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ABSTRACT 

The goals of the work described here were the development of a method of 
selection of spectral estimation for use with pulsed Doppler ultrasonic blood flow 
instruments, and the use of this method to select an estimator and its 
implementation in a form suitable for real-time applications. 

A study of estimation accuracy of the mean frequency and bandwidth using a 
number of spectral estimators was carried out. Fourier based, parametric, and, 
minimum variance estimators were considered. A Doppler signal simulator was 
developed to allow the accuracy tests required. 

A method of selection of spectral estimators based on the accuracy of 
estimation of decisive signal parameters, under the constraint of low computational 
complexity has been proposed. This novel cost/benefit criterion, allows the 
possibility of weighting appropriate to estimator (mean frequency and bandwidth) 
and signal frequency importance (across the range of signal characteristics). For 
parametric spectral estimators, this criterion may also be used to select model 
order, leading to lower orders than FPE, AIC and CAT criteria. Its use led to the 
selection of a 4t' order modified covariance parametric method. 

A new version of the modified covariance method for spectral estimation of 
real signals was developed. This was created with a view to the parallel 
partitioning of the algorithm for parallel implementation on a transputer-based 
system, using OCCAM. A number of parallel topologies were implemented. Their 
performance was evaluated considering estimation of a single, and a sequence of 
Doppler signal segments, revealing the feasibility of these parallel implementations 
to be achieved in real-time. 
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CHAPTER 1 

Introduction 

1.1. GENERAL OVERVIEW 

1.1.1. Motivation 

Doppler ultrasound techniques have been increasingly used in noninvasive assessment of 

circulatory disease providing means of diagnosing and monitoring stenosed arteries [1]. 

Doppler ultrasound devices detect movement of an object in the path of the ultrasonic beam 

from the Doppler shift in the frequency of the signal scattered or reflected from the object. In 

this case, the objects are blood particles, essentially the red blood cells, which under pathological 

conditions have altered velocity patterns [2]. The blood velocity within an artery is periodic with 

the cardiac cycle, and the variation of blood velocity in each cardiac cycle (velocity waveform) 

changes with vessel disease and therefore contains diagnostically useful information. In addition, 
local to an intrusive vessel lesion there is disturbed flow which results in an increase in the range 

of Doppler shift frequency (spectrum broadening) [3]. Any Doppler signal analysis scheme must 
deal with both of these aspects. 

The mathematical treatment of the interaction between the received ultrasonic signal from 

blood velocity measurements and the blood scattering particles has been developed in different 

ways. Angelsen [4] is one of the authors who developed a comprehensive analysis of this 
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relationship, assuming that the scattering of ultrasound from blood arises from random 

fluctuations of bulk elastic modulus intensity and density. This and the other proposed models, 

result in the conclusion that the Doppler signal from undisturbed flow is random, with a Gaussian 

probability density function, and 'a spectrum determined by the range of magnitudes of the 

velocities of the streamlines crossing the sample volume, and the sample volume characteristics. 

Thus the Doppler signal from ultrasonic Doppler instruments is a random signal with a 
Gaussian probability density function in undisturbed flow and with a time-varying frequency 

spectrum determined by the time-varying-blood velocity field and the size and position, within 

the velocity field, of the instrument resolution cell [5]. If the heart rate is steady and there are 

no changes in the physiological state the signal is cyclo-stationary [3]. 

Typically two types of Doppler ultrasound devices are referred to in the literature. The 

continuous-wave and the pulse-wave instruments. The former has major disadvantage, the 

inability to distinguish signals from vessels at different levels, which is overcome by the use of 

pulsed Doppler ultrasound devices [6]. 

Analysis of the Doppler signals involves a sequence of procedures starting from the collection 

of clinical data by the technician till the application and consequent interpretation of the 

estimated Doppler spectrum. Throughout all these stages measurement errors are introduced [7]. 

Some of them are recognized and may be overcome by application of suitable spectral analysis 

techniques, namely windowing and spectral averaging. 
Conventional spectral analysis of the Doppler signal uses a Fast Fourier Transform on 

sequential or overlapping windowed signal segments. The limitations of these techniques to 

estimate Doppler spectrum are extensively published. Some examples of comparative analysis 

of the results obtained using Fourier transformed windowed Doppler signals and other spectral 

estimation techniques are presented in [8 - 12]. 

Another class of spectral estimator methods is comprised of the modem parametric methods. 
Their potential advantage is the frequency resolution, while their major drawbacks are the 

computational burden and also the selection of a model order or model orders which can 
accurately represent the modelled signal. The commonly referred model order selector criteria 
perform the selection on the basis of full spectrum estimation [12 - 15], and, often lead to poor 
estimates of the correct model order when used with signals whose model order is known [16] 
[17]. 
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These limitations induced the development of other spectral estimation methods than the 

parametric ones, such as the application of time-domain techniques to estimate spectral 

parameters [18]. 

Nevertheless there is still much work carried out on accurate estimation of the spectrum as 

a whole or of specific spectral parameters using parametric models, as may be observed on some 

recent publications on mean frequency and bandwidth estimation of narrow band signals [19] 

[20]. 

The spectral estimation methods above referred are essentially digital methods and are often 

software based. Another important strategy to estimate the Doppler spectrum is obtained by a 

mixture of software and hardware implementation. In this field, the application of Digital Signal 

Processors (DSPs) is commonly found (Eg. work reported by Schlindwein and Evans [21] on the 

feasibility of real-time autoregressive spectral estimation). 

The demand for increasing processing power, together with the availability of hardware 

technology enabling elaborate calculations to be computed rapidly, led signal processing towards 

the use of multi-processor systems. For instance, the computation of Fourier Transforms using 
transputer arrays [22], and in parametric estimation, the development of fast algorithms for 

solution of Toeplitz systems of equations [23] and the implementation of a least squares 

algorithm in systolic array [24]. 

The above referred environment of Doppler signal processing aimed at cardiovascular disease 

detection motivated the development of the work described in this thesis. 

1.1.2. Goals 

- Development of a flexible but objective method of selection of spectral estimators based on 

measured estimation accuracy and the requirements of the user, taking also into account the 

cost of the implementation. 

" Use of this method to select a spectral estimator for the measurement of mean frequency and 
bandwidth. The development of a Doppler signal simulator to allow, the, accuracy tests 

required by the above. 

- Development of the selected estimator into a form suitable for real-time application using 
parallel processing techniques. Its implementation on a transputer-based system. 
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1.2. THESIS OUTLINE 

Chapter 1 has given a general overview of some important features that motivated the usage of 

spectral analysis of Doppler shifted ultrasound scattered from blood to increase the sensitivity 
to blood vessel disease detection, describing the goals of the work developed. It also includes a 
thesis outline and a description of the major contributions achieved during this work. 

Chapter 2 provides necessary background material for the three major disciplinary areas 
involved in this project, this is, Doppler ultrasound, spectral analysis, and, parallel processing. 
A brief description of Doppler ultrasound instruments, the relationship of the Doppler signal with 

the blood velocity, and the Doppler spectrum analysis techniques are included. A general 

overview of the most commonly used relationships between time and frequency representations 

of random signals, the Fourier based spectral estimation methods and typically employed 

windows, and the general concepts common to parametric spectral estimation methods are also 

presented. The parallel processing section gives a general idea about the steps need for the 

development and implementation' of a numerical process on a multi-processor system, enables 
familiarization with the terminology employed in this field, and describes the transputer and its 

related parallel programming language - OCCAM. 

Chapter 3 is concerned with the implementation and inspection of the Doppler signal 

simulations required to measure the performance of spectral estimators. Three algorithms were 
implemented, two of them based on reports of earlier work done in this field, and the other, 
developed from one of the previous algorithms to enable faster computations. Analysis of the 
behaviour of the amplitude distribution of the Doppler signal is presented and the criterion for 

selection of one of the simulation algorithms is indicated. Evaluation of the frequency content 

of the Doppler signal simulation obtained from the selected simulation algorithm is also 

presented. 
Chapter 4 describes the measurements to be applied to assess spectral estimation accuracy and 

the selection of a suitable ensemble size for expected value estimation. 
Chapter 5 starts with a more advanced description of the spectral estimation methods 

employed on this research work, giving special emphasis to' the parametric methods 
(autoregressive, moving average, and autoregressive moving average methods) and the minimum 
variance method. The autoregressive methods comprise the Yule-Walker, Burg, and modified 

covariance spectral estimators. The Durbin method (a moving average method), although not 
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implemented alone as a Doppler spectral estimator, is also described. The least squares modified 

Yule-Walker equations and the Mayne Firoozan methods are the autoregressive moving average 

methods employed. This chapter deals also with the problem of parametric model order selection 

and spectral estimator selection. Conventional model order selection criteria are described. A new 

criterion enabling the selection of both a spectral estimation method (from parametric or non- 

parametric methods), and a model order(s) when parametric spectral estimators are considered, 
is proposed. The selection is constrained by the requirement of accurate spectral mean frequency 

and bandwidth estimation at low computational complexity. The results obtained when this new 

criterion is applied to the estimators described are reported. 

Chapter 6 addresses the parallel implementation of the spectral estimation method selected 
in the previous stage of the work, the modified covariance method. Two approaches are 

presented. The first one, considering the estimation of the spectrum of a single Doppler data 

segment, is -fully studied and described in this thesis. In this context, a description of the 

development of a parallel version of the modified covariance algorithm and comparison of its 

computational complexity behaviour with those attained by published versions of the same 

algorithm is presented; two approaches of parallel partitioning the modified covariance algorithm 

are introduced; different schemes of achieving- the parallel implementation of the algorithm 

constituent blocks together with their performance results are described; results of parallel 

performance evaluation of the modified covariance spectral estimator as a single parallel program 

are given. The second approach, comprising the concurrent spectral estimation of a number of 

Doppler data segments, is being currently developed in collaboration with a research work 

colleague. It is included in this thesis for completeness of the subject of the parallel 
implementation of the modified covariance algorithm. 

In Chapter 7 general conclusions from this work are given. Suggestions for future work are 
also described. 

Throughout this thesis statistical concepts are used as important tools to judge and make 
decisions in comparative studies. Although important, their theoretical basis has not been included 
in this thesis, and, whenever necessary, a suitable reference is given. 

Notational consistency has not been always easy to achieve throughout the thesis, since 
different disciplinary areas are involved. However, within each chapter, an attempt is made to 
maintain one symbol to represent one quantity. Typically the italic form is used to introduce a 
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specific term for the first time and to identify software program names. The round brackets are 

usually used with continuous signals, while the squared brackets are used with discrete signals. 

1.3. CONTRIBUTIONS OF THIS RESEARCH WORK 

In addressing the problem of increasing the sensitivity to blood vessel disease detection using 

spectral analysis of Doppler shifted ultrasound scattered from blood, this thesis makes the 

following specific contributions: 

- The experimental study of the statistical behaviour of the mean frequency and bandwidth 

spectral estimators, obtained from different spectral estimator methods, and in the case of 

parametric spectral estimators, different model orders. This study required selection and 

implementation of a Doppler signal simulation algorithm. 

- The development of a novel criterion of parametric model order selection, and, selection of 

spectral estimation methods (parametric or non-parametric), the cost/benefit criterion. The 

proposed criterion takes into account the cost (or computational complexity) of the spectral 

estimation algorithm employed, and allows different weights to be given to mean frequency 

and bandwidth estimation errors across a range of different signals. These signals are 

characterized by Gaussian probability density function, Gaussian spectral shape, mean 
frequencies varying from 1KHz to 8KHz, and half bandwidths of 5% (except for the 1KHz 

mean frequency signal), 10% and 20% of the mean frequency. 

- The development of a new version of the modified covariance method for spectral estimation 

of real signals. This was created with a view to enable an efficient parallel partitioning for 

parallel implementation on a multi-processor system. 

The implementation of the new version of the modified covariance method on a transputer- 
based system using the parallel programming language, OCCAM. Each main computational 
block of the algorithm is implemented using different parallel architecture topologies, for 

which, performance measurements are taken. An overall OCCAM program is presented to 

enable estimation of narrow-band spectra of stationary Doppler ultrasound signal segments. 
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Considerations about feasibility of this parallel implementation are presented on basis of the 

performance measurements achieved. 
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CHAPTER 2 

Background 

2.1. INTRODUCTION 

The purpose of this chapter is to provide the reader the essential background of the major areas 

of this multidisciplinary project and in particular to enable a clear understanding of the 

motivations and goals described in chapter 1. 

The first section of this chapter, concerned with the biomedical component of this 

research program, describes the Doppler ultrasound instruments, some definitions and physics 

theory related to the Doppler ultrasound signal model, the origin of the Doppler spectrum and 

some details of Doppler signal processing and analysis. 
The second section, introduces the basic theory related to the analysis of the frequency 

spectrum of a signal and describes common terminology in this field. It also distinguishes two 

major spectral estimation techniques, those based on Fourier transformed signals, i. e. the 

traditional or conventional spectral estimation methods, from those sometimes called the modern 

methods, which are the parametric or model based estimators. 

The third and last section of this chapter, introduces the area of parallel processing. The 

most common parallel processing architectures are described. The transputer and the OCCAM 

programming language are presented. Usual performance metrics employed in parallel processing 

are described. 
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2.2. DOPPLER ULTRASOUND 

Doppler ultrasound techniques provide an important means for the noninvasive detection and 

measurement of the velocity of moving structures, and particularly blood, within the body. They 

are frequently used to assess circulatory diseases by detection of abnormalities in arteries, veins, 

and heart. `An example of these diseases is plaque on the vessel wall, which reduces flow and 

pressure downstream in the vessel. If a severe reduction on the vessel lumen is observed, a 

change in the blood velocity waveform occurs. 

The understanding of the mechanism by which the Doppler signal is produced, the 

relationship of the Doppler signal with the pulsatile flow patterns, and, the means of analysis and 

interpretation of the Doppler spectrum, are necessary in order to develop and improve analysis 

techniques to enable extraction of diagnostic information. 

2.2.1. Doppler Ultrasound Instruments 

Doppler ultrasound instruments are based on the idea of detecting the Doppler shift in the 
frequency of the ultrasound that is reflected or backscattered from moving structures. In the case 

under examination the scattering structures are the blood particles. 
A signal with the Doppler shift frequency is obtained from a Doppler demodulator which 

mixes the received signal and a reference signal at a transmitted frequency in a non-linear device 

(usually a multiplier) and low pass filters its output to remove signal components at the 

transmitted frequency and above. 

The Doppler shift (or difference) frequency (fd) is defined as the difference between the 

received (f) and the transmitted frequency (f), the received frequency being the sum of the 

reference frequency with a frequency component proportional to the velocity of the blood particle 

(v). If the ultrasound is received in a direction 180° from the direction of transmission, then: 

fd 
-f -f, = (2. 

C 
). V. COSO (2.1) 

where c the velocity of sound in tissue and 0 the angle between the ultrasound beam and the 
direction of motion of the target [25]. 
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In the above expression the speed of sound and the transmitted frequency are known in 

a particular situation, allowing the substitution of the parameters inside the brackets by a 

constant. Thus the relationship between the Doppler frequency and the velocity of the blood 

target is evident, making clear the importance of the analysis of the Doppler ultrasound spectrum 
to study disturbances of the blood flow in vessels. 

The method of processing the information contained in the Doppler ultrasourºd signal 
developed through several stages. Initially performed by audible interpretation of the detected 

velocity changes, it moved to an analog display of the velocity patterns by means of a zero- 

crossing detector, and pushed by the disadvantages of this technique, moved towards the 

application of digital frequency methods using more sophisticated instruments [2]. 

The commonly encountered Doppler ultrasound systems may be classified as Continuous- 

wave or pulsed-wave instruments, dependent on the way the transmitted signal is emitted, 

continuously or in bursts. 

Continuous-wave instruments use two transducers, one for transmitting ultrasound 

continuously and one for receiving the backscattered ultrasound. In this case the direction of 

transmission and reception are not exactly 180° as a result of the offset of the two transducers. 
For small offset, the change in (2.1) is negligible. These instruments are sensitive to flow within 
the region of overlap of the beams of the two transducers. Their weak range resolution leading 

to confusion of direction of signals from close vessels, the difficulty in quantification of the 
blood flow using this systems, the exaggerated sensitivity to vessel wall motions, are some of 

the disadvantages that lead to the usage of other instruments [26]. 

With a pulsed Doppler system (see Fig. 2.1) short bursts of ultrasound from a single 

transducer are generated, activating the receiver to obtain a short sample of the return signal. 
Only small sample volumes are considered, and their depth in tissue determines the distance of 
the transducer for which the reception of the echo from each transmission is still assured to be 

received. This way, the rate at which the pulses can be transmitted is limited to the pulse 

repetition frequency (PRF), and the highest Doppler shift frequency is limited to the Nyquist 

frequency (PRF/2) [2]. 
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Fig. 2.1: Pulsed Doppler instrument block diagram. 

2.2.2. Doppler Ultrasound Signal Model 

A range of models of the process of generation of the Doppler signal and the interaction of 

ultrasound and blood have been published [27] [4] [5]. A brief description of a possible 

modelling of the Doppler signal is now presented. 
The Doppler frequency signal received from a single scatterer on the resolution cell can 

be modelled by 

Z(t) =A. B. V. cos (2.7t. (f +fd). t+ ) (2. Z) 

where A is the amplitude of the transmitted sinusoidal continuous wave signal with frequency 

f� B is a factor depending on the compressibility and density of the scatterers and the 
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surrounding medium, V is the effective volume of the scatterer, fd is the Doppler frequency and 

0 is the phase shift [27]. 

Within the resolution cell numerous scatterers rather than only one can be found, and their 

joint contribution (assuming no multiple scattering) may be regarded as the sum of the I 

individual scatterer contributions 

Y(t) _ý z; (t) (2.3) 

This signal, y(t), after demodulating (to downshift the signal spectrum by frequency f) 

leads to the general form of the Doppler signal 

(2.4) x(t) =A. B. E v.. cos(2.2n . v(r. ). cos(0). t+ýi) 

where the scatterer velocity 'o(r) is a function of the radial position assuming astationary blood 

velocity profile during the period of measurement, and the phase shift 4i is a random variable 

uniformly distributed over [0,21t] when the scatterers are assumed to be uniformly distributed in 

the vessel and with random size, shape and orientation [27] [28]. 

The Doppler signal is therefore a rather complicated signal, function of three random 

variables V;, r, and 4;, fact that enables the definition of x(t) as a stochastic process. Since it may 

also be regarded as a summation of a large number of uncorrelated contributions, the Central 

Limit Theorem [29] enables the classification of x(t) as a Gaussian random process. Therefore 

x(t) is perfectly characterized by its second moment, i. e., its autocorrelation function, since it is 

a zero mean Gaussian process [4]. 

Typically the Doppler signal is analyzed in a discrete form, this is, it is sampled at the 

pulse repetition frequency, determined by the maximum Doppler shift frequency that can be 

unambiguously detected (PRF/2). Thus the continuous Doppler signal x(t) is transformed into the 

time sequence x(nts) with n=0�.., N"I, when N is the data sequence length, and f, =l/T, is the 

sampling frequency. For simplicity the discrete Doppler signal will be represented by x[n]. 

2.2.3. Doppler Signal Spectrum 

The equation (2.1) representing the Doppler frequency is only valid under the ideal conditions 

of an infinitely wide ultrasound beam insonating uniformly the entire cross-section of the vessel, 
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width interrogating the vessel just on a sample area (sample volume) and each blood target b\ 

itself produces a spectrum of Doppler shift frequencies rather than a single frequency [30]. 

The Doppler spectrum is determined by the range of the velocities of the streamlines 

passing through the resolution cell (assuming undisturbed flow) and by the characteristics of the 

sample volume. 

In order to extract quantitative diagnostic information from the backscattered Doppler 

signal, variations in the Doppler spectrum mean frequency (caused by change in the blood 

velocity waveform) and in the Doppler spectral width (induced by flow disturbance) should be 

accurately estimated by an appropriate signal processing scheme. 

The most typical method of conversion of the Doppler time function to the frequency 

domain is obtained by application of a Fast Fourier Transform (FFT) to sequences of Doppler 

signal time segments. The magnitude of the resulting frequency function is the spectrum. 

4 
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Fig. 2.2: Real-time Doppler spectrum showing 3 cardiac cycles from the centre of a normal 
common carotid artery using a 5MHz pulsed Doppler ultrasound instrument. 

Usually the display of the spectral waveforms relates the time and frequency coordinates 

with the magnitude of the spectrum displayed as a grey-scale intensity. A typical display is 

shown in Fig. 2.2. Image brightness at a particular frequency and time indicates that frequency 

component power at that time. For each cardiac cycle, the relationships between velocity and 

time are displayed, and, at the same time, flow disturbances are denoted by the spectral 
broadening displayed. Due to the spectral variability of adjacent spectra, quantitative information 
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should only be obtained by ensemble averaging over several cardiac cycles, particularly if 

analysis about the mean frequency and spectral width is to be performed on a single point of the 

cardiac cycle, rather than on the entire spectrum. In this situation, ensemble averaging of the 

spectra from similar points in a number of consecutive cycles should be done [30]. 

The velocity of blood flow within arteries is periodic, resulting from the pumping action 

of the heart and the velocity profile alters in shape during each period as a result of the pressure 

pulse from the heart, the non-linear elastic properties of the arterial wall and pulse reflections 
from discontinuities in vessel-transmission-line-impedance at vessel branch points. As a 

consequence, the Doppler signal spectrum not only alters in mean frequency but also in shape 

throughout each pulse period, leading to a non-stationary, or cyclo-stationary signal. Current 

practice is to assume approximate stationarity over time segments of 2-20ms duration [27] [30] 

to which the Fourier transform are applied. Sequential or overlapping time segments may be 

considered, tapered by one of the available windows in an attempt to suppress the side-lobe 

effects on the spectrum [31]. 

The limitations of the spectral width estimation resulting from the window duration [17] 

[32] and exacerbated by the non-stationarity of the Doppler signal [3] lead to the investigation 

of model-based or parametric estimators [9] [11 - 13] [15] [33]. These methods, applied to 

stationary Doppler signal segments, offer potential improvements in the time-frequency resolution 

product, enabling the conservation of the shape of the velocity waveform and leading to greater 

sensitivity in the detection of spectral broadening, therefore increasing the sensitivity in disease 

detection. However, the major disadvantages of model based spectral estimation compared with 

classical methods are the requirement of selection of an accurate order of the model to represent 

the Doppler signal, and the increased computational burden (increasing with model order). 
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Fig. 2.3: Averaging frequency spectra of Doppler signals taken at similar points in N consecutive 
cardiac cycles. (a) Real-time spectrum, (b) individual spectra, and (c) averaged spectrum [34]. 

2.3. SPECTRUM ANALYSIS 

Most of the signals encountered in practice are available for analysis over only a short period. 
Sonar and radar signals are examples of this class of signals. Signals with such characteristics 

usually assume the discrete form of a data sequence where valuable information is corrupted by 

unwanted noise and/or random effects. In these situations statistics play an important role in 

conjunction with signal estimation techniques to enable the extraction of pertinent information 

from the signal under analysis. 
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Spectral analysis is a very powerful tool used to characterize the frequency content of a 

signal, commonly performed via Fourier transforms, which are the mathematical foundation used 
to relate time or space signals or even a model of its signal to its frequency domain 

representation [32]. 

The spectral estimation methods based on the computation of the Fourier transform of 

either the signal or the autocorrelation function within a measurement interval are usually referred 
to in the literature as conventional methods. 

Traditionally employed to obtain spectral estimates, the Fourier based methods have 

revealed weak ability to distinguish spectra of two or more closely allocated (in frequency) 

signals (the so called frequency resolution ), and to suffer from leakage of the energy of the main 
lobe of a spectral response into the sidelobes due to windowing effects [35] [31]. 

Alternative techniques of spectrum estimation have been developed since early seventies 
in an attempt to alleviate the inherent limitations of the Fourier Transform approach. 

A common philosophy adopted to classify the spectral estimation methods is to designate 

the conventional methods and the minimum variance method (a filter bank method) as 

nonparametric methods, while the other methods that consider more knowledge about the signal 
than that enclosed in the measurement interval are termed parametric methods [17]. 

Parametric spectrum estimation techniques are not so computationally efficient as the 

classical methods. However, the improvement that might be obtained in terms of frequency 

resolution performance justifies the study of the applicability of these modern methods 

particularly in the case of signals composed of short data records. 
A general perspective of the theory used in the field of spectral analysis will now be 

developed. Some typical terms and mathematical expressions are pointed out to facilitate the 
foregoing study of spectral estimates obtained from the pulsed Doppler ultrasound signal under 
analysis. Some commonly used methods belonging to the class of conventional methods will be 
briefly described, and overall features of parametric model spectral estimation are pointed out. 
The minimum variance method will be described later in Chapter V. 

2.3.1. Signals and their Frequency Transformation 

Signals may be classified into several classes according to their characteristics. The general signal 

categories [36], deterministic (those whose future course may be determined by some linear 

analysis of the signal), random (those whose individual data may have occurred in any order), 
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continuous, and discrete, alone or combined, are frequency transformed with different approaches, 

and details of the procedure involved may be found in many textbooks and papers [37 - 39]. , 
Concentrating for the purpose of this thesis on random signals only, a summary of the 

most used terminology and their respective meaning related to those signals will follow. This, 

however, will be done with the help of expressions developed specifically for other types of 

signal. For example, the definition of the energy, E, of a deterministic analog waveform 
(represented by a complex-valued variable x(t), a continuous function of time t), is 

E= flx(t) I2dt (2.5) 

where the x(t) satisfies the Dirichlet conditions, which require that the function is absolutely 

integrable, has a finite number of discontinuities, and a finite number of maxima and minima 

[37]. 
The equivalent energy relation in terms of frequency is obtained employing the Parseval's 

theorem 

My 

E= fx(t). 
x'(t)dt = 

fX(r). X(f)df (2.6) 

where * stands for complex conjugate and X(f) is the Fourier transform of x(t). The function 

S(f)= I X(f) 12 representing the distribution of energy as function of the frequency, is called the 
Energy Spectral Density (ESD). 

Considering now the random process of interest rather than a deterministic signal, the 

estimation of its spectra characteristics will oblige the adoption of a statistical viewpoint. 
Recalling (section 2.2.2) that the Pulsed Doppler Ultrasound (PDU) signal may be shortly 

modeled as a complex-valued signal x(t) 

x (r) = xý (r) +j xs (r) (2.7) 

where x, (t) and x, (t) are the in-phase and quadrature baseband components respectively [11]. The 
blood velocity variations with time, causing the nonstationarity, may be overcome by considering 
periods of time (usually around lOms) over which the velocity distribution remains approximately 

constant. In this case, the classification of the Doppler signal as a Wide Sense Stationary (WSS) 

process is assured [11]. 
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Under these steady flow conditions, x(t) becomes a stationary complex Gaussian process 
[4], and the use of the covariance function enables full characterisation of the process in the time 

domain. 

The covariance function cxx(t,, t2) is defined as the difference between the Autocorrelation 

Function (ACF) - yxx(tl, t) - of the process x(t) at times tl and t2, and the product of the mean 

values of x(t) at times t, and t2. 
When a WSS process is considered, the mean value (p) of the process is constant and the 

ACF does not depend on the specific times tl and t2, but on the time-difference (or lag) i=t2-tl. 
In this case, the covariance function is 

c(t) ='XX(ti)- Iuil (2.8) 

The covariance function evaluated for lag zero is equal to another commonly used 

statistic, the variance of the process, ßx2, given by 

6x = c(p) =y (0) _ p2 (2.9) 

WSS Gaussian processes which are zero-mean, just like the Doppler signal [27], are 

completely statistically determined by the autocorrelation function. 

In contrast with the deterministic signals, stationary random processes do not have finite 

energy and therefore do not possess a Fourier transform. The equivalent of the ESD in this case, 

that is, the distribution in frequency of the power of x(t), is called the Power Spectral Density 

(PSD). 

This function presents always a real non-negative value, as for complex processes 

Yxx(ti)=yxx`(ti) produces a real positive PSD, and for real processes, the ACF is real and even, 

producing again real positive values of PSD [17]. 

Usually in practice we deal with a single realization of the random process, for which we 
do not know the true ACF yxx(T), but with which we can compute a time-averaged ACF. 

If an additional assumption is made, i. e., that the process is ergodic in the first and second 
moments, the substitution of time averages for ensemble averages is possible, allowing the 

replacement of the ensemble average ACF y. (ti) by the time-average ACF 1'xx(ti) within the 
time window ('T) in consideration, as expressed in (2.10). 
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, yxx(ti) = 1imT. 
4. 'y'am (T) 

T 

(2.10) 
= hmT_j� Tf X(t+t) . X'(t) dt 

T 
_7 

Furthermore the Fourier transform of Yxx(ti) (not possible before the ergodicity 

assumption was made [17]) is now computed as indicated in (2.11) [40] [37]. When averaged and 

computed in the limit for T tending to infinity, equals the true PSD P(f). 

T 
3 

P(f) = 
fy(t). 

e. i2x1tdt 

_T 3 (2.11) 
T 

=TIf x(t). e_J2"J'dt 12 
T 

_, T 

9 Ü) = 1im1 
- .. 

rP ((f)) (2.12) 

If we now consider a sampled version of the random signal, x[n], obtained by sampling 

x(t) at f, Hz, and assuming the random process bandlimited to ±1/2T= Hz, the autocorrelation 

sequence (ACS) of x[n] for lag k is described as 

r[k] = S[ x[n+k]. x' [n] ] (2.13) 

and its Fourier transform yields the PSD 

P(f) _E>, (k] . ej2,, 
kjll. (2.14) 

k. -. e 

We may notice the existence of two alternatives to compute the PSD of a random process. 
One called the direct method, computes the PSD directly by Fourier transforming the signal x[n], 

and another, the indirect method, which first computes the autocorrelation sequence, and then 
Fourier transforms it to obtain the PSD [171. 
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2.3.2. Conventional Methods 

The so called conventional or traditional methods are based on the direct and indirect alternatives 

of computing the PSD of a signal, now applied to finite data records. From now on discrete 

random processes will be assumed. 
The PSD estimate based on the indirect approach may be given as [17], 

L -, snkf 11 (2.15) PBT(f) =E [k] .e 5f5 
k. _L 2T 2T 

where the estimates of the ACS have been forced to zero outside the range [-L, L]. 

Assuming N data samples available, one possible autocorrelation estimate is 

N-k-I 

F [k] =1 x[n+k]. x'[n], 0<k<_N-1 (2.16) 
N-k �-o 

This autocorrelation estimate is conjugate symmetric, and is a consistent estimate, i. e., is 

unbiased and its variance tends to zero as N increases [37]. 
An alternative autocorrelation estimate, as proposed by Jenkins and Watts, is 

N-k-1 

[k] =1E x[n+k]. x`[n] OSk<_N-1 (2.17) 
N,,. o 

This estimate is biased for finite N but is asymptotically unbiased as N tends to infinity. 

