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Summary  
 

Many important marine ecosystem functions, goods and services rely on healthy, 

productive benthic communities, yet these communities are at risk from anthropogenic 

activity such as bottom fishing and aggregate dredging. Marine spatial management 

measures such as marine protected areas could help protect benthic communities from 

these activities and ensure the continued provision of the ecosystem goods and services 

that they support. The establishment of MPAs to protect benthic communities could be 

prioritised based on benthic invertebrate production, an indicator of benthic ecosystem 

quality that is comparable across different habitats. This thesis has considered the 

development and utility of modelled benthic infaunal production as a practical selection 

criterion for MPA design in the Irish Sea. The ability to model production over large 

scales and the spatial association between production and biodiversity have been 

investigated to determine whether or not benthic production can be and needs to be 

explicitly included as a selection criterion in MPA design to ensure protection from 

anthropogenic activities such as fishing. 

 

Results indicate that an empirical, size-based model that incorporates strong 

environment-production relationships can successfully predict relative benthic infaunal 

production over large scales in the Irish Sea. The model can also investigate bottom 

fishing impacts and the subsequent recovery of benthic production and biomass, all of 

which have utility for informing MPA design. A lack of spatial association between 

benthic production and biodiversity suggests that sites where the protection of 

biodiversity and production could be achieved simultaneously are limited in number, 

and therefore marine ecosystem function needs to be explicitly included as a selection 

criterion in MPA network design to ensure protection from anthropogenic activities. The 

implications of results for the spatial management of benthic communities are 

discussed, and general recommendations for MPA network design are made. 
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CHAPTER 1 – Introduction 
 

1.1  SUMMARY 

 
Benthic invertebrate communities provide and support the provision of many 

ecosystem goods and services, including food production. These communities and their 

functioning are under threat from anthropogenic pressures, particularly fishing and 

aggregate dredging. Marine protected areas (MPAs) are a form of marine spatial 

management that are fast becoming mainstream tools for managing anthropogenic 

activity and tackling declines in marine biodiversity and function. Since not all areas can 

be protected, MPA establishment needs to be prioritised based on informative selection 

criteria that match conservation objectives. Biodiversity or structural components of 

ecosystems have traditionally driven conservation effort. However, direct protection of 

ecosystem function by the use of functional selection criteria may better help maintain 

the flow of ecosystem goods and services, and achieve an ecosystem approach to 

management.  

 

Of the suite of ecosystem processes operating in marine benthic communities, benthic 

invertebrate production is a possible functional candidate criterion for MPA designation. 

It plays a key role in marine ecosystems by mediating the flow of energy from primary 

producers to higher trophic levels, thus supporting commercial stocks. Benthic 

production has the potential to be modelled and compared over large scales, and it could 

also act as a proxy for other features of conservation interest, such as benthic 

biodiversity and higher predators.  

 

Here the importance of benthic invertebrate communities and the threats to them are 

introduced. The practicalities of using modelled benthic production for selecting marine 

protected areas and the likelihood of benthic production as a proxy for other features of 

conservation interest are discussed, and three key research questions identified. These 

research questions form the focus of this PhD thesis and will be addressed in four 

research chapters. 
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1.2  CONTEXT 

 
1.2.1 Marine ecosystem goods and services 

 

Marine environments provide us with a suite of direct and indirect goods and services, 

the most apparent and well understood being food production (Beaumont et al. 2008). 

The provision of aggregates, fuel and energy in the form of gas, oil and tidal power, 

medicines, cosmetics, and recreational use are all examples of other direct benefits 

gained from the marine ecosystems (Beaumont et al. 2007). Indirect or supporting 

services are equally important, although are more difficult to quantify. These include 

climate regulation through exchange of atmospheric gases, flood and storm protection, 

waste remediation and nutrient cycling. Various ecosystem processes and functioning 

underlie the provision of these important services (Hein et al. 2006). For example; the 

fixation of carbon by marine organisms underlies climate regulation (Beaumont et al. 

2007), the degradation of pollutants by bacteria in estuarine sediments aids remediation 

(Niepceron et al. 2010), and the mixing of sediments through bioturbation by benthic 

organisms facilitates nutrient cycling (Lohrer et al. 2004; Rossi et al. 2008; Ferron et al. 

2009).  

 

1.2.2 The importance of benthic invertebrate communities 

 

Benthic invertebrate communities are those invertebrate communities living on and in 

the surface of seabed sediments. These communities commonly include polychaetes, 

bivalve molluscs, gastropod molluscs, crustaceans, echinoderms and attached cnidarians 

(anemones, hydroids, corals) and porifera (sponges) (Levinton, 2001; Kaiser et al. 

2005). These invertebrates are grouped into epifauna, which are emergent species that 

live on the sediment surface, and infauna, which refer to those species that live either 

partially or entirely within the sediment (Kaiser et al. 2005). This thesis will focus on 

those infaunal macro-invertebrate communities typically associated with shallow 

continental shelf seas in temperate Europe. 

 

Benthic invertebrate communities are recognised to play a key role in the provision of 

many goods and services (Snelgrove et al. 1997; Levin et al. 2001, Danovaro et al. 2008). 
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The position of benthic communities within trophic webs means that benthic macro-

invertebrates are a key food source for commercial fish species, particularly demersal 

stocks, and are therefore important for supporting fish production (Christensen et al. 

1996; Heath, 2005). Some benthic shellfish stocks, such as king scallop Pecten maximus, 

brown crab Cancer pagurus, European lobster Homarus gammarus and common prawn 

Palaemon serratus are also important fisheries in their own right. 

 

Benthic invertebrate communities facilitate services such as nutrient and carbon cycling 

(Steele et al. 2007; Ferron et al. 2009), through the consumption, production, transfer 

and bioturbation of organic matter (Lohrer et al. 2004; Danovaro et al. 2008; Hiddink et 

al. 2009; Sandwell et al. 2009). Benthic invertebrates also contribute to habitat 

heterogeneity, through the creation of biogenic structures and reefs (Lenihan, 1999), 

such as horse mussel Modiolus modiolus beds and Sabellaria reefs, or through the 

creation of burrows and depressions. These features provide niches and refuges for 

other species, including other benthic invertebrates and juvenile fish species (Thrush et 

al. 2002).  

 
 

1.2.3 Threats to benthic invertebrate communities  

 

Growing recognition of the world-wide degradation of marine ecosystems has drawn 

attention to their lack of protection from anthropogenic activities (Jackson et al. 2001; 

Rabalais et al. 2009). This recognition extends to benthic ecosystems (Danvaro et al. 

2008; Salomidi et al. 2012). Benthic invertebrate communities are at risk from a number 

of activities that can have a negative impact on benthic ecosystem function and thus the 

ecosystem goods and services that they support and provide (Danvaro et al. 2008). One 

of the best studied direct threats to benthic communities is fishing. Demersal fishing, 

such as bottom trawling and dredging, has been found to have a negative impact on the 

abundance, biomass, species richness and productivity of benthic invertebrates (e.g. 

Jennings et al. 2001; Collie et al 2005; Hiddink et al. 2006b; Reiss et al. 2009). These 

negative impacts result from the mortality and removal of individuals and a subsequent 

reduction in abundance and total biomass (Jennings et al. 2001).  

 



CHAPTER 1 - Introduction 

 

 

4 
 

The impact of fishing disturbance is stronger for some benthic groups than others, 

primarily due the negative relationship between body size, life history and fishing 

mortality (Querios et al. 2006). Large epifauna is considered most vulnerable to fishing 

(Thrush et al. 1998; Hermsen et al. 2003; Hiddink et al. 2006; Tillin et al. 2006), whereas 

infaunal communities have been found to be more resilient (Hiddink et al. 2006b; 

Jennings et al. 2002; Reiss et al. 2009). Some findings have even suggested that certain 

intensities of fishing can increase the abundance and productivity of infaunal 

communities, perhaps due to the release of opportunistic species from competition with 

larger, long lived species (Jennings et al. 2001; Hermsen et al. 2003; Querios et al. 2006). 

However, many of these observed positive effects are not significant (Jennings et al. 

2001; Reiss et al. 2009), and conflicting evidence exists. For example, Hinz et al. (2008) 

found that the abundance and total productivity of nematode communities was 

negatively affected by bottom trawling.   

 

The severity of fishing impacts on benthic communities also appears to differ between 

habitat types, largely driven by the differences in vulnerability of the associated 

communities (Collie et al. 2005; Hiddink et al. 2006b; Querios et al. 2006). For example, 

benthic communities in gravelly habitats, associated with high abundance of large, 

sessile epifauna, are considered more vulnerable than that in sand and mud habitats, 

which are associated with an increasing dominance of infauna (Collie et al. 2005).  

 

Another direct threat to benthic invertebrate communities is aggregate dredging. Both 

removal from and placement of aggregates on the seafloor has localised, negative 

impacts on benthic invertebrates (Barrio Frojan et al. 2008; Wilber et al. 2008). 

Reductions in benthic invertebrate abundance, biomass and species richness and 

changes in community composition, for example, have been observed following 

dredging events (Newell et al. 1998; Foden et al. 2009), and studies into the recovery of 

benthic communities following aggregate extraction have found that recovery from 

these impacts can take from <1 year to > 10 years, depending on the habitat type and 

extent and magnitude of impact (Boyd et al. 2005; Foden et al. 2009). The extent of 

aggregate dredging in the UK is very small, covering less than 1% of the seafloor that is 

exposed to bottom fishing (for the period 2001-2007) (Foden et al. 2009). Due to the 
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highly localised and generally short-term impact of aggregate activity, it is not 

considered as great a threat to benthic production as fishing.  

 

The rapidly increasing construction of offshore wind farms has raised interest and 

concerns over their possible effects on the marine environment (Lindeboom et al. 2011; 

Krone et al. 2013). Possible impacts that could affect benthic communities include 

disturbance of the areas during installation, e.g. pile driving (Lindeboom et al. 2011), 

and altered sediment regimes and seafloor togography (Wilson et al. 2010; Krone et al. 

2013). However, research to date indicates generally positive benefit for marine 

invertebrate communities, because the increase of available hard substrata provides 

habitat, particularly for sessile epifauna and associated fauna (Andersson & Ohman, 

2010; Lindeboom et al. 2011; Krone et al. 2013).  

 

Land-based activities can also have an impact on benthic invertebrate communities. For 

example, eutrophication resulting from nutrient-rich freshwater runoff can trigger high 

rates of microbial decomposition of algal blooms and the subsequent depletion of 

dissolved oxygen in bottom waters. This results in hypoxia, or in extreme cases anoxia 

(Powers et al. 2005). Many studies have recorded the impacts of both short-term and 

long-term hypoxia and anoxia on benthic communities, all observing reductions in 

abundance (Powers et al. 2005; Diaz & Rosenberg, 2008; Seitz et al. 2009). If hypoxia is 

severe or prolonged the mass mortality of benthic fauna can result, and ecosystem 

function and productivity can be severely impaired (Diaz & Rosenberg, 2008; Seitz et al. 

2009). These impacts of eutrophication are restricted to shallow coastal areas, with 

estuarine environments being the most susceptible.  

 

Finally, climate change is considered the most wide ranging anthropogenic threat to the 

marine environment (Halpern et al. 2008; Brown et al. 2010). The various impacts of 

climate change, including rising temperatures, ocean acidification and increased 

magnitude and frequency of severe storm events (Pachauri & Reisinger, 2007) are all 

expected to have an effect on benthic invertebrate communities (Behrenfeld et al. 2006; 

Richardson & Schoeman, 2004; Nixon et al. 2009; Hinz et al. 2011). For example, climate 

change induced changes in primary productivity could alter the amount of organic 
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matter available to the benthos in areas of strong pelagic-benthic coupling (Behrenfeld 

et al. 2006; Richardson & Schoeman, 2004; Nixon et al. 2009). As temperature rises, the 

northward movement of both southern species and northern species is expected to 

occur (Hiscock et al. 2004; Southward et al. 2004), although analyses of long-term data 

from the English Channel suggest this has not happended for benthic invertebrates 

(Hinz et al. 2011). Ocean acidification, resulting from increasing uptake of atmospheric 

CO2 by the oceans is expected to affect the biomineralisation rates of calcifiers such as 

bivalves (Thomsen et al. 2013). Kroeker et al. (2011) found that benthic invertebrate 

diversity, biomass, and trophic structure decreased with increasing acidification, driven 

by a loss of acidification-sensitive taxa. These climate-change driven changes are 

expected to have knock-on effects on ecosystem function (Kroeker et al. 2011).  

 

From a marine management perspective, the indirect threats to benthic communities, 

such as climate change-induced changes and freshwater runoff-induced eutrophication 

and hypoxia, are difficult to prevent or control directly, compared to activities such as 

fishing and aggregate dredging. Reducing the impacts of eutrophication, for example, 

would require terrestrial water quality management to reduce terrestrial inputs into the 

marine environment (Diaz & Rosenberg, 2008), and preventing climate change impacts 

will require action on a global scale to reduce emissions of greenhouse gases. Mitigation 

measures at a local level to lessen the impacts of climate change on marine communities 

are possible, however. For example, Ling et al. (2009) found that protection of kelp bed 

benthic communities from fishing within MPAs reduced the chance of climate-driven 

phase-shifts to less productive sea urchin barrens. 
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1.3 PROTECTION OF BENTHIC INVERTEBRATE COMMUNITIES 

 

1.3.1 Marine spatial management 

 

Here the protection of benthic invertebrate communities from direct impacts of 

anthropogenic activities such as bottom fishing is considered, because these activities 

can be controlled from a purely marine management perspective.  

 

Marine spatial planning and management refers to the comprehensive planning of all 

marine activities and uses in time and space, in order to reduce conflict and ensure the 

sustainable use of marine resources (Douvere, 2008). This spatial planning approach is 

becoming a prominent approach to the management of marine activities and 

conservation of marine ecosystems, and is expected to be a key tool for the 

implementation of ecosystem-based marine management, including the delivery of EU 

Marine Strategy Framework Directive objectives for Good Environmental Status (GES) 

(Douvere, 2008; Stelzenmüller et al. 2013). Marine protected areas (MPAs) are one form 

or aspect of marine spatial planning and management that are particularly popular for 

protecting marine communities and habitats from degradation, and ensuring that 

conservation objectives are not compromised by human activities (Douvere, 2008; 

Rabuat et al. 2009; Giakomi et al 2012). The spatial planning and zoning of activities of 

the Great Barrier Reef Park is a key example of this marine spatial management in action 

(Douvere, 2008).  

 

With respect to the role of MPAs in protecting benthic invertebrate communities, both 

modelling and field studies have indicated that the protection of benthic communities 

from fishing activity in no-take MPAs is beneficial (Hermsen, Collie & Valentine, 2003; 

Collie et al. 2005; Hiddink et al. 2006b). For example, a greater abundance, biomass and 

diversity of benthic organisms vulnerable to fishing were observed in the Sackville Spur 

closed area compared to fished areas in the Northwest Atlantic (Frojan et al. 2012), and 

Collie et al. (2005) found a fourfold increase in production within an area closed to 

fishing on Georges Bank over a five year period. MPAs are expected to have a similar 

beneficial effect on benthic communities if they exclude activities such as aggregate 
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dredging, because they would prevent the removal and disturbance of the sediment and 

associated communities. 

 

1.3.2 Current approaches to selecting marine protected areas in Europe 

 

Within the EU, member states have committed to the establishment of a network of 

MPAs, known as the Natura 2000 network. This commitment is driven by the EU Bird- 

and Habitats Directives (hereafter EU Nature Directives), which in turn are driven at the 

international level by the Convention on Biological Diversity (CBD) and the World 

Summit on Sustainable Development (Sorensen & Thomsen, 2009; Giakoumi et al. 

2012). Most recently the EU Marine Strategy Framework Directive (MSFD) requires 

member states to establish spatial protection measures that contribute to the current 

Natura 2000 network, as part of a programme of measures to achieve and maintain 

‘Good Environmental Status’ of their marine waters. Northern Europe has a further 

obligation to establish a coherent MPA network under the Oslo-Paris (OSPAR) 

Convention.   

 

The EU has a relatively well-established, centrally-driven approach to the establishment 

of MPAs (Sorensen & Thomsen, 2009), with defined ecological selection criteria outlined 

in both the EU Nature Directives and OSPAR Convention. These ecological criteria 

largely focus on features such as the presence of rare, threatened or declining species 

and habitats (European Commission Council, 1992; OSPAR Commission, 2003). The use 

of these ‘structural’ ecosystem features is driven by the key, global conservation 

objective; the conservation of biodiversity. This conservation goal is a feature of most 

environmental initiatives and policies (Salomon et al. 2006; Pressey et al. 2007), and 

stems from the CBD (2002), which marked the first international recognition of 

biodiversity decline. OSPAR selection criteria also include the presence of key stone 

species and maximising the representation of a range of habitats and species across the 

maritime area (OSPAR Commission, 2003).  

 

Examples of sub-tidal European MPAs include the Doggerbank Special Area of 

Conservation Interest (SAC) in the North Sea (Netherlands), established to protect grey 
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seal Halichoerus grypus, common seal Phoca vitulina, and harbour porpoise Phocoena 

phocoena, and the South-West Porcupine Bank SAC off the west coast of Ireland, which 

was established to protect Lophelia pertusa reef habitat. EU MPAs in the UK include; the 

Fal and Helford SAC (South West England) (Langston et al. 2006) and Strangford Lough 

SAC (Northern Ireland), established to protect listed habitats, and the Cardigan Bay SAC 

(Wales), which was designated due to the presence of bottlenose dolphin Tursiops 

truncatus and harbour porpoise Phocoena phocoena (Kirsten Ramsey, pers. Comms). 

With respect to OSPAR MPAs, very few countries have identified sites that are additional 

to the current Natura 2000 network. An example of additional designation is the Sedlo 

Seamount, north of the Azores (OSPAR Commission, 2009), which was nominated for 

protection because seamounts are recognised to be biodiversity hotspots, and also 

important for supporting wide-ranging pelagic species (Gubbay, 2003). 

 

1.3.3 Systematic conservation planning 

 

Not all areas of the ocean can be protected. Limited resources for conservation (Myers et 

al. 2000), and conflicting human needs mean that space and resources for the 

establishment of MPAs is restricted. Many existing MPAs for nature conservation have 

been allocated on an ad-hoc, opportunistic basis (Stewart et al. 2003), and are often 

sited in areas where they simply do not conflict with other marine uses such as fishing. 

This approach may not necessarily result in effective conservation result, because those 

areas that do end up in MPAs may not be particularly valuable to conservation (Stewart 

et al. 2003). Systematic conservation planning is becoming increasingly utilised in the 

allocation of both terrestrial and marine protected areas, in order to help prioritise and 

maximise the achievement of conservation goals, whilst minimising costs (Margules & 

Pressey, 2000). It allows a structured and objective approach to site selection, involving 

the evaluation of potential sites against certain selection criteria. These selection criteria 

generally indicate the ecological quality of an area, or its value to conservation, and the 

metric used ultimately depends on the conservation objectives that are driving the MPAs 

establishment. Any costs resulting from the possible establishment of protected areas, 

such as socio-economic losses, can also be incorporated into the systematic conservation 

planning process. 
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Despite the centrally-driven approach to MPA establishment in Europe, systematic 

conservation planning has not been widely used (Giakoumi et al. 2012). Placement of 

Natura 2000 sites, for example, has been largely based on expert judgement regarding 

the EU Nature Directive and OSPAR ecological criteria (Jongman, 1995), rather than the 

objective evaluation of sites against these criteria. 

 

1.3.4 Biodiversity versus functional selection criteria 

 

There is a strong focus on single species and habitats in the EUs approach to MPA 

selection, with both EU Directive and OSPAR criteria relying heavily on structural 

metrics such as species presence, species richness, or presence of vulnerable habitats to 

direct conservation effort. Despite the conservation objectives of the legislative drivers, 

little attention is given to ecosystem processes, functioning, goods or services, with the 

exception of the consideration of keystone species within the OSPAR criteria. There are 

currently no criteria that directly relate to ecosystem functioning, or the provision of 

goods or services. 

 

The recent paradigm shift towards ‘ecosystem-based’ management calls for a more 

integrated approach that considers the management of ecosystems as a whole, and 

focuses on ensuring the maintenance of ecosystem functioning and continued provision 

of goods and services, rather than the protection and persistence of a particular species 

(Beaumont et al. 2007; Tillin et al. 2008; Douvere, 2008). The single-species approach in 

traditional fisheries management, for example, is gradually being replaced with an 

approach that considers the wider ecosystem impacts of fishing (Reiss et al. 2009). 

Furthermore, the upcoming EU Marine Strategy Framework Directive advocates the 

ecosystem-based approach, and requires member states to achieve ‘Good 

Environmental Status’ for 11 environmental descriptors, which include ecosystem 

attributes such as sea floor integrity and food webs, in addition to biodiversity. 

 

Despite this shift in focus under the ecosystem approach, functional indicators for 

assessing ecological quality or ecosystem state remain underdeveloped (Feld et al. 
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2009), and structural metrics such as species presence, abundance or community 

composition are primarily used (Young et al. 2008). This is because structural elements 

of ecosystems tend to be much easier to measure, communicate and manage, and 

because it is often assumed that biodiversity or structural ecosystem elements directly 

relate to ecosystem functioning (Millennium Ecosystem Assessment, 2005; Sandin & 

Solimini, 2009). That is, in the context of conservation management, if ecosystem 

structure is maintained, it is assumed that normal ecosystem functioning is also 

maintained. Some recent literature, however, has suggested that functional metrics of 

ecological quality or ecosystem health are needed to complement structural indicators 

(Jorgensen, 2000; Tillin et al. 2008; Young et al. 2008), because structural metrics do not 

always capture an ecosystems complete response to stresses (Young et al. 2008), and 

because the understanding of structure-function relationships has not yet reached a 

consensus (Young et al. 2008; Austin et al. 2008; Sandin & Solimini, 2009).  

 

The ability to scale-up structure-function relationships identified in small-scale 

manipulations to a scale relevant to management and conservation efforts, in particular, 

is uncertain (Srivastava & Vellend, 2005). Both modelling and experimental studies have 

found that the contribution of both individual species and whole communities to 

ecosystem functioning can be context dependent, i.e. contingent on environmental 

conditions or disturbance regime, and also depends on the function in question 

(Cardinale et al. 2000; Cardinale et al. 2005; Boyer et al. 2009; Griffin et al. 2009; 

Hiddink et al. 2009). Therefore, although structural elements of ecosystems are often 

used as surrogates for functional attributes, they may not capture all the information 

regarding the functioning or condition of an ecosystem (Sandin & Solimini, 2009), 

especially when compared over large spatial scales.  

 

In addition to this, with respect to MPA selection, the prioritisation of conservation 

effort in areas of highest species richness (so-called ‘silver bullet’ strategy) overlooks 

low diversity ecosystems that may be functionally important, and the protection of only 

rare, endemic species will miss a whole suite of organisms that may be critical for 

ecosystem processes (Gaston, 2010). Furthermore, because species composition and 

habitat type changes over large scales, as the driving environmental and biogeographical 
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processes change, it is difficult to directly compare the value or quality of ecosystems 

over these large areas based only on species presence, abundance or habitat type. 

 

Given the above discussion, functional metrics are considered more useful for inferring 

ecological quality under the ecosystem-based approach compared to metrics such as 

species presence or species richness (Tillin et al. 2008). Those functional metrics that 

have been developed, for example, tend to be measures of ecosystem-level attributes 

that reflect the ecosystem processes underlying function (Hiddink et al. 2006b; Sandin & 

Solimini, 2008). The consideration and management of these types of ecosystem-level 

attributes is expected to be more effective for ensuring the continued provision of 

ecosystem goods and services compared to structural metrics. Therefore, although 

ecosystem processes may be more difficult to measure and are a more difficult concept 

to communicate to policy makers and managers compared to the presence of species or 

habitats, they are more likely to give a direct indication of an ecosystems ability to 

deliver goods and services, and are also comparable across different habitats and 

ecosystems. 

 

In the context of selecting MPAs in the Europe Union then, a functional selection 

criterion could be developed to complement current structural criteria, in order to move 

towards an ecosystem approach to the management and protection of benthic 

communities and habitats, and help fulfil the ecosystem function objectives of the 

upcoming EU MSFD. Here the utility of benthic invertebrate production as a functional 

selection criterion for selecting ‘functional MPAs’ is investigated. 
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1.4 THE UTILITY OF BENTHIC PRODUCTION FOR SELECTING MPAS 

 

1.4.1 Benthic invertebrate production and ecosystem goods and services 

 

Any functional selection criterion developed for MPA design needs to have ecological 

and management relevance (Tierney et al. 2009), so should ideally reflect an ecosystem 

process that underlies the provision of important marine ecosystem goods or services. 

Benthic invertebrate production refers to the heterotrophic production of organic 

matter by benthic organisms per unit time and area (Cusson & Bourget, 2005). Although 

production can be measured for individual species, production at the community level is 

likely to be a better measure of ecosystem-level functioning.  Benthic invertebrate 

production mediates the transfer of material through the food web, from primary 

producers to higher trophic levels (Seitz et al. 2009), and therefore plays a key role in 

energy flow and ecosystem dynamics (Tumbiolo & Downing, 1994; Brey, 2001). This 

productivity reflects the amount of energy available to the next trophic level, and thus 

mediates the carrying capacity of ecosystems for higher predators, including commercial 

fish stocks (Christensen et al. 1996; Heath, 2005; Hiddink et al. 2011; Rice et al. 2012), 

for example, found that in areas of reduced benthic invertebrate production due to 

bottom trawling, commercial fish condition was also reduced. Benthic invertebrate 

productivity is therefore important for supporting food production. 

 

Benthic invertebrate production also plays an important role in the provision of 

ecosystem services such as nutrient and carbon cycling, because it mediates the 

consumption and transfer of organic matter (Steele et al. 2007; Ferron et al. 2009; 

Danovaro et al. 2008). Bioturbation by benthic invertebrates also mediates nutrient 

cycling (Lohrer et al. 2004; Hiddink et al. 2009; Sandwell et al. 2009). Although 

bioturbation rates depend strongly on community composition (Lohrer et al. 2004), 

more productive benthic communities are expected to have a high biomass, and 

therefore may exhibit greater bioturbation rates.  
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1.4.2 Benthic invertebrate production and ecosystem quality 

 

Community secondary production has been used as a functional measure of ecosystem 

health because it is a direct measure of energy flow at the ecosystem-level. Valentine-

Rose et al. (2011), for example, used fish community production as an indicator of 

ecosystem health in response to habitat fragmentation in sub-tropical mangroves, and 

Dolbeth et al. (2007) used benthic invertebrate production to assess the impact of 

eutrophication on the ecological integrity of an important estuarine ecosystem. To 

better understand its ability to reflect ecological quality, an understanding of how 

benthic invertebrate production is measured and how the life history characteristics of a 

benthic invertebrate population influence productivity is required.  

 

Production is an ecosystem process and is therefore measured as a rate. Here, 

production refers to the somatic production of biomass by benthic macro-invertebrate 

fauna (i.e. does not consider production of reproductive tissue), per unit area and time. 

It is usually estimated as annual production (i.e. total organic matter produced in one 

year), and can be measured in wet weight, ash free dry weight, organic carbon or Joules 

(energy), for any given area or volume. When considering a community of organisms, 

production is a function of both the growth and mortality of individuals within that 

community over time (Brey, 2001). That is, both the addition of biomass through 

growth, and the loss of biomass through mortality, is considered.  

 

The total production of a community is often related to the amount biomass present by 

dividing production estimates by the average biomass to give a production-biomass 

ratio (P/B) (Brey, 2001). Benthic invertebrate production can therefore be considered in 

terms of two different metrics; total community production and community P/B ratio. 

These two variables are not always found to co-vary (e.g. Bolam et al. 2010), and a 

decision needs to be made with respect to which metric best reflects ecosystem quality 

and could be utilised to direct marine spatial management. Both growth and mortality 

rates in natural populations are highly correlated to life history traits, and a 

consideration of these life history characteristics of benthic invertebrates gives an 
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insight into the value of using total production and community P/B ratios to inform the 

conservation of benthic communities. 

 

In general, small-bodied organisms have higher growth rates and higher mortality rates 

than large-bodied organisms. Low biomass and high production exhibited by small-

bodied organisms result in high P/B ratios, whereas the high biomass and low 

production of large bodied organisms result in low P/B ratios (Schwinghamer et al. 

1986; Cusson & Bourget, 2005). The life span and motility of organisms also has a strong 

influence on production (Roberston, 1979; Cusson & Bourget 2005). Cusson & Bourget 

(2005) found a negative correlation between life span and production and P:B ratios, 

and a significant difference between the P/B ratios of motile VS non-motile species, with 

motile species tending to have higher P/B ratios than non-motile species. These two 

relationships result from a combination of factors. Longer lived species tend to increase 

in body size with age, and also invest more energy into respiration and reproduction 

than somatic growth. More motile invertebrate species are likely to have higher 

metabolisms and smaller body sizes than non-motile species, and therefore have higher 

P/B ratios (Cusson & Bourget, 2005).  

 

Based on these observations, benthic communities that exhibit high P/B ratios could be 

expected to be characterised by small, short-lived, fast growing and motile species, 

whereas low P/B ratios would be associated with large, long-lived, non-motile species. 

Communities that have suffered perturbation can be dominated by small, fast growing 

opportunistic species and thus can be considered highly productive from a P/B ratio 

perspective (Srivastava & Vellend, 2005). P/B ratios are therefore not considered 

suitable metric to direct conservation effort, because high P/B ratios do not necessarily 

represent good ecological quality or ecosystem health.  

 

In contrast to communities characterised by small, short-lived, fast growing species, 

communities dominated by large, long-lived species are likely to exhibit greater total 

production and biomass. Total production of benthic invertebrate communities is 

therefore expected to be a better estimate of quality over P/B ratios. Large, long-lived 

species are expected to be more characteristic of ecosystems that have not been 
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damaged or disturbed by anthropogenic activities, such as fishing, and therefore 

considered to better reflect a natural, healthy ecosystem state. Large, long-lived species, 

such as large bivalve molluscs are also often considered to have high conservation value, 

compared to, for example, annelid worms, because they are less numerous and more 

vulnerable to anthropogenic activities. The native oyster Ostrea edulis, quahog clam 

Arctica islandica, and horse mussel Modiolus modiolus, for example, are all large, rare 

long-lived bivalves that are conservation priority species in the UK, utilised in the 

current species-based, biodiversity approach to selecting marine conservation zones in 

England (Natural England & JNCC, 2010). 

 

Total benthic invertebrate production may therefore be an ideal candidate for 

development as a functional selection criterion for the establishment of MPAs, because it 

is considered to a useful metric of good marine ecosystem quality that plays a strong 

role in providing both direct and indirect ecosystem goods and services. In addition to 

this, because total benthic invertebrate production is negatively impacted by bottom 

fishing and aggregate dredging (Murawski, 2000; Boyd et al. 2005; Hiddink et al. 2006; 

Foden et al. 2009), through the removal of total biomass (Jennings et al. 2001; Reiss et 

al. 2009), it is a useful indicator of ecosystem health in response to these anthropogenic 

stresses, and protection within no-take MPAs will have a positive benefit on ecological 

quality. Finally, benthic invertebrate production is process common to all marine 

environments, making it an ideal metric for comparing the quality of different habitats 

and ecosystems over large areas (Hiddink et al. 2006a).  

 

This thesis will focus in particular on the use benthic infaunal production; the 

production of organic matter by those organisms live in or partially in the sediment 

(macro-infauna), as a candidate selection criterion for MPA network design. Infaunal 

production is chosen as the focus of this thesis because more data required for 

calculating production is available for this benthic invertebrate community type 

compared to epifauna, and infaunal communities are also considered to contribute 

substantially to overall benthic invertebrate community productivity. Table 1.1 indicates 

the variation in infaunal and epifaunal production and/or biomass across different 

habitat types (mud, sand, gravel and biogenic). These data suggest that infaunal 
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communities contribute significantly to benthic community biomass and productivity 

across a range of habitat types.  In sandy sediments in particular, infaunal communities 

seem to contribute significantly to benthic invertebrate biomass compared to epifaunal 

communities. In gravelly habitats, on the other hand, epifaunal biomass appears to be 

generally higher than that for infauna. This is expected to be driven by the potentially 

greater habitat heterogeneity provided by coarser sediment, and a higher number of 

attached, sessile epifaunal invertebrate species. The figures from Bolam et al. (2010), 

however, indicate that infaunal production in coarse sediments can still be reasonable 

high (up to 896.6 kJ m-2 yr-1).  

 

Overall, the estimates in Table 1.1 suggest that consideration of only benthic infaunal 

production as a candidate selection criterion for MPA network design is justified 

because it is likely to provide substantial information about the total productivity of 

benthic invertebrate communities, and is therefore expected to be a good indicator of 

ecosystem quality. 

 

Table 1.1. Range and mean production and/or biomass estimates for infaunal and epifaunal 
invertebrate communities in different habitat types. Source publications are included. 

Habitat/ 

sediment 

Infaunal production/ biomass  

Range (mean) kJ m-2 yr-1 / g WW m-2  

Epifaunal production/ biomass 

Range (mean) kJ m-2 yr-1 / g WW m-2 

Source publication 

Mud 5.6 - 177.4 (52.8) g WW m-2   

65.9 - 700.7 (270.9) g WW m-2   

12.3 - 485.4 (144.1) kJ m-2 yr-1 

9.6 - 779.7 (208.9) g WW m-2   Hinz et al. (2009) 

Hiddink et al. (2008) 

Bolam et al. (2010) 

Sand 0.7 - 64.0 (22.62) g WW m-2 

10.8 - 422.4 (106.8) kJ m-2 yr-1  

0.5 - 7.7 (1.9) g WW m-2   Hiddink et al. (2006) 

Bolam et al. (2001) 

Gravel/ 

coarse  

15.6 - 896.6 (128.9) kJ m-2 yr-1  

50 - 3101 (513) g WW m-2   

Bolam et al. (2001) 

Hermsen et al. (2003) 

Biogenic  Data not available Data not available  
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1.4.3 Measuring benthic infaunal production over large areas 

 

In order to use benthic infaunal production to compare ecosystem quality over large 

areas, it must first be measured over these large areas. As ready discussed, total 

community production is a function of the addition and loss of biomass through the 

growth and mortality of individuals within that community (Brey, 2001). The addition 

and loss of biomass is quantified over a specified time period, usually one year. There 

are various methods for calculating production. Direct methods require repeat sampling 

of abundance and mean mass or size of individuals in the community throughout the 

period of investigation (Cusson & Bourget, 2005). These include cohort-based methods 

such as the Allen curve and Incremental summation method, and the size-based Size 

frequency method (Brey, 2001). These methods are very time and data intensive, 

required time-series samping (Tumbiolo & Downing, 1994), and it is not realistic to use 

these methods when studying production over large scales (Bolam et al. 2010). 

Fortunately, indirect methods utilising empirical models that relate production and P/B 

ratios to one or more easily measured parameters have been developed (Brey, 2001). If 

accurate enough for purpose, these predictive models remove the need for intensive, 

time-series sampling (Cusson & Bourget, 2005). 

 

Initial empirical models of benthic inverbrate production included one or two 

population parameters, such life span, mean body mass and population biomass (Brey, 

2001). Due to the strong influence of environmental conditions on production, later 

models incorporated environmental variables such as temperature and water depth 

(Tumbiolo & Downing, 1994; Cusson & Bourget, 2005). There are now many different 

models that estimate production based on both these biotic (population/life history 

characteristics) and abiotic (environmental) variables (Tagliapietra et al. 2007). 

Reviews of these models (e.g. Cusson & Bourget, 2005) have indicated that the most 

accurate is that developed by Brey (2001), which is available online and regularly 

updated and requires life history, environmental and taxonomic parameters (Bolam et 

al. 2010). The Brey (2001) model (hereafter Brey model), however, still requires 

extensive benthic community sampling to provide numerical abundance and mean body 

mass data in order to calculate benthic community productivity. 
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Hiddink et al. (2006b) developed a size-based model of benthic biomass, production and 

species richness for the North Sea, from a model originally developed by Duplisea et al. 

(2002) that predicted the size-distribution of benthic assemblages and investigated 

trawling impacts. The Hiddink (2006) model (hereafter Hiddink model) extended the 

Duplisea (2002) model in a variety of ways, including the addition of a habitat 

parameter. This enabled the extended model to predict benthic community 

characteristics over larger spatial scales, where habitat data were available (Hiddink et 

al. 2006b). The dynamic, size-based nature of this empirical model means that minimal 

biotic data is required once parameterised, and so it is the least demanding in terms of 

benthic sampling.  

 

This type of empirical modelling would be useful for creating a map or data layer of 

benthic invertebrate production to inform marine spatial management in the form of 

marine protected areas. For example, model outputs could highlight area of high benthic 

invertebrate productivity that could be prioritised for protection. In order to 

incorporate benthic invertebrate production in systematic conservation planning a data 

layer of model outputs could be included in reserve selection software such as MARXAN 

(Stewart et al. 2003). MARXAN (version 2.1.1.) is one of the most well-known 

conservation planning software available, used to design protected area networks that 

meet specified conservation targets whilst minimizing costs, through a process of 

simulated annealing (see Ball & Possingham (2000) for technical details of how Marxan 

operates).  

 

In addition to predicting benthic production, the Hiddink model can also estimate the 

impacts of bottom fishing, and the capacity of benthic communities to recover following 

fishing impact. Both these metrics could also be useful for inform spatial management 

options to preserve benthic communities (Hiddink et al. 2006b). For example, 

knowledge of the extent and intensity of fishing impact could inform restorative 

management, and an understanding of the recovery potential of benthic communities, 

i.e. the time is takes for the benthic community to recover to a unfished state following 
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fishing impact, can help managers direct fishing impacts away from vulnerable towards 

resilience communities through spatial planning and measures. 

 

The Hiddink model could also support the evaluation of spatial management options for 

no-take marine protected areas or bottom fishing closures by running the model under 

various different management scenarios and analysing the outputs. This would require 

management objectives for benthic invertebrate production and fishing to be clearly 

defined in order to assess the achievement of those objectives under the different 

scenarios. Therefore, the Hiddink model could not only provide the ability to map 

benthic invertebrate production for informing spatial management such as marine 

protected area design, but can also analysis, develop and evaluate spatial management 

options (Stelzenmuller et al. 2013) regarding bottom fishing. The model cannot, 

however, examine or assess cumulative effects, i.e. the combined effect of multiple 

human activities. The model is limited to predicting the impact of activities that have a 

size-dependent impact on benthic invertebrates (Hiddink et al. 2006a). 

 

Using the Hiddink model to inform marine spatial management would require 

confidence in the accuracy of model predictions over large scales. Tillin et al. (2009) 

investigated the performance of the Hiddink model in predicting benthic secondary 

production for the Southern North Sea, by comparing model outputs with those 

obtained from the more direct and established Brey model. It was found that model 

outputs were not correlated, and that confidence in the Hiddink model was not great 

enough to be utilised for predicting production over large spatial scales around the UK 

(Tillin et al. 2009). 

 

Several assumptions and limited datasets were utilised in the development and 

parameterisation of the Hiddink model (Hiddink et al. 2006). Carrying capacity 

parameterisation, for example, was based on a small dataset of chlorophyll-a content of 

sediment data, and interpolated chlorophyll-a sediment data were used to estimate 

benthic carrying capacity in the model. The influence of spatial grain and spatial extent 

was also not considered when parameterising the Hiddink model. The nature of 

observed ecological relationships can vary with the spatial grain and extent of analysis 
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(O’Neill et al. 1986; Wiens, 1989; Levin, 1992), therefore the importance of drivers of 

productivity may change as the grain and extent of analysis changes. As a result, 

confidence that the empirical environment-production relationships identified by 

Hiddink et al. (2006) during model parameterisation can be scaled up to the 9 km2 scale 

of predictions is limited, and the degree to which the identified relationships apply over 

large areas is unknown.   

