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Summary 

Peatlands represent an important terrestrial pool of carbon, but are threatened by anthropogenic 

climate change, including a potential increase in drought events. Drought leads to the release 

of carbon dioxide from peat. It is well established that drought affects microbial communities, 

but so far insights into the microbial mechanisms underpinning the release of carbon from 

droughted peat are limited. 

In this project, temporally-explicit drought manipulations were carried out in two peatland 

habitats using a replicated and controlled series of mesocosm cores. ARISA fingerprinting was 

used to initially delimit shifts in microbial community composition, followed by shotgun 

metagenomic sequencing of a subset of samples and sequencing of SSU rRNA genes (marker 

gene analysis; MGA). DNA-based methodologies were accompanied by biogeochemical 

assays, which confirmed that drought conditions were achieved in treated cores relative to 

controls. 

ARISA fingerprinting demonstrated a significant effect of drought on bacterial and fungal 

community composition, with the most significant effect during the rewetting period. 

Conversely, sequencing-based methodologies detected a weak or non-existent effect of drought 

on overall community composition. However, MGA indicated that a subset of OTUs 

(operational taxonomic units) responded significantly to drought, particularly in the fen at 5cm 

depth. Where it was possible to assign taxonomy to drought-responsive OTUs, Proteobacteria 

and Bacteroidetes were overrepresented relative to their abundances in the community as a 

whole. In many cases, OTUs exhibiting negative responses to drought were closely related to 

obligate anaerobes. Rhizaria (a group of protists) also appeared to respond to drought. The 

abundance of hydA (a gene for the enzyme which catalyses the hydrogenic step in fermentation) 

fell during drought. 

To conclude, although the effect of drought on overall communities was weak, the analyses 

showed that a number of OTUs and functional genes responded to drought. The results provide 

numerous avenues for future research into the mechanisms underlying drought-driven carbon 

release from peatlands. 
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1.1 Introduction & Definitions 

1.1.1 Climate Change 

Anthropogenic climate change poses a serious threat to both human lives and natural 

ecosystems, and is caused by the concentration of certain gases in the atmosphere (‘greenhouse 

gases’). Greenhouse gases prevent the radiation of energy into space and instead absorb it, 

increasing the amount of energy in the atmosphere and thus causing warming. In particular, 

human activities have led to an increase in atmospheric concentrations of carbon dioxide (CO2), 

methane (CH4) and nitrous oxide (N2O). Greenhouse gas emissions have already caused a rise 

in global average temperatures of 0.5°C over the last fifty years, and temperatures are predicted 

to continue to rise at a rate of 0.2°C per decade (IPCC 2007).  

The combustion of fossil fuels is an important contributor to the problem of climate change, 

releasing carbon which had been stored for millions of years back into the atmosphere in the 

form of CO2. The terrestrial biosphere and the ocean represent large carbon pools (Figure 1.1) 

and have the potential to absorb a significant proportion of anthropogenic carbon emissions, 

but natural carbon pools are unable to keep pace with current carbon dioxide emissions. This 

has led to an overall increase in atmospheric carbon of ~4.3 Gt C yr-1 (Falkowski et al. 2000). 

While the quantity of carbon stored in peat is small in comparison to the ocean and the total 

terrestrial biosphere (Figure 1.1), peat nonetheless represents a significant carbon pool which 

is highly threatened by human impacts, including climate change. The size of the peat carbon 

pool shown in Figure 1.1 (Falkowski et al. 2000) is probably lower than the true value: other 

estimates of the peat carbon pool range from 273 Gt C (Turunen et al. 2002) to 547 Gt C (Yu 

2012), with the most commonly cited Figure 1.being 455 Gt (Gorham 1991). Climate change 

is likely to have a negative impact on carbon stores in peat, as many peatlands will shift from 

being carbon sinks to sources (Clark et al. 2010). Therefore, the impact of climate change on 

peatlands may create a positive feedback loop, further increasing carbon emissions. 

In particular, this thesis will focus on the effect of drought on peat carbon fluxes, which has 

been the subject of much research. Climate change will result in changes in the frequency and 

severity of drought: modelling studies predict an overall fall in peatland water tables (Roulet 

et al. 1992; Gong et al. 2012). Although predictions of future changes in precipitation patterns 

still contain a large degree of uncertainty, rainfall will probably increase at high latitudes and 

decrease at low latitudes, with mid-latitudes generally showing a summer decrease and a winter 
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increase (Douville et al. 2002; Bates 2008). Alongside changes in the amount of rainfall, 

increased evapotranspiration and a trend towards extreme rainfall events separated by long dry 

periods will contribute to an increase in summer drought frequency (Bates 2008). There is some 

evidence that drought events are already becoming more frequent in comparison to past 

centuries (Worrall et al. 2006; Briffa et al. 2009). 

Conversely, climate change impacts on peatlands may be partially moderated by the effects of 

restoration and management programmes. The majority of peatlands in the UK are not 

currently in pristine peat-forming condition: for example, one third of deep peat in England is 

subject to rotational burning, one fifth is gripped (drainage channels dug) and one seventh 

affected by gullies (JNCC 2011). Growing awareness of the importance of peatlands has led to 

a number of efforts to restore damaged peatlands, with the most common interventions being 

drain blocking (‘grip blocking’) and removal of invasive vegetation (Holden et al. 2008). Grip 

blocking is of particular relevance to the impact of increasing drought frequency on peat, as it 

typically leads to a rise in the water table of gripped peatlands (Shepherd et al. 2013) and can 

lead to greater stability of the water table during drought events (Wilson et al. 2011). Given 

Figure 1.1: Size of major global pools of carbon. The lithosphere (not shown) 

contains an additional 75 million Gt of carbon. Pool sizes are in gigatons (Gt) and 

are taken from Falkowski et al. (2000). 
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the large proportion of British peatlands which are in a degraded condition, continued peatland 

restoration and management may be able to minimise the impact of climate change on 

peatlands. 

1.1.2 Definitions and Importance  

Peat is defined as soil which has an 

organic matter content of at least 30% of 

dry weight, but this is often much higher 

(Joosten and Clarke 2002).The vast 

majority of peatlands are situated in the 

Northern hemisphere, which contains 3.5 

million km2 of peatlands out of an 

estimated 4 million km2 worldwide 

(Gorham 1991; Joosten and Clarke 2002). 

Particularly important areas for Northern 

peatlands are Canada, Siberia and 

Scandinavia, but the UK also contains 

significant amounts of peat (JNCC 2011), 

especially in highland areas within 

Scotland and Wales. In addtion to their 

role in carbon sequestration, peatlands 

provide a range of other ecosystem 

services including species diversity, water 

purification, nutrient cycling and tourism (JNCC 2011) 

Commonly, peatlands are divided into minerotrophic (groundwater-fed) and ombrotrophic 

(rainwater-fed), reflecting the fact that the water supply has a crucial effect on ecosystem 

characteristics. In common parlance minerotrophic peatlands are referred to as fens and 

ombrotrophic as bogs. In general, minerotrophic peatlands are more nutrient-rich than 

ombrotrophic peatlands, with a higher soil pH due to mineral inputs from groundwater (Joosten 

and Clarke 2002; Hill et al. 2014). However, this trend is not invariably found: Bridgham et al. 

(1998) found that although ombrotrophic peatlands were low in nitrogen and iron, labile 

phosphorus was relatively high due to higher mineralisation rates and nutrient availability in 

Figure 1.2: Simplified depiction of the carbon 

fluxes in a typical peatland. Estimated flux 

sizes are in kg C m-2 yr-1 and are taken from  

Worrall et al. (2009). OM= organic matter; 

NPP= Net primary productivity; DOC = 

dissolved organic carbon. 
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acidic fens was similar to that in bogs. However, while the ombrotrophic-minerotrophic 

definition may not predict nutrient concentration, it corresponds well to differences in pH and 

the degree of peat decomposition (Bridgham et al. 2000). 

 1.1.3 Carbon Accumulation in Peatlands 

Carbon accumulates in peat because the rate of gross primary productivity (GPP) exceeds the 

rate of respiration, leading to a build-up of carbon. Peatlands exchange carbon in gaseous and 

aqueous forms (Figure 1.2), with the most significant exchanges being gaseous CO2 and CH4 

and dissolved organic carbon (DOC). Carbon dioxide exchange is by far the largest flux and 

results in an overall uptake of carbon, while fluxes of DOC and CH4 are much smaller and 

represent net losses (Nilsson et al. 2008; Worrall et al. 2009; Billet et al. 2010; Koehler et al. 

2010; Christensen et al. 2012). Carbon fluxes vary greatly between years (Aurela et al. 2004; 

Koehler et al. 2010), seasons (Koehler et al. 2010) and microforms (Schneider et al. 2012a). 

Annual variation in fluxes may occasionally result in years where peatlands are net sources of 

carbon, but overall the majority of 

peatlands act as carbon sinks (Worrall 

et al. 2009), resulting in peat 

accumulation (Clymo 1984).  

By definition the water table in 

peatlands is high, which is a crucial 

factor in peat formation and 

maintenance (Clymo 1984). Peat has a 

low hydraulic conductivity which 

decreases with depth (Figure 1.3), 

helping to maintain a high water table 

(Clymo 1984). The high water table 

slows decomposition by imposing 

anaerobic conditions, enabling peat 

build-up until an equilibrium level is 

reached. Lowering the water table 

allows oxygen to penetrate the peat profile and leads to a loss of peat carbon (Sulman et al. 

2013). However, while drainage and short-term droughts are associated with a loss of stored 

Figure 1.3: Simplified model of peat layers 

and hydraulic conductivity. Adapted from 

Lindsay et al. (2010). 
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carbon, CO2 fluxes often remain elevated even after rewetting (Laine and Minkkinen 1996; 

Fenner and Freeman 2011). Elevated fluxes after rewetting suggests that the effect of the water 

table on decomposition may be mediated by another factor, or factors, at least in part. Phenolic 

compounds are one candidate: the concentration of phenolic compounds is negatively 

correlated to the rate of litter decomposition (Aerts and de Caluwe 1997; Bridgham and 

Richardson 2003) and soil respiration (Wang et al. 2015) in peatlands. Conversely, it is possible 

that elevated levels of electron acceptors (e.g. sulfate) persist following rewetting and allow 

carbon dioxide fluxes to remain elevated (discussed fully in section 1.3).  

1.2 Peat Microbiology 

1.2.1 The Structure of Peat Microbial Communities 

Peat, and soil in general, is a complex environment which is home to a diverse range of 

organisms from all three domains of life. Bacteria dominate peat microbial communities in 

terms of DNA concentration (Lin et al. 2014b) and activity (Winsborough and Basiliko 2010), 

although there is evidence that fungi may be more dominant in bogs than in fens (Golovchenko 

et al. 2007; Amha et al. 2015). Fungal abundance decreases rapidly with depth (Lin et al. 2012; 

Lin et al. 2014b) and fungi found in deep layers of peat are rarely viable (Golovchenko et al. 

2013). Bacterial numbers also decrease with depth, although more slowly than fungi, while 

archaea become more abundant (Lin et al. 2012; Lin et al. 2014b). 

1.2.2 Bacterial Communities in Peat 

Most peatland bacterial communities are inhabited by a similar set of bacterial phyla including 

Acidobacteria, Proteobacteria, Actinobacteria, Verrucomicrobia and Planctomycetes (Figure 

1.4). These communities are comparable to the bacterial communities found in other soils 

(Fierer and Jackson 2006; Barnard et al. 2013), although the large degree of within-habitat 

variation makes generalisations difficult. 

The prevalence of Acidobacteria in peat is unsurprising. Many Acidobacteria are slow-growing 

oligotrophs: they are positively correlated with a high C/N ratio (Jones et al. 2009) and are 

negatively affected by addition of labile carbon (Fierer et al. 2007) or litter addition (Nemergut 

et al. 2010). Acidobacteria are more abundant in bogs then fens (Lin et al. 2012; Lin et al. 

2014b), which is unsurprising given the preference of this phylum for acidic habitats (Jones et 

al. 2009).  
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The characteristics of Proteobacteria are more difficult to define than Acidobacteria, due to the 

large size and diversity of this phylum. However, in general Proteobacteria appear to be faster 

growing and to prefer environments with a higher level of nutrients and labile carbon than 

Acidobacteria (Fierer et al. 2007; Nemergut et al. 2010; Goldfarb et al. 2011; Belova et al. 

2014). Metagenomic studies show that α-proteobacteria contain the majority of functional 

genes in bogs and fens, including phenol oxidase genes (Lin et al. 2014a). Proteobacteria also 

possess the majority of genes for phenolic degradation in permafrost (Tveit et al. 2013) 

suggesting a key role in degrading complex aromatics in all peaty soils. Moreover, a diverse 

range of methanotrophic Proteobacteria are also found in peatlands (Dedysh et al. 2006; 

Bragina et al. 2014; Lin et al. 2014b).  

 

Actinobacteria play an important part in the degradation of complex organic polymers such as 

cellulose and lignin (Goodfellow and Williams 1983). In bog and fen peats, Actinobacteria 

usually make up a relatively small proportion of the community (Figure 1.4), but they may 

nonetheless play a significant role in degradation of phenolic compounds (Lin et al. 2014a). 

Actinobacteria respond strongly to water table and are more abundant under drier conditions 

(Jaatinen et al. 2007; Jaatinen et al. 2008; Kotiaho et al. 2012; Barnard et al. 2013) so it is 

Figure 1.4: Phylum composition of bacterial communities inhabiting peat soils. 
Data taken from Lin et al. (2012; 2014b), Serkebaeva et al. (2013), Deng et al. (2014), 

Frank-Fahle et al. (2014), Yun et al. (2014) and Tveit et al. (2013). 
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likely that the water-saturated conditions in bog and fen peats prevent high Actinobacterial 

abundances. In permafrost peats, Actinobacteria make up a much larger proportion of the 

community and are responsible for the majority of cellulose- and hemicellulose-degrading 

genes (Tveit et al. 2013), suggesting that this phylum is relatively tolerant to some peat 

environments. 

Several other bacterial phyla are commonly recovered from peat, but do not dominate the 

community. Firmicutes may be much more abundant in fens than bogs (Lin et al. 2012), 

although more recent studies have found Firmicutes to show similar abundances in both bogs 

and fens (Lin et al. 2012). Verrucomicrobia tend to be limited to the upper levels of peat 

(Serkebaeva et al. 2013; Tveit et al. 2013) suggesting that most peatland Verrucomicrobia are 

aerobic. Planctomycetes often decrease with depth also, but may exhibit a second ‘peak’ of 

abundance in deeper peat (Ivanova and Dedysh 2012; Lin et al. 2014a). Both Verrucomicrobia 

and Planctomycetes are considered to be made up of relatively slow-growing species, which 

are outcompeted in high-nutrient environments (Ansola et al. 2014; Belova et al. 2014)  and 

become less abundant in nutrient-enriched environments (Goldfarb et al. 2011). 

While an attempt has been made above to summarise characteristics of bacterial phyla, it should 

be noted that a large amount of variation in lifestyle exists among members of each phyla. For 

example, while the overall abundance of Acidobacteria shows a consistent negative correlation 

to pH, a number of subdivisions within the Acidobacteria prefer pH values close to neutral 

(Pankratov et al. 2008; Jones et al. 2009). A second example is the different subgroups of 

Planctomycetes inhabiting shallow and deep peat (Ivanova and Dedysh 2012). However, 

despite these difficulties, many nucleic-acid-based studies continue to analyse bacterial taxa to 

phylum level due to difficulties with annotation of sequences to a lower taxonomic levels 

(Garcia-Etxebarria et al. 2014) and the lack of species-level information about bacteria. 

1.2.3 Archaeal Communities in Peat 

While archaea make up a relatively small proportion of the community (Lin et al. 2014a; Lin 

et al. 2014b), they increase with depth and are of great interest due to their role in 

methanogenesis. Previous studies indicate that the most abundant phyla in peatlands are 

Crenarchaeota and Euryarchaeota, with methanogenic classes of Euryarchaeota typically 

dominant (Figure 1.5). Methanogenesis can proceed via several pathways of which the most 

common are acetoclastic and hydrogenotrophic, which use acetate and CO2 as electron 
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acceptors, respectively (Le Mer and Roger 2001). Both of these pathways are present in 

peatlands, and the dominant methanogenesis pathway may vary with depth or habitat (e.g. Lin 

et al. 2014b; Lin et al. 2015).  

 

1.2.4 Microbial Eukaryotes in Peat 

Eukaryotes also make up a relatively small proportion of microbial cells in peat (Lin et al. 

2014a) but remain important because of their potential importance in the decomposition of 

complex substrates. In terrestrial habitats fungi are often considered to be the main degraders 

of complex substrates (Romani et al. 2006; Schneider et al. 2012a; Schneider et al. 2012b) 

although this paradigm has recently been challenged (Rousk and Frey 2015). In peat however, 

bacteria play a dominant role in decomposition (Winsborough and Basiliko 2010) and produce 

a variety of enzymes for degradation of complex substrates including aromatics (Ausec et al. 

2011) and cellulose (Pankratov et al. 2011). Nonetheless, peatland fungi possess the ability to 

degrade a wide variety of recalcitrant substrates, particularly phenolic compounds (Williams 

and Crawford 1983; Golovchenko et al. 2013), and are likely to respond strongly to climate 

change (Jaatinen et al. 2007; Jaatinen et al. 2008; Peltoniemi et al. 2015) 

Figure 1.5: Composition of archaeal communities inhabiting peat 

soils. Data taken from Lin et al. (2012) and Deng et al. (2014). 

Thermoplasmata E2, Methanococci, Methanobacteria, and 

Methanomicrobia are each classes within phylum Euryarchaeota. 
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 Early culture-based studies indicated that the dominant fungal phylum in most peatlands was 

Ascomycota, with Basidiomycota, Zygomycota and Chytridiomycota also regularly identified 

(Thormann 2006; Thormann and Rice 2007). More recently, DNA-based studies of soil fungal 

communities have revealed high levels of diversity in peat fungal communities with 

Ascomycota and Basidiomycota usually dominant (summarised in Figure 1.6),  similar to 

fungal communities in mineral soils (Kivlin and Treseder 2014; Tedersoo et al. 2014), 

However, the proportion of Basidiomycetes in peatlands is less than the global average 

presented by Tedersoo et al. (2014; Figure 1.6). The comparative lack of Basidiomycetes is 

potentially relevant given the importance role which Basidiomycota have traditionally been 

thought to play in the degradation of complex substrates such as lignin: Frankland (1998) 

suggested that a fungal succession occurs from Ascomycetes through to Basidiomycetes during 

decomposition, since Basidiomycetes are more likely to possess the ability to degrade complex 

substrates (especially lignin) which remain in the later stages of decomposition. However, the 

predicted succession is not observed during the decomposition of litter in peatlands (Thormann 

et al. 2003). 

Figure 1.6: Composition of fungal communities inhabiting peat 

soils. Data taken from Lin et al. (2012; 2014b) and Tedersoo et al. 

(2014). 
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While fungi have been the best-studied group of eukaryotes in peat, protozoa may also play an 

important role in nutrient cycling and as predators of other micro-organisms (Mieczan 2012; 

Jassey et al. 2014). In particular, testate amoeba make up a large proportion of microbial 

biomass in peat (Gilbert et al. 1998; Mieczan 2007; Jassey et al. 2013). Ciliates may also 

contribute significantly to peatland microbial communities (Mieczan 2007; Tveit et al. 2013) 

and a number of other protest taxa are also present in small numbers including heterotrophic 

flagellates, microalgae, Rhizaria and Strameopiles (Gilbert et al. 1998; Jassey et al. 2013; Tveit 

et al. 2013).  

1.3 The Effects of Short-term Drought 

1.3.1 Drought and Carbon Fluxes 

There are a number of different definitions of drought, each with different (yet overlapping) 

impacts (Marsh et al. 2007). In particular, ‘meteorological’ drought can be used to refer to 

deficiency in rainfall, while ‘hydrological’ drought refers to accumulated efficiencies in runoff 

and aquifer recharge. The drought of 1976, sometimes considered as a ‘benchmark’ drought 

due to its severity (Marsh et al. 2007), was caused by extremely low  summer rainfall (81.8mm; 

summer rainfall data for Wales downloaded from https://data.gov.uk/dataset/regional-climate-

values-for-rainfall on 13/10/16) following the driest 16-month period on record in England and 

Wales. However, the relative severity of droughts depends on the measurement used: for 

example, the Aridity Index of the 1995 drought is greater than that of the 1976 drought, while 

the two-year November-April rainfall deficiency of 2006 was greater than that of any other 

year since the first half of the 20th century (Marsh et al. 2007). 

In peatlands, where the water table is typically high, ‘drought’ is typically used to mean a fall 

in the water table (e.g. Fenner and Freeman 2011; Chen et al. 2012; Romanowicz et al. 2015). 

Worrall et al. (2006) suggest that when the water table falls below a ‘critical’ depth of 

approximately -16 cm, drought has severe effects on biogeochemical processes in the catotelm 

and fluxes of DOC are disrupted for many years after the drought ends. Between 1958 and 

2000, two droughts of this magnitude occurred in Northern England: one in 1976 and one in 

1995 (Worrall et al. 2006), both corresponding to exceptionally dry years (Jones and Conway 

1997; Marsh et al. 2007). Similarly, Estop-Aragonés et al. (2016) found peatland mesocosms 

to shift from net carbon sinks to net carbon sources when the water table dropped to 

approximately –24 cm below the water table, although the ‘critical’ water table differed 

https://data.gov.uk/dataset/regional-climate-values-for-rainfall
https://data.gov.uk/dataset/regional-climate-values-for-rainfall
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between sites. Duration of drought is also important (Estop-Aragonés et al. 2016), although 

changes in biogeochemistry and carbon fluxes can be observed only days after the water table 

begins to fall (Fenner and Freeman 2011).  

The potential for an increase in drought frequency or intensity with climate change (Bates 

2008) gives cause for concern due to the impact of drought on peat carbon stores, as severe 

droughts can have long-term effects on carbon fluxes in peatlands.  Simulated drought 

conditions invariably increase the rate of CO2 release from peat, which has been demonstrated 

in lab mesocosms (Fenner and Freeman 2011; Chen et al. 2012), reconstructed peat columns 

(Moore and Knowles 1989; Moore and Dalva 1993) and field experiments (Bridgham et al. 

2008; Fenner and Freeman 2011). In many cases CO2 emissions rise still further after rewetting, 

and moderate drought can result in 

elevated CO2 emissions for 3-4 years 

(Fenner and Freeman 2011). There is also 

a significant negative relationship 

between CO2 release and water table in 

natural systems (Chimner and Cooper 

2003).  Despite the mounting evidence, a 

limited number of studies have failed to 

find a significant effect of drought on CO2 

emissions (Aerts and Ludwig 1997; Ellis 

et al. 2009) but this may be due to a high 

level of variability in CO2 fluxes under 

normal conditions.  

One influential explanation for increased 

CO2 release from peat during drought and 

rewetting is that the breakdown of 

inhibitory phenolic compounds enables 

an increase in the rate of decomposition 

(Freeman et al. 2001). While some 

anaerobic micro-organisms possess 

pathways for the degradation of phenolic 

compounds in the absence of oxygen, anaerobic decomposition of phenolics becomes 

Figure 1.7: The biogeochemical cascade 

leading to release of CO2 during drought 

in peatland. Adapted from Fenner & 

Freeman (2011).   
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energetically unfavourable at low redox potentials (Schink et al. 2000). Therefore, the 

anaerobic conditions found in waterlogged peatlands lead to a build-up of phenolic compounds 

and these inhibit both enzyme activities and microbial growth. Increased oxygen availability 

allows the action of phenol oxidase enzymes, which degrade phenolic compounds. In the 

cascade model presented by Fenner and Freeman (2011; Figure 1.7), increased microbial 

growth in the presence of oxygen leads to increased production of phenol oxidase enzymes. 

Phenol oxidases degrade phenolic compounds and thus release other enzymes from inhibition 

by phenolic compounds, allowing the degradation of soil organic matter and leading to the 

release of carbon and nutrients which bacteria can then use for growth and respiration.  

Freeman et al. (2001) provide convincing evidence that phenol oxidases play a key role in 

drought-driven increases in enzyme activities and CO2 release: the authors report that the 

activity of hydrolase enzymes (responsible for breaking down polymeric organic matter) does 

not increase in direct response to oxygen, but does increase in response to the removal of 

phenolic compounds or the addition of phenol oxidase (Freeman et al. 2001; Freeman et al. 

2004b). Additionally, in field systems there is a strong negative correlation between peat 

carbon fluxes and phenolic compounds (Freeman et al. 2001; Wang et al. 2015). However, a 

number of other studies have failed to find the expected link between phenol oxidases, water 

table and decomposition rates. Williams et al. (2000) failed to find any correlation between 

water table depth and phenol oxidase activity, while Xiang et al. (2013) found phenol oxidase 

activity to actually fall during drought. Another experiment found than aerobic conditions 

increased CO2 release from incubated peat samples, but without affecting the concentration of 

phenolic compounds (Brouns et al. 2014). Most recently, Romanowicz et al. (2015) found 

hydrolase activities to show no correlation to concentration of phenolic compounds. Therefore, 

it seems likely that phenolic compounds are one of many potentially interacting factors that 

limit decomposition in peatlands. Brouns et al. (2014) found that oxygenation directly led to 

an increase in CO2 release from peat, and this effect continued after anoxic conditions had 

resumed, linked to the increased availability of electron acceptors such as sulfate. This direct 

effect of oxygenation suggests that in some cases the mechanism underlying drought-driven 

carbon release may simply be the availability of electron acceptors. Alternatively, increased 

hydrolase activity during drought could in some cases liberate nutrients such as nitrogen from 

organic matter (Mettrop et al. 2014), thus releasing micro-organisms from nutrient limitation 

and allowing further growth and respiration. 
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As well as carbon dioxide, fluxes of methane (CH4) and nitrous oxide (N2O), two extremely 

potent greenhouse gases, are affected by drought. Methane production decreases during 

drought (Moore and Dalva 1993; Aerts and Ludwig 1997; Blodau et al. 2004; Ellis et al. 2009; 

Knorr et al. 2009), and often remains depressed following rewetting (Freeman et al. 1993; 

Aerts and Ludwig 1997). Methanogenesis is suppressed by the availability of alternative 

electron acceptors such as nitrate and sulfate, which are oxidised during drought (Kang and 

Freeman 2002).  Nitrous oxide is produced as a by-product of denitrification, which in 

peatlands is usually limited by low concentrations of nitrate (Keller and Bridgham 2007). N2O 

emissions often increase during drought but rapidly fall following rewetting, as nitrate ions are 

rapidly depleted (Freeman et al. 1993; Aerts and Ludwig 1997; Dowrick et al. 1999). 

Finally, dissolved organic carbon (DOC) concentrations in pore water fall during drought 

(Freeman et al. 1994; 2004a; Ellis et al. 2009; Fenner and Freeman 2011; Clark et al. 2012), 

probably due to the fact that aerobic conditions allow carbon to be fully oxidised and released 

as carbon dioxide (Acharya 1935). In addition, the decrease in porewater pH which is observed 

during drought can lead to a decrease in DOC solubility (Clark et al. 2012). 

1.3.2 Drought, Microorganisms and Carbon Release 

Alongside the enzyme dynamics of peatland ecosystems, it is important to understand the 

microbial mechanisms underlying drought-driven carbon release: microorganisms play a key 

role in determining gas fluxes (Schimel and Gulledge 1998) and in determining rates of 

decomposition and nutrient cycling (Madsen 2005). Microbial communities are also strongly 

affected by environmental conditions, and have been linked to greenhouse gas fluxes (Philippot 

et al. 2011; Nazaries et al. 2013; McCalley et al. 2014) and shown to mediate the effect of 

environmental change on decomposition (Allison et al. 2013; Wang et al. 2015). 

While microbial biomass is commonly incorporated into models of decomposition rates, the 

role of community composition is more complex and thus is less commonly considered 

(McGuire and Treseder 2010). However, Moorhead and Sinsabaugh (2006) suggest a model in 

which litter is successively decomposed by three guilds of micro-organisms: ‘opportunists’, 

‘decomposers’  and ‘miners’. These three guilds are each associated with different categories 

of substrate: first opportunists use the most labile substrates (sugars and amino acids), then 

decomposers degrade moderately recalcitrant substrates (particularly holocellulose), and 

finally miners degrade the most recalcitrant substrates such as lignin. Under this model, it is 
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likely that community composition becomes more important as decomposition proceeds: many 

micro-organisms are able to use sugars for energy, but the ability to degrade lignin is typically 

limited to white-rot fungi, which are primarily found within class Agaricomycetes (Riley et al. 

2014). Given that the dominant fractions in peat organic matter are lignin and holocellulose 

(Yavitt et al. 2000), it is therefore likely that microbial community composition is important 

for the decomposition of organic matter in peatlands. There is evidence that abiotic conditions 

may influence peatland microbial community composition more strongly than does organic 

matter type (Preston and Basiliko 2016), and so it is possible that the conditions in peatlands 

constrain the ability of the community to degrade recalcitrant organic matter. Aeration of peat 

following drought could potentially alleviate these constraints, and lead to shifts in community 

composition which allow the decomposition of recalcitrant organic matter. The increases in 

extracellular enzyme activity which occur during drought lead to an increase in labile carbon 

and nutrients (Fenner and Freeman 2011). This in turn could potentially lead to a rise in the 

abundance of fast-growing ‘cheaters’, using the labile substrates produced by extracellular 

enzymes in order to fuel rapid growth (Allison 2005). Therefore, drought potentially causes 

large changes to the selective pressures on microbial communities, and therefore it can be 

hypothesised that drought will lead to large changes in community composition.  

Several studies have found drought to lead to changes in microbial community composition in 

mineral soils (e.g. Barnard et al. 2013; 2015), but the conclusions of these studies are unlikely 

to apply to peat due to differing hydrological conditions between habitats. In dryland soils 

drought represents a transition from aerobic to desiccated conditions, while in wetlands the 

transition is from anaerobic to aerobic conditions. However, few studies have looked at the 

impact of drought on microbial communities in peatlands. Fenner et al. (2005) carried out 

TTGGE fingerprinting of xylE (a phenol oxygenase gene) and found that the diversity and 

abundance of this gene increased during drought, accompanied by an increase in phenol 

oxidase activity. Kim et al. (2008) looked at three groups of micro-organisms using appropriate 

markers: total bacteria (16S rRNA), denitrifiers (nirS) and methanogens (mcrA).  Drought 

reduced the abundance (according to real-time PCR) of all three genes in fens, as well as the 

abundance of 16S rRNA and nirS in bogs. However, T-RFLP fingerprinting failed to find 

changes in the composition or diversity of the three genes during drought. A more recent study 

looked at the effect of several years of climate manipulation on Scandinavian fens, and found 

long-term drying to have a small but significant impact on the composition of community 
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PLFA and fungal ITS (Peltoniemi et al. 2015). However, the effect of short term drought on 

microbial communities is likely to be different to that of long-term drying, as part of the 

response during long term drying may be indirect e.g. due to changing vegetation (Wang et al. 

2015). Additionally, Nunes et al. (2015) report reduced bacterial community diversity and 

changes in bacterial community composition following fluctuations in water content, although 

this study was carried out on peat at 50cm depth and so does not reveal microbial changes in 

the more active peat layers closer to the surface. 

Therefore, current literature leaves a number of unanswered questions. While T-RFLP may be 

used to determine species identity in some cases (Horz et al. 2000; Dickie and FitzJohn 2007), 

this has not been utilised for research of peatland microbial communities. T-RFLP is only able 

to visualise the dominant bands, meaning that much of the diversity within peat is likely 

ignored by this method. In addition, while Fenner et al. (2005) found differences in the 

diversity and abundance of the xylE gene, several other families of phenol oxidase genes exist 

which have not yet been studied during drought in peatlands (Appel 1993). Other classes of 

enzyme which are thought to be involved in drought-driven CO2 release (e.g. hydrolases) have 

been ignored completely by genetic studies. As with phenol oxidase enzymes, hydrolases 

represent a large and diverse category, including members from a large number of families and 

individual genes. Therefore, application of genetic fingerprinting or qPCR for study of 

functional genes would be improved by prior characterisation of the functional genes in 

peatland environments. Additionally, the response of microbial eukaryotes to short-term 

droughts has been little studied. Therefore, there is a great deal of potential for the use of high-

throughput sequencing to shed light on the microbial mechanisms underlying CO2 release 

following drought in peatlands. 

1.4 High-throughput sequencing and microbial ecology 

1.4.1 Next-generation Sequencing in Community Ecology 

In the last decade a number of high-throughput ‘second-generation’ sequencing platforms have 

been developed, vastly reducing sequencing cost per base pair. The first of these to be 

introduced was the Roche 454 Genome Sequencer in 2005 (Shokralla et al. 2012). The 

introduction of Illumina sequencing gave much higher throughput with a lower error rate, but 

at the cost of short read lengths (initially only ~35bp). However, Illumina sequencing chemistry 

has steadily improved, and under ideal conditions the Illumina Miseq is now able to generate 
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paired-end 300bp reads while the latest Illumina HiSeq can generate up to 1.5Tb of data in a 

single run (http://www.illumina.com/systems/sequencing-platform-comparison.html; accessed 

27/09/15). More recently, ‘third-generation’ sequencing platforms such as the PacBio RS or 

the MinION (Oxford Nanopore Technologies) give much longer reads (Branton et al. 2008; 

Ferrarini et al. 2013; Quick et al. 2014), although to date these are typically used for genome 

assembly rather than community analysis. 

A number of molecular approaches have harnessed the power of second-generation sequencing 

to study communities from all cellular domains of life (e.g. Fierer and Jackson 2006; Lin et al. 

2014a; Lallias et al. 2015), as well as viruses (e.g. Reavy et al. 2015). Currently, the most 

commonly used methods are DNA-based, including shotgun sequencing (metagenomics) and 

marker gene analysis (MGA) which will be the focus of this review. RNA-based methods may 

be better able to distinguish rapid changes in the active community (Barnard et al. 2013; Moran 

et al. 2013),  as many environmental micro-organisms may be dormant or inactive (Jones and 

Lennon 2010) and extracellular DNA may be abundant in soils (Carini et al. 2016). However, 

RNA-based methodologies also come with a number of challenges, including the unstable 

nature of RNA (Prosser 2015) and the fact that the vast majority (95-99%) of environmental 

RNA is rRNA, meaning mRNA must be enriched prior to sequencing if functional transcripts 

are of interest (McGrath et al. 2008). 

