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ABSTRACT 

There is major concern internationally, and specifically in the Ethiopian afromontane 

biodiversity hotspot, about the impact of forest habitat fragmentation on biodiversity 

conservation. This study assessed the effect of land-use change on land-cover pattern, forest 

patch spatial structure and consequent effects on plant species richness and composition in 

two areas of southwest Ethiopia: Illubabor and the Gamo highlands of Gamo Gofa. Land-

use change analysis was conducted on three sites, I (1500-2000 m altitude) and II and III 

(1878-2422 m altitude), each of 47,648 ha, in Illubabor and one area of 66,765 ha in the 

Gamo highlands. Two Landsat images from the years 1986 and 2000 and one Spot image 

from 2007 covering Illubabor and two Landsat images from 1995 and 2010 covering most 

of the Gamo highlands study area were analysed. The change in area, number, shape and 

edge density of patches of each land-cover class were quantified between the years. Field 

sampling of woody plants was conducted in plots within 30 forest patches in Illubabor 

stratified between the three sites, and ten in the Gamo highlands stratified between sacred 

groves and non-sacred forests. Information on local knowledge, cultural association, 

institutions, practices and threats of the sacred groves was obtained by interviewing 24 of 

their traditional custodians. The landscape pattern in both Illubabor Zone and Gamo 

highlands has changed rapidly over 20 years. In highland areas there has been a rapid 

conversion of forest to farm, settlement and grazing land. At lower altitude forest cover has 

been retained but it has been degraded by its use for understorey coffee cultivation. The 

area and number of forest patches has decreased while patch shape and edge density has 

increased. In Illubabor forests’ woody plant species richness was higher in the lower 

altitude site I (70.8±9.2) than in sites II (50.9±6.3) and III (54.3±4.9), with little difference 

in the shape of their species accumulation curves. Species composition also differed 

between site I and sites II and III; altitude and disturbance were more strongly associated 

with this difference than were patch size, shape and edge density. There was little 

difference in tree density or basal area amongst the sites. 

Within forest patches, tree basal area was higher in the patch interior (96.8±9.4 m
2
 ha

-1
) 

than in the edge zone (77.2±15.3 m
2
 ha

-1
), however total tree density did not differ 

significantly. The interior forest had twice the density of trees taller than 22 m and a higher 

density of small trees (5-14.9 cm DBH) than the edge. Tree species richness did not differ 

significantly between the two habitats, however including shrubs and vines total woody 

species richness was higher in the edge (69.3±5.9) than interior (52±3.5) forest. While the 

upper canopy of interior forest was dominated by species with a wide habitat distribution 

range, it also had a higher abundance of forest-habitat specialist species than the edge. 

Species with a distribution associated with forest-margins were, as expected, more 

abundant in the edge habitat. No association was found between tree density, basal area or 

height in both habitat types and any fragmentation variables (patch size, shape or edge 

density) or environmental variables (rainfall, altitude or cumulative disturbance). However, 
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edge habitat basal area was negatively associated with disturbance. Shrub, vine and 

geophytic angiosperm herb species composition differed between forest edge and interior 

habitats. Species richness of vascular epiphytes was higher in interior (28.9±1.8) than edge 

(13.6±1.4) habitat, as was their individual density (114.5±6.5 and 42.7±3.7 respectively), 

which was associated with the density of large DBH trees. Epiphyte density was not 

associated with any fragmentation variables, rainfall or altitude, however in the edge habitat 

it was negatively associated with disturbance. Species composition varied between the two 

habitats, with forest-habitat distribution species, which tended to have herbaceous stems 

and leaves, being more abundant in the interior habitat. However, the same three epiphyte 

species were dominant in both habitats, and species with succulent stems and leaves or 

woody stems had similar abundance in both. Geophytic fern species richness was higher in 

interior (29.4±1.8) than edge (22.1±1.4) habitat, as was individual density (104±22.3 and 

59.8±13.7 respectively). Species with forest-habitat distribution, those with creeping or 

erect rhizomes and those with tufted fronds were more abundant in the interior, while 

generalist distribution species and those with spaced fronds showed no difference. 

In the Gamo highlands, sampled woody plant species richness and diversity were higher in 

sacred groves than in non-sacred forests, however, the species accumulation curve showed 

no difference between the two categories of forest. Their species composition differed and 

the sacred groves had a higher proportion of species endemic to Ethiopia (12.5%) than the 

non-sacred forests (9.2%). Two national conservation priority species, Cordia africana and 

Hagenia abyssinica, were only recorded in the sacred groves, and one IUCN red list 

species, Prunus africana, was more abundant there. Mean basal area was significantly 

higher in the sacred groves (1.55±0.45 m
2
 ha

-1
) than the non-sacred forests (1.28±0.41) as 

was tree seedling density (1111.7±393.2 ha
-1

 and 476.8±87.3 ha
-1

 respectively) but not 

sapling density. 

In conclusion, forests in southwest Ethiopia are undergoing a high rate of fragmentation 

and degradation. The resulting loss of forest interior core habitat is associated with a loss of 

biodiversity, especially of vulnerable forest-specialist species of woody plant, vascular 

epiphyte and geophytic fern. Nonetheless, the remaining small forest patches do still have 

high biodiversity value and they should be made a high conservation priority. In the Gamo 

highlands these small patches are generally sacred sites with high cultural value, however 

they have recently come under high levels of threat which risks loss of biocultural diversity. 

Their conservation through strengthening of traditional community institutions is a high 

priority. 
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CHAPTER 1 

GENERAL INTRODUCTION 

 

1.1 Background 

 

A large number of studies have estimated that most of our planet’s land surface has 

been transformed by human development. Expansion of the land area under productive 

use by the increasing human population has caused increased natural resource 

exploitation and alteration of landscape pattern (Turner et al., 2001). Such changes in 

land-use are occurring at a high rate in many developing countries (Laurance et al., 

1999) and are recognized as major drivers of environmental change (Feddema et al. 

2005). They often result in the severe habitat change of deforestation, often associated 

with fragmentation, or else degradation of the remaining forest habitat (Turner et al., 

2001; Lindenmayer and Fischer, 2006). These land-use changes have created highly 

fragmented landscape patterns that affect the continuing capacity of ecosystems to 

maintain ecological processes and functions (FAO, 2003; Hersperger et al., 2003).  The 

details of the forest fragmentation that often accompanies deforestation include the 

reduction in forest area (area effect), arrangement and connectivity, which can have 

substantial effects on the capacity of forest ecosystems to maintain their original 

biodiversity (Herzog and Lausch, 2002; FAO, 2003; Bierwagen, 2007). Populations of 

forest dependent species are more likely to become extinct in fragmented landscapes 

due to effects associated with the smaller size, greater isolation and increased amount of 

edge of forest habitat patches, leading to smaller and more isolated populations 

(Lindenmayer and Fischer, 2006). The sum of these changes have a negative impact on 

a variety of ecological process such as tree seed dispersal and cause shifts in the  species 

composition of habitat patches (Turner, 1989; Turner et al., 2001). As a consequence 

these changes of forest habitats jeopardize the supply of ecological goods and services 

from forest lands (Forman, 1995; Laurance et al., 1997).  

 

Ethiopia is a typical country in this respect. Natural forest habitats have been reduced to 

2-3% of the original forest cover (Teketay, 2000) and the remaining habitats have 
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become degraded and fragmented (with reduced capacity for regeneration) as a result of 

encroachment by farming, grazing and vegetation trampling as the most important 

causes (Teketaye, 2000). However, an assessment of the threat status and future 

management effectiveness of these habitats requires quantitative and objective 

assessment of land-use and land-cover change impacts on landscape structure, function 

and biodiversity (Bleher et al., 2006). A possible approach to fulfilling these criteria can 

be based on the quantification of the properties of land-cover change as a result of land-

use expansion (Gustafson, 1998) and investigation of the effect of this change on 

species composition, diversity and population structure of the remaining fragments. 

 

A brief overview of existing knowledge and methodology for research into land-use and 

land-cover change, change in landscape spatial pattern, fragmentation and their impacts 

on natural habitats are therefore given in the following section. 

 

1.1.1 Land-use and land-cover change 

 

Land-use changes have become a global concern because of the negative impact on land 

cover. Land use and land cover are two related land surface characteristics where land 

use is the way in which humans exploit the land cover (Riebsame et al., 1994). Land use 

summarises the human activities occurring on a given area of land, e.g. forestry, 

agriculture (which can be divided between pasture and cultivated land) and built up 

areas (Sivrikaya et al, 2007). The changes in these land uses have great influence on 

land cover. Land cover, on the other hand, refers to the surface cover of the earth. It is 

the actual physical characteristics of the landscape and the vegetation on it, and maps of 

this type often distinguish several different types of natural habitat (Turner et al., 1993; 

Forman, 1995). 

 

Land-use changes are diverse and may be explained in terms of temporal and spatial 

aspects (William, 2003). They may involve the complete transformation of habitat into 

other land-use types. For example, transformation may be in the form of replacement of 
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forest by agriculture, grazing or settlement land (Lindenmayer and Fischer, 2006). 

Land-use changes may also occur in the form of expansion or reduction in which case 

one or more land uses expand at the expense of other land-use/cover types. Expansion 

of crop agriculture and settlement, for example, can be at the expense of grazing land or 

forest which is area gain for agriculture and settlement, but area loss (or reduction) for 

grazing or forest land.  

 

The fragmentation of remaining of natural forests into patches that then shrink in size 

and become perforated has long been recognized (Forman, 1995). In addition, however, 

because of land-use activities around and inside these patches they are under further 

anthropogenic pressure which leads to greater isolation between patches (as distances 

increase, and matrix permeability decreases, as well as disturbance within patches 

leading to degradation (Hanski, 1994; Lindenmayer and Fischer, 2006)). A more 

detailed account of the concept of forest fragmentation is given in section 1.1.3 below. 

This fragmentation of large forest habitats into smaller parcels as a result of land-use 

activities may disrupt the integrity of ecosystem process and function (Hobbs 1993), 

producing isolated segments of forest habitat and ecosystem surrounded by a matrix of 

intensively utilized areas which: modifies the ecological interrelationships between 

forest fragments (Forman, 1995); reduces the space available for some species (Haila, 

2002; Fahring, 2003); influences a variety of ecological phenomena, like population and 

community structure (Turner et al., 1989; Pulliam et al., 1988); changes landscape 

pattern by altering the relative abundances of natural habitats (Turner et al., 2001; 

Sivrikaya et al., 2007); and affects soil condition and water quality and water supply 

(Meyer, 1995). 

 

Land-use and land-cover changes are also a globally important source of emissions of 

greenhouse gases, whose accumulation in the atmosphere brings about global climate 

change. The increase in atmospheric CO2 by 35% in the last 100 years may be attributed 

to land-use change, principally through deforestation (Meyer, 1995). Since then 

deforestation and forest degradation have been estimated to contribute up to 17% (in 

2004) of global CO2 emissions (IPCC, 2007). The major source of increased CH4 and 



4 

 

N2O emissions are all related to land-use including biomass burning, pastoral 

agriculture, fertilizer application and landfills (Meyer, 1995). Therefore, research to 

understand both spatial and temporal changes of land-use and land-cover and their 

effect on landscape pattern should be given a priority to provide the evidence base to 

recommend possible solutions to mitigate land-use impacts on land-cover and plan for 

plausible forms of sustainable management. 

 

1.1.2 Landscape spatial pattern change 

 

The dynamics of species and the decline they face are determined by their population 

characteristics and distribution, the quality of their habitat, and the changes in these 

factors in response to human-caused disturbance and various natural processes 

(Akcakaya et al., 2003). Natural processes, e.g. volcanic eruption and flooding, can 

produce new fragmented habitats (Lindenmayer and Fischer, 2006). However, habitat 

fragmentation due to anthropogenic disturbances is by far the most important 

manifestation of habitat loss (Forman, 1995; Fischer and Lindenmayer, 2002; Wade et 

al., 2003; Lindenmayer and Fischer, 2006; Farina, 2007). Ecologist use landscape 

models as a main approach to investigate these dynamic processes. Landscape models 

may predict changes in landscape spatial pattern (Akcakaya et al., 2003). Landscape 

spatial pattern can be characterized by both the composition of the habitat types and 

structure of those habitats (Turner, 1989; McGarigal and Marks, 1994; Turner et al., 

2001; Drinnan, 2005; Farina, 2007). These are the two essential features that are 

required to describe any landscape (Gustafson and Parker, 1992; John et al., 1992).  

 

Landscape composition refers to features associated with the presence and amount of 

each patch type without regard to how they are spatially arranged (Forman et al., 1986; 

McGarigal and Marks, 1995; Turner et al., 2001; McGarigal et al., 2004). This is 

important for many ecological processes, for example many plant and animal species 

require specific habitat types, and the amount and quality of this habitat therefore 

influences the occurrence and abundance of these species (Hersperger et al., 2003). For 

instance, a study on the effect of habitat amount on biodiversity in fragmented 

traditional orchards by Bailey et al. (2010) indicates that abundance of the weevil 
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(Phyllobius oblongus) increased with landscape-scale habitat amount. Landscape 

structure refers to features associated with the patch structure, i.e. arrangement of 

patches, patch shape, size, edge density, fractal dimension and connectivity (Turner et 

al., 2001). The patchiness of a landscape structure is the result of the interaction of past 

disturbance and the heterogeneity of the abiotic environment (Gergel and Turner, 2002). 

The patch structure of a landscape may have a significant effect in determining the 

structure of a particular community (e.g. Turner, 1989; Laurance et al., 2002; Hill and 

Curran, 2003; Goparaju and Jha, 2010). Consequently, monitoring change in patch-

based measures of spatial pattern is an important way to assess landscape change 

(Gergel and Turner, 2002). 

 

1.1.3 Fragmentation and its impact on natural habitat 

 

Fragmentation is often defined as a process by which a natural landscape is broken up 

into small patches, isolated from one another in a matrix of lands dominated by human 

activities (Forman, 1995; Griffiths et al., 2000; Malcolm et al., 2007). This definition is 

adopted in the present study. Habitat fragmentation has been identified as one of the 

most important causes of loss of biodiversity worldwide (Saunders et al., 1991; Fahrig, 

2003; Farina, 2007). Recent studies have estimated that over half of the temperate 

broadleaf and mixed forest biome and one quarter of the tropical rain forest biome have 

been fragmented or removed by human use (Wade et al., 2003, Farina, 2007).  
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Figure 1.1 The spatial pattern process in forest fragmentation (A) and isolation (B). 

 

 

The process of habitat fragmentation involves three main factors, each of which have an 

important effect on plant and animal species:  

 

1) Fragmentation leads to the breaking up of large patches into numerous smaller 

patches (e.g. Figure 1.1A), resulting in a net habitat loss and change in spatial structure 

(Forman, 1995; Turner et al., 2001; Gehring and Swihart, 2002, Echeverria etal., 2006). 

This results in a decrease in the amount of resources and area for shelter available to 

plant and animal species dependent on this habitat (Haig et al 2000) and therefore leads 

to a general reduction in the number of individuals that can be hosted (Lindenmayer and 

Fischer, 2006). For example, Doherty et al. (2002) investigated bird communities living 

in forest fragments of different size in agricultural landscapes in USA and found that 

their survival rate was negatively affected by fragment size. They showed that their 

survival was higher in larger patches. Hillers et al. (2008) studied influence of forest 

fragmentation on leaf-litter frogs in tropical rainforests of West Africa. They found that 

species richness and diversity were lower, and species composition was altered, in 

forest fragments compared with continuous forest. The change in spatial structure and 

the loss of habitat due to fragmentation could also alter the population structure and size 

of individual plant species and therefore community diversity, richness and composition 
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(Saunders et al., 1992; Holt, 1992; Connor et al., 2001; Hill and Curran, 2001). For 

example, Bastine and Thomas (1999) found that the patch occupancy of 22 plant 

species increased with habitat age, habitat area and number of habitat. Other findings 

also indicate that habitat diversity in human-modified landscapes is important in 

explaining the presence of species groups of high conservation value (Honnay et al., 

1998). Hill and Curran (2003) found that forest patch area, shape and isolation 

accounted for a high proportion of the variability in tree species diversity per patch in 

Ghana. They conclude that forest area is the most important consideration when 

planning tropical forest reserves. On the other hand, Honnay et al., (1998) concluded 

that small forest fragments can also be very important for maintaining regional plant 

species diversity, at least if they are of high habitat quality and if the forest management 

is appropriate. Other studies have also shown that a large number of small fragments in 

modified landscapes can be very important in providing “stepping stones” between 

larger patches (Lindenmayer and Fischer, 2006) and the presence of a large number of 

smaller habitat patches can increases connectivity between patches at a landscape scale 

(Farina, 2007). 

 

Fragmentation also has an impact on forest shape (McGarigal and Marks, 1994). 

Changes of forest shape due to fragmentation can play a major role in patch species 

composition. Irregular and rectangular patch shapes are believed to have less core area 

which reduces the abundance of species dependent on forest interior habitat compared 

with circular shapes (McGarigal and Marks, 1994). Empirical studies indicate that 

community composition can also be altered as a result of change in forest shape, e.g. 

Hill and Curran (2005) who found that irregular-shaped fragments had a higher 

proportion of regenerating, light-demanding pioneers and animal-dispersed tree species 

than regular-shaped forest patches. 

 

2) By opening core areas to the effects of exterior habitats, fragmentation of continuous 

habitat patches may lead to a dramatic increase in edge effect (Sih et al. 2000; Turner et 

al. 2001; McGarigal et al., 2002; Harper et al., 2005). In highly modified landscapes, 

many edges can be created by humans. Examples are the boundaries between recently 

clear-cut forest or other land uses and natural forest stands (Lindenmayer and Fischer, 

2006). Edge effect refers to changes in biological and physical conditions that occur at 
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boundaries and within adjacent areas of affected forest (Laurance et al., 2002; 

Lindenmayer and Fischer, 2006). According to Harper et al. (2005) edge effect is 

classified into primary responses that arise directly from edge creation or secondary 

responses that arise indirectly. Primary responses include structural damage to the 

vegetation, disruption of the forest floor and soil layer, altered nutrient cycling and 

decomposition, changed evaporation, and altered pollen and seed dispersal (Harper et 

al., 2005). Secondary, or indirect responses, include patterns of plant growth, 

regeneration, reproduction, and mortality and are manifested as altered patterns of 

vegetation structure and species composition (Hobbs and Yate 2003; Harper et al., 

2005). Thus edge effects can influence the distribution and composition of species that 

inhabit vegetation remnants (Lindenmayer and Fischer, 2006). For example, Lovei et al. 

(2006) have found that edge-preferring species increased with the edge: area ratio, and 

they concluded that the much greater abundance of generalist and edge-preferring 

species at the edge distorts the species-area relationship. 

 

3) Habitat fragmentation results in the geographic isolation of patches among a matrix 

of, e.g., agricultural crop and grazing land (Bender et al., 2003) - see Figure 1.1B. This 

might greatly restrict the mobility of plant propagules and less mobile animals 

(Andreassen et al. 1996), and thereby isolate some populations, especially of species 

with specialist habitat requirements that are obligately dependent on the habitat type 

restricted to the isolated patch islands. Small isolated populations can be threatened by 

inbreeding, which represents a serious problem for their survival (Schmitt and Seitz, 

2002). Moreover, small populations are more sensitive to stochastic events, such as 

epidemic outbreaks, that could drive local populations to extinction (Sutherland, 2000). 

As the isolation of habitat patches increases, the probability of species recolonizing 

individual patches, and forming a viable metapopulation across the landscape may 

decrease (Parker and Nally, 2002). 

 

The equilibrium theory of island biogeography (MacArthur and Wilson, 1967) has 

subsequently been applied to describe the biodiversity pattern of isolated patches of 

mainland ecosystems. According to this theory, the species richness of a habitat island 

is positively correlated with the area of the “island” and negatively affected by the 

distance from the “mainland”, or another habitat patch which acts as a source of 
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immigrant organisms, e.g. seeds for plants. These are the main factors influencing the 

immigration of species to patches, the rate of local extinction and recolonization, and 

the rate of species turnover (Gilpin and Hanski, 1991). However, island biogeography 

theory alone cannot be used to explain the pattern of biodiversity in landscapes because 

the heterogeneity of habitat within each patch and human influences surrounding the 

patch are not considered in this concept (Wagner and Edwards 2001; Laurance, 2008). 

Island biogeography theory also provides few predictions about how community 

composition in fragmented patches changes over time and which species are more 

affected by fragmentation (Laurance, 2008). However, island biogeography theory 

remains one of the main conceptual frameworks for the development of metapopulation 

theory (Hanski 1998) which is now very influential in landscape-scale conservation 

biology. A metapopulation consists of several spatially separated sub-populations that 

are related through the dispersal of individuals between them (Forman, 1995; Hanski 

1998; Farina, 2007). For example, in a matrix around a given islet, many species can 

exist as sub-populations in scattered habitat patches that are interrelated due to dispersal 

of individuals (e.g. as seeds or pollen). Consequently the survival of a whole population 

depends upon the relationship between extinction and recolonization rate among these 

habitats patches (Hanski 1998). For instance, Mennechez et al. (2003) investigated the 

effect of habitat loss and fragmentation on population functioning of butterflies by 

comparing demography (daily and total population size) and dispersal (dispersal rate 

and dispersal kernel) and their results suggest that habitat loss and fragmentation affect 

dispersal more than demography. 

 

The source – sink model is one version of the metapopulation model. In this model, one 

viable sub-population has a positive growth rate and therefore acts as a source of 

propagules to other sub-populations – sinks (Pulliam 1996, Farina, 2007). This model is 

applicable if the distance and connectivity between sub-populations enables the 

dispersal from one habitat patch to another (from source to sink). However, several 

studies have shown that too great a distance between habitat patches is a main reason 

for poor colonization of patches in fragmented landscapes (e.g. Benitez-Malvido, 1998; 

Bennett, 2003; Petit et al., 2004; Laurance, 2008). As a result, in such a highly 

fragmented landscape, species composition, diversity and abundance patterns may be 

much more dependent on the existing seed bank within the patch, rather than long-
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distance dispersal from other patches (Piessens et al., 2005). If recruitment from the 

source seed is limited to the source habitat patch itself, the population may face local 

extinction due to demographic stochasticity and inbreeding depression (Sutherland, 

2000). This type of crisis could be minimized by conserving all the remaining patches in 

sufficiently close proximity for dispersal within a fragmented landscape or, if necessary 

and feasible, increasing their number (see section 1.1.4 below). Therefore, 

quantification of the number of patches and their spatial structure and how this 

landscape pattern changes over time is important information for assessing the potential 

of the existing biota to survive landscape change, a crucial issue for conservation 

(Lindenmayer and Fischer, 2006, Rey-Benayas et al., 2007). In highly human-modified 

landscapes such as in south-west Ethiopia, it is expected that forest habitat patches are 

decreasing in size and number, and changing in shape, which is expected to have 

impacts on species richness, composition and distribution. In order to understand and 

conserve the biodiversity of forests in south-west Ethiopia, it is essential to identify the 

location and distribution patterns of these natural habitats and how this is linked to their 

species diversity, composition and structure. 

 

1.1.4 Recommended approaches to reduce fragmentation effects 

 

A number of authors (e.g. Honnay et al., 2002; Donald and Evans, 2006; Cortina et al., 

2006; Farina, 2007, Bullock et al., 2011) have reported various options for reducing the 

fragmentation of forests. Patch area, patch number and connectivity between patches are 

the landscape structural characteristics that are most influenced by fragmentation 

(Forman, 1995). These are the principal conservation parameters that should be 

modified in order to minimize the negative effects caused by fragmentation 

(Lindenmayer and Fischer, 2006). The means most often discussed to achieve better 

modification of these conservation parameters include restoration of degraded habitat to 

increase the recovery of those ecosystem attributes and functional process that have 

been lost or reduced with degradation (Donald and Evans, 2006, Rey-Benayas et al., 

2008, 2009; Bullock et al., 2011), or reducing patch isolation by establishment of 

stepping stones in the form of new woodland patches to increase the heterogeneity of 

landscape and habitat richness (McGarigal and Marks, 1994; Rey-Benayas et al., 2008), 
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establishment of habitat corridors or increasing matrix woodland composition (Farina, 

2007). In other words forest restoration is a key practice to improve biodiversity in 

altered landscapes, while the maintenance and creation of woody patches is fundamental 

to conserve species where dispersal is limited and large patches are required 

(Lindenmayer and Fischer, 2006). Another major focus for landscape ecology-based 

habitat conservation is the interaction at the edge between patch and matrix. Gascon et 

al. (1999) indicated that diversification of a matrix with different tree species can reduce 

pressure from this edge effect.  

 

In human-dominated landscapes, before undertaking these conservation measures, it is 

likely that landscape pattern needs to be quantified since most processes on a landscape 

level are influenced or even controlled by habitat spatial pattern (Maestre et al., 2006). 

For long-term sustainability of the natural habitats in a modified landscape, the links 

between landscape pattern and ecological process and human activities also need to be 

clarified. For example, multiple conservation questions should be addressed such as: 

how landscape has changed through time and direction of change; determining whether 

the patterns of two or more landscapes differ from one another, and in what ways 

(Gergel and Turner, 2002). This form of analysis enables evaluation of alternative land 

management strategies in terms of landscape pattern. This can provide valuable 

evidence for recommendations of which structural characteristics of each patch should 

be maximized, and where new forest patches should be created (Gergel and Turner, 

2002). Underpinning this is the understanding provided of the interactions between 

landscape spatial pattern and process at multiple scales: landscape, class and patch 

(Turner et al. 2001). For this, quantification of landscape pattern is key (McGarigal et 

al., 2002). Then, investigation of the origin and internal dynamics, e.g. changes in 

species composition due to change in landscape structure caused by fragmentation, may 

give important insights into the function and conservation potential of a given patch. 

Summation of this information can then be scaled up to the whole landscape. 
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1.1.5 Forest fragmentation in Ethiopia 

 

Ethiopia accounts for the largest part of the “Eastern Afromontane” global biodiversity 

hotspot (Myers et al. 2000). It is a country with an estimated total area of 1.12 million 

km
2
 with a diversity of ecosystems (CSA, 2007). The massive highlands with high and 

rugged mountains are divided by the Great Rift Valley which runs from northeast to 

southwest (Figure 1.2) giving a variety of climate, soils and vegetation types (Tadesse, 

2003). The highlands on each side of the Rift Valley are categorized into the central 

lava highlands, and the massifs of the northern plateau and southeastern highlands 

(Woubeshet, 2001). The highlands form catchments for rivers in the extensive arid and 

semi-arid lowlands to the east, south and west of the country (Figure 1.2). 

 

 

The diversity of ecosystems and the biogeographical isolation of the Ethiopian 

highlands due to the arid and semi-arid lowlands lead to their unique and diverse 

biological diversity (McKee, 2007). However, clearing of forests for agriculture (both 

subsistence and commercial plantations), cattle grazing, establishment of settlement 

Figure 1.2 The highlands of Ethiopia divided into southeastern and northwestern blocks by 

the Rift Valley.    

 



13 

 

areas represent a significant threat to the natural forests (Teketay, 2000). According to 

various sources (e.g. Logan, 1946; FAO, 1981; IUCN, 1991; EFAP, 1994), 40% of the 

country was covered by natural high forests up to the early 1900s. These natural forest 

habitats have undergone considerable loss of area and fragmentation through a long 

history of human activities (Teketay, 2000). Evidence for this is provided, for example, 

by change detection analyses based on satellite images of 1976 which indicate that 

natural high forest had been reduced to 6.08% of land area (FAO, 1978). Analysis of 

Landsat images 14 years later (1986 to 1990) showed that Ethiopia’s forest cover had 

reduced even further to 3.9 % (Ministry of Water Resources, 1997; Reusing, 1998). By 

that time the only remnant natural forests were in church and monastery yards (Teketay, 

2000; Binggeli et al., 2003; Alemayehu and Teketaye, 2006; Aerts, 2007), numerous 

traditional sacred forests (Desalegn, 2007), forests in inaccessible areas (Feoli et al., 

2002) and blocks of afromontane rain forests in the southwest and southeast of the 

country (Reusing, 1998; WBISPP, 2000). 

 

In the central and northern highlands of Ethiopia natural forest vegetation is now almost 

exclusively limited to church and monastery compounds (Aerts et al., 2006; Alemayehu 

and Teketaye, 2006). However, landscapes of the  (Illubabor, GamoGofa, Kaffa and 

Sheka and southeast (Bale Mountain) highlands still contain considerable forest areas 

that exist in government protected areas, community forests and in the form of sacred 

groves, but these are being removed at alarming high rate estimated at 8% per year 

(FAO, 2003, Reichhuber et al., 2012). This loss of Ethiopian forest is of global 

importance since the Eastern Afromontane biome is one of the world’s recognized 

biodiversity hotspots (Myers et al., 2000; Tadesse, 2003). Ecologically, these forests are 

home to many afromontane endemic species, species endemic to Ethiopia and other 

forest-specialist species (Tadesse, 2003). The forests of the south-west highlands are 

also the natural habitat of coffee (Coffea arabica L.) and support a unique pool of its 

genetic diversity (Fayera and Denich, 2006; Tadesse et al., 2008). Wild coffee 

populations in these forests serve as a source gene pool for coffee that is under 

cultivation (Tadesse et al. 2002). However, knowledge of the unique biodiversity of 

these forest ecosystems has not halted their increasing deforestation, fragmentation and 

habitat loss (Tadesse et al., 2008). 
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The dominant land-use system in this area used to be smallholder farming with 

agricultural production in small parcels for subsistence purposes which had a limited 

effect on natural forests (Mengistu, 2005). The communities used traditional farm tools 

that did not have a great impact on soils or extensive forest areas. Gathering of NTFPs 

from forests constituted a major component of their livelihoods (Tadesse and Nigatu, 

1996). According to Desalegn and Yilma (2008), in 2008 90% of communities living in 

and around the remaining Bonga forest, which is part of south-west afromontane 

forests, were still engaged in the harvesting and production of NTFPs, including wild 

and semi-wild coffee, honey, spices, mushrooms, bamboo, wild fruits and tubers. 

 

Since 1984 rapid expansion of the land area under agriculture has occurred in the 

Ethiopian south-west highlands due to the influx of people from the central and northern 

parts of the country due to both planned government resettlement programmes and 

spontaneous migration (Reusing, 1998, 2000; Tadesse et al., 2001; Mekuria, 2005; 

Mengistu, 2005). This has resulted in the loss of a significant amount of forest cover 

and fragmentation (Tadesse, 2003). The area was selected by the national government 

for resettlement without sufficient consideration of the potential impact on the natural 

ecosystem, people’s livelihoods or the cultural practices of the indigenous population 

(Mengistu, 2005; McKee, 2007). Consequently, the natural forest habitat, and 

traditional livelihoods and management systems that were compatible with the 

environment were all negatively affected by the new settlers (Mengistu, 2005). The 

settlers have used slash-and-burn cultivation systems, carried out extensive drainage of 

wetlands and converted large areas of forest and wetlands to permanent or rotational 

agricultural land for food production. This has permanently changed the landscape 

pattern and ecological process (Bognetteau et al., 2003, 2007). The settlers also 

introduced large numbers of cattle, in addition to those already owned by the indigenous 

people. These cattle are largely for domestic use. Their grazing occupies large areas of 

marginal land and converted or degraded forest. The natural regeneration of forest tree 

species has been markedly reduced by the high intensity of grazing within many forests 

(Reusing, 1998). 
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A more recent major threat to forest ecosystems in south-west Ethiopia is commercial 

agriculture. Major external investment has been targeted in particular at the natural 

forest blocks with coffee growing in the understorey in the suiTable 

climate/microclimate conditions of temperature and rainfall. This medium-- to large-

scale commercial farming has increased greatly in forest areas during the past decade 

(Mekuria, 2005; Tadesse and Masresha, 2007; McKee, 2007; Hiywot et al., 2012) both 

degrading and altering the spatial pattern of forest habitats. For example, two-thirds of 

the primary rainforest which covered 60% of Kaffa Zone in 1973 has been cleared to 

give way to cash crop plantations of coffee and tea, so that it covered only 20% of the 

zone in 2005 just 32 years later (Tadesse and Masresha, 2007; Bedru, 2007). The 

rapidly dwindling forest remnants remain important to local communities for harvesting 

of understorey coffee and other non-timber forest products (Tadesse and Nigatu, 1996). 

As a result, there are frequent disputes over this scarce forest land resource between 

outside investors and local communities and among local communities themselves 

(Wood, 1993; personal observation). The continuing conversion of these forests is 

increasing habitat fragmentation; together with resulting over-exploitation of forest 

products and other forms of forest degradation this is expected to decrease the species 

richness of the remaining patches. 

 

The issue of land ownership, tenure and rights to access forest resources by local 

communities are major contributors to forest habitat loss and fragmentation in south 

west Ethiopia (Mekuria, 2005). Land and its resources, in Ethiopia in general, are state-

owned property while local communities have only user rights (Abegaze, 2004). As 

forest use-rights are restricted to non-timber forest products, communities in south-west 

Ethiopia are not currently able to exercise their traditional full tenure rights. In some 

areas, the forests are largely considered to be state forests. As such they are subject to 

high rates of deforestation and timber looting because there is no strong state control 

and this is causing a major change in landscape pattern (Tadesse, 2007; personal 

observation). The regional and national governments have been unable to foster viable 

partnerships with all communities in the protection of the region’s forests. 
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The consequences of this deforestation and forest degradation in south-west Ethiopia for 

biodiversity conservation are not adequately documented as the area lacks adequate 

landscape-level ecological and floristic data, and there has been no analysis of the 

linkage between landscape pattern and floristic composition of these forests. This lack 

of evidence is constraining the prioritization of these habitats in conservation policy. 

One exception is that a small fraction of the forests in Illubabor Zone in  Ethiopia have 

recently (in 2008) been designated as a Biosphere Reserve under UNESCO’s World 

Heritage Programme (Tadesse et al., 2008). In addition, a small number of forest blocks 

(Masha Anderecha and the forests of the Bonga area) have also been designated as 

protected areas by the national government in an attempt to protect them from mass 

deforestation and fragmentation (Schmitt, 2006). However, the actual protection 

accorded to them is not proportionate to their conservation status. For example, Tadesse 

(2008) stated that a significant amount of timber continues to be illegally extracted by 

local people. Illegal tree cutting and timber extraction focuses on species such as 

Pouteria adolfi-friedrici, Afrocarpus falcatus and Cordia africana (Aseffa, 2007). Other 

studies by Schmitt et al. (2006) and Aseffa (2007) showed that these forests were under 

pressure from expansion of private coffee plantations and other land-uses. The 

expansion of intensive agricultural monocultures of tea, and other rain fed crops, as well 

as coffee, at the expense of forest cover could change the functional landscape pattern 

(Tadesse et al., 2002; Tadesse, 2003; Schmitt et al., 2006; Tadesse et al., 2008). The 

fragmentation of the forests may also harm provisioning ecosystem services, e.g. 

productivity of understorey Coffea arabica L. may be reduced under reduced shade 

levels when it is less able to compete for soil nitrogen (Prof. Ensermu Kelbessa, pers. 

comm.). 

 

In summary, the forests of south-west Ethiopia have been used by local communities 

over centuries for a variety of uses and practices (Demel et al., 1998; Tadesse and 

Denich, 2001; Fayera and Denich, 2006). Livestock grazing, harvesting of fuelwood, 

fodder, timber and managed understorey coffee have coexisted with limited complete 

clearance of forest for agriculture in historic and more recent times (FAO, 2010). The 

recent rapid increase in these activities as human populations in the area have greatly 

increased creates substantial pressure on the forest resources which results in the 
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fragmentation of patches and modification of spatial heterogeneity.  This, in turn, results 

in a substantial change in landscape pattern which is likely to disrupt ecosystem 

function and ecological process (Gelgel and Turner, 2002). The impact of this 

disturbance is related to the resulting size and shape of individual patches and, at a 

landscape scale, to patch structure and spatial arrangement (Turner et al., 2001). The 

deforestation and forest degradation in south-west Ethiopia is likely to alter the structure 

of populations and thus the regeneration dynamics and species composition within 

forest patches (Mehta et al., 2008). Failure to maintain functional and resilient 

ecosystems is likely to have serious negative consequences for provision of ecosystem 

goods and services. However, quantitative studies on forests in south-west Ethiopia 

were relatively few. The majority of these studies have focused simply on description of 

vegetation composition (Kumelachew and Tamirat, 2002; Tadesse, 2003). In contrast, 

few studies have attempted an integrated ecosystem functional assessment of the impact 

of fragmentation in order to elucidate the linkage and feedbacks between, for example, 

change in forest spatial pattern and its impacts on species diversity, composition and the 

structure of populations. 

 

1.1.6 Objective of the study 

 

This study aims to provide the evidence required to inform the development of 

conservation policy for the remnant forests of south-west Ethiopia. It will quantify the 

fragmentation of forest habitat resulting from recent deforestation and degradation, the 

consequences for plant species biodiversity, and the resulting conservation value of the 

remaining forest patches. It will also investigate the relationship between forest 

protection and the culture and institutions of local communities. The objectives of this 

study are:  

1. To evaluate the impact of land-use change on natural land-cover pattern and 

specifically the fragmentation of remaining forests in landscapes with 

contrasting land uses within the Illubabor and GamoGofa zones, south-west 

Ethiopia.  
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2. To investigate the impacts of fragmentation of afromontane rainforests in the 

Illuababor Zone on plant species composition, with a particular focus on small 

forest patches embedded in a matrix of agricultural land in contrast to larger 

forest blocks. 

3.  To evaluate how the response of plant species to fragmentation in afromontane 

forests is linked to their functional groups, focusing on responses to forest edge 

and interior environments, and the consequences of this for community 

composition of forest patches. 

4. To determine the value of the sacred forest groves of the GamoGofa Zone of 

south-west Ethiopia for conservation of regional plant diversity, and the level of 

threat that these habitats are currently under. 
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CHAPTER 2 

DESCRIPTION OF THE AREA AND GENERAL APPROACH OF THE STUDY 

 

2.1. Description of the study area 

 

The afromontane forest areas of south-west Ethiopia are predominantly under intensive 

management for coffee production. This is practiced by both local farmers and 

government-backed investors. The growing importance of forests for coffee production 

and the demand for more space by the rapidly increasing human population has put 

great pressure on the remnant natural forests (Schmitt et al., 2010). The understorey of 

the area’s forests is characterized by a large amount of wild and managed coffee and is 

considered a main national economic area. The area also contains a large number of 

indigenous sacred groves managed for religious purposes within a matrix of agricultural 

and settled land. The study was conducted in Illubabor and GamoGofa Administrative 

Zones of, respectively, Oromia and Southern Nations, Nationalities and Peoples 

Regional (SNNPR) states, in south-west Ethiopia (Figure 2.1). 
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Figure 2.1 States and Administrative Zones in Ethiopia, showing the Oromia and Southern 

Nations, Nationalities and Peoples Regional (SNNPR) states (top panel) and, within them, the 

Illbuabor and Gamo Gofa Administrative Zones (respectively) (bottom panel) in south-west 

Ethiopia in which the study was carried out. 
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2.1.1 Illuababor study area 

 

Illubabor Administrative Zone covers an area between latitude 8
0
 01 50.06 and 8

0
 10 

58.83 N; longitude 35
0
 11 11.90 and 36

0
 40 29.38E and has a land area of 16,000 

km
2
. The topography of the area encompasses flat areas, river valley slopes and water-

logged valley bottoms, with an elevation range of 1000-2500 m a.s.l. The geology is 

part of the south-west highlands block which are formed largely of Precambrian 

basement complex, Tertiary volcanic rocks from the trap series and quaternary 

sediments (Kazmin, 1975, Davidson, 1983). The Tertiary volcanic rocks mostly overly 

the Precambrian rocks (Friis et al 1982) and include agglomerates, rhyolites, trachytes, 

tuffs, ignimbrites and basalts (Tadesse, 2003). The soils of the area are mainly derived 

from alkali olivine basalt and tuffs (WBISPP, 2000; Mekuria, 2005) and are categorized 

as rhodic nitosols, eutric cambisols and chromic luvisols (Tafesse, 1996, FAO, 1998). 

 

Illubabor is one of the most important coffee growing zones in south-west Ethiopia, and 

is undergoing one of the highest rates of deforestation and fragmentation (Tadesse et al., 

2001). Within this area, functional landscape pattern has been altered by major 

modification and fragmentation of natural habitats due to commercial-scale coffee 

growing, farming of other crops and livestock, and settlement expansion. A major driver 

is rapid population expansion due to planned as well as spontaneous migration of people 

from other parts of the country. The spontaneous in-migration dates back to the 1930s 

(Tadesse, 2003; Dixon and Wood, 2007). However, most has occurred since the 1980s 

due to a government supported mass resettlement programme (Mengistu, 2005). 

 

2.1.2 Climate 

 

In Ethiopia the climate is mainly controlled by the seasonal migration of the Inter-

Tropical Convergence Zone (ITCZ) and associated atmospheric circulations, as well as 

by the complex topography of the country (Gemechu, 1977). It has very diversified 

climate, ranging from the semi-arid desert type in the lowlands to the humid and warm 
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type in the highland (Genechu 1977). The different parts of the country experience 

different distributions of rainfall and temperatures through the year (Woubshet, 2001). 

The whole area of Illubabor Zone experiences widespread and prolonged monsoon rains 

from May through September reaching a peak in August (Figure 2.2). However, a 

rainfall gradient exists across the Zone from 1500 mm to 2200 mm, with a mean annual 

temperature range between 18.5 and 26.8 ⁰C (Ethiopian Meteorological Agency 

unpublished data). 

 

               

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Annual rainfall distribution pattern in Illubabor Zone, average for whole zone 

 (Source: Ethiopian Metrological Agency, unpublished data). 

 

2.1.3 Spatial and temporal distribution of rainfall 

 

The rainfall of a given area varies according to topography, altitude and orographic 

pattern, and has a complex relationship with vegetation cover (Buytaert et al., 2006, 

Suhaila and Jemain, 2009, 2012). Therefore the rainfall data taken at a single station 

cannot provide a reliable estimate for a large study area. To address this problem, a 
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model of the spatial and temporal distribution of rainfall was obtained using monthly 

rainfall data recorded over 23 years (1986-2009) at 24 different locations distributed all 

over the Illubabor Zone, obtained from the Ethiopian Meteorological Agency. The 

locations of the rain-gauge stations selected for the study are shown in Figure 2.3. 

Before analysis, the data quality was checked and estimates of missing values were 

inserted based on the average rainfall recorded in the same period in other weather 

stations surrounding the study area. Time series of monthly average rainfall over 

different selected stations were prepared and the mean and coefficient of variation 

calculated for different years and stations. The mean rainfall of different years was 

compared to find out the temporal and spatial variability of the average rainfall pattern 

within the study period between 1986 and 2009 and amongst different stations. For each 

of the 24 metrological stations and each of the 30 forest patches that were sampled (as 

described in section 2.3.5 below), GPS readings were taken, plotted on a map, and used 

to determine which metrological station was closest to each patch. The mean annual 

rainfall for each patch was estimated to be equal to that of its nearest station. The 

rainfall value of some individual stations had to be used for more than two sampled 

forests (Figure 2.3). 

     

Figure 2.3 Location of the 24 rain gauge stations and 30 sampled forest patches in the study area 

in Illubabor Administrative Zone, Ethiopia. This Figure is not the full size of Illubabor 

Administrative Zone, it is confined to the area where the sampled forests are located. The 

boundary of this Figure was decided based on the area coverage of Satellite Image obtained. 
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The spatial distribution of rainfall across the study area showed high spatial variability. 

The spatial variability of mean annual rainfall from station to station is much higher  in 

the lower altitude central south and south west of the Zone which are the areas  with 

greater forest cover. The mean annual rainfall ranges from about 2412 mm in the south, 

gradually decreasing to 1121 mm in the west of the Zone with the largest annual rainfall 

recorded at Didu-Gordomo station (2412 mm) and the lowest at Bure station (1121 mm) 

(Figure 2.4). Only four stations recorded an average of less than 1500 mm annual 

rainfall. Average annual rainfall for the 24 stations was variable amongst the 23 sample 

years (Figure 2.5). It ranged from 2060.6 mm in 1988 to 935.5 mm in 2006. However, 

the inter-annual variability was generally not great (coefficient of variation = 0.15). The 

period 2002-2009 was notably drier (mean annual rainfall = 1432.2 mm) than the period 

1986-2001 (mean annual rainfall = 1873.1 mm). In general, the temporal distribution of 

rainfall shows decreasing from 1986 to 2009. The years 2002-2009 constituted eight of 

the eleven driest years over the 23 year period. All areas of the zone have a strong 

seasonality of rainfall with a single prolonged monsoon rainy season (Figure 2.2). 

Figure 2.4 Mean annual rainfall during the 23 year period 1986-2009 for 24 meteorological 

stations distributed across Illubabor Zone, south-west Ethiopia. Source of data: Ethiopian 

Metrological Agency 
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Figure 2.5Annual rainfall for each year 1986-2009 as the mean of 24 meteorological stations 

distributed across Illubabor Zone, south-west Ethiopia: Source of data: Ethiopian Metrological 

Agency 

 

2.1.4 Temporal distribution of temperature 

 

The average annual temperature was variable amongst the 23 sample years (Figure 2.6). 

The maximum ranged from 24.9 to 28.4 ºC and the minimum from 12.4 to 13.7 ºC 

(Table 2.2). The inter-variability was not great (CVmaximum = 0.03, CVminimum = 0.10). 

However, the mean temperature was higher during the drier period (2002–2009), mean 

rainfall 1432 mm, mean temperature 27.05 ºC, than during the wetter period (1986-

2001), mean rainfall 1873.1 mm, mean temperature 26.95 ºC). The highest monthly 

temperature was recorded in March (24.52 ºC) and November (24.50 ºC) and the lowest 

in May (23.78 ºC) and August (23.87 ºC). 
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Figure 2.6 Mean annual maximum and minimum temperatures for each year in the 1986-2009 

period as the mean of 24 meteorological stations distributed across Illubabor Zone,  Ethiopia 

(station details in Table 2.1). Source of data: Ethiopian Metrological Agency 

 

Table 2.1 Location details and mean annual rainfall over the 1986-2009 period for 24 meteorological 

stations in Illubabor Zone,  Ethiopia. Source of data: Rain fall  obtained from Ethiopian Metrological 

Agency, station altitude, latitude and longitude taken from Digital elevation models  (DEM) 

Station 

code 

Station name Station 

altitude (m) 

Station position (latitude-

longitude 

Average annual rainfall 

for 24 years (mm) 

Go Gore 1936 8º6901.08-35º3147.53 1797 

De Dembi 1976 8º0530.33-36º2740.41 1903 

No Nopa 1652 8º2428.15-35º3606.98 1623 

Fl Leka 1952 8º6511.17-35º4012.06 1999 

Si Sibo 1617 8º1316.54-35º1640.65 1418 

Be Bedele 1999 8º2725.94-36º2130.00 1811 

Me Metu 1686 8º1816.70-35º4408.36 1548 

Bu Bure 1540 8º1342.08-35º1114.95 1121 

Su Supe 1663 8º3115.85-35º3952.90 1356 

Dg Didu-Gordomo 1565 8º6049.33-35º2030.87 2412 

Ya Yambero 2195 8º1017.72-36º2734.02 1928 

Hu Hurumu 1792 8º2011.60-35º4200.63 1758 

Ab Abdela 1930 8º2225.77-36º1454.04 1803 

Db Debena 2084 8º2823.09-36º1539.84 1768 

Hm Humbe 2004 8º2153.89-36º0701.44 1760 

Yn Yanfa 2123 8º1452.34-36º3558.55 1780 

Ye Yembo 2001 8º2159.36-36º0702.98 1820 

Al Alge 1829 8º3531.30-35º4408.36 1576 

Ke Kemisse 1973 8º2757.87-36º1000.26 1828 

Ba Baro 1381 7º4139.77-34º5900.51 1670 

Bi Bilambilo 2000 8º2159.59-360701.40 2053 

We Wetete 1944 8º2211.99-36º1446.58 1547 

Di Dippa 1671 8º3452.99-35º3056.44 1458 

Ko Kone 1987 8º4122.56-36º1720.93 1662 
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Table 2.2 Mean maximum and minimum temperatures and rainfall for each year in the 1986-2009 period 

as the mean of 24 meteorological stations distributed across Illubabor Zone,  Ethiopia (station details in 

Table 2.1). Source of data: Ethiopian Metrological Agency 

Year Max. temp. (
°
C) Min. temp. 

(
°
C) 

Rainfall (mm) 

1986 26.3 13.6 1609 

1987 27.2 13.4 2037 

1988 28 12.7 2075 

1989 27.8 12.4 1805 

1990 28.1 12.7 1885 

1991 28.4 13.5 1841 

1992 26.2 13.6 1899 

1993 24.9 13.7 1904 

1994 28.2 12.8 1615 

1995 26.5 13.2 1619 

1996 27.3 13.0 1891 

1997 26.2 13.3 1991 

1998 27 13.4 1893 

1999 26.3 13.6 1982 

2000 25.8 13.0 1860 

2001 27 12.8 2040 

2002 26.8 13.0 1663 

2003 27.7 12.7 1645 

2004 27.5 12.4 1705 

2005 26.5 12.4 1501 

2006 28.1 13.7 936 

2007 27.9 13.5 1411 

2008 26 12.8 1562 

2009 25.9 12.8 1374 

 

 

2.1.5 Forests 

 

The forests of southwest/east Ethiopia are the only large block of intact forest that 

remains in the country. Their flora was among the least known in tropical Africa until 

recent years (Tadesse, 2003). Early biogeographical studies (Cheffy, 1942, Logan, 

1946), recent detailed botanical and vegetation surveys by Friis (1992), and Friis and 

Sebsebe (2001), and studies of the ecology and floristics (e.g Abayneh, 1998; 

Kumelachew and Tamrat, 2002; Tadesse, 2003) together indicate that the forests of the 

Illubabor zone largely consist of floristically and structurally distinct afromontane 
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rainforest and transitional rainforest vegetation types. The distribution of these two 

vegetation types (phytogeography) is influenced by elevation (Schmitt et al., 2010). The 

transitional rainforest occurs in the part of the Zone below 1500 m elevation and was 

sampled by Site I of the present study (Figure 2.11). In this forest type, species 

associated with Afromontane rainforest and those associated with lowland semi-

evergreen forest both occur, as well as species unique to this forest type (Friis, 1992). 

The Afromontane rainforest occurs in the eastern and northern highland section of the 

Zone above 1500 m elevation and was sampled by Sites II and III in the present study 

(Figure 2.11). These forests are highly fragmented, existing as remnant patches of the 

once extensive natural forest now embedded in an agricultural landscapes (pers.obs). 

 

2.1.6 Population and livelihoods 

 

The Illubabor Administrative Zone has the largest population density in Oromia 

Regional State and has been subject to dramatic population growth in recent years 

(Tadesse, 2003). This growth accelerated with the large resettlement programme that 

has taken place since 1984, compounded by subsequent additional spontaneous 

migration to this area (Mengistu, 2005). Based on data from the Ethiopian Government 

Central Statistical Agency (CSA, 1996), the population density in the zone in 1994 was 

80.3 persons per km
2
. According to the 2007 national Ethiopian population and housing 

census, the population size of Illubabor Zone is about 1.3 million (CSA, 2007); it had 

increased by 66.3% compared with the 1994 census (847,048 population). 

 

Different ethnic groups inhabit the Illubabor Zone of which the Oromo have the largest 

population (Tadesse, 2003). The major occupation is agriculture occupying more than 

90% of residents (Tadesse and Denich, 2001). The major crops grown are wheat, barley, 

maize and coffee. Coffee production, processing and marketing are the major sources of 

employment for communities at lower altitudes (Tadesse, 2003). Cattle, sheep and goats 

are the most important livestock in the farming systems. They are usually kept for 

income and as a source of manure. Marginalized pastureland and forests are the major 

feed source. 
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Natural forests contribute to the livelihoods of most people in the Zone. They depend on 

the forests mainly for coffee, spice and honey production (Tadesse and Denich, 2001). 

Communities living in lowland areas depend most heavily on forest products. They 

manage and harvest in large quantities from the following species in semi-natural 

forests: Coffea arabica, Piper capense and Aframomum corrorima (Aerts et al., 2011). 

The other major component of their livelihoods is production of a few agricultural 

crops, in particular Zea mays, Sorghum bicolour and different Brassica species in small 

parcels of land which are managed as home gardens (the land around the houses) 

(pers.obs.). The livelihoods of communities living in the upland areas are largely based 

on production of field grain crops such as Eragrostis teff, Triticum spp., Hordeum 

vulgare, Zea mays and Sorghum bicolour, in addition to production of Coffea arabica at 

a small scale in their home gardens and in small areas inside forest patches.  

 

2.1.7 Sampling strategy 

 

Taking the biogeographical aspects and anthropogenic patterns described above this 

study uses a sampling strategy where the Illubabor Administrative Zone is stratified into 

a) lowland and b) upland. Then, the upland area was again classified into II) northern 

and III) eastern  based on coffee production: Site I) the lowland area is mainly coffee 

production zone in the western part of the zone where people depend heavily on forests 

for the production of coffee which dominates their livelihoods (Figure 2.11); Site II) the 

medium-intensity coffee production area in the upland northern part of the zone where 

people’s livelihoods depend primarily on production of other crops but forests are still 

important to supplement livelihoods through growing coffee and harvesting forest 

products (Figure 2.11); Site III) the area in the upland eastern part of the zone where 

people’s livelihoods also depend heavily on production of agricultural crops 

supplemented by income from low levels of coffee production within forest patches ( 

Figure 2.11). Sites II and III contain several disjunct blocks of highland afromontane 

rainforest separated by a matrix of land highly modified from its natural condition 

(Chapter 3). The three sites together are well distributed over the range of 

environmental conditions in the broader landscape of Illubabor Zone. 
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2.2 Gamo highlands study area 

 

The Gamo highlands are also a section of the south-west Ethiopian highlands, and are 

located in the GamoGofa Administrative Zone in the Southern Nations, Nationalities 

and Peoples Regional state (SNNPRs) (Figure 2.7). The Gamo highlands are located on 

the western escarpment of the Great Rift Valley (Figure 2.7) between 5
0 

53.8 17.52 to 

6
0
 26 22.97 N and 37

0
 10 35.13 to 37

0
 42 31.89 E. The topography of the Gamo 

highlands is characterized by steep slopes, up to undulating plateaus with gentle slopes, 

as well as detached steep-sided hills and valleys (Desalegn, 2007, Figure 2.7). The 

elevation of the highlands rise abruptly from 1183 m  in the Maze lowlands to the west 

and from 1200 m at Lake Abaya and Chamo in the east to the central ridges with a 

maximum elevation of 3500 m at the summit of Mount Guge. The geology and soil 

types of the Gamo highlands are similar to the Illubabor Administrative Zone 

(Davidson, 1983). The Gamo highlands are the origin of a large number of streams and 

rivers, which are the primary source of water for people living in both the highlands and 

surrounding lowlands. 
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Figure 2.7 The location of the Southern Nations, Nationalities and Peoples Regional state (SNNPRs) and 

the Gamo highlands study area (a) coloured red (b) showing its elevation (m) topographic characteristics. 

 

a) 

 

b) 
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2.2.1 Population and livelihoods 

 

The gentle slopes, valley bottoms and lowland plains of the Gamo highlands are 

inhabited by the Gamo people with a total population of 1,107,163 (CSA, 2007). The 

pattern of settlements is based on ritual and traditional political systems and divided into 

ten districts: Dita, Zada, Doko, Dorze, Ocholo, Ganta, Boroda, Qogo, Bonke and 

Kamba (Freeman, 2002; Weedman, 2008). Within each district, traditional houses are 

concentrated in flat parts of the mountainous landscape. 

 

The livelihoods of the people are primarily based on livestock rearing and crop 

production (Belete, 2006). Local varieties of the following crops are cultivated: Enset 

ventricosum, Colocasia esculenta, Dioscorea alata, Manihot esculenta, Ipomoea 

batatas and Rutha chalapensis. Other areas on the plateaus, lower slopes and parts of 

the valleys are used during the rainy season to cultivate wheat, barley and maize 

(pers.obs). The people practice a polyculture with annual crops mixed with a large 

number of fruit-bearing trees and shrubs such as apple and grape. Other tree and shrub 

species characteristically occur in the managed land in hedgerows, e.g. Justicia 

schimperiana, Vernonia amygdalina and Dovalyis cafra, and as isolated sacred trees, 

e.g. Erytheina brucie, Hagenia abyssinica and Afrocarpus falcatus. Each household 

cultivates a home garden and a separate cultivated field, both of which have defined 

boundaries (pers. obs.). Land tenure is traditionally linked to extended families. Beyond 

the cultivated fields there are small “family reserve” lands, which are used for grazing 

of small animals, usually calves. Adjacent to these cultivated and small grazed lands are 

other sacred landscape features such as sacred dubusha, ultimately controlled by either 

the extended family or individuals. The location of sacred pasture land is not easily 

defined but it is usually surrounded by the village and is controlled by designated 

community custodians or the community at large (Shagire Shano and Mako Wario, 

community chief and religious leader respectively, pers. comm.). This sacred Site Is 

used by the whole community who come together to celebrate yearly thanksgiving and 

ritual purification ceremonies. Sacred groves, i.e. natural sacred relict forests as well as 

burial grounds, are either controlled by the community of a similar clan or by religous 
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leaders locally known as Maka. They are usually located on top of hills. The rest of 

lanscapes were covered by Euclaptus spp and Cupressus lucitanica 

   

2.2.2 Vegetation  

 

The Gamo highlands have various ecosystems ranging from afro-alpine grassland on the 

high mountain Guge (above an altitude of 3400 m) to various dry and moist 

afromontane forests in the altitudinal range 1500-3000 m (Desalegn, 2007). The 

vegetation is typical of south-west Ethiopia with the moist and dry evergreen vegetation 

types in a complex mosaic. The northeastern sides of the main mountain ranges are the 

windward side for the prevailaing easterly winds that bring most rainfall to the area 

during the rainy season (Fiedler and Gebeyehu, 1988) and are consequently 

characterized by moist forest types. Sites with all other aspects (from east round to 

north) have relatively a much lower rainfall and are dominated by dry evergreen forest 

types with a similar flora to the central Ethiopian highlands (pers. obs.).  

 

2.2.3 Climate  

 

The climate of the area is characterized by a bimodal rainfall pattern. The area receives 

high intensity rainfall from June to September which is locally known as Badhessa and 

low intensity rains from February to April known as Balgo. The mean annual rainfall 

ranges from 500 mm in the lowlands to 1200 mm in the highlands, and the temperature 

varies from 10 °C in the highlands to 25 °C in the lowlands (FDRE, 2000). More 

detailed long-term rainfall and temperature data were unavailable for most of the Gamo 

highlands area due to lack of weather station. This makes it difficult to compare the 

spatial distribution of rainfall and temperature across the Gamo highlands, however a 

rainfall map covering the area is shown in Figure 2.8. 
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2.2.4 Site characteristics of sampled forests 

 

Forests of two different management types (sacred groves and non-sacred forests) were 

purposefully sampled in this part of the study (as described in chapter 6). These two 

forest types are located in distinct geographical areas in the north and south of the Gamo 

highlands respectively, however these two areas have smilar average rainfall of 1600 

mm (Figure 2.8). The average altitude for the sampled sacred groves (2259 m) was only 

slightly lower than that of the non-sacred forests (2331 m) (Table 2.3). The two forest 

types did, however, differ greatly in their slope angles. The six sacred grove sites had a 

slope range from 1.39 º to 11.12 º. In contrast the slope for the four non-sacred forest 

sites was all > 16.45 ° except for Oche which was 1.39 º. The average slopes for the 

sacred grove and non-sacred forest sites are 6.26 ° and 17.04 °
 
respectively. The surface 

geology and soil texture of the two sites are also different. The non-sacred forest sites 

are chracterized by sandy soil whereas sacred forest sites chracterized by fine-textured 

or organic matter (pers.obs). 

 

Table 2.3 Site characteristics of the studied sacred groves and non-sacred forests in the Gamo highlands, 

SW Ethiopia 

Site name Altitude
1
 (m) Aspect

2
  Slope

3
 

(degree) 

Geology
4
  

Sacred groves     

Ula 2243 Flat 1.39 AOBTRR  

Gufae 2248 W (247.5-292.5) 11.12 AOBTRR 

Qimme 2246 N (337.5-360) 11.12 AOBTRR 

Tele 2389 NW (292.5 -337.5) 11.128 AOBTRR 

Akasie 2282 Flat 1.39 AOBTRR 

Osha-Ocha 2146 Flat 1.39 AOBTRR 

Average  2259 311.2 6.26  

Non-sacred forests     

Sora 2235 NW (292.5-337.5) 28.31 RTT 

Shoa 2215 N (0-22.5) 22.06 RTT 

Dhule 2438 NW (292.5-337.5) 16.45 RTT 

Oche 2436 S (157.5-202.5) 1.35 RTT 

Average  2331 205.3 17.0  
1 

Altitude measured using GPS, 
2 

Aspect and 
3 

slope derived from TIN (Triangulated Irregular Network) 

data created from contour. 
4 

Woody Biomas Inventory and Strategic Planning Project (WBISPP) (2000); 

AOBTRR, Alkali olivine basalt and tuffs and rare rhyolites; RTT, Rhyolites and trachytie tuffs (WBISPP, 

2000). The average for aspect and slope were calculated using the median of each site range. 
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Figure 2.8 Class distribution of mean annual rainfall (mm) for Ethiopa, showing the country as a 

whole in the top panel and the Gamo highlands study area in the bottom panel. The position of 

the Gamo highalnds in the top panel can be ascertained from the location of the study sites 

shown in both panels. The rainfall distribution class was obtained from Ethiopian Ministry of 

Agriculture (2000). GPS locations for the study sites were taken during the study.  
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2.3. General approach of the study 

 

Landscape pattern analyses can be conducted on land-use/land-cover spatial data 

produced from different data sources (Turner et. al., 2001). According to Gergel and 

Turner (2002), there are three main types of data source for landscape studies: aerial 

photography, digital remote sensing and published data and census data. In this study, 

digital remote sensing data were used because they cover larger landscape of the study 

area with multi-temporal records of the same landscape, allowing analysis of elements, 

units, and types of landscapes in different years. The study involved three general 

approaches: 

1) Production of land-use/land-cover change maps from three satellite images covering 

a time period of 21years in Illubabor Zone and two satellite images covering 15 years in 

GamoGofa Zone,  

2) Quantification of landscape structure using different landscape metrics to measure 

landscape composition and structure for analyzing the effect of land-use change on 

landscape pattern,  

3) Ecological data collection (plot-based vegetation survey) in selected forest fragments 

to examine floristic composition, species richness and abundance.  

 

2.3.1. Satellite remote sensing data and image processing  

 

Satellite images and data have come to play an important role in the study, 

documentation and mapping of the world’s terrestrial and aquatic surface for the past 

three decades (Tso and Mather, 2009). Remote sensing techniques have contributed in 

various ways to the assessment of the physical properties of the environment. An aspect 

of growing importance is in the surveying and monitoring of the effect of various land-

use and land-cover changes taking place in the environment including the response to 

land management (Foley et al., 2005; Reddy, 2008). 
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Landsat and Spot are two important satellites for earth resource observation (Lillesand 

and Kiefer, 1993). They have been available since 1972 and 1986 respectively, making 

possible long-term detection and monitoring of changes in land-use and natural 

vegetation (Campbell, 1996). Each of these satellites provides different image bands 

and resolution that have been widely used for surface classification (Reddy, 2008). 

Early Landsat (Landsat 1, 2 and 3, known as Landsat-MSS) had sensors that recorded 

two bands of reflected light in the visible spectrum (green and red) and two in the near 

infrared spectrum. This sensor scanned a continuous 185 km-wide swath with a ground 

resolution (spatial resolution) of 79 m. The sensor was later improved in the 1980s to 

the new sensor called Thematic Mapper (Landsat 4 and 5, known as Landsat TM) that 

recorded seven-band spanning from the blue band of the visible spectrum up to the 

thermal band. It has an improved spectral resolution over the Landsat MSS. It also has 

an improved spatial resolution of 30 m by 30 m for six bands and 120 m for the thermal 

band. In 1999 Landsat-7 was launched equipped with higher resolution instruments. It 

carries the Enhanced Thermal Mapper Plus (ETM+) which is an eight-band sensor. 

These bands are identical to those of the TM with the addition of a panchromatic band 

(Band 8) that records energy with a 15 m resolution, and an improvement of the spatial 

resolution of the thermal band to 60 m. Landsat TM and ETM+ are highly advanced 

sensors that are the most widely used remote sensing system for landscape survey 

(Campbell, 1996). 

 

The SPOT satellite is similar to Landsat in many ways (Lillesand and Kiefer, 1993). It 

has similar multispectral and multitemporal options as well as a potential for large area 

coverage in a single scene. However, SPOT has a highly increased spatial resolution of 

5-10 m in black and white (panchromatic) registration and 10-20 m for colour 

(multispectral) registration, and therefore makes it possible to obtain much greater 

numbers of picture elements per unit area. 

 

For this study, the Landsat images of 1986 (TM) and 2000 (ETM+) and a Spot image of 

2007 were acquired which cover the majority of the Illbuabor Administrative Zone. The 

Landsat images were obtained from the United State Geological Survey (USGS) archive 
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and downloaded for free. They were previously, geometrically and radiometrically 

corrected and geo-referenced to real-world coordinates by USGS. The row images of 

the Illubabor Zone are shown in Figure 2.9 using the band combination of RBG 7, 4 and 

2 for the Landsat images. The same quality level was available for the Spot 2007 image 

obtained from the Oromia Water Corporation Enterprise (OWCE). The row images for 

Spot 2007 are shown by band combination of RGB 3, 2, 1 in Figure 2.9. Before 

classification, the three bands of the Landsat images were layer stacked to merge them 

to produce a single image in ERDAS (2008) software. All images were already 

Orthorectified to a UTM (Universal Transverse Mercator) projection using the WGS 

(World Geodetic Systems) 84 datum by USGS. All three images were selected to have 

been taken during the dry season as this gives the best discrimination between land-

cover classes (Reddy, 2008). The characteristics of the satellite data used in this study 

are summarized in Table 2.4. 

 

Table 2.4: Characteristics of the satellite image data used in this study in Illbuabor Administrative Zone, 

SW Ethiopia. 

Sensor  Spectral bands Spatial resolution 

(Pixel size, m)  

Spectral resolution Date 

Landsat TM Band:2 30 0.45-0.52 m March 1986 

 Band:4 30 0.63-0.69 m  

 Band:7 30 0.52-0.60 m  

Landsat +ETM  Band:2 30 0.45-0.52 m February 2000 

 Band:4 30 0.63-0.69 m  

 Band:7 30 0.52-0.60 m  

Spot  Band:1 20 0.61-0.68 m February 2007 

 Band:2 20 0.78-0.89 m  

 Band:3 20 1.58-0.75 m  
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Figure 2.9 The raw satellite images masked to show the Illubabor Administrative Zone of SW 

Ethiopia which were used to produce land-use and land-cover maps for three years: 1986, 2000, 

 2007. 
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2.3.2. Land-use and land-cover cover classification  

 

Land-use and land-cover classification requires a classification scheme and algorithm 

(Congalton and Green, 1999). The unsupervised classification method was selected to 

classify the Landsat images. It was used for the classification of the two Landsat images 

because use of unsupervised techniques is recommended for large areas that cover a 

wide and unknown range of land-cover types, and where landscape heterogeneity 

complicate identification of homogenous training sites (Cihlar, 2000; Krishna et al., 

2010). In addition, there was no ground survey data with which to carry out a 

supervised classification. In this process for the two Landsat images the Iterative Self 

Organizing Data Analysis Technique (ISODATA) was applied to the eight classes of 

unknown land-covers with six iterations. The classified raster image was clumped using 

eight-neighbour rules (cells of the same edge that share a common edge or corner are 

considered part of the same patch) for delineating different land-use and land-cover 

patches (ERDAS, 2008; Geregel and Turner, 2002). A small minimum mapping unit of 

0.5 ha was used to include smaller forest patches, narrow extensions or corridors as 

independent land cover. In contrast, supervised classification begins with defining the 

area that will be used as training sites for different land-cover classes. It involves a 

person assigning each raw pixel to prior-defined classes on the selected training sites 

(Kramer, 1997). The representative samples of each class that are assigned are then used 

by the computer to classify the whole image into the previously defined classes. 

Supervised classification was possible for the 2007 Spot image because it is a more 

recent image with high resolution and easy to identify different land-covers. The eight 

cover classes assigned to the 2007 image guided by a previous land-cover map obtained 

from Ministry of Agriculture (WBISPP, 2000), vector map (town, road, river), kebele 

map (small administrative unit at community level) and GPS ground data points taken 

post image classification in 2009 were: natural forest, farm and settlement, grazing land, 

wooded grassland, bare soil or rocky area, disturbed forest, plantation and wetland. 

Then, the eight classes obtained from the unsupervised classification were labeled using 

the result of supervised classification. The forest class was clear and easily identified 

and labeled. The other classes with similar spectral reflectance also fall nearby as a 

cluster. Such classes may represent the same category with a slight variation in 
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reflection. The unsupervised and supervised classification was done using ERDAS 9.1 

(ERDAS, 2008). 

 

A reconnaissance field survey was carried out in 2010 using the supervised 

classification of the Spot image of 2007 and the unsupervised classifications of the 

Landsat images of 1986 and 2000. GPS reading were made for 355 land-cover classes 

labeled for both the supervised and unsupervised images, and their land-cover type 

checked in the field for verification. The 355 sample points were distributed between 

eight homogenous land-uses and land-cover types identified across the study area 

during the supervised classification. The sample points were collected using Garmin 

GPS 60. The sample size varied from 50 to 70 samples for each land-use and land-cover 

category (Jensen, 2005). These ground truth data were used in confirmation of cover 

classes identified with the supervised classification techniques, and the class 

identification and labeling process for images classified using the unsupervised 

classification technique. Even though the images classified using the unsupervised 

classification techniques were labeled using the results obtained from supervised 

classification techniques, they still needed class identification and labeling during the 

ground truthing. 

 

2.3.3 Image reclassification 

 

During ground survey I identified that some classes were locally misclassified and 

intermixed with neighboring classes and such misclassified cover-classes/pixels were 

identified using ground truth data points (Krishna et al., 2010). For example, most of the 

class "grazing land" was classified as "wetland", most of class "natural forest" was 

classified as "disturbed forest" or "plantation" and most of the class "farm and 

settlement" was classified as "bare or rocky area". Therefore, to improve on the 

classification of grazing land, wetland and grazing land was reclassified in both images 

(supervised and unsupervised) as grazing land since both areas are observed to be used 

for grazing land (pers. obs.); to improve on the classification of natural forest, disturbed 

forest and plantation was reclassified in both images as forest (again reflecting my 
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personal observations in the field); to improve the classification of the farm and 

settlement cover class, bare or rocky area and farm and settlement was reclassified as 

farm and settlement (again based on pers. obs., see Section 3.2.3.2, Chapter 3 for 

details). 

 

2.3.4. Quantification of landscape pattern  

 

Landscape patterns are the structural and functional arrangements of landscape elements 

(patch, corridor and matrix) across landscapes (Gorodon, 1986; Forman, 1995; Turner 

et al., 2001). These arrangements develop continuously in space and time (Sih et al 

2000). They are formed by the complex interaction between natural environments and 

human activities, resulting in the change of landscape spatial pattern and process 

(Turner et al., 2001). Description and quantification of landscape pattern using 

landscape metrics helps understanding of the relationship between pattern and process 

(Gergel and Turner, 2002) and improves the awareness of landscape patches 

associations and help for study of ecosystem functions, sustainable resource 

management and effective land-use planning (Matsushita et al., 2006) and restoration. 

Landscape metrics are quantitative indices used to quantify landscape pattern and their 

relationships (McGarigal and Marks, 1994; Herold et al, 2003). They are algorithms 

used for quantifying spatial characteristics of patches, classes of patches, or the entire 

landscape mosaic (McGarigal et al., 2004; Cabral et al., 2005). They were developed in 

the 1980s and include measures from information, percolation and fractal theory 

(Forman, 1995; Herold et al., 2003; Olsen, 2007). They numerically describe spatial 

configuration such as patch number, patch size, shape complexity, isolation, 

connectivity, contagion and interspersion of patches (Forman, 1995). 

 

In practice, there are many landscape metrics used to analyse the spatial features of 

landscape pattern. In this study, I selected eight landscape metrics for the derivation of 

landscape pattern. The selection was based on their high frequency of use in landscape 

analysis by different authors (Bierwagen, 2007) as well as their close firm with the 

objective of the study. Table 2.5 lists the landscape metrics used and their definitions 
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(see McGarigal and Marks (1995) for detailed definitions). These metrics are 

categorized into size metrics (Class Area (CA), Mean Patch Size (MPS), Core Area 

(COA) and Number of Patches (NUMP)), shape metrics (Area Weighted Mean Shape 

Index (AWMSI) and Area Weighted Mean Fractal Dimension (AWMPFD)), Patch Size 

Coefficient of Variation (PSCOV)) and edge metrics (Edge Density (ED)). The eight 

metrics were calculated for each of the four land-use/land-cover classes for each of the 

three images. 

 

The Class area (CA, total area), for each of the four classes combine to define landscape 

composition (the percentage of the area comprised by each land-use/land-cover class 

(Weng et al., 2007)). This is important for comparing among landscapes of varying 

sizes (Gergel and Turner, 2002; McGarigal et al., 2002). Mean patch size (MPS) 

measures the average area of all patches for each class (Gergel and Turner, 2002). It is 

the major index of natural habitat pattern that affects biodiversity conservation and 

species composition and diversity (McGarigal and Marks, 1995) therefore it has a 

particular relevance as an indication of patch viability for the forest class. Core Area 

(COA) is the size of interior habitat that is not affected by the edge of the patch. It is 

important as an indicator of the area available for forest interior habitat-dependent 

species. The fragmentation and shrinkage of this area has an influence on interior 

biodiversity (Farina, 2007). An edge width of 50 m was used in this study to delineate 

the interior area for the calculation of COA. This width was chosen based on values 

proposed to define habitats for forest interior habitats and birds by Gergel and Turner 

(2002). The number of patches (NUMP) was used to quantify the number of individual 

patches of each of the four land-use/land-cover classes in the landscape and its increase 

or reduction indicates fragmentation or loss of habitat. The patch shape metrics 

(AWMSI and AWMPFD) are based on the perimeter to area ratio of each patch, and are 

indicators of the influence of edge effects within the patch, therefore (again) these were 

of particular interest for the forest class in the present study. AWMSI measures the 

complexity of average patch shape in the landscape compared to a standard shape 

(Mandelbrot, 1983; Gustafson et al., 1992). It equals the sum of patch perimeter (m) 

divided by the square root of patch area (m
2
) for each patch in the landscape, adjusted 

by a constant to adjust for a square standard. The value varies between 1 and 2 and low 
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values are derived when a patch has compact rectangular form with a relatively small 

perimeter to the area. AWMFD is also used as a measure of shape complexity of each 

patch (Mandelbrot, 1983; Gustafson et al., 1992). It is obtained by regressing 2 x ln 

(P/4) on ln(A), where P= perimeter and A= area of patch. A value of fractal dimension 

greater than 1 indicates a complex shape. Edge Density (ED) is a measure of the total 

length of the edge of all of the patches in each land-use/land-cover class divided by the 

total landscape area. A large value of edge density indicates a high level of human 

disturbance and fragmentation of the class. A number of packages for use with 

geographic information systems (GIS) permit the analysis and characterization of 

landscapes in terms of their patch composition and patch structure. Patch Analyst 4.2.1, 

a GIS extension which is designed to compute a variety of landscape metrics for 

categorical map patterns (Elkie et al., 1999), was used to calculate and compare the 

landscape metrics in the present study (Table 2.5). Patch Analyst was chosen because it 

provides integrated GIS environment for spatial analysis. 
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Table 2.5 Selected landscape indices used to analyze the landscapes of the Illubabor Administrative Zone 

in SW Ethiopia in the present study. 

Metrics Formula             Description  

Class Area  CA =aij ,  aj = area of patch j in the landscape of patch 

class i 

Total area of the 

same class 

Core Area  
COA = 

n

j

caij
1

aj = core are of patch j in the landscape of 

patch class i , where c is the buffer size 

Area of interior 

habitat  

Edge Density  
ED = 

A

E
, where E = total edge, A = total area 

Perimeter-area ratio 

Number of Patches  NP  = ni,    ni = total number of patches of class I in the 

landscape 

Total number of 

patches in the 

landscape 

Mean Patch Size                                                           

MPS =
ni

aij
n

j 1
 aij the area of each patch j where ni is the 

number of patches of class i 

AWMP S=
)(

)( 2

aji

aij
aij = the area of patch j in the 

landscape class i 

Spatial configuration 

of patches 

Patch Size 

Coefficient of 

Variation  

PSCOV =

ni

aij

ni

aij
aij

n

j

n

j

n

j




























1

1

1
(

or 100X
MPS

PSSD
                                                           

 

Variability in patch 

size  

Area weighted 

Mean Shape Index  M SI=  

n

j

ni

aij

pij
1 *2

=pij=the perimeter of patch j in the 

landscape of patch class i, aij =the area of patch j in the 

landscape of patch class i,  ni = number of patches in the 

landscape of patch class i, ln = natural logarithmic  

 

Complexity of shape 

 

 

 

 

 

Area weighted 

Mean Fractal 

Dimension  

MPFD= 

n

j

ni

aij

pij
1 ln

ln2
 pij=the perimeter of patch j in the 

landscape of patch class i, aij = the area of patch j in the 

landscape of patch class i,  ni = number of patches in the 

landscape of patch class i 

 

Ratio of perimeter 

per unit area 

Sources: McGarigal and Marks; 1995, Turner et al., 2001; Gergel and Turner, 2002; Farina, 2007  
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2.3.5 Vegetation sampling and plot layout 

 

In order to obtain vegetation data in each sampled forest patch a plot-based inventory 

was carried out. The sampling was carried out in two stages: (i) a detailed inventory of 

forest interior habitat and (ii) a comparison of forest interior and edge habitats. All area 

within a forest patch at least 50 m from the nearest patch edge was classified as interior 

habitat. The interior coordinate of each patch was taken from the map using GIS and 

feed into GPS to navigate latter during sampling. Before establishing the sample plots 

the interior habitat was per-assessed by observation to identify the representative 

vegetation types. Then, a single main plot of 60 x 100 m was established in the interior 

habitat of each sampled forest patch (Figure 2.10). This was sub-divided into 15 sub-

plots using a 20 x 20 m grid. Eight of these sub-plots, based on a systematic sampling 

regime, were used for vegetation inventory. Systematic sampling (described below) was 

selected as it maximizes the distance between plots and therefore minimizes spatial 

correlation among observations, thus increasing sampling efficiency and the accuracy of 

estimating the true population mean, though at the cost of reducing the accuracy of 

assessing true variance around that mean (Barry et al., 1995). 

 

In order to investigate the mechanisms by which fragmentation of these forests (increase 

in the edge to area ratio of patches) influences their biodiversity, comparative data were 

required of the composition of the forest edge habitat (which is more liable to be 

exposed to grazing, trampling, microclimate and other environmental influences from 

the surrounding matrix). Thus, an additional eight plots of size 20 x 20 m were 

established systematically around the edge habitat of each patch (Figure 2.10) in forest 

patches that were large enough to accommodate both interior and edge plots (detail of 

plot layout described under section 5.1.2, chapter 5). The number of plots in the edge 

(eight) was set to sample as equal number as the 20x20 m sub-plots in the interior 

habitat. For both interior and edge habitat plots, five nested 5 x 5 m sub-sub plots were 

used within each 20 x 20 m sample unit, one at each corner and one at the centre to 

record saplings and seedlings of tree species and presence/absence of angiosperm 

herbaceous species. 
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Figure 2.10 Layout of (a) 20 X 20 m sub-plots within the main plot in the forest interior habitat, 

(b) 20 X 20 m plots in the forest edge habitat, and (c) 5 X 5 m sub-sub-plots in the sampled 

forest patches in Illubabor administrative in SW Ethiopia. Numbers 1-8 indicate the sampled 

plots 

 

 

 

 

 

 

 

 

 

 

Figure 2.11 Spatial distribution of the sampled forest patches in the Illubabor Administrative 

Zone of south-west Ethiopia.  
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CHAPTER 3 

DETECTION OF LANDSCAPE PATTERN CHANGE AS A RESULT OF 

HUMAN LAND-USE IN THE ILLUBABOR ZONE, SOUTH-WEST ETHIOPIA 

OVER THE PERIOD 1986 - 2007 

 

Abstract  

This study examines land-use changes in three landscapes of different land-use intensity 

in the Illubabor Administrative Zone, in south-west Ethiopia, and how these have 

affected landscape pattern and ultimately forest cover. Land-use change in the three 

landscapes was determined by interpretation of 1986 and 2000 Landsat images and Spot 

images of 2007. 

 

The three sites (Site I, II and III) are located in different land-use characteristics. Site I 

is located in mid-altitude and its land-cover was dominated by natural forest. Site II and 

III are located in higher altitude and their pattern of land-use was very similar and 

dominated by farm and settlement. In two of the three sites the decrease in overall forest 

cover was only slight: in Site I from 56.6% in 1986 to 53.1% in 2007; in Site III from 

22.1% in 1986 to 20.0% in 2007. However, in the third site, forest cover halved over the 

period: in Site II from 29.8% in 1986 to 14.8% in 2007. The cover of wooded grassland 

increased in Site I from 0.1% in 1986 to 0.4% in 2007, however it decreased in the other 

two sites: in II site from 1.6% in 1986 to 0.3% in 2007 and in Site III from 3.9% in 1986 

to 1.7% in Site III. The cover of farming and settlement land decreased, to a variable 

extent, in all three sites over the period: in Site I from 36.8% in 1986 to a slightly lower 

36.5% in 2007; in Site II from 48.0% in 1986 to 42.2% in 2007; in Site III from 53.9% 

in 1986 to 45.9% in 2007. In contrast, the cover of grazing land increased, to a very 

variable extent, in all three sites: in Site I from 6.5% in 1986 to 10% in 2007; in Site III 

from 20.1% in 1986 to 32.4% in 2007; and in Site II it more than doubled from 20.6% 

in 1986 to 42.7% in 2007. Comparing the trends in the two interim periods (1986-2000 

and 2000-2007) there was no consistency of pattern amongst the three sites or land 

cover types. In sites I forest cover increased during 1986-2000 but decreased to a 

greater extent during 2000-2007, whereas in Site III it showed the opposite pattern, 

increasing during 1986-2000 but decreasing (to a greater extent) in 2000-2007. In 
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contrast, in Site II it showed a small decrease in 1986-2000 and a large decrease in 

2000-2007. In both sites II and III the cover of farm and settlement land increased in the 

first period and then decreased to a greater extent in the second period, whereas in Site I 

it decreased in the first period and then increased in the second. Somewhat mirroring 

this, in sites II and III the cover of grazing land decreased during the first period and 

then increased to a greater extent during the second period, whereas it increased in both 

periods in Site I. 

 

The number of patches of forest land increased in the first period in Site I, while 

increasing in sites II and III, however it decreased greatly in the second period in all 

three sites, so that in all there was a net decline over the whole 1986-2007 period: by 

80% in Site I, 56% in Site II and 45% in Site III. In contrast there was a general increase 

in the mean size of forest patches. Mean patch size increased greatly in Site I over both 

periods, from 8.2 ha in 1986 to 37.9 ha in 2007 due to a high proportion of the smaller 

patches being converted to other land-use types. In contrast in both sites II and III it 

decreased during the 1986-2000 period, but increased during 2000-2007, to give a more 

modest net increase from 1986 to 2007 of 6.7 ha to 7.5 ha in Site II and 6.4 ha to 12.4 

ha for Site III respectively. The area-weighted shape index of forest patches showed 

contrasting trends amongst the three sites and two periods. In Site II it decreased in both 

periods to give an overall 1986-2007 decrease from 6.8 to 4.1. In Site III after a slight 

increase there was a greater decrease giving an overall small change from 6.4 to 5.6. In 

contrast, in Site I (which started with a much larger area-weighted mean shape index) a 

very small decrease was followed by a large increase giving an overall change from 

17.1 to 20.0. Forest patch edge density showed a different contrasting pattern across the 

periods and sites. In Site II it increased in both periods from 22.9 m ha
-1

 in 1986 to 54.7 

m ha
-1

 in 2007. In both sites I and III it decreased during 1986-2000 but increased 

during 2000-2007, however the net 1986-2007 change was a decrease in Site I from 

66.5m ha
-1

 to 52.2 m ha
-1

 but an increase in Site III from 33.1 m ha
-1

 to 41.7 m ha
-1

.  

 

The total core area of forest patches was defined in this study as the sum of all interior 

forest areas inside a 50 m buffer zone from the patch edge. This also showed an 
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inconsistent trend across the sites and periods, though for each Site Its trend between the 

two periods was the exact opposite of that for edge density. The net change, from 1986 

to 2007, in Site I was a small decrease from 17926 ha to 15399 ha, in Site III a similar 

small decrease from 6003 ha to 5524 ha, and in Site II a larger decrease from 7257 ha to 

3647 ha . The number of patches containing any core area showed a slight increase over 

the same period in Site III from 351 to 375, however it decreased in Site I from 733 to 

622 and greatly in Site II from 697 to 385.  

 

These results indicate a complex landscape pattern of deforestation across the 

contrasting parts of Illubabor Zone. There was a general increase in land area under 

grazing, but this was only associated with a high rate of net deforestation in two out of 

three studied landscapes. However, there was clear evidence of forest fragmentation 

effects though their detail varied between landscapes. In the lower altitude area 

dominated by coffee cultivation forest became consolidated into fewer larger patches, 

while there was an associated decrease in patch edge density, there was also a small 

decline in core (patch interior) forest area. The two higher altitude landscapes showed 

contrasting trends, with one experiencing high rates of net deforestation and decrease in 

number of forest patches, with just a small increase in mean patch size, and a large 

increase in edge density and decrease in core (patch interior) forest area. The second 

upland landscape did not experience high net deforestation, but it did show considerable 

loss of smaller patches with the large decrease in patch number being paralleled by a 

doubling of mean patch size and just a modest increase in edge density and reduction in 

core forest area. While the differences between the landscapes can be explained by 

contrasts in processes of land-use change they share common underlying causes, 

including changes in population characteristics and in forest management 

responsibilities. 
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3.1 Introduction 

 

Human land-uses have dramatically changed the landscape pattern by altering the 

relative abundances of natural and human-dominated habitats. In recent decades, the 

earth has experienced the fastest ever expansion and intensification of land cultivation 

(Leff et al., 2004), conversion to pasture and urbanization of land (Luck and Wu, 2002). 

These rapid land-use and land-cover changes caused by humans have become a major 

concern due to their influence on ecosystem processes and biodiversity (Lindenmayer 

and Fischer, 2006; Farina, 2007), global climate systems (Ramankutty et al., 2002) and 

landscape patterns (Gergel and Turner 2002). Thus, analyzing land-use/land-cover 

change (LULCC) is a fundamental step in order to capture and understand the impact of 

human activities on landscape pattern and process. 

 

Landscape processes are heavily influenced by spatial pattern (Turner 1989), which 

includes type, number and spatial distribution and arrangement of natural and human 

modified landscape units (Ji, 2008). Changes to these spatial patterns are widely 

discussed by many authors (e.g. Forman. 1989; Turner et al., 2001; Gergel and Turner, 

2002, Lindenmayer and Fischer, 2006; Farina, 2007) as they can influence ecosystem 

structure and function and there is a consensus that conservation and management is 

required at a landscape scale rather than at a patch level. In spite of this requirement for 

conservation and management at a landscape scale, anthropogenic effects continue to 

modify the natural habitat units with an ever increasing pace (Forman, 1995), and the 

rate of conversion of natural habitats due to direct human use is accelerating worldwide, 

particularly in regions such as Africa which exhibits rapid population growth (Turner et 

al., 2001; Malcolm et al., 2007). Large-scale land conversion, slash-and-burn agriculture 

for subsistence farming, grazing, settlement expansion, road construction, logging, and 

the expanding network of power lines all affect the spatial pattern of natural habitats 

(FAO, 2003; Hennig, 2006). 

 

These types of human influence can affect landscape pattern in three main ways. Firstly, 

they reduce the total area of forest by removing forest cover permanently (Kramer, 

1997; FAO, 2003). As a result some forest types have disappeared locally and there is a 
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reduction in the total amount of habitat, thereby affecting landscape pattern and process. 

