
Bangor University

DOCTOR OF PHILOSOPHY

Electrokinetic manipulation of particles : computer aided studies.

Hughes, Michael Pycraft.

Award date:
1995

Awarding institution:
Bangor University

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal ?
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 23. Dec. 2024

https://research.bangor.ac.uk/portal/en/theses/electrokinetic-manipulation-of-particles--computer-aided-studies(77d0cf41-088b-458e-89d2-c3262d0f6dd3).html


A thesis submitted to the University of Wales 

in candidature for the degree of 

Doctor of Philosophy 

Electrokinetic Manipulation of Particles: 

Computer Aided Studies 

by 

Michael (craft Hu es M. Eng. 
L DIDFFNY DDIO TN Y 

LLYFRGELL Yid' UNIG 

TO BE CONSULTED IN TIM- 
LIBRARY ONLY 

School of Electronic Engineering and Computer Systems 

University of Wales 

Bangor, Gwynedd 

rgc15 

lýýQ 
J 

... 
, 4\'w 



To my beloved wife 

Alisan: 

M-2A, 4(00) 

111 



Acknowledgements 

I would like to thank the following for their support in the undertaking of the work in 

this thesis: 

Firstly, great credit for this work must go to my supervisor, Professor Ron Pethig, to 

whom I am greatly indebted. I am also grateful to Drs Peter Gascoyne and Fred 

Becker for the organisation of, and support and advice during, my stay at the 

University of Texas MD Anderson Cancer Center. 

Thanks also are due to Dr Julian Burt and Dr Xiao-Bo Wang for their advice and 

guidance in the formulation of the Finite Element and Moment Method models 

respectively. 

I would also like to thank my colleagues, both at UWB and UTMDACC: Stephen 

Bellis, Ka Lok Chan, Ying Huang, John Kerslake, Richard Lee, Gerard & Sian Markx, 

Frank Marini, Jamileh Noshari, John Phelps, Robin Rhea, Juliette Rousselet, Mark 

Talary, Jody Vykoukal, Lionel Watkins and Xiao-Feng Zhou, for their friendship, 

advice and valuable discussions. 

Finally I wish to thank my wife Alisan and my parents Eric and Ceri for their support, 

patience and love during this studentship. 

iv 



Summary 

AC electrokinetics - encompassing dielectrophoresis, electrorotation and travelling 

wave dielectrophoresis - is the phenomenon of induced motion of colloidal particles 

through the application of AC electric fields. Motion may be induced in either 

rotational or translational senses, and the nature of the induced force is dependent on 

the time-dependent morphology of the electric field, as well as the dielectric 

characteristics of the particle and the suspending medium. 

The work presented in this thesis is concerned with the examination of the underlying 

principles of this phenomenon in a variety of practical applications through the medium 

of computer simulation. Various computer models are described, with the two used 
for the simulations presented here being described in greater detail. Applying these 

models to separate cases of dielectrophoresis, electrorotation and travelling wave 
dielectrophoresis, the nature of the force distributions may be studies. This allows a 

more thorough study of such phenomena than is possible through the experimental 

study of particle motion. 

A primary function of this work is to examine the means of optimising electrode design 

for particle manipulation, separation and characterisation through the application of 

AC electrokinetic forces. As a consequence of this study, the underlying principles of 

force distribution have become apparent. In many cases, the detailed study of electric 

fields and forces generated near the electrodes have demonstrated previously unknown 

particle behaviours, many of which have been confirmed by experimentation. 
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Chapter 1 
Introduction 

and Aims of Work 

1.1 Introduction 

The study of AC electrokinetics - the induced motion of colloidal particles through the 

application of alternating electric fields - is one which is gaining an increasing interest 

from a wide variety of researchers in many disciplines. The ability to electrically 

manipulate bioparticles is being investigated by researchers for possible applications in 

medical diagnostics and treatment. For example, observation of electrokinetic effects 

on cells provides a non-invasive method for the study of the dielectric properties of the 

cell interior. Also, manipulation of microscopic objects offers great potential in the 

expanding nanotechnology field. 

The nature of AC electrokinetics is such that motion is induced by the interaction of 

the dielectric properties of the bioparticles with the applied electric field, rather than 

any charge carried by the particles themselves [1] as is the case in electrophoresis. The 

electric field morphology is therefore of major significance in determining the direction 

of particle motion. Whilst generating electric fields in the laboratory is not a difficult 

task, the precise form the electric field takes and hence the exact motion particles 

within such fields will undergo is potentially far more difficult to predict. With the 

introduction of electrodes which use differing phases of the electric fields to generate 

more complex motive patterns the only accurate method of interpreting the particle 

motion observed in experimentation is through the building of computer models. To 

this ̀ end, the work presented here analyses the electric fields and applied forces as 

generated by three separate but related phenomena; dielectrophoresis, electrorotation 

and travelling-wave dielectrophoresis. 

1 



Dielectrophoresis is the translational motion of particles induced by polarisation effects 
in non-uniform electric fields, as defined by Pohl [2] and described further by Pethig 

[3]. Consider a particle suspended in a medium of lesser polarisability and subjected to 

a non-uniform electric field, such as that shown in figure 1.1(a). The electric field 

induces a dipole in the particle, the poles of which interact with the electric field and 

generate electrostatic forces. Due to the greater electric field strength across the pole 

facing the pin-shaped electrode, the force induced is greater than the force induced on 

the opposing side of the particle and a net force towards the pin electrode is exerted. 

This force will act towards the region of greatest electric field, regardless of whether 

the pin electrode is positively or negatively charged, and will thus also be present when 

an AC electric field is applied between the electrodes. This motion of the particle is 

termed positive dielectrophoresis. However, if the particle is suspended in a medium 

of higher polarisability than itself, the force on the particle is directed away from the 

high-field regions, towards the low-field regions (see figure 1. lb). This motion is 

referred to as negative dielectrophoresis. Since the polarisability of the particle and 

medium are frequency dependent, it is possible for a particle to experience either 

positive or negative dielectrophoresis according to the frequency of the applied electric 

field. 

The first experimental observations of the motion of particles in non-uniform electric 

fields were undertaken by Hatescheck and Thorne [4], in the study of nickel suspended 

in toluene and benzene. The phenomenon was named dielectrophoresis by Pohl in 

1951 [5], who later published an in-depth treatise on the subject in his 1978 book of 

the same title [2]. Pohl's work advanced the use of dielectrophoresis for investigating 

the properties of suspensoids, and for providing a means of separating particles from 

suspension. 

Similar investigations have been conducted using a frequency-based examination of 

dielectrophoretic collection rates of populations of cells to study dielectric properties 

of yeast [6] and bacteria [7]. Practical applications of dielectrophoresis have included 

the building of separators for the removal of PVC polmers [8], lubricating oils [9], and 

minerals [10] from solution. The use of positive and negative dielecrophoresis has 
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1.1 A neutral particle in a non-uniform electric field. (a) If the particle is of greater 
polarisability than the surrounding medium, the diplole aligns with the electric 
field and the particle experiences positive dielectrophoresis. (b) If the particle is 
less polarisable, the dipole orients counter to the applied field and the particle 
undergoes negative dielectrophoresis. 



been used to separate mixtures of viable and non-viable yeast cells [11] and mixtures of 
healthy and leukaemic blood cells [12]. Recent work by Rousselet et al [131 has 

applied dielectrophoresis to the induction of continuous linear motion of particles, 

expanding on the basic concept of dielectrophoresis as a means of trapping particles in 

a specific region in space. 

Another important form of AC electrokinetics is that of electrorotation, the continuous 

rotation of particles suspended within rotating electric fields. Cell rotation was 

observed and reported by experiments on AC dielectrophoresis [eg 14], and was later 

suggested to be the result of the dipole-dipole interaction of neighbouring cells [15]. 

This led Arnold and Zimmerman [16] to the principle of suspending single particles in a 

rotating field, and thus to a more amenable means of studying the phenomenon. 

Electrorotation occurs when a dipole is induced by a rotating electric field, as shown in 

figure 1.2. The dipole takes a finite time (the relaxation time) to establish, by which 

time the electric field has rotated slightly. There is thus a phase lag between the 

orientation of the electric field and that of the dipole moment, and thus a torque is 

induced as the dipole moves to re-orient itself with the electric field. Due to the 

continuous rotation of the electric field, the torque is induced continually and the cell 

rotates. The direction of rotation is determined by the phase angle between the dipole 

moment and the electric field; if the phase lag is less than 180° the particle rotation will 

follow that of the applied field, referred to as co-field rotation. If the phase angle is 

greater than 180° the shortest path for the dipole to align with the electric field is by 

rotating in a counterwise fashion to that of the electric field, and hence particle rotation 

will act in this direction (anti-field rotation). 

As with dielectrophoresis, the rate and direction of cell rotation is related to the 

dielectric properties of both the particle and the suspending medium. The technique 

can thus be used as an investigative technique for studying these properties. 

Electrorotation has been used to study the dielectric properties of matter, such as the 

interior properties of biological cells [17]. The ease and accuracy of observation of the 

effect - that of a continuous rotation of small numbers of particles, rather than studying 
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1.2 When a dielectric particle is suspended in a rotating electric field E, the dipole 
moment forms out-of-phase with the field due to the relaxation time for the 
dipole to form. This phase difference generates a torque IF which causes the 
particle to rotate. 



the collection rates of large populations - have resulted in electrorotation largely 

supplanting dielectrophoresis as a means of investigating subtle variations in the 

dielectric properties of particles, such as the aggregation of biofilms on the surface of 
beads [18]. 

The final example of AC electrokinetics discussed here is that of travelling-wave 

dielectrophoresis. The phenomenon was first reported by Masuda et al [19], where 

the electric fields "travel" along a series of bar-shaped electrodes where low frequency 

(0.1Hz to 100Hz) sinusoidal potentials, advanced 120° for each successive electrode, 

were applied. This was found to induce controlled translational motion in lycopodium 

particles [19] and red blood cells [20]. At low frequencies the translational force was 
largely electrophoretic, and it was proposed that such travelling fields could eventually 
find application in the separation of particles according to their size or electrical 

charge. However, later work by Fuhr and_ co-workers [21], using applied travelling 

fields at much higher frequency ranges (10 kHz to 30 MHz), demonstrated the 

induction of linear motion in pollen and cellulose particles. Huang et al [22] have used 

travelling fields at frequencies between 1 kHz and 10 MHz to linearly move yeast cells 

and separate them from a heterogeneous population of yeast and bacteria, and have 

demonstrated that the mechanism inducing travelling motion at these higher 

frequencies is dielectrophoretic, rather than electrophoretic, in origin. 

Travelling-wave dielectrophoresis is effectively an extension of the principle of 

electrorotation to include a linear case. As shown in figure 1.3, an AC electric field is 

generated which travels linearly along a series of electrodes. Particles suspended 

within the field establish dipoles which, due to the relaxation time, are displaced from 

the regions of high electric field. This induces a force in the particle as the dipole 

moves to align with the field. The principle of phase lag remains, in that as the applied 

travelling wave is a sinusoid, the dipole occupies a physical space at a given part of the 

cycle. If the dipole lags within half a cycle of the applied field net motion acts in the 

direction of the applied field, whilst a lag greater than this results in motion counter to 

the applied field. 
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1.3 When. sinusoidal potentials are applied to a continuous set of phase-shifted 
electrodes, a travelling electric field is generated. Particles within this field will 
attempt to orient along the field. Due to the relaxation time taken to form, the 
dipole will be displaced from the field, and the force generated by the dipole 
moving to align with the field causes the particle to undergo travelling-wave 
dielectrophoresis. 



1.2 Aims of Work 

The aim of this thesis is to examine these phenomena through the medium of computer 

simulation of these electric fields, and the forces experienced by particles suspended 

within such fields. Since the majority of electrodes used in AC electrokinetics produce 

non-analytical electric field morphologies (notable exceptions of which include 

polynomial electrodes, [23]), numerical methods of determining them must be 

employed. Two approaches are considered here for the calculation of electric fields. 

The first method, referred to as the Charge Density or Moment Method, derives the 

electric field by calculation of the charge distribution across the electrode surfaces, and 

subsequently by considering the contribution this charge makes to the electric field at a 

given point. This method requires that the charge distribution across the electrodes is 

divided into subareas, each of which is small enough to have effectively uniform charge 

across it. Based on the works of Maxwell, the method was originally advanced for the 

calculation of capacitance across a square [24], but has since been employed in 

determining charge distribution in parallel-plate capacitors [25] and electron beam 

trajectories through, non-uniform electric fields [26]. More recently, a study by Huang 

et al [27] examined dielectrophoretic forces generated by castellated electrodes using 

this method, and it has also been employed by Schnelle et al to examine forces within 

electrode field cages [28]. 

Another method considered here is the Finite Element Method. This was originally 

developed for solving mechanical stresses in Civil Engineering, but was later adopted 

for calculating electric fields. This is achieved by dividing the space between fixed 

potentials into a number of elements, and solving Laplace's Equation locally across 

each element. These results are then solved as a series of simultaneous equations to 

determine the overall electric field. This method is generally used for electric field 

calculation [eg. 29], and has been applied recently in a limited study of travelling wave 

effects in focussing electrode arrays [30]. Both methods are explained in greater depth 

in Chapter 2, where a comparison is presented for simulations of a single problem, and 

the two methods are evaluated for various applications within this study. 
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Chapter 2 
Numerical Methods 

2.1 Introduction 

This section is intended to familiarise the reader with the mathematical models used in 

this thesis as a means of determining the electric field across the volume separating two 

or more electrodes with applied potentials. Analysis of electric fields generally begins 

with Poisson's equation: 

VF=-p 6 (2. i) 

where p is the charge density, c is the permittivity, E is the electric field and V is the 

del vector operator. There are a limited number of electrode geometries which we 

may wish to simulate where the potential distribution and hence the electric field may 

be determined directly from algebraic equations relating to Poisson's equation [eg 1,2]. 

However, there are many more configurations which are not calculable directly from 

algebra to provide an exact form of the electric field, and the solution set can only be 

determined by generating numerical answers at specific points based on an 

approximate mathematical model. We term these approaches analytical and numerical 

analysis respectively. The work presented here deals specifically with the latter case. 

Numerical analysis covers a wide variety of mathematical models, some of which are 

more appropriate to specific problems than others. Presented here are the most 

prominent methods of numerical analysis in electric field problems, two of which are 

described in greater detail later. 
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2.1.1 The Finite Difference Method 

Derived from the work of Gauss, Finite Difference models [3] are calculated using a 

regular mesh superimposed across the volume in which the potential is sought (the 

"solution space"). At each node of the mesh, Poisson's equation is aproximated to a 
difference equation relating the potential at the node to the potentials at all the 

immediately connected nodes. Weightings may be introduced into the difference 

equation to model the effects of permittivity. The boundary conditions of the model 

are the known potentials of electrode surfaces. 

Originally, solutions were performed by hand using relaxation methods, where the 

residual of the sum of potentials acting on a given node is minimised from a series of 

estimated starting values. However, the advent of high-speed computing has brought 

about the replacement of this method by an iterative approach, where the solution is 

reached by repeatedly calculating the unknown potentials as a series of simultaneous 

equations until the answers converge. 

The Finite Difference method was the primary means of numerical field analysis from 

the 1930s to the 1960s when it was largely superceded by Finite Element Analysis. 

However it is still used in contemporary studies. For example, the recent AC resistor- 

network model of potential calculation postulated by H61zel [4] shares many of the 

principles of Finite Difference Analysis. 

2.1.2 The Finite Element Method 

Finite Difference models became unfavourable with electrical engineers, as these 

models required the application of rigid, regular meshes across the solution space. An 

alternative method, known as the Finite Element method, was soon adopted. This 

method was originally developed for solving mechanical stresses in Civil Engineering 

[eg 5], but was later adopted for calculating electric fields [see 6]. As in the Finite 

Difference method, the solution space is divided up into a series of nodes which define 

the corners of enclosed elements. However, unlike the Finite Difference method these 

elements need only loosely follow a general shape such aa cuboid or tetrahedron. As 

long as the element has the appropriate number of faces and corners it does not need to 
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be rigidly shaped. The element is transformed locally onto a rigidly defined master 

element, where Poisson's equation is approximated linearly across that element. The 

results are mapped -onto a system matrix and solved as a series of simultaneous 

equations to determine the overall electric field. Boundary conditions are mapped as 
defined potentials at the appropriate nodes. 

This method is widely used for electric field calculation [7]. It is available in a number 

of simulation software packages, forming the calculation engine of integrated 

CAD/calculation/post-processing software suites. It has many applications in the 

simulation of any field problems and is used in the calculation of mechanical stress [5], 

fluid flow [8] and waveguide studies [9]. It is used in chapter 3 as the basis of 

calculuation of dielectrophoretic ratchets, and is explained in greater depth in 

section 2.2. 

2.1.3 Boundary Element Methods 

The Boundary Element method [7] is effectively an extension to the Finite Element 

Method. The surfaces of the electrodes are discretised into elements, and the 

potential at enclosing boundaries surrounding the electrodes are coupled to these 

elements, where the potential is calculated. This method is accurate but highly 

computationally intensive, and is best applied to functions where far-field 

considerations are important, or where a core element is surrounded by many layers of 

material with different dielectric properties [10]. This method has also been combined 

with Finite Element modelling in some commercial software (eg. SI Eminence, Ansoft 

Inc) where a Finite Element model is used to determine the solution space, and a 
Boundary Element model is then used, taking the previous model as its core element, 
to determine far-field effects. It is also used in determining properties of an enclosed 

volume from data taken at the outer boundary, such as determining the properties of 

the human body by examining the electric signals transmitted to electrodes on one part 

of the skin due to an input potential applied at another part [11]. 

10 



2.1.4 The Monte Carlo Method 

As with the Finite Difference model, the Monte Carlo method [3] involves the 

superimposition of a mesh across the solution space, with a series of difference 

equations relating to the potential at the nodes. However, unlike the Finite Difference 

model, coefficients relating to the difference equations are interpreted as probabilities 

of a fictitious "particle" moving from one node to its neighbour. By evaluating the 

random walk of the particle from a given node to a known boundary it is possible to 
determine the most probable value of the potential at the original node. Permittivity, 

charge density and other factors may be included in the probability equations. 

The method produces a slowly converging result, as the random nature of testing 

requires extensive recursion in order to "settle" with any degree of confidence. It is 

common for calculation times to be greater than those for Finite Difference by factors 

of 20 [3]. It is most commonly applied in circumstances where the methods described 

elsewhere are not applicable and which study a small solution space. For example, the 

Monte Carlo method has recently been employed in studies of particle motion in 

ratchet electrodes [12]. 

2.1.5 The Method of Moments 

This method differs from the others presented here in that, whilst it imposes a mesh 

across the charge-bearing electrodes it does not impose a grid across the sample space. 
Referred to as the Charge Density or Moment Method, it differs from the other 

methods represented here in that the electric field is calculated based on Coulomb's 

law: 

E=ý 1r 
2i 4; riri 

(2.2) 

where E is the electric field at a point due to i charges of magnitude Q, a distance r, 

away along vector i,. This principle was used by Maxwell to calculate the charge 

across a square area by dividing it into smaller regions across which the charge was 

approximately uniform [13]. If the surfaces of the electrodes are divided into 
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sufficiently small subareas, the charge across these subareas can be assumed to be 

uniformly distributed. The charge on each subarea can be calculated by determining 

the contribution a unit charge on a given subarea makes to the potential at all other 

subareas, and by solving against the known potentials on the electrodes the charge 

distribution may be derived. A similar process is subsequently used to calculate the 

contributions of the charges on the electrodes to the potential at any arbitrary point. 

The Method of Moments is generally applied to electric field problems where charge 
distribution is required, such as capacitance calculations [14]. The method also has 

been widely used in dielectrophoresis research, including studies of dielectrophoretic 

forces on interdigitated electrodes by Huang et al [15], and an examination of the 
forces within electrode field cages [16] by Schnelle et al. The method forms the basis 

of the simulations performed in chapters 4 and 5, and is discussed more thoroughly in 

section 2.3. 
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2.2 Finite Element Analysis. 
As described in the previous section, most models introduced a numerical 

approximation by discretising the solution space into a series of evaluated "nodes". 

The Finite Element Method is similar, but divides the solution space into "elements" 

across which Poisson's equation is approximated. The element approach has many 

advantages over the imposition of meshes, as described in the previous section. Here, 

the procedures which underly construction of a Finite Element model are described. 

2.2.1 Local Elements and the Shape Function 

Consider the electrode geometry shown in figure 2.1(a). We may partition it into a 

number of partitioned elements, such as the triangular elements shown in figure 2.1(b); 

the nodes of the elements are the points where we wish to evaluate the potential. The 

elements may follow any mathematically-definable shape, and here we will consider 
both triangular and square elements. Taking triangular elements first and examining a 

single element (the "local element", such as the shaded area in figure 2.1(b)), it is 

possible to approximate Poisson's equation (equation (2.1)) linearly across it using an 

equation in potential variable u: 

u--U= a, +a2x+a3y (2.3) 

As we would wish to examine the potential at all three nodes, we may apply this 

equation to all three nodes (locally numbered 1 to 3); 

U, =a1+a2X, +a3. y1 

U2 =a, + a2x2 + a3y2 (2.4) 

U3=a, +a2x3 +a3y3 

This may be written in matrix form, ie 

Ul 1 xi Yl aý 
U2 =1 X2 Yx az (2.5) 

U3 1 x3 Ys as 
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2.1 (a) A 2-electrode system, between which the electric field is unknown. (b) The 
solution space between the electrodes, discretised into a series of triangular 
elements. A single element is highlighed, with its nodes numbered. 