For typical applications the mean square error of the former alternative tends to be higher than 
for the one obtained for the latter ACS estimate. Also the unbiased estimate can yield 

autocorrelation estimates that are not a valid autocorrelation sequence, since it can lead to 

autocorrelation matrices that are not positive semidefinite [32]. For these reasons, 71 [k] is often 

the preferred estimator. 
The direct approach of spectrum analysis is the periodogram PSD estimate 

PPERLk] =1 
N-1 

_ 
29 

IEx[n). e, 
kn(. ý-)12 =1 IX(k)I2 (2.18) 

,.. o 

where X[k] is the Fourier transform of the discrete time signal of length N, x[n] [39]. 

However the periodogram presents a variance which does not decrease with increasing 

values of data sequence length considered (it is a inconsistent estimator of the PSD), a problem 
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which may be overcome by application of averaging techniques [39]. Bartlett suggested splitting 

the data sequence into nonoverlapping segments, for which a periodogram estimate was computed 

and then the estimated spectrum would be the average of those periodogram estimates. A slightly 

different approach was made in Welch method, where the segments may overlap, and each 

segment is windowed before their periodogram estimates are computed, the final power spectral 

estimate being obtained as the average of the modified periodograms. 

Many of the problems of the periodogram PSD estimation techniques can be traced to the 

assumptions made about the data outside the measurement interval. The finite data sequence may 

be viewed as windowing an infinite sequence with a boxcar function. In terms of frequency, this 

corresponds to a convolution of the desired transform with a sinc function. If the power of the 

signal is concentrated in a narrow bandwidth, this convolution will have the effect of spreading 

this power over adjacent frequency regions, phenomena known as leakage. In addition to the 

distorting effects of leakage in the power estimation, it may also mask the presence of weak 

signals and prevent their detection. Other window functions (Bartlett, Hanning and Hamming for 

example [37] [39]) may be used to achieve better sidelobe levels than those of the boxcar 

function, therefore obtaining a better estimate. However, this can only be achieved by broadening 

the window's main lobe, therefore resulting in a reduction of spectral resolution. 

2.3.3. Parametric Methods 

Classical methods of estimation use Fourier transform operations on either windowed data or 

windowed ACS estimates. The unavailable data or unestimated ACS values outside the window 

are implicitly assumed zero. 
Parametric methods of -estimation drop this unrealistic assumption, and therefore avoid 

the need of windows, together with their distorting effects. 

This type of spectral estimation is described in detail in chapter 5 and only in outline 
here. 

Based on some a priori knowledge or assumptions about the process that generated the 

data, it is often possible to select a model which is a good approximation to the actual underlying 

process. Usually a better spectral estimate, both in terms of spectral fidelity and of frequency 

resolution is obtained, by basing the estimate on the model, whose parameters are estimated from 

the available data. 

Thus the parametric approach to spectral estimation involves three steps. 
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The first one is the selection of an appropriate model that fits the measured data. 

Many discrete-time random processes encountered in practice are well characterized by 

a time-series or rational transfer function filter model, driven by a white noise sequence. The 

transfer function' H(z) between the z transform -U(z)- of the input sequence u[n] and the z 
transform -X(z)- of the output sequence x[n] may generally be expressed as 

X(z) 
- 

B(z) H(z) = U(z) A(z) 
(2.19) 

where A(z) and B(z) represent respectively the Z-transforms of the Autoregressive (AR) and the 

Moving Average (MA) branches of the general Autoregressive Moving Average (ARMA) model. 
The PSD of the output process of an ARMA filter driven by a white noise process with 

variance & is 

pARMn(f)=a2 B(z) Is 
A (z) '°"' sýý 

T. 

q _j2ak' 
E b[k]. e '.. 

62 k. 0 

p _j2%k' 
E a[k]. e 
k. 0 

(2.20) 

where p poles and q zeros are considered. If the filter presents only p poles, the AR(p) model 
is obtained, while if the singularities presented are only q zeros, the MA(q) model is achieved. 

Knowledge of the spectral shape of the PSD may help in the selection of one of these 

methods to a certain application. If the spectra has sharp peaks but no deep nulls an AR(p) model 
is recommended; if it has deep nulls but no sharp peaks the MA(q) model is preferred; if it has 

both extremes the choice is an ARMA model [32]. 

Thus the specification of the model includes also the model order, which is generally not 
known a priori. 

Typically, practical experiments show that if a small model order is chosen the spectral 

estimate yields insufficient resolution while if a large model order is used the estimates will be 

statistically unstable presenting spurious peaks [17]. 

Some criteria have been developed to select an optimal model order, where the optimal 
represent the best compromise between bias and variance of the spectral estimate obtained. 
Published work on this field has proved that the model orders selected by a variety of methods 
do not differ too much from the selection made by means of the Final Prediction Error (FPE) 

criterion [41]. 
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In principle, if two or more models can reasonably represent the spectrum, the model 

with fewer parameters should, intuitively, be the chosen one. However we must also weight the 

computational burden of determining the parameters. For this reason the AR model is often the 

selected model [32]. 

The second step in the parametric approach to spectrum estimation is the estimation of 

the parameters of the assumed model. This may be done using either the available data samples 

or the autocorrelation lags. 

There are several possible approaches to produce model parameter estimates leading to 
different spectral estimation methods within each major class of parametric models. 

Some are based on the same theory but giving different mathematical interpretation to 

equations, like the AR methods of Yule-Walker, Covariance and Modified Covariance methods, 

and some are based on a maximum entropy concept like the AR Burg method for which many 
different algorithm approaches have been developed. 

However all methods present a common goal, the minimization of a mean squared error 

p computed as 

p=ý[ jx[n] -. f [n] 12 Il x[n] -. f [n] II2 (2.21) 

where R[n] represent the estimated data sequence when a specific parametric model is assumed, 

and I. 11 stands for the Euclidean norm of vector " [17]. 

The third and last step is the computation of the spectral estimate. The estimated model 

parameters are inserted into the theoretical PSD expression appropriate to that model. 
Other (nonparametric) methods exists that do not fit into the designation of classical 

estimation methods. One of them is the Minimum Variance method, also known as the Capon 

method. This method provides an estimate of the PSD by measuring the power at the output of 

a series of narrowband filters, which adapt according to the frequencies under consideration [17]. 

This method and some parametric methods will be further developed in Chapter 5. 

2.4. PARALLEL PROCESSING 

In the last few years the demand for faster, more accurate, and more flexible computers has been 

evident in areas as diverse as weather prediction, real-time control systems, and, signal 
processing. 
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Most of the currently available computer systems are based on the von Neumann 

architecture, where a single processing unit is connected to memory. In these systems, the typical 

processor operation is reading an instruction followed by data from memory and storing the 

results in memory again. Thus, the rate at which data can be read from and written to memory 
is a limitation of this architecture; this is known as the von Neumann bottleneck [42] [43]. 

Factors such as the achievement of very compact integrated circuit technology at low cost, 

were not matched by such good improvements in increasing clock rate. This led to the 

development of new computer architectures based on distributed processing units, that is, 

following a parallel processing approach [44]. 

The concept of parallel processing, this is, the completion of a certain job by a number 

of processors cooperating together for the same aim, is nowadays widely spread. 
Parallel processing makes it possible to speed up the execution times of algorithms which 

are split into different tasks to be executed simultaneously. The speedup achieved by the use of 

parallel processing techniques increases (up to a limit) with the number of processors employed, 

however this increase is not linear with the number of processors used. Factors such as 

contention for shared resources, communication overheads and inherent serialism of the algorithm 
being implemented impose a practical limit on the effective speed-up achievable [42] [45]. 

Therefore the implementation of an algorithm in a parallel form is by no means a trivial 

task. Some algorithms present a set of operations that cannot be efficiently implemented in 

parallel, and in these cases, the performance of the system and the maximum number of 

processors that can be effectively employed is determined by the amount of sequential processing 
involved, as stated in Amdahl's law [46]. 

The procedure for converting a problem into a program for parallel execution on a 

multiprocessor is basically composed of three steps: 

1- identification of the parallelism of the problem, 

2- partitioning of the problem into tasks that can be executed concurrently, and 
3- allocation (or scheduling) of those tasks on the available processors. 

The extraction of the portions of a problem which can be parallelized is dependent on the 

ability of the programmer to identify those portions tacking into account the implementation 

facilities provided by the target programming language. 

Partitioning and scheduling must be performed in order to minimise the parallel execution 
time on the target multiprocessor system, and depend on parameters such as number of 
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processors available, sequential execution times, communication overheads and scheduling 

overheads [47]. 

As far as the allocation of tasks to the processors is concerned, there are two general 

approaches, the static allocation, and the dynamic allocation. In the former the association of a 

group of tasks to a particular processor is resolved before running time and remains fixed during 

the execution of the program. In the latter approach, tasks are allocated to processors at running 

time according to a criterion previously established, such as processor availability, inter-task 

dependencies and task priorities. 

A general parallel processing system is composed of several Processing Elements (Pes), 

acting on parts of a problem, and being able to operate concurrently and communicate with each 

other whenever necessary. 
Typically the flexibility of each PE and the degree of connectivity between Pes determines 

different parallel architectures. An architecture whose Pes are characterized by performing 

simple tasks, establishing fast communications on a highly connected network, is termed a fine- 

grain architecture. On the other hand, the medium-grain architectures are more general purpose 
in nature; the degree of connectivity between such PEs is more complex and the communications 
between them tend to be slower. In general, the concept of granularity measures the size of an 
individual task that can be effectively executed on a parallel machine [42]. 

Another possible and popular classification of the parallel architectures is due to Flynn 

[48]. It categorizes the computer architectures according to whether the instruction stream and 

the data stream exist as single or multiple entities. Under this classification, the von Neumann 

architecture (the sequential or serial computer) is considered a Single Instruction stream Single 

Data stream (SISD); the SIMD class, represents those computers where a Single Instruction 

operates on Multiple Data simultaneously; the MIMD (Multiple Instruction stream Multiple Data 

stream) category is the more flexible one, since each processor can be performing totally different 

instructions at a given time on different data (see figure 2.4 for graphical representation of these 

architectures). 
A typical example of a MIMD system is the transputer. 
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Fig. 2.4: Flynn's taxonomy of computer architectures: (a) SISM, (b) SIMD and (c) MIMD, 
(C=control unit, P=processor, M=memory, IS=instruction stream, DS=data stream). 

The transputer is a programmable Very Large Scale Integration (VLSI) device containing 

a processor, local memory, and communication links for point-to-point inter-connection with 

other transputers. 

Although the transputer might be used alone, it is designed specifically to implement 

parallel processing systems, and to achieve so, a number of transputers can be connected together 

in a network. 
Programming languages dedicated to a multi-processor environment differ from sequential 

programming languages in several aspects. In a sequential programming language, action occurs 

strictly in sequence. However, with a parallel programming language, a means of performing a 

number of tasks (or processes), which are themselves sequential, in a concurrent way and with 

short execution times, must be provided. 
The specific needs of parallel processing systems led to the development of the parallel 

processing language, OCCAM, dedicated to the transputer. Over the past few years, some 
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compilers of Modula-2, Fortran, ADA and C have also been developed, in an attempt to ease the 

portability of programs. 
OCCAM is an abstract language whose basic unit, the process, presents inputs and outputs 

communicating with other processes via point-to-point links, called channels. Complex systems 

may be created by connecting together processes, where, since there are no shared variables, the 

communications are made solely through the channels. 

OCCAM's clear and simple representation of a program as a hierarchical structure, 

regarded from outside as a single process (see Fig. 2.5), enables the operation of individual 

processes independently. On the other hand, the concurrent processes may be executed in 

different processors. 

chani 

O 
prose 

Fig. 2.5: Hierarchical structure of processes allowed by OCCAM. 

A complete collection of processes, constituting an OCCAM program, may either be 

processed on a single transputer or on a network of transputers (Fig. 2.6). 

The processes may be executed in parallel or in sequence. The latter procedure is usually 

taken as a first case study of the parallel implementation of an algorithm, enabling also results 
for comparative studies on the parallel processing performance of the algorithm in consideration. 

As stated before, algorithms containing a significant number of sequential operations may 

not be suitable for parallel partitioning, or even, the number of processors used to achieve desired 

processing times may not produce an efficient usage of the same processors. For these reasons 

some suitable metrics (see section 2.3.3) have been developed to aid analysis of parallel systems. 
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Fig. 2.6: An OCCAM program implemented on a single transputer or a network of transputers. 

2.4.1. The Transputer 

The transputer is a single-chip computer with communication links for direct connection to other 

transputers [49]. It is usually employed in a network configuration, presenting an architecture 

which supports concurrency of the collection of transputers of the network, and provides 

synchronisation of the links' communications [50]. 

A network of transputers incorporates features to support parallelism through its associated 

programming language, OCCAM [49]. 

Different transputer architectures, presenting different capabilities are currently available. 
The most common is the IMS T800 version, consisting of a 32-bit microprocessor, using a 64-bit 

floating-point unit, four high-speed serial communication links, with 4Kbytes of on-chip memory, 

and an external memory interface [51]. 

The transputer communication links implementing two OCCAM channels in each 

direction, enables the point-to-point connection between transputers at a data transfer rate of 1 

Mbyte/second (for the T800 version of the transputer). Each transputer, possesses four of these 

links, allowing connection up to four other transputers. 

There are several possible ways of connecting the transputers in a network. According to 

the aim of the parallel implementation, topologies such as pipeline, ring, array, binary tree, or, 

processor farm, are easily configured (see Fig. 2.7). 
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Fig. 2.7: Transputer-based topologies: (a) linear, (b) ring, (c) processor farm, (d) tree, and, (e) 
matrix. 

The processor farm consists of a sequence of processors called workers and a master 

processor. The master processor schedules the tasks to the workers connected typically in a line. 

Each worker is used to monitor input data and either to process the data and return the result, 

or to transfer the data on to another worker [52]. 

A common development environment for OCCAM is the Transputer Development System 

(TDS). The TDS is 'a hardware board that plugs into a PC, together with a software package that 

allows the user to develop and debug the OCCAM programs. The most commonly used card is 

the IMS B004 [53]. 

The TDS provides an editing environment, the folding editor, based on the concept of 
hiding from view (as if by folding a piece of paper) a sequence of text [54]. The sequence of text 
is enclosed in the fold and marked by a single fold line commenting the text enclosed. The fold 

lines are denoted by ... (three fullstops). This way, a program may be viewed in different levels 

of complexity. Thus, the TDS allows the edition of a program as a single fold line, which, when 
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opened, enables the view of other hidden folders. Consecutive opening of folders will therefore 

reveal a deeper analysis of the program. 

Data are stored in separate files, as filed files of the filing system, and enclosed in a 

compilation fold (foldset) before compilation of the program. The foldsets are generally classified 

according to where the set of program contained in the fold is going to be executed, this is, as 

. 
EXE if it is going to be executed within the TDS, or . 

PROGRAM if it is to be executed on a 

network of transputers. 

The OCCAM programs edited and compiled using the TDS may be executed on the TDS 

board transputer, or a network of transputers connected to the TDS, or even, on a transputer 

system acting independently from the TDS. Fig. 2.8 illustrates a typical transputer environment. 

Host Computer Transputer Network 

VDU 

Keyboard 

Local Hard Disk 

W1 

TDS 1 Master 1- t W2 

Fig. 2.8: Typical transputer environment. 

2.4.2. OCCAM - the Parallel Programming Language 

W3 

The OCCAM language was created from the concepts developed by David May in Experimental 

Programming Language (EPL), and influenced by the theoretical model of Communicating 

Sequential Processes (CSP) of Tony Hoare [55]. Since then it has continued development at 

INMOS Ltd [56]. 

The principles beyond the minimalist approach of the OCCAM language were derived 

from the 14 ̀h century philosopher William of Occam, whose name was given to the language, 
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and for whom duplication of language entities should be avoid and observable phenomena should 

be explained by the simplest approach [57]. 

OCCAM programs are viewed as a collection of sequential processes, each one executing 
concurrently and interacting or communicating with the other processes via input/output 

operations through channels. Each process represents by itself a certain aspect of the overall 
implementation, and each channel describes a specific connection between each of the processes. 

In this way, an OCCAM program assumes a clear and simple structure, and allows its application 

to one or more transputers. 

An OCCAM program is built up from a number of primitive processes, which are 

combined to form constructions. Some of these constructions can be replicated a stated number 

of times, by means of replicators. The variables and data used in an OCCAM program must 

agree with the data basics defined by the language. Processes may be assigned with different 

priorities for execution. 
A brief outline of some of these OCCAM syntax items follows, together with 

description of the action to be taken to achieve the configuration of the processes for a network 

of processors. A more complete overview of these items may be�found in several references [56] 

[58 - 60]. 

A. Primitive Processes 

The simplest process in an OCCAM program (the primitive process) is an action, assuming three 

possible forms: 

" assignment process v=e -assign a expression value e to a variable v, 
" input process c? v -input a value v from a channel and assign to 

variable, and, 

" output process c! e -output a expression value e along a channel c. 

Another two processes, called SKIP and STOP, are used for special purposes. SKIP is 

a process that starts, performs no action and terminates. STOP is a process that also does nothing, 
but unlike SKIP, it does not terminate. SKIP is used in situations such as to indicate the existence 

of a partially completed code, or when we require nothing to happen. When STOP is executed 
in a process, that process is stopped as well as any other interacting process. 
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B. Constructions 

A construction is build from a number of processes, process 1 ... process n, combined in 

sequence, parallel or alternation, represented by the keywords: 

" SEQ -sequential construction, 

" PAR -parallel construction, and 

" ALT -alternation construction, 

and assuming a syntax format for the first two constructions as below 

SEQ (or PAR) 

process I 

process n 

The sequential construction, similarly to the traditional computers, enables the set of 

processes to be executed one after the other, till the last process terminates its action. 
In the parallel construction each process (composed of one of the primitive processes or 

a combination of processes) is executed concurrently, residing on a single transputer (achieved 

by time-slicing or "pseudo-parallelism"), or, on a network of transputers (where true parallelism 
is obtained). 

The alternation construction allows a particular process from a list of alternative 

processes (process 1 ... process n) to be selected for execution, at a time instant dependent on 

the input guard (where input 1 ... input n represent the input guards associated with the respective 

processes) that first presents available data. The process associated with that first input guard is 

the only one (from the list of alternative processes) to be chosen for execution. This construction 
is represented in the following format: - 
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ALT 
input 1 

process 1 

input n 

process n 

Some other more conventional constructions are provided by OCCAM: 

" IF -conditional construction, 

" CASE -selection construction and 

" WHILE -repetition construction. 

The conditional construction allows the selection and execution of the first process whose 

conditional instruction is true. Its format is 

IF 

Boolean expression 1 

process 1 

Boolean expression n 

process n 

The selection construction combines a number processes which are options, one of which 
is going to be selected by matching the value of a selector with the value of a constant 

expression, the case expression, associated with the option. In the case of unsuccessful matching, 

the associated process behaves as a STOP. The format of this construction is as follows: - 
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CASE 

case expression 1 

process 1 

case expression n 
process n 

A loop is created within an OCCAM program with a WHILE construction when a 
Boolean expression assumes the value TRUE. The evaluation of the process is performed 

repetitiously till the Boolean expression changes its value. This construction has the format: - 

WHILE boolean expression 

process 

C. Replicators 

Like in other programming languages, OCCAM also possesses the possibility of repeating a 

specified number of times a process. This replication property may be applied to the 

constructions SEQ, PAR, IF, and ALT. Any of these constructions may be appended with a 

replicator which specifies a replication count. An index is incremented in steps of one from the 

value start for count values. The data type of these parameters must be integer. The format of 

the replicator is 

. index = start FOR count 

where 

" index is the occam identifier of the replicator index, 

" start is an expression, value of which is the initial value of index, and 
" count is an expression, the value of which is the number of times the process is 

replicated. 

i 
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D. Data Basics 

OCCAM programs operate on constants and variables (with values assigned by an assignment 

instruction or by an input), channels and timers. The program data identifier and its type must 
be declared before use. The data types allowed in OCCAM are 

" data types - integer, floating-point, Booleans, etc. types, 

" channels - inter-process communication links which allow values to be 

communicated between concurrent processes, 

" timers - special input-only channels which provide access to the 

transputer's real-time clock facility and are useful in real time 

programming applications. 

E. Other issues 

The OCCAM language provides a means of establishing priorities among processes. Situations 

such as the implementation of real-time applications, the implementation of a program in parallel 

on a single transputer, or, the implementation of a process where specific processing of data is 

required upon its input from a channel, benefit from the available priority mechanisms. 
Two levels of priority are available to processes with the OCCAM/transputer combination. 

A process running at low priority in parallel with a high priority one is automatically de- 

scheduled in order for the high priority process to execute. 
The keyword PRI may be associated with the constructions PAR and ALT, where the 

textual ordering determines their priority order. 
The general format assumed in these situations is 

PRI PAR 

process 1 

process n 
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OCCAM has a useful set of operators (arithmetic, relational, boolean, bitwise and shift) 

and it also supports the use of abbreviations, functions and procedures. 

F. Configuration 

The mapping of processes onto one or more transputers implies the independent existence of 

these processes and the establishment of their communications through the transputers' physical 
links. This strategy enables the execution of concurrent processes on separate transputers for 

concurrent execution. 

The logical mapping of processes is independent of the hardware configuration on which 

they will execute. A common approach is to first test an implementation on a single transputer 

to eliminate logical errors before allocation of the processes over a network of transputers. 

There are three main actions which must be taken to configure processes onto a network 

of processors: 

" specify the type of processors in the system, 

" declare which processes will execute on which processor, and 

" map occam channels to transputer links for inter-transputer communications. 

These actions are achieved by using three language extensions: 

PLACE PAR 
PROCESSOR number type 
PLACE channel AT address 

The PLACE PAR extension specifies that the following named processes will be 

allocated to different processors. PROCESSOR is used to identify the processor in the network 

on which a process or processes are to execute, and the type of processor used (Eg. T8 for the 

T800 transputer). The last keyword, PLACE, specifies which hard channel between two 

processes on different transputers is going to be used. 
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2.4.3. Performance of Parallel Systems 

The performance of parallel algorithms running on parallel processing systems is 
. strongly 

dependent on the computers used to implement the algorithms, on the size of the problem 

considered, and the algorithms themselves used to parallel implement a solution. 
Although there is no single metric to define the absolute performance of an algorithm 

[61], the performance measures RIC, execution time, speedup, and efficiency are commonly used 
to achieve an estimate of the general performance of an algorithm. 

The R/C ratio is a measure of the effectiveness of the parallel implementation. Here R 

is the length of a run-time quantum and C is the length of the communications overhead 

produced by that quantum [42]. On a course-grain architecture with slow interprocessor 

communications this requires that individual tasks should involve a considerable computing 

effort. However, a fine-grain architecture with fast interprocessor communications will execute 

efficiently tasks having low computational effort. 
Speedup, efficiency and execution times [621 are related metrics, expressing the effective 

usage of a particular machine. The execution time (T) is the effective elapsed time to run a 

particular job on a given machine. Speedup (s) is defined as the ratio of the elapsed time when 

executing a program on a single processor (the single processor execution time) to the execution 

time when P processors are used, 

s= 
Till (2.22) 
T[P] 

Efficiency (e) is defined as the average utilization of the P allocated processors, 

e. 
T[1] 

=s (2.23) 
P. T[P] P 

Speedup assumes higher values as the number of processors increase (a linear 

development with the number of processors is desired), revealing high parallelization of the 

problem. Its dependency on the number of processors is also established by the efficiency metric. 
Efficiency close to unity suggests that the processors are used effectively. 
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CHAPTER 3 

Pulsed Doppler Ultrasound Signal Simulation 

3.1. INTRODUCTION 

The aim of this research work is to increase the sensitivity to blood vessel disease detection using 

spectral analysis of pulsed Doppler ultrasound signals scattered from blood. To achieve this, a 

comparative study of spectral estimation methods has to be performed. In order to compare and 

judge the different spectral estimation methods it is desirable to apply them to a common input 

reference signal. This reference signal should be able to accurately represent a pulsed Doppler 

ultrasound signal, and the characteristics of its time and frequency domain representations should 

also be known. Therefore, it is advisable that a Doppler simulated signal be applied on this work. 

The simulated signals contemplate two extreme cases of spectral shape. The Gaussian and 

the rectangular shapes. The Gaussian spectral shape represents the situation where large vessels 

with undisturbed flow and small sample volumes are considered. The rectangular spectral shape 

simulates the case of the uniform sensitivity over the vessel cross-section, parabolic velocity 

profile, and, spectral broadening due to transit time effects and deviations from plane-wave 

conditions is negligible. 

Two algorithms of Doppler ultrasound signal's simulation were considered. One based on Mo 

and Cobbold's [63] approach and the other based on Leuewen, Hoeks and Reneman's [64] 

theory. The algorithms are conceptually different. The former considers that the Doppler signal 
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is resultant from the backscatterer from a range of cell aggregates together with correlation of 

close scatterer position. The latter assumes that the Doppler signal arises from scatter from 

random fluctuations of bulk elastic modulus intensity and density. For simplicity, these algorithms 

will be referred in text as algorithm 1 and algorithm 2 respectively. 
The following section describes the simulation algorithms employed, as well as a modification 

operated on algorithm 1 to compute the simulated signals in a faster computational way. Details 

of the software implementation performed are also presented. 
The theoretical basis of the tests applied to the simulated signals are stated in section 3.3. The 

amplitude distribution of the simulated signals was tested using a Chi-square test (section 3.3.1. ). 

The amplitude distribution of the spectrum was studied considering ensembles (of variable size) 

of spectra. Development of the theoretical expressions for both the distribution of amplitude of 

the ensemble averaged spectrum, and, its expected percentage relative variance, are included in 

section 3.3.2. Description of the implementation of these tests is also presented in section 3.3.3. 

The results of the tests applied to the simulated signals, and the criteria used to select one of 

the algorithms are presented in section 3.4. 

Finally, some conclusions are drawn in section 3.5. 

3.2. SIMULATION ALGORITHMS 

3.2.1. Algorithm 1 

This algorithm is based on the Mo and Cobbold simulation study of a continuous wave Doppler 

ultrasound spectra in [63]. 

The continuous signal is simulated as 

M 

x(t)=E am. cos(2nfmt+Om) (3.1) 
m-l 

where am is the amplitude of the Doppler signal component at frequency fm, fm is the m`h 
frequency point in a frequency range [0, fm, 

x[, 
in which fm, 

x represents the maximum frequency 

of the PSD of the Doppler signal, and 4m is the phase shift of the mt' component, considering 
m=1 �.., M. 

The frequency fm is given by (3.2), where of=fmjM is the frequency resolution. 
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. 
fm = (m- 2)A. f for m=1,..., M (3.2) 

The amplitude a. is computed as 

am = 2. SX[fm]. Af. ym 
1 (3.3) 

where Sjfm] represents the PSD of the Doppler signal, and ym is the mh random variable of a 

set {ym} of independent Chi-square random variables with two degrees-of-freedom. 

The PSD is chosen to represent either Gaussian or rectangular spectral shapes. The former 

is expressed by (3.4) [65], where f, and b are (respectively) the mean frequency and half 

bandwidth of the spectrum. 

]=1. e7 __F_ (3.4) [fm 
b 2n 

The mean frequency is given by 

ff. s(r)df 

f= -" (3.5) 

fSwdf 

The half bandwidth of the spectrum, defined as 

z 

f(ff)2S(f)df 

= '" (3.6) b 
fS(f)df 

[20] where the integration in the denominator is unity [66], represents a rms bandwidth and is 

coincident with the standard deviation of the Gaussian function. 
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The expression of the PSD in the case of rectangular spectral shape, is generally expressed 
by (3.7) [5], where fm, 

x 
is the maximum frequency observed and n is the profile constant, 

assuming in this study the value 2, representing the parabolic velocity profile. 

2-e 

S [fm] = 1-n' ^ (3.7) 

max 

Each random variable y. (in equation (3.3)) has probability density function 

Y. 

f(Y, 
�) = 2. e Y. ýO m=1,..., M (3.8) 

10 otherwise 

[63] being generated from 

ym =-2. In (b, 
�) m =1,..., M (3.9) 

where bm are independent random variables, each one uniformly distributed over [0,1]. 

The phase shifts 0m in (3.1) are obtained from independent random variables uniformly 

distributed over [0,2n]. 

Each sinusoidal component in (3.1) represents the contribution of the scatterers whose 

velocities are coded into Doppler shifts within narrow frequency bands of size M. The sum of 

these contributions results in the Doppler signal. 
A requirement of this algorithm (as proved by Mo and Cobbold [63]) is that the number of 

frequency points considered, M, should be much greater than the product fm, 
xT, say M=cf.. T, 

for c representing a constant assuming different values. The larger the M values used in the 

simulation, the more closest to a continuous spectrum will the spectrum of the simulated signal 
be. 

This algorithm originally applied by Mo and Cobbold [63] to simulate continuous Doppler 

ultrasound signals, was now sampled at a frequency f,, giving rise to a discrete Doppler 

ultrasound signal. 
The data sequence was obtained computing x(t) in expression (3.1), at times nTfor n=0,..., 

N-1, where T, is the sampling period. 
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3.2.2. Algorithm 2 

This other algorithm is based on the simulation model that Leuewen, Hoeks and Reneman [64] 

used on their simulation of real-time frequency estimators for pulsed Doppler systems. 
If P[k] is the Fourier transform of the desired Doppler signal, then the simulated Doppler 

signal x[n] can be obtained as the real part of the inverse Fourier transform ([n]) of P[k] [67]. 

1 N-1 j2a 

x[n] 
kn 

t-o 
for n =O, -., N-1 (3.10) 

That is 

x[n] = Re(x[n] ) for n=0,..., N-1 (3.11) 

and P[k] obtained by application of a FFT algorithm, contains information about the PSD of 

the Doppler signal, SX[fk], weighted by a zero mean Gaussian function presenting unit variance. 
The real (X[k]) and imaginary (Y[k]) parts of this frequency domain signal are 

X[k] =Re(F[k]) = SX[fkl. C, k (3.12) 
Y[k] =Im(F[k]) = SZ[fk] "C2k 

where k=O,..., (N/2-1) and, C1 and C2k are independent random variables, representing the zero 

mean Gaussian weighting function. 

The PSD SZ[fk] is computed as in algorithm 1 (see (3.4) and (3.7)), using fk instead of fm, 

where fr=0,..., (N-1)fs/(2N), and f, b and fmax have the same meaning as in algorithm 1. 

