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Summary 

This thesis concerns the linking together of the currently distinct techniques of 

pharmacokinetic-pharmacodynamic and health economic modelling. These have limitations, 

with economic models being empirical and thus hard to extrapolate outside the evidence base 

where they are constructed, and challenging to implement early in the drug development 

process. Pharmacokinetic-pharmacodynamic models, by contrast, are mechanistic but 

produce a limited range of outputs, not generating all the values useful to inform decision 

making. 

Pharmacokinetic-pharmacodynamic-pharmacoeconomic models, by linking these approaches, 

have the potential to overcome these limitations. The feasibility, validity and applicability of 

such an approach are assessed through two case studies. The first contains both retrospective 

and prospective simulations of rituximab for the treatment of follicular lymphoma. 

Retrospective analyses allow simulated results to be compared with trial-based data, and 

show an acceptable degree of concordance between the two methods. The prospective 

simulation of a trial currently recruiting will enable comparisons with the results of the trial, 

when these become available. 

The second and larger case study uses anticoagulation and stroke prophylaxis for patients 

with atrial fibrillation as an example. The end result is a full, prospective simulation of 

genotype dosed warfarin compared with both standard clinical dosing and a number of newly 

available oral anticoagulants. To make such an analysis possible, necessary prerequisite work 

was undertaken with the construction of a discrete event simulation to extrapolate both trial 

and simulation results to a lifetime horizon and an indirect comparison of all available 

treatments, to ensure all possible alternatives are considered in the analysis. 

The modelling approach described has the potential to allow the calculation of earlier 

estimates of cost-effectiveness than are currently available, which can be used to inform and 

improve the efficiency of the drug development process, and enable better extrapolations of 

trial-based analyses to different patient populations or dosing regimens.  
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Thesis Structure 

This thesis is written as a collection of research papers following a common thread, rather 

than as a single body of work. This follows the style of the Institute of Medical and Social 

Care Research, and is designed to increase experience of paper writing and benefit from peer-

review comments. As such, and due to the structure of chapters 2-5 as research papers, there 

will be a small amount of unavoidable repetition inherent in the need for each chapter to 

contain sufficient background information as to be publishable. At the time of writing, 

chapters 4 and 5 are currently in the process of publication, with chapters 2 and 3 already 

having been published as: 

Pink J, Lane S, Hughes DA. Mechanism-based approach to the economic evaluation of 

pharmaceuticals: pharmacokinetic/Pharmacodynamic/pharmacoeconomic analysis of 

rituximab for follicular lymphoma. Pharmacoeconomics, 30(5):413-29 (2012). doi: 

10.2165/11591540 

Pink J, Lane S, Pirmohamed M, Hughes DA. Dabigatran etexilate versus warfarin in 

management of non-valvular atrial fibrillation in UK context: quantitative benefit-harm and 

economic analyses. BMJ, 343:d6333 (2011). doi: 10.1136/bmj.d6333 

Work on this thesis (specifically chapter 2) was also rewarded with the Lewis Sheiner Prize 

at the 2011 PAGE (Population Approach Group in Europe) conference.  
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Chapter 1 

 

Introduction  
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Health economics 

Health economics is the branch of economics that concerns health, and the provision of 

healthcare
1
. There are a number of key features of healthcare systems, including an 

asymmetric relationship between physicians as the primary decision makers and patients as 

the nominal consumers, many externalities in the effects of healthcare interventions in other 

areas, and the high levels of government intervention (in much of the world) associated with 

efforts to overcome the market failures these cause
2,3

. One application of health economics is 

to inform decision making, from the overall structure of healthcare systems to micro-level 

comparisons of individual treatment options. 

As in all problems of efficient resource allocation, two important tenets are that resources are 

limited but the potential demands on those resources are not. Specific challenges in 

healthcare include an ageing population and the associated increase in the burden of disease
4
, 

technological advances and the development of new (and almost always more expensive) 

treatments
5
. This means that no healthcare system, however it is constituted, will ever be able 

to meet all the demands of the people it serves. This requires us to make trade-offs between 

the various goals we wish to achieve, leading to the notion of an opportunity cost. This 

represents the benefits forgone from not allocating resources to a specific purpose and arises 

both when additional money is committed to the healthcare system and when money is 

reallocated within it. 

Two separate paradigms exist in which health economic evaluations can be conducted. The 

first is based on welfare economic theory
6
 and views healthcare in exactly the same light as 

any other resource allocation decision. Its three central tenets are, firstly, individualism, in 

that consumers are deemed to be the best judges of their own welfare and behave in a utility 

maximising manner. This means that the impacts of changes are best judged as the person 

them self perceives them to be. Social welfare thus becomes the sum of the individual utilities 

of the people contained within that society. Secondly, consequentialism, in that utility is 

generated only by the consumption of goods and services. Finally, the underlying theoretical 

aim of welfare economics is to derive decision rules that enable us to rank all possible states 

of the world according to their total utility. 

Specifically, these mean that each alternative choice should be judged as to whether it 

represents a potential Pareto improvement in social welfare, i.e. the overall balance of those 
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who gain and lose from a policy is positive. This means no preferential weight is given to 

changes in health outcome from a given policy, as opposed to any other utility changes. This 

perspective leads naturally to the use of cost-benefit analysis as an evaluative tool
7
. This 

involves assigning an economic value to each outcome of a policy decision, necessitating 

techniques to assign a monetary value to health and other changes that may result. 

The second framework is based on an extra-welfarist approach, and looks at healthcare 

decisions as problems of constrained maximisation
8
. This approach will take a series of 

inputs (budget limitations, a defined maximisation objective etc) and look to maximise an 

objective function subject to those constraints. This leads naturally on to the process of cost-

effectiveness analysis, where we study the incremental cost needed to generate a fixed 

additional unit of a defined benefit. In health economics, at least at a treatment selection 

rather than service structure level, we would typically (though not exclusively) have a purely 

health related objective function, subject to a budget constraint. In this form, cost-

effectiveness analysis has become the most commonly used evaluative tool in health 

economics
9
. 

Pharmacoeconomics and drug development 

Pharmacoeconomics refers to the branch of health economics specifically associated with 

pharmaceuticals. As a result, one of its principal uses is during and following the 

developments of new drugs, or the expansion of existing drugs into new indications, as they 

apply for regulatory approval and market access. 

The standard development pathway for a new pharmaceutical involves four clinical phases, 

after preclinical research has found a promising candidate. It is now commonly thought of as 

containing two successive learning-confirming cycles
10

. Phase I trials typically involve a 

small number of healthy volunteers, with the intention to study the pharmacological effects of 

the drug in humans (which may differ greatly from the predicted responses from preclinical 

animal testing) and to determine the safety profile of the drug by studying the relationship 

between dose and adverse drug reactions. Data will also be gathered on the pharmacokinetic 

properties of the drug and, in those rare cases where phase I studies are conducted in real 

patients (e.g. terminal cancer studies where the treatment could be expected to make healthy 

volunteers ill), data may also be gathered on pharmacodynamics and early indications of 

effectiveness. 
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Phase II studies will take place on patients with the intended disease or condition for 

treatment. They are still relatively small scale and are primarily dose response studies, 

examining the link between dose and both efficacy and adverse drug reactions. The aim is 

usually to recruit the smallest number of patients necessary in order to gather sufficient 

information to appropriately design a phase III trial, or alternatively to decide the drug is not 

sufficiently efficacious (or has sufficiently serious adverse drug reactions so as not) to merit 

further study. Thus, phase I and early phase II studies complete the first learning-confirming 

cycle, as we first find the largest dose that can be administered without causing harm (the 

maximum tolerated dose), then confirm whether that dose provides some measurable 

therapeutic benefit (minimum therapeutic dose).  

The second learning-confirming cycle begins in the later stages of phase II, as attempts are 

made to first optimise dosing regimens, looking for one or more doses which have promising 

harm-benefit balances, then obtain confirmation of this efficacy in phase III trials, and 

establish, for each patient subgroup, which of these doses has the optimal harm-benefit 

balance. Phase III trials are large scale trials of efficacy, designed to support applications for 

regulatory approval. They attempt to provide definitive evidence of efficacy, ideally 

comparing to the current gold standard treatment for a given condition, though comparisons 

against placebo and suboptimal alternatives do also occur. They take the form of randomised 

controlled trials (RCTs), interventional and prospective studies where, following patient 

recruitment, each person is randomised to one of the arms of the trial and, where possible, 

blinded to treatment allocation
11

. 

A number of different types of phase III trial can be performed, depending on the form of 

license the company intends to apply for. The first is a superiority trial
12

, designed to show 

the new drug has superior efficacy to either placebo or the standard existing treatment. 

Improvement in a given outcome will be assessed through formal statistical hypothesis 

testing, and it will need to be proven that any improvement is both statistically significant and 

clinically meaningful. Another form of trial is a noninferiority trial
13

,which is assessed in the 

same way but with the addition of a noninferiority margin i.e. the drug is shown to be no 

more than a pre-specified (and clinically insignificant) amount worse than the current 

treatment.  The third form of trial is an equivalence trial, where we wish to confirm there are 

no statistically significant differences in efficacy between the new and old treatments, tested 

by whether the confidence intervals for the relevant parameters lie within a specified 
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equivalence margin. It used to be the case that almost all new drug submissions would require 

support from multiple phase III trials, but it is becoming increasingly common for 

applications to be based on a single study. 

Finally, phase IV trials take the form of post marketing surveillance, and are conducted once 

a drug has already been approved for use. They study the long term safety profile of the drug 

over a large patient population (pharmacovigilance), and gather any additional necessary data 

that the time horizon of the phase III trial was too short to acquire. Modifications to the 

administration protocol may be made at this stage, and drugs may ultimately be withdrawn if 

sufficiently serious adverse reactions are identified. 

As a result of this relatively structured licensing process, and the subsequent use of the same 

data to promote the adoption of the product and its subsequent reimbursement, there is a 

greater degree of uniformity surrounding questions of resource allocation in 

pharmacoeconomics than in many other health economic areas e.g. other health technologies, 

system changes, public health interventions etc. As regulatory authorities (FDA, EMA etc) 

have set evidential standards for market authorisation, it is likely that approximately 

equivalent amounts and types of data will be gathered at the same stage across different drugs 

and trials. Whilst these standards (efficacy, often based on short term endpoints) are not those 

desired for reimbursement decisions (comparative effectiveness, long term outcomes), they 

are nonetheless closer than the evidence available in many non-pharmacological interventions. 

There are a number of issues that may make interpretation of the results obtained difficult, for 

example the fact that RCTs may not represent standard care, as they are often carried-out in 

controlled environments, and thus the results obtained may not be entirely applicable in 

practice (something which has led to the development of pragmatic trials). Nevertheless, this 

commonality of design has led to the development of a number of standard techniques for use 

in pharmacoeconomic evaluation. 

Economic evaluation 

In most of what follows, the primary interest is in microeconomic decisions between 

individual treatment alternatives, which generally involve quantifying the total costs and 

benefits (health or otherwise) associated with each alternative option, and using these as the 

basis for decision making in a cost-effectiveness framework. The aim is to maximise the 

allocative efficiency of the system (directing resources at the areas which will produce the 
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greatest gain) at a given fixed level of technical efficiency (maximising the output from a 

given combination of resources in a certain area)
14

. Changes in technical efficiency will 

change an assessment of allocative efficiency, but it is often assumed that changes in 

allocation will not affect technical efficiency. Since costs and benefits are being measured in 

different units, to render these analyses practical to perform usually requires the definition of 

a set of decisions rules, often based on a willingness to pay. Such a threshold represents the 

maximum amount society is prepared to pay for a given additional unit of health. 

Health outcomes can be measured in ways specific to the disease or intervention in question, 

usually based on a pre-existing clinical measure or scale, but there is often a desire to 

compare a range of conditions which may have entirely different clinical outcomes. This 

necessitates the use of generic measures of health which can be applied across conditions, by 

far the most common of which is the quality-adjusted life-year (QALY)
15

. Importantly, this is 

a preference-based measure based on choices and strength of preferences for different health 

outcomes
16

. It is constructed on the principle that health care interventions are designed to 

achieve two things, increasing both length and quality of life. One quality-adjusted life-year 

is equivalent to one year in perfect health, and then lengths of time spent in sub-optimal 

health are weighted according to population derived values
17

. Thus, if the health state 

associated with a given condition is deemed to have half the utility of being in full health, two 

years in this state will equate to one QALY. The total QALYs accrued by a patient over a 

time period is then equal to the length of time multiplied by the mean health state utility over 

that period
16

. The weight given to the gain of a QALY is normally assumed to be the same, 

regardless of any characteristics of the patients involved, and the total QALYs of different 

patients are assumed to be additive (even if certain people may lose QALYs as a result of a 

policy change), meaning the gain of one QALY by one individual is regarded as equivalent to 

the gains of 0.2 QALYs by five separate individuals.  

The most common method of acquiring QALY values in a trial is the administration of 

patient questionnaires on preference-based outcome, each possible set of answers to which 

will equate to a given health state. An example of such a questionnaire would be the EQ-5D, 

a generic measure of health status created by the EuroQol group
18

. Cost-effectiveness 

analysis based on the QALY is often referred to as cost-utility analyses. 

Costs in standard evaluations are generally considered from the perspective of the 

payer/funding body, though there is variation in how broad a range of costs are considered to 
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be applicable. For example, some analyses will consider purely health service costs; others 

will include social services, while others will expand still further into areas such as 

productivity gains as a result of health improvements. Resource use is measured through a 

variety of methods, including patient recall questionnaires, hospital notes and electronic 

records, and unit costs are attached to that resource use from the appropriate perspective. 

In contrast to the medical literature, where trial evaluations generally adopt a Frequentist 

perspective, with p values and hypothesis tests the standard results reported, health economic 

evaluations are traditionally structured on something closer to a Bayesian approach. This 

stems from the argument that classical statistical inference (based around type I and type II 

error rates) is arbitrary and irrelevant to clinical decision making
19

. If one were to accept the 

null hypothesis in cases where a new treatment has a statistically insignificant incremental net 

health benefit, this would, across a range of treatments, impose additional costs on the system 

(in healthcare or money). Decisions should thus be made purely on the basis of the optimal 

probabilistic choice. The variance of the benefit is irrelevant to the correct treatment choice, 

though it may influence decisions concerning the collection of additional data to reduce that 

uncertainty
19

. 

Following calculation of average, per patient, costs and utilities (QALYs) in each arm of the 

trial, the simplest summary statistic to report is an incremental cost-effectiveness ratio 

(ICER), which is the amount of additional money needed to produce a given additional unit 

of health improvement. Thus, for two treatments A and B, with per patient costs CA and CB 

and per patient outcomes OA and OB respectively, the ICER for treatment B versus treatment 

A is given by: 

     
     
     

 

We can then compare ICERs of multiple treatment options to see which is the most cost-

effective, and compare an individual ICER to a specified willingness to pay threshold to 

decide if we deem it worth funding. In a similar vein, for a specified willingness to pay 

threshold λ, we can calculate the net monetary benefits for treatments A and B, defined as: 

   ( )          

   ( )          
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Treatments can then be ranked in order of net monetary benefit. As this involves converting 

health outcomes into monetary values, the ranking of treatments by net monetary benefit can 

be thought of as a special case of cost-benefit analysis, where health benefits are the only 

ones being considered. 

Parameter uncertainty in a health economic evaluation is usually addressed through 

sensitivity analyses. These can either be univariate, looking at the change in output from a 

given change in input, or probabilistic, where all uncertainty is considered simultaneously. In 

probabilistic sensitivity analyses, each parameter in the model where there is uncertainty will 

be assigned a parametric probability distribution, then multiple samples will be taken from 

the joint distributions of these parameters and the model run for each of these parameter sets. 

This is possible because of the Bayesian framework of health economic evaluations, and from 

these simulations we can calculate summary results such as cost-effectiveness acceptability 

curves, which show the probability of a given treatment being cost-effective (derived from 

the proportion of simulations where that treatment is cost-effective) at different willingness to 

pay thresholds. Such a probabilistic approach is necessary in well conducted analyses, as it is 

important the full uncertainty present in the data should be reflected in the end results
20

. An 

important structural framework within which such an approach is possible is decision 

modelling. 

Decision modelling 

Decision analysis is a set of mathematical and statistical techniques designed for the 

analytical evaluation of decision making under uncertainty
21

. It has been used across a wide 

range of disciplines outside of health care, including engineering and finance. Within 

healthcare, it has been applied in clinical decision making, population analyses and in 

economic evaluations. A decision model consists of a set of mathematical relationships that, 

based on a set of possible inputs representing alternative scenarios under consideration, 

produces a series of possible sets of consequences. Each possible outcome will be associated 

with a probability, and costs and outcomes can be assigned. From this we can calculate the 

expected costs and expected outcomes of each scenario being considered, by weighting the 

costs and outcomes of each alternative by the probability. Such modelling is an unavoidable 

part of the evaluation process, in order to perform the necessary extrapolations from trial 

results to the required endpoints for decision making
22

. 
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Decision models allow for the explicit incorporation of uncertainty and variability
23

. This 

enables them to more accurately represent the real world fact that two seemingly identical 

patients will react in very different ways to the same treatment. The representation of this in 

terms of event probabilities (and associated distributions) allows us to collate and summarise 

the total effects of all the uncertainties present in the data. These models can then be used to 

inform resource allocation decisions, based on a set of decision rules defining the allocation 

priorities of the funding body in question (health maximisation, equity etc). As the use of 

economic evaluations by health care decision makers has increased
24

, so has the use of 

decision modelling as a means of carrying out that analysis. An example of this would be the 

methodology guidelines published by the UK National Institute for Health and Clinical 

Excellence
25

. 

Decision models have a number of important features which make them suitable tools in 

economic evaluations. First, they enable us to synthesise all the available evidence in one 

evaluation. The Bayesian framework in which most decision models operate enables us to use 

a variety of meta-analytical tools to synthesise evidence from different sources. Many 

different types of data may need to be synthesised in a single analysis, including resource use, 

quality of life and effectiveness evidence, all of which are consistent with the principles of 

evidence-based medicine
26

. Second, as previously stated, decision models allow for the 

explicit incorporation of parameter uncertainty. The use of probabilistic sensitivity analysis 

enables us to produce outcomes such as the probability that a given decision is the correct one, 

summarising all the uncertainties in the evidence base we have. 

Thirdly, there is the need to compare in a single evaluation all possible treatment options, 

even when these may have been tested across a number of different trials and thus head to 

head comparisons between some of the agents may not be available. The use of Bayesian 

indirect treatment comparisons across these different trials enables us to produce appropriate 

adjusted comparisons, rather than simply relying on naïve single arm comparisons. Finally, 

such models enable us to extrapolate the results outside of the constraints of the trials they are 

based on. Specifically, the limited time horizon of trials will often not be sufficient to 

represent the long-term differences that may result, particularly when there is a potential 

difference in mortality rates between arms of the trial. These extrapolations can be modelled 

within a decision analytic framework, both by using available information on the natural 

history of the condition being studied to project people’s events, costs and outcomes to a 
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longer horizon, and second to estimate how the differences in treatment effect between the 

different arms will change over an extended horizon. 

Three specific types of decision analytic model are in common usage in economic 

evaluations. The first and simplest is a decision tree, which contains a fixed number of 

pathways which patients can follow, with probabilities attached to each bifurcation of the tree. 

Costs and utilities are assigned to each possible pathway, which can then be summed across 

the whole tree to obtain total expected costs and utilities. Decision trees are simple to both 

use and explain, but have a number of limitations including the small number of health states 

it is possible to model, a need to define a separate probability for each branch of the tree and 

no time dependency in the model, a clear limitation in a field such as medicine where we 

clearly would expect a patients’ condition to change over time. Decision trees were among 

the earliest decision analytic models used in health economics, but have increasingly been 

superseded in recent times by more complex, and thus more realistic, methodologies. 

A second, somewhat more complex modelling framework is a Markov model. These contain 

a fixed number of health states patients can be in at any point in time, thus making them 

suitable for the assessment of conditions which can be divided into discrete health states. 

Patients remain in a state for a fixed period of time (the defined cycle length of the model), 

and a transition matrix (which can either be static or vary with time) then gives probabilities 

of what state the person will move to in the next cycle. Models can be run for an indefinite 

number of cycles (often until all patients have moved to the death state), and again costs and 

utilities attached to both states and the transitions between states. The key structural feature 

of a Markov model is the memorylessness property. Formally, for a random variably X: 

  (     |   )     (   ) 

In practice, this means that the future course of a patients’ events is defined only by their 

current state, and not by their past event history. This assumption significantly simplifies the 

computation complexity of a given problem, but again produces limitations as with many 

health conditions, we would expect a patient’s full event history to be relevant to their likely 

future progression. Despite this, Markov models have grown to become probably the most 

frequently used modelling technique in pharmacoeconomic evaluations, with the 

development of additional features such as tunnel states (a set of states which contain 

information not just on a patient’s health state but how long they have been in that state) to 
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counteract the limitations listed above. Whilst the number of states in a Markov model can, in 

theory, be expanded indefinitely to cover any plausible health states, the need to identify and 

specify a separate parameter for each transition between states in the model creates a ceiling 

on the number of states it is practical to implement. 

Markov models can be run as either cohort or individual patient simulations. In cohort 

models, a fixed number of patients are entered into the model at the start and then fixed 

proportions transition to each possible alternative state at every cycle, in exact concordance 

with the parameters of the transition matrix. In individual patient simulations, patients are 

entered into the model one at a time and their transitions are randomly simulated given the 

parameters of the model. This individual simulation approach is more computationally time 

consuming, but has the advantage of being able to generate variances and confidence 

intervals surrounding output values. 

The third and most recent model to come into prominent use in economics is the discrete 

event simulation (DES)
27

. These will usually take the form of a continuous time Markov 

process (as opposed to the discrete time Markov model above), and will be constructed as an 

individual patient simulation. Each simulated person will have a set of demographic 

characteristics and a treatment history, with probabilities of future events defined as a 

function of those parameters. This gives DES a greater flexibility than either decision trees or 

Markov models, with the ability to model a considerably greater number of states (the total 

number of possible states is the product of the possible numbers of states for each individual 

parameter, and can thus be infinite if some parameters are continuous). However, the 

downside is that their structure as individual patient simulations can lead to them being more 

computationally complex and time consuming than the other methods. 

It has been claimed that discrete event simulations, whilst having many advantages, suffer 

from a potential lack of transparency due to both the number of calculations required and 

number of relationships within the model. However, if this complexity is a result of the 

underlying complexity of the system, then any attempt to use simpler modelling techniques 

would simply result in a loss of accuracy in the results obtained
28

. Complexity in model 

structure should be possible to overcome with sufficient clarity of reporting. 
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Weaknesses of traditional economic evaluations 

Despite the well-developed methodology described above, there are certain limitations 

inherent in economic evaluations as they are usually conducted in pharmacoeconomics. Many 

of these stem from the use of a single or, at best, a limited set of clinical trials as the sole 

source of clinical data. Whilst a randomised controlled trial has a high degree of internal 

validity, making it a very effective method of establishing the efficacy of a drug within the 

constraints of the trial, it lacks generalisability and may provide considerably less information 

about what the real world effectiveness will be. Whilst long term follow up data from routine 

use should eventually be able to answer this question, it will not in most cases become 

available until considerably after both licensing and reimbursement decisions have been 

made, and may never become available for treatments that were not approved. 

Substantial differences between a treatment’s efficacy and effectiveness may result as a 

consequence of non-adherence, which is more prevalent in routine practice than in trials, a 

different patient casemix, including co-morbidities or co-medications, or simply lower levels 

of patient monitoring in routine care. Traditional health economic evaluations have no 

rigorous way to address these concerns, as they are dependent on the trial data as a source of 

effectiveness evidence. Various approaches have been suggested for the incorporation of non-

adherence data into economic evaluations, including regression modelling and the explicit 

incorporation of non-adherence as a parameter in decision modelling, all of which necessitate 

the collection of reliable data on adherence alongside a trial
29

. One ad hoc method that has 

been used to try and address this limitation is the adjustment of the control arm of the trial via 

the inclusion of data from routine practice
30

. This can partially control for protocol deviations 

in the control arm, but since no such data is likely to be available at this stage for the new 

intervention drug, it is not clear if adjusting just one of the arms of a trial in this way will 

reduce or increase the level of bias in the analysis. 

Standard economic models also struggle when attempts are made to extrapolate the results of 

evaluations outside of the context of the initial trial
31

. Some level of extrapolations is almost 

always necessary (e.g. modelling patient lifetimes from the much shorter time horizon of a 

trial) and accepted as standard practice in economic evaluations
22

. However, other 

extrapolations, such as modelling different patient populations from that of the trial, studying 

different dosing schedules or examining patient heterogeneity are much more difficult. The 

empirical nature of most health economic models essentially precludes such attempts to 
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extrapolate outside the boundaries of the trial evidence, or at least considerably limits the 

confidence with which we can do so. This is particularly a problem as both the cost and time 

involved in conducting phase III trials mean there is little prospect of additional trials being 

conducted to answer such questions. 

There is also an increasing desire to perform economic evaluations earlier in the drug 

development process, for example at the end of phase II
32

. It would be desirable to obtain 

early estimates of cost-effectiveness that could be used to inform the design of phase III trials, 

including sample size calculations, appropriate endpoints, appropriate trial populations etc. 

They would also be able to suggest which treatments would ultimately not prove to be cost-

effective and thus help to inform stop/go decisions during drug development. 

Full scale economic evaluations are traditionally only conducted once phase III data has been 

gathered, and this is the first reliable estimate of cost-effectiveness that will be derived. This 

means that many phase III trials are conducted (at considerable expense in both time and 

money) on drugs that ultimately turn out not to be clinically effective (or to be toxic) and thus 

not cost-effective, a problem that explains a substantial part of the reason why so many phase 

III trials ultimately end in failure (over 50% of recent phase III trials have either been 

terminated early or ended in failure
33

). However, it is often deemed impossible to conduct 

early analyses with standard modelling techniques, as there is simply not sufficient data 

available at the end of phase II trials to be able to undertake a useful economic analysis. Even 

where such analyses are conducted, the small sample sizes available from phase II trials mean 

that there will be extremely high levels of uncertainty in the estimates that are generated. 

The root cause of all these problems is the fact that standard economic evaluations only make 

use of a limited subset of the data that is collected during drug development (specifically only 

the cost and outcome data collected during phase III trials), something which contradicts one 

of the tenets of evidence based medicine, namely using all available evidence in decision 

making. By making use of other data collected during phase II trials, particularly 

pharmacological data, and combining this with the standard data collected in economic 

evaluations, we can look at addressing these issues. 

Pharmacological modelling 

Pharmacokinetics (PK) is the study of the absorption, distribution, metabolism and excretion 

of substances administered to the body. A pharmacokinetic model will typically produce the 
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concentration of a given compound (or its metabolites) in various components of the body 

over time. Population pharmacokinetic models look at inter-patient variability in how the 

body processes the drug over time.  They take as inputs the dose (and administration schedule) 

of the drug, as well as patient demographic, genetic variations, clinical measurements and 

other therapeutic characteristics (e.g. co-medications), giving as outputs estimates of the 

pharmacokinetic parameters (absorption, clearance, volume of distribution etc) and the 

variables that influence these parameters.  

Whilst non-compartmental pharmacokinetic models do exist, we are here most interested in 

compartmental models, as these can be used to predict concentration at any time point
34

. Key 

concepts in pharmacokinetics include bioavailability (the proportion of the administered drug 

available to the body), clearance (the rate at which the drug is excreted) and the volume of 

distribution (the apparent volume over which a drug is distributed). The structure of the 

model used will depend on the mode of administration of the drug. For example, with a bolus 

administration where the drug can all be assumed to enter the body instantaneously, less 

parameters will be necessary than with an oral medicine, where additional parameters will be 

needed to model the absorption of the drug (e.g. an additional compartment to represent the 

gut). Figure 1 below shows the structure of one, two and three compartment PK models, with 

the arrows representing drug entry, drug elimination and the movement between 

compartments. It becomes necessary to use two compartments when the time course of drug 

concentration shows two distinct phases, i.e. when the drug is absorbed by the soft tissue, and 

likewise for the addition of further compartments (e.g. effect compartments, a compartment 

or set of compartments modelled as the effect site of the drug). 
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The simplest possible model is for a single IV bolus dose, in a one compartment linear PK 

model. Here the time course of the concentration of the drug is given by: 

 ( )  
 

  
    (     ) 

where D is the dose, Vd the volume of distribution and kel the eliminations rate constant. In 

the slightly more complex example of an orally administered dose, the concentration over 

time is given by: 

 ( )  
      

  (      )
[   (     )      (    )] 

where D is the dose, F the bioavailability, Vd the volume of distribution, ka the absorption 

rate constant and kel the elimination rate constant. In these cases, it is possible to analytically 

derive an equation for concentration over time, but in more complex situations we have to 

rely on numerical methods. This is particularly the case where nonlinear PK models are used. 

Pharmacodynamics (PD) is the study of the effects of a drug on the body, and quantitatively, 

the link between drug concentration, patient characteristics, and pharmacological effect. PD 

models are usually time independent and thus describe an equilibrium relationship between 

concentration and effect. The simplest useful model in pharmacodynamics is the Emax model: 

  
      

      
 

where E is effect, C the concentration of the drug (or the active moiety), Emax the maximum 

attributable effect of the drug and EC50 the concentration of drug producing 50% of the 

maximum effect. More generalised formulae also exist to cover situations which are not 

accurately modelled by the equation above. For example, we can create a new set of models 

by introducing a shape parameter, the Hill coefficient γ giving: 

  
      

 

    
    

 

We can also introduce additional compartments into the model, representing the 

concentration of a drug at multiple effect sites. Models can, in principle, be made 

increasingly complex to cope with whatever the true concentration-effect relationship is, but 
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in practice we soon hit limits introduced by both computational efficiency and parameter 

identifiability.   

Pharmacokinetic-pharmacodynamic (PKPD) models, by combining these two together, thus 

give a model for pharmacological effect over time (figure 2). Population-PKPD models, 

considering inter-individual variability in patient response, describe the time course of 

pharmacological effect, conditional on a patient’s characteristics (age, sex, bodyweight, co-

medications etc) and dosing schedule. In some cases, PK and PD models will be derived 

separately from different data sets and then combined together, and in other cases the 

parameters for the model will be co-estimated from the data set. Importantly for our purposes, 

regardless of which of these approaches is used, the models are predictive and can be used to 

simulate predicted effects in specific patient subgroups, for different doses and dosing 

schedules. 

 

Figure 2 

Pharmacogenetics is the study of how genetic variations, and the accompanying variability in 

metabolic pathways, can affect individual response to drugs, both in terms of efficacy and 

adverse events. This is becoming an increasingly important area of study, as it links in with 

the field of personalised medicine, where treatments can be tailored to a person’s individual 
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characteristics. PKPD models can be extended to include how genetic variations can affect 

individual drug response. The standard way this is implemented into PKPD models is to have 

genetic information included as a covariate, i.e. the parameters in a PKPD model vary 

according to the genotype of the patient. 

