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Abstract

Bast fibre reinforced, unsaturated polyester matrix composites were fabricated using
non-woven mats of hemp or jute fibre as reinforcement. Composites were also
prepared using chopped strand mat glass fibre as reinforcement. The short-term
mechanical properties of the laminates were assessed. It was observed that at
equivalent fibre volume fractions the stiffness of the glass fibre reinforced material
only marginally exceeded that of the two, unmodified bast fibre, reinforced
materials. At equivalent fibre volume fractions, however, the strength of the glass
fibre reinforced composite was found to be significantly greater than that of the bast
fibre reinforced materials. It was noted that in the bast fibre reinforced composites,
the onset of non-linear behaviour occurred at relatively low applied stresses. Work
of fracture in static three-point flexure and Charpy impact strength tests, indicated
that the toughness of the plant fibre reinforced material was as much as an order of
magnitude less than that of the glass fibre reinforced material. Fracture mechanics
techniques were used to further quantify toughness and confirmed this to be so.
Furthermore, these tests indicated that the microstructure of the bast fibre reinforced
material should be examined more closely. Microscopy conducted on the fibres
revealed that these were often subject to extensive micro-compressive damage. It
was postulated that uneven fibre straining characteristics could lead to compromised
interfacial properties, which might in turn detrimentally affect the macroscopic
behaviour of the composite. A technique known as half fringe photoelasticity was
used to investigate the stress-field in the matrix surrounding the fibre defects. It was
observed that not only did concentrations of stress occur in the vicinity of these, but
also that the shear stress distribution along the length of the fibre was interrupted by
the presence of the defects. The implications of fibre defects upon composite
properties are discussed.
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1 Introduction

1.1 Background

Artificial composites, particularly polymer matrix composites such as the ubiquitous

'fibreglass', form an important class of engineering materials. It has been estimated

that the growth in the use of polymer matrix composites has been running at between

5% and 10% annually - in excess of that of the polymers themselves (Matthews &

Rawlings, 1994). These materials are often found in applications in which their

excellent specific properties may be exploited, for example in transportation and

aerospace (Ivens et al., 1997). However, it should be remembered that man-made

composites are by no means a new phenomenon, but have been in use for thousands

of years; from the reinforced mud bricks of the Ancients to the composite bows of

Medieval times (Gordon, 1976).

By far the greatest use of composite materials is made by nature; wood, bone and

teeth being just a few examples of naturally occurring composites. The diversity of

these natural materials is a reflection of the maimer in which composites can be

engineered for certain properties. Indeed, it could be argued that nature has 'selected'

composites through evolutionary processes because of their excellent properties and

their ability to be 'fabricated' by biosynthetic means. Further, it seems plausible that

the high strength, stiffness and toughness of these materials combined with their low

weight may have contributed to the development of highly dynamic life forms

(including mankind) as well as to large structures such as trees.

1.2 Composite materials

Composites might be thought to consist of two (or more) distinct constituents or

phases, which when married together, result in a material with entirely different
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properties to those of the individual components. Typically, an artificial composite

would consist of a reinforcement phase of stiff, strong material, frequently fibrops in

nature, embedded in a continuous matrix phase. The latter is often weaker and less

stiff than the former. Two of the main functions of the matrix are to transmit

externally applied loads, via shear stresses at the interface, to the reinforcement and

to protect the latter from environmental and mechanical damage (Matthews &

Rawlings, 1994). The advantage of such a coupling is that the high strength and

stiffness of the fibres, which would, in most practical situations be unable to trarsmit

loads, may be exploited. Naturally occurring composites (such as bone and wood) are

also reinforced with fibrous material. In the case of bone, for example, the hard

crystalline mineral, hydroxyapatite ((Ca 10(PO4)60F1)2) forms the reinforcement phase,

embedded in a matrix of the protein, collagen (Currey, 1984; Bonfield, 1994).

An interesting feature of composites is that the different phases often act

synergistically, lending improved properties to the resultant material (Norwood,

1994). By way of example, the fracture toughness (Ge) of a typical glass fibre-epoxy

composite is in the region of 40-100 Id m 2 and as such would be classified as a tough

material. On the other hand, glass with a G of around 0.01 kJ m 2 and epoxy resin

with a G of around 0.1 Id m 2 would both be regarded as brittle (Hull & Clyne,

1996). Thus two essentially brittle substances, when brought together in the forVl of

a composite can result in an extremely tough material (Gordon, 1976).

1.3 Polymer matrix composites

The matrices of artificial composites are often synthetic polymers derived from

petrochemicals. These polymer matrix composites (PMCs) are generally reinforced

with man-made fibre. Glass fibre, which accounts for some 99% of all reinforcement

used in PMCs, is by far the most widely used (Owens Corning, 1996). In applications

requiring especially good specific properties, however, other inorganic fibres such as

boron or carbon may be utilised. Alternatively, synthetic organic fibres such as

aramid might be employed (Hull & Clyne, 1996). Certain naturally occurring fibres
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are also sometimes used commercially, to reinforce composite products. 'Tufnol'

(composites of cotton fabric reinforced epoxy or phenolic resin), is perhaps one of' the

best known materials in this category, having been produced for over sixty years

(Tufnol, 1991, 1992). Some typical values for the mechanical properties of several

reinforcing fibres are given in Table 1.1.

Table 1.1 Mechanical properties of some synthetic and natural (plant) fibres
(Sources: Hull & Clyne, 1996, Ivens et al., 1997).

Fibre type	 I Density
	

Young 's
	

Tensile
	

Failure
modulus	 strength
	

strain

	

m3
	

(GN m2)
	

42V m2
.Synthetic fibres

E-glass

high strength carbon

KevlarTM (aramid)

boron

NaturalJihres

flax

hemp

Jute

sisal

cotton

2.56

1.75

1.45

2.6

1.4-1.5

1.48

1.4

1.45

15

76

230

130

400

50-70

30-60

20-55

9-22

6-10

2000

3400

3000

4000

500-900

3 10-750

200-450

80-840

300-600

2.6

3.4

2.3

1.0

1.3-3.3

2-4

2-3

3-14

6-8

Broadly speaking, the polymers comprising the matrices of PMCs may be classified as

either thermosetting or thermoplastic.

1.3.1 Therniosetting polymers

These are initially liquid resins that harden into brittle solids at room temperature

when cured. Curing involves chemical cross-linking, which is achieved by the

application of heat and/or pressure and/or the addition of a catalyst to complete the

process. Because they are initially relatively low viscosity liquids, thermosetting
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resins are very versatile and can be used to produce composites of complex shape and

large size (Norwood, 1994). It is estimated that in excess of 75% of all matrices in

PMCs are thermosetting (Matthews & Rawlings, 1994). Examples of thermosetting

polymers include; polyester, vinlyester, epoxy and phenolic resins.

1.3.2 Thermoplastic polymers

These are polymers that flow readily under the effects of heat and stress. Unlike

thermosetting resins which are chemically cross-linked, bonding between the polymer

chains of thermoplastics is due to Van der Waal's forces which are easily overcome,

allowing for relatively easy movement between adjacent chains. Examples of

thermoplastic polymers include nylon (polyamide), polyethylene, polypropylene and

polyetheretherketone (PEEK) (Matthews & Rawlings, 1994). Unlike thermosetting

polymers, which are relatively brittle, thermoplastic polymers can undergo

considerable plastic deformation prior to failure and as such are comparatively tough

(Hull & Clyne, 1996). A summary the mechanical properties of a number of polymers

is presented in Table 1 .2.

Whilst the utility of composite materials based on synthetic polymers reinforced with

man-made fibres cannot be seriously disputed, there are a number of potentially

serious environmental issues associated with their use. In recent years, this has helped

focus attention on the potential for replacing one or both of the synthetic phases with

alternative materials derived from renewable resources.
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Table 1.2 Selected properties for different polymers
(Source: Hull & Clyne, 1996).

Matrix

'I 'hermose is

epoxy resins

polyesters

iherinoplastics

Nylon 6.6

polypropylene

PEEK

Density	 Young 's	 Tensile
modulus	 strength

Mgm 3)	 (GNm2)	 'lvIJ'Jm

1.1-1.4	 3-6	 35-100

1.2-1.5	 2.0-4.5	 40-90

Failure
strain

1-6

2

40-80

300

50

	

1.14
	

1.4-2.8
	

60-70

	

0.9
	

1.0-1.4
	

20-40

1.26-1.32
	

3.6
	

170

1.4 Naturalfibre reinforced PMCs

Whilst the ultimate aim might be to manufacture structural composites entirely from

renewable resources (i.e. both reinforcement and matrix), a number of environmental

issues could be dealt with by realising the substitution of synthetic (primarily glass)

fibres with natural fibres. In recent years a significant number of articles have

appeared in the literature which discuss the environmental (and other) benefits of

utilising various plant fibres as reinforcement in both thermoplastic and thermosetting

PMCs (e.g. Rowell, 1992; Robson ci al., 1993; Bolton, 1994, 1995; Carruthers,

1994; Hill, 1997; Ivens ci a!., 1997; Olesen & Plackett, 1999; Schuh, 1999). No

attempt will be made here to extensively review all the issues pertaining to the

substitution of synthetic fibres with naturally derived ones. Nevertheless, it is

appropriate to mention some of the more salient points which have been raised.

1.4.1 Environmental considerations

Glass fibre, which forms by far the greatest proportion of reinforcement used in

PMCs, has a high embodied energy content of around 30 GJ/tonne. This compares

with around 4 GJ/tonne for plant fibre material (Bolton, 1995). However, with the
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latter, this embodied energy may be partially recovered, either by composting or

incineration. Neither of these options are available for glass fibre. This raises the

question of the disposal of a product or structure at the end of its working life. With

glass fibre reinforced material, the only sensible option is to landfill the material, since

recycling (only really relevant to thermoplastics) may be problematic. With plant fibre

reinforced material, however, the possibility exists to either compost or incinerate,

thereby avoiding the necessity to landfill and at the same time recover some of the

aforementioned energy content of the fibre (and that of the matrix too).

Plant fibres are CO 2 neutral. Only atmospheric carbon dioxide is used to produce the

fibres in the plant, which is subsequently liberated upon incineration or composting.

Thus, the net change in the CO 2 balance is zero. Although glass fibres themselves

contain no CO 2, the energy required for their manufacture doubtless accounts for a

net increase in atmospheric carbon dioxide (due to the burning of fossil fuels).

Today, one of the problems being faced (particularly in Europe) is that of food over

production. Certain fibre crops, notably flax and hemp have traditionally been grown

in Europe (Dempsey, 1975). If new, high added value, industrial applications could

be found for these fibres then this could help solve these problems by switching land

usage to annually harvested fibre crops.

Although not environmental issues, it is worthwhile noting that plant fibres are

potentially less hazardous to health, they are more pleasant to work with and

furthermore, since they are less abrasive than glass fibres, they do not blunt tools to

the same extent.

1.4.2 Economic viability

Cost is potentially an area in which natural fibres could score highly over their

synthetic counterparts. Table 1.3 shows a comparison between the prices of three

synthetic fibres and three natural fibres (Ivens et a!., 1997). As may be noted, the

prices of all three plant fibres are less than that of E-glass and significantly less than

either carbon or aramid fibres. Nevertheless, it should be borne in mind that there is
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often considerable variation in the price of natural fibre depending upon factors such

as the type and extent of processing (Ivens et a!., 1997) and whether the fibre is to be

used in any high added value products, such as textiles (Robson et a!., 1993; Ivens et

a!., 1997). For instance, the price of flax can increase approximately ten-fold after

spinning and still further after weaving (Sharma, 1999).

Table 1.3 Comparison between the costs of artificial and natural fibres
(Source: Ivens et a!., 1997).

PThre type	 Cost (ECU/kg)

E-glass
	

1.5-2.5

Carbon fibre
	

3 0-50

Aramid
	

20-3 5

Flax
	 0.5-1

Hemp
	 0.5-1

Jute
	 0.5

Additional costs would undoubtedly be incurred in making natural fibres suitable for

composite manufacture. These might include cleaning to improve adhesion to the

matrix or further breakdown processes, for instance steam explosion (Kessler &

Kohler, 1996). Alternatively, some form of chemical modification or surface

treatment may be required (Chum & Power, 1992). In addition, it may be necessary

to process the fibres (for example by weaving or using non-woven technology) into a

form suitable for use as reinforcement in composite fabrication (Ivens et a!., 1997).

1.4.3 Technical aspects

As may be noted from Table 1. 1, the tensile properties of the vegetable fibre, in

general, do not compare particularly favourably with the synthetics, even glass fibre.

However, when density is taken into account and the specific properties, especially

stiffness, are compared (Table 1.4), then vegetable fibres start to look more attractive.
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Table 1.4 Specific tensile properties of reinforcing fibres
(Source: Ivens et a!., 1997).

Fibre

E-glass

Flax

Hemp

Jute

Sisal

Sec,fIc tensile
•s'Irength (MN m

980- 13 67

345-620

210-5 10

140-320

55-580

LSecfic Young's
modulus (GNm2

27-29

34-48

20-4 1

14-3 9

6-15

As will be discussed more fully in the following chapter, however, it should be borne

in mind that the mechanical properties of composites are governed to a large extent by

the volume, rather than mass, fraction of reinforcement used (Mathews & Rawlings,

1994). Consequently, it will be the absolute, rather than the specific, properties that

will have the greatest impact upon the ultimate performance of the composite.

Nevertheless, for a given volume loading of fibre, the density of a plant fibre

reinforced composite will be lower than that of a glass fibre reinforced equivalent,

leading to enhanced specific composite properties.

On a purely performance or cost basis, the suitability of vegetable fibres as

reinforcement in PMCs is open to question. However, if environmental concerns are

to be addressed, then plant fibres offer a potentially attractive alternative to manmade

fibres.

1.5 Fibre selection

1.5.1 Fibre technical specification

For fibres to act effectively as reinforcement in polymeric matrices, they must possess

good tensile stiffness and strength as well as failure strains similar to those of the

matrices (Riedel, 1999; Riedel et a!., 1999). If the strain to failure is very much
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greater than that of the matrix, insufficient stress build-up in the fibre would be

achieved prior to matrix failure, resulting in poor reinforcing efficiency. In addition to

this, it would be of benefit if the fibres were relatively thin and possessed high aspect

ratios; that is to say they were long in comparison to their diameter. This would

provide the greatest possible surface area for adhesion between the phases, as well

making preferential alignment of the fibres possible, allowing for some scope in

tailoring composite properties. In addition to this thin, high aspect ratio fibres are

typically easier to process (cf the spinning of cotton and flax).

From a techno-economic standpoint, it would also be advantageous if the fibres were

derived from an established and widely used industrial crop, with a good

understanding of growth factors and fibre isolation procedures.

In a European context, the fibre types which would appear to most closely "fit the

bill" are flax (Linum usitalissimum) and hemp (Cannabis saliva). Flax is still widely

cultivated and processed for textiles in Europe (Franck, 1992; Mackie, 1992), whilst

until fairly recent times hemp was grown for textiles, cordage etc. and is now enjoying

something of a revival. Jute (Corchorus capsularis), another potentially suitable

fibre, is generally widely available in Europe, imported from Asia. The work

presented herein concentrates (but not exclusively) on hemp. This is primarily

because of the resurgent interest in the U.K. and Europe in this fibre type, for

industrial applications. As will be discussed in the forthcoming chapters, it is believed

that many of the findings may well be applicable to flax, because of the similar

ultrastructural organisation of these two fibre types. A certain amount of work

utilising jute as reinforcement was also conducted, and is presented herein.
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1.5.2 Reinforcement processing

As noted above, the cost of woven material (e.g. linen) is significantly higher than that

of the raw fibre, which might preclude this as suitable reinforcement. Air laid non-

woven technology does, however, provide a potentially cost effective means of

arranging fibres into a mattress structure which could be used as a basis for composite

fabrication (Newman, 1999). For this reason, non-woven, needle-punched, felted

fibre (hemp and jute) mats were utilised as reinforcement pre-forms in the laminates

fabricated in this work.

1.6 Matrix polymer

It is perhaps worthwhile noting at this stage that, at the outset, the aim of this project

was to develop a plant fibre reinforced polymer composite, suitable for commercial

production. The types of products envisaged were those that might have been

fabricated by hand lay-up or by resin transfer moulding (see Chapter 2). These

fabrication techniques require the use of thermosetting polymers. Because of its

extensive use in the type of products envisaged, the matrix polymer chosen for this

study was an unsaturated polyester.

1.7 Background and rationale of the study

1.7.1 Background

The initial aim of the programme was, as noted above, to produce a plant fibre

reinforced thermosetting polymer matrix material suitable for commercial production.

The hope was to achieve a direct substitution of glass fibre (in the form of a random

chopped strand mat) with a non-woven, needle-punched plant fibre felt. The results

of preliminary investigations, however, indicated that the short-term mechanical

properties of the bast fibre reinforced composites fell far short of their glass fibre

10



reinforced counterparts. Since this would, undoubtedly, have a direct bearing upon

the potential applications for which these materials might be suitable, it was believed

that the project should focus on more 'fundamental' issues concerning the material

behaviour and the underlying mechanisms controlling these.

As noted in Section 1 .2, one of the attributes of composite materials (particularly

certain natural composites such as wood) is their excellent tougimess. That is to say

they possess good resistance to the propagation of cracks or 'crack-like' defects

which could ultimately lead to failure of the material or structure (Gordon, 1976).

Preliminary tests suggested that, for an equivalent level of reinforcement (on a volume

for volume basis), the toughness of plant fibre reinforced unsaturated polyester

laminates was substantially less than that of their synthetic fibre reinforced

counterparts. Furthermore, it was found that chemical modification (acetylation) of

the fibre, aimed at improving the environmental stability of the resultant composites,

only made matters worse. This was unfortunate, since it had been originally believed

that chemical or surface modification could be used to improve composite properties

(see Section 2.6.2). Although this was achieved to some extent articularly with

regard to long-term exposure to wet and biologically aggressive environments), the

loss in toughness was deemed to be of overriding concern. As a result, whilst the use

of chemical modification was studied (although none of the results are presented

herein) it was felt that a far more profitable approach would be that of a thorough

appraisal of the material itself. This, it was believed, should be conducted at several

levels of organisation, from the laminates themselves, to the fibres and the interaction

between the two phases. It was believed that such an approach would highlight

factors limiting composite performance and thereby help identify ways in which

performance improvements might be gained.

After preliminary studies, this work took shape as an investigation into the mechanical

properties of plant fibre reinforced thermosetting PMCs and was effectively split into

three sections. Firstly, the mechanical properties of the laminates themselves were

considered, secondly the reinforcing fibres were investigated and finally the interaction

between the fibre and matrix at the interface or interphase was studied.
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1.7.2 Structure of thesis

The following chapter provides, by way of a literature review, relevant theoretical

background in support of the remainder of the thesis. This includes a brief description

of the biology and ultrastructure appropriate to hemp, flax and jute fibres as well as

describing the biochemistry and technology of the fibre isolation process. In addition

to this, the chemistry of unsaturated polyester and epoxy resins is briefly reviewed. A

short overview of the main composite fabrication methods employed is presented.

Some relevant aspects of composite materials science and mechanics are also

included. In addition to the foregoing, Chapter 2 contains a review of the literature

pertaining to plant fibre reinforced thermosetting PMCs.

Chapter 3 encompasses the mechanical properties of laminates reinforced with non-

woven, needle punched felts. Selected preliminary results as well as those of more

extensive tensile, flexural, Charpy impact strength, and fracture toughness tests are

presented. Also included are the results and findings of an examination of the fracture

surfaces using scanning electron microscopy.

Chapter 4 presents the findings of a microscopical study of the fibres. In Chapter 5,

the results of an investigation into the micromechanics of deformation and fracture of

'model' single fibre composites are presented. Chapter 6 draws together the main

findings of the work in an attempt to explain some of the observed macroscopic

material behaviour, in relation to its microstructure. Finally, Chapter 7, reviews the

main conclusions of the work and its perceived deficiencies and makes

recommendations as to areas in which it is believed further research would be

beneficial.
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2 Literature Review

2.1 Composite materials

2.1.1 Introduction

As noted in the previous chapter, composite materials are composed of two or more

phases, usually a reinforcement of strong stiff material, embedded in a weaker, more

compliant matrix. By combining these phases a material is produced which, in

general, possesses properties entirely different from that which might be expected

from a consideration of the individual constituents. The example cited in Chapter 1,

to demonstrate this phenomenon, was toughness. In this section, a brief review of the

salient aspects of composites science and technology is conducted. This review has

been based upon a number of standard text books covering the topic of composite

materials. These include: Piggott (1980), Matthews and Rawlings (1994) and Hull

and Clyne (1996), together with more specific literature.

2.1.2 Reinforcement processes

2.1.2.1 Load sharing

Key to the understanding of the mechanical behaviour of fibre reinforced composite

materials is the concept of load sharing between fibre and matrix. Whilst stress may

vary sharply from point to point along the fibre (particularly in short fibres), the

proportion of the external load carried by each of the individual constituents can be

assessed by volume-averaging the loads associated within them (Hull & Clyne, 1996).

This gives rise to the following condition:

o =Vf +(1—V)	 (2.1)

Where:	 o	 is the composite applied stress
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is the volume averaged fibre stress

m	 is the volume averaged matrix stress

Vf is the volume fraction of reinforcement. This is the

volume of fibre present in the composite as a fraction of
the total volume of the composite (expressed as a
percentage throughout this text).

For a two phase composite, it may be observed that a certain proportion of the load

will be carried by the fibre and the remainder by the matrix. Provided the response of

the composite remains elastic, the proportion of the load carried by each constituent

will depend upon:

• the volume fraction of reinforcement

• the shape and orientation of the reinforcement

• the elastic properties of the constituents.

The reinforcement may be considered to be acting efficiently if it carries a relatively

large proportion of the externally applied load. A high reinforcing efficiency can lead

to greater composite strength and stiffness, since the reinforcement is usually both

stronger and stiffer than the matrix (Hull & Clyne, 1996).

2.1.2.2 Elaslic stress transfer

A necessary aspect of the reinforcement process is the transfer of externally applied

stresses to the main load bearing constituent (reinforcement) of the composite. This

transfer of stress is accomplished by shear stresses, ;, acting across the interface

between matrix and fibre. If it is initially assumed that the bonding between the

phases is perfect (i.e. there is no slippage at the interface) and that the system behaves

elastically, then the transfer of stress may be rationalised as follows. As the composite

is strained, the matrix deforms around the fibre as depicted in Figure 2.1. Shear

strains induced in the matrix lead to shear stresses (;) at the interface. As may be

noted from Figure 2.1, the distortion is greatest at the fibre ends and thus it follows

that z will be greatest in these regions. In a similar manner, it may be reasoned that,

at the fibre ends, the axial stress in the fibre, af , will be zero and will build up as a
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result of z,, with increasing distance from the fibre end to a maximum point, some

distance away. This is the basis for the shear-lag model of stress transfer first

proposed by Cox (1952).

(a)

-	 UR(X)-
x=O

:U(X)

Figure 2.1 Schematic representation of a cCoxtype shear-lag distortion in the
matrix surrounding a reinforcing fibre (Source: Hull & Clyne, 1996).

By considering the balance of forces acting on an element of the fibre, it may be

shown that:

do-i	2z

dx	 r

Where:	 x

r

is the axial distance from the fibre mid-point

is the fibre radius

(2.2)

By utilising this approach, it may be shown that the axial stress distribution, due to

elastic stress transfer in a fibre, may be given by (Hull & Clyne, 1996):
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o = E1 e 1 [1—cosh(nxlr)sech(ns)J	 (2.3)

Where:	 Ef	 is the fibre Young's modulus

e 1	 is the applied composite strain

s	 is the fibre aspect ratio, defined as L/r (where L is the

fibre half length)

n	 is a dimensionless constant given by:

y
2E	 1

= [i + v)in(i1'v)j

Where:	 Em	 is the matrix Young's modulus

Vm	 is the matrix Poisson's ratio

Furthermore, it may be shown that the variation of along the fibre can be given by

(I-lull & Clyne, 1996):

"1	 sinh-J sech(ns)
	

(2.4)

The interesting features of these relationships are that they predict that stress transfer

is dependent upon the elastic properties of the phases, the applied strain and the

aspect ratio of the reinforcement. Equation 2.3, predicts that the maximum axial fibre

stress will depend upon its stiffness as well as the applied strain, and that the build-up

of stress is related to the difference between the fibre and matrix moduli. Similarly,

from Equation 2.4, it may be noted that the distribution of i is dependent upon the

same parameters. For a composite system (based upon a hypothetical plant fibre

reinforced thermosetting polymer) in which the fibre modulus is taken to be 50 ON

m 2 and the matrix modulus to be 3.5 GN m 2, with different aspect ratios (s = 5, 25,
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Figure 2.2 Theoretical shear-lag prediction of the variation of o,- along the fibre

length, assuming fibre aspects ratios of 5, 25 and 100 and an applied strain of 0.5%.
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Figure 2.3 Theoretical shear-lag prediction of the variation of 	 along the fibre

length, assuming fibre aspects ratios of 5, 25 and 100 and an applied strain of 0.5%.
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100) predicted distributions of o and	 (utilising Equations 2.3 and 2.4 and

assuming n = 0.125) along the fibre for an applied strain of 0.5% are shown in Figures

2.2 and 2.3 respectively.

2. 1.2.3 Stress transfer aspect ratio

It may be noted from Figure 2.2, that there is a build-up of axial fibre stress with

increasing distance from the fibre end. However, as may be observed, it is only when

the fibre aspect ratio exceeds something of the order of 30 that the maximum axial

stress is achieved (i.e. the fibre strain is equal to matrix strain and a plateau is reached

- this is clearly noted when s = 100). For this theoretical system, therefore, there is an

ineffective length in the region of the fibre ends where the stress is gradually building-

up. This gives rise to the concept of a critical value for the stress transfer length, at

which value of s the axial fibre stress builds up to a maximum, corresponding to the

strain being imposed on the composite (Hull & Clyne, 1996). It follows that fibres

below this critical value aspect ratio will be less efficient in terms of reinforcement

than longer fibres. This is clearly observed in the fibre with an aspect ratio of 5, in

which the axial fibre stress barely reaches 10% of the maximum plateau stress of 250

MN m 2 for the same applied strain. Figure 2.3 shows the theoretical interfacial shear

stress distribution. It may be noted that when s equals 100, r has zero value over

much of the fibre length.

2.1.2.4 Inelasiic processes

The above scenario assumes that the bonding between fibre and matrix is perfect, i.e.

no slippage takes place between fibre and matrix during straining of the composite, in

other words the system remains elastic. However, if a critical value of v is exceeded,

localised failure may result. This might be due to rupture of the fibre-matrix bond

(see Chapter 6) or to shear failure of the matrix, if such bonding is particularly good.

If it is assumed that fibre-matrix debonding occurs rather than matrix shear failure

(probable in PMCs - Piggott, 1980) and that following debonding, stress transfer at

the interface takes place through friction (which is constant) then a shear and axial

stress distribution similar to that shown in Figures 2.4 might be expected. This model

assumes that v,1 is constant near the ends of the fibre and zero at the centre. Again,
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using a balance of forces argument, it may be shown that the axial stress in the fibre

varies, linearly, as shown in Equation 2.5 (Piggott, 1980).

2
a1 =—(L–x)
	

(2.5)

Where:	 is the frictional interfacial shear stress

T

- mL -	 0 x .- mL -

Figure 2.4 Variation of axial fibre stress o and frictional interfacial shear stress

along a single fibre (Source: Piggott, 1980).

For a given composite system, intermediate situations may well exist in which stress

transfer takes place through a combination of elastic and inelastic processes. In the

region of the fibre ends, for example, fibre-matrix debonding may well be stimulated

by high interfacial shear stresses, whereas in the central portion of the fibre bonding

remains intact. Indeed, this form of stress distribution has been observed in the

vicinity of broken fibre ends in real composite systems, consisting of single or multiple

fibre microcomposites (Van den Heuvel et a!., 1997).

If elastic stress transfer is compared with transfer by friction (Figures 2.2 and 2.4) it is

evident that whilst the form of the stress distribution differs between these processes,

a critical value of aspect ratio can be identified. At this point, the axial stress at the

mid-point reaches the ultimate tensile stress of the fibre o, resulting in fibre fracture

(assuming that fibre fracture takes place at a defined and constant value). The aspect
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ratio of the fibre at which this occurs is known as the critical aspect ratio (se). 1f'

stress transfer by friction only is considered, then it may be shown that the fibre

critical aspect ratio is given by (Piggott, 1980; Hull & Clyne, 1996):

°fu
- 2r

Thus far, only an idealised situation has been considered, in which only stress transfer

parallel to the fibre axis has been considered. Nevertheless, in most "real" materials,

some degree of off-axis loading will take place. In such cases, the reinforcing

efficiency will be reduced and when loading is normal (or nearly so) to the fibre axis,

then the matrix may actually be weakened by the presence of the reinforcing fibres

(Chou, 1994; I-lull & Clyne, 1996).

2.1.3 Interface

From the foregoing, it is evident that the integrity of the bonding between fibre and

matrix plays a major role in the determination of composite properties (Hull & Clyne,

1996). Whilst adequate fibre-matrix adhesion is required to ensure the integrity of the

composite, it is also necessary that uncoupling of the two phases occurs under certain

conditions (for example to ensure that various toughening mechanisms come into

play). In view of the importance of the interface in controlling composite properties,

it is appropriate to briefly review adhesion related to fibre composites.

The first, but not only, requirement for good adhesion is that the liquid polymer

should adequately wet the substrate to which it is to bond. This is necessary since the

distances over which inter-atomic and inter-molecular forces operate are exceedingly

small. In addition, it is important that air entrapment or voids be excluded from the

system, since these can result in compromised mechanical properties. For instance, it

has been estimated that a void volume of only 1% can lead to a 7% reduction in

composite strength (Matthews & Rawlings, 1994). Wetting will occur if the viscosity

of the liquid polymer is not too high and when it results in a decrease in the total

(2.6)
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energy of the system. When considering the thermodynamics of the wetting process,

equilibrium is dictated by the Young equation (Kinloch, 1987):

7V = 73! + 7/V cosO
	

(2.7)

Where:	 y	 is the surface energy of the solid-vapour interface

r	 is the surface energy of the solid-liquid interface

r	 is the surface energy of the liquid-vapour interface

9	 is the contact angle

Equation 2.7 implies that complete wetting (i.e. 9 = 0) will occur if the surface

energy of the solid-vapour interface is equal to or greater than the sum of the liquid-

vapour surface energy and the solid-liquid interface surface energy. Systems where

the surface energy of the solid-vapour interface exceeds that of the liquid-vapour

interface by a good margin are likely to wet easily (Hull & Clyne, 1996). Once

intimate contact with the substrate has been established, a number of mechanisms

have been proposed to explain adhesion between the two phases. These include

(Kinloch, 1987):

• mechanical interlocking

• diffusion theory

• electronic theory

• adsorption theory.

Of these, the adsorption theory is the most widely applicable. Adsorption theory

proposes that, provided sufficiently intimate molecular contact is achieved at the

interface, the phases will adhere because of the inter-atomic and inter-molecular

forces which are established between the atoms and molecules in the surface of the

polymer and substrate. It is believed that the most common such forces are van der

Waals forces, but may also include other secondary forces such as hydrogen bonds. It

is also considered that primary (ionic, covalent and metallic) bonds as well as donor-

acceptor interactions may contribute to the bonding process (Kinloch, 1987). Table
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2. 1 summarises the bond types (and typical bond energies) thought to be implicated in

adsorption theory.

Table 2.1 Summary of bond types and bond energies thought to be implicated in the
adsorption theory of adhesion (Source: Kinloch, 1987).

lvpe

Primary bonds

ionic

covalent

metallic

Donor-acceptor bonds

Bronstead acid-base interactions

Lewis acid-base interactions

Secondary bonds

hydrogen bonds

Van der Waals bonds

Bond energy (id mo!')

600-1000

60-700

1 10-3 50

Up to 1000

Up to 80

Up to 40

0. 08-40

In addition to adsorption theory, and as will be discussed in more detail later in the

text (Section 6.6.4.1), mechanical interlocking may also be an important mechanism

of interfacial adhesion in bast fibre reinforced PMCs. The mechanical interlocking

theory attributes adhesion to a 'lock and key' effect, provided by the surface

roughness of the substrate. This form of bonding is likely to be more effective under

shear, rather than tensile, loading (Hull & Clyne, 1996). A greater resistance to

tensile failure is likely if some re-entrant angles are present.

2.1.4 Fibre microstructure

2.1.4.1 Volume fraction

Many factors combine to affect composite properties. However, in the opinion of

Matthews and Rawlings (1994), the relative proportions of the phases, expressed as a

volume fraction (Vf ), is the single most important parameter. The volume weighted

average of the properties of each constituent comprising the composite can be used to
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describe a number of material properties. In general terms, this relationship is known

as the 'Rule of Mixtures' (ROM) and may be expressed as follows:

X =	 +VmXm	 (2.8)

Where:	 X	 is the composite property

Xf	 is the fibre property

Xm	 is the matrix property

Vm	 is the volume fraction of matrix. This is the volume of

matrix in the composite as a fraction of the total volume
of the composite.	 Assuming that the composite
consists of two phases only (with no voids), Vm may be

expressed alternatively as (i - Vf).

Equation 2.1 is an example of a ROM relationship. Equation 2.8 can be used to

predict, say, the density of a composite from a prior knowledge of the densities of

each phase. It may also be used to predict some mechanical properties in certain

instances. For example, the ROM, can be used to predict the axial stiffness of

unidirectional long-fibre composites and has been used, by extrapolation, to predict

the strength and stiffness of natural fibres (Bisanda & Ansell, 1991).

Since the strength and stiffness of the reinforcement are generally far greater than that

of the matrix, it is apparent from Equation 2.8 that, in general, it is of benefit to have

as high a volume fraction of reinforcement as possible. This, however, has limitations

since there is an upper ceiling to Vf . For a uniaxially aligned composite containing

fibres of circular cross section, the theoretical upper value lies between around 75%

and 90% depending upon the packing arrangement (Hull & Clyne, 1996). In

commercial PMCs, Vf generally lies in the range 10% to 70%.

2.1.4.2 Fibre architecture

As intimated in Section 2.1.2, the orientation and the aspect ratio of the reinforcement

(since this affects the efficacy of stress transfer between phases) is important in terms
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of the mechanical response of the material. The orientation of long fibres is frequently

in the form of a unidirectional lamina (or plies) consisting of many fibres lying parallel

to one another as shown in Figure 2.5. Many laminae are often stacked up upon one

another to form a laminate, possibly in either a cross-ply or angle-ply configuration

(Figure 2.5). The stacking sequence is denoted by the angle made with respect to the

x direction of each ply in the laminate. For example, in the laminate shown in Figure

2.5(a), the stacking sequence is 00/900100/00/900100 which simplifies to {OI9OIOJ (Hull

& Clyne, 1996). The laminate structure referred to above is generally only applicable

to high performance materials. Often, woven, braided or knitted fibre fabrics are used

as convenient reinforcement configurations. A commonly used form of fibre

distribution, particularly for low-cost applications is chopped strand mat (CSM). In

CSM, relatively long bundles of fibres are distributed in a planar-random sense. This

form of reinforcement results in planar-isotropic laminate properties, but is limited to

fairly low values of VS,. (Hull & Clyne, 1996).

2.1.5 Elastic deformation of laminates

2.1.5.1 Axial s4fJizess

In the case of a unidirectional long-fibre laminate loaded parallel to the fibre axis, axial

stiffness may be expressed, as indicated above, by the ROM relationship. In this

instance, the axial modulus of the composite can be given by:

E1 VfEf + (i - Vi )Em	 (2.9)

Where:	 E1	 is the axial modulus of the laminate

Ef	 is the modulus of the fibre (assuming that the fibre

possesses isotropic properties)

Em	 is the modulus of the matrix
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Figure 2.5 Schematic representation of the stacking sequence in a multiply laminate
(Source: Hull & Clyne, 1996).

This analysis is based upon the premise that both fibre and matrix strains are equal

(the overall composite strain, e ) and that the composite can be treated as two

'slabs', one of 'reinforcement' and the other of 'matrix', constrained to deform to the

same extent. This type of equal strain model is also known as a 'Voigt model'.

2.1.5.2 Transverse slffiiess

Whereas, under uniaxial loading in long-fibre composites both matrix and fibre

undergo equal strain, under transverse loading the situation is complicated by the

perturbation of the matrix due to the presence of fibres. The effect of this is to

introduce regions within the matrix which undergo relatively greater strain. In effect,

the fibres act as stress concentrators which may simulate localised inelastic behaviour

arising from, say, interfacial debonding, plastic deformation of the matrix and

microcracking, at relatively low levels of applied stress (Hull & Clyne, 1996).
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Because of this, a slab model approach which assumes equal stress (rather than equal

strain as in the model described above), does not yield such satisfactory predictions

for transverse stiffness. According to Hull and Clyne (1996), the most successful

semi-empirical prediction is that due to Halpin and Tsai (1967), which broadly takes

into account enhanced fibre load bearing, relative to the equal stress assumption.

Transverse stiffness E2, is given by:

F Em(1+7?Vj)

(i-v)
(2.10)

Ef 1

Em
Where

m

E2 	 is the transverse laminate modulus

is an adjustable parameter generally of the order of

unity.

For the hypothetical composite system described in Section 2.1.2 (Ef = 50 GN m 2; Em

= 3.5 GN m 2), the axial and transverse moduli, predicted from Equations 2.9 and

2.10 respectively are represented graphically in Figure 2.6 (assuming that = 1).
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Figure 2.6 Predicted variation of axial and transverse laminate moduli with Vf.

The off-axis elastic deformation of unidirectional laminates will not be considered

herein. However, one particular case (namely that of a random configuration)

warrants mention in view of the importance of this reinforcement arrangement in this

work.

2.1.5.3 Young 's modulus ofplanar-random orientedfibre

As noted previously and as will be discussed more ffilly later in this chapter, the

reinforcement utilised in the production of laminates in this work was in the form of a

non-woven felt. The orientation of the fibres within this fabric might best be

described as 'pseudo planar-random'. The fibre distribution cannot be regarded as

being wholly planar-random since some preferred fibre alignment is undoubtedly

imparted during manufacture. However, it is appropriate to consider the stiffness of a

planar-random fibre reinforced laminate since this would probably be the closest

approximation in this instance (especially considering that it was proposed to compare
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Figure 2.7 Theoretical relationship between E and V1 for a planar-random

reinforced laminate.

By assuming the laminate to be composed of an infinite number of micro-laminae, it

may be shown that the in-plane Young's modulus, Er, of a random fibre reinforced

laminate may be given by (Piggott, 1980):

3	 5
Er	 E1 + 1 E2	 (2.11)

By substituting Equations 2.9 and 2.10 into Equation 2.11, it is possible to derive a

theoretical expression for the variation of Young's modulus with V1 , for a planar-

random array of fibres. This is presented graphically in Figure 2.7 (based upon the

same hypothetical laminate used previously). It may be observed that up to around
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40% to 45%, the relationship between Young's modulus and Vf shows an almost

linear relationship.

2.1.6 Strength and failure of composites

If a unidirectional lamina subject to an arbitrary state of stress is considered, failure

may occur as a result of critical values of axial tensile (o w ), transverse tensile (cr2)

or shear stresses (r12 ) being exceeded (or a combination thereof), as depicted in

Figure 2.8 (Hull & Clyne 1996).

.cr______

Figure 2.8 Schematic representation of the failure modes of a unidirectional lamina
due to (a) axial tensile stress, (b) transverse tensile stress and (c) shear stress (Source:

Hull & Clyne, 1996).
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2.1.6.1 Axial tensile failure

If it is assumed that both reinforcement and matrix behave in a brittle manner (i.e.

neither phase undergoes yielding prior to fracture) then, for a unidirectionally aligned

long-fibre composite loaded parallel to the fibre axis, two distinct failure scenarios

may be envisaged. The first occurs when the fibre strain to failure, s, is less than

that of the matrix failure strain, e,. The second occurs when the failure strain of the

matrix is less than that of the fibre. Simplified models for the prediction of axial

laminate strength (°) have been developed utilising this approach (Hull & Clyne,

1996).

In the first instance, fibre failure precedes matrix fracture (i.e. e < Cmu). In this

situation, it may be shown that the failure stress of the lamina can be expressed as

follows (Hull & Clyne, 1996; Piggott, 1980):

o- =V1 0 +(l—Vf )a ft 	(2.12)

Where:	 c-mfu is the matrix stress at the onset of fibre fracture

When the fibre failure strain exceeds that of the matrix, cracking of the latter occurs

prior to axial composite failure. As the composite is loaded, matrix cracking initiates

once the failure strain Emu is reached. As cracking continues, load is progressively

transferred to the fibres. If the load is carried entirely by the fibres, then the failure

stress o is given by:

c-lu = Vf c-ft
	 (2.13)

If, however, matrix cracking is incomplete before all the load has been transferred to

the fibres then the composite axial strength can be given by:
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0-lu =V,f-o,U +(l—Vf )a	 (2.14)

Where:	 ofmu is the fibre stress at the onset of matrix cracking

As indicated above, these models are simplifications. In reality, the situation is

complicated by the fact that residual loads continue to be carried by the phases even

after one or other has failed and that a certain amount of stress transfer also takes

place. In addition to this, it is assumed that the strength of a fibre is constant along its

length and that failure takes place in isolation; neither assumption is likely to be true

(Hull & Clyne, 1996).

2.1.6.2 Transverse failure

The nature of the interfacial bonding, the fibre distribution and the presence of voids

combine to influence failure under transverse loading. As noted in Section 2.1.5,

under transverse loading, stress concentrations are stimulated in the matrix and in

such regions of high local stress, interfacial debonding can (for example) occur. The

result is that the laminate stress and strain to failure under transverse loading is often

significantly less than that of the unreinforced resin itself (Hull & Clyne, 1996).

2.1.6.3 Shear strength

According to Hull and Clyne (1996), there is no simple analytical expression to

predict the effect of Vf on the shear strength of laminates. It is, nevertheless,

worthwhile noting that failure may occur in any one of the six directions depicted

schematically in Figure 2.9. It should be noted that in Figure 2.9, the designation of

the shear stresses are as follows. A shear stress designated r, refers to a stress acting

in the i-direction on a plane with a normal in the f-direction. For example i_12 acts in

the 1-direction, along a plane perpendicular to the 2-direction.
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Figure 2.9 Possible directions of shearing in a unidirectional fibre composite
(Source: Hull & Clyne, 1996).

2.1.6.4 Failure of laminates under off-axis loading

From the foreging, it is clear that the strength of a unidirectional lamina is highest

when it is loaded parallel to the fibre direction (axial tensile strength) and lowest when

it is loaded perpendicular to this direction (transverse tensile strength). At

intermediate angles, failure may occur by a combination of axial tensile, transverse

tensile or shear loads. The 'Tsai-HilI' criterion (Equation 2.15) can be used to predict

the failure of a unidirectional laminate under off-axis loading and furthermore can

provide, by inspection of the relative magnitudes of the terms, an indication of the

likely failure mode (Hull & dyne, 1996).

cos2 q 
(cos2 0 - sin 2 cz) sin4 q	 cos2 sin2	

-32

2	 + 2 +	 2
OHu	 a2	 12u

(2.15)
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Where:	 is the off-axis tensile failure stress of the lamina

is the loading angle

o 1	 is the axial tensile strength of the lamina

	

2u	 is the transverse tensile strength of the lamina

	

12u	 is the shear strength of the lamina

2.1.6.5 Strength of a planar-random arrangement offIbres

For a planar-random reinforcement, a laminate might be thought to consist of multiple

unidirectional sub-Iaminae, each oriented at differing angles, 0, to the applied stress

(Piggott, 1980). For such an arrangement, it may be shown that the ultimate strength,

o-,, for a random arrangement of fibres may be given by an expression analogous to

that for the stiffness (Equation 2.11), as follows:

= V1 a + (1— V1 )amu
	 (2.16)

2.1.7 Toughness

For many engineering materials, adequate toughness (or work of fracture) is essential

for their safe use in practical situations. Toughness may be regarded as the resistance

a material possesses to the propagation of cracks or crack-like defects which might

ultimately lead to failure. These cracks may, for example, be macroscopic, 'stress

raisers' such as bolted joints, or sharp changes in section, or alternatively pre-existing

crack-like defects in the material itself. These cracks result in localised stress

concentrations, the magnitude of which depend upon the size and shape of the crack.

If the stress concentrations are high enough, the material in the vicinity of the crack-

tip may fail. Under certain conditions a crack may propagate catastrophically, leading

to sudden failure of the material. The crack-tip may, therefore, be viewed as a

mechanism whereby local stresses in the material are raised sufficiently for fracture to

occur. However, for the crack to propagate, it must be energetically favourable for it

to do so. The energy to drive the crack forward is provided by the release of stored
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strain energy in the material, together with any external work done by the loading

system. Thus, if a material possesses mechanisms whereby significant amounts of

energy can be absorbed as the crack advances or if by some contrivance, the stress

concentration at the crack-tip can be relieved, then it is likely to be tough.

Brittle materials such as glass have little means of energy absorption or crack-blunting

and hence fail in a catastrophic manner, exhibiting low fracture energies of around

0.01 kJ m 2. Ductile metals such as mild steel, on the other hand, absorb large

quantities of energy by plastic deformation. Typically, tough engineering materials

such as steel exhibit fracture energies of around 100 kJ m 2 (Hull & Clyne, 1996). As

indicated in Section 1.1, many composites exhibit very good toughness, a1bei the

constituents are essentially brittle. The reason for this may be the heterogeneous

nature of composite materials (Gordon, 1976), in that they possess a number of crack-

blunting and energy absorption mechanisms.

2.1. 7.1 Interface

As noted in Section 2.1.3, the interface is of great importance. Whilst sufficient

adhesion between fibre and matrix is desirable so as to ensure adequate composite

integrity, fibre-matrix uncoupling under certain circumstances is necessary in order to

stimulate toughening mechanisms within the composite. For example, for a

composite to have high toughness, it is necessary that a crack travelling through the

matrix is repeatedly deflected and blunted. This occurs when an advancing crack

meets an interface which subsequently ruptures, resulting in the crack being blunted or

deflected. Cook and Gordon (1964), proposed a mechanism whereby crack-

deflection would take place at an interface if the interface 'strength' was

approximately 20% of that of the matrix. Crack-deflection criteria based on energetic

considerations have also been proposed (e.g. Kendall, 1975). Interfacial fracture

energies have been measured experimentally for single filament polymer matrix

composites (e.g. Pegoretti ci al, 1996; Hampe & Marotzke, 1997).

Energy is dissipated in the debonding process, through the creation of new crack

surfaces. In addition to this, debonding provides a means by which fibres may pull-

out from the matrix sockets and in the process a substantial amount of energy is
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absorbed through frictional sliding (Hull & Clyne, 1996). Thus, the conditions under

which debonding and crack-deflection take place are of significance in terms of

composite toughness. This aspect will be discussed more fully in Chapter 6.

Interfacial bond strength, therefore, has implications for the overall toughness of the

composite. If interfacial adhesion is too great, a crack propagating through the matrix

will not be deflected along the interface, as a result of which, the crack may trayerse

the fibre without the energy absorbing mechanisms (save for the energy required to

fracture the fibre) of interfacial debonding (see below) and fibre pull-out being

stimulated. This would undoubtedly lead to poor composite toughness. There are a

number of energy absorbing mechanisms implicated in PMCs.

2.1. 7.2 Energy absorbing mechanisms

The contribution that each of the energy absorbing mechanisms makes to the overall

toughness of the composite varies, depending upon the composite system involved

and the properties of the phases. The various mechanisms can, nevertheless, be

summarised as follows:

. Matrix deformation and fracture. With brittle thermoset polymers, the

contribution from matrix deformation and fracture to the overall fracture energy of

the composite is likely to be small. Typically, fracture energies of thermosetting

polymers are of the order of 0.1 kJ m 2 (Hull & Clyne, 1996).

• Fibre fracture. Brittle fibres such as glass exhibit very low fracture energiçs of

the order 0.01 kJ m 2 . The contribution to the overall work of fracture of the

composite is likely, therefore, to be small (Hull & Clyne, 1996). Wood fibres can,

however, exhibit high fracture energies. It has been observed that these fibres can

deform in a pseudo-plastic' manner, when strained parallel to the fibre axis (Page

et a!, 1971). It has been postulated that the high work of fracture, or toughness,

observed in wood is a result of its structural organisation (Gordon & Jeronomidis,

1974, Jeronomidis, 1976, Jeronomidis, 1980). This contention has been borne out

by the manufacture of artificial composites which mimic the structure of natural

composites. In this way it has been found that it is possible to obtain fracture
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energies comparable with those of ductile metals and higher than that of other

artificial composites (Gordon & Jeronomidis, 1980). Thus fibre fracture could,

potentially, contribute greatly to the toughness of a composite.

• Interfacial debonding. The debonding energy in composites is generally quite

small, '--0.01 kJ m 2 (Hull & Clyne, 1996; Piggott, 1980) and the resulting

contribution to the overall work of fracture is generally low (--'-'0.5 U m 2). As

discussed above, if the interfacial fracture energy is increased too much, debonding

is hindered.

• Frictional sliding and fibre pull-out. Potentially, this mechanism can absorb

large amounts of energy (—'100 U ma ). Frictional energy dissipation during pull-

out is dependent upon interfacial roughness, contact pressure and sliding distance

(Hull & Clyne, 1996).

In summary, adequate toughness is a prerequisite of an engineering material. Many

PMCs often exhibit very good works of fracture, particularly when viewed on a

specific basis. Toughness is dependent upon interfacial effects and the material

properties of the constituents. A number of energy absorbing mechanisms are thought

to contribute to the overall work of fracture of composites, of which fibre pull-out is

the most significant. However, with natural fibres as a reinforcement, fibre fracture

may offer a potential additional mechanism for toughness enhancement.

2.2 Composite manufacture

As noted in the previous chapter, the most frequently used matrices are thermosetting

polymers, with glass fibre being the most commonly employed reinforcement. Since

the properties of a composite are largely governed by the volume fraction of

reinforcement and the orientation thereof, which in turn are parameters controlled by

the manufacturing process, a review of these is appropriate. The manufacture of
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thermosetting PMCs can be conveniently divided into open-mould and closed-mould

processes.

2.2.1 Open-mould processes

2.2.1.1 Hand laminating

Because of the flexibility of the method and low capital outlay in moulds and

equipment, hand laminating is widely used to produce composite products of large

size and complex shape. The production of sailing craft, motor boats and canoes is

typically by this method.

Essentially, the process involves the application of a layer of neat resin, the 'gel coat',

to a female mould which has been sprayed with release agent to facilitate the removal

of the finished component. Once the gelation of this primary coat has taken place,

alternate layers of resin and reinforcement are applied until the desired thickness is

achieved. A ribbed roller is used to ensure frill impregnation of the reinforcement by

the resin. Once cured, the component is removed from the mould and finished.

2.2.1.2 Spray-up

In this process both resin and fibre are delivered simultaneously onto the mould.

Continuous strands of reinforcement are chopped into short lengths by a chopper unit

and carried onto the mould surface by a stream of catalysed resin.

2.2.1.3 Filament winding

Continuous fibre strands are fed through a resin bath and thence onto a rotating male

former. The fibre feed and resin bath are mounted on a traversing head in such a way

that by manipulating the relative speed of the traversing head and the speed of

rotation of the former, the desired winding angle may be achieved. Filament winding

is used in the production of pressure vessels, gas bottles, pipes, rocket motors etc.

Other forms of open-mould processes exist, many of which are variations on the ones

described above. A summary of the open-mould processes detailed is given in

Appendix 1.
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Closed-mould processes

2.2.2.1 Vacuum hag

In this process, reinforcement and resin are applied by hand lamination techniques to a

female mould. The laminate is then covered with a release film and a rubber bag,

clamped to the edges of the mould, placed over the laminate. The air in the space

between the bag and the laminate is evacuated so that atmospheric pressure is applied

over the surface of the composite, aiding consolidation of the laminate and

impregnation of the fibre by the resin. External hand rolling is still required to ensure

the full penetration of the fibres.

A variation on the vacuum bag theme is known as pressure bag moulding. In this, a

positive pressure is applied rather than atmospheric pressure alone, resulting in

improved consolidation and higher fibre volume fractions.

2.2.2.2 Autoclave

This is a vacuum bag assembly as described above, placed within a pressure vessel.

The laminate is subjected to vacuum, positive external pressure and heat

simultaneously, resulting in very good consolidation, curing and high volume

fractions.

2.2.2.3 Cold press

Good dispersion and impregnation of the fibres by the resin can be achieved by the

use of the high pressures obtained using rigid moulds mounted in hydraulic presses.

Dry reinforcement is loaded into the mould and resin poured on top. The mould is

then closed and pressure applied, distributing the resin and impregnating the

reinforcement. Once the resin has hardened, the pressure is released and the

component removed from the mould.

2.2.2.4 Hot press

This process is similar to the cold press method. However, production rates are

improved substantially by the application of heat. Because of this, metal moulds must

be used, adding to the expense of the process.
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2.2.2.5 Resin transfer moulding

This process again has similarities with cold pressing, in that reinforcement is loaded

into a matched male/female mould. However, rather than introducing the resin before

the mould is closed and pressed, the resin is pumped into the mould through injection

ports, afler closure.

2.2.2.6 Vacuum-assisted resin injection

This process is a development of resin transfer moulding. The closed mould is first

sealed around the edges after which it is partially evacuated; resin is then injected by

pump or gravity feed. The advantages of this system are that better consolidation of

the laminate and lower void content in the composite are achieved, as well as a higher

volume fraction.

2.2.2. 7 Injection moulding

A technique similar to the one used to process thermoplastics is used to manufacture

high volume goods such as electric plugs and sockets.

The open- and closed-mould techniques described above are only capable of

producing one component at a time. Continuous processes such as pultrusion,

continuous lamination and continuous filament winding are able to produce

composites without interruption. However, the range of shapes which can be

achieved is limited. A summary of the closed-mould processes described above, is

given in Appendix 2.

In summary, a number of manufacturing methods can be utilised to produce PMCs.

The system employed will depend upon many factors including, the size of the

composite, fibre volume fraction, orientation and morphology and the shape and

complexity of the component etc. Tooling and equipment costs are also important

criteria.
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2.3 Baslfibres: biology, chemistry, ulirastructure
and properties

2.3.1 Bast fibres

Flax (Liniim usilalissimum), hemp (Cannabis saliva) and jute (Corchorus capsularis)

are dicotyledonous plants containing long vegetable fibres known as bast fibres.

These are obtained from the bark, or basE, of the plant stem. Figure 2.10 shows the

location of these fibres in the stem of the flax plant (Catling & Grayson, 1982). Flax

and hemp fibres have similar characteristics and end uses and the plants have long

been cultivated by mankind (Weindling, 1947). Whereas flax and hemp grow well in

temperate climates, jute is a tropical species (Weindling, 1947).

The bast fibres that are separated from the plant stem during retting and decortication

(see below) are referred to as technical fibres or fibre bundles. It is these which are

subsequently used in textiles, or other applications. The length of these fibres varies

considerably. In flax, for instance, the length of the technical fibres might be from

0.3-0.6 metres whilst in hemp they range from 0.9-1.8, but can attain lengths of up to

4.5 metres (Weindling, 1947). The thickness of the technical fibres vary from around

50 to 500 jim in flax to 0.5 to 5 mm in hemp. The fibre bundles are, in turn,

composed of many individual cells. These too vary in length and diameter. In flax,

for example, cell length varies from 5 to 50 mm, averaging around 25 mm, whilst the

diameter ranges from 15 to 35 jim, giving the fibres an average aspect ratio of 1200

(Weindling, 1947). Hemp cells range from 5 to 55 mm in length, averaging around 20

mm and are between 0.125 and 0.375 mm in diameter (Weindling, 1947). The

average aspect ratio for hemp cells is 1000 (Weindling, 1947).
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Figure 2.10 Cross-section of a flax stem, showing the location of the fibres
(Sozirce. Catling & Grayson, 1982).

2.3.2 Chemical composition of lignocellulosic fibres

Plant fibres are, themselves, composite structures of considerable complexity and

elegance. Since the mechanical performance of composites is heavily dependent upon

the properties of the reinforcement, it is appropriate to consider, briefly, the chemical

composition and ultrastructure of bast fibres since this has a direct bearing upon their

mechanical behaviour. Bast fibres are lignocellulosic fibres which consist of three

main polymers: cellulose, lignin and matrix polysacharides (such as pectins and

hemicelluloses) associated with cellulose and lignin in the cell wall. In addition to
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18.6
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12.1

these, a number of non-structural components such as waxes, inorganic salts and

nitrogenous substances are also present (Desch & Dinwoodie, 1996; Focher, 1992).

A summary of the main chemical constituents of bast fibres, compiled from a number

of sources, is presented in Table 2.2. It may be noted that there is a significant degree

of variation due, no doubt, to fibre variability and different analysis methods.

Nevertheless, it is possible to distinguish general trends and it is possible to derive an

'average' or typical composition for a hypothetical bast fire (based upon a flax or

hemp fibre ultimate). This might consist of around 85% (by mass) cellulose, 10%

hemicellulose and 5% lignin.

Table 2.2 Summary of the main chemical constituents of flax, hemp and jute
(Various sources).

Fibre
	

Ce/I- Hemi- Pectin Lignin Extra-
 

Reference
ty/)e	 zilose cellulo	 dives

-Se	 (%)

J1a

jute

hemp

23.3

13.3

13

2.4

2.2

3

4.1

4

17.5

14.9

13.1

13

80-90

79

71.2

81

85.7

83.4

74

59.9

70-83

69.8

71.6

72

26*

2.6

1.1

2

10.2*

1.0

1

23-28 *

0.2

0.2

<1

3-4	 Weindling, 1947

1.9	 Bledzkietal., 1996

6	 Gassan & Bledzki, 1996

-	 Robson eta!., 1993

5.3	 Weindling, 1947

0.9	 Bledzkietal., 1996

-	 Robson eta!., 1993

9.9	 Lilholt & Bjarre, 1997

1.5-6.9 Weindling, 1947

0.6	 Bledzki eta!., 1996

1.8	 Gassan & Bledzki, 1996

-	 Robsonetal, 1993

* Includes "pectose bodies, lignin", "pectose and gummy substances" and "incrusting and pectin
matter". These include hemicellulose, pectin and lignin.
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2.3.2. 1 Cellulose

In flax, hemp and jute, cellulose accounts for around three quarters of the cell wall

material (Weindling, 1947). Cellulose may be described as a high molecular weight,

long chain molecule, consisting of j3-D anhydroglucopyranose units, bound with

/3 - (1 —* 4) glycosidic linkages, as represented schematically in Figure 2. 11 (Desch &

Dinwoodie, 1996; Fengel & Wegener, 1984; Focher, 1992). Every alternate unit

(C61-1f005) is rotated through 1800 (Desch & Dinwoodie, 1996). 	 Two

anhydroglucopyranose molecules form the smallest repeating unit in the chain, known

as the cellohiose unit. The number of anhydroglucopyranose units (the degree of

polymerisation — DP) in plant cellulose lies in the range 7,000-15,000 (Fengel &

Wegener, 1984). In retted (see below) flax fibre the DP is of the order of 2,500-

3,000 depending upon the growing factors and retting conditions (Focher, 1992).