In order to have a real signal x[n], P[k] must be created such that exactly half of its points 

are the complex conjugate of the other half. Thus both its real (X[k]) and imaginary (Y[k]) parts 

are computed for half the number of sample points N [64], and then 

X(N-k+1) =X(k+1) 
Y(N-k+1) = =Y(k+1) (3.13) 

X(2 +1) = Y(2 + 1) =0 
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3.2.3. Modified Algorithm 1 

In algorithm 1 the Doppler signal is simulated by adding M sinusoidal components as given by 

(3.1). Since M has to be made much greater than fm T, the number of sample points contained 
in the Doppler signal simulation using this algorithm is much larger than the one using algorithm 
2, leading to greater computational times. To overcome this problem some modifications have 

been introduced in algorithm 1, when the simulation of a Gaussian spectral shaped signal is 

considered. 

In the case of the Gaussian spectral shaped signal simulation, the effective number of 

computational loops required for the evaluation of the summation expressed in (3.1) are reduced. 
This is due to the need of truncating the Gaussian function at a minimum (fm;, ) and maximum 
(fmax) frequencies. Therefore, Sjfm] assumes non-zero values only over a finite range of 
frequencies [fmm, fm. ], outside which the am amplitude of the Doppler signal is forced to zero. 

Imposing this constraint, the software loop that calculates the parameter am, needs to consider 

only the sampling points in the range [cTf. b,, cTfm. ]. Thus, the PSD Sx[fm] may be evaluated 

only in M' points given by 

M' = c. T. (fm. - fmin) (3.14) 

The frequency values fmm and fm. are established using statistical practical considerations 

about the Gaussian distribution. The area under the curve of the probability density function of 

a Gaussian random variable is concentrated (95%) between the limits pt2a [68], where p and 

6 are respectively the statistical mean and standard deviation of the random variable. Using this 

reasoning, the amplitude of the simulated signal correspondent to an a percentage of its 

maximum value, will determine the limiting frequencies, fm;, and fm.. 

Since the effective value of the PSD employed during the simulations is the square root of 

Sx[fm], the maximum amplitude is (b(27c)'2)''n, so, the maximum and minimum frequencies are 

given by 
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f.. =f, +2. b. ln(100)-1n(a) (3.15) 
fmj. =f, -2. b. ln(100)-ln(a) 

The above modifications have been implemented as a new version of the simulation algorithm 

1. 

3.2.4. Implementation of the Simulation Algorithms 

These algorithms, algorithm 1 (original and modified versions) and algorithm 2, were 
implemented and tested on a VAX 8600 with an operating system VMS V5.3. They were 
included in a software program named DOPSYNA, written in Fortran 77 [69), which makes use 

of routines of the NAG software package [70], and employs for graphical outputs the library 

Ginograf version 2.3 [71]. 

The Doppler signal was simulated considering values of mean frequencies from 500Hz up 

to 8kHz with intervals of one octave and with half bandwidth values of 5%, 10%, and 20% of 

the mean frequency. The data sequence duration used was of lOms with a maximum possible 

variation of 2%. 

The relationship between the mean frequencies and the respective sampling frequencies was 

conditioned by three factors: 

a) the requirement of a number of sampling points which is a power of two, due to the 

algorithm of FFT employed, 
b) the fact that algorithm 1 is more efficient if the sampling frequency is kept just above 

twice the maximum signal frequency [63], 

c) the limitation on the range of admissible frequencies of the PSD (see (3.15)), imposed 

by an amplitude threshold of a% of the maximum amplitude of the PSD. The 

threshold value was a=10. 

Under these conditions the sampling frequencies are as shown in Table 3.1. 
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mean freq. 

f, (kHz) 
camp. freq. 

ff (kHz) 
no. sample pts 

N 

0.5 3.2 32 

1 6.4 64 

2 6.4 64 

4 13 128 

8 26 256 

Table 3.1: Signal simulation mean frequencies and, respective sampling frequencies and number 
of sampling points. 

3.3. TESTS APPLIED TO THE SIMULATED SIGNALS 

3.3.1. Testing the Amplitude of the Simulated Signal 

In order to simplify the application of tests to the amplitude distribution of the simulated Doppler 

ultrasound signal, the amplitudes were first normalized. This way the symmetric curve of the 

distribution of amplitudes, representing a Gaussian PDF centred on the mean amplitude a and 

with a standard deviation so, would be transformed into a standard normal distribution centred 

on zero. 
Considering x the random variable representing the amplitude distribution of the simulated 

Chapter 3 

signal, the normalized variable z and its PDF are given [72] by 

_ 
x-a 

S. 

ss 

Az) =1 , e' 
2n 

(3.16) 

The amplitude of the Doppler signal x(t) expressed by (3.1) has been proved to have a 
Gaussian PDF with zero mean [63]. Thus, in order to validate the simulation, the Gaussianity of 
the amplitude of the simulated Doppler signal has to be tested. 

A Chi-square was chosen to determine if the statistical hypothesis 'the amplitude of the signal 
is Gaussian' was acceptable or not. 

45 



-ft 

PDU Signal Simulation Chapter 3 

The significance level, i. e., the probability to reject the hypothesis when it is true, was 

considered to be of 5%, a reasonable value also chosen by Mo and Cobbold [63]. 

The time-domain simulated signal, existing as a discrete data sequence of N sample-points 
is primarily classified into a statistical frequency distribution of amplitudes. This frequency 

distribution of amplitudes is composed of K classes. Generally the classes have equal length, 

which is computed to be approximately the ratio of the difference between the largest and the 

lowest amplitude and the number of classes required [73], 

amplitude . ax amplitudem. length of class = max '° (3.17) 
no. of classes (k) 

Each element of the discrete signal is therefore assigned to one class only, and the classes 

cover the whole range of amplitudes in consideration. To avoid ambiguous allocation of elements 

between adjacent classes, for each class the admissible amplitudes of the signal belong to a right 

opened interval. 

However, the time-domain signal simulation following a Gaussian PDF presents very low 

amplitudes towards the tail of the Gaussian curve. Thus, the upper limit of the first class, and, 

the lower limit of the last class have to be imposed, as it will be shown below. Among these two 

amplitude limits, K-2 classes (with equal lengths) are created. 

The frequency distribution of amplitudes is then compared with a Gaussian distribution. The 

goodness-of-fit is measured by the variable [74], 

XZ - 
(ný-N. p1)z 

i-1 N"p1 
(3.18) 

where i=1,..., K represent the number of classes in which the histogram has been divided, N is the 

total number of sample points, n; the number of sample points in the it' class, and, p; represents 

the probability of the random variable being inside class i. If P(x2 >- c) < 0.05 where c is a 

constant, the hypothesis of the generated signal being Gaussian is accepted. 
To apply this test two requirements must be satisfied: 

a) the statistic x2 as defined above, can be said to have approximately a Chi-square 

distribution if the total number of samples considered is sufficiently large. In the case, 

x2 presents 'a number of degrees-of-freedom given by [68] 
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degress - of -freedom =K -1- (number of estimated parameters) (3.19) 

b) the other relevant requirement to validate the application of the Chi-square test is the 

need of having each class of the histogram with at least five sample points, this is, 

making 

N. p1 >5 

in equation (3.18) [68]. 

(3.20) 

Since the number of sampling points is determined by the product of the sampling frequency 

and the data sequence duration, and these parameters are limited by signal's specifications, the 

following approach is employed: the establishment of upper and lower limits of the first and last 

classes (respectively) of the frequency distribution of the amplitudes, are symmetric, due to the 

use of a standardised Normal distribution. Considering n, as the minimum number of elements 

wer class, where n, >5, the upper limit of the first class will be given by the deviate associated 

with the lower tail probability nj N of the standardised Normal distribution. This way, the K-2 

inner classes created with equal lengths, and the shape of the Gaussian curve, assure that if the 

first of these inner classes satisfies 

N. p; > ný (3.21) 

all the other inner classes will also satisfy the same condition. If not, either nc or K have to be 

adjusted. 

3.3.2. Testing the Ensemble Averaged Amplitude of the Spectrum 

The analysis of the frequency content of the simulated Doppler signals, was carried out by means 

of Fourier Transforming the simulated signal. 
Due to the random nature of the Doppler signal, individual estimates are random, and spectral 

averaging should be performed to reduce the variance of the spectrum [30]. The selection of a 

size of ensemble which guarantees low spectral variance values is our concern. To achieve so, 

theoretical developments are presented to establish an expression for the relative variance of the 
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averaged amplitude of the spectrum obtained by Fourier Transforming the signal simulated by 

algorithm 2. 

Representing the complex spectrum obtained by Fourier Transforming the simulated signal 
by 

{x }_ {y,, 72,... 
9 

1 (3.22) 

where the index j represents the order of the sampling point considered, and Nb=N/2 (N=f1T) 

denotes the need of computation of just half the spectrum (due to its symmetry), we may 

consider without loss of generality only one sample of the ensemble, and analyze its statistical 

distribution. 

Let one component j of the spectrum be represent by 

7X = XR +ý--1. XI (3.23) 

where XRj and XIJ are the real and imaginary parts of Xj. These components, given by (3.12), 

may now be rewritten as 

XR =S [f l "YR (3.24) 

Xj= sx[f]. Y, 

For both components the first factor is given by the same function, the square-root of the 

PSD that is expected to be followed by the simulated Doppler signal. YR and YI are independent 

random variables following a Gaussian distribution with zero mean and unity variance. 
We shall deal with the modulus of the spectrum, so each component j of the vector expressed 

in (3.22) will generally be represented by X,, presenting as well a constant factor, 

X=X= XRj +X1ý (3.25) 

= SX[f l" YR+Y; 

The last factor of the above equation is a random variable, whose PDF we want to 

characterize. 
It is known that the square of a random variable YR (or Y) with Gaussian distribution 

characterized by zero mean and unit variance, is a random variable Z with PDF 
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11 
. eý z>0 

B(z) = 2n 

0 z50 

(3.26) 

which corresponds to the PDF of a Chi-square random variable with one degree of freedom [74]. 

The sum of two independent random variables Z, and Z2 with distribution x12, is a random 

variable W whose moment generating function MW(t) is 

Mw(t) = E[e'x'] = E[etz']. E[etz1] (3.27) 

since Zl and Z2 are independent random variables [Meyer, 83]. Thus, 

(3.28) 
Mw(t) _ (1-2t) ý. (1-2t) "_ (1-2t)'', 

which is the moment generating function of a random variable following a x22 (two degrees of 
freedom) [75]. 

The square root of a random variable W with distribution x22 is a random variable U with 

PDF given by (3.29), following a Rayleigh distribution [66]. 

U2 

g(u) _ u. e r 

0 

uz0 

u<0 

(3.29) 

Thus, the random variable of (3.25) is Rayleigh distributed characterized by the following 

mean and variance 

mean = 2 (3.30) 
4-n 

variance = 2 

[Papoulis, 84], which allows the definition of the random variable X, of (3.25) as Rayleigh 

distributed with mean }p and variance ßj2 given by 
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p1= Ss[f, "] . 

T12 

(3.31) 

2=S 
j]. 

4-7c 

according to the properties of these statistics [74]. 

As stated before, we are interested in analyzing the statistical behaviour of the averaged 

amplitude of the spectrum. To do so, let us consider the modulus of the elements of the vector 

expressed in (3.22), rewritten taking into account the concepts of samples of an ensemble, 

{X1}_{X 1, X 2, �., XN, } for i=1,..., L (3.32) 

where the index i represents the it sample of a total number of L samples. 
Computing the average of the above L vectors, the averaged amplitude of the j`° frequency 

component of the spectrum, XMj, where j may vary up to Nh 

1L1L1L1L {XM. }= 
L>X; " =L EXýt" 

L 
EX; 

z+..., L 
EX; 

N = (3.33) ý ;. t ý" 

={XMt, XM2,..., XMN} 

Each XMM of the vector {XIA-} is the statistical mean of the L observations of the random 

variable X,, Therefore its mathematical expectation (E["]) is coincident with the theoretical mean 

of X., and, its variance (Var["]), is the theoretical variance divided by the number of samples in 

the ensemble [74] [76]. Making use of (3.31), 

E [DM ]=P; =S[. f; ]"2 
(3.34) 

62 
Var [XM ]=L= Sx[f ]. 42. 

L 

Since we are also interested in determining the variance of the averaged amplitude of the 

spectrum (expressed in (3.33)), each component j of {XMj}, for j=1, 
..., Nh may be regarded by 

itself as a sample of an ensemble of size Nh. This way, the sample variance is computed as 
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1 Ný 
E (XM - E[XM ] )2 

Nh i-1 
(3.35) 

To obtain a percentage relative variance of the averaged amplitude of the spectrum we may 

consider the computation of 

1 Nº 
E ZM. 

h11 

(XM-E[XM. ] )2 
with ZM. _'' . 100 

' (E [XM, } )2 
(3.36) 

The value of the summation in (3.36) can be obtained making use of an auxiliary random 

variable YM,, which is the relative averaged amplitude of the spectrum, defined as 

XM. 
YM. = , 

' E[XM ] 
(3.37) 

This variable, presenting unit expectation, enables an equivalent expression of the summation 
in (3.3 6), 

1 N. 
E(YMý-1)2 

NhJ 
(3.38) 

simplifying the calculation of the percentage relative variance of the averaged amplitude of the 

spectrum, by computing only the variance of YMj (see (3.39)), where the approximate value is 

obtained by assuming that a high number of sample points is considered. 

Var[YMM] = 

3.3.3. Implementation of the Tests 

Var[XM; ] 
C LAM JT 

_4-n0.2732 nL L 

(3.39) 

The DOPSYNA program (see section 3.2.4. ) includes also an FFT algorithm, transcribed from 

Kay' software package [17] to enable the computation of the Doppler signal simulated spectrum. 
The FFT routine processes complex vectors with a number of points equal to a power of two, 

and enables the computation of either the direct or the inverse Fourier Transform. 
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DOPSYNA is a modular program which enables the user to select various processing options. 
All specifications of the Doppler signal are introduced by the user. The program enables the 

study of the amplitude distribution of the Doppler ultrasound signal simulation by means of a 

Chi-square test. The Chi-square value and the correspondent significance level is presented on 

screen to the user. Optionally, a plot of the histogram of amplitudes of the signal against the 

theoretical Gaussian curve may be obtained. 
An ensemble of simulated Doppler signals may be created, according to the user's 

specification of size of the ensemble. Graphical outputs of the ensemble averaged spectra of the 

simulated signals can be plotted against the expected amplitude of the spectrum, together with 

the percentage relative variance of the ensemble averaged amplitude spectrum. 

3.4. RESULTS 

3.4.1. Selection of one Simulation Algorithm 

The amplitude distribution of the simulated signals created by simulation algorithms 1 and 2 was 

tested. Since algorithm 1 presents greater computational effort than algorithm 2, specially when 

a rectangular spectral shape is chosen, the first step of comparison of algorithm behaviour was 

concerned with the Gaussian spectral shape and the use of the modified algorithm 1, proposed 

in section 3.2.3. 

The results of the Chi-square test applied to the simulated signals obtained from both 

algorithms are shown on the following tables. The constant M' is the number of sinusoidal 

components used in modified algorithm 1. M' is computed in accordance with equations (3.14) 

and (3.15) putting a=10. The tables indicate the limits of the significance levels obtained in each 

test (a total of 5), when the number of degrees of freedom are chosen considering the estimation 

of two parameters, the mean frequency and the bandwidth of the spectrum (see (3.19)). 
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algorithm test 1 test 2 test 3 test 4 test 5 
1 25-50 5-25 1-5 25-50 5-25 
2 25-50 25-50 5-25 50-75 5-25 

(a) 

algorithm test 1 test 2 test 3 test 4 test 5 
1 5-25 25-50 5-25 5-25 5-25 
2 25-50 50-75 50-75 5-25 5-25 

(b) 

algorithm test 1 test 2 test 3 test 4 test 5 
1 50-75 5-25 25-50 25-50 25-50 
2 5-25 5-25 25-50 5-25 25-50 

(c) 

algorithm test 1 test 2 test 3 test 4 test 5 
1 25-50 5-25 5-25 50-75 25-50 
2 5-25 5-25 5-25 5-25 5-25 

(d) 

algorithm test 1 test 2 test 3 test 4 test 5 
1 25-50 50-75 5-25 25-50 50-75 
2 25-50 50-75 5-25 50-75 5-25 

(e) 
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algorithm test 1 test 2 test 3 test 4 test 5 

1 5-25 5-25 50-75 50-75 50-75 

2 75-95 5-25 50-75 25-50 50-75 

(0 
Tables 3.2: Results of the Chi-square test applied to simulated signals with: f, =50OHz, ff 3.2kHz, 
1 degree of freedom and (a) b=25Hz, M'=608, (b) b=50Hz, M'=1216, (c) b=10OHz, M'=1212; 
f, =1kHz, f, =6.4kHz, 5 degrees of freedom and (d) b=50Hz, M'=608, (e) b=10OHz, M'=606; and, 
(f) f, =8kHz, f, =26kHz, 7 degrees of freedom, b=1.6kHz, M'=971. 

The above Chi-square test results show that the Doppler signals simulated by both algorithms 

presented similar properties within the significance values assumed. 

Although algorithm 1 was improved in terms of computational time for the case of Gaussian 

spectral profile, its modified version was still much slower than algorithm 2. In fact, running both 

algorithms under similar . specifications, rough measures of typical processing times for the 

modified algorithm 1 and algorithm 2 may be contrasted on the Table 3.3, where case 1 

represents the simulated signal with f, =50OHz, b=25Hz, f, =3.2kHz and M'=576, and, case 2 

corresponds to a signal with f, =8kHz, b=1.6kHz, f, 26kHz and M'=8369. 

algorithm case 1 case 2 

modified a1g. 1 1 min : 47/100 sec 1 min : 5123/100 sec 

alg. 2 40/100 sec 61/100 sec 

Table 3.3: Comparison of processing times using by algorithms 1 (modified) and 2 for two 
different simulation cases. 

Therefore, as the underlying theories which gave rise to both algorithms are essentially the 

same [27], the selection of one of these algorithms relied on considerations of computational time 

efficiency, leading to the selection of algorithm 2. 

54 



ti 

PDU Signal Simulation Chapter 3 

3.4.2. Testing the Selected Algorithm 

The simulated Doppler ultrasound signal obtained from algorithm 2 was fully tested in terms of 

both the Gaussianity of its amplitude distribution and the characteristics of its PSD. 

The signal was deliberately oversampled to ensure that the sampling did not become a 

consideration in the statistical measurements. The simulated signal was tested in the situation of 

a sampling frequency of 217Hz (131072Hz) and a data sequence of 1 second. 

Two types of signal were simulated, one with a rectangular spectral shape with a bandwidth 

of fß/2, and the other with a Gaussian spectral shape with a mean frequency of fJ4 and a half 

bandwidth of 5% of the mean frequency. 

These simulated signals presented as a common feature very low amplitudes. As a 

consequence, the mean amplitude of the signal and its standard deviation assumed also very small 

values. 
Common values of these statistics, mean amplitude (a) and standard deviation (so), are 3*10.6 

and 3.7*10-3, and 0 and 1.5*10-5, respectively for rectangular and Gaussian spectral shapes. 

These very low amplitudes of the simulated Doppler signal are justified by the expression of 

the inverse Fourier Transform of a signal, generally given by 

1 N-1 j2x kn 

X[nl=Ex[k]. e "7 n=0,..., N-1 (3.40) 
N k. o 

where N=f, T is very large and R[k], assumes very low values in the case of a Gaussian spectral 

profile. 
Fig. 3.1 presents the simulated Doppler ultrasound signal for rectangular and Gaussian 

spectral shapes. Since the number of sample points considered is very large, only the first 100 

points are shown. 
The existence of a non-zero value of a, specially in the case of a rectangular spectral shape 

justifies the standardization mentioned in section 3.3.1. 
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(a) (b) 
Fig. 3.1: Simulated Doppler signal with (a) rectangular spectral shape with f, =2"Hz and fmax=fs/2, 
(b) Gaussian spectral shape with ff=2"Hz and ff=fß/4 and b=0.05fc. 

Considering the simulated signal with the specifications above mentioned, the frequency 

distribution of amplitudes was graphically output in a form of an histogram with 40 classes. The 

Chi-square variable presented 37 degrees of freedom assuming, for the previously established 5% 

significance level, the value [70], 

Z 52.19 X37,0.95 

Chapter 3 

(3.41) 

Tests applied to several simulated signals proved that on 6% and 13% of the simulations of 

rectangular and Gaussian spectral shapes respectively, the simulated signals were outside the 

significance level. 

The histograms of the amplitude distribution of the two simulated Doppler signals shown in 

Fig. 3.1 are presented in Fig. 3.2, whose statistical characteristics are shown in Table 3.4. 

56 

SIMULATED SIGNAL "ý ' nT, SIMULATED SIGNAL xio-4 -, T, 



PDU Signal Simulation 

x., 3 

NPi 

ni 

AMPLITUDE HISTOGRAM 
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k C3 

Npi 

n; 

AMPLITUDE HISTOGRAM (normalized arnphride) z (nornalized zmplitude) z 

(a) (b) 
Fig. 3.2: Histogram of the amplitude distribution of the simulated Doppler signal with 2" sample 
points with (a) rectangular spectral shape, (b) Gaussian spectral shape, against the theoretical 
amplitude distribution (solid line). 

Spectral shape a s a 
X 

observed /. observed 
ýy 2 
/x. 37,0.95 

rectangular -0.3* 10-5 3.9* 10-3 48.47 52.19 

Gaussian 0 1.5* 10-' 36.94 52.19 

Table 3.4: Characteristics of the amplitude distribution of the simulated signals of Fig. 3.2. 

To study the spectrum of the simulated signal it is necessary to consider an ensemble which 

is in general constituted by a large number of samples. Since the simulation of one signal with 

2" points is by itself a slow process, the execution of a number of samples would lead to long 

computational times. For this reason, simulated signals with only 213 (8192) points are considered. 

For simplicity this signal is sampled at 2"Hz with a data sequence of 1 second. 
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The relations between the maximum frequency, the mean frequency and the half bandwidth 

with the sampling frequency are the same as in the case of a sampling frequency of 2"Hz. The 

threshold value a used in (3.15) to define the range of allowed frequencies in the case of a 

Gaussian spectral shape, was modified to 1%. 

To assure that the statistical results obtained in this situation are similar to the ones presented 

by the simulated signal with 2" sample points, Fig. 3.3 show the histograms for both type of 

spectral shapes considered, and, Table 3.5 presents the values obtained for mean amplitude (a) 

and standard deviation (s) of the signals, as well as the Chi-square values obtained. 

x ý2 

'jai 
n; 

x", ýz FV 

AMPLITUDE HISTOGRAM (normalized amplir de) z AMPLITUDE HISTOGRAM (normalized amplirude) z 

(a) (b) 
Fig. 3.3: Histogram of the amplitude distribution of the simulated Doppler signal with 213 sample 
points with (a) rectangular spectral shape, (b) Gaussian spectral shape, against the theoretical 
amplitude distribution (solid line). 

NPj 
ni 
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Spectral shape a S. Xobserved2 %37,0.952 

rectangular -0.4* 10'S 15.6* 10.3 31.76 40.11 

Gaussian 0 24.8*10-' 25.57 40.11 

Table 3.5: Characteristics of the amplitude distribution of the simulated signals of Fig. 3.3. 

As stated earlier, DOPSYNA has graphical output facilities to help on the analysis of the 

spectrum of the simulated signal. The development of the ensemble averaged amplitude of the 

spectrum with different sizes of ensemble is illustrated in Figures 3.4 and 3.6 for ensembles of 

size 1 (i. e. a single signal), 10, and 500. The theoretical expected curve is included for reference. 

The percentage relative variances of the ensemble averaged amplitude of the spectrum 

(computed by (3.36)) are also presented in Figures 3.5 and 3.7. 

Some of the results of the graphical outputs are summarized in Table 3.6. 

spectral 

shape 

size of 

ensemble 

a 

max. value 

rel. var. (%) 

max. value 

rel. var. (%) 

mean value 

1 2.6958 132.46 27.2760 

rectangular 10 1.7750 17.32 2.7414 

500 1.3307 0.38 0.0552 

1 0.1578 315.99 27.9006 

Gaussian 10 0.1029 24.81 2.6431 

500 0.0814 0.47 0.0542 

Table 3.6: Ensemble averaged amplitude characteristics of simulated signals of figures 3.4 and 
3.6. 

These results are coherent with the theoretical statistical properties developed on section 

3.3.2.. In fact, the practical values depicted on the last column of the table above closely agree 

with the expected values given by (3.39), this is, 0.273/L (* 100%). 
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X1 

Fig. 3.4 (c) 
Fig. 3.4: Theoretical ({XMj}) (smooth) 

and ensemble averaged amplitude of the 
spectrum (E[XMj]) when (a) 1, (b) 10, 
and (c) 500 samples, are considered for 
a rectangular spectral profile. 

jZm 
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Fig. 3.5 (c) 
Fig. 3.5: Plot of percentage relative 
variances ((ZMj)) of the ensemble 
averaged amplitude of the spectrum 
when (a) 1, (b) 10, and (c) 500 samples, 
are considered for a rectangular spectral 
profile. 
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{E: XMý]) 
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Fig. 3.6 (c) 
Fig. 3.6: Theoretical ((XMj}) (smooth) 

and ensemble averaged amplitude of the 
spectrum (E[XMjl) when (a) 1, (b) 10, 

and (c) 500 samples, are considered for 

a Gaussian spectral profile. 

3.5. CONCLUDING REMARKS 

{ZM 
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Fig. 3.7 (c) 
Fig. 3.7: Plot of percentage relative 
variances ({ZMj}) of the ensemble 
averaged amplitude of the spectrum 
when (a) 1, (b) 10, and (c) 500 samples, 
are considered for a Gaussian spectral 
profile. 

Two simulation algorithms have been considered in order to obtain an accurate simulation of a 

pulsed Doppler ultrasound signal. According to practical considerations about the statistical 

distribution of amplitudes of the simulated signal when a Gaussian spectral shape is considered, 

a modification to algorithm 1 has been performed. 
The simulation algorithm 1 (original and modified versions) and simulation algorithm 2 were 

implemented on a software package, DOPSYNA. 
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The tests applied to the amplitude distribution of the simulated signals obtained from 

modified algorithm 1 and algorithm 2 simulators in the case of Gaussian spectral shape, presented 

similar Chi-square values. Therefore, the criteria of selection of one of these algorithms was 

based on their computational efficiency, leading to the selection of algorithm 2, this is, the 

Leuewen, Reneman and Hoeks signal simulation algorithm. 

The signals simulated by the selected algorithm were then fully tested in what concerns its 

amplitude distribution and the statistical properties of the ensemble averaged spectrum. 

Assuming an upper significance level of 5%, the amplitude of the simulated Doppler signal 

is consistent with the defined criteria in approximately 90% of the cases. 
The ensemble averaged amplitude of the spectrum, proved to approximate the theoretically 

expected values for increasing values of size of ensemble. The percentage relative variance of 

the ensemble averaged amplitude of the spectrum confirmed the values of the theoretical 

expressions developed. 
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CHAPTER 4 

Spectral Statistics 

4.1. INTRODUCTION 

The previous chapter was devoted to the development of a pulsed Doppler ultrasound signal 

simulation. The amplitudes of these signal simulations were tested either in time and frequency 

domains to assure the validity of the simulation, and, to enable a better knowledge of the signal's 

characteristics. 
In this chapter the statistical behaviour of the spectrum obtained by averaging an ensemble 

of Doppler spectra is studied. Estimators of the spectral mean frequency and half bandwidth 

parameters are developed. Analysis of the performance of the mean frequency and half bandwidth 

estimators with increasing sizes of ensemble is evaluated. Study of the effects of shifting the 

mean frequency parameter of the simulated signal on the bias of the spectral mean frequency 

estimator, for different sizes of ensemble, is also included. 

4.2. SPECTRAL ANALYSIS LIMITATIONS 

The power spectrum of the Doppler signal is conventionally obtained by applying a Fast Fourier 

Transform to short data segments, assuming that the Doppler signal is approximately stationary 
for the duration of each segment. 
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However, as a consequence of the random nature of the Doppler signal, the above procedure 

produces spectra which are themselves random, yielding only estimates of the true spectrum. 
Accuracy of spectral estimation may be improved by performing spectral ensemble averaging to 

reduce the variance of the estimate [30]. 

Earlier work on this field developed by Oppenheim and Schafer [77] showed that for a 

Gaussian random process the variance of an estimated spectrum is approximately proportional 

to the square of the true power spectrum for large N (the number of points in the data sequence). 
The same authors proposed a method of averaging K spectrum of consecutive data segments, 

the so called Bartlett's method. However even using a large number of points in the Fourier 

transform the improvement on variance would still be of 1/K. 

As Fourier transforms have to be applied to stationary data, and assuming that the Doppler 

signal may be considered as stationary over periods around 10-20ms of the cardiac cycle [30], 

the maximum frequency resolution that can be achieved with the Fourier based techniques is of 

the order of 100Hz. 

A better way of effectively reducing the spectral variance maintaining the frequency 

resolution is to average the transforms of stationary portions of similar points of the cardiac cycle 

over several cardiac cycles [30]. This is the procedure considered on this study. 

4.3. STATISTICAL CHARACTERIZATION OF SPECTRA 

4.3.1. Spectral Distribution 

In order to characterize the ensemble averaged spectrum obtained by simulation algorithm 2 (see 

Chapter 3), the expressions of the theoretical statistical distribution of the PSD of the signal are 
developed. 

As has been stated in Chapter 3 (section 3.3.2. ) the Fourier transform of the simulated signal 
has two components 

XR1= SX[. 
'] 

Yq XI = S, [f, ] Yj (4.1) 

where the real (XP,, ) and the imaginary (XIi) components are computed by the product of a given 
PSD S1[fj] by the statistically independent and zero mean Gaussian random variables YR and YI. 
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From now on the index j will be used to represent the j`h frequency of a spectrum with M 

points (j=1,..., M). 

The magnitude of the amplitude of the spectrum, at frequency fj is 

X= XR j+X ýZ = SX[ f] YR + Yý 

and has been proved to follow a Rayleigh distribution with mean pj and variance ßJ2 (see 

Chapter 4 

(4.2) 

expressions (3.31)) given by 

P. ', 
2 6; = Sx [. f, " l. 

4 
2" 

(4.3) 

Now our interest is on the analysis of the power spectral density of the signal, so the squared 

magnitude of the Fourier transform of the simulated signal has to be computed, this is 

SX = X,? = Sz[ f]"[ yR + y1 ] (4.4) 

Regarding the computations necessary to the deduction of (4.3) (see section 3.3.2. ), the 

variable [YR2 +Y12] can be said to follow a Chi-square distribution with 2 degrees-of-freedom. 

