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Summary 

 The Fibrobacteres phylum contains only two characterised species, Fibrobacter 

succinogenes and F. intestinalis, both of which are important degraders of cellulose in the 

mammalian gut. Fibrobacters were thought to be restricted to the gut environment, but this was 

recently disproven via the detection of novel Fibrobacter spp. in landfill sites and freshwater 

lakes, with the implication that the distribution and diversity of members of the genus 

Fibrobacter is poorly understood. Here, the environmental distribution of members of the 

genus Fibrobacter was addressed; a total of 64 samples from contrasting environments were 

screened for the presence of Fibrobacter spp. via genus-specific 16S rRNA gene PCR primers. 

Fibrobacters were detected in 23 samples, with the first specific detection of fibrobacters in 

marine and estuarine sediments, and Arctic cryoconite. Phylogenetic analysis of 16S rRNA 

gene sequences revealed 63 Fibrobacter OTUs at 95% sequence similarity, representing a 

wealth of unclassified species contained within this genus. To address the lack of cultivated 

Fibrobacter isolates, their isolation from landfill leachate microcosms containing either Avicel 

or dewaxed cotton string as the sole carbon source for growth was attempted, resulting in the 

first isolation of F. succinogenes from a landfill site, and the first isolation of fibrobacters from 

outside the mammalian gut. This is the first phenotypic evidence that fibrobacters are active 

members of the landfill cellulolytic community. The importance of fibrobacters in landfill 

cellulose decomposition was further characterised via 454 pyrosequencing of 16S rRNA gene 

amplicons and shotgun metagenomic sequencing of heavily-degraded cotton samples from 

landfill leachate microcosm, where fibrobacters have previously been shown to predominate. 

Fibrobacter 16S rRNA gene amplicons were enriched on the heavily degraded cotton sample 

(14.2% of sequences, vs. 0.02% for a poorly degraded cotton sample), and metagenome 

sequencing of the heavily degraded cotton revealed that proteins most closely related to F. 

succinogenes strain S85 dominated the sequence output. Attempts to isolate Fibrobacter spp. 

from the same heavily degraded cotton sample revealed that Fibrobacter spp. were present in 

co-culture with Clostridium sporogenes, but attempts to purify these strains were unsuccessful. 

These data represent a significant contribution to our understanding of the ecology of members 

of the genus Fibrobacter, and their important role in the hydrolysis of cellulolytic biomass. 
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1.1 Cellulose 

With the exception of cotton, which represents 100% crystalline cellulose, naturally 

occurring cellulose is typically associated with hemicellulose and lignin. The contribution of 

these compounds to the dry weight of lignocellulosic biomass varies between plant species, but 

typically lignin comprises 10 to 25%, hemicellulose 20 to 40% and cellulose 40 to 60% (Lin et 

al., 2010). Cellulose is the major structural component of plants, although it is also present in 

bacteria (O'Sullivan, 1997, Watanabe and Tokuda, 2010), fungi (O'Sullivan, 1997; Watanabe 

and Tokuda, 2010), algae (O'Sullivan, 1997; Jarvis, 2003) and tunicates (O'Sullivan, 1997; 

Jarvis, 2003). Whilst there are six polymorphs of cellulose (I, II, III1, III2, IV1 and IV2) 

(O'Sullivan, 1997), only cellulose I and II, known collectively as native cellulose, are present in 

nature (Brown, 2004). Cellulose I is the most abundant of the two native polymorphs (Brown, 

2004) and contains a mixture of two crystalline forms, Iα and Iβ, with the proportions of each 

varying between organisms. Typically, Iα is more abundant in celluloses derived from bacteria 

and algae, whilst Iβ is more prevalent in higher plant celluloses (Atalla and Vanderhart, 1984). 

A single cellulose chain comprises of β-D-glucopyranose residues organised in alternating 

directions and joined together by β-1, 4 glycosidic bonds (Brown, 2004). These cellulose chains 

lie alongside each other to form sheets which are held together by O-HO hydrogen bonds 

(Jarvis, 2003). These sheets are then stacked on top of each other in a staggered pattern and 

fixed via C-OH hydrogen bonds (Fig. 1.1) (Jarvis, 2003). In cellulose Iα the glucose molecules 

alternate in conformation in each chain, with each of the chains and sheets identical in pattern. 

In contrast, cellulose Iβ consists of chains and sheets consisting of a single conformation of 

cellulose, with sheets containing each conformation stacked alternately (Fig. 1.1) (Jarvis, 2003). 
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Figure 1.1 The structures of cellulose I.  

(A) Cellulose Iα has identical chains and sheets, with the glucose units in the chains alternating 

between the two conformations (shaded grey and white). (B) Cellulose Iβ, with each glucose 

molecule within the chain and sheet identical, and the sheets alternating in conformation. 

Modified from (Jarvis, 2003). 

 

1.2 The global carbon cycle 

Gross Primary Production (GPP) occurs when photosynthetic organisms fix CO2 to form 

organic compounds, resulting in the largest global flow of carbon (Beer et al., 2010) (Fig. 1.2).  

GPP also forms the basis for a number of other processes, and in conjunction with respiration, 

is critical in controlling the exchange of CO2 between the atmosphere and terrestrial and 

aquatic environments (Reich, 2010).  In order for the carbon cycle to be completed, cellulosic 

biomass must be degraded (Fig. 1.2). As it is estimated that the terrestrial GGP is between 115 

and 131 petagrams of carbon per year, the amount of cellulosic biomass produced is 

substantial. 
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Figure 1.2. The global carbon cycle. 
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1.3 Degradation of cellulose 

In the absence of enzymes, cellulose has a half-life of several million years (Wilson, 

2011). Although some cellulose is oxidised via fire (Falkowski et al., 2000), the majority is 

hydrolysed via enzymes. It was originally thought that animals were only capable of cellulose 

hydrolysis due to the presence of symbiotic microorganisms such as bacteria, fungi and 

protozoa (Watanabe and Tokuda, 2010; Tanimura et al., 2013). Whilst the majority of higher 

animals, such as ruminants, do rely on this symbiotic relationship to degrade cellulose, certain 

members of Arthropoda (Tanimura et al., 2013; Watanabe and Tokuda, 2001), Nematoda 

(Tanimura et al., 2013; Watanabe and Tokuda, 2001), Mollusca (Tanimura et al., 2013; 

Watanabe and Tokuda, 2001), Annelida (Tanimura et al., 2013), Echinodermata (Tanimura et 

al., 2013) and Chordata (Tanimura et al., 2013) have endogenous cellulases. However, the 

majority of cellulose hydrolysis is mediated by cellulolytic microorganisms (Lynd et al., 2002). 

Whilst approximately 90 to 95% of this hydrolysis occurs under aerobic conditions (Vogels, 

1979; Jenkinson et al., 1991; Perez et al., 2002), due to the amount of cellulosic biomass 

produced each year the amount degraded under anaerobic conditions is nevertheless 

substantial.  

 

1.3.1 Methods of microbial cellulose degradation 

 Cellulases are a diverse group of enzymes that hydrolyse the β-1, 4 glycosidic bond 

between two glucose molecules (Wilson, 2008; Wilson, 2011). There are three types of 

cellulases; endocellulases, also known as endoglucanases, exocellulases, also known as 

cellobiohydrolases, and processive endocellulases (Wilson, 2008; Wilson, 2011; Watanabe 

and Tokuda, 2010). The majority of cellulases are endocellulases (Wilson, 2011), which are 

capable of binding and cleaving molecules from any point of the cellulose chain (Spezio et al., 

1993). Exocellulases contain their active site within a ‘tunnel-like structure’ and bind to an end 

of the cellulose chain before cleaving molecules sequentially (Rouvinen et al., 1990), with two 

different classes of exocellulases, those that work on the reducing end, and those that work on 

the non-reducing end (Barr et al., 1996). To date, processive endocellulases appear to be 

unique to bacteria (Wilson, 2011). These act initially in an endocellulolytic manner in order to 

cleave the cellulose chain at a random point, before sequentially cleaving molecules from the 

non-reducing end (Wilson, 2011). Whilst the majority of microorganisms use either the free-

cellulase or cellulosome based mechanisms of cellulose hydrolysis, there are at least five 

different methods by which microbially mediated cellulose degradation can occur (Wilson, 

2011). 
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1.3.1.1 The free-cellulase mechanism 

 The majority of aerobic microorganisms utilise the free-cellulase mechanism to degrade 

cellulose (Wilson, 2008), the model for which is based on the cellulase system of the aerobic 

fungus Trichoderma reesei (Lynd et al., 2005). This method of cellulose hydrolysis consists of 

the organism secreting several different cellulases (Fig. 1.3). The majority of these cellulases 

contain a carbohydrate binding module (CBM) attached to the catalytic domain (CD) via a 

linker peptide, in order to facilitate binding of the enzyme to the substrate (Wilson, 2008; 

Wilson, 2011). These cellulases often act synergistically, and this can increase the specific 

activity of these enzymes up to fifteen fold (Irwin et al., 1993). 

 

1.3.1.2 The cellulosomal mechanism 

 The ‘cellulosome’ mechanism of anaerobic bacteria and fungi (order Neocallimastigales) 

is based on the mechanisms identified within cellulolytic clostridia (Lynd et al., 2005). A 

cellulosome is a complex of multiple cellulases bound to a scaffoldin unit (Bayer et al., 2004) 

(Fig. 1.3). The scaffoldin unit contains the CBM in order to facilitate binding of the 

cellulosome to the substrate, as the majority of the cellulases involved in this mechanism do not 

contain individual CBMs (Bayer et al., 2004; Wilson, 2008; Wilson, 2011). The scaffoldin also 

contains cohesion modules which bind to the dockerin domains of the enzymes to enable them 

to anchor to the scaffoldin (Bayer et al., 2004). 

 

1.3.1.3 Cellulose degradation by brown rot fungi 

 Brown rot fungi such as Gloeophyllum trabeum utilise free radicals and cellulases in 

order to hydrolyse cellulose. The free radicals cleave the cellulose chain, thus enabling 

degradation via the cellulases (Xu and Goodell, 2001) (Fig. 1.3). As the cellulases utilised by 

brown rot fungi lack CBMs and processive cellulases needed to hydrolyse untreated crystalline 

cellulose, the initial cleavage contained within this mechanism is critical (Wilson, 2011). This 

method consists of the hyphae of the fungus secreting oxalate and hydrogen peroxide into the 

plant cell lumen, where they can then diffuse into the cell wall. The oxalate lowers the pH 

generating a gradient that enables the fungus to transfer and sequester the insoluble, oxidised 

iron, and in turn to produce hydroxyl radicals within the plant cell wall. The oxalate forms a 

soluble complex with the FeIII, which is then removed from this complex via the chelator and 

reduced to FeII via Fenton chemistry (Hammel at al., 2002). The reduction of the FeIII also 

results in the formation of the hydroxyl radical (OH), which can oxidise the cellulose chains 

and allow the cellulases to act (Xu and Goodell, 2001).  
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1.3.1.4 Cellulose degradation by Saccharophagus degradans 

 Saccharophagus degradans is an aerobic bacterium that appears to utilise an atypical 

mechanism of cellulose hydrolysis. The S. degradans genome contains none of the scaffoldin 

or dockerin homologues associated with the cellulosomal method (Weiner et al., 2008). 

However, whilst S. degradans is capable of utilising cellulose as the sole carbon source (Taylor 

et al., 2006), although there are a number of endoglucanases contained within the genome 

there is only one cellobiohydrolase (Weiner et al., 2008), which is atypical of organisms that 

utilise the free cellulase mechanism. Furthermore, it has been proven that the sole 

cellobiohydrolase is actually an endoglucanase (Watson et al., 2009), thus raising the question 

as to how S. degradans is capable of degrading cellulose. It has been suggested that this is due 

to the novel processive endoglucanases secreted by this organism, and that these are capable of 

acting both as endoglucanases and cellobiohydrolases (Watson et al., 2009) (Fig. 1.3). 

 

1.3.1.5 Cellulose degradation by Fibrobacter spp. 

Members of the genus Fibrobacter are obligately anaerobic, cellulolytic bacteria that 

were first isolated from the bovine rumen (Hungate, 1947; Hungate, 1950). Electron 

microscopy was used to show that F. succinogenes adheres to plant cell walls, and on this 

material forms digestive pits (Cheng et al., 1984). Fibrobacter succinogenes binds tightly to the 

surface of plant materials via adhesins, leading to extensive plant cell wall degradation (Miron et 

al., 1989; Miron and Benghedalia, 1993c; Miron and Benghedalia, 1993b), and when adhesion 

cannot occur, either in non-adherent mutants (Gong and Forsberg, 1989) or due to the 

presence of the phenolic aldehyde vanillin (Varel and Jung, 1986), cellulose degradation does 

not occur. The outer membrane of F. succinogenes has been found to contain thirteen 

cellulose binding proteins, and in a mutant strain where two of these were absent, the strain was 

able to bind to amorphous cellulose, but not crystalline cellulose (Jun et al., 2007). When 

seven of these cellulose-binding proteins were absent in another mutant strain, the strain was 

unable to bind to either of the two forms of cellulose and no growth was detected (Jun et al., 

2007). Proteins designated as fibro-slime domain-containing proteins present on the outer 

membrane of F. succinogenes S85 and type IV pili may also be involved in the adherence of F. 

succinogenes to crystalline cellulose (Suen et al., 2011) (Fig. 1.3).  

It has been suggested that Fibrobacter spp. utilise a novel mechanism of cellulose-

degradation. This is based on the identification of genes encoding endocellulases, which 

randomly hydrolyse the cellulose chain and disrupt the crystalline structure, and the absence of 

exocellulases or processive endocellulases, both of which release cellobiose from the ends of 
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the cellulose chains and are crucial to the established free cellulase and cellulosomal 

mechanisms (Wilson, 2008). Furthermore, genome sequence data indicate that Cytophaga 

hutchinsonii may utilise a similar and novel mechanism (Wilson, 2009), and like F. 

succinogenes, also exhibits gliding motility on surfaces (Hungate, 1950). This is intriguing 

because F. succinogenes is an anaerobic rumen bacterium and C. hutchinsonii an aerobic soil 

bacterium, and they are phylogenetically distant from one another. This ‘third’ mechanism of 

cellulose depolymerisation may involve a protein complex that is present in the outer 

membrane of the cell, cleaving individual cellulose chains from the bound cellulose fibres, and 

transporting them into the periplasmic space through the outer membrane. Once in the 

periplasmic space, the cellulose chains would then be cleaved by endoglucanases, thus 

eradicating the need for exocellulases or processive endocellulases (Wilson, 2009) (Fig. 1.3). 

This would explain the requirement for the Fibrobacter cells to be bound to the cellulose, as 

the removal and binding of the individual cellulose chains would be a key step in the 

mechanism. This novel mechanism has both evolutionary and biotechnological significance, 

and may be the explanation for the superior cellulolytic ability of Fibrobacter spp. compared to 

that of other rumen bacteria (Suen et al., 2011).  

 The recently sequenced genome of F. succinogenes strain S85, revealed that there are 

numerous proteins unique to F. succinogenes; 37% of proteins could not be attributed to a 

known metabolic or physiological function using clusters of orthologous groups (COGs) 

analysis (Suen et al., 2011). Furthermore, up to 26% of the predicted proteins in the proteome 

of F. succinogenes did not have a known ortholog, suggesting a high content of genus- or 

species-specific proteins (Suen et al., 2011). A total of 134 genes encoded enzymes that were 

identified by carbohydrate-active enzyme (CAZy (Cantarel et al., 2009)) analysis, representing 

carbohydrate esterases, carbohydrate binding modules (CBMs), polysaccharide lyases and 

glycosyl hydrolases derived from 49 different families. Of these, the majority were predicted to 

contain signal peptides, indicating that these enzymes are not targeted within the cytoplasm 

(Suen et al., 2011). F. succinogenes strain S85 is predicted to have 31 cellulase genes, of which 

none contain the CBMs that are typically found in cellulosomes associated with adherence to 

crystalline cellulose. The absence of known dockerin domains in the cellulose genes, and the 

absence of known scaffoldin genes within the genome, therefore suggest that F. succinogenes 

S85 does not utilise the cellulosomal degradation mechanism (Suen et al., 2011). Whilst F. 

succinogenes S85 possesses endo-hemicellulases capable of hydrolysing a variety of substrates, 

it apparently lacks the genes necessary to transport and metabolise any of these carbohydrates 

other than cellulose and its hydrolytic products (Suen et al., 2011). F. succinogenes S85 is 
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specialised for utilising only cellulose, as growth assays utilising cellulose, pectin, starch, 

glucomannan, arabinogalactan and various forms of xylan, found that although all of the 

polysaccharides were hydrolysed, only cellulose was metabolised (Suen et al., 2011), including 

cellulose II, which is highly stable (Weimer et al., 1991). Forano and colleagues have studied 

the carbohydrate metabolism of F. succinogenes in detail, reviewed in Forano et al. (2008). 

NMR studies demonstrated the cycling of carbohydrates, notably glycogen, by F. succinogenes; 

these are in addition to several reversible metabolic pathways that enabled both the degradation 

and synthesis of carbohydrates. This ability to accumulate and rapidly degrade storage 

compounds such as glycogen may represent a strategy for rapid adaptation of F. succinogenes 

to changing environmental conditions. Surprisingly, F. succinogenes was found to synthesise 

maltodextrins and maltodextrin-1-phosphate, possibly in association with glycogen metabolism, 

and it is likely that the excretion of maltodextrins may support the cross-feeding of non-

cellulolytic bacteria in co-culture in addition to other planktonic F. succinogenes cells (Forano 

et al., 2008). 

 



28 

 

 

Figure 1.3. Microbial mechanisms of cellulose-degradation. Modified from Ransom-Jones et al. (2012). 

(A) Aerobic cell-free cellulase system (based on Lynd et al. (2002)); typical of aerobic microorganisms including Trichoderma reesei. Cellulose is 

hydrolysed via the synergistic interaction of individual enzymes that are secreted from the cell.
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(B) Anaerobic ‘cellulosome’ mechanism (based on Lynd et al. (2002)); typical of anaerobic 

bacteria (e.g. Clostridium thermocellum) and fungi. Cellulosomes consist of the catalytic 

enzymes capable of cellulose hydrolysis in addition to scaffoldin molecules, which anchor the 

enzymes to the cellulosome, and carbohydrate binding modules (CBMs) to maintain close 

contact with the substrate. The close proximity between the bacterial cell wall and cellulose 

substrate is a major benefit, resulting in concerted enzymatic activity arising from optimal 

synergy between cellulases. (C) Mechanism utilised by brown rot fungi (based on Xu and 

Goodell (2001)). Cellulose hydrolysis occurs via the interaction of free radicals and 

endoglucanases. (D) Proposed mechanism of S. degradans (based on Watson et al. (2009)) 

whereby cellulose hydrolysis is mediated solely via the activity of secreted endoglucanases. (E) 

Proposed cellulose degradation mechanism for F. succinogenes (based on Wilson (2009) and 

Suen et al. (2011)). Attachment to the substrate is mediated by fibro-slime proteins and type IV 

pilin structures attached to the outer membrane. Cellulose fibres are disrupted by carbohydrate 

active enzymes and individual cellulose chains are transported through the outer membrane via 

an ABC transporter. Current data suggests that the degradation of cellulose chains occurs in the 

periplasmic space. 

 

1.4 Cellulases in biotechnology 

Cellulases have a variety of industrial applications including those in food, animal feed, 

paper, textile, waste management, fuel and chemical industries (Mandels, 1985; Bhat, 2000). 

The first interest in microbial cellulases arose during World War II, when a fungus, T. reesei, 

attacked the tents and clothing of soldiers in Southeast Asia (Reese et al., 1950). Whilst 

cellulases have a broad range of applications, growing concern over the global energy crisis has 

highlighted the potential for cellulases to be utilised for the production of second-generation 

biofuels. The microbial conversion of cellulose (and similar polymers) from plant matter and 

municipal wastes to hydrolysis products such as ethanol and glucose is an attractive vision for 

nations seeking alternative fuel options (Lynd et al., 2005), with the added benefit of providing 

an alternative waste disposal to landfill sites, and reducing greenhouse gas emissions (Bayer et 

al., 2007). Cellulases are also utilised in second-generation biofuel pilot plants for the optimal 

hydrolysis of lignocellulosic materials, maximising the yield of sugars that are available for 

fermentation to ethanol (Sun and Cheng, 2002). 
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1.4.1 Fibrobacter cellulases in biotechnology 

To date, there has been research into the application of F. succinogenes cellulolytic 

enzymes for use in detergent additives, where cellulases are utilised to brighten and soften 

garments (Chen and Wang, 2008). F. succinogenes has also been used to produce succinic acid 

(Li et al., 2010), which is utilised in a variety of industries and chemical manufacturing 

processes (Isar et al., 2006). The degradative capabilities of Fibrobacter spp. are also being 

utilised for waste decomposition in life support systems for long-term space missions such as 

the Micro-Ecological Life Support Alternative (MELiSSA) (Christophe et al., 2009). 

Cellulolytic enzymes of Fibrobacter spp. may also be cloned into non-cellulolytic bacteria, in 

order to improve silage production and the pretreatment of animal feeds (Stewart and Flint, 

1989). The display of F. succinogenes β-glucanase on the cell surface of Lactobacillus reuteri is 

the first example of the successful cloning of Fibrobacter cellulolytic enzymes into a non-

cellulolytic bacterium, which was shown to improve the capability of L. reuteri to adhere to and 

degrade β-glucan in barley (Huang et al., 2011).  

F. succinogenes cellulolytic enzymes also have the potential to be used in the 

production of biogas (Lissens et al., 2004), and have significant potential for the refining of 

lignocellulosic biomass in the generation of bioethanol (Lynd et al., 1991; Rubin, 2008). For 

these processes, cellulose from plant matter and municipal waste could be utilised, thus also 

providing an alternative waste disposal mechanism and so reducing the environmental impact 

of waste treatment sites (Bayer et al., 2007). As the current work on the cellulolytic enzymes of 

Fibrobacter spp. is restricted to F. succinogenes, it is possible that the novel centres of variation 

detected in terrestrial and aquatic environments may contain cellulolytic enzymes with 

extended potential for applications in a variety of industrial processes, particularly in the area of 

second generation biofuel production.  

 

1.5 The genus Fibrobacter 

Originally designated as Bacteroides succinogenes, F. succinogenes was first isolated 

form the bovine rumen in 1947 (Hungate, 1947; Hungate, 1950) and members of the genus 

are one of the predominant bacterial degraders of cellulosic material in the herbivore gut 

(Hungate, 1966; Stewart and Bryant, 1988; Kobayashi et al., 2008). Fibrobacter is currently the 

sole formal genus of the bacterial phylum Fibrobacteres, which is phylogenetically related to 

the well-characterised Bacteroidetes and Chlorobi phyla (Cole et al., 2003; Ludwig and 

Schleifer, 2001). F. succinogenes was initially classified as B. succinogenes due to the historical 

broad genus definition for Bacteroides; “all anaerobic, Gram-negative, nonmotile or 
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peritrichous, nonsporeforming rods that do not produce butyric acid from the fermentation of 

carbohydrates” (Cato and Salmon, 1976). However, this resulted in the accumulation of many 

unrelated species within the Bacteroides genus. It was suggested that as B. succinogenes 

possessed mainly straight-chain fatty acids, and lacked the membrane sphingolipids observed in 

other Bacteroides spp., it should be excluded from the genus (Shah and Collins, 1983).  

Subsequently, 16S rRNA oligonucleotide cataloguing methods were used to 

demonstrate that B. succinogenes and B. amylophilus were in fact not closely related to the 

other Bacteroides species (Paster et al., 1985). In addition, the advent of 16S rRNA gene 

sequencing revealed that there were no organisms closely related to B. succinogenes and that its 

isolates formed a phylogenetically coherent group (Montgomery et al., 1988). The genus 

Fibrobacter was circumscribed on this basis and contains only two recognised species, F. 

succinogenes and F. intestinalis, both Gram-negative, obligate anaerobes that are the 

predominant bacterial colonisers and degraders of lignocellulosic plant material in the 

herbivore gut (Montgomery et al., 1988). F. succinogenes comprised rumen isolates and F. 

intestinalis was the name assigned to the caecal isolates of B. succinogenes. Moreover, a 

previous study suggested that B. succinogenes isolates were sufficiently distant from other 

species to represent a distinct phylum (Woese et al., 1985). Most recently, taxonomic 

distribution analysis of the predicted proteins in the F. succinogenes S85 genome confirmed 

that this species is indeed correctly classified at the phylum level (Suen et al., 2011).  

 

1.5.1 Phenotypic characteristics of Fibrobacter isolates 

Members of the genus Fibrobacter are defined as obligately anaerobic, non-

sporeforming, Gram-negative, rods or pleiomorphic ovoid cells (Montgomery et al., 1988), 0.3 

to 0.5 µm in diameter and 0.8 to 2.0 µm in length (Hungate, 1950; Stewart and Flint, 1989). 

The cells are able to migrate through agar medium by a mechanism comparable to that of 

Cytophaga spp. (Hungate, 1950). Fibrobacter spp. ferment xylan (Groleau and Forsberg, 1983; 

Sipat et al., 1987; Miron and Benghedalia, 1993a), glucose, cellobiose and cellulose, producing 

succinic and acetic acids, and sometimes a small amount of formic acid (Montgomery et al., 

1988), although only cellulose and the hydrolytic products of cellulose can be metabolised 

(Suen et al., 2011). Ammonium (Montgomery et al., 1988), in addition to peptides and amino 

acids (Atasoglu et al., 2001; Ling and Armstead, 1995), can be utilised as a source of nitrogen, 

and carbon dioxide, straight-chain and branched-chain fatty acids and one or more vitamins 

(typically biotin, p-Aminobenzoic acid, B12 (cyanocobalamine) or thiamine) are also required 

for growth (Montgomery et al., 1988).  
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There are currently no definitive phenotypic characteristics that can be used to separate 

F. succinogenes and F. intestinalis taxonomically. Previously, it was considered that F. 

succinogenes is a rumen bacterium while F. intestinalis inhabits the caecum (Montgomery et 

al., 1988). This was later discredited when the use of rRNA gene-targeted oligonucleotide 

probes demonstrated that F. intestinalis is present in the rumen (Stahl et al., 1988), and F. 

intestinalis strains LH1 and JG1 were subsequently isolated from the ovine rumen (Table 1.1). 

Furthermore, F. succinogenes was thought likely to be present in the intestine due to the 

carriage from rumen digesta (Montgomery et al., 1988), and this was confirmed by the isolation 

of strain GC5 from the bovine caecum (Table 1.1). Although it is evident that a loose 

relationship exists between the isolation site and the species, this cannot be used to definitively 

identify a Fibrobacter species (Amann et al., 1992). The absolute requirement for biotin 

exhibited by F. succinogenes strains was the only known distinguishing phenotypic 

characteristic between the two species (Montgomery et al., 1988; Hungate, 1966). However, it 

was subsequently found that two strains of F. intestinalis (LH1 and JG1) also require biotin for 

growth (Table 1.1) (Amann et al., 1992). 
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Table 1.1 Sources and growth characteristics of Fibrobacter isolates. From Ransom-Jones et al. (2012), modified from Amann et al. (1992). 

a. can also use maltose (Varel et al., 1984). ND = Not Determined. V = Variable. PABA = Para-aminobenzoic acid. 

 

 

 

Strain  ATCC Source  Morphology Yellow mol% Biotin PABA B12 Thia- Glucose Lactose Reference(s) 

 No.                 Pigment  G+C   mine 

 

Fibrobacter succinogenes strains: 

Group 1. subsp. succinogenes strains 

B1  Bovine Rumen Coccoid  - ND + ND - - + -  (Stewart et al., 1981) 

BL2  Bovine Rumen Coccoid  - ND + ND - - + -  (Stewart et al., 1981) 

A3c  Bovine Rumen Coccoid  - 49 + - - - + -  (Dehority, 1963; Dehority, 1969) 

S85 19169
T 

Bovine Rumen Coccoid  - 48 + V - - + (slow) +  (Bryant et al., 1959) 

Group 2. 

GC5  Bovine Caecum   Rod shaped - ND + ND - - + -  (Amann et al., 1992) 

REH9-1 53857
T 

Bovine Rumen Rod shaped - 51 + + - - + -  (Montgomery and Macy, 1982) 

Group 3. 

HM2 43856
T

 Ovine Rumen Rod shaped + ND + + + - + -  (Amann et al., 1992) 

MN4  Ovine Rumen Rod shaped + ND + ND + - + -  (Amann et al., 1992) 

MB4  Ovine Rumen Rod shaped + ND + ND + - + -  (Amann et al., 1992) 

Group 4.                          

MC1  Ovine Rumen Rod shaped - ND + ND - - + -  (Amann et al., 1992) 

 

Fibrobacter intestinalis strains: 

NR9 43854
T

 Rat caecum Rod shaped - 45 - + + + + -  (Montgomery and Macy, 1982) 

C1a  Porcine caecum Rod shaped - ND - ND + + +
a

 -  (Varel et al., 1984) 

DR7 43855 Porcine caecum Rod shaped - ND - + + - + -  (Amann et al., 1992) 

LH1  Ovine rumen Rod shaped + ND + ND - - + -  (Amann et al., 1992) 

JG1  Ovine rumen Rod shaped + ND + ND - - + -  (Amann et al., 1992) 

 

 

Vitamin Requirements Energy Sources 
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1.5.2 The phylogeny of the genus Fibrobacter 

 Despite the fact that there are currently no distinct phenotypic traits to distinguish F. 

succinogenes and F. intestinalis, there is considerable genetic distance between the two formally 

recognised species (Amann et al., 1992). Furthermore, it has been suggested that the 

phylogenetic difference between them based on 16S rRNA gene sequence comparison is 

sufficient to designate them as belonging to two distinct genera (Montgomery et al., 1988) (Fig. 

1.4). This is compounded by the fact that the evolutionary distance between F. succinogenes 

and F. intestinalis (as determined by 16S rRNA gene analysis) is similar to that between the 

bacterial genera containing Arthrobacter globiformis and Mycobacterium flavescens, and 

deeper than that between Escherichia coli and Proteus vulgaris (Montgomery et al., 1988). The 

diversity of Fibrobacter isolates was further characterised by the use of DNA:DNA 

hybridisation and 16S rRNA gene sequencing of a greater number of isolates (Table 1.1) 

(Amann et al., 1992). Comparisons of the 16S rRNA gene of F. succinogenes and F. intestinalis 

demonstrated approximately 91 to 93% similarity (Amann et al., 1992; Jewell et al., 2013), and 

genomic DNA similarity between the two species as determined by DNA:DNA hybridisation 

was less than 20% (Amann et al., 1992). It is currently suggested that 20% DNA-DNA 

homology and approximately 95% 16S rRNA similarity (Ludwig et al., 1998) are the minimum 

allowable with a genus. Advances in next-generation sequencing technologies now make the 

application of comparative genomics a tangible approach for the ‘phylogenomic’ analysis of the 

Fibrobacteres phylum (Yilmaz et al., 2010).  

 The study by Amann and colleagues (1992) demonstrated four distinct lines of descent 

within the F. succinogenes lineage, designated F. succinogenes subsp. Succinogenes (subgroup 

1) (Montgomery et al., 1988) and subgroups 2, 3 and 4 (Amann et al., 1992). Of these, group 1 

is considered to be the most important in cellulose degradation (Kobayashi et al., 2008; Shinkai 

and Kobayashi, 2007; Shinkai et al., 2009) due to its high metabolic activity and widespread 

presence on plant material. Koike et al. (2004) detected only subgroups 1 and 3 in rumen 

digesta and on hay stems incubated in the rumen, with subgroup 1 dominating the Fibrobacter 

population on the less degradable hay stems. A study using fluorescence in situ hybridization 

(FISH) to determine the attachment of bacteria to hay within the rumen detected only F. 

succinogenes subgroups 1 and 2, with subgroup 1 cells representing the largest proportion of 

the Fibrobacter population on the stems (Shinkai and Kobayashi, 2007). Suppressive 

subtractive hybridization has been used to compare the genes of F. succinogenes S85 and F. 

intestinalis DR7, suggesting that 33% of F. intestinalis DR7 genes were specific to this strain (Qi 

et al., 2005) and 41% of F.
 
succinogenes S85 genes were either absent from, or exhibited low 
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similarity
 

to, those of F. intestinalis DR7 (Qi et al., 2008). However, as discussed above there is 

no known phenotypic difference between the two species and as such they remain within the 

same genus (Fig. 1.4). It is envisaged that a phylogenetically coherent family will be established 

for what is currently the genus Fibrobacter and its close relatives when more taxa are detected 

and identified. 

 

1.5.3 Fibrobacters are major degraders of plant biomass in the herbivore gut 

Whilst cellulose degradation is fundamental to the global carbon cycle, only a small 

proportion of organisms are capable of complete cellulose hydrolysis. As a result many 

animals, including ruminants, rely on consortia of bacteria, protozoa and fungi in order to 

digest plant material (Moir, 1965). Previous studies have indicated that the predominant 

species of cellulose-degrading bacteria detected via cultivation-based approaches in the 

herbivore gut are F. succinogenes, Ruminococcus albus and Ruminococcus flavefaciens 

(Halliwell and Bryant, 1963; Hungate, 1966), notwithstanding recent studies suggesting that 

other as yet uncultivated bacteria may also have a role in cellulose hydrolysis within the rumen 

(Koike and Kobayashi, 2009). More recently, molecular biological techniques targeting the 16S 

rRNA gene of cellulolytic rumen bacteria have further supported the importance of F. 

succinogenes, R. albus and R. flavefaciens in cellulose hydrolysis (Tajima et al., 2001; Denman 

and McSweeney, 2006; Mosoni et al., 2007; Shinkai and Kobayashi, 2007). It is possible that 

the enzymatic system of F. succinogenes is more effective at degrading cellulose than the 

mechanisms used by the other cellulolytic organisms that occupy the same environment. For 

example, it was found that when F. succinogenes strains S85 and A3C were grown in pure 

cultures, they were able to degrade a greater amount of cellulose from intact forage than the 

two other predominant rumen cellulolytic bacteria, R. albus and R. flavefaciens (Dehority, 

1993). F. succinogenes is also capable of a growth rate on ball milled cellulose equivalent to 

that when cellobiose is used as substrate (Fields et al., 2000).  

F. succinogenes has been described as one of the major cellulolytic bacterial species 

present in the rumen (Forsberg et al., 1997), and real-time PCR has been widely utilised to 

quantify Fibrobacter spp. in the rumen (Tajima et al., 2001; Ozutsumi et al., 2006; Koike et al., 

2007; Denman and McSweeney, 2006; McDonald et al., 2008). Fibrobacter spp. have been 

detected in the intestinal tracts of a number of herbivorous species using both molecular and 

culture based approaches including; the bovine rumen and caecum (Hungate, 1947; Hungate, 

1950; Bryant et al., 1959; Dehority, 1963; Dehority, 1969; Stewart et al., 1981), ovine rumen 

(Mosoni et al., 2007; Stewart and Duncan, 1985), porcine caecum (Varel et al., 1984), equine 
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caecum (Davies, 1964; Lin and Stahl, 1995; Julliand et al., 1999; Daly and Shirazi-Beechey; 

2003; Ley et al., 2008), faeces of Grevy’s zebra (Ley et al., 2008), rat caecum (Macy et al., 1982; 

Montgomery and Macy, 1982), black rhinoceros faeces (Ley et al., 2008),  ostrich caecum 

(Matsui et al., 2010a; Matsui et al., 2010b), faeces of snub-nosed monkeys (Wu et al., 2010), 

yak rumen (An et al., 2005), wild ass faeces (Ley et al., 2008), goat rumen (Lin et al., 1994), 

rock hyrax faeces (Ley et al., 2008), capybara faeces (Ley et al., 2008) and antelope rumen 

(Hungate et al., 1959). The application of 16S rRNA gene-targeted oligonucleotide probes has 

provided an insight into Fibrobacter diversity and ecology in a number of gut ecosystems, with 

the use of these probes on RNA extracted from the intestinal contents of cattle and goats 

demonstrating a greater diversity of Fibrobacter spp. than previously thought (Lin et al., 1994). 

Whilst the relative abundance of members of the genus Fibrobacter were found to be between 

0.6 and 6% of the total 16S rRNA for cattle and 0.5 and 2% for goats, only half of this 

abundance was accounted for by the species-specific probes (Lin et al., 1994). A similar study 

conducted on equine caecal samples also suggested the presence of novel Fibrobacter spp. 

similar to F. succinogenes, as whilst the genus specific probe demonstrated that fibrobacters 

comprised 12% of the 16S rRNA, neither the F. intestinalis probe, nor any of the F. 

succinogenes subspecies-specific probes hybridised with the RNA (Lin and Stahl, 1995). These 

novel Fibrobacter spp. affiliated with F. succinogenes, but representing novel lines of descent 

(Fig. 1.4 – lineage represented by sequence accession number L35547) were confirmed via 

PCR amplification of the 16S rRNA gene, cloning and sequencing (Lin and Stahl, 1995).  
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Figure 1.4. Phylogeny of the Fibrobacteres phylum. Maximum likelihood tree of 16S rRNA 

gene sequences belonging to the Fibrobacteres phylum. All sequences classified within the 

Fibrobacteres phylum and annotated as ‘good’ quality were downloaded from the Ribosomal 

Database Project (Cole et al., 2007; Cole et al., 2009) website in November 2010. An updated 

version of this tree is present in chapter 2 (Fig. 2.1). Sequences were aligned using the 

MUSCLE aligner (Edgar, 2004). In order to compare the phylogeny of those sequences 

derived from environmental samples, termites and the herbivore gut, alignments were trimmed 

to include only sequences that contained positions corresponding to 153 to 1017 of the E. coli 

16S rRNA gene. The remaining trimmed sequences were clustered into Operational 

Taxonomic Units (OTU’s) at 95% similarity using CDHIT (Li and Godzik, 2006; Huang et al., 

2010). A number of putative chimeric sequences were removed from the dataset after analysis 

with the Pintail chimera check program (Ashelford et al., 2005). The representative sequences 

of each OTU (n=42) were aligned using the Greengenes NAST aligner (DeSantis et al., 2006) 
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and imported into Arb where the alignment was visually checked. A maximum likelihood tree 

was produced from the final alignment using PhyML online (Guindon et al., 2010) with the 

HKY85 substitution model and the Shimodaira-Hasegawa (SH)-like approximate likelihood-

ratio test (aLRT) branch support method. Filled circles indicate nodes at which an aLRT value 

of >95% was observed, and unfilled circles denote nodes with aLRT values between 75 and 

95%. Nucleotide sequence accession numbers for the representative sequence of each OTU 

are displayed on each node. The number of sequences clustering within each OTU are 

displayed in parentheses and numbered circles indicate the environmental niches represented 

within each OTU. Clusters highlighted in grey represent sequences that are affiliated with the 

two known cultivated species within the genus, F. succinogenes and F. intestinalis. The scale 

bar indicates 0.1 base substitutions per nucleotide. From Ransom-Jones et al. (2012). 

 

1.5.4 A cellulolytic subphylum of the Fibrobacteres in the termite gut 

 It was originally thought that members of the genus Fibrobacter were restricted to the 

mammalian intestinal tract, but the occurrence and distribution of members of the 

Fibrobacteres phylum has recently been extended to include termite intestinal contents, where 

cellulose is again the primary carbon source for the host organisms (Hongoh et al., 2005, 

2006). However, data to support the role of symbiotic gut bacteria in the direct hydrolysis of 

cellulose and xylan in the termite gut were only recently reported (Tokuda and Watanabe, 

2007).  

Hongoh and colleagues (2005), utilised terminal restriction fragment length 

polymorphism (T-RFLP) analysis in addition to general bacterial 16S rRNA gene clone 

libraries derived from colonies of the wood-feeding higher termite genus Microcerotermes and 

the lower termite genus Reticulitermes, to create molecular community profiles of the bacterial 

gut microflora. Of 960 sequenced 16S rRNA gene clones derived from 10 termite colonies (six 

Microcerotermes colonies and four Reticulitermes colonies), 12 phylotypes of clone sequences 

affiliated with the phylum Fibrobacteres were identified, and all of these sequences were from 

members of the higher termite genus Microcerotermes, representing approximately 10% of the 

total 16S rRNA clones from this group. These cloned Fibrobacteres sequences represented a 

novel sub-phylum cluster within the phylum, designated as Fibrobacteres subphylum 2 

(Hongoh et al., 2005) (Fig. 1.4). Further work using a Fibrobacteres subphylum 2-specific 

probe in FISH experiments on samples of luminal fluid from the higher termite hindgut 

demonstrated that Fibrobacteres were the second most dominant group of the gut microflora, 

representing between 10.8 and 16.0% of the total bacterial cells, and around 1.3x10
7

 cells per 
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gut (Hongoh et al., 2006). Interestingly, FISH analysis demonstrated that the morphology of 

bacteria belonging to Fibrobacteres subphylum 2 differed from that of the known rumen strains 

of the genus Fibrobacter in that they represented undulate forms with a tapered end and a 

typical cell size of 0.2-0.3 μm x 1.3-4.9 μm (Hongoh et al., 2006).  

Fibrobacteres subphylum 2-specific PCR primers were used to survey for these novel 

termite sequences in a variety of environments beyond the termite gut, including the gut of 

cockroaches, lake and deep-sea sediments and rice paddy soil. However, Fibrobacteres 

subphylum 2 were not detected in any of these environments, suggesting that this novel 

subphylum of the Fibrobacteres represents an autochthonous lineage of termite gut symbionts 

(Hongoh et al., 2006). Phylogenetic analysis of 16S rRNA gene sequences derived from 

Fibrobacteres subphylum 2 and members of the genus Fibrobacter sensu stricto (described as 

Fibrobacteres subphylum 1 by Hongoh et al. (2006)) demonstrated 16S rRNA gene sequence 

similarities of 81.3 to 84.3% between subphyla 1 and 2, against 85.3% 16S rRNA gene 

similarity within subphylum 2 (Hongoh et al., 2006), again highlighting the profound genetic 

diversity that circumscribes this phylum. As the two currently described species of the 

Fibrobacteres, F. succinogenes and F. intestinalis, are known anaerobic degraders of 

lignocellulosic biomass in the herbivore gut, Hongoh and colleagues (2006) suggested that the 

detection of novel lineages of Fibrobacteres in anoxic termite guts where cellulose again 

represents the primary carbon source for growth implies a role for these organisms in 

cellulolysis. 

This was later confirmed when a metagenomic and functional analysis of the microbiota 

of a wood-feeding higher termite demonstrated the presence of a broad diversity of bacterial 

genes responsible for cellulose degradation, and these were identified as belonging to the phyla 

Spirochaetes and Fibrobacteres (Warnecke et al., 2007). Fibrobacteres were detected in 16S 

rRNA gene inventories from the higher termite hindgut, and also represented 13% of the 

identifiable DNA fragments from a shotgun metagenome derived from the same sample. Many 

of these metagenomic sequences identified as belonging to Fibrobacteres encoded glycosyl 

hydrolases or carbohydrate-binding modules, and proteomic analysis confirmed that some of 

these genes were expressed in vivo or their cloned gene modules possessed cellulase activity in 

vitro, implicating them in lignocellulose degradation in this environment (Warnecke et al., 

2007). As molecular biological and ‘omics’ techniques continue to improve our ability to 

characterise such communities, it is likely that the role of fibrobacters in cellulose degradation 

in other anoxic environments will be definitively established.  
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1.5.5 Molecular detection of Fibrobacter spp. in non-gut environments 

Members of the genus Fibrobacter are established as major degraders of lignocellulosic 

biomass in the herbivore gut, and the failure to detect fibrobacters in terrestrial and aquatic 

environments beyond this highly specialised and restricted environment supported the notion 

that they were in fact obligate ‘gut’ anaerobes (Montgomery et al., 1988). However, the 

microbial-mediated depolymerisation of lignocellulose is also a feature of many other anoxic 

habitats in the biosphere, such as waterlogged soils, wetlands, landfill sites and the anoxic water 

column and sediments of freshwater, estuarine and marine systems (Leschine, 1995). 

Cellulolytic clostridia are ubiquitous within the biosphere and have been isolated from 

numerous environments in which cellulose is hydrolysed under anaerobic conditions, such as 

soils (Skinner, 1960; Monserrate et al., 2001), estuarine sediments (Madden et al., 1982; 

Murray et al., 1986) freshwater sediments (Leschine and Canaleparola, 1983), the bovine 

rumen (Hobson and Wallace, 1982), methanogenic bioreactors (Sleat et al., 1984; Shiratori et 

al., 2006), waste digesters (Benoit et al., 1992), anoxic rice paddy field soils (Chin et al., 1998; 

Weber et al., 2001) and landfill sites (Westlake et al., 1995). This leads to the suggestion that 

clostridia are the predominant degraders of cellulose in the open environment. However, a 

number of sequences related to the Fibrobacteres phylum have been detected in general 

bacterial 16S rRNA gene clone libraries derived from potentially anoxic cellulose-rich 

environments including, soils (Nusslein and Tiedje; 1999, Saul et al., 2005), peat bogs (Sizova 

et al., 2003), mangrove sediments (Liang et al., 2007) and the Atlantic and Pacific oceans 

(Gordon and Giovannoni, 1996). Despite this, 16S rRNA gene sequences affiliated with the 

genus Fibrobacter (as currently defined) have until recently evaded detection, possibly due to 

the associated difficulties in both the isolation and molecular detection of fibrobacters. The 

recent detection of novel centres of variation belonging to the genus Fibrobacter in landfill sites 

(McDonald et al., 2008) and freshwater lake sediments (McDonald et al., 2009) using a genus-

specific 16S rRNA gene primer set represented the first detection of fibrobacters beyond the 

gut. These data indicate that fibrobacters occupy a much wider ecological range than previously 

acknowledged and suggest a role in cellulose hydrolysis in anaerobic environments in general.  