Population-PKPD models are often constructed from data collected during phase II clinical 

studies, as this provides the optimum balance between the number of patients studied and the 

intensity of monitoring (phase I trials are generally not sufficiently large, in phase III trials 

there is not sufficient monitoring). These models are already used extensively to study the 

properties of the drug, for example the forgiveness to missed doses, or the prediction of the 

appropriate steady state concentration of the drug. Such modelling has been used to inform 

licensing decisions for different patient subgroups and is accepted as evidence to support 

such decisions by licensing bodies (e.g. FDA)
35

. A more recent development is the use of 

these models as the basis for simulation studies. 

Clinical trial simulation 

Clinical trial simulations based on population-PKPD models are now widely used during the 

drug development process
36

. These will typically consist of simulating the outcomes of 

various possible phase III trials, and using these outputs to optimise trial design, looking at 

such areas as dosing schedules, patient demographics and the effects of patient non-

adherence on effectiveness. 

A full CTS model is made up of three components; an input-output model, a covariate 

distribution model and a trial execution model
37

. The standard input-output model in most 

CTS is a population-PKPD model, though additional models may also be added at this stage, 

such as models of expected disease progression over time. The covariate distribution model 

contains the details of the population being modelled, and will need to specify values and 

distributions for all parameters that affect the PKPD model. Finally, the trial execution model 

represents both the intended trial protocol and expected deviations from that, e.g. patient 

withdraw, non-adherence, missing data etc. Whilst there will often be considerable parameter 

uncertainty in the PKPD models used, this uncertainty can be explicitly incorporated into the 

simulations through parameter distributions, and thus quantified in terms of its impact on the 

results. 
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One of the uses of CTS is in assessing the effect protocol deviations will have on the outcome 

of a trial
38

. During the planning of a trial it is necessary to assume it will proceed according to 

a prescribed experimental design. If this protocol is appropriately implemented and adhered 

to, sufficient power should be obtained to estimate treatment efficacy. However, deviations 

from this protocol will often lead to a trial not having a sufficient sample size or appropriately 

constructed sample to reach these levels, meaning the trial will result in failure. Whilst this 

can be compensated for by deliberately overpowering trials, this is an inefficient and 

unreliable process. We can however, given a sufficiently well specified trial execution model, 

use individual patient CTS to estimate the combined effects of a multitude of potential 

protocol deviations, and thus quantify the expected change these will cause in the outcome of 

the trial
39

. 

Taking non-adherence as an example of a protocol deviation we may wish to correct for, 

various different modelling approaches can be adopted. A simple method is to use a two state 

Markov model, where a person's probability of missing a given dose is contingent only on 

whether they missed their previous dose. This can then be made more precise by the addition 

of further covariates to the model, linking non-adherence rates to other patient demographic 

characteristics. Another approach is to have non-adherence modelled as a function of a 

person's disease and demographic characteristics, or events (either due to lack of efficacy or 

adverse drug reactions) they may experience whilst on the medication, creating a feedback 

cycle between the PKPD and adherence models. Discontinuations can also be modelled in 

this way, or we can perform a survival analysis of any pre-existing data we may have, 

creating a parametric function for discontinuation over time. Whilst in any individual case it 

will be necessary to perform some form of model selection to decide which of these options 

to use, the important point here is that all of these approaches are consistent with and 

implementable within a PKPD based CTS
38

. 

Another use is in the optimisation of the design for phase III trials, to aim for greater 

efficiency through utilising the minimum number of patients/doses to make the same 

inferences. Only a finite number of potential dosing schedules will have been studied in 

phase II, and often at this stage new information on dose-exposure-response relationships will 

be discovered which may, as an example, imply dosing based on body-surface area will be 

more effective than fixed dosing. Simulations can attempt to both optimise the algorithms for 

such dosing and provide support for the implementation of a dosing regimen that may not 

have been tested in exactly that format in phase II. As a post phase III extension of this, 
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simulations may also have a role as supporting data for new drug submissions to regulatory 

bodies, particularly in cases where only a single trial has been conducted
40

. A simulation 

model that accurately predicts real world results can be used as evidence the pharmacology of 

the new agent is well understood. 

Subgroup analyses are particularly important at phase II, to study heterogeneity in patient 

response. If it is the case a new drug has considerable variability in response, then the 

inclusion of a large number of patients in a phase III trial in whom there is no incremental 

effect will not only reduce the effective sample size of the trial, but also introduce extra 

variability in results through the confounding effect of these patients who ideally should not 

have been included. However, since one of the key goals of phase II trials is to make 

decisions based on the minimum possible numbers of patients, we are extremely unlikely to 

have sufficiently many patients in any subgroup of interest to perform traditional subgroup 

analyses. CTS can fill this is gap by allowing us to simulate the differential outcomes of 

various group of interest. A key example of when this might be desirable is where there are 

differences in response based on genetics, as this may well only become known during phase 

II trials when PK and PD data is collected, thus any analysis of the effects of this will need to 

be post-hoc as the phase II trial was not designed with it in mind. All such simulations would 

be hypothesis generating, and then ideally these hypotheses would be tested during the phase 

III trial. 

A final key use of CTS is in internal strategic decision making by drug companies during the 

development process. Previously we have discussed ways of optimising the design of future 

trials, but it is also important to identify early on those drugs where a phase III trial is liable 

to give a negative response, and prevent the unnecessary waste of both time and money in 

conducting it
41

. If simulations can provide an increase in the success rate of clinical trials, by 

preventing some trials that would ultimately prove negative from starting without 

simultaneously preventing trials that would give a positive result from being conducted, this 

will greatly improve the efficiency of the process. 

Weaknesses of PKPD modelling and traditional clinical trial simulations 

The use of CTS has already been shown to lead to an increase in the likelihood of achieving a 

trial’s prescribed objectives
42

. However, there are a number of limitations to their usefulness 

in pharmacoeconomics as currently conducted. First there is the difficulty in deciding on the 
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complexity of the PKPD model which should be used. In many cases simple linear models 

with small numbers of compartments will not generate good fits to the data, which we can 

only achieve by introducing much more complex features, such as nonlinear dynamics or 

multiple compartment chains. Whilst these models may well fit the data better, we lose the 

ability to relate the structure of the model to the biological features of the underlying system; 

for example we may not have any indication as to what each compartment of the model 

actually represents, if anything. Given that much of the current use of such models is to gain 

a greater understanding of the underlying dynamics of the system, these models will not be 

able to fulfil that purpose. 

Physiologically-based pharmacokinetic-pharmacodynamic (PBPKPD) models are an attempt 

to fill this gap, where each compartment in a model has anatomical and physiological 

significance, representing specific tissues or sets of tissues
43

. The derived parameters then 

directly correspond to the underlying biological processes of the system. Such models are still 

at an early stage of their acceptance into mainstream use, and there remaining problems with 

both computational complexity and sufficiently accurate model fitting, but nonetheless they 

represent a promising potential developmental path
43

. 

A significant limitation of standard clinical trial simulations is that the endpoints they 

produce as outputs are in many cases not the same outputs as those by which the drug will 

ultimately be judged. First, often PKPD models only have intermediate endpoints or 

biomarkers as their output. These may well be useful for informing various aspects of the 

earlier development process, but are limited somewhat in their usefulness by not linking to 

longer term clinical outcomes. Even when the final output of a simulation is a useful clinical 

endpoint, it will generally only be one out of a number that are clinically important. The 

proportion of published PKPD models which allow you to simulate all relevant efficacy and 

safety endpoints is extremely small. Whilst it is possible to use different PKPD models and 

thus different simulations to prioritise different endpoints, joint optimisation across these 

different simulations is exceedingly complex, meaning that in practice simulations are usually 

only used to optimise one primary endpoint. 

Whilst this may be sufficient for traditional sample size calculations, it misses a significant 

part of the picture. As many countries now require evidence of cost-effectiveness in order to 

secure reimbursement, decision making should also be informed by this important endpoint. 

A drug may well appear to be effective, compared to standard care, on the basis of 



 
 

30 
 

simulations and may well indeed be so in reality. However, the less cost-effective the drug is, 

the less it will be utilised and thus the less money it will ultimately make for the company. 

The ability for phase III trial decisions to be assessed on the basis of cost-effectiveness could 

help to ensure potential reimbursement likelihoods are also taken into account in decision 

making. 

Standard clinical trial simulations do not, however, provide a great deal of help in making 

such decisions, as they do not create a sufficiently large set of parameters, with only some 

effectiveness parameters and no resource use data being generated. Whilst it is possible to 

perform very simple cost-effectiveness analyses from the data they generate, essentially using 

only the measures of effectiveness simulated and only the expected cost differential in drug 

price and simulated event treatment cost, and such analyses are better than nothing in 

informing decisions, they are nonetheless extremely unreliable as a data source to use. Thus, 

there is currently no easy way to synthesise the available economic data with CTS of 

efficacy
39

. 

Finally, at present, CTS have not been put to great use post phase III, with the exception of 

adjusting for protocol deviations. This is generally because the data from phase III trials, 

given that it is of much larger samples and longer follow up, has tended to be used for all 

subsequent analysis. This ignores the fact that the considerably more intensive monitoring 

undertaken during phase II means that the this data, whilst it can clearly never replace the 

need for phase III trials, can still be extremely valuable in supplementing it even when phase 

III trials have already been fully completed. 

PKPDPE modelling 

Pharmacokinetic-pharmacodynamic-pharmacoeconomic (PKPDPE) modelling is the 

synthesis of these two techniques (pharmacological and economic modelling) in an attempt to 

overcome the inherent shortcomings each separately possesses. 

Drug-disease trial models are already recommended by the FDA Critical Path document as a 

valuable tool to improve the productivity of the drug development process
44

, and a number of 

publications have suggested the extension of these models to incorporate economic 

information
45,46

. Despite this, virtually no publications have actually attempted to implement 

this idea in practice. This is principally due to the cross-disciplinary nature of such an idea, 

meaning only a limited number of people have sufficient knowledge of both fields to make 
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this practical. This has not, however, stopped interest in the underlying principle of the idea 

from increasing. Many companies are now considering implementing such models, but 

without any publications emanating from this it is difficult to say how far the idea has 

progressed. 

The general structure of a PKPDPE model is that estimates of efficacy (and other relevant 

and available outcomes, e.g. adverse drug reactions) derived from clinical trial simulations 

can then be used as inputs to traditional decision-analytic pharmacoeconomic models. The 

PKPD model would be used to simulate the full expected outcome of a clinical trial, and then 

this would be fed into a health economic model as if it were the data from a trial. The 

stochastic nature of the output of the CTS matches neatly with the distributions necessary for 

probabilistic sensitivity analysis in economic evaluations. A full population-PKPD model 

should contain all the necessary data to simulate different patient subgroups and compare 

them in terms of cost-effectiveness. Previously published or prospectively collected cost and 

QALY data can then be used complete the necessary parameter sets to run the model. 

Ultimately we should be able to construct exactly the same set of results we would for 

clinical trial data, and whilst there would obviously be considerable uncertainty, we are able 

to quantify that uncertainty into easily interpretable summary measures such as the 

probability of cost-effectiveness. 

The first advantage of this is that we are able to run these simulations and obtain estimates of 

cost-effectiveness as soon as a PKPD model has been built, i.e. during phase I/II. As that 

model is improved by the collection of additional data we are able to rerun our simulation to 

refine our cost-effectiveness estimates. We are thus able to address all the standard questions 

that CTS are used for, but from the standpoint of cost-effectiveness rather than simply 

effectiveness. Such an approach might reasonably be hoped to facilitate more accurate 

decision making than is currently the case. 

Such an approach is also compatible with value of information (VOI) analysis, which is an 

alternative method for optimising trial designs. This looks at the value attached to the 

reduction of uncertainty in a model or certain parameters within that model, measured as the 

benefits lost through making the wrong allocation decision due to uncertainty
47

. This value 

can then be compared to the cost of gathering additional data to reduce that uncertainty. Trial 

designs can then be optimised based on the value of the information they collect. The 

practical implementation of such an approach takes as its input the output of the probabilistic 
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sensitivity analysis of an economic evaluation, meaning it can also be conducted based on our 

simulated data sets. Thus, with such an approach we are able to implement full scale VOI 

analyses at an earlier stage than is currently possible. 

Whilst all the analyses we have discussed will require the collection of certain additional data, 

such as the costs and health state utilities of various events, this is all data the company will 

ultimately be required to find anyway, it simply brings the need for it earlier in the process. 

The same is true for the building of the economic model itself; it does not necessarily 

represent additional work, merely a change in when that work takes place. Importantly, in 

such analyses, we are only interested in the predictive power of the PKPD model being used, 

and not in pharmacological interpretation of the results. This means we are free to make use 

of the best fitting model we have available to us, even if it does not immediately seem to be a 

direct representation of the underlying biological processes. This provides a clear distinction 

between situations where we wish to develop our understanding of the underlying dynamics 

of the system (where PBPKPD models may offer the most promising path for development), 

and our situation where we wish to use such models for purely simulative purposes. 

The mechanistic nature of PKPD modelling also helps address one of the weaknesses of 

purely empirical health economic models. Even after the completion of phase III trials, 

simulations can still have an important role in aiding extrapolations outside the scope of the 

trial, be they extrapolations of time, population or treatment. Such extrapolations are often 

criticised in the health economics literature as introducing additional uncertainty to a data set, 

the effect of which cannot be quantified in standard evaluations
48

. However, once again the 

stochastic nature of CTS, combined with probabilistic analysis in health economics, allows us 

to quantify any uncertainty we may introduce from our use of simulated as opposed to trial 

data. 

In summary, PKPDPE modelling has the potential to address shortcomings in both standard 

pharmacological and economic modelling, and can do so primarily using tools that have 

already been well developed in the other field. However, considerable work on validating this 

approach would be necessary, looking at comparisons of simulated and real world results, to 

ascertain whether the predictions obtained are sufficiently accurate as to be useful to decision 

makers. However attractive the principle of the idea may be, this is of no use if its practical 

implementation would not produce real changes in decision making, be they internal drug 

company decisions (economic viability, price setting) or those by reimbursement bodies. 
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Intentions 

Three principal questions around PKPKDPE need to be addressed; namely the feasibility, 

validity and applicability of such an approach. We here present two case studies designed to 

assess these questions, and consider how such an analysis might be conducted in practice. 

The first case study in chapter 2 is primarily retrospective, and based on the use of rituximab 

for the treatment of follicular lymphoma. By simulating the results of already conducted trials, 

we can compare how well these simulations match the trial derived results, and thus how 

much confidence we feel we can have in the process. We then provide one example of a 

prospectively simulated economic analysis, both as a demonstration of how such analyses 

might be conducted, and as a basis for comparison when that trial is ultimately completed. 

Since it is virtually impossible to construct any reasonable way to internally validate these 

models, the best approach seems to be for a number to be constructed which can then be 

compared with real data as it is collected. We will then be able to address if there are specific 

features of the modelling approach or conditions being studied that appear to lead to greater 

congruence between trial and simulated results. 

Chapters 3-5 present a full prospective analysis of a currently topical condition, namely drugs 

for stroke prophylaxis in atrial fibrillation. Chapter 3 presents an economic model of atrial 

fibrillation, used for an economic comparison of warfarin and dabigatran, derived fully from 

the published literature and based on a large scale multinational phase III clinical trial. All the 

cost and quality of life data used were available prior to the completion of the trial, meaning 

it would have been available to use in a phase II economic analysis had one been conducted. 

Chapter 4 is an indirect comparison of currently available treatment alternatives, performed 

so as to include all currently available treatments (warfarin, dabigatran, rivaroxaban, 

apixaban and aspirin) in the analysis. This is a key step in any attempt to gain early 

indications of cost-effectiveness, as it is inherently a comparative process; a drug can only 

ever be cost-effective in comparison to another. This form of meta-analysis falls within the 

same tenets of evidence based medicine, namely making use of all available data, in which 

we have justified our use of CTS. 

Finally, chapter 5 is a complete prospective population-PKPD simulation, based on genotype-

guided warfarin dosing, which is used as an input to these previously constructed models, in 

order to gain estimates of cost-effectiveness in situations where trials have not be conducted 
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and are unlikely ever to be conducted. Whilst some trials of warfarin pharmacogenetics have 

taken place, they have been too small scale to provide definitive results, and only a small 

number of the myriad possible warfarin algorithms have been tested. The sheer number of 

potential algorithms makes it certain that only a small number will ever be tested in trials, all 

of which are likely to be comparisons only with warfarin as opposed to the newer 

anticoagulants available, leaving simulations as the only possible way to assess the cost-

effectiveness of these. The particular simulation used here has three stages. First, a CTS 

simulates the outcome of an important biomarker (International Normalised Ratios - a 

measure of the clotting properties of the blood), a meta-analysis of published literature is 

performed that links this intermediate outcome to clinical endpoints, and these clinical event 

rates are fed into an economic model. 

Feasibility will be assessed simply through the process of constructing these models; 

specifically whether simulations provide sufficient data to fully supply necessary clinical 

parameters, and whether it is possible to obtain the necessary cost and quality of life data at 

these earlier stages. Validity will ultimately be judged by comparing the simulated results we 

obtain with real world data as it is collected. Some such data is already available for 

comparison, and more will become available as some of the trials which we are currently 

simulating are completed. Finally, we will need to consider what specific questions we are 

ultimately able to address with these techniques, and the best methods for implementing them 

in practice. 

Chapter 6 concludes by giving an overall summary of the conclusions of the thesis, its 

strengths, limitations and the avenues for further research, as well as exploring the place of 

the techniques discussed within the context of the expanding field of model-based drug 

development.  
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Chapter 2 

 

Mechanism-Based Approach to the Economic 

Evaluation of Pharmaceuticals: 

Pharmacokinetic/Pharmacodynamic/Pharmacoecon

omic Analysis of Rituximab for Follicular 

Lymphoma 
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Summary 

Introduction: Economic value is an important consideration during all phases of the drug 

development process. Building on previously published work describing a mechanism-based 

economic modelling approach that incorporates data obtained during phase II clinical studies 

on the relationships between dose, exposure and response, this chapter describes case studies 

of rituximab for the treatment of follicular non-Hodgkin’s lymphoma based on this 

methodology. 

 

Methods: A population pharmacokinetic and pharmacodynamic model was used linking 

serum rituximab concentration to progression-free survival, to simulate the effectiveness of 

rituximab in various clinical contexts. These served as inputs to economic models of 

follicular lymphoma, based on National Institute for Health and Clinical Excellence (NICE) 

appraisals, to assess the cost-effectiveness of rituximab. Results were compared with trial-

based estimates from the NICE appraisals. In a further analysis, the results of an on-going 

trial were simulated to generate predictions of cost-effectiveness. 

 

Results: The analyses suggest an acceptable degree of concordance between simulation- and 

trial-based estimates of cost-effectiveness. For first-line and maintenance therapy, deviations 

of £2,099 and £1,355 per QALY, respectively, from trial-based incremental cost-

effectiveness ratio estimates of £8,290 and £7,721 per QALY gained would not affect 

reimbursement decisions. The probability of rituximab-containing regimens being cost 

effective at £20,000 and £30,000 per QALY thresholds was 1 for both first-line and 

maintenance therapy in both simulated and trial-based analyses. 

 

Discussion: These analyses demonstrate the feasibility of mechanism-based economic 

analyses, which may have applications during drug development to the following: (i) 

directing future research based on the cost of reducing uncertainty; (ii) assessing subgroups, 

dosing schedules and protocol deviations; and (iii) informing strategic research and 

development and pricing decisions.  
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Introduction 

As value-based pricing extends from smaller markets (e.g. Australia, Canada and Sweden) to 

the UK market
49

, which has international significance as a pricing reference, pharmaceutical 

industries are becoming increasingly mindful of the importance of the early determination of 

cost-effectiveness. Although pricing has always influenced decisions throughout the drug 

development process, the role and methods of pharmacoeconomics are less well defined in 

the early phases
50,51

. 

Various papers have previously proposed a mechanism-based modelling approach to help 

inform clinical phases of drug development while also directly considering the resource 

constraints of payers of healthcare
45,46

. Our approach is reliant on the mathematics of the 

structural relationships between dose, internal exposure and response (which describe the 

pharmacokinetics and pharmacodynamics of a drug), and how uncertainties in related 

parameters may be explained by clinical, demographic and other covariates. 

Pharmacokinetics is the study of drug absorption, distribution, metabolism and excretion. 

These processes determine the fate of a drug when administered to humans, and may be 

quantified by determining concentrations, usually in blood plasma, urine or saliva. PK 

models are mathematical representations of the time course of drug concentration. This 

fluctuates according to several factors, including the dose; dosage form and dosing schedule; 

use of concomitant interacting medications; and patient demographic and pathophysiological 

characteristics, e.g. liver and kidney function and adherence. Pharmacodynamics is the study 

of the pharmacological effects of drugs, and in particular the relationship between 

concentration and response. PD models thus link drug concentration and response, again 

taking into account individual patient characteristics. Combined PK/PD models quantify the 

time course of drug effects and may be used to simulate clinical data for a given population, 

drug and dosing schedule. This enables us, through our simulations, to study different 

populations or dosing schedules from those in which research has previously been carried 

out
52-55

. 

Population pharmacokinetic/pharmacodynamic (PK/PD) models are being recognized 

increasingly for their utility in expediting the development process by the pharmaceutical 

industry and are accepted by regulatory authorities
44,56

. Applications include simulations of 

drug effectiveness and safety; optimization of trial design in the latter phases of development; 

and exploration of the effects of different dosing regimens and patient demographics
36

. As 
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these simulations are usually based on the data from phase II trials, there is necessarily 

considerable uncertainty surrounding the parameters of such models. Nevertheless, they 

provide a framework to quantify both the available information and the uncertainty therein. 

Using the output of population PK/PD models, to serve as the input of economic decision 

analyses, allows these same questions to be addressed, but from the perspective of cost-

effectiveness rather than merely effectiveness. We explored the feasibility of the method in 

proof-of-concept case studies of rituximab, a chimeric monoclonal antibody used in the 

treatment of follicular non-Hodgkin’s lymphoma. Rituximab was chosen because of the 

availability of the necessary data – PK and PD models, as well as economic evaluations for a 

number of indications – in the public domain. The pharmaceutical industry would typically 

have comparable PK and PD data available following phase II studies. 

The first case study relates to the use of rituximab as a maintenance treatment following 

induction chemotherapy for patients with recurrent or refractory stage III or IV follicular non-

Hodgkin’s lymphoma
57

. The second explores rituximab as a first-line treatment
58

. In both 

cases, PK/PD-based decision analyses are compared with trial-based decision analyses that 

informed decisions made by the National Institute for Health and Clinical Excellence (NICE) 

for the use of rituximab in England and Wales. A third case study forecasts the clinical and 

economic outcomes of the PACIFICO trial (Purine-Alkylator Combination in Follicular 

Lymphoma Immuno-Chemotherapy for Older Patients; ClinicalTrials.gov identifier: 

ISRCTN99217456)
59

, a phase III randomized controlled trial currently recruiting elderly 

patients to compare rituximab, fludarabine and cyclophosphamide (R-FC) and rituximab, 

cyclophosphamide, vincristine and prednisolone (R-CVP) induction chemotherapies for the 

treatment of stage II-IV follicular lymphoma. 
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Methods 

Pharmacokinetic Simulations 

A two-compartment linear PK model was utilized, in which body surface area (BSA) and 

gender were the significant covariates for both clearance (Cl) and central volume of 

distribution (Vc)
60

. The population PK model was based on a phase II study of rituximab in 

102 patients with rheumatoid arthritis
60

. Individual (Cl, Vc) parameters are predicted from 

population parameters (CL, VC) according to: 

      (
   

    
)
       

 (         ) 

      (
   

    
)
       

 (         ) 

where θ are the effects of covariates on the parameters. CL and VC were sampled from a log-

Normal distribution with coefficients of variation (CV) of 28.2% and 12.3%, respectively
60

. 

Simulations of rituximab serum concentrations assume BSA follows a Normal distribution, 

BSA(m
2
) ~ N(1.71, 0.2) for men and BSA(m

2
) ~ N(1.91, 0.2) for women

61
, and that patients 

were equally likely to be male or female. A mixed (additive and proportional) residual error 

model was used
60

. Mean concentrations since the last infusion (Cm) were calculated as 

follows: 

  ( )  
∫  ( )  
 

  

    
 

where C is the concentration of rituximab at time t, tn is the time of the most recent rituximab 

infusion and φ is a dummy integration variable. Mean rituximab concentration since the last 

infusion was used as this was found to give more realistic PD parameters than using the 

actual concentration at a given time
62

. 

Pharmacodynamic Model 

Following Ternant et al.
62

, an exponential hazard model was used to relate progression-free 

survival (PFS) at time t to mean rituximab concentration: 

   ( )   
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where λmax is the median hazard in the absence of rituximab, Cm50 is the Cm value leading to 

a 50% decrease of λmax and γ is a shape factor. Cm50 and γ are assumed to be the same in all 

situations, whilst λmax varies depending on the adjuvant chemotherapy
62

. With no data on the 

inter-individual variability of Cm50, the random effects were assumed to be log-Normally 

distributed (50% CV). In the original publication by Ternant et al., this model was built by 

fitting it to data from two studies of rituximab pharmacokinetics and validated by using it to 

predict the results of two additional separate studies
62

. Values of λmax were obtained by fitting 

exponential survival curves to the PFS data from relevant trials of treatment without 

rituximab
63-65

. 

γ and Cm50 were both assumed to follow Normal distributions and the uncertainty in 

parameter estimates were accounted for as follows: γ ~ N(0.486, 0.052) and Cm50 ~ N(35.06, 

2.2).
61

 For the PACIFICO case study, where patients who respond follow a different 

treatment path from those who do not, responding patients were sampled as follows: 

γ ~ N(1.5, 0.11) and Cm50 ~ N(18, 0.87)
62

.  

Simulated PFS data for cohorts of 1,000 patients receiving rituximab were generated from 

PK/PD analyses relating to each case study. This was done by first generating a set of 1,000 

hypothetical patients by sampling from the aforementioned parameter distributions. PK 

simulation, using these patient profiles and the dosing schedule from the appropriate trial, 

generated 1,000 individual mean concentrations since the infusion. PFS data were 

subsequently simulated by propagating the PK data through the PD model. 

Rituximab Maintenance Therapy 

The pivotal European Organisation for Research and Treatment of Cancer (EORTC) 20981 

trial randomized patients to either 3-weekly cycles of cyclophosphamide, doxorubicin, 

vincristine and prednisolone (CHOP) or rituximab plus CHOP (R-CHOP) as induction 

therapy
63

. Responding patients were randomized to either rituximab maintenance (375 mg/m
2
 

BSA per cycle), or no further treatment. λmax was calculated by fitting an exponential 

function to 1500-day PFS data for patients randomized to CHOP, obtained by digitizing the 

published Kaplan-Meier PFS curve using Engauge Digitizer V4.1
66

. 

First-Line Treatment 

Evidence supporting the use of rituximab as a first-line treatment for stage III–IV follicular 

lymphoma comes from the M39021 clinical trial
64

, in which patients received either eight 3-
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weekly cycles of cyclophosphamide, vincristine and prednisolone (CVP) chemotherapy, or 

rituximab (375 mg/m
2
 BSA per cycle) plus CVP. The value of λmax was calculated using 

digitized PFS data relating to CVP as described in the previous section. 

PACIFICO 

Values of λmax for patients responding (complete or partial response) to induction with CVP 

and fludarabine and cyclophosphamide (FC) were derived following digitization of published 

data from a trial that randomized patients to each for a maximum of eight cycles, the E1496 

trial
65

. This was identified from a search of PubMed, the Cochrane Central Register of 

Controlled Trials database and the American Society of Hematology database for trials that 

compare FC and CVP for the management of follicular lymphoma. λmax for non-responders 

was obtained from the proportional difference in hazard rate between responders and non-

responders
63

, and assumed to be the same, irrespective of prior treatment. 

Health Economic Modelling 

Models that determine the incremental cost-effectiveness, expressed as cost (in £; year 2004 

values for the maintenance and first-line models and year 2010 values for the PACIFICO 

model) per QALY gained, of regimens including rituximab were based on manufacturer 

submissions to NICE
57,58

. These adopted a UK NHS costing perspective. Reported 

methodologies were replicated, and models analysed according to the parameter values in 

table 1 (P43). Incremental cost-effectiveness ratios (ICERs) were calculated (difference in 

total expected costs divided by the difference in total expected QALYs), as were cost-

effectiveness acceptability curves that present the probability of the rituximab-containing 

regimen being cost effective at different cost-effectiveness thresholds. For all models, utility 

values were calculated using the EQ-5D questionnaire from a UK study of a cohort of 222 

patients with follicular lymphoma
67

, and both costs and benefits were discounted at 3.5% per 

annum
25

. 