Thus, 

E[SX ] =Sx[f, "]. E[xz] 
Var [ SX ]= SX [f]. Var [X2] 

(4.5) 

were E[" ] and Var[" ] represent respectively the mean and variance of the random variable inside 

brackets, in this case a Chi-square variable. For v degrees-of-freedom 

E[xv] =v (4.6) 
Var[x2]=2v 

[76], therefore expressions (4.5) may be rewritten in the form, 
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E[SX ] =2. Sx[f ] 
Var[SX ] =4. S, r[f ] 

(4.7) 

Thus, we will expect the estimated spectrum to present a magnitude of double the one of the 

theoretical spectral profile, and a variance four times greater than the magnitude of the theoretical 

curve. 

4.3.2. Spectral Parameters Estimators 

To assess performance analysis of the mean frequency and half bandwidth spectral estimators, 

statistical estimators for these parameters have to be defined. In this context, let the PSD of a 

simulated Doppler signal (stationary segment) be represented by SX; j , where i represents the 

sample under consideration (i=1,..., L) and j the index of the j' frequency (j=1,..., M for M= 

fc. T/2, where fs is the sampling frequency and T the data sequence duration). 

For each sample of the ensemble, the mean frequency (fo) and the half bandwidth (a; o) are 

computed as follows 
M SJi'.. 

110 =Ef"M '' i=1;.., L 
;. i (4.8) 

E SX, f 
;. 1 

M2 sx.. 
a; o =z(. f, " - fo) .M (4.9) 

SX; ý ;. ý 

The average value of fo over all i and identically the average value of ß; o over all samples 

of the ensemble are the ensemble mean frequency (foo) and ensemble half bandwidth (ß00) 

respectively. They are 

L 
lfo (4.10) foo 
L ;. 1 

1L 
600 ° aio 

L ;. 1 
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For each sample, the standard deviation observed for the estimates of mean frequency (f; o) 
and half bandwidth (a; o) are 

1L (4.12) 
sd(. f�) = (f; o ' 1Foo )2 i=1,..., L 

L-1;. 1 

sd(a0). 
L 

600 )2 i=1,..., L 
(4.13) 

L-1 ;., 

The ensemble averaged spectrum represented by SX0j is the average of all i=l,..., L spectra 

computed at each frequency bin j. This is, 

tii 
sxoj =1 j= 1,..., M (4.14) 

L 

and the standard deviation observed for each bin of frequency j is 

sd(SX1)j =1L (SXýý - SXoj )2 j=1,..., M 
(4.15) 

L-1 ;., 

The mean frequency and the half bandwidth of the ensemble averaged spectra, SXaj, are also 

computed 

M SXo* 
foo =fM (4.16) j-1 SXoi 

j- i 

SX 
$00 =X` fj 

-J 00 
)2. 

MO, 
(4.17) 

j. l 
E SXOj 
j-1 

The above defined statistics are illustrated in Fig. 4.1. 
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Fig. 4.1: Ensemble of Doppler spectra and the statistics employed. 

After defining this set of estimators some ways of measuring the difference between the 

estimated and the exact values of the spectral parameters mean frequency and half bandwidth 

must be defined. 

So, if we consider the definitions of bias, variance and mean squared error of an estimate S 

of a spectrum S(f) as given by, 

BIAS[ S(f)] 
=E[S(f)] - S(f) (4.18) 

VAR[S(f)l = E[ S(f)-E[S(f)] ]2 (4.19) 

MSE [ S(f) ]=E[ S(f) 
- S(f) ]Z (4.20) 

= VAR [ S(f) ]+ BIAS2 [ S(f) ] 
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[12], we may think of computing the mean squared error of both the estimated mean frequency 

and half bandwidth as follows: 

- mean frequency: 
L 

BIAS 
(4.21) 

VAR [fo]=E[fo-foo]2 = sd(f. o)2 
MSE[fo] =VAR [fo]+BIAS[fo]2 

- half bandwidth: 

BIAS[a10] =1 Eaio-b = aoo-b L '"' (4.22) 
VAR[a; o]=E[a; o-aoo]2 = sd((700)2 
MSE[a; o] = VAR [a. o]+BIAS [aio]2 

where and b stand for the theoretical values of mean frequency and half bandwidth 

respectively. 

It is realized that the use of f00 and ß0o as estimators of the ensemble averaged spectral mean 

frequency and half bandwidth estimators, is not the most accurate way of drawing conclusions 

about these population parameters. However the use of foo and ßoo enabled the establishment of 

a clear relationship between the size of the ensemble and the parameters' behaviour (relationship 

not evident if foo and O'oo were employed). 

4.4. SOFTWARE IMPLEMENTATION 

The generation of an ensemble (of variable size) of Doppler signal simulations, using algorithm 
2 signal simulator (see Chapter 3) was software implemented in a program named STENS. 

The software program STENS, was written in FORTRAN 77 [69] and made use of routines 

of the NAG software package [70]. It was implemented on a VAX 8600 with an operating 

system VMS V5.3. 

The user is led to input the necessary parameters by following a menu. Two choices of signal 
spectral shapes are presented. If the parabolic plug profile is selected, the user is asked to input 

the maximum frequency of the spectrum and the profile constant (n=2). In case of a Gaussian 
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spectral shape, the mean frequency of the signal, the half bandwidth and the threshold spectrum 

value, are required. 

For both choices of spectral shape, the user is asked to enter the sampling frequency and the 

data sequence duration. The software program computes the product ff. T and automatically 

adjusts the data sequence duration so that the number of points of the signal (N) becomes a 

power of two. If by mistake N is greater than the maximum value allowed to its correspondent 

variable, the program warns the user and enables him\her to reenter the values of f, and T. 

The user specifies the number of simulated Doppler signals that he\she is interested in. With 

this number, the software program computes the smallest power of two that is bigger than L (this 

is, the size of ensemble), say LC. Then, a 'long' signal with a number of points equal to NC= 

fs. T. LC = N. LC is created. Thus, the frequency resolution of this signal is at least L times 

smaller than the frequency resolution of the signals which are used to estimate the PSD (this is, 

f)N), and, at the same time, the effects of window broadening are reduced to negligible levels. 

Each sample of the ensemble of Doppler signal simulations is stored in a data file. At the 

same time, a file containing the ensemble characteristics (size of ensemble, sampling frequency, 

mean frequency, half bandwidth, and data sequence length) is also created. 

To study the influence of the size of ensemble on the estimated spectral variance, the PSD 

of the pulsed Doppler ultrasound signal simulations has been estimated using a Fourier transform. 

This was implemented in a software package named ANENS, also written in FORTRAN 77 

using the same operating system. 

ANENS allows the user to input the Doppler signal simulations by selecting the code name 

of the data files (Eg. those created by STENS). The size of the ensemble also need to be input. 

For the purpose of validating the signal under analysis, the software program instructs the user 

to enter the signal's specifications, and checks their accordance with the data files. 

At this stage of the work ANENS enabled the application of either Boxcar or Hanning 

window to the Doppler signal simulation, followed by Fourier transformation. 

The signal simulations' estimated PSD - SX; j ( i=l,..., L ; j=1,..., M) - and the ensemble 

averaged spectrum - SX0J (j=l,..., M - are used by ANENS software package's statistical routine 

to compute the parameters presented in Table 4.1, as well as the measurements of error described 

on (4.21) and (4.22). 
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ensemble mean freq. foo (4.10) 

averaged spec. mean freq. 'oo (4.16) 

st. deviation of f; o sd(f; o); (4.12) 

ensemble half bandwidth (Too (4.11) 

averaged spec. half band. aý (4.17) 

St. deviation of ß; o sd(ß; o)i (4.13) 

Table 4.1: Statistical parameters computed by ANENS and respective equation numbers. 

A graphics option using the GINOGRAF software package [71] is included in ANENS. A 

normalized theoretical spectral curve is plotted against a normalized ensemble averaged spectrum 

to allow comparison of both spectra. Both normalizations are performed with respect to the 

Euclidean norm of the respective vectors. 

Subject to the choice of the user, the standard deviation of the ensemble averaged spectrum 

(see (4.15))' may or may not be plotted. If plotted, it is represented by two curves (normalized 

with respect to the 2-norm of the vector representing the ensemble averaged spectrum values), 

surrounding the ensemble averaged spectrum, as result of the operation 

SX1oj±sd(SX'0 ) 

where SX'oj stands for the normalized ensemble averaged spectrum. 

(4.23) 

In summary, ensembles of Doppler signal simulations were created by the software package 
STENS and statistical parameters of their spectrum were computed by ANENS. 

4.5. RESULTS 

As a common feature, all simulations of the Doppler signal presented very low amplitudes. As 

an example, a signal simulation with mean frequency 1kHz and half bandwidth of 100Hz had 

amplitudes of the order of 10'04 - 10"0S which were 100 times smaller than the amplitudes of a 

signal simulation with same characteristics but created for only one sample (L=1). 

This discrepancy resulted from the generation procedure of a 'long' signal. Recalling what 
has been said in section 3.2.2 (last chapter) algorithm 2 creates first the spectrum of the Doppler 

signal and then by application of an inverse Fourier transform the time-domain simulated signal 
is obtained. As by definition the inverse Fourier transform divided the time-domain signal by the 
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number of points that constitute the signal, which in the case of a 'long' signal is NC, each lOms 

segment of the Doppler signal simulation (with N points) was scaled by a factor N/NC. 

A maximum of 150 samples of each Doppler simulation case were created, and fifteen 

different cases were studied. The term 'simulation case' stands for a certain specification of mean 
frequency and half bandwidth. The correspondent sampling frequency is subject to the constraints 

stated earlier (chapter 3, section 3.2.4). The data sequence duration is always made equal to 

lOms. 

The allowed mean frequencies varied from 500Hz up to 8kHz in octaves. For each mean 

frequency there were three values of half bandwidth : 5% , 10% and 20%. 

Each signal simulation case was analyzed using ANENS. 

The joint graphical output of theoretical and ensemble averaged PSDs showed that the 

spectrum obtained presented mean and variance values following the mean and variance 

theoretical values (expressed in (4.7)) of a Chi-square distribution with two degrees of freedom. 

The theoretical spectral profile was multiplied by a factor of two (in accordance with (4.7)), so 

that the ensemble averaged and the theoretical spectra were appropriately scaled. 

The upper curve of the standard deviation of the ensemble averaged spectrum, SX'oj (see 

(4.23)), was found to be approximately double the one of the scaled theoretical spectrum, which 

again is in accordance with the relationship (4.7). 

These features were evident in all signal simulation cases. As an example some ANENS 

graphical outputs are presented. 

Fig. 4.2 (a) and (b) show that for a mean frequency of 1kHz and a half bandwidth of 100Hz 

only seven frequency bins constitute the standard deviation on the frequency range of the 

truncated Gaussian curve. 
In the case of a simulated signal with 500Hz as mean frequency, the number of points inside 

the range [fmm , fmax] is even smaller; for a half bandwidth of 5% it was just three points. 
A spectral estimate build up from such a lower number of frequency bins is not 

recommended, specially if statistical conclusions have to be drawn. 

On the other hand it was not possible to increase this number of frequency bins since they 

were dependent on the threshold value established (see Chapter 3) and a reduction of the 

threshold value would result in aliasing problems in the spectrum of the simulated signals with 
b=0.2fß. 
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Therefore to assure the overall conditions of the Doppler signal simulation we considered 

only those with 9 or more frequency bins inside the range [f,,,,, , 
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Fig. 4.2: Ensemble averaged spectrum of a pulsed Doppler ultrasound signal simulation 
with (a)-(b) f,: =]kHz, b=0.1fß Hz, fS=6.4kHz, (c)-(d) f,, =8kHz, b=0.2fß Hz, fS=26kHz, all with 
T=10ms, and values of sizes of ensemble of 20 ((a) and (c)) and 150 ((b) and (d)). The vertical 
and horizontal axis represent respectively the normalized (see section 4.4) PSD, and the 
frequency in Hz. The '+' symbols represent the normalized standard deviation of the ensemble 
averaged spectrum (see (4.23)). 

As a guideline, Table 4.2 shows the parameters of the signal simulation cases considered. 

This table includes the specification of the sampling frequencies used on each type of signal, and 

for each half bandwidth, the respective range [fmin 
, 

fmaxl and correspondent number of frequency 

bins 
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f. 

(KHz) 

b 

(Hz) 

f, 

(KHz) 

fmin 

(Hz) 

fm�x 

(Hz) 

freq. bins in 

[fm; 
ý>fm_J 

1.0 100 6.4 570.8 1429.2 9 

200 141.6 1858.4 17 

100 1570.8 2429.2 9 

2.0 200 
. 
12.8 1141.6 2858.4 17 

400 283.2 3716.8 35 

200 3141.6 4858.4 17 

4.0 400 25.6 2283.2 5716.8 35 

800 566.5 7433.6 69 
400 6283.2 9716.8 35 

8.0 800 51.2 4566.5 11433.6 69 
1600 1132.9 14867.1 137 

Table 4.2: Characteristics of pulsed Doppler ultrasound signal simulations to be employed. 

The values of bias, variance and mean-squared error for both mean frequency and half 

bandwidth were analyzed for ensemble sizes from 10 to 150 in decade increments. 

As an example, the statistical values obtained for a signal simulation with a mean frequency 

of 8kHz, a half bandwidth of 1.6kHz, sampled at 25.6kHz, and, T=9.8ms, are presented on Table 

4.3. 

By analysis of the numerical values of the Table 4.3, it is obviously difficult to determine a 

size of ensemble above which the measurement errors assume values of the same order of 

magnitude. 
At the same time, comparison of the development of these statistics with L seemed to be 

more reasonable, if the measurement values presented to the user assumed the form of percentage 

relative values. 
Therefore the software package ANENS was slightly modified to incorporate new statistical 

calculations. 
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size of 
ensemble 

Bias 
of f; o 

Var 
of fo 

MSE 
of fo 

Bias 
of ß; o 

Var 
of ß; o 

MSE 
of ß; o 

10 9.7 1492.6 1586.7 -11.1 337.1 460.3 

20 1.6 1422.3 1424.9 7.5 633.3 689.6 

30 0.2 1344.8 1344.8 4.8 696.4 719.4 

40 -2.1 1491.0 1495.4 4.6 613.4 634.6 

50 2.5 1717.3 1723.6 3.9 548.4 563.6 

60 -1.7 1516.8 1519.7 -5.4 530.3 559.5 

70 -1.0 1355.6 1356.6 -6.6 551.1 594.7 

80 0.7 1473.7 1474.2 -6.6 530.8 574.4 

90 1.0 1532.2 1533.2 -5.1 579.7 605.7 

100 0.1 1513.3 1513.4 -4.1 552.7 569.5 

150 2.5 1515.8 1522.1 -4.7 593.9 615.9 

Table 4.3: Statistical characteristics of the spectrum of a simulated pulsed Doppler 
ultrasound signal windowed by a Boxcar window. The signal has Gaussian spectral profile with 
f, =8kHz, b=1.6kHz, fj 26kHz and T=9.8ms. 

Equations (4.21) and (4.22) became measures of percentage relative values, calculated as 

shown in the following set of equations for the mean frequency estimator. For the half bandwidth 

estimator, symbols fo and f, are substituted by ß; o and b, respectively. 

RBIAS [ f. o ] =BIAS 
[f o]f, 

. 100 

VAR [fo] (4.24) 
RSTD [1o] _f . 100 

RMSE [fo] =RBIAS[fo]+RSTD [fo] 

Attention must be drawn to the fact that the calculation of the measurement RMSE[f o] in 

(4.24) was achieved by simply adding the percentage relative values obtained for bias an standard 
deviation of the estimators. The relationship (4.20) is not maintained. However, since this 

measurement is representative of the joint contribution of bias and standard deviation, it will be 

used and named in the following text (for simplicity) by percentage relative mean squared error. 
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For each different signal simulation case and for the different values of L considered, the 

values of percentage relative bias, standard deviation and mean-squared error for both mean 

frequency and half bandwidth spectral estimators, were taken and stored in software data files. 

This procedure was repeated an arbitrary five times for each signal simulation case. The data files 

were imported into a software program written in MATLAB [78] on a SUN system, which 

enabled the output of graphs such as those presented on Fig. 4.3. 
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Fig. 4.3: Results of percentage relative bias, standard deviation (std), and mean squared error, 
(mse) of (a) and (c) mean frequency and (b) and (d) half bandwidth estimators when five Fourier 
transformed simulated Doppler signals windowed by Hanning windows were analyzed. Signal 
characteristics: (a) and (b) ff=1kHz, b=200Hz, f, =6.4kHz, and (c) and (d) ff=8kHz, b=800Hz, 
fS=51.2kHz, (T=10ms both). 
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Fig. 4.3 show a wide range of variability on the values of the statistical measurements among 

the five simulation cases considered. This range becomes smaller as the mean frequency of the 

signal increases, this is, as the length of the spectra increases. 

As the mean squared error is computed from the bias and the standard deviation, a general 

view of the behaviour of both estimators mean frequency and half bandwidth is possible by 

analysis of the percentage relative mean squared error. 

To summarize the results obtained for all signal simulation cases considered, an average over 

the five samples of the percentage relative mean squared errors was computed for each signal 

simulation case. Fig. 4.4 illustrated these average values. 
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respectively. 

Analysis of the results expressed on Fig. 4.4, and regarding the fact that each signal 

simulation case actually presents variations such as those presented on Fig. 4.3, a value of 150 

for the size of the ensemble for signal analysis seems to represent reasonably the compromise 

between an almost uniform statistical results and a not extremely large ensemble (to avoid high 

computational burden). 

The PSD estimates presented were obtained using a Boxcar or Hanning windowed Doppler 

signal simulation. It is known that the energy spectrum of a Boxcar window is a sing squared 
function, which is not integrable over the range ]-oo, +oo[ and therefore the concept of a root mean 

squared bandwidth (see (3.6) in last chapter) for a Boxcar windowed signal is meaningless. 
However we obtain finite mean squared bandwidths since the frequency range of the analyzed 
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spectrum is truncated. Thus, the spectral results obtained with a Boxcar windowed signal are 
included in the interest of completeness. 

Another feature analyzed was the effect produced on the spectrum of the Doppler signal 

simulation when a shift on the mean frequency of the signal was applied. It is generally accepted 

that any sampled spectrum with even symmetry is sensitive to shifts of its central axis of 

symmetry. That sensitivity is manifested by an increase in the bias of the estimator of the central 
frequency. 

The spectrum of a pulsed Doppler ultrasound signal with Gaussian spectral profile is an even 

curve centred on its mean frequency. Thus two types of signal were tested as elucidative 

examples of the behaviour of bias to this feature. A signal simulation with mean frequency of 

1kHz and a half bandwidth of 100Hz (10% of f, ) and another signal with 4kHz of mean 

frequency and a half bandwidth of 800Hz (20% of ff) were arbitrarily chosen. A shift of the 

frequency samples of a quarter of the frequency resolution was considered in each case. 

Again an ensemble of signals was used and five different ensemble averaged spectrum for 

each signal simulation case were analyzed. 

In fact, no significant changes in mean frequency bias were observed. 

4.6. CONCLUDING REMARKS 

The procedure developed in Chapter 3 to create a simulation of a pulsed Doppler ultrasound 

signal, was adapted to enable the use of an ensemble averaged Doppler signal simulation in the 
following stages of this research work, the study of spectral estimation techniques. 

A statistical characterization of the squared magnitude of the obtained spectrum was 

theoretically developed and confirmed by the practical results obtained. 
Analysis of the number of frequency bins that effectively constitute the range of the estimated 

Gaussian spectral profile show that for signal simulations with low mean frequency values, this 

number is very small. Since we are interested in drawing statistical conclusions (as accurate as 

possible) from the estimated spectra, and, tacking into account the limitations imposed on the 

signals' specifications, only signal simulation cases with a number of frequency bins greater than 
9, were considered. Thus, the signal simulation cases with mean frequencies of 500Hz, for all 
bandwidths, and, the case of mean frequency of 1kHz and half bandwidth of 5% were no longer 

considered on this study. 
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Measures of performance of the spectral parameter estimators mean frequency and half 

bandwidth were described, namely, bias, standard deviation and mean squared error, assuming 

the form of percentage relative values. 
These metrics were software implemented and results were taken from spectra obtained by 

Fourier transforming windowed Boxcar and Hanning Doppler signal simulations. 

The results obtained for several different signal simulation cases were analyzed. The average 

of these statistical measurements over five samples of each signal simulation case, enabled the 

selection of a size of ensemble of 150, as a suitable compromise between the computation burden 

of large ensemble number and resultant variance values from finite ensemble size. 

With the spectra and sampling frequencies considered, the ensemble averaged spectrum is 

insensitive to small shifts (of a quarter of the frequency resolution) in the mean frequency value 

of the spectrum. 
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CHAPTER 5 

Spectral Estimation: Methods and Selection 

5.1. INTRODUCTION 

The primary objective of this research work is the selection of methods or if possible the 

selection of a method of spectral estimation which best estimates the spectrum of a pulsed 

Doppler ultrasound signal with Gaussian spectral profile. 

Extensive research in the last few years has been carried out in the spectral estimation field, 

particularly investigating the applicability of parametric models. 

Classical methods of spectral estimation based on the application of Fourier transforms are 

recognized in literature as limited. Accused of being very weak in frequency resolution, and of 

suffering from inherent leakage due to window effects, some of these methods will be considered 

in this study for comparison. 

Parametric model estimation requires a previous knowledge of general behaviour of the signal 

to be estimated. Tacking in account the particular signal under investigation, some pre-selection 

of methods was carried. These methods were applied to the signal and 'their spectrum analyzed. 

Another non-parametric but non-classical method of spectral estimation, 'the minimum 

variance method was also investigated. 

Measures of bias and standard deviation of estimators spectral mean frequency and half 

bandwidth estimators were obtained for the different spectral estimation methods applied. 
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The meaning of 'best' spectral estimation was considered. A selection criteria has been 

developed to reflect the constraints and objectives of the user. 

5.2. SPECTRAL ESTIMATION THEORY 

5.2.1. Basics 

Parametric methods basically consists of three steps. The first step is the selection of the suitable 

parametric time-series model to fit the measured data. Next, the parameters of the assumed model 

are estimated, and finally, an estimate of the spectrum is obtained by substitution of the 

estimated model parameters into the corresponding theoretical PSD. 

Most of the discrete-time processes encountered in practice may be approximated by a time- 

series model represented by a filter linear difference equation 

9 

x[n] _-E a[k]. x[n-k] +E b[k]. u[n-k] (5.1) 
b. l k-0 

where x[n] denotes the output sequence of the filter, with an input sequence u[n]. 
The z-transforms [37] of the output and of the input are related by the rational transfer 

function 

H(z) = 
X(z) 

= 
B(z) 

U(z) A (z) 

where A(z) (considering without loss of generality a[0]=1) and B(z) are the polynomials 

P 

A(z) = 1+E a[k]. z-k 
k- I 

4 

B(z) _E b[k]. z4 
b. 0 

(5.2) 

(5.3) 

(5.4) 

It is assumed that all zeros of A(z) are inside the unit circle of the z-plane to assure stability 

and causality of H(z). The parameters a[k] and b[k] represent the filter model parameters. 

The output sequence may alternatively be represented by the convolution of the input 

sequence with h[n] 
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x[n] _E h[k]. u[n-k] (5.5) 

t. o 

where h[k] is the impulse response defined as 

h[k] = Z'' [H(z)] (5.6) 

where Z''["] is the inverse z-transform of function ". 
Writing (5.2) in the form 

H(z) = 

b[k] 
k. 0 (5.7) 

P 

1+ Ea[k]. z'' 
k. l 

illustrates the idea of the pole-zero process that characterizes the autoregressive-moving average 

model. Thus it is generally referred to as ARMA(p, q). 

If q=0 and b[0]=1, 

H(z) = 
1 

P 

1+Ea [k] . z"k 
(5.8) 

we have the all-pole model or, as usually termed, the autoregressive model of order p, AR(p). 

A value of p=0, leads to the all-zero model or, moving-average model of order q, MA(q) 

9 

H(z) = Eb[k]. z4 (5.9) 

It is possible to establish the relationships between the filter parameters and the 

autocorrelation sequence either by taking the inverse of the z-transform of the power density 

spectrum, or directly from the time-series model [17]. 

The development of these relationships may be found in general books of spectral analysis, 

such'as Proakis and Manolakis [37], Kay [17], or Marple [32]. The relationship between the 

ARMA parameters and the autocorrelation sequence rxx[k] of a process x[n] is 

`ý 
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Ir, [ -k] k<O 
P4 

r [k] - 
-Ea[i]. rJ([k-i] + cY . 

Eb[i]. h'[i-k] OSk<_q 
t-I i-k 
p 

-ý a[i]. r[k-i] k>q 
I ý, 

The equivalent equations for an AR process are obtained by setting q=0, 

Irte[ 
-k] k<O 

r 
[k] 

= 
rte[-i] + ßü k=0 

P 

-E a[i] .r [k-i] - k>O 
i-i 

leading to the so called Yule-Walker equations [32]. 

Usually these linear relationships are written in the matrix form 

r,, [0] r[-1] ... rte[-(p-1)] 

I Ia[1] 
[1] 

[1] ri[p] ".. r[-(P-2)] a[2] xx[2] 

ii ý" iii 

r. [P-1] r [P-2] .. " rß[0] j La[P] [P] 

(5.11) 

(5.11) 

(5.12) 

The square matrix (p*p) of autocorrelation values is designated the Autocorrelation matrix, 

R,, and has the properties of being Hermitian ([R, 1]H=R. 
), Toeplitz since the elements along any 

diagonal are equal, and positive semidefinite or even positive definite if x[n] does not consist 

purely of p-1 or fewer sinusoids [321. 

These properties of R. provides us the facility of solving (5.12) using computational efficient 

algorithms such as the Levinson algorithm, with complexity (asymptotic number of flops required 
(see section 5.3.3)) O(p2) [17], [32]. 

If we now evaluate (5.10) for p=0 and noting that h[k]=b[k] for 1: 5kSq, the relationship 
between the ACS and the MA model parameters is given by (5.13) [32] 

rL[ -k] k<0 

[k] = 6? Eb[i]. b'[i-k] 0<_kSq 
(5.13) 

i-k 

0 k>q 
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The above relationships between the ACS and the ARMA and MA filter parameters include 

nonlinearities due to the unknown input driving sequence u[n]. The Wold Theorem states that any 

ARMA or MA(AR) process may be represented uniquely by an AR(MA) model of infinite order 

[37], and may often be closely approximated by an AR (MA) model of an order not too much 

greater than that of the process being approximated. 

Therefore, the choice of an AR model seems to be more attractive. Since its computational 
burden is less than that of an MA or an ARMA model, sometimes it is advisable to estimate the 

parameters of an AR model and afterwards compute the parameters of the desired model using 

those already obtained by the AR model as first approximation of the model parameters [32]. 

After computing the model parameters estimates the spectral estimate may be obtained by 

insertion of the estimated parameters into the power density spectrum expression appropriate for 

the chosen model. 
The PSD of an ARMA process is given by 

z 
Pu. ) 6ü, 

B(z) (5.14) 

where f. =f/f, represent the normalized frequency (f¬ [-1/2,1/2]). 

5.2.2. Parametric Methods: Autoregressive spectral estimators 

When dealing with AR processes the general modelling theory described in section 5.2.1 may 

be equivalently explained in terms of linear prediction theory and lattice filter theory. 

Some of the AR spectral estimation methods employed are algorithmically developed taking 

advantage of the affinity between these three approaches. Therefore a brief explanation of the 

subject will help in understanding the spectral estimation methods investigated. 

The linear prediction problem is concerned with the prediction of unobserved data x[n], 

assuming that x[n] is an AR process. 

The forward linear prediction estimate is defined as 
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k 

. RJ[n] = -E af[i] . x[n-i] (5.15) 
i-I 

where a[i] are the forward linear prediction coefficients, and superscript f denotes forward 

prediction. The prediction x`[n] is based on the observed sequence {x[n-1], x[n-2], ..., x[n-k]} of 

the last k samples. 
A measure of the quality of this estimate is given by the forward linear prediction error 

e1[n] = x[n] -. ff[n] (5.16) 

which is frequently used in practice in the form of a mean squared error, computed as 

g(I ef(n) 1z) = Jr[ jX[n] -If[n] I2) = pf (5.17) 

The quantity pt is termed the power of the forward prediction error. Analysis of the statistics 

of p` allows its decomposition into the variance of the estimator R[n] and its bias [32]. 

If we can assume z'[n] to be unbiased, pt is only a measure of variance. 
Our interest is to compute the parameters at[i] that will produce the best approximation xf[n] 

of the sequence x[n]. 
Matrix algebra theory suggests that in this situation the method of uniquely assigning values 

to af[i] is the computation of the minimum of pf [32]. 

Hence, developing (5.17) after substituting xf[n] from (5.15), and assuming x[n] as a WSS 

process, we come to the conclusion that the vector af[i] which minimizes the variance pf is 

obtained by solution of the matrix, system 

gy[p] rte[ 1] ... rr[k] 1 Pf 

r[1] r[p] ... rr[k-1] af[1] p (5.18) 

Iii "% ii Iii 
Lrk1 rJk-1] ... rte[p] Lafki] Lo] 

where the equivalence rxx[-k]=rxx [k] [32] is employed. This system presents similarities with the 

Yule-Walker equations for an AR process, and is very useful in understanding the subsequent 

algorithms. 
It should however be noticed that distinct interpretations are given-far the input and output 

sequences of the filter. Considering the modelling approach, u[n] is the input white noise process 
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of an autoregressive filter with x[n] as output, while considering the linear prediction theory, the 

error sequence ef[n] is the output of a forward linear prediction filter with x[n] as input. Only 

when x[n] is an AR(p) process, and k=p does e`[n] become a white noise process [79]. 

The backward linear prediction estimate e[n] is defined in a similar form as At[n] but basing 

the prediction at time index n on k later samples. 

k 

jb[n] _ -Eab[i]. x[n+i] (5.19) 

The parameters ab[i] are called backward linear prediction coefficients evaluated at time i. 

The backward linear prediction errors eb[n] are defined by 

eb[n] = x[n-k] _2b[n-k] 
(5.20) 

and the power of the backward prediction error is 

pb = ý[ eb[n] 1'] (5.21) 

Analogously, the computation of the sequence ab[i] that minimizes pb, is obtained by solving 

the system 

rß[0] r, ß[1] ... rr[k] ae[k] 0 

[1] r[0] ... r, [k-1] 0 (5.22) 
t1 "% i ab[1] i 

r, [k] r[k-1] ... [0] 1 
tPb] 

which again involves an Hermitian Toeplitz autocorrelation matrix [32]. 

When solving (5.18) and (5.22) the following properties are verified 

Pb= Pf (5.23) 
ab[i] = (af[i])' 

for 15i: 5k, which means that for prediction filters with same length k the backward linear 

prediction coefficients equal the complex conjugate of the forward linear prediction coefficients 

[32]. 