Secondly, the spatial structure of forests is altered by dividing forest cover into 

fragments (Dale et al., 1994; Forman, 1995, Turner et al., 2001). Fragmentation results 

in the disruption of existing ecological connections between spatially separated habitats 

(Gergel and Turner, 2002; Lindenmayer and Fischer, 2006). Thirdly, land-use activities 

between fragmented patches largely separate them from each other and increase 

isolation (Saunders, 1991, Turner, 1996; Bender et al., 2003; Lindenmayer and Fischer, 

2006). An isolated patch can also be subjected to edge effects from the surrounding 

matrix (Annette and Martin, 2004) and the amount of edge habitats in an isolated patch 

can be increased relative to interior habitats (Arroyo-Rodríguez and Mandujano, 2006). 

 

The combination of the above pressures has resulted in the decline, loss and 

fragmentation of forest habitats in large areas of Africa impairing the ecological 

functionality of landscapes. For example, between 1990 and 2000, Africa lost about 52 

million hectare of forest, accounting for about 56% of the global reduction in forest 

cover through deforestation and fragmentation (FAO, 2003). The net loss of forest area 

remains high at an estimated four million hectares per annum between 2000 and 2005 

(FAO, 2006). The recent FAO (2010) reports also indicate that the forest reduction 

between 2005 and 2010 continued in the same trend. Despite these facts, frequent 

monitoring of the changing landscape pattern and reduction in forest resources is 

lacking in African countries, making trend analysis at a landscape level difficult for 

conservation and restoration planning.  

 

Natural forest habitats in Ethiopia are intensively deforested and extensive afromontane 

forest remnants only exist in the south-west and south-east of the country (EFAP, 1994) 

Figure 3.1. In recent years, however, there has been rapid agricultural expansion around 

and inside these remaining forests due to the influx of people from central, eastern and 

northern parts of the country due to planned government resettlement programmes and 

spontaneous migration (Reusing, 1998, 2000; Tadesse et al., 2001; Mekuria, 2005; 

Mengistu, 2005). This has contributed to the loss of a significant area of natural habitat 

and fragmentation of much of the remaining forest (Tadesse, 2003) resulting in a 

changed landscape pattern from predominantly natural to highly human-modified. 
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Figure 3.1: Map of Ethiopia with remaining afromontane forest distribution predominantly in 

the south-west part of the country: source WBISPP, 2000 

 

These landscape pattern changes in Ethiopia and their possible effects have not yet 

received any major research attention. Although there have been some studies on 

LULCC in Ethiopia (e.g. Reusing, 1998; WBISPP, 2000; FAO, 2001; Reid et al., 2000; 

Bedru, 2007), these have focused only on landscape cover proportion. None of them 

report on landscape composition and structural characteristics of remaining patches 

within the larger landscape. To improve this evidence base, a major stage in resolving 

natural habitat fragmentation has to be the identification and analysis of the LULCC 

which will require assessment at the landscape scale to determine changes both in 

proportion and structure at landscape, class and patch levels. An exemplar landscape for 

such analysis is the Illubabor Zone in south-west Ethiopia. This area has undergone 

rapid land-use change as a result of socio-cultural change, unprecedented population 

growth and unsustainable forest use. However, no research has been carried out there 

which analyses the spatial character of forest habitat patches at landscape, class and 

patch level.  
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The main objective of this study is to evaluate the impact of land-use change on natural 

land-cover pattern, especially of forest, within Illubabor Zone, south-west Ethiopia. The 

specific objectives were to determine the nature and extent of changes in land-use in 

three landscapes of different land-use characteristics between 1986 and 2007, to 

establish the causes of these changes and to assess their impact on forest cover and its 

spatial pattern. To achieve these objectives, the change in land-cover proportion, and 

forest patch area, shape, number and edge density were investigated by analyzing land-

use/cover changes at landscape and class level. 

 

3.2 Materials and methods 

3.2.1 Data used for land-use and land-cover map production 

 

Landsat images from 1986 and 2000 and a Spot image from 2007 were used for 

LULCC map production (see Table 2.3 for their details and acquisition date). Landsat 

images were obtained from the United States Geological Survey (USGS) archive and 

downloaded for free (www.glovis.usgs.gov). They were previously geometrically and 

radiometrically corrected by USGS. The same quality level was available for the Spot 

2007 image which was obtained from the Oromia Regional State Water Corporation 

Enterprise (OWCE). Both Landsat images were geo-referenced to Universal Transverse 

Mercator (UTM) projection using the WGS (World Geodetic Systems) 84 datum by 

USGS. The three bands (2, 4 and 7) of each Landsat image were layer stacked to merge 

them together to produce a single image using ERDAS 9.1 (ERDAS, 2008). The Spot 

image was obtained in a layer stacked using three available bands (RGB 3, 2 and 1). All 

images are available for each month of every year of the study area. From the available 

images, those in the dry seasons were selected to better discriminate land-cover classes. 

The dry season of the study area is from November to March (Woubshet, 2000, Chapter 

2). Images of the area containing 0% cloud cover were selected for each year for land-

use production. 
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3.2.3 Land-use and land-cover classification and accuracy assessment 

3.2.3.1 Land-use and land-cover classification 

 

The detailed description of supervised and unsupervised classification technique used in 

this study was given under section 2.3.2 (chapter 2). Classification of the 1986, 2000 

and 2007 images was performed on a sub-scene I clipped from the full image on the 

basis of a vector frame covering the study area (Figure 2.9, chapter 2). Then, the 

classified images were exported to ARC GIS 9.2 (ESRI, 2007). Using its GIS tools, 

different land-use and land-cover raster polygons identified on the satellite images were 

converted to vector polygons and then to shape formats. The land-use and land-cover 

classes identified and labeled for each image were taken to the field and GPS reading 

were made for 355 land-cover classes or polygons created for all images and their land-

cover type checked in the field for verification. As described under section 2.3.2, these 

355 sample points were distributed between eight land-uses and land-cover types 

identified across the study area. The sample points were collected using Garmin GPS 60 

in 2010 and 50-70 sample points were selected for each land-use and land-cover 

category (Jensen, 2005). Land-use and land-cover polygons of 1986 and 2000 labeled 

using results from supervised technique of image 2007 were compared with land-cover 

from ground-truthing data.  

 

3.2.3.2 Image reclassification 

 

Initial classification of the images using the two classification methods (unsupervised 

for 1986 and 2000 Landsat images and supervised classification for 2007 Spot image) 

revealed a wide range of spectral confusion among land-cover types. Spectral confusion 

can occur when several land-cover classes have similar spectral response (Yang and Lo, 

2002). To reduce this problem, I closely examined to highlight major area of 

misclassified land-covers. This was achieved with the aid of existing land-cover map 

produced by WBISPP (2000) and sample points taken during ground survey. Interviews 

of local elders and farmers were also conducted during ground survey for five sample 

points where a clear relationship between the Landsat and Spot images could not 

established. Most farm and settlement pixels were classified as bare soil or exposed 
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rocky area; most natural forest pixels were classified as plantation and disturbed forest; 

most grazing land pixels were classified as wetland. During ground survey I also 

recognized that there was no clear boundary between undisturbed and disturbed forests. 

Therefore, to improve on the classification the following cover types were reclassified 

into three land-cover classes in both unsupervised and supervised images: (a) bare soil 

or exposed rocky area and farm and settlement, (b) wetland/swampy area and grazing 

land, (c) undisturbed forest, disturbed forest and plantation. The fourth class, wooded-

grassland land-cover, was classified correctly during initial classification. Finally, the 

eight land-use/cover polygons initially identified were combined after field verification 

and the four basic classes of land-use/cover were identified from the classified images 

for all years (Table 3.1). 

 

Table 3.1: Land-use/cover classes and definitions used in this study  

No Land-use/cover class                                             Definition 
1 Farm and settlement Agricultural land currently under cultivation, areas cleared of 

vegetation which have not yet been planted, urban and rural 

settlements, gravel as well as asphaltic roads, bare soil or 

exposed rocky area.  

2 Forest High canopy forest, including montane evergreen forest and 

closed evergreen lowland forest, disturbed forest, highly coffee 

managed forest, plantation forest (Cuperssus lucitanica, Pinus 

spp and Eucalyptus spp forests). 

3 Grazing land Areas under cover of grasses and other herbaceous vegetation, 

wetlands (normally used as grazing ground in Ethiopia), may 

include some land under fallow after crop cultivation. 

4 Wooded grassland Areas with both a high percentage of grasses and scattered trees 

and shrubs. 

 

 

3.2.3.3 Accuracy assessment 

 

Classification accuracy associated with the maps is critical to reliably characterize 

spatial pattern, detect change, and relate pattern to process (Iverson, 2007) since the 

land-use/cover maps derived from remote sensing data always contain some errors due 

to factors which range from classification technique to method of satellite data capture 

(Shao and Wu, 2004; Muzien, 2006; Shao and Wu, 2008). These errors could spread to 

subsequent landscape pattern analysis. Without knowing the magnitude of these errors 

in the landscape data, the characterization of landscape pattern is not reliable. The 

inaccurate result obtained may affect the inferences of pattern-process relationships and 
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thus recommendations for conservation and restoration planning (Shao and Wu, 2008). 

In order to use the derived land-use/cover maps for pattern change analysis, therefore, 

the errors need to be quantified in terms of classification accuracy. 

 

The accuracy assessments of both supervised and unsupervised techniques were made 

through a confusion or error matrix (Hasmadi et al., 2009). A confusion matrix usually 

represented in terms of producer’s accuracy, user’s accuracy and overall accuracy (Shao 

and Wu, 2008) and the Kappa coefficient (Congalton and Green, 1999, Tso and Mather, 

2009). I compared pixels categorized under different land-cover polygons by software 

to the same Site In the field (Hasmadi et al., 2009). This process was used to estimate 

the accuracy of the image classification by comparing the classified map with the 

reference map based on field sample points (Caetano et al., 2005). The technique was 

used to provide a statistical and analytical approach to examine the accuracy of the 

classification. The producer’s accuracy was calculated as the percentage of each land-

use/cover type on the ground correctly classified in the 1986, 2000 and 2007 maps. It 

was calculated as the ratio of the number of correctly classified pixels for a class to the 

total number of pixels for that class from the field survey (column total). User’s 

accuracy was calculated by dividing the number of correctly identified pixels to the 

classified total (row total which includes both correctly classified and misclassified 

samples) (Foody, 2002). The overall accuracy was computed by dividing the total 

correct number of pixels (the total diagonal value) by the total number of pixels in the 

matrix. 

 

Kappa coefficient (K) is another measurement used to assess maps accuracy in this 

study. It is a method for validating LULCC results by using the random independent 

validation points (Foody, 2002). It expresses proportionate reduction in error generated 

by a classification process compared with the error of a completely random 

classification (Congalton and Green 1999). The Kappa coefficient proposed by 

Congalton and Green (1999) was calculated as:  
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 where: K = Kappa coefficient, r = the number of 

rows in the error matrix, Xii = the number of observations in rows i column i (along the 

major diagonal), Xi+ = is the marginal total of row i (right of the matrix), X+i = the 

marginal total of column i (bottom of the matrix), N = the total number of observations 

included in the matrix (total GPS points for ground truthing). 

 

The value of Kappa is always less than or equal to 1. A value of 1 implies perfect 

agreement in this case the maps classification accuracy would be precise. Most studies 

indicate that values  of Kappa is usually less than 1 but value < 0.20 is poor agreement 

and values between 0.7 and 1 is very good agreement. Though the classification 

accuracy is critical for landscape pattern analysis, there is no universally applicable 

standard based on which the adequacy of classification accuracy can be quantified 

(Shao and Wu, 2008). However, the producer’s and user’s accuracy values ranging from 

60% to 100% are accepTable (Shao and Wu, 2008). 

 

I used ground truthing of 355 sample points and existing land-use and land-cover maps 

to assess the classification accuracy of the land-use and land-cover maps in this study. 

The result of my classification accuracy assessment indicates that both producer’s 

accuracy and user’s accuracy for each of the three images are range from 60% to 100% 

(Tables 3.2). Therefore the reliability of the results that will be obtained from landscape 

pattern analysis is expected to be high. When individual land-use and land-cover of each 

image year is considered, in 2007 the highest producer’s accuracy exists in the land-

use/cover class of farm and settlement, while the highest user’s accuracy exists for 

natural forest (Table 3.2). The farm and settlement class has such high classification 

accuracy as it was the dominant matrix and continuous landscape in 2007 (Figure 3.6). 

In contrast, for 2000 the highest producer’s accuracy was for natural forest and user’s 

accuracy was for grazing land (Table 3.2). In 1986, the highest producer’s accuracy was 

for natural forest and user’s accuracy for wooded grassland (Table 3.2). The overall 

accuracy was 79.1% for the TM (1986) data, 82.8% for +ETM (2000) data and 80.6% 

for Spot (2007) data. The Kappa Coefficients for 1986, 2000 and 2007 were 0.71, 0.77 
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and 0.73 respectively. The large values of Kappa coefficient (> 0.7) for each of the three 

years indicate that there is a very good agreement between producer’s (developers of the 

map) and user’s accuracy. Therefore, the classification carried out in this study 

produced an overall accuracy and Kappa coefficient that fulfils the accuracy threshold 

(> 60%) required for further LULCC analysis. 

Table 3.2 Classification accuracy assessment for Landsat Satellite images of the years 1986 and 2000, and 

Spot image of 2007. 

 Landsat 1986 Landsat 2000 Spot 2007 

Land-cover class Producer’s 

(%) 

User’s (%) Producer’s 

(%) 

User’s (%) Producer’s 

(%) 

User’s 

(%) 

Forest 95.0 71.9 91.0 76.5 83.0 96.5 

Grazing land 60.0 75.0 72.0 90.0 70.7 62.4 

Farm &settlement 77.5 83.8 84.2 85.6 87.5 78.9 

Wooded grassland 78.0 92.2 80.0 82.1 75.0 90.0 

       

Overall accuracy  79.1%  82.8%  80.6%  

Kappa statistic 0.713  0.763  0.734  

 

 

3.2.3.4 Landscape pattern analysis by landscape metrics 

 

After land-use and land-cover classification and accuracy assessment was done for the 

larger part of the Illubabor Administrative Zone study area, specific areas of interest 

were clipped for detailed study. The first stage was to classify the study area into two 

land-use categories based on dominant productive land use in 2007: coffee or mixed 

farming (Figure 2.11). Based on data of the land area under coffee and food crop 

production collected from the Zone Agricultural Office, it was decided to locate one site 

for detailed study in the land category dominated by coffee cultivation. The delimitation 

of this study site was determined by altitude. Because of the large heterogeneous area 

within the zone predominantly under mixed-farming food crop production at higher 

altitudes, it was decided to locate two sites for detailed study in this land category. 

 

The second stage was to define the spatial scale of the map. The concept of spatial scale 

in landscape ecology encompasses both extent and grain (Forman and Godron, 1986): 

spatial extent is the total area of the map being considered for analysis; grain is the size 

of the individual units of observation, i.e. land-cover classes. Extent and grain define the 
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upper and lower limits of resolution of the study (Wiens, 1989, Gergel and Turner, 

2002) and was dictated by the scale of the maps obtained by the processing of Landsat 

and Spot imagery (1: 250,000). The extent of the newly clipped land-use and land-cover 

maps from whole study area for each site for spatial analysis was purposefully aimed to 

cover most of the area encompassing the sampled forests for vegetation analysis. The 

boundary of each map was defined by a vector polygon created by edit tools in GIS. I 

created the polygons using edit tools purposely for each site and overlaid on each land-

cover map and subjectively increased the size by dragging all sides of the polygon until 

it covers the whole sampled forest patch and each gives an identical area before the 

maps are clipped. These created equal-area polygons help to analyze spatial data in 

similar area in all sites (Wu, 2004). Making spatial analysis in equal areas of polygon 

reduces the problems that may arise due to different scales of analyzed spatial data 

because this has been shown to greatly influence values of pattern metrics (e.g. Turner 

et al., 1989; Gustafson and Parker, 1992; Wickham and Riitters, 1995; Saura and 

Martinez-Millan, 2001; Wu, 2004).  

 

The third step was the definition of landscape unit or land-cover patches within the 

defined map boundaries. The land-cover patches were defined by the pixels belonging 

together to one land-cover class of the classified images and delimited by patch 

boundary. Two adjacent patch polygons can have the same meaning and the boundary 

between the two polygons should be dissolved (Rempel, 2012), otherwise the landscape 

pattern detected using landscape metrics will have little meaning. In the present 

research, before analysis of change at each site for each year, the land-use and land-

cover polygons with similar meaning were dissolved by dissolve feature described by 

Rempel (2012) and available in Patch Analyst (ArcGIS extension) to remove 

boundaries between polygons. This method is useful to reduce the number of patches 

that will be artificially high caused by undissolved boundaries of same-class polygons 

(Rempel, 2012). 

 

The location of the three sites is shown in Figure 2.11. Site I covers an altitude range of 

1500 to 1990 m a.s.l. (Table 4.1, Chapter 4). Its land cover in 2007 was dominated by 
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natural forest (53.1%), of which a high proportion was revealed to be subject to 

understorey coffee cultivation during the field survey. Site II covers an altitude range of 

1878 to 2319 m a.s.l. Its land cover in 2007 was dominated by farm & settlement land 

cover (42.1%). During the field survey it was ascertained that this land was dominated 

by the cultivation of field crops such as teff, wheat, and barley as well as some coffee. 

In addition, 14.8% of this site was classified in 2007 as natural forest, and the field visit 

revealed that this was also subject to some understorey coffee cultivation. Site III covers 

an altitude range of 2000 to 2422 m a.s.l. Its land cover in 2007 was also dominated by 

farm & settlement land cover (45.9%). In the field survey the pattern of its land use was 

found to be very similar to Site II including understorey coffee cultivation in some areas 

of natural forest (which occupied 20% of the Site in 2007). Informal interviews with 

more than five elders of the long-established local communities were conducted during 

the field work at each of the three sites. The elders at Site I reported that some of its 

current population migrated to the area before 1986 either spontaneously or during a 

planned resettlement programme. The elders at Site II reported that about a quarter of its 

current population were members of households which migrated to the area during a 

resettlement programme in ca. 1990, 20 years ago. The elders at Site III reported that 

some of its current population migrated to the area in approximately 2003. According to 

the elders, the land-use practices of these migrants are different from the indigenous 

people living in the area for a long time in that they remove forests to cultivate crops 

and for expansion of settlement area while the indigenous people use the forest only to 

collect some non-timber forest products, i.e. Coffea arabica, Piper capense and honey. 

The elders added that the indigenous people also use wood and lianas for house and 

beehive construction. 

 

3.3 Results  

3.3.1 Landscape pattern change in Illubabor Zone, ern Ethiopia from 1986 to 2007 

 

3.3.1.1 Land use/land cover in Site I 

 

The maps of the distribution of the four land-use/land-cover (LULC) classes of 1986, 

2000 and 2007 for Site I are displayed in Figures 3.4, 3.5 and 3.6; Figure 3.2 provides 
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details of the area and proportion of different LULC classes in each year and Figure 3.3 

shows the change in these areas between the years. 

 

In Site I there were only small changes in the area of each of the four LULC classes 

over the 21 year study period (Table 3.3). Forest remained the completely dominant 

class (> 50%) throughout the period (Figure 3.2): a small increase in area of 3.8% from 

1986 to 2000 was followed by a larger decline of 9.7% between 2000 and 2007 to give 

a net decline in area of 6.2% (Table 3.4). The second most abundant LULC class 

remained farm and settlement throughout the period, with a very similar area (37%) at 

the start and end. Grazing land and wooded grassland both increased in area in both 

time periods, giving each a total increase of 53% and 526% respectively. Therefore, 

while the forest area declined between 2000 and 2007 that of all the other three classes 

increased. In this sense the forest constituted the “matrix” component of the landscape 

throughout the period. The fluctuation in proportion of farm and settlement LULC class 

may be due to fallow land inclusion or exclusion under farm each year.  

 

Table 3.3 Area occupied by each land use/land cover class in hectares and as a percentage of the total 

land area in the years 1986, 2000 and 2007 in Site I in Illubabor Zone outhwestern Ethiopia 

 1986   2000   2007   

 Land-use and land-cover classes                                   Area  

  ha % ha % ha % 

Forest 26980.2 56.6 28005.9 58.78 25300.4 53.1 

Grazing land 3114.2 6.5 3353.0 7.0 4776.6 10.0 

Wooded grassland 29.3 0.1 70.0 0.1 183.3 0.4 

Farm and settlement 17550.9 36.8 16218.8 34.0 17394.2 36.5 

Total 47,647.7 100 47,647.7 100 47,647.7 100 

 

Table 3.4 Change in area of land-use/land-cover categories in time periods between 1986 and 2007 in Site 

I in Illubabor Zone southwestern Ethiopia 

Land-use and land-cover 

classes 

1986-2000 %  

change 

2000-2007 % 

change 

1986-2007 % 

change 

Forest 1025.7 3.8 -2705.5 -9.7 -1679.8 -6.2 

Grazing land 238.8 7.7 1423.6 42.5 1662.4 53.4 

Wooded grassland 40.7 138.9 113.3 161.9 154.0 525.6 

Farm and settlement -1572.8 -7.6 1416.1 7.2 -156.8 -0.9 
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Figure 3.2 Total area of land (ha) occupied by each land-use/land-cover 

class in 1986, 2000 and 2007 in Site I            
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Figure 3.3 Net change in area (ha) of each land-use/land-cover class in each of 

three periods (1986-2000, 2000-2007, 1986- 2007) in Site I                                                                     
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Figure 3.4 Final land-use and land-cover map of Site I in 1986 

 

 

Figure 3.5 Final land-use and land-cover map of Site I in 2000 
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Figure 3.6 Final land-use and land-cover map of Site I in 2007 

 

3.3.1.2 Land use/land cover in Site II 

 

Land cover changed much more in Site II than in Site I during the study period (Figures 

3.9, 3.10 and 3.11). The proportion of each land-use and land-cover is indicated in 

Figure 3.7. Farm and settlement started as the dominant land cover (48% of the total 

land area) in 1986, increased greatly to 62% in 2000, before declining to an even greater 

extent (to 42%) by 2007 (Table 3.5). In contrast, grazing land decreased greatly between 

1986 and 2000 before a huge increase (of 285%, to 43% of the total land area) by 2007 

(Table 3.6). Forest cover declined in both periods, especially the second (Figure 3.8), 

producing an overall halving of its area from 30% of land area in 1986 to 15% in 2007. 

Wooded grassland declined greatly in the first period and then remained at only 0.3% of 

land area. 
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Table 3.5 Proportion of land-use/cover class of the study area at Site II for the year 1986, 2000 and 2007 

Land-use and land-cover 

types 

1986   2000   2007   

                                 Area 

  ha % ha % ha  % 

Forest 14186.4 29.8 12664.2 26.6 7052.0 14.8 

Grazing land 9817.3 20.6 5287.4 11.1 20351.5 42.7 

Wooded grassland 778.4 1.6 137.4 0.3 158.8 0.3 

Farm and settlement 22865.5 48.0 29558.7 62.0 20085.4 42.2 

Total 47647.7 100 47647.7 100 47647.7 100 

  

Table 3.6 Land-use and land-cover area and their change at Site II between 1986 and 2007 

   Land-cover change between 1986 & 2007 

Land-use and land-cover 

classes 

1986-2000  % change 2000-2007  % 

change 

1986-2007  % 

change 

Forest -1522.2 -10.7 -5612.2 -44.3 -7134.4 -50.3 

Grazing land -4529.9 -46.1 15064.1 284.9 10534.2 107.3 

Wooded grassland -641.0 -82.3 -21.4 15.6 -619.6 -79.6 

Farm and settlement 6693.2 29.3 -9473.3 -32.1 -2780.1 -12.1 

 

 

 

 

 

 

 

 

 

 

 

  

 

 Figure 3.7 Total area of land (ha) occupied by each land-use/land-cover class 

in 1986, 2000 and 2007 in Site II 
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Figure 3.9 Final land-use and land-cover map of Site II in 1986 
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 Figure 3.8 Net change in area (ha) of each land-use/land-cover class in each 

of three periods (1986-2000, 2000-2007, 1986- 2007) in Site II                                                                     
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Figure 3.10 Final land-use and land-cover map of Site II in 2000 

 

Figure 3.11 Final land-use and land-cover map of Site II in 2007 
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3.3.1.3 Land use/land cover in Site III 

 

The land-use and land-cover distribution maps for Site III are displayed in Figures 3.14, 

3.15 and 3.16. The cover proportion and net cover change of each land cover class is 

indicated in Figures 3.12 and 3.13 respectively. The magnitude of changes in area of the 

LULC classes in this site was intermediate between those of Sites I and II. The pattern 

of trend between the two periods for forest was more similar to Site I, but for farm and 

settlement, for grazing land and for wooded grassland it was more similar to Site II. In 

summary, farm and settlement remained the dominant land cover throughout (Table 3.7) 

but following an initial increase its area declined greatly (to 46%) in 2007. In contrast, 

after an initial decline, grazing land increased massively (to 32%) in 2007 (Table 3.7). 

Like farm and settlement, forest initially increased in area before a large decrease (to 

20%) in 2007. The net cover change of these land-cover classes also declined (Table 

3.8). The forest cover class gained area during the first period and lost large amount of 

area during the second period with a net area loss of 9.4% in 2007 (Table 3.8) 

 

Table 3.7 Proportion of land-use/cover class of the study area at Site III for the year 1986, 2000 and 2007 

  1986     2000    2007 

                                Area  

Land-use and land-cover 

classes 

Ha % Ha % Ha % 

Forest 10522.5 22.1 13284.3 27.9 9530.2 20.0 

Grazing land 9588.9 20.1 6579.3 13.8 15439.6 32.4 

Wooded grassland 1841.0 3.9 282.6 0.6 802.3 1.7 

Farm and settlement 25695.3 53.9 27501.5 57.7 21875.5 45.9 

Total 47647.7 100 47647.7 100 47647.7 100 

 

Table 3.8 Land-use and land-cover area and their change at Site III between 1986 and 2007 

                       Land-use and land-cover change between 1986 & 2007   

  1986-2000 % change 2000-2007 % change 1986-2007 % 

change 

Forest 2761.8 26.2 -3754.1 -28.3 -992.3 -9.4 

Grazing land -3009.6 -31.4 8860.3 134.7 5850.7 61.0 

Wooded 

grassland 

-1558.4 -84.6 519.7 183.9 -1038.7 -56.4 

Farm and 

settlement 

1806.1 7.0 -5625.9 -20.5 -3819.8 -14.9 
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Figure 3.13 Net change in area (ha) of each land-use/land-cover class in each of 

three periods (1986-2000, 2000-2007, 1986- 2007) in Site III 

Figure 3.12 Total area of land (ha) occupied by each land-use/land-cover class in 

1986, 2000 and 2007 in Site III            
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Figure 3.14 Final land-use and land-cover map of Site III in 1986 

 

Figure 3.15 Final land-use and land-cover map of Site III in 2000 
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Figure 3.16 Final land-use and land-cover map of Site III in 2007 

 

3.3.2 Land-cover spatial characteristics at each site between 1986 and 2007 

3.3.2.1 Patch area and patch number 

 

For the dominant LULC classes change in mean patch size (MPS, as the metric of patch 

area) was found to be very closely related to number of patches over each of the two 

time periods in all three sites (a decrease in number of patches being associated with an 

increase in MPS). Therefore the two metrics are dealt with together. The trends over 

time in these two metrics did vary greatly amongst the four land use/land cover classes 

within each site. However, within each LULC class there were similar trends in both 

metrics between the time periods across the three sites (especially for sites II and III). In 

all three sites the structure of the landscape became much more coarse-grained over 

time. In Site I, for natural forest, in both time periods patch number greatly decreased 

(to reach in 2007 just 20% of the 1986 number) and mean patch size greatly increased 

(to reach in 2007 462% of the 1986 size) (Figures 3.17 & 3.18, Appendix 3.1). 

Similarly, for farm and settlement, in both time periods patch number greatly decreased 

(to reach in 2007 just 31% of the 1986 number) and mean patch size greatly increased 

(to reach in 2007 317% of the 1986 size). Over the whole period the trend was the same 
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(but the magnitude less) for grazing land, with a decreased in number of patches (to 

reach in 2007 64% of the 1986 number) and an increase in mean patch size (to reach in 

2007 243% of the 1986 size). In contrast, the rare LULC class, wooded grassland, 

massively increased its number of patches (to reach in 2007 1470% of the 1986 

number), but also had a modest increase in mean patch size (to reach in 2007 130% of 

the 1986 size).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.18 Mean patch size (ha) of the four land use/land 

cover classes in 1986, 2000 and 2007 in Site I of the study 

area  
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Figure 3.17 Number of patches of each of four land use/land cover 

classes in 1986, 2000 and 2007 in Site I of the study area 
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For Site II, the overall trend over the whole 1986-2007 period was comparable for the 

three dominant LULC classes to Site I, however there was greater variation between the 

two component periods. For natural forest, patch number increased then greatly 

decreased (to reach in 2007 44% of the 1986 number) and mean patch size decreased 

and then greatly increased (to reach in 2007 112% of the 1986 size) (Figures 3.19 & 

3.20, Appendix 3.2). Similarly, for farm and settlement, in both time periods patch 

number greatly decreased (to reach in 2007 64% of the 1986 number) and mean patch 

size increased and then slightly decreased (to reach in 2007 136% of the 1986 size). 

Grazing land showed the same trend as forest, with patch number increasing then 

greatly decreasing (to reach in 2007 73% of the 1986 number) and mean patch size 

decreased then greatly increased (to reach in 2007 285% of the 1986 size). In Site II, 

wooded grassland showed the same trend as the other classes with a massive decrease in 

number of patches (to reach in 2007 just 12% of the 1986 number) and a doubling of 

mean patch size between 1986 and 2007. 

 

 

 

 

 

 

 

 

 

 

 

The trends in Site III mirrored those in Site II very closely. For natural forest, patch 

number increased then greatly decreased (to reach in 2007 47% of the 1986 number) 

and mean patch size decreased and then greatly increased (to reach in 2007 194% of the 

Figure 3.20 Mean patch size (ha) of the 

four land use/land cover classes in 1986, 

2000 and 2007 in Site II of the study 

area 
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Figure 3.19 Number of patches of the 

four land use/land cover classes in 1986, 

2000 and 2007 in Site II of the study 

area. 
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1986 size) (Figures 3.21 & 3.22, Appendix 3.3). Similarly, for farm and settlement, 

patch number decreased and then slightly increased (to reach in 2007 76% of the 1986 

number) and mean patch size increased and then decreased (to reach in 2007 112% of 

the 1986 size). Grazing land showed the same trend as forest, with patch number 

increasing then greatly decreasing (to reach in 2007 91% of the 1986 number) and mean 

patch size decreased then greatly increased (to reach in 2007 183% of the 1986 size). In 

Site III, wooded grassland showed a very similar trend to Site II with a massive early 

decrease in number of patches (to reach in 2007 just 21% of the 1986 number) and an 

increase in mean patch size (to reach in 2007 138% of the 1986 size). 

 

 

 

 

 

 

 

 

 

 

 

3.3.2.2 Patch shape and edge density 

 

Of the standard patch shape and edge metrics produced by the Patch Analyst analysis of 

the four LULC classes in the three study sites just three metrics, i.e. area-weighted mean 

shape index (AWMSI), Mean shape index (MI) and edge density (ED, perimeter to area 

ratio) are selected for presentation in the main results because they are commonly used 

to characterize patch spatial pattern (they are reported in more detail in Appendices 3.1-

3.3). Area-weighted mean shape index increases with greater irregularity of patch shape 
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Figure 3.21 Number of patches of the four 

land use/land cover classes in 1986, 2000 

and 2007 in Site III of the study area. 

 

Figure 3.22 Mean patch size (ha) of the 

four land use/land cover classes in 1986, 

2000 and 2007 in Site III of the study 

area 
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from a circle, while ED increases with greater complexity or elongation of patch shape. 

Of these two indices, AWMSI showed a slightly greater consistency for each LULC 

class across the three sites, than did ED. Between 1986 and 2007, for all three sites 

AWMSI increased for grazing land and decreased for farm and settlement (Figure 3.23, 

Appendices 3.1-3.3). However, for forest AWMSI decreased in sites II and III while it 

increased in Site I and, similarly, for wooded grassland it decreased in sites II and III 

while it remained the same in Site I. There was little evidence of consistency amongst 

the sites or LULC classes in the pattern of their trends between the two time periods 

(1986-2000 and 2000-2007). Forest decreased in AWMSI in two out of three sites in 

both periods. Grazing land decreased in AWMSI in all three sites 1986-2000 while 

increasing in all three sites 2000-2007. Wooded grassland increased in two out of three 

sites 1986-2000, while it decreased in all three sites 2000-2007. In sites II and III, farm 

and settlement AWMSI increased in 1986-2000 and decreased in 2000-2007, while in 

Site I it showed the opposite change in both periods. Across the three sites 1986-2007 

AWMSI increased by an average of 158% in grazing land, while it decreased by an 

average of 11.7% for forest, 12.1% for wooded grassland and 27.4% for farm and 

settlement. 

 

When mean shape index (MSI) of each class is considered it showed a much greater 

consistency for each LULC class across the three sites, than did ED. Between 1986 and 

2007, MSI increased for all four LULC classes in both Site I and Site III; in Site II it 

increased in farm and settlement and in grassland but stayed the same in the other two 

classes (Figure 3.23, Appendices 3.1-3.3). In all three sites, for all LULC classes there 

was a tendency for MSI to decrease or stay unchanged in 1986-2000 but to increase 

greatly in 2000-2007. Across the three sites the average 1986-2007 increase in MSI was 

21.4% for farm and settlement, 9.4% for forest, 8.6% for grazing land and 4.8% for 

wooded grassland. 
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Figure 3.23 Area-weighted mean shape index (AWMSI) and mean shape index (MSI) for all 

four land-cover classes for sites I, II and III in 1986, 2000 and 2007. 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

Forest Grazing 

land 

Wooded 

grassland 

Farm and 

settlement 

M
e

an
 s

h
ap

e
 in

d
e

x 
 

1986 2000 2007 

 

0 

10 

20 

30 

40 

50 

60 

Forest Grazing 

land 

Wooded 

grassland 

Farm and 

settlement 

A
re

a 
w

e
ig

h
te

d
 m

e
an

 s
h

ap
e

 
in

d
e

x 

1986 2000 2007 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

Forest Grazing 

land 

Wooded 

grassland 

Farm and 

settlement 

M
ea

n
 s

h
a

p
e 

in
d

ex
 

1986 2000 2007 

Site II 

 

0 

5 

10 

15 

20 

25 

30 

35 

40 

Forest Grazing 

land 

Wooded 

grassland 

Farm and 

settlement 

A
re

a
 w

ei
g

h
te

d
 m

ea
n

 s
h

a
p

e 

in
d

ex
 

1986 2000 2007 

Site III 

 

0 

5 

10 

15 

20 

25 

30 

Forest Grazing 

land 

Wooded 

grassland 

Farm and 

settlement 

A
re

a
-w

ei
g

h
te

d
 M

ea
n

 s
h

a
p

e 
in

d
ex

 1986 2000 2007 

 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

1.8 

Forest Grazing 

land 

Wooded 

grassland 

Farm and 

settlement 

M
ea

n
 s

h
a
p

e 
in

d
ex

 

1986 2000 2007 

Site I 



78 

 

For ED there was much less consistency amongst the three sites in its change between 

1986 and 2007 (Figure 3.24, Appendices 3.1-3.3). Edge density did increase in wooded 

grassland in all three sites, for forest it increased in sites II and III but decreased in Site 

I, for grazing land it increased in sites I and III, but decreased in Site II, and for farm 

and settlement it increased in Site III, but decreased in sites I and II.  The trend between 

the two time periods was also very variable amongst the three sites. In Site I patch ED 

tended to decrease 1986-2000 but increase 2000-2007 across the three dominant LULC 

classes. In Site II it increased during 1986-2000 (except for farm and settlement), but 

decreased during 2000-2007 (except for forest). In Site III it showed inverse temporal 

trends between two groups of LULC classes: in farm and settlement it decreased during 

1986-2000, while increasing during 2000-2007; however in grazing land and in wooded 

grassland it increased during 1986-2000, while decreasing during 2000-2007. Across 

the three sites the average 1986-2007 increase in ED was 660% for wooded grassland, 

48% for forest and 1% for grazingland, while it decreased by 12% for farm and 

settlement.  
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Figure 3.24 Patch edge density (ED) for all four land-cover classes for sites I, II and III in 1986, 

2000 and 2007. 
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3.3.2.3 Landscape level analysis of fragmentation at each site 

 

Combining all four land use/land cover classes to enable overall analysis at the 

landscape level, Site I was characterized by an increase in patch size during both study 

periods, from 4.11 ha in 1986 to 6.44 ha in 2000 and 11.48 ha in 2007 (Figure 3.25, 

details in Appendix 3.4). Mean landscape patch size in both sites II and III slightly 

decreased during 1986-2000 (from 5.08 ha to 4.57 ha in Site II and 4.69 ha to 4.24 ha in 

Site III respectively), and then drastically increased during 2000-2007 (to 9.35 ha for 

Site II and 7.44 ha for Site III respectively). The landscape of Site I was the most 

fragmented in 1986 as is indicated by its high number of patches which then decreased 

markedly during both time periods (Figure 3.25, Appendix 3.4). In the landscapes of 

both sites II and III patch number slightly increased during 1986-2000, but then (like 

Site I) sharply decreased during 2000-2007. The net Shannon diversity index of all 

patches of four cover classes showed a slight decrease in all sites to the end of the 

period (Appendix 3.4). Landscape area-weighted mean shape index showed contrasting 

trends amongst the three sites. In Site I it decreased during 1986-2000 and then 

increased by the same amount during 2000-2007. In Site II it increased and then greatly 

decreased, while in Site III it decreased markedly in both periods. In contrast landscape 

edge density (ED) showed the same pattern across the three sites: a decrease followed 

by an increase. The absolute variation of patch size (PSSD) increased in sites I and II 

while it decreased in Site III, however the patch size coefficient of variation (PSCoV) 

increased during 1986-2000 in all sites (Appendix 3.4). These two metrics both 

decreased in all three sites during 2000-2007 (Figure 3.25). 
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Figure 3.25 Number of patches (Nump), mean patch size (MPS), area-weighted mean shape 

index (AWMSI) and edge density (ED) for all classes combined at the landscape level for sites 

I, II and III in 1986, 2000 and 2007. 
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3.3.2.4 Forest core area 

 

Of the total area of forest patches about 60.9% in Site I, 51.7% in Site II and 57.9% in 

Site III were core (interior habitat) area (Appendix 3.5). The largest total forest core 

area occur was in Site I in all three years, however it showed a marked variation during 

the period, increasing greatly during 1986-2000, before an even greater decrease during 

2000-2007, giving a net loss over the whole period of 2526 ha (14.1% of the 1986 area) 

(Figure 3.26). Site III showed the same pattern, with a net loss over 1986-2007 of 478 

ha (7.9%), however Site II had a decrease in both periods (especially 2000-2007), so it 

had lost a net decrease in forest core area of 3610 ha during the whole period (49.7% of 

1986). The mean size of forest core area per patch showed the same trends as total core 

area for sites I and III: an increase during 1986-2000 followed by a decrease during 

2000-2007 (Figure 3.26, Appendix 3.5). Both changes were of a very large magnitude 

for Site I, though they almost cancelled each other out (from 24.5 ha in 1986 to 81.0 ha 

in 2000 and 24.8 in 2007), and comparatively slight, though leading to a net decrease, in 

Site III (from 17.1 ha in 1986 to 18.8 in 2000 and 14.7 ha in 2007). Site II showed the 

opposite trend (and intermediate magnitude of change), from 10.4 ha in 1986 to 8.8 ha 

in 2000 and 9.5 ha in 2007.  

 

The number of forest patches large enough to contain any core area (i.e. with any area at 

least 50 m from the nearest edge) showed a different trend from the other two metrics. 

In Site I the number decreased markedly from 733 in 1986 to 328 in 2000 before 

increasing by slightly fewer to 622 in 2000. In Site II the number decreased very 

slightly from 697 in 1986 to 667 in 2000 and then decreased much more to 385 in 2007. 

In Site III the changes in number were smaller than the other two sites and with a 

different trend: an increase from 351 in 1986 to 410 and then a decrease to 375 in 2007. 
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Figure 3.26 The total forest patch core area, mean size of core area per patch and    number of 

patches containing core area for sites I, II and III in 1986, 2000  and 2007. 

 

3.4. Discussion 

 

In this study, analyses of the changes over time in four land-use/land-cover classes were 

first performed at a landscape scale and then more detailed landscape structural analyses 

were conducted covering the metrics of most relevance to habitat fragmentation: patch 
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size, shape and edge density, with a more detailed assessed of the changes in core area 

of forest habitats. 

 

3.4.1 Land-use/land-cover proportion   

 

The high percentage of highland landscapes were converted into farm and settlement 

(Site II = 42.2% and Site III = 45.9%) and grazing land (Site II = 42.7% and Site III = 

32.4%) at the end of the study period. While the dominant land-cover class in Site I was 

the forest (53.1%). The forest cover class was the third in proportion in high altitude 

(Site II = 14.8% and Site III = 20.0%). The increasing of human population and 

expansion of land under crop agriculture likely to be the most important factor 

influencing forest cover in high altitude. Mid-altitude areas have been used for coffee 

production which can retain most tree species as coffee shade (Aerts et al., 2011). The 

wooded grassland was the least proportion of cover classes in all study landscapes 

(Table 3.3, 3.5 and 3.7).  It was increasing in Site I due to conversion of forests into 

farmland, then short grass fallow land under sparsely distributed trees in old agricultural 

field. In contrast to mid-altitude it was decreased in Site II and III at the end of the 

period due to conversion to agricultural land.       

 

3.4.2 Influence of land-use/land-cover change on the forest spatial pattern 

 

Forest area as a proportion of total land area gives a good overview of the contrast 

between forest cover and other land-uses. However, the spatial patterns and distribution 

of forests varied with the gradient of land-use pressure. In Site I, which was dominated 

by the relatively low impact land-uses of traditional coffee management system, these 

highly modified natural forests remained the dominant land cover (53%), still 

occupying 25300.4 ha, with a mean patch size (MPS) of 37.9 ha in 2007. Forest cover 

had only declined slightly from 56% in 1986. On the assumption that this area had once 

been under continuous forest cover, the large number of separate forest patches in 1986 

(3297) indicates that there had previously been high levels of forest fragmentation. 

Some of this may have been very recent, triggered by the creation of a new resettlement 
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area in 1984 near and inside the existing forests; this programme was designed to 

exploit this natural resource that at that time was seen as ‘under utilized’(Mengistu, 

2005). Since 1986, the mean patch size of forest increased greatly (from 8.2 ha) to 37.9 

ha in 2007), which could be taken as indicating a reversal of the previous fragmentation. 

However, much of this change is attribuTable to the reduction in number of forest 

patches by half between 1986 and 2000. This is attribuTable to the complete loss of 

many small patches as well as due to the merging of some nearby forest patches isolated 

in 1986 (Figure 3.4), e.g. due to secondary succession after abandonment of agriculture 

(either food crops or open-grown coffee). Widespread forest restoration by tree planting 

was not observed or reported by the local informants.  The fall of world coffee market 

prices between 1986 and 2000 had a major impact in this area (Dr Tadesse 

Woldemariam, pers. comm.). It may have both led to abandonment of some coffee 

farming and, according to local elders, reduced the rate at which coffee farmers cleared 

natural forests. The importance of the combination of these processes was indicated by 

the increase in total class area (CA) of forest from 26,980 ha in 1986 to 28,006 ha in 

2000. However, during the period between 2000 and 2007 there was a rise in world 

coffee prices. Consequently there was a resumption of net deforestation in Site I: forest 

area reduced from 28,006 ha in 2000 to 25,300 ha in 2007 (-6.2%). 

 

The landscape of Site II in 1986 was characterized by a moderate cover of forest 

(14,186 ha, 29.8%), however this reduced to 12664 ha (26.6% of the area) by 2000. The 

period 1986-2000 was also characterized by a high rate of forest fragmentation, as 

reflected by an increase in the number of patches and decrease in mean patch size. The 

anthropogenic pressure on forest habitats in Site II continued after 2000 and led by 2007 

to large reduction in total forest area (by 44%) and removal of 72% of the number of 

forest patches existing in 2000, as indicated by the LULCC map (Fig 3.11 and  3.28). 

Visual inspection of the 1986, 2000 and 2007 maps (figs. 3.9, 3.10 and 3.11) shows the 

increasing extent to which, with the exception of four larger blocks, remaining forest 

comprised patches increasingly isolated from each other within a matrix of human-

dominated farm and settlement, and increasingly grazing land. The landscapes of Site 

III showed fluctuation in its forest cover, number of patches and mean patch size 

between 1986 and 2007. Over the whole period overall forest cover only declined 

slightly from 22.1% to 20.0%, but it did show a considerable loss of smaller patches 
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with the large decrease in patch number (from 1639 in 1986 to 9530 in 2007) being 

paralleled by a doubling of mean patch size. It was noTable that the overall net decrease 

in forest cover over the whole period was much greater in Site II than in sites I or III.  

This is attribuTable to deforestation at the periphery of remnant forests and loss of large 

number of patches  

 

3.4.3 Changes in patch size and spatial pattern from 1986 to 2007 

 

Overall there was a net decrease in forest cover area in each study area between 1986 

and 2007, although variation in the timing and spatial pattern of the decrease was a 

more striking result than the magnitude of net reduction in area. For example, forest 

cover for Site I and Site III increased between 1986 and 2000, and then decreased from 

2000 to 2007, whereas forest cover in Site II decreased in both periods. 

 

Land-use change obviously affects spatial pattern and ecological process. The five 

spatial processes in forest alteration identified by Forman (1995) include fragmentation 

(breaking up of habitat into patches of different size), attrition (disappearance of 

patches), perforation (the process of making holes in habitats), dissection (subdivision 

of habitat using equal width lines) and shrinkage (decreasing of size of habitat patches). 

The comparison of spatial processes between different periods within the same site and 

between different sites can be achieved in the present study by inspecting the vector 

forest maps for the years 1986, 2000 and 2007 as shown in Figure 3.4 to 3.6, 3.9 to 3.11 

and 3.14 to 3.16 in combination with the calculated landscape-patch metrics. These 

indicate that the spatial pattern of forest cover in each study area has changed since 

1986. Breaking apart of forest area, loss of forests area, decrease in patch size and 

increase of forest edge are all clearly shown providing evidence of the occurrence of all 

the main spatial pattern processes of fragmentation, attrition, shrinkage, perforation and 

dissection. This analysis is further assisted by Figure 3.27 which shows in greater detail 

changes in land use/land cover class distribution in one exemplar area selected from 

each site. This illustrates well the processes of forest expansion and then contraction 

(through attrition and perforation) in Site I, and more continuous attrition and 
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perforation in sites II and III leading to the measured changes in patch number, mean 

size and shape. 

 

A high number of separate patches of a habitat indicates high fragmentation (Cambin 

and Lachavanne, 2002). Therefore, the peak of forest fragmentation for the Site I 

landscape was in 1986 and for the Site II and III landscapes was in 2000. For Site I this 

interpretation was supported by its low mean patch size and high edge density in 1986. 

For all three sites the higher rate of overall deforestation occurred during 2000-2007. 

For Site I the pattern of forest cover change during both 1986-2000 and 2000-2007 was 

characterized by loss of patch number and increase in mean patch size. Whereas this 

was associated with a slight net increase in total forest area in the first period, there was 

a net decrease in the second. Site II experienced net deforestation in both periods, but 

this occurred in two distinct phases. It went through a period of increased patch number 

and reduced mean size, indicating the fragmentation of large existing forests (Griffiths 

and Lee, 2000), followed by an even greater reverse of a reduction of patch number by 

two thirds with an associated more modest increase in mean size, as the previously 

fragmented smaller patches were completely lost through conversion to other land 

use/cover. Forest cover change in Site III also went through two phases, but the pattern 

was more similar to Site I. Between 1986 and 2000 the net increase in forest area was 

associated with  an increase in number of patches but a smaller decrease in mean patch 

size. Then the high rate of net deforestation during 2000-2007 was, like Site III, 

associated with a massive reduction in patch number (by two thirds), but also a large 

increase in mean patch size. In all three sites, the whole 1986-2007 period was 

characterized by fragmentation of the largest forest blocks with area reduction both 

through attrition at the edge and perforation, as can be seen in figs 3.4-3.16 and 3.27. In 

addition, in all three sites some many forest patches were totally converted to grazing 

land or farm and settlement land.  

 

The increase in length of edge between forest and other land-cover classes indicates a 

high rate of human land-use activity (Turner et al., 2003; Bennett, 2003). This 

interpretation was supported by the results of the present study in the way that changes 

of edge density coincided with other indicators of land-use induced deforestation and 

forest fragmentation. In Site I, it was highest in 1986 (66.5 m ha
-1

) and decreased (to 
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41.5 m ha
-1

) before increasing to 52.5 m ha
-1

 in 2007. Site III showed the same pattern, 

a decrease from 33.1 m ha
-1

 to 24.8 m ha
-1

 followed by an increase to 41.7 m ha
-1

. In 

contrast, in Site II edge density increased in both periods from 22.9 m ha in 1986 to 

54.5 m ha
-1

 in 2007.The trends of shape complexity weighted by the area of patches for 

forest (AWMSI) gave a different perspective on patterns of deforestation/fragmentation 

from the other indices. In Site I the expectation that AWMSI would positively correlate 

with edge density in showing an opposite trend to forest cover was met. However, in 

both sites II and III the trends in AWMSI were positively correlated with forest cover 

and negatively with edge density. This difference between the higher altitude and lower 

altitude sites can be attributed to large impact of forest in higher altitude   

 

3.4.4 Spatial characteristics of forest patch core area (CoA) 

 

The core forest areas are the interior of forest patches, which are not influenced by the 

edge effect caused by interaction with the surrounding matrix (Turner et al, 2001). It is 

the central portion of a patch that remains after removing the specified edge buffer 

(Leitao et al., 2006). The edge buffer is the transition zone between non-forest and 

interior forest around the patch perimeter. To delineate the edge buffer for species 

conservation studies, the distance is usually defined by the user to be relevant to a 

specific organism under investigation or objective of the research. Since the present 

study was addressing the quality of forest habitat as a whole, a more general edge width 

had to be selected, 50 m which is widely considered as an adequate distance to detect 

edge influence on plant species. A high proportion of forest plant species are considered 

to be sensitive to microclimate, therefore loss of core forest loss is expected to have a 

major impact on conservation of these species decreasing their within-patch population 

size, and the suitability of habitat patches to support their meta-populations, thus 

increasing extinction risk (Farina, 2007). Change in core forest area is expected to be 

broadly correlated with mean patch size, however it will also be influenced by changes 

in patch shape and edge density at a landscape level. 

 

The spatial pattern of change in core area is illustrated in Figure 3.28. Those core areas 

present in 1986 that had been lost due to conversion to other land-cover types are shown 



89 

 

in red. The scale of the Figure is such that loss of core area by it entering the buffer zone 

due to incremental shrinkage of the area of forest patches cannot be seen. The loss of 

core area during 1986-2007 was greatest in Site II, followed by Site III and least in Site 

I. The 1986 landscape in Site I had a cumulative core area of 17,926 ha out of the total 

26,980 ha forest area (66.4%). Paralleling the trends in total forest area, the core area 

increased by 28.4% between 1986 and 2000, and then reduced by 5.6% between 2000 

and 2007. These trends were amplified in the mean size of patches containing any core 

area which increased from 24.5 ha to 81.0 ha before reducing to 24.8 ha. In Site I 66.4% 

of the total forest patches were large enough to contain core forest area in 1986, but by 

2007 this had reduced to 60.8% reflecting the high rate of loss of small patches. Taking 

these results together, in Site I there were large fluctuations in the habitat area available 

for forest-dependent species, which occurred so rapidly that there was probably a lag in 

the capacity of their populations to track these changes.  

 

The fluctuation in core forest area was less in Site III. From 6002.5 ha in 1986 (57% of 

the total forest area) this increased to 7720.1 ha (a similar 58.1%) by 2000, before 

falling to 5524.4 ha (57.9%) by 2007. The mean size and the number of patches 

containing core forest showed very comparable changes. Matching the overall trends in 

deforestation, the changes in core forest habitat were greater in Site II. The total core 

area fell from 7256.8 ha in 1986 (51.1% of the total forest area) to 5890.7 ha (46.5%) in 

2000 and at a greater rate to 3647.1 ha (51.7%) in 2007. The number of patches 

containing core forest showed the same trend with a reduction in percentage of total 

patches containing core forest area from 39.9% in 1986 to just 22.0% in 2007. 

However, their mean size increased slightly during 2000-2007 after having fallen during 

1986-2000. The latter result probably reflects a high rate of loss of area of patches of the 

scale of 1-5 ha (pushing them below the threshold size to contain core forest habitat). 

Figure 3.28 shows the pattern of the high rate of loss of core forest area present in 1986 

and 2000 through conversion to other land-uses at the edge of larger forest patches and 

complete loss of core forest area in small or even medium-sized patches. Overall the 

loss of core forest area from Site II was acute during the study period, posing a severe 

threat to the conservation of forest-dependent biodiversity. 
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3.4.4 Implication for habitat conservation  

 

In the present study the rate of LULCC has been high over the 21 year study period in 

all three sites. The pattern varied amongst the three sites. The lower altitude site where 

land-use had been dominated by coffee farming under forest, after an initial expansion 

of the dominant forest cover suffered high rates of fragmentation by other land uses. 

One of the two higher altitude sites suffered high rates of deforestation and 

fragmentation during the study period which markedly accelerated during the final 

seven years. This high rate of deforestation (> 1% per year) and fragmentation during 

the 2000-2007 periods was a feature of all three sites and should be a matter of high 

concern for biodiversity conservation. Habitat fragmentation always goes together with 

habitat loss and decrease in metapopulations (Lindenmayer and Fischer, 2006).  In all 

three sites, the landscape has lost many forest patches and there has been a noTable 

increase in mean patch size due to a high rate of loss of small patches, indicating a shift 

in the underlying landscape matrix with lower connectivity of more fragmented forest 

due to expansion of the area of other land uses, especially grazing land. Despite the 

increase in mean patch size over the whole 1986-2007 period in all three sites, such was 

the high overall rate of deforestation that they did have a reduction in the area of core 

(interior) forest habitat. This rate of loss was particularly marked for the 2000-2007 

period indicating the high current level of threat to forest-habitat dependent species 

across this whole area. 

 

At the same time, these fragmented forest patches are largely natural ecosystems that 

provide local communities with timber, food, fuel, wild fruit, spices and medicinal 

plants. Their role as the location of forest coffee production is particularly important 

economically. More fundamentally, these forests have a potentially important role in 

delivering the ecosystem services of regulating climate, purification of air and water, 

and the supporting service of maintaining soil fertility by controlling of erosion, and 

pollination of crops (MEA, 2005).  
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The loss of these forests can be reversed in two main ways: conservation of existing 

isolated patches of habitat and restoration of degraded habitat. On the assumption that 

core forest area that has most recently been lost should be the highest priority for the 

restoration of forest habitat and its biodiversity because these areas will have the highest 

potential for restoration due to retention of some root stock and presence of some 

similar tree species and ultimately contribute to increasing core forest area. Figure 3.28 

provides a valuable guide to the priority areas in each of the three study sites (those lost 

since 2000 coloured light green, followed by those lost since 1987 coloured red).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.27 Selected sections of land-cover maps indicating the spatial process in natural forest 

loss in sites I, II and III from 1986 to 2007. 
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Figure 3.28 Diagrammatic illustration of changing core area at all three study sites in each year. 

Red shows core area present in 1986 that was lost in 2000 and in 2007. Light green shows core 

area present in 2000 that was lost in 2007. Dark green shows core area present in 2007.  
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CHAPTER 4 

THE EFFECT OF HUMAN-INDUCED FRAGMENTATION ON FOREST 

FLORISTIC COMPOSITION, SPECIES RICHNESS AND STRUCTURE IN 

ILLUBABOR ZONE, ETHIOPIA 

 

Abstract 

Land-use expansion for crops, pasture and rural settlement in south-west Ethiopia has 

caused forest habitat fragmentation which is likely to lead to biodiversity decline due to 

habitat reduction and loss. Human disturbance may also directly alter woody species 

composition within remaining forest patches. I evaluated the importance of forest 

patches for the conservation of afromontane rainforest regional biodiversity in Illubabor 

Zone, Oromia Regional State, south-west Ethiopia, and the impact of fragmentation and 

disturbance on this biodiversity. I analysed woody species richness, composition and 

structure in 240 plots within 30 forest patches in three landscapes (sites I, Site II and III) 

with different land use intensities. Site I contained large patches of unfragmented forest 

(> 2000 ha) whereas sites II and III contained smaller forest patches (1 - 2000 ha).  

 

All woody species (254 species) sampled were native to the area. Despite their recent 

reduction in area, the forest patches contained a diverse community of native plants, 

including: IUCN red-listed plant, nationally endemic species, afromontane endemics, 

national priority species for conservation and economically important species. 

 

Species richness was significantly different amongst the three sites, with a notably 

steeper species/individual accumulation curve for Site I. However, tree species density 

and basal area in Site I was not different from sites II and III. Species composition and 

distribution patterns are influenced by disturbance and topography more than by patch 

area and shape. In conclusion, this study showed that a high portion of the remaining 

forest plant diversity in this landscape is located in fragmented patches which are 

important for regional biodiversity conservation.  
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4.1 Introduction 

 

Land-use expansion due to human population growth has greatly transformed the land-

cover of natural habitats, which has resulted in measurable changes to their composition 

and spatial pattern (Turner et al., 1998; Farina, 2007). Demand for more agricultural 

land, pasture and urban expansion has caused habitat fragmentation, which ultimately 

leads to a decline in biodiversity (CBD, 2001; MEA, 2005). Habitat fragmentation is a 

dynamic process in which the fragmented habitats are gradually reduced to smaller 

patches, decreasing connectivity between habitats (Turner et al., 2001, Echeverria et al., 

2007). Reduction of forest patch size, and the accompanying spatial change caused by 

this fragmentation, decreases species richness (Laurance, 1998; Gergel and Turner, 

2002), the density of species populations within these patches, and their meta-

populations across the landscape (Farina, 2007). Following fragmentation, the patches 

could also be exposed to different types of human-induced disturbance, such as grazing, 

timber harvesting, forest clearance and firewood collection (Hamer et al., 1997). Such 

disturbance within a habitat could also have a profound effect on species richness, 

abundance and floristic composition, compounding the influence of reduction in patch 

size, and change in shape and edge density. However, little is known of the impact of 

these factors in south-west Ethiopia. 

 

The south-west of Ethiopia was largely (40%) covered by afromontane rainforests in the 

1970s (Reusing, 1998) of which less than 18% cover remained in 2000 (Reusing, 2000; 

Tadesse et al, 2002). This extensive forest depletion was caused by land-use change as a 

result of population growth from planned government resettlement programmes, and the 

fast conversion of forests to agricultural uses and human settlement (Scmmitt, 2006). 

Most large forests now exist along rivers and inaccessible rocky areas, while large 

numbers of patches of different size and shape exist as remnants in landscapes of 

different land-use intensities and patterns. Local communities have close relationships 

with these forest patches for their food and livelihood security. They contain important 

plant species such as coffee (Coffea arabica), cardamom (Aframomum corrorima) and 

wild pepper (Piper capense) (Teketay, 1999; Tadesse, 2003, Fayera and Denich, 2006). 

Furthermore, they provide people with wild honey, mushrooms and medicinal plants on 
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which they depend to supplement their livelihoods (Desalegn and Yilma, 2008). 

However, these habitat patches have long been subjected to deforestation and 

fragmentation from land-use change, and degradation from grazing and over-

exploitation of forest products (Reusing, 2000), and their maintenance is likely to be 

important for the ongoing provision of ecosystem goods and services.  

 

Land-use practices around these fragmented forests, and over-harvesting of products 

within the forests, may alter the composition and distribution patterns of species. A 

detailed knowledge of these effects is important, in order to assess their conservation 

status and plan their management. There have been some descriptive studies undertaken 

of these forests, to gain information about species composition and structure (for 

example, Kumelachew and Tamrat; 2002; Tadesse, 2003, Fayera and Denich, 2006, 

Schmitt, 2006, Tadesse et al., 2008, Schmitt et al., 2010, Aerts et al., 2011). However, 

most of these studies focused on single large and unfragmented forest reserves. 

Currently, most of the fragmented forests situated in matrices of different land-uses in 

south-west Ethiopia have not been studied, and thus their conservation importance is 

little known. New research is needed, which uses methods of landscape ecology, to 

determine the relative importance of the loss of forest area, forest fragmentation and 

degradation of forest habitats within the landscape to species composition and 

conservation value.  

 

The objectives of this study were to determine the impact of fragmentation of 

afromontane rainforests on plant species composition and to evaluate the importance of 

small forest patches embedded in agricultural land for the conservation of regional plant 

diversity. To accomplish these objectives I analysed species richness, species 

composition, diversity and forest structure in forest patches located in three landscapes 

with different levels of land-use intensity in Illuababor Zone, south-west Ethiopia. 

Specifically, I examined the contribution of small patches to regional plant species 

diversity; the relationship of species richness, species composition and forest structure 

to patch size, shape and edge density; differences in species richness and diversity 
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among landscapes; and patterns of species composition in forest patches within and 

among landscapes.   

 

4.2 Materials and Methods 

4.2.1 Selection of sampled forests and their spatial characteristics 

 

An exploratory survey identified the location of potentially suiTable forest patches in 

the three sites. From these, 30 forest patches were selected based on the following 

criteria: locally representative of natural forest in their full range of characteristics 

(naturalness, ≥ 50% canopy cover); sufficient accessibility for field work. Amongst the 

three landscapes defined in Chapter 3, this resulted in a sample of 8 patches in Site I, 12 

patches in Site II and 10 patches in Site III. 

 

The spatial characteristics of each sampled patch of size < 2000 hectare were derived 

from the 2007 land use map produced for land use study in chapter 3 (land-use and 

land-cover map 2007). This method was adopted from Altamirano et al. (2010). For 

each patch, the following spatial data were calculated: patch area, shape, fractal 

dimension (Mandelbrodt, 1982) and edge density using Patch Analyst (Arc GIS 

extension) (Table 4.1). The area of each forest patch was quantified from the polygon 

produced. The shape index (SI) of each patch was calculated using,
A

Pi
Si

*2 
 , 

(Arroyo-Rodriguez and Mandujano, 2006) where P is the perimeter of the patch (m) and 

A is patch area (m
2
). Its value for a circular shaped patch is 1 and values greater than 1 

represent irregularity potentially indicating that the patch is more dominated by a range 

of edge-influenced microenvironments (Honnay et al., 1998). The edge density of each 

patch was obtained by dividing patch total edge length to area, (edge: area ratio). The 

slope and aspect of the patches were derived from a Digital Elevation Model (DEM) of 

90 m resolution obtained from United State Geological Survey (USGS). The elevation 

of each patch was measured during field survey using a GPS (Garmin 60). All of the 

eight sampled forests in Site I were located in different parts of the same large 
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continuous forests > 2000 ha in area, and none of these landscape ecology metrics were 

calculated for these samples (Table 4.1). The raw rainfall data over 23 years for the 24 

meteorological stations within the study area were obtained from the Ethiopian 

Metrological Agency and, using the methods described in detail in Chapter 2, used to 

estimate mean annual rainfall for each sample/patch.  

Table 4.1 The spatial and rainfall characteristics of forest patches in the Illubabor Administrative Zone of  

Ethiopia: shape index, SI; fractal density, FD; edge density, ED; patch area, PA; altitude (above sea 

level); slope; aspect; mean annual rainfall (1986-2009). 

Local name of 

patches 

Site SI FD ED PA (ha) Altitude 

(m) 

Slope 

(%) 

Aspect Mean annual 

rainfall (mm) 

Issya III 4.9 1.4 162.6 109 2197 4.1 N 1928 

Qotora1 III 8.4 1.4 62.9 2000 2179 12.9 N 1928 

Qotora2 III 2.7 1.3 76.3 164 2312 13.3 N 1928 

Koda III 7.9 1.4 63.3 1958 2296 16.4 E 1780 

Simber III 4.9 1.4 111.8 249 2268 9.8 E 1780 

Dike III 5.6 1.4 78.0 656 2422 9.8 N 1811 

Jireen III 2.7 1.3 132.0 52 2356 9.4 E 1811 

Busajireen III 3.6 1.4 105.0 151 2156 4.9 NE 1811 

Buyina III 2.8 1.3 222.8 3 2237 7.3 W 1548 

Jamia III 2.7 1.3 58 2000 2197 3.6 S 1903 

Tuluboka II 4.7 1.3 96.2 304 2188 3.9 NE 1662 

Sibu1 II 2.3 1.3 137.1 37 1942 2.9 N 1576 

Sibu2 II 2.5 1.3 125.7 52 2198 3.3 N 1576 

Markafa II 3.2 3.2 152.4 55 1918 2.2 SW 1576 

Yaroo II 2.4 1.3 128.9 43 2141 3.3 N 1828 

Lagachancho II 2.1 1.5 110.0 85 1951 5.5 N 1576 

Gobe II 7.8 1.4 111.6 620 2005 5.4 E 1576 

Malate II 3.7 1.4 99.8 174 2044 6.4 W 1828 

Tulumaka II 2.9 1.3 81.2 166 2319 5.5 N 1828 

Jorgo II 3.1 1.3 30.7 1301 2192 5.7 N 1662 

Qolowarabesa II 1.2 1.3 526.0 0.6 1903 3.2 W 1576 

Bongi II 2.8 1.3 212.0 10 1878 5.7 W 1576 

Gorezuria I - - - >2000 1695 5.5 SW 1797 

Metuzuria I - - - >2000 1594 3.3 N 1548 

Burusa I - - - >2000 1629 3.3 N 1548 

Baljo I - - - >2000 1625 3.2 NE 1121 

Uka I - - - >2000 1635 3.7 SW 1121 

Masha I - - - >2000 1948 2.2 SW 2048 

Leka I - - - >2000 1853 3.5 SE 1898. 

Gaba I - - - >2000 1518 3.8 SW 1356 
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4.2.2 Vegetation data collection  

 

A quantitative and qualitative field survey of the 30 forest patches was undertaken 

between January and November 2010. In order to obtain data on the plant species 

richness, species diversity, floristic composition and structure of each, a plot-based 

inventory was carried out. A single main plot of 60 x 100 m was established in each 

patch. This main plot was sub-divided into 15 sub-plots using a 20 x 20 m grid. Eight of 

these sub-plots, based on a systematic sampling regime, were used for vegetation 

inventory (see plot layout in Figure 2.10). All woody plants that were live, standing 

dead or fallen with ≥ 5 cm diameter at breast height (DBH) were recorded (Table 4.2). 

Their DBH was measured using a diameter tape. Trees with large buttresses were 

measured above these protrusions. All stems ≥ 5 cm in DBH of plants with multiple 

stems were measured separately. To get an equivalent total diameter for the whole plant 

of these multiple stems, the basal area of each stem was calculated; these were summed 

and then divided by π, square rooted and multiplied by two. The height of the every 

recorded plant was estimated using a clinometer. When difficult to identify the top part 

of an individual tree in a dense forest I took an estimated value for the height. In 

addition, all plants of woody species that were < 5 cm DBH but > 1m height (including 

understory shrubs and woody and semi-woody vines) were identified. Free standing 

plants < 5 cm DBH were counted (to give a density for each species) whereas for vine 

species their presence/absence was recorded. In each sub-plot, five sub-sub-plots each 

of 5 x 5 m were established, one at each corner (four corners) and one at the centre to 

record saplings and seedlings of woody species. In these sub-sub-plots all individuals of 

woody species < 5 cm DBH and > 1 m in height were identified and recorded as 

saplings. In addition, individuals of woody species of 0-1 m in height were identified, 

and recorded as seedlings. 

 

 

Disturbance of the forest was evaluated by a number of criteria using a combination of 

quantitative and qualitative observations. To record tree cutting, all dead and live 

stumps occurring in the sampled sub-plots were recorded, (where possible) identified to 

species and sprouts were counted and recorded. Disturbance from grazing, non-timber 

forest product gathering and forest clearance for cultivation, was scored from a 
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minimum of 0 (no disturbance) to a maximum of 4 (highly disturbed) in each sample 

sub-plot. 

 

 

Plant species identification in the field was carried out with the help of a field key 

prepared for the Flora of Ethiopia (Edwards et al., 1995, 1997, 2000; Hedberg et al., 

1989, 2003, 2006; Mesfin, 2004). Most of the common trees were easy to recognize and 

identify in the field. Voucher specimens of sterile plants and any others that were 

difficult to identify in the field were collected with standard information for 

identification using the reference specimens at the National Herbarium, Addis Ababa 

University. Classification of species by growth form was carried out in the field in all 

patches according to the criteria used in the Flora of Ethiopia 

Table 4.2: Summary of site description information recorded from field data for each of 30 sampled forest 

patches in the Illubabor Administrative Zone of south-west Ethiopia.  

Attribute  Description of variable generated for analyses 

  

Disturbance  Visual assessment of grazing, logging, fuelwood collection, 

fire, and forest clearings rated from 0 (no disturbance) to 4 

(highly disturbed) depending upon the perceived intensity of 

the disturbance 

 

Altitude 

 

Taken during field survey using GPS (Garmin 60) 

Species richness and diversity of 

woody plants (trees, shrubs and vines) 

 

Number of species, alpha diversity 

Individual trees density 

 

For all trees ≥ 5 cm DBH were counted 

Species basal area 

 

Calculated only for individuals ≥5 cm DBH 

Species sapling density 

 

 

Species seedling density 

Individuals < 5 cm DBH but > 1m height including individuals 

classified as shrubs or vines 

 

Individuals ≤ 1m height excluding individuals classified as 

shrubs or vines 

 

4.3 Data Analyses 

4.3.1 Species richness, diversity and structural composition 

 

For these analyses data from all the sub-plots recorded in each patch were pooled to 

give a single total value for each patch. The mean species richness per patch was 
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compared between the three sites using one-way ANOVA. A species-area curve (the 

accumulation of species as a function of the sample plot/area) was generated for all 30 

patches using EstimateS (Colwell, 2010). In addition separate species-area curves were 

generated for each of the three sites for comparison. The number of observed species 

per patch and the non-parametric estimators Chao 1 and Jacknife-2 were used to 

estimate species richness (Magurran, 2004). Jacknife-2 was chosen because it calculates 

species richness and gives an estimate of absolute number of species in a community 

taking into account the occurrence of rare species (Magurran, 2004). Fisher’s alpha 

diversity (S = a*ln (1+n/a), where S is the number of taxa, n is the number of 

individuals and a is Fisher's alpha) was calculated for each patch. Fisher’s alpha is a 

good estimator of -diversity because it is independent of the number of individual 

plants in a sample (Rosenzweig, 1995, Cayuela et al., 2006a) and assumes an 

underlying parametric model for the distribution of species’ abundances. It is also useful 

as a measure of richness that is insensitive to sample size and its' adoption as the 

standard diversity index has been recommended by various authors (Rosenzweig, 

1995). 

 

The structure of a given forest is a product of forest dynamics and biophysical processes 

and a template for biodiversity and ecosystem function (Spies, 1998). Consequently, 

understanding forest structure can help to understand the history, function and future of 

a forest ecosystem (Spies, 1998). The structural composition of trees (≥ 5cm DBH) 

recorded in each patch was described by their density (individual density/ha and basal 

area (m
2
/ha)). The difference in tree density and basal area of trees between the three 

sites was tested using one-way ANOVA. The relationship of tree individual density and 

basal area with environmental (rainfall, altitude, aspect and slope), fragmentation (patch 

size, shape and edge density) and disturbance (cumulative score of disturbance from 

forest clearance, grazing and firewood collection) variables were tested using Pearson’s 

correlation coefficient. All statistical analyses and regression analyses were performed 

using the QED Statistics 1.0 package (obtained from PISCES Conservation LTD, UK). 

QED Statistics is a Windows program that offers all the standard statistical methods 

used in science (Seaby and Henderson, 2007). 
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The importance value index of each tree species was calculated based on the sum of tree 

density (individuals/area), frequency (number of sub-plots in which each species was 

recorded/total number of sub-plots sampled) and dominance (basal area/total basal area 

of all species). This index provides an overall indicator of the abundance of plant 

species (Arro-Rodriguez and Mandujano, 2006). To investigate the past dynamics and 

regeneration status I carried out analyses of stand structure by classifying tree stems into 

different diameter size classes from (a) seedling and sapling to minimum diameter of 

105 cm DBH, (b) from the lowest measured diameter (5 cm DBH) to a minimum 

diameter of the final size class of 60cm DBH and (c) from the lowest measured 

diameter (5 cm DBH) to minimum diameter of the final size class of 105 cm DBH to 

see the full range of size class distribution. The range between these minimum and 

maximum value for (a) and (c) was divided into 13 equal size classes with a 10 cm 

DBH interval, with a 13
th

 class of trees > 105 cm DBH and for (b) the minimum and 

maximum value was divided into 11 equal size classes with a 5 cm DBH interval, with 

eleventh class of trees > 60 cm DBH.This diversity of approaches was adopted to 

minimise the risk of visual misinterpretation of distributions due to arbitrary decisions 

about the selection of size class intervals. 

 

4.3.2 Community composition and fragmentation, disturbance and environmental 

gradient 

 

Multivariate data analyses were employed to examine the similarities among and within 

the three sites (I, II and III). The process involved the production of a similarity matrix 

(Bray-Curtis similarity) and subsequent ANOSIM using the Community Analysis 

Software Package (Seaby and Henderson, 2007). Analysis of similarities (ANOSIM) 

has been widely used for testing spatial differences in community composition (Clarke, 

1993; Chapman and Underwood, 1999; Clarke and Warwick, 2001). It uses the test 

statistic (R) based on the differences between the average of all the rank dissimilarities 

between species and between sites and the average of all the rank dissimilarities 

between species within the sites. ANOSIM generates a value of R which is scaled to lie 

between -1 and +1, a value of zero indicates no difference among a set of samples while 

R values > 0 indicate that species are more dissimilar between sites than within sites 
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(Clarke and Warwick, 2001). Negative R values indicate that dissimilarities within sites 

are greater than dissimilarities between the sites (Clarke and Warwick, 1994). In this 

study, R values less than 0.5 are interpreted to indicate little difference and values 

greater than 0.5 to indicate a substantial difference. To test for significance, the ranked 

similarity between sites was compared with the similarity that would be generated by 

random chance. The samples were randomly assigned to sites 1000 times and R was 

calculated for each permutation. A difference between sites was considered to be 

significant if the P-value was below 1% (0.01). Then, similarity percentage (SIMPER) 

analysis was used to determine which species accounted for the greatest percentage of 

similarity or dissimilarity between sites and within sites (Clarke and Warwick, 1994). 

SIMPER computes the percentage contribution of each species to the similarity or 

dissimilarity between all pairs of patches between sites and the percentage contribution 

of each species to the similarities between all pairs of patches within the site. 

 

The relationships between the species composition of the 30 patches was then examined 

using Non-metric Multi-Dimentional Scaling (NMDS) ordination. Non-Metric Multi 

Dimensional Scaling expresses the similarity between sites in a reduced number of 

dimension by reducing a complex interrelationship to a simple Figure and provides a 

visual representation of how well a model accounts for variation in species composition 

between sites (Seaby and Henderson, 2007; Keleher and Rader, 2008). It also calculates 

the stress (residual modelling error) as a rank function instead of absolute dissimilarity 

values (Jongman et al., 1995). The analysis was run using the Bray-Curtis similarity 

matrix based on the presence/absence of species. The Bray-Curtis index gives less 

weight to outliers and is the recommended distance measure for NMDS (Southwood 

and Henderson, 2000). In NMDS two-dimensional ordination spaces, sample plots are 

represented by a point and the distance between points show the degree of dissimilarity 

or similarity between the samples (Hahs and Mcdonnell, 2007). 

 

A second ordination technique, Canonical Correspondence Analysis (CCA), was used 

to relate the variation in species composition to environmental, fragmentation and 

disturbance variables to determine whether they correlated with community 
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composition. This method examines direct vegetation change along known 

environmental gradients, e.g. topography, and indirect environmental causes of 

vegetation patterns by arranging species according to their floristic similarity (Ter 

Braak, 1987; McCune and Mefford, 1999, Ter Braak and Smilauer, 2002). It allows 

ordering species and plots along axes according to their relationships (Ter Braak, 1987; 

McCune and Mefford, 1999). The axes represent gradients in environmental, 

fragmentation and disturbance variables, and therefore provide a dimensional view of 

the distribution pattern of sites and species in relation to environmental variables 

(Tadesse, 2003). Relationships of the individual species to the environmental, 

fragmentation and disturbance gradients were then further tested by regression. 

 

4.4 Results 

4.4.1 Overall species composition, floristic pattern and structure of forest 

patches 

 

In the total 9.6 ha (0.32 ha/patch x 30) of sampled forest across the 30 patches in all 

three sites, 254 species of woody plants belonging to 179 genera and 62 families were 

recorded. Of these, 42.6% of species were classified as trees, 33.5% as shrubs, and 

23.6% as vines. All species were angiosperms with the exception of Afrocarpus falcatus 

(Gymnospermae) and a tree fern Cyathea manniana (Pteridophyta). The angiosperms 

were all dicot except Phoenix reclinata (a palm). A list of all the woody plant species 

recorded is given in Appendix 4.6). 

 

Among the recorded species, trees were the most frequent life form (represented by 109 

species), followed by shrubs (85 species) and vines (60 species). The species richness 

per patch ranged from 17 to 50 for trees; 4-33 for shrubs and 5-20 for vines (Figure 4.1). 

The most species-rich genus of trees was Ficus represented by 11 species. The most 

species-rich genus of shrubs was Vernonia also represented by 11 species and of vines 

were Hippocratea, Ipomoea and Clematis with three species each. The species richness 

at family level was high with 16 families represented by five or more species. These 
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were Asteraceae (20 species), Rubiaceae (19), Euphorbiaceae (16), Moraceae (14), 

Fabaceae (13), Celasteraceae (10), Asclepiadaceae (9), Malvaceae (8), Sapindaceae (7), 

Lamiaceae, Cucurbitaceae (6) each, Acanthaceae, Oleaceae, Ulmaceae, Verbenaceae, 

Vitaceae (5) each, jointly accounting for 63.2% of the total species. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 Number of woody species by life form per patch in 30 forest patches in the Illubabor 

Administrative zone of south-west Ethiopia. Results are shown as a box plot: the horizontal line 

through each box depicts the median; the box depicts the central 50
th
 percentile of data, and the 

two whiskers indicate the highest and lowest values. 

 

Ten families with > 100 individual plants of ≥ 5cm DBH had a combined density of 

467.4 individuals ha
-1

. Rubiaceae was the most abundant family with 105.7 individuals 

ha
-1

, (largely comprising understorey trees); its most abundant species were Coffea 

arabica, Oxyanthus speciosus and Psychotria orophila. Second most abundant was 

Myrtaceae with 81.6 individuals ha
-1

 predominantly comprising large canopy trees, such 

as Syzygium guineense with 77.6 individuals ha
-1

. Myrtaceae were especially abundant 

in the high altitude forest patches without extensive coffee management in sites II and 
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III. The third most abundant family was Fabaceae (its most abundant species were 

Milletia ferruginea with 49.2 individuals ha
-1

 and the canopy tree Albizia gummifera 

with 26.3 individuals ha
-1

).  Fabaceae was the dominant family of the species kept as 

shade or for their value in increasing soil fertility (pers. comm. with local farmers) in 

coffee managed forest in most of the Site I. The fourth most abundant family was 

Euphorbiaceae, with its most abundant species being Croton macrostachyus (28.0 

individuals ha
-1

) and Macaranga capensis (26.8 individuals ha
-1

); it was concentrated in 

small patches or in heavily disturbed large patches/continuous forest. Myrsinaceae 

showed a similar distribution amongst patches (its most abundant species was Maesa 

lanceolata with 22.2 individuals ha
-1

). The next three most abundant families were 

mainly represented by understory tree species: Oleaceae (with Chionanthus mildbraedii 

having 32.5 individuals ha
-1

) followed by Rutaceae (with Vepris dainellii having 32.4 

ha
-1

) and Melianthaceae (with Bersama abyssinica having 31.7 individuals ha
-1

). Two 

other abundant canopy tree species in rarer families were Pouteria adolfi-friederic in the 

Sapotaceae with 23.9 individuals ha
-1

 and Prunus africana in the Rosaceae with 10.9 

individuals ha
-1

. 

 

The 32 afromontane endemic and near endemic species and those endemics to Ethiopia 

are distributed amongst 20 different families (Table 4.3). These species are of high local 

conservation concern in the future even though the majority of these species may not be 

considered to be globally threatened.  
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Table 4.3 Distribution types of the recognize conservation-important species collected in sample plots. 

Eth/e, Ethiopian endemics; AfrM/e, Afromontane endemics; AfrM/n-e, afromontane near endemics; Sub-

AfrM/n-e, Afromontane sub-endemics. Sources: Friis, 1992; Tadesse, 2003; Schmitt, 2006. 

 Species Family Distribution  Growth form 

Rhus glutinosa Anacardaceae Eth/e Tree 

Tiliacora troupinii Menispermaceae Eth/e Climber 

Phyllanthus immuensis Euphorbiaceae Eth/e Shrub 

Milletia ferruginea Fabaceae AfrM/e/Eth/e Tree 

Vepris dainelli Rutaceae AfrM/n-e /Eth/e Tree 

Coffea arabica Rubiaceae AfrM/e Tree 

Canthium oligocarpum Rubiaceae AfrM/e Tree 

Olea capensis Oleaceae AfrM/e Tree 

Bersama abyssinica Melianthaceae AfrM/e Tree 

Ritchiea albersii Anacardiaceae AfrM/e Tree 

Olea welwitschii Oleaceae AfrM/e Tree 

Galineria saxifraga Rubiaceae AfrM/e Tree 

Psychotria orophila Rubiaceae AfrM/e Tree 

Ilex mitis Aquifoliaceae AfrM/e Tree 

Macaranga capensis Euphorbiaceae AfrM/e Tree 

Brucea antidysenterica Simarubaceae AfrM/e Shrub 

Cassipourea malosana Rhizophoraceae AfrM/n-e Tree 

Prunus africana Rosaceae AfrM/n-e Tree 

Polyscias fulva Araliaceae AfrM/n-e Tree 

Apodytes dimidata Icacinaceae AfrM/n-e Tree 

Canthium giordanii Rubiaceae AfrM/n-e Tree 

Rhus quartiniana Anacardaceae AfrM/n-e Tree 

Senna petersiana Fabaceae AfrM/n-e Tree 

Pittosporum viridiflorum Pittosporaceae AfrM/n-e Tree 

Oxyanthus speciosus Rubiaceae AfrM/n-e Tree 

Podocarpus facatus  Podocarpaceae AfrM/n-e Tree 

Teclea noblis Rutaceae AfrM/n-e Tree 

Trichilia dregeana Meliaceae Sub-AfrM/n-e Tree 

Eugenia bukobensis Myrtaceae Sub-AfrM/n-e Tree 

Elaeodendron buchananii Celasteraceae Sub-AfrM/n-e Tree 

Albizia grandibracteata Fabaceae Sub-AfrM/n-e Tree 

Dracaena steudneri Dracaenaceae Sub-AfrM/n-e Tree 

 

4.4.2 Species richness and diversity 

 

The mean (±1.96*SE) woody species richness per patch varied significantly amongst 

the three sites (ANOVA, F = 8.14, p < 0.05): at Site I it was 70.8±9.2, at Site II it was 

50.9±6.3 and at Site III it was 54.3±4.9 (Figure 4.2). There was a large range of Fisher’s 

alpha diversity (Whittaker, 1972) values amongst the forest patches. Within, the lower 

altitude/larger forest block, Site I mean diversity was 37.0±1.28 with a large range 

amongst patches of 27.4-68.68. For both the upper altitude sites, II and III, the mean 

was notably lower (21.9±1.82 and 21.7±1.80 respectively) with a much narrower range 

amongst patches, 20 of the patches had diversity values between 18.8 and 24.2 with 
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only one patch in each site having a higher value (41.4 in Site II and 37.7 in Site III). 

The mean alpha diversity of Site I was significantly different from Site II (ANOVA, F = 

12.9, p < 0.05) and III (ANOVA, F = 10.49, p < 0.05). In contrast, alpha diversity was 

not significantly different between sites II and III (ANOVA, F = 0.64, p > 0.05, 

Appendix 4.5). 

 

.  

 

 

 

 

 

 

Figure 4.2 Species richness of wood plants (mean±SE*1.96) of forest patches in three sites in 

the Illubabor Administrative zone of western Ethiopia. 

 

The species accumulation curve for all 240 sub-plots pooled together (one value per 

sub-plot) had completed the steep section of the curve after ca. 80 sub-plots (3.2 ha), 

however even after the accumulation of species in all 30 patches (240 sub-plots, 9.6 ha) 

the curve was still showing a steady increase indicating that the sample was still a long-

way below the total species richness of the whole regional species pool (Figure 4.3a). 

The tight 95% confidence intervals around the mean curve give confidence in its 

representativeness across the three study landscapes. Separate species area curves for 

the sub-plots within each of these three landscapes again show a clear distinction 

between the lower altitude/larger forest block SiteI and the other two sites (Figure 4.3b). 

There was a much more rapid initial accumulation of species in Site I, however after 

about 20 sub-plots (1 ha) the gradient of the curve of Site I had reduced to less than that 

of sites II and III which continued to accumulate species at a slightly higher rate. None 

of the three curves had approached a plateau by the end of the number of sub-plots 

sampled. The curves for sites II and III remained very similar throughout. 
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Figure 4.3 Area- and individual-based woody species accumulation curves for 30 forest patches 

in the Illubabor Administrative Zone of south-west Ethiopia (a) area-based curve for all three 

sites pooled, (b) individual-based curves for each site. The mean curve is shown as a solid line 

with the upper and lower 95% confidence intervals as dotted lines in (a) and solid lines coloured 

blue (b). 
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4.4.3 Stand composition and structure  

 

A total of 7446 tree individuals ≥ 5cm DBH was measured and identified in the 240 

plots across the three sites. When quantified separately, 1600 individuals in Site I, 2660 

individuals in Site II and 2306 individuals in Site III were measured. Trees down to 5.0 

cm DBH were found in all three sites. The maximum DBH in Site I was 365.6 cm (a 

Ficus sur tree in Gore Zuria), in Site II 550.8 cm (a Syzygium guineense tree in 

Tuluboka) and in Site III 434.5 cm (a Prunus africana tree in Jireen). The mean±SE 

density of individual trees ≥ 5cm DBH in Site I was 662±31 ha
-1

 with a range from 525 

ha
-1

 at Baljo to 766 ha
-1

 at Gore-Zuria (Figure 4.4a, Table 4.4). In Site II the mean tree 

density was slightly lower at 607±42 ha
-1

 ranging from 334 ha
-1

 at Qollo to 775 ha
-1

 at 

Bongi (Figure 4.4a). At Site III mean tree density was intermediate at 624±39 ha
-1

 with 

a range from 456 ha
-1

 at Qotora2 to 878 ha
-1

 at Dike (Figure 4.4a, Table 4.4). The 

difference among the three sites was not significant (p > 0.05). Likewise, the mean total 

tree basal areas were similar (and not significantly different) amongst the three sites: in I 

it was 94.2±4.7 m
2 

ha
-1

 (range 74.0-110.9 m
2 

ha
-1

), in II 99.2±3.4 m
2 

ha
-1

 (range 68.0-

113.8 m
2 

ha
-1

), and III 89.8±3.7 m
2 

ha
-1

 (range 68.4-101.9 m
2 

ha
-1

) (Table 4.4, Figure 

4.4b).  
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Figure 4.4 Box plot diagram depicting the distribution of individual tree (a) density and (b) 

basal area per forest patch in each of three sites in the Illubabor Administrative zone of south-

west Ethiopia. The horizontal line through each box depicts the median; the box depicts the 

central 50
th
 percentile of data, and the ends of the whiskers show the full range of values. 

