/4 
(3.66) 

ea U3/N3L (3.67) 

shows that to find c the following equation has to be solved 

numerically: 

log (Le114/v3/4) = v/C1/3L1/3 (3.68) 

It is clear that an increase in U at constant L causes an increase 
in the dissipation rate and a decrease in a. Figure 8 shows the 

expected variation of the velocity profile for La 30 m and ca 23 0.29 cm /s (which result in N= 11 and Ul s 105 cm/s) for three 
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velocities up to Ul - 105 cm/s, and for 5U1 for the same inputs. 

A model for intermittent turbulence. 

The following model is proposed: 

a. Below a critical velocity UI the energy dissipation rate is 

constant and the large eddy intermittency is proportional to the 

current speed. 

b. The velocity profile is given by (3.33) with a value of N 

approximately equal to 11, the model roughness length A being 

close to the dissipation scale over a flat bed. 

c. The eddies should exhibit group behaviour because of continuity 
and the effect of the production process on the bulk flow. This 
grouping may vary with intermittency. When the turbulence is fully 
developed a sequence of NL large eddies should show related 
behaviour. 

The remainder of this thesis is concerned with testing these 
model propositions against spectral evidence and direct 
measurement made at sea. Turbulent spectra are a useful tool for 
establishing the value of the energy dissipation rate, c, and are 
discussed in the next chapter. 
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CHAPTER 4 TURBULENT SPECTRA 

Wave number spectra 

Tennekes and Lumley (1972) showed that the energy 
contribution from each eddy size to a true one dimensional wave 
number spectrum of a field of spatially discrete and intermittent 

eddies would be associated with a wave number, k, such that: 

k- 2n/e (4.1) 

and that if the magnitude of the spectral estimate at k is 01(k) 
then the energy associated with a discrete disturbance whose size 
is I will be found within a spectral band of width k centred on k. 
This is because the fourier transform of a narrow band around k is 

a wave of wavelength 2n/k with an envelope whose width is the 
inverse of the bandwidth. The mean energy contribution from each 
size is given by nfke since: 

nek, = (1/L) (L/E) (nt) (kee) (4.2) 

(1) (2) (3) (4) 

the individual terms being: 

(1) The averaging term over the record length L 
(2) The number of discrete sites t in the record 
(3) The probability that a site is active 
(4) The 1D energy contribution from each site 

Substituting (4.1) into (4.2), using (2.41), and associating the 
mean energy per size with the energy in the spectrum at that wave 
number kP (k) : 

klP 
l 

(k) =nkkk= nke2/3 (2Tr/k) 2/3 (4.3) 

41(k) - 3.4 nk c2/3k-5/3 (4.4) 

The energy cascade proposed in Chapter 2 is characterised by 
all the eddy sizes smaller than the largest having the same 
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intermittency, equal to nL/2. Such a cascade would exhibit the 

k513 dependence throughout the range of wave numbers higher than 

the peak: 
0 (k) - 1.7 nLE2/3k 

3/3 (4.5) 

This result for the one dimensional wave-number spectrum is of the 

same form as (1.13) which was derived from Batchelor's result for 

the three dimensional wave-number spectrum in the inertial 

subrange (equation (1.12)) and the assumption that the turbulence 

is isotropic in that range. Here the formulation is derived 

without regard to isotropy or the conditions under which the 

inertial subrange is expected to exist. 

If the spectrum is sharply cut off by the outer flow 

parameters so that the peak is at a wave number, kL given by: 

kL = 2n/L (4.6) 

then using equation (2.41): 

0 

01(k) dk 0.74 nLuL (4.7) 

k 
L 

and the mean square measured turbulent velocity is directly 

proportional to the kinetic energy density of the energy 

containing eddies. 

Surface spectra 
Woods (1975a) reported that two dimensional wave number 

spectra of horizontal temperature variance which have been 

directly measured at the sea surface exhibit a k-2 trend. if, as 
he suggests (see Introduction) the distribution of temperature 

variance reflects the spatial distribution of the eddies, then we 

can write immediately: 

ký2 (k) at (4.8) 
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so that using (4.6) : 

02 (k) a ký2 (4.9) 

Frequency spectra 

Tennekes and Lumley (1972) show a direct equivalence between 

the frequency and wave number spectra of a property, thus: 

CO1(a-) = kcl (k) (4.10) 

where 0(c) is the frequency spectral estimate at frequency a. This 

relationship is used to transform time records taken at a point 
into wave number spectra using Taylor's Hypothesis (Heathershaw, 

1979). In this transformation the wave number is related to the 

frequency by: 

k= `2i r/U (4.11) 

where U is the mean velocity at the point of recording. For 

equivalence with equation (4.1) the frequency must be associated 

with the eddy passage time. Equating (4.1) and (4.11): 

k- WE - 2iro /U 

so that: 

a. = U/E (4.12) 

The eddy passage time, t, being given by: 
pasaag. 

tpa.. 
ag. = @/U (4.13) 

We should therefore expect to see a rsý3 dependence in the 
frequency spectrum which is then transformed directly into the 
k-5/3 wave number spectrum when Taylor's hypothesis is valid. If 
the spectrum is cut-off by the outer flow parameters then the peak 
frequency, a-p, will be given by: 
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Pp - U/L (4.14) 

and the 0.5"3 dependence will be seen at higher frequencies than 

0'. P 

if it were possible to measure a spectrum so that the energy 
in a particular eddy size was associated with a frequency related 

to the eddy lifetime, te, so that: 

a= 1/tt (4.15) 

then, calling this spectrum 4(v), and using (4.3), (4.10) and 
(4.14) : 

r (c') -4 (v) /t1 - nk, 

so that: 

4(a) = nEkete (4.16) 

We can now use (2.41) and (2.42) to give: 

ý (P) ri ct2 (4.17) 

so that resubstituting for a using (4.15), and putting ne equal to 

nL/2 as before, this spectrum has the form: 

ý(o) 0.5nLe 0' (4.18) 

This is the form predicted by Tennekes and Lumley (1972) and 
described in Chapter 1. If this spectrum is cut-off by the outer 
flow parameters then the peak should be at a frequency, mot, given 
by: 

a't = 1/t 
L (4.19) 

OZ and the dependence should be seen above that frequency. 
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The peak frequencies aP and ct are related by: 

o' /a' = Ut L 
/L (4.20) 

pt 

Substituting (3.26): 

niNL = UotL (4 . 21) 

into (4.20) gives: 

crp/o't =nL NU/U 0 (4.22) 

If the turbulence is well developed (4.22) can be approximated by: 

rpz No- 
t 

(4.23) 

We have seen in the previous chapter that in a boundary 
layer energy is expected to exist at frequencies equivalent to 
1/te due to the production process. If the time spectral estimate 
at a- t 

is equal to 4P then the time spectral estimate at a, t 
is 

given approximately by (4.18) and (4.23): 

4 (tr 
t) As + IN2 (4.24) 

and with N approximately equal to 11 we should expect the time 

spectrum, 4, to be greatly reduced before the passage time 

spectrum, 0, is measured. We should expect, therefore, to see a 

spectrum from the bottom boundary layer having two distinct peaks. 
This will happen if the energy in a particular eddy size is 

divided equally between the 4' and spectra since in that 

circumstance: 

a'tý (0't) - a'p0 (o'p) (4.25) 

and (4.23) gives: 

(a-t) NO (a't) (4.26) 
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so that from (4.24): 

ý (Pt) 0 (Pt) IN (4.27) 

The lack of previous reporting of the time spectra, 4(c), can 
be explained by considering some published results. Figure 9 shows 

two figures taken from Heathershaw (1979). The top figure (Figure 

9(a)) shows a typical analogue record in which the u signal shows 

a clear variation about the mean with a period of about 300 

seconds. The lower figure (Figure 9(b)) gives his derived spectra, 

the lowest wave number of which (approximately 0.002 cm'') 

corresponds to a period of 60 seconds at a mean velocity of 50 

cm/s. Figure 10 is taken from Bowden and Ferguson (1980). Figure 

10(a) showing analogue records where the u component displays a 

clear 9 minute periodicity. Figure 10(b) shows the resulting 
spectra in which the minimum wave number equates to an 80 second 
period. It seems likely that in both cases the systematic 

variation in the u component shown in Figures 9(a) and 10(a) were 

removed as a linear trend in the data since each record length was 
only slightly longer than the fundamental period. 

Surface layer similarity scaling 
Many spectra have been measured near the sea bed in marine 

boundary layers. These are reported in detail in monographs by 

Soulsby (1983) and Heathershaw (1979). In his original paper 
(Soulsby, 1977), Soulsby reported that spectra calculated over a 

wide range of wave numbers, with reasonably tight confidence 
limits, together with spectra from other authors and atmospheric 
results, collapsed to a universal form when scaled with variance 
and measuring height, h, thus: 

klý (k) 
v. kh 

fw-t (k) dk 
0 

collapsed the spectra irrespective of the value of c (since 

atmospheric spectra also collapse). The spectra were ensemble 
averaged one dimensional velocity spectra. Heathershaw (1979) 
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commented that this scaling appears to undermine the similarity 
scaling (which should be with u*) and the assumptions which go 
with it. An inertial subrange (i. e. a k-5'3 dependance in the 

spectra) could be discerned at higher wave numbers although the 
Reynold's numbers were less than those at which an inertial 

subrange should exist. The scaling must be examined for its 

significance since it implies some universality of structure. It 

should be noted that the scaling is not as successful in 

laboratory flows (Anwar, 1981) where better collapse is achieved 
by scaling with flume depth. Figure 11 is taken from Soulsby 
(1983) and illustrates the scaling. 

To begin to explain the scaling the collapse of the spectral 
peaks is considered first. If the spectrum is sharply cut-off by 

the outer flow parameters and displays a power law dependence at 
higher wave numbers, so that using (4.4): 

(k) =A c2/3k-5/3 k>kp (4.28) 

0 (k) =0k<k 
p 

where A is a constant. At the peak the spectral estimate, O(k) is 

given by: 

0 (k 
p) 

=A E2/3 p-5/3 (4.29) 

so that: 

p$ (k )=Ae 2/3kp-2/3 (4.30) 
p 

The integral under such a spectrum is given by: 

f'o 
iP(k) dk = (3/2)A E2/3kp 

2/3 (4.31) 
k 

P 

Thus: 
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kp0(kp) 
2/3 

(4.32) 

f'o 0 (k) dk 
0 

irrespective of the value of A or of c. The published spectra 

scaled under surface layer similarity scaling collapse to 

approximately 1/2 this value indicating that about half the 

spectral energy lies below the peak. 

To explain the scaling completely it is necessary to 

investigate the fact that the peak wave numbers collapse with the 

sensor height. We have seen that these spectra are associated with 
the eddy passage times and peak at a frequency given by (4.14). 

Using (4.11) to convert to peak wave number we achieve: 

k= 2n/L (4.33) 
P 

implying that the non-dimensional peak, k*, should be located at: 
P 

k* =k h= 2nh/L 
Pp 

(4.34) 

which at first sight cannot be constant since there is no 
interdependence between the sensor height, h, and the boundary 
layer thickness L. After detailed analysis, Soulsby (1983) 

recognised that the value of k* increases with sensor height as we 
P 

would expect from equation (4.34). It appears that two phenomena 

contribute to the collapse of k*. The first is that, at least in 
P 

the marine records, the ratio of the sensor height to boundary 
layer depth all fall within a small band on the logarithmic kh 

scale. For all the marine spectra calculated by Soulsby (1983), 

Heathershaw (1979) and Bowden and Ferguson (1980) the value of the 

ratio falls in the band: 

0.06 < h/L < 0.1 (4.35) 

when the boundary layer depth is defined as the water depth at the 

measuring point. Using (4.34): 
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0.37 <kP<0.62 (4.36) 

which is well within the range of values over which the spectral 

peaks lie as may be seen in Figure 11. 

The second point of interest is that k* for the vertical 

velocity spectra is about ten times the value for the horizontal 

peak. It is likely that the vertical component is reflecting more 

of the fine scale structure of each eddy as it passes than the 

horizontalA since it is less constrained by continuity. If this 

is so then we might expect the peak wave numbers to be related by 

an equation similar to (4.23). Substituting (4.11) into (4.23) 

and (4.34) gives: 

(k*) su N(k*) (4.37) 
p passage time p eddy lifetime 

and substituting N= 11 (as found in the previous chapter) into 

(4.37) would explain the observed spectral shift. 

