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Summary

This work investigated the consequences of vegetable oils spills in salt marsh sediments.

T'he role of autochthonous bacteria in the oils degradation and degradative pathways were
also studied ‘in situ’ and ‘in vitro’.

Simulated spills of sunflower and linseed oils revealed that both oils penetrated the
sediments at a rate of 107 c¢m’ s However, whereas 60% of the linseed o1l had
disappeared from the sediments after 2 months most of the sunflower oil remained after 6
months. Differences were noted in the adsorption of the oils to sediment particles and the

depth at which they accumulate and these factors most likely influenced the route of the oil
degradation and the sediments properties such as permeability. The contamination of the

sediments with vegetable oils lead to a noticeable reduction in the abundance of plant roots
and infauna.

The abundance of aerobic, anacrobic and sulphate reducing bacteria in the sediments was
increased by the addition of both oils, with linseed oil supporting greater bacterial density
than sunflower oil. During the course of the experiment the relative abundance of oil
degrading bacteria also increased. As a consequence of the increased bacterial activity, the
sediments pH and Eh decreased and anoxic conditions were established, earlier in the case
of linseed than that of sunflower oils.

The degradation of the oils appeared to be a sequential process, initiated by the aerobic
and/or anaerobic bacteria and continued by the sulphate reducing bacteria which
themselves where unable to utilise the raw oils. The original composition of both oils
underwent alterations mostly associated with their main fatty acid: the concentration of
18:3w3 and 18:2w6 1n linseed and sunflower oil, respectively, decreased whereas that of the
remaining fatty acids increased.

As a result of the bacterial degradation of the vegetable oils ‘new’ fatty acids were detected
and their identification was attempted using GC-MS analysis of their picolinyl and methyl
esters. Various degradative pathways of linseed and sunflower oils involving the formation
of the ‘new’ fatty acids are suggested with isomerisation, hydrogenation and 3-oxidation as

the primary routes for the degradation.
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1. INTRODUCTION

1.1. COMMERCIAL USE OF VEGETABLE OILS

Oils and fats are used in the food industry for the manufacture of a wide variety of products
ranging from margarines to chocolate or used directly as salad and cooking oils. However,
a significant proportion (about 20%) is used in the oleochemicals industry for the
manufacture of an equally wide range of products: soap, detergents, toiletries, plastics,
paints, ink, efc. (Ratledge, 1994). About 75% of the total fats and oils are derived from
plants (of which soybean, palm, sunflower and rape oils account for over 70%) and the

remainder are from animals which encompass lard, tallow and marine oils (Ratledge,

1994),

Between the mid thirties and the mid eighties, the world exports of edible oils increased
five fold from 4 to 20 million tonnes per year (Gunstone, 1989). The increase was due
almost entirely to only four vegetable oils: soya, palm, sunflower and rape. The export of
all the others vegetable oils rose from 3.1 to only 4.5 million tonnes for the same period,
while the growth leaders increased almost 20 fold from 0.8 to 15.2 million tonnes. Soya
became significant during 1950’s and palm, sunflower and rape oils during the 70’s

(Gunstone, 1989). World consumption of vegetable oils has increased 4% per year over the
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last 15 years, driven mainly by population growth and improved income in large parts of

the world and it has been predicted that in the year 2000, world production of vegetable
oils and fats will have increased to 85 million tons (van Duyvenbode, 1995). Countries like
Malaysia will increase their production of palm oil from 5 to 8 million tonnes per year
(Ong, 1989). According to Ong, palm oil will have a major role to play in satisfying the
world demand for edible oils because oil palm is the most productive oil producing plant in
the world (Gunstone, 1994a). Others oils like rapeseed are expected to be potential
competitors. It 1s also expected that China will have greater demands of edible oils than the
domestic supply, creating export opportunities for other countries, namely Canada
(Gunstone, 1994b). China is expected to produce a total of 11.7 million tonnes of oils and
fats per year from domestic crops by 2004/2005, about 9 million tonnes being seed oils.
Consumption of edible oils and fats 1s projected to reach about some 15.3 million tonnes
and 5.1 million tonnes higher than in 1993 (Gunstone, 1994b). Rapeseed 1s expected to
remain the dominant oil in terms of consumption, but will probably lose market share

because of limited supplies and strong competition from palm o1l and soybean oil

(Gunstone, 1994b).