OH	
OH

H	 H	 H	 H	 H	
/ 

H

ThiThi0	
H H

OH	 OH	 D1OH
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Cek,00s. urn!

Figure 2.11 Schematic representation of part of a cellulose chain.
(Source: Desch & Dinwoodie, 1996).

The structure of the anhydroglucopyranose unit is not flat, but bent in the form of a

chair (this is the lowest energy configuration — Fengel & Wegener, 1984). Ribbon-like

cellulose molecules pack together to form a crystal structure with neighbouring

cellulose chains displaced by one quarter of a repeating unit. The existence of

hydroxyl (-OH) groups facilitates intra- and inter-molecular hydrogen bonding, which

binds adjacent molecules and imparts rigidity to the structure.	 Individual

anhydroglucopyranose units are joined covalently, giving rise to a very strong
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molecular chain along its length (Desch & Dinwoodie, 1996). This packing

arrangement is shown schematically in Figure 2.12.

Figure 2.12 Schematic representation of the packing arrangement of cellulose chains,
showing inter- and intra- molecular bonding (Source. Focher, 1992).

Further aggregation of the cellulose molecules, gives rise to the crystalline 'backbone'

of what may be regarded as the basic fibrous building element of all lignocellulosic

fibres - the microji br/i. The diameter of this unit is generally of the order of 10-30

nm. Nevertheless, even smaller units, termed elementary fibrils have been detected,
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having average diameters of between 2 and 4 nm (Fengel & Wegener, 1984). As will

be discussed further in Section 2.3.3 this cellulose 'core' is surrounded by para- and

amorphous cellulose as well as other polymeric material (Fengel & Wegener, 1984).

In a longitudinal sense, the cellulose 'core' of the fibril is thought to consist of

crystalline regions (the crystal/lies) interspersed with less ordered domains. The exact

nature of this structure has not been fully elucidated and a number of models have

been proposed (Fengel & Wegener, 1984; Chanzy, 1990). The length of the

crystallites varies from around 50 to 100 nm, depending upon the origin of the

cellulose (Chanzy, 1990; Desch & Dinwoodie, 1996). Between 70% and 80% of the

cellulose present in bast fibres is crystalline (Fengel & Wegener, 1984). It should be

noted that a significant proportion of this non-crystalline cellulose corresponds to the

surface chains (Chanzy, 1990).

2.3.2.2 Hemicelluloses

These are heterogeneous polysaccharides, composed of various monomeric units such

as D-glucose, D-mannose, D-galactose, D-xylose, L-arabinose and small amounts of

L-rhamnose in addition to D-glucuronic acid, 4-O-methyl-D-glucuronic acid and D-

galacturonic acid (Sjöström, 1993). Structurally, hemicelluloses are branched

molecules having a low degree of crystallinitv (Fengel & Wegener, 1984; Desch &

Dinwoodie, 1996). Typically, DP is only around 200 (Sjöström, 1993). In wood,

hemicelluloses are thought to account for some 2000 to 30% of the dry weight of

wood (SjostrOm, 1993) whereas in bast fibres this is considerably less (see Table 2.2).

According to Fengel and Wegener (1984). there is most probably a linkage between

polysaccharides and lignin, the so called lignin-carbohydrate complex'. It seems

highly probable therefore that hemicelluloses function as 'interfacial coupling agents',

linking the cellulose 'core' to the surrounding lignin.

2.3.2.3 Peclins

Pectins are present in plant tissue to varying degrees, being found predominantly in

fruit peel and gums (Fengel & Wegener, 1984). Unretted flax contains between 3%

and 4% pectins (Kertesz, 1951). In flax, pectins are to be found in the cells

surrounding fibre bundles, especially those separating bast fibres from core tissue

(Akin et al., 1996). High concentrations of pectins occur in the primary cell wall and
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middle lamella of fibres (Fengel & Wegener, 1984; Focher, 1992; Sjöströrn, 1993;

Akin el al., 1996). Here, in conjunction with hemicelluloses, their function is that of a

cementing material (Focher, 1992). Because of their importance as a binding

material, removal of pectins during the retting process (see below) is of particular

importance in the production of technical fibre.

The main building block of pectin is a linear chain of a - (i - 4) linked D-

galacturonic acid units (Kertesz, 1951; Stephen, 1983; Aspinall, 1980; Fengel &

Wegener, 1984; SjOstrOm, 1993). The predominant galacturonan backbone of pectin

is, however, modified by the insertion, at intervals, of a -L-rhamnopyranose units

(Aspinall, 1980). Other neutral sugars such as D-galactose and L-arabinose

(Sjöström, 1993; Aspinall, 1980) are present in extended side chains, whilst D-xylose;

L-fucose; D-glucuronic acid are present in short side chains (Aspinall, 1980).

The uronan chain is ordered into blocks of unbranched, unesterified segments and

heavily branched, esterified blocks (Jarvis, 1984). The latter are frequently

interrupted by rhamnose units, linked by a - (1 -^ 2) and a - (1 -> 4) bonds to

adjacent galacturonic acid units (Fengel & Wegener, 1984). Many of the rhanmose

units carry arabinan and galactan side chains. The rhamnose units introduce 'kinks'

into the chain. The unbranched, unesterified blocks are rarely interrupted by

rhamnose units. The chains are thus able to aggregate together along the unbranched

lengths and form junctions, through bonding together non-covalently by co-ordinated

calcium ions. This enables gel formation to take place. High ester pectic

polysaccharides are able to form acid gels (Jarvis, 1984).

2.3.2.4 Lignin

Lignin is an amorphous, highly cross-linked aromatic polymer resulting from the

dehydrogenative radical polymerisation ofp-coumaryl, coniferyl and synapyl alcohols,

which are the precursors and building blocks of all lignins (Focher, 1992). By mass,

lignin accounts for some 20% to 40% of the cell wall in wood (Fengel & Wegener,

1984; Focher, 1992). In flax this figure lies between 2% and 5% depending upon the

degree of retting (Focher, 1992).
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2.3.3 Structural organisation of the cell wall

Broadly speaking, lignocellulosic fibres are analogous to synthetic fibre reinforced

composites, in which cellulose forms the reinforcement with other polysaccharides

and lignin, the matrix. The basic fibrous building element of the cell wall may be

regarded the microfibril. The microfibril can itself be viewed as a composite, in which

crystalline cellulose forms the 'reinforcement' core, surrounded by a 'matrix' of para-

and amorphous cellulose, hemicellulose and pectins. These are, in turn, sheathed in

lignin. Several models of the association of the cell wall components have been

proposed by various authors. Figure 2. 13(a), shows a schematic representation of the

cross-section of the microfibril. As may be noted, in this model a single crystalline

'core' is surrounded by a 'matrix' of other polysaccharides and lignin. Figure 2.13(b)

depicts, not only the supramolecular structure of the microfibril, but also takes into

account, smaller elementary fibrils. Nevertheless, in both these models, it may be

observed that there is a close association between the cellulose 'core' and the

surrounding hemicelluloses and lignin.
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(a)	 (b)

Figure 2.13 Schematic representation of the cross-section of an individual microfibril
(Sources: a) Desch & Dinwoodie, 1996; b) Fengel & Wegener, 1984).
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Figure 2.14 Schematic representation of the cell wall structure of a typical
lignocellulosic fibre (Source: Desch & Dinwoodie, 1996).

In detail, the structure of an individual lignocellulosic fibre consists of a primary and

secondary cell wall, with the arrangement of the microfibrils within each of these

varying as depicted schematically in Figure 2.14. The very thin primary wall, lying at

the outside of the fibre, adjacent to the middle lame/la (the interstitial region between

adjacent cells), consists of a more or less random arrangement of microfibrils (Desch

& Dinwoodie, 1996). The secondary wall may be further sub-divided into S 1 , S2 and

S 3 layers. The microfibrils within the outermost S i layer, which forms around 10% of

the wall thickness, are arranged in two distinct spirals; one left handed and the other

right handed ('Z' and 'S' helices). The microfibrils in this layer lie at angles of

between 500 and 700 to the fibre long axis (Desch & Dinwoodie, 1996). The angle

formed between the microfibril axis and the fibre axis is referred to as the

microfi br/i/ar angle. The microfibrils in the middle, S 2, layer which comprises some

85% of the total wall thickness, are aligned parallel to one another in a steeply

inclined helix. In wood, the microfibrillar angle of the S 2 layer lies between 100 and

30° (Desch & Dinwoodie, 1996). In bast fibres, the microfibrillar angle of the S2
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layer is generally low; in hemp for instance, this has been reported to lie between 20

and 2.3° (depending upon the measurement technique used) and in jute at 790

(Preston, 1974). The mechanical properties of the fibre are closely linked to the

microfibrillar angle of the S 2 layer (see Figure 2.15); low angles being associated with

higher strength and stiffness (Mark, 1967). The S 3 layer in wood fibres accounts for

only around 1% of the wall thickness (Desch & Dinwoodie, 1996).
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Figure 2.15 Variation of the fibre tensile (Young's) modulus with the microfibrillar
angle of the S2 layer (Source. Page et al., 1977).

2.4 Fibre extraction, processing and properties

2.4.1 Introduction

Flax and hemp, as well as other bast fibres such as jute, are extracted from the stem in

a decortication process which involves several operations. Firstly, the mature plant is

49



either cut or pulled from the ground. Pulling is preferred to cutting as it preserves as

much of the fibre length as possible (Searle & Tuck, undated). Nevertheless at

present, harvesting in the UK is by cutting. The straw is then retied. In this operation

the technical fibres are loosened from the surrounding stem tissue in a form of

controlled rotting. Enzymes, secreted by micro-organisms, degrade the non-cellulosic

substances, mainly pectins, which are in abundance in the surrounding tissue, thereby

liberating the intact fibre bundles (Dempsey, 1975; Chesson, 1978, 1980; Sharma,

1987b). Once retting is complete, the straw is dried, usually by spreading in the field

and when it is dry it is scutched. This involves the straw being broken up

mechanically with extraneous woody material, the shives, being removed from the

fibre bundles. The final operation is termed hackling. This involves the fibres being

pulled through a set of pins to align them and to remove any remaining woody

material. Short or broken fibres known as tow are also separated from the long fibres

(Dempsey, 1975).

According to Dempsey (1975), fibre quality is very sensitive to the retting operation

and whilst ultimately fibre quality is dependent upon the quality of the straw, poor

retting can lower the quality of the resultant fibre. In view of the influence of retting

upon fibre quality, it is appropriate to briefly review the methods of retting.

Traditionally, dew or field retting and water retting have been employed (Dempsey,

1975). Recently, however, attention has been directed towards retting procedures

involving chemical or enzymatic degradation of pectins (Sharma, 1 987c; Vilppunen et

al., 1992).

As indicated, retting involves the liberation of the fibres in the straw by the action of

enzymes capable of decomposing pectins. Much of the literature cited in the

forthcoming sections concerns the retting of flax, since a considerable amount of

research has been carried out on this fibre due to its commercial importance.

Nevertheless, the same principals apply to the retting of other bast fibres, in particular

hemp, which, according to Dempsey (1975) has traditionally been retted in much the

same way.
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2.4.2 Dew retting

Dew retting involves laying pulled straw on the ground when the temperatures are

above 0°C and turning occasionally during the retting period. The retting period

generally lasts for between 25 and 30 days in summer and between 50 and 100 days in

winter (Dempsey, 1975). According to Dempsey (1975), the quality of fibre

produced by this method is inferior to that of water retted fibre (see below). The

principal micro-organisms involved in dew retting are ulingi and although bacteria

have been reported to be present they are often suppressed by the former (Sharma et

a!., 1989; Sharma & Van Sumere, 1992). A major disadvantage of dew retting is

that it is totally dependent upon weather conditions, which can sometimes lead to the

loss of a whole crop. Further, the labour costs involved are high (Sharma & Van

Sumere, 1992).

2.4.3 Water retting

Although water retting used to be carried out in ditches, ponds and slow moving

rivers, this practice has been largely discontinued in many countries due to pollution

problems (Dempsey, 1975). Most water retting nowadays is undertaken in purpose

built retting tanks (Dempsey, 1975; Chesson, 1978; Sharma & Van Sumere, 1992).

Pollution by rettery effluents, however, continues to be problematic and has led to the

decline of flax retting in many countries (Sharma & Van Sumere, 1992).

In this process, the straw is firstly given a preliminary leaching for 2-24 hours

(Chesson, 1978; Sharma & Van Sumere, 1992) after which the leach water is drained

off, fresh water added and the ret commenced. Retting is completed in between 3 and

7 days at water temperatures of between 30°C and 35°C (Sharma & Van Sumere,

1992). The retting action is carried out by enzymes secreted by a population of

mainly anaerobic bacteria. (Dempsey, 1975; Chesson, 1978; Sharma, 1987a;

Majumdar eta!., 1990; Sharma & Van Sumere, 1992).
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2.4.4 Novel retting methods

2.4.4.1 Enzyme retting

One of the drawbacks of retting as an industrial process, particularly dew retting, is

the lack of control over the process. Furthermore, the length of time taken to

complete the ret is comparatively long. In addition to this, the organic by-products of

the process lead to pollution which can be problematic (Dempsey, 1975; Sharma &

Van Sumere, 1992). The use of commercial enzyme preparations has been explored

as an alternative method of retting to overcome these problems (Sharma, 1987a,

1987b; Sharma & Van Sumere, 1992; Majumdar et a!., 1990; Vilppunen et a!.,

1992).

Enzymatic retting is similar in concept to tank retting. However, rather than enzymes

secreted by micro-organisms being responsible for the retting action, commercially

prepared enzymes are used. To date, most studies on the enzymatic retting of bast

fibres have been carried out on a laboratory or semi-industrial scale. Nevertheless, it

has been demonstrated that the retting time can be dramatically reduced. Majumdar

et a!. (1990), for example, reported that the retting of jute can be completed in 48

hours, whilst the ret time of flax has been reduced to 20-24 hours (Sharma, 1987a,

198Th). Vilppunen et a!. (1992) claim to have reduced the ret time to 3-6 hours for

flax.

Sharma (1987b) found that there was no significant difference between the strength of

enzyme retted fibre and that of water retted material, whilst Majumdar et al. (1990),

reported that the strength of enzyme retted jute was higher than that of conventionally

retted fibre. However, Sharma and Van Sumere (1992) state that the strength of

enzyme retted fibre is not as good as that of the best quality water retted fibre. This

was attributed to the inability to control the enzyme action during retting; the enzyme

concentration being higher, and the end point of the ret being reached faster than in

water retting. Owing to this, it is possible to 'overshoot' and over-ret the fibre,

leading to a loss in fibre strength. Furthermore, after retting is complete, there is a

tendency for the residual enzymes to continue to act and weaken the fibre. Methods

have now been developed to overcome these problems (Sharma & Van Sumere,
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1992). Recently, excellent quality flax fibre has been produced on a semi-commercial

scale utiising this retting method (Vilppunen, et al., 1999).

2.4.4.2 Chemical retting

Pectins may be degraded by chelating agents for calcium (Aspinall, 1980). The use of

chelating agents as a novel method for the retting of flax straw has been patented

(Sharma, 1987c). By chelating metal ions from the pectin complex, plant pectins and

hemicelluloses can be extracted with an alkaline solution of chelating agents, leaving

the fibre free from pectins and hemicelluloses (Sharma, 1987c). On a semi-industrial

scale, flax stems have been retted successfully using ethylene dianiine tetra acetic acid

(EDTA) sodium salt (Sharma, 198Th). The quality and strength of the fibre were not

significantly different from either water or enzyrnatically retted fibre but chemical

retting did remove a high percentage of hemicellulose and pectin (shanna, 198Th).

Once retting (by whichever method) has been completed, the fibres may be separated

from the remaining woody material by scutching. Thereafter the material may be

hackled.

Following retting and decortication, the fibre bundles may then be further refined into

individual cells. A technique which has received a significant amount of attention in

this respect is steam explosion treatment (Kessler & Kohler, 1996; Kohler & Kessler,

1999).

2.4.5 Felting

The cost advantage of using plant fibre material as a reinforcement in PMCs was

noted in Chapter 1. However, whilst the cost of the raw material may be

comparatively low, further processing could add significantly to the total cost of

processing the fibres into a useful reinforcement arrangements. Air-laid, needle-

punched, non-woven technology offers a means of forming fibres into felted mats

potentially suitable for use as reinforcement in PMCs (Olesen & Plackett, 1999).
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Essentially, the felting process can be split into three steps. The first involves taking

chopped, decorticated fibre and teasing this into a fine web. During this mechanical

process, known as carding, the fibres are repeatedly combed between rotating drums

or rollers equipped with numerous fine 'teeth'. Multiple layers of the web are

subsequently built-up, one upon the other, to form a light mattress, in the second,

cross-lapping, stage. Finally, the bulky mass is squeezed with rollers and needle-

punched. This effectively locks together the compressed mattress to form a felted

material. A schematic representation of the felting process is shown in Appendix 3.

By this method, felts of varying areal density, or 'grammage' may be produced.

2.4.6 Mechanical properties of fibres

Ultimately, the mechanical properties of a composite depend upon the properties of

the phases and in particular those of the fibre reinforcement. A summary of the

reported tensile properties of flax, hemp and jute fibre is presented in Table 2.3. As

with chemical composition (Table 2.2) a great deal of variability exists between the

values reported for any particular fibre type. The cause of this variability may be the

result of any one or more of a large number of factors. The following are some

examples of factors which might contribute to variability in the mechanical properties

of the fibres:

• Type of fibre; whether it is the technical fibre or fibre ultimate that is being tested.

• Fibre variability; arising from ultrastructurai organisation, growth conditions, fibre

maturity or the degree of retting.

• Fibre damage; whether the fibres have been carefully removed from the stem in the

laboratory or whether they have been decorticated industrially.

• Testing; the accuracy of the testing equipment, the type of test, measurement of

specimen cross section, number of replicates, gauge length, ambient humidity and

temperature of test etc.

Although there is a great deal of variability both within each fibre type and between

different fibre types, 'typical' values for tensile strength, stiffness and strain to failure

may be identified for each. If an ideal flax fibre, only, is considered; then based upon
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Fibre type

flax

hemp

jute

Strain to	 Reference
failure

Brown, 1947

Bos eta!., 1997

McMullen, 1984

Bolton, 1994

Ivens eta!., 1997

Sridhar eta!., 1982

Bledzki et a!., 1996

Davies & Bruce, 1998

Brown, 1947

Bolton, 1994

Ivens eta!., 1997

Bledzki eta!., 1996

McMullen, 1984

Brown, 1947

Bolton, 1994

Wells eta!., 1980

Sridhar eta!., 1982

Bledzki eta!., 1996

1.3-3.3

2.7-3.2

2.4

1.33

2-3

1.6

1.7-1.8

the figures given in Table 2.3 a fibre modulus of, say, 90 GN m 2, might reasonably be

expected for an ultimate fibre (possibly somewhat less for a fibre bundle). Further, if

a strain to failure of say 2% is assumed (again not unreasonable considering the

figures shown in Table 2.3) and that the fibres behave as Hookean materials (Davies

& Bruce, 1998), then a fibre ultimate tensile strength of around 1800 MN m 2 would

be expected. Again, this would not seem implausible for a fibre ultimate (tensile

strengths in excess of 2 GN m 2 have been recorded for individual flax ultimate

specimens - Bos, 1999). As will be discussed in detail in Chapter 4, fibre damage may

well play a significant role in determining the mechanical properties of bast fibres.

Table 2.3 Mechanical properties of flax, hemp and jute fibre bundles and fibre
ultimates.

Young's
modulus
(GNm2)

103

85

50-70

28

100

52

25

30-60

57

8

10-78

27.6

13

Ultimate
tensile strength

(MNm2)
814

1500*

690

2000*

500-900

345-1035

1100

621

690

895

310-750

690

455

538

393-773

550

* denotes fibre ultimates
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2.5 Th ermosetting polymers

Two thermosetting polymers frequently used as matrices in PMCs are unsaturated

polyesters and epoxies. These resins are initially relatively low viscosity liquids,

which cure to form a three-dimensional cross-linked polymer of essentially infinite

molecular weight (Restaino & James, 1994). The inherent three-dimensional network

of thermosets results in significant advantages over thermoplastic matrices including,

for example, better dimensional stability and less flow under stress (Restaino & James,

1994). Nevertheless, these polymer glasses are brittle, exhibiting fracture energies of

the order of a few hundred J m 2. This contrasts with many thermoplastics which have

fracture energies of several kJ m 2 (Hull & Clyne, 1996).

2.5.1 Unsaturated poiyesters

The general reaction scheme for producing an unsaturated polyester resin is shown in

Figure 2.16. Polyester resins are the reaction products of the esterification of di- or

poly-hydric alcohols with di- and poly-basic acids or anhydrides (Hare, 1996). The

resins that are of greatest interest in composites are polyesters containing

maleate/fumarate unsaturation (Restaino & James, 1994). The resulting polyester

moiety is dissolved in a polymerisable solvent, usually styrene. During the cure,

styrene co-polymerises with the polyester through the unsaturated (R 3) portion of the

molecule to give a cross-linked resin (Restaino & James, 1994). Co-polymerisation

during cure relies largely on the free radical-induced opening of the unsaturated bonds

(Hare, 1996).

2.5.2 Epoxies

Epoxy resins are prepared by the ring-opening polymerisation of compounds

containing, on average, more than one epoxy group per molecule (Restaino & James,

1994). Typically, these resins are formed by the reaction of epichlorohydrin and a

dihydroxy compound; the latter usually being a diphenol, for example, bisphenol A
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(Turner, 1988). According to Turner (1988) two reactions with the phenolic hyroxyl

brings about polymerisation; a) condensation with chlorine to eliminate hydrochloric

acid and b) addition to epoxide, opening the ring (this produces one hydroxyl group).

This type of epoxy resin contains a maximum of two epoxide rings at either end of the

molecule (Turner, 1988). Figure 2.17 shows the chemical structure of an epoxide

based upon epichiorohydrin and bisphenol A. The curing agent ring opens the

epoxide groups and, since each molecule of the curing gent can react with several

epoxide groups, a cross-linked structure is formed by the curing agent acting as multi-

fUnctional bridge between epoxide moieties (Restaino & James, 1994).

00	 00	 /	 00
I	 II	 II	 II	 II

	

a H0—R 1 —OH + b HO— R, —OH + c H R, —OH - X	 R1—O--CR2C—O—R--O--CR3C Y
diol	 saturated acid	 unsaturated acid	 unsaturated polyester

(or anhydride)	 (or anhydride)

Figure 2.16 Representation of the general reaction scheme for producing an un-
saturated polyester resin (Source: Restaino & James, 1994).

CH—CH—C1-l 2CI + HO(J t_C OF{ -

epichiorhydrin	 bisphenot A
(diphenytol propane)

+ NaCt -
	 - -

	 C/OH + CtCH5—CCH5+ nCH 5—CFI CH 2 0Ct-t — CI-!--CHe 0

CH,
CH—CH5

o'CH7CH—CH40Q4&0 H

+ NaCI

Figure 2.17 Schematic representation of an epoxide based on epichiorohydrin and
bisphenol A (Source: Turner, 1988).
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2.6 Review of work on thermosetting
polymer-plant fibre composites

The history of natural fibre reinforced polymers can be traced back almost to the

advent of synthetic polymers in the early part of the 20th Century. However,

following the introduction of glass fibre during WW II, research into the use of

natural fibres as a reinforcement in structural composites rapidly declined.

Nevertheless, as noted in Chapter 1, in more recent times there has been a resurgence

of interest in natural fibre reinforced polymers. It is perhaps not surprising that this

renewed interest occurred during the 1970's and 80's when rapid increases in oil

prices prevailed. So as to place in context the work presented herein, it seems

appropriate to give a short account of the history of vegetable fibre reinforced

polymer composites and to review some of the early work undertaken in this area.

The main purpose of this section, however, is to review the more recent scientific

work undertaken in this sphere. It should be noted that this is not intended to be an

exhaustive survey of the literature, but will concentrate on the more salient work

relating to the mechanical properties of vegetable fibre reinforced thermosetting

PMCs.

2.6.1. Historical background

2.6.1.1 Introduction

The roots of synthetic polymer matrix composites can be traced back to as early as

1909, with the invention of Bakelite. Soon after, this was mixed with wood flour and

later with string and waste rag to form the earliest synthetic PMCs (McMullen, 1984).

Although pioneering work was carried out in 1924 by Messrs Caidwell and Clay, into

the use of fabric reinforced synthetic resins for airscrews (De Bruyne, 1937), it was

not until the 1930's that any significant interest was shown in the potential of

synthetic composites as structural materials (McMullen, 1984). Much of this early

work on natural fibre reinforcement for synthetic resins was spurred on by the search

for lighter materials for use in aircraft primary structures (McMullen, 1984).
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One of the first, true, man-made composites, potentially capable of being used in

structural applications was "Gordon-Aerolite". This was a composite consisting of

unidirectionally aligned unbleached flax thread impregnated with phenolic resin

(McMullen, 1984). The development of this material began in 1936 with work

undertaken by De Bruyne to utilise cotton fabric, as reinforcement iii phenolic

mouldings (Bishopp, 1997). Indeed, in 1936 De Bruyne in conjunction with The Dc

Havilland Aircraft Company Ltd., with whom De Bruyne had a consultancy (Bishopp,

1997) took out a patent entitled "Improvements relating to the Manufacture of

Material and Articles from Resinous Substances" (patent specification [No. 470,331],

1936). From Gordon-Aerolite, a number of prototype aircraft structural components

were produced. One of the first of these was a wing spar for the Bristol Blenheim

(Bishopp, 1997). As well as this, was the production of an experimental fuselage for

the Supermarine Spitfire fighter (Aero Research Ltd., 1945). This development was

instigated by a threatened shortage of bauxite for the production of duralumin.

However, this threat did not materialise and so this line or research was discontinued

(Aero Research Ltd., 1945).

Other cellulose-based composites, employing paper impregnated with adhesives were,

however, used successfully in a number of wartime applications. The most notable of

these was probably a composite pilot seat for the Spitfire (McMullen, 1984). It is

interesting to note, however, that apart from this and possibly drop-tanks (for fuel),

no use was made of cellulose-based composites for aircraft primary structures

(McMullen, 1984).

By the mid 1940's, the use of cellulosic fibre (either as fabric or in paper form)

reinforced polymers was quite well established and much interest was being shown in

the use of these materials for structural parts (Livingston Smith, 1945). Indeed,

Brown in his 1947 book stated (with reference to research being carried out at the

time) that, "the beneficial results of work........will result in a great extension in the

application of this material." However, with the advent of strong and stable synthetic

fibres and liquid polymers such as polyesters and epoxies, the use of cellulose fibre

reinforced composites in structural applications was superceeded by wholly synthetic
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composites. The properties of these early cellulose based composites, nevertheless,

remain extremely impressive.

2.6.1.2 Properties of Gordon-A erolite and other early cellulose-based composites

As noted above, Gordon-Aerolite, was a composite consisting of unidirectional flax

thread in a matrix of phenolic resin. Skeins of this material, approximately 15 cm in

width would be placed next to one another and over laid by others placed at right

angles (i.e. a {0/90/0] laminate), to build up the required thickness. The pack of

strips was then hot pressed to consolidate the laminate (Aero Research Ltd., 1945).

The ultimate tensile strength and Young's modulus of a longitudinally loaded

unidirectional skein of this material were around 480 MN m 2 and 48 GN m2

respectively, with a density of 1363 kg m 3 (Aero Research Ltd., 1945). It was stated

by the authors of this work that for a cross-ply laminate, "The material had

approximately equal strength and stifThess along and across the sheet, but the strength

and stiffness at 45° to the grain was only one-half that along the fibres". Furthermore,

"The specific tensile strength at 00 and 90° was approximately the same as that of

duralumin, while the specific stiffness (tensile at 00 and 90° and shear at 45°) was

about three-quarters that of duralumin." The fibre volume fraction of these

composites was around 75% (Livingston Smith, 1945). This is approaching the

theoretical maximum for a unidirectionally aligned fibre composite. The compressive

strength of "Gordon-Aerolite" was found to be 200 MN m 2, parallel to the fibres and

95 MN m 2, perpendicular to them; shear strength parallel to the fibres was 38 MN m2

(Livingstone Smith, 1945). Unfortunately, no figures were quoted for the impact

properties of this material.

At this time, much of the reinforcement was of cotton fabric, either in sheet form or as

diced, chopped or shredded material (Brown, 1947). In 1937, De Bruyne, gave a

lecture to the Royal Aeronautical Society entitled 'Plastic Materials for Aircraft

Construction". In this he presented details of the properties of a material referred to

as "Cord-Aerolite". This was a woven cotton fabric in which the number of 'cords' in

the warp direction formed around 90% of the total. This fabric was embedded in a

bakelite matrix. It was found that the compressive strength of the reinforced laminate
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was no greater than that of the unreinforced bakelite, but the nature of the stress-

strain relationship was altered, as was the failure mode, which occurred predominantly

in shear. Similar findings were reported elsewhere for other fabric reinforced

laminates (Brown, 1947). The cord reinforcement was, however, found to have "a

remarkable effect on the properties in tension". The tensile strength was reported to

be 180 MN m 2 and Young's modulus around 13.8 GN m 2. It was noted that the

ultimate strength of the laminate was equal to that of the cords alone, which was

interpreted to mean that the cord reinforcement had pulled away from the surrounding

resin prior to failure. It was believed that the point at which the fibres started to pull

away from the resin was related to the moulding pressure. Furthermore, it was

observed that in this (and in laminates bound with urea formaldehyde or methyl

methacrylate) material the initial moulding pressure affected the stress-strain response.

Higher moulding pressures were observed to result in a higher initial Young's

modulus as well as a more linear stress-strain response. Interestingly, when transverse

sections of the material were viewed under crossed polariser and analyser, " round

each cord there is a line of bright light suggesting that a high adhesion stress in the

resin such as might be produced if resin and cord were in a state of initial stress

relative to one another."

Although it was found that maximum strength was obtained using paper-based

laminates, composites reinforced with textiles (either in sheet form or chopped, diced

or shredded) were attributed with high "shock resistance" (Brown, 1947). In other

words, the use of fabrics conferred toughness to an otherwise brittle resin. Whilst it is

difficult to compare data on impact strength, it may be noted that the addition of sheet

fabric resulted in a twenty-fold increase in this property over that of the unreinforced

phenolic resin alone (Brown, 1947). The addition of chopped, diced or shredded

material resulted in a twelve-fold increase and the laminated paper a ten-fold increase

over that of the neat polymer (Brown, 1947). To give this some perspective, the

sheet fabric reinforced laminates were found to possess an impact strength two and a

half times that of spruce (Brown, 1947). It should be noted, however, that no details

were given of the test type nor conditions. It is interesting to record that Brown

(1947) states categorically that; "if the highest impact resistance is required the

fibrous reinforcement must be present as a fabric."
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According to Brown (1947) scouring, to remove sizing agents used in weaving,

increased penetration of the resin into the fabric. It was found that following

scouring, the average tensile strength was 1.5 times higher than the unscoured

reinforcement and impact strength increased by a factor of 1.65. Scouring also

improved shear strength and Young's modulus, but had little effect on compressive

strength.

Finally, before leaving this early work on cellulose fibre reinforced laminates, it is

interesting to note that Brown (1947), summarised the factors which he believed gave

rise to high strength in textile reinforced polymers. These were:

• The fibre of which the textile is composed has a high Young's modulus and a high

tensile strength.

• The yarn has a minimum twist.

• The fabric is constructed to allow the threads to lie as straight as possible with

minimum crimp.

• The fabric is scoured.

• The resin has high tensile strength.

• The resin is able to penetrate the yarns to the maximum possible extent.

• The moulding pressure is high.

• Care is taken to avoid overbaking the plastic.

2.6.2 Recent work on plant-fibre reinforced thermosetting PMCs

Whilst the mechanical properties of the early composite laminates are extremely

impressive and serve as a benchmark, it must be noted that their manufacture

necessitated high temperatures and moulding pressures. For this, heavy and expensive

equipment was required. Furthermore, the shape of the laminates produced thus were

extremely limited. According to McMullen (1984), it was J.E. Gordon who first

proposed that fibre reinforced composite materials should be used to low-pressure

mould large, one-piece monocoque shells, rather than using the laminates as a direct

substitute for existing materials. It is this approach - moulding complicated structures
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at low pressures - which would, presumably, be the most (cost) effective means of

utilising plant fibres in composites. There must, nevertheless, still be a number of

applications for which high-pressure moulding would be appropriate. Much of the

more recent work has, however, involved the use of thermosetting resins not requiring

high moulding temperatures or pressures to form the laminate.

Some early work was conducted in the 1970's on the use of sisal and jute, to

reinforce epoxy and polyester matrices, with the aim of producing low-cost housing

units as well as other common structures (Paramasivam & Abdul Kalam, 1974;

Winfleld & Winfleld, 1974). Paramasivam and Abdul Kalam (1974) found that tensile

strengths of between 245 and 295 MN m 2 could be achieved from unidirectional sisal

reinforced epoxy - nearly half the strength of a similar glass fibre-epoxy laminate. The

stifihess of the unidirectional laminates was around 8.3 GN m 2. No further details

regarding this work were, however, published. Other experimental jute fibre

reinforced polyester composites were produced for low-cost housing units as well as

grain silos and fishing boats during this period (Winfield, 1979). Much of this work

was, however, directly related to applications rather than to an evaluation of material

properties.

More recently, Wells el a!. (1980), studied the use of unmodified jute as

reinforcement in an epoxy matrix. Unidirectional laminates were prepared from jute

sliver (parallel stands of retted jute fibre), a non-twist experimental yarn, crimped

warp fibre from hessian fabric, low-twist yarn, untwisted yarn and an experimental

'unidirectional' fabric. It was found that at a V of 70%, the non-twist experimental

yarn resulted in the stiffest laminates (flexural modulus 38 GN m 2), whilst the

strongest laminates were the non-twist experimental yarn and untwisted yarn (at 395

and 384 MN m 2 respectively). These results are in accordance with the observation

made by Brown (1947) that the threads should "lie as straight as possible with

minimum crimp". The authors attributed the lower properties of laminates containing

twisted or crimped fibres to orientation effects, rather than to fibre damage sustained

during spinning or weaving. They also derived, by extrapolation, the Young's

modulus for the fibres. These varied between 53 and 66 GN m 2, depending upon

species. Flexural strength was also derived by extrapolation and found to vary
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between 570 and 640 MN m 2. No data was presented on the relative impact

properties of these laminates.

Roe and Ansell (1985) measured the tensile strength, Young's modulus, work of

fracture (determined by Charpy impact) and inter-laminar shear strength of

unidirectionally aligned, unmodifed jute fibre-polyester composites at a number of

They found that Young's modulus, tensile strength, work of fracture and interlaminar

shear strength all increased linearly with Vf . They also evaluated, by extrapolation,

the fibre tensile modulus and found this to be 55.5 GN m 2 (which is in close

agreement with that found by Wells et al., 1980). The fibre tensile strength obtained,

again by extrapolation, was 442 MN m 2. The authors noted that above a V of

around 60%, incomplete wetting of the fibres occurred and at a V of 70%, failure of

the laminates occurred at low stresses. Strain to failure was observed to rise with

increasing volume fraction, levelling off at around 1%. The work of fracture of the

composites was evaluated using a notched Charpy test. It was noted that at volume

fractions greater than 30%, the composites were "tough". This was accompanied by

a change in the failure mode of the laminates; from tension, to tension plus shear. At

a	 of 60 %, the work of fracture rose to in excess of 20 Id m 2, for a crack

propagating normal to the fibre direction.

Sanadi et al. (1985), fabricated unidirectional sunhemp (another bast fibre) fibre

reinforced polyester resin composites. They found that both Young's modulus and

ultimate tensile strength followed a linear ROM relationship with volume fraction. A

fibre modulus derived from the ROM was found to be approximately 35 GN n12.

They concluded that the specific stifThess of a unidirectional sunhemp reinforced

composite of 40% Vf was higher than that of a glass fibre composite of 20% Vf . In

their study on the origins of touglmess of natural fibre-polyester composites, Sanadi et

a!. (1986a) measured the notched Izod impact strength of unidirectional sunhemp-

polyester composites. They found that at a Vf of 24%, the work of fracture

measured in this way was 21.54 Id m 2, some 15 times greater than that of the

unreinforced polymer alone (1.37 Id m 2). It was noted that following fracture, some

of the fibres had undergone fibrillation and splitting, and that the paths of propagating
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cracks were not straightforward. For instance, it was observed that an advancing

crack may have entered the fibre but, may then have been deflected along the interface

between fibre ultimates and thereafter, deflected again across the fibre, resulting in a

"step-fracture". Pull-out aspect ratios were noted to be of the order of 3. They

concluded that the main fibre fracture mechanisms included "fibril" pull-out, plastic

flow of the lignin-hemicelluose matrix, plastic deformation of the fibrils, fibre splitting

and crack diversion at the fibril-fibril interface. It was believed that these mechanisms

were partially responsible for the high toughness of these materials.

Later, Sanadi et at. (1986b) analysed the tensile and impact properties of sunhemp

fibre-reinforced polyester unidirectional composites, as well as the tensile properties

of the fibres themselves. Ultimate tensile strength and Young's modulus of

approximately 390 MN m 2 and 35 GN m 2 respectively were obtained for the fibres.

The fibre strain to failure was noted to be 1.1%. Once again, the Young's modulus

and tensile strength of the laminates varied linearly with Vf , following closely the

theoretical predictions of the ROM. In addition, they predicted the frictional

interfacial shear stress from the observed pull-out lengths of the fibres and found this

to be 4.34 MN m 2. They noted that the effectiveness of the fibre-matrix bond is

dependent upon the chemical compatibility and the presence of mechanical "keying"

between fibre and matrix.

Their analysis of the toughness of the composites included a comparison with

theoretical predictions. It was found that for the composite systems under

investigation, the experimental works of fracture were only around a half those

predicted from the theory. By way of explanation they noted, for instance, that the

fibres may well permanently contract during pull-out (as evidenced by the

"considerable 'clearance' between the fibres and the matrix"), resulting in reduced

frictional energy absorption. Furthermore, they believed that variations in the

frictional interfacial shear stress, caused by the fibres twisting and turning as they pull-

out from the matrix socket, might well affect the work of fibre pull-out. In addition,

they believed that the estimate for the interfacial fracture energy they had used for the

theoretical prediction was on the high side, which had the effect of increasing the total
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work of fracture. They also commented that the phenomenon of fibre fracture was

quite complex.

Kumar (1986), prepared unidirectional jute fibre-epoxy laminates with a 29% fibre

volume fraction, using a hand lay-up technique. These laminates were tested to

determine the longitudinal and transverse moduli, Poisson's ratio and shear modulus.

The average longitudinal modulus was found to be 16.8 ON m 2 (this compared with

13.5 GN m 2 for the modulus predicted from the RUM). The ultimate tensile strength

was found to be 119.2 MN m 2. It was found that the average strain to failure of the

laminates was 0.71%. In tests conducted on the fibres themselves, these workers

found the average tensile strength of jute fibre to be 271 MN m 2 and Young's

modulus to be 39.1 GN m 2. The stress-strain behaviour of the fibres was linear to

failure. Average transverse modulus and strength were found to be 3.47 GN m 2 and

10.2 MN m 2 respectively. Under both longitudinal and transverse loading the stress-

strain behaviour of the laminates was linear to failure. The in-plane shear modulus

and Poisson's ratio were found to be 1.5 GN m 2 and 0.32 respectively.

O'Dell (1997), prepared resin transfer moulded (RTM) laminates to a volume fraction

of between 10% and 15%, using a non-woven jute fabric to reinforce an unsaturated

polyester matrix. The properties of these were compared with those of laminates

reinforced with a random continuous glass fibre mat. It was found that both the

tensile and fiexural strength, and stiffness of the jute laminates, were generally less

than half that of the glass fibre reinforced material. Notched and un-notched Izod

tests, showed that the impact strength of the jute reinforced material, was an order of

magnitude lower than that of the glass fibre reinforced material.

Like O'Dell (1997), Sèbe et a!. (1999) also studied the properties of RTM laminates

consisting of non-woven fabric reinforced unsaturated polyester. Rather than jute,

however, hemp was the fibre of choice in this work. It was found that flexural

strength and modulus increased with Vf . Un-notched Charpy impact strength, on the

other hand, was found to decrease initially with low fibre content, but then increase on

the addition of further fibre. The poor impact properties were attributed to the

introduction of "a disproportionately high degree of critical defects to the composite
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structure, perhaps in the form of voids or poorly bonded interface regions". It was

also thought that this phenomenon might be partially explained by the presence of

many pre-existing fibre microcompressive defects.

Munikenche Gowda et al. (1999) studied the mechanical properties of untreated jute

fabric-reinforced polyester composites. Woven jute fabric was hand laminated with

polyester resin to form composites with a fibre volume fraction of around 45%. The

average longitudinal tensile strength and modulus of this laminate was found to be 60

MN m 2 and 7 GN m 2 respectively. The same properties under transverse loading

were 35 MN m 2 and 3.5 GN m 2 respectively. The discrepancy was attributed to

differing numbers of yarns in the warp and weft directions of the reinforcing fabric.

Under compression, the addition of reinforcement was found to improve the

compressive modulus around twofold over that of the unreinforced resin. The

compressive strength of the laminate was, however, almost the same as the pure resin;

this is in agreement with the findings of De Bruyne (1937) for "Cord-Aerolite". In

flexure, the laminates exhibited average strengths and moduli of 92.5 MN m 2 and 5.1

GN m 2 respectively. The authors reported that in the flexural tests, no specimen

failed through delamination and that the failure mode exhibited little or no fibre pull-

out. Charpy impact tests were conducted and it was found that at this fibre volume

fraction, the average impact strength of the laminates was 29 kJ m 2, approximately 16

times greater than that of the pure resin alone. An average interlaminar shear strength

of 10 MN m 2 was reported for these laminates. In-plane shear strengths and moduli

for this material were found to be 16.6 MN m 2 and 2.2 GN m 2 respectively.

Oksman (1999), studied the mechanical properties of RTM flax fibre reinforced-

epoxy matrix composites. The flax fibre used in this study was enzymatically retted,

in a semi-industrial process, and thought to be of superior quality to conventionally

retted fibre. The mechanical properties of unidirectional composites reinforced with

these fibres and with traditionally (field) retted flax as well as with glass fibres were

compared. It was found that for equivalent Vf , the strength (both absolute and

specific values) of the enzymatically refted fibre reinforced material was better than

the conventionally retted fibre; but that neither reached that of the glass fibre laminate.

The stiffness of the unidirectional enzymatically retted flax-reinforced laminates was
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found to be superior to that of the glass fibre reinforced laminates, for equal Vf . The

strain to failure of the enzymatically retted flax-reinforced epoxy was found to lie

between 0.8% and 0.9%, which compared with around 2.8% for the glass fibre

reinforced material. The stress-strain behaviour was found to be approximately linear.

A derived fibre strength for the enzymatically retted material -of 700 MN m 2 was

obtained. A fibre modulus of between 80 and 100 GN m 2 was estimated for the

enzymatically retted flax. It was thought that the adhesion between fibre and matrix

was not "as strong as expected", as evidenced by visible fibre pull-out and the fact

that the fibres were "not covered with the epoxy matrix". It was noted, however, that

the void content was low. No data on toughness was presented.

Bos and Van den Oever (1999) studied the influence of fibre structure on the

mechanical properties of pultruded flax-polyester and flax-epoxy laminates. These

materials were tested in tension and in compression. Interestingly, whilst the tensile

strength of flax-polyester composites increased with V1 , following a ROM

relationship, their compressive strength did not show any increase, but stayed at the

level of the compressive strength of the pure polymer. It was noted that adhesion

between the fibre and polymer was "very poor" and was attributed to the thin waxy

layer surrounding the fibres, which it was thought prevented bonding. However,

removal of this layer did not result in an improvement in compressive strength.

Several regimes designed to improve the compatibility between the two phases were

tried, but without success. It was speculated that fibre damage in the form of kink

bands may have contributed to the low compression strength of the laminates. Similar

effects were observed with the flax-epoxy system. An increase in tensile strength was

observed with Vf , whilst compressive strength was unaffected. A slight increase in

the compressive strength (16%) was noted upon removal of the waxy layer. Again,

however, it was concluded that adhesion was poor. Addition of melamine-

formaldehyde (MF) as a compatibiliser did improve compressive strength, but at the

expense of tensile strength. It was postulated that the MF stabilised kink bands in the

fibre, thereby improving compressive strength, rather than simply acting as a

compatibiliser. The authors believed that kink band damage, present in scutched
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fibres, hindered optimisation of the compressive strength of these laminates and might

"seriously hamper the use of flax fibres in more structural applications".

It may be noted that the more recent work reviewed above considered the use of bast

fibres only as reinforcement. For completeness, however, it should be noted that a

number of other agro-fibres have been considered in the capacity of reinforcement in

PMCs. These include, for example, straw (White & Ansell, 1983), sisal (Bisanda &

Ansell, 1991), bamboo (Jam et a!., 1992), wood cellulose (Zadorecki, et a!., 1986;

Zadorecki & Michell, 1989) and coir (Prasad eta!., 1983).

As noted by Sanadi eta!. (1985), moisture absorption and poor bonding between fibre

and matrix "have been identified as the major bottlenecks in large scale use of these

composites". Lignocellulosic material is inherently hydrophilic. This is due to the

abundant hydroxyl functionality present in the cell wall polysaccharides (Desch &

Dinwoodie, 1996). Accessible -OH groups, not mutually satisfied, are able to

hydrogen bond with available water molecules. This results in the absorption of

moisture, leading to swelling of the cell wall material. Conversely, desorption leads to

shrinkage. In addition to dimensional instability, the presence of -OH groups on the

fibre surface render this hydrophilic, giving rise to potential problems of compatibility

with (more) hydrophobic synthetic polymers (Bolton, 1995). This is a particular issue

with thermoplastics (Ivens et a!., 1997) and a significant volume of work has been

published on the means of achieving an improvement in the compatibility between the

two phases (e.g. Myers et a!., 1990; Kolosick et a!., 1990; Maldas & Kokta,

1991 a,b; Liang et a!., 1994). The situation with thermosetting resins is somewhat

different, however, in that these polymers are generally more hydrophilic. For

example, epoxy resins often contain -OH functionality, rendering them somewhat

polar (Turner, 1988) and are thus likely to be more compatible with lignocellulosic

material.

Nevertheless, a combination of fibre dimensional instability coupled with relatively

poor adhesion between the phases, can lead to compromised composite properties

(Zadorecki & Flondin, 1986), as well as to dimensional instability of the laminates

themselves, Indeed, dimensional instability was noted to be one of the problems
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associated with the early flax-phenolic materials (Gordon, 1976). Whilst no work is

presented herein on the use of either surface or fibre modification to improve

composite properties, it is worthwhile noting that a good deal of work has been

published in this area. It is appropriate, therefore, to note some of the general

findings obtained, particularly with regard to the effects of fibre modification on the

mechanical properties of the composites.

Zadorcki and Flondin (1986), for instance, conducted a microscopical study of the

formation of debonding cracks in cellulose fibre based unsaturated polyester

composites. The reinforcing fibre was in the form of a bleached kraft paper. This was

used in unmodified form and modified by the introduction of coupling agents based on

trichloro-s-triazine. Three coupling agent were utilised. Two were considered to

result in covalent bonds forming across the interface whilst the other was thought to

lead to improved molecular contact. Initially, all composites were "translucent",

indicating that no voids were present in the material. Following soaking and redrying,

however, "whitening" occurred in the untreated fibre-polyester specimens as well as

in composites reinforced with fibres modified in such a way as to lead to improved

molecular contact. In the composites formed from fibres modified so as to form

covalent bonds across the interface, no such debonding cracks were noted. The

authors postulated a mechanism of crack formation, based upon the stresses induced

across the interface when the fibres dried out; in poorly bonded material this occurs

relatively easily, in well bonded laminates rather less so.

Hua et a!. (1987), investigated the use of formaldehyde and melaniine compounds to

modiFy cellulose fibre with the aim of producing composites with reduced moisture

sensitivity. Laminates, prepared from modified and unmodified bleached kraft paper

reinforced polyester resin, were tested for moisture absorption and wet and dry

mechanical properties. Although the dry mechanical properties were little affected by

the method of modification and were somewhat better than the untreated fibre-

reinforced material, the wet strength of some of the modified fibre reinforced material

was markedly superior to others and to the untreated fibre laminates. It was believed

that not only was interfacial adhesion enhanced but also the fibre strength was

improved by modification (using 5% formaldehyde and 5% dimethylolmelamine).
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Bisanda and Ansell (1991), studied the effect of silane treatment on the mechanical

and physical properties of unidirectional sisal-epoxy composites. They found that

silane treatment (following mercerisation) resulted in an improved resistance to water

absorption (after 72 hours immersion). In moist environments, all mechanical

properties (compressive strength, flexural modulus and flexural strength) were

improved with the silane treated sisal-reinforced laminates. Interestingly, they found

that, apart from compressive strength, the dry mechanical properties were unaffected

by use of the coupling agent. The compressive strength of the laminates was

improved following mercerisation. This was attributed to an "improvement in the

interfacial bonding by giving rise to additional sites of mechanical interlocking, hence

promoting more resinlfibre interpenetration at the interface". No additional

improvement was gained after silane treatment. It was noted that the failure of the

untreated fibre composites was "predominently by cleavage in the loading planes with

little bulging and shear buckling". It was considered that the waxy surface of the

untreated fibre allowed an easy mode of failure, which the strongly bonded material

was able to resist. The modified fibre-reinforced composites on the other hand,

underwent "considerable lateral deformation before finally failing by shear

deformation, usually indicated by a zone of kinked fibres making an inclination of

about 450 to the loading axis".

Ogano-silane treated fibre was used as reinforcement (orientation unspecified) in

RTM jute-epoxy composites by Gassan and Bledzki (1996). The composites were

manufactured with a fibre volume fraction of about 40%. It was noted that following

modification tensile strength became independent of laminate moisture content, but

modulus fell with increasing moisture levels. At the maximum attainable moisture

content (-5.2%), Young's modulus was around 30% lower than the dry value. With

unmodified fibre reinforcement, tensile strength fell to around 65% at the maximum

moisture content, whilst modulus only retained around 25% of its dry value. Dry

properties, however, appeared to be little affected by surface modification.

Sèbe et a!. (2000), in their studies on RTM hemp fibre reinforced polyester, observed

that the introduction of strong interfacial adhesion, by modification with methacrylic

anhydride, did not result in an increase in the dry flexural properties of the laminates.
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However, it was noted that the mode of failure changed, with modification causing

the composites to become embrittled. Subsequent unnotched Charpy impact tests

confirmed this to be so. It was noted that fibre pull-out was suppressed in the case of

the modified fibre reinforced composites. It has been shown conclusively that such

modification leads to the formation of covalent bonds with the matrix (Hill & Cetin,

2000).

The above represents a brief review of some of the literature concerned with the use

of surface or chemical treatments to improve the performance of vegetable fibre

reinforced thermosetting PMCs. Broadly speaking, whilst improved interfacial

bonding enhances the wet strength and stiffness of lignocellulosic fibre reinforced

composites, the dry properties are less affected, with at best only fairly minor

improvements in performance being recorded. On the other hand it has been

intimated that toughness (measured as impact strength), may well be compromised by

the introduction of strong interfacial adhesion.

A summary of some of the main mechanical properties of the plant fibre reinforced

thermosetting PMCs reviewed herein (arranged in chronological order) are presented

in Table 2.4.

2.7 Approach

As may be noted, most of the work reviewed in the preceding section has focused on

evaluating the properties of finished laminates and the effects of either, a) fibre type,

b) fibre loading fraction, c) orientation of reinforcement or d) the use of coupling

agents or chemical modification, to improve either the short-term mechanical

properties of the material, or their environmental performance.
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As far as thermosetting PMCs reinforced with bast fibre are concerned, very little

work appears to have been undertaken with regard to the fundamental mechanics of

the interaction between fibre and matrix and the effect that this has upon the

mechanical behaviour of the material. It was noted in Section 2.1.7 that toughness is

a particularly important mechanical property, required of an engineering material. It

seems likely, therefore, that if bast fibre reinforced composites are to be used in

structural or semi-structural applications, then due account will need to be taken of

this important property.

Whilst an improvement in properties over those of the unreinforced polymer have,

quite rightly, been emphasised, relatively little work appears to have been conducted

on the mechanical properties relative to their most likely synthetic competitor - glass

fibre. It would seem appropriate, therefore, that in any work undertaken the

properties of bast fibre reinforced materials should be compared directly (on a volume

for volume basis) with their glass fibre reinforced equivalents.

In view of the foregoing, it was believed that this work should consist of a thorough

appraisal of the short-term mechanical properties of the material, with particular

emphasis on toughness, since this aspect does not appear to have been as rigorously

assessed as the other properties. In conjunction with this, it was felt that it was

important to investigate both the fibres themselves, particularly with regard to any

features which might affect the mechanical properties of the composite properties, and

the interaction between fibre and matrix - the composite micromechanics.
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3 Physical and Mechanical Properties of
Laminates

3.1 Introduction

Whilst the environmental benefits of substituting the synthetic fibres, currently usd as

reinforcement in thermosetting PMCs, with natural fibres would appear clear, it is also

evident that the resultant composite materials must be able to compete in performance

terms too. The work presented in this and the following two chapters was undertaken

in order to gain a more fundamental understanding, at various levels of organisation,

of the mechanisms controlling the mechanical behaviour of these materials. At this

stage, no chemical or surface modification of the fibres was considered as a meais of

improving the short-term performance of the composites. It was believed that a

better starting point would be a thorough investigation into factors which might

contribute to the mechanical response of bast fibre reinforced thermosetting PMCs.

This approach was adopted in the belief that a more thorough understandin of

material behaviour could help pinpoint any limiting factors and possibly highlight ways

in which performance might be improved.

In this chapter, the physical and macro-mechanical properties of laminates prepared

from non-woven, un-modified bast fibre (jute and hemp) reinforced unsaturated

polyester are considered. Throughout, these properties are compared with those of

equivalent (on a volume for volume basis of reinforcement) materials reinforced with

glass fibre. During an extensive programme of preliminary tests (some of the results

of which are presented in Section 3.3.2), it became clear that the natural fibre

reinforced material appeared to lack the toughness, that is to say the crack stopping

ability, of their glass fibre reinforced equivalents. In view of this, a significant

proportion of this chapter is given over to the quantification, utilising fracture

mechanics techniques, of this property. In addition to this, other, short-term

mechanical (tensile, flexural and impact) properties of the laminates are presented.
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3.2 Materials and method

3.2.1 Fibre

Two bast fibre types were utilised in this part of the work, namely jute (Corchorus

capsularis) and hemp (Cannabis saliva). Jute, grown, retted, decorticated, chopped

and baled in Bangladesh, was supplied by Sidlaws of Dundee. Hemp, grown in the

UK, was supplied by Hemcore Ltd. This fibre had been dew retted and mechanically

decorticated, prior to chopping and baling. The length of both fibre types was

approximately 50 mm. No further fibre treatment had been carried out. The fibres

were processed into a non-woven felt, in the manner described in Chapter 2, by J.B.

Plant Fibres Ltd. of Holyhead, Gwynedd. The areal density of the material used for

composite fabrication varied from approximately 350 g.s.m (grams per square metre),

to around 1100 g.s.m. Prior to use, the fibre felts were refluxed in a mixture of

toluene, acetone and industrial methylated spirit (in the proportions 4:1:1 by volume)

for , hour to remove waxes and other extractable material.

In addition to the natural fibre reinforcement, glass fibre was utilised for compartive

studies. This was supplied in the form of chopped strand mat (CSM), manufactured

by Scott Bader.

3.2.2 Matrix resin

A general purpose unsaturated polyester resin (Synolite 0593-T-1, manufactured by

DSM resins) of 40% styrene content was used for the matrix. This required

accelerator (N,N-diethylaniline, 10% in aliphatic ester) and initiator

(dibenzoylperoxide) for curing at room temperature (20°C). Accelerator and

initiator, added at a rate of 3% (by weight) each, were found to give a gel time of

approximately 1 hour which was adequate for completion of the fabrication process.
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3.2.3 Laminate fabrication

Laminates were prepared as flat plaques, approximately 30 cm square and of nominal

thickness 4.5 mm. These dimensions were found to be suitable for a variety of test

specimen sizes.

The investigation into the effect of fibre volume fraction on mechanical properties

necessitated the fabrication of laminates containing various fibre loadings. A single

layer of non-woven material, lightly clamped to a pressure of approximately 0.5 bar,

produced laminates with a Vf in the region of 16%. Higher volume fractions were

achieved by pre-pressing multiple layers-of-felt-in -a -hot -press -at 105°-C to a thickness

of 4.5 mm. The press was held closed for 5 minutes. It was found that when the

pressure was released a permanent 'set' had been imparted to the fibre felts. Little

'spring back' was noted after removal of the clamping pressure. After pressing, the

felts were allowed to recondition at 65% R.H. and 2°-C. Very -little further 'spring

back' was evident. Preliminary tests on the laminates containing single layers of felt

showed that there was a degree of anisotropy (see Section 3.3.2) which was attributed

to a preferred fibre orientation imparted to the felts during manufacture. Because of

this, in laminates requiring several plies, multiple felts were stacked with the same

orientation and subsequent testing undertaken bearing this in mind. The lamination

procedure was as follows:

3.2.3.1 Resin preparation

Accelerator was first added to the resin and mixed thoroughly with a mechanical

stirrer for approximately 5 minutes (for a 1 kg charge). Subsequently, the initiator

was added and mixing continued (a further 5 minutes). Prior to use, the resin was

degassed under vacuum for 5 minutes.

3.2.3.2 Felt impregnation

The felt impregnation process essentially involved drawing, by means of vacuum,

catalysed resin through a plastic tube in which the reinforcement was situated. A

schematic representation of the process in shown in Figure 3.1.
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Figure 3.1 Resin vacuum impregnation process.

Squares of felt reinforcement (either single 'piy' or pre-pressed 'multi-ply') were

inserted into heavy duty industrial polythene tubing which, when laid fiat, was of a

width such that the felts formed a 'snug' fit when inside (in practice the tubing was

approximately 10 cm wider than the felt; the width of the tubing was reduced by

folding over and taping). A tight fit was necessary to prevent the resin bypassing the

felts, leaving resin starved regions. An additional, 'sacrificial' felt was inserted at the

head of the tube, to prevent resin entering the suction head (attached to a vacuum

pump) or collapsing the tube when under vacuum. This end was then sealed with

tape. At the other end of the tube, a bag was formed with the aid of 'bulldog' clips,

into which the catalysed resin was poured. Once the resin was in the bag formed at

the end of the tube, this end too was sealed with tape. The clips separating the resin

and reinforcement were subsequently removed and the catalysed polymer allowed to

slowly impregnate the felt. Impregnation was assisted mechanically by means of a

roller. As soon at the felts were fully loaded with resin, the vacuum was removed, the

tube cut open and the impregnated felts taken out for moulding.
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3.2.3.3 Moulding

The impregnated felts were placed between toughened glass plates (400 mm x 400

mm by 15 mm thick) to which had previously been applied a film of wax release agent

(M700/C-WAX; Oskar's, Pfiegemittel GmbH, D-47059 Duisburg, Germany) in

accordance with the manufacturers instructions. Mild steel spacers, 4.5 mm thick (7.0

mm thick for fracture toughness specimens) were inserted at each corner and the

plates clamped.