1.4.2 MGA Workflows 

MGA approaches involve PCR amplification and sequencing of marker genes which are then 

assigned to OTUs (operational taxonomic units) for downstream analysis (see Figure 1.8 for a 

simplified workflow). Most commonly, the choice of marker gene and OTU assignment 

methodology is designed in such a way that OTUs approximate species-level units of diversity. 

Commonly used marker genes for microbial life include 16S rRNA for bacteria and archaea 

(e.g. Sogin et al. 2006), 18S rRNA for protozoa (e.g. Pawlowski et al. 2012) and ITS for fungi 

(e.g. Epp et al. 2012). A number of programs exist which will carry out all steps of MGA 

analyses, from quality control to hypothesis testing, including QIIME (Caporaso et al. 2010) 

and mothur (Schloss et al. 2009). 

http://www.illumina.com/systems/sequencing-platform-comparison.html
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Approaches to OTU-picking fall into two main groups: de novo OTU picking clusters 

sequences based on percentage similarity, while closed reference OTU picking clusters OTUs 

based on a reference database. Neither method is ideal: de novo OTU-picking may be 

computationally expensive for large 

numbers of sequences, and often leads to 

OTU groupings which do not agree with 

known species (White et al. 2010) or 

which aggregate organisms which do not 

share ecological characteristics (Preheim 

et al. 2013; Yamamoto and Bibby 2014). 

Conversely, closed reference OTU 

picking is limited by the fact that the 

majority of biodiversity is still 

undiscovered (Caporaso et al. 2011). 

Additional problems with MGA come 

from primer bias (Klindworth et al. 2013) 

and copy-number heterogeneity 

(Větrovský and Baldrian 2013). Despite 

these drawbacks, MGA approaches are an 

efficient way to study community composition in diverse environments such as soil (Lin et al. 

2014b) or the human gut  (Turnbaugh et al. 2009). Alternative MGA approaches focus on a 

single function of interest using relevant functional genes as markers such as narG, nirK/nirS 

and nosZ for denitrification (Palmer et al. 2012) or cbhI for cellulose degradation (Mueller et 

al. 2014). 

 

1.4.3 Metagenomic Workflows 

Rather than using PCR amplification of a gene of interest, metagenomic sequencing involves 

sequencing a random subset of DNA from the environment. Metagenomic sequencing 

workflows involve randomly fragmenting all DNA in a sample, before attaching sequencing 

adaptors, carrying out normalisation steps and sequencing the libraries which result. 

Metagenomics has a number of advantages over MGA: it enables functional and taxonomic 

Figure 1.8: Schematic showing a ‘typical’ 

workflow for MGA. 
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communities to be examined simultaneously, as well as avoiding the primer bias which is 

common to all MGA studies (Klindworth et al. 2013). Directly analysing functional genes 

enables insights into the functional potential of the microbial community that taxonomy alone 

would not. For example, Fierer et al. (2012) found that nitrogen concentration affected both 

taxonomic and functional composition of the bacterial community. Nitrogen addition led to an 

increase in Proteobacteria, Bacteriodetes and Actinobacteria and a decline in Acidobacteria. At 

the same time, there was an increase in genes for DNA/RNA replication, electron transport and 

protein metabolism alongside a decrease in genes involved with urea decomposition. Both 

analyses allow us to infer that the microbial community shifts from one dominated by 

oligotrophs to one dominated by copiotrophs as nitrogen is added. However, the functional 

approach allows us to do so directly, based on the presence of genes involved in growth and 

respiration. Nitrogen addition also led to a reduction in genes involved in urea decomposition, 

suggesting a reduction in organic nitrogen usage that would not have been detected by 

taxonomic analysis. Conversely, metagenomic sequencing is not without disadvantages. A 

large volume of sequence data is needed for adequate coverage of complex communities (Ni 

et al. 2013), which increases the cost of both sequencing and data analysis. In addition, the 

majority of metagenomic analyses rely on annotation using existing datasets: for example, Lin 

et al. (2014a) were only able to assign 33% of reads to known proteins, and accuracy of 

assignment progressively decreases with increasing taxonomic resolution and decreasing read 

length (Garcia-Etxebarria et al. 2014). 
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An example metagenomic workflow is shown in Figure 1.9. As with MGA, workflows exist to 

carry out all steps of analysis in a single platform, with the MG-RAST webserver being by far 

the most commonly used (Glass et al. 2010). The first steps in metagenomics workflows are 

quality control and demultiplexing. Basic quality control can be carried out using relatively 

simple tools (Zhou and Rokas 2014) to demultiplex samples based on ‘barcode’ sequences, 

trim adapters and primers from the ends of reads, and to remove unreliable reads or bases based 

on quality scores generated by the sequencing instrument during the run. Once these steps have 

been carried out, software such as FastQC (Zhou and Rokas 2014) may be used to visualise the 

data in order to detect common problems such as untrimmed barcode sequences or quality score 

deterioration at the 3’ ends of reads. 

 

Once suitable quality control has been carried out, analysis proceeds with the goal of inferring 

both the taxonomic composition and the functional potential of the community in question. 

Taxonomic assignments can be carried out in several ways. Firstly, marker genes (such as SSU 

Figure 1.9: Schematic to illustrate steps in a ‘typical’ metagenomic workflow. 
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rRNA) may be extracted from the dataset and annotated, for example using PhylOTU 

(Sharpton et al. 2011). The main advantage of extracting SSU rRNA for analysis lies in the 

large number of annotated sequences available in supported repositories such as the Ribosomal 

Database Project (RDP; Maidak et al. 1997) or SILVA (Pruesse et al. 2007), but  analysing 

marker genes alone ignores a large amount of available data and is subject to problems with 

SSU sequence analysis, such as copy-number heterogeneity (Větrovský and Baldrian 2013). 

An alternative approach is to attempt to annotate all sequences, but this approach is 

computationally expensive, limited by incomplete databases, and may create bias towards well-

studied organisms with sequenced genomes Thirdly, composition-based approaches such as 

PhyloPythia (McHardy et al. 2007) or Phymm (Brady and Salzberg 2009) assign taxonomy 

based on oligonucleotide composition, allowing classification of novel organisms. Recently, a 

fourth approach has been introduced: inference of the community composition based on a set 

of ‘elite’ marker genes, as is carried out in Phylosift (Darling et al. 2014). Fairly similar 

taxonomic profiles are usually obtained from metagenomic data whether 16S rRNA genes or 

all sequences are used for taxonomic assignment (Delmont et al. 2012; Fierer et al. 2012), 

while composition-based methods may provide improved classification of novel organisms but 

are strongly affected by read length (Brady and Salzberg 2009). 

Functional analysis usually begins with a gene finding step, to identify the sequences in the 

dataset which are most likely to code for proteins and therefore reduce the computational power 

required for later steps. A number of gene-finding algorithms have been developed specifically 

for metagenomic analysis, including FragGeneScan (Rho et al. 2010), MCG (El Allali and 

Rose 2013) and Orphelia (Hoff et al. 2009). Each of these methods uses several sequence 

characteristics- e.g. codon bias, stop/start codons, GC content- to calculate a probability that a 

given read belongs to a protein coding region. Gene finding yields a reduced subset of reads, 

which are then annotated. In MG-RAST this is carried out using the BLAT algorithm (Wilke 

et al. 2013) but other approaches may be used, such as HMMER (Eddy 2011) which models 

conserved amino acids in order to find domains belonging to protein families of interest. 

The final step is hypothesis testing and presentation of the data. While early metagenomics 

studies were mostly exploratory and focused on differences between highly distinct 

environments such as whale carcasses and the open ocean (Tringe et al. 2005) or very different 

biomes (Fierer and Jackson 2006), more recent studies are beginning to use metagenomics to 

study more subtle differences such as the effects of warming (Luo et al. 2014) or fire (Tas et 
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al. 2014). With the continuing increase in sequencing throughput, metagenomic studies are 

increasingly required to adopt replicated designs, enabling accurate conclusions to be drawn 

(Knight et al. 2012). The demand for proper statistical tests in metagenomics has resulted in 

the development of a number of statistical programs designed to implement them. For example, 

STAMP (Parks et al 2014) is a stand-alone program which carries out statistical tests on 

differences between two or more groups of samples. A number of R packages have also been 

developed with the specific aim of enabling analysis of shotgun metagenomic data: examples 

include phyloseq (McMurdie and Holmes 2013), ShotgunFunctionalizeR (Kristiansson et al. 

2009) or MetaPath (Liu and Pop 2010). Less-specialised R packages may also be used: for 

example, VEGAN (Dixon and Palmer 2003) for community analysis or DESeq2 (Love et al. 

2014) to test for differential abundances of proteins or taxa. 

In addition to the workflow described in Figure 1.9, metagenomic reads may be assembled into 

contigs or even draft genomes. A number of assembly algorithms have been developed to 

overcome challenges specific to metagenomic assembly, such as uneven coverages (caused by 

the differential abundance of different organisms) and distinguishing sequence errors from 

interspecies differences. Examples of metagenome assemblers include Ray Meta (Boisvert et 

al. 2012), MetaVelvet (Namiki et al. 2012) and Meta-IDBA (Peng et al. 2011). Although 

annotation of contigs rather than raw reads improves annotation accuracy (Magasin and Gerloff 

2014), the majority of taxonomic and functional metagenomic analyses use raw reads even 

where contigs are assembled as a separate step (Delmont et al. 2012) because annotation of 

contigs makes quantitative data analysis inappropriate. A number of studies have assembled 

draft genomes from metagenomic analyses, even from high-diversity habitats such as sediment 

or gut samples (Sharon and Banfield 2013; Sangwan et al. 2016). Genome assembly may be 

assisted by digital normalisation to reduce data volume to a manageable level (Howe et al. 

2012) or by binning contigs based on composition and/or coverage (Albertsen et al. 2013; 

Alneberg et al. 2014).  

1.5 Summary 

Northern peatlands contain a large store of organic carbon which is threatened by climate 

change. In particular, droughts may become more frequent and intense: periods of drought 

result in a loss of carbon in the form of CO2, with the effect continuing for some time after the 

drought finishes. This is believed to be caused by the release of hydrolase enzymes from 
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inhibition by phenolic compounds, mediated by phenol oxidases (which are activated by 

aeration of the peat when the water table falls). 

Although microbial communities are critically important in decomposition and CO2 release, 

little is known of their response to drought in peatlands. The abundances of methyl coenzyme-

M reductase, nitrite reductase and certain phenol oxidases have been studied during drought, 

but the response of other phenol oxidase genes remains unknown and we know next to nothing 

about other ways in which the functional and taxonomic composition of the microbial 

community in Northern peatlands changes during drought. In addition, without a better 

understanding of which genes are involved in driving decomposition in peat it is difficult to 

apply qPCR or genetic fingerprinting approaches to determine the effect of drought on the most 

important genes in degradation of organic matter in peat. 

Metagenomics and MGA have the potential to answer these questions. The field of 

metagenomics has advanced hugely with the invention of next-generation sequencing and the 

development of user-friendly computational resources for metagenomic analysis. Therefore, a 

metagenomic study combining functional and taxonomic analyses would advance our 

understanding of the mechanisms of carbon release from peatlands subjected to drought. 

1.6 Thesis Scope and Objectives 

The overarching aim of the current PhD thesis is to use second-generation sequencing 

methodologies to identify whether changes in peatland microbial communities underlie 

changes to greenhouse gases fluxes which occur in peatlands during drought. This aim was 

built around the following hypotheses: 

i) That the taxonomic composition of microbial communities, both prokaryotic and 

eukaryotic, changes during drought as a response to changing hydrological and 

chemical conditions 

ii) That changes in the taxonomic composition of microbial communities are 

associated with changes in community functional potential 

iii) That the changes described in (i) and (ii) are linked to the changes in carbon fluxes 

which have been previously observed during drought in peatlands 



25 

 

 

Additional aims were to advance current understanding of the composition of peat microbial 

communities, and to develop and apply an ecologically relevant approach to delimitation of 

OTUs in marker gene datasets. 

To achieve the stated aims, the following techniques were applied: 

i) A simulated drought was carried out using peat ‘mesocosm cores’ from two 

peatland habitats, half of which were subjected to drought and the remainder 

maintained at constant water table to serve as controls 

ii) Biogeochemical assays were coupled with ARISA fingerprinting in order to 

identify the timing of changes to microbial communities (Chapter 2) 

iii) Marker gene assessment of 18S and 16S SSU markers was used to identify changes 

in the taxonomic composition of microbial communities during drought (Chapter 

3) 

iv) Shotgun metagenomic sequencing of a subset of samples, taken from a single 

habitat and depth, to identify changes in both taxonomic and functional composition 

of microbial communities during drought and to characterise important functional 

genes present in this environment (Chapter 4) 

v) De novo assembly of dominant members of the bacterial community from 

metagenomic shotgun sequencing (Chapter 5) 
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2.1 Introduction 

Peatlands represent a major store of sequestered terrestrial carbon, meaning that the potential 

impact of climate change on peat cannot be taken lightly (Limpens et al. 2008). Anthropogenic 

climate change will likely lead to an increase in the severity and frequency of drought (Bates 

2008), which causes a large release of carbon dioxide from peatlands (Fenner and Freeman 

2011). Drought also affects the fluxes of nitrous oxide and methane, two greenhouse gases 

which are even more potent than carbon dioxide. Nitrous oxide flux commonly increases 

during drought (Freeman et al. 1993; Aerts and de Caluwe 1997; Dowrick et al. 1999), while 

methane flux decreases (Moore and Dalva 1993; Ellis et al. 2009) under drought conditions.  

Changes in gas fluxes are a result of numerous changes to biogeochemical processes in peat 

soils during drought and rewetting. Redox potential rises following water table drawdown 

(Vepraskas and Faulkner 2001) as oxygen penetrates more deeply into the peat, and the 

concentrations of ferric iron and of nitrate and sulfate ions rises as reduced forms of iron, 

nitrogen and sulfur are oxidised (Clark et al. 2005; Knorr et al. 2009; Brouns et al. 2014). 

Changes in nitrate and sulfate availability have a direct effect on gas fluxes: methanogenesis is 

supressed by the availability of alternative electron acceptors such as sulfate (Kang and 

Freeman 2002) while increased nitrate availability allows denitrification to proceed, releasing 

N2O as a by-product (Keller and Bridgham 2007). In addition, increased concentrations of 

sulfate and dissolved CO2 cause a fall in the pH of porewater (Ponnamperuma 1972). Increased 

sulfate concentrations may also be a factor in the decrease in DOC concentrations which is 

observed under drought conditions, as decreases in pH decrease DOC solubility (Clark et al. 

2012; Evans et al. 2012). Each of these chemical variables may exert a strong influence on 

microbial communities. In particular, redox potential has a strong impact on the ratio of fungi 

to bacteria (Seo and DeLaune 2010), while pH has a strong impact on bacterial growth 

(Fernández-Calviño and Bååth 2010) and community composition (Rousk et al. 2009; 2010). 

In many cases, drought-driven carbon dioxide release is likely caused by a decrease in the 

concentration of phenolic compounds caused by increased phenol oxidase activity under 

oxygenated conditions (Freeman et al. 2001). Phenolic compounds inhibit the activities of 

extracellular enzymes (Freeman et al. 2001) and are toxic to microbial life (Freeman et al. 

1990; Mellegård et al. 2009). The degradation of phenolic compounds allows a rise in the 

activity of many enzymes, including extracellular hydrolases which contribute to the 
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degradation of polymeric organic matter (Fenner and Freeman 2011). In particular, hydrolysis 

of polymeric carbohydrates such as cellulose may contribute to carbon cycling in plant litter 

and soils. Cellulose is one of the most abundant components of plant matter, making up 15-

60% of total mass (Paul and Clark 1989), and consists of long chains of glucose molecules 

linked by β(1→4) linkages. A simplified model of the degradation of cellulose involves three 

types of enzyme: endoglucanases, which break cellulose down into shorter chains; 

exoglucanases, which break these short fragments into cellobiose (a disaccharide) or small 

oligosaccharides; and finally, β-glucosidases, which break cellobiose into glucose (Singhania 

et al. 2013). As the terminal step in cellulose degradation, therefore, β-glucosidase plays an 

important role in degradation of organic carbon in plant matter. β-glucosidase activity increases 

during drought in response to a reduction in phenolic compounds (Freeman et al. 2001; Fenner 

and Freeman 2011), meaning that this enzyme may well play a role in drought-driven carbon 

loss from peatlands. 

A number of studies have found that microbial communities differ between depths and habitats 

(Lin et al. 2012; Serkebaeva et al. 2013; Lin et al. 2014b). Community differences are related 

to differences in soil and porewater chemistry, in particular pH, concentration of carbon and 

nitrogen, and carbon quality (Lin et al. 2012). However, there is currently little to no 

understanding of the microbial mechanisms underlying changing carbon fluxes in peatlands 

during drought. Fungi and bacteria are responsible for the majority of microbial decomposition 

in soils and plant litters. Of the two, fungi are considered the most important producers of 

enzymes under aerobic conditions (Romani et al. 2006; Schneider et al. 2012) and are 

especially important producers of phenol oxidase enzymes (Romani et al. 2006). However, 

bacteria dominate carbon mineralisation in peatlands (Winsborough and Basiliko 2010) and 

play important roles in the degradation of phenolic compounds under anaerobic conditions 

(Philipp and Schink 2012). 

Prior to the large-scale application of second-generation sequencing methodologies to the study 

of microbial communities, a number of DNA-based ‘community fingerprinting’ approaches 

were developed, including T-RFLP, DGGE and ARISA fingerprinting. Each of these 

approaches can be used to pinpoint shifts in the richness and composition of the microbial 

community, and in some cases may even be used to infer which species are present (Shyu et 

al. 2007; Slemmons et al. 2013). ARISA fingerprinting is able to distinguish the microbial 
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communities of different habitats (Ranjard et al. 2001; Danovaro et al. 2006), and is often more 

sensitive than other microbial fingerprinting techniques (Danovaro et al. 2006). Richness 

estimates obtained using ARISA fingerprinting are strongly correlated to the ‘true’ richness of 

a community (Kovacs et al. 2010). Therefore, despite the advent of next-generation 

sequencing, ARISA fingerprinting remains a quick and affordable method to identify where 

and when changes occur in microbial communities, allowing targeted application of next-

generation sequencing.  

Aims and Objectives of Chapter 

The overarching aim of this chapter was to test the hypothesis that microbial communities in 

peat change during periods of drought and rewetting. The objectives of this chapter were as 

follows: 

1. To identify changes in gas fluxes, enzyme activities, water chemistry and the 

concentration of phenolic compounds during a period of drought 

2. To identify whether differences exist between the microbial (bacterial and fungal) 

communities of bogs and fens at two depths 

3. To identify whether peatland microbial communities change during simulated drought, 

and if so, to identify the temporal and spatial location of these changes 

4. To compare the responses of peatland bacterial and fungal communities to drought 

2.2 Methods 
2.2.1 Sample Site 

Ten ‘mesocosm cores’ were collected from two sites representing typical Welsh bog and fen 

habitats. The chosen fen habitat was Cors Erddreiniog, a low-lying fen in mid-Anglesey 

(SH461826). This site is a part of the Anglesey Fens complex, which is designated a Special 

Area of Conservation and represents a nationally important area of alkaline and calcareous fen 

(http://jncc.defra.gov.uk/protectedsites/sacselection/sac.asp?EUCode=UK0012884, accessed 

25/08/15). 

Marchlyn Mawr is a small bog on the edge of Snowdonia National park (grid reference 

SH610625). This site is less well-characterised than Cors Erddreiniog, but the vegetation 

http://jncc.defra.gov.uk/protectedsites/sacselection/sac.asp?EUCode=UK0012884
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belongs to NVC classification M6 (Carex echinata – Sphagnum recurvum/auriculatum mire) 

(Williamson et al. 2010). 

 

Figure 2.1: Schematic showing aspects of the experimental design. A: Overview of the 

experiment showing the number of mesocosm cores collected for each treatment and habitat, 

as well as depths at which sample collection was carried out. B: View of mesocosm cores from 

above, giving an indication of typical vegetation in bog and fen. C: Position of the water table 

throughout the experiment, with sampling time points indicated by dotted lines. 

 

2.2.2 ‘Mesocosm Core’ Design and Collection 

Peat ‘mesocosm cores’ were collected in PVC pipes (each 20 cm in diameter and 35 cm in 

length), following a protocol adapted from Freeman et al. (1993). Peat cores collected in this 

way have intact peat profiles and plant communities. After collection, mesocosm cores were 

kept in a controlled temperature room at 8-10°C for the duration of the experiment, and were 

lit by fluorescent daylight tubes for 16 hours a day (mean PAR: 305.4 µmol m-2 sec-1). Cores 

were placed in bins filled with artificial rainwater for bog cores and artificial groundwater for 

fen cores, with holes drilled near the base of each core to allow water exchange with the 

surrounding water. The composition of the rainwater followed a standard recipe described by 

Fenner (2002) and the groundwater recipe followed the composition of groundwater at Cors 
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Erddreiniog as closely as was possible (Nina Menichino, pers. comm.). Ion concentrations in 

both waters are described in Table 2.1. The concentration of calcium (Ca2+) is extremely high 

in groundwater from Cors Erddreiniog and leads to an apparent charge imbalance, but this is 

likely due to the fact that bicarbonate was not measured: bicarbonate and calcium are the two 

dominant ions at Cors Erddreiniog (Farr et al. 2014). While the calcium concentrations shown 

in Table 2.1 are high, they are not exceptional for this habitat (Menichino 2015).  

Table 2.1: Final concentration of important ions in artificial rainwater and 

groundwater, as well as measured concentrations from Cors Erddreiniog (N. Menichino, 

pers. comm.). Unfortunately, it was not possible to exactly match concentrations from the 

groundwater using available equipment and salts. Concentrations are given in mg l-1. 

Ion 

Artificial 

Groundwater 

Artificial 

Rainwater 

Cors E. 

Groundwater 

Na2+ 2.4 2.5 - 

K+ 0.1 0.1 - 

Ca2+ 0.3 5.2 124.5 

Mg+ 0.7 2.9 5.5 

Cl- 0.7 10.2 15.1 

SO4
- 3.1 3.3 3.0 

NH4
+ 0.1 0.0 0.1 

NO3
- 0.0 0.1 0.1 

 

2.2.3 Water Table Manipulation 

Within each habitat, five mesocosm cores were assigned to the drought-rewet treatment while 

the remaining five acted as controls (Figure 2.1A). The water table in the drought cores at each 

sampling time point is described in Table 2.2 and visualised in Figure 2.1C. The duration and 

severity of water table drawdown was based on a natural drought which occurred in 2006 in 

the Cerrig-yr-Wyn catchment in mid-Wales (Nathalie Fenner, pers. comm.). The water level 

in the control cores was kept constant by topping up with distilled water when necessary. 

Distilled water, rather than artificial rain or groundwater, was used to maintain the water table 

in order to avoid increasing ion concentrations as the experiment progressed: water was lost 

through evaporation, but ions could not leave the system (whereas in a natural system they 

could be lost by leaching to lower levels). The water level of the drought cores was adjusted 

twice a week (on Tuesdays and Fridays): during the drought period this involved the removal 

of water from the bins containing drought cores, and during the rewetting period artificial 
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rainwater or groundwater was added to bring the water table up to the required level (Table 

2.2). 

Table 2.2: Depth beneath the surface of the water table in drought cores throughout the 

experiment. Water table depth was adjusted at twice-weekly intervals by removing water 

from each bin containing a drought core. ‘Soil sample’ refers to the label applied to each time 

point for soil samples, while ‘water sample’ refers to the label applied to water sample time 

points. 

Day 

 

Date 

Water Table 

(cm) 

Soil 

Sample 

Water 

Sampl

e 

0 28/08/2013 0 T1  

7 02/09/2013 0   

14 09/09/2013 0   

21 16/09/2013 0   

28 23/09/2013 0 T2  

35 30/09/2013 -2.2   

42 07/10/2013 -4.4   

49 14/10/2013 -6.6 T3  

56 21/10/2013 -8.8   

63 28/10/2013 -11   

70 04/11/2013 -13.2 T4  

77 11/11/2013 -15.4  W1 

84 18/11/2013 -17.6   

91 25/11/2013 -20 T5  

98 02/12/2013 -20  W2 

105 09/12/2013 -20   

112 16/12/2013 -20 T6  

119 23/12/2013 -20   

126 30/12/2013 -20   

133 06/01/2014 -17 T7 W3 

140 13/01/2014 -14   

147 20/01/2014 -11   

154 27/01/2014 -8 T8 W4 

161 03/02/2014 -5   

169 10/02/2014 -2  W5 

176 17/02/2014 0 T9 W6 

 

2.2.4 Sample Collection 

Mesocosm cores were allowed to acclimatise for one month before sample collection began, 

after which samples were collected at three week intervals on the dates shown in Table 2.2. 
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Gas samples were taken by placing a sealed headspace over each core with a rubber septum to 

allow gas collection. At 0, 15, 30, 60 and 120 minutes, a 20 cm3 gas sample was removed and 

injected into an evacuated 12 ml glass vial (Labco Medical Supplies).  Gas sampling was 

carried out between 10 am and 12 noon.  

Immediately following gas sampling, samples of peat were collected at two depths in each peat 

core. Holes were drilled in the pipe at two depths: 5 cm and 20 cm, measured from the peat 

surface (no mesocosms subsided following sample collection) and a 6 g sample of peat was 

collected for laboratory analysis using sterile tools. Following removal of the soil sample, a 

redox probe was inserted into the peat and a measure of redox potential taken using a redox 

probe with an Ag/AgCl reference electrode in 3 M  KCl. To adjust the value obtained to the 

‘true’ value (i.e. that which would have been obtained using a standard hydrogen electrode), a 

correction factor of +207 was added prior to further analysis (Vepraskas and Faulkner 2001). 

Porewater samples were also collected during the second half of the experiment (Table 2.2). 

Water samples were collected using Rhizon samplers (Rhizosphere Research Products, The 

Netherlands), which were inserted into the holes from which soil samples had been taken at the 

first time point. Rhizons were left in place throughout the experiment. Water samples were 

collected by connecting an evacuated 20 ml syringe and leaving it in place until 20 ml of water 

was collected. Samples were immediately filtered using a 0.45 µm syringe filter, and stored at 

4°C until analysis. Water sample collection was not possible in all cases, especially during 

drought, and sample size for each combination of treatment, time, depth and habitat is shown 

in Table 2.3. 

2.2.5 Laboratory Analysis of Samples 

DNA Extraction 

Soil collected from the mesocosm cores was mixed thoroughly using flame-sterilised tools: 

undecomposed plant matter was cut into small pieces with fine tip dissection scissors, and the 

peat was stirred using a spatula. DNA was extracted from a 0.25 g subsample with a MoBio 

PowerSoil kit, following manufacturer’s instructions. Following preliminary tests, the MoBio 

PowerSoil kit was found to give more consistent results than alternative methods. 
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 Table 2.3: Sample size for water chemistry measurements. Five replicate cores were 

collected within each combination of habitat and treatment, but due to difficulties with 

extraction of water from cores a balanced set of replicates was not taken at every time point.  
    Time   Sample size  

Habitat Depth Point Treatment pH Phenolics Nitrate Sulfate 

Bog 5cm W1 Control 5 5 2 0 

Bog 5cm W1 Drought 3 3 0 0 

Bog 5cm W2 Control 5 5 5 5 

Bog 5cm W2 Drought 0 0 0 0 

Bog 5cm W3 Control 5 5 5 5 

Bog 5cm W3 Drought 0 0 3 3 

Bog 5cm W4 Control 5 5 4 4 

Bog 5cm W4 Drought 1 3 4 4 

Bog 5cm W5 Control 4 4 4 4 

Bog 5cm W5 Drought 2 2 2 2 

Bog 5cm W6 Control 4 4 4 4 

Bog 5cm W6 Drought 3 4 4 4 

Bog 20cm W1 Control 5 5 3 0 

Bog 20cm W1 Drought 5 5 2 0 

Bog 20cm W2 Control 5 5 5 5 

Bog 20cm W2 Drought 5 5 5 5 

Bog 20cm W3 Control 5 5 5 5 

Bog 20cm W3 Drought 4 4 5 5 

Bog 20cm W4 Control 5 5 5 5 

Bog 20cm W4 Drought 5 5 3 3 

Bog 20cm W5 Control 5 5 5 5 

Bog 20cm W5 Drought 5 5 5 5 

Bog 20cm W6 Control 5 5 5 5 

Bog 20cm W6 Drought 5 5 4 5 

Fen 5cm W1 Control 5 5 2 4 

Fen 5cm W1 Drought 5 4 5 3 

Fen 5cm W2 Control 5 5 5 5 

Fen 5cm W2 Drought 4 4 4 4 

Fen 5cm W3 Control 5 5 5 5 

Fen 5cm W3 Drought 3 3 5 5 

Fen 5cm W4 Control 5 5 5 5 

Fen 5cm W4 Drought 5 5 5 5 

Fen 5cm W5 Control 4 4 4 4 

Fen 5cm W5 Drought 5 5 5 5 

Fen 5cm W6 Control 5 5 5 5 

Fen 5cm W6 Drought 5 5 5 5 

Fen 20cm W1 Control 5 5 3 3 

Fen 20cm W1 Drought 5 5 5 2 

Fen 20cm W2 Control 5 5 5 5 

Fen 20cm W2 Drought 5 5 5 5 

Fen 20cm W3 Control 5 5 5 5 

Fen 20cm W3 Drought 5 5 5 5 

Fen 20cm W4 Control 5 5 5 5 

Fen 20cm W4 Drought 5 5 5 5 

Fen 20cm W5 Control 5 5 5 5 

Fen 20cm W5 Drought 5 5 5 5 

Fen 20cm W6 Control 5 5 5 5 

Fen 20cm W6 Drought 4 4 4 4 
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DNA was eluted with 100 µl sterile Tris-EDTA buffer (10 mM Tris, 1 mM EDTA, pH 7.6) 

and stored at -80°C prior to further analysis. Samples were further purified using a MoBio 

PowerClean kit following manufacturer’s instructions, as this was found to give more 

consistent PCR amplification during the ARISA fingerprinting step. 

Water Content 

Dry weight and water content were obtained by weighing approximately 1 g of peat into a 

crucible, heating to 108°C for 48 hours, and weighing the mass which remained. No extra mass 

loss was observed by increasing the duration of heating. 

 

Figure 2.2: Workflow for β-glucosidase assay, using 4-methylumbelliferone-β-D-

glucopyranoside (MUF-B) as the substrate. In the presence of β-glucosidase, MUF-B is 

converted to MUF-free acid, which fluoresces at 450nm excitation, 330nm excitation. 
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Gas Fluxes 

Gas samples were analysed on a Varian 450-GC, fitted with a flame ionisation detector (FID) 

and methaniser to measure CO2 and CH4, and an electron capture device (ECD) for nitrous 

oxide.  At each time point, the machine was calibrated using three gas mixtures of known 

concentration obtained from Scientific and Technical Gases Ltd (Newcastle under Lyme, 

Staffordshire, UK). For each gas a regression line was calculated between time and gas 

concentration, and the slope of the regression was taken as the average flux value. Global 

warming potential (GWP) was calculated by multiplying each of the three gases by its 100-

year global warming potential: 1 for CO2, 23 for CH4 and 296 for N2O (IPCC 2001). 

Determination of Enzyme Activities and Concentration of Phenolic Compounds 

Phenol oxidase activities were measured using L-3,4-dihydroxyphenylalanine (L-DOPA). In 

the presence of phenol oxidase, L-DOPA is oxidised to 3-dihydroindole-5,6-quinone-2-

carboxylate (dicq), which has a pinkish colour (Pind et al. 1994). Briefly, 1 cm3 of peat was 

thoroughly mixed with 9 cm3 of water in a stomacher (Seward). Six 750 µl subsamples of the 

resulting slurry were removed into Eppendorf tubes. 750 µl of 10 mM L-DOPA was added to 

half of these tubes to measure phenol oxidase activity, while 750 µl of ultrapure water was 

added to the remaining three tubes to measure baseline absorbance. All tubes were incubated 

at 4°C for 9 minutes, then centrifuged at 20,000g for 5 minutes to terminate the reaction. 300 

µl of the supernatant from each tube was placed into a clear 96-well microplate and absorbance 

was measured at 460 nm. Absorbance was used to calculate phenol oxidase activity using 

Beer’s Law and a molar absorption coefficient of 3700 for dicq (Pind et al. 1994; modified by 

Dunn et al. 2014). 

β-glucosidase activity was measured following Dunn et al. (2014), as summarised in Figure 

2.2. This method is modified from Freeman et al. (1995) and uses 4-methylumbelliferone-β-

D-glucopyranoside (MUF-B) as a substrate, which upon hydrolysis releases 4- 

methylumbelliferone (4-MUF). 

1. Prior to beginning the assay, fresh solutions of MUF-B and 4-MUF were made. 

MUF-B was brought to the incubation temperature, while dilutions of 4-MUF were 
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made for the calibration curve (to give final concentrations of 0, 5, 10, 15, 20 and 

30 µM). 

2. For the assay, 7 cm3 of 400 µm MUF-B was added to the first peat sample, 

homogenised, and incubated at 4 °C for 58 minutes. At the same time peat slurry 

for the calibration curve was prepared by adding 7 cm3 of water to the second peat 

subsample, then homogenising and incubating the resulting slurry alongside the 

assay sample. 

3. While the samples were incubated, a black microplate was prepared: 50 µl of the 

relevant 4-MUF dilution was added to wells in the first six columns, while 50 µl of 

distilled water was added to three wells to give an equivalent dilution to the wells 

used to calculate the calibration curves. 

4. At the end of incubation, the supernatant was extracted by transferring the slurry to 

a 2 ml centrifuge tube and centrifuging at 20,000g for 5 minutes. 250 µl of 

supernatant was added to the relevant microplate wells: adding the peat-MUF-B 

mix to the assay wells, and the water-peat mix to the calibration curve wells. 

Absorbance was measured for all wells at 450 nm emission and 330 nm excitation, 

and the concentration of MUF in the assay wells was calculated using the calibration 

curve. 