 

1.5.5.1 Landfill sites 

It has been suggested that anaerobic cellulose degradation in landfill sites is 

predominantly due to members of the genera Clostridium and Eubacterium (Van Dyke and 

McCarthy, 2002). This was first indicated by the work of Westlake et al. (1995), who isolated a 

number of cellulolytic bacteria from landfill sites and identified them as members of these 
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genera. Furthermore, the advent of molecular biological techniques, and specifically the use of 

16S rRNA gene PCR primers, enabled further characterisation of the landfill microbiota. 

General bacterial 16S rRNA gene clone libraries from anaerobic landfill leachate bioreactor 

samples demonstrated that of those microorganisms attached to cellulosic material and in the 

mixed fraction, 100% and 90% respectively belonged to the Firmicutes and the majority of 

these clones fell into clusters III and XIVa of the clostridia (Burrell et al., 2004). Studies 

utilising 454 pyrosequencing of PCR amplicons targeting 16S rRNA gene have also 

demonstrated the presence of Firmicutes, and more specifically Clostridia in landfill leachate 

(Bareither et al., 2013; Xie et al., 2014). Furthermore, both 16S rRNA gene clone libraries 

derived from the leachate of a closed municipal solid waste landfill (Huang et al., 2005) and 

effluent leachate of a full-scale recirculating landfill (Huang et al., 2004), as well as 454 

pyrosequencing studies on an anerobic bioreactor (Xie et al., 2014) and a lab-scale bioreactor 

(Bareither et al., 2013), both treating landfill leachate, did not identify any sequences belonging 

to the genus Fibrobacter. However, as stated above, even in the rumen where fibrobacters are 

known to predominate, 16S rRNA gene clone library analysis using general bacterial primers 

appears to bias against the detection of fibrobacters.  

Recently, novel lineages belonging to the genus Fibrobacter (as currently defined) were 

detected in landfill leachate samples, providing the first evidence that Fibrobacter spp. existed 

outside of the gut ecosystem (McDonald et al., 2008). This study utilised genus-specific 16S 

rRNA gene PCR primer sets targeting all known Fibrobacter spp. to detect novel sequences 

from the community DNA of leachate drawn from five landfill sites. Cloned PCR products 

were further analysed using temporal thermal gel electrophoresis (TTGE) and phylogenetic 

analysis of 58 clone sequences revealed that only two sequences could be identified as a named 

Fibrobacter species, and both were F. succinogenes. The remaining sequences represented 

novel centres of variation within the genus Fibrobacter as currently defined, occupying four 

distinct clusters within the genus, all of which exclusively comprised novel landfill Fibrobacter 

sequences (Fig. 1.4. Landfill Fibrobacter lineages represented by sequence accession numbers 

EF186272, EF186275, EF186285 and EF186286). Of these four clusters, one contained 

sequences that were identified across all of the sampled sites, two contained site specific 

sequences from one of two landfill sites, and the fourth predominantly consisted of sequences 

identified from a low level radioactive waste site in which cellulosic material was the only source 

of organic carbon (Fig. 1.4).  

In this study, reverse-transcribed community RNA from landfill leachate samples was 

subjected to 16S rRNA gene-targeted quantitative PCR (qPCR) assays, demonstrating that the 
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abundance of reverse-transcribed Fibrobacter 16S rRNA in landfill samples relative to total 

bacterial 16S rRNA could be as much as 40%. Significantly, the abundance of fibrobacters in 

one landfill sample (40%) was higher than that of ovine rumen fluid samples analysed in the 

same way (21 to 32%). Data from this study suggested that fibrobacters are more readily 

detected when environmental RNA samples were used, as they were detected in a greater 

proportion of samples when reverse-transcribed RNA was utilised in PCR reactions compared 

to extracted DNA (McDonald et al., 2008). As Fibrobacter spp. are considered to be 

predominant bacterial degraders of cellulose in the herbivore gut, it is likely that these novel 

lineages play a role in the degradation of cellulose that occurs in landfill environments 

(McDonald et al., 2008); cellulose is the main biodegradable component of landfill, 

representing up to 63.4% of the total organic content (Bookter and Ham, 1982). Recently, the 

predominance of Fibrobacter spp. in a cellulolytic biofilm that colonised and degraded cotton 

in a landfill leachate microcosm has been demonstrated via qPCR, whereas Fibrobacter were 

not detected in the biofilm of an un-degraded cotton sample (McDonald et al., 2012).  

Although only partial Fibrobacter 16S rRNA gene sequences were obtained from 

landfill samples (ca. 855 bp), phylogenetic analyses suggested that these four landfill lineages 

represent novel centres of variation within the genus Fibrobacter as currently defined 

(McDonald et al., 2008). Amann and colleagues (1992) suggested that Fibrobacter may in fact 

represent a supra-generic taxon, and the subsequent detection of novel lineages of 

Fibrobacteres in the termite gut and in landfill sites certainly supports this assertion. It remains 

necessary however, and a significant gap in our knowledge, to determine the physiology and 

true phylogeny of this group of organisms via the application of ‘omic’ techniques in addition to 

the targeted isolation and cultivation of representatives of these new taxa, as addressed in this 

thesis. 

 

1.5.5.2 Freshwater lakes 

Novel lineages of Fibrobacter have also been detected in freshwater lakes (Percent et 

al., 2008; McDonald et al., 2009). Fibrobacter genus-specific PCR and qPCR primers targeting 

the 16S rRNA
 

gene demonstrated the detection of novel members of the genus Fibrobacter
 

in 

lake water, sediment and colonised cotton (cellulose) samples taken from different depths of 

two U.K. freshwater lakes (McDonald et al., 2009). This study identified two sets of sequences; 

those that were similar to F. succinogenes, (Fig. 1.4. Lake Fibrobacter clusters similar to F. 

succinogenes represented by accession numbers EU468455, GU303627, EU475370 and 

FJ711738), and a separate and novel cluster of Fibrobacter sequences that were similar to other 
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sequences previously observed in clone
 

libraries from freshwater environments (Fig. 1.4. Novel 

lake Fibrobacter clusters represented by accession numbers EF520548 and FJ711714).  

To determine if the detection of fibrobacters in freshwater lake sediments originated 

from the percolation of faecal contaminants from grazing ruminants, soil and ovine faecal 

samples from the adjacent fields were analysed in the same way and these did not contain any 

sequences related to the novel ‘aquatic’ Fibrobacter lineages, suggesting that there is no linkage 

between the Fibrobacter sequences in these environments (Fig. 1.4). Furthermore, all 

Fibrobacter sequences clustering within the aquatic group were detected on colonised cotton 

samples, many of which were obtained using reverse-transcribed RNA, and both qPCR and 

PCR demonstrated that fibrobacters were more readily detected in colonised cotton baits than 

in the surrounding water or sediment sample at the equivalent depth, suggesting active 

colonisation of cellulosic substrates and metabolic activity (McDonald et al., 2009). In addition, 

Fibrobacter sequences were more readily detected in the anoxic regions of the water column 

and sediment, consistent with the obligate anaerobic physiology of all cultivated fibrobacters. 

Quantitative PCR analysis of reverse transcribed bacterial
 

community RNA suggested low 

metabolic activity of Fibrobacter spp. on the colonised cotton baits (0.005 to 0.02%) and on the 

sediment surface (ca. 1%), although the Fibrobacter sequences were enriched on the colonised 

cotton baits in comparison to the surrounding water column. The preference of these aquatic 

Fibrobacter spp. for colonised cotton baits and lake sediment provides further support for the 

suggestion that these organisms contribute to the degradation of plant and algal biomass in 

aquatic environments (McDonald et al., 2009). 

 

1.5.6 Difficulties in the isolation and molecular detection of Fibrobacter spp. 

Although F. succinogenes was first characterised in 1947, fibrobacters are notoriously 

difficult to isolate and cultivate in the laboratory, and consequently their presence in other 

environments has probably been greatly underestimated (McDonald et al., 2008). 

Undoubtedly, low cell numbers obtained by the anaerobic culture of Fibrobacter strains from 

the rumen has similarly resulted in the underestimation of their contribution to the degradation 

of cellulose (Hungate, 1966). Latham et al. (1971) isolated several hundred rumen bacteria 

strains, but only one of these was F. succinogenes, leading them to conclude that only a small 

amount of the cellulolytic activity that occurred in the rumen could be ascribed to this species. 

Furthermore, despite ecological and physiological evidence of the importance of fibrobacters as 

a major degrader of plant biomass in the herbivore gut (Julliand et al., 1999), it has become 

apparent that the nucleic acid sequences of Fibrobacter spp. are poorly represented both in 
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16S rRNA gene clone libraries in a number of studies on ruminant microflora (Whitford et al., 

1998; Daly et al., 2001; Tajima et al., 1999; Tajima et al., 2000; Tajima et al., 2001) and a 

ribosomal intergenic spacer clone library (Larue et al., 2005). In a study by Larue and 

colleagues (2005), community DNA prepared from colonised plant biomass in the herbivore 

gastrointestinal tract was subjected to both ribosomal intergenic spacer analysis (RISA) and 

denaturing gradient gel electrophoresis (DGGE). Although Fibrobacter spp. were not detected 

in any of the clone libraries, genus-specific PCR-DGGE for Fibrobacter spp. confirmed their 

presence in all community DNA samples used to generate the libraries, with the cloned 

sequences showing between 91 and 98% identity to previously identified F. succinogenes 

sequences. Furthermore, the F. succinogenes sequences were found to have no mis-matches 

with the oligonucleotide primers used to produce the library, indicating an inherent bias against 

the PCR amplification of Fibrobacter 16S rRNA gene sequences (Larue et al., 2005). 

Fibrobacter spp. are often poorly represented in metagenomic studies, with some studies on 

the bovine rumen unable to detect any Fibrobacteres sequences at all (Hess et al., 2011; Brulc 

et al., 2009), although they have been detected in others (Nathani et al., 2013) as well as other 

mammalian metagenomes (Ley et al., 2008). 

It is not known conclusively why Fibrobacter spp. are so poorly represented in general 

bacterial 16S rRNA gene libraries, but one hypothesis is that this is due to the presence of 

DNA associated molecules (Tajima et al., 2001). When equal quantities (30 ng) of DNA 

extracted from pure cultures of 12 rumen bacteria, including F. succinogenes, were subjected to 

qPCR with a general bacterial primer set it was found that different bacterial species exceeded 

the threshold fluorescence at different cycle numbers. Whilst Streptococcus bovis exceeded the 

threshold at cycle 6.74, it was not until cycle 15.85 that the same occurred for the last species, 

F. succinogenes (Fig. 1.5). This delay in amplification was not due to fewer copies of the rRNA 

operon in F. succinogenes as it possesses three copies, whilst S. bovis has only one. In addition, 

once the threshold had been exceeded the F. succinogenes template behaved in the same 

manner (exponential amplification) as that of the other species. This led to the conclusion that 

the initial Fibrobacter genomic DNA template was the problem, rather than the PCR 

amplicons or primers themselves, and the possibility that molecules associated with the DNA 

imparted this inhibitory effect (Tajima et al., 2001). It has since been suggested that where 

possible, reverse transcribed rRNA should be utilised in order to study the Fibrobacteres 

phylum (McDonald et al., 2008). It is therefore possible that due to the under-representation of 

fibrobacters in rumen clone libraries and the difficulties in isolating these obligately anaerobic 

organisms, that their apparent absence from many terrestrial and aquatic anoxic environments 
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is erroneous, particularly in environments with a high cellulosic biomass content (addressed in 

chapter 2). 

 

 

 

Figure 1.5. Differential amplification of rumen bacterial DNA templates with universal 

bacterial primers 27f and 1525r. Real-time PCR amplification was conducted essentially as 

described in Materials and Methods with 30 ng of each bacterial DNA template. PCR cycling 

was performed as follows: 95°C for 10 min of initial denaturation, then 40 cycles of 95°C for 15 

s, 60°C for 5 s, and 72°C for 1 min. The fluorescence was captured at the end of the extension 

phase. The threshold fluorescence values were calculated with the LightCycler software and 

were as follows: S. bovis, 6.736 cycles; S. ruminantium, 8.375 cycles; A. lipolytica, 8.412 cycles; 

P. bryantii, 8.758 cycles; R. flavefaciens, 8.821 cycles; T. bryantii, 9.071 cycles; P. albensis, 

9.592 cycles; P. ruminicola, 10.98 cycles; E. ruminantium, 10.28 cycles; S. dextrinosolvens, 

12.59 cycles; R. amylophilus, 13.39 cycles; and F. succinogenes, 15.85 cycles. From Tajima et 

al. (2001). 
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1.6 Aims and objectives 

 Despite the diversity and potential functional importance of the members of the  

Fibrobacteres phylum, little is known concerning their ecology, phylogeny and physiology. The 

three key aims of this thesis are: 

1. To determine the ecological range and taxonomic diversity of members of the 

Fibrobacteres phylum.  

2. To attempt the isolation and cultivation of the Fibrobacter spp. present in landfill sites. 

3. To determine the function of members of the Fibrobacteres phylum present in landfill 

sites. 
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CHAPTER 2 

 

 

Distribution and diversity of members of the bacterial phylum 

Fibrobacteres in environments where cellulose degradation occurs 
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Abstract 

The Fibrobacteres phylum contains two described species, Fibrobacter succinogenes 

and F. intestinalis, both of which are prolific degraders of cellulosic plant biomass in the 

herbivore gut. However, recent 16S rRNA gene sequencing studies have identified novel 

Fibrobacteres in landfill sites, freshwater lakes and the termite hindgut, suggesting that the 

Fibrobacteres occupy a broader ecological range than previously appreciated. Here, the 

ecology and diversity of Fibrobacteres was evaluated across 64 samples from contrasting 

environments where cellulose degradation occurs. Fibrobacters were detected in 23 of the 64 

samples via Fibrobacter genus-specific 16S rRNA gene PCR, providing their first targeted 

detection in marine and estuarine sediments, and cryoconite from Arctic glaciers, in addition to 

a broader range of environmental samples. To determine the phylogenetic diversity of the 

Fibrobacteres phylum, Fibrobacter-specific 16S rRNA gene clone libraries derived from 17 

samples were sequenced (384 clones) and compared with all available Fibrobacteres sequences 

in the Ribosomal Database Project repository. Phylogenetic analysis revealed 63 lineages of 

Fibrobacteres (95% OTUs), many representing as yet unclassified species. Of these, 24 OTUs 

were exclusively comprised of fibrobacters derived from environmental (non-gut) samples, 17 

were exclusive to the mammalian gut, 15 to the termite hindgut, and 7 comprised both 

environmental and mammalian fibrobacters, establishing Fibrobacter spp. as indigenous 

members of microbial communities beyond the gut ecosystem. These data highlight significant 

taxonomic and ecological diversity within the Fibrobacteres, a phylum circumscribed by potent 

cellulolytic activity, suggesting considerable functional importance in the conversion of 

lignocellulosic biomass in the biosphere. 
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2.1 Introduction 

Cellulose is Earth’s most abundant organic polymer and as such, the microbial-

mediated degradation of cellulosic biomass is a fundamental mechanism in the global carbon 

cycle (Leschine, 1995). Cellulose hydrolysis occurs in both oxic and anoxic environments, 

where anaerobic decomposition usually occurs due to the synergistic interaction of a 

consortium of bacteria, rather than the activity of a single species (Leschine, 1995). This is best 

exemplified in the rumen, where the microbial decomposition of cellulosic plant biomass has 

been relatively well studied, with members of the genus Fibrobacter thought to be the 

predominant bacterial degraders of cellulose (Denman and McSweeney, 2006; Koike and 

Kobayashi, 2001; Kobayashi et al., 2008) in conjunction with Ruminococcus albus and 

Ruminococcus flavefaciens (Tajima et al., 2001; Denman and McSweeney, 2006; Mosoni et al., 

2007; Shinkai and Kobayashi, 2007). However, F. succinogenes is considered as the 

predominant bacterial degrader of cellulose in the rumen (Kobayashi et al., 2008), as when F. 

succinogenes strains S85 and A3C were grown in pure culture alongside R. albus and R. 

flavefaciens, Fibrobacter spp. degraded more of the cellulose from intact forage than 

Ruminococcus spp. (Dehority, 1993). This may be explained by the recent observation that 

Fibrobacter spp. do not appear to utilise either of the two well-established mechanisms of 

cellulose-decomposition; the aerobic cell-free cellulase mechanism (Wilson, 2011), or the 

cellulosome system typified by anaerobic bacteria and fungi (Ding et al., 2008). Instead, the 

superior efficiency of cellulolysis by Fibrobacter spp. (Dehority, 1993) is thought to arise from 

a novel enzyme mechanism for cellulose decomposition that appears to be restricted to 

members of the Fibrobacteres phylum. The genome of the type strain F. succinogenes S85 

does not appear to contain exocellulases or processive endocellulases, and these enzymes are 

required for both the cellulosomal and free cellulase methods for cellulose hydrolysis (Wilson, 

2008). Furthermore, none of the predicted cellulase genes contain the carbohydrate binding 

molecules, dockerin domains or scaffoldin genes that are typically associated with cellulosomes 

(Suen et al., 2011). Consequently, it has been suggested that the method by which F. 

succinogenes degrades cellulose involves adherence via a putative fibro-slime protein located 

on the outer membrane of the cell (Suen et al., 2011) before the severing of individual cellulose 

chains. These chains are thought to be subsequently transported into the periplasmic space 

where they are hydrolysed by endoglucanases (Wilson, 2009). 

F. succinogenes was first isolated from the rumen in 1947 and was originally designated 

as Bacteroides succinogenes (Hungate, 1947, Hungate, 1950). However, the subsequent 

application of 16S rRNA gene based phylogeny demonstrated that B. succinogenes belonged 
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to a separate genus, Fibrobacter, that contained two species, the renamed F. succinogenes and 

the newly described F. intestinalis, both of which were thought to be present only in the 

mammalian intestinal tract (Montgomery et al., 1988).  

The diversity of Fibrobacter spp. in the herbivore gut has been relatively well 

characterised, particularly via oligonucleotide probes and comparative sequencing of the 16S 

rRNA gene. Stahl et al. (1988) designed the first Fibrobacter-specific oligonucleotide probes. 

These three probes had varying levels of specificity, one designed to targeted all but one of the 

known Fibrobacter strains, one to target rumen isolates, and the other to target cecal strains, 

enabling the successful detection and quantification of fibrobacters where cultivation-based 

methods were unsuccessful (Stahl et al., 1988). Fluorescently labelled oligonucleotide probes 

were subsequently designed for F. succinogenes, F. intestinalis and F. succinogenes subsp. 

succinogenes, which when used alongside comparative sequencing enabled the characterisation 

of eight previously uncharacterised Fibrobacter strains. (Amann et al., 1990); five isolated from 

ovine rumen, two from bovine rumen and one from the bovine cecum (Amann et al., 1990), 

with strain identification later confirmed by DNA:DNA hybridisation (Amann et al., 1992). 

Consequently, the application of rRNA-targeted probes enabled the quantification of 

fibrobacters in the rumen (Stahl et al., 1988; Lin et al., 1994; Lin and Stahl, 1995), and the 

detection of novel Fibrobacter populations in the bovine (Stahl et al., 1988; Lin et al., 1994) 

caprine (Lin et al., 1994) and equine (Lin and Stahl, 1995) intestinal tract. Significantly, Stahl et 

al. (1988) determined that the probe designed to target all but one of the currently isolated, 

putative Fibrobacter strains (then members of Bacteroides) detected a greater number of 

fibrobacters than the combination of rumen and cecal specific probes, leading to the suggestion 

that the bovine rumen contained previously uncharacterised species similar to F. succinogenes. 

This was later supported by the work of Lin et al. (1994), which demonstrated that only half of 

the species detected by general Fibrobacter probes in cattle and goats could be detected by 

probes targeting the two specific species. A further study suggested the presence of novel 

Fibrobacter populations in the equine cecum (Lin and Stahl, 1995), as the application of a 

Fibrobacter genus-specific probe suggested that fibrobacters comprised 12% of total 16S rRNA 

in the equine cecum, and while the species-specific probe designed to target F. succinogenes 

suggested that the majority of these sequences belonged to F. succinogenes, there was no 

hybridisation with any of the three F. succinogenes subspecies-specific probes, suggesting that 

presence of novel species or sub-species closely related to F. succinogenes (Lin and Stahl, 

1995). 
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F. succinogenes and F. intestinalis remain the only two formally described Fibrobacter 

species to date, possibly because fibrobacters are difficult to isolate and cultivate, and their 

ecology was previously thought to be restricted to the mammalian gut (Ransom-Jones et al., 

2012). However, members of a novel subphylum of the Fibrobacteres, designated subphylum 

2, have since been detected in the gut of wood-feeding termites (Hongoh et al., 2005; Hongoh 

et al., 2006) and proteomic analyses confirmed that these novel Fibrobacteres are involved in 

cellulose hydrolysis in the termite hindgut (Warnecke et al., 2007). 

Using a genus-specific 16S rRNA gene primer set, members of the genus Fibrobacter 

were detected in landfill sites (McDonald et al., 2008; McDonald et al., 2012) and freshwater 

lakes (McDonald et al., 2009), providing the first evidence of members of the genus 

Fibrobacter beyond the intestinal tract, and these environmental fibrobacters include novel 

phylogenetic lineages that represent as yet uncultivated species, in addition to F. succinogenes-

like strains (Ransom-Jones et al., 2012). It has been suggested that fibrobacters are active 

members of the cellulolytic microbial community in these environments, as it has been 

demonstrated via quantitative PCR that they become enriched on heavily degraded cotton 

string both in landfill sites (McDonald et al., 2012) and freshwater lakes (McDonald et al., 

2009). In landfill sites, fibrobacters can comprise up to 40% of the total bacterial rRNA and 

reach relative rRNA abundances that exceed those detected in the ovine rumen (McDonald et 

al., 2008).  

The molecular detection of novel lineages of the Fibrobacteres phylum in landfill sites 

and freshwater lakes suggests that the true ecology and diversity of this poorly studied, but 

functionally important phylum, is not fully understood. To address the ecological range and 

diversity of fibrobacters, Fibrobacter genus-specific PCR primer sets were applied to DNA 

extracted from a range of natural and managed environments where cellulose decomposition 

occurs, expanding the range of ecological niches for which the presence of fibrobacters has 

previously been described. Cloning, sequencing and phylogenetic analysis of fibrobacters from 

seventeen of these environments in addition to current Fibrobacteres diversity in the public 

databases, provides the most comprehensive analysis of the ecology and diversity of the 

Fibrobacteres to date. 
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2.2 Materials and methods 

2.2.1 Sampling  

Sixty-four samples were collected from a range of mammalian gut, terrestrial, aquatic 

and managed environments as listed in Table 2.1. Landfill leachate and water samples were 

processed by filtration though a 0.2 μm pore diameter membrane. Landfill leachate 

microcosms were constructed by placing nylon mesh bags containing dewaxed cotton string in 

1 l Duran bottles, sterilised by autoclaving and transported to the landfill site where they were 

filled to the top with leachate to avoid the presence of air in the headspace, sealed and 

incubated in the laboratory at ambient temperature for three months. For solid sample 

matrices such as equine faeces, soils and sediments, samples were collected in sterile containers 

and transported to the laboratory where they were frozen at -80°C. Samples of cryoconite were 

collected from three High Arctic valley glaciers on Svalbard (Austre Brøggerbreen [AB], 

Midtre Lovénbreen [ML], and Vestre Brøggerbreen [VB]) and three alpine valley glaciers in 

Austria (Gaisbergferner [GB], Pfaffenferner [PF], and Rotmoosferner [RM]) as detailed by 

Edwards et al. (2014). In brief, samples were collected aseptically in 15 ml tubes and stored at -

20°C in field stations pending frozen transfer to the laboratory. 
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Table 2.1. PCR and qPCR analysis of environmental samples. ND = ‘Not Determined’. Insufficient nucleic acid was retrieved from the environmental sample to 

enable qPCR analysis with sufficient replication for the quantitative analysis of both general bacteria and Fibrobacter spp. 

a. Percentage relative abundance of 16S rRNA genes of Fibrobacter spp. compared with total bacteria 

b. An additional 24 soil samples from Conwy, North Wales were tested via nested PCR, but no Fibrobacter PCR amplicons were detectable. 

 

Sample   Sample Type Location     Direct PCR  Nested PCR Clone library sequencing qPCR (%   

product with product with  of the Fibrobacter 16S of total bacterial  

 Fibrobacter  Fibrobacter rRNA gene PCR   rRNA gene copies)
a

 primers  primers  amplicons   

 

Equine faeces  Faecal matter n/a     +  +  +   1.31 

Ovine rumen fluid Rumen fluid n/a     +  +  +   0.04 

Bovine rumen fluid Rumen fluid n/a     +  +  +   ND 

Peat   Peat  Acid Erosion Complex,    -  -  -   ND 

Migneint-Arenig-Dduallt,  

Conwy, Wales  

Soil from stable  Soil  Stable sand dune, Newborough,  -  +  -   ND 

sand dune    Anglesey 

Blanket bog soil   Soil  Migneint-Arenig-Dduallt, Conwy, Wales -  +  +   ND 

Buckley compost  Compost Compost heap, Chester, England  -  -  -   ND  

Cryoconite VB1  Cryoconite High Arctic (Svalbard)   -  +  +   ND  

Cryoconite PF1  Cryoconite European Alps (Tyrol)   -  -  -   ND  

Cryoconite RM1  Cryoconite European Alps (Tyrol)   -  -  -   ND  

Cryoconite GB1  Cryoconite European Alps (Tyrol)   -  -  -   ND  

Cryoconite ML6  Cryoconite High Arctic (Svalbard)   -  +  -   ND  

Cryoconite AB6  Cryoconite High Arctic (Svalbard)   -  +  +   ND  

Esthwaite (lake)   Sediment Esthwaite Lake, Lake District, England -  -  -   ND  

Sediment 

Lake Ogwen sediment Sediment Lake Ogwen, Gwynedd, Wales  -  +  -   ND 

Sediment 

Llyn Aled (lake)  Sediment Llyn Aled, Conwy, Wales   -  +  +   ND  

Sediment 
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Aled Isaf (lake)  Sediment Aled Isaf, Conwy, Wales   -  +  +   ND 

Sediment 

Conwy Estuary  Cotton string Mussel Bed, Conwy Estuary, Wales  -  -  -   ND 

microcosm 1 cotton 

Conwy Estuary  Cotton string Mussel Bed, Conwy Estuary, Wales  -  +  +   ND 

microcosm 2 cotton 

Conwy Estuary  Cotton string Mussel Bed, Conwy Estuary, Wales  -  +  +   ND 

microcosm 3 cotton 

Conwy Estuary  Cotton string Mud Flat, Conwy Estuary, Wales  -  +  -   ND 

microcosm 4 cotton 

Conwy Estuary  Cotton string Mud Flat, Conwy Estuary, Wales  -  -  -   ND 

microcosm 5 cotton 

Marine off shore  Sediment Conwy, Wales    -  -  -   ND 

transect sediment 1km 

Marine off shore  Sediment Conwy, Wales    -  -  -   ND 

transect sediment 2km 

Marine off shore  Sediment Conwy, Wales    -  +  +   ND 

transect sediment 4km 

Marine off shore  Sediment Conwy, Wales    -  -  -   ND 

transect sediment 8km 

Marine off shore  Sediment Conwy, Wales    -  -  -   ND 

transect sediment 12km 

Brombrough Dock Filtered  Brombrough Dock Landfill,  +  +  +   3.90 

(landfill) microcosm leachate  Wirral, England 

Buckley (landfill)  Filtered  Buckley Landfill, Flintshire, Wales  -  +  +   ND 

leachate 1 (LC3)  leachate  

Buckley (landfill)  Filtered   Buckley Landfill, Flintshire, Wales  -  +  +   ND 

leachate 2 (LC1B) leachate  

Buckley (landfill)  Filtered  Buckley Landfill, Flintshire, Wales  -  -  -   ND 

leachate 3 (LC2B) leachate  

Bidston Moss (landfill) Cotton string Bidston Moss Landfill, Wirral, England -  +  +   0.02 

microcosm cotton 1J 

Bidston Moss (landfill) Cotton string Bidston Moss Landfill, Wirral, England -  -  -   ND 

microcosm cotton 3E 
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Bidston Moss (landfill) Cotton string Bidston Moss Landfill, Wirral, England -  -  -   ND  

microcosm cotton 3F 

Bidston Moss (landfill) Filtered  Bidston Moss Landfill, Wirral, England -  +  +   1.43 

microcosm 3F   microcosm  

containing 0.1%  

(wt/vol) avicell 

Bidston Moss  Filtered  Bidston Moss Landfill, Wirral, England -  -  -   ND  

(landfill) leachate 1J leachate 

Bidston Moss  Filtered   Bidston Moss Landfill, Wirral, England -  -  -   ND  

(landfill) leachate 3E leachate  

Bidston Moss  Filtered   Bidston Moss Landfill, Wirral, England -  +  +   ND  

(landfill) leachate 3F leachate 

Soil transect point 5  Soil
b

  Conwy, Wales    -  +  -   ND  

Soil transect point 8  Soil
b

  Conwy, Wales    -  +  -   ND  
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2.2.2 DNA extraction 

Either a complete membrane filter (0.2 μm pore diameter) or 0.5 g of sample material 

was subjected to nucleic acid extraction with phenol-chloroform-isoamyl alcohol and 

mechanical bead beating via the method of Griffiths et al. (2000) with the following 

modifications. Prior to precipitation with polyethelene glycol, RNase A (Sigma) was added to 

the aqueous layer at a final concentration of 100 mg ml
-1

 and incubated at 37°C for 30 minutes 

before the addition of an equal volume of chloroform-isoamyl alcohol (24:1) (Sigma) and 

centrifugation and precipitation as described by Griffiths et al. (2000). The DNA was 

resuspended in 50 μl nuclease free water (Bioline) and visualised on a 1% agarose (Bioline) gel 

with HyperLadder 1kb (Bioline) before quantification with the Qubit Fluorometer (Life 

Technologies) and the Qubit dsDNA BR Assay Kit (Life Technologies). Cryoconite samples 

were subjected to PowerSoil (MoBio, Inc.) DNA extraction as specified by the manufacturer, 

with DNA extracted from 250 mg (fresh weight) of cryoconite and eluted in 100 µl Buffer C6. 

Purified DNA was stored at -80°C.   

 

2.2.3 Amplification of the 16S rRNA gene via direct and nested PCR 

PCR reactions contained 0.2 mM each primer (Table 2.2), 0.2 mM each dNTP, 1x 

SuperTaq Buffer (Cambio), 0.5 mM MgCl2, 1x BSA, 1 unit SuperTaq (Cambio), 50 ng DNA 

and dd H2O to a final volume of 50 μl. PCR reactions using the Fibrobacter primer set (Fib 1F 

and Fib 2AR, Table 2.2) contained an increased concentration of each primer (0.4 mM) and 

MgCl2 (1.5 mM). PCR cycling conditions were as follows: initial denaturation at 94°C for 5 min, 

35 cycles of 94°C for 1 min, 1 min at the specific annealing temperature for each primer set 

(Table 2.2) and 72°C for 1.5 min. The final extension was performed at 72°C for 10 min. For 

direct PCR, 50 ng extracted DNA was amplified with the Fibrobacter specific primers (Table 

2.2). Nested PCR consisted of an initial round of PCR using the general bacterial primer set 

(pA and pH’, Table 2.2), followed by a second round of PCR on the general bacterial 

amplification products (1 μl) with the Fibrobacter specific primers (Fib 1F and Fib 2AR, Table 

2.2). PCR products were visualised on a 1% agarose (Bioline) gel with HyperLadder 1kb 

(Bioline) and stored at -20°C. 
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Table 2.2. 16S rRNA gene primers used for PCR and qPCR amplification and sequencing. 

a.  Ambiguities: K=(GorT), S=(GorC), W=(AorT), Y=(CorT), H=(A,CorT), R=(AorG), D=(G,AorT), V=(A,CorG).  

b. Primers used for qPCR analysis.  

c. Primer used for sequencing. 

d. QuantiFastTM SYBR® Green PCR assay (Qiagen) uses same annealing temperature (60°C) for all primer sets. 

e. Primers based on those of Lin and Stahl (1995) and modified by McDonald et al. (2008). 

 

Primers  Sequence (5’ – 3’)
a

   Specificity  Annealing  Amplicon Reference 

Temperature (°C)  Size (bp) 

 

pA  AGAGTTTGATCCTGGCTCAG  General Bacteria  55   ~ 1534  (Edwards et al., 1989) 

pH’  AAGGAGGTGATCCAGCCGCA 

Fib 1F
e

  CCGKSCCAACGSSCGG   Fibrobacter genus  60   ~ 855  (McDonald et al., 2008) 

Fib 2AR  ATCTCTCGCYGCGGCGWTYCC  

1369F
b

   CGGTGAATACGTTCYCGG   General bacteria
b

  60
d

   ~ 151  (Suzuki et al., 2000) 

Prok 1492R
b

 GGWTACCTTGTTACGACTT  

FibroQ153F
be

  CCGKSCCAACGSSCGGHTAA   Fibrobacter
b

 genus 60
d

   ~ 104  (McDonald et al., 2008) 

FibroQ238R
b

 CSCCWACTRGYTAATCRGAC  

M13 Forward
c

 GTTTTCCCAGTCACGAC  M13 Vector  n/a   n/a  (Messing, 1983) 
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2.2.4 Cloning and sequencing of Fibrobacter specific PCR amplification products 

 Seventeen of the Fibrobacter specific 16S rRNA-gene PCR amplification products from 

the nested PCR described above were extracted from a 1% agarose (Bioline) gel and purified 

using the QIAquick Gel Extraction Kit (Qiagen) according to the manufacturer’s instructions. 

The 16S rRNA gene PCR products were ligated and cloned into competent E. coli JM109 

(Promega) using the pGEM-T Easy Vector System I (Promega) according to the 

manufacturer’s protocol, and the plasmid DNA extracted and purified using the QIAEX II Gel 

Extraction Kit (Qiagen) prior to sequencing using the M13 forward primer (Table 2.2) by 

Source BioScience. 

 

2.2.5 Quantification of Fibrobacter spp. via qPCR 

For each of the five samples for which sufficient DNA template was achieved for qPCR 

analysis, triplicate qPCR assays were performed with both the general bacterial (1369F and 

Prok 1492Rb, Table 2.2) and Fibrobacter specific primer sets (FibroQ153F and FibroQ238R, 

Table 2.2) on the 7900HT Fast Real-Time PCR System (Applied Biosystems). Each reaction 

was performed in a 20 μl final volume, containing 10 ng DNA, 10 μl of 2x QuantiFast SYBR 

Green PCR Master Mix (Qiagen), 1 mM (final concentration) forward and reverse primer and 

dd H2O. Cycling conditions were 95°C for 5 min, followed by 45 cycles of 95°C for 10 seconds, 

and 60°C for 30 seconds, with fluorescence detection in the combined annealing and extension 

step. A dissociation step was included at the end of every run to confirm the presence of single 

amplification products. 

The amplified 16S rRNA gene of F. succinogenes S85 was used to generate standard 

dilution curves to determine the relative abundance of Fibrobacter spp. The almost full length 

16S rRNA gene (~1534 bp) was amplified using the primers pA and pH’ (Table 2.2) as 

described above and the amplification product excised from a 1% agarose (Bioline) gel and 

purified using the QIAquick Gel Extraction Kit (Qiagen) according to the manufacturer’s 

protocol. The concentration of purified DNA was established with a Qubit Fluorometer (Life 

Technologies) using the Qubit dsDNA BR Assay Kit (Life Technologies) and the 16S rRNA 

gene copy number per microliter was calculated via the following equation: (X g/µl DNA / 

[PCR product length in basepairs x 660]) x 6.022 x 1023 = Y molecules/µl. 

Triplicate standard curves of the F. succinogenes S85 16S rRNA gene were generated 

using serial dilutions from 3 x 10
8

 to 3 x 10
2

 gene copies, with all three serial dilutions included 

on each plate with each primer set. Standard curves for each primer set were generated by 

plotting the Ct value against the log gene copy number, and a linear line of best fit used to 
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determine the r
2

 value, amplification efficiency and y-intercept (Pfaffl, 2001). The relative 

abundance (%) of Fibrobacter spp. was determined by dividing the number of gene copies per 

sample from the Fibrobacter specific assay with the number of total bacterial gene copies per 

sample as determined by the standard curves for each primer set (Smits et al., 2004). 

 

2.2.6 Phylogenetic analysis of Fibrobacteres 16S rRNA gene sequences 

All sequences classified within the Fibrobacteres phylum and annotated as ‘good’ 

quality were downloaded from the Ribosomal Database Project (Cole et al., 2007; Cole et al., 

2009) website in July 2013, and combined with sequences derived from the clone libraries 

produced in this study. The resulting dataset was subsequently aligned using the MUSCLE 

aligner (Edgar, 2004). Sequences were trimmed to produce an alignment containing only 

complete sequences corresponding to the regions between positions 188 and 887 of the E. coli 

16S rRNA gene. Sequences from the aligned dataset were subsequently clustered into 

Operational Taxonomic Units (OTUs) using a cutoff of 95% similarity using CDHIT (Li and 

Godzik, 2006; Huang et al., 2010). Sequences were checked for chimeras using Bellerophon 

(Huber et al., 2004) and putative chimeric sequences removed from the dataset. The 

representative sequences of each OTU (n=63) were aligned using the MUSCLE aligner (Edgar, 

2004) and imported into ARB (Ludwig et al., 2004) where the alignment was visually checked 

and manually optimised. A maximum likelihood tree was produced from the final alignment 

using ARB (Ludwig et al., 2004). Nodes for which a bootstrap value of >95% was observed are 

marked with a filled circle, nodes for which the bootstrap value was between 75 and 95% are 

marked with an unfilled circle. Nucleotide sequence accession numbers for the representative 

sequence of each OTU are displayed on each node and the number of sequences clustering 

within each OTU are displayed in parentheses. Clusters highlighted in grey represent 

sequences that are affiliated with the two known cultivated species within the genus, F. 

succinogenes and F. intestinalis. The scale bar indicates 0.1 base substitutions per nucleotide. 

 

 

 

  

  



73 

 

2.3 Results and discussion 

2.3.1 Genus-specific 16S rRNA gene PCR amplification of Fibrobacter spp. in environmental 

samples 

Fibrobacter spp. were detected in 23 of the 64 samples studied via nested PCR, 

including equine faeces, ovine and bovine rumen fluids, soils, cryoconite, freshwater, estuarine 

and marine sediments and landfill sites (Table 2.1). This is the first targeted detection of 

Fibrobacter spp. in estuarine sediments, marine sediments and cryoconite. A direct PCR 

amplification product was detected in 4 of the 64 environmental samples screened (Table 2.1). 

A direct PCR result for the presence of Fibrobacter spp. usually only occurs in samples where 

there is a significant abundance of Fibrobacter spp. The four environments in which 

Fibrobacter spp. were detected via direct PCR (equine faeces, ovine rumen fluid, bovine rumen 

fluid and Bromborough Dock landfill) are known to have high numbers of fibrobacters, with 

qPCR demonstrating the relative abundance of Fibrobacter rRNA compared with total 

bacterial rRNA as 21-32% (Ovine gut) (McDonald et al., 2008) and 28.9% (Brombrough Dock 

Riser 3) (McDonald et al., 2012).  

The relative rRNA gene abundance of Fibrobacter spp. in relation to total bacteria as 

determined by qPCR ranged from 0.02 to 3.9% in landfill sites (Table 2.1), which is 

comparable with previous studies that have shown that fibrobacters range from 0.2 to 40% of 

the total bacterial rRNA molecules in landfill sites (McDonald et al., 2008) and 0.005 to 1% in 

lakes (McDonald et al., 2009). These data suggest that fibrobacters can represent a significant 

and active proportion of the microbial population in these environments. There are however 

caveats when using DNA to detect fibrobacters via PCR, as it is thought that DNA associated 

molecules interfere with PCR amplification, thus resulting in the previous underestimation of 

their abundance within the rumen via general bacterial 16S rRNA gene libraries (Tajima et al., 

2001). Furthermore, the extraction method used can also introduce bias (Henderson et al., 

2013). Molecular analysis of reverse transcribed rRNA is thought to be a better approach to 

studying members of the Fibrobacteres (McDonald et al., 2008), as the inhibitory molecules 

seem to only be associated with DNA. Tajima et al., (2001) observed that F. succinogenes 

genomic DNA had a prolonged delay in amplification prior to the exponential amplification 

phase of the DNA template in qPCR assays; however, once PCR amplification surpassed the 

threshold of detection, the template amplified exponentially, suggesting that the initial genomic 

DNA was responsible for the poor amplification efficiency. Thus when cDNA is used for 

downstream applications this potential interference would be overcome. However, it was not 

possible to extract enough RNA from the samples for RT qPCR to be applied here.  
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2.3.2 Phylogenetic analysis 

The Fibrobacteres phylum currently consists of two subphyla, subphylum 2, which 

contains only species detected in the termite gut, and subphylum 1 - the genus Fibrobacter 

sensu stricto, which contains the two characterised species, F. succinogenes and F. intestinalis 

(Fig. 2.1). The generation of new Fibrobacter 16S rRNA gene sequence data from several 

contrasting environments here expands our knowledge of the ecological range of this poorly 

studied phylum and comparative phylogenetic analyses of these data in addition to known 

Fibrobacteres diversity in the public databases makes this study of the Fibrobacteres phylum 

the most comprehensive to date. The Ribosomal Database Project repository (Cole et al., 

2007) previously contained only one Fibrobacter sequence that had been detected in marine 

and estuarine sediments, and as a result this study has added to the current understanding of 

the ecology of the phylum in these and other environments. This is also the first specific 

detection of Fibrobacter spp. in cryoconite, a microbe-mineral aggregate responsible for 

darkening glacial ice surfaces (Takeuchi et al., 2001) and associated with high rates of microbial 

carbon production despite ambient temperatures between 0 and 1°C (Anesio et al., 2009).  

Previous phylogenetic studies have used 95% similarity to designate species-level 

diversity within the Fibrobacteres phylum due to the substantial 16S rRNA gene and genomic 

diversity between the two described species (Jewell et al., 2013; Ransom-Jones et al., 2012), 

with the sequences derived from F. intestinalis isolates forming a single OTU at 95%, below the 

commonly accepted 97% OTU cutoff used to cluster at species-level (Jewell et al., 2013). 

When all sequences were clustered at 95% sequence similarity, 63 OTUs were generated, with 

F. succinogenes comprising 11 OTUs and F. intestinalis 3 OTUs clustering separately from F. 

succinogenes, with a bootstrap value of >95% (Fig. 2.1). This would suggest that the strains 

currently designated as F. succinogenes do not actually represent a single species. Previous 

studies have suggested that F. succinogenes and F. intestinalis may actually represent two 

distinct genera (Montgomery et al., 1988; Ransom-Jones et al., 2012), but in the absence of 

phenotypic data to distinguish between the two species (despite significant genomic diversity), 

elevating each taxon to genus status is premature. Consequently, F. succinogenes is currently 

separated into four sub-species.  

In order to determine the extent of 16S rRNA gene diversity within the F. succinogenes 

lineage, all sequences designated as isolates of F. succinogenes were downloaded from the 

Ribosomal Database Project website and aligned as described previously. The alignment was 

then trimmed to create a near full length alignment of the 16SrRNA gene (1176 bp) (data not 

shown). When a similarity matrix was constructed for this alignment, it was found that a 91% 
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clustering value would be needed to group all members of F. succinogenes into the same node. 

Nevertheless, this value for interspecies variation is lower than the current 95% 16S rRNA 

similarity considered as the minimum allowable within a genus (Ludwig et al., 1998). If 

clustered at 91% similarity, 29 OTUs are generated, suggesting that there are at least 27 

potentially novel species contained within the phylum, demonstrating that there is greater 

diversity outside of the two recognised species than within.  