3.2.3.4 Preparation of CSM reinforced laminates

The vacuum impregnation technique could not be used for the CSM reinforcement,

due to excessive 'washing' of the reinforcement during the process, resulting in very

uneven laminates. Instead, the laminates were prepared by careful hand lay-up

directly onto the glass plates. Once the desired thickness had been built up, another

plate was placed on top, with spacers between the plates, and clamped as described

above.

3.2.3.5 Casting of resin without reinforcement

Unreinforced resin laminates were prepared by pouring catalysed resin onto a glass

plate, children's modelling clay ('Plasticine') being used to prevent resin overflow. A

second plate was placed on top with spacers between the two and clamped.

3.2.3.6 Laminatesforfracture toughness testing

In order to attempt an estimation of the toughness of the material using fracture

mechanics techniques, thicker specimens were utilised. These were prepared in the

same manner as described above save that several additional layers of felt were

required to attain comparable fibre volume fractions. These laminates were prepared

to a nominal thickness of 7.0 mm.

3.2.4 Curing

Gelation was allowed to proceed at room temperature (- . 20°C) for approximately 20

hours, after which the laminates were removed from the plates and placed in an oven

to post cure for 6 hours at 90°C. This temperature was chosen so as to minimise
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thermal degradation of the fibre. To reduce distortion of the laminates during this

stage of the operation they were placed between 4 mm thick aluminium plates and

clamped. The laminates were separated by 'grease-proof' baking paper to prevent

contact with one another and the plates.

3.2.5 Specimen preparation

A number of mechanical tests were performed, each requiring specimens of differing

dimensions; nevertheless, the preparation procedure was similar for all. The tests

conducted included the following:

• tensile (Young's) modulus and tensile strength

• flexural modulus and strength

• Charpy impact strength

• fracture toughness.

Coupons for the tensile, flexural and Charpy impact strength tests were prepared from

the natural fibre reinforced laminates by cutting with a circular cross-cut saw. By this

method it was found that samples could be prepared with minimal damage to the cut

surfaces. The cut surfaces were, however, gently abraded to remove artefacts. Initial

testing showed that acceptably low standard deviations were achievable, indicating

that the effect of preparation damage was minimal. All CSM and un-reinforced

polymer laminates, as well as those specimens destined for fracture toughness testing

were, however, cut with a water lubricated diamond saw. This method gave an

excellent surface finish.

Starter notches for the fracture toughness specimens were cut centrally in an

'edgewise' plane using the diamond saw (see Figure 3.2). To obtain a sufficiently

sharp starter crack at the root of the notch, razor sawing, as described in Anderson

(1995), was utilised. Plate 3.1 shows a sharp notch 'sawn' in a polyester resin

specimen. This method proved satisfactory for all laminate types.
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0.5 mm

Plate 3.1 Transmitted light micrograph of a sharp 'starter crack' sawn at the root of
a notch stress concentrator in an un-reinforced polymer laminate.

3.2.6 Conditioning

Prior to testing, all specimens were conditioned for a minimum of one week at 65%

relative humidity and a temperature of 20°C.

3.2.7 Testing

Tensile tests were conducted on an Instron 1195 universal testing machine, fitted with

a 100 kN load cell. Load versus extension (measured either as cross-head movement

or independently by means of an extensometer) data were acquired by PC, which also

facilitated machine control. Flexural and fracture toughness tests were carried out on

an Iristron model 4301, universal testing machine fitted with a 5 kN load cefl. This

instrument too was PC controlled.

3.2.7.1 Tensile tests

Tensile testing was conducted in accordance with BS 2782: Part 10: Method

1003:1977. (EN 61). A cross-head speed of 2 mm min. 1 was used. Modified type II

specimens were utilised; the modification lay in specimen dimensions and clamping.

The standard specifies a specimen length of at least 250 mm. In view of the size of

the laminates, however, this was not possible and thus this was reduced to 200 mm,

with a width of 20 mm, thereby maintaining the same specimen aspect ratio.

Furthermore, rather than utilising pin jointed ends, the specimens were clamped using
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self tightening jaws. To prevent damage to the specimen where clamped, removable

'U' shaped aluminium tags were fitted over the ends of the specimen prior to

clamping. A slight abrading of the ends ensured that the specimens did not slip in the

jaws. During testing, fracture of the specimens (even the brittle resin) rarely occurred

within or near to the grips. Every care was taken to ensure correct alignment of the

specimens in the jaws, prior to final tightening. Strain was measured with an

extensometer, attached to the central portion of the test specimen with clips. During

testing, this was removed at a pre-determined point (0.3% strain) to prevent damage

when the specimen failed.

3.2. 7.2 Flexural tests

Testing was conducted in accordance with BS 2782: Part 10: Method 1005: 1977

(EN 63) - Determination of Flexural Properties. Three Point Method. Specimen

coupons of nominal dimensions 100 mm x 15 mm x 4.5 mm were utilised. The cross-

head speed was 10 mmmin.1.

3.2.7.3 Impact tests

The Charpy method (BS EN ISO 179:1997 - Determination of Charpy impact

strength) was used to assess the flat-wise impact properties of un-notched type 1

specimens. The nominal specimen dimensions were 80 mm x 10 mm x 4.5 mm. An

analogue Zwick instrument, equipped with either a 0.5 J or a 4 J pendulum was used.

3.2.7.4 Fracture toughness

The procedure adopted for the determination of fracture toughness was based upon

the method described in BS 7448: Part 1: 1991. This standard describes a procedure

to determine the opening mode plane strain fracture toughness (K1), the critical

crack-tip opening displacement (CTOD) fracture toughness, and the critical J

fracture toughness of metallic materials.

Rectangular section, single edge notched (SEN) specimens were loaded in three point

flexure. The load-line displacement rate (cross-head speed) was 5 mm min.'. The

loading fixture and nominal specimen dimensions are shown schematically in Figure

3.2. In addition to noting the overall dimensions of the specimen, the depth of the
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notch was accurately measured, prior to testing, by means of a dial micrometer

(accurate to 0.01mm) equipped with a sharp edge (razor blade) which 'sat' in the

sawn notch. Control of the loading device and data capture were via PC. The data

capture rate was set at 20 points sec'. Specimens were loaded until a maximum force

reading was attained. Captured data was saved in 'ASCII' format to facilitate

subsequent analysis in 'ORIGIN' software.

P

Figure 3.2 Three point bending specimen for fracture tougimess determination
(all dimensions are in millimetres).

3.2.8 Evaluation of physical properties

3.2.8.1 Measurement of density

The dimensions of all specimen coupons were accurately measured and their weight

recorded. From these the composite density, p, was calculated using the well

known relationship:

p = MCIV
	

(3.1)

Where:	 MC is the mass of the composite

V	 is the volume of the composite
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3.2.8.2 Measurement offibre volume fraction

Fibre volume fraction may be calculated utilising Equation 3.2, provided the density

of the fibre is known.

V1 = M1/Vpj	 (3.2)

Where:	 M1 is the mass of fibre

Pf	 is the bulk density of the fibre

Estimates of Vf were made using literature values for the bulk density of jute and

hemp fibres. However, as will be discussed below, this method is potentially

inaccurate due to a number of factors. Therefore, in addition, V1 was calculated from

the following expression which does not require a prior knowledge of the fibre density

(Roe&Ansell, 1985):

Vf = (Vc_ (Mc_ Mf)/Pr )/Vc	(3,3)

Where:	 Pr	 15 the density of the cured polymer

This method accounts for any porosity of the fibre in the calculation and has the

advantage that a value for the effective bulk density of the fibre can be derived. As

stated by Roe and Ansell (1985), the value for Vf thus obtained is not strictly a true

fibre volume fraction but, as will be discussed below, is probably more representative

as a factor controlling mechanical behaviour than a derived volume fraction which

assumes the fibre to be a solid mass.

3.2.9 Fractography

The modes of failure of the specimens tested were noted. Broken specimens from the

Charpy tests were prepared for scanning electron microscopy by cutting, with a

hacksaw, a small portion of the test specimens, in the region of the fracture surface
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and securing to aluminium stubs with an epoxy adhesive. The samples were dried

over silica gel, under vacuum, for at least 48 hours prior sputter coating with gold.

Examination was conducted with a Hitachi S-520 scanning electron microscope

(SEM).

3.3 Results and discussion

3.3.1 Physical properties

3.3.1.1 Appearance

The surface finish of the laminates produced was extremely smooth and defect free;

this was attributed to the good surface finish of the plate glass used to mould the

composite. The colour of the laminates depended upon that of the reinforcing

material. Jute reinforced material was a rather light brown colour, whilst the hemp

reinforced material was somewhat darker in appearance. Both natural fibre reinforced

laminates were of a pleasing colour, being somewhat akin to varnished tropical

hardwood. The CSM reinforced laminates were an off-white colour.

3.3.1.2 Fibre volume fraction

As discussed in Chapter 2, fibre volume fraction is probably the single most important

parameter influencing composite properties (Matthews & Rawlings, 1994) and

therefore it is essential to establish this as accurately as possible so that comparisons

between, fibre types can be made. Fibre volume fraction may be evaluated by utilising

Equation 3.2, which requires a value for the bulk density of the fibre. Natural fibres

are, however, variable materials and jute and hemp are no exception. As such, figures

quoted for their bulk density should be treated with caution. Variability arises from

factors such as fibre maturity, which affects the cell wall thickness and consequently

the density of the fibres. Figures vary considerably but typically lie in the region 600-

1200 kg m 3 (Bolton, 1994), with values as high as 1480 kg m 3 having been reported

(Ivens et al., 1997). From Equation 2.8 it can be shown that, (assuming the density of

the composite and resin remain constant), Vf varies as the inverse of fibre density.

Since the upper threshold for fibre density occurs when it reaches the density of the
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cell wall material ('-4 500 kg m 3) a lower limiting value for Vf can be established for a

given weight of fibre. This condition will be reached either when the fibres are solid,

in other words they do not possess any lumen space whatsoever, or, if the lumena are

completely filled with resin. It should be noted that this argument assumes that there

are no additional voids present in the composite structure. Table 3.1 compares J/

derived by: a) assuming that the density of the fibres is that of the cell wall material,

b) using literature values for fibre density (Ivens et al., 1997) and c) using the

expression in Equation 3.3. As expected, the volume fraction derived by assuming the

fibre density to be 1500 kg m 3 (colunm A), in the most part, provides the lowest

estimate of Vf (with the exception of 6 and 9 ply hemp laminates).

Table 3.1 Calculated volume fractions of laminates.

reinforcement
type

2 ply jute

4 ply jute

6 ply jute

3 piy hemp

6 ply hemp

9 ply hemp

CSM*

A.
V (%)

assuming Pfibre

=1500 kg m3

B.
V,. (%)

Pjute = 1450 kg m3

Phemp =1480 kgm3

C.

(derivedfrom
Equation 3.3)

	

18.8
	

19.5
	

19.3

	

34.8
	

36.6
	

36.3

	

39.0
	

40.4
	

40.4

	

14.7
	

14.9
	

15.1

	

31.6
	

32.0
	

31.4

	

44.7
	

45.4
	

44.3

	

20.0
	

20.0
	

25.3

*Density of E glass fibre taken to be 2560 kg m 3 (Hull & Clyne, 1996).

The calculation of Vf by the remaining methods (columns B and C) both assume a

certain degree of fibre porosity and result in higher estimates for Vf-. The volume

fraction figures obtained by utilising the bulk density of the fibre (column B), makes

no allowance for the fact that during fabrication, resin enters the lumen space. On the

other hand, derivation of V from Equation 3.3 implicitly takes this factor into

account.
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Plate 3.2 SEM micrograph of the fracture surface of a jute reinforced polyester
laminate, showing the cured polymer projecting from the fractured fibre.

In reality, SEM micrographs (Plate 3.2) clearly show resin to have entered the lumena

of jute fibres and although this phenomenon was not observed directly in hemp, it

cannot be ruled out. It is, however, not known what proportion of the total lumen

space might be occupied by the polymer in this manner. The literature values taken

for the bulk densities of the fibres are in fact very close to the assumed density of the

cell wall material itself and therefore little difference is observed in V. Erroneous

estimates of V1 may well arise, however, regardless of the value assumed for the bulk

density of the fibre, since the luniena are likely to be at least partially filled with

polymer. In reality, however, this method might be the more representative, since it is

debatable what function resin included in the lumen space would play in controlling

fibre mechanical properties (see below). The difference, however, observed between

Vf calculated by assuming the cell wall density to be 1500 kg m 3 and Equation 3.3 is

small (generally < 2%) and probably within the range of experimental error,

indicating that void space (whether the lumena or otherwise) is minimal. Since no

independent measurements of the fibre bulk density were undertaken in this work to

verify literature figures, the method of calculating V from Equation 3.3 was utilised,

with the exception of the CSM glass fibre reinforcement. With the glass fibre, V

was detemiined utilising Equation 3.2. As can be seen from Table 3.1, there is an
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approximately 25% difference between the V1 calculated via Equation 3.3 and that

derived directly from the fibre density. Since the former takes into account included

voids, it might be implied that these laminates contain around 5% void space.

However, since the density of glass fibre is known with some accuracy, the figure of

20% for V1 is probably realistic. It is worthwhile noting that many included air

bubbles were visible in the CSM laminate, believed to be a result of the fabrication

process.

The apparent lack of void space in the bast fibre reinforced laminates is indicative of

good wetting of the fibres by the resin. As noted previously, Roe and Ansell (1985)

concluded that an intimate bond between fibre and polyester was achieved up to a

volume fraction of around 60%. Beyond this level of fibre addition, they found that

incomplete wetting occurred, resulting in compromised composite properties. This

may point to potentially good adhesion between the two phases, since the first

requirement for good adhesion, namely that the substrate is adequately wetted, would

seem to be fulfilled. However, as noted in Section 2.1.3, this requirement being met

in itself does not guarantee good adhesion. It is likely, however, that the relatively

low viscosity of the resin (although quantitatively measured, no problems were

experienced with the wetting out of the laminates) coupled with the vacuum forming

technique aided this.

It was noted previously that systems in which the surface energy of the solid interface

exceeds that of the liquid interface by a good margin are likely to wet easily (Equation

2.7). The surface energy of liquid polyester resin 	 is quoted as being of the order

35 mJ m 2 (Hull & Clyne, 1996). The surface energy of wood has been reported to be

around 50 nil m 2 for many species (Liptáková & Küdela, 1994) and that of untreated

sisal fibre to be similar (Singh, et a!., 1998). It seems likely, therefore, that in other

lignocellulosic materials such as bast fibres, the surface energy will be greater than

that of the resin, making good wetting probable. Furthermore, it is likely that the

removal of oils, waxes and other extraneous material from the surface of the fibre

through refluxing would have the effect of increasing the surface energy.
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The appearance of the cured polymer within the lumena of jute fibres would certainly

seem to lend weight to the argument that good wetting occurs. Nevertheless, it is

interesting to note that in some instances what appear to be colunms of cured resin

(Plate 3.2) are seen projecting from the fractured fibres. This may indicate that

although the liquid polymer is able to penetrate the cell, presumably through the cut

ends of the fibres, through pits (apertures connecting adjacent cells for the purpose of

transporting water) or other fissures, it is not intimately bonded to the fibre. During

curing, thermosetting resins undergo volumetric shrinkage, which in polyesters is of

the order 4-8% (Hull & Clyne, 1996). This cure shrinkage is likely to lead to normal

stresses acting across the interface between lumen surface and polymer which could, if

adhesion is poor, result in the two being relatively easily separated. It is also likely

that during curing, the elevated temperatures (due either to the exotherm from the

curing polymer or to post-curing) cause moisture to be driven from the fibres, causing

them to shrink also.

It is interesting to speculate upon the influence that the polymer cured within the

lumen has upon the mechanical properties of the laminate. Firstly, if adhesion is non-

existent, then the resin within the matrix could not take part in any load sharing

operation since the interface shear strength would be zero. However, the resin could

act as mechanical restraint preventing the cell collapsing, either because of radial loads

applied on the fibre, or due to any contraction of the cell when subject to a tensile

stress. When adhesion is finite, no doubt some load sharing would take place, but this

is likely to be governed by the elastic behaviour of the fibre (i.e. how the strain

distribution varies between the outside of the fibre and the lumen surface) and the

efficacy of the bonding between fibre and cured polymer. As discussed above, it is

likely that normal stresses acting across the interface could well result in debonding

taking place at low stress levels. This would lead to the conclusion that the

contribution to the overall mechanical response of the material made by the lumen

resin is negligible. It could therefore be argued that when defining Vf for plant fibre

reinforced material, lumen resin should be ignored. Bearing this in mind, the V,.

utilised in this study could under-estimate slightly the 'effective' fibre volume fraction

of the composite, but the effect is likely to be almost insignificant.

91



3.3.1.3 Density

The densities of the bast fibre reinforced laminates as a function of volume fraction

are presented in Figures 3.3 and 3.4. As can be seen, density increases with Vf for

both fibre types. Nevertheless, unlike the theoretical prediction made by the ROM

(Equation 2.8), the relationship is not linear. A comparison with the theoretical

prediction shows that, at all volume fractions studied (> 0), the experimentally

determined densities lie below the theoretical line. Extrapolation of the regression

curves to a fibre Vf of 100% leads to theoretical fibre densities well in excess of 1500

kg m 3 (2114 kg m 3 and 1659 kg m 3 for jute and hemp respectively) which are clearly

unrealistic.

13])	 1 157+0.506 x4-0.0451 x	 - - - -

R2=99.9%

,
(II

........ 

trendline

-------------theorecdensi

I'	 - Iinearregression

11

0	 10	 2)	 3)	 5)

fibre oIume fraction (%)

Figure 3.3 Variation of laminate density with V,. - jute fibre reinforced laminate.
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Figure 3.4 Variation of laminate density with Vf - hemp fibre reinforced laminate.

If, however, it is assumed that the void content of the resin itself remains constant,

then the differential observed between the theoretical prediction of density and the

experimentally determined values may be attributed to void space included by the

addition of fibre (i.e. lumen space and other voids). If, because of this, the first data

point (un-reinforced resin) is ignored and a linear regression performed on the

remaining data then excellent fits are achieved (R2 values of better than 99% for both

fibre types). The fibre densities obtained by extrapolation of these regression lines

were then found to be 1438 kg m 3 and 1494 kg m 3 for jute and hemp respectively. It

is believed that these are probably realistic values for the apparent density of the fibre

and are in good agreement with the literature values (Ivens et a!., 1997) utilised to

determine Vf in Table 3.1.

In comparing the trends of the regression lines with the theoretical predictions, it is

evident in the case of jute reinforcement that the regression line appears to lie almost

parallel with the theoretical line, at a value of about 75 kg m 3 lower at all values of
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Vf . In the case of hemp, the two lines would appear to converge; at a volume

fraction of -2O% the calculated density is only around 25 kg m 3 lower than the

theoretical prediction. It would seem, therefore, that up to the volume fractions

studied, a proportionate increase in void space is not observed with increasing fibre

loading, from which it might be inferred that wetting of the fibre by the liquid polymer

during fabrication remains good even at higher Vf . Indeed, if the hemp reinforcement

only is considered, it would appear that void space actually decreased at higher fibre

loading. This is probable since the method employed to attain higher volume fractions

involved pre-pressing the fibre mats in a hot press. This may well have resulted in

some collapse of thin walled fibres, thereby reducing lumen space. As a consequence

there would probably be less lumen space for the resin to occupy in the first instance.

Alternatively, pressing may induce some longitudinal splitting of the fibre, thereby

exposing any lumena to resin ingress.

At a Vf of 20%, the densities of the glass, jute and hemp fibre reinforced laminates

were 1358 kg m 3, 1185 kg m 3 and 1200 kg m 3 respectively (the densities of the bast

fibre laminates were determined by interpolation, utilising the regression equations

shown in Figures 3.3 and 3.4).

3.3.2 Preliminary investigations

During the initial stages of this work a number of parameters with the potential to

influence the mechanical properties of the laminates were explored by means of three

point flexural tests. These included, fibre type, volume fraction, fibre architecture and

the effect of various surface and chemical treatments. Since several of these

parameters have a direct influence upon the mechanical properties discussed in the

reminder of this chapter, it is appropriate to present selected results from these

preliminary investigations at this juncture. Results from investigations into the effects

of, a) fibre microstructure (e.g. felt orientation and the number and areal density of

plies) and b) the effect of extraction are presented.
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3.3.2.1 Microstructure - anisotropy due to felt orientation

During the felting process a 'preferred' orientation is imparted to the fibres. Since

this occurs during 'carding', which is followed by 'cross lapping', the preferred

orientation lies perpendicular to the machine direction. Furthermore, the line of

needle punching is also perpendicular to that of the preferred fibre direction. In view

of this, it was believed that a degree of anisotropy would be imparted to any laminates

reinforced with such a felt and should therefore be investigated. Table 3.2 provides a

comparison of the orthogonal flexural properties of three laminate types as

determined from coupons cut from the material in mutually perpendicular directions.

A two sample t-test (at the 95% confidence level) performed on the data showed that,

for each laminate type, significant differences in both flexural strength and stiffness

arose as a result of the testing orientation. Since all other parameters remain

unchanged, it may be concluded that this anisotropy was due to the felt (and hence to

some extent fibre) orientation. Throughout the remainder of this section of the work,

due account was taken of the anisotropic nature of the laminate reinforcement.

Table 3.2 Comparison of flexural properties tested parallel and perpendicular to the
preferred fibre orientation (i.e. perpendicular and parallel to the machine direction).

Laminate	 Flexural modulus (GN m)	 Flexural strength (?vIN m')

zype

jute

hemp

flax

parallel to
bre direction
7.36 (0.25)

8.71 (0.35)

5.39 (0.28)

perpendicular to
fibre direction

5.35 (0.058)

5.29 (0.002)

4.52 (0.16)

parallel to	 perpendicular to
bre direction	 fibre direction

	104.4 (7.6)
	

78.2 (2.2)

	

143.2 (2.3)
	

100.9 (2.0)

	

100.3 (4.0)
	

88.2 (2.2)

Notes: A) The Vf of both the jute and flax laminates was -35%. The Vf of the hemp 1irninte

was —40%. B) Standard deviations are in parentheses.

3.3.2.2 Microstruciure - effect of the number of 'plies'

Following the discussion above, it is a reasonable assumption that a certain degree of

'in plane' fibre orientation also takes place. During felting, fine webs of carded fibre

are laid one upon the other, forming a thick 'fluffy' mattress of fibres. This mattress

is subsequently pressed by nip rollers and needle punched to 'intertwine' the fibres,
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thus locking the structure together. Prior to needle punching, it is probably

reasonable to assume that the majority of fibres are aligned in the X-Z plane within the

felt (see Figure 3.5).

V

Needleing holes

-

	

z
	

.

x

Figure 3.5 Schematic representation of the structure of the needled, non-woven
felted fabric, showing misalignment of fibres in the vicinity of needle holes.

Following needle punching, it was apparent from an examination of the felts that a

good proportion of the fibres were subsequently oriented in the Y direction. It is

likely that the proportion of fibres oriented in the Y direction will depend upon the

degree of needle punching and/or the thickness and grammage of the felts. In order to

test this hypothesis, laminates were prepared to the same Vf , but with different

grammage of reinforcement. The results are presented in Table 3.3.

Table 3.3 The influence of different felt densities on the flexural properties
of laminates (V1 13.5%).

	

Laminate type	 Flexural modulus (GN m 2) Flexural strength (MN m2)

2 x 350 g.s.m. hemp
	

3.55 (0.27)
	

72.68 (5.95)

1 x 700 g.s.m. hemp
	

3.21 (0.31)
	

55.32 (7.51)

Note: Differences between means are significant at the 95% confidence level.
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It was observed that both the strength and stiffness of the laminates reinforced with

two layers of 350 g.s.m hemp were greater than those of the laminate reinforced with

only a single layer of 700 g.s.m. material. This may be explained as follows. The 350

g. s.m. felt, being thinner would, in all probability, consist of a greater number of fibres

oriented in a planar-random sense (i.e. in the X-Y plane - Figure 3.5) than in the 700

g.s.m. felt. Although the needling density was similar for both non-wovens the

likelihood is that in the denser felt, a greater proportion of the fibres would be

engaged in 'locking together' the structure of the fabric. In other words in the 700

g.s.m. felt, a relatively greater proportion of the fibres would be oriented in the Z

direction than in the lighter materials. Consequently, in the laminate containing two

layers of 350 g.s.m. felt it seems highly probable that there was, in total, a greater

proportion of fibres oriented in the X-Y plane than in the laminates reinforced with a

single layer of 700 g.s.m. felt. This would undoubtedly result in more efficient

reinforcement which could well explain the higher fiexural strength and stiffness of the

laminate reinforced with two layers of350 g.s.m. felt.

An examination of the fracture of the laminates reinforced with a single layer of felt

revealed an interesting feature of needling, namely that failure invariably occurred at

these points. In this respect, needle punching may be likened to a row of perforations,

critically weakening the laminate.

3.3.2.3 Effect of extraction

Lignocellulosic material contains a proportion of non-bonded material. In addition to

this, during processing, lubricating oils and other debris undoubtedly contaminate the

fibre surfaces. To minimise the influence of these substances on composite properties

(J)rimarily interface performance), the fibre was solvent washed by refiuxing prior to

lamination. To assess the effect of this upon composite performance, the properties

of laminates prepared with extracted and 'loom state' fibre were evaluated (Table

3.4).
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Table 3.4 Effect of prior extraction of reinforcing fibre on laminate properties
(V,. --22%).

Reinforcement

un-extracted hemp
fibre

extracted hemp fibre

Densily	 Flexural modulus
(kgm 3)	 (GNm2)
1185 (3)	 4.70 (0.14)

1192(7)	 4.84(0.10)

Flexural strength
(MNm2) •
98.6 (4.8)

95.0 (5.1)

Note: *Djfference between means not significant at the 95% confidence level.

As can be seen, there are slight increases in both the density and the fiexural modulus

of the laminate reinforced with extracted hemp fibre (<1% and <3% respectively).

Whilst there would appear to be a small drop in strength, this difference was not

found to be statistically significant.

Both the apparent increase in density and stifThess may be explained by improved fibre

to matrix interaction. Removal of waxes, oils and other debris could have the effect

of changing the surface free energy of the fibre, rendering it more readily wettable by

the resin. If this were so, then it is likely that fewer void spaces would be present,

thereby increasing the density of the laminate. As discussed in Section 3.3.1, the

voids may be either unfilled lumena or other cavities in the structure of the composite.

Improved wetting may also promote interfacial adhesion, either as a result of more

intimate contact between the phases leading to better mechanical interlocking, or to

enhanced secondary force interactions (see Section 2.1.3). An improved interface

may result in more efficient stress transfer between the matrix and fibre, leading to

enhanced composite stiffness.

3.3.3 Tensile properties

As outlined above, preliminary tests confirmed that laminates reinforced with non-

wovens were anisotropic. In view of this, all specimens were prepared and tested

with the preferred fibre orientation aligned parallel to the major axis of the specimen.

The results presented for the mechanical properties of the bast fibre reinforced

laminates therefore probably overestimate the properties which might be expected if
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the reinforcement was truly randomly planar in nature. Furthermore, all laminates

were prepared from multiple felts of low areal density (35O g.s.m for the hemp

laminates and —5OO g.s.m for the jute laminates). In view of the discussion in the

previous section, it was believed that the adoption of multiple 'plies' would minimise

the effects of out of plane fibre alignment and needle punching.

3.3.3.1 Nature of stress-strain behaviour

Typical tensile stress versus tensile elongation records for the various laminates

investigated are presented in Figure 3.6. The stress-strain behaviour of the un-

reinforced resin is essentially linear until fracture. The inclusion of fibre was observed

to increase Young's modulus (steeper initial part of the curve) and to impart a certain

amount of non-linear 'plastic' behaviour to the laminate, regardless of fibre type.

For all laminate types, it was observed that failure occured in a brittle manner upon

the attainment of the first peak stress. Almost without exception, this form of fracture

occurred for all the specimens tested. Tensile elongation to failure (which is

equivalent to strain, since all specimens were of the same gauge length) was seen to

increase with the addition of glass fibre, but at similar Vf was reduced with both jute

and hemp, when compared with the un-reinforced polymer. This may, in part at least,

be explained by the differing failure strains of the various constituents.

The failure strain of the polyester resin used in this work, determined from these

experiments, was found to be around 1.7%. The failure strain of E-glass fibre is

approximately 2.6% (Hull & Clyne, 1996), whilst that of flax, similar in structure to

hemp (see Chapter 4), has been reported to be <1.5% (Davies & Bruce, 1998). It

would seem that the failure strains of the organic and inorganic fibres straddle that of
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Figure 3.6 Typical tensile stress versus tensile extension records for un-reinforced
polymer, CSM, jute and hemp reinforced specimens.

the polymer and the behaviour of the laminates appear to reflect this. Thus at

relatively low Vf (<20%), the difference in failure strain may be explained by the fact

that the bast fibres fail at relatively low strain, leaving the matrix un-reinforced;

changes to the microstructure, such as stress concentrations at the broken fibre ends

may then promote fracture of the matrix, leading to overall failure of the laminate at

strains below that of the un-reinforced polymer itself. The converse may be true of

the glass fibre reinforced material, in that matrix cracking precedes fibre failure. Since

the tensile strength of the fibre is very much greater than that of the polymer itself; it

is reasonable that the fibres will continue to support significant loads after matrix

cracking has initiated. This is borne out by an examination of the failed laminates; the

CSM reinforced material exhibiting a substantial amount of transverse micro-cracking

(observed as fine bands across the specimen), whereas at these volume fractions none

was evident whatsoever in either bast fibre reinforced laminate. Nevertheless, as will

be discussed below, higher Vf resulted in increased strains to failure for the bast fibre

reinforced composites which are probably a reflection of different failure mechanisms.
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The stress-strain curve for the CSM reinforced laminate shows a distinct 'knee'

occurring at around 50 MN m 2. Similar behaviour has been noted in cross-ply

laminates (Chou, 1994) and is probably due to the onset of transverse micro-cracking,

initiating where the fibres are locally aligned perpendicular to the applied stress

(analogous to rupture in transverse plies). The behaviour of the bast fibre reinforced

composites appeared to be similar. However, the 'knee' in the curve was not as

distinct, but was nevertheless discernible. It does, however, appear as though non-

linear behaviour was initiated at significantly lower stress levels in the bast fibre

reinforced materials.

Figures 3.7 and 3.8 show typical stress-tensile elongation curves for jute and hemp

respectively, at three different V1 , together with that of the un-reinforced polymer (as

noted previously, these are equivalent to stress-strain curves, since the guage lengths

were the same). As can be seen, the addition of both bast fibre types in increasing

proportion had the effect of increasing both stress and strain to failure. The difference

between the 36.3% and 40.4% Vf jute reinforcement was marginal, but then the

difference in V,. was small, and furthermore the curves are simply representative and

cannot therefore be treated quantitatively.	 Interestingly, in the case of jute

reinforcement, at all Vf , the failure strain of the laminates was below that of the

polymer itself. In the case of hemp, however, at a Vf of 44.3% the failure strain

exceeded that of the resin. This increase in strain to failure of both laminate types

may be explained by a change in the mode of failure. At higher volume fractions,

extensive transverse micro-cracking becomes visible. Presumably this occurs because,

with a higher percentage of fibre, concentrations of stress at the fibre matrix-interface

make it more likely for the matrix to rupture prematurely. However, with a greater

proportion of fibre, the laminate remains bound together by the fibres bridging the

matrix cracks.
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Although it is difficult to deduce from the curves, it appeared as though there was

significantly more non-linear, 'plastic', behaviour in the hemp reinforced laminates

than the jute reinforced material, particularly at higher J/	 To investigate this

phenomenon, the yield stress or rather (since these laminates do not possess a

distinguishable yield point), the 0.2% proof stress (Timings, 1989) of the laminates

was determined and compared with the ultimate tensile strength of the laminates (see

below). It did, however, seem evident that in both bast fibre reinforced materials,

incipient non-linear behaviour occured at relatively low stress levels (possibly <20

MN m 2). Although not directly tested inihis part of the work, it is believed that this

non-linear behaviour is irreversible and most probably due to micro-structural

damage. A fuller discussion of this aspect of the work is conducted in Chapter 6.

An estimate of the work of fracture is provided by the area under a force-

displacement record (Jeronomidis, 1980). Since it may be observed that the areas

under the stress-elongation curves increase with V 1. (Figures 3.7 and i8) this may be

indicative of improved toughness resulting from higher fibre loading. The issue of

composite fracture toughness is considered in Section 3.3.6.

3.3.3.2 Young 's modulus

Figures 3.9 and 3.10 show Young's modulus, E, as a function of Vf for jute and

hemp fibre reinforced polyester respectively. As might be expected, increasing Vf

resulted in an increase of stiffness. In both instances, there appeared to be an almost

linear relationship between E and Vf . Regression analysis confirmed this, with

excellent 'goodness of fits' being achieved (R2 values of better than 99%).

Such a relationship might well be expected from the theory. As noted in Section

2.1.5, the theoretical prediction (Equation 2.11) for a planar-random reinforcement

configuration (Figure 2.7) shows an almost linear relationship between Young's

modulus and volume fraction up to a value for V1 of around 40-45%.
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Figure 3.9 Young's modulus versus volume fraction. Jute fibre reinforcement.
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Figure 3.10 Young's modulus versus volume fraction. Hemp fibre reinforcement.
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A comparison of the tensile stiffness of the three laminate types versus Vf is

presented in Figure 3. 11, It can be observed that the plots for the two bast fibre

reinforced composites almost coincide with each other. This is an interesting

phenomenon, given that reported values for the tensile stiffness of hemp generally

exceed those of jute (see Table 1.1). This difference may, however, be explained by

variations in fibre achitecture, since different area! weights (with different needling

densities) of felt were utilised for the different fibres types.
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Figure 3.11 Variation of Young's modulus with Vf forjute, hemp and CSM glass

fibre reinforced laminates.

At equivalent Vf (20%), the Young's modulus of the glass fibre reinforced laminate

only marginally exceeded that of the bast fibre reinforced material. It should,

however, be remembered that the moduli for the bast fibre reinforced materials are

probably a 'best case' scenario for this reinforcement architecture, and thus the 'real'

difference is probably somewhat greater. Young's modulus at 20% Vf for the bast
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fibre reinforced laminates has been derived from the regression equations shown in

Figures 3.9 and 3.10, and a comparison with the CSM reinforced material is shown in

Table 3.5. Also shown are the specific values (E/p). Viewed in this manner, the

stiffness values of the plant fibre reinforced material looks very encouraging!

Table 3.5 Comparison of absolute and specific Young's moduli (Vf = 20%).

Laminate type	 Young's modulus (GN m 2)	 E/p (MN m 2/kg m3)

Jute	 I	 6.81	 5.75

Hemp	 6.68	 5.57

CSM glass fibre	 7.95	 5.85

The superior tensile stiffness of the glass fibre reinforced material may be accounted

for by the greater modulus quoted for this fibre type (Ivens eta!., 1997). Further, the

configuration of the bast fibres themselves may well influence the elastic properties of

the laminate, for whilst glass fibres in CSM are generally straight, the bast fibres are

decidedly 'curly' where they pass over, under and between one another. The type of

structure seen in a needled non-woven is probably more akin to paper than to a CSM

reinforcement. This 'curliness' of the fibres would no doubt present problems in

modelling the elastic properties of laminates reinforced with such material.

In view of the above, no attempt was made in this work to model the elastic

behaviour of the non-woven plant fibre reinforced laminates. The empirical

relationships derived for E as a function of Vf , will, of course only be valid within the

range of volume fractions studied and for the particular non-woven felts utilised.

3.3.3.3 Tensile strength

Tensile stress at break, o,, as a function of Vf for the two bast fibre reinforced

laminates are shown in Figures 3.12 and 3.13.
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Figure 3.12 Tensile stress at break versus fibre volume fraction. Jute reinforcement.
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Figure 3.13 Tensile stress at break versus fibre volume fraction. Hemp
reinforcement.
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It is clear that unlike E, o did not follow a linear relationship with V1 . Indeed, it

may be seen that for both fibre types, o appeared to reach a minimum value at a V1

somewhere between 10% to 15%, and only when V1 increased to between 20% and

30% (depending upon reinforcement type) did o, equal or exceed the matrix

ultimate stress, omu

In the case where very few fibres are added to the matix, the polymer may be

weakened rather than strengthened (Piggott, 1980). In these circumstances, a critical

fibre volume fraction, Vnrn, can be identified, below which any fibre added actually

weakens the matrix. As noted in Section 3.3.3.1, it seems probable that the strain to

failure of bast fibres is probably less than that of the unreinforced polymer. In these

circumstances it can be shown that the critical fibre volume fraction may be given by

(Piggott, 1980):

E a—Ecrfr
Vjmjn 

(E1 _Em)	
(3.4)

Where:	 E1	 is the fibre modulus

Em	is the matrix modulus

is the fibre ultimate strength

°mu	 is the matrix ultimate strength

X1	is a factor less than unity which makes allowance for

unaligned fibres (0.38 for planar random reinforcement)

By substituting 'typical' values for the bast fibre properties (tensile modulus — P50 GN

m 2 and tensile strength 500 MN m 2 - see Table 1.1) and the matrix properties

derived in this work (Young's modulus -3.8 GN m 2 and tensile strength 50 MN

m 2) into Equation 3.4, it may be shown that Vf mm is theoretically approximately 8%.

However, as may be clearly observed from Figures 3.12 and 3.13, the 'break even'

fibre volume fractions for both hemp and jute (where the laminate tensile strength
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exceeds that of the unreinforced matrix), is considerably higher than this figure.

Utilising the regression equations shown in Figures 3.12 and 3.13, it can be shown

that the actual minimum fibre volume fractions are 22% and 29 % for jute and hemp

respectively. These figures are substantially higher than those predicted from the

theory and, even allowing for some error in the estimates of the fibre tensile

properties, it seems likely that either the assumptions made regarding the material

(fibre failure strain < matrix failure strain) are invalid or some other mechanisms are

involved in the weakening of the matrix.

Probable explanations for this behaviour in the plant fibre composites are as follows.

At all I/f, the orientation of the reinforcement is 'pseudo-planar random', as a result

of which a proportion of the fibres are oriented perpendicular (or at a large angle) to

the applied stress; these effectively act in the manner of unidirectional plies under

transverse loading. The tensile strength of plies under transverse loading is, however,

significantly less than that under axial loading because of a tendency for high local

stresses and strains to develop in the matrix; consequently the failure stress of the

lamina is less than mu (Hull & Clyne, 1996). Nevertheless, it might be argued that

this effect would be offset by a significant proportion of the fibres lying along the axis

of loading (or nearly so). However, in view of the fibre configuration and other

morphological features, which will be discussed in the following chapter, it is likely

that these too may create concentrations of stress and strain in the matrix. At low

I/f , therefore, when a tensile specimen is strained, stress concentrations are

stimulated in the matrix as a result of transversely loaded fibres and other fibre

defects. Furthermore, given that the strain to failure of the fibres is less than that of

the matrix, it is probable that fibre failure also takes place at low overall strains. This

would effectively leave the laminate un-reinforced at relatively low strains, but

furthermore, riddled with stress concentrators (added to by the broken fibres). Given

the susceptibility of brittle materials to stress concentrators, it is therefore not

unreasonable that at low Vf the plant fibre reinforced laminates are weaker than the

un-reinforced matrix itself.
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Figure 3.14 Comparison of the tensile strengths of CSM glass fibre, jute and hemp
reinforced laminates.

At higher VI , however, it would seem likely that there might be a proportionately

greater number of stress concentrators which could initiate matrix cracking prior to

general fibre failure. In these circumstances, a greater proportion of fibres might be

considered to give the laminate macroscopic integrity, though irreversible microscopic

damage processes may well have already taken place. This explanation could also

account for the large 'plastic' region observed, particularly in the hemp reinforced

laminate, which at higher volume fractions exhibited extensive transverse micro-

cracking.

A comparison with the CSM reinforced polyester (Figure 3.14), revealed that o for

this composite was significantly higher than that of either of the two bast fibre

reinforced materials at a V of 20% (approximately 60% greater than the jute

laminate and 100% greater than the hemp laminate at this Vi ). Taking into account

fibre orientation, the greater strength of the glass fibre reinforced laminates may be
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explained by the greater tensile strength of this fibre (approximately 2.5 GN m 2 for

glass fibre as compared with around 0.5 GN m 2 for the bast fibres - see Table 1.1).

3.3.3.4 Yielding

As mentioned above, in order to estimate the amount of 'plastic' behaviour of the

laminates the yield stress (0.2% proof stress) was compared with cr. Table 3.6

shows a comparison of the yield stress, ci, to the ultimate tensile stress of the

laminates together with the laminate failure strain, s,.

Table 3.6 Ultimate tensile strength, yield stress and failure strain of laminates.

Laminate type

Polymer

CSM(VJ. '--20%)

Hemp(V1 -15%)

Hemp(V --31%)

Hemp (V1. '--44%)

Jute(V1 '-19%)

Jute(V '-.36%)

Jute(V1 '--40%)

(MNm')

49.1

73.4

33.8

54.2

84.7

46.1

73.6

81.19

(?L1N m2)

49.1

59.6

33.8

44.4

50.8

44.2

53.7

51.0

/c (%)	 (%)

	

100	 1.66

	

81	 1.74

	

100	 0.88

	

82	 1.28

60	 2.06

96	 1.09

73	 1.46

63	 1.67

It is clear that, in the bast reinforced polyester composites, as Vf increased so the

ratio of o /o	 decreased. In other words, it would appear that subsequent to

'yielding' an increasing amount of 'plastic' deformation takes place prior to the

attainment of the ultimate tensile strength. This behaviour is readily observed in

Figures 3.7 and 3.8. Additionally, the strain to failure, e, increased with Vf . It may

be seen that, with the exception of the highest volume fraction laminates, all bast fibre

reinforced materials failed at strains below that of the un-reinforced resin. A plot of

versus Vf (Figure 3.15) indicates that with both jute and hemp reinforcement, the

strain to failure reached a minimum value at around 20% V1 . It would seem that both
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1

o and e 'bottom out' at a composite Vf of somewhere between 10% and 20%.

This, coupled with the observation that little non-linear behaviour was observed in this

region, would tend to lend weight to the argument that the inclusion of bast fibres at

low Vf actually introduces 'weaknesses' into the laminate structure, most probably in

the form of the aforementioned stress concentrations. On a practical note, this would

imply that there is little to be gained, in reinforcement terms (other than to increase

stiffness), by utilising non-woven bast fibre felts at volume fractions below around

25% Vf . The data from the tensile tests conducted in this work appear in Appendix

4.
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Figure 3.15 Variation of strain to failure with fibre volume fraction. Jute, hemp and
CSM reinforced laminates.

3.3.4 Flexural properties

3.3.4.1 Nature offlexural stress-strain records

Typical fiexural stress-strain records for jute and hemp fibre reinforced laminates are

presented in Figures 3.16 and 3.17 respectively. It may be observed that, as with the

tensile tests, the traces show an initially linear portion, followed by a non-linear region

"I
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prior to the attainment of maximum fiexural stress. Furthermore, with increasing V1

it may be observed that modulus increased, as evidenced by a steeper initial portion of

the curve, and that the degree of non-linear behaviour increased (see also belpw).

Once the maximum stress was attained, the recorded stress diminished in a more

gradual maimer to that observed in the tensile tests. The transformation to this t'orm

of post maximum stress behaviour is most probably a result of the shear stresses

induced in the specimen during this mode of loading. Failure was observei to

invariably initiate on the tension surface and to progress through to the neutral axis of

the specimen. At low Vf , failure in both bast fibre reinforced laminate types was

noted to be primarily brittle, however, at higher V1 , a certain amount of shear filure

was also evident.

Egj

0
0	 1	 2	 3	 4	 5

fle.iraI strain (%)

Figure 3.16 Typical fiexural stress-strain records for jute reinforced polyester
laminate specimens in three point flexure.
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Figure 3.17 Typical flexural stress-strain records for hemp reinforced polyester
laminate specimens in three point fiexure.

In Figure 3.18, a comparison is presented between typical flexural stress-strain

records of the two bast fibre reinforced laminates, CSM reinforced material and the

cast polymer. It may be observed that at approximately equivalent reinforcement

levels (V1 —15 to 20%), the fiexural stiffness of the synthetic fibre reinforced material

exceeded that of either of the two natural fibre reinforced laminates. All

reinforcement types, however, seemed to produce an increase in flexural stiffness over

that of the neat polymer. Whereas the addition of glass fibre resulted in an

improvement in the fiexural stress at break, over that of the un-reinforced polymer, at

these V1 's bast fibre reinforcement appeared to reduce the strength of the laminates.

Flexural strain at break also appeared to be reduced by the addition of all

reinforcement types (see below).
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Figure 3.18 Flexural stress-strain records for un-reinforced, jute, hemp and CSM
reinforced laminates in three point flexure. The reinforced laminates are at approx-

imately equivalent V1 (15 to 20%).
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Figure 3.19 The variation of flexural modulus with V1 . Jute reinforcement.
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Figure 3.20 The variation of flexural modulus with Vf . Hemp reinforcement.

3.3.4.2 Flexural modulus

Figures 3.19 and 3.20 show the variation of fiexural modulus with Vf . These trends

are similar to those observed in tensile tests, albeit the relationships do not exhibit the

same degree of linearity.

A comparison between the fiexural moduli of the various reinforcement types is

presented in Figure 3.21. It may be observed that at equivalent Vf , the flexural

modulus of the CSM glass fibre reinforced laminate exceeded that of the bast fibre

reinforced material. At a fibre volume fraction of 20%, the modulus of the glass fibre

reinforced laminate exceeded that of the jute and hemp reinforced material by

approximately 32% and 38% respectively. What is of particular interest, however, is

to compare these differences with those obtained from the tensile tests. In these, the

difference between the glass and the jute and the glass and the hemp laminates was

17% and 19% respectively. Another way of looking at this phenomenon is to

compare the differences in the moduli of the laminates at equivalent Vf , obtained
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either by tensile or flexural tests. In the case of the CSM laminate, the flexural

modulus is around 14% lower than the corresponding tensile modulus. With th un-

reinforced polymer, this difference is around 11%. On the other hand, the difference

observed in the jute and hemp laminates is around 26% and 28% respectively. Given

that some difference in the value of modulus would be expected as a result of the

loading configuration, the much larger difference observed in the modulus of the

natural fibre reinforced material warrants explanation.
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Figure 3.21 Comparison between the flexural moduli of jute, hemp and CSM glass
fibre reinforced unsaturated polyester laminates.

In flexural tests, the stress distribution varies through the thickness of the test

specimen, from tensile on one face to compression on the opposite face. It should be

bourne in mind, however, that the flexural tests undertaken in this work were

conducted in three, rather than four point bending; as such there would have been a

distribution of shear stresses through the thickness as well as along the specimen. The

use of a four point loading configuration would have removed the shearing element in

the mid-section and would have provided a more accurate assessment of flexural

modulus. Nevertheless, if it were assumed that the material under investigation

behaved in the same manner both in tension and in compression (i.e. the same moduli
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in both compression and tension), then it might be thought that any difference in the

modulus resulted from the test method (either tensile or fiexural) employed (in this

instance, the lower modulus in flexure may also partly result from the finite

compliance of the loading system, making the apparent strain greater and hence the

fiexural modulus lower). The greater difference observed in the modulus of the bast

fibre reinforced laminates between the two tests may be indicative of a certain amount

of bimodular behaviour, i.e. they have differing tensile and compressive moduli. As it

seems unlikely that this should originate in the polymer itself, it may be that the fibres

or the composite structure are the root cause of the behaviour. Bimodular behaviour

has, for instance, been noted in solid wood as well as in fibrous composites (Conners

& Medvecz, 1992). Since the difference observed was greater in the bast fibre

reinforced material than in the CSM glass fibre laminate, this may be indicative that

the fibres themselves account for a large proportion of this behaviour. Howver,

since the orientation of the fibres was 'pseudo-planar random' it is impossible to say

whether this behaviour occurs during radial or axial loading of the fibres. It shoujd be

noted, however, that no compression tests were conducted in this work to confirm or

disprove this supposition.
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Figure 3.22 Flexural stress at break versus Vf . Jute fibre reinforced unsaturated

polyester laminates.
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Figure 3.23 Flexural stress at break versus V1 . Hemp fibre reinforced unsaturated

polyester laminates.

3.3.4.3 Flexural strength

The flexural strength of jute and hemp fibre reinforced laminates as a function of fibre

volume fraction are presented in Figures 3.22 and 3.23 respectively. As with the

tensile tests, flexural strength appeared to reach a minimum value at a V1 somewhere

in the region of 20%. The reasons for this may again be attributed to the inclusion of

a population of stress concentrators at relatively low V1 . The absolute values for the

flexural strengths of all laminate types were found to be greater than the

corresponding tensile strengths. This, in all probability, is due to the test method

(Martin, 1996). As with the tensile tests, the flexural strengths of the CSM reinforced

laminate were greater than that of the bast fibre reinforced material at an equivalent

V1 , being approximately 135% and 150% greater than the jute and hemp reinforced

laminates respectively.
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Figure 3.24 Work of fracture in three point flexure versus V1 . Jute reinforcement.
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Figure 3.25 Work of fracture in three point flexure versus r'. Hemp reinforcement.
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3.3.4.4 Work offracture in ihree point flexure

The work done in a three point flexure test (measured as the area under the load-

deformation curve) provides an estimate of the energy absorbed by a material when

undergoing fracture. Figures 3.24 and 3.25 show the work of fracture (normalised by

dividing the work done by the cross sectional area of the specimen) in three point

flexure of the jute and hemp laminates respectively.

It may be observed that, in a similar fashion to tensile and flexural strengths, the

works of fracture of the natural fibre reinforced composites reached minimum values

somewhere between 15% and 20%. This would indicate that rather than increasing

the toughness of the composite, at low V, work of fracture is compromised by the

addition of plant fibre. As will be discussed more fully in the following section,

however, this may be accounted for in part by the test procedure. The un-reinforced

polymer underwent considerable flexural strain (3.4%) prior to fracture. In all bast

fibre reinforced laminates, the strain to failure was less than that of the resin and only

in the CSM reinforced laminates was a greater failure strain observed (3.5%). Upon

fracture, the pure resin specimens shattered and flew apart. It is therefore likely that

the stored strain energy in the specimen, upon fracture was used to create many

fracture surfaces and converted to kinetic energy, thus the work done (area under the

load-deformation curve) probably gives a gross overestimate of the true work of

fracture (i.e. to propagate a crack in the self same manner through the specimen). At

low V1 , the bast fibre reinforced specimens had low strains to failure (1.9% and 2.2%

for the jute and hemp reinforced material respectively), and fractured in a quasi-bittle

manner with a single macroscopic crack extending through the specimen. It is

probable that this is more representative of the actual work of fracture of the material.

The apparent reduction in the work of fracture could be brought about by an increase

in the incidence of 'critical' defects within the structure of the laminate, resulting in

microscopic stress concentrations, instigating failure. As V increases beyond around

20%, the apparent work of fracture increases to in excess of that of the un-reinforced

resin. This is in all probability accounted for by an improvement in the various

toughening mechanisms (e.g. crack blunting, and deflection) which effectively

increases the energy absorption capacity of the material. The manner of failure should
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be borne in mind, for whilst the un-reinforced polymer fractured with an abrupt, brittle

fracture, the addition of fibre at all loading levels resulted in a more 'contr9lled'

failure with what may have been a degree of slow crack advance prior to failure.

A comparison with the CSM glass fibre reinforced laminate (Figure 3.26) revealed a

large difference in the works of fracture of the natural and synthetic fibre reinforced

materials, the former being between 5.0 and 7.5 times greater than the latter. The

reasons for the seemingly large difference in the toughness of the different laminate

types will be considered below. A summary of the results obtained during the fiexural

tests appear in Appendix 5.
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Figure 3.26 Work of fracture in three point flexure. Jute, hemp and CSM glass fibre
reinforced laminates.

3.3.5 Impact properties

An assessment of the toughness or work of fracture of the materials was conducted by

measuring the Charpy impact strength of the laminates. Figures 3.27 and 3.28 show

the Charpy impact strength as a function of Vf , for jute and hemp reinforced

laminates respectively. It may be observed that impact strength reached a minimum
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value at a Vf of between 10% and 15%, depending upon fibre type. Only when V1

was increased to between 20% and 25%, did the impact strength equal that of th un-

reinforced resin. Subsequent increases in V1 resulted in enhanced impact properties.
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Figure 3.27 Charpy impact strength versus fibre volume fraction.
Jute reinforcement.

It should be noted that the tests were, however, conducted using un-notched

specimens. It is believed that this may have led to erroneous results for the work of

fracture of the specimens; there must therefore be some doubt regarding the validity

of the data. Nevertheless, the following observations can be made. Firstly, the

Charpy impact strength of the un-reinforced polymer, at around 9 kJ m 2, was almost

two orders of magnitude greater than the works of fracture of thermosetting polymers

quoted in the literature (e.g. Hull & Clyne, 1996; Williams, 1981). The work of

fracture of the polymer used in this work has been calculated by alternative methods

(see Section 3.3.6) and found to be in very good agreement with published values.

This may be explained by the test methodology; firstly, when the specimens fracture,

they do so by shattering into numerous shards and secondly, the shattered specimens

are thrown some distance by the apparatus. By shattering, no single crack propagates
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in the self-same manner, but numerous additional crack surfaces are created, thereby

absorbing energy. This, together with the kinetic energy of the shards (plus any

further energy absorbed by the system) may well account for the large work of

fracture determined in this manner. Clearly, this might disguise the 'true' trends in

composite toughness.
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Figure 3.28 Charpy impact strength versus fibre volume fraction.
Hemp reinforcement.

The drop in the Charpy impact strength would appear to reflect a reduction in the

work of fracture of the laminate. This is consistent with the discussion in Section

3.3.3 regarding the reasons for the drop in tensile strength seen in the plant fibre

reinforced laminates at a Vf of around 15-20%. Tn effect, at these volume fractions,

the fibres would seem to introduce a population of defects into the structure of the

laminate, without a commensurate increase in mechanisms which serve to improve

toughness (such as crack blunting at weak interfaces, energy absorption through the

creation of crack surfaces and frictional sliding of the fibres within the matrix).

Indeed, it was clearly observed that, at low volume fractions, the bast fibre laminates

failed in a brittle manner, with fracture occurring along a single macroscopic crack.
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At higher volume fractions, however, toughening mechanisms are introduced which

increase the apparent work of fracture to above that of the polymer itself. In these

circumstances, although fracture was predominantly macroscopically brittle, there was

some evidence of inter-laminar shear failure, which may account for enhanced energy

absorption.

The foregoing is, however, probably only partly true since, if the nature of the fra?ture

of the un-reinforced polymer is taken into account, the fibres would serve to improve

the work of fracture of the laminate. If it is assumed that the work of fracture of the

polymer is in the region of 0.1 Id m 2 (Williams, 1981), for a crack propagating in the

self-same manner, then the addition of fibre would be seen to increase the work of

fracture at all fibre loadings. The discrepancy between the work of fracture of the

polymer itself and those of the bast fibre reinforced laminates, is probably due to the

maimer in which fracture occurs and also to the test procedure, rather than a

reflection of the toughness of the material.

The Charpy test, as used in this work, may well have provided misleading data on the

toughness of the composites due to the manner in which the laminates fail.

Nevertheless, it may have provided an insight into possible failure mechanisms arid

may also indeed provide a more representative estimation of the 'brittleness' of the

material in service conditions. It could reasonably be claimed that this test, using Un-

notched specimens, offers a measure of the sensitivity of the material to the initiation

and propagation of a pre-existing population of micro-defects. The resistance of the

material to the propagation of macroscopic cracks - fracture toughness, mai be

viewed somewhat differently. A more quantitative approach to toughness, in terms of

the sensitivity of the materials to macroscopic cracks, will be presented in the

following section.

A comparison of the Charpy impact strength of the bast fibre reinforced material with

that of the CSM glass fibre laminate is shown in Figure 3.29. It may be observed that

there was a large difference (approximately an order of magnitude) between the

Charpy impact strengths of the synthetic and natural fibre reinforced materials.
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Similar differences in the impact strengths of vegetable fibre and glass fibre reinforced

composites have been reported elsewhere (O'Dell, 1997).
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Figure 3.29 Comparison of un-notched Charpy impact strength (un-notched
specimens). Jute, hemp and CSM reinforced laminates.

The above findings seem to be in general agreement with those reported by other

authors. For example, Roe and Ansell, (1985) found that at a V1 of 20%, the work

of fracture of unidirectional jute fibre reinforced polyester was arQund 4 kJ m2

(obtained using the Charpy test - notched samples), rising to around 22 U m 2 with a

V1 of 60%. By way of comparison, for a glass fibre epoxy system at a Vf of 67%, a

fracture energy of around 200 U m 2 has been reported (Harris, 1980). Sanadi et al.

(1986a), reported a fracture energy of 21.54 U rn 2 using the Izod test for a 24% V1

uniaxial Sunhemp polyester composite. Prasad Ct a!. (1983), reported a Charpy

impact value of 7.44 U m for untreated coir-polyester composites of 20% fibre Vf,

less than the 8.33 U m 2 of the un-reinforced resin. White and Ansell (1983), used

straw to reinforce polyester resin and found that at a Vf of 70%, fracture energies of

around 7 U m 2 were obtained.
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Whilst due account should be taken of the test methods employed to derive works of

fracture, it seems evident that for equivalent volume fractions of reinforcement the

toughness of plant fibre reinforced thermosets is significantly lower (possibly as riuch

as an order of magnitude) than their glass fibre reinforced equivalents. This may well

ultimately prove to be a highly significant factor, limiting the potential end uss to

which these materials may be applied. Appendix 6 records the full results of the

Charpy impact strength tests.
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3.3.6 Fracture toughness

In the words of the late Professor J.E. Gordon, (1976): "The worst sin in a

engineering material is not lack of strength or lack of stiffness, desirable as these

properties are, but a lack of toughness, that is to say, lack of resistance to the

propagation of cracks". It is a requirement of most engineering materials that they

possess adequate toughness or crack stopping ability. One of the attractions of many

composite materials is their excellent toughness, especially when viewed on a specific

basis (Gordon, 1970). It seems likely, therefore, that if composites based on

thermosetting polymers reinforced with vegetable material are to used in structural

applications, then it must be ensured that their works of fracture are adequate. The

results reported thus far would, however, seem to indicate that bast fibre reinforced

polyester composites are considerably less tough (possibly by as much as an order of

magnitude) than their glass fibre reinforced counterparts. In view of the importance

of this property it was believed that this aspect warranted closer investigation. As a

first step, the relative toughnesses of the materials under investigation were

quantified.