 

The basal area per patch was positively correlated with disturbance (r = 0.405, p < 

0.05). However, the basal area per patch was also heavily influenced by the inclusion 

within the sample plots of very large trees of a limited number of dominant species 

(Table 4.5). There was a noTable distinction between Site I (with three dominant 

species, of which one Celtis africana, was rare in the other two sites) and sites II and III 

(which were more similar). 

Table 4.4 Tree species richness, basal area, stem density and height at sites I, II and III. Species richness 

is shown as the cumulative total for all eight sub-plots sampled in each patch, basal area and density are 

shown as the mean (± SE) for the eight sub-plots, and mean tree height 

Site I 

Patch name Species 

richness 

 Mean basal 

area (m
2
/ha) 

 Mean stem 

density 

(no./ha) 

 Mean 

Height 

(m) 

Gorezuria 23 93.4±2.5 765.6±20.4 12.5 

Burusa 33 74.0±1.4 631.3±18.0 12 

Baljo 34 96.25±1.9 525±7.3 15.5 

Gaba 34 92.8±1.8 740.6±8.0 17.7 

Uka 35 110.9±1.4 575±31.8 13.4 

Masha 44 104.4±0.9 753.1±7.8 16.5 

Metuzuria 48 76.6±1.2 643.7±8.0 8 

Leka 50 105.6±1.2 662.5±5.7 16 
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Site II 

Patch name Species 

richness 

Mean basal 

area (m
2
/ha) 

Mean stem 

density 

(no.//ha) 

Mean height 

(m) 

Qolowarabesa 17 113.8±3.0 334.4±7.9 10.5 

Lagchancho 20 102.5±2.2 768.8±15.8 13.6 

Markafa 26 97.5±3.5 418.8±5.5 16.8 

Yaroo 27 113.1±2.8 593.8±8.1 15.5 

Sibu1 28 102.8±2.1 475±7.6 15.6 

Malate 28 90.3±1.6 650±9.5 15.6 

Bongi 28 68.4±1.9 775±10.9 8.9 

Tulumako 29 97.8±1.9 740.6±1.7 15 

Sibu2 32 105.3±1.7 512.5±3.5 14.5 

Gobe 32 96.9±1.9 759.4±9.4 14.5 

Tuluboka 35 93.8±1.7 628.1±6.4 12.4 

Jorgo 36 107.8±1.4 631.3±4.3 16.8 

 

Site III 

   

 

 

 

 

 

 

Table 4.5 Dominant species in terms of proportion of total basal area in forest patches in each of three 

sites in the Illubabor Administrative zone of south-west Ethiopia. All species contributing ≥ 4% of basal 

area are shown. 

 Proportion of total basal area (%) 

Species  Site I Site II Site III 

Milletia ferruginea  10.9 4.9 4 

Celtis africana  10.2 - - 

Albizia gummifera  8.5 7.8 4.1 

Syzygium guineense  - 19.6 16.8 

Trilipsium madagascariense  - 8.9 - 

Pouteria adolfi-fredericii  - 5.6 13.6 

Macaranga capensis  - 5.3 6 

Croton macrostachyus  - 4.9 5.7 

Prunus africana  - 4.2 10.3 

Afrocarpus falcatus - - 5 

Patch name Species 

richness 

Mean basal area 

(m
2
/ha) 

Mean stem 

density 

(no./ha) 

Mean 

height (m) 

Qotora1 18 100.3±3.4 509.4±7.1 15.6 

Busajreen 20 80.9±2.1 668.8±8.8 14.7 

Jireen 24 84.4±2.1 565.6±8.9 16.6 

Issya 25 92.5±1.9 503.1±8.4 16.5 

Buyina 26 68.4±1.5 631.3±11.4 10 

Simbir 29 75.9±1.2 734.4±12.8 12.6 

Dike 30 101.9±1.6 878.1±7.8 16.7 

Koda 32 97.5±1.4 696.9±6.9 15.5 

Qotora2 34 101.6±1.3 456.3±2.5 13.7 

Jamia 38 94.7±1.2 596.9±5.9 14.5 
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For an overall assessment of species abundance, relative density and relative frequency 

were added to relative dominance (basal area) to give an “importance value” (Table 

4.6). The most abundant tree species in Site I, e.g. Milletia ferruginea, were pioneer 

species indicative of a high level of forest disturbance. In this site (and connected with 

the disturbance) the most abundant species in the lower storey (< 10 m height) was 

Coffea arabica (IVI = 7.8%, Table 4.6), which had the highest relative density and 

relative frequency of all species in this site (Appendix 4.1). Most of the species that are 

common understorey trees in sites II and III, such as Chionanthus mildbraedii, Vepris 

dainellii and Oxyanthus speciosus, were either absent or rare in Site I (Table 4.6). 

 

With regard to frequency, a few species were widely distributed amongst the patches. In 

Site I, two species, Milletia ferruginea (73%) and Coffea arabica (84%), occurred in 

more than half of the plots (one plot per patch) (Appendix 4.1). Sites II and III had more 

high frequency species: five in Site II, Syzygium guineense (85%), Croton 

macrostachyus (68%), Chionanthus mildbraedii (56%), Macaranga capensis (55%) and 

Bersama abyssinica (55%) (Appendix 4.2), and five in Site III, Syzygium guineense 

(92%), Croton macrostachyus (66%), Bersama abyssinica (61%), Allophylus 

abyssinicus (58%) and Pouteria adolfi-frederici (52%) (Appendix 4.3). 
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Table 4.6 Tree species with importance values ≥ 2% in forest patches in each of three sites in the 

Illubabor Administrative zone of south-west Ethiopia. The importance values were calculated for all trees 

≥ 5cm DBH and the tree species are divided into two groups (upper and middle storey) according to the 

height of their tallest individuals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Importance value (IVI)   

Site I Site II Site III 

Upper storey (15-30 m height)  Upper storey (15-45 m height)  Upper storey (15-40 m height)  

Albizia gummifera (IVI 4.7)  Syzygium guineense (IVI 13.4)  Syzygium guineense (IVI 13.2) 

Celtis africana (IVI 3.9) Albizia gummifera ((IVI 4.9) Pouteria adolfi-frederici (IVI7.8) 

 Pouteria adolfi-frederici (IVI 3.8) Prunus africana (IVI5.2)  

 Elaeodendron buchananii (IVI 2.5) Albizia gummifera (IVI3.8) 

  Afrocarpus falcatus (IVI2.7) 

   Middle storey (10-15 m height)  Middle storey (10-15 m height) Middle storey (10-15 m height) 

Milletia ferruginea (IVI 8.5)  Croton macrostachyus (IVI4.9) Croton macrostachyus (IVI5.1)  

Croton macrostachyus (IVI 3.5)  Milletia ferruginea (IVI4.9) Macaranga capensis (IVI5.1) 

Maesa lanceolata (IVI 3.4) Macaranga capensis (IVI4.8)  Bersama abyssinica (IVI4.4) 

 Bersama abysinica (IVI 3.0) Milletia ferruginea (IVI4.0)  

  Allophylus abyssinicus (IVI3.2) 

  Apodytes dimidata (IVI3.0) 

   Canthium oligocarpum (IVI2.9) 

   

Understory (< 10m height) Understory (< 10m height) Understory (< 10m height) 

Coffea arabica (IVI 7.8) Vepri dainellii (IVI3.3) Vepris dainellii (IVI3.2) 

  Oyxanthus speciosus (IVI3.1)  Oyxanthus speciosus (IVI2.9) 

  Chionanthus mildbraedii (IVI4.3) Chionanthus mildbraedii (IVI2.0) 
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The patches in each site vary in density and composition of understory shrub and liana 

species. Using a density threshold of > 5 individuals per hectare, abundance in the 

understorey was shared amongst a greater number of species in Site I (29) than Site II 

(18) or Site III (20) (Table 4.7). 

 

Table 4.7 Density (individuals/ha) of the most abundant shrub and liane species (with > 5 individuals/ha) 

in the understorey (< 10 m height) in forest patches in each of three sites in the Illubabor Administrative 

zone of south-west Ethiopia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Species Site I Site II Site III 

Justcia schimperiana 134.4 35.4 37.5 

Maytenus gracilipes 131.3 49.5 135.3 

Clausena anisata 128.9 9.4 83.1 

Erythrococcaa trichogyne 60.5 21.6 57.8 

Rytigina neglecta 50.8 20.1 126.6 

Vernonia glabra 47.3  -  - 

Phyllanthus ovalifolius 35.9 10.9  - 

Cyathula uncinulata 33.2 25.0 129.1 

Pavetta abyssinica 26.6  - 7.2 

Pavetta oliveriana 26.6 13.8 46.6 

Rubus apetalus 25.8 10.7 28.4 

Vernonia auriculifera 22.3  -  - 

Premna schimperi 21.5  -  - 

Aframomum corrorima 16 43.8  - 

Hibiscus micranthus 15.2  - 5.9 

Hibiscus ludwigii 13.7  -  - 

Vernonia hochstetteri 13.3  - 13.4 

Vernonia urticifolia 12.5 23.1  - 

Microglosum pyrifolia 11.3  -  - 

Rubus steudneri 10.2  - 7.8 

Acalypha psilostachya 9.8  -  - 

Acalypha racemosa 9.8 8.6  - 

Pentas lanceolata 9.4  -  - 

Paulina pinnata  7.4  -  - 

Acalypha ornata 7  -  - 

Solanium schimperiana 7 6.3  - 

Acanthopale pubescens 5.9 45.6 121.6 

Ocimum suave 5.5  -  - 

Acanthus eminens  - 32.6 88.8 

Senna petersiana  - 15.4 10.0 

Solanacieo mannii  - 11.7 11.6 

Solanacieo gigas 10.9  - 33.8 

Embelia schimperi  - 5.2 5.9 

Discopodium penninervium  -  - 11.6 

Pychnostachys abyssinica  -  - 9.1 



116 

 

The size-class distributions of all woody species were examined in three different 

forms. The first form included all sampled individuals of woody plant species 

(including those < 5 cm DBH). The second form included all sampled individuals of 

woody species ≥ 5 cm DBH. The first and second forms both used 5 cm size-class 

intervals. The third form included all individuals of woody species ≥ 5 cm using 10 cm 

size-class intervals to show the full range of sizes. The all-individuals diameter size-

class distributions with 5 cm interval showed a strikingly similar pattern across the three 

study sites (Figure 4.5a & b). There was consistently a very high density of individuals 

in the smallest size class (> 0 m height and < 5 cm DBH), which accounted for > 68% 

of the individuals recorded in each site (Figure 4.5a). In all three sites there was a large 

reduction in density from this < 5 cm DBH class to the subsequent 5-9.9 cm DBH class: 

98.4% for Site I, 96.8% for Site II and 95.4% for Site III. Above 5 cm DBH, it is 

noTable that in all three sites there is a general decline in density with size, yet density 

is lower in the 5-9.9 cm than the subsequent 10-14.9 cm class, there is an uneven trend 

across the three classes 10-24.9 cm and then a steep decline to the 25-29.9 cm class, 

after which there is a more consistent stepped decline in density (Figure 4.5b). This may 

be attributed to the human-caused disturbance (e.g. tree cutting) being concentrated in 

trees up to 30 cm DBH, with dynamics of trees > 30 cm DBH being more a result of 

natural population processes. The size class distribution of trees ≥ 5cm DBH with 10 cm 

size-class intervals showed similar pattern for Site I and III (Figure 4.5c) but indicated a 

lower density in the smallest size class (5-14.9 cm DBH) in Site III. 

 

4.4.4 Regeneration status of tree species in all patches at each site  

 

A total of 22,423 seedlings and saplings (> 0 m < 1m tall for seedlings and > 1m but < 5 

cm DBH for saplings) of tree species were recorded in all plots in all sites. The seedling 

and sapling size class represents a majority of the population of all tree species together 

(76.7%) (Figure 4.5a). The density of seedlings and saplings was greater in Site I (9302 

in the sample area of 25,600 m
2
), than Site II (6284/38,400 m

2
) and Site III 

(6837/32,000 m
2
). The composition and density of tree species in the sapling and 

seedling size class varied greatly amongst the three sites (Appendix 4.4). Coffea 

arabica, a crop species, had the highest density in Site I (1483 individuals < 1 m 
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height/25,600 m
2
). Second-fourth in rank were the pioneer species Albizia gummifera 

(778/25,600 m
2
), Milletia ferruginea (718/25,600 m

2
) and Maesa lanceolata 

(388/25,600 m
2
). The former two species are intentionally retained and even sometimes 

transplanted into areas managed for coffee cultivation due to their value in increasing 

soil fertility and coffee shade (pers.com with local farmers). However, local farmers 

stated no benefits for Maesa lanceolata and its abundance may simply be an indicator 

of human disturbance as it usually regenerates in forest gaps and open areas (personal 

observation). The species with highest density in Sites II and III combined was 

Oxyanthus speciosus (561/70,400 m
2
) (Appendix 4.4). Second-fourth in ranking were 

Pouteria adolfi-friederici (531/70,400 m
2
), Chionanthus mildbraedii (487/70,400 m

2
) 

and Bersama abyssinica (336/70,400 m
2
). 
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Figure: 4.5 All individual woody plant species size class distributions (for all species) of forest 

patches in each of three sites in the Illubabor Administrative zone of south-west Ethiopia. 

Density of stems in each size class is shown as the percentage of all individuals in the sample 

plots. The distributions are shown for two size groups: (a) for all individuals of woody species < 

5 and ≥ 5 cm DBH, (b) and (c) for all individuals of woody species ≥ 5 cm DBH. Size class 

intervals (DBH) are 5 cm for a and b and 10 cm for (c) with the minimum of the first interval 

being 0 cm DBH in (a) and 5 cm DBH in (b) and (c). 

 

4.4.5 Compositional similarity 

 

Analysis of similarity (ANOSIM) showed that similarity in woody plant species 

composition amongst patches within each site was greater than similarity amongst sites, 

as the Global R value is positive (+0.543, p = 0.001, Table 4.8). Pairwise tests showed 

that patches in Site I had a distinct species composition from those in Site II (R = +0.87, 

p = 0.001) and those in Site III (R = +0.83, p = 0.001), but patches in sites II and III 

were not significantly different (R = +0.12, p = 0.037, at the 1% level i.e. p > 0.01)). 

Similarity percentage (SIMPER) analysis showed that the average dissimilarity in 

community composition between Site I and Site II was 65.6% and this dissimilarity was 

partially attribuTable to the high abundance in patches of 11 species. The average 

dissimilarity in community composition between Site I and Site III was 66.4%, and was 

attributed to the high abundance of nine species. The dissimilarity between Site II and 

Site III was least, 48%, and. was accounted for by the ten times higher abundance of 
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Pouteria adolfi-fredrici in Site III, probably due to the high rate of logging in Site II 

(pers. obs.). Other species contributing to dissimilarity between  sites II and III were 

Nuxia congesta, Teclea noblis, Flacourtia indica and Ekbergia capensis, which were 

four times more abundant in Site II. Apodytes dimidata, Chionanthus mildbraedii, 

Albizia schimperiana, Lepidotrichilia volkense, Prunus africana had twice the 

abundance in Site II. 

 

Table 4.8 Analysis of similarity (ANOSIM) of woody species composition for pairwise comparisons of 

patches amongst and within the three study sites in the Illubabor Zone of south-west Ethiopia. 

  Permutation P Value  R 

ANOSIM for all three sites (Global R) 1000 0.001*  0.543 

Pairwise tests      

Site I (n = 8)    vs    Site II   (n = 12) 

Site I (n = 8)    vs    Site III  (n = 10) 

Site II (n = 12) vs    Site III  (n = 10) 

1000 0.001*  0.875 

1000 0.001*  0.837 

1000 0.037
n.s

  0.118 

* indicate significance at 0.01, 
n.s

 not significant at 0.01 

 

Two dimensional non-metric multi-dimensional scaling of woody plant composition in, 

firstly, all 30 sampled patches and, secondly, each of the 8 sub-plots per patch, also 

clearly separated patches in Site I from those in sites II and III on the first axis (Figure 

4.6a). However, this distinction was clearer at the whole patch (Figure 4.6a) than sub-

plot (Figure 4.6b) level. Axis 2 predominantly separated patches within each site 

(especially for Site I). Site II and Site III show strong overlap. The Site III axis 1 outlier 

patch, Jireen, and site 2 axis 2 outlier patch, Qollo were noTable for their different 

species composition (Figure 4.6a). Plot distribution amongst the sites also showed 

variation in species composition. In the ordination space the plots of Site I are clustered 

on the right side while almost plots from Site II and III overlapped (Figure 4.6b). 
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Figure  4.6 Non-metric multi-dimensional scaling Axis 1 vs Axis 2 – 2D model-sampled using a 

Bray-Curtis similarity matrix for: (a) individual patches, (b) individual sub-plots within the 

patches at 95% concentration ellipse level for the three study sites in the Illubabor Zone of 

south-west Ethiopia. The basic NMDS algorithm  calculates the similarity or dissimilarity 

between sites or sub-plots and assign to each site or sub-plot a set of coordinate in ordination 

space.   

 



122 

 

4.4.6 Effect of fragmentation, disturbance and environmental gradients on woody 

species community composition 

 

Canonical Correspondence Analysis (CCA) ordination showed the distribution of the 8 

20 x 20 m sub-plots within each patch and species against vectors of disturbance, patch 

shape, edge density, altitude, rainfall and slope in ordination space (Figure 4.7). Other 

environmental and fragmentation variables such as patch aspect, patch area and fractal 

dimension were discarded after testing multicollinearity since they were highly co-

correlated. The first CCA axis explain just 14% of the variance in species composition, 

while the first three CCA axes together explain only 25%. However, the correlation of 

species/explanatory variables scores are high, 0.93 for the first axis, 0.94 for the second 

axis and 0.89 for the third axis (Table 4.9) indicating that most of the variation in 

species composition can be accounted for by the variables linked to these three axes. 

Monte Carlo analysis (McCune and Mefford, 1999) with 1000 replicates showed that 

the amount of variability explained by the tested environmental, fragmentation and 

disturbance variables was significant (p < 0.01) for axes 1, 2 and 3 (Table 4.10). 

 

Table 4.9 Variance explained by the first three axes of a Canonical Correspondence Analysis of forest 

patches in the Illubabor Administrative Zone of south-west Ethiopia. 

 Axis  1 2 3 Total 

variance 

Eigen value   0.265 0.121 0.089 1.89 

% variance explained   13.991 6.424 4.701  

Cumulative % variance explained  13.991 20.415 25.116  

Multiple correlation species/environment scores   0.932 0.946 0.890  

Total Eigen value 0.628     

 

Table 4.10 Result of Monte Carlo test (with 1000 runs) for the significance of linear correlation between 

the environmental variables and species matrices for each of the first three axes of the Canonical 

Correspondence Analysis. 

Axis 1 2 3 

Eigenvalues 0.265 0.121 0.089 

Mean 0.122 0.080  0.064 

Maximum 0.266 0.119  0.093 

Minimum 0.072 0.056  0.046 

Probability at 5% level     0.002**     0.001** 0.002** 

** significant at p < 0.01 
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To best use the CCA ordination to investigate the association between forest species 

composition and the tested environmental variables, axes 1 and 2, and axes 1 and 3, 

were plotted (Figure 4.7a &b). The CCA ordination showed the same pattern as the 

NMDS with axis 1 clearly distinguishing patches in Site I from those in sites II and III 

(which showed great overlap). The environmental variables most strongly linked with 

the first axis of the CCA are altitude and patch shape (negative, associated with sites II 

and III) versus disturbance (positive, associated with Site I) (Figure 4.7a&b). The only 

environmental variable strongly linked to the second axis of the CCA is edge density 

(Figure 4.7a). Disturbance showed the strongest association with axis 3.  

 

In the CCA ordination, the distribution of 21 species was significantly correlated with 

altitude (four positively and 17 negatively) (Table 4.11). Coffea areabica and Trichilia 

emetica were most strongly negatively correlated with altitude. Three species were 

significantly positively correlated with disturbance and four negatively. It is noTable 

that this CCA-based analysis distinguishes species associations with the different 

environmental variables: of the seven species significantly correlated with disturbance, 

only one (Apodytes dimidiata) showed a significant strong correlation with altitude 

(positive). Three species were significantly positively correlated with edge density and 

six negatively. Of these none were significantly correlated with disturbance, and only 

one with altitude (Ficus vallis-choudea, weakly negative with edge density and negative 

with altitude). The six species negatively correlated with edge density were all observed 

to be concentrated in the forest understorey where there was dense shade (except for 

Albizia grandbracteata). Eight species were significantly positively correlated with 

patch shape index and seven negatively. More of these species also showed significant 

correlations with other environmental variables: Allophylus abyssinicus was positive for 

patch shape and altitude, Olea capensis and Trichilia dregeana were positive for patch 

shape and negative for disturbance, while Ficus vallis-choudae, Trichlia emitica and 

Vanguria apiculata were negative for shape index and for altitude, and Albizia 

grandbracteata was negative for patch shape and edge density. 
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Table 4.11 Coefficients of correlation between species and environmental variables in the CCA 

ordination of forest patches in the Illubabor Administrative Zone of south-west Ethiopia. All correlations 

with a p value < 0.05 are shown resulting in correlations with four environmental variables: altitude, 

disturbance, edge density and patch shape. 

Species  r-value p-value Species  r-value p-value 

Correlation with altitude   Correlated with edge 

density 

  

Trichilia emtica -0.78 0.00007 Dalbergia lactea 0.64 0.0001 

Ehertia cymosa -0.63 0.0001 Rhus glutinosa 0.59 0.0005 

Vanguria apiculata -0.63 0.0002 Allophylus macrobotrys 0.5 0.004 

Allophylus abyssinicus 0.62 0.0003 Galineria saxifraga -0.49 0.006 

Albizia grandibracteata -0.61 0.0003 Chionanthus mildbraedii -0.43 0.02 

Apodytes dimidata 0.6 0.0004 Dracaena fragrans -0.42 0.02 

Coffea arabica -0.68 0.0005 Ficus vallis-choudae -0.38 0.03 

Bridelia micrantha -0.57 0.001 Oxyanthus speciosus -0.37 0.03 

Celts toka -0.55 0.001 Albizia grandbracteata -0.39 0.03 

Filicium decipiens -0.56 0.001    

Alangium chinense -0.62 0.002 Correlated with patch 

shape 

  

Antiaris toxicaria -0.44 0.002 Trichilia dregeana 0.66 0.0008 

Sarcocephalus latifolius -0.5 0.004 Trichlia emitica -0.57 0.001 

Croton macrostachyus 0.44 0.01 Vanguria apiculata -0.43 0.001 

Ficus vallis-choudae -0.46 0.01 Albizia grandbracteata -0.55 0.002 

Garcinia buchananii -0.43 0.01 Cassipurea malosana 0.5 0.004 

Dracaena afromomum 0.44 0.02 Ficus vallis-choudae -0.48 0.007 

Olea welwitschii -0.42 0.02 Olea capensis 0.46 0.009 

Allophylus macrobotrys -0.39 0.03 Macaranga capensis 0.45 0.01 

Argomuellera macrophylla -0.4 0.03 Diospyros abyssinica -0.44 0.01 

Ficus mucuso -0.39 0.03 Entada abyssinica 0.39 0.03 

   Afrocarpus falcatus 0.39 0.03 

Correlation with 

disturbance 

  Pappea capensis -0.4 0.03 

Olea capensis -0.56 0.0007 Allophylus abyssinicus 0.38 0.04 

Elaeodendron buchananii -0.55 0.001 Pouteria adolfi-friederici 0.39 0.04 

Apodytes dimidata -0.53 0.003 Eugenia bukobensis -0.37 0.04 

Trichilia dregeana -0.58 0.007    

Albizia gummifera 0.45 0.01    

Cordia africana 0.45 0.01    

Anthocleista schweinfurthii 0.35 0.03    
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Figure 4.7 CCA ordination biplots of species and forest patches with vectors for environmental 

variables showing (a) axes 1 and 2; (b) axes 1 and 3.  Location of patches in sites I, II and III of 

the studied landscape in the Illubabor Administrative Zone of south-west Ethiopia are 

distinguished. The woody species with frequency distribution > five patches or 40 sub-plots 

were used for the ordination. 
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4.4.7 Effect of fragmentation, disturbance and environmental gradients on woody 

plant species richness, diversity and abundance 

 

Patch area and shape had negligible influence on woody plant species richness (r = -

0.12, p = 0.58; r = 0.003, p = 0.98 respectively), basal area (r = 0.26, P = 0.21; r = 0.05, 

p = 0.81) and individual tree density (r = 0.10, p = 0.63; r = 0.25, p = 0.24). Likewise 

altitude, slope and rainfall had no influence on basal area (r = -0.14, p = 0.5, r = -0.02, p 

= 0.9), r = 0.05, p = 0.8 respectively), density (r = 0.05, p = 0.7, r = 0.19, p = 0.3, r = 

0.22, p = 029 respectively) and species richness (r = -0.14, p = 0.5, r = -0.04, p = 0.8, r = 

-0.20, p = 0.3 respectively). However, the relationship between patch shape and 

individual tree density was positive even though it was on the margin of significance (r 

= 0.25, p = 0.05). Patch area and individual tree density were not significantly 

correlated (r = 0.10, p = 0.63). Individual tree density did show a clear decrease with 

edge density of patches (r = -0.498, p = 0.01). Disturbance intensity within patches (the 

sum of scores for cut trees, forest clearance, firewood collection and grazing) was 

significantly negatively correlated with tree basal area (r = -0.40, p = 0.04) and tree 

height (r = -0.55, p = 0.005). Basal area and height of trees were not correlated with any 

of the other environmental variables, i.e. rainfall, slope, altitude, patch area or patch 

shape. 

 

There is no significant correlation between Fisher’s alpha diversity of woody species 

and fragmentation metrics: fractal dimension (r = - 0.0002, p = 0.99), patch size (r = -

0.15, p = 0.46), patch shape (r = -0.28, p = 0.15) and other environmental variables: 

rainfall (r = -0.25, p = 0.23) or slope angle (r = -0.35, p = 0.09). However, Fisher’s 

alpha diversity did increase significantly with decreasing altitude (r = -0.58, p = 002) 

and with increasing edge density (r = 0.45, p = 0.02). 
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4.5 Discussion 

4.5.1 Overall species richness and diversity  

 

Tropical forests are considered to be one of the most species-diverse ecosystems in the 

world (Kumar et al., 2006). However, fragmentation of these forests due to 

deforestation is occurring faster than their recovery even if disturbance is ceased. 

Consequently, in many tropical regions forests are restricted to small and isolated 

patches (Turner and Corlett, 1996). Where large forest areas persist they can still 

support a high proportion of the original forest biodiversity, including the larger biota, 

however recent research has shown that a substantial number of forest species can also 

persist for decades in fragmented forests (Lindenmayer and Fischer, 2006). Forest 

patches can also play an important role in resilience at the landscape scale: in regions 

with little forest remaining, as in the case of Ethiopia, patches can be the source from 

which natural vegetation re-establishes (Turner and Corlett, 1996).  

 

In Ethiopia, deforestation and forest degradation have a long history and only a few 

fragmented afromontane forests have remained intact in the south-west and south-east 

part of the country. Recent studies of these forests reported that they contain a high 

diversity of woody species (Friis, 1992; Abayneh, 1998; Kumelachew and Tamrat, 

2002; Tadesse, 2003; Schmitt, 2006). Although it is difficult to do direct comparison 

due to variation in forest size, sampling method, number of sampled plots and objective 

of the study (Tadesse, 2003), it is worth mentioning (for comparison) some results of 

previous studies in large reserved forests in south-west Ethiopia in the vicinity of the 

current study area within similar landscapes and environments. Hence, in Masha-

Anderecha afromontane forest located in Shekicho Zone 107 species of woody plants 

were recorded in a total of 96 plots (Kumelachew and Bekele, 2003), while in Bonga 

forest, in Kaffa Zone 158 species were recorded in 85 plots (Schmitt, 2006); in 

Illubabor Zone itself in Yayu forest 92 species were recorded in 50 plots (Tadesse, 

2003) and in Sese forest 133 species were recorded in 75 plots (Shiferaw, 2010). In the 

present study, I recorded a much higher richness than each of these previous studies, 

though with a larger sample plot number: 254 woody species, distributed among 179 
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genera and 62 families, in 22 fragmented patches and 8 different sites of the same large 

continuous reserve forests in 240 plots (Appendix 4.6). Recorded species richness is 

clearly a product of the diversity of habitat conditions which it contains. Within the 

present study, since the total sample sizes were different between the three sampled 

sites, it is difficult to compare them as a means of assessing the impact of past and 

contemporary forest management or land-use intensity on species richness. Differences 

in overall recorded species richness between them could be caused either by an actual 

difference in landscape species richness or just an artificial sample difference because of 

unequal sample size. Therefore, in addition to comparing total species richness and 

average species density per plot, the species accumulation curves were used to compare 

species richness of the three sites rather than absolute number of species. The individual 

accumulation curves for each of the three sites shown in Figure 4.3b allow comparison 

of species richness at a number of different same sample sizes. Therefore, the individual 

accumulation curve showed the higher species richness of Site I as compared to Site II 

and III   

 

The majority of population of species recorded were found in the (larger number of 

sampled) smaller patches in sites II and III rather than being confined to the larger forest 

areas in Site I, suggesting that the small patches at higher altitude are extremely 

valuable for maintaining regional plant biodiversity. The forest patches contained 

economically important species such as coffea arabica, Aframomum korarima and 

Piper capense, which also contribute delivery of provisioning services to the value of 

their biodiversity. The patches also contained a large number of forest-habitat specialist 

species of conservation interest such as Chionanthus mildbraedii, Galineria saxfraga, 

Oxyanthus speciosus and Dracaena fragrans, species designated as being of national 

conservation priority, e.g. Cordia africana and Afrocarpus falcatus, and a high 

population density of Prunus africana, a species listed as vulnerable in the IUCN Red 

Book (IUCN, 2010; Tadesse, 2003).   
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4.5.2 Species type and structural composition 

 

Change in forest structure and composition is a typical effect of human influences 

(Thompson et al., 2009). These human influences are more conspicuous in small 

fragmented forest patches than unfragmented forests (Hill and Curran, 2005) since the 

unfragmented forests are relatively resilient (Thompson et al., 2009; Malhi et al., 2009). 

The current study revealed that human-induced fragmentation and within-habitat 

disturbance shaped the woody plant community structure and composition of the forest 

patches. Here, I sampled patches in three contrasting sites differing in the dependency 

of local livelihoods on forest resources and found a significant difference in their 

species composition (Table 4.8). In Site I pioneer species, e.g. Albizia gummifera, 

Milletia ferruginea, Croton macrostachyus and Maesa lanceolata, accounted for most 

of the stem density and basal area (Appendix 4.1). These forests are under continuous 

human disturbance associated with coffee management, which benefits pioneer species 

as evidenced by their abundance in human-created canopy gaps. The species 

composition was more or less similar between sites II and III, where the forest area 

predominantly comprised small fragmented forest patches: a mixture of wide-habitat-

range/generalist (e.g. Prunus africana, Pouteria adolfi-friederici, Syzygium guineense), 

forest-habitat (e.g. Macaranga capensis, pioneer (e.g. Croton macrostachyus) and many 

forest understory (e.g. Chionanthus mildbraedii, Vepris dainellii, Galineria saxfraga 

and Oxyanthus specieous) species (Appendix 4.2 & 4.3). These differences in species 

composition among the three sites can be attributed to altitudinal variation, within-

habitat disturbance from timber extraction and firewood collection, forest clearance for 

cultivation, and forest thinning for coffee management, as well as fragmentation. The 

sampling design restricts the potential to separate the influence of these factors on 

variation amongst sites because they are confounded, however (using variation amongst 

patches within sites) their correlation with species composition is analysed in chapter 5. 

 

 

In contrast to the differences in species composition between the three sites the mean 

stem density and basal area of trees were very similar between them with no significant 

differences (Figure 4.4). In all three sites, when shown in 5 cm intervals (but not in 10 

cm ones) the density of trees in the smallest DBH size class is less than the second class 
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(Figure 4.5). This low density in the smallest size class of trees in all three study sites is 

in agreement with other studies carried out in unfragmented forests of  Ethiopia 

(Kumelachew and Tamirat, 2002; Tadesse, 2003). Observations of cut stems in the 

sample plots indicate that this may be due to selective felling of trees in the 5-10 cm 

DBH size range. This may pose a threat to the rate of establishment of younger trees to 

replace older canopy trees when they are harvested or die, which may eventually lead to 

an opening of the forest canopy. Cut stumps resulting from illegal timber extraction of 

large diameter trees were observed in all three sites, contributing to the low density of 

large trees retained as coffee shade. 

 

4.5.3 Fragmentation versus environmental effects on species composition 

 

Many studies have shown that the area of habitat patches has an effect on plant species 

richness and diversity (e.g. Hill and Curran, 2001; Godefroid and Koeda, 2003; Cagnolo 

et. al., 2006; Fischer and Lindenmayer, 2007). In contrast, in the present study, 

regression analyses indicated that patch area (as an indicator of fragmentation) was a 

poor predictor of woody plant species richness and diversity. This was also the case in 

some previous studies in the tropics, e.g. Cayuela et al. (2006a) found no effect of 

fragmentation per se (defined as the reduction in patch area and connectivity) on plant 

species richness and diversity. In his review of many empirical studies, Fahrig (2003) 

pointed out that the effects of fragmentation on species richness and diversity were 

ambiguous and as likely to be positive as negative. Cayuela et al. (2006c) mentioned 

that these inconsistent results are based on studies that differ in spatial and temporal 

scale, and targeted species, with different response variable such as presence/absence, 

abundance and alternative diversity indices, in sites differing in environmental 

variability and history of human use. In my study, patch area was correlated with tree 

community physical structure indicated by tree basal area and density. Other studies 

have also found a significant positive correlation between patch size and tree stem basal 

area and density (e.g. Tripathi et al., 2010). 
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Patch shape was expected to be another major variable influencing the number and 

composition of species in habitat patches (Fahrig, 2003) but, supporting other findings 

(Hill and Curran, 2003), I did not find significant effects of this variable on species 

richness and diversity. This result, however, should be considered carefully, since the 

sampling location within a patch and size of the patch can determine the influence of 

patch shape on species composition (Graham and Blake, 2001). In this study, I sampled 

the interior of all patches and compared the influence of shape between patches also 

differing in size. The influence of patch shape may be more significant where the 

sampling is also done near the edge of patches since patch shape determines the ratio of 

edge to interior habitat (Graham and Blake, 2001); results of this are reported in chapter 

5. 

 

The shape of patches could be more influential over species composition than species 

richness and diversity. For example, Hill and Curran (2003, 2005) found that irregular-

shaped patches have different species composition than do more regular (circular) 

patches. Irregular patches are mostly dominated by light-demanding pioneer species and 

animal-dispersed species (Hill and Curran, 2003). In the present study, Pearson 

correlation analyses showed that the presence of forest-margin or light-demanding 

species was associated with irregular patch shape indicating that it can influence species 

composition, even in the sampled forest interior habitat (Table 4.11). However, as with 

all of these correlation results, the confounding of the variables (in this case between 

irregular patch shape and altitude (Sites II and III), must be taken into account. 

 

Edge density of habitat patches has also been found to explain the distribution, 

abundance and richness of species (McGarigal and Marks, 1995). Many studies 

indicated that forest fragmentation results in the increased susceptibility of forest 

remnants to the edge effect which may result in change of species composition (Kupfer 

et al., 2006). In my study, as for patch shape, the abundance of forest-margin or light 

demanding species in the sampled interior forest of small patches was correlated with 

patch edge density. The lack of this effect for species associated with larger patches 

such as Chionanthus mildbraedii, Oxyanthus speciosus and Vepris daniellii may be 



132 

 

accounted for by the purposeful location of the sample plots in the patch interior habitat 

away from the edge. The results from sample plots located in both edge and interior 

habitat presented in chapter 5 are more suited to testing edge effects. 

 

Analysis of environmental and fragmentation metrics was made in order to determine 

the factors contributing to the variation of woody species composition. Amongst the 

three sites this variation appeared to reflect the significant influence of altitude more 

than indicators of fragmentation such as patch area and shape in the Canonical 

Correspondence Analyses (CCA) of species and plots (Figure 4.7). Altitude 

corresponded with the transition from mixed transitional evergreen forest in Site I to 

afromontane forest of sites II and III as indicated by the presence of a mixture of species 

from lowland and highland afromontane forests in Site I (Friis, 1992). These species 

include Vanguria apiculata, Pouteria altissma, Manilkaria butugi, Deinbollia 

kilimandscharica, Morus mesozygia and Hallea rubrostipulata with a lowland affinity 

and Allophylus abyssibicus, Milletia ferrugeana Bersama abyssinica, Maesa lanceolata 

and Croton macrostachyus with a broader range but a particular affinity with highland 

forests. These transitional evergreen forests are typically located within an altitudinal 

range of 1300-1900 m a.s.l. (Friis, 1992) – the altitude of the forests studied in Site I 

was 1594-1695 m. Some species are restricted in their distribution to within this 

altitudinal range, for instance the abundance of Vanguria apiculata, Pouteria altissma, 

Manilkaria butugi, Deinbollia kilimandscharica is significantly higher in Site I located 

below 1900 m.a.s.l. As well as the broad-range species that were also abundant in Site I 

(listed above), the tree community of sites II and III was characterised by the abundance 

of species much rarer or even absent from lowland forests, e.g. Syzygium guineense, 

Pouteria adolfi-friederic, Afrocarpus falcatus, Elaeodendron buchananii and Prunus 

africana. These results support the distribution range of species recorded in the flora of 

Ethiopia (Hedberg and Edwards, 1989-2006; Edwards et al., 1995-2000).  
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4.5.4 Within-habitat disturbance 

 

Although fragmentation of forest area is currently the most widely recognised cause of 

biodiversity loss within landscape ecology, it is important not to neglect the potentially 

critical role of human disturbance within remnant forest patches. Disturbance from 

selective tree logging, cutting of understorey tree stems, firewood cutting, and browsing 

by livestock were all observed to be factors impacting the studied fragmented patches 

with potential implications for species richness, composition and structure (as reported 

by Gao et al., 2009, Cayuela et al., 2006d). In the present study, plot species richness 

was negatively correlated with an index combining the intensity of these different types 

of disturbance. Disturbance of canopy trees, e.g. through felling for timber, in general 

creates gaps providing a rich mosaic of microhabitats capable of supporting a diversity 

of plant species (Denslow, 1987; Schnitzer and Carson, 2001; Wright, 2002). On the 

other hand disturbance can negatively affect populations of species dependent on intact 

forest habitats (Teketay, 1992). In the present study, I observed that disturbance affected 

understory trees. These trees such as Chionanthus mildbraedii., Vepris daniellii., 

Macaranga capensis and Olea capensis subsp. macrocarpa, were gradually thinned, 

and in some areas totally removed, and this resulted  in increasing convergence of the 

composition of tree stands with dominance by the same  unexploited and  disturbance-

benefiting species of Albizia gummifera, Milletia ferruginea, Croton macrostachyus and 

Maesa lanceolata in Site I.  

 

The analyses reported in chapter 3, supported by information from local people, showed 

that for three decades, especially after the government’s planned resettlement program 

in 1984, the forests in Illubabor Zone have experienced varying degrees of disturbance, 

such as human-induced fragmentation through clear-cutting of forests for settlement and 

crop agriculture (including in some places tea plantations) and introduction of intensive 

management of natural forest converting it to forest managed for coffee production, 

utilization of the forests for grazing and production of timber and non-timber products 

(Tadesse et al., 2001; Mengistu, 2005; Fayera and Dinch, 2006). Forests are cut down in 

order to convert it to cropland, then after a few cycles of crops the land is allowed to or 

actively, converted to grazing land. Grazing is also allowed in forests to such an 



134 

 

intensity that there is very few tree regeneration in some sub plots; combined with other 

ongoing disturbance this leads to a gradual transition from forest to grazing land. Their 

current natural status is greatly diminished also by gradual extraction of large canopy 

and understory tree species (Tadesse, 2003). In the present study, almost all the sampled 

forest patches in Site I had undergone thinning of large- and medium-sized trees. In 

these forests only some canopy species were likely to be preserved including some 

legume species such as Albizia gummifera, Milletia ferrugina and Albizia schinperiana 

with high recorded importance value indices in Site I (Appendix 4.3), which are 

considered to be important for promoting soil fertility (per. com. from local community 

elders). While this preservation of some tree species by farmers for coffee shade and 

soil fertility has potential benefits for biodiversity and the provision of ecosystem 

services, it should not be taken as achieving the conservation of the full biodiversity of 

these afromontane forests, which is clearly being threatened by gradual fragmentation, 

selective timber extracted and establishment of homogenous stands of low tree species 

diversity. Due to disturbance, the interiors of forests managed for coffee production in 

Site I, as well as some of the fragmented forest patches in sites II and III, were 

dominated by pioneer tree species (e.g. Milletia ferruginea, Macaranga capense, 

Croton macrostachyus and Maesa lanceolata) as well as a range of vine species (e.g. 

Gouania longispicata, Sericostachys scandens, Urerea hypselodendron, Stephania 

abyssinica, Dioscorea bulbifera, Peponium vogelii, Scutia myrtina, Lagenaria 

abyssinica and Combretum paniculatum) that are able to invade forest gaps. Shrubs that 

are typical of more open woodland or other disturbed woody habitats (e.g. Vernonia 

spp., Hibisus spp., Cyathula sp. and Rubus steudneri) were also notably more abundant 

in these forests. An empirical study using an individual tree-based gap model of 

neotropical montane forest following human disturbance found that the recovery rate is 

very low and it may take several hundred years to re-establish a canopy dominated by 

shade-tolerant tree species (Golicher and Newton 2007). In fragmented forest subjected 

to recurrent disturbance and gradual thinning, as in the case of the afromontane forest in 

the present study, there is therefore a risk of species becoming locally extinct if the rate 

of disturbance exceeds the rate of forest habitat and population recovery. 

 



135 

 

4.5.5 Implication for biodiversity conservation  

 

The high rate of loss of forest area across Illubabor Zone was established in chapter 3. 

The present chapter reports the process and impacts of fragmentation and degradation of 

the remaining forests. It also reports the high woody plant diversity and conservation 

importance of the remaining forest fragments. In a landscape ecology context, 

conservation of the remaining forest patches would also allow them to act as stepping 

stones through inter-patch movement of plant propagules (seeds and pollen) that 

increase landscape connectivity (Lindenmayer and Fischer, 2006; Arroyo-Rodriguez et 

al., 2008). This will be important to enable the landscape-scale survival of 

metapopulations of rare and endangered species, even if individual patches cannot 

support a viable population in isolation (Hanski, 1991). In a functionally connected 

landscape the total area of forest in remaining patches will be critical for the 

conservation of biodiversity (Arroyo-Rodriguez et al., 2008). Diversity in 

environmental conditions amongst forest patches (providing complementary 

habitats/resource) will also be important for maximising the beta component of 

landscape-scale biodiversity (Dunning et al., 1992; Arroyo-Rodriguez et al., 2008).  

 

The results of the present study indicate that forest patches distributed in a landscape 

with an agricultural-dominated matrix contained many species of high conservation 

importance, and were (on balance) more important for biodiversity conservation than 

the limited number of large preserved forest in this part of south-west Ethiopia. In 

addition to their value for biodiversity conservation and ecological processes, the small 

forest patches distributed across the landscape of Illubabor Zone are also important in 

providing food provisioning ecosystem services as they are the major sources of wild 

spices, such as Aframomun corrorima and Piper capense, and a major cash crop, Coffea 

arabica, on which people depend as an important component of their livelihoods.  

 

As the forest patches in Illubabor Zone continue to shrink in size and become 

increasingly degraded due to surrounding farm encroachment and intensive disturbance 

within patches, their capacity to provide sufficient habitat for viable metapopulations of 

many species (Arroyo-Rodriguez et al., 2008) and their capacity to deliver ecosystem 

services to local people will decline. There may also be a delayed decline in 
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conservation and economic value of these small patches because extinction may occur 

one or more generations after fragmentation (Tilman et al., 2002). Should further 

fragmentation (and intensification of agricultural land use in the matrix) increase the 

effective isolation of remaining forest patches this will be an important factor 

(combined with habitat degradation and loss of habitat area) limiting tree recruitment 

and establishment within the patches (Arroyo-Rodriguez et al., 2008).  

 

In conclusion, to conserve forest plant biodiversity in Illubabor Zone, it is critical to 

address all of these issues: retaining patches, minimising their isolation, preventing loss 

of their area and minimising further habitat degradation. If resources permit an active 

restoration programme then it would be valuable to target recovery from degradation 

within existing patches and re-establishment of forest in small patches distributed across 

the landscape of Illubabor Zone. In addition to preserving and protecting large 

unfragmented forests, in highly deforested and fragmented regions, such as  Ethiopia, 

biodiversity conservation will only be possible by preserving and restoring small 

remnants concurrently (Hill & Curran 2003; Arroyo-Rodr´ıguez & Mandujano 2006). 

Therefore, under current circumstances, rather than focus on the creation of one single 

biosphere reserve of forest that is already deteriorated in its natural condition, a wider 

landscape-scale planning approach is recommended to rescue plant biodiversity from 

local extinctions (da Silva & Tabarelli 2000, Arroyo-Rodriguez et al., 2008). The local 

communities in this study area are effectively protecting some forest patches, e.g. Dike, 

Koda, Simbir, Qotora 1 & 2, Jireen and Sibu 1, and if their management efforts are 

coordinated, they may be able to conserve forest patches at a landscape scale, which 

could have a greater impact on conservation of the biodiversity of afromontane forests 

of south-west Ethiopia. 
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CHAPTER 5 

RESPONSE TO FRAGMENTATION OF PLANT SPECIES DIFFERING IN 

LIFE-FORM AND HABITAT REQUIREMENT 

 

Abstract 

Fragmentation alters both the extent and spatial configuration of habitat patches and 

reduces living space for species. It also reduces connectivity of patches and increases 

the length of edge between patches and the surrounding matrix ultimately increasing the 

edge effect on microclimate and physical disturbance at the boundaries of patches. The 

objective of this chapter is to determine the impact of fragmentation-linked edge effects 

on plants of different functional characteristics in patches of afromontane forest in 

south-west Ethiopia. The abundance of different plant functional types (for woody 

species based on their shade tolerance and for epiphyte and fern species based on their 

shade tolerance and morphological characteristics) was assessed and the net impact on 

plant community composition and structure was determined.  

 

Woody (tree, shrub and vine) and non-woody (vascular epiphyte, geophytic fern and 

other angiosperm herbs) species were sampled in 18 patches within a matrix of 

intensive land use. All plants were sampled in 16 plots of 20 x 20 m per patch (8 in 

interior and 8 in edge habitats) – total sample area 11.52 ha. Total species richness in 

the interior habitat was 394 (113 herbs, 90 trees, 62 shrubs, 50 epiphytes, 46 vines and 

30 ferns) and in the edge habitat 413 (110 herbs, 95 trees, 83 shrubs, 58 vines, 26 ferns 

and 28 epiphytes). Most of species were common in both habitats 

 

Tree species composition varied significantly between edge and interior habitats. Light-

demanding species were more abundant (with higher frequency amongst plots) in the 

edge habitat and forest-habitat/forest-specialist species in the interior. Disturbance and 

altitude accounted for more of the variability in species composition between the two 

habitat types than did patch area, shape or edge density. Stem density of trees did not 

differ significantly between edge and interior habitats but basal area was significantly 
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higher in the interior. The geophytic angiosperm herbaceous species community showed 

differences between edge and interior due to higher ruderal species in the edge habitat. 

The species richness of both vascular epiphytes and geophytic ferns was significantly 

higher in the interior habitat than the edge and the species composition differed. The 

habitat specificity and functional group of epiphyte and geophytic fern species, and 

available host tree size for epiphytes, had a significant influence on species distribution 

between edge and interior habitats. Epiphyte species with herbaceous leaves and stems 

were more abundant under deep shade in the forest interior, whereas species with fleshy 

and leathery leaves, pseudobulbs and succulent or woody stems were distributed more 

evenly between edge and interior habitats, though still having greater abundance in the 

interior. 
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5. 1 Introduction 

 

Habitat fragmentation is a major characteristic of habitat loss caused by anthropogenic 

disturbance which may be an important mechanism in its effects on biodiversity. It has 

been a major focus of landscape ecological research worldwide (e.g. Turner et al., 2001; 

Echeverria, 2006; Ewers and Didham, 2006) and is considered to be a major factor in 

functional and structural landscape pattern change and biodiversity loss in the tropics 

(Hill and Curran, 2001). Fragmentation alters both the extent and spatial configuration 

of habitat patches and reduces living space for plant and animal species that require 

large and connected patches (Fahrig, 2003; Baldwin and Bradfield, 2007). It reduces 

functional connectivity by isolating remaining patches from one another (Forman, 1995) 

and increases the length of boundaries or edges between patches and the surrounding 

matrix (Forman, 1995). The boundaries created between patches and the surrounding 

matrices are likely to be subject to edge effects (Forman and Godron, 1986; Forman, 

1995; Franklin, 2001; Lindenmayer and Fischer, 2006). These changes in the spatial 

arrangement of habitats could have negative effects on species richness and community 

composition within the remnant patches (Saunders et al., 1991; Forman, 1995; Laurance 

et al., 1998; Hill and Curran, 2001; Harper et al., 2005; Echeverria, 2007) and alter 

ecological processes such as movements of propagules, e.g. spores, pollen and seeds 

from parent individuals in the metapopulation (Hamilton, 1999; Turner et al., 2003). 

 

The fragmentation of habitats, however, does not affect all species in the same way. 

Species that require large and continuous habitats often react negatively to the effect of 

fragmentation (Bennett and Saunders, 2010). The effects of fragmentation on such 

species can be a direct result of changes in habitat area (Lindenmayer and Franklin, 

2002). For some species, impacts of habitat fragmentation are mainly due to changes in 

the spatial arrangement of suiTable habitat across the landscape and more frequent 

interaction with altered microclimate and other factors associated with human land use 

at the periphery of fragmented patches (Turner et al., 2001). This could indicate that the 

ecological consequences of forest fragmentation may depend on a combination of 

parameters in addition to area of the patches (Echeverria et al., 2006), such as adjacent 

land use (matrix quality), spatial configuration of the patch including shape, edge and 
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connectivity (Forman, 1995; Lindenmayer and Franklin, 2002) and within-patch habitat 

quality (e.g. linked to disturbance type and intensity) (Lindenmayer and Fischer, 2006). 

 

Most studies of fragmentation effects thus far are largely derived from the theory of 

island biogeography (MacArthur and Wilson, 1967; Lovei et al., 2006) which is based 

on the idea that the surrounding habitat, within which fragments are situated, is 

unsuiTable for fragment habitat-dependent species (Benedick et al., 2006). Island 

biogeography theory took into account only patch size and isolation or connectivity, but 

not variation in habitat quality, or other attributes of the patch or surrounding matrix 

(Farina, 2006). Thus, the theory has been used to explain the loss of species as a 

function of the loss of patch area resulting from land use/cover change (Godefroid and 

Koedam, 2003; Lovei et al., 2006). On the other hand, there is increasing evidence that 

habitat patches usually exist in a complex landscape matrix, and dynamics within a 

patch are also affected by matrix composition (Andren, 1994; Wiens, 1994; Hobbs, 

2001; Cook et al., 2002; Lindenmayer and Franklin, 2002; Helm et al., 2006), change to 

their shape (usually represented as edge-to-area ratio), connectivity and within-habitat 

quality or disturbance (Lindenmayer and Fischer, 2006). Therefore, in addition to patch 

area, other patch characteristics such as matrix quality, geometry of the patch (shape, 

edge density, fractal dimension) and within-patch anthropogenic disturbance should be 

considered when assessing the impact of fragmentation on species richness, 

composition and diversity (Metzger, 2000; Fahriga, 2003; Godeforid and Koedam, 

2003; Helm et al., 2006). 

 

The quality of the matrix in terms of vegetation composition could play a major role in 

ecological process within patches and on which species are present (Lindenmayer and 

Fischer, 2006). It can contribute to the edge habitat dynamics, including population 

recovery of species after disturbance (Lamberson et al., 1994), the exchange of 

individuals between patches (Gaublomme et al., 2008) and occupancy rates of the 

patches (Bradford et al., 2003). The shape of fragmented patches represented by edge-

to-area ratio is an indicator of the influence of edge effects within the patch (Hill and 

Curran, 2003). Changes in patch shape could increase the amount of edge habitat, 
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resulting in loss of habitat area for species dependent on patch interior conditions. Edge 

habitats have distinct microclimates, with abrupt changes in the amount of solar 

radiation, soil nutrients and moisture, and generally have high microhabitat diversity 

(Murica, 1995). For many plant species these habitats are a physical arena within which 

population dynamics, ecological processes and evolution occur (Murphy and Lovett-

Doust, 2004). As many studies indicate, persistence of plant species over the long term 

in a heavily anthropogenically-influenced landscape requires coping with these changes 

to their habitat. Many plant life-history characteristics, including growth form, shade-

tolerance and clonal propagation, may have significance in this context (Murphy and 

Lovett-Doust, 2004). For example, the resprouting of some tree stumps after 

disturbance from tree cutting in the edge indicates that local populations may persist in 

the medium-term even though a patch has become unsuiTable for regeneration from 

seed. 

 

Fragmentation can affect species in different ways and at different geographical scales 

(Forman, 1995). Some species are very sensitive to fragmentation, while others are 

more tolerant (Haila, 2002; Hill and Curran, 2005). This differential susceptibility to 

habitat fragmentation is expected to depend on species’ functional characteristics related 

to plant growth form, habitat requirement and resistance/resilience to disturbance, but 

only rarely have measurements been made of the difference between plant functional 

types in their tolerance of habitat fragmentation. Some studies have indicated that 

habitat fragmentation most severely affects plant species with low frequency of 

occurrence and high habitat specificity (Hill and Curran, 2001). There is a hypothesis 

that shade-tolerant trees and shrubs, and moisture-dependent lower plants like ferns and 

epiphytes, could be more sensitive to fragmentation and its accompanying edge effects. 

On the other hand, many established forest interior trees, after exposure to the 

environment of edge habitat, show resilience to the effects through their vegetative 

regeneration capacity and seed traits. There is a major debate in plant ecology about the 

extent to which ineviTable functional trade-offs mean that species traits which confer a 

competitive advantage in within-forest habitat conditions, necessarily disadvantage 

these species in more disturbed conditions (e.g. Wright et al., 2004; Easdale et al., 2007; 

Easdale and Healey, 2009). This indicates that community composition at the patch 
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edge following fragmentation may depend on the actual capacity to tolerate disturbance 

of the species present and the diversity of genotypes within their population (Mayfield 

et al., 2010) as well as the potential for invasion by more disturbance-benefiting species. 

 

These landscape ecology issues are an important applied consideration because the use 

of well-evidenced and ecologically-realistic information of responses of species will 

improve our ability to make wise management decisions. Since the forest fragments in 

the study area, the Illubabor Zone of south-west Ethiopia, are exposed to different 

intensities of land use, they provide a good opportunity to test the response of plants of 

different functional types to forest habitat fragmentation. The objective of this study 

was to evaluate how the response of plant species, and thus community composition, to 

fragmentation of afromontane forest habitat in south-west Ethiopia is linked to species 

functional type. It is hypothesised that the species of different functional types respond 

to fragmentation in different ways, with shade-tolerant tree species and herbaceous 

species lacking drought-tolerant morphological traits being more sensitive. 

 

The approach taken was, within a landscape where there is a rapid rate of fragmentation 

of forest habitat patches, to compare the population abundance of species of different 

functional types in patch edge and interior habitats, and to determine the impact of these 

species-level responses on overall community structure and composition. The analysis 

also assessed other factors known to affect species diversity and composition such as 

rainfall, topography and habitat disturbance. The focus was on woody plants and 

indicator groups of herbaceous plants (angiosperm epiphytes and geophytic ferns). 

Specific tests were made of the relationships between the abundance of plant species of 

different functional type (life form, morphology and shade tolerance) and patch 

attributes (area, shape and edge density) and landscape matrix variables (proportion of 

different land-use and cover types). 
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5.2 Materials and methods 

5.2.1 Selection and stratification of study habitat patches 

 

From the 30 forest habitat patches sampled in the whole project, 18 were selected for 

this particular study. They were selected to fulfill the following criteria: area greater 

than 10 ha as calculated from the 2007 land-use and land-cover map; embedded within a 

matrix of agricultural land; and predominantly composed of highland rainforest species. 

The habitat within these 18 patches was stratified into two zones of contrasting 

environmental conditions reflecting the impacts of fragmentation, the edge and interior. 

For the present study the boundary between edge and interior habitat was defined by a 

distance of 50 m from the margin of the patch inward. 

 

5.2.2 Vegetation sampling 

 

A single main plot of 60 x 100 m was established in a position within the interior habitat 

of each fragment subjectively chosen on the basis of representativeness in species 

composition. Each main plot was sub-divided into 15 sub-plots using a 20 x 20 m grid. 

Eight of these sub-plots, based on a systematic sampling regime (see Figure 2.10 for 

plot layout) were used for vegetation inventory and are hereafter referred to as “plots”. 

In the edge zone of each patch, eight independent 20 x 20 m sample plots were 

established in a systematic design with even spacing between plots around the edge of 

the patch, with the nearest edge of each plot being at approximately 10 m from the outer 

edge of the patch. To get equal distance between plots around the edge, the 

circumference of the patch was calculated using GIS tools and the total divided into 

eight (number of plots) to get equal distance between the plots. Then, a single 

coordinate point for each edge plot was taken from the land use map and entered into a 

GPS for navigation to each plot. 

 

 

All woody live, standing dead and fallen individuals ≥ 5 cm diameter at breast height 

(DBH) in each 20 x 20 m sample plot were measured using diameter tapes, and 

identified to species (this was achieved for all live individuals and for a majority of 
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those that were dead). Trees with large buttresses were measured above these 

protrusions. The DBH of all stems ≥ 5 cm DBH of trees with multiple stems were 

measured separately. To get an equivalent total diameter for the whole individual the 

basal area of each stem was calculated, summed and divided by π, square rooted and 

multiplied by two. The height of each individual tree was estimated using a clinometer. 

When it was difficult to sight the top of individual trees in dense forest, the height was 

estimated by observation. Density of shrubs (woody plants < 5 cm DBH with multiple 

stems arising at the base) and presence/absence of all woody or semi-woody vines were 

collected in each 20 x 20 m sample plot. In addition, five nested 5 x 5 m sub-subplots 

were established within each 20 x 20 m sample plot, one at each corner and one at the 

centre, to record saplings (individuals < 5 cm DBH and > 1 m in height) and seedlings 

(individuals ≤ 1 m in height) of tree species, which were identified and counted. For 

angiosperm herbaceous species presence/absence was recorded in sub-sub plots used for 

seedling and sapling.   

  

Within each 20 x 20 m sample plot the species of each vascular epiphytic plant growing 

on tree stems ≥ 10 cm DBH, and the DBH of its host tree, were recorded. Similarly all 

individuals of geophytic fern were identified to species and recorded. Epiphytes and 

ferns growing in dense clumps (often from the same stem) were recorded as single 

individuals following the method of Barthlott et al. (2001). Identification to the species 

level was made where possible in the field using field guides such as Demissew et al. 

(2004) and the keys in the Flora or Ethiopia and Eritrea (Volume 1). For those epiphytes 

located on upper trunks and difficult to identify from the ground, binoculars were used 

and where necessary samples were collected by local tree climbers under my direction 

with the aid of the binoculars (Lowan and Atwood, 2002). Identification of non-orchid 

species was made using Flora of Ethiopia and Eritrea. The majority of unidentified 

morphospecies were those found only in a sterile condition. Voucher specimens were 

collected for all unidentified morphospecies and taken to the National Herbarium, Addis 

Ababa University, where they were identified by matching with determined herbarium 

specimens. 
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5.2.3 Functional groups 

 

Species were classified according to life form, habitat requirement and morphology 

(Appendix 5.5 – 5.8). There were six life forms: tree, shrub, vine, geophytic angiosperm 

herb, vascular epiphyte and geophytic fern. This life form classification was based on 

combined information from personal field observation and the Flora of Ethiopia and 

Eritrea (V1-V7). Three categories of habitat requirement were recognised: under deep 

shade/forest, widely distributed amongst habitats and forest-margin. Tree species were 

classified into shade/forest-habitat, wide-habitat/generalist and forest-margin on the 

basis of the description of which habitats they are present in given in the Flora of 

Ethiopia and Eretria (1989-2009); Bekel et al., 1993; Fichtl and Admasu, 1994). 

Epiphyte species were classified into forest-habitat/forest specialist and wide-habitat 

species. They classification was also informed by information about habitat association 

given by Sebsebe et al. (2004) and in the Flora of East Africa (Vol.3). I combined 

information from these two sources to obtain the most parsimonious classification for 

each species. For geophytic fern species two different categories of habitat-association 

were used: deeply shaded/moist forest and forest-margin (Flora of Ethiopia Vol. 1; 

White et al., 2001; Roux, 2001; Roux, 2003; Sebsebe et al., 2004; Archer and Victor, 

2005; Burrows, 1990). In addition, two separate classifications of epiphyte species was 

made according to their morphology: (a) two categories of leaf texture 

(leathery/succulent or (thin) herbaceous) and (b) two categories of stem type 

(woody/pseudobulbus or herbaceous stem) using information from the same literature 

sources cited above. Fern species were also classified morphologically according to (a) 

two categories of rhizome orientation (creeping or erect); (b) two categories of frond 

arrangement (spaced or tufted) (my own personal field observation; Burrows, 1990). 

Shrub and vine species were classified into forest-habitat and forest-margin/wide-

habitat species. Both forest-margin and wide-habitat shrub and vine species were pooled 

together and considered as one functional group since it was difficult to separate the two 

groups into independent functional groups by the available literature.  
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5.2.4 Environmental data, fragmentation indices and landscape descriptors 

 

The cumulative effect of disturbance from (a) grazing, (b) gathering of non-timber 

forest products and (c) forest clearance for cultivation in each 20 x 20 m sample plot 

was subjectively evaluated in five categories from minimum 0 to maximum 4. The 

disturbance score of each interior habitat 20 x 20 m plot in single patch was summed 

and divided by eight to get mean disturbance score for single patch. The disturbance 

score for the edge habitat of each patch was calculated in the same way. For each patch 

altitude was recorded using a GPS (Garmin 60) located at the centre of the patch during 

the field survey. Rainfall data for the years 1986-2009 were obtained for the 24 

monitored meteorological stations in the study area from the Ethiopian Metrological 

Agency. From these mean annual rainfall was estimated for each patch using the 

methods described in chapter 2. The boundary of each patch was determined in a GIS-

based land-use/land-cover map generated from a Spot 2007 image (as described in 

Chapter 3). Fragmentation indices (patch size, shape, fractal dimension and edge 

density) for each patch were then extracted from this map. To estimate land cover in the 

matrix surrounding each patch, the proportion of forest land, farm and settlement land, 

grazing land and wooded grassland) within 100 m distance outwards from the patch 

edge was calculated using Patch Analyst (Arc GIS 9.2 extension) (Elkie et al., 1999). 

 

 

5.2.5 Data analyses 

5.2.5.1 Overall species composition  

 

Assessment of the total species composition recorded across the 18 patches in the edge 

and interior habitats was based on a total of 144 sample plots (5.76 ha) in each habitat. 

The species in each were classified by life form (tree, shrub, vine, geophytic angiosperm 

herb, vascular epiphyte and geophytic fern). 
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5.2.5.2 Species composition and diversity in edge and interior  

 

Differences in patch composition (based on individual species) between edge and 

interior habitats were tested using the ANOSIM randomization test (Clarke 1993). This 

technique is based on a Bray-Curtis dissimilarity matrix. Hence, a vegetation data 

matrix using presence/absence, comprising species X plots was constructed separately 

for trees, shrubs, vines, geophytic angiosperm herbs, vascular epiphytes and geophytic 

ferns both for the interior and for the edge habitats. The Similarity Percentage Analysis 

(SIMPER) described by Clarke (1993) and available in CAP 4 (Community Analysis 

Package 4) (Seaby and Henderson, 2007) was used to identify discriminating species. It 

calculates the average Bray-Curtis dissimilarity between pairs of inter-group samples 

(i.e. all sample plots in edge habitat against all sample plots of interior habitats). The 

Bray-Curtis dissimilarity measure incorporates the average dissimilarity between 

sample plots in edge and interior habitats and expresses this in terms of the average 

contribution from each species (Clarke, 1993). Then, the average abundance of shrub, 

vine and herb calculated using SIMER analysis were used to test the difference between 

edge and interior for selected functional groups (forest-habitat and forest-margin/wide-

habitat species).    

 

 

5.2.5.3 Structural composition of woody species between edge and interior habitats 

 

In each patch, individual tree density (number of individual trees/plot area) was 

calculated for trees, saplings and seedlings. Likewise, basal area (m
2
/ha) was calculated 

for trees ≥ 5 cm DBH. The importance value of each species in edge and interior 

habitats was calculated from their relative basal area, relative density and relative 

frequency (amongst the 20 x 20 m sample plots). The significance of differences in 

individual tree density and basal area between edge and interior habitats was tested for 

all species combined using two-way ANOVA. The model for the ANOVA treated each 

patch as a unit of replication (thus the data for the eight 20 x 20 m sample plots in each 

habitat type were combined to a single value for each patch). The importance value of 

selected tree functional groups based on their habitat characteristics also tested between 

edge and interior.     
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5.2.5.4 The effect of fragmentation, disturbance and environmental variables 

 

As a test of fragmentation effects (Kupfer and Malanson, 1993) the influence on species 

composition of patch area, shape, edge density, disturbance, altitude, rainfall, slope, 

aspect and proportion of land-uses and land-covers in the surrounding matrix within 100 

m of each patch was assessed using Canonical Correspondence Analysis (CCA). Before 

applying CCA, a multicollinearity test was conducted and highly correlated variables 

(which were patch area, land-use and land-cover proportion and slope aspect derived 

from the digital elevation model) were discarded. To explore the significance of the 

association of the above independent variables with the dependent vegetation variables 

Pearson correlation analysis was performed. The dependent variables were interior-

habitat species richness (woody species), edge-habitat species richness (woody species), 

interior-habitat individual density (trees ≥ 5 cm DBH), edge-habitat individual density 

(trees ≥ 5 cm DBH), interior-habitat tree basal area and edge-habitat tree basal area 

within each forest patch. All statistical analyses were performed using QED Statistics 

1.0 (obtained from PISCES Conservation Ltd, UK). QED Statistics is a Windows 

program that offers all the standard statistical methods used in science (Seaby and 

Henderson, 2007). The correlation of some individual species to each environmental 

variables also tested using Pearson correlation.     

 

5.2.5.5 Vascular epiphytes and geophytic ferns 

 

The significance of differences in species richness and individual density of vascular 

epiphytes and geophytic ferns between patch-edge and patch-interior habitats was tested 

using ANOVA. As above, the model for the ANOVA treated each patch as a unit of 

replication (thus the data for the eight 20 x 20 m sample plots in each habitat type were 

combined to a single value for each patch).The diameter of each epiphyte’s host tree, 

the overall density of host trees and the density of epiphytes on these host trees were 

used as variables to test for differences between patch-edge and patch-interior habitats 

using same model of ANOVA. The relationship between host tree diameter and 

epiphyte density was tested using Pearson correlation separately for the patch-edge and 

patch-interior habitats in order to compare the results between edge and interior for each 
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patch. The density (number of individuals of each species) of geophytic ferns was 

compared between the two habitats.  

 

 

The species rank-abundance for both vascular epiphytes and geophytic ferns was 

performed using density of each species in all 144 plots. Variation amongst different 

vascular epiphyte and geophytic fern species in their density between patch edge and 

interior habitats was assessed in terms of their functional/ecological type (habitat 

association and morphology). The species for epiphytes were classified according to 

habitat association (forest-habitat, wide-habitat) and morphology (woody and 

pseudobulbous stem, herbaceous stem, leathery and succulent stem and herbaceous 

leaf). The species of fern were classified by habitat association (forest-habitat, forest-

margin species) and morphology (creeping rhizome, erect rhizome, spaced frond, tufted 

frond). The density of individual plants of all the species of one type/functional group 

were lumped together into a single pool and a single score calculated in interior as well 

as edge habitat (i.e. the unit of replication for this test was individual species).  

 

5.3. Results 

5.3.1 Overall species composition  

 

A total of 465 species belonging to 305 genera and 98 families were recorded in the 

sample plots across the 18 forest fragments. Geophytic angiosperm herbs were the 

dominant growth form (133 species, 28.6%), followed by trees (104 species, 22.4%), 

shrubs (94 species, 20.2%) vines (64 species, 13.8%), vascular epiphytes (50 species, 

10.8%) and geophytic ferns (30 species, 6.5%). Of these, 30 species (6.5%) were 

endemic to Ethiopia (11 herbs, 10 shrubs, 4 trees, 3 vines and 1 epiphyte). Only three of 

the recorded species, Eucalyptus camldulensis, Eucalyptus globulus and Cupressus 

lucitanica, recorded in the edge of two fragments (Jireen, Bussa-Jireen), were non-

native (for the list of all plant species, see Appendix 5.18). 
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5.3.2 Structural composition of trees of patch interior versus edge habitat  

 

The interior habitats and edge habitats showed considerable variation amongst patches 

in their structural composition (density, basal area and population size class structure). 

Individual tree density ranged from 418.8 ha
-1

 to 878.1 ha
-1 

in the interior and from 350 

ha
-1

 to 725 ha
-1

 in the edge habitats (Appendix 5.3, Figure 5.1). Therefore, the mean tree 

density did not differ significantly between interior (621.7 ± 127.0 ha
-1

) and edge (559.4 

± 94.8 ha
-1

) habitats (t = 1.69, DF = 17, p > 0.05). 

 

 

 

 

 

  

 

 

 

 

Figure 5.1 Box plot depicting individual tree density (trees ha
-1

) in edge and interior habitats in 

18 forest patches in the Illubabor Zone of south-west Ethiopia. The horizontal line through each 

box depicts the median; the box depicts the central 50
th
 percentile of data and the ends of the 

whiskers show the smallest and largest values. 

 

Tree basal area was significantly higher in patch interior habitat (96.8±9.4 m
2 

ha
-1

 with a 

range of 75.9- 113.1 m
2 

ha
-1

 amongst the patches) than edge habitat (77.2±15.3 m
2 

ha
-1

 

with a range of 39.7-101.7 m
2 

ha
-1

) (Figure 5.2, Appendix 5.3, t=4.61, DF=17, p < 

0.05). Trees in the interior had slightly larger average DBH (15.16 cm) than those 

located in the edge habitat (14.85 cm).  
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There are 201 (3.4% of the total individual trees recorded) and 336 (4.8%)) big 

individual trees > 100 cm DBH in edge and interior habitat respectively. This indicates 

that large trees were selectively extracted from edge habitat, while a few original 

canopy trees of species such as Syzygium guineense, Pouteria adolfi-friederici and 

Prunus africana still persisted. The total basal area in interior and edge habitats was 

greatly influenced by these large trees in the plots. When individual species are 

considered, the highest proportion of basal area in the interior habitat was accounted for 

by widely-distributed species: Syzygium guineense (13%), Pouteria adolfi-fredericii 

(8.2%), Prunus africana (6.3%) and Millettia ferruginea (5.7%)  and forest-margin 

species: Albizia gummifera (6.6%) (Appendix 5.2). The forest-margin species are more 

common in gaps created by disturbance. 

 

The highest proportion of basal area for edge habitat was also accounted for by 

Syzygium guineense (11.7%), here 

followed by other widely-distributed 

species such as Croton 

macrostachyus (8.4%), and the 

forest-margin species Maesa 

lanceolata (6.9%) and the forest-

habitat species Macaranga capensis 

(7.7%). In the edge habitat Maesa 

lanceolata was noTable for having a 

high density of trees rather than 

large individual trees. 

 

 

Figure 5.2 Box plot depicting stand basal area (m
2
 ha

-1
) in edge and interior habitats in 18 forest 

patches in the Illubabor Zone of south-west Ethiopia. The horizontal line through each box 

depicts the median; the box depicts the central 50
th
 percentile of data and the ends of the 

whiskers show the smallest and largest values. 

 

Overall abundance, as indicated by the Importance Value Index, showed a similar 

pattern amongst species to basal area (Appendix 5.1 & 5.2). In the patch-interior habitat 

the most abundant species were forest-margin and widely-distributed that dominated the 
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canopy (Appendix 5.2). However, the next sets of species in abundance rank were in the 

forest-habitat specialist group and were typically found below the main canopy (Table 

5.1). The most abundant tree species in the edge habitat (at ≥ 10% IVI threshold) were 

indicated under Appendix 5.1 and 5.2.  

 

 

The trees of edge and of interior habitat of the 18 patches were grouped into 11 size 

classes with 10 cm intervals. The edge habitat is characterized by a small number of 

individuals in the first class (5-14.9 cm DBH) and a large number of individuals in the 

second class (15-24.9 cm DBH) (Figure 5.3a). Then, the second class decreased sharply 

to the third class and the third to fourth.  After that there was a gradual decline of 

numbers towards the larger size classes (> 105 cm DBH). In contrast, the first size class 

(5-14.9 cm DBH) in the interior habitat is characterised by a large number of 

individuals (Figure 5.3b). There is a sharp decrease in numbers from the second class 

(15-24.9 cm DBH) to the third class (25-34.9 cm DBH).  Then from the third class there 

is a gradual decrease toward the larger classer. It is only > 105 cm DBH that the interior 

habitat has a higher density of individuals than the edge, which is the sole important 

cause of the higher basal area in the interior habitat than the edge. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 Individual size class distributions of all tree species in (a) edge and (b) interior 

habitat of 18 forest patches (5.76 ha interior and 5.76 ha edge). Absolute density of stems in 

each size class is shown for all individuals in the sample plots. Size class intervals are 10 cm: 1 

= 5-14.9, 2 = 15-24.9, 3 = 25-34.9, 4 = 35-44.9, 5 = 45-54.9, 6 = 55-64.9, 7 = 65-74.9, 8 = 75-

84.9, 9 = 85-94.9, 10 = 95-104.9 and 11 = > 105 cm. 
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Canopy height and stand vertical structure varied between interior (Figure 5.4a) and 

edge (Figure 5.4b) habitats. The number of individual trees > 22 m height is > two times 

larger in interior than edge (Figure 5.4b). The average maximum tree height per patch 

was also significantly higher in the interior (15.01 ±1.4 m) than the edge (11.2 ±1.5 m) 

habitat (F = 9.72, df = 17, p < 0.005). Across all patches absolute maximum height in 

the interior habitats was 45 m, whereas in the edge it was 25 m. 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 Height classes (in m) of tree species in (a) interior and (b) edge habitat of 18 forest 

patches (5.76 ha interior and 5.76 ha edge). Numbers shown above bars are the number of 

individual trees per class. 

 

5.3.3 Species richness  

 

The range of edge and interior habitat tree species richness amongst the 18 patches was 

18-36 and 18-45 for interior and edge respectively (Appendix 5.3). The mean 

(±1.96*SE) species richness for the interior habitat is 28.0±2.4 and edge 31.4±3.3; the 

difference was on the borderline of significance (t = 2.119, DF = 17, P = 0.05,Figure, 

5.5a). Likewise, the range of total woody species richness (sum of tree, shrub and vine 

species) was 39-65 for the interior habitat and 47-90 for the edge. The mean was 

significantly lower for the interior (52±3.5) than for the edge (69.3±5.9) (t= -5.4, 

DF=17, p < 0.05, Figure 5.5b) 
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Figure 5.5 Mean (± one confidence interval, 1.96*SE) species richness of (a) tree species and 

(b) all woody species  in interior and edge habitat of 18 patches. 

 

 

5.3.4 Woody and herbaceous species composition similarity between edge 

and interior habitats 

 

The species composition of trees, shrubs, vines and geophytic angiosperm herbs were 

each significantly different between patch edge and interior habitats (Table 5.1). 

 

Table 5.1 Non-parametric analyses of similarity (ANOSIM) for differences in the rank similarities of 

species for two habitat types (edge and interior) grouped by species presence/absence and composition for 

trees, shrubs, vines and herbs. ANOSIMs were calculated based on Bray–Curtis similarity. 

 

Pairwise comparison  

interior X edge 

No. of permutations  R P Value Significance level (1 %) 

Tree 1000 0.41 0.001 0.01 

Shrub 1000 0.18 0.001 0.01 

Vines 1000 0.24 0.001 0.01 

Heb 1000 0.42 0.001 0.01 

 

The habitat associations of the individual species are shown in Appendix 5.8 and 5.9 for 

woody species and herbs respectively. In addition, the species with importance value 

(IVI) ≥ 1.5% in either habitat (edge or interior) are shown in Table 5.2 and the 

difference in abundance between these two habitats for each of the three species 

functional (distribution) groups was tested using ANOVA. The tests indicate that tree 

species in the forest-habitat specialist group had higher abundance in the interior than 
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the edge habitat (ANOVA, F= 10.22, P < 0.05, Figure 5.6a) whereas the forest-margin 

specialist group species were more abundant in edge habitat (F= 9.17, p < 0.05) (Figure 

5.6b) but the species in the wide-distribution group showed no difference between the 

two habitats (F=0.27, P > 0.05, Figure 5.6c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6 The abundance (IVI)) of tree species (restricted to those with an IVI > 1.5%) of three 

different distribution functional groups in edge and interior habitats: (a) forest-specialist species 

(b) wide-distribution species and (c) forest-margin species. 
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Table 5.2 Three components and total (IVI) abundance in edge and interior habitat of all tree species with 

an importance value > 1.5% in either habitat, or both. 

 

Functional (distribution) 

groups 

Relative 

dominance 

Relative  

density 

Relative 

frequency  

IVI 

Forest-habitat species Edge Interior Edge Interior Edge Interior Edge Interior 

Macaranga capense  7.7 6.6 7.9  5.4 5.7  4.5 7.1 5.5 

Vepris dainelli   0.3 5.3 1.4  3.6 0.6  2.9 0.8 4.0 

Chionanthus mildbraedii   0.2 5.1 0.8  3.7 1.1  5.1 0.7 4.6 

Oxyanthus speciosus   0 3.1 0  0.6 0  3.6 0 2.5 

Canthium oligocaprpa  0.8 2.5 1.1  1.9 1.4  1.4 1.1 1.9 

Cassipurea malosana  0.5 2.0 0.3  1.8 0.5  2.3 0.4 2.0 

Dracaena fragrans  0 1.1 0  5.8 0  3.8 0 3.6 

Galinera saxifraga  0.4 1.0  1.0 3.6  1.0 4.4 0.8 3.0 

Mean (±SE)       1.4±0.8 3.4±0.5 

         

Wide-distribution species            

Syzygium guineense   11.7 21.6  10.5 16.7  6.3 7.4 9.5 15.2 

Croton macrostachyus   8.4 10.9 9.5  4.4 6.9  3.7 8.2 6.3 

Bersama abyssinica   2.1 5.9 5.9  1.8 5.4  2.1 4.5 3.3 

Prunus africana   4.8 1.3 1.8  5 2.5  3.6 3.0 3.3 

Allophylus abyssinicus   2.1 4.2 2.5  5.5 3.2  3.4 2.6 4.4 

Pouteria adolfi-friederici  4.5 3.3 2.3  0.9 2.1  1.3 2.9 1.8 

Mean (±SE)       5.1±1.2 5.7±1.9 

         

Forest-margin species            

Maesa lanceolata   6.9 0.9 11.7  0.6  6.0 0.2 8.2 0.6 

Rhus quartinana 2.3 0 3.6 0 3.2 0 2.7 0 

Nuxia congesta   4.2 0.4 3.6  1.7 3.2  1.9 3.7 1.4 

Albizia gummifera   4.2 2.1 2.6  2.6 3.1  3.1 3.3 2.6 

Milletia ferrugina   4.2 2.5 4.4  1.3 3.7  2.8 4.1 2.2 

Albizia schimperiana   3.4 0.4 2.4  0.8 4.3  1.5 3.4 0.9 

Mean (±SE)       4.2±0.03 1.3±0.02 

 

As stated above ANOSIM also showed a significant difference in shrub species 

composition between edge and interior habitats (Table 5.1). The habitat association of 

shrub, vines and herbs calculated by SIMPER (Clark, 1993) and species with ≥ 0.5 

average abundance value in either habitat were also tested using ANOVA. The 

composition of shrub species in the forest-margin/wide-habitat functional (distribution) 

group showed a significant difference between edge than interior habitats (ANOVA, F = 

35.29, p < 0.05, Figure 5.7a). In contrast, for the forest- specialist species there was no 

significant difference (ANOVA, F=1.26, p > 0.05).  During the field work it was 
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observed that the number of shrubs in the margin group was far higher than in the 

forest-specialist group.  

 

There was also a significant different between edge and interior habitats in the 

composition of vine species (ANOSIM, Table 5.1). Like shrubs, vine species in the 

forest-margin functional (distribution) group were more abundant in edge habitat 

(ANOVA, F = 38.40, p < 0.05, Figure 5.7b, Appendix 5.10), while forest-specialist 

species did not differ significantly between the two habitat types (F = 5.24, p > 0.05, 

Figure 5.7b, Appendix 5.11). Most of the forest-margin group vine species were 

observed to be present in the surrounding matrix and to be invading the patch from its 

edge after disturbance. At the edge of some forest fragments (such as Sibu1, Sibu2, 

Tulumako, Lagachancho and Gobe), they formed impenetrable thick entanglements 

intermingled with other woody species and appeared to restrict establishment and 

growth of tree seedlings (though they may also have provided some protection against 

browsing livestock). In almost all sampled patches, the forest-margin group lianas 

Sericostachys scandens, Oncinotis tenuiloba and Gouania longispicata were observed 

to form dense growth up the trunk of canopy trees and might have restricted rates of tree 

growth due to their weight on the tree crowns.  

 

The composition of angiosperm geophytic herbaceous species is also different between 

the two habitat types (ANOSIM, Table 5.1, Appendix, 5. 12). This could be due to the 

presence of more ruderal species in edge than in interior habitats. However, the average 

abundance of both forest-specialist and forest-margin functional (distribution) groups 

did not differ significantly between edge and interior habitats (F = 7.3, p > 0.05; F = 6.0, 

p > 0.05 respectively, Figure 5.7c) 
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Figure 5.7 The difference in average abundance (for species with ≥ 0.50 average abundance as 

calculated by SIMPER) in edge and interior habitats of (a) shrub, (b) vine and (c) geophytic 

angiosperm herb species in two different functional (distribution) groups. Results are shown as 

a box plot: the horizontal line through each box depicts the median, the box depicts the central 

50
th
 percentile of data, and the two whiskers indicate the highest and lowest values. 
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5.3.5 Environmental, fragmentation and disturbance impacts on structure and 

species composition in patch edge and interior habitats 

 

Tree individual density in both habitat types was not associated with any fragmentation 

variables (patch size r = 0.14, p = 0.57 and r = 0.04, p = 0.86; patch shape r = 0.27, p = 

0.28 and r = 0.06, p = 0.80; edge density r = 0.37, p = 0.12 and r = 0.06, p = 0.8 for 

interior and edge respectively) or environmental variable (cumulative disturbance r= 

0.26, p= 0.28 and r= 0.31, p = 0.20; rainfall r = 0.04, p = 0.87 and r = 0.11, p = 0.65; 

altitude r = 0.28, p = 0.27 and r = 0.25, p = 0.30 for interior and edge respectively). 

Likewise tree basal area and mean tree height in both habitats were not associated with 

fragmentation variables i.e. patch size, patch shape, edge density and environmental 

variables rainfall, altitude and slope. However, in the patch edge, but not in the patch 

interior, they were both significantly lower with greater cumulative disturbance (basal 

area r = -0.86, p < 0.05; height: r = -0.77, p < 0.05). 

 

 

5.3.6 Ordination 

 

Correlations amongst the environmental variables were tested using Pearson correlation 

analyses (Table 5.3). Rainfall and slope angle both increase with altitude, whilst patch 

interior disturbance (due to clear cutting, grazing and firewood collection) decreases 

with altitude. This disturbance was associated with coffee management which decreased 

with altitude and was rarely observed above 2000 m. Slope angle is positively 

associated with patch shape but negatively associated with patch edge density, interior 

disturbance and especially edge disturbance. Interior disturbance and edge disturbance 

are positively correlated.  However, whilst edge disturbance is negatively correlated 

with patch shape, interior disturbance is not related to it. Similarly while interior 

disturbance is strongly positively correlated with edge density, edge disturbance is only 

weakly (and non-significantly) correlated with it. 
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Table 5.3 Preseason correlation coefficients (r) for relationships amongst environmental and disturbance 

variables for 18 forest patches in Illubabor Zone south-west Ethiopia. 

 

  Altitude Rainfall Patch shape Edge density Interior 

disturbance 

Edge 

disturbance 

Altitude       

Rainfall 0.60*      

Patch shape 0.14 0.18     

Edge density -0.41 -0.20 -0.32    

Interior disturbance -0.55* -0.23 -0.12 0.67*   

Edge disturbance -0.28 -0.35 -0.56* 0.35 0.51*  

Slope 0.55* 0.51* 0.56* -0.56* -0.49* -0.71* 

* P < 0.05 

 

The Canonical Correspondence Analysis (CCA) model fitted to the tree species x 

patches data against the environmental variables listed in Table 30 showed two axes to 

be significantly associated with the species distribution in a Monte Carlo test (P < 0.05, 

Figure 5.8, Table 5.4). However, total variation in species distribution explained by the 

first two axes was only 26% and even by the first four axes was just 38%; the total 

inertia was 1.5 (Table 5.5). The first axis (Eigenvalue 0.22) mainly represented altitude, 

rainfall and patch shape (which were very closely linked) versus edge disturbance 

(Table 5.6). Axis 2 (Eigenvalue 0.16) was most strongly linked with edge density and 

interior disturbance. No environmental variables were strongly linked with axes 3 or 4. 

The axes scores for individual plant species are shown in Appendix 5.4  

 

Pooled mean score (mean±SE) of selected species functional groups (based on their 

habitat preference) is indicated on both axes (Appendix 5.17). Forest-specialist 

functional group species are scored (0.47±0.19 and 0.91±0.29 on axis 1 and axis 2 

respectively). The distribution of these species along these axes showed no significant 

difference (t = -1.077, p > 0.05). However, the mean of these species is higher in axis 

two. Species in the wide-habitat and forest-margin functional groups scored 0.57±0.21 

and 0.55±0.19, and 0.70±0.09 and 0.69±0.23 on axis 1 and axis 2 respectively. Likewise 

the two functional groups are not significantly difference along the two axes’ gradients 

(t = 1.254, p = 0.05 and t = 0.06, p > 0.05 respectively).  

 

 

 



161 

 

Table 5.4 Results of 1000 Monte Carlo tests of the significance of the axes of a CCA of tree species in 18 

forest patches in Illubabor Zone south-west Ethiopia. 

 

Axis Axis 1 Axis 2 Axis 3 

Actual Eigenvalues 0.2196 0.1566 0.0926 

Eigenvalue results from simulation       

Mean 0.1578 0.1156 0.0925 

Maximum 0.2412 0.1624 0.1297 

Minimum 0.0960 0.0827 0.0713 

Probability 0.0070 0.0030 0.4705 
 

 

 

Table 5.5 Variance and Eigenvalues of a CCA of tree species in 18 forest patches in Illubabor Zone 

south-west Ethiopia. 

 

    Axis1 Axis2 Axis3 Axis4 

Total variance (inertia) in species data 1.5         

Eigen value   0.220 0.157 0.093 0.087 

% variance explained   15.083 10.755 6.360 5.944 

Cumulative % variance   15.083 25.838 32.198 38.142 

Multiple correlation species/environment scores   0.947 0.969 0.971 0.919 

Sum of canonical Eigen values 0.718         

   

 

Table 5.6 Axis scores for environmental variables tested in a CCA of tree species in 18 forest patches in 

Illubabor Zone south-west Ethiopia. 