Rituximab Maintenance Therapy 

The NICE report of rituximab for recurrent/refractory follicular lymphoma describes a 

Markov process approach, with three states representing PFS, progressed follicular 

lymphoma (PFL) and death
57

 (figure 3a, P42). All patients enter in the PFS state, and transit 

among these states (1-month cycle duration) according to probabilities determined from 

observed values and modelled extrapolations of the EORTC 20981 trial
63

. For the first 24 
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months, overall survival (OS) and PFS were taken from Kaplan-Meier data, obtained by 

digitizing the published OS and PFS curves. Extrapolations beyond 24 months were based on 

Weibull parametric functions fitted to 1500-day data
67

, a Weibull distribution being preferred 

to a log-logistic, log-Normal, exponential or Gompertz distribution following model selection 

by the Akaike information criterion and Schwarz’s Bayesian criterion
67

. The number of 

patients in the PFL state was taken as the difference between the numbers in the PFS and 

dead states. In the PK/PD-based health economic analysis, trial-based PFS data were replaced 

with simulated data. 
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Table 1 - Parameters and distributions for models of first-line and maintenance therapy 

Parameter Maintenance therapy First-line therapy 

 Mean (estimate for 

sensitivity 

analysis) 

PSA distribution Mean (estimate for 

sensitivity 

analysis) 

PSA distribution 

λmax 0.0451 NA 0.0269 N(0.0269, 0.001) 

Overall survival 

 Weibull scale parameter 0.5274 N(0.5274, 0.0367) NA NA 

 Weibull intercept – control 7.7576 N(7.7576, 0.1257) NA NA 

 Weibull intercept – treatment 8.1555 N(8.1555, 0.1257) NA NA 

Transition probability [PFS to PFL] NA NA 0.0170 (0.0085, 

0.0255) 

N(0.0170, 0.001) 

Costs 

 PFS state £28.67 (86) NA £32.33 (16.16, 

64.66) 

Gamma(32.33, 1) 

 PFL state [routine management] £86 (28.67) Tri(60, 86, 141) NA NA 

 Treatment of PFL state – control £285.77 (571.54) [58] £193.33 (96.67, 

386.66) 

Gamma(193.33, 1) 

 Treatment of PFL state – treatment £286.27 (572.54) [58] £193.33 (96.67, 

386.66) 

Gamma(193.33, 1) 

 Drug – control  £0 NA £330.96 Tri(220.96, 

420.96) 

 Drug – treatment £7739 1325 × N(5.9254, 

0.263) 
£10 110.24 Tri(7110.24, 

13 110.24) 

 Drug administration – treatment £502 86 × N(5.9254, 

0.263) 

£800 (400, 1200) Tri(600, 800, 

1000) 

  SAE – control £7.05 (0) Uniform(0, 

2000) × Beta(1, 

166) 

NA NA 

  SAE – treatment £188.90 (0) Uniform(0, 

2000) × Beta(30, 

NA NA 
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137) 

  NSAE – control £124.11 (62.05, 

248.22) 
1.443 × Uniform(0, 

200) 

NA NA 

  NSAE – treatment £138.01 (69.01, 

276.02) 
1.605 × Uniform(0, 

200) 

NA NA 

Other 

PFS utility 0.805 (0.618) Trimmed N(0.805, 

0.018) 

0.805 (0.618) Trimmed N(0.805, 

0.018) 

PFL utility 0.618 (0.805) Trimmed N(0.618, 

0.056) 

0.618 (0.805) Trimmed N(0.618, 

0.056) 

Duration of treatment benefit 5 years (2, 30) NA 5 years (3, 25) NA 

Time horizon of analysis 30 years (4, 50) NA 25 years (5, 50) NA 

Cost discount rate 3.5% (0, 6) NA 3.5% (1.5, 6) NA 

QALY discount rate 3.5% (0, 6) NA 3.5% (1.5, 6) NA 

 

λmax = maximum value of median hazard; N = Normal; NA = not applicable; NSAE = non-serious adverse event; PFL = progressed follicular 

lymphoma; PFS = progression-free survival; PSA = probabilistic sensitivity analysis; SAE = serious adverse event; Tri = triangular.
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The costs and utilities associated with each health state, taken from the NICE report
57

, are 

reproduced in table 1 (P43). PFS costs are based on expected numbers of visits to health 

clinics, whilst PFL costs are based on the cost and frequency of expected treatments 

following progression. Drug costs, taken from the British National Formulary
68

, were based 

on BSA and assumed wastage from unused vials. Costs for individual patients accrue 

according to time spent in each state, number of cycles of chemotherapy, duration of 

treatment effect and the incidence of adverse events. QALY calculations were based on 

utilities in the PFS and PFL states and patients’ survival. 

The analytic time horizon was set to 30 years and the duration of treatment benefit from 

rituximab was set to 5 years, whereupon transition probabilities reverted to those of the 

control group
57

. 

First-Line Treatment 

The same three-state health economic model formed the basis of a NICE report of rituximab 

as first-line treatment
58

 (figure 3a, P42). Transitions from PFS to PFL were determined by a 

log-logistic extrapolation of the trial data, following model selection as described in the 

earlier section on rituximab maintenance therapy
58

. Transitions from PFS to death were taken 

from all-cause mortality data
69

, and from PFL to death by a parametric extrapolation of data 

from the Scottish National Lymphoma Group (SNLG) Vanguard database
58

, which records 

survival data pertaining to second-line chemotherapy. An exponential survival model fitted to 

these data was used to obtain transition probabilities, following the methodology of the NICE 

submission
57,58

. For the economic evaluation based on trial simulation, observed PFS data 

were replaced by simulated data from the PK/PD analysis. 

Costs and utilities for each health state, and the costs of treatment, were taken from the 

published report
58

. PFS costs consisted of drug and administration costs for eight cycles of 

chemotherapy, and regular maintenance costs; PFL costs were based on treatments patients 

are expected to receive following progression. 

The treatment benefit of rituximab was assumed to persist for the lifetime of the model, with 

the analytic time horizon set to 25 years, in line with the NICE model
58

.
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PACIFICO 

In PACIFICO, patients are randomized to receive either eight cycles of R-CVP or four cycles 

of R-FC followed by four cycles of rituximab alone, with treatment terminated after four 

cycles if there is no response to induction
58

. Patients who continue to respond after eight 

cycles are given rituximab maintenance every 3 months for 2 years or until progression. A 

five-state Markov model was developed to predict the cost-effectiveness of regimens used in 

the trial
67

 (figure 3b, P42). The model specifies states for PFS, PFL and death, with the PFS 

state subdivided into patients undergoing induction, those who have responded (and hence 

were assigned to the maintenance group), and those who did not respond (and hence were 

taken off protocol). Parameter estimates are presented in table 2 (P47). 

The probability of remaining in the PFS state during each 1-month cycle was calculated 

directly from the PK/PD simulation. In line with a previous analysis
58

, transition probabilities 

between PFS and death were calculated from all-cause mortality data
69

, and an exponential 

survival model was applied to data from the SNLG database for transitions from PFL to death. 

Response rates for induction were taken from a trial comparing FC and CVP 

chemotherapies
65

, and adjusted for the effect of rituximab using data from a meta-analysis of 

published trials of both induction chemotherapies
63,65,70-73

, identified from the literature 

review. Response rates from each study were weighted by population size, yielding a mean 

probability of 0.558 for non-responders being converted to responders by the addition of 

rituximab. The assumption of this probability being constant, irrespective of chemotherapy 

regimen, was tested in sensitivity analysis.
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Table 2 - Parameters and distributions for PACIFICO model 

Parameter R-CVP 

value 

R-FC 

value 

PSA distributions Source(s) 

λmax 0.02238 0.01943 N(Mean, 0.001) [65] 

λmax – non-responders 0.025 0.025 N(0.025, 0.001) [57,65] 

Response rate – 4 cycles 0.8984 0.9381 Beta(107, 12) 

Beta(108, 7) 

[65] and meta-analysis 

Response rate – 8 cycles 0.9426 0.9735 Beta(112, 7) 

Beta(112, 3) 

[65] and meta-analysis 

Transition probability [PFL to 

death] 

0.0170 0.0170 N(0.017, 0.001) [58] 

FC induction mortality rate NA 0.0025 Uniform(0, 0.005) Meta-analysis 

Cost of PFS state £31.25 £31.25 Gamma(31.25, 1) [57] 

Cost of PFL state £405.23 £405.23 Gamma(405.23, 1) [57] 

Mean cost per dose 

 Rituximab £1,325.01 £1,325.01 None [75] 

 Fludarabine NA £726.42 None [75] 

 Cyclophosphamide £9.47 £9.47 None [75] 

 Vincristine £26.46 NA None [75] 

 Prednisolone £3.98 NA None [75] 

Proportion neutropenic 0.3108 0.5890 Beta(442, 980) 

Beta(493, 344) 

Meta-analysis 

Cost of managing neutropenia £3,773 £3,773 Gamma(3773, 1) [74] 

Proportion thrombocytopenic 0.0338 0.1195 Beta(48, 1374) 

Beta(100, 737) 

Meta-analysis 

Cost of managing 

thrombocytopenia 

£1634 £1634 Gamma(1634, 1) [74] 

Proportion anaemic 0.0169 0.0335 Beta(24, 1398) 

Beta(28, 809) 

Meta-analysis 

Cost of managing anaemia £1,634 £1,634 Gamma(1634, 1) [74] 
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Proportion with infection 0.0422 0.0681 Beta(60, 1362) 

Beta(57, 780) 

Meta-analysis 

Cost of managing infection £344 £344 Gamma(344, 1) [74] 

Proportion suffering other events 0.0253 0.0227 Beta(36, 1384) 

Beta(19, 818) 

Meta-analysis 

Mean cost of managing other 

events 

£1,326 £1,326 Gamma(1326,1) [74] 

Mean number NSAE 2 2 4 × Beta(2, 2) [57] 

Unit cost of NSAE £86 £86 Gamma(86, 1) [57] 

Health state utility – PFS 0.805 0.805 1-Gamma(117, 

0.00166) 

[57] 

Health state utility – PFL 0.618 0.618 1-Gamma(46.5, 

0.00821) 

[57] 

Cost discount rate 3.5% 3.5% None [25] 

Outcome discount rate 3.5% 3.5% None [25] 

Model horizon 30 years 30 years None Assumption 

Duration treatment benefit 5 years 5 years None [57] 

 

λmax = maximum value of median hazard; FC = fludarabine and cyclophosphamide; N = Normal; NA = not applicable; NSAE = non-serious 

adverse event; PFL = progressed follicular lymphoma; PFS = progression-free survival; PSA = probabilistic sensitivity analysis; R-FC = 

rituximab, fludarabine and cyclophosphamide; R-CVP = rituximab, cyclophosphamide, vincristine and prednisolone.
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Adverse events were assumed to be additive for induction and maintenance regimens, and 

obtained from the same literature review. Where available, the proportions of patients 

experiencing neutropenia, thrombocytopenia, anaemia, infection or other adverse events 

related with R-FC or R-CVP regimens were extracted directly. Where data were only 

available for FC or CVP, incidences were increased by 54%, 68%, 27%, 51% or 69%, 

respectively, as calculated from a meta-analysis of relevant studies
63,65,73

. Data were weighted 

by sample size to derive the final estimates (table 2, P47). 

The number of patients undergoing induction at each cycle was taken from the number in the 

PFS-induction state, and used to calculate the expected cost of induction therapy. Together 

with published costs for adverse events
74

, the expected total cost per patient was calculated. 

The overall cost consisted of drug costs (taken from the British National Formulary
75

), 

administration costs, routine maintenance costs based on health state and the costs of adverse 

events. 

Patients were assumed to enter the model at 60 years of age. The analytic time horizon was 

set to 30 years and, following the model for rituximab maintenance therapy
67

, the duration of 

treatment benefit from rituximab was set to 5 years, whereupon transition probabilities 

reverted to those of the control group. 

Sensitivity Analysis 

Univariate and probabilistic sensitivity analyses (PSA) were conducted to explore parameter 

uncertainty. For the maintenance and first-line models, ranges and distributions were 

replicated from the NICE reports
57,58

 wherever possible (table 1, P43). Where these were not 

available, and for the PACIFICO model (table 3, P50), univariate analysis involved varying 

parameters by 50%. For PSA, proportional data were modelled with Beta distributions. 

Unless indicated otherwise, clinical parameters were assigned Normal distributions. Cost data 

were modelled with Gamma distributions and, when variances were not known, they were 

assumed to be equal to the mean (table 2, P47). In all cases, 2000 simulations were performed.
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Table 3 - Sensitivity analysis for the model of the PACIFICO trial 

Parameter Sensitivity 

range 

Parameter estimate Incremental cost 

per QALY gained (£) 

Base case NA NA 19,950 

Monthly cost of PFS health state −50% £14.34 19,672 

 +50% £57.34 20,228 

Monthly cost of PFL health state −50% £185.89 20,982 

 +50% £743.54 18,916 

Utility values NA PFS utility = PD utility = 0.618 28,217 

  PFL utility = PD utility = 0.805 21,721 

Mortality rate for PFL state −50% 0.0085 25,562 

 +50% 0.0340 18,842 

Cost of rituximab (per dose and 

administration – first line and 

maintenance) 

−50% £662.51 16,103 

 +50% £2,650.02 23,819 

Cost of fludarabine (per dose and 

administration) - first line 

−50% £363.21 14,801 

 +50% £1,452.84 24,984 

Cost of adverse events −50% Neutropenia: £1,886.50 

Thrombocytopenia: £817 

Anaemia: £817 

Infection: £172 

Other: £663 

17,812 

 +50% Neutropenia: £7,546 

Thrombocytopenia: £3,268 

Anaemia: £3,268 

Infection: £688 

Other: £2,652 

22,069 

Discount rates NA Costs = 0%; QALYs = 3.5% 18,788 

  Costs = 6%; QALYs = 3.5% 20,620 
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  Costs = 3.5%; QALYs = 0% 13,058 

  Costs = 3.5%; QALYs = 6% 25,855 

Time horizon of analysis NA 10 years 49,796 

Treatment benefit NA 2 years 23,658 

  30 years 19,437 

Response rates (at 4 and 8 cycles, 

respectively) assumed to be equal in 

treatment arms 

Rate for R-FC 

taken from R-CVP 

(0.8984, 0.9426) 21,466 

 Rate for R-CVP 

taken from R-FC 

(0.9381, 0.9735) 20,394 

Increase in response rate due to 

rituximab – FC arm 

−50% 0.279 20,561 

 +50% 0.837 19,319 

λmax for non-responders NA 0.02 21,714 

  0.03 18,742 

λmax for FC chemotherapy NA 0.02238 31,181 

λmax for CVP chemotherapy NA 0.01943 35,474 

FC induction mortality None 0 18,229 

 Double 0.005 21,390 

 

λmax = maximum value of median hazard; CVP = cyclophosphamide, vincristine and prednisolone; FC = fludarabine and cyclophosphamide; NA 

= not applicable; PFL = progressed follicular lymphoma; PFS = progression-free survival; R-CVP = rituximab, cyclophosphamide, vincristine 

and prednisolone; R-FC = rituximab, fludarabine and cyclophosphamide.
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One particular source of uncertainty that is not, in this context, captured in a standard PSA is 

the accuracy of cost estimates. Because current unit costs are used in order to estimate the 

probability of the intervention being cost effective at some future point, the uncertainty as to 

what costs will be at that time is greater than that indicated by the uncertainty in current cost 

estimates. This problem was mitigated to an extent by increasing the variance of the cost 

estimates in our PSA. In the PACIFICO example, we thus assessed the effect on the 

probability of cost-effectiveness of doubling the variance for each of the costs. 

Value-of-Information Analysis 

The expected value of perfect information (EVPI) for R-FC versus R-CVP was calculated 

using Monte Carlo simulation following methods described elsewhere
76

, to provide an 

estimate of the upper limit on returns on future research. This was based on an annual UK 

patient population of 1,204 for 10 years
77

. 

Congruence of Modelling Approaches 

For the economic models of first-line and maintenance rituximab, comparisons were made 

between the NICE reports
57,58

, and the analyses in which the trial-based PFS data were 

substituted for simulated data. The congruence of both approaches was assessed by 

calculating the difference in mean output values (and associated 95% central range [CR]); by 

comparing the cost-effectiveness acceptability curves; and by comparing the frequency of 

dissimilar pairings of simulated ICERs. For the latter approach, the proportion of simulations 

that yielded a different outcome (i.e. whether or not they were deemed to be cost effective) 

was plotted for each threshold value of cost-effectiveness. This provides a representation of 

the width of the range of thresholds over which the PK/PD-based simulation results may be 

untrustworthy (>5% difference). 

PK analyses were performed using NONMEM 7.1.0 (ICON, Ellicott City, MD)
78

. PD and 

health economic modelling were both done using R, version 2.9.2
79

.
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Results 

Rituximab Maintenance Therapy 

The simulation-derived ICER for R-CHOP versus CHOP is £9,076 per QALY gained, 

compared with £7,721 from the trial-based economic analysis (a 17.6% deviation; table 4, 

P55). Based on PSA, the mean difference in ICER between simulated and trial data is £1,896 

per QALY gained (95% CR −£2,086, £5,773). Figure 4 (P54) presents the cost-effectiveness 

acceptability curves for simulated- and trial-based analyses, and the likelihood that the 

PK/PD-based analysis leads to a decision about the regimen’s cost- effectiveness, which is 

different from trial-based analysis. Between cost-effectiveness thresholds of £3,247 and 

£16,256 per QALY, more than 5% of simulation pairs give different results. However, both 

approaches give a decision uncertainty of zero at the NICE threshold range of £20,000 to 

£30,000 per QALY
25

. 

The deviation in ICER values is related to the mean times in the PFS state, which differ from 

trial-based estimates, over a lifetime, by 4.7 weeks (2.6%) and 17.7 weeks (18.9%) for the 

rituximab and control groups, respectively. Differences in mean life expectancy are 1 day 

(0.1%) and 3 days (0.2%), respectively, and QALYs deviations are 0.063 (1.5%) and 0.363 

(10.9%). Differences in modelled total cost are £1,120 (5.2%) for the rituximab group and 

£2,633 (17.9%) for the control group (table 4, P55). 

First-Line Treatment 

Using PFS derived from the PK/PD model, the ICER for first-line R-CVP versus CVP is 

£10,389 per QALY gained (table 4, P55). This compares with a trial-based estimate of £8,290 

per QALY gained, a difference of 25.3%. Based on PSA, the mean difference in ICER 

between simulated and trial data is £2,062 per QALY gained (95% CR −£74, £3,972). At the 

NICE cost-effectiveness threshold, both models yielded a probability of 1.0 for R-CVP being 

cost effective. More than 5% of simulations give different results between cost-effectiveness 

thresholds of £6,168 and £13,872 per QALY (figure 4, P54).  

Differences in mean PFS are 10.1 weeks (3.9%) and 8.8 weeks (5.8%) for the rituximab and 

control groups; and differences in mean life expectancy are 11.6 weeks (2.3%) and 10.4 

weeks (2.6%), respectively. Differences in total QALYs were 0.199 (3.5%) and 0.062 (1.4%) 

for the rituximab and control groups, respectively, and differences in total costs were £1,193 

(5.8%) and £1,368 (13.7%). 
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Table 4 - Comparison of the results of the simulation- and trial-based economic evaluations of maintenance and first-line use of rituximab, and 

of the PACIFICO simulated trial
b
 

Value Maintenance therapy First-line treatment PACIFICO
a
 

 Simulation Original Simulation Original Simulation 

Costs – treatment (£) 

Study drug  8,241 8,241 10,910 10,910 25,016 

Adverse event  327 327 NA NA 2,746 

PFS state 4,023 3,858 1,651 1,630 1,702 

PFL state 10,137 9,182 9,069 7,807 12,326 

Total 22,728 21,608 21,630 20,437 41,790 

Costs – control (£) 

Study drug  0 0 331 331 19,991 

Adverse event  131 131 NA NA 546 

PFS state treatment  4,319 3,833 1,062 891 1,634 

PFL state treatment 12,905 10,758 9,952 8,755 13,013 

Total 17,355 14,722 11,345 9,977 36,184 

Benefits – treatment 

Mean life expectancy [undiscounted] 6.599 6.600 9.392 9.616 10.659 

Median survival 6.249 6.221 9.685 9.801 9.538 

Mean time in PFS state [undiscounted] 3.507 3.417 4.829 5.024 6.361 

Total QALYs 4.288 4.225 5.512 5.711 4.982 

Benefits – control 

Mean life expectancy [undiscounted] 5.398 5.409 7.815 7.615 10.162 

Median survival 5.273 5.214 6.959 6.788 8.988 

Mean time in PFS state [undiscounted] 2.139 1.799 3.088 2.919 5.642 

Total QALYs 3.696 3.333 4.522 4.460 4.701 

Incremental analysis – treatment and control 

Incremental cost (£) 5,373 6,886 10,285 10,370 5,606 

Incremental life-years gained 1.011 1.000 1.094 1.327 0.331 

Incremental QALYs gained 0.592 0.892 0.990 1.251 0.281 
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Incremental cost per life-year (£) 5,315 6,885 9,401 6,929 16,937 

Incremental cost per QALY (£) 9,076 7,721 10,389 8,290 19,950 

 

a. In PACIFICO, treatment is R-FC; control is R-CVP. b. Year of costing is 2004 for maintenance and first-line treatment and 2010 for the 

PACIFICO analysis. NA = not applicable; PFL = progressed follicular lymphoma; PFS = progression-free survival; R-CVP = rituximab, 

cyclophosphamide, vincristine and prednisolone; R-FC = rituximab, fludarabine and cyclophosphamide.
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PACIFICO 

Figure 5 (P58) shows the proportion of patients in each state over time, as predicted by the 

simulation of PACIFICO. At 3 years, in the R-FC arm of the trial, 72.2% of patients are in 

the PFS state and still on protocol; 3.9% are in the PFS state but are off protocol; 16.0% are 

in the PFL state; and 7.8% have died. The corresponding percentages for the R-CVP arm are 

64.9%, 6.9%, 20.1% and 8.1%, respectively. Compared with R-CVP, R-FC increased PFS at 

the planned 3-year follow-up (primary endpoint) by 4.3%, from 71.8% to 76.1% (hazard ratio 

0.822; p < 0.01). 

The ICER for R-FC versus R-CVP is £19,950 per QALY gained (table 4, P55). The mean 

(SE) simulated incremental cost and QALY gains are £5,606 (1,227) and 0.281 (0.133), 

respectively. The PSA suggests an 80% probability of R-FC being cost effective at the higher 

£30,000 per QALY threshold (figure 5, P58). For the modified PSA analysis using doubled 

variances for the cost data, the probability of R-FC being cost effective reduces to 76%. The 

results of univariate sensitivity analyses indicate that changes in the time horizon of analysis 

and the median hazard in the absence of rituximab (λmax) for CVP chemotherapy have the 

most significant impact on the ICER, increasing it to £49,796 and £35,474 per QALY gained, 

respectively (table 3, P50). 

Subgroup analyses indicate that significant covariates from the PK model had little impact on 

the ICER. When all patients are male (female) the ICER changes to £18,705 (£20,656) per 

QALY gained; and when mean BSA is reduced by 0.1 (increased by 0.1), the ICER changes 

to £19,279 (£20,423) per QALY gained. 

The UK EVPI for the simulation is £3,916,472 if one QALY is valued at £30,000. 

  



 
 

58 
 

   

 

 

Cost-effectiveness acceptability 

curve – R-FC versus R-CVP 

Clinical simulation – R-FC 

Clinical simulation – R-CVP 

Cost-effectiveness threshold (£/QALY) 

Time (years) 

Time (years) 

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 20000 40000 60000

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 5 

P
ro

p
o
rt

io
n

 
P

ro
p
o
rt

io
n

 
P

ro
p
o
rt

io
n

 



 
 

59 
 

Discussion 

We conducted cost-effectiveness analyses, based on PK/PD/pharmacoeconomic (PE) models, 

to calculate incremental costs per QALY gained for different rituximab-containing regimens 

for follicular lymphoma. Our choice of rituximab as a case study was facilitated by 

previously published population PK/PD analyses and conventional economic models. These 

enabled direct comparisons to be made between cost-effectiveness estimates derived from 

simulations and from actual trials when rituximab is used as first-line or maintenance therapy. 

Our simulation of PACIFICO represents an example of how such an approach might be 

applied in practice. 

The simulated results for first-line and maintenance therapy gave higher costs per QALY 

than the original data, but have sufficient accuracy to result in the same economic decisions, 

given that the ICERs are well below NICE’s cost-effectiveness threshold range of £20,000 to 

£30,000 per QALY. We acknowledge that factors other than cost-effectiveness will affect the 

reimbursement decision and so the actual decision may differ, irrespective of the probability 

of cost-effectiveness. Nevertheless, the deviations of our simulation-based analyses from 

trial-based analyses are no greater than the inter-model variation in the estimates of ICERs in 

other published economic evaluations of rituximab in follicular lymphoma
67,80-83

. 

For the maintenance rituximab model, the discrepancy between simulated and trial-based 

estimates results from patients spending less time in the PFS and more in the PFL state, hence 

accruing higher costs whilst having a lower health state utility. For the first-line rituximab 

model, simulated times in the PFS state are lower, thereby raising the ICER. The range of 

cost-effectiveness thresholds over which the simulations are an unreliable predictor 

(incongruence >5%) are approximately £13,000 and £8,000 per QALY for maintenance and 

first-line treatment, respectively. The impact this has on cost-effectiveness decisions depends 

on the proximity of the ICER to the cost-effectiveness threshold.  

Our simulation of PACIFICO indicates an ICER for R-FC (vs. R-CVP) much closer to 

NICE’s cost-effectiveness threshold. Therefore, there is less confidence in the expectation 

that R-FC will represent good value for money (i.e. decision uncertainty is high). As 

PACIFICO is not due to report until 2017, it remains to be seen whether the simulation is a 

reliable forecast of the planned trial-based economic evaluation
59

. 
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The approach taken necessitates a number of assumptions, creating limitations in our analysis. 

First, models may be misspecified. The PK/PD model was developed from separate analyses 

of pharmacokinetics and pharmacodynamics, in different populations, and validated for 

rituximab in combination with other chemotherapies
62

. The relationship between exposure 

and response is assumed to apply to our analyses, but we have no evidence to support this. 

However, our deviations in PFS from observed trial results at 24 months (rituximab arms: 4.2% 

maintenance, 5.6% first-line) are well within the 3-52% range in the original study, which 

validated the PK/PD model
62

. Our economic models extrapolate short-term PFS estimates to 

lifetime. This is necessary to reduce bias in cost-effectiveness estimates, as interventions that 

impact differentially on survival will accrue costs and QALYs beyond the trial time horizon. 

Within the proposed analytic framework, extrapolations of this nature will depend on how 

well the PK/PD model is verified and on the parametric form adopted. Our disease model, 

which represents follicular lymphoma as a finite number of defined health states, represents a 

further potential source of model misspecification. In line with the reporting of clinical trials 

in oncology, health economic models are almost invariably based on a Markov architecture 

defining states of PFS, progressive disease and death. Our model follows those assessed by 

NICE in this respect. 

Second, our reliance on the (unpublished) E1496 trial
65

 to simulate PACIFICO has many 

caveats. The posology differed in terms of the doses administered (higher in E1496) and the 

dose schedules used (cyclophosphamide is no longer administered as a single dose on day 1), 

and no dose allowances were made for patients with reduced renal function, which 

collectively may have contributed to the higher mortality in the FC group of E1496
65

. 

Consequently, the efficacy and toxicity of chemotherapies during the induction phase of 

E1496 might not be generalizable to the PACIFICO trial, although sensitivity analysis 

suggests minimal impact of mortality in the FC group on the ICER. 

Third, the model requires extensive parameterization (n = 47 for the PACIFICO model). 

Whereas conventional economic models are reliant on direct measures of treatment effect, an 

analysis based on PK/PD modelling requires many more parameters to describe the dose-

exposure-response relationship. Whilst parsimony is an important consideration, the balance 

between models that are empirical on the one hand, and mechanistic (e.g. based on systems 

biology) on the other, depends on the context of use and scenarios being analysed.  
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A fourth limitation, the uncertainty around parameter estimates, was addressed in terms of its 

contribution to decision uncertainty, expressed as the probability of rituximab being cost 

effective given a particular cost-effectiveness threshold. It is important to also consider any 

additional uncertainties that may result from the fact the analysis is being performed at a very 

early stage. One example we consider is that the uncertainty surrounding cost data – because 

current unit costs are being used as a proxy for future costs – will be considerably higher than 

that captured by increasing the uncertainty around current unit costs. It will therefore be 

necessary, on a case-by-case basis, to modify the model parameters to take account of this 

fact. First, if the long-term inflation rates of two types of cost in the model are potentially 

different (e.g. if the costs of medicines increase on average at a faster rate than hospital unit 

costs), this will need to be incorporated in the analysis. Second, the increase in total 

uncertainty needs to be considered by appropriate modifications to the parameters in the PSA 

analysis. 

A natural extension to the method presented in this paper is value-of-information (VOI) 

analysis, which quantifies the cost of reducing parameter uncertainty. The EVPI represents 

the maximum price that a pharmaceutical company (for instance) should be willing to pay for 

the perfect prediction of an uncertain outcome. In the case of R-FC, the global EVPI exceeds 

the actual cost of PACIFICO, giving no evidence the trial cost is unacceptable. 

However, an EVPI alone is a very crude measure of the value of research. In practice, more 

sophisticated techniques such as the expected value of perfect parameter information (EVPPI) 

or the expected value of sample information (EVSI) should be preferred. These also allow 

questions such as the optimum design of a phase III trial or the key areas for future research 

to be addressed. We did not calculate these for this example as the focus of this paper was on 

demonstrating the feasibility of linking PK/PD and health economic models, rather than the 

particular way any such model should be used. Importantly, from the data generated in this 

model, one could perform an EVPPI or EVSI calculation, as appropriate for a given situation. 

Our analysis lends support to the plausibility of a population PK/PD-based PE evaluation of 

rituximab for follicular lymphoma. Although we position such an approach for the early 

determination of cost-effectiveness, the case studies relied on a PK/PD model that was based 

on later-phase trials. Drug developers would have access to data that were not available to us 

in the public domain. Nevertheless, in simulating PACIFICO, the analysis demonstrates its 

potential utility. 
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Early-phase decisions are subject to considerable uncertainty, simply as a result of the paucity 

of data available. However, it is useful to be able to explicitly quantify the uncertainty to 

enable the identification of which particular parameters are principally responsible, e.g. using 

a Bayesian analytical framework to update a priori probabilities as new evidence becomes 

available, and VOI analyses to inform the design of phase III trials
84

. A range of methods 

have been proposed for incorporating economic analyses during early-phase clinical 

development
51

, with applications covering strategic research and development decisions; pre-

clinical market assessment; decisions for progressing between clinical phases of research; 

price determination; and reimbursement assessment. However, the population PK/PD-based 

approach described here is consistent with Sheiner’s ‘learning and confirming’ paradigm for 

the clinical phases of drug development
10

, and consequently might help facilitate a co-

ordinated modelling approach across pharmaceutical industry R&D, Pricing and 

Reimbursement, Health Economic and Outcomes Research and Strategic Planning sections. 

The pervasiveness of pharmacoeconomics – from drug development through to market 

access
85

 – requires that cost-effectiveness is an important consideration in clinical research 

investment, and reliable methods for determining value for money during each of the clinical 

phases of drug development are necessary. The mechanistic or semi-mechanistic features of 

PK/PD models afford them the qualities that are desirable for integration within economic 

evaluations. Applications might feasibly include the impact of protocol deviations (e.g. non-

adherence
86

) and subgroups (e.g. based on significant PK or PD co-variates) on cost-

effectiveness, and the assessment of different doses and dose schedules
46

. However, further 

studies are necessary to determine the applicability of such an approach in different clinical 

contexts. 
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Preface to Chapter 3 

After the completion of the initial rituximab case study, the intention was to conduct a second, 

to investigate a different aspect of when PKPDPE modelling might be used, in particular 

looking at the modelling of patient non-adherence. The models used for rituximab (both 

population PKPD and health economic) were comparatively simple, and the fact rituximab 

was already in common usage in a number of other indications meant there was published 

information available that would often not be the case when conducting such analyses. Our 

choice of warfarin for stroke prophylaxis in patients with non-valvular atrial fibrillation for 

this second study was motivated by the fact that that whilst warfarin is a well-established 

drug, meaning we have accessible PKPD and long tern efficacy data, genotyping to inform 

dose selection prior to warfarin initiation is still in the very early stages of development, with 

no definitive trials as yet having reported. Pharmacogenetics is an area which is likely to 

expand considerably over the coming years, making it a logical choice for a second case 

study. 