Spectral ratios. 
In order to examine isotropy, Bowden and Ferguson (1980) 

calculated spectral ratios from 3000 spectral estimates for the 

inertial subrange and plotted "w(k)/t 
u 

(k) against kh where h was 

again the sensor height. Within the scatter the ratio increased 

linearly from 1 to 1.33 as kh increased to 2n and then remained 

at 1.33 indicating that the turbulence was isotropic above that 

wave number. At kh - 2n, (4.1) gives: 

kh = 2nh/@ > 2n (4.38) 

so that for the turbulence to appear isotropic: 

h>Q (4.39) 

This equation is eqivalent to the condition used to calculate the 
mean velocity profile from the passing eddy structure; namely that 
only the eddies of a particular size which were in contact with 
the bottom would be anisotropic, and that these eddies would only 
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be detected 'if the eddy size was greater than sensor height 
(otherwise they would pass beneath the sensor). 

The discrete eddy cascade model has been shown to be 

consistent with the turbulent spectra found in the sea. It is 

shown below that by using current meters, frequency spectra which 
reflect the production process can be resolved and related to the 

model. It is also shown that if the fourier components associated 
with a particular eddy size are isolated, then the discrete nature 
of the eddy cascade is revealed. 
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CHAPTER 5. DESCRIPTION OF A CURRENT METER EXPERIMENT 

A current meter experiment was carried out in the North Sea 

in August 1989 using the facilities of the Warren Spring 

Laboratory, Stevenage. The aim of the experiment was to collect 
detailed current data over several tidal cycles in two locations 

using two arrays of three current meters suspended vertically at 

varying separations. In the event, bad weather and instrumentation 

failure curtailed the experiment, fortunately without detriment to 

the major results. 

The experiment was carried out from the SEASPRING a 194.5 

foot converted sewage vessel at anchor 15 miles to the east of 

Felixtowe at 510 57.31' N, 1° 46.06' E in about 30 m of water over 

a flat sandy bottom (the variation in chart depth is 3m in 1000 

m), fixed by Decca and bearings on the Shipwash light. The tidal 

streams in the area had been previously measured (Elliott, 1986). 

The experiment can be conveniently divided into two parts. 
The first part was conducted overnight on the second of August 

with both arrays of current meters deployed from the anchored 
SEASPRING. The current meter deployment is shown in Figure 12. One 

set of current meters were always deployed from SEASPRING and are 
hereafter described as the fixed set. The meters which recorded 

successfully were suspended at depths of 10 m and 22 m below the 

surface from a derrick on the starboard side. In this part of the 

experiment the second set of current meters, called hereafter the 

moving set, was suspended overnight from a crane on the port side, 

separated laterally at a distance of 20 m and longditudinally by 5 

in. In the moving set only one meter functioned correctly. 
Fortunately this was a meter suspended at 22 in, allowing direct 

comparison with the bottom fixed meter. The top fixed and bottom 

moving current meters were DNC-2B meters constructed by NBA 
(Controls) Ltd and record current by propeller revolution count 
and direction by internal compass. 

The bottom meter of the fixed array was a DNC 2M meter, 
similar to the above but with a slightly different fin geometry 
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and capable of measuring temperature, salinity and conductivity as 

well as speed and direction. The meters were calibrated by the 

manufacturers in preparation for the experiment and set-up in 

accordance with the handbooks. The data recording rate (the meters 

record digitally onto magnetic tape) was set at the minimum 
interval of 15 s and the scaling factor selected such that the 

meters would record accurately at well above the predicted maximum 

water velocity. All the meters were started at the same time at 

0850 on the 2nd August and ran throughout the experiment until 

switched off at 1308 on the 3rd. It is not known what caused two 

meters to be defective although rough handling in poor weather 

conditions 30 miles further out to sea on the 2nd was probably the 

most significant factor. An AML salinometer was used to measure 

salinity profiles at slack water, it not being possible to take 

readings when the current was running fast, and the readings from 

this equipment and the DNC-2M meter confirmed that the tidal 

stream was unstratified throughout the whole experimental period. 

The second part of the experiment was conducted during the 

morning of the 3rd August. The moving array of meters was detached 

from SEASPRING and suspended (at the same depth below the surface) 
from a 13 m utility vessel called SEATRUCK. Simultaneous readings 

were then taken from fixed and moving arrays at grid positions as 

shown in Figure 12 while the tide was flooding (the flood being 

when the water level was rising). The sampling time at each 

position was chosen to be between 15 and 25 minutes so that as 

much detail as possible could be recorded without the weather and 
tidal conditions changing significantly over the period during 

which the different stations were sampled. 

Overnight on the 2/3rd August and during the second part of 
the experiment there was little wind and no wind-generated waves. 
There was a slight residual swell overnight which decreased as the 

second experiment progressed. The only effect of this was to cause 
SEASPRING to roll and pitch at a frequency of 0.2 Hz, a frequency 

which as will be seen in the results is far removed from that of 
the turbulence. Further the maximum vertical displacement of the 
meters at their suspension points was 0.6 in, a quantity which was 
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much smaller than any systematic motion from the different 

suspension mechanisms. 

The ship was anchored with 120 m of cable and had only 2m of 
draft making it very unlikely that the current meter readings 

would be influenced by the presence of the ship or by its wake 

although the actual measuring position could be expected to vary 

slowly as the ship swung at anchor. The hardest problem was to 

accurately and consistently position SEATRUCK relative to 

SEASPRING during Part 2 of the experiment. This was achieved by 

running a light, buoyant line between the vessels, the line being 

marked at 20 m intervals. SEATRUCK's outboard was used to maintain 
line tension and position when the lateral stations were being 

measured. Astern the current was such that the measuring line 

remained taut although there was some lateral swing about the mean 

current bearing at the 20 m and 40 m stations. 

To check the surface current and -relative diffusion 

coefficients, dye patches were released from the stern of 
SEASPRING at each astern measuring station and their spreading and 
transport time measured. This sequence of dye releases was 

recorded on video film to aid later analysis. The current meters 

recorded the total number of turns of the propeller in each 15 

second sampling interval. The specified accuracy is +/- 2% above 
3.1 cm/s. When the tidal stream reversed at slack water the ship 

was swinging at its anchor but this minimum restriction is 

unimportant since readings in these periods were not used. 

Direction was recorded using a magnetic compass at each 15 a 

sampling interval. This was an instantaneous reading and not an 
average over the interval as the current reading was. The 

specified resolution is 2°. The clock accuracy was +/- 2sa day. 

At maximum current the angle made between the suspension wire 
and the vertical reached 12° - 15°. This would imply a maximum of 
0.7 m variation in bottom meter depth below the surface and a 
maximum streamwise displacement of 6m since the bottom meters 
were suspended on 22 m of wire. The top fixed meter was suspended 
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on 10 m of wire so the maximum streamwise separation between the 
two meters should have been less than 3m since a very heavy 

weight was attached to the bottom of the array. Finally, although 
the compasses were calibrated, the data processing recognised that 

systematic errors in direction measurement could exist between 

meters. 

The data were recovered from the meters on magnetic tape and 

processed on a Hewlett Packard PC using software supplied by NBA 

(Controls) Ltd and validated by their test program to convert the 

recorded signals to ASCII format. At a sampling interval of 15 s 

and a record length of 27.5 hours there was a considerable 

quantity of data. The data was time-matched and then transferred 

to the PRIME 9955 Mark 2 mini computer in the Department of 
Nuclear Science and Technology, Royal Naval College Greenwich, 
for processing. The records were compared to check that the 

transfer had been completed without corruption and split into 

separate files for access by the data handling program. In 

particular each file was checked for notable features (such as 

zero readings when the meters were removed from the water) to 

ensure that the time matching was correct. 

Two data handling processes were fundamental to all the 

subsequent results and their interpretation. First the current and 
direction readings had to be converted to streamwise and 
cross-stream (u and v) components. The vertical velocity component 
was not measured. It is possible for a component of the vertical 
velocity to contribute to the other components if the current 
meter angle of attack varied in the vertical plane. For this 

reason the coherence between the derived u and v components was 
calculated. 

Secondly a representative mean value had to be chosen from 
each signal so that the fluctuating signal could be extracted and 
processed. The raw data consisted of a current averaged over the 
sampling interval, R, and a direction, 0, measured at each 
interval. Taking these as the raw data the following simple 
algorith was used to produce u and v velocity components. First 0 
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was smoothed'(smoothing is discussed below) to produce a mean, and 
this was subtracted from the raw direction signal to achieve a 
fluctuating angle, i', with a zero mean. The fluctuating angle, 

o', is therefore a direction relative to the tidal stream. All 

smoothing processes induce numerical diffusion and the fact that a 

satisfactory mean value had been achieved was checked by computing 

rms fluctuation values at discrete (short) intervals and by 

comparing the mean with the lowest frequency components of a Fast 

Fourier Transform of the signal. 

The data were then processed using the following simple 

algorithms to give u and v, the streamwise and cross-stream 

velocity fluctuations: 

t' is averaged over the interval 

v=Rs in, 3' 

UR cosO' 

where U is the total streamwise velocity, fluctuating around its 

mean U: 

U=Ü+u 

and the U signal was smoothed again (and checked as above) to find 

a mean, Ü and this then subtracted to produce u. J is taken as the 

mean streamwise velocity at that current meter. This algorithm, 
although simple, balances the forces against the current meter 
fins while assuming the meter to be in the steady state over the 

averaging interval. No better algorithm is recommended by the 

manufacturer or has been used in the literature. 

The data was non-stationary in every respect. The mean 
streamwise velocity varied with time, the mean square value of the 
fluctuating components varied with time and the frequency 
structure was also time varying. This made the data very difficult 
to handle as there is no totally satisfactory algorithm which can 
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handle all types of non-stationary situation, primarily because 

the very nature of the non-stationarity is the first unknown. The 

subject is well reviewed in the last chapter of Bendat and Piersol 

(1971). It is only possible to sensibly process the data into 

usable form and clearly compare and report the effects of the 

mathematical techniques used. 

With such large data sets it proved impractical to attempt a 

polynomial or cubic spline fit to elucidate the mean values even 

using the NAG library sub-routines available on the PRIME. It was 

therefore decided find to mean values using a smoothing process 

known as "Hanning" (Bendat and Piersol (1971) and Kinsman, 

(1965)). This process is normally used to remove spectral leakage 

when producing spectra from correlation functions. The process 

consists of taking a weighted average value of each data point and 
its adjacent data points, the weighting factors a and b (following 

Kinsman the programs use a-0.54, b=0.23) being applied without 

carrying the new value across to the next average: 

<xi> = bxi_1 + axi + bxi+l (5.1) 

Repeating the smoothing process 1000 times to 0 and 

subsequently U gave non-stationary mean values which when 

subtracted from the original signal left component velocities 

which fluctuated evenly around zero. The original signal was then 

converted to a complex spectrum using the FFT algorithm in the 

PRIME NAG library and the resulting spectrum cropped and 
transformed back for comparison with the mean derived from the 

smoothing process. The result depended on the amount of spectral 

cropping (equivalent to passing the signal through a low-pass 

filter) but the spectrum peaked severely at the frequency of the 

tidal period, and a transform of the frequencies close to the peak 
showed a very similar mean signal to that derived from the 

smoothing process. This double check showed that the separate mean 
and fluctuating signals produced were valid since similar results 
were obtained from two very different techniques. The result is 
demonstrated in Figure 13 where the whole data set for the bottom 
fixed meter is shown. In this figure the top graph is depth versus 
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time (the depth readings were taken by echo-sounder, corrected for 

keel depth and the curve fitted by a cubic spline interpolation). 

The second graph shows the mean streamwise velocity U and the 

third and fourth the u and v fluctuating components. 

The two lowest graphs show the statistical distributions of u 

and v taken over the whole record. These are approximately 

Gaussian. Figures 14 and 15 show the autocorrelations and derived 

spectra for the u and v components, calculated from the record as 

a whole. Each autocorrelation time lag is 15 seconds. One would 

expect some distortion in the spectral estimates due to the 

varying r. m. s. value of the signals but it is encouraging that the 

correlations and spectra are well behaved and have the expected 

form. A record length of 4160 and an autocorrelation sample length 

of 50 gives around 80 degrees of freedom and a reasonable 

confidence that the derived spectrum is representative of the 

underlying process (Kinsman, 1965). 