Environmental 

variables  

Axis 1 Axis 2 Axis 3 Axis 4 

Altitude 0.297 -0.216 0.012 -0.038 

Rainfall 0.232 -0.171 -0.064 0.163 

Patch shape 0.169 -0.184 -0.024 0.061 

Edge density 0.002 0.336 -0.070 0.050 

Interior disturbance -0.074 0.269 0.101 0.166 

Edge disturbance -0.296 0.100 0.127 0.028 
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Figure 5.8 First and second axes of a CCA of all woody species (red) in 18 forest patches (blue) 

and six environmental variables in the Illubabor Zone of south-west Ethiopia. Species 

abbreviations are given in Appendix 5.5 

 

Inferred ranking of the species along the environmental variables tested in the CCA 

enables us to identify species that are particularly positively or negatively correlated 

with each chosen environmental variable (Henderson and Seaby, 2007). The position of 

each species is projected onto the line formed by the environmental vector. The closer 

the point (species) to the line of the environmental vector, the higher its correlation with 

that environmental variable. The plots for edge disturbance and altitude (the two 

variables most strongly negatively and positively associated with axis 1 respectively) 

are shown in Figures 5.9 and 5.10. The arrow shows the direction of increasing 

magnitude for these environmental variables. Hence the proportion of species closely 

associated with high (> 2 axis score), medium (> 1 but < 2 axis score) and low (< 1 but 

> 0) values of altitude in a positive direction on axis 1 and high (> -2 axis score), 

medium (> -1 but < -2) and low (< -1 but > 0) value of edge disturbance in a negative 
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direction on axis 1 was quantified. Twelve (13.8%) of species scored a high value, 

11.5% a medium value and 19.5% a low value of altitude (Figure 5.9). 

 

Figure 5.9 CCA biplot showing the inferred ranking of species along the vector of altitude for 

18 forest patches in Illubabor Zone south-west Ethiopia. Species abbreviations are given in 

Appendix 5.5 

 

Likewise, seven (8.1%), 18 (20.7%) and 23 (26.4%) of species scored high, medium 

and low values respectively of edge disturbance in a negative direction on CCA axis 1 

(Figure 5.10). The three species placed at the extreme end of edge disturbance are 

Albizia grandibracteata, Rhus glutinosa and Nuxia congesta. These species were as all 

in the forest-margin functional (distribution) group. Similarly, 11 (12.6%), nine (10.3%) 

and 21 (24.1%) species scored high, medium and low values respectively of edge 

density in a positive direction on CCA axis 2, and eight (9.2%), 17 (19.5%) and 21 

(24.1%) species scored high, medium and low values respectively of edge density in a 

negative direction (Figure 5.11, Appendix 5.14). Bridelia micrantha is placed at the 

extreme end of  a positive association with high edge density while Mimusops kummel, 
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Ficus thonningii and Coffea arabica were less strongly positively associated with high 

edge density (Figure 5.11). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10 CCA biplot showing the inferred ranking of species along the vector of edge 

disturbance for 18 forest patches in Illubabor Zone south-west Ethiopia. Species abbreviations 

are given in  Appendix 5.5 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5.11 CCA biplot showing the inferred ranking of species along the vector of edge 

density for 18 forest patches in Illubabor Zone south-west Ethiopia. Species abbreviations are 

given in  Appendix 5.5 
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5.4 Patterns of epiphyte and fern distribution and their response to fragmentation 

 

5.4.1 Vascular epiphyte species richness, abundance and patterns of distribution in 

forest patch interior and edge habitats 

 

A total of 50 vascular epiphyte species were recorded on 995 trees in the interior and 28 

species on 293 trees in the edge habitat. Of these, 57% were orchids, 35% were ferns 

and 8% were in other groups of vascular plants (Appendix 5.6). Total vascular epiphyte 

species richness per patch was significantly greater in the interior habitat 

(mean±1.96*SE, 28.9±1.8; range 22-36) than the edge habitat (mean ± 1.96*SE, 

13.6±1.4; range 7-19) (t = 8.957, DF 17, p < 0.05, Figure 5.12, Appendix 5.13).  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 The mean (± confidence interval, 1.96*SE) species richness of epiphytes in interior 

and edge habitat of 18 forest patches in Illubabor Zone south-west Ethiopia. 

 

 

The most frequent species of vascular epiphyte in the interior habitat was Peperomia 

tetraphylla which was recorded in 123 (85.4%) of the interior plots and in all 18 forest 

patches. This species belongs to the leathery leaf and succulent stem functional 

(morphological) groups. Five other species also occurred in ≥ 50% of the interior habitat 

plots, whereas no species occurred in ≥ 50% of the edge habitat plots (Appendix 5.6, 
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Figure 5.13). Twenty six species were noTable for having a frequency more than 5% 

greater in the interior than the edge plots, whereas only two species had a frequency 

more than 5% greater in the edge than the interior plots.  

 

Figure 5.13Frequency of vascular epiphyte species in edge and interior habitats in 18 forest 

patches in the Illubabor Zone of south-west Ethiopia. Frequency is shown as the number of the 

144 sample plots in each habitat in which  the species was present. The species are classified 

into four colour-coded groups based on their relative distribution between the two habitats: (a) 

restricted to interior (absent from edge); (b) more abundant in interior (> 2.5 times higher 

frequency in interior); (c) similar in abundance in edge and interior (< 2.5 times different 

frequency between the two); (d) more abundant in the edge (> 2.5 times higher frequency in 

edge). 
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5.4.2 Distribution of vascular epiphyte plants between interior and edge habitats 

and effects of patch fragmentation and disturbance on density distribution 

 

Combining all vascular epiphyte species together, the density of individual plants (or 

clumps) was significantly higher in the interior habitat (mean ±SE 114.5±6.3, range 62 - 

158/m
2
) than the edge habitat (mean±SE 42.7±3.7, range 24 - 85/m

2
) of the 18 forest 

patches (t = 10.829, df = 17, p < 0.05). However, none of the tested indices of patch 

fragmentation had a significant effect on density distribution: patch size (r = 0.28, p = 

0.24), shape (r = 0.31, p = 0.19) and edge density (r = -0.13, p = 0.58). Other 

environmental factors such as rainfall and altitude did not show a significant effect 

either (r = 0.346, p = 0.15 and r = -0.091, p = 0.71). In contrast, forest disturbance 

showed different effects on epiphyte density between the two habitats. While the 

interior habitat cumulative disturbance score showed no effect on epiphyte density (r= 

0.078, p = 0.7) in the edge the cumulative disturbance score had a significant effect on 

epiphyte density (r = -0.75, p = 0.00032). 

 

 

The mean (±SE) density of host trees with vascular epiphytes in the interior habitat 

(55.3±8.4) was higher than in the edge (16.4±8.5), (paired sample t-test, t = 13.5, df = 

17, P < 0.05, Figure 5.14a). Epiphytes were recorded on host trees ranging greatly in 

size. The size range was 7-520 cm DBH in the interior and 13-350 cm DBH in the edge 

and the density of epiphytes was significantly positively correlated with host tree DBH 

in both habitats (interior, r = 0.72, df = 17, p = 0.004; edge, r = 0.87, df = 17, p = 0.002, 

Figure 5.15a & b respectively). However, the mean DBH of host trees was not 

significantly different between the interior (86.8±5.9) and edge (88.2±6.2) habitats (t = -

0.17, df = 17, P > 0.05, Figure 5.14c) though it was highly variable per patch within 

both habitats (41.4-125.5 cm DBH in the interior and 52.0-142.5 cm in the edge, 

Appendix 5.13)  
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Figure: 5.14 Box plots of (a) individual density of host trees bearing epiphytes, (b) density of 

epiphytes per patch (plot/m
2
), (c) mean host tree DBH (cm)  in edge and interior habitats in 18 

forest patches in Illubabor Zone south-west Ethiopia. The centre line shows the median, the box 

depicts the central 50
th
 percentile of data, the whiskers depict the smallest and greatest value in 

the distribution.  
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Figure 5.15 Relationship between host tree trunk diameter and number of individuals/clumps of 

vascular epiphytes in (a) interior and (b) edge habitats of 18 forest patches in Illubabor Zone 

south-west Ethiopia. 

 

 

Species rank abundance (dominance-diversity) curves (Magurran (2004) for vascualar 

epiphyte species showed a different shape in edge and interior habitats (Figure 5.16). In 

both habitats the community was dominated by three epiphyte species (Peperomia 

tetraphylla followed by Peperomia rotundifolia and Asplenium theciferum). Epiphyte 

abundance showed a sharp decrease with species rank over the first five species before 

flattening in the interior habitat while showing a more moderate decline over the first 

eight species before flattening in the edge (Figure 5.16). In the interior habitat  25 of the 
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50 species were “rare” (with an abundance <  10 per 400 m
2
 of sample plots, whereas 

for edge habitat only 4 of the 28 species were this rare. 

 

 
 

Figure 5.16 Rank abundance curves of vascular epiphyte species in interior and edge habitats in 

18 forest patches in Illubabor Zone south-west Ethiopia. The index of abundance was density 

(number of individuals per 400 m
2
 of sample plots). 

 

 

The distribution of epiphytes amongst host trees of different DBH differed between 

interior and edge habitats (Figure 5.17a & b). The DBH of tree stems with epiphyte 

were grouped into 11 classes with 10 cm intervals. The percentage of individual tree 

stems with epiphytes generally increased with DBH in both habitats (though in the edge 

habitat there was no increase between 75 cm and 95 cm DBH (Figure 5.17). In the edge 

habitat, more than 95% of vascular epiphyte individuals were recorded on host trees > 

30 cm DBH, compared with 85% in the interior. The percentage of individual trees < 30 

cm DBH with epiphytes was more than 3 times greater in the interior habitat (9.9%) 

than the edge (3.2%). In terms of epiphyte density, individual trees supported from 1 to 

54 epiphyte individuals clumps in interior habitat and 1-25 in edge. The mean number 

of epiphytes per individual host tree stems< 30 cm DBH in interior habitat (3.3%) was 

twice as greater as in edge habitat (1.3%). However, in both habitats the mean number 
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of epiphytes increased with host stem DBH (Figure 5.17a & b) for the first five classes 

(10-19.9 cm to 50-59.9 cm) in the interior and for the first four classes for the edge 

habitat (10-19.9 cm to 40-49.9 cm). The distribution between 70 cm and 109.9 cm DBH 

showed more or less even number of epiphytes per host stem in the interior habitat 

while it kept increasing gradually in the edge habitat.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.17 The distribution of vascular epiphytes between host tree stems of different DBH 

classes in a) interior habitat, b) edge habitat in 18 forest patches in Illubabor Zone south-west 

Ethiopia. The tree stems on which epiphytes were recorded are grouped into eleven classes with 

10 cm DBH intervals. The minimum DBH for the classes is 10 cm (1= 10-19.9, 2 = 20-29.9, 3 = 

30-39.9, 4 = 40-49.9, 5 = 50-59.9, 6 = 60-69.9, 7 = 70-79.9, 8 = 80-89.9, 9 = 90-99.9, 10 = 100-

109.9, 11= > 110 cm). 
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5.4.3 Abundance of epiphyte functional groups in edge and interior forest habitats 

 

The recorded epiphyte species were classified into two functional groups according to 

known distribution (forest-specialist species, forest-margin/widely-distributed species) 

and four functional groups according to morphology (woody and pseudobulbus 

stemmed species, herbaceous stemmed species, leathery and succulent leafed species, 

herbaceous leafed species) in order to compare their distribution between interior and 

edge forest habitats (Table 5.7, Appendix 5.6 and 5.15). Woody and pseudobulbous 

stems were classified into a single group, and leathery and succulent leaves were also 

classified into a single group. The forest-specialist species distribution functional group 

(mean±SE*1.96, interior = 41.4±17.9, edge = 15±10; paired t-test, t = 4.9, p < 0.05), 

and all four of the morphologically defined functional groups, woody and 

pseudobulbous stemmed species (interior = 17.3±8.1, edge = 5.2±2.2; t = 3.4, p < 0.05), 

herbaceous stemmed species (interior 47.2±20.5, edge = 13.6±11; t = 4.4, p < 0.05), 

leathery and succulent leaved species (interior = 46.2±31.2, edge = 19.3±4.9; t = 3.3, p 

<0.05, and the herbaceous leaved species (interior = 38.9±15.9, edge = 12.9±8.6; t = 4.4 

p < 0.05) all had a significantly higher density in the interior than the edge habitat 

(Figure 5.18a, c, d, e, and f).  Therefore, the only functional group with weaker 

(marginal) statistical evidence for a higher density in the interior habitat was the widely-

distributed species group (interior = 34.7±22, edge = 12.8±4.9; t = 2.3, p = 0.05) (Figure 

5.18b).  

 

 

Table 5.7 The mean (± one confidence interval, SE*1.96) density of each functional groups of vascular 

epiphyte species in the interior and edge habitats in forest patches 18 forest patches in Illubabor Zone 

south-west Ethiopia. 

 Density of each group 

Functional group Interior habitat  Edge habitat 

Forest-habitat/specialist distribution species 41.9±17.9 15.8±10 

Widely-distributed species 34.7±22.0 12.8±4.9 

Species with woody and pseudobulbous 

stems 

17.3±8.0 5.2±2 

Species with herbaceous stems 47.2±20.5 13.6±11 

Species with leathery and succulent leaves 46.2±31.2 19.3±16.8 

Species with herbaceous leaves 38.9±15.9 12.9±8.6 
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Figure 5.18 The mean (± one confidence interval, SE*1.96) density of six functional groups of 

vascular epiphyte species in interior and edge habitats of 18 forest patches in Illubabor Zone 

south-west Ethiopia: a) forest-specialist species, b) widely-distributed species, c) woody and 

pseudobulbous stemmed species, d) herbaceous stemmed species, e) leathery and succulent 

leaved species and f) herbaceous leaved species.   
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5.4.4 Geophytic fern species richness and species frequency between interior and 

edge habitats 

 

A total of 30 species of geophytic fern were recorded in the interior and 26 in the edge 

habitats. Mean (±SE*1.96) species richness per forest patch was significantly greater in 

the interior (29.4±1.8, range 23-37) than the edge (22.1±1.4, range 17-27) habitats 

(paired t-test, t = 8.592; df = 17, P < 0.05, Figure 5.19). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.19 The mean (± one confidence interval, 1.96*SE) species richness of geophytic ferns 

in interior and edge habitats of 18 forest patches in Illubabor Zone south-west Ethiopia. 

 
 

In terms of frequency amongst plots, across all 18 patches, of the 31 identified fern 

species, 16 were more than 2.5 times more frequent in the interior habitat (of which 

four, Asplenium formosum, Asplenium sandersoni, Thelypteris confluens and 

Conigramme africana were restricted to interior habitat), five in the edge habitat (of 

which one, Pteridium aquilinum, was restricted to the edge habitat) and 10 more evenly 

distributed between the two habitats (Figure 5.20, Appendix 5.7). There was a 

significant association between species allocation to these two groups and their a priori 

functional (distribution) groups: species more frequently in the interior habitat were 
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more likely to forest-specialist species and those more frequent in the edge habitat were 

more likely to be forest-margin/wide-habitat species. 

 

Figure 5.20 Frequency of geophytic fern species in edge and interior habitats in 18 forest 

patches in the Illubabor Zone of south-west Ethiopia. Frequency is shown as the number of the 

144 sample plots in each habitat that the species was present in. The species are classified into 

five colour-coded groups based on their relative distribution between the two habitats: (a) 

Restricted to edge, b) more abundant in edge (> 2.5 times frequency in edge); c) restricted to the 

interior; d) more abundant in interior (> 2.5 times higher frequency in interior); (e) similar 

abundance in edge and interior (< 2.5 times different frequency between the two) 
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5.4.5 Geophytic fern species density between edge and interior habitats 

 

The total density of geophytic ferns of all species was significantly higher in interior 

habitat (104±22.3 per patch (3200 m
2
 of plots), range 77-137) than in edge habitat 

(59.8±13.7, range 34-88) (paired samples t = 10.37, DF = 17, p < 0.05). However, 

density across both habitat types was not significantly correlated with any tested indices 

of patch fragmentation: interior habitat epiphyte density, patch area (r = 0.16, p = 0.53), 

edge density (r = 0.07, p 0.73).  or patch shape (r = 0.44, p = 0.06) (Appendix 5.14). The 

correlation of epiphyte density in interior was positive with shape of patch even though 

statistically not significant. Edge habitat epiphyte density: patch area (r = 0.03, p = 

0.90), patch shape (r = 0.07, p = 0.78) and edge density (r = 0.20, p = 0.40).  Likewise 

rainfall had no significant correlation with fern density (r = 0.23, p = 0.35), however 

there was a significant positive correlation for altitude (r = 0.50, p = 0.03). Similarly, 

summed disturbance score showed a significant negative correlation with fern density in 

both interior and edge habitats (r = -0.60, p = 0.008 and r = -0.897, p < 0.001 

respectively, Figure 5.21, Appendix 5.14). 
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Figure 5.21 Relationship between summed disturbance score and density of geophytic ferns 

(number of individuals/clumps per 3200 m
2
 of sample plot in each patch) in (a) interior and (b) 

edge habitats of 18 forest patches in Illubabor Zone south-west Ethiopia. 

 

Species rank abundance (dominance-diversity curves) for geophytic fern species in edge 

and interior habitats showed a similar shape, with equivalent high levels of evenness, 

and low numbers of “rare” species (relative to the vascular epiphytes) (Figure 5.22). In 

the interior habitat the community was dominated by three species of Asplenium (A. 

theciferum followed by A. gemmiferum, and A. lunulatum). In the edge habitat there 
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were also three dominant species in different genera (Pteridium aquilinus followed by 

Arthropteris monocarpa and Drynaria volkensii).  

 

 
 

 

Figure 5.22 Rank abundance curves of geophytic fern species in interior and edge habitats in 18 

forest patches in Illubabor Zone south-west Ethiopia. The index of abundance was density 

(number of individuals per 400 m
2
 of sample plots).  

 

 

 

The species functional groups differed in the variation of their density between interior 

and edge habitats (Table 5.8, Figure 5.23). Of the functional groups defined by 

distribution, forest-specialist species had a significantly higher density in interior 

(mean±SE*1.96, 66.5±16.5) than in edge (37.1±10.8) habitat (t = 3.88, p < 0.05, Figure 

5.23a), however forest-margin species showed no difference in density between the two 

habitats (interior 42.6±23.1, edge 41.9±26.2, t = 0.04, p > 0.05, Figure 5.23b). Of the 

functional groups based on morphology, species with both creeping (interior 52.6±19.5, 

edge 36.2±12.9) and erect (interior 64.3±15.9, edge 35.1±16.4) rhizomes had a 

significantly higher density in the interior habitat (t = 2.82, p < 0.05 and t = 2.23, p < 

0.05 respectively, Figure 5.23c & d). Similarly species with tufted fronds (interior 

75.2±17.6, edge 35.2±14.1) had a significantly higher density in interior habitat (t = 

3.808, p <0.05, Figure 5.23f), however those with spaced fronds did not differ 
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significantly between the two habitat types (interior 47±14.3, edge 35.5±16.9; t = 1.008, 

p > 0.05, Figure 5.23e, Appendix 5.16). 

 

Table 5.8 Mean (± one confidence interval, SE*1.96) density (number of individuals per 400 m
2
 of 

sample plots) of six functional groups of geophytic fern species in the interior and edge habitats of 18 

forest patches in Illubabor Zone south-west Ethiopia. 

 

 Density 

Functional groups Interior habitat  Edge habitat 

Forest-specialist species 66.5±16.5 37.1±10.8 

Forest-margin/wide-habitat species 42.6±23.1 41.9±26.2 

Creeping rhizome species 52.6±19.5 36.2±12.9 

Erect rhizome species 64.3±15.9 35.1±16.4 

Spaced frond species 47±14.3 35.5±16.9 

Tufted frond species 75.2±17.6 35.2±14.1 
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Figure 5.23 Mean (± one confidence interval, SE*1.96) density (number of individuals per 400 

m
2
 of sample plots) of six functional groups of geophytic fern species in interior and edge 

habitats of 18 forest patches in Illubabor Zone south-west Ethiopia. a) forest-specialist species, 

b) forest-margin species, c) creeping rhizome species, d) erect rhizome species, e) spaced frond 

species and f) tufted frond species.  

 

5.5 Discussion 

5.5.1 Variation in woody species composition between edge and interior habitats 

 

There was a significance difference in species composition between edge and interior 

habitats of the studied fragmented forest patches. The difference in species composition 

between these two habitats types was due to species of different habitat preference and 

morphological groups tending to be associated with either the interior or edge habitats. 

In the edge habitat there was high abundance of either forest-margin or wide-habitat 

distribution species.  In terms of morphology these tended to be species of types well-

suited to drier and/or hotter environments. The tree species with a distribution largely 

restricted to forest habitats were, as expected more abundant in patch interior than edge 

environments, reflecting the way that they have become “filtered out” of edge habitats 

and confined to the interior. This process may have been quite rapid in patches that have 

only recently lost a high proportion of their original area from the margin. The relative 

density and frequency of forest-specialist woody species were respectively eight and 

three times higher in the interior habitat compared with edge habitat. These findings are 

in accord with previous studies carried out in human-modified landscapes that have 
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described the effects of fragmentation on species composition in habitat patches 

(Honnay et al., 2002; Echeverria et al., 2007; Galanes and Thomlinson, 2009; Gonzalez 

et al., 2010). Human-induced fragmentation and within-habitat disturbance (forest 

clearance, extraction of canopy trees for timber, grazing and firewood collection) were 

found to strongly influence species composition and habitat conditions (Honnay et al. 

(2002). Through time, these human-induced fragmentation and disturbance effects in 

Illubabor Zone have been found to lead to simplification of ecosystems through a 

reduction in species diversity (Vanderwel et al., 2011). In such simplified forest 

habitats, the species composition had become dominated by a generalist set of widely 

dispersed or forest-margin species, some of which could be characterised as light-

demanding pioneers, supporting the findings of Hill and Curran (2005). This has been 

shown to reduce the diversity of composition amongst habitats, especially in their 

understory forest-habitat-dependent/shade-tolerant species (Chapter 4).  

 

The greater abundance of forest-specialist woody species in the interior than the edge 

habitat could be attributed to: (a) their intolerance of edge environments; (b) selective 

cutting of these species in the edge habitat; and (c) suppression of their seedlings by 

grazing and possibly competition from herbaceous plants in the edge habitat. Forest-

habitat-associated species like Vepris dainellii, Chionanthus mildbraedii, Allphylus 

abyssinicus, Oxyanthus speciosus, Canthium oligocaprp and Cassipurea malosana were 

reported to be amongst the most valued plants by local communities for farm tools, 

roofing and fencing material and they were observed to be selectively cut and harvested 

in the edge habitat. These species usually grow in forest under the shade of canopy trees 

where there is an organic layer of decomposing leaf litter on the soil surface and where 

there is a lower cover of herbaceous plants and less vegetation trampling and soil 

compaction (Pual and Fine, 2002; Flora of Ethiopia and Eritrea, Vol. 3). These factors 

may all contribute to lower establishment and survival rates in edge habitats. These 

species may also be suppressed in the edge by browsing, grazing and trampling by cattle 

from the surrounding matrix. Consequently, at the time of this study, forest-specialist 

species were often seen in the edge habitat as coppice re-growth from the stumps of 

recently cut stems. The seedling and sapling of these species were rare relative to 

coppice re-growth.  
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The species found in high abundance in the edge habitat, in contrast, belong to the 

group of forest-margin and wide-habitat distribution tree species, e.g. Syzygium 

guineense, Maesa lanceolata, Croton macrostachyus, Macaranga capense and Albizia 

gummifera. Most of these species have little value to the local community because of 

their soft wood (pers. comm. from local elders). On the other hand, most of these forest-

margin and wide-habitat distribution species have a pioneer ecology and were observed 

to be regenerating at a high density in the studied edge habitats associated with high 

rates of fruiting. These species must therefore also be tolerant of other edge effects such 

as grazing and vegetation trampling because of their close association with such 

disturbed parts of forests (Tadesse, 2003). Hill and Curran (2003) observed a similar 

trend that light-demanding/forest-margin species regenerate in exposed gaps in edge 

habitat and cover the area faster than forest-habitat species. They found that the 

proportion of regenerating forest-margin/light-demanding trees increased with 

increasing edge effect as compared with shady interior conditions. As a corollary of 

this, Echeverria et al. (2007) found that shade-tolerant species gradually increase in 

abundance towards the patch interior while shade-intolerant species declined. They 

showed a spectrum of tree species responses to habitat fragmentation, some benefiting 

and some disadvantaged. The species benefiting from fragmentation had a higher 

density of seedlings in edge habitat and were characterised as light demanding (Metzger 

2000; Honnay et al. 2002; Echeverria et al., 2007) as was the case in the present study. 

This evidence suggests that further fragmentation and within-patch disturbance of the 

fragmented habitats in Illubabor might seriously affect forest-habitat/shade-tolerant 

species (Echeverria et al., 2007). 

 

5.5.2 Forest structural composition 

 

Forest composition or edge and interior habitats was characterised on the basis of stem 

density, basal area, diameter and height class distributions, and dominance (basal area). 

Although there was high variation amongst patches in the density of individual trees, 

there was no significant difference in mean individual tree density between edge and 

interior habitats. This may be attributed to the replacement of the density of forest-

habitat species in the interior habitats by a similar density of forest-margin/light-
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demanding and wide-habitat/generalist species in the edge habitat. In contrast, the basal 

area of trees was significantly greater in patch interior than edge habitats which were 

attribuTable to the existence of a higher density of big trees in the interior, 

corresponding to the findings of (William-Linera, 1990) in Mexico. In the edge habitats 

there had been much more intensive selective tree cutting for timber extraction in the 

past. A reduction of basal area in edge as compared with interior habitat represents a 

modification of the forest structure in which the forest has returned to an earlier 

successional stage (Echeverria et al., 2007). 

 

When the structural composition of different functional groups of species is considered, 

the stem density, basal area and abundance (IVI calculated from the sum of relative 

basal area, relative stem density and relative frequency) of forest-specialist species was 

very significantly higher in the interior habitat than in the edge (Table 5.2). The interior: 

edge ratios of basal area and stem density of forest-specialist trees were 8:1 and 6:1 

respectively, indicating a huge impact of the edge effect on forest stand composition. 

 

5.5.3 Vertical structure 

 

The vertical structure of vegetation in a forest is as important to many species as the size 

of the forest (Zehm et al., 2003). Change of this structure may cause changes in 

processes and habitat condition such as microclimate, nutrient cycling and plant-plant 

interaction. The present study found that the vertical structure of interior habitat was 

different from the edge. Edge disturbance simplifies the complex structural diversity of 

interior habitats. The four distinguishable vertical components in the interior forest 

stands were reduced to three in the edge. The top structural component of interior 

habitat entirely consisted of mature canopy trees from the functional groups of forest-

margin and wide-habitat/generalist species: Syzygium guineense, Pouteria adolfi-

friederici, Prunus africana, Albiza gummifera, Trilepisium madagascariense, Olea 

welwitschii and Elaeodendron buchananii. The tallest species in the interior habitat 

(reaching 30-45 m in height) was Pouteria adolfi-friederici followed by Prunus 

africana. Below this, the second component of interior habitat comprised a mixture of 
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forest-margin/light-demanding, wide-habitat/generalist and forest-habitat species like 

Macaranga capense, Croton macrostachyus, Milletia ferruginea, Diospyros abyssinica, 

Allophylus abyssinicus and Cassipourea malosana. The third component comprised the 

functional group of forest-specialist species such as Vepris dainellii, Chionanthus 

mildbraedii, Allphylus abyssinicus, Oxyanthus speciosus, Canthium oligocaprpa, 

Cassipurea malosana, Dracaena fragrans, Galinera saxifrage, Lepidotrichlia volkense, 

Psydrax parviflora, Psychotria orophila, Diospyros abyssinica and Ilex mitis. The 

fourth (lowest) component comprised forest-habitat shrub species, like Rytigynia 

neglecta, Erythrococcaa trichogyne, Maytenus gracilipes and Justicia betonica, and 

forest-habitat vine species such as Oncinitis tenuiloba, Hippocratea africana, Paullinia 

pinnata and Keetia gueinzii intermingled with the shrubs. 

 

The edge habitat was characterized by a simpler structure. The top component 

comprised a low density of high-canopy trees from the same species group as in interior 

habitats, but the tallest species were different and lower: Syzygium guineense and 

Macaranga capense reaching up to 25 m height. The second component differed from 

the interior and comprised only the forest-margin/light-demanding species Maesa 

lanceolata, Croton macrostachyus, Nuxia congesta, Rhus glutinosa and Rhus 

quartiniana. In contrast, the third component of edge habitat had a similar 

physiognomic character, but was comprised of different species, than the fourth 

component of interior habitat. In the edge habitat it consisted of shrub species such as 

Vernonia spp., Lippia adoensis, Lantana terifolia and Phytolocca dodecandera and vine 

species such as Clematis spp., Helinus mystacinus and Gouania longispicata. The mean 

height of trees was significantly lower in edge than interior habitat. The third structural 

component of interior habitat was missing in the edge habitat. However, the density of 

trees in the 7-12 m height range was notably higher in edge than interior habitat and 

they almost all consisted of forest-margin species. The density of trees was markedly 

less in edge than interior habitat in all height classes taller than 12 m. 
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5.5.4 Effect of fragmentation and environmental factors on species composition 

 

The species composition and distribution in forest fragments was found to be mainly 

influenced by habitat disturbance, altitude, rainfall, and patch shape. The CCA result 

suggests that habitat disturbance alone could largely explain the species composition 

and patterns of distribution amongst patches. However, edge disturbance was highly 

confounded by variables such as altitude, rainfall and patch shape so their effects could 

not be distinguished. A number of studies have also shown that there is a strong 

stratification of species along gradients of environmental factors and forest spatial 

patterns (Arias-Gonzolez et al., 2008). Understanding these influences of environmental 

and spatial variables in driving variation in species composition is an important and a 

growing area of community ecology research (Jones et al., 2008). 

 

5.5.5 Epiphyte species composition and distribution in edge and interior habitats 

 

Orchids dominated the epiphytes identified in this study, followed by ferns and then 

other vascular plants, which is consistent with other findings from Africa (e.g. 

Biedinger and Fischer, 1996; Zapfack et al., 1996). Epiphytes constitute a specialized 

plant community because of their extreme habitat. They are good indicators of 

environmental quality of an area since they are sensitive to changes in humidity caused 

by opening up of forests by fragmentation (Benzing, 1998; Werner and Gradstein, 

2009). In the present study, the species richness of epiphytes was significantly greater in 

interior than in edge habitats. This difference was strongly linked to disturbance, 

epiphyte species functional group and presence of large host trees. The lower epiphyte 

richness in edge habitat coincides with patterns described from other areas (e.g. Kromer 

and Gradstein, 2003; Wolf, 2005). Those studies found that epiphyte diversity is 

positively associated with the occurrence of host trees and microclimatic conditions. In 

the present study, epiphyte community composition was noticeably different between 

edge and interior habitats due to differences in the relative abundance of epiphyte 

functional groups differing in distribution/habitat association and morphological 

characteristics. I found that forest-habitat species largely dominated the composition of 
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the patch interior habitats, but were relatively less common in the edge habitats. On the 

other hand, the patch edge habitats were strongly dominated by forest-margin and wide-

habitat distribution species that were poorly represented in the interior habitats. 

 

Leaf and stem morphological characteristics were also linked to the distribution of 

epiphyte species between the two habitats. Species with herbaceous leaves and stems, 

such as Elaphoglossum acrostidoides, Elaphoglossum lastii, Asplenium sandersonii and 

Bolusiella iridifolia, were relatively scarce in edge plots, which were dominated by 

species with woody, succulent or bulbous stems, e.g. Cyrtorchis arcuata, 

Calyptrochilum christyanum, Microcoelia globulosa, Diaphananthe fragrantissima and 

Polystachya tessellata. This result is expected from the evidence of previous studies that 

edge habitat is exposed to multiple micro-climatic effects including increased light 

levels, wind velocity and temperature, and reduced air humidity (Laurance, 2004). The 

resulting desiccating microclimate conditions have been found to be unsuiTable for 

epiphytes with herbaceous leafs and stems (Hylander 2005; Werner et al, 2005). 

Desiccation increases with forest structural disturbance that results in increased direct 

sunlight through canopy opening and wind penetration (Laurance, 2004). Thus, the 

requirement for high humidity and low energy loads by epiphytes with herbaceous 

stems and leaves is likely to limit their population persistence in edge habitat. The 

morphological characters of the epiphyte species found to be more common in the edge 

habitat in the present study (succulent leaves and succulent, woody or bulbous stems) 

are associated with a suite of morphological and physiological traits that greatly reduce 

rates of water loss (Werner and Gradstein, 2009) and store water and nutrients (La 

Croxi, 2008). 

 

Epiphyte abundance increased with increasing host tree size in both the interior and 

edge habitats, which is in accord with previous studies showing that host tree size 

distribution impacts on epiphyte community structure, with tree size distributions 

closely mirroring gradients of disturbance (Heizer, 1999; Are´valo and Betancur, 2006). 

In the present study, as recorded by others, edge habitat appeared to have suffered 
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higher rates of tree mortality from natural wind throw (Murcia, 1995) and from selective 

tree cutting for timber extraction, which had lead to a reduced density of large (height 

and diameter) tree stems and greater canopy openness (Laurance, 2004). In the present 

study, the higher density of large trees, and more complex vertical canopy structure, in 

the interior habitat were observed to be associated with a greater heterogeneity of 

epiphyte microsites, ranging from fully exposed to very shaded, with larger amounts of 

trapped organic matter. This is in agreement with the findings of Friedel et al. (2006) 

who recorded an increasing number of epiphyte species with an increasing host tree size 

along an edge to interior gradient. However, I observed some situations where some 

species previous considered to be highly forest habitat-specialist had survived in 

fragmented and disturbed edge habitats (Appendix 5.6). These species (e.g. Peperomia 

tetraphylla and Peperomia rotundifolia) were noTable for possessing some desiccation-

resistant traits, e.g. succulent leaves, and succulent or leafless stems. It is not known for 

how long they can persist in the edge habitat: it is possible that their presence is 

restricted to more recently exposed edge habitat, or that which is adjacent to a less open 

surrounding matrix. Nonetheless, this observation indicates the potential value of using 

data on the functional traits of species, rather than just their known distribution and 

habitat-associations from past specimen collection records (as reported in floras), for 

predicting their response to forest disturbance and fragmentation (Appendix 5.6) 

 

5.5.6 Geophytic fern species richness, diversity and composition in edge and 

interior habitats 

 

Fragmentation and disturbance in forest fragments in Illubabor Administrative Zone did 

not appear to have the same impact on all fern species. While the majority of fern 

species (14 out of 31) suffered from the effect of fragmentation and disturbance on edge 

habitats, a few (perhaps five of the species) seemed to benefit from the altered edge 

habitat. Overall, however, it was clear that forest fragmentation and disturbance led to a 

major compositional difference in geophytic ferns between edge and interior habitat. 

Observations of the ground vegetation in edge habitat showed that it had been densely 

colonized by grasses, other weedy herbaceous plants and vines, which are likely to have 

impacted negatively on the abundance of forest-habitat specialist ferns through reducing 
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the availability of suiTable microhabitats for their establishment (Laurance et al., 2007). 

It was noted that within both the edge habitat and under canopy gaps in the interior 

habitat, forest-specialist geophytic ferns were completely absent amongst dense ground 

layer vegetation dominated by weedy grass, herb and vine species, which is in 

accordance with the findings of Babaasa et al. (2004). As discussed for epiphytes above, 

Thuiller et al. (2004) found that the distribution of ferns amongst such forest habitats is 

closely linked to their physiological traits associated with water relation (Silvia et al, 

2011). In the present study, the species Asplenium gemmiferum, Asplenium sandersoni, 

Asplenium formosum and Conigramme africana were noted as forest-habitat specialists  

never seen growing away from deep moist shade that, from their morphology, are 

unlikely to be tolerant of edge effects. One fern species stood out as benefitting most 

from disturbed forest-edge habitat, the tall and dense-growing rhizomatous, Pteridium 

aquilinum in accordance with its known ecology world-wide (e.g. Marrs & Watt, 2006) 

as well as in Ethiopia (Flora of Ethiopia, Vol. 1).  

 

The density of ferns was much higher in interior than in edge habitats and in less 

disturbed than more disturbed areas of edge, and this appeared to be attribuTable to the 

higher density of forest-habitat specialist species in the interior and less-disturbed 

habitats. However, the species rank abundance curves in both habitats followed a 

similar shape (with a lower abundance in the edge habitats across all species rank 

positions). The loss of forest structural complexity in the edge also causes great 

differences between the two habitat types in addition to disturbance, forest area 

reduction and patch shape complexity (Paciencia and Prado. 2005). 

 

5.5.7 Implication for conservation 

 

It has been suggested that habitat fragmentation may be more a problem of edge effects 

than of spatial habitat structure, e.g. shape and area of patches (Honnay et al., 1998). 

Forest-habitat specialist species were found to be greatly reduced in abundance, or even 

absent, from the forest patch edge habitats. The results could be interpreted as showing 

a process by which the upper story and under story structures of the forest stand become 
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increasingly simplified and dominated by a single group of widespread forest-

margin/light-demanding species. Extrapolating from the results of this study to forest 

patches across south-west Ethiopian landscapes it is likely that these habitats are 

becoming increasingly structured into two zones with an edge dominated by such 

forest-margin/light-demanding, or wide-distributed generalist species of little 

conservation value, whereas the forest-habitat specialist species of greater conservation 

value (and also of greater value for a range of other locally important ecosystem 

services) are becoming mostly confined to the interior habitat of the patches. As 

disturbance and microclimatic change generated from the surrounding matrix penetrate 

further into patches (effectively expanding their edge zone) the forest interior habitats 

capable of supporting these vulnerable species will become increasingly diminished (or 

even eliminated in small patches) which poses a significant threat to biodiversity 

conservation. Therefore, the importance of the protection of forest interior habitats is 

very important for future biodiversity conservation in this region. 
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CHAPTER 6 

SACRED GROVES AS SITES FOR BIODIVERSITY CONSERVATION IN 

SOUTH-WEST ETHIOPIA 

 

 

Abstract 

There have been many studies on the importance of sacred groves in biodiversity 

conservation but only a few have compared sacred groves with non-sacred forests. 

Sacred groves in Ethiopia are generally considered to be small and not to support many 

species of conservation importance. I tested this assumption through comparative study 

of plant species richness, diversity, composition and regeneration dynamics in sample 

plots within six sacred groves and four non-sacred forests differing in their level of 

disturbance in the Gamo highlands of south-west Ethiopia. Open-ended individual and 

group interviews were conducted with the custodians of each sacred grove to evaluate 

its importance for biocultural diversity. To provide a wider context of the past reduction 

in area and fragmentation of sacred groves and non-sacred forests in the whole 66,765 

ha Gamo highlands study area, 1995 and 2010 Landsat Thematic Mapper (TM) satellite 

images were analysed using maximum-likelihood classification to map land-use and 

land-cover. 

 

Species accumulation curves showed no difference between the two forest types. 

However, analysis of the sample plot data by Renyi species diversity profiles showed 

higher species diversity in the sacred groves than in the non-sacred forests. There were 

no noTable differences in tree stem density or sapling density, between the two forest 

types, however seedling density and mean basal area of trees > 5 cm dbh was 

significantly higher in the sacred groves than the non-sacred forests. The species 

composition of sacred groves differed from non-sacred forest. However, this cannot be 

attributed to sacred status as the two forest types are different in topographic position 

(aspect and slope) and geology. 
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The local custodians reported that the sacred groves had great religious and social 

significance, and provide local people with benefits such as plants used for medicine 

and rituals, environmental protection as wind breaks and soil cover that reduces erosion, 

and cultural services in the form of a symbols of identity and beauty. 

 

The satellite image analyses indicated a high rate of land-cover modification around the 

sacred groves during the 1995-2010 periods. The farm and settlement land-cover types 

increased from 28.8% to 60.4% while others reduced: wooded grassland decreased from 

35.1% to 17.2%, open pasture land from 25.3% to 15.6% and forest from 10.8% to 

6.8%. The total number of forest fragments decreased from 1718 to 1441 due to the 

complete conversion of some to other land uses. The mean patch size of forests 

decreased from 4.1 to 3.0 ha. Likewise mean shape index and edge density decreased 

from 1.5 to 1.3 and 14.8 to 10.5 respectively, indicating human impacts on the margins 

of the groves. At the patch level, while all non-sacred forests decreased in size, only a 

few of the sacred groves decreased indicating that the sacred groves have been better 

protected.  

 

In conclusion, sacred groves suffered a lower rate of deforestation than did the non-

sacred forests. Sacred groves contained a higher density of national priority species for 

conservation, e.g. Cordia africana and Hagenia abyssinica, and a species recognized as 

internationally vulnerable, Prunus africana, indicating their important role in 

biodiversity conservation in south-west Ethiopia. Despite the lack of recognition of 

sacred groves by conservation officials in Ethiopia, the custodians of sacred groves have 

employed cultural practices that do maintain biodiversity. Giving appropriate legal 

support to both culture and value systems of the communities, as they are applied to 

sacred groves, could reduce the current threat that sacred groves are facing and enhance 

the conservation of biodiversity. The value of the existing network of sacred groves is 

well suited to this objective as they cover a wide variety of habitat types and are well 

distributed across the landscape. 
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6.1 Introduction 

 

Deforestation and degradation of wooded habitats due to anthropogenic activities are 

among the major contributors to today’s global climate change and biodiversity 

reduction. Land-use change is considered to be the main factor (Lambin et al., 2003). 

Human population pressures are expanding the area of land-use, such as agriculture and 

settlement, into natural habitats in all parts of the world to meet the demand for food 

and housing (Lambin et al., 2003). These land-use changes have led to deforestation 

further aggravating fragmentation of forest habitats (FAO, 2003). In response to this, 

large investments have been made in the establishment of nature reserves across the 

world to preserve large pristine areas. The management of most of these reserves, 

however, has not been successful as the initiatives are often politically driven and aspire 

to achieve environmental benefit without the involvement of immediate users or local 

communities (Khan et al., 1997; Brown, 2003; reviewed in Bhagwat and Rutte, 2006). 

On the other hand, many local communities conserve tracts of forest habitats in their 

habitation area in the form of sacred groves for cultural purposes. Despite increased 

pressures, these forests have existed for centuries where they are under the custody of 

local communities and religious leaders (Swamy et al., 2003). In this context, successful 

conservation of biodiversity may require the incorporation of cultural traditions and 

conservation practices of indigenous communities for future mitigation of deforestation, 

degradation, habitat loss and climate change.  

 

Sacred groves are patches of forest located in human habitation areas and protected by 

the local community in accordance with their customary laws (Gerden and Mtallo, 

1990), taboos and religious beliefs (Aumeeruddy and Bakels, 1994, Campbell, 2004, 

Madeweya et al., 2004) for their cultural, social and material values (FAO, 2003). They 

exist in various forms, including natural relict forests as a site of ancestral or deity 

worship (Ramakrishana et al., 1998; Khan et al., 2008) and burial grounds (Mgumia and 

Oba, 2003; Madeweya et al., 2004). The management of these communal sacred places 

has often been found to be very effective where it is firmly rooted in the local 

communities’ institutions and cultural traditions (Kokou, 2006). However, the major 

role sacred groves can play in biodiversity conservation has generally been undervalued 
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due to a lack of comparative studies on their importance in conservation. This is despite 

such areas of forest being known to contain valuable biodiversity that has survived 

despite pressures for forest conversion (Salick et al., 2007). Conservation of these 

sacred groves and associated biocultural diversity, in collaboration with local stewards, 

can therefore make a potentially important contribution to reduction of biodiversity loss 

and habitat degradation. 

 

The importance of sacred groves in biodiversity conservation has been studied and 

acknowledged by many authors who have documented the role of traditional 

conservation systems supported by religious beliefs of the indigenous community 

(Aumeeruddy and Bakels, 1994; Wadley and Colfer, 2004; Sukumaran and Jeeva, 2008, 

Khan et al., 2008; Wild, 2008). Examples of such preserved forests are found widely in 

many countries and are particularly well known in India (Chandrakanth et al., 2004; 

Bhagwat and Rutte, 2006; Ormsby and Bhagwat, 2010), where their high density of 

plant species of conservation importance has been documented (Sukumaran and Jeeva, 

2008; Page et al., 2009, Rao et al., 2011). The existence of sacred groves has also been 

reported in, Europe, Asia, America and Australia (Khan et al., 2008), for example 

sacred mountains surrounded by woodland in Italy (Borys, 2000). In Asia, Sherpa 

people in Nepal are noted for their management of sacred groves and these places 

continue to support a rich biodiversity (Stevens, 2008). In America sacred forests are set 

aside as memorials of dead people (Svendsen and Campbell, 2010). In some African 

countries like Benin, Togo, Congo, Ghana, Tanzania and Kenya sacred groves have 

been documented as depositories of plant species due to their careful management by 

traditional stewards (Chouin, 2002; Mgumi and Oba, 2003; Madeweya et al., 2004; 

Combell, 2004, 2005; Lebbie and Guries, 2008; Fomin, 2008; Msuya and Kideghesho, 

2009; Sheridan, 2009). Of these studies, however, very few have made comparative 

analyses between sacred and non-sacred forests to adequately substantiate their frequent 

claims of the high level or even unique importance of sacred groves for biodiversity 

conservation (Mgumi and Oba, 2003). 
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In Ethiopia, recent studies of sacred groves have showed that they are important for 

biodiversity conservation (e.g. Binggeli et al, 2003; Alemayehu and Teketay, 2006; 

Bongers et al., 2006; Aerts et al., 2006; Aerts, 2007). These studies mainly focused on 

sacred Ethiopian Orthodox Church forests, surrounding churches and monasteries, 

particularly in the northern part of the country. However, Ethiopia also has many sacred 

groves that belong to the indigenous communities, are more associated with non-

Christian belief systems and do not have church buildings inside them or in their 

vicinity. These indigenous sacred groves have been comparatively neglected by 

researchers and conservationists (Desalegn, 2007). These indigenous sacred groves are 

particularly commonly among communities in south-west Ethiopia, where they have 

been protected by strong local belief in their status as sacred sites and consequent strict 

application of religious practices, taboos, customary laws for their protection by 

indigenous institutions (Desalegn, 2007). These practices are notably different from 

those promoted by non-governmental conservation organizations and government 

agencies, in that they are generally applied to sites of a smaller size, under the 

traditional tenure of community institutions, are based on indigenous religions and 

taboos and are closely aligned with local cultural traditions. Because of this these sacred 

groves may have had a continuity of forest cover for a very long time whilst cycles of 

anthropogenic deforestation and forest regeneration have occurred over thousands of 

years across most of the rest of the Ethiopian highland landscape (Tewolde, 1988, 

1989).  In this case they may act as important refugia for relic flora and fauna.  

However, no assessments have been made on their biodiversity importance in contrast 

to the attention paid to large areas of state-managed or non-sacred community-managed 

forests. Consequently, the possible role of these sacred groves for biodiversity 

conservation has been comparatively neglected by conservation organizations in 

Ethiopia (Desalegn, 2007).  

 

The sacred groves of south-west Ethiopia are currently under threat from various 

anthropogenic pressures due to land-use changes such as farm and settlement 

expansion, deforestation and forest degradation, e.g. through over-exploitation of 

resources (Desalegn, 2007). Religious beliefs and community rules that were central to 

the protection of sacred groves and their biodiversity are also being threatened by 
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changes in value systems, acculturation and integration of traditional communities into 

dominant religious beliefs, ultimately leading to loss of indigenous knowledge 

(Desalegn, 2007). Locally adapted indigenous management practices and governance 

institutions have become weakened in this area due to lack of recognition by institutions 

external to the communities. The absence of legal backing for the role and authority of 

the traditional custodians of the sacred groves and lack of recognition of customary laws 

and use rights by local government has further aggravated the situation leading to 

deforestation and degradation of sacred groves (Desalegn, 2007). A loss of appreciation 

for the sacred groves has also occurred due to cultural change and economic pressure 

within the local communities, reflected in particular by a change in attitudes between 

the current generation of young people and older generations (Desalegn, 2007). All of 

these factors have combined to cause a reduction in the area, integrity and the strength 

of associated culture of the sacred groves of south-west Ethiopia.  

 

The underlying rationale of this study was the conservation of biodiversity in Ethiopia 

with a particular focus on components of biodiversity with high “biocultural” value. The 

specific objectives were to establish the conservation value of the biodiversity of the 

sacred groves in south-west Ethiopia, the level of threat that these habitats are currently 

under, and to use this information to propose the highest priorities for conservation 

action. It is intended that the results of this study will provide the evidence to influence 

the policies of international and national institutions towards the conservation of sacred 

groves of south-west Ethiopia. 

 

To meet these specific objectives, a set of sacred groves and non-sacred forests were 

selected and plot-based vegetation survey was used to record their floristic composition 

and conservation status. Evidence of recent disturbance within the forests was evaluated 

as an additional indicator of threat. The biocultural value of the groves (current sacred 

status, people’s perceptions, management and uses) were evaluated qualitatively by 

interviewing local elders and custodians. The effect of agricultural expansion leading to 

encroachment reducing the number and area of sacred groves, and increasing their 
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fragmentation, was explored with satellite images by analyzing land-use and land-cover 

changes. 

 

6.2 Materials and Methods 

6.2.1 Site selection and method of vegetation data collection 

 

An exhaustive reconnaissance survey was undertaken all over the Gamo highlands 

which identified 272 sacred groves. From these six sacred groves were selected and 

matched to four non-sacred forests based on elevation similarity and physical 

environment and proximity to each other (Figure 6.17).The site selection was also 

constrained by local permission to enter sacred groves and availability of an 

approximately equal number of non-sacred forests. Remaining non-sacred forests are 

very few in number in the Gamo Highlands, so only a maximum of four could be 

sampled, which constrained the sampling regime for the comparison. 

 

The size of the six sacred groves ranges between 0.7 and 33.6 ha, whereas the four non-

sacred forests range from 16.6 to 400 ha. I made a pre-assessment within each sampled 

sacred and non-sacred forest to determine the representative vegetation cover. After pre-

assessment, a main plot of size 60 m x 100 m was chosen. This size was chosen to have 

standard plot size for both small and large forests. One main plot was established in five 

sacred groves and two main plots in one sacred grove (in Tele). Likewise two main 

plots were established in three non-sacred forests and a single main plot in one non-

sacred forest (Oche forest). The position of each main plot was chosen subjectively to 

best represent the structure and composition in the interior of each forest. The two plots 

in the same forest were laid at a 20 m distance parallel to each other. Within each of the 

ten sites (six sacred groves and four non-sacred forests) a systematic plot sampling 

design was used. Each plot was divided into fifteen 20 m x 20 m sub-plots. Of these, 

eight sub-plots were sampled (Figure 2.10) which gave a total of 56 sub-plots in the 

sacred groves and 56 sub-plots in non-sacred forests. Within each sampled sub-plot, the 

diameter of trees with ≥ 5cm at breast height was measured using diameter tape. The 
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density, i.e. number of individual tree/plot and cover abundance of trees species was 

recorded.  In addition, the diameter and height of each individual tree was recorded. 

Five sub-sub-plots of 5 x 5 m were established within each sampled 20 x 20 m sub-plot, 

one in each corner and one in the centre for seedling and sapling data collection. 

Seedlings and saplings were identified to the species level and counted. In each sub-plot 

sprouting from cut stumps was recorded for each species as (i) the number and diameter 

of stumps which had any sprouts and (ii) the number of all young sprouts per stump. 

Large size tree stem that have had a sprout origin was considered as individual tree.  

The presence/absence of herbaceous species, including epiphytes and ferns, was 

recorded in each sub-plot. All vascular plant species per plot were identified and 

recorded. Herbarium specimens of all species present in a sub-plot that could not be 

identified in the field were collected and taken to Addis Ababa University and identified 

using authenticated specimens. The nomenclature of plant names in this study follows 

the flora of Ethiopia (Hedberg and Edwards, 1989 &1995; Edwards et al., 1995, 1997, 

2000; Hedberg et al., 2003, 2006; Mesfin Tadesse, 2004). 

 

The effect of disturbance was evaluated subjectively for each sub-plot. Disturbance 

from (i) grazing (rating proportion of herbaceous ground cover removed and vegetation 

trampled), (ii) forest clearance (trees cut for timber or fuelwood collection and 

associated damage caused during tree fall) were separately given a score between 0 and 

4, where 0 = no disturbance, 1 = low disturbance, 2 = intermediate, 3 = moderate, 4 = 

highly disturbed. The scoring was based on the intensity of the disturbance in terms of 

proportion of the ground cover vegetation and tree biomass removed from 0 to 100% in 

approximate equal size categories. The scores for each sub-plot were summed for each 

main plot separately to generate a cumulative value. For the forests with two main plots, 

the average value of each of the two disturbance types from each main plot was 

calculated.  
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6.2.2 Vegetation analyses 

6.2.2.1 Species richness and diversity  

 

While the number of individual sites sampled differed between the two forest types (six 

for the sacred groves and four for the non-sacred forests) the total area of forest sampled 

was the same for both (2.24 ha). Therefore, a single estimate of species richness and 

composition at this fixed area across the whole landscape was calculated for each of the 

two types to provide an initial gross comparison between them. The mean species 

richness of the six sacred groves and four non-sacred forests was compared using the 

Kruskal Wallis test (selected because of the unbalanced data). For each of the two forest 

types, area-based accumulation curves (the accumulation of species as a function of the 

sample plot/area) were generated using EstimateS (Colwell, 2010) with 100 iterations to 

see how they differ in species richness. The number of observed species per whole 

sample plot (seven in sacred groves and seven in non-sacred forests) were compared 

with the non-parametric estimators Chao 1 and Jacknife-2. These two estimators were 

chosen because they calculate species richness and give an estimate of absolute number 

of species in a community incorporating rare species (Magurran, 2004).  

 

Species diversity in each sacred grove and non-sacred forest was further investigated by 

rarefaction analysis and Renyi’s diversity ordering to assess variability within sites. 

Renyi’s diversity ordering (sometimes known as the diversity profile) was calculated 

using the Species Diversity and Richness Analysis Package (Seaby and Henderson, 

2007). Renyi’s diversity ordering values (H) are calculated from the proportional 

abundance of each species (abundance of each species/total abundances of species) and 

the scale parameter  ranges from zero to infinity () (Kindt et al., 2004 in Robiglio, 

2008). Renyi’s diversity ordering is based on the concept of entropy and is defined as 

H=









1

log
1

s

i

pi

, where  is the ordering ( ≥ 0,  ≠ 0), pi is the proportional abundance 

of the i
th

 species, and log is the logarithm to base of e. Diversity orders that start at a 

higher level have higher richness. Orders that are higher at = infinity have a lower 

proportional abundance of the dominant species (Robiglio, 2008). If two communities 
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cross over, they are non-comparable. Such non-comparable communities occur when 

relative abundance and species richness are summarized using a single diversity index 

indicating that a single diversity index will not provide sufficient information about the 

given community (Kindt et al., 2004 in Robiglio, 2008). Diversity ordering such as 

Renyi’s diversity profile offers a solution by identifying those communities that are 

consistent in their relative diversity. 

 

6.2.2.2 Species abundance 

 

The abundance of each tree species recorded in each sacred grove and non-sacred forest 

site was described by their stem density (number of stems/ha), dominance (basal area in 

m
2
/ha) and frequency (the proportion of the sub-plots in each site that they were present 

in). The mean stem density/plot and basal area/plot were compared between the two 

forest types using paird T-test. The mean density of tree seedling of six sacred groves 

and four non-sacred forests, and mean sapling density of six sacred groves and four 

non-sacred forests also compared using Kruskal Wallis test (Community Analysis 

Package IV). The importance value of each tree species in each site was calculated from 

their values relative to the total for all species as the sum of relative dominance (relative 

basal area), relative density (stem density) and relative frequency. 

 

Tree species were divided into DBH classes to investigate past dynamics and 

regeneration status. The data were sorted accordingly from the lowest to the highest 

range DBH. Trees ≥ 5 cm were divided into DBH classes of 5 cm interval. All 

individuals of tree species ≤ 1 m in height were termed seedlings whereas those with 

DBH  5 cm and height > 1 m were termed saplings. For dominant species individual 

population DBH structure in each forest types was also explored.  

 

All tree species present as individuals ≥ 5 cm DBH were classified into three functional 

groups: wide-habitat/generalist species, forest-habitat species and forest-margin/light -

demanding forest species using a priori information on their distribution from Flora of 
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Ethiopia (Edward et al., 1995, 1997, 2000; Hedberg et al., 1989, 1995, 2003, 2006; 

chapter 5). The importance value (IVI) of each species within each functional group was 

calculated and the mean was used to compare the difference between the sacred and 

non-sacred forests.  

 

6.2.2.3 Similarity of community composition  

 

Plant community composition was analysed using multivariate techniques. The 

analysis-of-similarities (ANOSIM) permutation procedure was applied to test for 

differences in community composition between forest types (Clarke, 1993; Clarke and 

Warwick, 2001). ANOSIM uses the test statistic (R) based on the differences between 

the average of all the rank dissimilarities between species and between sites and the 

average of all the rank dissimilarities between species within the sites. It generates a 

value of R which is scaled to lie between -1 and +1, a value of zero indicates no 

difference among a set of samples while R values > 0 indicate that species are more 

dissimilar between sites than within sites (Clarke and Warwick, 2001). Negative R 

values indicate that dissimilarities within sites are greater than dissimilarities between 

the sites (Clarke and Warwick, 1994). In this study, R values < 0.5 indicate little 

difference and values > 0.5 indicate substantial difference. To test for significance, the 

ranked similarity between sites was compared with the similarity that would be 

generated by random chance. 

 

The samples were randomly assigned to sites 1000 times and R was calculated for each 

permutation. A difference between communities was considered to be significant if the 

P-value was below 1% (0.01). To examine the species that contributed most to 

differences between sacred and non-sacred, similarity percentage (SIMPER) was used 

(Clarke and Warwick, 2001). SIMPER computes the percentage contribution of each 

species to the dissimilarity between all pairs of sample plots between sites and the 

percent contribution of each species to the similarities between all pairs of sample plots 

within the site. 
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The results of the analyses were visualized using Non-metric Multi-Dimensional 

Scaling (NMDS) ordination. Being non-parametric, NMDS was more suited than other 

ordination methods to the complexity of the uneven distribution of sample sub-plots 

between and within sites in this study. Ordination was performed because it expresses 

the similarity between sacred groves and non-sacred forests in a reduced number of 

dimensions by reducing a complex interrelationship to a simple Figure and provides a 

visual representation of how well a model accounts for variation in species composition 

between sites (Seaby and Henderson, 2007; Keleher and Rader, 2008). NMDS also 

calculates the stress (residual modeling error) as a rank function instead of absolute 

dissimilarity values (Jongman et al., 1995). NMDS was run using the Bray-Curtis 

(Curtis, 1951) dissimilarity matrix based on species presence/absence. The Bray-Curtis 

index gives less weight to outliers and is the recommended distance measure for NMDS 

(Southwood and Henderson, 2000). In NMDS two-dimensional ordination spaces, 

sample subplots are represented by a point and the distance between points show the 

degree of dissimilarity or similarity between the samples (Hahs and Mcdonnell, 2007). 

Canonical Correspondence Analysis (CCA) was used to relate the composition 

difference between the two forest types to environmental variables (Ter Braak and 

Smilauer, 2002). Environmental variables include altitude, disturbance and topographic 

data (Altamirano et al., 2010) such as slope and aspect.  

 

6.2.2.4 Disturbance  

 

The disturbance scores from grazing and for forest clearance for each sampled sub-plot 

(20 x 20 m) ranged from 0 (no disturbance) to 4 (highly disturbed). The values for 

grazing as well as forest clearance taken separately in a single sub-plot summed and 

divided into two to get cummulative score of disturbance for each eight sub-plots. Then, 

value for each sample sub-plot was summed and divided by eight to get an average 

score for each single sacred grove as well as each non-sacred forest. Correlation 

analyses were performed between disturbance and (a) the sum of seedling and sapling 

density, (b) tree density, (c) alpha diversity (Rao et al., 2011). The disturbance from tree 

cutting was also quantified separately and rated using the disturbance index 
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100



ba

a
(Bhuyan et al., 2003), where a is the total number of individual tree 

stumps ≥ 5 cm, and b is the total number of  uncut trees ≥ 5 cm. 

 

6.2.2.5 Biocultural diversity value of the forests 

 

Biocultural diversity is described as the link between culture and biological diversity 

(Maffi and Woodley, 2010). The biocultural value of the studied sacred groves was 

qualitatively analyzed from interviews conducted with the custodians of the groves. I 

interviewed 24 custodians, four at each sacred grove, who are responsible for protecting 

the groves within their communities. They are all men. According to local traditions 

women are not allowed to be direct observants of the sacred grove but they participate 

in festivals, preparation of food and drinks for festival and liquors for sacrifice. I 

selected the custodians for interview on the assumption that they were the members of 

the community most knowledgeable about the groves. Group interviews were conducted 

with the custodians at each of the six sites, supplemented by individual interviews 

where this was agreed. These interviews took place near the sacred groves. The 

interviews were semi-structured and based around a pre-determined set of questions that 

were designed to gather information about the guardians’ perception of the groves, their 

significance in both spiritual and material terms, the impact of the groves on their own 

lives and those of other community members, and their perception of the current threat 

to the groves (the questionnaire is in Appendix 6.4).  

 

6.2.3 Land-use and land-cover data and analyses 

 

Landsat Thematic Mapper (TM) images of an area of 183 x 183 km covering the 

majority of the Gamo highlands were obtained for the years 1995 and 2010. They gave 

a total sample area in the Gamo highlands of 66,765 ha. A maximum-likelihood 

classification of the data of each TM image was carried out to map land cover. The 

classification was aggregated into four cover classes of: cultivated land and settlement, 

forest, open pasture, and wooded grassland. Classification accuracy was verified to 78% 
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for 1995 and 85% for 2010 in ERDAS 9.1 (ERDAS, 1997) using ground control points 

(GCP) obtained during the field survey. The contour map and administrative boundary 

vector maps of the area produced by Ethiopian Map Agency were also used to clip the 

area of interest and to determine the position and ensure that the specific area covered 

by the two images was the same. The extent of land-cover types in each image and their 

reduction or gain in total area (1995-2010) in the whole 66,765 ha were evaluated by 

computing the proportion of each land-cover class (CA). Fragmentation was evaluated 

for each image by quantifying the number of patches (PN), mean patch size (MPS), 

mean shape index (MSI), edge density (ED), Shannon diversity (SDI) and Shannon 

evenness (SEI) using Patch Analyst 4.2 (Elkie et al., 1999) at landscape, class and patch 

levels for each year. 

 

6.3 Results  

6.3.1 Floristic composition of sacred groves and non-sacred forests  

 

The land area of each of the six sampled sacred groves ranged from 0.72 to 33.6 ha 

(mean 8.5 ha, total area 58.8 ha) and for the four sampled non-sacred forests from 16.6 

to 400 ha (mean 116.4 ha, total area 556.8 ha). A total of 152 species of plants 

belonging to 129 genera and 60 families were recorded in the six sacred groves. 

Recorded richness was marginally lower at the species and genus levels, but higher at 

the family level, in the non-sacred forests: 142 species belonging to 123 genera and 74 

families (see Appendix 6.1 and 6.2 for the total species lists). The dominant families in 

terms of species number were similar between the two site types, with a greater 

abundance of Fabaceae species in the sacred groves and of Asteraceae in the non-sacred 

forests. In the sacred groves and non-sacred forests six and seven families, respectively, 

contained at least five species (Table 6.1). Fifty families in the sacred groves and 64 

families in the non-sacred forest were represented by less than 5 species. Of the 152 

plant species recorded in the sacred groves, 30.5% were tree species, 29.8% shrubs, 

9.9% climbers, 25.2% terrestrial angiosperm forbs, 2.0% grasses, 2.0% angiosperm 

epiphytes and 0.7% geophytic ferns; in the non-sacred forests, of the 142 species 

recorded, 27.5% were trees, 31.7% shrubs, 9.9% climbers, 24.6% terrestrial angiosperm 

forbs, 1.4% grasses, 1.4% angiosperm epiphytes and 3.5% geophytic ferns. Summing 
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these data, the woody species contributed a very similar 70.2% and 69.1% of the total 

species richness in the sacred groves and non-sacred forests respectively, though this 

was slightly more weighted to tree species in the sacred groves. The tree species with 

the highest frequency in the 56 20x20 m sample plots in both forests was Syzygium 

guineense (85.7% and 60.7% in the sacred groves and non-sacred forests respectively). 

Only one other species (Ilex mitis) occurred with a frequency > 50% in both forest 

categories.  

 

Table 6.1 The dominant families and their number of species in sacred groves and non-sacred forests in 

Gamo Highlands, south-west Ethiopia. 

Family                 Number of species  

 In sacred grove In non-sacred forest 

Fabaceae 11 5 

Lamiaceae 11 7 

Asteraceae 9 13 

Rubiaceae 8 6 

Urticaceae 6 5 

Acanthaceae 6 5 

Euphorbiaceae 6 5 

Celasteraceae 5 5 

 

Nineteen and 13 species were found in the sacred groves and non-sacred forests 

respectively that are endemic to Ethiopia based on the work of Ensermu Kelbessa et al. 

(1994) and Vivero et al. (2005) (Table 6.2). The endemic species contributed a slightly 

higher proportion of the recorded flora of the sacred groves (12.5%) than of the non-

sacred forests (9.0%). For each of the endemic species, the mean number of sites 

present in four sacred groves was 2.9 (out of 6) and for non-sacred forest was 1.3 (out of 

4) (Table 6.2). All 13 of the endemic species present in the non-sacred forests were also 

present in the sacred-groves, leaving six endemic species only recorded in the sacred 

groves (though in the case of Erythrina brucei it was also recorded in non-sacred land 

managed as agroforestry systems). Of the 19 endemic species, the IUCN red list (Vivero 

et al 2005) places four in the “near threatened” category: Acanthus sennii, Spermania 

macrocarpa, Maytenus addat and Crotalaria rosenii (the latter two being recorded only 

in the sacred groves). Another non-endemic species that was present in both forest types 

was also recorded in the IUCN red list, Prunus africana. In addition there were two 

species identified as national priorities for conservation (Cordia africana and Hagenia 
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abyssinica) (Bekele and Berhanu, 2001.) both of which were only recorded in the sacred 

groves.  

Table: 6.2 Endemic species recorded in six sacred groves and four non-sacred forests in the Gamo 

Highlands of Ethiopia and their conservation status. 

 Species  Family Life 

form
1
 

No. of 

sacred grove 

sites 

recorded in 

No. of 

non-sacred 

sites 

recorded in 

Conservation 

status
2
 

1 Acanthus sennii Acanthaceae     S 3 1 NT 

2 Kniphofia foliosa Asphodelaceae H 1 1 DD 

3 Erythrina brucei Fabaceae           T 4 0 LC 

4 Maytenus addat Celastraceae      T 1 0 NT 

5 Millettia ferruginea Fabaceae            T 3 2 LC 

6 Acacia abyssinica sub 

sp.abyssinica 

Fabaceae T 3 0 DD 

7 Crotalaria rosenii Fabaceae            S  4 0 NT 

8 Plectocephalus varians Lamiaceae S 6 1 DD 

9 Solanecio gigas Asteraceae         S 4 3 LC 

10 Urtica simensis Urticaceae H 6 0 DD 

11 Vepris dainellii Rutaceae            T 3 3 LC 

12 Pentas caffensis Rubiaceae H 1 2 DD 

13 Spermania macrocarpa Malvaceae          S 4 2 NT 

14 Vernonia leopoldi Asteraceae          S 2 1 LC 

15 Lippia adoensis Lamiaceae          S 3 0 LC 

16 Bothriocline schimperi Asyeraceae         S 4 3 LC 

17 Vernonia rueppellii Asteraceae          S 1 1 LC 

18 Justicea diclipteroides Asteraceae H 1 3 DD 

19 Phylanthus mooney Euphorbiaceae H 1 2 DD 

Mean number of sites present in 2.9 1.3  
1 T, tree; S, shrub;  H, herb.2NT, near threatened; LC, least concern; DD, data deficient (Source IUCN, 2006). 

 

6.3.2 Species composition similarity 

 

The ANOSIM test based on Bray-Curtis similarity using 1000 permutations at the 

0.01% significance level showed that there was a significant difference in total species 

composition between the sacred groves and non-sacred forests (R = 0.61, p = 0.001). 

This was due to differences in the abundance of a range of species (29 species were 

responsible for 69.6% of variation between sites, Table 6.3). The presence of species in 

large abundance in sacred groves, such as Syzygium guineense, Bersama abyssinica, 

Maytenus undata, Prunus africana, Hagenia abyssinica and Cordia africana, was the 

major contributor to the difference. Species that were more abundant in the sacred 

groves were predominatly light-demanding and wide-habitat in distribution whereas 

those more abundant in the non-sacred forests were predominatly forest-habitat and 
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wide-habitat in distribution (Table 6.3, 6.4). However, the mean IVI of the wide-habitat 

and forest-habitat distribution species functional groups did not differ significantly 

between the two habitat types (t = -0.68, p > 0.05; t = -0.69, p > 0.05 respectively). The 

forest-margin species had higher abundance in sacred groves than non-sacred forests but 

this difference was just not significant (t = 2.069, p = 0.06).   

    

Differences between the two categories (sacred groves and non-sacred forests) 

accounted for a much greater variation in species composition amongst the 10 studied 

sites than did differences within each category (within sacred groves as well as within 

non-sacred forests). The average dissimilarity between sacred groves and non-sacred 

forests was 69.6% whereas the average dissimilarity amongst the six sacred groves was 

42.3%, and amongst the four non-sacred forests was 46.3% (from SIMPER analysis). 
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Table: 6.3 Species more abundant in sacred grove and non-sacred forest, in the Gamo Highlands of 

Ethiopia, assessed by a similarity percentage (SIMPER). For species with higher abundance in one site 

type, this Site Is indicated by highlighting. For each species the average dissimilarity between the forest 

categories, and its percentage contribution to the overall variation in species composition between them is 

also shown. 

  Sacred groves Non-sacred forests     

Name Average 

abundance 

Average abundance Average 

Dissimilarity 

% 

Contribution 

Albizia gummifera 0.1 0.0 0.2 0.3 

Allophylus abyssinicus 0.4 0.6 0.8 1.2 

Apodytes dimidiata 0.7 0.6 0.8 1.1 

Brucea antidysenteria 0.3 0.0 0.6 0.8 

Canthium oligocarpum 0.4 0.5 0.8 1.2 

Celtis africana 0.4 0.2 0.7 1.0 

Dracaena fragrans 0.2 0.7 1.0 1.4 

Ekebergia capensis 0.6 0.4 0.8 1.2 

Embelia schimperi 0.5 0.8 0.8 1.2 

Euphorbia candelabrum 0.4 0.0 0.6 0.8 

Hippocratea goetzei 0.4 0.1 0.6 0.9 

Jasminum abyssinicum 0.4 0.7 0.9 1.2 

Lepidotrichilia volkensii 0.3 0.6 0.9 1.2 

Maytenus addat 0.6 0.3 0.9 1.2 

Myrsin africana 0.0 0.7 1.1 1.6 

Ocimum lamifolium 0.4 0.0 0.7 1.1 

Olea capensis subsp macrocarpa 0.0 0.6 1.0 1.4 

Olea welwitschii 0.2 0.0 0.3 0.5 

Oxyanthus lepidus 0.8 0.4 0.9 1.4 

Psychotria orophilia 0.3 0.8 1.1 1.5 

Pouteria adolfi-friedericii 0.0 0.2 0.3 0.4 

Prunus africana 0.3 0.2 0.6 0.9 

Rhamnus prinoides 0.2 0.1 0.4 0.6 

Schefflera abyssinica 0.2 0.2 0.5 0.7 

Solanecio gigas 0.0 0.2 0.3 0.4 

Syzygium guineense 0.6 0.9 0.7 1.0 

Teclea nobilis 0.0 0.4 0.7 1.0 

Vepris dainellii 0.3 0.6 0.8 1.2 
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Table 6.4 Abundance (importance value index, IVI) of trees ≥ 5 cm DBH of each species classified into 

three different function groups in sacred groves and non-sacred forests in the Gamo Highlands of 

Ethiopia. 

  Functional group IVI Functional group IVI 

Wide-habitat/ generalist 

species 

Sacred 

grove 

Non-sacred 

forest 

Forest-habitat species Sacred 

grove 

Non-

sacred 

forest 

Syzygium guineense 20.86 27.08 Ilex mitis 12.36 9.76 

Schefflera abyssinica 4.28 4.33 Macaranga capensis 9.07 3.25 

Dracaena steudneri 2.27 0 Olea capensis 3.25 8.49 

Allophylus abyssinicus 2.17 1.21 Galiniera saxifraga 4.63 3.41 

Prunus africana 1.81 1.40 Apodytes dimidata 9.34 1.49 

Ficus sur 1.72 3.07 Aguaria saxifolia 0 6.86 

Ficus vasta 0.48 0 Lepidotrichilia volkensii 0.39 6.17 

Croton macrostachyus 1.66 0.64 Vepris dainellii 1.09 1.32 

Bersama abyssinica 0.92 1.37 Schefflera volkensii 0 0.64 

Flacourtia indica 0 0.46 Canthium oligocarpum 0.8?0 1.4?0 

Pouteria adolfi-frederici 0 0.30 Chionanthus mildbraedii 0 1.58 

Polyscias fulva 0 0.35 Dracaena fragrans 0 4.71 

Albizia gummifera 0.18 0 Olinia rochetiana 0 3.33 

Celtis africana 1.38 0 Ficus palmata 0.28 0 

Dombeya torrida 0.37 0.15 Pittosporum viridiflorum 0.35 0.15 

Scherebra alata 0.36 0 Mean (±SE) 2.8±2.5 3.5±1.6 

Myrica salicifolia 0 0.34 

Millettia ferruginea 0.11 0 

Mean  (±SE) 2.1±3.3  2.3±0.9  

      

Forest-margin/Light 

demanding 

Sacred 

grove 

Non-sacred 

forest 

 Sacred 

grove 

Non-sacred 

forest 

Maytenus undata 6.24 1.07 Nuxia congesta 0.4?0 1.18 

Euphorbia candelabrum 5.67 0 Dovyalis abyssinica 0.3?0 0 

Maytenus arbutifolia 2.31 0.17 Dracaena steudneri 2.27 0 

Ekbergia capensis 1.59 1.82 Maytenus addat 0.58 2.08 

Maesa lanceolata 0.88 0.15 Erytrina brucei 1.18 0 

Cordia africana 0.64 0 Albiziz schimperiana 0.18 0 

    Mean (±SE) 1.9±1.5  0.5±1.1  
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6.3.3 Ordination 

The NMDS ordination also showed a very clear separation of species composition 

between the sacred groves and non-sacred forests with no overlap of their clusters of 

individual sample plots (Figure 6.1). 

 

 

Figure 6.1: Non-metric multidimensional scaling (MDS) ordination of species composition, 

based on two dimensions with Bray-Curtis dissimilarities using species presence/absence data 

recorded in each of 56 20x20 m sample plots in sacred groves and non-sacred forests 

respectively in the Gamo Highlands of Ethiopia. The two-dimensional stress was 0.226. The 

plots in the sacred groves are coloured red and in the non-sacred forests in green. The sample 

plots were arranged in sets of eight within each sample unit, thus plots with numbers 1-8 were 

in the first sample unit, 9-16 in the second etc. The plots in each of the two site types are 

clustered separately. 

 

Ordination with environmental variables performed using canonical correspondence 

analysis (CCA) (TerBraak and Smilauer, 2002) produced a first axis which explains 

35.59% of the variation and a second axis which explains 31.38% (Figure 6.2, 
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Appendix 6.3). The third and fourth axes did not show significant in variation (P > 

0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 CCA ordination plots of (a) 10 sites, and (b) plant species. Environmental variables 

shown as vectors are geology, disturbance, slope, altitude and geographical aspect. Red circles 

show the six sacred groves, green circles show the four non-sacred forests and blue circles in (b) 

show plant species.  
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The first axis (Eigenvalue 0.28) mainly represented geology, slope and altitude. The 

second axis (Eigenvalue 0.25) was most strongly linked with disturbance and aspect. 

The non-sacred forests were primarily split from the sacred groves by axis 1, though 

one sacred grove (Gufae) and one non-sacred forest (Dhule) were separated from the 

other eight sites by axis 2. Non-sacred forests were associated with higher values of 

slope and altitude, and a different geology, than the sacred groves. There was a weak 

association between the single sacred grove and non-sacred forest sites with high axis 2 

scores and high disturbance index. The species most strongly associated with the non-

sacred forests and their high values of slope and aspect (and different) geology were 

Schfflera volkensii, Aguaria saxifolia, Lepidotrichilia volkensii, Dracaena fragrans, 

Olea capensis subsp. macrocarpa, Olinia rochetiana and Polyscias fulva.  

 

6.3.4 Species diversity and richness 

 

The Renyi diversity profile showed considerable variation amongst the individual 

sample sites within as well as between the two forest types (Figure 6.3). The shapes of 

the curves for all ten sites were similar indicating a comparable relationship between 

richness and evenness, though the shallower curve for the Oche non-sacred forest 

indicates that it has the highest evenness. For approximately half of the individual sites 

within each category the diversity curves for  > 0 did not overlap, indicating a clear 

hierarchy in their relative diversity (in terms of both richness and evenness). However, 

within the sacred groves the curves of three of the six sites overlapped with each other 

showing that there is no overall consistent difference in their diversities: for Osha-Ocha 

and Gufae at =0.5, Osha-Ocha and Tele at =0.8, and Tele and Gufae at =1 (Figure 

6.3a). Richness (the y-intercept) was very similar for Osha-Ocha and Gufae. For the 

non-sacred forests none of the four curves intersected, however for Dhule and Oche 

they were very close over the range of  between 0 and 0.5 indicating a similar richness 

and limited confidence in there being an overall difference in their diversity (Figure 

6.3b). The overall comparison between the two categories of site shows a small but 

consistently higher diversity of the sacred groves than the non-sacred forests, which is 

largely based on a difference in richness rather than evenness (Figure 6.3c). 
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The total number of species present in the sites of each category was estimated from 

accumulation curves: observed number of species (using Mao-Tau), Chao 1 and 

jackknife 2 (Colwell, 2010). Lumping together the data from the sample plots in the six 

sacred groves (Figure 6.4a) as well as four non-sacred forest (Figure 6.4b) sites 

produced landscape-scale estimates for each forest type. Species richness was higher in 

the sacred groves than in the non-sacred forests using all three indices: with Mao-Tau it 

was observed as 152.0±4.7 for the sacred groves and 142.0±4.5 for non-sacred forests, 

with Chao 1 it was 154.6±3.2 and 145.8±2.6 respectively, and with jackknife 2 it was 

176.5±6.1 and 165.6±5.2 respectively. The ratio of observed (Mao-Tau) to estimated 

c) 
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Figure 6.3. Comparison of species 

diversity within and between sites 

shown by Renyi diversity profiles in 

(a) each sacred grove, (b) each non-

sacred forest, (c) for the categories 

of sacred groves and non-sacred 

forests as a whole, in the Gamo 

highlands of Ethiopia.  

 

b) 
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(Chao 1) species richness was 97.6% for the sacred groves and 98% for the non-sacred 

forests suggesting that at least 2.4% more species in sacred groves and 2% more species 

in the non-sacred forest are expected to be present than were observed. 

 

Figure 6.4 Species accumulation by sample plot, based on observations (Mao Tau method), and 

Chao 1 and Jacknife 2 estimators in (a) sacred groves and (b) non-sacred forests in the Gamo 

Highlands of Ethiopia. The x-axis labels show the number of plots and the y axis the number of 

species. 

 

Species accumulation by all individual sampled plants within each of the ten sites 

(relating to alpha diversity) assessed using the EstimateS rarefaction technique 

(Colwell, 2010) showed considerable variation amongst the sites (Figure 6.4). This 

variation matched well with the richness values revealed by the Renyi curves (Figure 

6.3): four of the sacred groves had a very similar rate of accumulation whereas it was 

greater for Ula, and less for Akasi (Figure 6.5a); the non-sacred forests divided into two 

pairs with greater accumulation in Shoa and Sora and less in Dhule and Oche (Figure 

6.5b). Of the ten sites, the curves of only Shoa and Sora approached an asymptote, for 

the others a noTable proportion of the species likely to be present had not been recorded 

even after the sampling of up to 500-1300 individual plants per site, supporting the 

result from Chao 1 and Jackknife 2 estimates for the two categories of forest as a whole 

(Figure 6.4). 
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Figure 6.5 Individual plant-based rarefaction curves for ten sampled forests in the Gamo 

highlands of Ethiopia: (a) six sacred groves, (b) four non-sacred forests. The red line is the mean 

curve and the upper and lower lines (blue) for each accumulation curve indicate confidence 

limits at 95%. 

 

6.3.5 Structural composition 

 

A total of 876 and 944 individual trees ≥ 5cm DBH were recorded in the sacred groves 

and non-sacred forests in 56 plots respectively. The absolute stem density calculated for 

the plots in each forest type (n = 56) was higher in the non-sacred forests (421.4 ha
-1

) 

than in the sacred groves (350.9 ha
-1

) however the mean (±SE) of individual trees/plot 

in non-sacred forest (12.04±2.98) was not significantly different than sacred groves 

(10.03±2.09) (t= 0.42, p > 0.05). The absolute basal area of trees ≥ 5 cm DBH in each 

forest type was also calculated: sum of basal area for sacred grove was 54.4 m
2
 ha

-1
 and 

44.6 m
2
 ha

-1
 for non-sacred forest respectively. The mean basal area of all trees ≥ 5 cm 

DBH/plot in each forest types (n=56) was greater in the sacred groves (0.97±0.37) than 

in the non-sacred forests (0.79±0.34) (t = 2.98, p < 0.05). 

 

The basal area in both forest categories was dominated by a few tree species, with 

Syzygium guineense being overwhelmingly dominant in both forest types (Table 6.5). 

d) 

a) b) 

  

a) b) 
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There was considerable similarity in the composition of dominant species between the 

forest categories though Apodytes dimidata, Macaranga capensis, Euphorbia 

candelabrum, Prunus africana Maytenus arbutifolia and Erytrina brucei were noTable 

for having > 2.5 times greater basal area in the sacred groves than in the non-sacred 

forests, while comprising > 1.5% of the total basal area in the sacred groves. On the 

other hand, Olea capensis, Ekbergia capense, Aguaria saxifolia, Olinia rochetiana and 

Maytenus addat had > 2 times greater basal area in the non-sacred forests than the 

sacred groves, while comprising > 1.5% of the total basal area in the non-sacred forests.  

 

Large trees are a good indicator of the structural condition and disturbance history of 

forests (Spies, 1998). In the 2.24 ha of sample plot area in each forest category there 

were 53 trees with a basal area ≥ 1 m
2
 in the sacred groves and 32 in the non-sacred 

forests (a high density of 24 and 14 ha
-1

 , accounting for 31.4% and 27.3% of all trees, 

and comprising 10 and 9 species respectively). Large trees were found in all sites. This 

indicates that a high percentage of total basal area in the sacred groves and in non-

sacred forests was contributed by a few dominant species. 
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Table 6.5: Basal area (m
2
 ha

-1
) by species of all trees with DBH ≥ 5 cm in six sacred groves and four non-

sacred forests in the Gamo highlands of Ethiopia. 

                            Sacred groves                         Non-sacred forests 

Species Basal area (m
2
 ha

-1
) Species Basal area (m

2
 ha

-1
) 

Syzygium guineense 18.18 Syzygium guineense 17.62 

Apodytes dimidiata 6.65 Schefflera abyssinica 5.39 

Ilex mitis 6.49 Ilex mitis 3.85 

Schefflera abyssinica 4.93 Olea capensis 3.54 

Macaranga capensis 3.62 Ficus sur 3.02 

Euphorbia candelabrum 2.53 Ekbergia capensis 1.65 

Ficus sur 1.95 Aguaria saxifolia 1.50 

Olea capensis 1.73 Olinia rochetiana 1.46 

Prunus africana 1.48 Maytenus addat 1.06 

Maytenus arbutifolia 1.24 Macaranga capensis 0.88 

Erytrina brucei 0.93 Lepidotrichilia volkensii 0.59 

Galiniera saxifraga 0.69 Dracaena fragrans 0.57 

Allophylus abyssinicus 0.68 Apodytes dimidiata 0.56 

Ekbergia capensis 0.56 Prunus africana 0.55 

Croton macrostachyus 0.53 Allophylus abyssinicus 0.45 

Maytenus addat 0.39 Vepris dainellii 0.39 

Maytenus undata 0.38 Galiniera saxifraga 0.28 

Cordia africana 0.27 Polyscias fulva 0.27 

Dracaena steudneri 0.22 Maytenus undata 0.19 

Ficus vasta 0.22 Bersama abyssinica 0.18 

Hagenia abyssinica 0.22 Schefflera volkensii 0.17 

Celtis africana 0.15 Nuxia congesta 0.15 

Nuxia congesta 0.09 Croton macrostachyus 0.07 

Canthium oligocarpum 0.05 Chionanthus mildbraedii 0.06 

Dombeya torrida 0.05 Myrica saxifolia 0.05 

Vepris dainellii 0.03 Canthium  oligocarpa 0.05 

Maesa lanceolata 0.03 Flacourtia indica 0.03 

Ficus palmata 0.03 Maytenus arbutifolia 0.02 

Schrebera alata 0.03 Pouteria adolfi-frederici 0.01 

Bersama abyssinica 0.02 Dombeya torrida    0.01 

Millettia ferruginea 0.02 Dovyalis abyssinica 0.01 

Lepidotrichilia volkensii 0.01 Maesa lanceolata 0.001 

Pittosporum viridiflorum 0.01 Pittosporum viridiflorum 0.001 

Albizia gummifera 0.01   

Albiziz schimperiana 0.01     

Cupressus lucitanica 0.01   

 Total 54.44  Total 44.63 

 

Combining relative dominance, relative frequency and relative density into an 

importance value index indicated that Suzygium guineenses, Ilex mitis, Apodytes 

dimidata, Macaranga capensis, Maytenus undata and Euphorbia candelabrum had > 

1.5 times greater abundance in the sacred groves than the non-sacred forests, while 

comprising > 1.5% of the total importance value in the sacred groves (Table 6.6). On 

the other hand, Olea capensis, Aguaria saxifolia, Lepidotrichilia volkensii, Dracaena 
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fragrans, Scheflera abyssinica and Galineria saxfiraga had > 2 times greater abundance 

in the non-sacred forest than the sacred groves (Table 6.7). 

 

Table 6.6 Importance value index (IVI) of tree species in six sacred groves in the Gamo highlands of 

Ethiopia, calculated as (relative dominance + relative frequency + relative density)/3. 

Species Relative dominance Relative frequency Relative density IVI 

Syzygium guineense 33.53 13.28 15.78 20.86 

Ilex mitis 11.97 12.5 12.6 12.36 

Apodytes dimidiata 12.26 10.55 5.22 9.34 

Macaranga capensis 6.68 7.42 13.11 9.07 

Maytenus undata 0.71 3.13 14.89 6.24 

Euphorbia candelabrum 4.67 5.47 6.87 5.67 

Galiniera saxifraga 1.27 6.64 5.98 4.63 

Schefflera abyssinica 9.09 2.73 1.02 4.28 

Olea capensis 3.19 2.74 3.82 3.25 

Maytenus arbutifolia 2.29 3.12 1.53 2.31 

Dracaena steudneri 0.41 1.95 4.45 2.27 

Allophylus abyssinicus 1.25 3.48 1.78 2.17 

Prunus africana 2.73 1.95 0.76 1.81 

Ficus sur 3.6 1.17 0.38 1.72 

Croton macrostachyus 0.98 2.73 1.27 1.66 

Ekbergia capensis 1.03 2.73 1.02 1.59 

Celtis africana 0.28 2.34 1.53 1.38 

Erytrina brucei 1.72 1.17 0.64 1.18 

Vepris dainellii 0.05 1.95 1.27 1.09 

Bersama abyssinica 0.04 1.95 0.76 0.92 

Maesa lanceolata 0.05 1.56 1.02 0.88 

Canthium oligocarpum 0.09 1.56 0.76 0.80 

Cordia africana 0.5 0.78 0.64 0.64 

Maytenus addat 0.71 0.78 0.25 0.58 

Ficus vasta 0.41 0.78 0.25 0.48 

Nuxia congesta 0.16 0.78 0.25 0.40 

Lepidotrichilia volkensii 0.02 0.78 0.38 0.39 

Dombeya torrida 0.09 0.78 0.25 0.37 

Schrebera alata 0.05 0.78 0.25 0.36 

Pittosporum viridiflorum 0.02 0.78 0.25 0.35 

Ficus palmata 0.05 0.4 0.38 0.28 

Albizia gummifera 0.02 0.4 0.13 0.18 

Albiziz schimperiana 0.02 0.4 0.13 0.18 

Cupressus lucitanica 0.02 0.4 0.13 0.18 

Millettia ferruginea 0.04 0.04 0.25 0.11 

Total 100 100 100 100 
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Table: 6.7 Importance value index (IVI) of tree species in four non-sacred forests in the Gamo highlands 

of Ethiopia, calculated as (relative dominance + relative frequency + relative density)/3. 