Solving equation (2.5) in a we find 

L 
U, Xl Y, 

11U, 
Y, 

a, = 2A U2 x2 Yz a2 =-1 U2 Yz 
U3 x3 y3 1 U3 y3 

where A is the area of the triangle, and 

11x, 
U, 

a3=2A1 x2 U2 

1 x3 U3 
(2.6) 

I x1 y1 
2A =1 X2 Y2 

1 x3 Y3 

If we define variables a, b, c such that for node 1 

a1 =X 2Y3 Y2x3 

b1 = Y2 -Y3 
Cl = x3 - X2 

and similarly for node 2 and 3, then equations (2.5) and (2.7) may be expessed as 

a3 =-L (a1U3 +a2U2 +a3U3) 

a2 = zÄ (b1U3 +b2U2 +b3U3) 

a3 = 2', (c3 U, +c2U2 +c3U3) 

2A = a, +bx, + c, y, 

This may be generalised for node i using equation (2.3); 

(2.7) 

(2.8) 

(2.9) 

U= ^Ä[(a, +blx+cly)U, +(a2 +b2x+c2y)U21 +(a3 +b3x+c3y)U3] 

ZNjUU (2.10) 
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where U. is the potential at node i. N, is the shape ficnction, and for triangular 

elements, is written as: 

Ni = 
a; +b; x; +c; 

2A 
(2.11) 

which is a transformation into a coordinate system known as area coordinates [7], 

effectively normalising the dimensions of the element. This coordinate transformation 

is an important concept, and forms the basis for the examination of square elements, as 
discussed later. 

2.3.2 The Galerkin Method 

Let us suppose that across all the elements i the potential u is such that 

u=N; a; (2.12) 

where a; is a set of parameters, which will need to be determined. It is possible to 

insert this into equation 2.1, which may be expressed in the form: 

V. kVu +Q =O (2.13) 

Substituting equation (2.12) into equation (2.13), we obtain the expression 

R D. kV N; a; +Q =0 (2.14) 

where R=0 for an exact solution of equation (2.12), and is otherwise an indication of 

the error introduced do to the linear approximation used in section 2.2.1. It is possible 

to force R to zero over the solution space S by satisfying the equation 

I w, RdQ =0 (2.15) 
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where w is a set of weighting functions. In order to determine Poisson's equation 

over the solution space, we substitute equation (2.14) (Poisson's equation across a 

single element) into equation (2.15). Considering the effect of a the potential function 

across a single element U on a single node j, this result is given by 

Jw1[V. kVU+Q]dc= 0 (2.16) 
a 

If we expand this to consider the effect for all nodes, we find 

Jwj[V. kVU+Q]dQ =E 
f wi[V. kVU+Q]dS)1 =0 (2.17) 

Q 0=1 n. 

Effectively, the integral across the solution space fl has been replaced by the sum of 

the integrals across the elements fl,. If we integrate equation (2.17) by parts we 

obtain the following expression: 

Jw1[V. kVU+Q]dfl =-f Vw1kVUdc2+ f w1Qdc2+ f wjk 
%dr' 

=0 (2.18) 
000 

where IF is the surface surrounding the solution space D. The weighting functions w 

may take a wide range of values. In the Galerkin approach, we define the weighting 
functions as being the shape functions of the elements over which the integration is 

taking place; hence 

VN,. kvN1dn,, U f+J NNQdQ2. (2.19) 

where R; ) is the residue at node i due to element e. This can be expressed in the form 

+ {(`) Ri(! `) = k(y`)uj f (2.20) 
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where 

k °N'+°w' do 
'' oc o'k oy oy ` 

" (2.21) 

. ý(`) = 
JN, QdQS 

These integrals are easily performed over the triangular shape functions described 

earlier: 

f N; NZN3dQ2 = 2A a! b! c! (2.22) 
(a+b+c+2)! n, 

where 

k 
j(e) 

1k(b11b+c. c. )df k(b; 
1b+c1c, 

) 

4A2 4A 

f(`)=1(a, +b; x+ciY) 
all _AQ 

ýý 2A 3 

(2.23) 

These results may be organised into the matrix form of equation (2.20); the local 

system matrices for a single element are: 

R1 1 1b; +C2 blb2 + clc2 blb3 + clc3 Tu, 1 

RZ = b2 
22+ c2 b2b3 + c2 c3 u2 +3 

_R3_ 

4A 
sym. b3 + c; u3 1 

(2.24) 
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2.2.3 Quadrilateral Elements 

The principles described above may be applied to elements of other shapes. If we 

consider quadrilateral elements rather than triangular elements, the linear 

approximation across the element is now an equation in four, rather than three, 

unknowns; 

uU =a, +a2x+a3y+a4xy (2.25) 

This can be shown [9] to transform to a shape function N, where 

Ni = ä(1+ýIý. )(l+i7, i70) (2.26) 

where ýo and rho may take the values ±1 according to how the the shape function has 

been mapped onto the local element. By considering ý and i as axes, this mapping 

process can be seen as a transformation of the element onto a master element, as 

shown in figure 2.2. The conformal mapping of one shape to another varies the 

lengths of the edges by a factor defined by the Jacobian of the transformation [ 17]; 

ICI = ý ý 
of o! 1 

From which we obtain the following relationships; 

aß 
__ 

10 
a ICI 45ýi 

ex, IAaý 

aý_-pax 
fu1 a 

är7 1äC 

/ I. I a9 

(2.27) 

(2.28) 
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2.2 A quadrilateral element e is mapped onto a`master element Ste 



Here we define the master element, to which the element is transformed, as follows: 

x=Ex1U1(ý, i) . v=ßy1 U1(ß, 77) (2.29) 

We require these expressions to map out the potential U across the master element. 

This is expressed in terms of the potential function across the master element Ui (e) ; 

v, = v, c) («x, y), il(x, y)) 

from which we find, using the chain rule, 

avr 
_a 

av(`> av(`) avý`ý +to? 
l aui= a ý, 

+ 
e 

a ax any aý wi e 

Substituting equation (2.29) into equation (2.31) we obtain the following result: 

U1 oje 
y 

oil (°) o j(°) j(°) 
y' ICI a, ' i i , e 

ji, 
=, [- 

e ii Öý xj 
c9i 

+ Öre x, 
999 

(2.30) 

(2.31) 

(2.32) 

We now have an expression for the potential U across the original element expressed 

entirely in terms of the master element dimensions. We wish to determine the potential 

across the element according to Poisson's equation, so from equation (2.20) we need 

to solve for k and f. Since this is a highly complex integral, it is appropriate to 

approximate a solution using the Gaussian Quadrature principle [9], where the integral 

of a function g across a square area may be determined by summing the value of the 

function at four specific points. Across the master element, this is described by 

equation (2.33). 
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2.3 The location of Gaussian quadrature points across the quadrilateral master 
element. 



$g(S, j7)d4dr1=Zg(4, i, )w, +E (2.33) 

where 1 is the set of co-ordinates shown in figure 2.3, E is the quadrature error (which 

equals zero if sufficient quadrature points are taken, as is the case here), n is the 

number of Gaussian quadrature points taken across the element and w is the set of 

weighting functions (equal to the shape function of the element, as expressed in 

equation (2.26). The values of ki and f, are determined using this approximation on 

the integrals described in equations (2.21), and are assembled into a local matrix as 
described in equation (2.24). 

This principle may be extended to general element shapes, such as cuboids or other 
three dimensional elements, with the mimimum of difficulty. An example of a Finite 

Element program using cuboid elements is presented in Appendix I. 

2.2.4 Assembling the Elements 

We have formulated a means of approximating the potential across an element by 

mapping it to a master element. We now examine the method of assembling the 

elements in such a way as to determine the overall potential distribution across the 

whole solution space. This is performed by assembling the local matrices, of the form 

expressed in equation (2.24), into system-wide equivalent matrices. For example, 

consider the 2-element solution space shown in figure 2.4. From equation (2.24), the 

local system matrices are defined in terms of the nodes of the element. For element 1, 

the system is represented as follows: 

RI k11 k12 k1a ui 
-fl 

1 ?2 = k22 k24 U2 + f2 

[R4] sym k44 
] [u4j 

f 

Similarly, we can construct the system matrices for element 2: 

(2.34) 
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2.4 A rectangular solution space, discretised into 2 triangular elements 



Ri k11 k14 k13 u1 fi 

R4 = k44 k43 U4 + fa (2.35) 
R3 sym k33 u3 f3 

The system matrices for the whole solution space is the result of merging both of the 

above according to nodal positions. The R term may be set to zero, as is the condition 
defined by the Galerkin method in equation (2.14). Hence: 

k(l) +k(2) k°12 k(2) k(» +k(2) 11 11 13 41 41 u 1 
-fl(l) 

1 + f(2) 

k12) k22) 0 kam) uz 
°- 

fi 1) 
(2.36) 

k(2) 0 k(2) k(2) 13 33 43 u 3 c2) f3 

k(1) +k(2) k(1) k (2) kcn +k(2) 41 41 24 43 44 44 u 4 [i° )+ f(2) 

Note that k, = k32 = 0. This is due to the arrangement of nodes such that no element 

contains both node 2 and node 3, and hence there is no interaction between these two 

nodes. Large numbers of nodes thus leads to potentially very sparse matrices, which 

may be exploited during the solution phase, as is described later. 

2.2.5 Applying Boundary Conditions 

Boundary conditions upon the system may take one of two forms: the Dirichlet 

Boundary condition where a potential at a given boundary (such as an electrode 

surface) and hence the potential at those nodes located on that surface, is defined; and 

the Neumann boundary condition which states that across the surface r that encloses 

solution space 0, the following condition must apply: 

au 
ag = constant (2.37) 

where g is an axis normal to the surface at the given point. This condition exists across 

the whole surface and need not be integrated into the procedure. Indeed, 

consideration of this condition is important, and such an imposition of symmetry of 

potential at the outer boundary may be exploited in simulating symmetrical systems. 
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Consideration must also be taken when simulating systems which involve changing 

phase relationships, as this symmetrical boundary will negate any phase relationships at 

the boundary. 

However, it is necessary to define the known system potentials that comprise the 

Dirichlet boundaries. Having determined the system matrices, we now apply the initial 

conditions to the system. In the case of the solution of equation (2.1) these take the 

form of known node potentials. Consider the case of a 3-node system, as shown in 

equation (2.38). 

k1, k12 k13 ul Ai 
k21 k22 k23 U2 = �2 

(2.38) 

k3, k31 k33 ua [13] 

If it is known that potential u3 = U3, then equation (2.38) may be rewritten as 

1k11 k12 0 ui fl - k13U3 
k2, k22 0 u2 = f2 

- 
k23U3 (2.39) 

Lo 01 u3 U3 

In general, for the boundary condition of potential u, = U, where U, is known, the 

following procedure is followed: 

1. Subract k; 1 U, from fj, where j is the list of all nodes, 

excluding i; 
2. Assign k;, = 1; 

3. Set all other values in row and column i to 0; 

4. Setf, =U, 

Note that for a large number of boundary conditions, matrix k becomes increasingly 

sparse due to procedure number 3. As mentioned previously, sparsity may be 
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exploited during the solution phase in minimising the quantity of memory required for 

storing the matrix during the solving process. 

2.2.6 The Solution Process 

The solution of the potentials is thus performed by solving the calculation (2.20) across 

solution space 0, with the residue set to zero; 

u=k-'f (2.40) 

This calculation produces a vector u containing the values of the potential at all nodes. 
There are a wide variety of well-documented methods for implementation of this 
function. In the calculations performed in section 2.4.2 using the program shown in 

Appendix `I, an intrinsic FORTRAN NAG function has been used. However, 

alternative methods such as Gaussian Elimination [17] or Incomplete Choleski- 

Conjugate Gradients [7] may be employed where solving routines are not available. 
The advantages of these methods are discussed elsewhere [7]. A consideration when 

performing such an implementation is that matrix k is largely sparse (ie contains a large 

quantity of zero-value elements) and is also symmetrical. It may be expedient to use a 

solution method such as ICCG which takes these features into account if computer 

storage space is at a premium. 

Having determined the potentials across fl, it is a relatively straightforward procedure 

to determine the electric field by calculating Vu across the nodes. This may be 

performed as a post-processing function, using mathematical tools such as MATLAB 

(The Math Works, Inc) or Mathematica (Wolfram Research) which are commercially 

available. 
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2.3 The Method of Moments 
In contrast to the method described above, the Method of Moments (or Charge 

Density Method) does not discretise a finite solution space to derive the electric field 

across it. Instead the surfaces of the electrodes generating the electric fields are 

divided into a series of charges whose contributions to the electric field according to 

the principles of Coulomb described in equation 2.2. Thus the model derives its 

solution as an examination of unrelated points at which the potential is determined, 

rather than adopting the more abstact concept of a finite solution space. Consequently 

the model used is simpler to define. 

2.4.1 Calculating Charge Density 

Consider the system of n conducting electrodes shown in figure 2.5. Potentials Vn are 

applied, relative to OV at infinity. Each electrode carries a surface charge q. . It can 

be shown [19,20] that the charges and potentials are related by the equation: 

V1 = P11g1 +P1242............ +p1ngn 
V2 = P21g1 + P2292+.......... +P2ngn 
V3 = P31g1 +P32g2+........... +p3ngn (2.41) 

V. = P., 141 + Pn292+.......... +pnngn 

where pj is a parameter which couples the potential on electrode i due to charge j. 

These expressions may be written in the form, 

V1 Ply P12 pin 91 
V2 

= +P21 
P22 P2,, 42 (2.42) 

Vn PI-1 P�2 Pm, 9") 

and hence: 

V= PQ (2.43) 
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Vn qn V -1 
q 

-1 
vn-2 qn-2 

Vl q1 V2 q2 V3 q3 

2.5 A sequence of n electrodes in space, each carrying a charge q and at potential V 
relative to OV at infinity. 



It is possible to simulate electrode systems by representing each electrode as a single 

point charge [16]. However, the more complex and detailed simulations presented 

here require that the physical dimensions of the electrodes be represented in the model, 

and that the charge density varies across the surface of the electrodes. In order to 

account for this charge distribution, an approximation is made here. By dividing the 

surfaces of the electrodes into subelectrode areas, the charge distribution across the 

subarea may be considered to be uniform. This approximation becomes more 

accurate as the number of subareas is increased [21]. Owing to the computer facilities 

available, the models used in this work were limited to a total of 2000 subareas. 

Element p; ý of matrix P is the the potential on electrode i resulting from a unit charge 

on electrode j in the absence of any other charges. If subarea j is sufficiently small, 
then the potential at a point (chosen as the midpoint of subarea i) is determined by 

integrating over subarea dAj a distance r, from such a unit charge thus: 

1Q jIdAjI p`' 4nes 
f (2.44) 

where P -m is the relative permittivity of the medium surrounding the electrodes, which 

is assumed to be homogeneous. Since subarea j holds unit charge, 

ßi=1 (2.45) 
Aj 

From equations (2.44) and (2.45) we obtain an integration over electrode j: 

1 frAI 
(2.46) A; Pý; =4 

oSmf re) 
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If we assume that subarea j is rectangular and is in relation to the midpoint of electrode 
I in the axes imposed as shown in figure 2.6 then, provided the rectangle j does not 

cross the x or y axes the result of the above integration is given by [see appendix 6.1, 

19]: 

47tEoCmAjPr; =II(xz, Y2., z1)-1(x2, YI, z1)-I(xI, Y2, z, )+I(xI, YI"zI)I (2.47) 

where 

+z. t(x+ y2 +z2) . 
1= x. sinh'1 y }+yh-'1____x 

(x2 +z2) +z2) XY 

(2.48) 

This caneither be coded in this manner, or through the use of logarithmic identities 

[20,22]: 

I= An y i+ y2 +y x i+ xz 
(x2 +zZ) (x2 fz2) (y2 +z2) 

4(y2 
+z2) 

+z. tan-' Z (4 
- 
x2 +y2 +z2) (2.49) 

If the rectangle j lies across aither the x or y axes, it must be divided into two (or four) 

separate subareas partitioned by the axes, and calculated as before. 

Having determined the values of matrix P it is possible to calculate the charges on each 

subarea by reorganising equation (2.43) and solving for charge Q: 

Q=P-'V (2.50) 

where V is the potential applied to the subareas. Alternatively, by considering the 

relationship described by equation (2.45), we may express equation (2.50) in terms of 

charge density, rather than charge: 
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X 
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2.6 A coordinate system (X, Y, Z) imposed between the midpoint of electrode i(O, O, Z) 
and electrode j in the X-Y plane. 



a=P, -IV (2.51) 

where a is the charge density vector and pj = Aj pj , as calculated using equations 

(2.47)-(2.49). The solution of equation (2.51) may performed using one of the 

methods described in section 2.2.5. In the sample program shown in Appendix II, used 

for the simulation example in section 2.3.2 and the studies in Chapters 4 and 5, the 

NAG library routine was employed. 

Having derived the charge-density distribution across the electrode surfaces, it may be 

saved for future use. Any subsequent calculations involving a previously simulated 

electrode array may re-use an-existing charge matrix for calculating the potential and 

electric field. 

2.3.2 Calculating the Potential 

If we consider an electrode array which has been subdivided into a system of charges 

across the electrode surfaces, there are a number of methods which may be employed 
for determining the potential due to these charges. One possible method is to apply 

Coulomb's law (equation (2.2)) and derive the electric field directly by calculation of 

the contributions of each charge to the electric field. However, this method may be 

inefficient to implement directly due to the requirement to consider vector 

computations. 

An alternative approach is to consider the expression given in equation (2.51), which 

states that for a given set of points in space the potential 9S is dependent on the charge 
density across the subareas of the electrode, and on a charge-potential relationship 

matrix: 

4=ar' (2.52) 

If this is expressed in the form of equation (2.44), we can express the relationship of 
the potential at a point to charge na distance s away at its centre in the following form 
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7ce j Id,, PM -4 Is"I 

(2.53) 

Substituting equation (2.53) into expression (2.52), we can derive an expression for 

the potential at a general point k: 

Ok - z-d 0� f 
ldA I 

, --1 
Is� 1 

(2.52) 

where N is the total number of subareas and s� is the distance from the centre of 

subarea n to the point k. The advantage of this implementation is that the code 

required to perform equation (2.51) is the same as that required for equation (2.46), 

allowing both to be performed by the same subroutine. This program is implemented in 

such a way as to provide the results in the form of 2D matrices at locations K which 

may then be loaded into a mathematical post processing system such as Matlab. 

Furthermore it is a straightforward task to adapt the calculation of the potential so as 

to calculate potentials at points displaced a small, regular distance from the points of 

study along the axes centred on the sample point. This allows calculation of the 

electric field at the series of points, by calculating field gradients based on differences 

between potentials at these extra points. Such a method increases computation time, 

but gives high levels of accuracy by minimising the distance from sample point to extra 

nodes. Having calculated the electric field in vector form in this manner, the data may 
be saved in the form of matrices Exx , EyK and EzK . 

Since the electrode model in the Method of Moments requires a fixed charge density, it 

is unable to perform true AC analysis. However, by discretising the AC cycle into a 

number of static "frames" it is possible to analyse phase effects across a cycle in great 
depth. 
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2.4 A Comparison of the Finite Element and Moment Methods 

In the previous sections two numerical models have been discussed, having been 

determined to be most applicable to the numerical solution of electric fields in the 

studies discussed later in this thesis. Here the applicability of these methods for 

various applications of AC electrokinetic study are analysed. 

2.4.1 Approximations and Limitations 
It is the nature of all numerical models that the solution provided is an approximation 

to the actual field, rather than an exact solution. By introducting simplifying 

conditions, such as discretisation of otherwise continuous functions, errors are 

introduced into the solution, with which care must be taken to minimise. An 

understanding of the approximations made in a model, the limitations placed on the 

construction of that model, and the restrictions on determining the solution are useful 

in determining which method is appropriate for a given problem. 

The Finite Element model divides the volume containing both the electrodes and the 

volume for which a solution is required into elements which are solved in a piecewise 

linear fashion. The inclusion of the solution points as part of the model restricts the 

number of locations that can be examined, in that the model must retain the regular 

order of elements throughout. Furthermore, without the aid of powerful graphical 

tools the constuction of the model itself (in terms of the positioning of nodes and the 

allocation of potential boundary conditions to these nodes) is a non-intuitive and 

laborious task when the number of elements is reasonably large. This makes 

modification of the model difficult and error-prone. 

A further consideration is the Neumann boundary condition (see section 2.2.5) which 

effectively creates "ghost" electrodes in the mirror-image of the electrodes being 

simulated, reflected at the outer boundary of the solution space in all directions. This 

has the effect of raising the magnitude of the potential at the boundary and setting the 

electric field across it to zero, both of which create errors in the final solution. Further 

care must be taken where a phase direction is studied (such as the travelling-wave 

simulations of chapter 5), as the reflected electrodes at either end of the electrode array 
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will have applied travelling waves running counter to those on the actual electrode 

simulated. To avoid this, the electrodes and region of study should be isolated from 

the boundary by large, empty elements. These introduce a large "distance" between 

the real and ghost electrodes, but increase simulation time. Alternatively, it is 

sometimes possible to make use of symmetry in the electrode geometries by placing the 

Neumann boundary at the time of symmetry and only simulating half of the problem 

space. 

The Method of Moments does not employ the concept of a defined solution space, and 

thus does not restrict the choice of sample points to be examined, or create "ghost" 

electrodes. However, the system of discretisation of the electrodes creates 

approximation errors of a different nature. The system of expressing the charge on a 

subarea as a single point from which the distance to the sampling point creates errors 
in close proximity to the electrode surfaces, where the difference between charge 

focussed at set points, rather than distributed equally across the subarea surfaces, 

becomes more apparent. Thus, within a distance from the electrodes approximately 

equal to the width of adjacent subareas, the potential will vary according to whether it 

is facing a point charge or a subarea boundary. 

Another limitation to the Moments Method is that due to the nature of the model 

considering a direct-line relationship between the sample point and the point charges, 

the introduction of heterogeneous dielectric media between these points (or into the 

model generally) is a complex problem which potentially increases computation time to 

make the method unsuitable for any problems of this nature. Thus this method is most 

appropriate to the simulation of electrodes suspended in a medium such as the aqueous 

soultion of basic electrokinteic experiments. 

