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ABSTRACT

The kinetic energy density, k, and lifetime, t, of a
turbulent eddy, volume V, are shown to be related ¢to a
characteristic length scale, ¢, by:

3

& =V k==82/3

e2/3 t m 8'1/322/3

where ¢ is the energy dissipation rate. A self similar cascade of
discrete eddy sizes is derived, each size related to the next
larger by:

| l"H-:I. = CE&

where C = 8%, With some simple assumptions as to the turbulent
production process the mean logarithmic velocity profile is
derived. The relationship between the friction velocity and
Reynolds stress is explained in terms of the large eddy
intermittency, n. Below a critical free stream velocity, U’, n is

proportional to the free stream velocity. The dissipation rate, ¢,
is then constant and given by:

e = U'/N°L

where N 1s the number of discrete eddy sizes in the boundary
layer. When the boundary layer has reached the surface N = l1ll. The
observed turbulent spectral characteristics are derived from the
eddy equations without wusing dimensional reasoning and an

explanation of the mechanism behind surface layer similarity
scaling is proposed.

An experiment was carried out in the North Sea to test the
model predictions. Correlations showed that, except at slack
water, the largest eddies were approximately cubic, occupying the
whole flow depth, and were advected with the mean flow. Frequency

gspectra provided evidence that the cascade formulation was
correct. The turbulent intermittency was proportional ¢to the

current speed and the value of g, calculated by several methods,
was found to be constant with a value:

e = (0.3 crnz/s3

The characteristics of the largest eddies were isolated using
a spectral cropping technique and plotted as a phase portrait of
the turbulent strange attractor. This demonstrated that the

boundary layer sat at preferred, discrete energy levels. The
levels observed could be related to the discete cascade model. A

computer code based on the model equations was tested against a
Series of large scale o0il and dye releases in the North Sea. The
observed intermittency, meandering, and dispersion were well
simulated with the value of £ given above.
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CHAPTER 1 INTRODUCTION

This thesis was driven by the need to quantify the mechanisms
involved in contaminant dispersion in the surface layers of
estuaries and shallow seas. This need 1is significant since most
contaminant releases have their environmental effects in such
areas. Buoyant contaminants necessarily remain in the surface
layers, and neutrally buoyant contaminants released near the
surface may mix downwards comparatively slowly allowing the

near-surface mixing mechanisms to be effective for a significant
time.

Four mechanisms are important in their effect on the temporal
evolution of the concentration of a contaminant:

1. Advection. A contaminant is carried along by the mean
current in which it finds itself. Such mean currents may be

tidally or density driven, generated by a wave field or driven by
a wind stress on the surface. Secondary currents, which may be
thought of as large semi-permanent swirls or eddies are often
caused by coastal topography. In this thesis the expression "mean
current” i1s avoided wherever possible, the expression "bulk flow"
being more descriptive of the macroscopic water motions. Such bulk
flows are commonly approximated by two-dimensional, depth
averaged, numerical models; the detail available being limited by
computational efficiency and grid size. Here the agssumption is
made that such bulk flows can be predicted sufficiently well that

an improvement in accuracy of mixing models can be achieved by the
inclusion of the more detailed fluid motions.

2. Turbulent mixing., All tidally driven flows are turbulent
over a large part of the tidal cycle. The significant
characteristic of a turbulent flow is its ability to mix and

disperse a contaminant effectively. Three mechanisms generate such
turbulent mixing, these are illustrated in Figure 1,

a. Large, esseﬁtially#htwd-dimensional eddies are generated by
side boundaries. In an estuary these often occupy the whole width

11
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Figure 1. Turbulent mixing mechanisms,



of the flow and are advected for considerable distances before
dissipating. Their scale makes them impossible to distinguish from
secondary bulk flows and their prediction is thus a function of

the accuracy of the bulk flow model ‘and is outside the scope of
this thesis.

b. Bottom generated, rough turbulent boundary layers often reach
to the surface in shallow seas and generate active mixing. This

thesis is concerned with predicting and modelling these turbulent
effects.

c. Wind generated surface waves both transport contaminants in the

surface layers and generate turbulence and its associated mixing,
especially when they break.

3. Molecular diffusion. Molecular diffusion is an essential
mechanism for smoothing out the large concentration gradients
produced by the turbulent mixing: and in converting turbulent
kinetic energy into heat. In the flows considered here the
dispersive effect of molecular diffusion- will be insignificant

when = compared to that of the turbulence -although ' ‘molecular

influences are essential to the determination of turbulent mixing
parameters,

4. Contaminant Interactions. Some contaminants degrade in
sea-water through biological or chemical reaction. For example
radionuclides decay as they disperse. Many contaminants react with
the suspended solids in the flow and are dispersed with them
rather than following the motions of the fluid. Drying banks
retain contaminants which may be re-suspended on the following

tide. Oil slicks behave as a collection of droplets but exhibit
colloidal and surface tension effects.

Previous work on turbulent mixing has followed two main

Streams, neither of which has proved entirely satisfactory. The

first originated before powerful computers became readily

available and predicts concentrations in an Eulerian frame. In
recognition of the fact that turbulent dispersion is not a

12



property of the contaminant or of its local concentration, the
diffusion coefficients are replaced by . "apparent - eddy
diffusivities" which are made functions of both space and time.
Csanady  (1972) noted ‘that this leads to a mismatch between 'the

formulation and the physical processes taking place.

Often the mean shear, itself a product of the turbulent
structure, is modelled separately in an attempt to represent the
large scale flow structure, diffusion then representing  the

smaller scales. Unfortunately there are few adequate correlations
for predicting the eddy diffusivities as a tidally driven flow
develops (Smith, 1982). Mean shear measurements also show a wide
variation which limits the efficacy of shear diffusion modelling.
Further progress in quantifying the mixing mechanisms demands a
more physically realistic method of modelling the turbulence
itself.

‘The second technique employed has been to predict the
Lagrangian paths of particles dispersing in a turbulent £flow
field. Either particle velocity or acceleration is treated as a
random walk process, the magnitude and time scales of the random

steps being coupled to the turbulence.

Durbin (1983) showed that a simple random walk of fixed step
length equates to a diffusion model with constant diffusivity and
suffers from the same physical unrealism. Langevin models, in
which some past velocity history is recalled at each time step,
are more successful since they go some way to acknowledging ‘the
longer term influences of the large scale motions in the flow.
Again turbulent accelerations at a point are not a local property
and have to be predicted from a model of the mean turbulent
characteristics or measured in the field.

Much work has been carried out in trying to predict the mean
properties of turbulent flows. This is because almost all
engineering flows are turbulent, indeed they are almost always
designed to be fully turbulent so that their characteristics can
be empirically predicted. Turbulent flows can be represented by

13



the Navier Stokes equations but these equations cannot be solved
analytically because they are non-linear. If they were linear,
then the dispersion problem would be solved since the passive

contaminant would be transported as a marked fluid packet moving
in the flow. The resolution of the dispersion would then be
determined by the grid size and the numerical integration

technique,

Information can be gained from a study of the time averaged
equations if time averaged <quantities are regarded  as
characteristic of the fluid properties. The continuity and
Navier-Stokes equations, decomposed into mean and £fluctuating
parts for a constant density fluid are given by Tritton (1977):

a(Ui+ ui)/a:x:L = () (1.1)

Averaging this equation (the processes of averaging and
differentiation are interchangeable in order) shows that:

U ,/ox, = 0 and éu /ox, = 0 o (1.2)

The same division applied to the Navier Stokes equation yields:

U BU = - 2 2 = *
; 1/6xj 1/p éJP/élxi + V8 Ui/axj a(uiuj) /axj (1.3)

for steady flow. This equation for the mean velocity U differs
from the laminar flow equations by the addition of the last term
which arises from the non-linearity of the Navier Stokes equation.

The tensor:
-p(uiuj) | (1.4)
is called the Reynolds stress.
A similar equation can be derived for the transport of

turbulent kinetic energy, q = 1/2 (uiui) r giving, in the absence
of buoyancy effects: |

14



Ukaq/ ax =-u u dU 1/ 0x =V (aﬁi/ 8% ) 2_a/axk[1/2 G{u 1u‘)-v6q/ axk-i-P'{Ik/ Pl
(1) (2) o (3) | “’ | (4) - - (1.5)
The terms represent:

(1) advection by the mean flow

(2) production of g by mean strain
(3) viscous dissipation

(4) diffusive transport (P2=1/2 pnz)

If this turbulent kinetic energy equation is written for a
pure shear flow (u in the streamwise direction) in the absence of
buoyancy effects, then the entire productlon occurs in the
equation for u, /2 and the equations for u, ‘/2 and u, /2 have no
production terms since there is no shear perpendicular to the 2
and 3 axes. The u, and u  components must therefore receive their

energy from the pressure interaction terms.

Because thé sum of the pressure terms 18 zero, the pressure
terms exchange energy between components without changing the
total amount of energy. Also if the 2 and 3 terms are to maintain
themselves despite dissipative losses, pauz/axz and p5u3/6x3 must
be positive and pdu /ox, must be negative. This can only be the
case 1f the turbulence is not isotropic. In most shear flows this
is indeed found to be the case with the r.m.s streamwise component

being roughly twice as large as the vertical (Raudkivi and
Callander, 1975).

The turbulent energy equation shows that the Reynolds
stresses work against the mean velocity gradient to remove energy
from the mean flow and provide energy for the turbulence. In order
to calculate the development of the mean flow schemes that predict
the Reynolds stresses have been devised. The simplest (writing in
2D for clarity, U and u being mean and fluctuating velocities in

the x direction, v being the fluctuating velocity in the vy
direction) are:

15



-uv = v 8U/8y (1.6)

where v.r the eddy viscosity, ~can be taken as a constant Hc:r a
function of position derived from a model of the turbulence or
empirically determined (Boussinesqg, 1877). Unfortun}atel:} since
turbulence involves large scale coherent fnotibns, the Reynolds
stresses at any point depend on the whole velocity profile and not
just on the local gradient.

Prantle’s momentum transfer hypothesis (Prantle, 1925) better
reflects these larger scale motions by allowing an appropriate
length scale to be applied to the geometry. Here:

-uv = {au/ay |8u/ay] | (1.7)
where {, the mixing length, must be specified.

The mixing length theory suffers from the same theoretical
limitations as above. To its credit, however, if { is taken as
proportional to the distance from a solid boundary then a
logarithmic velocity profile is predicted (Landahl and
Mollo-Christensen, 1987). Much of the literature is concerned with
fitting coefficients to this logarithmic profile which is widely
held to Dbe representative of turbulent shear flows, although
striking departures from the logarithmic form are often reported
(Soulsby, 1983). Tennekes and Lumley (1972), while rejecting the
mixing length hypothesis, show by dimensional reasoning that a

logarithmic profile should exist over some part of a boundary
layer.

A higher level model recognises that the Reynolds* stresses
nmust be related to the turbulent kinetic ”energy level and its

dissipation rate, e. It is possible to derive an exact equation
for € from the Navier Stokes equations (Johes, 1971) .
Unfortunately this is again difficult to solve except in the
simplest restricted geometries. Having solved for, or pﬁZdribed,

qd and €, the expression:

16



e =g %/l (1.8)

gives ¢, where ‘¢ is a ‘length scale characterising the energy
containing motions (Launder et al., 1972). The Reynolds stresses

are then predicted using ¢ and the Prantle~Kolmogoroff expression
(Prantle, 1945):

Bl 1/2 *
uu=C q'°¢ an/axj

(1.9)
i 4 J

or that:

v = C, qa’? e | | o 1(1-10)%
where C, 1s a constant. The length ¢ may be diféctly specified,
thus saving the need to solve an equation for e¢. This has the
advantage that v, can reflect transport processes but in complex
flows ! is difficult to specify. An alternate form (Jones and
Launder, 1972) gives the eddy viscosity directly from:

- colfe "“ 1.11)
v, Czq/e‘ | - (‘ )H

where the constant C2 now has to be found from experi*me’ht or
specified. |

For complex flows progress has Dbeen ?made by deriving
equations for the transport of the Reynolds stresses themselves.
Unfortunately if the unknown stresses are represented as dependent
variables in conservation equations, higher order correlations
appear. The level at which truncation of this’process takes place
is referred to as the level of "closure" of the modelling. Various
closures have been developed with some success in predicting
complex flows in relatively restricted gec;metry and scale
(Bradshaw, Cebeci and Whitelaw, 1981). domputationally" a 3D
closure model of an estuary is expensive and a typical three
dimensional estuarine model (Smi‘lih, 1982) scales the magnitude of
the eddy viscosity on the depth-mean turbulence kinetic energy and
a proscribed depth mean turbulence energy dissipation rate while

17



the vertical - structure is described by a suitable similarity
function derived by experiment.

To summarise: The temporal and spatial evolution of. mean
turbulent flows can only be calculated using prescribed functions
which do little to reflect the underlying physics. In many simple
cases they work adequately when the unknowns are. found from
experiment or trial and error, and any new model that  seeks to
refine the turbulence modelling must give the same result as these
préscriptions in the cases where they have been shown to work
well., The varying temporal and spatial characteristics of the
turbulence in a real flow cannot be predicted by these models
except 1in the case of Reynolds stress closures in very simple
geometries. The development of a real geophysical flow, and the
associated turbulent mixing cannot be quantified unless a more
physical representation of the turbulence is modelled. As a first
step towards this it 4is necessary to discuss the concept of
coherent turbulent structures or "eddies",

It appears from observations of turbulent wakes, plumes and
flows, that turbulence has a structure and some universal
characteristics. Coherent structures can be seen or extracted from
records using statistical analysis techniques. These structures
are known as eddies. Eddies of different "sizes" co-exist in the
turbulent flow and appear to interact with each other, some eddies
being of the same scale as the flow (the same "size" as the width

cf a smoke plume or the diameter of a pipe), some being very much
smaller (Tritton, 1977).

Turbulence will decay in the absence -of a continuing
generating mechanism. It is thought that in three-dimensional
flows large eddies which initially contain most of the turbulent
energy break down or decay into smaller and smaller eddies until
the very smallest eddies dissipate energy as heat by the effects
of molecular diffusion (Tennekes and Lumley, 1972). There is a
cascade of energy from the larger to the smaller scales. In
largely two dimensional flows, for example in the ‘atmospheric
boundary layer or the Gulf Stream, eddies are also observed  to

18



coalesce, transferring energy from smaller to larger scales.