Species Relative dominance Relative  frequency Relative density IVI 

Syzygium guineense 39.49 16.22 25.53 27.08 

Ilex mitis 8.63 10.47 10.17 9.76 

Olea capensis 7.95 6.08 11.44 8.49 

Aguaria saxifolia 3.36 3.04 14.19 6.86 

Lepidotrichilia volkensii 1.31 9.46 7.73 6.17 

Dracaena fragrans 1.28 5.74 7.1 4.71 

Schefflera abyssinica 12.09 0.68 0.21 4.33 

Galiniera saxifraga 0.62 6.42 3.18 3.41 

Olinia rochetiana 3.27 4.06 2.65 3.33 

Macaranga capensis 1.96 4.39 3.39 3.25 

Ficus sur 6.77 1.69 0.74 3.07 

Maytenus addat 2.37 2.7 1.06 2.04 

Ekbergia capensis 3.70 1.35 0.42 1.82 

Chionanthus mildbraedii 0.14 2.7 1.91 1.58 

Apodytes dimidiata 1.25 2.36 0.85 1.49 

Canthium oligocarpa 0.11 3.04 1.06 1.40 

Prunus africanus 1.23 1.69 1.27 1.40 

Bersama abyssinica 0.39 2.36 1.37 1.37 

Vepris dainellii 0.87 2.36 0.74 1.32 

Allophylus abyssinicus 1.00 1.69 0.95 1.21 

Nuxia congesta 0.34 2.36 0.85 1.18 

Maytenus undata 0.44 2.03 0.74 1.07 

Croton macrostachyus 0.16 1.35 0.42 0.64 

Schefflera volkensii 0.38 1.01 0.53 0.64 

Flacourtia indica 0.06 1.01 0.32 0.46 

Polyscias fulva 0.61 0.34 0.11 0.35 

Myrica saxifolia 0.12 0.68 0.21 0.34 

Pouteria adolfi-frederici 0.02 0.68 0.21 0.30 

Dovyalis abyssinica 0.01 0.68 0.21 0.30 

Maytenus arbutifolia 0.05 0.34 0.11 0.17 

Dombeya torrida 0.01 0.34 0.11 0.15 

Maesa lanceolata 0.00 0.34 0.11 0.15 

Pittosporum viridiflorum 0.00 0.34 0.11 0.15 

Total 100 100 100 100 

 

 

6.3.6 Tree size-class structure 

 

A single diameter size-class distribution for all individual trees ≥ 5 cm DBH was drawn 

for the sacred groves and for the non-sacred forests (Figure 6.6a). An indication of the 

density of smaller individuals of trees was added as a 0-5 cm DBH class comprising all 

measured stems > 0 cm tall and < 5 cm DBH. The seedlings and saplings were recorded 
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in 5 x 5 m sub-subplots and the values were multiplied by 16 to get them on the same 

area basis as the ≥ 5 cm DBH stems measured in the 20 x 20 m plots. The overall size-

class structure of all tree species was similar in both forest categories, a successive 

decrease in density from 0 to 15 cm DBH and very low density in each class above that 

(Figure 6.6a). However, while the density of stems < 5 cm DBH in the sacred groves 

was 2.75 times than in the non-sacred forests, the density of stems in the 5-10 and 10-15 

cm DBH classes was higher in the non-sacred forests than the sacred groves. If this 

reflects an equilibrium situation it implies much greater mortality rates over this size 

range in the sacred-groves. However, an alternative non-equilibrium explanation is that 

there has been a recent increase in seedling/sapling recruitment in the sacred groves that 

has not occurred in the non-sacred forests. The density of trees ≥ 50 cm DBH was twice 

as great in the sacred groves (76 ha
-1

) as in the non-sacred forests (35 ha
-1

). 

 

Size class distributions were assessed for tree height (Figure 6.6b). Comparison with the 

diameter class distributions is complicated by the effect of using different size class 

intervals. Nonetheless, it is clear that both forest categories also show a successive 

negative decline in tree density with height but the rate of decline up to 10 m height is 

less for the non-sacred forests than the sacred groves, though for both the rate of decline 

appears less steep for height than for diameter. 

 

For the four most abundant tree species in each forest category the population DBH 

size-class distributions show a wide range of shapes (Figure 6.7 a-d). For the two 

species in common between the forests categories both Ilex mitis and Syzygium 

guineense show a higher density in the 0-4.9 cm DBH class followed by a steeper 

decline in numbers with size in the sacred groves than the non-sacred forests. For I. 

mitis density over 5-24.9 cm DBH is greater in the non-sacred forests, but then density 

> 25 cm DBH is greater in the sacred groves. The distributions for the other two 

abundant species in the sacred-groves is very similar to S. guineense, whereas in the 

non-sacred forests, the other two species show a similar distribution to I. mitis (though 

for Aguaria saxifolia the density of 0-4.9 cm DBH is less than that in the next two 

classes indicating some restriction in its seedling/sapling recruitment or survival rate. 
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In the sacred groves, for Macaranga capensis, the density increased from 5-9.9 cm 

DBH to 20-24.9 cm. The density then decreased between 25 and 49.9 cm DBH while 

the population of Apodytes dimidata was dominated by seedlings/saplings and by trees  

≥ 50 cm DBH. In the non-sacred forests, the density of Aguaria saxifolia increased from 

seedlings and saplings to the 5-9.9 cm DBH classes and then sharply decreased after 

that while Olea capensis subsp. macrocarpa declined in density from seedlings and 

saplings over the whole size range. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6. Individual tree size class distribuitions for all species in sacred groves and non-

sacred forests in the Gamo Highlands of Ethiopia: (a) by DBH class, (b) by height class. For 

DBH the 0-5 cm class includes all individuals of tree species > 0 cm tall and < 5 cm DBH. For 

height the smallest class (0-5 m) has been divided into two sub-classes 0-1 m (which includes 

all individuals of seedlings of tree species > 0 cm and < 100 cm tall) and saplings of height 1-

5m. (c) and (d) show the distribution of only the individuals in DBH class ≥ 5 cm and height 

class ≥5 m respectively. 
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(a) Sacred groves     (b) Non-sacred 

forests 
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Figure 6.7 Population DBH size-class distributions of the four most abundant tree species in 

sacred groves and non-sacred forests in the Gamo Highlands of Ethiopia shown including and 

excluding the 0-4.9 cm DBH (the latter in order to better see the shape of distribution of 

individuals ≥ 5 cm DBH). DBH size classes are: (a, b) 1, 0-4.9 cm; 2, 5-9.9 cm; 3, 10-14.4 cm; 

4, 15-19.9 cm; 5, 20-24.9cm; 6, 25-29.9 cm; 7, 30.-34.9cm; 8, 35-39.9 cm; 9, 40-44.9cm; 10, 

45-49.9 cm; 11, ≥ 50 cm, and (c, d) 1, 5-9.9 cm; 2, 10.14.4 cm; 3, 15-19.9 cm; 4, 20-24.9 cm; 5, 

25-29.9 cm; 6, 30.-34.9cm; 7, 35-39.9 cm; 8, 40-44.9cm; 9, 45-49.9 cm; 10, ≥ 50 cm. 
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6.3.7 Current level of disturbance 

 

Levels of disturbance from grazing was scored on a scale from 0 (no disturbance) to 4 

(highly disturbed). The value obtained between 0 and 4 for each 8 20 x 20 m plots in a 

single site were summed and divided into eight to get average disturbance for each site.  

For the eight 20 x 20 m plots in each sacred grove the summed scores ranged from 0.4 

to 3.6, whereas in the non-sacred forests they ranged from 0.3 to 3.3 (Table 6.8).  The 

disturbance did not show any significant correlations with density of trees and alpha 

diversity (Table 6.8). In contrast, a significant negative correlation between seedling and 

sapling density (dependent variable) and disturbance score (independent variable) was 

found: increase in disturbance significantly reduced seedling and sapling density in both 

forest categories (Table 6.8).  

 

Table 6.8 Spearman rank correlation tests of correlation between scores of the intensity of disturbance 

(“D score”) and density of tree seedlings and saplings, density of trees and alpha diversity of trees in 56 

20x20 m sample plots in six sacred groves and four non-sacred forests respectively in the Gamo 

Highlands of Ethiopia. 

Sites Density of tree seedlings and 

sapling (< 5 cm DBH) 

Density of trees (> 

5 cm DBH)/ha 

Alpha 

diversity 

in 56 20 x 

20 m plots 

D score 

Sacred groves 

 

  

 Ula 3131.3 246.9 23.4 2.6 

Gufae 8290.6 187.5 20.8 0.4 

Qimme 1875.0 709.4 18.8 3.5 

Tele 7475.0 309.4 18.3 1.1 

Osha-Ocha 1665.6 418.8 17.1 3.6 

Akasie 990.6 275.?0 18.8 3.6 

r (correlation) -0.985 0.5507 -0.456   

P (Significance) < 0.05* > 0.05 > 0.05   

Non-sacred forests         

Sora 2868.8 456.4 24.5 0.3 

Shoa 2590.6 345.6 17.1 2.8 

Dhule 1950.0 256.7 14.1 3.3 

Oche 1121.9 198.5 13.4 3.5 

r (correlation) -0.948 0.313 0.326   

P (significance) < 0.05* > 0.05 > 0.05   

                      * Significant, P < 0.05  
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Disturbance from tree cutting was observed in both forest categories but its rate was 

slightly higher in the non-sacred forests (total stump density 198.7±46.4 ha
-1

) than in the 

sacred groves (181.5±64.4 ha
-1

) (Table 6.9). Syzygium guineenses, Macaranga capensis 

and Croton macrostachyus had the highest number of stumps in both forest categories. 

The majority of stumps of all sizes of all three species resprouted and had a high 

number of sprouts per stump.  

 

Table 6.9 Indicators of tree cutting disturbance for six sacred groves and four non-sacred forests in the 

Gamo Highlands of Ethiopia. 

 Sacred groves  

Sites Ula Gufae Qimme Tele Akasie Osha-

Ocha 

Mean(+/-SE) 

Mean number of sprouts/stump 2.9 9.9 4.9 8.1 3.1 1.5 5.0±0.7 

Density of living cut stumps/ha 78.1 293.8 118.8 46.9 175.0 168.8 146.9±35.7 

Density of dead stumps/ha 0.0 112.5 53.1 73.4 34.4 37.5 51.8±15.6 

Total density of stumps/ha 78.1 406.3 171.9 120.3 209.4 206.3 198.7±46.4 

Density of uncut trees/ha 246.9 187.5 709.4 309.4 275.0 418.8 357.8±76.9 

Total-stump/ha + Tree 

density/ha 

325.0 593.8 881.3 429.7 484.4 625.1 556.5±78.8 

Disturbance index* % 24.03 68.42 19.51 28.00 43.23 33.00 33.0±8.9 

 Non-sacred forests    

 Sora Shoa Oche Dhule    Mean (+/- 

SE) 

Mean number of sprouts/stump 3.5 8.9 17.3 7.4   9.3±2.9 

Density of living cut stumps/ha 53.0 91.7 28.1 206.3   94.8±39.4 

Density of dead stumps/ha 96.9 81.3 18.8 150.0   86.8±27.0 

Total density of stumps/ha 149.9 173.0 46.9 356.3   181.5±64.4 

Density of uncut trees/ha 456.4 345.6 198.5 256.7   314.3±56.2 

Total-stump/ha + Tree 

density/ha 

606.3 518.6 245.4 613.0   495.8±86.2 

Disturbance index* % 24.72 33.36 19.11 58.12   33.8±8.6 

stumpsofnumbertreeuncutofnumberTotal

stumpstreeofNumber


*  

 

The disturbance index of cut tree stumps as a proportion of the total of cut and uncut 

trees shows a remarkably similar level of disturbance for the two forest categories 

(33.0% of trees being cut in sacred groves and 33.8% in the non-sacred forests, Table 

6.9). Gufae is the most disturbed of all the sacred groves with disturbance index of 

68.42%, and has the highest count of living as well as dead stumps/ha. It also has the 

highest number of sprouts per stump, however most of them were not vigorous which is 
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attributed to the high grazing intensity (Table 6.8). People used this sacred grove as a 

grazing ground for their cattle and the cattle fed on most of the sprouts. The highest 

disturbance from tree cutting was also recorded in Gufae sacred grove where people 

extract biomass for construction. The tradition of respecting the sacred groves was 

becoming less in this area. It was also observed that people had chopped parts of living 

trees for charcoal and firewood at this site. According to the elders, most of the dead 

stumps in this forest were due to cutting for house construction and firewood collection. 

Akasie was the second most highly tree-cutting disturbed sacred grove (disturbance 

index 43.23%). The ground under the canopy of this forest was used as a playground by 

the children from the surrounding village. The anthropogenic disturbance of Osha-Ocha 

sacred grove was mainly at the edge of the patch, and there was no observed human 

disturbance at the core of this site. There were a high number of tree falls in the middle 

of this grove due to wind-throw. No sign of grazing was observed in this forest. Tele 

had the greatest canopy cover of the sacred groves, however it was under pressure from 

cattle grazing and there were also a number of cut stumps observed in this site. Less tree 

cutting disturbance was observed in Ula and Qimme burial forests having 24.03% and 

19.51% disturbance rates respectively. 

 

With respect to the non-sacred forests, Dhule was the most tree-cutting disturbed forest 

with a density of 150 ha
-1

 of dead stumps and 206.3 ha
-1

 of living stumps (disturbance 

index = 58%). Shoa and Sora were second and third most disturbed with disturbance 

indices of 33% and 25% respectively. Oche may have suffered the highest rate of 

disturbance in the past as judged by its high density of trees with multiple stems (data 

not shown). 

 

6.3.8 Regeneration status of sacred groves and non-sacred forests 

6.3.8.1 Tree regeneration 

 

Immature stems of tree species were observed in both the sacred groves and non-sacred 

forests. In some cases these clearly originated as sprouts from cut stumps. Others 

emerged from the ground but it was not possible to determine if they had established 
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directly from germinated seeds or as sprouts from below ground organs. In this section 

the term seedling is used to describe any individual of a tree species with a minimum 

height of 0 cm and a maximum of 100 cm, and a sapling as any individual of a tree 

species with a minimum height of > 100 cm and a maximum DBH of < 5 cm. Plants in 

either size category with multiple stems (e.g. a branched stem or multiple sprouts from 

the same trunk) were counted only as a single individual. The density of seedlings and 

saplings together recorded in the sacred groves ranged widely from 317 m
-2

 at Akasie to 

2653 m
-2

 at Gufae, and for non-sacred forests from 359 m
-2

 at Oche to 918 m
-2

 at Sora 

(Table 6.10). The mean (±SE) seedling density m
-2 

of six sacred groves (1111.7±393.2) 

and four non-sacred forests (476.8±87.3) and sapling density m
-2

 of six sacred groves 

(137.8±29.4) and four non-sacred forest (205.8±58.9) respectively were not 

significantly different (Kruskal Wallis test, H= 0.72, p > 0.05 and H= 1.64, p > 0.05 

respectively). However, mean seedling density/plot (n=56) of each species of sacred 

groves (53.17±17.14) and non-sacred forest (15.18±4.92) was significantly different (t = 

3.06, p < 0.05) while sapling density/plot of each species of sacred groves (6.60±1.82) 

and mean density/plot of
 
each saplings of non-sacred forest (6.56±1.56) was not 

significant (t = 0.019, p > 0.98). The ratio of seedlings to saplings was notably higher 

for the sacred groves (8:1) than the non-sacred forests (1.5:1).  

  

Table 6.10 The total density of seedlings and of saplings of tree species (individuals m
-2

) for each site of 

sacred and non-sacred forests. 

Sacred grove Seedling Sapling Non-sacred 

forest 

Seedling Sapling  

Ula 831 171 Sora 709 209 

Gufae 2468 185 Shoa 470 359 

Qimme 426 174 Dhule 442 182 

Tele 2187 205 Oche 286 73 

Osha-Ocha 481 52    

Akasie 277 40    

 1111.7±393.2 137.8±29.4  476.8±87.3 205.8±58.9 

 

There was a noTable difference in seedling/sapling species composition and community 

structure between the two forest types. Thirty two species were recorded in the sample 

plots in the sacred groves and 28 in the non-sacred forests (Table 6.11). It is noTable, 

however, that Syzygium guineense dominated the seedling size class, but was lower than 

fifth in rank order in the sapling size class, in both forest types. Its absolute density of 
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seedlings was ca. four times greater in the sacred groves, but of saplings was ca. two 

times greater in the non-sacred forests. Eight of the next nine ranked seedling species in 

the non-sacred forests, Macaranga capensis, Ekbergia capensis, Apodytes dimidata, 

Chionanthus mildbraedii, Canthium oligocarpum, Flacourtia indica, Prunus africana 

and Celtis africana, all had notably higher relative and absolute seedling densities in the 

sacred-groves than the non-sacred forests. While Bersama abyssinica had a slightly 

higher absolute seedling density in the sacred groves, it was second in rank (with a 

higher relative density) in the non-sacred forests. The third ranked species of seedling in 

the non-sacred forests, Lepidotrichilia volkensii, had a higher absolute density than in 

the sacred groves and the fourth ranked species, Olinia rochetifoliana, was (notably) 

completely absent from the sacred grove plots. Of the top ten ranked seedling species in 

the sacred-groves only the tenth, C. africana, was absent from the plots in the non-

sacred forests.  

 

It was noTable that for all of the most abundant seedling species, their ratio of saplings 

to seedlings was higher in the non-sacred forests than the sacred groves, e.g. Syzygium 

guineense had 0.012 saplings per seedling in the sacred groves but 0.090 in the non-

sacred forests, Macaranga capensis had 0.021 and 0.652, Ekbergia capensis had 0.030 

and 0.231, Apodytes dimidata had 0.217 and 0.349, Chionanthus mildbraedii had 0.133 

and 1.222, Bersama abyssinica had 0.175 and 0.251, Canthium oligocarpum had 0.077 

and 0.594, Flacourtia indica had 0 and 1.978 and Prunus africana had 0.010 and 0.621 

respectively. This could indicate higher seedling survival rates in the sacred groves or 

faster seedling (or slower sapling) growth rates in the non-sacred forests. 

 

In both forest categories, some species were recorded as present as trees but not as 

seedlings or saplings. In the sacred groves these were Schefflera abyssinica (which was 

eighth in rank in tree abundance with an importance value of 4.3), Cordia africana (a 

nationally conservation priority species), Maytenus addat (an endemic species), Ficus 

vasta and Albizia schimperiana. Of these five, only one (S. abyssinica) was recorded as 

a seedling in the non-sacred forests. For the non-sacred forests, the following species 

were recorded as trees but were absent as seedlings or saplings: Dracaena fragrans 
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(which was sixth in rank in tree abundance with an importance value of 6.7), Myrica 

saxifolia, Dombeya torrida, Maytenus arbutifolia and Polyscias fulva. Of these five 

species, two (D. torrida and M. arbutifolia) were recorded as seedlings and saplings in 

the sacred groves.  

A number of species were recorded as present as seedlings in the plots, but not as trees: 

Flacourtia indica (high seedling density but absent as saplings in the sacred groves, low 

seedling and sapling density in the non-sacred forests), Phoenix reclinata (moderately 

low seedling density but absent as saplings in the sacred groves, absent from the non-

sacred forests), Erytherinea brucei (an endemic species, low seedling density but absent 

as saplings in the sacred groves, absent from the non-sacred forests), Ficus sur (low 

seedling density but absent as saplings in the sacred groves, low seedling and sapling 

density in the non-sacred forests) and Ficus palmata (very low seedling density but 

absent as saplings in the sacred groves, absent from the non-sacred forests). 
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Table 6.11 Density of seedlings (se) and saplings (sa) per hectare of (a) individual tree species and (b) 

three functional groups of species (wide-habitat/generalist, WH; forest-habitat, FH; and forest-

margin/light demanding, FM) in six sacred groves and four non-sacred forests in the Gamo Highlands of 

Ethiopia. (F.group = functional groups). Se = Seedling, Sa = Sapling 

 (a)    

                                        Sacred groves    Non-sacred forest                                

Species Se ha
-1

 Sa ha
-

1
 

F. 

group 

Species Se ha
-

1
 

Sa ha
-

1
 

F.group 

Syzygium guineense 839.3 10.3 WH Syzygium guineense 218.3 19.6 WH 

Macaranga capensis 298.2 6.3 FH Bersama abyssinica 138.8 34.8 WH 

Ekbergia capensis 296.9 8.9 FM Lepidotrichilia volkensii 87.5 54.0 FH 

Apodytes dimidiata 224.1 48.7 FH Olinia rochetifoliana 53.6 13.4 FM 

Chionanthus mildbraedii 167.0 22.3 FH Allophylus abyssinicus 50.0 10.3 WH 

Bersama abyssinica 163.4 28.6 WH Maesa lanceolata 42.4 19.2 FM 

Canthium ologocarpum 133.5 10.3 FH Vepris dainellii 40.6 46.9 FH 

Flacourtia indica 113.0 0.0 FM Apodytes dimidiata 38.4 13.4 FH 

Prunus africana 92.9 0.9 WH Macaranga capensis 30.8 20.1 FH 

Celtis africana 80.4 71.9 WH Ilex mitis 24.1 18.8 FH 

Euphorbia candelabrum 71.9 4.9 FM Canthium oligocarpa 16.5 9.8 FH 

Ilex mitis 71.0 8.5 FH Prunus africana 12.9 8.0 WH 

Maesa lanceolata 68.8 25.0 FM Olea capensis 12.9 28.6 FH 

Maytenus undata 65.2 36.2 FM Galiniera saxifraga 12.5 2.2 FH 

Allophylus abyssinicus 61.2 4.9 WH Croton macrostachyus 12.1 6.3 WH 

Pittosporum viridiflorum 60.3 3.6 FH Ekbergia capensis 11.6 2.7 FM 

Galiniera saxifrage 46.9 8.9 FH Schefflera volkensi 9.8 9.8 FH 

Lepidotrichilia volkensii 30.4 26.8 FH Aningeria adolfi-

friederici 

7.6 15.6 WH 

Vepris dainellii 30.4 20.1 FH Dovyalis abyssinica 7.6 2.23 FM 

Albizia gummifera 13.8 0.9 WH Nuxia congesta 6.7 8.84 FM 

Croton macrostachyus 10.3 0.5 WH Chionanthus 

mildbraedii 

4.9 6 FH 

Dracaena afromontane 8.9 11.2 FM Aguaria saxifolia 4.9 5.4 FH 

Maytenus arbutifolia 8.0 5.8 FM Maytenus addat 2.2 5.8 FM 

Phoenix reclinata 7.6 0 FM Ficus sur 0.9 0.5 WH 

Nuxia congesta 5.8 0.9 FM Maytenus undata 0.9 4.0 FM 

Erythrina brucei 2.2 0 FM Flacourtia indica 0.5 0.9 FM 

Ficus sur 1.8 0 WH Pittosporum 

viridiflorum 

0.5 0.5 FH 

Olea capensis 1.3 0.5 FH Schefflera abyssinica 0.5 0 WH 

Dovyalis abyssinica 1.3 0.5 FM     

Dombeya torrida 0.5 1.8 WH     

Millettia feruginea 0.5 0.5 WH     

Ficus palmata 0.5 0 FH     

Total 2977.2 369.4   850.0 367.5  
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 (b)  

Functional groups Sacred groves (mean ±SE) Non-sacred forest (mean ±SE) 

 Seedling Sapling  Seedling Sapling  

Wide-habitat/generalist (WH)  98.4±22.2 8.6±6.8  35.4±10.9   7.8±3.7 

Forest-habitat (FH)  76.0±10.5 11.1±4.1  24.1±4.8   16.4±3.9 

Forest-margin/light demanding (FM)  57.8±12.5 8.8±4.5  7.9±4.8   4.7±2.9 

 

 

6.3.8.2 Sprouting from stumps 

 

Several species were found to sprout from cut stumps. The multiple sprouts on single 

stumps were recorded separately and summed to quantify total density of individual 

sprouts per hectare. The total density of sprouts was similar between the two forest 

types: 831.7 ha
-1

 in the sacred groves and 718.4 ha
-1

 in the non-sacred forests. For the 

sacred groves the mean of their mean number of sprouts per stump was 5.0±0.7  (with a 

range between sites from 1.5 to 9.9) (Table 6.9). The number of sprouts per stump was 

greater for the non-sacred forests (mean of site means 9.3±2.9), ranging between sites 

from 3.5 to 17.3. The species showing the largest number of sprouts per stump, or else 

the greatest observed “vigour” of sprouts, in the sacred groves were Syzygium 

guineense, Macaranga capensis, Apodytes dimidata, Maytenus undata, Canthium 

oligocarpum, Croton macrostachyus and Nuxia congesta. All of these species were also 

recorded as seedlings and saplings, however for the following three their sapling density 

was < 1 ha
-1

 and so vegetative sprouting might be a particularly important regeneration 

mechanism: C. macrostachyus, N. congesta and A. gummifera. 

 

6.4 Biocultural diversity value of sacred groves 

 

Twenty four people were interviewed from the age group 45-70 years. They consisted 

of religious leaders, clan elders, lineage heads and community chiefs. All of them were 

men and had lived in the village where they were interviewed since childhood and had 

acquired local beliefs and values during their upbringing. They fall into the broad group 

of “elders” who are very conversant with traditional rituals, norms and taboos. They are 

responsible for organizing rituals on sacred sites and punishing those community 
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members who act against traditional norms. The opening discussions with them were 

focused specifically on the origin, uses and current threats of the sacred groves, and how 

the respondents had gained the knowledge and skills necessary to manage the groves. 

 

The interviewees consistently reported that their knowledge has generally been passed 

down from their ancestors but they all identified their fathers as the direct source of 

their knowledge. They also stated that they consult other knowledgeable elders within 

their own clan or sometimes from different clans (social units in communities). The 

process of gaining this knowledge was largely through participation and observation, 

which had occurred since their childhood. According to the respondents, the eldest son 

amongst the family members usually takes the responsibility to perform the ceremonies 

and other roles connected with the sacred groves that their father did in the past. 

 

The respondents also reported that the origin of sacred groves was back in the time of 

their ancestors. They also noted that the sacred groves are not the only sacred places in 

the Gamo Highlands. They stated that the Gamo people believe that every natural 

object, such as mountains, pasture lands, rocks, rivers, streams, trees, animals, 

footpaths, the sun and the moon, are potentially sacred and that numerous spirits, both 

good and evil, inhabit them in local tradition. For example, the sun has its own spirit 

and according to local traditions this explains why the dry season is sometimes 

unusually long and hot. It is also believed that the sun has divine power that lights the 

whole earth. It needs prayer and offerings as a mark of respect. The elder locally known 

as arshe eqaa, (arshe = sun, eqaa = name traditionally given to a religious leader) makes 

offerings and prayers to the sun either together with other elders or alone. 

 

Similarly, the rain has its own spirit, explaining why the onset of rain at the start of the 

wet season is sometimes delayed or takes longer to stop at the end of the wet season and 

into the harvesting season. On these occasions Eraa kawo (the king of rain) makes a 

prayer on behalf of the community to bring the rain or sometimes to stop too much rain 

that people think will destroy the crops. Sacred assembly places known as dubusha (a 
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small place surrounded by a stone wall or wooden fences) are common in the Gamo 

Highlands. They are used for community affairs, such as settling disputes between two 

villages or individuals by local elders and religious leaders. Sacred pasture lands known 

as kalo are also mentioned as sacred sites. They are used for community gatherings for 

thanksgiving ceremonies. People get together and celebrate Meskel festivals (celebration 

of New Year) on sacred pasture lands. Collective decision-making related to communal 

lands also takes place on sacred pasture lands. 

 

Similar beliefs and practices apply to the sacred groves. Even though the whole village 

is responsible for the groves, each grove has its own eqaa as well. Eqaa perform 

offerings and make prayers each year to upgrade the sanctity of the groves and the 

wellbeing of the whole community. The respondents indicated that the sacred groves are 

the most threatened of the sacred sites in the Gamo Highlands and they were 

increasingly concerned about their deforestation and degradation. According to the 

interviewees, sacred groves had enormous significance for the people as evidenced by 

the following: prayers are offered to the deity by the ritual leaders and community 

elders. Specific beliefs about the sacred groves are that they harbor spirits that help 

families and protect them from any misfortune. The custodians believed in the sanctity 

of sacred groves and the spirits inhabiting them. The sacred groves on which this study 

focused were burial grounds (locally known as bossa or dufo) and relict natural forests 

(known as kasha). 

 

6.4.1 Management of sacred groves 

 

Because of the beliefs about the spiritual significance and sanctity of the sacred groves, 

it is not permitted for anyone to enter the sacred groves except ritual leaders when they 

make thanksgiving sacrifice and children under the age of puberty. Cutting trees within 

the sacred groves is not permitted by anyone under any circumstances. Hunting in 

sacred groves is also forbidden because eating meat of animals from sacred groves is 

considered taboo. Grazing is not allowed. The general belief of the custodians was that 

if anyone breaks these rules and enters the sacred groves or even cuts trees or kills 
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animals, the spirit would bring wrath to the village in the form of epidemic disease, or 

death of children and milking cows as a punishment.  

 

The respondents stated that the Gamo people had the custom of confession whenever 

they break the rules, followed by performing a sacrament to receive a pardon for their 

wrong action in the presence of ritual leaders. All the respondents agreed that anyone 

who was not willing to perform the sacrament would encounter misfortune including 

death to one of his family members. For the wellbeing of his family he must perform the 

custom. The sacrament is usually the sacrifice of a domestic animal, either a goat, sheep 

or cock based on what the ritual leaders recommended, which is slaughtered to pacify 

the wrath of the spirit of the sacred groves. 

 

In addition to this general belief system custodians also recently started protecting the 

sacred groves from domestic animals. If anyone breaks the rule, the community council 

that consists of elders, the chief and religious leaders punish the law breakers by 

demanding a payment in kind or cash based on their preference. Other potential sources 

of damage to sacred groves, such as forest fire and fire from land clearing for farming, 

were not considered to be a problem in the area. Even if they manage sacred groves in 

different ways, according to their interview responses, the custodians do not carry out 

active management, e.g. restoring degraded sacred groves by planting trees and 

promoting tree regeneration. Digging sacred ground with a sharp metal implement such 

as a hoe is considered taboo. This may be an influence against planting trees inside 

sacred groves. However, non-timber forest products such as wild fruit and medicinal 

plants are allowed to be collected by children from the sacred groves. 

 

6.4.2 Value of sacred groves 

 

All plant species present in the sacred groves are protected through belief systems (see 

appendix 6.1 for lists or plant species present in the surveyed sacred groves). Use of 

these plant species is carefully managed in sacred groves. While cutting trees is not 
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permitted, limited gathering of non-timber forest products such as fruits by children, 

medicinal plants  and plants used for ritual initiations by ritual leader is allowed since 

they are more common in sacred groves. For example, flowers of Hagenia abyssinica 

are collected from sacred groves for medical purposes. The flower of H. abyssinica is 

widely used in Ethiopia to expel tapeworms from the intestine (Negash, 1995). Leaves 

of Arundinaria alpina are collected from sacred groves for ritual initiations during male 

circumcision, while the stem is used as a symbol of fortune and holiness. The whole 

plant part of Ranunculus multifidus is used to ritually cleanse grave-digging hoes before 

they are taken home. Discopodium penninervium is used to ritually purify two 

individuals who are in dispute so that their differences are resolved. Besides these uses, 

the respondents stated that sacred groves are also valued as a wind break, to minimize 

soil erosion, and as a symbol of identity and beauty by their presence. 

 

6.4.3 Threats  

 

The respondents stated that sacred groves in the Gamo highlands currently face different 

threats. They classified the threats into two: physical threats and spiritual threats. 

Twenty of the 24 respondents said that the two main physical threats to the sacred 

groves were grazing and tree cutting. The remaining four placed more emphasis on 

grazing than tree cutting. All 24 of the respondents said that the spiritual value of sacred 

groves was threatened by being undermined by changes in belief systems between 

generations and that this, in turn, caused the above physical threats. The following 

responses are representative of the views of all the respondents: 

“Today sacred groves and other sacred places are disregarded by some people 

especially by the young generation. As a result wrath came to our village as well 

as to the region as a whole. Consequently, there was no harvest, the harvest had 

no value. Milking cows have died and the living are not giving milk as much as 

before when the sacred groves were respected by the whole village all 

together.”  
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“Today we are spiritually impure because some [village members] are going 

their own way. They have chosen another religion. On top of that they keep 

preaching to our family members so that they abandon their customs and beliefs 

and follow them, which is equivalent to preaching to lose identity”.  

 

“Our children are out of control, we can’t teach them our customs as we used to 

since they are not willing to participate and learn. We are all spiritually 

degraded because of them”. 

 

“Because of all these, we are under the wrath of the spirit. You can see many 

people dying each year due to the wrath. Marriage is not fruitful, rain is 

unpredicTable, and untreaTable disease [HIV] is killing our people. Before 

[when sacred groves were respected], if something went wrong we went and 

prayed to the sacred grove and got an answer immediately. Today, when we 

pray to the sacred grove, it takes longer to get a response or we get nothing at 

all.”    

 

The appropriation of sacred groves by other strong religions was identified as a spiritual 

threat by the respondents. In corroboration of this, I observed that some sacred groves 

had been changed into places of modern religion during a broad survey of sacred sites in 

the Gamo highlands. In discussing this, some of the respondents noted that, in some 

places, the custodians of the sacred groves were preached at by those promoting new 

religious beliefs and told that they are backwards and believe in superstition. This type 

of preaching is occurring widely in the Gamo highlands with the intention of taking 

over the sacred groves to build churches inside them. Most interviewed custodians also 

mentioned that they were under pressure from their spiritually converted relatives and 

forced to believe in both the indigenous and modern religion. From these and other 

examples highlighted above, it appears that sacred groves and their associated culture 

are under pressure, which in turn imposes threats to the biocultural diversity of sacred 

groves. 
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6.5 Land-use and land-cover change impact on sacred groves  

6.5.1 Land-use and land-cover composition at the landscape level 

 

There was a large change in land cover in the study area due to human land-use in the 

15-year period, 1995-2010 (Figure 6.17, Table 6.12). Wooded grassland was the 

dominant and most connected land-cover class in 1995, occupying 35% of the study 

area, however almost half of the area of this class had been converted to farm and 

settlement land cover by 2010 (Figure 6.8a). Farm and settlement was the second largest 

in area (28.8%) in 1995, then it more than doubled in area to become the dominant land 

cover by 2010. This is evidence that the area of human land-use in the Gamo highlands 

increased rapidly during this period at the expense of more natural habitats. Open 

pasture land was 25.3% of the area sampled in 1995 and largely restricted to high 

elevation areas which include the alpine grassland habitats. This land-cover type 

reduced to 15.6% of the total area by 2010, a loss of 6488 ha. Forest covered just 7216 

ha (10.8%) of the study area in 1995 and was reduced to 4573 ha (6.8%) in 2010 

(Figure 6.8a). In summary, between 1995 and 2010 wooded grassland lost 51.0% of its 

area, open pasture 38.4% and forest 36.6% all predominantly to farm and settlement 

land (Figure 6.8b). 

 

 

 

       

 

 

 

 

 Figure 6.8 Land-cover of the Gamo Highlands study area (66,764 ha): a) area of each land-

cover class in 1995 and 2010 and b) percentage change in area of each land-cover class between 

1995 and 2010. Farmland comprises cultivated and settled land. 
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Table 6.12 Land-cover and land-cover change of the Gamo Highlands study area (1995-2010). 

Year/period 1995 2010 1995-2010         change 

Cover classes Area (ha) % Area (ha) % Area (ha) % 

Farm and 

settlement 

19,255 28.84 40,329 60.4 21,074.0 +109.4 

Forest 7216 10.81 4573 6.8 -2643.0 -36.6 

Grazing land 16,878 25.28 10,390 15.6 -6488.0 -38.4 

Wooded grassland 23,415 35.07 11,472 17.2 -11,943.0 -51.0 

Total 66,764 100.00 66,764 100.0 0  

 

There was a decrease in the number of patches of all four land-cover classes between 

1995 and 2010 indicating a simplification of the pattern of land cover (Figure 6.9a, 

Table 6.13). Forests had the smallest reduction in patch number (from 1718 to 1441 

(19%, or 18.5 patches per year). 

 

 

 

 

 

 

 

Figure 6.9: Fragmentation of land-cover classes in the Gamo Highlands study area in 1995 and 

2010: a) number of patches, b) mean patch size (ha).  

 

In 1995 individual patches of farm and settlement land were often still interspersed by 

land of the three other land-cover classes having a mean patch size of only 1.7 ha (Table 

6.11). By 2010 the patches of farm and settlement land had often coalesced through 

conversion of the intervening land cover increasing their mean patch size more than 

five-fold to 9.9 ha (Table 46, Figure 6.9b). During this process there was both a 

decrease in patch number and in mean patch area of all three of the other land-cover 

classes. This simplification of the landscape structure was also reflected in the reduction 

in values of patch Mean Shape Index and Edge Density metrics for all four land-cover 
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classes between 1995 and 2010 (Table 6.13). The percentage reduction in edge density 

was greatest for wooded grassland and least for farm and settlement, whereas the 

reduction in mean shape index was greatest for forest. The Patch Size Coefficient of 

Variation (PSCOV) value, indicating variation of patch size in the landscape, increased 

for farm and settlement land, while decreasing for the other three classes, especially 

open pasture land and wooded grassland.  

 

Table 6.13 Fragmentation metrics for four land-cover classes in the Gamo Highlands study area in 1995 

and 2010.  

  Number of 

patches 

Mean patch 

size (ha) 

Edge density 

(m ha
-1

) 

Patch size 

coefficient of 

variation 

Mean shape 

index 

Year/land-cover 

class 

1995 2010 1995 2010 1995 2010 1995 2010 1995 2010 

Farm and 

settlement 

11159 4093 1.7 9.9 67.7 62.4 837.0 5683.0 1.5 1.4 

Forest 1718 1441 4.1 3.0 14.8 10.5 949.5 816.3 1.5 1.3 

Open pasture land 8106 5853 2.1 1.8 47.2 34.4 3712.0 1239.8 1.4 1.3 

Wooded 

grassland 

3996 2475 5.9 4.6 34.5 18.9 4420.9 2431.7 1.5 1.4 

 

When fragmentation is assessed at the landscape level (which sums across all four land-

cover classes) the same trends of simplification and reduction in heterogeneity between 

1995 and 2010 are apparent, with many small patches being converted to the land-cover 

of their surrounding matrix. There was a reduction in both the Shannon diversity and 

evenness indices for the landscape of 2010 compared with the landscape of 1995 

(Figure 6.10, Table 6.14). Mean patch size greatly increased while mean shape index 

was slightly reduced (Figure 6.11), and there was a large reduction in the total number 

of patches (Figure 6.12) and edge density (Figure 6.13). The mean shape index (MSI) 

decreased from 1.5 in 1995 to 1.4 in 2010 (Figure 6.11) which indicate that the patches 

had a more irregular shape in 1995. The more regular shape in 2010 indicates an 

increase in pressure on patches from land-use in the surrounding matrix. 
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Figure 6.10 Shannon diversity and evenness indices for patches of all four defined land-cover 

classes in the Gamo highlands study area in 1995 and 2010. 

 

 

 

 

  

 

 

 

 

 

Figure 6.11 Mean shape index and mean patch size (ha) for patches of all four defined land-

cover classes in the Gamo Highlands study area in 1995 and 2010. 

 

The reduction of mean patch size (MPS) overtime indicates the fragmentation of patch. 

In contrast, the mean patch size in Gamo highland increased from 4.3 ha in 1995 to 7.8 

ha in 2010 which means that most of the small patches lost to other land-uses. This 

further confirmed by decrease of patch number in the landscape of the study area. The 

number of patches (NP) has decreased greatly from 25,004 in 1995 to 13,926 in 2010 
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due to changes in land use (Table 6.13, Figure 6.12). Taking the evidence of these 

metrics together, the pattern of landscape change in the Gamo highland is that of 

attrition of land-cover types rather than fragmentation (Forman, 1995). Many patches 

have been diminished to destruction and replaced with other land-uses rather than 

remaining as fragments. The edge density decreased from 166.6 m ha
-1

 in 1995 to 128.6 

m ha
-1

 in 2010 (Figure 6.13). Edge density at the landscape level is directly related to 

the degree of spatial heterogeneity (McGarigal et al., 2002), hence the study area 

became less heterogeneous in 2010. 

 

 

 

 

 

 

 

 

Figure 6.12 Number of patches of all four defined land-cover classes combined in the Gamo 

Highlands study area in 1995 and 2010. 

 

 

 

 

 

 

 

 

Figure 6.13 Edge density (m ha
-1

) of all four defined land-cover classes combined in the Gamo 

Highlands study area in 1995 and 2010. 
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Table 6.14 Fragmentation metrics of all four defined land-cover classes combined in the Gamo Highlands 

study area in 1995 and 2010. SDI, Shannon diversity index; SEI, Shannon evenness index; MSI, mean 

shape index; ED, edge density; MPS,mean patch size; NumP, number of patches; PSCOV, patch size 

coefficient of variation; TA, total area (ha). 

 

     Year SDI SEI MSI ED MPS NumP PSCOV TA 

1995 1.5 0.9 1.5 166.6 4.3 25,003 6620.3 66,765 

2010 1.3 0.8 1.4 128.6 7.8 13,926 6016.8 66,765 

 

 

6.5.2 Fragmentation of individual sacred groves and non-sacred forests 

 

Fragmentation was also assessed at the scale of the individual patches of the six 

sampled sacred groves and four non-sacred forests. Change in shape index of the six 

sacred groves was variable between 1995 and 2010 with little overall change in the 

mean (Table 6.15): for Ula, Qimme and Tele there was no noTable change, for Osha-

Ocha and Akasai a decrease and for Gufae a large increase (Figure 6.14a, Table 6.15). 

In contrast, shape index decreased notably for three of the four non-sacred forests 

patches (indicating greater regularity of shape) (Figure 6.14b, Table 6.15). 

 

 

Figure 6.14 Shape index of (a) six sacred grove and (b) four non-sacred forest patches in the 

Gamo Highlands of Ethiopia in 1995 and 2010. 
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On average patch size decreased by 6% for the sacred groves, however the most 

noTable feature was its high variability with a noTable increase in Gufae and a small 

increase in Tele (Figure 6.15a Table 6.15). In contrast, all non-sacred forests showed a 

large decrease in size (on average by 43%) (Figure  6.15b). 

 

 

 

 

 

 

 

 

 

 

Figure 6.15 Patch size (ha) of (a) six sacred groves and (b) four non-sacred forest patches in the 

Gamo Highlands of Ethiopia in 1995 and 2010. 

 

The mean edge density for sacred groves increased significantly from 308.2±42.9 m ha
-1

 

in 1995 to 392.3±60 m ha
-1

 in 2010 (paired t-test, t = -3.451, p < 0.05), and in each of 

the six individual sites (Figure 6.16a, Table 6.15). The change in edge density was 

much more variable amongst the four non-sacred forests, resulting in a very similar 

mean for 1995 and 2010 (Table 6.15). The edge density reduced in Sora and Dhule and 

increased for Shoa and especially Ochee (Figure 6.16b, Table 6.15). In 1995 edge 

density was higher for all six sacred groves than for all four non-sacred forests; by 2010 

this was still the case except for Tele and Ochee.   
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Figure 6.16 Edge densities (m ha
-1

) of (a) six sacred grove and (b) four non-sacred forest 

patches in the Gamo Highlands of Ethiopia in 1995 and 2010. 

 

Table 6.15 Shape index, edge density and patch size of six sacred grove and four non-sacred forest 

patches in the Gamo Highlands in 1995 and 2010. Dch = direction of change. 

  Shape Index 

 

Edge Density (m ha-1) 

 

Patch Size (ha) 

  1995 2010 Dch  1995 2010 Dch  1995 2010  Dch 

Sacred groves 

Ula 2.6 2.5 =  355.7 483.2 + 3.6 1.8 -  

Gufae 2.7 4.4 +  184.3 269.6 +  27.2 33.5 +  

Qimme 1.3 1.2 = 429.6 583.3 +  1.26 0.72 - 

Tele 1.7 1.8 +  172.5 180.9 +  12.1 12.6 +  

Osha-

Ocha 

3.4 2.5 - 367.4 384.2 +  10.8 5.3 -  

Akasie 3.4 2.3 - 339.4 452.7 + 7.3 4.9 -  

Mean (+/- 

SE) 

2.52±0.3 2.45±0.4 - 308.2±42.9 392.3±60 + 10.4±3.8 9.8±5 - 

Non-sacred forests 

Sora 9.1 5.3  - 125.3 94.2 -  665.4 400.2 -  

Shoa 3.7 2.7  - 98.7 102.3 +  188.3 91.4 -  

Ochee 2.5 2.4  = 161.6 209.4 +  31.7 16.6 -  

Dhule 3.4 2.1  - 125.2 104.5 -  96.3 48.8 -  

Mean (+/- 

SE) 

4.7±1.5 3.1±0.7  - 127.7±13 127.6±27.2 =  245.4±143.5 139.3±88.2 -  
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Figure 6.17 Land-cover classification of the Gamo Highlands study area in (a) 1995 and (b) 2010 showing the location of the six sacred groves and four non-sacred 

forests.  
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6.6 Discussion  

6.6.1 Species richness, diversity, composition, structure and density of sacred 

groves versus non-sacred forests 

 

 Despite the smaller size of sacred groves there were no significant differences in tree 

species richness (per fixed area of sample plot) compared with larger non-sacred forests 

in the Gamo highlands of south-west Ethiopia. In addition, no significant differences 

were found between the two forest types in individual-based species accumulation 

curves by sample plot. Individual-based rarefaction curves did show differences 

amongst the sites: however, while two of the non-sacred forests approached a plateau at 

a much lower species richness than the other two, overall there was no evidence of a 

consistent difference between the six sacred groves and four non-sacred forests. While a 

large sampling effort was undertaken in this study, for all six sacred groves and two of 

the non-sacred forests the rarefaction curves are still far from the plateau when all 

sampled individuals were included, indicating that more species would be found in the 

area if more plots had been sampled. Therefore, the data do not allow a firm conclusion 

to be drawn about difference in species richness between the two forest types. However, 

tree species diversity (judged by inspection of Renyi profiles) was higher in the sacred 

groves than the non-sacred forests. 

 

The analysis of similarity (ANOSIM) (Clarke and Warwick, 2001) of species 

composition between sacred groves and non-sacred forests showed significant 

differences. These differences in species composition were shown by percentage 

similarity analysis (PERSIM) (Clarke and Warwick, 2001) to be due to the presence of 

species that discriminated between the two forest types. For example, Prunus africana, 

Celtis africana, Maytenus undata, Euphorbia candelabrum, Apodytes dimidata and 

Matenus arbutifolia were more commonly found in the sampled sacred groves and 

Hagenia abyssinica was totally restricted to the sacred groves. On the other hand 

species such as Lepidotrichilia volkensii, Chionanthus mildbraedii and Maytenus addat 

were more commonly found in non-sacred forest and Aguaria saxifolia and Olinia 

rochetiana were restricted to non-sacred forest. 
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Ordination analysis provided evidence of major differences between the two forest 

types in species composition, which are likely to be due to (a) the higher rate of 

disturbance of the non-sacred forests, e.g. due to tree cutting (discussed below), and (b) 

topographic factors (Jin et al., 2008). Elevation, aspect and slope are the main factors 

that control the distribution and pattern of vegetation in mountain areas (Titshall et al., 

2000). They determine the microclimate and thus large-scale spatial distribution and 

pattern of vegetation (Busing et al., 1992). The two forest types are different in slope as 

well as geology, from which their soil is derived (Chapter 2, Table 2.2) while they are 

similar in rainfall distribution (Chapter 2, Figure 2.6). The aspects and altitudes of the 

forests are also fairly different (Table 2.2). These differences in slope, altitude, geology 

and aspect may have all contributed to species composition differences of the sacred 

groves and non-sacred forests.  

 

For all species combined, there were no significant differences between the sacred 

groves and non-sacred forests in tree basal area  or in individual tree density. Inspection 

of the stand size-class distributions also showed that over most of the diameter size 

range (15-50 cm DBH) the absolute densities and distribution-shape (a gradual decline 

in numbers with size) was very similar between the two forest types. In addition, the 

densities of trees larger and smaller than that range did indicate major effects of human 

disturbance. The density of trees > 50 cm DBH (and > 30 m height) was notably higher 

in the sacred groves, however it was very clear that the density of trees 5-15 cm DBH 

(and 5-10 m height) was greater in the non-sacred forests. This difference was not 

reflected in the density of saplings which was also non-significantly higher in the sacred 

groves than in the non-sacred forests. However, the trend was reversed for seedling 

density which was significantly higher in the sacred groves. 

 

6.6.2 Disturbance level 

 

The average level of disturbance quantified as a combination of the impacts of tree 

cutting and grazing (Mehta et al., 2008) was the same in the sacred groves and non-

sacred forests being moderately high in both. The quantification of the density of cut 
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stumps as a proportion of all cut and uncut trees showed no overall difference between 

the two forest categories. This finding is incompatible with the interview response of 

the sacred grove custodians that people extract woody biomass in non-sacred forests 

without any restriction while they are culturally prohibited from entering the sacred 

groves to cut trees. These responses may reflect more the custodians’ views on how 

things used to be rather than current reality. However, I observed a higher density of 

recently cut stumps of large trees in non-sacred forests than in sacred groves during the 

field work. As shown by the results (above) of a much higher density of live trees > 50 

cm DBH in the sacred groves, while most of the large trees in non-sacred forests had 

probably already been removed for timber and other utilities (and their stumps no longer 

visible), many had been retained in the sacred groves, which is more compatible with 

the custodians stated perceptions. In the non-sacred forests, the past removal of large 

trees is likely to have caused the current lower basal area and more open canopy leading 

to the higher density of small trees. In the sacred groves, the high rate of selective 

cutting of small trees that had occurred (despite the custodians’ statement) may have 

permitted the higher density of seedlings than the non-sacred forests. In addition, 

however, the seedling population in the sacred-groves was more dominated by species 

that could tolerate the higher level of canopy shade (and in some cases might even 

benefit from it in this seasonally dry climate (McLaren and McDonald, 2003)) than was 

the case in the non-sacred forests. Cattle grazing disturbance was common in all ten 

forests and is also likely to have had a major impact on tree species regeneration 

(through vegetation trampling and soil compaction as well as through browsing). 

 

6.6.3 Land-use and land-cover change impacts on sacred and non-sacred forests in 

the Gamo highlands 

 

Expansion of agricultural and settlement land-use has greatly reduced the land-cover of 

natural habitats in the Gamo highlands landscape over the past 15 years; reflecting the 

trends reported across the tropics by Lambin et al. (2003). This has led to fragmentation 

(a reduction in the spatial relationship between natural habitats) as the landscape spatial 

pattern has changed (Turner et al., 2001). Up to 1995 the landscape was dominated by 

natural/semi-natural habitats of woodland, wooded grassland and open-pastureland, 
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forming the matrix for the comparatively small patches of household farms and 

settlements. Farms were usually located on gentle slopes and valley bottoms, while the 

steep slopes and flat plateaus were used as open communal pasture land. In contrast, by 

2010 the area of farmland and settlement had expanded massively into land previously 

occupied by all three natural/semi-natural habitats and now forms the matrix of most of 

the landscape except for one strip dominated by wooded grassland in the west and one 

dominated by open pasture to the east of the centre (Figure 6.17). Virtually all the 

remaining forest patches are now within a matrix of farm and settlement land. This 

combination of a great reduction in the area of forest patches (through encroachment for 

agriculture and settlement) and the severe fragmentation of the patches due to being 

surrounded by this matrix of intensively used land-cover, which is likely to be 

impermeable to many forest species, is likely to pose a severe threat to the conservation 

of forest biodiversity in this landscape. This has led to an increase in the relative 

importance of the sacred groves for conservation as they have suffered a lower rate of 

area loss than the non-sacred forests. However, their capacity to provide this benefit is 

also highly threatened by fragmentation and the effect of the surrounding farmed and 

settled matrix. 

 

The reduction in patch number within this landscape between 1995 and 2010 affected 

wooded grassland and open pasture land more severely than forest, however the overall 

area reduction across these habitat types has reduced the landscape’s habitat richness 

(McGarigal, 1995). Together with the reduction in the size and shape complexity of the 

patches of these natural/semi-natural habitats this is very likely to have reduced 

landscape-level biodiversity, indicating the urgent need for assessment of conservation 

priorities. 

 

6.6.4 Importance of sacred groves for biodiversity conservation 

 

The evidence from this study indicates the important role of sacred groves in 

biodiversity conservation in southern Ethiopia, supporting the many existing accounts 

from other countries (e.g. Mgumia and Oba, 2003; Bishra et al., 2005; Bhagwat et al., 
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2005; Rao et al., 2011). This quantitative ecological evidence was well-supported by the 

qualitative information obtained from interviews with local custodians about the 

protection afforded to the sacred groves by traditional practices, and their high cultural 

value. This high cultural value and protection is associated with the abundance in the 

sacred groves of a number of species that have become rare (through over exploitation) 

in other forest habitats, as has been found in other parts of Africa (Mgumia and Oba, 

2003). These included tree species of national conservation priority, Cordia africana 

and Hagenia abyssinica, the globally threatened species Prunus africana, and a number 

of endemic tree species, e.g. Vepris daniellii and Maytenus addat. 

 

Despite this national and international conservation value of the sacred groves, in 

interview very few of the custodians showed awareness of their wider conservation 

importance. Their protection practices are motivated by the indigenous cultural and 

spiritual value of these groves. While this represents a complex combination of values it 

does show the potential for a “win-win” outcome in which enhanced protection of the 

sacred groves both conserves local traditional culture (manifest in practices, taboos and 

value systems developed and enriched by the community over centuries) and wider 

biodiversity values (Claudia, 2008). The sacred groves are still considered to be a 

central part of life by many community members. The strength of these traditional 

values is evidenced by the fact that, even during the period of high political instability 

in the country over recent decades, when there were huge population, economic and 

social changes in the Gamo highlands, a high proportion of the sacred groves have been 

protected.  

 

This apparent synergy between actions that would conserve both traditional culture and 

internationally important biodiversity, through protection of sacred groves, seems to 

present an obvious way forwards. However, it also presents a potential dilemma in 

terms of the appropriate role of different institutions. Up to the present, protection of the 

sacred groves of the Gamo highlands has entirely been the result of the actions of 

indigenous traditional institutions (predominantly the custodians). There has been no 

recognition of sacred groves by the official conservation institutions in Ethiopia. Clearly 
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these cultural practices have been sustained as new generations have gained this 

knowledge through participation, observation and by oral traditions and eventually 

eldest sons have taken over this responsibility (as reported by the guardians), in 

common with many other traditional cultures (Berkes et al., 2000). However, the 

sustainability of this indigenous system appears to be under threat. The custodians 

themselves stated that this culture is being undermined by the growing strength of non-

indigenous (Christian) religious beliefs in the area, and that an increasing number of 

young people are engaging in cattle grazing and tree cutting which is threatening the 

sacred groves. The forest inventory results of the present study provided empirical 

evidence for the high threat that such grazing and tree cutting is now posing to the six 

studied sacred groves. External national (government and NGO) conservation agencies 

could respond to this evidence by using existing instruments such as legal registration of 

remaining sacred groves as cultural heritage sites and attempting to enforce forest 

protection laws. However, these very externally-imposed actions might well serve to 

further undermine the status and authority within the community of indigenous 

traditional institutions, such as the custodians. Therefore, instead, I advocate carefully 

considered actions by external agencies, preceded by careful negotiation with 

community institutions, to determine if a truly balanced partnership can be achieved that 

will support the sacred-grove protection practices of the custodians (if appropriate 

through legal measures) and not risk undermining their status within their rapidly 

changing communities. The patience and care with which such a process must be 

conducted is essential despite the apparent urgency of the biodiversity conservation 

need indicated by the evidence presented in this study of the severe current threat posed 

to the sacred-groves through both deforestation and degradation. 

 

 

 

 

 



252 

 

CHAPTER 7 

GENERAL DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS 

 

 

7.1 Introduction 

 

The present research was designed to further our understanding of land-use change 

impacts in southwestern Ethiopia. In this thesis, the research was structured into four 

components that together were designed to address major gaps in knowledge of land-

use change impacts on landscape pattern, forest patch spatial structure and consequent 

effects on species richness, composition and conservation value within the patches, as 

well as associated cultural values, in order that their conservation and management can 

be improved. 

 

The first research component involved analyzing changes in landscape spatial pattern 

resulting from land use change (Chapter 3). In many countries landscape spatial pattern 

analysis has been found to be an important means of quantifying landscape change and 

thus used for forest spatial change modeling (e.g. Echeverria et al., 2007). However, this 

approach to landscape ecology research has had limited use in Ethiopia. It was applied 

in the present study in Ethiopia with the objective of developing forest restoration 

strategies jointly with communities. It assessed how the landscape pattern of forest 

patches changed over two decades, including the amount of core forest habitat area and 

its spatial distribution that could be used for identification of potential sites for 

restoration (Figure 3.28). 

 

The second research component investigated the species composition of forest patches 

embedded within the increasingly agricultural-dominated landscape and its relationship 

with their fragmentation (Chapter 4). Particular attention was paid to the presence, 

abundance and distribution amongst patches of species of conservation value in order to 

assess the importance of small forest fragments in regional biodiversity conservation. 
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The impact of patch fragmentation and disturbance on forest structure, species 

composition and regeneration dynamics was assessed. This information is important to 

inform regional and national conservation strategy, in particular to draw the attention of 

conservation authorities in Ethiopia to the value of small forest patches distributed in 

agricultural landscapes. 

 

The third research component explored whether and how plant species of different 

functional groups responded to forest patch fragmentation (Chapter 5). The functional 

groups’ approach to analyse plant community response to fragmentation has been found 

in previous studies to provide an ecological understanding of the consequences of 

fragmentation (MacIntyre and Lavorel, 1994). This approach was adopted to inform 

conservation planning for small forest fragments in Ethiopia. 

 

The fourth research component was focused on the value of sacred groves for 

biodiversity conservation, the cultural values that have led to their protection and the 

threats that they are currently under (Chapter 6). While the existence of sacred groves 

and their potential importance for biodiversity conservation in Ethiopia have been 

recognized (Desalegn, 2007) there is a serious lack of detailed information about their 

biodiversity and cultural importance. This need was met in the present study through 

comparison of the species composition and diversity of sacred with non-sacred forests. 

Linking to the previous two study components, the threat posed to sacred groves by 

land-use change and other pressures, linked to the status of community institutions, was 

also assessed. The findings of this research are important for conservation planning 

targeted at sacred groves, as well as assessing their role in wider regional conservation 

planning. 

 

7.2 Discussion  

7.2.1 Land-use and land-cover change  

 

Consistent with studies in other parts of Ethiopia, which indicated a recent decrease in 

natural habitat resulting from expansion of land area under human use (Feoli et al., 
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2002), this study has revealed a very high rate of loss of forest cover in three different 

study areas in Illubabor Zone SW Ethiopia. In the lower altitude Site I, which started 

with much higher forest cover, it decreased 6.30% between 1986 and 2007 at an annual 

rate of 0.30%. There was a big forest loss in Site II which decreased 50.19% between 

1986 and 2007 at a rate of 2.39% annually. Whereas there was a 9.45% decrease 

between 1986 and 2007 at an annual rate of 0.45% in Site III. Thus the two higher 

altitude areas which had previously lost a higher proportion of their forest cover were 

suffering the highest rates of deforestation, in one area so great that there is a serious 

risk that functional forest habitat will soon cease to be a component of its landscape. 

These forest area losses were associated with an expansion of land area under farming, 

grazing and settlement (Chapter 3). While crop land was the dominant land-cover class 

in high altitude areas its change over time showed inconsistent trends between periods 

as well as between sites. Grazing land showed a clear trend of increased area over the 

twenty-one years in all three sites, however its greatest expansion occurred at higher 

altitudes (reaching 42.7% of total land area in Site II and 32.4% in Site III by 2007). 

The expansion of grazing land at the expense of forest has also been found by previous 

studies in other continents (e.g. Echeverria et al., 2012). Amongst the three study sites, 

Site II experienced the highest rate of deforestation and had the highest percentage of 

farm and grazing land by 2007. In contrast the lowest altitude site (I) retained the 

highest percentage of forest cover (four times that of Site II and three times that of Site 

III). There are two possible explanations for this. Firstly, traditional coffee management 

at such mid-altitudes does not require complete clearance of existing forest vegetation 

(Aerts et al., 2011), in contrast to the dominant crop agriculture at higher altitudes. 

However, coffee management does lead to serious forest disturbance, with greatly 

reduced regeneration of tree species because of frequent slashing by farmers as they 

make the understorey dominated by coffee. However, some tree biodiversity is retained 

as coffee shade (Gove et al., 2008; Aerts et al., 2011). Secondly, the human population 

density is higher at higher altitudes in the Zone (CSA, 2007) leading to increasing 

pressure on land for food production. 

 

The area of wooded grassland substantially increased in the lowest altitude site (I) while 

it greatly reduced in area in the two higher altitude sites. In Site I forest land is 
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converted to wooded grassland due to the practice of fallowing, the creation of short 

grass fallow under remnant trees. In the higher altitude sites, the dominant process 

affecting wooded grassland is its conversion to crop agriculture. In general, total change 

of natural landscape to human land-use through deforestation, settlement expansion, 

agriculture and other human influences substantially altered the landscape pattern of the 

study area. 

 

7.2.2 Landscape spatial patterns and forest fragmentation 

 

Landscape metrics provided a useful tool to explore differences between the sites and 

change over time of landscape spatial pattern. The use of landscape and class level 

pattern metrics enabled assessment of the spatial structure of forest cover and its 

relation to other major land-cover types, i.e. farm and settlement, and grazing land (as 

had also been successfully carried out by Echeverria et al. (2007) in southern Chile). 

Forest fragmentation has three components at the landscape level: a) habitat loss; b) 

reduction of patch size; and c) increased isolation of patches (Forman, 1995; Bennett, 

2003; Farina, 2007; Echeverria et al., 2007). All three of these components were shown 

to have occurred over the last two decades in all three study sites. Forests have 

undergone high rates of fragmentation, forest patches have been greatly reduced in area 

due to encroachment at their margin and in some places there has been a complete loss 

of patches as they are converted to other land-uses (Figure 3.28). However, the pattern 

of fragmentation varied between the three sites. In the two highland sites (especially 

Site II) the dominant trend was reduction in size of the (already small) remnant forest 

patches. In all three sites the landscape pattern became simplified over time: for all 

land-cover classes combined the mean patch size increased and patch number 

decreased. By the end of the study period the landscape cover of Site I remained 

dominated by forest, in Site III by farm and settlement, though in sites II a huge 

expansion in the area of grazing land brought it to co-dominance with farm and 

settlement land by the end of the study period. 
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The net shape complexity of the forests was more irregular in Site I, as indicated by its 

relatively high area weighted mean shape index (AWMSI) whereas the complexity was 

more regular in sites II and III indicating the greater human influence on landscape 

pattern at higher altitudes. Similarly, the edge density of the forests decreased in Site I 

while it increased in sites II and III indicating frequent disturbance at forest edges. 

 

The mean patch size of core area for the two higher altitude sites reduced greatly over 

time. Core area is the patch area remaining after removing an edge buffer to represent 

the area not influenced by the edge effect (Bridge et al., 2000). A 50 m wide edge buffer 

was used in this study to delineate core area. The total core area of the forest habitat in 

all three study sites decreased over time indicating the decline in the total amount of 

core forest habitat at the landscape level. Reduction of core area reduces the viability of 

forests for providing adequate protection of species dependent on within-forest habitat 

conditions (Bridge et al., 2000), therefore this result gives serious concern about the 

level of threat to forest species in the Illubabor Zone. 

 

7.2.3 Importance of small forest patches in biodiversity conservation in Illubabor 

Zone, Ethiopia 

 

There were large differences in woody species composition amongst the three sites, 

especially between Site I at mid-altitude and sites II and III at higher altitude (Chapter 

4). Different patterns of forest fragmentation and disturbance were associated with this 

altitudinal split into two groups of sites, so the study design did not allow clear 

separation between these potential causes. Canonical correspondence analysis showed 

that both altitude and disturbance (from grazing and tree cutting) were the strongest 

factors, while slope angle, patch shape, rainfall and patch edge density were less 

important in determining composition. Apart from its influence on rainfall, the basic 

impact of altitude on temperature is likely to have influenced patterns of vegetation 

distribution (Jin et al, 2008, Kreyling et al., 2010). In this study there are some species 

which were only recorded in study plot of lower altitude in Site I (Anthocleista 

scheinfurthii, Pouteria altissima, Pappea capensis, Blighia unijugata, Vanguria 
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apiculata, Trichilia dregeana, Morus mesozygia and Albizia grandibracteata). This is in 

agreement with the findings of Friis (1992) that there are a set of species whose range is 

restricted to the transitional forest types situated at mid-altitudes in south-west Ethiopia. 

 

While the relative contribution of different factors to the floristic differences between 

the three sites cannot be determined with certainty, the distinction between Site I and 

sites II and III was clearly strongly linked to forest patch size. The theory that "a large 

habitat area supports more species than small ones" diverts attention from the need for 

simultaneous conservation strategies that include the retention of small patches 

(Lindenmayer and Fischer, 2006). Protection of large forest reserves in modified 

landscapes is important for biodiversity conservation, but should not be the only 

strategy (Lindenmayer and Franklin, 2002). The present study established that small 

forest patches in  Ethiopia contained large numbers of high conservation value species 

which is in agreement with the findings of studies in other tropical areas (e.g. Turner, 

1996; Fischer and Lindenmayer, 2002; Arroyo-RodrÃguez and Mandujano, 2006). In 

fact the set of small forest patches in sites II and III had some species not recorded in 

continuous forest in Site I, including a higher number of conservation value species 

population (Afrocarpus falcatus, Pouteria adolfi-friederici, Olea welwitschii). This 

suggests that the forest patches at higher altitudes are crucial for maintaining the 

regional biodiversity of the Illubabor Zone. Furthermore, of the species that occurred in 

both larger forest blocks in Site I and smaller patches in Site II and III, most had a larger 

population density/plot in patches, such as for Prunus africana, Elaeodendron 

buchananii, Erythrococca trichgyne and Apodytes dimidata and for some species 

endemic to Ethiopia, Vepris dainelii, Milletia ferrugina, Phyllanthus limmuensis and 

Maytenyus addat, as well as afromontane endemics, Ilex mitis, Bersama abyssinica, 

Olea capensis subsp macrocarpa, Canthium oligocarpum, Galineria saxfragia, 

Macaranga capensis and Ritchiea albersii. This indicates the substantial threat to tree 

species conservation that would result from the loss or alteration of these small patches. 

Nonetheless, their capacity to act as effective habitats for conservation will greatly 

depend on them not becoming fragmented beyond a threshold at which they could no 

longer collectively support metapopulations of conservation value species (Rutledge, 

2003). 
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The intensity of anthropogenic disturbance on sites can also be responsible for species 

distribution patterns that led to difference in species composition. The forests in Site I 

exprienced frequent human disturbance in which the timber tree species were extracted 

selectively (Feyera and Denchi, 2006) while trees in the understory were slashed for 

coffee management (Aerts et al., 2011). In the present study a high proportion of the 

woody plants recorded in Site I were of pioneer-type species that dominate the upper 

and lower canopy layers (Milletia ferrugina, Albizia gummifera, Croton macrostachyus 

and Maesa lanceolata) and whose establishment is promoted by forest disturbance (Hill 

and Curran, 2003). The composition and density of the sapling and seedling size classes 

was also dominated by these species, along with Coffea arabica actively promoted by 

management which was the most abundant species in the lower story (Aerts et al., 2011; 

Chapter 4). There are four possible reasons for this result: 1) the germination of other 

forest-habitat dependent species is greatly reduced by frequent substrate disturbance 

exposing their seed to predators; 2) the forest canopy is so severely disturbed that the 

understorey environment is unstable for the survival of other forest-habitat dependent 

species; 3) forest-habitat species are selectively slashed by farmers preventing them 

from attaining their full height (Aerts et al., 2011) and thus reproductive maturity or the 

capacity to set seed; 4) continuous human disturbance associated with coffee 

management may alter the forest environment to favor the growth of pioneer species 

(Tesfaye et al., 2010) in competition with the other forest-habitat species. A 

combination of these four factors may lead to the priority effect (Alford and Wilbur, 

1985) where pioneer species are able to preempt the establishment of other species, 

competitively occupy the habitat and prevent the later invasion by forest-habitat species 

due to ongoing levels of disturbance. 

 

Fragmented patches at higher altitude in Site II and III, in contrast, contain a mixture of 

species mostly limited to a higher altitudinal range (Syzygium guineense, Afrocarpus 

falcatus and Pouteria adolfi-friederici) and some with a wide altitudinal range in 

afromontane forests. The upper story of the patches was dominated by the first group 

(high altitude species). The lower story, including saplings and seedlings of the upper 

storey species, were dominated by forest-habitat species (Chionanthus mildbraedii, 

Veperis dainelii, Oxyanthus speciiosus and Canthium oligocarpum) and generalist 
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species (Syzygium guineense, Bersama abyssinica, Prunus africana and Pouteria adolfi-

friederici). However, the sampling of the edge habitat of these patches (Chapter 5) 

showed that the upper canopy was dominate by generalist species and the lower story 

dominated by species of pioneer types similar to Site I, suggesting that the edge effect 

through fragmentation and human disturbance can lead to a similar species composition 

to the generally disturbed/degraded coffee forests of Site I. 

 

The lower number of woody plant species found in the smaller forest patches at high 

altitude compared with the larger continuous forest areas in Site I is in agreement with 

several studies that have found higher species richness in large continuous forest than in 

small forest patches (e.g. Turner, 1996; Cambin and Lachavanne, 2002; Schmitt et al., 

2010). However, the individual-based species accumulation curves showed that the 

species richness was far from completely recorded for the forest patches despite the 

large sampling effort used in the present study, indicating that there were more species 

to be found in each of the three sites if sampling were continued. Although the curve 

showed an increment in species number at the end of the full sample in each site, 

species density (number of species per sampled plot) is still higher in the continuous 

forests of Site I (chapter 4; Figure 4.3) for 3200 m
2
 sample plot size. The possible 

explanations for this difference might be that the sampling in Site I covered a greater 

range of habitat types than in sites II and III due to inherent differences in the 

environmental heterogeneity between the two areas. While the forests in Site I, 

predominantly under management for coffee production, were subject to high rates of 

disturbance, this was patchy within these large forest blocks. Because of the large block 

size, individual sampled locations were less isolated from other forest habitats than was 

the case for the sampled patches in sites II and III, making them more likely to be re-

colonized after disturbance. The abundance of pioneer woody species in the sampled 

flora provided a set of species that could maintain high levels of species richness in 

these circumstances (Schmitt et al., 2010, Tesfaye et al., 2010). The other possible 

explanation for the higher species number in Site I is that the range of species could be 

restricted to this mid-altitudinal area (some of these are Vangueria apiculata, Trichilia 

dregeana, Mimusops kummel, Deinbollia kilimandischarica, Manilkaria butugi and 

Pouteria altissima).  
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Vegetation analysis along altitudinal gradient by Hamilton (1975) in Ugand forest also 

showed that the number of species decreased with increasing altitude. Though the 

regression analysis between altitude and species richness in this study indicated little 

relationship there should be an altitudinal effect at a level of individual species (Table 

4.11). 

 

Forest structure defined by tree basal area and individual tree density can be influenced 

by patch area (RodrÃguez and Mandujano-Arroyo, 2006), whereas Barbosa et al. 

(2010) found that patch size reduction due to anthropogenic habitat loss influenced tree 

basal area of the patches. In addition, a positive relationship between altitude and 

tropical forest basal area was found by Lieberman et al. (1996), Wangda and Ohsawa 

(2006) and Sahu et al. (2008). On the other hand, Coomes and Allen (2007), like many 

previous studies, showed a decline of tree diameter growth with altitude. However, in 

the present study, the sampled patches at higher altitude in sites II and III contained an 

equally high total density of individual trees and total tree basal area as the sampled 

blocks of forests at mid-altitude in Site I. Tree density and basal area showed high 

variability among the sampled patches within all three sites, which is likely to be due to 

variation in anthropogenic disturbance (cutting and grazing impacts on small trees, and 

timber harvesting impacts on large trees). The variability of basal area among patches 

within sites at higher altitude was lagely due to the density of large individual trees. The 

disturbance from tree cutting had not affected the patches equally in these areas, thus 

some patches still retained a considerable number of larger trees. The variability of 

individual tree density in patches can be due to cutting of many lower story shade trees 

for coffee management and trees of a range of sizes for construction purposes. 

 

7.2.4 Response to Fragmentation of Plant species differing in life-form and habitat 

requirement 

 

Species differing in life-form and habitat requirement can be affected differently by 

fragmentation (McIntyre and Lavorel, 1994; Annette and Martin, 2004). For example, 

the present study has shown differences in distribution between forest patch edge and 
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interior of species differing in their previously-known habitat preference (Lindenmayer 

and Fischer, 2006; Chapter 5). In particular, species known to be associated with forest 

habitats (e.g. the woody species Vepris dainelli, Chionanthis mildbraedii, Galineria 

saxfragia, Oxyanthus speciosus and Psydrax parviflora) were rarer or absent in patch 

edges. This agrees with the findings of other studies of tropical forest, where 

fragmentation has been reported to restrict the establishment of shade tolerant species to 

patch interior habitat (Hill and Curran, 2003).  

 

Changes resulting from land-use change, like encroachment into forest patches, 

reduction in forest habitat core area and spatially variable degradation within forest 

habitats due to increased grazing pressure and selective tree cutting, can all lead to 

quantitative changes in the distribution of shade tolerant species between edge and 

interior (Laurance, 2008; Barbosa et al., 2010). An important mechanism is increased 

light levels and temperature and reduced humidity in patch edge habitats due to canopy 

disturbance and lateral penetration of exterior microclimate (Laurance, 2008). As a 

corollary of this, the present study found that species known to be associated with (more 

open) non-forest habitats (e.g. the woody species Maesa lanceolata, Albizia gummifera, 

Albizia schimperiana, Milletia ferruginea and Croton macrostachyus) were more 

abundant in the edge than the interior of the forest patches (as had been found by Hill 

and Curran, 2003). A third functional group, generalists with wide-habitat tolerance, 

e.g. Syzygium guineense, Prunus africana and Pouteria adolfi-friederici, showed no 

variation in abundance between forest patch edge and interior habitat. 

 

Despite this variation in species’ relative abundance between patch edge and interior 

habitat no difference was detected in overall species richness of trees between the two 

habitats. However, when all woody species (trees, shrubs and vines) were combined 

species richness was higher in the edge habitat. This is attribuTable to the suitability of 

this habitat for a large number of shrub and vine species associated with non-forest 

habitats and present in the surrounding matrix. 
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In terms of forest structure, tree basal area was higher in the interior than the edge 

habitat (where there was a lower density of large trees). This may be a direct 

consequence of higher rates of selective tree cutting, and tree mortality in the edge 

habitat (Laurance, 2008; Gutierrez et al., 2008; Barbosa et al., 2010). A higher rate of 

tree mortality in patch edges has been attributed to a range of causes including canopy 

damage and tree fall caused by wind turbulence (Esseen and Renhhorn, 1998). Unlike 

basal area, no difference was found in overall individual tree density between edge and 

interior habitats. However, there was a large difference in the composition of tree 

density between the two habitats: as noted above, in the edge non-forest and generalist 

species were more abundant, whereas in the interior forest-specialist species were more 

abundant. 

 

Multivariate analysis of the association of woody species distributions with individual 

environmental variables and fragmentation metrics showed a complex pattern. Overall 

the distribution of species amongst forest patches was most strongly linked to altitude 

and an index of forest disturbance, followed by fragmentation metrics (patch shape and 

edge density). However, the distribution amongst patches of individual functional 

groups did not show these associations (instead it appears that their distribution between 

edge and interior within patches (reported above) was a clearer response to 

fragmentation and forest disturbance). 

 

Vascular epiphytes were found to be more susceptible to negative effects of 

fragmentation than were woody plants, which supports their value as indicators of 

variation in microclimate and human disturbance (Werner and Gradstein, 2009; Wyse 

and Burns, 2011). As these can be linked to forest edge conditions, epiphytes are 

expected to be sensitive to forest habitat fragmentation (Lobel et al., 2006). High 

temperatures, low humidity and lack of availability of host trees have all been found to 

limit survival of vascular epiphytes in forest edge habitats (Kersten et al., 2009). In the 

present study, as expected total species richness and individual density of vascular 

epiphytes was found to be lower in forest edge than interior habitats. A clear distinction 

was found between different vascular epiphyte functional groups in their edge/interior 
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distribution. As anticipated, species previously known to be associated with forest-

habitats were notably more abundant in the interior than the edge. Morphologically, 

these species generally have herbaceous stems and leaves (Appendix 5.6) which are 

associated with sensitivity to low humidity conditions. In contrast, species with a 

succulent stem and leaf morphology, as well as those with woody stems were similar in 

abundance between edge and interior habitats. However, the vascular epiphyte 

communities in interior habitats were dominated by three species: Peperomia 

teteraphylla, Peperomia rotundifolia and Asplenium theciferum  

 

Epiphyte species composition and richness has also been found to be highly dependent 

on forest stand properties (Heizer, 1999, Hietz et al., 2006). In the present study a 

positive correlation was found between host tree diameter and vascular epiphyte 

individual density and species richness (supporting the findings of Hietz et al (2006)). 

Large diameter trees provide a suiTable substrate for epiphytes because of their branch 

structure and bark properties (Kersten, 2009), however there is also a big difference 

between tree species in these properties. In the present study the species Syzygium 

guineense, Schefflera abyssinica, Ficus sur, Prunus africana, and Pouteria adolfi-

feridricii (all of which are widely distributed generalist species) were found to support a 

high individual density and species richness of forest-habitat-associated vascular 

epiphytes that were rare in the forest edge, as well as species such as Peperomia 

tetraphylla which are also abundant in edge habitat. The disturbance through selective 

tree cutting and the edge effect resulting from fragmentation will increasingly constitute 

a bottleneck for the persistence of vascular epiphytes in the face of ongoing habitat 

alteration. 

 

Geophytic fern species richness was substantially lower in forest edge than interior 

habitat, in agreement with previous studies (e.g. Paciência and Prado, 2005; Silva et al., 

2011). However, in contrast to Silvia et al. (2011) who found a similar density of fern 

individuals in edge and interior habitats, the present study found a higher geophytic fern 

density in the interior than the edge. There was also a noTable variation in community 

composition between the two habitats: 16 geophytic fern species (51.6%) had a 
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frequency at least 2.5 times higher in interior habitats, of which four (Asplenium 

formosum, Asplenium sandersoni, Thelypteris confluens and Conigramme africana) 

were restricted to the interior, 10 species (32.3%) were approximately evenly distributed 

between the two habitats, just 5 species (16.1%) had a frequency at least 2.5 times 

higher in edge habitats, and only one species (Pteridium aquilinum) was found only in 

the edge. As expected, the species found to be more abundant in the interior habitat 

were predominantly those already known to be forest-specialist species, such as three 

species of Asplenium: A. theciferum, A. gemmiferum and A. lunulatum. However, 

species known to be more generalist in their distribution or associated with other 

habitats showed no difference in abundance between edge and interior. 

 

Differences in frond and rhizome morphology were found between species more 

abundant in edge or interior habitats. Species with tufted fronds were more abundant in 

the interior while species with spaced fronds showed no trend of greater abundance in 

one habitat over the other. Species with creeping and with erect rhizomes were greatly 

more abundant in the interior habitat. 

 

The higher geophytic fern individual density found in the forest interior habitat is very 

likely to be associated with its higher humidity (Silvia et al., 2011). Ferns are highly 

dependent on humidity for their sexual reproduction, since they use flagellated gametes 

for external fertilization. Therefore, fragmentation and disturbance of forest which 

reduces humidity is likely to lead to a gradual reduction in fern abundance (starting with 

the more humidity-sensitive forest specialist species, thus shifting community 

composition) due to a reduction in the rate of reproductive success. 

 

7.2.5 Value of sacred groves in plant biodiversity conservation 

 

The results of the present study provide strong evidence of the important contribution of 

sacred forests in the Gamo highlands of Ethiopia to conservation of plant biodiversity. 

Analysis of similarity showed a difference in species composition between sacred 
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groves and non-sacred forests. The sacred groves were found to possess a slightly 

higher plant species richness (152 species in a total sample plot area of 2.24 ha) than did 

the non-sacred forests with which they were compared (142 species). In addition, the 

flora of the sacred groves contained a higher proportion of species endemic to Ethiopia 

(12.5%) than did the non-sacred forests (9.2%). Moreover, two tree species (Cordia 

africana and Hagenia abyssinica) listed as national priority species for conservation 

were recorded only in the sacred groves while one tree species (Prunus africana) 

included in the IUCN red list of threatened species was found to be much more 

abundant in the sacred groves than the non-sacred forests. A number of species were 

found only in the non-sacred forests and not in the sacred groves (e.g. Aguaria saxifolia, 

Olinia rochetiana, Polyscias fulva, Schefflera volkensii), however these are regionally 

commoner species of lower conservation value. Moreover species/individual 

accumulation curves showed an increasing trend at the limit of the full sample for all six 

sacred groves but only for two of the four non-sacred forests, suggesting that more 

complete sampling of the area would show a greater superiority of the sacred groves in 

species richness. This supports the findings of previous studies in other countries which 

also recorded higher species in sacred groves than in non-sacred forests (e.g. 

Ambinakudige and Sathish, 2009). 

 

Due to the confounding of the geographical characteristics of the sites of forests in the 

Gamo highlands and their sacred status, the difference in species composition between 

the sacred groves and non-sacred forests cannot be attributed with certainty to sacred 

status. The distance between the two sets of sites ranges from 17 to 25 km and they 

differed in topographic position, which can be a major controlling factor in vegetation 

growth, pattern and spatial distribution in mountain areas, specifically aspect and slope 

(Busing et al., 1992; Dawes and Short 1994; Titshall et al., 2000). The two site areas 

also differed in geology and thus probably in soil type. However, there was no 

appreciable difference in rainfall and elevation. 

 

The surrounding land matrix could also have an influence on species composition 

within the patch-like sacred groves. The sacred groves are completely isolated within an 
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agricultural landscape (Chapter 6, Figure, 6.17) and land-use activities around them may 

have an impact through edge effects, or reduction in patch area where their protection is 

not completely effective. Assessment of fragmentation of the individual sacred grove 

patches showed that the area of four was reduced over 15 years, while two increased. 

Over the same period the shape complexity of one increased while two decreased and 

the remaining three showed no noTable change. The edge density of all six sacred 

groves increased, indicating that there was frequent disturbance around their edges 

which impacted on the groves. For all four non-sacred forests the area and the shape 

complexity decreased over the same period, while the edge density of two non-sacred 

forests increased and two reduced. 

 

These results show that the non-sacred forests in the Gamo highlands are under a high 

level of threat of habitat loss and fragmentation. The situation for the sacred groves is 

more mixed. While Gamo religious leaders and community elders still adopt traditional 

sacred values, cultural taboos, belief systems and bylaws to protect sacred groves (as 

has also been observed in many other societies around the world (Bhagwat and Rutte, 

2006)), in practice this is not effectively ensuring that the status of all of them is 

preserved. Despite the continuation of these traditional values and institutions, many of 

the sacred groves are under threat, reflecting the complex economic, social and cultural 

changes currently taking place in the Gamo highlands. Thus, the sacred groves were 

degraded due to grazing and some tree cutting. No active management from enrichment 

tree planting or restoration was observed or reported. This may be due to the associated 

taboo which prevents digging sacred ground by sharp metal implements. 

 

Another challenging factor within the communities that is likely to have threatened the 

sacred groves is the increasing stratification of the communities into different religious 

groups. Most of the newly formed religious groups are dominated by employees of 

government agencies, with many decisions made by them without considering their 

impacts on the less privileged traditional group (led by the custodians of the sacred 

groves). This has an impact on the ownership and decision-making rights of the 

custodians on the sacred groves. Traditional practices associated with the sacred groves 
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have become increasingly limited to the older generation since most members of the 

younger generation not willing to learn, according to the custodians. The transmission 

of culture to the younger generation is likely to be hampered due to educational systems 

that do not acknowledge local value systems, alienating youth from local culture 

(Claudia, 2008). This, in turn, has contributed to the undermining of traditional 

institutions by local government agents exposing them to a dominant religion that is 

seriously impacting on local value systems and conservation practices. 

 

7.3 Conclusion 

 

The use of a landscape approach in this study has allowed the assessment of change in 

the spatial structure of habitats associated with forest fragmentation at the spatial scale 

that is most relevant for many aspects of biodiversity conservation and enactment of 

policy on forest management. The results obtained, and in particular the information 

derived by the landscape metrics, identified the changes in forest habitat spatial 

structure that have taken place over the past two decades across the whole Illubabor 

Zone. The land-cover change analysis showed that landscapes across the zone are 

becoming increasingly dominated by farm and settlement land-use, and grazing at 

higher altitudes. At lower altitudes, while forest cover remains above 50%, this forest 

has become notably more fragmented. These patterns of land-use change have had a 

major effect on the spatial structure of the forest remnants in both altitudinal areas, 

resulting in smaller fragmented patches that are more isolated, less well spatially 

connected and exposed to a greater edge effect. This fragmentation is the result of 

socio-economic drivers, such as increased demand for land for crop and livestock 

production, and for settlement, all of which have led to deforestation. These impacts 

have been supplemented by socio-economically driven degradation of the remaining 

forest (though its dominant mechanism varies with altitude, between lower areas suited 

to understorey coffee production and higher areas farm expansion). The underlying 

causes, however, include increases in human population density, changes in the socio-

economic characteristics of the resident population (Schulz et al., 2011), external 

economic drivers (such as investment in cash crop cultivation) and changes in effective 
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tenure and management responsibility for forests (Tadesse, 2007; Desalegn and Yilma, 

2008). 

 

The results clearly show the value of forest patches for plant biodiversity conservation 

(Chapter 4). Examples of conservation priority species such as afromontane endemics, 

species endemic to Ethiopia, other national priority species, internationally vulnerable 

species and a wider set of species with a narrow habitat range restricted to forests were 

all found in the studied forest patches. The presence of wild coffee (in high abundance 

in some patches) also makes them important for the conservation of coffee genetic 

resource (Labouisse et al., 2008). However, these priority species are restricted to (or 

found in the highest abundance) in interior core areas (away from the edge zone) of the 

forest patches. Therefore their populations will be threatened by further fragmentation, 

and future survival of these species within the studied landscapes will be depend on 

effective conservation of the patches' core area. Contrary to what would be expected 

from early biogeography theory (MacArthur and Wilson, 1967), a forest does not 

necessarily have to be large to have a high conservation value, provided that it is well 

connected to sufficient other patches within the landscape to allow adequate gene flow 

to enable the survival of metapopulations of conservation priority species (Braunisch et 

al., 2010). Therefore, there is a need to promote conservation of all forest patches within 

a landscape, even those that currently have low biodiversity value, through protection, 

restoration and management. Inspection of the results of the present study showed no 

evidence of spatial trends of the conservation value of the species composition patches 

in the landscape. Therefore, it provided no basis for prioritizing particular patches/areas 

for conservation action on this basis. In addition, the results provided no basis to 

prioritize patches for conservation simply on their area as it showed that even small 

patches can harbour conservation priority species that were missing in some of the 

larger forest patches (Chapter 4, Appendix 4.2 & 4.3). Therefore, forest patches cannot 

be ignored in conservation policy and practice simply on the grounds that they are 

currently small in area. Nonetheless, current developments in theory and evidence of 

forest habitat networks (e.g. Quine et al., 2002; Jacquemyn et al. 2003), which were not 

tested in the present study, show the great potential for spatial prioritization of habitat 

patches, less on the basis of their current species, composition but more on the basis of 
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their position relative to other habitat patches, the extent to which they would (as 

“stepping stones” increase the connectivity of other forest patches, and thus contribute 

to a habitat network maximizing the potential for survival of metapopulations of forest-

dependent vulnerable species. 