The fact this analysis was fully prospective meant that we needed to build an extrapolative 

health economics model from scratch, rather than being able to base it on pre-existing 

evaluations as was done with rituximab. The key data source necessary was a large 

randomised control trial with warfarin as one of the treatment arms, which we would later be 

able to populate with data from our planned population PKPD simulations. The largest and 

most recent such study was the RE-LY study, a multinational trial of 18,113 patients 

comparing warfarin with dabigatran etexilate, a new oral anticoagulant. Dabigatran (and 

other newer anticoagulants) provide alternatives both to standard warfarin therapy and 

genotype-guided warfarin, meaning they must also be included in any evaluation of possible 

alternative anticoagulants. 

The model constructed from this needed to both extrapolate the results of the trial data to a 

lifetime horizon and attach appropriate costs and utilities to the outcome data derived. 

Conducting quantitative risk-benefit and cost-effectiveness analyses of dabigatran versus 

warfarin would not only produce the necessary model framework but also enable us to 

compare our simulated warfarin results (genotype and non-genotype) not just with each other, 

but also with another competitor now available. Chapter 3 thus presents the model produced 

and the cost-effectiveness analysis of dabigatran and warfarin that resulted from it.  
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Chapter 3 

 

Dabigatran etexilate versus warfarin in management 

of non-valvular atrial fibrillation in UK context: 

quantitative benefit-harm and economic analyses 
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Summary 

Introduction: We wish to determine the incremental net health benefits of dabigatran etexilate 

110mg, 150mg bid and warfarin in patients with nonvalvular atrial fibrillation; and to 

estimate the cost-effectiveness of dabigatran in the United Kingdom. 

Methods: We conducted quantitative benefit-harm and economic analyses (from the 

perspective of the UK National Health Service) using a discrete event simulation model to 

extrapolate the findings of the RE-LY study to a lifetime horizon. Cohorts of 50,000 patients 

at moderate to high risk of stroke with a mean baseline CHADS2 score of 2.1 were simulated 

with the main outcomes produced being quality-adjusted life-years (QALY) and the 

incremental cost per QALY of dabigatran versus warfarin 

Results: Compared with warfarin, low- and high-dose dabigatran were associated with 

positive incremental net benefits of 0.094 and 0.146 QALYs. Positive incremental net 

benefits resulted for high-dose dabigatran in 94% and 76% of simulations versus warfarin 

and low-dose dabigatran. In the economic analysis, high-dose dabigatran dominated the low-

dose, had an incremental cost-effectiveness ratio of £23,082 per QALY gained versus 

warfarin, and was more cost-effective in patients with baseline CHADS2 score ≥3. However, 

at centres achieving good INR control, such as those in the UK, dabigatran 150mg was not 

cost-effective, at £42,386 per QALY gained. 

Discussion: Our analysis supports regulatory decisions of dabigatran offering a positive 

benefit-to-harm ratio when compared with warfarin. However, we were unable to identify a 

sub-group for which dabigatran 110mg offered any clinical or economic advantage over 

150mg. High-dose dabigatran will only be cost-effective for patients at increased risk of 

stroke or for whom INR is likely to be less well controlled. 
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Introduction 

Atrial fibrillation is the most common sustained cardiac arrhythmia
87

, with an estimated UK 

prevalence of 10% in patients aged 75 or over
88

, and an associated five-fold increase in the 

risk of ischaemic stroke. Bed days for patients with a primary or secondary diagnosis of atrial 

fibrillation cost the National Health Service (NHS) £1.9bn in 2008, with outpatient and other 

inpatient costs (e.g. procedure and inpatient medication costs) totalling £329m
89

. 

Warfarin is the mainstay of oral anticoagulation thromboprophylactic therapy
90

. However, 

patients exhibit considerable variability in their response to warfarin, which, coupled with a 

narrow therapeutic range, necessitates frequent monitoring and dose adjustment to ensure 

optimal anticoagulation. Deviations outside the therapeutic range (international normalised 

ratio [INR] 2.0-3.0) increase the risks of both strokes and haemorrhagic events
91

. 

Dabigatran etexilate is a new oral direct thrombin inhibitor that may provide an alternative to 

warfarin, having the advantage of not requiring regular monitoring. In the multinational, 

Randomized Evaluation of Long-Term Anticoagulation Therapy (RE-LY) study, 18,113 

patients with nonvalvular atrial fibrillation and at least one stroke risk factor were randomised 

to one of two doses of dabigatran (110mg or 150mg, twice daily) or dose-adjusted warfarin
92

. 

After a median follow-up of 2 years, the rates of the primary outcome (stroke or systemic 

embolism) were similar to warfarin among patients assigned the lower dose, but were lower 

among patients assigned the higher dose (1.11% vs. 1.71% per year; RR, 0.66; 95% CI, 0.53 

to 0.82; p=0.0001). Compared with warfarin, the annual rate of major bleeding was lower 

among patients assigned 110mg dabigatran (2.71% vs. 3.36%; RR, 0.80; 95% CI, 0.69 to 

0.93; p=0.003) but similar among patients assigned 150mg. Dabigatran was associated with 

higher rates of myocardial infarction, but these were not statistically significant
93

. 

The US Food and Drug Administration was satisfied of the positive benefit to harm balance 

of dabigatran, but failed to identify a patient subgroup in which the benefit-harm profile was 

superior for the 110mg dose compared with the 150mg dose
94

, and consequently approved 

only the higher dose. However, both doses have been approved by other regulatory 

authorities, including the European Medicines Agency, which specifies 150mg bid for 

patients <80 years; and 110mg bid for patients ≥80 years, or as an option when the 

thromboembolic risk is considered to be low and the bleeding risk is high
95

. 
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Against this background, we describe a quantitative analysis of the trade-off between 

thrombotic and bleeding risks – events which have differential impacts on life expectancy 

and quality of life – as a basis to guide clinicians’ prescribing. We also develop a health 

economic evaluation to estimate the cost-effectiveness of dabigatran in patients with 

nonvalvular atrial fibrillation, given the considerable uncertainty of its cost-effectiveness 

within the UK healthcare setting. 
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Methods 

We modelled the net benefits and expected lifetime clinical event rates of each dose of 

dabigatran and warfarin to quantify the benefits and harms of competing treatments, while 

accounting for parameter uncertainty
96,97

. Incremental net benefits were estimated as the 

difference among treatments in quality-adjusted life-years (QALYs), a preference-based 

outcome measure which combines two dimensions of health: life expectancy, and health-

related quality of life.  

In the economic analysis, the model was extended to estimate resource use and costs from the 

perspective of the UK NHS. The primary outcome was the incremental cost per QALY 

gained. 

We developed a discrete event simulation model which considers individual patients, their 

characteristics and their experience of clinical events and outcomes according to the passage 

of time
27

. Following each event, a patient’s health profile is updated, leading to a new set of 

probabilities for future events. Costs and QALYs are accrued from the patient’s health states 

and events that occur. 

For each treatment, identical cohorts of 50,000 patients were generated, each assigned an age 

and health profile, defined by the presence/absence (according to trial protocol
98

) of any of 

the following characteristics at baseline: hypertension, diabetes mellitus, congestive heart 

failure, prior stroke, prior transient ischaemic attack, prior myocardial infarction and prior 

intracranial haemorrhage (Table 5, P69)
92

. Health characteristics were assumed to be 

independent in the base-case analysis but a sensitivity analysis was conducted to assess the 

effect of correlation. 

All analyses were performed in R
79

. Ethics approval was not required. 

Clinical parameter estimates 

A search of Medline, Embase, the Cochrane library and the FDA and ClinicalTrials.gov 

websites was undertaken during July 2010 to identify relevant trials of dabigatran in atrial 

fibrillation. We used “dabigatran”, “BIBR 1048”, “atrial fibrillation” as search terms, and 

identified three phase II trials (PETRO
99

, PETRO-Ex
99

 and NCT01136408
100

) and a single 

phase III trial (RE-LY)
92

. The phase II studies included too few patients receiving the 

licensed dose and were of too limited a duration (12 weeks) to provide useful data on
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Table 5 - Baseline patient characteristics, costs, health state utilities and discount rate parameters used in the model. 

Parameter Value Probabilistic sensitivity analysis distribution References 

Baseline characteristics 

Hypertension* 14283/1811

3 

Beta (14283,3830) [92,100] 

Diabetes* 4221/18113 Beta (4221,13892) [92,100] 

Heart failure* 5793/18113 Beta (5793,12320) [92,100] 

Prior stroke* 2273/18113 Beta (2273,15840) [92,100] 

Prior transient ischaemic attack* 1663/18113 Beta (1663,16450) [92,100] 

Prior myocardial infarction* 3005/18113 Beta (3005,15108) [92,100] 

Prior intracranial haemorrhage* 713/18113 Beta (713,17400) [92,100] 

Health state utilities 

Atrial fibrillation (age 67) 0.774 1-Gamma (43.06,0.0052) [101] 

Stroke (permanent disutility)† 0.233 Normal (0.233,0.0032) [102] 

Stroke (temporary disutility) † 0.1385 Normal (0.1385,0.01) [101,103] 

Stroke (temporary duration, years)† 1/12 Uniform (0,0.183) [103] 

Myocardial infarction (permanent disutility) 0.0409 Normal (0.0409,0.002) [101] 

Myocardial infarction (temporary disutility) 0.1247 Normal (0.1247,0.01) [101,103] 

Myocardial infarction (temporary duration, years) 1/12 Uniform (0,0.183) [103] 

Intracranial haemorrhage (permanent disutility) 0.0524 Normal (0.0524,0.001) [101] 

Pulmonary embolism (temporary disutility) 0.1385 Normal (0.1385,0.01) [101,103] 

Pulmonary embolism (temporary duration, years) 1/12 Uniform (0,0.183) [103] 

Transient ischemic attack (temporary disutility) 0.1032 Normal (0.1032,0.01) [101,103] 

Transient ischemic attack (temporary duration, years) 5/365 Uniform (0,0.027) [101] 

Major bleed (temporary disutility) 0.1385 Normal (0.1385,0.01) [101,103] 

Major bleed (temporary duration, years) 1/12 Uniform (0,0.183) [103] 

Minor bleed (temporary disutility) 0.06 Normal (0.06,0.01) [103] 

Minor bleed (temporary duration, years) 5/365 Uniform (0.0.027) [103] 

Warfarin disutility 0.013 Gamma (1.3,0.01) [102] 

Dabigatran disutility 0.002 Gamma (0.2,0.01) Assumption 

Aspirin disutility 0.002 Gamma (0.2,0.01) [102] 
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Costs 

Stroke – year 1† £10,543.36 Gamma (102.68,102.68) [104] 

Stroke – subsequent years† £2,781.22 Gamma (52.74,52.74) [104] 

Myocardial infarction – year 1 £2,357.13 Gamma (58.26,40.46) [104] 

Myocardial infarction – subsequent years £828.90 Gamma (34.55,23.99) [104] 

Pulmonary embolism £1,543.27 N/A [105] 

Transient ischaemic attack £839.62 N/A [105] 

Major bleed £1,684.58 N/A [106] 

Minor bleed £93.17 N/A [106] 

Proton pump inhibitors (1 year) £185.20 N/A [107] 

Warfarin – drugs (1 year) £41.23 Uniform (32.98,49.48) [75,107] 

Warfarin – monitoring (1 year) £198.39 Gamma (202.59,0.979) [108] 

Dabigatran – both doses (1 year) £919.80 N/A [109] 

Aspirin (1 year) £7.39 Gamma (73.9,0.1) [75,103] 

Discount rate 

Utilities 3.5% N/A [25] 

Costs 3.5% N/A [25] 

 

*Proportion in initial population 

†Includes both strokes and systemic emboli, excluding pulmonary emboli
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reduction in stroke event rate. The 5-year open-label extension to PETRO did not include 

warfarin as a comparator. We therefore used the RE-LY study for annualised clinical event 

rates
91,100

 (Table 6, P72), and the patients being modelled consequently represented those of 

RE-LY.  

This reflected patients in the RE-LY study
91

, who were: 63.6% male, 70% Caucasian, with a 

mean age of 71.5 years, weight of 82.6kg and no contraindication to anticoagulation. Mean 

baseline CHADS2 score was 2.1 with 32.4% of patients having a score of 3 or more. 50.4% 

of patients were vitamin-K antagonist naïve. 

Our analysis considered the probability of (and reasons for) treatment discontinuation to 

better reflect the real world use of oral anticoagulants. This occurred in 21% and 17% of 

patients randomised to dabigatran and warfarin at 2 years, respectively
91,100

. Patients who 

discontinued dabigatran because of a bleed, or who discontinued warfarin (for any reason) 

were assumed to be switched to aspirin. Patients who discontinued dabigatran for reasons 

other than bleeds were assumed to be switched to warfarin, but this was tested in a sensitivity 

analysis. 

Age-specific mortality rates from non-vascular causes were taken from general population 

data
69

, as were incidence rates for hypertension
110

 and diabetes mellitus
111

; all with the 

assumption that these adequately reflect the RE-LY population (Table 6, P72). The relative 

risks of thromboembolic events and bleeds with aspirin (versus warfarin) were taken from a 

published meta-analysis of comparative trials
112

. 

Utility estimates 

The permanent utility decrement associated with stroke was taken from the results of the 

European Stroke Prevention Study, using the proportions of disabling and non-disabling 

strokes from RE-LY (45% of non-fatal strokes are non-disabling). The baseline health state 

utility for a person with atrial fibrillation (adjusted by age), as well as the decrements 

associated with other cardiovascular sequelae and haemorrhagic adverse events, were taken 

from a report of EQ-5D utility scores elicited from several thousand respondents to the US 

Medical Expenditure Panel Survey
101,103

. Utility losses in patients receiving warfarin (e.g. as 

a consequence of regular monitoring) and aspirin (assumed to be the same for dabigatran e.g. 

because of gastrointestinal upset), were obtained from a study of 83 patients with atrial
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Table 6 - Clinical parameters used in the model 

Parameter‡ Aspirin Warfarin Dabigatran 110mg Dabigatran 150mg References 

Clinical event rates 

Stroke (CHADS2 score 1)*† 0.0177 0.0109 0.0112 0.0068 [92,100,112] 

Stroke (CHADS2 score 2)*† 0.0222 0.0138 0.0145 0.0084 [92,100,112] 

Stroke (CHADS2 score ≥3)*† 0.0441 0.0273 0.0212 0.0189 [92,100,112] 

Pulmonary embolism* 0.0016 0.0010 0.0012 0.0015 [92,100,112] 

Transient ischaemic attack* 0.0135 0.0084 0.0062 0.0072 [92,100,112] 

Congestive heart failure* 0.0062 0.0062 0.0070 0.0048 [92,100] 

Probability of death from stroke† 0.1887 0.1887 0.1887 0.1887 [92,100] 

Probability of death from pulmonary 

embolism 

0.1591 0.1591 0.1591 0.1591 [92,100] 

Vascular death (excluding stroke, 

systemic and pulmonary embolism)* 

0.0228 0.0228 0.0216 0.0208 [92,100] 

Probability major bleed is an 

intracranial haemorrhage 

0.2191 0.2191 0.0839 0.0960 [92,100] 

Adverse events 

Major bleed (CHADS2 score 1)* 0.0127 0.0290 0.0188 0.0220 [92,100,112] 

Major bleed (CHADS2 score 2)* 0.0145 0.0331 0.0298 0.0304 [92,100,112] 

Major bleed (CHADS2 score ≥3)* 0.0202 0.0461 0.0380 0.0486 [92,100,112] 

Minor bleed* 0.0718 0.1637 0.1316 0.1485 [92,100,112] 

Non-bleed adverse events N/A 0.4600 0.4596 0.4725 [92,100] 

Proportion of patients using proton 

pump inhibitor 

0.2317 0.1840 0.2126 0.2164 [92,100,113] 

Myocardial infarction* 0.0064 0.0064 0.0082 0.0081 [92,100,104] 

Co-morbidities 

Diabetes* 0.0122 0.0122 0.0122 0.0122 [111] 

Hypertension* 0.0271 0.0271 0.0271 0.0271 [110] 

Discontinuations 

Probability major bleed leads to 

discontinuation 

N/A 0.1425 0.1801 0.2133 [92,100] 
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Probability adverse event leads to 

discontinuation 

N/A 0.0194 0.0298 0.0292 [92,100] 

Probability discontinue year 1 (other 

reasons) 

N/A 0.0832 0.1160 0.1226 [92,100] 

Probability discontinue year 2 

onwards (other reasons) 

N/A 0.0459 0.0475 0.0432 [92,100] 

 

*Figures presented as rates per 100 person-years 

†Includes both strokes and systemic emboli but not pulmonary emboli 

‡See table 8 for parameters specifying the distributions for the probabilistic sensitivity analysis
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Fibrillation
102

. All utility values are presented in Table 5 (P69), with multiple utility 

decrements for an individual patient assumed to be additive. 

Resource use and cost estimates 

All costs (besides those of dabigatran) are reported in 2009 GBP(£). Costs incurred during 

the first and subsequent years following stroke or myocardial infarction were inflated from 

2006/7 prices
104

. Costs included in this figure were ward costs (staffing, equipment, 

consumables and overheads) and procedure costs (which also included the cost of hospital 

medicines), inpatient and outpatient costs, GP and district nurse visits and the costs of other 

medicines
104

. The costs of pulmonary emboli and transient ischaemic attacks were taken from 

NHS reference costs
105

, as were those for managing major and minor bleeds, following the 

methodology and definitions of a NICE report on the costing of atrial fibrillation
106

. 

Incidences of other adverse events did not differ significantly between treatment groups, so it 

was not deemed necessary to attach a cost to such events. The exception to this is the higher 

incidence of dyspepsia in the dabigatran groups, 11.8% and 11.3% (110mg and 150mg), 

compared with 5.8% for warfarin, which was accounted for by including the cost of proton 

pump inhibitors. The proportion of patients taking proton pump inhibitors came from RE-LY, 

and the number of capsules per patient from a published cost-effectiveness analysis
107

. The 

relative proportion of patients using proton pump inhibitors in conjunction with aspirin was 

taken from a randomised, controlled trial of antithrombotic therapies
113

. 

The costs of warfarin and associated monitoring were based on a micro-costing analysis of 

165 patients with atrial fibrillation included in a 6-month prospective cohort study, with the 

cost of warfarin initiation excluded from the long-term maintenance cost
108

. The average use 

of aspirin in practice was obtained from a published costing study
114

. 

Drug acquisition costs were taken from the British National Formulary
75

 and the NICE 

appraisal consultation document for dabigatran
109

. All costs are presented in Table 5 (P69). 

Discounting 

We applied an annual discount rate of 3.5%
25

 to costs, life-years and QALYs to reflect time 

preference but not to discreet clinical events
115

. 

Assumptions in model 
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 The risk of future cardiovascular events for each simulated patient, at any given time, 

is determined by their age, current treatment and CHADS2 score (a stroke risk index 

based on age, diagnosis of hypertension, diabetes or congestive heart failure, and prior 

stroke or transient ischaemic attack
116

), according to probabilities determined from 

RE-LY (Table 6, P72) 

 Clinical event rates (including myocardial infarction) would remain constant over 

time, unless a change occurred in one or more of the risk factors 

 The rates of treatment discontinuation in the second year of the RE-LY study 

persisted for the lifetime of treatment 

 The incidence (though not prevalence) of hypertension and diabetes was the same in 

patients with atrial fibrillation as the general population; as were deaths from non-

vascular causes  

Age-adjusted dosing 

Patients initially below the age of 80 years start on the 150mg dose, and those above on the 

110mg dose. If a person reaches 80 and is still continuing with the 150mg dose, they are then 

switched to the 110mg dose. We modelled this regimen in two different ways. Our primary 

method used the results of a post-hoc subgroup analysis
100

, which subdivided people by age. 

The secondary method used the event rates from the full trial for patients taking either dose. 

Sensitivity and scenario analyses 

Univariate sensitivity analyses of each model parameter were performed to assess the 

stability of the results when key assumptions are tested. Parameter ranges were based on 95% 

confidence intervals where available, or alternatively, plausible percentage ranges (Table 7, 

P76). The possibility that the cost of managing intracranial haemorrhage and gastrointestinal 

bleeding may be higher with dabigatran than warfarin, because of the lack of an appropriate 

reversal agent, was tested by increasing the costs to consider the potential use of prothrombin 

complex concentrates (non-activated or activated)
117,118

.  

Our base-case assumes treatment benefit to persist for the lifetime of patients, but we tested 

two further scenarios, one where the benefit persisted for two years, the second where the 

benefit decreased linearly to zero over the ten years following the trial.
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Table 7 - Combination of parameter estimates used to specify high and low ranges for the 

univariate sensitivity analyses 

Analysis Parameter Low Value High Value 

Discount rates Cost discount rate 0% 6% 

 Utility discount rate 0% 6% 

Discontinuation rates Probability major bleed leads to discontinuation (warfarin) 0.1092 0.1794 

 Probability major bleed leads to discontinuation (dabigatran) 0.1734 0.2561 

 Probability adverse event leads to discontinuation (warfarin) 0.0159 0.0232 

 Probability adverse event leads to discontinuation (dabigatran) 0.0250 0.0337 

 Probability discontinue year 1 other reasons (warfarin) 0.0764 0.0903 

 Probability discontinue year 1 other reasons (dabigatran) 0.1145 0.1310 

 Probability discontinue year 2 other reasons (warfarin) 0.0404 0.0517 

 Probability discontinue year 2 other reasons (dabigatran) 0.0378 0.0490 

Bleed rates - 

dabigatran 
Major bleed (CHADS2 score 1) 0.0175 0.0270 

 Major bleed (CHADS2 score 2) 0.0254 0.0358 

 Major bleed (CHADS2 score ≥3) 0.0421 0.0556 

 Probability major bleed is an intracranial haemorrhage 0.0683 0.1277 

 Minor bleed 0.1422 0.1549 

Medication cost - 

warfarin 

Cost warfarin – drugs (1 year) £33.39 £49.07 

 Cost warfarin – monitoring (1 year) £171.96 £226.56 

Bleed rates - warfarin Major bleed (CHADS2 score 1) 0.0236 0.0349 

 Major bleed (CHADS2 score 2) 0.0280 0.0386 

 Major bleed (CHADS2 score ≥3) 0.0396 0.0531 

 Probability major bleed is an intracranial haemorrhage 0.1799 0.2611 

 Minor bleed 0.1571 0.1705 

Event utility losses Stroke (permanent disutility) 0.1703 0.2957 

 Stroke (temporary disutility) 0.1189 0.1581 

 Myocardial infarction (permanent disutility) 0.0370 0.0448 
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 Myocardial infarction (temporary disutility) 0.1051 0.1443 

 Intracranial haemorrhage (permanent disutility) 0.0504 0.0544 

 Pulmonary embolism (temporary disutility) 0.1189 0.1581 

 Transient ischemic attack (temporary disutility) 0.0836 0.1228 

 Major bleed (temporary disutility) 0.1189 0.1581 

 Minor bleed (temporary disutility) 0.0502 0.0698 

Medication utility 

losses 

Warfarin disutility 0 N/A 

 Dabigatran disutility 0 N/A 

 Aspirin disutility 0 N/A 

Vascular death rates - 

dabigatran 

Probability of death from stroke 0.1561 0.2236 

 Probability of death from pulmonary embolism 0.0681 0.2793 

 Vascular death (excluding stroke, systemic and pulmonary embolism) 0.0183 0.0234 

Vascular death rates - 

warfarin 

Probability of death from stroke 0.1561 0.2236 

 Probability of death from pulmonary embolism 0.0681 0.2793 

 Vascular death (excluding stroke, systemic and pulmonary embolism) 0.0202 0.0256 

Stroke rates - 

dabigatran 
Stroke (CHADS2 score 1) 0.0044 0.0097 

 Stroke (CHADS2 score 2) 0.0058 0.0114 

 Stroke (CHADS2 score ≥3) 0.0148 0.0234 

Stroke rates - 

warfarin 
Stroke (CHADS2 score 1) 0.0077 0.0147 

 Stroke (CHADS2 score 2) 0.0105 0.0175 

 Stroke (CHADS2 score ≥3) 0.0224 0.0328 
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We conducted a probabilistic sensitivity analysis, implementing a Monte Carlo simulation of 

2000 sets of simulated parameters (Tables 5 & 8, P69 & P79); to estimate the 95% central 

ranges of clinical event rates and net health benefits. In the economic analysis, the 

probabilistic sensitivity analysis was used to consider the joint uncertainty in costs and 

QALYs to estimate the probabilities of dabigatran being cost-effective at different thresholds, 

presented as a cost-effectiveness acceptability curve, and in different clinical scenarios. 

We performed sub-group analyses to calculate the net health benefits (and associated 95% 

central ranges), the incremental cost-effectiveness ratios, and the probability of cost-

effectiveness, in the following, pre-specified populations
100,119-121

: 

1. Patients aged 75 or older. 

2. Patients with a CHADS2 score of 2, or a CHADS2 score ≥3. 

3. Patients who have previously suffered a stroke or transient ischaemic attack. 

4. Patients attending trial centres (clinics) reporting mean INR time within therapeutic 

range greater (or lower) than 65.5%. 

5. Patients on warfarin whose time within therapeutic range was greater (or lower) than 

66.8% were compared with the full dabigatran populations. Only summary 

information was available for this calculation. 

6. Patients with poor renal function as indicated by a low (30-50mL/min) creatinine 

clearance. 

7. Patients who were vitamin-K antagonist naïve.
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Table 8 - Parameters used for specifying the distributions for the probabilistic sensitivity analysis 

Parameter Aspirin Warfarin Dabigatran 

110mg 

Dabigatran 

150mg 

Clinical event rates     

Stroke (CHADS2 score 1)* † Lognormal(0.478,0.137)*Beta(37

,3342) 

Beta(37,3342) Beta(41,3629) Beta(25,3667) 

Stroke (CHADS2 score 2)* † Lognormal(0.478,0.137)*Beta(60

,4290) 

Beta(60,4290) Beta(59,4001) Beta(35,4143) 

Stroke (CHADS2 score ≥3)* † Lognormal(0.478,0.137)*Beta(10

2,3629) 

Beta(102,3629) Beta(82,3786) Beta(73,3795) 

Pulmonary embolism* Lognormal(0.478,0.137)*Beta(12

,11782) 

Beta(12,11782) Beta(14,11885) Beta(18,12015) 

Transient ischaemic attack* Lognormal(0.478,0.137)*Beta(99

,11695) 

Beta(99,11695) Beta(74,11825) Beta(87,11946) 

Congestive heart failure* Lognormal(0.478,0.137)*Beta(73

,11721) 

Beta(73,11721) Beta(83,11816) Beta(58,11975) 

Probability of death from stroke† Beta(97,417) Beta(97,417) Beta(97,417) Beta(97,417) 

Probability of death from 

pulmonary embolism 

Beta(7,37) Beta(7,37) Beta(7,37) Beta(7,37) 

Vascular death (excluding stroke, 

systemic and pulmonary 

embolism)* 

Beta(269,11525) Beta(269,11525) Beta(257,11642) Beta(250,11783) 

Probability major bleed is an 

intracranial haemorrhage 

Beta(87,310) Beta(87,310) Beta(27,295) Beta(36,339) 

Adverse events     

Major bleed (CHADS2 score 1)* Lognormal( 

-0.824,0.400)*Beta(98,3281) 

Beta(98,3281) Beta(69,3601) Beta(81,3601) 

Major bleed (CHADS2 score 2)* Lognormal( 

-0.824,0.400)*Beta(144,4206) 

Beta(144,4206) Beta(121,3939) Beta(127,4051) 
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Major bleed (CHADS2 score ≥3)* Lognormal( 

-0.824,0.400)*Beta(172,3559) 

Beta(172,3559) Beta(147,3721) Beta(188,3680) 

Minor bleed* Lognormal( 

-0.824,0.400)*Beta(1931,9683) 

Beta(1931,9863) Beta(1566,1033

3) 

Beta(1787,10246) 

Non-bleed adverse events N/A Beta(5425,6369) Beta(5469,6430) Beta(5685,6348) 

Proportion of patients using proton 

pump inhibitor 

1.26* Beta(1108,4914) Beta(1108,4914) Beta(1279,4736) Beta(1315,4761) 

Myocardial infarction* Beta(66,11728) Beta(66,11728) Beta(87,11812) Beta(89,11944) 

Co-morbidities     

Diabetes* Normal(0.0122,0.001) Normal(0.0122,0.0

01) 

Normal(0.0122,

0.001) 

Normal(0.0122,0.

001) 

Hypertension* Normal(0.0271,0.002) Normal(0.0271,0.0

02) 

Normal(0.0271,

0.002) 

Normal(0.0271,0.

002) 

Discontinuations     

Probability major bleed leads to 

discontinuation 

N/A Beta(54,325) Beta(58,264) Beta(80,295) 

Probability adverse event leads to 

discontinuation 

N/A Beta(105,5320) Beta(163,5306) Beta(166,5519) 

Probability discontinue year 1 

(other reasons) 

N/A Beta(501,5521) Beta(698,5317) Beta(745,5331) 

Probability discontinue year 2 

onwards (other reasons) 

N/A Beta(242,5036) Beta(242,4852) Beta(220,4872) 

 

*Figures presented as rates per 100 person-years 

†Includes both strokes and systemic emboli but not pulmonary emboli
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Results 

The results of our simulation at 2-years matched the results of the trial. No value deviated by 

more than 2.1%, a level of variability that would be expected given the stochastic nature of 

the simulation. 

Clinical outcomes and net health benefit 

In the base-case analysis, dabigatran 110mg bid and 150mg bid, extended life by 1.1 and 2.4 

months, respectively, when compared with warfarin (Table 9, P82). The corresponding 

incremental net benefits were 0.094 (95% central range, -0.083 to 0.267) and 0.146 (95% 

central range, -0.029 to 0.322) QALYs. Compared with the low-dose dabigatran, the higher 

dose was associated with a positive incremental net benefit in 76% of simulations and with a 

mean value of 0.052 QALYs (95% central range, -0.122 to 0.228). Compared with warfarin, 

dabigatran 110mg bid and 150mg bid were associated with positive incremental net benefits 

in 86% and 94% of simulations, respectively.  

Lifetime incidences of stroke or systemic embolism were 12.5% lower with dabigatran 

110mg bid than warfarin; and 27.4% lower with dabigatran 150mg bid. Incidences of major 

haemorrhagic events were lower for low-dose dabigatran (by 4.0%), but higher for high-dose 

dabigatran (by 8.8%). There were no discernible differences in lifetime incidences of 

myocardial infarction between either doses of dabigatran, but these were about 19% higher 

than warfarin. 

While being associated with lower bleeding rates, the higher rates of thrombotic events 

resulted in age-adjusted dabigatran dosing being inferior to the 150mg dose with respect to 

QALYs and life-years gained. 