Both autocorrelations are characterised by negative portions 

of roughly equal area to the positive, reflecting the fact that 

the mean values achieved are good representations. The spectra 

exhibit sharp peaks at the same frequency and the logarithmic 

spectra exhibit the predicted characteristic -2 power dependence. 

The r. m. s. value of the v component and the height of its spectral 

peak show that the v component is of the same order of magnitude 

as (and may be in some circumstances larger than) the u. The 

horizontal turbulence as measured is essentially isotropic. 

Figures 16 shows the coherence function between the u and v 

components from the whole data set, bottom fixed meter. Normally a 

coherence function is used to establish limits in a non-linear 

system within which the output is directly related to the input 

without distortion due to extraneous effects such as system noise. 
It is defined as the square of the modulus of the co-spectrum 
divided by the product of the component spectral values at the 

same frequency. Aside from at zero frequency (where departures 
from mean values may be significant) the coherence is very small, 
indicating that the measuring techniques and mathematical 
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algorithms are unlikely to be introducing any significant 

systematic error into the resulting statistics. 

The Nyquist frequency is 0.033 cps and calculated spectral 

estimates will be aliased if the physical process being measured 
has energy at frequencies higher than this. This frequency is at 
the maximum of the frequency axes in Figures 14 and 15 and since 
the spectrum becomes very small at much lower frequencies than 

this, the sampling criterion is satisfied. 

The residual swell had a frequency of 0.2 Hz, a much higher 

frequency than the energy containing range of the spectra. The 

spectral peaks in both the u and v records occur with a period 

close to 600 s or 10 minutes. This period is far from the tidal 

period, measured in hours, and the swell or instrument pendulum 

effects which were measured in seconds. The only events occurring 
in the sea at these intermediate periods are the turbulent eddies 

of the bottom-generated boundary layer. It appears that the 

signals derived from the current meters are representative of the 

turbulence without being contaminated by other effects. It is 

therefore expected that useful qualitative results about these 

eddies might be obtained from shorter record segments where 

stationary conditions were better realised, and that quantitative 
comparisons might be obtained for each component as variations 
take place over a tidal period. 

Stern and side s ]Race correlations. 
The energy peak in the whole record component spectra was 

centred around a period of 10 minutes and there was energy in the 

spectra down to a period of about 40 s. In carrying out space 
correlation estimates a compromise had to be achieved between 

getting sufficient readings per location to reveal the detail of 
the motion (ideally each record should be 5 or 6 times longer than 
the 10 minute period) and achieving results at sufficient 
locations for the spatial distribution to be established before 
the environment changed appreciably. This maximum period was 
obviously less than the 6 hour half-tidal cycle. In the event 
practical considerations dictated a compromise and the runs 
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achieved are shown in Table 2. 

It was unsafe to try 

separation abeam of SEASPRING, 

set records were extracted 

previous tidal cycle when tY 

SEASPRING. 

and control SEATRUCK at a 20 m 
therefore to complete the beam data 

'rom the equivalent period in the 

9 moving array was suspended from 

The experiment was terminated at 1230 on the 3rd August in 

order that the chemical speciation experiments required by Warren 

Spring could be conducted within the sea-time available to 

SEASPRING. During the experiment the mean streamwise velocity 
increased but the turbulent fluctuations were much better behaved 

than, shown in the overall record. Space correlations for the 

further 2 hour period, as the velocity decreased towards high 

water were, unfortunately, not achieved. Figures 17 - 20 show the 

records, probability distributions, autocorrelations, spectra and 

coherence function calculated over the 4 hour period of this 

experiment. 

The correlations show a flattening at the origin and 

coherence over a longer time than they did for the whole 15 hour 

record. The correlations indicate coherence extending to 8 minutes 
in the u component and 5 minutes in the v. The spectral peaks have 

a period near to 6 minutes. The spectra still have the same form 

as those derived for the whole record. Since the mean flow is 

varying less over the shorter record period the coherence function 
is now very small over the whole range. in the next chapter, where 
property variations over a tidal cycle are studied, the results 
will be taken from even shorter records and the lack of coherence 
between u and v implies that the characteristics of the turbulent 

structure, rather than those of the current meters themselves, 

will be properly reflected in the data. 

The runs were first processed to determine the spatial extent 
over which the signals were well correlated, thus giving an 
indication of the largest eddy size. For each fluctuating 
component the correlations were calculated for simultaneous 
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RUN START TIME FINISH TIME NOTES 

Stern 45 m 0900 0921 

Stern 65 m 0923 0949 

Stern 85 m 0951 1015 Dye release 1014 

Stern 105 m 1016 1027 Dye release 1021 

Stern 125 m 1028 1055 Dye release 1050 

Stern 145 m 1056 1125 Dye release 1103 

Beam 40 m 1135 1154 

Beam 60 m 1155 1209 

Beam 80 m 1210 1225 

Table 2. Correlation experiment. 
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records measured at different spatial separations. The results are 
given in Figure 21 for the beam runs and Figure 22 for the stern 

runs. 

The u and v correlations display variability and this is not 

surprising owing to the constraints on the sampling duration at 

each station. The overall trend is, however quite clear. Abeam the 

signals are well correlated over 20 - 30 m and then rapidly become 

uncorrelated. Astern the result is similar except that there is 

more noise in the signal. 

There are two aspects in the interpretation of such space 

correlations. First how "long", or "wide" is the eddy, and, 

second, is it moving during its lifetime relative to the mean line 

of advance through the sampling point? The answer is that one 

cannot tell. It appears that the eddy is about 30 m wide and long, 

approximately the same as the depth of water at the time the 

record was taken. It may be that the eddy width or length is 

distributed around this size or that the coherent motion involves 

a moving spatial mean. This will be discussed further in Chapter 7 

where all the results are summarised and the parameters used in 

the model given. 

The astern correlations were next examined to find the time 
delay at which the correlation between two simultaneous records 
taken at varying separations was a maximum. This reveals the mean 
propagation velocity of the eddy structures (Townsend, 1976). The 

results are shown in Figure 23. The separation distance was 
divided by the mean velocity to give an expected time delay (if 
the turbulent structures were moving at the mean velocity of the 
flow) which is plotted on the x axis. 

Determination of the mean velocity was complicated by the 
fact that the current meters were suspended from the surface and 
therefore were not at a fixed distance above the sea-bed. Mean 
current profiles from top and bottom sensors and the surface dye 
release experiments showed that during this period the boundary 
layer occupied the whole flow depth. The mean velocity was 
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therefore taken as the average of the mean currents measured at 
the two bottom sensors since the bulk flow is found close to 0.4 

of the depth in these conditions (Prandle, 1982). It may be seen 
that the actual and expected time delays in Figure 23 are nearly 

equal, implying that the largest eddies move at the bulk velocity 

of the flow as was anticipated in Chapter 3. 
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CHAPTER 6 PROPERTY VARIATIONS OVER A TIDAL CYCLE 

General Characteristics 

To investigate the variation of the turbulent properties over 

a tidal cycle, the 12 hours from the first measured slack water to 

the second was divided into 2 hour intervals and correlations and 

spectra produced as before. Figures 24-26 show the results for a 
typical interval. Each record is 480 samples long and the 

correlations and spectra have been kept to 50 intervals giving 10 

degrees of freedom. This is a compromise between gaining 
definition and achieving confidence that the spectra reflect the 

underlying process. The correlations and spectra showed the 

following characteristics: 

a. The frequency at which the spectral peak occurred was the 

same for both the u and v components and was always close to a 
frequency corresponding to a period of approximately 350 a. The 

streamwise correlations show that the eddies are about 30 m 
"long", implying that the eddy passage time should be between 30 s 

and 60 s dependent on the mean bulk velocity during the 2 hour 

interval. The peak is therefore associated with the eddy lifetime 

as was predicted by the crude model of the bursting sequence given 
in Chapter 3. 

b. The resolution in the spectra was sufficient to show that 

each spectrum is made up of a set of discrete, but overlapping, 
peaks. The peak heights followed aa2 trend at higher 
frequencies. This was predicted by (4.18) and is not inconsistent 

with the logarithmic plots in Figures 25 and 26. The frequencies 

at which obvious peaks occur are at 2 and 4 times the frequency 

associated with the major peak, indicating that the periods of the 

eddies causing the peaks follow (2.65). 

c. The integral value of all the correlations was close to zero. 
This indicated that the non-stationary mean flow derived for each 
of the 2 hour intervals was a good representation. The time delay 
between each point in the correlations shown in Figures 25 and 26 
is the data sampling interval, 15 s. The correlations all had a 
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positive value for time delays between 0 and 60 s, indicating that 

within this period the velocity structure is dominated by a single 

passing eddy. The integral value always became zero close to a 
time delay of 350 s, the period corresponding to the frequency of 
the main spectral peak. The total time lag shown for each 

correlation is 750 s and a second near sinusoidal 

positive/negative variation is often apparent when the lag is 

between 350s and 750s, indicating the recurrent nature of the 

process. 

The mean and fluctuating components from the top and bottom 

fixed meters are shown in Figure 27. The sum of the component. 

squares, a measure of the horizontal kinetic energy, is shown for 

later use. Individual component fluctuations from the two meters 
followed each other consistently, fluctuations at the top meter 
being sensed 15 - 30 s before the lower. This indicated that the 

eddies may have a characteristic slope to the vertical of about 45 

degrees as suggested by Utami and Uemo (1987). The fluctuations 
had similar magnitude. The mean streamwise velocities were 

approximately sinusoidal with the lower meter recording 
approximately 0.85 the current speed of the upper. 

Mean velocity profile variation. 
The following equations are repeated for convenience: 

uL ý1/3L1/3 (2.52) 

N log L/A (3.18) 

U0/N R nLUL (3.28) 

nL - Uo/Ul (3.63) 

Ul/N - uL (3.65) 

U (h) - nLuLlog (h/l) + 1.5nLu,, h/L + HEUL (3.33) 

ýy3/c)114 (3.34) 
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U (h2) (log(h1/h2)ý(1.5(ii2_ii2)/L)) 

- 1.5h2 -1 
U1 -U 2 

-L 

(3.43) 

The value of A was calculated over the whole record using 
(3.43). The mean value of A was found to be 0.052 cm with a 

standard deviation of 0.022 cm. Departures from the mean were 

greatest when the mean current was small and SEASPRING was 

swinging. Substituting a value for A of 0.05 cm into (3.34), and 

using a value for the kinematic viscosity of 0.014 cm2/s, gives a 

value for the energy dissipation rate c equal to 0.3 cm2/s3. 

Substituting A into (3.18) and putting L equal to 30 m gives 
N equal to 11. This is the median of the values derived in Chapter 
3. 

Substitution of 0.3 cm2/s3 as the value of c into (2.52) and 
putting L equal to 30 m gives a value of UL equal to 9.65 cm/s. 
Substituting this value of UL into (3.65) with N equal to 11 
implies that a value for U, the velocity where the turbulence is 

fully developed, equal to 105 cm/s. This is close to the highest 

surface velocities measured with the dye releases in part two of 
the experiment and shown in Figure 27. The necessary implication 
is that over most of the record the turbulence is intermittent. 

The variation of intermittency. 

The variation in the intermittency of the turbulence was 
studied by comparing values directly measured from the data with 
values calculated from (3.28) using the values of uL and N 
calculated above and assuming that the boundary layer occupied the 
full water depth. The intermittency was assessed in two ways. 
First the signal was processed to give a plot of measured kinetic 
energy against time. Figure 28 (top) shows a plot of a portion of 
this record. The measured kinetic energy record was used since 
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being the sum of the squares of the signal 

and supressed the low values, giving a bei 

passage of the larger eddies with which 

associated, especially as the (unmeasured) 

vertical component is known to be well 

streamwise (Heathershaw, 1979). 

it enhanced the peaks 

: ter indication of the 

the intermittency is 

kinetic energy in the 

correlated with the 

The intermittency was first determined by assessing where the 

magnitude of the signal exceeded a threshold value. This threshold 

was kept the same value throughout the record at a value equal to 

one half of the maximum peak measured. These results were measured 
for same 12 intervals as above and are plotted as "nL-amp" points >` 

in Figure 29. 