Pendulum tests such as Charpy and Izod provide a qualitative measure of a material's

toughness (Anderson, 1995). However, a more fundamental approach to the study of

the toughness is provided by fracture mechanics. Under suitable conditions, fracture

mechanics techniques can provide a quantitative measure of toughness. Of particular

relevance to this approach, is the way in which the macroscopic toughness of the

material can be related to its microstructure, possibly highlighting ways in which

toughening mechanisms may be stimulated (Hull & Clyne, 1996). In view of this, it

was felt that an evaluation of the fracture toughness of the natural (and synthetic)

fibre reinforced composites should be attempted. The applicability of fracture

mechanics techniques as applied to these composite materials will be discussed. From

the outset it should be pointed out that the results obtained from these tests should be

treated with caution since the laminates studied violate many of the material

assumptions made in fracture mechanics theory. Nevertheless, it is believed that some

insight as to the reasons behind the relatively poor toughness observed in these

composites was obtained as a result of this analysis.
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3.3.6.1 Fracture mechanics

In essence, fracture mechanics provides a measure of the toughness of a material by

considering the conditions under which a pre-existing sharp crack or crack-like defect,

which might ultimately lead to failure, begins to propagate (Martin, 1996). Both

energy and force based failure criteria have been developed for materials exhibiting

brittle or quasi-brittle behaviour (Knott, 1973; Parton, 1992). These are collectively

known as linear elastic fracture mechanics (LEFM). Primarily developed for metals

(BSI, 1991, ASTM, 1991), LEFM has nonetheless been applied, with varying degrees

of success to non-metallic materials including wood and synthetic PMCs (Patton-

Mallory & Cramer, 1987; Williams, 1981; Stanzl-Tschegg, eta!., 1994, 1995, 1996)

as well as to other biological materials (Lucas eta!., 1991, 1995, 1997).

3.3.6.2 Linear-Elastic Fracture Mechanics

Fracture mechanics evolved from the early work of Griffith (1920), in which the

thermodynamics of the fracture process in a nearly perfectly linear-elastic material

(glass) containing a sharp crack, was considered. Griffith derived an expression for

fracture stress as a function of crack length and work of fracture (taken to be the

work required to create new crack surfaces). It was shown that, for a crack of length

2a contained in an infinite body, with a stress applied normal to the plane of the crack,

the following relationship exists between fracture stress o, crack length and work of

fracture:

(2yE 
1/2

o_F	 I

Where:	 E	 is Young's modulus

27s 
is the work of fracture (y is the surface energy)

This work was later extended to encompass materials which were capable of energy

dissipation through plastic flow, as well as the creation of new surfaces, In this

approach, the y, term is supplemented by other, irreversible, contributions to the

energy absorbed in the vicinity of the crack-tip. A new term was subsequently

(3.5)
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introduced to replace work of fracture, known as the energy release rate, G, defined

as (Anderson, 1995):

dU

G dA

Where	 TIE	 is potential energy

A	 is crack area

Thus G is a measure of the rate of change of potential energy with respect to crack

area. For the example noted above, it can be shown that G = cr 2 lTa/E. For fracture

to occur, G must exceed a critical value G, the critical energy release rate, or

fracture toughness. In the above noted example, it can be shown that the relationship

between fracture stress and G is (Anderson, 1995):

(GCE 
1/2

I	 (3.7)
¼ ira)

An equivalent, force-based approach, considers the stress field in the vicinity of' the

crack-tip. It may be shown that a constant K, the stress intensity factor (units of MN

m 3 ) characterises the crack-tip stress-strain conditions. Furthermore, it can be

shown that G and K are related as follows (Anderson, 1995):

G = K 2 /E	 (in plane stress)	 (3.8)

G = K 2 (i - v 2 )/E (in plane strain)	 (3.9)

Where:	 v	 is Poisson's ratio

It may be shown that the stress distribution in a material ahead of a crack in a loaded

homogeneous, isotropic and ideally linear-elastic body takes the general form (Parton,

1992):

(3.6)
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K
=	 1/2 f(a) +.	 (3.10)

(2 )

Where z is the distance from the crack tip, a, the angular displacement about the

plane of the crack. The stress intensity factor characterises the intensity of the stress

field ahead of the crack (Knott, 1973). The stress field in the vicinity of the crack-tip

therefore differs only by a constant (depending upon the mode of the crack surface

displacement), K, which encompasses the external load and geometry of the body. A

critical value of K = K defines the onset of crack growth and provides a force based

fracture criterion. The critical stress intensity factor K , is also referred to as

fracture toughness. Under opening mode, plane strain conditions, "plane strain

fracture tougimess" (K1 ) can be regarded as a material parameter, provided stringent

validity criteria are met (e.g. BSI, 1991; ASTM, 1991).

For a range of specimen configurations and loading schemes, standard solutions for

the determination of the stress intensity factor (K) are available and generally take

the form K = o	 where cr is the nominal applied stress, 1 the crack length

and Y is a dimensionless constant, known as the K-calibration. The K-calibrpiion

depends upon the ratio of crack length to specimen thickness, b. K-calibrations

usually take the form of a polynomial, thus (Parton, 1992):

Y(2) = c0 + c1 2 + c22 + c323 +...........
	 (3.11)

Where: 2=51

It is therefore possible to determine the fracture toughness of a material, if the remote

stress at crack initiation can be determined, if the global behaviour of the material is

linear-elastic, and if the specimen geometry and loading fall within certain boinds.

These validity criteria are set out in the standards (BSI, 1991; ASTM, 1991).
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The advantage of a LEFM approach to materials' failure lies in the fact that, provided

valid figures for fracture toughness can be determined, the strength of real structures

containing cracks can be ascertained. As well as providing characterisation of

material toughness, this approach, as indicated above, can be used to link material

toughness with micro-structure. For instance, the size of the plastic zone ahead of a

crack is given by (Hull & Clyne, 1996):

r	 \2
ilK	

(3.12)

Where:	 r	 is the radius of the plastic zone

is the yield stress of the material

3.3.6.3 Fracture toughness of laminates

An estimate was made of the fracture toughness (K1 ) of the natural fibre reinforced

polyester composites and compared with that of material reinforced with CSM glass

fibre. The procedure adopted to measure K1 was based heavily upon that set out in

B S 7448 (1991), employed in the measurement of the fracture toughness of meçallic

materials.

This standard sets out a procedure for analysing the force versus loac-line

displacement records, obtained during a fracture toughness test and when certain

criteria are met, establishing a value for K1 . The point of interest on the record is

the load at which unstable crack extension begins. For linear elastic materials, this

load can taken to be the maximum load observed on the load-displacement record.

For materials which exhibit a limited amount of non-linear behaviour prior to the

attainment of a maximum force or 'pop-in' (a jump in the force-displacement curve

corresponding to sudden crack advance) in the load-deformation record, a procedure

known as the 'offset procedure' (Knott, 1973; Parton, 1992) is adopted. This

involves the construction of a secant with a gradient 5% less than that of a tangent

drawn parallel to the initial elastic region. The point of intersection with the record

line is taken to be the critical load, PQ , from which a provisional value of K = KQ is
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computed and which is subsequently tested for validity. If these validity criteria are

met, then this is taken to be the plane strain fracture toughness (K1 ) of the material

(B SI, 1991). The offset procedure estimates the size of the plane strain plastic zone

and compares this with the dimensions of the specimen (Knott, 1973; Anderson,

1995). If the plastic zone is large in comparison to other specimen dimensions, tlen it

is likely that any value of K determined by this method will not provide a realistic

measure of the fracture toughness of the material. For instance, in a material which

undergoes a significant amount of plastic deformation prior to failure, this method

would underestimate the toughness of the material. In such cases, yielding fracture

criteria may be more appropriate (Williams, 1981).

The offset procedure provides a point on the curve (corresponding to 2% apparent

crack growth) at which crack extension is assumed to occur. However, if possible, it

is preferable to detect the onset of crack growth by some direct means (Knott, 1973).

In this work, an alternative (Kimber, 1999) to the offset procedure, which involved

the direct detection of crack initiation was employed. If even small pop-ins can be

detected, then it should be possible to define the onset of crack growth in the material.

Essentially pop-ins represent changes in compliance of the specimen. Digital data

acquisition enables computer numerical techniques, such as differentiation to be easily

performed on the force versus load-line displacement record. If the second derivative

of the load-deformation record is obtained, then this effectively represents the rate of

change in stiffness of the specimen with respect to deformation; large changes in rate

thus correspond to pop-ins and can effectively be used to detect the onset of crack

growth in the material. This method was used to detect crack initiation ii1 the

laminates studied in this work and the values for load thus obtained were utilised in

the determination of K1 (it should be noted that the values for critical K determined

in this work carry the suffix '' even though in reality these are not necessarily valid

K1 figures (see below). Nevertheless, this convention has been used for

convenience to denote the critical value of K determined using this technique).

Figure 3.30 shows a typical load-displacement record for a CSM glass fibre SEN test

specimen, with the corresponding second derivative curve shown beneath. A small

pop-in is observed in the former, whilst the corresponding rate change associated with

the pop-in is clearly noted in the latter.
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Figure 3.30 Force versus load-line displacement record for a cracked CSM glass
fibre laminate in three point fiexure (above). Second derivative of the record with
respect to displacement (below). The point at which crack initiation is assumed to

occur is marked.

134



E

I	 4
U)

.0 3
0)

22

1'

E6

'- 50

c,4

-C
0)

E

7

y=O.56+O.15x-O.001 x2

0	 10	 Z)	 3)	 5)

fibre cIume fraction (%)

Figure 3.31 Variation of K1 with fibre volume fraction. Jute reinforcement.
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Figure 3.32 Variation of K1 with fibre volume fraction. Hemp reinforcement.
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The suitability of the experimental technique used in this work to assess the fracture

toughness of these composite materials is demonstrated by considering fracture of the

un-reinforced polymer itself. The value for K1 of this material was determined to be

0.62 MN m 3"2, which is in excellent agreement with values published in the literature

for thermosetting polyesters (Williams, 1981) and is in good agreement with the order

of magnitude for other thermosetting resins such as epoxies (Hull & Clyne, 1996).

Utilising Equation 3.8 and the value obtained for Young's modulus, a value for the

G1 of the polymer was calculated to be 0.09 kJ m 2 (assuming v0.38 (Hull &

Clyne, 1996)). Again, this is in good agreement with reported values for the work of

fracture of other organic glasses (Ashby & Jones, 1980). It is worthwhile noting the

difference between the work of fracture figures obtained by this method and those

determined through the Charpy test, which differ by almost two orders of magnitude.

3.3.6.4 Variation offracture toughness with V

Figures 3.31 and 3.32 show the variation of fracture toughness with fibre volume

fraction for jute and hemp reinforced laminates respectively. Both reinforcement

types show a strong positive correlation between fracture toughness and fibre volume

fraction. The relationship does not appear to be quite linear, which may indicate that

at higher volume fractions, at least, the benefit to toughness of adding fibte is

somewhat reduced. This relationship could be expected if, say, at a higher fibre

loading, difficulty in wetting out the fibres occurred, leading to reduced bording

between fibre and matrix and to a greater number of voids in the microstructure.

However, as discussed in Section 3.3.1, up to the fibre volume fractions studied

(-45%) little evidence either of poor wetting or void inclusion was observed,

indicating that other factors may be important in determining fracture toughness. If it

is assumed that there is little effect upon the quality of the interface as V increases

(in other words that the interfacial shear strength remains constant) and the ratio of

fibre modulus to matrix modulus remains the same, then factors such as the relpiive

fibre to fibre spacing may well be of significance. For example, it has been shown that

reducing the fibre to fibre spacing (i.e. increasing Vf ) results in higher stress

concentrations occurring in fibres adjacent to cracked fibres (He & Hutchinson, 1989
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cited in Hull & Clyne, 1996). This could undoubtedly contribute to a reduction in

composite toughness. This aspect is explored further in Chapter 6.

3.3.6.5 Influence offibre type

The fracture toughness of the glass fibre reinforced material was evaluated at one

fibre volume fraction ( .-.20%) only. In order to make a comparison, therefore,

between the fibre types at equivalent Vf , the regression equations shown on Figures

3.31 and 3.32 were invoked. Table 3.7 provides a comparison of the fracture

toughness of the reinforced laminate types as well as with the un-reinforced polymer

itself. An estimate of the critical energy release rate (G e ) was made utilising

Equation 3.8. The effect of ignoring the (1-v 2 ) term under plane strain conditions

(Equation 3.9) is negligible, and would not alter the order of magnitude of the

differences between the laminate toughness figures appreciably. Young's modulus at

the	 in question was calculated from the regression equations shown in Figures 3.9

and 3.10. It must be noted that this is very much an estimate of the order of

magnitude of G, since the materials are treated as being isotropic and E is taken to

be the experimentally determined values along one axis only. As this was parallel to

the preferred fibre direction, E would no doubt be somewhat greater than if the

reinforcement was planar random. Clearly, this is a simplification of the situation, but

necessary in order to make the comparison.

Table 3.7 Comparison between the fracture toughness of laminates reinforced with
jute, hemp and glass fibre and the un-reinforced polymer. (Vf = 20%).

G

10.2

1.4

1.7

0.1

Laminate type

CSM laminate

Jute laminate

Hemp laminate

Un-reinforced polymer

K1	 E
Vm 32) (GNm2)

9.0	 7.97

3.1	 6.77

3.4	 6.74

0.6	 3.80
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As discussed above, a value of 0.62 MN m 3"2 for K1 for a thermosetting polymer is

realistic. Likewise, the value for CSM reinforced material is in good agreement with

other published data; a figure of 7.0 MN m 3 being quoted by Williams (1981) for a

similar laminate type, albeit at a higher (33%) fibre loading. A slightly higher value

for K1 might well be expected since the method used to determine the load at crack

initiation differs from the offset procedure', leading to somewhat higher values. This

issue is discussed below. No figures could be found in the published literature for the

K1 of plant fibre reinforced material. Nevertheless, these figures again do not look

unreasonable and are on a par with those quoted for a number of thermoplastic

polymers, for example Nylon 6.6 and polypropylene (Ashby & Jones, 1980).

With regard to K1, the addition of reinforcing fibre to the polymer results in an order

of magnitude improvement in fracture toughness, with an approximately three-fold

difference between natural and synthetic fibre types being observed. Hemp would

seem to provide a marginally greater toughness enhancement than jute. The stress

intensity factor, in essence, provides a measure of the severity of the stress field ahead

of a sharp crack. Simplistically therefore, K1 can be viewed as providing a measure

of the strength of the material in the presence of a notch. The lower fracture

toughness observed in the natural fibre reinforced material, may, in part at least, be

attributed to the lower tensile strengths reported for these fibres (see Table 1.1).

As may be seen, the addition of both natural fibre types resulted in an order of

magnitude improvement in the G of the laminates over that of the un-reinforced

polymer, hemp possibly providing a somewhat greater improvement. The difference,

however, between the G of natural fibre reinforced composites and the glass fibre

reinforced material was also approximately an order of magnitude. This order of

difference is more or less the same as observed between the Charpy impact strengths

of the reinforced fibre laminates (although not the same as between the un-reinforced

polymer and reinforced material). The implications of this are that the energy

dissipative processes involved in the toughness of the bast fibre reinforced composites

are not as effective as those seen in their glass fibre reinforced counterparts.
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One of the advantages of a fracture mechanics approach to failure is, as mentioned

above, its ability to allow a link between macroscopic behaviour to conditions in the

region of the crack tip to be made. If it is assumed that the materials under

investigation behave elastically, apart from a zone ahead of the crack-tip where

limited plastic behaviour occurs, and that the vast amount of the energy absorbing

processes occur, within this 'plastic zone', then an estimate of the 'energy absorbing

capacity' of the material should be possible if the 'volume' of the 'plastic zone' can be

established. Figure 3.33 shows an idealised representation of the 'plastic zone' ahead

of the crack tip. Equation 3.12 provides a relationship between the radius of the

plastic zone, fracture tougimess and the yield stress, o.

Figure 3.33 Schematic representation of the crack-tip plastic zone.

The composites under investigation were, however, heterogeneous arid anisotropic

and thus contravened LEFM assumptions. Nevertheless, if the situation is idealised

and it is assumed that the materials were homogeneous, isotropic and that

macroscopically they behaved in a linear-elastic fashion and furthermore that they

possessed K1 and o values equal to those determined for the eal' laminates,

then for these 'equivalent' materials ry may be computed. It is filly appreciated that
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this is very much a simplification of reality, but the exercise was conducted in order to

try and gain an estimation of the relative sizes of the plastic zones of the laminates.

From these, it was hoped that some inferences regarding the 'energy absorbing

capacity' of the laminates could be made.

In this instance, o is taken to be the 0.2% proof stress (see Table 3.6). The radii of

the plastic zones, as calculated from Equation 3.12 are presented in Table 3.8.

Table 3.8 Crack-tip plastic zone radius (Vf = 0.2)

Laminate type	
J 

r (mm)	 r2 (mm2)

Unreinforced polymer
	

0.03
	

9x10

Jute reinforced laminate
	

0.70
	

0.50

Hemp reinforced laminate
	

1.30
	

1.70

CSM reinforced laminate
	

3.70
	

13.70

As can be seen, the value of for the un-reinforced polymer is significantly less than

that of the reinforced laminates. Its value of 30tm is probably realistic, denoting a

very small region of plastic flow and consistent with other predominantly brittle

materials in which the main energy absorbing process is through the creation of new

crack surfaces. Of all the laminate types studied, the un-reinforced polymer is nearest

to the idealised 'equivalent' material; being essentially elastic, homogeneous and

isotropic. Similarly, the ry values for the 'equivalent' reinforced materials do not

appear unreasonable. Visual inspection of the failed bast fibre reinforced specimens

revealed that damage extended beyond the apparent crack face into the laminate itself

by <1 mm; in other words the advancing crack left a 'wake' of micro-damaged

laminate, analogous to the plastic wake left behind an advancing crack in metals

(Anderson, 1995). This would seem to be consistent with calculated values for ry.

With increasing Vf the extent of the damage zone appeared to increase. This would

again seem to be consistent with the predictions made by Equation 3.12, since the
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ratio of K1 to o increased with V1 . In other words, yield strength rose at a

disproportionately lower rate with V1 than did K1 , due to an increasing amount of

non-linear, plastic, behaviour. The radius of the plastic zone determined for the glass

fibre reinforced 'equivalent' laminate was approximately 3 to 4 times that of the

natural fibre reinforced 'equivalent' material. Again, this prediction was supported by

visual inspection of the ruptured laminate. However, whilst in the bast reinforced

material the visible micro-damage was confned to what seemed to be a well defined

region along the crack face, in the glass fibre reinforced material, micro-damage

appeared to be far more extensive. Micro-damage, associated with fibre breakage,

fibre-matrix debonding and matrix cracking, appeared to be a more diffuse and

extensive affair in the glass reinforced polymer than the natural fibre reinforced

equivalent material.

If, as mentioned above, it is assumed that most energy dissipation occurs in the

damage region ahead of the advancing crack-tip, then it is reasonable that the amount

of energy absorption is proportional to the volume of the damage zone. Thus, for a

crack of unit width, the volume of the damage zone is proportional to r 2 . Table 3.8

shows a comparison of the computed r 2 values. As may be seen, the estimated

volume of the damage zone observed in the 'equivalent' natural fibre reinforced

composites is approximately an order of magnitude lower that that seen in the

'equivalent' glass fibre reinforced material at equal fibre volume fractions. This would

seem to point to a possible explanation for the lower touglmess observed in the bast

fibre reinforced materials, in that energy dissipative processes are simply not

stimulated in the crack-tip region to the same extent as they are in their glass fibre

reinforced equivalents. Visual examinations of the fractured specimens seem to bear

this out. The order of magnitude difference seen in r 2 is also consistent with the

measured works of fracture of the natural and synthetic fibre reinforced composites

which are also approximatly an order of magnitude in difference.

This analysis has not been presented as a rigorous proof rather simply to establish

orders of magnitude for the relative quantities. Nevertheless, the computed sizes of

the plastic zones for the 'equivalent' materials seem to be in broad agreement with the
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observed behaviour, as indeed is the increasing size of r with Vf . Furthermore, it is

not the intention to suggest that the lower toughness of the natural fibre materials is

due solely to the relative volumes of the damage zone. Nevertheless, it does provide

an indication that this region should be studied more closely, and in particular the

micro-structure. This aspect is dealt with in more detail in following chapters.

3.3.6.6 Validity of K1 measurements

Typical force versus load-line displacement records up to the point of maximum load,

obtained from the fracture toughness tests, are presented in Figures 3.34 and 3.35.

As can be clearly seen, particularly with the hemp reinforced material and at higher

volume fractions, non-linear behaviour becomes significant.

06

/

-
Q4- -

,, _.__-;_.-•

•••••••••16%

31%

Q0L
00	 Q4	 Q8	 12	 1.6
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Figure 3.34 Force versus load-line displacement records for SEN jute specimens
under three point flexure (quasi-static loading). Various V1 are shown, together with

the record obtained for a CSM laminate (—'21% V1).
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Figure 3.35 Force versus load-line displacement records for SEN hemp specimens
under three point flexure (quasi-static loading). Various V1 are shown, together with

the record obtained for a CSMlaniinate (-21% V1).

If a secant is drawn with a gradient 5% less than that of the initial tangent, the point of

intercept, i.e the value	 is typically at a much lower load than the value obtained

through noting the onset of crack of growth directly from the force versus load-line

displacement record, the method employed in this study. Figure 3.36 shows a typical

force-displacement curve for a hemp reinforced laminate (30% Vf ). As can be clearly

seen, the gradient of a secant constructed between the origin and the point of

intercept on the curve where crack initiation is taken to occur, is approximately 21%

less than the gradient of the initial tangent. When the 5% secant is drawn, the

intercept occurs at a markedly lower force. Computed values of K1 would therefore

differ considerably if this procedure had been adopted.
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Figure 3.36 A typical force versus load-line displacement record for a hemp
reinforced SEN specimen (Vf -3O%), showing secant constructions.

As discussed previously, the construction of the secant in the 'offset procedure' is

designed to test whether the degree of plasticity prior to crack advancement is small

enough to ensure that LEFM principles are not invalidated. Further, it examines

whether any non-linear behaviour can be attributed to slow crack growth or to

plasticity effects. In this study, it is believed that the non-linear behaviour prior to the

attainment of a pop-in (taken to be the onset of macroscopic crack extension) is

attributable to 'plasticity'. It is, however, clearly difficult to differentiate between

what might be termed micro-cracking ('plastic' behaviour) and the initiation of

macro-crack advance. Nevertheless, it is believed that the technique used here, of

detecting small pop-ins, does make the distinction between the two more easily

observable. Relying upon the construction of a secant and assuming that cracking

initiates at the point of intercept with the force versus load-line displacement may

therefore, in this instance at least, bear no relation to the actual behaviour of the

material.
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The 5% secant line represents the change in compliance that would be associated with

a crack extension equal to the maximum allowable size of the plane strain plastic

zone, such that LEFM principals are not violated. That is, the size of the plastic zone

is small in comparison to the overall specimen dimensions, or in other words, that

global behaviour is predominantly linear elastic and the plastic zone is confined to a

small region at the crack tip. The purpose of this is to ensure that the asymptotic

equations (cf Equation 3.10), which are based upon linear elastic theory, are not

invalidated by excessive plastic behaviour.

The purpose of the foregoing is to argue that, rather than using the 'offset procedure'

to determine the point of crack advance, direct detection through an analysis of the

load-displacement trace provides a better physical meaning to the onset of crack

advance. Nevertheless, this cannot necessarily be associated with brittle fracture of

the material, simply the onset of macroscopic crack advance. A result of using this

method is that, with the specimen dimensions employed, excessive plastic behaviour

prior to crack growth was apparent (at least in those laminates with higher Vi),

making the results from these tests questionable since LEFM assumptions were in all

probability invalidated. Specimens very much larger than those used would be

required for valid results to be obtained (BSI, 1991). In view of the foregoing, the

data was reanalysed using elastic-plastic fracture mechanics (EPFM) techniques.

3.3.6.7 Critical Jfracture toughness

The J contour integral can be used as a fracture characterising parameter for non-

linear materials. J, defined as a path independent contour integral, is equal to the

energy release rate in a non-linear body containing a crack and is analogous to G in

linear-elastic materials. In linear materials JG. Further, the J integral can also

characterise crack tip stress-strain conditions in non-linear materials (Anderson,

1995).

Elastic-plastic fracture analysis was used to reanalyse the force versus load-line

displacement records obtained in the above tests, utilising the procedure set out in BS

7448 (1991). The standard sets out a procedure to evaluate a critical value off, the

experimental equivalent of the J contour integral which can be used as a measure of a
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material's fracture toughness. As in the case of the determination of K1 above, the

point of interest is that at which macroscopic crack advance initiates. This analysis

differs from the K1 determinations, however, in that plastic behaviour preceding

crack initiation is taken into account. According to BS 7448 (1991), the procedure

for calculating critical J, (Jr), involves determining the amount of plastic work Up

prior to crack initiation. From a knowledge of this, the 'plastic' component of J can

be established. When added to the 'elastic' component, an overall value for J can be

computed. The experimental value ofJfor a bend specimen can be given by (Knott &

Withey, 1993, Anderson, 1995):

K2 	 2U
J=_._(1_V2)+B(W_a)	 (3.13)

As can be seen, the first term on the right hand side of the expression is equivalent to

that for G (Equation 3.9), the elastic energy release rate (the (1-v2 ) term has been

ignored in the calculations for the same reasons as discussed previously). The second

term is the plastic component of J. For a linear elastic material this latter term would

have a zero value and hence J would be equivaent to G.
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Figure 337 Critical Jversus Vf for a jute reinforced SEN bend specimen.
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Figure 3.38 Critical Jversus V1 for a hemp reinforced SEN bend specimen.

Figures 3.37 and 3.38 show respectively the variation of J with V1 for jute and

hemp reinforced laminates. It may be observed that with increasing V1 . J also

increases, in what would appear to be an almost linear fashion. Also shown on these

figures is G, derived from the values of K1 obtained previously. Effectively, this

provides a representation of the relative contributions of the two components of J,

namely the 'elastic' and 'plastic' parts. What is immediately apparent is that the two

curves converge on the unreinforced polymer, which is as expected from the theory.

Further, with increasing Vf the two components diverge, such that at higher volume

fractions, the contribution from the 'plastic' component becomes significant, further

casting doubt upon the validity of LEFM to characterise toughness in fibre reinforced

composite materials. The relationship linking K and G is given by Equations 3.8 and

3.9. Analogous relationships between equivalent values for the stress intensity factor,

K and Jare given by (Knott & Withey, 1993):
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K 2 = JE	 (in plane stress)	 (3.14)

JE

K2 (1-v2)
(in plane strain) (3.15)

If values for critical	 (K) are calculated utilising Equation 3.14, it is apparent

that these will exceed those derived from LEFM, and perhaps provide a more

representative assessment of the critical stress intensity factor. Table 3.9. shows a

comparison between J G, K1 and	 for the three reinforced laminate types along

with the un-reinforced polymer.

Table 3.9 Comparison of the fracture toughness of laminates derived by LEFM and
EPFM methods.

Laminate

zype

Polymer

CSM

17% hemp

30% hemp

42% hemp

16% jute

3 1% jute

47% jute

K1
(MN m3/2)

0.62

9.01

3.08

4.47

5.73

2.51

4.34

5.21

With the unreinforced polymer, it may be observed that the difference between the

two toughness characterising parameters is negligible. This would be expected from

the theory in that the polymer itself of all the materials investigated, would be

expected to behave most closely to that of an ideally linear-elastic material. With the

glass fibre reinforced material the fracture toughness obtained through LEFM and

EPFM are similar, whereas at similar Vf (-15-20%) it may be observed that the
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difference is somewhat greater in the bast fibre reinforced materials. This would

imply that the plant fibre reinforced laminates exhibit greater plastic behaviour than

the glass fibre material. This would seem to present an anomaly, in that the 'plastic

zone' of the plant fibre reinforced material is smaller than that of the glass fibre

material, yet, the former displays greater 'plasticity'. This, however, can be explained

by the fact that the yielding takes place at far lower stress levels in the plant fibre

reinforced material than it does in the glass fibre reinforced material. The reasons for

the early onset of this non-linear behaviour will be explored in the following chapters.

A comparison of the two plant fibre reinforced materials reveals that there would

appear to be a somewhat greater difference in the tougimess, as assessed by the two

methods, in the hemp reinforced material than the jute reinforced material.

If the same argument to describe the size of the plastic zone is followed, it would be

concluded that the derivation of ry from K1 rather than	 and would probably

somewhat underestimate its relative size. Results from the K1 and J tests appear

in Appendix 7.

3.3.7 Fractography

The fracture surfaces of laminates (V -i8%) fractured in the Charpy test were

examined. At this volume fraction, both the jute and the hemp fibre reinforced

materials showed macroscopically brittle failure, with little apparent fibre pull-out.

The CSM reinforced laminates rarely failed completely and by comparison, exhibited

substantial amounts of shear failure and fibre pull-out.

3.3.7.1 Fracture surfaces

An examination of the fracture surfaces by SEM revealed a number of notable

features. Plates 3.3 and 3.4 show typical fractures in jute and hemp reinforced

laminates respectively. It is clear that fibre pull-out is limited in both instances,

especially when compared with the extensive fibre pull-out exhibited by the CSM

glass fibre reinforced laminate shown in Plate 3.5.
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Plate 3.3 Fracture surface of
	

Plate 3.5 Fracture surface of
a jute reinforced laminate.	 a CSM glass fibre reinforced

laminate.

Plate 3.4 Fracture surface
	

Plate 3.6 Fracture in a hemp
of a hemp reinforced

	
laminate, arrow showing fibri-

laminate.	 Ilation at the fibre surface.

Although not quanti lied in any way, in the former, pull-out aspect ratios were

perhaps of the order of 10:1, whereas in the latter they were evidently far greater. As

mentioned in the previous chapter, fibre pull-out is generally considered to account

for a large proportion of the total energy absorbed in fibre composites during fracture

(Hull & Clync, 1996). This supposition would lead to the conclusion that, in the bast

150



b

i'.,	 4.

/
T

reinforced laminates, significantly less energy is absorbed through frictional sliding

than in the glass fibre reinforced matierial. The lack of fibre pull-out may well be a

result of the relatively low fibre strength, exacerbated by damage (see Chapter 4) and

to good fibre to matrix interaction.

Good mechanical fibre to matrix interaction might be expected considering the rough

fibre surface. As may be observed in Plates 3.3 and 3.4, both bast fibre types exhibit

quite irregular surface topographies. This, coupled with good wetting, would likely

lead to significant mechanical interlocking of the fibre into the matrix and may result

in the fibre being too well constrained, having little opportunity to pull-out of the

matrix. This may partly explain the low pull-out aspect ratios observed. In addition

to this, there may be relatively good adhesion between the phases. As discussed

previously, the first requirement for good adhesion, namely intimate contact with the

substrate would appear to occur and although this does not necessarily imply good

adhesion, there is some evidence to suggest that reasonably good adhesion does take

place. Examination of Plate 3.6 reveals fibrillation at the fibre surface, indicating

that a portion of the fibre has been torn away from the bulk during fracture. This is

likely to have occurred if there had been good adhesion between the two phases.

Plate 3.7 Debonding cracks
	

Plate 3.8 Debondirig cracks
in jute reinforced polyester. 	 in hemp reinforced polyester.
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Nevertheless, it is clear that a degree of fibre-matrix debonding does take place, as

evidenced by the cracks seen where the fibres project through the matrix at the

fracture surface (Plates 3.7 and 3.8). This, in all probability, allows for a degree of

crack-deflection to take place, as well as enabling limited fibre pull-out to occur. It

has been clearly demonstrated that the suppression of fibre-matrix debonding in hemp

fibre reinforced unsaturated polyester composites, by introducing strong interfacial

adhesion, substantially lowers the Charpy impact strength (Sèbe et a!., 2000). This is

most likely to be due to the suppression of crack blunting and deflection mechanisms.

Plate 3.9 Fracture surface of
	

Plate 3.10 Close up of a
a hemp fibre bundle. fractured hemp fibre ultimate

showing 'brash' failure of the
cell wall.

3.3. 7.2 Fibre fracture

Examination of fractured fibres indicates that these fail in a 'brash' manner,

evidenced by the 'squared-off' appearance of the fibre ends (Plate 3.9). Closer

examination of the fractured fibre bundles revealed that often individual ultimates

also failed in a brash or brittle manner (Plate 3.10), with no evidence of the pseudo-

plastic tensile buckling mechanism implicated in the high toughness of wood fibres

(Gordon & Jeronomidis, 1974). Nevertheless, a certain amount of intra-wall shear

failure was observed (Plate 3.1 1). Interestingly, transverse, intra-wall fibre failure
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appeared to take place almost perpendicular to the fibre axis. Longitudinal inter- or

intra-cel! failure was evident from the 'splintering' of fibre bundles (Plate 3.12).

Plate 3.11 Shear failure in the
	

Plate 3.12	 Longitudinal
cell all of a hemp fibre ultimate.	 splitting in a hemp fibre bundle.

From an examination of the fracture surfaces of the bast fibre reinforced material, it

seems likely that fibre pull-out would contribute little to the overall fracture energy of

the laminates. Furthermore, the observed fibre fracture indicated that this too was

brittle and may be expected to account for little energy absorption. As for the ability

of cracks to be repeatedly blunted and deflected at the interface, it is evident that some

fibre-matrix debonding does occur during fracture, but to what extent and how this

affects the toughness is unknown. However, based upon the observation that

improved interfacial adhesion substantially reduces (by more than 50%) the Charpy

impact strength of RTM hemp fibre reinforced unsaturated polyester composites

(Sèbe, et al., 2000), this is likely to be of some significance.
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3.4 Conclusions

Un-saturated polyester laminates reinforced with non-woven, needle punched, jute

and hemp fibre felts, exhibited good stiffness, especially on a specific basis, when

compared with materials reinforced with equivalent volume fractions of CSM glass

fibre. Strength similarly was found to be acceptable. The toughness of the natural

fibre reinforced materials were, however, found to be substantially inferior and it is

believed that this might be a factor limiting their potential applications.

Analysis of the physical properties and fractography of the plant fibre reinforced

material indicated that an intimate bond is formed between the resin and natural fibre

(at least up to the volume fractions studied). Adhesion between the two is believed to

be intimately linked with mechanical keying rather than true adhesion. Nevertheless,

this is an aspect which warrants ftirther investigation.

A potential area of concern from a practical standpoint is the observation that yielding

would appear to initiate at low stress levels and although the materials showed

substantial plastic deformation prior to fracture, in reality this could be limiting from a

design point of view. The initiation of microscopic damage may be the likely cause of

this behaviour. This aspect is considered in more detail in Chapter 6.

Work of fracture in three point flexure tests and Charpy impact strength

measurements indicated that the toughness of the natural fibre reinforced material was

poor, in comparison to their synthetic fibre reinforced counterparts. The use of

fracture mechanics to characterise the toughness of these materials has hopefully

provided a more quantitative assessment of the relative toughness of the laminates

under study. It would appear to have confirmed that initial concerns regarding the

toughness of the materials are valid. The applicability of fracture mechanics

techniques to characterise toughness in this class of material is perhaps open to some

criticism. Nevertheless, it is believed that this approach has provided an insight into

the mechanisms involved in the toughness of these materials and highlighted the fact

that the microstructure should be investigated more closely. In particular, it is

154



believed that energy absorbing mechanisms are simply not stimulated to the same

extent in the bast fibre reinforced materials as they are in the CSM glass fibre

reinforced laminates. These issues are considered in the following two chapters.
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4 Fibre Characterisaijon

4.1 Introduction

4.1.1 Background

In the previous chapter, the mechanical properties and behaviour of unsaturated

polyester resin laminates reinforced with either non-woven jute, or non-woven hemp

fibre felts, was investigated. The properties of these composites were then compared

with those of laminates reinforced with a commercial CSM glass fibre. Broadly

speaking, for equivalent fibre loadings (by volume), acceptable values for strength and

stiffness were achieved with the bast fibre reinforced materials. However, toughness

was substantially inferior to that of the glass fibre reinforced equivalent. The fracture

behaviour and low toughness exhibited by the plant fibre reinforced composites were

considered to be of particular concern; it is believed that these properties would

severely restrict the potential applications for the materials. A fuller understanding of

the micro-mechanics of deformation and fracture could, however, highlight ways in

which material performance might be improved. The behaviour of the fibres

themselves and the micromechanics of the fibre-matrix interface are considered in this

and the following chapter.

In this chapter, the mechanical properties of bast fibres are considered. This includes,

by way of a literature survey, a discussion of the mechanical properties of fibres in

relation to their ultastructure, as well as presenting the results of a study on fibre

damage. The latter includes a discussion of the mechanisms, origins and implications

of such damage upon fibre properties. The study of fibre damage consisted of a

microscopic examination of hemp and jute technical fibres and ultimates. Although

not utilised as a reinforcing fibre in this work, flax was included in the study due to its

similarity to hemp and potential as a reinforcing fibre.
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4.1.2 The influence of fibre ultrastructure on mechanical properties

The structure of flax and other bast fibres is, in general terms, similar to that of other

plant fibres in as much as the cell wall follows the same overall ultrastructural

organisation of lignocellulosic fibres, outlined in Chapter 2 (Roland et al., 1995).

Whilst much work has been undertaken with a view to gaining a fundamental

understanding of the mechanics of individual wood fibres in relation to their structure

and chemical composition, comparatively little is to be found in the literature on

similar studies conducted on bast fibres. This is presumably due to the fact that the

latter have, in recent times at least, been used almost exclusively in textile applications

and that, compared with other natural fibres (such as cotton and wool), only to a

relatively limited extent. On the other hand an understanding of the mechanics of

individual wood fibres is extremely important because of the influence of the

mechanical properties on not only wood, but also paper and wood-based panel

products. Doubtless, however, if bast fibres are to be used as reinforcement in "high

performance" PMCs, with structural end uses in mind, a much fuller understanding of

the structure-property relationships will be required.

4.1.2.1 Axial tensile properties

A significant volume of experimental work has been published over the years relating

to the determination of the Young's modulus and the tensile strength of individual

wood pulp fibres (e.g. Jayne, 1960; Dinwoodie, 1965; Page et al., 1971). It has

been clearly demonstrated that these properties are controlled by the ultrastructural

organisation of the fibre, in particular the winding angle of microfibrils in the

dominant 52 layer. It has been shown, for example, that both tensile strength and

stiffness, as well as the mode of deformation and fracture of the fibres, are dependent

upon the microfibril angle of the S 2 layer (Mark, 1967; Page eta!., 1971; Page et a!.,

1972). Whereas, the S 2 layer dominates the properties of the fibre in tension, the S1

layer is thought to be important in controlling fibre stability in compression, by

limiting excessive lateral cell expansion (Booker & Sell, 1998). The S3 layer, on the

other hand, is believed to resist hydrostatic pressure within the cell lumen (Booker &

Sell, 1998) whilst the combined laminate structure is considered to be of importance

in controlling trans- and intra-wall crack propagation (Booker, 1995).
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Over the years, many models have been proposed to predict the elastic behaviour of

the lignocellulosic fibre cell wall (e.g. Mark, 1967, Cave, 1968, 1969; Tang & Hsu,

1973; Page et al., 1977; Salmén & de Ruvo, 1985; Harrington et al., 1998; Astley,

et a!., 1998). These models are based on orthotropic elasticity theory, in which the

cell wall was considered to be a composite laminate structure composed of balanced

plies (Page et a!., 1977; Salmén & de Ruvo, 1985). The models have been used to

predict the Young's modulus and tensile strength of fibres as a function of the

microfibril angle of the S 2 layer (Page et a!., 1971; Page et a!., 1977). Good

agreement between theoretical and experimental values for stiffness and strength have

been obtained, discrepancies being attributed to defects and inhomogeneities within

the fibre (Page et a!., 1971; Kim et a!., 1975; Page & El Hosseiny, 1976). Whilst

most models have been constructed to predict the behaviour of wood fibres, some

work has recently been undertaken with a view to modelling the behaviour of flax and

other plant fibres (Davies & Bruce, 1997).

A simple model to predict the tensile modulus of an idealised bast fibre is presented in

Section 4.4 and is compared with literature values for the moduli of flax and hemp.

4.1.2.2 The toughness ofplant fibres

One of the great attractions of wood as a structural material is its excellent work of

fracture, which, on a specific basis is on a par with that of mild steel and higher than

that of synthetic PMCs (Jeronomidis, 1980). This too has, in part at least, been

attributed to the fibre ultrastructural organisation. As stated by Lucas et a!. (1997),

the overall work of fracture of plant fibre material can be attributed to:

• fracture of the cell wall material itself

• plastic buckling of the cell wall into the lumen as a result of shear stresses

• pull-out of intact cells.

Fracture toughness (K1 ) measurements conducted by Lucas eta!. (1995, 1997) on a

range of plant fibre material and wood species, using a method which involved driving

a crack through the material using scissors, indicated a figure which was identified as

the work of fracture of the cell wall material itself. This figure, which they referred to

as the 'intrinsic toughness' of the cell wall (independent of contributions from either
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plastic work or cell pull-out) was for a crack traversing a fibre perpendicular to its

axis, in other words, 'across the grain'. The results of these investigations pointed to

a figure of around 3.45 kJ m 2 for the intrinsic toughness of the cell wall. This value is

in broad agreement with a figure of 1.65 kJ m 2 for the intrinsic toughness of cell wall

material reported by Ashby et al. (1985), obtained by a different method.

If the cell wall is considered to be an heterogeneous orthotropic material itself, then a

certain degree of variation in the intrinsic toughness, or cell wall work of fracture,

would be expected. This would depend upon the path followed by a crack

propagating through the cell wall. This is supported by the fact that Gibson and

Ashby (1988) report a figure for the intrinsic toughness of <0.35 kJ m 2 'along the

grain', whilst measurement of the fracture energy of solid wood conducted 'with the

grain' indicates values of between 0.2 to 0.3 kJ m 2 (Stanzl-Tschegg, 1995). In these

tests it might be supposed that crack propagation would be either intra-wall i.e. along

the middle lamella or inter-wall, through the cell wall material, along the direction of

the microfibrils in the S 2 layer.

Notwithstanding the above, the intrinsic toughness of the cell wall is substantially

lower than the measured works of fracture of wood across the grain which fall in the

region of 10-30 kJ m 2 (Jeronomidis, 1980). The work of fracture attributed to the

pull-out of individual cells is, however, believed to contribute little to the overall work

of fracture (1.6 kJ m 2) of the material (Jeronomidis, 1980). The major contribution

is thought to be due to a pseudo-plastic tensile buckling mechanism first proposed by

Gordon and Jeronomidis (Gordon & Jeronornidis, 1974; Jeronomidis, 1976). This

was based on observations made by Page et a!. (1971) that some individual wood

pulp fibres undergo unstable buckling when loaded in axial tension. Lucas et a!.

(1997) were also able to estimate the amount of 'plastic work' occurring during

fracture. They estimated that approximately 90% of the overall work of fracture

could be attributed to plastic deformation, the balance being due to the intrinsic

toughness of the cell wall. This pseudo-plastic mechanism of energy absorption is due

to shear failure occurring within the S 2 layer as the fibre buckles. In the process,

considerable amounts of energy are absorbed irreversibly (Jeronomidis, 1980). The
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effectiveness of this mechanism in enhancing energy absorption has been subsequently

confirmed using synthetic analogues of the wood cell (Gordon & Jeronomidis, 1980).

The above, outlines some of the factors influencing the tensile mechanical properties

of plant fibres and plant fibre material. Nevertheless, whilst these properties are of

great importance, there is reason to suspect that the properties of plant fibres in

compression, particularly the mode of failure in compression, are of particular

relevance to plant fibre reinforced composites. As will be discussed in Section 4.4,

compression failure in bast fibres is oflen reminiscent of the failure seen in many

unidirectional composites and to that observed in a number of highly oriented

synthetic polymeric fibres. This has ramifications for interface behaviour and is

discussed more fully in Chapter 5.

4.1.3 Fibre micro-compressive damage

4.1.3.1 Origin of micro-compressive damage in wood and woodfibres

In solid wood, microscopic damage to individual cells caused by mechanical

overloading in compression can dramatically affect its mechanical properties

(Dinwoodie, 1978). This damage takes the form of small creases in the cell wall

known variously as slip planes, kink bands or micro-compressions. These features

can be observed by polarised light microscopy and appear in the form of a bright 'X'

traversing the double cell wall as shown in Figure 4.1. The appearance of these

features under polarised light is due to misalignment of the microfibrils in the cell wall

(Dinwoodie, 1968). Frequently, a line of micro-compressions form, due to co-

operative micro-buckling of cell walls forming a crease in the structure of wood.

Under certain circumstances these creases are visible to the naked eye and are readily

observable under a microscope using low angle incident light (Desch & Dinwoodie,

1996). In wood, these micro-compressive defects can arise as a result of growth or

mechanical stresses within the tree (Dinwoodie, 1976). Micro-compressions may also

result from compressive stresses in the wood induced during harvesting, conversion

or whilst in service (Dinwoodie, 1976).
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Figure 4.1 Micro-compressive damage in the cell wall of wood
(Source: Dinwoodie, 1968).

4.1.3.2 Effect of micro-compressions on the mechanical properties of wood and

woodfibres

Slightly lower tensile strengths and moduli have been noted in pre-compressed wood.

However, the most significant effect observed in pre-compressed wood is the

reduction in impact properties (Dinwoodie, 1978). Failure is invariably noted to

follow the line of the compression crease (Dinwoodie, 1978). Micro-compressions

formed during cyclic loading have been shown to propagate a line of compression

creases in wood which can subsequently lead to crack formation and ultimately to

failure (Imayama, 1994).

Individual wood fibres carefully isolated from a block of pre-compressed wood,

containing micro-compressive defects, have shown failure loads which are reduced by

around 46%, as well as decreased stiffness (Dinwoodie, 1978). Micro-compressions

in wood pulp fibres, most likely caused by isolation and handling, have been shown to

result in lowered bre tensile strengths and moduli (Page et a!., 1971; Page & Seth,

1980). It has also been shown that the elastic modulus of paper is reduced by the

presence of fibre micro-compressive defects, crimps and curls (Page et a!., 1979;

Page & Seth, 1980). By drying fibres under tension, these kinks and micro-

compressions may sometimes be straightened out, resulting in improved tensile

properties (Kim, et aL, 1975).
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Jn addition to reduced tensile strength and stiffliess, micro-compressions have been

noted to act a critical defects in the fibre structure (Page et a!., 1971; Page & Seth,

1980) and fibre fracture has been successfully explained in a probabilistic manner

(Page & El-Hosseiny 1976).

Further, it has been shown that micro-compressions (as well as other features such as

pit apertures, creases etc.) can affect the surface strain distribution in single wood

pulp fibres (Mott et a!., 1996).

4.1.3.3 Micro-compressions in bast fibres

A number of features, similar to those seen in wood, have been noted in flax, hemp

and jute fibres, and are referred to as nodes or dislocation marks (Catling & Grayson,

1982; Ra.hman, 1979). These features too can be observed, using a polarising

microscope, as bright bands traversing the fibre in the same way as in individual

micro-compressed wood fibres (Davies & Bruce, 1998). Such features have been

shown to reduce both the tensile strength and modulus of flax and nettle fibre

ultimates (Davies & Bruce, 1998).

Plate 4.1 Water retIed and scutched flax fibre bundle
showing compression creases (X & Y) running across
the fibre (low angle incident light microscopy - x12

magnification.).

A preliminary examination of bast fibres using low angle incident light microscopy at

low magnification (Plate 4.1) revealed what appeared to be creases (X and Y), similar

to those observed in compression damaged wood. It was believed that such gross
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damage might well influence the properties, not only of the fibres themselves, but also

those of the PMCs reinforced with such material. It was considered that this

warranted a detailed microscopic study of the structure and morphology of this fibre

damage. The study was undertaken with a view to elucidating how the damage was

induced and how it might affect the performance of composites reinforced with such a

material.

4.2 Materials and method

4.2.1 Introduction

The fibre bundles and fibre ultimates of flax, hemp and jute were examined by optical

microscopy, using both polarised and ordinary light. Flax and jute were examined 'as

received' i.e. after retting and decortication, but without further processing. Hemp

fibre was examined after having undergone differing degrees of mechanical

processing.

4.2.2 Sample preparation

Water retted and decorticated flax was supplied by McConvilles Flax Mills of

Northern Ireland. Jute fibre (grown in Bangladesh), water retted, decorticated and

chopped into approximately 50 mm lengths, was supplied by Sidlaws of Dundee. For

examination of the fibre bundles, short lengths of fibre (approximately 10 mm long)

were chopped from the long strands with a fresh razor blade. These were then placed

in a small (25 ml) beaker containing de-ionised water and allowed to soak for

approximately 30 minutes in order to 'wet-up'. Individual fibre bundles were then

transferred to a microscope slide, holding the fibres carefully with tweezers at one end

only. Temporary slides were prepared by mounting the fibres in de-ionised water

only. Semi-permanent slides were prepared by mounting the fibre bundles in glycerol.

For studies conducted at high magnification (xlOO objective lens), individual ultimates

were mounted temporarily in benzyl benzoate because of its higher refractive index,
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which provided improved definition when used in conjunction with an oil immersed

objective lens.

The preparation of fibre ultimates involved macerating short lengths ('--2O mm) of the

fibre bundles, in a 1:1 (by volume) mixture of hydrogen peroxide and acetic acid

(Catling & Grayson, 1982) for approximately 1 hour. Mechanical agitation was kept

to an absolute minimum so as to reduce, if not totally eliminate, further damage to the

fibres (Dinwoodie, 1974). After maceration, the fibres were washed thoroughly with

de-ionised water and stored in small phials containing the same. When required, a

small quantity of the macerated fibres were decanted into a Petri dish contaming de-

ionised water. This resulted in them being thoroughly dispersed without the need for

excessive agitation. Individual cells were carefully retrieved from the dish with

tweezers, taking care to hold the fibres at their ends so as to minimise damage, and

thence transferred to glass microscope slides. The fibre ultimates were subsequently

mounted temporarily or semi-permanently as described above.

Hemp fibres were obtained from several sources:

• From freshly pulled 'green' hemp stem grown at Henfaes farm, University of

Wales, Bangor Gwynedd.

• From dew retted (but not decorticated straw), supplied by Hemcore Ltd.

• Fibres extricated from felted mats. These had been manufactured from UK -

grown hemp, dew retted and mechanically decorticated (from Hemcore Ltd) and

felted by the process described in Chapter 2 (J.B. Plant Fibres Ltd.).

From the 'green' hemp stem, only ultimates were isolated. One stem (selected at

random) was cut into short lengths. Each section was labelled so that the position in

the plant could be identified (i.e. top or bottom of the stem) and immediately

immersed in water to prevent drying. Small rings of stem (approximately 20 mm in

length in the longitudinal direction) were cut from each section with a razor blade and

slivers of bark carefully removed from the rings, again using a razor blade. The

slivers of bark were subsequently macerated in the manner described above. The

tissue thus treated, contained not only fibre ultimates but also other, non-structural
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elements surrounding the fibres, some of which could still be clearly seen adhering to

the ultimates when examined by microscope.

Dew retted but undecorticated hemp straw was soaked in cold tap water for

approximately 24 hours. After this period, strips of bark were readily separated from

the woody core material. Short sections of bark (-20 mm) containing loosely bound

fibre bundles were then transferred to a Petri dish containing deionised water and by

gentle manipulation, released from the surrounding tissue. Some of the fibre bundles

were mounted as described above, or else macerated and then mounted.

Short lengths of fibre (-20 mm) removed from felted mats were soaked in deionised

water contained in a Petri dish. Wetted fibre bundles were mounted, as described, on

microscope slides. A quantity of fibre bundles were subsequently macerated in the

manner described and thereafter mounted as either permanent, or temporary slides.

4.2.3 Optical microscopy

The slide specimens prepared above were examined using a Leitz Weltzlar

microscope, under both polarised and ordinary light. The microscope was equipped

with x2.5, x4, xlO, x40 and xlOO objective lenses. Images could be viewed either

directly using a binocular eyepiece (xlO magnification) or indirectly, as a real-time

digital image displayed on a PC monitor. To facilitate this, the microscope was

equipped with a digital camera ('Pixera Visual Communication System'), with a

maximum resolution of 1260 x 960 picture elements ('pixels'). A proprietary

software programme ('Pixera studio', 'Pixera album') facilitated image capture,

enhancement and storage.
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4.3 Results

4.3.1 Occurrence of damage

4.3.1.1 Fibres in 'as received' condition

Plates 4.2-4.4 show respectively flax, hemp and jute fibre ultimates, viewed under

polarised light at low (xlOO) overall magnification. All fibres were in the 'as

received' condition, in other words having been retted and decorticated (save the

hemp which had not been decorticated) but having undergone no further processing.

Micro-compressions were clearly visible as bright bands stretching across the fibres.

Although no attempt was made to quantify the frequency of these defects, it appeared

that in flax they occurred at less frequent intervals along the fibre than in either hemp

or jute. In the latter, defects were often observed at intervals of between only one or

two fibre diameters along the length of the fibre. The damage observed in jute did,

however, appear to be decidedly less severe than in either of the other two bast fibres

(ses Section 4.4.2.2). Micro-compressive damage was not only confined to the fibre

ultimates, but was also clearly seen in the intact fibre bundles (Plates 4.5 - 4.7). The

severity of the damage appeared to vary, ranging from areas which seemed to affect

only individual cells, to complete creases running across the fibre bundle.

Plate 4.2 Flax ultimate (polarised light xlOO magnification).
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Plate 4.3 Hemp ultimate (polarised light xlOO magnification).

Plate 4.4 Jute ultimate (polarised light xlOO magnification).

Plate 4.5 Flax fibre bundle (polarised light xlOO magnification).
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Plate 4.6 Hemp fibre bundle (polarised light xlOO magnification).

Plate 4.7 Jute fibre bundle (polarised light xlOO magnification).

4.3.1.2 Fibre from 'green 'hemp stein

Plate 4.8, shows micro-compressive damage in fibres taken from the lower stem of

'green' hemp straw. The damage here again appeared to be extensive, occurring at

frequent intervals along the length of the fibre. Whilst it is impossible to be certain

that no damage was induced during the isolation process, great care was taken to

avoid this. Much of the damage appeared as thin bright lines extending across the

cell wall. Interestingly, as can be seen from Plate 4.9, there appeared to be a

significant amount of damage in fibre taken from the upper part of the stem also,

although this seemed to be far less severe. As will be discussed in the following

section, this may give some insight into the cause of the damage.
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Plate 4.8 Fibre ultimate from the lower stem of 'green' hemp
straw (polarised light xlOO magnification).

Plate 4.9 Fibre ultimate from the upper stem of 'green' hemp
straw (polarised light xlOO magnification).

4.3.1.3 Processed heiiip fibre

Processed hemp (Plate 4.10) fibre appeared to be significantly more damaged than

the 'as received' variety. This is hardly surprising, given the intensive mechanical

action to which the fibres are subjected during the felting process. In the fibre shown

in Plate 4.11, distinct 'kinks' (A and B) can be observed in its structure.

Plate 4.10 Fibre ultimate - processed hemp
(polarised light xlOO magnification).
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Plate 4.11 Fibre ultimate - processed hemp showing 'kinks' (A &
B) in the fibre structure (un-polarised light xlOO magnification).

4.3.2 Morphology of micro-compressions

At low magnification (xlOO) under polarised light, it was difficult to see clearly the

morphology of the micro-compressive damage (Plates 4.2-4.4). What did seem to be

evident, however, was that the severity or degree of damage varied quite

considerably, from almost imperceptible, fine cracks traversing the fibre to gross

deformations of the cell wall structure. As shown in Plate 4.12, fine fissure-like

features could be observed traversing the cell wall. In some instances, minute

disruptions to the fibre wall appeared to be present (Plate 4.13).

"'c...	 flS.'LJ	 4

Plate 4.12 Fine, 'fissure-like' defects in hemp fibre
ultimate (polarised light x400 magnification).
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Plate 4.13 Microscopic kinking in an (unprocessed) hemp
ultimate showing minute 'fissure-like' compression failures

at (A) and (B) (ordinary light xlOO magnification).

At high magnification, (ordinary light), two distinct types of gross failure geometry

become clearly distinguishable. Plate 4.14 is a photomicrograph (digitally enhanced

to highlight the morphology of the damage) of a compression failure in hemp fibre.

Two major shear planes can be readily discerned, running across the entire width of

the fibre ultimate and converging near the lower fibre surface. The angle made

between the longitudinal axis of the fibre and the shear planes is approximately 600_

70°. There appeared to be a distinct lateral displacement of the cell wall

microfibrillar structure in the region of the damage. In addition, a number of minor

creases were evident in the vicinity of the deformation. As can be seen in Plate 4.15,

disruptions to the cell wall were evident, which take the form of a distinct kink (Plate

4.16). What was apparent was that some of these defects were barely perceptible,

either under polarised or ordinary light. The morphology of this damage was similar

to the compression failure seen in solid wood (Desch & Dinwoodie, 1996). In Plates

4.17 and 4.18 only single shear planes are observable (although in the former, there

is some evidence of a second) with the structure of the cell wall being laterally

displaced. The angle made between the shear plane and the axis of the fibre was

approximately 60°. Although not quantified, the transition between the undisrupted

microfibrillar structure and the niicrofibrils in the kink zone appeared to be very

sharp.
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Plate 4.14 Detail of the morphology of microcompressive failure
in an unprocessed hemp fibre ultimate showing typical 'minute

compression failure' (ordinary light xl000 magnification).
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Plate 4.15 Disruptions in the cell wall of an unprocessed hemp
ultimate. The gross failure mode of the fibre is also visible (ordinary

light xl000 magnification).
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Plate 4.16 Kink observed in the cell wall of a hemp ultimate
(ordinary light xl000 magnification).

Plate 4.17	 Detail of the morphology of micro-
compressive failure in a flax fibre ultimate showing
typical 'kink band' (ordinary light xl000 magnification).
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Plate 4.18 Fine detail of a 'kink band' in a flax fibre ultimate
(ordinary light xl 000 magnification).

Wardop and Dadswell (1947), described two basic types of cell wall deformation,

firstly 'slip planes', corresponding to what are now more commonly referred to as

'kink bands' and secondly 'minute compression failures'. The former can be

regarded as a wrinkle in the cell wall, with the angle between the plane of the kink

and the fibre axis lying somewhere between 500 and 700 (Dinwoodie, 1974). The

latter are effectively two kinks oriented at opposing angles, with an included angle of

around 40°. Figure 4.2 shows diagrammatically, both kink band and minute

compression failure. Both these failure types were observed in the fibres examined

in this study. It should, however, be noted that although there is a similarity in the

morphology of these deformations, a distinction should be made regarding the

location of the damage.