The concentration of phenolic substances was measured using Folin-Ciocalteu reagent (Box 

1983). Briefly, a 1 cm3 subsample of peat was taken using a cut-off syringe and weighed, before 

water-soluble phenolics were extracted by homogenising the peat subsample with 9 ml of water 

before centrifuging the resulting slurry. 250 µl of supernatant was added to three wells of a 

clear microplate and baseline absorbance measured prior to addition of 12.5 µl Folin-Ciocalteu 

reagent and 37.5 µl filtered sodium carbonate solution (200 mg l-1).  Samples were mixed, 

incubated at room temperature for 90 minutes, and absorbance measured at 750 nm. A 

calibration curve was produced using dilutions of phenol solution in the range of 0-10 mg l-1. 

To measure the pH of peat itself, a pH probe was placed in peat slurry made by mixing 1 cm3 

of peat with 9 ml of MilliQ water (Toberman et al. 2010). Prior to each use, the pH probe was 

calibrated using commercial calibration solutions with pH values of 4 and 7 (Sigma Aldrich). 
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Water Chemistry 

The pH of each porewater sample was taken by inserting a pH probe into the sample. Nitrate 

and sulfate were measured using a Metrohm 850 Ion Chromatograph, with a Metrosep A Supp 

5 150 mm anion column and an eluent of 3.2 mM/1.0 mM sodium carbonate/bicarbonate. 

Concentrations of dissolved phenolic compounds were measured using an identical procedure 

to that used for soil samples, but substituting porewater for peat slurry. 

ARISA Fingerprinting 

Automated ribosomal intergenic spacer analysis (ARISA) involves amplifying the intergenic 

spacer region of microbial ribosomal DNA and analysing the length of the obtained amplicons. 

The length of the intergenic spacer region is very variable, and amplicons of different sizes are 

therefore assumed to be separate species (although this is not always the case (Kovacs et al. 

2010)). A subset of three mesocosm cores for each combination of treatment and time was 

selected for ARISA fingerprinting. For each chosen core ARISA was carried out for both 

depths and all nine time points, giving a total of 216 samples for this part of the analysis. 

Primers chosen for ARISA of bacterial communities were ITSF (5’-

GTCGTAACAAGGTAGCCGTA-3’) and ITSReub (5’-GCCAAGGCATCCACC-3’), which 

have been shown to outperform other commonly used ARISA primers (Cardinale et al. 2004). 

As there was no existing comparison of primer pairs for ARISA fingerprinting of fungal 

communities, selected primers were tested using Primer Prospector software. Forward primers 

used in the comparison were 2234C, ITS1, ITS1WH and ITS5, and reverse primers were ITS4 

and 3126T (White et al. 1990; Ranjard et al. 2001). First, primers were compared in all possible 

combinations, and screened based on the number of matches to sequences in the UNITE 

database (Abarenkov et al. 2010). Reverse primer 3126T was ruled out based on a low number 

of matches to the database (data not shown). Secondly, the taxonomic distribution of matches 

and the length distribution of fragments were examined. Matches were distributed across all 

the major phyla of fungi for all three primer pairs (data not shown). However, the spread of 

fragment sizes was larger and more even for ITS1WH-ITS4 meaning that this primer pair 

would distinguish species more clearly (Figure 2.3). 
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Figure 2.3: Distribution of amplicon sizes generated by four primer pairs tested in 

PrimerProspector. 

 

Each PCR reaction for ARISA contained 9.45 µl of nuclease -free water, 12.5 µl of PCR Master 

Mix (Promega), 1 µl of each primer (10 µM), 0.05 µl of molecular grade bovine serum albumin 

(1mg/ml, Thermo Scientific) and 1 µl of template DNA (diluted to 10 ng/µl) to give a final 

volume of 25 µl. For ARISA of bacterial communities, the mixture was held at 95°C for 2 

minutes for initial denaturation, followed by thirty cycles of 95 °C for one minute 
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(denaturation), 52°C for 45 seconds (annealing), 72 °C for 1.5 minutes (extension), and a final 

extension period of five minutes. An annealing temperature of 54.2°C was used for the fungal 

ARISA primers, with all other steps in the PCR program identical to that for ARISA of bacterial 

communities. 

PCR amplicon lengths were measured on a Qiaxcel Advanced (Qiagen), using a Qiaxcel High 

Resolution kit and method OM1200 (recommended by the manufacturer for amplicon lengths 

between 0.5 and 1.5 kbp).  Thresholds for peak calling were adjusted to a baseline window of 

240 s and a peak identification threshold of 6 % for ARISA of bacterial communities. For 

ARISA of fungal communities, a baseline window of 40s (the default) was used with a 

threshold of 6%. 

2.2.6 Data Analysis 

All biogeochemical variables (enzyme activities, phenol concentration, gas fluxes, pH and 

redox) were analysed using linear mixed effects models. Linear mixed-effects models are 

gaining popularity in ecological analyses (e.g. Langenheder et al. 2010; Dossena et al. 2012; 

Evans et al. 2012), and were required in this case to allow for the effect of core (since multiple 

samples were taken from each mesocosm core, analyses would otherwise have been 

compounded by temporal pseudoreplication). Model selection was based on the 

recommendations of Zuur et al. (2009), and was carried out using the ‘nlme’ package in R 

(Pinheiro et al. 2013). 

Firstly, a maximal model was constructed using depth, habitat, treatment, date and all 

interactions. The random effects were chosen by using restricted maximum likelihood (REML) 

to fit the maximal model both with no random component and with core as a random 

component, and comparing between the two using likelihood ratios. The random intercept 

model was chosen if the p-value obtained by a likelihood ratio test was <0.05 (i.e. indicating 

that the random effect of ‘core’ had a significant effect on the model). The residuals from this 

step were plotted against each factor (including random variables), and where patterns existed 

a new variance structure was selected. This was done by fitting a new model with a fixed 

variance structure (i.e. allowing for different variances for each level of the factor causing the 

pattern). Again, the best model was chosen using a likelihood ratio test. For some variables 

(dissolved phenolics, nitrate, DOC) a fixed variance structure was insufficient to correct 



59 

 

 

variance heterogeneity and a log transformation was applied. Finally, the optimal fixed effects 

structure was chosen using backwards selection. Briefly, the maximal model with the optimal 

random effects structure was fitted again using maximal likelihood (ML). Interactions were 

dropped one at a time, and significance of each term was tested by comparison with the 

previous model using maximum likelihood (terms were removed if the p-value obtained was 

>0.05). Once all non-significant terms had been removed, the model was refitted using REML 

and validated by inspection of residual plots. Post-hoc tests were carried out using the package 

‘lsmeans’ (Lenth 2016), in order to determine at which time points a significant treatment-

control difference was found. 

Data from the ARISA analysis was analysed using the ‘vegan’ package in R (Oksanen et al. 

2015). First, fragment sizes were sorted into 5 bp bins and converted to presence-absence data. 

Richness of bacterial and fungal communities were analysed using generalized linear models 

fitted using the ‘glm’ function in R. Models were fitted using time point, treatment and the 

interaction between time point and treatment as factors. A separate model was fitted within 

each combination of habitat and depth. Models were initially fitted using Poisson errors, but in 

cases where evidence of overdispersion (the presence of greater variability than would be 

expected within the Poisson distribution) was found, standard errors were corrected using a 

quasi-GLM method in which the variance was the mean multiplied by a dispersion parameter 

(in the Poisson distribution the variance is assumed to be equal to the mean). The significance 

of each interaction term was then analysed by analysis of deviance (function ‘drop1.glm’) using 

a Chi-squared test. 

Jaccard distances were calculated between samples and used to conduct PERMANOVA tests 

(function ‘adonis’) as follows: 

1. PERMANOVA tests were carried out on all samples to test for the effects of all factors 

(time, treatment, habitat and depth). 

2. As the effect of habitat and depth was very large, PERMANOVA was carried out 

separately for each combination of habitat and depth to test for effects of time point, 

treatment and a time: treatment interaction.  

3. Where significant effects of treatment were found, time points were broken into four 

groups of roughly even size to identify when changes occurred (there were not enough 

replicates at each time point to analyse these separately)- hereafter, these groups are 
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referred to as pre-drought (time points T1 and T2), drying (T3, T4 and T5), minimum 

water table (T6 and T7) and rewetting (T8 and T9). Although the water table was at a 

minimum at time point T5, the water table had only just reached this level and so time 

point five was grouped with ‘drying’. 

PCoA plots were generated based on Jaccard distances using function ‘cmdscale’ in package 

‘VEGAN’. Samples in which no fragments were detected were excluded from PERMANOVA 

analysis and NMDS plots (two samples from the bacterial dataset and one from the fungal 

dataset). 

2.3 Results 
2.3.1 Water Content and Redox Potential  

Water content was significantly different between the two habitats and depths, and was lowest 

at 20 cm depth and in the fen habitat. There were significant interactions between time point 

and treatment and between treatment and depth (Table 2.4), representing a lower water content 

at 5 cm during drought (Figure 2.4). Water content was significantly different between 

droughted and control mesocosm cores at 5 cm depth during time points 3 (t17= -3.2, p =0.006), 

4 (t17= -2.5, p =0.02), 5 (t17= -2.5, p =0.02), 7 (t17= -3.2, p =0.005) and 8 (t17= -3.4, p =0.003). 

There was also a significant effect of time point on water content (Figure 2.4; Table 2.4), with 

significant interactions between time point and habitat and time point and depth. Water content 

rose in the early part of the experiment in both habitats and at both depths (Figure 2.4). 



61 

 

 

 

Figure 2.4: Mean water content as a percentage of total wet mass.  Significant differences 

between the two treatments are marked with *, while significant differences between time 

points are marked with different letters (red = drought, black = control). Error bars show 

standard errors. 

Table 2.4 Results of minimal adequate linear mixed-effect models, with percentage 

water content (arcsine-transformed) and redox potential as response variables. Degrees 

of freedom reported are reported in the form: d.f.denominator, d.f.numerator. 

Variable Effect F d.f. p 

Water Content Habitat 26.0 1,17 <0.001 

 Depth 43.5 1,306 <0.001 

 Time Point 4.7 8,306 <0.001 

 Treatment 2.8 1,17 0.110 

 Time Point: Treatment 2.01 8,306 0.04 

 Time Point: Habitat 2.8 8,306 0.006 

 Time Point: Depth 4.6 8,306 <0.001 

 Treatment: Depth 13.3 1,306 <0.001 

Redox Habitat 179.1 1,17 <0.001 

 Treatment 6.4 1,17 0.022 

 Time Point 3.7 5,198 0.034 

 Time Point: Treatment 5.0 5,198 <0.001 

 

Depth: Time Point: 

Treatment 3.1 5,198 0.011 
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Figure 2.5: Mean redox potential (mV). Due to difficulties with equipment, redox potential 

was not measured prior to T4. Significant differences between the two treatments are marked 

with *, while significant differences between time points are marked with different letters 

(red = drought, black = control). Post-hoc tests were carried out across both habitats, as there 

were no significant interactions between habitat and other factors.  Error bars show standard 

errors. Dotted lines represent transition between four stages of water table manipulation: pre-

drought, drying, minimum water table, and rewetting (in that order). 

Redox potential was significantly higher in bog than fen mesocosm cores and in drought cores 

compared to control cores (Table 2.4). In addition, there was a significant interaction between 

time point and treatment, as redox potential rose during drought (Figure 2.5).  At 5 cm depth, 

redox potential was significantly higher in drought than control cores at every time point at 

which redox potential was measured: time points 4 (z=2.53, p=0.01), 5 (z=4.52, p<0.001), 6 

(z=6.02, p<0.001), 7 (z=4.81, p<0.0001), 8 (z=5.42, p<0.0001) and 9 (z=3.43, p =0.0006). At 

20 cm depth, redox potential was only significantly higher in drought than control cores at time 

points 5 (z =3.06, p = 0.002), 6 (z = 2.56, p =0.01), 8 (z=3.10, p=0.002) and 9 (z=2.59, 

p=0.0095). There was a significant effect of time point on redox potential in both droughted 

and control cores: in control cores at both depths and in droughted cores at 20 cm, the redox 

potential fell between time points 4 and 5, before rising again towards the end of the experiment 

(Figure 2.5). In the droughted cores at 5 cm, redox potential rose between time points 4 and 8 

before falling again at the final time point (Figure 2.5).  
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Figure 2.6: Mean CO2 flux (mg m-2 h-1) in droughted and control mesocosm cores. There 

was no significant effect of habitat on CO2 flux, so averages were calculated across both 

habitats. Significant differences between the two treatments are marked with *, while 

significant differences between time points are marked with different letters (red = drought, 

black = control). Error bars show standard errors. Dotted lines represent transition between 

four stages of water table manipulation: pre-drought, drying, minimum water table, and 

rewetting (in that order). 

 

Figure 2.7: Mean methane flux (mg m-2 h-1) in droughted and control mesocosm cores, 
separated by habitat.  Significant differences between the two treatments are marked with *, 

while significant differences between time points are marked with different letters (red = 

drought, black = control). Error bars show standard errors. Dotted lines represent transition 

between four stages of water table manipulation: pre-drought, drying, minimum water table, 

and rewetting (in that order). 
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Figure 2.8: Mean flux of nitrous oxide (mg m-2 h-1) in droughted and control mesocosm 

cores, separated by habitat. Significant differences between the two treatments are marked 

with *, while significant differences between time points are marked with different letters 

(red = drought, black = control). Error bars show standard errors. Dotted lines represent 

transition between four stages of water table manipulation: pre-drought, drying, minimum 

water table, and rewetting (in that order). 

2.3.2 Gas Fluxes 

There was a significant interaction effect between time point and treatment on carbon dioxide 

fluxes, with a significant main effect of time point (Table 2.5). As illustrated in Figure 2.6, CO2 

fluxes were significantly higher in drought than control cores at time points 4 (z=2.09, p=0.04), 

5 (z=2.06, p=0.04) and 6 (z=2.28, p=0.02). In control cores, the carbon dioxide fluxes were 

significantly lower at time point 5 than time point 9, with a trend towards fluxes decreasing 

and then increasing over the course of the experiment, while in the droughted cores carbon 

dioxide fluxes peaked at time point 6, corresponding to minimum water table (Table 2.2). 
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Figure 2.9: Global warming potential (GWP, mg of CO2 equivalent m-2 h-1) in 

droughted and control mesocosm cores, separated by habitat. Significant differences 

between the two treatments are marked with *, while significant differences between time 

points are marked with different letters (red = drought, black = control). Error bars show 

standard errors. Dotted lines represent transition between four stages of water table 

manipulation: pre-drought, drying, minimum water table, and rewetting (in that order). 

 

Methane flux was likewise significantly affected by the interaction between time point and 

treatment (Table 2.5), with drought leading to lower methane emissions (Figure 2.7). In the 

fen, methane emissions were significantly lower in drought than control cores at time points 2 

(z=-2.36, p=0.02), 3 (z=-2.03, p=0.04), 4 (z=-4.11, p<0.0001), 5 (z=-4.65, p<.0001), 6 (z=-

4.97, p<0.0001), 7 (z=-7.06, p<0.0001), 8 (z=-7.42, p<0.0001) and 9 (z=-4.61, p<0.0001). In 

the bog, methane emissions were significantly lower in drought than control cores at time 

points 7 (z=-3.99, p=0.0001) and 8 (z=-3.07, p=0.0022). Methane flux was also significantly 

different between habitats, with a much higher methane flux in the fen (Table 2.5; Figure 2.7). 

Methane flux was also significantly affected by time point, with methane flux from control 

cores decreasing over time (Figure 2.7). When the analysis was repeated with a single very 

large outlier removed, all effects remained significant (results not shown). 
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Figure 2.10: Mean pH of peat slurry (1 cm3 peat suspended in 9 cm3 ultrapure water). 
Significant differences between the two treatments are marked with *, while significant 

differences between time points are marked with different letters (red = drought, black = 

control). Error bars show standard errors. Dotted lines represent transition between four stages 

of water table manipulation: pre-drought, drying, minimum water table, and rewetting (in that 

order). 

 

Nitrous oxide fluxes were significantly affected by the interaction between time point and 

treatment (Table 2.5): fluxes were significantly higher in drought than control cores at time 

point 9 only (z=-3.16, p=0.0016; (Figure 2.8). However, nitrous oxide fluxes at all time points 

were small and variable and the significant effect of treatment was primarily due to outlier 

effects. Nitrous oxide fluxes were significantly higher from bog mesocosm cores (Table 2.5; 

Figure 2.8), and were also significantly affected by time point, with a trend towards falling 

N2O fluxes in the early time points followed by rising fluxes from time point 6 onwards (Figure 

2.8). 
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Figure 2.11: Mean phenol oxidase activity of peat (μmol dicq produced per gram of dry 

peat per minute), separated by habitat and depth. There was no significant effect of 

treatment so means were calculated across both treatments. Significant differences between 

time points are marked with different letters. Error bars show standard errors. Dotted lines 

represent transition between four stages of water table manipulation: pre-drought, drying, 

minimum water table, and rewetting (in that order). 

 

Global warming potential (GWP) was significantly affected by the three-way interaction 

between time point, treatment and habitat (Table 2.5): GWP was significantly lower in 

droughted than control mesocosm cores from the fen between time points T6 and T8. GWP 

was also significantly affected by habitat, and by two-way interactions between habitat and 

time point and between treatment and time point. 

2.3.3 Soil Biogeochemistry 

Fen mesocosm cores had significantly higher slurry pH values than bog mesocosm cores 

(Figure 2.10). There were significant interaction effects between time point and treatment and 

between time point, treatment and depth:  pH was significantly different between the treatment 

and control at 5 cm at time point 9 (z=2.89, p=0.004), and at 20 cm at time point 4 (z =-2.10, 

p=0.036). A significant interaction was also found between time point and habitat. There was 

a significant effect of time point on pH, with pH falling over time in control cores from both 

habitats. 
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Soil phenol oxidase activity was significantly higher in the fen than the bog (Figure 2.11; Table 

2.6) and significantly differed between depths, with a significant interaction between depth and 

habitat. In the fen, activity was higher at 20 cm depth, while in the bog, activity was highest at 

5 cm. There was also a significant effect of time point, and a significant interaction between 

time point and treatment (Table 2.6). In the bog, activity fell sharply between the first and 

second time points and remained low until the end of the experiment, while in the fen activity 

rose between time points 1 and 2 and the remaining time points (Figure 2.11). There was also 

a significant effect of depth, and a significant interaction between depth and habitat (Table 2.6). 

Phenol oxidase activity was modelled using a general linear model rather than a mixed effect 

model, because adding the random term did not significantly affect the model. 

 

Table 2.5 Results of minimal adequate linear mixed-effect models, with fluxes of 

important greenhouse gases as response variables. Degrees of freedom reported are 

reported in the form: d.f.denominator, d.f.numerator. 

Variable Factor F d.f. p 

CO2 Flux Time Point 2.1 4,144 0.04 

 Time Point:Treatment 3.8 4,144 <0.001 

CH4 Flux Habitat 51.6 1,16 <0.001 

 Time Point 4.7 8,136 <0.001 

 Time Point:Habitat 9.3 8,136 <0.002 

 Habitat:Treatment 7 1,16 0.02 

 Time Point:Treatment 6.7 8,136 <0.001 

N2O flux Time Point 167.3 7,119 <0.001 

 Habitat 15.3 1,17 0.001 

 Time Point:Habitat 6.9 7,119 <0.001 

 Time Point:Treatment 2.8 7,119 0.01 

GWP Habitat 5.7 1,16 0.03 

 Habitat:Time Point 8.2 7,112 <0.0001 

 Treatment:Time Point 2.1 7,112 0.048 

 Habitat:Treatment:Time Point 3.4 7,112 0.0025 

 

The concentration of soluble phenolic compounds in soil was significantly higher in bog than 

fen mesocosm cores and at 5 cm than 20 cm (Figure 2.12; Table 2.6). There was a significant 

effect of time point on concentration of phenolic compounds, with a significant interaction 

between time point and habitat: in the bog, phenolic compounds rose sharply at time point six 

before falling slightly and remaining constant until the end of the experiment (Figure 2.12). In 
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the fen, there was a more gradual rise in the concentration of phenolic compounds (Figure 

2.12). However, there was no significant effect of treatment (F1,17= 2.61, p=0.12), and no 

significant interaction between time point and treatment (F8,306= 1.45, p=0.18). 

The activity of β-glucosidase was significantly higher at 5 cm than 20 cm depth, and was 

highest in the bog mesocosm cores (Figure 2.13; Table 2.6). There was a significant interaction 

between time point and treatment (Table 2.6), although visualisation of β-glucosidase activity 

in each treatment suggests that actual differences were minimal and significance may have 

resulted from random variation.  In addition, there was a significant three-way interaction 

between time point, depth and treatment and a significant main effect of time point, with a fall 

in β-glucosidase activity between time points 1 and 5 at 5 cm and between time points 1 and 2 

at 20 cm (Figure 2.13).  

Full outputs (F, d.f. and p-values) from statistical tests on soil biogeochemical variables are 

shown in Table 2.6. 

 

Figure 2.12: Quantity of soluble phenolics (mg of phenol per gram dry weight of peat) 

in peat, separated by habitat and depth. There was no significant effect of treatment so 

means were calculated across both treatments. Significant differences between time points are 

marked with different letters. Error bars show standard errors.  
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Table 2.6: Results of minimal adequate linear mixed-effect models, with pH, activity of 

β-glucosidase and phenol oxidase and concentration of water-soluble phenolics as 

response variables. Degrees of freedom reported are reported in the form: d.f.denominator, 

d.f.numerator. 

Variable Effect F d.f. p 

pH Habitat 421.4 1,17 <0.001 

 Time Point 4.6 7,263 <0.001 

 Depth 3.9 1,263 0.049 

 Time Point:Treatment 3.6 7,263 0.0025 

 Time Point:Habitat 4.7 7,263 <0.001 

 

Time Point: 

Depth:Treatment 2.6 7,263 0.024 

β-glucosidase Time  Point 7.1 8, 305 <0.0001 

 Habitat 34.2 1, 17 <0.0001 

 Depth 304.8 1, 305 <0.0001 

 Treatment 0.3 1, 17 0.6 

 Time Point: Depth 3.7 8, 305 0.0004 

 Habitat: Depth 15.5 1, 305 0.0001 

 Time Point: Treatment 1.4 8, 305 0.2 

 Depth: Treatment 0.4 1, 305 0.5 

 

Time Point: Depth: 

Treatment 2.0 8, 305 0.04 

Phenol Oxidase Habitat 1.32 1,331 <0.25 

 Depth 95.23 1, 331 <0.001 

 Time Point 52.25 8, 331 <0.001 

 Treatment 2.8 1,331 0.09 

 Habitat: Time Point 23.08 8, 331 <0.001 

 Depth: Time Point 13.39 8, 331 <0.0001 

 Habitat: Treatment 6.74 1, 331 0.01 

Phenolics Habitat 22.2 1,17 <0.001 

 Depth 11.1 1,306 0.001 

 Time Point 28.7 8,306 <0.001 

 Time Point: Habitat 22.9 8,306 <0.001 

 Habitat: Depth 2.1 8,306 0.032 

 Depth: Treatment 9.6 1,306 0.002 

 

2.3.4. Water Chemistry 

The pH of pore water was significantly higher in fen than bog mesocosm cores and significantly 

higher in control than drought cores (Figure 2.14). There was a significant interaction between 

depth and treatment, with pH showing a greater decrease during drought at 5 cm depth (Table 

2.7). There was a significant effect of time point on porewater pH although the response to 
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time point differed between the two habitats: in the fen, porewater pH fell slowly throughout, 

while in the bog pH fell sharply at W5 and peaked at W6 (Figure 2.14). 

The concentration of dissolved phenolic compounds was significantly lower in droughted than 

control mesocosm cores (Figure 2.15), with a significant interaction between time point and 

treatment (Table 2.7): the concentration of phenolics was significantly lower in droughted than 

control cores at time point W3 (t174=-4.1, p=0.0001) in the bog, and at time points W1 (t174=3.3, 

p=0.0014) and W4 (t174=-3.5, p=0.0006) in the fen. There was also a significant main effect of 

time point (Table 2.7): particularly in the fen habitat, the concentration of dissolved phenolics 

was highest at time points W1 and W4 (Figure 2.15). The concentration of dissolved phenolics 

was modelled using a general linear model rather than a mixed effect model, because adding 

the random term did not significantly affect the model. 

 

Figure 2.13: Mean β-glucosidase activity (μmol MUF released per gram dry peat per 

minute), separated by habitat, depth and treatment. Significant differences between the 

two treatments are marked with *, while significant differences between time points are marked 

with different letters (red = drought, black = control). Error bars show standard errors. Dotted 

lines represent transition between four stages of water table manipulation: pre-drought, drying, 

minimum water table, and rewetting (in that order). 
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Table 2.7: Results of minimal adequate linear mixed-effect models, with water 

chemistry measurements as response variables: porewater pH and concentrations of 

phenolic compounds, dissolved organic carbon (DOC), nitrate and sulfate in pore water. 
Degrees of freedom reported are reported in the form: d.f.denominator, d.f.numerator. Non-

significant terms and interactions were removed during model fitting, but remained within the 

model where they were part of a significant interaction term: however, this are omitted from 

the table for clarity. 

Variable Effect F d.f. p 

pH Habitat 563.1 1,17 <0.001 

 Treatment 8.7 1,17 0.009 

 Time Point 14.0 1, 174 <0.001 

 Time Point: Habitat 10.2 5,174 <0.001 

 Depth: Treatment 11.5 5,174 <0.001 

Phenolics Time Point 14.3 5, 174 <0.001 

 Habitat 25.6 1, 174 <0.001 

 Treatment 9.1 1,174 <0.001 

 Time Point: Habitat 3.4 5,174 0.006 

 Time Point: Depth 2.8 5, 174 0.02 

 Time Point: Treatment 2.5 5,174 0.03 

 Depth: Treatment 6.8 1,174 0.001 

 Time Point: Habitat: Depth 2.7 5,174 0.002 

 Time Point: Habitat: Treatment 3.8 5,174 0.003 

DOC Treatment 4.7 1,17 0.04 

 Habitat 32.8 1,17 <0.001 

 Time Point 6.0 5,181 0.014 

Nitrate Habitat 8.5 1,203 0.004 

 Depth 10.1 1, 203 0.002 

 Treatment 27.7 1,203 <0.001 

 Time Point 11.8 2,203 <0.001 

 Time Point:Habitat 3.0 5,203 0.01 

 Time Point: Depth 4.5 5, 203 <0.001 

 Depth: Treatment 13.6 1,203 <0.001 

 Time Point: Treatment 4.1 5, 203 0.001 

 Time Point: Habitat: Depth 2.4 5,203 0.04 

 Time Point: Depth: Treatment 2.7 5,203 0.02 

Sulfate Treatment 6.9 1,173 0.01 

 Time Point 2.6 1,173 0.03 

 Time Point: Treatment 4.0 5,173 0.002 

 Habitat: Depth 4.4 1,173 0.04 

 Depth: Time Point: Treatment 2.9 5,173 0.02 
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Figure 2.14: Mean pH of porewater, separated by habitat, depth and treatment. 
Significant differences between time points are marked with different letters. Error bars show 

standard errors. Dotted lines represent transition between three stages of water table 

manipulation: drying, minimum water table, and rewetting (in that order). 

 

Figure 2.15: Mean concentration of phenolic compounds in porewater (mg L-1), 

separated by habitat, depth and treatment. Significant differences between the two 

treatments are marked with *, while significant differences between time points are marked 

with different letters (red = drought, black = control). Error bars show standard errors.  

 



74 

 

 

 

Figure 2.16: Mean concentration of dissolved organic carbon (DOC; mg L-1) in 

porewater, separated by habitat, depth and treatment. Significant differences between 

time points are marked with different letters (red = drought, black = control). Error bars show 

standard errors. Dotted lines represent transition between three stages of water table 

manipulation: drying, minimum water table, and rewetting (in that order). 

 

Figure 2.17: Mean concentration of nitrate (mg L-1) in porewater, separated by habitat, 

depth and treatment. Significant differences between the two treatments are marked with *, 

while significant differences between time points are marked with different letters (red = 

drought, black = control). Error bars show standard errors.  
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Figure 2.18: Mean concentration of sulfate (mg L-1) in porewater, separated by habitat, 

depth and treatment. Significant differences between the two treatments are marked with *, 

while significant differences between time points are marked with different letters (red = 

drought, black = control). Error bars show standard errors. Dotted lines represent transition 

between three stages of water table manipulation: drying, minimum water table, and 

rewetting (in that order). 

 

Concentration of dissolved organic carbon (DOC) was significantly lower in fen than bog 

mesocosm cores and in drought than control cores (Table 2.7; Figure 2.16). There was also a 

significant effect of time point (Table 2.7), with the concentration of DOC highest at W3 and 

lowest at W6 in both habitats (Figure 2.16). 

Nitrate concentration was significantly higher in bog than fen mesocosm cores and in drought 

than control cores, with a significant effect of time (Figure 2.17). There was a significant 

interaction between time point and treatment (Table 2.7).  The concentration of nitrate was 

modelled using a general linear model rather than a mixed effect model, because adding the 

random term did not significantly affect the model. 
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Figure 2.19: Mean number of bands obtained by ARISA fingerprinting of fungal 

communities in bog and fen mesocosm cores at two depths. Error bars represent standard 

errors. 

Sulfate concentration was significantly higher in the drought treatment (Figure 2.18), and was 

significantly affected by time point (Table 2.7), with a slight increase in sulfate concentration 

over time (with the exception of the fen at 5 cm, where there was a decrease in sulfate 

concentration between W1 and W2). There was also a significant interaction between time 

point and treatment (Table 2.7). In the bog at 5 cm, sulfate concentration was significantly 

higher in drought cores at time points W2 (z=2.6, p=0.009), W4 (z=3.3,p=0.0009), and W5 

(z=4.0, p=0.0001); while in the fen at 5 cm sulfate concentration was higher at time points W2 

(z = 2.8, p=0.005), W4 (z= 4.0, p= 0.0007) and W5 (z=4.2, p <0.0001). At 20 cm, sulfate 

concentration was significantly higher in the drought treatment at time point W4 in both the 

bog (z = 2.4, p =0.015) and the fen (z = 2.3, p =0.02). There was a significant interaction 

between depth and treatment, as drought led to a greater increase in sulfate concentrations at 5 

cm depth than at 20 cm. 

Full outputs (F, d.f. and p-values) from statistical tests on water chemistry variables are shown 

in Table 2.7. 
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Figure 2.20: PCoA plots, based on Jaccard distances, depicting bacterial (A) and fungal 

(B) community composition. Arrows on the fungal plot (B) represent environmental 

variables plotted using the ‘envfit’ function: only variables which were significant (p<0.05) 

are shown. WT= water table depth; b-gluc= β-glucosidase activity. Dim1 and Dim2 represent 

the first two axes (‘dimensions’) of the ordination result. 
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Figure 2.21: Effect of time on mean bacterial richness in the fen at both depths (i.e. the 

number of bands detected by ARISA fingerprinting). Significant differences between time 

points are marked with different letters: significant differences were only found at 20 cm 

depth, and were the same for both treatments. Error bars show standard errors. Dotted lines 

represent transition between three stages of water table manipulation: drying, minimum water 

table, and rewetting (in that order). 

Table 2.8: Test statistics resulting from generalised linear models in which fungal band 

richness was the dependent variable. Significant p-values are denoted by * (p < 0.05), ** 

(p < 0.01), and *** (p < 0.001). Marginal significance (p < 0.1) is denoted by ‘.’. 

Data Subset Variable χ2 d.f. p 

All Data Habitat 26.8 1,214 <0.001*** 

 Depth 96.8 1,213 <0.001*** 

 Habitat:Depth 7.1 1,212 <0.001*** 

Bog-5cm Time Point 1.5 8 1 

 Treatment 0.9 1 0.3 

 

Time 

Point:Treatment 2.1 8 1 

Bog-20cm Time Point 13.0 8 0.1 

 Treatment <0.1 1 0.8 

 

Time 

Point:Treatment 2.7 8 1 

Fen-5cm Time Point 2.7 8 1 

 Treatment <0.1 1 0.8 

 

Time 

Point:Treatment 5.8 8 0.7 

Fen-20cm Time Point 1.9 8 1 

 Treatment <0.1 1 0.9 

 

Time 

Point:Treatment 2.5 8 1 
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2.3.5 ARISA Fingerprinting 

There was a significant effect of habitat and depth on fungal band richness, as well as a 

significant interaction between habitat and depth (Table 2.8; Figure 2.19). Fungal band richness 

was higher at 5 cm than 20 cm depth and in the bog rather than fen habitat. Bacterial band 

richness was not significantly different between habitats or depths (Table 2.9). 

 

Figure 2.22: NMDS ordination of bacterial communities at 20 cm depth, separated by 

habitat and time point. There was a significant effect of time point on bacterial 

communities in the bog at 20 cm (p = 0.004) and fen at 20 cm (p = 0.01). Full results of 

PERMANOVA tests are shown in Table 2.11.  
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The composition of both bacterial and fungal communities was significantly different between 

the two habitats and depths, with a significant interaction effect between habitat and depth, 

although effect sizes (R2 values) were small (Table 2.10). A PCoA plot of the bacterial 

communities shows the bog samples from the 20 cm depth to be distinct from the other samples, 

with other habitat-depth combinations clustering weakly with some overlap (Figure 2.20A). A 

PCoA plot of the fungal communities shows that fungal communities form two clusters which 

are not linked to habitat or depth, with the two depths showing a degree of separation within 

each cluster (Figure 2.20B). Correlations between the community composition and 

environmental variables (calculated using ‘envfit’ in package ‘VEGAN’) found that both water 

table depth and β-glucosidase activity are strongly correlated to the differences between the 

two clusters. 

Table 2.9 Test statistics resulting from generalised linear models in which bacterial 

band richness was the dependent variable. Significant p-values are denoted by * (p < 

0.05), ** (p < 0.01), and *** (p < 0.001). Marginal significance (p < 0.1) is denoted by ‘.’. 