The intermittency was then assessed in the following way. 
First the u and v component records were calculated and the 

records Fast Fourier Transformed to produce a complex spectrum. 
The spectrum was inspected and cropped on either side of the peak 

so that the only non-zero spectral components remaining were those 
in a band around the peak. The spectral peak was then transformed 
back to give modified u and v records which were squared and 

added. The resulting signal was insensitive to the actual cropping 
points provided that the peak was retained and a portion is 

illustrated in Figure 28 (bottom). By retaining only the spectral 
components around the peak at l/tL it was expected that the 

resulting signal would reflect only the large eddy production 
process. The intermittency was then assessed as the proportion of 
the time at which energy was apparent in the smoothed signal. 
These results are plotted as "nL-tL" in Figure 29. 

The plot of measured versus calculated intermittency in 
Figure 29 clearly shows that during the flood tides (when the 
water level is rising) the model formulation correctly reflects 
the intermittency measured by either method. 

The points on Figure 29 which strongly depart from the 
expected relationship are the "nL-amp" points for the majority of 
the ebb tide. Here the calculated intermittency is significant but 
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the magnitude of the measured turbulence was small, despite there 

still being energy at the 1/tL spectral peak. A detailed 

investigation of the vertical profile during this period showed an 
intermittent 10-to 20 fold increase in the value of A when (3.43) 

was calculated at every 15 s data interval. This indicated that 

the boundary layer may have dropped away from the surface at high 

slack water and taken some time to recover. It is clear from the 

kinetic energy plot in Figure 27 that there was a reduced level of 

turbulence during the accelerating phase of the ebb tide (that 

following the first slack high water) than during either of the 

flood tides, despite the mean velocity shear being similar in both 

cases. This will be discussed below. 

Calculated values of the energy dissipation rate. 
Figure 29 shows good agreement over the flood tides for c 

equal to 0.3 cm2/s3. This value also gives a value of the 

Kolmogorov scale, a, here associated with the profile roughness 
length, equal to that derived from a fitted logarithmic profile 

and well within the range that Heathershaw (1979) and Soulsby 

(1982) give as typical for this type of sea-bed. The derived value 

of A also gives a number of eddy sizes, N, equal to 11, which is 

as predicted in Chapter 3 and consistent with Yalin's (1977) 

sand-dune results. 

The energy dissipation rate was calculated from the u and v 

spectra calculated for each 2 hour interval. The average value of 
the intermittency was assessed from the mean current and Figure 29 

and (4.18) was used to calculate c from the most linear part of 
the logarithmic spectral plots. Recalling: 

0(o')-0.5 nLC 2 (4.18) 

The result of the 12 calculations was a mean value of c of 0.28 

cm2/s3 with a standard deviation of 0.09 cm2/s3. Given the 

sensitivity to the resultant value to exactly where the spectral 
curve fitting was made this is considered a very stable result. 

The energy dissipation rate was then calculated from (2.52) 
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which may be rewritten as: 

e= L2/tL3 (7.1) 

The calculation was performed for the 12 intervals used in the 
intermittency calculation. The periods, tL, were measured from the 

cropped kinetic energy plots (Figure 28(bottom)). The period tL 

was taken as the mean time for which a peak existed within each 
interval. The mean measured value of c derived in this way was 
found to be 0.304 cm2/s3 with a standard deviation of 0.02 cm/s. 
Here there was no correction for intermittency and the result was 

more stable. 

The dissipation rate c was also assessed by making the 

reasonable assumption that at some stage during the record the 

full value of uL would be measured in one velocity component by 

one of the current meters. Searching through the record for this 

maximum value gave uL equal to 9.55 cm/s at a depth water depth of 
29.5 m in the middle of period 2 of the experiment. This 

corresponded to a value of c from (7.1) equal to 0.295 cm2/83. 

The values for c found in this thesis are shown in Table 3 

along with those measured by other authors in similar conditions. 
The energy dissipation rate remains substantially constant over 
the tidal cycle and has a value close to 0.3 cm2/s3 . This result 
was tested against oil and dye release experiments made in a 45 m 
water depth and reported in Chapter 8. An immediate test was made 
by modelling the mean velocity profiles found over the cycle. A 

plot of measured and calculated profiles is shown in Figure 30. 
The best fit was achieved by using a mean profile given by (7.2): 

U (h) - nLuLlog (h/, \) + 1.5n 
la uL (h/L) + 0.5n�u,. (7.2) 

the maximum error being 4% at the peak of the ebb tide. The inputs 
to the equation were calculated as follows: 
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REFERENCE SOURCE VALUE 

Table 1 Tidally averaged estuary values 0.23 

Table 1 Surface layers of tidal flow 0.51 

Heathershaw (1979) Revised estimate 0.41 

Woods (1975) Ensemble average 0.31 

This thesis Fitting of logarithmic profile 0.30 

This thesis Frequency spectra (4.18) 0.28 

This thesis Lifetime relationship (7.1) 0.30 

This thesis Maximum fluctuation (7.1) 0.29 

Table 3. Summary of values of energy dissipation rate (cm2/s3) 
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PARAMETER 

)+U {h2)) /2 Umean = (U (h1 mean velocity found at 0.4 water 
depth - Chapter 3 

L= water depth 

u ß_/3L1/3 
L 

nL Umsaa 11uL 

A=0.05 cm 

assumes boundary layer has reached 

the water surface 

(2.52) with c=0.3 cm2/s3 

(3.23) with N- 11 

(3.27) with v-0.014 cm2/s 

Equation (3.33) was derived in Chapter 3 for eddies mixing 

momentum away from the bottom momentum at a constant rate: 

U (h) - nLuLlog (h/A) + 1.5nLuL (h/L) + nyuL (3.33) 

Comparing (3.33) with (7.2): 

U (h) = nzuLlog (h/x) + 1.5nLuL (h/L) + 0.5nLu, (7.2) 

shows that the best fitting profile is as derived in Chapter 3 but 

with the criterion that: 

U (x) - 0.5nLuL (7.3) 

which is descriptive of a viscous sublayer of thickness A at the 

wall. If the velocity distribution within this layer is linear we 
can write (Soulsby, 1983): 

zo = pv (8U/8y) 
o pvnLuL/2A (7.4) 

which using (2.52) and (3.23) gives: 

0 
/P vUo/2N (7.5) 
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where v is the Kolmogorov dissipation scale velocity (Heathershaw 

1979). If the boundary layer has grown to occupy the whole depth 

and c is constant then (7.5) predicts that the bed stress should 
be directly proportional to the mean velocity. This is contrary to 

the constant stress layer hypothesis (Soulsby, 1983) which relates 
the square of the calculated friction velocity to the bed stress 

and predicts that the stress varies as U2. Since from (3.50): 

u*/K =nLuL (3.50) 

so that since nL is proportional to U0, u*2 is proportional to U2 

and (7.5) does not predict an equivalence between bed stress and 
Reynolds stress. 

Tidal hysteresis 

As has already been noted there was a reduced level of 
turbulent fluctuation measured by the current meters during the 

accelerating phase of the ebb tide. During this period the 

following effects were apparent: 

a. The depth of water remained at the high water level while the 

mean velocity accelerated to almost its maximum ebb value. This is 

a phenomenum not noted after each slack low water where the water 
depth increased immediately the flood tide commenced. 

b. The calculated value of A increased during this period, 
indicating that the boundary layer had dropped away from the 

surface. There was insufficient accuracy in the method of 
calculating the mean profile from only two sensors to quantify by 
how much. 

c. There was still an energy peak in the frequency spectra from 
this period at a frequency corresponding to a period of 350 s, 
i. e. to the lifetime of the largest eddies. The magnitude of the 
observed fluctuations was reduced. 

d. The r. m. s. values of the streamwise and cross-stream 
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fluctuations were measured by both direct calculation and by 

measuring the total area under each derived spectrum. The results 

are plotted against mean current in Figure 31. The r. m. s. 

fluctuation level appears to follow a linear trend but with only 

half the value on the ebb as against the flood. 

Development of the mean flow profile. 
Below a velocity equal to (Ul/2i/2) it is possible for the 

velocity profile between the bed and h L/C to be created by a 

boundary layer of thickness L or L/C. From (3.63) at Uo 

U1 /(2 1/2) 

nL - 1/ (21/2) (7.6) 

and from (2.52) with boundary layer thickness L: 

n LuL 
C1/3L1/3/ (21/2) (7.7) 

If the boundary layer is at L/C and is fully developed so that: 

nL/c 

then from (2.52) and using C= 81/2: 

(7.8) 

nL/CuL/C Iffz uL/C 'x c1/3 (L/C) 1/3 
= e1/3L1/31 (21/2) (7.9) 

since (7.7) and (7.9) have the same value then the profile given 
by (7.2) will be the same. Above U0 - U1/(2) 1/2 it is not possible 
to mimic the mean profile with the smaller eddies otherwise their 

intermittency, nL/c, would have to be greater than unity. A study 
of Figure 30 shows that the mean velocity at the top and bottom 

sensors became close at velocities less than about 75 cm/s. With c 
= 0.3 cm2/s3 and N= 11, (3.65) gives Ul - 105 cm/s, U, /(2 1/2) M 
74 cm/s. When the mean velocities at the top and bottom sensors 
are equal than the boundary layer has certainly dropped from the 

surface. It appears that the surface layers will not be affected 
by bottom generated turbulence at velocities less than about 
U1/(2)1/2, a velocity found 1-2 hours either side of slack water. 
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Modelling the tidal hysteresis. 

The derivation of the mean velocity profile given in Chapter 
3 can be changed to model the observed hysteresis above Uo 

U1/ (2)1/2. The profile (7.3) is written in the following way for 

the boundary layer having thickness Q, where E<L: 

U (h) = (L/Q)1J3nLu1(1og (h/X) + 1.5h/L + 0.5) (7.10) 

which reduces to (7.3) whatever the value of t. The kinetic energy 
density in the production process, kprod , is written as, following 

(2.66) : 

k= (Q/L) (3/2) n2u2 (7.11) 
prod L1 

(r. m. s. ) 
prod 

'a (kprod ) 1/2 (7.12) 

which is again correct when f=L. Equation (7.10) allows the mean 

profile to be modelled above U1/(2) 1/2 without ne having to become 

greater than unity. Equation (7.11) predicts r. m. s. values which 

agree well with observation if the boundary layer remains at L/C 

over the ebb tide. Figure 32 plots the r. m. s. values from (7.12) 

against the measured values used in Figure 31, showing the 

agreement. 

The calculated value of u*2 is found by modifying equation 
(3.49) to write: 

u*2 - 0.3 (L/e) 2/3 n2u2 

which preserves the relationship between u*2 and 
kinetic energy given by (3.48) and gives values 
coefficient which fall within the band given 
Ferguson (1980) as typical of those found in the 
coefficient, Cd 

100 
is defined from: 

*2 2 
u Cd 

100 
tJ 

00 

(7.13) 

the turbulent 

for the drag 

y Bowden and 

sea. The drag 

(7.14) 
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and U, 
00, 

the velocity 1m above the bed, is calculated from 

(7.2). Figure 33 plots the calculated values of the ratios given 
by (7.13) and (7.14), with the largest eddy size, £, assumed to be 

L (equal to the water depth) on the flood, and L/C on the ebb. 

Equations (7.10) and (7.13) are consistent with the Reynolds 

stress correlation being the driving function behind the mean 

velocity profile. To model the observed mean velocity the Reynolds 

stress has to remain proportional to u2 I' 
Equation (7.11) for the 

kinetic energy implies that the production process reflects the 

total kinetic energy in the boundary layer, averaged over the full 

depth of water. Writing the total kinetic energy in the boundary 

layer, KE , as. per unit area 

KE = C(3/2)u2 (7.15) 
per unit area t 

then the kinetic energy density, kprod, is given by: 

z kprod ° KEpor 
unit area 

/L - (Q/L) uQ (7.16) 

which is of the same form as (7.11). 