 

Fragmentation results in an increase in the proportion of forest area that is in the 

proximity of a patch edge (the “edge zone”), and the results of this study showed strong 

evidence of the large impact of this edge effect on plant species composition, causing 

differential effects between different functional groups. Species known to be most 

dependent on forest habitats, and those with morphological characteristics likely to give 

the least tolerance of desiccation were the most negatively affected. These findings 

indicate the importance of preventing the reduction in area of those forest patches that 

are currently sufficiently large to include an interior (core) area that is big enough to 

support populations of such vulnerable species. On the other hand, within the larger 

forests, the human disturbance through coffee management altered the plant species 

composition and diversity more than species richness. However, in line with other 

findings (Tadesse et al., 2008; Gove et al., 2008; and Aerts et al., 2011) these forests 

still have biodiversity value. Where these forests are subject to high levels of 

degradation (e.g. associated with coffee cultivation) there is a conservation priority to 

reduce degradation in at least some parts of the interior area sufficient to meet the 

habitat needs of conservation priority species. Coffee management practices by farmers 

are mainly carried out in the forest edge zone in larger patches, and this zonation gives 

potential for protection of the interior habitat for strict biodiversity conservation which 

would also protect a coffee gene pool for cultivated coffee. 

 

The landscape of Site I, in contrast to the higher altitude areas, was characterized by a 

forest-dominated mosaic with a few forest species retained by farmers as shade in 

coffee farms outside the forests as well as some fruit trees and hedgerows managed in 

and around individual farms (per. Obs.). This management of different tree species for 

different uses can increase the number of species in the farmland (e.g. Tolera et al., 

2008). Some of these forest trees maintained in the farmland harbour some vascular 

epiphyte species (pers. obs, and as found by,e.g., Hylander et al., 2008) because they are 
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still functionally connected to forests in the vicinity which influence temperature and 

moisture in the air to create favorable conditions for some epiphytes. However, most of 

these epiphytes are likely to be forest-margin or wide-habitat species with less 

conservation value. Although conversion of forest to coffee cultivation may not affect 

the number of woody plant species (Tolera et al., 2008) it is likely to alter species 

composition with the loss of forest-dependent and vulnerable species.  Therefore, 

protection of forest interior areas will still be required for their conservation (Cayuela et 

al., 2006c). 

 

In the higher altitude areas, in contrast to the lower altitude, forest patches tend to be 

isolated from each other (Chapter 3). Some patches are used for coffee production in 

their edge zone while it is others that have tended to be most subject to deforestation for 

cultivation of other agricultural crops (pers. obs.). Households manage coffee 

cultivation in patches adjacent to their dwelling place starting from forest edge inwards 

up to a certain distance. The interior area beyond this intensively managed forest edge 

zone is used for collection of fuelwood and other non-timber forest products (NTFPs), 

in contrast to Site I where it is used more for collection of coffee berries from 

unmanaged coffee trees (Desalegn and Yilam, 2008). In most of the patches in sites II 

and III there are rarely any natural coffee plantations, associated with their higher 

altitude (Teketaye, 1999). The interior area of these patches could be protected as a 

conservation zone while maximizing coffee production, if necessary, in the edge zone or 

diversifying agroforestry systems (including coffee) in the surrounding farmland that is 

managed by local farmers. This should help to protect the remaining patches from 

degradation and complete habitat loss, provided land tenure meets the livelihood needs 

of all households and they have sufficient alternative sources of fuelwood, construction 

wood and other destructively harvested NTFPs. 

 

Sacred groves are the forests most strongly protected by the traditional institutions of 

local communities in the Gamo highlands. The present study showed clearly the 

importance of these forests as habitats for biodiversity in the agricultural dominated 

landscape of this area, where most forests are now plantations of exotic species of 
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Eucalyptus and Cupressus (per.obs.). These forest patches, their flora and their 

associated culture are becoming increasingly threatened in this area by change in land 

use (expansion of farmland, grazing land) and cultural institutions (the reduction in the 

status and influence of the traditional belief systems and their custodians within the 

local communities). Measures need to be taken at a local level to empower local 

traditional institutions and facilitate community participation in protection and 

management of sacred groves. For custodians to effectively conserve and manage their 

sacred groves and freely exercise their traditional practice, they must have a sense of 

custodianship toward their forests. This develops through the diffusion of awareness 

within communities (especially between generations) and the empowerment of 

custodians to maintain control over sacred groves; as well over developmental and other 

political processes affecting the communities. In the face of new political, cultural and 

economic pressures, custodians may also need effective collaboration with non-

governmental and governmental organizations that should play an active but equal role, 

that of a facilitator rather than a dominating ruler. Conservation NGOs in particular can 

play a significant role in contributing at community discussion forums, by raising 

awareness and introducing information about the use of sacred groves from ecological 

and cultural perspectives. 

 

7.4 Recommendations 

 

Recommendations made for forest biodiversity conservation often focus on the 

protection of the single largest remaining areas of forest (Turner et al., 2001). Less 

attention has been given to conservation and management of many small forest patches 

at the landscape level. There is increasing evidence that the presence of large numbers 

of forest patches in a landscape is of great importance in maintaining its biodiversity 

(Lindenmayer and Fischer, 2006). The results of the present study have shown how the 

presence of a large number of forest patches in the landscape of the Ilubabor Zone may 

be of great importance for the conservation, to date, of its forest biodiversity. These 

small patches contain a high proportion of the conservation priority and vulnerable 

species, relative to the remaining large forest areas (Chapter 4). The new national 
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conservation policy should therefore be structured in such a way as to include the 

conservation of forest patches.  

 

In conservation practice, the maintenance of large areas of continuous forest cover 

should be concomitant with complementary measures such as protection and 

management of small forest patches (Lindenmayer and Fischer, 2006). Thus the patches 

surrounded by an agricultural matrix should also receive conservation attention. A 

strong emphasis should be put on reduction of encroachment and within-habitat 

disturbance of the patches in the higher altitude landscape and fragmentation and 

disturbance of larger forest areas in the mid-altitude landscape. Patches in the higher 

altitude landscape are currently exposed to harsh environmental conditions in the edge 

zone that are likely to harm forest-dependent species. In Chapter 5, major changes in 

plant species richness were reported between the forest interior zone (more than 50 m 

from the edge) and the edge zone. Vascular epiphytes and geophytic ferns often showed 

a higher richness and density in the interior zone. Thus focusing forest protection on the 

inner zone of patches, while maintaining forest cover in the edge zone to buffer them is 

important for conservation of forest-dependent species. The distinct edge zone habitat, 

being suiTable for other species, will contribute to overall biodiversity. Within the edge 

zone, promoting forest restoration, e.g. through reducing disturbance and encouraging 

tree natural regeneration, can enhance the size and shape of forest patches, the linkages 

between isolated patches and, therefore, the resilience of forest habitat at the landscape 

scale, and metapopulations of key forest species, to external disturbances and to land 

degradation. Chapter 3 reported that the most important direct causes of deforestation 

and degradation in Illubabor Zone include the conversion of forest lands to crop 

agriculture and grazing land. The forces behind these activities are related to the poor 

state of the local economy that has been heavily influenced by recent major socio-

cultural change through high rates of immigration. Therefore, conservation and 

management plans must address the social and economic factors that are leading to 

patch degradation and deforestation. 

 

The current economically-driven threats to the sacred grove of the Gamo highlands also 

involve competing land uses (grazing) and over-exploitation of forest resources (tree 
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cutting). However, here an additional important factor is that they are inextricably 

linked to the declining strength of the traditional community institutions that have, 

hitherto, served to protect the sacred groves from such threats. Given the growing 

influence of, e.g., new religions as well as other major cultural and social changes in the 

area, and lack of backing from local government agencies, it is unlikely that the 

traditional institutions will retain sufficient power to protect the sacred groves in the 

future. The taboo against digging sacred ground by hoe or any sharp metal implement, 

even if used to prepare ground for tree planting, remains a major constraint on 

restoration of forest within the sacred groves. On one hand, most of the sacred groves 

are lacking core forest habitat area due to their small size. On the other hand, even if the 

patches have enough size to contain a core area, interviews with the custodians of the 

sacred groves revealed that it is culturally prohibited to divide sacred grove into edge 

and core area, e.g. to recommend the edge zone for sustainable use and core area for 

strict conservation. Therefore, instead, the establishment of a forest buffer zone around 

the remaining sacred groves is recommended. Forest established in this buffer zone 

could be managed for multiple uses, e.g. through agroforestry by the farmers owning 

the land. Where there is not the local demand for such multiple use, but grazing pressure 

is severe, land around sacred groves could be fenced to facilitate forest restoration, if 

necessary with the use of active reclamation techniques. Extrapolating from the results 

obtained in the Illubabor Zone (Chapter 5) it is anticipated that the microclimatic impact 

of this buffer zone would improve habitat quality within the existing sacred grove for 

sensitive forest-dependent species, and may increase the rejuvenation of their 

populations through natural regeneration. In addition, analysis of the landscape context 

of sacred groves may indicate those for which creation of new woodland patches within 

the matrix with similar species composition may increase the connectivity between 

sacred groves and improve the potential for survival of woodland species’ 

metapopulations. 

 

The tenure status of some sacred groves conflicts with certain government interests 

since local government authorities consider them as state forests and according to the 

custodians, have allocated them to people who oppose the traditions upheld by the 

custodians, without even consulting the custodians about this decision. This would 



274 

 

obviously undermine the authority of the traditional custodians to protect these forests. 

To counter this tendency in order to conserve both cultural and biological diversity 

would require the empowering of local institutions and custodians to maintain their 

traditional authority and control over the sacred groves, and thus strengthen the existing 

traditional rules about the use, management, and conservation of these forests. This will 

require full recognition of the tenure rights of the custodians over the sacred groves and 

acceptance of their practices by the local government authorities. Education and other 

advocacy approaches by governments and NGOs are required to try and improve the 

understanding of the ecological and cultural values of the sacred groves amongst the 

many religious organizations, groups and individuals that are newly active within the, 

hitherto, very traditional communities of the Gamo people. While it may be unrealistic 

to expect these new religions to become active advocates of the protection of the sacred 

groves, it will be important at least, to discourage them from actively undermining their 

conservation. 

 

7.5 Limitation of the study 

 

The use of images with different spatial resolution and taken at different times in the 

year, could lead to misleading results and interpretation. Furthermore, the low spatial 

resolution of Landsat images limited the analysis to a few land cover classes and, as a 

consequence, allowed the investigation of few spatial processes related to 

fragmentation. 

 

Although the study considered many environmental factors, there are still some which 

could not be assessed due to limitations of data availability and research budget. For 

instant, analysis of soil properties would have provided further useful information on 

site factors influencing species composition. 

 

This study compared patches in upper altitude landscapes with large unfragmented 

forest located in a lower altitude landscape. This confounding is likely to have 

influenced the results and interpretation. If the actual location of forests of different 

types within the landscape had permitted, it would have been better if both the sampled 
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large and the small forest patches were located with the same site conditions in the same 

landscapes, or at least those that did not have such a major confounding variable. 

However, such is the spatial determination of patterns of deforestation that such a 

situation rarely occurs in reality. 

 

7.6 Suggestion for future research 

 

This study has not taken into account connectivity or isolation between patches, either 

the linear features such as corridors that connect patches or detailed characteristics of 

the matrix between patches. According to the metapopulation model (Hanski and Gilpin 

1992; Hanski, 1999) smaller patches may support a viable population if they are well 

connected. Even though a small mapping unit size (0.5 ha) was used in the image 

analysis in the present study to include small habitats and linear corridors it was 

difficult to identify them in the map hindering analysis of connectedness between 

patches. Satellite imagery with finer spatial resolution should be used in the future to 

measure the linear connections between patches and describe the nature of the matrix 

land between patches. 

 

In this study, functional grouping of species focused on plant life form, morphological 

characteristics and previously reported distribution of species between different habitat 

types. While this provided valuable preliminary information about the characteristics of 

species that were most negatively affected by forest fragmentation and degradation, new 

research is needed that uses much more sophisticated (and truly “functional”) measures 

of species’ functional traits.  

 

The impact of fragmentation on annual vascular herbaceous plant species was not 

covered in great detail in this study due to the field work being restricted to the dry 

season and research in the future should consider both seasons to record the full range 

of species present in forest patches.  

  

  



276 

 

REFERENCES 

 

Abayneh, D. 1998. Natural regeneration in broad-leaved afromontane rainforest,  

Ethiopia. M.Sc. Thesis. Swedish University of Agricultural Science, 

Uppsala, Sweden 

Abegaz, B. 2004. Escaping Ethiopia’s poverty trap: the case for a second agrarian 

reform. Journal of Modern African Studies 42:313 – 342.  

Aerts, R. 2007.  Church forests in Ethiopia. Frontiers in Ecology and the  Environment 

5:66–66 

Aerts, R., K. Van Overtveld,  M. Haile, M. Hermy, J. Deckers and B. Muys. 2006. 

Species composition and diversity of small Afromontane forest fragments in 

northern Ethiopia. Plant Ecology 187: 127-142. 

Aerts, R., Kitessa H., Gezahegn B., Gijbels, P., Baeten, M. Maarten, Mechelen, V  

Hermy, M,  Muys, B. and Honnay, O. 2011. Semi-forest coffee cultivation 

and the conservation of Ethiopian Afromontane rainforest fragments. Forest 

EcologyandManagement,   1034-1041  DOI: 10.1016/j.foreco.2010.12.025 

Akcakaya, H., J. Atwood, D. Breininger, C. and Duncan, B. 2003. Metapopulation 

dynamics of the California least tern. Journal of Wildlife Management 

67:829-842. 

Alemayehu, W and Teketay D. 2006.  Soil seed banks in church forests of northern 

Ethiopia: Implications for the conservation of woody plants. Flora 201:32–

43 

Alford, R.A. and Wilbur, H. M.1985. Priority effects in experimental pond 

communities: competition between. Ecology  66:1097 1105 

Altamirano, A. Field, R., Cayuela, L., Aplin, P., Lara, A. and Rey-Benayas, J.M .2010. 

Woody species diversity in temperate Andean forests: The need for new 

conservation strategies. Biological Conservation 143:2080-2091  DOI: 

10.1016/j.biocon.2010.05.016   

Ambinakudige, S.  and Sathish, N. B. 2009. Comparing tree diversity and composition 

in coffee farms and sacred forests in the Western Ghats of India.  

Biodiversity  Conservation 18:987–1000  DOI 10.1007/s10531-008-9502-5 



277 

 

Andreassen, H. P., Halle, S. and Ims, R.A. 1996. Optimal width of movement corridors 

for root voles: not too narrow and not too wide. Applied Ecology 33: 63-70. 

Andrén, H. 1994. Effects of habitat fragmentation on birds and mammals in landscapes 

with different proportions of suiTable habitat: a review. Oikos 71: 355–366. 

Annette, K. and Martin, D. 2004. Effects of environment, habitat configuration and 

forest continuity on the distribution of forest plant species. Journal of 

vegetation Science 15: 199-208  

Archer, R. H. and Victor, J. E. 2005. Macaranga capensis (Baill.) Benth. ex Sim var. 

capensis. National Assessment: Red List of South African Plants version 

2012.1. Accessed on 2012/06/20 

Are´valo, R. and  Betancur, J. 2006.  Vertical distribution of vascular epiphytes in four 

forest types of the serrani´a de chiribiquete, Colombian Guayana. Selbyana 

27:175–185.  

Arias-Gonzalez, J. E, Legendre P. and Rodriguez-Zaragoza F. A. 2008.  Scaling up beta 

diversity on Caribbean coral reefs. Journal of Experimental Marine Biology 

and Ecology 366:28–36 

Arroyo-Rodríguez, V. and Mandujano, S. 2006. The Importance of Tropical Rain Forest 

Fragments to the Conservation of Plant Species Diversity in Los Tuxtlas, 

Mexico. Biodiversity and Conservation 15:4159-4179. 

Arroyo-Rodrı´guez, V., Pineda, E., Escobar, F. and Benı´tez-Malvido,J. 2008. 

Conservation value of small patches to plant species diversity in highly 

fragmented landscapes. Conservation Biology 23:729-739 DOI: 

10.1111/j.1523-1739.2008.01120.x. 

Aseffa, S. 2007. Economic value of afro-mountain natural forest in Sheka Zone,  

Ethiopia. In: Masresha, Fetene (Ed.), Forests of Sheka: Multidisciplinary 

Case Studies on Impacts of Land use/land cover Changes, Ethiopia. 

MELCA Mahiber, Addis Ababa, Ethiopia, pp. 183–218. 

Aumeeruddy, J. and Bakels, Y. 1994. Management of a sacred forest in the Kerinchi 

valley, centeral Sumatra: an example of conservation of biological diversity 

and its cultural bases. Journ. d’ Agric. Trad. et de Bota. Appl., nouvell serie, 

36:39-65  



278 

 

Babaasa, D., Eilu, G., Kasangaki, A., Bitariho, R. and McNeilage, A. 2004. Gap 

characteristics and regeneration in Bwindi Impenetrable National Park, 

Uganda. African Journal of Ecology 42:217-224. 

Bailey, D., Schmidt-Entling, M. H. et al. 2010. Effects of habitat amount and isolation 

on biodiversity in fragmented traditional orchards. Journal of Applied 

Ecology 47:1003-1013. 

Baldwin, L., and Bradfield, G.E. 2007. Bryophyte responses to fragmentation in 

temperate coastal rainforests: a functional group approach. Biological 

Conservation 136:408-422. 

Barbosa, O, Marquet, P.A., Bacigalupe, L.D., Christie, D.A.,  Del-Val, E. et al. 2010.  

Interactions among patch area, forest structure and water fluxes in a fog-

inundated forest ecosystem in semiarid Chile. Functional Ecology 24:909-

917. 

Barry, D., Shiver, B. and Borders, E. 1995. Sampling Techniques for Forest Resource 

Inventory.NewYork,USA,Wiley.(availableat http://www.wiley.com/WileyC

DA/WileyTitle/productCd-0471109401.html.) 

Barthlott, W., Schmit-Neuerburg, V. Nieder, J. and Engwald, S. 2001. Diversity and 

abundance of vascular epiphytes: a comparison of secondary vegetation and 

primary montane rain forest in the Venezuelan Andes. plant Ecology 

152:145–156. 

Bastin, L. and Thomas, D. C. 1999. The distribution of plant species in urban vegetation 

fragments. Landscape ecology 14: 493-507 

Bedru, S. 2007. Landuse/landcover changes in Anderacha and Masha Woredas of Sheka 

Zone, SNNP Regional State. In: Masresha, Fetene (Ed.), Forests of Sheka: 

Multidisciplinary Case Studies on Impacts of Land use/land cover Changes,  

Ethiopia. MELCA Mahiber, Addis Ababa, Ethiopia, pp. 21–55. 

Bekele, M. & Berhanu L. 2001 State of Forest genetic Resources in Ethiopia. Sub-

Regional Workshop FAO/IPGRI/ICRAF on the conservation, management, 

sustainable utilization and enhancement of forest genetic resources in 

Sahelian and North-Sudanian Africa (Ouagadougou, Burkina Faso, 22-24 

September 1998). Forest Genetic Resources Working Papers, Working 

Paper Forestry Department, FAO, Rome, Italy. 



279 

 

Bekele, T., Birnie A and Tengnas B. 1993. Useful trees and shrubs for Ethiopia. 

Regional Soil Conservation Unit (RSCU), Swedish International 

Development Authority (SIDA). 

Belete, G. 2006. Impact of Male out-migration on rural women's livelihood. The case of 

Chencha Woreda, south Ethiopia. MSc. Thesis. Addis Ababa, University  

Benedick, S., Hill, J. K., Mustaffa, N., V. K. Chey, V. K., Maryati, M., Searle, M. J. 

Schilthuizen, B. M. and Hamers, K. C. 2006. Impacts of rain forest 

fragmentation on butterflies in northern Borneo: species richness, turnover 

and the value of small fragments. Journal of Applied Ecology 43:967–977. 

Bender, D. J. and Fahrig, L. 2003 Using patch isolation metrics to predict animal 

movement in binary landscapes. Landscape Ecology 18:17–39. 

Benitez-Malvido, J. 1998. Impact of forest fragmentation on seedling abundance in a 

tropical rain forest. Conservation Biology 12:380-389. 

Bennett, A. F. 1999. Linkages in the landscape: the role of corridors and connectivity in 

wildlife conservation. IUCN, Gland, Switzerland, and Cambridge, UK. 

Bennett, A. F. and Saunders, D. A. 2010.  Habitat fragmentation and landscape change.  

pp 88–106 in Conservation Biology for All.  (Eds. N. Sodhi and P. Ehrlich).  

Oxford University Press. 

Benzing, D. H., 1998. Vulnerabilities of Tropical Forests to Climate Change: the 

Significance of Resident Epiphytes. Climatic Change 39:519-540. 

Berkes F, Colding J, and Folke C. 2000. Rediscovery of traditional ecological 

knowledge as adaptive management. Applied Ecology 10:1251–62. 

Bhagwat, S.A., Rutte, C. 2006. Sacred groves: potential for biodiversity management. 

Frontiers in Ecology and the Environment 4:519-524. 

Bhuyan, P., Khan, M. L. and Tripathi, S.R. 2003. Tree diversity and population 

structure in undisturbed and human-impacted stands of tropical wet 

evergreen forest in Arunachal Pradesh, Eastern Himalayas, 

India. Biodiversity and Conservation 12:1753-1773. 



280 

 

Biedinger. N. and  Fisher, E. 1996. Epiphytic vegetation and ecology in central African 

forests (Rwanda, Zaire or R. D. C.). Ecotropica 2:121-142. 

Bierwagen, G. B. 2007. Connectivity in urbanizing landscapes: The importance of 

habitat configuration, urban area size, and dispersal. Urban ecosystem 

10:29-42. DOI 10.1007/s11252-006-0011-6 

Bingelli, P., Desalegn, D., Healey, J. Painton, M., Smith, J. and Zewge, T. 2003. 

Conservation of Ethiopian Sacred Groves. European Tropical Forest 

Research Network.  Ethiopian Wildlife and Natural History Society 

Newsletter 38:37-38. 

Bleher, B., Uster, D. & Bergsdorf, T. 2006. Assessment of threat status and 

management effectiveness in Kakamega Forest, Kenya. Biodiversity and 

Conservation 15:1159-1177. 

Bognetteau E, Wood P, Afework H. and Legesse T. 2003. Wetlands and food security 

in South-West Ethiopia: An economic, ecological and institutional analysis 

for sustainability. EWNRA, Addis Ababa, Ethiopia. 

Bognetteau, E., Abebe H., and Wiersum, K. F. 2007. Linking forests and people, a 

potential for sustainable development of the  Ethiopian highlands. 

Proceedings International Conference on Participatory Forest Management, 

Biodiversity and Livelihoods in Africa, Addis Ababa, Ethiopia, March 19-

21, 2007. 

Bongers, F., Wassie, A., Sterck, F. J., Bekele, T and Teketay, D. 2006. Ecological 

restoration and church forests in northern Ethiopia. Journal of the Drylands 

1:35-45. 

Borys, A. M. 2000. Number, Spoils, and Relics: Totemic Images in aMnemotopia. 

Journal of Architectural Education 54:28-34. 

Bradford, D. F., Neale, A. C., Nash, M. S., Sada, D. W and Jaeger, J. R.. 2003. Habitat 

patch occupancy by toads (Bufo punctatus) in a naturally fragmented desert 

landscape. Ecology 84:1012–1023. 

 

 



281 

 

Braunisch, V., Segelbacher, G. and Hirzel, A. 2010. Modelling functional landscape 

connectivity from genetic population structure: a new spatially explicit 

approach.  Molecular Ecology 19:3678. doi: 10.1111/j.1365-

294X.2010.04703.x    

Bridge, S., Watt, R. W., Lucking, G. and Naylor, B. 2000. Landscape Analysis for 

forest management planning in Boreal Northeastern Ontario. NEST 

Technical Report TR-040. 

Brown K. 2003. Three challenges for a real people-centred conservation. Global 

Ecology and Biogeography 12:89–92. 

Burrows, J. E. 1990. Southern African Ferns and Fern Allies, Frandsen, Sandton. 

Bullock, J. M.,  Aronson, J., Newton, A.C., Pywell, R.F., Rey-Benayas, J.M. 2011. 

Restoration of ecosystem services and biodiversity: conflicts and 

opportunities. Trends in Ecology & Evolution  26:541-549.  DOI: 

10.1016/j.tree.2011.06.011   

Busing, R. T., White, P. S. and MacKende, M. D., 1992, Gradient analysis of old 

spruce-fir forest of the Great Smokey Mountains circa 1935. Canadian 

Journal of Botany 71:951-958. 

Buytaert W, Celleri, R, Willems P, Bievre B. D, Wyseure, G. 2006. Spatial and 

temporal rainfall variability in mountainous areas: a case study from the 

south Ecuadorian Andes. Journal of  Hydrology 329:413–421 

Cabral, P., Geroyannis, H., Gilg, J., and Painho, M. 2006. Analysis and modelling of 

land use and land cover change in Sintra-Cascais Area. 

http://plone.itc.nl/agile/Conference/estoril/papers/06_Pedro%20Cabral.pdf, 

Accessed 12
th

  October 2011. 

Caetano, M., Mata, F., Freire, S. 2005. Accuracy assessment of the Portuguese 

CORINE Land Cover map. In: Marcal, A. (ed.), Global Development in 

Environmental Earth Observation from Space, Rotterdam, Millpres, pp. 

459-467 

Campbell, J. B. 1996. Introduction to Remote Sensing. Taylor & Francis, London 



282 

 

Campbell, M. O. 2005. Sacred groves for forest conservation in Ghana's coastal 

savannas: Assessing ecological and social dimensions. Singapore Journal of  

Tropical Geography 26: 151-169. 

Campbell, M. O. 2004. Traditional forest protection and woodlots in the coastal 

savannah of Ghana. Environmental Conservation 31:225-232. 

Cambin, D. and Lachavanne, J-B. 2002. Does size matter? The relationship between 

pond area and biodiversity.  Biological Conservation 104:59–70 

Cagnolo, L., Cabido, M. and Valladares, G. 2006. Plant species richness in the Chaco 

Serrano Woodland from central Argentina: ecological traits and habitat 

fragmentation effects. Biological Conservation 132:510–519. 

Cayuela, L ., Benayas, J. M., Justel, A. and Salas-Rey, J. 2006a. Modelling tree 

diversity in a highly fragmented tropical montane landscape. Global 

Ecology and Biogeography  15:602-613  DOI:10.1111/j.1466-

822x.2006.00255.x   

Cayuela, L., Rey Benayas, J. M. & Echeverría, C. 2006b. Clearance and fragmentation 

of tropical montane forests in the Highlands of Chiapas, Mexico (1975–

2000). Forest Ecology and Management 226: 208–218. 

Cayuela, L., Golicher, D. J and Rey-Benayas, J. M.  2006c. The extent, distribution, and 

fragmentation of vanishing Montane cloud forest in the Highlands of 

Chiapas, Mexico. Biotropica  38:544-554  DOI: 10.1111/j.1744-

7429.2006.00160.x 

Cayuela, L., Golicher, D. J., Benayas, J. M., Gonzalez-Espinosa, M. and Ramirez-

Marcial, N. 2006d. Fragmentation, disturbance and tree diversity 

conservation in tropical montane forests. Journal of Applied Ecology  43: 

1172-1181  DOI: 10.1111/j.1365-2664.2006.01217.x   

CBD (Convention on Biological Diversity). 2001. Sustainable management of non-

timber forest resources. Montreal, SCBD, 30p. (CBD Technical Series no. 

6). 

Chaffey, D. R. 1978. South-west Ethiopia Forest Inventory Project. Ministry of 

Overseas Development, Land Resources Division, Surrey, England. 



283 

 

Chandrakanth, M.G., Bhat, M. G., Accavva, M. S. 2004. Socio-economic changes and 

sacred groves in South India: Protecting a community-based resource 

management institution. Natural Resources Forum 28: 102–111. 

Chouin, G. 2002. Sacred groves in history: pathways to the social shaping of forest 

landscapes in coastal Ghana. IDS Bulletin 33: 39-46. 

Chapman M. G., Underwood A. J. 1999. Ecological patterns in multivariate 

assemblages: information and interpretation of negative values in ANOSIM 

tests. Marine Ecology Progress Series 180: 257-265. 

Cihlar, J. 2000. Land-cover mapping of large area from satellites: status and research 

priorities. International Journal of Remote Sensing 21:1093-1114.  

Clarke, K. R. and Warwick, R. M. 2001. Change in Marine Communities: an Approach 

to Statistical Analysis and Interpretation, PRIMER-E, Plymouth.  

Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community 

structure’, Australian Journal of Ecology 18: 117 – 143.  

Clarke, K. R. and Warwick, R. M. 1994. Change in Marine Communities: An Approach 

to Statistical Analysis and Interpretation. Natural Environment Research 

Council, Plymouth, 144 pp. 

Claudia, S. 2008. The role of indigenous peoples in biodiversity conservation: The 

natural but often forgotten partners. Report to World Bank.    

Congalton, R. and Green. K  1999. Assessing the Accuracy of Remotely Sensed Data: 

Principles and Practices. Lewis Publishers, Boca Raton, FL. 

Colwell, R. K. 2010. EstimateS: Statistical estimation of species richness and shared 

species from samples. Version 8.2. User's Guide and application published 

at: http://purl.oclc.org/estimates. 

Connor, E. F. and McCoy, E. D. 2001. Species–area relationships. Encyclopedia of 

Biodiversity 5:297–411. 

Cook, W. M., Lane, K. T., Foster, B. L. and Holt, R. D. 2002 Island theory, matrix 

effects, and species richness patterns in habitat fragments. Ecology Letters, 

5: 619–623. 

Coomes, D. A. and Allen, R. B. 2007. Effects of size, competition and altitude on tree 

growth. Journal of Ecology  95: 1084-1097. 



284 

 

Cortina, J., Maestre, F. T., Vallejo, V. R., J.Baeza, J., Valdecantos, A. and Perez-

Devesa, M. 2006. Ecosystem function and restoration success: are they 

related? Journal for nature conservation 14:152-160   

Curtis, J. T., and McIntosh, R. P. 1951. An upland forest continuum in the prairie-forest 

border region of Wisconsin. Ecology 32: 476-96. 

CSA (Central Statistical Authority). 1996. The 1994 Population and Housing Census of  

Ethiopia. Central Statistical Agency, Addis Ababa. 

CSA, 2007. Ethiopian population and housing census result report of Central statistical 

Agency. Central Statistical Agency, Addis Ababa 

Dale, V. H., Pearson, S. M., Offerman, H. L. and  O'Neill, V. R.. 1994. Relating 

patterns of land-use change to faunal biodiversity in the Central Amazon. 

Conservation Biology 8: 1027-1036 

da Silva, J. M. C. and Tabarelli, M.. 2000. Tree species impoverishment and the future 

flora of the Atlantic forest of northeast Brazil. Nature 404:73–74. 

Davidson, A. 1983. The Omo River Project. Reconnaissance geology and geochemistry 

of parts of Illubabor, Kefa, Gemu Gofa, and Sidamo, Ethiopia. Bulletin 

No.2. Ethiopian Institute of Geological Survey. 

Dawes, W. R. and Short, D. 1994. The significance of topology for modelling the 

Surface hydrology of fluvial landscapes. Water Resources Research 30: 

1045- 1055. 

Demel. T., Ababu,  A., Getahun, M. and Mehari, E. 1998. Study on forest conservation. 

CIP/CTA, Addis Ababa 

Denslow, J. S. 1987. Tropical rainforest gaps and tree species diversity. Annual Review 

Ecological Systems 18:431–51. 

Desalegn, D and Yilma, D. 2008. Biodiversity assessment in south-west Ethiopia. 

Unpublished report to FAO  



285 

 

Desalegn, D.  2007. The Biocultural Diversity of Living Indigenous Sacred Landscape 

in the Gamo Highlands of Ethiopia. Ethiopian Wildlife and Natural History 

Society. Unpublished project report 

Devictor, V, Julliard, R., Jiguet, F. and Couvet, D.  2008.  Distribution of specialist and 

generalist species along spatial gradients of habitat disturbance and 

fragmentation. Oikos. 117: 507–514. doi:10.1111/j.2008.0030-

1299.16215.x. 

Dixon, A. B., and Wood, A. P. 2007. Local institutions for wetland management in 

Ethiopia: sustainability and state intervention. In B. van Koppen, M. 

Giordano, & J. Butterworth (Eds.), Community-based water law and water 

resources management reform in developing countries (pp. 130–

145).Wallingford: CABI International. 

Doherty, P. F. and Grubb, T.C.Jr. 2002. Survivorship of permanent-resident birds in a 

fragmented forested landscape. Ecology 83:844-857 

Donald, F. P. and Evans, D. A. 2006. Habitat connectivity and matrix restoration: the 

wider implications of agri-environment schemes. Journal of applied ecology 

43:209-218 

Drinnan, I. N. 2005. The search for fragmentation thresholds in a southern Sydney 

suburb. Biological Conservation 124: 339–349. 

Dunning, J. B., Danielson, B. J. and Pulliam, H. R. 1992. Ecological processes that 

affect populations in complex landscapes. Oikos 65:169 –175. 

Easdale, T. A., Gurvich, D. E., Sersic, S. N. and Healey, J. R.  2007. Tree morphology 

in seasonally dry montane forest in Argentina: relationships with shade 

tolerance and nutrient-shortage. Journal of Vegetation Science 18: 313-326. 

Easdale, T. A. and Healey, J. R. 2009. Resource-use related traits correlate with 

population turnover rates, but not stem diameter growth rates, in 29 

subtropical montane tree species. Perspectives in Plant Ecology, Evolution 

and Systematics 11:203-218. 

Echeverría, C., Coomes, D., Salas, J., Rey-Benayas, J. M., Lara, A. and Newton, A. 

2006. Rapid fragmentation and deforestation of Chilean Temperate Forests. 

Biological Conservation 130: 481-494. 



286 

 

Echeverría, C., Newton A. C, Lara A. 2007.  Impacts of forest fragmentation on species 

composition and forest structure in the temperate landscape of southern 

Chile. Global Ecology and Biogeography 16: 426–439 

Echeverria, C.,  Newton, A., Nahuelhual, L., Coomes, D. and Rey-Benayas, J.M. 2012. 

How landscapes change: Integration of spatial patterns and human processes 

in temperate landscapes of southern Chile. Applied Geography  32: 822-

831  DOI: 10.1016/j.apgeog.2011.08.014   

Edwards, S., Mesfin T. and Hedberg, I. (eds.). 1995. Flora of Ethiopia and Eritrea 

volume 2 Part 2, Canellaceae to Euphorbiaceae. The National Herbarium, 

Addis Ababa, Ethiopia; Uppsala, Sweden.  456 pp. 

Edwards, S., Mesfin T., Sebsebe D. and Hedberg I. (eds.) 2000. Flora of Ethiopia and 

Eritrea Volume 2 Part 1, Magnoliaceae to Flacourtiaceae. The National 

Herbarium, Addis Ababa, Ethiopia; Uppsala, Sweden.. 532 pp. 

Edwards, S., Sebsebe D. and Hedberg, I. (eds.). 1997. Flora of Ethiopia and Eritrea 

Volume 6, Hydrochavitaceae to Arecaceae. The National Herbarium, Addis 

Ababa, Ethiopia; Uppsala, Sweden 586 pp. 

EFAP, 1994. Ethiopian Forestry Action Program. Final Report, Ministry of Natural 

Resources Development and Environmental Protection, Addis Ababa, 

Ethiopia. 

Elkie, P., Rempel, R., and Carr, A. 1999. Patch Analyst User's Manual. Ontario Minstry 

of Natural Resource Northwest Science & Technology Thunder Bay, 

Ontario. 16pp + Append. 

Ensermu K., Sebsebe D., Zerihun W. and Edwards, S. 1992. Some threatened Endemic 

plants of Ethiopia. NAPRECA Monograph, Series 2: 35-55 

ERDAS, 2008. Erdas Imagine On-Line Help, Erdas International. 

Esseen, P-A. and Renhorn, K-E. 1998. Edge effect on an epiphytic lichen in fragmented 

forests. Conservation biology  12: 1307-1317   

 



287 

 

Ewers, R. M. and Didham, R. K. 2006. Confounding factors in the detection of species 

responses to habitat fragmentation. Biological Reviews 81: 117-142. 

ESRI. 2007.  GIS and mapping software  http://www.esri.com/ 

Fahrig, L. 2003. Effect of habitat fragmentation on biodiversity. Annual Review of 

Ecological System 34:483-515. Doi:10.1146/.ecolsys.34.011802.132419 

FAO, 1978. Land Use and Land Cover Ethiopia 1:1,000,000. Ministry of Agriculture, 

Land Use Planning and Regulatory Department, Addis Ababa, Development 

and Environmental Protection, Addis Ababa, Ethiopia. 

FAO, 1981.  Forest resource of tropical Africa. Rome Italy 

FAO, 1998. The Digital Soil and Terrain Database of East Africa (SEA). CD-ROM, 

Version 1.0. Rome, Italy. 

FAO, 2001. Forest Finance: the forest revenue system and government expenditure on 

forestry in Ethiopia. Working paper: FSFM/WP/04. Addis Ababa. 

FAO, 2003. Forestry Outlook Study for Africa: Sub regional Report – Southern Africa. 

African Development Bank, European Commission and the Food and 

Agriculture Organization of the United Nations, Rome. 

ftp://ftp.fao.org/docrep/fao/005/y8672e/y8672e00.pdf 

FAO, 2006. Global Forest Resources Assessment 2005. Progress towards sustainable 

forest management. FAO Forestry Paper 147. Rome. 

FAO, 2010. Global forest resources assessment. FAO Country Report Ethiopia. 

http://www.fao.org/docrep/013/al501E/al501e.pdf. 

Farina, A. 2007. Introduction to landscape ecology. In Principles and methods in 

landscape ecology. Springer Netherlands  

Fayer, S. and Denich, M.. 2006. Effects of wild coffee management on species diversity 

in the Afromontane rainforests of Ethiopia. Forest Ecology and 

Management, 232: 68-74. 

Fayera, S., Schmitt, C., Denich, M., Demissew, S., Velk, P.L.G., Preisinger, H., 

Woldemariam, T., Teketay, D., 2005. The diversity and distribution of 

lianas in the Afromontane rainforests of Ethiopia. Diversity Distribution 11: 

443–452. 

ftp://ftp.fao.org/docrep/fao/005/y8672e/y8672e00.pdf


288 

 

Franklin S. E. 2001. Remote sensing for sustainable forest management. 407 p. CRC 

Press, London. 

FDRE. 2000. Agroecological Zonation of Ethiopia. Addis Ababa, Ministry of Agriculture, 

Federal Democratic Republic of Ethiopia. 

Feddema, J. J. et al. 2005. The importance of land-cover change in simulating future 

climates. Science 310:1674-1678 

Feoli, E., Vuerich, L. G., Woldu, Z. 2002. Processes of environmental degradation and 

opportunities for rehabilitation in Adwa, northern Ethiopia. Landscape 

Ecology 17:315–325. 

Fichtl, R. and Admasu, A. 1994. Honeybee flora of Ethiopia. The National Herbarium, 

Addis Ababa University and Margrat, Germany  

Fiedler, H. J. and Belay, G. 1988. Forest and their importance for soil conservation in 

Ethiopia. Arch. Nat.Schutz Landsch.forsch. Berlin 28:161-175 

Fischer, J. and Lindenmayer, D. B. 2006. Landscape modification and habitat 

fragmentation: a synthesis. Global Ecology and Biogeography 16:265–280. 

Fischer, J. and Lindenmayer, D. B. 2002. Small patches can be valuable for biodiversity 

conservation: two case studies on birds in southeastern Australia. Biological 

Conservation. 106: 129-136. 

Foley, J. A., Defries, R., Asner, G.P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, 

F.S., Coe, M.T., Daily, G.C., Gibbs, H.K., Helkowski, J.H., Holloway, T., 

Howard, E.A., Kucharik, C.J., Monfreda, C., Patz, J.A., Prentice, I.C., 

Ramankutty, N., & Snyder, P. K. 2005. Global Consequences of Land Use. 

Science 309: 570-574 

Foody, G. 2002. Status of land-cover classification accuracy assessment. Remote 

Sensing of Environment  80:185-201. 

Fomin, D. E. S. 2008. Royal Residences and Sacred Forests in Western Cameroon: The 

Intersection of Secular and Spiritual Authority, Journal of the Study of 

Religion, Nature, and Culture 2: 391-407. 

Forman, R. T. 1995. Land mosaics: the ecology of landscapes and regions. Cambridge 

University Press, New York.  



289 

 

Freeman, D. 2002. Initiating change in highland Ethiopia: Causes and consequences of 

cultural transformation. Cambridge University Press, Cambridge. 

Friedel, A. et al. 2006. Species diversity and species composition of epiphytic 

bryophytes and lichens – a comparison of managed and unmanaged beech 

forests in NE Germany.  Feddes Repert 177:172–185. 

Friis I., Rasnussen F. N. and Vollesen K. 1982. Studies in the flora and vegetations of 

south-west Ethiopia. Operational Botany 63:1-70 

Friis, I. 1992.  Forests and Forest Trees of Northeast Tropical Africa: Their Natural 

Habitats and Distribution Patterns in Ethiopia, Djibouti and Somalia. Royal 

Botanical Gardens, Kew Bulletine Additional Series XV, Crown Copyright, 

London. 

Friis, I. and Sebsebe, D. 2001. Vegetation map of Ethiopia and Eritrea: a review of 

existing maps and the requirements to a new one for the flora of Ethiopia 

and Eritrea. Biologike. Skrifta. 54: 399-439 

Galanes, I. and  Thomlinson, J. 2009. Relationships between spatial configuration of 

tropical forest patches and woody plant diversity in northeastern Puerto 

Rico. Plant Ecology 201:101-113. 

Gao, Z. Y., Giese, M., Han, G. X., Wang, L. D., Zhou. H., Brueck, S. and Taube, L. 

2009. Land use and drought interactively affect interspecific competition 

and species diversity at the local scale in a semiarid steppe ecosystem. 

Ecologica Resources, 24: 627–635 DOI 10.1007/s11284-008-0532-y 

Gascon C.;  Lovejoy, T.E.; Bierregaard, J. r. R. O.; Malcolm, J. R.; Stouffer P. 

C.; Vasconcelos, H. L.; Laurance, W. F.; Zimmerman, B.; Tocher 

M.; Borges, S. 1999. Matrix habitat and species richness in tropical forest 

remnants. Biological conservation 91:223-229 

Gaublomme, E, Hendrickx, F., Dhuyvetter, H. and Desender K., 2008. The effects of 

forest patch size and matrix type on changes in carabid beetle assemblages 

in an urbanized landscape. Biological Conservation 141:2585-2596. 

 



290 

 

Gehring, M. A. and Swihart K. R. 2002. Body size, niche breadth and ecologically 

scaled responses to habitat fragmentation: mammalian predators in an 

agricultural land. 

Gerden, C. and Mtallo, S. 1990. Traditional Forest Reserves in Babati District, Tanzania 

A study in Human Ecology. FTP, Swedish University of Agricultural 

Sciences, International Rural Development Centre, Uppsala, Sweden. 

Gemechu, D., 1977. Aspects of climate and water budget in Ethiopia. Addis Ababa 

University Press, pp. 77. 

Gergel, S. E. and Turner, M. G. 2002. Learning landscape ecology. A practical guide to 

concepts and techniques. Springer-Verlag, New York 

Gilpin, M. E., and Hanski, I. 1991. Metapopulation dynamics. Academic Press, London. 

Godron, M. and Forman, R. T. T. 1986. Landscape Ecology. John Wiley and Sons, New 

York. 

Godefroid, S. and Koedam, N. 2003. How important are large vs. small forest remnants 

for the conservation of the woodland flora in an urban context? Global 

Ecology and Biogeography 12:287-298. 

Golicher, D., and Newton, A. C. 2007. Applying succession models to the conservation 

of tropical montane forest. Pages 200–222 in A. C. Newton, editor. 

Biodiversity loss and conservation in fragmented forest landscapes. The 

forests of montane Mexico and temperate South America.CABI, 

Wallingford, Oxfordshire, UK. 

Gonzalez, M., Ladet, S., Deconchat, M., Cabanettes, A., Alard, D., Balent, G. 2010. 

Relative contribution of edge and interior zones to patch size effect on 

species richness: An example for woody plants. Forest ecology and 

management 259:266-274 

Goparaju L. and Jha, C.S. 2010. Spatial dynamics of species diversity in fragmented 

plant communities of a Vindhyan dry tropical forest in India. Tropical 

Ecology 5:55-65  

 



291 

 

Gove, A.D., Hylander, K., Nemomisa, S. and Shimelis, A. 2008. Ethiopian coffee 

cultivation-Implications for bird conservation and environmental 

certification. Conservation Letters  1(5) :208-216  DOI: 10.1111/j.1755-

263X.2008.00033.x    

Graham, H. C. and Blake, J. G. 2000. Influence of Patch- and Landscape level factor on 

birds assemblage in fragmented tropical landscape. Ecological Applications 

11(6): 1709–1721 

Griffiths, G. H., Lee, J. and Eversham, B. C. 2000. Landscape pattern and species 

richness, regional scale analysis from remote sensing. International Journal 

of Remote Sensing 21: 2685-2704. 

Gustafson, E. J. 1998. Quantifying landscape spatial pattern: What is the state of the 

art?.  Ecosystems 1:143–156. 

Gustasfson, E. J. and Parker, G. R. 1992. Relationships between landcover proportion 

and indices of labdscape spatial pattern. Landscape Ecology 7: 101-110 

Gutie´rrez, A.G., Barbosa, O., Christie, D.A., del-Val, E., Ewing, H.A., Jones, C.G., 

Marquet, P.A., Weathers, K.C. & Armesto, J.J. 2008 Regeneration patterns 

and persistence of the fog-dependent Fray Jorge forest in semiarid Chile 

during the past two centuries. Global Change Biology, 14: 161–176. 

Haig, A. R, and Larson, D.W. 2000. Effects of natural habitat fragmentation on the 

species richness, diversity, and composition of cliff vegetation. Canadian. 

Journal of Botany 78:786–97. 

Haila, Y. 2002. A conceptual genealogy of fragmentation research: from island 

biogeography to landscape ecology. Ecological Applications 12:321–334 

Hairston, G. N., Hubendick, B., Watson, M. J., Oliver, J. L. 1958. An evaluation of 

techniques used in estimating snail population.   

Hamer, K. C, et al., 1997.  Ecological and biogeographical effects of forest disturbance 

on tropical butterflies of Sumba, Indonesia. Journal of Biogeography, 

24:67-75. 

Hahs, A. K. and McDonnell, M. J. 2007. Composition of the plant community in 

remnant patches of grassy woodland along an urban-rural gradient in 

Melbourne, Australia. Urban Economy, 10: 355-377 



292 

 

Hamilton M. B. 1999. Tropical tree gene flow and seed dispersal . Nature 401:129-130 

Hamilton, A. C., 1975. A quantitative analysis of altitudinal zonation in Uganda forests. 

Vegetation. 30: 99-106 

Hanski, I. 1999. Habitat connectivity, habitat continuity, and metapopulations in 

dynamic landscapes. Oikos 87: 209–219. 

Hanski, I., & Gilpin, M. 1992. Metapopulation dynamics- brief-history and conceptual 

domain. Biological Journal of the Linnean Society 42:3–16. 

Harper, K. A., Macdonald, S. E., Burton, P. J., Chen, J., Brosofske, K. D., Saunders, S. 

C., Euskirchen, E. S., Roberts, D., Jaiteh, M .S. and Essen, P.E. 2005. Edge 

influence on forest structure an composition in fragmented landscape. 

Conservation Biology 19: 768-782 

Hasmadi, M., Pakhriazad, H. Z., and Shahrinn, M. F. 2009. Evaluating supervised and 

unsupervised techniques for land cover mapping using remote sensing 

data. Malaysian Journal of Society and Space 5:1-10 

Hedberg, I. and Edwards, S. (eds.) 1995. Flora of Ethiopia and Eritrea Volume 7, 

Poaceae (Gramineae). The National Herbarium, Addis Ababa, Ethiopia; 

Uppsala, Sweden 420 pp. 

Hedberg, I. Edwards, S. and Sileshi N. (eds.) 2003. Flora of Ethiopia and Eritrea 

Volume 4 Part 1, Apiaceae to Dipsacaceae. The National Herbarium, Addis 

Ababa, Ethiopia; Uppsala, Sweden. 

Hedberg, I., Ensermu K., Edwards, S., Sebsebe D. and Persson, E. (eds.) 2006. Flora of 

Ethiopia and Eritrea Volume 5, Gentianaceae to Cyclocheilaceae. The 

National Herbarium, Addis Ababa, Ethiopia; Uppsal, Sweden. 690pp. 

Hedbergs, I. and Edwards, S. (eds.) 1989. Flora of Ethiopia and Eritrea Volume 3, 

Pittosporaceae to Araliaceae. The National Herbarium, Addis Ababa and 

Asmara, Ethiopia, Uppsala, Sweden. 659 pp. 

Helm, A., Hanski, I., Partel, M. 2006. Slow response of plant species richness to habitat 

loss and fragmentation. Ecology Letters 9:72–77. 



293 

 

Henderson, P. A. & Seaby, R. M. H.  2007. Environmental Community Analysis 2.1. 

Pisces Conservation Ltd, Lymington, UK. 

Hennig R. C., 2006. Forests and deforestation in Africa.- the wasting of an immense 

resource. http://www. afrol.com/features/10278. 

Herold, M., Goldstein, N. and Clarke, K. 2003. The spatiotemporal form of urban 

growth: measurement, analysis and modeling. Remote Sensing of 

Environment 86: 286-302. 

Hersperger, A. M. and Forman, R. T. T. 2003. Adjacency arrangement effects on plant 

diversity and composition in woodland patches. – Oikos 101: 279–290. 

Herzog, A and Lausch, S. 2002. Applicability of landscape metrics for the monitoring 

of landscape change: issues of scale, resolution and interpretability. 

Ecological indicators 2: 3-15.  

Heizer, P. 1999. Diversity and Conservation of Epiphytes in a Changing Environment. 

International Union of Pure and applied Chemistry (IUPAC). Volume 70: 

Issue11. http://www.iupac.org/symposia/proceedings/phuket97/hietz.html 

Hietz, P., Buchberger, G. and Winkler, M. 2006. Effect of forest disturbance on 

abundance and distribution of epiphytic bromeliads and orchids. Ecotropica 

12: 103–112. 

Hill, J. L., Curran,  J. P. 2003. Area, shape and isolation of tropical forest fragments: 

effects on tree species diversity and implications for conservation. Journal 

of Biogeography 30: 1391–1403 

Hill, L. J and Curran, J. P. 2001. Species composition in fragmented forests: 

conservation implications of changing forest. Applied Geography 21:157-

174 

Hill, L. J and Curran, J. P. 2005. Fragment shape and tree species composition in 

tropical forests: a landscape level investigation. African Journal of Ecology 

43: 35–43 



294 

 

Hillers, A., Veith, M and Rödel, M-O. 2008. Effects of forest fragmentationand habitat 

degradation on West African leaf litter frogs. Conservation Biology 22: 762-

772. 

Hiywot M. G., et al., 2012. Forest conservation versus conversion under uncertain 

market and environmental forest benefits in Ethiopia: The case of Sheka 

forest, Forest Policy and Economics, doi:10.1016/j.forpol.2012.01.001 

Hobbs, R. J. 2001. Synergisms among habitat fragmentation, livestock grazing, and 

biotic invasions in ern Australia. Conservation Biology 15:1522–1528. 

Hobbs R. J. 1993 Effects of landscape fragmentation on ecosystem processes in the 

Western Australian wheat belt. Conservation Biology 64: 193–201. 

Hobbs, R. J. and Yates C. J. 2003.  Impacts of ecosystem fragmentation on plant 

populations: generalising the idiosyncratic. Australian Journal of Botany 51: 

471–488. http://dx.doi.org/10.1071/BT03037 

Holt, R. D., 1992. A neglected facet of island biogeography: the role of internal spatial 

dynamics in area effects. Theoretical Population Biology 41:354–371. 

Honnay, O., Verheyen, K.  and Hermy, M. 2002. Permeability of ancient forest edges 

for weedy plant species invasion. Forest Ecology and Management 

161:109-122. 

Honnay, O., Mermy, M. and Coppin, P. 1998. Effects of area, age and diversity of 

forest patches in Belgium on plant species richness, and implications for 

conservation and reforestation. Biological Conservation 87:73-84 

Honnay, O., Verheyen, K., Butaye, J., Jacquemyn, H., Bossuyt, B. and Hermy, M. 

2002. Possible effects of habitat fragmentation and climate change on the 

range of forest plant species. Ecology Letters 5:525–530. 

Houghton R. A.1994 The worldwide extent of land-use. Bioscience 44:305–313 

http://plone.itc.nl/agile/Conference/estoril/papers/06_Pedro%20Cabral.pdf, 

Accessed 12
th

  October 2011. 

Hylander, K. 2005. Aspect modifies the magnitude of edge effects on bryophyte growth 

in boreal forest. Journal of Applied Ecology 42:518–525. 

Hylander, K. and  Nemomissa, S. 2008. Home garden coffee as a repository of epiphyte 

biodiversity in Ethiopia. Frontiers in Ecology and The Environment, Vol. 6: 

524-528  DOI: 10.1890/080001 



295 

 

IPCC 2007. Report (The Physical Science Basis, Working Group. Oryx 44: 339-351. 

IUCN,  1991. Caring for the earth. A strategy for sustainable living. Gland, Switzerland. 

IUCN, 2010. IUCN Red List of Threatened Species. www.iucnredlist.org. 

Downloaded on 28 May 2011. 

Iverson, L.2007. Adequate data of known accuracy are critical to advancing the field of 

landscape ecology. In: Wu J, Hobbs R (eds) Key topics in landscape 

ecology. Cambridge University Press, Cambridge, UK, pp 11–38 

Jacquemyn, H., Butaye, J. and Hermy, M. 2003. Impacts of restored patch density and 

distance from natural forests on colonization success. Restoration Ecology  

11: 417-423 

Jensen, J. 2005. Introductory Digital Image Processing, 3rd Ed., Upper Saddle River, 

NJ: Prentice Hall. 

Jin, X.M., Zhang, Y. K., Schaepman, M.E., J.G.P.W. Clevers, J.G.P.W.,  Su, Z. 2008.  

Impact of elevation and aspect on the spatial distribution of vegetation in the 

Qilian mountain area with remote sensing data. The International Archives 

of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 

37. Part B7 

Jones, M. M., Tuomisto, H., Borcard, D., Legendre, P., Clark, D. B., Olivas, P.C. 2008.  

Explaining variation in tropical plant community composition: influence of 

environmental and spatial data quality. Oecologia 155:593–604 

Jongman, R. H. G., Ter Braak, C. J. F. and van Tongeren O. F. R. (eds.). 1995. Data 

Analysis in Community and Landscape Ecology. Cambridge University 

Press, Cambridge. 

John, B. Dunning, B., Danielson, J. and Pulliam, H. R. 1992.  Ecological Processes That 

Affect Populations in Complex Landscapes, Oikos 65:169-175.  URL: 

http://www.jstor.org/sTable/3544901 

Kazmin, V. 1975. Explanation of the Geological Map of Ethiopia. Ethiopian Institute of 

Geological Surveys, Bulletin 1. Addis Ababa. 

Keleher, J. M. and Rader, B. R. 2008. Dispersal limitations and history explain 

community composition of metaphyton in desert springs of the Bonneville 

Basin, Utah: A multiscale analysis. Limmology and Oceagraphy 53:1604-

1613 



296 

 

Kersten, A. R., Borgo, M. and Silva, M. S. 2009. Diversity and distribution of vascular 

epiphytes in an insular Brazilian costal forest. Review of Tropical Biology 

57:749 -759 

Khan, L. M., Devi, K. A., Tripathi, S. R. 2008. The Sacred Groves and Their 

Significance in Conserving Biodiversity an overview. International Journal 

of Ecology and Environmental Sciences 34: 277-291 

Khan, M. L., S. Menon, and K. S. Bawa, S.K. 1997. Effectiveness of the protected area 

network in biodiversity conservation: A case-study of Meghalaya state. 

Biodiversity and Conservation 6:853-868. 

Kindt , R., Simons , A. J., Van Damme, P. 2004. Do Farm Characteristics Explain 

Differences in Tree Species Diversity among Western Kenyan Farms. 

Agroforestry Systems 63: 63-74. 

Kokou, K., Adjossou, K. and Kokutse, D. A. 2006. Considering sacred and riverside 

forests in criteria and indicators of forest management in low wood 

producing countries: The case of Togo. Ecological indicators 8: 158 – 169 

Kramer, E. A. 1997. Measuring landscape changes in remnant tropical dry forests. Pp. 

386– 99. In: Laurance, W.F. & Bierregaard, R.O., (eds), Tropical forest 

remnants. The University of Chicago Press, Chicago. 

Krishna, G. M., Prasad, T. S. and Bubacar, B. 2010. Delineating shallowground water 

irrigated areas in the Atankwidi Watershed. African Journal of 

Environmental Science and Technology  4: 455-465.  

Kromer, T. and Gradsten, S. R. 2003. Species richness of vascular epiphytes in two 

primary forests and fallows in the Bolivian Andes. Selbyana 24: 190-195. 

Kruskal, J. B. 1964. Non-numeric multidimensional scaling: a numerical method. – 

Psychometrika 29: 115-129. 

Kreyling, J., Wana, D. and Beierkuhnlein, C. 2010. Potential consequences of climate 

warming for tropical plant species in high mountains of southern Ethiopia. 

Diversity and Distributions 16(4):593-605  DOI: 10.1111/j.1472-

4642.2010.00675.x 



297 

 

Kumar, A., Bruce, G. M. and Ajai, S. 2006. Tree species diversity and distribution 

patterns in tropical forests of Garo Hills. Current Science  91:1370-1381 

Kumelachew, Y. and Tamerat B. 2002. Plant Community analysis and Ecology of 

Afromontane and Transitional Rainforest Vegetation of South-west Ethiopia. 

Sinet:Ethiop. Journal of Science 25:155-175  

Kupfer, A. J and Malanson, P. G. 1993. Observed and modelled directional change in 

riparian forest composition at a cutbank edge. Landscape Ecology 8: 185-

199 

Kupfer, A. J., Malanson, P. G. and Franklin, B. S. 2006. Not seeing the ocean for the 

islands: the mediating influence of matrix-based processes on forest 

fragmentation effects. Global Ecology and Biography 15: 8-20.  

Labouisse, J. P., Bellachew, B., Kotecha, S. and Bertrand, B. 2008. Current status of 

coffee (Coffea arabica L.) genetic resources in Ethiopia: implications for 

conservation. Genetic Resources and Crop Evolution 55:1079-1093  DOI: 

10.1007/s10722-008-9361-7   

La Croix, I. F. 2008. The new encyclopaedia of orchids. 1500 species in cultivation. 

Lambin, F. E, Geist, J. H. and Lepers, E.  2003. Dynamics of land-use and land-cover 

change in tropical regions. Annual Review of Environmental Resources 

28:205–41doi: 10.1146/annurev.energy.28.050302.105459 

Lamberson, R. H., Noon, B. R., Voss, C. and McKelvey, R. 1994. Reserve design for 

territorial species: the effects of patch size and spacing on the viability of 

the Northern Spotted Owl. Conservation Biology 8: 185–195. 

Laurance, W. F., Laurance, N. H., Andrade, S. G. and Ewers, R. M, et al. 2007. Habitat 

Fragmentation Variable Edge Effects, and the Landscape-Divergence 

Hypothesis. . PLoS ONE 2: 10: e1017. doi:10.1371/journal.pone.0001017. 

Laurance, F. W., Lovejoy, E.T., et al. 2002. Ecosystem Decay of Amazonian Forest 

fragments: a 22-year Investigation. Conservation Biology 16: 605-618 

Laurance W. F. and Yensen E. 1991. Predicting the impacts of edge effects in 

fragmented habitats. Biological Conservation 55: 77-92. 



298 

 

Laurance, W. F. and Bierregaard, O. R.(eds). 1997. Tropical forest remnants: ecology, 

management, and conservation of fragmented communities. University of 

Chicago Press, Chicago, Illinois, USA. 

Laurance, W. F., Ferreira, L. V.,  Rankin de Merona, J. M., Laurance, W. F.,  

Hutchings, R. W. and Lovejoy, T. E. 1998. Effects of forest fragmentation 

on recruitment patterns in Amazonia tree communities. Conservation 

Biology 12: 460–464. 

Laurance, W. F. 2008.  Theory meets reality: how habitat fragmentation research has 

transcended island biogeographic theory. Biological Conservation 

141:1731–1744 

Laurance, W. F. 1991. Edge effect in tropical forest fragments: application of a model 

for the design of the natural reserve. Biological Conservation 57: 205-219 

Laurance, S. G. and Laurance, W.F. 1999. Tropical wildlife corridors: use of linear 

rainforest remnants by arboreal mammals. Biological Conservation 91:231–

239. 

Laurance, W. F. 2004. Forest-climate interactions in fragmented tropical landscapes. of 

the Royal Society of London Series. Biological Sciences 359:345-352. 

Lebbie, A., Guries, R. P. 2008. The role of sacred groves in biodiversity conservation in 

Sierra Leone, in: Sheridan, M.J., Nyamweru, C. (Eds.), African Sacred 

groves. Ecological Dynamics and social change, James Currey Ltd., Oxford. 

Leff, B., Ramankutty, N., and Foley, A. J. 2004. Geographic distribution of major crops 

across the world, Global Biogeochemcal Cycles, 18, GB1009, 

doi:10.1029/2003GB002108. 

Lieberman, D., M., Lieberman, R. P. and Hartshorn, S. G. 1996. Tropical Forest 

Structure and Composition on a Large-Scale Altitudinal Gradient in Costa 

Rica. Ecology 84: 137-152. 

Leitao, A. B., 2006. Measuring landscapes : a planner's handbook, Washington, DC: 

Island Press. 

Lillesand, T. M. and Kiefer, R. 1993. Remote Sensing and Image Interpretation, Third 

Edition. John Villey, New York. 

 



299 

 

Lindenmayer B. D. and Franklin F. J. 2002. Conserving forest biodiversity: a 

comprehensive multiscaled approach. Island Press. 

Lindenmayer, D. B and Fischer, J. 2006. Habitat Fragmentation and Landscape Change: 

An Ecological and Conservation Synthesis, Island Press 

Liu, W.,  Hu, H., Ma, Y. and Li, H. 2006. Environmental and Socioeconomic Impacts 

of Increasing Rubber Plantations in Menglun Township, China. Mountain 

Research Development 26 (3):  245-253.  

 Lobel, S. and Rydin, H., 2006. Species richness patterns and metapopulation processes 

–evidence from epiphyte communities in boreo-nemoral forests. Ecography 

29:169–182. 

Logan, W. E. M. 1946. An introduction to the forests of central and southern Ethiopia. 

Imperial Forestry Institute, University of Oxford. Institute. Paper No. 24 

Lowman, M. D. and  Atwood, J. T. 2002. Epiphyte diversity in primary and fragmented 

forests of Cameroon, Central Africa: a preliminary survey. Selbyana 23: 

121–130. 

Lövei, L. Magura, G., Tóthmérész, T. B. and Ködöböcz, V. 2006. The influence of 

matrix and edges on species richness patterns of ground beetles (Coleoptera: 

Carabidae) in habitat islands. Global Ecology and Biogeography 15:283-

289.  

Lovell S. T and Johnston D. M. 2009. Creating multifunctional landscapes: how can the 

field of ecology inform the design of the landscape? Frontiers in Ecology 

and the Environment 7:212-220. 

Luck, M. and Wu, J. 2002. A gradient analysis of urban landscape pattern: a case study 

from the Phoenix metropolitan region, Arizona, USA. Landscape Ecology, 

17:327-339. 

MacArthur, R. H. and Wilson, E. O. 1967.  The theory of island biogeography. 

Princeton University Press, Princeton, New Jersey, USA. 

Madeweya, H. K, Hiroyasu, O. and Mitsuo, M. 2004. Sustainable Management of 

Sacred Forests and Their Potential for Eco-Tourism in Zanzibar. Bulletin of 

FFPRI 3: 33-48 



300 

 

Maestre, F. T. Cortina, J. and Vollejo, R. 2006. Are ecosystem composition, structure 

and functional status related to restoration success? A test from semiarid 

Mediterranean steppes. Restoration Ecology 14: 258-266  

Maffi , M. and Woodley, L. 2010. Biocultural diversity: a global source book. Earthscan 

publications, London and Washington DC. ISBN 978-1-84407-929.9 

Marrs, R. H. and Watt, A. S. 2006. Biological flora of the British Isles: Pteridium 

aquilinum (L.) Kuhn. Journal of Ecology 94:1272-1321. 

Magurran, A. E. 1996. Ecological Diversity and Its Measurement. Chapman & Hall, 

London.  

Magurran, A. E. 2004. Measuring biological diversity. Blackwell. 

Malcolm, L., Hunter, J. R. and James, G. 2007. Fundamentals of conservation Biology. 

3rd edition. Blackwell publishing. 

Malhi, Y., Aragao, D. Galbraith, C. Huntingford, R. Fisher, P. Zelazowski, S. Sitch, C. 

McSweeney and P. Meir. 2009. Exploring the likelihood and mechanism of 

a climate-change-induced dieback of the Amazon rainforest. Proc. Nat. 

Acad. Sci. USA: online at: http://www.pnas.org/content/ 

arly/2009/02/12/0804619106.full.pdf+html?sid=3978dfb7-646f-4d85-a9b8-

e373ca183a9c 

Mandelbrodt, B. B. 1982. The fractal geometry of nature. W.H. Freeman and Co., New 

York. 

Matsushita, B., Xu, M. and Fukushima, T. 2006. Characterizing the changes in 

landscape structure in the lake Kasumigaura Basin, Japan using a high-

quality GIS dataset. Landscape and Urban Planning 78: 41-250. 

Mayfield, M. M., Bonser, S. P., Morgan, W. J,. Aubin, I., cNamara, S. and Vesk, P.A. 

2010. What does species richness tell us about functional trait diversity? 

Predictions and evidence for responses of species and functional trait 

diversity to land-use change. Global Ecology and Biogeography 19: 423–

431 

 



301 

 

McAlpine, C. and Loyn, R. 2000. Assessing and monitoring forest fragmentation: 

Questions of spatial pattern, scale and methods., Management for 

Sustainable Ecosystems, eds P Hale, A Petrie, D Moloney & P Sattler , 

Centre for conservation biology, University of Queensland, Brisbane, pp. 

109-117. 

McCune, B. and Mefford, J. M. 1999. Multivariate analysis of ecological data. Version 

4.16. MJM software, Oregon, USA. 

McGarigal K, C. S., Neel M. C., Ene, E. 2002. FRAGSTATS: Spatial Pattern Analysis 

Program for Categorical Maps. Computer software program produced by 

the authors at the University of Massachusetts, Amherst, Available at 

www.umass.edu/landeco/research/fragstats/fragstats.html. 

McGarigal K, Marks, B. J. 1995. FRAGSTATS: spatial pattern analysis program for 

quantifying landscape structure. Portland (OR): USDA Forest Service, 

Pacific Northwest Research Station; General Technical Report PNW-GTR-

351. 

McGarigal K, Marks, B. J. 1994. Fragstats. Spatial pattern analysis program for 

quantifying landscape structure. Version 2.0. Corvallis: Forest science 

department, Oregon State university. 

McKee, J. 2007. Ethiopia: Country Environmental Profile. 

http://ec.europa.eu/development/ icenter/repository/Ethiopia-

ENVIRONMENTAL-PROFILE-08-2007_en.pdf. 

McLaren, K. P., and McDonald, M.A.. 2003. Seedling dynamics after different 

intensities of human disturbance in a tropical dry limestone forest in 

Jamaica. Journal of Tropical Ecology 19:567–578. 

Mehta, K.V., Sullivan, J. P., Walter T. M., Krishnaswamy, J. and DeGloria, D. S. 2008. 

Ecosystem impact of disturbance in dry tropical forest in southern India, 

Ecohydrology 149-160 www.interscience.wiley.com) DOI: 10.1002/eco.14 

MEA (Millennium Ecosystem Assessment). 2005. Ecosystems and Human Well-Being: 

Synthesis, Island Press, Washington. 

http://ec.europa.eu/development/


302 

 

MeIntyre, S. and Lavorel, S. 1994. How environmental and disturbance factors 

influence species composition in temperate Australian grassland. Journal of 

Vegetation Science 5: 373-384   

Mekuria, A.D. 2005. Forest conversion-soil degradation-farmers‘ perception nexus: 

Implication for sustainable land use in the  of Ethiopia. Ecological and 

Development Series No.26,2005, PhD thesis University of Bonn. 

Mendez, M., Garrcia, D., Maestre, T. F. and Escudero, A. 2008. More ecology is need 

to restore Mediterranean Ecosystems: Society for Ecological Restoration 

International. Doi:10.1111/j.526-100X.2008.00390x  

Mengistu, W. 2005. Effect of Resettlement Schemes on the Biophysical and Human 

Environments. The case of the Gambela Region, Ethiopia. Universal 

Publishers, Boca Raton, Florida, USA. 

Mennechez, G. N. L., Schtickzelle, N., et al. 2003. Metapopulation dynamics of the bog 

fritillary butterfly: comparison of demographic parameters and dispersal 

between a continuous and a highly fragmented landscape. Landscape 

Ecology 18:279-291. 

Mesfin, T. 2004. Flora of Ethiopia and Eritrea Volume 4 Part 2, Asteraceae .The 

Nationa Herbarium, Addis Ababa, Ethiopia; Uppsala, Sweden. 408 pp. 

Metzger, J. P. 2000 Tree functional group richness and landscape structure in a 

Brazilian tropical fragmented landscape. Ecological Applications 10: 1147-

1161. 

Meyer, B.W. 1995. Past and present land use and land cover in USA: The nature and 

implication of Environmental Change. Consequence : 1 

Mgumia, F. H. and Oba, G. 2003. Potential role of sacred groves in biodiversity 

conservation in Tanzania. Environmental Conservation 30(03): 259-265. 

Ministry of Water Resources. 1997. Baro River Basin Integrated development Master 

Plan Project. Final Report and Maps, Federal Democratic Republic of 

Ethiopia, Addis Ababa, Ethiopia. 



303 

 

Mishra, B. P., Tripathi, R. S. and Pandey, H. N. 2004. Effects of anthropogenic 

disturbance on plant diversity and community structure of a sacred grove in 

Meghalaya, northeast India. Biodiversity and Conservation 13:421-436. 

Murcia, C. 1995. Edge effects in fragmented forests: implications for conservation, 

Trends in Ecology and Evolution 10: 58–62. 

Msuya, T. S. and Kideghesho, J. R. 2009. The Role of Traditional Management 

Practices in Enhancing Sustainable Use and Conservation of Medicinal 

Plants in West Usambara Mountains, Tanzania. Tropical Conservation 

Science 2:88-105. Available online: www.tropicalconservationscience.org 

Murphy, H. T. and Lovett-Doust, J. 2004. Context and connectivity in plant 

metapopulations and landscape mosaics: does the matrix matter?  Oikos, 

105:3-14. 

Muzein, B. S. 2006. Remote Sensing & GIS for Land cover/Land Use Change 

Detection and Analysis in the Semi-Natural Ecosystems and Agriculture 

Landscapes of the Central Ethiopian Rift Valley. 

Myers, N.,Mittermeier, R. A.,  C. G. Mittermeier, C. G., da Fonseca, G. A. B and Kent, 

J. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853-

858. 

Negash, L. 1995. Indigenous trees of Ethiopia: Biology, uses and propagation 

techniques. Addis Ababa University, Ethiopia  

Ningal, T., Hartemink, A. E., Bregt, A. K. 2007. Land use change and population 

growth in the Morobe Province of Papua New Guinea between 1975 and 

2000. Journal Environmental Management 87:117 – 124. 

Olsen, L., Dale, V., and Foster, T. 2007. Landscape pattern as indicators of ecological 

change at Fort Bennin. 

Olson, M. J., Misan, S., Cambell, J. D., Mbonil, M. and Mugisha, M. 2004. Land-use 

change impacts and dynamics (LUCID) project working paper No. 47. 

Nairobi Kenya: International Livestock Institute. 



304 

 

Ormsby, A. A., Bhagwat, S. A. 2010. Sacred forests of India: a strong tradition of 

community-based natural resource management. Environmental 

Conservation 37: 320–326. 

Paciencia, B. L. M and Prado, J. 2005. Effect of forest fragmentation on pteridophytes 

diversity in tropical rain forests in Brazil. Plant Ecology 180: 87-104. 

doi:10.1007/s11258-005-3025-x  

Page, V. N., Qureshi, Q., Rawat, S.G. 2009. Plant diversity in sacred forest fragments of 

Western Ghats: a comparative study of four life forms. Plant Ecology. DOI 

10.1007/s11258-009-9638-8 

Parker, M., Mac Nally, R. 2002. Habitat loss and the habitat fragmentation threshold: an 

experimental evaluation of impacts on richness and total abundances using 

grassland invertebrates. Biological Conservation 105:217–229. 

Paul, S. and Fine, A.  2002. The invasibility of tropical forest by exotic plants. Journal 

of Tropical ecology 18: 687-705. DOI:10.1017/S0266467402002456 

Pausas, J. G. and Saez, L. 2000. Pteridophyte richnessnin the NE Iberian Peninsula: 

biogeographicpatterns..Plant.Ecology148:195-205. 

doi:10.1023/A:1009899615852 

Petit, S., Griffiths, L., Smart, S. S., Smith, G. M., Stuart, R. C. and Wright, S.M. 2004. 

Effect of area and isolation of woodland patches on herbaceous plant 

species richness across Great Biritain. Landscape Ecology 19: 463-471. 

Piessens, K., Honnay, O. and Hermy, M. 2005. The role of fragment area and isolation 

in the conservation of heathland species. Biological Conservation 122: 61–

69. 

Pulliam, H. R. 1996 Sources and sinks: Empirical evidence and population 

consequences. In: Rhodes or, Chesser K, smith M (eds) Population 

dynamics in ecological space and time. Chicago: University of Chicago 

Press, pp: 45-69. 

Pulliam, H. R. 1988. Sources, sinks, and population regulation. The American 

Naturalist. 132: 652-661. 



305 

 

Quine, C. P., Humphrey, J. W., Purdy, K. and Ray, D. 2002. An approach to predicting 

the potential forest composition and disturbance regime for a highly 

modified landscape: a pilot study of Strathdon in the Scottish Highlands.: 

Silva Fennica  36 : 233-247 

Ramankutty, N. et al., 2002. The global distribution of cultivable lands: current patterns 

and sensitivity to possible climate change. Global Ecology and 

Biogeography 11:377-392. 

Ramakrishnan, P. S, Saxena K. G. and Chandrashekara U.M. 1998. Conserving the 

sacred for biodiversity management. New Delhi, India: Oxford and India 

Book House. 

Rao, R.B., Babu, V.M., Reddy, S. M., Reddy, M. A., Rao, S. V., Sunitha, S. and 

Ganeshalah, N. K. 2011. Sacred groves in south eastern ghats, India: Are 

they better managed than forest reserve? Tropical ecology 52: 79-90  

Reddy, M.A., 2008. Text book of remote sensing and geographical information systems. 

3rd edition. BS Publications, 4-4-309, Giriraj Lane, Sultan Bazar, 

Hyderabad - 500095 AP.   

Reichhuber, A. and  Requate, T., 2012. Alternative use systems for the remaining 

Ethiopian cloud forest and the role of Arabica coffee - A cost-benefit 

analysis. Ecological Economics 75:102-113  DOI: 

10.1016/j.ecolecon.2012.01.006 

Reid, R. L. Kruska, M. A., Taye, S., Wotton, C. J. Wilson, M. W. 2000  Land-use and 

land-cover dynamics in response to changes in climatic, biological and 

socio-political forces: the case of ern Ethiopia. Landscape Ecology 15:339–

355 

Rempel,  R. 2012 Patch Analyst 4.2, Thunder Bay, Ontario Canada, Centre for Northern 

Forest Ecosystem Research. Available at: 

http://flash.lakeheadu.ca/_rrempel/patch 

Reusing, M. 1998. Monitoring of Natural High Forests in Ethiopia. Internal Report, 

Ministry of Agriculture, Addis Ababa, Ethiopia. 



306 

 

Reusing, M. 2000. Change detection of natural high forests in Ethiopia using remote 

sensing and GIS techniques. International Archives of Photogrammetry and 

Remote Sensing  38:1253-1258. 

Rey-Benayas, J. M., Gonzalez-Espinosa, M., Echeverria, C., Manson, R.H., Williams-

Linera, G. et al. 2007. Plant Diversity in Highly Fragmented Forest 

Landscapes in Mexico and Chile: Implications for Conservation, (ed by 

Newton, A. C) in Biodiversity loss and Conservation in Fragmented forest 

Landscapes: The forests of Montane Mexico and Temperate South 

America  Pages: 43-68  DOI: 10.1079/9781845932619.0043 

Rey-Benayas, J. M., Newton, A. C., Diaz, A. and Bullock, J .M. 2009. Enhancement of 

Biodiversity and Ecosystem Services by Ecological Restoration: A Meta-

Analysis. Science  325: 1121-1124  DOI: 10.1126/science.1172460  

Rey-Benayas, J. M.,  Bullock, J. M. and Newton, A. C. 2008. Creating woodland islets 

to reconcile ecological restoration, conservation, and agricultural land use. 

Frontiers in Ecology and The Environment  6:329-336  DOI: 

10.1890/070057   

Riebsame, W. E., Meyer, W. B., Turner, B. L. 1994. Modeling land use and cover as 

part of global environmental change. Climate Change 28:45 – 64. 

Robiglio, V. 2008. Beyond slash and burn: landscape ecology of shifting cultivation in 

southern Cameroon. PhD thesis  

Roux, P. J. 2003. Swaziland Ferns and Fern Allies.   

Roux, J. P. 2001. Conspectus of Southern African Pteridophyta. Southern African 

Botanical Diversity Network Report 13 Page 19. Schelpe, E.A.C.L.E. 

(1970). Pteridophyta FZ Page 18. 

Rutledge, D. 2003. Landscape indices as a measure of the effect of fragmentation: Can 

pattern reflect Process? Doc Science Internal Series 98. Published by New 

zealand Department of Conservation.   

http://www.mozambiqueflora.com/speciesdata/literature-display.php?literature_id=26
http://www.mozambiqueflora.com/speciesdata/literature-display.php?literature_id=25
http://www.mozambiqueflora.com/speciesdata/literature-display.php?literature_id=25


307 

 

Sahu, P. K., Sagar, R. and Singh, J. S. 2008. Tropical forest structure and diversity in 

relation to altitude and disturbance in a Biosphere Reserve in Central India. 

Applied Vegetation Science  11:461-470 

Salick, J., Amend, A. Anderson, A., Koffmeister, K., Gunn, B. and Zhendong, F. 2007. 

Tibetan sacred sites conserve old growth trees and cover in the eastern 

Himalayas. Biodiversity and conservation 16: 693-706, DOI 

10.1007/s10531-005-4381-5  

Salovaara, J. K., Thessler, S., Malik, N. R., Tuomisto, H. 2005.  Classification of 

Amazonian primary rain forest vegetation using  Landsat ETM+ satellite 

imagery. Remote sensing of Environment 97:39-51. Available online at 

www.sciencedirect.com 

Saunders, D. A., Hobbs, R. J. and Margules, C. R. 1992. Biological consequences of 

ecosystem fragmentation: a review. Conservation Biology 5:12–32. 

Saura, S. 2002. Evicts of minimum mapping unit on land cover data spatial 

configuration and composition. International Journal of  remote sensing. 

23: 4853–4880 

Saura, S. and Martínez-Millán, J. 2001. Sensitivity of landscape pattern metrics to map 

spatial extent. Photogrammetric Engineering and Remote Sensing 67 (9): 

1027-1036. 

Schmitt B. C. and Seitz, N. 2002. Influence of habitat fragmentation on the gentic 

structure of Polyommatus coridon (Lepidoptera: Lycaenidae): implications 

for conservation. Biological Conservation 291-297. 

Schmitt, C. B. 2006. Montane rainforest with wild Coffea arabica in the Bonga region 

(SW Ethiopia): plant diversity, wild coffee management and implications 

for conservation. Ecology and Development Series, No. 48. Cuvillier 

Verlag, Göttingen. PhD thesis, German 

Schmitt, B. C., Denich, M., Sensebe D., Friis I. and Boehmer, J.  2010. Floristic 

diversity in fragmented Afromontane rainforests: Altitudinal variation and 

conservation importance. Applied Vegetation Science 13:291–304, 2010 

DOI: 10.1111/j.1654-109X.2009.01067.x 



308 

 

Schnitzer, S. A. and Carson, W. P. 2001. Treefall gaps and the maintenance of species 

diversity in a tropical forest. Ecology 82: 913-919. 

Schulz, J. J., Cayuela, L., Rey-Benayas, J. M. and Schroder, B. 2011. Factors 

influencing vegetation cover change in Mediterranean Central Chile (1975-

2008). Applied Vegetation Science  14: 571-582  DOI: 10.1111/j.1654-

109X.2011.01135.x   

Seaby, M. P. H., Henderson, P. A. 2007. QED Statistics 1.1.3.443. Pisces Conservation 

Ltd, Lymington, UK. 

Sebsebe, D. Cribb, P. J. and Rasmussen, F. 2004. Field Guide to Ethiopian Orchids. 

Royal Botanic Garden, Kew 

Sheferaw, B. 2010. Woody Plant Species of Sese Forest, Illubabor Zone, Oromia 

National Regional State,  Ethiopia. MS.C Thesis. 

Sheridan M. J. 2009. The environmental and social history of African sacred groves: a 

Tanzanian case study. African Studies Review 52:73-98. 

Shmida, A. 1984. Whittaker's plant diversity sampling method. Israel Journal of Botany 

33: 41-46.  

Shao, G. and Wu, J. 2008: On the accuracy of landscape pattern analysis using remote 

sensing data. Landscape Ecology 23:505–11. 

Shao G, Wu W. 2004. The effects of classification accuracy on landscape indices. In: 

Lunetta RS, Lyon JG (eds) Remote sensing and GIS accuracy assessment. 

CRC Press, Boca Raton, FL, pp 209–220 

Sih, A., Jonsson, B. G. and Luikart, G. 2000. 'Do edge effects occur over large spatial 

scale? Tree: 134-135. 

Silvia, I., Pereira, A. and Barros, I. 2011. Edge effects on fern community in an Atlantic 

Forest remnant of Rio Formoso, PE, Brazil. Brazil Journal of Biology, 7 

http://dx.doi.org/10.1590/S1519-69842011000300011 

Siverikaya, F., Cakir, G., Kadiogullari, I. A., et al. 2007. Evaluating land use/land cover 

changes and fragmentation in the Camili forest planning unit of northeastern 

turkey from 1972 to 2005. Land Degradation and Development, 18:383-

396. 



309 

 

Spies, T. A. 1998. Forest Structure: A key to the ecosystem. In J. A. Trofymow and 

A.MacKinnon (Eds.). Proceedings of a workshop on Structure, Process, and 

Diversity in Successional Forests of Coastal British Columbia, February 17–

19, 1998, Victoria, British Columbia. Northwest Science, 72: 34–39. 

Southwood, T. R. E., and  Henderson A. P. 2000. Ecological methods, third edition. 

Blackwell Science, Oxford, England. 

Stevens, S. 2008. The Mount Everest Region as an ICCA: Sherpa conservation 

stewardship of the Khumbu Sacred Valley, National Park and Buffer Zone, 

report for Cenesta. IUCN/CEESP and GTZ, 2008. 

Suhaila, J. and A. A. Jemain, A. A. 2009. A comparison of the rainfall patterns between 

stations on the East and the West coasts of Peninsular Malaysia using the 

smoothing model of rainfall amounts. Meteorological Applications, 16: 391-

401. 

Suhaila, J.and Jemain, A. A. 2012. Spatial analysis of daily rainfall intensity and 

concentration index in Peninsular Malaysia. Theory and Applied 

Climatology, 108:235–245. DOI 10.1007/s00704-011-0529-2 

Sukumaran S.and Jeeva, S. 2008 A floristic study on miniature sacred forests at 

Agastheeshwaram, southern peninsular India. EuroAsia Journal of 

Biological science 2:66-72. www.ejobios.com/content/2/8/66-72 

Sutherland, W. J. 2000. The conservation handbook: research, management and policy. 

Blackwell publishing, Oxford. 

Svendsen, E. S., and Campbell, L. K. 2010. Living Memorials: Understanding the 

Social Meanings of  Community-Based Memorials to September 11, 2001. 

Environment and Behavior 

Swamy, P. S., Kumar, M. and Sundarapandian , M. S. 2003. Spirituality and ecology of 

sacred groves in Tamil Nadu, India in Unasylva 213. 

Tadesse, W. 2003. Vegetation of Yayu forest in south-west Ethiopia: Impacts of human 

use and implications for in-situ conservation of wild Coffea arabica L. 

population. PhD thesis, German 



310 

 

Tadesse, W. and Masresha F. 2007. Forests of Sheka: Ecological, social, legal and 

economic dimension of recent land use/ land cover changes. Overview and 

Synthesis, Melca: 45 

Tadesse, W. 2007. The Impact of land use/land cover changes on biodiversity in Masha 

and anderacha woredas of Sheka zone, SNNP Regional State. In: Masresha, 

Fetene (Ed.), Forests of Sheka. MELCA Mahiber, Addis Ababa, Ethiopia, 

57–82. 

Tadesse, W. and Nigatu, L. 1996 An ecological and ethnobotanical study of wild or 

spontaneous coffee, Coffea arabica in Ethiopia. In: J.G. van der Maesen et 

al (eds), The biodiversity of African plants 277-294. 

Tadesse, W. Borsch, T. Denich, M. and Demel T. 2008. Floristic composition and 

environmental factors characterizing coffee forests in  Ethiopia. Forest 

Ecology and Management 255: 2138–2150. Available online at 

www.sciencedirect.com 

Tadesse, W. and Denchi, M. 2001. Subsistence in a mountain forest ecosystem: the case 

of south west. In proceeding of the world mountain symposium 2001, 30 

September – October, 2001,  Interlaken, Swizerland. 

Tadesse, W., Denich, M., Teketay, D. Vlek, P.L.G. 2002. Human Impacts on the Coffee 

Arabica Gene pool in Ethiopia and the need for its in situ Conservation. In: 

Engels, M.M.J., Ramantha, R.V., Brown, A.H.D.,Jackson, M.T. (Eds.), 

Managing Plant Genetic Diversity. CABI, Oxon, UK, pp. 237–248. 

Tafesse, A. 1996. Agroecological zones of south-west Ethiopia. Matreialien zur 

Ostafrica-Forschung 13:1-241 

Teketay D. and Bekele T. 2002. State of forests and forestry research in Ethiopia. 

Indicators and tools for restoration and sustainable management of forests in 

east Africa. I-Too working paper no. 1. Albert-Ludwigs University, 

Freiburg. 

Teketay, D. 1997. The impact of clearing and conversion of dry Afromontane forests 

into arable land on the composition and density of soil seed banks. Acta. 

Oecologica 18:557-573. 



311 

 

Teketay, D. 2000. Status of forestry development, conservation and utilisation in 

Ethiopia. African Forestry Research Network, Country reports on Forestry 

situation, Addis Ababa, 37-53. 

Teketay, D. 1997. The impact of clearing and conversion of dry Afromontane forests 

into arable land on the composition and density of soil seed banks. Acta. 

Ecology 18: 557-573. 

Teketay, D. 1992. Human impact on a natural montane forest in southeastern Ethiopia. 

Mountain Research Development 12:393–400. 

Ter Braak C. J. F, Smilauer, P. 2002. CANOCO reference manual and CanoDraw for 

Windows user’s guide. Software for Canonical Community ordination 

(Version 4.5). Biometris, Wageningen, Ceske Budejovice. 

Ter Braak, C.F.J. and Gremmen, M. J. N.1987. Ecological amplitudes of plant species 

and the internal consistency of Ellenberg’s indicator values for moisture. 

Vegetation 69:79-87. 