The number of sequences contained within each of the 63 OTUs generated at 95% 

(Fig. 2.1) varies from 297 sequences to singleton sequences, with 18 OTUs containing only one 

sequence. As a result of this, it cannot be inferred if these lineages are exclusive to a particular 

niche, as further sequencing data may well reveal other as yet undetected Fibrobacters that 

would cluster within these OTUs, either from the same or different environments. Whilst there 

are lineages that contain species from a range of environments, others seem to be specific to 

one particular ecological niche. Seven of the 63 OTUs (95%) contained sequences derived 

from both mammalian gut and environmental samples. However, 24 of the 64 OTUs 

contained sequences detected exclusively in non-gut environmental samples. These data 

suggest that a significant proportion of the diversity detected within the Fibrobacteres phylum is 

derived from environmental (non-gut) fibrobacters (Fig. 2.1). Consequently, the isolation and 

cultivation of these potentially novel Fibrobacter spp. is an obvious priority, in order to further 

our understanding of their physiology and function in natural and managed environments. The 

OTU represented by FJ711711 contains species found solely in freshwater lakes, and lineages 

GQ139119, GQ132590, GQ133837, GQ135610, GQ135762, GQ135590, GQ135618, 

GQ134316, GQ138403, GQ135015 and GQ136636 all contain species from an Anaerobic 

Batch Sequencing Reactor (ABSR), utilised for treating swine waste (Fig. 2.1). In addition to 

this, EF186285, EF186275 and KJ364190 contain species found solely in landfill sites, with the 

separation of EF186275 supported by a bootstrap value of >95%, and KJ364274 containing 

only species present in cryoconite samples (Fig. 2.1). The OTU represented by KJ364274 is 

also distant to both it’s nearest neighbor, GQ134316, and any of the other lineages, suggesting 

that the sequences contained within this OTU may in fact be members of a novel subphylum 

(Fig. 2.1). Cryoconite fibrobacters are also present in lineage CP001702, which clusters within 

the F. succinogenes group, supported by a >95% bootstrap value, despite the geographic 

separation of this environment from grazing areas. In addition, cryoconite bacterial 

communities are distinct from adjacent habitats, and appear to assemble by deterministic 

processes (Edwards et al., 2013), implying the selection of taxa involved in the functioning of 

cryoconite ecosystems. Both alpine and Arctic cryoconites receive allocthonous organic matter 
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from plant sources (Pautler et al., 2013; Xu et al., 2010). The detection of fibrobacters on all 

Svalbard glaciers sampled but none of the alpine glaciers examined in this study is interesting. 

Cryoconite aggregates on Arctic glaciers, including those sampled here, frequently mature to 

form granular structures (Langford et al., 2010) while the cryoconite aggregates on the alpine 

glaciers sampled are poorly developed aggregates of cells, organic matter and mineral debris. 

The distribution of fibrobacters in Arctic cryoconite is therefore consistent with the evolution 

of anoxic microhabitats in the interiors of cryoconite granules (Hodson et al., 2010; Telling et 

al., 2012). The presence of both cosmopolitan and unique lineages illustrates the potential 

broad dispersal and diversity of fibrobacters in Arctic glacial environments. As such, the data 

presented suggests a role for fibrobacters in Arctic cryoconite carbon cycling, in particular as 

cryoconite community structure, respiration rates and organic matter profiles are closely related 

(Edwards et al., 2011; Edwards et al., 2014). The detection of fibrobacters within this 

environment is therefore suggestive of a greater role in the global carbon cycle than previously 

thought. This is supported by the fact that landfill site (McDonald et al., 2008; McDonald et al., 

2012), freshwater lake (McDonald et al., 2009) and estuarine fibrobacters were detected on 

colonised cotton in both this and previous studies. 

However, the detection of novel Fibrobacter species is not limited to environmental 

samples, as 15 of the detected Fibrobacter lineages (95% OTUs) were exclusive to the termite 

gut (Fig. 2.1). In addition, the majority of previous mammalian intestinal tract studies have 

relied on F. succinogenes species-specific primers, thus potentially missing other novel 

members of the genus that may be present in these environments. Bovine, ovine and equine 

samples were therefore included in order to determine whether or not novel fibrobacters were 

also present in these environments. Seventeen of the 63 Fibrobacter OTUs (95%) observed 

were comprised exclusively of mammalian gut sequences (Fig. 2.1). Lineages M62682 and 

KJ364196 (Fig. 2.1) contain only bovine associated species, suggesting that in the bovine rumen 

there are also as yet unclassified novel species. Furthermore, a number of OTUs, EU470330, 

EU473529, EU473449, EU775761 and L35547 contain only equine associated species, with 

the separation of EU473449 and EU473529 supported by bootstrap values of >95%. Lin and 

Stahl (1995) used Fibrobacter genus and species specific probes in an rRNA hybridization 

study of equine cecal contents, suggesting that the F. succinogenes and F. intestinalis signal 

represented only a small proportion of the total Fibrobacter abundance generated with the 

genus specific probe. These data therefore suggested that novel Fibrobacter species were 

present in the equine cecum and our detection of five equine-specific Fibrobacter lineages here 

supports this assertion.  
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Further work should focus on the application of PCR-independent methods to 

investigate the abundance, ecology and physiology of fibrobacters in these environments. The 

sequence data and phylogenetic analysis presented here enable the design and application of 

lineage-specific Fibrobacter probes for both RNA and cellular quantification of fibrobacters. 

Previous studies have also utilised PCR-independent methods such as RNA hybridization and 

Fluorescence In Situ Hybridization (FISH) to provide important insights into the abundance, 

ecology and physiology of Fibrobacter lineages in the gut (Amann et al., 1990; Amann et al., 

1992; Lin and Stahl, 1995; Lin et al., 1994; Stahl et al., 1988). For example, ecological and 

physiological differences between strains from phylogenetic subgroups 1-3 of F. succinogenes 

have been detected in the rumen using qPCR and FISH. F. succinogenes subgroup 1 were 

observed to predominate numerically and were highly active on plant material, particularly on 

the less degradable hay stems, whereas subgroups 2 and 3 were more often associated with 

other rumen bacteria on the more readily degradable leaf sheaths (Shinkai and Kobayashi, 

2007; Kobayashi et al., 2008). Consequently, such approaches may now be applied to 

determine the ecology and physiology of fibrobacters in their newly described ecological 

niches. 
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Figure 2.1. The ecology and taxonomy of the Fibrobacteres  

phylum (Ransom-Jones et al., 2012). OTUs are labelled with the accession number of the 

representative sequence, and the number of sequences contained within each OTU is in 

brackets. OTUs containing cultivated species are designated by boxes on the end of the node. 

Please refer to Appendix 3 for a full data table describing the sequences contained in each 

OTU, their accession numbers and percentage environmental composition of each OTU. 
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Further information on the environmental distribution is as follows: 

Mammalian Gut (Equine): a) Horse, b) Grevy’s Zebra, c) Wild Ass. 

Mammalian Gut (Other): a) Buffalo, b) Capybara, c) Colobus, d) Dromedary Camel, e) 

Elephant, f) Goat, g) Pig, h) Rat, i) River Hog, j) Rock Hyrax, k) Tammar Wallaby, l) Yak, m) 

Yunnan Snub-nosed Monkey. 

Sewage: a) Activated Sludge, b) Anaerobic Sludge Digester, c) Raw Sewage. 

Freshwater lake: a) Lake Sediment, b) Lake Water. 

 

2.4 Conclusions  

There is a current impetus to better understand the diversity of cellulolytic microbes 

and their enzyme systems for biotechnological applications, particularly in the production of 

second-generation biofuels and in understanding biomass decomposition and nutrition in 

commercially important herbivores. Fibrobacters are prolific degraders of cellulose, however 
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most cultivation-based approaches for the isolation of cellulolytic microorganisms typically 

focus on aerobic or facultative anaerobic species that are easier to isolate and cultivate, thus 

disregarding obligate anaerobes such as fibrobacters. Furthermore, the problems associated 

with Fibrobacter DNA amplification have meant that until recently Fibrobacter spp. have 

remained undescribed in many environments due to the apparent biases against the detection 

of Fibrobacter DNA in microbial communities using general 16S rRNA gene and shotgun 

metagenomic approaches (Hess et al., 2011; Brulc et al., 2009). Consequently, the genomic 

diversity, physiology and metabolism of the Fibrobacteres is barely understood, despite the 

significant ecological, economical and biotechnological potential of this functionally diverse 

phylum.  

Here, our understanding of the taxonomic diversity and ecological range of Fibrobacter 

spp. in natural and managed environments is extended to several newly described niches, all of 

which potentially promote adaptation and diversity, thus generating novel centres of variation 

within the Fibrobacteres that comprise enzymes and growth requirements that are favourable 

for biotechnological exploitation. Historically, the ecology of fibrobacters was thought to be 

restricted to the mammalian intestinal tract. However, the significant diversity of potentially 

novel Fibrobacter species described here, and in particular the large proportion of OTUs 

(n=24) derived exclusively from natural and managed environments, demonstrates their broad 

ecological range in the biosphere. Fibrobacters are therefore an important target for cultivation-

based and omics approaches aiming to elucidate novel carbohydrate active enzymes and 

mechanisms. It has recently been suggested that F. succinogenes S85 utilises a novel 

mechanism for cellulose hydrolysis (Wilson, 2008), and with the observed taxonomic diversity 

within the Fibrobacteres it is likely that the phylum represents a significant source of 

unexplored diversity with respect to carbohydrate active enzymes.  
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CHAPTER 3 

 

 

Isolation and cultivation of Fibrobacter spp. from landfill leachate 

cellulose enrichment cultures 
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Abstract    

Whilst it was originally thought that fibrobacters were restricted to the mammalian 

intestinal tract, F. succinogenes and novel members of the genus Fibrobacter have recently 

been detected in natural and managed environments beyond the gut, confirming the broad 

ecological range of the Fibrobacteres phylum. Landfill sites are perhaps the best characterised 

of these environments, with the relative abundance of Fibrobacter rRNA representing as much 

as 40% of the total bacterial rRNA. However, despite the diversity and abundance of these 

Fibrobacter lineages, there remains only two characterised species within the genus, both 

isolated from the mammalian intestinal tract. Here, the isolation of Fibrobacter spp. from 

landfill sites was attempted by the use of microcosms containing landfill leachate supplemented 

with either glucose or Avicel, in order to enrich fibrobacters for isolation via the Hungate roll 

tube method. A total of 63 cellulolytic bacterial strains were isolated from landfill 

leachate/Avicel enrichment cultures; five of which contained Fibrobacter spp. as determined 

via genus specific 16S rRNA gene PCR. These Fibrobacter-containing cultures underwent 

seven further rounds of purification before purity was established. However, upon achieving 

purification of Fibrobacter strains, it was not possible to passage the isolates further. 

Sequencing and BLASTn analysis of Fibrobacter specific 16S rRNA gene PCR amplicons of 

each isolate demonstrated that these species were F. succinogenes. Phylogenetic analysis of 

each isolate demonstrated that landfill F. succinogenes isolates clustered within the F. 

succinogenes subsp. succinogenes lineage, suggesting that these are strains of F. succinogenes 

that are adapted to the landfill environment. This is the first isolation of Fibrobacter spp. from 

a non-gut environment (landfill sites) and their ability to propagate outside of the gut confirms 

their status as active members of cellulolytic microbial populations in landfill sites, and 

potentially, in other environments.  
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3.1 Introduction 

Fibrobacter succinogenes (previously designated as Bacteroides succinogenes) was 

isolated from the bovine rumen in 1947 (Hungate, 1947) and represents one of only two 

formally described species of the genus Fibrobacter, the sole genus of the Fibrobacteres 

phylum. The genus Fibrobacter was established in 1988 to contain F. succinogenes (re-

classified from Bacteroides succinogenes) and the newly described F. intestinalis, which to date 

remain the only characterised species within the Fibrobacteres phylum (Montgomery et al., 

1988). Members of the genus are described as Gram-negative, non-sporeforming, obligate 

anaerobes, that are either rod-shaped or pleiomorphic ovoid cells (Montgomery et al., 1988), 

approximately 0.8-2.0 µm in length and 0.3-0.5 µm in diameter (Hungate, 1950; Stewart and 

Flint, 1989).  

The Hungate method for isolating obligate anaerobes was first described in 1947 

(Hungate, 1947) and is still the primary technique employed for the cultivation of F. 

succinogenes from the rumen (McDonald et al., 2012b). The preferred medium, either liquid 

or solid, is prepared under anoxic conditions by boiling the medium for 10 minutes to remove 

excess oxygen, with CO2 gas also flowing through the medium. A reducing agent such as 

cysteine hydrochloride is added to the medium and subsequently the redox indicator 

Resazurin, which possesses a dark blue colour under aerobic conditions, becomes colourless 

due to the reduction of the medium to an anoxic state (McDonald et al., 2012b). The medium 

is then aliquoted into individual glass tubes under anaerobic conditions, which are maintained 

via the use of metal gas hooks connected to a CO2 source, enabling the flow of CO2 into the 

tubes, thus displacing the oxygen (Fig. 3.1). The tubes are subsequently sealed with butyl 

rubber stoppers and autoclaved to ensure sterility (Fig. 3.1). Further work with the cultures 

takes place aseptically under anaerobic conditions maintained by the flow of CO2 via the gas 

hooks. 
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Figure 3.1. The Hungate anaerobic cultivation method demonstrating A) The inoculation of 

medium with microbial strains, and B) the isolation of individual colonies. From McDonald et 

al. (2012b).  

In order to ensure that individual colonies can be picked from agar roll tubes, a dilution 

series may be required, which is subsequently used to inoculate molten agar roll tubes that have 

been held in a hot water bath after autoclaving. Any tubes that have a pink colour after 

autoclaving (due to the Resasurin redox indicator) are discarded, as they are not sufficiently 
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anaerobic (McDonald et al., 2012b). Once inoculated, the tubes are spun in an ice bath in 

order to solidify the agar in a film around the outside of the tube. The roll tubes are then 

incubated and individual colonies can be picked using a sterile inoculating wire and sub-

cultured into either sloppy agar or broth medium under a flow of CO2 gas in order to maintain 

anaerobic conditions (Fig. 3.1). 

Cellulose is an insoluble substrate, but soluble derivatives such as carboxymethyl 

cellulose (CMC) are also available (McDonald et al., 2012b). The latter are often preferred for 

isolation and cultivation of cellulolytic microorganisms as growth is more readily visible. 

However, the degradation of these substrates may not always indicate true cellulolytic activity. 

CMC is a water soluble derivative of cellulose (Gelman, 1982), which although enables a more 

accurate visual estimation of growth in liquid and solid media, can also be utilised by organisms 

that do not possess a full cellulase system, including those that possess endocellulases, 

exocellulases and processive endocellulases but lack a carbohydrate binding module (CBM) 

(Wilson, 2011). Another soluble derivative of cellulose is cellobiose, which consists of two 

glucose molecules bound in alternating rotations. The hydrolysis of cellobiose is mediated by 

β- glucosidase (Wilson, 2008; Watanabe and Tokuda, 2010) and can also be used by 

microorganisms that are not capable of growth on crystalline cellulose. However, this does 

make cellobiose a useful substrate when determining the purity of cellulolytic isolates (McBee, 

1950). Insoluble forms of cellulose commonly used as substrates for growth include Avicel, a 

microcrystalline form of acid-treated cellulose, bacterial cellulose, filter paper and dewaxed 

cotton string (McDonald et al., 2012b). 

Until recently, fibrobacters were thought to exclusively occupy the mammalian 

intestinal tract, where they represent one of the predominant bacterial degraders of cellulose 

(Hungate, 1966; Stewart and Bryant, 1988; Kobayashi et al., 2008). Consequently, cultivation-

based studies have focused entirely on this environment, and whilst there remains only two 

characterised species (F. succinogenes and F. intestinalis), F. succinogenes is currently 

separated into four subspecies (Amann et al., 1992); F. succinogenes subsp. succinogenes 

(subgroup one) (Montgomery et al., 1988) and subgroups two, three and four (Amann et al., 

1992). Of these four subgroups, F. succinogenes subsp. succinogenes (subgroup one) is 

considered to be the most important in the rumen. The use of competitive PCR and restriction 

fragment length polymorphism (RFLP) analysis on ruminally incubated hay stems 

demonstrated the presence of subgroups one and three of F. succinogenes, with the abundance 

of subgroup one greater than that of subgroup three (Koike et al., 2004). Shinkai and 

Kobayashi (2007) utilised fluorescence in situ hybridization (FISH) to visualise F. succinogenes 
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subgroups one to three on ruminally incubated hay, with subgroup one and a few cells from 

subgroup two detected. The greater abundance of F. succinogenes subgroup one in 

comparison to other subgroups and the detection of this group on hay stems which are difficult 

to degrade, has led to the suggestion that subgroup one is the predominant subgroup of F. 

succinogenes involved in the cellulose hydrolysis that occurs within the rumen (Koike et al., 

2004). 

The first specific detection of Fibrobacter spp. outside of the gut environment was 

reported in 2008, when fibrobacters were detected via genus-specific 16S rRNA gene PCR in 

landfill leachate samples, including leachate from Bidston Moss landfill, the source of landfill 

leachate for this study (McDonald et al., 2008). Whilst two of the 58 cloned PCR amplicons 

were identified as F. succinogenes, the remaining sequences represented novel species of 

Fibrobacter, with sequences from Bidston Moss residing within a general landfill cluster 

(containing fibrobacters derived from a variety of geographically distinct landfill sites) and a 

cluster comprising sequences entirely from this specific landfill site (McDonald et al., 2008). 

Further phylogenetic analysis demonstrated that within the genus Fibrobacter, these landfill 

species occupied four distinct lineages that represented novel species within the genus 

Fibrobacter as currently defined (Ransom-Jones et al., 2012; McDonald et al., 2008). However, 

there is evidence to support the separation of F. succinogenes and F. intestinalis into two 

distinct genera (Montgomery et al., 1988), suggesting that landfill Fibrobacter lineages may in 

fact represent novel genera of the phylum Fibrobacteres, rather than species.  

In addition, qPCR targeting the 16S rRNA of cDNA generated from these landfill 

leachate samples demonstrated that the abundance of Fibrobacter 16S rRNA could represent 

up to 40% of the total bacterial rRNA, and this abundance was greater than the relative 

abundances of Fibrobacter spp. detected in ovine rumen fluid samples (21 to 32%) (McDonald 

et al., 2008). Subsequently, evidence of a functional role for fibrobacters in cellulose hydrolysis 

in landfill sites was obtained by the comparison of cellulolytic biofilms from two separate 

landfill leachate microcosms, one of which contained heavily degraded cotton after 6 weeks 

incubation, with the second microcosm exhibiting poorly-degraded cotton. qPCR analysis of 

the cotton-associated biofilm demonstrated that fibrobacters represented 28.9% of the total 

bacterial 16S rRNA on the heavily degraded cotton, in comparison to the less-degraded cotton 

sample where Fibrobacter species were not detected (McDonald et al., 2012a). 

Given the level of diversity contained within the Fibrobacteres phylum (Ransom-Jones 

et al., 2012) it is likely that several novel species/genera exist beyond the rumen, with 

phylogenetic analysis of the Fibrobacteres phylum demonstrating 24 OTUs (95%) that 
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contained sequences derived solely from natural and managed environments, as demonstrated 

in chapter 2 (Ransom-Jones et al., 2014). As members of the genus are defined by their 

cellulolytic activity, and considering their broad ecological range in environments where 

cellulolysis occurs, the potential role of Fibrobacter spp. in cellulose decomposition within the 

carbon cycle cannot be underestimated. However, the lack of characterised species remains a 

critical gap in our understanding of the ecology of this phylum. The isolation of these novel 

environmental species is therefore a priority, with the high relative abundance and diversity of 

landfill derived fibrobacters implicating this environment as an obvious starting point. This 

study aims to isolate novel Fibrobacter spp. previously detected in Bidston Moss municipal 

waste landfill (McDonald et al., 2008) via the anaerobic cultivation method of Hungate 

(Hungate, 1947). 

 

3.2 Materials and methods 

3.2.1 Collection of landfill leachate samples 

Leachate from Bidston Moss municipal waste landfill site, Wirral, United Kingdom  

(riser 3F, leachate temperature on collection approximately 41°C) was collected in April 2011 

and transported to the laboratory where microcosms were set up within 8 hours of sampling as 

described below. The remaining leachate was stored at 4°C for processing and use in M2GSC 

culture medium as described below. 

 

3.2.2 Landfill leachate enrichment culture setup 

Microcosms containing a total volume of 35 ml landfill leachate were set up in triplicate 

in sealed sterile glass bijou bottles. Each microcosm contained landfill leachate and either 0.1%, 

1% or 10% (wt/vol) glucose (Sigma) or 0.1%, 1% or 10% (wt/vol) Avicel (Sigma), with a no 

substrate microscosm (leachate only) as a control. Cysteine hydrochloride at 0.01% (wt/vol) was 

added to each microcosm to act as a reducing agent. These microcosms were incubated 

(without shaking) at 41°C for 68 days, after which they were used as a source material for the 

isolation of Fibrobacter species via the Hungate anaerobic cultivation method described below. 

 

3.2.3 Processing of landfill leachate for use in bacterial growth medium 

 Leachate for use as a growth supplement in M2GSC medium was prepared by straining 

the leachate through muslin cloth to remove large particles before centrifugation at 5000 rpm 

for 30 minutes. The supernatant was then removed and filtered through a membrane filter (0.2 

μm pore diameter) (Whatman) before autoclaving. The processed fluid was stored at 4C. 
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3.2.4 Hungate method for isolating anaerobes 

Bacterial strains were isolated using the anaerobic roll tube method of Hungate 

(Hungate, 1947, Bryant, 1972) and incubated at 41C. The strains underwent seven rounds of 

purification with each round as described in (Fig. 3.2). The M2GSC medium described below 

was prepared anaerobically under an atmosphere of 99.999% CO2 (BOC gases).  Broths and 

sloppy agar cultures were made in 7.5 ml volumes, whilst roll tubes were made in 4.5 ml 

volumes and dilution fluid in 9 ml volumes. For subculture into either broth or roll tubes, 0.5 

ml of broth/diluting fluid was used as the inoculum. For transfer of colonies from roll tubes 

and sloppy agars, a wire inoculating loop was used.  

 

Figure 3.2. Processes contained within one round of strain purification. 

 

 

 

2. DNA 
extraction and 

PCR screening for 
presence of 

Fibrobacter spp.

3. Dilution series 
made of cultures 

containing 
fibrobacters and 
used to inoculate 

agar roll tubes

4. Single colonies 
picked from agar 

roll tubes and 
subcultured into 

sloppy agars
5. Gram stains to 
determine purity

1. Broth cultures 
grown



                                                              

 

94 

 

3.2.5 Preparation of M2GSC medium 

Liquid M2GSC medium was prepared as described by Miyazaki et al. (1997) with one 

modification; landfill leachate was used instead of rumen fluid. The medium contained; 1% 

(wt/vol) casitone (BD Biosciences), 0.25% (wt/vol) yeast extract (BD Biosciences), 0.4% (wt/vol) 

NaHCO3 (Sigma), 0.2% (wt/vol) glucose (Sigma), 0.2% (wt/vol) cellobiose (Sigma), 0.2% 

(wt/vol) soluble starch (Sigma), 30% (vol/vol) filtered landfill leachate, 0.1% (wt/vol) cysteine 

hydrochloride (Sigma), 0.045% (wt/vol) K2HPO4 (Sigma), 0.045% (wt/vol) KH2PO4 (Sigma), 

0.09% (wt/vol) (NH4)2SO4 (Sigma), 0.09% (wt/vol) NaCl (Sigma), 0.09% (wt/vol) MgSO4 

(Sigma), 0.09% (wt/vol) CaCl2  (Sigma), 0.0001% (wt/vol) resazurin (Sigma) and H2O to the final 

volume. For sloppy agars, 0.75% (wt/vol) agar (Sigma) was added, whilst roll tubes contained 

2% (wt/vol) agar (Sigma). Where carboxymethyl cellulose (CMC) (Sigma) was used as an 

alternative carbon source, it was added to the medium at a concentration of 0.2% (wt/vol), with 

glucose, cellobiose and soluble starch omitted. Where cellobiose was used as the sole carbon 

source, glucose and soluble starch were omitted. For medium that contained no leachate, H2O 

was added as an alternative to leachate. 

 

3.2.6 Preparation of dilution fluid for anaerobic cultures 

Dilution fluid was used for the serial dilution of cultures (Miyazaki et al., 1997) and 

contained 1% (wt/vol) casitone (BD Biosciences), 0.25% (wt/vol) yeast extract (BD 

Biosciences), 0.4% (wt/vol) NaHCO3 (Sigma), 10% (vol/vol) filtered landfill leachate, 0.1% 

(vol/vol) Tween 80 (Sigma), 0.1% (wt/vol) cysteine hydrochloride (Sigma), 0.045% (wt/vol) 

K2HPO4 (Sigma), 0.045% (wt/vol) KH2PO4 (Sigma), 0.09% (wt/vol) (NH4)2SO4 (Sigma), 0.09% 

(wt/vol) NaCl (Sigma), 0.09% (wt/vol) MgSO4 (Sigma), 0.09% (wt/vol) CaCl2  (Sigma), 0.0001% 

(wt/vol) resazurin (Sigma) and H2O to a final volume. 

 

3.2.7 Gram stain of bacterial isolates 

Cell suspensions were obtained from culture tubes by inserting a sterile 10 μl 

inoculation loop into the sloppy agar culture and spreading onto a glass slide. The cells were 

heat fixed and Gram stained using the Gram Staining Kit (Sigma) according to the 

manufacturer’s instructions before analysis under oil immersion microscopy (x1000 

magnification). 
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3.2.8 Preparation of DNA for PCR via boiling of bacterial cultures 

A 1.5 ml volume of broth culture was centrifuged for 5 minutes at 14,000 rpm, the 

supernatant removed and the cell pellet re-suspended with nuclease free water (Bioline) to a 

final volume of 100 μl. This suspension was boiled at 100°C in a dry heat block for 10 minutes 

before 1 μl was used as a template in each PCR reaction.  

 

3.2.9 DNA extraction from bacterial cultures and leachate samples 

Leachate samples (50 ml) were filtered through a 0.2 μm pore diameter membrane 

filter, which was then used for nucleic acid extraction. For extraction from broth cultures, 1.5 

ml of the culture was centrifuged at 14,000 rpm for 5 minutes, the supernatant removed and 

the cell pellet re-suspended with nuclease free water (Bioline) to a final volume of 500 μl. 

Nucleic acid extraction occurred via the method of Griffiths et al. (2000) with the modifications 

as described in chapter 2. Extracted DNA was visualised via agarose gel electrophoresis on a 

1% agarose (Bioline) gel with HyperLadder 1kb (Bioline), and quantified using the Qubit 

Fluorometer (Life Technologies) and the Qubit dsDNA BR Assay Kit (Life Technologies).  

 

3.2.10 DNA and RNA extraction from bacterial cultures after round seven of purification 

Total broth cultures (7.5 ml) were centrifuged at 5000 rpm for 30 minutes, the 

supernatant removed and the cell pellet re-suspended with nuclease free water (Bioline) to a 

final volume of 500 μl. DNA extractions were attempted via the methods of Griffiths et al. 

(2000) and the following DNA extraction kits: Isolate Genomic DNA Kit (Bioline), Wizard 

Genomic DNA Purification Kit (Promega), PowerSoil DNA Isolation Kit (MoBio) and the 

DNeasy Blood & Tissue Kit (Qiagen). RNA extractions were attempted via the method of 

Griffiths et al. (2000) and the RNeasy Midi Kit (Qiagen), however these were unsuccessful.  

 

3.2.11 Direct and nested PCR targeting the 16S rRNA gene 

MyTaq Red Mix (Bioline) was initially trialled due to it’s increased sensitivity for lower 

quantities of template DNA and reduced cycling time, however it was found that the SuperTaq 

enzyme used in previous studies (McDonald et al., 2008; McDonald et al., 2009; McDonald et 

al., 2012a; Ransom-Jones et al., 2012) and in chapter 2, was more appropriate for the detection 

of fibrobacters. MyTaq Red Mix was used for PCR up to and including round four of 

purification, after which SuperTaq was used. For the initial PCR, approximately 10 ng (MyTaq 

Red Mix) or 50 ng (SuperTaq) of the extracted DNA was used with the direct and nested PCR 
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protocols as described below. For both enzymes, the PCR products were visualised on a 1% 

agarose (Bioline) gel with HyperLadder 1kb (Bioline) and stored at -20°C. 

 

3.2.12 PCR amplification using MyTaq Red Mix (Bioline) 

Reactions were performed in 50 µl volumes containing 10 ng DNA, 0.2 mM of each 

primer (Table 3.1), 1 x MyTaq
TM

 Red Mix (Bioline) and nuclease free water to 50 µl. PCR 

cycling conditions were as follows: initial denaturation at 95C for 1 minute, 35 cycles of 95C 

for 15 seconds, 15 seconds at the annealing temperature required by the primer set (Table 3.1) 

and 72C for 10 seconds. 

 

3.2.13 PCR using amplification SuperTaq (Cambio) 

Each reaction (total volume 50 μl) contained 0.2 mM each primer (Table 3.1), 0.2 mM 

each dNTP, 1x SuperTaq Buffer (Cambio), 0.5 mM MgCl2, 1x BSA, 1 unit SuperTaq 

(Cambio), 50 ng DNA and nuclease free water (Bioline). PCR reactions using the Fibrobacter 

primer set (Fib 1F and Fib 2AR, Table 3.1) contained an increased concentration of each 

primer (0.4 mM) and MgCl2 (1.5 mM). The PCR cycling conditions were: initial denaturation 

at 94°C for 5 minutes, 35 cycles of 94°C for 1 minute, 1 minute at the specific annealing 

temperature for each primer set (Table 3.1) and an extension of 72°C for 1.5 minutes. The 

final extension was performed at 72°C for 10 minutes. 

 

 

 

  



                                                              

 

97 

 

Table 3.1. 16S rRNA gene primers used for PCR and sequencing. 

a.  Ambiguities: K=(GorT), S=(GorC), W=(AorT), Y=(CorT), H=(A,CorT), R=(AorG), D=(G,AorT), V=(A,CorG).  

b. Primer used for sequencing.  

c. Annealing temperature used with SuperTaq (Cambio). 

d. Annealing temperature used with MyTaq Red Mix (Bioline).  

 

Primers  Sequence (5’ – 3’)
a

   Specificity  Annealing  Amplicon Reference 

Temperature (°C)  Size (bp) 

 

pA  AGAGTTTGATCCTGGCTCAG  General Bacteria  55
c

   ~ 1534  (Edwards et al., 1989) 

pH’  AAGGAGGTGATCCAGCCGCA     53
d

 

Fib 1F
e

  CCGKSCCAACGSSCGG   Fibrobacter genus  60
c

   ~ 855  (McDonald et al., 2008) 

Fib 2AR  ATCTCTCGCYGCGGCGWTYCC    58
d

 

M13 Forward
c

 GTTTTCCCAGTCACGAC  M13 Vector  n/a   n/a  (Messing, 1983) 
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3.2.14 Cloning and sequencing of Fibrobacter-specific PCR amplicons 

PCR amplification products were excised from a 1% agarose (Bioline) gel and purified 

using the Bioline Isolate Gel Extraction Kit (Bioline) following the manufacturer’s protocol. 

The purified PCR products were ligated and cloned into competent E. coli JM109 (Promega) 

using the pGEM-T Easy Vector System I (Promega) according to the manufacturer’s 

instructions. The plasmid DNA was extracted and purified using the QIAprep Spin Miniprep 

Kit (Qiagen) and sequenced using the M13 forward primer (Table 3.1) by GATC Biotech. 

 

3.1.15 Phylogenetic analysis of Fibrobacter 16S rRNA gene sequences 

Sequences from this study and cultivated Fibrobacter species from the Ribosomal 

Database Project website (Cole et al., 2007; Cole et al., 2009) were aligned using the MUSCLE 

aligner (Edgar, 2004), trimmed and used to generate a neighbour-joining tree with 1000 

bootstrap samplings via PhyML (version 3.0) (Guindon et al., 2010) which was viewed using 

Interactive Tree of Life (Letunic and Bork, 2007). Bootstrap values of >95% are marked by a 

filled circle on the node, bootstrap values between 75 and 95% are marked with an unfilled 

circle. The scale bar represents 0.1 base substitutions per nucleotide. 

 

3.3 Results 

3.3.1 Molecular detection of fibrobacters in landfill leachate microcosms 

Prior to the construction of the landfill leachate microcosms, DNA extracted from 50 

ml of the landfill leachate collected to set up the microcosms was filtered through a 0.2 μm 

pore diameter membrane filter and Fibrobacter-specific nested PCR confirmed the presence of 

fibrobacters in the leachate sample. After 68 days of incubation, all microcosms (excluding 

those containing 10% (wt/vol) Avicel) were filtered through 0.2 μm membrane filters, whilst the 

microcosms containing 10% (wt/vol) Avicel were vortexed, 1.5 ml of the liquid and Avicel 

suspension removed and prepared for extraction as described above for broth cultures (section 

3.2.9). Both filters and cell pellets were subjected to DNA extraction using the method of 

Griffiths et al. (2000) and the extracts screened for the presence of fibrobacters via the use of 

Fibrobacter specific PCR primers (Table 3.1) and MyTaq Red Mix. No Fibrobacter 

amplification products were obtained via direct PCR, but all microcosms were positive for 

Fibrobacter spp. via nested PCR (Table 3.2). 
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Table 3.2. Detection of Fibrobacter spp. in landfill leachate samples and microcosms via PCR 

with genus specific 16S rRNA gene primers.  

 

Sample/microcosm   Direct Fibrobacter  Nested Fibrobacter 

PCR result  PCR result 

Landfill leachate inoculum   -   + 

Microcosms: 

No substrate control   -   + 

0.1% (wt/vol) glucose    -   + 

1% (wt/vol) glucose    -   + 

10% (wt/vol) glucose    -   + 

0.1% (wt/vol) Avicel    -   + 

1% (wt/vol) Avicel    -   + 

10% (wt/vol) Avicel    -   + 

 

3.3.2 First round of isolation using the Hungate anaerobic culture method 

Landfill leachate microcosms containing Avicel were used as the source material for the 

inoculation of Hungate roll tubes containing M2GSC and leachate, as it was predicted that due 

to Avicel being the sole carbon source for microbial growth, there would be a greater chance of 

isolating true cellulolytic species such as Fibrobacter. A total of 63 individual colonies were 

picked from agar roll tubes; 18 from microcosms containing 0.1% (wt/vol) Avicel (strains A1-

A9 and B1-B9), 14 from 1% (wt/vol) Avicel (strains C1-C9 and D1-D5) and 31 from 10% 

(wt/vol) Avicel (strains D6-D9, E1-E9, F1-F9 and G1-G9). Fibrobacter-specific PCR with 

MyTaq Red Mix (Bioline) on boil preps of these cultures detected five isolates/cultures that 

contained Fibrobacter species via direct PCR; cultures A7, B2, B4, D2 and E4.  

 

3.3.3 Second round of isolation via the Hungate anaerobic culture method  

Subsequently, the five strains testing positive for Fibrobacter after the initial round of 

isolation (A7, B2, B4, D2 and E4) were subjected to a second round of purification in Hungate 

agar roll tubes containing M2GSC medium and leachate. Each of the roll tubes contained only 

one colony morphology type for each culture (Table 3.3), with individual colonies selected due 

to sufficient separation to reduce the risk of contamination and picked from roll tubes 

containing approximately 30 to 300 colonies, before transfer to individual sloppy agar cultures. 
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Gram stains of the sloppy agar cultures from this round of purification showed that all cultures 

contained a mixture of Gram-negative and different sized Gram-positive rods, as the cultures 

were not pure. 

 

 

Figure 3.3. Colony morphologies as seen on agar roll tubes. 

 

Table 3.3. Colony morphologies (as described in Fig. 3.3) present in cultures from round one 

of purification via the Hungate roll tube method.  

 

Culture Size  Form  Colour 

A7  Medium Rhizoid White 

B2  Medium Irregular White 

B4  Small  Irregular White 

D2  Small  Circular White 

E4  Small  Circular White 

 

 

3.3.4 Testing media supplementation and substrate utilisation of isolates from the second 

round of purification 

Although the leachate used to supplement the bacterial growth medium was filtered 

through a 0.2 μm pore membrane filter and autoclaved with the medium before inoculation 

with the isolated strains, it was conceivable that the endospores typically associated with Gram-

positive bacteria were still present in the medium, thus resulting in contamination of the 

cultures. In order to determine whether or not these isolated strains required leachate for 

growth, and therefore potentially avoid this issue by removing leachate from the medium, 
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strains A7, B2, B4, D2 and E4 were grown in M2GSC both containing leachate, and with 

distilled water substituted for the leachate. Visible growth was observed in both media 

demonstrating that leachate was not required by these strains for growth.  

Strains A7, B2, B4, D2 and E4 were also grown in M2GSC medium containing 

leachate, with the following substrates provided as the sole carbon sources for growth; 

cellobiose, Avicel, dewaxed cotton string and filter paper. Visible growth occurred on all 

substrates as determined by turbidity in the medium and visible degradation of the filter paper 

and dewaxed cotton string (with the exception of Avicel) (Table 3.4), proving that at least one 

of the organisms in these cultures is capable of cellulose hydrolysis. Whilst bacterial growth 

may certainly have occurred in the medium containing Avicel, this was difficult to determine 

due to the insoluble nature of the substrate. 

 

Table 3.4. Growth of cultures in media containing different substrates as the sole carbon source 

as determined via visual examination. ND – not determined.  

 

Culture  Cellobiose Avicel  Dewaxed  Filter paper 

      cotton string 

A7  +  ND    +  +  

B2  +  ND  +  +  

B4  +  ND  +  + 

D2  +  ND    +  + 

E4  +  ND   +  + 

 

 

3.3.5 16S rRNA gene sequencing of Fibrobacter specific PCR amplicons  

PCR amplicons of strains A7, B4, and E4 generated with the Fibrobacter specific 16S 

rRNA gene primers (Table 3.1) and MyTaq Red Mix were cloned and sequenced with the 

M13 forward primer (Table 3.1). Fibrobacter specific 16S rRNA gene PCR amplicons 

generated from strains B2 and D2 were unable to be sequenced as the products were lost 

during the gel purification step. The sequences obtained showed that whilst strains A7 and B4 

were 99% similar to F. succinogenes, strain E4 had a similarity of 97%, with strains A7 and E7 

most closely related to fibrobacters previously detected on colonised cotton incubated in 

Esthwaite water lake (Table 3.5). This lake sequence was identified as a member of F. 
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succinogenes along with two previous landfill sequences, supporting the assertion that F. 

succinogenes is present outside of the mammalian intestinal tract (McDonald et al., 2009). 

 

Table 3.5. Blast matches of Fibrobacter 16S rRNA gene PCR amplicon sequences (~852bp) 

 

Strain  Closest match via NCBI Blast    Percentage  

         similarity 

A7  Uncultured Fibrobacter sp. clone EW-C-3.0-1  99 

16S ribosomal RNA gene, partial sequence (lake)   

B4  Fibrobacter succinogenes subsp. succinogenes  99 

S85, complete genome (rumen) 

E4  Uncultured Fibrobacter sp. clone EW-C-3.0-1  97 

16S ribosomal RNA gene, partial sequence (lake)  

 

 

3.3.6 Third round of isolation via the Hungate anaerobic culture method  

The cultures of strains A7, B2, B4, D2 and E4 containing filter paper as the sole 

carbon source for growth were used as the inoculum for the third round of purification in 

M2GSC medium containing leachate and cellobiose as the sole carbon source. The filter paper 

cultures were utilised in order to select for cellulolytic species such as Fibrobacter, as although 

utilising inoculum from the Avicel cultures would also have enabled this, the amount of 

biomass present in the broth cultures was difficult to determine due to the insoluble nature of 

this substrate. This would also have made isolating single colonies in agar roll tubes difficult. 

From these five strain cultures, a total of seven colonies were isolated, A71, A72, B21, B22, 

B41, D21 and E41. Gram stains of these cultures suggested that none of the stains were pure, 

with all strains containing a mixture of different sized Gram-negative rods. 

 

3.3.7 Fourth round of isolation via the Hungate anaerobic culture method 

The seven cultures from the previous round of purification (strains A71, A72, B21, 

B22, B41, D21 and E41) were inoculated into roll tubes containing water instead of leachate 

and cellobiose as the sole carbon source, as the cultures were able to grow in the absence of 

leachate, as reported in 3.3.4 and the substitution with water removed any potential 

contamination of the cultures via spores present in the leachate. Of the 20 individual colonies 

selected for isolation due to varying morphology and sufficient separation (Table 3.6), three 
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were positive for Fibrobacter species via direct PCR with MyTaq Red Mix and the Fibrobacter 

specific 16S rRNA gene primer set (Table 3.1), cultures A711, A721 and B211. Gram stains of 

these cultures revealed that the cultures were not pure, with A711 containing a mixture of small 

Gram-negative ovoid cells and short, Gram-positive rods, and B211 containing a mixture of 

Gram-negative short rods and small ovoid cells (A721 did not stain). The presence of Gram-

positive cells is interesting as the parent cultures were all Gram-negative, but this could be due 

to experimental stain variation or the presence of C. botulinum (Table 3.7) which can stain 

Gram variable (Brazier et al., 2002). 
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Table 3.6. Morphologies (as described in Fig. 3.3) of cultures from round four of purification 

via the Hungate roll tube method.  

 

Parent  Isolate  Size  Form  Colour  

culture name 

 

A71  A711  Small  Circular  White 

  A712  Medium Rhizoid  White 

A713  Medium Rhizoid  Cream 

A714  Medium Rhizoid  Cream 

A72  A721  Medium Rhizoid  White 

B21  B211  Medium Rhizoid  White 

B212  Medium Rhizoid  White 

B213  Medium Rhizoid  White 

B214  Small  Circular  White 

B22  B221  Medium Rhizoid  White 

B41  B411  Small  Circular  White 

D21  D211  Medium Circular  White 

D212  Medium Rhizoid  Pale yellow 

D213  Medium Rhizoid  White 

D214  Medium Rhizoid  Pale yellow 

E41  E411  Medium Circular  Cream 

E412  Medium Rhizoid  White 

E413  Medium Rhizoid  White 

E414  Medium Rhizoid  White 

E415  Small  Circular  White 

 

3.3.8 Sequencing of 16SrRNA gene PCR amplicons 

General bacterial 16S rRNA gene PCR amplification products from strains A711, A721 

and B211 were gel extracted, cloned and sequenced with the M13 forward primer (Table 3.1) 

generating sequences of approximately 852 bp. Despite a positive Fibrobacter-specific direct 

PCR result on DNA extracted from all of these cultures, of the twelve clones sequenced for 

each strain, none were related to Fibrobacter spp. when blasted against the NCBI nucleotide 

database (Table 3.7). Sequences for strain A711 were a mixture of Bacillus thermoamylovorans 

and Clostridium botulinum, whilst the sequences for B211 were all B. thermoamylovorans 

(Table 3.7). Further sequencing of amplicons from PCRs using the Fibrobacter specific primer 
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set (Table 3.1) confirmed the presence of fibrobacters in these cultures, and determined that 

these strains were 99% similar to F. succinogenes (Table 3.8), and specifically were most closely 

related to F. succinogenes sequences previously detected on colonised cotton baits in Esthwaite 

water, as observed in round 2 of purification (Table 3.5). Phylogenetic analysis of these 

sequences demonstrated that all of these isolates formed a cluster within F. succinogenes 

subgroup one, supported by a bootstrap value of 95% (Fig. 3.4).  

 

Table 3.7. Blast matches of general bacterial clone library sequences. 