Either the most unstable mode of breakdown to turbulence 1is
at the largest scale or the large eddies are produced by
interactions from smaller scales. The theory of instability of
laminar flows indicates, at 1least in two dimensions, that the
earliest wave mode to go unstable is the one that occupies the
whole flow (Yalin, 1977). Unfortunately the theory is unable to
deal with anything more complex than a singular instability in
simple geometry.

The growth of a boundary layer over a flat plate is a good
example of a situation where the underlying mechanism appears to
be different. Turbulent spots developing in the laminar boundary
layer appear to be derived from the development and interaction of
hairpin vortices revealed by numerical and flow visualisation
experiments (Utami and Uemo, 1987). The implication is that the
large eddies, occupying and defining the full thickness of the
boundary layer, are generated by a mechanism which originates at
small scales close to the plate. The resulting turbulent patch is

then transported and decays until laminar flow is re-established
(Raukivi and Callander, 1975).,

Fine scale velocity records in wakes and boundary layers show
that turbulence is "intermittent" except in the region very close
to a rough boundary (Csanady, 1972). Fluctuating portions of the
record are separated by regions of smooth mean flow., All classical
models of turbulent flows ignore this intermittency which is still
present at high Reynolds numbers. A similar intermittency is
observed in records of dye concentrations, (Nakamura, Sakai and
Miyata, 1987) showing that the mixing associated with the
turbulence also occurs in a patchy fashion. If the turbulent flow
1s decomposed into eddies, each of which is being advected by the

mean flow and by larger eddies, then this intermittency can be
conceptualised.

An eddy can be thought of as a volume in which local
instability, overturning and mixing is taking place, Since

19



turbulence is dispersive so must be an eddy, implying that a line
of marked fluid particles affected by the eddy motion must be
stretched as well as deformed. In attempting to extract eddies
from velocity records the assumption is made that in an eddy there
is some form of organised structure and that the velocity of the

particles in an eddy are in some way correlated to each other
(Woods, 1977a).,

Correlations extracted from records are often normalised with
an appropriate r.m.s8 value and may be either space or time
averages. Thus they may be the average product of, for example,
velocity components measured at two different points in space or
the average product of velocities measured at the same point at
different time delays. The particular case of the product average
of a velocity measured in the same direction at the same point
after some time delay is, when normalised with the r.m.s value,
called the autocorrelation (Tennekes and Lumley, 1972). The

. integral -time ‘scale  is - often regarded as a measure of the memory
time over which particle velocities are related to each other.

~Zry— - - e e e

i [, n ~ g T o =M
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Concentration, velocity or correlation records c¢an be
analysed to determine the proportion of the signal being received
within a narrow frequency band. If a measure of the signal
strength 1is plotted against frequency this is called a spectrum,
Although only individual points can be derived from records, the
magnitude of the contribution being averaged over the (small)
bandwidth of the filter, continuous spectra are often derived and
compared with those predicted theoretically.

Frequency spectra can be converted to space spectra by
associating the frequency band in which the contribution 1is
measured with a "wave number”, k, using Taylor’s hypothesis
(Tennekes and Lumley, 1972). This states that if a probe is moved
through the turbulent field much faster than the field changes
then the time record from the probe is equivalent to a space
record, taken over the distance that the probe has moved, at a

pParticular time. The frequency is then converted to a wave number
using the probe wvelocity.

20



Taylor’s hypothesis is  often applied to velocity -records
taken at a fixed point as the turbulent flow passes. The criterion
then is that the mean flow must be much larger than the turbulent
fluctuation change rate. A wave number is representative of a wave
which exists in all space, whereas eddies are localised. The
interpretation of wave number spectra in terms of their component
eddies must recognise this. In this thesis the majority of spectra
presented are raw frequency spectra, allowing their interpretation
to be discussed case by case.

Two dimensional wave number spectra can be measured directly
at the sea surface and ensemble average spectra of horizontal
variance of sea surface temperature exhibit a k ° trend (Woods,
1977b) . Local spectra however show wide fluctuations in slope and
the temperature variance is concentrated into hills and ridges in
the (x,k) plane. The kurtosis .of horizontal temperature gradient

ranges up -to 40 confirming that the temperature variations are
distributed very intermittently.

wWoods (1977b) - states that the patchy distribution of
temperature variance reveals, ‘by definition, the patterns
associated with eddies, uncontaminated by internal waves. Vertical
profiles of temperature microstructure show the same kurtosis of
temperature gradient and the same intermittency and this leads to
a picture of turbulent motion at the sea surface characterised by
discrete eddies, distributed so that only a selection of eddies is
present at any given location at any instant.

To elucidate this process Kolmogorov (1941) predicted. the
existence at sufficiently high Reynolds numbers of a universal
equilibrium range of eddy sizes where a transfer of . energy
proceeds towards smaller scales. of motion, each having increased
statistical independence of the mean flow as the scale reduces.
The rate of energy supply to this range is governed by, and in
equilibrium with, its rate of removal. The only .two parameters
controlling this process are £ {(the- rate of turbulent kinetic
energy dissipation per unit mass) and v (the kinematic viscosity).
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If the energy containing and dissipating scales are sufficiently
well separated then energy transfer will occur with negligible
dissipation. This is called the ‘“inertial -“subrange” and
dimensional analysis shows that the 3D energy spectrum, ‘E(k), is
given by (Tennekes and Lumley, 1972):

2/3 k-sfa

E(k)= const.c (1.12)

For isotropic turbulence the same authors show that the 1D
energy spectrum @1(k) is given by:

? (k) = A o e2/3k™3/3 | (1.13)

where k 1s the radian wave number, A is a constant determined from
considerations of isotropy and normally taken as 18/55 and « is
1.44. The inertial subrange 'is only expected to exist at
sufficiently high Reynolds numbers and is well supported by 1D
measurements in high Reynolds number flows if Taylor’s hypothesis
1s used to transform records from time to space - (Tennekes and
Lumley, 1972). It should be noted that 1D spectra are only
expected to follow the k™°/* law if the turbulence is isotropic.
Unfortunately a region of the spectrum exhibiting this
relationship is often found when an inertial subrange should not
exist on dimensional grounds (Turner, 1973) or when the turbulence
18 known to be -anisotropic (Heathershaw, 1979). Ozmidov : (1965)
suggested that the K*/3 dependence may be characteristic of the

eddy cascade wherever energy is not being 'supplied to the
turbulence.

Tennekes and Lumley (1972) show that one dimensional spectra
of " velocity ' fluctuations plotted against a frequency, o,
associated with the eddy timescale (or strain rate), are predicted
to follow a ¢ ° relationship in the inertial subrange although
spectra of this kind have not been directly measured. Later in
this thesis these dependencies will be shown to follow from the
characteristic relationships derived for individual eddies in a
cascade and time spectra will be presented,

22



The turbulent motions in a shear flow are never isotropic,
however the smaller scale motions should be randomly orientated
since they have little statistical dependence on the large scale
motion characterising the flow. At small scales therefore the
isotropic assumption should be wvalid. This is called local
isotropy (Tennekes and Lumley, 1972)., If this assumption is made
then the value of ¢ can be calculated from measured 1D sgpectra.
The dissipation rate may also be measured by assuming local
isotropy and measuring the temporal derivative of the longitudinal
velocity fluctuation (equation (1.5), term 3). Browne, Antonia and
Shah (1887) made detailed studies in a low Reynolds number wake
and showed that the asbumptidn of local isotropy is unlikely’td be
true in any shear flow, even at high Reynolds numbers. The values
of ¢ achieved by assuming local isotropy were underestimated by
ftactors of about 45% on a wake centreline and 80% at the edge,

values verified by considering the turbulence kinetic energy
budget.

Heathershaw (1979) compared the value of £ found from spectra
with that calculated from the assumption that in a constant stress
layer the production should equal dissipation, ie:

t/p 8U/8z = ¢ (1.14)

This is another common method for estimating € which assumes
that the advection and diffusion are negligible. He found that ¢

was anomalously high so that the budget did not balance. Also the
ratio of the magnitudes of the longitudinal and transverse space
spectra was Sn(k) /szz(k) =~ 1 instead of 4/3 as it should be for

isotropy. Therefore there was only qualitative experimental
support for the theory as it stands.

The ensemble mean dissipation rate, £, should lie somewhere

in the range of values measured at small scales. Published values

of ¢ show a wide scatter and Woods (1975a) noted that the actual
dissipation rate within a turbulent patch should be related to ¢

by the intermittency factor of the turbulence. Heathershaw (1979)
and Woods (1977a) both reviewed published values of ¢ for
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1o (wWw’

_  VALUE (W‘g’g) = o (M"‘s“"‘) LOCATION

0.02 1 m above the sea bed in a stratified estuary
= 1.02 The surface layers of a tidal flow
= 0.08 The upper layers of the ocean
0.14 - 0.32 Tidally averaged estuary values
| 0.10 Patches in the equatorial undercurrent

Table 1. Summary of published values of the energy dissipation
rate.



comparison with their own measurements. These are summarised 1in
1 ¥ 2 3
Table 1 in units of cm'/s™:

It is important to achieve some quantitative results for the
extent of the range of turbulent eddy sizes. Let us first consider
the dissipative scales. Heathershaw used his estimate for e (0.6
cm®/s>) to estimate the Kolmogorov microscales at which eddies
with unity Reynolds number are able to dissipate kinetic energy
into heat and noted that a typical dissipation wave number will be

a couple of orders of magnitude larger than any that can be
measured. These estimates were:

n .04 cm the dissipative length scale
T .14 s the dissipative timescale
v .30 cm/s a characteristic velocity in the dissipative eddies

At the largest scales the formation of seabed sand dunes can
be described in terms of the action of the large scale turbulent
eddies in the flow (Yalin, 1977). This argument is particularly
revealing. It 4is a significant empirical fact that the dune
wavelength is very directly correlated with the water depth (h).
The build up of the dunes is described in terms of the ringing in
the autocorrelation of the horizontal velocity which has a
wavelength 1/h. The theory predicts dunes of wavelength A=27h
which is very close to the field measurements. The implication is
that the driving velocity must have a narrow spectrum centred
around 1l/h or that the size of the energy containing eddies must
be centered around h, this being the average length scale over
which horizontal velocities are 7just correlated.:

Although the probabilistic characteristics of u vary with
depth, the characteristics of the largest eddies, those with the
lowest spectral frequencies, remain remarkably constant over the
majority of the channel depth (Heathershaw, 1979), implying again
that the large scale eddies have the same length scale as the
flow., Sand dunes undoubtedly form and thus the presence of energy
containing eddies of the same scale as the flow must be taken as
established. These eddies are similar to those scaling with the
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outer dimensions of a boundary layer and it i1s. a reasonable
assumption that the largest eddies occupy the whole depth when the
boundary layer does, as is the case in many sea areas within an
hour or two of slack water (Soulsby, 1983).

Contributions to the Reynolds stress are large and
intermittent both in laboratory and geophysical shear flows
(Heathershaw, 1979). At sea the strength of the contributions is
not known more than 2 m from the bed although they are of constant
strength within that layer (Bowden and Ferguson, 1980). In the
laboratory there is little variation over the flow depth (Anwar,
1981) . These contributions are believed to have causal similarity

to bursting phenomena observed in laboratory shear flows where a
well ordered sequence has been established:

w>0, u<0 Ejection

w<0, u>0 Sweep

w>0, u>0 Outward interaction
w<0, u<0 Inward. interaction

Ejections and sweeps make large negative contributions to the
Reynolds stresses, interactions make weak positive contributions.

Whereas u and w are distributed normally around their means, uw is

skewed and kurtosed. For large Jvalues of the kurtosis K(uw)n 3/3’
where 7y 1s an indicator of the time in a total record length for
which the signal is effectively "switched on” (Heathershaw, 1979).
If the quantity being examined is intermittent the kurtosis will
take on large values. Applying this criterion to the Reynolds
stress he showed that the signal was typlcally "on" for 25 -30% of
the time and that the mean period ‘between bursts, T N remained

fairly constant across the boundary layer and could be scaled with
the outer flow parameters :

TP = cc::nst,..rci/U0 (1.15)

The specification of the boundary 1ayer depth, d, .‘.LS fairly
arbitrary except where the boundary layer has grown to occupy the
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whole flow. U0 is the free stream velocity. The correlation time
for the events (their average duration), T, 3is related to the

period between bursts and the intermittency calculated from the
kurtosis of the signal by:

T /T =y (1.16)

showing that the Reynolds stresses are mainly associated with the
large eddies which occupy the whole flow. Reynolds stresses are

associated with anisotropy (Tritton, 1977) so that these large
eddies are anisotropic.

It has been shown that there exists a range of eddy scales
from the largest size equal to the major dimensions of the
turbulent flow down to the smallest, dissipative size where
kinetic energy is irreversibly turned into heat. The main spectral
characteristics of the inertial subrange seem to apply outside the
range of scales for which they are predicted, leading to the hope
that 1f some general characteristics of turbulent eddies can be

found, both in space and time, then a more effective modelling of
the turbulence can be made. |

All turbulent flow dispersion experiments exhibit meandering
in the early stages after release. The plume from a chimney, o0il
slick or dye release wanders so that the meandering is much
greater than the plume dimensions. The averaged properties of the
pPlume as a whole are described by "absolute" diffusion theory and
the spreading of the plume relative to its centre of gravity by
"relative" diffusion theory. These theories are described in
detail by Csanady (1972) and are illustrated in Figure 2. They are
particularly applicable to the dispersion of some toxic chemicals
where a threshold level is hazardous. Some extra mathematical

derivations are given here since they will be used later in the
thesis.