 

In order to apply the Hiddink predictive model for the purpose of MPA design, it will 

require refining and re-parameterising for the particular area of interest. To predict 

benthic production in the Irish Sea, for example, a quantitative understanding of the 

relationship between the environmental conditions and the productivity of benthic 

communities in this area would be required, and an understanding of the influence of 

spatial grain size and extent on these relationships would be helpful to identify the 

optimal scale at which to make predictions. Ideally spatial continuous and easy to obtain 

environmental data would be used to support predictions of benthic invertebrate 

production. This would ensure that spatial continuous predictions could be made over 

large scales in most areas. 

 

1.5 BENTHIC PRODUCTION AS A PROXY FOR OTHER FEATURES OF CONSERVATION 
INTEREST 

 

1.5.1 Win-win conservation scenarios 

 

In addition to being a stand-alone indicator of benthic ecosystem value, benthic 

invertebrate production could also act as an indicator for other features of conservation 

interest. If there is spatial covariance between production and these features, the use of 

benthic production as an MPA selection criterion could result in ‘win-win’ situations for 

conservation (Anderson et al. 2009). That is the protection of benthic invertebrate 

production could result in the protection of other features of conservation interest if 

they occurred in the same place. A weak association between different features or 

ecosystem services of interest has been found in the literature (e.g. Eigenbrod et al. 

2009). However, these studies often compare disparate services, such as carbon 
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sequestration and recreation. In the context of marine conservation and management, 

there may be a greater possibility of concurrence between benthic production and other 

features of conservation interest. These features include higher predators and benthic 

biodiversity.  

 

1.5.2 Benthic invertebrate production and higher predators 

 

Objectives to conserve higher predators are common, given their recognised role as top-

down regulatory forces (Ritchie & Johnson, 2009), and often charismatic nature (Perry, 

2010). Higher predators can include important Habitat Directive species such as seals 

and dolphins, as well as commercial fish stocks that feed on benthic fauna. Highly 

productive areas may be associated with the presence of higher predators due to a 

greater ecosystem carrying capacity. Although the reliance of commercial stocks on 

benthic production, for example, has been quantified through stomach content- and 

stable isotope analyses of trophic dynamics, there is little empirical work that compares 

the importance of different areas of benthic production to higher predators, and directly 

links their presence to highly productive benthic communities. 

 

1.5.3 Benthic invertebrate production and benthic invertebrate diversity 

 

Areas of high benthic invertebrate production could be associated with a high number of 

benthic invertebrate species. This hypothesis is driven by the observed positive 

correlations between diversity and productivity in natural systems (Waide et al. 1999; 

Mittelbach et al. 2001), such as over latitudinal gradients (Cardinale et al. 2009), and 

also the findings of Biodiversity-Ecosystem Function (BEF) research (Balvanera et al. 

2006; Srivastava & Vellend, 2005). This research investigates the effects of biodiversity 

on ecosystem function, and has indicated that the loss of diversity from an assemblage 

can reduce the rates of ecosystem processes associated with that assemblage 

(Hillebrand & Matthiessen, 2009).  

 

Observed positive correlations in nature could exist due to simple covariation of 

production and diversity. For example, a correlation between species richness and 
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production could occur because both species richness and the production of community 

biomass are constrained by the availability of limiting resources, such as food supply 

(Loreau et al. 2001; Schmid, 2002; Cardinale et al. 2009). 

 

In BEF research, the relationship between community diversity and community 

productivity has received the most attention (Cardinale et al. 2009). BEF experiments 

have indicated a general positive correlation between these two variables, and identified 

three primary causal mechanisms that create this relationship (Srivastava & Vellend, 

2005; Hillebrand & Matthiessen, 2009). These propose that an increasing number of 

species increases resource use efficiency within a community. Evidence for these has 

been found in experimental communities where either initial species diversity is 

manipulated or species are sequentially removed from a community (Balvanera et al. 

2006). The mechanism of facilitation refers to the process whereby the presence of 

certain species within the community benefits the growth or function of others, due to 

strong positive interspecific interactions (Hillebrand & Matthiessen, 2009). If more 

species are present in a community the opportunities for facilitation are considered 

greater. Complementarity refers to differences between species in resource utilisation 

for biomass production, which reduces interspecific competition and increases resource 

use efficiency. Finally, sampling or selection effects (also known as the functional 

dominance effect) refers to the situation when certain species contribute 

disproportionally to ecosystem production, and results in their loss having a large 

impact on this function.  

 

Although there is empirical evidence to support these hypotheses regarding 

biodiversity-production relationships, the majority of BEF research to date is primarily 

focused on terrestrial systems and is largely restricted to relating primary production to 

autotrophic species richness, although this focus has diversified recently (Balvanera et 

al. 2006; Hillebrand & Matthiessen, 2009). There also is a strong reliance on small-scale, 

and short-term, artificial manipulative studies. Very few studies have investigated 

diversity-function relationships over large scales. Those that have offer different 

conclusions. Danovaro et al. (2008), for example, found a consistent positive association 

between species richness and several different functions within deep-sea ecosystems 
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over global scales. Other studies from marine and freshwater systems have found that 

the association between diversity and function can be moderated over environmental 

gradients or disturbance (Hiddink et al. 2008; Cardinale et al. 2005). These later two 

studies observed this pattern at the scale more relevant to management and 

conservation (Srivastava & Vellend, 2005). With respect to marine subtidal 

communities, a single study by Bolam et al. (2008) found a positive relationship 

between high biomass (total production) and high species richness, but not with 

community P/B ratios. It appears then, that the observed association between diversity 

and the function of interest is dependent both on scale, environmental gradients and the 

function in question (Harmelin-Vivien et al. 2009; Hiddink et al. 2009). 

 

Overall, there is currently no consensus regarding the nature, strength and predictability 

of diversity-production relationships in natural systems (Hillebrand & Matthieseen, 

2009). 

 

1.6 PROTECTION OF BENTHIC PRODUCTION IN MPAS 

 

1.6.1 Is targeted protection of benthic production required? 

 

As already outlined, marine protected area design has traditionally focused on 

protecting biodiversity and habitat (Armsworth et al 2007), and the protection of 

biodiversity and habitat is a legal requirement demanded by the EU Natures Directives. 

This legal requirement means that conservation efforts cannot be re-directed from the 

protection these structural features, instead efforts will need to expand to encompass 

the protection of benthic invertebrate production in addition to biodiversity.  

 

Given the above discussion regarding the association between benthic invertebrate 

production and other features of conservation interest, and the fact that there are many 

EU MPAs established and planned for biodiversity, perhaps the targeted protection of 

benthic invertebrate is not necessary. ‘Biodiversity’ MPAs may adequately protect 

benthic invertebrate communities and productivity, therefore removing the need for an 

additional, functional selection criterion for MPA design. On the other hand, biodiversity 
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MPAs alone may not achieve adequate protection of benthic invertebrate production 

and functional MPAs that specifically aim to restore or protect this important ecosystem 

process may be required.  Clearly management or conservation objectives for benthic 

invertebrate production would need to be established in order to assess whether or not 

protection in biodiversity MPAs is sufficient, or whether or not a functional, benthic 

invertebrate production selection criterion should be developed to direct MPA design. 

 

 

1.7 AIMS AND OBJECTIVES OF THESIS  

 

1.7.1 Summary of current knowledge and understanding 

 

Here benthic infaunal production has been proposed as a functional indicator of marine 

ecological quality that could inform ecosystem-based, marine spatial management. In 

particular, benthic infaunal production could be utilised as a selection criterion for 

directing MPA design. Benthic infaunal production is a process that plays an important 

role in the functioning of marine ecosystems, and underlies the provision of a number of 

ecosystem goods and services. The most important of these is its role in mediating the 

transfer of energy from primary producers to predatory species, providing food to 

higher trophic levels. Estimates of benthic infaunal production are therefore useful 

indicators of energy transfer efficiency and ecosystem carrying capacity (Rice et al. 

2012). 

 

With respect to the practicalities of using benthic production as a MPA selection 

criterion, in contrast to the current selection criteria used within the EU and OPSAR 

frameworks, benthic production has a greater utility than metrics such as species or 

habitat presence for comparing ecosystem quality and function across different areas or 

habitats. Furthermore, although not all threats to benthic production can be mitigated 

by MPAs, no-take MPAs are considered highly effective for protecting production from 

the impacts of bottom fishing and aggregate dredging, the biggest immediate threats to 

production. MPAs are therefore considered useful tools for preserving this important 

marine ecosystem process and the goods and services it supports. High productivity 
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may not always a good representation of ecosystem quality, however. If benthic 

production is utilised as a criteria, it is suggested the total benthic infaunal production is 

used, rather than P/B ratios.  

 

There is potential to predict total benthic production estimates over large scales using 

empirical models based on allometric relationships, population dynamics and key 

environmental parameters. Although such models have recently been developed, they 

are not yet accurate enough to predict production over the scales required to inform 

MPA design. The consideration of spatial scale during model parameterisation is 

recommended to ensure greater confidence in predictions at a particular spatial grain 

and over large spatial extents. 

 

Benthic production could have even greater utility as a selection criterion if it acted as a 

proxy for other features of conservation interest, such as higher predators and 

biodiversity. The use of this functional selection criterion could result in win-win 

conservation scenarios if this were the case. Although theory and observation from 

other trophic levels and systems suggest a positive relationship exists between 

production and diversity, there is limited empirical evidence of this association in 

marine subtidal environments. Whether or not the association is consistent at the scales 

at which MPAs are implemented is another question that remains unanswered. There is 

also currently little evidence that directly relates higher predators to areas of high 

benthic productivity. 

 

Finally, if MPAs designated to protect biodiversity also protect sufficient amounts of 

benthic invertebrate production, a functional, benthic invertebrate production selection 

criterion would not be required. 

 

1.7.2 Key research questions 

 

Given the above discussion, it is clear that there are significant research gaps with 

respect to the development and utility of benthic production for selecting MPAs. These 

require addressing to determine whether or not it is possible and necessary to develop 
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benthic infaunal production as an MPA selection criterion, and also whether the use of 

this functional MPA criterion could result in win-win conservation scenarios. The 

following key research questions have been identified; i) can benthic infaunal 

production be modelled over large scales using easily obtained environmental 

variables? ii) Is there a spatial association between benthic infaunal production and 

biodiversity? iii) Does benthic infaunal production need to be explicitly included as a 

selection criterion in MPA design in order for it to be protected from anthropogenic 

activities such as fishing? 

 

These research questions will be applied to benthic invertebrate communities in the 

Irish Sea, because of the easy availability of benthic community, environmental and 

fishing activity data. Due to the logistical constraints of manipulative work at depth and 

the scales at which the above relationships will be investigated, research will be largely 

restricted to the investigation of patterns of association between observed benthic 

infaunal production and environmental parameters, and modelled benthic infaunal 

production and biodiversity features of conservation interest  found within spatially-

explicit datasets. 

 

To determine whether or not benthic infaunal production can be modelled over large 

scale using easily obtained environmental variables, Chapter 2 will first establish an 

understanding of the key environmental drivers of benthic production in the Irish Sea. 

Potential environmental drivers investigated include sea surface chlorophyll-a, seabed 

sediment type, modelled hydrodynamic conditions and characteristics and bottom 

fishing intensity. In particular, this chapter will investigate how any identified 

environment-production relationships vary with spatial grain (resolution of 

observation) and extent (total area over which observations are made), in order to 

inform a suitable scale for making predictions. Chapter 3 will then refine and re-

parameterise the Hiddink empirical model of benthic communities in order to 

incorporate these identified environment-production relationships for the prediction of 

benthic infaunal production in the Irish Sea. Chapter 3 will compare the refined model 

predictions to independent, observed benthic community data in order to validate the 

model outputs. 
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To gain a better understanding of the use of benthic production as a proxy for 

biodiversity features, Chapter 4 will investigate the spatial association between benthic 

infaunal production and biodiversity features of conservation interest in the Irish Sea, 

such as benthic invertebrate diversity, cetacean abundance and species of conservation 

concern. This chapter will provide empirical evidence to determine whether or not 

benthic production is consistently, positively associated with other features of interest 

at the spatial scale of the Irish Sea, and therefore its utility to inform MPA design that 

achieves several conservation objectives (win-win conservation scenarios). The possible 

of the influence of spatial grain and extent on the spatial association between benthic 

production and biodiversity is recognised, and it would be useful to investigate the 

degree to which any observed pattern of association is mediated by spatial grain or 

extent. Unfortunately this was not possible due to spatial scale of available data and time 

constraints, and therefore the consideration of spatial scale is not included in the 

chapter. 

 

Finally, Chapter 5 will address the extent to which MPAs networks designed to 

protection biodiversity also protect benthic infaunal production, and the degree of 

similarity between biodiversity MPA networks and functional MPA networks. This will 

help to determine whether or not a benthic infaunal production MPA selection criterion 

is required in addition to biodiversity criteria to achieve the protection of ecosystem 

function. 

 

The results of the above chapters will help determine the utility of benthic infaunal 

production as a practical indicator of benthic ecosystem quality for the purpose of 

informing ecosystem-based marine spatial management, particularly MPA design. Such a 

functional selection criterion could have the potential to support the delivery of an 

ecosystem-based approach and help halt the continuing observed declines in both 

marine ecosystem function and biodiversity. 
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CHAPTER 2 - The drivers of benthic production 
in the Irish Sea: a multi-scale analysis
 

2.1 AIM: To identify the primary environmental drivers of benthic production in the 

Irish Sea. The influence of spatial grain and extent on the importance of these drivers 

will be investigated in order to determine the most suitable spatial scale for predictive 

modelling. 

 

2.2 ABSTRACT 

 

Benthic communities play a key role in marine ecosystem functioning and provide food 

for commercial fish species, yet they are under threat from various anthropogenic 

pressures.  Bottom fishing in particular can reduce the abundance, biomass, species 

richness and productivity of these important communities. Benthic secondary 

production, the heterotrophic production of organic matter by benthic macro-

invertebrates per unit area and time, is a useful indicator of benthic ecosystem quality 

that could help prioritise marine protected area design to manage the impact of bottom 

fishing on benthic communities. Here the primary drivers of benthic production in the 

Irish Sea will be investigated in order to inform predictive model development for the 

purpose of advising MPA design. The influence of spatial grain (resolution of 

observations) and extent (total area under consideration) on the importance of these 

drivers will be examined to give an insight into appropriate spatial scales for predictive 

modelling. Chlorophyll-a concentration at the sea surface, seabed sediment type and 

bottom fishing activity were found to be the most important drivers of benthic 

production in the Irish Sea, and spatial grains up to around 20 km2 were identified to be 

the most suitable resolution for predictive modelling. The importance of these 

environment-production relationships, however, was not consistent as the extent of 

analyses increased. Only chlorophyll-a was found to be a useful predictor of productivity 

across the whole extent of the Irish Sea area. Although this has implications for the 

confidence with which benthic secondary production can be predicted, these findings 

are considered a useful first step for informing the development of a predictive model of 

benthic production to advise MPA design. 
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2.3 INTRODUCTION 

 

Benthic communities are recognised to play a key role in marine ecosystem function and 

the provision of goods and services (Snelgrove et al. 1997; Levin et al. 2001, Danovaro et 

al. 2008). Benthic macro-invertebrates, for example, are a key food source for many 

commercial fish stocks (Christensen et al. 1996; Heath, 2005), and benthic shellfish 

stocks, such as King Scallop Pecten maximus, Common Prawn Palaemon serratus and 

European Lobster Homarus gammarus are lucrative fisheries in their own right. Benthic 

communities facilitate nutrient and carbon cycling through the consumption, 

production, and transfer of organic matter (Danovaro et al. 2008), and certain benthic 

species play an important role in the creation of habitat heterogeneity. For example, 

filter feeders such as Horse mussels Modiolus modiolus create biogenic structures 

(Lenihan, 1999), and other organisms create burrows and depressions, all of which 

provide habitats for other species (Thrush et al. 2002). 

 

Anthropogenic activity can have a negative impact on these various benthic ecosystem 

functions, goods and services. Bottom fishing and aggregate dredging, for example have 

been documented to reduce the abundance, biomass, species richness and function of 

benthic invertebrate communities through the removal and mortality of individuals 

(Jennings et al. 2001; Collie et al. 2005; Hiddink et al. 2006a; Reiss et al. 2009; Frojan et 

al. 2008; Wilber et al. 2008). The extent of aggregate dredging in the UK is very small, 

covering less than 1% of the seafloor that is exposed to bottom fishing (for the period 

2001-2007) (Foden et al. 2009), therefore bottom fishing is considered a greater 

anthropogenic threat to benthic communities and their functioning. 

 

It is recognised that the impact of bottom fishing on benthic communities can be 

managed through spatial management measures such as marine protected areas (MPAs) 

(Halpern, 2003; Duineveld et al. 2007; Hiddink et al. 2006c). Limited resources for 

conservation (Myers et al. 2000), and conflicting human needs, however, mean that the 

establishment of MPAs needs to be prioritised in some way, i.e. protecting areas of 

highest quality or value to conservation. Systematic conservation planning is becoming 

increasingly utilised in protected area design because it allows an objective approach to 
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site prioritisation, by evaluating potential MPA sites against certain selection criteria 

(Margules & Pressey, 2000). The specific selection criteria used to prioritise MPA 

placement depend ultimately on the conservation objectives that drive their 

establishment. 

  

In the context of benthic communities, a suitable MPA selection criterion may be benthic 

community productivity. That is, the secondary production of organic matter by benthic 

macro-invertebrates per unit area and time (Cusson & Bourget, 2005). Community 

secondary production has been identified as a suitable functional indicator of ecosystem 

quality because it plays an important role in energy flow and ecosystem dynamics 

(Tumbiolo & Downing, 1994; Brey, 2001; Valentine-Rose et al. 2011). The productivity 

of marine benthic macro-invertrebrates mediates the transfer of material from primary 

producers to higher trophic levels (Seitz et al. 2009), and their position within trophic 

webs means that their productivity is key for supporting demersal fish stocks 

(Christensen et al. 1996; Heath, 2005). Flatfish nursery grounds, for example, have been 

found to be associated with high macrobenthic productivity (Wouters & Cabral, 2009). 

 

Secondary production in benthic communities is also a process common to all marine 

ecosystems, making it an ideal metric for comparing quality across large areas and 

different habitats (Hiddink et al. 2006a). Furthermore, no-take MPAs have been shown 

to be effective for protecting the productivity of benthic communities (Collie et al. 2005; 

Hiddink et al. 2006c). Benthic secondary production is therefore considered a suitable 

selection criterion for prioritising the placement of no-take MPAs, because it is a useful 

indicator of ecosystem function and quality, and its protection within MPAs is likely to 

be beneficial for the continued provision of the goods and services that it supports. To 

inform the spatial management of benthic productivity, knowledge of its spatial 

distribution is required. Direct measurements of benthic production are very time and 

data intensive (Tumbiolo & Downing, 1994), therefore the development of empirical 

modelling techniques to predict benthic production would help facilitate the use of this 

indicator of ecosystem quality in MPA design.  

 



   CHAPTER 2 – Drivers of benthic production 

 

 

33 
 

Hiddink et al. (2006a) developed a size-based model of benthic biomass, production and 

species richness for the North Sea, from a model originally developed by Duplisea et al. 

(2002). The Hiddink (2006) model includes habitat/environmental parameters to 

enable it to predict benthic community characteristics over large spatial scales (Hiddink 

et al. 2006a). Tillin et al. (2009), however, found that confidence in the Hiddink (2006) 

model was not great enough to be utilised for predicting production outside the original 

area for which it was parameterised.  This may be because the importance of different 

environmental drivers may vary across different areas. Bolam et al. (2010), for example, 

was unable to to explain the spatial variation in benthic secondary production across the 

UK continental shelf using a single suite of environmental characteristics. In order to 

apply the Hiddink (2006) predictive model to another area, it will require re-

parameterising for that particular area. To predict benthic production in the Irish Sea, 

for example, a quantitative understanding of the relationship between the 

environmental conditions and the productivity of benthic communities in this area is 

required.  

 

The relationships and interactions driving any one ecological pattern operate on a range 

of different scales (Levin, 1992); therefore the importance of the observed relationship 

between two variables is likely to be influenced by the spatial scale at which they are 

measured (O’Neill, 1989; Wiens, 1989). There are two aspects of spatial scale; (i) spatial 

grain, which is the resolution or unit size of observations, e.g. the quadrat, or the sample 

unit area within which measurements are made, and (ii) spatial extent, which is the 

overall area under consideration by a study. The ability to detect ecological relationships 

is dependent on both the spatial grain and extent of an investigation (O’Neill et al. 1986; 

Wiens, 1989), therefore the importance of drivers of productivity are likely to change as 

the grain and extent of analysis changes. To date, multi-scale analyses on the drivers of 

productivity across large areas have not been conducted, and the lack of consideration 

of spatial grain and extent by Bolam et al. (2010), for example, might explain why 

significant environment-production relationships were not identified. 

 

Here then, the primary environmental drivers of benthic secondary production in the 

Irish Sea will be investigated at a range of spatial grains and extent, in order to examine 
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how any observed environment-production relationships change with spatial scale. The 

spatial grain at which the explanatory power of environmental variables is considered 

highest (i.e. a close correlation between observed and fitted values) will be considered 

the most appropriate scale at which to make predictions of benthic production for the 

purpose of informing MPA design. As the spatial extent changes, the importance of 

drivers may also change. Studying more than one spatial extent will help determining 

the degree to which a relationship driving productivity at in one area can be generalised 

to other areas (Thrush et al. 1997), giving an insight into the expected confidence in 

predictions over the whole Irish Sea area. 

 

The environmental variables investigated are; remotely-sensed sea surface chlorophyll-

a concentration, water column characteristics, including annual frequency of pelagic 

fronts, modelled tidal-induced bed shear stress (hereafter tidal shear stress), wave-

induced bed shear stress (hereafter wave shear stress), seabed sediment type and 

bottom fishing intensity (estimated from vessel monitoring system (VMS) data). These 

variables are chosen because previous research has indicated that they may be 

important in driving benthic productivity. 

 

Food supply in particular is considered a major limiting factor on biomass and 

production (Beukema & Cadee, 1997; Bourget et al. 2003), and higher rates of primary 

production, as indicated by sea surface chlorophyll-a concentration (Agboola et al. 

2013) are expected to be associated with higher rates of secondary production (Schrum 

et al. 2006; Darnis et al. 2012). The amount of this resource that reaches benthic 

communities is dictated by the hydrodynamic regime (Kaiser et al. 2006), and therefore 

the presence of pelagic fronts (Schrum et al. 2006; Darnis et al. 2012), stratification 

(Bolam et al. 2010) and degree of shear stress experienced by the seabed (Hiddink et al. 

2006) could be useful proxies for the amount of food available to the benthos. Tidal and 

wave-induced seabed shear stresses, for example, control the degree of water 

movement at the water-sediment interface, which in turn influences the availability of 

food to the benthos and growth rate (Warwick & Uncles, 1980; Snelgrove & Butman, 

1994). High tidal shear stress impairs the supply of food, by transporting it away too 

quickly, and so reduces growth rates (Hiddink et al. 2006a). Conversely, if water 
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movement is too slow, benthos may not receive not enough food to maintain 

metabolism (Patterson & Black, 1999). Very high tidal shear stress can also impair 

benthic production if the force of water movement results in significant erosion of 

sediment. Wind-induced wave shear stress is stronger than tidal shear stress and can 

result in the re-suspension of sediments, which releases organic matter and can enhance 

secondary production (Kaiser et al. 2006), but, similarly, if it becomes too strong, 

sediment can be moved across the seabed and have negative effect on secondary 

production through habitat disturbance-induced mortality (Emerson, 1989; Hiddink et 

al. 2006a).  

 

Sediment characteristics have a strong influence on benthic community composition 

(Van Hoey et al. 2004; Reiss et al. 2009), and may also influence productivity. Grain size 

and organic content in particular have been found to be associated with both community 

composition and biomass (Warwick et al. 1991). Ricciardi & Bourget (1999), for 

example, found that decreasing grain size correlated with increasing total biomass, 

driven primarily by an increase in deposit-feeder biomass. This study was limited to 

intertidal areas, however, and in contrast Bolam et al. (2010) found that the 

communities associated with coarser sediment often had higher total production values 

than other habitats across the UK continental shelf. Gravelly habitats in particular tend 

to be associated with greater numbers of large epifauna compared to finer sediments 

(Collie et al. 2005). Sediment characteristics are largely determined by the 

hydrodynamic regime (Warwick & Uncles, 1980), and as a result changes in productivity 

with sediment type may simply reflect differences in hydrodynamic conditions.  

 

It is expected that local factors, such as sediment type will influence those benthic 

communities (and therefore perhaps their productivity) that are directly associated to 

that area, therefore any relationship between productivity and sediment type is 

expected to be found only at small spatial grains. Fishing intensity is expected to have a 

negative impact on benthic production (Jennings et al. 2001; Collie et al 2005; Hiddink et 

al. 2006b; Reiss et al. 2009), and is expected to be observed at small to medium spatial 

grains due to the inaccuracy of fishing intensity estimates derived from VMS data at very 

small and very large spatial grains (Mills et al. 2007, Lambert et al. 2012). Chlorophyll-a 
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at the sea surface and water column characteristics (e.g. presence of fronts, stratified 

versus well-mixed areas) are other potential drivers of productivity, due to their 

influence on food supply (Kaiser et al. 2006; Schrum et al. 2006). A relationship between 

these factors and productivity are expected to be observed at larger spatial grain sizes 

because they are unlikely to directly influence those benthic directly beneath on the 

seafloor, due to water movement (tides, currents), and they may also be overridden by 

more local and biological factors (e.g. competition, predation) at smaller scales.  

 

The following hypotheses will be tested; (i) local factors such as seabed sediment type, 

tidal shear stress and wave shear stress are expected to have a relationship with benthic 

production at small spatial grain sizes. (ii) Fishing intensity is expected to have a 

negative relationship with benthic production, but this will not be observed at the 

smallest or largest grain sizes.  (iii) Chlorophyll-a at the sea surface and water column 

characteristics are expect to have a relationship with benthic community production, 

and these relationship are expected to be observed at large spatial grains. 

 

2.4 MATERIALS AND METHODS 

 

2.4.1 Method overview 

 

Benthic community production data, environmental data and bottom fishing intensity 

data was collated from existing data sources for the Irish Sea and Northern Celtic Sea for 

the time period 2004 to 2008. To investigate the influence of spatial grain on 

environment-production relationships these data were partitioned into nine different 

spatial grains within a restricted, 20,000 km2 area using a gridded approach. To 

investigate the influence of spatial extent, data at a spatial grain of 5 km2 was extracted 

for five increasing spatial extents that reached a maximum coverage of 100,000 km2. 

Generalised least squares regression was used to elucidate the importance of the 

different environmental and anthropogenic variables that drive benthic community 

production at these different spatial grains and extents. 
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The benthic data used in analyses was restricted to a limited time period (2004 to 2008) 

because it is expected that benthic communities and productivity in the Irish Sea may 

change over time, for example due to changes in primary productivity or temperature 

under climate change (Jennings et al. 2002; Hinz et al. 2011). Temporal variation in 

production may complicate the analysis or influence the interpretations of results if this 

is not accounted for in the analysis. A maximum time period of five years within which 

benthic data was collected was set as criteria for inclusion in analysis, in order to 

minimise the chances of significant change in productivity over time. 

 

2.4.2 Data collection 

 

Empirical benthic infaunal production estimates 

 

Key criteria for calculating empirical benthic community production are species-specific 

abundance and biomass data. Although many surveys of benthic macro-infauna have 

been conducted in the Irish Sea, the majority of these datasets do not include species-

specific biomass records which are necessary for the calculation of benthic production. 

Given these criteria, and the limit of a five year time period, available benthic community 

abundance and biomass data for this study was restricted to that collected during five 

independent benthic surveys conducted across the Irish Sea, between November 2004 

and May 2008. These research surveys were undertaken by Environment Agency Wales, 

the Countryside Council for Wales and the School of Ocean Sciences, Bangor University, 

each for different original purposes. See Table 2.1, Appendix 2.7.1 for details of these 

research surveys. 

 

 The number of stations sampled within each survey ranged from one to twenty one, 

giving a total of 49 stations of benthic infauna abundance and biomass data available for 

analysis. At each station, two to five replicate samples were taken, depending on the 

survey, and the most common gear used was the 0.1 m2 Day Grab. Only data for those 

organisms collected using a 1 mm sieve were used for estimating benthic community 

production. Replicate grabs at a station were pooled and all species data were 

standardised to number of individuals and total wet mass (grams) per m2. Species 
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where total wet mass equalled <0.001 g m-2 were removed due to a lack of a tangible 

biomass value and because they were considered to be inconsequential to subsequent 

calculation of community production estimates.  

 

Total annual benthic infaunal production estimates (kJ m-2 yr-1) for each station were 

calculated from species abundance and biomass per m2 using an empirical model freely 

available in spreadsheet form on the Internet http://www.thomas-

brey.de/science/virtualhandbook/navlog/index.html (Brey, 2001). This multiple 

regression model calculates total annual production (kJ m-2 yr-1) and 

production/biomass (P:B) ratio (yr-1) for a given population based on a number of  

population-specific and habitat-specific inputs (see Brey 2001 for a detailed description 

of model). Here each population represents a different species, and so species-specific 

biomass (kJ m-2), abundance (individuals m-2), mean individual body mass (kJ), life 

history trait and taxonomic data were input into the model, along with station-specific 

depth and mean annual bottom water temperature (obtained from 

http://www.gebco.net/data_and_products/gridded_bathymetry_data and 

http://cobs.pol.ac.uk/modl/polcoms/irish/index.php?plot=t&type=002 respectively. 

See Annex A for maps and further details of these environmental data).  

 

To generate the energy values (kJ) required by the Brey empirical model, species 

biomass data (g WM m-2) were converted to kJ m-2 using published conversion factors 

(Brey et al. 2010). Conversion factors at the family level of taxonomic resolution were 

used because these values were based on a greater number of studies than those at 

higher taxonomic resolution, and are therefore assumed to be more representative and 

provide more accurate estimates than individual species or genus conversion factors. 

Where there was a paucity of data at the family level conversion factors from a lower 

taxonomic resolution were used, for example class or phyla. Biomass data for those taxa 

with shells were converted to shell-free weights using wet mass with shell (g WM+shell) 

to wet mass (g WM) conversion factors before further energy conversion factors were 

applied. The empirical Brey model outputs include estimated P:B ratio (yr-1)  and total 

annual production (kJ m-2 yr-1) values with 95% confidence intervals for each species at 

each station. Although no confidence intervals for community level estimates can be 

http://www.thomas-brey.de/science/virtualhandbook/navlog/index.html
http://www.thomas-brey.de/science/virtualhandbook/navlog/index.html
http://www.gebco.net/data_and_products/gridded_bathymetry_data
http://cobs.pol.ac.uk/modl/polcoms/irish/index.php?plot=t&type=002
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calculated, pooled estimates are considered more accurate than individual population 

estimates (Brey, 2001).  

 

In addition to the above 49 production estimates calculated from survey data, additional 

benthic infaunal production estimates from 50 stations sampled and calculated by 

CEFAS were obtained from Stefan Bolam (Bolam et al. 2010). These estimates of benthic 

infaunal production were calculated using the same Brey (2001) method outlined above, 

therefore the data were considered comparable. In total, ninety nine stations for which 

benthic community production data were available for analyses. Although these 99 

stations cover the whole of the study area their distribution is not even. For example the 

North-Eastern Irish Sea has the highest concentration of available data, whereas 

offshore areas in general are poorly represented (see Figure 2.1). 
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Figure 2.1. Distribution of benthic infaunal production estimates available for analysis. 
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Environmental data 

 
The environmental variables investigated in this analysis include remotely-sensed sea 

surface chlorophyll-a concentration (mean values for 2004-2008), modelled tidal shear 

stress, wave shear stress, annual mean frequency of pelagic fronts, water column 

characteristics, and seabed sediment type. These variables were considered potentially 

important drivers of benthic community production because of their expected influence 

on food availability, and therefore growth rates, as well as mortality.  

 

As already outlined in the introduction, chlorophyll-a concentration at the sea surface, 

the presence of pelagic fronts, and degree of mixed within the water column could be 

useful proxies for the amount of food available to the benthos (Schrum et al. 2006; 

Bolam et al. 2010; Darnis et al. 2012), and tidal and wave bed stress are also likely to 

effect the amount of food available to benthos (Emerson, 1989; Kaiser et al. 2005; 

Hiddink et al. 2006). Seabed sediment types are likely, in part, to reflect the degree of 

shear stress experienced in that particular area (Warwick & Uncles, 1980), and so could 

act as a proxy for hydrodynamic effects. There is also much work that has associated 

different benthic infauna communities to different sediment types (Snelgrove & Butman, 

1994), and these differences in community composition could potentially drive 

differences in productivity. Depth was not included in this analysis because it was 

collinear with many of the other variables. Furthermore, because variation in depth and 

temperature are incorporated into the Brey model used to calculate benthic infauna 

production from abundance and biomass estimates they are excluded from further 

analyses as they have already been accounted for. 

 

Remotely-sensed surface chlorophyll-a concentration data at a 1.1 km spatial resolution 

were provided by NEODAAS (NERC Earth Observation Data Acquisition and Analysis 

Serivces, http:/www.neodaas.ac.uk). These data were obtained from the MODIS sensor 

using the case 2 chl-a algorithm (OC5) for turbid shelf seas. An annual average for the 

years 2004 to 2008 was calculated from monthly composites for analysis (see Figure 

2.7, Appendix 2.7.2 for a map of mean annual sea surface chlorophyll-a estimates). The 

annual frequency of pelagic fronts data were derived from oceanic thermal front metrics 
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obtained from remotely-sensed data sea surface temperature data (Miller et al. 2010). 

The annual frequency of pelagic fronts refers to the percentage of time that strong fronts 

occur in a particular area over a year. Annual mean front frequencies were extracted 

from 1.2 km resolution seasonal maps obtained from Defra via Dr Kirsten Ramsey (see 

Figure 2.8, Appendix 2.7.2 for a map of annual front frequency estimates used in the 

analyses here). Water column characteristic data was obtained from a classification 

produced by the UKSeaMap project (McBreen et al. 2011), which describes the 

ecological character of the water column based on various hydrographic parameters, 

including salinity, surface to seabed temperature difference and frontal probability, at a 

spatial resolution of 0.02 decimal degrees. This classification was structured according 

to four seasons (spring, summer, autumn and winter), and thirteen different water 

column types were defined in total. For the purpose of this analysis the water column 

characteristic classification for summer was used, because it is the time of year when the 

majority of sea surface primary productivity occurs. This time period is therefore 

considered more useful for understanding variation in benthic production across the 

study area (see Figure 2.9, Appendix 2.7.2 for a map of water column characteristic data 

used in the analyses here).  

 

Tidal shear stress modelled for the European Shelf by Egbert et al. (2010) was 

downloaded from the OSU Tidal Data Inversion webpage, 

http://volkov.oce.orst.edu/tides/ES.html (for details see Egbert et al. 2010). The data 

have a spatial resolution of 0.03 decimal degrees, and represent total tidal-induced 

stress or force (N/m2) experienced by the seabed (see Figure 2.10, Appendix 2.7.2 for a 

map of the tidal shear stress estimates used in the analyses here).  In this analysis the 

fraction of the time that wave bed stress values exceeded 0.25 N/m2 was used as a 

measure of wave shear stress. These values were obtained from a model developed by 

Dr Simon Neill for the Irish Sea (see Hiddink et al. 2009 for further details of model 

development). The spatial resolution of the raw data was 0.04 decimal degrees (see 

Figure 2.11, Appendix 2.7.2 for a map of the wave shear stress estimates used in the 

analyses here). 

 

http://volkov.oce.orst.edu/tides/ES.html
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Seabed sediment data was obtained from the latest British Geological Survey (BGS) 

1:250 000 scale digital Sea bed Sediment map, released 2011. These data indicated that 

there were twenty different seabed sediment types across the study area (see Figure 

2.12, Appendix 2.7.2 for a map of the BGS seabed sediment data). The Folk triangle 

classification used by BGS was simplified by collapsing all sediments dominated by mud 

into ‘Mud’, all sediments dominated by sand into ‘Sand’, and all sediments dominants by 

gravel into ‘Gravel’. No benthic community data were available for Rock and similar 

habitats, and so these and the remaining, undifferentiated seabed sediment types were 

grouped into ‘Other’ (for example, diamicton). This gave four major sediment types, 

Mud, Sand, Gravel, Rock and Other (see Table 2.2, Appendix 2.7.2 for sediment 

conversion table, and Figure 2.13 for the distribution of the re-classified sediment 

types). This simplification of the Folk triangle classification was done to improve 

replication within sediment types, and increase the statistical power of the analysis. In 

addition to this, it was considered more biologically appropriate to group very similar 

habitats together, as the subtle differences between different mud habitats, for example, 

were not considered likely to drive large differences in benthic communities. McBreen et 

al. (2008), for example, found that variation in benthic assemblage structure in the 

southern Irish Sea could not be explained using the full BGS Folk sediment classification.  

 

Bottom fishing intensity data 

 

Bottom fishing intensity estimates are derived from Vessel Monitoring System (VMS) 

data from the Marine Fisheries Agency (predecessor of the Marine Management 

Organisation). VMS data from bottom fishing vessels between the period 2004 to 2008 

were cleaned and processed using the VMStools package and protocol developed by 

Hintzen et al. (2012). Fishing intensity in a particular area is likely to vary each year, and 

bottom trawling history, i.e. trawling impacts over several years, is expected to be a 

better indicator of benthic community composition than single year fishing intensity 

estimates (Hiddink et al. 2006a). Bottom fishing intensity data from several years is 

therefore used to better reflect cumulative fishing impact on the benthos (Lambert et al. 

in press). 
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Bottom fishing vessel types were grouped into three main classes; otter trawlers, beam 

trawlers and dredgers. A gear width of 60 metres and 24 metres was allocated to otter 

trawlers and beam trawlers, respectively. Different regulations regarding the maximum 

number of dredges are in force across the Irish Sea, depending on in which country and 

how many nautical miles from shore a vessel is fishing. Therefore gear width for 

dredgers was determined based on where in the Irish Sea a VMS position was identified. 

Table 2.3, Appendix 2.7.3 indicates these different administrative zones and the number 

of dredges and gear width allocated to dredgers found within them. To determine which 

VMS positions represented actual fishing activity fishing speeds for the three different 

vessel types were identified based on visual inspection of speed histograms, similar to 

the approach of Lee et al. (2010). Fishing speed for otter trawlers and dredgers was 

defined as one to four knots, whereas fishing speed for bean trawlers was defined as two 

to five knots. Interpolation between 2 hours VMS positions was not considered 

necessary given the spatial scales and time period over which data was being aggregated 

(Lee et al. 2010).  The area swept by fishing gear represented by each 2 hour interval 

VMS record was determined from the fishing speed and fishing gear width associated 

with each record.  

 

2.4.3 Partitioning data into different spatial scales 

 

Analysis 1: how spatial grain size influences the identification of drivers of production 

 

To investigate the effect of changing spatial grain size on the interpretation of 

relationships between environmental parameters and benthic production, a range of 

spatial grain sizes were selected within a restricted extent of 20,000 km2 in the North-

Eastern Irish Sea. This particular area was chosen because it is the area where the 

highest concentration of benthic community production data was available, and an 

extent of 20,000 km2 was considered large enough to incorporate a large range of spatial 

grain sizes. Furthermore, this aspect of the analysis aimed only to investigate the 

influence of spatial grain. Different environmental variables may be more important 

than others in different areas of the Irish Sea, and this variation over a large extent may 
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reduce the ability of the analysis to identify the drivers of production. Conducting the 

analysis in a restricted area reduced the possibility of any potential regional effects. 