 

Strain  Clone Closest match via NCBI Blast Percentage 

  number   similarity 

 

A711 1 Bacillus thermoamylovorans strain NBY26 98 

   16S ribosomal RNA gene, partial sequence  

 2 Bacillus thermoamylovorans gene for 16S  99 

  rRNA, partial sequence, strain: BHK180-4  

 3 Bacillus thermoamylovorans strain N12-2  99 

  16S ribosomal RNA gene, partial sequence  

 4 Bacillus thermoamylovorans gene for 16S  99 

  rRNA, partial sequence, strain: BHK180-3  

 5 Bacillus thermoamylovorans strain N12-2  97 

  16S ribosomal RNA gene, partial sequence  

 6 Bacillus thermoamylovorans gene for 16S  99 

  rRNA, partial sequence, strain: BHK180-4  

 7 Bacillus spp. R-31297 partial 16S rRNA  99 

  gene, strain R-31297  

 8 Bacillus thermoamylovorans gene for 16S  99 

  rRNA, partial sequence, strain: BHK180-4  

 9 Bacillus thermoamylovorans strain N12-2  98 

  16S ribosomal RNA gene, partial sequence  

 10 Bacillus thermoamylovorans gene for 16S  99 

  rRNA, partial sequence, strain: BHK180-4  

 11 Clostridium botulinum H04402 065,  99 

  complete genome sequence  
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 12 Clostridium botulinum str. ATCC 3502  99 

  complete genome  

A721 1 Clostridium botulinum H04402 065,  99 

  complete genome sequence  

 2 Clostridium botulinum H04402 065,  99 

  complete genome sequence  

 3 Clostridium botulinum H04402 065,  99 

  complete genome sequence  

 4 Clostridium botulinum F str. 230613,  99 

  complete genome  

 5 Clostridium botulinum H04402 065,  99 

  complete genome sequence  

 6 Clostridium botulinum H04402 065,  99 

  complete genome sequence  

 7 Clostridium botulinum H04402 065,  99 

  complete genome sequence  

 8 Clostridium botulinum H04402 065,  99 

  complete genome sequence  

 9 Clostridium botulinum H04402 065,  99 

  complete genome sequence  

 10 Clostridium botulinum H04402 065,  99 

  complete genome sequence  

 11 Clostridium botulinum H04402 065,  99 

  complete genome sequence  

 12 Clostridium botulinum H04402 065,  99 

  complete genome sequence  

B211 1 Bacillus thermoamylovorans strain N12-2  99 

  16S ribosomal RNA gene, partial sequence  

 2 Bacillus thermoamylovorans gene for 16S  99 

  rRNA, partial sequence, strain: BHK180-4  

 3 Bacillus thermoamylovorans strain N12-2  99 

  16S ribosomal RNA gene, partial sequence  

 4 Bacillus thermoamylovorans strain N12-2  99 

  16S ribosomal RNA gene, partial sequence  
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 5 Bacillus thermoamylovorans gene for 16S  99 

  rRNA, partial sequence, strain: BHK180-4  

 6 Bacillus thermoamylovorans strain N12-2  99 

  16S ribosomal RNA gene, partial sequence  

 7 Bacillus thermoamylovorans strain N12-2  99 

  16S ribosomal RNA gene, partial sequence  

 8 Bacillus thermoamylovorans strain N12-2  99 

  16S ribosomal RNA gene, partial sequence  

 9 Bacillus thermoamylovorans strain N12-2  99 

  16S ribosomal RNA gene, partial sequence  

 10 Bacillus thermoamylovorans gene for 16S  99 

  rRNA, partial sequence, strain: BHK180-3  

 11 Bacillus thermoamylovorans strain N12-2  99 

  16S ribosomal RNA gene, partial sequence  

 12 Bacillus thermoamylovorans strain N12-2  99 

  16S ribosomal RNA gene, partial sequence  
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Table 3.8. Blast matches of 16S rRNA gene sequences generated using the Fibrobacter genus 

specific primer set.  

 

Strain  Clone Closest match via NCBI Blast Percentage 

  number   similarity  

 

A711 1 Uncultured Fibrobacter spp. clone  99 

   EW-C-3.0-1 16S ribosomal RNA gene   

A721 1 Uncultured Fibrobacter spp. clone  99 

  EW-C-SED-4 16S ribosomal RNA gene 99 

B211 1 Uncultured Fibrobacter spp. clone  99 

  EW-C-SED-4 16S ribosomal RNA gene 99 

B211 2 Uncultured Fibrobacter spp. clone  99 

  EW-C-SED-4 16S ribosomal RNA gene 99 
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Figure 3.4. Phylogeny of Fibrobacter isolates from landfill sites.  

Isolates from this study are in bold. Bootstrap values of >95% are marked by a filled circle on the node, bootstrap values between 75 and 95% are 

marked with an unfilled circle. The scale bar represents 0.1 base substitutions per nucleotide. 
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3.3.9 Fifth round of isolation via the Hungate anaerobic culture method 

The three strains containing fibrobacters (A711, A721 and B211) were sub-cultured in 

M2GSC roll tubes containing water and cellobiose as the sole carbon source. A total of 8 

colonies were picked, strains A711A, A711B, A711C, A721A, A721B, B211A, B211B and 

B211C. DNA extracted from these cultures was subjected to PCR with SuperTaq, as although 

the sequenced MyTaq products were fibrobacters, there had been some false positives given 

when this enzyme had been used in other experiments (data not shown). No direct positives 

were obtained with the Fibrobacter specific primer set (Table 3.1), however nested PCRs on 

strains A711C and B211C were positive for the presence Fibrobacter spp. (Table 3.9). 

 

Table 3.9. Detection of Fibrobacter spp. in cultures via PCR with genus specific 16S rRNA 

gene primers.  

 

Sample Direct Fibrobacter  Nested Fibrobacter  

PCR result  PCR result 

A711A   -   - 

A711B   -   - 

A711C   -   + 

A721A   -   - 

A721B   -   - 

B211A   -   - 

B211B   -   - 

B211C   -   + 

 

3.3.10 Sixth round of isolation via the Hungate anaerobic culture method 

Strains A711C and B211C were sub-cultured in M2GSC roll tubes containing 

cellobiose as the sole carbon source and no leachate. A total of 8 colonies were picked, strains 

A711C1, A711C2, A711C3, A711C4, B211C1, B211C2, B211C3 and B211C4. Gram stains 

showed that these strains were not pure. 

 

3.3.11 Testing the growth of isolated landfill fibrobacters in culture medium supplemented 

with landfill leachate or rumen fluid 

Sequencing of the Fibrobacter specific 16S rRNA gene PCR amplicons demonstrated 

that these strains were 99% similar to F. succinogenes. In order to ascertain whether these 
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strains were landfill adapted F. succinogenes, or if they were simply rumen strains, A711C and 

B211C from the fifth round of purification were grown in M2GSC medium containing 

cellobiose as the sole carbon source, and supplemented with either rumen fluid, landfill 

leachate or distilled water. Roll tubes of the two stains were created using each of the three 

media and incubated for 48 hours at 41°C. For both strains, there was no discernable 

difference in the colony counts from any of the three media supplementations, although this 

was not conducted in triplicate (Table 3.10).  

 

Table 3.10. Colony counts for strain dilution series in roll tubes supplemented with rumen 

fluid, landfill leachate or distilled water. TMTC– Too many to count. 

 

Strain  Dilution Colony count Colony count  Colony count 

 (leachate) (rumen fluid) (water) 

 

A711C  10
-1

  TMTC  TMTC  TMTC 

  10
-2

  TMTC  TMTC  TMTC 

  10
-3

  14  TMTC  17 

  10
-4

  5  2  2 

  10
-5

  0  0  0 

  10
-6

  0  0  0 

B211C  10
-1

  TMTC  TMTC  TMTC 

  10
-2

  TMTC  TMTC  TMTC 

  10
-3

  46  TMTC  27 

  10
-4

  3  3  4 

  10
-5

  0  0  0 

  10
-6

  0  0  0 

 

 

3.3.12 Seventh round of isolation via the Hungate anaerobic culture method  

Strains A711C1, A711C2, A711C3, A711C4, B211C1, B211C2, B211C3 and B211C4 

were purified in M2GSC medium with water substituted for leachate and cellobiose as the sole 

carbon source and selected due to variable morphology (Table 3.11), with Gram stains 

suggesting that some of these strains were pure (Fig. 3.5). All of the isolated strains from round 

seven of purification were Gram-negative rods and with the impure strains A711C2, A711C3, 
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B211C1 and B211C3 containing a mixture of long and short rods (Fig. 3.5). All strains were 

able to grow on cellobiose as the sole carbon source and so strains A711C1, A711C4, B211C2 

and B211C4 possess at least the enzymes required to hydrolyse β-1, 4 glycosidic bonds. 

Extraction of either DNA or RNA via any of the methods attempted was not possible from 

broth cultures and possibly reflects a lack of microbial biomass in the broth cultures, which had 

an incubation time of two months. In addition, attempts to subculture the strains from the 

sloppy agar cultures were unsuccessful suggesting that although the culture had grown 

sufficiently to enable Gram staining, it had subsequently died. 

 

Table 3.11. Morphologies (as described in Fig. 3.3) of colonies from round seven of 

purification via the Hungate roll tube method.  

 

Isolate  Size  Form  Colour  

name 

 

A711C1 Small  Circular White 

A711C2 Small  Circular Black 

A711C3 Large  Irregular Cream 

A711C4 Large  Irregular White 

B211C1 Small  Circular White  

B211C2 Small  Circular White 

B211C3 Small  Circular White 

B211C4 Small  Circular White 
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Figure 3.5. Gram stains of isolated strains from the seventh round of purification, viewed under oil immersion microscopy (x1000). 
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3.4 Discussion 

Despite the fact that F. succinogenes (then Bacteroides succinogenes) was first isolated 

over 60 years ago from the bovine rumen (Hungate, 1947, Hungate, 1950), there are still only 

two characterised species contained within the phylum (Montgomery et al., 1988). Due to the 

importance of F. succinogenes in the rumen, where it is considered to be one of the main 

cellulolytic bacterial species (Hungate, 1966; Stewart and Bryant, 1988; Kobayashi et al., 2008), 

and the assumption that fibrobacters were restricted to the gut environment, attempts to 

cultivate members of this phylum have been limited to the mammalian intestinal tract. Of the 

63 originally colonies isolated here, five were positive for the presence of Fibrobacter spp. via 

PCR using genus specific 16S rRNA gene primers, with the cultures containing these species 

comprising 7.9% of the first round of isolates. Previous cultivation based studies focusing on 

the rumen yielded few isolates of F. succinogenes despite the abundance of this species in the 

rumen, with only 2 of 214 (0.93%) (Nyonyo et al., 2013) and 3 of 129 (2.3%) (Nyonyo et al., 

2014) bacterial isolates belonging to the Fibrobacteres phylum. 

The inoculation source may determine the ease by which fibrobacters are isolated. In a 

study that isolated 339 bacterial strains from either rumen fluid, or hay that had been incubated 

in the rumen, 32 (9%) were F. succinogenes. Of these isolates, 30 were obtained from cultures 

that used the ruminally incubated hay as an inoculation source, compared to the 2 isolated 

from the rumen fluid (Shinkai et al., 2009), suggesting that the fibrobacters were enriched on 

the solid substrate, thus making it a more efficient isolation source. Whilst this study utilised 

landfill leachate microcosms enriched with Avicel as an inoculation source, the use of filter 

paper or dewaxed cotton string may be a better alternative. The Fibrobacter spp., which bind 

rapidly to the substrate (Koike et al., 2003), would thus be present in higher numbers on the 

cotton or filter paper in comparison with other organisms present., enabling easier transfer of 

fibrobacters from one culture to another as well as clearer visualisation of degradation 

All of the Fibrobacter spp. isolated from landfill within this study are contained within 

F. succinogenes subsp. succinogenes (supgroup 1) (Fig. 3.4), the main subgroup involved in 

cellulolytic activity in the rumen (Kobayashi et al., 2008; Shinkai and Kobayashi, 2007; Shinkai 

et al., 2009; Koike et al., 2004) and it is therefore likely that these landfill isolates are also active 

members of the cellulolytic community. This is further supported by previous work, which 

demonstrated via qPCR that fibrobacters comprised 28.9% of the total bacterial rRNA from 

the biofilm of a heavily degraded cotton sample, higher than that of Clostridium spp., 

compared to the poorly degraded cotton sample, where Fibrobacters were undetectable 

(McDonald et al., 2012a). The degree of similarity of the isolated strains to F. succinogenes is 
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intriguing given that previous studies on landfill sites have demonstrated the presence of novel 

Fibrobacter populations (McDonald et al., 2008). However, F. succinogenes has been detected 

in landfill sites (McDonald et al., 2008) and on colonised cotton baits deployed in freshwater 

lakes (McDonald et al., 2009). 

Furthermore, the generation of PCR contamination from our Fibrobacter PCR control 

material is also unlikely given that negative PCR controls consistently demonstrated no 

contaminants in the PCR master mix, only a handful of cultures tested positive in some rounds 

of amplification, and sequence analysis demonstrated that there were 11 base pair mismatches 

between the F. succinogenes S85 DNA used as the control in PCR reactions and the most 

closely related isolate (B4(1)) in the 852 base pair alignment used to construct the phylogenetic 

tree. It therefore is unlikely that the detection of F. succinogenes in the cultures is due to PCR 

contamination. One explanation for the detection of F. succinogenes strains rather than the 

novel fibrobacters previously detected using molecular methods (McDonald et al., 2008) could 

be that the medium used was designed for the isolation of anaerobes from the rumen, and so 

isolates related to F. succinogenes may have been inadvertently selected for. In later rounds of 

strain purification, qPCR quantification of Fibrobacter abundance in the cultures was 

attempted, but it was not possible to retrieve suitable quantities of DNA for qPCR analysis. 

Modifications to the culture medium may enable the isolation of novel Fibrobacter spp. 

The use of a different gelling agent, such as phytagel or gellan gum instead of agar, has enabled 

the isolation of previously uncultivated rumen bacteria (Nyonyo et al., 2013; Nyonyo et al., 

2014), along with the removal of potassium phosphate and the addition of magnesium chloride 

(Nyonyo et al., 2013). Although F. succinogenes does not possess any motility genes it does 

exhibit a motility mechanism similar to that of Cytophaga hutchinsonii (Suen et al., 2011). The 

modification of the media via either the reduction (Shinkai et al., 2009) or change (Nyonyo et 

al., 2013; Nyonyo et al., 2014) of gelling agent may therefore be particularly helpful in enabling 

the bacteria to migrate through the agar and access the substrate, thus improving the isolation of 

Fibrobacter spp. 

The lack of Fibrobacter sequences from the general bacterial 16S rRNA general clone 

library, despite a positive PCR result with the Fibrobacter specific primer set, is unsurprising 

given that a number of 16S rRNA gene clone library studies on ruminants have also not 

generated any Fibrobacter sequences (Whitford et al., 1998; Daly et al., 2001; Tajima et al., 

1999; Tajima et al., 2000; Tajima et al., 2001), despite the abundance of fibrobacters in this 

environment. The two species that were detected in co-culture with the Fibrobacter spp. were 

B. thermoamylovorans, a facultative anaerobe (Combetblanc et al., 1995), and C. botulinum, 
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an anaerobe (Collins et al., 1994) (Table 3.7). Clostridia have been previously isolated from 

landfill (Westlake et al., 1995) and clusters III, IV and XIV of the clostridia detected in landfill 

sites (Burrell et al., 2004; Van Dyke and McCarthy, 2002; McDonald et al., 2012a). However 

C. botulinum, falls within cluster I of the clostridia (Collins et al., 1994), and has previously 

been undetectable in landfill via PCR with subgroup specific primers (Van Dyke and 

McCarthy, 2002; McDonald et al., 2012a), although it has since been isolated from a landfill 

site (Krishnamurthi and Chakrabarti, 2013). Unlike other members of the clostridia, C. 

botulinum is not capable of degrading cellulose (Sebaihia et al., 2007), suggesting that for 

culture A721, F. succinogenes is responsible for the cellulose hydrolysis that occurred with 

potential cross-feeding with C. botulinum. This is less clear for cultures A711, which contained 

C. botulinum, B. thermoamylovorans and F. succinogenes, and B211, which contained B. 

thermoamylovorans and F. succinogenes. Whilst F. succinogenes is likely to have contributed 

to cellulose hydrolysis, B. thermoamylovorans is also cellulolytic (Chang et al., 2008) thus 

making it difficult to determine the exact role of these organisms whilst they existed in co-

culture. 

Whilst after seven rounds of purification cultures A711C1, A711C4, B211C2 and 

B211C4 were pure, the broth cultures were slow growing with an incubation time of two 

months. Extraction of either DNA or RNA from these broth cultures via any of the attempted 

methods was unsuccessful. In addition, attempts to subculture the strains from the sloppy agar 

cultures into broth were unsuccessful, suggesting that although the culture had grown 

sufficiently to enable Gram staining it was no longer extant. 

 

3.5 Conclusions 

It has long been known that fibrobacters are the predominant bacterial degraders of 

cellulose within the rumen, and the genus Fibrobacter is circumscribed by cellulolytic activity. 

Of the 63 initial isolates from microcosms containing landfill leachate and Avicel, five were 

determined to contain Fibrobacter spp. via PCR with Fibrobacter specific primers. When 

sequenced it was demonstrated that these species were closely related to F. succinogenes, 

rather than novel landfill lineages previously described. Phylogenetic analysis revealed that 

these species formed a distinct group within F. succinogenes subsp. succinogenes, and their 

ability to grow in the absence of rumen fluid, usually a requirement, supports the assertion that 

these are novel landfill adapted isolates of F. succinogenes. This is the first isolation of F. 

succinogenes from outside of the mammalian intestinal tract, and the first isolation of 

fibrobacters from landfill sites. These data demonstrate that Fibrobacter spp. are metabolically 
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active within landfill sites and that they potentially play an important role in the cellulose 

hydrolysis that occurs within this environment. 
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Characterising cellulolytic microbial communities in landfill sites: a 

combined molecular and cultivation-based approach 
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Abstract   

 Whilst cellulolytic bacteria are critical to the global carbon cycle, their presence outside 

of the rumen has not been well studied, and this is particularly true for anaerobic environments 

where the isolation and cultivation of cellulolytic anaerobic bacteria and fungi has proven 

difficult. The material contained within landfill sites often has a high cellulosic content, and as 

such, understanding the diversity and function of members of the microbial community 

contained within this environment may improve both our approach to waste management, and 

elucidate novel species and enzymes for biotechnological applications. This study utilised a 

combination of molecular and cultivation-based methods to characterise the biofilm of a 

heavily degraded colonised cotton sample from a landfill leachate microcosm. A general 

bacterial 16S rRNA gene clone library detected members of 22 bacterial families, of which the 

predominant groups were members of the Firmicutes (54.5%), Porphyromonadaceae (16.5%), 

Spirochaetaceae (8.3%) and Fibrobacteraceae (5.8%), with sequence identities ranging from 76 

to 98% similarity to their nearest neighbour, suggesting the presence of both novel cellulolytic 

species, genera and potentially phyla, in this environment. Novel members of the 

Fibrobacteraceae were detected despite known biases against the amplification of these species 

in general 16S rRNA gene clone libraries, supporting previous studies that identified 

fibrobacters as abundant members of the cellulolytic landfill bacterial community. Anaerobic 

isolation and cultivation yielded 55 bacterial isolates, with PCR and sequencing of the 16S 

rRNA gene demonstrating that all isolates were members of the Firmicutes. These isolates were 

related to one of three bacterial species, C. leptum, C. sporogenes or S. acetigenes, with the 

BLAST score of the isolates with C. leptum as their nearest neighbour demonstrating only 90 

to 93% similarity, suggesting that these are potentially members of a novel genus. The isolation 

of S. acetigenes, a member of Clostridium cluster XII, represents the first isolation of this 

clostridia group from a landfill site. These data provide important insights into the composition 

of cellulolyltic microbial communities in landfill sites.  
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4.1 Introduction 

Members of the genus Clostridium are thought to be responsible for the majority of 

cellulose hydrolysis that occurs in landfill, due to their consistent isolation from this 

environment and their dominance amongst isolated strains (Westlake et al., 1995; Benoit et al., 

1992; Krishnamurthi and Chakrabarti, 2013). However, the isolation and cultivation of 

anaerobic bacteria and fungi from landfill sites is a difficult and laborious process, and to date 

much of the work characterising the microbial populations of landfill sites has relied on the 

application of molecular biological techniques (Van Dyke and McCarthy, 2002; Li et al., 2009; 

McDonald et al., 2012; Burrell et al., 2004). Of the 19 clusters of the clostridia (Collins et al., 

1994) clusters III and IV are the most commonly found in landfill sites (Van Dyke and 

McCarthy, 2002; Li et al., 2009; McDonald et al., 2012; Burrell et al., 2004), although 

members of cluster XIV (McDonald et al., 2012; Burrell et al., 2004) and lineages associated 

with clusters VIII and XII (Burrell et al., 2004) have also been detected. General bacterial 16S 

rRNA gene clone libraries have suggested the predominance of members of the genus 

Clostridium in landfill sites, and the absence of fibrobacters (Burrell et al., 2004; Huang et al., 

2004; Huang et al., 2005). Burrell et al. (2004) sequenced general bacterial 16S rRNA gene 

clone libraries derived from both biomass attached to cellulosic material (attached phase) and a 

mixture of solid and liquid material (mixed phase) contained within a landfill leachate 

bioreactor. The majority of these clones belonged to clusters III (65% attached phase, 48% 

mixed phase) and XIVa (16% attached phase, 10% mixed phase) of the clostridia, although 

members of cluster VI (11% attached phase, 10% mixed phase) were also present. However, as 

discussed previously in chapter 1, there is an apparent bias against fibrobacters and their 

detection in general 16S rRNA clone libraries. 

Studies focussing on the Fibrobacter populations contained within landfill sites have 

determined that fibrobacters are ubiquitous in this environment (McDonald et al., 2008; 

McDonald et al., 2012), with many of these species representing novel lineages within the 

genus Fibrobacter (McDonald et al., 2008). The relative abundance of these species also 

demonstrates the potential importance of fibrobacters in landfill, with qPCR illustrating that 

they may represent as much as 40% of the total bacterial population, greater than the 21 to 32% 

relative abundance of Fibrobacter spp. in ovine rumen samples, where they are known to 

predominate (McDonald et al., 2008). The comparison of biofilms from heavily and poorly 

degraded cotton incubated in two microcosms containing landfill leachate also supports the 

potential importance of Fibrobacter spp. in this environment (McDonald et al., 2012). The 

relative abundance of fibrobacters was determined via qPCR as 28.9% of the total bacterial 
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population on the heavily degraded cotton sample, and undetectable on the poorly degraded 

cotton, suggesting that they are active members of the cellulolytic community within this 

environment. Furthermore, the relative abundance of Clostridum cluster III, of which all 

known members are cellulolytic, was only 17.2% of the total bacterial population from the 

heavily degraded cotton (McDonald et al., 2012).  

Due to the potential issues both with isolating obligately anaerobic Fibrobacter spp. and 

relying solely on molecular approaches, it is important to utilise a combination of cultivation 

and molecular methods in order to study both this and members of the other phyla present in 

landfill sites.  Also, whilst 16S rRNA gene clone library studies focussing on landfill sites have 

generated sequence data suggesting that novel cellulolytic species are present in this 

environment (Burrell et al., 2004; Huang et al., 2004; Huang et al., 2005), the identity and 

function of these species can only be validated by cultivation. Here, heavily degraded cotton 

string retrieved from a landfill leachate microcosm (McDonald et al., 2012) was used as source 

material for the isolation of cellulolytic anaerobic bacteria and the simultaneous analysis of 

taxonomic diversity via 16S rRNA gene clone library analysis. This study utilises colonised 

cotton from a landfill leachate microcosm, where fibrobacters were 28.9% of the total bacterial 

16S rRNA (McDonald et al., 2012), in order to characterise and isolate members of the 

cellulolytic microbial community, including Fibrobacter spp.   

 

4.2 Materials and methods 

4.2.1 Sampling and set up of a microcosm containing landfill leachate and dewaxed cotton 

string 

Dewaxed cotton string from a microcosm containing leachate from Brombrough Dock 

landfill site risers 3 and 4 was generated in a previous study (McDonald et al., 2012) and the 

material had been stored at -80C prior to use as the source material for DNA extraction and 

cultivation via the Hungate roll tube method, as described in chapter 2.  

 

4.2.2 Hungate roll tube method for isolating obligate anaerobes 

Bacterial strains were isolated from 0.5 g dewaxed cotton string used to inoculate 

M2GSC broths containing either glucose, soluble starch and cellobiose, or carboxymethyl 

cellulose (CMC) as the carbon sources, via the anaerobic roll tube method of Hungate 

(Hungate, 1947; Bryant, 1972) with static incubation at 41C until visible growth occurred. The 

bacterial strains underwent two rounds of purification as described in chapter 3. The culture 

medium was prepared anaerobically under 99.999% CO2 (BOC gases).   
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4.2.3 Preparation of M2GSC medium for the cultivation of anaerobes 

Liquid M2GSC medium as described by Miyazaki et al., (1997) was prepared with the 

removal of rumen fluid from the medium, which contained; 1% (wt/vol) casitone (BD 

Biosciences), 0.25% (wt/vol)yeast extract (BD Biosciences), 0.4% (wt/vol) NaHCO3 (Sigma), 

0.2% (wt/vol) glucose (Sigma), 0.2% (wt/vol) cellobiose (Sigma), 0.2% (wt/vol) soluble starch 

(Sigma), 30% (vol/vol) filtered landfill leachate, 0.1% (wt/vol) cysteine hydrochloride (Sigma), 

0.045% (wt/vol) K2HPO4 (Sigma), 0.045% (wt/vol) KH2PO4 (Sigma), 0.09% (wt/vol) (NH4)2SO4 

(Sigma), 0.09% (wt/vol) NaCl (Sigma), 0.09% (wt/vol) MgSO4 (Sigma), 0.09% (wt/vol) CaCl2  

(Sigma), 0.0001% (wt/vol) resazurin (Sigma) and H2O to the final volume.  Where CMC 

(Sigma) was used as an alternative carbon source this was added to the medium at a 0.2% 

(wt/vol) concentration, with glucose, cellobiose and soluble starch omitted from the medium. 

For sloppy agars, 0.75% (wt/vol) agar (Sigma) was added, whilst roll tubes contained 2% (wt/vol) 

agar (Sigma). 

 

4.2.4 Gram stains of cultured isolates 

Cells were collected using a sterile 10 μl inoculation loop inserted into the sloppy agar 

culture and streaked on a glass slide. The cells were heat fixed and Gram stained using the 

Gram Staining Kit (Sigma) according to the manufacturer’s instructions before analysis under 

oil immersion (x1000 magnification). 

 

4.2.5 DNA extraction of dewaxed cotton string and broth cultures 

For DNA extraction, either 0.5 g colonised dewaxed cotton string (for general bacterial 

clone library analysis of the cotton sample) or the pellet of 1.5 ml broth culture centrifuged at 

15000 rpm for 5 minutes and resuspended in 500 μl PCR water (Bioline) (for 16S rRNA gene 

sequencing of bacterial isolates) was subjected to the method of Griffiths et al., (2000) with the 

modifications as described in chapter 2. The DNA was visualised on a 1% agarose (Bioline) gel 

with HyperLadder 1kb (Bioline) as a marker, and the DNA concentration quantified using the 

Qubit Fluorometer (Life Technologies) with the Qubit dsDNA BR Assay Kit (Life 

Technologies).  

 

4.2.6 Direct and nested PCR targeting the 16S rRNA gene 

Each reaction (total volume 50 μl) contained 0.2 mM each of general bacterial primers 

pA (5’ – 3’ sequence AGAGTTTGATCCTGGCTCAG) and pH’ (5’ – 3’ sequence 

AAGGAGGTGATCCAGCCGCA) (Edwards et al., 1989), 0.2 mM each dNTP, 1x SuperTaq 
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Buffer (Cambio), 0.5 mM MgCl2, 1x BSA, 1 unit SuperTaq (Cambio), 50 ng DNA and 

nuclease free water (Bioline). Where nested PCR was utilised to determine the presence of 

Fibrobacter spp. the PCR reactions used the Fibrobacter primer set, Fib 1F (5’ – 3’ sequence 

CCGKSCCAACGSSCGG) and Fib 2AR (5’ – 3’ sequence ATCTCTCGCYGCGGCGWTY 

CC) (McDonald et al., 2008) with each reaction containing 0.4 mM each primer, 1.5 mM 

MgCl2 and 1 μl of the PCR product generated using the general bacterial primers pA/pH’. The 

PCR cycling conditions were: an initial denaturation at 94°C for 5 min, 35 cycles of 94°C for 1 

min, 1 min at the specific annealing temperature for each primer set (55°C for pA/pH’, 60°C 

for Fib 1F/FIB 2AR) and an extension of 72°C for 1.5 min. The final extension was performed 

at 72°C for 10 min. The PCR products were visualised on a 1% agarose (Bioline) gel with 

HyperLadder 1kb (Bioline) as a size marker, and stored at -20°C. 

 

4.2.7 Cloning and sequencing of 16S rRNA gene PCR amplicons 

PCR amplicons generated using the general bacterial primer set pA (5’ – 3’ sequence 

AGAGTTTGATCCTGGCTCAG) and pH’ (5’ – 3’ sequence 

AAGGAGGTGATCCAGCCGCA) (Edwards et al., 1989) were purified from a 1% agarose 

(Bioline) gel using the Bioline Isolate Gel Extraction Kit (Bioline) following the manufacturer’s 

instructions. The PCR products were ligated and cloned into competent E. coli JM109 

(Promega) using the pGEM-T Easy Vector System I (Promega) following the manufacturer’s 

protocol. These clones were purified from the plasmid and sequenced using the M13 forward 

primer (5’ – 3’ sequence GTTTTCCCAGTCACGAC) (Messing, 1983) by Macrogen. General 

bacterial 16S rRNA gene PCR products from the isolated strains were purified and sequenced 

using the pA forward primer (5’ – 3’ sequence AGAGTTTGATCCTGGCTCAG) by 

Macrogen. 

 

4.2.8 Phylogenetic analysis of 16S rRNA gene sequences from the general bacterial clone 

library 

Sequences derived from the clone library were viewed using 4Peaks, quality clipped 

and subjected to a BLASTn search against the NCBI nucleotide database in order to 

determine their nearest neighbour. Sequences identified as members of the Fibrobacteraceae 

and cultivated Fibrobacter spp. downloaded from the Ribosomal Database Project website 

(Cole et al., 2007; Cole et al., 2009) were aligned using the MUSCLE aligner (Edgar, 2004), 

trimmed and used to generate a neighbour-joining tree with 1000 bootstrap samplings via 
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PhyML (version 3.0) (Guindon et al., 2010) which was viewed using Interactive Tree of Life 

(Letunic and Bork, 2007).  

 

4.2.9 Phylogenetic analysis of 16S rRNA gene sequences derived from isolates  

The sequence trace files were viewed using 4Peaks, quality clipped and the nearest 

neighbour assigned by a BLASTn search against the NCBI 16S ribosomal RNA (Bacteria and 

Archaea) database. These sequences were aligned using the MUSCLE aligner (Edgar, 2004) 

before clustering at 97% similarity using CDHIT (Li and Godzik, 2006; Huang et al., 2010). 

The nearest neighbours of the sequences as determine by BLAST were downloaded from the 

Ribosomal Database Project website (Cole et al., 2007; Cole et al., 2009) and these along with 

the representative sequences of each cluster were realigned using MUSCLE, trimmed and used 

to generate a neighbour-joining tree with 1000 bootstrap samplings with PhyML (version 3.0) 

(Guindon et al., 2010), viewed using Interactive Tree of Life (Letunic and Bork, 2007). 

 

4.3 Results 

4.3.1 Diversity of 16S rRNA gene sequences derived from a landfill colonised cotton biofilm 

The partial 16S rRNA gene sequence of all 121 clones was sequenced and the identity 

assigned via a BLASTn search against the NCBI 16S ribosomal RNA (Bacteria and Archaea) 

database (Altschul et al., 1990), identifying members of 22 bacterial families (Table 4.1). 

Members of the Ruminococcaceae were most abundant (23.4%) followed by Lachnospiraceae 

(23.1%), Porphyromonadaceae (16.5%) and Spirochaetaceae (8.3%) (Table 4.1). These 

sequences varied in their similarity to their nearest neighbour, with the lowest sequence 

similarity to their nearest neighbour belonging to a sequence within the 

Thermoanaerobacteraceae (76%) and the highest within the Spirochaetaceae (98%) (Table 

4.1). Members of Clostridrum clusters XIVa (28 clones) III (15 clones) and IV (14 clones) 

were detected in the general bacterial 16S rRNA gene clone library, whilst members of cluster I 

were undetected (Table 4.1). The Fibrobacteraceae were the fifth most abundant family, 

comprising 5.8% of the total 16S rRNA gene sequences (n=7) (Table 4.1), with these sequences 

demonstrating 83 – 89% sequence similarity to their nearest cultivated neighbour (Fig. 4.1). 
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Table 4.1. Taxonomy of 16S rRNA gene clone library sequences derived from the biofilm of colonised cotton incubated in a landfill leachate 

microcosm. 

a. Closest relative as determined by NCBI nucleotide BLAST (Altschul et al., 1990) 

 

Putative assignment   Number  Percentage of    Similarity to closest   Clostridium cluster 

     of clones  clone library    relative (%)
a

   (number of sequences) 

        sequences (%) 

 

Acholeplasmataceae   1   0.8    90 

Synergistaceae    1   0.8    90 

Anaerolineaceae    1   0.8    88 

Spirochaetaceae    10   8.3    86-98 

Fibrobacteraceae    7   5.8    83-89 

Peptococcaceae    2   1.7    88-89 

Clostridiales Incertae Sedis XI  5   4.1    89-95 

Ruminococcaceae    29   24.0    82-94    III (15), IV (14) 

Lachnospiraceae    28   23.1    82-94    XIVa (28) 

Porphyromonadaceae   20   16.5    82-96 

Flavobacteriaceae    1   0.8    85 

Marinilabiaceae    4   3.3    91-93 

Flammeovirgaceae   1   0.8    86 

Cytophagaceae    1   0.8    91 

Peptostreptococcaceae    2   1.7    84-87 

Lactobacillaceae     1   0.8    91 

Streptococcaceae     1   0.8    81 

Gracilibacteraceae    1   0.8    87 

Thermoanaerobacteraceae   2   1.7    76-84 

Cardiobacteriaceae    1   0.8    82 

Chromatiaceae     1   0.8    90 

Xanthobacteraceae   1   0.8    88 
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Figure 4.1. Phylogeny of 16S rRNA gene clone library sequences derived from the biofilm of heavily degraded colonised cotton and identified as 

fibrobacters via NCBI nucleotide blast. Accession numbers of cultivated isolates downloaded from the Ribosomal Database Project are in bold. 

Filled circles represent bootstrap values >95%, unfilled circles represent bootstrap values between 75 and 95%. The scale bar represents 0.1 base 

substitutions per nucleotide. 
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4.3.2 Isolation and 16S rRNA gene sequencing of isolates cultivated from the biofilm of cotton 

incubated in a landfill leachate microcosm 

A total of 55 bacterial isolates were obtained from the cellulolytic biofilm and the 16S 

rRNA gene amplified via PCR and sequenced using a general bacterial primer set. Twenty-five 

(45%) of these isolates were between 90 and 93% similar to Clostridium leptum, whilst 17 

isolates (31%) were 99 to 100% similar to Clostridium sporogenes and 13 isolates (24%) 99 % 

identical to Sporanaerobacter acetigenes (Table 4.2) (Fig. 4.2). Of these strains, 29 (53%) were 

isolated using medium containing CMC as the sole carbon source for growth (suggesting a 

cellulolytic phenotype), whilst the remaining 26 (47%) strains were isolated using medium that 

contained glucose, cellobiose and soluble starch (GSC). All isolate cultures obtained from 

M2GSC medium, with the exception of one isolate, were pure (Table 4.2). All of the isolates 

obtained using M2MGSC medium were related to C. leptum, apart from the impure strain, 

which was identified as S. acetigenes (Table 4.2). The strains isolated from CMC containing 

medium were either C. sporogenes or S. acetigenes, with 13 of the strains remaining impure 

after two rounds of purification (Table 4.2). 

Cultures of the 13 impure strains isolated from CMC medium and sequenced along 

with two strains for which no sequence data was available due to poor quality reads (S41A and 

U11A) were subjected to a third round of purification before DNA extraction and nested PCR 

using the Fibrobacter specific primer Fib 1F (5’ – 3’ sequence CCGKSCCAACGSSCGG) and 

Fib 2AR (5’ – 3’ sequence ATCTCTCGCYGCGGCGWTYCC) (McDonald et al., 2008). Of 

these cultures, 6 were positive for the presence of Fibrobacter spp., with all of these cultures 

containing a mixture of Gram-negative rods and cocci (Table 4.3) (Fig. 4.3). 
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Table 4.2. Taxonomy of 16S rRNA gene sequences generated from isolates cultivated from a biofilm on colonised cotton from a landfill leachate 

microcosm.  

a. Closest relative as determined by NCBI nucleotide BLAST (Altschul et al., 1990). 

b. GSC refers to media containing glucose, soluble starch and cellobiose, CMC refers to media containing carboxymethylcellulose.  

 

Putative assignment  Strain Nearest cultivated neighbour
a

 Maximum  Substrate Gram stain Pure 

   Identity used for  

    isolation
b

   

 

Ruminococcaceae W41A Clostridium leptum 90% GSC Gram-negative rods Y 

(Clostridium  W41B Clostridium leptum 90% GSC Gram-negative rods Y 

cluster IV) W42A Clostridium leptum 93% GSC Gram-negative rods Y 

 W51A Clostridium leptum 92% GSC Gram-negative rods Y 

 W62A Clostridium leptum 92% GSC Gram-negative rods Y 

 W62B Clostridium leptum 93% GSC Gram-negative rods Y 

 X41A Clostridium leptum 92% GSC Gram-negative rods Y 

 X42A Clostridium leptum 92% GSC Gram-negative rods Y 

 X42B Clostridium leptum 93% GSC Gram-negative rods Y 

 X71A Clostridium leptum 93% GSC Gram-positive rods Y 

 Y32A Clostridium leptum 92% GSC Gram-positive rods Y 

 Y52B Clostridium leptum 92% GSC Gram-negative rods Y 

 Y81B Clostridium leptum 93% GSC Gram-negative rods Y 

 Z11A Clostridium leptum 93% GSC Gram-negative rods Y 

 Z12A Clostridium leptum 93% GSC Gram-negative rods Y 

 Z21A Clostridium leptum 92% GSC Gram-negative rods Y 

 Z22B Clostridium leptum 93% GSC Gram-negative rods Y 
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 Z31A Clostridium leptum 93% GSC Gram-negative rods Y 

 Z32A Clostridium leptum 93% GSC Gram-negative rods Y 

 Z41A Clostridium leptum 93% GSC Gram-negative rods Y 

 Z41B Clostridium leptum 93% GSC Gram-negative rods Y 

 Z81A Clostridium leptum 92% GSC Gram-negative rods Y 

 Z82A Clostridium leptum 93% GSC Gram-negative rods Y 

 Z82B Clostridium leptum 93% GSC Gram-negative rods Y 

 Z92A Clostridium leptum 92% GSC Gram-negative rods Y 

Clostridiaceae R51A Clostridium sporogenes 99% CMC Gram-negative cocci and rods N 

(Clostridium R61A Clostridium sporogenes 99% CMC Gram-negative cocci and rods N 

cluster I) R62A Clostridium sporogenes 99% CMC Gram-negative cocci and rods N 

 R72A Clostridium sporogenes 100% CMC Gram-negative cocci and rods N 

 R92A Clostridium sporogenes 100% CMC Gram-negative rods Y 

 S11A Clostridium sporogenes 100% CMC Gram-negative cocci and rods N 

 S12A Clostridium sporogenes 100% CMC Gram-negative rods Y 

 S21A Clostridium sporogenes 99% CMC Gram-negative cocci and rods N 

 S22A Clostridium sporogenes 100% CMC Gram-negative cocci and rods N 

 S31A Clostridium sporogenes 99% CMC Gram-negative rods Y 

 S72A Clostridium sporogenes 100% CMC Gram-negative cocci and rods N 

 S81A Clostridium sporogenes 100% CMC Gram-negative cocci and rods N 

 T21A Clostridium sporogenes 100% CMC Gram-negative rods Y 

 T72A Clostridium sporogenes 99% CMC Gram-negative rods Y 

 T81A Clostridium sporogenes 99% CMC Gram-negative rods Y 

 T82A Clostridium sporogenes 99% CMC Gram-negative rods Y 

 T91A Clostridium sporogenes 100% CMC Gram-negative cocci Y 

Clostridiales Incertae R12A Sporanaerobacter acetigenes 99% CMC Gram-negative rods Y 
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Sedis XI R31A Sporanaerobacter acetigenes 99% CMC Gram-positive rods Y 

(Clostridium cluster R41A Sporanaerobacter acetigenes 99% CMC Gram-negative, mixed sized rods  N 

XII) S52A Sporanaerobacter acetigenes 99% CMC Gram-negative rods Y 

 S82A Sporanaerobacter acetigenes 99% CMC Gram-positive rods Y 

 S91A Sporanaerobacter acetigenes 99% CMC Gram-positive rods Y 

 S92A Sporanaerobacter acetigenes 99% CMC Gram-negative cocci and rods N 

 T32A Sporanaerobacter acetigenes 99% CMC Gram-negative rods Y 

 T42A Sporanaerobacter acetigenes 99% CMC Gram-positive, mixed sized rods N 

 T52A Sporanaerobacter acetigenes 99% CMC Gram-negative rods Y 

 U12A Sporanaerobacter acetigenes 99% CMC Gram-positive, mixed sized rods N 

 U21A Sporanaerobacter acetigenes 99% CMC Gram-negative rods Y 

 W22A Sporanaerobacter acetigenes 99% GSC Gram-negative, mixed sized rods  N 

  

 

 

 

 

Figure 4.2. Phylogeny of 16S rRNA gene sequences derived from cultivated isolates. Filled circles represent bootstrap values >95%, unfilled circles 

represent bootstrap values between 75 and 95%. Accession numbers are in brackets. The scale bar represents 0.1 base substitutions per nucleotide.
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Table 4.3. Detection of Fibrobacter spp. via nested PCR using genus specific 16S 

rRNA gene primers in impure cultures subjected to a third round of purification. 

 

Strain  Nested Fibrobacter   Species in co-culture 

PCR Result 

R51A  -    C. sporogenes   

R61A  +    C. sporogenes 

R62A  -    C. sporogenes 

R72A  -    C. sporogenes 

S11A  +    C. sporogenes 

S21A  +    C. sporogenes 

S22A  -    C. sporogenes 

S41A  +    No sequence data 

S72A  -    C. sporogenes 

S81A  +    C. sporogenes  

R41A  -    S. acetigenes  

S92A  -    S. acetigenes  

T42A  -    S. acetigenes  

U11A  +    No sequence data 

U12A  -    S. acetigenes  
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Figure 4.3. Gram stain images of the 6 isolates that were positive for the presence of 

Fibrobacter spp. as determined via 16S rRNA gene PCR. 
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4.4 Discussion 

4.4.1 Comparing the composition of cellulolytic microbial communities in landfill as 

determined via molecular and cultivation-based methods 

Molecular methods revealed the presence of 22 bacterial families present on 

the colonised cotton biofilm with members of the Firmicutes comprising the majority of 

sequences at 54.5% (Table 4.1). However, the cultivation-based approach yielded three 

species, C. leptum, C. sporogenes and S. acetigenes, all of which belong to the 

Firmicutes (Table 4.2), demonstrating that the application of molecular methods 

revealed a greater diversity than the cultivation based approach. This is unsurprising 

given that many organisms are intractable to study via conventional cultivation, and that 

the sample had been frozen. The diversity of species detected via molecular methods 

varied, with the highest sequence similarity belonging to a species related to a member 

of the Spirochaetaceae (98%) whilst the lowest sequence similarity belonging to a 

species loosley related to the Thermoanaerobacteraceae (76%) (Table 4.1). In contrast, 

the cultivation based approach yielded two species that were highly similar to their 

nearest neighbour, Clostridium sporogenes (99 – 100% sequence similarity) and 

Sporanaerobacter acetigenes (99% sequence similarity), whilst only the species related 

to Clostridium leptum was novel (90 – 93% sequence similarity) (Table 4,2). Although 

these results suggest that a solely molecular based approach would be best for studying 

an environment, the isolation of C. sporogenes, a member of cluster I of the clostridia 

both here and previously (Krishnamurthi and Chakrabarti, 2013) would suggest that 

this is not always the case. Members of Clostridium cluster I were not detected in the 

16S rRNA gene clone library constructed in this or a previous study (Burrell et al., 

2004) and in addition to this, members of this cluster have not been detected in landfill 

sites via group-specific 16S rRNA gene PCR primers, (Van Dyke and McCarthy, 2002; 

McDonald et al., 2012). This would suggest that for this group in particular, the use of 

molecular methods is biased against the detection of these organisms, and it would 

stand to reason that other species might also be either underrepresented or missed 

entirely by the reliance on only one method.   
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4.4.2 Diversity of 16S rRNA gene clone library sequences derived from a colonised 

cotton sample incubated in a landfill leachate microcosm  

A previous study of cellulolytic bacterial populations in a landfill leachate 

microcosm, using the same colonised cotton material used as source material for the 

culture-based and general bacterial 16S rRNA analysis here, demonstrated via qPCR 

the presence of members of clostridia clusters III, IV, XIV, and the genus Fibrobacter, 

with the relative abundance of these species representing 17.2%, 3.2%, 0.9% and 28.9% 

of the total bacterial 16S rRNA gene respectively (McDonald et al., 2012). This is 

consistent with other studies that also detected Clostridium clusters III, IV and XIV 

(Burrell et al., 2004; Van Dyke and McCarthy, 2002; McDonald et al., 2012) and 

fibrobacters (McDonald et al., 2008) in landfill sites.  

Interestingly, despite Fibrobacter spp. representing the greatest proportion of 

the total bacterial rRNA from this cotton as determined via qPCR (McDonald et al., 

2012), only 7 clones, 5.7% of the sequences from the general bacterial clone library, 

were determined to be members of the Fibrobacteraceae via NCBI nucleotide BLAST 

(Table 4.1). These species were between 83 and 89% similar to their nearest neighbour 

as determined via NCBI nucleotide BLAST (Table 4.1) (Fig. 4.1), which supports 

previous work that demonstrated the presence of novel Fibrobacter spp. in landfill sites 

(McDonald et al., 2008; Ransom-Jones et al., 2014). However, previous 16S rRNA 

gene clone libraries derived from a landfill leachate bioreactor (Burrell et al., 2004), a 

closed municipal solid waste landfill (Huang et al., 2005) and a recirculating landfill 

(Huang et al., 2004), along with 454 pyrosequencing of simulated municipal solid waste 

bioreactors (Bareither et al., 2013) failed to detect any Fibrobacter sequences. 