Absolute diffusion theory (Csanady, 1972) predicts the
ensemble averaged properties of a diffusing cloud or plume in a
constant mean flow. The ensemble average concentration
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distribution is assumed to be Gaussian and no account is taken of
intermittency or wvelocity shear. Fick’s law provides a
relationship between the spatial distribution of concentration and
flux provided ‘that the continuum approach to the density
distribution is valid and that the ‘flight time’ of a particle is
small compared to the time step under consideration. Mathematical
closure using the equation of continuity results in the diffusion
equation for the concentration, x:

ax/ét + u.Vy = Dsz (1.17)

where D is the "diffusivity"”, a material quantity. For a constant
diffusivity and in one dimension, a point source diffusing under
this relationship exhibits a Gaussian concentration distribution
with the wvariance o~2 = 2Dt so that ¢ increases with the square
root of time. In the turbulent diffusion approximation this is
replaced by the eddy diffusivity which must be related to the
turbulence. Csanady showed that the spreading of an initially
concentrated cloud can be related to the  Lagrangian
autocorrelation, R(t), of the stationary wvelocity field by

Taylor’s theorem (Taylor 1922). This is:

t * N - . - - : *
o*i (t) = 2 u2J (t - 1) R(t) drt ' (1.18)

The predicted dispersiJon is relatively insensitive to the
form of the Lagrangian autocorrelation. Two examples show this. If

dispersion in stationary, homogeneous turbulence is a Markov
process then Durbin (1983) showed that:

R(t) =fexp (-r/th) , o | (1.119)

where t i1s a timescale associated ‘wiwth the largest Euijulent
eddies. There is laboratory =evidence for a Lagrangian
autocorrelation of this form although it is known to be incorrect
at the origin. Substituting and integrating gives:

ol = 2 't t - 20 t: (l-exp(-t/ t)) (1.20)
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which for t >> tL implies that:

2 _ 2 _
o= 2 u tL(t tL) (1.21)
Thus the standard deviation tends to grow with the square root of
time from an origin at t.

If an alternate extreme form of R(r) is chosen to reflect the

spatial distribution of eddies so that:

R(t) = 1, t = tx.
R{(t) = 0, t > tz. (1.22)

then integration gives:

c?=2vt (t -t /2) (1.23)
X L L
and once again the standard deviation grows with the square root
cof time, here from an origin at tL/2. In practice this would be

indistinguishable from the first formulation at times greater than
t_.

L
If dispersion 1s modelled as a simple random ﬁalk, stép

length utL occurring every t then after many ;te;ﬁas; the particle
distribution approaches the Gaussian with variance:

o’ = utht (1.24)

and the standard deviation grows with the square root of time as
before. This demonstrates that a random walk model with constant
step length is the equivalent of a diffusion model with constant

diffusivity (Durbin, 1983). An isotropic two dimensional random
walk in x and y, although at large times Gaussian in x and vy,

approaches a Rayleigh distribution for r, the dispersion distance
from the moving origin (Bartlett, 1978). Thus:

r’(t) = x°(t) + y?(t)
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fr(t) = (2r/u2£Lt) exp (- r2/4u2t;t)
with a mean m_ now increasing as:
n_(t) =(nu2tLt/41) +/2 (1.25)
and variance giventby:
o ?(t) = (1 - n/4) u'tt (1.26)

The mean and standard deviation of r increase with the square root
of time as before.

Real plumes meander (Bowden and Lewis, 1973). An ensemble
average concentration distribution in a fixed frame at a certain
distance x downstream from the source will show a wider and lower
profile than that achieved by averaging in a moving frame of
reference centred on the realised centre of gravity of the plume
at each traverse. Adéepting that the averaged, centred,
concentration distribution will be Gaussian, whatever -the
fluctuation concentration distribution at a point, provided that
at each point the fluctuation distribution profile is the same
(Bartlett, 1978) it is instructive to study spreading in a moving
frame. Indeed when inaking dispersion measurements in the sea

relative diffusion measurements are often the only ones that it is
practicable to make.

If the initial dispersion of a point source cloud relative to
~its centre of gravity is governed by the action of turbulent

eddies in the inertial subrange, Batchelor (1950,1952) predicted
on dimensional grounds: |

‘ 32
> (t) 1 2/3 2/3

= a s8¢ | co o (1.27)

t (t) = azs”sc-us (1.28)

where ¢ is the energy dissipation rate, s the standard deviation
of the cloud concentration about its centroid, a1 and a, constants
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of order unity and t a Lagrangian time scale for relative
diffusion. Assuming a Gaussian concentration distribution and
defining a standard deviation relative to the centroid, s(t),
Batchelor (1952) showed tha;:
g° (t) = 2 { tuz (t7) tn(t') dt’ t (1.29)
0 |

so that substituting (1.27) and (1.28) into (1.29) gives: ~
s(t) = (231é2/3)3/231,2 £3/2 (1.30)

when the cloud is initially concentrated at a point. The standard
deviation relative to the centroid should grow with t'°. There is
much evidence that this is a good representative model (Csanady,
18972) . As in the spectral evidence already discussed, however, the
£t> growth is found over a much wider range of physical scales
than those for which inertial subrange eddies could possibly
account (Okubo, 1971). Attempts to explain this discrepaﬂcy invoke
shear dispersion, a recognition 4in itself that the mean
characteristics of the large eddies in the flow exhibit the same
dispersive characteristics as the smaller ones. C J

The discrepancy between theory and observation cduld45130 be
explained if the constants "a:l and a, in (1.27) and (1.28) were
significantly less than unity. The scales over which meandering is
observed (until relative and absolute diffusion are r“equal) would
then be extended. Batchelor’s (1952) argument agssumed a continuous
distribution of eddy sizes in the inertial subrange. There would
always therefore be an eddy size available to sprégd the patch
efficiently S(eddiﬁes much smaller or larger than the patch being
ineffective in causing spreading). The constants can only be
reduced if the distribution of eddies is itself patchy, so that
some of the possible sizes are absent, A distribution where some
sizes are preferred may be termed a "discrete" distribution.

‘The statistical characteristics of such discrete eddy
cascades have been examined previously (Yaglom, 1966) but have not
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been related to practical turbulence models. Mandelbrot (1974) has
clearly pointed out the dependence of measured parameters on the
measuring technique when one dimensional, eulerian, measurements
are taken of an intermittent and three-dimensional process. He has
introduced the concept of fractional dimension, ‘a self similarity
dimension for geometrical constructions that need not be integer.
Mandelbrot (1973) calls this fractional dimension A and shows that

for a spatially intermittent set of such figures, it is necessary
for A to be less than 3 and-suggests that:

1/3 A > A-2 0 (1.31)

The advantage of a fractional dimension is that it allows the
mathematics to be performed without the necessity for the geometry
of the self-similar structure to be known. As a concept it removes
a traditional constraint, that of being able to mentally wvisualise
the geometric form under consideration. In this thesis the
dissipative cascade of eddies will be shown to necessarily have a
fractal dimension within the Mandelbrot limits given above.

More recently the evolving understanding of non-linear
dynamics, generically termed "Chaos Theory"”, has demonstrated: that
many natural phenomena may be - described without resorting to
statistical methods. Since by their very nature non-linear systems
of equations are mathematically intractable, computer simulations
are used.to track particles moving in a non-linear fashion at each
time step. This is similar to Langevin modelling but without the
random input at each step. Applications to dispersion are rare and
the non-linear ‘equations are often not derived from physical
principles. It has been shown, for example,  (Okubo, Andreasen and
Mitchell, 1984) that particles moving under an amplified
Climbing-sine"model of the form: | |

== p ]
X,,, =X *+a|[X] sin X (1.32)

exhibit a rate of growth of displacement variance which is faster
than linear “in- time, rather like the explosive phase of cloud
growth in relative diffusion. Other work has shown (for example
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Cox, Darzin, Ryrie and’ Slater, 1990) that particle paths can be
chaotic in simple systems of perturbed irrotational cellular flows
or in irrotational flows containing simple, but non-linear, wave
fields. The development of turbulence and its dispersive
properties are both governed by the non-linear Navier Stokes
equations. Even simplified versions of these are intractable to
analysis. ‘It appears, however, that such families ‘of equations
exhibit solutions which, although unstable,  are structured. A
fuller understanding of these structures may be the only way to
link fundamental dynamical theory to the phenomenum of turbulence.
This would restore randomness to its natural position of modelling
the motion of the super-molecular £fluid packets and the
statistical description to its position as the target against

which models are run. To summarise the introduction, an improved
model of turbulent eddies must:

a. Recognise the spatial distribution of eddies and ‘the
intermittency of the turbulence.

b. Give the mean velocity distributions found by observation.

C. " Give the correct frequency -and wave number spectral

Characteristics, possibly over a wider range than those “derived
for the inertial subrange.

d. Give values for parameters such .as e which are within the band
of values measured by experiment.

e. Predict dispersion which agrees with the measurements of
relative and absolute dispersion, meandering and intermittency.

£. Model the Reynolds stresses and justify the models currently in
use for their prediction.

g. Give eddy characteristics which are derived from the
fundamental equations of motion, so that the physics of the
turbulent process 1is made more clear.
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CHAPTER 2. THE EDDY ENERGY CASCADE IN THE ABSENCE OF BOUNDARIES.

An isolated eddy

R ————

Let us consider how an isolated eddy might behave. Clearly
the eddy has to be spatially limited and we shall define its
volume V as {’, where V may vary during the existence of the eddy
and ¢ is a representative length scale. V is chosen to be big

enough ‘to encompass the fluid motions induced by the eddy but
small in comparison with the total volume of fluid in which : the

eddy is embedded. Clearly V contains vorticity or the eddy would
not exist.

Consider now an infinite volume of: stationary irrotational
fluid into which the eddy is placed at time t=(0. There is an

immediate dilemma. Any motion involving f£luid shear -dissipates
kinetic energy by the action of viscosity, and the presence of
vorticity implies the presence of velocity gradients and energy
dissipation. Lamb (1932) shows, however,  that the total kinetic
energy of this system should remain invariant. How can this be?
The implication is that the flow structure should arrange itself
so that the induced velocities within V are such that the average
gain in kinetic energy exactiy balances the loss. To see the

implications of this we now need to consider vorticity dynamics in
some detail. = = : - R ) o

The equation of motion for a fluid at any point can be

written in the form known as the "vorticity equation" (Batchelor,
1967) :

ow/ot = = (u.V)w + (W.)u +v¥w o (2.1)

Alternatively, following the motion of a marked fluid packet:

Dw/Dt =(w.V)u + wWow . (2.2)
The advantage of describing the flow field in terms ofﬂp vorticity
is that the pressure terms are absent from the equations of
motion. Vorticity is a mathematical property of the fluid motion
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and not a property of the fluid itself, however if the behaviour
of the vorticity distribution can be characterised then the motion
as a whole 1s defined.

A line in the fluid whose tangent is everwhere parallel to
the local vorticity is termed a "vortex line" and a useful result
(Batchelor, 1967) i1is that the wvorticity vector behaves like a
material line element coinciding instantaneously with the vortex
line, even in a real fluid, Batchelor (1967) showed that as a
result the flux of vorticity across a material surface element
changes only as a result of diffusion. There are two consequences
to this for our postulated isolated eddy. First, although V might
change radically in shape while the eddy exists, it will change in
size only as a result of vorticity diffusing under the action of
viscosity. Secondly if V is allowed to encompass all the
rotational flow, then the total "amount" of vorticity in V will
remain invariant, Defining an "amount"’ of w as the square of the

magnitude of the vector w.w or wz and Qz as the total "amount" of
vorticity in the eddy:

J' wz‘ dV’ = constant = Qz ﬂ Hﬁ (2.3)
v

W = nz/v (2.4)

Locally, within the eddy, the vortical regions will be being
deformed. Raudkivi and Callender (1975) noted that the deformation
will involve an overall stretching of fluid elements because of
the dispersive nature of turbulence. Batchelor (1967) showed that
vorticity when stretched concentrates into lines or sheets (a
sheet can be considered as being made up of a set of adjacent
vortex lines). Solutions exist in simple geometries and we
consider here the dynamics of a small element of vortex sheet to

i1llustrate the  main effects of stretching. - The . geometry is
illustrated in Figure 3.
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The solution for a sheet which is being stretched in one
direction only is given by Batchelor (1967). The sheet exists in
the x,z plane and the stretching is in the x direction such that
u(x)=px. If all the resulting contraction is in the y direction
then the vorticity is ultimately concentrated into a Gaussian
distribution about y=0 thus:

w(y) = o exp (-By-/2v) (2.5)

where w is now the amount of wvorticity per unit area of the
elemental sheet. The standard deviation, ¢, o0f the Gaussian

vorticity distribution is given by:

o= (/B3 (2. 6)

*'\-'l.

and 95% of the vorticity will be found within a layer 4c¢ thick,
98% in a layer 8¢ thick. This steady solution (time does not
appear in the equation) exists because the diffusion of vorticity
away from the y=0 plane is exactly balanced by the inward flux of

fluid necessary for continuity within the control volume under
consideration.

If the vorticity vector was originally wholly - in the direction
of the stretching, so that:

W = (wx,0,0) - < v (2.T)

then the concentration will result in an increase of vorticity
within a control volume containing the sheet. This is known as
vortex stretching (Tennekes and Lumly, 1972; Batchelor, 1967). We
can find an equation for w in these circumstances bjr assuming
that the wvorticity is concentrated into the (x,z) plane. The

vorticity equation becomes, following the motion of the small
element:

Dw /Dt = w du /8x + vdw /ox° “" T (2.8)
X x X o

and ignoring diffusion in the direction of stretching the solution
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is:
- w = _const.exp (Bt) - ! (2.9)

X

which increases - exponentially. The  sheet element has enlarged

because. of the  stretching since-there is no contraction 'in the -z
direction. Thus, calling the sheet area A:

DA/Dt = BA (2.10)
and:
A = const, exp(pt) - (2411)

The vorticity per unit area, w = w /A, therefore remains constant

as expected from the steady state solution given above.

1f the original vortex vector is wholly in the z direction,
8o that:

w=(0,0,w) | T (2,12)
the Gaussian solution still applies since the vorticity diffuses
in the same manner and the stretching and influx are the same. The

value of w may be obtained as before by considering the vorticity

equation with all the vorticity concentrated into the x,z plane.
Thus: -

Du /Dt = v azwz/ax?w . - (2.13)

and ignoring viscous diffusion in the direction of stretching this
becomes, following the motion of a fluid packet:

Dwz/Dt = ( (2.14)

therefore W remains constant and W decreases exponentially with
time as the .sheet stretches normal to the vortex lines.
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The formulation implies that if B is negative so0 that the
sheet is being compressed, then Vg should increase exponentially.
In practice this does not occur since the sheet can only thicken
by diffusion and a consequential stretching in the z direction
would have to be induced. Rogers and Moin (1987) found that on
compression a vortex sheet buckles or folds and, since a perturbed
sheet 18 unstable (Batchelor, 1967), the folding becomes

increasingly complex as compression continues, without thickening
the sheet.