Data 

Subset Variable χ2 d.f. p 

All Data Habitat 0.7 1,214 0.52 

 Depth 1.9 1,213 0.31 

 Habitat:Depth 0.1 1,212 0.86 

Bog-5cm Time Point 3.4 8 0.90 

 Treatment 0.4 1 0.50 

 

Time 

Point:Treatment 4.7 8 0.79 

Bog-20cm Time Point 1.2 8 1.00 

 Treatment 0.8 1 0.40 

 

Time 

Point:Treatment 1.9 8 1.00 

Fen-5cm Time Point 18.0 8 0.02* 

 Treatment 1.5 1 0.20 

 

Time 

Point:Treatment 5.8 8 0.70 

Fen-20cm Time Point 19.7 8 0.01* 

 Treatment 2.7 1 0.10 

 
Time 

Point:Treatment 3.8 8 0.90 
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Table 2.10: Test statistics resulting from PERMANOVA in which bacterial and fungal 

community composition were the dependent variables and habitat, depth and the 

habitat:depth interaction term were independent variables. Significant p-values are 

denoted by * (p < 0.05), ** (p < 0.01), and *** (p < 0.001). Marginal significance (p < 0.1) is 

denoted by ‘.’. 

Community Variable F d.f. R2 p 

Bacteria Habitat 10.0682 1,210 0.04357 0.001** 

 Depth 6.3164 1,210 0.02733 0.001** 

 Habitat:Depth 4.7193 1,210 0.02042 0.001** 

Fungi Habitat 7.2602 1 0.02988 0.001** 

 Depth 22.3763 1 0.0921 0.001** 

 Habitat:Depth 2.331 1 0.00959 0.01* 

 

 

Figure 2.23: NMDS ordination of fungal communities in the bog at both depths, and in 

the fen at 5 cm, separated by habitat, depth and time point. There was a significant effect 

of time point on fungal community composition in each of these habitat depth combinations: 

bog-5cm (p=0.001), bog-20cm (p = 0.001) and fen-5cm (p=0.01). Full results of 

PERMANOVA tests are shown in Table 2.11. 
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Richness was not significantly different between treatments for either bacterial or fungal 

communities, nor was there a significant effect of the interaction between time point and 

treatment (Table 2.8; Table 2.9). However, there was a significant effect of time point on 

bacterial band richness in the fen at both depths (Table 2.9; Figure 2.21). However, post-hoc 

tests failed to find any significant pairwise differences between time points in the fen at 5 cm. 

In the fen at 20 cm, significantly more bands were present at time point 7 than time point 1, 

and there was a trend towards increasing fungal band richness with time at both depths 

(although richness fell at T5 in both cases). 

There was a significant effect of treatment on bacterial community composition in the bog at 

both depths and in the fen at 20 cm (Table 2.11), while the effect of treatment on the fungal 

community was only significant in the fen at 5 cm. There was a significant two-way interaction 

effect between time point and treatment on fungal community composition in the fen at 20 cm. 

In addition, there was a significant effect of time point on bacterial communities at 20 cm in 

both habitats (Table 2.11; Figure 2.22) and on fungal communities in the bog at both depths 

and in the fen at 20 cm (Table 2.11; Figure 2.23). Bacterial communities show a clear shift 

along the first axis of a PCoA plot at time point 5 in the bog at 20 cm, and time point 4 in the 

fen at 20 cm. Conversely, fungal communities at 5 cm depth in both habitats appear to show 

changes at the third time point, while fungal communities at 20 cm responded at time point 5. 
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Figure 2.24: NMDS ordination of bacterial communities within the bog at 20 cm, bog at 

5 cm and fen at 20 cm depth, separated by stage of the drought manipulation. Treatment 

differences were significant in the bog at 5 cm during rewetting only (p = 0.02); in the bog at 

20 cm during minimum water table (p = 0.04) and rewetting (p = 0.02); and in the fen at 20 

cm during both drying (p=0.004) and minimum water table (p=0.04). Full results of 

PERMANOVA tests are shown in Table 2.11. 
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Table 2.11: Test statistics resulting from PERMANOVA in which bacterial and fungal 

community composition were the dependent variables and time, treatment and the 

time:treatment interaction term were independent variables. Significant p-values are 

denoted by * (p < 0.05), ** (p < 0.01), and *** (p < 0.001). Marginal significance (p < 0.1) is 

denoted by ‘.’. 

Community 

Data 

Subset Variable F d.f. R2 p 

Bacteria Bog-5cm Treatment 1.5 1 0.03 0.001** 

  Time Point 1.1 8 0.16 0.1 

  

Treatment: Time 

Point 0.9 8 0.13 0.9 

 Bog-20cm Treatment 1.5 1 0.03 0.04* 

  Time Point 1.3 8 0.19 0.004** 

  

Treatment: Time 

Point 1 8 0.14 0.6 

 Fen-5cm Treatment 1.4 1 0.03 0.1 

  Time Point 1.1 8 0.16 0.3 

  

Treatment: Time 

Point 0.9 8 0.14 0.8 

 Fen-20cm Treatment 1.7 1 0.03 0.02* 

  Time Point 1.3 8 0.18 0.01* 

  

Treatment: Time 

Point 1.1 8 0.13 0.2 

Fungi Bog-5cm Treatment 1.0 1 0.02 0.4 

  Time Point 2.0 8 0.26 0.001** 

  

Treatment: Time 

Point 1.0 8 0.13 0.4 

 Bog-20cm Treatment 0.9 1 0.01 0.6 

  Time Point 1.8 8 0.24 0.001** 

  

Treatment: Time 

Point 1.1 8 0.14 0.3 

 Fen-5cm Treatment 1.9 1 0.03 0.04* 

  Time Point 1.5 8 0.20 0.01* 

  

Treatment: Time 

Point 1.1 8 0.15 0.3 

 Fen-20cm Treatment 2.2 1 0.04 0.09. 

  Time Point 1.0 8 0.14 0.4 

  

Treatment: Time 

Point 1.5 8 0.20 0.09. 

 

Where either treatment or the interaction between time point and treatment had a significant 

effect on microbial communities, PERMANOVA tests were applied to subsets based on the 

phase of drought (pre-drought, drying, minimum water table and rewetting). Bacterial 
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communities were significantly different between the two treatments during rewetting in the 

bog at 5 cm; during drying and minimum water table periods in the bog at 20 cm; and during 

minimum water table and rewetting in the fen at 20 cm (Table 2.12; Figure 2.24). Fungal 

communities were significantly different between treatments in the fen at 5 cm during 

rewetting (Table 2.12; Figure 2.25), and in the fen at 20 cm during both pre-drought and 

rewetting. The low fungal richness in the fen at 20 cm meant that very little variation in 

community composition was detected in this subset of the data, and so PCoA plots of these 

results were not plotted. Results of these tests are reported in Table 2.12. 

 

Table 2.12: Test statistics resulting from PERMANOVA in which bacterial and fungal 

community composition were the dependent variables, and treatment was a dependent 

variable. Where a significant treatment effect was found (Table 2.11), data was further 

divided subsets groups according to the phase of drought (pre-drought indicates time points 1 

and 2, drying indicates time points 3-5, minimum water table indicates time points 6 and 7, 

and rewetting indicates time points 8 and 9). It was not possible to subset individual time 

points due to insufficient replication. Significant p-values are denoted by * (p < 0.05), ** (p < 

0.01), and *** (p < 0.001). Marginal significance (p < 0.1) is denoted by ‘.’. 

Community Data Subset Time Subset F d.f. R2 p 

Bacteria Bog-5cm Pre-drought 1.2 1,10 0.11 0.1 

  Drying 1.3 1,16 0.07 0.2 

  Minimum 0.9 1,10 0.09 0.6 

  Rewet 1.5 1,10 0.13 0.02* 

 Bog-20cm Pre-drought 0.9 1,10 0.08 0.7 

  Drying 1.3 1,16 0.07 0.1 

  Minimum 1.6 1,10 0.14 0.04* 

  Rewet 1.5 1,10 0.13 0.02* 

 Fen-20cm Pre-drought 1.4 1,9 0.13 0.2 

  Drying 2.0 1,16 0.11 0.004** 

  Minimum 1.6 1,10 0.14 0.04* 

  Rewet 1.1 1,10 0.10 0.3 

Fungi Fen-5cm Pre-drought 0.8 1,10 0.08 0.727 

  Drying 1.5 1,16 0.08 0.155 

  Minimum 1.1 1,10 0.10 0.255 

  Rewet 1.6 1,10 0.14 0.03* 

 Fen-20cm Pre-drought 1.0 1,10 0.09 0.001** 

  Drying 3.0 1,16 0.16 0.047* 

  Minimum 2.0 1,10 0.17 0.076 . 

  Rewet 1.7 1,10 0.14 0.001** 
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Figure 2.25: NMDS ordination of fungal communities in the fen at 5 cm, separated by 

stage of drought manipulation. Significant differences were found between communities in 

the control and droughted mesocosm cores during rewetting only (p=0.03). Full results of 

PERMANOVA tests are shown in Table 2.12. 

 

2.4 Discussion 
As expected, drought led to a rise in carbon dioxide emissions, although this was only 

significant at minimum water table and emissions from droughted cores fell to the same level 

as those from control cores as soon as rewetting began. Given that carbon dioxide emissions 

returned to control levels before the concentration of dissolved phenolic compounds did, it 

appears that in the current study phenolic compounds were not the primary factor responsible 

for the suppression of carbon dioxide emissions from water-saturated peat. Instead, it is 

suggested that increased carbon dioxide emissions from peat were driven by the aeration of the 

peat, which potentially enabled increased activity of aerobic micro-organisms or root 

expansion into deeper peat. Changes in microbial communities occurred sooner at 20 cm depth 

than at 5 cm, and the timing of changes in microbial communities at 20 cm corresponded to the 
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timing of maximum carbon dioxide efflux. Therefore, it is possible that drought allows 

increased growth of aerobic micro-organisms at 20 cm depth, and that the associated increase 

in microbial respiration leads to the release of carbon dioxide.  

2.4.1 Water Content and Redox Potential 

Alongside water table depth, two variables were considered to act as indicators of the drought 

status of each mesocosm core: redox potential and water content. Redox potential was 

significantly affected by the drought treatment at both depths: droughted mesocosm cores had 

considerably higher redox potentials than control cores, demonstrating that the water table 

manipulation caused conditions to become more oxidising throughout the peat profile. At 5 cm 

depth, redox potential was higher in droughted than control mesocosm cores at all time points 

measured (i.e. time point 4 onwards); however, at 20 cm the effect of treatment on redox 

potential only became significant when the water table reached 20 cm depth, suggesting that 

drought only affected the redox potential of peat which was at or above the water table. Water 

content, the second indicator of drought status, was also affected by treatment: the mean water 

content of droughted cores was lower than that of control cores during the droughted period, 

demonstrating that peat became less water-saturated during drought. The drought treatment did 

not affect water content at the 20 cm depth, probably because this depth represented minimum 

water table. 

Redox potential was lower in the fen than the bog mesocosm cores. There are a number of 

possible explanations for the lower redox potential of the fen. Firstly, the higher bulk density 

of fen peat (Hill et al. 2014) leads to smaller pore sizes and slower hydraulic conductivity, 

which in turn may prevent electron acceptors from travelling between layers. However, the 

lack of a significant difference in redox potential between depths in either habitat suggests that 

this was not the case. Therefore, differences in redox potential can likely be attributed to 

differences in the vegetation between habitats: despite a large amount of intra-habitat variation, 

fen cores were typically graminoid-dominated while the bog mesocosm cores were dominated 

by mosses (Figure 2.26). Differences in vegetation type are likely to have a strong effect on 

carbon availability: root-exudates from vascular plants are an important source of carbon in 

deeper peat (Corbett et al. 2012), while Sphagnum mosses are known to be very slow to 

decompose (Lang et al. 2009). In turn, the availability of labile carbon sources may lead to 

increased rates of respiration, and thus to rapid use of oxygen and other electron acceptors. 
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It should be noted that a number of problems exist with the use of redox probes: in complex 

systems such as soils, many redox couples co-exist but are combined into a single value by the 

redox probe, which may not be truly representative of any couple present. This problem is 

compounded by the fact that members of several important redox couples (including oxygen, 

nitrate and nitrogen gas) are not well measured by platinum electrodes (McBride 1994). 

Despite the drawbacks of this method, the design of this experiment imposed severe limitations 

on the amount of material that could be removed from the peat cores at each time point, 

meaning that dye-based methods (Vepraskas and Faulkner 2001) were not feasible. 

Nevertheless, strong and consistent patterns were observed which are consistent with theory, 

suggesting that the methodology was robust enough to draw conclusions about the overall 

effect of drought on redox potential. 

 

Figure 2.26: Mean proportion of area covered of plant functional groups in the bog and 

fen mesocosm cores. Error bars represent standard error. The cover of each plant functional 

group was assessed by taking a photo of each core from above, drawing a grid over it in 

Microsoft Paint, and assessing the number of squares taken up by each functional group. 

 

Unexpectedly, despite the actual droughting experimental manipulation, water content did 

increase with time in both treatments during the early part of the experiment. Three possible 

explanations for this observation can be suggested: (i) mesocosm cores were drier than 
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expected on collection, possibly due to seasonal effects, and slowly rewetting after being placed 

indoors; (ii) mesocosm cores became drier during the acclimatisation period; and/or (iii) 

sample collection led to water ingress. However, each of these explanations seems unlikely. 

While the months preceding collection of cores experienced below average precipitation 

(http://www.metoffice.gov.uk/climate/uk/summaries/2013/spring), on collection of fen 

mesocosm cores the holes from which cores were taken filled rapidly with water, suggesting 

that peat was saturated on collection from the field. On collection, cores were transferred to 

bins of water within hours, and small holes drilled in each core to allow water transfer. Finally, 

holes were plugged with tightly-fitting rubber plugs following sample collection, meaning that 

a large ingress of water would be unlikely. It is not possible to confidently determine how the 

water content changed prior to the beginning of the experiment: no samples were collected 

during the acclimatisation period due to limitations on the amount of peat material which could 

be removed from each mesocosm core. Redox potential was also affected by time point, despite 

the fact that it was only measured from time point 4 onwards, suggesting that the rise in water 

content during the earlier time points may have had a lasting effect on redox potential. The 

effect of time on redox potential was treatment-dependent, but in the control cores the redox 

potential fell (i.e. conditions became more reduced) between time points T5 and T6 before 

rising again towards the end of the experiment (Figure 2.5). Although the rising water content 

at the beginning of the experiment may mean that the two treatments represent differential rates 

of wetting, rather than ‘saturated control’ and ‘drought’ conditions, the fact that the water 

content fell and redox potential rose in the cores exposed to water-level drawdown means that 

these cores will hereafter continue to be referred to as ‘drought’ cores. 

2.4.2 Gas Fluxes 

Fluxes of all three greenhouse gases measured were significantly affected by the drought 

treatment (Table 2.5). Each greenhouse gas was also affected by time point, and changes with 

time point were likely related to the increase in water content which was observed at the 

beginning of the experiment (Figure 2.4). Together, these findings highlight the potential 

danger of feedback responses if global climate change increases the severity or regularity of 

drought in regions containing bogs and fens (Bates 2008).  

 

 

http://www.metoffice.gov.uk/climate/uk/summaries/2013/spring
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Carbon dioxide (CO2) 

Carbon dioxide fluxes were strongly elevated during drought, corresponding with the results 

of previous studies (Moore and Knowles 1989; Freeman et al. 1993; Moore and Dalva 1993; 

Fenner and Freeman 2011; Chen et al. 2012). However, as soon as rewetting began, carbon 

dioxide emissions in the drought cores fell to the same level as emissions from control cores. 

This is in contrast to previous drought manipulations in which carbon dioxide emissions rose 

higher during rewetting than during drought itself (Fenner and Freeman 2011; Kuiper et al. 

2014), although other studies have similarly found carbon dioxide emissions to fall on 

rewetting (Freeman et al. 1993; Chen et al. 2012). Surprisingly, the return of carbon dioxide 

fluxes to control levels occurred while many biogeochemical factors (e.g. pH and redox 

potential) remained significantly different to controls and while the water table remained below 

the level at which carbon dioxide fluxes initially rose. The concentration of dissolved phenolic 

compounds, thought to be a key inhibitor of carbon release in peatlands (Freeman et al. 2001), 

likewise remained supressed until after time point T8 in the fen mesocosm cores at 5 cm. 

Although water samples could not be taken from droughted bog mesocosm cores at 5 cm until 

the final two time points, the concentration of phenolic compounds in the bog porewater at 20 

cm likewise remained supressed at time point W3 (corresponding to T7; Figure 2.15). This 

result suggests that phenolic compounds may not be the key driver of microbial degradation 

and carbon cycling in the current experiment: while phenolic compounds act as an ‘enzymatic 

latch’ restricting degradation of organic carbon in many peatlands (Freeman et al. 2001; Fenner 

and Freeman 2011), this is not universally the case (Williams et al. 2000; Romanowicz et al. 

2015). 

There are several possible explanations for the weak relationship between CO2 fluxes and 

phenolic compounds in the current experiment. Firstly, the drought treatment may not have 

been severe enough to impose long-lasting biogeochemical changes in the peat, as enzyme 

activities were not significantly affected despite the changes in carbon fluxes. However, the 

drought treatment was severe enough to induce a fall in the concentration of phenolic 

compounds, suggesting that a reduced concentration of dissolved phenolic compounds was not 

sufficient to elevate CO2 fluxes and lead to increased enzyme activity. Secondly, it is possible 

that methodological differences between the current study and previous ones reduced the 

influence of phenolic compounds: in particular, mesocosm cores in the current study were held 
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in a growth room at a relatively low temperature, potentially meaning that temperature 

inhibited microbial activity even when the concentration of phenolic compounds fell. Finally, 

it is possible that in some wetlands the concentration of phenolic compounds is too low to 

initiate the ‘enzymatic latch’ mechanism, and other mechanisms limit decomposition. In both 

the current study and that of  Romanowicz et al. (2015), neither of which found phenolic 

compounds to be related to enzyme activities, the concentration of phenolic compounds in the 

porewater was low in comparison to the concentrations in the control condition of Fenner and 

Freeman (2011). These results add to a growing body of evidence (Williams et al. 2000; Xiang 

et al. 2013; Brouns et al. 2014; Romanowicz et al. 2015) that phenolic compounds are not the 

only factor governing drought-driven carbon release from peatlands. 

The coupling of water table and carbon dioxide fluxes in the current study suggests that oxygen 

availability may be the most important factor, potentially regulating microbial respiration and 

thus carbon fluxes. Previous comprehensive studies of the biogeochemistry of peatlands 

(Fenner and Freeman 2011) and humic-rich lakes (Fenner and Freeman 2013) suggest that 

carbon release on oxygenation is a result of a cascade, of which the first step is the stimulation 

of microbial growth and activity in response to increased oxygen availability. In the current 

study, therefore, it appears likely that this direct effect of oxygenation occurs but is not 

accompanied by the downstream effects of oxygenation (e.g. degradation of phenolic 

compounds and increased nutrient availability), allowing a fall in CO2 fluxes following 

rewetting. Alternatively, the fall in carbon dioxide flux as the water table rises may be a result 

of carbon dioxide dissolving in the porewater rather than being released at the surface of the 

peat: the concentration of dissolved inorganic carbon (DIC) increases rapidly on rewetting 

(Knorr and Blodau 2009), suggesting the potential for porewater to absorb the gases released 

by microbial metabolism. 

Another explanation for the rise in carbon dioxide emissions under droughted conditions is that 

aerobic conditions allowed increased root growth coupled with an increase in root respiration. 

Plant respiration makes up over half of total respiration in peat, and has been shown to increase 

during water table drawdown (Knorr et al. 2008). Knorr et al. (2008) suggest that the increase 

in root respiration following water table drawdown is primarily as a result of plant species 

which are poorly adapted for anaerobic conditions, while in the current experiment saturated 

conditions at the sites where mesocosm cores were selected would be expected to select for a 
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plant community which is more resistant to anaerobic conditions, potentially reducing the 

effect of drought on root respiration. Root expansion following water table drawdown could 

also lead to changes in the distribution of root exudates, potentially driving changes in 

microbial respiration. A second mechanism by which plants may alter carbon dioxide fluxes is 

by altered rates of photosynthesis: Sphagnum mosses may decrease their rate of photosynthesis 

when desiccated, causing a reduction in carbon dioxide uptake (Kuiper et al. 2014). There was 

no significant effect of habitat on carbon emissions in either droughted or control conditions 

despite the very different plant communities in the two habitats. Nonetheless, the current data 

does not rule out an effect of increased root respiration or decreased photosynthesis on carbon 

dioxide fluxes during drought, and this represents a weakness of the study. 

Methane (CH4) 

Methane fluxes were much higher in the fen than in the bog, reflecting lower redox potentials 

in the fen (Figure 2.7). Methanogenesis occurs at a measured redox potential of -200 mV 

(McBride 1994), which is lower than any redox potential measurement obtained in the current 

study. However, known problems exist with redox probe measurements (Section 2.4.1), which 

are compounded by the high degree of spatial variation in redox potential (Vepraskas and 

Faulkner 2001). Methanogenesis likely occurs in small pockets of peat with especially low 

redox potentials (Knorr et al. 2009; Askaer et al. 2010). Previous studies have also reported 

higher methane emissions from fens than from bogs (Moore and Knowles 1989; Drewer et al. 

2010), likely reflecting better conditions for methanogenesis in fen habitats: for example,  the 

release of root exudates by the graminoid-dominated plant communities in fens may result in 

higher concentrations of suitable substrates for methanogenesis (Hornibrook 2009). 

Interestingly, fens have distinct assemblages of methanogens compared to bogs (Kim et al. 

2008) and contain more diverse methanogens at the order level (Lin et al. 2012), but it is 

currently unknown exactly what impact this has on methane fluxes from different habitats. 

Methane emissions fell during drought, especially in the fen mesocosm cores (methane fluxes 

in bog mesocosm cores were very low in both treatments, making treatment differences 

difficult to detect). There is a strong link between water table and methane emissions (Moore 

and Knowles 1989; Freeman et al. 1993; Blodau et al. 2004), resulting from decreased methane 

production rather than increased methane oxidation (Freeman et al. 2002). Falling methane 

fluxes during drought are unsurprising: methanogenesis only proceeds at very low redox 
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potentials (Vepraskas and Faulkner 2001) and drought leads to a higher redox potential (Figure 

2.5) as well as a rise in the concentration of nitrate (Figure 2.17) and sulfate (Figure 2.18), both 

of which can inhibit methanogenesis (Dowrick et al. 2006). 

There was also an effect of time point on methane emissions, likely linked to changes in water 

content (Figure 2.4) and redox potential (Figure 2.5) over time. In the fen, methane fluxes were 

highest at the first two time points (Figure 2.7), corresponding to low water content. High 

methane emissions at this time point are surprising given the link between methane and 

waterlogged (reduced) conditions (Moore and Knowles 1989; Freeman et al. 1993; Blodau et 

al. 2004). A number of biogeochemical variables differed between the first time points and the 

remainder of the experiment: for example, β-glucosidase activity was at the highest values 

observed. It is possible that the high β-glucosidase activities led to higher levels of substrate 

for methanogenesis, as the breakdown of polymeric organic matter such as cellulose is the first 

step in the multi-organism process leading to methanogenesis (Drake et al. 2009).  Conversely, 

in the bog methane fluxes peaked at time points T7 and T8, approximately three months after 

the initially low water content but only three weeks after the minimum redox potential was 

reached in control cores (Figure 2.5). The higher redox potential in the bog than the fen may 

mean that redox potential is a more important inhibitor of methanogenesis than substrate 

availability: methane fluxes were very low in the bog in comparison to the fen (Figure 2.7). 

Nitrous oxide (N2O) 

Nitrous oxide emissions were small and variable, meaning that conclusions about fluxes of this 

gas should be regarded with caution. N2O fluxes were significantly higher from the bog than 

the fen cores, with mean fluxes of 0.134 and 0.097 mg m-2 d-1 respectively (values calculated 

for control cores at time points 2-9). This is surprising given that N2O fluxes show a strong 

positive correlation to Ca2+ ions and to pH (Regina et al. 1996), both of which were higher in 

the fen. Indeed, previous studies have found nitrous oxide fluxes in bogs to be either negligible 

or negative (Regina et al. 1996; Drewer et al. 2010), although nitrous oxide fluxes from fens 

are often below detection as well (Aerts and de Caluwe 1997; Palmer and Horn 2015). Nitrous 

oxide is a product of the reduction of nitrate, which is generally only found at low 

concentrations in peatlands due to highly reducing conditions (Knorr et al. 2009). In this study, 

redox potentials in the bog at or slightly lower than the range expected for nitrate reduction 
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(McBride 1994). Conversely, the lower redox potential in the fen suggests that redox couples 

with lower redox potentials, such as sulfate, will dominate.  

Nitrous oxide fluxes were significantly higher in droughted than control mesocosm cores at the 

final time point (T9). Previous studies have likewise found elevated nitrous oxide emissions 

during water table drawdown (Freeman et al. 1993; Regina et al. 1996; Dowrick et al. 1999; 

Goldberg et al. 2010). As with methane, changes in nitrous oxide fluxes during drought are 

closely linked to changes in redox potential: the higher redox potentials observed during 

drought allow oxidation of ammonium to nitrate (nitrification). During rewetting, nitrate is 

reduced to nitrogen gas via a series of intermediates which include N2O  (Ponnamperuma 1972; 

Knorr et al. 2009). However, in the current study nitrous oxide fluxes were small and variable, 

and the rise in the N2O flux of droughted mesocosm cores at the final time point was primarily 

due to outlier effects. 

Global Warming Potential (GWP) 

Despite the increased flux of carbon dioxide from droughted cores, global warming potential 

(GWP) actually fell in droughted cores due to the fall in methane emissions. The fall in GWP 

was particularly pronounced in the fen, where methane emissions were highest, and reflects the 

fact that the overall change in carbon dioxide emissions during drought was fairly small as well 

as the much larger global warming potential of methane. 

2.4.3 Soil and Water Biogeochemistry 

pH 

Samples from the fen mesocosm cores had a much higher pH than those from the bog, both in 

peat slurry and pore water. This is unsurprising as pH differences are one of the main divisions 

between the two habitat types, and may occur due to relatively high concentrations of basic 

cations in groundwater (the main source of water in fens) compared to rainwater (Bridgham et 

al. 2000).  

The pH of porewater in the fen mesocosm cores responded strongly to the drought treatment, 

with drought leading to lower porewater pH in the fen, but not the bog, habitat (Figure 2.14). 

A fall in pH during drought is consistent with theory (Ponnamperuma 1972; McBride 1994) 

and with previous experiments (Fenner and Freeman 2011; Clark et al. 2012): drought causes 

a rise in sulfate concentrations due to the oxidation of sulfur-containing species under oxic 
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conditions (Freeman et al. 1998; Clark et al. 2012), and potentially also leads to an increase in 

dissolved CO2 as microbial respiration increases (Ponnamperuma 1972). However, the effect 

of drought on the pH of peat extract was much weaker than the effect on the pH of porewater 

(Figure 2.10). Measurement of pH from peat extracts may be more accurate than pH 

measurements from porewater due to the risk of degassing from porewater: in particular, 

degassing of CO2 can cause the pH to rise as CO2 is acidic (Argo et al. 1997). Unexpectedly, 

the pH of porewater from the bog did not respond to drought in either porewater or extracts 

(Figure 2.14). This may be as a result of the higher redox potential in the bog, meaning that 

sulfate reduction in this environment was minimal even under saturated conditions.  

There was also a sharp fall and then rise in the pH of porewater from the bog at time points W5 

and W6, but the magnitude of the change (a rise of over 1 pH unit in a single week, representing 

a tenfold increase in H+ ion concentration) suggests that this change represented a 

methodological error rather than a genuine change in pH.  

Phenol oxidase 

Phenol oxidase activity was far higher in the fen than the bog (Figure 2.11; Table 2.6), 

corresponding to earlier results (Williams et al. 2000; Lin et al. 2012; c.f. Hill et al. 2014). The 

higher phenol oxidase activity in the fen was likely related to higher pH, as phenol oxidase 

activity is inhibited at low pH (Pind et al. 1994; Williams et al. 2000). In addition, it has been 

suggested that tannins (a type of polyphenolic compound) may inhibit phenol oxidase activity 

in bogs (Williams et al. 2000): condensed tannins are absent from graminoids, which dominate 

fens, but are present in woody plants (e.g. dwarf shrubs) and potentially in Sphagnum mosses 

(Wilson et al. 1989). However, the evidence for condensed tannins in mosses is contradictory 

(Erickson and Miksche 1974). Nonetheless, it seems clear that compounds within Sphagnum 

moss inhibits microbial and enzymatic activity (Painter 1991; Borsheim et al. 2001; Lang et 

al. 2009) and that phenolic compounds play a role in this inhibition (Freeman et al. 2001). 

Somewhat unexpectedly, phenol oxidase activity in the fen was higher at 20 cm than 5 cm:  

this may be a result of changes in the litter composition with depth. Lignin-degrading fungi are 

expected to become more abundant as decomposition proceeds and more labile substrates are 

degraded (Bengtsson 1992; Thormann et al. 2003), potentially leading to an increase in phenol 

oxidase activity as peat becomes more degraded along the depth of the profile. Under normal 

conditions the low redox potential in fen peat would halt phenol oxidase activity, but peat was 
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stored under aerobic conditions following sample collection and so this may suggest rapid 

production of enzymes occurred in this period.  

Phenol oxidase activity was not affected by the drought treatment, but was significantly 

affected by sampling time, suggesting that the rise in water potential at the beginning of the 

experiment may have affected the activities of this enzyme. In the bog, phenol oxidase activity 

fell rapidly between the first and second time points, suggesting that rising water content during 

the early part of the experiment may have enabled increased phenol oxidase activity. Phenol 

oxidases require bimolecular oxygen for their functionality (Sinsabaugh 2010) and oxygen is 

rapidly depleted following submergence (Chen et al. 2012), and so the fall in phenol oxidase 

activity following the initial increase in water content is expected. However, phenol oxidase 

activity in the fen showed the opposite pattern, and actually rose with time despite the rise in 

water content. Given that redox potentials in fen mesocosm cores indicated anoxic conditions 

during this period, it is unlikely that phenol oxidases were active in situ, but it is possible that 

rapid enzyme synthesis occurred following sample collection. Ferrous iron (Fe2+) is known to 

increase phenol oxidase activity (Bodegom et al. 2005), and so it is possible that anoxic 

conditions allowed reduction of ferric iron (Fe3+) to ferrous iron, stimulating phenol oxidase 

activity under assay conditions. Ion concentrations are typically higher in fens than bogs, 

potentially explaining why this effect was not observed in the fen (Bridgham et al. 2000). It 

should also be noted that the temperature at which enzyme assays were carried out (4 °C) was 

lower than the temperature in the controlled temperature room in which peat cores were kept: 

it is possible that this reduced the ability of enzyme assays to detect changes in enzyme activity 

during drought, although this is unlikely given that the assays were sensitive enough to detect 

differences in enzyme activities between habitats, depths and time points. 

Phenolics 

The concentration of both porewater and soil phenolic compounds was higher in the bog than 

the fen. Therefore, the concentration of phenolic compounds showed the opposite pattern to 

phenol oxidase activities, demonstrating that phenol oxidase production in the bog is not 

limited by substrate availability and suggesting that additional constraints on the degradation 

of phenolics exist in bogs, such as pH (Pind et al. 1994; Williams et al. 2000). Similarly, Tfaily 

et al. (2013) observed that the concentration of phenolic compounds and aromatics decreased 

with depth in a fen but not in a bog, supporting the suggestion that the degradation of phenolics 
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is inhibited in bogs. Despite the differences in the concentration of phenolic compounds 

between habitats, there were no significant differences in carbon dioxide release between the 

two habitats: this suggests that the ‘enzymatic latch’ mechanism suggested by Freeman et al. 

(2001) does not control habitat differences in carbon release. 

The quantity of water-extractable phenolic compounds in peat soil was unaffected by the 

drought treatment, but the concentration of phenolic compounds in porewater was lower during 

drought, consistent with previous work (Fenner and Freeman 2011). The weak effect of drought 

on the quantity of phenolic compounds in peat extracts is similar to previous findings (Chris 

Freeman, pers. comm.), and may be due to the larger pool of phenolic compounds in the soil 

making changes hard to detect or to the fact that soil phenolic compounds are often held within 

larger humic complexes with very low turnover rates (Zaccone et al. 2008). Dissolved phenolic 

compounds represent a smaller pool and are potentially more accessible to degradation. The 

fall in the concentration of dissolved phenolic compounds is somewhat surprising as phenol 

oxidase activities did not show a measurable response to drought. However, previous studies 

have likewise only found a weak correlation between phenol oxidase activity and the 

concentration of phenolics (Romanowicz et al. 2015). It is likely that use of L-DOPA as a 

substrate does not detect all phenol oxidases present in the soil: phenol oxidase is a broad term 

encompassing a wide variety of enzymes with strongly differing in substrate specificities 

(Sinsabaugh et al. 1994). Additionally, peroxidase enzymes were not measured. Peroxidases 

often play a role in degradation of phenolic compounds (Sinsabaugh et al. 1994) and in some 

cases have been found to be even more important than phenol oxidases (Jassey et al. 2012). 

Alternatively, the fall in concentrations of dissolved phenolics may be due in part to a reduction 

in DOC solubility as sulfate concentration rises (Clark et al. 2012). 

While the quantity of water-extractable phenolic compounds in the peat was not affected by 

the drought treatment, it was significantly different between sampling time points. In the fen, 

there was a slow increase in the quantity of water-extractable soil phenolics with time. This 

rise could represent the build-up of phenolic compounds in the soil after water content rose at 

the beginning of the experiment (Figure 2.4), inhibiting aerobic phenol oxidases and 

peroxidases. However, the activity of phenol oxidase enzymes actually rose during this period. 

It is possible that alongside rising phenol oxidase activity, increased activity of degradative 

enzymes led to the breakdown of large structural polymeric phenolic compounds and resulted 
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in the release of monomeric phenol or smaller, water soluble phenolic polymers. Alternatively, 

peroxidase enzymes might play an important role in the degradation of water-extractable 

phenolics (Jassey et al. 2012), as these enzymes are functional at higher redox potentials than 

phenol oxidases (Sinsabaugh 2010). In the bog there was a sharp increase in the quantity of 

water-extractable phenolics at T5 followed by a slight fall: as with the rising concentration of 

phenolic compounds in the fen, this could have been driven by the rise in water content at the 

beginning of the experiment. However, given that the concentration of dissolved phenolic 

compounds increased in both control and drought mesocosm cores, care should be taken when 

interpreting these results as they could have been caused by a change in the environmental 

conditions. For example, between W1 and W2 (the first two water sampling dates, roughly 

corresponding to time points T4 and T7 for soil sampling), the concentration of chloride ions 

rose markedly across all habitats, depths and treatments from a mean of 51.6 to a mean of 

1263.7 mg L-1 (data not shown). It is not clear what caused this rise in the concentration of 

chloride ions: at time point 5 all cores were watered using distilled water from the same source, 

so it is possible that a problem developed with the still used in the preparation of distilled water 

(although no problems were noted at the time).  