 

The smallest grain size utilised here was the individual sites from which the benthic 

infaunal production data was obtained, representing total benthic infaunal production at 

1 m2. Following this a gridded approach was used to produce spatial grains that doubled 

in area with each increase in scale, beginning with 2.5 km2, increasing to 5 km2, 10 km2 

and so on until a maximum grain size of 320 km2 (See Figure 2.15, Appendix 2.7.4 for an 

example of sampling designs used). A maximum grain size limit of 320 km2 was chosen 

because larger grids cells (for example 640 km2) would not fit within the restricted 

20,000 km2 extent chosen for this analysis. 

 

Benthic infaunal production estimates from sites falling within the grid cells for each 

grain size were extracted and averages calculated. Averaged values of all continuous 

environmental variables were similarly calculated, whereas for categorical sediment 

type and water column characteristic data, the factor level with the largest area within a 

cell was extracted. Average annual fishing intensity estimates for the period 2004 - 2008 

were calculated for each grid cell. For each spatial grain a standardised sample size of 15 

grid cells were randomly selected from the total number of cells available for analysis 

within the 20,000 km2 area, and all associated values were extracted for input into GLS 

models. 15 grid cells were chosen as the standard sample size because this is the 

maximum number of data available at the largest spatial grain size, 320 km2.  

 

Analysis 2: how increasing spatial extent influences the identification of drivers of 

production 

 

Analysis 1 determined that the strongest and greatest number of relationships between 

environmental variables, fishing intensity and benthic community production are found 

between a spatial grain size of 2.5 to 20 km2. Analysis 2 selected a spatial grain size of 5 

km2 and aimed to determine whether or not these relationships identified in the first 

analysis at 20,000 km2 were consistent and applicable for all areas of the Irish Sea. If the 

production-environment relationships observed changed as spatial extent increased, 
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this would suggest that the strength of different processes influencing benthic 

community production varies across the Irish Sea. If the strength of these different 

production-environment relationships do vary across the Irish Sea, predicting benthic 

community production across the whole area using the results from one analysis may be 

difficult, because any variation in relationships is not captured.  On the other hand, if 

production-environment relationships were the same across the Irish Sea, it is assumed 

that predicting production across the whole area would be simpler. 

 

To investigate the possible effects of increasing extent on the relationship between 

environmental variables and benthic community production identified in the first 

analysis, the whole study area was divided into five different extents ranging from the 

same 20,000 km2 area utilised in analysis one, increasing by 20,000 km2 to a total area of 

100,000 km2. All benthic community production, environmental and fishing intensity 

data across the whole study area were standardised to grid cell area of 5 km2 using the 

methods outline above, and within each of the five extents a standardised sample size of 

20 grid cells were randomly selected for analysis. All associated values extracted for 

input in GLS models.  

 

To ensure an even spatial distribution of data within each extent, each of the extents 

were further divided into 10,000 km2 sections and an equal number of 5 km2 

observations/grid cells were randomly sampled from each section. For example, for the 

smallest extent of 20,000 km2, five observations/grid cells were randomly selected from 

two 10,000 km2 areas, and for the largest extent of 100,000 km2 two grids cells were 

randomly sampled from within ten 10,000 km2 areas that made up the total extent. This 

removed any bias towards the areas of high data concentration, such as the North-

Eastern Irish Sea. 
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2.4.4 Statistical analysis 

 

Dealing with spatial autocorrelation and variance heterogeneity    

 

Generalised least squares (GLS) regression models were utilised to investigate the 

potential role of environmental factors in driving variation in benthic community 

production at each of the spatial grain sizes and extents outlined above. GLS regression 

was applied to the data described above using the gls() function from the nlme package 

in R (Pinheiro et al. 2012; R Core Team, 2012). This resulted in a total of nine GLS 

models for analysis 1 (spatial grain) and five GLS models for analysis 2 (spatial extent). 

GLS regression was used because it is able to accommodate spatial autocorrelation in 

model residuals, which was expected in this study due to the spatially explicit nature of 

the data (Zuur et al. 2009). Residual spatial autocorrelation is a form of dependency and 

occurs when residuals for data that are closer together in space are more similar than 

those for data that are further apart, purely as a result of the distance between them 

(Fortin & Dale, 2005). This phenomenon can lead to type 1 errors due to the estimation 

of inappropriately small standard errors for coefficients (Zuur et al. 2010). The presence 

of this dependency between residuals is therefore detrimental to the correct 

identification of drivers of benthic community production. GLS regression can 

accommodate residual spatial autocorrelation by the addition of autocorrelation 

structures to the error component of the regression model (Zuur et al. 2009).  

 

To check for residual spatial correlation visual tools such as semi-variograms could not 

be employed because the number of data points was too small (N=15 or 20). Usually a 

minimum of fifty data points is required (Fortin & Dale, 2005). Similarly a spatial map of 

model residuals to check for clusters of similar residuals was difficult to interpret due to 

small sample sizes. In the absence of robust visual diagnostics, AIC scores for GLS 

models fitted with different autocorrelation structures were compared against a 

reference GLS model without such a structure. This comparsion of AIC scores was used 

to determine whether or not a correlation error structure was necessary to improve 

model fit, as recommended by Zuur et al. (2009). 
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Generalised least squares regression can also deal with heterogeneity in the variance of 

model residuals, a major violation of most regression approaches and a common issue in 

ecological data (Zuur et al. 2009). Although data transformation can be applied to 

remove heterogeneity, an increasing approach in ecological modelling is to take 

heterogeneity into account when estimating regression parameters because it can be a 

source of ecological information (Zuur et al. 2009). In GLS regression this heterogeneity 

can be modelled in the error component by the inclusion of a variance structure. 

Variance heterogeneity was investigated through visual inspection of standardised 

residuals vs. fitted values, and residual patterns for individual explanatory variables. 

Where homogeneity of variance was violated different common variance structures 

were added to GLS model and the models compared using AIC and likelihood ratio tests 

to identify the most suitable error structure. 

 

Dealing with multicollinearity 

 

In addition to issues of spatial autocorrelation and variance heterogeneity, the inclusion 

of many environmental variables in regression models may increase the chance of 

multicollinearity. Collinearity between explanatory variables is an issue because it can 

result in inaccurate regression coefficient estimates for individual predictors (Faraway, 

2006). Pairplots and boxplots of environmental variables, Spearman’s Rank correlation 

coefficients of explanatory variables and variance inflation factors (VIF) calculated for 

initial, simple linear models including all variables were investigated for 

multicollinearity before GLS models were run (as recommended in Zuur et al. 2010). 

Correlation coefficients greater than 0.7 calculated for pairs of drivers were considered 

to indicate collinearity between the relevant variables, and those variables with VIF 

scores greater than 8 were also regarded as a potential issue (following the approach 

recommended in Zuur et al. 2009). Where either approach highlighted potentially 

problematic explanatory variables the simple linear regression model was rerun with 

one of the collinear variables removed until VIF scores for all variables were lower than 

8. GLS models were then constructing with the remaining variables using the methods 

outlined above. 
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Identification of environmental and anthropogenic drivers of production  

 

Once the above protocols for removing collinear variables and obtaining optimal error 

structures for GLS models had been followed, likelihood ratio tests comparing full 

models against those with a dropped explanatory variable were performed in a 

sequential manner to identify which environmental factors are significant drivers of 

benthic community production. 

 

Once all variables identified using likelihood ratio tests as unimportant in a model were 

removed partial residual plots were produced for the remaining variables that were 

considered important drivers of benthic production, and therefore useful predictors. 

These plots described the relationship between individual environmental drivers and 

benthic community production, whilst taking into account the influence of other 

environmental variables in the model. Comparing plots of each model within each 

separate analysis gives an indication of patterns and trends over spatial scale in the 

ability to identify drivers, and therefore helps highlight those scales at which benthic 

community production could potentially be predicted. 

 

Overall explanatory power of GLS models 

 

To gain a further understanding of which spatial grain and which spatial extent benthic 

infaunal production could be best predicted in the Irish Sea, the overall explanatory 

power of the GLS models for each analysis was compared using observed versus fitted 

values plots. This visual check was used in absence of a meaningful R-squared statistic 

for GLS models (Zuur et al. 2009). 

 

2.5 RESULTS 

 

2.5.1 Collinearity 

 

Investigation of multicollinearity indicated a positive association between chlorophyll-a 

concentration and wave bed stress. This is unlikely to reflect a direct relationship, and is 
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more likely due to both variables having a negative association with depth, that is, 

chlorophyll-a concentration and wave bed stress are both likely to be greater in shallow, 

coastal waters. In analysis 1, VIF values from initial linear models indicated that wave 

bed stress should be dropped to reduce the effects of collinearity at four spatial grains 

(2.5 km2, 5 km2 10 km2 and 20 km2), because this variable exhibited the highest VIF 

value. High VIF values in analysis 2 also indicated that wave bed stress should be 

dropped for one of five of the models.  

 

In analysis 1, VIF values also indicated that summer water column characteristic should 

be dropped from seven out of nine models at different spatial grains. In the models 

where summer water column feature was retained it was not found to be an important 

driver of benthic production, and therefore this variable was dropped from subsequent 

analyses. 

 

Visual checks for collinearity indicated a possible association between sediment type 

and fishing intensity in the majority of models across both analyses. Specifically, fishing 

intensity tended to be lower on sand and gravel sediment types compared to muddy 

sediments. This is likely to reflect the targeted activity of the east and west Irish Sea 

Nephrops fisheries on muddy grounds. Despite this observation, VIF values did not 

suggest that either of these variables should be dropped from models, and both were 

retained throughout the analysis. 

 

2.5.2 Analysis 1: how spatial grain size influences the identification of drivers of 

production 

 

Generalised least squares (GLS) model results from all nine of the spatial grain sizes in 

this analysis suggest that sea surface chlorophyll-a concentration is an important driver 

of benthic infaunal production at all grains. From the site scale to 320 km2 chlorophyll-a 

concentration was found to have a strong, positive relationship with benthic community 

production (Figure 2.2).  At grain sizes larger than 80 km2 (160 km2 and 320 km2) 

chlorophyll-a was the only variable identified to be an important driver of benthic 

production (Figure 2.2). 
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Sediment type is also highlighted as an important explanatory variable alongside 

chlorophyll-a concentration at four out of nine of the spatial grains in this analysis., 

these include the site scale, 5km2, 20 km2 and 40 km2 but not 2.5 km2,10 km2 or 80km2 

to 320 km2 (Figure 2.2).  At these spatial grains benthic infaunal production was found 

to be significantly higher in sandy sediments compared to muddy sediment types. 

Although this effect of sediment type was insignificant at 80 km2, AIC indicated its 

importance for the performance of the GLS model and so it was retained along with 

chlorophyll-a concentration (Figure 2.2). 

 

Fishing intensity and tidal bed stress are found to have an effect at small spatial grains. 

Where sediment type is not significant (2.5 km2 and 10 km2), fishing intensity is found to 

have a significant negative relationship with benthic infaunal production (Figure 2.2).  

At 5 km2 tidal shear stress has a significant positive influence on benthic production and 

is retained in the GLS model in addition to sediment type and chlorophyll-a 

concentration (Figure 2.2). This relationship between tidal bed stress and benthic 

production is not found at any other spatial grain. Wave bed stress, summer water 

column characteristic and annual frequency of pelagic fronts were not identified to have 

a relationship with benthic infaunal production at any of the spatial grain sizes included 

in this analysis. 
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Figure 2.2. Partial residual plots indicating the environment-production relationships 

identified by optimal GLS models in analysis 1. Environment-production relationships are 

presented for all nine spatial grain sizes included in the analysis (site scale to 20 km2). 

Significant relationships are highlighted by the inclusion of statistics in red. Plots where no 

statistics are given indicate non-significant variables that have been retained in the model. For 

model fits see Figure 2.3. For further details of each model, see Table 2.4, Appendix 2.7.5. 
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Figure 2.2. Partial residual plots indicating the environment-production relationships identified 

by optimal GLS models in analysis 1. Environment-production relationships are presented for all 

nine spatial grain sizes included in the analysis (40km2 to 320 km2). Significant relationships are 

highlighted by the inclusion of statistics in red. Plots where no statistics are given indicate non-

significant variables that have been retained in the model. For model fits see Figure 2.3. For 

further details of each model, see Table 2.4, Appendix 2.7.5. 
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Plots of observed versus fitted values are given to indicate overall model fit for the 

optimal models identified at each spatial grain size. This is because GLS models do not 

produce a meaningful R-squared statistic (See Methods, section 2.4.4). These plots 

indicate that models for the smallest, site scale up to a spatial grain of 20 km2 have a r-

squared value greater than 0.9 (Figure 2.3). The close, positive association between 

observed and fitted values of these models suggest that they have the highest predictive 

ability. The lowest r2 values are observed for optimal models at two largest spatial 

grains (160 km2 and 320 km2). These models retained only one predictor variable, 

chlorophyll-a concentration.  

 

 

 

Figure 2.3. Observed versus fitted value plots indicating the explanatory power of optimal GLS 

models identified for each spatial grain size in the analysis (site scale – 320 km2). Pearson 

correlation coefficients are given to give a rough comparison of goodness of fit. The lines 

through the plots represent a 1:1 relationship. 
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2.5.3 Analysis 2: how increasing extent influences the identification of drivers of 

production 

 

The results of analysis 2 suggest that the significant, positive relationship identified 

between chlorophyll-a concentration and benthic infaunal production at a spatial grain 

of 5 km2 is consistent across the whole extent covered in this analysis, 100,000 km2 of 

the study area (Figure 2.4). Sediment type and fishing intensity, on the other hand, are 

only found to be significant at the smallest extents (20,000 km2 and 40,000 km2). 

Benthic infaunal production is, again, higher in sandy sediment compared to mud at 

20,000 km2, and a negative relationship between production and fishing intensity is 

found at 40,000 km2. Fishing intensity was also retained in the models at 60,000 km2 

and 80, 000 km2 because removing this variable increased AIC values. Despite being 

highlighted in the previous analysis as a significant explanatory variable, tidal shear 

stress was not identified as a useful predictor at any extent. 
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Figure 2.4. Partial residual plots indicating the environment-production relationships identified 

by optimal GLS models in analysis 2. Environment-production relationships are presented for all 

five spatial extents included in the analysis (20,000 to 100,000 km2). Significant relationships 

are highlighted by the inclusion of statistics in red. Plots where no statistics are given indicate 

non-significant variables that have been retained in the model. 

 

 

 

 

 



   CHAPTER 2 – Drivers of benthic production 

 

 

57 
 

Visual comparison of observed versus fitted production values for each GLS model at 

each extent suggest that predictive power of the optimal models is fairly good up to a 

spatial extent of 80,000 km2 (Figure 2.5).  

 

 

 

Figure 2.5. Observed versus fitted value plots indicating the explanatory power of optimal GLS 

models identified for each spatial extent in the analysis (20,000 km2 – 100,000 km2). The lines 

through the plots represent a 1:1 relationship. 
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To give an initial indication of modelled benthic infaunal production for the Irish Sea, 

predicted benthic production estimates from the optimal model for 5 km2 identified in 

analysis 1 were mapped in Figure 2.6. These predictions are only made for the sediment 

types sand and mud because these were the only factor levels included in the GLS model.  

 

Figure 2.6. Modelled benthic infaunal production based on the outputs from the optimal model 

identified at a spatial grain size of 5km2. This model includes chlorophyll-a at the sea surface, 

sediment type and tidal shear stress (see Figure 2a). Predictions are not made in the white areas 

because these are areas of gravel and other sediment types, which were not represented in the 

GLS model. See Figure 2.16, Appendix 2.7.6 for a map indicating the area where no predictions 

are made. 
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2.6 DISCUSSION 

 

2.6.1 The drivers of benthic community production and the influences of spatial 

scale  

 

Chlorophyll-a concentration at the sea surface, sea bed sediment type, fishing intensity 

and tidal shear stress are all found to have an important influence on benthic infaunal 

production. However, the spatial grain and extent at which these different relationships 

are examined has an effect on the interpretation of their importance. This has 

implications for the possible scales at which benthic infaunal production can be 

accurately predicted. Wave bed stress, water column feature and the frequency of 

pelagic fronts are not identified to be important drivers of benthic community 

production at any of the spatial scales included in this study. 

 

Sea surface chlorophyll-a concentration 

 

Out of the identified variables, sea surface chlorophyll-a concentration appears to be 

only driver that has a consistent relationship with benthic infaunal production across all 

spatial grains and extents in the analyses presented here. Primary production at the sea 

surface is a major source of food to the benthos (Ramsey & Snelgrove, 2003, Trimmer, 

Gowen & Stewart, 2003), and food supply is known to be a major limiting factor on 

benthic biomass and production (Beukema & Cadee, 1997; Bourget et al. 2003). Positive 

relationships between surface chlorophyll-a concentration and benthic biomass have 

been found in coastal areas in the Arctic and Atlantic Oceans, suggesting strong benthic-

pelagic coupling in these areas (Grebmeiner at el. 1988; Piepenburg et al. 1997). The 

positive, linear relationship between chlorophyll-a concentration and benthic 

community production observed here suggest a similar benthic-pelagic coupling in the 

Irish Sea, and indicates that chlorophyll-a at the surface could be a useful proxy for the 

maximum carrying capacity of the benthic community, irrespective of the spatial grain at 

which it is measured.  
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Tidal shear stress 

 

Food supply to the benthos is expected to be influenced by other factors other than the 

amount of primary production at the surface. These factors include hydrodynamic 

processes such and tidal and wave-induced shear stress, which control the degree of 

water movement at the water-sediment interface and the availability of food to the 

benthos (Wildish & Kristmanson, 1979; Warwick & Uncles, 1980, Patterson & Black, 

1999). Here, wave stress was dropped from many models due to strong, positive 

collinearity with chlorophyll-a concentration. This is likely to be a result of their co-

variance with proximity to the coast; both chlorophyll-a concentration and wave stress 

decreased with distance from the shore. Tidal shear stress, on the other hand, was found 

to have a positive relationship with production at 5 km2, but only at a restricted spatial 

extent of 20,000 km2. Lambert at al. (2011) similarly found an increase in benthic 

epifauna biomass with tidal velocity (closely related to tidal shear stress), and Hiddink 

et al. (2006a) found a positive influence of tidal shear stress on benthic infauna at low 

values of tidal stress, although this switched to a negative relationship as tidal stress 

increased. At higher levels of tidal shear stress a negative impact would be expected on 

growth due to a reduction in food supply source. Due to the distribution of the data here, 

not enough data was available at higher levels of tidal stress to determine the 

relationship between high tidal bed stress and benthic infaunal production in the Irish 

Sea. The fact that the positive relationship between tidal shear stress and production at 

5 km2 was only found at a restricted spatial extent of 20,000 km2 suggests that the 

importance of tidal stress for driving benthic infauna may not be the same across the 

whole Irish Sea area. 

 

Sediment type 

 

The results indicate that sediment type is an important driving factor for benthic 

infaunal production, although unlike chlorophyll-a concentration, this is only found to 

be the case up to a spatial grain of 40 km2 and a spatial extent of 20,000 km2. Benthic 

infauna production is found to be significantly higher in gravel and sand sediments 

compared to muddy sediments. This result supports the findings of Bolam et al. (2010) 
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who found that benthic production tended to be greater in coarser sediments than fine 

grain sediments. Due to the strong correlation between sediment type and tidal shear 

stress (Warwick & Unlces, 1980), the relationship observed between production and 

sediment type at spatial grains up to 40 km2 could potentially be an indirect association 

that reflects the direct influence of shear stress on the growth rates of benthic infauna. 

However, in the optimal model where tidal shear stress was retained, sediment type was 

also retained, suggesting that at this spatial grain they both have an independent 

influence on production. Alternatively, differences in community production between 

sediment types could reflect differences in community composition. For example, 

perhaps greater numbers of productive taxa are found in sandy sediments compared to 

muddy sediments. A review of animal-sediment relationships by Snelgrove & Butman 

(1994), however, indicated that benthic community composition is rarely explained by a 

single sedimentary characteristic.  

 

Sediment type is considered a local factor, only having a direct influence on the benthic 

community residing within it. Therefore, a lack of a relationship between sediment type 

and productivity at a spatial grain larger than 40 km2 is expected to be because the 

variation in sediment type is likely to be too high for a significant relationship to be 

identified between the sediment type and production. The fact that a relationship 

between sediment and benthic infauna production at the small spatial grain of 5 km2 is 

only found within a restricted 20,000 km2 extent in analysis 2 could reflect a specific 

regional effect that is not found elsewhere, perhaps because other drivers become more 

dominant and overwhelm the relationship between production and sediment type. 

 

Alternatively, the reason that sediment type is not retained in optimal models for spatial 

extents greater than 20,000 km2 could be because fishing intensity is retained in these 

models instead (at least up to 80,000 km2). Initial observations during collinearity tests 

indicated that sediment and fishing intensity maybe associated, with muddy sediments 

being associated with higher fishing intensity. Despite this visual observation, both were 

retained in the analyses due to low VIF values. Interesting, for both analysis 1 and 2, 

sediment type and fishing intensity are not retained as predictors of benthic infaunal 

production within one model. For example, in analysis 1, at a grain size of 2.5 km2 and 
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10 km2 fishing intensity is retained as a predictor and sediment type is not. However, at 

the site scale and at 5 km2 sediment type is retained as predictor whilst fishing intensity 

is not. The fact that sediment type is indicated to be an important driver of production at 

the site scale and at 5km2 would suggest that it should also be important at the 2.5 km2 

scale. Similarly, the fact that fishing is indicated to be an important driver of production 

at 2.5 km2 and 10 km2 would suggest that it should also be important at 5 km2. It 

appears likely, then, that low levels of benthic production are related to both muddy 

sediments and high levels of fishing intensity, and because of the relationship between 

them only one of these predictors is being retained in the optimal model. Partial least 

squares regression (PLSR) on transformed benthic infaunal production (to remove 

heterogeneity) may be a more suitable option for determining the individual effects of 

these variables on benthic infaunal production. 

 

Given the above, that fact that both sediment type and tidal shear stress are retained in 

the optimal model at 5 km2, when sediment type is expected to act as a proxy for shear 

stress, may be a result of sediment type actually acting as a proxy for fishing intensity in 

this particular model. Sediment type is still therefore considered a proxy for the 

influence of hydrodynamic regime, and therefore food supply on productivity, in other 

optimal models at different spatial grains, particularly at very small and very large 

spatial grains (e.g. at the site scale and at 40 km2) where fishing intensity in not expected 

to have an effect due the inaccuracy of estimates derived from VMS data (Mills et al. 

2007, Lambert et al. 2012).  

 

Bottom fishing intensity 

 

Bottom fishing intensity has a significant, negative impact on benthic community 

production at small spatial grain sizes (5 km2 and 10 km2) up to a spatial extent of 

40,000 km2. Many studies have identified a similar negative relationship between fishing 

and a number of different benthic community attributes, including abundance, biomass 

and production, for many different types of benthic community (e.g. Jennings et al. 2001; 

Collie et al. 2005; Queiros et al. 2006; Reiss et al. 2009; Lambert et al. 2011). The 

negative impact of bottom fishing on infaunal production is likely to result from the 
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removal of individuals, which reduces biomass and therefore overall community 

production (Jennings et al. 2001). There is expected to be a body size-specific impact on 

benthos, with those large, long-lived species being particularly vulnerable to bottom 

fishing (Queiros et al. 2006). The loss of these species would result in a disproportionate 

loss of total production from the community.   

 

The fact that the negative relationship between bottom fishing intensity and benthic 

production is not observed at the larger spatial grains in this analysis is likely due to the 

fact that as grain size increases, the total area impacted by fishing tends to be 

overestimated, whereas the maximum fishing intensity tends to be underestimated 

(Mills et al. 2007, Piet & Quirijns, 2009, Dinmore et al. 2003). Increasing error in fishing 

activity estimates will reduce the possibility of accurately quantifying fishing impacts on 

the benthos (Lambert et al. 2012). Similarly, at very small spatial grain sizes, the 2 hour 

intervals between VMS positions can also result in inaccurate calculations of fishing 

activity because the exact area fished between positions cannot be determined (Lambert 

et al. 2012). This may explain the lack of a relationship identified between fishing 

intensity and benthic community production at the site scale in this analysis. Mills et al. 

(2007) recommended 3 km by 3 km grid cells as an appropriate compromise for 

accurately describing fishing effort, which equates to approximately 10 km2, the 

maximum spatial grain at which fishing intensity was identified as a significant driver in 

this analysis. 

 

The maximum extent of 40,000 km2 at which a significant relationship with bottom 

fishing is observed includes the area of the west and east Nephrops fisheries, which are 

the most lucrative fisheries in the Irish Sea. This suggests that the significant effect of 

fishing intensity that is observed could result primarily from trawling activity for 

Nephrops.  Beyond 40,000 km2, although not significant, fishing intensity is still retained 

as a predictor, suggesting it has wider application across the Irish Sea.  
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2.6.2 Implications for predictive modelling of benthic communities in the Irish Sea 

 

The results here can help inform the development of a predictive model of benthic 

infaunal production in the Irish Sea. This predictive model can identify areas of high 

benthic production that reflect good benthic ecosystem health and quality, and direct 

spatial management to protect them. 

 

Chlorophyll-a at the sea surface, sediment type and bottom fishing intensity are found to 

be the most useful variables for predicting benthic infaunal production. These variables 

are particularly useful for predicting at the smallest, site scale, up to a spatial grain of 40 

km2. Tidal bed stress is also identified to be a useful predictor of benthic production at 

spatial grain of 5km2. A visual comparison of the observed and fitted values for the 

optimal models at each spatial grain suggests that optimal model predictive ability 

greatest between a spatial grain of 2.5 km2 and 20 km2. The general minimum 

recommendation for MPA size is 5 km2 (Roberts et al. 2003). Therefore, due to the good 

predictive ability of environmental variables at this scale and its relevance to marine 

spatial management, 5 km2 is deemed the most suitable spatial grain at which to 

accurately predict benthic infaunal production for the purpose of marine protected area 

design.   

 

The strong relationship between all four identified variables and benthic infaunal 

production at a spatial grain of 5km2 cannot be assumed over the whole Irish Sea area, 

however. Only chlorophyll-a concentration is found to be a consistent predictor of 

benthic infaunal production across all the spatial extents included in the analyses here. 

Models where only chlorophyll-a is retained as a significant predictor do not perform as 

well for predicting benthic production, suggesting that other drivers not captured within 

this analysis are operating at this larger scale. These drivers may be those that were 

excluded from the initial analyses; temperature, depth and wave stress. Also, a simpler 

measure of stratification may have been more appropriate for identifying statistical 

relationships than the UKSeaMap water column characteristic used here, which had 13 

different water column characteristic types in total for the whole Irish Sea area. A simple 

stratification index may have had greater statistical power. 
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The fact that sediment type, fishing intensity and tidal shear stress are only retained as 

predictors within the 20,000 to 40,000 km2 areas included in the spatial extent analysis 

here suggest that there may be regional differences in the dominant drivers of benthic 

community production across the Irish Sea. Unfortunately, the uneven distribution of 

data available for this analysis means that the ability to conduct a detailed analysis 

within a different, restricted area of the Irish Sea other than the north-east area used in 

analysis 1 is limited, and thus the possible differences in the importance of drivers 

between different areas is difficult to determine. Despite the fact that not all predictors 

are retained at large spatial extents, the comparison of observed and fitted values from 

the optimal models identified in analysis 2 indicate that the ability to predict bentic 

production is fairly good up to a spatial extent of 80,000 km2. 

 

Initial prediction of benthic infaunal production in the Irish Sea, based on the optimal 

model identified in analysis 1, suggest that the most productive benthic communities 

occur in the Solway Firth, off the east coast of Ireland and north coast of Northern 

Ireland. Benthic production is also predicted to be relatively high along the north-west 

coast of England and in the centre of the Irish Sea (between the Isle of Man and 

Anglesey). Modelled benthic production estimates are lowest for area of mud in the west 

and east Irish Sea, and also along the Cardigan Bay coast and in the Northern part of the 

study area. These predictions are not biologically constrained, e.g. by maximum carrying 

capacity or competition dynamics, and are based on the linear environmental-

production relationships identified here (explaining the negative predictions of 

production), therefore they are not expected to be an accurate representation of 

productivity in the Irish Sea. For example, in comparison to the benthic infaunal 

production estimates observed by Bolam et al. (2010), which ranged from 3.1 to 897.2 kJ 

m-2 yr-1 across the UK continental shelf, the modelled estimates here are much higher. 
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2.6.3 Conclusions 

 

In summary, the findings here indicate that (i) chlorophyll-a, seabed sediment type, and 

bottom fishing intensity are important drivers of benthic infaunal production in the Irish 

Sea. (ii) The optimal spatial grain at which to predict benthic infaunal production from 

these drivers and inform MPA design is 2.5 – 20 km2. (iii) Initial predictions indicate that 

the most productive benthic communities occur in the Solway Firth, off the east coast of 

Ireland and north coast of Northern Ireland, however, (iii) confidence in predictions of 

benthic infaunal production is low over a spatial extent of 80,000 km2. 
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2.7 APPENDICES 

 

2.7.1 Benthic community data used to calculate production estimates 

Table 2. 1. Details of the five research surveys from which existing benthic infauna biomass and abundance data were obtained and used to calculate 
benthic infaunal production estimates. Where appropriate, the associated publication that originally used the data is also given. 

Survey 
No. 

Source Location Survey dates No. of 
stations 

No. of 
replicate 
samples at 
each station 

Sample gear Associated publication 

1 Bangor 
University 

North-East Irish 
Sea 

18 - 26/11/04 21 4 0.1m
2 

Day grab Hinz et al. (2009) Trawl disturbance on benthic 
communities: chronic effects and experimental predictions. 
Ecological Applications 19(3): 761-773. 

2 Bangor 
University 

Irish Sea 23 - 30/06/07 14 2 0.1m
2 

Day grab Hiddink et al. (2008) Context dependency of relationships 
between biodiversity and ecosystem function is different 
for multiple ecosystem functions. Oikos 118(12): 1892-
1900. 

3 Countryside 
Council for 
Wales 

Cardigan Bay , 
Wales 

19 - 20/02/08 8 2-4 0.1m
2 

Day grab  

4 Countryside 
Council for 
Wales 

St Bridesbay, 
Wales 

08 - 09/04/08 5 4 0.1m
2
 Day grab  

5 Environment 
Agency Wales 

Carmarthen 
Bay, Wales 

14/05/08 1 5 0.1m2 Van Veen 
Grab 
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2.7.2 Environmental data 

 

 

Figure 2.7. Mean annual sea-surface chlorophyll-a concentration for 2004-2008, calculated 
from remotely-sensed monthly composites obtained from NEODAAS (NERC Earth Observation 
Data Acquisition and Analysis Serivces, http:/www.neodaas.ac.uk). Data are presented at a 
spatial resolution of 5km2. 
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Figure 2.8. Annual front frequency data, extracted from 1.2 km resolution seasonal front 
frequency maps obtained from Defra via Dr Kirsten Ramsey. The annual frequency of pelagic 
fronts refers to the percentage of time that strong fronts occur in a particular area over a year. 
Front frequency was derived from oceanic thermal front metrics obtained from remotely-sensed 
data sea surface temperature data (see Miller et al. 2010 for technical details). Data are 
presented at a spatial resolution of 10 km2. 
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Figure 2.9. Summer watercolumn characteristic data obtained from the UKSeaMap project. Data 
are presented at a spatial resolution of 5 km2. 
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Figure 2.10. Total tidal-induced shear stress or force (N m-2) experienced by the seabed, 
modelled for the European Shelf by Egbert et al. (2010). 
http://volkov.oce.orst.edu/tides/ES.html. Data are presented at a spatial resolution of 5km2. 

http://volkov.oce.orst.edu/tides/ES.html
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Figure 2.11. The fraction of the time that wave shear stress values exceeded 0.25 Nm-2 was used 
as a measure of wave shear stress experience by the benthic community. This metric was 
obtained from a model developed by Dr Simon Neill for the Irish Sea (see Hiddink et al. 2009 for 
further details of model developed). Data are presented at a spatial resolution of 5 km2. 
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Figure 2.12. British Geological Survey Folk Triangle Classification for sea-bed sediment data. 
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Figure 2.13. Sediment type converted from the British Geological Survey Folk Triangle 

classification using the conversions in Table 2.2. These simplified sediment types were used in 

all subsequent analyses. Data is presented at a spatial resolution of 5 km2. 
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Table 2.2. Conversion table used to group British Geological Survey Folk Triangle sea bed 

sediment classifications into four sediment groups for statistical analysis. 

 

BGS Folk Triangle classification Sediment type 

SANDY MUD Mud 

MUD Mud 

SLIGHTLY GRAVELLY SANDY MUD Mud 

SLIGHTLY GRAVELLY MUD Mud 

GRAVELLY MUD Mud 

SLIGHTLY GRAVELLY SAND Sand 

SAND Sand 

GRAVELLY SAND Sand 

MUDDY SAND Sand 

GRAVELLY MUDDY SAND Sand 

SLIGHTLY GRAVELLY MUDDY SAND Sand 

SANDY GRAVEL Gravel 

MUDDY GRAVEL Gravel 

GRAVEL Gravel 

MUDDY SANDY GRAVEL Gravel 

ROCK OR DIAMICTON Other 

UNDIFFERENTIATED SOLID ROCK Other 

DIAMICTON Other 

GRAVEL, SAND AND SILT Other 

ROCK AND SEDIMENT Other 
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2.7.3 Fishing intensity data 

 

Table 2.3. Scallop dredge gear width conversions used to calculate area swept for vessel 
monitoring system (VMS) records. 

 

Administration Distance from 
shore (nm) 

Dredge limit 
(no. per side) 

Dredge width 
(m) 

Total gear 
width 
calculation 

Total gear width 
(per vessel) 

England 0 - 6 8 0.75 (8*2)*0.75 12 

England >6 18 0.75 (18*2)*0.75 27 

Scotland 0 - 6 8 0.75 (8*2)*0.75 12 

Scotland 6 - 12 10 0.75 (10*2)*0.75 15 

Wales 0 - 3 4 0.75 (4*2)*0.75 6 

Wales 3 - 12 8 0.75 (8*2)*0.75 12 

Isle of Man 0 - 3 5 0.75 (5*2)*0.75 7.5 

Isle of Man 3 - 12 8 0.75 (8*2)*0.75 12 
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Figure 2.14. Fishing intensity estimates derived from vessel monitoring system (VMS) data 
(2008-2011) obtained the Marine Management Organisation.  Data are presented at a spatial 
resolution of 5 km2.
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2.7.4 Sampling design 

 

Figure 2.15. Examples of sampling design for analysis 1 (spatial grain size). Sampling design is illustrated for a grain size of (a) 2.5 km2, (b) 20 km2 and 

(c) 320 km2. Greyscale is used to illustrate different sampling units, and is not respresentive of any measure or value. 
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2.7.5 Generalised Least Squares regression model details 

 

Table 2.4. Regression model details and results for all optimal Generalized least squares (GLS) regression models identified in Analysis 1. Analysis 1 
investigated production-environment relationships at nine different spatial grains in the Irish Sea. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spatial grain Correlation  
structure 

N Df Variables retained Coefficient Std Error F P-value Pearson’s 
correlation 
coefficient (r) 

Site scale varPower 15 12 Chlorophyll-a 445.76 81.06 26.87 0.000  0.92 
    Sediment type (sand) 209.53 44.50 22.17 0.000   

2.5 km
2
 NONE 15 12 Chlorophyll-a 336.27 49.25 51.02 0.000  0.95 

    Fishing intensity -30.19 4.57 34.93 0.000   

5 km
2
 NONE 15 11 Chlorophyll-a 519.49 118.01 38.40 0.001 0.92 

    Sediment type (sand) 223.02 80.34 7.71 0.020  
    Tidal shear stress 390.87 144.23 17.62 0.018  

10 km
2
 varPower 15 12 Chlorophyll-a 260.22 59.34 23.90 0.001 0.92 

    Fishing intensity -22.64 4.76 22.65 0.001  

20 km
2
 varPower 15 12 Chlorophyll-a 552.05 124.91 31.26 0.001 0.85 

    Sediment type (sand) 255.34 61.72 17.12 0.001  

40 km
2
 varPower 15 12 Chlorophyll-a 454.29 91.05 11.60 0.000 0.85 

    Sediment type (sand) 287.15 50.74 32.03 0.000  

80 km
2
 NONE 15 12 Chlorophyll-a 319.84 70.05 20.04 0.001 0.82 

    Sediment type (sand) 120.68 62.74 3.70 0.078  

160 km
2
 NONE 15 13 Chlorophyll-a 303.01 116.29 6.79 0.022 0.59 

          

320 km
2
 varPower 15 13 Chlorophyll-a 297.99 87.18 11.68 0.005 0.74 
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2.7.6 Area of no model predictions 

 

Figure 2.16. Areas of gravel and rock (identified by the grey colour) for which predictions from 
the optimal 5 km2 Generalised least squares (GLS) regression model identified in Analysis 1 are 
not available. No predictions are made for these sediment types because they are not 
represented in the original model parameterisation data. See Figure 2.6 for further details. 
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CHAPTER 3 - Modelling benthic infaunal 
production, biomass and recovery in the Irish 
Sea 
 

3.1 AIM: To refine and re-parameterise an existing size-based model of benthic 

invertebrate communities for application in the Irish Sea. The model will predict benthic 

infaunal production and biomass, assess the impact of current bottom fishing activity on 

these attributes, and estimate the recovery time of benthic communities following 

fishing impact. 

3.2 ABSTRACT 

 
Knowledge of the spatial distribution of benthic infaunal production is required if this 

important ecosystem process is to be protected in marine protected areas (MPAs). Size-

based models of benthic invertebrate communities are useful tools for predicting 

community productivity. If size-based models can be used to predict production over 

large spatial scales these models could help prioritise MPA site selection. Here the 

Hiddink et al. (2006a) size-based model of benthic production, biomass and bottom 

fishing impacts for the North Sea is re-parameterised and validated for the Irish Sea. In 

particular, the estimation of benthic community carrying capacity is improved and re-

parameterised. The model predicts benthic infaunal production and biomass under 

fished and unfished scenarios at a spatial scale of 5 km2. Estimates of fishing intensity 

incorporated into the fished scenario were obtained from vessel monitoring systems 

(VMS) data (2008-2011). The model outputs were validated with independent benthic 

infauna data from 19 stations in Irish Sea collected in 2011. 48% of the spatial variation 

in productivity can be explained. The model predicts that areas of high production and 

biomass are located along the North Wales coast, off the north-west coast of England, 

the Solway Firth. Predictions of bottom fishing impact indicate that fishing reduces Irish 

Sea production by 5.1% and biomass by 12.2% compared to the unfished scenario, and 

predictions of benthic community recovery from fishing suggest that the productivity of 

communities takes between 2.6 to 13.3 years to recover, whereas biomass takes 2.2 to 

7.7 years.  The spatial distribution of benthic production and biomass, areas of high 
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bottom fishing impact and long recovery time could all inform spatial management of 

benthic communities in the Irish Sea.  

 

3.3 INTRODUCTION 

 

Benthic infaunal production is an important marine ecosystem process that underlies 

energy and nutrient cycling, and supports demersal fish stocks (Tumbiolo & Downing, 

1994; Danovaro et al. 2008; Heath, 2005; Wouters & Cabral, 2009). This indicator of 

benthic ecosystem health and quality could be used to direct spatial management 

measures such as marine protected areas (MPAs) (Collie et al. 2005; Hiddink et al. 

2006b). To prioritise areas of high benthic infaunal production for protection in MPAs, 

knowledge of the spatial variation in productivity is required. Empirical models of 

benthic production could provide spatially consistent data to support MPA design. 