Batchelor (1967) and Raudikvi and Callender (1975) showed
that the vorticity equation implies that the increase in one
component of the vorticity of a fluid packet is at the expense of
the other components without a reduction in the total amount of
vorticity. This is because the pressure terms in the turbulent
kinetic energy equation transfer energy between components without
loss and the local vorticity vector moves instantaneously with the
fluid. If w is neither parallel to nor normal to the direction of
stretching then it will tend to turn to align itself with the
stretching axis since downstream fluid particles instantaneously

coincident with the vortex line are moving faster than upstream
ones,

Suppose that the instantaneous vorticity distribution within
V can be approximated by a large number of small vortex sheet
elements, each of which is being stretched. If the many elements
are examined at an instant in time then the central limit theorem
(Bartlett, 1978) tells us that an ensemble average of the
vorticity distribution across each element will be Gaussian. If
the sheet elements are chosen to be small enough so that each is
two-dimensional then Batchelor (1967) gives for the kinetic energy
dissipation rate per unit area of such an element:

0

| 2
(BKE/at)Ptr unit area - v [_ w(y) dy (2.13)

00

Substituting the Gaussian vorticity distribution, (2.5), into the
integral gives (Dwight 1961):
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(8KE/ L) = -v(w.)z(nv/B) 1/2 (2.16)

per unit area

If we define the element thickness, 3, as 8c so that almost all
the vorticity is contained in the sheet then, using (2.6):

s = 80 = 8(v/g)>? (2.17)

The average kinetic energy dissipation rate per unit volume within
the element is given by:

(BKE/38t) = (1/8) (6KE/38t) (2.18)

per unit volume per unit area

and Substituting from (2.16) and (2.17) into (2.18) gives:

(6KE/3t) = -v(v)’n*’?/8 (2.19)

per unit volume

which is independent of element thickness.

The total kinetic energy dissipation rate within the eddy is

found by summing the dissipation within each elemental volume dvV’,
thus:

SKE/ ot E“(w_)zdv' (2.20)

oud
elements

and since by summing over all the vortical elements we account for
all the vorticity within the eddy, we can use (2.3) to give:

SKE/8t o =v nz (2.21)

If the vorticity distribution within V can be approximated by
a suitable selection of elemental Gaussian sheets then it is also

valid to consider the Gaussian as a distribution function whose
properties reflect the average manner in which the vorticity is

diffusing and therefore of the manner in which the boundary of V
is increasing by diffusion.
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The representative length scale ¢ will therefore increase
with time as:

= 2v (t+t ) (2.22)

where to reflects the finite size of ¢ at t=0. Since V is equal to

33:

Vo (vit+t )" (2.23)
and:
V = v0(1+vt/V§’3)3’2 (2.24)

where v, is the volume at t=0. Now the kinematic viscosity of
water is very small. The value varies with temperature and
salinity but is of the order of 1072 cmz/s (Batchelor (1967),
Appendix 1). If V wasl ;nsthen it would take 16 hours for the eddy
to increase in volume by 10%. A 40 m eddy (VO=64000 ms) will
increase its wvolume by 3% in one hour. A 1 cm eddy might double
its volume in 100 s. Turbulence decays in much shorter timescales
than these (Tennekes and Lumley, 1972) and it is therefore safe to
assume, to a high level of approximation, that V is constant over
the lifetime of the eddy. The same argument applies to the shape
of V. Since V 1is constant, ¢ is a constant and is the average
magnitude of a vector stretching from the centroid of V to the
surface at any point. Defining this vector as (ex,ey,ez) then 1if
( o+ say, is increasing then EY and 21 can reduce at any rate to
conserve volume but dex/dt can never become greater than the rate
of diffusion of vorticity in the x direction. Thus:

(de /dt) o p/2 (t+t ) ~1/2 (2.25)

80 that soon after the eddy is established we would expect its
shape to stabilise.

The average kinetic energy dissipation rate in the eddy, -,

1s constant since 002 is constant and V is constant. From (2.21):
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eV = dKE/dt o =v n': (2.26)

and ¢ 18 constant.

This dissipation has to be accounted for by an increase in
the kinetic energy in V so that the total kinetic energy remains
invariant. This can only be achieved as a result of the vorticity
re-arranging itself to amplify certain components by vortex
stretching so that net circulations are increased around certain
closed 1loops within the eddy. The wvorticity distribution must

dynamically order itself such that the average kinetic energy due
to the self induced motions increases thus:

(dKE/dt) = const.v Qz (2.27)

induced

and a representative averaged kinetic energy density for the

induced velocities, k, varies as:
dk/dt = const.v Q /V (2.28)
which is a constant since 902 and V are constant. Thus:
k(t)= const.v @ (t+t ) /V (2.29)
where.th again reflects the initial conditions. Since at t=0 there

has been no dissipation and k(t) reflects the additional induced

energy required to compensate for subsequent dissipation, equation
(2.4) gives:

k(t) = const.v wit (2.30)

and i1f an averaged induced velocity in the eddy is defined as u(t)
so that:

u(t)’= k(t) (2.31)

then:
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u(t) « wl(vt)l/z (2.32)

At some time the induced kinetic energy must equal the total
original kinetic energy of the eddy. It certainly cannot exceed it
since there is then no kinetic energy to be dissipated. Calling
the invariant total kinetic energy KE £ then at some time, t :

max

KE = const.v 0°t (2.33)
0 0 max
and:
t « KE /ve° (2.34)
max 0 0

giving, from equation (2.30):

k(t ) avwt oKE/V (2.35)

The fact that there must be a maximum time for which the
motion can proceed can also be demonstrated as follows; the
induced velocities can only increase if the vorticity in one
direction is being amplified and vortex 1lines do not induce
velocities in the direction of the vorticity vector (Batchelor,
1967) . When all the original vorticity has aligned itself into one
component, say w , there is maximum circulation around the x axis
and none around the y or z. It 1is not possible then to induce
stretching in the x direction. With no stretching the vorticity
will diffuse away from the x axis and kinetic energy will be lost.
This cannot occur in this system. At some point before this
maximum level of organisation can take place the eddying motion
must change in character. Since it cannot suddenly get larger, it
must break-down in such a way as to produce smaller eddies which
are able to sustain themselves. In this break=-down the total

kinetic energy and amount of vorticity in the system should be
preserved.

In time t ., an average particle within the eddy will be

transported by a distance ¢ such that, using (2.32):
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t
$ = me u(t)dt «o wlv”zt 3/2 (2.36)

max
0

and since the particle must remain within V, £ must be proportional

to . Thus we can write equation (2.36) in terms of ¢:

t o v I T3 P (2.37)

max 1

and:

2l
k(t ) a vt (2.38)

ax

At tmx, k(tmx) is equal to the 1invariant average kinetic

energy density of the eddy. Calling this kf! and calling t the
mean eddy lifetime, t

L
®

4

k,/t, o vwi (2.40)

and from (2.26) we can identify this value as ¢, the constant

énergy dissipation rate within the eddy. There follows:

k, = e2/3 p2/3 (2.41)
t, = g 1/3 p2/3 (2.42)
€ « vwi | (2.43)

These formulae often appear in turbulence models. Tennekes
and Lumley (1372) give for the lifetime, 11, of the dissipation
eddies:

v = g /) (2.45)
For all eddies in the inertial subrange Woods (1975) gives:

== (et;') 1/2

(2.46)
both of which are the same formulation as (2.42). Woods (1975a)
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gives for eddies at the beginning of the buoyancy range with
1:'1=N, N being the buoyancy frequency:

3N=(C/N3)1/2 (2.47)
which again has the same form as (2.42).

The turbulence theory (k/e) model described in the
introduction uses, rewriting equation (1.8):

k = (c)2/3 (2.48)
which is the same as (2.41). If the Prantle-Kolmogorovf and Jones
and Launder expressions for eddy wviscocity, (1.10) and (1.11), are
€quated then:

k% = x*/¢ (2.49)

which is the same as (2.41).

Tennekes and Lumley (1972) give, for high Reynolds number
flows:

Q

> vV 0w (2.50)

i1

which has the same form as (2.43). In the absence of knowledge of
w, Wwe can use (2.31) to write:

u£2== k, (2.51)

and (2.41) to give:

£ = uea/f (2.52)

Tennekes and Lumley (1972) give this expression as an
approximation for ¢ when a length scale is known.

The value of ¢ determines the time for which kinetic enerqgy
can exist at a particular scale. The value depends on the
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kinematic viscosity and the square of the vorticity per unit

volume in the eddy. One would expect, therefore, that ¢ will be
the same for similar fluids and for eddies with the same value of
wi. If an eddy breaks down into smaller ones then they must occupy
the same volume of fluid as the large eddy since V can only grow
(slowly) Dby the diffusion of wvorticity and the breakdown is
assumed to occur instantaneously. Therefore there can be no loss
of total kinetic energy due to the breakdown itself, nor can there
be a change in Qz. Since V 1is constant and Qz is constant, wi
remains constant. Thus ¢ is the same just after the breakdown has
taken place. This must be true for each subsequent breakdown and ¢
1s independent of scale. The implication is that eddies of all
scales have the same fundamental energy and time characteristics

(given by (2.41) and (2.42)) as the large eddy producing them.

This assertion 1is normally made in the 1literature. 1In
deriving the dimensional characteristics of eddies breaking down
in the inertial subrange, for example, (Tennekes and Lumley,
1972), ¢ is taken as independent of wave number, or eddy size. The
same authors show that large eddies contain smaller ones. On
average, therefore, the amount of vorticity per unit volume within
the smaller eddies must be the same as that of the larger ones
containing them, producing the same result.

It 1s now necessary to consider how the various possible
scales are related. It has been shown in the introduction that for
meandering to be observable there cannot be a smooth distribution
of eddy sizes and since ¢ remains constant there must be some
common relationship between possible sizes at each stage of the

breakdown. Taking the scales, {, as discrete, and fi as a typical
scale:

b1 = fwi) (2.53)

b, = £ ) (2.54)

where £({) is the same function each time since the mechanism
causing the breakdown has the same characteristics at each stage.
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Although each individual eddy will be physically different,
when the average characteristics of a breakdown is considered all
the available smaller sizes must be allowed to appear. The
smallest eddy which can be created will be taken at the Kolmogorov
dissipation scale A (Tennekes and Lumley, 1972). Here the smallest

eddies are irreversibly converting energy, and vorticity, into
heat.

When the next size down breaks down, some time later, the
smaller eddy sizes should have the same distribution as for the
first breakdown since ¢ is constant and £({) is the same function
at each stage. Now to conserve kinetic energy at the first

breakdown (V 18 constant, € is constant and therefore Qz is
already being preserved):

- L=}
k:. 2 2—‘ ;\ k£ (2.55)

where L is the size of the largest eddy and the summation is taken

over all the smaller sizes down to A. When the next largest size
breaks down:

- L-2
k. 2_‘ X, (2.56)

where k , 1s the kinetic energy density in the largest eddy size
Created by the first breakdown. For a consistent model this must
be true all the way down the cascade to A. Reverting to the

largest eddy and the first breakdown, substituting (2.53) and
(2.41) into (2.55):

FAL) a3 273 273 2/3
Z 232 3= 2%, (2.57)
A

and since ¢ is constant:

£(L)
X 23 o p2/3 (2.58)
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For the subsequent breakdown:

- L£(LZ(L))
§ #lP= (£(1))*"? (2.59)
- A

and subtracting the second series from the first retains only the
top term so that:

£(L)?? = 1¥° - (£(1)) 3 (2.60)
and so on for every step. Thus from equation (2.60):

2/3 2/3
2£(2)°° = (1) (2.61)

for every step. The only way for this to be possible is for:

p = 2%% (2.62)

i+l i

This states that the discrete scales are logarithmically
distributed as first suggested by Kolmogorov  (1941l) from
dimensional reasoning. He did not, however, consider the cascade

as discrete. The proposition that the eddies are related by a
constant C such that 8“1 = C ﬂi and:

C = 8% « 2.83 (2.63)

1s original to this thesis. This scaling factor is within
the limits that Mandelbrot (1974) suggested as appropriate for the
turbulent cascade (equation (1.31)). Taking C = gt/ gives:

k1+1 = 2 k1 (2.64)

and:

b= %Y (2.65)

A temporal view of the energy cascade is given in Figure 4.
This represents the eddy sizes on the vertical axis which will on
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average be present at a point, time being the horizontal axis. It
shows that each size exists in total for precisely half the time

that the largest eddy exists. If we define the (one dimensional)
probability that a large eddy exists as n , then the probability
that a smaller eddy will be found at any particular location and
time is nL/2. All the energy in an eddy size L will dissipate into
heat in time t, preserving the physical nature of ¢ as both an
energy dissipation rate and as a factor which determines how long
energy can remain in an eddy at a particular scale.

Since it is possible for the small eddies from a previous
large eddy breakdown to be contained in a newly forming large
eddy, it is possible for turbulence to become fully developed.
This is illustrated in Figure 5 for nL=0.5 and n =1. The large
eddy production process will be discussed in the next chapter.

If n is equal to 1 then Figure 5 shows that the average
turbulent kinetic energy present in the flow, q, is given by:

q = (3/2)kL (2.66)

since the kinetic energy from a breakdown at L is dissipated at a
constant rate over t .

The cascade formulation can now be applied to a simple
geometry. Define the largest size present at any instant as L’ and

the associated time as t with t=0 at the first breakdown. It may
be seen from Figure 4 that:

t= tr.. - tL, (2.67)

where t , is the 1lifetime at L'. If (2.42) ig substituted
into (2.67) there results:

L' = (L2? - eilat)alz (2.68)

If the decaying eddies are being transported with a mean
velocity U and their properties measured at x such that:
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t = x/U (2.69)
then:
L' = (L*? - ¢M3x/u)%/? ' - (2.70)

These conditions approximate to wind tunnel turbulence for which
Tennekes and Lumley (1972) derive from dimensional reasoning
(writing L’ as their "integral length scale"):

L’ = const. (x/U)*/? (L'uL,)uz (2.71)

so that, using (2.52):
1/ = const. (x/uU)?/? pri/? M€ pe3/€ (2.72)
giving:
L’ = const.el? (x/U)>/? (2.73)

which has the same form as (2.70) . Since the integral scale must
be related to the largest eddies present, the model formulation
agrees well with Tennekes and Lumley’s theory for the decay of
(isotropic) wind tunnel turbulence for which they quote
experimental support.