The other possible representation for an autoregressive process is the lattice filter 

representation. 
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In this approach either the forward and the backward prediction errors are functions of both 

prediction errors, and the parameters in use are the reflection coefficients, Kk. 

The reflection coefficients equal the linear prediction coefficients ak[k] for 1 p, where the 

ap[k] are the final approximations of the linear prediction coefficients. The reflection coefficients 

are commonly used as the negative normalized correlation coefficient between the forward and 

the backward linear prediction errors with one unit of delay [32] 

Kk. - 
-9[ek l[n] " (ek ý[n-1])' ] 

(5.24) - 
9[j2 ek. [nl I2] Fg[lek-, 

[n-11 11 

Development of the numerator of this equation enables the establishment of I Kk 1 51 for 

1p, which constitutes a necessary and sufficient condition for the autocorrelation matrix to 

be positive semidefinite [32]. 

The linear prediction errors are recursively computed as 

e([n] = ek l[n]+Kk. ek , [n-1] (5.25) 

e* [n]= ek i[ n-1 ]+K;. of [n] (5.26) 

with initial conditions x[n]=eo1[n]=eo [n]. 

So we may briefly summarize the possible AR(p) processes representations as: 

a) the infinite-duration autocorrelation sequence. This sequence has in fact only p+l 

samples, (r [0], r1 [1], ..., rxx[p]}, as the other samples may be obtained recursively. 
This finite set of ACS values defines a positive definite sequence, enabling the 

application of fast computational algorithms to solve the Yule-Walker equations. 
b) the finite sequence of autoregressive parameters (pp, ap[1], ap[2], ..., ap[p] } obtained 

by minimization of the power of the prediction errors, which will produce a minimum 

phase polynomial 

A(z) =1 z'' (5.27) 

C), the finite sequence of reflection coefficients (rxx[O], k,, k2, ... ) kp} which provide 
Kk I <1 and pk>0 for 15k-<p. 
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The description of the AR spectral estimation methods employed which follows, although 

commonly found in many publications in the area, seemed to be a useful complement in this 

study. 

A. Yule-Walker Method 

The Yule-Walker method is commonly termed the Autocorrelation method since it is based on 

the solution of the system of equations involving the autocorrelation matrix 
Equation (5.12) is computed for estimated values 

U01 U-11 ... pes[-(P-1)] 6[1] pß[1] 

P[1] [0] ... r"j-(p-2)] ä[2] P, I2] 

FF *% FiF 

p [p-1] P[p-2] ... P [0] ä[p] r(p] 

where the biased ACS ? xx[k] 
for lag k is given by 

1 
N P [k] .= 

N-1-k 

E x'[n]. x[n+k] k=0,1; ""p 

(5.28) 

(5.29) 

PL[-k] k= -(p-1), -(p-2),.. ", -1 

System (5.28) may be solved by various algorithms, but Levinson algorithm is usually the 

selected algorithm since it enables a computationally fast solution. This algorithm enables the 

computation of the reflection coefficients {kl, k2,..., kp} given the autocorrelation sequence values 

and the desired model order [17]. 

Regarding the application of the Levinson algorithm the solution of the Yule-Walker 

equations may be expressed in terms of the minimization of the prediction error power 

1. ix[n] +E a[k] . x[n-k] 12 

where for n<O and n>N, x[n] is made zero. 

The estimate of the white noise variance & is 

(5.30) 
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D 

P [0] +E ä[k]. P, [-k] (5.31) 
k-1 

which is given in the last step of the Levinson recursion as 

P 

8'2 =1 [0]II(1-JA 12) (5.32) 

i-ý 

The resolution of the spectral estimates obtained with this method are the poorest of this class 

of spectral estimation methods [171, specially if short data records are used [40]. 

The ACS values computed are biased estimates, producing in general model parameter 

estimates which lead to transfer functions with poles located inside the unit circle. The unbiased 

version of the ACS frequently produces singular autocorrelation matrices, and is not 

recommended [17]. 

B. Burg Method 

This method, originally proposed by Burg as a maximum entropy algorithm, was later interpreted 

as a constrained least squares minimization algorithm [35]. 

The model parameter estimates are obtained by minimization, for each model order k, of the 

arithmetic mean of the forward (p k) and backward (pbk) prediction error powers 

N-1 
f11 
k= T-7 .EI x[n] + ak [i] . x[n-i] I2 =Nk"EI ek [n] 12 (5.33) 

N-1-k k N-1 
b1 Pk = N-k .EI x[n] +a [i] . x[n+t] 12 = Nl k"E 

(ex [n] 12 (5.34) 
n-k 

where the prediction errors, ert[n] and ekb[n], computed over the available data only, are 

recursively obtained as functions of the k"' reflection coefficient, 
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N-1 

-2. l[n-1]. eLl[n]. ek- 

1ý - "'k (5.35) 
k 

(I eL 1[0] 
12 

+I 
I2) 

n-k 

by the relationship, 

ek[n] = ek 1[n] +kk, ek 1[n-1] n= k+1, k+2,..., N-1 (5.36) 
ek [n] = ek 1[n-1] + Rk 

. ek 1[n] n=k, k+1; "", N-2 

The averaged prediction error power, pk=(p k+pbr)/2, may be simply expressed in terms of 

the last estimate Ak. l as 

ýk - ý1-IKk1Z)"fýk-i (5.37) 

making clear the fact that the parameter estimates are constrained by the previously obtained 

parameter estimates [17]. 

The AR model parameter estimates are updated recursively as functions of the reflection 

coefficient estimates Rk, 

&k_, [i] + 12k. ä 
(5.38) 

Kk i=k 

where for k=1 ä1[1]=K1. 

The final AR parameter estimates are {a [l], ä, [2],..., ä[p]} and the white noise variance is 

made equal to the prediction error power for lag p. 

The constraint imposed by Burg ensures that the AR filter poles are within the unit circle (to 

achieve stability of the filter) [35], however the constraint seems to produce problems such as 

spectral line splitting, specially for narrowband signals [11], and bias of the frequency estimate, 

which do not occur when a non-constrained minimization of the same expression of averaged 

prediction error power is used [32]. 
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C. Modified Covariance Method 

The modified covariance method as the name suggests results from a modification on the 

covariance method. 
The covariance method computes the model parameter estimates by minimizing the following 

expression of prediction error power 

= Ni x[n] +E a[k] . x[n-k] (5.39) 
p n-v k-1 

This expression, coincident with the forward prediction error power used in the modified 

covariance method, differs from the one employed in Yule-Walker method only on the range of 

the outer summation. In (5.39) only (N-p) lag products are used to compute the ACS, although 

there are more, and in (5.30) zeroing of data is assumed for n<0 and n>N. So, both Yule-Walker 

and covariance methods make use of a truncated autocorrelation sequence which is the cause of 

some smearing of the spectra. 

The modified covariance method makes use of all the available data samples by considering, 

as the Burg method, the minimization of the arithmetic average of the forward and backward 

prediction error powers 

p= 2"( of + A' ) (5.40) 

where (5f is given by (5.39) and pb is 

ý3 6= 
Nl 

E x[n] +E a'[k] . x[n+k] (5.41) 
P ', -o k-i 

This approach involves the optimal forward and backward prediction estimates as expressed 
in (5.15) and (5.19) respectively. 

ßa,, is obtained by solution of the modified covariance equations 

cß[1,1] c, ß[1,2] """ c, [1, p] 6[1] cß[1,0] 

c, ß[2,1] , 
[2,2] ... c, [2, p] ä[2] c, ß[2,0] (5.42) 

i iý "ý "i ýt 
LC. [P, c [p, 2] ... c [p, p] O[P] c, Jp, O] 

x -j 

97 



Spectral Estimation: Methods and Selection Chapter 5 

where the matrix, called the covariance matrix, is Hermitian and positive definite [17]. Each 

element of the matrix is computed as 

1 N-1 N-I-p (5.43) 
c[i, j] Ex'[n-i]. x[n-j] +E x[n+i]. x'[n+j] 2. (N-p) n. p n. 0 

The AR model parameter estimates are obtained by solution of the linear system (5.42) using 

for instance Cholesky decomposition [17] [32]. 

The estimate of the white noise variance is obtained as 

P 

c [O, O) 
,+ 

d[k] . cJO, kl (5.44) 

Phenomena such as spectral line splitting, false shifting of frequency peaks and peak location 

dependence on initial phase have not been observed on spectral estimations obtained with the 

modified covariance method [17], and in particular this method is better than the Burg method 

which does exhibit spectral line splitting. A possible cause of such a behaviour is the fact that 

this method performs a minimization of the prediction error power pr with respect to all 

prediction coefficients rather than just to the a,,. l[k-1] as does the Burg method [32]. 

However the removal of the constraint no longer guarantees the filter stability, although most 

of the time the method is stable [80]. 

Another advantage of the modified covariance method is the fact that for a model order much 

smaller than the number of data points (N), the computational efficiency of the modified 

covariance algorithm approximates that of a Burg algorithm with the same model order [32]. 

After having computed the model parameter estimates, using any of the above methods, Yule- 

Walker, Burg, or, modified covariance, the estimates of the power spectrum are obtained using 

the estimates ä[k] for k=1,2,..., p in the expression 

A 62 
PAR (f") _+e 

-jsnl. + +a [P] e i2zlaI2 
(5.45) 

ý1 d[1]... " . 

where fo represents the normalized frequency f/ft. 
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5.2.3. Parametric Methods: Moving Average Spectral Estimators 

The power density spectrum of a moving average process may be represented by (5.46). 

q 

1MAL fns =E r[k]. e; znjk 
k. -q 

Iq 62 .E b'[! ] . b[l+k] 
for rjk] _ k. -q 

rte[-k] 

k=0,1; "", q 
(5.46) 

PmA(f) is obtained by Fourier transforming the ACS evaluated at lags -q<q, which makes 

this approach very similar to a Blackman Tukey spectral estimation. The process is assumed to 

be a MA process with zero theoretical ACS values for lags outside the range [-q, q], while in the 

Blackman Tuckey periodogram the unmeasured ACS samples are forced to zero [17]. 

The difficulty of solving the nonlinear system to obtain the ACS lead to other means of 

computing the MA spectral estimate. 

The Durbin's method exploits the possibility of computing the MA parameters by an AR 

process of very high order, as stated by the Wold's theorem [17]. 

Durbin Method 

A MA(q) process may be represented by the data sequence 

9 

x[n] =E b[k] . u[n-k] (5.47) 
k-0 

which is equivalent to 

x[n] = -ý a[k]. x[n-k] + u[n] (5.48) 
k-1 

of an AR(-) process, if a[k] constitute the impulse response of A(z)=1/B(z). 

The general idea is to replace the MA(q) process by an AR(L), with q«L«N, that 

approximates the impulse response of 1/B(z), which decays to zero for index values greater than 
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L. This will lead to AR(L) parameter estimates {a[1], ä[2],..., ä[L]}, and an estimate of the 

white noise variance computed as 

L 

62 =P [O] + ä[n]. ä [n+i] (5.49) 

The parameter estimates are fed to an AR(q) filter as input data and the resulting parameter 

estimates are the MA(q) parameter. estimates, this is, {b[1], 6[2],..., &[q] }. 

This way the MA parameter estimates represented as b are obtained by the product 

Sb = -' pI.? (5.50) 

where R,; 1 is the inverse of the LxL matrix of autocorrelation between the estimated AR(L) 

parameters with elements computed as 

L-I+ jI 
[Raa];.. =1 ä[n3. ä[n+ li-jl] ij =1,2,..., q (5.51) 

L+1 n. o 

and L is the Lxl vector of these ACS values with elements given by 

(5.52) [ Pý ]=1 ä[n] . ä[n+i] i =1,2, -", 4 L+ 1 ,,. o 

The MA parameter estimation method just stated makes use of the Yule-Walker or 

autocorrelation method. However any other method of last section would be applicable [32]. 

The spectral estimate is obtained by substitution of {b[l], b[2],..., fi[q), 0ý} into 

PMA (fa) = $2 
I'1) 12 

(5.53) 

for B(fr) =1+j b[k]. e'Z"fk 
k-i 

5.2.4. Parametric Methods: Autoregressive Moving Average Spectral Estimators 

The model ARMA is suitable to approximate processes whose PSDs in general exhibit both 

spectral peaks and spectral valleys. 
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For reliable estimates of the ARMA parameters maximum likelihood estimate techniques 

should be applied. For large data records these estimation methods produce unbiased and efficient 

estimates. However the solution of their highly nonlinear set of equations make them difficult 

to implement and computational time consuming [17]. 

For this reasons alternative methods have been developed. They rely on the theoretical 

relationship between the ACS and the ARMA parameters stated in equation (5.10). 

With this approach faster algorithms are achieved at the expense of suboptimal solutions. 
Akaike method is concerned with the maximization of the likelihood function, therefore it has 

not been included in this study. 
The least squares modified Yule-Walk-er equations method (LSMYWE method) is an extended 

version of the modified Yule-Walker equations method. It considers more equations than 

unknowns resulting in a least squares problem. 

The LSMYWE method appear to provide best performance with ARMA processes whose 

poles are dominant [17]. Since the PDU signal spectrum usually has a single peak, the LSMYWE 

method has been studied. 
For the same reason another suboptimal method the Mayne-Firoozan method has been 

investigated. 

A. Least Square Modified Yule-Walker Equations Method 

This method is based on the modified Yule-Walker equations method. A brief description of the 

underlying theory is therefore explained. 
For an ARMA(p, q) process the ACS may be expressed as 

r, [k] _ -E a[i]. c[k-i] kZq+1 (5.54) 

where the choice of the p equations corresponding to k=q+1, q+2,..., q+p is arbitrary [17]. Writing 

these equations in matrix form the modified Yule-Walker equations are obtained 
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r[q+1] r, [q] 

rr[q+2] r. [q+ 1] 

ýt 

rjq+p] r [q+p-1] 

r. [q-1] ... r[q-p+l] a[1] 
r, Iq] ... r, [q-p+2] a[2] 

t "ti ts 

rjq+p-2] a[p] 

(5.55) 

Solving these equations with the theoretical ACS values replaced by estimates brings up the 

AR parameters {ä[1], ä[2], ..., A[p]) of the ARMA process. 
The remaining parameters {6[1), 6[2], 

..., 
b[p], (fl, may be found by filtering the sequence 

x[n] with 

P 

A(z) =1 +aUI. z-. (5.56) 

For good approximations A(z) of A(z) the output of the filter will approximate the MA(q) 

process, for which Durbin method produces the parameter estimates. 
Problems arise when the matrix of ACS samples in (5.55) is nearly singular. The solution 

proposed on LSMYWE method is to consider more than p equations, say M, and solve the 

system in a least squares sense [17]. 

The number of equations considered must be sufficiently high to take advantage of the 

information on the high-order lags, but not so large that the highest sample of the ACS becomes 

unreliable. 
Equation (5.55) may be rewritten considering M equations, and including an error vector 

introduced by the overdetermination imposed 

r[q+l] , [q] 

r[q+2] r. [q+1] 

c[M] r[M-1] 

or in matrix notation 

c[q-1] ... [q-p+l] a[1] e[q+1] 
rq] ... r[q-p+2] 1a211 fe[q+2] 

(5.57) 

c[M-2] ... r. [M-p] La][p]e[Afl 

r"= -R. a+e 
(5.58) 

where r and P. denote respectively the vector and matrix of ACS samples in (5.57), when 

computed for estimated values. 
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The ACS estimates to be used in (5.58) should be unbiased estimates so that the average of 

this error equation (8[e]= r]+g[ft]a=r+Ra) produces nil values [17]. 

The least-squares solution of (5.58), as in general least squares problems, is given by 

a= (5.59) 

where fHf( is usually positive definite, thus invertible by Cholesky decomposition [32]. 

Having these AR parameter estimates, the MA parameters are obtained in the same way as 

in the Modified Yule-Walker method. 

The major problem of the LSMWYE method is the selection of a suitable M. If M is too 

large PH1 will tend to be singular; however the variance of the estimator A decreases with 
increasing number of equations (M-q). A compromise value of M=N/5 for N representing the 

number of frequency points is suggested by Kay [17]. 

B. Mayne-Firoozan Method 

Another possible approach to avoid the computation of maximum likelihood estimators and 

consequent nonlinear systems of equations is to exploit the relationship between the data 

sequence x[n] and the unknown input u[n]. In fact the observed nonlinearity is due to the 

unknown crosscorrelation function between x[n] and the input u[n] [17]. 

In this method, also known as the three-stage least square method, an estimate of u[n] is 

computed enabling (5.1) to be written as 

P9 

x[n] = -E a[k]. x[n-k] +E b[k]. ü[n-k] + 0[n] n=0,1,..., N- 1 (5.60) 
A-1 1.1 

where {x[-p],..., x[-1], u[-q],..., u[-1]} are set to zero, or equivalently in matrix notation 

x= H. 8+ü (5.61) 

where 
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x= [x[O] x[1] ... x[N-1]]T 
12 = 

[u[O] ü[1] ... O[N-1]]T 
r 0= [-a[1] 

-a[2] ... -a[p] b[i] b[2] ... b[4]] 

and 

x[-1] x[-2] ... x[-P] 0[-1] a[-2] ... ü[-q] 

H x[0] x[-1] """ x[-p+l] o [O] f2[-1] """ a[-q+l] 
= fi 'ti ifi 'ti f 

x[N-2] x[N-3] """ x[N-p-1] ü[N-2] ü[N-3] """ ü[N-q-1] 

(5.62) 

(5.63) 

System (5.61) has now the structure of a linear system whose parameters are given by the 

least squares solution 

0= (HH. H)''. H". x (5.64) 

which might be obtained by Cholesky decomposition [17]. Thus, the estimates of the input 

sequence ü[n] are obtained by filtering the data sequence x[n] with A(z), whose parameters are 

estimates obtained by application of one of the AR estimation algorithms to the data x[n], 

considering a large order model, say M. 

The MA parameter estimates b[k] obtained are used to form the filtered sequences y[n] and 

z[n], which will lead to the final estimates of the ARMA parameters by minimization of 

N-1 pq 

a[kl "Y[n-k] -E b[k]. z[n-k] (5.65) 
n. 0 k-0 k-0 

following an identical procedure as indicated in (5.64) where x is replaced by (y-z), H has the 

same form as in (5.63) with x replaced by y, and, u is replaced by z [17]. 

The estimate of the white noise variance is obtained by [17] 

3 

a==1. J N1 
IX(f. )11-IA(fn)11 

I(f)I2 
df. (5.66) 

This method, characterized by making simultaneous estimate of both the autoregressive and 

moving average parameters in an interactive way, does not always guarantee the convergence of 
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the iterative procedure and the conditions for convergence are not generally known [32], which 
is clearly a deficiency of the method. 

5.2.5. Minimum Variance Method 

The minimum variance method, sometimes referred to as the Capon method, or the maximum 
likelihood method, is neither a parametric nor a classical method of spectral estimation. 

This method provides an estimate of the PSD by measuring the power out- of a set of 

narrowband filters like the periodogram estimate. But in the minimum variance method the shape 

of the filters are, in general, different for each frequency, and adapted to the process for which 

the PSD is sought [81], while in the periodogram estimate procedure the filter shapes are fixed 

[40]" 

In this method the PSD is expressed in terms of the impulse response of a linear shift- 

invariant filter h[n], whose frequency response H((o) (w=2nf) is equivalent to a bandpass filter 

with centre frequency w=coo, producing a filter output power due only to the PSD in the vicinity 

of coo [81]. 
To alleviate the problem of sidelobe leakage into the neighbourhood frequencies which 

distorts the resulting PSD, the power at the output of each filter 

a 

p= ftHl2. Pod-- 
2ir 

(5.67) 

is minimized subject to the constraint that the filter frequency response should be unitary, this 

is H(cuo)=1. 

Development of this expression enables the power p to be expressed in the matrix form 

Ph ff Rxx h 
(5.68) 

when h =[h[0] h[-1] """ h[-(N-1)]]T 

and Rxx is the NxN matrix of autocorrelation samples, presenting a minimum value of [81] 

(5.69) 
e "Rxx e 

The spectral estimate is defined to be 
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_p 1 
mv 

22 

e HRxx e 

for 

(5.70) 

T (5.71) 
e. ý1 e° ..: e1 P1)] 

where the factor p is included to yield a power spectral density estimate [81]. As in the other 

nonparametric methods a tradeoff between bias and variance of the estimator is observed in the 

selection of p. In this method, too large values of p increases the variance while too small values 

present high bias [81]. 

Although the minimum variance spectral estimates exhibit better resolution than the 

periodogram estimates they are still poorer than these of an AR spectral estimator [40]. 

5.3. CRITERIA OF SELECTION OF SPECTRAL ESTIMATION METHODS 

This project is concerned with comparing several spectral estimation techniques to select a 

method that best estimates the spectrum of the PDU signal simulation under consideration. 

The definition of 'best' estimation is vague and we should contemplate several aspects. It is 

intended that the spectral estimate produce rapid efficient estimates of the mean frequency and 

bandwidth of the signal's spectrum. 

When parametric spectral estimation is performed an additional difficulty is encountered. The 

order of the assumed model may vary leading to different statistical results for the estimators 

studied. 
Selection of the best model order for each of the parametric methods employed would help 

in the comparison between the different spectral estimation methods. 
Some model order selection methods are available in literature and the most commonly 

referred are described in next section. 

These accepted model order selection criteria compute model order by analysis - of the 

prediction error power, reflecting the goodness-of-fit of the parametric model assumed and the 

signal. This may not lead to an accurate estimate of spectral parameters [82]. In addition these 

criteria often lead to poor estimates of the correct order when used with signals whose order is 

known [16] [17]. 
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These difficulties indicated the desirability of a new method of estimator selection (including 

the order of model based estimators) in which both accuracy of estimation of selected spectral 

parameters and the computational complexity of the estimation were taken into account. 
For this reason a new selection criteria has been developed. It enables the joint comparison 

of parametric and nonparametric methods, given the statistical results obtained with each method 

and the user's requirement of accuracy in mean frequency and bandwidth estimation. 

Each considered method -may be weighted according to the user's requirement. Bias and 

standard deviation of both estimators (mean frequency' and bandwidth) have also adjustable 

contributions and computational complexity of the algorithms employed may be considered in 

this new criteria. 

5.3.1. Parametric Model Order Selection 

Selection of the model order(s) of a parametric model may be achieved by systematic analysis 

of practical experiments with successive model orders or may be accomplished by application 

of a criteria of selection. 
Since the use of a too low a model order implies, in general, a smooth, poor resolution, 

spectral estimate and conversely a too large value produces spurious spectral peaks [40], a 

reliable method of model order selection is of interest. 

There are three common methods of computing the AR model order for real data sets. 

The Final Prediction Error (FPE) and the Akaike Information Criterion (AIC) proposed by 

Akaike are based on the prediction error power's property of decreasing its value with increasing 

model order. Both include information about the number of data samples and the model order 

itself, such that the joint contribution of these three factors results in a curve with a minimum 

denoting the optimal model order. 

More precisely, the FPE criteria is defined by the function 

FPE(k) N+k. 
lýk (5.72) 

[17] where Pk is the estimate of the prediction error power of the k`' order AR model and N is 

the number of data samples considered. 

The AIC function is given by 
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AIC(k) = N1ogpk+2k (5.73) 

This last criteria, assumes that the process has Gaussian statistics [83], and is developed from 

statistical considerations on the difference between the assumed and the actual probability density 

functions of the sequence x[n]. 
For short data records the AIC criterion is recommended [17], however as N---oo both AIC and 

FPE estimators yield identical model order estimates [41]. 

The third well known criterion termed the Criterion Autoregressive Transfer function (CAT) 

was proposed by Parzen. 

k 

CAT(k)=NEk 
(5.74) 

where =N 

The optimum k is given when the estimate of the mean square error between the true filter 

and the estimated filter is a minimum [84]. 

The estimates of MA and ARMA model orders cannot be achieved by CAT or FPE criteria 

since for these models the prediction error power is monotonically decreasing with the order of 

the linear predictor [17]. 

So the Akaike information criterion assumes the form 

AIC(j) = N1ogd; +2j (5.75) 

for. an MA model, where tF j2 is the maximum likelihood estimate of the white noise variance of 

the jth MA order model. 
For an ARMA model the AIC function is 

AIC(k, j) = N1ogdk12+2(k+j) (5.76). 

where k and j are the AR and MA model orders respectively, and the CkJ2 is the maximum 
likelihood estimate of the white noise variance of an ARMA(k, j). 

These techniques present some weakness. It has been observed for instance that although 

producing the most accurate model order among the three criteria, AIC produces in general 

overestimated model orders when tested with a true AR-model input data sequence [17]. 
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Schlindwein and Evans have also shown that these methods produce estimates of the model 

order of a true AR process different than the true order when short data sequences are considered 

[15]. 

Nevertheless, these or similar model order estimation methods may be applied to determine 

first approximations to the model order, specially when the process studied does not fit a pure 

parametric model. 

5.3.2. New Selection Criterion: Cost/Benefit Criterion 

In this study we were interested in determining the best spectral estimation method (or methods) 

among a variety of techniques applied to PDU signal simulations characterized with Gaussian 

spectral profile. In the case of parametric methods, the specification of the best method had also 

to include the optimal model order. 
We were interested in determining a 'good' spectral estimate, in the sense that the mean 

frequency and half bandwidth estimates obtained were as close as possible to their true values. 
As stated earlier, the available FPE, AIC and CAT are model order selection criteria 

applicable to a particular parametric spectral estimation method. Besides, they select the model 

order based on the study of the prediction error power. Thus these criteria are inappropriate and 

insufficient for the problem dealt here. 

The new criterion enables simultaneous comparison of parametric or nonparametric estimator 

methods resulting in an indication of the method presenting the best performance. 
In the case of the parametric techniques the model order that enabled a best fit of the 

assumed model to the data is also calculated. 

The specification of what constitutes a good estimate is furnished to the criterion by means 

of weights attributed to the criterion parameters. 
The parameters weighted according to the user are the mean squared errors of the estimators 

mean frequency and half bandwidth, the signal simulation cases, and the complexity of the 

algorithm employed. 
Formalizing the criterion, the best spectral estimation method is therefore selected among 

m=1 up to m=M methods under comparison, as the one which presents a minimum value for an 

optimal criterion function co(m), that is 
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minor {co(m), m=1,.. ", M } (5.77) 

The optimal criterion function co(m) represents by itself the result of the application of the 

criterion to a particular method m: 
Let i and j be the indicators of the AR and MA model orders respectively, so that i=j=O is 

representative of a nonparametric method, then the optimal criterion function is obtained by 

K (5.78) 
co(m) = min; r 

Ewk. c(m ki j) i=0 1"" I j=0 1"" J 
k. l 

where k=1,..., K represent the K different simulation signals considered. The usefulness of each 

of these signals to the criterion may be expressed by weighting function wk this is, a function of 

the probability of occurrence, of the signal k in practice. 

In (5.78) the minimization is performed for all values of model orders up to I and J which 

are the maximum values of model orders common to all cases K. 

The function c(m, k, i, j) is a cost-benefit function 

c(m, k, i, j) = 

where 

cost(m, N(k), i, j) 
benefit(W, Bf, Sf, Bb, Sb ) 

Bf = biasf(m, k, i, j) 
Sf = stdf(m, k, i, j) 

Bb = biasb (m, k, i, j) 
S6 = stdb (m, k, Q) ) 

(5.79) 

were 'std' stands for standard deviation, and the subscripts 'f' and 'b' represent respectively the 

mean frequency and the half bandwidth estimators. 
On the above equation the numerator represents the cost of applying a specific spectral 

estimation method m to a certain simulation signal k, characterized by N sample points and i and 
j represent the model order parameters in case of a parametric method. 

The cost function is a measurement of the complexity of the algorithm employed. Factors 

such as the input of the data to the software program or the display of data were not taken into 

account since they occur for all methods and they are device dependent, rather than determined 

by algorithm characteristics. 
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This cost function is described in more detail in the next section. 
The denominator of (5.79) is a measure of the quality of spectral estimation. 
The benefit function weights the separate contribution of the estimators mean frequency and 

half bandwidth by means of their mean squared errors. This way the performance of the spectral 

estimation may be evaluated giving more emphasis to the clinical feature mean blood velocity, 
by attribution of higher weights to the statistics related with the mean frequency estimator, or, 

conversely by considering the blood flow disturbance as a more relevant feature by giving higher 

weights to the half bandwidth estimator. 
A more precise characterization of the spectral study is provided by allowing the attribution 

of weights to both bias and standard deviation of mean frequency and half bandwidth estimators. 
The benefit function is 

benefit(W, Bf, Sf, B6, Sb) =1 (5.80) 
Wbf. Bf +wf. S; + Wbb. Bb +Wb. S2 

The symbol W on the left hand-side of equation (5.80) represents the set of weights wbf, wi f, 
Wbb, and Wsb attributed to the statistical performance measurements. 

5.3.3. Complexity of the Algorithms 

The cost function indicated as the numerator of (5.79) should quantify the computational cost of 

the algorithms employed to obtain the spectral estimates. 

Usually assessment of algorithmic performance involves subjective considerations such as 

simplicity, clarity and appropriateness of the algorithm for the expected data, and run time 

efficiency [85]. 

Simplicity and clarity were considered when developing the algorithm software and therefore 

affect complexity and consequently the cost function. 

The third issue (the appropriateness of the algorithm) was achieved in successive steps. A 

priori knowledge of the signal's characteristics had already influenced the selection of methods 
for consideration, specially when parametric spectral estimation was to be performed. On the 

other hand, the selection criterion developed aimed to select the algorithm which most 

appropriately fitted the input data. 
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The run time efficiency of an algorithm may be determined by measurement of the execution 

time of a particular implementation on a specific computer for a certain input data. 

However this procedure would result in highly device dependant measures as well as 

dependence on the data set used. 

For this reason asymptotic time complexity measures are preferred. They should account the 

worst-case time complexity, ignoring constant factors in intermediate calculations. 

The efficiency of an algorithm is usually represented in big-Oh notation, this is to say 0(n). 

O(n) represents the function of n. that gives. the maximum, over all inputs of length n, of the 

number of mathematical operations taken by the algorithm on that input [85]. 

In order to calculate the complexity of an algorithm running time in big-Oh notation some 

rules of algorithm analysis have to be considered. 

Let Pl and P2 represent two program fragments, each with complexity O(f(n)) and O(g(n)) 

respectively.. The complexity of P, executed in sequence by P2 is given by the overall complexity 

O(max{f(n), g(n)} ) 

The above rule is known as the rule of sums [85]. 