 

Hiddink et al. (2006) developed an empirical, size-based model of benthic biomass, 

production and species richness for the North Sea, based on a model of trawling impacts 

originally developed by Duplisea et al. (2002). Size-based models are useful for 

modelling the productivity of marine communities because body size largely determines 

metabolic rate and subsequently rates of consumption and production (Sheldon et al 

1977), and the body size distribution of a population is therefore a key parameter in the 

calculation of a population’s productivity (Brey, 2001, Robinson et al 2010). Marine 

communities are size-structured, meaning that interactions between individuals are 

size-dependent. Size-based models can therefore capture marine population dynamics 

without the need to know the ecology for all species in a community (Blanchard et al. 

2012). This generality allows size-based models to be applied to a range of different 

community and habitat types (Travers et al. 2007; Robinson et al. 2010). Finally, fishing 

impacts on benthic communities are size-specific, making size-based models useful for 

estimating the impact of bottom fishing on productivity (Queiros et al. 2006). 

 

The Hiddink et al. (2006) model (hereafter Hiddink model) included habitat features to 

enable it to predict benthic community characteristics over large spatial scales and to 
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identify differences in vulnerability to trawling (Hiddink et al. 2006a; Hiddink et al. 

2006b). Tillin et al. (2009), however, found that confidence in the Hiddink model was 

not great enough to be utilised for predicting production beyond the area for which it 

was parameterised. Many assumptions were made and limited datasets utilised in the 

development and parameterisation of the Hiddink model (Hiddink et al. 2006a). 

Carrying capacity parameterisation, for example, was based on a small dataset of 

chlorophyll-a content of sediment data, and interpolated chlorophyll-a sediment data 

were used to estimate benthic carrying capacity in the model. The influence of spatial 

grain and spatial extent was also not considered when parameterising the Hiddink 

model. As a result, confidence that the empirical environment-production relationships 

identified during parameterisation can be scaled up to the 9 km2 scale of predictions is 

limited, and the degree to which the identified relationships apply over large areas is 

unknown.   

 

In order to apply the Hiddink (2006) predictive model for the purpose of MPA design it 

will require refining and re-parameterising for the particular area of interest. To predict 

benthic production in the Irish Sea, for example, a quantitative understanding of the 

relationship between the environmental conditions and the productivity of benthic 

communities in this area is required, and an understanding of the influence of spatial 

grain size and extent on these relationships would be helpful to identify the optimal 

scale at which to make predictions. Here the Hiddink (2006) size-based model is 

improved and re-parameterised for application in the Irish Sea, based on production-

environment relationships identified in the multi-scale generalised least square 

regression analyses outlined in Chapter 2. Chapter 2 examined how spatial grain size 

and extent influenced these environment-production relationships in order to identify 

the optimum spatial grain at which to make predictions and inform re-parameterisation 

of the model.  

 

The model will predict benthic infauna production and biomass in the Irish Sea under 

current bottom fishing activity, estimated from vessel monitoring system (VMS) satellite 

data (obtained from the Marine Management Organisation). As outlined in Chapter 1, 

bottom fishing has been found to have a negative impact on benthic invertebrate 
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production and biomass, resulting from the removal and morality of individuals caused 

by fishing gear (Jennings et al. 2001; Reiss et al. 2009). The extent and magnitude of 

current bottom fishing impacts on benthic production and biomass at the scale of the 

Irish Sea can be estimated by comparing this model output to predictions made under 

an unfished scenario, and the nature of the dynamic, size-based model allows the 

estimation of the time it takes for the productivity and biomass of benthic communities 

to recovery following the cessation of bottom fishing. Time to recover estimates can be 

compared to current fishing intensity estimates to understand the current recovery 

status of the benthic communities in the Irish Sea. All these model output could inform 

the spatial management of benthic production in MPAs, by identifying areas of high 

benthic productivity, areas where trawling has a large negative effect, and areas that are 

slow to recover or in an un-recovered state for MPA prioritisation. 

 

3.4 MATERIALS AND METHODS 

 

3.4.1 Method overview 

 

Here an existing size-based model of benthic invertebrate communities is re-

parameterised and validated for the Irish Sea. This model of benthic biomass, 

production and species richness for the North Sea was originally developed by Duplisea 

et al. (2002) to predict the size-distribution of benthic assemblages and investigate 

bottom trawling impacts. The model was refined by Hiddink et al. (2006a) to include 

environmental parameters for application in the southern North Sea. The Hiddink et al. 

(2006) model (hereafter Hiddink model) made predictions of benthic community 

production and biomass at a spatial resolution of 9 km2 in response to environmental 

conditions and bottom trawling. This model incorporated four environment-mediated 

relationships, including the effect of (i) tidal-induced shear stress on population growth 

(hereafter tidal shear stress), (ii) sediment erosion on mortality, (iii) sediment type on 

fishing mortality, and (iv) chlorophyll-a concentration of the sediment on benthic 

community carrying capacity. 
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As already outlined, the Hiddink model has some weaknesses, particularly the 

calculation of carrying capacity and lack of consideration of spatial scale. Furthermore, 

in order to apply to a different area of UK waters, it is likely that the model will need 

local parameterisation in order to reflect any differences in production-environment 

relationships. Environmental conditions in the North Sea and Irish Sea are very 

different; the North Sea is dominated by soft sediments and stratified waters (Heath, 

2005), whilst the Irish Sea exhibits greater variation in hydrodynamic regime, seabed 

sediment type and depth (Bolam et al. 2010; Bowers et al. 2013).   

 

Potential major improvements on the Hiddink model include refined parameterisation 

of benthic carrying capacity estimates and influence of tidal shear stress, and the 

identification of a suitable spatial scale for predictions, based on the observed multi-

scale production-environment relationships identified in Chapter 2. Chapter 2 identified 

a spatial grain size between 2.5 km2 and 20 km2 to be suitable scale at which the 

explanatory power of production-environment relationships is greatest for making 

predictions. A spatial grain of 5 km2 was chosen to make predictions here because of it is 

considered a relevant scale for informing MPA design. A review of 89 marine protected 

areas by Halpern (2003), for example, found that the median size of reserves was 4.0 

km2 (ranging from 0.002-846 km2). 

 

The relationships between benthic community production and environmental 

conditions in the Irish Sea identified in Chapter 2 included; (i) a positive relationship 

between production and remotely-sensed chlorophyll-a concentration in surface waters, 

(ii) variation in productivity with sediment type, (iii) a positive relationship between 

production and modelled tidal shear stress, and (iv) a negative relationship between 

production and bottom fishing intensity estimated from vessel monitoring system (VMS) 

records from the time period 2004 – 2008. See Chapter 2 for an outline of the data and 

methods used to identity these relationships. The Irish Sea specific production-

environment relationships were incorporated by adding and adapting existing 

environment-mediated carrying capacity, growth and mortality functions in the size-

based model. The sediment erosion-mortality function was removed because this 

relationship was not investigated for the Irish Sea. 
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To make predictions of benthic infaunal production at the 5 km2 scale, remotely-sensed 

surface water chlorophyll-a concentration, sediment type, modelled tidal shear stress, 

and VMS derived fishing intensity data was collated a spatial resolution of 5 km2 for 

input into the model (see Appendix 2.7.2 and 2.7.3 for distribution maps of these data). 

 

3.4.2 Model development 
 

The size-based model consists of 32 state variables. These 32 state variables are 

characterised by different body sizes and two different body types; 16 soft-bodied 

(SOFT, body size range: 1.9-500 mg AFDW) and 16 hard-bodied (HARD, body size range: 

50-60 000 mg). The SOFT body size classes represent macrofauna such as polychaetes, 

whereas HARD body size classes represent macrofauna such as bivalves and 

crustaceans. Growth of population biomass within each of these 32 different body size 

and body type groups is modelled using modified Lotka-Volterra competition equations 

to give population biomass flux: 

( )           
   
  

       (
           

  
)          

where i and j are two competing populations of animals, Bi is the biomass of animals in 

population i and Bj the biomass of the competing animals in population j. Ci refers to the 

carrying capacity of the competitor i, ri to the specific growth rate or rate of increase in 

biomass of i, and Morti to the mortality rate of I. αij is the competitive influence of a unit 

of the competitor j biomass on the carrying capacity of population i.  Here soft-bodied 

and hard-bodied animals are assumed to be in competition with each other (Wilson, 

1990), so that in the model the biomass of HARD animals (those fauna with shells or 

exoskeletons, representing bivalves and crustaceans) has a negative effect on the 

carrying capacity of SOFT animals (representing soft-bodied fauna such as polychaetes) 

and vice versa. Specific growth rates for SOFT and HARD were derived by Duplisea et al. 

(2002) from Von Bertalanffy growth rate values (k) taken from Brey (1999). Specific 

mortality rates were subsequently derived from these specific growth rates. For details 

of all parameter values for all body size classes and body types see Table 2 in Duplisea et 

al. (2002). 
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The influence of environment on the productivity of benthic communities identified in 

Chapter 2 is incorporated into the model by adapting the estimation of benthic 

community carrying capacity, and the environment-mediated growth modifer and 

mortality functions that influence the Lotka-Volterra growth function. The key 

differences to the Hiddink model are the improvements made to the estimation of 

carrying capacity, and changes to a tidal shear stress-mediated growth modifier 

function. Both of these influence growth in the model, and are explained in details in the 

sections below. 

 

Estimating the carrying capacity of the benthic community 

 

Sea surface chlorophyll-a is expected to represent food potentially available to the 

benthos (Wolff, 1977; Bolam et al. 2010). Surface water chlorophyll-a concentration has 

been found to be an important driver of benthic community production at the 5km2 

scale across the whole of the Irish Sea area, indicating that it could be a useful proxy for 

the carrying capacity of benthic communities (see Chapter 2). Remotely-sensed surface 

water chlorophyll-a is therefore used to determine carrying capacity of the benthic 

community in the model, rather than chlorophyll-a content of the sediment data, which 

was used in the Hiddink model. This is considered an improvement on the Hiddink 

model because it allows benthic carrying capacity to be estimated from a remotely-

sensed, spatially continuous environment variable that is easily obtained from 

NEODASS, rather than from interpolated chlorophyll-a content of the sediment from 

spaced observations which can be subject to interpolation error (Zhou, 1998). 

Furthermore, chlorophyll-a content of the sediment may limit estimates of carrying 

capacity because it only reflects food available to certain faunal groups, e.g. surface and 

subsurface deposit feeders (Burd et al. 2012). Suspension feeders are more likely to 

metabolise suspended organic material than that accumulated in sediment, and 

therefore chlorophyll-a at the sea surface may be a better estimate of total food 

availability and therefore maximum carrying capacity. It is recognised, however, that 

this will be modified by hydrodynamic regime, such as stratification, and the strength of 

bed shear stresses (Warwick & Uncles, 1980; Snelgrove & Butman, 1994; Kaiser et al. 

2006; Bolam et al. 2010). 
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The relationship between chlorophyll-a and carrying capacity was determined by 

quantile regression describing how benthic community biomass (g WM m-2) was limited 

by surface chlorophyll-a (mg m-3) using 5 km2 resolution data from across the Irish Sea 

(chlorophyll-a data obtained from NERC Earth Observation Data Acquisition and 

Analysis Serivces, http:/www.neodaas.ac.uk). These data represented an average from 

the period Jan 2004 to Dec 2008. Interestingly, an interaction between chlorophyll-a and 

sediment type was found in relation to total benthic infauna biomass, and quantile 

regressions describing the relationship between chlorophyll-a and biomass in different 

sediment types were used to parameterise benthic community carrying capacity in the 

model. Figure 3.1a and Figure 3.1b presents the results of 90th quantile regressions used 

for parameterising the carrying capacity estimates in sand and mud sediment types, 

respectively. For gravel there appeared to be no relationship between chlorophyll-a and 

benthic biomass, so carrying capacity was set at a fixed level of 1143.35 g MW m-2 based 

on 90th quantile regression without an intercept on the data available (Figure 3.1c).  

 

Although such an interaction between chlorophyll-a, sediment type and benthic biomass 

is unexpected, the quantile regression results support the finding that sediment type is 

also an important driver of benthic infauna production at the 5km2 scale (see Chapter 2). 

Higher rates of total benthic production in sandy sediments compared to muddy 

sediments are assumed to reflect the influence of hydrodynamics (Warwick & Uncles, 

1980), which is known to influence food supply to the benthos and thus growth 

(Snelgrove & Butman, 1994; Kaiser et al. 2006). That is, sandy, coarser sediments are 

characteristic of areas that experience higher levels of tidal shear stress than areas of 

muddy sediment (Warwick & Uncles, 1980), and in these areas a greater current speed 

provides more food to the benthos (Hiddink et al. 2006; Lambert at al. 2011). Using 

sediment-specific relationships to calculate carrying capacity from chlorophyll-a allows 

the previously identified associations between both chlorophyll-a concentration and 

sediment type on production to be incorporated into the model. 
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Figure 3.1. Parameterisation of the model. (a) 90th quantile regression describing the 

relationship between benthic infaunal biomass (g WM m-2) in sandy sediments and sea surface 

chlorophyll-a concentration (mg m-3, annual mean 2004 to 2008). (b) 90th quantile regression 

describing the relationship between benthic infaunal biomass (g WM m-2) in muddy sediments 

and chlorophyll-a concentration (mg m-3, 2004 to 2008). (c) 90th quantile regression without 

intercept between benthic infaunal biomass (g WM m-2) in gravelly sediments and chlorophyll-a 

concentration (mg m-3, 2004-2008). The dashed lines on figures (a) to (c) represent the 

relationships used to parameterise carrying capacity in the model. (d) Gaussian relationship 

between benthic infaunal production (kJ m-2 yr-1), infauna growth rate and tidal shear stress (N 

m-2) parameterised in the model. The data points represent the observed relationship between 

benthic infaunal production (kJ m-2 yr-1) and tidal shear stress (N m-2) at a resolution of 5 km2 in 

the Irish Sea (N = 15, F[1,11] = 7.34, p= 0.020). (e) Observed relationship between benthic infaunal 

production (kJ m-2 yr-1) and fishing intensity (km-2 yr-1) at a resolution of 5 km2 in the Irish Sea 

(N = 20, F [1,17]= 19.68, p = 0.000). (e) Percentage mortality per fishing event for hard- (solid 

bars) and soft-bodied (open bars) benthic invertebrates for the three sediment types included in 

the model, adapted from Hiddink et al. (2006a). 
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Effect of tidal shear stress on growth rate 

 

Tidal shear stress is a measure of the degree of water movement at the water-sediment 

interface and is expected to have an important influence benthic productivity by 

mediating the availability of food to the benthos (Warwick & Uncles, 1980; Snelgrove & 

Butman, 1994). A positive linear relationship between benthic infaunal production and 

tidal shear stress over a range of 0.2 to 1 N m-2 has previously been identified in the Irish 

Sea at a spatial resolution of 5km2 (see Chapter 2). Due to its influence on food supply 

this relationship between tidal shear stress and benthic production is included in the 

model by modifying the growth rate of benthic invertebrates in relation to different 

levels of tidal shear stress (Figure 3.1d).  

 

The data used to identify the above, observed relationship between benthic production 

and tidal shear stress had a maximum shear stress of 1 N m-2. However, tidal shear 

stress in the Irish Sea extends up to 1 N m-2 so additional information from previous 

studies and literature was used to inform the relationship between productivity and 

shear stress at values higher than 1 Nm-2. An optimal bed stress range within which a 

sufficient amount of food is provided to the sea bed is expected (Kaiser et al. 2005; 

Hiddink et al. 2006a), because at high levels of tidal shear stress food is expected to be 

transported away too quickly, impairing uptake by benthic invertebrates (Hiddink et al. 

2006a). Hiddink et al. (2006a) found an optimum relationship between benthic biomass 

and shear stress in soft sediments in the North Sea, therefore an optimum relationship 

was also included here. 

 

An optimum relationship between tidal shear stress and benthic infaunal growth was 

built into the model by including a growth rate modifier function. This tidal shear stress-

dependent growth rate modifier function identified a factor by which to multiply the 

normal, Lotka-Volterra estimated growth rate. The relationship between tidal shear 

stress and the growth rate modifier is described by the Gaussian curve shown in Figure 

3.1d, modelled according to: 

( )                     (          ) 
(    )
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Where G is the shear stress-dependent growth modifier factor, Gmin is the minimal 

growth rate (0.95), Gmax is the maximum growth rate (1.2), S is shear stress, Sm is shear 

stress at which the maximum growth rate is reached (1 N m-2), and V is the variance of 

the Gaussian curve (0.085). This parameterisation reflected the assumed optimal 

relationship between tidal shear stress and growth, informed by the empirical findings 

of Chapter 2 and Hiddink et al. (2006a). 

 

Impact of bottom fishing on mortality 

 

Bottom fishing is expected to have a negative impact on benthic production (Jennings et 

al. 2001; Collie et al 2005; Hiddink et al. 2006b; Reiss et al. 2009), and a significant 

negative relationship between benthic infaunal production and bottom fishing has been 

found in the Irish Sea at a resolution of 5km2 (Figure 3.1e). This negative impact of 

bottom fishing on benthic production was incorporated into the model by including 

habitat- and body type-dependent mortality functions. These were determined by 

Hiddink et al. (2006a) based on an extensive quantitative dataset of direct fishing 

impacts collated by Collie et al. (2000) (See Hiddink et al. 2006a for further details). 

Mortality rates are found to be highest in coarser sediments such as sand and gravel 

compared to finer sediments such as mud, and higher for hard-bodied benthic animals 

than for soft-bodied benthic animals (Figure 3.1f). 

 

3.4.3 Making predictions 

 

Environmental data for the Irish Sea 

 

Remotely-sensed surface water chlorophyll-a concentration data at a 1.1 km spatial 

resolution were provided by NEODAAS (NERC Earth Observation Data Acquisition and 

Analysis Serivces, http:/www.neodaas.ac.uk). These data were obtained from the MODIS 

sensor using the case 2 chl-a algorithm (OC5) for turbid shelf seas, and an annual 

average for the years 2008 to 2011 was calculated from monthly composites (see Figure 

X, Annexe A). The tidal shear stress data used here was modelled by Egbert et al. (2010). 

This modelled data is available for the whole European Shelf, and was downloaded from 
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the OSU Tidal Data Inversion webpage, http://volkov.oce.orst.edu/tides/ES.html (for 

details see Egbert et al. 2010). The data have a spatial resolution of 0.03 decimal 

degrees, and represent total maximum tidal-induced stress or force (N m-2) experienced 

by the seabed (see Figure 2.7, Appendix 2.7.2). Average chlorophyll-a concentration and 

tidal shear stress values were calculated at a spatial resolution of 5 km2 across the Irish 

Sea. 

 

Seabed sediment data was obtained from the latest British Geological Survey (BGS) 

1:250 000 scale digital Sea bed Sediment map, released 2011 (see Figure 2.12, Appendix 

2.7.2). The Folk triangle classification used by BGS was simplified by collapsing all 

sediments dominated by mud into Mud, all sediments dominated by sand into Sand, and 

so on, to give four major sediment types; Sand, Mud, Gravel and Other (see Table 2.1 

Appendix 2.7.2 for a conversion table, and Figure 2.13, Appendix 2.7.2 for resulting map 

of the four different sediment types). This meant that sediment types were comparable 

to those used in Chapter 2. To scale sediment data up to a spatial resolution of 5 km2, the 

sediment type that covered the greatest area within a 5 km2 cell was assigned to that 

cell. 

 

Bottom fishing intensity estimates were derived from Vessel Monitoring System (VMS) 

data provided by the UK Marine Management Organisation. Fishing intensity was 

measured as the number of times a 1 km2 area is swept by fishing gear per year (km-2 yr-

1), calculated from bottom trawling and dredging VMS records within each 5 km2 cell 

from the time period Jan 2008 to December 2011 (see Figure 2.13, Appendix 2.7.3). 

Fishing intensity in a particular area is likely to vary each year, and bottom trawling 

history, i.e. trawling impacts over several years, is expected to be a better indicator of 

benthic community composition than single year fishing intensity estimates (Hiddink et 

al. 2006a). Bottom fishing intensity data from several years was therefore used to better 

reflect cumulative fishing impact on the benthos (Lambert et al. submitted).  

 

VMS data were cleaned and processed using the VMStools package in R and protocol 

developed by Hintzen et al (2012). Bottom fishing vessel types were grouped into three 

main gear classes; otter trawl, beam trawl and scallop dredge. A gear width of 60 metres 

http://volkov.oce.orst.edu/tides/ES.html
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and 24 metres was allocated to otter trawlers and beam trawlers, respectively, following 

previous approaches by Hiddink et al. (2006a) and Hinz et al. (2009). Different 

regulations regarding the maximum number of dredges are in force across the Irish Sea, 

depending on in which country and how many nautical miles from shore a vessel is 

fishing (Beukers-Stewart & Beukers-Stewart, 2009). Gear width for dredgers was 

therefore determined based on where in the Irish Sea a VMS position was identified. The 

different administrative zones, associated number of dredges and total gear width can 

be found in Table 2.3, Appendix 2.7.3. Vessel speed was used to distinguish between 

steaming and fishing activity in order to determine which VMS positions to include in 

the calculation of fishing intensity. Fishing speed was defined using speed histograms, 

similar to the approach of Lee et al. 2010. Fishing speed for otter trawlers and dredgers 

was defined as one to four knots, whereas fishing speed for beam trawlers was defined 

as two to five knots.  

 

The area swept by fishing gear represented by each 2 hour interval VMS record was 

determined from the fishing speed and fishing gear width associated with each record. 

Interpolation of fishing tracks between 2 hours VMS positions was not considered 

necessary here because data were being collated at 5km2 scale, and therefore fine scale 

detail of fishing tracks was not required (Lee et al. 2010). The total area swept by fishing 

gear in each 5km2 cell was calculated by summing the area represented by all the 

records occurring in the cell between 2008 and 2011. The number of times that each 

5km2 cell was fished per year was then estimated to give fishing intensity (km-2 yr-1). For 

example, one 2 hour interval VMS record for a 60m otter trawler travelling at 4 knots 

represents a fished area of 0.889 km2, and if this was the only record found in a 5km2 

cell over a four year period, the estimated fishing intensity would be 0.0445 km-2 yr-1 for 

that cell. 
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3.4.4 Model application to MPA design 

 

Predicting benthic infaunal production and assessing current bottom fishing impacts 

 

Benthic infaunal production and biomass under current fishing activity for each 5 km2 

cell in the Irish Sea was predicted by running the model for 1500 time steps of 30 days, 

using the habitat and bottom intensity data described above. To assess the extent and 

magnitude of current bottom fishing impacts on benthic infaunal production and 

biomass these estimates were compared with predictions under an unfished scenario. 

Unfished production and biomass estimates were generated by running the same model 

for 1500 time steps of 30 days whilst setting bottom fishing intensity to zero. The 

difference between fished and unfished estimates were mapped to give an 

understanding of the spatial distribution of bottom fishing impacts, and to identify those 

areas that are most highly impacted. To understand the overall impact of bottom fishing 

at the scale of the Irish Sea, production and biomass estimates predicted under the 

fished and unfished scenarios were summed over all cells in the Irish Sea and compared. 

 

Modelling benthic infaunal production under current fishing activity can identify areas 

of high productivity and inform the prioritisation of MPAs to protect benthic 

communities. Similarly, estimating the extent and magnitude of bottom fishing impacts 

on benthic infaunal communities could inform marine spatial management by 

highlighting areas of very high negative impact. These negative impacts could be 

mediated by spatial management measures such as permanent no-take MPAs, or effort 

restrictions that manage bottom fishing impact at some defined, acceptable level. 

 

Estimating recovery potential and recovery status of benthic communities  

 

In addition to predicting production, biomass and quantifying the impact of bottom 

fishing activity, the nature of the dynamic, size-based model used here allows the 

estimation of the recovery potential of benthic communities following cessation of 

bottom fishing. Recovery potential is measured by the time it takes for benthic 
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productivity and biomass to recover to a level expected in the absence of fishing 

(unfished), or near to an unfished state, chosen arbitrary to be 90% of the production 

and biomass estimates (P0.9 and B0.9)  generated under the unfished scenario described 

above (Hiddink et al. 2006b). 

 

Time to recovery estimates were generated by running the model for 1500 time steps of 

30 days without bottom fishing, and then implementing a single fishing event and 

recording the time at which infauna production and biomass returned to the near 

unfished state, P0.9 and B0.9 respectively. These recovery potential estimates can be 

compared to current fishing intensity estimates to understand the current recovery 

status of the benthic communities in the Irish Sea. That is, whether or not the benthic 

community has recovered to the near unfished state, P0.9 or B0.9, since the last bottom 

trawling event (recovered to P0.9/B0.9 since last bottom fishing event = 1, not recovered 

to P0.9/B0.9 since last bottom fishing event = 0). Here, if bottom fishing intensity is lower 

than the inverse of the recovery potential of the benthic infaunal community, bottom 

fishing intensity is assumed to be high enough to prevent the community reaching a 

recovered state since the last fishing event. 

 

Estimates of recovery potential and recovery status can inform marine spatial 

management by highlighting those areas that are vulnerable to bottom fishing, i.e. take a 

long time to recovery from fishing impacts, or are currently in an unrecovered state. 

These areas could be prioritised for benthic community protection in no-take MPAs. 

Alternatively, fisheries management measures such as effort limitation could be 

employed to reduce fishing intensity to a level that allowed the benthic community 

recovery. 
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3.4.5 Model validation 

 

A research cruise on the RV Prince Madog was conducted in the Eastern Irish Sea during 

summer 2011 to collect independent benthic community data for model validation. 

Model predictions of benthic infauna production under current fishing activity were 

validated using observed benthic infauna production estimates calculated from this 

independent data. 

 

Independent data collection             

                                                                                                                                                                                                                                                                                                                                                                                                                                                                     

Benthic infaunal communities at 19 stations in the eastern Irish Sea were sampled using 

a Day grab. A limited area of the Irish Sea was sampled due to shiptime and funding 

constraints. Random sampling, stratified by sediment type was used to ensure a large 

range of habitats and environmental conditions (e.g. sediment type was assumed to act 

as a proxy for variation in tidal shear stress) were sampled within the limited time 

period and steaming distance available (see Figure 3.2 for sampling design). The largest 

range of environmental parameters possible within these restraints was covered in 

order to test the ability to the model to predict over different conditions. 

 

Three grabs were taken at each station and samples were passed through a 1 mm sieve 

and all retained animals were preserved in 4% buffered formalin on board. Replicates 

were pooled and all species data were standardised to number of individuals and total 

wet mass in grams per m2 (g WM m-2). Species where total wet mass equalled <0.001 g 

m-2 were removed due to a lack of a tangible biomass value and because they were 

considered to be inconsequential to subsequent calculations of community production 

estimates. 
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Figure 3.2. Research survey sampling design to collect independent benthic infaunal abundance 

and biomass data. 
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Benthic community production estimates 

 

Total annual benthic community production estimates (kJ m-2 yr-1) for each station were 

calculated from species abundance and biomass per m2 using an empirical model freely 

available in spreadsheet form on the Internet http://www.thomas-

brey.de/science/virtualhandbook/navlog/index.html (Brey, 2001). This multiple 

regression model calculates total annual production (kJ m-2 yr-1) and 

production/biomass (P:B) ratio (yr-1) for a given population based on a number of  

population-specific and habitat-specific inputs (see Brey 2001 for a detailed description 

of model). Here each population represents a different species, and so species-specific 

biomass (kJ m-2), abundance (individuals m-2), mean individual body mass (kJ), life 

history trait and taxonomic data were input into the model, along with station-specific 

depth and mean annual bottom water temperature.  

 

Depth data for individual stations were extracted from GEBCO 30 arc-second gridded 

bathymetry data http://www.gebco.net/data_and_products/gridded_bathymetry_data, 

and modelled annual mean bottom temperature for the year 2004-2008 for each station 

was obtained from the National Oceanography Centre, Liverpool, 

http://cobs.pol.ac.uk/modl/polcoms/irish/index.php?plot=t&type=002. 

 
To generate the energy values required by the Brey empirical model, species biomass 

data (g WM m-2) were converted to kJ m-2 using published conversion factors (Brey et al. 

2010). Conversion factors at the family level of taxonomic resolution were used because 

these values were based on a greater number of studies than those at higher taxonomic 

resolution, and are therefore assumed to be more representative and provide more 

accurate estimates than individual species or genus conversion factors. Where there was 

a paucity of data at the family level conversion factors from a lower taxonomic 

resolution were used, for example class or phyla. Biomass data for those taxa with shells 

were converted to shell-free weights using wet mass with shell (g WM+shell) to wet 

mass (g WM) conversion factors before further energy conversion factors were applied.  

http://www.thomas-brey.de/science/virtualhandbook/navlog/index.html
http://www.thomas-brey.de/science/virtualhandbook/navlog/index.html
http://www.gebco.net/data_and_products/gridded_bathymetry_data
http://cobs.pol.ac.uk/modl/polcoms/irish/index.php?plot=t&type=002


CHAPTER 3 – Modelling benthic production 

 

 

99 
 

The Brey (2001) model outputs include estimated P:B ratio (yr-1)  and total annual 

production (kJ m-2 yr-1) values with 95% confidence intervals for each species at each 

station. Although no confidence intervals for community level estimates can be 

calculated, pooled estimates are considered more accurate than individual population 

estimates (Brey, 2001).  

 

Community size spectra comparison 

 

Results of the model validation indicate that the absolute predicted values of benthic 

infauna production are approximately a factor 0.28 higher than the observed production 

estimates calculated from the independent data. This difference in absolute predicted 

and observed values may be a result of discrepancies in the absolute and relative 

abundance of different benthic infauna size classes between the independent data 

samples and those original data samples used parameterise the model (hereafter 

parameterisation data). 

 

Any such discrepancies between the independent and parameterisation data would be 

highlighted by a comparison of the size distribution of the benthic infauna in samples 

from the respective datasets. Therefore, to search for discrepancies, and  ensure that the 

independent data collected during the validation research cruise were comparable to 

the parameterisation data, normalised biomass size spectra for the communities were 

calculated on a base 2 logarithmic scale.  

 

Biomass data were pooled across all 19 validation stations, and across 19 randomly 

selected stations from the parameterisation dataset. These 19 randomly selected 

stations were restricted to the eastern Irish Sea area to maximise comparability. 

Normalised size spectra for the independent and parameterisation data were 

determined by plotting the total biomass for each log2-based size class divided by the 

weight range of the size class interval, against the upper limited of the log2 size class. 

These two normalised size spectra were visually compared to identify any discrepancies 

in size distribution. 



CHAPTER 3 – Modelling benthic production 

 

 

100 
 

3.5 RESULTS 

 

3.5.1 Model validation  

 

The model was validated by comparing model predictions with empirically observed 

benthic infaunal production from 19 stations sampled in the eastern Irish Sea. A 

significant, positive correlation between relative observed and predicted production 

estimates indicates that 48% of variation in benthic infauna production can be explained 

by the model (Figure 3.3, Pearson’s product-moment correlation; R2 = 0.48, t = 2.26, df = 

17, p = 0.037).  

 

Figure 3.3. Model validation. A comparison of modelled benthic infaunal production under 

current fishing activity to 19 independent, empirically observed benthic infaunal production 

estimates, calculated from benthic community data collected in the eastern Irish Sea in 2011. 
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The predicted values of benthic infaunal production were a factor of 0.28 higher than 

the empirically observed values. Comparison of the normalised community biomass size 

spectra for the independent, empirically observed validation data and the original 

empirically observed data used to parameterise the model indicate that the validation 

data may be under-representing larger biomass size-classes in the benthic community in 

comparison to the data used to parameterise the model (Figure 3.4). These larger size 

classes contribute significantly to production estimates because larger bodied animals 

tend to be long-lived, slow growing animals with high total annual production. The 

potential under-representation of these larger-bodied animals in the validation data are 

likely to result in the disparity between the absolute values of predicted and empirically 

observed benthic production. A correction factor is applied to the model to account for 

this difference.  

 

 

Figure 3.4. Comparison of normalised community biomass size spectra for the independent, 

empirically observed validation data and the empirically observed data originally used to 

parameterise the model. 
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3.5.2 Model predictions 

 

Benthic infauna production 

 

The spatial variation in predicted benthic infaunal production and benthic infaunal 

biomass under current fishing activity can be seen in Figure 3.5. Predicted benthic 

production estimates range from 0.8 to 1852.3 kJ m-2 yr-1, and summed benthic infaunal 

production for the whole Irish Sea area under current fishing activity is 1.6*106 kJ m-2 

yr-1. Predicted benthic biomass estimates range from 0.7 to 1531.1 g WM m-2, and 

summed biomass for the whole Irish Sea area under current fishing activity is 1.3*106 g 

WM m-2. Benthic production and biomass estimates are highest along the north Wales 

coast and areas along the north-west coast of England, the Solway Firth and off the 

south-west coast of Scotland. There is also a small area of relatively high productivity 

and biomass just of the coast of Dublin, Ireland. Production and biomass are predicted to 

be lowest in the mud holes of the east and west Irish Sea, and in the centre of the Irish 

Sea. As expected, the general pattern of productivity and biomass in the Irish Sea follow 

the general pattern of sea surface chlorophyll-a, the primary driver of benthic carrying 

capacity in the model. This pattern was modified by sediment type, explaining the low 

estimates for the mud holes. However, it should be noted that high fishing intensity in 

these areas also contributes to the low estimates of production and biomass. As 

expected, higher estimates were also associated with optimum tidal shear stress levels 

for growth (1 N m-2). 
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Figure 3.5. The spatial variation in modelled benthic infaunal (a) production and (b) biomass, predicted under current fishing activity in the Irish Sea.  

Figure 2.14, Appendix 2.7.2. gives the distribution of current fishing activity for comparison. Predictions are not made in the white areas because these are 

areas of hard substrate and the model was not parameterized to make predictions for this sediment type. See Figure 3.13, Appendix 3.7.1. for a map of the 

areas of hard substrate for which no predictions are made.
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Bottom fishing impact 

 

The predicted extent and magnitude of current bottom fishing impact on benthic 

infaunal production and biomass can be seen in Figure 3.6. Based on 2008-2011 VMS 

data, the model predicts that 51.4% of the Irish Sea area is impacted in some way by 

bottom fishing. Out of this 51.4%, only 37.8% of the Irish Sea experiences a decrease in 

benthic infaunal production in response to fishing. These negative impacts range from 

reductions of 435.7 to 0.01  kJ m-2 yr-1. The remaining 13.6% of the Irish Sea is predicted 

to experience a slight increase in productivity in response to fishing impact, illustrated 

by the blue areas in Figure 3.6. In comparison, the impacts of bottom fishing on benthic 

biomass are more severe, with all areas impacted by bottom fishing predicted to 

experience a decrease in benthic biomass, ranging from reductions of 622.9 to 0.01 g 

WM m-2 (Figure 3.6). 

 

Figure 3.7 presents the predicted changes in benthic production and biomass in 

response to bottom fishing for benthic infaunal communities in different sediment types. 

The greatest negative impacts in terms of reductions in both production and biomass 

were experienced by benthic infaunal communities in sandy and gravelly sediments, 

whereas benthic infaunal communities in muddy sediments were least impacted by 

bottom fishing. This is surprising, considering that muddy sediments in the Irish Sea 

experience the highest levels of fishing intensity (see a comparison of fishing intensity 

experienced by different sediment types in Figure 3.8). Figure 3.9 further indicates that 

the highest negative impacts experienced by benthic communities are not necessarily 

associated with the highest levels of fishing intensity. Benthic communities in gravel and 

sand that experience a loss of production or biomass greater than 200 kJ m-2 yr-1 or 200 

g WM m-2, for example, do not necessary experience the highest level of fishing intensity. 

 

The negative impact of bottom fishing on benthic infaunal production and biomass 

results from a removal of larger bodied individuals, and a subsequent shift towards 

smaller individuals with lower total annual production. Only limited areas in the Irish 

Sea experience very high negative fishing impacts. Figure 3.7 and 3.9 indicates that the 

majority of negative impacts fall between a reduction of 100 to 0 kJ m-2 yr-2 for 



CHAPTER 3 – Modelling benthic production 

 

 

105 
 

production and 200 to 0 g WM m-2 for biomass. Those areas that lose more than 100 kJ 

m-2 yr-1 of production as a direct result of bottom fishing, for example, cover only 0.7% 

of the Irish Sea.  

 

As mentioned above, bottom fishing also appears to have a positive impact on benthic 

production in 13.6% of the Irish Sea, indicated by Figure 3.6a.  These areas experience a 

slight increase in production under bottom fishing. These positive impacts are not 

observed for biomass (Figure 3.6b, Figure 3.7b). Increases in production under fishing 

occur in all habitats across a range of fishing intensities (Figure 3.9a), but are limited to 

areas of relatively low to medium levels of production (8.9 to 429.1 kJ m-2 yr-1). The 

range of positive impact varied from a 0.0002 to 70.8 kJ m-2 yr-1 increase in production. 

Overall productivity is only 5.1% lower than what would be expected under an unfished 

scenario. In comparison, benthic biomass is 12.2% lower than would be expected under 

an unfished scenario. 
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Figure 3.6. The predicted extent and magnitude of current bottom fishing impact on benthic infaunal (a) production and (b) biomass in the Irish Sea. 

Figure 2.14, Appendix 2.7.2 gives the distribution of current fishing activity for comparison.
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Figure 3.7. Predicted changes in benthic infaunal (a) production (kJ m-2 yr-1) and (b) biomass (g 

WM m-2) in response to bottom fishing, experienced by benthic infaunal communities in 

different sediment types; gravel, mud and sand. 
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Figure 3.8. A comparison of bottom fishing intensity (km-2 yr-1) experienced by benthic infauna 

communities in different sediment types; gravel, mud and sand. 
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Figure 3.9. Predicted changes in benthic (a) production and (b) biomass in response to bottom 

fishing in relation to bottom fishing intensity (km-2 yr-1) and sediment type. The straight black 

line represents zero bottom fishing. 
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 Recovery of benthic infauna communities 

 

The time taken for the productivity of benthic infaunal communities to recover after 

fishing impact to a level expected in the absence of fishing (P0.9) varied from 2.6 years to 

13.3 years (Figure 3.10a). In comparison, time take for the biomass of benthic 

communities to recover to B0.9 following the cessation of fishing ranged from 2.2 to 7.2 

years (Figure 3.10b). Benthic infaunal communities in muddy sediments recover quicker 

from bottom fishing impacts compared to sandy and gravelly sediments (Figure 3.11). 