Costs and cost-effectiveness 

Total, discounted, lifetime costs for dabigatran 110mg bid, 150mg bid and warfarin were, 

respectively, £10,529, £9,850 and £6,480. These were comprised mainly of drug and 

monitoring costs, which accounted for 47.3% and 44.2% of the overall costs of both doses of 

dabigatran compared with 22.4% for warfarin. The costs of managing strokes or systemic 

emboli accounted for 39.1%, 40.2% and 57.6% of total costs, respectively, with the 

remainder comprised of the costs of managing other events.
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Table 9 - Lifetime estimates of event rates, net benefits and incremental differences versus comparator, derived from probabilistic sensitivity 

analysis 

 

 

Outcome Referent Mean estimate Mean difference  

Comparator Mean 2.5% 97.5% Mean 2.5% 97.5% 

Quality-adjusted life-years (QALYs)†  

Warfarin 6.390 6.265 6.517 -0.094 0.083 -0.267 Dabigatran 110mg bid 

Dabigatran 110mg bid 6.484 6.360 6.634 -0.049 0.126 -0.221 Dabigatran age-adj.‡ 

Dabigatran age-adj.‡ 6.531 6.401 6.664 -0.005 0.171 -0.180 Dabigatran 150mg bid 

Dabigatran 150mg bid 6.536 6.413 6.662 0.146 -0.029 0.322 Warfarin 

Life-years†  

Warfarin 10.851 10.687 11.018 -0.089 0.142 -0.323 Dabigatran 110mg bid 

Dabigatran 110mg bid 10.940 10.776 11.111 -0.102 0.129 -0.338 Dabigatran age-adj.‡ 

Dabigatran age-adj.‡ 11.042 10.873 11.221 -0.009 0.243 -0.232 Dabigatran 150mg bid 

Dabigatran 150mg bid 11.051 10.885 11.220 0.200 -0.035 0.429 Warfarin 

Stroke or systemic embolism (excluding pulmonary emboli)  

Warfarin 0.2408 0.2010 0.2841 0.0302 -0.0260 0.0875 Dabigatran 110mg bid 

Dabigatran 110mg bid 0.2107 0.1698 0.2538 0.0308 -0.0268 0.0893 Dabigatran age-adj.‡ 

Dabigatran age-adj.‡ 0.1799 0.1401 0.2245 0.0044 -0.0476 0.0511 Dabigatran 150mg bid 

Dabigatran 150mg bid 0.1755 0.1354 0.2196 -0.0654 -0.0092 -0.1226* Warfarin 

Ischaemic stroke  

Warfarin 0.1718 0.1484 0.1982 -0.0045 -0.0565 0.0493 Dabigatran 110mg bid 

Dabigatran 110mg bid 0.1763 0.1507 0.2067 0.0331 -0.0189 0.0822 Dabigatran age-adj.‡ 

Dabigatran age-adj.‡ 0.1432 0.1167 0.1708 0.0044 -0.0502 0.0570 Dabigatran 150mg bid 

Dabigatran 150mg bid 0.1388 0.1121 0.1662 -0.0330 0.0261 -0.0803 Warfarin 

Transient ischaemic attack  

Warfarin 0.1643 0.1281 0.2074 0.0218 -0.0280 0.0712 Dabigatran 110mg bid 

Dabigatran 110mg bid 0.1425 0.1057 0.1791 0.0273 -0.0237 0.0762 Dabigatran age-adj.‡ 

Dabigatran age-adj.‡ 0.1152 0.0791 0.1509 0.0042 -0.0449 0.0580 Dabigatran 150mg bid 

Dabigatran 150mg bid 0.1110 0.0744 0.1476 -0.0533 -0.0035 -0.1027* Warfarin 
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Intracranial haemorrhage  

Warfarin 0.0756 0.0655 0.0835 0.0479 0.0347 0.0614* Dabigatran 110mg bid 

Dabigatran 110mg bid 0.0277 0.0240 0.0308 -0.0062 -0.0191 0.0077 Dabigatran age-adj.‡ 

Dabigatran age-adj.‡ 0.0339 0.0298 0.0372 -0.0017 -0.0133 0.0116 Dabigatran 150mg bid 

Dabigatran 150mg bid 0.0356 0.0322 0.0391 -0.0400 -0.0271 -0.0578* Warfarin 

Major bleed (including intracranial haemorrhage)  

Warfarin 0.3313 0.2942 0.3766 0.0133 -0.0409 0.0673 Dabigatran 110mg bid 

Dabigatran 110mg bid 0.3180 0.2811 0.3623 -0.0379 -0.0902 0.0257 Dabigatran age-adj.‡ 

Dabigatran age-adj.‡ 0.3559 0.3180 0.3985 -0.0048 -0.0561 0.0512 Dabigatran 150mg bid 

Dabigatran 150mg bid 0.3607 0.3233 0.4017 0.0294 0.0835 -0.0247 Warfarin 

Non-fatal myocardial infarction  

Warfarin 0.0612 0.0434 0.0813 -0.0109 -0.0346 0.0126 Dabigatran 110mg bid 

Dabigatran 110mg bid 0.0721 0.0560 0.0895 -0.0006 -0.0251 0.0256 Dabigatran age-adj.‡ 

Dabigatran age-adj.‡ 0.0727 0.0560 0.0914 -0.0003 -0.0250 0.0255 Dabigatran 150mg bid 

Dabigatran 150mg bid 0.0730 0.0561 0.0934 0.0119 0.0356 -0.0116 Warfarin 

 

Columns 2-4 are means and central ranges for the given referent, columns 5-7 are means and central ranges for the difference from the 

comparator group. 

 

*Incremental difference 95% central range not crossing zero 

†Discounted at 3.5% per annum 

‡Age-adjusted dabigatran dosing regimen (110mg bid for patients aged ≥80 years) based on a post-hoc subgroup analysis. 
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Table 10 - Cost-effectiveness results for sub-groups, based on the probabilistic sensitivity analysis. 

Sub-group Warfarin cost Warfarin 

QALY 

Dabigatran 

150mg bid 

Cost 

Dabigatran 

150mg bid 

QALY 

ICER 

(£/QALY) 

Probability cost-

effective at: 

£20,000 

per QALY 

£30,000 

per QALY 

RE-LY population £6,480 6.390 £9,850 6.536 £23,082 0.449 0.596 

CHADS2 score 2 £7,412 6.283 £10,443 6.433 £20,207 0.475 0.615 

CHADS2 score ≥3 £9,912 6.224 £12,646 6.396 £15,895 0.565 0.683 

Centre time within 

therapeutic range 

≥65.5% 

£6,247 6.517 £9,977 6.605 £42,386 0.137 0.309 

Centre time within 

therapeutic range 

<65.5% 

£6,617 6.261 £9,656 6.410 £20,396 0.469 0.636 

Patients’ time within 

therapeutic range 

≥66.8% 

£6,302 6.401 £9,850 6.536 £26,281 0.393 0.511 

Patients’ time within 

therapeutic range 

<66.8% 

£6,694 6.360 £9,850 6.536 £17,932 0.519 0.643 

Creatinine clearance 

<30-50mL/min 

£7,991 6.310 £10,788 6.460 £18,647 0.501 0.631 

Prior stroke or 

transient ischaemic 

attack 

£10,004 6.217 £12,787 6.378 £17,286 0.525 0.649 

Vitamin-K antagonist 

naive 

£6,437 6.396 £9,792 6.545 £22,517 0.446 0.587 

Age ≥75 years £4,612 4.275 £7,362 4.429 £17,857 0.498 0.635 

 

Final two columns show proportion of simulations in which dabigatran 150mg bid is cost-effective versus warfarin 
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The incremental cost-effectiveness ratio (ICER) for low-dose dabigatran versus warfarin is 

£43,074 per QALY gained; while that of high-dose dabigatran is £23,082 per QALY gained 

(Table 10, P84). Dabigatran 110mg bid is dominated as a strategy by dabigatran 150mg bid, 

as it is associated with a worse health outcome (-0.052 QALYs) and higher cost (+£679). 

Age-adjusted dosing  

The use of dabigatran 110mg bid from the age of 80 years is dominated by the 150mg bid 

dose under both possible modelling methodologies. In the models based on the post-hoc 

subgroup analysis, and using full RE-LY data, respectively, the use of the lower dose accrues 

0.005 and 0.017 less QALYs and costs £62 and £234 more over a lifetime. Compared to 

warfarin, the ICERs when low dose dabigatran is used in the over 80s are £24,340 and 

£27,940 per QALY gained, for the two methodologies, respectively.  

 

Figure 6 
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Sensitivity analysis 

The tornado plot (Figure 6, P85) indicates the sensitivity of incremental net benefits to stroke 

rates and the duration of effect of dabigatran. Dabigatran 150mg bid was cost-effective at the 

lower threshold of £20,000 per QALY when we assumed decreases (or increases) in the rates 

of stroke or vascular death in patients receiving dabigatran (or warfarin); or increases in 

either clinical event costs or utility losses. 

Compared to warfarin, the ICER for dabigatran 110mg bid exceeded £32,415 per QALY in 

all sensitivity analyses. 

The probabilistic sensitivity analysis (Figure 7) indicates that warfarin has the highest 

probability of being cost-effective at thresholds of £24,400 or lower. Dabigatran 150mg bid is 

the most probable cost-effective option at thresholds above that value. Considering a pair-

wise comparison between warfarin and dabigatran 150mg bid, warfarin is the most cost-

effective treatment at thresholds of £22,800 and below. 

 

 

Figure 7  
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Sub-group analyses 

Among the sub-groups analysed, the mean incremental net health benefit consistently 

favoured both doses of dabigatran over warfarin; and dabigatran 150mg bid over 110mg bid 

(Figure 8). 

 

Figure 8 

Dabigatran 150mg bid was within the £30,000 per QALY cost-effectiveness threshold for all 

patient sub-groups other than in centres with mean INR time within therapeutic range ≥65.5% 

(Table 10, P84). Dabigatran 150mg bid was most cost-effective in patients at high risk of 

stroke (CHADS2 score ≥3), but even here the probability of being cost-effective is only 68%. 

Dabigatran 110mg bid, when used for all ages or restricted to patients ≥80 years, was 

dominated by the higher dose in all sub-groups.  
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Discussion 

Our quantitative benefit-harm analysis suggests that dabigatran is associated with positive net 

health benefits when compared with warfarin. High-dose dabigatran was the most clinically 

effective option. Greatest benefits were evident when compared with patients in whom INR 

control is poorest (patient time within therapeutic range <66.8%); and least benefits in centres 

that achieve good INR control (centre time within therapeutic range ≥65.5%). We were 

unable to identify a patient sub-group in which the lower dose of dabigatran – when used for 

all ages, or restricted to patients ≥80 years - was superior to the higher dose. The benefits of 

reduced bleeding rates with the lower dose are offset by reduced efficacy in stroke prevention. 

These finding are in accordance with the results of the RE-LY study
92

, and related sub-group 

analyses
100,119-121

, and lends support to the FDA’s rationale for not licensing the 110mg dose
94

.  

The economic analysis indicated that for the overall RE-LY study population, dabigatran 

150mg bid is potentially a cost-effective alternative to warfarin, at £23,082 per QALY gained. 

However, its probability of being cost-effective at a threshold of £20,000 per QALY is only 

45%. This uncertainty is driven largely by stroke rates and, to a lesser extent, vascular death 

rates and costs of managing strokes. NICE’s criteria for decision-making state that “above a 

most plausible ICER of £20,000 per QALY gained, judgements about the acceptability of the 

technology as an effective use of NHS resources will specifically take account the degree of 

certainty around the ICER. NICE will be more cautious about recommending a technology 

when it is less certain about the ICERs presented”
25

. Dabigatran 110mg bid is not a cost-

effective option, and the age-adjusted dosing regimen is dominated in all scenarios by the 

150mg dose. 

High-dose dabigatran is more cost-effective in patients at a greater risk of stroke (baseline 

CHADS2 score ≥3). However, at centres which achieve good INR control (centre time within 

therapeutic range ≥65.6%), dabigatran 150mg bid is no longer cost-effective, at £42,386 per 

QALY gained. While the mean time within INR range in the UK of 72% in the RE-LY 

study
119

 may be higher than routine practice
108

, so too might adherence to dabigatran, which 

requires twice daily dosing compared with warfarin’s once. 

Comparison with other studies 

We are unaware of any quantitative benefit-harm analyses of dabigatran in atrial fibrillation. 

However, two economic evaluations of dabigatran in non-valvular atrial fibrillation have 
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been published. Both used Markov models to estimate lifetime cost-effectiveness based on 

the RE-LY trial. 

The US study, which adopted the costing perspective of a health insurer
122

, yielded a quality-

adjusted life expectancy of 10.28 with warfarin, 10.70 with low-dose dabigatran, and 10.84 

with high-dose dabigatran. These are considerably higher than our estimates, primarily 

because of patients’ starting age which, at 65 years, is 6.1 years younger than in our analysis 

based on the RE-LY population. Nevertheless, despite this differences, similar results were 

obtained with respect to dabigatran 150mg bid being associated with positive incremental net 

health benefits across a range of risks for stroke and intracranial haemorrhage, compared with 

dabigatran 110mg bid and warfarin. A similar economic outcome also resulted, with the 

ICER falling just below the cost-effective threshold but with a high level of uncertainty, 

driven mostly by drug costs and stroke rates. 

The Canadian study
123

, sponsored by the manufacturer of dabigatran and based on RE-LY 

patient-level data (though not listed as a pre-specified analysis)
98

, assessed its cost-

effectiveness according to the same age-adjusted dosing schedule as approved in Europe. In 

contrast to the US and our study, however, dabigatran was deemed to be cost-effective 

compared with warfarin, at Can$10,440 per QALY gained. Differences relate largely to costs, 

which were proportionally much greater in their analysis for the management of events and 

long term care. Considering a patient, taking dabigatran, who has an acute stroke and five 

years of follow-up costs; in our analysis, the costs of stroke is about 5-times higher than the 

cost of medication whilst in the Canadian study they are more than 15-times higher. 

Strengths and weaknesses 

Our analysis benefited from applying a discrete event simulation methodology, which is the 

method of choice for conditions where there are no obvious discrete disease states into which 

patients can be classified, a necessary assumption for a Markov model
27

. It allows for a much 

larger number of potential health states to be modelled and removes the need to define the 

additional structural parameters necessary for a Markov model (e.g. cycle length). A discrete 

event simulation also operates in continuous rather than discrete time, thus more naturally 

approximating actual patient histories and allowing continuous parameters (e.g. age) to be 

more appropriately modelled.  
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Our analysis addresses the concerns raised by NICE in its appraisal of the manufacturer’s 

submission
109

; namely, the inclusion of the age-adjusted dosing regimen, use of reliable 

estimates of INR monitoring cost, continuation of dyspepsia throughout duration of 

dabigatran treatment, and treatment-independence of the risks of disability and mortality after 

stroke. We had no access to data on the quality of life sub-study of RE-LY; and made no 

attempt at modelling a typical UK atrial fibrillation population who are typically older, with 

proportionately more females, and a different stroke risk profile than the RE-LY trial 

population
124

. Patients are also less likely to persist with anticoagulant therapy in routine 

practice than in a clinical trial setting
124

, but we had no additional data for more elaborate 

modelling. 

However, there are a number of caveats. First, the reliance on the RE-LY study as the sole 

source of clinical data is a potential cause for concern. Although RE-LY is one of the largest 

trials of atrial fibrillation, this makes it difficult to assess the impact of any possible 

weaknesses in the design of the RE-LY study (e.g. its open-label design, a significant 

proportion of patients taking aspirin concomitantly and only about a third of patients with a 

baseline CHADS2 score ≥3). We were further limited by not having access to individual 

patient data. Our a priori decision to base our analysis on the entire RE-LY study population 

may limit the generalisability of the base-case estimates to a UK context. Sub-groups, defined 

by centres achieving better INR control and patients within the higher categories of stroke 

risk, may result in more relevant ICER estimates. 

Second, the necessity of bringing together data from a wide variety of sources has the 

potential to introduce bias into the analysis. For example, relative event rates for aspirin 

therapy were derived from a separate study, which will have had different patient 

demographics and different warfarin dosing schedules to RE-LY. There are also issues 

regarding the extrapolation of a two year trial to a lifetime horizon, and the assumption that 

utility decrements for events derived from the general population are appropriate for patients 

with atrial fibrillation. However, approximations such as these are unavoidable in economic 

modelling. 

Third, we did not include the possibility that widespread use of dabigatran might impact on 

the provision of anticoagulation clinic services, as we considered it unlikely that dabigatran 

would displace warfarin to such an extent. 
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Implications for practice and future research 

There are advantages of dabigatran over warfarin, the most important being that monitoring 

will not be required, there is more predictable anticoagulation for a given dose and there are 

likely to be fewer drug-drug interactions. However, there are disadvantages as well
125

: (a) the 

lack of monitoring provides little ability to objectively monitor adherence which in the real-

world setting is likely to be worse with dabigatran given the need for twice daily dosing and 

its associated higher incidence of dyspepsia; (b) if the patient has a serious bleed, there are no 

proven antidotes
126

; (c) there is some uncertainty of dosing in certain clinical settings such as 

renal failure, elderly and concomitant intake of amiodarone, which may lead to either under- 

or over-dosing given that there is no ability to monitor with a pharmacodynamic marker; (d) 

the safety and efficacy of thrombin inhibitors in the longer term (beyond 2 years) are 

uncertain, though the follow-up study of RE-LY patients should yield valuable information
127

. 

An important finding from the cost-effectiveness analysis is that dabigatran is not cost-

effective when compared to patients whose INR is well controlled, or in centres which 

achieve good INR control, which includes the UK. Part of the reason why there is such 

variability in the time within therapeutic range with warfarin is the presence of genetic 

polymorphisms in the CYP2C9 and VKORC1 genes
108,128

. There are at least 4 randomised 

trials running globally where genotype-guided prescribing for warfarin, which is predicted to 

improve the time within therapeutic range, is being tested against current clinical care. 

Whether dabigatran would be cost effective against genotype-guided prescribing of warfarin 

is unclear, and needs further evaluation. Furthermore, there are other competitors to 

dabigatran due to be evaluated for licensing soon such as rivaroxaban and apixaban, which 

have shown similar clinical effectiveness to warfarin, but have not been tested against 

dabigatran
129

. Thus, while the arrival of new anticoagulants should be welcomed, their place 

in the prevention of strokes in patients with atrial fibrillation in comparison to warfarin 

(perhaps genotype-guided) needs further evaluation.  In the end, a stratified approach may 

represent the best approach to maximise both the clinical and cost-effectiveness of 

anticoagulation in patients with atrial fibrillation. 
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Preface to Chapter 4 

During the time taken for the construction of the economic model in the previous chapter, 

two other large trials of novel anticoagulants (the ROCKET-AF trial of rivaroxaban and the 

ARISTOTLE trial of apixaban) had reported. A decision was made that rather than 

proceeding directly to the planned population PKPD simulation, an indirect comparison of 

these trials would be conducted, to obtain estimates of relative treatment efficacy. These 

could then be fed into the discrete event simulation described in the previous chapter to 

obtain estimates of comparative effectiveness at a lifetime horizon. 

Such an approach would enable us to more accurately reflect the process of drug 

development in the real world. Since both effectiveness and cost-effectiveness are ultimately 

relative rather than absolute, in decision making it is important to be able to compare any 

newly available treatment with all relevant comparators. If we had proceeded directly to our 

simulations and not included these other drugs, it would have led to an incomplete and 

potentially inaccurate assessment of their effectiveness and cost-effectiveness. Since not all 

of the necessary economic data were available to perform a cost-effectiveness analysis at this 

time (specifically, the costs of rivaroxaban and apixaban were not available) it was decided to 

perform a comparison based only on effectiveness and net clinical benefit. Any newly 

available cost data would then be included in the final cost-effectiveness model when all 

PKPD simulations had been conducted.  
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Chapter 4 

 

Comparative effectiveness of dabigatran, 

rivaroxaban, apixaban and warfarin in the 

management of non-valvular atrial fibrillation 
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Summary 

Introduction: Alternative anticoagulants to warfarin are available for the prevention of 

thromboembolic stroke in atrial fibrillation, but there is a lack of information on their 

comparative effectiveness. We evaluate the comparative effectiveness of dabigatran, 

rivaroxaban, apixaban and warfarin in patients with non-valvular atrial fibrillation. 

Methods: A discrete event simulation with a lifetime horizon of analysis and based on an 

indirect comparison of the RE-LY, ROCKET-AF and ARISTOTLE trial results. Simulations 

were performed on cohorts of patients with characteristics matching those of the US atrial 

fibrillation population, with a mean age of 73 years, and mean CHADS2 score of 1.92. 

Outcomes included the incremental net health benefits, defined in terms of quality-adjusted 

life-years (QALYs); probability of each treatment being most effective; and clinical event 

rates.  

Results: Over a lifetime, apixaban, dabigatran and rivaroxaban accrued 0.1297 (95% central 

range [CR] -0.0296 to 0.2644), 0.1055 (95% CR -0.0481 to 0.2477) and 0.0948 (95% CR -

0.0523 to 0.2422) more QALYs than warfarin, respectively. They were also associated with 

33.6%, 17.0% and 6.7% lower lifetime incidences of stroke or systemic embolism. Apixaban 

was associated with a 21.3% lower lifetime incidence of major bleeding, with dabigatran and 

rivaroxaban having 1.3% and 7.0% higher incidences, respectively. This ordering was 

maintained across patient subgroups and modelling assumptions, with apixaban having a 55% 

probability of accruing the highest total lifetime QALYs. 

Discussion: In the absence of a definitive trial, and acknowledging the limitations of an 

indirect comparison, the available evidence suggests apixaban to be the most effective 

anticoagulant.  
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Introduction 

Atrial fibrillation (AF) is estimated to affect 2.5 million people in the United States, results in 

a fivefold increase in the risk of ischemic stroke
87,130

. Associated costs exceed $7 billion 

annually
131

. Antithrombotic agents have proven benefits in preventing stroke in patients with 

AF. Until recently, vitamin K antagonists, such as warfarin, were the only form of oral 

thromboprophylactic anticoagulation treatment
132

. Although clinically effective and 

inexpensive, warfarin increases the risk of haemorrhage, interacts with many drugs and, 

because of the considerable variability in patient response, requires careful monitoring
91,133

. 

Newer oral anticoagulants, which include the direct thrombin inhibitor dabigatran etexilate 

(hereafter referred to as dabigatran), and the direct factor Xa inhibitors rivaroxaban and 

apixaban, have recently been developed. The Randomized Evaluation of Long-Term 

Anticoagulation Therapy (RE-LY) study evaluated two doses (110mg and 150mg twice daily) 

of dabigatran as an alternative to warfarin in 18,113 patients with at least one risk factor for 

stroke
92

. The Rivaroxaban Once Daily Oral Direct Factor Xa Inhibition Compared with 

Vitamin K Antagonism for Prevention of Stroke and Embolism Trial in Atrial Fibrillation 

(ROCKET-AF) compared rivaroxaban with warfarin in 14,264 patients at elevated risk of 

stroke
134

. The Apixaban for Reduction in Stroke and Other Thromboembolic Events in Atrial 

Fibrillation (ARISTOTLE) trial compared apixaban with warfarin in 18,201 patients with at 

least one risk factor for stroke
135

. 

After median follow up periods of approximately two years, the primary outcome of stroke or 

systemic embolism showed a potential improvement in the intention-to-treat population with 

all three alternatives, demonstrating superiority of the licensed 150mg dose of dabigatran 

(1.11% v 1.71% per year; p<0.001) and apixaban (1.27% v 1.60% per year; p=0.01) and non-

inferiority of rivaroxaban (2.1% v 2.4% per year; p=0.12), compared with warfarin. Rates of 

major bleeding were not significantly different between dabigatran 150mg and warfarin or 

between rivaroxaban and warfarin, but apixaban was associated with a lower risk of major 

bleeding (2.13% v 3.09% per year; p<0.001). 

Both dabigatran and rivaroxaban have been approved by the US Food and Drug 

Administration and a decision on apixaban is pending. Whilst their efficacies in relation to 

warfarin have been demonstrated, their comparative effectiveness remains unknown.  With 

no prospect of a head-to-head trial, we describe an adjusted, indirect comparison to help 

guide treatment selection.  The analysis assesses the trade-offs in thrombotic and bleeding 
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risks for all four anticoagulants, and incorporates a preference-based, patient-centred outcome, 

the quality-adjusted life-year (QALY), to combine health-related quality of life with survival.  

Our analysis acknowledges differences in trial designs and populations, and their potential 

impacts on estimated comparative effectiveness, by adopting a probabilistic approach for a 

range of plausible scenario analyses.  
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Methods 

Comparative effectiveness was assessed using an indirect analysis that extrapolated benefits 

and harms to a lifetime horizon, consistent with AF being a lifelong condition requiring 

indefinite treatment. 

The analysis is based on a discrete event simulation model which we have described 

previously (chapter 3), and which allows for explicit incorporation of both structural and 

parameter uncertainty
27

.  The model simulates the clinical events and outcomes experienced 

by individual patients. The risks of their occurrence are determined from patients’ 

characteristics which are updated according to time and event history. Comparative 

effectiveness was determined from incremental net health benefits, measured as the 

differences between treatments in QALYs, and from modelled clinical event rates
96

 (chapter 

4). 

Model population 

In the base-case analysis, patients’ baseline characteristics, which were assumed to be 

uncorrelated, were representative of the stroke risk profile of the US atrial fibrillation 

population
136

. Patients had a mean age of 73.0 years, with 38.8%, 36.8%, 18.0%, 6.4% 

having CHADS2 (Congestive heart failure, Hypertension, Age ≥75, Diabetes mellitus, prior 

Stroke/transient ischemic attack) scores of 1, 2, 3 and ≥4 respectively
136

. 

For each treatment, identical cohorts of 100,000 patients were generated. Each patient was 

given a simulated set of characteristics consisting of the presence or absence (at the start of 

the simulation) of the following: hypertension, diabetes mellitus, congestive heart failure, 

prior stroke, prior transient ischemic attack, prior myocardial infarction and prior intracranial 

haemorrhage, drawn from binomial distributions based on the probability of having each 

condition at baseline (table 11, P98). 

Interventions 

The analysis considered a dose of 5mg twice daily of apixaban, and the licensed doses of 

dabigatran 150mg twice daily, rivaroxaban 20mg once daily, and dose-adjusted warfarin.
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Table 11 - Patients’ baseline characteristics 

Baseline characteristics* RE-LY ROCKET-AF ARISTOTLE 

Number of patients
 

18,113 14,264 18,201 

Hypertension
92,134,135

 78.9% 90.5% 87.4% 

Diabetes
92,134,135 

23.3% 39.9% 25.0% 

Heart failure
92,134,135 

32.0% 62.5% 35.4% 

Prior stroke
92 

12.5% 34.4%† 11.9%† 

Prior transient ischemic attack
92 

9.2% 25.3%† 8.7%† 

Prior myocardial infarction
92,134,135 

16.6% 17.3% 14.2% 

Prior intracranial haemorrhage
92 

3.9% 10.7%† 3.7%† 

 

*Percentage in initial population.  

†These values were imputed from the data available in the RE-LY study and the distribution of CHADS2 scores at the start of the trial, which 

was known for all three studies, under the assumption that the ratio of strokes to transient ischemic attacks and intracranial haemorrhages would 

be consistent between trials. Probability of prior stroke or TIA in ROCKET-AF was 55%, and in ARISTOTLE was 19%.
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Clinical parameters 

Annualised clinical event rates were extracted from the RE-LY, ROCKET-AF and 

ARISTOTLE trials
92,134,135

 identified from a systematic review of the literature
137

. Based on 

the method of Bucher et al
138

, indirect comparisons were adjusted according to the results of 

their direct comparisons with warfarin. This adjustment accounts for differing baseline risks 

between trials by assuming a constant relative treatment effect e.g. for two trials comparing A 

and B, and B and C, with relative risks for a given event of RRAB and RRBC respectively, the 

indirect, relative effect of C versus A is estimated as: 

ln(RRAC) = ln(RRAB) + ln(RRBC) 

Event rates for dabigatran, apixaban and rivaroxaban were calculated by multiplying relative 

treatment effects by warfarin event data, calculated from a meta-analysis of the warfarin arms 

of the three trials (table 12, P100). Diabetes and hypertension incidence rates were taken from 

US general population data
139,140

, as were age-specific non-vascular mortality data
69

, all with 

the assumption these accurately reflect the atrial fibrillation population. 

Whenever the necessary data were not available (e.g. a particular parameter was not reported 

for a given trial), values were imputed, based on data from the other trials and US population 

data (tables 11 & 12, P98 & P100). All assumptions were assessed through sensitivity 

analysis (see structural sensitivity analysis, below). 

In order to better reflect the use of oral anticoagulants in routine care, the analysis also 

includes the trial-derived probabilities of (and reasons for) discontinuation of treatment. 

Patients who discontinued dabigatran, rivaroxaban or apixaban because of a bleed or who 

discontinued warfarin for any reason were assumed to be switched to aspirin, whilst other 

discontinuing patients were switched to warfarin. This assumption was tested in a sensitivity 

analysis. Relative risks of events for aspirin came from a published meta-analysis of trials 

comparing warfarin and aspirin
112

, and the AVERROES trial comparing apixaban with 

aspirin in patients deemed unsuitable for vitamin K antagonist therapy
141

. 

QALYs were discounted at 3% per annum to reflect time preference
142

, but no discounting 

was applied to discrete clinical events.



 
 

100 
 

Table 12 - Clinical event rates 

Parameter Warfarin Dabigatran Rivaroxaban Apixaban Aspirin 

Stroke (CHADS2 score ≤ 1)* 0.00921 0.00536 0.00750† 0.00678 0.01485 

Stroke (CHADS2 score 2)* 0.01405 0.00824 0.01255 0.01211 0.02265 

Stroke (CHADS2 score 3)* 0.01957 0.01164† 0.01335 0.01133† 0.03157 

Stroke (CHADS2 score 4)* 0.03119 0.02154† 0.02442 0.02097† 0.05030 

Stroke (CHADS2 score 5)* 0.02899 0.02398† 0.02785 0.02334† 0.04676 

Stroke (CHADS2 score 6)* 0.03639 0.03098† 0.03511 0.03015† 0.05869 

Systemic embolism* 0.00135 0.00113 0.00031 0.00115 0.00217 

Pulmonary embolism* 0.00078 0.00114 0.00091‡ 0.00060‡ 0.00126 

Transient ischemic attack* 0.00839 0.00723 0.00662‡ 0.00616‡ 0.01354 

Myocardial infarction* 0.00763 0.01008 0.00620 0.00666 0.00763 

Congestive heart failure* 0.00619 0.00482 0.00488‡ 0.00454‡ 0.00619 

Vascular death (excluding stroke and 

systemic and pulmonary embolism)* 

0.02281 0.02078 0.02155 0.02118 0.02281 

Probability of death from stroke or systemic 

embolism 

0.25457 0.25457 0.25457 0.25457 0.25457 

Probability of death from pulmonary 

embolism 

0.15909 0.15909 0.15909 0.15909 0.15909 

Major bleed (CHADS2 score ≤ 1)* 0.02612 0.01981 0.02248† 0.01590 0.01146 

Major bleed (CHADS2 score 2)* 0.03175 0.02916 0.03379† 0.02434 0.01393 

Major bleed (CHADS2 score ≥ 3)* 0.04433 0.04674 0.04799† 0.03061 0.01944 

Probability that major bleed is intracranial 

haemorrhage 

0.23361 0.10234 0.14947 0.14068 0.23361 

Minor bleed* 0.16560 0.15020 0.17140 0.11783 0.07263 

Diabetes* 0.0141 0.0141 0.0141 0.0141 0.0141 

Hypertension* 0.0323 0.0323 0.0323 0.0323 0.0323 

Probability of discontinuation (year 1)* 0.14466 0.22048 0.14481 0.14232 N/A 

Probability of discontinuation (year 2 

onwards)* 

0.06760 0.06695 0.07224 0.04975 N/A 
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*Presented as rates per 100 person years. 