β-glucosidase 

Unlike phenol oxidase, β-glucosidase activity was higher in the bog than the fen (Figure 2.13), 

corresponding to a previous study (Hill et al. 2014). The higher β-glucosidase activity could 

suggest C-limitation (Hill et al. 2014): although the carbon content of peat is extremely high 

(Hill et al. 2014),  much of the carbon in peat is contained within recalcitrant compounds and 

therefore may be difficult for many micro-organisms to access (Tfaily et al. 2013). 

Alternatively, higher β-glucosidase activity in the bog could reflect higher redox potential in 

this habitat, providing better growth conditions for many enzyme-producing micro-organisms. 

β-glucosidase activity decreased with depth, potentially due to changes in litter composition as 

decomposition proceeded with increasing depth down the peat profile. Models of litter 

decomposition typically divide this process into three phases characterised by different 

microbial guilds: firstly, opportunists break down labile soluble substrates; next, 

‘decomposers’ break down holocellulose; and finally, ‘miners’ break down lignocellulose 

(Moorhead and Sinsabaugh 2006). As an important enzyme in the degradation of cellulose, β-

glucosidase is important in the second phase of this model but will become less relevant later 

in decomposition when lignin makes up the majority of remaining litter (Moorhead and 
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Sinsabaugh 2006). This model is a highly simplified version of the process of litter 

decomposition (Cotrufo et al. 2015), however, and there is little evidence for a succession of 

guilds in the decomposition of peatland litters (Thormann et al. 2003).  

Although the difference between β-glucosidase in control and droughted cores was statistically 

significant at 5 cm depth at the third time point (T3), with lower activities of this enzyme in 

droughted cores, visualisation of the data suggests that this difference was minimal (Figure 

2.13). While it is possible that drought initially suppressed hydrolase enzyme activities at 5 cm 

depth, inspection of the data suggests that it is more likely this represents a spurious p-value 

and that hydrolase enzymes were unaffected by drought treatment. 

DOC 

The concentration of dissolved organic carbon was higher in the bog than in the fen, consistent 

with the literature (Lin et al. 2012; Tfaily et al. 2013). DOC in bogs is more resistant to 

degradation than DOC in fens (Corbett et al. 2013; Tfaily et al. 2013), possibly due to 

vegetation differences, as Sphagnum moss is especially resistant to decomposition (Lang et al. 

2009), or to higher concentrations of phenolic compounds found in bogs (Figure 2.12; Figure 

2.15). It is also possible that the transport of carbon into deep peat in the form of root exudates 

which is observed in fens (Corbett et al. 2013) results in a priming effect and causes more rapid 

consumption of fen DOC (Blagodatskaya et al. 2014). Additionally, higher sulfate 

concentrations in the fen (Figure 2.18) may have decreased DOC solubility (Clark et al. 2012) 

and thus led to lower DOC concentrations. 

The concentration of dissolved organic carbon fell during drought (Figure 2.16), although 

treatment differences were only significant in the fen. However, the sample size in the bog 

during drought was very small due to difficulties with collection of water samples during 

drought (Table 2.3) and there was a non-significant trend towards lower concentrations of DOC 

in both habitats, so it is possible that a larger sample size would have revealed significant 

changes in DOC in the bog during drought. Previous studies have also observed a decrease in 

dissolved organic carbon during drought (Freeman et al. 2004; Ellis et al. 2009; Fenner and 

Freeman 2011; Clark et al. 2012), either as a result of complete mineralisation to carbon 

dioxide (Acharya 1935) or as a result of acidification leading to decreased solubility of DOC 

(Clark et al. 2012). 
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Dissolved organic carbon concentration was also significantly affected by time point in the 

control cores: it was significantly higher at W3 than W6, representing a small peak in DOC 

concentration followed by a fall. This may be linked to unexplained changes in porewater ion 

concentrations which occurred between W1 and W2 (Figure 2.17; Figure 2.18), as sulfate in 

particular has a well-known effect on DOC solubility in peatland porewater (Clark et al. 2012; 

Evans et al. 2012).  

Nitrate and Sulfate Concentrations 

Porewater concentrations of nitrate and sulfate were higher in drought than control cores 

(Figure 2.17; Figure 2.18). Both nitrate and sulfate are used as electron acceptors in microbial 

metabolism under anoxic conditions, but may be re-oxidised under oxic conditions. Previous 

studies have almost invariably found sulfate concentrations to rise during drought (Clark et al. 

2005; Knorr et al. 2009; Clark et al. 2012; Brouns et al. 2014; Juckers and Watmough 2014), 

while the effect of drought on nitrate concentrations is more variable. Drought usually leads to 

an increase in nitrate concentrations (Knorr et al. 2009; Kane et al. 2013; Juckers and 

Watmough 2014), but decreasing (Hughes et al. 1999) or nonresponsive (Dowrick et al. 1999; 

Goldberg et al. 2010; Brouns et al. 2014) nitrate concentrations during drought have also been 

reported. Nitrate levels in peatlands are often very close to the limit of detection (Knorr et al. 

2009; Palmer and Horn 2015), making accurate quantification of changes difficult. It is also 

possible that differences in plant communities affect drought-driven changes in nitrate 

concentration: for example, the presence of plants can control whether nitrate is converted to 

ammonium or into gaseous form under anoxic conditions (Matheson et al. 2002), potentially 

influencing whether nitrogen is available to be re-oxidised when conditions are aerobic. Plant 

nitrate uptake may also significantly affect concentrations in the soil (Rückauf et al. 2004). In 

this study, changes in nitrate and sulfate concentrations were highly variable between cores 

and time points (Figure 2.17; Figure 2.18). Variability in the concentration of these ions 

potentially represents spatial and temporal variability in redox potential (Askaer et al. 2010), 

but also makes it difficult to distinguish genuine changes in nitrate and sulfate concentrations 

from outlier effects and random variability. 

The concentration of both nitrate and sulfate rose between time points W1 and W2 (Figure 

2.17; Figure 2.18), approximately corresponding to time points T4 and T7 for soil samples, 

accompanied by a sharp rise in chloride concentration (data not shown). The reasons for these 
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changes in ion concentrations are unclear, as given that they are observed in both treatments 

and habitats the effect of experimental problems (such as a problem with temperature 

regulation in the controlled temperature room or the still used to prepare distilled water) cannot 

be discounted. 

The concentrations of nitrate and sulfate were both significantly different between bog and fen 

mesocosm cores. Nitrate concentration was higher in the bog than the fen, reflecting the higher 

redox potential in the former habitat, while sulfate concentration was higher in the fen. It is 

unclear why sulfate concentration was higher in the fen, as inputs to the two habitats were 

expected to be similar both before and after collection of mesocosm cores: sulfate concentration 

was similar in artificial rainwater and groundwater, as well as in groundwater at Cors 

Erddreiniog (Table 2.1). Atmospheric sulfate deposition has a large impact on sulfate 

concentration in peatlands (Clark et al. 2012) but is similar for both sites 

(http://www.apis.ac.uk/search-by-location, accessed 14/09/15). Therefore, the most likely 

explanation is that sulfate run-off from agricultural land surrounding Cors Erddreiniog (e.g. 

from ammonium sulfate fertilisers) may have acted as an additional source of sulfate (Kaown 

et al. 2009). 

2.4.4 ARISA Fingerprinting 

Both bacterial and fungal communities differed between the two habitats and depths (Table 

2.10), matching the results of recent next-generation sequencing studies (Lin et al. 2012; 

2014a; 2014b). However, a PCoA plot of bacterial communities showed a significant degree 

of overlap between habitats and depths (Figure 2.20A). This overlap was likely a result of the 

limitations of ARISA fingerprinting: in diverse communities, multiple species may share the 

same intergenic spacer length, causing fragment numbers to become ‘saturated’ (Kovacs et al. 

2010). Binning fragments, as was done here, minimises inaccuracy in measuring fragment 

length but at the cost of increasing the likelihood that fragment sizes will overlap. Nonetheless, 

the PCoA plot of bacterial communities demonstrates a clear tendency of samples from the 

same habitat to cluster together, with the first axis showing a gradient from the bog to the fen 

samples and separating the two depths within the bog samples.  Strong habitat differences were 

likely driven by pH differences between the bog and the fen, as pH is one of the main 

determinants of bacterial community composition (Fierer and Jackson 2006; Rousk et al. 

2010). Within the bog, bacterial communities differed between depths, reflecting differences 

http://www.apis.ac.uk/search-by-location
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between a number of environmental parameters.  For example, the texture of peat differed 

strongly between depths: samples from the 5 cm depth consisted of partially-decomposed 

Sphagnum moss while samples from 20 cm consisted of fully humified material (pers. obs.), 

potentially affecting bacterial communities both directly and indirectly (e.g. through 

differences in pore size or carbon availability). Previous studies have shown nutrient 

availability, particularly of phosphorus, to likewise differ between depths (Hill et al. 2014; Lin 

et al. 2014b). The second axis on the PCoA plot separates samples from the fen at 20 cm from 

all other samples. This reflects a pattern observed for dissolved organic matter properties 

(Tfaily et al. 2013), which are known to be related peatland microbial community composition 

(Lin et al. 2012). 

Fungal communities also differed between the two habitats and depths, both in species richness 

(Figure 2.19; Table 2.8) and community composition (Figure 2.20B; Table 2.10). Fungal 

communities were significantly more diverse in the bog habitat and at 5 cm, potentially 

reflecting the higher redox potential and larger pore sizes in the bog, both of which are known 

to be beneficial to fungal growth (Boer et al. 2005; Seo and DeLaune 2010). In many peatlands 

fungal abundance decreases rapidly with depth (Lin et al. 2012; 2014b), likely leading to lower 

diversity in deeper layers of peat. Intriguingly, a PCoA plot of fungal communities’ showed 

two distinct clusters which were not defined by either habitat or depth and may instead have 

been linked to water table depth or β-glucosidase activity (Figure 2.20B). Within each of the 

two clusters, fungal communities were more strongly affected by depth within the peat profile 

than by habitat, corresponding to previous studies of peatland fungal communities (Lin et al. 

2012). 

Bacterial band richness increased over time in the fen at both depths (Table 2.9; Figure 2.21), 

although post-hoc tests were only significant in the fen at 20 cm. The rise in diversity 

potentially resulted from a delayed response to the rise in water content observed at the 

beginning of the experiment.  Conditions following a rise in water content may allow high 

levels of bacterial growth (Fenner and Freeman 2011) and thus facilitate an increase in 

diversity. 

Despite a large degree of heterogeneity between communities in different mesocosm cores and 

at different time points, treatment significantly affected microbial community composition in 

the peat (Table 2.11; Table 2.12). In addition, time point had a significant effect on both fungal 
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and bacterial communities. To further examine the timing of treatment effects, time points were 

separated into four categories: pre-drought, drying, minimum water table, and rewetting. While 

the effect of drought on microbial community composition was weak, a number of interesting 

patterns emerged from analysis of changes in microbial communities during drought. 

The time at which treatment effects were significant varies greatly between the two habitats 

and depths, as well as between bacteria and fungi. For example, at 5 cm depth significant 

changes occurred only during the rewetting period (Table 2.12), and were only significant for 

fungi in the fen and for bacteria in the bog. This is surprising given that abiotic variables at 5 

cm changed quickly following the commencement of drought. However, many micro-

organisms may have survived the early stages of drought by entering a dormant state: previous 

research shows that analyses based on community RNA (e.g. metatranscriptomics) find 

stronger responses to drought than DNA-based analyses (Barnard et al. 2013; Barnard et al. 

2015), suggesting that many bacteria may survive droughts by persisting in an inactive state 

(mRNA has a much faster rate of turnover than DNA (Moran et al. 2013)). During rewetting, 

some previously dormant bacteria undergo a pulse of fast growth while other bacteria may be 

lysed by the change in osmotic pressure (Manzoni et al. 2014), leading to a shift in microbial 

community composition. 

At 20 cm depth, bacterial community composition in both habitats was significantly different 

between treatments when the water table was at its minimum level, as well as during drying in 

the fen and during rewetting in the bog. Earlier changes in community composition at 20 cm 

than at 5 cm depth could suggest that micro-organisms living at this depth are less resistant to 

changes in water content and redox potential as drying occurs more rarely in peat at this depth. 

Notably, drought only affected fluxes of carbon dioxide during minimum water table, 

potentially suggesting that microbial communities at 20 cm may play a key role in drought-

driven CO2 release. Despite lower enzyme activities in deeper peat, it has been shown 

previously that carbon dioxide release from peat at 20 cm depth increases significantly with 

drought (Blodau et al. 2004).  

Nonetheless, where significant effects occurred NMDS plots show only small differences 

between the community composition in each treatment, as well as a great deal of variability 

in community composition (Figure 2.24; Figure 2.25). This means that it is extremely 

difficult to distinguish random variation in community composition from genuine changes 
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caused by the drought treatment. This difficulty was likely caused in part by the low 

resolution of ARISA fingerprinting, which meant that even community differences between 

different habitats were weak (Figure 2.20), as well as the small number of samples at each 

time point. It should also be noted that by analysing microbial communities in each time 

subset separately, a larger number of statistical tests were carried out and thus the likelihood 

of false positives was increased. However, tests were only carried out on time subsets in 

cases where the effect of treatment on community composition was significant overall, 

suggesting that a real effect is likely in these cases. Therefore, while it appears that drought 

has some impact on the bacterial and fungal communities in peatlands, further work is 

required to confirm this result using higher resolution methods such as high-throughput 

sequencing. 

2.5 Conclusions 
1. Drought had a large effect on gas fluxes: carbon dioxide fluxes increased during the 

period of minimum water table, but fell back to control levels during rewetting. Given 

that the concentration of dissolved phenolic compounds in porewater remained 

supressed during the early stages of rewetting, this suggests that  factors other than the 

concentration of phenolic compounds played a role in suppressing carbon dioxide 

emissions from submerged peat. The tight coupling of water table and carbon dioxide 

suggests that oxygen availability may be important, potentially by regulating the 

activity of aerobic micro-organisms. However, an increase in root expansion and 

respiration cannot be ruled out as a factor influencing carbon dioxide fluxes. 

2. Both habitat and depth had a large impact on bacterial and fungal communities. 

3. Changes in bacterial communities in the deeper peat (20 cm depth) occurred during 

minimum water table while bacterial communities at 5 cm depth did not respond to 

drought until rewetting. Given that carbon dioxide efflux from the peat was only 

elevated from the droughted peat during minimum water table, this suggests a potential 

role of microbial communities at 20 cm depth in the release of stored carbon during 

water table drawdown.  

4. Microbial communities at 5 cm depth only responded to during the rewetting period. 

Both fungi and bacteria responded to rewetting, but each in only a single habitat: 

bacteria in the bog, and fungi in the fen. It is unclear whether the opposing responses 
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of the two groups were due to methodological issues, different environmental drivers 

or biotic interactions between the two groups. 
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3.1 Introduction 

Marker gene analysis (MGA) is here defined as the sequencing of a single marker gene (or 

several genes in combination) to study the composition of a community. Commonly, the 

markers used are chosen to be taxonomically informative, such as ribosomal RNA genes 

(rRNA genes). However, in some cases key genes for a function of interest may be chosen, 

such as genes for denitrification (Palmer and Horn 2015) or mcrA for methanogenesis (Kim et 

al. 2008). Marker gene analysis (MGA)-based studies have played a huge role in our 

understanding of microbial diversity and taxonomy. An early example is the use of 16S rRNA 

sequencing in the revolutionary discovery of Archaea as a third domain of life (Woese and Fox 

1977) and in the development of a taxonomically meaningful system of classification for 

bacteria (Fox et al. 1980). Later studies used 16S rRNA genes to investigate bacterial 

communities in natural ecosystems, uncovering numerous uncultured species (Giovannoni et 

al. 1990; Ward et al. 1990) and even candidate phyla (Hugenholtz et al. 1998). However, initial 

DNA-based microbial ecology studies were limited by the low-throughput of existing 

sequencing technologies. The introduction of second-generation sequencing platforms 

immediately decreased the cost per base pair of sequencing datasets, enabling ‘metagenomics’ 

and marker gene analysis (MGA) to be used on much broader scales to test hypotheses about 

microbial distributions and the interactions between micro-organisms and the environment 

(Tringe and Hugenholtz 2008). Earlier studies of microbial ecology relied on microscopy or 

culturing of isolates, limiting the amount of information which could be obtained on bacterial 

taxonomy and ecology and introducing bias towards species which grow well in culture. The 

use of ribosomal genes as markers in MGA was later expanded to include eukaryotic taxa 

(Blaxter et al. 2005), including fungi (Epp et al. 2012) and protozoa (Pawlowski et al. 2012).  

It is therefore unsurprising that since the advent of next-generation sequencing, the number of 

published metagenomic and MGA studies has risen steadily (Figure 3.1). Despite the recent 

explosion in popularity of marker gene analyses, terminology has not yet fully converged 

among all practitioners: current terms include ‘metabarcoding’ (Taberlet et al. 2012), 

‘metagenetics’ (Creer et al. 2010), ‘amplicon sequencing’ and ‘metasystematics’ (Hajibabaei 

2012). Additionally, MGA studies are sometimes referred to as ‘metagenomics’, although this 

is incorrect: metagenomics refers to sequencing of a random sample of all DNA present in the 

environment (see Chapter 4). Figure 3.1 shows a year-on-year increase in the number of papers 

containing each of these terms, reflecting increasingly powerful sequencing technology 
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(Loman et al. 2012) and user-friendly bioinformatic workflows such as QIIME (Caporaso et 

al. 2010) or MOTHUR (Schloss et al. 2009), both of which have made marker gene analyses 

ever more accessible. In this work, the term MGA will be used because ‘metabarcoding’ and 

‘metagenetics’ most commonly refer to macrofaunal studies, and ‘amplicon sequencing’ is 

ambiguous, referring to any study in which a gene is PCR-amplified prior to sequencing. 

 

Figure 3.1: Number of papers published containing the words ‘metabarcoding’, 

‘metagenetics’ and ‘metagenomics’, by year. Number of papers denotes the number of hits 

obtained for each word on Google Scholar, filtered by year. 
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Two recent studies have applied MGA to the study of bacterial, archaeal and fungal 

communities in peatlands (Lin et al. 2012; 2014b) and both have revealed strong differentiation 

between the microbial communities present in bogs and fens as well as large changes in the 

community along the peat profile. Peat bacterial communities are dominated by Acidobacteria 

and Proteobacteria, while the abundances of other bacterial phyla are more variable: one study 

found high abundances of Firmicutes in a fen (Lin et al. 2012), while a second study by the 

same authors found much lower abundances of Firmicutes in a different fen (Lin et al. 2014b), 

reflecting site or regional differences. Fungal communities in peat are dominated by 

Ascomycota and Basidiomycota (Lin et al. 2012; 2014b).  

Both bacterial and fungal community composition in peat is driven by environmental factors, 

including dissolved carbon and nitrogen, pH, C:N ratio and vegetation (Lin et al. 2012; 2014a). 

Drought affects many of the aforementioned variables, for example leading to an increase in 

dissolved organic carbon and a decrease in pH (Clark et al. 2005; Fenner and Freeman 2011), 

and would thus be expected to have a large effect on peatland microbial communities. 

Microbial community fingerprinting methods have been used to study the effect of drought on 

peatland microbial communities: these have found that drought leads to a decrease in 

denitrifiers and methanogens (Kim et al. 2008) and an increase in the diversity of phenol 

oxidase genes (Fenner et al. 2005). In addition, Chapter 2 of the present work demonstrated 

that ARISA fingerprinting of peatland bacterial and fungal communities detected a significant, 

yet weak, effect of drought. MGA has a number of advantages over community fingerprinting: 

it avoids problems inherent in community fingerprinting methodologies such as the potential 

for multiple species to produce the same ‘fingerprint’ (Kovacs et al. 2010). In addition, MGA 

allows the identification of the taxa responsible for community changes. However, despite 

indications that peat microbial communities will respond to climate change and that this will 

in turn affect carbon release (Jassey et al. 2015; Peltoniemi et al. 2015; Wang et al. 2015), no 

study has yet applied second-generation sequencing to study the effects of drought on microbial 

communities in the active layers of peat. 

As discussed in Chapter 2, it is possible that the changes in carbon dioxide emissions observed 

during drought in the current study were driven by plants: in particular, water table drawdown 

could allow root expansion into newly aerated parts of the peat profile, and thus lead to 

increased root respiration (Knorr et al. 2008). However, in the current study micro-organisms 
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were chosen for further study rather than plants for several reasons. Firstly, previous studies 

have shown that drought influences carbon dioxide fluxes regardless of the effect of plants: for 

example, Brouns et al. (2014) found oxygenation to increase carbon dioxide release from peat 

incubations without plants. Kuiper et al. (2014) found that while plant functional group 

removal did affect net ecosystem exchange of CO2, it did not affect ecosystem resilience and 

resistance to drought. Therefore, it is clear that plant respiration is not the only mechanism 

underpinning drought-driven CO2 release from peatlands. Secondly, ARISA fingerprinting 

found a significant, albeit weak, effect of water table drawdown on the peat microbial 

community in the current study (Chapter 2). It was hypothesised that MGA would be able to 

capture the same differences with better resolution. Finally, changes in global warming 

potential (GWP) during drought were primarily due to the fall in methane emissions, and both 

methane production and consumption are microbial processes. Therefore, further analysis of 

the microbial community was considered justified. Given that knowledge of the microbial 

mechanisms underlying drought-driven changes to the carbon cycle is currently lacking, high-

throughput sequencing was used to analyse changes in the microbial community as a whole in 

order to generate more detailed hypotheses about which microbial taxa are most affected by 

drought. 

Aims and Objectives of Chapter 

The primary objective of this chapter was to identify differences in both prokaryotic and 

eukaryotic communities between habitats and depths as well as changes in communities during 

a period of drought and rewetting. Marker gene analysis (MGA) was chosen as a tool for this 

purpose, using 16S rRNA genes as markers for prokaryotes and 18S rRNA genes as markers 

for eukaryotes. The aims of this chapter were as follows: 

1. To determine the taxonomic composition of a Welsh bog and fen at two depths (5 cm 

and 20 cm) 

2. To identify differences in the taxonomic composition and taxon richness of microbial 

communities between habitats and depths 

3. To identify changes in the taxonomic composition of microbial communities and 

species richness of bogs and fens during simulated drought 
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3.2 Methods 

3.2.1 Sequencing and Quality Control 

Experimental design and DNA extraction methodologies are described in full in Chapter 2. 

Sequencing was carried out by the Earth Microbiome Project (Gilbert et al. 2014) following 

standard protocols (http://www.earthmicrobiome.org). Briefly, the V4 region of the 16S rRNA 

gene was amplified using primers 515f (GTGCCAGCMGCCGCGGTAA) and 806r 

(GGACTACHVGGGTWTCTAAT) (Caporaso et al. 2011a), which amplify both bacterial and 

archaeal sequences, and the V9 region of the 18S rRNA gene was amplified using 

Illumina_Euk_1391f (GTACACACCGCCCGTC) and Illumina_EukBr 

(TGATCCTTCTGCAGGTTCACCTAC) (Amaral-Zettler et al. 2009). Sequencing was 

carried out on an Illumina HiSeq in rapid run mode, giving paired-end reads of 150bp in length. 

Quality control and demultiplexing was carried out by the Earth Microbiome Project (Gilbert 

et al. 2014) in QIITA (http://qiita.microbio.me/), a QIIME-based repository and analysis 

platform for “-omics” data, and was equivalent to quality control in QIIME using default 

parameters.  For 18S rRNA, forward and reverse reads were joined using the ‘obijoinpairedend’ 

command from the obitools suite (Boyer et al. 2015). The primers used for amplification of the 

16S rRNA region gave amplicons of 300-350bp in size, meaning that it was not possible to 

consistently join the forward and reverse reads belonging to the 16S rRNA amplicons. 

3.2.2 OTU Clustering and Taxonomy Assignment 

Further quality control and OTU clustering was carried out in vsearch 

(https://github.com/torognes/vsearch), a method which has been found to output high quality 

OTUs (Westcott and Schloss 2015). Firstly, identical reads were merged and singletons 

removed (‘vsearch --derep_fulllength’), before chimera removal was carried out on the 

dereplicated reads using uchime_denovo. Next, OTUs were clustered at 97% similarity 

(‘vsearch --cluster_fast’) and OTU centroids were extracted from each OTU generated in this 

way. An OTU table suitable for downstream analysis was created by mapping all initial reads 

(including singletons) to the OTU centroids. Inclusion of singletons at this final step meant that 

while singletons could not form OTUs on their own, they were included if they belonged to an 

OTU consisting of sequences that occurred multiple times. Finally, the results were converted 

to an OTU table suitable for further analysis using the script ‘uc2otutab.py’ 

(http://drive5.com/python/uc2otutab_py.html).  

https://github.com/torognes/vsearch
http://drive5.com/python/uc2otutab_py.html
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Taxonomy was assigned to each OTU centroid using the ‘utax’ command in usearch v8.12 

(Edgar 2010). Taxonomy was assigned against the Greengenes database for 16S rRNA genes 

(DeSantis et al. 2006), and against the SILVA database for 18S rRNA genes (Quast et al. 

2012). 

3.2.3 Statistical Analysis 

Prior to further analysis, read numbers were standardised in all samples using the ‘rrarefy’ 

command from the ‘VEGAN’ package (Oksanen et al. 2015). While the use of rarefying to 

normalise library size has been criticised (McMurdie and Holmes 2014), a more recent analysis 

combining simulated and real datasets suggests that rarefying may be the most appropriate 

normalisation technique to apply prior to clustering analyses (Weiss et al. 2015). In particular, 

Weiss et al. (2015) recommend the use of rarefying to normalise library size when clusters are 

subtle, as was expected to be the case for treatment effects in the current study. 

Samples in the 16S rRNA gene dataset were standardised to contain 70,000 reads and samples 

in the 18S rRNA gene dataset were standardised to contain 20,000. The thresholds used for 

standardisation were chosen to include the majority of samples, but exclude samples where 

sequencing had failed. Samples which contained fewer reads than these thresholds were 

removed from the dataset: 10 samples were removed from the 16S rRNA gene dataset and 9 

from the 18S rRNA dataset as they did not contain the requisite number of reads for the read 

number standardisation step. Once read numbers had been standardised, rarefaction analysis 

was carried out to assess coverage using the ‘rarefy’ command in the R package ‘VEGAN’. 

Both OTU richness and Simpson’s Complement Index (hereafter Simpson’s Index) were 

calculated for each sample using commands ‘specnumber’ and ‘diversity’ in package 

‘VEGAN’ (Oksanen et al. 2015). For the 18S rRNA dataset, OTUs assigned to the phyla 

Holozoa, Metazoa, Chloroplastida and ‘NA’ (i.e. OTUs with no taxonomic assignment) at any 

confidence level were excluded from calculations of α-diversity as the experiment was 

designed to focus on micro-organisms. Next, linear mixed effects models were used to test for 

effects of habitat, depth, time point and treatment on α-diversity. Models were initially fitted 

with all main effects and two and three-way interactions included, and interaction effects were 

removed sequentially until only significant interactions remained (with the exception of the 

interaction between time point and treatment which was kept in all models due to the 

importance of this term to the chapter aims). As Simpson’s Index is always a value between 0 
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and 1 and is thus not normally distributed, Simpson’s Index values were logit transformed 

(logit(y) = log(y/[1-y] )) prior to model fitting, following the recommendations of Warton and 

Hui (2011). ‘Core’ OTUs, defined as OTUs found in 95% of samples, were calculated for each 

sample using a custom R script. 

Next, models were fitted to test for significant effects of habitat, depth, time point and treatment 

on the proportion of the community which was made up by each of the most abundant phyla 

(i.e. those phyla which made up a mean of >1% of the community in at least one habitat and 

depth). The proportion of each phyla was logit-transformed prior to fitting linear mixed-effects 

models with ‘~1|Core’ as a random effect. Linear mixed-effects models were fitted using 

package ‘lme’ (Pinheiro et al. 2013). Models were initially fitted with all main effects and two 

and three-way interactions included, but interaction effects were removed sequentially until 

only significant interactions remained (with the exception of the interaction between time point 

and treatment, which was kept in all models due to the importance of this term to the chapter 

aims). Only OTUs which could be assigned at phylum level with an utax confidence value of 

0.85 or higher were included in this part of the analysis. 

To visualise differences in the community composition of prokaryotic and eukaryotic 

communities, NMDS plots were calculated using function ‘metaMDS’ in R package ‘VEGAN’ 

(Dixon and Palmer 2003). NMDS ordination was based on Bray-Curtis dissimilarities. NMDS 

plots were first calculated using all samples, and then using subsets corresponding to each 

combination of habitat and depth. In addition, PERMANOVA tests were carried out using 

function ‘adonis’ from the R package ‘VEGAN’. In order to focus on the community 

composition of microbial eukaryotes, all OTUs assigned to phyla Holozoa, Chloroplastida, 

Metazoa and “NA” with any confidence level were excluded from NMDS ordination, CCA, 

and PERMANOVA. 

Next, partial constrained correspondence analysis (also known as canonical correspondence 

analysis) was carried out on a filtered subset of OTUs (i.e. those which occurred in at least 20% 

of samples). Constrained correspondence analysis (CCA) first involves chi-square 

transformation of the species matrix, followed by multiple linear regression of the species 

matrix on the variables of interest (constraints). Therefore, CCA only displays variation which 

can be accounted for by the chosen constraints. Partial CCA (pCCA) additionally allows the 

inclusion of a ‘conditioning’ variable, the effect of which is removed prior to regression on the 
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constraints. In the current study, water table direction was used as the constraining variable: 

water table direction was always ‘Steady’ for control cores but for drought cores was either 

‘Steady’ (T1&2), ‘Drying’ (T3, 4 & 5), ‘Minimum’ (T6 & 7) or ‘Rewet’ (T8 & 9). Core was 

included as a conditioning variable, to remove the effect that large between-core community 

differences had on the results. Following the fitting of the CCA, an ANOVA-like permutation 

test was calculated to test the significance of water table direction (function ‘anova.cca’). 

To identify individual OTUs which showed significant responses to drought, OTUs were first 

filtered to include only those OTUs which were sufficiently abundant (at least 1 read per 1000 

reads) and present in at least 20% of samples. This strict filtering was carried out in order to 

minimise spurious effects of rare OTUs or OTUs which were highly abundant in a few samples 

but otherwise absent; the high proportion of rare OTUs in the dataset was considered likely to 

generate these spurious results. Following filtering, OTU abundances were logit transformed 

(Warton and Hui 2011) and linear mixed effect models were fitted with ‘~1|Core’ as a random 

effect and with time point, treatment and the interaction between time and treatment as fixed 

effects. Benjamini-Hochberg corrections were calculated to correct for the large number of 

comparisons. Where a significant effect of the time point: treatment interaction was found, 

OTU abundances were visually inspected and cases where the interaction effect was due to 

outlier effects were removed. 

To investigate the underlying causes of community differences between different mesocosm 

cores, PERMANOVA tests were carried out using function ‘adonis’ (Dixon and Palmer 2003) 

to test whether the effect of core was significant for each habitat-depth subset. To determine 

the variables underlying the differences in prokaryotic and eukaryotic communities between 

different cores, a subset of likely variables were selected: pH and the percentage cover of 

important plant functional groups (mosses, dwarf shrubs and graminoids for the bog; mosses 

and graminoids in the fen). The cover of each plant functional group was assessed by taking a 

photo of each core from above, drawing a grid over it in Microsoft Paint, and assessing the 

number of squares taken up by each functional group. Constrained correspondence analysis 

(CCA) was then carried out within each habitat-depth subset, and the significance of each 

variable determined using ANOVA-based permutation tests (function ‘anova.cca’).  
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Figure 3.2: Rarefaction analysis of prokaryotic (A-D) and eukaryotic (E-H) 

communities, with each line representing the results of rarefaction analysis on a single 

sample. Results are plotted separately for each habitat-depth combination as follows: A and 

E, bog-5cm; B and F, fen-5cm; C and G, bog-20cm; D and H, fen-20cm. Rarefaction was 

carried out after standardisation of read numbers within each sample. 
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3.3 Results 

3.3.1 Sequencing and Quality Control 

A total of 102,439,895 and 104,156,662 paired-end reads were obtained for 16S and 18S rRNA 

marker genes, respectively. Of the 16S rRNA reads, 29,337,117 passed initial quality control 

steps (including 4,184,029 singletons) and were clustered into 49,892 OTUs. A total of 

17,214,346 18S rRNA reads passed quality control and paired-end joining, of which 9,600,970 

were singletons. The 18S rRNA genes were clustered into 43,058 OTUs. During 

standardisation of read counts, 10 samples were removed from the 16S rRNA gene dataset and 

9 from the 18S rRNA gene dataset as they did not contain the requisite number of reads for the 

read number standardisation step. 

Rarefaction analysis suggested that coverage was adequate in the bog samples at both depths, 

with rarefaction curves for bog samples reaching a near asymptote for both prokaryotic (Figure 

3.2A; Figure 3.2C) and eukaryotic (Figure 3.2E; Figure 3.2G) OTUs. However, both 

prokaryotic and eukaryotic communities were considerably more diverse in the fen samples, 

and diversity did not come close to an asymptote in fen samples (Figure 3.2B; Figure 3.2D; 

Figure 3.2F; Figure 3.2H). 

3.3.2 α-Diversity 

Habitat and depth significantly affected the α-diversity of both prokaryotes and microbial 

eukaryotes (Table 3.1; Figure 3.3). The total number of OTUs was significantly higher in the 

fen than the bog habitat for both 16S and 18S rRNA genes (Figure 3.3). For prokaryotic 

communities, higher OTU richness was found at 5 cm than 20 cm depth in both habitats; for 

eukaryotic communities, OTU richness was higher at 5 cm than 20 cm in the bog, but was 

similar between both depths in the fen. Likewise, Simpson’s Index was significantly different 

between habitats and depths (Table 3.1). The Simpson’s Index of prokaryotic communities was 

lower in the bog at 20 cm than other habitats and depths, while the Simpson’s Index of 

eukaryotic communities was lower in the bog than the fen (Figure 3.3). There was no 

significant effect of the drought treatment on OTU richness for either prokaryotes or microbial 

eukaryotes (Table 3.1). However, the Simpson’s Index of eukaryotic communities was 

significantly affected by the interactions between depth and time point and between depth and 

treatment (Table 3.1). These significant interaction effects were caused by a rise in the 
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Simpson’s Index of droughted mesocosm cores from the bog at 5 cm between time point 3 and 

time point 5 (Figure 3.4). 