Estimates of recovery status from a comparison of recovery times and current fishing 

intensity (km2 yr-1) indicate that 27.2% of the Irish Sea experiences a bottom fishing 

intensity that prevents the predicted production of the benthic communities returning 

to P0.9 after fishing impact (Figure 3.10c). In comparison, 20.6% of the Irish Sea 

experiences a bottom fishing intensity that prevents the predicted biomass of the 

benthic communities returning to P0.9 after fishing impact (Figure 3.10d). As expected, 

benthic communities that are considered not recovered tend to be those that experience 

the highest levels of fishing intensity (Figure 3.11. Also see Figure 2.13, Appendix 2.7.2 

for a distribution map of current bottom fishing intensity estimates for comparison). In 

these unrecovered areas fishing intensity is such that there is not enough time between 

fishing events to allow the productivity or biomass of the benthic infaunal community to 

recover to that expected under an unfished scenario (P0.9 and B0.9). Areas where the 

benthic infaunal community was estimated to be recovered (where production and 

biomass estimates were equal to or greater than P0.9 and B0.9) were characterised by 

relatively low fishing intensity (Figure 3.11). 
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Figure 3.10. Estimated recovery time for the (a) biomass and (b) production of benthic infaunal 

communities in the Irish Sea (time taken to recover to P0.9 and B0.9 respectively), following the 

cessation of fishing, and subsequent estimated recovery status for benthic (c) biomass and (d) 

production. Recovery status 1: bottom fishing intensity is low enough to allow predicted (c) 

biomass and (d) production to recover to B0.9 and P0.9 (recovered). Recovery status 0: bottom 

fishing intensity is too high to allow the predicted (c) biomass and (d) production to recover to 

B0.9 and P0.9 (not recovered). 
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Figure 3.11. A comparison of estimated recovery times for the (a) production and (b) biomass 

of benthic infaunal communities in different sediment types; gravel, mud and sand. Recovery 

time refers to the time taken for the (a) production and (b) biomass of benthic communities to 

recovery to a level expected in the absence of fishing (P0.9 and B0.9, respectively), following the 

cessation of fishing. 
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Figure 3.12. A comparison of bottom fishing intensity (km-2 yr-1) experienced by benthic 

infaunal communities exhibiting different estimated recovery status for (a) production and (b) 

biomass. Not recovered: bottom fishing intensity is too high to allow predicted (a) production 

and (b) biomass to recover to P0.9 and B0.9, respectively. Recovered: bottom fishing intensity is 

low enough to allow predicted (a) production and (b) biomass to recover to P0.9 and B0.9, 

respectively. The straight black line represents zero bottom fishing. 
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3.6 DISCUSSION 

 
 

3.6.1 Overview 

 

This is the first attempt to model benthic productivity over large spatial scales in the 

Irish Sea. The size-based model of benthic invertebrate communities refined and re-

parameterised here explains 48% of spatial variation in benthic infaunal production in 

the Irish Sea. This model is based on allometric relationships, population dynamics and 

the influence of environmental conditions on growth and mortality. The fact that only 

48% of variability is explained by this model indicates that there are other factors not 

accounted for that play a role in driving the productivity of benthic infaunal 

communities. These are expected to be processes such as recruitment, immigration, 

predation and facilitation (Hiddink et al. 2006a). However, the model does perform 

better at predicting variation in benthic invertebrate community attributes than the 

Hiddink (2006) model developed for the southern North Sea, which explained up to 

39% of the variation of in epifaunal biomass. Therefore, despite the simplicity of the 

model, the validation results indicate that the relationships and dynamics capture by 

this size-based model are useful for helping predict large scale patterns in benthic 

productivity and the response of benthic communities to bottom fishing. These metrics 

could inform marine spatial management measures, including MPA design. 

 

3.6.2 Model outputs  

 

Benthic infauna production 

 

Predicted benthic infaunal production under current fishing activity in the Irish Sea is 

highly variable, ranging from 0.8 to 1852.3 kJ m-2 yr-1. Empirically observed estimates 

benthic infaunal production calculated by Bolam et al. (2010) across the UK continental 

shelf also indicated high variability in the Irish Sea, from 3 to 467 kJ m-2 yr-1. The high 

estimates observed by Bolam et al. (2010) along the North-West coast of England 
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generally coincide with the high productivity predicted by the model, however predicted 

estimates tend to be higher than those observed by Bolam et al (2010). 

 

In general, large scale spatial variation in production and biomass indicate that these 

attributes are higher closer to the coast, particularly where there is a high river input, 

driven primarily by the influence of sea surface chlorophyll-a concentration. Nutrient 

input from rivers can boost primary productivity in surface waters (Sarma et al. 2009; 

Kuzyk et al. 2010), and therefore benthic community carrying capacity in these areas is 

expected to be high. Spatial variation in estimates is also driven by seabed sediment 

type, with the highest estimates occurring in areas of high sea surface chlorophyll-a and 

sandy sediment. The improved predictive ability of the model developed here, compared 

to the Hiddink model, is expected to result from the refined calibration of benthic 

carrying capacity, which incorporates the identified relationships between production, 

sea surface chlorophyll-a and sediment type, and estimates carrying capacity from 

spatially continuous remotely-sensed chlorophyll-a data obtained from NEODASS. The 

re-parameterisation of carrying capacity here also the considered of the spatial grain at 

which environment-production relationships operate. 

 

The results of the Irish Sea model validation and comparison between predicted and 

Bolam et al. (2010) estimates, however, suggest that the model maybe over-predicting in 

some of areas. This may be partly due to the fact that the relationship between 

chlorophyll-a and carrying capacity in muddy and sandy sediments is linear in the 

model, and growth is only limited by tidal shear stress and competition dynamics 

(estimated by Lotka-Volterra competition equations). It is expected that other limiting 

processes and factors such as recruitment, predation and habitat availability are likely 

to mediate total community biomass and total annual production (Hiddink et al. 2006; 

Rice et al. 2012). 
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The impact of bottom fishing 

 

As expected, bottom fishing has a largely negative impact on the productivity and 

biomass of benthic infaunal communities, with communities in sand and gravel 

sediments experiencing the greatest impact. The parameterisation of bottom fishing 

impacts in the model reflects the previously observed sensitivity of benthic communities 

in these sediment types to bottom fishing (e.g. Collie et al. 2000; Collie et al. 2005; 

Hiddink et al. 2006a; Queiros et al. 2006), driven by the sensitivity of the different fauna 

associated with different sediment types (Collie et al. 2005; Queiros et al. 2006). 

 

Although bottom fishing is predicted to effect benthic production and biomass in some 

way over large area of the Irish Sea (51.4 % in total), a comparison of overall 

productivity in the Irish Sea between fished and unfished scenarios indicates that 

current bottom fishing activity reduces total productivity by only 5.1% and overall 

biomass by 12.2%. This is in contrast to the southern North Sea, where it was predicted 

that bottom trawling in 2002-2003 reduced overall production by 21% and biomass by 

56% (Hiddink et al. 2006b). The smaller overall impact of bottom fishing in the Irish Sea 

compared to the southern North Sea is likely to be because the fishing intensity 

experienced in the Irish Sea is generally lower than that experienced in the North Sea. 

For example, the maximum fishing intensity incorporated in the model is approximately 

3 times a year (See Figure 2.14, Appendix 2.7.3 for a distribution map of fishing intensity 

in the Irish Sea), whereas in the southern North Sea fishing intensity can be much 

higher, and areas can be trawled more than 10 times a year (Hiddink et al. 2006b). In 

addition to this, most negative fishing impacts experienced by areas in the Irish are 

small. For example, 80% of the impacted area experienced a reduction in productivity of 

only 0.01 - 36 kJ m-2 yr-1. There are some very small areas where bottom fishing can 

reduce production by up to 435.7 kJ m-2 yr-1 and biomass by up to 622.9 g WM m-2, but 

these areas of highest negative impact are limited to a few 5km2 cells only (figure 3.9).  

 

Productivity is also seen to increase in certain areas, further contributing to the 

relatively small overall impact experienced by productivity in the Irish Sea in response 

to fishing. The observed increases in production are largely restricted to muddy areas, 
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particularly those associated with the important Nephrops fishing grounds in the east 

and west Irish Sea, but are also observed in some gravel and sand habitats. Increases in 

the production of certain size classes or faunal groups in response to fishing have been 

observed using both field experiment and modelling approaches. For example, Hiddink 

et al. (2008) predicted an increase in the production of small size classes at low levels of 

bottom trawling in the North Sea using the Hiddink model, and Jennings et al. (2001) 

observed small increases in polychaete production in some areas of the North Sea that 

were subject to moderate levels of fishing. An increase in productivity of small size 

classes in response to fishing is attributed to their competitive release following the 

removal of large-bodied individuals (Jennings et al. 2001; Hiddink et al. 2008). Although 

the total productivity of the benthic communities in Hiddink et al. 2008 was not 

predicted to increase under fishing, these estimates included epifauna as well as infauna. 

The fact that total production did not increase is therefore a due to loss of production by 

large-bodied organisms (Hiddink et al. 2008). Here only infauna are considered, and it 

appears that increases in the productivity of small infauna size-classes under fishing can 

outweigh the loss of large infauna size-classes, and result in an overall increase in total 

benthic infaunal productivity. These effects are only apparent in areas of low initial 

benthic infaunal production. In summary, the increase in total benthic infaunal 

production in chronically trawled areas (i.e. the Nephrops grounds) appears to be a 

result of the cumulative impact of reducing the number of large-bodied individuals and 

increasing the number and productivity of small-bodied individuals over time, to the 

point where the  abundance and productivity of small-bodied individuals more than 

compensates for the loss of large individuals, and results in an increase in productivity 

above the level expected in the absence of fishing (P0.9). 

 

In contrast to the effects of bottom fishing on production, benthic communities in the 

Irish Sea only experience a reduction in biomass in response to fishing. This 

demonstrates that in areas where the fishing induced proliferation of small-bodied 

individuals increases the biomass and production of small size classes, these changes do 

not compensate for the loss of the biomass of large-bodied infauna. The difference in the 

overall reduction in production and biomass resulting from bottom fishing at the scale of 

the Irish Sea indicate that in general benthic biomass is more severely impacted than 
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benthic production. Similar patterns have been observed in the North Sea (e.g. Hiddink 

et al. 2006a, 2006b). 

 

Recovery time of benthic communities 

 

The recovery time of benthic infaunal communities following fishing impact in the Irish 

Sea varies spatially. Muddy sediments recover quickest from fishing impacts, whereas 

sandy and gravelly sediments take much longer, and are therefore considered more 

vulnerable to bottom fishing. These results are similar to the findings of Foden et al. 

(2010), who found that the recovery time of benthic communities increased with 

sediment hardness. In general, estimated recovery times broadly agree with the findings 

of other recovery studies; which estimate recovery times between < 3 and 12 years 

(Granfield et al. 2001; Hermsen et al. 2003; Blyth et al. 2004; Collie et al. 2005; Kaiser et 

al. 2006; Hiddink et al. 2006; Foden et al. 2010). These studies investigated the recovery 

of a range of community metrics, including abundance, community composition, 

biomass and production. It is expected that biomass and total production will take 

longer to recover to an un-impacted state that metrics such as abundance because 

recovery of these attributes requires time for both re-colonisation of individuals and 

growth, rather than just re-colonisation (Newell et al.  2004). 

 

The recovery time of benthic communities in the Irish Sea may be overestimated by the 

size-based model used here because processes such as recruitment and immigration, 

and the environmental parameters that influence them, are not accounted for (Collie et 

al. 2000; Dinmore et al. 2003; Hiddink et al. 2006b). Lambert et al. (submitted) found 

that hydrodynamic regime and proximity to unfished areas influences the recovery time 

of epifaunal communities, and suggested that higher rates of recovery could occur in 

fished areas where individuals can recruit or immigrate from undisturbed and 

populated area nearby, and also in areas where currents facilitate recruitment via the 

delivery of propagule (Lambert et al. submitted).  

 

Recovery time may also not be accurately predicted in some cases, because of the 

variation in recover potential between different species. It is expected that because 
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certain benthic species are more resilient or vulnerable to fishing impact, they are likely 

to vary in their ability to recover, regardless of size (Hiddink et al. 2006a). However, 

incorporating these various species-specific responses to fishing into predictive 

modelling is difficult because it would require substantial research to gain a detailed 

understanding of each species response. Species composition also varies with habitat 

and over large areas, so these species-specific responses would have to be known for 

each community type. Size-based estimates of community productivity, fishing impact 

and recovery rates are much easier to calculate and model over large areas, regardless 

of changes in habitat or ecosystem type (Hiddink et al. 2006; Travers et al. 2007; 

Robinson et al. 2010). 

 

Recovery status of benthic communities 

 

Even though infaunal communities in muddy sediments take the least time to recovery, 

the recovery status estimates here suggest that these areas are more likely to be in an 

unrecovered state (predicted production is less than P0.9) than communities in sandy 

and gravelly sediment in the Irish Sea. This is because these muddy areas tend to 

experience the highest levels of bottom fishing intensity. This result contradicts the 

previous prediction that benthic infaunal productivity actually increases in these areas, 

such as the Nephrops grounds, in response to fishing (Figure 3.6a).  

 

This discrepancy between estimated recovery status of production and predictions of 

productivity under current fishing activity in chronically fished areas highlight the 

difference in the implementation of fishing impact in the two different models (recovery 

model and production model). In the recovery model, a single fishing event is 

implemented on an unfished community, and recovery from this initial impact to a near-

pristine level (P0.9) is recorded to estimate recovery time and recovery status. In the 

production model, fishing events are implemented according to the frequency indicated 

by the fishing intensity data incorporated into the model, and the cumulative impacts of 

these repeated events are recorded through time 
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The cumulative impacts of chronic fishing on a benthic community may vary from a 

single impact on a previously unfished community, and result in the disparate outputs 

observed. In chronically fished areas, where the recovery of predicted production to P0.9 

does not occur between fishing events, each fishing event is estimated to have a smaller 

impact on total production, because the community consists of fewer large-bodied 

individuals (due to being removed by previous fishing events). The estimated fishing 

impacts for small-bodied individuals are less severe and they do not experience the 

same reductions in biomass and production (Hiddink et al. 2006a; Queiros et al. 2006). 

In addition to smaller impacts on production over time, the removal of large bodied 

individuals following each fishing event can cause the competitive release of smaller 

individuals, and result in an increase in the productivity of these size classes following 

fishing impact (Jennings et al. 2001; Queiros et al. 2006; Hiddink et al. 2008; Reiss et al. 

2009). The fact that large-bodied individuals are lost is indicated by the fact that fishing-

induced increases in production are always accompanied by a decrease in biomass 

(Figure 3.6b). 

 

The above cumulative changes in community composition under chronic fishing have 

resulted in the total productivity of the benthic community increasing above P0.9 in some 

cases, indicated by the ‘positive’ fishing impacts predicted by the production model. The 

discrepancy observed between these predictions and the outputs of the recovery model 

result then from the fact that the changes in benthic community size-structure over time 

under repeated fishing are not captured within the recovery model. Instead, only a 

single fishing event and subsequent recovery is implemented. As a result, it would 

appear that the recovery model used here has limited application for predicting 

recovery status in chronically fished areas, and therefore this metric is not considered 

useful for informing marine management.  

 

In light of the above, although estimates of recovery status indicate that 25% of the Irish 

Sea is currently fished at an intensity that prevents the recovery of productivity to P0.9, 

which is comparable to the southern North Sea (where 27.1% of the area had trawling 

intensity that was too high for production to exceed P0.9) (Hiddink et al. 2006b), this is 
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expected to be an over-estimation of the extent to which communities in the Irish Sea 

are unrecovered.  

 

3.6.3 Implications for management in the Irish Sea 

 

Benthic infaunal production underpins the provision of important ecosystem goods and 

services, including fish production (Heath, 2005) and energy and nutrient cycling 

(Tumbiolo & Downing, 1994; Danovaro et al. 2008). Large scale reductions in benthic 

productivity will therefore affect energy flow through the marine food web (Hiddink et 

al. 2006). In the Irish Sea in particular the loss of macrobenthic production could 

potentially have a large impact on the commercial fisheries in the Irish Sea, because 

ecosystem modelling has identified that these stocks place a high demand on this 

productivity (Heath, 2005). The outputs of the size-based model developed here could 

inform spatial management of benthic infauna production to ensure that it remains 

available to higher trophic levels, and continues to support the provision of the 

ecosystem goods and services that are dependent on it.  

 

Areas of high predicted benthic infauna production, such as off the North Wales coast, 

along the north-west coast of England, the Solway Firth and off the south west coast of 

Scotland, could be prioritised for protection within no take MPAs to ensure that this 

productivity remains available to the marine food web in these areas. Similarly, the 

modelled impact of bottom fishing on benthic infaunal communities and estimated 

recovery times could be used to identify sensitive or vulnerable communities and direct 

the use of no-take MPAs to protect these communities. For example, because sandy and 

gravelly sediments are more sensitive to fishing impacts and take longer to recover from 

impact than muddy sediments, these types of habitats should be prioritised for 

protection from bottom fishing, and fishing effort redirected to areas that are able to 

recover more quickly (Foden et al. 2010).  

 

It should be noted, however, that re-directing bottom fishing to muddy areas may result 

in higher fishing intensity levels that no longer cause the slight increase in productivity 

currently predicted, and may therefore result in these  communities exhibiting an 
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unrecovered state due to the high fishing intensity. Although infauna communities in 

muddy sediments in the Irish Sea are not considered as productive as sandy and gravelly 

sediments, indicated by the outputs of the size-based model here, they are clearly 

important to the fishing industry in the Irish Sea, reflected by the high fishing intensity 

that they experience. Hiddink et al. (2011) found that in area of high bottom trawling, 

commercial fish species condition was poorer compared to areas of lower fishing 

intensity. Therefore if increasing bottom fishing intensity in muddy areas (due to 

displacement from other areas) does result in reductions in productivity rather than the 

currently predicted increases, displacement into these areas may have a detrimental 

impact on the fisheries targeted. If predictions of fishing behaviour in response to MPA 

design are included in the size-based model here, the model can help resolve issues like 

this by initiating model runs under different MPA scenarios and evaluating their impacts 

on benthic production, biomass and recovery status. This model application is explored 

more in Chapter 5. 

 

Maps of bottom fishing impacts could also inform restorative management, in that areas 

identified to be experiencing high levels of negative bottom fishing impacts or that have 

a negative recovery status could be protected in no-take MPAs to allow them to recover 

to unfished levels of productivity. The results here indicate that the few sandy and 

gravelly areas most highly negatively impacted by bottom trawling are not those areas 

that experience the highest levels of bottom trawling; therefore these areas could be 

prioritised for no-take protection without as much impact on fishing activity as would be 

if the areas did experience high levels of fishing activity.  

 

No-take MPAs in any area where fishing occurs is likely to result in some conflict 

between conservation and fishing sectors, therefore rather than informing the design of 

no-take MPAs, scenarios of bottom fishing impacts could inform other forms of spatial 

management, such as rotational closures or effort restrictions (Collie et al. 2005; 

Lambert et al. submitted). Rather than permanently excluding fishing, these approaches 

could be used to manage fishing impact at a level that maintains a certain level of 

benthic productivity, or allows productivity to recover between fishing events.  Although 

recommending a level of benthic production to maintain is beyond the scope of this 
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study, it could be based upon an amount of benthic production sufficient for supporting 

fish production (Hiddink et al. 2006b). This would ensure that in those areas important 

to fishing, benthic production would be available to support fish stocks and 

subsequently provide a benefit to the commercial fisheries that prosecute them 

(Hiddink et al. 2011). 

 

Interestingly, overall productivity in the Irish Sea is reduced by only 5.1% under current 

bottom fishing activity in comparison to an unfished scenario. Benthic infaunal 

production in the Irish Sea therefore does not appear to be as heavily impacted by 

bottom fishing as may have been expected, given the fact that model estimates suggest 

that approximately 51.4% of the Irish Sea is affected by bottom fishing. This implies that 

substantial losses of benthic productivity in response to fishing, and thus reduced food 

availability for commercial fish stocks (Heath, 2005), may not be occurring in the Irish 

Sea, and suggests that substantial protection measures, such as no-take MPAs, for 

benthic communities may not be required. This is of course dependent on any 

ecosystem-level conservation or management objectives that are set. Futhermore, when 

the impacts on benthic biomass are considered, the extent and magnitude of impacts is 

perceived to be greater. 

 

Finally, the model outputs regarding fishing impacts indicate that the effects of 

protection on benthic infauna production are context dependent. It appears that fishing 

in muddy sediments with benthic communities of low to medium productivity (9.8 to 

457.2 kJ m-2 yr-1) can actually increase benthic infauna production, and protection in no-

take MPAs therefore results in a reduction in total benthic production, highlighting that 

the expected effects of protection from bottom fishing are not always realised. This 

increase in productivity under bottom fishing is not necessarily a positive ecosystem 

outcome if management objectives are to maintain benthic communities in a natural, 

undisturbed state. MPA network scenario simulation using size-based models like the 

one developed here can help in predicting the potential outcomes of protection (e.g. 

Hiddink et al. 2006c). 
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3.6.4 Conclusions 

 

In summary; the findings here indicate that (i) the empirical, size-based model 

developed here can explain 48% of spatial variation in benthic infaunal production in 

the Irish Sea, suggesting that size-based models of community production and biomass 

are useful tools for informing marine spatial management. ii) Although size-based 

models can also provide additional metrics such as bottom fishing impact, and the 

recovery time and status of benthic production and biomass, estimates of recovery 

status are not considered useful for informing management because they do not reflect 

realistic fishing impacts in chronically fished areas.  iii) Benthic infaunal communities in 

gravelly and sandy sediments are considered more sensitive and vulnerable to bottom 

fishing impacts than benthic communities in muddy sediments because they experience 

a greater predicted reduction in production and biomass as a result of fishing, and are 

estimated to take longer to recover from fishing impact. iv) Overall, the negative impacts 

of bottom fishing are predicted to be greater for benthic infaunal biomass than benthic 

infaunal production at the scale of the Irish Sea. 
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3.7 APPENDICES 

 

3.7.1. Area of no model predictions 

 

Figure 3.13. Areas of hard sediment where predictions from the benthic community model 

developed and parameterised in Chapter 3 are not available (see Figure 3.5 for model 

predictions of benthic infaunal production and biomass). No predictions are made for this 

sediment type because no parameterisation data were available.  
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CHAPTER 4 - The spatial association between 
benthic infaunal production and biodiversity 
features in the Irish Sea 
 
4.1 AIM: To investigate the spatial association between benthic infauna production, an 

important marine ecosystem function, and three different biodiversity features in the 

Irish Sea; i) benthic infaunal diversity, ii) cetacean species abundance, and iii) the 

presence of conservation priority species; for the purpose of investigating potential 

overlaps and informing effective conservation planning.   

 

4.2 ABSTRACT 

 
Prioritisation of conservation effort in areas that protect both ecosystem function and 

biodiversity requires knowledge of the degree of spatial overlap between the two. Areas 

of overlap between function and biodiversity features would minimise the amount of 

space required for conservation purposes, particularly in the context of marine 

protected area designation. Here the spatial overlap between both modelled and 

empirically observed benthic production and three different biodiversity features of 

conservation interest that commonly direct marine protected area (MPA) designation is 

investigated. These three biodiversity features are; i) benthic community species 

diversity, ii) cetacean species abundance, and iii) the presence of conservation priority 

species. The modelled and empirically observed production data were obtained from a 

predictive size-based model of benthic infaunal production developed and validated for 

the Irish Sea and five independent benthic surveys conducted in the Irish Sea, 

respectively. Cetacean relative abundance estimates were from the Atlas of the Marine 

Mammals of Wales, and conservation priority species and habitats data were obtained 

from the NBN gateway (http://data.nbn.org.uk/) and Defra. Due to the spatial nature of 

the data, generalised regression models that can take account of spatial auto-correlation 

were employed for analysis. Results indicate that there is little spatial association 

between benthic production and biodiversity features in the Irish Sea. Significant 

positive associations were only found between empirical benthic production and 

benthic community species richness (F = 32.61, df = 47, p = 0.000), and between 

http://data.nbn.org.uk/
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modelled benthic production, and two diversity indexes, the Shannon-Wiener index of 

diversity (H’) (F = 14.14, df = 44, p = 0.001) and Pielous’s Evenness (J’)  (F = 6.18, df = 44, 

p = 0.017). No significant associations, positive or negative, were found for any other of 

the biodiversity features. It would appear that opportunities for MPAs that protect both 

benthic infauna production and biodiversity features simultaneously in the Irish Sea are 

limited. This implies that the protection of the biodiversity features included in the 

analyses may not automatically protect high levels of ecosystem function. 

 

4.3 INTRODUCTION 

 

Conservation has traditionally focused on protecting biodiversity and habitat 

(Armsworth et al. 2007). These features represent the structural elements of 

ecosystems. In recent years, however, there has been increasing recognition of the need 

to protect and manage ecosystem function in addition to ecosystem structure (Daily & 

Matson, 2008; Frid et al. 2008). Protection of biodiversity and habitat is a legal 

requirement demanded by the EU Birds and Habitats Directives, therefore conservation 

efforts cannot be re-directed from these structural features. Instead efforts will need to 

expand to encompass the protection of function in addition to biodiversity.  

 

Conservation effort, particularly in the form of protected areas, is restricted due to limits 

on funding and competition for space with conflicting uses and activities (Myers et al. 

2000; Parravicini et al. 2012). In the marine environment, for example, marine protected 

areas (MPAs) can compete with commercial fisheries, aquaculture, energy extraction 

and generation, aggregate dredging, shipping, and recreational uses (Douvere, 2008; 

Weslawki et al. 2010). MPA designation therefore needs to be prioritised and focused 

where maximum benefits can be achieved at minimum cost, both financially and in 

terms of impact on other users (Moore et al. 2004). Win-win conservation scenarios, 

where the protection of one function or conservation feature benefits other functions or 

features, are ideal solutions for minimising costs (Balmford et al. 2002, Crossman & 

Bryan 2009). In order to achieve win-win scenarios, however, spatial overlap between 

the ecosystem functions and conservation features in question is required (Anderson et 

al 2009). 
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Spatial overlap between marine ecosystem function and biodiversity 

 

Benthic infaunal production is an important marine ecosystem function that has been 

modelled and mapped for the Irish Sea (see Chapter 3 or details of model development 

and parameterisation). Benthic infaunal production refers to the production of organic 

matter by benthic macro-invertebrates per unit time and area (Cusson & Bourget, 2005), 

and is important for mediating the flow of energy and material through the marine food 

web (Tumbiolo & Downing, 1994, Seitz et al. 2009). The production model uses easily 

obtained environmental data, including remotely sensed sea surface chlorophyll-a, 

modelled tidal bed stress, seabed sediment and fishing intensity, estimated from vessel 

monitoring system (VMS) data, to predict total annual production (kJ m-2 yr-1) for 

benthic infaunal communities at a resolution of 5 km2 across the whole Irish Sea. This 

provides an opportunity to investigate the degree of spatial association between a 

marine ecosystem function and biodiversity features at a regional scale. 

 

Concurrence between benthic infaunal production and biodiversity features of 

conservation interest such as higher predators and benthic biodiversity may be 

expected. Higher predators include several important Habitats Directive cetacean 

species such as bottlenose dolphin, harbour porpoise and minke whale, and these 

species may be associated highly productive areas due to greater food availability (Kim 

& Oliver, 1989; Ballance et al. 2006). Areas of high benthic production could also be 

associated with a high number of benthic species. Correlations between diversity and 

productivity have been observed in natural systems (Mittelbach et al. 2001, Cardinale et 

al. 2009), and the findings of Biodiversity-Ecosystem Function (BEF) research indicate 

that the loss of diversity from an assemblage can reduce the rates of ecosystem 

processes associated with that assemblage, suggesting a positive association between 

diversity and productivity (Balvanera et al. 2006; Srivastava & Vellend, 2005). Although 

the majority of BEF research to date is primarily focused on terrestrial systems 

(Balvanera et al. 2006; Hillebrand & Matthiessen, 2009), Danovaro et al. (2008), found a 

consistent positive association between benthic diversity and several different functions 

within deep-sea ecosystems over global scale, and at a national scale, a study by Bolam 
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et al. (2010) found a positive relationship between biomass and species richness in UK 

subtidal waters.  

 

Opportunities for win-win conservation scenarios have been investigated in the 

terrestrial environment, by quantifying the spatial overlap between ecosystem function 

and services such as pollination, carbon storage, and biodiversity (e.g. Chan et al. 2006; 

Naidoo et al. 2008; Anderson et al. 2009; Crossman & Bryan, 2009). In general, very 

weak associations have been found. For example, Naidoo et al (2008) found that at a 

global scale, ecoregions selected for their importance for biodiversity provided no more 

ecosystem provision than if ecoregions were selected randomly and Chan et al. (2006) 

found the average correlation (Pearson’s r) between biodiversity and six different 

ecosystem services to be very low (0.04).  

 

These terrestrial studies often compare functions and features that are not expected to 

be directly related or dependent on similar habitats or ecosystem components. For 

example, carbon storage and the number of terrestrial UK BAP priority species (e.g. 

Anderson et al. 2009). Furthermore, comparisons of the spatial distribution of these 

different functions and features were conducted at very large, global to national scales, 

which Anderson et al (2009) suggest may not always be appropriate for detecting 

patterns of association for informing management. Anderson et al. (2009) found that 

relationships between certain functions and biodiversity were significantly different in 

different areas of the UK, indicating that associations were location or region specific. 

Regional variation in the association between biodiversity and ecosystem function 

suggests that global or national approaches to identifying spatial concurrence are 

unlikely to be informative about the potential for win-win conservation scenarios at the 

scale at which spatial management is implemented. Regional approaches are therefore 

deemed more appropriate for identifying spatial concurrence between biodiversity and 

function to inform effective conservation planning.  

 

In this chapter, the spatial association between benthic infaunal production, cetacean 

species relative abundance, benthic infaunal diversity, and the number of conservation 

priority species will be examined to investigate the potential for win-win conservation 
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scenarios in MPA designation at the regional scale of the Irish Sea. Conservation priority 

species included are marine UK Biodiversity Action Plan- (BAP) and OSPAR species 

(Olso and Paris convention for the protection of the marine environment of the North-

East Altantic) (OSPAR Commission, 2008). Many of these species are features of 

conservation importance used as selection criteria for recommending Marine 

Conservation Zone (MCZ) designations in England, therefore spatial concurrence 

between benthic production and these species would offer great opportunities for win-

win conservation scenario in MPA design. However, a positive spatial association with 

benthic production is not expected to be found, based on the results of previous, 

terrestrial studies. 

 

Here both modelled and empirically observed benthic infauna production data are used 

to investigate spatial association between production and biodiversity features. The 

empirically observed (hereafter empirical) benthic production data has a limited spatial 

distribution, whereas the modelled benthic production data covers the whole of the Irish 

Sea area.  Although the model for estimating empirical production is well established 

(Brey model, 2001), and the large scale, benthic infauna production model has been 

validated and confirmed representative of relative production (see Chapter 3 for model 

validation results), models are always simplifications of natural systems and so both 

estimates will be subject to a degree of error and uncertainty. If analyses with modelled 

and empirical benthic production generate similar results, greater confidence can be 

held in the conclusions made. 

 

Three hypotheses will be tested; i) there is a positive association between benthic 

infauna production and benthic infauna diversity, ii) there is a positive association 

between benthic production and the relative abundance of cetacean species, and iii) 

there is no association between benthic production and the number of conservation 

priority species. Opportunities for win-win conservation scenarios for MPA designation 

will be determined by the extent to which there is significant overlap observed between 

benthic production and these biodiversity features, estimated by generalised regression 

models.  
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4.4 MATERIALS AND METHODS 

 
4.4.1 Method overview 

 

Spatial variation in modelled and empirically measured benthic infaunal production 

estimates were compared to the spatial distribution of three different groups of 

biodiversity features that currently inform conservation efforts in the UK seas. These 

include i) the species diversity of benthic communities, ii) the relative abundance of five 

cetacean species in the Irish Sea, which represent higher predators and as well as being 

and UK and EU conservation features, iii) the presence of benthic OSPAR and UK 

Biodiversity Action Plan (BAP) priority species. 

 

4.4.2 Data collection and preparation  

 

Observed benthic production estimates 

 

Species-specific abundance and biomass data are needed for calculating empirical 

benthic infauna production. Although many surveys of benthic macro-infauna have been 

conducted in the Irish Sea, the majority of these data do not include the species-specific 

biomass records that are necessary for the calculation of production. Empirically 

observed benthic production estimates from a total of 74 stations in the Irish Sea were 

available for analysis. Infaunal production estimates were obtained directly for 25 

stations (Bolam et al. 2010), and for the remaining 49 stations production estimates 

were calculated from available benthic infauna abundance and biomass data collected 

by six independent benthic surveys conducted between November 2004 and May 2008. 

The distribution of these 74 stations is not even across the Irish Sea (Figure 4.1). For 

example the North-Eastern Irish Sea has the highest concentration of available data, 

followed by areas of the Welsh coast. Further details of these stations and the data 

collection process can be found in Chapter 2.   Total annual benthic infauna production 

estimates (kJ m-2 yr-1) were calculated from species abundance and biomass per m2 

using an empirical model freely available in spreadsheet form on the Internet 

http://www.thomas-brey.de/science/virtualhandbook/navlog/index.html (Brey, 2001). 

This multiple regression model calculates total annual production (kJ m-2 yr-1) and 

http://www.thomas-brey.de/science/virtualhandbook/navlog/index.html
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production/biomass (P:B) ratio (yr-1) for a given population based on a number of  

population-specific and habitat-specific inputs (see Brey (2001) for a detailed 

description of model). Here each population represents a different species, and so 

species-specific biomass (kJ m-2), abundance (individuals m-2), mean individual body 

mass (kJ), life history trait and taxonomic data were input into the model, along with 

station-specific depth and mean annual bottom water temperature. Further details of 

this model and its input requirements can be found in Brey (2001) and Chapter 2.  
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Figure 4.1. Distribution of benthic infaunal production estimates available for analysis. 

 

Benthic diversity  

 

Only the 49 stations for which raw species abundance data were available were included 

in the species diversity analysis. Three different indices of community or species 

diversity were calculated from the empirical species abundance data using the vegan 

package in R (R Core Team, 2012). These indices were community species richness, 

Shannon-Wiener diversity and Pielou’s evenness. Species richness simply refers to the 

total number of species identified at each station. Shannon-Wiener diversity (H’) and 

Pielou’s evenness (J’) are two different indices of diversity that are commonly calculated 

for communities from abundance data. These indices not only take into account the total 
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number of species in a community, but also the relative abundance of those species, 

unlike species richness which is simply the number of species present. The Shannon-

Wiener diversity values of H’ can range from 0 to 1, with high values indicative a high 

number of species with an equal distribution, representing a diverse community. Lower 

values indicate fewer species with a less equal distribution, representing a less diverse 

community. The Shannon-Wiener diversity index is calculated by:  

 )       ∑       

 

   

 

where S is the total number of species in the community, Pi is the proportion of 

individuals belonging to the ith species in the community. Values of H’ can range from 0 

to 1, with high values indicative a high number of species with an equal distribution, 

representing a diverse community. Lower values indicate fewer species with a less equal 

distribution, representing a less diverse community. 

 

Pielou’s evenness is different from the Shannon-Wiener diversity index because it 

focuses only on how equal a community is in terms of the numerical abundance of 

species, also known as species evenness. The evenness value J’ ranges from 0 to 1, with 

higher numbers indicating a more even community. It is calculated from the Shannon-

Wiener index by: 

  )    
 

    
 

where Hmax is the maximum value of H if all species in the community were equally 

abundant. 

 

For statistical analysis the three diversity estimates were directly compared to the 

benthic infaunal production estimates calculated from the empirical benthic community 

data collected at the forty nine stations outlined above. Modelled benthic production 

estimates were extracted for the same forty nine stations using ArcGIS 9.3.  
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Modelled benthic production 

 

A predictive size-based model of benthic infauna production developed and validated 

for the Irish Sea was used to generate benthic infauna production estimates (kJ m-2 yr-1) 

at a spatial resolution of 5 km2 for the whole Irish Sea area (excluding areas of hard 

substrate because parameterisation data was not available for these areas). The original 

model was developed by Duplisea et al. (2002) for the prediction of trawling impacts on 

benthic communities, and was parameterised by Hiddink et al. (2006a) for application 

to the North Sea. This model was refined and re-parameterised for application in the 

Irish Sea, for the purpose of predicting the spatial distribution of benthic infauna 

productivity for large scale environmental parameters to inform marine protected area 

design. These environmental data include remotely sensed sea surface chlorophyll-a, 

modelled tidal bed stress, seabed sediment and fishing intensity estimated from vessel 

monitoring system (VMS) data. Both actual production and potential production without 

fishing impact can be predicted by the model, by altering the fishing intensity values 

input into the model. Here actual production is used for investigating spatial association 

with biodiversity features, because it was considered representative of the current 

status of benthic communities in the Irish Sea, and therefore most suitable for 

investigating spatial association with the current distribution of biodiversity features.  

For further details of model development and validation see Chapter 3.  

 

Cetacean species sightings 

 

Relative abundance data for the five most common cetacean species in the Irish Sea 

were obtained from the Atlas of the Marine Mammals of Wales (Baines & Evans, 2009). 

These five species are bottlenose dolphin (Tursiops truncatus), short-beaked common 

dolphin (Delphinus delphis), Risso’s dolphin (Grampus griseus), harbour porpoise 

(Phocoena phocoena) and minke whale (Balaenoptera acutorostrata). All are listed as UK 

BAP priority species are protected under the EU Habitats Directive. The spatial 

resolution of this atlas is 10’ latitude x 10’ longitude and the data is collated from 1990 

to 2009. A total of sixteen different survey projects contributed to the database and 

sightings rates were corrected for sea state and sampling method, which ranged from 
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land based sightings, to aerial and vessel surveys. Annual long-term standardised 

sighting rates and long-term standardised sightings for the months April to June were 

used in this analysis. Long-term standardised sightings rate refers to the mean sightings 

rate over the time period 1990 to 2009, in units of sightings per hour for the three 

dolphin species bottlenose, short-beaked common and Risso’s dolphins, and individual 

counts per hour harbour porpoise and minke whale. The months April to June were 

analysed in addition to an annual average because this time period coincides with the 

marine spring bloom in the Irish Sea. High primary productivity during the spring bloom 

is expected to coincide with greater concentration of prey species, and therefore 

cetaceans may aggregate during this time of year (Dalla Rosa et al. 2012). 

 

Conservation priority species 

 

A list of relevant OSPAR (OSPAR Commission, 2008) and  UK Biodiversity action plan 

(BAP) marine species (http://jncc.defra.gov.uk/page-5167) that occur in the Irish Sea as 

collated and the spatial distribution data for these species were obtained from Defra (via 

Dr Kirsten Ramsey, Countryside Council for Wales) and the NBN gateway 

(http://data.nbn.org.uk/). Many of these species were used as selection criteria in the 

English Marine Conservation Zone project. Only limited mobility species were included 

in the analysis because these species were expected to have a stronger association with 

benthic communities, due to their limited movement. For mobile species it would be 

difficult to discern whether from the records collated here whether or not they were 

actually associated with a particular area of the seabed, or if they just travelling over 

that area at the time of being recorded. Table 4.3, Appendix 4.7.1 lists all the limited 

mobility conservation priority species records in the Irish Sea included in this analysis. 

Only species data within 6 nautical miles of the coast were selected for analysis, due to 

that fact that most of the priority species data fell within this range. The lack of data 

beyond 6 nm is likely to be primarily a result of sampling bias in coastal areas, therefore 

excluding the area beyond 6 nm in order to reduce the effects of this sampling bias is 

considered justified. Inclusion of the whole Irish Sea area in analysis resulted in a very 

high number of priority species zero counts, resulting in heavily skewed data. 

 

http://jncc.defra.gov.uk/page-5167
http://data.nbn.org.uk/
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4.4.2 Statistical analysis 

 

Regression analyses were used to determine whether or not there was a significant 

association between the spatial distribution of empirically measured and modelled 

benthic production and four groups of biodiversity features. Similarity between data 

that is in close proximity in space can lead to dependency or auto-correlation in 

regression model residuals. This auto-correlation needs to investigated and accounted 

because it can lead to Type 1 error, and can result in poor interpretations and 

conclusions (Zuur et al. 2009). This is very difficult to account for with simple Spearman 

rank and Pearson correlation analyses. Regression models can deal with spatial-

autocorrelation through the inclusion of a spatial correlation structure.  

 

To determine whether or not spatial auto-correlation was present and needed to be 

accounted for general regression models without auto-correlation structure were first 

fitted and Moran’s I tests conducted on the fitted model residuals. Where auto-

correlation in model residuals was detected a spatial correlation structure was 

incorporated into the regression model. Appropriate spatial correlation structures were 

chosen based on evaluation of alternative restricted maximum likelihood (REML) 

estimated models using Akaike Information Criterion (AIC) values (see Zuur et al. 2009 

for further detail). 

 

The type of regression model used for analysis was based on the distribution of the 

response variable. If the response variable was normally distributed (Gaussian 

distribution), or if data transformation was sufficient enough to normalise the 

distribution, a generalised least squares regression (GLS) approach was used. This 

regression approach can accommodate spatial auto-correlation by the inclusion of a 

spatial correlation structure to the error component of the regression model (Zuur et al. 