Tesfaye, G., Teketaye, D., Fetene, M. and Beck, E. 2010. Regeneration of seven 

indigenous tree species in a dry Afromontane forest, southern Ethiopia. 

Flora 205:135-143  DOI: 10.1016/j.flora.2008.12.006  Published: 2010  

Tewolde, G. 1998. Vegetation and environment of the mountains of Ethiopia: 

implications for utilizations and conservation. Mountain Research 

Development 8:211-216   

Tewolde, G. 1989. Background to the 20th century ecological crisis in Ethiopia. Walia 

12:21-29  

Thomas P., Sullivan, D., Sullivan, S. P. and Lindgren , F. M. 2000. Small Mammals and 

Stand Structure in Young Pine, Seed-Tree, and Old-Growth Forest,  Canada. 

Ecological Applications, 10(5) (Oct., 2000), pp. 1367-1383.  STable URL: 

http://www.jstor.org/sTable/2641292 

Thompson, I., Mackey, B., McNulty, S., Mosseler, A. 2009. Forest Resilience, 

Biodiversity, and Climate Change. A synthesis of the 

biodiversity/resilience/stability relationship in forest ecosystems. Secretariat 

of the Convention on Biological Diversity, Montreal. Technical Series no. 

43-67 pages. 



312 

 

Thuiller, W., Lavorel, S. et al. 2004. Relating plant traits and species distributions along 

bioclimatic gradients for 88 Leucadenderon Taxa . Ecology 85:1688–1699 

Tilman, D., May, R. M., Lehman, C. L. and Nowak, A.M. 2002. Habitat destruction and 

the extinction debt. Nature 371:65–66. 

Titshall, L.W., O’Connor, T. G., and Morris, C. D. 2000, Effect of long-term exclusion 

of fire and herbivory on the soils and vegetation of sour grassland. African 

Journal of Range and Forage Science 17:70–80. 

Tole, L. 2002.  An estimate of forest cover extent and change in Jamaica using Landsat 

MSS data. International Journal of Remote Sensing 23:91-106 

http://dx.doi.org/10.1080/01431160010014837 

Tolera, M., Asfaw, Z., Lemenih, M. and Karltun, E. 2008. Woody species diversity in a 

changing landscape in the south-central highlands of Ethiopia. Agriculture 

ecosystems and environment  128:52-58  DOI: 10.1016/j.agee.2008.05.001 

Tripathi, O. P.,  Upadhaya, K., Tripathi , R. S and Pandey H. N. 2010. Diversity, 

Dominance and Population Structure of Tree Species along Fragment- Size 

Gradient of a Subtropical Humid Forest of Northeast India 

Tso, B. and Mather, M. P. 2009. Classification method for Remotely sensed data (2
nd

 

ed). Published by CRC press, USA 

Turner, M. G., Gardner R. H., O’Neill, R. V., Kratz, T.K. A. 1993. Revised concept of 

landscape equilibrium: disturbance and stability on scaled landscapes. . 

Landscape Ecology  8:213–227. 

Turner, M. G. 1989. Landscape ecology: the effect of pattern on process. Annual Review 

of Ecology and Systematics 20:171-197. 

Turner, M. G., Gardner, R. H. and O'Neill, R. V. 2001. Landscape ecology in theory 

and practice: pattern and process. Springer-Verlag, New York 

Turner, I. M. 1996. Species loss in fragments of tropical rain forest: a review of the 

evidence. Journal of Applied Ecology 33:200-209. 

Turner, M. G., Pearson, S. M. Bolstad, P. and Wear, D. N. 2003. Effects of land-cover 

change on spatial pattern of forest communities in the Southern 

Appalachian Mountains (USA). Landscape Ecology 18:449–464. 



313 

 

Turner, M. G., Carpenter, S. R., Gustafson,  E. J., Naiman, R. J and Pearson, S. M. 

1998. Land use. Pages 37–61 in M. J. Mac, P. A. Opler, P. Doran, and C. 

Haecker, Status and trends of our nation’s biological resources. Volume 1. 

USGS National Biological Service, Washington, D.C., USA. 

Turner, I. M. and Corlett, R.T. 1996. The conservation value of small, isolated 

fragments of lowland tropical rain forest. Trends in Ecology and Evolution 

11:330–333. 

Vanderwel, M. C, John, P. Caspersen, J. P, Malcolm, J. R, Papaik, M. R, Messier, C. 

2011. Structural changes and potential vertebrate responses following 

simulated partial harvesting of boreal mixed wood stands. Forest Ecology 

and Management 261:1362–1371 

Vivero, J. L., Ensermu K. and Sebsebe D. 2005. The Red List of Endemic Trees & 

Shrubs of Ethiopia and Eritrea. Fauna & Flora International, Cambridge, 

UK.  23 pp. 

Wade, T. G, Riiters, K. H, Wickham, J. D. et al. 2003. Distribution and causes of global 

forest fragmentation. Conservation Ecology 7:7 [online] 

http://www.consecol.org/vol7/iss2/art7 

Wadley, R. L., and  Colfer, P. J. C. 2004. Sacred forest, hunting, and conservation in 

West Kalimantan, Indonesia. Human Ecology 32:313-338. 

Wagner, H. H., Edward., P. J. 2001. Quantifying habitat specificity to assess the 

contribution of a patch to species richness at a landscape scale. Landscape 

Ecology 16:121–131. 

Wangda, P. and Ohsawa, M. 2006. Gradational forest change along the climatically dry 

valley slopes of Bhutan in midst of humid eastern Himalaya. Plant Ecology 

186: 109-128.doi:10.1007/s11258-006-9116-5 

WBISPP, 2000. Digital Land-cover Classification of SW Ethiopia. Woody Biomass 

Inventory and Strategic Planning Project, Ministry of Agriculture, Addis 

Ababa, Ethiopia 

Weedman, A. K .J. 2008. The Gamo hideworkers of ern Ethiopia and Cross-Cultural 

Comparisons. Anthropozoologica 43: 67-98. 



314 

 

Weng, Y. 2007. Spatiotemporal changes of landscape pattern in response to 

urbanization. Landscape and urban planning 81:341-353. 

Werner, F. A. and Gradstein, S. R. 2009. Diversity of dry forest epiphytes along a 

gradient of human disturbance in the tropical Andes. Journal of Vegetation 

Science 20: 59-68. 

Werner, F. A., Homeier, J. and Gradstein, S.R. 2005. Diversity of vascular epiphytes on 

isolated remnant trees in the montane forest belt of southern Ecuador. 

Ecotropica 11:21–40. 

White, F., Dowsett-Lemaire, F. and Chapman, J. d, 2001. Evergreen forest flora of 

Malawi Royal Botanic Gardens, Kew Pages 254 - 255. 

Whittaker, R. H. 1975. Evolution and measurement of species diversity. Taxon. 21:213–

251. 

Wickham, J. D. and Riitters, K. H. 1995. Sensetivity of landscape metrics to pixel size. 

International Journal of Remote Sensing 16: 3585-3594 

Wiens, J. A. 1989. Spatial scaling in ecology. Functional Ecology. 3:385-397 

Wiens, J. A. 1994. Habitat fragmentation: island vs. landscape perspectives on bird 

conservation. Ibis 137. Supplement 1:S97–S104. 

Wild, R. and McLeod, C. 2008. Sacred Natural Sites. Guidelines for Protected Area 

Managers, IUCN, Gland, Switzerland. 

William-Linera, G. 1990. Vegetation structure and environmental conditions of forest 

edges in Panama. Journal of Ecology 78:356-373 

William, M. C. 2003. Land-use change impacts and dynamics (LUCID) project working 

paper No. 30. Nairobi Kenya: International Livestock Institute  

Williams P. H. 1994. Centers of seed-plant diversity: The family way. 

Wolf, J. H. D. 2005. The response of epiphytesto anthropogenic disturbance of pine-oak 

forests in the highlands of Chiapas, Mexico. Forest Ecology and 

Management 212:376- 393. 

 

 

 



315 

 

Wood, A. 2007. Through Whose Eyes? Understanding Stakeholders’ Perspectives on 

Potential Forest Income, as the Basis for Successful PFM. In: Ensermu, 

Kelbessa, Camille De, Stoop (Eds.), Proceedings of the International 

Conference Participatory Forest Management (PFM), Biodiversity and 

Livelihoods in Africa, 19–21 March 2007 Addis Ababa, 

Ethiopiahttp://www.pfmpfarmsos.org/Docs/ 

pfm%20conference_proceeding.pdf. 

Wood, A. P. 1993. Natural Resource Conflict in South-West Ethiopia: State, 

Communities, and the role of the National Conservation Strategy in the 

search for sustainable development. Nordic Journal of African studies 2:83-

99. 

World Checklist of Selected Plant Families. 2011. The Board of Trustees of the Royal 

Botanic Gardens, Kew. Published on the Internet; 

http://www.kew.org/wcsp/ accessed May, 2012 

Woubeshet S. 2001.  Junior Atlas for Ethiopia.  Ethiopian Mapping Authority, Addis 

Ababa. 

Wright, IJ; Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., 

Cavender-Bares, J., Chapin, T., Cornelissen, J. H.C., Diemer, M., Flexas, J., 

Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B. Lee, T., 

Lee, W., Lusk, C., Midgley, J. J., Navas, M. L., Niinemets, U., Oleksyn, J.,  

Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V. I., Roumet, C., 

Thomas, S. C., Tjoelker, M. G., Veneklaas, E. J. and Villar, R. 2004. The 

worldwide leaf economics spectrum. Nature 428:821-827. 

Wright, S. J. 2002.  Plant diversity in tropical forests: a review of mechanisms of 

species coexistence. Oecologia 130:1–14. 

Wu, J. 2004. Effect of changing scale on landscape pattern analysis: scale relations, 

Landscape Ecology 19: 125-138 

Wyse, V. R. and Burs, R. B. 2011. Do host bark traits influence trunk epiphyte 

communities? Short Communications. 

Yang, X. 2007.  Integrated use of remote sensing and geographic information systems 

in riparian vegetation delineation and mapping. International Journal of 

Remote Sensing 28:353–370. 



316 

 

Yang, X. and Lo, C. 2002. Using satellite imagery to detect land use and land cover 

changes in Atlanta, Georgia metropolitan area. International Journal of 

Remote Sensing. 24:583-594 

Yu, X. J. and C. N. Ng. 2007. Spatial and temporal dynamics of urban sprawl along two 

urban-rural transects: A case study of Guangzhou, China. Landscape and 

Urban Planning 79: 96-109. 

Zehm, A., Nobis, M. and Schwabe, A. 2003. Multiparameter analysis of vertical 

structure based on digital image processing. Flora: 198:142-160. 

Zapfack. L., A. B. Nkongmeneck, A. B., Villiers, J. E. and Lowrnan, M.. 1996. The 

importance of pteridophytes in the epiphytic flora of some phorophytes of 

the Cameroonian semi-deciduous rain forest. Selbyana 17:76-81. 

 

 

  



317 

 

APPENDICES 

 

     Appendix 3.1 Patch spatial characteristic of Site I during study period: Nump= Number of patch, MPS= Mean patch size (ha),MSI= Mean shape index,  

                AWMSI= Area-weighted mean shape index, AWMPFD= Area-weighted mean patch fractal dimension,   TE= Total edge (m), ED= Edge density, PSCoV=              

  Patch size cofficient of variation, PSSD= Patch size standard deviation,   TLA= Total land area, CA= class area   

 

Site I 1986 NumP MPS MSI AWMSI AWMPFD TE ED PSCoV PSSD TLA CA 

Forest 3297 8.2 1.4 17.1 1.5 3169799.7 66.5 3525.3 288.5 47647.7 26980.2 

Grazing land 2176 1.4 1.5 3.1 1.4 1315892.9 27.6 365.7 5.2 47647.7 3114.2 

Wooded grassland 14 0.7 1.4 1.6 1.4 5661.1 0.1 79.9 0.5 47647.7 9.2 

Farm and settlement 6095 2.9 1.4 27.4 1.5 4413668.7 92.6 3978.4 114.6 47647.7 17550.9 

Site I 2000                       

Forest 1545 21.5 1.4 17.0 1.4 1979936.0 41.5 3469.7 746.0 47647.7 28005.9 

Grazing land 2346 1.0 1.5 2.2 1.4 1148448.1 24.1 206.3 2.1 47647.7 3353.0 

Wooded grassland 147 0.7 1.4 1.7 1.4 58897.9 1.2 122.5 0.9 47647.7 310.7 

Farm and settlement 3357 3.6 1.4 12.4 1.5 2572220.1 54.0 2179.6 77.8 47647.7 15978.1 

Site I 2007                       

Forest 668 37.9 1.7 20.0 1.5 2487891.9 52.2 1557.1 589.8 47647.7 25300.4 

Grazing land 1388 3.4 1.7 4.8 1.4 1509430.6 31.7 529.7 18.2 47647.7 4776.6 

Wooded grassland 206 0.9 1.5 1.6 1.4 96842.1 2.0 91.0 0.8 47647.7 183.3 

Farm and settlement 1890 9.2 1.7 25.1 1.5 3833856.5 80.5 2139.4 196.9 47647.7 17394.2 



318 

 

Appendix 3.2 Patch spatial characteristic of Site II during study period: Nump= Number of patch, MPS= Mean patch size (ha), MSI= Mean shape index, 

AWMSI= Area-weighted mean shape index, MPFD= Mean patch fractal dimension, AWMPFD= Area-weighted mean patch fractal dimension, TE= Total 

edge (m), ED= Edge density(m/ha), PSCoV= Patch size cofficient of variation, PSSD= Patch size standard deviation, TLA= Total land area (ha), CA= 

class area (ha)   

 

Site II 1986 NumP MPS MSI AWMSI MPFD AWMPFD TE ED PSCoV PSSD TLA CA 

Forest 2127 6.7 1.6 6.8 1.4 1.4 2357511.7 22.9 1304.9 87.0 47647.7 14186.4 

Grazing land 2983 3.3 1.6 4.8 1.4 1.4 2903747.4 60.9 537.8 17.7 47647.7 9817.3 

Wooded grassland 1432 0.5 1.4 1.7 1.4 1.4 497244.1 1.4 136.8 0.7 47647.7 778.4 

Farm and settlement 2839 8.1 1.4 46.6 1.4 1.5 5339647.2 112.1 3259.2 262.5 47647.7 22865.5 

Site II 2000                         

Forest 3380 3.7 1.5 5.3 1.4 1.4 2604878.0 49.5 1278.9 47.9 47647.7 12664.2 

Grazing land 4402 1.2 1.5 2.3 1.4 1.4 2437818.6 96.7 210.1 2.5 47647.7 5287.4 

Wooded grassland 144 1.0 1.4 2.0 1.4 1.4 64957.7 10.4 253.6 2.4 47647.7 137.4 

farm and settlement 2497 11.8 1.3 50.8 1.4 1.5 4152571.2 87.2 4564.6 540.3 47647.7 29558.7 

Site II 2007                         

Forest 940 7.5 1.6 4.1 1.4 1.4 1092547.8 54.7 821.0 61.6 47647.7 7052.0 

Grazing land 2168 9.4 1.7 17.4 1.4 1.5 4609847.2 51.2 1471.9 138.2 47647.7 20351.5 

Wooded grassland 167 1.0 1.4 1.6 1.4 1.4 78961.1 1.7 106.2 1.0 47647.7 158.8 

Farm and settlement 1823 11.0 1.7 15.6 1.4 1.5 3838254.9 80.6 1538.5 169.5 47647.7 20085.4 
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   Appendix 3.3 Patch spatial characteristic of Site III during study period: Nump= Number of patch, MPS= Mean patch size (ha), MSI= Mean shape     

 index,  AWMSI= Area-weighted mean shape index, AWMPFD= Area-weighted mean patch fractal dimension, TE= Total edge (m), ED= Edge density 

 (m/ha),  PSCoV= Patch size cofficient of variation, PSSD= Patch size standard deviation, TLA= Total land area (ha), CA= class area (ha)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Site III 1986 NumP MPS MSI AWMSI AWMPFD TE ED PSCoV PSSD TLA CA 

Forest 1639 6.4 1.5 6.4 1.4 1568321.6 33.1 1298.1 83.3 47647.7 10522.5 

Grazing land 3211 2.9 1.6 4.0 1.4 2982438.4 62.9 456.7 13.3 47647.7 9588.9 

Wooded grassland 2397 0.8 1.4 2.3 1.4 1000631.7 3.5 292.0 2.2 47647.7 1841.0 

Farm and settlement 2851 9.0 1.4 27.5 1.6 5118327.9 108.0 4677.9 421.6 47647.7 25695.3 

Site III 2000                       

Forest 2458 5.4 1.4 6.6 1.4 1976173.9 24.8 1495.1 80.8 47647.7 13284.3 

Grazing land 6653 0.9 1.4 2.7 1.4 3134964.4 94.5 340.1 3.2 47647.7 6579.3 

Wooded grassland 425 0.7 1.4 1.8 1.4 163866.8 21.1 184.0 1.2 47647.7 282.6 

Farm and settlement  1635 16.8 1.4 35.9 1.5 3272621.9 69.1 3355.4 564.4 47647.7 27501.5 

Site III 2007                       

Forest 766 12.4 1.6 5.6 1.4 1175583.0 41.7 899.6 111.9 47647.7 9530.2 

Grazing land 2933 5.3 1.7 10.3 1.5 4479011.8 66.2 1043.0 54.9 47647.7 15439.6 

Wooded grassland 506 1.1 1.5 1.6 1.4 262618.7 5.5 109.8 1.2 47647.7 802.3 

Farm and settlement 2162 10.1 1.7 25.5 1.5 5355988.0 113.0 1573.8 159.2 47647.7 21875.5 
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 Appendix 3.4 Landscape spatial characteristic of all study sites of each year: Nump= Number of patch, MPS= Mean patch size (ha),  

 MSI= Mean shape index, AWMSI= Area-weighted mean shape index, SDI= Shannon diversity index, SEI= Shannon eveness index,  

 ED= Edge density (m/ha), PSCoV= Patch size cofficient of variation, PSSD= Patch size standard deviation, TLA= Total land area (ha) 

 

 Class NumP MPS MSI AWMSI SDI SEI ED PSCoV PSSD TLA 

Site I            

1986 All 11582 4.11 1.40 20.00 0.87 0.63 186.87 4252.12 174.95 47647.68 

2000 All 7395 6.44 1.42 15.11 0.96 0.55 120.86 5354.56 345.06 47647.68 

2007 All 4152 11.48 1.66 20.29 0.76 0.69 166.36 2367.86 271.77 47647.68 

Site II                       

1986 All 9381 5.08 1.51 25.42 1.11 0.80 232.92 2964.89 150.59 47647.68 

2000 All 10423 4.57 1.46 33.17 0.91 0.66 194.35 5817.00 265.92 47647.68 

2007 All 5098 9.35 1.67 14.61 1.03 0.74 201.89 1478.53 138.19 47647.68 

Site III                       

1986 All 10098 4.69 1.47 37.35 1.11 0.80 225.18 4830.62 226.67 47647.68 

2000 All 11171 4.24 1.44 23.05 0.97 0.70 180.39 5170.19 219.30 47647.68 

2007 All 6367 7.44 1.68 16.26 1.10 0.79 237.88 1441.89 107.32 47647.68 
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 Appendix 3.5: Core area characteristic of forest in each site during study period : Nump= Number of patch, MPS= Mean patch size (ha),   

 AWMSI= Area-weighted mean shape index, AWMPFD= Area-weighted mean patch fractal dimension, TFA= Total forest area (ha), TCoA=   

 Total core area (ha), %CA= Percent of Core area, CAD= Core area density, ED= Edge density (m), PSCoV= Patch size coefficient of variation,  

 PSSD= Patch size standard deviation.   

 

 

 

 

 

 

 

 

 NumP MPS AWMSI AWMPFD TFA TCoA % CA CAD ED PSCoV PSSD 

Site I            

1986 733.0 24.5 7.6 1.4 26980 17925.7 66.4 2.9 51.0 1892.3 462.8 

2000 328.0 81.0 7.3 1.4 28005.9 26553.4 94.8 1.0 34.3 1168.6 946.0 

2007 622.0 24.8 14.3 1.4 25300.4 15399.4 60.9 2.5 94.1 1493.6 369.8 

Site II                    

1986 697.0 10.4 3.3 1.3 14186.4 7256.8 51.1 5.4 89.1 834.9 86.9 

2000 667.0 8.8 3.0 1.3 12664.2 5890.7 46.5 6.1 89.7 817.5 72.2 

2007 385.0 9.5 2.7 1.3 7052 3647.1 51.7 6.0 93.0 733.8 69.5 

Site 

III 

                   

1986 351.0 17.1 3.4 1.3 10522.5 6002.5 57.0 3.6 76.1 663.2 113.4 

2000 410.0 18.8 4.2 1.3 13284.3 7720.1 58.1 3.3 74.2 712.1 134.1 

2007 375.0 14.7 4.0 1.3 9530.2 5524.4 57.9 4.2 85.5 717.3 105.7 



322 

 

Appendix 4.1 Importance value of tree species in Site I. BA = Basal area, RDO = Relative dominance, D = 

Species Density, RED = Relative Density, F = Frequency, RF = Relative frequency and IVI = Importance 

Value Index 

Species  BA RDO D RED F RF IVI 

Millettia ferruginea 27.85 10.14 64.8 10.38 0.73 4.88 8.46 

Coffea arabica 3.08 1.12 103.5 16.56 0.84 5.60 7.76 

Albizia gummifera 21.72 7.91 21.1 3.38 0.42 2.80 4.70 

Celts africana 25.87 9.42 5.1 0.81 0.20 1.35 3.86 

Croton macrostachyus 12.71 4.63 18.8 3.00 0.44 2.91 3.51 

Maesa lanceolata 8.93 3.25 39.5 6.31 0.11 0.73 3.43 

Bersama abyssinica 4.59 1.67 23.4 3.75 0.47 3.11 2.84 

Ehertia cymosa 5.20 1.90 19.5 3.13 0.45 3.01 2.68 

Chionanthus mildbraedii 2.14 0.78 23.8 3.81 0.44 2.91 2.50 

Sapium elliptcum 14.93 5.44 2.3 0.38 0.25 1.66 2.49 

Maytenus undata 5.33 1.94 27.0 4.31 0.17 1.14 2.46 

Trilepisium 

madagascariense 

9.92 3.61 8.2 1.31 0.34 2.28 

2.40 

Pouteria adolfi-friederici 9.42 3.43 7.8 1.25 0.31 2.08 2.25 

Ficus sur 9.51 3.46 6.3 1.00 0.33 2.18 2.21 

Vepris dainellii 1.80 0.65 21.5 3.44 0.38 2.49 2.19 

Oxyanthus speciosus 2.71 0.99 18.4 2.94 0.38 2.49 2.14 

Syzygium guineense 5.34 1.94 12.5 2.00 0.33 2.18 2.04 

Mimusops kummel 11.04 4.02 9.0 1.44 0.08 0.52 1.99 

Cordia africana 6.70 2.44 7.4 1.19 0.30 1.97 1.87 

Psychotria orophila 2.11 0.77 16.4 2.63 0.25 1.66 1.68 

Macaranga capensis 4.72 1.72 7.0 1.13 0.33 2.18 1.67 

Trichilia dregeana 5.51 2.01 5.9 0.94 0.28 1.87 1.60 

Argomuellera macrophylla 1.05 0.38 20.7 3.31 0.13 0.83 1.51 

Rothmannia urcelliformis 1.22 0.44 7.0 1.13 0.41 2.70 1.42 

Ritchiea albersii 2.45 0.89 8.6 1.38 0.28 1.87 1.38 

Elaeodendron buchanani 4.73 1.72 5.9 0.94 0.17 1.14 1.27 

Canthium oligocarpum 2.30 0.84 7.4 1.19 0.27 1.76 1.26 

Dracaena fragrans 1.12 0.41 8.2 1.31 0.27 1.76 1.16 

Galineria saxifraga 0.88 0.32 7.0 1.13 0.30 1.97 1.14 

Ficus vasta 7.12 2.59 0.8 0.13 0.06 0.42 1.04 

Diospyros abyssinica 0.80 0.29 4.7 0.75 0.25 1.66 0.90 

Cassipourea malosana 0.88 0.32 3.5 0.56 0.27 1.76 0.88 

Ficus vallis-choudae 4.67 1.70 2.0 0.31 0.08 0.52 0.84 

Allophyllus abyssinicus 1.80 0.66 3.9 0.63 0.19 1.25 0.84 

Psydrax parviflora 0.47 0.17 3.5 0.56 0.23 1.56 0.76 

Pappea capensis 1.62 0.59 4.3 0.69 0.11 0.73 0.67 

Albizia grandibracteata 1.39 0.51 1.6 0.25 0.19 1.25 0.67 
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Vangueria apiculata 0.84 0.31 2.7 0.44 0.19 1.25 0.66 

Polyscia fulva 3.28 1.19 1.6 0.25 0.08 0.52 0.65 

Garcinia buchananii 1.16 0.42 2.3 0.38 0.17 1.14 0.65 

Scheflera abyssinica 3.19 1.16 0.8 0.13 0.09 0.62 0.64 

Prunus africana 3.13 1.14 1.6 0.25 0.08 0.52 0.64 

Ficus mucuso 2.98 1.09 2.0 0.31 0.06 0.42 0.60 

Euphoriba ampliphylla 3.51 1.28 2.3 0.38 0.02 0.10 0.59 

Blighia unijugata 1.36 0.50 2.7 0.44 0.11 0.73 0.55 

Olea welwitschii 1.60 0.58 2.7 0.44 0.09 0.62 0.55 

Brucea antidysenterica 0.51 0.18 3.1 0.50 0.13 0.83 0.50 

Teclea nobilis 0.32 0.12 3.1 0.50 0.13 0.83 0.48 

Lepidotrichilia volkense 0.20 0.07 0.8 0.13 0.19 1.25 0.48 

Sarcocephalus latifolius 0.68 0.25 3.5 0.56 0.09 0.62 0.48 

Celts africana 0.39 0.14 3.5 0.56 0.11 0.73 0.48 

Apodytes dimidata 1.34 0.49 1.6 0.25 0.09 0.62 0.45 

Dalbergia lactea 0.48 0.17 1.6 0.25 0.14 0.93 0.45 

Filicium decipiens 1.00 0.37 2.0 0.31 0.09 0.62 0.43 

Alangium chinense 0.97 0.35 1.6 0.25 0.09 0.62 0.41 

Olea capensis subsp 

macrocarpa 

0.03 0.01 0.4 0.06 0.17 1.14 

0.41 

Flacourtia indica 0.27 0.10 1.6 0.25 0.13 0.83 0.39 

Anthocleista schweinfurthii 1.52 0.55 1.2 0.19 0.06 0.42 0.39 

Ficus thonningii 1.44 0.52 1.2 0.19 0.06 0.42 0.38 

Pouteria  altisma 0.71 0.26 2.0 0.31 0.08 0.52 0.36 

Albizia schimperiana 0.75 0.27 1.2 0.19 0.09 0.62 0.36 

Bridelia micrantha 0.29 0.11 1.2 0.19 0.11 0.73 0.34 

Eugenia bukobensis 0.39 0.14 1.6 0.25 0.09 0.62 0.34 

Ficus exasperata 0.96 0.35 0.8 0.13 0.08 0.52 0.33 

Hallea rubrostipulata 1.16 0.42 1.6 0.25 0.05 0.31 0.33 

Breonadia salicina 0.50 0.18 1.2 0.19 0.08 0.52 0.30 

Antiaris toxicara 0.35 0.13 0.8 0.13 0.09 0.62 0.29 

Morus mesozygia 1.00 0.37 0.4 0.06 0.06 0.42 0.28 

Dracaena afromontana 0.75 0.27 0.8 0.13 0.05 0.31 0.24 

Ekbergia capensis 0.56 0.20 0.4 0.06 0.06 0.42 0.23 

Dracaena steudneri 0.09 0.03 0.8 0.13 0.08 0.52 0.22 

Pittosporum viridiflorum 0.05 0.02 0.8 0.13 0.08 0.52 0.22 

Fagaropsis angolensis 0.52 0.19 0.8 0.13 0.05 0.31 0.21 

Celts toka 0.11 0.04 0.4 0.06 0.06 0.42 0.17 

Ocotea keynensis 0.22 0.08 0.8 0.13 0.05 0.31 0.17 

Nuxia congesta 0.33 0.12 0.4 0.06 0.05 0.31 0.16 

Maytenus addat 0.43 0.16 0.8 0.13 0.03 0.21 0.16 

Scherebra alata 0.03 0.01 0.4 0.06 0.06 0.42 0.16 
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Appendix 4.2 Importance value of tree species in Site II.  BA = Basal area, RDO = Relative dominance, D = 

Species Density, RED = Relative Density, F = Frequency, RF = Relative frequency and IVI = Importance 

Value Index 

Species BA RDO D RED F RF IVI 

Syzygium guineense 78.13 19.58 93.23 13.60 0.85 7.15 13.4

4 

Croton macrostachyus 19.76 4.95 28.65 4.18 0.69 5.76 4.96 

Millettia ferruginea 19.72 4.94 41.41 6.04 0.45 3.75 4.91 

Albizia gummifera 31.01 7.77 23.96 3.49 0.41 3.40 4.89 

Macaranga capensis 21.32 5.34 31.25 4.56 0.55 4.62 4.84 

Chionanthus mildbredii 5.66 1.42 46.88 6.84 0.56 4.71 4.32 

Pouteria adolfi-

friederici 

22.22 5.57 18.75 2.73 0.35 2.97 

3.76 

Trilipsium 

madagascariense 

35.80 8.97 9.90 1.44 0.05 0.44 

3.62 

Vepris dainellii 4.94 1.24 34.90 5.09 0.45 3.75 3.36 

Oxyanthus speciosus 4.12 1.03 31.25 4.56 0.46 3.84 3.14 

Bersama abyssinica 3.71 0.93 24.22 3.53 0.55 4.62 3.03 

Prunus africana 17.01 4.26 9.11 1.33 0.22 1.83 2.47 

Elaeodendron 

buchanani 

14.36 3.60 15.10 2.20 0.19 1.57 

2.46 

Ficus sur 15.58 3.90 4.69 0.68 0.26 2.18 2.26 

Maesa lanceolata 5.15 1.29 20.05 2.92 0.28 2.36 2.19 

Allophlus abyssinicus 6.56 1.64 10.94 1.60 0.40 3.32 2.19 

Olea capensis 9.39 2.35 11.98 1.75 0.22 1.83 1.98 

Canthium oligocarpum 6.53 1.64 10.16 1.48 0.29 2.44 1.85 

Psychotria orophila 1.49 0.37 28.39 4.14 0.05 0.44 1.65 

Coffea arabica 1.07 0.27 17.45 2.54 0.20 1.66 1.49 

Ehertia cymosa 7.88 1.97 10.94 1.60 0.08 0.70 1.42 

Teclea nobilis 0.80 0.20 11.20 1.63 0.28 2.36 1.40 

Cyathea manniana 0.07 0.02 0.8 0.13 0.05 0.31 0.15 

Senna petersiana 0.01 0.00 0.8 0.13 0.05 0.31 0.15 

Manilkara butugi 0.37 0.14 1.2 0.19 0.02 0.10 0.14 

Deinbollia kilimandischarica 0.14 0.05 0.4 0.06 0.05 0.31 0.14 

Vernonia amygdalina 0.07 0.03 0.4 0.06 0.05 0.31 0.13 

Grewia ferruginea 0.03 0.01 0.4 0.06 0.05 0.31 0.13 

Dombeya torrida 0.30 0.11 0.4 0.06 0.03 0.21 0.13 

Trema orientalis 0.40 0.15 0.4 0.06 0.02 0.10 0.10 

Ficus palmata 0.06 0.02 0.4 0.06 0.03 0.21 0.10 

Rhus quartiniana 0.04 0.02 0.4 0.06 0.03 0.21 0.10 

Ilex mitis 0.06 0.02 0.8 0.13 0.02 0.10 0.08 
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Maytenus undata 1.25 0.31 9.64 1.41 0.26 2.18 1.30 

Dracaena fragrans 2.01 0.50 11.20 1.63 0.21 1.74 1.29 

Apodytes dimidata 4.84 1.21 4.17 0.61 0.24 2.01 1.28 

Albizia schimperiana 4.22 1.06 5.47 0.80 0.23 1.92 1.26 

Nuxia congesta 4.11 1.03 7.81 1.14 0.17 1.40 1.19 

Cassipourea malosana 0.99 0.25 5.99 0.87 0.28 2.36 1.16 

Brucea antidysenterica 0.64 0.16 6.25 0.91 0.25 2.09 1.06 

Lepidotrichilia volkensii 1.57 0.39 6.77 0.99 0.21 1.74 1.04 

Polycias fulva 4.82 1.21 4.43 0.65 0.14 1.13 1.00 

Trichilia dregeana 1.67 0.42 6.51 0.95 0.13 1.05 0.80 

Dracaena afromontana 1.66 0.42 3.13 0.46 0.17 1.40 0.76 

Ritchiea albersii 0.96 0.24 3.91 0.57 0.17 1.40 0.74 

Sapium ellipticum 5.63 1.41 1.56 0.23 0.06 0.52 0.72 

Maytenus arbutifolia 0.54 0.14 5.73 0.84 0.13 1.05 0.67 

Ekbergia capensis 2.96 0.74 1.82 0.27 0.11 0.96 0.66 

Psydrax parviflora 0.66 0.17 5.73 0.84 0.11 0.96 0.65 

Flacortia indica 0.66 0.17 3.39 0.49 0.15 1.22 0.63 

Rothmannia 

urcelliformis 

1.87 0.47 3.91 0.57 0.09 0.79 

0.61 

Galineria saxifraga 0.75 0.19 5.21 0.76 0.10 0.87 0.61 

Diospyros abyssinica 1.90 0.48 3.91 0.57 0.06 0.52 0.52 

Vangueria apiculata 0.22 0.06 7.81 1.14 0.04 0.35 0.51 

Afrocarpus falcatus 0.78 0.20 1.82 0.27 0.13 1.05 0.50 

Albizia grandibracteata 2.24 0.56 3.65 0.53 0.03 0.26 0.45 

Celts africana 1.76 0.44 2.34 0.34 0.06 0.52 0.44 

Garcinia buchanani 2.96 0.74 3.13 0.46 0.01 0.09 0.43 

Dalbergia factea 0.28 0.07 2.08 0.30 0.09 0.79 0.39 

Euphorbia ampliphylla 2.01 0.50 1.82 0.27 0.04 0.35 0.37 

Ilex mitis 0.56 0.14 3.65 0.53 0.05 0.44 0.37 

Dombeya torrida 1.51 0.38 2.08 0.30 0.04 0.35 0.34 

Scheflera abyssinica 1.01 0.25 1.04 0.15 0.07 0.61 0.34 

Pittosporum viridiflorum 0.56 0.14 2.34 0.34 0.05 0.44 0.31 

Trema orientalies 1.47 0.37 2.34 0.34 0.02 0.17 0.30 

Cordia africana 0.84 0.21 1.82 0.27 0.03 0.26 0.25 

Eugenia bukobensis 0.83 0.21 2.60 0.38 0.01 0.09 0.22 

Bridelia micrantha 1.33 0.33 1.04 0.15 0.02 0.17 0.22 

Dracaena steudneri 1.38 0.35 1.30 0.19 0.01 0.09 0.21 

Ficus thonningii 0.90 0.23 0.78 0.11 0.03 0.26 0.20 

Blighia unijugata 1.05 0.26 1.04 0.15 0.01 0.09 0.17 

Olea welwitschii 0.80 0.20 0.52 0.08 0.02 0.17 0.15 

Allophylus macrobotrys 0.06 0.01 0.78 0.11 0.02 0.17 0.10 

Mimusops kummel 0.44 0.11 0.26 0.04 0.01 0.09 0.08 
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Vernonia amygdalina 0.04 0.01 0.26 0.04 0.01 0.09 0.05 

Phoeneix reclinata 0.03 0.01 0.26 0.04 0.01 0.09 0.04 

 

Appendix 4.3 Importance value of tree species in Site III. BA = Basal area, RDO = Relative dominance, D = 

Species Density, RED = Relative Density, F = Frequency, RF = Relative frequency and IVI = Importance 

Value Index 

Species  BA RDO D RED F RF IVI 

Syzygium guineense 68.19 16.86 107.50 14.82 0.93 7.91 13.20 

Pouteria adolfi-friederici 55.37 13.69 37.19 5.13 0.53 4.49 7.77 

Prunus africana 41.72 10.32 18.75 2.59 0.33 2.78 5.23 

Croton macrostachyus 22.86 5.65 29.69 4.09 0.66 5.66 5.14 

Macaranga capensis 24.39 6.03 36.88 5.08 0.48 4.06 5.06 

Bersama abyssinica 7.90 1.95 43.13 5.95 0.61 5.24 4.38 

Milletia ferruginea 16.54 4.09 36.56 5.04 0.35 2.99 4.04 

Albizia gummifera 16.78 4.15 26.88 3.71 0.40 3.42 3.76 

Vepris dainellii 2.32 0.57 37.81 5.21 0.45 3.85 3.21 

Alllophylus abyssinicus 8.03 1.99 19.38 2.67 0.58 4.91 3.19 

Apodytes dimidata 12.46 3.08 15.31 2.11 0.45 3.85 3.01 

Oxyanthus speciosus 5.46 1.35 30.63 4.22 0.36 3.10 2.89 

Canthium oligocarpum 8.08 2.00 21.56 2.97 0.43 3.63 2.87 

Afrocarpus falcatus 20.52 5.08 8.13 1.12 0.21 1.82 2.67 

Coffea arabica 0.97 0.24 31.56 4.35 0.25 2.14 2.24 

Chionanthus mildbraedii 2.46 0.61 22.19 3.06 0.28 2.35 2.01 

Galineria saxifraga 2.53 0.63 16.56 2.28 0.34 2.88 1.93 

Ficus sur 11.58 2.86 4.38 0.60 0.15 1.28 1.58 

Dracaena fragrans 1.92 0.48 11.88 1.64 0.25 2.14 1.42 

Brucea antidysenterica 1.16 0.29 15.00 2.07 0.21 1.82 1.39 

Olea capensis subsp 

macrocarpa 

3.52 0.87 6.88 0.95 0.26 2.24 1.35 

Cassipourea malosana 1.15 0.28 8.13 1.12 0.28 2.35 1.25 

Scheflera abyssinica 12.15 3.00 1.25 0.17 0.05 0.43 1.20 

Maesa lanceolata 2.34 0.58 8.75 1.21 0.20 1.71 1.16 

Elaeodendron buchanani 3.90 0.96 7.50 1.03 0.18 1.50 1.16 

Cordia africana 8.43 2.08 4.69 0.65 0.09 0.75 1.16 

Dracaena afromontanum 2.05 0.51 7.50 1.03 0.20 1.71 1.08 

Psydrax parviflora  0.91 0.22 8.44 1.16 0.19 1.60 1.00 

Olea welwitschii 4.84 1.20 6.88 0.95 0.06 0.53 0.89 

Polycias fulva 4.92 1.22 3.44 0.47 0.11 0.96 0.88 

Pavetta oliveriana 0.86 0.21 7.81 1.08 0.15 1.28 0.86 

Lepidotrichilia volkensii 1.03 0.25 7.19 0.99 0.15 1.28 0.84 

Trichilia dregeana 0.66 0.16 7.19 0.99 0.15 1.28 0.81 
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Maytenus undata 0.52 0.13 8.13 1.12 0.14 1.18 0.81 

Teclea noblis 0.47 0.12 7.81 1.08 0.08 0.64 0.61 

Psychotria orophila 0.35 0.09 4.38 0.60 0.13 1.07 0.59 

Vernonia amygdalina 1.19 0.29 7.50 1.03 0.05 0.43 0.58 

Celts africana 1.30 0.32 2.81 0.39 0.11 0.96 0.56 

Ehertia cymosa 1.01 0.25 4.06 0.56 0.09 0.75 0.52 

Dombeya torrida 3.76 0.93 3.75 0.52 0.01 0.11 0.52 

Diospyros abyssinica 2.12 0.52 3.44 0.47 0.06 0.53 0.51 

Flacortia indica 0.71 0.18 2.50 0.34 0.08 0.64 0.39 

Pittosporum viridiflorum 0.45 0.11 2.81 0.39 0.08 0.64 0.38 

Maytenus arbutifolia 0.18 0.04 0.94 0.13 0.10 0.85 0.34 

Ritchiea albersii 0.43 0.11 2.19 0.30 0.05 0.43 0.28 

Ekbergia capensis 1.26 0.31 1.25 0.17 0.04 0.32 0.27 

Euphorbia ampliphylla 1.80 0.45 1.25 0.17 0.01 0.11 0.24 

Sapium ellipticun 1.02 0.25 0.94 0.13 0.04 0.32 0.23 

Trilepisium 

madagascariense 

0.97 0.24 0.94 0.13 0.04 0.32 0.23 

Nuxia congesta 0.46 0.11 1.56 0.22 0.04 0.32 0.22 

Ilex mitis 0.58 0.14 2.81 0.39 0.01 0.11 0.21 

Cyathea manniana 0.33 0.08 1.88 0.26 0.03 0.21 0.18 

Ficus sycomorus 1.22 0.30 0.63 0.09 0.01 0.11 0.17 

Maytenus addat 0.27 0.07 1.25 0.17 0.03 0.21 0.15 

Ficus thonningii 1.13 0.28 0.31 0.04 0.01 0.11 0.14 

Ficus lutea 1.04 0.26 0.31 0.04 0.01 0.11 0.14 

Celts zenkeri 0.85 0.21 0.31 0.04 0.01 0.11 0.12 

Hallea rubrostipulata 0.23 0.06 0.63 0.09 0.03 0.21 0.12 

Garcinia buchananii 0.75 0.19 0.31 0.04 0.01 0.11 0.11 

Dracaena steudmeri 0.26 0.06 0.94 0.13 0.01 0.11 0.10 

Albizia schimperiana 0.48 0.12 0.31 0.04 0.01 0.11 0.09 

Antiaris toxicaria 0.45 0.11 0.31 0.04 0.01 0.11 0.09 

Eugenia bukobensis 0.23 0.06 0.31 0.04 0.01 0.11 0.07 

Alangium chin 0.15 0.04 0.31 0.04 0.01 0.11 0.06 

Bridelia micrantha 0.12 0.03 0.31 0.04 0.01 0.11 0.06 

Dovyalis abyssinica 0.11 0.03 0.31 0.04 0.01 0.11 0.06 

Scheribera alata 0.08 0.02 0.31 0.04 0.01 0.11 0.06 

Rothmannia urcelliformis 0.06 0.01 0.31 0.04 0.01 0.11 0.05 

Grewia ferrugina 0.06 0.01 0.31 0.04 0.01 0.11 0.05 

Vanguria apiculata 0.04 0.01 0.31 0.04 0.01 0.11 0.05 
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Appendix 4.4 Regenerating species seedling and sapling density in each site (I, II and III)  

Species (Site I) density Species (Site II) density Species (Site III)  density 

Coffea arabica 1483 Oxyanthus speciosus 561 Chionanthus mildbraedii 487 

Albizia gummifera 778 Pouteria adolfi-friederici 531 Bersama abyssinica  336 

Millettia ferruginea 719 Chionanthus mildbraedii 510 Coffea arabica 324 

Maesa lanceolata 388 Vepris dainellii 453 Syzygium guineense 312 

Syzygium guineense 339 Prunus africana 310 Veperis dainelii 311 

Bersama abyssinica 337 Syzygium guineense 310 Albizia gummifera 307 

Psychotria orphila 334 Croton macrostachyus 219 Pouteria adolfi-friederici 288 

Croton macrostachyus 326 Maesa lanceolata 166 Dracaena fragrans 272 

Dracaena steudneri 310 Albizia gummifera 163 Olea capensis subs 

macrocarpa 

171 

Veperis dainellii 303 Bersama abyssinica 150 Oxanthus speciosus 156 

Trilepisium 

madagascariense 

296 Coffea arabica 148 Syzygium guineense 153 

Ritchiea albersii 275 Olea capensis 130 Polyscia fulva 115 

Pouteria adolfi-

friederici 

270 Macaranga capensis  104 Croton macrostachyus 100 

Cordia africana 262 Apodytes dimidata 87 Macaranga capensis 95 

Chionanthus mildbraedii 256 Canthium oligocarpum 75 Maesa lanceolata 79 

Oxyanthus speciosus 212 Milletia ferruginea 70 Maytenus undata 75 

Macaranga capensis 166 Allophylus abyssinicus 68 Prunus africana 73 

Argomuellera 

macrophylla 

160 Pavetta abyssinica 60 Apodytes dimidata 72 

Cassiopurea malosana 159 Lepidotrichilia 54 Allophylus abyssinicus 69 

Ficus palmata 154 Celts africana 44 Trichilia dregeana 65 

Trichilia dregeana 145 Galineria saxfraga 35 Canthium oligocarpum 62 

Maytenus undata 143 Brucei antidysentrica 30 Millettia ferruginea 62 

Allophyllus abyssinicus 139 Cassipurea malosana 27 Brucei antidysenterica 55 

Sapium ellipticum 130 Ilex mitis 23 Elaerodendron buchanani 52 

Dracaena fragrans 127 Albizia schemperiana 19 Cassipourea malosana  49 

Rothmannia 

urcelliformis 

126 Dalbergia lactea 19 Galineria saxfraga 46 

Flacortia indica 101 Maytenus undata 18 Lepidotrichilia volkensii 46 

Teclea nobilis 99 Dracaena stuedeneri 15 Afrocarpus falcatus 39 

Canthium oligocarpum 89 Diospyros abyssinicus 14 Teclea noblis 38 

Dalbergia factea 82 Ficus sur 12 Nuxia congesta 35 

Brucea antidysenterica 73 Polyscias fulva 11 Flacourtia indica 32 

Diospyros abyssinica 72 Rothmannia urcelliformis 9 Cassipurea malosana 32 

Maytenus arbutifolia 70 Euphorbia sp 8 Albizia schimperiana 30 

Nuxia congesta 55 Ritchiea albersii 8 Pittosporum vridifolium 30 

Ilex mitis 48 Trilipsium 

madagascariense 

8 Chanthium oligocarpa 25 

Lepidotrichilia volkensii 48 Ehertia cymosa 6 Ehertia cymosa 20 
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Albizia schimperiana 47 Sapium ellipticum 6 Ilex mitis 17 

Prunus africana 46 Dracaena afromontana 5 Euphorbia sp 9 

Antiaris toxicaria 44 Ekbergia capensis 5 Psydrax parviflora 8 

Ficus lutea 43 Ealerodenderon 

buchnanii 

5 Rothmannia urcelliformis 8 

Ehertia cymosa 41 Mimusops kummel 5 Scheflera abyssinica 7 

Polyscias fluva 40 Nuxia congesta 5 Celts africana 5 

Pavetta abyssinica 35 Psydrax parviflora 5 Ritchiea albersii  5 

Dracaena afromontana 28 Teclea noblis 5 Sapium ellepticum 5 

Celts africana 26 Cordia africana 3 Ficus sur 4 

Scheflera abyssinica 26 Schflera abyssinica 2 Dracaena stuednerii 3 

Albizia grandibracteata 24 Flacourtia indica 1     

Aningeria altissima 24 Phoniex reclinata 1     

Apodytes dimidata 22 Afrocarpus falcatus 1     

Bridelia micrantha 22         

Celts toka 17         

Vangueria apiculata 16         

Pittosporum viridiflorum 15         

Galineria saxifraga 13         

Olea capensis subsp 

macrocarpa 

12         

Anthocleista 

schweinfurthii 

11         

Ocotea keynensis 10         

Manilkara butugi 9         

Olea welwitschii 9         

Vernonia amygdalina 8         

Pappea capensis 7         

Chanthium lactescens 6         

Ficus vallis-choudae 6         

Grewia ferruginea 6         

Psydrax parviflora 6         

Dombeya torrida 5         

Garcinia buchanani 5         

Phoniex reclinata 5         

Elaeodendron 

buchananii 

3         

Ficus sur 3         

Ficus vasta 3         

Morus mesozygia 3         

Mumisops kummel 3         

Euphorbia sp 2         

Trilipsium 

madagascariense 

2         
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Eugenia bukobensis 1         

Ficus mucuso 1         

Ficus ovata 1         

Hallea rubrostipulata 1         

Rhus quartinaiana 1         

Sarcocephlus latifolius 1         

Trema orientalis 1         

 

  Appendix 4.5 The total species and mean alpha diversity of species  

  at each sampled forest fragment 

  Site I  

Site Name Total species Mean Fisher's alpha 

Metu_zuria 95 68.68±13.1 

Gore_zuria 82 40.85±4.9 

Burusa 75 35.96±3.2 

Baljo 70 33.51±2.6 

Uka 69 31.50±2.2 

Masha 61 29.82±1.9 

Leka 62 28.51±1.7 

Gaba 52 27.48±1.6 

  Site II  

Sibu1 65 41.38±8.1 

Sibu2 62 24.19±3.2 

Markafa 62 21.76±2.2 

Tulu_Boka 59 20.87±1.8 

Yaroo 56 20.13±1.6 

Lag_chancho 55 19.72±1.4 

Gobe 50 19.51±1.3 

Malate 48 19.33±1.3 

Tulu_Mako 44 19.24±1.2 

Jorgo 44 19.12±1.2 

Qolo_Warabesa 39 19.03±1.1 

Bongi 27 18.83±1.1 

  Site II  

Issya 72 37.67±7.3 

Qotora1 44 22.29±2.9 

Qotora2 46 20.71±2.1 

Koda 54 20.02±1.9 

Simber 55 19.67±1.5 

Dike 56 19.33±1.4 
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Appendix 4.6 Plant species list of 30 sampled forest patches  

Acanthaceae Lauraceae 

Acanthus eminens C.B.Clarke  Cassytha filiformis L.  

Acanthopale pubescens (Lindau) C.B.Cl. Ocotea keynensis 

Justicia betonica L Liliaceae 

Justcia schimperiana Simlax aspera L 

Thunbergia alata Boj. ex. Sims Sparmannia ricinocarpa (Eck. & Zeyh.) 

Alangiaceae Loganiaceae 

Alangium chinense (Lour.) Harms Anthocleista schweinfurthii Gilg. 

Amaranthaceae Strychnos mitis S. Moore 

Cyathula uncinulata Malvaceae 

Sericostachys scandens Gilg & Lopr Abutilon cecilli N.E.Br 

Anacardiaceae Abutilon longicuspe Hochst. Ex A. Rich. 

Rhus ruspolii Engl.  Hibiscus ludwigii Eckl. & Zeyh  

Rhus glutinosa A. Rich Hibiscus micranthus L.f.  

Rhus quartiniana A.Rich Hibiscus sp2 

Apocynaceae Pavonia urens Cav. 

Landolphia buchananii (Hall. F.) Stapf Sida ternata L.f 

Oncinotis tenuiloba Stapf Sida collina Schlechtend 

Aquifoliaceae Maranthaceae 

Ilex mitis (L.) Radlk.  Maranthochloa leucantha (A. Rich) Munro 

Araliaceae Meliaceae 

Polyscias fulva (Heirn) Harms Eckebergia capensis Saprrm. 

Schefflera abyssinica (Hochst ex A. Rich) Harms Lepidotrichilia volkensii (Gürke) Leroy 

Schefflera volkensii (Engl.) Harms Trichilia dregeana Sond 

Schefflera myriantha (Bak.) Drake Turraea holstii Guerke 

Arecaceae Melianthaceae 

Phoenix reclinata Jacq.  Bersama abyssinica Fresen. 

Asclepiadaceae Menispermaceae 

Blyttia fruticulosum Cissampelos pareira L-Abuta 

Ceropegia cufodontis Chiov Cissampleos torulosa E. Mey. ex Harv 

Dregea schimperi (Decne.) Bullock Stephania abyssinica (Dillion ex A. Rich.) Walp. 

Pentarrhinum inspidum E. Mey Tiliachora funifera Oliv. 

Pergularia daemia (Forssk.) Chiov subsp. daemia  Tiliachora troupinii Cufod 

Periploca linearifolia Quert.-Dill. & A. Rich.  Moraceae 

Busa_jireen 51 19.25±1.3 

Buyina 58 19.19±1.2 

Jamia 65 19.22±1.2 

Jireen 47 19.15±1.4 
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Secamone parvifolia (Oliv.) Bullock  Antiaris toxicara 

Secamone punctulata Decne Ficus capreaefolia Del. 

Asparagaceae Ficus exasperata Vahl 

Asparagus officinalis Ficus lutea Vahl 

Asparagus africana Ficus mucuso Ficalho 

Asteraceae Ficus ovata 

Aspilia mossambicensis Ficus palmata 

Helichrysum splendidum (Thunb.) Less Ficus sur Forssk.  

Laggera pterodonta (DC.) Sch, Bip. Ex Oli Ficus sycomorus L.  

Microglossa pyrifolia (Lam.) Kuntze  Ficus thonningii Blume 

Solanecio gigas(Vatke) C.Jeffrey Ficus vallis-choudae Del. 

Solanecio mannii (Hook.f.) C.Jeffrey Ficus vasta Forssk.  

Vernonia auriculifera Hiern. Morus mesozygia Stapf 

Vernonia glabra (Steetz) Vatke Trilepisium madagascariense DC 

Vernonia myriantha Hook. f. Myrsinaceae 

Vernonia urticifolia A. Rich. Embelia schimperi Vatke  

Vernonia ruepellii Sch. Bip. Ex Walp. Myrsine africana L.  

Vernonia amygdalina Del Maesa lanceolata Forssk.  

Buddlejiaceae Myrtaceae 

Buddleja polystachya Fresen Eugenia bukobensis Engl. 

Nuxia congesta R.Br. ex Fresen. Syzygium guineense (Willd.) DC. ssp. afromontanum  

Nuxia oppositifolia (Hochst.) Benth-CJB Oleaceae 

Boraginaceae Jasminum abyssinicum Hochst. ex DC.  

Cordia africana Lam.  Chionanthus mildbraedii (Gilg &Scellenb.) Stearn. 

Ehertia cymosa Thonn. Olea capensis subsp macrocarpa (C.H.Wright) I. Verd 

Campanulaceae Olea welwitschii (Knobl.) Gilg & Schellenb 

Lobelia gibberoa Hemsl.  Schrebera alata (Hochst.) Welw.  

Capparidaceae Opiliaceae 

Ritchiea albersii Gilg Opilia campestris Engl. 

Celasteraceae Phytolaccaceae 

Carissa span L Phytolacca dodecandra L´Herit.  

Hippocratea africana (Wild) Loes Piperaceae 

Hippocratea pallens Plancho ex Oliver Piper capense L.f. var. capense 

Hippocratea goetzei Loes Pittosporaceae 

Elaeodendron buchananii (Loes) Loes Pittosporum viridiflorum Sim.  

Maytenus gracilipes (Welw. ex Oliv.) Exell Podocarpaceae 

Maytenus obscura (A Rich) Cuf Podocarpus falcatus (Thunb.) Mirb 

Maytenus adat (Loes.) Sebsebe Ranunculaceae 

Maytenus arbutifolia (A. Rich.) Wilczek  Clematis longicauda Steud. Ex A.Rich.  

Maytenus undata (Thunb.) Blakelock Clematis simensis Fresen.  

Combretaceae Clematis hirsuta Perr. & Guill 
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Combretum paniculatum Vent. Rhamnaceae 

Convolvulaceae Gouania longispicata Engl 

Ipomoea cairica (L.) Sweet  Helinus mystacinus (Ait.) E. Mey. ex Steud.  

Ipomoea hochstetteri House Rhamnus prinoides L`Herit. 

Ipomoea obscura (L.) Ker-Gawl.  Rhamnus staddo A. Rich. 

Ipomoea tenuirostris Steud. Ex Choisy Scutia myrtina (Burm. f.) Kurz 

Cucurbitaceae Rhizophoraceae 

Kedrostis foetidissima (Jacq.) Cogn. Cassipourea malosana (Bak.) Alston 

Lagenaria abyssinica (Hook.f.) C.Jeffrey Rosaceae 

Momordica foetida Schumach Rubus steudneri Schweinf.  

Peponium vogelii (Hook.f.) Engle. Rubus apetalus Poir.  

Sicyos polyacanthus Cong. Prunus africana (Hook.f.) Kalkm.  

Zeheneria scabra (Linn. f.) Sond.  Rubiaceae 

Cyatheaceae Breonadia salicina (Vahl) Hepper &Wood 

Cyathea manniana Canthium oligocarpum Hiern  

Dioscoreaceae Canthium sp 

Dioscorea bulbifera L. Coffea arabica L. 

Dracaenaceae Crossopteryx febrifuga (Afz. Ex G.Don) Benth. 

Dracaena afromontana Mildbr.  Galiniera saxifraga (Hochst.) Bridson 

Dracaena fragrans (L) Ker-Gawl  Hallea rubrostipulata (K.Schum.) J.-F.Leroy 

Dracaena steudneri Engl Keetia gueinzii (Sond.) Bridson 

Ebenaceae Pavetta abyssinica Fresen 

Diospyros abyssinica (Hiern) F. White  Pavetta oliveriana Hiern 

Euphorbiaceae Pentas lanceolata (Forssk.) 

Tragia brevipes Pax Psydrax schimperiana (A. Rich.) Bridson 

Acalypha marissima Rytigynia neglecta (Hiern) Robyns 

Acalypha ornata Oxyanthus lepidus 

Acalypha psilostachya Oxanthus speciosus sbsp. Stenocarpus (K.Schum.) 

Bridson 

Acalypha racemosa Psychotria orophila Petit 

Acalypha acrogyna Psydrax parviflora (Afz.) Bridson 

Argomuellera macrophylla Pax Rothmannia urcelliformis (Hiern) Robyns 

 Sarcocephalus latifolius (Sm.) Bruce. 

Bridelia micrantha (Hochs) Baill Vangueria apiculata K. Schum 

Clutia abyssinica Jaub. & Spach Rutaceae 

Croton macrostachyus Del. Clausena anisata (Willd.) Benth.  

Erythrococcaa trichogyne (Muell Arg) Prain (det A 

Radcliffe-Smith) 

Fagaropsis angolensis (Engl.) Dale 

Euphorbia ampliphylla Pax  Teclea nobilis Del.  

Euphorbia acandilabrium Vepris dainelli (Pichi-Sermolli) Kokwaro 

Macaranga capensis var kilimandscharica (Pax) 

Friis & Gilbert 
Sapindaceae 

Phyllanthus limmuensis Cuf Allophyllus abyssinicus (Hochst.) Radlkofer  
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Phyllanthus ovalifolius Forssk Allophylus macrobotrys (Gilg 

Ricinus communis  L. Blighia unijugata 

Sapium ellipticum (Hochst) Pax. Dododaea angustifolia 

Fabaceae Deinbollia kilimandscharica Taub. 

Albizia grandibracteata. T Filicium decipiens (Wight &Am) Thwaites 

Albizia gummifera (J.F.Gmel.) C.A.Sm.  Lepisanthes senegalensis (Juss. ex Poir.) Leenh.  

Albizia schimperiana Oliv.  Pappea capensis Eckl. & Zeyh.  

Calpurnia aurea (Ait.) Benth.  Paullinia pinnata (L) 

Crotalaria emarginella Sapotaceae 

Dolichos sericeus E. Mey Manilkara butugi Chiov. 

Dalbergia lactea Vatke Mimusops kummel Bruce ex A.DC. 

Glycine wightii (Wight & Arn.) Verdc. Pouteria adolfi-friederici 

Indigofera arrecta Hochst ex A. Rich. Pouteria altissima (A.Chev.) Aubrev. & Pellegr 

Kotschya sp Simaroubaceae 

Macrotyloma axillare (E. Mey.) Verdc Brucea antidysenterica J.F. Mill.  

Milletia ferruginea (Hochst) Baker Solanaceae 

Pterolobium stellatum (Forssk.) Brenan Discopodium penninervium Hochst.  

Rhynchosia minima (L.) DC. Solanum incanum L.  

Senna petersiana (Bolle) Lock Solaniun indicum L 

Tephrosia linearis (Willd.) Pers Solanium anguivi Lam 

Tephrosia villosa (L.) Pers. Stericuliaceae 

Vigna parkeri Bak. Dombya torrida (J.F. Gmel.) P. Bamps  

Flacourtaceae Tiliaceae 

Dovyalis abyssinica (A. Rich) Warb.  Grewia ferruginea Hochst. ex A. Rich. 

Flacourtia indica (Burm.f.) Merr.  Ulmaceae 

Guttiferae Celtis africana Burm. F. 

Garcinia buchananii Baker Celts gompholla Bak 

Hypericaceae Celtis toka (Forssk.) Hepper & wood 

Hypericum quartinianum A. Rich.  Celts zenkeri Endl 

Icacinaceae Trema orientalis (L) Blume 

Apodytes dimidata, Arn. Urticaceae 

Lamiaceae Elatostema monticolum Hook. F. 

Clerodendron myricoides (Hochst.) R. Br.ex Vatke.  Urerea hypselodendron (A. Rich.) Wedd. 

Leonotis ocymifolia (Burm.f.) Iwarsson  Urerea trinervis (Hochst. Ex Krauss) Friis & immelman 

Leucas glabrata (Vahl) R.Br.  Verbenaceae 

Leucas martinicensis (Jacq.) R. Br.  Lantana trifolia L 

Ocimum lamiifolium (Hochst. ex Bent.) DC.  Lippia adoensis Hochst. ex Walp. 

Ocimum suave Willd. Vitaceae 

Plectranthus assurgens (Baker) J.K. Morton Cissus quadrangularis L. 

Plectranthus sylvestris Gürke Cissus petiolata Hook. f. 

Premna schimperi Engl.  Cissus quadrangularis Linn 

Pycnostachys abyssinica Fresen.  Cyphostemma adenocaule (Stued. ex A. Rich.) 

Desc.oings ex Wild & R.B. 
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Pycnostachys eminii Gürke  Cyphostemma cyphoetalum (Fresen.) Desc. ex Wild & 

R.B. 

 Cyphostemma rivae (Gilg) Desc.oings  

 Rhoicissus tridentata (L. f.) Wild & R.B. Drumm.Willd & 

Drummond  

 

Appendix 5.1 The importance value of tree species in the edge habitat. BA = Basal area, RDO = Relative 

dominance, D = Species Density, RED = Relative Density, F = Frequency, RF = Relative frequency and IVI 

= Importance Value Index 

  Edge      

Species BA RDO D RDE F RF IVI  

Syzygium guineense 53.0 11.7 4.5 10.5 0.67 6.3 9.5 

Croton macrostachyus 37.9 8.4 4.0 9.3 0.74 6.9 8.2 

Macaranga capensis 34.9 7.7 3.4 7.9 0.62 5.7 7.1 

Maesa lanceolata 31.4 6.9 5.0 11.7 0.65 6.0 8.2 

Prunus africana 21.6 4.8 0.8 1.8 0.27 2.5 3.0 

Ficus sur 20.7 4.6 0.5 1.2 0.31 2.9 2.9 

Pouteria adolfi-friederici 20.2 4.5 1.0 2.3 0.22 2.1 2.9 

Nuxia congesta 19.2 4.2 1.6 3.6 0.35 3.2 3.7 

Albizia gummifera 19.1 4.2 1.1 2.6 0.33 3.1 3.3 

Milletia ferrugina 19.0 4.2 1.9 4.4 0.40 3.7 4.1 

Sapium elpticum 18.3 4.0 0.3 0.8 0.13 1.2 2.0 

Albizia schimperiana 15.6 3.4 1.0 2.4 0.46 4.3 3.4 

Maytenus arbutifolia 10.1 2.2 0.9 2.2 0.35 3.2 2.5 

Allophlus abyssinicus 9.6 2.1 1.1 2.5 0.34 3.2 2.6 

Bersama abyssinica 9.5 2.1 2.5 5.9 0.58 5.4 4.5 

Apodytes dimidata 8.9 2.0 0.5 1.1 0.24 2.3 1.8 

Acacia abyssinica 8.2 1.8 0.5 1.1 0.19 1.7 1.6 

Ekbergia capensis 7.9 1.7 0.1 0.1 0.02 0.2 0.7 

Afrocarpus falcatus 7.0 1.5 0.2 0.5 0.11 1.0 1.0 

Celtis africana 6.0 1.3 0.2 0.5 0.10 0.9 0.9 

Rhus glutinosa 5.8 1.3 1.6 3.6 0.35 3.2 2.7 

Elaeodendron buchanani 5.2 1.1 0.2 0.4 0.06 0.5 0.7 

Polycias fulva 3.6 0.8 0.1 0.2 0.05 0.5 0.5 

Canthium oligocarpum 3.6 0.8 0.5 1.1 0.15 1.4 1.1 

Schefleria abyssinica 3.6 0.8 0.1 0.3 0.04 0.4 0.5 

Flacortia idica 3.3 0.7 0.3 0.7 0.11 1.0 0.8 

Vernonia amygdalina 3.0 0.7 0.7 1.7 0.34 3.2 1.8 

Euphorbia candilabrium 2.5 0.6 0.1 0.2 0.04 0.4 0.4 

Dombeya torrida 2.4 0.5 0.1 0.2 0.07 0.6 0.5 

Ficus thonningii 2.3 0.5 0.1 0.2 0.03 0.3 0.4 

Olea capensis subsps 2.3 0.5 0.3 0.7 0.10 1.0 0.7 
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macrocarpa 

Cupressus lucitanica 2.2 0.5 0.4 1.0 0.06 0.6 0.7 

Trema orientalis 2.1 0.5 0.2 0.5 0.05 0.5 0.5 

Cassipourea malosana 2.0 0.5 0.1 0.3 0.06 0.5 0.4 

Ehertia cymosa 1.9 0.4 0.3 0.6 0.10 0.9 0.7 

Galineria saxifraga 1.8 0.4 0.4 1.0 0.11 1.0 0.8 

Cordia africana 1.8 0.4 0.1 0.3 0.04 0.4 0.4 

Dracaena afromontana 1.7 0.4 0.2 0.5 0.01 0.1 0.3 

Vepris dainellii 1.4 0.3 0.6 1.4 0.07 0.6 0.8 

Maytenus addat 1.3 0.3 0.1 0.3 0.02 0.2 0.3 

Maytenus undata 1.3 0.3 0.4 0.8 0.19 1.8 1.0 

Albizia grandibracteata 1.2 0.3 0.1 0.2 0.03 0.3 0.3 

Brucea antidysenterica 1.1 0.2 0.6 1.4 0.25 2.3 1.3 

Dracaena steudneri 1.1 0.2 0.1 0.3 0.03 0.3 0.3 

Eucalyptus camaldulensis 1.0 0.2 0.2 0.5 0.02 0.2 0.3 

Euphorbia ampliphylla 0.9 0.2 0.1 0.1 0.00 0.0 0.1 

Chionanthus mildbraedii 0.9 0.2 0.4 0.8 0.12 1.1 0.7 

Lepidotrichlia volkensii 0.8 0.2 0.3 0.6 0.04 0.4 0.4 

Pittosporum viridiflorum 0.8 0.2 0.2 0.4 0.06 0.5 0.4 

Ficus vasta 0.7 0.2 0.0 0.1 0.02 0.2 0.1 

Olea welwitschii 0.7 0.2 0.0 0.1 0.01 0.1 0.1 

Gardenia ternfolia 0.7 0.1 0.1 0.2 0.01 0.1 0.2 

Rhus ruspolii 0.6 0.1 0.0 0.1 0.06 0.5 0.2 

Ritchiea albersii 0.6 0.1 0.1 0.3 0.06 0.5 0.3 

Psychotria orophila 0.5 0.1 0.2 0.5 0.06 0.6 0.4 

Garcinia buchananii 0.5 0.1 0.0 0.1 0.01 0.1 0.1 

Oxyanthus speciosus 0.5 0.1 0.2 0.5 0.06 0.5 0.4 

Celts philipensis 0.5 0.1 0.0 0.0 0.01 0.1 0.1 

Bridelia micrantha 0.4 0.1 0.1 0.2 0.04 0.4 0.2 

Coffea arabica 0.4 0.1 0.3 0.7 0.06 0.6 0.5 

Psydrax parviflora 0.4 0.1 0.1 0.3 0.03 0.3 0.2 

Stereospermum kunthianum  0.4 0.1 0.0 0.1 0.01 0.1 0.1 

Entada abyssinica 0.4 0.1 0.1 0.2 0.03 0.3 0.2 

Blighia unijugata 0.4 0.1 0.0 0.1 0.01 0.1 0.1 

Fagaropsis angolensis 0.3 0.1 0.0 0.1 0.01 0.1 0.1 

Allophylus macrobotrys 0.3 0.1 0.1 0.2 0.02 0.2 0.1 

Buddleja plostachya 0.3 0.1 0.1 0.2 0.03 0.3 0.2 

Teclea nobilis 0.3 0.1 0.2 0.4 0.03 0.3 0.2 

Grewia ferrugina 0.3 0.1 0.2 0.4 0.08 0.7 0.4 

Combretum collinum 0.3 0.1 0.0 0.0 0.02 0.2 0.1 

Trichilia dregeana 0.2 0.0 0.3 0.8 0.08 0.7 0.5 

Maytenus obscura 0.2 0.0 0.1 0.1 0.01 0.1 0.1 
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Ilex mitis 0.2 0.0 0.0 0.1 0.01 0.1 0.1 

Diospyros abyssinica 0.2 0.0 0.1 0.1 0.01 0.1 0.1 

Ficus lutea 0.2 0.0 0.1 0.2 0.01 0.1 0.1 

Senna petersiana 0.1 0.0 0.1 0.1 0.01 0.1 0.1 

Dalbergia lactea 0.1 0.0 0.0 0.1 0.01 0.1 0.1 

Celts toka 0.1 0.0 0.0 0.0 0.01 0.1 0.0 

Phoneix reclinata 0.1 0.0 0.0 0.1 0.01 0.1 0.0 

Dracaena fragrans 0.1 0.0 0.1 0.1 0.11 1.0 0.4 

Dodonea angustifolia 0.0 0.0 0.0 0.0 0.01 0.1 0.0 

Ficus vallis-choudae 0.0 0.0 0.0 0.0 0.01 0.1 0.0 

Dombeya abyssinica 0.0 0.0 0.0 0.0 0.01 0.1 0.0 

Canthium giordanii 0.0 0.0 0.0 0.0 0.01 0.1 0.0 

Celtis zenkeri 0.0 0.0 0.0 0.0 0.01 0.1 0.0 

 

Appendix 5.2 The importance value of tree species in the interior habitat. BA = Basal area, RDO = Relative 

dominance, D = Species Density, RED = Relative Density, F = Frequency, RF = Relative frequency and IVI 

= Importance Value Index 

Species BA RDO D RDE F RF IVI 

Syzygium guineense 139.5 21.6 111 16.7 0.9 7.4 15.2 

Croton macrostachyus 70.5 10.9 29 4.4 0.5 3.7 6.3 

Macaranga capensis 42.9 6.6 36 5.4 0.6 4.5 5.5 

Bersama abyssinica 38.1 5.9 12 1.8 0.3 2.1 3.3 

Vepris dainellii 34.3 5.3 24 3.6 0.4 2.9 4.0 

Chionanthus mildbraedii 32.7 5.1 24 3.7 0.6 5.1 4.6 

Allophlus abyssinicus 26.9 4.2 37 5.5 0.4 3.4 4.4 

Pouteria adolfi-friederici 21.3 3.3 6 0.9 0.2 1.3 1.8 

Oxyanthus speciosus 20.3 3.1 4 0.6 0.5 3.6 2.5 

Milletia ferruginea 16.4 2.5 9 1.3 0.4 2.8 2.2 

Canthium oligocarpum 16.1 2.5 13 1.9 0.2 1.4 1.9 

Albizia gummifera 13.6 2.1 17 2.6 0.4 3.1 2.6 

Apodytes dimidata 13.2 2.0 1 0.2 0.1 0.7 1.0 

Cassipurea malosana 12.9 2.0 12 1.8 0.3 2.3 2.0 

Ficus sur 11.9 1.8 14 2.2 0.5 3.8 2.6 

Olea capensis sps 

macrocarpa 

10.8 1.7 1 0.2 0.0 0.3 

0.7 

Prunus africana 8.3 1.3 33 5.0 0.5 3.6 3.3 

Dracaena fragrans 7.4 1.1 39 5.8 0.5 3.8 3.6 

Galineria saxifraga 6.7 1.0 24 3.6 0.6 4.4 3.0 

Brucea antidysenterica 6.6 1.0 2 0.2 0.1 1.1 0.8 

Maytenus undata 6.6 1.0 17 2.6 0.5 4.2 2.6 

Coffee arabica 6.5 1.0 2 0.3 0.1 1.1 0.8 
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Maesa lanceolata 5.6 0.9 4 0.6 0.0 0.2 0.6 

Dracaena afromontana 4.6 0.7 6 0.9 0.1 1.1 0.9 

Lepidotrichlia volkensii 4.3 0.7 9 1.4 0.2 1.6 1.2 

Elaeodendron buchanani 4.2 0.7 2 0.3 0.1 0.8 0.6 

Psydrax parviflora 4.0 0.6 12 1.8 0.2 1.9 1.4 

Teclea nobilis 3.9 0.6 3 0.4 0.1 0.9 0.7 

Psychotria orophila 3.7 0.6 3 0.4 0.0 0.4 0.5 

Afrocarpus falcatus 3.2 0.5 3 0.5 0.1 0.5 0.5 

Trichilia dregeana 3.1 0.5 2 0.3 0.0 0.4 0.4 

Nuxia congesta 2.9 0.4 12 1.7 0.2 1.9 1.4 

Polycias fulva 2.7 0.4 2 0.3 0.1 0.7 0.5 

Albizia schimperiana 2.6 0.4 5 0.8 0.2 1.5 0.9 

Flacortia indica 2.3 0.3 8 1.1 0.3 2.5 1.3 

Maytenus arbutifolia 2.1 0.3 7 1.0 0.1 1.1 0.8 

Ekbergia capensis 2.0 0.3 1 0.1 0.0 0.2 0.2 

Celts africana 2.0 0.3 7 1.1 0.2 1.5 1.0 

Schefleria abyssinica 1.7 0.3 11 1.6 0.2 1.8 1.2 

Ritchiea albersii 1.7 0.3 2 0.3 0.1 0.4 0.3 

Sapium ellipticun 1.7 0.3 11 1.6 0.2 1.3 1.1 

Pittosporum viridiflorum 1.6 0.2 10 1.5 0.2 1.8 1.2 

Diospyros abyssinica 1.5 0.2 1 0.2 0.0 0.2 0.2 

Rothmannia urcelliformis 1.2 0.2 3 0.5 0.1 0.9 0.5 

Ilex mitis 1.2 0.2 0 0.1 0.0 0.1 0.1 

Dombeya torrida 1.1 0.2 4 0.6 0.1 0.4 0.4 

Euphorbia ampliphylla 1.1 0.2 11 1.7 0.2 1.3 1.1 

Dalbergia lactea 1.1 0.2 7 1.0 0.2 1.4 0.9 

Ehretia cymosa 1.0 0.2 0 0.0 0.0 0.1 0.1 

Trilipsium 

madagascariense 

1.0 0.2 14 2.1 0.2 1.7 

1.3 

Olea welwitschii 1.0 0.1 1 0.1 0.0 0.1 0.1 

Euphorbia candilabrium 0.9 0.1 2 0.3 0.0 0.3 0.2 

Ficus thonningii 0.9 0.1 3 0.4 0.1 0.6 0.4 

Vernonia amygdalina 0.9 0.1 2 0.4 0.1 0.6 0.4 

Albizia grandibracteata 0.4 0.1 0 0.0 0.0 0.1 0.1 

Cyathea manniana 0.4 0.1 0 0.1 0.0 0.1 0.1 

Mimusops kummel 0.3 0.0 0 0.1 0.0 0.1 0.1 

Bridelia micrantha 0.3 0.0 2 0.3 0.1 0.8 0.4 

Allophylus macrobotrys 0.3 0.0 1 0.2 0.0 0.2 0.1 

Cordia africana 0.2 0.0 1 0.1 0.0 0.1 0.1 

Garcinia buchananii 0.2 0.0 1 0.1 0.0 0.3 0.1 

Ficus palmata 0.2 0.0 0 0.1 0.0 0.2 0.1 

Ficus exasperata 0.2 0.0 1 0.1 0.0 0.1 0.1 
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Dracaena steudneri 0.1 0.0 0 0.0 0.0 0.1 0.0 

Ocotea keynensis 0.1 0.0 0 0.0 0.0 0.1 0.0 

Trema orientalis 0.1 0.0 0 0.0 0.0 0.1 0.0 

Pouteria altissima 0.0 0.0 0 0.1 0.0 0.1 0.0 

Ficus lutea 0.0 0.0 0 0.0 0.0 0.1 0.0 

Eugenia bukobensis 2.0 0.3 1 0.1 0.0 0.1 0.2 

Blighia unijugata 0.7 0.1 1 0.2 0.0 0.1 0.1 

Ficus sycomomorus 0.6 0.1 1 0.1 0.0 0.1 0.1 

Breonadia salicina 1.1 0.2 1 0.1 0.0 0.1 0.1 

Fagaropsis angolensis 0.4 0.1 0 0.1 0.0 0.1 0.1 

Schrebera alata 0.9 0.1 0 0.1 0.0 0.1 0.1 

Canthium giordanii 0.8 0.1 1 0.1 0.0 0.1 0.1 

Phoneix reclinata 0.8 0.1 1 0.1 0.0 0.1 0.1 

 

Appendix 5.3 Tree basal area and density and species richness and species richness of total woody species 

(TWS, i.e. tree, shrub and vines), tree species and average tree height of each patch in edge and interior 

habitats of 18 forest patches in Illubabor Zone south-west Ethiopia. 

patches  

code      

      Tree basal area 

        (m2  ha-1) 

 Tree density 

 (ha-1) 

Tree species 

richness 

TWS species 

richness 

Mean height  

        (m) 

 Interior   Edge  

 

Interior Edge Interior Edge Interior Edge Interior Edge 

SIB1 102.8±2.1 90.3±1.7 475±7.6 350±5.6 28 29 65 79 13.6 8.9 

SIB2 105.3±1.7 84.1±0.7 512.5±3.5 625±3.2 32 45 48 63 14.5 10.5 

MAF 97.5±3.5 63.8±1.4 418.8±5.5 725±13.0 26 18 44 47 16.8 11.5 

ISS 92.5±1.9 69.4±0.9 503.1±8.4 475±5.20 25 32 63 73 16.5 10.8 

QOT1 100.3±3.4 80±1.0 509.4±7.1 528.1±6.4 18 28 45 90 15.6 13.5 

QOT2 101.6±1.3 86.6±0.7 456.3±2.5 578.3±4.4 34 35 46 74 13.7 10.8 

KOD 97.5±1.4 90±0.7 696.9±6.9 640.6±4.5 32 35 54 85 15.5 12 

SIM 75.9±1.2 77.2±1.0 734.4±12. 606.3±7.7 29 32 54 78 12.6 12.4 

DIK 101.9±1.6 73.4±0.9 878.1±7.8 609.4±8 30 29 54 74 16.7 13.6 

JIR 84.4±2.1 68.4±0.8 565.6±8.9 662.5±8.3 24 28 46 75 16.6 10.5 

BUS_J 80.9±2.1 60.9±0.9 668.8±8.8 559.4±6.5 20 23 50 66 14.7 12.8 

TUL_B 93.8±1.7 59.1±1.1 628.1±6.4 503.1±6.3 35 25 62 66 12.4 10.7 

YAR 113.1±2.8 39.7±0.4 593.8±8.1 440.6±3.9 27 35 62 74 15.5 10.6 

LAG_H 102.5±2.2 73.4±0.9 768.8±15.8 496.9±5.7 20 32 39 67 13.6 8.6 

GOB 96.9±1.9 90±28.4 759.4±9.4 500±3.6 32 45 50 83 14.5 11.5 

MAL 90.3±1.6 101.7±1.3 650±9.5 700±9.0 28 24 44 45 15.6 11.5 

TUL_M 97.8±1.9 91.9±1.7 740.6±1.7 556.3±8.3 29 28 56 50 15.0 8.7 

JOR 107.8±1.4 91.3±1.1 631.3±4.3 512.5±2.7 36 42 55 59 16.8 12.8 

Mean     28 31 52 69   

SIB1=Sibu1, SIB2=Sibu2, MAF= Markafa, ISS= Issya, QOT1= Qotora1, QOT2= Qotora 2, KOD= Koda, SIM= Simbir, DIK= Dike, 

JIR= Jireen, BUS_J= Busa-Jireen, TUL_B= Tulu-Boka, YAR= Yaro, LAG_H= Laga_Chancho, GOB= Gobe, MAL= Malate, TUL_M= 

Tulu_Mako, JOR= Jorgo 
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Appendix 5.4 The species score of each axis (axis 1 and axis 2) for tree species.  

  Axis 1 Axis 2       

Albizia grandibracteata -2.0090 0.4605 Garcinia buchananii -0.7776 -3.0356 

Albizia gummifera -0.2751 0.6674 Grewia ferruginea 2.2459 -1.5232 

Albizia schimperiana 0.2476 1.5048 Hallea rubro 3.0090 -2.2363 

Allophlus abyssinicus 0.4499 0.5302 Hypericum revolutum -1.5202 3.5323 

Allophylus macrobotrys -2.1024 -0.7371 Ilex mitis -0.7237 1.4723 

Apodytes dimidata 0.9443 -0.3881 Lepidotrichlia volkense -0.5651 -1.1891 

Bersama abyssinica -0.1670 -0.0879 Macaranga capensis -0.0505 0.4082 

Blighia unijugata 1.4353 -1.5714 Maesa lanceolata -0.3715 0.7422 

Breonadia salicina 1.5843 -2.8019 Maytenus arbutifolia -0.2353 0.0441 

Bridelia micrantha -0.4487 5.6420 Maytenus undata -0.7495 -0.0631 

Brucea antidysenterica -0.7780 0.7390 Milletia ferruginea -0.7028 0.2974 

Budlleja polystachya -1.5202 3.5323 Mimusops kummel 0.6842 3.6060 

Canthium oligocarpa -0.0764 -1.5545 Nuxia congesta -1.0380 1.3535 

Cassipurea malosana 0.0499 -0.4192 Ocotea keynensis -3.1395 -3.2693 

Celts africana -1.5114 -1.3748 Olea capensis 0.6679 -0.6208 

Chionanthus mildbraedii -0.6366 -0.1657 Olea welwitschii -0.7776 -3.0356 

Coffee arabica -0.0121 2.6160 Oxyanthus speciosus -0.1888 -0.6959 

Cordia africana 1.4432 2.2474 Pappea capensis 3.2769 2.2737 

Croton macrostachyus -0.1249 0.1403 Phoneix reclinata -1.9036 -0.2160 

Cyathea manniana -0.9043 1.5531 Pittosporum 

viridiflorum 

-0.3798 0.1171 

Dalbergia lactea -1.0117 1.8351 Afrocarpus falcatus 0.5343 -1.6767 

Diospyros abyssinica -1.4014 -1.5986 Polycias fulva -0.0621 -0.8072 

Dombeya torrida -1.0147 -0.2358 Pouteria adolfi-

friederici 

1.6776 -0.8595 

Dovyalis abyssinica 2.3786 -2.1672 Pouteria altisna -1.9664 -1.0097 

Dracaena afromontana 0.2360 0.8062 Prunus africana 0.5960 -1.2688 

Dracaena fragrans 0.4206 -0.7620 Psychotria orophila -0.8801 -1.1035 

Dracaena steu 2.1548 1.1714 Psydrax parviflora 1.3260 0.6263 

Ehretia cymosa 0.5924 -1.5827 Rhus ruspoli -1.2784 -0.0425 

Ekbergia capensis -1.6905 -0.6314 Rhus glutinosa -1.7746 0.3929 

Elaeodendron buchanani 0.2227 -0.1606 Ritchiea albersii 0.0714 0.6708 

Entada abyssinica -1.2784 -0.0425 Rothmannia 

urcelliformis 

1.9838 1.2806 

Eugenia bukobensis 2.1548 1.1714 Sapium ellipticun -1.1928 2.1949 

Euphorbia candelabrum -1.3877 -1.0455 Schefleria abyssinica 2.0064 -0.2547 

Euphorbia ampliphylla 0.9146 -1.8244 Schrebera alata 2.3455 -2.1682 

Fagaropsis angolensis -3.1395 -3.2693 Senna petersiana -1.5620 0.7581 

Ficus exasperata -0.7776 -3.0356 Syzygium guineense -0.5939 0.3955 

Ficus lutea 4.0534 2.9208 Teclea noblis -1.7945 -0.1494 

Ficus palmata -2.2090 -1.6559 Trema orientalis -1.4514 2.3699 
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Ficus sur -0.1200 0.0548 Trichilia dregeana -0.0078 -0.6135 

Ficus sycomorus 2.0405 -0.9744 Trilipsium 

madagascariense 

2.1888 1.5746 

Ficus thommingii -0.3621 3.3202 Vangueria apiculata 2.6824 0.5318 

Ficus vasta 2.3786 -2.1672 Vepris dainelli 2.0460 -0.4180 

Flacortia indica -1.0080 -0.0595 Vernonia amygdalina 2.9652 0.7591 

Galineria saxifraga 0.1926 -0.9099       

 

Appendix 5.5 Full name of species abbreviations used in Cannonical Correspondance Ananysis 

Abbreviation Full name of species Abbreviation Full name of species 

Alb_ gr Albizia grandibracteata Gar_bu Garcinia buchananii 

Alb_gu Albizia gummifera Gre_fe Grewia ferruginea 

Alb_sc Albizia schimperiana Hal_ru Hallea rubro 

All_ ab Allophlus abyssinicus Hyp_re Hypericum revolutum 

All_ma Allophylus macrobotrys Ile_ mi Ilex mitis 

Apo_ di Apodytes dimidata Lep_vo Lepidotrichlia volkense 

Ber_ab Bersama abyssinica Mac_ca Macaranga capensis 

Bli_ un Blighia unijugata Mae_la Maesa lanceolata 

Bre_ sa Breonadia salicina May_ar Maytenus arbutifolia 

Bri_mi Bridelia micrantha May_un Maytenus undata 

Bru_an Brucea antidysenterica Mil_fe Milletia ferruginea 

Bud_po Budlleja polystachya Mim_ku Mimusops kummel 

Can_ol Canthium oligocarpa Nux_co Nuxia congesta 

Cas_ma Cassipurea malosana Oco_ke Ocotea keynensis 

Cel_af Celts africana Ole_ca Olea capensis 

Chi_mi Chionanthus mildbraedii Ole_we Olea welwitschii 

Cof_ar Coffee arabica Oxy_sp Oxyanthus speciosus 

Cor_af Cordia africana Pap_ca Pappea capensis 

Cro_ma Croton macrostachyus Pho_re Phoneix reclinata 

Cya_ma Cyathea manniana Pit_vi Pittosporum viridiflorum 

Dal_la Dalbergia lactea Afr_fa Afrocarpus falcatus 

Dio_ab Diospyros abyssinica Pol_fu Polycias fulva 

Dom_to Dombeya torrida Pou_ad Pouteria adolfi-friederici 

Dov_ ab Dovyalis abyssinica Pou_al Pouteria altisna 

Dra_af Dracaena afromontana Pru_af Prunus africana 

Dra_fr Dracaena fragrans Psy_or Psychotria orophila 

Dra_st Dracaena steu Psy_pa Psydrax parviflora 

Her_cy Ehretia cymosa Rhu_ru Rhus ruspoli 

Ekb_ca Ekbergia capensis Rhu_gl Rhus glutinosa 

Ela_bu Elaeodendron buchanani Rit_al Ritchiea albersii 

Ent_ab Entada abyssinica Rot_ur Rothmannia urcelliformis 
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Eug_bu Eugenia bukobensis Sap_el Sapium ellipticun 

Eup_ca Euphorbia candelabrum Sch_ab Schefleria abyssinica 

Eup_am Euphorbia ampliphylla Sch_al Schrebera alata 

Fag_an Fagaropsis angolensis Sen_pe Senna petersiana 

Fic_ex Ficus exasperata Syz_gu Syzygium guineense 

Fic_lu Ficus lutea Tec_no Teclea noblis 

Fic_pa Ficus palmata Tre_or Trema orientalis 

Fic_su Ficus sur Tri_dr Trichilia dregeana 

Fic_sy Ficus sycomorus Tri_ma Trilipsium 

madagascariense 

Fic_th Ficus thommingii Van_ap Vangueria apiculata 

Fic_va Ficus vasta Vep_da Vepris dainelli 

Fla_in Flacortia indica Ver_am Vernonia amygdalina 

Gal_sa Galineria saxifraga     

 

Appendix 5.6 The habitat characteristic, frequency distribution, leaf and stem morphology of epiphyte species 

between edge and interior. 