Therefore, the fact that fibrobacters were detected in this clone library, despite the bias 

against them, supports the qPCR data that Fibrobacter spp. are highly abundant in this 

environment (McDonald et al., 2012), and demonstrates the use of dewaxed cotton 

string as a ‘bait’ for the enrichment of cellulolytic species.  

Although fibrobacters were the predominant bacterial species as determined via 

qPCR, with their relative abundance of the total bacterial 16S rRNA exceeding the 

combined Clostridium cluster abundances (McDonald et al., 2012), the Firmicutes 

comprise the majority of sequences (54.5%) from the general 16S rRNA gene clone 

library (Table 4.1), with the majority belonging to cluster XIVa of the clostridia (28 

sequences), along with clusters III (15 sequences) and IV (14 sequences) (Table 4.1). 

The Firmicutes, also known as low G+C Gram-positive bacteria, are known to 
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dominate general 16S rRNA gene clone libraries derived from landfill leachate (Huang 

et al., 2004; Burrell et al., 2004; Huang et al., 2005). Burrell et al., (2004) constructed 

clone libraries from a mixture of leachate and solid substrate, and colonised cellulosic 

matter from a landfill leachate bioreactor. The Firmicutes comprised 100% of the 

sequences derived from the biofilm on the solid cellulose and 90% of the sequences 

from the leachate/solid substrate mix, with the majority of these sequences similar to 

Clostridium clusters III, IV and XIVa, although clusters VIII and XII were also 

detected (Burrell et al., 2004). Studies utilising 16S rRNA gene targeted PCR primers 

specific to groups I, III, IV and XIV of the clostridia detected clusters III, IV and XIV 

in landfill sites, whilst cluster I was not detected in any of the samples (Van Dyke and 

McCarthy, 2002; McDonald et al., 2012). Of the clusters that were detected, cluster III 

was found to be the most commonly detected in both studies (Van Dyke and 

McCarthy, 2002; McDonald et al., 2012) along with either cluster IV (Van Dyke and 

McCarthy, 2002) or cluster XIV (McDonald et al., 2012). 

 

4.4.3 Taxonomy of isolates obtained from dewaxed cotton string incubated in a landfill 

leachate microcosm 

Of the 55 isolates, all of the sequences were identified as having one of three 

species as their nearest neighbours via NCBI nucleotide BLAST, suggesting that these 

were multiple isolates of the same organisms (Table 4.2). Of the three strains identified, 

isolates related to Clostridium sporogenes (99 – 100% sequence similarity) and 

Sporanaerobacter acetigenes (99% sequence similarity) had a high similarity to their 

nearest neighbour, whilst isolates related to the other identified strain were determined 

as having 90 – 93% sequence similarity to their nearest neighbour, Clostridium leptum 

(Table 4.2), with the isolates related to C. leptum representing a novel species based on 

16S rRNA gene sequence similarity.   

In previous isolation studies from landfill sites, both a Cellulomonas species 

(Bagnara et al., 1985) and members of the genus Eubacterium (Westlake et al., 1995) 

have been isolated from landfill, as well as clostridia  (Westlake et al., 1995; Benoit et 

al., 1992; Krishnamurthi and Chakrabarti, 2013). No eubacteria were isolated in this 

study, but that all of the isolates from this study belonged to the Firmicutes is 

unsurprising given their dominance both in clone libraries (Huang et al., 2004; Burrell 

et al., 2004; Huang et al., 2005) and a cultivation based study on landfill, where 86.7% 

of species isolated belonged to this phylum (Krishnamurthi and Chakrabarti, 2013).  
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As discussed previously, members of Clostridium cluster IV are known to be 

present in landfill environments (Burrell et al., 2004; McDonald et al., 2012; Van Dyke 

and McCarthy, 2002), therefore the isolation of strains related to Clostridium leptum 

(cluster IV), and that these strains account for the 45.5% of the isolated species, is 

expected. These strains are between 90 and 93% similar to their nearest neighbour 

(Table 4.2) (Fig. 4.2), suggesting that these isolates are a novel species, and potentially 

belong to a novel genus within clostridium cluster IV, as were many of the other 

bacteria previously isolated from landfill sites (Krishnamurthi and Chakrabarti, 2013; 

Bagnara et al., 1985; Westlake et al., 1995).  

The other isolates from this study belonged to clusters I and XII of the 

clostridia. Members of cluster XII are less readily detected in landfill than other groups 

of the clostridia, but they have been detected previously in a 16S rRNA gene clone 

library derived from a landfill leachate bioreactor (Burrell et al., 2004), this is however 

the first isolation of members of cluster XII clostridia from a landfill site. Whilst 

members of cluster I have not been previously detected in landfill sites via group 

specific 16S rRNA gene PCR primers, (Van Dyke and McCarthy, 2002; McDonald et 

al., 2012), or via a 16S rRNA gene clone library (Burrell et al., 2004), C. sporogenes, 

belonging to cluster I of the clostridia (Collins et al., 1994), has been isolated from 

landfill in both here (chapter 3), and previous studies (Krishnamurthi and Chakrabarti, 

2013). The species isolated in this study were between 99 and 100% similar to their 

nearest neighbour, so it is unlikely that these species were undetected due to primer 

mismatches in the group specific PCR primers. It is possible that these species, whilst 

present in the landfill environment, are in much lower abundances than the members 

of other Clostridium clusters. As a result of this, it is only when they are enriched by 

cultivation, particularly using a substrate such as CMC, which requires the organism to 

be capable of producing at least some of the cellulolytic enzyme groups required for the 

degradation of crystalline cellulose, that they are detected.  

The detection of Fibrobacter spp. in the impure cultures in unsurprising given 

their presence in both the general bacterial 16S rRNA gene clone library (Table 4.1), 

and their relative abundance of 28.9% of the total bacterial 16S rRNA on the colonised 

cotton as determined via qPCR (McDonald et al., 2012). As demonstrated in chapter 3, 

fibrobacters are difficult to purify, thus the impurity of these cultures even after three 

rounds of purification (Table 4.3). The Fibrobacter spp. are likely to be the smaller, 

ovoid cells (Montgomery et al., 1988) present in the Gram stain images (Fig. 4.3). The 



                                                              

 

141 

 

fact that the fibrobacters were always associated with C. sporogenes is intriguing, 

especially due to the fact that in chapter 3, cultures containing Fibrobacter spp. also 

contained C. botulinum, which is closely related to C. sporogenes (Lee and Riemann, 

1970). It is possible that this association is required by the Fibrobacter spp. in order for 

them to survive, thus potentially explaining the difficulties in obtaining pure isolates of 

these species.  

 

4.5 Conclusions 

The general bacterial 16S rRNA gene clone library generated in this study from 

the colonised cotton sample detected the presence of 22 bacterial families, with the 

species detected by the 16S rRNA gene clone library ranging in their similarity to their 

nearest neighbour, from 76% within the Thermoanaerobacteraceae to 98% within the 

Spirochaetaceae, demonstrating that there are potentially a number of novel organisms 

present in landfill sites. The detection of members of the Fibrobacteraceae in this 

general bacterial 16S rRNA gene clone library, despite the bias against these species, 

supports previous data to suggest that fibrobacters are abundant members of this 

community (McDonald et al., 2012).  

The cultivation-based approach detected only members of the Firmicutes, and 

isolated three strains related to C. leptum (90 - 93% sequence similarity), C. sporogenes 

(99 - 100% sequence similarity) and S. acetigenes (99 - 100% sequence similarity), with 

sequence similarity suggesting that only the C. leptum related isolates were novel. It has 

long been known that environmental characterisation studies focusing solely on 

cultivation fail to isolate all of the members of the community, however molecular 

methods also have their limitations and as such the cultivation of novel species remains 

important (Walker et al., 2014). It is likely that a combination of molecular and 

cultivation based approaches will be needed in order to fully understand the taxonomy 

and function of members of any given community, with the isolation of novel species 

improved by the molecular data (Pope et al., 2011; Renesto et al., 2003). Given the 

diversity of bacteria detected in the biofilm on the colonised cotton, it is possible that 

the cellulolytic community contained within landfill sites is more diverse than previously 

thought, with the implication that this environment is a potential source of both novel 

species and enzymes for use in biotechnological applications. 
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CHAPTER 5 

 

 

Shotgun metagenomic analysis of a landfill cellulolytic microbial 

community 
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Abstract   

 Despite the fact that landfill waste contains a high cellulosic content, the 

taxonomic and functional composition of cellulose-degrading microbial communities in 

landfill is not well understood. In this study, we determined the composition of two 

bacterial communities associated with poorly or heavily degraded colonised cotton 

‘baits’ incubated in landfill leachate via 454 pyrosequencing of 16S rRNA gene PCR 

amplicons. In addition, metagenomic sequencing of the heavily degraded colonised 

cotton sample was utilised in order to determine the taxonomic and functional diversity 

of the members of this community. Analysis of 16S rRNA gene PCR amplicons 

revealed a total of 22 and 24 phyla present on the poorly and heavily degraded 

colonised cotton, respectively. Members of the Bacteroidetes (72.7%), Proteobacteria 

(18.7%) and Actinobacteria (3.3%) dominated the poorly-degraded cotton biofilm, 

whereas Firmicutes (34.7%), Bacteroidetes (20.5%), Spirochaetes (14.8%) and 

Fibrobacteres (14.2%) dominated the heavily degraded cotton. These data imply that 

members of the Firmicutes, Spirochaetes and Fibrobacteres are key members of the 

cellulolytic community in landfill sites. Analysis of bacterial contigs from the 

metagenome dataset supported this observation, with the identification of 18 phyla 

including members of the Firmicutes (47.2%), Bacteroidetes (22.8%) and Spirochaetes 

(6.1%), whilst also potentially implicating Proteobacteria (6.4%) as having a role in 

cellulose degradation in landfill sites. Recruitment plot analysis of the heavily degraded 

colonised cotton metagenome also implicated members of the Fibrobacteres in 

cellulose hydrolysis, with the genome of F. succinogenes subsp. succinogenes S85 

having the most protein matches in comparison to the metagenome. These data 

provide important insights into the cellulose degrading microbial community present in 

the landfill environment, with implications for our understanding of carbon cycling and 

waste management. 
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5.1 Introduction 

Cellulose is the most abundant organic carbon polymer in landfill waste, and 

can comprise as much as 63.4% of the organic content present (Bookter and Ham, 

1982). Despite this, little is known about the taxonomic and functional composition of 

microbial communities associated with the cellulose hydrolysis in landfill. Members of 

the Firmicutes, and more specifically the class Clostridia, are thought to be one of the 

predominant bacterial degraders of cellulose in landfills due to their isolation (Westlake 

et al., 1995) and detection via molecular methods (Burrell et al., 2004; Huang et al., 

2005; Huang et al., 2004; Xie et al., 2014; Bareither et al., 2013); both a 16S rRNA 

gene clone library (Burrell et al., 2004) and 454 pyrosequencing of 16S rRNA gene 

PCR amplicons (Bareither et al., 2013; Xie et al., 2014) have demonstrated the 

presence of members of the Clostrida in landfill leachate. A study of both leachate and 

solid material from a lab-scale landfill waste bioreactor demonstrated that 100% of 

Firmicutes sequences from the leachate and 85.8% of Firmicutes sequences from the 

solid material were assigned to the class Clostridia (Bareither et al., 2013).  

Bacterial 16S rRNA gene clone library studies of landfill leachate have also 

demonstrated the presence of members of the Chlamydiae/Verrucomicrobia group 

(Huang et al., 2004; Huang et al., 2005), the Cytophaga–Flexibacter–Bacteroides group 

(Huang et al., 2004; Huang et al., 2005), Planctomycetes (Huang et al., 2004), 

Spirochaetes (Huang et al., 2004; Huang et al., 2005), Proteobacteria (Huang et al., 

2004; Huang et al., 2005) and Actinobacteria (Huang et al., 2004), with the members of 

these groups implicated in a variety of processes that occur within the landfill 

environment, including the degradation of cellulose. The use of next-generation 

sequencing has enabled further characterisation of the members of the microbial 

community present in landfill, with these data supporting the results of previous clone 

library studies. The use of 454 pyrosequencing targeting 16S rRNA gene PCR 

amplicons to determine the microbial community associated with anaerobic bioreactors 

that were treating landfill leachate demonstrated that Firmicutes (Xie et al., 2014; 

Bareither et al., 2013), Bacteroidetes (Bareither et al., 2013; Xie et al., 2014), TM6 

(Xie et al., 2014), Chloroflexi (Bareither et al., 2013; Xie et al., 2014), Actinobacteria 

(Xie et al., 2014), Proteobacteria (Bareither et al., 2013; Xie et al., 2014), Lentisphaerae 

(Bareither et al., 2013), Spirochetes (Bareither et al., 2013), Synergistetes (Bareither et 

al., 2013) and Thermotogae (Bareither et al., 2013) were the most abundant phyla 

detected in this environment.  
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However, the use of 16S rRNA gene-targeted sequencing approaches as the sole 

method for the characterisation of microbial communities is not without issue, 

including PCR bias, which can result in certain members of the community being 

undetected or under-represented, despite their presence in that environmental niche. 

One such example is the detection of novel Fibrobacter spp. in landfill sites via the use 

of genus specific 16S rRNA gene PCR primers (McDonald et al., 2008; Ransom-Jones 

et al., 2014), despite their absence from both 16S rRNA gene clone libraries (Burrell et 

al., 2004; Huang et al., 2004; Huang et al., 2005) and studies utilising 454 

pyrosequencing (Bareither et al., 2013; Xie et al., 2014). In addition, qPCR on cDNA 

utilising genus specific 16S rRNA gene PCR primers has demonstrated that these 

Fibrobacter spp. can comprise as much as 40% of the total bacterial community in 

landfill (McDonald et al., 2008), and qPCR analysis of DNA extracted from the heavily 

degraded colonised cotton studied here demonstrated that fibrobacters represented 

28.9% of the total bacterial 16S rRNA, in comparison to members of the clostridia for 

which the highest relative abundance was that of Clostridum cluster III at 17.2% 

(McDonald et al., 2012).  

Although PCR amplicon sequencing studies can generate a wealth of taxonomic 

information, inherent limitations do exist, including the reliance on PCR primer sets 

that are designed based on sequences already present in the public databases, and that 

the specificity of primer sets used is at best limited to one domain. Whole community 

metagenome sequencing studies can overcome some of these problems, as they do not 

rely on specific PCR primer sets and therefore can be utilised to simultaneously study 

bacterial, eukaryotic, archaeal and viral diversity present in the same sample, in addition 

to potentially novel members of the community that would be undetectable by PCR-

based analysis. Metagenome sequencing can also be utilised in order to assign function 

to the members of the microbial community, and potentially inform further cultivation-

based approaches (Pope et al., 2011; Renesto et al., 2003).  

Here, 16S rRNA gene targeted 454 pyrosequencing was used to assess the 

taxonomic diversity of both heavily and poorly degraded colonised cotton incubated in 

two landfill leachate microcosms. The use of amplicon sequencing enabled a direct 

comparison of community composition between the two samples in order to determine 

the differences in the microbial communities, and gain a greater insight into which 

species are involved in the cellulose degradation that occurs in landfill sites. In addition, 

metagenome sequencing of the heavily degraded colonised cotton biofilm was 
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performed in order to determine both the taxonomy and function of landfill cellulolytic 

organisms. A further aim of this study was to investigate the role of Fibrobacter spp. as 

cellulolytic members of the landfill microbial community via the assembly of large 

metagenome contigs belonging to the novel Fibrobacter spp. present in this 

environment (McDonald et al., 2008). The detection and annotation of Fibrobacter 

genome contigs in a highly cellulolytic biofilm could potentially indicate the genomic 

potential of fibrobacters for cellulose biodegradation in landfill sites, particularly as 

fibrobacters comprised 28.9% of the total bacterial 16S rRNA present on the heavily 

degraded colonised cotton biofilm sample studied here (as determined via qPCR) 

(McDonald et al., 2012). These data would enable the determination of the function of 

the species, including fibrobacters, present in landfill, and potentially aid future 

cultivation approaches in order to characterise the members of this poorly studied 

genus (Pope et al., 2011; Renesto et al., 2003). 

 

5.2 Materials and methods 

5.2.1 Construction of landfill leachate microcosms containing dewaxed cotton dewaxed 

cotton string 

Archive samples of dewaxed cotton string from microcosms 1, containing 

leachate from Brombrough Dock risers 3 and 4 (C1-R3) and 2, containing leachate 

from Brombrough Dock riser 5 (C2-R5) as described and previously studied by 

McDonald et al. (2012) was stored at -80C prior to use as the source material for DNA 

extraction. 

 

5.2.2 DNA extraction of colonised cotton from landfill leachate microcosms for 454 

pyrosequencing and metagenome analysis  

Both the poorly and heavily degraded cotton from the microcosms described in 

McDonald et al., (McDonald et al., 2012) were used as a source of material for DNA 

extraction via the method of Griffiths et al. (2000) as discussed in chapter 2.  

 

5.2.3 Metagenome sequencing of heavily degraded colonised cotton (C1-R3) 

Total DNA extracted from the heavily degraded colonised cotton was utilised to 

generate three sequencing libraries with insert sizes of 300, 400 and 600 bp, which were 

then sequenced on one lane of an Illumina HiSeq, generating paired-end libraries (2 x 

100 bp), by the Centre for Genomic Research, Liverpool, UK.  
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5.2.4 Assembly of the heavily degraded colonised cotton (C1-R3) metagenome 

Adapter sequences were removed using Cutadapt (version 1.2.1) (Martin, 2011) 

and trimmed via Sickle (version 1.2) (Joshi and Fass, 2011) with a minimum window 

quality score of 20 and reads shorter than 10 bp removed. The three sequence libraries 

were assembled via MetaVelvet (version 1.2.01, k-mer = 61) (Namiki et al., 2012) using 

the HPC Wales computing network.  

 

5.2.5 Metagenome analysis of the heavily degraded colonised cotton biofilm C1-R3 via 

MG-RAST 

Contigs assembled from each library were uploaded to the MG-RAST server 

(version 3.3.6) (Meyer et al., 2008) using the option for assembled sequences and the 

default quality control settings. Taxonomic profiling based on 16S/18S rRNA genes was 

performed against the M5RNA rRNA gene database via the best hit classification 

algorithm with an E-value cutoff of 1E-5, a minimum identity of 80% and a minimum 

alignment length of 50 bp. Functional annotation was determined via the hierarchical 

classification algorithm against the KEGG (KO) database, E-value cutoff of 1E-5, a 

minimum identity of 80% and a minimum alignment of 50 bp. Recruitment plot 

analysis identified genomes containing proteins similar to those contained in the 

metagenome libraries, and further analysis was conducted for each of the three libraries 

against the most similar genome, Fibrobacter succinogenes subsp. succinogenes S85, 

with an E-value cutoff of 1E-3. 

 

5.2.6 454 pyrosequencing of general bacterial 16S rRNA gene PCR amplicons 

generated from poorly (C2-R5) and heavily (C1-R3) degraded colonised cotton samples 

DNA extracted from both the heavily and poorly degraded colonised cotton 

resulted in extracts of comparable quntitly and quality. These extracts were subjected to 

PCR with barcoded general bacterial primers that targeted the V1-V3 region of the 16S 

rRNA gene, forward primer B16S-F (5’ – 3’ sequence 

GAGTTTGATCMTGGCTCAG) and reverse primer B16 (5’ – 3’ sequence 

WTTACCGCGGCTGCTGG) by Chunlab Inc., Republic of Korea, resulting in 

sequences of approximately 500bp. These PCR amplicons were then purified via the 

QIAquick PCR Purification Kit (Qiagen) before sequencing with the 454 GS FLX 

Titanium Sequencing System by Chunlab Inc., Republic of Korea. 
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5.2.7 Analysis of the 454 pyrosequencing PCR amplicons generated from poorly (C2-

R5) and heavily (C1-R3) degraded colonised cotton  

The 16S rRNA gene sequences were processed to separate the samples via the 

barcodes before removal of the barcode, linker and PCR primer sequences via 

Chunlab Inc., Republic of Korea. Sequences were classified via CLcommunity against 

the ExTaxon datatbase using the default parameters. 

 

5.3 Results 

5.3.1 Bacterial community composition of colonised cotton biofilms from landfill 

leachate microcosms as determined by 16S rRNA gene pyrosequencing 

The colonised cotton from two landfill leachate microcosms, C1-R3 

(microcosm one, heavily degraded cotton) and C2-R5 (microcosm two, poorly 

degraded cotton), analysed in a previous study (McDonald et al., 2012) was subjected to 

DNA extraction and 454 pyrosequencing of 16S rRNA gene PCR amplicons (V1-V3 

region). A total of 10,783 reads were generated for sample C2-R5 and 6690 reads for 

C1-R3 (Appendix 4), which were analysed against the EzTaxon database. A total of 22 

and 24 phyla were identified for poorly (C2-R5) and heavily degraded (C1-R3) cotton 

respectively, with 0.01% of reads from the heavily degraded cotton unable to be 

classified at the phylum level, whilst all reads from the poorly degraded cotton were 

able to be assigned to a phylum (Fig. 5.1). The bacterial community composition varied 

between the two samples, with the dominant phyla within the poorly degraded cotton 

determined as Bacteroidetes (72.7%), Proteobacteria (18.7%) and Actinobacteria 

(3.3%), whilst for the heavily degraded cotton the dominant phyla were Firmicutes 

(34.7%), Bacteroidetes (20.5%), Spirochaetes (14.8%) and Fibrobacteres (14.2%) (Fig. 

5.1).  
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Figure 5.1. Comparison of bacterial phyla identified via 16S rRNA gene PCR amplicon 

sequences from poorly (black bars) and heavily (grey bars) degraded cotton from 

landfill leachate microcosms as determined via comparison of the sequences against the 

EzTaxon database. 
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5.3.1.1 Taxonomic classification at the class level of 454 pyrosequenced 16S rRNA 

gene PCR amplicons derived from poorly degraded colonised cotton from landfill 

leachate microcosm C2-R5 

Of the 22 phyla detected from the poorly degraded colonised cotton sample via 

analysis of the 16S rRNA gene sequences against the EzTaxon database, the three most 

abundant phyla were Bacteroidetes (72.7%), Proteobacteria (18.7%) and Actinobacteria 

(3.3%) (Fig. 5.1). Within the Bacteroidetes phylum, five classes were detected of which 

the predominant was Bacteroidia, comprising 92.5% of sequences assigned to 

Bacteroidetes, as well as Flavobacteria (4.7%), Sphingobacteria (1.0%), Cytophagia 

(0.8%), Balneola (0.9%) and 0.04% of sequences belonging to the Bacteroidetes phylum 

that were unable to be classified at the class level (Appendix 4). Within the 

Proteobacteria, four classes, Gammaproteobacteria (67.7%), Betaproteobacteria 

(26.9%), Alphaproteobacteria (4.0%) and Epsilonproteobacteria (1.5%) were detected 

whilst Micrococcales (96.1%), Bifidobacteriales (1.7%), Frankiales (1.1%) and 

Propionibacteriales (0.8%) were the classes detected within the Actinobacteria with 

0.3% of sequences assigned to this phylum unable to be assigned to a particular class 

(Appendix 4). 

 

5.3.1.2 Taxonomic classification at the class level of 454 pyrosequenced 16S rRNA 

gene PCR amplicons derived from heavily degraded colonised cotton from landfill 

leachate microcosm C1-R3 

A total of 24 phyla were detected on the heavily degraded colonised cotton 

sample, with the most abundant phyla comprising Firmicutes (34.7%), Bacteroidetes 

(20.5%), Spirochaetes (14.8%) and Fibrobacteres (14.2%) (Fig. 5.1). Members of the 

Clostridia (96.6%) were the most abundant class within the Firmicutes phylum, with 

Erysipelotrichi (2.0%), Bacilli (1.2%) and an uncharacterised class for which the 

representative sequence accession number was AB476673 (0.04%) also detected 

(Appendix 4). Within the Bacteroidetes, Bacteroidia were the predominant class 

detected comprising 99.3% of the sequences assigned to this phylum. Members of the 

Flavobacteria (0.4%), Sphingobacteria (0.2%) and Cytophagia (0.1%) were also present, 

with the remaining 0.1% of sequences unable to be assigned at the class level (Appendix 

4). Of the sequences assigned to the Spirochaetes, 99.9% were members of the class 

Spirochaetes and the remaining 0.1% unclassified whilst those assigned as members of 
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the Fibrobacteres phylum comprised entirely of those designated as belonging to the 

class Fibrobacteria (Appendix 4). 

    

5.3.2 Metagenome assembly of heavily degraded colonised cotton sample 

The three trimmed sequence libraries generated via Illumina HiSeq technology 

were assembled via MetaVelvet, generating a total of 546,248 contiguous sequences 

(contigs) (Table 5.1). 
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Table 5.1. Assembly of heavily degraded colonised cotton metagenome sequences. 

a. Paired end reads consist of both a forward and reverse sequence, therefore each paired end read represents two of the sequences after 

processing. 

 

Library  Initial number    Number of reads Number of     K-mer length  Number  Average contig  Largestcontig 

 of reads       after processing paired-end      used    of contigs  length  (bp)  length (bp) 

    reads
a

       

 

300 bp 135,007,994     134,585,268 67,087,235     61   115,162 780.4   134,352 

400 bp 103,519,620     102,970,873 51,216,304     61   328,447 497.7   103,882 

600 bp  93,776,958     92,853,901  45,970,929     61   102,639 826.5   91,326 
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5.3.3 Analysis of heavily degraded colonised cotton metagenome contigs against 16S/18S 

rRNA gene data  

The taxonomy of contigs assembled via MetaVelvet from the heavily degraded cotton 

sample was determined via comparison against the M5RNA rRNA gene database via MG-

RAST. Bacteria were the dominant domain comprising 85.6% of the community, with 4.1% 

assigned to eukaryota, 2.7% to archaea and 0.3% to viruses, with 3.3% of contigs unable to be 

classified at the domain level (Fig. 5.2). A total of 18 bacterial phyla were identified with the 

predominant phyla determined as Firmicutes (47.2%), Bacteroidetes (22.8%), Proteobacteria 

(6.4%) and Spirochaetes (6.1%), with 4.4% of these contigs unable to be assigned to a specific 

phylum (Fig. 5.3) (Appendix 5). The eukaryota and archaea consisted of 9 and 1 phyla 

respectively, with the dominant eukaryota determined as Arthropoda (59.6%) and Streptophyta 

(11.5%) (Fig. 5.4), whilst Euryarchaeota (91.18%) dominated the reads assigned to the archaea 

(Fig. 5.5). 

 

 

Figure 5.2. Classification of contigs derived from the metagenome of heavily degraded 

colonised cotton incubated in a landfill leachate microcosm. Domains were assigned via 

analysis of 16/18S rRNA gene sequences by MG-RAST against the M5RNA database, utilising 

the best hit classification algorithm with an E-value cutoff of 1E-5, a minimum identity of 80% 

and a minimum alignment length of 50 bp. 
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Figure 5.3. Classification of bacterial phyla via analysis of contigs derived from the metagenome 

of heavily degraded colonised cotton incubated in a landfill leachate microcosm. Assignments 

were determined via analysis of 16S rRNA gene sequences by MG-RAST against the M5RNA 

database, utilising the best hit classification algorithm with an E-value cutoff of 1E-5, a 

minimum identity of 80% and a minimum alignment length of 50 bp. 
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Figure 5.4. Classification of phyla assigned as eukaryota via analysis of contigs derived from the 

metagenome of heavily degraded colonised cotton incubated in a landfill leachate microcosm. 

Assignment determined via analysis of 18S rRNA gene sequences by MG-RAST against the 

M5RNA database, utilising the best hit classification algorithm with an E-value cutoff of 1E-5, a 

minimum identity of 80% and a minimum alignment length of 50 bp. 

 

 

 

 

 



                                                              

 

159 

 

 

Figure 5.5. Classification of phyla assigned as archaea via analysis of contigs derived from the 

metagenome of the heavily degraded colonised cotton incubated in a landfill leachate 

microcosm. Assignment determined via analysis of 16S rRNA gene sequences by MG-RAST 

against the M5RNA database, utilising the best hit classification algorithm with an E-value cutoff 

of 1E-5, a minimum identity of 80% and a minimum alignment length of 50 bp. 

 

5.3.3.1 Classification of metagenome contigs derived from heavily degraded colonised cotton 

from landfill leachate microcosm C1-R3 at the class level via comparison againt 16S/18S rRNA 

gene data 

Of the 18 bacterial phyla identified via analysis of contigs against the M5RNA database 

with MG-RAST, the Firmicutes (47.2%), Bacteroidetes (22.8%), Proteobacteria (6.4%) and 

Spirochaetes (6.1%) were the most abundant phyla (Fig. 5.3). Within the Firmicutes phylum 

four classes were identified, Clostridia (79. 7%), Bacilli (15. 7%), Erysipelotrichi (2.6%) and 

Negativicutes (2.1%) (Appendix 5). Contigs identified as Bacteroidetes were also assigned to 

one of four classes, Bacteroidia (57.5%), Flavobacteriia (23.9%), Sphingobacteriia (9.3%) or 

Cytophagia (3.9%), with 5.4% of these contigs unable to be assigned to a class (Appendix 5). 

Members of the Proteobacteria belonged to one of six classes, Gammaproteobacteria (30.1%), 

Alphaproteobacteria (23.3%), Deltaproteobacteria (23.3%), Betaproteobacteria (16.4%), 

Epsilonproteobacteria (4.1%) or Zetaproteobacteria (2.7%), whilst the members of the 

Spirochaetes phylum were all assigned to the class Spirochaetia (Appendix 5). 
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Contigs designated as members of the eukaryota via MG-RAST were assigned to one of 

nine phyla, of which Arthropoda (59.6%) and Streptohyta (11.5%) were the most abundant 

(Fig. 5.4). Within the Arthropoda two classes were present, Insecta (90.3%) and Maxillopoda 

(9.7%), whilst Liliopsida (66. 7%) was the only class detected within the Streptohyta phylum 

with the remaining 33.3% of contigs unable to be classified at the class level (Appendix 5). Only 

one phylum (Euryarchaeota) was identified within the archaea (Fig. 5.5) for which 

Methanomicrobia (93.6%) was the sole class identified with the remainder of the contigs (6.5%) 

unassigned to a class (Appendix 5). 

 

5.3.4 Functional analysis of heavily degraded colonised cotton metagenome contigs 

Functional affiliation of predicted proteins from the heavily degraded colonised cotton 

metagenome was determined via comparison against the KEGG (KO) database using MG-

RAST. These proteins were assigned to one of six processes, of which those assigned to 

functions relation to metabolism had the greatest abundance (47.5%) (Fig. 5.6). Within this 

category a further ten putative functions could be determined with amino acid metabolism 

comprising 35.2% of proteins, energy metabolism 31.3% and carbohydrate metabolism 16.8% 

(Fig. 5.7). 
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Figure 5.6. Predicted function of proteins as identified via MG-RAST in metagenome contigs 

derived from the heavily degraded colonised cotton sample. 
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Figure 5.7. Classification of proteins from the heavily degraded colonised cotton metagenome 

assigned to the metabolism category via MG-RAST  

 

5.3.5 Comparison of the heavily degraded colonised cotton metagenome contigs against the 

genome sequence of Fibrobacter succinogenes subsp. succinogenes S85 

The three libraries were compared against related reference genomes via MG-RAST 

via recruitment plot analysis. For each of the libraries, F. succinogenes S85 was the genome 

with the most similarities to the metagenome contigs (Table 5.2). For each of the libraries, 

glycoside hydrolase 9 was within the 10 most prevalent matches when compared with F. 

succinogenes S85 (Table 5.3), and both carbohydrate binding family 11 and glycosyl hydrolase 

family 98 putative carbohydrate were within the top 20 protein matches. 
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Table 5.2. Genomes most closely related to the heavily degraded colonised cotton 

metagenome as determined via analysis with MG-RAST.  

 

Library    Genome       Number of 

protein matches 

300 bp     Fibrobacter succinogenes subsp. succinogenes S85  5931 

    Treponema vincentii ATCC 35580    2153 

    Treponema denticola ATCC 35405    1934 

    Paludibacter propionicigenes WB4    1554 

    Clostridium thermocellum ATCC 27405    1131 

400 bp     Fibrobacter succinogenes subsp. succinogenes S85  7460 

    Methanoculleus marisnigri JR1     4239 

    Paludibacter propionicigenes WB4    4017 

    Treponema vincentii ATCC 35580    2681 

    Clostridium thermocellum ATCC 27405    2551 

600bp    Fibrobacter succinogenes subsp. succinogenes S85   5783 

    Treponema vincentii ATCC 35580    1900 

    Treponema denticola ATCC 35405    1708 

    Paludibacter propionicigenes WB4    1544 

    Clostridium thermocellum ATCC 27405    1045 

 

 

5.3.6 Identification of carbohydrate-active enzymes (CAZymes) present within the heavily 

degraded colonised cotton metagenome  

Each of the three libraries were searched for the presence of proteins identified as 

glycoside hydrolases via MG-RAST. For all three libraries the most abundant classification was 

for proteins that were unable to be assigned to a specific family, followed by the presence of 

family 9 glycoside hydrolases in the 300 and 400 bp libraries and family 43 glycoside 

hydrolases in the 600 bp library (Table 5.3). 
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Table 5.3. Glycoside hydrolase families identified in the metagenome libraries generated from the heavily degraded colonised cotton. 

a. Function as identified via the Carbohydrate Active Enzymes database (Lombard et al., 2014) 

 

Glycoside hydrolase  Function of enzymes in this category
a

  Number of protein  Number of protein  Number of protein 

matches (300 bp)  matches (400 bp) matches (600 bp) 

   

Family protein   Unclassified     151   382   128 

Family 9   Mainly cellulose degradation, second  85   110   84  

largest cellulase family 

Family 3 domain protein Cellulose degradation, cell wall     83   177   51 

modification, pathogen defence   

Family 43   Plant cell wall degradation, includes  69   170   73 

    xylanases 

Family 8   Enzymes that degrade cellulose, chitin,   27   42   21 

lichen and xylan 

Family 31   Enzymes that degrade numerous   24   47   17 

    substrates including starch 

Family 16   Enzymes that target numerous   20   30   25 

    substrates 

Family 5   Largest family, includes cellulases and  17   41   12 

    xylanases 

Family 65 central catalytic Phosphorylases targeting various    16   18   16 

    substrates 

Family 3 protein   Cellulose degradation, cell wall   16   86   21 

    modification, pathogen defence 
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5.4 Discussion 

5.4.1 Bacterial community composition as determined via 16S rRNA gene amplicon 

sequencing of the poorly degraded colonised cotton 

A total of 22 phyla were detected on the poorly degraded colonised cotton sample, of 

which the dominant phyla were Bacteroidetes (72.7%), Proteobacteria (18.7%) and 

Actinobacteria (3.3%) (Fig. 5.1). Members of the Bacteroidetes have been previously identified 

in landfill sites both via general bacterial 16S rRNA gene clone libraries (Huang et al., 2004; 

Huang et al., 2005) and 454 pyrosequencing of 16S rRNA gene PCR amplicons (Bareither et 

al., 2013; Xie et al., 2014). At the class level, Bacteroidia comprised 92.5% of the sequences 

assigned to the Bacteroidetes phylum, supporting a previous 454 pyrosequencing study on 16S 

rRNA gene PCR amplicons derived from an anerobic bioreactor that was treating landfill 

leachate, which demonstrated that Bacteroidia were the dominant class of Bacteroidetes 

identified (Xie et al., 2014). Bacteroidetes are known to occupy a variety of ecological niches 

including activated sludge, decaying plant material and compost, and are capable of degrading 

both polysaccharides and proteins (Thomas et al., 2011), though given that this cotton was 

poorly degraded it is more likely that the species identified here were involved in protein 

degradation and the hydrolysis of simple polysaccharides that were present in the landfill 

leachate. 

Members of the Proteobacteria were the second most abundant phylum comprising 

18.7% of the sequences (Fig. 5.1), of which the dominant classes were Gammaproteobacteria 

(67.7%) and Betaproteobacteria (26.9%) (Appendix 4). Proteobacteria have been detected in 

16S rRNA gene clone libraries from landfill leachate (Huang et al., 2004; Huang et al., 2005), 

with Gammaproteobacteria (22 clones), and Betaproteobacteria (14 clones) identified as the 

most abundant classes of Proteobacteria (Huang et al., 2005). Members of the Proteobacteria 

have also been detected in landfill leachate via 454 pyrosequencing of 16S rRNA gene PCR 

amplicons (Bareither et al., 2013; Xie et al., 2014) in which Gammaproteobacteria (Bareither 

et al., 2013) or Betaproteobacteria (Xie et al., 2014) were the predominant class of 

Proteobacteria. The detection of Proteobacteria as a key member of the landfill biofilm is 

therefore unsurprising, and it is possible that the poorly degraded colonised cotton sample 

simply provided an inert surface for which members of this and other phyla present could 

colonise whilst metabolising the nutrients already present in the landfill leachate. 

Within the poorly degraded colonised cotton 16S rRNA gene PCR amplicon library, 

members of the phylum Actinobacteria comprised 3.3% of sequences, with 96.1% of these 

assigned to the class Micrococcales (Appendix 4). Actinobacteria have previously been detected 
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in landfill leachate via a clone library (Huang et al., 2004) and 454 pyrosequencing (Xie et al., 

2014), both targeting the 16S rRNA gene. Given the broad ecological range of members of the 

Actinobacteria, including both natural and managed environments, with the majority of species 

having a saprophytic role and contributing to nutrient cycling in this manner (Goodfellow and 

Williams, 1983), their detection in landfill leachate is unsurprising. 

 

5.4.2 Bacterial community composition as determined via 454 pyrosequencing of the heavily 

degraded colonised cotton 

Of the 24 phyla detected via 454 pyrosequencing of the 16S rRNA gene, the four most 

abundant phyla were Firmicutes (34.7%), Bacteroidetes (20.5%), Spirochaetes (14.8%) and 

Fibrobacteres (14.2%) (Fig. 5.1). Members of the Firmicutes have previously been identified as 

100% and 90% of the 16S rRNA gene clones in libraries derived from solid cellulosic material 

and mixed cellulosic/leachate material respectively from a bioreactor treating landfill leachate 

(Burrell et al., 2004), and have also been detected in other 16S rRNA gene clone library studies 

(Huang et al., 2004; Huang et al., 2005). 454 pyrosequencing studies targeting the 16S rRNA 

gene have also detected both Firmicutes, and more specifically Clostridia, within both an 

anerobic bioreactor (Xie et al., 2014) and a lab-scale reactor (Bareither et al., 2013) treating 

landfill leachate, with Clostridia identified as the most abundant class within the Firmicutes 

(Bareither et al., 2013; Xie et al., 2014). The identification of members of the Clostridia 

supports previous qPCR analysis of this heavily degraded colonised cotton sample, which 

determined that Clostridium clusters III, IV and XIV totalled 21.3% of the bacterial 

community. Of the 19 Clostridium clusters, four (I, III, IV and XIVab) contain cellulolytic 

species (Collins et al., 1994), and it is likely that the members of these clusters have played a 

role in the degradation of the cotton sampled here, with members of clusters III and IV most 

commonly identified in landfill (Van Dyke and McCarthy, 2002; Li et al., 2009; McDonald et 

al., 2012; Burrell et al., 2004), along with cluster XIV (McDonald et al., 2012; Burrell et al., 

2004). Members of cluster I have also been isolated from the landfill environment both in 

chapters 3 and 4, and in a previous study (Krishnamurthi and Chakrabarti, 2013), despite their 

absence in a previous landfill 16S rRNA gene clone library (Burrell et al., 2004) and the lack of 

detection of this cluster using cluster-specific 16S rRNA gene PCR primers (Van Dyke and 

McCarthy, 2002; McDonald et al., 2012), therefore suggesting a potential role for cluster I 

clostridia in landfill cellulose decomposition.  

Members of the Bacteroidetes were also detected on the heavily degraded cotton, as 

well as on the poorly degraded sample (Fig. 5.1), although they comprised 20.5% of sequences 
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of the heavily degraded cotton in comparison to 72.7% on the poorly degraded sample. For 

both samples, Bacteroidia was the most prevalent class and as discussed previously this is 

unsurprising given the previous dominance of this class within a 16S rRNA gene 454 

pyrosequencing dataset derived from landfill leachate (Xie et al., 2014). Both proteins and 

polysaccharides can be utilised by Bacteroidetes (Thomas et al., 2011), thus accounting for 

these presence of this phylum in both samples despite the differences in the degradation of the 

cotton, and it is likely that more cellulolytic members of this genus are present on the heavily 

degraded cotton sample than on the poorly degraded sample. 

Sequences assigned to the Spirochaetes were the third most dominant phylum (14.8%) 

and have been identified in landfill both by 16S rRNA gene clone libraries (Huang et al., 2004; 

Huang et al., 2005) and 454 pyrosequencing targeting the 16S rRNA gene (Bareither et al., 

2013; Xie et al., 2014). Spirochetes have also been isolated from the bovine rumen, (Stanton 

and Canaleparola, 1979) and although are not cellulolytic, they are capable of utilising 

polymers such as xylan, pectin, starch and cellobiose and may act in a symbiotic manner with 

cellulolytic organisms in order to improve the hydrolysis of cellulose (Leschine, 1995). When 

Spirochaeta caldaria was grown in co-culture with Clostridium thermocellum, a cellulolytic 

bacteria, the rate of cellulose degradation in the co-culture was higher than that observed in the 

pure culture of C. thermocellum (Pohlschröder et al., 1994).  This is possibly due to the 

removal of cellobiose by S caldaria, as high concentrations of cellobiose can have an inhibitory 

effect on cellulose hydrolysis (Ljungdahl and Eriksson, 1985). The importance of spirochetes 

in the rumen environment and their detection both here and in previous studies may suggest 

that they have an important role in the cellulose degradation that occurs in landfill sites, 

especially in light of the fact that two species of Treponema, T. vincentii and T. denticola, were 

the second and third genomes with the most protein matches against the 300 and 600 bp 

metagenome libraries via recruitment plot analysis (Table 5.2), and T. vincentii was also the 

fourth genome with the most protein matches against the 400 bp library (Table 5.2).  

The detection of members of the Fibrobacteres as 14.2% of the sequences at the 

phylum level is perhaps more surprising. Despite the detection of fibrobacters in landfill sites 

via genus specific 16S rRNA gene PCR primers (McDonald et al., 2008, McDonald et al., 

2012), they remained undetected in this environment via either 16S rRNA gene clone libraries 

(Huang et al., 2004; Huang et al., 2005; Burrell et al., 2004) or 454 pyrosequencing approaches 

(Bareither et al., 2013; Xie et al., 2014). Given the absence of Fibrobacter spp. in other landfill 

leachate studies (Burrell et al., 2004; Huang et al., 2004; Huang et al., 2005; Bareither et al., 

2013; Xie et al., 2014), the fact that they were both identified and comprised the fourth most 
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abundant phylum within this 16S rRNA gene amplicon library (Fig. 5.1) supports the assertion 

that fibrobacters are one of the prevalent members of the bacterial community within this 

environment (McDonald et al., 2012). Given their low abundance on the poorly degraded 

cotton as determined in the 16S rRNA gene PCR amplicon library generated in this study (Fig. 

5.1), in comparison to the heavily degraded colonised cotton, it is evident that members of the 

genus Fibrobacter are an important member of the landfill cellulolytic microbial community.  

 

5.4.3 Taxonomic profile of metagenome contigs derived from heavily degraded colonised 

cotton 

Of the 85.6% of contigs that were designated as bacteria at the domain level, 18 phyla 

were identified, with members of the Firmicutes (47.2%), Bacteroidetes (22.8%), Proteobacteria 

(6.4%) and Spirochaetes (6.1%) the most abundant (Fig. 5.3). The presence of the Firmicutes, 

Bacteroidetes and Spirochaetes is similar to that observed in the heavily degraded colonised 

cotton 16S rRNA gene PCR amplicon library, however Proteobacteria were more readily 

detected on the poorly degragded colonised cotton (18.7%) than the heavily degraded cotton 

(0.9%) (Fig. 5.1). In addition, Fibrobacteres comprised 0.8% of the metagenome contigs (Fig. 

5.3) in comparison to 14.2% of the sequences from the heavily degraded cotton 454 

pyrosequencing dataset (Fig. 5.1). The disparity between these results may be explained by the 

nature of the different sequencing approaches used. The amplicon approach sequenced only 

the 16S rRNA gene, thus ensuring that all sequences could be compared against each other 

and differences in the members of the bacterial community between the poorly and heavily 

degraded colonised cotton inferred with more accuracy, although as discussed previously there 

are issues with PCR bias, particularly in relation to fibrobacters (Tajima et al., 2001). In 

contrast, the metagenome sequencing approach resulted in the generation of both 16/18S 

rRNA gene and other gene sequences, many of which were protein sequences that could 

therefore not be assigned to a particular taxonomic rank via analysis against a 16/18S gene 

database, thus potentially resulting in fewer sequences being assigned as belonging to the 

Fibrobacteres.  