2009).  Where the response variable could not be normalised a generalised linear 

modelling (GLM) or generalised additive modelling (GAM) approach was utilised 

instead. For example, the priority species count data was heavily skewed to the left due 

to a high proportion of zeros and very few high number counts and could not be 

normalised by data transformation. These approaches extend the linear regression 
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model and allow the analysis of non-normally distributed data through the specification 

of a particular distribution family for the response variable and as well as the nature of 

the relationship (known as the link function) between the mean of the response and the 

explanatory variables (Faraway, 2006, Zuur et al. 2009). Here suitable distribution 

families and link functions were chosen for each individual analyses based on model 

comparison using the AIC. Those models with the lowest AIC score were considered 

optimal.  

 

To enable the inclusion of spatial correlation structures in the GLM and GAM models, the 

glmmPQL() function from the MASS package (Venables & Ripley, 2002) and the gamm() 

function from the mgcv package (Wood, 2006) in R were used, respectively (R Core 

Team, 2012). The glmmPQL() function fits specified generalised linear mixed models 

using Penalized Quasi-Likelihood (see R-help files and Venables & Ripley (2002) for 

more details), and the gamm() function fits specified generalised additive mixed models 

(see R-help files and Wood (2006) for more details). Both functions can account for 

spatial autocorrelation in model residuals through the inclusion of a correlation 

structure. Unlike other regression models used in this study, the glmmPQL model does 

not enable selection of spatial autocorrelation structures using AIC comparisons or 

likelihood ratio tests. In absence of these tests visual comparison of semi-variograms of 

model residuals were used to choose the spatial correlation structure that removed the 

most apparent auto-correlation.  

 

The decision to use a GLM or GAM was based on the nature of the relationship between 

benthic infaunal production and the biodiversity feature in question observed during 

data exploration. If a relationship was deemed to be non-linear, a GAM approach was 

used because it allows a non-linear relationship between the response and explanatory 

variables through the use of a smoothing function (Zuur et al. 2009). GLMs and GAMs 

that allowed the inclusion of a spatial correlation structure were used here, to ensure 

that any potential auto-correlation in model residuals could be accounted for. All 

statistical analyses were conducted in R software (R Core Team, 2012). 
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Computational difficulties were experienced when conducting initial analyses for some 

biodiversity features because the inclusion of a spatial auto correlation structure 

requires all pair-wise distances between data points to be considered, and this requires 

a large amount of computational power when a lot of data points are included in 

analysis. Therefore, in order to avoid computational problems data were either collated 

at a coarser spatial scale or sub-sampled to reduce sample sizes.  For example, the 

analysis conservation priority species was conducted using data at a spatial resolution of 

20km2. This is because it was the smallest spatial scale at which computational 

difficulties were not encountered when running the analyses. i.e regression models did 

not converge using data with a spatial resolution of 5-15 km2. Modelled and empirical 

benthic production estimates were averaged within 20 km2 grid cells across the whole 

Irish Sea area, and the total number of conservation priority species present within each 

grid cell were calculated in ArcMap 9.3. 

 

A description of the data, the type of regression model applied and details of data 

preparation and use of correlation structures for each of the biodiversity features is 

summarised in Table 4.1.  
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Table 4.1. Summary table of all data used in the analyses, included data distribution, the type of regression model applied and details of data preparation 

and correlation structures for analyses of each of the three groups of biodiversity features investigated.

Biodiversity feature Production 
estimate 
type 

Data 
distribution 

Regression 
model type 

Computational 
difficulties 

Spatial resolution of 
production estimates 

Sub-
sampling  

Transformation Correlation 
structure 

Benthic diversity 

Modelled Left-skewed GLS No 5 km
2
 No Log10 Various 

Empirical Left-skewed GLS No Point estimate No Log10 Various 

Cetacean 
abundance 

Modelled Negative 
binomial (NB) 

NB gamm No 10’ lat x 10’ lon No None Various 

Empirical Negative 
binomial (NB) 

NB gamm No 10’ lat x 10’ lon No None Various 

Conservation 
priority species 

Modelled Negative 
binomial (NB) 

NB glmmPQL Yes 20 km
2
 No None corRatio 

Empirical Binary NB glmmPQL No 20 km
2
 No None None 
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4.5 RESULTS 

 

Benthic infaunal production and the three different groups of biodiversity feature 

examined here have very different spatial distributions. Regression analyses indicate 

that there is very little association between the spatial distribution of modelled and 

empirical benthic infaunal production these biodiversity features in the Irish Sea (Table 

4.2).  

 

Modelled production estimates indicate that benthic infauna production is highest in the 

north-east Irish Sea, particular in coastal areas off North Wales, north west England and 

the Solway coast. There are also relatively high in areas of production in Cardigan Bay, 

off the coast of Anglesey, the Llyn Peninsula, and Dublin. Production appears to be 

lowest in offshore areas, particularly in the Western and Central areas of Irish Sea, as 

well as close inshore in Cardigan Bay, Wales. Where available, empirical production 

estimates largely mirror this pattern (Figure 4.2). 

 

Figure 4.2. Modelled (a) and empirically observed (b) production estimates data used in 

analyses.
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Table 4.2. Details for all statistical analyses and results regarding the spatial association between modelled and empirical infaunal production and 

biodiversity features of conservation interest in the Irish Sea. 

 

  
 Biodiversity feature Production 

data 
Regression 
model 

Correlation  
structure 

N Coefficient Std Error Df F P-value 

Benthic diversity Species Richness Modelled GLS corGaus 46 0.08 0.09 44 0.81 0.374  

Empirical  corRatio 49 0.24 0.04 47 32.61 0.000 *** 

Shannon-Wiener diversity Modelled GLS corGaus 46 0.73 0.19 44 14.14 0.001 *** 

Empirical  corExp 49 0.03 0.18 47 0.03 0.857 

Pielou’s evenness Modelled GLS corLin 46 0.13 0.05 44 6.18 0.017**  

Empirical  corExp 49 -0.07 0.04 47 3.61 0.064  

Annual cetacean 
sightings 

Bottlenose dolphin  Modelled NB GAM corRatio 264 1.56 1.38 262 1.31 0.254 

Empirical  corCompSymm 55 -3.65 4.37 53 0.33 0.407 

Harbour porpoise  Modelled NB GAM corCompSymm 264 -2.65 1.98 262 1.81 0.181 

Empirical  corCompSymm 55 -0.08 0.78 53 0.46 0.605 

Minke whale  Modelled NB GAM corRatio 264 0.24 1.32 262 0.03 0.856 

Empirical  corRatio 55 -0.21 1.51 53 0.02 0.887 

Risso’s dolphin  Modelled NB GAM corGaus 264 -0.56 2.69 262 0.04 0.835 

Empirical  NONE 55 1 - 53 0.19 0.659 

SB Common dolphin  Modelled NB GAM corRatio 264 0.83 1.17 262 0.49 0.485 

Empirical  corRatio 55 0.53 0.36 53 2.14 0.149 

Spring cetacean 
sightings 

Bottlenose dolphin  Modelled NB GAM corRatio 264 1.45 2.10 262 0.48 0.489 

Empirical  corRatio 55 0.23 0.74 53 0.09 0.754 

Harbour porpoise  Modelled NB GAM corCompSymm 264 -0.62 1.14 262 0.30 0.582 

Empirical  corCompSymm 55 0.68 0.89 53 2.09 0.130 

Minke whale Modelled NB GAM corRatio 264 1.80 1.77 262 0.98 0.310 

Empirical  corCompSymm 55 -4.93 7.05 53 0.81 0.372 

Risso’s dolphin  Modelled NB GAM corRatio 264 -1.65 6.25 262 0.07 0.791 

Empirical  corCompSymm 55 -6.88 6.02 53 12.01 0.258 

SB Common dolphin  Modelled NB GAM corRatio 264 0.76 1.99 262 0.14 0.703 

Empirical  corRatio 55 0.59 0.37 53 2.66 0.108 

Conservation 
priority species 

Priority species Modelled NB GLM corRatio 1185 -0.01 0.00 1183 - 0.240 

Empirical  NONE 35 -0.00 0.00 33 -0.14 0.889 
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Benthic production and benthic infauna diversity 

 

On visual comparison of the distribution data, the spatial variation in both modelled and 

empirical production is most similar to the variation in species richness compared to the 

other measures of diversity (Figure 4.2, Figure 4.3). This is most apparent in the north-

east Irish Sea where the majority of the data is clustered. The association between 

species richness and production is less apparent around the coast of west Wales, where 

species richness estimates are generally high and production estimates are low. 

 

There was a significant, positive association between empirical production and benthic 

community species richness (Figure 4.4b, Table 4.2; F = 32.61, df = 47, p = 0.000), but no 

association between empirical production and the Shannon-Wiener diversity or Pielou’s 

evenness indices (Figure 4.4). For modelled production, there was a positive, linear 

association between production and the Shannon-Wiener diversity index (Figure 4.4c, 

Table 4.2; F = 14.14, df = 44, p = 0.001) and Pielou’s Evenness (Figure 4.4e, Table 4.2; F = 

6.18, df = 44, p = 0.017), but no significant association between modelled production and 

species richness.  
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Figure 4.3. Three different benthic infaunal community diversity indices estimated for available data in the Irish Sea; a) Species richness, b) Shannon-

Wiener diversity index, c) Pielou’s evenness. 
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Figure 4.4. The relationship between modelled and empirical benthic production (log10 (kJ m-2 

yr-1) and three different indices of benthic community diversity, including a-b) Species richness 

(log10 (number of species), c-d) Shannon-Wiener index, and e-f) Pielou’s evenness. N = 46 and 49 

for modelled and empirical production, respectively. 
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Benthic production and long-term cetacean sightings 

 

Visual examination of the long-term sightings rate distribution for the five cetacean 

species indicates a different spatial pattern for each species (see Figure 4.5 for 

bottlenose dolphin and harbour porpoise distribution, and Figure 4.10 & 4.11, Appendix 

4.7.2 for the annual and spring distributions of minke whale, risso’s dolphin and short-

beaked common dolphin). The only cetacean species to have a strong, but not exclusive, 

presence in areas of high production are bottlenose dolphin and harbour porpoise 

(Figure 4.5). A difference between the annual and spring distributions for these two 

species is apparent. The spring distribution is less wide ranging for both species, 

particularly for harbour porpoise which has a very broad annual distribution across 

most of the Irish Sea. Both the annual and spring distribution for Bottlenose dolphin 

appears to be concentrated in Cardigan Bay. 

 

The cetacean long-term sightings rate data were strongly skewed by a high number of 

zeros. As a result, negative binomial generalised additive models (GAM) were used to 

investigate the association between cetacean sightings and benthic production. Results 

for all cetacean species, for both annual long-term sighting rates and long-term sighting 

rates during the spring bloom (April to June) indicate no significant association with 

modelled or empirical benthic infauna production (Figure 4.6 & 4.7).  

 

 



CHAPTER 4 – Spatial association 

 

 

147 
 

 

 

 

Figure 4. 5. Spatial distribution of annual long-term sightings rate for (a) bottlenose dolphin 

(Tursiops truncatus) and (b) harbour porpoise (Phocoena phocoena), and spring (April – June) 

long-term sightings rate for (c) bottlenose dolphin (Tursiops truncatus) and (d) harbour 

porpoise (Phocoena phocoena). 
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Figure 4.6. The relationship between empirical and modelled benthic production (kJ m-2 yr-1) 

and the annual relative abundance of five different cetacean species, recorded at a spatial 

resolution of 10’ latitude x 10’ longitude. The unit of relative abundance is annual long-term 

sightings rate (sightings/hr or counts/hr). The five cetacean species include; a-b) bottlenose 

dolphin (Tursiops truncatus), c-d) harbour porpoise (Phocoena phocoena), e-f) minke whale 

(Balaenoptera acutorostrata), g-h) Risso’s dolphin (Grampus griseus), and i-j) short-beaked 

Common dolphin (Delphinus delphis). N = 55 and 264 for empirical and modelled production, 

respectively. 
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Figure 4.7. The relationship between empirical and modelled benthic production (kJ m-2 yr-1) 

and the relative abundance of five different cetacean species during spring (April-June), 

recorded at a spatial resolution of 10’ latitude x 10’ longitude. The unit of relative abundance is 

spring long-term sightings rate (sightings/hr or counts/hr). The five cetacean species include; a-

b) bottlenose dolphin (Tursiops truncatus), c-d) harbour porpoise (Phocoena phocoena)), e-f) 

minke whale (Balaenoptera acutorostrata), g-h) risso’s dolphin (Grampus griseus), and i-j) short-

beaked Common dolphin (Delphinus delphis). N = 55 and 264 for empirical and modelled 

production, respectively. 
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Benthic production and the number of conservation priority species  

 

A visual comparison of the spatial distribution of the number of limited-mobility priority 

species and benthic infauna production in the Irish Sea suggests little consistent 

association between the two across the area studied. The number of priority species 

ranged from 0 to 2, and their distribution appears to be fairly scattered across the area 

included in the analysis, with most areas having 0 or 1 species present (Figure 4.8). The 

highest numbers of priority species (2 priority species) are found of the South 

Pembrokeshire coast and in and around Strangford Lough, Northern Ireland. 

 

The benthic production and priority species data were heavily skewed by a high number 

of zero species counts, therefore a generalised linear model (GLM) with negative 

binomial distribution was used for both empirical and modelled benthic production. 

GLM results indicate no significant association between modelled or empirical benthic 

production and the number of priority species (Table 4.2). Figure 4.9 shows the raw 

data for empirical (N= 35) and modelled (N = 1185) production, respectively. Both are 

dominated by zero counts, followed by single species counts, particularly at lower values 

of benthic production.  
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Figure 4.8. The distribution of limited-mobility conservation priority species records per 20 

km2, within 6 nm. 
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Figure 4.9. The relationship between (a) empirical and (b) modelled benthic production (kJ m-2 

yr-1) and the number of limited-mobility conservation priority species (UK BAP and OSPAR 

priority species), recorded at a spatial resolution of 20 km2. N = 1257 and 41 for modelled and 

empirical production, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 4 – Spatial association 

 

 

153 
 

4.6 DISCUSSION  

 

4.6.1 Overview 

 

Out of the three groups of biodiversity features included in the analysis here, only 

benthic diversity was found to a have significant, positive spatial association with 

benthic production. No significant association was found between production and 

cetacean relative abundance, or the number of conservation priority species. This would 

suggest that designating MPAs to protect these later two biodiversity features will not 

result in substantial protection of the important ecosystem function benthic infaunal 

production.  It would therefore appear that opportunities for establishing win-win 

conservation scenarios that protect both biodiversity and ecosystem function in the 

Irish Sea are limited. Of the three hypotheses tested, two were support by the results; i) 

a positive association between benthic production and benthic diversity, and iii) no 

association between benthic production and the number of conservation priority 

species. The hypothesis predicting a positive association between benthic production 

and cetacean relative abundance was not supported. 

 

Both types of production estimates were included in the analyses here, in order to 

increase confidence in results, should both estimates exhibit positive associations. 

Empirical infaunal production (kJ m-2 yr-1) is calculated by a multiple regression model 

that uses a number of population-specific and habitat-specific inputs (see Brey (2001) 

for a detailed description of model). Modelled infaunal production is predicted using a 

size-based model that includes several statistically-estimated environment-mediated 

growth and mortality functions. Both rely on statistically estimated relationships, and 

both have a limited number of inputs which are unlikely to represent all influences on 

benthic production. Therefore both models are unlikely to predict precise estimates. 

Despite this, agreement between results between empirical and modelled estimates is 

assumed to suggest greater confidence in the results. Here, where positive associations 

were found for the different measures of benthic infauna diversity, a significant 

relationship was only found for one production estimate, not both. Therefore, 
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confidence in the result is not as strong as if both production estimates had significant 

associations with diversity. 

 

4.6.2 Benthic infaunal production and biodiversity features 

 

Benthic production and benthic diversity 

 

Here, the positive association between empirical production and species richness, and 

modelled benthic production and the Shannon-Wiener index and Pielou’s Evenness 

suggests that both the number and relative abundance of different species could have an 

influence on the productivity of the benthic infauna community. The primary causal 

mechanisms for a positive relationship between species diversity and productivity put 

forward in biodiversity-ecosystem function research are facilitation and 

complementarity, which both propose that increasing species diversity increases 

resource use efficiency within a community (Srivastava & Vellend, 2005; Balvanera et al. 

2006, Hillebrand & Matthiessen, 2009). Alternatively, observed positive correlations in 

nature could also exist due to simple covariance of production and diversity. A greater 

number of species may simply mean greater community abundance, resulting in high 

biomass and therefore productivity.  

 

Causal mechanisms are not necessary for identifying potential win-win scenarios. As 

long as spatial concurrence exists consistently across the area of interest, there is 

potential to inform effective conservation planning. Available data for investigating the 

relationship between benthic production and benthic community is not expected to be 

representative of the whole Irish Sea area, therefore it is difficult to say that the result 

here can be generalised to this scale. However, the results do suggest that there is more 

likely to be an association between benthic production and benthic community diversity 

compared to the other biodiversity features included in the analyses here. 

 

 

 

 



CHAPTER 4 – Spatial association 

 

 

155 
 

Benthic production and conservation priority species 

 

The lack of a spatial association between benthic infaunal production and the number of 

conservation priority species is not unexpected because there is no particular biological 

justification for a high number of these species to be associated with highly productive 

benthic communities. In fact, in terrestrial ecosystems it has been observed that rare or 

endemic species are usually associated with low productivity habitats, such as 

savannahs (Bustamante et al. 2012) and serpentine soils (Jules et al. 2012). The list of 

species included in the analyses here is fairly diverse and the different species are not 

expected to be associated with each other because of different habitat requirements, so 

there is little likelihood of them occurring in the same area. Other studies have similarly 

found no or very little association between ecosystem services and conservation priority 

species (e.g. Chan et al. 2006; Naidoo et al. 2008). Conversely, Anderson et al. (2009) 

found an overall negative association between an ecosystem service, carbon storage, and 

number of terrestrial UK BAP priority species at a national scale (England).  

 

Benthic production and cetacean relative abundance 

 

Unexpectedly, no spatial association was found between benthic production and long-

term sightings rate for the five priority cetacean species included in the analyses here. 

Marine mammal feeding activity has been shown to be associated with areas of high 

productivity, such as fronts and areas of upwelling (e.g. Scott et al. 2010; Thompson et 

al. 2012; Santora et al. 2012). However, the five species of cetacean included here have 

subtle differences in diet which may influence the possibility of them being associated 

specifically with areas of high benthic production. For example, Minke whale feeds on 

krill, plankton and small schooling fish in surface and near-surface waters. Short-beaked 

common dolphin and Risso’s dolphin feed on epi-pelagic fish and cephalopods (NOAA 

fisheries, Office of Protected Resources; 

http://www.nmfs.noaa.gov/pr/species/mammals/cetaceans/).  

 

Bottlenose dolphins and Harbour porpoise are most likely to target benthic or demersal 

fish, cephalopods and other invertebrates, therefore an association with benthic infauna 

http://www.nmfs.noaa.gov/pr/species/mammals/cetaceans/
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production could be expect for these two species in particular. Distribution maps do 

suggest that they do have a strong presence in areas of high production, however, they 

also a strong presence in areas of low predicted production and regression analysis 

confirm that there is no significant association when considering their distribution 

across the whole Irish Sea area.  

 

The fact that cetaceans are highly mobile makes determining species-habitat 

associations difficult (Ballance et al. 2006). The greater the mobility of an animal, the 

more difficult it is to identify strong associations. The sightings rate data used in this 

analysis also only records surface activity of the cetaceans, therefore it is difficult to 

determine if the species are simply travelling through the area, or are in the area to feed. 

If the feeding ground of these species were known and mapped, the spatial pattern may 

be quite different to that determined from sightings data and may have yielded different 

results from those found here. Similarly, a stronger link may be found between 

cetaceans and their actual prey items, for example demersal fish, compared to between 

cetaceans and benthic productivity. Investigation of the association between benthic 

production and demersal fish, and demersal fish and cetaceans of conservation 

importance is recommended for future research. 

 

4.6.3 Implications for conservation planning 

 

The lack of positive spatial associations between benthic production and biodiversity 

features in the Irish Sea suggest limited scope for designating MPAs that protect both an 

important marine ecosystem function and biodiversity.  Furthermore, the assumption 

that the protection of biodiversity, or ecosystem structure, will confer protection of 

ecosystem function or services is not supported by the findings. This reinforces 

recommendations that spatial concurrence between conservation priorities and 

ecosystem services should be empirically investigated in order to confirm the degree of 

overlap and inform effective conservation planning (e.g. Naidoo et al. 2008, Larsen et al. 

2011). The results indicate that there is no general pattern of association between 

biodiversity and ecosystem function; a finding that is mirrored by other studies 

(Eigenbrod et al 2009). For example, findings range from no association between 
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ecosystem services and biodiversity priorities (Naidoo et al 2008), some positives 

associations, between freshwater services and biodiversity (Larsen et al. 2011), and the 

number of listed species and regulating services (Schneider et al. 2012), as well as 

negative associations, for example between carbon storage and conservation priority 

species (Anderson et al. 2009).  

 

Understanding both potential win-win scenarios and trade-offs in conservation 

management of biodiversity and ecosystem function is essential for informing effective 

planning and prioritisation of effort (Power et al. 2010). Studies investigating spatial 

overlap between ecosystem services and conservation priorities like the one outlined 

here are an important step in this process. Although the results here indicate no great 

opportunity of win-win scenarios, the lack of a significant negative association suggests 

that strong management trade-offs between biodiversity features and benthic infaunal 

production do not occur. Conversely, Anderson et al. (2009) found a negative 

relationship between carbon storage and the number of conservation priority species in 

the UK, because the peat and moorland areas important for carbon storage in the UK had 

low numbers of these particular species. This indicates that conservation of carbon 

stores in the UK will have little benefit for conservation priority species, and if 

conservation efforts are limited, trade-offs will have to be made when considering their 

protection. Here, the lack of a distinct difference in the distribution of benthic 

productivity and biodiversity features suggests that optimizing protection for one of the 

biodiversity features will not retract sustainably from the protection of benthic 

production compared to if conservation was not focused on this one feature. 

 

Although no obvious trade-offs between the protection of biodiversity and function are 

apparent here, the lack of significant spatial overlap suggests that a larger area will be 

required for conserving both ecosystem structure and function than if significant spatial 

congruence existed. This has cost implications not only for conservation, but also for 

other marine users, because the greater the area required for protection the greater the 

likelihood of conflict with these other users. Strong trade-offs are therefore likely to 

occur between conservation and conflicting uses such as fishing, as opposed to a trade-

off between the protection of one conservation feature over another. Determining the 
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area of protection needed to conserve both biodiversity and ecosystem structure is 

beyond the scope of this study. This will, however, be partly addressed in Chapter 5. An 

approach similar to that of Chan et al. (2006) which compared the degree to which 

networks of protected areas for biodiversity met targets for different ecosystem 

services, and the amount of extra land networks would need to meet such targets, would 

be suitable for determining the area required for protection of all conservation features. 

The generation of networks to protect both biodiversity and ecosystem function would 

also be useful for further investigating the potential for win-win conservation scenarios 

and further informing efficient conservation planning.   Despite the weak correlations 

between biodiversity and individual ecosystem services found by Chan et al. (2006), the 

creation of networks to protect biodiversity identified that these networks did actually 

protect substantial amount of ecosystem services. This is because there were hotspots 

where biodiversity and areas important the functions in question did coincide. Naidoo et 

al. (2008) similarly found no consistent association between biodiversity and ecosystem 

services at a global scale, but were still able to identify areas important for both at local 

scales. Although no consistent association between biodiversity features and benthic 

production across the whole Irish Sea was found here, comparisons of the distribution 

maps do indicate some areas where high productivity coincide with the biodiversity 

features examined. For example a high relative abundance of bottlenose dolphin and 

harbour porpoise occur in areas of high productivity off the North Wales and in Cardigan 

Bay. The next step in determining the extent of win-win scenario in the Irish Sea would 

therefore be to generate protected area networks for biodiversity features and quantify 

the degree to which the networks also protect benthic production, and vice versa. In 

addition to this, the degree of similarity or overlap between alternative networks 

generated to protect biodiversity features and benthic production would indicate areas 

useful for protecting both, therefore highlighting potential areas for prioritising 

conservation effort.  

 

The importance of spatial scale 

 

The fact that a stronger association was detected between benthic infaunal production 

and benthic infaunal diversity compared to the other biodiversity features investigated 
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here is not unsurprising. This is because the benthic diversity and benthic diversiy data 

were extracted either at similar scales (modelled production), or directly from the same 

area (empirical production). In comparision the biodiversity feature data could only be 

investigated at a much larger spatial grain compared to the scale at which benthic 

production data was generated. 

 

The general lack of association between biodiversity features and benthic infaunal 

production may also be a due to the large spatial extent at which data were analysed. 

Anderson et al. (2009) found distinct regional differences in the relationship between 

biodiversity and ecosystem services, when compared to the general pattern found for 

the whole of Britain. For example, although an overall negative association between 

biodiversity and carbon storage was found for the whole of the UK, when this analyses 

was broken down into 100x100km grid cells, a significant negative relationship 

remained for area of the north-west and uplands, but a significant positive relationship 

was found between biodiversity and carbon storage in south and east areas, where high 

biodiversity was associated with high-carbon habitats forest and wetland. This suggests 

that restricting analyses to one, large spatial extent may mean that opportunities for 

win-win conservation scenarios maybe missed. Here, the only analysis with a restricted 

extent is the comparison of benthic production and benthic diversity, limited primarily 

to the North East Irish Sea, and some stations around the coast of Pembrokeshire, Wales. 

This is the only analysis that yielded a significant association between biodiversity and 

production. Analyses for cetacean relative abundance and conservation priority species 

were conducted at a much larger spatial scale, and no significant results were found. The 

results of Anderson et al (2009) would suggests that these analyses may have been 

conducted at too large a spatial extent for informing effective conservation planning, and 

a smaller scale, local approach may be more appropriate or identifying in-win 

conservation scenarios in the Irish Sea.  

 

4.6.4 Conclusions 

 

In summary, the findings here indicate that (i) the protection of biodiversity (ecosystem 

structure) will not automatically ensure the protection of ecosystem function, 



CHAPTER 4 – Spatial association 

 

 

160 
 

suggesting that (ii) to protect biodiversity features and ecosystem function in the Irish 

Sea conservation planning will need to specifically consider and target both. (iii) 

Although no significant, consistent associations were found, visual comparisons of 

spatial patterns in the Irish Sea suggest that some areas of high benthic productivity do 

coincide with high biodiversity feature abundance or diversity; (iv) therefore a targeted, 

local approach is more likely to be successful for identifying win-win conservation 

scenarios than the Pan-Irish Sea approach described here.  
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4.7 APPENDICES 

 

4.7.1 Conservation priority species 

 
Table 4.3. The limited mobility OSPAR and UK Biodiversity Action plan species included in the 

analysis to investigate spatial association between benthic production and the number of 

conservation priority species. The table also indicates whether or not the species is also a 

criterion for the MZC selection process in England, and gives the data source. 

 

Species of conservation importance BAP/OPSAR species MZC criteria 
(England) 

Data 
source 

Atrina pectinata (Fan mussel) BAP Yes Defra 

Edwardsia timida (Timid burrowing anemone) BAP Yes Defra 

Eunicella verrucosa (Pink-sea fan) BAP Yes Defra 

Funniculina quadrangularis (Tall sea pen) BAP No Defra 

Haliclystus auricula (Kaleidoscope jellyfish) BAP Yes Defra 

Hippocampus guttulatus (Long snouted seahorse)  BAP/OSPAR Yes Defra 

Lithothamnion corallioides (Coral maerl) BAP/OSPAR Yes Defra 

Lucernariopsis campanulata (Stalked jellyfish) BAP Yes Defra 

Ostrea edulis (Native oyster) BAP/OSPAR Yes Defra 

Palinurus elephas (Spiny lobster) BAP Yes Defra 

Phymatolithon calcareum (Common maerl) BAP/OSPAR Yes Defra 

Tenellia adspersa (Lagoon sea slug) BAP Yes Defra 
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4.7.2 Cetacean species 
 
 

 
 

Figure 4.10. Distribution of annual long-term sightings for (a) minke whale (Balaenoptera acutorostrata), (b) risso’s dolphin (Grampus griseus) and (c) 

short-beaked common dolphin (Delphinus delphis).  
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Figure 4.11. Distribution of spring long-term sightings (April – June) for (a) minke whale (Balaenoptera acutorostrata), (b) risso’s dolphin (Grampus 

griseus) and (c) short-beaked common dolphin (Delphinus delphis). 
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CHAPTER 5 - Do marine protected area networks 
designed to protect biodiversity also protect 
ecosystem functioning? 
 

5.1 AIM: To investigate the extent to which marine protected areas (MPAs) designed to 

protect biodiversity also protect an important ecosystem function, benthic infaunal 

production. 

 

5.2 ABSTRACT 

 

Safeguarding ecosystem functioning is gaining importance in conservation and 

environmental management. Benthic infaunal production is an important marine 

ecosystem process that mediates energy transfer through the marine food web. Benthic 

production could be protected in marine protected areas (MPAs), however, to date the 

majority of MPAs have been designated to protect biodiversity features such as species 

and habitats. Here the amount of benthic production that is protected by hypothetical 

biodiversity MPA networks in the Irish Sea will be compared to those designed to 

protect benthic infaunal production. In particular, a protection target of 30% of total 

benthic infaunal production in the Irish Sea is set (based on International 

recommendations for marine habitats), and the extent to which biodiversity MPAs met 

this target is investgiated, to determine whether or not targeted protection of ecosystem 

function using functional selection criteria is required. The biodiversity features 

included here are the species and habitats used to identify potential marine 

conservation zones in England. Different MPA networks are generated using the 

conservation planning software MARXAN. The influence of a fishing cost surface (that 

reflects the importance of an area to the fishing industry) on network outputs is 

investigated to determine if the consideration of socio-economic costs effects the 

amount of production protected or total network costs. Results indicate that biodiversity 

MPA networks do not protect 30% of benthic productivity in the Irish Sea, and a large 

total network area is required to protect both biodiversity and function. As a result these 

networks exhibit the highest costs to fishing. The inclusion of a fishing cost surface 
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reduces MPA benefits to production and total network costs. Overall, results suggest 

that ecosystem functioning should be explicitly included in MPA network design to 

ensure its protection. 

 

5.3 INTRODUCTION 

 

Marine protected area (MPA) designations tend to target the protection of biodiversity, 

specifically species or habitats of conservation importance (Frid et al. 2008). There is 

increasing interest in also managing and protecting ecosystem function, however, 

because it underpins ecosystem health and the provision of ecosystem goods and 

services (Beaumont et al. 2007; Beaumont et al. 2008; Tillin et al. 2008; Frid et al 2008; 

Curtin & Prellezo, 2010; Young et al. 2008). If there is a high spatial association or 

overlap between areas of high biodiversity and ecosystem functioning, the protection of 

biodiversity features in MPA networks, for example from fishing, could also protect 

those coinciding ecosystem functions that are damaged by fishing. These cases of spatial 

coincidence therefore offer opportunities for multiple benefits, or ‘win-win’ 

conservation scenarios (Balmford et al. 2002, Crossman & Bryan 2009). General links 

between biodiversity and ecosystem function have been made (Balvanera et al. 2006; 

Srivastava & Vellend, 2005), as well as between particular biodiversity features and 

function (e.g. Mumby et al. 2008; Smyth et al. 2013). Smyth et al. (2013), for example, 

found that in temperate estuaries, oyster reefs and seagrass beds remove significantly 

more nitrogen per unit area compared to intertidal and subtidal flats and salt marshes. 

This nitrogen removal is important because it reduces the chances of eutrophication 

events (Smyth et al 2013). If the high biodiversity oyster reefs and seagrass beds are 

protected, this function will also be maintained.   

 

If biodiversity does not coincide with ecosystem functioning, targeted protection of 

important functions and processes will be required to ensure good ecosystem health 

and the continued provision of goods and services. To identify areas of good ecological 

quality and ecosystem functioning, some kind of indicator or metric of quality is 

required (Tillin et al 2008; Young et al. 2008). Benthic infaunal production is the 

heterotrophic production of organic matter by benthic infaunal macro-invertebrates per 
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unit time and area (Cusson & Bourget, 2005). This metric has been proposed as an ideal 

indicator of marine ecosystem quality because it directly reflects the flow of energy and 

material through the ecosystem (Valentine-Rose et al. 2011), and supports a number of 

ecosystem goods and services. In particular, this productivity is key for supporting 

higher trophic levels, including demersal fish species that eat benthic invertebrates 

(Christensen et al. 1996; Heath, 2005; Wouters & Cabral, 2009; Hiddink et al. 2011).  

 

Chapter 4 found little spatial association between benthic infaunal production and 

biodiversity features, such as species of conservation importance, in the Irish Sea. This 

suggests that areas of high ecological quality are unlikely to be captured within MPAs 

designed to protect biodiversity. To ensure good marine ecosystem health and the 

continued provision of goods and services then, areas of high ecosystem quality 

indicated by high levels of benthic infaunal production may require targeted protection 

in MPAs. Other research has similarly found that areas of high biodiversity do not 

coincide with areas important for ecosystem goods and services (e.g. Chan et al. 2006; 

Naidoo et al. 2008; Anderson et al. 2009; Luck et al. 2009).  Chan et al. (2006), however, 

found that despite a lack of spatial association between biodiversity and ecosystem 

functioning in the Central Coast eco-region of California, protected area networks 

designed to protect biodiversity did actually protect a significant amount of functioning. 

 

In order to determine whether or not benthic infaunal production does require targeted 

protection in MPAs, an investigation into the amount of benthic production captured in 

MPA networks designed to protect biodiversity (hereafter biodiversity MPA networks) 

is required. Here, then, the amount of benthic infaunal production protected by 

hypothetical biodiversity MPA networks is investigated and compared to the amount of 

benthic production protected by networks designed using benthic infaunal production 

as a ‘functional’ MPA selection criterion (i.e. a selection criterion related to ecosystem 

functioning). These hypothetical MPA networks will be created in the systematic 

conservation planning software MARXAN (version 2.1.1.). In order to design networks, 

MARXAN requires numerical conservation targets for those features the network is 

being designed to protect. The biodiversity features included in the analysis are the 

broad-scale habitats and species and habitats of conservation importance used to 
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identify marine conservation zones in England, and the same conservation targets used 

for these features in England are applied here. Benthic infaunal production is broad-

scale process that occurs across the Irish Sea, therefore a target of 30% is selected, 

based on general targets for broad-scale marine habitats proposed in international 

agreements. The World Summit on Sustainable Development (United Nations 2002) and 

the World Parks Congress (IUCN 2004), for example, outline targets of 20-30% of 

marine habitats to be protected within a governments jurisdiction (Lombard et al: 

2007).  

 

Given the lack of spatial association between biodiversity features and benthic infaunal 

production identified in Chapter 4, biodiversity MPA networks are not expected to 

protect 30% of production in the Irish Sea. If this is the case, benthic infaunal production 

will need to be explicitly included in MPA design in order to meet the 30% target, and a 

large total network area is expected to be required to meet conservation targets for both 

biodiversity and production. 

 

The designation of MPA networks incurs costs and can result in conflict between 

different marine users, particularly when those networks exclude activities such as 

fishing (Naidoo et al. 2006). In addition to direct establishment and enforcement costs, 

the loss of revenue to the fishing industry through the loss of fishing grounds or 

displacement on to less favourable grounds is a major indirect cost of non-extractive 

MPAs (van der Geer et al. 2012; Hunt, 2013). These costs are known as opportunity 

costs (Chan et al. 2011), and can result in high levels of conflict (Di Minin et al. 2013). 

The greater the opportunity costs to the fishing industry, the higher the expected 

conflict between conservation and the fishing industry (van der Geer et al. 2012). MPA 

networks designated to protect benthic infaunal production may overlap with areas of 

high fishing activity, due to the potential importance of benthic infauna as food for 

demersal fish and therefore for demersal fisheries (Heath, 2005; Powers et al. 2005). If 

this is the case, networks to protect benthic infaunal production may incur higher 

opportunity costs and conflict with fishing compared to MPA networks designated to 

protect biodiversity. Costs and possibilities for conflict are important to consider in MPA 

network design because conflict can result in a lack of acceptance and therefore 
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compliance, which can reduce the effectiveness of the network for achieving 

conservation goals (van de Geer et al. 2012). If opportunity costs and conflict between 

activities is very high, management trade-offs between activities may be required to 

reduce conflict (Di Minin et al. 2013).  

 

In order to designate effective MPA networks, the consideration of costs to other marine 

users can be incorporated into the conservation planning process (Naidoo et al. 2006; 

Richardson et al. 2006; De Minin et al. 2013). This can be done in MARXAN using cost 

surfaces, which allocate an opportunity cost reflecting the relative importance of 

different areas to other users. During the network design process MARXAN uses these 

cost surfaces to minimise the overall opportunity costs incurred by the network, by 

directing MPAs away from areas that are important to other users. The inclusion of a 

fishing cost surface in MARXAN would therefore reduce conflict with fishing activity, 

resulting in MPA networks that are more likely to be accepted, supported and therefore 

effective (van de Geer et al. 2012). If overlap between areas of high benthic production 

and fishing activity exists, the inclusion of such a cost surface may result in less benthic 

infaunal production being protected, or a larger total MPA network area to ensure that 

conservation targets for production are met whilst reducing conflict with fishing. 

 

In summary, MPA networks designed to protect biodiversity and benthic infaunal 

production will be compared to address the following hypotheses; i) biodiversity MPA 

networks will not protect 30% of benthic infaunal production in the Irish Sea and, due to 

a lack of spatial overlap between biodiversity and high benthic productivity. ii) MPA 

networks designed to protect benthic infaunal production will incur higher opportunity 

costs than biodiversity MPA networks, due to an association between fishing activity 

and benthic productivity. If biodiversity MPA networks do not protect 30% of benthic 

infaunal production, benthic infauna production will need to be explicitly included in 

MPA design to ensure conservation targets for this important ecosystem process are 

met. If MPA networks designed to protect benthic infaunal production incur high 

opportunity costs greater conflict with the fishing industry is expected. This could mean 

that MPAs to protect benthic infaunal production may not be effective due to problems 

with compliance, or the need for management trade-offs will be required. The influence 
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of including a fishing cost surface that reflects fishing opportunity costs on network 

outputs will be considered to investigate how reducing conflict with the fishing industry 

may alter the amount of production protected and overall network size. 

 

5.4 MATERIALS AND METHODS 

 

5.4.1 Method overview 

 

Three alternative selection criteria scenarios were implemented in MARXAN; i) 

biodiversity selection criteria only, ii) biodiversity and benthic infaunal production 

selection criteria, and iii) a benthic infaunal production selection criterion only. Each 

scenario was implemented with and without a fishing cost surface reflecting fishing 

opportunity costs, giving six network outputs in total. The extent to which these 

networks protect benthic infaunal production was compared, and the spatial similarity 

between networks, total network opportunity cost and area was also quantified and 

compared.  

 

5.4.2 MPA network design 

 

Marxan software 

 

Marxan software has been widely used for designing marine protected area networks 

for both practical management and academic purposes (e.g. Smith et al. 2008; Ban et al. 

2009; Edwards et al. 2009; Allnutt et al. 2012; Malcolm et al 2012). It is one of the most 

well-known conservation planning software available, and is considered appropriate for 

the purposes of this study. Marxan aims to design protected area networks that meet all 

specified conservation targets whilst minimizing costs, through a process of simulated 

annealing (see Ball & Possingham (2000) for technical details of how Marxan operates).  

 

The area for which networks are to be designed is divided into planning units, and five 

types of input data inform the design process; i) the presence, number or percentage of 

each conservation feature in each planning unit, i.e. amount of benthic production or 
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number of species, ii) protection targets for each conservation feature (e.g. 30% of a 

species occurrence or area of habitat), iii) a specified cost for each individual planning 

unit, provided by a cost surface (i.e. the cost of incorporating that planning unit in the 

network, for example the cost of excluding fishing activity from that planning unit would 

be reflect by a fishing opportunity cost), iv) a user defined penalty for not achieving 

conservation feature targets and, v) a boundary length modifier value that constraints 

the total perimeter of the network and therefore influences the degree of patchiness or 

clumping of planning units in the network solutions. 