As may be noted from Figure 4.1, in wood, kinks are formed in the double cell wall

of adjacent cells (i.e. the combined cell wall of two adjacent fibres with the middle

lamella sandwiched in between). In a number of the fibres studied in this work,

particularly those with very thick cell walls and practically no lumen, shear failure

was observed to traverse the whole cell, as if individual cells were acting as a solid

mass with kinking or minute compression failures traversing the whole cell, rather

than the than the double cell wall as in the case of solid wood. Figure 4.3 shows

schematically the morphology of the compression failures observed in this study.
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Figure 4.2 Types of cell wall micro-compressive failure in wood fibres.

Key: PW - primary wall; Si, S2 and S3 are respectively the inner, middle and outer layers of the
secondary cell wall (Adaptedfrom: Wardop & Dadswell, 1947).

Figure 4.3 Schematic representation of the morphology of micro-compressive
failures observed in bast fibres. a) 'Kink band' and b) 'minute compression failure'.
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4.4 Discussion

4.4.1 The structure of bast fibres

In general terms, the ultrastructural organisation of bast fibres is, as discussed in

Section 4.1.2, similar to that of wood. Nevertheless, in detail there are a number of

significant differences. A summary of the chemical composition of flax, hemp and jute

was presented in Table 2.2. Clearly, the cellulose content is significantly higher and

its crystallinity greater than in wood, whilst the percentage of other cell wall

polysaccharides (hemicelluloses and pectins) and lignin is much lower. Using an

analogy with fibre reinforced composites, there is a significantly greater proportion of

reinforcement in bast fibres than in wood. This is particularly so in hemp and flax. In

addition, in many bast fibres, the microfibrils of the S 2 layer are aligned almost parallel

with the axis of the fibre. In hemp, for instance the measured mean microfibril angle

is 2.3° (Preston, 1974). The microfibril angle of jute is, however, somewhat higher at

around 8° (Preston, 1974). Furthermore, the S 2 layer comprises by far the greatest

proportion of the cell wall, accounting for up to 90% of the total bulk (Booker & Sell,

1998).

In Section 4.1.2, it was noted that many models have been constructed to predict the

elastic properties of the wood cell wall. It is proposed here, in view of the foregoing,

that a simplified model of the cell wall of hemp and flax may be utilised, to give an

estimate of the order of magnitude of the tensile modulus of an ideal bast fibre. In this

model, the fibre is considered as a unidirectional long fibre composite in which the

small microfibrillar angle observed in real fibres is ignored, as too is the contribution

made to axial tensile stiffness by the S 1 and S3 layers. This model is more applicable

to flax and hemp, in which the microfibril angle of the S2 layer is almost parallel with

the axis of the fibre, than jute in which the microfibril angle is somewhat greater. In

view of this, much of the following discussion is largely relevant to flax and hemp

alone.
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4.4.2 Formation of micro-compressive defects

4.4.2.1 Kinkiiig

The morphology of much of the micro-compressive damage observed in bast fibres is,

as mentioned previously, reminiscent of that seen in highly oriented polymeric fibres

such as polyethylene (Grubb & Li, 1994) and rigid rod polymers (Martin & Thomas,

1991). Such fibres exhibit superb tensile strengths, but are often a factor of ten

weaker in compression (Martin & Thomas, 1991). These fibres, which consist of

fibrils having low interfibrillar bonding strength, are susceptible to kink band

formation when loaded in compression (Grubb & Li, 1994).

Kinking is also observed in unidirectional PMCs under compression parallel to the

axis of the fibres (Hull & Clyne, 1996). Argon (1972), proposed a model for the

initiation of kinks in such materials. At the onset of instability, it was predicted that

the compressive stress, acomp , would be given simply by:

acomp	 (4.1)

Where:	 r	 is the plastic shear strength of the matrix

LW) is the average misorientation angle of the reinforcing

elements (in radians)

4.4.2.2 Kinking in bast fibres

The bulk density of bast fibre, as noted in the previous chapter, can be as high as 1450

kg m 3 (Ivens, et at., 1996). If the density of the cell wall material is assumed to be

1500 kg m 3, then certain individual fibres may be thought to consist almost entirely of

cell wall material. In other words, the fibres might be considered to be solid

composite structures. This supposition has been substantiated through observation in

this work; many fibres appearing as though they possessed almost no lumen

whatsoever. Nevertheless, as mentioned previously, bulk density can vary

considerably (from 600 kg m 3 to 1200 kg m 3 according to Bolton, 1994). This
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would imply that relatively thin walled fibres may also be found (this too was

observed).

There is good reason to believe that the relative thickness of the cell wall could affect

the macroscopic mode of failure of the fibre. Simplistically, thick and thin walled

fibres might be likened to either columns, or thin walled cylinders respectively. The

type of compressive failure thus expected might be as shown in Figure 4.4. Here, the

thin walled cylinder (A) corresponds to lower density fibres in which macroscopic

failure is by gross 'crumpling' of the cell, albeit the wall exhibits kinking within itself

(see below). Failure of the column (B), corresponding to high density, thick walled

fibres is through shear, such as might be observed in solid wood in pure compression

(Desch & Dinwoodie, 1996) and in flax fibre (Rowland et a!., 1995). Both failure

types were observed in the fibres studied in this work, along with what appeared to be

a form of 'hybrid' failure mode.

The fibre failure observed in Plate 4.14 would appear to correspond to a form of

macroscopic shear failure ('minute compression failure') such as might be expected

from the failure of a solid column in pure compression (cf Figure 4.3B). This form of

macroscopic shear failure is, however, more clearly observed in Plate 4.17 in which

the whole cell has apparently failed in shear ('kink band'). However, when the cell

wall is examined in detail (Plate 4.15), it would appear that this too failed in a

shearing mode. This is perhaps more clearly observed in Plate 4.16, in which the

macroscopic failure form is indistinct, but in which shear failure within the (relatively

thin) cell wall itself was noted. This can be likened to the form of failure expected in a

thin walled cylinder (cf Figure 4.3A). The form of failure observed in Plate 4.15

could be considered to correspond to the form of 'hybrid' failure envisaged, in which

both the macroscopic failure of the cell is through shear, as is that of the cell wail

itself.
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(A) (B)

Figure 4.4 Schematic representation of compression failure by a) localised crumpling
in a thin walled cylinder and b) shear failure in a solid colunm.

From the relationship in Equation 4.1, it has been shown that a misalignment angle of

3° is sufficient to cause the onset of kinking in unidirectional composites (Jelf &

Fleck, 1992). However, it is unclear what proportion of the fibres need to be

misaligned in order to initiate kinking (Hull & Clyne, 1996). In wood fibres, kinking

of the cell wall occurs, as pointed out by Dinwoodie (1974), in a plane normal to that

in which the microfibrils lie. This is perhaps more clearly expressed diagramatically

(Figure 4.5). As can be seen, in the plane of kinking, the microfibrils, or rather

lamellae, are aligned parallel with the fibre axis. It is perhaps not difficult, however,

to imagine regions in which the microfibrils are misaligned by greater than 30 which

might be sufficient to initiate local instability leading to kinking. The possible loci of

micro-compressive failure could well be misaligned microfibrils lying at the surface of

the cell wall layer (S2/S3 interface) or, alternatively amorphous domains within the

fibrillar structure, nucleating kink band formation. Dinwoodie (1968), for instance,

noted that "stress lines" appeared to be precursors of kinking in the cell wall. These

had the appearance of fine lines which were almost imperceptible under a polarising

microscope. The deformation of the microfibrils was thought to be very small. This

type of failure could lead to the type of macroscopic fibre failure envisioned by

considering the fibre to be a thin walled cylinder (Fig. 4.4A) and was observed in

hemp fibre examined in this study (Plate 4.16).
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Figure 4.5 Schematic representation of kinking in the S 2 layer of the wood cell wall
(Adaptedfrom: Dinwoodie, 1974).

By considering flax and hemp to be solid (or near solid) columns in which the winding

angle of the microfibrils in the S 2 layer is all but parallel to the fibre axis, the whole

fibre rather than just the cell wall may kink (macroscopically in a similar fashion to

synthetic polymer fibres) in the manner depicted in Figure 4.4B. Plates 4.17 and 4.18

clearly show that this type of failure also occurs in bast fibres. In this instance, the

microfibrillar angle may itself be sufficient to act as the instigator of instability. In X-

ray diffraction studies of softwood tracheids, the microfibril angle of the S 2 layer is

seen as a distribution, rather than a discrete and constant value (Cave & Robinson,

1998). In hemp for example, in which the mean microfibrillar angle is reported to be

in the region 2-3° (Preston, 1974), only a slight perturbation would be required in

order to create a region of misalignment greater than 30, resulting in localised

instability. Using a similar argument, if the compressive loading on the fibre was even

slightly off-axis, then this might be sufficient to cause instability, thereby initiating

kinking. Such a scenario is perhaps not too difficult to imagine occurring in the plant

(see below).
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In addition to the above, the amount and type of 'matrix' material (other

polysaccharides and lignin), as well as the way in which it is bonded to the cellulosic

components (lignin-polysaccharide complex), would undoubtedly play a part in the

lateral constraint of the microfibrils. In bast fibres, this 'matrix' likely consists of a

higher proportion of pectin which, being more flexible than lignin (which is highly

cross-linked), would probably provide less lateral support to the microfbrils than in

wood, which contains not only a higher proportion of 'matrix', but also this is mainly

lignin. This might also explain why jute appears to be somewhat less susceptible to

micro-compressive damage than either flax or hemp. Furthermore, it is worthwhile

noting, that the microfibrillar angle of the S 2 layer in compression wood is higher than

in normal wood (up to 450 - Desch & Dinwoodie, 1981). This would presumably

also confer greater stability in compression (although to the detriment of tensile

strength).

Bast fibres might be thought to be analogous to the reaction (tension wood) tissue

found in hardwoods, wherein the lignin content of the gelatinous layer is lower than in

normal wood (whilst the microfibril angle is zero). Tension wood is noted to be

somewhat stronger in tension than normal wood, but "exceptionally weak in

compression parallel to the grain" (Desch & Dinwoodie, 1981).

As stated in Section 4.3, no attempt was made in this study to quantify the extent of

the micro-compressions, but nevertheless, this type of damage appeared to be rife in

the bast fibres examined and was even evident in (hemp) fibres carefully extracted

from the plant. This would indicate that these fibre types are particularly prone to

damage by kinking.

4.4.2.3 Compressive strength of bast fibres

Based on the foregoing, it would seem reasonable to expect that the strength of bast

fibres is lower in compression than in tension. Whether this difference is as great as

that observed in synthetic fibres, which similarly fail through kink band formation, is a

matter for conjecture. It would seem likely, however, that the difference should be

less, since in the conventional model of the cell wall, cellulose chains ('reinforcement')

are supported with a 'matrix'. If, as proposed by Argon (1972), compressive strength
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is governed by the plastic yield strength of the matrix, it would seem reasonable that

the 'matrix' of the bast fibres would confer greater stability and resistance to kinking

than in synthetic polymeric fibres. It is worth noting that these synthetic fibres do not

possess 'matrix', but rely instead on weak Van der Waal's forces for interfibrillar

bonding (Mathur & Netravali, 1996). Indeed, it has been found that in synthetic

polymeric fibres, improved fibre compressive properties can be achieved by artificially

introducing a 'matrix' through polymer infiltration (Mathur & Netravali, 1996). Lee

and Santhosh (1993), consider that hoop constraint around the fibre may be an

effective method of improving compressive strength. Bast fibres effectively possess

such constraint in the form of the primary wall and S 1 layer which, as was discussed in

Section 4.1.2, is considered to be of importance in stabilising the fibre in just this

manner (Booker & Sell, 1998).

It would seem plausible, therefore, that bast fibres should be significantly stronger in

compression than synthetic fibres. This contention has, indeed, been borne out by

recent work carried out on flax ultimates (Bos et aL, 1997). It was found that these

fibres displayed axial tensile strengths of around 1500 MN m 2, whilst in compression

the strength was found to be around 1200 MN m 2. In other words, the compressive

strength of flax fibres is around 80% of the tensile strength, which compares with

around 20% for Keviar (Mathur & Netravali, 1996).

Nevertheless, it remains likely that bast fibres will be susceptible to compressive

damage and this could well impact upon the compressive properties of laminates.

This would be particularly so in uniaxially aligned fibre composites loaded parallel to

the fibre direction. Unfortunately, no such compression tests were performed during

the course of this work and thus this supposition cannot be validated.

4.4.3 Origin of micro-compressive defects

4.4.3.1 Formation of kink bands in the plant

The examination of fibres taken from the 'green' stem of hemp revealed the existence

of numerous micro-compressive defects. It is interesting to note that the occurrence

of damaged fibres appeared to be very extensive within the plant. Why this should be
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so and the mechanisms by which this occurs requires explanation. In trees, it is

thought that compression damage occurs as a result of both externally applied loads

(gravity and wind induced mechanical loads) or internal growth stresses (Dinwoodie,

1976). It is likely that these factors operate in annual plants too. Plants such as flax

and hemp are likely to sway significantly during their life-time. This would in all

probability lead to the fibres being stressed cyclically in axial tension and compression.

Such fatigue loading has been shown to lead to compression creases in wood,

ultimately resulting in crack formation and failure (Imayama, 1994). It might be

thought, however, that if this were the only mechanism involved, damage would be

prevalent in the lower part of the stem (which would have undergone more fatigue

cycles and the fibres would also, in all probability, undergo greater compressive

strain). Whilst a greater level of damage appears to be present in fibres isolated from

the lower stem, there is still a significant amount visible in fibres taken from the upper

stem. Micro-compressions may also arise from growth stresses induced by the

surrounding plant tissue. This has been cited as a possible explanation for the

appearance of these features in flax (Focher et a!., 1992).

4.4.3.2 The influence of decortication and processing

The processes involved in the decortication and refining of the fibres would in all

probability result in further micro-compressive damage being introduced. In any

process in which the fibres are bent into sharp radii, the compressive stresses induced

in the fibre could well result in localised kinking. This failure mechanism has been

observed in flax fibres in loop tests conducted in an environmental scanning electron

microscope (Bos & Donald, 1999). The fibres used as reinforcement in this study

were, as stated previously, formed into non-woven felted mats. This process involves

an intensive mechanical process (carding) in which the fibres are separated by

'combing' the fibres between pins moving in opposite directions. This process would

undoubtedly induce a significant amount of bending in the fibres which may well

account for the extensive damage observed.
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4.4.4 ImpJications of micro-compressive defects

If bast fibres are to be used as reinforcement in PMCs, then it is essential to gain a full

understanding of their behaviour. This study has highlighted the fact that these fibres

are susceptible to damage through kinking. It is of prime importance, therefore, to

understand the influence that these defects have on the fibres themselves, since this

will have a direct bearing upon the mechanical properties of composites reinforced

with such fibres. It should be noted that in this work, no separate study was

conducted to determine the mechanical properties of the fibres (bundles or ultimates).

Thus, the following discussion is based upon data obtained from the literature.

4.4.4.1 Influence of micro-compressive defects on tensile (Young 's) modulus

It is reasonable to suppose that when a damaged fibre is strained, individual micro-

compressive defects or kinks will have a tendency to 'straighten out'. Furthermore,

as individual kinks straighten, the relative strain which each kink undergoes will

reduce as it straightens out. As more and more kinks straighten, the resistance of the

fibre to straining should increase. Thus, intuitively, the fibre should become stiffer as

it is strained and a non-linear stress-strain response would be expected. There is some

evidence to support this supposition. Hornsby et al. (1997), for instance, observed

such non-linear behaviour in pulped flax fibres. The fibres used in that investigation

were noted to contain a significant number of "dislocations" (kinks), some of which

no doubt resulted from the pulping process.

With regard to the direct effect of micro-compressive damage on the tensile modulus

of individual fibres, Page et a!. (1977), who investigated the influence of the

microfibril angle on the elastic modulus of single wood pulp fibres, found that there

was significant scatter in the results for fibres with nominally the same fibril angles.

They were able to confirm through ciné photography that this was attributable to

micro-compressions and other inhomogeneities in the fibre cell wall, with defects and

micro-compressions resulting in a reduced tensile modulus. Davies and Bruce (1998)

found that as the level of micro-compressive damage increased, fibre modulus

decreased. This again might be expected; a greater number of micro-compressions

leading to a greater overall fibre strain for a given level of stress.
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If flax or hemp fibres are indeed considered as unidirectional fibre reinforced

composites, then a simple 'Voight' model (Hull & Clyne, 1996) to predict the tensile

modulus might be instructive. In this, the overall tensile modulus of the fibre is

considered to be the volume weighted average of the moduli of the individual

components. The data presented in Table 4.1 were derived from the literature and

represents a 'best guess' at material properties and relative proportions (see Section

2.3.2) of constituents for an 'ideal' bast fibre.

Table 4.1 Material properties of an 'ideal' bast fibre.

Constituent

Cellulose

Other polysaccharides

Lignin

Vf Axial modulus, E
(%)	 (GNm2)
85*	 134.0

10*	 8.0

5*	 4.0

Reference

Sakurada et al,, 1962

Cousins, 1978

Cousins, 1976

* Estimated volumetric proportions (see Section 2.3.2).

The tensile modulus Efibre of the fibre is given by:

Efibre =	 + V 1 E 1 + Vjjg.Eijg.	 (4.2)

Where:	 V	 is the volume fraction of cellulose

is the volume fraction of other polysaccharides

ig.	 is the volume fraction of lignin

Ecei	 is the axial modulus of cellulose

E, is the axial modulus of other polysaccharides

Ej,g.	 is the axial modulus of lignin

Substitution of the material data and relative proportions of each constituent given in

Table 4.1 into the Equation 4.2, yields a theoretical tensile modulus of 1 15 GN m2.

To give an effective fibre modulus, the fact than no contribution to the overall

stiiThess from either the S 1 or S3 layers is assumed, must be taken into account.
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Similarly, it is assumed that in measuring the cross section of real fibres, no account is

taken of the lumen space; allowance should be made for this too. Assuming the

density of a mature fibre to be 1400 kg m 3 and 90% of the cell wall is comprised of

the S2 layer, then the effective stiffness would be 97 GN m 2. This figure compares

with -70 GN m 2 for glass fibre (Ivens et al., 1997). In the only known study of the

influence of fibre damage on the tensile modulus of flax fibres, Davies and Bruce

(1998) observed a static tensile modulus of around 93 GN m 2 for undamaged fibre.

As can be seen, this figure compares well with the predicted value.

4.4.4.2 The influence of micro-compressions on the tensile strength offibres

In the same study, Davies and Bruce (1998) found that not only do micro-

compressions affect the tensile modulus of the fibres, but also their strength, with

increasing damage levels resulting in lower tensile strengths. Further, failure in flax

fibre has been observed to initiate at micro-compressions (Focher et a!., 1992;

Rahman, 1979). Page et a!. (1971) using ciné photography noted that in single wood

pulp fibres, failure was initiated at the defects. Also, they attributed the large

variation in tensile strengths, for a given microfibril angle, to the influence of these

defects on fracture. Kim et a!. (1975), investigating the effect of drying stress on the

tensile strength of pulp fibres, found that micro-compressions could, in some

instances, be removed by drying under tension, resulting in an improvement in tensile

strength. Later, Page and El-Hosseiny (1976), successfully fitted Pierce's weak link

theory to the failure of Black spruce fibres and concluded that, for fibres of similar

microfibril angle, tensile strength is controlled by a randomly distributed population of

defects in the fibre. Furthermore, Dinwoodie (1978) found that artificially induced

micro-compressions reduced the failing load of individual Norway spruce fibres by

nearly 50%, although the effect in solid wood was far less, with a reduction in tensile

strength of around 10% being observed.

From the foregoing, it is evident that the presence of micro-compressions in the fibre

reduces tensile strength and, as noted by various authors, failure is observed to initiate

at these features. What is of interest is the mechanisms by which the strength

reduction takes place. Evidently, micro-compressive defects, particularly those which
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are observed in thick walled bast fibres, change the geometry of the cell wall,

introducing a step into the structure and effectively creating a stress concentrator.

Using the Griffith criterion (Equation 3.7) a critical crack length can be deduced (by

making the assumption that the cell wall behaves as an elastic, isotropic continuum -

this is an over-simplification but is believed to be valid in order to establish orders of

magnitude for critical crack lengths) from the cell wall material constants and an

estimate of failure stress. If the fracture toughness of the cell wall material, normal to

the microfibrillar direction is taken to be 3.45 kJ m 2 (Lucas et al., 1997) and the

modulus of elasticity is assumed to be 100 GN m 2, then for an applied tensile stress of

500 MN m 2, the critical crack length would be of the order —450 jim. If the tensile

stress is raised to 2000 MN m 2, then the critical crack length reduces to --28 jim.

Given that the diameter of flax or hemp ultimates is often around 25 jim, it seems

unlikely that the morphological change to the fibre could alone constitute a critical

length crack.

Dinwoodie (1978), postulated that the decrease in tensile strength is a manifestation

of damage to the cellulose molecule. In the zone of the micro-compression,

microfibrils are bent in the form of a sharp 'Z' or kink. It is believed that this results

in a loosening of the structure, with the severance of cross-bonds in the unit cell and

possibly a limited amount of breakage of the longitudinal covalent bonds (Dinwoodie,

1978). It would certainly seem as though structural alterations take place in the

kinked zone, since it has been reported that increased chemical reactivity, uptake of

dyes etc. occurs in these regions (Keith & Cote, 1968). It seems feasible that in

addition to lateral, interfibrillar bond scission, damage to the longitudinal covalent

bonds, as postulated by Dinwoodie (1978), may also take place. Although not

directly applicable to micro-compressed bast fibres, a recent study on kink band

formation in rigid-rod polymers, using low-dose high resolution electron microscopy,

has shown that at the juncture between undisturbed fibrils and those lying in the

kinked zone, very large angle changes in molecular orientation (400) at very sharp

(0.5 rim) tilt boundaries are observed (Martin & Thomas, 1991). It has been

calculated that a radius of curvature of —9 nm is sufficient to cause damage to the

cellulose microfibril (MUhlethaler, 1965). If similar kink conformations were to occur
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in micro-compressed bast fibres, it is perhaps reasonable to suppose that localised

axial damage to the cellulose molecules may occur. This, coupled with the stress

concentrating effect of the gross morphological changes to the fibre cell wall, may

account for the loss in tensile strength of the fibres.

Whilst it is interesting to speculate upon the theoretical strength which might be

achieved from in 'ideal' undamaged fibre, the prediction of this is complicated

because of uncertainty regarding fracture mechanisms involved and the properties of

the fibre constituents. Nevertheless, if it is assumed that the model fibre behaves

perfectly elastically to (brittle) fracture, which is not unreasonable, bearing in mind

experimental observations (e.g. Davies & Bruce, 1998), then it should be possible to

estimate a value for tensile strength. Assuming a strain to failure of around 2% for

cellulose (Muhlethaler, 1965), this would, if the effective fibre modulus is taken to be

100 GN m 2, lead to a tensile strength of 2000 MN m 2. This figure does not look too

unreasonable, given that the tensile strength of some individual flax fibres can

approach this value (Davies & Bruce, 1998).

4.4.4.3 The toughness of bast fibres

As mentioned above, the stress-strain relationship for bast fibres under axial tension is

essentially linear, culminating in brittle fracture of the fibres. As was seen in the SEM

micrographs in the previous chapter, (Plate 3.10) the fracture surfaces of individual

fibres had the brash 'carroty' appearance of brittle failure. This type of failure is

perhaps not unexpected given the fibre ultrastructure. As mentioned in Section 4.1.2,

much of the high work of fracture observed in wood can be attributed (possibly up to

90% of the overall work of fracture) to the pseudo-plastic buckling mechanism

proposed by Gordon and Jeronomidis (1974). A prerequisite for this mechanism to

operate, however, is a non-zero value for the microfibrillar angle of the S 2 layer (150

was determined to be optimal in Gordon and Jeronomidis' work). Since the

microfibril angle in flax and hemp is at most only a couple of degrees little, if any,

contribution to the overall work of fracture could be expected from this form of

plastic deformation. The work of fracture of flax and hemp fibres is, at best, probably

akin to the intrinsic toughness of the plant cell wall determined by Lucas et al. (1997),

with a value of around 3.45 kJ m 2 . This value is probably an overestimate if there is
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a severe disruption to the ultrastructure, or even longitudinal bond severance in the

region of micro-compressions.

4.5 Conclusions

Bast fibres, particularly flax and hemp which are potentially the most valuable in terms

of composite reinforcement, would appear to be very sensitive to the formation of

kink bands or micro-compressive defects. This is most probably due to their

ultrastructure, which perhaps makes them more susceptible to this form of damage

than wood. There are a number of implications for this behaviour.

Firstly, the tensile properties are affected. Young's modulus and strength are reduced

whilst the defects act as loci for fibre failure. This will undoubtedly have ramifications

as far as the properties of composites reinforced with these fibres are concerned.

Secondly, the fibres themselves would appear to be brittle, with little work of fracture.

No significant contribution to the overall work of fracture of composites reinforced

with these fibres could therefore be expected from fibre fracture alone. Further, this

may affect the manner in which cracks propagate through the composite material. In

addition, a factor, not extensively discussed above, is the potentially poor properties

of composites in compression. In this work, no separate study of the compression

behaviour of laminates was undertaken. This is an area which should be investigated.

Poor properties in compression have limited the use of certain synthetic polymeric

fibres (Grubb & Li, 1994). Finally, and thought to be potentially extremely important,

is the effect that these micro-compressions have on the heterogeneity of strain within

the fibre.

In the region of the micro-compression, it is to be expected that for a given load, the

fibre will undergo greater strain. In other words there will be a strain concentration at

the micro-compressive defect. This supposition is supported by recent work

undertaken using the technique of digital image correlation to map strain in single

wood pulp fibres, where it was found that strain concentrations existed in the vicinity
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of fibre defects and inhomogeneities, including micro-compressions (Mott et al.,

1996). The fibre could thus be thought of as having different moduli in different

regions. This, coupled with the distinct morphology of some of the more extreme

examples of these defects, would undoubtedly impact upon the micromechanics of

deformation and fracture, occurring at the interface when the fibres are used to

reinforce what is essentially a homogeneous, isotropic medium. This issue is

considered in the following chapter.
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5 Interface Micromechanics

5.1 Introduction

5.1.1 General background

In the previous chapter, the effect of fibre micro-compressive defects and processing

damage was discussed in relation to the mechanical properties of the fibres

themselves. From the standpoint of composite manufacture, however, the important

questions which arise are: in what way and to what extent do these defects influence

the mechanical properties of the laminates themselves? Evidently, the mechanical

properties of the composite will be affected by the tensile and compressive moduli

and strengths of the fibres, which in turn have been shown to be influenced by fibre

damage (Davies & Bruce, 1998). However, another factor which needs to be

considered is the effect that these damage features have on the interaction between

fibre and matrix; in particular how they influence the deformation and fracture

processes occurring at the fibre/matrix interface.

Recently, it has been shown that a variety of cell wall defects including pit apertures,

processing induced creases and micro-compressions can affect the cell wall strain

distribution in single wood fibres, leading to localised strain concentrations (Mott et

a!., 1996). It is plausible, therefore, that a similar fibre strain heterogeneity occurs in

hemp, flax and jute fibres, with the region of the fibre in the vicinity of the micro-

compression undergoing greater strain relative to undamaged portions of fibre. Such

behaviour is likely, since when a fibre is subject to a tensile load, the 'kinks' would

tend to straighten out. This can be observed as the so called 'strain hardening'

observed in individual fibre tensile tests (Hornsby et a!., 1997). An heterogeneous

fibre strain distribution, coupled with the distinct geometry of the micro-compressive

features, could well lead to stress concentrations occurring in the matrix (which is

essentially homogeneous and isotropic) when the fibres are used as reinforcement.

In turn, these stress concentrations could promote crack formation at the interface,

leading to fibre-matrix debonding and to localised rupture of the matrix. This
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hypothesis is supported by work carried out on the effects of residual thermal stresses

in high-modulus polyethylene fibre composites. In these composites, it was found

that kink bands formed in the fibres as a result of axial curing stresses. These, as

well as pre-existing damage had the effect of creating stress concentrations in the

matrix in the vicinity of the kinks which were thought to act as sites of potential

crack initiation and fibre-matrix debonding (Grubb & Li, 1994). It is feasible too,

that residual stresses may exacerbate the effect of the microcompressive features

found in bast fibres. In view of the importance of the interface in controlling the

performance of composite materials (Hull & dyne, 1996), it was believed that an

investigation into the nature of the interface would lead to a fuller understanding of

the material behaviour as a whole. In particular, it was thought that an examination

of the stress field in the matrix adjacent to the micro-compressions would be of

particular relevance.

Photoelasticity offers a potentially convenient method for the analysis of stresses in

polymeric matrices, such as epoxies and polyesters, which exhibit artificial

birefringence when stressed (Daily & Riley, 1965; Burger, 1993). Photoelasticity is

an experimental method for analysing stress or strain fields in mechanics, inferring

stresses in certain transparent materials from their optical effects (Burger, 1993).

The optical effects in photoelasticity appear as a form of interference pattern, with

the number of fringes generated (fringe order), or the density of the spacing, being a

function of the stress response (Burger, 1988).

5.1.2 Experimental technique

In this chapter, the matrix stress-field in the vicinity of micro-compressive defects is

examined in a model system. This system consisted of single filament composites

(SFCs) reinforced with either individual bast fibre (hemp) ultimates and bundles or

E-glass fibres. These composites were loaded in tension, parallel to the axis of the

fibre in a miniature tensile frame and the state of stress in the matrix inferred from

the photoelastic response of the matrix utilising a technique known as half fringe

photoelasticity (HFP). Essentially HIFP combines classical photoelasticity with

modern digital image analysis using computers, enabling the rapid, whole-field stress

analysis of a photoelastic sample to be undertaken (Burger, 1993).
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5.1.3 Photoelasticity theory - behaviour of light

Figure 5.1 Instantaneous field pattern of a linearly polarised ray
(Source: Burger, 1993).

For the purposes of describing the photoelastic effect observed in birefringent

materials, the electromagnetic theory due to Maxwell is often used (DaIly & Riley,

1965). In this, light propagates as a transverse electromagnetic wave as shown in

Figure 5.1. The disturbance producing the light can be considered as wave motion,

where, the instantaneous magnitude E, of the electric field vector, observed at a

fixed point along the direction of propagation is (Burger, 1993):
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is amplitude

is wavelength

is the velocity of propagation (3 x 108 ms')

is time

is angular frequency

is frequency

The above relationship describes the situation for a linearly polarised ray. However,

photons emitted in any direction from a light source will have electric fields

randomly oriented and will produce an un-polarised beam of light. In a beam of light

which is made up of photons with their electric fields preferentially aligned, the light

is said to be polarised. For instance, when the E fields are parallel to one another, the

light is linearly, or plane, polarised. Linear polarisation is a special case of the

general state of polarisation - elliptical polarisation. Another special case of

polarisation is circular polarisation in which the electric field vector describes a

circle of constant magnitude rotating about the direction of propagation. These states

of polarisation are depicted schematically in Figure 5.2.

Plane polarised light may be obtained by a number of methods, one of the most

convenient of which is to use 'polaroid' sheet. As will be discussed in more detail in

Section 5.1.6, circular polarised light is often employed in photoelastic studies.

Circular polarised light may be obtained by 'conditioning' plane polarised

monochromatic light using an optical element known as a quarter-wave retarder or

quarter-wave plate (2/4 retarder/plate).
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Figure 5.2 Motion of the electric vector for a) plane, b) circular and c) elliptically
polarised light (Source. Burger, 1993).

5.1.4 Wave retarders or wave plates

A number of materials possess the ability to resolve a linearly polarised light vector

into two orthogonal components and moreover, to transmit each component through

the material at different velocities. These include various crystalline materials such

as mica and quartz, as well as many polymers which exhibit artificial anisotropy as a

result of residual stresses induced during the manufacturing process. These materials
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are said to be doubly refracting or birefringent. An optical element made from a

birefringent material is known as a wave plate or wave retarder.

axIs 1	 axIs 2
index of refraction - n1	 Index of refraction -
velocity of propagation - 	 velocity of propagation - c2

plate

Figure 5.3 Schematic representation of a wave plate or wave retarder.

A wave retarder can be considered as having two principal axes (Figure 5.3) 1 and 2

along which the light vectors propagate at velocities c1 and c2 . Where c 1 > c2, axis 1

is known as the 'fast axis' and axis 2, the 'slow axis'. Furthermore, the axes possess

different indices of refraction n 1 and n2 respectively. It can be shown that the angular

phase shift, A, between the two components when they emerge from the wave

retarder is (Daily & Riley, 1965):

2,rh

A = 2 (n
i -112)
	

(5.2)

Where:	 h
	

is the thickness of the wave retarder

The angular shift is thus determined by the plate thickness, the wavelength of light

used and by the optical properties of the retarder. A plate designed to give an

angular retardation of ir /2 is known as a quarter wave retarder or quarter wave plate.
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Circular polarised light may be obtained by aligning the axis of the 2/4 retarder axis

so that it forms an angle of r /4 with the axis of the linearly polarised light (Figure

5.4).

Optic axs	 4G
(fast or slow axis)41

(7

Input/output plaiia of
polstin

Circularly polarised
input or output

\
Lixiearly poLaised
mput or output

Figure 5.4 'Conditioning' of linearly polarised light to obtain circularly polarised
light and vice versa (Source: Burger, 1993).

5.1.5 Stress-optic law

Certain amorphous polymeric materials such as epoxies, polyesters and urethane

rubbers are normally optically isotropic. However, when stressed, they become

doubly refracting (DaIly & Riley, 1965). The indices of refraction for such

temporarily birefringent materials are linearly proportional to the stresses therein.

For the general three dimensional case, the relationships between the three principal

stresses , a2 and and the principal indices of refraction ni, n2 and n3, for

waves vibrating parallel to the principal stresses are given by (Burger, 1993):
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- n = C1 a 1 + c2(a2 + a

- fl = ca 2 + c2(a + a i)

n3 -n=cl a 3 +c2 (o- 1 + a2)

Where:	 n	 is the index of refraction of the unstressed material in

its optically isotropic state

c 1 , c2 are varying constants (depending upon the material),

termed the 'stress-optic coefficients' for a specific

material

On subtraction to eliminate n, the following relationship is obtained:

1 i _ fl2	 (c i - c2)( a 1 - a2)

= C(a 1 - a2)
	

(5.3)

Where:	 C ( c1 - c2 ) is the relative stress-optic coefficient

(a1 - a2 )	 is the principal stress difference

Similarly it can be shown that:

- fl3 = C(0 1 - a

fl2 -fl3 -C(a 2 - a3)

If the photoelastic sample is a plate and the stress normal to the plate is zero, i.e.

conditions of plane stress, and further, the in-plane stresses do not vary through the

thickness, then the stressed plate can be regarded as a temporary wave plate with the

optical fast and slow axes coinciding with the axes of the principal stresses.

However, as shown previously, for a wave plate, the difference in the indices of

refraction (ni - n2) are given by:
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2irh
	 (5.4)

Substituting Equation 5.3 into Equation 5.4 and re-arranging yields:

2,rhC

, 
(a1—a2)

Equation 5.5 is the classical description of the 'stress-optic law' in two dimensions at

normal incidence. Nevertheless it is more convenient in photoelasticity work to re-

write this expression and re-define a number of units as follows:

(cr1 - o2) = 
Nf	

(5.6)

Where:	 N Al2ir
	 is the relative retardation known as 'fringe

order' and is wavelength dependent

(dimensionless)

2	
is the material fringe value (N m')

h
	

is the specimen thickness

Thus, if the fringe order, N can be measured, the principal stress difference may be

determined, provided the material fringe value f7 can be established by means of

calibration. A polariscope is a means of determining N at each point in a stressed

photoelastic specimen.

(5.5)

199



5.1.6 Behaviour of a stressed photoelastic specimen in a polariscope

If a photoelastic sample is loaded in a plane polariscope, such that the principal stress

direction makes an arbitrary angle a with the axis of polarisation, as depicted in

Figure 5.5, then it can be shown that the intensity of the light emerging from the

polariscope at this point in the sample is (Daily & Riley, 1965):

A
I = Ksin 2 2a sin 2 -

Where:	 I	 is the intensity of light emerging from the
polariscope

K	 is a constant.

Axis of

Principal stiss
direction 1

Axis of
polasisation Ii	 ( '%)I<'An.alYser

i -t )	
Principal stress

-	 Sample	 direction 2

x

Polariser

Light soume

Figure 5.5 Stressed photoelastic model in a plane polariscope
(Source: Burger, 1993).

As can be seen, the intensity goes to zero, i.e. extinction occurs, when either the

sin2 2a or sin2 A /2 terms are zero. Strictly, the above relationship includes a

cos2 a t term. However, since the angular frequency is so great, the conditions under

which extinction occurs as a result of this may be ignored for practical purposes

(Daily & Riley, 1965). Considering first the sin2 2a term, this goes to zero when

2a	 nir, where n = 0,1,2,3, etc., in other words, a 	 0,,r12 or an exact multiple

(5.7)
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thereof. This implies that extinction will occur if either of the principal stress

directions U i or a 2 coincide with the axis of polarisation. This results in a fringe

pattern appearing over the whole sample, where the fringes are the loci of points

where either of the principal stress directions coincide with the axis of the polariser

(Daily & Riley, 1965). This fringe pattern is known as the isoclinic fringe pattern.

The second condition of extinction occurs when A/2 n,, where n = 0,1,2,3, etc.

In other words when /2 = n, the intensity goes to zero. From the above and from

Equation 5.6, it can be shown that (Daily & Riley, 1965):

n	 = N =	 (a - a2 )
	

(5.8)

Thus the intensity of light emerging form the polariscope at a point in the sample

goes to zero when the principal stress difference is such that:

h

y- (o 
— cr2) = 0,1,2,3, etc.

The order of extinction or 'fringe order' (i.e. N= 0,1,2,3, etc.) is thus a function of

the magnitude of the principal stress difference ( 1 - a2 ) and is dependent upon the

sample thickness and the material fringe value (a measure of the stress-optical

sensitivity of the photoelastic material). When the sample is viewed in whole-field, a

second set of extinction lines, being the loci of points of equal principal stress

difference (where (a1 - 2 ) = Nfa /h), are observed. The fringe pattern thus formed

is known as the isochromatic fringe pattern.

Therefore, in a plane polariscope two fringe patterns, one dependent upon the

directions of the principal stresses - the isoclinics and the other - the isochromatics,

dependent upon the magnitude of the principal stress difference, are observed,

superimposed upon one another.
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A polariscope employing circular polarised light is commonly used in photoelastic

studies, as it has the effect of eliminating the iscoclinics, leaving only the

isochromatic fringe pattern which may then be used to determine the principal stress

differences. It may be shown that for a model loaded in a circular polariscope in

dark-field (linear polariser and analyer crossed) set up such that the principal stress

direction makes an arbitrary angle a with the axis of the polariser, as depicted in

Figure 5.6 then the intensity of light emerging from the polariscope is given by

(Daily & Riley, 1965):

I=Ksin 2 - 	 (5.9)

Axis of polarisaftoii

Slow
axis y

2

Fast
	 axis

axis
	

Secoiidqiarterwa'e plate

Axis of polaxisation

IIIIIi1I'-'
First quaterw'e plate

x	 Parier

Light soue

Figure 5.6 Stressed photoelastic sample in a circular polariscope
in 'dark-field' set up (Source: Burger, 1993).

This expression contains an additional term [cos( a + Co t) - sin( a - w t)]2.

However, for practical purposes this may be ignored since the angular frequency is

so high. Further, since a is combined with the w t term in the sine and cosine

functions, it is effectively eliminated from the expression. In other words, no

isoclinic fringe pattern is superimposed upon the isochromatic fringe pattern.
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intensity- I

5.1.7 Half fringe photoelsticity

The determination of the state of stress in a photoelastic model in a circular

polariscope is a matter of counting and locating the fringes. As such, the method is

discrete. Nevertheless, the relationship between light intensity and relative

retardation (Equation 5.9 for dark-field set up), is a continuous function. Half fringe

photoelasticity is a technique, developed in the early 1980's by Burger and Voloshin,

which utilises the continuous nature of this function (Burger & Voloshin, 1982;

Voloshin & Burger, 1983; Burger, 1988). The name derives from the fact that the

system operates within the first 'half fringe' of relative retardation (Figure 5.7). Half

fringe photoelasticity has been used to determine stress intensity factors in cracked

isotropic bodies (Burger & Voloshin, 1983; Miskioglu, et a!., 1987) and to study the

stress field around single wood pulp fibres embedded in a polyurethane matrix

(Mercado, 1992).

Fringe order - N

Figure 5.7 Working range of Half Fringe Photoelasticity
(Source. Burger, 1993).

The principal stress difference in a photoelastic model may be calculated from

Equation 5.6, provided the material fringe value, f,, is known and the fringe order,

N at a particular point in the sample can be determined. In half fringe

photoelasticity, rather than counting discrete fringes, the intensity of light between
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Z	 =iiiJ Y
max	 'I' max (5.13)

fringes (or rather, within the first half fringe) is measured by means of a video

camera able to record light intensity with a high degree of accuracy. This is then

used to determine the 'partial fringe order' within the working range of HFP (i.e.

between N = 0 and N = 0.5). Consequently, the principal stress difference at a given

point in the photoelastic model can be determined from the measured intensity once

suitable calibration has been established to convert intensity to 'partial fringe order'.

The theoretical basis for HFP is an extension of the discussion above.

By substituting Nit for , Equation 5.9 can be rewritten as:

I=Ksin 2 Nit
	

(5.10)

Introducing a reference intensity, 'max' to replace K (Burger, 1988), Equation 5.10

may be rewritten:

I 
= sin 2 Nit	 (5.11)

max

The video response Z is not, however, linearly related to light intensity, but in the

following manner (Voloshin & Burger, 1983):

Z=yJI"
	

(5.12)

Where:	 cu	 is a constant

y	 is the log linear sensitivity curve of the video
camera on a log Z versus log I plot

Nevertheless, the light intensity emerging from the polariscope must have its

maximum when the Zvalue is a maximum (Miskioglu, 1987). Thus:
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z (i
Zmax	'max)

(5.14)

By taking ratios:

Substitution of Equation 5.11 into Equation 5.14 and taking logs, yields the

following relationship:

iogZJ = ylog(sin2 N)
	

(5.15)

Thus a plot of log(z/z) versus log(sin2 Nz), yields a straight line of slope y,

enabling evaluation of the camera sensitivity to be undertaken.

However, Equation 5.14 may also be expressed in the form:

I (z

'max	 Zmax)

Substitution of Equation 5.16 into Equation 5.11 and rearranging gives:

1	 (z
N = — sin1I

(5.16)

(5.17)

Thus, it is possible to determine the fringe order, N, if the ratio of (Z/Zmax ) is

known and if y can be established. Further, if the material fringe value, ía, is

determined by calibration, the principal stress difference may be evaluated for any

point in a photoelastic model from Equation 5.6.
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5.2 Materials and method

5.2.1 Specimen preparation

Epoxy, rather than polyester, resin was chosen for the matrix material because of its

good stress-optic properties (DaIly & Riley, 1965; Burger, 1993). Epoxy resin

(Epiglass HT9000 - International) was cured by the addition of catalyst (Epiglass

HT9000 standard hardener - International) in the ratio 4:1 (by volume) resin: catalyst.

Care was taken during mixing to minimise the inclusion of air bubbles and any

extraneous matter. Prior to use, the catalysed resin was degassed under vacuum for 5

minutes.

Reinforcing fibres were prepared from dew retted but undecorticated hemp. Sections

of stem were soaked in deionised water for approximately 24 hours at ambient

temperature. Strips of bark were then easily separated from the woody core material.

Individual fibre bundles were carefully teased from the bast using tweezers. Fibre

ultimates were prepared from the bundles by maceration in a mixture of 50/50 (by

volume) hydrogen peroxide/acetic acid as described more fully in Chapter 4.

Throughout, great care was taken in handling to minimise fibre damage. Once

separated, the fibres were carefully washed and stored in deionised water.

50mm

2.5 mm

75 mm

Fibre
r =25 mm	 ultimate

Figure 5.8 Schematic diagram of a single filament composite
(dimensions are approximate).
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Individual fibre ultimates were dried on microscope slides under ambient conditions.

Single filament composites (SFCs) were prepared by casting catalysed resin,

containing a single hemp fibre ultimate (or bundle), between glass plates. For

comparative studies, SFCs reinforced with a single E-glass filament were also

prepared.	 For calibration purposes, un-reinforced polymer specimens were

fabricated. The resin was cured for two hours at 50°C. Waisted tensile specimens

(Figure 5.8) were cut from the resin film with a fresh razor blade. In this way it

proved possible to produce specimens, approximately 150 ji.m in thickness and 2.5

mm in width, at the necked down portion. The specimens were conditioned at 65%

RH and 20°C for at least one month, prior to testing.

5.2.2 Half fringe photoelasticity system

A schematic representation of the HFP system used in this work is shown in Figure

5.9. Plate 5.1 shows the working system (further photographs showing details of the

system may be found in Appendix 8). Essentially, the system consisted of a standard

circular polariscope, in 'dark-field' set up, operated through an optical microscope

(Leitz, 'Laborlux'). The optical response of the photoelastic model was viewed with

a monochrome video camera (Sony CCD unit). The video signal was digitised and

recorded, using a capture card and associated software (Prolab 'Videoworks' and

'Image folio') and subsequently stored for analysis on PC. The digitised image was

composed of 480 by 360 picture elements ('pixels'), each divided into 256 levels of

grey (Z values), ranging from 0 (black) to 255 (white). This represents 8-bit

resolution. Image analysis was performed using a number of software programmes

including 'Optimas' (Bioscan), 'Idrisi for Windows' (Clark Labs for Cartographic

Technology and Geographic Analysis, IDRISI Project, at Clark University, USA)

and 'Unimap 2000'. The SFCs and clear resin specimens were strained in a

miniature tensile rig (PL Thermal Systems 'Minimat'), clamped onto the microscope

stage. Control of the tensile frame and data acquisition were by a separate PC.
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capture and
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Figure 5.9 Schematic representation of the HFP operating system.

Key: a) Monochromatic light source. b,) Circular polariscope operated through microscope. c,)

Tensile specimens strained in a miniature tensile rig clamped to the microscope stage. d) CCD
camera.

II;

Plate 5.1 Half fringe photoelasticity apparatus.

Key: a) PC for image capture and analysis. b) Monochromatic light source. ç) Miniature tensile rig
clamped to microscope stage. il) CCD unit. e) Stepper motor. J, PC for tensile rig control and

data acquisition.

The monochromatic light source for the circular polariscope consisted of a 55 watt

low pressure sodium lamp (standard street lamp) with associated control equipment.

This was sited in a purpose built lamp house, painted a flat white on the interior.

This lamp replaced the existing white light source of the microscope. The polariser
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and first quarter wave plate were sited below the condenser assembly of the

microscope, in a specially fabricated mount. The second quarter wave plate and

analyser were again provided with a purpose built mount and sited above the

objective lens. The polariser, quarter wave plates and analyser were carefUlly

aligned for 'dark-field' set up before final mounting. This was necessary as no

means were available to accurately rotate the wave plates and polarisers relative to

one another, once mounted in the microscope. Indirectly, this led to an alternative

calibration procedure, to the ones described in the HFP literature, being adopted (see

Section 5.3.2). Both polariser and analyser were obtained in the form of 'polaroid'

sheet (Polaroid corporation). Quarter wave plates were fabricated from 'retarder'

sheet (International Polarizers, Inc.). To obtain circular polarised light, it is

necessary to ensure 2/4 retardation with a wave plate suitable for the particular

wavelength of the monochromatic light being used (the use of white light results in

elliptically polarised light due to the different wavelengths constituting white light).

Since sodium light (2 589.6 nm) was used, it was necessary to obtain retarder

sheet giving 2/4 retardation at the same wavelength. The retarder sheet used

nominally gave 2/4 retardation at 560 nm, but nonetheless, this was deemed

satisfactory since there was a range of wavelengths over which the retarder sheet

gave the required retardation (International polarizers Inc., 1998). The assembly,

comprising, light source, polariser, two quarter wave plates and analyser constituted

the standard arrangement for a circular polariscope (see Figure 5.6).

Due to the relatively low light intensity of the sodium light source, it was found that

it was not possible to use the polariscope at high magnification. However, this did

not prove problematic since at higher magnifications it proved difficult to

satisfactorily focus on the desired region of the specimen. In the event, the system

was calibrated and set up to operate using a x4 objective lens, giving good results.

The photoelastic sample under consideration, as indicated, was loaded using a

miniature tensile testing frame, located on the microscope viewing stage in such a

way that adjustment in the X, Y and Z planes was possible. The 'Minimat' was

equipped with a 20 N load cell (beam). Load data were acquired by PC. Cross-head

movement was achieved using a stepper motor, again controlled from the PC. Cross-
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head displacement was measured from the stepper motor increments. The tensile

specimens used were gripped in specially fabricated clamps.

5.2.3 Testing

5.2.3.1 Calibration specimens

The thickness of clear resin specimens at the necked down portion was measured to

0.01 mm with a dial micrometer. The width of the specimens in the necked down

region was measured optically, under a microscope (Letiz Wetzlar), by means of

calibrated graduations.

The specimens were located in the 'Minimat' in such a way that the imaged area was

sited in the centre of the sample. This was to ensure that the imaged region (using a

x4 objective lens) did not include, and was remote from, the edges of the specimen,

thereby rendering it free from any residual birefingence imparted to the specimen

during preparation (cutting), which might otherwise have affected image quality.

Furthermore, it was ensured, as far as possible, that the imaged area was free from

any debris which would adversely affect image quality and consequently the

intensity of the transmitted light emerging from the polariscope. These procedures

were adopted with a view to reducing possible calibration errors.

The specimens were then loaded incrementally in tension and the grey level ('Z')

value recorded for each increment. Loading was continued until it became apparent

that the first half-fringe had been exceeded (i.e. the recorded light intensity had

reached a maximum and was beginning to fall-off). At least four clear resin

specimens from each batch were tested in order to calibrate the system.

5.2.3.2 Single filament composites

The dimensions of the SFC's were measured in the manner described above. Each

specimen was loaded incrementally on the tensile stage. Once a target load had been

reached, the photoelastic image was captured and the specimen immediately

unloaded. This was done to reduce, as far as possible, any visco-elastic effects. The

nominal stress in the specimens was kept as low as possible (<15 MN m 2) so as to

reduce, if not totally eliminate, non-linear behaviour of the matrix. Only one image
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for each level of loading was captured; averaging of multiple images to eliminate

random optical and electrical noise was not undertaken.

5.3 Results and discussion

5.3.1 Photoelastic material selection

The stress-optic law in two dimensions, for a linearly elastic material at normal

incidence, provides that relative retardation (A) is linearly proportional to the

principal stress difference (cr1 - ° 2) Further, from Equation 5.5 it is observed that

A is linearly proportional to the sample thickness h and the relative stress-optic

coefficient C (a material constant) and is inversely proportional to the wavelength

(2) of monochromatic light used in the polariscope. An ideal photoelastic material

would be one in which its stress-optic, strain-optic and stress-strain behaviour were

linear, in addition to which, the material should be free from mechanical and optical

creep over the time-scale of the photoelastic investigation and be isotropic and

homogeneous (DaIly & Riley, 1965). Furthermore, the material should be stress-

optically sensitive and possess good stiffness to prevent excessive deformation under

load. A figure of merit can be associated with each photoelastic material, being the

ratio of elastic modulus E to the material fringe value f . Table 5.1 shows a

comparison of the approximate properties of typical epoxy and polyester resins

(Burger, 1993). Whilst the Young's modulus, limit of proportionality and Poisson's

ratio of the two polymers are similar, the material fringe value of epoxy is about half

that of polyester, giving epoxies a figure of merit around twice that of polyesters.
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Table 5.1 Comparison of mechanical and stress-optical properties of typical
thermosetting polyester and epoxy resins (Source. Burger, 1993).

Materialfringe
value - f0.

(green light,	 Young 's Proportional Poisson 's Figure of
A. =546 nm) moduhis, E	 limit	 ratio	 merit

Material	 (Nm')	 (GNm2)	 (MNm 2)	 (E/fa)

Polyester	 24,000	 3.9	 48	 0.35	 4000

Epoxy	 11,000	 3.3	 55	 0.37	 8000

Most polymeric photoelastic materials, including epoxies and polyesters, exhibit

linear stress-strain and stress-fringe order behaviour up to a point, but deviate from

linearity at higher stresses (Burger, 1993; Dally & Riley, 1965). When these

materials are prepared for photoelastic studies, they are usually cast from liquid resin

and are generally homogeneous and isotropic (Dally & Riley, 1965). At room

temperature, epoxy resins have little tendency to creep; polyester resins, on the other

hand, do exhibit some visco-elastic behaviour (Burger, 1993).

For reasons of handling and cutting and the wish to destructively test the specimens,

a specimen thickness of around 150 pm was adopted. For calibration purposes,

however, it proved necessary to load the specimens to a point at which the first half

fringe appeared. Utilising the material properties listed in Table 5.1, substituting in

Equation 5.6 and solving for (a 1 - a2 ), yields a principal stress difference of around

37 MN m 2 at the first half fringe for epoxy resin, whilst for polyester this figure is

around 80 MN m 2 . Thus with epoxies, the stress difference at the first half fringe is

likely to be within the elastic limit of the material ('-55 MN m 2) whilst for polyesters

it is in all probability beyond the limit of proportionality ('--48 MN m 2). This

effectively precluded the use of polyesters due to the inability to calibrate the system

by the method envisioned. Further, in applications in which the photoelastic model

contains cracks or discontinuities with attendant stress concentrations, there is a

likelihood of localised non-linear behaviour which must be guarded against. By

definition, HFP operates at low levels of birefringence and when used in conjunction

with stress-optically sensitive materials, low loads and hence small deformations

may be expected with a decreased risk of non-linear behaviour.
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Some initial trials were, nevertheless, performed on SFC utilising a polyester matrix.

Whilst these showed what appeared to be stress concentrations in the matrix in the

vicinity of micro-compressive defects, it became clear that if the stress

concentrations were to be quantified successfully, it would be necessary to use an

epoxy matrix. In view of its optical sensitivity, and in other respects similarity in

mechanical properties to polyesters, it was decided to utilise an epoxy matrix for the

remaining photoelastic studies.

5.3.2 Calibration

Essentially, the calibration procedure adopted in this work involved loading a tensile

specimen in the HFP apparatus and recording (c r - a2 ) at known values of N. This

procedure is similar to that adopted in classical photoelasticity, wherein the fringe

order is noted for various values of applied load. A plot of load against fringe order

is then constructed with the slope of the resultant linear plot providing a value for the

material fringe value (Dally & Riley, 1965). Due to the aforesaid limitations

imposed by specimen dimensions and geometry it was not possible, however, to

obtain fringe orders substantially greater than N = 0.5. Effectively, this meant that it

was impossible to directly construct a plot of N against load. An alternative method

would have been to interpolate between N= 0 and N= 0.5, obtaining values ofNby

the method of Tardy compensation (Dally & Riley, 1965). Noting the applied tensile

Stress at different values of 'partial fringe order' thus obtained, would have facilitated

the construction of a curve, similar to that derived by the classical method. This

would then have enabled the material fringe value to be evaluated. Methods based

On this approach have been used in previous HFP studies (e.g. Burger & Voloshin,

1983; Mercado, 1992). In order to operate the method of Tardy compensation,

however, it is necessary to accurately align the axes of the optical elements relative

to one another. Unfortunately, due to certain limitations of the HFP apparatus used

in this work, this was not possible and is considered to be one of the drawbacks of

the system in its present form (see also Section 5.4). The method of calibration

adopted in this work relied upon locating the first 'half fringe' and measuring,

accurately, the principal stress difference at this point (i.e. determining (a - cr2 ) at

AJ= 0.5). Substituting for (cr1 - a2 ) and N in Equation 5.6 and solving, enabled the
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material fringe value f to be obtained. By repeating this procedure with several

specimens it was believed that this yielded a reliable figure for the material fringe

value.

As detailed in Section 5.2.3, calibration of the HFP system involved incrementally

loading clear resin tensile specimens and noting the grey level value recorded by the

video camera for each increment. The theoretical two dimensional principal stress

difference (a1 - a2 ) in a tensile specimen is given by the tensile stress (o) alone

(assuming the normal components of stress are zero). Thus:

	

P	 P
	a = -	 and a2 = 0	 gives: (a1 —a2 ) =

	

WI	 WI

In practice, however, obtaining perfect alignment of the specimen in the grips was

difficult to achieve. This, in all probability, led to the incorporation of some bending

moment resulting in a non zero value for a2 . To reduce, if not eliminate the effects

of this problem, the tensile specimens were very carefully loaded onto the tensile

stage. Furthermore, each specimen was positioned in the polariscope such that the

image was recorded as near to the midspan of the necked down portion and as near to

the centreline as possible, thereby reducing edge effects and any influence from the

shoulders' of the specimen. A plot of light intensity recorded along a line

perpendicular to the applied load, traversing a typical image recorded for calibration

purposes is shown in Figure 5.10. It can be observed that there is some fluctuation in

the light intensity from one side of the image to the other (indicating the application

of a bending moment). However, as the image intensity (grey level) is taken as the

mean value for the whole image (480 x 360 pixels) rather than discrete points, it was

believed that such discrepancies would be averaged out. In addition to the method of

lcading causing variations in the amount of birefringence, other factors may well

have influenced the overall image intensity. For instance, it cannot be ruled out that

there may have been variations in the thickness of the specimens. Furthermore,

uneven lighting and imperfect optical elements (microscope optics, polarisers and

Wave plates) may all have contributed to variations in image intensity. Nevertheless,

the recorded grey level versus applied stress plots (see below) gave excellent

ccrrelations between the two variables.
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Figure 5.10 The recorded light intensity traversing loaded, unreinforced polymer
tensile specimen.

A typical stress-strain curve for a clear epoxy micro-tensile specimen used in this

work is presented in Figure 5.11. As can be seen, the initial portion of the curve is

essentially linear. However, once a tensile stress of approximately 25 MN m 2 was

reached, the behaviour appeared to depart from linearity. It is believed that in this

instance, the limit of proportionality was in the region of 25 MN m 2. In subsequent

testing of reinforced specimens, efforts were taken to ensure that stress levels in the

photoelastic model did not exceed this value.