2.4.2 Computational Intensity 

In order to highlight the advantages and disadvantages of using the two simulation 

methods descibed above, a simulation of the electric field generated by a set of 

travelling-wave electrodes (see chapter 5) was simulated using both methods. The 
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programs used are shown in appendices I and II. Presented here are the results of that 

comparison. 

Both simulation programs were written using FORTRAN 77 and implemented on a 
Cray Y-MP supercomputer. The Cray was chosen due to the large nature of the 

matrices involved in the calculation, which are beyond the resources of most medium- 

size mainframe computers. The Moments model consisted of nine opposing pairs of 

electrodes across a channel. The electrodes were each divided into 110 subareas, 

giving a total of approximately 2000 subareas. The output was in the form of four 

2D matrices containing potential and electric field data. The Finite Element model 

contained only 7 electrodes, and made use of the Neumann boundary of symmetry 

across the centre of the channel. The simulation space was divided into approximately 
5500 cuboid elements 2.5µm square across the X-Y face, and of varying thickness. 

Half-width electrodes were added at either end of the array to preserve charge 

neutrality. 

Compared to the resources a modern computer can provide, the disk requirements of 

the two programs are small. Counting both the calculation programs and their 

respective data generators, neither set of programs exceeded 16kb. The input files 

differ more significantly, with the Moments datafile requiring only 157kb compared to 

the 886kb Finite Element datafile. At output the total memory required is once more 

similar, with the Moments data requiring 1.2Mb against the Finite Element data 

requiring 1.6Mb. It is important to consider that these data files do not represent data 

in the same manner, as is discussed below. 

The quantity of memory required by both systems is effectively proportional to the 

largest matrix used in the calculations. In Finite Element Analysis, this is the System 

Matrix which is proportional to the square of the number of nodes. For the Method of 
Moments it is the Charge Relationship matrix, which is proportional to the square of 

the number of subareas. Since the Cray operates at '64-bit (single) precision, the 

quantity of swap space required for the Finite Element and Moment methods is 230Mb 

and 30Mb respectively. The Finite Element matrix is by its nature sparse (with sparsity 
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reaching 90% in some cases), and it is possible to reduce the swap space required by 

the system by performing the calculations using only the non-zero matrix elements. 

This increases the efficiency of the program, although there is a trade-off in the form of 

an extended total run-time. 

Although the Moments method performs the better of the two when compared on the 

basis of maximum memory required, this situation is not reflected in the total CPU time 

required to run these programs. Using the Cray YMP, the Finite Element method took 

only 349.9 seconds to run compared with the Moment Method's 1881.3 seconds. 
When the time-memory integrals (a standard measure of the resources used by a 

program) are compared, the Finite Element program usage was approximately half that 

of the Moments program (10442.7Mword-seconds compared to 22370.7Mword- 

seconds). This is due to the the methods by which the main matrices are populated, 

and by the method of extracting the solution from that matrix. The Finite Element 

system matrix is assembled by calculating only those matrix elements which represent 

coupled nodes, an increasingly small quantity as the number of elements increases. 

Once constructed, the matrix is solved and the solution is derived directly. However, 

the smaller Moments matrix is fully populated, as every charge is effectively coupled to 

every other charge. Thus, the matrix takes considerably longer to construct. 

Furthermore, the solution is calculated by performing mathematical operations based 

on the value of every charge density to provide the solution for a single point in space. 

For large numbers of sample points, determining the solution can thus become a large 

part of the calculation process. 

The efficiency of Finite Element Analysis simulations may be further enhanced if 

solution routines are used which take advantage of the unusual properties of the 

system matrix - those of sparsity and symmetry - which may drastically reduce the 

memory capacity required to perform the calculation. Another method of improving 

the performance of Finite Element models is to concentrate the elements in those 

locations where the electric field changes rapidly, such as near electrode edges. 

Adaptive meshing such as this reduces the number of elements required to gain an 

accurate solution. However, as the mesh generation is. a pseudo-random process, it 
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may complicate the process of determining the electric field around the electrodes. 
Furthermore, if not accurately controlled such meshing can make the analysis of 

specific points in a defined plane a complex procedure. Several software suites are 

commercially available such as Maxwell (Ansoft Inc. ) which provide an integrated 

meshing / solution / postprocessing environment. 

2.4.3 Comparing Simulation Results 

As a basis for comparison of the methods, the time-averaged magnitude and phase 

distributions of the electric field through a plane 3µm above the electrodes were 

studied using both methods. This point of comparison was chosen for its simplicity 

and the ease with which differences in the simulations may be identified, as well as its 

importance to the study of travelling-wave dielectrophoresis (see Chapter 5). The 

magnitudes (parts a, c, e) and phases (parts b, d, f) of the X, Y and Z components are 

illustrated in figures 2.7 and 2.8 for the Finite Element and Moments methods 

respectively. 

The significance of the results themselves are discussed in chapter 5. Here we examine 

only the forms of the results. As the electric field is unknown, it is difficult to 

determine which simulation is more "correct" than the other in the event of 

discrepancies occuring. Rather, the reasons for these discrepances occurring may be 

postulated in considering the differences in the models. used. Since the plane studied is 

above the electrodes and extra electrodes (beyond the regions studied) have been 

included, approximation errors of the types discussed in section 2.4.1 have been largely 

avoided. Hence the results presented here allow for the examination of other 

differences which may occur. .'g 

It is apparent by inspection that the results of the two simulations correlate very well 

both in terms of absolute values and field conformations. The comparisons of phase 

distribution are also highly favourable. The fact that the two methods produce highly 

similar results via two completely different methods, both of which agree with 

experimental predictions (as discussed in chapter 5), indicate that it is highly probable 

that both results are, in general, accurate. 
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However, minor discrepancies do occur in the results. The correlation of X-direction 

magnitudes is excellent, with very little variation between them. However, two 

important differences in the phase characteristics are evident. Firstly the Moments 

result deviates by 180° near the edge of the sample area, over the electrodes. This is 

due to the finite length of the electrode models, as the changeover occurs exactly 

halfway across the electrode length. Secondly, the phase does not vary across the 

electrode surfaces in the Finite Element case, which indicates that the potential is 

constant across the surfaces at all times. Further investigation found this to be related 

to Neumann-boundary effects where the "ghost" electrode effect maintained the 

potential at an artificially constant uniformity. 

Both the Y- and Z-direction phase studies produce almost identical results, which may 

be accepted due to the high degree of correlation. However, in these instances there 

are minor differences in the magnitudes of these components. The Moments 

distributions are smoother, and more consistent with an averaged-out field due to 

subcharges, on which the potential is not always constant due to the charge 

distribution across the electrode surfaces. The Finite Element model does not 

consider these edge effects of charge build-up and thus the electrode potential is 

equally distributed across the electrodes, a process which is extended by the ghost 

electrode problem described above. This led to the reduced Z-component electric field 

across the electrode surfaces shown in figure 8(e). This effect may also be responsible 
for the higher electric field (approximately 20%) in the inter-electrode gaps in the 

Finite Element simulations of these two field components. 

These considerations thus distort' the results from the unknown "correct" electric field 

distribution. The similarity of the results, coupled with the successful predictions 

obtained using the Moments data in Chapter 5, seem to indicate that the models are 

sufficiently accurate for the studies undertaken here. Note also that the Finite Element 

model was also used to perform force calculations similar to those presented in 

Chpater 5. The results were very similar, with the "ghost" electrode effect only 
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causing significant problems in studying Z-plane effects (see Chapter 5, particularly 

figure 5.5, for details). 

2.5 Conclusions 
In order to examine the effects of AC electrokinetics on particles, the electric field 

generated by manipulating electrodes must be analysed. For all but a few cases, the 

electric field must be simulated using an approximate numerical model. Five 

alternative schema for the numerical analysis of electric fields have been discussed, and 

the most appropriate methods for the simulation of electrodes for dielectrophoretic 

applications have been described in detail. 

The Method of Moments divides the potential across the electrodes into subareas upon 

each of which the charge is determined. The contributions of each charge on the 

potential of an arbitrary point are subsequently determined. The method is slow and 

computationally intensive. The fact that the mesh of points is arbitrary, and has no 

dependence on the division of subelectrodes, is advantageous in the repeated 

simulation of a given geometry for a number of circumstances. Also, the grids may be 

collocated, allowing the points to be animated, for example. The simulation requires a 

large computing overhead, and is thus most suitably implemented on a mainframe 

system. Calculation of the electric field may be performed within the program by 

examining local potentials and deriving the gradients, which increases the processing 

time but offers accurate solutions. 

The Finite Element Method partitions the solution space into elements across which 

the potential is calculated by approximation of Poisson's equation. It requires large 

computer resources unless specialised solving routines are employed. It is possible to 

reduce the total number of elements used in the calculation by generating a mesh which 

contains more elements (and thus resolves the potential in greater detail) in regions 

where the field gradients are high, and fewer elements where there is little change in 

electric field over a wide spatial area. Use of such routines allows more rapid 

simulation, and can be implemented on a well-specified PC. This generates a pseudo- 
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random set of nodes which may cause problems in matching the potential at an 

arbitrary point on two simulations, for example to examine the result of changing 

electrode phase. The method is thus best suited for non-phase related applications 

such as the study of dielectrophoresis. 
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Chapter 3 
"Motion Without Force": 

Analysis of Dielectrophoretic Ratchets 

3.1 Introduction 

Recent theoretical interest has developed in the study of induced motion in colloidal 

particles by harnessing thermally-induced motion via the application of assymetric 

periodic potentials [1-5]. Studies by Ajdari and Prost [1] considered the forces acting 

on a particle in suspension and subject to a Brownian motion. A sawtooth potential, 

when repeatedly applied and removed for finite periods of time, will theoretically show 

a biased overall motion in the direction along the direction in which potential increases 

for the longest physical distance, leading Chauwin et al to the assertion that this 

principle provided "mouvement sans force" [2]. Analysis by Magnasco [3] and 

subsequently by Astumian and Bier [4], illustrated that models of this nature could be 

devised to explain the motion of proteins along biopolymer using thermal noise to 

advance the smaller molecules though a series of potential "ratchets". 

The application of this principle to larger particles, using dielectrophoresis to provide 

the necessary potential gradient, was first proposed by Ajdari and Prost [1] and 

subsequently demonstrated experimentally by Rousselet et al [5]. Rousselet and co- 

workers used latex spheres of varying diameters to attain particle motion of 0.2µm s' , 
with diffusion rates of particles advancing from one ratchet to the next (at an 

"efficiency" of 40% per step) for significant times of zero applied field. However, the 

form of the boundary of attraction between two successive ratchet units was not 

determined, taking a shape somewhere between a straight line and a semicircle across 

the widest part of the structure. In the work presented here, the electrodes used by 

Rousselet et al are examined using computer modelling and the form of the crossover 

boundary is determined. 
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Ajdari and Prost [1] also proposed that this method has applications in the separation 

of particles according to their relative sizes. It is proposed here that, using the 

dielectrophoretic methods described here, it is possible to separate particles in a 

continuous manner according to their relative dielectric properties using principles 

establised in previous publications on the separation of viable and non-viable yeast cells 

[6]. It is shown that, under the correct conditions, it may be possible to drive particles 

of specific dielectric properties backwards through the ratchet system whilst other 

particles are simultaneously being driven forwards in the manner described previously. 

This study also presents an analysis in the optimisation of the "Christmas-tree" 

electrode design [5] for the efficient transport of particles in manufactured ratchet 

systems. Since the efficiency of transportation depends on the percentage of particles 

stepping forward for each application of the field, a ratchet design will optimally have a 

negligible distance between potential peak and valley. A study in one dimension, along 

a line between the electrode tips, provides a means of making comparisons between 

electrode configurations and principles for optimisation. Furthermore, a system is 

proposed whereby the principle of ratcheting is retained, but the reliance of the system 

on Brownian motion to provide the local particle motion is eliminated. This greatly 

improves ratchet performance and efficiency. 
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3.2 Forced Thermal Ratchets 

Consider a quantity of colloidal particles, of greater polarisability than the surrounding 

medium, suspended within the electrode geometry shown in figure 3.1, with successive 

electrode tips spaced a distance d apart. On application of a potential difference to the 

electrodes, the particles will undergo positive dielectrophoresis towards the region of 

highest electric field. For spherical particles of radius r, the dielectrophoretic force is 

calculated using the expression [7]: 

F(w) = 22rcocmr3 R4f ]VE2 (3.1) 

where co is the permittivity of free space, sm is the relative permittivity of the medium, 

Re denotes that the real part of the function in brackets be taken, V is the del vector 

operator, E is the RMS electric field, and f is the Clausius-Mossotti factor defined 

by: 

few - 
ED -Em 

Ep +2E. 
(3.2) 

where cp and cm are the complex permittivities of particle and medium respectively. 

Due to the V E2 term, dielectrophoretic motion will be directed along path of 

increasing local electric field gradient. Due to the assymetric design of the electrodes, 

the field gradient is biased such that a greater proportion of the space between 

successive electrode tips generates dielectrophoretic motion to the right of the diagram 

than to the left (figure 3.2). Hence the majority of particles will translate towards the 

right. 

Following the collection of particles over a period r0N , the potential difference across 

the electrodes is removed. Under Brownian motion, the particles will then drift from 

the electrode tips over a period of time. After sufficient time, some particles will drift 

a distance d, which will place those translating to the right within the dielectrophoretic 

capture region of the next (right) electrode, after which point the electric field is 
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3.1 Schematic of the electrode geometry used by Rousselet et at. Two sets of 
electrodes consist of interdigitated combs, an enlargement of a portion of which 
is shown in the box. Along these combs, electrodes have triangular protrusions, 
which are symmetrical across a line between the electrode tips and thus foram 
large triangular spaces. 
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3.2 Illustration of the mechanism used for particle transport. A potential is applied to 
the electrode structures, resulting in potential energy profile UON at the line 
between adjacent electrodes. The potential energy maximum occurs at the 
electrode tips, with the minimum displaced from the nearest and next-nearest tips 
by distances d, and d2 respectively. Particles undergoing positive 
dielectrophoresis collect at the potential maxima, as shown in concentration A. 
The potential is then removed, producing profile U0,. Diffusion takes place, 
and particle concentration takes a form such as that shown in concentration B. 
When the field is reapplied particles which have diffused beyond the local field 
minimum are attracted to the next electrode tip, as indicated by the arrows. 
Hence there is net particle movement to the right. 



reapplied. Assuming particle dispersion has taken place at an approximately equal rate, 

all particles except those which have travelled a distance greater than d, will be 

attracted to the same electrode tip. However, those which have moved greater than 

dl to the right will be trapped by the next electrode on re-applying the field. Provided 

no particles have moved a distance d2 to the left, thereby entering the capture area of 

the previous electrode, there is thus a net motion of particles to the right. This is 

further explained in figure 3.3. 

Particle diffusion has been calculated previously using the one-dimensional probablilty 

distribution on the Fokker-Planck equations [8] along axis x: 

i (x, t) = -div J(x, t) 

where 

(3.3) 

J(x, t)= 
D 

P(x, t)F(x, t) -D VP(x, t) (3.4) 

with P indicating the probability density function of the particle location, D is the 

diffusion coefficient and F is the external force due to an imposed potential. It has 

been shown [1] that for optimum transport this diffusion will be bounded by the lower 

diffusion limiting case of the above expressions, where the diffusion rate is small 

enough to prevent particles passing beyond a single repeating electrode unit in a single 

time interval TOFF. This limiting case is given by the expression: 

T «(d2 -d1)2 
oD (3.5) 

If this condition is met, then for a 2-dimensional isotropic diffusion the probability of 

particles crossing a circular boundary of radius d, in time rOFF, and thus the fraction 

of particles having crossed that boundary at that time, is given by the expression [5]: 
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3.3 Consider the inter-electrode gap illustrated in figure 3.3(a). The potential is 

applied, and particles are trapped at the electrode tips in the region illustrated by 
the broken line. If the potential is removed, the particles diffuse from this point 

is Brownian motion. After a period of time, some particles will diffuse beyond 
the crossover boundary, illustrated by the dotted line. (b) On re-application of 
the field these particles (represented by the horizontal hatching) will be attracted 
to the electrode tips at right, resulting in net motion to the right. If the particles 
diffuse for a longer period then some (indicated by the vertical hatching) will be 

captured by the electrode tips on the left. This reduces the overall effectiveness 
of the transporting mechanism. 



-d2 P=2 exp ' 
(4DTff 

(3.6) 

where the 2 
factor indicates isotropic diffusion. Rousselet and co-workers [5] 

determined through experimentation that in practice the cross-over boundary is 

approximately semi-circular, but is not exactly so and proposed a more accurate model 
based on experimental observation: 

P=0.9exp -d''2 
4Dtoff 

(3.7) 

where d, is a radius variable chosen to fit the equation from experimental data. The 

coefficient 0.9 indicates that the crossover boundary is not semicircular, but may be 

approximated as such. This is further complicated by the observation by Rousselet et 

al that the diffusion is non-isotropic, with particles in experiments tending not to 

mount the electrode surfaces and thus being more likely to diffuse forward from the 

collection point. After the optimum time zoFF [9] some particles, ie those which have 

travelled a distance d2 - d, forward (ie towards the right), will be captured by the next 

electrode on re-application of the electric field. If TcFF is greater than this, some 

particles will be captured by the previous (left) electrode and the efficiency of the 

ratchet will be reduced. Thus, maximum velocity has a defined maximum period time 

(zo»+ rox) as shown in the studies of Prost et at [ 10]. 

Rousselet et al [5] determined that the boundary between adjacent capture areas is 

neither circular nor straight, following a more complex pattern. It is thus difficult to 

evaluate the efficiency of the geometry in terms of the proportion of cells migrating 
forward within the time rom.. Ajdari and Prost [1] proposed a dimensionless factor x 

as a ratio based on the distance d, as a proportion of the total distance dA similar 

measure of this ratio A has been used here for the comparison of different electrode 

geometries. A is expressed as the ratio of the distance along the axis through the 

centre of the gaps between the electrodes along which particles are attracted to the 
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next electrode tip at time Tom, as a proportion of the total distance between 

neighbouring electrode tips: 

n_ 
d2-d, 
d2+d, 

(3.8) 

The value A may be interpreted as a measure of asymmetry, and may take values from 

0 (a symmetrical electrode assembly) to 1 (complete asymmetry). In practice A=1 is 

unattainable, but by maximising A ratchet performance may be measured and 

improved. 

In order to gain greater insight into the processes occuring in practical electrode 

structures, the electric fields and forces around such structures were simulated. A 

limited study has previously been performed by Rousselet [11] in two dimensions, 

using the Finite Difference model [12]. The results obtained by that method have been 

verified and extended by undertaking advanced three dimensional studies using the 

Finite Element model, as described in the previous chapter. Calculations were 

performed using an integrated meshing/calculation/postprocessing program (Maxwell: 

Ansoft Inc. ) to calculate the electic fields, and also to calculate dielectrophoretic forces 

based on equation (3.1). Fields were simulated in three dimensions to provide highly 

accurate data, using tetrahedral elements to accurately model the triangular electrode 

shapes. Two-dimensional studies were also performed for relative performance 

optimisation, where obtaining an accurate result for a single line was considered to be 

of greater importance than obtaining wide-area results with the expense of large 

quantities of computing time. Two-dimensional results were also used to confirm 3-D 

results with larger error margins. Adaptive meshing was employed, with a maximum of 

approximately 10,000 nodes per simulation. In order to control meshing, the program 

attempts to iteratively minimise potential energy across the solution space by 

examining the discontinuity of the second differential of the potential at element 

interfaces [13]. This error, cumulative across the solution space, is used as a total 

local, rather than global residual, error measurement [14]. Overall local error limits of 
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2% (3D simulations) and 0.01% (2D simulations) were imposed. Calculations were 

performed on a Pentium-90 PC. 

3.3 Results and Discussion 

3.3.1 Electric Field Distributions 

The electric field across the electrodes described in figure 3.1, in a plane 3 µm above 

the upper surfaces of the electrodes, is shown in figure 3.4. Peak electric field at the 

electrode tips is 4V/µm, falling to 1.2V/µm in the 3µm plane above the tips. The 

crossover point between repeating triangular electrode units is visible as a 5µm-wide 

band at which the electric field is relatively stationary at a minimum value of 

approximately 0.4V/µm, extending in an elliptical arc from the corners of the triangular 

region, the centre of which passes through the point 17µm from the nearest electrode 

tips along the line between the electrode tips. In terms of the comparison factor (the 

transport factor A described in equation (3.8)), the measurement d, = 174m produces 

a transport factor A=0.32. This elliptical boundary agrees well with the practical 

observations reported [5] where the boundary has been described as falling between a 

semicircle of radius d, and a straight boundary a distance d, from the previous 

electrode tip. 

Previous 1-dimensional simulations of electric field conducted by Rousselet [11] using 

a Finite Difference model of the ratchet electrodes provided a transport factor A of 

0.375, based on a geometry with a shallower slope angle of the leading electrode edge 

due to a narrower electrode base (this geometry has a maximum inter-electrode gap 

width of 40µm rather than 509m). This value agrees well with the prediction here, 

given the difference in geometries and the simplicity of the earlier model. Furthermore, 

allowing for the difference in geometry as discussed in section 3.4.2, the value 

calculated here for the geometry described in [11] is indeed A=0.375. 
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3.4 The electric field strength in a plane 3µm above the plane of the electrodes 
shown in figure 3.1. The crossover boundary is visible as a semi-ellipsoid band 
reaching from the inner corners of the central triangle through a point ', of unit 
length d from the nearest electrode tips. The high-field region is visible at the 
electrode tips. 



3.3.2 Dielectrophoresis 

The positive and negative unit vectors of positive and negative dielectrophoretic force 

are shown in figure 3.5(a) and (b) respectively. The magnitude of these vectors, which 

are equal to one another and equivalent to the potential energy, vary according to 

figure 3.5(c). 