(5.81) 

If Pl and P2 were for instance a loop and its body, the rule of products would state that the 

complexity achieved was 

O(f(n). g(n)) (5.82) 

These basic rules are used to analyze more complex structures of the algorithm as illustrated 

in the following examples: 

a) the complexity of a sequence of statements is computed by the sum rule, 
b) the cost of an if-statement will be the maximum of the complexities of the if- 

conditioning statement and the longest conditional sequence of statements, where the 

sequence of statements has complexity evaluated as in a), 

c) the complexity to execute a loop is ruled by (5.82), but the body of the loop, 

interpreted as a sequence of statements, may by itself include if-statements or other 
loops,. whose complexities are computed following the above rules. 
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The spectral estimation algorithms used on the study of the PDU signal simulation were also 

analyzed under the above rules. Table 5.1 presents the resulting expressions of complexity in 

terms of floating point operations. 

FFT/Boxcar(*) A=(N/2)log2N 

FFT/Hanning 4N+A 

AR/Yule-Walker 3p2/2+2Np+6N+A 

AR/Burg 

AR/mod. covar. (*) 

ARMA/LSMYWE 

-4p2+lONp+6N+A 

6p2+Np+A 

2p2(N/5-q)+ 

2p(N-q)+N2+7N+2A 

Table 5.1: Complexities of the spectral estimation methods employed (*[32]). 

This table do not refer the complexity of both ARMA Mayne-Firoozan and minimum 

variance methods for reasons explained in next section. 

The complexities of the AR and ARMA methods are represented in Fig. 5.1. as functions of 

the model order. Each graph illustrates the behaviour of the respective expressions of complexity 

for four different values of data sequence lengths. 

A comparison of the complexities of the AR methods algorithms is presented in Fig. 5.2. for 

the particular data sequence length of 512 points. The complexity of the AR modified covariance 

algorithm (Marple's version [32]), is the smallest among the AR methods considered. 
From figures 5.1. and 5.2. we may notice that the order of magnitude of the values of the 

complexity functions is very high, fact that has to be taken into account when acting in 

conjunction with the values of the benefit function to form (5.79). 
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Fig. 5.1: Complexity of the algorithms of AR Yule-Walker (a), AR Burg (b), AR modified 
covariance (c), and ARMA LSMYWE methods (d), as functions of the model order(s) for data 
sequence lengths of 64,128,256, and 512 points. 
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Fig. 5.2: Comparison of complexities of the AR algorithms considered (Yule-Walker -, Burg --, 
modified covariance -. ) as function of the model order, for a particular data sequence length, 
N=512 points. 

5.4. RESULTS 

Several spectral estimation methods have been applied to the PDU signal simulations described 

in Chapter 4. 

The PDU signals employed have Gaussian spectral profiles with mean frequencies (f) varying 

from 1kHz to 8kHz in octaves with half bandwidths (b) of 5%, 10% and 20% of the mean 

frequency. The signal with ff=1kHz and b=. 05fß was excluded for the reasons explained in the 

last section of Chapter 4. 

The signals' characteristics are summarized in Table 3.2, and briefly represented now in Table 

5.2. This table includes also the number of sample points of each signal simulation. 

For simplicity each pair (fb) is classified as a simulation case number, which from now on 

will be used to reference each type of signal simulation. 

These simulated signals constitute the input of the software program ANENS written in 

FORTRAN 77 [69]. This program makes use of routines from the NAG software package [70], 

COMPARISON 

N=532 B 

Yw 
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and presents graphics facilities enabled by routines of the GINOGRAF software package [71]. 

It has been implemented on a VAX 8600, running a VMS V5.3 operating system. 

f, 

(kHz) 

b 

(Hz) 
case no. N 

1.0 100 1 64 

200 2 

100 3 

2.0 200 4 128 

400 5 

200 6 

4.0 400 7 256 

800 8 

400 9 

8.0 800 10 512 

1600 11 

Table 5.2: PDU signal simulations employed in spectral estimation analysis. 

ANENS, whose constituent software block structures have been already mentioned in Chapter 

4, was developed to include far more spectral estimation methods than the classical ones. 

ANENS' statistical routine was maintained, enabling the computation of percentage relative 

bias and standard deviation of both estimators mean frequency and half bandwidth of the 

ensemble averaged spectrum. These statistical measures are evaluated by (4.24) for the mean 
frequency estimator, and similarly for the half bandwidth estimator, as stated in last Chapter. For 

simplicity, these percentage relative bias, standard deviation, and mean squared error measures 

will also be shortly called by bias, standard deviation, and mean squared error, respectively. 
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Each ensemble averaged spectrum is obtained by considering 150 simulations of the PDU 

signal. 
ANENS produces graphical outputs of the normalized ensemble average spectrum and 

theoretical spectrum. Numerical outputs of the statistical measurements of performance are 

presented. Fig. 5.3 is an example of the output produced by this program, for-case 4 when the 

spectrum of the simulated signal is obtained by an AR(6) model estimated by Yule-Walker 

method. 
The latest version of ANENS included the following spectral estimation methods: FFT with 

Boxcar window, FFT with Hanning window, AR Yule-Walker, AR Burg, AR modified 

covariance, ARMA Mayne-Firoozan, ARMA least squares modified Yule-Walker equations 

(LSMYWE), and the minimum variance method. 

The ARMA Mayne-Firoozan and minimum variance methods were excluded from further 

consideration at this stage. 

The Mayne-Firoozan method, implemented with a modified covariance method to estimate 

the large order AR filter, produced forced exiting of the software program when estimating the 

signal simulation case 1. This result agreed with the recognized limitation of this method, this 

is, the production of unstable MA filters [17]. 

The minimum variance method was applied to the signal simulation cases 1 and 6, presenting 

high biases (specially for the half bandwidth estimator), therefore was also excluded. 
Each of these spectral estimation methods was applied to each simulation case mentioned in 

Table 5.2. When the parametric methods were considered, increasing values of model order were 

tried till the equations to be solved became ill-conditioned, or the arbitrary limit of p=30 was 

attained, as in the case of the Yule-Walker method. 

The statistical measurements obtained with the AR Yule-Walker and Burg methods were 

processed by a program written in MATLAB [78] to allow graphical presentation of the variation 

of bias and standard deviation of both estimators mean frequency and half bandwidth with the 

model order. 
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Fig. 5.3: Signal's characteristics, statistical results computed from the estimated spectrum, and 
curves of estimated against theoretical spectra are obtained. Case 4, using AR Yule-Walker with 
p=6 as spectral estimator. The vertical and horizontal axis represent the normalized (see section 
4.4) PSD, and the frequency in Hz. 
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Examples of the graphs obtained with the Yule-Walker method are presented in Figures 5.4 

(a) to (c) with different values of mean frequencies, each one with half bandwidths of 5%, 10% 

and 20% of the respective mean frequency, to allow a general view of the behaviour of the 

statistical measurements with the model order. 

From these figures we may notice that the range of values of the bias and standard deviation 

are of a different order of magnitude for the estimator mean frequency, while for the estimator 

half bandwidth, bias and standard, deviation may or may not be of the same order of magnitude 
depending on the simulation case. 

Another feature occurring for almost all the graphs is the tendency of the curve to show very 

small or even negligible variations in the statistic after a certain value of model order. However 

there are some exceptions; for example in the case of mean frequency standard deviation in Fig. 

5.4 (b), and also in the cases of bias and standard deviation of mean frequency estimator of Fig. 

5.4 (a), for which the curves increase continuously after, p=10. 
Similar curves were obtained for the other parametric methods, revealing a difficulty of 

determining the order producing the best statistical performance for either mean frequency or half 

bandwidth estimators based solely on minimum error. Thus it is even more difficult to 

empirically select a model order which corresponds to a best performance over both spectral 

estimators and all simulation cases. 

Nevertheless, a first comparative study (based on subjective judgements) of the behaviour of 

the parametric spectral estimation methods for each signal simulation case was performed. The 

criterion used to select the model orders considered firstly the individual performance of the 

statistics bias and standard deviation of each spectral estimator. The lowest model order of the 

range of model orders over which these were negligible variations of the statistics was indicated. 

Then, the model order that seemed to represent the best compromise between the four model 

orders pointed out and their respective statistical behaviour was selected. 
Table 5.3 summarizes the empirically selected model orders for the parametric methods 

applied to the PDU signal simulations, using the above described procedure. 
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Fig. 5.4: Behaviour of bias and standard deviation of both estimators mean frequency and half 
bandwidth of spectra estimated with AR Yule-Walker, with model order; Simulation cases: (a) case 
4, (b) case 7, (c) case 11. 

method AR ARMA 

case Y-W B MC LSMYWE 

1 8 6 5 4,2 

2 10 8 6 4,3 

3 6 4 4 4,2 

4 6 6 5 4,3 
5 8 10 7 4,4 

6 6 4 4 4,2 

7 6 6 4 5,5 
8 6 4 7 7,3 
9 6 4 5 4,3 

10 6 6 4 5,3 
11 6 10 8 7,7 

Table 5.3: Empirically chosen model orders for the parametric methods. 
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The statistical measurements obtained from the spectra estimated by the parametric methods 

with model orders specified in Table 5.3 and the classical methods, Fourier transform with 

Boxcar window and Fourier transform with Hanning window, are shown below in the form of 

a variance and a mean squared error (sum of squared bias and variance) in Fig. 5.5 - 5.12. 

The error in mean frequency and bandwidth estimations against case number are shown in 

Fig. 5.5 - 5.10. 

From these Figures we may notice that the mean frequency estimator presents the same sort 

of pattern for all spectral estimators considered. That is, for all methods the mean frequency error 

increases with bandwidth, for a given mean frequency value, but, nevertheless, the error decreases 

with increasing values of mean frequency. The dominance of the variance as opposed to bias over 

all mean frequencies considered is also noticeable. 

The increased bias observed on the half bandwidth estimation when a Boxcar windowed 

signal (see Fig. 5.5 (b)) is considered, was expected, as reported in section 4.5. 
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Fig. 5.5: Statistical performance of FFT with Boxcar window spectral estimator. Variance (var) 
and mean squared error (mse) of estimators: (a) mean frequency, (b) half bandwidth. 

If instead a Hanning window is used (Fig. 5.6), the contribution of bias to the half bandwidth 

mean squared error is much lower, being generally noticeable when the simulation case has small 

half bandwidths (5% of the respective mean frequency), as may be seen in Fig. 5.6 (b). 
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Fig. 5.6: Statistical perfonnance of FFT with Hanning window spectral estimator. Variance (var) 
and mean squared error (mse) of estimators: (a) mean frequency, (b) half bandwidth. 

Looking to figure 5.7 we note that the AR Yule-Walker estimation behaves similarly to the 

FFT with a Boxcar estimation. 
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Fig. 5.8: Statistical performance of AR Burg spectral estimator. Variance (var) and mean squared 
error (mse) of estimators: (a) mean frequency, (b) half bandwidth. 

For spectra estimated by AR Burg and AR modified covariance methods, we may see that 

the contribution of bias to the mean squared error for both parameters in study (see figures 5.8 

and 5.9) becomes less important than the observed in previous figures. Also, the range of values 

assumed by the mean squared error for these two methods are comparable with the one presented 

in Fig. 5.6 (b) by the FFT with Hanning window estimator. 
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Fig. 5.9: Statistical performance of AR modified covariance spectral estimator. Variance (var) and 
mean squared error (mse) of estimators: (a) mean frequency, (b) half bandwidth. 
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Fig. 5.10: Statistical performance of ARMA LSMYWE spectral estimator. Variance (var) and 
mean squared error (rose) of estimators: (a) mean frequency, (b) half bandwidth. 

The ARMA LSMYWE method presents the highest values of mean frequency and mean 

squared error of this comparison, demonstrating high sensitivity to variations in bandwidth as 

shown in Fig. 5.10. Half bandwidth mean squared error has also a strong bias component. 

The variation of mean squared error of the centre frequency and half bandwidth estimators 

against signal case, for the three different fractional bandwidths, are shown in Figures 5.11 and 

5.12. 
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Fig. 5.11: Variation of mean squared error of estimator mean frequency with simulation case for 

values of half bandwidth of (a) 5% ( cases 3,6,9), (b) 10% (cases 1,4,7,10), and (c) 20% 
(cases 2,5,8,11) of respective mean frequency. 
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(cases 2,5,8,11) of respective mean frequency. 

From these figures we may notice that when the mean frequency estimator is considered, the 

larger the bandwidth of the signal, the larger the values of the mean squared error becomes. 

Conversely, as the bandwidth increases the half bandwidth parameter becomes better estimated. 
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Whatever half bandwidth measure is considered, the mean squared error values become better 

as the value of mean frequency considered increases. This fact is statistically understandable as 

the number of points involved on the statistical computations increases with increasing values 

of mean frequency. 

It is also evident the similarity of estimated values obtained for both mean frequency and half 

bandwidth estimators with the AR Burg and modified covariance methods, as stated by Kay [17]. 

The FFl' with Hanning window seems to present also very good results. 

Even making a qualitative selection of the parametric model order to use (Table 5.3), 

procedure by itself difficult and subjective, the selection of a spectral estimation method that 

more accurately estimates the mean frequency and the half bandwidth spectral estimators, among 

several signal simulation cases and several methods, is also a hard task, as may be concluded by 

the analysis of the above figures. 

So, some criterion which could select the best model order for a specific parametric method, 

and afterwards enable the selection of one among several estimation methods (parametric or non- 

parametric), would be of great advantage. 

The cost-benefit selection method developed in Section 5.3.2 has been implemented in 

MATLAB on a Sun workstation. 

The software program enables the input of the statistical measurements under consideration 

for two or more spectral estimation methods. Each simulation case may be weighted, as well as 

the statistical measurements, according to the user's specification. 

For each parametric spectral estimation method (m) under comparison, the selection program 

output graphically the values of expression c(m, k, i, j) presented by (5.79), as a function of both 

the model order(s) and the simulation case. For each simulation case k, the model order at which 
function c(m, k, i, j) is a minimum is identified by the letter 'B' on graph. 

A plot of the minimum values of c(m, k, i, j) over all simulation cases was then generated, 
followed by calculation and display of co(m) for all the estimators under consideration and 
identification of the optimum estimator m given by min{co(m)}. 

In this example section all simulation signals were given equal weight (wk=1 for k=1,..., 11). 

In a first case study, equal importance was assigned to the accuracy of mean frequency and 

bandwidth - reflecting an equal interest in blood velocity estimation and flow disturbance 

detection - by putting WbPW, PWbb=wtb=1. Since the bandwidth estimation error is always very 

129 



Spectral Estimation: Methods and Selection Chapter 5 

much greater than that for mean frequency estimation this means that the selection of a spectral 

estimation method was mainly determined by the behaviour of the bandwidth estimator. 
Fig. 5.13 is an example of the output of the criterion program after evaluation of the function 

c(m, k, i, j). It shows the behaviour of the AR modified covariance method when applied to the 

different signal simulation cases, estimating both mean frequency and half bandwidth estimators, 

as function of the model order i. The letters 'B' on the graphs identify the model order for which 

c(m, k, i, j) is a minimum for that particular simulation case k. 
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Fig. 5.13: Cost/benefit criterion: example of graphical output of function c(m, k, i, j) for AR 
modified covariance method when estimating both fý and b, for the simulation cases: (a) 1 
(ff=1kHz, b=100Hz), (b) 4 (f, =2kHz, b=200Hz), (c) 6 (ff=4kHz, b=200Hz), (d) 11 (f, =8kHz, 
b=1.6kHz). 

A summary of the selected model orders at this stage of the application of the criterion, for 

each simulation case, considering all the parametric methods studied, is presented on Table 5.4. 

B 
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method AR ARMA 
falb 

(Khz) 
YW B MC LSMYWE 

p14 
110.1 2 4 4 412 
110.2 2 2 2 413 
210.1 2 2 4 412 
210.2 2 2 4 512 
210.4 2 2 2 412 
410.2 2 4 4 412 
410.4 2 4 4 512 
410.8 6 2 4 412 
810.4 2 4 4 412 
810.8 6 4 4 412 
811.6 6 4 4 717 

best p 2 4 4 4/2 

Table 5.4: Model orders selected. by the first stage of the cost/benefit criterion when estimating 
both f, and b. The last row indicates the model order selected by the intermediate stage of the 
criterion. 

The last row of this table indicates the result of the intermediate stage of this selection 

method, this is, the minimum values of c(m, k, i, j) over all simulation cases - values of co(m) for 

different m. In the case of parametric spectral estimation the function co(m) enables the selection 

of the best model order. 

Fig. 5.14 is representative of this stage of the selection when the modified covariance method 
is employed. Again, letter 'B' on graph indicates the model order to select when considering the 

whole range of simulation signals indicated by k, for a particular spectral estimation method. 
With knowledge of all co(m) values for the methods in comparison, the software program 

presents a last graph, of co(m) values for the different methods, indicating the method which 

performs best overall. 
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Fig. 5.14: Cost/Benefit criterion: minimum values of c(m, i, j) for different model orders, when 
estimating both f, and b. B identifies the method's model order selected. 

The results of the final stage of the selection procedure taking all methods in consideration, 

are presented in Fig. 5.15, indicating the selection of the AR modified covariance method with 

a model order of 4 when both estimators are equally weighted. 
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Fig. 5.15: Final stage of the cost/benefit criterion versus spectral estimator (1-FFT/Boxcar, 2- 
FFT/Hanning, 3-AR/Yule-Walker, 4-AR/Burg, 5-AR/modified covariance, 6-ARMA/LSMYWE) 
when estimating both fý and b. 

In a second case study, only spectral mean frequency estimation was considered, denoting 

more interest in blood velocity estimation. In this situation the statistical measurements' weights 
were wbf=WSf=1 and wbb=W b=0. 
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As an example of the modification in the behaviour of the criterion function c(m, k, i, j) when 

only the mean frequency estimator is considered, Fig. 5.16 illustrates the first stage of the 

cost/benefit selection method when the AR modified covariance method is considered, enabling 

a comparison with Fig. 5.13. 

The selected model orders for mean frequency estimation for all signal cases and estimation 

methods are shown in Table 5.5. 
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Fig. 5.16: Cost/benefit criterion: example of graphical output of function c(m, k, i, j) for AR 
modified covariance method when estimating f, only, for the simulation cases: (a) 1 (f, =1kHz, 
b=10OHz), (b) 4 (ff=2kHz, b=200Hz), (c) 6 (ff=4kHz, b=200Hz), (d) 11 (f, =8kHz, b=1.6kHz). 
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Fig. 5.17 presents the results of the last stage of the proposed criterion, showing 

the Fourier transform with Boxcar window as the selected method when spectral mean frequency 

estimation of the pulsed Doppler ultrasound signal is required. 

method AR ARMA 
fýIb 

(kHz) 
YW B MC LSMYWE 

plq 
110.1 2 2 2 413 

110.2 2 2 2 412 
210.1 2 2 2 413 

210.2 2 2 2 413 

210.4 2 2 2 313 

410.2 2 2 2 413 

410.4 2 2 2 413 

410.8 2 2 2 616 

810.4 2 2 2 413 

810.8 2 2 2 413 

811.6 2 2 2 717 

best p 2 2 2 4/2 

Table 5.5: Model orders selected by the first stage of the cost/benefit criterion when estimating 
f, only. Last row indicates the model order selected by the intermediate stage of the criterion. 
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Fig. 5.17: Final stage of the cost/benefit criterion versus spectral estimator (1-FFT/Boxcar, 2- 
FFT/Hanning, 3-AR/Yule-Walker, 4-AR/Burg, 5-AR/modified covariance, 6-ARMA/LSMYWE) 
when estimating f, only. 
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If the user is concerned only with the estimation of the blood flow disturbance, the mean 

frequency statistics' weights wbr and W, are set to 0, and the modified covariance method with 

model order 4 is also selected by the cost/benefit criterion program. 
The model order selection for each simulation case was compared with the selected orders 

obtained by application of previously published model order selectors, when AR parametric 

spectral estimators (j=0) were considered. 

To do so, some adaptations of the cost/benefit criterion algorithm had to be performed. The 

criterion algorithm had to be modified to compute only the best model order for a certain 

simulation case, considering each spectral estimation method separately. 
Graphical presentations of the function c(m, k, i, j) versus model order i for particular method 

(m) and signal case were compared with FPE, AIC and CAT values and show similarly shaped 

curves with a single minimum. The curves with the most noticeable minimum are those from the 

cost/benefit criterion, followed by those from the CAT criterion. 
As an example, these two curves are shown in Fig. 5.18, when the AR Yule-Walker method 

is considered and even values of model order up to 30 are employed. 
Two simulation cases are presented to show that as the simulation case numbers increased, 

that is, as the simulated signal mean frequency increased, the minima became less pronounced 

with the accepted criteria, while it remained clearly noticeable with the cost/benefit criterion. 

Fig. 5.19 shows a summary of the model orders selected when all simulation cases were 

considered, by the four model order selector criteria for the AR spectral estimators considered 

in this study. 
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Fig. 5.18: Model order selection when AR Yule-Walker method is applied to simulation case (a) 
4 (ff=2kHz, b=200Hz) (b) 8 (ff=4kHz, b=800Hz), when CAT and the first stage of the 
cost/benefit criterion are compared. 
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Fig. 5.19: Comparison of model order selection criteria when AR (a) Yule-Walker, (b) Burg, (c) 

modified covariance are considered. 

Clearly, the cost/benefit criterion in its first selection step in comparison with the FPE, AIC 

and CAT criteria, produced lower and more stable model order values over the range of signal 

simulation cases considered. 

While the other criteria presented increasing model orders selections with increasing half 

bandwidth values within the same mean frequency, and, in the case of the Yule-Walker estimator, 

even increasing model orders with increasing mean frequency values, the cost/benefit criterion, 
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dependent on the spectral estimator, tended to select smaller model orders for higher bandwidths, 

independently of the size of the data sequence considered. 

This feature results from the fact that in the cost/benefit criterion although the cost function 

does not vary greatly within a certain mean frequency value with different half bandwidth values, 

the benefit function, is dominated by the half bandwidth statistical performance values, which 

have proven to be more accurate for larger bandwidths. -' 
The reason for the selection of low model orders by the cost/benefit selection method is due 

to the fact that for high case values the number of points involved in the computation of the 

spectral estimate of the simulated signal produced high values of the cost function, forcing the 

costibenefit criterion algorithm to prefer smaller model orders at the cost of a small loss in 

statistical accuracy. 

If the cost function in the cost/benefit selection method is put equal to unity, the selected 

model order values presented in Tables 5.4 and 5.5 will generally increase, achieving the values 

indicated in Tables 5.6 (a) and (b). 

method AR ARMA 
falb 

(kHz) 
YW B MC LSMYWE 

PIq 
110.1 8 8 5 412 
110.2 10 4 8 413 
210.1 20 2 4 412 
210.2 6 2 5 512 
210.4 30 6 6 512 
410.2 6 4 5 412 
410.4 10 4 5 512 
410.8 26 12 6 412 
810.4 6 4 4 412 
810.8 10 4 4 412 
811.6 30 12 6 717 

best p 16 4 4 4/2 

Table 5.6 (a) 

'"''When the joint estimation of spectral mean frequency and half bandwidth parameters is 

performed (see Tables 5.4 and 5.6(a)), the benefit function reveals more sensitivity to the half 
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bandwidth values of by each simulation case than the cost/benefit function, particularly when the 

AR Yule-Walker spectral estimator is used. This sensitivity is less pronounced when only mean 

frequency estimation is considered (see Tables 5.5 and 5.6 (b)). 

The best model orders for each parametric method (indicated in the last line of Tables 5.4 - 
5.6) are maintained, except for the Yule-Walker method. This is probably due to the fact that 

the cost/benefit selection method includes a rather simple cost function. 

method AR ARMA 
falb 

(kHz) 
YW B MC LSMYWE 

plq 
110.1 2 2 2 413 
110.2 4 4 2 412 
210.1 2 2 2 413 
210.2 26 2 2 413 
210.4 4 4 6 313 
410.2 2 2 2 413 
410.4 6 2 2 413 
410.8 14 14 8 616 
810.4 2 2 2 413 
810.8 4 12 5 413 
811.6 4 18 8 717 

best p 4 2 2 4/3 

Table 5.6 (b) 
Table 5.6: Model orders selected by the first stage of the cost/benefit criterion when considering 
cost=l, when (a) f, and b, or, (b) f, only, are the spectral estimators considered. Last row 
indicates the model order selected by the intermediate stage of the criterion. 

5.5. CONCLUDING REMARKS 

The simulation of the PDU signal characterized by Gaussian spectral profile developed in Chapter 

4 has now been subject of study in the frequency domain by application of some spectral 

estimation methods available from the literature. 
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The so called classical methods of Fourier transforming windowed signals were applied, using 

a Boxcar and a Hanning window. Among the parametric methods, the AR Yule-Walker, Burg, 

and modified covariance, and two ARMA methods, the least square modified Yule-Walker 

equations and the Mayne-Firoozan methods were employed. The minimum variance method, a 

non-parametric method, was also tried. 

-, ° Both the ARMA Mayne-Firoozan and the minimum variance methods were eliminated from 

consideration since their results proved to produce either non-minimum-phase filter estimates 

(case of the ARMA method) and high spectral variances (case of the minimum variance method), 

presenting clear disadvantages in estimating the PDU signal with a Gaussian spectral profile. 

An initial study of the statistical results obtained with the selected spectral estimation methods 

has been performed, basing model order selection and comparative judgements on qualitative 

decisions. This first study, motivated the development of an objective criterion of spectral 

estimator and parametric model order selection, the cost/benefit criterion. 

The cost/benefit criterion enables the selection of spectral estimators by taking into account 

the cost (or computational complexity) and allowing varying weighting to be given to mean 

frequency and bandwidth estimation errors across the range of these signal characteristics. This 

allows the possibility of weighting appropriate to estimator (mean frequency and bandwidth) and 

signal frequency importance in disease detection. It also enables more appropriate order selection 

for parametric estimators. 
This selection criterion proved to produce justified choices both of the spectral estimation 

methods under consideration and the selected model orders. It is shown that when estimating both 

mean frequency and bandwidth, or only the latter, the AR modified covariance method is 

selected. 
However, when the mean frequency only is the estimator of interest, the improvement in 

statistical performance by the use of a parametric model does not compensate for the cost of 

applying a model to the data instead of a FFT algorithm, and a non-tapered window allows 

maximum contribution of the available data to the estimation. 

The results of the first selection step of the cost/benefit criterion has been compared with 

those obtained for the same simulation cases with accepted model order selectors, the FPE, AIC, 

and, CAT criteria. 

The parametric model orders selected by the cost/benefit criterion are lower than the selected 

by accepted criteria. 
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Two factors influence this. Firstly, the choice of the spectral parameters of interest (the mean 
frequency and bandwidth) involve only low order spectral moments and impose small control on 

model spectral shape and therefore allows the use of low model-orders as has been noted 

elsewhere [19][86]. 

Secondly the rapid increase in cost with model order tends to constrain the selected model 

order to low values whereas the other criteria have slower rates of increase with model order 

leading to shallow minima and the selection of orders higher than may be adequate for the 

spectral accuracy required. 

It was expected that the cost function would have a noticeable effect on model order selection 

in all signal cases. The cost function was fairly simple in this study and this situation might 

change when the cost function is developed further. 

ý' 
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CHAPTER 6 

Implementation of AR-Modified Covariance 

Spectral Estimator Using 

Parallel Processing Techniques 

6.1. INTRODUCTION 

The performance of several spectral estimators with respect to the statistical accuracy of the 

spectral estimators mean frequency and half bandwidth was investigated (Chapter 5), when 

applied to ensembles of Doppler signal simulation (Chapter 4). The simulated signals were 

characterised by Gaussian probability density function, Gaussian spectral profiles (Chapter 3) 

with mean frequencies ranging from, 1kHz to 8kHz in octaves, and half bandwidths of 5% 

(excepting the 1kHz case), 10% and 20% of the mean frequency. The cost/benefit criterion [87] 

[88] enabled the selection of the AR modified covariance method with a model order of 4 as the 

spectral estimator which most accurately,, estimated (under general conditions) the spectral 

parameters of interest. 

The final objective of this thesis is the implementation of the chosen spectral estimator in 

real-time, enabling its spectral resolution benefits to be applied to the diagnosis of cardiovascular 

disease progression and treatment. 
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With such an objective in mind, the implementation of the previously selected spectral 

estimator (the AR-modified covariance algorithm) using fast computer processing techniques was 
developed and is reported in this Chapter. General background theory in the field of parallel 

processing was included in Chapter 2, where the definition of typical terms and procedures were 
described. 

Two different approaches to the parallelization of the modified covariance spectral estimation 

method are reported. The first considered the application of the method to a single Doppler data 

segment, while the other, a more general approach, regarded the concurrent spectral estimation 

of a number of Doppler data segments. The latter is being currently developed in collaboration 

with a research group colleague, and is briefly described in section 6.8. 

The new version of the modified covariance algorithm [89], based on the algorithm published 

by Kay [17], is described in the section 6.2. A study of the computational complexity of the new 

algorithm in comparison with the published versions of Kay and of Marple [32] is also presented. 

The strategy employed to achieve the parallelization of the algorithm (this is the separate 

treatment of each major computational block and then the connection of all blocks) is reported 

in more detail in section 6.2.4. 

The following sections (6.3 - 6.6) describe the development of each computational block of 

the modified covariance algorithm, the parallel partitioning schemes followed, the parallel 
implementation topologies employed and the results obtained. Some comments on the 

performance of the parallel implementations are also made. 

Section 6.7 deals with the overall implementation of the algorithm, after connection of all the 

computational blocks. General remarks on the performance achieved are included. 

Section 6.9 summarizes the most relevant features of this chapter. 

6.2. THE AR MODIFIED COVARIANCE ALGORITHM 

The general theory behind the modified covariance spectral estimation method has already been 

described in section 5.2.2. C., however its most important mathematical expressions are repeated 
here to aid a clear understanding of the simplifications made on them to achieve a parallel 

algorithm. 
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Kay [17] and Marple [32], describe two different algorithms to implement the modified 

covariance method. The former, follows the usually given interpretation of the method, while the 

latter, corresponds to a modification introduced by Marple on the general algorithm [80]. 

. Although the algorithm employed in Chapter 5 was the Marple's version of the modified 

covariance method (choice due to its fast sequential computational times and capacity to 

determine matrix ill-conditioning situations), its high degree of recursion and nested structure lead 

to the usage of Kay version as the basis of the simplifications here developed. 

6.2.1. General Algorithm 

The modified covariance method minimizes the average of the forward and backward prediction 

error powers (see (5.39 to (5.41)) by solution of the modified covariance equations 

cß[1,1] cß[1,2] .. " c, [1, p] 

cß[2,1] cß[2,2] ... c, [2, p] 

si "% 
LC. [P, c, [p, 2] ... c.. jp, P] 

where the covariance matrix, is Hermitian and po: 

Each element of the matrix is computed as 

ö[1] c, ß[1,0] 
6[2] cß[2,0] (6.1) 

FF 
A 

Q(p] c, [p, 0] 

itive definite. 