 

5.4.4 Functional analysis of the heavily degraded colonised cotton metagenome 

Of the predicted proteins that were assigned putative functions via MG-RAST, the 

largest number (47.5%) were involved in metabolism (Fig. 5.6), with further analysis of this 

group revealing proteins involved in amino acid metabolism (35.2%), energy metabolism 

(31.3%) and carbohydrate metabolism (16.8%) (Fig. 5.7). The proteins assigned to energy and 
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carbohydrate metabolism are unsurprising given the degraded nature of this cotton sample, and 

the detection of high numbers of members of the Clostridia, of which many are known 

cellulose degraders (Collins et al., 1994) and Bacteroidetes, which can also utilise complex 

polysaccharides as well as proteins and amino acids (Thomas et al., 2011).  

Recruitment plot analysis demonstrated that the genome of F. succinogenes S85 had 

the most proteins that matched proteins encoded within the metagenome (Table 5.2). This is 

intriguing given the low abundance of members of the Fibrobacteres as determined via 

comparison of 16S rRNA gene sequences, however, as discussed previously this could be due 

to the nature of metagenome sequencing, which sequences random fragments of the entire 

genome rather than one specific region, and it is therefore more likely that more protein 

coding regions will have been sequenced than 16S rRNA gene regions. The abundance of 

proteins similar to that of F. succinogenes subsp. succinogenes S85 present in the heavily 

degraded colonised cotton metagenome as determined via recruitment plot analysis (Table 5.2) 

also demonstrates that fibrobacters are an important member of the cellulolytic microbial 

community, especially due to the fact that for each of the libraries compared against F. 

succinogenes S85, enzymes involved in cellulose hydrolysis, including members of the 

glycoside hydrolase family 9, carbohydrate binding family 11 and glycosyl hydrolase family 98 

putative carbohydrate, were within the top 20 hits. 

Further analysis of the glycoside hydrolases present within the heavily degraded 

colonised cotton metagenome revealed that for each of the three libraries, many of the 

glycoside hydrolases could not be assigned to a family, with glycoside hydrolases belonging to 

family 9 the second most prevalent in the 300 and 600 bp libraries, and with the glycoside 

hydrolases assigned as family 3 domain proteins the second most prevalent in the 400 bp 

library (Table 5.3). The presence of these glycoside hydrolase, especially family 9 which is the 

largest cellulose family, supports the assertion that the dominant members of this microbial 

community are responsible for the cellulolytic activity that occurs in landfill sites.  

 

5.5 Conclusions 

Although landfill sites are a repository of cellulosic matter, little is understood about the 

taxonomic and functional diversity of the microbial community. The use of high throughput 

454 pyrosequencing of 16S rRNA gene PCR amplicons from two colonised cotton samples at 

different stages of decomposition from landfill leachate microcosms implicates the involvement 

of members of the Firmicutes, Bacteroidetes, Spirochaetes and Fibrobacteres as having a role 

in the cellulose hydrolysis that occurs within landfill sites. In addition, the use of metageome 
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sequencing on the heavily degraded colonised cotton sample demonstrated the abundance of 

members of the Firmicutes, Bacteroidetes, Proteobacteria and Spirochaetes, with analysis of 

the glycoside hydrolases present demonstrating the cellulolytic capabilities of the members of 

this microbial community, and recruitment plot analysis on the proteins encoded in the heavily 

degraded colonised cotton metagenome contigs further supported the cellulolytic role of 

members of the Fibrobacteres. These data provide an important insight into the role of 

members of the microbial community within the landfill environment, with these organisms 

playing an important role in both carbon cycling and waste management.  
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6.1 Synthesis 

The most abundant organic polymer on Earth is cellulose, and the hydrolysis of this 

compound represents a critical step in the global carbon cycle (Leschine, 1995). The 

degradation of cellulosic biomass is best characterised in the rumen, where fibrobacters are one 

of the predominant bacterial species that mediate the degradation of cellulose (Denman and 

McSweeney 2006; Koike and Kobayashi 2001; Kobayashi et al., 2008). One possible 

explanation for the superior cellulolytic activity of Fibrobacter spp. is the apparent evolution of 

a novel mechanism by which Fibrobacter spp. degrade cellulose. The genome sequence of F. 

succinogenes S85 demonstrated that this organism did not utilise either the free cellulase or 

cellulosomal mechanisms typically associated with cellulose hydrolysis (Suen et al., 2011). It is 

therefore suggested that F. succinogenes attaches to the cellulose via fibro-slime proteins and 

type IV pilin structures present on the outer membrane of the cell, before using carbohydrate-

active enzymes to cleave the cellulose into individual chains that can be transported through the 

outer membrane into the periplasmic space, where they are further degraded (Wilson, 2009; 

Suen et al., 2011).  

F. succinogenes (then Bacteroides succinogenes) was first isolated from the bovine 

rumen in 1947 (Hungate, 1947; Hungate, 1950), and since then only two species (F. 

succinogenes and F. intestinalis) have been formally described, with fibrobacters thought to be 

present solely in the mammalian intestinal tract (Montgomery et al., 1988). This is due to the 

obligately anaerobic phenotype of known Fibrobacter strains, which makes progress towards 

the isolation and cultivation of new Fibrobacter isolates a challenging process. Consequently, 

only a handful of additional Fibrobacter strains have been isolated in the subsequent 60 years, 

and all have been obtained from mammalian intestinal tracts (Amann et al., 1992). 

However, the paradigm that fibrobacters are restricted to the gut environment has since 

been disproven via the detection of novel members of the genus Fibrobacter in landfill sites 

(McDonald et al., 2008; McDonald et al., 2012) and freshwater lakes (McDonald et al., 2009) 

via genus specific 16S rRNA gene PCR primers, which provided the first evidence for 

fibrobacters existing outside of the gut environment. In addition, these environments contained 

both species similar to F. succinogenes, and novel lineages that may represent as yet 

uncultivated species, suggesting that the true diversity of this phylum was not yet characterised 

(Ransom-Jones et al., 2012). The paucity of characterised species also hinders our 

understanding of both the ecology of the members of this phylum, and the mechanism by 

which they hydrolyse cellulose. Therefore, the aims of this thesis as stated in chapter 1 were: 



 

175 

 

1. To determine the ecological range and taxonomic diversity of members of the 

Fibrobacteres phylum.  

2. To attempt the isolation and cultivation of the Fibrobacter spp. present in landfill sites. 

3. To determine the function of members of the Fibrobacteres phylum present in landfill 

sites. 

 

6.2 Results of objective 1; to determine the ecological range and taxonomic diversity of 

members of the Fibrobacteres phylum 

As discussed throughout this thesis, much of the previous work on members of the 

genus Fibrobacter has been conducted on the rumen, resulting in a lack of information on both 

the environmental distribution and diversity contained within this genus. This is compounded 

by that fact that fibrobacters are obligate anaerobes, thus making them difficult to isolate and 

cultivate (Hungate, 1966) and that they are poorly represented via molecular methods using 

general bacterial primers targeting the 16S rRNA gene, even in the rumen where they are 

known to predominate (Whitford et al.; 1998; Daly et al., 2001; Tajima et al., 1999; Tajima et 

al., 2000; Tajima et al., 2001). However, novel Fibrobacter spp. have been detected in landfill 

sites (McDonald et al., 2008) and freshwater lakes (McDonald et al., 2009) via Fibrobacter-

specific 16S rRNA gene PCR primers, suggesting that the use of specific primers may be a 

better method for studying the members of this genus. Therefore, in order to identify the 

ecological range of fibrobacters, these genus specific 16S rRNA gene PCR primers were used 

to determine the presence of fibrobacters in 64 environmental samples, as outlined in chapter 

2. 

Fibrobacters were detected in 23 samples, including equine faecal, ovine and bovine 

rumen, soil, cryoconite, freshwater, estuarine and marine sediment and landfill leachate 

samples, demonstrating the broad ecological range of the members of this genus. In addition, 

the detection of Fibrobacter spp. in estuarine and marine sediments and cryoconite represents 

the first specific detection of members of this genus in these environments, and adds to the 

current body of knowledge concerning the ecological range of this phylum. These data 

demonstrate the broad ecological diversity of members of the genus Fibrobacter, with a 

significant proportion of this diversity present outside of the mammalian gut, thus 

demonstrating that Fibrobacter spp. have a wider ecological distribution and greater role in 

carbon cycling in the biosphere than previously thought. It is therefore likely that fibrobaters 

are present in a wide variety of anoxic environments in which there is cellulosic biomass.  
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These data yielded important insights into the ecological distribution of members of the 

genus Fibrobacter, and provided the basis for taxonomic analysis. Clone library sequences of 

the Fibrobacter-specific 16S rRNA gene PCR amplicons were constructed for 17 

environmental samples, and these sequences, in addition to all Fibrobacter sequences in the 

Ribosomal Database Project database, were used to determine the phylogeny of the members 

of this phylum, resulting in the most comprehensive study the Fibrobacteres to date. A total of 

63 OTUs at were generated at 95% sequence similarity, suggesting that there are a number of 

novel species contained within the Fibrobacteres phylum. Of these OTUs, 18 OTUs contained 

only one sequence, and therefore it cannot be inferred as to whether or not these lineages are 

exclusive to a particular environment or if they would in actual fact contain sequences derived 

from several environments if the sequencing coverage was increased. The use of next 

generation sequencing, such as 454 pyrosequencing or Illumina amplicon sequencing, would 

enable a better study of the taxonomic diversity present in these environmental samples, 

however although 454 pyrosequencing was attempted as part of the work contained within 

chapter 2, it was unsuccessful and so clone library sequencing was utilised instead. At the time, 

454 pyrosequencing was selected due to the greater read length than sequencing on the 

Illumina platform, in order to enable more accurate taxonomic analysis, but this would still 

have resulted in shorter reads than the clone library sequencing, which generated almost full 

length Fibrobacter-specific 16S rRNA gene PCR amplicon sequences. Since then advances 

have been made in the Illumina sequencing capability, with the V3 Miseq kit enabling the 

generation of 2x300 bp paired-end reads (Tang et al., 2014), which would enable both the 

generation of sufficient length sequences to perform accurate taxonomic analysis and greater 

coverage to enable further identification of the Fibrobacter spp. present in different 

environments. 

The taxonomic analysis of the Fibrobacters phylum also revealed the unexplored 

diversity contained within the two characterised species, with F. succinogenes comprising 11 

OTUs (95%) and F. intestinalis 3 OTUs (95%), suggesting that the current species designations 

actually represent distinct genera that comprise a collection of several different species. The 

cultivation of these novel species is therefore critical to our understanding of the taxonomy and 

function of the members of this phylum, with the adaptation and diversity of fibrobacters in 

these environments likely to have also resulted in the evolution of novel enzymes and growth 

conditions, that may be favourable for biotechnological applications.  
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6.3 Results of objective 2; to attempt the isolation and cultivation of the Fibrobacter spp. 

present in landfill sites 

Whilst the presence and function of fibrobacters is relatively well characterised in the 

rumen, there are no isolates of Fibrobacter spp. from other environments despite the diversity 

contained within this phylum, described in chapter 2. Because of this lack of isolates it difficult 

to determine precisely the role of these species in these environments, and it is therefore 

important to attempt to isolate Fibrobacter spp. in order to be able to ascertain their function. 

Additionally, given the previous characterisation work on landfill sites, including the detection 

of novel lineages in chapter 2, and the potential abundance of fibrobacters within this 

environment (McDonald et al., 2008; McDonald et al., 2012), landfill sites were selected as the 

environment for attempts to isolate and cultivate fibrobacters as outlined in chapters 3 and 4.  

In chapter 3, microcosms containing landfill leachate and Avicel were used as a source 

for the isolation and cultivation of Fibrobacter spp. via the method of Hungate (Hungate, 

1947).  Initially 63 cultures were isolated, of which five were positive for the presence of 

fibrobacters via PCR using genus specific 16S rRNA gene primers, and these five strains 

underwent seven rounds of purification resulting in four pure cultures, although these were 

slow growing and attempts at both nucleic acid extraction and further sub-culturing were 

unsuccessful. The use of Fibrobacter specific 16S rRNA gene PCR primers to identify cultures 

for further purification is unusual, as normally cultivation studies focus on the purification of 

strains and then classify the isolates once they are pure. However, given the laborious nature of 

anaerobic cultivation, and the difficulties in isolating fibrobacters, this screening was required in 

order to maximise the likelihood of isolating and purifying Fibrobacter spp. The difficult 

nature of these species was demonstrated when it was impossible to further passage or extract 

DNA from the pure cultures, and without the PCR derived data from previous rounds, it 

would have been impossible to determine the presence of fibrobacters in the cultures, and 

utilise 16S rRNA gene sequencing in order to determine the taxonomy of these isolates. 

 Sequencing of genus specific 16S rRNA gene PCR amplicons from previous rounds of 

purification determined that these fibrobacters were closely related to F. succinogenes, and 

formed a distinct group within F. succinogenes subsp. succinogenes. This represents the first 

isolation of F. succinogenes from outside of the mammalian gut, and the first isolation of 

fibrobacters from a landfill site. The isolation of F. succinogenes, rather than the novel 

fibrobacters detected in landfill sites is intriguing in light of the fact that a previous clone library 

of genus-specific 16S rRNA gene PCR amplicons, derived from landfill leachate, detected only 

two F. succinogenes clones out of a total of 58 (McDonald et al., 2008). The isolation of F. 
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succinogenes may therefore be due to the use of culture medium designed for the isolation of 

anaerobic rumen bacteria, thus inadvertently selecting for species related to those present in the 

rumen. However, the fact that F. succinogenes could be isolated and propagated from landfill 

leachate, combined with its molecular detection in landfill, suggest that it is metabolically active 

in this environment, rather than being present solely due to faecal pollution.  

In order to attempt the isolation of novel Fibrobacter spp. from landfill, a combined 

molecular and cultivation-based study was conducted on dewaxed cotton string from a landfill 

leachate microcosm. Previous analysis of this cotton had determined that fibrobacters 

comprised 28.9% of the total bacterial 16S rRNA gene copies, as determined via qPCR 

(McDonald et al., 2012), with this enrichment potentially resulting the isolation of novel 

Fibrobacter spp. In addition, the total community of the colonised cotton string was 

characterised in order to determine the potential role of fibrobacters in this environment.  In 

chapter 4, 55 bacterial strains were isolated from dewaxed cotton string that had been 

incubated in a landfill leachate microcosm, with cultures most closely related to either C. 

leptum, C. sporogenes or S. acetigenes purified, and the strains related to C. leptum 

representing a novel species, and possibly genus, based on 16S rRNA gene sequence similarity 

(90 – 93%). A total of 13 of the 55 strains remained impure after three rounds of purification 

via the Hungate roll tube method (Hungate, 1947), with six of these strains containing 

fibrobacters as determined via PCR using genus specific 16S rRNA gene primers. Given that to 

date only two species of the genus, F. succinogenes and F. intestinalis, have been isolated and 

characterised, it is understandable that further attempts at cultivation would be difficult. The 

modification of the inoculum source in order to utilise solid cellulosic matter may be a more 

efficient method for isolating Fibrobacter spp. (Shinkai et al., 2009). Other modifications, such 

as the use of a gelling agent that enables the migration of the less motile Fibrobacter spp. 

though the agar, may also prove useful in cultivating these species (Nyonyo et al., 2013; Nyonyo 

et al., 2014; Shinkai et al., 2009). It may also be possible to utilise a different purification 

method, such as dilution to extinction, in order to purify Fibrobacter spp. (Kenters et al., 

2011), with qPCR using Fibrobacter specific and general bacterial 16S rRNA gene primers 

utilised in order to track the purity of the cultures. 

The fact that the fibrobacters were associated with either C. sporogenes (chapter 3) or 

C. botulinum (chapter 4) is intriguing, especially due to the fact that these two species are both 

members of cluster I of the clostridia and are closely related (Lee and Riemann, 1970). It is 

possible that this association is required by the Fibrobacter spp. in order for them to survive, 

thus potentially explaining the difficulties in obtaining pure isolates of these species.   
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It is likely that further isolation attempts will be enhanced by molecular data, such as 

genome or metagenome sequencing (Pope et al., 2011; Renesto et al., 2003). The use of a 

combined molecular and cultivation approach would also useful both for confirming the 

cellulolytic phenotype of fibrobacters outside of the gut environment, and for elucidating the 

mechanism by which members of the genus Fibrobacter are able to degrade cellulose. 

 

6.4 Results of objective 3; to determine the function of members of the Fibrobacteres phylum 

present in landfill sites 

Due to the fact that the Fibrobacter spp. isolated in chapter 3 were unable to be sub-

cultured and that those isolated in chapter 4 were impure, it was not possible to confirm the 

cellulolytic phenotype of the landfill fibrobacters based solely on this work. However, the fact 

that these strains were able to be isolated from microcosms containing either Avicel or dewaxed 

cotton string as the sole carbon source does suggest fibrobacters are capable of degrading 

cellulose, especially in light of the fact that although these Fibrobacter spp. were in co-culture 

with C. sporogenes (chapter 3) or C. botulinum (chapter 4), neither C. sporogenes or C. 

botulinum are  capable of degrading cellulose (Sebaihia et al., 2007). In order to confirm the 

role of fibrobacters in landfill, two next generation sequencing approaches were used. The first 

was 454 pyrosequencing of 16S rRNA gene PCR amplicons from poorly and heavily degraded 

colonised cotton samples incubated in microcosms containing landfill leachate, and the second 

was shotgun metagenome sequencing of the heavily degraded colonised cotton, both outlined 

in chapter 5. 

The comparison of the 16S rRNA gene amplicon libraries from the heavily and poorly 

degraded colonised cotton implicated members of the bacterial phyla Firmicutes, 

Bacteroidetes, Spirochaetes and Fibrobacteres as the major bacterial cellulose degraders in 

landfill sites. The metagenome sequences derived from the heavily degraded colonised cotton 

supported assertion that members of the Firmicutes, Bacteroidetes and Spirochaetes are 

involved in cellulose hydrolysis, with the additional involvement of members of the 

Proteobacteria. 

The Firmicutes has previously been identified as the dominant phylum in a bioreactor 

treating landfill leachate via a 16S rRNA gene clone library (Burrell et al., 2004), and has also 

been detected in other landfill 16S rRNA gene clone library studies (Huang et al., 2004; Huang 

et al., 2005) and 16S rRNA gene 454 pyrosequencing studies on an anerobic bioreactor (Xie et 

al., 2014) and a lab-scale reactor (Bareither et al., 2013) treating landfill leachate. The 

involvement of members of the Bacteroidetes, which are able to degrade polysaccharides 
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(Thomas et al., 2011) is also expected due to their previous detection in landfill leachate via 

general bacterial 16S rRNA gene clone libraries (Huang et al., 2004; Huang et al., 2005) and 

16S rRNA gene PCR amplicon 454 pyrosequencing studies (Bareither et al., 2013; Xie et al., 

2014). Both Proteobacteria and Spirochaetes have previously been detected in landfill leachate 

16S rRNA gene clone libraries (Huang et al., 2004; Huang et al., 2005), and Spirochaetes have 

also been identified in landfill leachate via 454 pyrosequencing targeting the 16S rRNA gene 

(Bareither et al., 2013; Xie et al., 2014). The detection of members of the Fibrobacteres via 

454 pyrosequencing of 16S rRNA gene PCR amplicons is more surprising, as although they 

have been previously detected in landfill sites via genus-specific 16S rRNA gene PCR primers 

(McDonald et al., 2008, McDonald et al., 2012), previous landfill leachate studies utilising 

either clone libraries (Huang et al., 2004; Huang et al., 2005; Burrell et al., 2004) or previous 

454 pyrosequencing approaches (Bareither et al., 2013; Xie et al., 2014) targeting the 16S 

rRNA gene have failed to detect members of this phylum. Therefore these data not only 

implicate fibrobacters in the cellulose degradation that occurs in landfill sites, but also 

demonstrates that they are more readily detected on the colonised cotton sting that had been 

used as a ‘bait’ for cellulolytic species than in the landfill leachate, suggesting that this 

enrichment may be a better method for studying the fibrobacters present in environmental 

samples. 

Further functional analysis of the heavily degraded colonised cotton metagenome in 

chapter 5 determined that the genome of F. succinogenes subsp. succinogenes S85 had the 

most protein matches against each of the three metagenome libraries, with T. vincentii and T. 

denticola (phylum Spriochaetes) the second and third genomes with the most protein matches 

against the 300 and 600 bp metagenome libraries. These data implicate both fibrobacters and 

spriochetes as being important members of the landfill cellulolytic microbial community. 

Recruitment plot analysis of the genome of F. succinogenes subsp. succinogenes S85 against 

the metagemome contigs confirmed this via the detection of proteins involved in cellulose 

hydrolysis by F. succinogenes in the metagenome. These included members of glycoside 

hydrolase family 9, the largest cellulase family, but a large number of glycoside hydrolases were 

unable to be assigned to a specific family, further supporting the novelty of the mechanism by 

which Fibrobacter spp. degrade cellulose.  These data, combined with the isolation of 

fibrobacters in chapter 4 from the dewaxed cotton string, demonstrates that the fibrobacters 

present in landfill sites are active members of the cellulolytic community. 
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6.5 Key findings of this study 

The key findings from this study are: 

  Fibrobacters have a broad ecological range that includes mammalian and termite guts, 

terrestrial, aquatic and managed environments (landfill) where cellulose decomposition 

occurs; here, the first specific detection of fibrobacters in marine and estuarine 

sediments, and Arctic cryoconite samples is also reported. 

 The Fibrobacter genus contains 63 OTUs at 95% clustering of the 16S rRNA gene 

sequences, demonstrating the molecular detection of several new species of 

fibrobacters. 

 Members of F. succinogenes comprised 11 OTUs and F. intestinalis 3 OTUs at 95% 

clustering of the 16S rRNA gene sequences, suggesting that these two formally 

described species may in fact be separate genera. 

 F. succinogenes has been isolated from a landfill site, providing the first evidence that F. 

succinogenes is metabolically active outside of the mammalian intestinal tract. 

 Fibrobacter spp. have been isolated from dewaxed cotton string incubated in a landfill 

leachate microcosm, demonstrating the cellulolytic nature of fibrobacters in landfill.  

 A novel species of bacteria, related to C. leptum, was isolated from a landfill site and its 

16S rRNA gene similarity (90-93%) suggests that this is potentially a member of a new 

genus within the Firmicutes phylum. 

 S. acetigenes was isolated from a landfill site, representing the first isolation of a 

member of Clostridium cluster XII from landfill. 

 Fibrobacters were determined to be important members of the landfill cellulolytic 

community via comparative 454 pyrosequencing targeting 16S rRNA gene PCR 

amplicons, which determined that members of the Fibrobacteres comprised 14.2% of 

sequences from a heavily degraded colonised cotton sample in comparison to 0.02% of 

sequences from the poorly degraded sample. 

 The cellulolytic phenotype of landfill fibrobacters was confirmed via functional analysis 

of the metagenome from a heavily degraded colonised cotton sample, which 

demonstrated that F. succinogenes S85 had the most protein matches to those encoded 

within the metagenome, including members of glycoside hydrolase family 9. 
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6.6 Future work 

The detection of novel Fibrobacter spp. in a range of environmental niches 

demonstrates that fibrobacters have a broader ecological range and are more diverse than 

previously thought.  Given that this diversity has likely also resulted in the evolution of novel 

enzyme systems, it is inconceivable that so little is known with regards to the taxonomy and 

function of the members of the genus Fibrobacter.  

Further attempts to isolate and cultivate the novel Fibrobacter spp. present in a variety 

of environments would enable both the characterisation of their taxonomy, and function within 

their environmental niche. Given the level of diversity contained within the phylum based 

solely on 16S rRNA gene sequence data, it is also likely that different Fibrobacter isolates 

would have different growth conditions and different enzymes of potential interest. 

Comparative genomic analysis of new Fibrobacter isolates derived from contrasting 

environments, and F. intestinalis and F succinogenes subspecies against the genome of F. 

succinogenes S85, would also further improve our understanding of the taxonomy, ecology and 

mechanism of cellulose hydrolysis exhibited by the members of this phylum.  

Additionally, the use of mRNA transcriptome sequencing on these Fibrobacter strains 

whilst they are grown on different substrates would also improve our understanding of the 

novel mechanism by which fibrobacters are thought to degrade cellulose, by elucidating the 

genes, and therefore enzymes, required for various cellulosic substrates with differing levels of 

complexity. These data would provide an important insight into the cellulolytic mechanism of 

Fibrobacter spp., with the potential for the enzymes to be utilised in biotechnological 

applications such as the improvement of ruminant nutrition, waste management and the 

production of second-generation biofuels.  
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Supplementary Table 1: Sequences contained within each OTU, the environment from which they were derived and the percentage of sequences 

for each OTU that are associated with each environment (*RS = representative sequence for that OTU).  

 

Number of 

sequences 

in OTU 

(95%) 

sequence 

identity 

Sequenc

e 

number 

NCBI 

sequence 

accession 

number  

Similarity to 

representative 

sequence for 

OTU (%) 

 

Environmental source 
Sequence represents a cultivated 

species 

Environmental composition of 

OTU: % of sequences from each 

environment. 

1 0 FJ716839 RS* Marine Sediment  Marine Sediment 100 

2 0 M62686 RS* Porcine Cecum Fibrobacter intestinalis; C1a Other Mammal 100 

 1 M62695 97 Rat Cecum Fibrobacter intestinalis; NR9 

4 0 M62687 RS* Porcine Cecum Fibrobacter intestinalis; DR7 Ovine 50 

Other Mammal 50  1 M62690 95 Ovine Rumen Fibrobacter intestinalis; JG1 

 2 M62691 95 Ovine Rumen Fibrobacter intestinalis; LH1 

 3 HQ008626 96 Dromedary Camel  

12 0 M62683 RS* Bovine Rumen Fibrobacter succinogenes; A3C Bovine 75 

Bovine/Lake Sediment 8.3 

Landfill 8.3 

Marine Sediment 8.3 

 1 M62684 96 Bovine Rumen Fibrobacter succinogenes; B1 

 2 M62685 96 Bovine Rumen Fibrobacter succinogenes; BL2 

 3 EF186237 98 Bovine Rumen  

 4 JF629951 95 
Bovine Rumen/Lake 

Sediment 
 

 5 JF657541 97 Bovine Rumen  

 6 KJ364216 100 Landfill  

 7 KJ364259 97 Marine Sediment  

 8 KJ364262 98 Bovine Rumen  

 9 KJ364263 95 Bovine Rumen  

 10 KJ364269 98 Bovine Rumen  

 11 KJ364270 97 Bovine Rumen  

122 0 M62696 RS* Bovine Rumen Fibrobacter succinogenes; S85 Landfill 24 
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 1 DQ054633 97 Bovine Rumen  Bovine 18 

Lake 14 

Soil 11 

Estuarine 9 

Bovine/Lake Sediment 8 

Ovine 7 

Simulated Rumen 3 

Marine Sediment 3 

Other Mammal 2 

Equine <1 

 

 2 DQ054634 98 Bovine Rumen  

 3 AB275487 98 Ovine Rumen Fibrobacter succinogenes; OS117 

 4 AB275488 98 Ovine Rumen Fibrobacter succinogenes; AS206 

 5 AB275489 98 Ovine Rumen Fibrobacter succinogenes; AS213 

 6 AB275509 98 Ovine Rumen Fibrobacter succinogenes; RS223 

 7 AB275513 98 Ovine Rumen Fibrobacter succinogenes; RS233 

 8 AM493696 99 Simulated Rumen  

 9 AM493698 97 Simulated Rumen  

 10 AM493701 99 Simulated Rumen  

 11 AM493708 99 Simulated Rumen  

 12 EF186240 98 Bovine Rumen  

 13 EF186242 98 Bovine Rumen  

 14 EF186234 99 Bovine Rumen 
Fibrobacter succinogenes subsp. 

succinogenes S85 

 15 EF186235 98 Bovine Rumen 
Fibrobacter succinogenes subsp. 

succinogenes S85; 2 

 16 EU719256 98 Bovine Rumen  

 17 EU459511 95 Capybara Faeces  

 18 EU981979 98 Buffalo Rumen  

 19 FJ711720 98 Lake Sediment  

 20 FJ711721 98 Lake Sediment  

 21 FJ711722 98 Lake Sediment  

 22 FJ711724 98 Lake Sediment  

 23 FJ711725 98 Lake Sediment  

 24 FJ711726 98 Lake Sediment  

 25 AB549935 96 Equine Faeces  

 26 GQ327172 98 Bovine Rumen  

 27 HM104722 96 Bovine Rumen  

 28 HM104756 95 Bovine Rumen  
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 29 JF619947 96 Bovine Rumen  

 30 JF628603 97 Bovine Rumen  

 31 JF631124 97 Bovine Rumen  

 32 JF631487 96 Bovine Rumen  

 33 JF643198 97 
Bovine Rumen/Lake 

Sediment 
 

 34 JF654521 96 
Bovine Rumen/Lake 

Sediment 
 

 35 JF655714 97 
Bovine Rumen/Lake 

Sediment 
 

 36 JF655875 97 
Bovine Rumen/Lake 

Sediment 
 

 37 JF659371 97 
Bovine Rumen/Lake 

Sediment 
 

 38 JF659783 98 
Bovine Rumen/Lake 

Sediment 
 

 39 JF662483 97 
Bovine Rumen/Lake 

Sediment 
 

 40 JF663034 97 
Bovine Rumen/Lake 

Sediment 
 

 41 JF665372 98 
Bovine Rumen/Lake 

Sediment 
 

 42 JF667541 97 
Bovine Rumen/Lake 

Sediment 
 

 43 JF667934 97 
Bovine Rumen/Lake 

Sediment 
 

 44 KJ364185 97 Lake Sediment  

 45 KJ364187 95 Landfill  

 46 KJ364191 98 Landfill  

 47 KJ364193 96 Landfill  



 

215 

 

 48 KJ364195 97 Bovine Rumen  

 49 KJ364197 97 Bovine Rumen  

 50 KJ364213 99 Landfill  

 51 KJ364214 98 Landfill  

 52 KJ364217 98 Estuarine  

 53 KJ364219 98 Estuarine  

 54 KJ364242 98 Lake Sediment  

 55 KJ364253 98 Soil  

 56 KJ364254 98 Soil  

 57 KJ364258 98 Marine Sediment  

 58 KJ364261 98 Bovine Rumen  

 59 KJ364264 98 Bovine Rumen  

 60 KJ364265 99 Bovine Rumen  

 61 KJ364271 96 Bovine Rumen  

 62 KJ364310 97 Ovine Rumen  

 63 KJ364312 98 Ovine Rumen  

 64 KJ364315 98 Ovine Rumen  

 65 KJ364325 99 Soil  

 66 KJ364326 99 Soil  

 67 KJ364327 97 Soil  

 68 KJ364328 99 Soil  

 69 KJ364329 97 Soil  

 70 KJ364330 98 Soil  

 71 KJ364331 98 Soil  

 72 KJ364333 98 Soil  

 73 KJ364335 99 Soil  

 74 KJ364336 99 Soil  

 75 KJ364338 98 Soil  

 76 KJ364339 98 Soil  

 77 KJ364342 98 Lake Sediment  
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 78 KJ364344 99 Lake Sediment  

 79 KJ364345 98 Lake Sediment  

 80 KJ364346 99 Lake Sediment  

 81 KJ364354 97 Lake Sediment  

 82 KJ364358 98 Landfill  

 83 KJ364359 98 Landfill  

 84 KJ364361 99 Estuarine  

 85 KJ364363 99 Estuarine  

 86 KJ364365 98 Estuarine  

 87 KJ364367 98 Estuarine  

 88 KJ364369 99 Estuarine  

 89 KJ364370 97 Estuarine  

 90 KJ364371 98 Estuarine  

 91 KJ364376 96 Estuarine  

 92 KJ364380 97 Estuarine  

 93 KJ364390 98 Lake Sediment  

 94 KJ364394 98 Lake Sediment  

 95 KJ364397 99 Lake Sediment  

 96 KJ364402 98 Lake Sediment  

 97 KJ364404 99 Marine Sediment  

 98 KJ364409 97 Marine Sediment  

 99 KJ364412 98 Marine Sediment  

 100 KJ364418 98 Landfill  

 101 KJ364419 97 Landfill  

 102 KJ364420 99 Landfill  

 103 KJ364421 98 Landfill  

 104 KJ364422 98 Landfill  

 105 KJ364423 98 Landfill  

 106 KJ364424 98 Landfill  

 107 KJ364426 99 Landfill  
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 108 KJ364432 99 Landfill  

 109 KJ364447 97 Landfill  

 110 KJ364451 98 Landfill  

 111 KJ364452 97 Landfill  

 112 KJ364453 98 Landfill  

 113 KJ364454 98 Landfill  

 114 KJ364456 98 Landfill  

 115 KJ364461 99 Landfill  

 116 KJ364476 98 Landfill  

 117 KJ364480 98 Landfill  

 118 KJ364481 99 Landfill  

 119 KJ364482 99 Landfill  

 120 KJ364483 99 Landfill  

 121 KJ364484 99 Landfill  

223 0 AF018454 98 Bovine Rumen  Bovine 33 

Ovine 14 

Lake 13 

Landfill 13 

Estuarine 9 

Marine Sediment 5 

Bovine/Lake Sediment 5 

Soil 4 

Other Mammal 3 

Cryoconite <1 

Equine <1 

 1 AJ496032 99 Bovine Rumen 
Fibrobacter succinogenes subsp. 

Succinogenes; S85 

 2 AJ496186 96 Ovine Rumen Fibrobacter succinogenes; HM2 

 3 AJ496447 99 Bovine Rumen Fibrobacter succinogenes; H 

 4 AJ496448 99 Bovine Rumen Fibrobacter succinogenes strain; U 

 5 AJ496566 99 Ovine Rumen Fibrobacter succinogenes; FE 

 6 AJ505937 99 Bovine Rumen Fibrobacter succinogenes; BL2 

 7 AJ505938 99 Bovine Rumen Fibrobacter succinogenes; R 

 8 AY311623 99 Yak Rumen  

 9 AY311716 99 Yak Rumen  

 10 AY315348 96 Jinnan Cattle Rumen  

 11 AB113694 99 Ovine Rumen  

 12 AB275486 99 Ovine Rumen Fibrobacter succinogenes; OS109 

 13 AB275490 99 Ovine Rumen Fibrobacter succinogenes; AS216 

 14 AB275491 99 Ovine Rumen Fibrobacter succinogenes; AS220 
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 15 AB275492 99 Ovine Rumen Fibrobacter succinogenes; AS221 

 16 AB275493 99 Ovine Rumen Fibrobacter succinogenes; AS225 

 17 AB275494 99 Ovine Rumen Fibrobacter succinogenes; AS226 

 18 AB275495 99 Ovine Rumen Fibrobacter succinogenes; AS228 

 19 AB275496 98 Ovine Rumen Fibrobacter succinogenes; OS102 

 20 AB275497 99 Ovine Rumen Fibrobacter succinogenes; OS103 

 21 AB275498 98 Ovine Rumen Fibrobacter succinogenes; OS112 

 22 AB275500 98 Ovine Rumen Fibrobacter succinogenes; OS118 

 23 AB275501 99 Ovine Rumen Fibrobacter succinogenes; OS119 

 24 AB275502 99 Ovine Rumen Fibrobacter succinogenes; OS120 

 25 AB275503 99 Ovine Rumen Fibrobacter succinogenes; OS128 

 26 AB275504 98 Ovine Rumen Fibrobacter succinogenes; RS*209 

 27 AB275505 99 Ovine Rumen Fibrobacter succinogenes; RS*214 

 28 AB275506 99 Ovine Rumen Fibrobacter succinogenes; RS*215 

 29 AB275507 99 Ovine Rumen Fibrobacter succinogenes; RS*216 

 30 AB275508 99 Ovine Rumen Fibrobacter succinogenes; RS*220 

 31 AB275510 98 Ovine Rumen Fibrobacter succinogenes; RS*224 

 32 AB275511 99 Ovine Rumen Fibrobacter succinogenes; RS*225 

 33 AB275512 99 Ovine Rumen Fibrobacter succinogenes; RS*230 

 34 AB275514 99 Ovine Rumen Fibrobacter succinogenes; RS*235 

 35 EF445213 99 Bovine Rumen  

 36 EF186236 98 Bovine Rumen  

 37 EF186238 98 Bovine Rumen  

 38 EF186239 99 Bovine Rumen  

 39 EF186243 99 Bovine Rumen  

 40 EF190826 99 Landfill  

 41 EF190828 99 Landfill  

 42 EU381787 98 Bovine Rumen  

 43 EU381803 97 Bovine Rumen  

 44 EU381811 97 Bovine Rumen  
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 45 EU381836 98 Bovine Rumen  

 46 EU381840 98 Bovine Rumen  

 47 EU381857 97 Bovine Rumen  

 48 EU381861 97 Bovine Rumen  

 49 EU381922 98 Bovine Rumen  

 50 EU381936 96 Bovine Rumen  

 51 EU381958 98 Bovine Rumen  

 52 EU381968 98 Bovine Rumen  

 53 EU381993 98 Bovine Rumen  

 54 EU382022 98 Bovine Rumen  

 55 EU382049 97 Bovine Rumen  

 56 EU463562 95 Equine Faeces  

 57 EU475370 96 Rock Hyrax Faeces  

 58 EU475376 97 Rock Hyrax Faeces  

 59 EU606019 98 Bovine Rumen Fibrobacter succinogenes 

 60 FJ711723 98 Lake Sediment  

 61 FJ711733 99 Lake Water  

 62 FJ711734 99 Lake Water  

 63 FJ711735 99 Lake Water  

 64 FJ711736 99 Lake Water  

 65 FJ711738 99 Lake Sediment  

 66 FJ711739 98 Soil  

 67 FJ711740 99 Soil  

 68 CP001792 99 Bovine Rumen 
Fibrobacter succinogenes subsp. 

Succinogenes; S85 

 69 CP001792 100 Bovine Rumen 
Fibrobacter succinogenes subsp. 

Succinogenes; S85 

 70 CP001792 99 Bovine Rumen 
Fibrobacter succinogenes subsp. 

Succinogenes; S85 

 71 GU269553 96 Bovine Rumen Fibrobacter succinogenes (T); HM2 
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 72 GU303546 96 Bovine Rumen  

 73 CP002158 99 Bovine Rumen 
Fibrobacter succinogenes subsp. 

Succinogenes; S85. 