It i1s also possible to construct a model of how such a
cascade might disperse a contaminant. To do this we consider each
particle in an eddy to be moved randomly by a simple random walk
step length u,t, for each period tll equal to the lifetime of the

eddy. The step length will have to be modified dependant on the
geometry under consideration. For example at the surface, when the

vertical velocity component is supressed (Brumley and Jirka,
1987) .

2 2
us/2 + vs/2 = uz (2.74)

S0 that 1f the surface turbulent velocities are isotropic:
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For three dimensional isotropic mixing:

3u’/2 = uj (2.76)

and:

u = (2/3)1/2 u (2.77)

£
The dispersion o©of a concentrated patch of contaminant from a
homogeneous and stationary field of such eddies is given by

(1.24). Putting u = u,, so that surface dispersion 4is being
modelled (equation (2.74)):

2 2
o u, tgt (2.78)
If the eddy size is intermittent, so that the step occurs with a

probability n, then:

2 2

This 1is equivalent to diffusion with a constant diffusion
coefficient, Dﬂ‘r given by:

2
D£ = neu£t£/2 (2.80)
The dispersion from a superposition of such eddy fields is given

by adding the diffusion coefficients (Csanady 1972), thus:

? = (Tnult,)t (2.81)

Summing the geometric series from A to L, using £1+1 m C 81, and
using nL/2 for eddies smaller than L, then, keeping ¢ constant,

the summation is (Dwight, 1961):
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2 2 2:
o= nLuLtLt + nLtLuLt/ 6

= ('7/6)nLuitLt (2.82)

when I, >> A, This represents absolute diffusion when the cascade
i1s as described.

In the explosive phase of cloud growth (representing the

early stages of relative diffusion) then following Batchelor’s
argument given in the introduction (equation (1.29)):

2 ' 2
ds’/dt = 2(n_/2) Z e, (2.83)

since eddies of dimension ¢ > s will move the patch as a whole

rather than causing individual particles to separate. Summing as
before:

ds®/dt = (1/3)nu’t  (2.84)
Substituting (2.51), (2.41) and (2.42) into (2.84) gives:

ds’/dt = (n /3)e’s"" ~ (2.85)
Integrating (2.85) we achieve:

g = (nL/g)3/2el/2 (t - t°)3/2 (2.86)

where t, reflects the finite size of the patch at t=0. For a point

source release, the cascade model predicts relative diffusion at
the surface by:

s = 0.037 ni“”e“’ts"" (2.87)

The same argument for the isotropic three dimensional case where u
= (2/3) 1"2u£ gives:

g = (2nL/9)3/2 gt/ 232 (2.88)
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Recalling (1.30), Batchelor’s (1952) result for the 3D isotropic
case given in the introduction:

3/281/2 3/2

t

s = (2a1a2/3) (1.30)

we see that the model gives nL/ 3 for the product of the
non-dimensional constants a, and a,. Knowledge of this value 1is
necessary to relate e to measured relative dispersion. Using the
model results we would expect absolute and relative diffusion to
be the same when s = ¢, so that from (2.82) and (2.87):

o..,os'z:nff2 e}/ 2¢3/2 4 1.08n:/281/6 1,2/3 ¢1/2 (2.89)
which gives:
o...ho:Man:”3 t = 123 (2.90)

If the maximum time for which meandering will be observable 1is
defined as Tz, then substituting (2.42) into (2.90) gives:

T2 = 29.4 tL/nL (2.91)

With L = 45 m, ¢ = 0.3 cm’/s® and n = 1l meandering should occur
for a period of about 12000 8 from the release. In a mean flow of
1l m/s then the meandering of a plume should extend over about
12000 m from the release point. The figures here have been chosen

to reflect o0il and dye release experiments reported in Chapter 8
where meandering over such distances is observed.

Csanady (1972) relates absolute dispersion (characterised by
its standard deviation ¢), relative dispersion (characterised by
s) and the standard deviation of the meandering, m, by:

o° = m’ + 8° (2.92)

This equation gives for the explosive phase, from (2.82) and
(2.87) :
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m’ = 1.171an.-1’3 L3¢ - 0.0012 ni e t° (2.93)

There should be a period where the equation simplifies. This
is when the relative diffusion 1is not "explosive" and the
spreading is being caused by all sizes up to and including L/C,
the meandering being caused by the large eddies L only. Then the

model gives:

m* = nu't t (2.94)
L L L

or, substituting for ui and t:.. as before:

m? = nLclle’L“at (2.95)

Equating (2.93) and (2.95) we would expect (2.95) to be dominant

after a time, T given by:

T = 11.9 e"”*"L””'/nL (2.96)

which can be rewritten in terms of the large eddy lifetime, t

giving:
T = 11.9t /n, (2.97)

Csanady (1972), without a model for the non-dimensional
constants aland a, in (1.30), predicted that the explosive phase
would end at T = t . Were this the case then meandering on the
scale reported in Chapter 8 would not be observed. By substituting
the wvalues used above for L, ¢ and n into (2.96), then the
meandering should follow (2.94) from about 5000 m from the release
point. During this second phase s’ is found by substituting (2.82)

and (2.95) into (2.92) giving:

s? = (1/6)nLc“3L"3t (2.98)

ox:
1/2 1/6,2/3,.1
/C/L/tlz (2.99)

8 = 0.4 n
L
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The model has predicted two phases in the development of the
relative diffusion. In the first phase the growth is explosive,

following a £3/2

relationship as larger eddy sizes contribute to
the growth of the patch. In the second phase the growth slows to
follow a t*/? relationship because of the wide gap between the
eddy sizes at L/C and L. Two distinct phases of growth are
reported in Chapter 8 and provide evidence that this formulation

is correct. From (2.91) and (2.97):

!I‘2 ~ 2.5 T1 (2.100)
and from (2.82):
o = 1.08 ni’ze”‘Lmtm (2.101)

so that during the second phase, using (2.99):

s ~ 0.4 ¢ (2.102)

so that the development of the absolute and relative dispersion
can be approximated by:

T =~ 2,5 T
2 1
3 /.2
s ~ 0.03 /L 0<t<T:|.
s ~ 0.4 ¢ T £t < T
1 2
s & ¢ t > T (2.103)
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CHAPTER 3. EDDIES IN THE BOTTOM BOUNDARY LAYER

Aim.

The structure of the eddies in a turbulent boundary layer
must reflect the turbulent production process as well as the
dissipation cascade. The mean eulerian velocity profile reflects
the passage of the turbulent eddies past the sensing point., If
the mean velocity profile can be associated with the turbulence
then it should be possible to relate the amount of turbulence
present, and its dispersive effect, with some easily measurable

cquantity such as the surface velocity U,. That is the aim of this
chapter.

When the boundary conditions are changing slowly (for example
if the channel width and depth are constant) the average velocity
of the eulerian profile, U will equal the bulk flow, U, . The
bulk flow is a measure of the average streamwise Lagrangian
velocity since the turbulent mixing will cause fluid packets to
sample all positions within the boundary layer if their motion is
followed for 1long enough. The distinction is made since the
variation in the "mean" velocity profile during the eddy

production process will be discussed.

In the following derivations the logarithms (written as 1log)
are to the base e. The size of the eddies in the dissipation
cascade is characterised as a geometric series whose base is C =
v8. Since logx = 1.034 logx, the natural 1logarithm is a
sufficiently good approximation to the cascade for use in the
derivations below.

General considerations.

If an eddy V is placed into a uniform bulk flow U then
Lamb (1932) shows that since the pressure forces exerted on the
surface of V are equal to the forces exerted in the fluid at all
points just outside V, the eddy will move with the fluid at Ub.
Small eddies existing within bigger ones will be transported by
the larger eddy velocities. Since none of the fluid particles

within a large eddy leave its volume V during its lifetime, a
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small eddy finding itself within a larger one will remain within
it.

If an eddy V is placed into a shearing bulk flow then the
same argument implies that the volume V must distort with the mean
shear. Batchelor (1967) showed that any velocity field may be
represented as the superposition of a symmetrical expansion, two
simple shearing motions and a rigid rotation. Further, he showed
that each simple shearing motion may be regarded as a
superposition of a pure straining motion (with =zero rate of
expansion) and a rigid rotation. Since V is constant throughout
eddy lifetime (Chapter 2), it is reasonable to characterise its
distortion as the resultant of two pure straining motions, which

are equivalent to a single pure straining motion. It will also
rotate as a rigid body.

As far as the characteristics of V are concerned (which are
encompassed in the value of ¢€) rigid body rotation will have no
effect since all the vorticity components within V will rotate in
the same manner. To consider the effect of straining by shear it
is convenient to give some two dimensional examples. If the only

velocity is in the x direction and is sheared such that U{(y) =
‘ f(y) then putting:

DU/Dy = £’ (y) = constant (3.1)

characterises a local mean shear on an eddy if ¢ (the
characteristic eddy dimension) 1is of order Ay, The total
derivative is used since we are following the translational and
rotational motion of V., Batchelor gives the maximum rate of
extension of a unit element in V as:

D¢/Dt = A ¢ (3.2)

where:

A = (DU/Dy)/ (2% (3.3)
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If the eddy lifetime is characterised by (2.42):

t = 8'1/3 82/3

? (2.42)

and a representative value of ¢ is in the higher regions of those
found in the sea, 0.3 cm"’/s?',r then for:

{ = 1m

DU/Dy = 0.03 s~

which represents a small eddy in the bulk of a geophysical stream
30 m deep and whose free surface velocity is about 1 m/s; the
maximum extension of ¢ due to the shear is 2% in te. For:

2 = 10 cm

DU/Dy = 10 s

which is an extreme case of a small eddy in a high shear layer of
the same dimensions as the eddy (a situation which might occur at
a solid boundary), then in t, the maximum extension of ¢ is about
20%. The value of ¢ for large eddies in a weak shear should
therefore remain substantially unaffected by the shear. The value
may increase for small eddies in a high shear layer near a
boundary.

Summary of the production process.
The details of the process by which the large eddies are

produced are unclear (Landahl and Mollo-Christensen (1988) give a
recent review) but in a flow moving over a so0lid boundary it is
the no-slip condition at the surface which generates vorticity and
this is the source of vorticity for the turbulent eddies since
vorticity cannot be created within the fluid (Batchelor, 1967).

In the laboratory the vortical surface layer is observed to
remain thin (Tennekes and Lumley, 1972) and a large part of the
streamwise velocity shear can occur in this layer. The transport

56



of vorticity and momentum from this layer into the bulk of the

flow results in the turbulent eddies and the mean velocity
profile.

Flow visualisation studies reported by Utami and Ueno (1987)
and numerical simulations reported by Rogers and Moin (1987) show
that the disruption to the vortical layer is characterised by the
evolution of hairpin wvortices which themselves interact in a
complex manner. Such hairpin structures induce a fluid velocity
within themselves which is counter to the streamwise velocity and
away from the wall. This induced flow exhibits the characteristic
correlation of the aintermittent bursting event found when
measuring Reynolds stress in the laboratory and at sea
(Heathershaw, 1979).

Kim, Kline, and Reynolds (1971) showed, in the laboratory,
that much of the turbulence production was associated with the

bursting events. Heathershaw (1979) has correlated the bursting
events with large eddies in the sea and, since such events can

transport vorticity away from the boundary, the burst of negative
Reynolds stress must be an event characterising the production of

the large eddies in the flow or their passage, once formed, past
the sensing point,

Kim, Kline and Reynolds (1971) also used high speed
photographs of hydrogen bubbles to show that when an eddy from the
turbulent flow outside the surface layer impinges on it, the eddy

penetrates to the wall, disrupting the layer and causing a burst.
The ejected low momentum fluid retards the fluid in its new

surroundings, giving rise to a further eddy. To that extent when
turbulence exists, it is self propagating.

The implication is that the eddies in the flow are both
responsible for the continued generation of eddies and for the
subsequent transport of momentum and vorticity from the wall to
the outer flow regions. Their disruptive effect on the wall layer
is to scour vorticity away from the layer, keeping it thin.
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Tennekes and Lumley (1972) showed that the amount of
turbulence in a shear flow is determined by a strongly
non-stationary dynamic process. In a geophysical flow the driving
forces (primarily tidal) of the flow as a whole are continuously
changing and the turbulence varies so0o that the resulting mean
profile changes to match the boundary conditions. Here it is
intended to highlight only those features of a steady, two
dimensional, turbulent shear flow which the discrete eddy model is

able to describe.

Production and large eddies.

If the boundary layer has thickness L, so that the largest
eddies have characteristic size L, and if they are produced in a
characteristic time, tp, then the average velocity at which
vorticity moves vertically away from the boundary is equal to
L/t . This cannot be larger than the largest measured vertical

P
velocities measured in the flow. Thus:

lr../tp < u (3.4)
and:

tp > L/uL (3.5)
and since the average large eddy lifetime, t ., is given by:

tL = L/uL (3.6)
then:

tp >t (3.7)

The 1intermittency is related to these times since it is the
Probability that an eddy exists. Thus:

n = tL/tp ; (3.8)
and (3.7) implies that:

58



n s 1 (3.9)

Soulsby (1983) reported that the standard deviation of the
vertical velocity fluctuations measured in boundary shear layers
is characteristically 0.46-0.5 times the horizontal, and 0.66
times the cross-stream. Writing,for the mean vertical velocity, w:

(w/0.5)%/2 + (w/0.66)%/2+ w'/2 = u? (3.10)

then repeating (3.5) - (3.8) gives:

n < 0.5 (3.11)

implying that the turbulence in a shear flow may always be found
to be significantly intermittent.

The kinetic energy density of the largest eddies is k and

this is produced in tp. Thus the energy production rate is given

by:

D (KE) /Dtpr = n:.kz./tx. = ne (3.12)

od
which is equal to the dissipation rate, as it should be if the
conditions are steady. In the mean the turbulent kinetic energy is

produced and dissipated at a constant rate if the conditions are
steady.