1 N-1 N-1-P 

c,, j, k] _E x'[n-j] . x[n-k] +E x[n+j]. x'[n+k] 
(6.2) 

2. (N-p) ,. p n. o 

and the solution of the system is typically obtained by Cholesky decomposition. 

The white noise variance estimate is computed as 

P 

cJO, 0] +E ä[k] . c, [O, k] (6.3) 
k-I 

The approximate number of computational operations required for the implementation, of each 

major algorithmic block in this method is represented in Table 6.1. Computational burden is 

measured in terms of floating point operations (flops). 

In. the situation under consideration, where N, is large compared with p, the most 

computational time-consuming block is that concerned with the computation of the covariance 
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matrix elements, while the solution of the linear system of equations is the action that requires 

the' least number of flops. 

Therefore the block of calculation of the covariance matrix elements is the one requiring most 

attention in order to reduce computational times. 

BLOCK FLOPS 

covariance matrix 3p2N 

right-hand-side vector 4pN 

solution of system (Cholesky) p3 

white noise variance 4pN 

Table 6.1: Modified covariance algorithm blocks and respective complexities (in flops). 

6.2.2. Development of Modified Covariance Algorithm 

The development of the modified covariance algorithm will be achieved through an example 

where a data sequence length of 64 is considered and a model order of 10 is assumed. 
Since the covariance matrix is Hermitian (complex conjugate symmetry) we need to compute 

only half the elements of the matrix. 

Developing equation (6.2) for different values of line and column indices we conclude that 

the matrix obtained by omitting the last line and last column of the covariance matrix is also 

symmetric about its main cross diagonal. This matrix is called the remaining matrix. Fig. 6.1 (a) 

shows the original matrix, where the main diagonal, the main cross diagonal and one of the 

parallels to the main cross diagonal are indicated. The- elements that need to be computed to 

calculate the whole covariance matrix are highlighted in Fig. 6.1 (b), where the remaining matrix 
is illustrated. 

In the following development, element Cs55, the middle element of the remaining matrix, will 

be considered as the starting point for the analysis. The "walking lines" for computation of the 

remaining matrix elements are the main diagonal and its parallels. The starting point of each 

walking line is the element located on the intersection of that particular diagonal with either the 

main cross diagonal of the remaining matrix - called elements lying on the main cross diagonal 
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(or more briefly, on the cross diagonal) - or, the first upper parallel to the main cross diagonal 

of the remaining matrix - denoted as elements not lying on the main cross diagonal. 

\ Man / 
\ Diagonal / Mein Cross 

Diagonal (CD) 

i 1. 1. 

... _. 0.. _. ti.. _o_ l 4.. r.. . f... .. _. 

, 
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,. .. , 

,. _. 
0.. 

_ . 
r.. 

... 
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.. 
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,..... . "... ...,. _. .,. _..,.... ..,. .... 
'i.. 

.. 
. 
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/. / . \ 
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\ 
C41 C4.2 C43 
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" 
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Fig. 6.1: (a) Original covariance matrix, and, (b) remaining matrix for a 10`h order model. 
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Thus, starting by developing the middle element C5,5 of the remaining matrix we see that both 

summations in (6.2) are equivalent. This feature occurs for all elements on the cross diagonal, 

that is C6,4, C7,30 C8,2, and C9,1. Therefore instead of computing two summations, each one 
involving 2(N-p) flops, these elements may be given by doubling the value obtained on just one 

summation. 
Another important aspect is that the elements on the diagonals involve a summation range 

overlap with that of the previously computed element (see (6.4)). 

In equations (6.4) to (6.7) an arrow is used as an abbreviation to indicate repetition of the 

product of x values (a pair of x values), whose indices range from the index values indicated on 

the left-hand-side of the arrow till the index values indicated on the right-hand-side of the arrow. 

The relationship between the indices of the x values within a pair is maintained during the 

repetition. 

C5,5 = 2. (x5x5 --4x58x58 ) 
C4,4 = (x6X6-iX59X59 + (X4X4 --ýXS7X57) =X4X4 -XSX5 + C5,5-x58x58 +x59x59 

C3, = (X7X7 4X6OX60) + (X3X3--4X56x56) =X3X3 -X6X6 + C4,4 -X57x57 +X6OX60 

ii 
C64= 2. (x6x4 - X59X57 

C5,3 = (x7x5 -+X60x58) + (X5X3 -4X38x56)- XSX3 - x6X4 + C6 
4- x59x57 +x60x58 

(6.4) 

C4,2= (x8X6-*x61xS9)+(X4X2--)x37x55)=x4x2-x7x5+C53-x38x56+X61X59 

4i 

i 
C9.1= 2. (x9x, --*x62x54) 

If we now consider the other diagonals whose first elements do not lie on the main cross 

diagonal, i. e. the diagonals starting with elements C5.41 C6.39 C72, and C81,, a similar structure can 

be'devised (see (6.5)). This way, the first element to be computed on each diagonal requires 

2(N-p-1)+5 flops. 

Developing the covariance element expression (6.2), for the last line of the covariance matrix, 
j=10 in this example, we obtain (6.6) where, with exception of CIO,,, all elements are computed 

by adding four new terms to a previously computed element. 
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C5 
4= 

(x6X5 -x59 x58) + (x5x4 --ix58x37 )= xx4 + 2. (x5x5 --). 58x57) + x59x58 

C4 
3= 

(x7x6 -+x60x59) + (X4X3 --'X57x56) = x4X3 - X6x5 + C5 
4- x58x57 + x60x59 

C3,2 = (x8x7 -+x61 x60) + (X3x2 -)X56x55) = X3X2 - X7X6 + C4,3 - X57 x36 + X61 x60 

ii 
C63 

3= 
(x7x4 -x60x57 )+ (X6x3 

--+X59x56 
)= X6X3 +2. (x 

7X4 -3XS9x56) + X60x57 

C5.2 = xS--x61x58)+(x5x2-- xS8x)=x x -x x +C -x x +x x (6.5) 
5,2 8 55 52746,3 59 56 61 58 

C41 
1= 

(x9x6 -9x62x59) + (X4X1-->XS7x, 
4) =x4x1 -X8x5 + C5,2 

-x58x55 +x62x59 

ii 

i 
Cs., _ (x9x2 --)x62x55 )+ (x8x, --)xb, x_u) = xgxl + 2. (x9x2 -+x61 xM) + x62x55 

C101 =X9X0 + 2. (X10X1-4X62x53) +X63'54 

C10,2 = (x8X0 -X9X1 )+2. 
`X70X2-X61X53) 

+ (X62XS4--4X63XS5) =XOX8 -X1X9 + C9.1 
-X54X62 +XSSX63 

C10,3 = (X7X0--4X9X2) + 2. (X10X3 
-4X60XS3) + (X61XS4-*X63X56) =X0X7 -X2X9 + C8.1 

-X54X61 +XS6X63 

(6.6) 
C��= (X2X0 -exgx7 )+2. (X10X8-+X33X53) + (XS6X54-4X63X61 ) =XOX2 -X7X9 + C3.1 -X54X56 +X61'63 
C19 = (X1X0 -3X9X8) + 2. (X10X9--)X54XS3) + (X55X34-4X63X62) =XOX1 -X8X9 + C2.1 

-X54X55 +X62'63 

C10,10=(' 
0X0-«9X9)+ 

2. (X30'10-+X53'53)+(X54X54- X63X63)=XOXO-X9X9+CI, 
1-X34X34 

+X63x63 

The elements of the right-hand-side vector of (6.1) are computed by setting k in (6.2) equal 

to zero and considering x[n] to be a real data sequence. Developing the resultant expressions we 

obtain (6.7) where it can be seen that all the elements , except the last, are already computed. 

The ̀ last element, CO110 needs to be completely calculated. However its computation is easily 
incorporated in an already existing algorithm loop since it has a structure similar to that of the 

elements on the main cross diagonal of the remaining matrix. 

Co., = (x0x1-ix8X9) + 2. (X9X10 -X53X54) + (X54X55 -X62X63) = C109 
9 

C0,2=(x0X2-4x49)+2(X8X10- x53X55) +(X54X56-X61 X63)=010,8 

(6.7) 

C09 
9 =X0X9 + 2. (X6X4-' X59X57) +X54'63 C101 

1 
00,10 = 2. (XOx103X53X63) 
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Thus, all the elements of the covariance matrix and right-hand-side vector arise from a 

computation of only a few elements as shown in Figures 6.2 and 6.3 where the double arrows 

denote that an element is calculated from the previously computed element. 

C5. '5 C4,4 ý Caa ý C2 
2,2 

c1, ý C10,10 
C64 4 

C5,3 Ca2 
2 Cs1 

1 
C10,9 

C7,3 C62 
2 

C31 
1 

C106 
6 

C8,2 C7 
1= 

010,4 

C9,1 C102 
2 

C0,10 

Fig. 6.2: Remaining matrix elements whose first element lie on the main cross diagonal. 

C5 
4 

C4" C3,2 = C21 
1 

C109 
9 

C6,3 = C5,2 C4,1 = C10,7 

C7,2 C6,1 = C10,5 

C81 
1= 

C10,3 

C101 
1 

Fig. 6.3: Remaining matrix elements whose first element do not lie on the main cross diagonal. 

The other elements of the matrix are obtained by software attribution expressions, taking into 

consideration the matrix symmetries. 

The computational burden of calculating the white noise variance may also be reduced. The 

value of C0,0, initially computed by (6.2), is coincident with C10,10 reducing to 2p+1 flops the 

computation of the last block of Table 6.1. 

The example used to explain the development of the method uses an even model order. 

Although the symmetry of an odd order covariance matrix differs from that presented, a similar 

simplification procedure may be adopted. 

The solution of the linear system of equations (another block of Table 6.1) and the 

computation of the power spectral density (PSD) will be described in sections 6.4 and 6.6 

respectively. 
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6.2.3. Comparison of the computational complexities of the Modified Covariance versions 

The new modified covariance algorithm was evaluated in terms of computational complexity in 

comparison with the other two existing versions. 
To achieve this, the three versions were implemented in MATLAB [78]. The solution of the 

system of equations was performed making use of MATLAB functions. 

The complexity of the algorithms was measured in flops by making use of the MATLAB 

floating point operations counting facilities. Data sequence lengths (N) of 64,128,256 and 512 

were considered, as those obtained with the Doppler signal simulations in study. Also having in 

mind the application of these methods to the Doppler signal, the model order values considered 

were even numbers, ranging only from 2 to 10, as typically occurred in Chapter 5. 
'Analyzing the variation of the number of flops with the model order in the graphs (Fig. 6.4) 

obtained for the different data sequence lengths (N), it is noted that the new algorithm present 

a computational complexity of the same order of magnitude as Marple's version, both presenting 

a much lower number of flops than the Kay version. This result is shown in Fig. 6.4, where data 

sequence lengths of 256 and 512 are considered as examples, and the new, Kay, and Marple 

methods are quoted as "new", "old(Kay)" and "old(Marple)". 

The development of the number of flops with the length of the data sequence for a particular 

model order (p) value also proves the similarity of computational complexity of both the new and 

the Marple's algorithms (see Fig. 6.5 for particular case of p=4). 
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Fig. 6.4: Comparison of computational complexity between new (-) and old versions of Kay (--) 

and Marple (: ) of the modified covariance method versus model order, for data sequences of (a) 
256 and (b) 512 points. 
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Fig. 6.5: Comparison of computational complexity between new (-), Kay (--) and Marple (: ) 

versions of the modified covariance method versus no. of points of the data sequence (p=4). 
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6.2.4. Strategy for the Parallel Implementation of the New Modified Covariance Algorithm 

The modifications introduced into Kay's modified covariance algorithm resulted in' a sequential 

computational complexity similar to Marple's version. This last algorithm is much too complex 

to be reliably parallelized, and, as is explained below, the new algorithm is parallelized in a 

straightforward manner. 
Each main computational block of the algorithm (the computation of the covariance matrix 

and the right-hand-side vector, the solution of the system of linear equations using a Cholesky 

algorithm, the computation of the white noise estimate, and, finally the determination of the PSD 

of the signal), were implemented in parallel separately. For each block, alternative parallel 

implementations were considered, performance measurements taken, and the implementation 

presenting the better performance identified. 

These best implementations (of each computational block) were put together to form a single 

parallel program and final performance results taken. 

The modified covariance algorithm block concerned with the computation of the covariance 

matrix was studied in more detail, since it is the most expensive block (in terms of computational 

complexity), as stated in Table 6.1. Therefore, two parallel task partitioning schemes were 

studied, before any kind of parallel implementation procedure was employed. 

6.3. THE COVARIANCE MATRIX AND THE RIGHT-HAND-SIDE VECTOR 

6.3.1. Parallel Partitioning Schemes 

Two different methods of partitioning the algorithm into a form suitable for parallel 

implementation were considered. 

The first approach enabled a general model order implementation of the modified covariance 

method in a manner suitable for fine-grain partitioning. 

The other approach was specifically oriented for the Doppler spectrum under consideration 

and the algorithm was partitioned assuming a medium-grain parallelism. 

i~ t 

,-160 . '00.0 
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A. Fine-grain Partitioning 

Observing from (6.4) to (6.6) that the major computational times, for each element of the matrix, 

were produced during the calculation of the summations, each summation was partitioned into 

four smaller summations, assuming that at this stage a maximum of four processors were 

available. Each small summation was computed in parallel by one of the four processors. The 

terms before and after the summations were distributed to the processors in an organized way to 

avoid idle times and reduce the communications among the processors. 

,, Table 6.2 represents a possible way of performing such a distribution of tasks for the 

computation of the elements shown in Fig. 6.2. 

5! r ; 

3 
t 

t 

i 
k' 

P1 P2 P3 P4 FLOPS 

C5,5 14 Css 14 C5,5 14 C5,5 I4 a 

C444 12 K% T 

C5,5 C4,412 03,312 02,212 

--- C3,312 0.2,2 12 

C44 4 C1,112 b `ý"% ti 
C3,3 C11 

1 
12 C10110 12 C10,10 12 ti 

02,2 p p 

C1,1 

C10,10 T 

C6,414 C6,414 C6,4I4 C6.414 a 

06.414 C6,4I4 C6,414 C6,414 a 

ti b b ti 

. -, -ý 
C0,10 - --- lT 

Table 6.2: Fine-grain partitioning for elements of Fig. 6.2. 

In Table 6.2 the first time slice for each processor is 
, spent computing a quarter 

(approximately) of the summations to, determine element Cs55. This is represented by Cs, s /4 and 

takes a flops. The next time slice is used by processors PZ, P3, and P4 to communicate to P, the 
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real result of the partial summation - indicated by the symbol '. Meanwhile Pl spends the same 

amount of time computing the first two terms of element C4,4, which is represented in the table 

by C4,4 / 2. Element C4,4 may only be determined after C5,5 and its additional terms have been 

completely calculated and the results communicated to the processor that is going to perform the 

final sum of partial results. In this scheme processor P, is idle for a time slice corresponding to 

,r flops. Idle times are represented in Table II by the symbol ,.. _.. 
A similar procedure is repeated for all elements shown in figures 6.2 and 6.3. 

B. Medium-grain Partitioning 

The fine-grain parallelism described above requires a considerable amount of communications, 

as is evident from an analysis of Table 6.2. The overhead introduced by communications and idle 

times will reduce the profitability of the parallelism. 
Therefore, another possible partitioning of the algorithm - computing the elements on the 

diagonal and its adjacent sub-diagonals on separate processors was considered. 
To illustrate this alternative partitioning scheme, a 4`h order model will be used as an 

explanatory example, for reasons of simplicity. 

In this new example, the elements to be computed are shown in Fig. 6.6. Elements C2,2, C3.19 

and Co4 4 are elements lying on the main cross diagonal, requiring 2(N-p) flops, while C1 and C4,1 

lie out of the main cross diagonal, requiring 2(N-p-l)+5 flops, as happened for corresponding 

elements in the 10' order model given earlier. The other elements are obtained from those 

previously computed with an additional cost of 8 flops each. 

C2,2 ~ C11 
1~ 

C44 
4 

C21 
1~ 

CO 

C3.1 ~ C4,2 C41 
1 

CO, 
4 

Fig. 6.6: Elements to compute the covariance matrix and right-hand-side vector for ae order 
model. 

In this approach, each horizontal line of the two groups of elements represented on Fig. 6.6 

is computed on a separate processor. The first time-slice, each of the five (for this particular 

example) processors in use, is computing the element which needs to be obtained by computation 
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of a summation, that is, C2.2, C3111 Co. a, CZ, 1 and C4.1. In the next time slice all processors with 

exception of the third and fifth - which do not have subsequent elements - are calculating Cl,,, 

C422, and C43 3 respectively, in parallel. The last element calculated - C1,1 - is computed in the first 

processor, using 8 flops, while all the others are already free. Table 6.3 elucidates this. In this 

table, the elements marked with ' require 3 more flops than the number indicated. 

P1 P2 P3 P4 P5 FLOPS 

c2,2 c3.1 Co. 4 Gi. l 
* C41 1* 2(N-p) 

C1,1 C42 
2 C43 

3 
8 

- 
C4.4 8 

T 

Table 6.3: Medium-grain partitioning for a 4' order model. 

6.3.2. Parallel Implementation 

This section describes the strategies used to implement the parallel realization for computing the 

coefficients of the modified covariance equations, on a transputer-based system. This involved 

two main aspects: identifying a suitable partitioning scheme to decompose the algorithm into a 

number of the parallel tasks, and utilising a suitable task allocation procedure to evenly distribute 

the resulting tasks onto the target parallel processing system. 
Owing to its coarser granularity, the medium-grain partitioning scheme, described in section 

6.3.1. B., proved to be the most straightforward for mapping parallel tasks onto the target 

processing system. 
Typical measurements of performance such as execution time, speedup and efficiency [90] 

of each topology were determined by mapping the parallel version of the algorithm onto a T800- 

25 transputer platform [91], hosted by a SUN system, and programmed in OCCAM. 

Before implementing the parallel realization of the covariance matrix and right-hand-side 

vector on a multiple transputer-based system, a sequential version of this computational block 

was implemented using a single transputer. The execution time of this sequential version was 
measured using the real-time clock facility available on the transputer architecture. Fig. 6.7 

illustrates the execution times (in ms) for this sequential version for a range of p and N values. 
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Execution times (ms) 

40 

35 
30 
25 

10 N=256 
5 N=128 
0 Nei 

2 4 6 8 10 model order 

N=512 7.855 14409 20.984 27.579 34.196 

N-256 3.946 7.245 10.565 13.906 17.267 
N=128 992 3.667 5.356 7.07 8.805 

N .4 :. 014 1.872 2752 3.651 4.573 

Fig. 6.7: Execution times obtained for the sequential version implementation of the computation 
of the covariance matrix and right-hand-side vector versus model order (p) and data sequence 
length (N). 

These execution times acted as reference for the values obtained for the multiple-transputer 

implementations. 

The transputer-based topologies adopted were: 

-a linear processor farm topology, 

-a tree topology (depth 3), where two different task allocation strategies (dynamic and static) 

were implemented, and, 

-a tree topology (depth 2). 

To simplify the explanation of how the allocation of the computation of the matrix and the 

right-hand-side vector elements onto each processor for each one of these topologies was carried 

out, Fig. 6.8 illustrates some abbreviations used, when a 10`h order model is employed. It 

considers the lower quarter part of the covariance matrix, resulting from the division of the 

remaining matrix by its main diagonal and main cross diagonal. This way, the elements of the 

remaining matrix, the elements of the last line of the covariance matrix, and also, the element 

of the right-hand-side vector (the element located at the bottom left side of the covariance matrix) 

to be fully computed, are contemplated. The elements whose calculation is based on elements 

lying on the cross diagonal or on the first parallel to the main cross diagonal (identified as 

elements not lying on the cross-diagonal in Fig. 6.3 for p=4), are also pointed out. 
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Main Remaining Matrix 
\ Diagonal / Cross Diagonal / 

; ý' . . 
.... ......... ... ....... ...... . .... ... _... f.......... _ 

............. .... ..:.............. .. .... ...................... 

... ..:........... 

.... :... _.... . ._ CD1 .. .:..... _ ................... 

..... CD2 NCD5. 61 ... ............... ....... 

CD3 NCD4 ö 0 

CD4 NCD3 C" o " 'G 

CD5 NCD2O... 0.. b 40. _ . _0. ". . <..... 

R NCD1 o ". . _ö " ö Go -0.0 

CD - elements lying on cross-diagonal 
NCD -elements not lying on cross-diagonal 
R -element C[O, p] 

o -elements computed based on CD 

" -elements computed based on NCD 

Fig. 6.8: Abbreviations used to identify the elements of the covariance matrix and right-hand-side 
vector of a 10`h (p=10). 

The parallel implementation topologies used will now be described and their respective 

performance results presented. 

A. Processor Farm Linear Topology 

The most straightforward version of the processor farm model uses a single master processor for 

scheduling tasks to one or more worker processors connected in a line. 

The computation task is the calculation of some of the elements of the covariance matrix and 

the right-hand-side vector (see Fig. 6.8 for a particular example). This task runs on each of the 

worker processors, and routers are used to route data and results through the network. Task 

identifiers, to define which tasks must be executed, and input data, are passed to the network as 

they are required, in order to utilise the full processing potential of the system. This provides an 

automatic mechanism for dynamic load balancing. Results are collected by the master as they are 

produced from the network. Finally, these results are used to generate the remaining elements. 

The processor farm linear model is shown in Fig. 6.9. 

The execution time measurements of this topology were carried out varying N (the length 

of the input data) and the number of workers in each farm. The number of workers used was 
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equal to the model order plus one. Fig. 6.10 shows the resulting speedup and efficiency for the 

linear processor farm scheme employed. 

Master Worker Worker '" Worker 

Data Router Data 

Application 

Results Router Results 

Fig. 6.9: Processor farm linear topology. 
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N4 0.52 0.43 0.35 0.29 0 23 

(b) 

Fig. 6.10: Processor farm linear topology (a) speedup, and (b) efficiency. 

The key to the success of the processor faun model is the requirement that the time consumed 

by the processors in performing communication is small relative to that expended for 

computation. 
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However, when this requirement is not matched and a significant overhead on communicating 

data items exists, this linear array may be unsuitable for any more than a small number of 

processors in the farm due to the limited throughput of this topology. Thus, the original linear 

model of the processor farm has been extended by configuring the system as a tree topology. 

B. Tree Topology (Depth 3) 

This topology required a more sophisticated task allocation strategy. However, a reduction in 

communications overhead was expected, because, in this extended approach, there is a shorter 

path between the master and any worker. This extended model has the same conceptual 

architecture as the first model: a single controller processor with a number of workers, but in this 

case the workers are grouped in a tree structure with three branches. 

Within this tree model, the worker process retained a similar software structure, as in the 

original linear array, for computing the tasks, but the routers were modified to allow the routing 

of data and results to the rest of the workers down the same branch. Two different task allocation 

strategies were implemented with this tree model. The first one is a processor farm scheme, 

where the computation of an element of the matrix is attributed dynamically to each worker. Fig. 

6.11 shows the assignment of the elements of the matrix per processor, when a model order of 

10 is considered. 

M 

wo W1 W2 

CD1 CD2 CD3 

W3 W4 W5 W6 W7 W8 W9 W10 W11 

CD4 CD5 LR NCD5 NCD4 NCD3 NCD2 NCD1 

Fig. 6.11 : Tree topology (depth 3) - 1S` approach and respective task allocation for a 10`h order 
model (see Fig. 6.8 for abbreviations). 
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In this situation, the efficiency and speedup values obtained are depicted in Fig. 6.12. 
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Fig. 6.12: Tree topology (depth 3) - 151 approach (a) speedup and (b) efficiency. 

The improvement obtained on the performance results when comparing with those obtained 

for the linear topology were smaller than what was expected. Therefore, an alternative allocation 

scheme was tried (see Fig. 6.13). 

This second implementation approach using the tree topology (depth 3) numbered the workers 

of the lowest level in a different sequence, this being determined by the mother-worker of the 

first level (see Fig. 6.13). Also, the allocation of tasks to the workers became static, through the 

use of a map. 

This way, a more balanced loading of each branch of the tree was achieved, and due to the 

mapping facilities introduced, some of the communication overheads (reflected on the last 

performance results) were avoided. 

The speedup and efficiency results are illustrated in Fig. 6.14. 
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Fig. 6.13 : Tree topology (depth 3) - 2°d approach and respective task allocation for a 10`h order 
model (see Fig. 6.8 for abbreviations). 
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Fig. 6.14: Tree topology (depth 3) - 2nd approach (a) speedup and (b) efficiency. 

At this stage of the work, some graphs (Figs. 6.15 to 6.17) provide comparison of the three 

implemented schemes. This confirms that the tree topology (depth 3) using the second task 

allocation approach is the topology presenting best performance results. 
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Fig. 6.15 presents a comparison of the execution times taken by each scheme considered, for 

different model orders, and, the extreme cases of data sequence length, N=64 (Fig. 6.15 (a)) and 

N=512 (Fig. 6.15 (b)). These execution times refer to the implementation of the three approaches 

on the same transputer system. The tables underneath each graph include also, as a reference, the 

respective values of execution times obtained for the implementation of a sequential version of 

the covariance matrix and right-hand-side vector. From these reference values, the improvement 

obtained with any of the parallel schemes employed, and particularly with the static version of 

the tree topology (depth 3), becomes evident. 
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27 579 34196 

416 4 499 

3.841 4.055 
3.742 3.66 

Fig. 6.15: Comparison of execution times obtained with the processor farm linear, tree (depth 3) 
(151 and 2nd) approaches versus model order, for data sequence lengths (N) of (a) 64 and (b) 512. 

The speedup, when analyzed for a particular model order and N values ranging fron 64 to 

512, leads also to the conclusion that the static task allocation approach of the tree (depth 3) 

topology (depth 3) performs best. 

Fig. 6.16 illustrates the speedup results obtained when a 4`h order model (Fig. 6.16 (a)), and 

a 10`h order model (Fig. 6.16 (b)) were implemented on a processor farm with 5 and 11 active 

workers, respectively. 
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Fig. 6.16: Comparison of speedup values obtained with the processor farm linear, tree (depth 3) 
1' and 2nd approaches versus data sequence lengths, for model orders (p) of (a) 4 and (b) 10. 
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Fig. 6.17: Comparison of speedup values obtained with the processor farm linear, tree (depth 3) 
1`` and 2nd approaches versus model orders, for data sequence lengths (N) of (a) 128 and (b) 512. 

If instead the analysis of speedup is carried out varying the order of the model for each data 

sequence length considered (see Fig. 6.17 for cases N=128 and N=512), again the tree topology 
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(depth 3) with the second task allocation approach is the one closest to the optimal speedup line. 

The values assumed by this optimal line are determined by the number of active workers. 

C. Tree Topology (Depth 2) 
3- 

The last topology implemented was specifically concerned with improving the load balancing of 
the tasks attributed to the workers, and reducing the communications between them. It was also 

constrained to the usage of only three workers and a 'master processor, contemplating a 

commonly encountered practical situation where only a hardware board with four transputers is 

available. 
This topology uses only a single-level of workers, whose tasks are statically attributed by a 

pre-defined map, which enables the allocation of the computation of the matrix elements in 

workers, according to the model order in use and satisfying the load balancing and 

communication requirements stated above. Fig. 6.18 illustrates this topology and the tasks 

attributed to each worker for the case of a model order of 10. (See Fig. 6.8 for abbreviations 

used). 

MASTER 

WO wi 1M2 
NCD1 NCD4 NCD3 
CDI NCD5 NCD4 
CD4 C03 CD2 
CD5 R 

Fig. 6.18: Tree topology (depth 2) and respective task allocation for a 101h order model (see Fig. 
6.8 for abbreviations). 

The performance results obtained with this topology are presented in Fig. 6.19. 
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Fig. 6.19: Tree topology (depth 2) (a) speedup and (b) efficiency. 
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Fig. 6.20: Comparison of speedup values obtained with the tree (depth 3) 2nd approach ('Tree 
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Fig. 6.20 allows the comparison of speedup values obtained for this topology and the tree 

topology (depth 3) using a static task allocation. For better understanding of the behaviour of 

these topologies, the optimal values of speedup for each topology (3 in the case of tree (depth 

2) topology (quoted as 'Three proc. ' in Fig. 6.20), and (p+l) in the case of the second approach 

of the tree topology (depth 3)) (quoted as 'Tree Top. ' in Fig. 6.20) are included. 

In fact, comparing the speedup achieved by these two schemes for the particular cases of 

model orders of 4 (Fig. 6.20 (b)) and 10 (Fig. 6.20 (b)), it is clear that the tree (depth 2) follows 

more uniformly, and approaches more closely, the optimal speedup than the previous topology. 

D. Performance Analysis 

In the current realisation all parallel implementations achieved speedup. This was higher for the 

tree (depth 2) topology. In all cases the speedup was most significant when N was large, due to 

the coarser grain size. Speedup was also higher for higher values of model order, except for the 

tree (depth 2) topology, where the relationship between the model order (p) and the number of 

active workers (number of workers=p+1) is no longer true. 

Analyzing the values of efficiency of the linear processor farm, we note that for all the values 

of N considered, this array may be unsuitable for any more than a small number of processors 

in the farm (3 or 5). For larger number of processors efficiency drops away. This is mainly due 

to the limited throughput of this topology and the consequent communication overheads. 
The tree topologies are able to achieve higher values of efficiency than the linear array, and 

when N is large (N=512), efficiency is almost constant, even for a higher number of workers. 
Of the tree topologies, the depth 2 offers the most efficient use of processors, as may be seen 

in Fig. 6.21 for different data sequence lengths and model order values of 4 and 8. Also, this 

topology is less sensitive to unbalanced loading of the workers, since the relative weight of a task 

to the overall weight of the tasks attributed to a particular worker, is less in the case of the depth 

3 tree than in the other topologies considered. 
Thus the depth 2 tree topology offers the best performance. It requires a more sophisticated 

task allocation strategy, however it offers a significant reduction in communication overheads as 

a result of shorter paths between the master and workers. 
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Fig. 6.21: Comparison of efficiency values obtained with all the implemented topologies versus 
data sequence lengths, for model orders of (a) 4 and (b) 8. 

6.4. SOLUTION OF THE LINEAR SYSTEM OF EQUATIONS 

6.4.1. General Description 

The solution of linear systems of equations is efficiently computed in sequential computers using 

Cholesky decomposition [17] [32] [37]. 