 74 CP002158 99 Bovine Rumen 
Fibrobacter succinogenes subsp. 

Succinogenes; S85 

 75 CP002158 99 Bovine Rumen 
Fibrobacter succinogenes subsp. 

Succinogenes; S85 

 76 HM104735 97 Bovine Rumen  

 77 HM104984 96 Bovine Rumen  

 78 CP001792 RS* Bovine Rumen 
Fibrobacter succinogenes subsp. 

Succinogenes; S85 

 79 CP001792 99 Bovine Rumen 
Fibrobacter succinogenes subsp. 

Succinogenes; S85 

 80 CP001792 99 Bovine Rumen 
Fibrobacter succinogenes subsp. 

Succinogenes; S85 

 81 HQ616118 99 Bovine Rumen  

 82 HQ008623 99 
Dromedary Camel 

Rumen 
 

 83 JF619353 97 Bovine Rumen  

 84 JF624919 97 Bovine Rumen  

 85 JF626877 97 Bovine Rumen  

 86 JF628349 98 Bovine Rumen  

 87 JF628876 98 Bovine Rumen  

 88 JF631630 97 Bovine Rumen  

 89 JF632152 97 Bovine Rumen  

 90 JF632279 98 Bovine Rumen  

 91 JF633413 96 Bovine Rumen  

 92 JF634082 97 Bovine Rumen  

 93 JF636497 98 Bovine Rumen  

 94 JF636594 98 Bovine Rumen  
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 95 JF636625 98 Bovine Rumen  

 96 JF638129 97 Bovine Rumen  

 97 JF639431 97 Bovine Rumen  

 98 JF640254 97 Bovine Rumen  

 99 JF646765 97 
Bovine Rumen/Lake 

Sediment 
 

 100 JF653661 98 
Bovine Rumen/Lake 

Sediment 
 

 101 JF655355 97 
Bovine Rumen/Lake 

Sediment 
 

 102 JF656038 97 
Bovine Rumen/Lake 

Sediment 
 

 103 JF656888 98 
Bovine Rumen/Lake 

Sediment 
 

 104 JF657159 98 
Bovine Rumen/Lake 

Sediment 
 

 105 JF657955 98 
Bovine Rumen/Lake 

Sediment 
 

 106 JF657961 97 
Bovine Rumen/Lake 

Sediment 
 

 107 JF658129 95 
Bovine Rumen/Lake 

Sediment 
 

 108 JF659551 97 
Bovine Rumen/Lake 

Sediment 
 

 109 JF665653 97 
Bovine Rumen/Lake 

Sediment 
 

 110 JF666539 98 
Bovine Rumen/Lake 

Sediment 
 

 111 JF970205 99 Bovine Rumen Fibrobacter succinogenes; H23 

 112 AB665863 98 Ovine Rumen  
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 113 AB665895 99 Ovine Rumen  

 114 AB665948 98 Ovine Rumen  

 115 HQ634725 98 Yak Rumen  

 116 JQ346742 99 Bovine Rumen 
Fibrobacter succinogenes subsp. 

Succinogenes; S85 

 117 AB730669 98 Bovine Rumen Fibrobacter; RM1 

 118 AB555230 98 Bovine Rumen  

 119 AB555376 97 Bovine Rumen  

 120 AB612345 95 Bovine Rumen  

 121 AB612778 99 Bovine Rumen  

 122 AB614696 99 Bovine Rumen  

 123 AB614894 97 Bovine Rumen  

 124 AB614945 97 Bovine Rumen  

 125 AB615044 97 Bovine Rumen  

 126 AB615174 98 Bovine Rumen  

 127 AB615195 98 Bovine Rumen  

 128 AB616290 99 Bovine Rumen  

 129 AB616322 99 Bovine Rumen  

 130 AB616408 98 Bovine Rumen  

 131 KJ364183 98 Lake Sediment  

 132 KJ364184 98 Lake Sediment  

 133 KJ364186 98 Landfill  

 134 KJ364192 98 Landfill  

 135 KJ364204 98 Landfill  

 136 KJ364205 98 Landfill  

 137 KJ364206 98 Landfill  

 138 KJ364212 98 Landfill  

 139 KJ364215 98 Landfill  

 140 KJ364218 98 Estuarine  

 141 KJ364220 99 Estuarine  
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 142 KJ364221 97 Estuarine  

 143 KJ364222 98 Estuarine  

 144 KJ364223 98 Estuarine  

 145 KJ364224 97 Estuarine  

 146 KJ364240 98 Lake Sediment  

 147 KJ364241 98 Lake Sediment  

 148 KJ364243 98 Lake Sediment  

 149 KJ364247 97 Ovine Rumen  

 150 KJ364250 98 Soil  

 151 KJ364251 98 Soil  

 152 KJ364252 98 Soil  

 153 KJ364255 98 Marine Sediment  

 154 KJ364256 98 Marine Sediment  

 155 KJ364257 98 Marine Sediment  

 156 KJ364267 99 Bovine Rumen  

 157 KJ364288 96 Cryoconite  

 158 KJ364320 99 Ovine Rumen  

 159 KJ364322 98 Ovine Rumen  

 160 KJ364332 99 Soil  

 161 KJ364334 99 Soil  

 162 KJ364337 99 Soil  

 163 KJ364340 99 Lake Sediment  

 164 KJ364341 98 Lake Sediment  

 165 KJ364343 98 Lake Sediment  

 166 KJ364347 98 Lake Sediment  

 167 KJ364348 98 Lake Sediment  

 168 KJ364349 98 Lake Sediment  

 169 KJ364350 99 Lake Sediment  

 170 KJ364351 98 Lake Sediment  

 171 KJ364352 98 Lake Sediment  
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 172 KJ364353 98 Lake Sediment  

 173 KJ364355 98 Landfill  

 174 KJ364356 98 Landfill  

 175 KJ364357 98 Landfill  

 176 KJ364360 99 Estuarine  

 177 KJ364362 99 Estuarine  

 178 KJ364364 99 Estuarine  

 179 KJ364366 99 Estuarine  

 180 KJ364368 99 Estuarine  

 181 KJ364372 97 Estuarine  

 182 KJ364374 99 Estuarine  

 183 KJ364375 97 Estuarine  

 184 KJ364378 98 Estuarine  

 185 KJ364379 99 Estuarine  

 186 KJ364381 98 Estuarine  

 187 KJ364382 97 Estuarine  

 188 KJ364383 98 Estuarine  

 189 KJ364391 99 Lake Sediment  

 190 KJ364392 98 Lake Sediment  

 191 KJ364395 98 Lake Sediment  

 192 KJ364396 99 Lake Sediment  

 193 KJ364398 98 Lake Sediment  

 194 KJ364399 98 Lake Sediment  

 195 KJ364400 99 Lake Sediment  

 196 KJ364401 98 Lake Sediment  

 197 KJ364403 98 Lake Sediment  

 198 KJ364405 98 Marine Sediment  

 199 KJ364406 98 Marine Sediment  

 200 KJ364407 98 Marine Sediment  

 201 KJ364408 99 Marine Sediment  
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 202 KJ364410 98 Marine Sediment  

 203 KJ364411 98 Marine Sediment  

 204 KJ364413 99 Marine Sediment  

 205 KJ364414 98 Marine Sediment  

 206 KJ364425 99 Landfill  

 207 KJ364427 99 Landfill  

 208 KJ364428 99 Landfill  

 209 KJ364429 98 Landfill  

 210 KJ364430 99 Landfill  

 211 KJ364431 98 Landfill  

 212 KJ364448 99 Landfill  

 213 KJ364449 99 Landfill  

 214 KJ364450 99 Landfill  

 215 KJ364455 98 Landfill  

 216 KJ364457 99 Landfill  

 217 KJ364458 99 Landfill  

 218 KJ364459 99 Landfill  

 219 KJ364460 99 Landfill  

 220 KJ364477 99 Landfill  

 221 KJ364478 99 Landfill  

 222 KJ364479 99 Landfill  

1 0 M62682 RS* Bovine Rumen Fibrobacter succinogenes; REH9-1 Bovine 100 

21 0 M62688 RS* Bovine Rumen Fibrobacter succinogenes; GC5 Bovine 71 

Ovine 19 

Other Mammal 5 

Soil 5 

 1 AB275483 96 Ovine Rumen Fibrobacter succinogenes; AL227 

 2 AB275484 97 Ovine Rumen Fibrobacter succinogenes; AL225 

 3 AB275485 98 Ovine Rumen Fibrobacter succinogenes; AS211 

 4 AB275499 98 Ovine Rumen Fibrobacter succinogenes; OS114 

 5 EF186241 97 Bovine Rumen  

 6 EU981941 97 Buffalo Rumen  

 7 FJ711742 96 Soil  
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 8 HM104731 95 Bovine Rumen  

 9 HM104754 96 Bovine Rumen  

 10 HM104767 95 Bovine Rumen  

 11 HM104806 96 Bovine Rumen  

 12 HM104828 96 Bovine Rumen  

 13 HM104911 96 Bovine Rumen  

 14 HM104958 95 Bovine Rumen  

 15 HM105476 95 Bovine Rumen  

 16 KJ364194 97 Bovine Rumen  

 17 KJ364260 97 Bovine Rumen  

 18 KJ364266 97 Bovine Rumen  

 19 KJ364268 97 Bovine Rumen  

 20 KJ364272 96 Bovine Rumen  

13 0 AY578474 97 Bovine Rumen  Bovine 15 

Ovine 85  1 AY578638 97 Bovine Rumen  

 2 M62689 RS* Ovine Rumen Fibrobacter succinogenes; HM2 

 3 M62692 96 Ovine Rumen Fibrobacter succinogenes; MB4 

 4 M62694 97 Ovine Rumen Fibrobacter succinogenes; MM4 

 5 KJ364246 98 Ovine Rumen  

 6 KJ364248 97 Ovine Rumen  

 7 KJ364316 98 Ovine Rumen  

 8 KJ364317 98 Ovine Rumen  

 9 KJ364318 98 Ovine Rumen  

 10 KJ364319 99 Ovine Rumen  

 11 KJ364323 98 Ovine Rumen  

 12 KJ364324 96 Ovine Rumen  

3 0 M62693 RS* Ovine Rumen Fibrobacter succinogenes; MC1 Ovine 100 

 1 FJ711751 98 Ovine Faeces  

 2 FJ711752 98 Ovine Faeces  
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3 0 EF520548 99 
Acid-impacted Lake 

Water 
 

Lake 67 

Shrimp Pond 33 

 1 EF520549 99 
Acid-impacted Lake 

Water 
 

 2 HQ433562 RS* Shrimp Pond  

1 0 HM184982 RS* Hot Spring  Hot Spring 100 

20 0 AJ496284 96 Rat Cecum Fibrobacter intestinalis (T); NR9 Other Mammal 80  

Bovine 20 

 

 1 EU474873 97 Red River Hog Faeces  

 2 EU475285 97 Rock Hyrax Faeces  

 3 EU774496 97 
Eastern Black and 

White Colobus Faeces 
 

 4 GQ451204 RS* 
Yunnan Snub-nosed 

Monkey Faeces 
 

 5 GQ451231 99 
Yunnan Snub-nosed 

Monkey Faeces 
 

 6 GQ451246 99 
Yunnan Snub-nosed 

Monkey Faeces 
 

 7 GQ451248 99 
Yunnan Snub-nosed 

Monkey Faeces 
 

 8 GQ451260 99 
Yunnan Snub-nosed 

Monkey Faeces 
 

 9 GQ451284 99 
Yunnan Snub-nosed 

Monkey Faeces 
 

 10 GQ451292 99 
Yunnan Snub-nosed 

Monkey Faeces 
 

 11 GQ451306 100 
Yunnan Snub-nosed 

Monkey Faeces 
 

 12 GQ451307 99 
Yunnan Snub-nosed 

Monkey Faeces 
 

 13 GQ451318 96 Yunnan Snub-nosed  
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Monkey Faeces 

 14 GQ451324 99 
Yunnan Snub-nosed 

Monkey Faeces 
 

 15 GQ451325 99 
Yunnan Snub-nosed 

Monkey Faeces 
 

 16 AB555427 97 Bovine Rumen  

 17 AB555445 97 Bovine Rumen  

 18 AB555456 96 Bovine Rumen  

 19 AB555470 96 Bovine Rumen  

4 0 EU101143 RS* 
Frasassi Sulfidic Cave 

Stream Biofilm 
 

Cave Water 100 

 1 EU101148 99 
Frasassi Sulfidic Cave 

Stream Biofilm 
 

 2 EU101166 99 
Frasassi Sulfidic Cave 

Stream Biofilm 
 

 3 EU101192 99 
Frasassi Sulfidic Cave 

Stream Biofilm 
 

297 0 EF686988 99 Bovine Faeces  Bovine/Sediment 54 

Landfill 22 

Cryoconite 10  

ASBR Reactor 8 

Sewage 4 

Biogas Plant 1 

Bovine <1 

Other Mammal <1 

Lake Sediment <1 

Estuarine <1 

 

 1 EF186244 98 Landfill  

 2 EF186247 98 Landfill  

 3 EF186249 98 Landfill  

 4 EF186250 98 Landfill  

 5 EF186251 98 Landfill  

 6 EF186253 98 Landfill  

 7 EF186259 98 Landfill  

 8 EF186260 99 Landfill  

 9 EF186261 98 Landfill  

 10 EF186262 99 Landfill  

 11 EF186263 99 Landfill  

 12 EF186264 97 Landfill  
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 13 EF186265 98 Landfill  

 14 EF186266 97 Landfill  

 15 EF186267 98 Landfill  

 16 EF186270 98 Landfill  

 17 EF186278 98 Landfill  

 18 EF186282 98 Landfill  

 19 EF186283 99 Landfill  

 20 EF186284 98 Landfill  

 21 EF186286 98 Landfill  

 22 EF186291 99 Landfill  

 23 EF186292 98 Landfill  

 24 EF186293 98 Landfill  

 25 EF190823 99 Landfill  

 26 EF190824 98 Landfill  

 27 EF190825 99 Landfill  

 28 EF190827 99 Landfill  

 29 EF190829 96 Landfill  

 30 AM982635 98 Porcine Faeces  

 31 DQ261258 99 Biogas Plant  

 32 AB494338 99 
Anaerobic Digester 

Sludge 
 

 33 FN985259 99 Biogas Reactor  

 34 JF541098 97 
Bovine 

Rumen/Sediment 
 

 35 JF541203 97 
Bovine 

Rumen/Sediment 
 

 36 JF541333 98 
Bovine 

Rumen/Sediment 
 

 37 JF541377 99 
Bovine 

Rumen/Sediment 
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 38 JF541389 99 
Bovine 

Rumen/Sediment 
 

 39 JF541495 97 
Bovine 

Rumen/Sediment 
 

 40 JF541543 97 
Bovine 

Rumen/Sediment 
 

 41 JF541618 99 
Bovine 

Rumen/Sediment 
 

 42 JF541636 98 
Bovine 

Rumen/Sediment 
 

 43 JF541697 98 
Bovine 

Rumen/Sediment 
 

 44 JF541813 98 
Bovine 

Rumen/Sediment 
 

 45 JF541863 98 
Bovine 

Rumen/Sediment 
 

 46 JF541917 98 
Bovine 

Rumen/Sediment 
 

 47 JF541954 98 
Bovine 

Rumen/Sediment 
 

 48 JF541985 99 
Bovine 

Rumen/Sediment 
 

 49 JF542048 98 
Bovine 

Rumen/Sediment 
 

 50 JF542170 98 
Bovine 

Rumen/Sediment 
 

 51 JF542223 98 
Bovine 

Rumen/Sediment 
 

 52 JF542229 98 
Bovine 

Rumen/Sediment 
 

 53 JF542428 98 Bovine  
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Rumen/Sediment 

 54 JF542431 99 
Bovine 

Rumen/Sediment 
 

 55 JF542458 99 
Bovine 

Rumen/Sediment 
 

 56 JF542468 99 
Bovine 

Rumen/Sediment 
 

 57 JF542530 98 
Bovine 

Rumen/Sediment 
 

 58 JF542567 98 
Bovine 

Rumen/Sediment 
 

 59 JF542601 99 
Bovine 

Rumen/Sediment 
 

 60 JF542691 98 
Bovine 

Rumen/Sediment 
 

 61 JF542774 99 
Bovine 

Rumen/Sediment 
 

 62 JF542814 98 
Bovine 

Rumen/Sediment 
 

 63 JF542824 99 
Bovine 

Rumen/Sediment 
 

 64 JF542890 99 
Bovine 

Rumen/Sediment 
 

 65 JF542899 98 
Bovine 

Rumen/Sediment 
 

 66 JF543024 98 
Bovine 

Rumen/Sediment 
 

 67 JF543044 98 
Bovine 

Rumen/Sediment 
 

 68 JF543133 98 
Bovine 

Rumen/Sediment 
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 69 JF543204 98 
Bovine 

Rumen/Sediment 
 

 70 JF543225 98 
Bovine 

Rumen/Sediment 
 

 71 JF543302 98 
Bovine 

Rumen/Sediment 
 

 72 JF543359 99 
Bovine 

Rumen/Sediment 
 

 73 JF543393 98 
Bovine 

Rumen/Sediment 
 

 74 JF543564 99 
Bovine 

Rumen/Sediment 
 

 75 JF543634 98 
Bovine 

Rumen/Sediment 
 

 76 JF543662 98 
Bovine 

Rumen/Sediment 
 

 77 JF543786 98 
Bovine 

Rumen/Sediment 
 

 78 JF543841 98 
Bovine 

Rumen/Sediment 
 

 79 JF543842 99 
Bovine 

Rumen/Sediment 
 

 80 JF544020 98 
Bovine 

Rumen/Sediment 
 

 81 JF544038 99 
Bovine 

Rumen/Sediment 
 

 82 JF544044 98 
Bovine 

Rumen/Sediment 
 

 83 JF544047 98 
Bovine 

Rumen/Sediment 
 

 84 JF544065 98 Bovine  
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Rumen/Sediment 

 85 JF544072 98 
Bovine 

Rumen/Sediment 
 

 86 JF544093 98 
Bovine 

Rumen/Sediment 
 

 87 JF544129 98 
Bovine 

Rumen/Sediment 
 

 88 JF544160 99 
Bovine 

Rumen/Sediment 
 

 89 JF544197 99 
Bovine 

Rumen/Sediment 
 

 90 JF544218 98 
Bovine 

Rumen/Sediment 
 

 91 JF544255 99 
Bovine 

Rumen/Sediment 
 

 92 JF544302 98 
Bovine 

Rumen/Sediment 
 

 93 JF544415 98 
Bovine 

Rumen/Sediment 
 

 94 JF544430 99 
Bovine 

Rumen/Sediment 
 

 95 JF544496 97 
Bovine 

Rumen/Sediment 
 

 96 JF544507 98 
Bovine 

Rumen/Sediment 
 

 97 JF544527 99 
Bovine 

Rumen/Sediment 
 

 98 JF544669 98 
Bovine 

Rumen/Sediment 
 

 99 JF544690 98 
Bovine 

Rumen/Sediment 
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 100 JF544694 99 
Bovine 

Rumen/Sediment 
 

 101 JF544734 99 
Bovine 

Rumen/Sediment 
 

 102 JF544820 98 
Bovine 

Rumen/Sediment 
 

 103 JF544927 98 
Bovine 

Rumen/Sediment 
 

 104 JF545000 98 
Bovine 

Rumen/Sediment 
 

 105 JF545077 98 
Bovine 

Rumen/Sediment 
 

 106 JF545138 98 
Bovine 

Rumen/Sediment 
 

 107 JF545139 99 
Bovine 

Rumen/Sediment 
 

 108 JF545196 98 
Bovine 

Rumen/Sediment 
 

 109 JF545245 99 
Bovine 

Rumen/Sediment 
 

 110 JF545297 99 
Bovine 

Rumen/Sediment 
 

 111 JF545342 99 
Bovine 

Rumen/Sediment 
 

 112 JF545419 99 
Bovine 

Rumen/Sediment 
 

 113 JF545440 99 
Bovine 

Rumen/Sediment 
 

 114 JF545457 99 
Bovine 

Rumen/Sediment 
 

 115 JF545530 99 Bovine  
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Rumen/Sediment 

 116 JF545640 98 
Bovine 

Rumen/Sediment 
 

 117 JF545648 99 
Bovine 

Rumen/Sediment 
 

 118 JF545668 98 
Bovine 

Rumen/Sediment 
 

 119 JF545679 99 
Bovine 

Rumen/Sediment 
 

 120 JF545807 99 
Bovine 

Rumen/Sediment 
 

 121 JF545879 99 
Bovine 

Rumen/Sediment 
 

 122 JF545999 98 
Bovine 

Rumen/Sediment 
 

 123 JF546121 98 
Bovine 

Rumen/Sediment 
 

 124 JF546148 99 
Bovine 

Rumen/Sediment 
 

 125 JF546192 98 
Bovine 

Rumen/Sediment 
 

 126 JF546284 98 
Bovine 

Rumen/Sediment 
 

 127 JF546403 98 
Bovine 

Rumen/Sediment 
 

 128 JF546408 98 
Bovine 

Rumen/Sediment 
 

 129 JF546428 99 
Bovine 

Rumen/Sediment 
 

 130 JF546442 99 
Bovine 

Rumen/Sediment 
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 131 JF546445 98 
Bovine 

Rumen/Sediment 
 

 132 JF546491 99 
Bovine 

Rumen/Sediment 
 

 133 JF546526 98 
Bovine 

Rumen/Sediment 
 

 134 JF546550 98 
Bovine 

Rumen/Sediment 
 

 135 JF546640 99 
Bovine 

Rumen/Sediment 
 

 136 JF546690 98 
Bovine 

Rumen/Sediment 
 

 137 JF546700 99 
Bovine 

Rumen/Sediment 
 

 138 JF546748 98 
Bovine 

Rumen/Sediment 
 

 139 JF546770 99 
Bovine 

Rumen/Sediment 
 

 140 JF546809 98 
Bovine 

Rumen/Sediment 
 

 141 JF546971 99 
Bovine 

Rumen/Sediment 
 

 142 JF547113 98 
Bovine 

Rumen/Sediment 
 

 143 JF547263 98 
Bovine 

Rumen/Sediment 
 

 144 JF547289 99 
Bovine 

Rumen/Sediment 
 

 145 JF547344 98 
Bovine 

Rumen/Sediment 
 

 146 JF547382 98 Bovine  
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Rumen/Sediment 

 147 JF547390 99 
Bovine 

Rumen/Sediment 
 

 148 JF547486 99 
Bovine 

Rumen/Sediment 
 

 149 JF547511 98 
Bovine 

Rumen/Sediment 
 

 150 JF547521 99 
Bovine 

Rumen/Sediment 
 

 151 JF547567 98 
Bovine 

Rumen/Sediment 
 

 152 JF547579 98 
Bovine 

Rumen/Sediment 
 

 153 JF547615 98 
Bovine 

Rumen/Sediment 
 

 154 JF547649 98 
Bovine 

Rumen/Sediment 
 

 155 JF547668 98 
Bovine 

Rumen/Sediment 
 

 156 JF547681 98 
Bovine 

Rumen/Sediment 
 

 157 JF547732 99 
Bovine 

Rumen/Sediment 
 

 158 JF547754 98 
Bovine 

Rumen/Sediment 
 

 159 JF547757 99 
Bovine 

Rumen/Sediment 
 

 160 JF547759 98 
Bovine 

Rumen/Sediment 
 

 161 JF547875 98 
Bovine 

Rumen/Sediment 
 



 

238 

 

 162 JF547905 98 
Bovine 

Rumen/Sediment 
 

 163 JF547973 99 
Bovine 

Rumen/Sediment 
 

 164 JF548050 98 
Bovine 

Rumen/Sediment 
 

 165 JF548055 98 
Bovine 

Rumen/Sediment 
 

 166 JF548135 99 
Bovine 

Rumen/Sediment 
 

 167 JF548216 98 
Bovine 

Rumen/Sediment 
 

 168 JF548298 98 
Bovine 

Rumen/Sediment 
 

 169 JF548329 98 
Bovine 

Rumen/Sediment 
 

 170 JF548397 99 
Bovine 

Rumen/Sediment 
 

 171 JF548553 98 
Bovine 

Rumen/Sediment 
 

 172 JF548560 98 
Bovine 

Rumen/Sediment 
 

 173 JF548562 98 
Bovine 

Rumen/Sediment 
 

 174 JF548626 98 
Bovine 

Rumen/Sediment 
 

 175 JF548710 98 
Bovine 

Rumen/Sediment 
 

 176 JF548771 99 
Bovine 

Rumen/Sediment 
 

 177 JF548794 98 Bovine  
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Rumen/Sediment 

 178 JF548886 98 
Bovine 

Rumen/Sediment 
 

 179 JF549027 98 
Bovine 

Rumen/Sediment 
 

 180 JF549111 98 
Bovine 

Rumen/Sediment 
 

 181 JF549211 98 
Bovine 

Rumen/Sediment 
 

 182 JF549241 99 
Bovine 

Rumen/Sediment 
 

 183 JF549278 99 
Bovine 

Rumen/Sediment 
 

 184 JF549283 98 
Bovine 

Rumen/Sediment 
 

 185 JF549316 99 
Bovine 

Rumen/Sediment 
 

 186 JF549417 98 
Bovine 

Rumen/Sediment 
 

 187 JF549437 98 
Bovine 

Rumen/Sediment 
 

 188 JF549524 98 
Bovine 

Rumen/Sediment 
 

 189 JF549792 98 
Bovine 

Rumen/Sediment 
 

 190 JF550122 98 
Bovine 

Rumen/Sediment 
 

 191 JF550176 99 
Bovine 

Rumen/Sediment 
 

 192 JF550179 99 
Bovine 

Rumen/Sediment 
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 193 JF550297 98 
Bovine 

Rumen/Sediment 
 

 194 JF834127 RS* Biogas Slurry  

 195 GQ132252 99 ASBR Reactor  

 196 GQ132261 99 ASBR Reactor  

 197 GQ132442 98 ASBR Reactor  

 198 GQ132478 98 ASBR Reactor  

 199 GQ132499 99 ASBR Reactor  

 200 GQ132501 98 ASBR Reactor  

 201 GQ132609 98 ASBR Reactor  

 202 GQ133123 97 ASBR Reactor  

 203 GQ133225 97 ASBR Reactor  

 204 GQ133237 97 ASBR Reactor  

 205 GQ133240 98 ASBR Reactor  

 206 GQ133287 99 ASBR Reactor  

 207 GQ133293 98 ASBR Reactor  

 208 GQ133295 95 ASBR Reactor  

 209 GQ133301 99 ASBR Reactor  

 210 GQ133369 98 ASBR Reactor  

 211 GQ134182 99 ASBR Reactor  

 212 GQ134365 98 ASBR Reactor  

 213 GQ134392 99 ASBR Reactor  

 214 GQ134395 98 ASBR Reactor  

 215 GQ134401 98 ASBR Reactor  

 216 GQ138292 99 ASBR Reactor  

 217 GQ138400 99 ASBR Reactor  

 218 JQ089558 98 
Anaerobic Sludge 

Digester 
 

 219 JQ108760 98 
Anaerobic Sludge 

Digester 
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 220 JQ110680 99 
Anaerobic Sludge 

Digester 
 

 221 JQ126817 99 
Anaerobic Sludge 

Digester 
 

 222 JQ129974 99 
Anaerobic Sludge 

Digester 
 

 223 JQ139566 98 
Anaerobic Sludge 

Digester 
 

 224 JQ149873 97 
Anaerobic Sludge 

Digester 
 

 225 JQ151287 98 
Anaerobic Sludge 

Digester 
 

 226 JQ151288 99 
Anaerobic Sludge 

Digester 
 

 227 JQ151319 99 
Anaerobic Sludge 

Digester 
 

 228 JQ151385 99 
Anaerobic Sludge 

Digester 
 

 229 KJ364199 99 Landfill  

 230 KJ364200 99 Landfill  

 231 KJ364201 98 Landfill  

 232 KJ364202 98 Landfill  

 233 KJ364203 98 Landfill  

 234 KJ364207 98 Landfill  

 235 KJ364208 98 Landfill  

 236 KJ364209 98 Landfill  

 237 KJ364210 98 Landfill  

 238 KJ364211 97 Landfill  

 239 KJ364225 98 Cryoconite  

 240 KJ364226 98 Cryoconite  
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 241 KJ364227 99 Cryoconite  

 242 KJ364228 99 Cryoconite  

 243 KJ364229 98 Cryoconite  

 244 KJ364230 97 Cryoconite  

 245 KJ364231 97 Cryoconite  

 246 KJ364232 99 Cryoconite  

 247 KJ364233 98 Cryoconite  

 248 KJ364234 98 Cryoconite  

 249 KJ364244 98 Lake Sediment  

 250 KJ364276 99 Cryoconite  

 251 KJ364277 98 Cryoconite  

 252 KJ364278 96 Cryoconite  

 253 KJ364280 98 Cryoconite  

 254 KJ364281 99 Cryoconite  

 255 KJ364283 98 Cryoconite  

 256 KJ364285 99 Cryoconite  

 257 KJ364286 99 Cryoconite  

 258 KJ364287 99 Cryoconite  

 259 KJ364289 99 Cryoconite  

 260 KJ364290 99 Cryoconite  

 261 KJ364291 98 Cryoconite  

 262 KJ364292 95 Cryoconite  

 263 KJ364293 98 Cryoconite  

 264 KJ364294 98 Cryoconite  

 265 KJ364295 96 Cryoconite  

 266 KJ364373 98 Estuarine  

 267 KJ364377 98 Estuarine  

 268 KJ364385 99 Cryoconite  

 269 KJ364388 98 Cryoconite  

 270 KJ364389 99 Cryoconite  
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 271 KJ364393 99 Lake Sediment  

 272 KJ364433 98 Landfill  

 273 KJ364434 99 Landfill  

 274 KJ364435 99 Landfill  

 275 KJ364437 99 Landfill  

 276 KJ364438 98 Landfill  

 277 KJ364439 99 Landfill  

 278 KJ364440 99 Landfill  

 279 KJ364441 99 Landfill  

 280 KJ364442 99 Landfill  

 281 KJ364443 97 Landfill  

 282 KJ364444 99 Landfill  

 283 KJ364445 99 Landfill  

 284 KJ364446 99 Landfill  

 285 KJ364462 99 Landfill  

 286 KJ364463 98 Landfill  

 287 KJ364464 98 Landfill  

 288 KJ364465 99 Landfill  

 289 KJ364466 99 Landfill  

 290 KJ364467 96 Landfill  

 291 KJ364468 99 Landfill  

 292 KJ364469 99 Landfill  

 293 KJ364471 99 Landfill  

 294 KJ364473 99 Landfill  

 295 KJ364474 98 Landfill  

 296 KJ364475 99 Landfill  

2 0 AM409807 98 Lake Sediment  Lake 50 

Estuarine 50 
 1 JN038681 RS* 

Wetland (Estuarine) 

Soil 
 

39 0 AY315287 97 Bovine Rumen  Equine 46 
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 1 L35548 95 Equine Cecum  Bovine 38 

Other Mammal 13 

Ovine 3 

 

 2 EU381839 95 Bovine Rumen  

 3 EU463463 96 Equine Faeces  

 4 EU473476 97 
Somali Wild Ass 

Faeces 
 

 5 EU473520 97 
Somali Wild Ass 

Faeces 
 

 6 EU473538 97 
Somali Wild Ass 

Faeces 
 

 7 EU473539 97 
Somali Wild Ass 

Faeces 
 

 8 EU473542 96 
Somali Wild Ass 

Faeces 
 

 9 EU473558 96 
Somali Wild Ass 

Faeces 
 

 10 EU473600 97 
Somali Wild Ass 

Faeces 
 

 11 EU473604 97 
Somali Wild Ass 

Faeces 
 

 12 EU473606 97 
Somali Wild Ass 

Faeces 
 

 13 EU773721 98 Capybara Faeces  

 14 EU774414 96 
Eastern Black and 

White Colobus Faeces 
 

 15 EU774452 96 
Eastern Black and 

White Colobus Faeces 
 

 16 EU779347 95 
Somali Wild Ass 

Faeces 
 

 17 EU779383 97 
Somali Wild Ass 

Faeces 
 

 18 EU779394 97 Somali Wild Ass  
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Faeces 

 19 EU779396 97 
Somali Wild Ass 

Faeces 
 

 20 EU779399 97 
Somali Wild Ass 

Faeces 
 

 21 AB549942 97 Equine Faeces  

 22 GU303627 95 Bovine Rumen  

 23 GU999988 96 Goat Rumen Fibrobacter succinogenes; FGL 01 

 24 GU999989 96 Goat Rumen Fibrobacter succinogenes; FGL 25 

 25 HM104821 97 Bovine Rumen  

 26 HM105466 97 Bovine Rumen  

 27 AB665809 98 Ovine Rumen  

 28 AB555039 96 Bovine Rumen  

 29 AB555056 RS* Bovine Rumen  

 30 AB555099 96 Bovine Rumen  

 31 AB612349 96 Bovine Rumen  

 32 AB612387 96 Bovine Rumen  

 33 AB612730 95 Bovine Rumen  

 34 AB614748 95 Bovine Rumen  

 35 AB615064 96 Bovine Rumen  

 36 AB615083 96 Bovine Rumen  

 37 AB616232 96 Bovine Rumen  

 38 KJ364303 95 Equine Faeces  

8 0 HM104816 97 Bovine Rumen  Bovine 75 

Ovine 25  1 HM104820 97 Bovine Rumen  

 2 HM104868 96 Bovine Rumen  

 3 JF628563 96 Bovine Rumen  

 4 AB665797 100 Ovine Rumen  

 5 AB614672 RS* Bovine Rumen  

 6 AB614851 98 Bovine Rumen  
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 7 KJ364314 96 Ovine Rumen  

33 0 AB255931 95 Termite Gut  Termite 100 

 1 AB255933 96 Termite Gut  

 2 AB255934 96 Termite Gut  

 3 AB255935 95 Termite Gut  

 4 AB255937 96 Termite Gut  

 5 AB255945 96 Termite Gut  

 6 EF453857 95 Termite Gut  

 7 EF454783 98 Termite Gut  

 8 EF453821 97 Termite Gut  

 9 EF453822 96 Termite Gut  

 10 EF453826 97 Termite Gut  

 11 EF454021 97 Termite Gut  

 12 EF454057 97 Termite Gut  

 13 EF454275 98 Termite Gut  

 14 EF454284 98 Termite Gut  

 15 EF454314 96 Termite Gut  

 16 EF454318 98 Termite Gut  

 17 EF454325 98 Termite Gut  

 18 EF454418 97 Termite Gut  

 19 EF454434 96 Termite Gut  

 20 EF454459 98 Termite Gut  

 21 EF454461 98 Termite Gut  

 22 EF454475 98 Termite Gut  

 23 EF454506 97 Termite Gut  

 24 EF454585 98 Termite Gut  

 25 EF454604 96 Termite Gut  

 26 EF454628 98 Termite Gut  

 27 EF454859 RS* Termite Gut  

 28 EF454888 98 Termite Gut  
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 29 EF454924 97 Termite Gut  

 30 EF454949 97 Termite Gut  

 31 EF454981 96 Termite Gut  

 32 EF455006 96 Termite Gut  

7 0 AB255932 95 Termite Gut  Termite 100 

 1 EF453831 RS* Termite Gut  

 2 EF454276 98 Termite Gut  

 3 EF454303 99 Termite Gut  

 4 EF454610 99 Termite Gut  

 5 EF454823 99 Termite Gut  

 6 EF454908 99 Termite Gut  

1 0 EU471816 RS* Asiatic Elephant Faeces  Other Mammal 100 

5 0 EU473449 RS* 
Somali Wild Ass 

Faeces 
 

Equine 100 

 1 AB549937 98 Equine Faeces  

 2 AB549941 98 Equine Faeces  

 3 AB549945 95 Equine Faeces  

 4 AB549950 96 Equine Faeces  

1 0 GQ134316 RS* ABSR Reactor  ABSR Reactor 100 

2 0 GQ135590 RS* ABSR Reactor  ABSR Reactor 100 

 1 GQ135614 99 ABSR Reactor  

4 0 GQ135610 RS* ABSR Reactor  ABSR Reactor 100 

 1 GQ135709 99 ABSR Reactor  

 2 GQ135746 99 ABSR Reactor  

 3 GQ136142 100 ABSR Reactor  

10 0 GQ133837 RS* ABSR Reactor  ABSR Reactor 100 

 1 GQ135134 99 ABSR Reactor  

 2 GQ135584 99 ABSR Reactor  

 3 GQ135690 99 ABSR Reactor  
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 4 GQ135695 99 ABSR Reactor  

 5 GQ135710 99 ABSR Reactor  

 6 GQ135744 99 ABSR Reactor  

 7 GQ135753 100 ABSR Reactor  

 8 GQ135795 99 ABSR Reactor  

 9 GQ135895 99 ABSR Reactor  

2 0 GQ139119 RS* ABSR Reactor  ABSR Reactor 50 

Cryoconite 50  1 KJ364273 99 Cryoconite  

3 0 FJ353483 97 Raw Sewage  Sewage 67 

Mud Volcano 33  1 GU915580 96 Activated Sludge  

 2 JQ245640 RS* Mud Volcano  

1 0 GQ135762 RS* ABSR Reactor  ABSR Reactor 100 

7 0 EU470330 RS* Grevy's Zebra Faeces  Equine 100 

 1 EU470375 98 Grevy's Zebra Faeces  

 2 EU470410 98 Grevy's Zebra Faeces  

 3 EU473545 96 
Somali Wild Ass 

Faeces 
 

 4 AB549946 97 Equine Faeces  

 5 AB549947 96 Equine Faeces  

 6 AB549949 97 Equine Faeces  

10 0 EU463400 96 Equine Faeces  Equine 100 

 1 EU473518 96 
Somali Wild Ass 

Faeces 
 

 2 EU473529 RS* 
Somali Wild Ass 

Faeces 
 

 3 EU473605 98 
Somali Wild Ass 

Faeces 
 

 4 AB549932 99 Equine Faeces  

 5 AB549934 99 Equine Faeces  

 6 AB549938 98 Equine Faeces  
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 7 AB549948 97 Equine Faeces  

 8 KJ364298 95 Equine Faeces  

 9 KJ364301 95 Equine Faeces  

1 0 GQ132590 RS* ABSR Reactor  ABSR Reactor 100 

1 0 GQ138403 RS* ABSR Reactor  ABSR Reactor 100 

20 0 DQ054636 97 Bovine Rumen  Ovine 30 

Soil 30 

Other Mammal 15 

Lake 15 

Bovine 5 

Simulated Rumen 5 

 

 1 AB113670 98 Ovine Rumen  

 2 AM493699 97 Simulated Rumen  

 3 EU461440 98 
Black Rhinoceros 

Faeces 
 

 4 EU468455 97 
Black Rhinoceros 

Faeces 
 

 5 FJ711741 97 Soil  

 6 FJ711743 97 Soil  

 7 FJ711744 97 Lake Sediment  

 8 FJ711745 97 Lake Sediment  

 9 FJ711746 97 Lake Sediment  

 10 FJ711747 97 Soil  

 11 FJ711748 97 Soil  

 12 FJ711749 98 Soil  

 13 FJ711750 98 Soil  

 14 GQ358264 RS* Tammar Wallaby Gut  

 15 KJ364245 96 Ovine Rumen  

 16 KJ364249 97 Ovine Rumen  

 17 KJ364311 97 Ovine Rumen  

 18 KJ364313 97 Ovine Rumen  

 19 KJ364321 97 Ovine Rumen  

2 0 GQ135015 RS* ABSR Reactor  ABSR Reactor 100 

 1 GQ136564 96 ABSR Reactor  

1 0 AB234547 RS* Termite Gut  Termite Gut 100 
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10 0 EF190822 RS* Landfill  Landfill 50 

Cryoconite 40 

Estuarine 10 

 1 KJ364198 97 Landfill  

 2 KJ364275 99 Cryoconite  

 3 KJ364284 99 Cryoconite  

 4 KJ364384 99 Estuarine  

 5 KJ364386 99 Cryoconite  

 6 KJ364387 99 Cryoconite  

 7 KJ364436 99 Landfill  

 8 KJ364470 99 Landfill  

 9 KJ364472 99 Landfill  

2 0 AB192095 RS* Termite Gut  Termite Gut 100 

 1 AB192093 96 Termite Gut  

6 0 AB192085 RS* Termite Gut  Termite Gut 100 

 1 AB192086 99 Termite Gut  

 2 AB192087 98 Termite Gut  

 3 AB192088 100 Termite Gut  

 4 AB192097 96 Termite Gut  

 5 AB243275 100 Termite Gut  

9 0 AB192079 95 Termite Gut  Termite Gut 100 

 1 AB192081 96 Termite Gut  

 2 AB192082 96 Termite Gut  

 3 AB192096 RS* Termite Gut  

 4 AB243276 96 Termite Gut  

 5 AB248829 99 Termite Gut  

 6 AB248830 96 Termite Gut  

 7 AB255941 95 Termite Gut  

 8 AB255942 96 Termite Gut  

3 0 AB192075 RS* Termite Gut  Termite Gut 100 

 1 AB192077 98 Termite Gut  
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 2 AB255938 98 Termite Gut  

2 0 AB192083 RS* Termite Gut  Termite Gut 100 

 1 AB192084 98 Termite Gut  

6 0 AB192089 96 Termite Gut  Termite Gut 100 

 1 AB192090 97 Termite Gut  

 2 AB192091 RS* Termite Gut  

 3 AB192092 99 Termite Gut  

 4 AB192094 96 Termite Gut  

 5 AB243277 100 Termite Gut  

1 0 AB243279 RS* Termite Gut  Termite Gut 100 

2 0 AB255943 RS* Termite Gut  Termite Gut 100 

 1 AB255952 96 Termite Gut  

1 0 EU775761 RS* Equine Faeces  Equine 100 

1 0 GQ135618 RS* ABSR Reactor  ABSR Reactor 100 

1 0 L35547 RS* Equine Faeces  Equine 100 

197 0 JF531980 98 
Bovine 

Rumen/Sediment 
 

Bovine/Sediment 97 

Sewage 2 

ABSR Reactor <1 

Cryoconite <1 

 

 1 JF532546 98 
Bovine 

Rumen/Sediment 
 

 2 JF533869 99 
Bovine 

Rumen/Sediment 
 

 3 JF534568 98 
Bovine 

Rumen/Sediment 
 

 4 JF534724 98 
Bovine 

Rumen/Sediment 
 

 5 JF534917 99 
Bovine 

Rumen/Sediment 
 

 6 JF535075 99 
Bovine 

Rumen/Sediment 
 

 7 JF535488 99 Bovine  
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Rumen/Sediment 

 8 JF535659 98 
Bovine 

Rumen/Sediment 
 

 9 JF535681 99 
Bovine 

Rumen/Sediment 
 

 10 JF535696 99 
Bovine 

Rumen/Sediment 
 

 11 JF535727 98 
Bovine 

Rumen/Sediment 
 

 12 JF535730 98 
Bovine 

Rumen/Sediment 
 

 13 JF535789 99 
Bovine 

Rumen/Sediment 
 

 14 JF535830 99 
Bovine 

Rumen/Sediment 
 

 15 JF535997 98 
Bovine 

Rumen/Sediment 
 

 16 JF536057 99 
Bovine 

Rumen/Sediment 
 

 17 JF536331 99 
Bovine 

Rumen/Sediment 
 

 18 JF536779 98 
Bovine 

Rumen/Sediment 
 

 19 JF537054 99 
Bovine 

Rumen/Sediment 
 

 20 JF537774 99 
Bovine 

Rumen/Sediment 
 

 21 JF538050 98 
Bovine 

Rumen/Sediment 
 

 22 JF538234 99 
Bovine 

Rumen/Sediment 
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 23 JF538450 99 
Bovine 

Rumen/Sediment 
 

 24 JF538631 99 
Bovine 

Rumen/Sediment 
 

 25 JF538841 99 
Bovine 

Rumen/Sediment 
 

 26 JF539023 99 
Bovine 

Rumen/Sediment 
 

 27 JF539141 99 
Bovine 

Rumen/Sediment 
 

 28 JF539648 99 
Bovine 

Rumen/Sediment 
 

 29 JF539900 99 
Bovine 

Rumen/Sediment 
 

 30 JF541373 98 
Bovine 

Rumen/Sediment 
 

 31 JF542950 98 
Bovine 

Rumen/Sediment 
 

 32 JF543045 98 
Bovine 

Rumen/Sediment 
 

 33 JF543570 98 
Bovine 

Rumen/Sediment 
 

 34 JF543936 99 
Bovine 

Rumen/Sediment 
 

 35 JF544473 99 
Bovine 

Rumen/Sediment 
 

 36 JF544665 99 
Bovine 

Rumen/Sediment 
 

 37 JF545458 98 
Bovine 

Rumen/Sediment 
 

 38 JF545788 99 Bovine  
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Rumen/Sediment 

 39 JF545833 99 
Bovine 

Rumen/Sediment 
 

 40 JF546354 99 
Bovine 

Rumen/Sediment 
 

 41 JF546563 99 
Bovine 

Rumen/Sediment 
 

 42 JF546814 98 
Bovine 

Rumen/Sediment 
 

 43 JF547023 98 
Bovine 

Rumen/Sediment 
 

 44 JF547792 98 
Bovine 

Rumen/Sediment 
 

 45 JF548146 99 
Bovine 

Rumen/Sediment 
 

 46 JF548554 98 
Bovine 

Rumen/Sediment 
 

 47 JF550142 98 
Bovine 

Rumen/Sediment 
 

 48 JF550832 97 
Bovine 

Rumen/Sediment 
 

 49 JF551115 99 
Bovine 

Rumen/Sediment 
 

 50 JF551780 99 
Bovine 

Rumen/Sediment 
 

 51 JF552279 98 
Bovine 

Rumen/Sediment 
 

 52 JF552475 98 
Bovine 

Rumen/Sediment 
 

 53 JF552527 98 
Bovine 

Rumen/Sediment 
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 54 JF552711 98 
Bovine 

Rumen/Sediment 
 

 55 JF552965 98 
Bovine 

Rumen/Sediment 
 

 56 JF553866 99 
Bovine 

Rumen/Sediment 
 

 57 JF554623 98 
Bovine 

Rumen/Sediment 
 

 58 JF554673 98 
Bovine 

Rumen/Sediment 
 

 59 JF555194 99 
Bovine 

Rumen/Sediment 
 

 60 JF555517 99 
Bovine 

Rumen/Sediment 
 

 61 JF556595 99 
Bovine 

Rumen/Sediment 
 

 62 JF557536 98 
Bovine 

Rumen/Sediment 
 

 63 JF557839 98 
Bovine 

Rumen/Sediment 
 

 64 JF557884 98 
Bovine 

Rumen/Sediment 
 

 65 JF558895 99 
Bovine 

Rumen/Sediment 
 

 66 JF559653 98 
Bovine 

Rumen/Sediment 
 

 67 JF561764 98 
Bovine 

Rumen/Sediment 
 

 68 JF561953 99 
Bovine 

Rumen/Sediment 
 

 69 JF562405 97 Bovine  
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Rumen/Sediment 

 70 JF563069 99 
Bovine 

Rumen/Sediment 
 

 71 JF563769 99 
Bovine 

Rumen/Sediment 
 

 72 JF563801 98 
Bovine 

Rumen/Sediment 
 

 73 JF564019 98 
Bovine 

Rumen/Sediment 
 

 74 JF564430 99 
Bovine 

Rumen/Sediment 
 

 75 JF566211 98 
Bovine 

Rumen/Sediment 
 

 76 JF566576 98 
Bovine 

Rumen/Sediment 
 

 77 JF566592 99 
Bovine 

Rumen/Sediment 
 

 78 JF569925 98 
Bovine 

Rumen/Sediment 
 

 79 JF570487 98 
Bovine 

Rumen/Sediment 
 

 80 JF570876 98 
Bovine 

Rumen/Sediment 
 

 81 JF571055 98 
Bovine 

Rumen/Sediment 
 

 82 JF571741 98 
Bovine 

Rumen/Sediment 
 

 83 JF572088 98 
Bovine 

Rumen/Sediment 
 

 84 JF572705 98 
Bovine 

Rumen/Sediment 
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 85 JF574227 99 
Bovine 

Rumen/Sediment 
 

 86 JF574870 99 
Bovine 

Rumen/Sediment 
 

 87 JF575965 99 
Bovine 

Rumen/Sediment 
 

 88 JF576526 98 
Bovine 

Rumen/Sediment 
 

 89 JF577354 99 
Bovine 

Rumen/Sediment 
 

 90 JF577907 99 
Bovine 

Rumen/Sediment 
 

 91 JF578900 99 
Bovine 

Rumen/Sediment 
 

 92 JF578965 99 
Bovine 

Rumen/Sediment 
 

 93 JF579008 99 
Bovine 

Rumen/Sediment 
 

 94 JF579080 98 
Bovine 

Rumen/Sediment 
 

 95 JF579834 98 
Bovine 

Rumen/Sediment 
 

 96 JF579897 99 
Bovine 

Rumen/Sediment 
 

 97 JF580142 99 
Bovine 

Rumen/Sediment 
 

 98 JF580205 98 
Bovine 

Rumen/Sediment 
 

 99 JF580500 98 
Bovine 

Rumen/Sediment 
 

 100 JF580903 98 Bovine  
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Rumen/Sediment 

 101 JF583391 98 
Bovine 

Rumen/Sediment 
 

 102 JF583770 96 
Bovine 

Rumen/Sediment 
 

 103 JF584324 98 
Bovine 

Rumen/Sediment 
 

 104 JF585065 98 
Bovine 

Rumen/Sediment 
 

 105 JF585898 98 
Bovine 

Rumen/Sediment 
 

 106 JF586657 99 
Bovine 

Rumen/Sediment 
 

 107 JF586945 98 
Bovine 

Rumen/Sediment 
 

 108 JF587075 98 
Bovine 

Rumen/Sediment 
 

 109 JF587208 98 
Bovine 

Rumen/Sediment 
 

 110 JF589024 98 
Bovine 

Rumen/Sediment 
 

 111 JF589244 98 
Bovine 

Rumen/Sediment 
 

 112 JF589553 98 
Bovine 

Rumen/Sediment 
 

 113 JF597551 97 
Bovine 

Rumen/Sediment 
 

 114 JF597589 99 
Bovine 

Rumen/Sediment 
 

 115 JF597612 98 
Bovine 

Rumen/Sediment 
 



 

259 

 