 

There are a large number of possible network solutions that meet the conservation 

targets for the given MPA selection criteria, each made up of a different combination of 

planning units that achieve the targets set. MARXAN typically generates 100 of these 

possible networks through the process of simulated annealing. MARXAN then identifies 

the ‘near-optimal’ network that achieves as many conservation targets as possible whilst 

keeping network costs to a minimum. MARXAN does this by calculating an overall ‘score’ 

or ranking, from the total network cost (calculated from the cost surface) and penalty 

values (resulting from missed conservation targets) for each of the 100 networks 

generated. The lowest scoring network output as identified as the ‘near-optimal’ 

network solution for the conservation targets set.  

 

In addition to the 100 different network solutions, including the identified ‘optimal’ 

solution, a selection frequency map that highlights the frequency at which each 

individual planning unit is incorporated into a network, summed over the total 100 runs 

is generated. This selection frequency map can be interpreted as a measure of planning 

unit importance for achieving the suite of conservation targets outlined for that 

particular 100 Marxan runs (Ardron et al. 2010). For example, if a planning unit has a 

selection frequency of 100, this indicates that the planning unit always has to be 

included in the network in order to meet a conservation target. 

 

Study area and spatial scale 
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5 km2 planning units across the whole Irish Sea area were used because this is the 

spatial scale at which benthic infaunal production is modelled for the Irish Sea (see 

Chapter 3). 5 km2 is also considered an appropriate unit for comparing marine spatial 

management approaches across the area of study, a total of 57477 km2, whilst still being 

relevant to scale of marine protected area network design. In a review of 89 marine 

protected areas by Halpern (2003), for example, the median size of reserves was 4.0 km2 

(ranging from 0.002-846 km2). See Figure 5.1 for a map of the study area extent. 

 

Figure 5.1. The Irish Sea. The extent of the area included in analyses is indicated by the blue 

area. 
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Biodiversity features and targets  

 

Three different types of biodiversity features were included in the analyses here; i) 

broad-scale habitats, and ii) habitats and iii) species of conservation importance in the 

Irish Sea. The features chosen for network selection here are the same features included 

in the criteria for selecting Marine Conservation Zones (MCZs) in the Marine 

Conservation Zones project (Natural England & JNCC, 2010). 

 

The broad-scale habitat data were modelled seabed habitat in the EUNIS Level 2 

classification, obtained from the EUSeaMap Consortium. A complete list of broad-scale 

habitats included in the analyses here can be found in Table 5.1, and a map of the 

distribution of broad-scale habitats in the Irish Sea can be seen in Appendix 5.7.1 (Figure 

5.10). Data layers of the spatial distribution of habitats and species of conservation 

importance, in the form of ESRI polygon and point shape files respectively, were 

obtained from the Countryside Council for Wales (CCW). These data layers were outputs 

from the DEFRA biophysical data layers project, which aimed to aid the designation of 

Marine Conservation Zones (MCZs) in England and Wales under the Marine and Coastal 

Access Act. Three species of conservation importance were removed from the analysis 

here, due to a lack of confidence in the data, as identified by JNCC & Natural England 

(JNCC & Natural England, 2012). These three species were ocean quahog Arctica 

islandica, horse mussel Modiolus modiolus and ross worm Saballeria spinulosa. These 

data were deemed to be of very low confidence, with many records considered incorrect 

or from unreliable sources (JNCC & Natural England, 2012), and therefore not suitable to 

indicate the species current distribution. The habitats and species of conservation 

importance included in this analysis are listed in Table 5.1, and their distribution can be 

seen in Appendix 5.7.1, Figures 5.11 and  5.12 respectively. 

 

Conservations targets for broad-scale habitats are the same as those set out in the 

Marine Conservation Zone Project guidelines (Natural England & JNCC, 2010). A range of 

values was given in the Marine Conservation Zone Project guidelines for each habitat 

type, and here the middle value was chosen as a quantitative target in Marxan. For 

example, for low energy circalittoral rock, the recommended proportion of the total 
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habitat area to protect in the Irish Sea is 16-32%, giving a middle value of 24%. See 

Table 5.1 for the protection target allocated to each habitat type. These initial protection 

targets ranges set by the Marine Conservation Zone Project in England aim to ensure the 

protection of 70-80% of species associated with these broad-scale habitats, and the 

proportions given are based on a species-area curve approach developed by Rondinini 

(2011). It should be noted that despite the use of this best available ecological evidence, 

it is acknowledged that there are many assumptions made in the methods utilised to 

propose protection target, therefore the suitability of these targets is uncertain (Natural 

England & JNCC, 2010). 

 

Numerical protection targets for habitats and species of conservation importance were 

not set by the Irish Sea Conservation Zone project, because not enough information was 

considered available to make an informed decision (Natural England & JNCC, 2010). 

Instead, other principles were used to determine that amount of these features to be 

protected by the Irish Sea MZC project, such as size and shape of MPAs, replication and 

connectivity between MPAs. Unfortunately it is difficult to include these principles for 

determining the protection of conservation features in Marxan software. Numerical 

protection targets are the best way for features of conservation importance to be 

included in the Marxan as MPA selection criteria, therefore numerical targets have been 

set for the purpose of the exercise here. These numerical targets were set higher than 

those for broad-scale habitats, because they are considered to be higher priority. A 

protection target level of 50% of the total area covered by each habitat and species was 

deemed appropriate (pers. comms Kirsten Ramsey, 2012). It should be noted that this 

50% target is arbitrary, and is set to reflect their perceived higher importance compared 

to broad-scale habitats. 

 

A total of 36 biodiversity features were included in this analysis. These consisted of 11 

broad-scale habitats, 11 habitats of conservation importance, and 14 species of 

conservation importance. The total area of each broad-scale habitat and habitats of 

conservation importance was calculated for each planning unit, and the number of 

records for each species of conservation importance was calculated for each planning 

unit as input for Marxan. 
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Table 5.1. The 36 biodiversity conservation features and their associated conservation targets 

included in the network design process. 

 

Structural conservation feature Conservation target (%) 
Broad-scale habitats  
High energy infralittoral rock 23.5 
Moderate energy infralittoral rock 23.5 
Low energy infralittoral rock 24 
High energy circalittoral rock 19.5 
Moderate energy circalittoral rock 22 
Low energy circalittoral rock 24 
Subtidal coarse sediment 23.5 
Subtidal sand 22.5 
Subtidal mud 22.5 
Subtidal mixed sediments 24 
Deep-sea bed 10 
Habitats of conservation importance  
Blue mussel beds 50 
Estuarine rocky habitats 50 
Intertidal boulder communities 50 
Maerl beds 50 
Mud habitats in deep water 50 
Sea-pen & burrowing megafauna communities 50 
Sabellaria reefs 50 
Seagrass beds 50 
Sheltered muddy gravels 50 
Subtidal sands & gravels 50 
Tide swept channels 50 
Species of conservation importance  
Alkmari romijni (Tentacled lagoon-worm) 50 
Atrina pectinata (Fan mussel) 50 
Cruoria cruoriaeformis (Burgundy maerl paint weed) 50 
Dermocorynus montagnei (Little-lobed weed) 50 
Edwardsia timida (Timid burrowing anemone) 50 
Eunicella verrucosa (Pink-sea fan) 50 
Haliclystus auricula (Kaleidoscope jellyfish) 50 
Hippocampus guttulatus (Long snouted seahorse)  50 
Lithothamnion corallioides (Coral maerl) 50 
Lucernariopsis campanulata (Stalked jellyfish) 50 
Ostrea edulis (Native oyster) 50 
Palinurus elephas (Spiny lobster) 50 
Phymatolithon calcareum (Common maerl) 50 
Tenellia adspersa (Lagoon sea slug) 50 
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Benthic infaunal production and targets for protection 

 

Benthic infaunal production was included as a conservation feature in MARXAN using a 

modelled data layer of benthic infaunal production. Benthic production was modelled at 

a spatial resolution of 5km2 for the study area using an empirical, size-based model 

developed and parameterized for the Irish Sea (see Chapter 3 for details). Productivity 

under the current fishing regime in the Irish Sea was predicted so that the model output 

included in MARXAN was comparable to the current distribution of habitats and species 

used to select biodiversity MPAs. i.e. the species and habitat data used here represents 

the distribution of biodiversity features under current fishing pressure, therefore the 

distribution of benthic production under current fishing pressure was also used to select 

MPAs to protect ecosystem functioning. The model data layer used in MARXAN can be 

seen in Figure 3.5, Chapter 3. 

 

The conservation target selected for production is 30% of all benthic infaunal 

production in the Irish Sea. The need for protection of benthic infaunal production is 

deemed more similar to broad-scale habitats than a feature of conservation importance, 

because it is broad-scale process that occurs across the Irish Sea, rather than having a 

small, restricted range. Due to a lack of specific ecological guidance for the protection of 

this ecosystem function, this 30% protection target is based on targets for marine 

habitats proposed in international agreements.  For example, the World Summit on 

Sustainable Development (United Nations 2002) and the World Parks Congress (IUCN 

2004) outline targets of 20-30% of marine habitats to be protected (Lombard et al: 

2007), and the OSPAR Commission recommends that at least 10-20% of broad-scale 

habitats should be protected within the OSPAR MPA network (OSPAR Commision, 

2003). A protection target of 30% for benthic infaunal production also makes it similar 

to those targets set for broad-scale habitats by the Irish Sea Conservation Zones project, 

which range from a minimum of 11% and maximum of 42% between habitats, with 

most broad-scale habitats having a protection target of 25-30%. 
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Selection criteria scenarios and cost surfaces 

 

Three different selection criteria scenarios for MPA networks in MARXAN were 

investigated; i) ‘Biodiversity only’ selection criteria included conservation targets for 

broad scale habitats and species and habitats of conservation importance only, ii) 

‘Biodiversity + Production’ selection criteria included conservation targets for both 

habitats, species and benthic infaunal production. Finally, iii) a ‘Production only’ 

selection criterion included conservation targets for benthic infaunal production. Each 

scenarios was run with two alternative cost surfaces, one standard (to act as a control) 

and one to represent fishing opportunity cost. These cost surfaces allocate a specified 

cost to each planning unit across the area of interest, and allows MARXAN to identify 

networks that minimize these costs.  

 

The standard cost surface simply gave every planning unit a standard cost of 1, giving 

each planning unit an equal weight. This provided a standard against which to compare 

the effects of the other cost surfaces. The fishing cost surface incorporates socio-

economic costs into the network design process by attributing a specific fishing 

opportunity cost to each 5 km2 planning unit, based on the amount of bottom fishing 

that is expected to be lost should that planning unit be incorporated into a MPA 

network. Here it is assumed that excluding fishing from MPA networks results in a loss 

of fishing activity. Fishing activity can either be lost or displaced through the 

introduction of non-extractive MPAs. However, it is difficult to calculate the costs of 

displacement without modelling fishermen’s displacement response, and this is beyond 

the scope of this study. Bottom fishing intensity (km-2 yr-1) was calculated from 2010-

2011 vessel monitoring system (VMS) data (obtained from the Marine Management 

Organisation) for each planning unit, using the same method outlined in Chapter 2. This 

bottom fishing intensity was used as a direct indication of the relative cost to the fishing 

industry if that planning unit were included in the network.  A higher fishing intensity 

(km-2 yr-1) therefore reflects a greater cost to the fishing industry should that planning 

unit be included in a network. This higher cost means that this planning unit is less likely 

to be included in the network. A comparison of the standard cost surface and fishing cost 

surface can be made in Figure 5.13, Appendix 5.7.2. 
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MARXAN conservation target penalty parameter 

 

In addition to the conservation targets for each of the selection criteria and the cost 

surface included in the network design process, another important parameter is the user 

defined ‘penalty’ for not achieving conservation targets. The value of this parameter was 

calibrated for each selection criteria scenario to ensure that the conservation targets set 

for each selection criteria were met by the network solutions generated, by following 

the guidance given in the Marxan Good Practices Handbook (Ardron et al.  2010). 

Ensuring that conservation targets for selection criteria were met meant that any 

differences in total area or total lost fishing opportunity cost between scenarios were a 

result of differences in the selection criteria used, rather than because certain 

conservation targets were not met. See Table 5.4, Appendix 5.7.2 for a summary of the 

user defined conservation target penalties calibrated. 

 

5.4.3 MPA network comparison 

 

Comparing benefits to benthic production 

 

The near-optimal network identified for each selection criteria scenario and cost surface 

combination outlined above were selected for comparison. Three selection criteria 

scenarios and two cost surfaces gave six different near-optimal networks in total. Both 

the immediate, short-term benefits of the MPA networks to benthic infauna production, 

and those benefits predicted to be accrued over the long-term were compared.   

 

Immediate, short-term benefit was measured as the percentage of total benthic infaunal 

production in the Irish Sea protected within the different near-optimal networks. 

Excluding bottom fishing from these areas is expected to increase productivity over time 

as the benthic communities are allowed to recover from the negative impact of fishing 

(Collie et al. 2005; Hiddink et al. 2006b; Hiddink et al. 2006c). However, it should be 

noted that if bottom fishing is banned from an MPA, it is likely that the effort will be 

displaced elsewhere (Rijnsdorp et al. 2001; Dinmore et al. 2003). This behaviour can 

have a negative impact on benthic communities occupying the surrounding areas, and 
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could reduce or completely remove the benefit accrued from establish the MPA (Hiddink 

et al. 2006c; Abbott & Haynie, 2012). The long-term benefit of protection on benthic 

communities in the whole Irish Sea is modelled here to compare the potential long-term 

impacts of protection on productivity both within and beyond the boundaries of the 

different networks. This was done by simulating the impact of both excluding and 

removing, and excluding and displaced fishing from the proposed networks, using the 

same benthic infaunal production model used to generate the benthic infaunal 

production data layer.  

 

To simulate the exclusion of bottom fishing from the MPA network, and the reduction of 

overall fishing effort in the Irish Sea the model was run as normal to equilibrium (1500 

time steps of 30 days) with zero fishing activity in the areas designated for conservation. 

Total production values were then compared between networks. Displacement of the 

Irish Sea bottom fishing fleet in response to the designation of the MPA networks was 

simulated by running the production model as normal with zero fishing activity in the 

areas designated for conservation, but instead of completely removing the fishing effort 

from the model, fishing effort excluded from the network areas was re-distributed 

across the non-protected areas of the Irish Sea.  Effort was re-distributed proportional to 

the current effort, so that fishing in those areas heavily fished will increase more than in 

those areas only lightly fished, following displacement from the protected area network. 

This same assumption was made by Hiddink et al. (2006c), when predicted impacts of 

displacement within ICES rectangles. This approach was taken because it was assumed 

that the current distribution of effort reflected the relative importance or value of 

grounds to the fishing industry, and that fishing vessels were more likely to move on to 

these more valuable grounds following displacement (Abbott & Haynie, 2012). In reality, 

a combination of removal and displacement to both heavily fishing and lightly fished 

grounds is likely to occur (Hiddink et al. 2006c; Suuronen et al. 2010). It is expected that 

the actual response would fall somewhere between the two outputs generated in this 

exercise.  
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Comparing total network cost 

 

Total network cost was measured in two ways, i) total fishing opportunity cost, 

calculated by summing the fishing opportunity costs allocated to each planning unit 

included in the network (these fishing opportunity costs were obtained from the fishing 

cost surface), and ii) total network area (km2), calculated by summing the area covered 

by all the planning units included in the network. 

 

If total fishing opportunity costs are found to be very high for a particular network 

compared to others, this is assumed to reflect high conflict with the fishing industry, and 

could highlight the need for trade-offs in MPA network design (Di Minin et al. 2013). If 

total network area is very large, it is expected that total fishing opportunity costs will be 

greater, due to greater likelihood of overlap between conservation effort and fishing 

activity. Conflict with other users, not quantified here, and also general MPA costs, such 

as those associated with implementation and enforcement are expected to be higher for 

MPA networks that cover a greater area (van der Geer et al. 2012; Hunt, 2013). 

 

Network similarity 

 

The similarities between the different near-optimal networks designed using different 

selection criteria scenarios was assessed both visually and by quantifying the 

percentage of planning units that are shared between MPA networks designed using 

different selection criteria. A comparison of selection frequencies across the different 

networks was also made to compare the relative importance of different planning units 

between networks.  
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5.5 RESULTS 

 

Six different ‘near-optimal’ networks were generated in total. Each network is made up 

of a different spatial configuration of planning units, and each varies in the total number 

of planning units included. A visual comparison can be made between the three selection 

criteria scenarios and the alternative cost surfaces in Figure 5.2.  

 

Visual comparison of the networks indicate that biodiversity only and biodiversity + 

production networks cover a much greater area compared to production only networks. 

In addition to this, biodiversity only and biodiversity + production networks have some 

individual MPAs of much larger area compared to production only networks (Figure 

5.2). 

 

All biodiversity only networks include large MPAs in the south and west Irish Sea, 

including the area south of the Llŷn Peninsula in Wales. Biodiversity + production 

networks similarly have large MPAs in the south and west Irish Sea, and also north of 

the Isle of Man. Areas of Cardigan Bay are included in all three networks. These two 

networks tend to share smaller MPAs in the same areas, which reflect the distribution of 

the species of conservation importance included as conservation targets for those 

scenarios. For example, the same planning units in Strangford Lough, Northern Ireland 

and off the North-east tip of the Isle of Man are consistently included in all biodiversity 

and biodiversity & production networks. These areas cover the distribution of the 

species of conservation importance, Lithothaminion coralloides (coral maerl), and Ostrea 

edulis (Native oyster) and Alkmaria romijni (Tentacled lagoon-worm), respectively. 

Production only networks appear to be more variable, although areas along the North 

Wales coast across to Liverpool Bay are consistently included in the network outputs, as 

well as areas north and northeast of the Isle of Man, towards the Solway Firth. Benthic 

communities in these areas are predicted to be highly productive by the empirical, size-

based benthic production model (Figure 3.5, Chapter 3).  
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Figure 5.2. The six ‘near-optimal’ MPA networks identified by MARXAN for the different 
selection criteria (1 = Biodiversity criteria only, 2 = Biodiversity + Production criteria, 3 = 
Production criteria only) and cost surfaces (a = Standard cost surface, b = fishing cost surface. 
These ‘near-optimal’ MPA networks achieve the most conservation targets whilst keeping 
network costs to a minimum. See Methods section 5.4.2 for further detail about ‘near-
optimal’ network selection. 
 
 
5.5.1 MPA network benefits for benthic production 

 

As expected, all biodiversity + production and production networks, where benthic 

infauna production is included explicitly as a conservation target, meet the 30% protect 

target for production. None of the biodiversity networks, designed only to meet 

conservation targets for biodiversity features, meet the 30% protection target for 

benthic production. However, a reasonably high percentage of benthic production is still 

protected by these networks, ranging from 26.5 to 28.6% (Table 5.2). In contrast, for 

production networks, between 5 and 6 out of 36 targets for all biodiversity features 

were met, depending on the cost surface used (Table 5.2).  

 

With respect to the influence of a fishing cost surface on short-term benefits of the MPA 

networks on production, slightly less production was protected by the biodiversity and 

biodiversity + production MPA networks (Table 5.2).  The inclusion of a fishing cost 

surface reduced the amount of production protected by 2.13 % for biodiversity 

networks and 5.58% for biodiversity + production networks. There was no difference 

for production networks, both protected 30% of production in the Irish Sea. 

 

The long-term performance of the MPA networks for protecting benthic infaunal 

production and biomass in the Irish Sea was compared for two different fishing 

behaviour scenarios, reflecting two different potential responses of the Irish Sea bottom 

fishing fleet to the implementation of the networks. All networks, regardless of fishing 

behaviour scenario, resulted in an overall increase in benthic infaunal production in the 

Irish Sea (Figure 5.3). These increases in production varied between 0.98 and 2.4% of 

the pre-network implementation baseline value. Observed increases in total 

productivity under the displaced fishing behaviour scenario are smaller than those 

under the removed fishing behaviour scenario. 
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Table 5.2. The number of biodiversity conservation targets met and the total percentage of 

benthic community production protected by each MPA network. 

 

Selection criteria 

scenario and cost 

surface 

 

Number of 

biodiversity targets 

met 

 

Percentage of 

production 

protected 

BIODIVERSITY   

Standard cost 36 28.63 

Fishing cost 36 26.50 

BIODIVERSITY + 

PRODUCTION 

  

Standard cost 36 35.58 

Fishing cost 36 30.00 

PRODUCTION   

Standard cost 6 30.00 

Fishing cost 5 30.00 
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Figure 5.3. The overall percentage change in total benthic infaunal production in the Irish Sea 

resulting from the implementation of a bottom fishing ban in the ‘near-optimal’ MPA networks 

presented in Figure 5.2. Changes in benthic production in response to changes in fishing effort 

distribution are modelled using the predictive model developed in Chapter 3, and overall change 

is measured by the predicted percentage change in total benthic infaunal production relative to 

total production predicted in absence of the MPA networks. The change in production in 

response to two different fishing behaviour scenarios are compared; a) cessation of fishing in 

MPAs and not displaced elsewhere (no change is observed outside MPAs), and b) cessation of 

fishing in MPAs, and effort is displaced to the areas outside of the network, for each of the three 

MPA selection criteria scenarios (1) Biodiversity, 2) Biodiversity + Production, 3) Production). 
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Figure 5.4. The overall percentage change in total benthic infaunal biomass in the Irish Sea 

resulting from the implementation of a bottom fishing ban in the ‘near-optimal’ MPA networks 

presented in Figure 5.2. Changes in benthic biomass in response to changes in fishing effort 

distribution are modelled using the predictive model developed in Chapter 3, and overall change 

is measured by the predicted percentage change in total benthic infaunal biomass relative to 

total biomass predicted in absence of the MPA networks. The change in biomass in response to 

two different fishing behaviour scenarios are compared; a) cessation of fishing in MPAs and not 

displaced elsewhere (no change is observed outside MPAs), and b) cessation of fishing in MPAs, 

and effort is displaced to the areas outside of the network, for each of the three MPA selection 

criteria scenarios (1) Biodiversity, 2) Biodiversity + Production, 3) Production). 
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The largest increase in total productivity across the Irish Sea of 2.4% (equivalent to 

39011 kJ m-2 yr-1) is observed for biodiversity + production networks (standard cost) 

under the removed fishing scenario. This drops to 2.2% (equivalent to 34350 kJ m-2 yr-1) 

under the displaced fishing scenario. The lowest increase in productivity of 0.98% is 

observed for biodiversity networks (fishing cost) under the displaced fishing scenario 

(Figure 5.3). The production benefits accrued by production networks under the 

removed and displaced fishing scenarios are very similar (Figure 5.3). The inclusion of a 

fishing cost surface results in results in smaller benefits to production compared to the 

standard cost surface.  

 

Under the removed fishing scenario, the impact of MPA implementation on benthic 

infaunal biomass exhibits the same general pattern; however the observed relative 

increase in total Irish Sea benthic biomass is higher than that observed for production, 

ranging from 2.9 to 5.2% of the pre-implementation total biomass (Figure 5.4).  

Under the displaced fishing scenario, the benefits of MPA implementation are much 

lower compared to the removed fishing scenario, and the inclusion of the fishing cost 

surface results in greater benefits to biomass compared the standard cost surface, which 

is the opposite to the pattern observed for production. 

 

The model outputs from the long-term benefit simulations were mapped so that the 

relative changes in benthic production and biomass can be visualized (Figure 5.5 and 

5.6). In general, these figures indicate that even though the overall impact of protection 

on benthic infauna production is positive for all but one network under both fishing 

behaviour scenarios, there are always some areas that appear to be negatively impacted, 

both inside and outside the protected areas (Figure 5.5).  In contrast, a different pattern 

is observed when investigating the impact of MPA network implementation on benthic 

infaunal biomass. Only increases in biomass, or positive benefits, are observed inside 

MPAs, and only reductions in biomass, or negative impacts, are observed outside MPAs. 

Figure 5.5 illustrates the changes in production, and Figure 5.6 the changes in biomass 

across the Irish Sea resulting from MPA network implementation. The three different 

selection criteria scenario networks generated with the standard cost surface are 

compared. 
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Negative impacts of MPA establishment on benthic infaunal production result from two 

different processes, i) displacement of fishing effort on to grounds outside the MPA 

network can have a negative impact on the benthic infaunal production in those areas 

due to the removal of biomass, and ii) the cessation of light fishing effort from areas 

where removing large-bodied benthic organisms results in the competitive release of 

fast-growing, small-bodied organisms can actually reduce overall productivity in these 

areas (Hiddink, Rijnsdorp & Piet, 2008). In displaced fishing scenarios, both processes 

can operate, whereas in the removed fishing scenarios, the slight negative impacts of 

MPA establishment observed inside MPAs result only from the changes in population 

dynamics brought about by the later process. The negative impacts on benthic infaunal 

production are always higher and more widely spread for the displaced fishing 

behaviour scenario, but are outweighed overall by the increases in production within 

protected areas. 
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Figure 5.5. The mapped changes in benthic infaunal production resulting from the 

implementation of a bottom fishing ban in MPA networks (generated using the standard cost 

surface). Three different MPA selection criteria scenarios (1) Biodiversity, 2) Biodiversity + 

Production, 3) Production), and two different fishing behaviour scenarios are compared; a) 

cessation of fishing in MPAs and not displaced elsewhere (no change is observed outside MPAs), 

and b) cessation of fishing in MPAs, and effort is displaced to the areas outside of the network. 

See Figure 5.14, Appendix 5.7.3 for similar outputs for MPA networks designed using a fishing 

cost surface. 
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Figure 5.6. The mapped changes in benthic infaunal biomass resulting from the implementation 

of a bottom fishing ban in MPA networks (generated using the standard cost surface). Three 

different MPA selection criteria scenarios (1) Biodiversity, 2) Biodiversity + Production, 3) 

Production), and two different fishing behaviour scenarios are compared; a) cessation of fishing 

in MPAs and not displaced elsewhere (no change is observed outside MPAs), and b) cessation of 

fishing in MPAs, and effort is displaced to the areas outside of the network. See Figure 5.15, 

Appendix 5.7.3 for similar outputs for MPA networks designed using a fishing cost surface. 

 

 

5.5.2 Total network size and cost 

 

Total network cost is considered in terms of total network area and lost fishing 

opportunity, both total for the Irish Sea and per unit network area. A comparison of total 

network area between the different conservation scenarios can be seen in Figure 5.7. It 

is clear that production networks have a much smaller area than biodiversity and 

biodiversity + production networks. Unsurprisingly, biodiversity + production networks, 

with the greatest number of conservation targets, are the largest networks generated by 

MARXAN. The biodiversity + production MPA network with a standard cost surface is 

2369 km2 larger in areas than the biodiversity network and 12311 km2 larger than the 

production network. 
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Figure 5.7. The total network area of the different MPA networks. Three different MPA selection 

criteria scenarios (i) Biodiversity, ii) Biodiversity + Production, iii) Production), and two 

different cost surfaces are compared; i) standard cost, ii) fishing cost.  

 

 

Production networks also exhibit the lowest fishing opportunity costs compared to 

biodiversity and biodiversity + production networks. In contrast to production 

networks, biodiversity +production networks exhibit the highest opportunity cost 

(Figure 5.8). Total fishing opportunity cost is estimated to be 198.08, 578.68 and 701.75 

km-2 yr-1 for production, biodiversity and biodiversity + production networks (standard 

cost surface), respectively (Figure 5.8a). Similarly, lost opportunity cost per unit area is 

estimated to be 0.020, 0.029 and 0.032 km-2 yr-1 for production, biodiversity and 

biodiversity + production networks (standard cost surface), respectively (Figure 5.8b).  

 

With respect to the influence of different cost surfaces on total network costs, those 

networks generated using the fishing cost scenario exhibited the lowest lost fishing 

opportunity cost (Figure 5.8). These networks are therefore expected to exhibit the least 

conflict with fishing activity in the Irish Sea. With respect to total network area, the 
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inclusion of a fishing cost surface resulted in a smaller MPA network for the biodiversity 

and biodiversity + production selection criteria scenarios, whereas the inclusion of a 

fishing cost surface resulted in slightly larger total MPA network area for the production 

selection criteria scenario. The inclusion of a fishing cost surface therefore appears to 

concentrate conservation effort focused on biodiversity into a smaller area, yet spreads 

out conservation effort focused on productivity, in order to minimise costs to fishing.  

 

The fact that the inclusion of fishing opportunity costs results in a larger area for 

production networks suggests that fishing activity may coincide with some areas that 

are important for benthic productivity. It is assumed that conservation effort to be 

shifted away from areas of high productivity over a larger area because these areas 

exhibit high fishing opportunity costs. The difference in area is very relatively small, 

however (186.60 km2), compared to those difference observed for other selection 

criteria scenarios resulting from the inclusion of a fishing cost surface. 
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Figure 5.8. The total fishing opportunity costs and fishing opportunity costs per unit area 

incurred by the different MPA networks. Three different MPA selection criteria scenarios (i) 

Biodiversity, ii) Biodiversity + Production, iii) Production), and three different cost surfaces are 

compared; i) standard cost, ii) fishing cost.  
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5.5.3 Network similarity 

 

A comparison of the number of planning units that are shared between networks 

designed using different selection criteria gives an indication of network overlap and 

therefore similarity. Table 5.3 presents the percentage of planning units, from those 

available over the entire Irish Sea area, that are shared between networks generated 

using the standard cost surface. The greatest network overlap occurs between 

biodiversity only and biodiversity + production networks, indicated by the fact that the 

two networks shared 19.4% of the same planning units available across the Irish Sea. 

This is in comparison to the overlap between conservation biodiversity and production 

networks, which share only 4.5% of planning units available in the Irish Sea. 

Approximately 2% more planning units are shared between biodiversity + production 

and production networks.  

 

Table 5.3. The percentage of planning units, from those available over the entire Irish Sea area, 

that are shared between MPA networks generated under different selection criteria scenarios 

(standard cost only). 

Network selection 

criteria scenario 

Biodiversity Biodiversity + 

production 

Biodiversity - 19.4 

Production 4.5 6.6 

 

 

Scatter plots and associated r2 values comparing the relative importance of different 

planning units between networks generated using the standard cost surface (Figure 5.9) 

indicate that the correlation between the importance of certain planning units is the 

greatest for biodiversity and biodiversity +production networks, further supporting the 

results presented in Table 5.3 which indicate that biodiversity and biodiversity are more 

similar than biodiversity and production networks and production and biodiversity + 

production networks. Similar patterns in the similarity of networks was observed for 

those networks generated using the fishing cost surface (See Figure 5.16, Appendix 5.7.3 

for scatter plots of selection frequency for networks generated using the fishing cost 

surface.) 
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Figure 5.9. Scatter plots visualising the correlation between planning unit selection frequency 

for networks designed using different selection criteria (generated using the standard cost 

surface). Planning unit selection frequency reflects the relative importance of different planning 

units to the network, and a comparison of these frequencies between two networks gives an 

indication of the similarity between them. Associated r2 values are also presented. 
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5.6 DISCUSSION 

 

5.6.1 Overview 

 

A limited number of studies have explicitly included ecosystem functioning in protected 

area design (e.g. Chan et al. 2006, Chan et al. 2011; Izquierdo & Clark, 2012), and only 

one has directly compared biodiversity networks with those designed to protect 

functioning (Chan et al. 2006). Although others studies have attempted to include 

ecosystem processes and services in network design, surrogates for these processes are 

often used, and only the short term, immediate effects of their inclusion investigated 

(e.g. Edwards et al. 2010). This study represents the first direct comparison of 

biodiversity selection criteria and a functional selection criterion, which directly reflects 

an ecosystem process, for the purpose of informing MPA design. This is also the first 

comparison of the long-term benefits of these different MPA selection criteria for the 

ecosystem process in question, benthic infaunal production. 

 

The results indicate that MPA networks generated using biodiversity selection criteria 

do not meet the 30% protection target chosen for benthic infaunal production in the 

Irish Sea. There is little similarity between MPA networks designed to using biodiversity 

selection criteria and those designed using a functional selection criterion. This is 

because areas important for biodiversity do not coincide with areas of high benthic 

productivity. Those networks designed using both biodiversity and benthic infaunal 

production as MPA selection criteria have the largest total network area and offer the 

greatest benefits to productivity at the scale of the Irish Sea. 

 

MPA networks designed to protect benthic infaunal production do not incur higher 

fishing opportunity costs than biodiversity MPA networks. In fact, production networks 

exhibit the smallest network area and the lowest fishing opportunity costs. As well as 

exhibiting the largest total network area, those networks designed to protect both 

biodiversity and benthic production also incur the highest costs to the Irish Sea fishing 

industry. 
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The inclusion of a fishing cost surface in network design, reflecting fishing opportunity 

costs, alters the amount of production protected by MPA networks, overall network size 

and, unexpectedly, the total fishing opportunity cost incurred. The inclusion of a fishing 

cost surface generally reduces the benefits of MPA networks for productivity, and can 

increase or decrease the total network area, depending on the MPA selection criteria 

used. 

 

5.6.2 Comparison of MPA networks 

 

Short-terms benefits of protection for benthic infaunal production 

 

Although biodiversity networks do not meet the 30% conservation target for benthic 

infaunal production, they do met a high proportion of this target (between 0.79 and 

0.85), equivalent to 26.5 and 28.6% of total benthic production in the Irish Sea. These 

figures are comparable to those targets set for broad-scale habitats (see Table 1). A 

similar result was found by Chan et al. (2006), who found that a terrestrial protected 

area network designed to conserve biodiversity also protected a considerable amount of 

ecosystem services, despite them not being explicitly included in the network design 

process. For example, over 60% of the total protection targets for services such as 

carbon storage, flood control and recreation were met by the biodiversity network. 

Protection targets for carbon storage, in particular, were fully met by the biodiversity 

network, because areas of high carbon storage are also very valuable for forest 

biodiversity conservation (Chan et al. 2006). In order for the biodiversity network to 

meet the 30% protection target for benthic infaunal production, a comparison of total 

network area between biodiversity and biodiversity + production networks suggest that 

approximately an additional area of 12-17% of the total biodiversity network area 

(2298 – 3329 km2) would be required to meet the 30% conservation target for benthic 

production. 

 

In comparison to the high proportion of benthic infaunal production protected by 

biodiversity networks, those networks designed to only protect benthic infaunal 

production protect between 5 and 6 out of 36 of the biodiversity features used in this 
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analysis. Chan et al. (2006) also investigated the performance of ecosystem networks for 

protecting biodiversity, and found that networks design to meet targets for ecosystem 

services only met approximately 50% of the protection targets for biodiversity, which is 

much higher than that met by the functional network generated here. The ecosystem 

service network generated by Chan et al. (2006), however, was designed to meet 

protection targets for six different ecosystem services compared to the one ecosystem 

function used here. Therefore the assumed greater relative area of this network 

generated by Chan et al. 2006 is expect to capture more biodiversity features than the 

small production networks generated here. 

 

The fact that production networks protect so few biodiversity features suggest that high 

value areas for benthic infaunal production do not generally coincide with areas 

important for biodiversity features. This is supported by the finding that there is little 

similarity between those networks designated to protect biodiversity and those 

designated to protect benthic production, and also the findings of Chapter 4, which 

found no significant spatial association between benthic infaunal production and 

biodiversity features at the scale of the Irish Sea.  

 

A similar lack of spatial concurrence between biodiversity and ecosystem services has 

also been found in many terrestrial studies (e.g. Naidoo et al. 2008; Anderson et al. 

2009). At a global scale, Naidoo et al. (2008) found that areas important for biodiversity 

(terrestrial species richness) did not coincide with areas important for ecosystem 

services. For example, when prioritising ecoregions to conserve services such as carbon 

sequestration and water provision, only 22-35% of species that would be protected if 

conservation effort was focused on biodiversity were protected. This 22-35% was no 

more than would be protected if ecoregions were randomly allocated for conservation 

(Naidoo et al, 2008).  Anderson et al. (2009) similarly found no positive spatial 

association between biodiversity (UK BAP species) and ecosystem services such as 

carbon storage and recreation at the UK scale.  

 

A lack of consistent correlation between biodiversity and ecosystem services found in 

these studies is likely to partly result from the spatial extent of analysis. Both studies 
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found that at local scale, there were instances where areas important to both did 

coincide, suggesting that there are opportunities for protecting ecosystem services 

within networks design to protect biodiversity, but these need to be identified at smaller 

scale than at which the initial analysis was conducted. Here, the scale of the Irish Sea is 

considered relatively small scale compared to global and national scale at which Naidoo 

et al. (2008) and Anderson et al. (2009) conducted their analyses, yet the difference 

between biodiversity and production networks and the fact that the protection of highly 

productivity areas in the Irish Sea do not provide substantial benefits for biodiversity 

indicate that there are few areas where high biodiversity and high productivity coincide. 

This suggests that the 26.5 – 28.6% of production protected by biodiversity networks 

seems to be a result of the large network area, and the inclusion of some productive 

areas, such as off the north coast of Wales and areas of Cardigan Bay, rather than 

substantial overlap between high value areas for both biodiversity and production.  

 

Long-term benefits of protection for benthic infaunal production 

 

The success of MPA networks in protecting ecosystem function must be also measured 

by the impact they have beyond their boundaries. A number of studies have investigated 

the hypothetical displacement and redistribution of fishing activity following MPA 

implementation, and the subsequent impacts of this change in fishing effort distribution 

on benthic invertebrate communities (e.g. Dinmore et al. 2003; Hiddink et al. 2006b; 

Greenstreet et al. 2009). These investigations indicate that the benefits accrued within 

MPAs can either be greater or outweighed by the negative impacts experienced by 

benthic communities outside MPAs resulting from redistributed fishing impacts 

(Hiddink et al. 2006b; Greenstreet et al. 2009).  Positive benefits refer to a reduction in 

fishing mortality (Greenstreet et al. 2009) and subsequent recovery of benthic biomass 

and productivity inside MPAs (Hermsen, Collie & Valentine, 2003; Hiddink et al. 2006c), 

and the negative impacts refer to higher fishing mortality of benthic invertebrates 

outside of the MPAs (Greenstreet et al. 2009), and a subsequent reduction in biomass 

and productivity in these areas (Dinmore et al. 2003; Hiddink et al. 2006c).  
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The trade-offs between the benefits and negative effects of MPAs depend on the MPA 

objectives, size, location and management (Dinmore et al. 2003; Hiddink et al. 2006c). 

For example, Dinmore et al. 2003 found that repeated temporary closure of an area in 

the North Sea to protect cod stocks would lead to a mean reduction in benthic 

productivity over time. Greenstreet et al. (2009) similarly found that MPAs to protect 

demersal fish species resulted in an overall increase in fishing impact on benthic 

communities at the scale of the North Sea due to displacement.  In contrast, MPAs 

designed to reduce fishing impacts on benthic invertebrates, by protecting those areas 

most heavily impacted by fishing, did provide a small benefit to benthic communities at 

the North Sea scale, despite displacement effects (Greenstreet et al. 2009). Hiddink et al. 

(2006c) compared a number of different closed area configurations, again in the North 

Sea, and found that MPAs implemented in important fishing grounds tending to result in 

an overall negative impact on benthic communities, whereas those MPAs established in 

areas of less importance to fishing resulted in positive benefits. This is because closing 

areas important to fishing resulted in greater displacement of fishing effort into 

previously unfished areas, and the subsequent negative impacts outweighed those 

increases in biomass and production observed within the MPA as the benthic 

communities recovered (Hiddink et al. 2006c). 