Considering positive dielectrophoresis first, it is evident that, upon application of the 

field more particles will be attracted towards the right of the electrode assembly to the 

electrode tips than to the right by a ration of approximately 2: 1. The crossover 

boundary is evident, with the force vectors being tangential to this boundary. Across 

the boundary, it can be seen than the force vectors reverse direction. Negative 

dielectrophoresis, as shown in figure 3.5(b), acts counterwise to the positive 
diectrophoretic force and forces most particles from right to left, towards the 

crossover boundary. Within this region, particles are transported towards the 

electrodes along the crossover boundary. This effect has been reported as an attractive 

force acting on latex beads in high frequency electric fields by Rousselet in 

experimentation [11]. However, the size of the force across the crossover region, 

where motion should take place towards the electrode corners, is several orders of 

magnitude smaller at the crossover boundary than at the electrode tips. Thus, larger 

particles pushed into the crossover region may remain in this region, forming a 

crescent shape. This formation is evident from a contour map of electric field, shown 

in figure 3.5(c). 

An interesting and potentially useful phenomenon resulting from the negative 

dielectrophoretic force distribution is that particles are transported to the left of the 

diagram rather than to the right, as is the case ui,,.: the right-to-left motion induced 

by positive dielectrophoresis, and the collection point is displaced from the previous 

location, at the electrode tips. Using the Brownian motion harnessing of thermal 

ratcheting principle, it is theoretically the case that over several cycles negatively 

dielectrophoretic particles should be propelled in a continuous right-to-left fashion, in 

contrary motion to the macroscopic force experienced by particles undergoing positive 

dielectrophoresis. I 
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3.5 Unit direction vectors of (a) positive and (b) negative dielectrophoretic forces 

generated in a plane 3µm above the electrode geometry shown in figure 3.1. The 
magnitudes of these forces are shown in figure 3.5(c). Dielectrophoretic force is 
highest near the electrode tips, and lowest at the crossover boundary. At this 
point the force is so low that particles responding to negative dielectrophoretic 
force may collect at the crossover boundary rather than be transported to the 
electrode surfaces. 
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3.5(c) The magnitude distribution of dielectrophoretic force across plane 3µm above the 
upper electrode surfaces. The positive and negative collection areas are visible as 
pale regions at the electrode tips and crossover boundaries respectively. The 
force at the crescent-shaped crossover boundary is ,,, x, that at the high-field 

region, and so may be insufficient to move particles held within it. 



3.3.3 Continuous Separation using Dielectrophoretic Ratchets 

The mechanism presented here for the transport of colloidal particles may also be 

applied to the separation of particles from a heterogeneous population. As the 

dielectrophoretic force attracting the particles between electrode tips is related to the 

AC dielectric properties of the particles, particles with differing dielectric properties 

will respond differently when subjected to electric fields of a given frequency. Non- 

polar particles will not respond to dielectrophoretic forces and thus a suspension of 

polarised and non-polarised particles will respond within a ratchet assembly by the 

former being drawn out of the population whilst the latter remains in place. 

The use of negative dielectrophoresis allows this concept to be extended further. The 

controlling factor of dielectrophoretic response is the real component of the Claussius- 

Mossotti factor, f cm. Figure 3.6 illustrates the values of Re[ f, ] as a function of 

frequency for viable and non-viable yeast suspended in a medium of conductivity 

40 Sm". At low frequencies, non-viable yeast is positively dielectrophoretic and 

would thus be attracted forward through the ratchet system, whilst viable yeast is 

negatively dielectrophoretic and is driven backwards through the system. At 

approximately 3kHz, the dielectrophoretic response of the viable yeast drops towards 

zero and the cells remain motionless whilst the non-viable cells continue to move 

forward. Beyond this frequency, the viable yeast becomes positively dielectrophoretic 

and travels forward with the non-viable yeast. This response is maintained up to 

1MHz at which the non-viable yeast becomes less positively diectrophoretic until 

reaching its crossover point and remaining unaffected by the ratchet. Above this 

frequency the non-viable yeast is driven backwards through negative dielectrophoresis 

whilst the viable cells continue to be driven forward. 

The dielectrophoretic response is a sensitive function of the conductivity of the 

medium conductivity. Thus by careful selection of medium, it is possible to perform 

ratchet-based continuous separation of particles using dielectrophoretic forces, based 

on a variety of separation methods as described above. This has potential applications 

similar to methods of continuous dielectrophoretic separation proposed elsewehere 
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[141, but appropriate to situations where it is impractical to provide a fluid flow 

through the particle chamber or where smaller numbers of particles need be separated. 

3.4 Geometry Manipulation Studies 

The primary problem in the building of practical separators based on forced thermal 

ratchets is the dependence on Brownian motion. The total particle velocity is inversely 

proportional to the diffusion coefficient D as described by the Einstein-Stokes equation 

[11] and therefore on the size of the particle. For biological cells (approximately 5µm 

diameter) and other similarly-sized particles the process is thus quite inefficient. 

However, for particles of diameter less than l [Im, the system is more effective and may 
be used as described here and in the literature [1-5]. In order to improve the 

performance of dielectrophoretic ratchets, the distance from dielctrophoretic collection 

point to crossover point must be minimised. To achieve this, methods of improving 

the efficiency of dielectrophoretic ratchets, including the response for larger particles, 

have been investigated. The results of that investigation are presented below. 

3.4.1 Curved Electrodes 

Electrodes with curved leading edges of various degrees in both convex and concave 

senses were studied in both two and three dimensions. The results of these simulations 

are shown in figure 3.7(a) and (b) for sample convex and concave geometries 

respectively. In the convex case, the rapid closing of the electrode neck over distance 

along the assembly causes a rapid rise in electric field. In practice this implies that 

collection is rapid, and the crossover point is close to the electrode tips of the previous 

electrode. However, at the tips the convex nature of the geometry draws the 

electrodes near each other for a short distance before the electrode tips. This results in 

an unfocussed high-field region rather than a distinct point, and thus the positive 

dielectrophoretiC collection point covers a region some 5µm long. This gives a lower 

factor A; with values of 0.3 and 0.28 for increasing convexity of the electrodes. 

In the case of concave electrodes such as those shown in figure 3.7(b), the increasing 

symmetry of the electrodes towards a series of opposing "needles" results in an 
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unfocussed low-field region and near-symmetrical field peak which results in a poor 

value of A. Calculated values decrease in a similar fashion to convex electrodes. 

3.4.2 Dimension Manipulation 

Consider the electrode geometry illustrated in figure 3.8. Based on the standard 

"Christmas Tree" electrode geometry [5], two parameters have been introduced which 

may be varied in order to test for features which may optimise the electrode transport 

efficiency. Parameter a is the distance which a previous electrode tip projects into the 

hollow area of the next electrode unit, and is measured relative to the standard 

geometry. Parameter b is the distance between the end of the previous unit and the 

base of the next unit, and is also measured relative to the standard case. Manipulation 

of these two characteristics allows for the approximate modelling of several other 

parameters, such as electrode distance. As described previously, simulation in terms of 

the angles of the leading and trailing electrode edges can accurately model geometries 

such as Rouselet's [I I] narrower electrode geometry. 

Simulations have been performed for a wide range of values of a and b using a 2- 

dimensional model. The results have been analysed using the A transport ratio 

parameter as a means of comparing transport efficiency. This method of comparison 

was chosen due to its ease of calculation, due to the increasingly complex geometry of 

the crossover boundary with increasing field non-uniformity, which makes an 

evaluation in terms of area or 2-dimensional probability distribution difficult to 

evaluate. Figure 3.9 provides a comparison of A factors for a wide range of values of 

variables a and b. As can be seen, the general trend is that factor A increases with 

increasing values of a and b. This is to be anticipated, as increasing both these factors 

increases the field non-uniformity along the centre of the electrode channel. For some 

values of a and b the increase in A is small, or a local decrease is evident. These are 

largely present for higher values of b, where successive electrode units are placed 

further apart and hence a low-field region tends to form at electrode roots. This 

causes a defocussing of the electric field minima at which the crossover of attraction is 

located and hence the location of the actual crossover is more highly influenced by 

small local field distortions caused by electrode shape. In practical situations, 
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electrodes of the dimensions required to produce higher values of A presented here 

would be difficult to realise. For the case where a=40µm and b=3011m, the stalks of 

the electrode ratchets would be triangles no more than 5{ß, m wide and over 90µm long. 

Thus, implementation of more extreme cases is difficult and does not guarantee 

improved performance due to the susceptibility to electrode conformations in these 

cases. From figure 3.9, the most stable geometry offering improved performance is the 

a=10-20µm, b=2011m case. Beyond these limits, the electrodes become too thin and A 

is no longer guaranteed to increase with increasing a and b. These characteristics 

provide a transport factor of A=0.44, and improvement of 40% over the standard 

design. 

3.4.3 Stacked Ratcheting Mechanisms 

The primary drawback with using forced thermal ratchets as a practical method of 

particle separation is the reliance on Brownian motion to provide a means of driving 

particles from the collection points. This restriction limits the use of such a separator 

to applications involving small particles with correspondingly large diffusion constants. 

Practical diffusion rates for micron-sized particles [51 are approximately 120 seconds 

for 40% of particles to pass one unit forward. This may be improved by optimising 

electrode design, but is unlikely to attain the rates required for practical continuous 

particle separation. 

Proposed here is a mechanism whereby the design principles of thermal ratchets is 

retained, but the reliance on Brownian motion to provide the driving mechanism is 

eliminated. Consider the electrode assembly shown in figure 3.10. The assembly is 

composed of two pairs of ratchet electrodes, with one pair located 50µm above the 

other and displaced along the main axis by half of one unit length, ie 25µm. Potentials 

are applied to only one pair of electrodes at any given time. 

If a mixture of particles is suspended between the electrodes and potentials are applied 

to the lower pair of electrodes, particles undergo dielectrophoresis and are attracted to, 

or repelled from, the electrode tips towards their respective collection points. After 

time ti oN collection has taken place and the cells have aggregated. At this time the 
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(a) 

(b) 

3.10 A proposal for a continuous separator based on two pairs of stacked ratchet 
electrodes, as shown in figure 3.10(a). When the bottom electrode pair is active, 
particles undergoing positive dielectrophoresis are attracted to the tips of these 

electrodes, whilst those undergoing negative dielectrophoresis collect at the 

crossover boundary. Once collection has taken place, potentials are removed 
from the lower electrodes and applied to the upper set. The particles at the 
electrode tips are all held beyond the crossover boundary for these electrodes and 
are attracted forward, whilst those at the previous crossover boundary are 
repelled backwards. After this collection has taken place the potentials are 
reversed to their original state. In this manner 100% of the suspended particles 
are continually transported through the electrodes. 
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potentials on the lower pair of electrodes are removed and the top pair of electrodes 

are activated. Those particles undergoing positive dielectrophoresis, located at the 

previous collection point 25µm from the new collection point, will be attracted 

forward to that point. Similarly, particles undergoing negative dielectrophoresis will 

be repelled to the collection point of the previous cell. The repulsion of the two 

stacked electrodes in this displaced form ensures that particles undergoing negative 

dielectrophoretic collection will not settle over the electrode surfaces. After a further 

time roN the potential reverts to the lower set of electrodes and the cycle is repeated. 

This process offers many advantages over the single-ratchet mechanism. The types of 

particles which may be used in this manner are limited according to their 

dielectrophoretic response rather than their size, and thus much larger particles may be 

used than is possible at present. Also, the cycle has duration 2ttoN rather than 

TOFF +TON in the single-pair case. Experiments [5] have shown that for particles of 

approximately 1µm diameter, TON has value 30 seconds or less compared to zoFF of 

approximately 120 seconds. Thus the stacked-ratchet method offers approximately 

twice the efficiency of the first method, a value which increases with increasing particle 

size. This is further enhanced by the percentage of particles being drawn forward per 

cycle approaching 100%, an effect arising from the fact that at the time of the removal 

of potential from one electrode pair, the particles are located at the tips of these 

electrodes, at a point which is located beyond the crossover boundary of the other 

electrode pair (see figure 3.10). 

3.5 Conclusion 

Recent theoretical study has shown that potential "ratchets", in the form of non- 

symmetrical potentials, can possibly induce macroscopic motion in particles 

undergoing Brownian motion. Recent experimental work has confirmed this through 

the use of dielectrophoretic force generated in "Christmas-tree" shaped electrodes. 

Such ratchets have many potential applications, but the complex nature of the electric 

field surrounding the electrodes has made analytical study of the phenomenon difficult. 
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Presented here is a three-dimensional study of the electric field and dielectrophoretic 

force generated by the Christmas-tree electrode geometries. In studying the 

dielectrophoretic response of the particles, it is proposed that the possibility exists for 

particle separation according to the dielectric properties of the particles, in addition to 

particle size considerations. The use of dielectrophoresis allows not only the drawing 

of one type of particle from a heterogeneous population, but also the displacement of 

two types of particles in opposite directions. Thus, a particle of a given type may be 

driven forward through the ratcheting system in the manner proposed previously, 

whilst particles of another type may be driven backwards, against the flow of the first 

type. 

The location and shape of the inter-unit crossover has been determined, the geometry 

of which fits with experimental data. Furthermore, by establishing a means of 

comparison the crossover points of several electrode geometries have been 

systematically studied and conclusions on the optimisation of ratchet electrode 

geometries have been presented. A proposed geometry also allows for the elimination 

of the Brownian motion requirement, which thus allows the use of the ratchet principle 
in the transportation and separation of larger particles, and in a more efficient manner, 

than is possible in the present geometry of Rousselet et al. 

Finally, although the concept of forced thermal ratchets is interesting, it is potentially 

not as effective for particle transport as the travelling wave dielectrophoresis effect 
discussed in chapter 5 due to the reliance on Brownian motion to provide motive 
force. However the reliance of travelling wave electrode arrays on complex wiring 

systems to provide the multiphase potentials makes ratcheting more attractive for small 

separators of as part of a larger, embedded electrode system where external connectors 

are difficult to insert. 
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Chapter 4 

Analyses of Electric Fields Used in 

Electrorotation Studies 

4.1 Introduction 

Since the first demonstration by Arnold and Zimmermann [1] and Mischel et al [2] that 

rotating electric fields can be used to induce the controlled rotation of biological cells, 

there has been a steady increase of interest in exploiting this electrorotation technique 

as a non-invasive method for studying the electrical properties of cells as a function of 

their physiology [e. g. 3-5]. The method has also been used to investigate the physico- 

chemical properties of colloidal particles [6], and to assay the presence and viability of 

micro-organisms in water [7]. Considerable progress has been made in developing the 

theory of electrorotation for realistic cell models [e. g. 8-10], in unifying it with the 

theories of the dielectrophoretic and dielectric properties of cells [11,12], and in 

developing rotating field generators [13]. These studies show that the torque exerted 

on a particle is proportional to the square of the rotating field's magnitude. However, 

apart from the recent resistor-network-based analysis of Hölzel [14], no work appears 

to have been directed towards understanding to what extent the accuracy and 

reproducibility of electrorotation spectra are limited by the uniformity of this field. 

Hölzel's [14] insights into this problem are extended here by performing computer- 

aided simulations of the spatial variations of the magnitude and phase of the rotating 

field generated by ten electrode designs that can be fabricated using standard 

photolithography. 

Rotating electric fields can be generated using an arrangement of the form shown in 

figure 4.1, where the four electrodes are addressed by four sinusoidal voltages, of 

equal magnitude, phased 900 apart. More generally n electrodes in number, phase 
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polynomial geometry. The phases at time t=0 of the cosine voltages (10V pk) 
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thick electrodes, defines the region over which the rotating field is analysed. 



shifted 360°/n apart, and of form ranging from flat plates to wire pins can be used. 

The focus of attention in this paper is the polynomial electrode design shown in figure 

4.1, which has been used in combined dielectrophoresis and electrorotation studies 

[5,15]. The field characteristics produced by this electrode geometry are compared 

with those obtained for circular electrodes, which Hölzel [14] concluded generates the 

most homogeneous field distribution. By considering the spatial variations of both the 

magnitude and phase of the rotating field, we find that features other than field 

homogeneity may need to be taken into account when designing electrodes for 

electrorotation studies. 

An electrorotation spectrum is obtained by determining, as a function of the frequency 

of the applied voltages, the rate and sense of rotation of particles arising from the 

torque induced by the rotating field. Analyses of such spectra can be used to derive 

the dielectric properties of the various compartments of cells, the surface properties of 
beads, or as an assay of agents that affect test particles [1-12]. The suspending 

medium is usually of low conductivity and signal frequencies of between 1 kHz and 

100 MHz are normally used, so that electrode polarization effects are often negligibly 

small. As shown in figure 4.1, it is often advantageous to analyse the electrorotational 

spectra of many particles at once, and so each particle will be located at different 

positions within the region defined by the edges of the electrodes. Also, depending on 

the dielectric properties of the particle and the surrounding medium, during the course 

of a measurement the test particle may change location as a result of dielectrophoretic 

forces associated with field inhomogeneity. It is demonstrated here that the accuracy 

and reproducibility of analyses of electrorotation spectra, especially if aided by 

computerized image analysis such as that developed for dielectrophoresis [16], can be 

significantly improved if the spatial variations of the magnitude and phase of the 

rotating field vector are taken into account. 
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4.2 Simulations 

4.2.1 Static Electric Field. 

The simulation model was developed using the Method of Moments [17], described in 

Chapter 2. This method has previously been used for calculations of fields generated 

by interdigitated, castellated electrodes designed for dielectrophoretic manipulation, 

the results of which have been given elsewhere [18]. In the simulations presented here, 

the total surface area of all the electrodes is divided into approximately 600 subareas. 
Therefore approximately 150 subareas were used per electrode for a four-electrode 

system such as that illustrated in figure 4.1. The results were determined across a 

regular matrix of 40 x 40 points arranged in a square, which could be placed at any 

point within or above the plane of the electrodes. This was located within the area 
defined by the electrode tips (illustrated by the thin dotted line on figure 4.1). 

As described elsewhere [15] the geometry of the polynomial electrodes in the x-y plane 
is defined according to: 

I x2-y2 I-k2 (4.1) 

where 2k defines the distance between opposing electrode tips. These electrodes are 

fabricated using standard photolithography, and in the simulations they were defined as 

being 0.2 pm thick with the spacing between electrode tips chosen to be 400 elm. The 

subareas si were chosen to be squares of sides 20 µm, and were uniformly distributed 

over the electrode surface to a distance of 200 µm back from the electrode tips. Four 

sinusoidal voltages (10V pk) were assigned to the electrodes, with 90° phase 

difference between adjacent electrodes. To simulate the sinusoidal voltages, the 

electrodes along the x-axis (at time t=0) were assigned phase values p of zero on one 

electrode and 1800 on the other, and those along the y-axis were assigned phase values 

of 90° and 270° (see figure 4.1). Thus, in concept at least, the field f acting in the 

space between the electrodes results from the superposition at a given instant in time t 

of two orthogonal linear field vectors and is given by: 
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E. cos(cwt)ä, r + E, cos(wt -2 )äy (4.2) 

where äx and äy, are unit vectors along the x- and y-axes, respectively, and co is the 

radian frequency of the applied voltages. Thus, the magnitude and phase of the 

rotating field at any instant are given by: 

IEI=E,; 0=wt (4.3) 

Our simulations show (e. g. figures 4.4 & 4.5) that the magnitudes of E and O in fact 

vary significantly with position, so that the rotating field in the x-y plane takes the 

more general form: 

E= Ex cos(wt + 4p )ä, 
r +. 9y cos(wt + opy )äy (4.4) 

Because of the inherent symmetry of the electrode design of figure 4.1, only one- 

quarter of the total field distribution required simulation and for this 400 sample points 

were arranged in an area of 400µm x 400 gm. Cells used in electrorotation studies are 

typically of the order 6µm in diameter, and so the field calculations have been 

performed for a plane taken at 3µm above the upper surface of the electrodes. 

4.2.2 Temporal Effects 

The rotating field was simulated for one complete cycle of the voltage signals applied 

to the electrodes. This was achieved by determining the static electric field distribution 

at 100 intervals for one-half of a cycle and reversing these results to determine the 

second half of the cycle. These 18 calculations were performed using FORTRAN 77 

on a Cray YMP supercomputer, and the results were then processed using MATLAB 

(The Math Works, Inc) to produce plots of the electrical potential in the plane of the 

electrodes as well as of the magnitude (Ex, Ey, EZ) and phase ((px, cpy, (p) of the 

rotating field. 
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4.2.3 Torque and Dielectrophoretic Force 

The magnitude of the steady-state electrorotation Cl (rad. s-1) is limited by the viscous 
frictional drag acting on the particle according to: 

R 
(4.5) 

where R is the friction coefficient whose value depends on the viscosity of the 

surrounding medium and on the geometry and surface frictional properties of the 

particle. For the low rotational rates normally encountered, the Reynolds numbers are 

low and the viscous drag for ellipsoidal geometries can be readily obtained [10]. For 

simplicity we shall consider spherical particles of radius r, in which case the torque is 

usually [8-12] given as: 

IF = -4lrs, � r3 Im(. fCWf )E; (4.6) 

where's, � 
is the absolute relative permittivity of the suspending medium. The symbol 

Im means that the imaginary component of the Clausius-Mossotti factor fcM is to be 

taken, and this factor is a function of the complex permittivities of the particle and 

suspending medium and can be generalised for the case of a heterogeneous particle 

exhibiting multiple dielectric dispersions [19]. Equation (4.6) has been derived for the 

case of an ideal rotating electric field which, as shown in equation (4.2), is composed 

of two equal field components phased 900 apart. For the practical case where the 

rotating field is of the general form of equation (4.4) the torque vector is given by: 

r=-47tCm r3Im(fcm)EEEysin(4': -9oy)ä xäy. (4.7) 

From equations (4.6) and (4.7) we can define a field factor E1 as a measure of the 

uniformity of the rotational torque exerted on the particle as a function of its location: 

E2ff =E, rEysin(q, r-co 
). (4.8) 
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The importance of equations (4.7) and (4.8) are that they indicate that the rotating 

torque is not in general, as hitherto commonly assumed, proportional to the square of 

the field strength. Equation (4.6) is the special case for an ideal rotating field, which as 

we shall show exists over only a limited region between the electrodes. 