 116 JF597664 99 
Bovine 

Rumen/Sediment 
 

 117 JF597669 98 
Bovine 

Rumen/Sediment 
 

 118 JF597763 99 
Bovine 

Rumen/Sediment 
 

 119 JF597809 98 
Bovine 

Rumen/Sediment 
 

 120 JF597906 98 
Bovine 

Rumen/Sediment 
 

 121 JF597933 99 
Bovine 

Rumen/Sediment 
 

 122 JF598021 99 
Bovine 

Rumen/Sediment 
 

 123 JF598072 99 
Bovine 

Rumen/Sediment 
 

 124 JF598101 98 
Bovine 

Rumen/Sediment 
 

 125 JF598137 98 
Bovine 

Rumen/Sediment 
 

 126 JF598191 98 
Bovine 

Rumen/Sediment 
 

 127 JF598289 99 
Bovine 

Rumen/Sediment 
 

 128 JF598487 99 
Bovine 

Rumen/Sediment 
 

 129 JF598527 98 
Bovine 

Rumen/Sediment 
 

 130 JF598570 98 
Bovine 

Rumen/Sediment 
 

 131 JF598589 99 Bovine  
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Rumen/Sediment 

 132 JF598650 99 
Bovine 

Rumen/Sediment 
 

 133 JF598737 98 
Bovine 

Rumen/Sediment 
 

 134 JF598783 99 
Bovine 

Rumen/Sediment 
 

 135 JF598885 98 
Bovine 

Rumen/Sediment 
 

 136 JF598997 99 
Bovine 

Rumen/Sediment 
 

 137 JF599024 99 
Bovine 

Rumen/Sediment 
 

 138 JF599211 99 
Bovine 

Rumen/Sediment 
 

 139 JF599303 98 
Bovine 

Rumen/Sediment 
 

 140 JF599344 99 
Bovine 

Rumen/Sediment 
 

 141 JF599598 98 
Bovine 

Rumen/Sediment 
 

 142 JF599749 99 
Bovine 

Rumen/Sediment 
 

 143 JF599775 99 
Bovine 

Rumen/Sediment 
 

 144 JF599792 98 
Bovine 

Rumen/Sediment 
 

 145 JF599909 98 
Bovine 

Rumen/Sediment 
 

 146 JF599926 98 
Bovine 

Rumen/Sediment 
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 147 JF599955 98 
Bovine 

Rumen/Sediment 
 

 148 JF600126 99 
Bovine 

Rumen/Sediment 
 

 149 JF600196 98 
Bovine 

Rumen/Sediment 
 

 150 JF600383 96 
Bovine 

Rumen/Sediment 
 

 151 JF600387 98 
Bovine 

Rumen/Sediment 
 

 152 JF600579 99 
Bovine 

Rumen/Sediment 
 

 153 JF600866 99 
Bovine 

Rumen/Sediment 
 

 154 JF600902 99 
Bovine 

Rumen/Sediment 
 

 155 JF601277 99 
Bovine 

Rumen/Sediment 
 

 156 JF601280 99 
Bovine 

Rumen/Sediment 
 

 157 JF670601 97 
Bovine 

Rumen/Sediment 
 

 158 JF670822 98 
Bovine 

Rumen/Sediment 
 

 159 JF671013 98 
Bovine 

Rumen/Sediment 
 

 160 JF671023 98 
Bovine 

Rumen/Sediment 
 

 161 JF671126 98 
Bovine 

Rumen/Sediment 
 

 162 JF671330 99 Bovine  
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Rumen/Sediment 

 163 JF671433 98 
Bovine 

Rumen/Sediment 
 

 164 JF671438 98 
Bovine 

Rumen/Sediment 
 

 165 JF671439 98 
Bovine 

Rumen/Sediment 
 

 166 JF671605 99 
Bovine 

Rumen/Sediment 
 

 167 JF671619 98 
Bovine 

Rumen/Sediment 
 

 168 JF671640 99 
Bovine 

Rumen/Sediment 
 

 169 JF671689 98 
Bovine 

Rumen/Sediment 
 

 170 JF671773 99 
Bovine 

Rumen/Sediment 
 

 171 JF671808 98 
Bovine 

Rumen/Sediment 
 

 172 JF671924 99 
Bovine 

Rumen/Sediment 
 

 173 JF671951 99 
Bovine 

Rumen/Sediment 
 

 174 JF671992 98 
Bovine 

Rumen/Sediment 
 

 175 JF672007 98 
Bovine 

Rumen/Sediment 
 

 176 JF672386 98 
Bovine 

Rumen/Sediment 
 

 177 JF672462 99 
Bovine 

Rumen/Sediment 
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 178 JF672588 98 
Bovine 

Rumen/Sediment 
 

 179 JF672613 99 
Bovine 

Rumen/Sediment 
 

 180 JF672659 99 
Bovine 

Rumen/Sediment 
 

 181 JF672756 97 
Bovine 

Rumen/Sediment 
 

 182 JF672880 98 
Bovine 

Rumen/Sediment 
 

 183 JF672882 98 
Bovine 

Rumen/Sediment 
 

 184 JF672887 98 
Bovine 

Rumen/Sediment 
 

 185 JF672957 99 
Bovine 

Rumen/Sediment 
 

 186 JF673007 99 
Bovine 

Rumen/Sediment 
 

 187 JF673116 98 
Bovine 

Rumen/Sediment 
 

 188 JF673163 99 
Bovine 

Rumen/Sediment 
 

 189 JF673312 98 
Bovine 

Rumen/Sediment 
 

 190 JF673667 98 
Bovine 

Rumen/Sediment 
 

 191 JF673991 98 
Bovine 

Rumen/Sediment 
 

 192 GQ138377 RS* ABSR Reactor  

 193 JQ133101 98 
Anaerobic Sludge 

Digester 
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 194 JQ137036 99 
Anaerobic Sludge 

Digester 
 

 195 JQ148874 98 
Anaerobic Sludge 

Digester 
 

 196 KJ364282 99 Cryoconite  

1 0 AB255951 RS* Termite Gut  Termite Gut 100 

1 0 AB255946 RS* Termite Gut  Termite Gut 100 

2 0 AB255948 RS* Termite Gut  Termite Gut 100 

 1 AB255949 98 Termite Gut  

2 0 AB255954 RS* Termite Gut  Termite Gut 100 

 1 AB255956 96 Termite Gut  

1 0 GQ136636 RS* ABSR Reactor  ABSR Reactor 100 

9 0 FN429847 RS* Hydrothermal Vent  Equine 89 

Hydrothermal Vent 11  1 KJ364235 95 Equine Faeces  

 2 KJ364296 97 Equine Faeces  

 3 KJ364297 98 Equine Faeces  

 4 KJ364299 96 Equine Faeces  

 5 KJ364304 98 Equine Faeces  

 6 KJ364306 98 Equine Faeces  

 7 KJ364308 97 Equine Faeces  

 8 KJ364309 98 Equine Faeces  

10 0 EF186254 98 Landfill  Landfill 90 

Soil 10  1 EF186255 98 Landfill  

 2 EF186256 98 Landfill  

 3 EF186257 98 Landfill  

 4 EF186258 98 Landfill  

 5 EF186272 RS* Landfill  

 6 EF186288 98 Landfill  

 7 EF186289 98 Landfill  
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 8 EF186290 98 Landfill  

 9 FJ711753 98 Soil  

14 0 EF186245 99 Landfill  Landfill 100 

 1 EF186246 99 Landfill  

 2 EF186248 99 Landfill  

 3 EF186268 99 Landfill  

 4 EF186269 99 Landfill  

 5 EF186271 99 Landfill  

 6 EF186273 99 Landfill  

 7 EF186274 99 Landfill  

 8 EF186275 RS* Landfill  

 9 EF186276 99 Landfill  

 10 EF186277 99 Landfill  

 11 EF186279 99 Landfill  

 12 EF186280 99 Landfill  

 13 EF186281 99 Landfill  

3 0 EF186252 99 Landfill  Landfill 100 

 1 EF186285 RS* Landfill  

 2 EF186287 98 Landfill  

16 0 FJ711708 99 Lake Water  Lake 100 

 1 FJ711709 99 Lake Water  

 2 FJ711710 99 Lake Water  

 3 FJ711711 RS* Lake Water  

 4 FJ711712 99 Lake Water  

 5 FJ711713 99 Lake Water  

 6 FJ711714 99 Lake Water  

 7 FJ711715 99 Lake Water  

 8 FJ711716 99 Lake Sediment  

 9 FJ711727 99 Lake Water  
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 10 FJ711728 99 Lake Water  

 11 FJ711729 98 Lake Water  

 12 FJ711730 99 Lake Water  

 13 FJ711731 99 Lake Water  

 14 FJ711732 99 Lake Water  

 15 FJ711737 99 Lake Sediment  

14 0 AB549939 97 Equine Faeces  Equine 64 

Landfill 36  1 KJ364188 RS* Landfill  

 2 KJ364189 96 Landfill  

 3 KJ364236 97 Equine Faeces  

 4 KJ364237 97 Equine Faeces  

 5 KJ364238 99 Equine Faeces  

 6 KJ364239 97 Equine Faeces  

 7 KJ364300 96 Equine Faeces  

 8 KJ364302 99 Equine Faeces  

 9 KJ364305 98 Equine Faeces  

 10 KJ364307 99 Equine Faeces  

 11 KJ364415 96 Landfill  

 12 KJ364416 97 Landfill  

 13 KJ364417 99 Landfill  

1 0 KJ364190 RS* Landfill  Landfill 100 

1 0 KJ364196 RS* Bovine Rumen  Bovine 100 

2 0 KJ364274 RS* Cryoconite  Cryoconite 100 

 1 KJ364279 95 Cryoconite  
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Supplementary Table 2. Classification of 454 pyrosequencing 16S rRNA gene PCR amplicons derived from heavily and poorly degraded colonised 

cotton via analysis against the EzTaxon database. 

Domain Phylum Class Order Family 

Poorly Degraded 

Cotton (% of 

Sequences)  

Heavily Degraded 

Cotton (% of 

Sequences) 

Bacteria         100.00 99.99 

Unclassified         0.00 0.01 

  Bacteroidetes       72.69 20.54 

  Firmicutes       1.08 34.66 

  Spirochaetes       0.75 14.80 

  Fibrobacteres       0.02 14.18 

  Proteobacteria       18.70 0.85 

  Actinobacteria       3.30 0.06 

  Cyanobacteria       0.36 2.63 

  Cloacamonas       0.00 4.01 

  Tenericutes       0.65 3.39 

  Synergistetes       0.00 2.99 

  Lentisphaerae       0.06 1.11 

  OD1       0.74 0.28 

  Chlorobi       0.29 0.03 

  Planctomycetes       0.32 0.10 

  Deinococcus-Thermus     0.19 0.00 

  TM7       0.18 0.01 

  Chloroflexi       0.24 0.07 

  Verrucomicrobia       0.13 0.07 

  SR1       0.11 0.00 

  HQ912765       0.05 0.06 

  BRC1       0.06 0.01 

  GN02       0.06 0.01 

  Acidobacteria       0.00 0.03 

  4P001694       0.03 0.00 

  Armatimonadetes       0.00 0.04 

  Thermotogae       0.00 0.03 

  JS1       0.00 0.01 

  Fusobacteria       0.01 0.00 

  Bacteroidetes Bacteroidia   92.54 99.27 
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    Flavobacteria   4.66 0.44 

    Cytophagia   0.80 0.07 

    Balneola     0.93 0.00 

    Sphingobacteria   1.03 0.15 

    Unclassified   0.04 0.07 

  Bacteroidetes Bacteroidia Bacteroidales   99.92 99.71 

      Unclassified   0.08 0.29 

    Flavobacteria Flavobacteriales 99.73 100.00 

      Unclassified   0.27 0.00 

    Cytophagia Cytophagales 100.00 100.00 

    Balneola Balneola   100.00 100.00 

    Sphingobacteria Sphingobacteriales 100.00 100.00 

  Bacteroidetes Bacteroidia Bacteroidales Marinilabiliaceae 87.88 6.62 

        Porphyromonadaceae 4.97 54.34 

        Paludibacter 4.35 8.24 

        FJ437992 1.34 0.74 

        EU845084 0.06 6.54 

        HQ183936 0.00 5.59 

        Prolixibacter 0.07 4.19 

        Bacteroidaceae 0.26 2.87 

        EF148839 0.00 3.90 

        AM982614 0.03 3.53 

        Prevotellaceae 0.06 0.66 

        GQ480115 0.12 0.15 

        Anaerocella 0.00 0.66 

        FJ437753 0.00 0.44 

        DQ206420 0.00 0.44 

        GQ357022 0.04 0.07 

        EF602759 0.00 0.15 

        Rikenellaceae 0.00 0.07 

        FN658701 0.00 0.07 

        EU864494 0.00 0.07 

        Unclassified 0.83 0.66 

  Bacteroidetes Flavobacteria Flavobacteriales Flavobacteriaceae 59.63 3.33 

        EF572459 24.87 0.00 

        Brumimicrobiaceae 4.01 0.00 

        GQ349278 2.94 0.00 
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        Cryomorphaceae 1.34 0.00 

        GU454927 1.07 0.00 

        FJ628329 0.27 0.00 

        Unclassified 3.21 66.67 

  Bacteroidetes Cytophagia Cytophagales Cytophagaceae 1.59 100.00 

        Unclassified 98.41 0.00 

  Bacteroidetes Balneola Balneola HM129785 53.42 0.00 

        Balneola 36.99 0.00 

        Unclassified 9.59 0.00 

  Bacteroidetes Sphingobacteria Sphingobacteriales Chitinophagaceae 44.44 100.00 

        Saprospiraceae 28.40 0.00 

        EU234264 4.94 0.00 

        Unclassified 22.22 0.00 

  Firmicutes Clostridia     59.48 96.64 

    Bacilli     35.34 1.21 

    Erysipelotrichi   4.31 2.03 

    AB476673   0.00 0.04 

    Unclassified   0.86 0.00 

  Firmicutes Clostridia Clostridiales   76.81 99.11 

      Thermoanaerobacterales 20.29 0.09 

      DQ887962   0.00 0.45 

      Anaerobranca 0.00 0.04 

      Unclassified   2.90 0.31 

  Firmicutes Bacilli Bacillales   92.68 7.14 

      Lactobacillales 7.32 92.86 

  Firmicutes Erysipelotrichi Erysipelotrichales 100.00 100.00 

  Firmicutes AB476673 AB476673   0.00 100.00 

  Firmicutes Clostridia Clostridiales Ruminococcaceae 7.55 69.47 

        Lachnospiraceae 11.32 11.26 

        Desulfonispora 0.00 4.77 

        Sedimentibacter 0.00 3.65 

        Natranaerovirga 0.00 2.21 

        Christensenellaceae 0.00 1.62 

        HM124151 0.00 1.13 

        Mogibacterium 0.00 2.48 

        Tissierella 18.87 0.36 

        Anaerovirgula 20.75 0.14 
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        Clostridiaceae 13.21 0.14 

        Clostridium g7 16.98 0.00 

        Syntrophomonadaceae 0.00 0.27 

        Gracilibacteraceae 0.00 0.36 

        Peptostreptococcaceae 0.00 0.18 

        Eubacteriaceae 0.00 0.18 

        Veillonellaceae 3.77 0.05 

        Thermincola 0.00 0.05 

        AB118592 0.00 0.14 

        Unclassified 7.55 1.58 

  Firmicutes Clostridia Thermoanaerobacterales DQ346486 100.00 0.00 

        HM041937 0.00 100.00 

  Firmicutes Clostridia DQ887962 DQ887962 0.00 90.00 

        FN436103 0.00 10.00 

  Firmicutes Clostridia Anaerobranca Anaerobranca 0.00 100.00 

  Firmicutes Bacilli Bacillales Paenibacillaceae 92.11 50.00 

        Planococcaceae 0.00 50.00 

        Unclassified 7.89 0.00 

  Firmicutes Bacilli Lactobacillales Lactobacillaceae 66.67 100.00 

        Streptococcaceae 33.33 0.00 

  Firmicutes Erysipelotrichi Erysipelotrichales EU009800 80.00 91.84 

        Allobaculum 0.00 4.08 

        Erysipelotrichaceae 20.00 2.04 

        Unclassified 0.00 2.04 

  Firmicutes AB476673 AB476673 AY221604 0.00 100.00 

  Spirochaetes Spirochaetes   100.00 99.90 

    Unclassified   0.00 0.10 

  Spirochaetes Spirochaetes Spirochaetales 100.00 98.79 

      Unclassified   0.00 1.21 

  Spirochaetes Spirochaetes Spirochaetales Spirochaetaceae 2.47 98.46 

        Leptospiraceae 93.83 0.00 

        Unclassified 3.7 1.54 

  Fibrobacteres Fibrobacteria   100.00 100.00 

  Fibrobacteres Fibrobacteria Fibrobacterales 100.00 100.00 

  Fibrobacteres Fibrobacteria Fibrobacterales Fibrobacteraceae 100.00 99.68 

        Unclassified 0.00 0.32 

  Proteobacteria Gammaproteobacteria   67.67 22.81 
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    Betaproteobacteria   26.87 22.81 

    Alphaproteobacteria   3.97 36.80 

    Epsilonproteobacteria   1.49 1.75 

    Deltaproteobacteria   0.00 15.79 

  Proteobacteria Gammaproteobacteria Oceanospirillales 60.51 23.08 

      Chromatiales   29.81 7.69 

      Alteromonadales 6.81 7.69 

      Pseudomonadales 1.61 15.38 

      Xanthomonadales 0.36 15.38 

      OM182   0.29 0.00 

      Methylococcales 0.00 15.38 

      Thiotrichales   0.14 7.69 

      Vibrionales   0.07 0.00 

      Enterobacteriales 0.00 7.69 

      HQ191045   0.07 0.00 

      Steroidobacter 0.15 0.00 

      Marinicella   0.00 0.00 

  Proteobacteria Betaproteobacteria Rhodocyclales 59.78 0.00 

      Burkholderiales 39.85 76.92 

      Methylophilales 0.37 0.00 

      DQ009366   0.00 7.69 

      Zoogloea   0.00 7.69 

      EU786132   0.00 7.69 

  Proteobacteria Alphaproteobacteria Rhodobacterales 67.50 4.76 

      Rhizobiales   17.50 42.86 

      Micavibrio   13.75 0.00 

      SAR11   0.00 28.57 

      Sphingomonadales 0.00 9.52 

      Rickettsiales   0.00 4.76 

      Rhodospirillales 1.25 0.00 

      EU939387   0.00 4.67 

      Unclassified   0.00 4.67 

  Proteobacteria Epsilonproteobacteria Campylobacterales 100.00 100.00 

  Proteobacteria Deltaproteobacteria FM253572   0.00 55.56 

      EU861868   0.00 22.22 

      Desulfobacterales 0.00 11.11 

      GU112205   0.00 11.11 
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  Proteobacteria Gammaproteobacteria Oceanospirillales Halomonadaceae 99.64 0.00 

        Oceanospirillaceae 0.00 100.00 

        Unclassified 0.36 0.00 

  Proteobacteria Gammaproteobacteria Chromatiales Sedimenticola 99.51 0.00 

        Thiobios 0.00 100.00 

        Nitrosococcus 0.25 0.00 

        Unclassified 0.25 0.00 

  Proteobacteria Gammaproteobacteria Alteromonadales Cellvibrio 54.26 0.00 

        Idiomarinaceae 42.55 0.00 

        Marinobacter 1.06 0.00 

        Alishewanella 1.06 0.00 

        Teredinibacter 1.06 0.00 

        Porticoccus 0.00 100.00 

  Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae 100.00 100.00 

  Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae 100.00 100.00 

  Proteobacteria Gammaproteobacteria OM182 GU474872 100.00 0.00 

  Proteobacteria Gammaproteobacteria Methylococcales Methylomonas 100.00 100.00 

  Proteobacteria Gammaproteobacteria Thiotrichales Methylophaga 100.00 0.00 

        Leucothrix 0.00 100.00 

  Proteobacteria Gammaproteobacteria Vibrionales Vibrionaceae 100.00 0.00 

  Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae 0.00 100.00 

  Proteobacteria Gammaproteobacteria HQ191045 HQ191045 100.00 0.00 

  Proteobacteria Gammaproteobacteria Steroidobacter AB013829 50.00 0.00 

        Unclassified 50.00 0.00 

  Proteobacteria Gammaproteobacteria Marinicella Marinicella 100.00 0.00 

  Proteobacteria Betaproteobacteria Rhodocyclales Rhodocyclaceae 99.07 0.00 

        Unclassified 0.93 0.00 

  Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae 71.30 0.00 

        Comamonadaceae 25.46 30.00 

        Lautropia 2.31 0.00 

        Sphaerotilus 0.00 50.00 

        AY234747 0.93 0.00 

        FJ755754 0.00 20.00 

  Proteobacteria Betaproteobacteria Methylophilales Methylophilaceae 100.00 0.00 

  Proteobacteria Betaproteobacteria DQ009366 AM990454 0.00 100.00 

  Proteobacteria Betaproteobacteria Zoogloea Zoogloea 0.00 100.00 

  Proteobacteria Betaproteobacteria EU786132 EU786132 0.00 100.00 
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  Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae 85.19 100.00 

        Hyphomonadaceae 14.81 0.00 

  Proteobacteria Alphaproteobacteria Rhizobiales Devosia 28.57 0.00 

        Phyllobacteriaceae 28.57 0.00 

        Xanthobacteraceae 14.29 0.00 

        Rhodoligotrophos 0.00 22.22 

        Rhizobiaceae 7.14 1.11 

        Methylobacteriaceae 7.14 0.00 

        Bradyrhizobiaceae 0.00 1.11 

        Hyphomicrobiaceae 0.00 1.11 

        Unclassified 14.29 4.44 

  Proteobacteria Alphaproteobacteria Micavibrio AY945895 54.55 0.00 

        Micavibrio 45.45 0.00 

  Proteobacteria Alphaproteobacteria SAR11 SAR11-1 0.00 83.33 

        SAR11-2 0.00 16.67 

  Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae 0.00 100.00 

  Proteobacteria Alphaproteobacteria Rickettsiales EU800706 0.00 100.00 

  Proteobacteria Alphaproteobacteria Rhodospirillales Thalassobaculum 100.00 0.00 

  Proteobacteria Alphaproteobacteria EU939387 AB270041 0.00 100.00 

  Proteobacteria Epsilonproteobacteria Campylobacterales Sulfurimonas 90.00 100.00 

        Campylobacteraceae 6.67 0.00 

        Sulfurovum 3.33 0.00 

  Proteobacteria Deltaproteobacteria FM253572 FM253572 0.00 100.00 

  Proteobacteria Deltaproteobacteria EU861868 EU861868 0.00 100.00 

  Proteobacteria Deltaproteobacteria Desulfobacterales Desulfobacteraceae 0.00 100.00 

  Proteobacteria Deltaproteobacteria GU112205 GU112205 0.00 100.00 

  Actinobacteria Actinobacteria   100.00 100.00 

  Actinobacteria Actinobacteria Micrococcales 96.07 75.00 

      Bifidobacteriales 1.69 0.00 

      Frankiales   1.12 0.00 

      Propionibacteriales 0.84 25.00 

      Unclassified   0.28 0.00 

  Actinobacteria Actinobacteria Micrococcales Demequinaceae 64.33 0.00 

        Intrasporangiaceae 33.04 33.33 

        Cellulomonadaceae 1.75 0.00 

        Microbacteriaceae 0.29 66.67 

        Unclassified 0.58 0.00 
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  Actinobacteria Actinobacteria Bifidobacteriales Bifidobacteriaceae 100.00 0.00 

  Actinobacteria Actinobacteria Frankiales Nakamurellaceae 100.00 0.00 

  Actinobacteria Actinobacteria Propionibacteriales Propionibacteriaceae 100.00 0.00 

        Nocardioidaceae 0.00 100.00 

  Cyanobacteria Vampirovibrio   0.00 100.00 

  Cyanobacteria JF737898     100.00 0.00 

  Cyanobacteria Vampirovibrio Vampirovibrio   0.00 99.43 

      AF544207   0.00 0.57 

  Cyanobacteria JF737898 JF417809   76.92 0.00 

      GU174155   15.38 0.00 

      JF417809   7.69 0.00 

  Cyanobacteria Vampirovibrio AF544207 AF544207 0.00 100.00 

      Vampirovibrio Unclassified 0.00 100.00 

  Cyanobacteria JF737898 JF417809 AY212703 9.09 0.00 

      JF417809 Unclassified 90.91 0.00 

      GU174155 GU444060 100.00 0.00 

  Cloacamonas Cloacamonas   0.00 100.00 

  Cloacamonas Cloacamonas EF031090   0.00 60.07 

      Cloacamonas   0.00 39.55 

      Unclassified   0.00 0.37 

  Cloacamonas Cloacamonas EF031090 AJ853569 0.00 96.89 

        Unclassified 0.00 3.11 

  Cloacamonas Cloacamonas Cloacamonas Cloacamonas 0.00 100.00 

  Tenericutes Mollicutes     100.00 100.00 

  Tenericutes Mollicutes AM275436   0.00 65.20 

      Acholeplasmatales 100.00 7.93 

      GU196243   0.00 25.11 

      Unclassified   0.00 1.76 

  Tenericutes Mollicutes AM275436 AM275436 0.00 83.78 

        EF445272 0.00 3.38 

        Unclassified 0.00 12.84 

  Tenericutes Mollicutes Acholeplasmatales Acholeplasmataceae 98.57 100.00 

        Unclassified 1.43 0.00 

  Tenericutes Mollicutes GU196243 FJ367735 0.00 56.14 

        GU196243 0.00 3.51 

        Unclassified 0.00 40.35 

  Synergistetes Synergistia   0.00 100.00 
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  Synergistetes Synergistia Synergistales   0.00 40.50 

      Dethiosulfovibrio 0.00 59.50 

  Synergistetes Synergistia Synergistales Synergistaceae 0.00 77.78 

        Thermovirga 0.00 22.22 

  Synergistetes Synergistia Dethiosulfovibrio Aminobacterium 0.00 52.94 

        Dethiosulfovibrio 0.00 47.06 

  Lentisphaerae Lentisphaeria   0.00 77.02 

    GU196224   100.00 21.62 

    Unclassified   0.00 1.35 

  Lentisphaerae Lentisphaeria Oligosphaerales 0.00 94.74 

      EU885056   0.00 3.51 

      Victivallales   0.00 1.75 

  Lentisphaerae GU196224 GU196224   100.00 100.00 

  Lentisphaerae Lentisphaeria Oligosphaerales Oligosphaeraceae 0.00 100.00 

  Lentisphaerae Lentisphaeria EU885056 EU885056 0.00 100.00 

  Lentisphaerae Lentisphaeria Victivallales Unclassified 0.00 100.00 

  Lentisphaerae GU196224 GU196224 EF574345 66.67 0.00 

        GU196224 0.00 93.75 

        JF747850 22.33 0.00 

        Unclassified 0.00 6.25 

  OD1 FJ547054     87.50 0.00 

    OD1     12.50 100.00 

  OD1 FJ547054 AB504963   98.57 0.00 

      Unclassified   1.43 0.00 

  OD1 OD1 OD1   100.00 100.00 

  OD1 FJ547054 AB504963 EU050865 59.42 0.00 

        AY168743 28.99 0.00 

        EU735622 8.70 0.00 

        FJ710698 1.45 0.00 

        AJ853574 1.45 0.00 

  OD1 OD1 OD1 AM982633 100.00 100.00 

  Chlorobi OPB56     100.00 100.00 

  Chlorobi OPB56 OPB56   100.00 100.00 

  Chlorobi OPB56 OPB56 EF648021 100.00 0.00 

        EU245114 0.00 100.00 

  Planctomycetes Phycisphaerae   85.29 57.14 

    Planctomycetacia   2.94 42.86 
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    Unclassified   11.76 0.00 

  Planctomycetes Phycisphaerae Phycisphaerales 100.00   

      HQ697838   0.00   

      Phycisphaerales 0.00   

  Planctomycetes Planctomycetacia Planctomycetales 100.00   

  Planctomycetes Phycisphaerae Phycisphaerales FJ936783 100.00 0.00 

      HQ697838 HQ697838 0.00 100.00 

      Phycisphaerales Phycisphaeraceae 0.00 100.00 

  Planctomycetes Planctomycetacia Planctomycetales Planctomycetaceae 100.00 100.00 

  TM7 TM7     100.00 100.00 

  TM7 TM7 JF421159   68.42 100.00 

      TM7   31.58 0.00 

  TM7 TM7 JF421159 JF421159 100.00 0.00 

        AF269001 0.00 100.00 

      TM7 TM7 83.33 0.00 

        Unclassified 16.67 0.00 

  Chloroflexi Anaerolineae   92.31 40.00 

    Dehalococcoidetes   0.00 20.00 

    Ktedonobacteria   0.00 20.00 

    GQ396871   0.00 20.00 

    Thermomicrobia   7.69 0.00 

  Chloroflexi Anaerolineae AF234733   54.17 0.00 

      Anaerolinaeles 45.85 100.00 

    Dehalococcoidetes Dehalococcoidales 0.00 100.00 

    Ktedonobacteria AY673403   100.00 100.00 

    GQ396871 GQ396871   0.00 100.00 

    Thermomicrobia DQ129389   100.00 0.00 

  Chloroflexi Anaerolineae AF234733 AB478660 92.31 0.00 

        AF234733 7.69 0.00 

      Anaerolinaeles GU455152 100.00 0.00 

        Anaerolinaceae 0.00 100.00 

    Dehalococcoidetes Dehalococcoidales GU553783 0.00 100.00 

    Ktedonobacteria AY673403 AY673403 0.00 100.00 

    GQ396871 GQ396871 GQ396871 0.00 100.00 

    Thermomicrobia DQ129389 DQ129389 100.00 0.00 

  Verrucomicrobia Opitutae     100.00 60.00 

    Verrucomicrobiae   0.00 40.00 
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  Verrucomicrobia Opitutae Puniceicoccales 85.71 100.00 

      Opitutales   14.29 0.00 

    Verrucomicrobiae Verrucomicrobiales 0.00 100.00 

  Verrucomicrobia Opitutae Puniceicoccales FJ825556 91.67 0.00 

        AY695840 8.33 100.00 

      Opitutales Opitutaceae 100.00 0.00 

    Verrucomicrobiae Verrucomicrobiales Akkermansia 0.00 100.00 

  SR1 AB015542   100.00 0.00 

  SR1 AB015542 AB015542   25.00 0.00 

      Unclassified   75.00 0.00 

  SR1 AB015542 AB015542 GU410548 100.00 0.00 

  HQ912765 HQ912765   100.00 100.00 

  HQ912765 HQ912765 HQ912765   100.00 100.00 

  HQ912765 HQ912765 HQ912765 HQ912765 100.00 100.00 

  BRC1 FP245541   100.00 0.00 

  BRC1 FP245541 FP245541   100.00 0.00 

  BRC1 FP245541 FP245541 EF683079 83.33 0.00 

        AM490696 16.67 0.00 

  GN02 GN02     100.00 0.00 

  GN02 GN02 AM086106   83.33 0.00 

      Unclassified   16.67 0.00 

  GN02 GN02 AM086106 AM086106 100.00 0.00 

  Acidobacteria Acidobacteria   0.00 50.00 

    HM243779   0.00 50.00 

  Acidobacteria Acidobacteria Acidobacteriales 0.00 100.00 

    HM243779 JF718667   0.00 100.00 

  Acidobacteria Acidobacteria Acidobacteriales Acidobacteriaceae 0.00 100.00 

    HM243779 JF718667 JF718667 0.00 100.00 

  4P001694 4P001694   100.00 0.00 

  4P001694 4P001694 Unclassified   100.00 0.00 

  Armatimonadetes Fimbriimonadia   0.00 100.00 

  Armatimonadetes Fimbriimonadia Fimbriimonadales 0.00 100.00 

  Armatimonadetes Fimbriimonadia Fimbriimonadales Unclassified 0.00 100.00 

  Thermotogae Thermotogae   0.00 100.00 

  Thermotogae Thermotogae Thermotogales 0.00 100.00 

  Thermotogae Thermotogae Thermotogales Kosmotoga 0.00 100.00 

  JS1 JS1     0.00 100.00 
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  JS1 JS1     0.00 100.00 

  JS1 JS1 JS1 JS1 0.00 100.00 

  Fusobacteria Fusobacteria   100.00 0.00 

  Fusobacteria Fusobacteria Fusobacteriales 100.00 0.00 

  Fusobacteria Fusobacteria Fusobacteriales Leptotrichiaceae 100.00 0.00 
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Supplementary Table 3. Classification of metagenome contigs derived from heavily degraded colonised cotton via analysis using MG-RAST against 

the M5RNA database. 

Domain Phylum Class Order Family Percentage of Contigs (%) 

Bacteria         89.59 

Eukaryota         4.10 

Archaea         2.68 

Unclassified         3.31 

Viruses         0.32 

Bacteria Firmicutes       47.18 

  Bacteroidetes       22.80 

  Proteobacteria     6.43 

  Spirochaetes       6.07 

  Unclassified       4.40 

  Tenericutes       3.87 

  Synergistetes       3.08 

  Actinobacteria     2.82 

  Fibrobacteres       0.79 

  Cyanobacteria     0.70 

  Lentisphaerae     0.44 

  Fusobacteria       0.26 

  Nitrospirae       0.26 

  Chlamydiae       0.18 

  Acidobacteria       0.18 

  Deferribacteres     0.18 

  Verrucomicrobia     0.18 

  Elusimicrobia       0.09 

  Chlorobi       0.09 

Bacteria Firmicutes Clostridia     79.67 

    Bacilli     15.67 

    Erysipelotrichi     2.61 

    Negativicutes     2.05 

  Bacteroidetes Bacteroidia     57.52 

    Flavobacteriia     23.94 

    Sphingobacteriia   9.27 

    Unclassified      5.41 

    Cytophagia     3.86 
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  Proteobacteria Gammaproteobacteria   30.13 

    Alphaproteobacteria   23.29 

    Deltaproteobacteria   23.29 

    Betaproteobacteria   16.44 

    Epsilonproteobacteria   4.11 

    Zetaproteobacteria   2.74 

  Spirochaetes Spirochaetia     100.00 

  Tenericutes Mollicutes     100.00 

  Synergistetes Synergistia     91.43 

    Unclassified     8.57 

  Actinobacteria Actinobacteria   100.00 

  Fibrobacteres Fibrobacteria     100.00 

  Cyanobacteria Unclassified     100.00 

  Lentisphaerae Unclassified     100.00 

  Fusobacteria Fusobacteriia     100.00 

  Nitrospirae Nitrospira     100.00 

  Chlamydiae Chlamydiia     100.00 

  Acidobacteria Acidobacteriia   100.00 

  Deferribacteres Deferribacteres   100.00 

  Verrucomicrobia Verrucomicrobiae   100.00 

  Elusimicrobia Elusimicrobia     100.00 

  Chlorobi Chlorobia     100.00 

Bacteria Firmicutes Clostridia Clostridiales   99.06 

      Thermoanaerobacterales 0.94 

    Bacilli Bacillales   59.52 

      Lactobacillales 40.48 

    Erysipelotrichi Erysipelotrichales 100.00 

    Negativicutes Selenomonadales 100.00 

  Bacteroidetes Bacteroidia Bacteroidales   100.00 

    Flavobacteriia Flavobacteriales 96.77 

      Unclassified   3.23 

    Sphingobacteriia Sphingobacteriales 100.00 

    Cytophagia Cytophagales   100.00 

  Proteobacteria Gammaproteobacteria Unclassified   50.00 

      Chromatiales   13.64 

      Enterobacteriales 13.64 

      Pseudomonadales 13.64 
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      Xanthomonadales 4.54 

      Thiotrichales   4.54 

    Alphaproteobacteria Rhizobiales   29.42 

      Unclassified   17.65 

      Rhodobacterales 17.65 

      Rickettsiales   11.76 

      Rhodospirillales 11.76 

      Sphingomonadales 11.76 

    Deltaproteobacteria Desulfovibrionales 35.30 

      Unclassified   29.41 

      Myxococcales   23.53 

      Bdellovibrionales 11.76 

    Betaproteobacteria Burkholderiales 66.67 

      Unclassified   25.00 

      Neisseriales   8.33 

    Epsilonproteobacteria Unclassified   66.67 

      Nautiliales   33.33 

    Zetaproteobacteria Mariprofundales 100.00 

  Spirochaetes Spirochaetia Spirochaetales 100.00 

  Tenericutes Mollicutes Acholeplasmatales 68.18 

      Mycoplasmatales 18.18 

      Entomoplasmatales 13.64 

  Synergistetes Synergistia Synergistales   100.00 

  Actinobacteria Actinobacteria Actinomycetales 71.88 

      Coriobacteriales 15.62 

      Acidimicrobiales 9.38 

      Rubrobacterales 3.12 

  Fibrobacteres Fibrobacteria Fibrobacterales 100.00 

  Fusobacteria Fusobacteriia Fusobacteriales 100.00 

  Nitrospirae Nitrospira Nitrospirales   100.00 

  Chlamydiae Chlamydiia Chlamydiales   100.00 

  Acidobacteria Acidobacteriia Acidobacteriales 100.00 

  Deferribacteres Deferribacteres Deferribacterales 100.00 

  Verrucomicrobia Verrucomicrobiae Verrucomicrobiales 100.00 

  Elusimicrobia Elusimicrobia Elusimicrobiales 100.00 

  Chlorobi Chlorobia Chlorobiales   100.00 

Bacteria Firmicutes Clostridia Clostridiales Clostridiaceae 36.17 
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        Ruminococcaceae 13.48 

        Lachnospiraceae 9.93 

        Clostridiales Family XI. Incertae Sedis 9.69 

        Eubacteriaceae 9.22 

        Peptostreptococcaceae 7.57 

        Peptococcaceae 4.96 

        Unclassified 4.49 

        Heliobacteriaceae 2.13 

        Clostridiales Family XII. Incertae Sedis 1.18 

        Syntrophomonadaceae 1.18 

      Thermoanaerobacterales Thermoanaerobacterales Family III. Incertae Sedis 50.00 

        Thermodesulfobiaceae 25.00 

        Thermoanaerobacteraceae 25.00 

    Bacilli Bacillales Bacillaceae 40.00 

        Paenibacillaceae 20.00 

        Alicyclobacillaceae 12.00 

        Listeriaceae 12.00 

        Staphylococcaceae 8.00 

        Unclassified 4.00 

        Thermoactinomycetaceae 4.00 

      Lactobacillales Lactobacillaceae 41.19 

        Streptococcaceae 29.41 

        Carnobacteriaceae 8.82 

        Enterococcaceae 8.82 

        Leuconostocaceae 5.88 

        Aerococcaceae 5.88 

    Erysipelotrichi Erysipelotrichales Erysipelotrichaceae 100.00 

    Negativicutes Selenomonadales Veillonellaceae 100.00 

  Bacteroidetes Bacteroidia Bacteroidales Porphyromonadaceae 43.62 

        Bacteroidaceae 31.55 

        Rikenellaceae 12.75 

        Prevotellaceae 5.37 

        Marinilabiaceae 4.03 

        Unclassified 2.68 

    Flavobacteriia Flavobacteriales Flavobacteriaceae 91.67 

        Unclassified 6.67 

        Blattabacteriaceae 1.66 
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    Sphingobacteriia Sphingobacteriales Sphingobacteriaceae 87.50 

        Unclassified 12.50 

    Cytophagia Cytophagales Cytophagaceae 100.00 

  Proteobacteria Gammaproteobacteria Chromatiales Chromatiaceae 66.67 

        Ectothiorhodospiraceae 33.33 

      Enterobacteriales Enterobacteriaceae 100.00 

      Pseudomonadales Pseudomonadaceae 66.67 

        Moraxellaceae 33.33 

      Xanthomonadales Xanthomonadaceae 100.00 

      Thiotrichales Francisellaceae 100.00 

    Alphaproteobacteria Rhizobiales Rhodobiaceae 20.00 

        Brucellaceae 20.00 

        Rhizobiaceae 20.00 

        Methylobacteriaceae 20.00 

        Bradyrhizobiaceae 20.00 

      Rhodobacterales Rhodobacteraceae 66.67 

        Unclassified 33.33 

      Rickettsiales Anaplasmataceae 100.00 

      Rhodospirillales Acetobacteraceae 50.00 

        Rhodospirillaceae 50.00 

      Sphingomonadales Sphingomonadaceae 100.00 

    Deltaproteobacteria Desulfovibrionales Desulfohalobiaceae 66.67 

        Desulfovibrionaceae 33.33 

      Myxococcales Nannocystaceae 75.00 

        Kofleriaceae 25.00 

      Bdellovibrionales Bacteriovoracaceae 50.00 

        Bdellovibrionaceae 50.00 

    Betaproteobacteria Burkholderiales Burkholderiaceae 50.00 

        Unclassified 25.00 

        Alcaligenaceae 12.50 

        Comamonadaceae 12.50 

      Neisseriales Neisseriaceae 100.00 

    Epsilonproteobacteria Nautiliales Nautiliaceae 100.00 

    Zetaproteobacteria Mariprofundales Mariprofundaceae 100.00 

  Spirochaetes Spirochaetia Spirochaetales Spirochaetaceae 95.65 

        Leptospiraceae 4.35 

  Tenericutes Mollicutes Acholeplasmatales Acholeplasmataceae 100.00 



 

286 

 

      Mycoplasmatales Mycoplasmataceae 100.00 

      Entomoplasmatales Entomoplasmataceae 50.00 

        Spiroplasmataceae 50.00 

  Synergistetes Synergistia Synergistales Synergistaceae 100.00 

  Actinobacteria Actinobacteria Actinomycetales Streptomycetaceae 17.39 

        Nocardiaceae 13.03 

        Propionibacteriaceae 13.03 

        Micrococcaceae 8.70 

        Corynebacteriaceae 8.70 

        Mycobacteriaceae 8.70 

        Unclassified 8.70 

        Microbacteriaceae 4.35 

        Frankiaceae 4.35 

        Promicromonosporaceae 4.35 

        Beutenbergiaceae 4.35 

        Actinomycetaceae 4.35 

      Coriobacteriales Coriobacteriaceae 100.00 

      Acidimicrobiales Acidimicrobiaceae 100.00 

      Rubrobacterales Rubrobacteraceae 100.00 

  Fibrobacteres Fibrobacteria Fibrobacterales Fibrobacteraceae 100.00 

  Fusobacteria Fusobacteriia Fusobacteriales Fusobacteriaceae 100.00 

  Nitrospirae Nitrospira Nitrospirales Nitrospiraceae   100.00 

  Chlamydiae Chlamydiia Chlamydiales Parachlamydiaceae 50.00 

        Simkaniaceae 50.00 

  Acidobacteria Acidobacteriia Acidobacteriales Acidobacteriaceae 100.00 

  Deferribacteres Deferribacteres Deferribacterales Deferribacteraceae 100.00 

  Verrucomicrobia Verrucomicrobiae Verrucomicrobiales Verrucomicrobiaceae 100.00 

  Elusimicrobia Elusimicrobia Elusimicrobiales Elusimicrobiaceae 100.00 

  Chlorobi Chlorobia Chlorobiales Chlorobiaceae 100.00 

Eukaryota Arthropoda       59.62 

  Streptophyta       11.54 

  Unclassified        9.61 

  Ascomycota       3.85 

  Chordata       3.85 

  Chlorophyta       3.85 

  Annelida       1.92 

  Apicomplexa       1.92 
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  Cnidaria       1.92 

  Nematoda       1.92 

Eukaryota Arthropoda Insecta     90.32 

    Maxillopoda     9.68 

  Streptophyta Liliopsida     66.67 

    Unclassified      33.33 

  Ascomycota Sordariomycetes   100.00 

  Chordata Actinopterygii     100.00 

  Chlorophyta Trebouxiophyceae   50.00 

    Prasinophyceae   50.00 

  Annelida Polychaeta     100.00 

  Apicomplexa Aconoidasida     100.00 

  Cnidaria Hydrozoa     100.00 

  Nematoda Chromadorea     100.00 

Eukaryota Arthropoda Insecta Isoptera   100.00 

    Maxillopoda Siphonostomatoida 100.00 

  Streptophyta Liliopsida Poales   100.00 

  Ascomycota Sordariomycetes Glomerellales   100.00 

  Chordata Actinopterygii Cypriniformes   100.00 

  Chlorophyta Trebouxiophyceae Chlorellales   100.00 

    Prasinophyceae Prasinococcales 100.00 

  Annelida Polychaeta Flabelligerida   100.00 

  Apicomplexa Aconoidasida Unclassified    100.00 

  Cnidaria Hydrozoa Hydroida   100.00 

  Nematoda Chromadorea Rhabditida   100.00 

Eukaryota Arthropoda Insecta Isoptera Rhinotermitidae  100.00 

    Maxillopoda Siphonostomatoida Caligidae 100.00 

  Streptophyta Liliopsida Poales Poaceae 100.00 

  Ascomycota Sordariomycetes Glomerellales Plectosphaerellaceae 100.00 

  Chordata Actinopterygii Cypriniformes Cyprinidae 100.00 

  Chlorophyta Trebouxiophyceae Chlorellales Unclassified  100.00 

    Prasinophyceae Prasinococcales Unclassified  100.00 

  Annelida Polychaeta Flabelligerida Flabelligeridae 100.00 

  Cnidaria Hydrozoa Hydroida Hydridae 100.00 

  Nematoda Chromadorea Rhabditida Rhabditidae 100.00 

Archaea Euryarchaeota     91.18 

  Unclassified        8.82 
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Archaea Euryarchaeota Methanomicrobia   93.55 

    Unclassified      6.45 

Archaea Euryarchaeota Methanomicrobia Methanomicrobiales 82.76 

      Methanosarcinales 17.24 

Archaea Euryarchaeota Methanomicrobia Methanomicrobiales Methanomicrobiaceae 50.00 

        Methanocorpusculaceae 16.67 

        Methanospirillaceae 16.67 

        Unclassified  16.67 

      Methanosarcinales Methanosarcinaceae 80.00 

        Methanosaetaceae 20.00 

 

 

 

 