Since the boundary of an eddy volume V can only move through
the surrounding fluid at a (slow) diffusion velocity proportional
to (vt)'”z, then to maintain its identity throughout its lifetime

tn' a large eddy L must move relative to the boundary without
being substantially influenced by the vortical 1layer at the

boundary surface even though the layer can be disturbed by its
passage. The streamwise fluctuations in a large eddy L are

proportional to u and any mean shear within the large eddy can

only be as a result of these fluctuations being more likely to be
in the upstream direction than the down stream, or to the strain
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induced in the eddy throughout its lifetime which we have seen to
be small. Since u is normally much less than U, the eddy volume
V is moving with the flow relative to the boundary. Since small
eddies within larger ones move with the larger ones, then it
follows that in the mean and outside the surface layer, all the
eddies are moving at U .

Fluctuations in the bulk flow.

The turbulence kinetic energy equation quoted in the
introduction, shows that the turbulent kinetic energy is produced
at the expense of the bulk flow. The mean flow, U is a constant
in steady conditions but since the production of the large eddies
is characterised by a burst, then, following the motion at Um, the
bulk velocity Ub should show a negative fluctuation where eddies
are being produced and a subsequent positive fluctuation so that
Um has a steady value. For a single large eddy whose lifetime is
tL then we should expect this wvariation to have a fundamental
period equal to t . If the fluctuation can be approximated by a
sine wave then the maximum amplitude of the disturbance, AUmx,
should be sufficient to supply all the kinetic energy of the large
eddy size since the turbulent kinetic energy equation (equation
(1.5))shows that the energy is initially supplied to the

streamwise component. Thus, using (2.51) for u :

2 2
AUmx/Z = kLﬂuL (3.13)

and:

= (n1/2
AUmx (2 )uL (3.14)
so that the r.m.s value of the fluctuation is equal to u . If the

turbulence is intermittent then the fluctuation should have r.m.s.
value nLuL.

If the boundary layer has not occupied the full flow depth
then we can define the free-stream velocity as Uo 80 that the bulk

velocity, U, within the boundary layer caused by the production
process should be:
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Ub m= U‘J - nu (3.15)

If the turbulence is significantly developed, and especially
if the boundary layer has grown to occupy the full depth of the
flow, then the requirements of continuity dictate that a
streamwise succession of eddies L should show similar fluctuations
in U over a distance equal to Ut indicating that approximately
Uth/L successive eddies will be at significantly correlated
stages of their history. It will be shown in the next section that
a significant spectral peak is found at a frequency equal to 1/tL
and of energy u:.

Derivation of the mean velocity profile.
The mean flow does not exist as a separate entity from the

turbulence and when measured by a fixed sensor is the time average
of the velocities caused by the eddies passing that point
superimposed on the bulk flow U . Since this cannot be measured
until the mean profile is known, the most convenient velocity on
which to base the derivation is the mean surface velocity, U,. A
discrete cascade of eddies is assumed, with the largest eddies
having size L and intermittency n. A fixed eulerian sensor is
situated at height h from the bottom boundary.

For an eddy size ¢ to disturb the vortical surface layer it
must be in contact with it. It can exchange vorticity or momentum
to a distance ¢ from the boundary during its lifetime since uetf
is equal to {. The transported property may become part of the
eddy, altering its characteristics, or may exist separately from
the eddy which has disturbed the wvortical layer. Here it is
considered that such an eddy assumes different characteristics

when in contact with the bottom, which simplifies the formulation.

Let it be assumed that each eddy size in the dissipative

cascade 1s equally likely to disturb £fluid from the vortical layer
at the boundary. Further, let it be assumed, Ccrudely, that the
disturbed low momentum fluid is instantaneously mixed throughout
the eddy. The probability that a packet will be transported to a
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distance greater than h from the surface, P(h), is then given by:

number of eddy sizes greater than h

P(h) = (3.16)

total number of eddy sizes

If the smallest eddy size in the dissipation cascade is
defined as A, then we can define the largest size L as:

L =C 2 (3.17)
where N is an integer. By defining N in this fashion the cascade
contains N+1 distinct eddy sizes including the smallest at A. It

will be shown that the value of N is an important parameter in
characterising the boundary layer. Since logC = 1 we can write:

N = log(L/X) (3.18a)
If the sensor height, h, is chosen so that:
c’" A =nh (3.19)

then there are n+l eddy sizes smaller than h and (N-(n+l)) sizes
greater than h. Putting these numbers into (3.16) gives:

P(h) = (N-(n+l))/N (3.18b)
The fluid packets carrying the momentum defect originate at
the boundary where they are effectively stationary compared to U,-

Thus on average we should expect the momentum exchange by the
eddies to give a profile of the form:

U(h) = U, - UO(N- (n+l)) /N (3.20)

Since the eddies smaller than L extend to a distance L/C from the

boundary, the surface velocity should extend down to h=L/C.
Equation (3.20) gives, for h = L/C and n = N-1:

U(L/C) = U = U (N-(N-1+1))/N = U_ (3.21)
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as expected. The velocity at h=A is given by:
Uu(d) = U - U (N-1) /N = UO/N (3.22)

This mean profile is stepped since (3.20) has only been
calculated at discrete values of h and is illustrated in Figure 6.
Near the bed when the discrete values of h are closely spaced the
profile will appear logarithmic. From (3.19):

n = log(h/A) (3.23)
then using (3.18a):
(N-n+l) = log(L/h) + 1 (3.24)
so that (3.20) can be rewritten as:
U(h) = U - (U/N)log(L/h) + U /N (3.25)

which is the profile in the velocity defect form (Tennekes and
Lumley, 1972). Using equation (3.22) this may be written as:

U(h) = (U /N)log(h/A) + U /N (3.26)

which is in the familiar logarithmic form. The criterion that h
should be small is as given by Tennekes and Lumley (1972) who
predict a logarithmic profile on dimensional grounds if L >> h and
In&'>>~v, the latter condition being always valid in the sea where
v is very small. A mean velocity profile of logarithmic form is

usually found in the sea near the bed (Soulsby, 1983) and in the
laboratory (Anwar, 1981).

The mean value of the velocity profile,
integrating (3.25) and is given by:

Um’ is found by

U = UO - Uo/N (3.27)

m
which is found at a height L/C or 0.353L. Prandle (1982) has found
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from experiments in the sea that the mean velocity is measured at
approximately 0.4 of the depth when the boundary layer has reached

the surface. Since we are associating the mean profile with the

production process we can equate (3.15) and (3.27) to write:

Uo/N = nu (3.28)

and the mean profile (3.26) as:
U(h) = nu log h/a + nu (3.29)

Two formulae which are immediately derived from the above

are, using (2.41l)and (3.28):

u = Uo/nLN = /33
so that using ut = L:
£ = Uz/niN3L (3.30)
nLNL = Uot:. (3.31)

Noting that each eddy size touching the bottom contributes an

extra velocity defect over the sizes larger than it equal to nu,
it is a straight-forward proposition to generate a smooth profile
by assuming that within each size the defect is distributed

linearly. Writing the extra defect in a size ! as:
ﬁue(h) = (l-h/¢) nu (3.32)

when £ > h. This models the fact that an eddy size ¢ can only mix
low momentum fluid a maximum distance ¢ from the boundary during
its lifetime t,. Summing over the sizes greater than h gives the

profile:

g

U(h) = nu log h/a + 1.5 nLuLh/L + nu (3.33)

This profile is shown in Figure 7 together with the stepped
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profile (equation (3.20)). It may be seen that both profiles are
similar in the bottom half of the flow. In Chapter 7 an equation
similar to (3.33) will be shown to accurately model the mean
profile found at sea when the parameters n and ¢ are known.

The smallest eddy size.

The smallest eddy size, A, may be identified with the
Kolmogorov dissipation scale and is given by (Tennekes and Lumley,
1972) :

A = (v/e)t! (3.34)

This is the only length scale which is of the same order of
magnitude as the wvalues of the roughness length, Z given by
Heathershaw (1979) and Soulsby (1983) for unrippled Dbeds
(approximately 0.03 cm). No other derivations give results close
to those found in the sea in these conditions.

Using (3.30) and (3.34) gives:

3
0

4 3_33

AT = Nnv L/U (3.35)

so that using (3.17) we obtain:

n N Cm/s
L

= UOL/v (3.36)
which i8 the Reynolds number. Taking typical values as:
L= 30m
UO*-- l m/s for nL==1

v = 0.014 cmz/s

gives:

N =11 (3.37)
If the bed is rippled or strewn with substantial obstacles
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then the value of z, is dependent on the ripple wavelength or
obstacle separation. Soulsby (1983) gives proscriptions from
several workers if the bed structure is known. These suggest that
z, may be an order of magnitude larger in some conditions (0.3 -
0.6 cm), equivalent to a change of 2 in the wvalue of N. For all
the results given by Heathershaw (1979) the wvalue of N lies
between 7 and 15 and the mean value of N = 1l agrees well with z
= A for the experiments where he has published the wvalues of «¢.

A length scale which may be more applicable to rippled or
very rough beds, A’, can be derived from (3.22) and (3.28):

UA") = UO/N = nu (3.38)

If the vorticity between h = 0 and h = ) is primarily
cross~-stream, then from the definition of g, (2.43) gives:

e = vui/h’z (3.39)

and:

A= (vt) 1/2 (3.40)

which is the diffusion distance related to large eddy lifetime.
With typical values of ¢ , v and L, A’ is 1-2 cm,

A useful result is that taking mean velocity measurements at
two heights, h:. and h2 and substituting into (3.33):

U(h,) = nu (log (h/A) +(1.5h /L) + 1) (3.41)
U(h,) =nu (log (h,/A) +(1.5h /L) + 1) (3.42)

so that eliminating nu:
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h
2

p Y,
I

U(hz) [1og(h1/h2)+(1.5(h1-h2)/L)] - 1.5h2 - 1

8) 1-U2 L

exp

(3.43)

an equation which allows the calculation of A when other

parameters are unknown. An increase in A implies that if the true

value of A varies only with bottom conditions then L has

decreased. This result, which does not invoke the intermittency
\

n, will be useful 1in analysing the results given in Chapter 7

where the boundary layer development is examined over a tidal
cycle.

We are now in a position to consider Yalin’s result (Yalin
(1977), see Introduction) that the wavelength of sand-dunes
generated by turbulence is between 2n and 20 times the water
depth. We would expect particles which are being transported by
the large eddies occupying the whole depth to travel approximately
UotL 1f they are suspended when the eddy is formed and settle when
it breaks down. Equation (3.31) with n equal to 1 (since no
transport will occur i1if the eddy is not there):

NL = Uot:. (3.44)

shows that the wavelength should be approximated by NL. The mean
(11) and spread (7 - 15) for N derived from Heathershaw’s (1979)

results agree well with Yalin’s sand-dune wavelength distribution
of 2n < N < 20.

Reynolds stress.
The average level of Reynolds stress near the bed is defined

in the literature as pu*’, where u* is the friction velocity. It
is found to be roughly constant near the bed outside the vortical
layer at the boundary (Soulsby, 1983). The Reynolds stresses are

associated with the anisotropic eddies, those affected by the
bottom which are creating the mean velocity ©profile. The
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contribution'to the averaged Reynolds stress from an eddy size ¢
must be proportional to the product of the averaged eddy velocity
components which make up the correlation. Using u*‘(¢) for the
stress in an eddy size we can see that it must be proportional to
the product of the streamwise velocity defect nu (which is the
same for each eddy size) and the mean vertical transport velocity

within the size which is proportional to n u,. Thus:

4

u*?(0) « n°u u (3.45)

L L ¢
and taking the constant of proportionality to be independent of

eddy size, then summing as before over all the sizes greater than
h:

u*’(h) = B ni(uz-uhuh) (3.46)

so that the stress is zero at L as we would expect. If h << L
then:

2 2 2
ux® = ﬁnLuL (3.47)

which is independent of h. Thus a constant stress layer will be
found near the bottom of a geophysical flow. The model implies
that the measured stress is proportional to the turbulent kinetic
energy. Heathershaw (1979) states that over a wide range of

conditions, the stress and measured turbulent kinetic energy, q,
are related by:

u*® ~ 0.2 g (3.48)

so that using (2.66):

2 <

L

u*“x 0,3 niu (3.49)
Equations (3.47) and (3.49) indicate that the value of 8 is

approximately 0.3. Soulsby (1983) reported that on average, and

under widely varying conditions the quadratic friction law holds
so that: '
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u*‘x 0.0025 Uz (3.50)

For fixed L, (3.31) and (3.34) imply that if ¢ is constant then n
1s proportional to U,r 8o that u* is proportional to U, (equation
(3.49)). Equation (3.48) can also be true if the turbulence is
fully developed. It may be that the intermittency accounts for the

wide scatter reported when measuring the Reynolds stress (Soulsby,
1983).

The mean velocity profile is normally characterised by u*/K
where K is Von Karman’s constant. Equating the two formulations
for the log profile (equation (3.29)):

u*/K

n u (3.51)

L L

and substituting (3.50) into (3.49) gives:
K~ (0.3)"% ~ 0.5

Von Karman’s constant is found to be approximately 0.4 when the
friction velocity is fitted to logarithmic profiles measured in
the sea (Soulsby, 1983). Equating (3.49) and (3.50) gives:

0.0025 uz ~ 0.3 niuz . (3.52)

so that (3.28) gives:

The production term in the tubulence kinetic energy equation,
(1.5), is given by uﬁzaU/ay for a two dimensional boundary layer.