Dielectrophoretic forces acting on the particle can indirectly influence the rotational 

torque by causing the particle to change its position during an electrorotational 

measurement. In some cases such forces can also result in the particle becoming 

immobilised at an electrode edge. The time-dependent dielectrophoretic force acting 

on the particle is [8-12]: 

F(t) = (m(t)"V)E(t) (4.9) 

and, in terms of the 36 simulations obtained at each 100 phase angle of a complete 

cycle of the applied electrode voltages, the time-averaged DEP force components are 

given by (taking Fr as an example): 

Fx _I ý(mx(i) o"(i) 
+my(i) °ßx(1) +MSO) °ýx(l)) (4.10) 

36 1& oy a 

where i corresponds to each of the 36 instants in time, and m(i) is the related dipole 

moment induced in the particle. The components of m(i) in equation (4.10) can be 

readily determined [5,20] so that, for example, the x-component of the dipole is given 

by 

m, ý =4; te, �r3Ex[Re(fw)cos(q5, +c))-Im(fcm)cos(qý+q ; )] (4.11) 

where ý, corresponds to each one of the 36 phases (and corresponding instants in 

time) used for calculating the field distribution over one complete cycle, and Re(fer) 

indicates that the real component of the Clausius-Mossotti factor fcu is to be taken. 
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4.3 Results and Discussion 

The potential distribution across the inter-electrode space is shown in figure 4.2 as a 

series of equipotentials spaced 1 volt apart (for 10V pk applied signals). The 

corresponding field vectors are normal to these equipotentials and of magnitude 

determined by the potential gradients. As the applied voltages progress through the 

first quarter of a cycle (in 30° steps) the field vectors shown in figure 4.3 progress in 

an anti-clockwise sense. However, only those field vectors located in the central 

region, corresponding to a circle of diameter around one-quarter of the inter-electrode 

gap, rotate in phase according to equation (4.4). The magnitudes of the rotating field 

vectors also vary according to their spatial coordinates, but of particular importance is 

the fact that the field vectors change their magnitudes as the potential cycle progresses. 

These effects are particularly noticeable in the regions near and between adjacent 

electrodes, where some of the field vectors vibrate and change polarity rather than 

rotate. Close inspection of figure 4.2 also reveals the fact that there are regions of 

field maxima near the electrodes which travel counter to the main rotating field. We 

consider that this effect is of relevance to understanding the so-called 'FUN regime 

observed [20] in travelling field studies where particles close to electrodes appear to 

behave anomalously. 

As indicated by equation (4.8), in order to determine the time-averaged torque across 

the inter-electrode space both the magnitude and phase of each field component have 

to be considered. These are summarized in figures 4.4-4.6, in which the spatial 

variations of the magnitudes and phases of each field component are plotted. To 

obtain the results for each individual location in space (represented by each elemental 

area in figs 4.4-4.6) the three principal (x-, y- and z-) components of the field were 

determined for each of the 36 simulations per applied voltage cycle. These were 

found, as expected, to be sinusoidal functions of time and from these functions the 

magnitude and phase of each field component could be calculated. 

Inspection of figures 4.4-4.6, reveals the extent of the non-uniformity of the rotating 

field. For example, the x-component of the field (see figure 4.4(a)) has its largest 

values near the (x-axis) electrode edges, and minima at the y-axis electrode edges. As 
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4.3 The electric field vectors (represented by an arrow whose hau and length, 

respectively, define the vector location and magnitude, respectively) 

corresponding to the potential profiles shown in figure 4.2. The field vector E in 

the central region rotates in an anti-clockwise sense in synchrony with the voltage 
phases of figure 4.1. 
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to be expected from the symmetry shown in figure 4.2, a corresponding behaviour 

exists for the y-component of the field. The extent to which Ey and Ex deviate from 

being equal is shown in figure 4.4(b) as a plot (log base 10) of the ratio of Ey to Ex. 

Also, as shown in figure 4.5(a), cp, of equation (4.4) deviates from its ideal value of 

zero (and correspondingly (py deviates from 90°) increasingly with distance from the 

central region between the electrodes. The spatial variation of the difference between cp 

x and cpy is shown in figure 4.5(b). Referring to figures 4.4 and 4.5, as well to figures 

4.2 and 4.3, it is clear that the ideal situation of two equal Ex and Ey field components 

of phase 90° apart holds only in a circular region approximately one quarter of the size 

of the square defined by the electrode tips. The phase difference between Ex and Ey 

approaches 00 and 1800 alternatively between adjacent electrodes, and thus the 

resultant field vectors in these regions have vibrational rather than rotational 

characteristics. Electrodes produced using photolithography are thin (in the case 

modelled here they are of thickness 0.2µm) and so it is of relevance to investigate the 

z-component of the field. As shown in figure 4.6, Ez has maxima at every electrode 

edge, and these are approximately a factor of 10 lower in magnitude than the x- and y. 

component fields appearing at these locations. Analyses of the phase distribution of 

the z-component indicate that rotational fields in the z-x and z-y planes occur at the 

electrode edges, and this is compatible with the fact that rotational motion of particles 

in these planes at the electrode edges is often observed in electrorotation experiments. 

A plot of the field factor E 
ff of equation (4.8), that takes into account all of the 

features shown in figures 4.4-4.6, is shown in figure 4.7. This plot effectively charts 

the spatial variation of the rotational torque exerted on a particle of fixed volume for a 

fixed frequency of the applied electrode voltages. At the centre of the inter-electrode 

space, the conditions for an ideal rotating field exist (i. e. Ex and Ey are equal and 

phased 900 apart) and with increasing radial distance from the centre this ideal 

situation becomes progressively degraded. Thus, if a test particle changes location 

during measurement, or if two or more particles of non-equivalent locations are to be 

examined, then corrections should be made to their measured rotation rates if 
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quantitative and reproducible analyses are to be made of their electrorotational 

behaviour. Figure 4.8 provides the correction factors that should be applied as a 

function of radial distance from the centre, either along the axes or along the diagonals 

of the square region defined in figure 4.2. Also, for measurements made within the 

central region, defined by a circle of radius equal to 0.6 of the distance between 

opposing electrode tips, the dielectrophoretic forces acting on the particle will be 

relatively small. Outside of this region, however, and depending on the dielectric 

properties of the particle and suspending medium, the dielectrophoretic force at some 

frequencies can be large enough to cause the particle to move either towards or away 

from the electrodes [15]. A quantitative analysis of this has been made, and an 

example of the distribution of positive dielectrophoretic forces is shown in figure 4.9. 

Hölzel considered electrodes of straight, circular and elliptic geometry, and he 

concluded [14] that the most homogeneous fields are generated by circular electrodes. 

We have applied the computer simulations to the case of circular electrodes, and the 

results for the inter-electrode torque profile and torque correction factors are given in 

figures 4.10 and 4.11, respectively. The differences between the polynomial and 

circular electrode geometries are interesting. The circular electrodes do provide a 

uniform field distribution over a slightly larger region than the polynomial ones, but 

beyond this region the field deviation, and hence dielectrophoretic forces, are much 

larger. A definite advantage of the polynomial electrodes is that for the same value of 

applied voltage and frequency, the torque exerted on a reference particle at the centre 

position between the electrodes is larger by a factor of 19% (4.56x 10' E. 'ff units in 

figure 4.7 compared to 4.0x 10-4 in figure 4.10). Also, Hölzel [ 14] defined a quality 

factor in terms of the ratio of the electrorotational and dielectrophoretic response. 

This was quantified as the ratio of the time-averaged square of the central rotating 

electric field and the spatial average of the absolute value of the gradient of the squared 

field strength. The spatial phase distributions of the fields were not taken into account, 

so that the form of the rotating field was assumed to be the ideal case described by 

equations (4.2) and (4.3), instead of the more general from of equation (4.4). 

Fortunately, the main objective of Hölzel's approach [14] as a method to optimize 

electrode geometries for electrorotation studies is not seriously affected, and in fact the 
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simplicity of his resistor network method has much to be recommended in this respect. 

However, as demonstrated in this present paper, to obtain torque correction factors as 

a function of the location of the test particle the spatial variations of both the 

magnitudes and phases of the field-components must be taken into account. This 

becomes increasingly important for particles which do not lie within the central inter- 

electrode region where the field is relatively homogeneous. 

4.4 Applications for Automated Rotation Assay 

Much work is presently being undertaken towards the goal of automated 

electrorotation study using image processing software to monitor particle rotation 

rates. Given the wide range of torque values across the electrode chamber as 
described above, some method of correction may be integrated into such a system. 

One possible implementation would be to incorporate the correction coefficients 

described above directly into the image processing software, automatically correcting 

according to particle location within the chamber. However, a template which varies 

continuously across the electrode chamber may be impractical for general use. Near 

the electrodes, the simulation from which the normalisation would be derived would 

need to accurately model the electrodes employed, including any imperfections along 

the electrode edge, to produce an accurate rotation correction template for that 

geometry. Practical electrodes rarely follow the exact specified outline, and thus a 

general polynomial correction curve may be inaccurate when applied to a given real 

electrode assembly for which it was not specifically modelled. Furthermore, whilst 

scientific investigations may require the study of a large number of cells, the processing 

facilities required to monitor and correct the rotation thoughout the chamber may be 

more than would be required for a simple assay system where only a few particles need 

be observed. 

In place of a gradated system, a more viable alternative is to employ a masking system. 

A section of the rotation chamber, where the torque is known not to vary from within 

an arbitary percentage from the value at the centre of the chamber, could be studied 

whilst the remainder of the electrode chamber is "masked off' and not studied. As a 
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consequence a smaller section of the chamber is studied and less computing power is 

required. Such a mask would be more readily applicable to general use with real 

electrode structures, as the variation of torque near the centre of the electrode is less 

susceptible to small changes in electrode shape resulting from the manufacturing 

process. 

Furthermore, the introduction of a mask system for a given electrode geometry allows 

a simple comparison of a variety of electrode geometries to be made in terms of the 

uniformity of torque across the central regions of the chamber. Previous studies of this 

nature [21] have considered only the instantaneous electric field, whereas the studies 

presented here also consider phase effects on torque distribution. The ideal geometry 
for electrorotation measurements would require a uniform torque across a large 

percentage of the electrode chamber, as well as consistently large torque values across 

this region to provide an easily-measured rotation rate. Using these criteria, a quality 
factor Q for the evaluation and comparison of different geometries may be defined as 

Q=arc (4.12) 

where r is the torque at the centre of the electrode chamber, and A is the percentage 

continuous area of the electrode chamber where the torque is within an arbitrary limit 

of rc. There are cases where the torque remains within the limit specified, but 

exceeds the limit in all other areas except for isolated areas near the corners of the 

electrode chamber. These areas are not included here in the calculation of area A, as 

they are unlikely to be used in austomated rotation; as they are near the electrode 

edges the values of torque are less likely to correspond with predicted values (as 

discussed above), and the irregular shape of these regions would be difficult to 

incorporate into a mask. 

Ten different electrode geometries have been simulated using models similar to those 

described previously to investigate their suitability for rotation assay, as shown in 

figure 4.12. Many of these geometries have been employed practically by other 

workers [eg 1,14,15,21,22,23], whilst others are arbitrary shapes which were tested in 

64 



(a) 

Ü 

........ .......... 

< 

7\ 

e)e) 

(g) 

(ý 

:........ ......: 

4.12 Electrode geometries studied to determine suitability for assay applications. 
(a) polynomial (b) bone (c) square (d) pointed pyramidal (e) truncated pyramidal 
(f) pin (g) elliptical: from centre - 2: 1,3: 2,1: 1,2: 3. The broken square at the 
centre of the electrodes in each case is equivalent to the central area defined in 
Figure 4.1. 
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Shape Effective Torque at 
Chamber Centre 
I', (E ff units) 

5% Torque Deviation 

A(%) Q 

10% Torque Vatiation 

A(%) Q 
Polynomial 4.56 x10-4 6 2.74 x10-3 13 5.93 X10-3 
Bone 4.49 x10'4 6 2.69 x10-3 13 5.84 x10-3 
Square 5.28x10-4 6 3.7x10-3 11 5.81x10"3 
Pointed 2.69 x10-4 6 1.61 x10-3 15 4.04 x10-3 

pyramidal 
Truncated 4.79 x10-4 6 2.87 x10-3 11 5.27 x10-3 

pyramidal 
Pin 5.30 x10-5 4 2.12 x10-4 8 4.24 x10-4 
Ellipses 

2: 1 1.97x10'4 6 1.18x10-3 9 1.77x10-3 
3: 2 2.38 x10'4 6 1.43 x10-3 9 2.14 x10-3 
1: 1 4.00x10-4 6 2.40x10-3 11 4.4X10"3 
2: 3 4.91 x10-4 6 2.95 x10-3 11 5.4 x10-3 

Table 4.1 The results of a comparison of the suitability of the electrode 
geometries shown in figure 4.12 for electrode assay applications. 



comparison with existing designs. The results of the simulation are presented in table 

4.1, where values of Q are calculated for both 5% and 10% limits of deviation of 

torque from r, The areas within which the torque remains within these limits, from 

which masks may be developed for use in automated rotation assay, and are shown in 

figure 4.13. 

As can be seen, for the 5% bound all electrode geometries save the pin geometry have 

similar values of A. For a 10% boundary, there is greater variation across the 

geometries. There is also a wide variation in values of r'c, with an order of magnitude 

separating the largest and smallest. Generally, the configurations with the higher 

electric fields and thus, the greater values of r c, also generate widely non-uniform 

fields and thus the lower values of A. Hence the geometries with the greatest values of 

Q are those with values of A and rc which are both above average, but not markedly 

so. 

These results show that the electrode geometries which produce the greatest values of 

Q are the polynomial [15] and bone [21,22] geometries, both of which are employed in 

practical experimentation. Geometries where the sides of neighbouring electrodes 

were approximately parallel, such as the polynomial and bone type, plus the pointed 

and truncated pyramid geometries which were designed for this simulation, generate 

more uniform electric fields. Electrode structures where neighbouring electrodes are 

close to one another, such as the plate [23] and ploynomial geometries, generate higher 

electric fields and thus greater values of torque. It is the combination of both these 

factors, where electrodes are approximately parallel but approach each other at a 

relatively large distance from the electrorotation chamber itself, that gives geometries 

such as the bone and polynomial types their relatively superior performance. In 

contrast to these the pin geometry [1], often employed in experimentation due to its 

ease of construction, has a particularly poor value of Q owing to its small, nonuniform 

electic field, and it is thus impractical for rotation experimentation in comparison with 

all the other geometries presented here. 
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4.5 Conclusion 

By computing the magnitude and phase of the electric field across the inter-electrode 

space and for 36 time-intervals in one A. C. cycle, it has been possible to simulate the 

time-average rotational torque and dielectrophoretic force effects produced by 

electrodes used in electrorotation studies. This provides, probably for the first time, a 

method for correcting the measured electrorotation rate of a test particle to take into 

account its position, and possible changes in position, relative to the optimum one at 

the centre of the inter-electrode space. This removes one of the dominant uncertainties 

present in electrorotation studies (the others being precise determinations of particle 

size, shape and viscous drag) and, as shown by the results of figures 4.7 and 4.10, the 

correction to be applied can be considerable if the particle lies outside or moves away 
from a region bounded by a circle of radius equal to 0.4 the distance between opposing 

electrodes. If computer-aided image analysis is used in the electrorotation 

measurements, then these results may be integrated into such a system. 

Implementation of such a system could either be by the application of torque 

correction factors, such as those presented in figures 4.8 and 4.11, or masking 

techniques where only small areas of uniform torque such as those shown in figure 

4.13 are incorporated automatically into the protocol. 
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Chapter 5 
Dielectrophoretic Forces on Particles in 

Travelling Electric Fields 

5.1 Introduction 

Masuda et al [1,2] were the first to demonstrate that travelling electric fields could be 

used to induce controlled translational motion of bioparticles (red blood cells and 
lycopodium particles). The travelling fields were generated by applying three-phase 

voltages, of frequency ranging from 0.1 Hz to 100 Hz, to a series of bar-shaped 

electrodes. At these low frequencies the dominant translational forces acting on the 

bioparticles were electrophoretic in origin, and Masuda et al [1,2] proposed that such 

travelling fields could eventually find application in the separation of particles 

according to their size or electrical charge. Travelling fields of frequency between 10 

kHz and 30 MHz were later shown by Fuhr and co-workers [3,4] to be capable of 

imparting linear motion on pollen and cellulose particles, and Huang et al [5] have 

shown that travelling fields of frequency between 1 kHz and 10 MHz can be used to 

manipulate yeast cells and to selectively separate them when they are mixed with 
bacteria. For frequencies above 1kHz the dielectric, rather than surface charge 

properties of the particles, determine their responses to imposed A. C. fields, and 

particle separation according to differences in either their dielectric properties or their 

size is in principle possible through careful choice of the electrode dimensions and 

design [5]. 

The electrode geometry employed [3-5] for producing travelling electric fields took the 

form of the design shown in figure 5.1, and from theoretical considerations a travelling 

field was assumed to be established over the electrodes and in the channel between 

them by applying sinusoidal voltages having phase sequences as shown in this figure. 

Depending on the frequency of the applied voltages and on the conductivity of the 
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the same direction as the travelling wave. 



I 

suspending medium, particles were observed [5] to move along the centre of the 

channel in the direction opposing that of the travelling potential wave (see figure 5.1). 

The theoretical analysis [5] of this effect, in terms of the interaction of the travelling 

wave with the dipole moment induced in the particle, was simplified by restricting it to 

the case of particles located in the centre of the channel. It was theoretically 

concluded and also experimentally verified that the velocity imparted on the particle 

depended on the imaginary component of the induced moment, which is 

conventionally associated with the phenomenon of electrorotation [6-8]. A negative 
dielectrophoretic force (corresponding to the real component of the induced dipole 

moment being negative [9-11]) was found, however, to be a necessary condition for 

the particles to be repelled from the electrode tips into the channel and to undergo 
linear motion. Particles located off the centre of the channel travelled with a spinning 

motion, as depicted in figure 5.1. As the frequency was increased to the region where 

the transition between negative and positive dielectrophoresis occured, the particles 

were observed to travel (in a regime termed FUI) in a "zigzag" manner near the 

electrode tips in the same direction as the travelling field. On increasing the frequency 

further the particles were trapped at the electrode tips under the influence of positive 
dielectrophoresis. 

In the work presented here the analysis of the particle-field interaction has been 

extended to cover the case of particles located anywhere over the region defined by the 

electrodes and channel, and not just to the case for those located in the centre of the 

channel. The results obtained reveal new phenomena associated with travelling electric 
field effects, and provide insights into possible practical applications for particle 

characterisation and selective separation. 
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5.2 Simulations 
5.2.1 Procedure 

The computer simulations of the travelling fields were obtained using the Method of 

Moments [12] described in Chapter 2. The model used is similar to the one described 

in Chapter 4, used to determine the fields used to manipulate particles by 

electrorotation. Thus, the surface charge density distribution on the electrodes, 

approximated by charge density values on a number of small subareas, were derived 

from the known applied electrode potentials and the charge-potential relationship 

matrix [13,14]. This enabled the potentials and electric field vectors at any location in 

the electrode system to be determined. 

The principal electrode geometry (figure 5.1) was chosen to be the same as in the 

previous work [5], in which nine pairs of electrodes (each of length 30µm, width l0µ 

in, and spaced 10µm apart) are located on either side of a channel of width 30µm. The 

electrode thickness was assumed to be 0.2 gm, typical of the electrodes fabricated 

using standard photolithography. To avoid complications of the field distribution 

arising from fringing effects at the ends of the channel and at the outer electrode 

boundaries, detailed analyses were confined to a square area 80µm x 80µm (see figure 

5.1) encompassing the five central electrodes. Each electrode surface in this region 

was divided into 110 subareas, with the elemental areas on the upper surfaces being 

square of side 2µm, whilst vertical electrode edges were divided into rectangular 

elements of sides 2µm x 0.1 gm. Sinusoidal signals of peak magnitude 10 volts and of 

phase sequences shown in figure 1 were applied to the electrodes. Sample X-Y planes, 

3µm and 10µm above the electrode surface, were chosen to cover the situations where 

yeast cells (average radius 3µm) reside on the electrodes or are slightly levitated above 

them [5]. A total of 1024 potential sampling points (in the form of a 32 x 32 matrix) 

were arranged to be 2.5µm apart. A vertical plane (Y-Z) through the electrodes was 

also analysed to a higher resolution corresponding to the potential sample points being 

spaced 1.0µm apart. The electrode and channel widths in figure 5.1 were also altered 

to ascertain their controlling influence on the overall travelling field distributions. 
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5.2.2 Dynamic Field Simulation 

The instantaneous electric field distribution generated by the electrode array was 

simulated for one complete cycle of a travelling wave. This was accomplished by 

advancing the signal phases at 100 intervals and determining the electric potential 

profiles at each instant. These 36 simulations were then arranged, using MATLAB 

(The Math Works, Inc), into a matrix whose three dimensions were the two spatial 

coordinates over the square plane studied plus that of time. Arranged in this form, the 

data could be analysed either in terms of temporal variations of the electric potential 

and field at any coordinate, or in the form of extended 2D or 3D animations that could 

be stored on video and viewed in real time. 

It was found that all three field components at any point of the electrode system follow 

sinusoidal temporal varations and the field E took the form, 

E(t) = E,, (t)äx +Ey(t)äy +E, (t)ä, 

_ EQo (x, y, z) cos{wt + c'a (x, y, z)}}Q 
(5.1) 

a=xy; z 

where d., d. and äz are unit vectors along the x-, y- and z-axes, respectively and w is 

the angular frequency of the voltages applied to the electrodes. E., and qua (a=x; y; z) 

are the magnitude and the phase of each field component, respectively, which were 

determined using an error minimisation procedure from the field temporal variations. 