†Where stratified event rates were not available, unknown stratified risks were imputed based on the assumption that the relative risks of events 

for patients with different CHADS2 scores would be independent of treatment. 

‡Imputed, based on the relative risks of different events from the RE-LY study, on the assumption that the relative risks of different 

thromboembolic events would be independent of treatment.  
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Table 13 - Health state utilities assigned to treatments and clinical events, and the corresponding duration of acute events. 

Parameter Value Probabilistic sensitivity analysis 

distribution 

Atrial fibrillation (age 67)
101 

0.774 1-Gamma(43.06,0.0052) 

Stroke/systemic embolism (permanent disutility)
102 

0.235 Normal(0.235,0.0032) 

Stroke/systemic embolism (temporary 

disutility)
101,103 

0.1385 Normal(0.1385,0.01) 

Stroke/systemic embolism (temporary disutility, 

years)
103 

1/12 Uniform(0,0.183) 

Myocardial infarction (permanent disutility)
101 

0.0409 Normal(0.0409,0.002) 

Myocardial infarction (temporary disutility)
101,103 

0.1247 Normal(0.1247,0.01) 

Myocardial infarction (temporary duration, years)
103 

1/12 Uniform(0,0.183) 

Intracranial haemorrhage (permanent disutility)
101 

0.0524 Normal(0.0524,0.001) 

Pulmonary embolism (temporary disutility)
101,103 

0.1385 Normal(0.1385,0.01) 

Pulmonary embolism (temporary duration, years)
103 

1/12 Uniform(0,0.183) 

Transient ischemic attack (temporary disutility)
101,103 

0.1032 Normal(0.1032,0.01) 

Transient ischemic attack (temporary duration, 

years)
103 

5/365 Uniform(0,0.027) 

Major bleed (temporary disutility)
101,103 

0.1385 Normal(0.1385,0.01) 

Major bleed (temporary duration, years)
103 

1/12 Uniform(0,0.183) 

Minor bleed (temporary disutility)
103 

0.06 Normal(0.06,0.01) 

Minor bleed (temporary duration, years)
103 

5/365 Uniform(0.0.027) 

Warfarin disutility
102 

0.013 Gamma(1.3,0.01) 

Dabigatran/rivaroxaban/apixaban disutility 0.002 Gamma(0.2,0.01) 

Aspirin disutility
102 

0.002 Gamma(0.2,0.01) 
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Utility estimates 

The age-adjusted baseline health utility for a person with atrial fibrillation, together with the 

utility decrements associated with cardiovascular sequelae (excluding stroke) and 

haemorrhagic events, were taken from the EQ-5D scores in a US Medical Expenditure Panel 

Survey of several thousand patients
101,103

. The permanent utility decrement associated with 

stroke was derived from the European Stroke Prevention Study, based on the proportions of 

disabling to non-disabling strokes (43% of non-fatal strokes were non-disabling across RE-

LY, ROCKET-AF and ARISTOTLE). The analysis incorporated utility losses inherent to 

warfarin (e.g. as a result of monitoring), and aspirin (assumed to be the same for dabigatran, 

rivaroxaban and apixaban)
102

. Multiple utility decrements were assumed to be additive and 

utility values are given in table 13 (P102). 

In order to assess the sensitivity of the model to the choice of utility parameters, a sensitivity 

analysis was conducted, replacing base-case utility values with those from an alternative cost-

effectiveness study in atrial fibrillation
122

. 

Parameter sensitivity analysis 

Univariate sensitivity analyses of each parameter in the model were conducted to assess the 

effect of varying assumptions on the stability of the results. 95% confidence intervals were 

used as the upper and lower limits for parameters or, where these were not available, 

plausible percentage ranges. 

A probabilistic parameter sensitivity analysis was also conducted as a Monte Carlo 

simulation of 2,000 sets of parameters sampled from appropriate distributions. This provided 

estimates of the 95% central ranges (2.5th to 97.5th percentile) for clinical event rates and net 

health benefits, and the probability of each treatment option resulting in the highest net health 

benefit. 

Structural sensitivity analysis 

The model necessitated a large number of assumptions, either for simplification purposes or 

because the desired data were not available in the necessary format. The robustness of the 

results in relation to different assumptions was assessed quantitatively. 

Univariate analyses considered the different options presented in table 14 (P105). A 

probabilistic analysis was performed by sampling 10,000 times, at random, from the subspace 
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of possible structural assumptions, with each assumption being equally likely to be selected. 

As previously, the outputs are presented as the probabilities with which each treatment option 

results in the highest net health benefit. 

In order to assess whether the choice of a discrete event simulation framework had a 

significant impact on the results, a secondary analysis was performed, replacing our 

simulation model with a published Markov model
143

. 

Scenario analyses 

Subgroup analyses were performed to calculate the net health benefits (and associated 95% 

central ranges) in the following pre-specified populations. Analyses for patients aged 75 or 

older; patients with a CHADS2 score of 3 or more; patients with the baseline characteristics 

of those in each of the three studies; and patients who have previously had a stroke or 

transient ischemic attack were performed by altering the baseline patient characteristics in the 

model. Separate, indirect comparisons were made for patients with impaired renal function 

(30-50mL/min creatinine clearance); and patients who were naïve to vitamin K antagonist 

treatment.
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Table 14 - Structural sensitivity analysis 

Parameter Assumption alternatives 

Population demographics  US atrial fibrillation population
136

* 

 RE-LY population
92

 

 ROCKET-AF population
134

 

 ARISTOTLE population
135

 

Imputing missing demographic 

data 
 Imputed based on RE-LY data* 

 Imputed based only on warfarin arm of RE-LY 

 Imputed based only on dabigatran arm of RE-LY 

 Extrapolated based on US event rates 

Baseline demographics  Uncorrelated* 

 Correlated 

Warfarin event rates  Meta-analysis of all three trials* 

 Taken from RE-LY only 

 Taken from ROCKET-AF only 

 Taken from ARISTOTLE only 

Stroke stratification  Full stratification (CHADS2 1,2,3,4,5,6)* 

 Partial stratification (CHADS2 ≤2,3,4,5,6) 

 Partial stratification (CHADS2 1,2,≥3) 

 Unstratified 

Stroke stratification imputation 

(rivaroxaban with CHADS2 

score of 1) 

 Imputed from RE-LY and ARISTOTLE* 

 Imputed from RE-LY 

 Imputed from ARISTOTLE 

 Imputed from US population data 

Stroke stratification imputation 

(dabigatran and apixaban with 

CHADS2 score ≥3) 

 Imputed from ROCKET-AF* 

 Imputed from US population data 

Systemic embolism  Disaggregated from strokes* 

 Included as a single parameter with strokes 
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Transient ischemic attack rates 

for rivaroxaban and apixaban 
 Imputed from relative stroke to transient ischemic attack rates in RE-LY* 

 Imputed from relative stroke to transient ischemic attack rates in US population 

Congestive heart failure rates 

for rivaroxaban and apixaban 
 Imputed from relative stroke to congestive heart failure rates in RE-LY* 

 Imputed from relative stroke to congestive heart failure rates in US population 

Pulmonary embolism rates for 

rivaroxaban and apixaban 
 Imputed from relative stroke to pulmonary embolism rates in RE-LY* 

 Imputed from relative stroke to pulmonary embolism rates in US population 

 Pulmonary embolisms excluded from model 

Probability of death from 

stroke 
 Included as a separate parameter* 

 Deaths from strokes included as part of general vascular mortality 

Probability of death from 

pulmonary embolism 
 Included as a separate parameter* 

 Deaths from pulmonary embolisms included as part of general vascular mortality 

Major bleed stratification  Stratified (CHADS2 1,2,≥3)* 

 Unstratified 

Major bleed stratification 

imputation (rivaroxaban) 
 Imputed from RE-LY and ARISTOTLE* 

 Imputed from RE-LY 

 Imputed from ARISTOTLE 

 Imputed from US population data 

Minor bleed rates  Included in model* 

 Excluded from model 

Utility values  Values in table 13* 

 Values derived from Freeman study
122

 

Stroke severity  Assumed to be independent of treatment* 

 Taken from the individual arms of the trials 

Treatment benefit duration  Lifetime* 

 Study time horizon 

 Linear reduction of treatment benefit to 0 over the 10 years following the study time 

horizon 
 

*Base case assumptions. 
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Table 15 - Lifetime estimates of event rates, net health benefits, and incremental differences versus comparator, derived from probabilistic 

sensitivity analysis 

Referent Mean estimate 

(95% central range) 

Mean difference 

(95% central range) 

Comparator 

Quality-adjusted life-years (QALYs) 

Warfarin 5.6364 (5.5461, 5.7326) -0.0948 (-0.2422, 0.0523) Rivaroxaban 

Rivaroxaban 5.7312 (5.6305, 5.8342) -0.0107 (-0.1644, 0.1443) Dabigatran 

Dabigatran 5.7419 (5.6519, 5.8535) -0.0242 (-0.1744, 0.1298) Apixaban 

Apixaban 5.7661 (5.6518, 5.8805 0.1297 (-0.0293, 0.2646) Warfarin 

Life years 

Warfarin 9.6375 (9.4982, 9.7367) -0.0917 (-0.2861, 0.1201) Rivaroxaban 

Rivaroxaban 9.7292 (9.5793, 9.8652) -0.0336 (-0.2411, 0.1716) Dabigatran 

Dabigatran 9.7628 (9.6043, 9.8929) -0.0454 (-0.2541, 0.1466) Apixaban 

Apixaban 9.8082 (9.6546, 9.9462) 0.1707 (-0.0311, 0.3617) Warfarin 

Stroke or systemic embolism 

Warfarin 0.3030 (0.2636, 0.3388) 0.0204 (-0.0334, 0.0739) Rivaroxaban 

Rivaroxaban 0.2826 (0.2381, 0.3192) 0.0312 (-0.0288, 0.0827) Dabigatran 

Dabigatran 0.2514 (0.2126, 0.3012) 0.0501 (-0.0014, 0.0986) Apixaban 

Apixaban 0.2013 (0.1688, 0.2543) -0.1017 (-0.1539,  -0.0502) Warfarin 

Transient ischemic attack 

Warfarin 0.1230 (0.0905, 0.1579) 0.0312 (-0.0187, 0.0844) Rivaroxaban 

Rivaroxaban 0.0918 (0.0697, 0.1234) -0.0056 (-0.0565, 0.0462) Dabigatran 

Dabigatran 0.0974 (0.0694. 0.1279) 0.0201 (-0.0342, 0.0691) Apixaban 

Apixaban 0.0773 (0.0545, 0.1041) -0.0457 (-0.0933, 0.0082) Warfarin 

Intracranial haemorrhage 

Warfarin 0.0727 (0.0637, 0.0808) 0.0142 (-0.0016, 0.0258) Rivaroxaban 

Rivaroxaban 0.0585 (0.0520, 0.0663) 0.0184 (0.0001, 0.0253) Dabigatran 

Dabigatran 0.0401 (0.0353, 0.0467) -0.0019 (-0.0153, 0.0144) Apixaban 

Apixaban 0.0420 (0.0333, 0.0470) -0.0307 (-0.0462, -0.0134) Warfarin 

Major bleed (including intracranial haemorrhage) 
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Warfarin 0.3070 (0.2620, 0.3470) -0.0214 (-0.0761, 0.0360) Rivaroxaban 

Rivaroxaban 0.3284 (0.2828, 0.3743) 0.0174 (-0.0367, 0.0691) Dabigatran 

Dabigatran 0.3110 (0.2741, 0.3632) 0.0694 (0.0135, 0.1148) Apixaban 

Apixaban 0.2416 (0.2052, 0.2778) -0.0654 (-0.1162, -0.0100) Warfarin 

Non-fatal myocardial infarction 

Warfarin 0.0665 (0.0468, 0.0864) 0.0071 (-0.0132, 0.0293) Rivaroxaban 

Rivaroxaban 0.0594 (0.0429, 0.0798) -0.02191 (-0.0432, -0.0018) Dabigatran 

Dabigatran 0.0813 (0.0633, 0.0994) 0.0189 (-0.0022, 0.0330) Apixaban 

Apixaban 0.0624 (0.0441, 0.0856) -0.0043 (-0.0216, 0.0187) Warfarin 
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Results 

The results of the simulations at 2 years matched the results of each trial. No value deviated 

by more than 3.2%, a level of variability that would be expected given the stochastic nature 

of the simulation. At 2 years, apixaban accrued 0.15 more quality-adjusted life-weeks than 

dabigatran, 0.26 more than rivaroxaban, and 0.78 more than warfarin. 

Clinical outcomes and net health benefit 

In the base-case analysis, apixaban, dabigatran and rivaroxaban extended life by 2.05, 1.51 

and 1.10 months respectively, compared with warfarin (table 15, P107). The corresponding 

incremental net health benefits were 0.1297 (95% central range [CR] -0.0296 to 0.2644), 

0.1055 (95% CR -0.0481 to 0.2477) and 0.0948 (95% CR -0.0523 to 0.2422) QALYs. In 

pairwise comparisons, using warfarin as the comparator, apixaban, dabigatran and 

rivaroxaban were associated with a positive incremental net health benefit in 90%, 84% and 

82% of simulations, respectively. Using rivaroxaban as a comparator, apixaban and 

dabigatran were associated with an incremental net health benefit in 71% and 61% of 

simulations, and finally apixaban was associated with an incremental net health benefit 

against dabigatran in 65% of simulations. 

Lifetime incidences of stroke or systemic embolism were 33.6% lower with apixaban, 17.0% 

lower with dabigatran and 6.7% lower with rivaroxaban, when compared to warfarin. 

Lifetime incidences of major haemorrhagic events were 21.3% lower with apixaban, but 7.0% 

and 1.3% higher with rivaroxaban and dabigatran, respectively. Incidences of myocardial 

infarction were 10.7% lower with rivaroxaban and 6.5% lower with apixaban, but 22.3% 

higher with dabigatran. 

The relative effects of each treatment on the two constructs of the QALY, health-related 

quality of life and life-years gained, is illustrated in figure 9 (P110). 

Univariate parameter sensitivity analysis results are presented in the form of tornado plots 

(figure 10, P111). 
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Figure 9 

Structural sensitivity analysis 

In the probabilistic sensitivity analysis of structural uncertainty, the base-case ordering of 

QALYs (apixaban, dabigatran, rivaroxaban, warfarin, in descending order) was replicated in 

65.1% of the simulations. The alternative ordering (dabigatran, apixaban, rivaroxaban, 

warfarin) occurred in 17.2% of simulations, and the ordering (apixaban, rivaroxaban, 

dabigatran, warfarin) occurred in 13.4% of simulations. No other ordering occurred in more 

than 1% of simulations. Overall, apixaban accrued the highest number of QALYs in 79.9% of 

the simulations, dabigatran in 18.0% and rivaroxaban in 2.1%, with warfarin never accruing 

the highest number. 
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Warfarin vs. rivaroxaban 

 

 

Warfarin vs. dabigatran 

 

Figure 10 
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Using a Markov model, instead of a discrete event simulation, led to changes in both event 

rates and the numbers of QALYs and life-years accrued. However, the same ordering was 

maintained, with apixaban the most effective with 8.49 QALYs, then dabigatran with 8.35, 

rivaroxaban with 8.28 and warfarin with 8.08 QALYs. 

Subgroup analyses 

Among the subgroups analysed, the ordering of medicines according to mean QALYs and 

probability of being most effective was consistent with the base-case analysis (table 16, P113 

& figure 11). Apixaban had the highest probability of being the most effective in patients 

with impaired renal function, and the lowest in older populations (≥75 years), but these 

probabilities were over a very narrow range (50.1% to 61.6%). 

 

 

Figure 11
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Table 16 - Net benefit results for subgroups, based on probabilistic sensitivity analysis 

Subgroup Warfarin 

QALYs 

(Probability most 

effective) 

Rivaroxaban 

QALYs 

(Probability most 

effective) 

Dabigatran 

QALYs 

(Probability most 

effective) 

Apixaban QALYs 

(Probability most 

effective) 

Base case 5.6374 (0.024) 5.7349 (0.159) 5.7450 (0.266) 5.7667 (0.551) 

Age ≥75 years 3.8481 (0.047) 3.9403 (0.177) 3.9479 (0.270) 3.9719 (0.506) 

CHADS2 score ≥3 5.4818 (0.014) 5.5899 (0.149) 5.6170 (0.234) 5.6485 (0.603) 

RE-LY population 5.6575 (0.027) 5.7460 (0.176) 5.7690 (0.296) 5.7837 (0.501) 

ROCKET-AF population 5.5820 (0.022) 5.6662 (0.151) 5.6775 (0.232) 5.7101 (0.595) 

ARISTOTLE population 5.6510 (0.038) 5.7472 (0.181) 5.7611 (0.266) 5.7858 (0.515) 

Previous stroke or transient 

ischemic attack 

5.4597 (0.006) 5.5448 (0.152) 5.5621 (0.305) 5.5817 (0.537) 

Creatinine clearance 30-

50mL/min 

5.5609 (0.010) 5.6642 (0.140) 5.6773 (0.234) 5.7014 (0.616) 

Vitamin K antagonist naïve 5.6409 (0.028) 5.7290 (0.171) 5.7421 (0.260) 5.7659 (0.541) 
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Discussion 

Based on an accepted method of comparative effectiveness research (CER) that preserves the 

randomisation of treatment allocation, and which results in an adjusted, indirect 

comparison
138

, apixaban appears as the most effective oral anticoagulant, followed by 

dabigatran, rivaroxaban then warfarin. Differences were driven principally by differential 

stroke rates and the risks of intracranial haemorrhage, which were lower for all newer agents 

compared with warfarin. This ordering remained consistent across patient subgroups, though 

the differences in net health benefits changed, with groups having lower risks of stroke 

associated with smaller differential QALYs. 

There is no subgroup in which the probability of apixaban being the most effective is below 

50%, and none where the probability of warfarin being the most effective is above 5%. The 

sensitivity analyses indicate that the parameters to which the outcome was most sensitive 

were stroke rates and vascular death rates. 

We are aware of two other adjusted,
144,145

 and one unadjusted
146

 indirect treatment 

comparisons. Lip et al.
145

 concluded that there were no discernible differences among 

treatments, while the analysis by Mantha et al.
144

, despite being based on the same clinical 

trial data, indicated that apixaban was equally effective to dabigatran 150mg, more effective 

than rivaroxaban, and associated with less major bleeding than both. The crude estimates of 

net clinical benefit calculated by Banerjee et al.
146

 for a Danish population are subject to bias, 

as the odds ratios derived from the trials were not adjusted. None of the analyses modelled 

patients representative of the US atrial fibrillation population, used a preference-based, 

patient-centred outcome measure, used an appropriate time horizon of analysis or considered 

alternative scenarios of analysis. 

Our analysis, by contrast, adopts a lifetime horizon, uses QALYs to synthesise the differential 

impacts of benefits and harms on health, and considers both structural and parameter 

uncertainty. QALYs may reveal differences among treatments which might be less apparent 

when considering individual clinical events. Adjusted, indirect treatment comparisons are 

accepted by healthcare decision-makers across several jurisdictions as the method of choice 

in situations where data from head-to-head trials are unavailable
147

. This Bayesian approach 

results in a meaningful outcome for prescribers, that is, the probability of a treatment being 

the best option. Judgements based on confidence intervals and hypothesis tests, based on the 

Frequentist notion of assuming the null hypothesis until sufficient evidence indicates 



 
 

115 
 

otherwise, can be criticised as inappropriate in this context, as decisions regarding treatment 

alternatives cannot be deferred as such evidence is unlikely to become available. Moreover, a 

lack of statistical significance does not necessarily imply equivalence in outcome
148

. 

There are potential caveats to our CER methodology, however. First, there are many 

important differences across trials in terms of their design (e.g. RE-LY being open-label and 

the use of sham INR testing only in ROCKET-AF), patient populations (e.g. higher risk of 

stroke, greater experience of previous stroke or TIA, and less time in INR range in ROCKET-

AF) and reporting (e.g. difference in the definitions of some clinical events). These have been 

discussed extensively elsewhere
139,147,149

 and, collectively, potentially undermine the 

assumption necessary for indirect comparison methodology, that any such differences do not 

affect the comparative effectiveness of the treatments being assessed. Although there is no 

method of testing the validity of this assumption, there is no prospect of a head-to-head 

comparison among newer anticoagulants and prescribers will in any case make qualitative 

judgements or naïve, unadjusted comparisons of competing treatment options. Our analysis is 

a more valid approach than simply comparing individual trials or trial arms in an unadjusted 

way
150

. 

Second, the modelled extrapolation to a lifetime horizon of analysis is necessary to reflect 

differential impacts of treatments on health and survival that extend beyond the protocol-

defined trial follow-up period
151

. The analysis used a discrete event simulation method, given 

there are no obvious discrete disease states into which patients can be classified
27

. However, 

this required an assumption that risk equations derived from 2-year data apply beyond that 

time. Relaxing this assumption by analysis at 2-years resulted in the same rank ordering of 

net health benefits, as did the use of an alternative, Markov model structure. 

Despite these limitations there was a high level of consistency in the ranking of treatment 

effectiveness across all the different simulations performed. Had the results been dependent 

on any specific modelling assumption, then this would be apparent in the sensitivity analysis. 

We can reasonably conclude that any biases in our analysis, if any are present, are inherent in 

the data and therefore impossible to correct under any modelling framework. 

It is important to note that the analysis did not consider additional factors that impinge on 

treatment choice.  These include cost-effectiveness
96

, patient convenience, preference (or 

aversion) to individual treatments
152

, the relative forgiveness of treatments to missed doses
153

, 

the lack of antidotes to over-anticoagulation with the newer oral anticoagulants
154

, the merits 
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or otherwise of patients being monitored regularly when prescribed warfarin, and longer term 

and rarer adverse events that might only become apparent with more extensive experience of 

use in routine practice
155-157

. Furthermore, the newer agents also interact with other drugs and 

there are specific safety considerations in certain vulnerable populations (e.g. the very elderly 

and those with severe renal impairment). There may also be sub-group(s) of patients, which 

were not explored in the present analysis – such as those with genetic polymorphisms of 

CYP2C9 or VKORC1 – in which the balance of harms and benefits differ significantly from 

the mean
128

. 

There is no doubt of the efficacy of the newer oral anticoagulants and the favourable risk-

benefit profile when compared to warfarin in the pivotal trials; however there are important 

differences among the agents and, in the absence of a definitive trial, modelling offers the 

only practical approach to estimate their comparative effectiveness. Whilst inevitably such 

conclusions will need to be kept under review as the evidence matures, our analysis currently 

points to the likely superiority of apixaban over others. 
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Preface to Chapter 5 

Following the previous two chapters, there was now an economic model suitable for the 

extrapolation of short-term data to a lifetime horizon, and an indirect comparison of all 

treatment alternatives where trial data was available. This meant all the necessary pre-

requisites were in place for the full population pharmacokinetic-pharmacodynamic-

pharmacoeconomic model to be constructed. This followed broadly three phases, with the 

first the PKPD based clinical trial simulations of both genotype-guided and clinically dosed 

warfarin. Since the population PKPD model available only produces an intermediate endpoint 

as an output, rather than relevant clinical outcomes, a meta-analysis was then conducted to 

estimate the link between the simulated output and the necessary event rates. Finally, these 

simulated event data were used to populate the discrete event simulation (chapter 3), with full 

costs and outcomes attached to each health state and event. 
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Chapter 5 

 

Cost-effectiveness of pharmacogenetic guided 

warfarin therapy versus alternative anticoagulation 

in atrial fibrillation 
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Summary 

Introduction: Warfarin dosing regimens informed by pharmacogenetic information have been 

suggested as an alternative to standard clinical dosing algorithms for patients with 

nonvalvular atrial fibrillation. They are anticipated to increase time within therapeutic range 

(TTR) and thus improve clinical outcomes. We compare the effectiveness and cost-

effectiveness of genotype-guided warfarin with both standard clinically dosed warfarin and 

three new oral anticoagulants (dabigatran, rivaroxaban and apixaban). 

Methods: A clinical trial simulation based on a PKPD model of S-warfarin was used to 

predict differences in TTR between genotype guided and clinically dosed warfarin. A meta-

analysis of trials linking TTR with outcomes was conducted to obtain relative risks of 

different clinical events. Finally, an economic analysis (from the perspective of the UK 

National Health Service) was conducted, based on a discrete event simulation model to 

extrapolate event risks to a lifetime horizon. The patient population modelled was 

representative of the AF population in the UK and the main outcomes produced were quality-

adjusted life-years and incremental cost-effectiveness ratios among the various treatment 

options. 

Results: Neither dabigatran nor rivaroxaban were cost-effective options, with rivaroxaban 

dominated by apixaban and dabigatran extendedly dominated. Apixaban and genotype guided 

warfarin had positive incremental net benefits of 0.1298 and 0.0031 QALYs versus clinically 

dosed warfarin, respectively, with apixaban having an ICER of £20,671 per QALY gained 

versus genotype guided warfarin therapy, which in turn had an ICER of £13,226 per QALY 

gained versus clinically dosed warfarin. 

Discussion: Clinical trial simulations based on pharmacological models offer a new way to 

obtain estimates of cost-effectiveness in circumstances where trial data are not available. 

Based on our simulations, apixaban appears to be the most cost-effective treatment, but this 

may only be the case in centres were INR is likely to be poorly controlled.  



 
 

120 
 

Introduction 

Warfarin has been the mainstay of oral thromboprophylactic treatment for patients with atrial 

fibrillation
90

. However, due to certain limitations associated with warfarin therapy, in 

particular the variability in patient response and the need for frequent monitoring and dose 

adjustment to ensure optimal anticoagulation, there has recently been considerable interest in 

the development of alternative anticoagulants
91

. 

Dabigatran, rivaroxaban and apixaban are three such novel oral anticoagulants.  Each have 

shown, in the RE-LY, ROCKET-AF and ARISTOTLE trials, respectively
92,134,135

, to be at 

least non-inferior to warfarin with regards to stroke prophylaxis. There is evidence for 

reductions in intracranial haemorrhages with all three, though apixaban is the only one 

associated with a reduction in the risk of major bleeds and to significantly reduce all-cause 

mortality when compared with warfarin. 

While these studies compared the novel anticoagulant to standard, dose-adjusted warfarin, 

there have been a number of approaches developed for increasing the effectiveness of 

warfarin, including self-monitoring of INR
158

, and dosing based on pharmacogenetics
159

. The 

latter uses information on CYP2C9 and VKORC1 genotype for more personalised dosing 

algorithms, with the aim to achieving the correct maintenance dose more quickly than 

standard clinical dosing algorithms, with evidence the use of genotype data increases average 

time in therapeutic range
160

. There is thus the potential for new anticoagulants, which may 

appear to be cost-effective compared to standard warfarin therapy
161

, not to be so against 

genotype-guided dosing. 

There are challenges, however, in assessing both the clinical and cost-effectiveness of 

warfarin dosing algorithms. First, the large number of potential algorithms, both clinical and 

pharmacogenetic, means conducting trials that cover even a significant subset of these is 

impractical. Second, the potential differences in both benefits and costs are sufficiently small 

that the sample sizes necessary to identify significant differences would be prohibitively 

expensive. Third, and in contrast to the newer oral anticoagulants, clinical trials of warfarin 

pharmacogenetics have only been powered to detect differences in intermediate endpoints, 

such as time within INR range, and not clinical outcomes
162

. 

One way of dealing these difficulties is through clinical trial simulations, based on 

pharmacometric analysis of the dose-exposure-response relationship of warfarin. This 
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approach may be used to simulate the clinical outcomes of a large number of possible dosing 

algorithms
163

, and may be extended to incorporate economic information and cost-

effectiveness as an endpoint
46

 (chapter 2). 

Against this background, we present a novel application of pharmacokinetic-

pharmacodynamic based clinical trial simulation to determine the cost-effectiveness of 

warfarin therapy. We simulated the costs and outcomes of a variety of both clinical and 

pharmacogenetic algorithms, and compared the cost-effectiveness of genotype- and clinical 

guided warfarin dosing algorithms, and the newer anticoagulants. The model was validated 

externally by comparing the simulated results with those from a trial comparing genotype 

guided and standard warfarin therapy
164

. 
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Methods 

The model consisted of three distinct stages. First, we conducted a clinical trial simulation of 

both genetic and clinical dosing algorithms for warfarin, based on a pharmacokinetic-

pharmacodynamic (PKPD) model which produces an output of time in various INR ranges. A 

systematic review and meta-analysis of studies that reported on the association between INR 

values and clinical events provided the necessary link between time in INR range and the 

risks of these events.  In the final stage, we used a discrete event simulation to extrapolate 

event rates to a lifetime horizon, and to facilitate comparison, via indirect methods, with 

dabigatran, rivaroxaban and apixaban. 

The outputs of this simulation were net health benefits, measured as the differences between 

treatments in quality-adjusted life-years (QALYs), a preference based measure of quality of 

life, and a cost-effectiveness analysis, resulting in an incremental cost per QALY gained. 

PKPD simulation 

The simulation was based on a published population model of the pharmacokinetics and 

pharmacodynamics of S-warfarin
165

, from which we obtained CYP2C9 and VKORC1 

genotype prevalence. This model consists of a linear, single compartment PK model and a 

KPD model with two, three-state transit compartment chains, with the last states of each 

chain representing the effect sites. The chains are used to model the time delay between peak 

drug concentration and peak pharmacodynamic response. The distribution of baseline INR 

values was taken from a pharmacogenetic cohort study
166

. Daily INR estimates were 

simulated for 5,000 hypothetical patients and combined, using the method of Rosendaal et 

al
167

, to give a proportion of time below, in and above therapeutic INR range (2.0-3.0) over 

three months. 