Table 3.1: Minimal adequate linear mixed effects model with alpha diversity as the 

response variables. Non-significant interactions are not shown, with the exception of the 

interaction between time point and treatment. Significant p-values are denoted by * (p < 

0.05), ** (p < 0.01), and *** (p < 0.001). Marginal significance (p < 0.1) is denoted by ‘.’. 

OTUs assigned to the following phyla were excluded from the 18S rRNA gene dataset prior 

to analysis: Holozoa, Metazoa, Chloroplastida and ‘NA’. 

Marker 

Gene 
Response Independent Variable F d.f. p 

16S OTU Richness Habitat 1190.7 1, 9 <0.0001*** 

  Depth 441.2 1, 177 <0.0001*** 

    Time Point 0.3 8, 177 1 

  Treatment 0.4 1, 9 0.6 

    Time Point: Treatment 0.5 8, 177 0.9 

 Simpson's 

Index 
Habitat 667.3 1, 9 <0.0001*** 

    Depth 582.7 1, 176 <0.0001*** 

  Time Point 0.3 8, 176 1 

    Treatment 0.2 1, 9 0.7 

  Habitat: Depth 183 1, 176 <0.0001*** 

    Time Point: Treatment 0.8 8, 176 0.7 

18S OTU Richness Habitat 689.2 1, 9 <0.0001*** 

    Depth 13.2 1, 177 0.0004** 

  Time Point 1.0 8, 177 0.4 

    Treatment 0.1 1, 9 0.8 

  Habitat: Depth 7.6 1, 177 0.0065** 

    Time Point: Treatment 0.9 8, 177 0.6 

 Simpson's 

Index 
Habitat 189.7 1, 9 <0.0001*** 

    Depth 0.5 1, 168 0.5 

  Time Point 0.4 8, 168 0.9 

    Treatment <0.1 1, 9 1 

  Habitat: Depth 69.1 1, 168 <0.0001*** 

    Depth: Time Point 2.2 8, 168 0.03* 

  Depth: Treatment 5.6 1, 168 0.02* 

    Time Point: Treatment 0.5 8, 168 0.8 
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Figure 3.3: OTU richness of prokaryotic (A) and eukaryotic (C) organisms, and 

Simpson’s Index of prokaryotic (B) and eukaryotic (D) organisms. OTUs assigned to the 

following phyla were excluded from the 18S rRNA gene dataset prior to analysis: Holozoa, 

Metazoa, Chloroplastida and ‘NA’. 
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Figure 3.4: Mean Simpson’s Index of microbial eukaryote communities by time and 

treatment. Error bars represent standard errors. Different letters represent time points 

with significantly different means (Simpson’s Index was not significantly different between 

time points at 20 cm depth, or in the control mesocosm cores). 

 

 

Figure 3.5: Venn diagram depicting the number of (A) prokaryotic and (B) eukaryotic 

‘core’ OTUs (i.e. OTUs present in 95% of samples for a given habitat) shared between 

the four different habitat-depth combinations. OTUs assigned to the following phyla were 

excluded from the 18S gene rRNA dataset prior to analysis: Holozoa, Metazoa, 

Chloroplastida and ‘NA’. 
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Table 3.2: Minimal adequate linear mixed effects model with the proportion of reads 

assigned to Archaea with a confidence value of 0.85 as the response variable.  Non-

significant interactions are not shown, with the exception of the interaction between time 

point and treatment. Significant p-values are denoted by * (p < 0.05), ** (p < 0.01), and *** 

(p < 0.001). Marginal significance (p < 0.1) is denoted by ‘.’. 

Factor d.f. F p 

Time Point 8, 174 1.0 0.4 

Treatment 1, 8 6.8 0.03* 

Habitat 1, 8 16.1 0.004** 

Depth 1, 174 20.2 <0.0001*** 

Time Point: Treatment 8, 174 0.8 0.6 

Treatment: Depth 1, 174 66.8 <0.0001*** 

Habitat: Depth 1, 174 32.9 <0.0001*** 

Treatment: Habitat: Depth 1, 174 30.6 <0.0001*** 

 

Corresponding to the higher diversity in the fen habitat (Figure 3.3), the fen had higher numbers 

of both eukaryotic and prokaryotic ‘core’ OTUs (cOTUs; OTUs shared by 95% of samples 

belonging to a given habitat-depth combination) than the bog (Figure 3.5). In the fen more 

prokaryotic cOTUs were found at 5 cm than 20 cm, matching the patterns of overall species 

richness, but the opposite pattern was seen in the bog (more cOTUs at 20 cm than 5cm despite 

higher overall species richness at 5 cm). The number of eukaryotic cOTUs was similar at both 

depths within both the bog and fen, but considerably more cOTUs were present in the fen than 

the bog. Relatively few cOTUs were shared between habitats (even when the sampling depth 

was the same), while a larger proportion were shared between depths in each habitat. 

3.3.3 Relative Abundances of Domains & Abundant Phyla 

The relative abundance of Archaea was low in all habitats, but was significantly higher in the 

fen than in the bog (Figure 3. 6A; Table 3.2). There was a significant effect of treatment on the 

relative abundance of Archaea, as well as a significant two-way interaction between treatment 

and depth and a significant three-way interaction between treatment, habitat and depth (Table 

3.2). However, if differences between treatments were due to the effect of drought then a 

significant interaction effect between time point and treatment would be expected, but this was 

not the case and so differences between treatments were likely due to pre-existing community 

differences between mesocosm cores. 
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Figure 3.6: Taxonomic assignment of 16S reads, at (A) domain level and (B) phylum level. 
OTUs which were assigned with a confidence value of <0.85 in utax were classed as 

‘unassigned’. To remove potential confounding effects of time point and treatment, only 

samples from time point 2 are included. 
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Table 3.3: Minimal adequate linear mixed effects model with the proportion of reads 

assigned to each of the most abundant prokaryotic phyla with a confidence value of 0.85 

as the response variable.  Non-significant interactions are not shown, with the exception of 

the interaction between time point and treatment. Significant p-values are denoted by * (p < 

0.05), ** (p < 0.01), and *** (p < 0.001). Marginal significance (p < 0.1) is denoted by ‘.’. 

Phylum Factor d.f. F p 

Acidobacteria Habitat 1, 9 170.3 <0.0001*** 

 Depth 1, 168 402.8 <0.0001*** 

 Time Point 8, 168 1.2 0.3 

 Treatment 1, 9 <0.1 1 

 Habitat:Depth 1, 168 107.0 <0.0001*** 

 Habitat:Time Point 8, 168 2.0 0.045* 

 Time Point: Treatment 8, 168 0.3 1 

Actinobacteria Habitat 1, 8 10.2 0.01* 

 Depth 1, 166 28.8 <0.0001*** 

 Time Point 8, 166 0.7 0.7 

 Treatment 1, 8 8.3 0.02* 

 Habitat:Depth 1, 166 14.9 0.0002*** 

 Habitat: Treatment 1, 8 5.6 0.045* 

 Depth: Treatment 1, 166 34.1 <0.0001*** 

 Habitat: Depth: Treatment 1, 166 27.7 <0.0001*** 

Bacteroidetes Habitat 1,8 147.4 <0.0001*** 

 Depth 1, 174 464.3 <0.0001*** 

 Time Point 8, 174 0.5 0.9 

 Treatment 1, 8 3.0 0.1 

 Habitat: Depth 1, 174 130.9 <0.0001*** 

 Habitat: Treatment 1, 8 5.1 0.055 

 Depth: Treatment 1, 174 8.7 0.004** 

 Time Point: Treatment 8, 174 0.8 0.6 

 Habitat:Depth:Treatment 1, 174 7.6 0.007** 

Euryarchaeota Habitat 1, 8 7.9 0.02* 

 Depth 1, 174 19.6 <0.0001*** 

 Time Point 8, 174 1.0 0.4 

 Treatment 1, 8 6.8 0.03* 

 Habitat: Depth 1, 174 41.7 <0.0001*** 

 Depth: Treatment 1, 174 60.8 <0.0001*** 

 Time Point: Treatment 8, 174 0.7 0.7 

 Habitat: Depth: Treatment 1, 174 28.1 <0.0001*** 

Proteobacteria Habitat 1, 9 76.8 <0.0001*** 

 Depth 1, 176 350.0 <0.0001*** 

 Time Point 8, 176 0.3 1 

 Treatment 1, 9 0.3 0.6 

 Habitat: Depth 1, 176 78.2 <0.0001*** 

 Time Point: Treatment 8, 176 1.0 0.4 

Cyanobacteria/ 

Chloroplast 

Habitat 1, 9 7.7 0.02* 

Depth 1, 168 293.4 <0.0001*** 

 Time Point 8, 168 2.2 0.03* 

 Treatment 1, 9 2.4 0.2 

 Habitat:Depth 1, 168 40.5 <0.0001*** 

 Habitat: Time Point 8, 168 2.9 0.005** 

 Time Point: Treatment 8, 168 0.5 0.8 

Verrucomicrobia Habitat 1, 9 1.2 0.3 
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 Depth 1, 173 3.4 0.07. 

 Time Point 8, 173 0.9 0.5 

 Treatment 1, 9 2.6 0.1 

 Habitat: Depth 1, 173 52.6 <0.0001*** 

 Depth: Treatment 1, 173 8.6 0.004** 

 Time Point: Treatment 8, 173 0.6 0.8 

 Habitat: Depth: Treatment 2, 173 4.5 0.01* 

 

 

Figure 3.7: Mean proportion of 16S rRNA genes assigned to Cyanobacteria/Chloroplast 

DNA. Error bars represent standard errors. Different letters represent time points where 

Cyanobacteria/Chloroplasts make up significantly different proportions of the community. 

 

The most abundant prokaryotic phyla by far were Acidobacteria and Proteobacteria (Figure 

3.6B). Four other bacterial phyla were present at relative abundances >1%: Bacteroidetes, 

Actinobacteria, Verrucomicrobia and Cyanobacteria/Chloroplasts. Euryarchaota were the only 

phylum within the Archaea to make up >1% of prokaryotic reads. However, many reads (25-

61%) could not be assigned to phylum level with a confidence value of 0.85 or greater. Both 

the main effects of habitat and depth and the interaction between habitat and depth significantly 

affected the proportion of almost all of the seven most abundant bacterial phyla: the only 

exception was Verrucomicrobia, the proportion of which was significantly affected by the 

interaction term but not the main effects of habitat and depth (Table 3.3). In particular, 

Acidobacteria was highest in the bog at 20 cm; Bacteroidetes were most abundant in the fen at 

5 cm; Actinobacteria were more abundant in the bog than the fen; and Proteobacteria were 

most abundant in the fen at 5 cm (Figure 3.6B). Treatment had a significant effect on the 
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relative abundances of most of the abundant bacterial phyla, as did interactions between 

treatment and habitat or treatment and depth (Table 3.3). However, the interaction between 

time point and treatment was not significant for any of the phyla tested, suggesting that the 

treatment effect was an artefact of pre-existing community differences between mesocosm 

cores (Section 3.3.6). Time point had a significant effect on the proportion of reads assigned to 

Cyanobacteria/Chloroplasts (Table 3.3), with a sharp fall in the abundance of Cyanobacteria 

occurring after time point three in the bog at 5 cm (Figure 3.7). 

 

 

Figure 3.8: Taxonomic assignment of 18S reads at phylum level. OTUs which were 

assigned with a confidence value of <0.85 in utax were classed as ‘unassigned’. To 

remove potential confounding effects of time point and treatment, only samples from time 

point 2 are included. 

 

The majority of eukaryotic reads belonged to OTUs which could not be assigned to a phylum 

level with a confidence value of 0.85 or greater, particularly at 20 cm depth (Figure 3.8). Within 

the OTUs which could confidently be assigned to a phylum, the two most abundant phyla were 

Fungi and Chloroplastida. Alveolata, Stramenopiles, Metazoa and Rhizaria also made up a 

mean of >1% of the community in at least one habitat type. Four of the six eukaryotic phyla 

tested were significantly more abundant at 5 cm than 20 cm: these were Fungi, Alveolata, 
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Metazoa and Rhizaria (Figure 3.8; Table 3.4). The effect of habitat on the abundances of 

eukaryotic phyla was weaker than the effect of depth, although Alveolata, Stramenopiles and 

Rhizaria had significantly higher relative abundances in the fen than the bog (Figure 3.8; Table 

3.4). The relative abundances of four of the six eukaryotic phyla were significantly affected by 

interactions involving treatment and other factors (Table 3.4). Only in the case of Rhizaria was 

the interaction between time point and treatment significant: this represented a large increase 

in the relative abundance of Rhizaria at minimum water table in the fen at 5 cm (Figure 3.9). 

 

Figure 3.9: Mean proportion of 18S rRNA genes belonging to OTUs which were 

assigned to phylum Rhizaria. Error bars represent standard errors. 
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Table 3.4: Minimal adequate linear mixed effects model with the proportion of reads 

assigned to the most abundant eukaryotic phyla with a confidence value of 0.85 as the 

response variable.  Non-significant interactions are not shown, with the exception of the 

interaction between time point and treatment. Significant p-values are denoted by * (p < 

0.05), ** (p < 0.01), and *** (p < 0.001). Marginal significance (p < 0.1) is denoted by ‘.’. 

Phylum Factor d.f. F p 

Fungi Habitat 1, 8 3.4 0.1 

 Depth 1, 175 149.0 <0.0001*** 

 Time Point 8, 175 0.9 0.5 

 Treatment 1, 8 0.1 0.8 

 Habitat: Depth 1, 175 5.7 0.02* 

 Habitat: Treatment 1, 8 4.2 0.07. 

 Depth: Treatment 1, 175 14.9 0.0002*** 

 Time Point: Treatment 8, 175 1.0 0.5 

 Habitat: Depth: Treatment 1, 175 17.0 0.0001*** 

Chloroplastida Habitat 1, 8 2.4 0.2 

 Depth 1, 175 0.6 0.4 

 Time Point 8, 175 0.5 0.8 

 Treatment 1, 8 <0.1 0.8 

 Depth:Treatment 1, 175 18.9 <0.0001*** 

 Time Point: Treatment 8, 175 0.7 0.7 

 Habitat: Depth: Treatment 1, 175 24.4 <0.0001*** 

Alveolata Habitat 1, 9 100.1 <0.0001*** 

 Depth 1, 177 330.7 <0.0001*** 

 Time Point 8, 177 0.9 0.6 

 Treatment 1, 9 1.5 0.3 

 Habitat: Depth 1, 177 58.8 <0.0001*** 

 Time Point: Treatment 8, 177 0.4 0.9 

Stramenopiles Habitat 1, 8 23.1 0.001** 

 Depth 1, 175 2.9 0.09. 

 Time Point 8, 175 0.9 0.5 

 Treatment 1, 8 2.4 0.2 

 Habitat: Depth 1, 175 15.5 0.0001*** 

 Depth: Treatment 1, 175 9.7 0.002*** 

 Time Point: Treatment 8, 175 1.1 0.4 

 Habitat: Depth: Treatment 1, 175 8.6 0.004** 

Metazoa Habitat 1, 9 2.7 0.1 

 Depth 1, 178 439.2 <0.0001*** 

 Time Point 8, 178 0.8 0.6 

 Treatment 1, 9 0.1 0.8 

 Time Point: Treatment 8, 178 0.9 0.5 

Rhizaria Habitat 1, 9 24.1 0.0008*** 

 Depth 1, 177 217.1 <0.0001*** 

 Time Point 8, 177 0.4 0.9 

 Treatment 1, 9 0.1 0.8 

 Habitat: Depth 1, 177 18.5 <0.0001*** 
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 Time Point: Treatment 8, 177 2.6 0.009** 

 

 

Table 3.5: PERMANOVA tests for the effect of habitat, depth and the interaction 

between habitat and depth on the community composition of prokaryotes (16S rRNA 

genes) and eukaryotes (18S rRNA genes). OTUs assigned to the following phyla were 

excluded from the 18S rRNA gene dataset prior to analysis: Holozoa, Metazoa, 

Chloroplastida and ‘NA’. 

 

 

Table 3.6: PERMDISP tests for the effect of habitat and depth on the multivariate 

homogeneity of group dispersions, implemented using the ‘betadisper’ function from R 

package ‘VEGAN’. OTUs assigned to the following phyla were excluded from the 18S 

rRNA gene dataset prior to analysis: Holozoa, Metazoa, Chloroplastida and ‘NA’. 

Marker Factor d.f. F p  

16S rRNA gene Habitat 1 29.0 <0.0001***  

 Depth 1 4.5 0.04*  

18S rRNA gene Habitat 1 109.3 <0.0001***  

 Depth 1 33.6 <0.0001***  

 

Marker Factor d.f. F R2 p 

16S rRNA gene Habitat 1 228.0 0.38 0.001*** 

 Depth 1 94.6 0.16 0.001*** 

 Habitat: Depth 1 82.5 0.14 0.001*** 

18S  rRNA 

gene 
Habitat 1 25.8 0.10 0.001*** 

 Depth 1 13.7 0.05 0.001*** 

 Habitat: Depth 1 11.3 0.04 0.001*** 
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Figure 3.10: NMDS ordination of (A) prokaryotic and (B) eukaryotic communities. 

NMDS ordination was calculated based on Bray-Curtis dissimilarities. OTUs assigned to the 

following phyla were excluded from the 18S rRNA gene dataset prior to analysis: Holozoa, 

Metazoa, Chloroplastida and ‘NA’. 

 

3.3.4 Overall Community Composition 

Large and consistent differences in eukaryotic and prokaryotic community composition were 

found between different habitats and depths: NMDS plots of both communities depict the two 

habitats separating along the first axis, with the two depths within each habitat separating along 

the second axis (Figure 3.10). PERMANOVA tests found that communities of both prokaryotes 
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and microbial eukaryotes were significantly different between habitats and depths, with a 

significant interaction between habitat and depth (Table 3.5). Multivariate dispersions were 

significantly different between habitats and depths (Table 3.6), meaning that the results of 

PERMANOVA tests should be viewed with caution, but the strong significance of the results 

and the fact that PERMANOVA is fairly robust to heterogeneous dispersions (Anderson and 

Walsh 2013) suggest that the effect of habitat and depth is real. 

 

Figure 3.11: NMDS ordination of prokaryotic communities within each of the four 

habitat-depth combinations sampled: (A) Bog-5cm, (B) Fen-5cm, (C) Bog-20cm, and (D) 

Fen-20cm. All samples taken from a given core are connected to form polygons. 

 

There was no significant effect of the interaction between time point and treatment on 

community composition (Table 3.7). While significant differences existed between the two 

treatments within every combination of habitat, depth and marker gene (Table 3.7), Figures 

3.11 and 3.12 show that control and drought cores differed at all time points rather than only 
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differing during the drought period. For eukaryotic OTUs, multivariate dispersion was 

significantly different between treatment and control samples in the fen at 20 cm (Table 3.8). 

 

 

Figure 3.12: NMDS ordination of eukaryotic communities within each of the four habitat-

depth combinations sampled: (A) Bog-5cm, (B) Fen-5cm, (C) Bog-20cm, and (D) Fen-

20cm. All samples taken from a given core are connected to form polygons. OTUs assigned to 

the following phyla were excluded from the dataset prior to analysis: Holozoa, Metazoa, 

Chloroplastida and ‘NA’. 

 

3.3.5 Effect of Water Table 

Partial constrained correspondence analysis (pCCA) was calculated with water direction as the 

constraining variable and core as the conditioning variable, in order to test for an effect of water 

direction with the effect of core removed. Constrained correspondence analysis is a method for 
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displaying variation in multivariate datasets which can be accounted for by a chosen set of 

variables (constraints), and thus is useful when a particular hypothesis about the effect of a 

certain variable is to be tested. Application of significance tests to pCCA found significant 

variation in community composition of prokaryotes with water table direction in both habitats 

at 5 cm depth, and in the fen at 20 cm depth (Table 3.9). Significant variation with water table 

direction was also found for the community composition of eukaryotes in both the bog and the 

fen at 5 cm depth (Table 3.9).  

Table 3.7: PERMANOVA tests for the effect of time point, treatment and the time 

point: treatment interaction term on the community composition of prokaryotes (16S 

rRNA genes) and eukaryotes (18S rRNA genes). Significant p-values are denoted by * (p < 

0.05), ** (p < 0.01), and *** (p < 0.001). Marginal significance (p < 0.1) is denoted by ‘.’. 

PERMANOVA was carried out separately for each combination of habitat and depth and for 

both marker genes. OTUs assigned to the following phyla were excluded from the 18S rRNA 

gene dataset prior to analysis: Holozoa, Metazoa, Chloroplastida and ‘NA’. 

Marker 

Gene 

Habitat-

Depth Factor d.f. F R2 p 

16S rRNA Bog-5cm Time Point 8 0.6 0.58 1 

  Treatment 1 3.2 0.07 0.002** 

  Time Point: Treatment 8 0.4 0.07 1 

 Fen- 5cm Time Point 8 0.8 0.13 0.9 

  Treatment 1 5.3 5.35 0.001** 

  Time Point: Treatment 8 0.7 0.68 1 

 Bog- 20cm Time Point 8 0.4 0.07 1 

  Treatment 1 8.3 0.17 0.001** 

  Time Point: Treatment 8 0.3 0.04 1 

 Fen- 20cm Time Point 8 0.6 0.11 1 

  Treatment 1 5.6 0.12 0.001** 

  Time Point: Treatment 8 0.5 0.09 1 

18S rRNA Bog-5cm Time Point 8 0.1 0.13 1 

  Treatment 1 3.6 0.07 0.001** 

  Time Point: Treatment 8 0.8 0.12 1 

 Fen- 5cm Time Point 8 0.8 0.13 1 

  Treatment 1 2.4 0.47 0.001** 

  Time Point: Treatment 8 0.8 0.13 1 

 Bog- 20cm Time Point 8 1.0 0.15 1 

  Treatment 1 1.5 0.03 0.001 

  Time Point: Treatment 8 0.9 0.15 1 

 Fen- 20cm Time Point 8 0.9 0.15 1 

  Treatment 1 2.3 0.05 0.001** 

  Time Point: Treatment 8 0.8 0.14 1 
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The OTUs exhibited a much smaller range of scores than the sites, with ‘tails’ of many points 

following the arrows which represent each water direction (Figure 3.13B; Figure 3.13D; Figure 

3.13F; Figure 3.13H); this indicates that the effect of water table direction was not primarily 

driven by ‘outlier’ OTUs. However, visualisation of the CCA ordinations suggests that the 

effect of water direction in the bog at 5 cm depth was primarily driven by a single core for both 

prokaryotes and eukaryotes (Figure 3.13A; Figure 3.13G), with the remaining cores responding 

weakly (eukaryotic communities; Figure 3.13B) or not at all (prokaryotic communities; Figure 

3.13A). Similarly, the pattern seen in the bog at 20 cm suggests that the effect of water direction 

is primarily observed as a result of outlier effects and differences between cores (Figure 3.13E). 

Only in the case of communities in the fen at 5 cm does visualisation of CCA suggest a 

consistent effect of drought across all treated cores (Figure 3.13C; Figure 3.13G).  

Table 3.8: PERMDISP tests for the effect of time point and treatment on the 

multivariate homogeneity of group dispersions, implemented using the ‘betadisper’ 

function from R package ‘VEGAN’. Significant p-values are denoted by * (p < 0.05), ** (p < 

0.01), and *** (p < 0.001). Marginal significance (p < 0.1) is denoted by ‘.’. PERMDISP was 

carried out separately for each combination of habitat and depth and for both marker genes. 

OTUs assigned to the following phyla were excluded from the 18S rRNA gene dataset prior 

to analysis: Holozoa, Metazoa, Chloroplastida and ‘NA’. 

Marker 

Gene Habitat-Depth Factor d.f. F p 

16S rRNA Bog-5cm Time Point 8 0.2 1 

  Treatment 1 0.1 0.8 

 Fen-5cm Time Point 8 1 0.4 

  Treatment 1 0.9 0.3 

 Bog-20cm Time Point 8 0.2 1 

  Treatment 1 1.3 0.3 

 Fen-20cm Time Point 8 0.2 1 

  Treatment 1 2.2 0.1 

18S rRNA Bog-5cm Time Point 8 0.9 0.5 

  Treatment 1 0.1 0.8 

 Fen-5cm Time Point 8 1.0 0.4 

  Treatment 1 1.6 0.2 

 Bog-20cm Time Point 8 1.2 0.3 

  Treatment 1 0.9 0.4 

 Fen-20cm Time Point 8 0.5 0.8 

  Treatment 1 12.1 0.001** 
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Figure 3.13: Partial constrained correspondence analysis of prokaryotic (A-F) and 

eukaryotic (G & H) communities, with water table direction as the only constraint. Plots 

on the left-hand side (A, C, E, G) show samples, with the shape of each point representing 

water table direction, while plots on the right-hand side (B, D, F, H) show OTUs. On plots A, 

C, E & G different cores are represented by different colours. Each row represents a different 

habitat-depth combination: A & B = bog-5cm, C & D = fen- 5cm, E & F = bog- 20cm, G & 

H = bog- 5cm (eukaryotes), I & J- fen 5cm (eukaryotes).  OTUs assigned to the following 

phyla were excluded from the 18S rRNA gene dataset prior to analysis: Holozoa, Metazoa, 

Chloroplastida and ‘NA’. 

 

Next, linear-mixed effects models were applied to extract the subset of the community which 

responded significantly to drought, in a more robust manner than extracting OTUs based on 
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the scores in the CCA ordination. A significant interaction between time point and treatment 

was found for a number of OTUs, which were manually filtered to remove OTUs which were 

significant due to outlier effects. These steps yielded a final subset of OTUs showing a 

significant response to drought, hereafter referred to as ‘drought-affected OTUs’ (Tables 3.10-

3.13). When NMDS ordination was carried out with an input matrix containing the abundances 

of drought-affected OTUs only, a strong effect of core was observed in the bog samples at 5 

cm (Figure 3.14C). However, NMDS ordination of drought-affected prokaryotes in the fen at 

both 5 cm and 20 cm depth yielded a clear separation between samples taken from droughted 

cores during drought treatment and all other samples (i.e. samples taken from control cores at 

all time points, and samples from drought cores at pre-drought time points), although the effect 

was greater at 5 cm depth (Figure 3.14A; Figure 3.14D). NMDS plots of drought-affected 

eukaryotes in the fen at 5 cm did not show a strong separation of drought and control samples 

(Figure 3.14B). 

Following Benjamini-Hochberg corrections for multiple comparisons, the only OTUs for 

which the interaction between time point and treatment had a significant effect were two 

Bacteria in the fen at 5 cm (Table 3.10): one of these belonged to the β-Proteobacteria and one 

to the γ-Proteobacteria. However, prior to the application of multiple corrections, many more 

OTUs were significantly affected by the interaction between time point and treatment: a total 

of 37 prokaryotes and seven eukaryotes in the fen at 5 cm; four prokaryotes and three 

eukaryotes in the bog at 5 cm; five prokaryotes and one eukaryote in the fen at 20 cm; and two 

prokaryotes in the bog at 20 cm (Tables 3.10-3.13).  

Taxonomic assignment of drought-affected OTUs in the fen at 5 cm found that the majority of 

prokaryotes belonged to domain Bacteria, with only one OTU assigned to the Archaea (Table 

3.10). Drought-affected OTUs in this habitat were dominated by Proteobacteria (15 OTUs) and 

Bacteroidetes (14 OTUs). A single eukaryotic OTU was assigned to each of Rhizaria, Alveolata 

and Metazoa by utax, with the remaining four OTUs unable to be assigned at Phylum level 

with a utax confidence value of 0.85; nonetheless the most probable domain for three of these 

was Rhizaria. There appeared to be a taxonomic pattern to the responses of different OTUs to 

drought, with 12 of the 14 Bacteroidetes OTUs decreasing in response to drought while 11 of 

the 15 OTUs assigned to Proteobacteria increased in proportional abundance (Figure 3.15; 

Table 3.10). 
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Table 3.9: ANOVA-like permutation tests for the effect of a single constraint (water 

direction) within partial constrained correspondence analysis (pCCA). The core from 

which each sample was taken was included as a conditioning variable, meaning that core 

effects were removed prior to fitting of constraints. CCA was carried out separately for each 

combination of habitat and depth, for both marker genes. Significant p-values are denoted by 

* (p < 0.05), ** (p < 0.01), and *** (p < 0.001). Marginal significance (p < 0.1) is denoted by 

‘.’. OTUs assigned to the following phyla were excluded from the 18S rRNA gene dataset 

prior to analysis: Holozoa, Metazoa, Chloroplastida and ‘NA’. 

Marker Water 

Direction 
F d.f. p 

16S rRNA Gene Bog-5cm 1.8 3 0.006** 

 Fen-5cm 1.4 3 0.014* 

 Bog-20cm 2.2 3 0.03* 

 Fen-20cm 0.9 3 0.7 

18S rRNA Gene Bog-5cm 1.4 3 0.001** 

 Fen-5cm 1.2 3 0.025* 

 Bog-20cm 1.1 3 0.4 

 Fen-20cm 1.0 3 0.6 

 

 

Drought-affected OTUs in the bog at 5 cm included two which were assigned to Acidobacteria, 

one assigned to Proteobacteria and one assigned to Bacteroidetes (Table 3.11). Of the 

eukaryotic drought-affected OTUs, two were assigned to the Rhizaria and one could not be 

assigned at phylum level. All of the drought-affected OTUs detected in the bog at 5 cm 

appeared to show a positive response to drought (Figure 3.16). In the fen at 20 cm, two OTUs 

showed a positive response to drought (Figure 3.17): OTU_75 from the 16S rRNA genes 

dataset (assigned to Acidobacteria) and OTU_40802 from the 18S rRNA genes (assigned to 

Stramenopiles). The remaining OTUs appeared to show a negative response to drought (Figure 

3.17), and could not be assigned to a phylum with a confidence value of 0.85 (Table 3.12). 

Only two OTUs in the bog at 20 cm showed a significant response to the interaction between 

time point and treatment, both of which were assigned to the Acidobacteria (Table 3.13) and 

appeared to show a positive response to drought (Figure 3.18). 
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Table 3.10: Linear mixed-effects models on logit-transformed abundances of 

prokaryotes (16S rRNA gene) and eukaryotes (18S rRNA gene) in the fen at 5 cm. 

Adjusted p-values (Benjami-Hochberg correction) are shown in column ‘p.adj’.  Only OTUs 

with an (unadjusted) p-value of <0.05 and for which the interaction between time point and 

treatment was not due to outliers are shown. Significant adjusted p-values are denoted by * (p 

< 0.05), ** (p < 0.01), and *** (p < 0.001). Marginal significance (p < 0.1) is denoted by ‘.’. 

Taxonomy was assigned using the RDP Classifier web server, as this was found to classify 

OTUs with more confidence than utax. Column ‘graph’ refers to the graph on Figure 3.15 

which corresponds to each OTU. 

 OTU F d.f. p p.adj Graph Taxonomy 

16S OTU_503 8.2 8,28 <0.0001 0.008** A Bacteria; Proteobacteria; Beta-

Proteobacteria 

 OTU_469 6.7 8,28 <0.0001 0.046* B Bacteria; Proteobacteria; 

Gamma-Proteobacteria 

 OTU_871 6.0 8,28 0.0002 0.1 C Bacteria; Proteobacteria; Beta-

Proteobacteria; 

Burkholderiales; 

Oxalobacteraceae; Massalia 

 OTU_699 5.4 8,28 0.004 0.3 D Bacteria; Bacteroidetes 

 OTU_226 5.2 8,28 0.0005 0.4 E Bacteria; Bacteroidetes 

 OTU_744 5.1 8,28 0.0005 0.4 F Bacteria; Proteobacteria; 

Alpha-Proteobactera; 

Rhizobiales 

 OTU_473 5.0 8,28 0.0007 0.5 G Bacteria; Bacteroidetes 

 OTU_1031 4.9 8,28 0.0007 0.5 H Bacteria; Bacteroidetes 

 OTU_1076 4.9 8,28 0.0007 0.5 I Bacteria; Bacteroidetes 

 OTU_845 4.2 8,28 0.002 1 J Bacteria 

 OTU_943 4.1 8,28 0.002 1 K Bacteria; Bacteroidetes; 

Bacteroidia; Bacteroidales; 

Porphyromandaceae; 

Paludibacter 

 OTU_20783 4.0 8,28 0.002 1 L Bacteria; Bacteroidetes 

 OTU_13911 3.9 8,28 0.004 1 M Bacteria; Proteobacteria 

 OTU_290 3.8 8,28 0.004 1 N Bacteria 

 OTU_695 3.7 8,28 0.004 1 O Bacteria; Bacteroidetes; 

Spingobacteriia; 

Sphingobacteriales 

 OTU_381 3.7 8,28 0.005 1 P Bacteria; Proteobacteria; Beta-

Proteobacteria; 

Burkholderiales; 

Oxalobacteraceae; Duganella 

 OTU_204 3.6 8,28 0.005 1 Q Bacteria 

 OTU_2224 3.4 8,28 0.007 1 R Bacteria 

 OTU_932 3.2 8,28 0.010 1 S Bacteria; Proteobacteria; Delta-

Proteobacteria 

 OTU_836 3.2 8,28 0.011 1 T Bacteria; Bacteroidetes 

 OTU_1515 3.1 8,28 0.012 1 U Bacteria; Proteobacteria 
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 OTU_720 3.0 8,28 0.014 1 V Bacteria; Proteobacteria; 

Alpha-Proteobacteria; 

Caulobacterales; 

Caulobacteraceae; Caulobacter 

 OTU_1109 3.0 8,28 0.015 1 W Bacteria; Proteobacteria 

 OTU_515 3.0 8,28 0.015 1 X Archaea; Pacearchaeota 

 OTU_405 3.0 8,28 0.016 1 Y Bacteria; Bacteroidetes 

 OTU_793 2.9 8,28 0.017 1 Z Bacteria; Bacteroidetes 

 OTU_15950 2.8 8,28 0.022 1 AA Bacteria; Proteobacteria; Delta-

Proteobacteria; 

Desulfuromonadales; 

Geobacteraceae; Geobacter 

 OTU_3414 2.7 8,28 0.024 1 AB Bacteria; Firmicutes; 

Clostridia; Clostridiales; 

Ruminococcaceae 

 OTU_545 2.7 8,28 0.026 1 AC Bacteria; Bacteroidetes; 

Bacteroidia; Bacteroidales 

 OTU_2189 2.6 8,28 0.027 1 AD Bacteria; Bacteroidetes 

 OTU_2114 2.6 8,28 0.028 1 AE Bacteria 

 OTU_601 2.6 8,28 0.032 1 AF Bacteria; Proteobacteria; Delta-

Proteobacteria 

 OTU_1143 2.4 8,28 0.040 1 AG Bacteria; Bacteroidetes 

 OTU_14319 2.3 8,28 0.045 1 AH Bacteria; Acidobacteria; Group 

6 

 OTU_26696 2.3 8,28 0.046 1 AI Bacteria; Proteobacteria; 

Alpha-Proteobacteria; 

Sphingomonadales; 

Sphingomonadaceae; 

Sphingomonas 

 OTU_683 2.3 8,28 0.048 1 AJ Bacteria; Proteobacteria; 

Alpha-Proteobacteria; 

Rhizobiales 

 OTU_37782 2.3 8,28 0.048 1 AK Bacteria; Proteobacteria; Beta-

Proteobacteria 

18S OTU_96 3.5 8,30 0.005 0.8 AL Eukaryota; Rhizaria; Cercozoa 

 OTU_389 2.8 8,30 0.02 1 AM Eukaryota 

 OTU_206 2.7 8,30 0.02 1 AN Eukaryota 

 OTU_62 2.5 8,30 0.03 1 AO Eukaryota; Alveolata 

 OTU_262 2.4 8,30 0.04 1 AP Eukaryota 

 OTU_102 2.3 8,30 0.04 1 AQ Eukaryota 

 OTU_51 2.3 8,30 0.05 1 AR Eukaryota; Metazoa; Nematoda 
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Table 3.11: Linear mixed-effects models on logit-transformed abundances of 

prokaryotes (16S rRNA gene) and eukaryotes (18S rRNA gene) in the bog at 5 cm. 
Adjusted p-values (Benjami-Hochberg correction) are shown in column ‘p.adj’.  Only OTUs 

with an (unadjusted) p-value of <0.05 and for which the interaction between time point and 

treatment was not due to outliers are shown. Significant adjusted p-values are denoted by * (p 

< 0.05), ** (p < 0.01), and *** (p < 0.001). Marginal significance (p < 0.1) is denoted by ‘.’. 