5.2.3 Force Calculations 

The induced dipole moment m(t) for a particle subjected to the field with three spatial 

components is given by, 

m(t) = mx(t)dx +my(t)äy +mm(t)äz. (5.2) 

Following Huang et al [5] and taking mx (t) as an example, the components of the 

dipole moment take the form, 
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mx(t)=42r s. r3 
{cos(a1+c') Re[fer]-sin(w t+e., ) Im[f ] )Exa (5.3) 

where r is the radius of the particle and v. is the absolute permittivity of the 

suspending medium. The terms Re and Im in equation (5.3) refer to the real and 

imaginary components, respectively, of the Clausius-Mossotti factor fw defined by: 

ep- 
Em 

fcM 
Ep +2Em 

(5.4) 

in which ýp and M are the particle and suspending medium complex permittivities, 

respectively, defined by s* = e- j(a/ w) with e the permittivity, a the conductivity 

and j=i. The time-dependent dielectrophoretic force acting on the particle is given 

[5,8,. 10] by: 

F(t) _ (in-(t) " V)E(t) 
(5.5) 

= Fx(t)ätx +Fy(t)äy +F: (t)ä: 

where the force components (taking. Fx (t) as an example) are given by: 

8Ex(t) 8EE(t) OEx(t) Fx(t)=mx(t) 
ax +my(t) 

ay 
+m, (t) az . (5.6) 

In our simulation the DEP force was time-averaged for the 36 simulations obtained at 

each 100 phase angle of a complete cycle of the applied electrode voltages, given by 

(cv=x; y; Z): 

F- 1 Dm i) 
aE°`_ 

+m i) 
DEa(l) 

+m: (i) 
aEa(l) 

(5.7) 
36 1 xý ex yý 49y 8z 
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where i corresponds to each of the 36 instants in time, and m(i) is the related dipole 

moment induced in the particle, given at each instant by equations (5.2-5.3). 

5.3 Results and Discussion 

5.3.1 Electric Field Distributions 

Using a facility provided by MATLAB 4 (The Mathworks, Inc), the field distributions 

for each 10° phase angle were sequentially displayed in order through full 360° cycles 

to produce an animated motion picture. By this means the key features of the potential 

and field distributions became evident. For example, the instantaneous field minima 

are found to occur in the central region of the channel and travel synchronously with 

the voltage signals applied to the electrodes. Also, in a plane 3µm above the 

electrodes the field maxima occur near the electrode tips and over the electrode 

surfaces, and move discontinuously in the opposite direction to that of the applied 

voltage waves. These two effects are evident in a plot of the equipotentials (figure 

5.2) as the voltage signals on the electrodes are advanced at 300 intervals through a 

quarter cycle. Furthermore, as will be described in more detail, the behaviour of the 

travelling field above the electrodes is dependent on the height above the electrode 

plane. 

The field features were further examined by plotting each field component as a 

function of time at the point of interest. This revealed that everywhere the three 

orthogonal field components Ez(t), EE(t) and E, (t) vary sinusoidally with time. The 

spatial variations of the magnitude and phase for each field component in a plane 3µm 

above the electrodes are shown in figure 5.3. At the centre of the channel, within 

limits approaching not less than around 5µm from the electrode tips, the field is 

dominated by its äx-component and the other two components (äy,, ä, ) are very small 

(figure 5.3(a, c, e)). The linear variation of the phase p,, (figure 5.3(b)) in the channel 

region agrees well with the expression: 

E, (x, y, I)= A(x) cos(wt -2 ;cy/ 2)ä (5.8) 
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5.2 The equipotentials in the x-y plane, located 3µm above the electrode surfaces 
defined in Figure 5.1, that are generated as a sinusoidal voltage applied to the 

electrodes is progressed in 30° steps for a quarter of a cycle. A continuous 
animation of such plots through several cycles reveals that the field minima at the 
centre of the channel travel in synchrony with the applied travelling potential 
wave, whereas the field maxima at the electrode edges travel in the opposite 
direction (le against the arrow V of figure 5.1). 
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proposed by Huang et al [5], where the wavelength ? of the travelling field is equal to 

the repetitive distance between electrodes of the same phase (80µm for the electrodes 

and phase sequence shown in figure 5.1). This indicates that a near-ideal travelling 

field, propagating in the same direction as the applied potential wave, is established in 

the channel, and confirms the earlier conclusion [5] that the travelling wave force 

acting on a particle at the centre of the channel is given by: 

F(o)) 
4r3[f]E2 

A 
(5.9) 

Also, as a result of the electrode symmetry, the phase for the ax- field is mirrored 

along the central line of the channel (figure 5.3(b)), whilst for the other two field 

components a 180° phase jump occurs (figure 5.3(d, f)). The effective rotating field is 

related to the factor ExEE sin (qpx - Spy) [ 14]. Since co is symmetrical about the centre 

of the channel (Figure 5.3(b)) and q'., steps up by 180° (figure 5.3(d)) across the 

channel, so that sin(gpx - q'ß, ) changes sign, cells on opposite sides of the channel are 

expected to exhibit opposing senses of rotation during travelling-wave 

dielectrophoresis. This effect was observed experimentally in earlier work [5]. 

Above the electrodes the fields are dominated by the ä, - and ä, - components, at the 

gaps between neighbouring electrodes and directly over the electrode surfaces 

respectively, whilst the ax- field component is of small magnitude (figure 5.3(a, c, e)). 

Close examination of the phase distribution for these regions shows that the phases for 

neither the ä, - nor äs- component exhibit a monotonic dependence along the y- 

direction, and so equation (5.9) is not applicable. This phase distortion from an 
idealised, sinusoidal function results from the electrodes being of finite size, and 

because the full 360° of the applied sinusoidal potential is quantised into four 

components in quadrature, rather than being a continuous function. This effect, 

coupled with the magnitude variations of the field components, results in the field 

maxima travelling discontinuously above the electrode regions, and in an opposite 
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sense to that of the field at the centre of the channel. The animated sequences of the 

field-time variations also reveal these features. 

5.3.2 Dielectrophoretic Force 

Equations (5.2-5.7) used to model the dielectrophoretic force acting on a particle in an 

AC electric field show that this force is given by the real and imaginary components of 

the Clausius-Mossotti factor fcM (equation (5.4)). The results obtained in the 

computer simulations are shown in figure 4 and can be summarised as follows: 

(i) Re[ fcM ]»I Im[ fcA ]I; Re[ fcM ]>0. The force vectors in figure 5.4(a) always 

point towards strong field regions at the electrode edges, an effect which is the same as 

conventional positive dielectrophoresis [10,11] and depends on the non-uniformity of 

the electric field. Further, it is found that the magnitudes of the force vectors are 

proportional to Re [ fcM ]. Reversing the polarity of Re[ fcM ] results in the force 

vectors reversing so as to be directed towards weak field regions, away from the 

electrode edges and towards the channel and the gaps between the electrodes. The 

dielectrophoretic force is thus proportional to both the real part of the Clausius- 

Mossotti factor and to the gradient of the field strength. Because the particles can be 

immobilised at either strong or weak field regions, the dielectrophoretic force can be 

termed a trapping force. 

(u) Im[fCM ]»I Re[fc, ]I; Im[fcM ]>0" In the channel and the regions located 

more than 5 µm above the electrodes the force vectors are directed in the äy, -direction 

opposing that of the travelling field. For these cases the translational force acting on 

the particle is of the form of equation (5.9). However, in the plane 3 gm above the 

electrode surfaces, and as a consequence of the phase distortions from an idealised 

sinusoidal waveform, the force vectors act in the same direction as the applied 

travelling wave, as shown in figure 5.4(b). Changing the polarity of Im[ fcM ] results in 

a reversal of the force vectors. - Furthermore, the simulations indicate that the 

magnitudes of the force vectors are proportional to Im[ fcM 1. This Im[ fcM ] dependent 

force term depends on the non-uniform distribution of the phase values for each field 
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5.4 Dielectrophoretic forces acting on a particle of 3 pin radius in a travelling wave 
generated by the electrode geometry of figure 5.1 with applied 10 V pk 
sinusoidal signals, and for various relative values of the real (Re) and imaginary 
(Im) components of the Clausius-Mossotti factor f 'cM 

. 
(a) Re[ f,. M I=0.5 and Im[ f .MI-0 in a plane 3µm above the electrodes. 
(b) Re[ f(. M I=0 and Im[ IL. M ]=0.5 in a plane 3µm above the electrodes. 
(c) Re[ fcM I=0 and Iml f;. M ]=0.5 in a plane 10µm above the electrodes. 



component (Wang et al [15]), and because it gives rise to linear particle motion we 

term it a translational force. In the channel this force arises from the variation of rpx, 

and for the regions directly above the electrode surface it depends on the variation of 
both qo,, and qo j. 

This complex nature of the force vectors in the y-direction is a direct 

result of the non-monotonic variations of cop and cp, with varying height above the 

electrode plane. 

(iii) Re[ fcm] I=I ImUcm] l >0. For near equal values of the real and imaginary 

components of the Clausius-Mossotti factors, the trapping force (see figure 5.4(a)) is 

about four times larger than the translational force (see figure 5.4(b)). For the general 

case where neither Re[ f] nor Im[fcm] is zero, the calculations reveal that the total 

force is simply the superposition of the trapping and translational force terms. This 

indicates that the real and imaginary parts of the induced dipole moment interact with 

the applied field independently, such that the combined effects of the trapping force 

and translational force determines the overall particle electrokinetic behaviour of a 

particle in a travelling electric field. On changing the frequency of the applied 

potential, the electrokinetic behaviour depends on the relative dielectric polarisabilities 

of the particle and suspending medium, as expressed in the Clausius-Mossotti factor of 

equation (5.4). 

The dielectrophoretic force acting on yeast cells as a function of frequency of the 

travelling field has been calculated, based on the reported [5,16] dielectric properties 

of such cells, for a suspending medium conductivity of 40 mS/m. At frequencies below 

500 kHz the factor Re[fer] is negative due to the low polarisability of yeast cells 

associated with the poorly-conducting cell membrane. On reversing the force vector 
directions shown in figure 5.4(a) (which corresponds with Re[fer] being negative), 

the trapping force can be seen to direct cells away from the electrode edges into the 

central regions of the channel. At such frequencies the cell's dielectric response time is 

much larger than that of the suspending medium, so that the induced dipole moment 
lags behind the applied field by more than half of the field period and a positive value is 

attained for Im[f ] (Huang et al [16]). Thus, a small translational force will act on 
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the cells and cause linear motion in the channel in the opposite direction to that of the 

travelling wave. However, cells located less than 5 pm above the electrode arrays will 

travel in the same direction as the travelling wave (see figure 5.5). As the frequency 

increases to 1MHz, Im[fcm] increases and with it the rate of linear motion of the cell. 

Within a narrow frequency band where Im[f] is between 4-6 times greater than 

Re[fer], the trapping and translational forces are of similar magnitude. This results in 

a highly complex force distribution, which contributes to the unpredictable particle 
behaviour observed experimentally at these frequencies and is referred to as the FUN 

effect [5]. 

For frequencies above 1 MHz, Re[fer] becomes positive as the applied field begins to 

penetrate the resistive plasma membrane and into the conductive cell interior [17]. At 

these frequencies the trapping force is much stronger than the translational force, 

causing cell motion towards electrode edges irrespective of their initial positions. Cells 

will remain trapped at electrode edges even though a translational force exists. Cell 

trapping continues until the frequency of the applied field increases to around 30 MHz, 

at which point the polarisability becomes dominated by permittivity rather than 

conductivity [8,10]. Above 50 MHz the simulation predicts that yeast cells will be 

repelled again from the electrodes and undergo linear motion in the same direction as 

the travelling electric wave. This is summarised in figure 5.6, and the predictions 

concerning the travelling wave behaviour correlate well with experimentation [5 and 

unpublished work] using red blood cells, viable and non-viable yeast cells, and bacteria. 

The verified prediction that viable and non-viable cells will travel in opposite directions 

is of particular interest and of potential practical application. 

Simulation of the dielectrophoretic force in the X-Y plane 104m above the electrodes 

is shown in figure 5.4(c). An interesting result emerges, namely that the 

dielectrophoretic force above the electrodes is directed in the same sense as that in the 

channel, unlike the situation in the 3µm plane (figure 5.4(b)) where the forces in the 

channel and above the electrodes oppose each other. This effect occurs because the 

phase distortions arising from the physical presence of the electrodes is absent, and this 

has been confirmed by us (unpublished work) using yeast cells. Thus, with sinusoidal 
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voltages of sufficient amplitude in the frequency range from 10kHz to 50kHz, yeast 

cells were levitated to a height of about 15µm above the electrodes and were observed 

to travel in the same direction as cells located in the central regions of the channel. As 

the voltage applied to the electrodes was reduced, cell levitation decreased and the 

direction of cell motion above the electrodes was reversed, whereas cells within the 

channel continued to travel in the same direction throughout this procedure. The 

explanation for this effect is also evident from figure 5.5, which shows how the 
dielectrophoretic force is cyclonic in nature in the vertical plane (the Y-Z plane) above 

the electrodes. Furthermore, this cyclonic force exists beyond the last electrode and 

can thus trap particles that have travelled across the electrode array. Such a particle- 

trapping effect was experimentally observed by Müller et al [ 18], but its physical cause 

was unclear. 

5.4 
, 
Electrode Geometry and Signal Manipulation 

5.4.1 Travelling-Wave Electrode Arrays 

Electric field and dielectrophoretic force calculations were performed on electrode 

configurations varying slightly from the basic pattern in figure 5.1. The results of these 

variations are summarised below: 

(i) Alteration of electrode width and spacing. By decreasing the gap between 

neighbouring electrodes (as illustrated in figure 5.7(a)) the wavelength of the travelling 

wave is reduced. As expected from equation (5.8), the travelling force increases in 

inverse proportion to the wavelength (see figure 5.7(b)), and the same result also 

occurs for the trapping force. 

(ii) Alteration of the channel width. As opposing electrode pairs are progressively 

moved closer together, reducing the channel width (figure 5.7(c)), larger electric fields 

and hence larger travelling forces (figure 5.7(d)) and trapping forces are generated. 

Thus, through alteration of either the electrode spacing or channel width (or a 

combination of both) it should be possible to use the amplified trapping force which 

exists at the points of shortest wavelength or narrowest channel width to selectively 
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manipulate a subpopulation of particles in a mixture, either by trapping them or 
directing them into or away from a channel constriction. 

(iii) Variation of applied voltage signals. The effect of applying two different phase 

quadrature signals of frequency f, and f2 to the two electrode arrays on each side of 

the channel was investigated. The resultant forces acting over the electrodes are found 

to be consistent with those already described here for each frequency, but at the centre 

of the channel the two force structures are superimposed. Thus, translational forces 

corresponding to signals f, and f2 , are generated independently of each other. In 

another simulation, the result of applying counter-directed travelling waves, of 
frequencies f, and f2, on either side of the channel was investigated. For the case 

f, = f2, stationary waves were established in the channel so that under conditions of 

negative dielectrophoresis particles formed stationary and slowly rotating aggregations 

at the sites of the field minima. 

5.4.2 Electrorotation Electrode Arrays 

Electrorotation electrode arrays, of the type described in Chapter 4, employ a 4-phase 

sinusoidal potential to generate a rotating electric fields. In principle such an array is 

similar in action to a travelling-wave electrode array, and the presence of a 

translational force acting near the electrodes has been predicted by Hagedorn et al [19] 

and has been experimentally reported by Wang et al [20]. 

Calculations have been performed to investigate the presence of a translational force 

component in polynomial electrorotation electrode arrays, using the simulation model 
described in chapter 4. The translational and trapping forces were found to be present 
in forms directly analogous to the linear case described previously, as shown in figure 

5.8. The translational force is small in comparison with the forces generated by linear 

travelling-wave electrode arrays, being some two orders of magnitude smaller at the 

electrode tips. As the electrode dimensions in this geometry are widely-spaced in 

comparison to those of the conventional travelling-wave array, the translational force is 

only of significant strength near the electrode edges. However, at greater heights 
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5.8 Dielectrophoretic forces acting on a particle of radius 3µm within a rotating 
electric field generated by polynomial electrodes of the type discussed in chapter 
4, with applied 10 V pk sinusoidal signals, and for various relative values of the 
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above the electrode this effect becomes evident across the rotation chamber (see figure 

5.8(c)), where a reversal of direction due to phase distortion is evident. 

5.5 Conclusions 

An important result from these computer simulations of the fields and dielectrophoretic 

forces generated by electrode arrays used to produce travelling fields is that the real 

and imaginary components of the dipole moment induced in a particle are 
independently acted upon. The force resulting from the interaction of the real 

component with the imposed field gradients induces a trapping effect, whilst the 

interaction with the imaginary component provides the force required to induce the 

lateral motion of a particle. As summarised in figure 5.6, the combination of these two 

forces results in particle travelling wave motion over relatively narrow frequency 

"windows", and is a sensitive function of the relative dielectric properties of the 

particle and surrounding medium as embodied in the Clausius-Mossotti factor fcM of 

equations 5.3 and 5.4. The fact that the direction of induced lateral motion depends on 

the polarity of Im[ fCM] leads to potentially important practical applications in which 

different particles (e. g. viable and non-viable cells) not only exhibit trapping and 

travelling wave motion effects at different frequencies, but can also be induced to 

travel in opposite directions (e. g. at frequencies f, and f2 in figure 5.6). 

Another important finding is that the phase structure of the travelling field is distorted 

in such a way as to effectively reverse the direction of travelling wave motion in 

locations close to the electrodes. Where the electrodes approach a width that is much 

less than the effective wavelength of the travelling wave, and for a large number of 

electrodes per wavelength, this effect is reduced. For the case where a particle is 

located well away from the electrodes, phase distortion does not occur. 

The Travelling wave effect may be compared with dielectrophoretic ratchets as 

described in Chapter 3. The method presented here offers greater scope for particle 

manipulation, separation and continuous transport than the ratchet method, and thus 

presents a more viable method for practical separation applications. 
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Chapter 6 

Conclusions, 

This work represents the first major study of all the principal forms of AC 

electrokinetics, including dielectrophoresis, electrorotation and travelling-wave 

dielectrophoresis, through the medium of computer simulation. Numerical study of the 

electric field, both in static and dynamic senses, for a wide range of microelectrode 

structures has presented the opportunity to examine the forces generated by AC 

electric fields directly. This has led to the affirmation of current dielectrophoretic 

theory by both accurately modelling the action of particles in previous experiments and 
by predicting new forms of behaviour within existing electrode structures. 

Computer models have been devised using two numerical approximation methods, the 

Finite Element Method and the Method of Moments. Both models have been 

implemented for a range of problems and their characteristics, advantages and 

weaknesses have been evaluated. The Finite Element Method offers rapid simulation 

in either 2D or 3D problems, offers great accuracy at electrode edges and can be run 

on a small workstation, but provides results in a disordered fashion which may cause 
incompatibility when comparing two results directly or when several simulations of the 

same points in space are required. This method is thus more ideally suited to general 
AC studies where phase is not a factor in determining forces, such as the study of 

dielectrophoresis. The Method of Moments does offer that regularity of result 

positioning for repeated simulations and is more applicable to analyses of conditions 

where the model is stepped through several conditions, as is required in studies of 

electrorotation and travelling-wave effects. However, it is computationally inefficient 

and requires large computer facilities such as mainframes or supercomputers. 
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Dielectrophoresis is the motion of a particle due to its interaction with local non- 

uniform electric field gradients. The non-uniform nature of the field generates 

Coulombic forces of differing magnitudes at either pole of the particle dipole, resulting 

in a non-zero net force and resultant particle motion. The motion of the particle is 

dictated by the gradient of the field and the polarisability of the particle, a function 

related to the dielectric properties of both the body and the medium surrounding it. If 

the particle is more polarisable than the medium, net motion acts in the direction of 

highest electric field regions; if the medium is more polarisable, net motion acts 

towards low-field regions. Since these properties are dependent on frequency of the 

applied electric field, careful choice of medium and frequency enables the separation of 

a heterogeneous population of particles according to whether they experience positive 

or negative dielectrophoretic force. 

Recent work has shown that the possibility exists for continuous transport of particles 

using asymmetrical "Christmas tree" -shaped electrodes. This principle has been 

established experimentally, but is inefficient and slow. Work presented here examines 

the principle of transport by "ratcheting" particles through a series of electrodes, and 

suggests principles for optimisation which should enhance the operation of these 

electrode structures. Furthermore, two advances to the design are proposed. Firstly, 

the introduction of an additional layer of electrodes would enable continuous particle 

motion based entirely on dielectrophoretic forces rather than employing particle 

diffusion as a means of particle transport,. Secondly, a study has been made of the use 

of such electrodes for continuous particle separation, based either on positive 

dielectrophoretic forces to draw particles of one type from a medium, or both positive 

and negative forces to actively separate particles by driving the two types in opposite 

directions. 

Electrorotation is the phenomenon of induced torque in dielectric particles suspended 

in rotating electric fields. It arises due to the interaction of the dipole moment of the 

particle and the electric field, when the dielectric properties of the particle cause a 

phase difference between the rotation of the dipole and that of the applied field. This 

manifests as an induced torque as the dipole attempts to align with the rotating electric 
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field. Computations have been undertaken to provide a detailed analysis of the 

magnitudes and phases of the X, Y and Z components of the electric field across the 

inter-electrode space. These studies have shown that the phases of the X and Y 

components are not orthogonal, as has been assumed in the past, but deviate from this 

condition in areas away from the centre of the electrode chamber. Hence it is not only 

the electric field strength but the phase of the field components which determines 

electrorotational torque. The variation between the rotation of particles at the centre of 

the chamber and particles suspended nearer to the electrode tips can be considerable, 

varying by up to a factor of 2. , Calculations show that torque remains within +/- 0.1 of 

the value at the centre of the chamber within a boundary covering only 13% of the area 

of a square defined by the electrode tips. Using a quality factor defined as a product of 

the area of the chamber which lies within this limit, and the relative torque produced at 

the centre of the chamber, ten different electrode geometries have been studied and 

evaluated according to their suitability for electrorotation studies. 