The description of the observed hysteresis by (7.10) and 
(7.11) is inconsistent with any theory that relates the Reynolds 

stress with the velocities within individual eddies. The stress is 

amplified by a factor, f, given by: 

I_ (L/e) 2/3 (7.17) 

for which no justification is immediately apparent. Furthermore 

when the boundary layer has largest eddy size L/C, the momentum is 

still transferred a distance L from the bed and the spectral peak 
remains at 1/tL. It is possible that the boundary layer has indeed 

grown to L but that the kinetic energy of the turbulence has 
remained at a lower level. If this is so then it may be that the 
boundary layer energy remains at preferred, discrete levels. Such 
discretisation of preferred energy levels is to be expected from 
the non-linearity of the governing equations. To investigate 
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whether this phenomenum might occur it is necessary to study the 

time variation of the spectral components associated with the 

large eddies, those components lying around the spectral peak at 

l/tL. 

The component attractor. 
It is difficult to calculate meaningful spectra from short 

records since to keep sufficient degrees of freedom to reproduce 

the underlying process a small number of Fourier calculation 

points has to be employed, resulting in a low level of resolution 
in the spectra. To try and elucidate the detailed variation in 

energy at the spectral peak frequency, 1/t 
L, 

it was decided to 

isolate those parts of the original signal associated with the 

peak. This was attempted by mathematically filtering the original 

signal to leave only Fourier components close to the spectral 

peak. Bendat and Piersol (1971) do not recommend any filtering 

method as being suitable for non-stationary data sets and Kinsman 

(1965) shows that the filtering method itself characteristically 
disturbs the output signal. 

Two unrelated filtering techniques were therefore used and 

the results compared to establish whether the underlying process 

was being adequately represented. The first technique was to use 
the Hanning process (Chapter 5) and the second to use the direct 

cropping of Fast Fourier Transforms in the same manner as was used 
to produce the kinetic energy signal in Figure 28. 

The Hanned results are discussed first. The raw speed and 

compass direction data were repeatedly smoothed using the Hanning 

process before u and v components were calculated. The effect of 
the smoothing was evaluated by plotting successive values of a 

resulting component against each other in three dimensions (a 
technique borrowed from chaos theory). At 100 amoothings the 

emergence of an underlying structure to the signal was 
unmistakable. Figure 34 shows a three dimensional plot of the 

resulting components ui_i, ui, ui+1 against each other for 200 

smoothings. A few successive points have been connected to show 
the elliptical structure. The figure is flat, three-dimensional 
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and like an elongated set of Saturn's rings which never repeats 
itself. A similar plot is found for the v component. The plot 

appears to be a low dimensional manifestation of the strange 

attractor which may underlie the turbulent process. It will be 

termed a component attractor for convenience. 

A more physically meaningful component attractor is shown in 

Figure 35. This is a plot of the derived u component against its 

change, Au, in the preceding time step. It has a similar form to 

Figure 34. The v component attractor is similar but a little more 

symmetrically distributed. In this figure all the points have been 

connected by a smooth curve, but the basic period of each ellipse, 
however large, is 350 s, the period of the spectral peak. 

To check that the attractor was not a function of the 

smoothing process the data were processed using Fast Fourier 

Transforms. The u and v components were produced from the raw data 

as described in Chapter 5 and the Fast Fourier Transform of the 

records produced using the FFT algorithm in the NAG FORTRAN 

library. The transform consists of a complex representation of the 

signal spectrum consisting of a number of pairs of discrete Dirac 

spikes equal to the total number of data points. These are evenly 

spread in frequency space between 0 and the Nyqist folding 

frequency. 

The complex spectra were cropped by setting the values of the 

Dirac pairs to zero except for a chosen band around the spectral 

peak. The resulting complex series were transformed back to u and 

v signals which contained only the chosen band of Fourier 

components. As the allowed band was narrowed around the peak, the 

resulting plot of the component attractor again appeared. Its 

characteristics are identical to that produced by the Nanning 

process. If the cropping band is chosen carefully the attractors 
can be made almost identical. 

Figure 36 is a plot of u against Au achieved by the FFT 
technique. In this plot the spectra was severely cropped to 
demonstrate the gapped structure in the rings. It may be seen that 
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Figure 35. Plot of u against Qu. 
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Figure 36. Plot of u against 4u achieved by cropping FFT spectrum. 



the rings, although never repeating, are grouped in geometric 

series, each group having major axis magnitudes which are 

approximately half the next larger group. The implication is that 

over the record as a whole the kinetic energy at the frequency 

spectral peak tends to sit at discrete levels, each a factor of 
four different from the adjoining levels. As expected, the 

attractor was approximately half the size on the ebb as on the 

flood. 
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CHAPTER 7. A COMPUTER SIMULATION OF DISPERSION AT THE SEA SURFACE 

A numerical model was written to test the dispersion theory 

derived in the preceding chapters. This code was developed on the 

PRIME mini-computer in the Department of Nuclear Science and 
Technology, Royal Naval College, Greenwich. The program was 

written in FORTRAN and used the NAG library facility for some 

statistical functions and GINO for the graphical output. The 

dispersion experiments against which the theory was to be tested 

were essentially two-dimensional measurements taken in the near 

surface region of the sea. These will be described in the next 

chapter. It was therefore decided that the code should only model 
two dimensions to save computing time. The code was subsequently 

extended to three-dimensions but is presented here in its 

two-dimensional form for simplicity, the extension being 

straight-forward. 

Inputs to the program. 
The following parameters were input to the program, several 

factors being included so a sensitivity analysis could be 

undertaken before the code was simplified to its final form: 

PARAMETER UNITS 
Water Depth m 
Current Speed m/s 
Intermittency 0.0 s intermittency s 1.0 
Spatial Anisotropy Factor non-dimensional a 0.0 
Velocity Anisotropy Factor non-dimensional 0.0 
Correlation Factor 0.0 s correlation factor s 1.0 

Switch Factor 0.0 s switch factor s 1.0 
Spatial Randomness Factor 0.0 s spatial randomness factors1.0 
Velocity Scalar non-dimensional z 0.0 
Time Step s 
Energy Dissipation Rate cm2/s3 
Number of Eddy Sizes non dimensional integer z1 

The release was modelled as a continuous source from a fixed 
point. The current flowing past the point was assumed to be 
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rectilinear and steady during the release period. The release was 

one hour in duration and one marked particle was released at each 
time-step. The bottom turbulence was modelled as a sequence of 
fields of rectangular eddies which were superimposed over the 

marked particles as they moved with the mean current. The 

cross-stream dimension of the largest eddy size was equal to the 

water depth. The streamwise dimension was made equal to the 

cross-stream multiplied by the spatial anisotropy. The probability 
that a large eddy site was active was given by the intermittency 

factor which was calculated independently for each site using a 

random-number generator. 

Whenever a grid of eddy sites was laid over the moving 

particles the physical position of the grid could be allowed to 

vary randomly using the spatial randomness factor. The marked 

moving particles were collected into the grid elements so that 

each set of particles within an eddy site were influenced by an 

eddy if the site was active. Since particles within an eddy do not 
leave it during its lifetime, the grids were placed and the 

particles collected only at the start of each eddy size lifetime. 

The group of particles influenced by each eddy were then given a 

velocity which continued to act on them throughout the lifetime of 
that grid, or eddy, size. 

The code first calculated the counter for the main 
computational loop, and the lifetime count for the largest eddy 
size, (tL divided by the time-step), from (2.42). Since eddies 
whose lifetime was less than the time-step could not be modelled, 
the code calculated the maximum number of eddy sizes that could be 

accommodated gave an error message if this was larger than the 

number demanded. 

Counters were then calculated which were used in the main 
computational loop to determine at which step each eddy grid 
should be laid and velocities given to the grouped particles if 
the site was active. Lifetime counters were calculated for each 
size and used to decide at which step induced velocities should be 
lost. There was a small systematic error in the calculation due to 
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the use of integer counters. This was reported as an output and 

was generally found to be less than one percent. 

Sorting the particles into discrete eddies. 

The random number generator was initialised and the release 

started at a random stage of large eddy lifetime. The model 

commenced by updating the number of particles released and by 

initialising working array elements. The maximum dimensions of the 

existing pattern of particle positions was calculated so that eddy 

grids could be kept as small as possible. 

A counter was used to check whether an eddy size should be 

initiated. If an eddy size smaller than the largest was due to 

commence then a sorting subroutine was called. A separate 

subroutine was called for the largest size. This was necessary 

since the smaller sizes occur only half as frequently as the 

largest size in the discrete eddy cascade. The streamwise or 

cross-stream eddy step length appropriate to that size was 

calculated and passed to the sorting subroutine. This defined the 

isotropic displacement vector component which eddies of that size 

were capable of achieving during their lifetime. The various 

methods which were used to parametise the motions induced by a 

particular eddy size are discussed further below. 

The sorting subroutines divided the step-length by the 

lifetime count appropriate to the size to give an incremental 

length for each pass of the main loop. Particle position arrays 

which were used to keep track of the particles were shifted by a 

proportion of the eddy dimension dependent on the spatial 

randomness factor and saved as temporary working arrays. These 

were then used for particle sorting. Temporary arrays were then 

created to hold particle positions as integer multiples of eddy 
dimension appropriate to the grid in question. Further working 

arrays held the accurate position of each particle as a remainder 
in grid dimensions. Integer counters then selected each eddy in 

the grid in turn. A counter then sorted through the integer arrays 
to determine which particles were in that particular eddy site. 
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Having calculated the incremental step for the particles 

within that eddy grid site, velocity arrays associated with each 

particle were updated. The velocity arrays were multi-dimensional, 

each dimension holding the displacement required for a particular 

eddy size per main loop time-step. These velocity arrays were then 

returned to the main computational loop. The final part of each 

sorting subroutine updated the velocity arrays for the particles 

released since the size was last called. This was necessary to 

ensure a realistic discharge near the source while allowing 

sorting only at the beginning of each eddy life, rather than at 

every time-step. 

The main loop continued by updating the particle position 

arrays by summing the elements of velocity arrays associated with 

each particle. A streamwise contribution from the mean flow was 
included in this position update. Since the smaller eddy sizes 

only exist for half their recurrence time a resetting subroutine 
then tested for the end of each small eddy size lifetime and 

returned the elements of the arrays velocity arrays to zero when 

required. 

The model then established a sampling box whose size and 

position were defined as input parameters. The mean concentration 
and particle velocities in such a box were taken as representative 
of a fixed eulerian sensor. The particle velocities were 
calculated from the differences -between particle positions at 

successive time-steps. A series of such boxes was generated in a 
cross-stream and stream-wise array, allowing eulerian spatial 
correlations and cross-correlations, frequency and wave number 
spectra and concentration intermittencies to be calculated. The 

correlations and cross-correlations and the frequency and 
wave-number spectra were calculated using the Blackman-Tukey 

method described in Chapter 5 (Bendat and Piersol, 1971). 
Lagrangian statistics could be calculated by following the motion 
of a series of particles and averaging. 

Isotropic random eddy velocities. 
The first implementation of the code gave all the particles 
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within an eddy grid site the same velocity. This formulation was 

chosen for its computational simplicity and because after many 

eddy lifetimes it produced realistic dispersion statistics. 

Since two-dimensional surface mixing was being modelled, the 

particles were given randomly generated cross-stream and 

streamwise eddy velocities. These were calculated using (2.41) and 

by assuming that the vertical velocity component was completely 

suppressed at the surface. Brumley and Jirka (1987) have carried 

out near-surface turbulent velocity component measurement in a 

grid-stirred tank and shown that the vertical component is 

suppressed exponentially as the surface is approached, the energy 

being equally distributed to the horizontal components. Thus 

writing u for the streamwise fluctuation and v for the 

cross-stream: 

ke =2/312/3 (2. al) 

ua+v2=2ke (2.74) 

The absolute value of the surface velocity generated by 

(2.74) and the input value of the energy dissipation rate could be 

varied using the velocity scalar. The induced surface velocities 

could be made anisotropic using the velocity anisotropy factor and 

neighbouring eddies could be made more or less likely to have 

velocity vectors in the same direction as each other using the 

correlation and switch factors. 