Nevertheless, the principal stress difference versus optical response (grey level value

Z) plot, shown in Figure 5.12, indicated that the maximum light intensity

transmitted through the polariscope occurred, in this particular specimen, at a stress

of around 32 MN m 2 . Due to the variation in the thickness between specimens (with

consequent variation in relative retardation), the peak value of Z generally occurred

at values of between 30 MN m 2 and 40 MN m 2 . It might therefore be expected that

at higher stresses, a certain degree of departure from linearity may have occurred

(see below).
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Figure 5.11 A typical stress-strain curve for an unreinforced epoxy micro-tensile
specimen.
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Figure 5.12 A typical stress-optical response of a micro-tensile specimen.
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As stated, calibration of the system relied upon determining the principal stress

difference at N = 0.5. This was achieved by plotting (a-1 - cr2 ) versus Z values and

fitting a suitable function to this data (see Appendix 9). From the theory, a sine

square relationship would be expected. However, it was found that a third order

polynomial could be applied with some accuracy to the data and R2 values better

than 99.9% were always achieved. The form of the applied function was, to a large

extent, unimportant since the main purpose of this curve fitting exercise was simply

to determine (cr1 - cr2 ) at the peak value of Z(i.e. atN= 0.5) and to derive maximum

and minimum values for Z. Differentiation of Z (y variable) with respect to principal

stress difference (x variable) and solving dy/dx = 0, provides values for x at the

maximum and minimum values of Z. Substitution for x gives numerical values for Z.

These values were used later in the calibration process to correct measured Z, since

there was a finite, rather than zero, intensity of transmitted light emerging from the

polariscope with the specimen under zero load. It is believed that this phenomenon

was due to flaws in the optical elements and imperfect alignment, rather than

birefringence of the photoelastic model itself, since the same phenomenon was

observed without the specimen installed in the apparatus. Substitution in Equation

5.6 for (o - a2 ) at the maximum value of Z and solving, provides a value for f.

The material fringe value was determined for each batch of specimens at the time of

conducting the investigations, as this material property can vary according to resin

composition, curing conditions etc. (Burger, 1993). Typically, for epoxy cured at

S0°C for two hours and tested a month or so after casting, a value of around 11 KN

RI1 was obtained. An example of the calculation of material fringe value Ia is

provided in Appendix 9. The values obtained for f0, were in good agreement with

those reported in the literature (Burger, 1993). Examples of the calculations adopted

i1 order to determine f and y appear in Appendix 9.

To complete the calibration procedure, it was necessary to determine a value for the

Camera sensitivity (y). Rearrangement of Equation 5.6 and substitution for Nit in

Equation 5.15 yields the following relationship:
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( z 	{ . 2 rh(a1 -a2 )11 	 (5.18)
iogl ,-,	 = y log sin [

	 IcY	 -itL)

(Z
I versus

Utilising Equation 5.18, 2' was determined from the slope of a lo 	 )\. max

1. 2 r (1_a2)2r11log sin	 plot. It should be noted that the values of Z and Zm were

1 L	 L	 jj
corrected by the subtraction of the minimum value of Z. Excellent linear

relationships were obtained (see Appendix 9) with R2 values better than 99% being

normal. A value of 1.12 was derived for the camera sensitivity.

Once I0 and y were obtained, it was possible to determine the fringe order, N,

directly from the 'Z' value utilising the relationship given by Equation 5.17. Further,

by substitution of the acquired value for N together with f. and the specimen

thickness, into Equation 5.6, the principal stress difference could be obtained. If

average values of 10. and y are used to predict N from the recorded Z values, and a

plot of derived partial fringe order versus calculated stress (Figure 5.13.) is drawn

then an excellent linear relationship is obtained. It should be noted from Figure 5.13

that data points with fringe orders in excess of 0.5 have been plotted. These were

obtained for stress differences greater than that at N = 0.5, by adding the difference

between the derived fringe order and the half order fringe to the latter. This required

manipulation of data beyond the half order fringe and was done purely to investigate

whether the relationship between (o — o 2 ) and N remained linear at stresses beyond

N = 0.5. It can be observed that this was so, indicating that the stress-optic

relationship was linear, at least within the operating range of HFP.

A comparison between the principal stress difference derived from the image

intensity (Z value) and that calculated directly from the applied load and specimen

dimensions is shown in figure 5. 14. A good correlation was apparent between the

two variables, suggesting that good repeatability might be expected. It may be noted

that there was not an exact match between the derived stress and tensile stress (since
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Figure 5.13 Variation of derived fringe order with applied stress.
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Figure 5.14 Relationship between (a1 - a2 ) derived from Z
and calculated (tensile) stress.
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With f0. and determined, N and consequently (o- - cr2 ) were derived for each

pixel in the image by applying Equation 5.17 to the Zvalue of each pixel by the use

of a mathematical operator incorporated in the image analysis software. For the

purpose of performing this operation, 'Idrisi for Windows' software was utilised. In

practice, regions of interest were selected and the function applied to these areas

only. A further programme, 'UNIMAP 2000', was used to map N and (a1 - a2)

over the entire region of interest of the image.

5.3.3. Demonstration of technique

By way of demonstration, Plate 5.2 shows a grey-scale image of the photoelastic

response around a circular hole in an epoxy resin film (resulting from an included

bubble in the liquid resin) when viewed through the circular polariscope. The film

was under uniaxial tension acting in the plane of the image, normal to the line A--B,

to a nominal far field stress of around 8 MPa. Since the resin film was thin (-150

iiii) in comparison to other specimen dimensions, conditions of plane stress were

believed to prevail. Figure 5.15 represents the principal stress difference (a 1 —a2)

derived from the acquired Z value along the line A--B.

Plate 5.2 Birefringence in an epoxy resin film around a circular hole
(circular polarised light).
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Figure 5.15 Principal stress difference along a line (A--B) perpendicular to the
applied tensile load, traversing the hole at the maximum diameter.

It can be observed that the principal stress difference reached a maximum at a point

close to where the line A--B intersects the hole contour. Here, (o - °2) rises

dramatically. A stress concentration factor K, can be identified, defined as follows:

The maximum principal stress difference referred to in Equation 5.19, corresponds to

the maximum stress difference obtained through birefringence analysis whilst the

minimum value is the 'far-field' matrix stress (again derived through birefringence

analysis). In this instance, the experimentally derived value for K was around 2.3.

This compares with a theoretical K of 3.0 for a circular hole ('Kirsch solution') in an

infinite elastic plate subject to uniaxial tension (Parton, 1992). The observation of a

reduced K value is consistent with the findings of previous workers using

photoelastic techniques to investigate stress concentrations and may be explained by
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the fact that, in this case, the diameter of the hole was relatively large in comparison

to the width of the specimen (Boresi ci al, 1993). Figure 5.16 shows a contour map

of the derived partial fringes around the hole.

Figure 5.16 Contour map of partial fringe orders around a circular hole in a polymer
film obtained with half fringe photoelasticity.

The original images were captured in a 480 by 360 pixel format. The optical

magnification (x4 objective) was kept relatively low, in order to ensure good focus

on the fibre-matrix interface. Furthermore, it was necessary to keep the

magnification fairly low because of the relatively poor intensity of the light source.

Consequently, 'zooming' in on a particular feature was achieved by selecting the

region of interest in the acquired image and enlarging this area. As a result, if high

magnifications were required, the image became 'blocky' in appearance due to the

pixel dimensions becoming significant. Nevertheless, for most purposes, when

operated in this manner the system was found to be satisfactory.

These results demonstrated the ability of HEP to experimentally measure (a1 - a2)

in a polymeric matrix, provided that the relative retardation remained within the

bounds 0> N> 0.5 and that due account was taken of any non-linear behaviour.
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5.3.4 Matrix stress field in the vicinity of micro-compressive defects

In previous chapters, the lack of toughness exhibited by vegetable fibre reinforced

composites was highlighted as being potentially one of the factors severely limiting

their use in structural or semi-structural applications. In Chapter 4, the influence of

micro-compressive defects found in these fibres was discussed in relation to the

mechanical properties of the fibres themselves. The primary aim of the work

presented in this chapter, was to investigate the influence that these micro-

compressive defects have upon the deformation and fracture behaviour of bast fibre

reinforced polymer matrix composites. This was achieved by looking specifically at

the interaction between fibre defect and the matrix, in a model composite system. It

was believed that the simplest model would be a single fibre composite (SFC) loaded

in tension parallel to the axis of the fibre. It was hypothesised that a change in the

morphology of the fibre at the micro-compressions, together with an heterogeneous

strain distribution at the surface and within the fibre at these points, could lead to

concentrations of stress in the matrix in the vicinity of the defects. It was believed

that such stress concentrations could initiate localised rupture of the matrix ami

might possibly contribute to the overall failure of the composite.

Plate 5.3. shows a typical micro-compressive defect in a single hemp fibre ultimate

embedded in an epoxy resin matrix (SFC). When the SFC was strained, the recorded

photoelastic response was used to examine the stress field surrounding the micro-

compressive feature. The simplest manner in which the stress field (principal stress

difference) could be visualised was to view the photoelastic effect observed in the

matrix. Plate 5.4 shows the birefringence pattern observed in the epoxy matrix

surrounding the micro-compressive defect shown in the Plate 5.3, when the SFC was

loaded to a nominal tensile stress in the laminate of around 15 MN m 2. To assist in

visualisation, the image has been enhanced by applying 'pseudo-colour' (which was

subsequently converted to grey scale).

What is discernible is a distinct pattern of stress in the matrix surrounding the micro-

compressive defect when the SFC was strained. This looks somewhat akin to the

pattern observed previously in the vicinity of a circular hole in a resin film under

uniaxial tension. Nevertheless, whilst this method does show that concentrations of
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stress appear in the matrix around micro-defects, what is not evident is the magnitude

of the stress concentration, nor the severity of the stress gradient.

Plate 5.3 Micro-compressive defect in a hemp fibre ultimate embedded in an
epoxy matrix. (ordinary white light x400 magnification).

Plate 5.4 Grey-scale adjusted 'pseudo-colour' image showing the birefringence
pattern in an epoxy matrix in the vicinity of a micro-compressive defect.

By utilising the calibration procedure described in Section 5.3.2, a pixel by pixel

conversion of the luminance (grey level) value to 'partial fringe order' (or principal

stress difference) was conducted. Figure 5.17 provides an illustration of the stress
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field in the matrix surrounding the micro-compressive defect shown in Plate 5.3.

The contours are loci of equal partial fringe order (isochromatic fringes). In this

figure, the fibre ultimate runs from left to right across the image, with the micro-

compressive defect situated at the centre. As may be seen, the values of these partial

fringe orders ranged from N 023 remote from the interface, to N = 0.31 in close

proximity to the defect. This would indicate that a K value of at least 1.4 exists in

the matrix in the vicinity of this particular micro-compressive defect.

Figure 5.17 Contour map of partial fringe orders around
a single micro-compressive defect.

Of particular note is the distribution of the principal stress differences. It may be

seen that there is a distinct pattern to the stress distribution, taking the form of an 'X'

(similar to the distribution around the hole shown in Plate 5.16). The 'arms' of the

'X' form angles of approximately ± 450 with the axis of the applied tensile load

(parallel to the fibre axis).

As noted previously, a circular polariscope is employed in photoelasticity work since

it eliminates the isoclinic fringe pattern leaving only the isochromatics which are
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(a1 —a2)

=	 2	
sin2a (5.20)

related to the magnitude of the principal stress difference (o - a2 ). Elimination of

the isoclinic fringe pattern means that the effect of the directions in which the

principal stresses act are neglected.

It may be shown that in the general case for a planar stressed state, a rectangular

element of a plate under the action of normal stresses o and cr along the x and y

axes and shear stresses	 and v, the principal stress difference (o - °2) is

related to shear stress as follows (Parton, 1992):

Where: a is the angle of inclination to the normal stresses of the principal

stresses.

From Equation 5.20, it may be observed that v will be maximal when a is 45°. In

the case of a bar or plate under uni-axial tension, the axis of one principal stress will

coincide with that of the tensile stress (the principal stress normal to this would be

zero). Thus the maximum shear stress would act along a plane inclined at ± 450 to

the principal stress. Ideally, the micro-tensile specimens under investigation in this

work may be viewed as being loaded in uni-axial tension. In a pure polymer

specimen, therefore, the principal stress difference (a 1 - a2 ) may be taken as the

tensile stress of the specimen. The maximum shear stress, r, would therefore be

expected to lie at an angle of ± 450 to the specimen axis.

In a clear resin tensile specimen, since the shear stresses are equal (theoretically) at

all points in the specimen, no optical evidence of an uneven shear stress distribution

would be expected. In tensile specimens reinforced with a single hemp ultimate,

however, it may be observed that a concentration of stress occurs in the matrix in the

vicinity of micro-compressive defects. The distinct pattern of the principal stress

difference distribution noted above may therefore be attributed to the observation

that the maximum shear stresses occur at ± 450 to the specimen axis. The reason for

their being observed in the reinforced SFC rather than in the pure resin specimens is
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due to the stress gradient in the matrix. This is highlighted in the partial fringe

pattern since this is effectively a contour map of equal principal stress differences.

It is interesting to speculate (but not possible to ascertain using this particular

analysis) upon the directions in which the principal stresses act in close proximity to

the interface. It would seem plausible, based on the above argument, that remote

from the interface, o acts parallel to the direction of the tensile load whilst a2

remains zero. However, in close proximity to the interface, particularly in the

vicinity of the micro-compression, it is feasible that this is not so. Regrettably, due

to limitations of the system in its present form, it was not possible to analyse the

isoclinic fringe pattern and so only the magnitude of the principal stress difference

may be commented upon with any degree of certainty. Nevertheless, it would be an

interesting exercise to develop the system to allow an analysis of stress trajectories to

be undertaken.

Another interesting feature of the principal stress difference contour map is the

similarity to the theoretical predictions made by the Kirsh solution' (Parton, 1992).

According to this, the maximum shear stress distribution lies along axes inclined at

± 450 to a uni-axially applied load. A comparison of Figures 5.16 and 5.17 show a

distinct similarity between the two principal stress difference distributions.

Further contour maps of partial fringe order (although the actual fringe orders are not

noted on the diagrams) are shown in Appendix 9. Whilst the maps are not as well

defined as that shown in Figure 5.17, the distinct patterns appearing in the matrix as

described above are readily observed.

Micro-compressive defects can occur frequently (sometimes at intervals of only one

fibre diameter along the fibre length) in many bast fibres (see previous chapter) and

this has implications for the stress distribution along the length of the fibre. Figure

5.18 shows a contour map of the principal stress difference in the matrix in the

vicinity of two relatively closely spaced micro-compressive features in a hemp fibre

ultimate.
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Figure 5.18 Contour map of partial fringes surrounding two micro-compressive
features in close proximity to one another.

5.3.5 Principal stress difference distribution

Another way in which the optical data may be interpreted, is by evaluating the

principal stress difference along the interface, or rather the principal stress difference

in the matrix in close proximity to the true interface. This concept is shown

schematically in Figure 5.19. In addition to recording the matrix principal stress

difference along this 'interface' (the 'interface' in this instance refers to the line A-B,

within the matrix but in close proximity to the true fibre-matrix interface), in a

number of the examples shown below, the principal stress difference is also recorded

along lines parallel to the true interface, but at a discrete distance remote from it

(Figure 5.19). It is worthwhile noting that the abscissa scale is in 'fibre diameters'

rather than absolute values. In this way it is possible to immediately view the figure

in terms of aspect ratio. Furthermore, the principal stress differences at discrete

distances from the interface have also been obtained at multiples of the fibre

diameter (0.25, 0.5, 1.0) and are thus more readily visualised. Since principal stress

difference is related to shear stress (Equation 5.20), this interpretation should provide

a measure of the shear stress distribution along this 'interface'. It was hoped that this

approach would allow some inference regarding the true interfacial shear stress

distribution to be made, in the expectation of providing some insight into the stress

transfer mechanisms operative in such systems.
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Figure 5.19 Schematic representation of position
of data acquisition along fibre length.

Plate 5.5 shows a hemp fibre bundle (technical fibre) embedded in an epoxy matrix.

As noted in the previous chapter, both fibre ultimates (single cells) and bundles

exhibit micro-compressive damage. Since the latter are generally used as reinforcing

media, it was felt appropriate to investigate both fibre forms. In this plate, three

micro-compressive defects are readily observed as dark bands traversing the fibre.

The defect to the right of the image in fact appears to be a 'minute compression

failure', as described in the previous chapter. The SFC has been loaded to a nominal

tensile stress of approximately 16.5 MN m 2 and a distinct pattern of birefringence

may be observed. It should be noted that this and a number of the following images

were digitally enhanced to make the pattern more distinct. However, the stress

analyses were based upon the original unaltered optical data. Figure 5.20 depicts the

principal stress difference in the matrix along the 'interface'.
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Plate 5.5 Grey-scale representation of the birefringence pattern in an epoxy matrix
surrounding three micro-compressive defects in a hemp fibre bundle. Nominal

tensile stress 16.5 MN m 2 (circular polarised light).
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It is readily apparent from Figure 5.20 that the distribution of stress along the

'interface' was extremely uneven, peaking in the vicinity of the defects. In the

region of the defect on the right hand side of the image, the maximum stress is

recorded, resulting in a stress concentration factor of approximately 1.64 (where the

nominal stress is taken to be the far-field stress derived through optical means rather

than the tensile stress obtained by considering the load on the specimen and its

geometry - see below). This value for K is somewhat higher than that recorded in

Figure 5.17. Higher values for K would be expected using this method since the

optical data is taken along a line parallel with the tme fibre-matrix interface and in

very close proximity to it. As such, this method would undoubtedly include optical

data from the more highly stressed regions adjacent to the interface, rather than at a

discrete distance remote from it. As such, this method may well provide a more

realistic estimate of K. Nevertheless, the system is limited by the resolution of the

camera and by the optical magnification possible. At this juncture, however, a word

of caution should be introduced, in that possible non-linear behaviour may occur

very close to the interface and also the condition that 0>A1/2 may be violated.

These would undoubtedly have introduced errors into the analysis.
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Figure 5.20 Plot of principal stress difference as a function of the distance
along the fibre (measured in fibre diameters).

230



It may be noted from Figure 5.20 that the regions where the matrix principal stress

difference rises above that of the nominal stress in the matrix appears to be a fairly

localised phenomenon. It may be observed that the maximum stress diminishes to

the nominal stress in a little over one fibre diameter. Furthermore, it may be noted

that the 'interface' stress, as calculated in this manner, drops below the nominal far-

field stress. This aspect is discussed further below.

One point of note is that the plot of stress difference has a decidedly 'jagged' profile,

with a number of minor peaks and troughs evident. This proved to be a common

feature in practically all the plots obtained through this method. It is believed that

the principal reason for this was optical 'noise' caused by dust and other detritus,

either encapsulated ip the resin during fabrication of the SFCs, or trapped on the

optical elements of the system. Additional factors contributing to this 'noise' were

thought to be unevenness of the illumination system and optical elements. Extreme

care during manufacture of the SFCs in a 'clean' environment would in all

probability assist in limiting this effect, as would regular and thorough cleaning of all

the optical elements of the polariscope and microscope system. Likewise, operating

the system in a sterile environment would also probably be beneficial. As for the

illumination system and polarising elements themselves, these were of a fairly

rudimentary construction and no doubt improvements made here would be of benefit.

Another aspect which should be taken into account is possible random electrical

'noise'. This too could affect image quality and subsequent stress analysis. By

averaging several images this could be alleviated (Voloshin & Burger, 1983). It is

believed that by utilising higher optical magnification, far more detailed stress

analysis could be undertaken and the effects of optical 'noise' reduced. However, for

this to be achieved, the illumination system would have to be improved.

It should be possible, using suitable digital image analysis software, to remove some

of the optical 'noise'. However, this method would need to be used with a degree of

caution, as it could lead to erroneous stress analysis. Nevertheless, it is felt that from

the experimental data obtained, it is possible to discern the broad pattern of principal

stress difference in the matrix and to make certain predictions about the micro-

mechanical behaviour of SFCs.
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Plate 5.6 shows two micro-compressive defects in a hemp fibre bundle reinforcing an

epoxy matrix (once again this image has been enhanced for the sake of clarity). The

SFC was loaded to a nominal stress of approximately 24.7 MN m 2 . Figure 5.21 is a

plot of the principal stress difference between the micro-compressive defects, not

only adjacent to the interface as shown in the previous example, but also along lines

parallel to the interface situated 0.25 and 0.5 fibre diameters remote from the fibre-

matrix interface.

The plot of principal stress difference along the 'interface' shows that a maximum

stress concentration factor of approximately 1.6 occurs in the matrix in the vicinity of

the micro-compressive defects. As in the previous example, the stress rapidly

reduces from the maximum value to that of the nominal matrix stress, within around

one fibre diameter of the micro-compressive defect.
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Plate 5.6	 Two micro-compressive defects situated in a hemp fibre bundle
embedded in an epoxy matrix. Nominal tensile stress 24.7 MN m 2 (circular

polarised light).

If the defect on the right hand side of the image only is considered, then it may be

observed that at 0.25 fibre diameters away from the interface, K has reduced to 1.32,

whilst at 0.5 fibre diameters this has reduced still further to 1.14. This would

indicate that the stress concentrating effects of the micro-compressive defects are

quite localised and rapidly diminish with distance; in other words there is a large

stress gradient in the matrix in the vicinity of the micro-compressive defect. A plot
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of the variation of K with radial distance from the interface is presented in Figure

5.22.
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Figure 5.21 Plot of principal stress differences along lines between the two micro-
compressive features shown in Plate 5.6, a) along the 'interface', b) at one quarter
fibre diameter from the interface and c) at one half fibre diameter from the interface.

From Figure 5.22, it would appear that at only around 0.3 fibre diameters removed

from the interface, the matrix stress concentration has reduced to half the maximum

and that at one fibre diameter from the interface, this has reduced still further and is

barely greater than the nominal far-field stress.

It would again appear as though midway between the two defects, the interface'

principal stress difference drops to below that of the nominal (far-field) stress. It is,

however, uncertain whether this is in fact truly the case or if it is the result of optical

noise. Nevertheless, such a behaviour might not be unexpected and may be

rationalised in the following manner. If it is assumed that the fibre has a certain

'effective' modulus, Eeff, relating to the 'overall' stiffness response of the fibre, but

that straining is heterogeneous, then it may be postulated that in certain localised
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areas (such as at micro-compressive defects) the modulus is reduced to (where

Eeff >E jefecf ). However, to give the resultant overall stiffness Eeff, the undamaged

section of the fibre would need to have a stiffness, Eunmagea, higher than that of the

effective fibre modulus. Thus, the condition Eunagea > E >	 would exist. It

might be expected that remote from the fibre-matrix interface, the straining

characteristics of the SFC would be dominated by the overall elastic response of the

fibre (since, as has been discussed above, the stress concentrating effects of micro-

compressive defects appear to be a localised phenomenon). Therefore, the matrix

might be expected to undergo greater strain remote from the interface than it would

in close proximity to sections of undamaged fibre where the greater stiffness of the

fibre might be expected to dominate straining behaviour. This may, indirectly,

provide confirmation that the straining characteristics of the fibre are, truly,

heterogeneous. The above hypothesis assumes that the behaviour of the composite

remains elastic and that there is no slippage at the interface.

QO	 Q5	 1.0	 1.5	 20

radial distance from interface
(mu(ples of fibre diameter)

Figure 5.22 Variation of stress concentration factor - K, with radial distance from
the fibre-matrix interface for the micro-compressive defect shown on the right hand

side of Plate 5.6.
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As a means of confirming the above, the stress distribution along a fibre having a

homogeneous modulus (E-glass) was evaluated (Figure 5.23). A photomicrograph

(once again digitally enhanced) of a single glass fibre, approximately 15 tm in

diameter, embedded in an epoxy matrix and loaded to a nominal composite (SFC)

tensile stress of approximately 25.8 MN m 2 is shown in Plate 5.7.
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Plate 5.7 Photomicrograph of an E-glass fibre reinforced SFC loaded to
approximately 25.8 MN n12 (circular polarised light).
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Figure 5.23 Plot of the principal stress differences along the E-glass fibre shown in
Plate 5.7, a) along the 'interface', h,) at one quarter fibre diameter from the interface

and c,) at one fibre diameter from the interface.
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Firstly, it may be noted from Figure 5.23 that there is no obvious variation in the

principal stress difference along the length of the fibre, other than a number of small

'jagged' peaks and troughs, attributable to the aforementioned optical 'noise'.

Secondly, it may be observed that the stress difference taken along lines at the

'interface' and parallel to it but remote by 0.25 and 1.0 fibre diameters essentially

coincide. This implies that the principal stress difference in the matrix remains

constant, regardless of the distance from the interface. It should be remembered that

the fibres under investigation all possess high aspect ratios and that the stress

analyses were conducted remote from the ends of the fibre. The high matrix shear

stresses associated with stress transfer at the fibre ends would not, therefore, be

expected to be present and thus (assuming the system behaves elastically and that

there is no slippage at the interface) fibre and matrix strain would be equal (Hull &

Clyne, 1996). Any perturbations in the stress distribution along the fibre should,

therefore, be the result of fibre inhomogeneity. It is therefore consistent that in the

E-glass fibre reinforced SFC, in which the stiffness of the reinforcement phase is

homogeneous, the stress in the matrix should remain constant, regardless of position

relative to the fibre-matrix interface.

The behaviour observed in the E-glass reinforced SFC would seem to lend weight to

the argument that the apparently lower matrix principal stress difference observed

near the interface, adjacent to undamaged portions of the bast fibre, are the result of

inhomogenous straining characteristics, brought about by the presence of micro-

compressive defects in the fibre.

Another feature of note is the difference observed between the tensile stress of the

SFC (calculated from the applied tensile load and the cross-sectional area of the

composite) and the nominal principal stress difference derived through a

consideration of the optical response of the matrix. As may be observed, the latter is

significantly less than the former. This may be explained by load sharing between

the two phases. If it is assumed that in these regions both phases undergo equal

strain, then since the fibre modulus is much larger than that of the matrix ('70 GN

m 2 for the fibre, -3 .3 GN m 2 for the matrix), the former will be subject to a much

higher tensile stress (assuming both phases behave as linear-elastic materials). Thus,

although V1 is very small (generally < 1% for the SFC studied), each fibre may carry
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an appreciable proportion of the load. By considering a force balance, the matrix

would carry a proportionately lower load and hence the matrix stress would be lower

(direct calculation of tensile stress assumes the SFC to be homogeneous and takes no

account of the heterogeneous micro-structure). A matrix stress lower than that of the

tensile stress was noted in all the specimens investigated. It is believed that this

phenomenon could be utilised to ascertain an 'effective' modulus for the fibre

without the need to measure fibre strain directly.

Plate 5.8 Photomicrograph of a hemp ultimate reinforced SFC loaded to
approximately 23.4 MN m 2 (circular polarised light).
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Figure 5.24 Plot of the principal stress differences along the hemp fibre ultimate
shown in Plate 5.8, a) along the 'interface', b) at one quarter fibre diameter from

the interface and c) at one fibre diameter from the interlace.
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Not all (but nearly so!) fibres contain micro-compressive defects. Plate 5.8 shows an

example of a relatively undamaged hemp fibre ultimate in an epoxy matrix. As may

be observed, no micro-compressive defects are visible (although there was some

evidence of minor defects when the SFC was examined under a normal polarising

microscope). The SFC was loaded to a tensile stress of around 23.4 MN m 2. The

corresponding principal stress differences along lines parallel with the interface are

shown in Figure 5.24. Once again, if optical 'noise' is taken into consideration, then

there would seem to be little fluctuation in the principal stress difference along the

fibre length. The only anomaly appears to the right of the plot after around 7 fibre

diameters when the stress difference is observed to drop. This is most likely to be an

artefact rather than a true drop in principal stress difference, especially considering

that similar trends are observed at all distances from the interface. In similar fashion

to the E-glass fibre reinforced SFC, the principal stress difference in the matrix has

essentially the same value regardless of the distance from the interface.

It is probably a realistic assumption that a less micro-compressed hemp fibre would

have a more even strain distribution than a more highly micro-compressed sample.

If it is assumed, therefore, that the fibre shown in Plate 5.8 has more even straining

characteristics than those presented in either Plates 5.5 or 5.6, then the variation in

the distribution of principal stress observed in the corresponding figures would in all

probability be the result of an heterogeneous fibre modulus (together with the fibre

morphology, as discussed below). As discussed above, this would in all probability,

account for the principal stress distribution along the fibre length and in particular

why this appears to drop below the nominal far-field matrix stress in regions adjacent

to undamaged fibre.

In terms of their elastic properties, it may thus be possible to view micro-compressed

bast fibres as having zones of lowered modulus corresponding to defected regions, in

series with higher modulus zones as depicted schematically in Figure 5.25. In this

model, the overall modulus of the fibre El is the series weighted average of E2 and

E3, the latter thus being the moduli of the fibre in the defect free and micro-

compressed regions respectively.
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Figure 5.25 Schematic representation of the 'composite' modulus of a micro-
compressed fibre.

The variation of the principal stress difference observed in the matrix, along the

length of the fibre, adjacent to the interface (the 'interface' principal stress

difference) may be explained in terms of the heterogeneity of the fibre modulus. In a

long fibre composite, the fibres can be effectively viewed as being infinitely long. In

other words, an individual fibre may be viewed as having an infinite aspect ratio. In

a SFC reinforced with a fibre having an homogeneous modulus, it may be thought

(providing the system behaves elastically and that there is no slippage at the

interface) that remote from the fibre ends, both fibre and matrix undergo equal strain

when the composite is subjected to a tensile load parallel to the fibre axis. In this

situation, a condition of load sharing equilibrium would exist between the fibre and

matrix. If, however, it is now assumed that a section in the fibre has a different and

lower modulus than the remainder, then since strain was originally equal in both

fibre and matrix, the stress in the portion of the fibre with the lower modulus would

necessarily be reduced (Hooke's Law). If it is assumed that the fibre is of constant

cross-sectional area, the fibre load would be reduced. Since this would alter the state

of equilibrium in the composite, the load would be redistributed through the matrix.

The matrix would thus undergo relatively greater strain (and hence would be more

highly stressed), whilst the fibre too would undergo greater strain until a condition of

equilibrium was re-established. Since the matrix would be subjected to higher loads

in the vicinity of micro-compressive defects, concentrations of stress and strain

would be expected to appear in the matrix.

As has already been mentioned above, the principal stress difference along the

'interface' adjacent to regions of the fibre between defects (which may be assumed to

be relatively less damaged) is observed to fall below that of the nominal far-field
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matrix stress level. It has already been discussed that this may be attributable to the

difference between the modulus of the undamaged fibre and its 'effective' modulus,

taking into account the micro-compressed regions. The differential between the

matrix stresses lying adjacent to damaged and undamaged portions of the fibre gives

rise to the stress gradients observed in Figures 5.20 and 5.21. A schematic

representation of the probable relationship between the matrix principal stress

difference and fibre modulus is presented in Figure 5.26.
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Figure 5.26 Schematic representation of the matrix principal stress difference along
the interface' and the influence of micro-compressive defects.

What is evident from the experimental data (shown schematically above) is that from

the micro-compressed region to the undamaged section of fibre, a steep stress

gradient exists in the matrix adjacent to the true interface. This would imply that

there could be a corresponding variation in the true interfacial shear stress

distribution along the interface between micro-compressive features. This type of

behaviour could be reasoned from shear-lag theory (Hull & Clyne, 1996). According

to this approach, relatively higher shear stresses act on the interface at the fibre ends,

reducing to zero at some finite distance from the ends (depending upon the elastic

properties of the constituents) when the fibre and matrix strain are equal and the fibre

axial stress has reached a plateau. The axial stress in the fibre would, however,

under equilibrium conditions, be expected to be lower at the micro-compressive

defects (since a greater proportion of the load is taken by the matrix at these points).

Making an analogy with the shear-lag model, the fibre ends would correspond to the

regions of the fibre directly adjacent to micro-compressive defects. The shear

stresses (inferred from the distribution of matrix principal stress difference in close
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proximity to the interface) are then observed to reduce with increasing distance from

the micro-compressions, in accordance with shear-lag theory. The implications of

this are that in a highly damaged fibre, where the distance (or aspect ratio) between

successive micro-compressions is small, there may be insufficient fibre length over

which loads can be transferred in order to develop a maximal axial stress in the fibre.

In other words, the length between defects may well be below the critical stress

transfer aspect ratio. This may indicate that the transference of stress from one phase

to another is compromised, leading to reduced reinforcement efficiency by micro-

damaged fibres.

Thus far, only the heterogeneity of the straining behaviour has been considered in

connection with the occurrence of stress concentrations in the matrix. However, the

morphology of these features may also be of significance. Many of the defects

appear as sharp kinks in the structure of the fibre. When such a distinct change in

section is introduced into the matrix, it might well be expected that this too could

constitute a stress raiser, exacerbating the effects of the straining behaviour of the

fibre.

5.3.6 Effect of micro-compressive defects on the fracture behaviour of SFC

Of particular interest as far as the macro-mechanical properties of the composite are

concerned is the influence that micro-compressions have on fracture. As discussed

above, the maximum values for (cr1 - cr2 ) were recorded in close proximity to the

fibre-matrix interface, adjacent to the micro-compressive defects. As a result, it has

been inferred that high interfacial shear stresses exist in these regions, the

consequences of which are that debonding between fibre and matrix may be

stimulated. This behaviour has been observed in composite systems reinforced with

micro-compressed synthetic (high modulus polyethylene) organic fibres (Grubb &

Li, 1994). This prediction seems to be validated by observations of a failed SFC, in

which debonding in the region of the fibre fracture is observed (Plate 5.9.).
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Plate 5.9 Fibre-matrix debonding at the point of fibre fracture
(ordinaiy light xl 00 magnification).

It is believed that fibre fracture occurs first at the micro-compressive defect; failure

in flax fibre having been observed to initiate at these locations (Focher et a!, 1992).

This does not seem unlikely, given that this region of the SFC would undoubtedly

strain to a greater extent than elsewhere in the composite and that the fibre may also

be in a 'weakened' state. Following fibre fracture, it seems reasonable to assume

that debonding cracks may well propagate along the interface as a result of the

release of stored strain energy as the fibre unloads.

In addition to the stimulation of fibre-matrix debonding, the concentrations of stress

in the vicinity of the defect may well lead to crack initiation within the matrix due to

localised rupture of the matrix, resulting from highly localised regions of the polymer

undergoing strain in excess of that required to cause failure (it would certainly seem

probable that some plastic behaviour could well take place here). This behaviour

may well be exacerbated by the morphological changes in the matrix, brought about

by the micro-compressive kink structure. Evidence for micro-compressions

initiating matrix failure was provided by the small visible transverse cracks seen in

Plate 5.10, located in the regions formerly occupied by the fibre (also cracks in the
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matrix were observed to iiiitiate and propagate when SFC's were tested to

destruction). It is thought that such cracks could, in turn, lead to macroscopic

fracture of the composite.

Crack in matrix

;

- -.

Crack in matrix

Plate 5.10 The formation of cracks in the matrix at the location of fibre fracture
(ordinaiy light x 400 inagnlcation).

5.4 Conclusions

Half fringe photoclasticity has proved to be a useful technique for detailed

examination of the stress field in an epoxy matrix. With some minor refinements, it

is believed that the system could be adapted to analyse other matrix materials which

exhibit artificial birefringence, most notably polyesters. Furthermore, the system

could be extended to the recording and analysis of the isoclinic fringes, enabling

stress trajectories to be computed. Nevertheless, in its present form, the system has

proved to be useful in identifying and quantifying stress concentrations in epoxy

matrix SFCs in the vicinity of micro-compressive defects.

The findings presented in this chapter indicate that it is likely that micro-compressed

fibres undergo heterogeneous straining. When combined with the distinct

morphology of the micro-defects, stress concentrations in the matrix result.

Furthermore, it would seem probable that the stress transfer mechanism between

fibre and matrix is impeded, resulting in lowered reinforcement efficiency. The
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presence of micro-compressive defects could therefore be viewed in a two-fold

manner. Firstly, they are responsible for the creation of stress concentrations in the

matrix, which it seems might lead directly to matrix cracking and to fibre-matrix

debonding. As such they may be likened to a series of small cracks or holes in the

matrix. Secondly, micro-compressed fibres may be thought of as a succession of

short fibres, less than the critical length, in series with one another with loads being

transferred from matrix to fibre via a form of 'shear-lag type' mechanism. However

they are viewed, it seems very likely that micro-compressive defects contribute to the

macroscopic behaviour of bast fibre reinforced PMCs. This aspect is discussed more

fully in Chapter 6.
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6 General Discussion

6.1 Introduction

6.1.1 Summary of work

In Chapter 3, the findings of a study into the macroscopic, physical and mechanical

properties of an unsturated polyester reinforced with two unmodified, non-woven,

bast fibre types were presented and discussed. The properties of these laminates were

compared with those of a composite material reinforced with CSM glass fibre. The

general findings of this part of the study indicated that, on a volume for volume basis

of reinforcement, the stiffness of the non-woven plant fibre reinforced laminates was

on a par with that of the CSM glass fibre reinforced material, particularly on a specific

basis. The results of the strength tests, though not as encouraging as stifThess,

nevertheless indicated that acceptable properties could be obtained. It is believed that

both strength and stiffness can be be explained in terms of fibre properties.

Toughness, on the other hand, was found to be substantially inferior (possibly by as

much as an order of magnitude) to that of the inorganic fibre reinforced polymer. In

view of the importance of this property in an engineering material (Gordon, 1976), it

was felt that this aspect warranted more detailed investigation. In addition to

displaying a lack of toughness, the materials also exhibited behaviour which, it was

believed, might well impact upon their potential end uses. It was felt that this too

required explanation. The behaviour referred to is primarily concerned with the

deformation properties of these laminates.

Firstly, it was noted that during loading (both in tension and fiexure) a departure from

linearity occurred at seemingly very low stress levels. It was unclear from the tests,

however, up to what point the behaviour remained elastic (and how far beyond the

proportional limit this extended). Nevertheless, the onset of irreversible (plastic)

behaviour at low stress levels would undoubtedly have practical implications

concerning the design of structures utilising such materials. In addition to this, it was
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believed that the bast fibre reinforced PMCs exhibited a degree of bimodular

behaviour, which again might have ramifications in practical terms. In view of the

dependence of composite macroscopic properties on microstructure, it was believed

that a thorough investigation of this, particularly with regard to the micromechanics of

deformation and fracture, was required.

The character of the reinforcing fibres themselves was considered in Chapter 4. A

number of investigators (e.g. Bolton, 1994; Ivens, et al., 1997; Robson et al., 1993;

Snell, et a!., 1997) have reported on the mechanical properties of bast fibres.

However, as far as is known, only one report exists in the literature on the effect of

micro-compressive damage ('kinks') on the tensile properties of these fibres (Davies

& Bruce, 1998). It is, nevertheless, known that in wood fibres, kink bands or minute

compression failures are responsible for a loss in properties (Dinwoodie, 1978) and it

has been postulated that these could influence the quality of the interface between

fibre and matrix in a wood fibre reinforced polymer composite system (Mott et a!.,

1996). In view of the foregoing, it was believed that a detailed microscopical study of

the fibres would be of benefit, hopefully elucidating potential areas of concern.

Microscopy revealed that all of the bast fibre types examined exhibited varying

degrees of micro-compressive damage. It was thought that this initiated during plant

growth and was exacerbated during the subsequent decortication and felting

processes. It was speculated that these fibres were particularly sensitive to micro-

compressive damage due to their structure. This, it was believed, indicated that the

compressive strength of these fibre types might well be lower than their tensile

strength (cf synthetic polymer fibres). It was postulated that the morphology of this

damage might well result in heterogeneous fibre straining characteristics. This

(coupled with the change in section of the fibre at the defect), it was hypothesised,

could give rise to the formation of stress concentrations in the matrix in the vicinity of

the interface when such fibres were embedded in an essentially homogeneous,

isotropic matrix. To investigate this hypothesis, an idealised situation was considered.

It was shown using photoelastic techniques (Chapter 5), that concentrations of stress

did indeed appear in the matrix in the vicinity of micro-compressive defects when
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single filament composites (SFCs) were strained in tension parallel to the fibre axis.

Stress concentration factors (K) of up to 1.65 were recorded in close proximity to the

interface in the vicinity of the 'kinks'. Furthermore, it was observed that the severity

of the damage appeared to affect the value of K.

When compared with (relatively) undamaged fibres (and also with glass fibre -

considered to posses homogeneous straining characteristics) it was found that the

matrix principal stress difference distribution in close proximity to the 'true' interface

was decidedly irregular in the SFCs reinforced with micro-compressed fibres. As a

result, it was postulated that this could lead to an inefficient transfer of stress from the

matrix to the fibre, with some form of 'Cox-type' shear-lag mechanism probably being

operative in such systems. In many instances, fibres had been found (Chapter 4) to

possess micro-compressive defects at intervals of only few fibre diameters along their

length. In consequence, it was believed that in these regions the build-up of axial

stresses in the fibre would be impeded, which might well result in poor reinforcing

efficiency. Furthermore, it was believed that in the vicinity of the micro-compressive

defects, localised debonding could occur as a result of high interfacial shear stress.

Analysis of failed specimens (as well as unrecorded visual observations during testing)

indicated that the fracture of both fibre and matrix initiated in these regions of high

local stress.

The purpose of this chapter is to discuss the separate findings of the previous three in

relation to the overall mechanical behaviour of natural fibre reinforced PMCs. The

discussion concentrates primarily on the two macroscopic properties which are

perceived to be of greatest concern, namely non-linear behaviour and toughness.

These macroscopic properties are considered in relation to microstructural behaviour.

Additionally, bimodular behaviour is also considered.
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6.2. Bimodular behaviour

In Section 3.3.4, it was noted that bast fibre reinforced PMCs appeared to exhibit

bimodular behaviour. Whilst this was not tested directly (rather, it was inferred from

the difference between tensile and flexural moduli), it is not unreasonable to suppose

that this might be so, since such behaviour has been recorded in other fibre composite

materials and is also thought to occur in wood (Conners & Medvecz, 1992).

If, firstly, fibre architecture is considered. The laminates studied in this work were

reinforced with what might best be described as a 'pseudo planar-random' array of

bast fibres. As a result, the fibres within the structure of the laminate would have

been oriented at various angles between 0° and 9Q0 to the axis of the applied load. It

is, in fact, unlikely that any one fibre would be aligned at any particular angle along its

length, due to the 'curliness' of individual fibres. However, it may be envisioned that

the fibres (or segments thereof) were distributed, in some manner, at angles between

0° and 90° to the laminate axis. The axis of any individual fibre within the composite

structure would therefore be oriented at an angle 0 to that of the applied compressive

or tensile load as shown schematically in Figure 6.1.

'c/
/

Ii

/
/

Figure 6.1 Schematic representation of the resultant forces acting on an individual
fibre inclined at an arbitary angle 0 to the loading axis.
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Simplistically, the applied load acting across the interface on the fibre, may be

resolved into two components, one parallel and the other normal to the fibre axis.

The question then arises; do individual fibres exhibit bimodular behaviour, either along

the fibre length or perpendicular to it, or both? It would seem likely, from the

discussion on fibre structure in Chapter 4, that individual bast fibres could be thought

of as uniaxially aligned fibre composites themselves. It has been recorded that a

number of synthetic composites show differences between their tensile and

compressive moduli (Conners & Medvecz, 1992). Conners and Medvecz (1992),

speculated upon the possibility of bimodular behaviour occurring in individual wood

fibres and concluded that this was plausible, particularly if the 'encrusting matrix' was

absent. It seems probable, therefore, that this type of behaviour might also occur in

bast fibres loaded uniaxially, particularly since the amount of matrix (hemicelluloses

and lignin) surrounding individual microfibrils would appear to be significantly less in

bast fibres than in wood (see Table 1.1). It seems reasonable too, from a

consideration of the ultrastructure, that bast fibres might also exhibit bimodular

behaviour when loaded perpendicular to the fibre axis, although this is purely

conjecture.

It would not seem too unlikely, that, if individual bast fibres behave in a bimodular

manner, then (coupled with the fibrous structure of the composite itself) the laminates

might also be expected to exhibit similar behaviour.

6.3 Failure mechanisms

In the bast fibre reinforced material studied, macroscopic laminate fracture appeared

to occur primarily through axial tensile failure. At higher volume fractions there was,

nevertheless, some evidence of laminate failure through shear, but this seemed to be

limited.
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6.3.1 Effect of fibre architecture upon fracture

As noted in the previous section, the orientation of the bast fibre reinforcement may

be described as 'pseudo planar-random'. As such the fibres would be oriented at

various angles to the applied load. In addition to this, a factor which may be of

potential relevance is the 'curliness' of the fibres. This would no doubt affect not only

the mechanism and efficacy of stress transfer, but could also play a part in the fracture

process itself.

In Section 2.1.6, it was noted that a unidirectional lamina, subject to an arbitrary state

of stress, may fail as a result of critical values of axial tensile, transverse tensile or

shear stresses being exceeded. The failure of laminae is related to the loading angle,

with the maximum strength of a unidirectional ply being observed when the fibres are

aligned parallel to the applied stress and the minimum when the applied stress acts

perpendicular to the fibre direction (Hull & Clyne, 1996). As noted previously, the

strain to failure of laminae loaded perpendicular to the fibre direction is generally

significantly lower than when loaded parallel to the fibre direction. Furthermore, both

the stress and strain to failure of the transversely loaded lamina are generally less than

that of the unreinforced matrix itself. As a result, in a crossply laminate (0/90) the

transverse plies crack before the parallel plies, leading to a distinctive 'knee' in the

stress-strain record for such materials, the 'knee' occurring at strains comparable to

the failure strain of the transverse ply and corresponding to the onset of irreversible

damage (Chou, 1994; Hull & Clyne, 1996).

At intermediate angles (i.e. between 0 and 900) lamina failure may occur as a result

of critical values of either axial tensile, transverse tensile or shear stresses (or a

combination thereof) being exceeded. A theoretical prediction for the dependence of

lamina failure stress on loading angle is provided by the 'Tsai-Hill Criterion'

(Equation 2.15).
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6.3.2 Transverse tensile failure

If, firstly, these hypothetical laminae, subject to essentially transverse tensile loading

(i.e. high values of 0) are considered, then it is likely that concentrations of stress

would occur in the matrix due to constriction by the fibres. This would in all

probability be more severe at higher Vf . These stress concentrations could possibly

stimulate matrix failure. However, it cannot be ruled out that fibres aligned

perpendicular to the applied load (or nearly so) may fail, rather than the matrix itself.

Plate 3.12 clearly showed either inter- or intra- wall splitting to have taken place

during fracture. It does not seem too unlikely then that such behaviour might occur,

given that in such circumstances the fibre itself might be likened to a ply under

transverse loading and would, therefore, be loaded in its weakest orientation. Since

the longitudinal ('along the grain') fracture toughness of plant fibre material has been

reported to be in the region of 0.3 kJ m 2 (Gibson & Ashby, 1988; Stanzl-Tschegg,

1994), this might indicate that cracks would propagate relatively freely in this plane

(c.f log splitting). Of course, it cannot be ruled out that fibre splitting may have

occurred as a result of shear (mode II) rather than opening (mode I) mode loading.

It is also possible that fibre-matrix dedonding occurs when the applied load acts

normal to the interface. Fibre-matrix debonding clearly occurred during fracture as

shown in Plates 3.7 and 3.8, whilst in SFC tests (Plate 5.9) debonding also appeared

to have taken place. This raises the question; how strong is the fibre-matrix bond? If,

as was discussed in Section 3.3.1, wetting is good, but adhesion is primarily the result

of mechanical interlocking, rather than any true 'adhesion', then it would seem

probable that debonding could occur relatively easily. This would be particularly so if

the applied stresses were acting normal to the interface, such as might be considered

to occur in transversely loaded laminae. In these circumstances, the purely

mechanical 'lock and key' effect of the fibre surface might well be less effective than

under shear loading. The conditions under which debonding takes place are discussed

further in a later section.

The above serves to illustrate that, in a transversely stressed hypothetical lamina,

failure could take place either in the matrix (as a result of stress concentrations), the
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fibre itself or at the fibre-matrix interface. It is probably reasonable to expect,

therefore, that failure could occur at relatively small overall strains, if low intra-fibre

cohesion exists together with (arguably) low fibre-matrix adhesion. If these

suppositions are correct, then it seems reasonable to assume that at relatively low

overall stresses in the 'real' laminates, irreversible micro-structural damage might take

place, as a result of transverse loading on fibres (the hypothetical laminae) oriented at

large angles to the applied tensile stress.

6.3.3 Axial tensile and shear failure

In reality, it might reasonably be expected that the vast majority of fibres in the non-

woven material would be inclined at some lower value of çb. Indeed, it might well be

expected that the fibres should lie preferentially in the direction of the applied load as

a result of the felt manufacturing process (see Section 3.3.2). If the situation is

idealised and hypothetical laminae, inclined at some intermediate angle are considered,

then these would in all probability fail by some combination of axial tension,

transverse tension and shear. At higher 0, shear and transverse tension might be

expected to prevail, whilst at lower 0, shear and axial tension could well be

dominant.

Failure through transverse tension has already been considered. Shear failure may

occur either ni the matrix, at the interface or in the fibre itself. It would seem likely,

based on photomicrographic evidence, that interfacial shear failure does occur. In

Plate 5.9, debonding is clearly visible in the vicinity of the fibre breaks as darker

regions (due to scattering of light at the interface - Grubb & Li, 1994) extending some

way from the fibre break along the fibre. There would also appear to be some

evidence of shear failure in the fibres themselves. Plate 3.12 clearly shows a

longitudinal fracture which might be indicative of fibre shear failure.

Axial tensile failure in unidirectional laminae is largely governed by the failure strains

of the constituents (Hull & Clyne, 1996). As discussed in Section 3.3.3, in the case of

bast fibre reinforcement it seems probable that their failure strain is less than that of

the matrix. Simplistically, it may therefore be envisaged that, as the laminate is
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progressively strained, fibre fracture would occur first of all leading to the axial load

on the laminate being progressively transferred to the matrix. As strain increases,

fibre fragmentation would reach a saturation condition depending upon the strength of

the fibre and the efficacy of stress transfer from matrix to fibre. Laminate fracture

would then occur when the matrix reaches its failure strain (Hull & Clyne, 1996).

This view of uniaxial laminate failure is, however, likely to be complicated by other

miromechanical events, such as stress concentrations associated with micro-

compressive defects and fractured fibre ends. These probably result in the initiation of

matrix cracking and fibre-matrix debonding and might well result in macroscopic

laminate fracture at strains below that of the matrix failure strain. These issues are

addressed in the following section.

6.4 The influence offibre micro-compressive deft cts
on microstructural damage

6.4.1 Influence of defects on the state of stress in a laminate

It has been clearly shown that flax, hemp and jute fibres all contain numerous micro-

compressive defects. When embedded in a polymeric matrix and strained parallel to

the fibre axis, it has been demonstrated that stress concentrations arise in the matrix in

the vicinity of these defects. Prior to discussing how these might influence fracture

behaviour, it is appropriate to consider the state of stress, not only in the micro-

compressed fibre itself and the immediate surrounding matrix, but also in

neighbouring fibres, prior to the onset of damage.

Consider a lamina under uniaxial tension applied parallel to the fibre direction. As the

overall strain increases, so too will the strain on individual fibres. However, as

discussed in the previous chapter, the straining behaviour of bast fibres is thought to

be heterogeneous. In regions of higher fibre strain (i.e. in the vicinity of micro-

compressive defects), therefore, the proportion of load supported by the fibre will

probably diminish. The balance of force must then be transferred to the surrounding
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matrix and to neighbouring fibres. As such, it seems probable that a rise in the axial

stress in these fibres would be observed in a position adjacent to the micro-

compressed fibre. This hypothesis is supported by the observation that concentrations

of axial stress are formed in fibres adjacent to one which contains a break. By using

Raman spectroscopy, it has been clearly demonstrated that in synthetic polymeric or

carbon fibre-epoxy systems, stress concentrations occur in neighbouring fibres and

that these diminish with increasing radial distance from the broken fibre (Grubb et a!.,

1995; Chohan & Galiotis, 1997; Van den Heuvel et a!., 1997). If a similar situation

arises in bast fibre reinforced composites (where the microcompressions can be

regarded as a fibre 'break'), it seems reasonable that the influence of fibre straining

heterogeneity will depend upon the relative inter-fibre spacing, which in turn is

governed by the fibre volume fraction.

Whilst it is difficult to know precisely the inter-fibre spacing in the 'real' laminates, it

is not too difficult to envisage that this is less than one fibre diameter. In the case of a

uniaxially aligned composite (assuming either square or hexagonal packing array) of

volume fraction around 30%, the inter-fibre spacing is less than one fibre diameter

(Hull & Clyne, 1996). In the composites studied in this work, it is very probable

(especially at higher Vf ) that the interfibre spacing between some fibres was

considerably less, due to the uneven packing arrangement and heterogeneity of fibre

morphology. The photomicrographs in Chapter 3 would certainly seem to support

this.

The exact mechanism(s) responsible for the load sharing operation described above

is/are probably difficult to predict. Nevertheless, it seems plausible that whilst some

of the redistributed axial stress is taken by the matrix, a proportion would be

transmitted by matrix shear to the neighbouring fibre. In addition to this, a direct

transfer of axial load to intact fibres could account for some of the re-distributed load.

6.4.2 Fracture in neighbouring fibres

If a neighbouring fibre were to contain a defect, in an approximately adjacent position

(which is not an unreasonable assumption, given the frequency with which micro-
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compressive defects can sometimes occur) then it is plausible that the axial stress in

the neighbouring fibre might be raised sufficiently to cause failure. As reported by

Van den Heuvel et al. (1997) and Chohan and Galiotis (1997) stress concentrations in

neighbouring fibres caused by a single fibre break can lead to co-operative fibre

failure, resulting in composite fracture. If such a system were to exist in the 'real'

bast fibre composites, it is not unreasonable to consider that at relatively low overall

composite stresses, fibre failure could be initiated in neighbouring fibres as a result of

the fibre strain heterogeneity. Based on the foregoing argument, high volume

fractions (i.e. low interfibre spacing) and highly micro-compressed fibres would

encourage this behaviour. A schematic representation of this process is presented in

Figure 6.2.

fibre break

apphed stress	 apphed stress -p-

A	 micro-compt'ssive defect

Figure 6.2 Fracture in a neighbouring fibre adjacent to a micro-compressive defect.

6.4.3 Matrix rupture

As discussed in the previous chapter, it is believed that matrix stress concentrations

caused by the presence of micro-compressive defects can result in matrix fracture at
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these locations, If neighbouring fibres are considered, then there is the possibility that

adjacent micro-compressive features exist in these. Given that the affected zone of

the matrix (in which a stress concentration exists) extends by up to say 0.5 fibre

diameters from the interface, the combined 'interaction' zone could be quite

appreciable (up to one fibre diameter). Therefore, at the interfibre spacing envisaged

in 'real' laminates, it seems quite likely that appreciable stress concentrations could be

stimulated in the matrix between fibres. These, it is believed, could result in plastic

deformation or fracture of the matrix. This scenario is depicted schematically in

Figure 6.3. It should, however, be remembered that if the surrounding fibres were

undamaged, again using a load sharing argument, it is probable that the matrix stress

concentration would reduce rather than increase.

micro-compressive defect

matrix failure

Figure 6.3 Representation of matrix failure between two adjacent
micro-compressive defects.

6.4.4 Interfacial debonding

As noted in Chapter 5, interfacial debonding in SFCs was observed as part of the

composite failure process. It was considered that this resulted from high interfacial

shear stresses induced at the micro-compressive defects. Following fibre fracture, it is

likely that the released strain energy would propagate the crack along the interface,

particularly if the fracture toughness of the interface was low. This would, in all

likelihood, account for the debonded zones observed in the failed SCFs. Strong

evidence for interfacial debonding in 'real' laminates was provided by the occurrence

of cracks formed between the matrix and fibre at the fracture surface, as shown in

Plates 3.7 and 3.8. This situation may be compared with interfaciai debonding

arising from the high interfacial shear stresses observed in model carbon fibre-epoxy
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systems (Melanitis et a!., 1992). Whilst debonding along individual micro-

compressed fibres as a result of stress concentrations would seem likely, it is possible

too that micro-compressions could stimulate fibre-matrix debonding in neighbouring

fibres. Two potential mechanisms can be identified.

Firstly, shear stresses in the matrix surrounding micro-compressive defects could, if

the inter-fibre spacing was sufficiently small, induce interfacial shear stresses in

neighbouring fibres (as part of the load transfer mechanism). If the interface

associated with the neighbouring fibre was particularly poor, then it would seem

possible that interfacial shear failure could be stimulated in this manner.

Secondly, whether any significant tensile stresses are stimulated which act in a plane

normal to the interface, in a fibre adjacent to one containing a micro-compressive

defect, is open to conjecture. If this were so, however, the stress concentrations

caused by micro-compressive defects may also stimulate debonding (and act in co-

operation with the interfacial shear failure described above) in a manner analogous to

the 'Cook-Gordon' mechanism of crack-blunting. As noted in the previous chapter,

the effect of micro-compressive defects on the matrix might be likened to the presence

of a hole in the matrix. Theoretically, it may be shown (using the 'Kirsch solution' -

Parton, 1992) that, around a circular hole in an infinite elastic plate, a perpendicular

stress equal in value to 3/8 of the nominal uniaxial tensile stress exists, which acts in a

sense so as to produce a tensile stress normal to the interface (i.e. to pull it apart).

The maximum stress would occur at a location approximately 0.2 fibre diameters from

the interface. If, as has been previously considered, interfacial bonding is primarily

due to mechanical interlocking, which would be inhibited if stresses acted

perpendicular to it, then it seems plausible that debonding could be stimulated. It

would, therefore, seem feasible that debonding might be stimulated in neighbouring

fibres, either through matrix shear stresses, or as result of normal stresses acting on

the interface (or a combination of the two). A schematic representation of these

possible mechanisms is presented in Figure 6.4.
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Figure 6.4 Debonding stimulated in a neighbouring fibre as a result of an adjacent
micro-compressive defect.

Although the possible effects of the micro-compressive defects on 'real' laminates is

mainly conjecture, the arguments appear reasonable. It would be of benefit to actually

study the interaction between neighbouring fibres, to ascertain the true effects and to

confirm or disprove these hypotheses. It is proposed that multi-filament micro-

composites (containing 3, 5, or more fibres aligned parallel to each other) should be

used to investigate this phenomenon.

In summary, a picture emerges of a composite microstructure riddled with stress

concentrations, leading to numerous potential mechanisms by which microstructural

failure may take place. These include; fibre failure, interfacial debonding and matrix

plastic deformation and fracture. It is interesting now to consider how these various

mechanisms might affect the macroscopic behaviour of the composites.

6.5 Plastic deformation of laminates

6.5.1 Macroscopic behaviour

The nature of the tensile stress-strain relationship was discussed in Section 3.3.3.

Particularly at higher V,. and more especially in the hemp fibre reinforced laminates, it

was noted that a departure from linearity occurred at comparatively low stress levels.