In the base case analysis, and in line with common UK practice
168

, patients were initiated 

with a 10mg dose of warfarin on days 1 and 2, then a 5mg dose on day 3. Maintenance doses 

were predicted using two algorithms developed by the International Warfarin 

Pharmacogenetics Consortium (IWPC); one based on clinical and demographic variables, and 

the other also on genetic information
128

. The predicted maintenance doses were estimated 

from: 
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Pharmacogenetic algorithm: 

√(Weekly Dose) = 5.6044 – 0.2614*(age in decades) + 0.0087*(height) + 0.0128*(weight) – 

0.8677*(VKORC1 AG) – 1.6974*(VKORC1 AA) – 0.4854*(VKORC1 unknown) – 

0.5211*(CYP2C9 *1*2) – 0.9357*(CYP2C9 *1*3) – 1.0616*(CYP2C9 *2*2) – 

1.9206*(CYP2C9 *2*3) – 2.3312*(CYP2C9 *3*3) – 0.2188*(CYP2C9 unknown) – 

0.1092*(Asian) – 0.2760*(Black or African American) – 0.1032*(Missing or Mixed Race) + 

1.1816*(Enzyme inducer) – 0.5503*(amiodarone) 

Clinical algorithm: 

√(Weekly Dose) = 4.0376 – 0.2546*(age in decades) + 0.0118*(height) + 0.0134*(weight) – 

0.6752*(Asian) + 0.4060*(Black or African American) – 0.0443*(Missing or Mixed Race) + 

1.2799*(Enzyme inducer) – 0.5695*(amiodarone) 

Dose adjustments were then made at each scheduled clinic visit using a widely used 

nomogram, which also schedules the date of the next clinic visit
178

. A variety of other 

algorithms were also simulated to explore their differences (table 17, P124). 

To better reflect the real world use of warfarin, patient non-adherence was incorporated in 

two ways; by assuming a fixed proportion of doses were missed at random, based on data 

from the IN-RANGE study
181

, and that variability in the timing of dosing could be 

approximated by a normal distribution with a standard deviation of 2 hours. 

Meta-analysis 

We updated a published systematic review and meta-analysis of the association between INR 

and risk of strokes and major bleeds in patients with AF receiving warfarin
182

. MEDLINE 

was searched for relevant articles published between January 1, 2000 and June 15, 2012, and 

manual searches were conducted of references in retrieved articles. Search terms were: atrial 

fibrillation, anticoagulant and warfarin. Studies of patients with atrial fibrillation who were 

receiving warfarin were included if the target INR range was 2.0-3.0 and if data were 

presented on strokes or bleeds stratified by time in therapeutic range (TTR). 

In the base case analysis, odds ratios for clinical events, stratified by INR within, above (>3.0) 

or below (<2.0) target range, where multiplied by the output from the PKPD model to 

generate simulated relative risks of thromboembolic and bleeding events over the first three
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Table 17 - Simulated warfarin algorithms 

 

Initiation algorithm Predicted maintenance dose Maintenance dose 

adjustment 

10mg-10mg-5mg (Days 1,2,3)† IWPC clinical algorithm
128

† Ansell
178

† 

10mg-5mg-5mg (Days 1,2,3) IWPC pharmacogenetic algorithm
128

*† Wilson
179 

5mg-5mg-5mg (Days 1,2,3) Anderson
174

* Keeling
180 

Fennerty
169 

Gage
175 

 

Meckley
170

* Wadelius
160

*  

Avery
171

* Zhu
176

*  

Hillman
172

* Solomon
177 

 

Kovacs
173 

  

Anderson
174

*   

 

*These algorithms made use of genetic information. 

†Algorithms used in base case analysis.
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months of treatment with each algorithm. The impact of subdividing INR ranges to smaller 

increments was tested in a sensitivity analysis. 

Discrete event simulation 

To extrapolate to a lifetimes horizon, we used a discrete event simulation model we have 

described previously (chapter 3), which simulates clinical events and outcomes for each 

patient, and allows explicit incorporation of parameters and structural uncertainty
27

. The risks 

of events at any given time are determined by a patient’s characteristics, which are updated 

over time and as events occur. 

Interventions 

We modelled clinical- and genotype-guided, dose-adjusted warfarin, dabigatran etexilate 

(150mg twice daily), rivaroxaban (20mg once daily) and apixaban (5mg twice daily).  

Model population 

For the base case analysis, patients’ baseline characteristics were assumed to be uncorrelated 

and follow the average profile of the UK atrial fibrillation population
124

. The modelled 

population had a mean age of 72.3 years, with 35.0%, 35.1%, 17.0%, 9.3%, 3.2% and 0.5% 

having CHADS2 (congestive heart failure, hypertension, Age≥75, Diabetes mellitus, prior 

Stroke/transient ischaemic attack) scores of 1 to 6, respectively
124

. 

For each treatment, identical cohorts of 100,000 patients were generated. Each patient was 

given a simulated set of characteristics consisting of the presence or absence (at the start of 

the simulation) of the following: hypertension, diabetes mellitus, congestive heart failure, 

prior stroke, prior transient ischemic attack, prior myocardial infarction and prior intracranial 

haemorrhage, drawn from binomial distributions based on the probability of having each 

condition at baseline. 

Clinical parameters 

Annualised clinical event rates for apixaban, dabigatran, rivaroxaban and warfarin therapy 

were calculated from an indirect comparison of the RE-LY
92

, ROCKET-AF
134

 and 

ARISTOTLE
135

 studies, as described previously (chapter 4). Events rates for 

pharmacogenetic-guided warfarin dosing over the first three months of therapy were 

calculated by multiplying the event rates for clinical algorithm dosed warfarin by the relative 
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risks from our clinical and pharmacogenetic warfarin simulations and meta-analysis, as 

described above. Event rates after 3 months were assumed to be the same as clinical 

algorithm dosed warfarin, as any benefits of pharmacogenetic testing are likely to occur 

principally during the initiation phase
183

. All clinical parameters are presented in table 18 

(P127). 

Utilities and costs 

Utilities for AF and disutilities associated with the medications and clinical events came from 

the European Stroke Prevention Study, a US Medical Expenditure Panel Survey and 

published data, as described previously (chapter 3). Multiple utility decrements for a given 

patient were assumed to be additive. 

Costing was performed from the perspective of the UK National Health Service, following 

the methodology of our evaluation of dabigatran (chapter 3). Event costs were based on NHS 

reference costs, following a National Institute for Health and Clinical Excellence costing 

template for long term care
184

, and inflated to 2011 GBP (£) values.  Drug costs were taken 

from the British National Formulary
75

, however, as apixaban has yet to be licensed for use in 

AF, we assumed the same percentage reduction in price would occur as happened when 

dabigatran and rivaroxaban gained their respective licensed extensions. This assumption was 

tested in a sensitivity analysis. Full costs and utility parameters are given in table 19 (P129). 

Costs, life years and QALYs were discounted at 3.5% per annum to present value, but there 

was no discounting of clinical events
25

.  

Sensitivity analysis 

Univariate sensitivity analyses were performed for each parameter in the discrete event 

simulation, to assess the stability of the results. Where available, ranges where based on 95% 

confidence intervals, otherwise we assumed plausible percentage ranges. We also varied the 

duration of benefit from genetic testing, from one month, to a linear reduction to zero over 

the course of a year. 

A probabilistic sensitivity analysis was also performed, using a Monte Carlo simulation of 

2,000 sets of parameters sampled from appropriate distributions. This provided estimates of 

the 95% central ranges (2.5th to 97.5th percentile) for clinical event rates and net health 

benefits, and the probabilities of each treatment option resulting in the highest net health
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Table 18 - Clinical parameters used in the discrete event simulation 

Parameter Warfarin Warfarin 

PGx 

Dabigatran Rivaroxaban Apixaban Aspirin 

Stroke (CHADS2 score ≤ 1)* 0.00921 0.00921 0.00536 0.00750† 0.00678 0.01485 

Stroke (CHADS2 score 2)* 0.01405 0.01406 0.00824 0.01255 0.01211 0.02265 

Stroke (CHADS2 score 3)* 0.01957 0.01958 0.01164† 0.01335 0.01133† 0.03157 

Stroke (CHADS2 score 4)* 0.03119 0.03120 0.02154† 0.02442 0.02097† 0.05030 

Stroke (CHADS2 score 5)* 0.02899 0.02900 0.02398† 0.02785 0.02334† 0.04676 

Stroke (CHADS2 score 6)* 0.03639 0.03641 0.03098† 0.03511 0.03015† 0.05869 

Systemic embolism* 0.00135 0.00135 0.00113 0.00031 0.00115 0.00217 

Pulmonary embolism* 0.00078 0.00078 0.00114 0.00091‡ 0.00060‡ 0.00126 

Transient ischemic attack* 0.00839 0.00839 0.00723 0.00662‡ 0.00616‡ 0.01354 

Myocardial infarction* 0.00763 0.00763 0.01008 0.00620 0.00666 0.00763 

Congestive heart failure* 0.00619 0.00619 0.00482 0.00488‡ 0.00454‡ 0.00619 

Vascular death (excluding stroke and 

systemic and pulmonary embolism)* 

0.02281 0.02281 0.02078 0.02155 0.02118 0.02281 

Probability of death from stroke or systemic 

embolism 

0.25457 0.25457 0.25457 0.25457 0.25457 0.25457 

Probability of death from pulmonary 

embolism 

0.15909 0.15909 0.15909 0.15909 0.15909 0.15909 

Major bleed (CHADS2 score ≤ 1)* 0.02612 0.02458 0.01981 0.02248† 0.01590 0.01146 

Major bleed (CHADS2 score 2)* 0.03175 0.02988 0.02916 0.03379† 0.02434 0.01393 

Major bleed (CHADS2 score ≥ 3)* 0.04433 0.04171 0.04674 0.04799† 0.03061 0.01944 

Probability that major bleed is intracranial 

haemorrhage 

0.23361 0.23361 0.10234 0.14947 0.14068 0.23361 

Minor bleed* 0.16560 0.15583 0.15020 0.17140 0.11783 0.07263 

Diabetes* 0.0141 0.0141 0.0141 0.0141 0.0141 0.0141 

Hypertension* 0.0323 0.0323 0.0323 0.0323 0.0323 0.0323 

Probability of discontinuation (year 1)* 0.14466 0.14466 0.22048 0.14481 0.14232 N/A 



 
 

128 
 

Probability of discontinuation (year 2 

onwards)* 

0.06760 0.06760 0.06695 0.07224 0.04975 N/A 

 

*Presented as rates per 100 person years. 

†Where stratified event rates were not available, unknown stratified risks were imputed based on the assumption that the relative risks of events 

for patients with different CHADS2 scores would be independent of treatment. 

‡Imputed, based on the relative risks of different events from the RE-LY study, on the assumption that the relative risks of different 

thromboembolic events would be independent of treatment. 
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Table 19 - Cost, health state utility and discount rate parameters used in the discrete event simulation 

Parameter Value Probabilistic sensitivity analysis distribution 

Baseline characteristics   

Hypertension* 14283/18113 Beta (14283,3830) 

Diabetes* 4221/18113 Beta (4221,13892) 

Heart failure* 5793/18113 Beta (5793,12320) 

Prior stroke* 2273/18113 Beta (2273,15840) 

Prior transient ischaemic attack* 1663/18113 Beta (1663,16450) 

Prior myocardial infarction* 3005/18113 Beta (3005,15108) 

Prior intracranial haemorrhage* 713/18113 Beta (713,17400) 

Health state utilities   

Atrial fibrillation (age 67) 0.774 1-Gamma (43.06,0.0052) 

Stroke (permanent disutility)† 0.233 Normal (0.233,0.0032) 

Stroke (temporary disutility) † 0.1385 Normal (0.1385,0.01) 

Stroke (temporary duration, years)† 1/12 Uniform (0,0.183) 

Myocardial infarction (permanent disutility) 0.0409 Normal (0.0409,0.002) 

Myocardial infarction (temporary disutility) 0.1247 Normal (0.1247,0.01) 

Myocardial infarction (temporary duration, years) 1/12 Uniform (0,0.183) 

Intracranial haemorrhage (permanent disutility) 0.0524 Normal (0.0524,0.001) 

Pulmonary embolism (temporary disutility) 0.1385 Normal (0.1385,0.01) 

Pulmonary embolism (temporary duration, years) 1/12 Uniform (0,0.183) 

Transient ischemic attack (temporary disutility) 0.1032 Normal (0.1032,0.01) 

Transient ischemic attack (temporary duration, years) 5/365 Uniform (0,0.027) 

Major bleed (temporary disutility) 0.1385 Normal (0.1385,0.01) 

Major bleed (temporary duration, years) 1/12 Uniform (0,0.183) 

Minor bleed (temporary disutility) 0.06 Normal (0.06,0.01) 

Minor bleed (temporary duration, years) 5/365 Uniform (0.0.027) 

Warfarin disutility 0.013 Gamma (1.3,0.01) 

Dabigatran/rivaroxaban/apixaban disutility 0.002 Gamma (0.2,0.01) 

Aspirin disutility 0.002 Gamma (0.2,0.01) 
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Costs   

Stroke – year 1† £11,228.93 Gamma (103.97,103.97) 

Stroke – subsequent years† £2,962.07 Gamma (54.42,54.42) 

Myocardial infarction – year 1 £2,510.40 Gamma (61.32,40.93) 

Myocardial infarction – subsequent years £882.80 Gamma (35.14,25.12) 

Pulmonary embolism £1,511.12 N/A 

Transient ischaemic attack £887.26 N/A 

Major bleed £1,794.12 N/A 

Minor bleed £99.23 N/A 

Proton pump inhibitors (1 year) £197.24 N/A 

Warfarin – drugs (1 year) £41.23 Uniform (32.98,49.48) 

Warfarin – monitoring (1 year) £198.39 Gamma (202.59,0.979) 

Dabigatran  (1 year) £919.80 N/A 

Rivaroxaban (1 year) £766.50 N/A 

Apixaban (1 year) £878.35 N/A 

Aspirin (1 year) £7.39 Gamma (73.9,0.1) 

Cost of genetic test £20.00 N/A 

Discount rate   

Utilities 3.5% N/A 

Costs 3.5% N/A 

 

*Proportion in initial population.  

†Includes both stroke and systemic emboli. 
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benefit, and being the most cost-effective at different threshold values. Probabilities of cost-

effectiveness are presented through multiple cost-effectiveness acceptability curves with the 

cost-effectiveness acceptability frontier (the optimal treatment choice at a given threshold) 

represented by the treatment with the highest probability at any given threshold
185

. 

To externally validate the simulated INR data, a separate analysis was conducted using INR 

data from the CoumaGen-II trial, a randomised controlled trial comparing a pooled set of 504 

patients dosed with genotype guided algorithms with 1866 patients given standard care
164

. 

Time in therapeutic range in this trial was 11% higher after 1 month in the pharmacogenetic 

arm and 12% higher after 3 months. 

Scenario analyses 

Subgroup analyses were performed to calculate the net health benefits (and associated 95% 

central ranges) and incremental cost-effectiveness ratios (ICERs) in the following pre-

specified populations: patients aged 75 or older; patients with a CHADS2 score ≥3; patients 

who have previously had a stroke or transient ischemic attack; patients with impaired renal 

function (30-50mL/min creatinine clearance); and patients who were naïve to vitamin K 

antagonist treatment.  
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Results 

PKPD simulation 

In our base case and in comparison with the clinical algorithm, the use of the genetic IWPC 

algorithm led to an increase in time both within and below INR range, and a decrease in time 

above range (figure 12, P133). The effect was most pronounced over the first month of 

simulation, with roughly equal percentages of time above, below and in range for the 

different algorithms after this, as patients had achieved their maintenance dose. 

This pattern was broadly replicated across the different algorithms simulated (table 17, P124), 

with genetic testing associated with higher times in range, mainly driven by both reaching the 

target range quicker and not overshooting that range during initiation. Across all algorithms 

simulated; the use of genotype data during the initiation phase only, for predicting 

maintenance doses only or for both, led to increases in times in range of 1.34%, 4.76% and 

5.71%, respectively, over the first three months. 

Meta-analysis 

702 abstracts were screened and 153 full articles were retrieved. Of these, seven studies met 

all the inclusion criteria for updating the Reynolds meta-analysis
181

 (table 20, P134). The 

computed odds for bleeding and thromboembolic events, according to INR ranges, are 

presented in table 21 (P136). Time in range data from our PKPD simulation are combined 

with these ratios, to give relative risks of thromboembolic events (RR=1.00047) and bleeds 

(RR=0.940997) for genotype guided versus clinically dosed warfarin. 

Net-health benefits 

In the base case analysis, genotype guided-warfarin, rivaroxaban, apixaban and dabigatran 

extended life by 0.003, 1.11, 2.06 and 1.47 months, respectively, compared with clinical 

algorithm dosed warfarin (table 22, P137). The corresponding incremental net benefits were 

0.0031 (95% central range [CR] -0.1649 to 0.1327), 0.0957 (95% CR -0.0510 to 0.2431), 

0.1298 (95% CR -0.0290 to 0.2638) and 0.1065 (95% CR -0.0493 to 0.2489) QALYs.  

In pairwise comparisons, using clinical algorithm dosed warfarin as the comparator, genotype 

guided warfarin, rivaroxaban, apixaban and dabigatran were associated with a positive 

incremental net health benefit in 57%, 83%, 90% and 85% of the simulations respectively. 

Using genotype guided warfarin as a comparator, rivaroxaban, apixaban and dabigatran were 
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Table 20 - Systematic review papers 

 

Authors Name Population Results 

Masaki N, Suzuki 

M, Matsumara A, 

et al. 

Quality of warfarin control 

affects the incidence of stroke 

in elderly patients with atrial 

fibrillation 

120 Japanese AF 

patients (mean age 

77) 

Group A: n=57 mean TTR=81%, number of strokes=2, number of 

bleeds = 2 

Group B: n=63, mean TTR=43%, number of strokes =11, number 

of bleeds = 2 

Jones M, 

McEwan P, 

Morgan CLl, et al. 

Evaluation of the pattern of 

treatment, level of 

anticoagulation control, and 

outcome of treatment with 

warfarin in patients with non-

valvar atrial fibrillation: a 

record linkage study in a 

large British population 

2223 non-valvar 

atrial fibrillation 

patients with no 

history of heart valve 

replacement 

Odds ratios compared to whole sample: 

Bleeds 

In range: 0.945 

Below range: 1.008 

Above range: 1.097 

Thromboembolic events 

In range: 0.891 

Below range: 1.148 

Above range: 0.948 

Witt DM, Delate 

T, Clark NP, et al. 

Outcomes and predictors of 

very stable INR control 

during chronic 

anticoagulation therapy 

6073 patients with 

INR measured at 

least every eight 

weeks over a six 

month period 

Group A: n=2504 TTR=100%, thromboembolic events=10, bleeds 

= 19 

Group B: n=3569 TTR=46.9%, thromboembolic events=26, bleeds 

=101 

Hylek EM, 

Evans-Molina C, 

Shea C, et al. 

Major hemorrhage and 

tolerability of warfarin in the 

first year of therapy among 

elderly patients with atrial 

fibrillation 

472 patients 

followed for one 

year 

Bleed incidence rates per 100 person years 

INR<2: 4.11 

2<=INR<=3: 3.78 

3<INR<4: 15.78 

INR>=4: 99.26 

Matchar DB, 

Jacobson A, 

Dolor R, et al. 

Effect of home testing of 

international normalized ratio 

on clinical events 

2922 patients taking 

warfarin for atrial 

fibrillation 

Group A: n=1463, patient years=4495, TTR=66.2%, strokes=31, 

major bleeds=147 

Group B: n=1452, patient years=4235, TTR=62.4%, strokes=31, 

major bleeds=143   

Singer DE, Chang 

Y, Fang MC, et 

Should patient characteristics 

influence target 

9217 atrial 

fibrillation patients 

Odds ratios compared to INR 2-2.5 reference range 

Thromboembolic events 
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al. anticoagulation intensity for 

stroke prevention in 

nonvalvular atrial fibrillation? 

The ATRIA study 

INR<1.5: 7.22 

1.5<=INR<2: 2.32 

2.5<INR<=3: 1.09 

3<INR<=3.5: 0.92 

INR>3.5: 1.16 

Bleeds 

INR<1.5: 1.37 

1.5<=INR<2: 0.93 

2.5<INR<=3: 1.60 

3<INR<=3.5: 1.24 

INR>3.5: 6.30 

Hylek EM, Frison 

L, Henault LE, et 

al. 

Disparate stroke rates on 

warfarin among 

contemporaneous cohorts 

with atrial fibrillation: 

potential insights into risk 

from a comparative analysis 

of SPORTIF III versus 

SPORTIF V 

3665 patients with 

atrial fibrillation 

across the two trials 

Percentage time above an INR value of 3 has a hazard ratio of 1.02 

as a univariate predictor for stroke/systemic embolism 
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Table 21 - Meta-analysis of ORs for differing INR levels 

 

 Stroke odds ratio (95% 

confidence interval) 

Bleeds odds ratio (95% 

confidence interval) 

INR < 1.5 4.26 (2.67, 6.81) 1.59 (1.01, 2.51) 

1.5 <= INR < 2.0 2.19 (1.85, 2.59) 1.21 (0.78, 1.88) 

3.0 < INR < 3.5 1.05 (0.84, 1.31) 2.01 (1.33, 3.04) 

3.5 < INR <= 4.0 1.14 (0.93, 1.40) 3.82 (2.57, 5.66) 

INR > 4.0 1.26 (0.71, 2.22) 31.76 (22.76, 44.32) 

 

All given as odds ratios compared to a reference INR range of 2-3. In the base case analysis categories were combined to give odds ratios for 

below, in and above INR range. 
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Table 22 - Lifetime estimates of event rates, net benefits, and incremental differences versus comparator, derived from probabilistic sensitivity 

analysis 

Referent Mean (95% central range) estimate Mean (95% central range) difference Comparator 

Quality-adjusted life-years 

(QALYs) 

   

Warfarin (clinical algorithm) 5.7209 (5.6299, 5.8162) -0.0031 (-0.1649, 0.1327) Warfarin PGx 

Warfarin PGx 5.7240 (5.6352, 5.8204) -0.0926 (-0.2345, 0.0533) Rivaroxaban 

Rivaroxaban 5.8166 (5.7158, 5.9191) -0.0108 (-0.1632, 0.1450) Dabigatran 

Dabigatran 5.8274 (5.7362, 5.9382) -0.0233 (-0.1729, 0.1318) Apixaban 

Apixaban 5.8507 (5.7374, 5.9647) 0.1298 (-0.0290, 0.2638) Warfarin (clinical) 

Life years    

Warfarin (clinical algorithm) 9.7220 (9.5825, 9.8216) -0.0002(-0.1525, 0.1510) Warfarin PGx 

Warfarin PGx 9.7222 (9.5838, 9.8209) -0.0926 (-0.2872, 0.1196) Rivaroxaban 

Rivaroxaban 9.8148 (9.6653, 9.9508) -0.0328 (-0.2406, 0.1723) Dabigatran 

Dabigatran 9.8476 (9.6890, 9.9774) -0.0457 (-0.2541, 0.1474) Apixaban 

Apixaban 9.8933 (9.7402, 10.0319) 0.1713 (-0.0316, 0.3599) Warfarin (clinical) 

Stroke or systemic embolism    

Warfarin (clinical algorithm) 0.3047 (0.2628, 0.3424) -0.0004 (-0.0487, 0.0472) Warfarin PGx 

Warfarin PGx 0.3051 (0.2641, 0.3427) 0.0262 (-0.0310, 0.0788) Rivaroxaban 

Rivaroxaban 0.2789 (0.2369, 0.3190) 0.0290 (-0.0273, 0.0811) Dabigatran 

Dabigatran 0.2499 (0.2161, 0.2985) 0.0467 (-0.0033, 0.0974) Apixaban 

Apixaban 0.2032 (0.1678, 0.2567) -0.1015 (-0.1539, -0.0496) Warfarin (clinical) 

Transient ischaemic attack    

Warfarin (clinical algorithm) 0.1210 (0.0932, 0.1571) 0.0010 (-0.0501, 0.0537) Warfarin PGx 

Warfarin PGx 0.1220 (0.0945, 0.1539) 0.0293 (-0.0208, 0.0825) Rivaroxaban 

Rivaroxaban 0.0927 (0.0689, 0.1226) -0.0047 (-0.0564, 0.0471) Dabigatran 

Dabigatran 0.0974 (0.0710, 0.1277) 0.0124 (-0.0389, 0.0640) Apixaban 

Apixaban 0.0750 (0.0549, 0.1062) -0.0260 (-0.0743, 0.0281) Warfarin (clinical) 

Intracranial haemorrhage    

Warfarin (clinical algorithm) 0.0715 (0.0634, 0.0803) 0.0066 (-0.0095, 0.0188) Warfarin PGx 
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Warfarin PGx 0.0649 (0.0568, 0.0730) 0.0060 (-0.0100, 0.0191) Rivaroxaban 

Rivaroxaban 0.0589 (0.0528, 0.0657) 0.0176 (-0.0006, 0.0252) Dabigatran 

Dabigatran 0.0413 (0.0344, 0.0468) 0.0002 (-0.0144, 0.0153) Apixaban 

Apixaban 0.0411 (0.0329, 0.0471) -0.0304 (-0.0466, -0.0137) Warfarin (clinical) 

Major bleed (including 

intracranial haemorrhage) 

   

Warfarin (clinical algorithm) 0.3059 (0.2599, 0.3471) 0.0321 (-0.0221, 0.0838) Warfarin PGx 

Warfarin PGx 0.2738 (0.2276, 0.3190) -0.0544 (-0.1062, 0.0008) Rivaroxaban 

Rivaroxaban 0.3282 (0.2836, 0.3715) 0.0160 (-0.0382, 0.0675) Dabigatran 

Dabigatran 0.3122 (0.2730, 0.3657) 0.0714 (0.0143, 0.1138) Apixaban 

Apixaban 0.2408 (0.2069, 0.2783) -0.0651 (-0.1168, -0.0091) Warfarin (clinical) 

Non-fatal myocardial 

infarction 

   

Warfarin (clinical algorithm) 0.0662 (0.0457, 0.0861) 0.0001 (-0.0210, 0.0229) Warfarin PGx 

Warfarin PGx 0.0661 (0.0449, 0.0863) 0.0071 (-0.0133, 0.0288) Rivaroxaban 

Rivaroxaban 0.0590 (0.0419, 0.0804) -0.0221 (-0.0436, -0.0013) Dabigatran 

Dabigatran 0.0811 (0.0632, 0.0990) 0.0191 (-0.0026, 0.0327) Apixaban 

Apixaban 0.0620 (0.0447, 0.0861) -0.0042 (-0.0216, 0.0184) Warfarin (clinical) 

  



 
 

139 
 

associated with an incremental net health benefit in 74%, 85% and 78% of the simulation; 

using rivaroxaban as a comparator, apixaban and dabigatran were associated with an 

incremental net health benefit in 72% and 59% of the simulations; and finally apixaban was 

associated with an incremental net health benefit against dabigatran in 66% of the simulations. 

Lifetime incidence of stroke or systemic embolism were 0.13% higher with genotype guided 

warfarin, 8.47% lower with rivaroxaban, 33.3% lower with apixaban and 18.0% lower with 

dabigatran, all compared to clinical algorithm dosed warfarin. Lifetime incidences of major 

haemorrhagic events were 21.3% lower with apixaban and 10.5% lower with genotype 

guided warfarin, but 7.3% and 2.1% higher with rivaroxaban and dabigatran, respectively. 

Incidences of myocardial infarction were 10.9% lower with rivaroxaban and 6.3% lower with 

apixaban, but 22.5% higher with dabigatran. 

Cost-effectiveness 

Total discounted lifetime costs for dabigatran, apixaban, rivaroxaban, genotype guided 

warfarin and clinical algorithm dosed warfarin were £8,426, £8,540, £9,112, £5,921 and 

£5,880. These were comprised mainly of drug and monitoring costs, which accounted for 

43.2%, 45.1%, 39.7%, 22.7% and 22.1% of the overall costs, respectively. The costs of 

managing strokes or systemic emboli accounted for 41.1%, 35.9%, 45.8%, 57.2% and 56.6% 

of total costs; the remainder was accounted for by the costs of managing other events. 

Rivaroxaban was dominated as a treatment option by both dabigatran and apixaban, meaning 

it was associated with both higher costs and lower QALYs. Dabigatran was extendedly 

dominated by apixaban, meaning that for cost-effectiveness thresholds where dabigatran 

would be selected over warfarin (clinical or genetic-guided dosing), apixaban would be 

preferred to dabigatran. Finally, the incremental cost-effectiveness ratio (ICER) for genotype 

guided warfarin versus clinical algorithm dosed warfarin was £13,226 per QALY gained, and 

the ICER for apixaban versus genotype guided warfarin therapy was £20,671 per QALY 

gained. 

Sensitivity analysis 

ICERs were most sensitive to changes in stroke rates, vascular death rates and the duration of 

treatment benefits. However, none of these changes altered the rank ordering in terms of 

either net health benefit or cost-effectiveness. The probabilistic sensitivity analysis (figure 13, 

P140) indicates that apixaban has the highest probability of being cost-effective at thresholds 
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of £13,782 per QALY gained, or higher. Considering a pairwise comparison of genotype 

guided warfarin and apixaban, apixaban has a higher probability of being cost-effective 

above thresholds of £20,600 per QALY gained. Genotype guided warfarin has a consistently 

higher probability of being cost-effective than clinical algorithm dosed warfarin above 

thresholds of £6,700 per QALY gained. 

 

Figure 13 
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An increase of 25% in the price of apixaban increased the overall cost of the apixaban arm to 

£9,287, making it no longer cost-effective at £36,964 per QALY, compared with dabigatran. 

Dabigatran in turn had an ICER of £24,226 per QALY versus genotype guided warfarin. 

Conversely, a 25% reduction in the price of apixaban (from base-case) decreased overall 

costs to £7,793, with apixaban now dominating both dabigatran and rivaroxaban, with an 

ICER of £14,773 per QALY versus genotype guided warfarin. Finally, using the current list 

price of apixaban increased the cost of the arm to £9,796, with an ICER of £58,782 per 

QALY versus dabigatran. 

Our analysis based on external INR data from the CoumaGen-II trial produced an ICER of 

£10,946 per QALY for genotype guided warfarin versus standard care, and an ICER of 

£21,874 per QALY for apixaban versus genotype guided warfarin. 

Scenario analyses 

Among the subgroups analysed, the mean net health benefits consistently showed the same 

ordering as the base case analysis (figure 14). Apixaban remained cost-effective compared to 

other options, and across all scenarios, with genotype guided warfarin also being consistently 

cost-effective compared with warfarin dosed according to clinical algorithm. 

Figure 14 
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Discussion 

Our results suggest that apixaban is the most promising of the novel anticoagulants available, 

in terms of estimated QALY gains, and that furthermore it has a high probability of being 

cost-effective against both genotype-guided and clinically-dosed warfarin. Importantly, the 

differences in costs and QALYs between the two warfarin dosing methods is much smaller 

than the difference between either and apixaban, meaning that decisions regarding the use of 

apixaban should not be affected by the type of warfarin dosing used as a comparator. 