 

Here, modelled estimates of production and biomass under the different MPA network 

scenarios demonstrate both the positive and negative local effects of MPA 

implementation described above. Biomass and, in most cases, production increased 

within MPAs, whilst areas outside experienced a reduction in production and biomass 

due to the displacement of fishing activity (Hiddink et al. 2006c). Another effect of MPA 

implementation observed here is the fishing-induced competitive release of small, fast 

growing benthic species, which can occur in fished areas (Hiddink et al. 2008). This 

effect appears to lead to small negative impacts on production inside MPAs, where 

fishing is removed, or small positive impacts on production in area outside MPAs that 

experience displaced fishing. These effects are only observed for the productivity of 

benthic communities, not total community biomass. Only reductions in biomass are 

observed as a result of bottom fishing. These effects of displacement on production have 

not been previously documented in response to MPA implementation, but similar 
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positive responses of benthic productivity to fishing have been observed by other 

studies (e.g Jennings et al. 2001; Hiddink et al. 2008).  

 

Despite the negative effects of hypothetical MPA network implementation described 

above, it is clear that the benefits of protection outweigh these negative effects, 

indicated by the overall positive impact of implementing MPA networks on benthic 

infaunal communities, measured at the Irish Sea scale. This overall positive impact is 

observed under both the removed fishing and displaced fishing scenarios, and for all 

network selection criteria scenarios. The overall positive benefits observed are greater 

for biomass than production, as also observed by Hiddink et al. (2006c).  

 

Unsurprisingly, the removed fishing scenario results in the greatest benefit to benthic 

invertebrate communities. This was also found by Greenstreet et al. (2009). Benthic 

communities are expected to either benefit less from protection in MPAs under the 

displaced scenario, or in some cases suffer an overall negative effect, based on the 

impacts of displacement identified in previous studies (Dinmore et al. 2003; Hiddink et 

al. 2006c; Greenstreet et al. 2009). Here the benefits of protection still outweighed the 

negative impacts resulting from this displacement. In fact, despite the fact that 

biodiversity + production networks displaced the most fishing activity (indicated by 

highest fishing opportunity costs), these large networks deliver greater benefits to 

benthic productivity compared to those designed to protection only either biodiversity 

or production. This is interesting when compared to the results of Hiddink et al (2006c) 

and Greenstreet et al. (2009), which found that closing areas important for fishing, and 

therefore resulting in highest displacement, resulted in overall negative impact on 

benthic communities.  

 

This apparent contradiction to previous findings may be a result of the fact that the MPA 

implemented here had different objectives to those previously investigated. Greenstreet 

et al (2009) and Hiddink et al. (2006c) implemented MPAs design to protect fish stocks, 

targeting areas of high fishing effort and mortality. Here biodiversity feature and areas 

of high productivity are targeted; therefore the displacement caused may not be as great 

as that observed in the North Sea. This would suggest that high fishing effort does not 
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occur in areas important for biodiversity and productivity in the Irish Sea. In addition to 

this, at a more general level, the impacts of fishing displacement may not be as severe in 

the Irish Sea compared to the North Sea because fishing effort and impacts are generally 

much lower the Irish Sea than in the North Sea. The findings of Chapter 3 support this 

notation, as they suggest that fishing activity in the Irish Sea only reduces total 

productivity by 5.1%, whereas in the southern North Sea fishing reduced production by 

21% % (Hiddink et al 2006a). This difference is assumed to reflect a much greater 

fishing intensity experience by the benthic communities in the North Sea. 

 

Biodiversity networks do not offer the same level of long-term benefit to productivity 

compared to production only networks. This is because they do not specifically target 

areas important for productivity, and their large areas results in high level of fishing 

displacement, resulting in greater negative impacts. Production networks are much 

smaller, and concentrated in areas of high productivity, therefore they protect more 

production whilst also minimising the displacement of fishing, offering greater overall 

benefit than biodiversity networks. This result agrees with those findings of Hiddink et 

al. (2006c) that indicate greater benefits are expected when less fishing effort is 

displaced. 

 

When considering the influence of different cost surfaces on the amount of production 

and biomass protected, those networks generated using the fishing cost scenario 

exhibited the lowest fishing opportunity costs, therefore these networks are expected to 

exhibit the least conflict with fishing activity in the Irish Sea. It would therefore be 

expected that the negative impacts of displacement would be lower when a fishing cost 

surface were included, because less fishing effort would be displaced, and thus the 

overall benefit to production and biomass would be greater. Here, the inclusion of a 

fishing cost surface did result in a greater benefit to benthic biomass, for all network 

scenarios under the displaced fishing scenario. However, for biomass under the 

removed fishing scenario, and for all scenarios regarding the benefits of protection to 

production, the inclusion of a fishing cost surface resulted in a lower overall benefit to 

benthic infaunal production as a result of MPA implementation, which contradicts the 

Hiddink et al. (2006c) that greater benefits are expected when less fishing is displaced. 
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This reduced benefit for production in particular suggests that the fishing cost surface 

may be directing conservation effort away from areas of both high fishing effort and high 

productivity and biomass, suggesting that the two may coincide in space. Overall, results 

suggest that reducing displacement by incorporating socio-economic costs has greater 

benefit for benthic biomass than production. This is likely to reflect the fact that benthic 

biomass tends to be more strongly effected by fishing than production, as demonstrated 

by the results of Chapter 3. 

 

Total network cost 

 

Biodiversity + production networks exhibit the highest total network area, in order to 

meet conservation targets for both, and as a result exhibit the highest fishing 

opportunity costs. Production only networks, on the other hand, exhibit the lowest total 

network area and fishing opportunity costs. As expected, the cost to fishing is lower 

when fishing activity is taken into account in the network design process by including a 

fishing cost surface, as has been demonstrated by other studies (e.g. Richardson et al. 

2006; Nadioo et al. 2006; Ban & Klein, 2009). With respect to a comparison of fishing 

opportunity per unit area the fact that networks to protect benthic infaunal production 

do not have the highest fishing opportunity cost per unit area would suggest that bottom 

fishing does not necessary concentrate more in area of high benthic productivity, 

compared to areas important for biodiversity features.  

 

With respect to total network area, the inclusion of a fishing cost surface resulted in a 

smaller MPA network for the biodiversity and biodiversity + production selection 

criteria scenarios, whereas the inclusion of a fishing cost surface resulted in slightly 

larger total MPA network area for the production selection criteria scenario. The 

inclusion of a fishing cost surface therefore appears to concentrate conservation effort 

focused on biodiversity into a smaller area, yet spreads out conservation effort focused 

on productivity, in order to minimise costs to fishing. 

 

The fact that the inclusion of fishing opportunity costs results in a larger area for 

production networks suggests that fishing activity does coincide with some areas that 
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are important for benthic productivity. It is assumed that conservation effort is being 

shifted away from areas of high productivity over a larger area because these areas 

exhibit high fishing opportunity costs. The difference in area is very relatively small, 

however (186.60 km2), compared to those difference observed for other selection 

criteria scenarios resulting from the inclusion of a fishing cost surface. 

 

5.6.3 Implications for management 

 

The results here indicate that the protection of biodiversity in the Irish Sea will not 

automatically mean that 30% protection targets for the important ecosystem function 

benthic infaunal production are met. This functional, selection criterion needs to be 

explicitly included in the MPA network process in order to meet this 30% target, rather 

than relying on surrogates such as habitats (as in Edwards et al. 2010). Equally, MPA 

networks designed to protect benthic infaunal production will not meet conservation 

targets for biodiversity features. There is a risk then that a focus on ecosystem service 

provision in conservation may dilute the benefits for biodiversity (Chan et al. 2006). In 

light of this, both biodiversity features and ecosystem functioning must be explicitly 

considered if conservation effort aims to meet targets for both. 

 

The success of biodiversity networks to meet conservation targets for ecosystem 

function depends on the conservation targets set. If the conservation target for benthic 

infaunal production was set to 25% here, for example, biodiversity networks would 

have been successful in protecting this ecosystem function. It should be noted that the 

establishment of numerical conservation targets can be fairly arbitrary, rather than 

based on solid ecological reasoning (Pfab et al. 2011). This should be kept in mind when 

considering the ‘performance’ of biodiversity only networks to protect benthic 

production.  

 

The lack of spatial association between biodiversity and areas of high benthic 

productivity at the Irish Sea scale means that a larger total MPA network area is 

required to meet conservation targets for both. These networks will have high MPA 

implementation and management costs (Hunt, 2013), and implications for other marine 
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users (Richardson et al. 2006; van der Geer et al. 2012). For example, networks to 

protect both biodiversity and benthic infaunal production exhibited higher lost fishing 

opportunity costs, and would therefore expected to have a larger impact on the Irish Sea 

fishing fleet if implemented compared to the other networks. 

 

The reduction of production protected, and slight increase in production MPA network 

size, when a fishing cost surface is included in MARXAN suggests that there may be 

conflict between the protection of benthic infaunal production and bottom fishing, and 

management trade-offs between conservation and fishing objectives may be required 

(van der Geer et al. 2012; Di Minin et al. 2013). These effects are very small, however, 

and contradict the findings of Chapter 2, which found a negative relationship between 

benthic infaunal production and fishing intensity. Further investigation into possible 

management trade offs with respect to benthic production and bottom fishing is 

recommended before any conclusions can be drawn. 

 

5.6.4 Conclusions 

 

In summary, the findings here indicate that (i) the protection of biodiversity (ecosystem 

structure) will not automatically ensure that 30% of benthic infaunal production in the 

Irish Sea is protected, and the protection of benthic infaunal production does not deliver 

great benefits to biodiversity conservation. Therefore, (ii) to meet conservation targets 

for both biodiversity features and ecosystem function in the Irish Sea conservation 

planning will need to specifically consider and target both. (iii) The consideration of lost 

fishing opportunity does reduce conflict between MPAs and bottom fishing, as observed 

in other studies, but also appears to reduce MPA benefits to benthic productivity. 
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5.7 APPENDICES 

 

5.7.1 Biodiversity features 

 

 

Figure 5.10. Broadscale scale habitats 

 

 

 

 

 



CHAPTER 5 – MPAs to protect ecosystem functioning 

 

 

208 
 

 

Figure 5.11. The spatial distribution of habitats of conservation importance used as biodiversity MPA selection criteria. For presentation the 

habitats of conservation importance are split between three maps. (a) biogenic inshore habitats (e.g. maerl beds, Sabellaria beds), (b) 

physical inshore habitats (e.g. sheltered muddy gravels, tide swept channels), and (c) offshore habitats (e.g. subtidal sand and gravels).
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Figure 5.12. The spatial distribution of species of conservation importance used as biodiversity 

MPA selection criteria. To aid presentation the species of conservation importance are split 

between four maps (a-d). 
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5.7.2 MARXAN parameters 

 

 

Figure 5.13. Standard cost and fishing cost surfaces for MARXAN, calculated at a spatial scale of 
5 km2. 

 

 

Table 5.4. Table of user defined species penalty factors calibrated for the different network 

scenarios in MARXAN. 

 

 

MARXAN parameter Selection criteria scenario 

 BIODIVERSITY BIODIVERSITY + 

PRODUCTION 

PRODUCTION 

Cost surface Standard Fishing Standard Fishing Standard Fishing 

Species penalty factor 6 12 12 14 2 2 
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5.7.3 Additional results 
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Figure 5.14. The mapped changes in benthic infaunal production resulting from the 

implementation of a bottom fishing ban in MPA networks (generated using the fishing cost 

surface). Three different MPA selection criteria scenarios (1) Biodiversity, 2) Biodiversity + 

Production, 3) Production), and two different fishing behaviour scenarios are compared; a) 

cessation of fishing in MPAs and not displaced elsewhere (no change is observed outside MPAs), 

and b) cessation of fishing in MPAs, and effort is displaced to the areas outside of the network.  
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Figure 5.15. The mapped changes in benthic infaunal biomass resulting from the 

implementation of a bottom fishing ban in MPA networks (generated using the fishing cost 

surface). Three different MPA selection criteria scenarios (1) Biodiversity, 2) Biodiversity + 

Production, 3) Production), and two different fishing behaviour scenarios are compared; a) 

cessation of fishing in MPAs and not displaced elsewhere (no change is observed outside MPAs), 

and b) cessation of fishing in MPAs, and effort is displaced to the areas outside of the network. 
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Figure 5.16. Scatter plots visualising the correlation between planning unit selection frequency 

for networks designed using different selection criteria (generated using the fishing cost 

surface). Planning unit selection frequency reflects the relative importance of different planning 

units to the network, and a comparison of these frequencies between two networks gives an 

indication of the similarity between them. Associated r2 values are also presented. 
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 CHAPTER 6 – General discussion 
 

6.1 SUMMARY 

 

This thesis has attempted to determine whether or not modelled benthic infaunal 

production could be a practical, functional indicator of benthic ecosystem quality for the 

purpose of selecting MPAs. The following research questions have been addressed in the 

context of the Irish Sea; i) can benthic infaunal production be modelled over large scales 

using easily obtained environmental data? ii) Is there a spatial association between 

benthic infaunal production and biodiversity? iii) Does benthic infaunal production need 

to be explicitly included as a selection criterion in MPA network design for it to be 

protected from anthropogenic activities such as fishing? The importance of considering 

spatial grain and extent in large scale modelling, and the wider application of size-based 

benthic community models to ecosystem-based marine spatial management has also 

been touched upon.  

 

In this final chapter, the contribution of the four research chapter findings to addressing 

the key questions will be summarised and discussed, and general conclusions and 

recommendations regarding the utility of empirical predictions of benthic infaunal 

production for directing MPA network design will be presented. The wider application 

of size-based benthic community models to ecosystem-based marine spatial 

management and the limitations of the thesis will also be briefly discussed. Further 

work regarding the development of functional indicators of benthic ecosystem quality 

for informing marine spatial management will also be recommended. 
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6.2 SUMMARY OF RESEARCH CHAPTER FINDINGS AND IMPLICATIONS FOR MPA 
DESIGN 

 

6.2.1 Modelling benthic production in the Irish Sea and application of predictions 

 

Benthic infaunal production is a biological attribute of seabed communities that 

mediates energy transfer from primary producers to higher trophic levels (Tumbiolo & 

Downing, 1994; Brey, 2001; Seitz et al. 2009). This important ecosystem process is 

proposed as a functional metric of ecological quality because it is considered an 

indicator of the benthic ecosystems ability to deliver important ecosystem goods and 

services (Steele et al. 2007; Ferron et al. 2009; Danovaro et al. 2008; Hiddink et al. 2011; 

Valentine-Rose et al. 2011). Rice et al. (2012), for example, considered benthic 

secondary production as a potential indicator of good environmental status (GES) for 

the Sea-floor integrity descriptor under the European Union Marine Strategy 

Framework Directive (MSFD), because of its importance in energy flow and determining 

marine ecosystem carrying capacity. However, secondary production was not deemed a 

practical indicator because it is very difficult to measure and monitor directly, especially 

at the large scales relevant to the MSFD. Although an existing empirical, size-based 

model of benthic secondary production was available (Hiddink et al. 2006), its 

application was considered limited to the southern North Sea (Rice et al. 2012). 

 

Chapters 2 and 3 of this thesis focus on the refinement and re-parameterisation of this 

existing size-based model to predict benthic infaunal production from easily obtained 

environmental data in the Irish Sea. This was to determine whether or not the model 

could be easily re-parameterised for application in other areas, and subsequently 

developed as a practical, functional indicator of benthic ecosystem quality for the 

purpose of informing marine spatial management, particularly MPA network design. 

These chapters present the first attempt to model benthic invertebrate production over 

large scales in the Irish Sea. 

 

The size-based model that has been refined and re-parameterised here is the Hiddink et 

al. (2006) model of benthic invertebrate production, biomass and trawling impacts, 

which was originally developed for application in the southern North Sea (Hiddink et al. 
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2006a). This predictive model is based on allometric relationships, competition 

dynamics and the influence of environment variables on benthic infauna growth and 

mortality. Chapter 2 identified a suite of relationships between benthic production and 

spatially consistent, easily obtained environmental variables that operate in the Irish 

Sea, at range of different spatial scales. The results of this chapter were used to inform 

the re-parameterisation of growth and mortality functions in the model in Chapter 3. 

The re-parameterised model can explain 48% of the variation in relative benthic 

infaunal production in the Irish Sea, at a spatial grain of 5 km2. This is an improvement 

on the predicative ability of the Hiddink (2006) model, which could explain 29 - 39% of 

the variation in benthic biomass in the southern North Sea. The validation result 

indicates that the relationships and dynamics captured by the size-based model are 

useful for predicting relative benthic infaunal production. The spatial extent at which 

model predictions can consistently explain 48% of variation in production is uncertain, 

however, due to the restricted area from which independent benthic community data for 

the validation were obtained. The results of Chapter 2 indicate that the identified 

environment variables included in the model have good predictive power up to 

approximately 80,000 km2, suggesting that the size-based model can accurately predict 

over equally large scales. Until an Irish Sea wide validation can be completed, the 

current validation and results of Chapter 2 regarding environment-production 

relationships at different spatial extents suggest that modelled benthic infaunal 

production could be a practical indicator of benthic ecosystem quality. This is because 

the ability to predict this important ecosystem process at this spatial extent negates the 

need for extensive, direct measurements of productivity, which are very resource 

intensive and not realistic for assessing ecological quality over large areas (Tumbiolo & 

Downing, 1994; Bolam et al. 2010; Rice et al. 2012).  

 

Spatially consistent data layers of modelled benthic infaunal production enable 

ecosystem function to be easily incorporated into marine protected area design, as has 

been demonstrated in Chapter 5. In addition to productivity, the nature of the size-based 

model means that benthic infaunal biomass and the extent and magnitude of bottom 

fishing impact on benthic production and biomass can be predicted.  The time taken for 

benthic communities to recover from fishing impacts, and thus recovery status of 
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communities can also be estimated. It should be noted, however, that the discrepancy 

between estimated recovery status of production and predictions of productivity in 

chronically fished areas, identified in Chapter 3, indicates that implementation of fishing 

impacts in the recovery model is not realistic for predicting benthic community recovery 

status in chronically fished areas. This is because the recovery model does not capture 

the effect of cumulative fishing impacts that can lead to an increase in predicted 

production above a level expected in the absence of fishing (see Chapter 3, Section 3.6 

for further details). The recovery status metric is therefore not considered as useful for 

informing management compared to recovery time and estimated fishing impact. The 

functionality of size-based models to provide these two additional functional metrics 

increases their utility for informing marine spatial management. The possible 

applications of recovery time and fishing impact estimates have been outlined in the 

relevant chapter discussions.  

 

Although the predicted increases in production under chronic fishing can exceed the 

level of productivity expected in the absence of fishing (i.e. a ‘near-pristine’ state), the 

benthic communities cannot be considered pristine or un-impacted by fishing because 

these changes reflect a shift in community composition and size spectra that is 

characteristic of perturbation, reflected by a simultaneous decline in biomass (Jennings 

et al. 2001; Srivastava & Vellend, 2005; Queiros et al. 2006). If management objectives 

are purely to maintain a certain level of productivity, then these increases could be 

viewed as positive. If management objectives aim to maintain benthic communities in 

their natural, undisturbed state, then these increases could be viewed as negative 

(Srivastava & Vellend, 2005). These possible increases in productivity in response to 

chronic fishing need to be born in mind if using modelled benthic infaunal production as 

an indicator of ecological quality. It should be noted, however, that despite these areas 

experiencing a slight increase in production under current fishing intensity in the Irish 

Sea, they are still estimated to have low productivity compared to other areas, therefore 

in the context of MPA network design to protect areas of high ecological quality, these 

areas are unlikely to be prioritised for protection.  
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Although these areas of increased productivity described above are unlikely to be 

prioritised for protection, due to low relative production, the above observations 

suggest that perhaps size-based predictions of benthic biomass should also be 

considered as an indicator of ecological quality and fishing impacts on benthic 

communities. Benthic infaunal biomass does not response positively to fishing, and can 

therefore be considered a more consistent indicator of fishing impact. Benthic infaunal 

biomass also tends to be more severely impacted by fishing in comparison to 

productivity. However, recover times for biomass tends to be much shorter than 

production, indicating a greater recovery potential and perhaps a lesser need for 

protection in areas where fishing intensity is low enough to allow biomass to recover.  

 

Predicted benthic production and benthic biomass are closely associated and high 

pristine production and biomass estimates are both expected to reflect areas of high 

benthic ecosystem quality. In general, high benthic invertebrate biomass is not expected 

to reflect ecosystem perturbation in the same way that, for example, high P/B ratios 

might. However, high biomass could result from the dominance of a particular species, 

such as brittle-stars or slipper limpets, which would result in an uneven community 

(low Pielou’s evenness, J’). Uneven communities dominated by one particular speices are 

often considered to be of low value to biodiversity. The decision regarding the best 

indicator of ecosystem function will ultimately depend of the definition of ecological 

quality used. If ecosystem function under a natural, unperturbed state is at the core of 

the definition, high biomass of the brittle-star Ophiothrix fragilis, for example may be 

considered high quality because of the key role O.fragilis feeding activity plays in pelage-

benthic transfer (Lozach et al. 2011). 

 

6.2.2 Benthic infaunal production in MPA design 

 

At the scale of the Irish Sea, it would appear that there is limited spatial association 

between areas important for benthic infaunal production and biodiversity features, 

suggesting that benthic production is not a useful proxy for biodiversity over large 

scales, and opportunities for win-win conservation scenarios for biodiversity and 

ecosystem function at the scale of the Irish Sea is limited. Visually comparison of 
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distributions, however, suggests there may be possibilities for overlap between high 

productivity and certain features, especially cetaceans, at local scales. It seems likely that 

the lack of a spatial association between benthic infaunal production and biodiversity 

features of conservation interest here is partially a result of the spatial scale, particularly 

the spatial extent, at which the spatial association between them was investigated. The 

influence of spatial extent on the detection of relationships was clearly observed in 

Chapter 2 for environment-production relationships, and has been observed for 

ecosystem service-biodiversity feature relationships at a national scale in the UK 

(Anderson et al. 2009). 

 

The lack of spatial associations also suggests that current biodiversity MPAs are likely to 

under-perform in terms of achieving an ecosystem-based approach to marine 

conservation and management. The establishment of MPA networks in Europe, for 

example, has been primarily driven by the EU Birds and Habitats Directive, with the aim 

to protect marine habitats and species of conservation importance (Frid et al. 2008; 

Giakoumi et al. 2012), many of which have been included in the analyses of Chapter 4 

and 5. The fact that these biodiversity features do not appear to coincide with benthic 

infaunal production, an indicator of benthic ecosystem quality, suggests that these MPA 

networks are limited in their ability to protect the areas important for the delivery 

ecosystem services and goods that are supported by this important ecosystem process.  

This indicates that functional metrics such as benthic infaunal production and biomass 

are likely to be useful for complementing biodiversity features when identify areas of 

good ecological quality under an ecosystem-based approach.  

 

With respect to suitable management measures, Chapter 5 confirms that overall, the 

establishment of no-take MPA networks are effective for protecting production from the 

impacts of bottom fishing in the Irish Sea, even when fishing effort is displaced from 

these protected areas. MPAs are therefore considered a useful spatial management tool 

for preserving this important marine ecosystem process and the goods and services it 

supports.  

6.3 FINAL CONCLUSIONS AND RECOMMENDATIONS FOR MPA DESIGN 
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6.3.1. Final conclusions 

 

The key research questions proposed at the beginning of this thesis have been 

answered; i) benthic infaunal production can be modelled over large scale using easily 

obtained environmental variables; ii) There is a lack of spatial association between 

benthic infaunal production and biodiversity features at the scale of the Irish Sea. Finally 

iii) benthic infaunal production does need to be explicitly included as a selection 

criterion in MPA design in order for it to be protected from anthropogenic activities such 

as fishing. 

 

Although it is difficult to generalise the validation of the size-model model refined and 

re-parameterised here across the whole Irish Sea area, the Chapter 2 results regarding 

the spatial extent of environment-production relationships and positive validation result 

suggest that modelled benthic infaunal production could be a suitable candidate for 

filling the current gap in functional indicators of benthic ecosystem quality, and can be 

used to inform MPA network design over large areas. The approach to re-

parameterisation using easily obtained environmental data here, particular by including 

remotely-sensed sea surface chlorophyll-a, has improved the predictive ability of the 

original Hiddink model, and suggests that it could be applied to different areas where 

remotely-sensed chlorophyll-a, sediment data and VMS data are available. However, it is 

recommended that the model is re-parameterised when applied to different areas to 

ensure confidence in predictions. Overall, modelled benthic infaunal production is 

considered a practical indicator of benthic ecosystem quality over large spatial scales. 

 

The other metrics predicted by the size-based model here are also considered to have 

utility for informing marine protected area design. However the identified weakness 

regarding the estimates of recovery status in chronically fished areas (due to unrealistic 

implementation of chronic fishing impacts), suggests that this metric is not as useful as 

predictions of benthic infaunal production and biomass (both fished and unfished), 

negative fishing impact, or estimates of benthic community recovery time.   
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The consideration of a suite of functional metrics is considered more useful for 

informing spatial management, compared to reliance on a single metric, for several 

reasons. Firstly, the results of Chapter 3 regarding the ‘positive’ impacts of fishing on 

production alongside a decline in benthic biomass suggests that the use of both 

production and biomass rather just production aids the interpretation and 

understanding of patterns, and therefore is more useful for informing management. In 

this case, although the observed increase in production under fishing could be 

considered positive, the decrease in biomass confirms that the fishing impacts are a 

result of changes in benthic community size composition, which is not necessarily 

considered a positive ecosystem outcome. Secondly, different metrics could inform 

different management measures that meet similar ecosystem objectives, offering 

flexibility in management approaches. For example, recovery time of benthic 

communities could inform bottom fishing effort management that allows benthic 

productivity to recover in fished areas, as an alternative to using metrics to inform no-

take MPA designation, which can result in large socio-economic costs. The use of several 

metrics can provide different options for spatial management and is expected to better 

help achieve the ecosystem-based approach from both an ecological and economical 

perspective, because it would allow a degree of flexibility with respect to these socio-

economic considerations. Finally, the availability of several functional metrics means 

that multiple ecosystem objectives can be set and achieved, for example the protection 

of highly productive and highly vulnerability benthic communities (i.e. those that take a 

long time to recover from fishing impacts). 

 

The results of Chapter 4 and 5 demonstrate that in order to protect those areas of high 

benthic ecosystem quality from damaging activities such as fishing, and thus achieve an 

ecosystem-based approach to marine spatial management, modelled benthic infaunal 

production is required to complement biodiversity criteria when selecting MPAs. This is 

because the use of biodiversity criteria alone is unlikely to identify those areas of high 

productivity that indicate high ecological quality and services provision. Due to a lack of 

spatial association between benthic production and habitats and species of conservation 

importance at the spatial scales investigated here, benthic infaunal production can only 

be considered a proxy for ecosystem goods and services, not biodiversity. It is expected, 
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however, that different patterns may be observed if similar analyses were conducted at 

different spatial grains and extents. 

 

6.3.2 Recommendations for MPA design 

 

The following general recommendations for MPA design are proposed based on the 

conclusions drawn by this thesis: 

 

1. For MPAs to meet ecosystem-based management objectives, i.e. prevent 

degradation of ecosystem function and maintain the health and ability of marine 

ecosystems to provide goods and services (Douvere, 2008), it is recommended 

that a functional selection criterion that directly reflects ecological quality and is 

linked to ecosystem goods and services is utilised in the MPA design process. This 

is because common MPA selection criteria such as habitats and other biodiversity 

features, which have previously been considered proxies for ecosystem function 

(Balvanera et al. 2006; Srivastava & Vellend, 2005), are not expected to capture 

this type of ecosystem-level information. This recommendation is based on the 

results of Chapter 4 and 5.    

 

2. Alternatively, the productivity of different habitats could be quantified to inform 

marine managers about the value of different habitats for production. i.e. which 

habitats would be best protected to ensure the protection of highly productive 

communities. This has been done here on a very broad, simplified scale; i.e. 

productivity in sandy, muddy and gravelly habitats, suggesting that the 

protection of gravelly and sandy habitats instead of mud would result in greater 

benefits for benthic production. However, to better match up with those 

biodiversity features commonly used to direct MPA design it would be useful to 

quantify and compare the benthic productivity at a higher resolution of habitat 

classification, for example, for Modiolus modiolus reefs, sea grass beds and sand 

banks. This has not been possible here, due to a lack of available benthic 

abundance and biomass data for these habitat types. Without dedicated sampling 
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effort, it is unlikely that the replication of data from different habitats types will 

be great enough to provide enough statistical power to allow such an analysis. 

 

3. Using a suite of functional metrics for benthic ecosystem quality is expected to 

better achieve an ecosystem-based approach to marine spatial management 

compared to the use of one single metric on its own. This is because the use of 

several metrics would i) support better understanding of ecosystem quality and 

therefore better spatial management decision-making, ii) provide a range of 

possible ecosystem management objectives and iii) a greater range of 

management options for meeting these objectives. Flexibility in approaches to 

protection and management of benthic ecosystems is likely to reduce conflict 

with and costs to other marine users. 

 

4. Due to the lack of spatial association observed between production and 

biodiversity features at the scale of the Irish Sea here, and the known influence of 

spatial grain and extent on the interpretation of relationships, as illustrated by 

Chapter 2, empirical investigations of spatial concurrence between ecosystem 

function and biodiversity for the purpose of prioritising MPA network design are 

recommended at local scales, and also at a spatial grain that is relevant to the 

scale at which spatial management measures are implemented to ensure that 

patterns of association are correctly identified. 

 

6.4 WIDER APPLICATION OF SIZE-BASED MODELS TO MARINE SPATIAL 
MANAGEMENT 

 

The empirical, size-based model of benthic invertebrate communities described here 

has wider application for marine spatial planning and management beyond its utility for 

informing MPA network design. For example, modelled benthic infaunal production 

could be a suitable indicator for the assessment and monitoring of good environmental 

status for sea-floor integrity under the MSFD (Rice et al. 2012). Although MSFD applies 

over all European waters, indicators will be developed and assessments made at 

appropriate regional scales. The process outlined in chapters 2 and 3 of this thesis could 
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provide guidance on how a size-based model could be re-parameterised for application 

in other regions, and provide metrics for assessment of GES. The ability to map 

production in the absence of fishing, the vulnerability of productivity to fishing impact 

(indicated by recovery time), and also the extent and magnitude of fishing impacts 

means that the size-based model outputs could have great utility for assessing GES. The 

difference between predicted production and production expected in the absence of 

fishing within a given area, for example, could be used as an indicator of state (Hiddink 

et al. 2006a; Rice et al. 2012), and the magnitude of predicted fishing impacts could be 

used as an indicator of response to pressure. The size-based model here can also predict 

benthic community size-spectra, another proposed indicator of sea-floor integrity under 

MSFD (Rice et al. 2012). 

 

The size-based model outputs could also be used to inform an ecosystem-approach to 

fisheries management, by evaluating the impact of different bottom fishing management 

scenarios, including closed areas and effort restriction measures, on benthic 

communities, and evaluate trade-offs between food production and benthic community 

quality or health (e.g. Kaplan & Levin, 2009). Predictions of fishing impact and recovery 

time could help determine a level of fishing effort that sustains some proportion of 

benthic production or biomass in a relatively undisturbed state, or allows recovery of 

production and biomass between fishing events. This may be more beneficial than 

excluding fishing from particular areas, which can result in negative impacts due to 

displacement effects (Dinmore et al. 2003; Hiddink et al. 2006c; Greenstreet et al. 2009). 

 

The model outputs could also inform marine environmental impact assessments. For 

example in areas proposed for new commercial fisheries, aggregate dredging or wind 

farm installation, the model outputs regarding current production and recovery time 

could be consulted to understand the current productivity of the area and, for bottom 

fishing, the potential vulnerability of the community to new activity. In highly productive 

areas, bottom fishing, aggregate dredging and wind farm installation may be 

discouraged in order to ensure that the productivity is preserved and made available to 

higher trophic levels in the marine ecosystem.  
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6.5 LIMITATIONS OF THESIS AND RECOMMENDATIONS FOR FURTHER WORK 

 

Data availability 

 

The limited availability of suitable benthic infaunal biomass and abundance data in the 

Irish Sea meant that only a limited dataset of empirically observed benthic infaunal 

production estimates were available for predictive model parameterisation, and for 

analyses in subsequent Chapters, such as the investigation of spatial association 

between empirically observed production and biodiversity. Furthermore, logistical 

constraints limited the number of independent benthic community data collected for 

model validation. Limited data for model parameterisation reduces confidence in the 

precision and accuracy of model predictions at the scale of the Irish Sea, and limited 

validation data means that this concern cannot be addressed. Clearly greater collection 

and availability of benthic invertebrate abundance and biomass data would help resolve 

these issues. 

 

Limited application 

 

Here only the productivity of benthic infaunal communities in soft sediments (mud, sand 

and gravel) are considered, therefore application of the model is restricted to soft 

bottom, offshore areas. The productivity of epifauna on soft sediments, of benthic 

communities on hard substratum, including inshore habitats, and the productivity of 

biogenic habitats such Modiolus modiolus and Sabellaria reefs is not considered. This is 

largely due to the lack of benthic production estimates for these fauna and habitat types. 

Sampling hard substrata, for example, using traditional techniques such as grabs  is not 

advisable due to sampling inefficiency (Bowden, 2005), and the direct sampling of 

biogenic habitats is difficult because their sensitivity to sampling gear and conservation 

status deems sampling unethical or illegal (Cook et al. 2013). Unfortunately the 

equipment and methods for calculation of epifaunal biomass from non-invasive 

underwater photographic and video data were not available.  
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Epifaunal benthic communities are often considered very important for ecosystem 

functioning and the provision of ecosystem goods and services. Modiolus modiolus and 

Mytilus edulis, for example, are considered bioengineers because they create and modify 

habitat, providing complex habitat for a high diversity of epifaunal species (Ragnarsson 

and Raffaelli, 1999; Sanderson et al., 2008; Ragnarsson & Burgos, 2012). The formation 

of mussel beds can alter ecosystem functions such as nutrient flux, due to high bio-

deposition rates (Hargrave et al. 2008; Ragnarsson & Burgos, 2012). In addition to this, 

the functional role of the brittle-star Ophiothrix fragilis in pelage-benthic transfer 

(Lozach et al. 2011), already been outlined in Section 6.2.1, provides another example of 

the importance of epifauna to ecosystem functioning. Many epifaunal species have also 

been identified as a major food source for fish (Braber & De Groot, 1973; Bowman et al. 

2000), and therefore considered important for supporting fish production alongside 

infauna (Hiddink et al. 2011). Not considering the productivity of epifauna and biogenic 

habitats is therefore expected to miss a great deal of information regarding benthic 

ecosystems, including their ecological quality and ability to support ecosystem function. 

 

The size-based model utilised here can be used to predict epifaunal production. The 

exclusion of this class of fauna here is purely a result of data deficiency. Therefore to 

incorporate epifaunal productivity targeted epifaunal abundance and biomass data 

collection is required. Unfortunately it is more difficult to quantify the biomass and thus 

productivity of epifauna per metre squared using traditional beam trawling 

methodology, because it’s difficult to know exactly when the dredges or beam trawl 

become full with benthos whilst traveling along the sea bed, and therefore to relate the 

individuals caught back to a specified area and subsequently derive quantitative 

estimates. It is also difficult to accurately quantify epifaunal communities using grabs, 

because large species can be found at very low densities, and the efficiency to capture 

epifauna present at the seabed surface is limited. The movement of the gear through the 

water, for example, can cause shock waves that displace epifauna away from the 

sampling area (Lozach et al. 2011). If methods to calculate biomass estimates from 

photographic and video data can be developed (e.g. Lambert et al. 2011), epifaunal data 

collection for model parameterise may be possible using photographic or video survey 

techniques. Photographic or video seabed survey is especially expected to be the most 
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suitable method for quantifying epifaunal communities on hard substrate (Bowden, 

2005). 

 

Secondary production in biogenic habitats is expected to be more difficult to incorporate 

into the model. It is expected to be very difficult to calculate the biomass of all epifaunal 

species in biogenic habitats without direct sampling because of the complex 3D habitat 

structure that they can create. Aerial view photographic and video data are highly 

unlikely to be able unable to capture all species in these habitats, and even less likely to 

be able to accurately calculate their biomass. Furthermore, facilitation is expected to 

play a large role in community dynamics of biogenic habitat communities (Bozec et al. 

2013), and this is not parameterised in the current model (Hiddink et al. 2006a). 

 

Other models of ecosystem productivity  

 

There are other models of ecosystem productivity that are utilised in European waters. 

The European Regional Seas Ecosystem Model (ERSEM), for example, is an ecosystem 

model that models biochemical and ecological processes in relation to large scale 

oceanographic drivers such as mixing (Allen et al. 2001). ERSEM incorporates primary 

producers as well as benthic consumers and decomposers, and can provide estimates of 

benthic community structure and function (including production), as well as recovery of 

these attributes in relation to fishing (e.g. Allen & Clarke, 2007). 

 

Although ERSEM has includes and has wider application to different ecological 

processes than the size-based model developed here, benthic community dynamics are 

modelled at a lower resolution in ERSEM than in size-based models. This is because the 

benthic macro-invertebrate component of the ecosystem model is only divided into a 

few functional groups (Allen & Clarke, 2007), and benthic body size is not considered, 

despite it being very important to benthic community dynamics (Sheldon et al 1977; 

Brey, 2001; Blanchard et al. 2012). Furthermore, as models become more complex (i.e. 

incorporate more processes), they become more difficult to parameterise and 

uncertainty in the reliability of outputs increases (Raick et al. 2006). Therefore size-
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based models like the one used here are considered more suitable for modelled benthic 

community attributes than complex ecosystem models such as ERSEM. 

 

Other ecosystem functions and indicators to consider 

 

This thesis has only considered the secondary production of benthic macro-infauna as 

an indicator of benthic ecosystem function. There are other benthic ecosystem processes 

and proxies that are commonly investigated in relation to ecosystem health, function 

and services. Oxygen concentration of sediment pore water, for example, is commonly 

used as a proxy for ecosystem health with respect to eutrophication (Ferreira et al. 

2010; Rice et al. 2012). Nutrient cycling in particular is considered an important 

ecosystem service provided by benthic ecosystems (Hiddink et al .2009). Sediment 

nutrient fluxes are mediated by benthic invertebrate processes such as bioturbation 

(Lohrer et al. 2004; Rossi et al. 2008), bioirrigation (Murray et al. 2013) and habitat 

modification by bioengineers (Hargrave et al. 2008; Ragnarsson & Burgos, 2012; Rossi 

et al. 2013). Nutrient fluxes can be measured directly, or tracked using stable isotopes 

(Rombouts et al. 2013). Alternatively, the apparent redox discontinuity of the sediment 

(aRPD) (Hiddink et al. 2009) or estimates of community bioturbaiton potential from 

benthic community compositon (Queiros et al. 2013) can be used as proxies for 

bioturbation and thus nutrient fluxes (Hiddink et al. 2009; Queiros et al. 2013). There 

are no known attempts to model these benthic processes that mediate nutrient fluxes 

over large scales for the purpose of informing marine spatial management. 

 

Determining the importance of benthic production to ecosystem goods and services 

provision 

 

Quantitative links between benthic productivity and marine ecosystem goods and 

services could be made to strength the case for the use of benthic infaunal production as 

a functional indicator for MPA selection criteria. For example, the relationship between 

fish production and benthic production could be empirically investigated to better 

understand the importance of benthic productivity to fish production. As well as 

strengthen the ecosystem-based case for the protection of benthic community 
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production, this would also support the identification of necessary trade-offs between 

commercial fishing and benthic production to ensure healthy marine ecosystems and 

sustainable fisheries into the future.  

 

6.6 FINAL SUMMARY 

 

Overall, this thesis has indicated that size-based predictions of benthic infaunal 

production and associated metrics has great utility for informing an ecosystem-based 

approach to marine spatial management. Greater consideration of benthic ecosystem 

processes and functioning in marine spatial management is expected to support healthy 

and productive marine environments, and help ensure the continued provision of the 

ecosystem goods and services that we rely on in the long-term.  
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