In the case of hemp, at a volume fraction of around 44%, analysis of the stress-strain
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record revealed that departure from linearity initiated at a composite tensile stress

possibly as low as 10 to 15 MN m 2. In the CSM laminate at a V of only 20%, this

departure from linearity did not occur until a tensile stress of around 25 MN m 2. It is

believed that such behaviour could impact upon the potential end uses to which these

materials might be put and therefore requires consideration. As stated previously, no

tests were undertaken to verify whether stresses beyond these limits resulted in

irreversible deformation (i.e. beyond the elastic limit) nor whether the behaviour

remained elastic up to some point beyond the proportional limit. Nevertheless, visual

(and audible) observations of the straining specimens did indicate that irreversible

processes were taking place, as evidenced by the appearance of extensive transverse

cracking in the matrix. However, in the medium volume fraction hemp reinforced

laminates (-. 3l%), considerably fewer matrix cracks were visible; whilst in the low

volume fraction samples (-1 5%), no cracking whatsoever was noted. This behaviour

seemed to be reflected in the nature of the stress-strain behaviour; in the lower

volume fraction specimens there was a far greater degree of linearity in the stress-

strain curves than at higher volume fractions. A similar trend was observed in the jute

fibre reinforced material, however, non-linear behaviour (at all volume fractions) did

not appear to be so pronounced. The degree of plastic behaviour was also assessed

by establishing the yield point (0.2% proof stress) and comparing this with the

ultimate tensile strength. It was found that non-linear behaviour seemingly increased

with volume fraction. Whilst it is impossible to state clearly the point at which elastic

behaviour ceased, it was apparent that the degree of plastic deformation displayed by

the laminates increased with V,.. Since this must be related to irreversible damage

occurring within the micro-structure of the composite, it is relevant to look to this for

an explanation of the behaviour.

6.5.2 Mechanisms of plastic deformation

As discussed above, there are potentially many different mechanisms by which

damage at the microstructural level could take place. 11 firstly, it is assumed that a

departure from linearity is indicative of irreversible micro-structural damage ('plastic'

behaviour), then it is reasonable to argue that in the bast fibre reinforced PMCs,

incipient microstructural damage may occur at relatively low nominal stress levels.
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This could take place through the action of stress concentrators initiating failure by

any, or all of the aforementioned mechanisms.

It is interesting to note that in the lower volume fraction materials there was little

deviation from linearity preceding fracture. This may be explained by the larger

interfibre spacing and, as a result of fewer fibres, a lower total number of stress

concentrations. As has been discussed above, higher volume fractions would favour

more fibre-fibre interaction resulting from, in particular, micro-compressive defects.

At low volume fractions, therefore, fewer stress concentrations (either in

neighbouring fibres of the matrix) would presumably result in less micro-structural

damage. However, because of the far greater proportion of matrix material at these

low Vf , once initiated, fracture could be expected to occur rapidly, since there would

be relatively less fibre with which to create crack stopping/blunting and energy

dissipating mechanisms. Simplistically, fracture at these Vf would be dominated by

the behaviour of the matrix, the fibres offering little reinforcement or resistance to

brittle fracture. Indeed, at low Vf , the fibres may indeed act as a population of

critical defects which, as discussed in Chapter 3, may actually initiate failure at low

stresses (and strains). This might well account for the fact that at low V, the

strength (and failure strain) of the laminates is observed to fall to below that of the

unreinforced resin itself. It should also be noted that the failure strain of the fibres is

probably less than that of the matrix. In these circumstances, it is likely that some

fibre fracture could well precede matrix failure, thereby exacerbating the effects of the

stress concentrators.

However, as I/f increases, so too will the proportion of stress concentrators. In

addition to this, because of the smaller interfibre spacing, their effect would become

more and more exaggerated. Nevertheless, there would be a 'trade-off', for whilst the

effects of the stress concentrations would be increased, the greater proportion of fibre

would tend to give enhanced reinforcement and toughness. The result might be that

as stress levels are increased, matrix fracture (plus no doubt other damage

mechanisms) would occur and load would be progressively transferred to the fibres
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(since a single macroscopic crack would be prevented from causing failure of the

composite at low stress levels). This is consistent with the observed behaviour.

At higher volume fractions, therefore, it could well be expected that as the load on the

specimen is increased, matrix fracture first occurs in those regions most susceptible to

the effects of the stress concentrators (or where limited fibre failure occurs). Once

matrix fracture has occurred, the load would then be taken by the fibres. As the load

is progressively increased, further regions of matrix cracking occur, resulting in a

greater and greater proportion of the load being transferred to the fibres.

Nevertheless, with the occurrence of matrix cracking and the transference of load to

the fibres, strain would necessarily increase, thereby resulting in a reduction in the

slope of the stress-strain curve (i.e. modulus decreases). It is interesting to note that

at the highest V1 studied (44%), the hemp reinforced laminate exhibited substantial

'plastic' deformation, prior to failure. Indeed e exceeded that of either the fibre or

matrix. It is likely that this behaviour resulted from localised microcracking of the

matrix away from the fibre, with the latter subsequently 'realigning' in the direction of

the applied stress. This would effectively increase the laminate strain dramatically in

these regions, resulting in high overall composite failure strains.

A comparison of the deformation behaviour of the two bast fibre reinforced PMCs

revealed what appeared to be very different responses (this was particularly noticeable

during testing). At the highest Vf studied, the hemp reinforced material exhibited

what appeared to be a far greater degree of plastic behaviour than the jute reinforced

material at a similar V1 . This appeared to be reflected in the frequency of matrix

micro-cracking, being significantly greater in the hemp reinforced laminates than in

jute. This might indicate that a greater degree of micro-structural damage takes place

in the former laminate type. The reasons for this are open to conjecture.

Nevertheless, one possible explanation would be that such damage is related to a

difference in the relative frequency and severity of the micro-compressions in the two

fibre types. Again, however, there is a slight anomaly in that the tensile strengths

quoted for jute (see Table 1.1) are generally lower than those of hemp and yet the

tensile strength of the jute laminates were on the whole greater. This could be

261



indicative of the occurrence of micro-structural damage taking precedence over fibre

strength - leading to overall composite failure. On the other hand, the toughness of

the jute fibre reinforced composites was observed to be poorer than that of the hemp

reinforced material, particularly under impact loading (Charpy test). It is believed that

under these circumstances, it is the strength of the fibres, rather than the occurrence

of micro-structural damage, which dominates the laminate behaviour. This would

seem to be confirmed when a comparison is made with the CSM reinforced laminate

in this test.

It seems plausible, therefore, that microstructural damage arising from stress

concentrations caused by, in particular, fibre damage can contribute to the type of

irreversible non-linear behaviour seen in bast fibre reinforced PMCs.

6.6 Toughness

6.6.1 Introduction

As noted in Section 6.1.1, one of the greatest concerns, with respect to the

mechanical properties of bast fibre reinforced PMCs, is their lack of toughness; that is

to say their lack of resistance to the propagation of cracks. In this context, it is the

lack of resistance to macroscopic cracks, which may ultimately result in component or

structural failure, which is of most concern.

Work of fracture under three point flexure (quasi-static and dynamic loading

conditions) measurements both indicated that, on a volume for volume basis, the

toughness of the natural fibre reinforced composites was considerably less than that of

the inorganic fibre reinforced PMC. Subsequent fracture toughness calculations

confirmed that the difference in works of fracture could be as much as an order of

magnitude. Clearly, this could be of potential concern if the bast fibre reinforced

materials were to be used in any structural or semi-structural applications.
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As noted in Section 3.3.6, a fracture mechanics approach to the toughness of

materials allows for scaling effects to be taken into consideration. If suitable

toughness characterising parameters can be established (K1 or	 then a link

between the macroscopic toughness of a material and the microstructure can be

established. As discussed previously, values of both K1 and were evaluated, the

latter being thought to be a more representative measure of the material toughness in

this instance. It was hypothesised that the relative 'volume' of the plastic, or damage

zone region ahead of the crack-tip was of importance in relation to the macroscopic

toughness of the material, since it is here that most energy absorption processes are

likely to occur. From a visual examination of failed laminates containing initially

sharp notches, it was considered that this was physically reasonable, since the relative

sizes of the observed damage regions approximated to those predicted from the

theory. The findings indicated that the 'volume' of the damage zone could be

significantly smaller (by more than an order of magnitude) in the vegetable fibre

reinforced PMCs than in the glass fibre reinforced material at equivalent Vf . This

suggested that in the former, the lack of toughness may be attributable to a reduced

'energy absorbing' capacity. That is to say, toughening mechanisms were simply not

stimulated to the same extent in the bast fibre reinforced material. The following

discussion attempts to relate the macroscopic toughness of the laminates to the micro-

structural observations made in this work.

6.6.2 Nature of crack propagation in laminates

One of the problems associated with the application of fracture mechanics to

composite materials is that of ensuring macroscopic crack propagation in the desired

direction. This is due to cracks being blunted and deflected at interfaces (Piggott,

1980). In other words, rather than a single macroscopic crack propagating in a self-

same manner through the material, there is a tendency for a crack to 'dissipate' and

meander, forming numerous micro-cracks within the structure of the laminate. It is

precisely this ability for cracks to be repeatedly deflected and blunted that, in part,

accounts for the high toughness of composite materials (Gordon, 1970; Hull &

Clyne, 1996). No doubt however, if the material specimen was sufficiently large,

micro-cracking would be confined to a relatively small zone at the crack-tip and an
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identifiable macroscopic crack would propagate through the material. The results of

this work indicated that for this to occur a very large specimen size would be

required.

It was believed that much of the deformation behaviour observed with the laminate

specimens tested could, therefore, be associated with microscopic crack growth

(together with other damage processes such as fibre and matrix fracture) taking place

within the laminate in the vicinity of the crack-tip rather than with macroscopic crack

advance. These processes would all, nevertheless, account for the absorption of

released strain energy and this probably explains why the fracture process (at higher

V1 ) in the reinforced materials was a rather gradual affair.

During the fracture toughness tests conducted in this work an attempt was made to

distinguish between macroscopic and microscopic crack growth. This issue was

resolved by assuming that macroscopic crack advance was accompanied by a

'significant' change in specimen compliance (a 'pop-in' in the force versus load-line

displacement record). It was assumed that the gradual change in the slope of the

force versus load-line displacement record was attributable to 'plasticity', or

irreversible damage events taking place within the laminate, as described in the

previous paragraph. It is the nature of this microscopic damage which is of interest in

terms of material toughness, since it is through these that energy absorption takes

place.

6.6.3 Crack-tip stresses

In an ideal elastic material, the state of stress ahead of the tip of a sharp crack may be

described by asymptotic equations, the general form of which were given in Equation

3.6. These predict that at the crack-tip infinitely high stresses will be observed,

reducing in magnitude with increasing distance from the crack-tip. Whilst the

materials under scrutiny in this study were far from elastic, homogeneous or isotropic,

it is probably fair to assume that macroscopically, the crack-tip stress conditions

follow some form of 'asymptotic type' relationship. Assuming this to be so, then
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there could be a region ahead of the crack-tip in which high local stresses would

prevail, albeit the far-field stress (and strain) in the laminate might be quite low.

Against this background of high stress (and strain), it is reasonable to envisage

localised microstructural rupture of the laminate occurring, by any or all of the

mechanisms described previously in Section 6.4. In this situation, the macroscopic

stress concentration created by the crack-tip may be thought to act as a stimulator for

microscopic damage. Stored strain energy released during crack (either microscopic

and diffuse or a single macroscopic crack) growth would then be absorbed within the

laminate micro-structure through various mechanisms.

Microstructural damage accumulation in the crack-tip region would undoubtedly have

the effect of 'blunting' the stress concentration ahead of the macroscopic crack,

leading to lower crack-tip stresses. This may be thought to be analogous to the

yielding at the crack-tip observed in ductile metals.

6.6.4 Energy absorbing processes

The processes thought to account for energy absorption in composite materials were

noted in Chapter 2. To reiterate, these include:

• energy absorbed during fibre-matrix debonding

• energy absorbed through frictional sliding of the fibre pulling-out of the matrix

• energy absorbed during plastic deformation and fracture of the matrix

• energy absorbed in fibre fracture.

6.6.4.1 Fibre-matrix debonding

Although fibre debonding itself is thought to account for a relatively small proportion

of the total energy absorption in composite materials (Hull & Clyne, 1996), the

conditions under which debonding occurs are of importance since the fractured fibre,

once debonded it is able to pull-out from the matrix, thereby absorbing energy

through frictional sliding. This latter mechanism is thought to absorb a significant

amount of fracture energy (Piggott, 1980; Hull & Clyne, 1996).
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C-

Since the macroscopic toughness of composites is closely linked with interfacial

effects (Hull & Clyne, 1996), it appropriate to consider here, briefly, the conditions

under which fibre-matrix debonding and other interfacial failure events occur.

Various tests involving pulling a single fibre from a block of neat resin have been

employed to simulate debonding and interface processes. An extensive review of the

fibre pull-out test has been conducted by DiFrancia et a!., (1996). The following

notes the salient points of their conclusions regarding the interpretation of the pull-out

test. Depending upon the length of the embedded fibre, distinct regions of the load-

extension trace of a fibre pull-out test can be identified with physical events.

clisplac ement

Figure 6.5 Schematic representation of the load-displacement trace in a model fibre
pull-out test (Adaptedfrom. DiFrancia, et a!, 1996 and Hampe & Marotzke, 1997).

Figure 6.5 (adapted from DiFrancia, et a!, 1996 and Hampe & Marotzke, 1997)

depicts a model pull-out trace. The first point of interest on the curve occurs at point

B, crack initiation. This is the point at which fibre-matrix debonding initiates, and is

believed to be the result of normal forces acting across the interface due to Poisson

contraction of the fibre (i.e. mode I loading). If the fibre embedded length is now

below a critical value to support further, stable, crack growth, catastrophic interfacial

failure will result and the debonded fibre will pull-out with friction (as per the tail of

the trace D-E). The region B-C represents a region of stable crack growth with

increasing frictional resistance. Frictional resistance occurs behind the propagating

crack and increases with advancing crack growth, hence the increase in load. At point

C, crack growth becomes unstable and the region C-D represents unstable crack
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propagation, culminating in total interfacial debonding. The tail of the curve, D-E

represents frictional pull-out.

From the foregoing, it follows that the value of the interfacial shear strength (ISS) can

be determined at three different experimental times. These correspond to (a) the

onset of crack propagation - crack initiation or catastrophic failure, (b) propagation

with friction and (c) when debonding is complete, during the pull-out phase

(DiFrancia et a!,. 1996).

It is clear from the above, that if the frictional ISS (region D-E in Figure. 6.5) is very

low, then there is little likelihood of any significant energy absorption through

frictional sliding. Also, as will be discussed in further detail, high ISS during

debonding could result in fibre fragmentation. Since no pull-out tests were conducted

in this work, the following is mostly a matter of conjecture. It is, nevertheless,

considered that the conditions under which interfacial failure takes place are of prime

importance in terms of understanding the behaviour of bast fibre reinforced

composites.

The debonding process may, therefore, be thought to be either catastrophic, if the

embedded length is small enough, or the result of some stable crack growth

accompanied by friction, occurring prior to unstable propagation. It is impossible to

say whether the fibre lengths in the hemp-epoxy/polyester systems were long enough

to support stable, as well as unstable crack propagation (particularly since it seems

probable that the fibre may fragment prior to debonding - see below). However, it is

interesting to speculate upon the factors which might affect the initiation and

propagation of interfacial cracks in bast fibre reinforced thermosetting polymer

systems. Nevertheless, whether the fibre embedded lengths are sufficiently long and

the fibres sufficiently strong to support stable crack propagation with frictional

resistance could well be important, since energy absorption would accompany this

process (DiFrancia eta!., 1996).

Qualitative observations conducted in this work indicated that in the bast fibre

composite systems, although intimate fibre-matrix contact was achieved during the
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fabrication process, adhesion between the two phases is likely to be the result of good

mechanical interlocking, rather than any chemical bonding. This would indicate that

under suitable circumstances the two might be easily separated. Evidence to support

this supposition is provided by the debonding cracks observed in failed SFCs as well

as macroscopic laminates, debonding in the former being observed to propagate some

way from the fibre break.

According to Hull and Clyne (1996), interfacial debonding often occurs under mixed

mode loading (opening and forward shear modes) conditions. Mode I (opening)

would presumably be more likely to be associated with crack initiation than

propagation, which would probably occur primarily under mode II conditions

(DiFrancia et al., 1996). If, as speculated, interfacial adhesion is mainly the result of

mechanical interlocking, it seems plausible that debonding would occur far more

readily under mode I loading than under mode II conditions. This is likely since,

under mode I conditions the interface would tend to separate under the action of

normal tensile stresses and this would probably occur relatively easily if there was

little 'true' adhesion. Under mode II conditions, however, mechanical interlockin8

would presumably inhibit debonding.

If these suppositions are correct, it would indicate that whilst crack initiation might be

relatively easily achieved, crack propagation would be more difficult. Furthermore, it

might imply that those fibres with the most uniform surface topographies would

debond most readily. It also raises the possibility that the interfacial fracture

toughness may vary along the length of the fibre as a result of differing degrees of

surface roughness. This would no doubt impact upon the potential efficacy of any

'Cook-Gordon' type crack blunting/deflection mechanisms.

As discussed previously, it has been demonstrated that the introduction of strong

fibre-matrix adhesion has the effect of markedly lowering the Charpy impact strength

of hemp reinforced polyester laminates (Sèbe et al, 2000). Increased interfacial

adhesion would presumably affect crack initiation more strongly (mainly under mode

I), than propagation (predominantly mode II). If initiation is suppressed, the

debonding process as a whole would be inhibited, resulting in a propagating matrix
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crack travelling in a direction normal to the interface passing through the fibre rather

than being deflected or blunted at the interface. If debonding under mode I loading is

more easily achieved than mode II, it might be implied that crack-deflection and

blunting through a 'Cook-Gordon' type mechanism would be inhibited by the

introduction of strong interfacial adhesion. The findings of Sèbe et al. (2000), would

seem to bear this out. If the propagation of a crack along the fibre-matrix interface is,

relatively, more difficult to achieve then this could affect the debonding length and

consequently the maximum possible pull-out length. This would, of course, affect the

maximum energy that could be absorbed through interfacial frictional sliding during

pull-out.

Other factors which may influence the conditions under which debonding takes place

include any residual stresses acting across the interface, due for example, to a

mismatch in thermal expansivities (Grubb & Li, 1994) or volumetric cure shrinkage of

the matrix (Hull & Clyne, 1996). An aspect which has thus far been ignored in this

discussion on debonding, is the environmental behaviour of the fibre. As noted in

Chapter 2, lignocullulosic material is subject to swelling/shrinkage as a result of

adsorptionldesorption of moisture. It might therefore be envisaged that if any

desorption (or cycling) were to have taken place subsequent to manufacture, then the

interface would be subject to normal tensile stresses acting across it. It would seem

probable that in these circumstances the integrity of the fibre-matrix bond may be

compromised, making debonding more likely.

Visual examination of failed SEN specimens as well as the theoretical predictions

made using fracture mechanics indicated that fibre-matrix debonding is far less

extensive in the bast fibre reinforced material than in the glass fibre reinforced

laminates. In other words, the size of the damage zone is small in the bast fibre

reinforced PMC. This may be explained in terms of fibre damage and its effect upon

the tensile properties of the fibre.

Consider a fibre undergoing debonding, such as might be found bridging a

propagating matrix crack. As the macroscopic crack opens, the load on the fibre will

increase and the interfacial debond crack will progressively propagate along the
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interface. Consequently, the stress in the fibre will build-up along the debonded

length (due to the effect of friction) to a maximum, once the fibre is clear of the

matrix. If the axial fibre stress at any point exceeds the strength of the fibre, then

fracture will occur. Bast fibres, as discussed in Chapter 4, contain a significant

number of micro-compressive defects, many of which are very closely spaced and

which have been shown to reduce the tensile strength of (flax) fibre ultimates (Davies

& Bruce, 1998). It would seem likely, therefore, that a critical defect could well be

met after relatively little debonding had occurred. This might well result in short pull-

out lengths with consequently little energy absorption.

One of the major differences observed between the fracture surfaces of the bast fibre

and glass fibre reinforced polymer systems was fibre pull-out. As noted in Section

3.3.7, the pull-out aspect ratios seen in the bast fibre reinforced laminates were

significantly less than in the CSM reinforced material. This may be explained in terms

of the relative strengths of the fibres and the stress transfer from matrix to fibre. As

composite strain is increased, the axial stress iii the fibre also increases, due to a rise in

the ISS. If the axial stress in the fibre rises to above that of the fibre strength, it will

fracture. Assuming that ISS becomes uniform at the interfacial shear strength, r,

of the system, it follows that there is a minimum value of fibre aspect ratio below

which the build-up of stress in the fibre cannot reach the ultimate strength of the fibre.

This introduces the concept of the critical aspect ratio, S 	 (aspect ratio in this

instance is defined as the length of the fibre divided by its radius). This corresponds

to the peak fibre stress just attaining its ultimate strength, o, under the influence of

the interfacial shear stress. It may be shown that the following condition exists (Hull

& Clyne, 1996):

Scrit =
	

(6.2)

From Equation 6.2, it may be inferred that the fibre pull-out length (related to critical

aspect ratio) is proportional to the strength of the fibre and inversely proportional to

the stress transfer from matrix to fibre. If it is taken into consideration that in bast

fibres, fracture is likely to be dominated by the presence of micro-compressive defects
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and that, based on the forgoing discussion, stress transfer (either elastic or inelastic

processes) is probably fairly effective (due to mechanical interlocking), this may

provide a likely explanation for the low fibre pull-out lengths observed.

6.6.4.2 Frictional sliding andfibre pull-out

Once the fibre is totally debonded from the surrounding matrix, it is able to slide in the

resultant socket. During the process of withdrawal, fracture energy may be dissipated

through friction. Depending upon the surface roughness, contact pressure and sliding

distance, this mechanism can account for a great deal of energy absorption in

composite materials (Hull & Clyne, 1996).

Using a shear-lag analysis, it may be shown that the contribution to the overall work

of fracture made by fibre pull-out is given by (Piggott, 1980; Hull & Clyne, 1996):

G VfdfS2

6

Where:	 Gf	 is the work of fibre pull-out

d	 is the diameter of the fibre

is the sliding interfacial shear stress (due to friction)

S	 is the fibre aspect ratio

This relationship predicts that the work of fibre pull-out will increase as the square of

the fibre aspect ratio, as well as increasing with volume fraction, fibre diameter, and

sliding frictional ISS.

As discussed previously, the morphology of bast fibres is quite irregular, in addition to

which the fibre surface has the appearance of being relatively rough. It is probable,

therefore, that this would affect the manner in which the fibre withdraws from the

matrix socket. In the bast fibre composite systems studied, it seems likely that the

frictional ISS would be far from constant, varying as a result of undulations in the

fibre cross-section and changes in surface topography. Sanadi et al. (1986b), noted

that such variations in frictional ISS as might occur during pull-out, could influence

(6.3)
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the toughness of Sunn hemp-polyester composites. Variations in the fibre cross-

sectional area might lead to fluctuations in the normal forces acting on the fibre

surface, as a result of elastic (with possibly inelastic) deformation of the cell wall.

Since frictional ISS is the product of the coefficient of friction and the normal

pressure acting upon the fibre surface (DiFrancia, et al., 1996), any rise in the normal

pressure would be accompanied by a commensurate increase in ISS (if, for the time

being it is assumed the coefficient of friction is constant). Not only is it likely that

undulations in the fibre surface would result in varying frictional ISS, but it is also

possible that mechanical 'keying' of the fibre in the socket may take place, where

major changes in fibre section (for instance micro-compressive defects) 'lock' into

adjacent regions of the matrix socket. Indeed, it is plausible that this might physically

prevent fibre pull-out occurring in the first instance and may actually result in fibre

fracture if the axial fibre stress in raised sufficiently (see below). Further, due to

apparent variations in surface roughness, it is possible that the coefficient of friction

varies along the length of the fibre. This, presumably, would also impact upon the

frictional ISS. Based upon the forgoing, it would seem likely that there would be a

certain amount of 'stick-slip' activity as a fibre pulls through the matrix.

Nevertheless, there are further factors which might affect the normal force acting

upon the fibre and which, consequently, could affect ISS and hence the work of fibre

pull-out.

It would seem probable that relatively thin walled fibres would undergo deformation

more readily as they travel through the matrix socket, than thicker walled individuals.

This radial deformation of the fibre would presumably lead to lower contact pressure,

lower frictional ISS and hence lower energy absorption. In addition to this, Poisson

contraction of the fibre would presumably affect the 'stick-slip' behaviour. As the

axial load on the fibre increases during the 'stick' phase (due to the mechanical hold

of the matrix on the fibre (DiFrancia et aL, 1996)), the fibre would undoubtedly

contract to some extent. In doing so, the normal clamping pressure would reduce to a

point at which friction is overcome and the fibre undergoes slip. Since the axial load

would then reduce, the fibre would expand (assuming that the contraction process

was fully reversible) and 'sticking' would be re-established. This behaviour could
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well compound the effects of the mechanical 'lock and key' phenomenon described

above.

It has, thus far, been considered that the fibres deform elastically up to fracture and

whilst the evidence supports this in bast fibres (Davies & Bruce, 1998), 'pseudo-

plastic' behaviour is observed in individual wood fibres (Gordon & Jeronimidis,

1974). It is just possible that, during either debonding or pull-out, the fibres deform

inelastically to some extent. It might be expected, therefore, that such behaviour

would be accompanied by a permanent reduction in the cross-section of the fibre,

which if sufficient to prevent contact with the matrix, would result in zero frictional

resistance and hence no energy absorption. This same conclusion was reached by

Sanadi eta!. (1986b) in their work on Sunn hemp-polyester composites.

As noted above, 'movement' of the lignocellulosic fibres may alter the normal forces

acting across the interface. This could, presumably, also affect the normal pressure

acting upon the fibre and consequently energy absorption through frictional sliding.

The relationship given in Equation 6.3 predicts that (assuming all other terms are

equal) the work of fibre pull-out is proportional to the square of the aspect ratio of

the pulled-out fibre. This may partly explain the reasons for the lack of toughness

observed in the bast fibre reinforced materials. As discussed above and in Section

3.3.7 (Plates 3.3-3.5), the fibre pull-out aspect ratios in the bast fibre reinforced

laminates are perhaps at best of the order of 10:1, but in any event are significantly

less than those observed in the glass fibre reinforced material. Even taking into

account the larger 'diameter' of bast fibres and the possibly good frictional ISS, it is

difficult to envisage how any significant amounts of energy can be dissipated through

frictional sliding, when the pull-out aspect ratios are so low.

The reasons for the low fibre pull-out aspect ratios were partly discussed above, in

terms of fibre damage. However, it is appropriate to elaborate upon this at this

juncture. During micro-mechanical tests with SFCs (see Section 5.3.6), the

reinforcing fibres were noted to fragment, with fracture believed to occur at micro-

compressive defects. Since the strain to failure of bast fibres is less than that of
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typical epoxy resins, it is not surprising that this behaviour should be observed.

Although no statistical records of fragment length were kept, it may be clearly

observed from Plate 5.9, that the aspect ratios of the fragments were quite low, being

of the order of 40:1 (LIr). It would seem plausible, therefore, that in regions of the

laminate subject to relatively higher matrix strains (such as may be found in the

vicinity of a stress concentrator), fragmentation (accompanied by limited fibre-matrix

debonding) should occur. Consider now a macroscopic crack propagating in a

direction normal to a single fragment. On the assumption that no further

fragmentation takes place, the maximum aspect ratio available to pull-out (assuming

that at best one half of the fragment pulled-out) would be 20:1, or a length to

diameter ratio of 10: 1. These orders of fibre pull-out aspect ratio were observed in

the 'real' laminates.

In this scenario, it seems possible that fragmentation of the fibre prior to macroscopic

cracking could occur, severely limiting the fibre pull-out aspect ratio. This type of

'pre-fragmentation' would be dependent upon the relative composite strain, the

efficacy of stress transfer from matrix to fibre and may well be dominated by the

frequency and severity of micro-compressive (or other) fibre defects. The fibres used

in the preparation of SFC, although micro-compressed, were relatively undamaged. It

is possible to envisage that in fibres which have undergone any significant processing,

additional damage may exacerbate fibre fragmentation, to the detriment of laminate

toughness.

If, in the above example, the matrix crack-tip passes the fragmented fibre and

debonding proceeds along the fibre-matrix interface to the end of the fragment, then

the aspect ratio of the withdrawn fibre would be dependent upon the remaining

embedded length. However, to facilitate debonding and fibre pull-out, the faces of the

macroscopic crack must continue to separate. As a result, the load on the fibre will

continue to increase, supplying the requisite strain energy for the debond crack to

propagate and to overcome the frictional resistance following debonding. However,

as discussed above, during the debonding process it is possible that the fibre stress

may exceed some critical value, either resulting in fracture in the plane of the crack, or
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at some point along the debonding region (Hull & Clyne, 1996). This may well have

the effect of lowering, still further, the pull-out aspect ratio.

Assuming the fibre, up to a certain aspect ratio, has completely debonded, then pull-

out may conm-lence. If, however, the fibre is mechanically constrained due to physical

'keying' within the matrix, then it is feasible that the fibre stress will again rise,

possibly resulting in fibre fracture. Similarly, as the fibre withdraws, it is likely to

experience stick-slip behaviour. During the 'stick' phase, it is again plausible that the

fibre axial stress may exceed some critical value, thereby causing it to fracture. With

all these possible mechanisms, micro-compressive defects could play a vital role in the

debonding and pull-out of the fibres and may well be, at least partly, responsible for

the low toughness of bast fibre reinforced composites.

It can be shown that work of fibre pull-out (G,) reaches a maximum when S is

equal to the critical fibre aspect ratio (Equation 6.2) and that in this instance:

V do-2

fPM4X - 24Vm
	 (6.4)

The interesting aspect of this prediction is that the maximum work of fibre pull-out is

proportional to the tensile strength of the fibre and is inversely related to the

interfacial shear strength. If, following the foregoing discussion, it is assumed that the

ultimate strength of micro-compressed fibres is significantly less than that of glass

fibre and that the interfacial shear strength is not insignificant, then even allowing for

the greater diameter of bast fibres, it is not difficult to envisage a significant difference

in the works of fibre pull-out.

6.6.4.3 Plastic deformation andfracture of matrix

The work of fracture of the unreinforced polyester resin determined in this study was

about 0.09 kJ m 2. It would seem unlikely that matrix deformation and fracture would

account for any significant amount of energy absorption in the bast fibre reinforced

Composite systems.
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6.6.4 Work offibre fracture

As noted in Chapter 4, the work of fibre fracture in bast fibres is likely to be quite

small since any pseudo-plastic deformation of the fibre would seem improbable. The

work of fracture in bast fibres is, therefore, likely to be akin to the 'intrinsic

toughness' of the cell wall material, determined by Lucas et a!., (1996, 1997) to be in

the region of 3.45 kJ m 2. Although this figure is significantly greater than glass (a

few tens of Joules per square metre - Hull & Clyne, 1996), it seems unlikely that this

mechanism could account for large amounts of energy absorption in these composites.

In bast fibre reinforced thermosetting PMCs, it seems probable that the main reason

for the low toughness exhibited by these materials, is the lack of energy absorption

through fibre pull-out, the mechanism thought to account for substantial amounts of

energy dissipation in composite materials (Hull & Clyne, 1996). Simplistically, this is

probably the result of relatively low fibre strength (particularly when exacerbated by

micro-compressive damage) coupled with good fibre-matrix interaction. The

remaining energy absorption mechanisms namely, debonding and fibre and matrix

fracture would seem unlikely to contribute significantly to this process. The high

works of fracture observed in wood fibres would not appear to be shared by their bast

fibre cousins.

6.7 Conclusions

Whilst much of the discussion in this chapter has been based on conjecture, it was

believed that some attempt should be made to explain the observed macroscopic

properties in terms of the laminate niicro-structural organisation. On the basis of the

findings of this work it seems very probable that both non-linear behaviour and

toughness (or lack of it) can be explained in terms of the fibre properties and the

interaction between fibre and matrix.

It seems plausible that micro-compressive defects in the cell wall of bast fibres result

in heterogeneous straining characteristics, which lead to microstructural laminate
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damage at possibly very low stress levels. This, coupled with fibre architecture and

seemingly poor fibre-matrix bonding (adhesion), could account for the onset of non-

linear behaviour at low nominal stress levels.

With regard to composite toughness, it would appear that the relative lack of

toughness when compared to the CSM glass fibre, can be attributed to poor energy

absorption. This is probably due to limited energy dissipation through frictional

sliding and pull-out. The likely reasons for this seem to be that, in reality, the fibre

strength is quite poor in comparison to glass fibre. Furthermore, good fibre-matrix

interaction through mechanical interlocking probably exists, limiting debonding, with

consequently shorter pull-out lengths. Coupled with fragmentation of the fibre at low

composite strains, it seems likely that the debonded fibre length available for pull-out

is relatively low. This is reflected in the short pull-out lengths observed. It would

seem unlikely that any significant further contribution to the composite work of

fracture is afforded by either debonding, matrix deformation and fracture or fibre

fracture.

The apparent bimodular behaviour of bast fibre reinforced polyester laminates may be

ascribed to potentially differing tensile and compressive moduli under axial and radial

loading.

As noted above, much of this chapter has been based on conjecture. Nevertheless, the

discussion has raised a number of issues which should be considered if a deeper

understanding of the mechanisms controlling the mechanical behaviour of bast fibre

composites is to be achieved. These are outlined in the final chapter.
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7 Conclusions and Recommendations
for Further Work

7.1 Introduction

The purpose of this, the final chapter, is to review the work presented in the thesis, to

summarise the main conclusions drawn and to suggest the direction in which it is

believed further research should be pursued, at least as far as the mechanical

properties of natural fibre reinforced composites are concerned. Now, with the

benefit of hindsight, it is fair to say that a number of issues which arose during the

course of this work would have been better approached in a somewhat different

manner. Thus, this chapter also aims to highlight what are perceived to be some of

the main limitations of this work in the hope that any further work conducted in this

area of research can avoid some of these pitfalls.

7.2 Summary of main conclusions

The work undertaken and presented in Chapter 3 was concerned with the

macromechanical properties of needle-punched, non-woven bast fibre reinforced

unsaturated polyester laminates. The properties of these materials were compared

with those of laminates reinforced with CSM glass fibre utilising the same matrix

polymer. The main findings were, that whilst the initial stiffness of the bast fibre

laminates was on a par with that of the synthetic material, their strength and

particularly toughness were substantially inferior, on the basis of equivalent (by

volume) fibre loadings. Coupled with this, it was found that the bast fibre reinforced

material, particularly the hemp, displayed incipient non-linear behaviour, at low levels

of applied stress.
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In view of the interest (and concern) regarding the failure of these materials, fracture

mechanics techniques were applied in order to quantify the toughness of the

laminates. Although the applicability of fracture mechanics (particularly LEFM) in

this instance is open to criticism, it is believed that the results were of value in that

they seemed to indicate that in the bast fibre reinforced material, toughening

mechanisms were simply not stimulated to the same extent as in their glass fibre

reinforced equivalents. This led to the conclusion that the microstructure was crucial

and should be examined in closer detail. Fracture mechanics provided what is

believed to have been a more quantitative assessment of the toughness of these

composite systems. It appeared to confirm earlier suspicions that, for equivalent fibre

loadings, the difference between the works of fracture of the synthetic and natural

fibre reinforcements was almost an order of magnitude. In view of the amount of

plasticity exhibited by the natural fibre reinforced materials, EPFM would seem to

provide a more representative value of material toughness.

Fractography revealed that, at low fibre loadings, failure in the bast fibre laminates

was predominantly brittle, but that at higher Vf , fracture included some evidence of

shearing. SEM studies showed that little fibre pull-out occurred (especially when

compared with the extensive pull-out observed in the glass fibre reinforced material).

This, coupled with brittle fracture of the fibres themselves and seemingly good fibre-

matrix interaction, were thought to contribute to the low toughness of the plant fibre

reinforced material. The good fibre-matrix interaction was evidenced, not only by the

appearance of cured resin within the lumen, but also by the low void content of the

laminates. Nevertheless, the degree of true 'adhesion' between the fibre and polymer

is open to question and is an aspect which, it is believed, should be explored more

thoroughly.

Although the mechanical properties of the fibres themselves were not investigated

during the course of this work, it is believed that the lower strength and toughness of

the bast fibre reinforced PMCs can, in part at least, be attributed to the significantly

lower strength of the natural fibres. In reality (after processing etc.) this might well be

as much a factor of 5 difference. In addition to the foregoing, it was believed that

fibre damage exacerbated the effects of low fibre strength, by affecting the interface
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between fibre and matrix, possibly leading to formation of stress concentrations. This

contention was supported too by the onset, in the bast fibre reinforced material, of

plastic behaviour at low stress levels. This was attributed, not only to the fibre

architecture, but also to fibre damage, resulting in a population of stress

concentrators, which it was believed caused microstructural damage at low applied

loads.

In general, the findings of Chapter 3 indicated that the micro structure of the bast fibre

laminates should be investigated in more detail.

As noted in Chapter 1, the initial concept of this project was that of 'product

development' rather than a 'fundamental' study. It is because of this that the

laminates investigated in this aspect of the work were reinforced with a non-woven

felted material. It is believed, however, that the use of such a reinforcement

configuration led to difficulties in the interpretation of test data. It is considered that

it would have been preferable to utilise unidirectional laminae, since this would have

facilitated simpler analysis and interpretation of the test data. It would be desirable, in

future work, to utilise such laminates.

On a practical note, whilst needle-punched non-wovens are relatively easy to produce,

they would appear to be of limited use as reinforcement. First'y, the intensive

mechanical action of 'carding', introduces significant damage to the fibres (see below)

which no doubt compromises the laminate properties. In addition to this, non-woven

felts are inherently bulky, requiring large external pressures to consolidate the mat. In

this work, the maximum V1 's achieved were less than 50% and even these were only

obtained by pre-pressing the felted fibres. Without pre-pressing, the maximum Vf 'S

attained were generally of the order 15-20%. During this work, however, it was

established that the 'break-even' volume fraction was of the order of 25%. This

'break-even' was the mimimum value of fibre addition required, so as to attain the

same strength as the unreinforced resin. Thus without pre-pressing, the addition of

felts effectively weakens the laminates. In view of this, it is doubtful whether useful

composites could be manufactured from non-woven felted material and it would be

preferable to consider other reinforcement architectures.
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As intimated above, it was believed that fibre damage might well influence the

mechanical properties of the laminates. In view of this, a detailed micoscopical study

of the fibres was presented in Chapter 4. It was found that all the bast fibres studied

exhibited micro-compressive damage to a greater or lesser degree. It was not entirely

clear at what stage the fibres became damaged, but it seemed likely that whilst some

damage probably occurred within the plant, subsequent processing exacerbated not

only the extent, but also the degree of 'kinking'. It was thought that the

ultrastructural organisation of bast fibres probably makes them particularly vulnerable

to the formation of this type of damage. In studies by other workers, it has been

shown that these defects lead to a reduction in both the tensile strength and modulus

of the fibres (Davies & Bruce, 1998). A simple model presented herein showed good

agreement with other published experimental results for the fibre tensile properties. In

this work, it was postulated that the presence of 'kink bands' or 'minute compression

creases' led to uneven fibre straining characteristics, which it was believed might well

influence the characteristics of the interface.

It has been postulated that fibre fracture might contribute substantially to the overall

work of fracture of lignocellulosic based composites. Unfortunately, it would appear

that these bast fibres, although amongst the strongest of all vegetable fibres, are

brittle, displaying none of the 'pseudo-plastic' behaviour associated with the high

toughness of wood fibres. This may, again, be attributed to their ultrastructural

organisat ion.

As will be discussed frirther, it seems clear that micro-compressive defects do

influence the behaviour of bast fibre reinforced PMCs. In view of this, it would seem

appropriate to conduct flirther work into the nature and origin of these features, in the

hope that it might elucidate the mechanisms behind 'kinking' in bast fibres and

whether means might be sought to reduce their occurrence and/or influence upon fibre

properties. It would be very interesting to ascertain whether these features are

common to all varieties of the plants producing the fibres (flax and hemp), or whether

varieties exist which are not so susceptible. Furthermore, if as is suspected, these

features strongly influence composite properties, benign means of separating the fibres
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from the plant should be sought as well as more 'fibre friendly' methods of producing

reinforcement preforms.

Verification of the supposition that heterogeneous fibre straining characteristics lead

to compromised interfacial properties was explored in Chapter 5. The technique of

half fringe photoelasticity (HFP) was used to examine the nature of the stress

distribution in the vicinity of individual micro-compressive defects. In addition to this,

the system was used to make certain inferences regarding the nature and efficacy of

the stress transfer mechanisms operative in plant fibre-polymer systems. The

influence of micro-compressive defects on fracture behaviour in single filament

composites was also investigated.

The applicability of HFP to determine the stress-field in a birefringent polymer was

demonstrated by considering the stress distribution around a circular hole in a polymer

film, and comparing this with theoretical solutions for such configurations. It was

found that good agreement could be obtained. There were, however, a number of

drawbacks with the system in its present form. If these were addressed, it is believed

that FIFP could provide a powerful tool for the analysis of matrix stresses and strains

in the interphase region of plant (and other) fibre reinforced PMCs. It is felt that a

worthwhile exercise would be to develop the system more fully in this respect.

Ultimately, the quality of the stress analysis which can be performed by digital image

analysis (DIA) is dependent upon the quality of the original image. In this respect,

attention should be paid to the manner in which the specimens are prepared

(avoidance of air bubbles or debris) or any other factors which might ultimately affect

image quality. In addition to this, the manner in which the specimens are illuminated

should be carefully considered - a greater 'evenness' of lighting would undoubtedly

help reduce errors. In particular, it is felt that the HFP system would benefit from a

more powerful monochromatic light source. This would, it is believed, make it

possible to use higher optical magnification, enabling finer resolution of the stress

distribution. In addition to this, electronic averaging of multiple images would, no

doubt, help eliminate random electrical 'noise'. An aspect which was considered to

be a major drawback, was the inability to accurately rotate the optical elements of the
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circular polariscope arrangement relative to one another. If this could be achieved,

the calibration procedure would be much simplified. In addition to this, the system

could be extended to enable the directions of the principal stresses to be computed

from the isoclinic fringe pattern.

It is believed, nevertheless, that HFP has certain limitations. Firstly, the system is

bound to operate within the first 'half fringe' of relative retardation. As such, in

highly stressed regions with steep stress gradients, not only is it possible that the 'half

fringe' might be exceeded, but also non-linear behaviour may become significant. In

view of the interest in the fracture behaviour of these systems (which, almost by

definition, includes large stresses and non-linearity), it would certainly be of benefit to

have the facility to analyse fringe orders> 0.5. This could also be achieved through

DIA techniques. It is worthwhile noting that in this work the SFCs were regarded as

two dimensional systems. This is undoubtedly a simplification and might lead to

errors in analysis if higher resolution were required. Due account should be taken of

the three dimensional nature of the systems under investigation.

The analysis of SFC specimens using HFP revealed that concentrations of stress arose

in close proximity to the 'kink bands' or 'minute compression failures'. Stress

concentration factors of up to around 1.65 were recorded. When the principal stress

difference in the matrix adjacent to the fibre surface was considered, it was inferred

that the interfacial shear stress distribution varied along the fibre-matrix interface.

The principal stress difference (related to shear stress) along the length of the fibre

appeared to follow what might be termed a 'shear-lag' type distribution between

adjacent micro-compressive defects. From this, it was concluded that the efficacy of

stress transfer between fibre and matrix was compromised by the presence of the

micro-compressions. This, it was believed, might ultimately affect the macroscopic

performance of the composite. The variation in the matrix principal stress difference

in close proximity to the true fibre-matrix interface was attributed to un-even fibre

straining characteristics and it was concluded that the fibre may be regarded as having

an overall or 'composite' tensile modulus. It was postulated that the micro-

compressive defects could be likened to a series of small 'cracks' or 'holes' in the

matrix, resulting in stress concentrations. Alternatively, micro-compressed fibres
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might be thought similar to a number of short fibres in series. In whatever way these

features are considered, it seems highly likely that they compromise the performance

of the composites.

Analysis of fractured specimens showed that failure occurred at the defects and that

fibre-matrix debonding and transverse matrix cracking were also present. It was

concluded that fibre-matrix debonding was probably the result of high interfacial shear

stresses present in the vicinity to the micro-compressive defects. Coupled with the

improvements to the system described above, it would be of great interest to monitor

the matrix stress-strain field during the fracture process in SFCs.

In Chapter 6, an attempt was made to pull together the various aspects discussed in

the preceding three chapters with the aim of relating the observed phenomena. One

issue which was considered in some detail was the possible influence that an individual

micro-compressed fibre might have upon its neighbours. Several scenarios were

considered, though all were 'hypothetical'. It would, therefore, be of great benefit to

investigate this possible behaviour in 'real' systems, in other words in micro-tensile

specimens containing more than one fibre. This would, hopefully, provide some

insight into whether these failure mechanisms actually occur or not.

The nature of fibre-matrix bonding was considered throughout the text, although no

work was actually conducted to measure this. It is believed that this is an aspect

which should be addressed. Of particular relevance would be the manner in which the

fibres pull-out from the matrix, since this will have a bearing upon the toughness of

the material. Techniques should be developed to accurately record the pull-out

phenomenon in bast fibre-thermosetting polymer systems (with due regard taken with

interpretation of the data).

The findings of this study have indicated that the properties of bast fibres are different

in compression and tension. No compression tests were performed during the course

of this work, but it is considered that it would be a worthwhile exercise to investigate

possible bimodular behaviour and also to assess the compressive strength of laminates

parallel to the fibre axis, since this could be another limiting factor.
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Overall, it is believed that the work conducted and presented herein accomplished

what it set out to achieve, namely, to provide a thorough assessment of the short-term

mechanical properties of bast fibre reinforced thermosetting PMCs. It is hoped that

some further insight into the mechanisms controlling the mechanical behaviour of

these materials has been gained. Whilst it seems improbable that bast fibres will ever

directly replace glass fibre as a reinforcement, it is to be hoped that useful applications

can be found for bast fibre based PMCs, in which the benefits of light weight and

biodegradability might be exploited. Specifically, it is believed that certain aspects

should be considered further in the hope that performance might be enhanced. These

can be summarised as follows:

• Research into the origin of fibre defects and methods by which their occurrence

might be limited.

• New technologies for the preparation of fibres into useful reinforcement pre-forms.

• Processing technologies to fabricate composite structures containing high volume

fractions of fibre.

• Further fundamental research into the nature of the fibre-matrix interface, with

possible 'interface engineering' to help alleviate some of the worst effects of

micro-compressive damage.

The issues of environmental performance have not been considered here, or other

aspects such as acoustic properties, creep, fatigue etc. which will all be relevant in

practical terms. These too require further consideration. It is firmly believed,

however, that new and exciting applications can yet be found for these materials in

which their particular properties might be fully exploited.
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Appendix 3

Schematic representation of a non-woven felt manufacturing line
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Appendix 4

Tensile test results

CSMglass fibre	 _______ ______ ______ ________ ________
No.	 Max.	 Tens.	 Auto. Young's	 Proof	 Strain at

Load	 Strength Mod.	 Mod	 Stress	 Break
_______	 (N)	 (MPa) (GPa) (GPa)	 (MPa) (mm/mm)

1	 5905.50	 62.20	 8.35	 9.09	 55.10	 0.0137
2	 7031.80	 78.40	 7.80	 8.48	 59.70	 0.0186
*3	 6619.40	 57.90	 7.34	 8.22	 48.20	 0.0328
4	 6249.20	 69.60	 7.61	 7.87	 58.80	 0.0156

5	 6492.70	 70.80	 7.22	 7.57	 60.20	 0.0163
6	 7034.60	 77.30	 7.23	 7.75	 60.20	 0.0195
7	 6236.60	 68.30	 7.21	 7.63	 57.80	 0.0167
8	 6311.70	 67.70	 7.52	 7.90	 55.20	 0.0170
9	 6377.80	 70.30	 6.95	 7.41	 58.70	 0.0171
10	 7856.70	 86.80	 7.71	 8.58	 65.60	 0.0198
11	 6837.30	 76.00	 7.24	 8.05	 56.80	 0.0191
12	 7145.50	 79.70	 6.74	 7.11	 67.80	 0.0178

Mean	 6679.90	 73.40	 7.42	 7.95	 59.60	 0.0174

SD	 558.50	 6.90	 0.45	 0.57	 3.90	 0.0018

CoV	 8.40	 9.50	 6.00	 7.21	 6.60	 10.4789
Mm.	 5905.50	 62.20	 6.74	 7.11	 55.10	 0.0137
Max	 7856.70	 86.80	 8.35	 9.09	 67.80	 0.0198

Un-reinforced
polymer________ _______ ______ _______ _______ ________

No.	 Max.	 Tens.	 Auto. Young's	 Proof	 Strain at
Load Strength Mod.	 Mod	 Stress	 Break

_______	 (N)	 (MPa) (GPa) (GPa)	 (MIPa) (mmlmm)

3	 3758.10	 40.20	 3.68	 3.83	 42.30	 0.0133
5	 5152.90	 57.00	 3.61	 3.78	 50.30	 0.0204
6	 4445.40	 48.40	 3.61	 3.78	 50.60	 0.0164
7	 4228.50	 45.50	 3.72	 3.73	 49.20	 0.0153
8	 4429.00	 47.00	 3.72	 4.01	 47.30	 0.0163
9	 4583.00	 52.90	 3.67	 3.67	 52.80	 0.0168
10	 5081.00	 55.60	 3.61	 3.70	 52.90	 0.0195
11	 4474.40	 48.20	 3.78	 3.67	 50.30	 0.0016
12	 4271.20	 46.20	 3.74	 4.07	 50.10	 0.0154
14	 4559.40	 49.70	 3.66	 3.73	 53.20	 0.0169

Mean	 4498.30	 49.10	 3.68	 3.80	 49.90	 0.0166
SD	 402.70	 5.00	 0.06	 0.14	 3.20	 0.0021

CoV	 9.00	 10.20	 1.56	 3.64	 6.50	 12.3561

Mm.	 3758.10	 40.20	 3.61	 3.67	 42.30	 0.0133

Max	 5152.90	 57.00	 3.78	 4.07	 53.20	 0.0204
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2 layer jute reinforcement
No.	 Max.	 Tens.	 Auto. Young's	 Proof	 Strain at

Load	 Strength Mod.	 Mod	 Stress	 Break
_______	 (N)	 (MPa) (GPa) (GPa)	 (MPa) (mm/mm)

1	 4360.40	 48.20	 6.39	 6.67	 42.20	 0.0122
2	 4443.60	 46.00	 6.26	 6.42	 44.00	 0.0109
3	 4553.30	 48.30	 6.68	 7.70	 44.30	 0.0112
4	 4604.80	 48.30	 6.26	 6.48	 44.40	 0.0121
5	 4263.70	 44.90	 6.58	 7.13	 44.10	 0.0107
6	 4545.10	 48.70	 6.43	 6.68	 46.80	 0.0114
7	 4308.90	 45.20	 6.63	 6.82	 42.50	 0.0106
8	 4431.00	 46.20	 6.37	 6.71	 42.90	 0.0109
9	 4313.00	 45.50	 6.40	 6.52	 45.70	 0.0102
10	 4443.90	 46.20	 6.36	 6.59	 42.10	 0.0111
11	 4129.50	 44.00	 6.14	 6.39	 46.30	 0.0106
12	 3929.10	 41.70	 6.34	 6.37	 45.30	 0.0094

Mean	 4360.50	 46.10	 6.40	 6.65	 44.20	 0.0109
SD	 191.50	 2.10	 0.16	 0.25	 1.60	 0.0008

CoV	 4.40	 4.50	 2.50	 3.74	 3.60	 7.0523
Mm.	 3929.10	 41.70	 6.14	 6.37	 42.10	 0.0094
Max.	 4604.80	 48.70	 6.68	 7.13	 46.80	 0.0122

4 layer jute reinforcement
No.	 Max.	 Tens.	 Auto. Young's	 Proof	 Strain at

Load Strength Mod.	 Mod	 Stress	 Break
_______	 (N)	 (MPa) (GPa) (GPa)	 (MPa) (mmlmni)

1	 7004.50	 72.10	 8.56	 9.20	 53.00	 0.0141
2	 7299.40	 72.30	 8.04	 8.67	 44.40	 0.0171
3	 7337.30	 71.90	 8.36	 8.95	 47.00	 0.0159
4	 7125.00	 70.10	 8.66	 9.28	 54.10	 0.0141
5	 7550.40	 75.80	 8.84	 9.30	 58.90	 0.0142
6	 7785.90	 78.50	 8.54	 9.19	 56.30	 0.0152
7	 7428.90	 75.60	 8.50	 9.20	 54.10	 0.0152
8	 7461.40	 72.00	 9.10	 9.87	 50.10	 0.0144
9	 7209.30	 74.20	 8.86	 9.61	 56.90	 0.0136
10	 7470.70	 71.60	 8.99	 9.79	 54.90	 0.0133
11	 7429.30	 74.20	 8.49	 8.95	 56.50	 0.0138
12	 7642.00	 75.00	 8.61	 9.21	 58.00	 0.0138

Mean	 7395.30	 73.60	 8.63	 9.25	 53.70	 0.0146
SD	 218.00	 2.40	 0.29	 0.35	 4.50	 0.0011

CoV	 2.90	 3.20	 3.36	 3.82	 8.30	 7.6116
Miii.	 7004.50	 70.10	 8.04	 8.67	 44.40	 0.0133
Max.	 7785.90	 78.50	 9.10	 9.87	 58.90	 0.0171
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6 layer jute reinforcement _______ _______ ________ ________
No.	 Max.	 Tens.	 Auto. Young's	 Proof	 Strain at

Load	 Strength Mod.	 Mod	 Stress	 Break
_______	 (N)	 (MPa) (GPa) (GPa)	 (MiPa) (mm/mm)

1	 9252.90	 74.40	 9.09	 9.87	 54.70	 0.0137
2	 9819.90	 78.40	 9.14	 9.78	 53.70	 0.0149

3	 10464.10	 83.90	 8.46	 9.63	 45.60	 0.0196

4	 10450.10	 85.00	 8.65	 9.20	 52.90	 0.0176

5	 10192.80	 83.30	 9.19	 9.97	 49.80	 0.0162
6	 10510.50	 87.70	 9.14	 9.76	 53.30	 0.0181
7	 11002.40	 85.90	 8.85	 9.88	 53.40	 0.0184
8	 9878.80	 77.90	 8.45	 9.23	 50.90	 0.0163

9	 9735.00	 78.70	 9.31	 10.03	 49.80	 0.0157
10	 9800.40	 80.80	 8.89	 9.57	 47.10	 0.0172

11	 9193.60	 72.90	 8.65	 9.11	 49.50	 0.0146
12	 10746.60	 85.40	 9.16	 10.37	 51.30	 0.0179

Mean	 10087.30	 81.20	 8.92	 9.70	 51.00	 0.0167
SD	 568.30	 4.80	 0.30	 0.38	 2.80	 0.0017

CoV	 5.60	 5.90	 3.38	 3.87	 5.50	 10.4829
Mm.	 9193.60	 72.90	 8.45	 9.11	 45.60	 0.0137
Max.	 11002.40	 87.70	 9.31	 10.37	 54.70	 0.0196

3 layer hemp reinforcement _______ _______ ________ ________
No.	 Max.	 Tens.	 Auto. Young's	 Proof	 Strain at

Load Strength Mod.	 Mod	 Stress	 Break
_______	 (N)	 (MPa) (GPa) (GPa)	 (MPa) (mnilmm)

1	 3180.10	 30.30	 5.10	 35.40	 29.10	 0.0077
2	 3664.10	 39.10	 5.29	 44.39	 39.40	 0.0096
3	 3371.10	 32.30	 5.39	 37.69	 33.10	 0.0082
4	 3496.90	 34.00	 6.07	 40.07	 37.80	 0.0086
5	 3298.50	 31.50	 5.39	 36.89	 34.10	 0.0085
6	 3609.80	 35.50	 5.63	 41.13	 38.20	 0.0094
7	 3407.10	 37.40	 6.16	 43.56	 36.90	 0.0087
8	 3644.00	 34.80	 5.31	 40.11	 37.20	 0.0101
9	 3186.20	 30.70	 6.02	 36.72	 34.50	 0.0084

10	 3378.50	 32.20	 5.44	 37.64	 34.00	 0.0084
11	 3423.60	 33.80	 5.26	 39.06	 37.10	 0.0092

Mean	 3423.60	 33.80	 5.55	 39.35	 35.60	 0.0088

SD	 168.20	 2.80	 0.37	 3.17	 3.00	 0.0007

CoV	 4.90	 8.20	 6.58	 14.78	 8.30	 7.7460

Mm.	 3180.10	 30.30	 5.10	 35.40	 29.10	 0.0077

Max.	 3664.10	 39.10	 6.16	 45.26	 39.40	 0.0101
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6 layer hemp reinforcement _______ _______ ________ ________
No.	 Max.	 Tens.	 Auto. Young's	 Proof	 Strain at

	

Load	 Strength Mod.	 Mod	 Stress	 Break
_______	 (N)	 (MPa) (GPa) (GPa) (MPa) (mmlmm)

1	 4478.20	 49.10	 7.47	 7.88	 43.70	 0.0112
2	 4979.30	 55.00	 8.23	 8.75	 47.30	 0.0122
3	 4959.90	 57.20	 7.45	 7.80	 45.80	 0.0141
4	 4848.40	 54.40	 7.48	 7.78	 44.90	 0.0129
5	 5026.50	 54.70	 8.06	 8.56	 44.20	 0.0134
6	 5219.00	 57.80	 8.43	 8.90	 43.20	 0.0138
7	 4845.60	 54.90	 8.45	 8.95	 47.80	 0.0117
8	 5187.90	 54.60	 9.45	 10.29	 45.50	 0.0129
9	 4908.50	 55.80	 7.79	 8.60	 40.80	 0.0152
10	 4925.60	 56.00	 8.68	 9.23	 45.40	 0.0122
11	 4152.30	 47.00	 7.56	 8.15	 40.10	 0.0114

Mean	 4866.50	 54.10	 8.10	 8.63	 44.40	 0.0128
SD	 306.80	 3.50	 0.63	 0.74	 2.40	 0.0012

CoV	 6.30	 6.40	 7.83	 8.60	 5.40	 9.5432
Miii.	 4152.30	 46.10	 7.45	 7.78	 40.10	 0.0112
Max.	 5219.00	 57.80	 9.45	 10.29	 47.80	 0.0152

9 layer Hemp reinlocement
No.	 Max.	 Tens.	 Auto. Young's	 Proof	 Strain at

Load Strength Mod.	 Mod	 Stress	 Break
_______	 (N)	 (MIPa) (GPa) (GPa)	 (MIPa) (mm/mm)