REGULATIONS GOVERNING TRANSPORT
AND SHIPMENT OF VEGETABLE OILS

1.2.

The nonpetroleum oil industry is already far from insignificant (see above) and with the
world’s demand for edible oils likely to increase, it is reasonable to expect that the world
trade of oils will increase. Nothing in the way vegetable oils are handled ditfers
significantly from petroleum oils, so the likelihood of spills of vegetable oils is no different
from that of petroleum oils (Rigger, 1997). However, the international community
regulations of shipboard discharges of petroleum and nonpetroleum oils differ (Hunt,
1997). Nonpetroleum oils are allowed to be discharged from tank cleaning or deballasting
operations provided their concentration is no greater than 1 part of the oil in 10 parts of
water. These requirements are part of international treaties establishing global standards for
regulating discharges from vessels and were established during the International

Convention for the Prevention of Pollution from Ships, 1978. Yet, there are no laws in case

of losses of entire tanks or entire cargo vessels.
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In recent years, this issue has been the subject of much debate in the USA. The Oil
Pollution Act of 1990 (OPA 90) is the latest major legislative effort to regulate pollution by
oil and hazardous substances (Hunt, 1997: Rigger, 1997). This act applies equally to
petroleum and nonpetroleum oils. Lately, the nonpetroleum oil industry sought a change in
environmental regulations governing edible oils, requiring that federal agencies
differentiate between edible and toxic oils, because the industry considered that the
environmental risks associated with the transportations, handling and storage of animal fats
and vegetable oils are different from those of toxic oils. However, in 1997 the
Environmental Protection Agency (EPA) denied this request based on the belief that a
worst case discharge or substantial threat of discharge of animal fats and/or vegetable oils
to navigable waters, adjoining shorelines or the exclusive economic zone, could reasonably

be expected to cause substantial harm to the environment, including wildlife that may be

killed by the discharge of fats or vegetable oils (EPA, 1997).

1.3. VEGETABLE OILS SPILLS AND EFFECTS

The greatest hazard to the marine environment from vegetable oils occurs during loading
and unloading of the cargo, when spillages of small amounts can occur (Hoffman, 1989).
Some of the largest ﬂu;(es to the marine system include emulsified industrial oils from
machinery, wastes from vegetable oil processing and soap manufacture. These influxes
constitute continual or chronic pollution (Clarke, 1992). However, larger spills can take

place and there are a number of cases reported.

The largest nonpetroleum oil spill documented in the literature was a 2.5 million gallon
spill of soybean oil into the Minnesota River and upper Mississippt River, during the
winter of 1962-1963 (Public Health Service, 1963). Because the spill occurred during
winter when the rivers where frozen, its impact was not felt until the spring thaw. Soybean
oil was found as far as 250 miles downstream of the spill after the thaw began. It was
estimated that this event caused the loss of 4000 birds and injured 1300 others. Additional

problems were caused by the increase in specific gravity of the oil after oxidation and

polymerisation. It then settled onto the bottom creating anaerobic conditions, which meant
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that the oil was not biodegraded quickly, with harmful consequences for the benthic

organisms. As water temperature rose in summer, the settled and floating oil increased the

biological oxygen demand.

A spill of nearly 10000 tons of palm and coconut oil and edible raw material such as copra
(dried coconut meat) occurred in 1975 on Fanning Island in the Pacific Ocean (Russell &
Carlson, 1978). According to these authors, the effects of these oily substances were
similar to those occurring after a petroleum oil spill. Fishes, crustaceans and molluscs were
killed and an excessive growth of Enteromorpha and Ulva occurred. However, the exact
mechanism leading to the death of these organisms was not identified. The authors
suggested that the most likely reason was asphyxiation and clogging of the digestive tract.
The algal growth was attributed to the elimination of algal competitors, increased

fertilisation from the pollution and reduced grazing pressure.

In the winter 1988/1989, a spill of nonylphenol and vegetable oils (such as palm oil) in the
Netherlands was responsible for thousands of seabi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>