Each time a grid was placed and a site selected a random 

number between zero and one was chosen and compared with the 

intermittency factor to determine if the site should be active. A 

second random number was compared with the switch factor to 

determine whether the incremental step should be positive or 

negative. A further similar comparison with the correlation factor 

determined the extent to which the signs of the cross-stream and 

streamwise steps should be correlated. 
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Results of the sensitivity analysis. 
Typical output from the program is shown in Figure 37. The 

values for the input parameters are printed at the top of the 

figure and the eddy grid sizes on the right hand side. The width 

of the largest eddy size is equal to the water depth, 45 m in 

Figure 37. The following results were apparent after the 

sensitivity analysis: 

a. The program ran very quickly when only calculating the large 

eddy grid, the particle tracking calculation for 1200 particles 
being completed in 2 or 3s CPU time on the PRIME computer.. The 

computing period became very much longer as the smaller eddy sizes 

were included, taking approximately 15 minutes CPU time for 3 eddy 

sizes. This is a function of the exponentially increasing number 

of FORTRAN DO loops containing IF statements. 

b. The dispersion was unaffected by the smallest eddy sizes, being 

primarily driven by the large eddy size and the value of c, which 
determines the frequency with which the large eddies appear and 

the velocity they produce. This is expected from (2.81) where the 

absolute dispersion coefficient was calculated from the sum of the 

coefficients from a cascade of eddy sizes: 

0'2 = (7/6) nuL2tLt (2 
. 

Q1) 

c. The dispersion coefficient produced by the realisation followed 

equation (2.81) with a velocity scalar and velocity anisotropy 
both equal to 1, the coefficient being linearly dependent on nL. 
If only the largest eddy size was modelled, then as Figure 38 

shows, the dispersion coefficient was slightly reduced to nLuL2tL 
and the program gives a cruder realisation of the dispersion while 
running very much more quickly. The correlation factor and switch 
factor both distorted the dispersion pattern but had little affect 
on the amplitude of the meandering. The spatial randomness factor 
had no effect on the realisation except close to the source. 

d. Although the meandering in Figure 37 is only crudely 
represented, the sensitivity analysis showed that the meandering 
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wavelength and spatial anisotropy were linearly related, the 

wavelength being approximately equal to the large eddy streamwise 
dimension. 

e. The sampling box size from which particle statistics were 

calculated was a variable of the program. After trying a range of 

sizes a sufficiently detailed measure of intermittency was 

produced by using a square box whose dimension was equal to the 

water depth. Figure 39 shows the average cross-stream 
intermittency from a sampling line made up of ten such boxes. 

Figure 39 allows a measure of absolute plume spreading to be 

calculated. An ensemble average of these intermittency plots was 
found to quickly approach a Gaussian distribution. The standard 
deviation of the Gaussian distribution increased with the square 

root of time as expected and the dispersion coefficient followed 
(2.81) dependent on the number of eddy sizes included in the 

model. 

Figure 40 shows the Eulerian concentration fluctuation 

measured as a time series. This gives a measure of the peakiness 
of the signal as measured at a point. This plot was used for 

comparison with a dye release experiment described in the next 
chapter. 

Implementation of the model. 
In the light of the sensitivity analysis the velocity scalar, 

velocity anisotropy, spatial randomness, correlation and switch 
factors were removed as input parameters to the program. The 

values were fixed as follows: 

PARAMETER VALUE EFFECT 
Velocity scalar 1.0 eddy velocities as predicted 

by equation (2.74). 

Velocity anisotropy 1.0 u and v fluctuation amplitudes 
equal. 

Spatial randomness 0.0 no shift in grid position 
between implementations. 
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Switch 0.5 no correlation between 

adjacent eddies. 

Correlation 0.5 no correlation between 

u and v components. 

The spatial anisotropy was set automatically by the program 

from (3.28). This was calculated by first determining the value of 

A, the dissipation scale or model roughness length, from the value 

of c using (3.34). The value of the energy dissipation rate, c, 

remained an input to the code. The value of N was calculated from 

the water depth L as the integer part of log L/a. Once c, N and L 

are known, the value of U1, the velocity at which the 

intermittency is unity, was calculated. The model was modified to 

allow mean flow variation throughout the release and the 

intermittency made equal to the ratio of current speed and U1, as 

predicted by (3.63). 

In order to increase the computational efficiency of the code 
it was decided that only the large eddies would be modelled 
individually. Thus the sorting routine and eddy velocities were 

retained for the large eddy size and the smaller sizes replaced by 

random dispersion, the dispersion coefficients of all the smaller 

sizes being summed in accordance with (2.86). 

To model the cyclical nature of the production process 
fluctuation more effectively, the induced eddy velocities in the 

remaining large, spatially anisotropic, eddies was assumed to be 

sinusoidal. Thus the streamwise induced velocities were given a 

spatial sine distribution within each active eddy site, the 

amplitude of the fluctuation being adjusted to give the correct 

r. m. s. statistics and dispersion. 

Correlations and spectra from the model. 
Figure 41 shows a typical Eulerian velocity correlation and 

spectrum produced by the model. This was achieved by calculating 
the average velocity of the particles within the sampling box at 
each time step. The spectral peak is at 1/tL and the logarithmic 
plot of the spectrum shows a are trend over part of the range. The 
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concentration covariance and spectrum produced by the model will 
be discussed in the next chapter where they will be shown to have 

the same form as that found in the sea. 

Figure 42 shows a wave-number spectrum calculated from the 

first version of the model which retained the smaller eddy sizes. 
The longditudinal correlation, R11, is that between the 

simultaneous streamwise velocity fluctuations, u, at various 

streamwise separations. The transverse correlation, R22, is that 

between the cross-stream fluctuations at the same points. F11 and 
F22 are the corresponding one-dimensional spectra taken by Fourier 

transforming the correlations. Both spectra show clear a k`3/3 

dependence over part of the wave number range. The isotropic 

relationship given by Tennekes and Lumley (1972) was used to 

calculate a measure of the three dimensional spectrum E(k): 

E (k) = k3 d/dk ((1/k) dF11/dk) (8.1) 

The spectrum E(k) calculated by this method closely followed 

the F22 spectrum. This is not as predicted by isotropic theory. 

Furthermore the ratio F11/F22 is clearly not 4/3 as it should be 

for isotropy. The model velocities used to produce these spectra 
were isotropic and the intermittency was unity. It therefore must 
be the spatial anisotropy which distorts the correlations and 
spectra away from the values predicted by isotropic theory. The 

same result was obtained when the eddy velocities were modelled in 

a polar mode, the step length being appropriate to eddy size but 
the direction being random. Thus velocity isotropy itself is not 
sufficient to produce isotropic spectra. Spatial isotropy also has 
to be included. 

Figure 43 shows typical output from the modified code. The 
meandering is much more clearly represented. The absolute and 
relative dispersion, meandering and intermittency predicted by the 
modified code is compared in the next chapter with dye and oil 
releases made at sea. 
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CHAPTER B. COMPARISON OF SURFACE DISPERSION MODEL WITH OIL AND DYE 

RELEASE EXPERIMENTS. 

The discrete eddy mixing model described in the previous 

chapter was used to simulate two large scale near-surface 
dispersion experiments, the first a series of Rhodamine B dye 

releases and the second an oil release. These were carried out by 

the Warren Spring Laboratory in the North Sea 35 miles off the 

coast at Ipswich. This area was chosen since there was known to be 

a considerable period of steady, rectilinear mean tidal flow 

(Elliott, 1986). The sea bed was sandy and flat with a depth of 45 

in. The experiments were carried out in calm, windless conditions. 

Dye release experiments. 
The dye release experiments were carried out on 2-4 August 

1988 and were specifically designed to establish the extent of the 

meandering. SEASPRING was anchored at 52°, 9.6' N, 2°, 30.7' W and 
the dye releases carried out at the same stage of the tidal flow 

on the three successive days. The dye was released through a 

weighted pipe over the stern of SEASPRING. The pipe remained close 
to the sea surface and the dye was released at a rate of 55 
litres/hour. 

The dye concentrations were measured from SEATRUCK whose 
position was fixed by DECCA and checked by radar range and bearing 
from SEASPRING. SEATRUCK was fitted with two vertically supported 
sampling tubes which extended to 1m and 5m below the surface. 
Water was pumped continuously at a known rate through the tubes to 

recording fluorometers on SEATRUCK. By calibrating the 
fluorometers against known concentrations of dye, the recorded 
data could subsequently be processed to give concentration 
readings in ppb. The time delay between a sample entering each 
tube and reaching the fluorometer was accounted for in the data 
processing. The general arrangement for the dye releases and of 
SEATRUCK are shown in Figures 44 and 45. 

SEATRUCK was limited to a low speed because of the underwater 
sampling tubes and was carried downstream by the mean current 

119 



Sea Truck 

"Y 't 

Sea Spring 

Figure 44. Deployment for dye release experiments. 



Doles 

Figure 45. SEATRUCK sampling layout. 

flurometers sea truck 



while carrying out each sampling crossing of the plume. The error 
from this effect was greatest when the widest sections of the 

plume were measured. On these occasions the position of SEATRUCK 

was fixed at the start and finish of each crossing so that the 

extent of the cross-stream spreading could be found accurately. 

Sufficient crossings to characterise the plume had to be 

achieved before the mean flow conditions changed appreciably. 
Since SEATRUCK was restricted in speed and the plume dimensions 

were large, it was decided that the most important criterion on 
the mean flow was that it should remain uni-directional throughout 
the experiment. Thus on 2nd August, when crossings were made 11000 

m downstream from SEASPRING, the dye had been released 3 hours 

previously. During this period the mean current direction varied 
by a maximum of 1. around its mean value of 204°. The two x 

crossings achieved at this distance from the source were evenly 
distributed around a 204° bearing from SEASPRING showing that the 

current had also remained rectilinear over the plume dimension. 

The variation in mean flow amplitude during the 3 hour period 

was 9% around its mean of 1 m/s. This is less significant since 
the plume width only varies slowly with distance from the source 
and a 9% error in converting distance from source to time since 
release is much less than the variability in the lateral 

measurements themselves. On the 3 August the plume measurments 

were taken out to 5000 m and the variation in mean flow was much 
less. 

When "relative" diffusion experiments are carried out (Bowden 

and Lewis, 1973) the plume is traversed many times at the same 
location and an ensemble average of the spread of each profile 
around its centroid taken as a measure of plume width. In these 
experiments only one crossing of the plume was made at each 
downstream distance from the source and more scatter in the 
relative diffusion calculations was expected. 

The true geographical position of each concentration profile 
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was recorded so that each crossing could be plotted on a chart. 
Figure 46 shows the result for both plumes. The plot ignores the 

time at which each crossing was made. The full width of each 

concentration profile is shown. This was taken as the extent in 

each record where positive dye concentrations were found. In some 

of the near source records there was a difference in the plume 

width between the records taken at 1m and 5m depths. In these 

cases the larger dimension was recorded. Typical near source and 
far-field crossing realisations are shown in Figure 47. The 

standard deviation of each concentration profile was calculated 

using a computer code. These were similar at 1m and 5m and an 

average was taken as representative for each crossing. 

The 5m depth sensor did not record dye until 1500 m from the 

source on either day, indicating that the dye remains within the 

top 5m for 25 minutes after release. The magnitude of the 

concentration peaks at 1m and 5m become approximately equal at 
2000 m from the source. From 3000 m the profiles become very 

similar, indicating that the plume has mixed down to substantially 

more than 5m deep. Near surface mixing mechanisms should 
therefore be effective for at least 30 minutes after a release in 

these conditions. Since measurements were not made at depths 

greater than 5 in, the realisations in Figure 46 are essentially 
two-dimensional. 

For each crossing the maximum distance at which dye was 
found, measured from the centre line of the release (the mean flow 
bearing), was measured. Twice this distance was taken as an 
assessment of the full plume width, W, at that distance from the 

source. The result is plotted against time since release, 
calculated at 1 m/s mean flow, in Figure 48. Since the mean 
current in each case was 1 m/s, the time since release was equal 
to the distance from source in metres. The values all fall within 
an envelope given by: 

w 8,3 t1/2 (8.1) 

This envelope is shown in Figure 48. Equation (8.1) is the best 
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assessment that can be made of the maximum extent of the absolute 

dispersion of the plumes. 

The following definitions were made. All lengths are in metres. 