1	 8670.80	 88.50	 8.98	 10.45	 53.70	 0.0214
2	 8587.70	 83.50	 8.69	 10.28	 49.80	 0.0206
4	 8882.60	 90.20	 8.79	 10.66	 49.90	 0.0234
5	 8045.60	 84.30	 8.49	 9.97	 50.40	 0.0209
6	 8150.80	 84.60	 8.86	 10.53	 43.80	 0.0216
8	 9023.00	 91.10	 9.08	 10.67	 54.10	 0.0226
9	 8458.20	 88.40	 8.95	 10.19	 50.90	 0.0204
10	 7862.20	 80.50	 9.36	 10.80	 54.10	 0.0176
11	 7831.60	 79.60	 8.39	 9.38	 49.90	 0.0196
12	 7620.70	 73.60	 9.00	 10.41	 52.20	 0.0172
13	 8528.80	 87.70	 9.12	 10.93	 50.50	 0.0211

Mean	 8332.90	 84.70	 8.88	 10.39	 50.80	 0.0206
SD	 459.10	 5.30	 0.28	 0.43	 2.90	 0.0019

CoV	 5.50	 6.20	 3.19	 4.16	 5.70	 9.1645
Mm.	 7620.70	 73.60	 8.39	 9.38	 43.80	 0.0172
Max.	 9023.00	 91.10	 9.36	 10.93	 54.10	 0.0234
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Appendix 5

THREE POINT FLEXURAL PROPERTIES

UN-REINFORCED POLYESTER RESIN

Stress	 Stress	 Strain	 Energy to Energy to
Modulus	 Modulus at Yield at Yield	 at Yield	 Yield	 Break

Specimen	 (Man.	 (Aut.	 (offset)	 (Max.	 (Max.	 Point	 Point
Young)	 Young)	 Load)	 Load)

Number	 (MPa)	 (MPa)	 (MPa)	 (MPa)	 (mm/mm)	 (J)	 (J)

1	 3394	 3372	 104.8	 116.9	 0.0392	 0.875	 1.158
2	 3469	 3404	 103.5	 111.6	 0.0364	 0.849	 1.022
3	 3284	 3283	 43.51	 86.58	 0.0279	 0.5867	 0.5867
4	 3421	 3340	 106.5	 112.6	 0.037	 0.9014	 1.038
5	 3583	 3544	 32.94	 99.1	 0.0305	 0.7239 0.7239
6	 3338	 3376	 106.6	 109.6	 0.0354	 0.8843	 0.9496
7	 3400	 3363 -97.67 0.0312 0.7322 0.7322
8	 3492	 3417	 107.6	 115.6	 0.0378	 0.9127	 1.096

Mean:	 3423	 3387 -106.2	 0.0344 0.8082 0.9133
SD:	 93	 76	 10.65	 0.004	 0.1156	 0.2061

CSM GLASS FIBRE REINFORCED
POLYESTER

Stress	 Stress	 Strain Energy to Energy to
Modulus	 Modulus at Yield at Yield 	 at Yield	 Yield	 Break

Specimen	 (Man.	 (Aut.	 (offset)	 (Max.	 (Max.	 Point	 Point
Young)	 Young)	 Load)	 Load)

Number	 (MPa)	 (MPa)	 (MIPa)	 (MIPa)	 (mm/mm)	 (J)	 (J)

1	 6847	 6826	 117.8	 160.5	 0.0337	 0.5826	 3.078
2	 6162	 6281	 106.3	 148.2	 0.0365	 0.5151	 2.266
3	 7082	 7242	 147	 186.4	 0.0362	 0.8279	 3.285
4	 6313	 6269	 105.3	 147.9	 0.036	 0.4983	 2.619
5	 5613	 6286	 115.8	 151.7	 0.0357	 0.5957	 2.442
6	 6028	 6626	 147.5	 169.8	 0.032	 0.8931	 2.631
7	 6559	 6774	 138.3	 179.1	 0.0398	 0.781	 3.02
8	 7190	 7167	 140.3	 173.4	 0.0339	 0.7727	 2.863
9	 7203	 6848	 143.1	 181.2	 0.0371	 0.8043	 2.898
10	 6578	 6602	 119.1	 147.5	 0.0313	 0.5961	 2.606

Mean:	 6557	 6692	 128	 164.6	 0.0352	 0.6867	 2.771
SD:	 534	 350	 16.8	 15.2	 0.0025	 0.1433	 0.313
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2 LAYER JUTE REINFORCED POLYESTER

	

Stress	 Stress	 Strain Energy to Energy to

	

Modulus Modulus at Yield	 at Yield	 at Yield	 Yield	 Break
Specimen	 (Man.	 (Aut.	 (offset)	 (Max	 (Max	 Point	 Point

	

Young)	 Young)	 Load)	 Load)
Number	 (MPa)	 (MPa)	 (MPa)	 (MPa) (mm/mm)	 (J)	 (J)

1	 4995	 4912	 55.73	 62.64	 0.0172	 0.179	 0.3388
2	 5059	 4856	 56.75	 60.88	 0.0168	 0.1802 0.2712
3	 5229	 4900	 59.64	 72.11	 0.0205	 0.1971	 0.3535
4	 5104	 4946	 62.22	 78.04	 0.0218	 0.2151	 0.398
5	 5134	 4919	 58.48	 68.53	 0.0193	 0.1922 0.3928
6	 4995	 4747	 58.32	 64.84	 0.0179 0.2049 0.3036
7	 5149	 4983	 59.99	 72.23	 0.0193	 0.2094	 0.393
8	 5049	 4931	 61.11	 75.48	 0.0209	 0.2093	 0.3592

Mean:	 5089	 4899	 59.03	 69.34	 0.0192 0.1984 0.3513
SD	 81	 71	 2.16	 6.17	 0.0018	 0.0137	 0.0456

4 LAYER JUTE REINFORCED POLYESTER

Stress	 Stress	 Strain Energy to Energy to
Modulus	 Modulus at Yield at Yield 	 at Yield	 Yield	 Break

Specimen	 (Man.	 (Aut.	 (offset)	 (Max	 (Max	 Point	 Point
Young)	 Young)	 Load)	 Load)

Number	 (MPa)	 (MPa)	 (MPa)	 (MPa) (mmlmm)	 (J)	 (J)

1	 6926	 6893	 71.81	 96.31	 0.0215	 0.237	 0.8278
2	 6946	 6820	 71.48	 91.65	 0.0199	 0.2422 0.8157
3	 7417	 7129	 75.96	 97.84	 0.02	 0.2505 0.8186
4	 6988	 6911	 74.23	 104.9	 0.0233	 0.2639 0.9743
5	 7091	 6755	 74.61	 90.01	 0.0196	 0.2615 0.8317
6	 7424	 7054	 74.18	 94.72	 0.02	 0.2415	 0.832
7	 7134	 7129	 73.69	 103.1	 0.0223	 0.2478	 0.89
8	 7182	 7043	 73.39	 101.6	 0.0223	 0.2469 0.8721

Mean:	 7139	 6967	 73.67	 97.52	 0.0211	 0.2489 0.8578
SD:	 196	 142	 1.47	 5.38	 0.0014	 0.0095	 0.054
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6 LAYER JUTE REINFORCED POLYESTER

Stress	 Stress	 Strain Energy to Energy to
Modulus Modulus at Yield at Yield	 at Yield	 Yield	 Break

	

Specimen (Man.	 (Aut.	 (offset)	 (Max	 (Max	 Point	 Point

	

Young)	 Young)	 Load)	 Load)
Number	 (M1Pa)	 (MIPa)	 (MIPa)	 (MPa) (mm/mm)	 (J)	 (J)

1	 6578	 7107	 82.11	 109.2	 0.0228	 0.3804	 1.646
2	 6784	 6952	 78.03	 99.37	 0.0206 0.3335	 1.36
3	 6585	 7021	 78	 99.44	 0.0209 0.3409	 1.383
4	 7030	 7162	 80.16	 109.2	 0.023	 0.3566	 1.576
5	 7385	 7220	 83.96	 108.6	 0.0224 0.3712	 1.578
6	 7230	 7162	 83.15	 109.4	 0.0231	 0.3778	 1.422
7	 6619	 6996	 79.54	 103.8	 0.0213	 0.351	 1.411
8	 7067	 7102	 81.27	 105.6	 0.0222 0.3564	 1.469

Mean:	 6910	 7090	 80.78	 105.6	 0.022	 0.3585	 1.481
SD:	 313	 93	 2.23	 4.31	 0.001	 0.017 L_0.106

3 LAYER HEMP
REINFORCEMENT

Stress	 Stress	 Strain Energy to Energy to
Modulus	 Modulus at Yield at Yield	 at Yield	 Yield	 Break

Specimen	 (Man.	 (Aut.	 (offset)	 (Max	 (Max	 Point	 Point
Young)	 Young)	 Load)	 Load)

Number	 (MPa)	 (MPa)	 (MIPa)	 (MIPa) (mmlmm)	 (J)	 ______
1	 4297	 4277	 61.42	 72.05	 0.0255	 0.2627 0.6447
2	 4346	 4182	 47.31	 59.31	 0.0223	 0.1762	 0.475
3	 4432	 4296	 49.2	 53.77	 0.0183	 0.1861	 0.3067
4	 4568	 4436	 47.69	 58.33	 0.0195	 0.1785 0.3608
5	 4534	 4420	 52.59	 65.27	 0.0232	 0.1983	 0.4801
6	 4965	 4512	 57.74	 66.97	 0.0229	 0.229	 0.4895
7	 4993	 4782	 58.04	 74.04	 0.0242 0.2241 0.6641
8	 4859	 4433	 52.78	 63.09	 0.0223	 0.1993 0.4609
9	 4784	 4570	 57.97	 69.03	 0.0235	 0.233	 0.5282
10	 4264	 4309	 39.37	 46.9	 0.0162	 0.1337 0.2321

Mean:	 4604	 4422	 52.41	 62.88	 0.0218	 0.2021 0.4642
SD:	 277	 172	 6.67	 8.44	 0.0029	 0.0365 0.1362

310



6 LAYER HEMP REINFORCED POLYESTER

Stress	 Stress	 Strain	 Energy to Energy to
Modulus	 Modulus at Yield at Yield	 at Yield	 Yield	 Break

Specimen	 (Man.	 (Aut.	 (offset) (Max Load) (Max Load) Point	 Point
Young)	 Young)

Number	 (MPa)	 (MPa)	 (MPa)	 (MIPa)	 (mmlmm)	 (J)	 (3)
1	 5820	 5615	 61.84	 77.52	 0.0247	 0.1967 0.8997
2	 6173	 6013	 67.39	 87.16	 0.0246	 0.2195	 1.018
3	 6090	 5782	 62.1	 81.03	 0.0276	 0.1959 0.8148
4	 6819	 6481	 70.23	 100.6	 0.0306	 0.2365	 1.318
5	 6376	 5971	 62.57	 79.11	 0.0231	 0.1939 0.8416
6	 6335	 6050	 65.3	 83.26	 0.0253	 0.2134	 1.29
7	 6138	 5993	 64.7	 82.48	 0.0241	 0.2051 0.9707
8	 6247	 5863	 66.77	 87.02	 0.027	 0.2323	 1.219

Mean:	 6250 T 5971	 65.11	 84.77	 0.0259	 0.2117 1.047
SD:	 287	 252	 2.94	 7.24	 0.0024	 0.0167 0.2023

9 LAYER HEMP REINFORCED POLYESTER

Stress	 Stress	 Strain Energy to Energy to
Modulus Modulus at Yield at Yield 	 at Yield	 Yield	 Break

Specimen	 (Man.	 (Aut.	 (offset)	 (Max (Max Load) Point 	 Point

	

Young)	 Young)	 Load)
Number	 (MPa)	 (MPa)	 (MIPa)	 (MIPa)	 (mm/mm)	 (J)	 (J)

1	 7453	 7599	 77.82	 119.9	 0.0299	 0.255	 2.227
2	 8096	 7652	 77.27	 121.4	 0.0311	 0.2521	 1.945
3	 7896	 8023	 83.84	 132.5	 0.0309	 0.2989	 2.892
4,	 7809	 7457	 75.72	 113.9	 0.0278	 0.2376	 1.817
5	 8033	 7491	 77.89	 119.4	 0.0301	 0.2658	 2.282
6	 7126	 7343	 77.49	 119.5	 0.0303	 0.262	 2.11
7	 8103	 7710	 81.05	 124.5	 0.0303	 0.282	 2.52
8	 8079	 7799	 78.28	 116.1	 0.0266	 0.2424	 2.104

Mean:	 7824	 7634	 78.67	 120.9	 0.0297	 0.262	 2.237
SD:	 357	 215	 2.56	 5.7	 0.0016	 0.0204	 0.339
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WORK OF FRACTURE IN THREE POINT FLEXURE

UN-REINFORCED
POLYMER
Specimen Energy to Energy to Specimen Specimen Work to Work to

No.	 yield pt.	 break	 width	 thick.	 yield pt fracture
_______	 (J)	 (J)	 (mm)	 (mm) (kJ m2) (kJ 2)

1	 0.875019 1.15782	 15.44	 4.35	 13.0	 17.2

2	 0.848979 1.02153	 15.49	 4.35	 12.6	 15.2

3	 0.58666 0.58666	 15.45	 4.37	 8.7	 8.7

4	 0.901449 1.03797	 15.23	 4.37	 13.5	 15.6

5	 0.723945 0.723945	 15.21	 4.34	 11.0	 11.0

6	 0.884279 0.949618	 15.11	 4.36	 13.4	 14.4

7	 0.73217	 0.73217	 15.12	 4.35	 11.1	 11.1

8	 0.912722 1.09642	 15.53	 4.34	 13.5	 16.3

Average	 12.1	 13.7

S.D.	 1.7	 3.0

CSM GLASS FIBRE
REINFORCEMENT
Specimen Energy to Energy to Specimen Specimen Work to Work to

No.	 yield pt.	 break	 width	 thick.	 yield pt fracture

_______	 (J)	 (J)	 (mm)	 (mm) (kJ m2) (kJ m2)

	1	 0.582632 3.07837	 15.42	 4.23	 8.9	 47.2

	

2	 0.515105 2.26645	 15.41	 4.23	 7.9	 34.8

	

3	 0.827885	 3.2853	 15.51	 4.23	 12.6	 50.1

	

4	 0.49832 2.61907	 15.08	 4.22	 7.8	 41.2

	

5	 0.595654 2.44169	 15.31	 4.23	 9.2	 37.7

	

6	 0.893056 2.63053	 15.5	 4.23	 13.6	 40.1

	

7	 0.78104 3.02032	 15.39	 4.23	 12.0	 46.4

	

8	 0.772717 2.86307	 15.43	 4.27	 11.7	 43.5

	9	 0.8043 14 2.89847	 14.96	 4.25	 12.7	 45.6

10	 0.596122 2.60553	 15.15	 4.24	 9.3	 40.6

Average	 10.6	 42.7

S.D.	 2.2	 4.7
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2 LAYER JUTE REINFORCEMENT
Specimen Energy to Energy to Specimen Specimen Work to Work to

No.	 yield pt.	 break	 width	 thick.	 yield pt fracture
_______	 (J)	 (J)	 (mm)	 (mm) (kJ m2) (kJ 2)

1	 0.179021 0.338751	 14.8	 4.07	 3.0	 5.6
2	 0.180241 0.271242	 14.61	 4.04	 3.1	 4.6
3	 0.197096 0.35354	 14.63	 3.98	 3.4	 6.1
4	 0.215147 0.39796	 14.79	 4	 3.6	 6.7
5	 0.192185 0.392758	 14.84	 4.03	 3.2	 6.6
6	 0.204934 0.303609	 15.2	 4.09	 3.3	 4.9
7	 0.209393 0.39302	 15.16	 4.14	 3.3	 6.3
8	 0.209283 0.359163	 14.94	 3.98	 3.5	 6.0

Average	 3.3	 5.8

S,D.	 0.2	 0.8

4 LAYER JUTE REINFORCEMENT
Specimen Energy to Energy to Specimen Specimen Work to Work to

No.	 yield pt.	 break	 width	 thick.	 yield Pt fracture
_______	 (J)	 (J)	 (mm)	 (mm) (kJ ..2) (kJ m2)

1	 0.236962 0.827776	 14.57	 4.45	 3.7	 12.8
2	 0.242201 0.815688	 15.09	 4.45	 3.6	 12.1
3	 0.250545 0.818609	 14.64	 4.42	 3.9	 12.7
4	 0.263909 0.974316	 15.21	 4.46	 3.9	 14.4
5	 0.261478 0.831654	 15.1	 4.44	 3.9	 12.4
6	 0.241497 0.831979	 14.49	 4.44	 3.8	 12.9
7	 0.247812 0.890019	 14.8	 4.47	 3.7	 13.5
8	 0.246914 0.872082	 14.7	 4.47	 3.8	 13.3

Average	 3.8	 13.0

S.D.	 0.1	 0.7
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6 LAYER JUTE REINFORCEMENT
Specimen Energy to Energy to Specimen Specimen Work to Work to

No.	 yield pt.	 break	 width	 thick,	 yield pt fracture
________	 (J)	 (J)	 (nun)	 (mm) (kJ 2) (kJ m2)

1	 0.380416 1.64587	 15.36	 5.48	 4.5	 19.6
2	 0.333471	 1.3598	 14.65	 5.51	 4.1	 16.8
3	 0.340877 1.38308	 15.05	 5.52	 4.1	 16.6
4	 0.356577 1.57631	 15.04	 5.52	 4.3	 19.0
5	 0.371181 1.57814	 14.78	 5.44	 4.6	 19.6
6	 0.377779 1.42159	 15.15	 5.43	 4.6	 17.3
7	 0.351003 1.41145	 14.92	 5.52	 4.3	 17.1
8	 0.3564	 1.46921	 14.79	 5.47	 4.4	 18.2

Average	 4.4	 18.0

S.D.	 0.2	 1.2

3 LAYER HEMP REINFORCEMENT
Specimen Energy to Energy to Specimen Specimen Work to Work to

No.	 yield pt.	 break	 width	 thick.	 yield pt fracture
_______	 (3)	 (J)	 (mm)	 (mm) (kJ m2) (kJ 2)

1	 0.262702 0.644653	 15.33	 4.29	 4.0	 9.8
2	 0.176184 0.475014	 15.83	 4.32	 2.6	 6.9
3	 0.186074 0.306663	 15.68	 4.3	 2.8	 4.5
4	 0.178517 0.360779	 16.49	 4.3	 2.5	 5.1
5	 0.198309 0.480099	 15.64	 4.3	 2.9	 7.1
6	 0.22898 0.489481	 15.79	 4.29	 3.4	 7.2
7	 0.224102 0.664134	 15.72	 4.29	 3.3	 9.8
8	 0.19932 0.460878	 15.73	 4.3	 2.9	 6.8
9	 0.233004 0.528154	 15.86	 4.31	 3.4	 7.7
10	 0.13375 0.232052	 16.16	 4.31	 1.9	 3.3

Average	 3.0	 6.8

S.D.	 0.6	 2.1
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6 LAYER HEMP REDFORCEMENT

Specimen Energy to Energy to Specimen Specimen Work to Work to
No.	 yield pt.	 break	 width	 thick.	 yield Pt fracture

_______	 (J)	 (J)	 (mm)	 (mm) (kJ m2) (kJ m2)

1	 0.196685 0.899712	 15.51	 3.89	 3.3	 14.9
2	 0.219476	 1.0183	 15.53	 3.96	 3.6	 16.6
3	 0.195886 0.814831	 15.69	 3.87	 3.2	 13.4
4	 0.236525 1.31838	 15.77	 4	 3.7	 20.9
5	 0.19386 0.841579	 15.72	 3.91	 3.2	 13.7
6	 0.213449 1.29001	 15.65	 4.06	 3.4	 20.3
7	 0.205067 0.970656	 15.61	 3.94	 3.3	 15.8

8	 0.232295 1.21864	 15.64	 4.13	 3.6	 18.9

Average	 3.4	 16.8

S.D.	 0.2	 2.9

9 LAYER HEMP REINFORCEMENT
Specimen Energy to Energy to Specimen Specimen Work to Work to

No.	 yield pt.	 break	 width	 thick.	 yield pt fracture
_______	 (J)	 (J)	 (mm)	 (mm) (kJ ..2) (kJ m2)

	

1	 0.254973 2.22665	 15.13	 4.2	 4.0	 35.0

	

2	 0.252139 1.94536	 15.09	 4.21	 4.0	 30.6

	

3	 0.298901 2.89195	 15.52	 4.33	 4.4	 43.0

	

4	 0.23763	 1.81671	 14.64	 4.18	 3.9	 29.7

	

5	 0.265826 2.28223	 15.31	 4.24	 4.1	 35.2

	

6	 0.262046 2.11012	 14.97	 4.27	 4.1	 33.0

	

7	 0.281999 2.51992	 15.44	 4.3	 4.2	 38.0

	

8	 0.242415 2.10441	 14.69	 4.2	 3.9	 34.1

Average	 4.1	 34.8

S.D.	 0.2	 4.2
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Appendix 6

Results of Charpy impact strength tests

Unreinforced
polymer________ ________ ________ ________
Specimen Thick. Width Energy W. ofF.

No.	 (mm)	 (mm) (J)	 (kJ m-2)

1	 4.34.	 9.81	 0.39	 9.04
2	 4.35	 9.74	 0.38	 8.85
3	 4.33	 9.83	 0.44	 10.34
4	 4.34	 9.76	 0.19	 4.49
5 .	4.35	 9.78	 0.45	 10.46
6	 4.35	 9.92	 0.39	 8.92
7	 4.31	 9.20	 0.25	 6.18
8	 4.36	 9.98	 0.45	 10.23
9	 4.36	 10.05	 0.27	 6.16
10	 4.34	 9.75	 0.55	 13.00

Average	 8.77
S.D.	 2.52

CSM glass fibre (V1 - .- 20%) _______ _______
Specimen Thick. Width Energy W. ofF.

No.	 (mm)	 (mm)	 (J)	 (kJ m-2)

	1 	 4.29	 9.75	 2.52	 60.25

	

2	 4.24	 9.79	 2.76	 66.49

	

3	 4.24	 9.77	 3.32	 80.15

	

4	 4.25	 9.86	 3.46	 82.57

	

5	 4.25	 9.18	 3.18	 81.51

	

6	 4.25	 9.90	 3.18	 75.58

	

7	 4.24	 9.92	 3.02	 71.80

	

8	 4.25	 9.82	 3.22	 77.15

	

9	 4.25	 9.82	 3.60	 86.26
10	 4.25	 9.82	 3.24	 77.63

Average 75.94
S.D.	 7.86
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2 Layer jute (V1 - .-

	

19%)	 ________ ________ ________ ________
Specimen Thick. Width Energy W. ofF.

No.	 (mm)	 (mm)	 (J)	 (kJ m-2)
	1 	 4.03	 9.33	 0.24	 6.38

	

2	 4.05	 9.95	 0.26	 6.45
	3 	 3.95	 9.73	 0.25	 6.50
	4 	 3.96	 10.07	 0.28	 7.02

	

5	 3.98	 10.26	 0.28	 6.86

	

6	 3.97	 10.24	 0.26	 6.40

	

7	 4.10	 10.04	 0.25	 6.07

	

8	 4.00	 10.73	 0.28	 6.52

	

9	 3.99	 9.99	 0.28	 7.02
10	 3.96	 9.95	 0.25	 6.34

	

11	 3.97	 9.74	 0.24	 6.21
12	 3.97	 10.48	 0.26	 6.25

Average	 6.50
S.D.	 0.31

4 Layer jute (Vf .-

	

36%)	 _______ _______ _______ ________
Specimen Thick. Width Energy W. ofF.

No.	 (mm)	 (mm)	 (J)	 (kJ m-2)
	1 	 4.43	 10.60	 0.65	 13.84

	

2	 4.45	 9.75	 0.62	 14.29

	

3	 4.36	 10.64	 0.62	 13.36

	

4	 4.35	 9.99	 0.60	 13.81

	

5	 4.43	 10.26	 0.66	 14.52

	

6	 4.45	 10.22	 0.66	 14.51

	

7	 4.45	 9.98	 0.60	 13.51

	

8	 4.44	 10.01	 0.65	 14.63

	

9	 4.40	 9.60	 0.60	 14.20

	

10	 4.38	 10.03	 0.66	 15.02

	

11	 4.40	 10.22	 0.60	 13.34

	

12	 4.37	 10.17	 0.60	 13.50

Average	 14.05
S.D.	 0.56J
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3 Layer hemp (V1 -
15%
Specimen Thick. Width Energy W. ofF.

No.	 (mm)	 (mm)	 (J)	 (kJ m-2J
1	 4.35	 10.44	 0.36	 7.93
2	 4.30	 10.68	 0.30	 6.53
3	 4.30	 10.69	 0.25	 5.44
4	 4.31	 10.86	 0.34	 7.26
5	 4.29	 10.38	 0.30	 6.74
6	 4.31	 9.94	 0.32	 7.47
7	 4.30	 10.27	 0.28	 6.34
8	 4.31	 10.61	 0.34	 7.44
9	 4.30	 10.35	 0.26	 5.84

Average	 6.78
S.D.	 0.82

6 Layer jute (V1-

	

40%)	 ________ ________ ________ ________
Specimen Thick. Width Energy W. ofF.

No.	 (mm)	 (mm)	 (J)	 (kJm-2)

	

1	 5.46	 10.82	 1.22	 20.65
	2 	 5.54	 10.98	 1.06	 17.43

	

3	 5.49	 9.76	 0.84	 15.68
	4 	 5.54	 10.01	 1.06	 19.11

	

5	 5.54	 9.67	 1.06	 19.79

	

6	 5.49	 10.38	 0.96	 16.85
	7 	 5.43	 9.92	 0.80	 14.85
	8 	 5.54	 10.53	 1.06	 18.17

	

9	 5.53	 10.17	 0.94	 16.71

	

10	 5.35	 10.33	 0.84	 15.20

	

11	 5.42	 10.16	 1.00	 18.16

Average	 17.51
S.D.	 1.88
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6 Layer hemp (Vj--.

	

31%)	 _______ _______ _______ _______
Specimen Thick. Width Energy W. ofF.

No.	 (mm)	 (mm)	 (J)	 (kJ m-2)
	1 	 3.92	 9.90	 0.62	 15.98

	2 	 3.94	 10.09	 0.60	 15.09

	

3	 3.88	 10.36	 0.70	 17.41

	

4	 3.89	 10.37	 0.68	 16.86

	

5	 3.85	 10.37	 0.72	 18.03

	

6	 4.01	 10.53	 0.68	 16.10

	

7	 3.96	 10.38	 0.58	 14.11

	

8	 3.91	 9.67	 0.74	 19.57

	

9	 4.07	 10.88	 0.74	 16.71
10	 3.90	 10.15	 0.56	 14.15

Average 16.40
S.D.	 1.71

9 Layer hemp (V1 -

	

44%)	 _______ _______ _______ ________
Specimen Thick. Width Energy W. ofF.

No.	 (mm)	 (mm)	 (J)	 (kJ m-2)
	1 	 4.18	 10.43	 1.32	 30.28

	

2	 4.23	 10.22	 1.08	 24.98

	

3	 4.19	 9.90	 1.00	 24.11

	

4	 4.27	 10.33	 1.28	 29.02

	

5	 4.29	 10.59	 1.08	 23.77

	

6	 4.19	 10.40	 1.16	 26.62

	

7	 4.24	 10.37	 1.18	 26.84

	

8	 4.19	 10.18	 1.14	 26.73

	

9	 4.32	 10.27	 1.44	 32.46

	

10	 4.26	 10.32	 1.14	 25.93

Aerage 27.07
[_S.D.	 2.76
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Appendix 7

DETERMINATION OF PROVISIONAL VALUES FOR PLANE STRAIN

FRACTURE TOUGHNESS - Kq

Laminate type: Unreinforced Resin

	

Specimen "W"	 "a"	 "B"	 "aJW"	 f(a!W)	 Fq	 Kq

No.	 (mm)	 (mm)	 (mm)	 (N)	 (MN m''-3I2)

1	 15.18	 7.86	 8.44	 0.518	 2.819	 57	 0.611

2	 14.84	 8.20	 8.45	 0.553	 3.170	 47	 0.585

3	 15.17	 8.13	 8.44	 0.536	 2.995	 55	 0.627
4	 15.20	 7.95	 8.44	 0.523	 2.868	 60	 0.653

5	 15.20	 8.05	 8.46	 0.530	 2.932	 59	 0.655

6	 15.17	 8.03	 8.46	 0.529	 2.929	 55	 0.612

7	 15.16	 7.97	 8.40	 0.526	 2.894	 57	 0.631

8	 14.51	 8.01	 8.53	 0.552	 3.165	 46	 0.586

Average	 0.620

S.D.	 0.027

Laminate type: CSM Glass Fibre

Specimen "W"	 "a"	 "B"	 "aJW" f(aJV)	 Fq	 Kq

No.	 (mm) (mm) (mm) _____ _____ (N) (MN m"-3/2)

1	 15.20	 8.54	 6.59	 0.562	 3.276	 577	 9.183

2	 14.50	 8.20	 6.67	 0.566	 3.319	 517	 8.840
3	 15.19	 8.21	 6.60	 0.540	 3.041	 678	 10.013
4	 15.27	 8.24	 6.57	 0.540	 3.032	 645	 9.466

5	 15.12	 8.38	 6.77	 0.554	 3.189	 433	 6.582
6	 15.27	 8.10	 6.66	 0.530	 2.940	 735	 10.317

7	 15.25	 8.32	 6.68	 0.546	 3.095	 528	 7.793
8	 15.24	 8.39	 6.73	 0.551	 3.148	 660	 9.846

Average	 9.005

S.D.	 1.257
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Laminate type: 3 Layer Jute

	

Specimen "W"	 "a"	 "B"	 "a/W"	 f(aJW)	 Fq	 Kq

	

No.	 (mm)	 (mm)	 (mm)	 (N)	 (MN m''-3I2)

	1	 15.23	 8.72	 6.84	 0.573	 3.404	 136	 2.161

	

2	 15.14	 8.69	 6.83	 0.574	 3.422	 120	 1.936

	

3	 15.21	 8.63	 6.80	 0.567	 3.341	 148	 2.326

	

4	 15.22	 8.60	 6.87	 0.565	 3.313	 165	 2.543

	

5	 15.39	 8.53	 6.83	 0.554	 3.189	 186	 2.729

	

6	 15.21	 8.53	 6.85	 0.561	 3.264	 192	 2.926

	

7	 15.18	 8.59	 6.85	 0.566	 3.323	 157	 2.443

	

8	 15.17	 8.56	 6.82	 0.564	 3.304	 195	 3.034

Average	 2.512

S.D.	 0.375

Laminate type: 6 Layer Jute

	

Specimen "W"	 "a"	 "B"	 "a!W"	 f(a/W)	 Fq	 Kq
No.	 (mm)	 (mm)	 (mm)	 (N)	 (MN mA..3/2)

1	 15.09	 8.19	 7.01	 0.543	 3.065	 288	 4.076
2	 15.31	 8.28	 7.01	 0.541	 3.045	 316	 4.347
3	 15.66	 8.30	 6.99	 0.530	 2.936	 359	 4.616
4	 15.25	 8.26	 7.02	 0.542	 3.053	 307	 4.254
5	 15.23	 8.05	 7.01	 0.529	 2.922	 344	 4.577
6	 15.28	 8.31	 6.99	 0.544	 3.076	 332	 4.642
7	 15.32	 8.22	 7.01	 0.537	 3.001	 294	 3.982
8	 15.33	 8.16	 7.04	 0.532	 2.958	 320	 4.251

Average	 4.343

S.D.	 0.250
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Laminate type: 9 Layer Jute

	Specimen "W"	 "a"	 "B"	 "a!W"	 f(aAV)	 Fq	 Kq
No.	 (mm)	 (mm)	 (mm)	 (N)	 (MN m"-3/2)

1	 15.42	 8.09	 7.11	 0.525	 2.884	 415	 5.274
2	 15.52	 7.85	 7.21	 0.506	 2.712	 329	 3.841
3	 15.56	 8.20	 7.11	 0.527	 2.906	 431	 5.446
4	 15.15	 8.20	 7.13	 0.541	 3.049	 413	 5.683
5	 15.55	 8.13	 7.13	 0.523	 2.867	 426	 5.300
6	 15.62	 7.96	 7.13	 0.510	 2.746	 487	 5.764
7	 15.50	 8.01	 7.10	 0.517	 2.810	 464	 5.710
8	 15.19	 8.06	 7.16	 0.531	 2.942	 355	 4.674

Average	 5.211

S.D.	 0.656

Laminate type: 5 Layer Hemp

	

Specimen "W"	 "a"	 "B"	 "a/W"	 f(a/W)	 Fq	 Kq
No.	 (mm)	 (mm)	 (mm)	 (N)	 (MN m"-3/2)

1	 15.25	 8.34	 6.88	 0.547	 3.109	 216	 3.110
2	 15.07	 8.36	 6.87	 0.555	 3.195	 215	 3.243
3	 15.23	 8.40	 6.88	 0.552	 3.159	 211	 3.093
4	 15.31	 8.50	 6.87	 0.555	 3.200	 219	 3.231
5	 15.30	 8.22	 6.87	 0.537	 3.008	 225	 3.123
6	 15.30	 8.54	 6.84	 0.558	 3.233	 198	 2.967
7	 15.26	 8.41	 6.88	 0.551	 3.155	 202	 2.948
8	 15.33	 8.42	 6.86	 0.549	 3.134	 205	 2.961

Average	 3.084

S.D.	 0.117
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Laminate type: 10 Layer Hemp

	

Specimen "W"	 "a"	 "B"	 "aJW"	 f(aAV)	 Fq	 Kq

No.	 (mm)	 (mm)	 (mm)	 (N)	 (MN m"-312)

1	 15.35	 8.26	 7.09	 0.538	 3.017	 311	 4.175
2	 15.30	 8.47	 7.06	 0.554	 3.182	 368	 5.258
3	 15.57	 8.54	 7.04	 0.548	 3.126	 284	 3.895
4	 15.35	 8.60	 7.07	 0.560	 3.257	 326	 4.739
5	 15.24	 8.57	 7.03	 0.562	 3.281	 264	 3.930
6	 15.21	 8.50	 7.08	 0.559	 3.241	 329	 4.817
7	 15.30	 8.76	 7.07	 0.573	 3.404	 278	 4.243
8	 15.09	 8.42	 7.06	 0.558	 3.231	 315	 4.667

Average	 4.465

S.D.	 0.480

Laminate type: 15 Layer Hemp

	

Specimen "W"	 "a"	 "B"	 "a/W"	 f(alW)	 Fq	 Kq

	

No.	 (mm)	 (mm)	 (mm)	 (N)	 (MN m"-312)

	1	 14.99	 8.44	 7.18	 0.563	 3.290	 351	 5.258

	

2	 15.14	 8.42	 7.24	 0.556	 3.210	 426	 6.084

	

3	 15.34	 8.63	 7.20	 0.563	 3.284	 422	 6.079

	

4	 15.36	 8.35	 7.21	 0.544	 3.074	 463	 6.222

	

5	 15.46	 8.43	 7.21	 0.545	 3.092	 459	 6.143

	

6	 15.40	 8.37	 7.21	 0.544	 3.073	 401	 5.366

	

7	 15.83	 8.33	 7.17	 0.526	 2.899	 379	 4.616

	

8	 15.41	 8.11	 7.21	 0.526	 2.899	 480	 6.054

Average	 5.728

S.D.	 0.58 1
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CRITICAL 'J' FRACTURE TOUGHNESS

LAMINATE TYPE: CAST POLYESTER RESIN
- Specimen	 Pk. Load Co-ords. 	 Co-ordinates for Initial	 Total

	

Dimensions_____ _______ _______ Gradient Calculation 	 _______
No B	 W a (mm) def.	 L. (kN) def.1	 L.I	 def.2	 L.2 Work (J)
• (	 (mm) ____ (mm)	 - (mm) (mm) (mm) (mm) ____
1 8.44 15.18 7.86	 201.66 0.0567 201.54 -0.0034 201.66 0.0492 0.00381
2 8.45 14.84	 8.2	 0.3324 0.04685 0.244	 0.0037	 0.327	 0.0416 0.00308
3 8.44 15.17 8.13	 0.0233 0.05477 -0.052	 0.0166 0.0097 0.0429 0.00387
4 8.44 15.2	 7.95	 0.3652 0.05974 0.237	 0.0156	 0.326	 0.0563 0.00393
5 8.46 15.2	 8.05	 0.2782 0.05853	 0.193 0.00786 0.285	 0.0499 0.00378
6 8.46 15.17 8.03	 0.2552 0.05517 0.158	 0.0049	 0.247	 0.0447 0.00399
7 8.4 15.16 7.97	 0.2295 0.05652 0.145	 0.0072	 0.232	 0.0463 0.00355
8 8.53 14.51	 8.01	 0.3126 0.04631	 0.192	 0.0133	 0.278	 0.0446 0.00325
-	 ______

-	
K	 £	 i'	 Up	 "Jb" 'J. cnt." Wk. of

F.
No a/W f(a/W) (MPa (GPa) (JW A 2) 	(J)	 (JmA2) (kJ	 (kJ

•	 ______ m AO.5) _______ ______ _______ _______ mA2) m'-2)- ______
1 0.518 2.819 0.608	 3.8	 85	 0.0001	 5	 0.09	 0.06
2 0.553 3.170 0.583	 3.8	 79	 0.0007	 24	 0.10	 0.05
3 0.536 2.995 0.624	 3.8	 90	 0.0004	 12	 0.10	 0.07
4 0.523 2.868 0.650	 3.8	 98	 0.0000	 1	 0.10	 0.06
5 0.530 2.932 0.649	 3.8	 97	 0.0000	 1	 0.10	 0.06
6 0.529 2.929 0.613	 3.8	 87	 0.0006	 19	 0.11	 0.07
7 0.526 2.894 0.626	 3.8	 90	 0.0000	 0	 0.09	 0.06
8 0.552 3.165 0.590	 3.8	 80	 0.0003	 11	 0.09	 0.06

Average	 88	 9	 0.10	 0.06 
1

S.D.	 7	 9	 0.01	 o.oij
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LAMINATE TYPE: CSM GLASS FIBRE (Vf- 0.21)
- Specimen	 Pk. Load	 Co-ordinates for Iiiitial	 Total

Dimensions ______ Co-ords. _______ Gradient Calculation 	 _______
No B	 W a (mm) def. L (kN) def.i	 Li	 def.2	 L2 Work (J)
• () (mm) ____ (mm) ____ (mm) (mm) (mm) (mm) ____
1 6.59 15.20	 8.54	 1.560	 0.677	 0.256	 0.288	 0.523	 0.445 0.54961

2 6.67 14.50 8.20	 2.240	 0.555	 1.141	 -0.003	 1.498	 0.190 0.47357

3 6.60 15.19	 8.21	 1.644	 0.775	 0.060	 0.177	 0.451	 0.434 0.67894

4 6.57 15.27 8.24	 1.605	 0,778	 0.381	 0.073	 0.846	 0.381 0.71965

5 6.77 15.12 8.38	 1.666	 0.671	 0.467	 0.103	 0.870	 0.337 0.57014

6 6.66 15.27 8.10	 1.658	 0.941	 0.336	 0.063	 0.863	 0.451 0.84312

7 6.68 15.25	 8.32	 1.666	 0.795	 0.198	 0.021	 0.721	 0.360 0.76646

8 6.73 15.24 8.39	 1.442	 0.695	 0.191	 0.000	 0.696	 0.312 0.54100

-	 K	 E	 "Ja"	 Up	 "Jb" "J. crit." Wk. of

No a/W f(aIW) (MPa (GPa) (Jm"-2)	 (J)	 (Jm"-2) (kJ	 (kJ
•	 _____ m AO.5) _______ _______ _______ _______ m"-2) mA_2)
1 0.562 3.276 10.774	 7.97	 12781	 0. 1599	 7286	 20.07	 12.52

2 0.566 3.319 9.490	 7.97	 9915	 0.1887	 8981	 18.90	 11.27

3 0.540 3.041 11.445 	 7.97	 14423	 0.2219	 9635	 24.06	 14.74

4 0.540 3.032 11.418 7.97	 14354 0.2629 11384	 25.74	 15.58

5 0.554 3.189 10.200	 7.97	 11456	 0. 1824	 7996	 19.45	 12.49

6 0.530 2.940 13.209	 7.97	 19209	 0.2418	 10126	 29.34	 17.66

7 0.546 3.095 11.734	 7.97	 15160	 0.2789	 12051	 27.21	 16.56
8 0.551 3.148 10.368	 7.97	 11835	 0.1501	 6511	 18.35	 11.74

	

Average 13642	 9246	 22.89	 14.07

S.D.	 2856	 1939	 4.24	 2.39
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LAMINL&TE TYPE: 3 LAYER JUTE (Vf- 0.16)
Specimen	 Pk. Load Co-ords. Co-ordinates for Initial
Dimensions	 _______ _______ Gradient Calculation

No B	 W a (mm) def.	 L. (kN) def.1	 L.1	 def.2
	

L.2
() (mm) ____ (mm) _____ (mm) (mm) (mm)

1 6.84 15.23	 8.72	 0.707	 0.208	 0.115	 0.023	 0.395
	

0.145

2 6.83 15.14	 8.69	 0.779	 0.194	 0.189	 0.015	 0.472
	

0.138

3 6.80 15.21	 8.63	 0.862	 0.200	 0.146	 0.023	 0.382
	

0.127

4 6.87 15.22	 8.60	 0.668	 0.192	 0.120	 0.013	 0.292
	

0.09 1

5 6.83	 15.39	 8.53	 0.655	 0.217	 0.114	 0.019	 0.389
	

0.147

6 6.85 15.21	 8.53	 0.562	 0.192	 0.099	 0.028	 0.327
	

0.130

7 6.85	 15.18	 8.59	 0.618	 0.189	 0.115	 0.019	 0.344
	

0.118

8 6.82 15.17	 8.56	 0.724	 0.202	 0.085	 0.015	 0.372
	

0.147

-	 K	 E	 "Ja"	 Up	 "Jb" ".1. crit." Wk. of
F.

No aJW f(aJW) (MPa (GPa) (Jm"-2)	 (J)	 (JmA2)	 (kJ	 (kJ
______ m'0.5) _______ _______ _______ ________ m A 2) mA_2)

1 0.573 3.404 3.304	 6.22	 1540	 0.0214	 959	 2.50	 1.59

2 0.574 3.422 3.130	 6.22	 1382	 0.0217	 985	 2.37	 1.48

3 0.567 3.341 3.143	 6.22	 1394	 0.0536	 2397	 3.79	 2.21

4 0.565 3.313 2.959	 6.22	 1235	 0.0214	 939	 2.17	 1.36

5 0.554 3.189 3.184	 6.22	 1431	 0.0204	 871	 2.30	 1.52

6 0.561 3.264 2.926	 6.22	 l20	 0.011	 516	 1.72	 1.16

7 0.566 3.323 2.941	 6.22	 1221	 0.0147	 651	 1.87	 1.24

8 0.564 3.304 3.143	 6.22	 1393	 0.0396	 1759	 3.15	 1.86

	

Average 1351	 1135	 2.49	 1.55

S.D.	 118	 628	 0.68	 0.34

Total

lork (J)

0.071

0.065

0.099

0.062

0.071

0.053

0.056

0.084
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LAMINATE TYPE: 6 LAYER JUTE (Vf 0.31)
Specimen	 Pk. Load Co-ords. Co-ordinates for Initial 	 Total
Dimeniions______ ________ ________ Gradient Calculation 	 ________

No B

	

	 W a (mm) def.	 L. (tiN) def.1	 L.l	 def.2	 L.2 Work (J)
Jim) ___ (mm) ____ (mm) (mm) (m) (mm) ____

1 7.01 15.09	 8.19	 0.942	 0.336	 0.232	 0.042	 0.565	 0.244	 0.156

2 7.01 15.31	 8.28	 0.864	 0.338	 0.146	 0.038	 0.467	 0.244	 0.148

3 6.99 15.66	 8.30	 0.944	 0.383	 0.206	 0.032	 0.513	 0.252	 0.199

4 7.02 15.25	 8.26	 0.785	 0.345	 0.100	 0.041	 0.402	 0.246	 0.143

5 7.01	 15.23	 8.05	 0.881	 0.358	 0.152	 0.039	 0.491	 0.272	 0.173

6 6.99 15.28	 8.31	 0.887	 0.353	 0.181	 0.065	 0.500	 0.266	 0.171

7 7.01 15.32	 8.22	 0.846	 0.340	 0.089	 0.063	 0.445	 0.292	 0.181

8 7.04 15.33	 8.16	 0.726	 0.341	 0.062	 0.065	 0.402	 0.288	 0.148

K	 E	 "Ja"	 Up	 "Jb" "J. crit." Wk. of
F.

No a/W f(a!W) (MPa (GPa) (Jm A 2) 	 (J)	 (JmA2)	 (' .J	 (kJ
______ m"O.S) ________ ______ ________ ________ m'-2) m"2)

1 0.543 3.065 4.755	 8.39	 2365	 0.0629	 2603	 4.97	 3.23

2 0.541 3.045 4.650	 8.39	 2261	 0.0590	 2394	 4.66	 3.00

3 0.530 2.936 4.925	 8.39	 2537	 0.0967	 3757	 6.29	 3.87

4 0.542 3.053 4.781	 8.39	 2390	 0.0553	 2253	 4.64	 2.91

5 0.529 2.922 4.763	 8.39	 2373	 0.0798	 3170	 5.54	 3.44

6 0.544 3.076 4.935	 8.39	 2547	 0.0721	 2961	 5.51	 3.51

7 0.537 3.001 4.606	 8.39	 2219	 0.0911	 3663	 5.88	 3.64

8 0.532 2.958 4.529	 8.38	 2148	 0.0594	 2352	 4.50	 2.93

Average 2355	 2894	 5.25	 3.32

S.D.	 592	 0.66	 0.35

327



LAMINATE TYPE: 9 LAYER JUTE (Vf-- 0.47)
- Specimen	 Pk. Load Co-ords. Co-ordinates for Initial	 Total

Dimensions ______ _______ _______ Gradient Calculation
No B	 W a (mm) def.	 L. (kN) def.1	 L.1	 def.2	 L.2 Work (J)
• (!!	 (mm) ____ (mm) _____ (mm) (mm) (mm) (mm) _____
1 7.11	 15.42	 8.09	 0.898	 0.456	 0.111	 0.063	 0.484	 0.373	 0.234

2 7.21 15.52	 7.85	 0.968	 0.491	 0.216	 0.114	 0.467	 0.336	 0.233
3 7.11 15.56	 8.20	 1.027	 0.468	 0.227	 0.066	 0.620	 0.380	 0.251
4 7.13	 15.15	 8.20	 1.055	 0.451	 0.224	 0.048	 0.613	 0.344	 0.252
5 7.13	 15.55	 8.13	 0.577	 0.479	 -0.111	 0.090	 0.269	 0.399	 0.209
6 7.13 15.62	 7.96	 0.534	 0.503	 -0.224	 0.160	 0.159	 0.495	 0.249
7 7.10 15.50	 8.01	 0.956	 0.490	 0.184	 0.070	 0.623	 0.457	 0.244
8 7.16 15.19	 8.06	 1.023	 0.426	 0.254	 0.050	 0.571	 0.304	 0.211

K - E	 "Ja"	 Up	 "Jb" "J. crit." Wk. of
F.

No aJW f(aJW) (MPa (GPa) (Jm A 2) 	(J)	 (Jm"-2)	 (kJ	 (kJ
______ m'0.5) _______ _______ _______ _______ m'-2) m"-2)

T 0.525 2.884 5.795	 10.76	 2739	 0.1089	 4179	 6.92	 4.49
2 0.506 2.712 5.732	 10.76	 2679	 0.0967	 3498	 6.18	 4.21
3 0.527 2.906 5.914	 10.76	 2852	 0.1139	 4355	 7.21	 4.80
4 0.541 3.049 6.206	 10.76	 3141	 0.1183	 4777	 7.92	 5.09
5 0.523 2.867 5.959	 10.76	 2896	 0.0679	 2568	 5.46	 3.95
6 0.510 2.746 5.953	 10.76	 2890	 0.1044	 3822	 6.71	 4.56
7 0.517 2.810 6.030	 10.76	 2965	 0.1078	 4055	 7.02	 4.59
8 0.531 2.942 5.609	 10.76	 2566	 0.0978	 3830	 6.40	 4.13

--

	

Average 28411	 3885	 6.73	 4.48

S.D.	 179	 657	 0.73	 0.37
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LAMINATE TYPE: 5 LAYER HEMP
Ispecimen	 IPk. Load Co-ords. I
Dimensions

'o B	 W a(mm) def.	 L. (kN)

Q!L (mm) ____
1 6.88	 15.25	 8.34

	
1.12 1
	

0.27

2 6.87 15.07	 8.36
	

0.899
	

0.243

3 6.88	 15.23	 8.4
	

1.02 1
	

0.241

4 6.87 15.31	 8.5
	

0.932
	

0.25

5 6.87	 15.3	 8.22
	

0.88
	

0.26

6 6.84	 15.3	 8.54
	

1.047
	

0.247

7 6.88 15.26	 8.41
	

0.788
	

0.206

8 6.86 15.33	 8.42
	

0.73
	

0.238

'Vf- 0.17)
0-ordinates for Initial
radient Calculation
def.1	 L.1	 def.2
(mm)	 (mm)	 (mm)
0.429	 0.0259	 0.6

0.294	 0.0255	 0.47

0.256	 0.069	 0.408

0.128	 0.056	 0.264

0.112	 0.05	 0.288

0.232	 0.056	 0.45

0.17	 0.041	 0.352

0.028	 0.052	 0.161

Total

	

L.2
	

Tork (J)

	

0.104
	

0.146

	

0.102
	

0.119

	

0.14 1
	

0.117

	

0.12
	

0.125

	

0.136
	

0.115

	

0.147
	

0.131

	

0.12 1
	

0.078

	

0.114
	

0.099

- -
	 K	 E	 "Ja"	 Up	 "Jb" "J. crit." Wk. of

F.
No a!W f(aJW) (MIPa (GPa) (Jm A 2) 	(J)	 (Jm'-2)	 (kJ	 (kJ
• - ______ m'O.5) _______ _______ _______ ________ m"-2) m"-2)
1 0.547 3.109 3.887	 6.22	 2131	 0.0662	 2785	 4.92	 3.07

2 0.555 3.195 3.665	 6.22	 1895	 0.0511	 2216	 4.11	 2.58

3 0.552 3.159 3.533	 6.22	 1761	 0.0557	 2370	 4.13	 2.49

4 0.555 3.200 3.688	 6.22	 1919	 0.0586	 2505	 4.42	 2.67
5 0.537 3.008 3.609	 6.22	 1838	 0.0458	 1884	 3.72	 2.36

6 0.558 3.233 3.702	 6.22	 1933	 0.0579	 2505	 4.44	 2.83

7 0.551 3.155 3.006	 6.22	 1275	 0.0297	 1262	 2.54	 1.66

8 0.549 3.134 3.437	 6.22	 1667	 0.0382	 1614	 3.28	 2.09

	

Average 1802	 2143	 3.94	 2.47

S.D.	 253	 515	 0.75	 0.44
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LAMINATE TYPE: 10 LAYER HEMP (Vf 0.30)
- Specimen	 Pk. Load Co-ords. Co-ordinates for Initial 	 Total

Dimensions	 ________ ________ Gradient Calculation 	 ________

No B	 W a (mm) def.	 L. (kN) def.1	 L.1	 def.2	 L.2 Work (J)

• (	 (mm) ____ (mm) _____ (mm) (mm) (mm) (mm) _____

1 7.09 15.35	 8.26	 1.118	 0.402	 0.128	 0.067	 0.338	 0.199	 0.255

2 7.06 15.30	 8.47	 1.191	 0.403	 0.164	 0.045	 0.329	 0.151	 0.266

3 7.04 15.57	 8.54	 1.053	 0.396	 0.067	 0.074	 0.369	 0.243	 0.340

4 7.07 15.35	 8.60	 1.315	 0.361	 0.232	 0.099	 0.540	 0.265	 0.273

5 7.03 15.24	 8.57	 1.135	 0.352	 0.333	 0.034	 0.651	 0.191	 0.209

6 7.08 15.21	 8.50	 1.261	 0.369	 0.187	 0.060	 0.439	 0.199	 0.257

7 7.07 15.30	 8.76	 1.103	 0.356	 0.095	 0.045	 0.321	 0.176	 0.224

8 7.06 15.09	 8.42	 1.152	 0.346	 0.104	 0.061	 0.456	 0.232	 0.228

-	 K	 E	 "Ja"	 Up	 "Jb"	 crit." Wk. of
F.

No aJW f(a!W) (MIPa (GPa) (Jm"-2) 	 (J)	 (Jm"-2)	 (kJ	 (kJ
______ m A O.5) _______ ________ _______ _______ m"-2) mA..2)

1 0.538 3.017 5.397	 8.17	 3128	 0.1265	 5031	 8.16	 5.07

2 0.554 3.182 5.758	 8.17	 3562	 0.1396	 5790	 9.35	 5.52

3 0.548 3.126 5.430	 8.17	 3167	 0.1999	 8078	 11.24	 6.87

4 0.560 3.257 5.247	 8.17	 2957	 0.1521	 6374	 9.33	 5.72

5 0.562 3.281 5.240	 8.17	 2949	 0.0835	 3562	 6.51	 4.46

6 0.559 3.241 5.403	 8.17	 3135	 0.1336	 5623	 8.76	 5.41

7 0.573 3.404 5.434	 8.17	 3172	 0.1147	 4960	 8.13	 4.84

8 0.558 3.231 5.126	 8.17	 2822	 0.1048	 4450	 7.27	 4.84

	

Average 3112	 5484	 8.60	 5.34

S.D.	 222	 1356	 1.45	 0.74
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LAMDATE TYPE: 15 LAYER HEMP (Vf- 0.42)
Specimen	 Pk. Load Co-ords. Co-ordinates for Initial	 Total
Dimensions ______ ________ ________ Gradient Calculation

No B	 W a (mm) def.	 L. (kN) def.1	 L.1	 def.2	 L.2 Work (J)
(	 (mm) ____ (mm) _____ (mm) (mm) (mm) (mm) _____

1 7.18 14.99	 8.44	 1.362	 0.409	 0.158	 0.044	 0.442	 0.208	 0.329

2 7.24 15.14	 8.42	 1.306	 0.474	 0.144	 0.105	 0.419	 0.274	 0.348

3 7.20 15.34	 8.63	 1.262	 0.455	 0.133	 0.042	 0.536	 0.270	 0.326
4 7.21	 15.36	 8.35	 1.351	 0.537	 0.105	 0.035	 0.486	 0.295	 0.415
5 7.21	 15.46	 8.43	 1.507	 0.551	 0.193	 0.070	 0.607	 0.363	 0.459
6 7.21 15.40	 8.37	 1.399	 0.522	 0.273	 0.037	 0.710	 0.365	 0.373
7 7.17 15.83	 8.83	 1.314	 0.594	 0.093	 0.105	 0.386	 0.333	 0.447
8 7.21	 15.41	 8.11	 1.429	 0.587	 0.190	 0.066	 0.621	 0.384	 0.475

-	
K	 E	 "Ja"	 Up	 "Jb" "J. crit." Wk. of

F.
No aJW f(aJW) (MPa (GPa) (Jm A 2) 	(J)	 (JmA2)	 (lzJ	 (kJ

_____ m"0.5) _______ _______ _______ _______ m"-2) m"-2)
1 0.563 3.290 6.126	 10.02	 3287	 0.1842	 7832	 11.12	 7.00
2 0.556 3.210 6.770	 10.02	 4013	 0.1652	 6791	 10.80	 7.15
3 0.563 3.284 6.554	 10.02	 3762	 0.1430	 5921	 9.68	 6.75
4 0.544 3.074 7.216	 10.02	 4560	 0.2037	 8061	 12.62	 8.21
5 0.545 3.092 7.374	 10.02	 4763	 0.2445	 9648	 14.41	 9.06
6 0.544 3.073 6.985	 10.02	 4272	 0.1915	 7556	 11.83	 7.36
7 0.558 3.229 8.059	 10.02	 5688	 0.2203	 8778	 14.47	 8.91
8 0.526 2.899 7.404	 10.02	 4801	 0.2415	 9177	 13.98	 9.02

	

Average 4393	 7970	 12.36	 7.93

S.D.	 736	 1237	 1.80	 0.98
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Appendix 8

Details of Half-Fringe Pliotoelasticity system

General arrangement of tensile rig set-up showing polariscope, 'Minimat', CCD unit,
and stepper motor.

Details of tensile specimen clamping in the 'Minimat'.
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HFP Calibration: grey level versus principal stress difference plots.
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CALIBRATION OF HALF FRINGE PHOTOELASTICITY
SYSTEM

Derivation of material fringe value from regression curve
analysis of stress versus grey level value plots

Regression curves in the form:
	

1st Derivative

y = ax'3 + bx''2 + cx + d
	

dy/dx=3ax"2+2bx+c=0
(at maxima and minima)

Solution for x, where Ax'2 + Bx + C = 0, given
by:

x = (-B+/-(Bt'2 - 4AC)"0.5)/2A

Calibration regression curve
functions:

y = -0.00329x3 + 0.22283x2 - 1.0519x + 17.18794
	

1

y -0.00422x3 + 0.26284x2 - 1.13958x +17.18151
	

2

y -0.00463x3 + 0.28062x2 - 1.22094x +17.12394
	

3

y = -0.00437x3 + 0.26339x2 - 0.91239x +16.4002
	

4

y = -0.00259x3 + 0.18845x2 - 0.80896x +16.86283
	

5

Constants	 First derivative	 Stress Stress Z	 Z	 Spec- Mat.
constants_____ @	 @ value value imen fringe

a	 b	 c	 d	 A	 B	 C Mm- Max- Mm. Max. thick. val.
_____ _____ _____ _____ _____ _____ _____ ima ima _____ _____ (mm) /m)
-0.003 0.22 -1.05 17.19 -0.010 0.446 -1.052 2.5 	 42.7	 15.9 122.4 0.13 11090

-0.004 0.26 -1.14 17.18 -0.013 0.526 -1.140 2.3 	 39.2	 15.9 122.2 0.14 10984

-0.005 0.28 -1.22 17.12 -0.014 0.561 -1.221 2.3 	 38.1	 15.7 121.9 0.14 10668

-0.004 0.26 -0.91 16.40 -0.013 0.527 -0.912	 1.8	 38.4	 15.6 122.3 0.14 10743

-0.003 0.19 -0.81 16.86 -0.008 0.377 -0.809 2.3 	 46.3	 16.0 126.3 0.12 11102

Avg. 15.8 122.2
	

10914

S.D.	 0.1	 0.3
	

220
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-Q5

Plots of 1og[2 
J 

versus log(sin2 Nr) to yield camera sensitivity curve gamma
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-20	 -1.5	 -1.0	 -05	 QO

log (sine2Npi)

Derived value for Gamma

Specimen- 1	 1.11
Specimen-2	 1.12
Specimen-3	 1.10
Specimen-4	 1.13
Specimen-S	 1.16

Average	 1.12
S.D.	 0.03
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Contour maps of partial fringe orders around fibre micro-compressive defects
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