By calculating the torque across the electrode chamber, it has been possible to create 

an accurate method for correcting the measured electrorotation rate of a given particle 

anywhere within the chamber. Two methods of correction have been supplied, both 

of which may be incorporated into image-processing software for the automatic 

calculation of rotation. In the first method, the simulation provides a normalisation 

factor against which the rotation of a particle may be corrected, according to its 

position within the chamber, in relation to the rotation or particles at the centre of the 

chamber. For the second method, a series of masks are provided which define the 

areas of the chamber where the variation of torque falls within well-defined limits. 

Both methods have advantages according to the circumstances and the needs of the 

experimentalist. 

Travelling-wave dielectrophoresis is similar in principle to electrorotation; AC electric 

fields are swept laterally, through a particle by means of a linearly-arranged electrode 

assembly. The properties of the particle cause a displacement between the electric field 

wave and the dipole moment, which results in a force moving the particle in the 
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direction of the applied wave. Phase differences greater than 180° will cause the 

particle to move in a direction contrary to the applied field. 

Computer simulations of the electric fields and dielectrophoretic forces generated by 

electrode arrays have been studied. An important feature presented here is that the 

real and imaginary components of the dipole moment induced in a particle are 
independently acted upon. The real component of the dipole moment interacts with 
the imposed electric field gradient, is in phase with the applied field and induces 

dielectrophoresis. However, the imaginary component of the dipole moment is out of 

phase with the applied electric field wave, inducing the lateral motion of a particle as 
described above. Actual particle motion under arbitrary conditions of frequency, 

particle and medium properties is the superimposition of these two forces, where the 

magnitudes of the forces are dependent on the values of the real and imaginary 

components as described by the Clausius-Mossotti factor. This suggests possible 

means of using the different properties of particles in the separation of heterogeneous 

populations by selecting conditions (such as the suspending medium conductivity and 

the applied frequency) whereby the one particle type may be trapped whilst the other 

undergoes lateral motion, or even the induction of motion in opposite directions. 

Close study of the predicted behaviour of particles indicates that particles reverse 

direction of travel when within approximately 5µm of the electrode surfaces, an 

observation later confirmed in experimental work. This phenomenon was found to be 

due to distortions in the phase of the electric field in the Y and Z directions. The effect 

may be minimised by using a greater number of electrodes per wavelength, thereby 

reducing the physical dimensions of the electrodes and inter-electrode gaps. 

Travelling wave 'dielectrophoresis has also been studied in a range of alternative 

geometries, including studies of the manipulation of linear electrodes and alteration of 

the phase relationship between ' travelling potential waves on opposing sides of the 

channel. These studies have provided insights into potential applications in particle 

manipulation and separation. The travelling wave mechanism may be compared with 

the dielectrophoretic ratcheting system, which indicates that travelling wave 
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mechanisms are more flexible and effective in principle. However, the constructional 

simplicity of the latter method, requiring two electrodes rather than many, suggests 

that it may be more applicable as an embedded part of a larger electrode system. The 

first studies were also performed on the induction of travelling-wave effects in 

electrorotation electrodes. 

This work has concentrated largely on the effects of electric fields on "unit" particles, 

in that the forces discussed here consider particles as though they do not interfere with 

the electric field surrounding them. Further work in this vein should incorporate 

modelling of particles such as cells between electrode structures, thereby considering 

any effects such particles may have on the electric field and each other, via dipole- 

dipole interactions. This could be extended to provide a highly detailed study, through 

simulation, of the electric fields through a cell considering factors such as the effects 

of organelles and examining the electric distribution through the cell in detail. 
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Appendix I 

Finite Element Method 
Field Calculation Program 

The two programs presented in Appendix I are collectively used to perform the 

travelling-wave dielectrophoresis problem described in Chapter 2 section 2.5 via the 

Finite Element method. The suite comprises a data generator which is specific to the 

problem described here, and a generic Finite Element solver which may be used for any 

problem proveded the inpou is of a similar format. 

The first program generates the numbers and co-ordinates of the nodes, and specifies 

the locations of known potentials and material properties. Known potentials are 

determined after the user has entered the starting phase angle. This data is saved 'in a 

data file (input. dat) which is loaded by the second program. 

This is a generic Finite Element solver which follows the procedures described in 

section 2.2, to which references are made throughout the program. The program 

produces as output a list of the potentials at all node locations in sequence, which are 

stored in file output. dat. 
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c FEMgen FINITE ELEMENT ANALYSIS PROGRAM FOR 3D 

c ELECTRODE STUDY - DATA GENERATION MODULE 
c 
c Written by: Michael Hughes 
c 
c 
c 

OPEN (10, file='input. dat', status='new') 
c 
c Part 1: Generate the co-ordinates of all nodes; the order of nodes in the list 
c dictates the node number. Note that the nodes are not all equally spaced. 
C 

nodes=5406 
nelements=4160 
write(10, *) nelements, nodes, 1088 
do 200 k=1,6 
if (keq. 1) wm=0 
if (k. eq. 2) wm=. 1 
if (k. eq. 3) wm=2.6 
if (k. eq. 4) wm=5.1 
if (k. eq. 5) wm=10 
if (k. eq. 6) wm=100 

c 
do 13 i=1,17 
write(10, *) (i*2.5e-6), (2.5e-6), wm*le-6 

13 continue 
do 15 i=1,17 
write(10, *) (i*2.5e-6), (3.75e-6), wm* le-6 

15 continue 
do 17 i=1,17 
write(10, *) (i*2.5e-6), (5e-6), wm*1e-6 

17 continue 
do 19 i=1,17 
write(10, *) (i*2.5e-6), (6.25e-6), wm*le-6 

19 continue 
do 21 i=1,17 
write(10, *) (i*2.5e-6), (7.5e-6), wm*le-6 

21 continue 
do 1 j=1,43 
do 1 i=1,17 
write(10, *) (i*2.5e-6), ((j+3)*2.5e-6), wm*le-6 

1 continue 
do 14 i=1,17 
write(10, *) (i*2.5e-6), (117.5e-6), wm* le-6 

14 continue 
do 16 i=1,17 
write(10, *) (i*2.5e-6), (118.75e-6), wm* l e-6 
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16 continue 
do 18 i=1,17 
write(10, *) (i*2.5e-6), (120e-6), wm*le-6 

18 continue 
do 20 i=1,17 
write(10, *) (i*2.5e-6), (121.25e-6), wm* le-6 

20 continue 
do 22 i=1,17 
write(10, *) (i*2.5e-6), (122.5e-6), wm*le-6 

22 continue 
200 continue 
C 

c Part 2: Generate a table containing the number of nodes in a given element (in 
this case 8) followed by the number of nodes relating to that element. 

c 
j=l 
k=1 
m=1 
do 25 i=l, nelements 
write(10, *) 8 
write(10, *) j 
write(10, *) j+1 
write(10, *) j+18 

write(10, *) j+17 

write(10, *) j+901 

write(10, *) j+902 
write(10, *) j+919 

write(10, *) j+918 

write(10, *) 
j j+l 
k=k+1 
m---m+1 
if (k. ne. 17) goto 2 
k=1 
j j+l 

2 continue 
if (m. ne. 833) goto 25 
m=1 
j =j+17 

25 continue 
C 
c Part 3: Define materials parameters (permettivity and current density) for all 

elements 
C 

do 3 i=l, nelements 
write(10, *) 8.84e-12,0 

3 continue 
C 
c 
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c Part 4: Determine boundary potentials for a given phase of the travelling wave 
c potentials, and assign these potentials to the nodes coinciding with the 
c electrode boundaries. 
C 

print *, 'Please enter primary wave angle (whole degrees) :' 
read *, iangle 
angle=float(iangle)*0.0175 
do 4 k=1,2 
do 4 i=1,7 
do 4 n=1,5 
j=(i-1)*136+ (n-1)*17 + (k-1)*901 
w=1.57*(i-1) 
v=10*cos(angle+w) 
write(10, *) 1+j, v 
write(10, *) 2+j, v 
write(10, *) 3+j, v 
write(10, *) 4+j, v 
write(10, *) 5+j, v 
write(10, *) 6+j, v 
write(10, *) 7+j, v 
write(10, *) 8+j, v 
write(10, *) 9+j, v 
write(10, *) 10+j, v 
write(10, *) 11+j, v 

4 continue 
c 

end 
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c FEM3D: FINITE ELEMENT ANALYSIS PROGRAM FOR 3D 
c ELECTRODE STUDY - CALCULATION MODULE 
C 

C 

C 

c PROGRAM STRUCTURE: 
c 
c Section One: Read in data files and generate variables 
c Section Two: Generate system matrices 
c Section Three: Impose boundary conditions 
c Section Four: Solve the equation and save results 
c Section Five: Subroutines 
c 
C. 
c Variable declarations: 

c 
REAL NC, EC, BC, NodePotential 
REAL EP, Potential, SV, SM, w 
REAL jacob, ijacob, kk, fact, dpsi, nu, xi, eta 

C. 
INTEGER NumNodes, NumElements, EN, NPE 
INTEGER Node, E 

c 
DIMENSION xi(8), eta(8), nu(8), w(8), apsi(8), dpsidz(8) 
DIMENSION ijacob(3,3) 
DIMENSION dpsi(3,8), dpsidx(8), dpsidy(8), jacob(3,3) 
DIMENSION NPE(5500), NC(5500,3) 
DIMENSION EN(5500,8), BC(5500,2) 
DIMENSION EP(5500,2), EC(5500,8,3) 
DIMENSION SM(5500,5500) 
DIMENSION SV(5500,2), SV2(5500) 
DIMENSION workspace(5500), NodePotential(5500) 

c 
OPEN (20, file='input. dat', status='old) 
OPEN (10, file='output. dat', status='new') 

C 
c Variables list: 

c NC - nodal co-ordinates EC - element coordinates 
c BC - boundary conditions table EP - element properties 
c EN - table of nodes in each element 
c NPE - list of the number of nodes in each element 
c NodePotential - output potential at all nodes SM- system matrix 
c Potential - boundary condition potentials SV-system vector 
c NumNodes - total number of nodes w- weightings 
c NumElements - total number of elements 
c jacob - the Jacobian matrix ijacob - inverse Jacobian matrix 
c nu, eta, xi - dimensions of the master element 
c dpsi, dpsidx, dpsidy, dpsidz - differentials for mapping to the master element 
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c SECTION 1 :: READ IN DATA FILES AND GENERATE VARIABLES 
c 

print *, 'Reading data file... ' 
read(20, *) NumElements, NumNodes, NumBC 
print *, NumNodes, NumElements, NumB C 
do 1 1=1, NumNodes 
read(20, *) NC(1,1), NC(1,2), NC(1,3) 
continue 
do 2 i=1, NumElements 
read(20, *) NPE(i) 
do 2 j=1, NPE(i) 
read(20, *) EN(i, j) 

2 continue 
do 3 i=1, NumElements 
read(20, *) EP(i, 1), EP(i, 2) 

3 continue 
do 20 i=1, NumB C 
read(20, *) BC(i, 1), BC(i, 2) 
print *, BC(i, 1), BC(i, 2) 

20 continue 
print *, 'Done. ' 
do 4 i=1, NumElements 
do 4 j=1, NPE(i) 
do 4 k=1,3 
EC(i, j, k)=NC((EN(i, j)), k) 

4 continue 
c 
c 
c SECTION 2:: GENERATE SYSTEM MATRICES 
c 

print *, 'Generating system matrices... ' 
do 5 E=1, NumElements 

c 
c Gauss Quadrature points (see Thesis, section 2.2.3): 
c 

x=-0.57735 
xi(1)=x 
xi(2)=-x 
xi(3)=x 
xi(4)=-x 
xi(5)=x 
xi(6)=-x 
xi(7)=x 
xi(8)=-x 
eta(1)=x 
eta(2)=x 
eta(3)=-x 
eta(4)=-x 
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eta(5)=x 
eta(6)=x 
eta(7)=-x 
eta(8)=-x 
nu(1)=x 
nu(2)=x 
nu(3)=x 
nu(4)=x 
nu(5)=-x 
nu(6)=-x 
nu(7)=-x 
nu(8)=-x 

C 
c weightings: 
c 

w(1)=1 
w(2)=1 
w(3)=1 
w(4)=1 
w(5)=1 
w(6)=1 
w(7)=1 
w(8)=1 

C 

C 

c The following section determines the potential across a single element, 
c following a method based on that described in section 2.2.3, expended to 3D 
c elements 
c 

do 5 i=1,8 
call shape(apsi, dpsi, xi(i), eta(i), nu(i)) 
call jacobian(jacob, E, EC, dpsi) 
call ijacobian(ijacob, jacob) 
call calcdpsidxyz(dpsidx, dpsidy, dpsidz, dpsi, ijacob) 
fact=determinant(j acob) 
do 5 j=1,8 
SV(EN(E, j), 1)=SV(EN(E, j), 1)+EP(E, 2)*apsi(j)*fact 
do 5 k=1,8 
RK=EP(E, 1)* (dpsidx(j)*dpsidx(k)+dpsidy(j)*dpsidy(k)+ 
1 dpsidz(j)*dpsidz(k))*fact 
SM(EN(E, j), EN(E, k))=SM(EN(E, j), EN(E, k))+RK 

5 continue 
print *, 'Done. ' 

c 
c 
c SECTION 3:: IMPOSE BOUNDARY CONDITIONS 
c (see thesis section 2.2.5) 
C 

print *, 'Calculating boundary conditions... ' 
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do 6 i=1, NumBC 
Node=BC(i, 1) 
Potential=BC(i, 2) 
do 7 j=1, NumNodes 
if (SV(j, 2). eq. 0) SV(j, 1)=SV(j, 1)-(SM(j, Node)*Potential) 

7 continue 
SV (Node, 1)=Potential 

c print *, Potential 
SV(Node, 2)=1 

6 continue 
c 
c 

do 8 i=1, NumBC 
Node=BC(i, 1) 
do 9 j=1, NumNodes 
SM(j, Node)=0 
SM(Node, j)=0 

9 continue 
SM(Node, Node)=1 

8 continue 
print *, 'Done. ' 

C 

C 

c SECTION 4:: SOLVE THE EQUATION AND SAVE RESULTS 

c Solve the system equation using NAG routine F04ARE 

c 
do 15 i=1, NumNodes 
SV2(i)=SV(i, 1) 

c print *, SV2(i) 
15 continue 

print *, 'Solving the equation... ' 
call F04ARE(SM, 5500, SV2, NumNodes, NodePotential, workspace, ifail) 
do 10 i=1, NumNodes 

c write(10, *) i, NC(i, 1), NC(i, 2), NodePotential(i) 
write(10, *) NodePotential(i) 

10 continue 
do 18 i=1,4 
do 18 j=1,4 

18 continue 
print *, 'Done. End program' 
end 

C 

C 

c SECTION 5 :: SUBROUTINES 

C 
c Generate the shape function in terms of the Gaussian quadrature points. 
C 

subroutine shape(apsi, dpsi, z, q, r) 
DIMENSION apsi(4), dpsi(3,8) 
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REAL apsi, dpsi, q, r, z 
apsi(1)=0.125*((1-z)*(1-q)*(1-r)) 
apsi(2)=0.125*((l+z)*(1-q)*(1-r)) 
apsi(3)=0.125 * ((l+z)* (l+q)* (1-r)) 
apsi(4)=0.125*((1-z)*(l+q)*(1-r)) 
apsi(5)=0.125*((1-z)*(1-q)*(l+r)) 
apsi(6)=0.125*((l+z)*(1-q)*(l+r)) 
apsi(7)=0.125*((l+z)*(l+q)*(l+r)) 
apsi(8)=0.125*((1-z)*(l+q)*(l+r)) 
dpsi(1,1)=0.125*((1-q)*(1-r))*(-1) 
dpsi(1,2)=0.125*((1-q)*(1-r)) 
dpsi(1,3)=0.125 *((l+q)* (1-r)) 
dpsi(1,4)=0.125*((l+q)*(1-r))*(-1) 
dpsi(1,5)=0.125*((1-q)*(l+r))*(-1) 
dpsi(1,6)=0.125*((1-q)*(l+r)) 
dpsi(1,7)=0.125*((l+q)*(l+r)) 
dpsi(1,8)=0.125*((l+q)*(l+r))*(-1) 
dpsi(2,1)=0.125*((1-z)*(1-r))*(-1) 
dpsi(2,2)=0.125*((l+z)*(1-r))*(-1) 
dpsi(2,3)=0.125 * ((l+z)* (1-r)) 
dpsi(2,4)=0.125*((1-z)*(l-r)) 
dpsi(2,5)=0.125*((1-z)*(l+r))*(-1) 
dpsi(2,6)=0.125*((1+z)*(l+r))*(-1) 
dpsi(2,7)=0.125*((l+z)*(l+r)) 
dpsi(2,8)=0.125*((l-z)*(l+r)) 
dpsi(3,1)=0.125*((1-z)*(1-q))*(-1) 
dpsi(3,2)=0.125*((l+z)*(1-q))*(-1) 
dpsi(3,3)=0.125*((l+z)*(l+q))*(-1) 
dpsi(3,4)=0.125*((1-z)*(l+q))*(-1) 
dpsi(3,5)=0.125*((1-z)*(1-q)) 
dpsi(3,6)=0.125 * ((l+z)* (1-q)) 
dpsi(3,7)=0.125*((l+z)*(l+q)) 
dpsi(3,8)=0.125*((1-z)*(l+q)) 
return 
end 

c 
c 
c Determine the Jacobian of the co-ordinate transform (equation 2.27) 
c 

subroutine jacobian(jacob, E, EC, dpsi) 
DIMENSION jacob(3,3), EC(5500,8,3), dpsi(3,8) 
REAL jacob, EC 
INTEGER E 
do 50 i=1,3 
do 50 j=1,3 
jacob(i, j)=0 
do 50 k=1,8 
jacob(i, j) jacob(i, j)+(dpsi(j, k) * EC(E, k, i)) 

50 continue 
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return 
end 

C 

C 

c Perform Thesis equation 2.28 

c 
subroutine calcdpsidxyz(dpsidx, dpsidy, dpsidz, dpsi, ijacob) 
DIMENSION dpsidz(8), dpsi(3,8), ijacob(3,3) 
DIMENSION dpsidx(8), dpsidy(8) 
REAL ijacob 
do 51 i=1,8 
dpsidx(i)=dpsi(l, i)*ij acob(1,1)- 
1 dpsi(2, i)*ijacob(2,1)+dpsi(3, i)*ijacob(3,1) 
dpsidy(i)=(-1)*dpsi(l, i)*ijacob(1,2)+ 
1 dpsi(2, i)*ijacob(2,2)-dpsi(3, i)*ijacob(3,2) 
dpsidz(i)=dpsi(1, i)*ijacob(1,3)- 
1 dpsi(2, i)*ijacob(2,3)+dpsi(3, i)*ijacob(3,3) 

51 continue 
return 
end 

C 

C 

c Calculate the inverse of the Jacobian matrix 
C 

subroutine ijacobian(ijacob, matrix) 
DIMENSION ijacob(3,3), matrix(3,3) 
REAL ijacob, determinant, detl, matrix 
det 1=determinant(matrix) 
ijacob(1,1)=matrix(2,2)*matrix(3,3) - 
1 matrix(3,2)*matrix(2,3) 
ijacob(2,1)=(matrix(2,1)*matrix(3,3) - 
1 matrix(2,3)*matrix(3,1))*(-1) 
ijacob(3,1)=matrix(2,1)*matrix(3,2) - 
1 matrix(2,2)*matrix(3,1) 
ijacob(1,2)=(matrix(1,2)*matrix(3,3) - 
1 matrix(1,3)*matrix(3,2))*(-1) 
ijacob(2,2)=matrix(1,1)*matrix(3,3) - 
1 matrix(1,3)*matrix(3,1) 
ijacob(3,2)=(matrix(1,1)*matrix(3,2) - 
1 matrix(1,2)*matrix(3,1))*(-1) 
ijacob(1,3)=matrix(1,2)*matrix(2,3) - 
1 matrix(2,2)*matrix(1,3) 
ijacob(2,3)=(matrix(1,1)*matrix(2,3) - 
1 matrix(1,3)*matrix(2,1))*(-1) 
ijacob(3,3)=matrix(1,1)*matrix(2,2) - 
1 matrix(1,2)*matrix(2,1) 
do 51 i=1,3 
do 51 j=1,3 
ijacob(ij)=ijacob(i, j)/det 1 
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51 continue 
return 
end 

C 

C 

c Calculate the determinant of a matrix 
C 

function determinant(matrix) 
DIMENSION matrix(3,3) 
REAL matrix, detl, det2, det3, determinant 
det 1=(matrix(1,1)) * (matrix(2,2)*matrix(3,3)- 
1 matrix(3,2)*matrix(2,3)) 
det2=(matrix(1,2))*(matrix(2,1)*matrix(3,3)- 
1 matrix(2,3)*matrix(3,1)) 
det3=(matrix(1,3))*(matrix(2,1)*matrix(3,2)- 
1 matrix(2,2)*matrix(3,1)) 
determinant=detl - det2 + det3 

return 
end 
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Appendix II 

Method of Moments 
Field Calculation Program 

As in the previous section, the programs presented here are those used to perform the 

Method of Moments simulation in section 2.5. Furthermore, the solver program (the 

second listed here) was also used to perform the simulation work for chapers 4 and 5. 

As with the Finite Element program, this model comprises two parts. An input datafile 

(s. dat) is generated by the "front-end" program EDGE, which contains the locations 

and dimensions of the electrode subareas, and all simulation output format instuctions. 