SYMBOL NAME 

W full plume width 

DERIVATION 

assessed from Figure 52 

(equation 8.1) 

w individual crossing 

width 

0' standard deviation 

of absolute diffusion 

s standard deviation 

of relative diffusion 

m standard deviation 

of the meandering 

t time since release 

assessed from each profile 
(Figure 51) 

calculated as W/4 

(equation (8.3)) 

calculated from each 

profile (Figure 51) 

calculated 
(equation (2.91) ) 

distance from source/ 

mean current 

The calculated standard deviations, at were plotted against 

the measured profile widths, w. With some scatter they were 

related by: 

w on 4s (8.2) 

This relationship was expected from a Gaussian concentration 
distribution and has been established in relative diffusion 

experiments (Bowden and Lewis, 1973). Since the absolute diffusion 
is also Gaussian, the following relationship was assumed to 

calculate the standard deviation, a: 

aa W/4 (8.3) 

The standard deviation of the meandering was then calculated from 

122 



(2.91) : 

M2 Q'2 _ SZ (2.91) 

From (8.1) and (8.3), the standard deviation of the absolute 

diffusion was given by: 

r=2.07 tl/2 (8.4) 

The standard deviation of the relative diffusion, s, was found to 

follow the following relationships: 

s 0.0002 t312 t< 5000 s (8.5) 

s 1.0 t1/2 t> 5000 s (8.6) 

These relationships are shown in Figure 49. The t312 behaviour is 

predicted for the growth of s during the explosive phase of growth 
in relative diffusion (see Introduction). Equations (8.4) - (8.6) 

will be used later in this chapter to derive the statistics of the 

meandering and the turbulence. 

A further dye experiment was carried out on 4 August under 

similar tidal conditions as before. After one crossing which 

showed that the plume dimensions were similar to the previous 
days', SEATRUCK was anchored on the plume centre-line at a 
distance of 1600 m from SEASPRING. That the anchoring point was on 

the plume centre-line was established first by bearing from 

SEASPRING and then confirmed by observing that the plume 

fluctuated equally to either side of SEATRUCK during the 

experiment. The point concentration record is shown in Figure 50. 

Point concentration record. 
The intermittency factor of the dye concentration, V, is 

defined as the proportion of the time at which dye is detected 
(see Introduction). Using this definition the point concentration 
record intermittency factor was 0.49. The intermittency decreased 

exponentially with threshold level so that if the chosen threshold 
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level was C and the intermittency, 7, was defined as thresh thresh 

the proportion of the time that the signal had a value greater 

than C: 
thresh 

Ithresh ° 0.49 exp (-Cthresh/50) (8.7) 

The significance of a relationship like (8.7) is that great care 
has to be taken in choosing the instrumentation threshold when 
intermittency measurements are made. 

The mean value of the concentration is 30 ppb with a standard 
deviation of 51 ppb. This was greater than the mean and showed 

that the signal was highly kurtosed and intermittent. The peak to 

mean ratio was 10 for the largest observed peak. Equation (8.7) 

and the anomaly in the calculated standard deviation indicated 

that the fluctuation distribution might be log-normal. This 

distribution has been found in the atmosphere and was predicted by 

Csanady (1972) who considered a succession of random diluting 

impulses on a fluid packet moving through a field of turbulent 

eddies. 

The probability distribution of the point concentration 

record is plotted against the logarithm of the concentration in 

Figure 51. The distribution is approximately Gaussian above the 

mean value, the distribution of low concentration values being 

difficult to measure. The probability distribution of peak values 
is plotted against the logarithm of the peak value in Figure 52. 

The distribution is approximately Rayleigh. Since the peak 
distribution of a narrow band Gaussian process is approximately 
Rayleigh (Pipes, 1958), these plots provide evidence that the 
fluctuation distribution is approximately log-normal. 

The highest peak concentrations, C.,, from all the crossings 
carried out on 2-3 August were plotted against time since 
release. The maxima were contained by an envelope given by: 

Cmax - Co/t7/3 (8. B) 
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where Co was the initial concentration. A relationship such as 
(8.8) is required when the absolute concentration of a substance 
is hazardous. 

The mean peak width (taken between points of zero 

concentration) was 95 s which corresponded to 95 m at a mean 

velocity of 1 m/s. The standard deviation of the peak widths was 
70 m, showing the wide scatter in the results. A 2.7 minute 
timescale was apparent in the record and is marked on Figure 50. 

The record could be split into peaks that were close to multiples 

of this timescale, indicating that the passing plume elements 

might be characterised by a streamwise dimension of approximately 
160 in. This value is close to W multiplied by the intermittency. 

From equation (8.1), Wa 332 in. Wx0.49 - 162 in. 

The mean period between peaks was difficult to establish 
because of the scatter at low concentrations. The mean period 
between the prominent peaks was 300 s with a standard deviation of 
96 s. This period is shown on Figure 50 and corresponds to a 
length close to the sand dune wavelength predicted by Yalin (1977) 

of 2nd (where d is the water depth). In 45 m water, 2nd s 282 m. 

Oil release experiment. 
An oil release experiment was carried out on 22 August 1987. 

The experiment was part of a series of experiments in which the 
dispersive effect of various detergents on oil was being tested. 
The experiment was the only one of the series where conditions 

were the same as for the dye experiments reported above. 

The release vessel, SEASPRING, maintained a constant position 
with respect to the sea bed during a one hour period when the 

surface velocity was steady at 1 m/s. There were no wind, waves or 
swell during the experiment. The position of SEASPRING was fixed 
by DECCA. The release position was within 1000 m of that from 
which the dye experiments were carried out. 

About one hour after the discharge commenced the slick was 
photographed from the air from a height of 330 m using an 
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Figure 53. Electronic image of oil slick. 



electronic camera. The aircraft flew up the reciprocal of the mean 

current bearing of 205°. The camera produced two simultaneous 
images of the slick. These are shown in Figure 53. The release 

vessel is at the top of each picture, and the white calibration 

marks at 200 m intervals. The slick was approximately 3000 m long 

and the meandering pronounced. 

The left hand view in Figure 53 was taken through an 

ultra-violet filter and by showing the surface "sheen" gave a good 
indication of the full extent of the spread of oil at the sea 

surface. The right hand view was taken through an infra-red 

filter to show the bulk of the thicker surface oil. 

The photographic strip was enlarged and the outline of the 

thicker oil slick traced and transferred to graph paper for 

subsequent analysis. The main axis of the slick, which was also 

the main current bearing from SEASPRING, was marked with points 

representing time since release at a mean flow of 1 m/s. 

The meandering was assumed to be described by the centre line 

of the thicker oil. Since the outline of this part of the slick 

was ribbon-like and its cross-stream dimension remained small this 

was easily defined. 

The meandering statistics were found by two methods. The 

first by directly measuring the cross-stream displacement, y, of 
the centre line at various times since release, t. In the second 

method an attempt was made to find the two-dimensional 

displacement of the slick centre line from the position which it 

would have occupied had the turbulence not been present. 

The length of the centre line, measured from the source, was 
plotted against release time taken from the main axis. The centre 
line length, 2, was given by: 

260 12 t4/3 (a. 9) 

with very little scatter. This indicated that the slick was 
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stretching along its centre line as the complexity of the 

meandering increased. 

Equation (8.9) was then used 

the slick in time since release. 

made and are illustrated in Figure 

SYMBOL NAME 

W total width of slick 
(absolute dispersion) 

to mark off the centre line of 
The following definitions were 
54. 

DERIVATION 

twice maximum 
displacement of 

sheen from axis 

w width of visible slick measured from 

(relative dispersion) sheen 

t time since release along calculated from 

mean current bearing current of 1 m/s 

t' time since release along calculated from 

slick centre line equation (8.9) 

y cross-stream seperation measured at t 
between centre line and axis 

X. streamwise separaton between measured at t 

equivalent points on centre line 

and axis 

r separation of equivalent points measured at t 

on centre line and axis 

It was found that the maximum values of W, y and r were 
described by: 

w 8.16 t"2 (8.10) 

yM, x - '3.2 t1/2 (8.1 
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r 3.26 t1/2 (8.12) 
max 

Beyond 1000 m from the source the cross-stream width of the 

sheen, w, is given by: 

w-0.00085 t3/2 (8.13) 

with little scatter. This equation, which is nearly the same as 
the one found for the dye releases, underestimates the width of 
the sheen close to the source. Quantitative comparison with 

relative diffusion theory is hampered by a lack of knowledge of 

oil drop size distribution (if it is in droplet form) and the 

response of a drop to turbulent impulses (Elliott, 1986). Surface 

tension will also affect surface spreading near the source. The 

near equivalence of (8.5) and (8.13) for relative diffusion and of 
(8.1) and (8.10) for absolute diffusion indicated that the oil was 
dispersed in the same manner as dye after about 20 minutes from 

release. 

The statistics of r and y were analysed. Since both 

parameters increased with time two new variables were created: 

r' - r/(týýZ) (8,14) 

y' y/(t''2) (ß. 15) 

From 1000m from the source the distribution of the values of 

r' was found to be Rayleigh. The distribution is plotted in Figure 
55. This distribution is expected from an isotropic 

two-dimensional random walk of fixed step length (see 
Introduction). The mean, -q(r') , and standard deviation, T(r'), of 
the distribution were given by: 

n (r' )®1.88 (8.16) 

c (r') - 0.91 (8.17) 

The standard deviation of y' was found to be: 
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P(y') a 1.79 (8,18) 

Equations (8.16), (8.17) and (8.18) may be rewritten in terms 

of r and y to give: 

-q(r) a 1.88 t1/2 (8.19) 

a-(r) - 0.91 t1/2 (8.20) 

o'(Y) = 1.79 t1/2 (8.21) 

Absolute dispersion and the mixing model. 

The envelope describing the maximum cross-stream dimension of 
the dye releases was: 

W 8.3 t1/2 (8.1) 

and for the oil release: 

w 8.16 tl/2 (8.10) 

so that using equation (8.1) to describe W and (8.3) to give a: 

W/4 (8.3) 

gives: 

a- = 2.3 t1/2 (8.22) 

If the surface spreading is caused by eddies which cause a 
simple random walk, step length uttt every to then the absolute 
dispersion from all the eddies in the cascade is given by (2,101): 

o, R 1.08 n1/2 c1/6L 2/3 l/2 (2.101) 

so that substituting (8.22) into (2.101) and using L- 45 m gives: 
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n3c-0.13 cm2/s3 (8.22) 

Relative diffusion and the mixing model. 

The relative dispersion of the dye was described by (8.5) 

and (8.6): 

s 0.0002 t3/2 t< 5000 s (8.5) 

1.0 t112 t> 5000 s (8.6) 

In Chapter 2 the model predicted for a point source release: 

s=0.037 nL3/2C1/2 t3/2 (2.87) 

s= 0.4 n2/2cl/6L2/3t1/2 (2.99) 
L 

11.9 tL/nL (2.91) 

Equating (8.5) and (2.87) gives: 

n3c - 0.29 cm2/s3 (8.23) 

Equating (8.6) and (2.99) gives: 

n3c=0.59 cm2/s3 (8.24) 

and putting 1 equal to 5000 s in (2,91) gives.. 

3c - 0.26 cm2/s n3 (8.25) 

Meandering and the mixirr model. 
The meandering statistics were calculated between 1000 m and 

2500 m from the source. They were found to be: 

-q(r) - 1.88 tl/z (8.19) 

a. (r) - 0.91 t1/2 (8.20) 
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(Y) 1.79 t1/2 (8.21) 

From the statistics of Rayleigh distributions given in (1.24), 

(1.25) and (1.26) we can write (Bartlett, 1978) : 

1j (r) 2= 
Trm2 /4 

c (r) 2- (1 - (Tr/4) )m2 

(8.26) 

(8.27) 

C2 (Y) = m2. (8.28) 

The measurements were taken within the explosive phase and the 

model predicts: 

m2 1.17nLc /3L4/3t - 0.0012 n3 c t3 (2.93) 

so that using La 45 m and n3c s4 0.3 we can assess the relative 

size of each term in (2.93). At ta 1000 a, the first term is 200x 

the second. At 2000 s, 60x. Thus in this region (2.93) may be 

approximated by: 

m2 su 1.17nzc1/3L4/3t 

Using (8.19), (8.26) and (8.29) with L- 45 m gives: 

nie - 0.14 cm2/s3 L 

Using (8.20), (8.27) and (8.29) with Lw 45 m gives: 

nie = 0.08 cm2/s3 L 

Using (8.21), (8.29) and (8.30) with L- 45 m gives: 

nLe = 0.06 cm2/S3 

(8.29) 

(8.30) 

(8.31) 

(8.32) 

Establishing the value of the energy dissipation rate. 
The mean value of (8.22) - (8.25) and (8.30) - (8.32) is 0.22 

cm2/s3 with a standard deviation of 0.17. The value of nLc given 
in (8.24) is undoubtedly an over-estimate since the derivation of 
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(2.99) assumed that no dispersion from the largest eddy size was 
taking place. This must be occurring to some extent and would 

result in a lower value in (8.24). Furthermore (8.24) is very 

sensitive to the measured dispersion in (8.6) because of the 1/6 

exponent in (2.99). Ignoring this result gives a mean of 0.16 

cm2/s3 with a standard deviation of 0.07. Recalling (3.30): 

n3 e= U3/N3L (3.30) 
0 

shows that with La 45 m, Uo- 1 m/s and n3c-0.16 cm2/s3, N- Zl. 