Taxonomy was assigned using the RDP Classifier web server, as this was found to classify 

OTUs with more confidence than utax. Column ‘graph’ refers to the graph on Figure 3.16 

which corresponds to each OTU. 

 OTU F d.f. p p.adj Graph Taxonomy 

16S OTU_748 3.7 8,30 <0.0001 1 A Bacteria; Proteobacteria; 

Alpha-Proteobacteria; 

Rhodospirillales; 

Acetobacteraceae 

 OTU_156 3.4 8,30 0.01 1 B Bacteria; Acidobacteria; 

Group 6 

 OTU_46137 3.1 8,30 0.01 1 C Bacteria; Acidobacteria; 

Group 1 

 OTU_695 2.7 8,30 0.02 1 D Bacteria; Bacteroidetes; 

Spingobacteriia, 

Spingobacteriales 

18S OTU_189 4.9 8,30 0.00 0.06. E Eukaryota 

 OTU_74 3.2 8,30 0.01 0.96 F Eukaryota; Rhizaria 

 OTU_23322 3.1 8,30 0.01 1 G Eukaryota; Rhizaria; 

Cercozoa 

 

Table 3.12: Linear mixed-effects models on logit-transformed abundances of 

prokaryotes (16S rRNA gene) and eukaryotes (18S rRNA gene) in the fen at 20 cm. 
Adjusted p-values (Benjami-Hochberg correction) are shown in column ‘p.adj’. Only OTUs 

with an (unadjusted) p-value of <0.05 and for which the interaction between time point and 

treatment was not due to outliers are shown. Significant adjusted p-values are denoted by * (p 

< 0.05), ** (p < 0.01), and *** (p < 0.001). Marginal significance (p < 0.1) is denoted by ‘.’ 

Taxonomy was assigned using the RDP Classifier web server, as this was found to classify 

OTUs with more confidence than utax. Column ‘graph’ refers to the graph on Figure 3.17 

which corresponds to each OTU. 

 OTU F d.f. p p.adj Graph Taxonomy 

16S OTU_606 3.1 8, 28 0.01 1 A Bacteria 

 OTU_364 2.6 8, 28 0.03 1 B Bacteria 

 OTU_524 2.4 8, 28 0.04 1 C Bacteria 

 OTU_75 2.4 8, 28 0.04 1 D 

Bacteria; 

Acidobacteria; Group 

1 

 OTU_62 2.3 8, 28 0.045 1 E Bacteria 

18S OTU_40802 3.0 8, 28 0.01 1 F 

Eukaryota; 

Stramenopiles 
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Figure 3.14: NMDS ordination of OTUs which were found to be significantly affected 

by time point and treatment. Plots A & B show ordination of drought-affected OTUs from 

the fen at 5 cm, divided into prokaryotes (A) and eukaryotes (B). Plots C & D show drought-

affected prokaryotic OTUs in the bog at 5 cm (C) and the fen at 20 cm (D). 

 

Table 3.13: Linear mixed-effects models on logit-transformed abundances of eukaryotes 

(16S rRNA gene) and prokaryotes (18S rRNA gene) in the bog at 20 cm. Adjusted p-

values (Benjami-Hochberg correction) are shown in column ‘p.adj’.  Only OTUs with an 

(unadjusted) p-value of <0.05 and for which the interaction between time point and treatment 

was not due to outliers are shown. Significant adjusted p-values are denoted by * (p < 0.05), 

** (p < 0.01), and *** (p < 0.001). Marginal significance (p < 0.1) is denoted by ‘.’. 

Taxonomy was assigned using the RDP Classifier web server, as this was found to classify 

OTUs with more confidence than utax. Column ‘graph’ refers to the graph on Figure 3.18 

which corresponds to each OTU. 

 OTU F d.f. p p.adj Graph Taxonomy 

16S OTU_4221 2.9 8, 32 0.02 1 A Bacteria; Acidobacteria; 

Group 1 

 OTU_1152 2.8 8, 32 0.02 1 B Bacteria; Acidobacteria; 

Group 1 
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Figure 3.15.1 (continued overleaf) 
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Figure 3.15.2: Line plots showing the abundance of OTUs which were found to be 

significantly affected by time point and treatment in the fen at 5 cm. Each fen mesocosm 

core is plotted individually to show the degree of individual variation in abundance between 

mesocosm cores: blue lines represent droughted cores, and red lines represent control cores. 

Further information on each OTU is displayed in Table 3.10. 
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Figure 3.16: Line plots showing the abundance of OTUs which were found to be 

significantly affected by time point and treatment in the bog at 5 cm. Each bog core is 

plotted individually to show the degree of individual variation in abundances between 

mesocosm cores: blue lines represent droughted cores, and red lines represent control cores. 

Further information on each OTU is displayed in Table 3.11. 

 

 

Figure 3.17: Line plots showing the abundance of OTUs which were found to be 

significantly affected by time point and treatment in the fen at 20 cm. Each fen core is 

plotted individually to show the degree of individual variation in abundances between 

mesocosm cores: blue lines represent droughted cores, and red lines represent control cores. 

Further information on each OTU is displayed in Table 3.12. 
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Figure 3.18: Line plots showing the abundance of OTUs which were found to be 

significantly affected by time point and treatment in the bog at 20 cm. Each bog core is 

plotted individually to show the degree of individual variation in abundances between 

mesocosm cores: blue lines represent droughted cores, and red lines represent control cores. 

Further information on each OTU is displayed in Table 3.13. 

 

3.3.6 Effect of Core 

A significant effect of mesocosm core on overall community composition was observed for 

both prokaryotes (Figure 3.11) and eukaryotes (Figure 3.12), and PERMANOVA found the 

effect of core to be strongly significant in both habitats and at both depths (Table 3.14). 

Differences between cores accounted for a large proportion of the variation in community 

composition, with R2 values of up to 0.69 (Table 3.14). In general, R2 values were higher for 

prokaryotes than for eukaryotes (Table 3.14). 

 

Table 3.14: PERMANOVA tests for the effect of Core on the community composition of 

prokaryotes (16S rRNA genes) and eukaryotes (18S rRNA genes). Tests were carried out 

separately for each combination of habitat and depth, for both marker genes. Significant 

adjusted p-values are denoted by * (p < 0.05), ** (p < 0.01), and *** (p < 0.001). OTUs 

assigned to the following phyla were excluded from the 18S rRNA gene dataset prior to 

analysis: Holozoa, Metazoa, Chloroplastida and ‘NA’. 

Marker 

Gene Habitat-Depth d.f. F R2 p 

16S rRNA Bog- 5cm 5 12.6 0.58 0.001** 

 Fen- 5cm 5 6.2 0.41 0.001** 

 Bog- 20cm 5 21.3 0.69 0.001** 

 Fen- 20cm 5 8.1 0.48 0.001** 

18S rRNA Bog- 5cm 5 4.5 0.33 0.001** 

 Fen- 5cm 5 2.7 0.23 0.001** 

 Bog- 20cm 5 1.6 0.15 0.001** 

 Fen- 20cm 5 2.2 0.20 0.001** 
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Table 3.15: ANOVA-like permutation tests for the effect of a multiple constrains within 

constrained correspondence analysis (CCA). CCA was carried out separately for each 

combination of habitat and depth, for both marker genes. Significant p-values are denoted by 

* (p < 0.05), ** (p < 0.01), and *** (p < 0.001). Marginal significance (p < 0.1) is denoted by 

‘.’. OTUs assigned to the following phyla were excluded from the 18S rRNA gene dataset 

prior to analysis: Holozoa, Metazoa, Chloroplastida and ‘NA’. 

Marker 

Gene Habitat Effect F d.f. p 

16S rRNA Bog-5cm Mosses 1.8 1 0.04* 

  Graminoids 1.4 1 0.119 

  Shrubs 5.5 1 0.001** 

  pH 2.1 1 0.045* 

 Fen-5cm Mosses 3.3 1 0.001** 

  Graminoids 4.4 1 0.001** 

  pH 3.4 1 0.001** 

 Bog-20cm Mosses 2.6 1 0.007** 

  Graminoids 1.4 1 0.3 

  Shrubs 4.9 1 0.001** 

  pH 1.6 1 0.1 

 Fen-20cm Mosses 7.1 1 0.001** 

  Graminoids 8.8 1 0.001** 

  pH 2.9 1 0.002** 

18S rRNA Bog-5cm Mosses 1.7 1 0.006** 

  Graminoids 1.5 1 0.023* 

  Shrubs 3.0 1 0.001** 

  pH 1.5 1 0.046* 

 Fen-5cm Mosses 2.0 1 0.001** 

  Graminoids 1.9 1 0.001** 

  pH 1.4 1 0.008** 

 Bog-20cm Mosses 1.0 1 0.9 

  Graminoids 0.9 1 1 

  Shrubs 1.2 1 0.001** 

  pH 1.2 1 0.026* 

 Fen-20cm Mosses 1.5 1 0.001** 

  Graminoids 1.6 1 0.001** 

  pH 1.2 1 0.046* 
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Figure 3.19: Constrained correspondence analysis of prokaryotic communities in all 

four habitat-depth combinations: (A) bog- 5cm, (B) fen- 5cm, (C) bog- 20cm, (D) fen- 

20cm. Fitted constraints were pH, redox potential and the percentage cover of dwarf shrubs 

(bog only), mosses and graminoids. Different shapes and colours represent different 

mesocosm cores. Only statistically significant constraints are shown (see Table 3.17). 
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Figure 3.20: Constrained correspondence analysis of eukaryotic communities in all four 

habitat-depth combinations: (A) bog- 5cm, (B) fen- 5cm, (C) bog- 20cm, (D) fen- 20cm. 
Fitted constraints were pH, redox potential and the percentage cover of dwarf shrubs (bog 

only), mosses and graminoids. Different shapes and colours represent different mesocosm 

cores. Only statistically significant constraints are shown (see Table 3.17). OTUs assigned to 

the following phyla were excluded from the dataset prior to analysis: Holozoa, Metazoa, 

Chloroplastida and ‘NA’. 

 

To determine which variables could account for the differences in community between 

different cores, constrained correspondence analysis (CCA) was carried out with pH and the 

percentage coverage of three important plant functional groups (mosses, graminoids and 

shrubs) as constraining (independent) variables. On the resulting ordination diagrams, 

samples clearly cluster by the core from which they were collected for both prokaryotic 

(Figure 3.19) and eukaryotic (Figure 3.20) communities. The results of ANOVA-like 

permutation tests to determine the significance of each constraint are shown in Table 3.15. 

Vegetation was a strong driver of differences between cores. In the bog at 5 cm, percentage 
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cover of all three plant functional groups had a significant relationship with the community 

composition of both prokaryotes and microbial eukaryotes, as did pH (Figure 3.19A; Figure 

3.19D; Figure 3.20A; Figure 3.20D; Table 3.15). Similarly, in the fen at both depths both pH 

and the percentage cover of graminoids and mosses had a significant effect on community 

composition (shrubs were not present in any fen mesocosm core; Figure 3.19B; Figure 3.20B; 

Table 3.15). In the bog at 20 cm, shrubs were the only plant functional group to significantly 

affect community composition, and pH also had a significant effect (Figure 3.19C; Figure 

3.20C; Table 3.15). In general, CCAs of prokaryotic and eukaryotic communities within each 

habitat and depth were affected by similar suites of variables (Figure 3.19; Figure 3.20; Table 

3.15). 

3.4 Discussion 

Prokaryotic and eukaryotic communities as a whole were strongly affected by habitat and 

depth, and also differed between mesocosm cores within each habitat. However, there was no 

effect of drought on overall community composition: this may either indicate that microbial 

communities within peat are unaffected by drought, or may be a result of dormant species and 

'relic DNA' (Carini et al. 2016) obscuring genuine community change. A small subset of OTUs 

did appear to respond to drought, especially in the fen at 5 cm depth, and the proportion of the 

eukaryotic community made up of Rhizaria also rose during drought; nonetheless, the majority 

of drought-affected OTUs were not significantly affected by drought once corrections for 

multiple comparisons were applied. 

3.4.1 Sequencing and Quality Control 

Singletons made up a significant proportion of the obtained sequences: 14% of reads from the 

16S rRNA gene, and over half of reads from the 18S rRNA gene. Singletons were excluded 

from the OTU clustering step, but after clusters had been formed singletons which belonged to 

existing OTUs were included in final abundance counts. Given the large number of sequences 

obtained in the current study, singletons were assumed to be either erroneous reads or to belong 

to transient or extremely rare species, neither of which would be likely to play a large ecological 

role. Including singletons in abundance counts of OTUs generated by clustering non-singletons 

meant that mildly erroneous reads or rare variants of more abundant species could be included. 

However, while singleton removal is common in MGA studies, it does reduce the ability of 

studies to recognise rare species. In particular, some singleton sequences may belong to 
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‘conditionally rare’ taxa: taxa which are at the limit of detection under ‘normal’ conditions, but 

become extremely abundant under particular environmental conditions (Caporaso et al. 2011b; 

Shade et al. 2014). The existence of these conditionally rare taxa suggests that rare organisms 

can play important ecological roles under the right conditions, and additionally shows that taxa 

at the limits of detection frequently represent genuine diversity rather than sequencing errors. 

Comparison of singletons with sequence databases or with raw data taken from other studies 

in similar habitats could shed further light on which of these sequences represent genuine taxa 

and which are erroneous reads. 

3.4.2 α-Diversity 

While rarefaction curves drawn for each sample suggested that coverage was adequate in both 

habitats (Figure 3.2), it should be noted that rarefaction curves are known to be insensitive to 

changes in the number of ‘rare’ species, where rare species are defined relative to sample size 

i.e. as species occurring less than once per sample of a given size (Haegeman et al. 2013). 

Therefore, it is not possible to draw conclusions about the overall species richness in either 

habitat and it is possible that a great number of rare species were missing.  

The OTU richness of both prokaryotic and eukaryotic communities was significantly higher in 

the fen than the bog (Figure 3.3A; Figure 3.3C; Table 3.1), corresponding to the results of an 

earlier study (Lin et al. 2012). The lower diversity of microbial communities in bog peat is 

likely linked to lower pH in this habitat (Bridgham et al. 2000):  pH is one of the most important 

drivers of soil microbial communities, and is negatively correlated to both prokaryotic (Fierer 

and Jackson 2006; Griffiths et al. 2011) and eukaryotic (Dupont et al. 2016) species richness 

in soils. Unlike the results of MGA, ARISA fingerprinting found that bacterial fragment 

richness did not differ between habitats (Chapter 2). However, measures of species richness 

from MGA are likely more accurate: when ARISA fingerprinting is carried out on diverse 

communities, multiple species may produce fragments of the same length, leading to 

underestimates of diversity (Kovacs et al. 2010). 

The effect of depth on OTU richness was weaker than the effect of habitat, but was nevertheless 

significant. Bacterial communities had lower OTU richness at 20 cm depth than at 5 cm in both 

habitats (Figure 3.3A), while OTU richness of microbial eukaryotic communities was higher 

at 5 cm than 20 cm in the bog but did not differ between depths in the fen (Figure 3.3C). Similar 

to differences in diversity between habitats, differences in OTU richness between depths may 
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be caused by pH differences: pH was slightly higher at 5 cm than 20 cm in both habitats 

(Chapter 2). However, the effect of depth on pH was relatively weak, suggesting other factors 

may play a role: for example, the species richness of both fungi and bacteria is strongly affected 

by soil organic matter and nitrogen (Siciliano et al. 2014). While organic matter content 

remains high throughout the peat profile, the lignocellulose index increases with depth (Hill et 

al. 2014), potentially making organic matter more difficult for microbial communities to 

access.  

The effect of habitat and depth on Simpson’s Index was different for prokaryotic and 

eukaryotic communities (Figure 3.3B; Figure 3.3D). For prokaryotic communities, Simpson’s 

Index was lowest for communities in the bog at 20 cm. All samples taken from the bog at 20 

cm contained a particular OTU at very high abundances (making up on average 19% of the 

community), while no single OTU made up such a large proportion of the community in any 

other habitat-depth combination. This OTU was assigned to subgroup 1 of phylum 

Acidobacteria, members of which are most abundant in habitats with low pH and low rates of 

carbon mineralisation (Fierer et al. 2007; Jones et al. 2009; Rousk et al. 2010). Therefore, it is 

likely that the combination of low pH and low enzyme activities in the bog at 20 cm depth 

create conditions that are only favourable for a limited subset of the community, leading to low 

OTU richness and high abundances of oligotrophic taxa. The Simpson’s Index of eukaryotic 

communities was lowest in the bog, potentially reflecting reduced diversity due to the low pH 

of this habitat (Dupont et al. 2016). 

Drought did not have a significant effect on OTU richness of either prokaryotic or eukaryotic 

communities (Table 3.1), in agreement with a previous study based on T-RFLP fingerprinting 

(Kim et al. 2008). The lack of a drought effect on OTU richness could be due to a number of 

factors: for example, species may persist in a dormant state under drought conditions (Manzoni 

et al. 2014), or a pattern of some species increasing and others decreasing could allow 

community change without a change in α-diversity. However, in the current study the response 

of the overall community to drought was weak (Section 3.3.4) and only a small subset of OTUs 

responded to drought (Section 3.3.5). The weak overall community response means that it is 

likely that the overall community was not affected strongly enough for overall community 

properties such as α-diversity to be affected. However, the Simpson’s Index of eukaryotic 

communities in the droughted mesocosm cores rose between time points 3 and 5, potentially 

indicating an increase in the diversity of microbial eukaryotes during the early stage of the 
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drought manipulation, although this did not result in a significant difference in Simpson’s Index 

between the two treatments. 

The number of ‘core’ OTUs (cOTUs) within each habitat and at each depth did not always 

reflect overall OTU richness. For example, in both habitats prokaryotic OTU richness was 

higher at 5 cm than 20 cm; however, while more prokaryotic cOTUs were found at 5 cm than 

20 cm in the fen, the opposite pattern was seen in the bog (Figure 3.5A). The higher number of 

cOTUs at 20 cm in the bog could reflect higher spatial or temporal turnover of OTUs at 5 cm 

depth, possibly due to a high proportion of dormant OTUs in the bog at 20 cm: enzyme 

activities at this depth were much lower than at 5 cm (Chapter 2) and the community was 

dominated by Acidobacteria, a phylum which often contains a high proportion of inactive 

members (Jones and Lennon 2010; Lin et al. 2014b). High levels of dormancy at 20 cm could 

be linked to labile carbon limitation, which occurs with increasing depth as the available 

organic matter becomes more recalcitrant (Hill et al. 2014) and may be particularly severe in 

bogs where much of the dissolved organic matter (DOM) is highly resistant to degradation 

when oxygen is lacking (Tfaily et al. 2013). For eukaryotes, more cOTUs occurred in the fen 

than the bog and differences in the number of cOTUs between depths were small (Figure 3.5B), 

reflecting the pattern seen for OTU richness.  

3.4.3 Relative Abundances of Domains & Abundant Phyla 

Bacteria made up a far higher proportion of the 16S rRNA gene dataset than Archaea did 

(Figure 3.6A), although a surprisingly large proportion of the community (up to 30%) could 

not be identified to domain level with confidence (Figure 3.6A). An even higher proportion of 

OTUs could not be assigned to phylum level. The proportion of unassigned OTUs was higher 

in the fen than in the bog, especially at 20 cm depth: this likely reflects the fact that a wide 

variety of anaerobic prokaryotes have been poorly studied, especially those belonging to the 

domain Archaea or to candidate phyla within the bacteria. For example, a number of recent 

studies describe new members of several candidate phyla which exhibit fermentative lifestyles 

(Wrighton et al. 2012; Kantor et al. 2013), meaning that they may be well suited to life in the 

fen environment where low redox potential is combined with abundant organic matter.  

Aside from ‘Unassigned’ OTUs, the prokaryotic phyla with the highest relative abundances 

were Acidobacteria (particularly in the bog) and Proteobacteria, corresponding to previous 

MGA studies of bacterial communities in peatlands (Lin et al. 2012; Serkebaeva et al. 2013; 
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Lin et al. 2014b). Proteobacteria and Acidobacteria are also abundant in non-wetland soils. In 

non-wetland soils Actinobacteria also tend to make up a large proportion of the community 

(e.g. Delmont et al. 2012; Luo et al. 2014; Chodak et al. 2015), which was not the case in the 

current study. The comparative rarity of Actinobacteria in peatlands (Lin et al. 2012; 2014b) 

may have important consequences for carbon cycling, as Actinobacteria contain many genes 

involved in degradation of phenolic compounds in peatlands (Tveit et al. 2013; Lin et al. 

2014a) and are one of the few bacterial phyla to contain members with the capability to break 

down lignin (Bugg et al. 2011). 

The proportion of the community made up by each of the most abundant phyla was affected 

by habitat and depth (Table 3.3; Figure 3.6B). Four phyla were more abundant in the bog than 

the fen: Acidobacteria, which flourish in soils with low pH values (Jones et al. 2009) such as 

bogs (Chapter 2); Actinobacteria, many of which are strict aerobes (Goodfellow and Williams 

1983) and thus may have preferred the higher redox potential of the bog mesocosm cores 

(Chapter 2); Verrucomicrobia, which are important in the degradation of recalcitrant organic 

matter in marine ecosystems (Martinez-Garcia et al. 2012) and thus may make use of 

recalcitrant organic matter found in bogs (Tfaily et al. 2013); and Chloroplasts/Cyanobacteria, 

which were likely present as a result of chloroplasts in undecomposed Sphagnum moss. 

Bacteroidetes were most abundant in the fen and at 5 cm depth, probably because abundance 

of this phylum increases with pH (Fierer et al. 2007; Frank-Fahle et al. 2014) and pH was 

considerably higher in the fen than the bog (Chapter 2). Overall, Proteobacteria were more 

abundant in the fen, but the relative abundance of Proteobacteria varied more with depth in the 

bog than in the fen (Figure 3.6B). Proteobacteria made up a large proportion of the prokaryotic 

community in the bog at 5 cm, with α-Proteobacteria particularly abundant. Large numbers of 

α-Proteobacteria are associated with the microbiome of Sphagnum moss (Bragina et al. 2014). 

Sphagnum was abundant in many of the bog cores, suggesting that the Sphagnum microbiome 

persists in the early stages of decomposition before being replaced as decomposition proceeds 

with increasing depth along the peat profile. Conversely, the proportion of Proteobacteria in 

the bog at 20 cm was very low: many Proteobacteria respond positively to nutrient additions 

(Fierer et al. 2012) and high carbon availability (Fierer et al. 2007), so the decrease in 

Proteobacteria with depth may be caused by depth-dependent phosphorus limitation (Lin et al. 

2014a) or by decreasing carbon availability with depth (Hill et al. 2014). 
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Cyanobacteria/Chloroplast rRNA was the only phylum within the 16S rRNA gene dataset to 

significantly respond to time point, showing a significant fall in abundance at time point T3 

(Figure 3.7). Most members of this group were affiliated with Chloroplasts rather than 

Cyanobacteria, and thus likely originated from undecomposed Sphagnum moss. Chloroplast 

abundance in Sphagnum is known to be affected by stress (Gerdol et al. 1996); however, the 

fact that Chloroplast abundance did not fall until T3 suggests that it is unlikely to be a response 

to changing conditions when mesocosm cores were collected and placed in the controlled 

temperature room. 

Fungi were the most abundant eukaryotic phylum at 5 cm depth, with Ascomycota and 

Basidiomycota being the most abundant subphyla of fungi, corresponding to earlier research 

in peatlands (Lara et al. 2011; Lin et al. 2012; 2014b) as well as other soils (Dupont et al. 

2016). Chloroplastida (green algae and land plants) were also abundant, probably as a result of 

undecomposed plant material. Each of the three most abundant protist taxa (Alveolata, Rhizaria 

and Stramenopiles) were more abundant in the fen than the bog. The low proportion of protists 

in the bog is likely as a result of low pH: fungi dominate communities of microbial eukaryotes 

in soils with low pH values, with protists becoming more abundant as the pH approaches 

neutral (Dupont et al. 2016). Within the protists, the most abundant phyla were similar to those 

in non–peat soils (Dupont et al. 2016): these included the Apicomplexa (Alveolata), Ciliphora 

(Alveolata), Cercozoa (Rhizaria), and the Oomycota (Stramenopiles). Many of the eukaryotic 

phyla tested were significantly more abundant at 5 cm than 20 cm depth (Table 3.4), a trend 

which was driven by the extremely high proportion of the community made up by unassigned 

OTUs at 20 cm depth (Figure 3.8). The properties of peatland ecosystems are sufficiently 

unusual (e.g. anoxic, low pH and low nutrients) that many of the taxa in peatland ecosystems 

may be unknown. A limited amount of research into protozoa in peatlands has been carried 

out, but this is primarily focused on communities within living Sphagnum moss (i.e. 5 cm depth 

or less) and relies on morphological methods to divide protozoa into functional groups (e.g. 

Mieczan 2007; Jassey et al. 2013; Jassey et al. 2015). The current work highlights the need for 

further research into the diversity of microbial eukaryotes and for continued expansion of 

existing databases 

Of the six eukaryotic phyla tested, only Rhizaria were significantly affected by drought (Figure 

3.9; Table 3.4). Unfortunately, few Rhizarian OTUs in the current dataset could be assigned to 

taxonomic levels below phylum, making it difficult to infer the functional roles of these 
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organisms in the community. Within the Rhizaria, the most abundant class was the Cercozoa: 

this group, like Rhizaria as a whole, includes a wide variety of lifestyles and morphologies 

(Burki and Keeling 2014; Harder et al. 2016). Existing evidence suggests that the proportional 

abundance of testate amoeba within the Cercozoa may respond to drought (Harder et al. 2016), 

and that a decrease in the biomass of mixotrophic testate amoeba leads to increasing carbon 

emissions from warmed peatlands (Jassey et al. 2015). However, further research is required 

to fully understand the effect of drought on Rhizaria and the role they play in carbon dioxide 

release from peat under drought conditions. 

3.4.4 Overall Community Composition 

Bogs and fens contained very different microbial communities, with relatively little overlap in 

core OTUs (Figure 3.5) and clear separation of the two habitats along the first axes of NMDS 

ordination plots based on both the 16S and 18S rRNA genes (Figure 3.10). Differences between 

the microbial communities present in each habitat likely reflect the large environmental 

differences between bog and fen peat (Chapter 2). In particular, pH is hugely important in 

determining the community composition of both microbial eukaryotes and prokaryotes in soils 

(Fierer and Jackson 2006; Rousk et al. 2010; Griffiths et al. 2011; Dupont et al. 2016) and the 

pH of bog peat was much lower than that of fen peat (Chapter 2). Most species of bacteria and 

fungi have optimum pH ranges of much less than two pH units (Hung and Trappe 1983; 

Wheeler et al. 1991; Rosso et al. 1995; Fernández-Calviño and Bååth 2010), which was the 

approximate difference in pH between the bog and the fen, thus explaining why so few ‘core’ 

OTUs were shared between habitats. Many other environmental variables also differed 

between the two habitats: for example, the fen had a lower redox potential, higher water content 

and a different plant community to the bog. All of the aforementioned variables have been 

found to significantly affect microbial community composition (Peralta et al. 2014; Dupont et 

al. 2016), and likely contribute to the differing microbial communities found in each habitat. 

The two depths (5 cm and 20 cm) also contained distinct microbial communities, although 

differences between depths were weaker than those between habitats (Figure 3.5; Figure 3.10). 

Peat chemistry differed less between depths than between habitats: for example, redox potential 

was not significantly different between depths, while pH was only slightly higher at 5 cm than 

20 cm (Chapter 2). 
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Community composition within each habitat-depth subset was significantly different between 

the two treatments for both prokaryotes and eukaryotes (Table 3.5; Table 3.6), but this effect 

was due to differences between mesocosm cores which were observed at all time points 

(including pre-drought) and drought did not affect the overall community composition (Figure 

3.11; Figure 3.12). Similarly, there was no significant effect of time point on either prokaryotic 

or eukaryotic communities despite the fact that water content rose at the beginning of the 

experiment (Chapter 2). These results suggest that peatland microbial communities as a whole 

are relatively resistant to drought, at least in the short term. It is possible that many bacteria 

survive droughts by becoming dormant (Manzoni et al. 2014): dormancy is a widespread 

phenomenon in environmental bacterial communities (Jones and Lennon 2010). The 

abundance of 16S rRNA genes changes much more slowly than the abundance of 16S rRNA 

transcripts during drought in dryland ecosystems (Barnard et al. 2013; Barnard et al. 2015), 

suggesting that the ‘active’ community is responding more strongly than the ‘present’ 

community. Dormancy usually plays a weaker role in the maintenance of eukaryotic 

communities under stressful conditions (Jones and Lennon 2010), although fungi may form 

spores and protists cysts. An additional explanation for the slow rate of change in microbial 

communities when DNA-based (rather than RNA-based) markers are used is the persistence of 

‘relic DNA’, i.e. DNA which persists from dead organisms. A recent study demonstrated that 

approximately 40% of fungal and prokaryotic DNA in soils is not contained within cells, 

suggesting that much of the DNA in the soil environment belongs to dead organisms (Carini et 

al. 2016). An earlier study suggested that the majority of extracellular DNA in soils was 

degraded within 30 days (Morrissey et al. 2015), but its persistence is affected by binding to 

clay minerals or humics. Therefore, extracellular ‘relic’ DNA has the potential to make the 

effects of short term environmental change difficult to detect using DNA-based methodologies.  

Future work on the effects of environmental change on soil microbial communities should 

therefore analyse community RNA as well as DNA, as RNA has a much more rapid turnover 

time in soil (Moran et al. 2013). 

3.4.5 Effect of Water Table 

While no effect of drought on the overall community composition was found by NMDS 

ordination or by PERMANOVA tests, there was evidence that drought significantly affected a 

subset of the community. Partial constrained correspondence analysis (pCCA) carried out on a 

filtered subset of the prokaryotic and eukaryotic community (i.e. those OTUs which were found 
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in at least 20% of samples) showed that there was a significant effect of water table depth on 

bacterial communities in the bog at both depths and in the fen at 5 cm, as well as on eukaryotic 

communities in the bog at 5 cm (although the effects in the bog were caused in large part by 

outlier effects or differences between mesocosm cores). Constrained correspondence analysis 

is a method which only considers the variation within a dataset which can be explained by the 

chosen constraints (in this case water table direction), and so the significant effect of water 

direction suggests that a subset of OTUs responded to drought (although many other OTUs did 

not). The effect of water table direction was most obvious in the fen at 5 cm, where all 

droughted mesocosm cores responded in a similar matter at minimum water table and during 

rewetting (Figure 3.13C; Figure 3.13I). Likewise, the fen at 5 cm harboured the largest number 

of OTUs which were significantly affected by the interaction between time point and treatment, 

was the only environment in which the effect of drought on some OTUs remained significant 

following correction for multiple comparison (Table 3.10), and was also the environment in 

which NMDS ordination of drought-affected OTUs showed the clearest community response 

to drought (Figure 3.14C). In the other habitats and depths the overall effect of drought was 

weak or was overshadowed by the effects of core (Figure 3.13; Figure 3.14). The low redox 

potential in the fen under normal conditions (Chapter 2) likely means that fen microbial 

communities were adapted to anoxic conditions and thus were more strongly affected by the 

rise in redox potential which occurs during drought than communities in the bog. Alternatively, 

a high proportion of relic DNA may obscure the effect of drought on microbial communities 

in the bog: the proportion of relic DNA is highest in acidic soils with low availability of base 

cations such as Ca2+ (Carini et al. 2016), and the bog had both a lower pH and a lower 

concentration of Ca2+ than the fen. 