The mean shear (au/ay)h between h/C and h in the mean profile
(3.33) is given by:

L

(aU/ay)h = l.SnLuL/L + Z nLuL/h ~ 1.5 nLuL/L + nLuL/ (C-1)h

h
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so that usiné (3.47) for the Reynolds stress with g = 0.3, summing
over all sizes with n =1 and equating production to dissipation

gives:

L
X 0.3 (ui - uLuh) [(uL/((C-1)h)+(1.5uL/L)]h(l-l/C) = ILec (3.54)
A

so that using (2.52) for e¢:
0.1 ((N+1)-2.62) =1 (3.55)
and:
N ~ 11 (3.56)
Direct substitution of (3.38) into the logarithmic profile gives:
u*’ = const. u, h 8U/8h (3.57)

which is the Prantle-Kolmogorov expression for the Reynolds stress
near a wall (equation (1.9)). Substituting again gives:

u** = const. hz(@U/ah)2 (3.58)

which is equivalent to the mixing length formulation (equation
(1 . 7) ) *

We have shown that a smooth logarithmic profile (equation
(3.33)) can be generated by the dissipation cascade of eddies if
each size is assumed to have a linear velocity defect given by
(3.32) additional to the defect induced by sizes larger than
itself when the eddies are touching the bottom. Recalling:

bu,(h) = (1-h/¢) nu (3.32)

U(h) = nu 1log h/h' + 1.5 nLuLh/L +n u (3.33)

L
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This is equivalent to each size containing an extra mean
cross-stream vorticity equal to u/f. The production event takes
place in tL/nL. Since the dissipative cascade only lasts for t we
shall initially assume that the production event takes place in t

and ignore the intermittency.

The average extra vorticity associated with an eddy size !{
touching the bottom is uL/E, and the maximum vorticity that such
an eddy can support 1is Uo/e (since the mean profile cannot be
negative). Therefore the production event may be modelled as a
sequence of N profiles, each lasting tz./N' and each reflecting a
different eddy size ¢ which is carrying vorticity UO/Bi. Since,
using (3.28):

t (W /8 = (t /N) (Nu/8) = (t /N) (U /0) (3.59)

the average extra vorticity in each size is retained. The profile
sequence is, for N profiles U, (h) each lasting tL/N:

U,(h) = =(Uh/l) h<
=(U ) h > ¢
¢, = C*a
i=1 a4 N (3.60)

The intermittency is now included by assuming that each step takes
t /Nn  so that the process is complete in the correct production

time. Integrating over the sequence of increasing sizes over time
gives the mean profile:

U(h) = nLuLlog h/A + 1.5 nLuLh/L + O.SnLuL (3.61)
which is very similar to (3.33).

The crude model of the bursting sequence simulates the time
variation of the velocity profile at a fixed point. If the eddies

are essentially cubic and pass the point in approximately L/U,
then since we have derived (equation (3.31)):
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n NL = Uotz. (3.31)
each eddy will pass the measuring point in time:

tp""g. = L/Uo = tL/NnL (3.62)
so that each time interval in this model is equal to the
individual eddy passage time. Modelling the bursting event as a
sequence reflects the earlier result that a sequence of N eddies
should be at co-ordinated stages of their lifetimes because of
continuity. Such a group would give the correct mean velocity
profile and reflect the production process into frequency spectra

at a frequency of 1/t . It is the contention of Chapters 5 - 7
that this is indeed the case.

The variation of intermittency with bulk velocity.

The following equations are repeated from this chapter for
ease of reference:

UO/N = nu (3.28)

€ = U /aN'L (3.30)

U(h) = nu log h/a+ 1.5n u h/L + nu (3.33)
A= (VW /e) ! (3.34)

nLN c3 o UOL/v (3.36)

These equations simplify to a closed set if it is assumed that at

some velocity, U.. n is equal to 1 and that below this velocity

n varies linearly with current speed as implied by (3.49) and
(3.50) . Writing:

n = UO/U1 (3.63)

then if n can be determined and plotted against U, the value of
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U can be found (such a plot would verify (3.63)). Rewriting
(3.36) using (3.63):

N ¢ = UIL/v (3.64)

which implies that if the turbulent boundary layer has grown to
£fill the whole depth so that L is known, then N is constant below

U, . This implies, from (3.28) and (3.30) which can be written as:

Ul/N = u (3.65)
- Ui/NaL (3.66)
that the dissipation rate is also a constant.

Forced turbulence.

If the velocity exceeds the critical value U, the
turbulence, already being fully developed and still being
constrained by the flow boundaries, can only change by an
alteration in the value of e. Tennekes and Lumley (1972) reported
that in laboratory experiments where L is constant an increase in
Revnolds number decreases the size 0f the smallest eddies so that
we would expect A to decrease and N to increase. Writing (3.34)
and (3.66) for these conditions:

A= (/e)! (3.66)
e = U/N'L (3.67)

shows that to find ¢ the following equation has to be solved
numerically:

log (Lcln/va“) = U/t::u‘?'bll3 (3.68)

It is clear that an increase in U at constant L causes an increase
in the dissipation rate and a decrease in A. Figure 8 shows the
expected variation of the velocity profile for L = 30 m and ¢ =
0.29 cm2/s3 (which result in N = 11 and U = 105 cm/s) for three
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velocities up to U, = 105 cm/s, and for SUE:ﬁor'the same inputs.

1

A model for intermittent turbulence.

*m_m

The following model is proposed:

a. Below a critical velocity U, the energy dissipation rate is
constant and the large eddy intermittency is proportional to the

current speed.

b. The velocity profile is given by (3.33) with a wvalue of N
approximately equal to 11, the model roughness length A being

close to the dissipation scale over a flat bed.

c. The eddies should exhibit group behaviour because of continuity
and the effect of the production process on the bulk flow. This
grouping may vary with intermittency. When the turbulence is fully

developed a sequence of NL large eddies should show related
behaviour.

Ny

The remainder of this thesis is concerned with testing these
model propositions against spectral evidence and direct
measurement made at sea., Turbulent spectra are a useful tool for

establishing the value of the energy dissipation rate, ¢, and are
discussed in the next chapter.
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CHAPTER 4 ' TURBULENT SPECTRA

Wave number sEectra

Tennekes and Lumley (1972) showed that the energy
contribution from each eddy size to a true one dimensional wave
number spectrum of a field of spatially discrete and intermittent
eddies would be associated with a wave number, k, such that:

k = 2n/¢ (4.1)

and that if the magnitude of the spectral estimate at k is ¢1(k)
then the energy associated with a discrete disturbance whose size
is ¢ will be found within a spectral band of width k centred on k.
This 1s because the fourier transform of a narrow band around k is
a wave of wavelength 2n/k with an envelope whose width is the
inverse of the bandwidth. The mean energy contribution from each
size is given by nﬂkﬂ since:
nk, = (1/L) (L/¢) (n,) (k,¢) (4.2)
(1) (2) (3) (4)

the individual terms being:

(1) The averaging term over the record length L
(2) The number of discrete sites ¢ in the record
(3) The probability that a site is active

(4) The 1D energy contribution from each site

Substituting (4.1) into (4.2), using (2.41), and associating the

mean energy per size with the energy in the spectrum at that wave
number kfbl (k) :

ko (k) = n k,= n e*’(2n/k)*" (4.3)

2/3, «5
cj’k /3

¢ (k) = 3.4 n (4.4)

k

The energy cascade proposed in Chapter 2 is characterised by
all the eddy sizes smaller ‘than the largest having the same
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intermittency, equal to n /2. Such a cascade would exhibit the
k373 dependence throughout the range of wave numbers higher than
the peak:

o (k) = 1.7 nLe”’k"”’ (4.5)

This result for the one dimensional wave-number spectrum is of the
same form as (1.13) which was derived from Batchelor’s result for
the three dimensional wave-number spectrum in the inertial
subrange (equation (1.12)) and the assumption that the turbulence
is isotropic in that range. Here the formulation is derived
without regard to isotropy or the conditions under which the

inertial subrange is expected to exist.

If the spectrum is sharply cut off by the outer flow
parameters so that the peak is at a wave number, kilgiven by:

k = 2n/L (4.6)
then using equation (2.41):

09

2
I @1(k) dk ~ 0.74 nu (4.7)
k

L

and the mean square measured turbulent velocity is directly
proportional to the kinetic energy density of the energy
containing eddies.

Surface spectra

Woods (1975a) reported that two dimensional wave number
spectra of horizontal temperature variance which have been
directly measured at the sea surface exhibit a K¢ trend. If, as
he suggests (see Introduction) the distribution of temperature

variance reflects the spatial distribution of the eddies, then we
can write immediately:

k@z(k) o ¢ (4.8)
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so that using (4.6):

©, (k) « k¢ (4.9)

Frecquenc sEectra

Tennekes and Lumley (1972) show a direct equivalence between
the frequency and wave number spectra of a property, thus:

<:r¢1 (¢) = ktbl (k) (4.10)

where ¢(c) is the frequency spectral estimate at frequency c¢. This
relationship is used to transform time records taken at a point

into wave number spectra using Taylor’s Hypothesis (Heathershaw,

1979). In this transformation the wave number is related to the
frequency by:

k = 250/U (4.11)
where U is the mean velocity at the point of recording. For
equivalence with equation (4.1) the frequency must be associated

with the eddy passage time. Equating (4.1l) and (4.1l1):

k = 2n/t = 2nc/U

so that:
c = U/¢ (4.12)
The eddy passage time, tpuug‘, being given by:
t = {/U (4.13)

passage

We should therefore expect to see a o >/3 dependence in the

frequency spectrum which is then transformed directly into the

-5/3
k*? wave number spectrum when Taylor’s hypothesis is wvalid. If

the spectrum is cut-off by the outer flow parameters then the peak
frequency, o will be given by:
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c = U/L (4.14)

and the ¢ /3 dependence will be seen at higher frequencies than

o .
P

If it were possible to measure a spectrum so that the energy
in a particular eddy size was associated with a frequency related

to the eddy lifetime, t£' s0 that:

c = l/t£ (4.15)

then, calling this spectrum ¢»(o~) ;, and using (4.3),(4.10) and
(4.14) :

o (c) = ¢(c) /t£ £ an£

so that:

¢(c) = nﬂkﬂtﬂ (4.16)

We can now use (2.41) and (2.42) to give:

() = nget; (4.17)

so that resubstituting for ¢ using (4.15), and putting n, equal to
nL/2 as before, this spectrum has the form:

(o) = 0.5n ¢ o~ (4.18)

This is the form predicted by Tennekes and Lumley (1972) and
described in Chapter 1. If this spectrum is cut-off by the outer
flow parameters then the peak should be at a frequency, C, given

by:
o, = 1/t1. (4.19)

2

and the ¢ ° dependence should be seen above that frequency.
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The peak frequencies o, and ¢, are related by:

O‘P/o*t = Ut.L/L (4.20)
Substituting (3.26):
nLNL = UotL (4.21)
into (4.20) gives:
v o‘p/o*t z= nI‘NU/Uo (4.22)

If the turbulence is well developed (4.22) can be approximated by:

crp R Na't (4.23)

We have seen in the previous chapter that in a boundary
layer energy is expected to exist at frequencies equivalent to
1/t£ due to the production process. If the time spectral estimate
at o 1s equal to ¢p then the time spectral estimate at o, is
given approximately by (4.18) and (4.23):

2
4)(0*1:)*:-‘ c|)P/N (4,24)

and with N approximately equal to 11 we should expect the time
spectrum, ¢, to be greatly reduced before the passage time
spectrum, ¢, is measured. We should expect, therefore, to see a
spectrum from the bottom boundary layer having two distinct peaks.

This will happen if the energy in a particular eddy size is

divided equally between the ¢ and ¢ spectra since in that
circumstance:

crtq: (crt) = o*qu (o*P) (4.25)

and (4.23) gives:

¢(o~t) * N¢ (o) (4.26)
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so that from (4.24):

d(c,) = ¢(o,) /N (4.27)

The lack of previous reporting of the time spectra, ¢(c), can
be explained by considering some published results. Figure 9 shows
two figures taken from Heathershaw (1979). The top figure (Figure
9(a)) shows a typical analogue record in which the u signal shows
a clear variation about the mean with a period of about 300
seconds. The lower figure (Figure 9(b)) gives his derived spectra,
the lowest wave number of which (approximately 0.002 cmd)
corresponds to a period of 60 seconds at a mean velocity of 50
cm/s. Figure 10 is taken from Bowden and Ferguson (1980). Figure
10 (a) showing analogue records where the u component displays a
clear 9 minute periodicity. Figure 10(b) shows the resulting
spectra in which the minimum wave number equates to an 80 second
period. It seems likely that in both cases the systematic
variation in the u component shown in Figures 9(a) and 10(a) were
removed as a linear trend in the data since each record length was
only slightly longer than the fundamental period.

Surface layer similarity scaling
Many spectra have been measured near the sea bed in marine

boundary layers. These are reported in detail in monographs by
Soulsby (1983) and Heathershaw (1979). In his original paper
(Soulsby, 1977), Soulsby reported that spectra calculated over a
wide range of wave numbers, with reasonably tight confidence
limits, together with spectra from other authors and atmospheric

results, collapsed to a universal form when scaled with wvariance
and measuring height, h, thus:

ke (k) V. kh

Jo¢(k)dk

collapsed the spectra irrespective of the value of ¢ (since

atmospheric spectra also collapse). The sSpectra were ensemble
averaged one dimensional velocity spectra. Heathershaw (1979)
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Figure 9. (a) Analogue records from Heathershaw (1979),
(b) spectra from the same author.



Figure 10. (a) Analogue records from Bowden and Ferguson (1980),
(b) Spectra from the same authors.



commented that this scaling appears to undermine the similarity
scaling (which should be with u*) and the assumptions which go
with it. An inertial subrange (i.e. a K373 dependance in the
spectra) could be discerned at higher wave numbers although the
Reynold’s numbers were less than those at which an inertial
subrange should exist. The scaling must be examined for its
significance since it implies some universality of structure. It
should be noted that the scaling is not as successful in
laboratory flows (Anwar, 198l1l) where better collapse is achieved
by scaling with flume depth. Figure 11 is taken from Soulsby
(1983) and illustrates the scaling.

To begin to explain the scaling the collapse of the spectral
peaks is considered first. If the spectrum is sharply cut-off by
the outer flow parameters and displays a power law dependence at
higher wave numbers, so that using (4.4):

2/3)=3/3 k> k (4.28)

d(k) = A ¢

®(k) = 0 k<kp

where A 1s a constant. At the peak the spectral estimate, ¢(kp) 18
given by:

¢(kp) = emkp'm (4.29)
so0 that:
ko(k) =ac "”%p"""" (4.30)
The integral under such a spectrum is given by:
00
j »(k)dk = (3/2)A ez’:"kp'm (4.31)
k

P

Thus:
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Figure 1l. Surface layer similarity scaling from Soulsby (1983).



k (k) (4.32)
P P
= 2/3

Im¢(k)dk
0

irrespective of the value of A or of €. The published spectra
scaled under surface layer similarity scaling collapse to

approximately 1/2 this value indicating that about half the
spectral energy lies below the peak.