From (3.18) and (3.34) : 

N log L/A (3.18) 

A= (VSic) 1/4 (3.34) 

then values of c between 0.26 cm2/s3 and 0.3 cm2/s3 give the 

required result with N= 11. These values are close to those found 
in 30 m of water and reported in Chapter 3. 

Numerical simulation of the dye and oil experiments. 
The surface dispersion code was found to best simulate the 

experiments with a value of c equal to 0.3 cm2/s3. The absolute 
dispersion envelope, (8.1) was followed with precision. The 

meandering wavelength approximated to 2nd (the Yalin (1977) sand 
dune wavelength) over the same distances from source as for the 

oil release. 

The accuracy of the relative dispersion was less easy to 

establish. The simulation was expected to be crude since the 
smaller eddies were modelled by (2.99) throughout the release. The 
program was modified to give real-time visual output and the 
envelope of the relative dispersion varied considerably as the 
release progressed. It proved impractical to track sufficient 
particles to establish (8.5) although (8.13) could be fitted to 
the relative dispersion between 1000 in and 2000 m from the source 
on some realisations. 

132 



-300 

CROSS-STRBAM 

Figure 56. Simulation of dye release. 



A typical realisation of the simulation of a dye release is 

shown in Figure 56. The concentration intermittency, r, was 

calculated from point source records taken at varying cross-stream 

and streamwise distances from source. The cross-stream 
intermittency distribution was approximately Gaussian in the mean, 

peaking on the centre-line and going to zero at +/- W/2. The 

streamwise development of 7 was more complex. From 0m to 

approximately 1500 m from the source, the mean centre-line 
intermittency reduced linearly from 1 to 0.5.1500 m was also the 

distance at which the 5m fluorometer detected dye. From 1500 m to 

3000 in, 7 varied randomly between 0.5 and 0.7, a figure which was 

comparable with that found from Figure 50. From 3000 m to 5000 in, 

a distance equaivalent to T1, the start of the second phase of 

growth in relative diffusion, - returned to 1 approximately 
linearly with distance. 

The concentration covariance and the concentration 
fluctuation spectrum were calculated from the point concentration 

record shown in Figure 50. This is compared with that calculated 
from the model in Figure 57. The model result is dependent on 

sampling box size and the comparison can only be qualitative. On 

that basis the simulation is close, indicating that the model is 

reproducing the point concentration fluctuation distribution 

realistically. 

In Figure 58 the diffusion due to small eddies has been 

artificially reduced in order to highlight the meandering. This 

simulates the thicker oil in Figure 53. The meandering wavelength 
varies between approximately 2nd (the Yalin (1977) sand dune 

wavelength) which is shown in Figure 53 and 4nd. This equates to 
the meandering of the oil release over the range shown in Figure 
53. 
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CHAPTER 9. SUNMARY OF RESULTS AND CONCLUSIONS. 

The dissipation cascade. 

A model of the turbulent dissipation cascade has been derived 

using a set of intermittent discrete eddy sizes. The kinetic 

energy density and lifetime of each eddy size are given by: 

3C EZ/3QZ/3 Ea (2.41 

tE 1/312/3 
(2.42) 

where e is a lengthscale describing the eddy size and c the 

turbulent kinetic energy dissipation rate. If the breakdown 

process to smaller sizes is self-similar then to conserve kinetic 

energy and vorticity the eddy sizes are related by a fractional 

dimension C where: 

C 81/2 (2.63) 

Equations (2.41) and (2.42) form part of many existing 

turbulence models and it is concluded that they should form the 

basis of any model which seeks to incorporate the spatial extent 

of individual eddies. When applied to simple geometries the 

cascade model can describe the development of grid generated 
turbulence and predict dispersion at the sea surface in a 

rectilinear mean current. 

The turbulent production process. 

A mean velocity profile was derived from the distance that 

eddies in the dissipation cascade can mix slow moving fluid away 
from the bed layer into the outer flow. Since the sizes are 
related by C, the profile is logarithmic. By equating the kinetic 

energy defect in the resulting profile with that of the largest 

eddies, so that the mean velocity profile is a result of the 
turbulent production process, there results: 
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üo/N °nLuL (3.28) 

where U0 is the mean surface velocity, L the boundary layer depth, 

U2 = kL (equation (2.41)), and nL the large eddy intermittency. 

The total number of discrete eddy sizes, N. is given by: 

N log L/? (3.18) 

It was concluded that A could be associated with the Kolmogorov 

dissipation scale and, more significantly, that the turbulent 

production could equal dissipation for a value of N equal to 11. 

The result was that the mean velocity profile: 

Ü ýý1ý nLUL log h/X + 1.5nLUL +nLuL (3.33) 

was predicted for surface velocities less than a critical surface 

velocity U1 given by: 

UI NuL (3.65) 

so that below U1 ,c remained constant and nL was given by: 

nL Uo/Ul (3.63) 

A model of the Reynolds stress related the stress to the 
friction velocity used to characterise the mean velocity profile 
and predicted a constant stress layer near the bed. A model of the 

bursting sequence showed that the mean profile could be produced 
by a streamwise succession of eddies, size L, at related stages of 
production. For this reason, and from considerations of 
continuity, it was predicted that the development of the largest 

eddy size should exhibit group behaviour, there being nN eddies 
in a streamwise group. The energy spectrum from such a group 
passing a fixed velocity sensor would show the production energy 
at a frequency equal to 1/tL rather than at the frequency 
associated with the eddy passage. time, invalidating Taylor's 
hypothesis for such spectra. 
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Turbulent spectra. 
By considering how the energy from a particular eddy size 

would reflect into a one-dimensional spectrum the equations: 

ý1(k) 1.7 nLe2/sk-s/s (4.5) 

tc) -0 . 5nLC o-2 (4.18) 

were derived from the dissipation cascade without reference to 

isotropy. These equations were used to propose an explanation for 

surface layer similarity scaling and the fact that the turbulence 

appears isotropic above kh - 2n where h is the sensor height. 

Current meter experiment. 
A current meter experiment was carried out in 30 m of water 

over a complete tidal cycle. Correlations showed that the largest 

eddies in the flow were approximately cubic with a dimension equal 
to the water depth. These eddies were shown to move with the mean 
flow. Frequency spectra for the turbulent components peaked at 
l/tL showing that the current meters were responding to the 

fluctuations caused by the production process rather than to the 

passage of individual eddies. The horizontal velocity fluctuations 

were approximately isotropic. 

The mean velocity measured at two heights closely followed 

(3.33) with c-0.3 cm2/s3 and N- 11. The large eddy 
intermittency was found by two methods and was proportional to 

current speed, validating (3.63). The value of c was also found by 
fitting (4.18) to spectra derived for different intervals of the 
tidal cycle and by using (2.62) at the spectral peak frequency, 
1/t 

L* 
The value again remained constant close to 0.3 cm2/s3. 

During the ebb tide the turbulent kinetic energy was 
approximately a quäter of the value found on the flood, despite C 
the mean velocity profiles being similar. This could not be 
satisfactorily explained except by proposing that the boundary 
layer might adopt preferred energy states. If this were so then 
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the observations could be related to the discrete eddy cascade and 

a value of C given by (2.63). 

To investigate the possibility that the boundary layer energy 

might vary in discrete steps the Fourier components of the 

spectral peak were isolated and transformed to give a signal 
descriptive of the large eddy production process. This signal was 

chaotic and is believed to be due to the strange attractor which 

underlies the turbulent process. By plotting the magnitude of this 

signal against its rate of change the discretised nature of the 

process was revealed. 

Numerical simulation of surface dispersion experiments. 

Two large scale dye releases and one oil release were 

analysed in terms of the dispersion predicted from the discrete 

dissipation cascade. The dispersion and meandering all followed 

the model equations with c close to 0.3 cm2/s3. This was confirmed 
by a numerical simulation. These experiments were carried out in 

45 m of water and the value of c was the same as in the current 

meter experiment. Since this was carried out in 30 m of water it 
is concluded that the dependence of c on water depth is slight. 

A third dye release experiment resulted in a 45 minute 
concentration record taken at a fixed point 1600 m from the 

source. The intermittency and concentration spectrum from the 

record were reasonably well simulated by the dispersion model. The 

concentration fluctuation distribution was analysed and shown to 
be approximately log-normal with a peak to mean ratio reaching a 
maximum of 10. The model showed that the cross-stream 
concentration intermittency distribution was approximately 
Gaussian and that the centre-line concentration intermittency, 71 
reduced linearly from unity to 0.5 over a distance approximately 
equivalent to that at which the dye was mixed throughout the water 
column. The value of 7 then remained close to 0.5 for a distance 
equivalent to the end of the explosive phase of cloud growth, and 
subsequently returned to unity at the distance from source where 
the meandering became insignificant. 
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Concluding discussion. 

The following paragraphs from the introduction gave the 

requirements of an improved turbulent dispersion model. These were 

that the model should: 

a. Recognise the spatial distribution of eddies and the 

intermittency of the turbulence. 

b. Give the mean velocity distributions found by observation. 

c. Give the correct frequency and wave number spectral 

characteristics, possibly over a wider range than those derived 

for the inertial subrange. 

d. Give values for parameters such as c which are within the band 

of values measured by experiment. 

e. Predict dispersion which agrees with the measurements of 

relative and absolute dispersion, meandering and intermittency. 

f. Model the Reynolds stresses and justify the models currently in 

use for their prediction. 

g. Give eddy characteristics which are derived from the 

fundamental equations of motion, so that the physics of the 

turbulent process is made more clear. 

The model of dispersion by turbulent eddies developed in this 

thesis satisfies these requirements for dispersion by bottom 

generated turbulence in a rectilinear flow. In predicting the 

turbulent intensity, and consequent turbulent dispersion, there 

remains a significant unanswered question. It appears that the 
kinetic energy of a turbulent boundary layer might tend to adopt 

preferred, discrete, energy states. This behaviour is typical of 

systems whose governing equations are non-linear. If this 

phenomenum is real, then the prediction of turbulent dispersion 
becomes a much more complex problem. 
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It is possible to reproduce the component attractor presented 
in this thesis with non-linear equations. It has not yet proved 

possible to derive these from the Navier-Stokes equations. If this 

could be achieved then the discrete energy levels, and subsequent 
turbulent dispersion, might be predictable. 

The model has been derived for, and tested in, rectilinear 

mean currents when the boundary layer has reached the surface. 
Under these restricted, but common, circumstances the value of the 

energy dissipation rate, c, is found to remain constant at 
approximately 0.3 cm2/s3, and the turbulent intermittency to vary 
linearly with current speed. To find a value for c the 
intermittency of the turbulence has to be accounted for and its 

variation in more complex geometries is as yet unknown. If c is 

constant then in the simple geometry studied here the depth 
integrated turbulent kinetic energy equation simplifies to a 
non-linear equation for the intermittency, nL. This may form 

another approach to the prediction of discrete energy levels and 
the development of turbulence in the sea. 

The set of non-linear equations which reproduce the attractor 
can also be written in a form similar to the Langevin equation. In 

a simple random walk, the particle position is recalled at each 
time step and the particle given a randomly generated velocity. In 
the Langevin equation, the particle velocity is recalled and a 
random acceleration applied at each time step. In the form which 
mimics the attractor, the acceleration is recalled and a random 
rate of change of acceleration applied at each time step. A 
typical result, simulating the dispersion of one fluid particle in 
a constant current, is shown in Figure 59. The mean position of 
the particle meanders. It is therefore concluded that an in-depth 
study of the component attractor would form a fruitful basis for 
future research. 
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i 

Figure 59. The dispersion of a single particle calculated from a 

modified form of the Langevin equation. 
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