Species  Habitat Frequency  Morphology  

    Interior edge Leaf texture Stem 

Aerangis brachycarpa Dense shade on the lower trunk 34 0 Leathery Woody 

Aerangis thomsonii Deep shade on lower trunk 17 0 leathery Woody  

Ancistrorhynchus 

metteniae 

Evergreen forest (shaded forest) 39 0 Leathery Herbaceous 

Angraecopsis holochila   In forest 14 1 Herbaceous Pseudobulbs 

Angraecopsis parviflora Evergreen forest and riverine 

forest 

13 4 Fleshy Semi-woody 

Ansellia africana Open woodland  12 9 Herbaceous Pseudobulbs/ 

woody 

Arthropteris monocarpa  Deep shade and moist forest 78 3 Herbaceous Herbaceous 

Arthropteris orientalis   Open woodland 11 8 Herbaceous Herbaceous 

Asplenium aethiopicum  Under the shade 42 13 Herbaceous Herbaceous 

Asplenium hypomelas Dense shade in moist forest 24 0 Herbaceous Herbaceous 

Asplenium sandersonii  Moist forest 75 0 Herbaceous Herbaceous 

Asplenium theciferum  Shaded forest 103 14 Herbaceous Herbaceous 

Bolusiella iridifolia  Forest among lichens and on 

rocks in river 

21 0 Herbaceous Herbaceous 

Bulbophyllum josephi Submonane forest and woodland 20 12 Herbaceous Pseudobulbs 

Bulbophyllum lupulinum  Forest and riverine forest 18 0 Herbaceous Pseudobulbs 

Bulbophyllum maximum Open woodland and riverine 

forest 

15 9 leathery Pseudobulbs 

Bulbophyllum 

sandersoni 

Woodland and forest 6 4 leathery Pseudobulbs 

Calyptrochilum 

christyanum 

Forest, wooded grassland 16 45 Fleshy Woody 
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Canarina eminii Hang on tree trunk in dense forest 5 1 Herbaceous Semi-woody 

Corymboriks corymbis Rainforest/base of trees (deeply 

shaded 

13 0 Herbaceous Semi-

leathery 

Culcasia falcifolia In shade evergreen forest 12 8 Leathery Semi-woody 

Cyrtorchis arcuata  Shaded forest, bushland and rocks 

in forest 

9 45 Herbaceous Semi-woody 

Diaphananthe adoxa Upland evergreen forest 5 0 Herbaceous Semi-woody  

Diaphananthe 

fragrantissima  

Forest, bushland and rocky 21 30 Leatheey Semi-woody 

Diaphananthe rohrii Montane forest (deep shade) 10 0 Herbaceous Herbaceous 

Diaphananthe 

tenuicalcar  

In forest 40 10 Herbaceous Herbaceous 

Drynaria volkensii In forest and forest margin  85 23 Herbaceous Herbaceous 

Elaphoglossum 

acrostidoides 

Moist montane forest 14 0 Herbaceous Herbaceous 

Elaphoglossum deckeni Moist montane forest 23 0 Herbaceous Herbaceous 

Elaphoglossum lastii Moist montane forest 7 0 Herbaceous Herbaceous 

Huperzia dacrydioides Shaded evergreen moist forest 5 2 Leathery Semi-woody 

Lepisorus excavatus   Shade often on rocks 3 2 Herbaceous Herbaceous 

Liparis abyssinica Shaded forest 5 0 fleshy Herbaceous 

Loxogramme abyssinica  Under the shade on rocks 5 0 Herbaceous Herbaceous 

Microcoelia globulosa .  Margin of evergreen forest, 

riverine forest, secondary forest 

42 40 Leathery Herbaceous 

Peperomia  rotundifolia In forest and forest margin on tree 

trunk 

122 26 Leathry Succulent 

Peperomia abyssinica  In forest and forest margin on tree 

trunk 

10 5 Leathry Succulent 

Peperomia tetraphylla  In forest and forest margin on tree 

trunk 

123 28 Leathry Succulent 

Pleopeltis macrocarpa  In deep shade 29 2 Herbaceous Herbaceous 

Polystachya bennettiana   Open woodland and riverine 

forest 

25 1 Herbaceous Semi-woody 

Polystachya cultriformis  under the shade of rainforest 5 0 Leathry Pseudobulbs  

Polystachya eurychila  Riverine forest/wet rock 5 4 Herbaceous Fleshy  

Polystachya fusiformis  Rainforest/wet rocks 18 0 Herbaceous Pseudobulbs 

Polystachya lindblomii  In dense forest and forest Margin 8 5 Herbaceous Pseudobulbs 

Polystachya steudneri  Woodland/dryish scrub 37 4 Herbaceous Pseudobulbs 

Polystachya tessellata  Rainforest (deeply shaded) 3 0 Herbaceous Pseudobulbs 

Pyrrosia schimperiana  Shaded area in forest on tree 

trunk 

10 0 Herbaceous Herbaceous 

Thelypteris confluens Moist shaded forest, swampy area 6 0 Herbaceous Herbaceous 

Tridactyle bicaudata  Montane forest and riverine forest  8 0 Semi-

leathery 

Semi-woody 

Vittaria volkensii  Moist forest on tree trunk 10 0 semi-

Leathery 

Herbaceous 
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Appendix 5.7 The habitat characteristic, rhizome type, frond arrangement and frequency distribution of fern 

species in edge and interior 

Species Rhizome Frond type Shade tolerant Frequency  

        Interior Edge 

Adiantum lunulatum  Erect Spaced Forest margin 28 60 

Arthropteris orientalis Erect Spaced Forest margin 39 65 

Athyrium filix-femia Erect Spaced Forest margin 25 65 

Cheilanthes farinosa Erect Spaced  Forest margin 6 102 

Dicranopteris linearis Creeping Spaced  Forest margin 47 51 

Doryopteris concolor Creeping Spaced  Forest margin, disturbed area 23 65 

Hypolepis sparsisora Erect  spaced Forest margin 32 60 

Pteridium aquilinus Erect Spaced  Forest margin 0 43 

Arthropteris monocarpa  Creeping Spaced In the forest, under shade 31 13 

Asplenium aethiopicum Creeping Spaced  Forest habitat, underdeep shade  31 56 

Asplenium anisophyllum Erect Tuffted  Deep shade, Shade tolerant 57 22 

Asplenium erectum Erect Tufted Forest-habitat 25 9 

Asplenium formosum Erect Tufted Forest-habitat 65 0 

Asplenium gemmiferum Erect Tuffted  Forest-habitat 107 9 

Asplenium hypomelas Erect Tufted Forest-habitat 91 48 

Asplenium lunulatum Erect Tufted Forest-habitat  105 65 

Asplenium monanthes Erect Tufted Forest-habitat 36 51 

Asplenium sandersoni Rhizome Tofted Forest-habitat 67 0 

Asplenium theciferum Erect Tufted Forest-habitat 109 36 

Blotiella glabra Creeping Spaced  Forest-habitat 58 38 

Conigramme africana Erect Spaced  Forest-habitat 60 0 

Drynaria volkensii Creeping Tufted Forest-habitat 57 24 

Dryopteris athamantica Creeping Tufted Forest-habitat 49 75 

Loxogramma abyssinica Erect Tufted Forest-habitat 21 5 

Marsilia minuta Creeping NA Forest-habitat 87 24 

Microlepia speluncae Creeping Spaced  Forest-habitat 63 50 

Pleopeltis macrocarpa  creeping  spaced Forest-habitat 48 16 

Tectaria gemmifera Erect Spaced  Forest-habitat 52 32 

Marattia fraxinea Creeping Tufted Forest-habitat 64 54 

Thelypteris confluens Creeping Spaced  Forest-habitat 48 0 

Asplenium sp creeping spaced Forest-habitat 21 0 
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Appendix 5.8 Habitat characteristics of woody species 

Species  Habitat Chracteristics  Functional groups  

Justcia schimperiana Understorey shrub, open area, forest margin, 

secondary forest  

Wide-habitat species  

Justicia betonica Understorey of evergreen forest, forest margin, 

clearings, recently opend forest 

Wide-habitat species  

Acalypha racemosa Understory of riverine forest, secondary forest, 

more open area, dry habitat 

Wide-habitat species  

Clausena anisata Montane forest, forest margin, understorey shrub in 

moist forest, common in secondary forest 

Wide-habitat species  

Clutia abyssinica  Along margins of evergreen forest, riverine forest 

and high rainfall woodland and clearings 

Wide-habitat species  

Hibiscus dongolensis Marshy grassland and secondary forest Forest-margin species 

Hibiscus ludwigii Afrocarpus forest, on edge, upland bushland Forest-margin species 

Hibiscus macranthus Forest edge, woodland and secondary forest Forest-margin species 

Hilleria latifolia Forest margin Forest-margin species 

Hypericum 

quartinianum 

Rocky place, gullery and river bank decidous 

woodland 

Wide-habitat species  

Kotschya (tiro) Forest margins, grassland swampy area Forest-margin species 

Phytolacca dodecandera Forest margin, open area and cultivated land Forest-margin species 

Plectranthus ornatus  semi-shade Forest-margin species 

Plectranthus punctatus  Montane gassland, open areas and forest margin Forest-margin species 

Pterolobium setllatum Riverine thickts and rocky area Forest-margin species 

Pycnostachys 

abyssinicus 

Forest margin, life fence, open area  Forest-margin species 

Pycnostachys eminii Forest margin, fallowland, hedgerows  Forest-margin species 

Rhamnus Prinoides Upland forest, usually on edge, riverine forest, 

secondary forest 

Forest-margin species 

Rhamnus Stado Upland forest at edge, woodland and grassland Forest-margin species 

Rhus quartianana Evergreen thickets and along river and streams Forest-margin species 

Rubus apetalus Open forest area or disturbed, forest margin  Forest-margin species 

Rubus steu Disturbed forest area, forest margin, woodland and 

secondary forest 

Forest-margin species 

Sparmania macrocarpa Edge of montane forest, scrub land scrub grassland Forest-margin species 

Solanacieo mannii Open forest area,forest margin, rocky area in high 

rainfall area 

Forest-margin species 

Solanecio gigas In disturbed forest, forest margin, open area, in high 

rainfall area 

Forest-margin species 

Solanium schimperiana Forest margin, degraded area and woodland Forest-margin species 

Abutilon martinianum Open forest area, forest margin and woodland Forest-margin species 

Acalypha marissima Open or forested slope Forest-margin species 

Acalypha ornata A.Rich. Riverine forest, more open rocky slopes and 

wooded grassland 

Forest-margin species 
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Acanthus eminens Open area, forest margin Forest-margin species 

Calpurnia urea Along evergreen forest margin, riverine forest and 

disturbed area 

Forest-margin species 

Crotalaria rosenii Open area inside forest and undershade Forest-margin species 

Crotalria milbraedii  Montane forest margins, bushlands, along roadside  Forest-margin species 

Discoppodium Forest margin, disturbed area and secondary forest Forest-margin species 

Dodonaea angustifolia edge of upland forest, upland bushland, grassland 

and secondary forest 

Forest-margin species 

Euphorbia schimperiana Forest margin, secondary forest Forest-margin species 

Ficus capre Component of ripariana forest and drier area Forest-margin species 

Maytenus obscura Forest margin, disturbed area and secondary forest Forest-margin species 

Microglossa pyrifolia At the edge of drier forest, secondary forest Forest-margin species 

Myrsine africana Margin of evergreen forest, woodland and rocky 

areas 

Forest-margin species 

Ocimum lamifolia Forest margin, open area, grazing land and bushland 

thickts 

Forest-margin species 

Pavonia urens Edge, path and clearing in upland forest, riverine 

forest ruderal 

Forest-margin species 

Pentas lanceolata Open deforested area, woodland  Forest-margin species 

Vernonia auriculifera Forest margin, grassland  Forest-margin species 

Vernonia glabra High rain fall woodland, riverine forest Forest-margin species 

Vernonia hochstetteri Wooded land, open area Forest-margin species 

Vernonia myriantha Forest margin, grassland  Forest-margin species 

Vernonia urticifolia Disturbed area, forest margin, woodland Forest-margin species 

Acanthopale pubescens Shaded forest area, in the understorey of evergreen 

forest, often in large numbers 

Forest-habitat species 

Acalypha psilostachya 

Hochst. 

Moist montane forest, allong valley botoms, forest 

margins 

Forest-habitat species 

Acalypha brachystachya Riverine and montane forest in deep shade Forest-habitat species 

Coffee arabica Shaded forest area as understorey shrub Forest-habitat species 

Embelia schimperi Upland thickt, prinary forest as understorey shrub Forest-habitat species 

Erythrococca trichogyne Moist evergreen forest Forest-habitat species 

Maytenus gracilipes Understorey shrub and secondary forest  Forest-habitat species 

Oxanthus le understory of shrub of evergreen forest Forest-habitat species 

Pavetta abyssinica Understorey shrub in high canopy forest  Forest-habitat species 

Pavetta oliveriana Understorey shrub in high canopy forest and thickts  Forest-habitat species 

Solanium uv Understorey forest shrub Forest-habitat species 

Abutilon cecillii Secondar scrub after former montane forest Forest-habitat species 

Clerodendrum 

myricoides 

Forest margin, woodland and grassland Forest-margin species 

Crotalaria emarginella     
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Hibiscus calyphyllus     

Malva verticillata     

Phyllanthus limmuensis  Under forewst shade, forest margin   

Phyllanthus ovalifolius   Forest-habitat species 

Sparmannia ricinocarpa     

Albizia gummifera In lowland and upland rain-forest, riverine forest, 

and in open habitats near forests. It occasionally 

appears as a pioneer species in forests and in 

thickets. 

Wide-habitat species  

Albizia schimperiana In Evergreen forest and margin of forest Wide-habitat species  

Allophylus abyssinicus In forest, edge and riverine forest Wide-habitat species  

Allophylus macrobotray Rainforest, riverine forest and woodland Wide-habitat species  

Apodytes dimidata Upland rain forest, secondary forest and riverine 

forest 

Forest-habitat species  

Bersama abyssinica In fores, edge, cultivated land  Wide-habitat species  

Brucea antidysenterica Montane forest, evergreen forest, forest margin, 

secondary forest and montane grassland  

Wide-habitat species  

Celts africana Dry and moist evergreen forest, riverine forest and 

dry rocky hills 

Wide-habitat species  

Dombeya torrida Montane forest, shaded and margin Wide-habitat species  

Dracaena afromontana Montane forest, forest margin, cultivated land Wide-habitat species  

Elaeodendron 

buchanani 

Evergreen forest and thickets, forest fringing 

swamps, deciduous woodland, grassland 

Wide-habitat species  

Euphorbia ampliphylla Moist montane forest, life fence Wide-habitat species  

Ficus ovata Riverine forest, upland rainforest and evergreen 

bushland 

Wide-habitat species  

Ficus sur Riverine forest, upland rainforest and secondary 

bushland 

Wide-habitat species  

Ficus thonningii Rainforest, dry evergreen forest and riverine forest Wide-habitat species  

Hallea rubro moist forest, forest margin Wide-habitat species  

Ilex mitis Riverine, Montane forest, moist woodland Wide-habitat species  

Manilkara bu Inside forest, forest margin, riverine forest Wide-habitat species  

Millettia ferruginea In montane forest, culticated land, coffee managed 

forest, forest margin 

Wide-habitat species  

Nuxia congesta A pioneering species, in forest, woodland or 

grassland, often in rocky places 

Wide-habitat species  

Olea capensis L. ssp 

macrocarpa  

Forest, forest margin and secondary forest Wide-habitat species  

Olea welwitschii  In forest and forest margin Wide-habitat species  

Pittosporum 

viridiflorum 

Forest, forest margin, cultivated land Wide-habitat species  

Polycias fulva In montane forest, forest margin, piomeer in 

clearings 

Wide-habitat species  

Pouteria adolfi-

friederici 

Componenet of afromontane forest, in forest, forest 

margin 

Wide-habitat species  
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Prunus africana High rain forest, riverine forest, forest margin Wide-habitat species  

Ritchiea albersii Understorey shrub of evergreen forest, forest 

margin and dense woodland 

Wide-habitat species  

Rytigina neglecta Understorey shrub and forest edge Wide-habitat species  

Sapium ellipticun Along streens in area of deciduous woodland, 

margin of moist forest and occasionaly forest 

component 

Wide-habitat species  

Schefleria abyssinica Upland rain forest, secondary forest and woodland Wide-habitat species  

Schrebera alata Forest, forest margin and secondary forest Wide-habitat species  

Syzygium guineense Componenet of afromontane green forest, in forest, 

forest margin 

Wide-habitat species  

Teclea noblis Dry evergreen bushland, woodland and moist 

montane forest 

Wide-habitat species  

Afrocarpus falcatus Component of  upland forest, forest margin and as a 

solitrary tree in cultivated 

Forest-margin species 

Alangium chinense Pioneer species in cleared area and upland rain 

forest 

Forest-margin species 

Anthocleista 

schweinfurthii 

In forest and forest margin, moist woodland Forest-margin species 

Bridelia micrantha Riverine forest margin Forest-margin species 

Buddleja polystachya Forest margin, cultuvatedland, life fence, woodland Forest-margin species 

Cordia africana Forest margin, sometines inside forest as coffee 

shade, woodland, grassland 

Forest-margin species 

Croton macrostachyus Forest margin, secondary woodland, disturbed areas 

and along the road 

Forest-margin species 

Deinbollia kilimandisch Lowland mixed forest Forest-margin species 

Dovyalis aby Highland forest margin, riverine forest and montane 

grassland 

Forest-margin species 

Dracaena steudneri Margin of evergreen forest Forest-margin species 

Ehretia cymosa Secondary forest, forest margin and grassland Forest-margin species 

Ekbergia capensis In montane forest Forest-margin species 

Eugenia bukobensis Sand-dune thicket and sometines in forest and 

grassland 

Forest-margin species 

Euphorbia candilabrium Secondary foret, forest margin and grassland, 

cultivated area 

Forest-margin species 

Ficus exasperata Secondary scrub and forest edge Forest-margin species 

Ficus palmata Riverine forest, upland rainforest and evergreen 

bushland 

Forest-margin species 

Ficus vallis-choudae Riverine forest or scrub Forest-margin species 

Flacortia indica Forest edge, woodland and secondary forest Forest-margin species 

Grewia ferruginea Gullery forest, along rivers and open woodland Forest-margin species 

Maesa lanceolata Forest margin of forest (pioneer species) Forest-margin species 

Maytenus addat Endemic to afromontane forest, forest margin Forest-margin species 
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Maytenus arbutifolia Forest margin, fallowland, sometimes under forest 

at the edge 

Forest-margin species 

Maytenus undata Along the margin of forest and woodland Forest-margin species 

Mimusops kummel Riverine forest, forest margin, ripariana forest Forest-margin species 

Nuxia opositfolia Riverine forest, and rocky areas and forest margin Forest-margin species 

Opilia campestris Woodland Forest-margin species 

Pappea capensis Wooded land, edge of forests Forest-margin species 

Phoneix reclinata Riverine forest, forest margin, woodland, swampy 

area 

Forest-margin species 

Rhus ruspolii Margins of montane forest and woodland Forest-margin species 

Senna petersiana Forest margin and grassland Forest-margin species 

Trema orientalis Riverine forest, pioneer in clearings, forest edge Forest-margin species 

Trichilia emitica Savanna woodland and ripariana woodland Forest-margin species 

Vangueria apiculata Forest margin, woodland and grassland Forest-margin species 

Vernonia amy Forest margin, cultivated land, woodland Forest-margin species 

Ficus lutea Riverine forest, upland rainforest and evergreen 

bushland 

Forest-habitat species 

Antiaris toxicara Lowland forest Forest-habitat species 

Blighia unijugata Evergreen lowland forest, upland forests and shade 

tree in coffee forest  

Forest-habitat species 

Breonadia salicina riverine forest Forest-habitat species 

Cassipurea malosana Upland rainforest and dry upland forest Forest-habitat species 

Celts philippensis Wet forest, understorey forest, secondary 

association 

Forest-habitat species 

Celts toka Riverine forest Forest-habitat species 

Celts zenkeri Wet evergreen forest and seni-deciduous woodland Forest-habitat species 

Chionanthus 

mildbraedii 

Understorey forest shrub, deeply shaded  Forest-habitat species 

Cyathea manniana Along river and streams in deep shade Forest-habitat species 

Dalbergia lactea In montane forest, forest margin Forest-habitat species 

Diospyros abyssinica In evergreen forest,  Forest-habitat species 

Dracaena fragrans Understorey shrub of evergreen forest. Deep shade Forest-habitat species 

Fagaropsis angolensis Upland rainforest (Afrocarpus forest) Forest-habitat species 

Galineria saxifraga Inside forest as understorey  small tree  Forest-habitat species 

Garcinia buchananii Riverine forest Forest-habitat species 

Lepidotrichlia volkensii Understory of moist forest Forest-habitat species 

Morus mesozygia Humid forest Forest-habitat species 

Ocotea keynensis Upland forest,  Forest-habitat species 

Oxyanthus speciosus Inside forest as understorey  small tree  Forest-habitat species 

Pouteria altisma Lowland montane forest and forest margin Forest-habitat species 

Psychotria orophila Under canopy of wet montane forest and becoming 

common at margins 

Forest-habitat species 
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Psydrax parviflora Under canopy of wet montane forest and becoming 

common at margins 

Forest-habitat species 

Rothmannia 

urcelliformis 

Understorey of evergreen forest Forest-habitat species 

Sarcocephalus latifolius Small tree as understorey of forest/montane Forest-habitat species 

Trilipsium 

madagascariense 

South-west Ethiopia Upland rainforest  Forest-habitat species 

Vepris dainelli Understorey of moist montane forest Forest-habitat species 

Ficus mucuso Lowland rainforest and coffee plantation Forest-habitat species 

Ficus sycomorus riverine forest Forest-habitat species 

Filicium decipiens Dense forest and riverine forest Forest-habitat species 

Trichilia dregeana Mid-altitude rain forest Forest-habitat species 

Canthium oligocarpa Inside forest, forest margin, riverine forest Wide-habitat species  

Canthium sp Inside forest Wide-habitat species  

Macaranga capensis Under canopy of wet montane forest and becoming 

common at margins 

Wide-habitat species  

Rhus glutinosa Forest margin and woodland Forest-margin species 

 

Appendix 5.9 Habitat characteristics of some herbaceous species 

Species Habitat Characteristics  Functional groups  

Achyranthes aspera Widespread, hedges, thickets, 

shaded habitat, bushland and 

riverine forest 

Wide-habitat species 

Achyrospermum schimperi Partial shade, forest, forest 

margins, bushland, coffee 

plantation 

Wide-habitat species 

Acmella caulirhiza Wet place, grassy slopes, forest 

floors, along stream banks 

Wide-habitat 

Ageratum  conyzoides Wetter area, shade area, eroded 

soils, grassland, along waterways  

disturbed land, grazing field 

Forest-margin/Wide-

habitat species 

Ajuga intigrifolia Wetter areas,  disturbed grassland, 

along road sides.  

Forest-margin/Wide-

habitat species 

Alchemilla cryptantha Moist shade forest, wet grassland, 

along stream   

Forest-habitat species 

Alchemilla rothii Wet area, montane forest, bamboo 

ticket,  evergreen bushland 

Forest-habitat species 

Arisaema flavum Open area, under shade, disturbed 

places 

Forest-margin/Wide-

habitat species 

Asystasia gangetica Forest, margin, partial shade, 

roadside, streamside 

Forest-margin/Wide-

habitat species 

Bidens pilosa Under forest, open place, road side, 

disturbed area 

Forest-margin/Wide-

habitat species 

Cardamine trichocarpa Open area, under trees, disturbed 

area 

Forest-margin/Wide-

habitat species 

Centella asiatica Under shade, swampy area, open 

land under trees 

Forest-habitat species 



351 

 

Kalanchoe petitiana Open evergreen, forest margin, 

under trees, disturbed area 

Forest-margin/Wide-

habitat species 

Cyperus esculenta In a forest, forest margin, shade 

areas 

Forest-habitat species 

Didymodoxa cafra Under shade, in forest, wetland, 

river bank 

Forest-habitat species 

Hypoestes  forskaoli Roadside,  grassland, open 

woodland, disturbed montane 

forest 

Forest-margin/Wide-

habitat species 

Hypoestes triflora Under the shade of forest, 

woodland roadside, waterways 

Forest-habitat species 

Justicia heterocarpa Woodland, undershade, degraded 

acacia woodland 

Forest-margin/wide-

habitat species 

Justicia striata Open area, disturbed land,  Forest-margin/wide-

habitat species 

Pilea tetraphylla Open area, forest margin, disturbed 

area 

Forest-margin/wide-

habitat species 

Piper capense Under shade of montane forest Forest-habitat species 

Spilanthes costata Under forest shade, wet area Forest-habitat species 

 

Appendix 5.10 Shrub species ≥0.50 average abundance in edge and interior habitats of 18 forest patches 

(from SIMPER analysis) 

Interior Average 

Abundance 

Average 

abundance 

Average 

Dissimilarity 

% 

Contribution 

 Species Edge Interior     

Clausena anisata 0.67 0.61 1.41 1.85 

Rytigina neglecta 0.72 0.56 1.47 1.93 

Maytenus gracilipes 0.44 0.56 1.49 1.95 

Erythrococcaa trichogyne 0.5 0.5 1.48 1.94 

Cyathula uncinulata 0.44 0.5 1.45 1.91 

Solanecio mannii 0.28 0.5 1.46 1.91 

Pavetta oliveriana 0.22 0.5 1.45 1.91 

  

 

0.47±0.07 0.53±0.02     

Edge 

Species Edge Interior     

Rytigina neglecta 0.72 0.56 1.47 1.93 

Maytenus gracilipes 0.72 0.17 1.79 2.35 

Clausena anisata 0.67 0.61 1.41 1.85 

Vernonia auriculifera 0.61 0.39 1.49 1.95 

Lippia adoensis 0.61 0.06 1.45 1.91 

Acanthus eminens 0.56 0.28 1.53 2 

Clerodendrum myricoides 0.56 0.11 1.44 1.88 

Ocimum lamifolia 0.56 0.06 1.34 1.75 

Lantana trifolia 0.56 0 1.55 2.04 
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Erythrococcaa trichogyne 0.5 0.5 1.48 1.94 

Pavetta abyssinica 0.5 0.28 1.46 1.92 

Hibiscus micranthus 0.5 0.28 1.35 1.77 

Calpurnia urea 0.5 0.17 1.35 1.77 

  0.58±0.2 0.27±0.06     

 

Appendix 5.11 Vine species with ≥0.50 average abundance in edge and interior habitats of 18 forest patches 

(from SIMPER analysis) 

Interior Average 

Abundance 

Average 

abundance 

Average 

Dissimilarity 

% 

Contribution 

 Species Edge Interior      

Simlax aspera 0.06 0.56 2.15 2.7 

Ipomoea carica 0.56 0.54 2.15 2.69 

Hippocratea goetzei 0.33 0.52 2.11 2.65 

Dioscorea bulbifera 0.11 0.5 1.95 2.44 

Tiliachora troupinii 0.44 0.5 2.02 2.53 

  0.3±0.09 0.52±0.01     

Edge  

 Species Edge Interior      

Clematis hirsuta 0.78 0.22 2.83 3.54 

Ipomoea carica 0.56 0.5 2.15 2.69 

Cyphostemma adenocaule 0.53 0.17 2.11 2.64 

Ipomoea tenuirostris 0.51 0.17 2.08 2.6 

Helinus mystacinus 0.51 0.11 2.15 2.7 

Clematis sinensis 0.5 0.17 1.95 2.45 

Gouania longispicata 0.5 0.11 1.95 2.44 

  0.56±0.04 0.21±0.05     

 

Appendix 5.12 Angiosperm herb species with ≥ 0.50 average abundance in interior and edge habitats of 18 

forest patches   

Interior Average 

Abundance 

Average 

abundance 

Average 

Dissimilarity 

% 

Contribution 

 Species Edge Interior     

Didymodoxa cafra 0.23 1 1.37 2.49 

Centella asiatica 0.47 0.95 0.95 1.73 

Cyperus esculenta 0.35 0.93 1.11 2.03 

Pilea tetraphylla 0.45 0.78 0.93 1.69 

Bidens pilosa 0.92 0.76 0.52 0.94 

Justicia striata 0.64 0.73 0.78 1.43 
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Ageratum  conyzoides 0.86 0.71 0.63 1.14 

Achyranthes aspera 0.95 0.68 0.61 1.11 

Justicia heterocarpa 0.53 0.66 0.87 1.59 

Acmella caulirhiza 0.54 0.65 0.87 1.59 

Piper capense 0.06 0.65 1.09 1.98 

Achyrospermum schimperi 0.65 0.64 0.83 1.51 

Hypoestes  forskaoli 0.47 0.64 0.91 1.65 

Alchemilla cryptantha 0.42 0.6 0.92 1.68 

Alchemilla rothii 0.55 0.58 0.88 1.6 

Cardamine trichocarpa 0.31 0.56 0.93 1.69 

Ajuga intigrifolia 0.44 0.51 0.89 1.62 

Hypoestes triflora 0.47 0.5 0.89 1.62 

  0.52±0.05 0.69±0.05     

Edge 

 Species Edge Interior     

Achyranthes aspera 0.95 0.68 0.61 1.11 

Bidens pilosa 0.92 0.76 0.52 0.94 

Ageratum  conyzoides 0.86 0.71 0.63 1.14 

Arisaema flavum 0.68 0.44 0.93 1.69 

Achyrospermum schimperi 0.65 0.64 0.83 1.51 

Justicia striata 0.64 0.73 0.78 1.43 

Spilanthes costata 0.57 0.38 0.91 1.67 

Asystasia gangetica 0.57 0.04 1 1.82 

Alchemilla rothii 0.55 0.58 0.88 1.6 

Acmella caulirhiza 0.54 0.65 0.87 1.59 

Apium sp 0.54 0.28 0.92 1.67 

Justicia heterocarpa 0.53 0.66 0.87 1.59 

Chalanchoe petitiana 0.51 0.27 0.88 1.61 

  0.65±0.04 0.52±0.06     
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 Appendix 5.13 Densityof vascular epiphytes in interior and edge habitats of 18 forest patches in Illubabor Zone of south-west Ethiopia: Species richness, 

SR; density of host trees  (bearing epiphytes) (no. 400 m-2), hD; mean DBH of host trees (cm), mDBH; density of epiphyte individuals or clumps (no. 400 

m-2), epD and attributes of the patches associated with fragmentation and environment (are, shape, edge density, rainfall, altitude and D. score = 

disturbance). 

Site Interior/SR Edge 

/SR 

Interior 

hD 

Edge 

hD 

Interior  

m DBH 

Edge 

mDBH 

Interior 

epD 

Edge 

epD 

Area of 

patches 

D. 

score 

interior 

D. 

score  

edge 

Shape 

index 

Edge 

density 

Altitude Rainfall 

Sibu1 26 17 60 46 66 94.3 123 51 37 3 3.1 2.3 137.1 1942 1576 

Sibu2 24 7 45 19 71.6 82.2 93 35 52 2.4 2 2.5 125.7 2198 1576 

Markafa 23 14 43 21 41.4 124 62 39 55 3 2.3 3.2 152.4 1918 1576 

Issya 34 15 66 15 67.3 151.4 130 85 109 4 1.4 4.9 162.6 2197 1928 

Qotora1 29 12 68 20 117.4 106 158 67 2000 2 1 8.4 62.9 2179 1928 

Qotora2 33 11 64 14 125.5 65 146 42 164 1.1 3.3 2.7 76.3 2312 1928 

Koda 36 16 70 14 102.3 82.8 145 30 1958 0 4 7.9 63.3 2296 1780 

Simbir 34 12 51 9 109.3 110.4 138 35 248.7 3.1 3.1 4.9 111.8 2268 1780 

Dike 29 16 48 18 116.8 118 118 36 656 1 3 5.6 78 2422 1811 

Jireen 27 19 45 17 124.4 67.3 107 33 52 1.3 4 2.7 132 2356 1811 

Busa-Jireen 31 15 56 10 63.5 104.5 106 63 151 3 3.3 3.6 105 2156 1811 

Tulu-Boka 33 16 60 9 91.2 89.2 121 32 304 2 4 4.7 96.2 2188 1662 

Yaro 29 15 60 12 84.3 62.8 147 24 42.8 2.3 4 2.4 128.9 2141 1828 

Laga-

Chancho 

27 11 55 8 76 55.2 99 32 85.2 2 4 2.1 110 1951 1576 

Gobe 28 14 49 20 65 70 82 43 620 3 4 7.8 111.6 2005 1576 

Malate 29 15 56 15 99.3 67.7 113 32 174 1.4 4 3.7 99.8 2044 1828 

Tulu-Mako 26 15 54 10 77.2 67.7 98 33 165.6 0 4 2.9 81.2 2319 1828 

Jorgo 22 15 45 18 63.2 69.2 75 38 1301 1 3 3.1 30.7 2192 1662 
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Appendix 5.14 The density of geophytic fern species (numbers of individuals per 400 m
2 
plot) in interior and edge habitats of 18 forest patches and 

attributes of the patches associated with fragmentation and environment ( area, D. score= disturbance score, shape, edge density, rainfall and altitude). 

Patch Interior 

SR 

Edge 

SR 

Density/plot 

Interior 

Density/plot 

edge 

Area of 

patches 

D. score 

interior 

D. score 

edge 

Shape 

index 

Edge 

density 

Altitude Rainfall 

Sibu1 28 25 82 71 37 2.7 2.5 2.3 137.1 1942 1576 

Sibu2 37 23 85 51 52 2.5 3.5 2.5 125.7 2198 1576 

Markafa 29 25 101 71 55 3 3.2 3.2 152.4 1918 1576 

Issya 34 24 110 64 109 1.5 3.5 4.9 162.6 2197 1928 

Qotora1 33 22 114 49 2000 2 3.8 8.4 62.9 2179 1928 

Qotora2 27 20 103 55 164 1 2.9 2.7 76.3 2312 1928 

Koda 33 27 115 76 1958 0 2.2 7.9 63.3 2296 1780 

Simbir 26 26 127 55 248.7 3 3.7 4.9 111.8 2268 1780 

Dike 36 23 137 82 656 1.5 1.5 5.6 78 2422 1811 

Jireen 25 21 134 88 52 1.5 1.5 2.7 132 2356 1811 

Busa-Jireen 28 21 107 53 151 2.5 3.5 3.6 105 2156 1811 

Tulu_Boka 29 21 121 60 304 2 2.8 4.7 96.2 2188 1662 

Yaro 23 18 130 62 42.8 2 2.7 2.4 128.9 2141 1828 

Laga-

Chancho 

26 17 61 34 85.2 3.5 4 2.1 110 1951 1576 

Gobe 27 20 117 48 620 2 4 7.8 111.6 2005 1576 

Malate 29 22 78 60 174 3.3 2.6 3.7 99.8 2044 1828 

Tulu_Mako 31 25 77 43 165.6 2.7 4 2.9 81.2 2319 1828 

Jorgo 29 17 82 54 1301 3.5 3.7 3.1 30.7 2192 1662 
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Appendix 5.15  Density of epiphytes under each functional groups  

Functional groups Density         

Forest-habitat species Interior Edge Woody as well as 

pseudobulbus stem 

 Interior  Edge 

Aerangis brachycarpa 7 0 Aerangis brachycarpa 7 0 

Aerangis thomsonii 8 0 Aerangis thomsonii 8 0 

Ancistrorhynchus metteniae 6 0 Angraecopsis holochila   2 2 

Angraecopsis holochila   2 2 Angraecopsis parviflora 9 7 

Angraecopsis parviflora 9 7 Ansellia africana 51 12 

Arthropteris monocarpa 9 9 Bulbophyllum josephi 39 11 

Asplenium aethiopicum 87 73 Bulbophyllum lupulinum  6 0 

Asplenium hypomelas 9 0 Bulbophyllum maximum 39 17 

Asplenium sandersonii  87 5 Bulbophyllum sandersoni 5 5 

Asplenium theciferum  182 87 Calyptrochilum christyanum 67 12 

Bolusiella iridifolia  55 0 Canarina eminii 1 1 

Bulbophyllum lupulinum 6 0 Corymboriks corymbis 8 0 

Canarina eminii 1 1 Culcasia falcifolia 31 12 

Corymboriks corymbis 8 0 Cyrtorchis arcuata  67 11 

Culcasia falcifolia 31 12 Diaphananthe adoxa 10 0 

Diaphananthe adoxa 10 0 Diaphananthe 

fragrantissima  

5 4 

Diaphananthe rohrii 56 0 Huperzia dacrydioides 2 2 

Diaphananthe tenuicalcar  83 14 Polystachya bennettiana   1 16 

Drynaria volkensii 92 67 Polystachya cultriformis  34 0 

Elaphoglossum 

acrostidoides 

117 0 Polystachya eurychila  4 4 

Elaphoglossum deckeni 32 0 Polystachya fusiformis  4 0 

Elaphoglossum lastii 23 0 Polystachya lindblomii  21 9 

Huperzia dacrydioides 2 2 Polystachya steudneri  4 4 

Lepisorus excavatus   2 2 Polystachya tessellata  3 0 

Liparis abyssinica 1 0 Tridactyle bicaudata 5 0 

Loxogramme abyssinica  11 0    17.3±8.1  5.2±

2.2 

Peperomia  rotundifolia 178 101 Herbaceous leaf     

Peperomia abyssinica  101 41 Ansellia africana 51 12 

Peperomia tetraphylla  234 127 Arthropteris monocarpa  9 9 

Pleopeltis macrocarpa  78 54 Arthropteris orientalis   77 25 

Polystachya cultriformis  34 0 Asplenium aethiopicum  87 73 

Polystachya eurychila  4 4 Asplenium hypomelas 9 0 

Polystachya fusiformis  4 0 Asplenium sandersonii 87 0 

Polystachya lindblomii  21 9 Asplenium theciferum  182 87 

Polystachya tessellata  3 0 Bolusiella iridifolia 55 0 

Pyrrosia schimperiana  4 0 Bulbophyllum josephi 39 11 

Thelypteris confluens 10 0 Bulbophyllum lupulinum  6 0 

Tridactyle bicaudata  5 0 Canarina eminii 1 1 

Vittaria volkensii  3 0 Corymboriks corymbis 8 0 
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   41.4±17.9  15.8±10.1 Diaphananthe adoxa 10 0 

Wide-habitat species     Diaphananthe rohrii 56 0 

Ansellia africana 51 12 Diaphananthe tenuicalcar  83 14 

Arthropteris orientalis   77 25 Drynaria volkensii 92 67 

Bulbophyllum josephi 39 11 Elaphoglossum 

acrostidoides 

117 0 

Bulbophyllum maximum 39 17 Elaphoglossum lastii 23 0 

Bulbophyllum sandersoni 5 5 Lepisorus excavatus   2 2 

Diaphananthe 

fragrantissima 

5 4 Loxogramme abyssinica  11 0 

Microcoelia globulosa 91 21 Pleopeltis macrocarpa  78 54 

Polystachya bennettiana   1 16 Polystachya bennettiana   1 16 

Polystachya steudneri 4 4 Polystachya cultriformis 34 0 

   34.7±22.0  12.8±4.9 Polystachya eurychila  4 4 

Leathery leaves and  

Succulent stem 

    Polystachya fusiformis  4 0 

Aerangis brachycarpa 7 0 Polystachya lindblomii  21 9 

Aerangis thomsonii 8 0 Polystachya steudneri  4 4 

Ancistrorhynchus metteniae 6 0 Polystachya tessellata  3 0 

Angraecopsis parviflora 9 7 Pyrrosia schimperiana  4 0 

Bulbophyllum maximum 39 17 Thelypteris confluens 10 0 

Bulbophyllum sandersoni 5 5    38.9±15.9  12.9

±8.6 

Calyptrochilum christyanum 67 12       

Cyrtorchis arcuata 67 11       

Diaphananthe 

fragrantissima 

5 4       

Huperzia dacrydioides 2 2       

Liparis abyssinica 1 0       

Microcoelia globulosa 91 21       

Peperomia abyssinica  101 41       

Peperomia rotundifolia 178 101       

Peperomia tetraphylla 234 127       

Polystachya tessellata 3 0       

Tridactyle bicaudata  5 0       

Vittaria volkensii  3 0       

   46.2±31.2  19.3±16.8       

Herbaceous stem           

Ancistrorhynchus metteniae 6 0       

Arthropteris monocarpa  9 9       

Arthropteris orientalis   77 25       

Asplenium aethiopicum  87 73       

Asplenium hypomelas 9 0       

Asplenium sandersonii  87 0       

Asplenium theciferum  182 87       

Bolusiella iridifolia  55 0       

Diaphananthe rohrii 56 0       
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Diaphananthe tenuicalcar  83 14       

Drynaria volkensii 92 67       

Elaphoglossum 

acrostidoides 

117 0       

Elaphoglossum deckeni 32 0       

Elaphoglossum lastii 23 0       

Huperzia dacrydioides 2 2       

Lepisorus excavatus   2 2       

Liparis abyssinica 1 0       

Loxogramme abyssinica  11 0       

Microcoelia globulosa   91 21       

Pyrrosia schimperiana  4 0       

Thelypteris confluens 10 0       

Vittaria volkensii 3 0       

   47.2±20.5  13.6±11.0       

 

5.16 Density of geophytic fern under each functional groups (Forest-habitat species, Forest-margin 

species, Spaced frond species, Tufted frond species, erect and creeping rhizome species. (Mean±SE) 

Forest-habitat species Interior Edge  Spaced frond type     

Asplenium formosum 63 21 Adiantum lunulatum  37 21 

Asplenium gemmiferum 137 15 Arthropteris monocarpa  33 14 

Asplenium hypomelas 87 54 Arthropteris orientalis 58 81 

Asplenium lunulatum 70 59 Athyrium filix-femia 61 44 

Asplenium monanthes 98 47 Blotiella glabra 120 64 

Asplenium sandersoni 61 37 Cheilanthes farinosa 38 3 

Asplenium theciferum 72 61 Conigramme africana 63 10 

Blotiella glabra 120 64 Dicranopteris linearis 41 25 

Conigramme africana 63 10 Doryopteris concolor 46 32 

Drynaria volkensii 115 79 Hypolepis sparsisora 60 14 

Dryopteris athamantica 42 38 Microlepia speluncae 50 34 

Loxogramma abyssinica 21 0 Pleopeltis macrocarpa 25 40 

Marsilia minuta 42 26 Pteridium aquilinus 0 115 

Microlepia speluncae 50 34 Thelypteris confluens 26 0 

Pleopeltis macrocarpa 25 40  Mean(±SE) 47±14.3 35.5±16.9 

Marattia fraxinea 39 46 Tufted frond type     

Thelypteris confluens 26 0 Asplenium anisophyllum 70 22 

 Mean (±SE) 66.5±16.5 37.1±10.9 Asplenium erectum 102 0 

Forest- margin     Asplenium formosum 63 0 

Adiantum lunulatum  37 21 Asplenium gemmiferum 137 15 

Arthropteris orientalis 58 81 Asplenium hypomelas 87 54 

Athyrium filix-femia 61 44 Asplenium lunulatum 70 59 

Cheilanthes farinosa 38 3 Asplenium monanthes 98 47 

Dicranopteris linearis 41 25 Asplenium sandersoni 61 37 

Doryopteris concolor 46 32 Asplenium theciferum 72 61 
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Hypolepis sparsisora 60 14 Drynaria volkensii 115 79 

Pteridium aquilinus 0 115 Dryopteris athamantica 42 38 

 Mean (±SE) 42.6±23.1 41.9±26.2 Loxogramma abyssinica 21 0 

Erect Rhizome type     Marattia fraxinea 39 46 

Adiantum lunulatum  37 21  Mean (±SE) 75.2±17.6 35.2±14.1 

Arthropteris orientalis 58 81 Creeping Rhizome type     

Asplenium erectum 102 0 Arthropteris monocarpa  33 14 

Asplenium formosum 63 0 Blotiella glabra 120 64 

Asplenium gemmiferum 137 15 Dicranopteris linearis 41 25 

Asplenium hypomelas 87 54 Doryopteris concolor 46 32 

Asplenium lunulatum 70 59 Drynaria volkensii 115 79 

Asplenium monanthes 98 47 Dryopteris athamantica 42 38 

Asplenium sandersoni 61 37 Marattia fraxinea 39 46 

Asplenium theciferum 72 61 Marsilia minuta 42 26 

Athyrium filix-femia 61 44 Microlepia speluncae 50 34 

Cheilanthes farinosa 38 3 Pleopeltis macrocarpa 25 40 

Conigramme africana 63 10 Thelypteris confluens 26 0 

Hypolepis sparsisora 60 14  Mean (±SE) 52.6±19.5 36.2±12.9 

Loxogramma abyssinica 21 0       

Pteridium aquilinus 0 115       

 Mean (±SE) 64.3±15.9 35.1±16.4       

 

Appendix 5.17 Mean score of species tree functional groups (forest-habitat, wide-habitat and forest-

margin species) on CCA axis one and axis two of the environmental variables (axis 1 = altitude, rainfall, 

edge disturbance and patch shape, axis 2= edge density and interior disturbance)  

Forest-habitat species Axis 1 Axis 2   Axis 1 Axis 2 

Canthium oligocaprpa 0.12 1.50 Widely-distributed species     

Cassipurea malosana 0.04 0.43 Allophylus abyssinicus  0.46 0.56 

Chionanthus mildbraedii  0.51 0.15 Bersama abyssinica  0.11 0.07 

Dracaena fragrans 0.60 0.69 Croton macrostachyus  0.15 0.13 

Galinera saxifraga 0.32 0.88 Pouteria adolfi-friederici 1.54 0.85 

Oxyanthus speciosus  0.21 0.72 Syzygium guineense  0.60 0.38 

Vepris dainelli  1.89 0.39 Mean (±SE) 0.57±0.21 0.55±0.19 

Olea welw 0.45 3.00       

Mean (±SE) 0.47±0.19 0.91±0.29       

Forest-margin species  Axis 1 Axis 2       

Albizia gummifera  0.39 0.62       

Albizia schimperiana  0.01 1.44       

Maesa lanceolata  0.65 0.62       

Milletia ferrugina  0.82 0.23       

Nuxia congesta  1.35 1.20       

Rhus quartinana 1.01 0.00       

Mean (±SE) 0.70±0.09 0.69±0.23       
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Appendix 5.18  Plant species list of edge and interior of 18 forest patches  

Acanthaceae Hypericum peplidifolium A. Rch 

Thunbergia alata Boj. ex. Sims Hypericum quartinianum A. Rich.  

Asystasia gangetica (L. )T. Anders Icacinaceae 

Brillantaisis madagascariensis  Lindau Apodytes dimidata, Arn. 

Dicliptera maculata Nees Lamaripsidaceae 

Dicliptera verticillatta (Forssk.) C. 

Christens 

Elaphoglossum acrostidoides (Hook. & Grev.) Schelpe 

Hypoestes  forskaolii (Vahl.) Roem. & 

Schult 

Elaphoglossum deckeni (Huhn) C. Chr 

Hypoestes triflora (Roem. Et Schult Elaphoglossum lastii (Baker) C. Chr 

Isoglossa laxa Oliv. Lamiaceae 

Justcia sp Achyrospermum schimperi (Hochst. Ex Briq) Perkins ex 

Mildbr 

Justicia betonica Linn Ajuga integrifolia Buch.-Ham 

Justicia heterocarpa T. Anderson Plectranthus punctatus L' Herit 

Justicia striata (Klotzsch) Bullock Plectranthus silvestris Gurke 

Mellera lobulata S. Moore Sanicula elata Buch-Ham 

Phaulopsis imbricata (Forssk.) Sweet Satrureja paradoxa Vatke 

Acanthopale pubescens (Lindau) C.B.Cl. Satureia abyssinica (Benth.) Briq. 

Acanthus eminens C.B.Clarke  Leonotis ocymifolia (Burm.f.) Iwarsson  

Justcia declipteriodes Lindau Ocimum lamiifolium (Hochst. ex Bent.) DC.  

Justcia schimperiana Ocimum suave Willd. 

Adiantaceae Plectranthus assurgens (Baker) J.K. Morton 

Cheilanthes farinosa (Forssk.) Kaulf Premna schimperi Engl.  

Amaranthaceae Pycnostachys abyssinica Fresen.  

Sericostachys scandens Gilg & Lopr Pycnostachys eminii Gürke  

Achyranthes aspera L. Lauraceae 

Celosia trigyna L Cassytha filiformis L.  

Cyathula polycephala Baker Ocotea keynensis 

Gomphrena celosiodesMart. Liliaceae 

Cyathula uncinulata (Schrad.) Schinz Simlax aspera L 

Amaryllidaceae Sparmannia ricinocarpa 

Scadoxus multiflorus (Martyn) Raf. Lycopodiaceae 

Anacardiaceae Huperzia dacrydioides (Baker) Pic. Serm 

Rhus ruspolii Engl.  Malvaceae 

Rhus glutinosa A. Rich Sida collina  Schlechtend  

Rhus quartiniana A.Rich Sida ternata L.f 

Rhus vulgare Meikle Wissadula rostrata (Schumach. & Thonn.) Hook. F 

Apiaceae Abutilon cecillii 

Apium sp Abutilon longicuspe 

Centella asiatica L. Hibiscus dongolensis 

Hydrocotyle mannii Hook. F.  Hibiscus ludwigii Eckl. & Zeyh  

Oenanthe palustris (Chiov.) C. Norman Hibiscus micranthus L.f.  

Pimpinella sp. Malva verticillata 



361 

 

Torilis arvensis (Huds.) Link Pavonia urens Cav. 

Apocynaceae Grewia ferruginea Hochst. ex A. Rich. 

Landolphia buchananii (Hall. F.) Stapf Maranthaceae 

Oncinotis tenuiloba Stapf Maranthochloa leucantha (A. Rich) Munro 

Aquifoliaceae Marattia fraxinea Sm 

Ilex mitis (L.) Radlk.  Marsileaceae 

Araceae  Marsilea minuta L.  

Culcasia falcifolia Engl. Meliaceae 

Amorphophallus abyssinicus (A. Rich.) N. 

E. Br. 

Eckebergia capensis Saprrm.  

Amorphophallus gallaensis (Engl.) N. E. Br. Lepidotrichilia volkensii (Gürke) Leroy  

Arisaema flavum (Forssk.) Schott Trichilia dregeana Sond 

Arisaema schimperanum Schott Trichilia emitica 

Araliaceae Melianthaceae 

Polyscias fulva (Heirn) Harms Bersama abyssinica Fresen.  

Schefflera abyssinica (Hochst ex A. Rich) 

Harms 

Cissampelos pareira L-Abuta 

Schefflera volkensii (Engl.) Harms Cissampleos torulosa E. Mey. ex Harv 

Phoenix reclinata Jacq.  Stephania abyssinica (Dillion ex A. Rich.) Walp.  

Asclepiadaceae Tiliachora troupinii Cufod 

Blyttia fruticulosum Decne Moraceae 

Ceropegia cufodontis Chiov Dorestenia soerensenii 

Pentarrhinum abyssinicum Ficus capreaefolia Del. 

Pentarrhinum inspidum E. Mey Antiaris toxicara Lesch 

Pergularia daemia (Forssk.) Chiov subsp. 

daemia  

Ficus exasperata Vahl 

Periploca linearifolia Quert.-Dill. & A. 

Rich.  

Ficus lutea Vahl 

Secamone parvifolia (Oliv.) Bullock  Ficus mucuso Ficalho 

Secamone punctulata Decne Ficus ovata Vahl. 

Gomphocarpus fruticosus (L.) Ficus palmata Forsk 

Asparagaceae Ficus sur Forssk.  

Asparagus africana Liana Ficus sycomorus L.  

Asparagus officinalis L. Ficus thonningii Blume 

Aspidiaceae Ficus vallis-choudae Del. 

Tectaria gemmifera (Fee) Alston Ficus vasta Forssk.  

Aspleniaceae Trilepisium madagascariense DC 

Asplenium abyssinicum Fee Musaceae 

Asplenium aethiopicum (Burm.f.) Bech Ensete ventricosum Maurelii 

Asplenium anisophyllum Kunze Myrsinaceae 

Asplenium erectum (Bory ex Willd Embelia schimperi Vatke  

Asplenium formosum Wild Myrsine africana L.  

Asplenium gemmiferum Schrad Maesa lanceolata Forssk.  

Asplenium hypomelas Kuhn Myrtaceae 

Asplenium lunulatum Sw Eucalyptus camaldulensis Dehnh 

Asplenium monanthes L. Eucalyptus globulus Labill 
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Asplenium sandersoni H.K.  Eugenia bukobensis Engl. 

Asplenium theciferum (Humb., Bonpl. & 

Kunth 

Syzygium guineense (Willd.) DC. ssp. afromontanum F. 

White  

Asteraceae Nyctaginaceae 

Mikaniopsis clematoides (Rch. Bip ex . A. 

Rich.) Mile-Redth 

Boehavia diffusa 

Acmella caulirhiza Del. Oleaceae 

Ageratum  conyzoides L.  Jasminum abyssinicum Hochst. ex DC.  

Anthemis tigreensis (J. Gay ex A. Rich Chionanthus mildbraedii (Gilg &Scellenb.) Stearn. 

Bidens pilosa L Olea capensis subsp macrocarpa 

Carduus nyassanus (S. Moore) R. E. Fr. Olea welwitschii (Knobl.) Gilg & Schellenb 

Cirsium dender Friis Schrebera alata (Hochst.) Welw.  

Crassocephalum montuosum (S. Moore) 

Milne-Redh 
Oleandraceae 

Crepis rueppellii Sch. Bip Arthropteris orientalis  (J.F. Gmel.) Posth 

Emilia abyssinica (Sch.Bip. Ex A.Rich) C. 

Jeffrey 

Adiantum lunulatum (Burm.f. 

Galinsoga parviflora Cav Opiliaceae 

Galinsoga qaudriradiata Ruiz & Pav Opilia campestris Engl. 

Gutenbergia rueppellii Sch. Bip Orchidaceae 

Lactuca inermis Forssk. Aerangis brachycarpa A. Rich 

Spilanthes costata Benth Aerangis thomsonii (Rolfe) Schltr. 

Taraxcum sp Ancistrorhynchus metteniae (Kraenzl.) Summerh 

Aspilia africana (Pers.) C. D. Adams Angraecopsis holochila  Summerh 

Aspilia mossambicensis (Oliv.) Wild Angraecopsis parviflora (Thouars) Schltr 

Bothriocline schimperi Oliv. & Hiern ex 

Benth.  

Ansellia africana Lindl. 

Helichrysum splendidum (Thunb.) Less Arthropteris monocarpa (Cordem.) C. Chr 

Laggera pterodonta (DC.) Sch, Bip. Ex Oli Bulbophyllum josephi (Kuntze) Summerh 

Microglossa pyrifolia (Lam.) Kuntze  Bulbophyllum lupulinum Lindl 

Solanecio gigas(Vatke) C.Jeffrey Bulbophyllum maximum (Lindl.) Richb.f. 

Solanecio mannii (Hook.f.) C.Jeffrey Bulbophyllum sandersoni (Hook.f. 

Vernonia adoensis Sch. Bip. Ex Walp. Calyptrochilum christyanum (Rchb.f.) Summerh 

Vernonia auriculifera Hiern.  Corymborkis corymbis Thouars 

Vernonia biafrae Oliv. & Hiern Cyrtorchis arcuata (Lindl) Schltr 

Vernonia dalettiensis Diaphananthe adoxa F.N.Rasm 

Vernonia glabra (Steetz) Vatke  Diaphananthe fragrantissima (Rchb.f.) Schltr 

Vernonia hochstetteri Sch-Bip Diaphananthe rohrii (Rchb.f.) Summerh 

Vernonia myriantha Hook. f.  Diaphananthe tenuicalcar Summerh 

Vernonia ruepellii Sch. Bip. Ex Walp. Liparis abyssinica A. Rich 

Vernonia thomsoniana Oliv. & Hiern Microcoelia globulosa (Hochst.) L.  

Vernonia turbinata Polystachya bennettiana  (Rchb. F. 

Vernonia urticifolia A. Rich.  Polystachya cultriformis (Thouars) Spreng 

Vernonia amygdalina Del Polystachya eurychila Summerh 

Bidens ghedoensis Mesfin Polystachya fusiformis (Thouars) Lindl. 

Baddlejaceae Polystachya lindblomii Schltr 
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Nuxia congesta R.Br. ex Fresen.  Polystachya steudneri Reichb.f. 

Nuxia opositfolia Polystachya tessellata (Jacq.) Garay & H.R.Sweet 

Balsaminaceae Tridactyle bicaudata (Lindl.) Schltr 

Impatiens hochstetteri Warb Eulophia guineensis 

Bignoniaceae Eulophia guineensis Lindl 

Stereospermum kunthianum Cham Habenaria cornuta 

Boraginaceae Habenaria cornuta Lindl. 

Cordia africana Lam.  Habenaria humilior Rchb.f 

Ehertia cymosa Thonn. Habenaria schimperiana A. Rich 

Brassicaceae Nervilia bicarinata (Bl.) Schltr. 

Cardamine africana L Oeceoclades saundersiana Rchb. F.Garay & P. Taylor 

Cardamine parviflora L Polystachya rivae Schweinf. 

Cardamine trichocarpa Hochst. Ex A. Rich Oxalidaceae 

Buddlejiaceae Oxalis corniculata L. 

Buddleja polystachya Fresen Oxalis latifolia H. B. K.  

Campanulaceae Oxalis trifolia 

Canarina abyssinica Engl. Phytolaccaceae 

Canarina eminii Asch. Ex Schweinf Hilleria latifolia (Lam.) H. Walter 

Lobelia gibberoa Hemsl.  Phytolacca dodecandra L´Herit.  

Cannaceae Piperaceae 

Canna indica L Peperomia  rotundifolia (L.) Kunth 

Capparidaceae Peperomia abyssinica Miq 

Gynandropsis gynandra Peperomia tetraphylla (G. Frost) Hook. & Arn 

Ritchiea albersii Gilg Peperomia molleri C. DC. 

Caryophylaceae Piper umbellatum Linn 

Drymaria cordata (Linn) Willd Piper capense L.f. var. capense 

Celasteraceae Pittosporaceae 

Hippocratea africana (Wild) Loes Pittosporum viridiflorum Sim.  

Hippocratea goetzei Loes Plantaginaceae 

Hippocratea pallens Plancho ex Oliver Plantago lanceolata L 

Carissa spinarium Linn Podocarpaceae 

Maytenus gracilipes (Welw. ex Oliv.) Exell  Podocarpus falcatus (Thunb.) Mirb 

Maytenus obscura (A Rich) Cuf Polygalaceae 

Elaeodendron buchananii (Loes) Loes Polygala sp 

Maytenus adat (Loes.) Sebsebe Polygonaceae  

Maytenus arbutifolia (A. Rich.) Wilczek  Persicaria setosula (A. Rich.) K. L. Wilson 

Maytenus undata (Thunb.) Blakelock Rumex abyssinicus Jacq 

Combretaceae Rumex nepalensis Spreng 

Combretum collinum fresen Polypodiaceae 

Combretum paniculatum Vent. Lepisorus excavatus  (Willd) Ching 

Commelinaceae Pyrrosia schimperiana (Kuhn) Alston 

Aneilema beniniense (P. Beauv) Kunth Conigramme africana 

Commeliana diffusa Drynaria volkensii Hieron 

Commelina foliacea Chiov Loxogramme abyssinica (Baker) M. G. Price 
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Commelina latifolia (Hochest. Ex A. Rich Pleopeltis macrocarpa (Willd.) Kaulf 

Cynotis barbata D. Don Pteridaceae 

Pollia condensata C. B. CI. Doryopteris concolor (Langsd. & Fisch.) Kuhn 

Pollia mannii C. B. CI. Ranunculaceae 

Convolvulaceae Clematis hirsuta Perr. & Guill. 

Ipomoea abyssinica Clematis longicauda Steud 

Ipomoea cairica (L.) Sweet  Clematis simensis Fres. 

Ipomoea hochstetteri House Ranunculus multifidus Forssk.  

Ipomoea obscura (L.) Ker-Gawl.  Rhamnaceae 

Ipomoea tenuirostris Steud. Ex Choisy Gouania longispicata Engl 

Costaceae Helinus mystacinus (Ait.) E. Mey. ex Steud.  

Costus afer Ker-Gawl Scutia myrtina (Burm. f.) Kurz 

Crassulaceae Rhamnus prinoides L`Herit.  

Crassula alsinoides (Hook. F.) Engl Rhamnus staddo A. Rich.  

Kalanchoe densiflora Rolfe Rhizophoraceae 

Kalanchoe sp Cassipourea malosana (Bak.) Alston 

Kalanchoe sp Rosaceae 

Cucurbitaceae Alchemilla cryptantha A. Rich 

Kedrostis foetidissima (Jacq.) Cogn. Alchemilla rothii Oliv.  

Lagenaria abyssinica (Hook.f.) C.Jeffrey Rubus apetalus Poir.  

Momordica foetida Schumach Rubus steudneri Schweinf.  

Peponium vogelii (Hook.f.) Engle. Prunus africana (Hook.f.) Kalkm.  

Sicyos polyacanthus Cong. Rubiaceae 

Zeheneria scabra (Linn. f.) Sond.  Keetia gueinzii (Sond.) Bridson 

Cupressaceae Geophila repens (Linn) I.M. Johnston 

Cupressus lusitanica Miller  Crossopteryx febrifuga (Afz. Ex G. Don) Benth 

Cyatheaceae Oxyanthus lepidus 

Cyathea manniana Pavetta abyssinica Fresen  

Cyperaceae Pavetta oliveriana Hiern  

Carex sp Pentas lanceolata  Forssk 

Cyperus esculenta Rytigynia neglecta (Hiern) Robyns 

Kyllinga sp Breonadia salicina (Vahl) Hepper &Wood 

Dennstaedtiaceae Canthium oligocarpum Hiern  

Blotiella glabra (Bory) R. M. Tryon Canthium sp 

Hypolepis sparsisora (Schrad.) Kuhn Coffea arabica L. 

Microlepia speluncae (L.) Moore Galiniera saxifraga (Hochst.) Bridson  

Pteridium aquilinum (L.) Kuhn Gardenia ternifolia Schumach & Thonn 

Dichondraceae Oxyanthus speciosus sbsp. Stenocarpus (K.Schum.) 

Bridson 

Dichondra repens (Forst. & Forst.  Psychotria orophila Petit  

Dioscoreaceae Psydrax schimperiana (A. Rich.) Bridson  

Dioscorea bulbifera L. Rothmannia urcelliformis (Hiern) Robyns 

Tacca leontopetaloides (L.) Kuntze Sarcocephalus latifolius (Sm.) Bruce. 

Dracaenaceae Vangueria apiculata K. Schum 

Dracaena afromontana Mildbr.  Rutaceae 
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Dracaena fragrans (L) Ker-Gawl  Clausena anisata (Willd.) Benth.  

Dracaena steudneri Engl Fagaropsis angolensis (Engl.) Dale 

Drynariaceae Teclea nobilis Del.  

Drynaria volkensii Hieron Vepris dainelli (Pichi-Sermolli) Kokwaro 

Dryopteridaceae Sapindaceae 

Athyrium filix-femia Paullinia pinnata (L) 

Dryopteris athamantica (Kunze) Kunze Dododaea angustifolia 

Ebenaceae Allophyllus abyssinicus (Hochst.) Radlkofer  

Diospyros abyssinica (Hiern) F. White  Allophylus macrobotrys (Gilg) 

Euphorbiaceae Blighia unijugata 

Euphorbia depauperata Hochest. Ex A. Rich Pappea capensis Eckl. & Zeyh.  

Euphorbia schimperiana Scheele Sapotaceae 

Phyllanthus sp Mimusops kummel Bruce ex A.DC. 

Tragia brevipes Pax Pouteria adolfi-friederici 

Acalypha acrogyna Pax Simaroubaceae 

Acalypha marissima M.G. Gilbert Brucea antidysenterica J.F. Mill.  

Acalypha ornate Hochst. Ex A. Rich Solanaceae 

Acalypha psilostachya Hochst. Ex A. Rich Physalis peruviana Linn 

Acalypha racemosa Baill Solanium nigrum 

Clutia abyssinica Jaub. & Spach.  Discopodium penninervium Hochst.  

Erythrococcaa trichogyne (Muell Arg) 

Prain (det A Radcliffe-Smith) 

Solanium anguivi Lam 

Phyllanthus limmuensis Cuf Solanium schimperiana 

Phyllanthus ovalifolius Forssk Solaniun indicum L 

Argomuellera macrophylla Pax Stericuliaceae 

Bridelia micrantha (Hochs) Baill Dombya torrida (J.F. Gmel.) P. Bamps  

Croton macrostachyus Del.  Thelypteridaceae 

Euphorbia acandilabrium Thelypteris confluens (Thunb.) C.V. Morton 

Euphorbia ampliphylla Pax  Tiliaceae 

Macaranga capensis var kilimandscharica 

(Pax) Friis & Gilbert 

Corchorus trilocularis L. 

Sapium ellipticum (Hochst) Pax. Triumfetta annua L. 

Fabaceae Triumfetta rhomboidea (Trimfetta Buee)  

Dolichos sericeus E. Mey Ulmaceae 

Lablab purpureus (L) Sweet Celtis africana Burm. F.  

Clitoria ternata L. Celtis toka (Forssk.) Hepper & wood 

Desmodium hirtum Guill. & Perr Celts zenkeri Endl. 

Desmodium repandum (Vahl) DC Trema orientalis (L) Blume 

Thalictrum rhynchocarpum Urticaceae 

Vermifrux abyssinica (A. Rich) Gillett Urerea hypselodendron (A. Rich.) Wedd.  

Calpurnia aurea (Ait.) Benth.  Urerea trinervis (Hochst. Ex Krauss) Friis & immelman 

Crotalaria emarginella Droguetia iners Schweinf. 

Kotschya sp Pilea rivularis Wedd 

Pterolobium stellatum (Forssk.) Brenan  Pilea tetraphylla Steud. Blume 

Acacia abyssinica Urtica simensis steudel 
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Albizia grandibracteata. T Verbenaceae 

Albizia gummifera (J.F.Gmel.) C.A.Sm.  Clerodendron myricoides (Hochst.) R. Br.ex Vatke.  

Albizia schimperiana Oliv.  Lantana trifolia L 

Dalbergia lactea Vatke Lippia adoensis Hochst. ex Walp.  

Entada abyssinica Steud. ex A. Rich.  Vitaceae 

Milletia ferruginea (Hochst) Baker Cissus petiolata Hook. f. 

Senna petersiana (Bolle) Lock Cissus quadrangularis Linn 

Flacourtaceae Cyphostemma cyphoetalum (Fresen.) Desc. ex Wild & 

R.B.  

Dovyalis abyssinica (A. Rich) Warb.  Rhoicissus tridentata (L. f.) Wild & R.B. Drumm.Willd & 

Drummond  

Flacourtia indica (Burm.f.) Merr.  Vittariaceae 

Geraniaceae Vittaria volkensii Heiron 

Geranium ocellatum Cambess. Zingibraceae 

Gleicheniaceae Aframomum corrorima (Braun) P.C.M 

Dicranopteris linearis (Burm. F.) Underw Aframomum zambesiacum K. Schum 

Guttiferae Zygophyllaceae 

Garcinia buchananii Baker Tribulus terrestris Linn. 

Hypericaceae Didymodoxa cafra (Thunb) Friis & Wilmot 

  
 

Appendix 6.1 Plant species list of six sacred groves.  

Acanthaceae Leucas martinicensis R. Br. 

Acanthus eminens C.B.Clarke  Lippia adoensis Hochst. ex Walp.  

Acanthopale pubescens (Lindau) C.B.Cl Ocimum lamiifolium Hochst. ex Benth 

Justicia schimperiana Hochst. Ex A. Rich Plectranthus assurgens (Baker) J.K. Morton 

Hypoestes  forskaolii (Vahl.) Roem. & Schult Premna schimperi Engl. 

Justicia diclipteroides Lindau Pycnostachys abyssinica Fresen. 

Thunbergia alata Bojer ex Sims Pycnostachys eminii Gürke  

Alismataceae Satrureja paradoxa Vatke 

Alisma plantago-aquatica Lobelaceae 

Amarantaceae Lobelia gibberoa Hemsl 

Achyranthes aspera L.  Malvaceae 

Apiaceae Abutilon longicuspe Hochst. Ex A. Rich 

Oenothera fruticosa A. Gray. Hibiscus dongolensis Delile 

Apocynaceae Pavonia urens Cav 

Carissa spinarum L. Hibiscus macranthus Hochst A ex Rich 

Aquifoliaceae Bersama abyssinica Fresen.  

Ilex mitis (L.) Radlk.  Ekebergia capensis Saprrm.  

Araceae Lepidotrichilia volkensii (Gürke) Leroy  

Arisaema schimperiana Schott Moraceae 

Araliaceae Ficus palmata Will 

Schefflera abyssinica (Hochst ex A. Rich) Harms Ficus sur Forssk.  

Schefflera volkensii (Engl.) Harms Ficus thonningii Blume 

Arecaceae Ficus vasta Forssk. 
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Phoenix reclinata Jacq.  Myrsinaceae 

Asclepiadiaceae Embelia schimperi Vatke  

Pentarrhinum abyssinicum Decne Maesa lanceolata Forssk.  

Pergularia daemia (Forssk.) Chiov. Myrsine africana L.  

Pentarrhinum abyssinicum Myrtaceae 

Pentarrhinum inspidum E. Mey Eucalyptus globulus Labill 

Asparagaceae Syzygium guineense (Willd.) DC. ssp. 

afromontanum F. White  

Asparagus racemosus Willd. Nyctaginaceae 

Aspleniaceae Boerhavia diffusa 

Asplenium sandersonii Hook Oleaceae 

Asteraceae Chionanthus mildbraedii (Gilg &Scellenb.) 

Stearn. 

Bidens ghedoensis Mesfin Jasminum abyssinicum Hochst. ex DC.  

Bothriocline schimperi Oliv. & Hiern ex Benth.  Olea capensis subsp macrocarpa (C.H.Wright) 

I. Verd 

Carduus nyassanus (S. Moore) R. E. Fr. Olea welwitschii (Knobl.) Gilg & Schellenb 

Anthemis tigreensis A. Rich Schrebera alata (Hochst.) Welw.  

Aspilia africana (Pers.) C. Adams Orchidaceae 

Galinsoga parviflora Cav Aerangis brachycarpa 

Helichrysum splendidum (Thunb.) Less Oxalidaceae 

Vernonia amygdalina Del Oxalis corniculata L. 

Vernonia auriculifera Hiern.  Phytolaccaceae 

Vernonia biafrae Oliv. & Hiern Phytolacca dodecandra L´Herit.  

Vernonia hochstetteri Schultz Bip. Piperaceae 

Balsaminaceae Peperomia abyssinica Miq 

Impatiens rothii Hook.f. Piper capense L.f. 

Impatiens hochstetteri Warb Pittosporaceae 

Boraginaceae Pittosporum viridiflorum Sim.  

Cordia africana Lam. Poaceae 

Buddlejaceae Panicum hochstetteri Steud. 

Nuxia congesta R. Br. Ex Fresen. Hyparrhenia rufa (Nees) Stapf 

Caparidaceae Oplismenus compositus (L.) P. Beauv 

Ritchiea albersii Gilg Polygalaceae 

Celastraceae Polygala steudneri Chordat 

Hippocratea africana (Wild) Loes Rumex abyssinicus Jacq 

Hippocratea goetzei Loes Rumex nepalensis Spreng. 

Maytenus adat (Loes.) Sebsebe Drynaria volkensii Hieron 

Maytenus arbutifolia (A. Rich.) Wilczek  Ranunculaceae 

Maytenus gracilipes (Welw. ex Oliv.) Exell  Clematis hirsuta Perr. & Guill. 

Commelinaceae Clematis simensis Fres. 

Commelina diffusa Burm. f. Ranunculus multifidus Forssk. 

Convolvulaceae Rhamnaceae 

Dichondra repens (J.R.Forst. & G.Frost Rhamnus prinoides L`Herit.  

Crassulaceae Rhamnus staddo A. Rich. 
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kalanchoe densiflora Dolfe Rosaceae 

Cucurbitaceae Alchemilla kiwuensis Angl. 

Lagenaria abyssinica (Hook.f.) C.Jeffrey Hagenia abyssinica 

Momordica foetida Schumach. Prunus africana (Hook.f.) Kalkm.  

Cupressaceae Rubus steudneri Schweinf.  

Cupresus lucitanica Rubiaceae 

Cyperaceae Canthium oligocarpum Hiern  

Cyperus esculenta Coffea arabica L. 

Dracaenaceae Galiniera saxifraga (Hochst.) Bridson  

Dracaena afromontana Mildbr.  Oxyanthus lepidus S. Moore 

Dracaena steudneri Engl. Pavetta abyssinica Fresen  

Euphorbiaceae Pentas lanceolata  Forssk 

Croton macrostachyus Del.  Rothmannia urcelliformis (Schweinf. ex Hiern) 

Bullock ex Robyns 

Euphorbia candelabrum Trem. Ex Kotschy Rytigynia neglecta (Hiern) Robyns 

Euphorbia platyphyllos L.  Rutaceae 

Macaranga capensis var kilimandscharica (Pax) 

Friis & Gilbert 

Clausena anisata (Willd.) Benth.  

Tragia cinerea (Pax) M.G.Gilbert & Radcl.-Sm. Vepris dainelli (Pichi-Sermolli) Kokwaro 

Acalypha racemosa Baill Sapindaceae 

Fabaceae Allophyllus abyssinicus (Hochst.) Radlkofer  

Acacia brevispica Harms Simaroubaceae 

Albizia gummifera (J.F.Gmel.) C.A.Sm. Brucea antidysenterica J.F. Mill.  

Albizia schimperiana Oliv.  Solanaceae 

Clitoria ternatea L. Discopodium penninervium Hochst.  

Crotalaria emarginella Vatke Tiliaceae 

Desmodium repandum (Vahl) DC Dombeya torrida (J.F.Gmel.) Bamps 

Dolichos sericeus E. Mey. Sparmannia ricinocarpa (Eckl. & Zeyh.) 

Kuntze 

Erythrina brucei Schweinf. Ulmaceae 

Millettia ferruginea (Hochst.) Bark. Celtis africana Burm. F.  

Paracalyx somalorum (Vierh.) Ali Trema orientalis (L.) Blume 

Vermifrux abyssinica (A. Rich.) J.B. Gillett Urticaceae 

Flacourtaceae Droguetia iners Schweinf. 

Dovyalis abyssinica (A. Rich) Warb.  Elatostema monticolum Hook.f. 

Flacourtia indica (Burm.f.) Merr.  Girardinia diversifolia (Link.) Friis 

Geraniaceae Pilea tetraphyla (Steud.) Blume 

Geranium ocellatum Cambess. Urerea hypselodendron (A. Rich.) Wedd.  

Icacinaceae Urtica simensis Hochst. ex A.Rich 

Apodytes dimidiata E. Mey. ex Arn.  Verbenaceae 

Lamiaceae Clerodendron myricoides (Hochst.) R. Br.ex 

Vatke.  

Lantana trifolia L Vitaceae 

Leonotis ocymifolia (Burm. f.) Iwarsson Cyphostemma cyphoetalum (Fresen.) Desc. ex 

Wild & R.B.  
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Appendix 6.2 species list of four non-sacred forests  

Acanthaceae Lobelaceae 

Acanthus eminens C.B.Clarke  Lobelia gibberoa Hemsl 

Acanthopale pubescens (Lindau) C.B.Cl Malvaceae 

Hypoestes  forskaolii (Vahl.) Roem. & Schult Abutilon longicuspe Hochst. Ex A. Rich 

Hypoestes triflora (Roem. Et Schult Hibiscus berberidifolius A. Rich 

Justicia heterocarpa T. Anderson Melastomataceae 

Justicia striata (Klotzsch) Bullock Dissotis canescens (Graham) Hook.f. 

Thunbergia alata Bojer ex Sims Meliaceae 

Adiantaceae Bersama abyssinica Fresen.  

Cheilanthes farinosa (Forssk.) Kaulf Ekebergia capensis Saprrm.  

Alismataceae Lepidotrichilia volkensii (Gürke) Leroy  

Alisma plantago-aquatica Menispermaceae 

Amarantaceae Stephania cyanantha (Welw. Ex Hiern 

Achyranthes aspera L.  Moraceae 

Cyathula uncinulata (Schrad.) Schinz Dorestenia soerensenii 

Anacardiaceae Ficus sur Forssk.  

Rhus glutinosa A. Rich Myricaceae 

Aquifoliaceae Myrica salicifolia Hochst. Ex A. Rich 

Ilex mitis (L.) Radlk.  Embelia schimperi Vatke  

Araceae Maesa lanceolata Forssk.  

Arisaema schimperiana Schott Myrsine africana L.  

Araliaceae Myrtaceae 

Polyscias fulva (Heirn) Harms Syzygium guineense (Willd.) DC. ssp. 

afromontanum F. White  

Schefflera abyssinica (Hochst ex A. Rich) Harms Nyctaginaceae 

Schefflera volkensii (Engl.) Harms Boerhavia diffusa 

Arecaceae Oleaceae 

Phoenix reclinata Jacq.  Chionanthus mildbraedii (Gilg &Scellenb.) 

Stearn. 

Asclepiediaceae Jasminum abyssinicum Hochst. ex DC.  

Pentarrhinum abyssinicum Jasminum grandiflorum L. 

Pentarrhinum inspidum E. Mey Olea capensis subsp macrocarpa (C.H.Wright) 

I. Verd 

Asparagaceae Schrebera alata (Hochst.) Welw.  

Asparagus racemosus Willd Oleandraceae 

Asparagus africanus Lam.  Arthropteris monocarpa (Cordem.) C.Chr 

Aspleniaceae Oliniaceae 

Asplenium lunulatum Sw Olinia rochetiana A. Jussieu 

Asplenium sandersoni H.K.  Onagraceae 

Asplenium erectum (Bory ex Willd Oenothera fruticosa A. Gray. 

Asteraceae Orchidaceae 

Ageratum conyzoides L.  Epipactis africana Rendle 

Acmella caulirhiza Del. Phytolacaceae 

Bidens ghedoensis Mesfin Phytolacca dodecandra L´Herit.  

Bothriocline schimperi Oliv. & Hiern ex Benth.  Piperaceae 
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Carduus nyassanus (S. Moore) R. E. Fr. Peperomia  rotundifolia (L.) Kunth 

Crepis rueppellii Sch. Bip Peperomia abyssinica Miq 

Haplocarpha schimperi (Sch.Bip.) Beaverd Peperomia tetraphylla (G. Frost) Hook. & Arn 

Helichrysum splendidum (Thunb.) Less Pittosporaceae 

Laggera pterodonta (DC.) Sch, Bip. Ex Oli Pittosporum viridiflorum Sim.  

Solanecio mannii (Hook.f.) C. Jeffrey Poaceae 

Solanecio gigas(Vatke) C.Jeffrey Harundinaria alpina (K. Schum) 

Vernonia amygdalina Del Hyparrhenia rufa (Nees) Stapf 

Vernonia auriculifera Hiern.  Oplismenus compositus (L.) P. Beauv 

Vernonia biafrae Oliv. & Hiern Polygalaceae 

Balsaminaceae Polygala steudneri Chordat 

Impatiens rothii Hook.f. Drynaria volkensii Hieron 

Buddlajaceae Rananculaceae 

Nuxia congesta R. Br. Ex Fresen. Clematis hirsuta Perr. & Guill. 

Caparidaceae Clematis simensis Fres. 

Ritchiea albersii Gilg Rhamnaceae 

Celastraceae Rhamnus prinoides L`Herit.  

Hippocratea africana (Wild) Loes Rosaceae 

Maytenus adat (Loes.) Sebsebe Prunus africana (Hook.f.) Kalkm.  

Maytenus arbutifolia (A. Rich.) Wilczek  Rubus apetalus Poir.  

Maytenus undata (Thunb.) Blakelock Rubus steudneri Schweinf.  

Maytenus gracilipes (Welw. ex Oliv.) Exell  Rubiaceae 

Commelinaceae Canthium oligocarpum Hiern  

Commeliana diffusa Galiniera saxifraga (Hochst.) Bridson  

Cynotis barbata D. Don Oxyanthus lepidus S. Moore 

Crassulaceae Pavetta abyssinica Fresen  

Kalanchoe petitiana A. Rich Pentas lanceolata  Forssk 

Cucurbitaceae Rytigynia neglecta (Hiern) Robyns 

Kedrostis foetidissima (Jacq.) Cogn. Rutaceae 

Cyperaceae Clausena anisata (Willd.) Benth.  

Cyperus esculenta Teclea nobilis Del.  

Dracaenaceae Vepris dainelli (Pichi-Sermolli) Kokwaro 

Dracaena afromontana Mildbr.  Salicaceae 

Dracaena fragrans (L) Ker-Gawl  Salix subserrata Willd 

Ericaceae Sapindaceae 

Erica arborea L. Allophyllus abyssinicus (Hochst.) Radlkofer  

Euphorbiaceae Sapotaceae 

Acalypha racemosa Baill Pouteria adolfi-friederici (Engl.) Baehni 

Clutia abyssinica Jaub. & Spach.  Simaroubaceae 

Croton macrostachyus Del.  Brucea antidysenterica J.F. Mill.  

Euphorbia platyphyllos L.  Solanaceae 

Macaranga capensis var kilimandscharica (Pax) 

Friis & Gilbert 

Discopodium penninervium Hochst.  

Fabaceae Physalis peruviana Linn 

Acacia brevispica Harms Tectariaceae 

Albizia schimperiana Oliv.  Tectaria gemmifera (Fee) Alston 

Crotalaria emarginella Vatke Ulmaceae 



371 

 

Desmodium repandum (Vahl) DC Trema orientalis (L.) Blume 

Flacourtiaceae Celtis africana Burm. F.  

Dovyalis abyssinica (A. Rich) Warb.  Urticaceae 

Flacourtia indica (Burm.f.) Merr.  Droguetia iners Schweinf. 

Geraniaceae Pilea rivularis Wedd 

Geranium ocellatum Cambess. Elatostema monticolum Hook.f. 

Hypericaceae Pilea tetraphyla (Steud.) Blume 

Hypericum peplidifolium A. Rch Urerea hypselodendron (A. Rich.) Wedd.  

Hypericum quartinianum A. Rich.  Verbenaceae 

Icacinaceae Clerodendron myricoides (Hochst.) R. Br.ex 

Vatke.  

Apodytes dimidiata E. Mey. ex Arn.  Lippia adoensis Hochst. ex Walp.  

Lamiaceae Vitaceae 

Plectranthus assurgens (Baker) J.K. Morton Cissus petiolata Hook. f. 

Plectranthus caninus Roth Cyphostemma cyphoetalum (Fresen.) Desc. ex 

Wild & R.B.  

Pycnostachys eminii Gürke   

Satrureja paradoxa Vatke  

 

 

Appendix 6.3 Variance  and Eigenvalues of a CCA of plant species in sacred and non-sacred forests  

Axis Eigenvalue % 

1 0.28163 35.59 

2 0.24824 31.38 

3 0.15132 19.13 

4 0.11001 13.9 
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Appendix 6.4 Biocultural diversity value of sacred groves - questionnaries  

 

I. Questionnaires for general sacred sites  

 

1. What sacred sites mean by you or other local elders?_________________________________ 

_____________________________________________________________________________

_____________________________________________________________________________ 

2. What kind of sacred sites you have (common, clan, family et c.)?_______________________ 

_____________________________________________________________________________

_____________________________________________________________________________ 

3. How many types of sacred sites in this area?_______________________________________ 

_____________________________________________________________________________

_____________________________________________________________________________

_____________________________________________________________________________ 

4. Are these sites that have split into good and bad spiritual energy?_______________________ 

_____________________________________________________________________________

_____________________________________________________________________________ 

5. What is the physical location of sacred sites?_______________________________________ 

 a) Where are sacred sites generally situated____________________________________ 

 b) Why are they situated there?_____________________________________________ 

 c)  What are the explanations for selection of the sacred site location? (beauty and 

  biodiversity, landscape, presence of stones, trees of unusual form or can you 

  explain)_________________________________________________________ 

 d) What is the purpose of the sacred sites?____________________________________ 

 e) Are there any prohibitions on visiting the sacred sites?________________________ 

6. Where did you gain the knowledge?_____________________________________________ 

____________________________________________________________________________ 

7. Is the knowledge specific to certain group of community members?____________________ 

_____________________________________________________________________________

____________________________________________________________________________ 

8. How often you visit sacred sites? who visit them?__________________________________ 

____________________________________________________________________________ 

 

II. Questionnaires focused on sacred groves  

 

9. Why do these sacred groves became sacred? are they because of the biological aspect or 

 religious beliefs of the people? 

_____________________________________________________________________________

_____________________________________________________________________________ 

10. Does sacred groves carry a biological importance with respect to the biological diversity 

conservation?__________________________________________________________________ 

_____________________________________________________________________________

_____________________________________________________________________________ 

 

11. Are there any rituals connected to visiting the sacred groves? What kind.________________ 

_____________________________________________________________________________ 

12. What are the days of prayer in a year in or around sacred 

grove?_______________________________________________________________________ 

_____________________________________________________________________________ 

13. Any connection to legends, and myths? what kind?_________________________________ 

_____________________________________________________________________________ 

14. Are there materials within the sacred forests that serves to differentiate it from ordinary 

world?_______________________________________________________________________ 
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____________________________________________________________________________ 

15. Are these sacred groves eternally sacred or occasionally sacred?_______________________ 

_________________________________________________________________________ 

16. How sacred groves are categorized? (forest under the control of the traditional religious 

leader, forests of great sacred value for sacrificial and religious ceremonies, burial 

ground)______________________________________________________________________ 

____________________________________________________________________________ 

17. What are traditional religious practices in sacred groves?____________________________ 

____________________________________________________________________________ 

18. What are the traditions (taboos and beliefs) associated with sacred groves?______________ 

____________________________________________________________________________ 

19. What will happen if one ignore or transgress  these traditions?________________________ 

____________________________________________________________________________ 

20. Are sacred groves are belongs to headman of the villages, or extended family or owned 

collectively by the villagers?____________________________________________________ 

____________________________________________________________________________ 

21. What is the value system (social order) of the community made it possible to keep the 

sacred groves? _______________________________________________________________ 

____________________________________________________________________________ 

22. How access and management of the sacred groves is governed?_______________________ 

____________________________________________________________________________ 

23. What institutions have been or continue to regulate access and management of sacred groves 

and its resources?______________________________________________________________ 

_________________________________________________________________________ 

24. What are traditional conservation practices? How people feel in these sacred forest? Have 

the way people felt changed over the years?_________________________________________ 

____________________________________________________________________________ 

25. What within a sacred forest is being valued? the trees? the land? the organisms in that 

forest? forest spirit? ____________________________________________________________ 

____________________________________________________________________________ 

26. Is there any symbolic significance attached to different species in sacred forest? what are the 

species? 

_____________________________________________________________________________

_____________________________________________________________________________ 

27. Have belief systems led to the protection of the biodiversity in sacred forest?____________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

28. Do you have a concept of species? Is it particular trees that are of value?_______________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

29. Have peoples  attitude to sacred forest changed over the last 20 years? why have those 

changes occurred?  ____________________________________________________________ 

 

30. What general change have you observed  to the peoples attitude toward sacred forest,  

example between young and old generations? ________________________________________ 

_____________________________________________________________________________

_____________________________________________________________________________ 

31. What are the threats to the sacred forests and the belief system?_______________________ 

_____________________________________________________________________________

_____________________________________________________________________________ 

32. What is the status of this traditional religion at the moment?__________________________ 

_____________________________________________________________________________ 

_____________________________________________________________________________ 

33. How the knowledge have passed from elders to the youngsters? ______________________ 
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_____________________________________________________________________________

_____________________________________________________________________________ 

 

34. How did land-use change influence the spiritual perception of sacred groves?___________ 

_____________________________________________________________________________ 

 

35. Have you ever made enrichment planting in sacred groves to restore the degraded areas from 

grazing?______________________________________________________________________ 

 

36. What kind of plant you prefer for planting in sacred groves?_________________________ 

_____________________________________________________________________________   
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