This datafile is read by a generic Moments simulation package (FieldGen) which 
follows the procedures described in section 2.3, to which references are made 

throughout the program. Program output is in the form of three electric field files 

Ex. dat, Ey. dat and Ez. dat, a charge density list cd. dat and a potential file vo. dat. 

These files contain a list of values which should be organised into a rectangular mesh 

of the preset dimensions. 
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c EDGE:: A PROGRAM FOR GENERATING ELECTRODE SOURCE 

c DATA FILES FOR TRAVELLING WAVE ANALYSIS. 

c FOR USE WITH THE FieldGen D. E. P. FIELD SIMULATOR. 
C 
c written by MICHAEL PYCRAFT HUGHES, IMBE, BANGOR 
C 
C 
C 
C 
c PART 1 :: Variable declarations 
c 

DIMENSION ev(3000), xo(3000), yo(3000), zo(3000) 
DIMENSION lz(3000), Ix(3000), ly(3000) 
DIMENSION xqp(3000), ygp(3000), zqp(3000), xe(3000) 
DIMENSION v(3000), ye(3000), ze(3000) 
REAL rot, ev, beta, alphal 
CHARACTERplane, test2, mode, rplane 
INTEGER nt, nxO, nyO, nzO, test, d 1, d2, d3, xsm, ysm, zsm, nplanes, n 1 
INTEGER xo, yo, zo, xoffset, yoffset, zoffset, lx, ly, lz, n2, xO, yO 
INTEGER dx, dy, dz, repetitions, ratio, alpha 
OPEN (10, file='s. dat', status='new') 

C 

C 

C- 

C 

c PART 2 :: Simulation Data 
c 
c Read in angle of primary wave 

print 
print 
print *, 'EDGE: the Travelling Wave Electrode Simulation Generator' 
print *, " 
print *, 'Please enter primary wave angle (whole degrees) :' 
read *, alpha 
alpha 1=float(alpha)*0.0175 

c 
c Set the number of travelling-wave electrode pairs to be simulated 

repetitions=8 
print *, 'Electrode pairs simulated : ', repetitions+l 

C 
c Size of the volume to be analysed in x, y, z directions 

dl=40 
d2=40 
d3=0 

C 

c Define the offset of the simulation output volume, relative to the origin 
xoffset=95 
yoffset=-5 
zoffset=0 
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C 

c No. of samples in each direction 
nxO=40 
nyO=40 
nzO=1 

C 
c Electric field gradient resolution; set the distance of extra sample points 
c from the central output point 

xsm=1.0 
ysm=1.0 
zsm=1.0 

C 

c Point charge distribution; set the size of all subareas 
dx=2 
dy=4 
dz=1 

C 

C 

C 

c PART 3 :: Electrode Geometry 
c 
c Divide the electrodes into subareas, based on the division of the electrode 
c surfaces into rectangular planes which are further divided into subaareas. 
c Parameters xo, yo, zo are the plane corner coordinates; lx, ly and lz are 
c dimensions 

k=0 
xo(1)=30 
yo(1)=-20 
zo(1)=0 
1y(1)=40 
lz(1)=1 
ev(1)=10*cos(alpha 1) 
m=1 
call divrec(xgp, yqp, zqp, xe, ye, ze, v, 1, 
1 xo(m), yo(m), zo(m), l, ly(m), lz(m), l, dy, dz, k, ev(m)) 
xo(2)=30 
yo(2)=-20 
zo(2)=0 
lx(2)=10 
lz(2)=1 
ev(2)=10*cos(alpha 1) 
m=2 
call divrec(xgp, yqp, zqp, xe, ye, ze, v, 2, 
1 xo(m), yo(m), zo(m), lx(m), 1, lz(m), dx, l, dz, k, ev(m)) 
xo(3)=30 
yo(3)=20 
zo(3)=O 
1x(3)=10 
lz(3)=1 
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ev(3)=10*cos(alpha 1) 
m=3 
call divrec(xgp, yqp, zqp, xe, ye, ze, v, 2, 
1 xo(m), yo(m), zo(m), lx(m), 1, lz(m), dx, l, dz, k, ev(m)) 
xo(4)=40 
yo(4)=-20 
zo(4)=O 
1y(4)=40 
lz(4)=1 
ev(4)=10*cos(alphal) 
m=4 
call divrec(xgp, yqp, zqp, xe, ye, ze, v, 1, 
1 xo(m), yo(m), zo(m), l, ly(m), lz(m), l, dy, dz, k, ev(m)) 
xo(5)=30 
yo(5)=-20 
zo(5)=1 
lx(5)=10 
1y(5)=40 
ev (5)=10 * cos (alpha 1) 
m=5 
call divrec(xgp, yqp, zqp, xe, ye, ze, v, 3, 
1 xo(m), yo(m), zo(m), lx(m), ly(m), l, dx, dy, l, k, ev(m)) 

c 
c 
c Copy the first electrode electrode a distance Imove along in the x direction. A 
c further distance linx, liny per electrode in the x, y directions. This generates a 
c further set of subareas with centre coordinates xqp, yqp, zqp and lengths xe, 
c ye, ze. 

lmove=20 
linx=O 

liny=O 

ktotal=k 
linxtotal=0 
linytotal=liny 
do 1102 i=1, repetitions 
lplanex=(lmove*i)+linxtotal 
lplaney=linytotal 
do 1101 j=l, ktotal 
x=xqp(j) 
y=yqp(j) 
z=zqp() 
xem=xe(j) 
yem=ye(j) 
zem=ze(j) 
vm=V(j) 
k=k+1 
call tw(i, lplanex, lplaney, 
1 x, y, z, xem, yem, zem, xqp, ygp, zqp, xe, ye, ze, V, vm, k, alpha) 

1101 continue 
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linxtotal=linxtotal+linx*i 
linytotal=linytotal+liny 

1102 continue 
c 
c 
c generate oppsing electrodes (for zero charge) by mirroring the first set along 

the centre of the channel 
C 

call mirror(xgp, yqp, zqp, xe, ye, ze, V, 70, k) 
C 

C 

C 

c PART 4 :: Write results to file 
c (nt is the total number of subareas) 

nt=k 
print *, 'number of charges: ', nt 
print *, 'The source datafile (s. dat) is currently being generated' 
write(10, *) nt, nxO, nyO, nzO, d 1, d2, d3, xsm, ysm, zsm, xoffset, yoffset, 
1 zoffset 
do 2 m=1, nt 
write(10, *) xqp(m), yqp(m), zqp(m), xe(m), ye(m), ze(m), v(m) 

2 continue 
close(10) 
print *'' 
print *, 'File generation complete. Type RUN FGX (or FGE) to begin' 
print *, 'simulation or SUBMIT the appropriate NEW batch statement' 
print *" 

print *, ' ** Remember to RENAME the s. dat file if necessary '' 
stop 
end 

C 

C 

C 

C 

c Subroutines 
C 
c 
c 
c Divide subareas into rectangles, generate co-ordinates and lengths 
c for charge calculation 
c 

subroutine divrec(xqp, yqp, zqp, xe, ye, ze, v, plane, 
1 xo, yo, zo, diml, dim2, dim3, nl, n2, n3, k, ev) 
dimension xqp(3000), yqp(3000), zqp(3000), xe(3000) 
dimension ye(3000), ze(3000), v(3000) 
integer xo, yo, zo, plane, dim l, dim2, dim3, n 1, n2, n3 
delta 1=float(n1) 
delta2=float(n2) 
delta3=float(n3) 
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if (plane. eq. 1) goto 310 
if (plane. eq. 2) goto 320 
if (plane. eq. 3) goto 330 

310 do 311 m=l, dim3/n3 
do 311 j=l, dim2/n2 
k=k+1 
v(k)=ev 
xgp(k)=xo 
yqp (k)=yo+dim2-float(j)*delta2+0.5 *delta2 
zqp(k)=zo+dim3 -float(m) * delta3+0.5 *delta3 
xe(k)=0 
ye(k)=delta1 
ze(k)=delta2 

311 continue 
goto 300 

320 do 321 m=1, dim3/n3 
do 321 i=1, diml/nl 
k=k+1 
v(k)=ev 
xqp(k)=xo+dim1-float(i)*delta 1+0.5 *delta 1 
yqp(k)=yo 
zqp (k)=zo+dim3-float(m) *delta3+0.5 *delta3 
xe(k)=deltal 
ye(k)=0 
ze(k)=delta2 

321 continue 
goto 300 

330 do 331 m=l, dim2/n2 
do 331 j=l, diml/nl 
k=k+1 
v(k)=ev 
xqp(k)=xo+dim1-floato)*delta 1+0.5*delta 1 
yqp(k)=yo+dim2-float(m)*delta2+0.5*delta2 
zqp(k)=zo 
xe(k)=deltal 
ye(k)=delta2 
ze(k)=0 

331 continue 
300 continue 

return 
end 

c 
c Copy existing electrode to new location 
c 

subroutine tw 
1 (i, lpx, lpy, x, y, z, xem, yem, zem, xqp, ygp, zqp, xe, ye, ze, V, vm, kndeg) 
dimension xqp(3000), ygp(3000), zqp(3000), xe(3000) 
dimension ye(3000), ze(3000), V(3000) 
rad=float(ndeg)*0.0175 
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xqp(k)=x+lpx 
yqp(k)=y+lpy 
zqp(K)=z 
xe(k)=xem 
ye(k)=yem 
ze(k)=zem 
a=1.57*i 
V(k)=10*cos(a+rad) 
return 
end 

C 

C 

c Copy the current set of electrodes across the centre of the channel 
c 

subroutine mirror(xgp, yqp, zqp, xe, ye, ze, v, cht, k) 
dimension xqp(3000), yqp(3000), zqp(3000), xe(3000) 
dimension ye(3000), ze(3000), v(3000) 
klim=k 
do 4321 i=l, klim 
k=k+1 
xgp(k)=xqp(i) 
yqp(k)=70.0-yqp(i) 
zqp(k)=zqp(i) 
xe(k)=xe(i) 
ye(k)=ye(i) 
ze(k)=ze(i) 
v(k)=-v(i) 

4321 continue 
return 
end 
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c FieldGen:: A PROGRAM FOR CALCULATING THE ELECTRIC 
FIELD, POTENTIAL AND DIELECTROPHORETIC FORCE 
ABOUT 3D ELECTRODES. 

C 
C 

c PROGRAM STRUCTURE: 

C 
c Section One: Input the geometrical parameters and define the electrode 

surfaces; 
c Section Two: Calculate Charge distribution 
c Section Three: Calculate fields 
c Section Four: Subroutines & Functions 
C 

C 

C 

C 

c Variable declarations: 
c 

C 

C 

C 

REAL xgp, yqp, zqp, xe, ye, ze, pot, ct 

INTEGER nxO, nyO, nzO, d 1, d2, d3 
INTEGER xsm, ysm, zsm, xoffset, yoffset, zoffset 

DIMENSION aa(2000,2000), aai(2000), vdt(20), s(2000) 
DIMENSION xqp(2000), yqp(2000), zgp(2000), wkspace(2000) 
DIMENSION xe(2000), ye(2000), ze(2000), v(2000), cd(2000) 
DIMENSION xdt(20), ydt(20), zdt(20), ex(2000), ey(2000), ez(2000) 

OPEN (20, file='s. dat', status='old) 
OPEN (60, file='vo. dat', status= new') 
OPEN (61, file='ex. dat', status='new') 
OPEN (62, file='ey. dat', status='new') 
OPEN (63, file='ez. dat', status='new') 
OPEN (64, file= cd. dat', status='new') 

C 

C 

c Variables list: 
c nt - total number of subareas ct - total electrode charge 
c cd - subarea charge density list v- potential on subareas 
c as - charge-relationship matrix aai - as aa, in list form 
c nxO, nyO, nzO - dimensions of the study volume 
c dl, d2, d3 - number of output samples in the x, y and z directions 
c xsm, ysm, zsm - distances of extra field sample points from the master points 
c xoffset, yoffset, zoffset - offset of simulation volume from origin 
c xqp, yqp, zqp - coordinates of subarea centres 
c xe, ye, ze - subarea dinensions 
c xdt, ydt, zdt - coodinates of electric field sample grid 
c ex, ey, ez - electric field at a given node 
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c SECTION ONE:: READ AND DIVIDE THE ELECTRODE PLANES 
c 
c This section will read in the dimensions of the planes from 
c the electrode plane by plane, dividing the planes into 
c subrectangles as it goes. Parameters: x, y, zqp: co-ordinates of 
c subarea centre; x, y, ze: dimensions; v:: potential 
c 

read(20, *) 
1 nt, nxO, nyO, nzO, dl, d2, d3, xsm, ysm, zsm, xoffset, yoffset, zoffset 
print *, 'Analysing Electrode Parameters.... ' 
do 21 m=1, nt 
read(20, *) xqp(m), yqp(m), zgp(m), xe(m), ye(m), ze(m), v(m) 

21 continue 
print *, 'Done. ' 

C 

C 

C 

c SECTION TWO:: CHARGE CALCULATUIONS 
c 
c 
c This section will generate the Charge-Potential-Relation Matrix 

c AA(ntotal, ntotal). aa(i, j) means the potential at point 
c (xqp(i), yqp(i), O) caused by a unit charge at the subarea 
c (xgp(j), yqp(j), 0). Then it will use intrinsic function F04ARE to 
c solve the equation' AA*CD=V' (equation 2.51 in Thesis text) 
c to obtain the charge distribution vector CD. 
c 
C 

print *, 'Calculating charge distribution.... ' 
print *, stage 1: coefficient matrix' 
do 50 i=1, nt 
xv=xgp(i) 
yv=ygp(i) 
zv=zgp(i) 
ntotal=nt 
call Mtrx(aai, xv, yv, zv, xqp, ygp, zqp, dl, d2, ntotal, xe, ye, ze) 
do 50 j=1, nt 
aa(i, j)=aai(j) 

50 continue 
print *, 'stage 2: charge' 
ifail=O 
call f04ARE(aa, 2000, v, nt, cd, wkspce, ifail) 
print *, 'Done. ' 
ct=0 
do 25 i=1, nt 
ct=ct+cd(i) 
write(64, *) cd(i) 

25 continue 
c 
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c SECTION THREE:: FIELD CALCULATIONS 
c 
c 
c Calculate the position of the 6 extra points around the sample point to 
c calculate the electric field. 
C 

print *, 'Calculating field and potential.... ' 
do 200 i=1,7 
xdt(i)=0.0 
ydt(i)=0.0 
zdt(i)=0.0 

200 continue 
ydt(2)=ysm 
ydt(3)=-ysm 
xdt(4)=-xsm 
zdt(5)=-zsm 
xdt(6)=xsm 
zdt(7)=zsm 

C 
C 
c Calculation of the potentials of points at the space between the 
c electrode determined by NxO, NyO (No. of Divisions of interval between 
c the electrodes) 
C 
C 

k=0 
xdelta=dl/float(nxO) 
ydelta=d2/float(ny0) 
zdelta=d3/float(nzO) 
zco=3.1 
do 700 m=1, nz0 
zco=zco+zdelta 
yco=-ydelta*0.5+float(yoffset) 
do 700 j=1, ny0 
yco=ydelta+yco 
xco=-xdelta*0.5+float(xoffset) 
do 700 i=1, nx0 
xco=xco+xdelta 
k=k+1 
xup(k)=xco 
yup(k)=yco 
zup(k)=zco 

700 continue 
npoint=nx0*nyO*nz0 
do 750 i=l, npoint 
do 745 k=1,7 
xu=xup(i)+xdt(k) 
yu=yup(i)+ydt(k) 
zu=zup(i)+zdt(k) 
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call Mtrx(aai, xu, yu, zu, xgp, yqp, zqp, d 1, d2, nt, xe, ye, ze, na) 
call mulmatr(pot, aai, cd, ntotal) 
vdt(k)=pot 

745 Continue 
calv(i)=vdt(1) 
ex(i)=(vdt(6)-VDT(4))/(2.0*xsm) 
ey(i)=(vdt(2)-VDT(3))/(2.0*ysm) 
ez(i)=(vdt(7)-vdt(5))/(2.0*zsm) 
write(60, *) calv(i) 
write(61, *) ex(i) 
write(62, *) ey(i) 
write(63, *) ez(i) 

750 continue 
end 

C 

C 

C 

C 

c SECTION FOUR:: SUBROUTINES AND FUNCTIONS 
C 
C 
C 

C 

c Calculate the charge-potential relation by evaluating equation 2.47 
C 
C 

subroutine Mtrx(aai, xv, yv, zv, xgp, yqp, zqp, dl, d2, nt, xe, ye, ze) 
dimension aai(2000), xqp(2000), yqp(2000), zqp(2000) 
dimension ye(2000), ze(2000), xe(2000) 
real xcq, ycq, xl, yl, d 1, d2, s 1, xmax, xv, yv, zv, xmq, ymq, zmq, xq, yq, zq 
do 120 j=1, nt 
xq=xqp() 
yq=yqp() 
zq=zgp(j) 
xl=xe(j) 
yl=ye(j) 
zl=ze(j) 
aai(j)=0.0 
sl=0.0 
do 20 iz=1,2 
if (iz. eq. 1) zsign=1.0 
if (iz. eq. 2) zsign=-1.0 
aanq=xq 
ymq=yq 
zmq=zq*zsign 
if (zl. eq. 0.0) goto 52 
if (yl. eq. 0.0) goto 54 
if (xl. eq. 0.0) goto 56 

52 call fdistance(xv, yv, zv, xmq, ymq, zmq, xl, yl, fdst) 
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sl=fdst 
goto 50 

54 call fdistance(xv, zv, yv, xmq, zmq, ymq, xl, zl, fdst) 
sl=fdst 
goto 50 

56 call fdistance(zv, yv, xv, zmq, ymq, xmq, zl, yl, fdst) 
sl=fdst 

50 continue 
aai(j)=aai(j)+s 1 

20 continue 
120 continue 

return 
end 

C 

C 

C 

C 

c Calculation of the potential function caused by the charge at a 
c rectangle (equation 2.47) 
C 
c 

subroutine fdistance(xv, yv, zv, xcq, ycq, zcq, xL, yL, fdst) 
REAL fdst, xL, yL, xv, yv, zv 
REAL xcq, ycq, x 1, x2, y 1, y2, zcq 
zp=abs(zv-zcq) 
xl=xcq-xLj2.0-xv 
x2=xcq+xL 2.0-xv 
yl=ycq-yL/2.0-yv 
y2=ycq+yL, l2.0-yv 
IF (((xl*x2). ge. 0.0). and. ((yl*y2). ge. 0.0)) goto 10 
IF (((xl*x2). ge. 0.0). and. ((y1*y2). lt. 0.0)) goto 20 
IF (((xl*x2). 1t. 0.0). and. ((y1*y2). ge. 0.0)) goto 30 
IF (((xl*x2). 1t. 0.0). and. ((y1*y2). 1t. 0.0)) goto 40 
STOP 

10 fdst=fcalcu(xl, yl, x2, y2, zp) 
return 

20 fdst=fcalcu(x1,0.0, x2, y2, zp)+fcalcu(x1,0.0, x2, abs(y1), zp) 
return 

30 fdst=fcalcu(0.0, y1, x2, y2, zp)+fcalcu(0.0, yl, abs(xl), y2, zp) 
return 

40 fdst=fcalcu(0.0,0.0, x2, y2, zp)+fcalcu(0.0,0.0, x2, abs(yl), zp) 
fdst=fdst+fcalcu(0.0,0.0, abs(xl), abs(yl), zp) 
fdst=fdst+fcalcu(0.0,0.0, abs(xl), abs(y2), zp) 
return 
end 

C 

C 

C 

C 
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c Performance of the "Multi-Matrix" operation 
c Simplest form: sum=a(1)*b(1)+a(2)*b(2)+.... +a(n-1)*b(n-1)+a(n)*b(n) 
c 
c 

subroutine mulmatr(sum, a, b, n) 
DIMENSION a(2000), b(2000) 
REAL sum 
sum=o. 
do 220 i=1, n 
sum=sum+a(i)*b(i) 

220 continue 
return 
end 

C 

C 

c The remaining subroutines collectively evaluate the result of equation 2.49 

c 
Function fcalcu(xl, yl, x2, y2, zp) 
real x 1, y 1, x2, y2, fcalcu 
real xa, xb, ya, yb 
real xxl, xx2, yyl, yy2 
xxl=abs(x1) 
xx2=abs(x2) 
yyl=abs(yl) 
yy2=abs(y2) 
xa=((xx l+xx2)-abs(xx 1-xx2))*0.5 

xb=((xx 1+xx2)+abs(xx l -xx2))*0.5 
ya=((yyl+yy2)-abs(yy1-yy2))*0.5 
yb=((yy l+yy2)+abs (yy 1-yy2))*0.5 
fx=flog(xa, ya, zp)+flog(xb, yb, zp) 
fy=flog(xa, yb, zp)+flog(xb, ya, zp) 
fcalcu=fx-fy 
return 
end 

C 

C 

C 

C 

function flog(xx, yy, zz) 
real ilog, xx, yy, zz 
xys=xx*xx+yy*yy 
If (zz. gt. 0.0) goto 20 
flog=0.0 
if (xx. ne. 0.0) goto 10 
if (yy. ne. 0.0) goto 5 
flog=0.0 
return 

5 flog=yy*log(xx+sqrt(xys)) 
return 
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10 flog=xx*1og(yy+sgrt(xys))+yy*1og(xx+sgrt(xys)) 
return 

20 continue 
fx 1=yy/sgrt(xx*xx+zz*zz) 
fx2=xx/sgrt(yy*yy+zz*zz) 
flog=xx*log(fx l+sgrt(1. +fx 1 *fx 1)) 
flog=flog+yy*log(fx2+sgrt(1. +fx2*fx2)) 
if ((xx. ne. 0.0). and. (yy. ne. 0.0)) goto 25 
flog=flog+zz*3.1415926/2.0 
return 

25 fx3=zz*sgrt(xx*xx+yy*yy+zz*zz)/xx/yy 
flog=flog+zz*atan(fx3) 
return 
end 
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