The solution of a system of equations Ax=b, where A is a square matrix of dimension n, x 

and b are column vectors with size n, is performed in three steps: 

Step 1- Decompose A into a product LDLH, where L (nxn) is a lower triangular matrix with 

ones as elements of its principal diagonal, D (nxn) is a diagonal matrix with real and 

positive elements on the principal diagonal 
, and, LH is the Hermitian conjugate of the 

matrix L. The L and D elements are computed by 
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for i=2,3,..., n 

d1 = a11 

Step 2- 

i-I 
d; = aii' dk" I ý-k 

k-I 

a'` for j=1 
dl 

1.. _ aij ý-1 1 
. 

dk. lj*k 

T. ýF di 

(6.8) 

for j=2,3,..., i -1 

Set y=DLHx, and solve the system Ly=b by back-substitution, thus 

y, =b, 
k-1 

ykbk-E1. y1 

;. 1 

Step 3- 

for k=2,3,..., n 

Chapter 6 

(6.9) 

Compute the final solution, by determining x= (LHD'1)"y, which again employs the 

backsubstitution recursion 

x= 
yn 

n 
n 

xk = 
yk 

-Elk` . xx dk j. k. l 
for k=n-1, n-2,..., l 

(6.10) 

Two parallel implementations of the Cholesky algorithm have been carried out following the 

above approach. 

6.4.2. Parallel Implementations 

Both parallel implementations used a transputer-based ring topology (see Fig. 2.4) with three 

processors. The highly recursive structure of the Cholesky algorithm did not enable a complete 

parallelization of the program. The partitioning of the algorithm may be described as follows: - 
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PAR 

... compute L 

... compute D 

... solve Ley=b 
SEQ 

. compute final solution 

The main difference between the implementations of the above partitioning scheme is 

concerned with the way of establishing communications among the processors. 

In the first approach, the processor in charge of the computation of the L elements, computed 

a whole column of the matrix and only afterwards communicated the values of the elements to 

the other processors, so that they could calculate the D elements and solve y (viewed as a sum 

of partial solutions). 

In the second approach, as soon as the first element of each column of L is determined, it 

is sent to the other processors which immediately start the operations, and then, when the rest 

of the elements of that particular column are computed, are sent as a vector to the remaining 

processors. 
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Fig. 6.22: Results of (a) speedup and (b) efficiency obtained with two parallel implementations 
of the Cholesky algorithm. 
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Despite the effort, parallelization was unsatisfactory, as may be seen in Fig. 6.22. The 

execution times obtained for both implementations were approximately the same as if a 

completely sequential implementation of the algorithm was performed on the sane transputer 

system (see Fig. 6.23). This result has been found elsewhere [92]. 
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par? 
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model order 

Fig. 6.23: Comparison of execution times observed for sequential and two different parallel 
implementations of Cholesky algorithm. 

6.5. COMPUTATION OF THE WHITE NOISE VARIANCE 

The computation of the white noise variance using the value of C, 010 (already computed for the 

covariance matrix) as C0, o in its expression (6.3), results in a simplified sequence of calculations 

consuming only 2p+1 flops (see section 6.2.2. ). Due to the low orders of the models considered 

in this study, this block of the modified covariance algorithm is not worth considering for parallel 

implementation. 

In fact, its sequential implementation on one of the processors revealed that the execution 

times increased linearly with the model order, confirming the theoretical complexity of 2p+1 

(section 6.2.2. ). 

Table 6.4 presents the execution times obtained for the sequential implementation on the 

transputer-based system considered, of the white noise variance computation, when model orders 

ranging from 2 to 10 (even values) were employed. 
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model order execution times (ms) 

2 0.011 

4 0.019 

6 0.026 

8 0.034 

10 0.043 

Table 6.4: Execution times obtained for the computation of the white noise variance estimate. 

6.6. COMPUTATION OF PSD 

The estimation of the power spectral density (PAR(f)) of the signal is obtained using (6.11). The 

denominator of the second expression is evaluated over the normalized frequency range [-1/2,1/2] 

at the frequency points f,, =(-1/2)+(n-1)/N, where n=1,..., N, and N is the number of frequency 

samples desired. This may be achieved in two ways, whether employing the DFT or, its fast 

implementation, the FFT. 

PAR (f") 
(6.11) 1A)(2 2 P 

1 +F a [k]. z'k Iz 
k-i 

The parallel implementation of the computation of the PSD was initially devised to include 

an available parallel implementation of the FFT [93]. However, it proved difficult to adapt this 

program to the SUN-hosted transputer system employed, and on which all other performance 

measurements were taken, and this lead to the development of a simplified parallel DFT, adapted 

to the type of signals used. 
Current work is being carried out on the implementation of the FFT algorithm [94] on a PC- 

based transputer system [53] [95], in conjunction with a research colleague. This FFT algorithm 
is used on a project concerned with the development of alternative implementations of the 

modified covariance spectral estimation method [96]. 

The performance results of the FFT implementation may be evaluated as part of the overall 

performance of the modified covariance spectral estimation algorithm, reported in section 6.8. 
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The procedure used to compute and implement in parallel PSD calculations using the simplified 

DFT is now described. 

6.6.1. Implementation of a Simplified DFT based PSD calculation 

After the computation of the model parameter estimates and white noise variance estimate, the 

usual sequence of procedures [17] to obtain a PSD, may be summarized in the following steps: 

Step 1- Create a vector whose first element is unity (the first term of the 

summation in the denominator of (6.11)), the following p elements being 

the p model parameter estimates, and the rest of the elements, up to a total 

of N (number of points required in the spectrum) are made equal to zero; 
Step 2- Compute its Fourier transform, normally using the FFT algorithm. Here the 

simplified DFT will be used; 
Step 3- Evaluate the squared modulus of the complex vector obtained in Step 2, 

and, using the white noise estimate, compute the values of the PSD for N 

points; 
Step 4- Transpose halves of the spectrum and summarize the results into a vector 

of N/2 elements for graphical purposes. 

Some simplifications have been carried out in the above procedure. 
The first simplification regards the computation of the data vector (d) of Step 1, where only 

the first p+l terms are now considered. 

Another simplification is that the computation of the Fourier transform needs only to be 

performed for only half the number of frequency points (N/2), since the spectrum of real signals 
is symmetric and, for visual presentation of the spectrum only the last half of the spectrum is 

usually considered. Thus, 

X[n- N] 
=Ed[k]. e-j2En77 for n= 2..., (N-1) (6.12) 

A-0 

where the X[O],..., X[(N/2)-1] vector elements were used to evaluate the final PSD values, 

P[i] _ 
62 

Re[X[i]]Z+Im[X[i]]2 
for i=0,1, -., (T -1) (6.13) 
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This algorithm was implemented in a tree (depth 2) topology, using three processors. The 

range of frequencies for expression (6.12) and (6.13) was partitioned into three smaller ranges, 

each one being computed on a separate processor. A master processor received through its input 

channels the results calculated on the three worker processors, and, composed the final expression 
(6.13). 

The OCCAM representation of the partitioning of the algorithm is: - 

PAR 

... compute the PSD for first range of frequencies 

... compute the PSD for second range of frequencies 

... compute the PSD for third range of frequencies 
SEQ 

... obtain the complete PSD 

6.6.2. Performance Results 

The sequential version of this simplified DFT was implemented on the SUN-hosted [91] 

transputer platform. 
Fig. 6.24 illustrates the considerable decrease in the time consumed by the parallel 

implementation (Fig. 6.24 (b)) in comparison with the execution times obtained for the sequential 
implementation of the same algorithm (Fig. 6.24 (a)). The associated values of speedup and 

efficiency are depicted in Fig. 6.25. It should be noted that these are very close to the ideal case 

of linear speedup. 
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Fig. 6.24: Execution times for the (a) sequential and (b) parallel implementations of the 
simplified DFT algorithm. 
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Fig. 6.25: Simplified DFT algorithm (a) speedup and (b) efficiency. 
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6.7. FULL SPECTRAL ESTIMATION PROCEDURE 

6.7.1. Parallel Implementation 

The parallel implementation, of the modified covariance spectral estimator algorithm as a whole 

was achieved by connecting the four computational blocks. These blocks comprised the 

computation of the covariance matrix and right-hand-side vector, the solution of the resultant 

linear system of equations using a Cholesky decomposition algorithm, the computation of the 

white noise estimate, and finally the calculation of the PSD. 

For each of these blocks, with the exception of the computation of the white noise estimate 
(computed sequentially), a study of their possible parallel implementations and corresponding 

performance was carried out (see sections 6.3 to 6.6). Analysis of the performance results 

achieved by each implementation led to the identification of the topologies and task allocation 

schemes that performed best. 

In this way, the OCCAM program developed to perform full spectral estimation, is the 

combination of the four partial programs associated with the best approaches. Some adjustments 

were made to enable the communication of data and results to all processors accordingly to their 

tasks and priority requirements. 
The overall OCCAM program was implemented on a SUN-hosted transputer system with a 

master processor scheduling the tasks to be executed on three workers. The master was also 

responsible for the input/output communications with the host system. When the covariance 

matrix and right-hand-side vector, or the DFT algorithm were executed, the running code 

regarded the connection between the master and the workers as being a processor farm single- 
level tree topology. When the linear system of equations was being solved, the workers were 

viewed as connected in a ring topology. 

6.7.2. Performance Analysis 

The success of the overall implementation of the modified covariance method may be appreciated 
by analysis of Figures 6.26 and 6.27. 

As the number of data points of the signal increased, the speedup also increased. The rate at 

which it increased depended on the order of the model considered, being greater for higher model 
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orders. Nevertheless, the speedup values achieved were very close to the maximum value, three 

(since three is the number of processors executing) for the larger N values. 

The same dependency on the data sequence length and order of the model is propagated to 

the efficiency metric. The lowest efficiency was obtained for the case where the highest model 

order and lowest data sequence length was considered. 
In fact, the performance of the overall program was mainly dictated by the performance of 

the block of covariance matrix elements calculation, since the other major block, the PSD 

calculation, was almost insensitive to variations of both model order and data sequence lengths 

(see Fig. 6.25). 

When higher model orders were considered, the main computation of each element of the 

covariance matrix (the summation) involved a smaller range of covariance values, contrasted by 

the fact that a greater number of elements need to be computed. If at the same time the data 

sequence length was smaller, the tradeoff between communications overhead and execution times 

became unbalanced, tending to be more influenced by the communications overhead. 
The analysis of the execution times is also relevant to evaluate the usefulness of this parallel 

implementation of the modified covariance spectral estimator algorithm. 
The method is to be applied to a sequence of Doppler signal segments, each one with a 

number of data points determined by the product of the sampling frequency and the data 

sequence duration. In this research work the data segment time duration was fixed to lOms, and, 
both sampling frequency and data sequence length were adjusted to satisfy the signals' constraints 
(see Chapter 2). In this situation, the analysis of Fig. 6.26 (b) show that only for signal 

simulation cases with up to 128 points length (considering the order model of interest, as 
indicated in Chapter 5), the algorithm executes within lOms. However, in practice, sampling 
frequency and data segment duration may be different. In this case, the feasibility of this 
implementation should be assessed by comparing the actual data segment duration with the 

execution times indicated in Fig. 6.26 (b), for the data segment length closest to the actual length. 

It should be noticed that setting a particular sampling frequency implies appropriate scaling of 

spectral mean frequency and bandwidth values. 
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Fig. 6.26: Execution times of (a) sequential and (b) parallel implementations of the overall 
modified covariance spectral estimator algorithm. The parallel implementation is achieved using 
three active processors and a master scheduling their activities. 
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Fig. 6.27: Modified covariance spectral estimator algorithm performance: (a) speedup and (b) 
efficiency, when implemented on three active processors and a master scheduling their activities. 
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When a more detailed examination of the contributory execution times is carried out (see 

Table 6.5), we come to the conclusion that a significant part of the time is spent on the 

computation of the PSD rather than on the matrix elements calculation. Therefore the substitution 
of the DFT algorithm by a less time consuming algorithm would expand the range of the 

parameters of the Doppler signal which could be efficiently implemented in parallel. Another 

possibility involves using more processors for the computation of the DFT. 

c 

blocks 
p=4 

N=128 
p=10 

N=512 

cov. matrix, rhs vector 1.64 13.18 

sol. of system (Cholesky) 0.23 1.86 

white noise variance 0.02 0.04 

computation of DFT 5.05 43.03 

Table 6.5: Computational blocks and their respective contributory execution times for the overall 
algorithm (cases: p=4 and N=128, and, p=10 and N=512). 

6.8. ANOTHER APPROACH 

This section is concerned with a brief description of a new approach to a parallel implementation 

of the modified covariance method [96] that is currently being developed in conjunction with a 

colleague. 
This work has been included for completeness here. The implementation (on a transputer- 

based system) of parallel versions of the modified covariance algorithm to enable this method 

of Doppler spectrum estimation to be achieved in real-time. 

The strategy described in the previous section, regarded the spectral estimate of a 'single time 

segment of the Doppler signal (a lOms segment is considered (see Chapter 3)), that is to say, it 

could only estimate the spectrum of the Doppler data segment corresponding to a single point 

in the cardiac cycle. However, each cardiac cycle (with an approximate duration of Isec) contains 

several, Doppler data segments. The parallel implementation approach presented in this section, 

enables the computation of a number of these Doppler data segments' to be ` executed 

simultaneously. 
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These two approaches differ also in terms of the implementation strategy employed. In the 

previous approach, parallelism was achieved by means of partitioning and allocating the 

constituent processes of the modified covariance method among a number of processors (a master 

and three workers). 

In the new approach, again a master and three workers are used, but the modified covariance 

method is now running sequentially on each processor, including the master. Each data segment 

in the block is executed in parallel. The number of segments processed concurrently depends on 

the number of processors used. 

The new algorithm has been implemented on a tree (depth 2) topology, on a PC-based 

transputer network, populated with T800 INMOS transputers running at 20MHz. The execution 

times obtained for a sequential implementation are shown in Fig. 6.28(a). These times may be 

compared with those given in Fig. 6.26(a), remembering that the calculation of the PSD was 

performed using a simplified DFT in the case of Fig. 6.26(a) and an FFT algorithm (see section 

6.6.1) in the case of Fig. 6.28(a). The times taken to execute the spectral estimation of four signal 

segments, using four transputers, are illustrated on Fig. 6.28(b). The execution times per data 

segment are one quarter of those shown. 
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Fig. 6.28: Execution times obtained with the 2nd approach implementation of the modified 
covariance spectral estimation of (a) a single data segment on a single processor, and, (b) four 
data segments on four processors. 
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Values of speedup and efficiency obtained with this new approach are presented in Fig. 6.29. 

In this approach (dealing with blocks of segments), a higher level of speedup and efficiency 

is achieved when compared with the single segment approach, mainly due to the lower 

communication requirements. 
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Fig. 6.29: Performance measurements of: (a) speedup and (b) efficiency obtained with the 
implementation of the 2"d approach of the modified covariance spectral estimation of four data 

segments using four processors. 

6.9. CONCLUDING REMARKS 

The work described in this Chapter was concerned with the identification of parallelism in the 

AR modified covariance spectral estimation algorithm, the partitioning of the problem into tasks 

that could be executed concurrently on different processing elements, and, the allocation of those 

tasks onto different number of processors of a transputer-based system. 

The parallelization of the modified covariance algorithm was primarily developed considering 

the spectral estimation of an individual Doppler data segment. In this approach, each algorithmic 

block (the computation of the covariance matrix and right-hand-side vector elements, the solution 

of the linear system of equations using a Cholesky decomposition algorithm, the calculation of 

the white noise estimate, and, the computation of the PSD) were separately studied. 

2 4 6 8 10 

N=512 0.95 096 096 097 0.97 
N=256 G. 94 0.95 D. 96 097 0.97 

N=128 0.93 0.95 0.96 0.97 0.97 
Ný4 0.92 0.94 0.95 0.96 0.97 
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A new strategy to compute the covariance matrix and right-hand-side vector elements was 

presented, and its computational complexity (measured in terms of flops) was compared with 

those obtained with the published versions of the modified covariance method (versions due to 

Kay and Marple). This new strategy proved to be much more efficient than Kay's algorithm and 

similar to Marple's version. The simplified covariance algorithm was then partitioned in two 

ways, using fine-grain and medium-grain strategies. The latter presented lower communication 

overheads, and enabled a straightforward parallelization. Different transputer-based topologies 

were evaluated (namely the processor farm linear topology, the tree topology (depth 3) with two 

different task allocation schemes, and, the tree (depth 2) topology), and measurements of 

performance achieved using each topology were compared. The tree (depth 2) topology 

performed best overall. 

The Cholesky algorithm was partitioned using two different schemes, both implemented on 

a ring topology, neither producing performance results that could justify the effort of its 

parallelization. 
The white noise estimate, due to the simplifications introduced in the modified covariance 

version proposed in section 6.2.2, was computed sequentially, on a single processor. 
An adaptation of the computation of the DFT to the specific signal of interest was developed 

in order to obtain the power spectral estimation of the signal. The simplified DFT algorithm was 
implemented on a depth 2 tree, where almost optimum speedup and efficiency values were 

attained. However, the parallel execution times obtained for the DFT did not satisfy the real-time 

requirement of executing in less than lOms for some of the signal cases considered. The 

substitution of the DFT algorithm by an FFT algorithm is proposed. 
The parallel approaches which performed best, for each computational block of the new 

modified covariance algorithm, were combined in an OCCAM program, to enable a complete 

spectral estimate of a Doppler signal segment to be obtained. Its performance results showed that 

the technique employed to parallelize the modified covariance method was efficient. 
Another approach involves considering the existence of a consecutive sequence of Doppler 

signal segments, each one with an approximate duration of lOms. Adapting this approach, the 

modified covariance algorithm is more efficiently used when implemented on each one of an 

array of transputers, each of them processing an individual data segment. This approach is being 

currently developed in collaboration with a research group colleague, and good levels of speedup 
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and efficiency have been achieved. This is more noticeable, due to a coarser grain size, when 

large values of data segment and AR model orders are used. 
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CHAPTER 7 

F 

Conclusion 

7.1. GENERAL CONCLUSIONS 

The research work presented in this thesis aimed to increase the sensitivity to blood vessel 

disease detection and investigation using spectral analysis of the Doppler shifted ultrasound 

scattered from blood. 

The sensitivity of disease detection depends inter alia, on the accuracy of estimation of the 

Doppler signal spectrum mean frequency and width. Intrusive vessel lesions produce disturbed 

flow, resulting in an increase in the range of Doppler shift frequency (spectral broadening), and 

variations in the blood velocity waveform of each cardiac cycle, and consequently in the Doppler 

spectrum mean frequency. 

Pulsed ultrasonic Doppler instrument signals were considered in this work. These type of 

signals are characterized by a random nature, having a Gaussian probability density function in 

undisturbed flow, and with a time-varying frequency spectrum determined by the time-varying- 

blood velocity field and size and position, within the velocity field, of the instrument's resolution 

cell (sample volume). Under steady heart rate conditions and stable physiological state,, the 

Doppler signal is cyclo-stationary. When a small sample volume in undisturbed flow is 

considered (case under study), the Doppler spectrum is under most conditions relatively narrow 

and single peaked. 
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Accurate methods of estimation of Doppler spectral mean frequency and bandwidth which 

could reduce the effects of the measurement procedure on the estimation of blood velocity and 

detection of flow disturbance, were therefore required. These methods should also contemplate 

general Doppler signal requirements, such as, the stationarity of the consecutive segments of the 

cardiac cycle to be analyzed, during which only short data records are available, and the narrow 

and single peaked shape of the expected spectrum. 

In this context, reliable analysis of the spectral content of the Doppler signal estimations 

obtained by the different spectral estimators required a complete knowledge of the Doppler 

signal. Therefore, this research work started by the implementation of a Doppler signal simulator. 
Two algorithms of simulation were implemented, comprising two different Doppler spectral 

shapes, the rectangular and the Gaussian shapes. The rectangular shape contemplates the situation 

were uniform sensitivity over the vessel cross-section, parabolic velocity profile, and, negligible 

spectral broadening resultant from transit time effects and deviations from the plane-wave 

conditions. On the other hand, the Gaussian spectral shape represents the case where large vessels 

with undisturbed flow and small sample volumes are considered. Algorithm 1 (as it is referred 
in this thesis) is based on Mo and Cobbold's [63] approach, while the other algorithm, algorithm 
2, is based on Leuewen, Hoeks and Reneman's [64] theory. A modification to algorithm 1 was 
introduced aiming to reduce its computational burden when simulating a Doppler signal with 
Gaussian spectral shape. The signals simulated by modified algorithm 1 and algorithm 2 gave 

similar Chi-squared values when the Gaussianity of their amplitude distribution was tested. Thus, 

the selection of algorithm 2 as the algorithm to use in this research work was based on 

considerations of computational efficiency. In 90% of the simulated signals using algorithm 2 the 

amplitude of the spectrum of the simulated signal followed a Gaussian distribution to within 
limits of the statistical test (a Chi-squared variable with 5% significance level was considered). 

The random nature of the Doppler signal induces randomness of the Doppler spectrum, 
leading to the application of ensemble averaging techniques in order to reduce spectral variance. 
The question of how many signals should constitute the ensemble was addressed in this project. 
Statistical expressions for estimating spectral mean frequency and half bandwidth parameters 

were developed, and measurements of their statistical performance were established. A 

compromise between the computational complexity of a large ensemble and the requirement of 

a low residual variance of the statistical measures resulting from the finite size of the ensemble 
led to the selection of an ensemble size of 150. 
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After establishing the use of a particular signal simulator algorithm, and testing both in time 

and frequency domains the statistical characteristics of the simulated signals, our attention was 

centred on the estimation of the spectrum of Doppler signal simulations with Gaussian spectral 

shape. Mean frequencies varying from 1kHz to 8kHz in octaves, and half bandwidths of 5% 

(except for the 1kHz signal), 10% and 20% of the mean frequency value (each of these signals 

was designated in the text as signal simulation case) were considered. 

A pre-selection of the spectral estimation methods that could be applied to signals with such 

characteristics was carried out. Among the parametric methods, the autoregressive Yule-Walker, 

Burg and modified covariance methods were implemented, as well as the autoregressive moving 

average methods of least squares modified Yule-Walker equations and Mayne-Firoozan. The non- 

parametric method of minimum variance was also considered. For completeness, the traditional 

methods of spectral estimation employing the Fast Fourier transform of Boxcar and Hanning 

windowed signals were also included in this study. 
Measurement of the percentage relative bias and standard deviation of the spectral mean 

frequency and half bandwidth estimators using the above spectral estimators was carried out. The 

ARMA Mayne-Firoozan and minimum variance methods were excluded at an early stage of this 

study, due to, respectively, the non-minimum-phase filter estimates and high spectral half 

bandwidth variances presented. 

The analysis of the Doppler simulated spectra was performed in a first stage comprising a 

qualitative comparison of the statistical results obtained for both spectral parameters. A subjective 

selection of the parametric model order(s) that more appropriately combined the uniformity of 

the results of the four statistics (bias and standard deviation for both mean frequency and half 

bandwidth parameters) for each signal simulation case, was carried out. Global analysis of the 

parametric spectral estimators' mean squared error of both spectral parameters, including all the 

simulation cases and considering the previously subjective chosen model order(s), was attempted. 
The difficulty encountered in selecting a particular spectral estimator from those considered, by 

means of qualitatively comparing the statistical results obtained, motivated the development of 

a novel criterion of parametric model order selection and spectral estimator selection (from 

parametric and non-parametric methods). 
The new criterion, the cost/benefit criterion [87] [88], is based on the accuracy of estimation 

of specific spectral parameters (mean frequency and bandwidth), under the constraint of low 
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computational complexity. It also allows the possibility of weighting appropriate to estimator 

(mean frequency and bandwidth) and signal frequency importance in disease detection. 

The cost/benefit results obtained when the spectral estimation methods referred above were 

employed to estimate (with equal levels of importance) both mean frequency and half bandwidth 

parameters of the Doppler spectrum, revealed that the fourth order modified covariance method 

was the spectral estimator that more appropriately satisfied the requirements. This method was 

also selected for the individual estimation of spectral half bandwidth parameter. If instead only 

spectral mean frequency is required, the improvement in statistical performance by the use of a 

parametric method would not compensate for the cost of applying the less computationally 

complex FFT algorithm. 
The parametric model orders selected by the cost/benefit criterion were compared with those 

selected by accepted model order selectors (FPE, AIC and CAT), for the same signal simulation 

cases. This comparison shown that the model orders chosen by the new criterion were lower than 

the selected by conventional criteria. 
More detailed analysis of the behaviour of the cost/benefit criterion when cost of the 

algorithmic implementation is or is not taken into consideration, demonstrated that computational 

complexity does influence the selection of model order within a single signal simulation case, 
but, the selection of a model order appropriate for estimation of several signal cases is mainly 
determined by the statistical accuracy of the spectral parameter estimates. 

Finally the parallel implementation of the spectral estimation method selected (under general 

conditions) by the cost/benefit criterion was carried out. 
The modified covariance algorithm was first parallelized considering the spectral estimation 

of a single Doppler data segment. To achieve that, the algorithm was partitioned into blocks. 

They were, the computation of the covariance matrix and right-hand-side vector, the solution of 

the linear system of equations using a Cholesky decomposition algorithm, the calculation of the 

white noise variance estimate, and the computation of the power spectral density. This approach 

was implemented on a SUN-hosted transputer system. The parallel programming language 

employed was OCCAM. 

Since the calculation of the elements of the covariance matrix and right-hand-side vector was 

the algorithmic block involving more computational effort, this block was treated in detail [97]. 

A new strategy to compute these elements (when real data sequences are considered) was 
developed, and its sequential computational complexity (measured in flops) was compared with 
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those presented by Kay and Marple versions of the modified covariance algorithm. The new 

modified covariance algorithm demonstrated a better computational performance than Kay's 

version, and comparable behaviour to Marple's version. Two strategies to parallel partition this 

computational block were investigated, the fine-grain and the medium-grain [89]. The latter 

revealed more capacity to be efficiently parallel-implemented, presenting less communication 

overheads than the fine-grain approach. Different transputer-based topologies were implemented, 

namely the processor farm linear topology, the two-level tree topology and the single-level tree 

topology. The two-level tree topology included two task allocation schemes, a dynamic task 

allocation (where the two-level tree may be regarded as a processor farm tree topology), and a 

static task allocation scheme achieved by means of a map. The single-level tree topology 

considered also a static allocation of the tasks onto three processors connected to a master 

processor (responsible for input/output communications) in a tree structure. The parallel 

implementation performance was measured in terms of execution times, speedup and efficiency. 

All topologies achieved speedup, but the single-level tree topology presented the best efficiency 

values. 
The parallel implementation of the Cholesky algorithm used three processors connected in 

a ring structure. Two different task allocation schemes were considered, none of them presenting 

significant improvements in the performance results achieved by a sequential implementation of 

the same algorithm. 

Due to simplifications resulting from the application of the new modified covariance 

algorithm, the computational burden involved in the calculation of the white noise estimate did 

not justify its parallelization. 

The computation of the power spectral density was achieved by means of a simplified DFT, 

targeted to the specific signal of interest. Its parallel implementation used three processors in a 

single-level tree topology, revealing close to optimum values of speedup and efficiency. 

Afterwards, best solutions for each computational block were interconnected to constitute a 

single spectral estimation parallel program. Performance measurements were taken, confirming 

the efficiency of the implementation achieved. However, the feasibility (in terms of execution 

times) of a real-time implementation of the modified covariance method using this simplified 

DFT algorithm will depend on the relationship between the Doppler data sequence length and 

the sampling frequency considered. For the signal simulation cases given as examples, where a 
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fixed lOms duration Doppler signal segment is considered, only signals with a number of points 

up to 128 (when a 4`h order model is used) can be estimated in less than lOms. ' 

Another approach to the parallel implementation of the modified covariance algorithm 

comprised the simultaneous estimation of a number of Doppler data segments on a PC-based 

transputer system. This approach, currently in development, executes (sequentially) the estimation 

of each Doppler data segment on each single processor. In this way, the number of processors 

in the network defines the number of Doppler signal segments that ' can be spectral estimated 

concurrently. It includes also an FFT algorithm for the calculation of the Doppler power spectral 

density estimation instead of the simplified DFT algorithm used before. The execution times 

obtained for the computation of each spectral estimate decreased, therefore enabling more flexible 

choice of the range of values of the sampling frequency and data sequence length [96]. 

Although constrained with some tradeoff considerations concerning sampling frequency, data 

sequence length and data sequence duration, the parallel implementation performance results 

showed that spectral mean frequency and bandwidth estimation using the modified covariance 

spectral estimator is achievable in real-time. 

7.2 FUTURE WORK 

The interdisciplinary content of this research work enables pointing out future work in specific 

areas or research. 
Starting by the area of Doppler ultrasound, an extension to non-stationary analysis of the 

Doppler signal may be developed. In this context, the Mo and Cobbold's signal simulator [98] 

may be used. On the other hand, the effects of additive Gaussian noise introduced by the Doppler 

signal instruments should be considered. Different levels of noise should be added to the Doppler 

signal, and, the performance of the each spectral estimators considered should be analyzed under 

these conditions. 
The signal processing area, due to its applicability to several other research areas, is in 

continuous development. Therefore, the spectral estimation methods considered in this research 

work covered only a limited range of the methods available, some of them resulting from 

modifications of commonly referred methods in order to satisfy requirements of certain 

applications. Parametric spectral estimation methods that can constantly adapt to the 

characteristics of the signal, such as, the recursive least squares autoregressive methods [32], may 
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be explored. Then, is also the possibility of following another approach of spectral mean 

frequency and bandwidth estimation, following the strategy of analysis of AR pole location in 

the z-plane, presented by Ahn and Park [20]. 

With reference to the cost/benefit selection of spectral estimation methods a deeper study of 

the benefit weighting, and cost functions should be carried out. The benefit weighting function 

should reflect (in a more objective way) the clinical requirements from the procedure of which 

spectral estimation is a part. As a start, the benefit weighting should be altered to truly reflect 

the equal importance of mean frequency and bandwidth estimators (when this is required) rather 

than simply equally weighting their errors, since this leads to the greater effective weight being 

given to bandwidth estimation because of the large associated error. The cost function should also 

be improved to take into account factors such as the computational burden of input/output 

procedures, the effective cost of employing a specific hardware system, and, the opacity of the 

algorithms used. Opacity is understood as the capacity of an algorithm to be clearly understood 

so that its application and/or modification can be reliably carried out [99]. 

Referring to the modified covariance estimator's parallel implementation some points should 
be stressed. Firstly, the modified covariance algorithm should be developed to enable spectral 

estimation of complex signals since Doppler instruments normally use phase-quadrature 
demodulation in order to preserve flow direction information. Secondly, the solution of the linear 

system of equations could be more investigated. 

The implementation of the modified covariance algorithm using other computer architectures 
is also desired. Its implementation on a Digital Signal Processor (DSP) is currently being 

considered by a research colleague. Comparative performance results obtained with the transputer 

and DSP implementations will be carried out. 
Meanwhile, the development of the modified covariance algorithm is being also studied with 

regard to its implementation on an Application Specific Integrated Circuit (ASIC), for 

incorporation into Doppler ultrasound instruments. 
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