However, it has been previously shown that the cost-effectiveness of new anticoagulants is 

strongly dependent on INR control in the warfarin arm (chapter 3), meaning apixaban may 

well ultimately prove to be cost-effective only in situations where warfarin therapy is poorly 

controlled. Apixaban ceases to cost-effective against dabigatran (at a threshold of 

£30,000/QALY) once the price of apixaban exceeds £1,032 per annum. 

Our results also appear to show genotype guided dosing to be cost-effective compared with 

clinical dosing. This pattern was consistently repeated across the range of simulations tested, 

and remained when trial data on INR values was used instead of simulated data. Whilst the 

duration of treatment benefit from genotyping is short, the prevention of events during this 

period means this group is at a permanently, albeit modestly, lower risk of future events. The 

congruence of the results between both trial and simulated data, both in terms of INR values 

and estimates of cost-effectiveness provides a measure of external validity to the simulated 

results we have generated. However, this trial still only provides the intermediary endpoint of 

time in INR ranges, not the full clinical endpoints we would ideally want to assess the 

accuracy of our simulations. 

A number of other studies have attempted to assess the cost-effectiveness of genotype guided 

warfarin dosing versus clinical dosing. Patrick et al
186

 used a Markov model approach and 

calculated that genotyping would have to increase time in range by 5-9% over the first three 

months for it to be cost-effective in the United States (our simulated increase was slightly 

over 5%). Eckman et al
187

 calculated an ICER of US$170,000 per QALY, with only a 10% 

probability of cost-effectiveness at a threshold of $50,000 per QALY. Finally, Meckley et 

al
188

, using a Markov model, calculated a 46% probability of cost-effectiveness at a threshold 

of US$50,000 per QALY. There is also one study, by You et al
189

, which compares genotype 

guided warfarin with clinically dosed warfarin and dabigatran, with genotype dosing 
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dominating clinical dosing and dabigatran having an ICER of $13,810 per QALY against 

genotype dosed warfarin. 

However, considerable uncertainty surrounded these analyses owing to the paucity of 

published data from randomized trials. Our approach, making use of PKPD simulations 

where data are unavailable, is able to help mitigate this problem and provide estimates with a 

lower (though still appreciable) amount of uncertainty. A number of larger trials of warfarin 

pharmacogenetics are now currently recruiting, designed to provide definitive evidence on 

efficacy
164,190,191

. While these trials will supersede the results of simulations, the modelled-

based approach described here may still have a role in determining the optimal algorithm, 

given that it is implausible to trial each option.  

Our analysis has a number of other strengths but also some weaknesses. The model makes 

use of a discrete event simulation methodology, which is likely to be a more appropriate 

method than a Markov model due to the higher number of states it allows patients to be 

classified into, plus its operation in continuous (as opposed to a Markov model’s discrete) 

time, to allow for more realistic modelling of patient histories
27

. This is particular important 

in the example described as the benefit of genotype-guided warfarin is for only for a limited 

period of time (approximately 3 months). A Markov model would thus need either to have 

very short cycles (making parameterisation more difficult) or the additional benefit will 

accrue over only a very small number of cycles (potentially reducing accuracy). 

Our adjusted, indirect comparison is necessary to include all possible treatment options. 

However, this may introduce bias through differences in trial design, which have been 

extensively discussed previously
149

, a lack of access to individual patient data and the need to 

extrapolate the available data from trial to lifetime horizons. Nonetheless, these assumptions 

are virtually unavoidable in any economic evaluation
17

, and there is no prospect of any 

evidence becoming available in the future that would enable us to avoid them. 

There are also limitations surrounding the use of simulated data. First, the models used may 

be misspecified. The PKPD model
165

 was derived from a number of data sources and the 

results obtained from it are difficult to validate externally. Second, both the PKPD and 

economic models are parameter intensive, increasing the probability that some of the values 

used are inaccurate. Thirdly, each of the three stages of the methodology (PKPD simulation, 

meta-analysis and economic model) introduces uncertainties. Whilst these may be quantified 
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at each individual stage of the process, they may not be synthesised into a single measure of 

uncertainty for the whole simulation. 

While data from phase III trials, if available, should take precedence in evaluating both 

effectiveness and cost-effectiveness over studies based on simulations, there are situations 

when PKPD-based simulations can add value. These can be in providing: cost-effectiveness 

estimates of complex pharmaceutical interventions, early indications of cost-effectiveness 

before large scale trial data becomes available, and inform the extrapolation of the results of 

those trials once they have been conducted. 
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Chapter 6 

 

Discussion 
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Summary 

The approach developed links clinical trial simulations based on pharmacokinetic and 

pharmacodynamic models with economic modelling techniques. This enables estimates of 

cost-effectiveness to be derived in situations where sufficient trial data are not available to do 

so using standard economic models. Crucially, these models are mechanistic, meaning they 

can be used to extrapolate results to different patient populations and incorporate the effects 

of protocol deviations and different dosing regimens. The equations underlying these models 

are linked back to the underlying pharmacology of the system, an advantage in situations 

where there is a shortage of evidence as it means any necessary modelling assumptions will 

be grounded in pharmacological theory.   

Chapters 2 and 5 both provide evidence of the conceptual feasibility of this approach. In both 

the PACIFICO model in chapter 2 and the warfarin model in chapter 5 it was possible to 

construct full prospective PKPDPE simulations of trials that have not yet taken place, and 

derive values for all the same endpoints as would be expected of a post-trial analysis. By 

synthesising published data (clinical, utility and cost) all necessary parameter values to 

populate the economic model can be obtained. However, it is important to remember that 

neither of these were trials of new drugs, rather of new uses or dosing regimens for existing 

ones. 

Chapter 2 investigated the use of rituximab in a new indication, specifically as an adjuvant to 

different chemotherapy regimens for follicular lymphoma than those it had been previously 

used with, and as a maintenance therapy following chemotherapy. This means that prior data 

was already available on its use with different treatments from which extrapolations could be 

made. Indeed, the PK model was not from follicular lymphoma patients
60

, but from patients 

with rheumatoid arthritis (there is no evidence PK parameters should differ between these 

conditions) and the PD model was derived from analyses using different chemotherapy 

regimens
62

. Likewise, warfarin therapy has been in use for many years, and the analyses in 

chapter 5 studied different dosing schedules for an already well-studied treatment. This 

limitation is always likely to be the case for any analysis relying on published data, meaning 

such analyses are likely to concern new uses of existing medications rather than entirely new 

treatments. The undertaking of analyses of new drugs will, in most cases, only be possible by 

the company developing that drug, as they will have access to the necessary phase I/II PKPD 

data, which will not come into the public domain until much later. 
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It was also necessary in both case studies (rituximab and warfarin) to produce early estimates 

of both costs and utilities associated with the new treatment/regimen. This is helped by the 

existence of databases of both unit cost data for the UK
105

 and utility losses associated with 

various outcome events
101

. These pre-existing data can be used to attach outcome values to 

each of the clinical events occurring in the models, obviating the need to collect additional 

prospective data. However, there are difficulties with such an approach, first in that the price 

of a new medicine (or changes in price as it gains a new indication) are unlikely to become 

known (publically, though a company undertaking such an analysis will have this information) 

until after it has received regulatory approval. In chapter 5 it was necessary to make an 

assumption as to the price of apixaban as no data was available, and since this is likely to be 

one of the principle incremental costs of the treatment, any inaccuracy in this parameter can 

have a very large impact on the reliability of the results obtained. Second, whilst health 

outcomes and utilities are often assumed to be similar across countries (there will be 

differences based on patient populations and clinical practice differences, but these are hoped 

to be sufficiently small as to be ignorable), costs will clearly differ greatly, depending on the 

payment structure of the healthcare system
192

. This means that as soon as economic evidence 

is included in a decision it becomes necessary to consider multiple analyses for the different 

countries of interest. Overcoming both of these difficulties will again require information on 

pricing strategy and intentions only available internally within a drug company. 

A number of attempts were made to look at assessing the validity of the modelling approach, 

by comparing to published data. In chapter 2, where the first two examples are retrospectively 

modelling previously published trials, these simulated results were directly compared with 

those from the trial. There were moderate differences in ICERs (£1,355 per QALY and 

£2,099 per QALY for the two examples) between simulated and trial ICERs, but both 

approaches led to the same decisions regarding cost-effectiveness. In general, this is evidence 

of the fairly logical point that simulations which show a treatment to be very clearly either 

cost-effective or not cost-effective are likely to be reliable, but those which lie close to the 

threshold will contain sufficient uncertainty as to be much less so. In these cases it becomes 

importantly to quantify that uncertainty through appropriate probabilistic analyses. In chapter 

5 simulated results were compared to trials of genotype-guided warfarin therapy. Again, a 

difference in ICER between simulated and trial-based data (£2,280) was present but not 

substantial. In this case, the interest is not in whether the simulation can accurately predict 

trial-based cost-effectiveness results (as this cost-effectiveness is ultimately going to be 
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determined on the basis of on-going trials not simulations) but rather whether the method is 

able to appropriately rank differing algorithms in terms of cost-effectiveness as a method of 

optimisation. 

In the long term, however, the validity of such a method will be judged on whether or not it is 

able to, across a range of different treatments and scenarios, produce sufficiently accurate 

predictions as to usefully inform decision making. It is this external validity that will 

ultimately prove more useful than any measures of internal validity that may be constructed. 

It will not be possible to address this question until the completion of trials for which data 

were simulated (e.g. the completion of the PACIFICO trial simulated in chapter 2, or the 

COAG
189

 or EU-PACT
166

 treaties for warfarin pharmacogenetics), and until such data 

becomes available it will not be possible to make a fully informed judgement as to the overall 

validity of the approach. 

The method of PKPDPE modelling may have two areas of application. The first is the 

derivation of earlier estimates of cost-effectiveness than are currently available, an approach, 

as stated above, mostly of interest and use to pharmaceutical companies during the drug 

development process. Whether such an approach is widely adopted in the future will depend 

entirely on whether it can be shown to improve decision making and efficiency during that 

process, in the same way that standard clinical trial simulations were shown to do, with their 

use leading to an increase in the proportion of trials meeting their pre-specified objectives
36

. 

The second use is in helping to more accurately extrapolate the results of previously 

conducted trials. This may take the form of correcting for protocol deviations in a trial 

(warfarin non-adherence, chapter 5), assessing alternative dosing regimens (genotype-guided 

warfarin dosing, chapter 5) or the use of a drug in different patient populations or for 

different indications (rituximab, chapter 2). These uses are all based on the principle of 

making the maximum use of all available evidence in coming to a decision
26

. 

Strengths and limitations 

The basic strength of the approach described is that it makes use of all available data. As 

discussed earlier, the four key features of a health economic decision model are data 

synthesis, explicit modelling of uncertainty, the inclusion of all relevant comparators and 

appropriate extrapolations. The discrete event simulation of warfarin (chapter 3) is designed 

for the extrapolation of trial results (real or simulated) to a lifetime horizon; the indirect 

comparison (chapter 4) brings in all relevant comparators and the PKPDPE simulation 
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(chapter 5) synthesises data from simulations and published trials together with cost and 

utility data to produce an ICER which is a function of all inputs. Finally, each stage of the 

model has a probabilistic element to model the parameter uncertainty present. 

The approach is also designed to answer questions where no appropriate trial data will be 

available. Since data from trials will always supersede simulated data when it becomes 

available, it is important that simulated results should either refer to situations before such 

data are available or where they never will be so. The two applications of early cost-

effectiveness indications and post-trial extrapolations of the data respectively relate to each of 

these appropriate areas for simulation. In both of these situations a lack of data makes the use 

of standard empirical economic analyses extremely difficult (the first through a simple lack 

of data, the second through the difficulties of extrapolation based on empirical models), a 

problem that the mechanistic nature of PKPD models can help to overcome. 

However, there are a number of limitations associated with this approach. First, is the risk of 

model misspecification. The PKPD models were extrapolated to slightly different contexts 

and patient populations than those in which they were built, and it is necessary to assume 

(without any empirical evidence) that the same exposure response relationships will apply. In 

this, the situation is much the same as with traditional clinical trial simulations, except as the 

results of these simulations are then used as inputs to other models, any errors may be 

magnified over the process, potentially resulting in a greater overall error rate. This limitation 

is unavoidable in any early stage extrapolation where there is a paucity of data, and the only 

way to minimise it is to use only well verified (preferably externally) PKPD models, and 

ensure all uncertainty is explicitly modelled. Whereas in traditional CTS it may be desirable 

to only include inter-patient variability and ignore parameter uncertainty, this would be 

incorrect here as the desire is to maintain that uncertainty through to the final result. 

Similar concerns also apply to the health economic extrapolations used. Due to the holding of 

randomised controlled trials as the gold standard for evidence of efficacy, there has been 

concern about the validity of various model extrapolations. In particular, as one of the key 

features of a well conducted trial is blinding, to ensure the prejudices of both patients and 

investigators do not bias the results, there is a fear bias will be reintroduced through the 

choices made in the modelling process. It is certainly true that different structural 

assumptions (which it is often difficult to make an objective comparison between) can 

produce considerable variability in output. The approach described in this thesis may 



 
 

150 
 

exacerbate this fear as conducting analyses at an earlier stage means less empirical data will 

be available, thus forcing more assumptions in the approach. Nevertheless, modelling is 

accepted as an unavoidable part of economic evaluation as the biases caused by relying 

purely on trial results (short time horizons and not representative of standard practice) are 

worse than those introduced by modelling
22

. The quantitative nature of the process means all 

assumptions can be explicitly stated and evaluated, so any biases should at least be 

transparent rather than hidden. 

It is necessary to synthesise data from a range of studies to perform these analyses, often 

from trials with very different designs. As an example, the RELY
92

, ROCKET-AF
134

 and 

ARISTOTLE
135

 studies used in the indirect comparison in chapter 4 are all large trials of new 

drugs for stroke prophylaxis in atrial fibrillation. Nevertheless, there is considerable 

variability in their designs
149

. Examples include different patient populations (baseline stoke 

risk much higher in ROCKET-AF), different blinding (ROCKET-AF and ARISTOTLE used 

sham INR, RELY was open-labelled), different definitions of outcome events, different 

qualities of warfarin INR control and many others. These problems exist in any modelling 

exercise but may be exacerbated by the approach adopted here given the need to synthesise a 

greater number of studies (PKPD as well as trials). However, despite this problem, evidence-

based medicine should still involve the use of the maximum amount of data possible
26

, and 

PKPDPE as an approach still adheres to that principle. 

The models constructed are also extremely difficult to validate. Whilst this may be possible 

for the individual components of the model, by testing PKPD simulations against available 

reference data and comparing health economic models to available trial data, because it is not 

possible to fully combine the uncertainty from the two different models there is no way to be 

certain how given inaccuracies at each stage affect the accuracy of the overall result. External 

validation of an individual model against other data sets is unlikely to be possible as the very 

nature of the use of these models in situations where no trial has been conducted means such 

data sets are unlikely to be available. 

This problem is not likely to be resolved until sufficient trials which have been simulated 

using this method report trial results, and these can be compared to the output of the 

simulations, a process that will only be delayed by the fact most such analyses are likely to be 

conducted by private industry, and these may well never be published. Even when such 

comparisons do become available, the likely result that some simulations match trial data 
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very well and others are extremely inaccurate will leave the difficult job of identifying 

exactly which features of a model are predictive of how accurate the simulations are likely to 

be. 

There is also the difficulty of the lack of uniformity in healthcare reimbursement structures 

around the world. Cost-effectiveness evidence requirements will differ considerably between 

countries with a central reimbursement body (e.g. NICE in England & Wales, SMC in 

Scotland or AWMSG in Wales) and ones with a higher predominance of private healthcare 

provision, and the evidence necessary may well differ even where countries systems are 

similarly structured. This is in contrast to licensing submissions where, whilst there may be 

differences between bodies (e.g. FDA, EMA), they are likely to be considerably smaller. 

Thus, whilst a single CTS may be useful to optimise clinical trial designs for all licensing 

submissions, a single PKPDPE analysis is much more restricted to the specific country for 

which it was designed. This leaves either suboptimal evidence for other countries or the need 

to conduct multiple analyses, obviously increasing both the time and cost. 

This leads naturally to one of the major difficulties with the applicability of this approach. 

The very structured nature of the licensing approval process, with its specific evidential 

hurdles that have to be crossed at each stage, is very amenable to the use of simulations to 

predict the outcome at each of these points. The lack of such a uniformly structured process 

in reimbursement decisions makes the application of the technique more challenging. 

Finally, the cross-disciplinary nature of the approach naturally makes its implementation 

more complex, as a larger number of people from different areas will need to work together 

to perform the work efficiently. This need for cross co-ordination (e.g. between 

pharmacological modellers, trial statisticians, trial design team) slowed the process of CTS 

coming into common usage
36

, and the addition of economic evidence as well can only make 

the process more challenging. This fact does not reduce the conceptual utility of the approach; 

merely reduce the potential speed at which it may be adopted. 

Future work 

In addition to the various limitations listed above, there are a number of technical issues with 

the approach which further work would be necessary to address. First, the accuracy of the 

predictions generated is clearly constrained by the quality of the PKPD models used as the 

basis for simulations. These could be developed in one of two ways. The first would be 
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finding the best possible model fit for the data, ignoring any attempt to structure the model in 

a way where parameters have an intuitive real world interpretation. The closer the model fit, 

the more accurate the CTS would be expected to be and thus the more accurate the cost-

effectiveness estimates should be. 

The second approach is for model structure to be informed by the underlying biology of the 

system. This links to the concept of physiologically based PKPD models discussed earlier
43

. 

Here it is necessary to accept, at least in the short term, a less good model fit but it is hoped 

this is compensated for by a greater ability to interpret the results. For example, if a change in 

patient population or model parameters leads to a change in cost-effectiveness output, it 

would be hoped to be able to use the structure of the model to hypothesise the biological 

reason for this change. Which of these two approaches is preferred depends on the specific 

question being addressed. If the aim is simply the best possible point estimates of cost-

effectiveness in a given situation, the best fitting model would be preferred. If, on the other 

hand, the interest is in comparative cost-effectiveness between differing scenarios, the second 

approach may be preferred so as to improve the interpretability of the results. PBPKPD 

models are still at a relatively early stage of development and acceptance into mainstream 

analyses, so hopefully future developments should lead to more becoming available for 

simulation testing. 

One weakness of the specific modelling approach used, particularly as one of the key goals is 

the quantitative modelling of uncertainty, is that it is now possible to carry that full 

uncertainty through the simulation at an individual level. Whilst both inter-individual 

heterogeneity and parameter uncertainty can be quantified in the CTS, it is necessary to then 

summarise the output of these simulations as parametric distributions for use in the 

probabilistic sensitivity analysis of the economic models. Whilst maintaining the same 

overall level of uncertainty, information is lost by needing to summarise the output in this 

way. Specifically, it is not possible to maintain a direct connection between the individual 

patients in the PKPD simulation of clinical events and the individual patients in the economic 

model. In this way the simulation is not accurately replicating the trial data it is attempting to 

replace, as here it is possible to pair up clinical data with both utilities and costs. 

Ideally, the whole process would be conducted in a single stage, rather than the two separate 

stages currently necessary. In the same way that within a health economic evaluation an 

individual patient simulation can provide more information than a cohort model, due to better 
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modelling of uncertainty, a fully integrated individual level simulation would be better than 

serial models. The limitation of doing this at present is essentially computational, as the 

standard programs in use for PKPD modelling (e.g. NONMEM
78

) are not amenable to 

economic modelling, and vice versa. The development of appropriate interfaces to fully 

integrate the two should allowed to produce, in a single simulation, a patient's full simulated 

clinical history, together with the cost and utility data attached to that. 

There is also the potential for the integration of the techniques developed here with value of 

information (VOI) analysis
47

. This is another tool for the optimisation of trial designs, based 

on calculating the value of a trial by the benefits associated with a reduction in uncertainty, 

and comparing this to the cost of conducting the trial. Chapter 2 already shows the 

compatibility of such an approach with PKPDPE modelling, and in fact the necessary data for 

VOI is exactly that data PKPDPE simulations produce. The current difficulty with this 

process is simply one of computational complexity. To conduct a full expected value of 

perfect parameter information (EVPPI) or expected value of sample information (EVSI) 

calculation, the level necessary to use in trial optimisation, is likely to require at least a 

thousand replications of the full PKPDPE analysis for each trial in the analysis, which is 

already a computationally intensive process due to the numbers of patients simulated per trial. 

However, improvements in hardware or the development of statistical short cuts in the 

process should render such analysis practical to perform. 

VOI analysis is particularly useful with the spreading implementation of value based 

pricing
49

. Under this system, rather than manufacturers specifying a fixed price for the drug, 

which is then either accepted or rejected on the grounds of cost-effectiveness, a drug will be 

assigned a price so as to set its cost-effectiveness at a pre-specified acceptable level. Whilst it 

is debated whether there will be any benefit in switching to such a system
49

, there is no doubt 

it will change the nature of the decision making process. Specifically, rather than the 

importance lying in reducing decision uncertainty in whether a new drug will be accepted or 

rejected for reimbursement, it is now necessary to find the most accurate possible point 

estimate of cost-effectiveness, as this will affect the finalised price. In such circumstances, 

VOI analysis becomes an extremely powerful tool, as it enables explicit comparisons 

between trial costs and the benefits of reduced uncertainty in that point estimate. During the 

drug development process, PKPDPE simulations become a method of deriving early 

estimations of this value. 
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Model-based drug development 

One of the overarching frameworks within which the work presented here fits is that of 

model-based drug development (MBDD). This has been defined by the FDA in its critical 

path document as the development and application of pharmacostatistical models of drug 

efficacy and safety from clinical and preclinical data to improve drug development decision 

making
44

. PKPD modelling, the differentiation of the “learning” and “confirming” phases of 

drug development and the use of clinical trial simulations are all aspects of MBDD. 

The underlying rationale is that drug development is a continuous process where additional 

data is always being acquired
193

. The aim is for data from each new clinical phase to be 

synthesised with relevant prior information to inform decision making, rather than prior 

information being neglected which is commonly the place at present
193

. This naturally leads 

towards a Bayesian approach where prior beliefs and newly collected data can be combined 

into posterior probabilities. Models allow for explicit quantitative evidence synthesis, and 

enable the drug development process to be regarded as a model building exercise where 

models are continuously updated as new information becomes available. 

There are six generally accepted aspects of MBDD (figure 15, P155). The first is PKPD and 

disease models. Disease (or placebo) models chart the expected time course of patient 

response over time, given no treatment (or placebo)
194

. Features can include natural disease 

progression over time, cyclical variations and regression to the mean. This last can be 

particularly relevant in clinical trials where study inclusion criteria may mean patients are 

included because they are at a particularly severe point at that time, meaning some natural 

improvement would be expected. PKPD models can be combined with disease progression 

models to simulate the expected time course of the condition on a given treatment
195

. 

The second aspect is the meta-analysis of candidate and comparator data. Since the 

commercial value of a drug depends on the other drugs available in that indication, 

combining all available data is extremely important. Model-based meta-analyses of dose 

response and time course data will help to understand the comparative pharmacodynamics of 

the treatment alternatives, in a way that standard meta-analyses cannot
196,197

. The fact the 

models used are mechanistic again means they have a direct link to the underlying biological 

properties of the drug in a way empirical models do not. This is particularly important at 

these early stages where one of the major goals is to increase the understanding not just of 

what effects a drug has, but why those effects occur. Technical issues it is necessary to 
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address include addressing publication bias, addressing the issue of correlation between time 

points in a longitudinal analysis and synthesising study level and patient level data from 

different sources
196

. 

 

Figure 15 

The remaining aspects are trial design and execution models, specifying the trial protocol and 

expected deviations from that; data-analytic models defining the statistical analysis that will 

be undertaken following collection of the trial data; and quantitative decision criteria and trial 

performance metrics to specify decisions made during the trial process (e.g. stop/go decisions) 

and the specific criteria that would lead to each decision being made at a given time
193

. 

Putting all these together gives a full quantitative approach to trial design and analysis, with 

explicitly defined decision rules at each stage of the process, meaning that decisions are 

evidence based and the reasoning behind those decisions transparent. 

The use of MBDD by companies is becoming increasingly common
198

. It is hoped that the 

integrated approach it provides, together with the necessary integration across different areas 

of the company, will be able to produce a greater volume of information at a lower cost
199

. 

One particular area of potential development is improvements in adaptive trial designs. An 

adaptive, as opposed to a fixed design, is one where rather than a pre-defined protocol that is 

followed in all circumstances; different paths will be followed depending on the results 

obtained, though clearly all such possibilities still have to be defined in advance. Examples 

include interim analyses with defined rules for stopping for failure, stopping for success and 
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collection more data, or seamless phase II phase III trials, where the trial automatically switch 

between the two once the necessary information has been obtained (e.g. optimal dose). 

MBDD can further improve such designs as it gives a larger range of outputs (e.g. 

pharmacological) which can be used in designing trials. It also produces an explicit 

framework in which trial design can be structured, with the aim of reaching necessary levels 

of evidence to gain regulatory approval as the lowest possible cost (financially, patient 

numbers, time etc). 

The principles of MBDD are fully compatible with the modelling framework developed in 

this thesis. There are already PKPD and trial execution models in the CTS used, and an 

economic model is a data-analytic method designed to provide quantitative answers to 

questions that, if well executed, should contain a meta-analysis of all available comparators. 

Developments across any of the individual fields of MBDD should thus also help to improve 

the accuracy of the analyses. 

The PKPDPE approach described in this thesis suggests the potential integration of a seventh 

component, economic modelling, within MBDD. At present, such analyses are normally 

concerned purely with clinical endpoints, and the synthesis of all available efficacy and/or 

effectiveness evidence
193

. In a framework which is already both data and parameter intensive, 

and where the decision has already been made that making use of all available evidence is a 

more important consideration than parsimony, the additional assumptions necessary should 

not be a major concern. Since the underlying theoretical idea of MBDD is to enable as much 

evidence as possible to be used to inform decision making, adding an economic component 

as well should only improve the usefulness of such an approach. 

Conclusion 

We have demonstrated the feasibility of an integrated pharmacological and economic 

modelling approach, which can be used both to improve the extrapolation of trial results and 

obtain earlier indications of cost-effectiveness than are currently available. However, there 

are difficulties with the practical implementation of this approach, specifically surrounding 

the validity of extrapolating based on the limited data we will have available. Whether or not 

such simulations become a regular component of the drug development process depends on 

the essentially empirical question of whether they improve decision making and ultimately 

trial success rates within that process. This is not a question that will be possible to answer 
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until more such analyses have been undertaken and we have the necessary data to fully 

compare trial and simulated results.  
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Figure Legends 

Fig 1 – Graphical representation of 1, 2 and 3 compartment pharmacokinetic models. 

Fig 2 – Pharmacokinetic and pharmacodynamic models combined to give a PKPD model of 

drug effect over time. 

Fig 3 - Markov models used for the health economic analyses: (a) represents the three-state 

model used in the maintenance and first-line analyses and (b) represents the five-state model 

used for the PACIFICO simulation. FL = follicular lymphoma. 

Fig 4 - Results of the probabilistic sensitivity analysis. Upper panels relate to maintenance 

rituximab therapy; lower panels relate to first-line use. Broken curves are trial results and 

solid curves are simulated results. Panels on the left-hand side are cost-effectiveness 

acceptability curves illustrating the probability of the rituximab-containing regimen being 

cost effective at different cost-effectiveness thresholds. Panels on the right-hand side 

illustrate the congruence between simulation and trial-based evaluations, given as the 

proportions of simulations where simulated and trial results fall on different sides of given 

cost-effectiveness thresholds. 

Fig 5 - Results of the simulation of the PACIFICO trial. Presented are the proportions of 

patients in each health state according to time for patients receiving (a) rituximab, 

cyclophosphamide, vincristine and prednisolone (R-CVP) and (b) rituximab, fludarabine and 

cyclophosphamide (R-FC). The red line represents patients in the progression-free survival 

on-protocol (maintenance or induction) state; the green line represents progression-free 

survival off protocol; the blue line denotes progressed follicular lymphoma; and the black 

line denotes patients who have died. The bottom graph (c) is the cost-effectiveness 

acceptability curve giving the probability of R-FC being cost effective (compared with R-

CVP) at different cost-effectiveness thresholds. 

Fig 6 - Tornado plot of univariate sensitivity analyses. First three panels relate to benefit-

harm analyses; lower right panel relates to economic comparison of dabigatran 150 mg twice 

daily and dose adjusted warfarin. L=lower end of 95% CI for parameter set; H=higher end of 

95% CI for parameter set (see table 7). bid=twice daily; CHADS2= Congestive heart failure, 

Hypertension, Age≥75 years, Diabetes mellitus, previous Stroke/transient ischaemic attack; 

ICER=incremental cost-effectiveness ratio; QALY=quality-adjusted life-year. *Maximum 
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deviation from all correlation structures tested, which occurred when all patients with 

hypertension were assumed to have diabetes and all patients with previous myocardial 

infarction were assumed to also have previous stroke 

Fig 7 – Cost-effectiveness acceptability curve for base case analysis. QALY=quality-adjusted 

life year. 

Fig 8 - Results of probabilistic sensitivity analysis on efficacy and safety end points, 

expressed as incremental QALYs. Values are means and 95% central ranges from 2000 

simulations. CHADS2= Congestive heart failure, Hypertension, Age≥75 years, Diabetes 

mellitus, previous Stroke/transient ischaemic attack; CrCl=creatinine clearance; 

QALY=quality-adjusted life-year; RE-LY= Randomized Evaluation of Long-Term 

Anticoagulation Therapy; TIA=transient ischaemic attack; TTR=time in therapeutic range. 

Fig 9 - Results of the probabilistic parameter sensitivity analysis indicating the relative 

impact of treatments on the two constructs of the QALY – quality of life, and life expectancy. 

Point estimates and associated 50% and 95% central range ellipses for life years and quality 

of life with warfarin (black), rivaroxaban (red), dabigatran (green) and apixaban (blue). 

Fig 10 - Tornado plots of univariate sensitivity analysis. Each figure presents the ten 

parameters which led to the greatest change in overall QALYs. L/H refers to lower and 

higher limits of parameter estimates. 

Fig 11 - Probabilities of treatment being most effective by patient subgroup. Probability of 

each treatment is the most effective, based on accrual of most lifetime QALYs, for each 

identified patient subgroup. 

Fig 12 - Results of base case simulation - times spent below, in and above INR range at 1 

week, 2 weeks, 1 month and 3 months. 

Fig 13 - Cost-effectiveness acceptability curves for base case analysis, showing the 

proportion of simulations where each treatment is the most cost-effective over different 

willingness to pay thresholds. 

Fig 14 - Scenario analyses – shows probability each treatment accrues the largest number of 

QALYs in each patient subgroup. 

Fig 15 - The components of a model-based drug development analysis.  
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