To explain the scaling completely it is necessary to
investigate the fact that the peak wave numbers collapse with the
sensor height. We have seen that these spectra are associated with
the eddy passage times and peak at a frequency given by (4.14).
Using (4.11) to convert to peak wave number we achieve:

kp = 2n/L (4.33)

: : *
implying that the non-dimensional peak, kp, should be located at:
k =k h = 2nh/L (4.34)

which at £first sight cannot be constant since there is no
interdependence between the sensor height, h, and the boundary
layer thickness L. After detailed analysis, Soulsby (1983)
recognised that the wvalue of k* increases with sensor height as we

P
would expect from equation (4.34). It appears that two phenomena

contribute to the collapse of k:. The first is that, at least in
the marine records, the ratio of the sensor height to boundary
layer depth all fall within a small band on the logarithmic kh
scale. For all the marine spectra calculated by Soulsby (1983),

Heathershaw (1979) and Bowden and Ferguson (1980) the value of the
ratio falls in the band:

0.06 < h/L < 0.1 (4.39)

when the boundary layer depth is defined as the water depth at the
measuring point. Using (4.34):
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0.37 < k: < 0.62 (4.36)

which is well within the range of values over which the spectral
peaks lie as may be seen in Figure 11l.

The second point of interest 1is that k: for the wvertical
velocity spectra is about ten times the value for the horizontal
peak. It is likely that the vertical component is reflecting more
of the fizggwws“ch%le structure of each eddy as it passes than the
horizontal, since it is less constrained by continuity. If this
is so then we might expect the peak wave numbers to be related by

an equation similar to (4.23). Substituting (4.11) into (4.23)
and (4.34) gives:

x

%
(kP ) passage time © N (kp) eddy lifetime (4. 37)

and substituting N = 11 (as found in the previous chapter) into
(4.37) would explain the observed spectral shift.

Spectral ratios.
In order to examine isotropy, Bowden and Ferguson (1980)

calculated spectral ratios from 3000 spectral estimates for the
inertial subrange and plotted tbw(k) /4>u(k) against kh where h was
again the sensor height. Within the scatter the ratio increased
linearly from 1 to 1.33 as kh increased to 2r and then remained

at 1.33 indicating that the turbulence was isotropic above that
wave number. At kh = 2n, (4.1) gives:

kh = 2nh/l > 2n (4.38)

so that for the turbulence to appear isotropic:

h > ¢ (4.39)

This equation is eqivalent to the condition used to calculate the
mean velocity profile from the passing eddy structure; namely that
only the eddies of a particular size which were in contact with
the bottom would be anisotropic, and that these eddies would only
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be detected "if the eddy size was greater than sensor height
(otherwise they would pass beneath the sensor).

The discrete eddy cascade model has been shown to be
consistent with the turbulent spectra found in the sea. It is
shown below that by using current meters, frequency spectra which
reflect the production process can be resolved and related to the
model. It is also shown that if the fourier components associated

with a particular eddy size are isolated, then the discrete nature
of the eddy cascade is revealed.
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CHAPTER 5. DESCRIPTION OF A CURRENT METER EXPERIMENT

A current meter experiment was carried out in the North Sea
in August 1989 wusing the facilities of the Warren Spring
Laboratory, Stevenage. The aim of the experiment was to collect
detailed current data over several tidal cycles in two locations
using two arrays of three current meters suspended vertically at
varying separations. In the event, bad weather and instrumentation
failure curtailed the experiment, fortunately without detriment to

the major results.

The experiment was carried out from the SEASPRING a 194.5
foot converted sewage vessel at anchor 15 miles to the east of
Felixtowe at 51° 57.31’ N, 1° 46,06’ E in about 30 m of water over
a flat sandy bottom (the variation in chart depth is 3 m in 1000
m), fixed by Decca and bearings on the Shipwash light. The tidal
streams in the area had been previously measured (Elliott, 1986).

The experiment can be conveniently divided into two parts.
The first part was conducted overnight on the second of August
with both arrays of current meters deployed from the anchored
SEASPRING. The current meter deployment is shown in Figure 12. One
set of current meters were always deployed from SEASPRING and are
hereafter described as the fixed set. The meters which recorded
successfully were suspended at depths of 10 m and 22 m below the
surface from a derrick on the starboard side. In this part of the
experiment the second set of current meters, called hereafter the
moving set, was suspended overnight from a crane on the port side,
separated laterally at a distance of 20 m and longditudinally by 5
m. In the moving set only one meter functioned correctly.
Fortunately this was a meter suspended at 22 m, allowing direct
comparison with the bottom fixed meter. The top fixed and bottom

moving current meters were DNC-2B meters constructed by NBA

(Controls) Ltd and record current by propeller revolution count
and direction by internal compass.

The bottom meter of the fixed array was a DNC 2M meter,
similar to the above but with a slightly different fin geometry

85



Sea Truck Sea Spring

Cea level

R e TP R L T G Rl YD I . n
ot H‘:‘?‘ifbfﬁf:ﬂ"fi‘é}'qilf M 'rﬁ" .‘-‘:: B ‘*L“E . b‘:l' o' ot Bttty
""-."'*-"..; MO o SR ‘ Foel e ¥ ey Ui 0 I . *
Sea bed Py e T ENERTE S ety e R B REL L . {
i . . - . - ' - ' '

Fixed Station
Port

0.
C 0O 6 0 0 O

OFixed Station
Sthoard

_Geometry of Current Meter ©
Experiment

o
(Approximately to scale)
{em=20m ©

Figure 12. Deployment of current meters.



and capable of measuring temperature, salinity and conductivity as
well as speed and direction. The meters were calibrated by the
manufacturers in preparation for the experiment and set=-up in
accordance with the handbooks. The data recording rate (the meters
record digitally onto magnetic tape) was set at the minimum
interval of 15 s and the scaling factor selected such that the
meters would record accurately at well above the predicted maximum
water velocity. All the meters were started at the same time at
0850 on the 2nd August and ran throughout the experiment until
switched off at 1308 on the 3rd. It is not known what caused two
meters to be defective although rough handling in poor weather
conditions 30 miles further out to sea on the 2nd was probably the
most significant factor. An AML salinometer was used to measure
salinity profiles at slack water, it not being possible to take
readings when the current was running fast, and the readings from
this equipment and the DNC-2M meter confirmed that the tidal
stream was unstratified throughout the whole experimental period.

The second part of the experiment was conducted during the
morning of the 3rd August. The moving array of meters was detached
from SEASPRING and suspended (at the same depth below the surface)
from a 13 m utility vessel called SEATRUCK. Simultaneous readings
were then taken from fixed and moving arrays at grid positions as
shown in Fiqure 12 while the tide was flooding (the flood being
when the water level was rising). The sampling time at each
position was chosen to be between 15 and 25 minutes so that as
much detail as possible could be recorded without the weather and
tidal conditions changing significantly over the period during
which the different stations were sampled.,

Overnight on the 2/3rd August and during the second part of
the experiment there was little wind and no wind-generated waves.

There was a slight residual swell overnight which decreased as the

second experiment progressed. The only effect of this was to cause
SEASPRING to roll and pitch at a frequency of 0.2 Hz, a frequency

which as will be seen in the results is far removed from that of
the turbulence. Further the maximum vertical displacement of the
meters at their suspension points was 0.6 m, a quantity which was
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much smaller than any systematic motion from the different
suspension mechanisms.

The ship was anchored with 120 m of cable and had only 2 m of
draft making it very unlikely that the current meter readings
would be influenced by the presence of the ship or by its wake
although the actual measuring position could be expected to vary
slowly as the ship swung at anchor. The hardest problem was to
accurately and consistently position SEATRUCK relative to
SEASPRING during Part 2 of the experiment. This was achieved by
running a light, buoyant line between the vessels, the line being
marked at 20 m intervals. SEATRUCK’s outboard was used to maintain
line tension and position when the lateral stations were being
measured. Astern the current was such that the measuring line

remained taut although there was some lateral swing about the mean
current bearing at the 20 m and 40 m stations,

To check the surface current and -relative diffusion
coefficients, dye patches were released from the stern of
SEASPRING at each astern measuring station and their spreading and
transport time measured. This sequence o0f dye releases was
recorded on video film to aid later analysis. The current meters
recorded the total number of turns of the propeller in each 15
second sampling interval. The specified accuracy is +/- 2% above
3.1 cm/s. When the tidal stream reversed at slack water the ship

was swinging at its anchor but this minimum restriction is
unimportant since readings in these periods were not used.

Direction was recorded using a magnetic compass at each 15 s
sampling interval. This was an instantaneous reading and not an

average over the interval as the current reading was. The
specified resolution is 2°. The clock accuracy was +/- 2 s a day.

At maximum current the angle made between the suspension wire
and the vertical reached 12° - 15°, This would imply a maximum of

0.7 m variation in bottom meter depth below the surface and a
maximum streamwise displacement of 6 m since the bottom meters
were suspended on 22 m of wire. The top fixed meter was suspended
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on 10 m of wire so the maximum streamwise separation between the
two meters should have been less than 3 m since a very heavy
weight was attached to the bottom of the array. Finally, although
the compasses were calibrated, the data processing recognised that
systematic errors in direction measurement could exist between

meters.

The data were recovered from the meters on magnetic tape and
processed on a Hewlett Packard PC using software supplied by NBA
(Controls) Ltd and validated by their test program to convert the
recorded signals to ASCII format. At a sampling interval of 15 s
and a record length of 27.5 hours there was a considerable
quantity of data. The data was time-matched and then transferred
to the PRIME 9955 Mark 2 mini computer in the Department of
Nuclear Science and Technology, Royal Naval College Greenwich,
for processing. The records were compared to check that the
transfer had been completed without corruption and split into
separate files for access by the data handling program. In
particular each file was checked for notable features (such as
zero readings when the meters were removed from the water) to
ensure that the time matching was correct.

Two data handling processes were fundamental to all the
subsequent results and their interpretation. First the current and
direction readings had to be converted to streamwise and
crogs-stream (u and v) components. The vertical velocity component
was not measured. It is possible for a component of the vertical
velocity to contribute to the other components if the current
meter angle of attack varied in the vertical plane. For this

reason the coherence between the derived u and v components was
calculated.

Secondly a representative mean value had to be chosen from
each signal so that the fluctuating signal could be extracted and
processed. The raw data consisted of a current averaged over the

sampling interval, R, and a direction, ¢, measured at each
interval. Taking these as the raw data the £ ollowing simple
algorith was used to produce u and v velocity components. First ¢
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wag smoothed " (smoothing is discussed below) to produce a mean, and
this was subtracted from the raw direction signal to achieve a
fluctuating angle, ¢’, with a zero mean. The fluctuating angle,
o', is therefore a direction relative to the tidal stream. All
smoothing processes induce numerical diffusion and the fact that a
satisfactory mean value had been achieved was checked by computing
rms fluctuation values at discrete (short) intervals and by
comparing the mean with the lowest frequency components of a Fast
Fourier Transform of the signal.

The data were then processed using the following simple
algorithms to give u and v, the streamwise and cross-stream
velocity fluctuations:

9’ is averaged over the interval
v = R sinv’
U = R cosv’

where U is the total streamwise velocity, fluctuating around its

mean U:
U=0U <+ u

and the U signal was smoothed again (and checked as above) to find
a mean, U and this then subtracted to produce u. U is taken as the
mean streamwise velocity at that current meter. This algorithm,
although simple, balances the forces against the current meter
fins while assuming the meter to be in the steady state over the

averaging interval. No better algorithm is recommended by the
manufacturer or has been used in the literature.

The data was non-stationary in every respect. The mean
streamwise velocity varied with time, the mean square value of the
fluctuating components varied with time and the frequency
Structure was also time varying. This made the data very difficult
to handle as there is no totally satisfactory algorithm which can
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handle all types of non-stationary situation, primarily because
the very nature of the non-stationarity is the first unknown. The
subject is well reviewed in the last chapter of Bendat and Piersol
(1971). It is only possible to sensibly process the data into

usable form and clearly compare and report the effects of the
mathematical techniques used.

With such large data sets it proved impractical to attempt a
polynomial or cubic spline fit to elucidate the mean values even
using the NAG library sub-routines available on the PRIME. It was
therefore decided find to mean values using a smoothing process
known as "Hanning" (Bendat and Piersol (1971) and Kinsman,

(1965)). This process is normally used to remove spectral leakage
when producing spectra from correlation functions. The process

consists of taking a weighted average value of each data point and
its adjacent data points, the weighting factors a and b (following

Kinsman the programs use a = 0.54, b = 0.23) being applied without
carrying the new value across to the next average:

<x1> = bxi_l + ax, + bx“ (5.1)

1

Repeating the smoothing process 1000 times ¢to ¢ and
subsequently U gave non-stationary mean values which when
subtracted from the original signal left component velocities
which fluctuated evenly around zero. The original signal was then
converted to a complex spectrum using the FFT algorithm in the
PRIME NAG 1library and the resulting spectrum cropped and
transformed back for comparison with the mean derived from the
smoothing process. The result depended on the amount of spectral
cropping (equivalent to passing the signal through a low-pass
filter) but the spectrum peaked severely at the frequency of the
tidal period, and a transform of the frequencies close to the peak
showed a very similar mean signal to that derived from the
smoothing process. This double check showed that the separate mean
and fluctuating signals produced were valid since similar results
were obtained from two very different techniques. The result is
demonstrated in Figure 13 where the whole data set for the bottom
fixed meter is shown. In this figure the top graph is depth versus
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time (the depth readings were taken by echo-sounder, corrected for
keel depth and the curve fitted by a cubic spline interpolation).
The second graph shows the mean streamwise velocity U and the
third and fourth the u and v fluctuating components.

The two lowest graphs show the statistical distributions of u
and v taken over the whole record. These are approximately
Gaussian. Figures 14 and 15 show the autocorrelations and derived
spectra for the u and v components, calculated from the record as
a whole. Each autocorrelation time lag is 15 seconds. One would
expect some distortion in the spectral estimates due to the
varying r.m.s. value of the signals but it is encouraging that the
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