In the fen at 5 cm, two phyla were overrepresented amongst drought-affected OTUs relative to 

the dataset as a whole: Proteobacteria made up 27% of total OTUs and 41% of drought-affected 

OTUs, while Bacteroidetes made up only 7% of total OTUs but 39% of drought affected OTUs 

(Figure 3.15; Table 3.10). The majority of drought-affected bacteria in phylum Bacteroidetes 

responded negatively to drought while Proteobacteria tended to respond positively, although 

there were exceptions. Only two of the Bacteroidetes OTUs which responded negatively to 

drought could be assigned below phylum level: both were affiliated with Bacteroidales, an 

order which has been previously shown to be negatively correlated to redox potential in 

permafrost peats, with many members exhibiting fermentative lifestyles (Lipson et al. 2013). 
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One of the Bacteroidetes OTUs was additionally identified as belonging to genus Paludibacter: 

the sole described member of this genus is strict anaerobe which lacks oxidase and catalase 

activity (Ueki et al. 2006), two enzymes important for the survival of anaerobic bacteria under 

oxic conditions (Rolfe et al. 1978; Brioukhanov and Netrusov 2007). On its discovery, genus 

Paludibacter was very distinct from its closest cultured relatives both in terms of sequence 

similarity and metabolism (Ueki et al. 2006): therefore, it is possible to speculate that many 

novel fermentative members of the Bacteroidetes remain to be discovered, and that many of 

the remaining drought-responsive Bacteroidetes may fall into this category. In addition, four 

Proteobacteria responded negatively to drought in the fen at 5 cm: one was assigned to genus 

Geobacter, a genus consisting of Fe(III)-reducing bacteria, many of which are also able to 

reduce sulphate and Mn(IV) (Lovley et al. 2011). Given that the redox potential in the fen 

mesocosm cores was within the range for Fe(III) and Mn(IV)-reduction (Chapter 2), the 

presence of Geobacter is unsurprising. The higher redox potential observed during drought 

may put metal-reducing species at a disadvantage: while there is evidence that some Geobacter 

species tolerate oxygen at low levels and even use it as an electron acceptor (Lin et al. 2004), 

it is unclear whether this is the case for all species or whether these species are able to compete 

with obligate aerobes under oxic conditions. A single OTU belonging to the Firmicutes also 

appeared to respond negatively to drought: this OTU was assigned to family Ruminococcaceae, 

which consists of strict anaerobes which often occur in the mammalian gut or in the rumen of 

ruminants. Finally, the only drought-affected Archaea responded negatively to the drought and 

was assigned to phylum Pacearcheaota: this phylum has been little researched, but appears to 

contain at least some fermentative members (Castelle et al. 2015). Therefore, all negatively 

drought-affected OTUs in the fen at 5 cm which could be meaningfully assigned appear to be 

affiliated with anaerobic taxa, including obligate anaerobes. The effect of these OTUs 

decreasing in abundance is unclear: many of the drought-responsive OTUs were only present 

at relatively low abundances, and thus their effects on carbon fluxes might be expected to be 

weak. 

Of the 17 bacterial OTUs showing a positive response to drought, 11 belonged to the 

Proteobacteria (Table 3.10). Interestingly, two of these OTUs are affiliated with taxa that are 

commonly associated with alkane degradation in petroleum-contaminated soils: genus 

Caulobacter and family Sphingomonadaceae (Yergeau et al. 2012; Yang et al. 2014; Tsuboi 

et al. 2015). Both taxa contain aerobic bacteria, suggesting that aeration during drought might 
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allow both OTUs to increase in abundance, but it is unclear whether the association with alkane 

degradation is relevant to their presence in peat. The abundance of saturated, deoxygenated 

carbon compounds increases with depth (D'Andrilli et al. 2010; Tfaily et al. 2013). As alkanes 

are saturated, deoxygenated chains, this potentially indicates that alkanes and related 

compounds are relatively slow to degrade in the peatland environment. Likewise, the potential 

effects of alkane degradation on peatland carbon fluxes is unclear: while one previous study 

found a negative correlation between the concentration of lipids (which have alkane-like ‘tails’) 

and anaerobic production of CO2 and CH4 (Reiche et al. 2010), this analysis was potentially 

complicated by the fact that lipids were most abundant in deep peat layers where microbial 

metabolism is suppressed by other factors. It is likely that taxa which are enriched following 

petroleum contamination are additionally able to degrade other forms of recalcitrant carbon 

such as phenolic compounds: Caulobacter cresentus, which belongs to the same genus as one 

of the enriched OTUs, possesses a cluster of genes homologous to those required for the 

degradation of aromatics (Nierman et al. 2001), and members of family Sphingomonadaceae 

generally contain diverse degradative enzymes (Aylward et al. 2013). Two of the other 

positively drought-affected OTUs belonged to genera Massilia and Duganella within family 

Oxalobacteraceae. Intriguingly, the abundance of family Oxalobacteraceae, and genus Massilia 

in particular, is sometimes significantly decreased following petroleum contamination of 

permafrost soils (Yang et al. 2014): this is the opposite response to that of Caulobacter and 

Sphingomonadaceae. Instead, these genera increase in response to enrichment with chitin 

(Cretoiu et al. 2014) or glucose (Padmanabhan et al. 2003), suggesting that these two OTUs 

could potentially represent opportunistic (‘copiotrophic’) bacteria taking advantage of the 

increased carbon and nutrient availability which occurs during drought as a result of increased 

hydrolase activity (Fenner and Freeman 2011). However, β-glucosidase activity did not 

increase during drought in the current experiment, and although other hydrolases are affected 

by drought (Fenner and Freeman 2011), these were not measured in the current experiment. 

Therefore, without further research these possibilities remain speculative. 

Of the drought-affected OTUs in the fen at 5 cm from the 18S rRNA dataset, two were assigned 

to protist groups (one to Alveolata and one to Rhizaria), one to Nematoda and four could not 

be assigned at phylum level (Table 3.10). However, three of the four unassigned OTUs were 

assigned to Rhizaria (class Cercozoa) with low confidence values. When combined with a 

significant increase in the abundance of Rhizaria as a whole this suggests that Rhizaria may 
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respond significantly to drought. However, none of the drought-affected Rhizaria could be 

assigned below class level, making it difficult to ascertain the functional roles they play in peat 

soils. Nonetheless, it is likely that Rhizaria are relevant to carbon fluxes in peatlands, either 

directly or indirectly: for example, bacterial predators within the Rhizaria strongly influence 

bacterial communities (Glücksman et al. 2010) while mixotrophic testate amoebae affect 

peatland CO2 emissions by switching between heterotrophic and autotrophic modes of living 

(Jassey et al. 2015). 

Far fewer OTUs were significantly affected by drought in the bog at 5 cm than in the fen at 5 

cm (Table 3.11), and all drought-affected OTUs in the bog at 5 cm showed a positive response 

to drought. Two of the four drought-affected prokaryotic OTUs in the bog at 5 cm were 

assigned to the Acidobacteria, reflecting the high proportion of Acidobacteria in this habitat. 

Another was assigned to family Acetobacteraceae within the α-Proteobacteria: this family 

contains obligate aerobes (Kersters et al. 2006), possibly explaining the positive response of 

this OTU to drought. Both Acetobacteraceae and Acidobacteria are tolerant of low pH, 

potentially demonstrating the limitations that the low pH of bog habitats imposes on the 

microbial community. The final drought-affected prokaryotic OTU belonged to order 

Sphingobacteriales within the Bacteroidetes: this order has previously been found to respond 

positively to drought in arid soils (Placella et al. 2012; Amend et al. 2016). Similar to the 

results in the fen, eukaryotic drought-affected OTUs were dominated by Rhizaria: two of the 

three drought-affected OTUs were assigned to this phyla, lending support to the notion that 

Rhizaria may be one of the microbial groups showing the strongest response to drought. 

The number of drought-affected OTUs detected at 20 cm was considerably less than the 

number detected at 5 cm, an unsurprising finding given that 20 cm represented minimum water 

table. At this depth, drought did not affect the water content of the peat but did cause a 

significant increase in redox potential, although this was weaker than the rise in redox potential 

observed at 5 cm depth (Chapter 2). Across both habitats, only three of the prokaryotic OTUs 

affected by drought at 20 cm could be assigned to a taxonomic level more precise than Bacteria 

(Tables 3.12 & 3.13): each of these was assigned to Acidobacteria (subdivision 1) and each 

increased during drought. Acidobacteria isolated from peat are commonly aerobic (Pankratov 

et al. 2008) and so likely benefit from increased redox potential during drought. In the fen at 

20 cm, four further OTUs showed a significant negative response to drought but could not be 
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taxonomically assigned with a confidence value that reached the threshold. However, the most 

likely assignment for two of these were families of obligate anaerobes: Ruminococcaceae and 

Anaerolineaceae, respectively. A single eukaryotic OTU responded positively to drought at 20 

cm and was assigned to the Stramenopiles. 

It should be noted that for the majority of ‘drought-affected OTUs’ described above, the effect 

of the interaction between time point and treatment did not remain significant following the 

application of corrections for multiple comparisons. Unfortunately, resources were not 

available to sequence all of the mesocosm cores included in the experiment, meaning that the 

sample size was relatively low (especially compared to the number of OTUs). In addition, 

different mesocosm cores not only contained heterogeneous communities (Section 3.3.6), but 

also showed different responses to drought: for example, OTU_156 showed a strong positive 

response to treatment in two of the droughted bog mesocosm cores at 5 cm depth, but in the 

third droughted core was only present at very low abundances throughout the experiment and 

did not respond to drought (Figure 3.16B). A greater number of mesocosm cores would have 

made it easier to distinguish between noise and genuine drought effects. Despite the low sample 

size, the current analysis acts as an effective hypothesis-generating exercise and suggests a 

number of future avenues of research which could not have been generated from previous data: 

in particular, the potential role played by Rhizaria (especially Cercozoa) in drought-driven 

changes to peat biogeochemistry and carbon fluxes. Combinations of morphological 

identification (to classify protists into functional groups) and targeted sequencing of the 18S 

rRNA gene could be used to fully understand the role Rhizaria play in drought-driven carbon 

release. 

3.4.6 Effect of Core 

Microbial community composition significantly varied between mesocosm cores, and the 

effect of mesocosm core accounted for a large proportion of the variation in the composition 

of communities of both prokaryotes and microbial eukaryotes (Table 3.14; Figure 3.11; Figure 

3.12). Constrained correspondence analysis with vegetation and pH as constraining variables 

suggested that both factors played a role in structuring the differences between microbial 

communities in different cores (Table 3.15; Figure 3.19; Figure 3.20), although the exact 

combination of variables and the relative effect of each varied between habitats, depths and 

marker genes. The strong effect of vegetation on the microbial community may be mediated 
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by organic matter quality: shrubs are likely to contribute woody tissue, which contains high 

levels of lignin (a highly recalcitrant polymer). However, Sphagnum, the dominant genus of 

mosses in bogs, is also particularly slow to decompose (Lang et al. 2009), potentially due to 

the inhibitory effect of phenolic compounds or other functional groups derived from Sphagnum 

(Painter 1991; Børsheim et al. 2001; Hajek et al. 2011). Additionally, vascular plants (such as 

graminoids and shrubs) may release root exudates and thus provide an additional source of 

carbon for microbial communities in soil (Corbett et al. 2013). Finally, many of the shrubs 

found in peatlands are ericoid mycorrhizal, while graminoids and mosses are not (Thormann 

et al. 1999). The effect of pH on community composition was generally weaker than the effect 

of vegetation despite the known impact of pH on microbial communities (Rousk et al. 2010; 

Dupont et al. 2016). However, within-habitat pH variations were much smaller than between-

habitat variations and thus it is likely that the amount of variation in pH was not enough to be 

a large source of between-core variation. 

3.5 Conclusions 

1. The prokaryotic community in all mesocosm cores was dominated by Bacteria, with few 

OTUs assigned to Archaea. Within the Bacteria, Acidobacteria and Proteobacteria were the 

most abundant phyla by far. Of the eukaryotic OTUs which could be assigned to phyla, Fungi 

and Chloroplastida were dominant. However, a large proportion of OTUs could not confidently 

be assigned at phylum level, suggesting a high level of unknown diversity occurs in peat soils. 

2. The overall composition of prokaryotic and eukaryotic communities was very different in 

bog and fen mesocosm cores, and was also affected by depth. However, no effect of drought 

was observed on the community as a whole. 

3. A subset of the community appeared to show a response to drought, especially in the fen at 

5cm: this was potentially a result of the lower redox potential in the fen (Chapter 2). In the fen 

at 5cm, drought led to an increase in the proportion of the eukaryotic community made up by 

Rhizaria. Drought also affected abundances of a number of individual OTUs, especially in the 

fen at 5cm: several positively drought-affected OTUs were affiliated to taxa previously 

observed to respond positively to oil contamination or to the addition of labile substrates, while 

negatively drought-affected OTUs were affiliated with obligate anaerobes. However, the 

majority of drought-affected OTUs did not show a significant response to drought once 

corrections for multiple comparisons were applied. 
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4.1 Introduction 

One of the earliest descriptions of the soil metagenome defined it as “the collective genomes 

of soil microflora” (Handelsman et al. 1998), and metagenomic analyses attempt to characterise 

the metagenome of an environment through random sequencing of DNA directly extracted 

from the environment. Metagenomics shares many of the advantages of marker gene analysis 

(MGA), in that it enables the study of microbial communities without the biases introduced by 

culture-based techniques, but metagenomics additionally has a number of advantages over 

MGA. Metagenomic methods are able to avoid many of the biases introduced by MGA 

workflows, especially those introduced by PCR primers (Ahn et al. 2012; Cai et al. 2013). 

While some of the library preparation methods commonly employed in metagenomic studies 

do involve PCR amplification (e.g. Nextera XT & TruSeq Nano HT DNA Library Preparation 

Kits), primer bias is avoided by random insertion of primer-binding sites during the DNA 

fragmentation step. Consequently, metagenomic methods often outperform amplicon 

sequencing methods when analysing microbial community composition (Shakya et al. 2013; 

Poretsky et al. 2014). 

In addition to avoiding primer bias, shotgun metagenomic sequencing data contains a snapshot 

of all genetic material present in the environment (rather than only the selected marker gene(s)) 

and thus provides a wealth of information which cannot be obtained using MGA alone. There 

are several advantages to sequencing all available genetic material: firstly, functional genes are 

obtained in addition to taxonomic markers, which allows insights into changes in the functional 

potential of microbial communities and how these relate to changes in soil function. The 

microbial community response to environmental stresses commonly includes changes in the 

functional potential of the community as well the taxonomic composition, and changes in 

functional potential may in turn be linked to changes in carbon fluxes (e.g. Allison and Martiny 

2008; Matulich and Martiny 2014). For example, warming leads to an increase in genes related 

to the utilisation of labile carbon sources which is linked to an overall increase in soil 

respiration (Luo et al. 2014). Work is also underway to fully integrate microbial functional 

genes into biogeochemical models (Reed et al. 2014). A second potential advantage of 

sequencing all genetic material is that a wider range of approaches to taxonomic analysis are 

possible, avoiding problems with taxonomic assignment based on small-subunit (SSU) rRNA 

genes such as copy-number heterogeneity (Větrovský and Baldrian 2013) and intragenomic 

variability (Sun et al. 2013). Examples of algorithms for taxonomic assignment of 
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metagenomic reads include Phylosift (Darling et al. 2014), which uses a set of universal single 

copy protein families as well as ribosomal genes, and MetaPhlAn (Segata et al. 2012), which 

identifies clade-specific marker genes. Unfortunately, these novel approaches come with a 

number of disadvantages: they may provide less intuitive outputs than SSU-based methods, are 

difficult to compare to existing analyses, and often require installation of dependencies or 

downloading of specific databases to enable usage. This means that many recent studies rely 

on the SSU region to assign taxonomy within shotgun sequencing datasets (e.g. Bragina et al. 

2014; Luo et al. 2014).  

Recently, shotgun metagenomic sequencing has been applied to North American bog and fen 

habitats (Lin et al. 2014b), as well as to related habitats such as permafrost (Tveit et al. 2014; 

Hultman et al. 2015) and Sphagnum moss (Bragina et al. 2014). The aforementioned studies 

have revealed that the functional potential of temperate bogs and fens is distinct from other 

soils, including permafrost peat, and demonstrate that peat represents a unique set of challenges 

for microbial communities. For example, the surface communities of both bogs and fens 

contain abundant genes for phosphorus transport (Lin et al. 2014a), probably as a result of the 

phosphorus limitation which is common to peatland ecosystems (Hill et al. 2014; Lin et al. 

2014b). Deep bog peat is enriched in genes for anaerobic respiration (sulfate reduction and 

methanogenesis) and glycoside hydrolases (Lin et al. 2014a), potentially because slow rates of 

decomposition in upper layers of bog peat allows carbohydrates to build up in deeper layers 

(Tfaily et al. 2013). Metagenomes from both bog and fen peat contain fewer copies of copper 

oxidase genes than those from other soils (Lin et al. 2014a): this of particular interest as this 

family includes laccases, an important group of phenol oxidase enzymes (Sinsabaugh 2010). 

Copper oxidase genes are therefore of potential relevance to peat carbon sequestration since 

low phenol oxidase activity may be one of the main factors allowing the build-up of carbon in 

peatlands (Freeman et al. 2001; Fenner and Freeman 2011). 

The microbial mechanisms underlying drought-driven carbon loss from peatlands are at present 

not well-understood, despite growing evidence that the microbial community in peatlands 

responds to water level (Kim et al. 2008; Nunes et al. 2015; Peltoniemi et al. 2015). Previous 

studies have shown that environment-driven taxonomic changes are accompanied by changes 

in functional potential (Luo et al. 2014; Tas et al. 2014), which could not be accurately detected 

using MGA alone. However, while a number of recent studies have used MGA to examine the 

effect of drought on the taxonomic composition of microbial communities (Barnard et al. 2013; 
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2015), at the time of writing shotgun metagenomic sequencing had not been used to analyse 

changes in the microbial community during drought in any habitat and the effect of drought in 

the peat acrotelm had not been fully established using DNA-based techniques. Therefore, our 

understanding of the linkage between microbial community changes and functional changes 

remains incomplete. 

Aims and Objectives of Chapter 

Biogeochemical analyses suggested that enzyme activities (phenol oxidase and β-glucosidase) 

were higher at 5cm below the peat surface than 20cm below it, and this remained true during 

drought (Chapter 2). This indicates that microbial communities in the upper layer of peat are 

potentially of great interest, as they drive the highest potential rates of decomposition. In 

addition, ARISA fingerprinting indicated that microbial communities at this depth were 

significantly affected by a drought-rewetting treatment (Chapter 2), leading to questions about 

the ways in which the community at this depth changes (both taxonomically and functionally). 

The aim of this chapter was to use full metagenome shotgun sequencing to investigate changes 

in both the taxonomic composition and functional potential of microbial communities during 

drought and rewetting in a peat bog at 5cm depth. The key objectives were as follows: 

1. To determine the taxonomic profile and composition of functional genes of microbial 

communities in a Welsh bog at 5cm depth 

2. To investigate changes in the taxonomic composition and α-diversity of bacterial and 

fungal communities in this environment over the course of drought and rewetting 

3. To identify SEED subsystems which are differentially abundant during drought or 

rewetting compared to permanently waterlogged controls 

4. To compare the relative abundance of phenol oxidase genes and genes involved with 

anaerobic metabolism in peat undergoing drought and rewetting with that of 

permanently waterlogged peat 

To this end, a subset of DNA extracts from the experiment described in Chapter 2 were selected 

for full metagenomic shotgun sequencing. The selected extracts came from the 10 bog 

mesocosm cores at a depth of 5cm and represented 5 time points (T2, T4, T6, T7 and T9), 

yielding a total of 50 samples for sequencing.  
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4.2 Methods 

4.2.1 Library Preparation, Sequencing and Quality Control 

The design of the experiment, as well as methods for DNA extraction and purification, are 

described fully in Chapter 2. Based on the results presented in Chapter 2, a subset of samples 

were chosen for sequencing: these samples represented all ten bog mesocosm cores at 5cm 

depth and at five selected time points (T2, T4, T6, T7 and T9; see Chapter 2). The pre-drought 

period was represented by T2, while the other four samples represent different stages of drought 

and rewetting. In addition to DNA extracts from the mesocosm cores, a negative control was 

prepared by carrying out extraction and purification protocols on sterile PCR-grade water. 

Negative extraction and purification controls were then pooled into a single negative control. 

Library preparation was carried out using a Nextera XT Kit (Illumina) according to 

manufacturer’s instructions, in combination with the Nextera XT Index Kit V2 Set A 

(Illumina). The prepared libraries were pooled in equal quantities before initial sequencing on 

an Illumina MiSeq to test quality and concentration of DNA within each library. Following this 

initial MiSeq run, a final pooled library was created by adjusting the concentration of each 

library to reflect DNA concentration (as indicated by the number of reads per sample in the 

initial MiSeq data). The final pool was sequenced on an Illumina HiSeq 2500 in Rapid Run 

mode. Sequencing was carried out by the Institute for Microbiology and Infection at the 

University of Birmingham. 

Reads were trimmed at the sequencing facility using Trimmomatic (Bolger et al. 2014) to 

remove adapter sequences and poor quality reads (i.e. those containing Phred scores below 28). 

Prior to taxonomic and functional assignment, reads which matched sequences in the negative 

control were removed using the script ‘bbsplit.sh’ from BBMap v35.43 

(http://sourceforge.net/projects/bbmap). Within the MG-RAST workflow, artificial replicates 

and reads matching to Homo sapiens were also removed. Metagenome coverage was calculated 

using Nonpareil (Rodriguez-R and Konstantinidis 2013), with a minimum overlap of 25% and 

all other parameters set to defaults. Nonpareil calculates coverage based on sequence 

redundancy (i.e. how many reads are present multiple times in the dataset). 

 

http://sourceforge.net/projects/bbmap
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4.2.2 Taxonomic Assignment 

To examine the taxonomic composition of the peat bog under normal and water-saturated 

conditions, taxonomic assignments were carried out during the first sequenced time point (T2), 

prior to the application of the drought treatment. Three methods of taxonomic assignment were 

compared: Phylosift, MG-RAST annotation of SSU sequences (MGRAST-SSU), and MG-

RAST annotation of all reads (MGRAST-M5NR). Phylosift (Darling et al. 2014) was run with 

default parameters, using unmerged paired reads as inputs. The MG- RAST webserver carries 

out read annotations using BLAT (Glass et al. 2010). Due to the low proportion of read pairs 

with a significant overlap, reads were left unpaired prior to uploading to MG-RAST and only 

the first read of each pair was uploaded to avoid biasing the results. Taxonomic annotations 

were downloaded in biom format using the MG-RAST API with a minimum percentage 

identity of 97%, alignment length of 30 and only the best hit per read considered. To obtain 

MGRAST-SSU annotations, reads identified as SSU rRNA were annotated against the SILVA 

database (Pruesse et al. 2007), and to obtain MGRAST-M5NR annotations, all reads were 

searched against the M5NR database for whole-metagenome annotation (Wilke et al. 2013). 

4.2.3 Effect of Drought on Taxonomic Composition (SILVA Annotations) 

The effect of drought on the taxonomic composition of microbial communities was analysed 

based on MGRAST-SSU annotations. MGRAST-SSU annotations were chosen because the 

databases for SSU sequences are more complete than the M5NR database, thereby reducing 

the bias towards well-characterised taxa, and because Phylosift output takes the form of 

summed probabilities which are difficult to interpret and unsuitable for the majority of existing 

statistical tools. Prior to analysis, the number of annotations was rarefied using the 

‘rarefy_even_depth’ command in the Phyloseq package (McMurdie and Holmes 2013). Fungi 

and bacteria were selected as the focus of the analyses in this chapter, as the methodology was 

inappropriate for analyses of macrofauna and protozoa were poorly represented in the 

annotations from MG-RAST. 

To test for a significant effect of time and treatment on OTU richness of bacteria and fungi, the 

number of OTUs was calculated using function ‘specnumber’ in package ‘vegan’ (Dixon and 

Palmer 2003). Generalised linear models were then fitted using function ‘glm’. Models were 

initially fitted using Poisson errors, but in cases where evidence of overdispersion was found 
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(i.e. the presence of greater variability than would be expected within the Poisson distribution), 

standard errors were corrected using a quasi-GLM method in which the variance was the mean 

multiplied by a dispersion parameter (in the Poisson distribution the variance is assumed to be 

equal to the mean; ‘quasipoisson’ errors). The significance of each interaction term was then 

analysed by analysis of deviance (function ‘drop1.glm’) using a Chi-squared test. Where 

significant differences were found, post-hoc tests were carried out using package ‘lsmeans’ 

(Lenth 2016). 

Abundant bacterial and eukaryotic phyla (defined as those with more than 1000 reads in total) 

were tested for significant effects of time point, treatment, or the interaction of time point and 

treatment. The proportion of the rarefied dataset made up by each phyla was logit transformed 

(Warton and Hui 2011) before application of linear mixed-effects models with ‘~1|Core’ as the 

random effects. 

Next, OTUs occurring in fewer than five samples were removed and NMDS plots were 

generated using the ‘metaMDS’ function from R package ‘VEGAN’ (Dixon and Palmer 2003), 

based on quantitative Jaccard distances and with all other parameters as defaults. Within the 

package ‘VEGAN’, the quantitative Jaccard distance (hereafter simply Jaccard distance, DJ) is 

calculated as follows: 

𝐷𝐽 =  
2𝐷𝐵

1+𝐷𝐵
, where DB = the Bray-Curtis dissimilarity. 

 The Bray-Curtis dissimilarity between samples j and k, Bjk, is defined as: 

𝐵𝑗𝑘 =  ∑
𝑎𝑏𝑠(𝑥𝑖𝑗 − 𝑥𝑖𝑘)

∑ 𝑥𝑖𝑗 +  𝑥𝑖𝑘
 

In the above equation, i stands for a given species. Separate NMDS plots were generated based 

on both family- and species-level annotations. In order to study the within-phylum community 

composition for the most abundant phyla, NMDS plots were generated using only OTUs which 

belonged to each of the most abundant phyla. PERMANOVA tests were run to test for 

differences between time points and treatments, and for the effects of the interaction between 

time point and treatment, using function ‘adonis’ from package ‘VEGAN’. The relationship 

between environmental variables and community composition was investigated by applying 

the ‘envfit’ procedure from package ‘VEGAN’. Envfit first calculates the direction of the effect 
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of a given variable: for ‘vectors’ (continuous variables) this is done by calculating the direction 

of maximum correlation between the variable and the ordination scores, while for ‘factors’ 

(discrete variables) envfit calculates the average ordination score for each factor level. Next, 

significance values are calculated for each variable using a permutation test. 

Additionally, partial canonical correspondence analysis (pCCA) ordination was carried out to 

test the hypothesis that water table affected community composition. Canonical 

correspondence analysis is a constrained method: i.e. rather than attempting to display all 

variation present in the data (e.g. as NMDS ordination does), CCA only displays the component 

of the variation which is explained by the constraints of interest. Therefore, CCA is of value 

when testing clear hypotheses about the effect of a particular variable on the community 

(Legendre and Legendre 2012; Oksanen et al. 2015). In this case a factor encoding the water 

table direction was used as the constraining variable, with three different levels: steady (all 

control cores, and drought cores at T2), falling (drought cores at T4 and T6) and rising (drought 

cores at T7 and T9). To remove confounding effects caused by inter-core differences, the core 

from which a sample was taken was included as a conditioning variable. Ordinations were 

fitted using command ‘cca’ from package ‘VEGAN’ (Oksanen et al. 2015), and tested for an 

effect of water table using the ‘anova.cca’ command. 

Next, a generalised estimation equation model (GEE) was fitted to counts of each OTU in order 

to test for significant interaction effects between time point and treatment, following Zuur et 

al. (2009). GEEs were chosen over alternative models because they allow for a dependence 

structure to be fitted (in this case, samples taken from the same core are correlated), rather than 

assuming all data points are independent, and because they can be fitted to non-normal data 

such as counts. First, OTUs were filtered to select only abundant organisms: those making up 

at least 0.1% of the community in at least one sample, and occurring in at least 40% of samples. 

GEEs were fitted with the Poisson distribution and with an ‘exchangeable’ correlation structure 

(all observations within a core are equally correlated to one another). After model fitting, the 

significance of interaction between time point and treatment was calculated using a Wald test 

and the obtained p-values were adjusted for multiple comparisons using a Benjami-Hochberg 

correction (function ‘p.adjust’). All GEE models were fitted with package ‘geepack’ (Yan et 

al. 2012). 
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4.2.4 Effect of Mesocosm Core on Taxonomic Composition (SILVA Annotations) 

To further investigate the large differences in community composition which were observed 

between different mesocosm cores, tests of differential abundance were carried out at phylum 

and domain level using package ‘DESeq2’ (Love et al. 2014).  DESeq2 fits generalised linear 

models with negative binomial distributions, with dispersion estimated across multiple genes 

with similar expression. Although DESeq2 was initially developed for use with RNA-seq data, 

it is also applicable to other data types where the input matrix describes raw counts of sequences 

assigned to different genes, including metagenomic datasets. 

4.2.5 Assembly of novel 16S rRNA regions (EMIRGE Assemblies) 

In order to examine the effect of drought on bacterial OTUs not present in the SILVA database, 

full-length 16S sequences were assembled using EMIRGE (Miller et al 2011). Briefly, the 

EMIRGE algorithm begins with a set of reference sequences, maps sample reads to the 

reference sequences, and then ‘corrects’ the reference based on the probability that it gave rise 

to the sample reads. Repeated correction of sequences is carried out over forty iterations, with 

each iteration increasing the probability that the set of assembled sequences gave rise to the 

sample data. EMIRGE was run on paired end reads using SILVA v111 (Pruesse et al. 2007) as 

the initial reference database, with an average insert size of 300 and standard deviation of the 

input size of 20. The SILVA database was chosen as a reference because it was the database 

used for testing of EMIRGE by the initial authors (Miller et al. 2011). 

Due to computational constraints, EMIRGE was run individually on each sample and the 

results merged by combining the outputs from each sample and clustering at 97% similarity 

using usearch v7.0 (Edgar 2010). Next, the representative assembled 16S rRNA gene 

sequences were used as a reference database for assigning reads to OTUs using the 

‘pick_closed_reference_otus.py’ script in QIIME (Caporaso et al. 2010). These abundances 

were combined into a single data frame and rarefied to give an even number of OTUs per 

sample. OTUs occurring in fewer than five samples were removed prior to analysis. 

Community composition was analysed using the ‘VEGAN’ package in R (Dixon and Palmer 

2003): NMDS plots were generated based on Jaccard distances, and the effect of environmental 

variables was fitted to ordinations using function ‘envfit’. Taxonomy was assigned using the 
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‘assign_taxonomy.py’ script in QIIME, with the SILVA database v119 as a reference (Pruesse 

et al 2007). 

4.2.6 Functional Assignment 

As with taxonomic assignment, functional assignments were carried out by BLAT within the 

MG-RAST webserver (Glass et al. 2010). Annotations against the M5NR database were 

downloaded in biom format through the MG-RAST API with a minimum percentage identity 

of 90% and a minimum alignment length of 30. Only the best hit for each read was considered. 

Pathways and gene functions were obtained from the SEED database, and annotations 

belonging to eukaryotes and bacteria were downloaded separately. 

 

Table 4.1: Properties of HMMs representing genes of interest. These represent either genes 

for oxidase enzymes or genes which represent key steps in pathways of anaerobic metabolism. 

 

 Gene/Family Source I.D. Pathway 

lcc-A Laccase- Ascomycete FunGene lcc-A Oxidase 

lcc-B Laccase-Basidiomycete FunGene lcc-B Oxidase 

ppo Polyphenol Oxidase FunGene ppo Oxidase 

mnp Manganese peroxidase FunGene mnp Oxidase 

lip Lignin peroxidase FunGene lip Oxidase 

vp1 Versatile peroxidase FunGene vp1 Oxidase 

cuo3 Multi-copper oxidase 

Type III 

PFAM PF07732 Oxidase 

cuo4 Multi-copper oxidase 

Type IV 

PFAM PF00394 Oxidase 

diox Dioxygenase PFAM PF00775 Oxidase 

perox Peroxidase PFAM PF00141 Oxidase 

tyros Tyrosinase PFAM PF00264 Oxidase 

pm Phenol mono-oxygenase PFAM PF04663 Oxidase 

dsrA Dissimilatory sulfate 

reductase 

FunGene dsrA Sulfate reduction 

hydA Hydrogenase FunGene hydA Fermentation 

nirK Nitrite reductase FunGene nirK Denitrification 

nosZ Nitrous oxide reductase FunGene nosZ Denitrification 

nirS Nitrite reductase FunGene nirS Denitrification 

pmoA Particulate methane mono-

oxygenase 

FunGene pmoA Methane oxidation 

alkB Alkane hydroxylase FunGene alkB Alkane 

degradation 

 



200 

 

 

Annotations were rarefied using the ‘rarefy_even_depth’ command in the Phyloseq package 

(McMurdie and Holmes 2013) and combined at the level of module (the third level of the 

hierarchy). Modules with less than one annotation were removed. Next, NMDS plots were 

generated using the ‘metaMDS’ function in package ‘VEGAN’ (Dixon and Palmer 2003), 

based on Jaccard distances. The impact of environmental variables on functional composition 

was tested by applying the ‘envfit’ procedure from package ‘VEGAN’ to NMDS ordinations. 

To test for a significant effect of the time point: treatment interaction on the abundances of any 

SEED module, GEEs were fitted on the count abundances of the most abundant genes. First, 

OTUs were filtered to select only abundant modules: those making up at least 1% of the 

community in at least one sample, and occurring in at least 40% of samples. GEEs were fitted 

with the Poisson distribution and with an ‘exchangeable’ correlation structure (all observations 

within a core are equally correlated). After model fitting, the significance of the interaction 

term between sampling time point and treatment was calculated using a Wald test and the 

obtained p-values were adjusted for multiple comparisons using a Benjami-Hochberg 

correction (with function ‘p.adjust’). All GEE models were fitted with package ‘geepack’ (Yan 

et al. 2012). 

4.2.7 Abundance of genes involved in phenol degradation and anaerobic metabolism 

In order to examine the effect of drought on abundances of phenol oxidase genes and on marker 

genes for anaerobic respiration and alkane hydroxylase genes, nine hidden Markov models 

(HMMs) were taken from the FunGene (Fish et al 2013) and PFAM (Finn et al 2013) 

databases. All selected HMMs are described in Table 4.1. Additionally, an HMM of the 

conserved single-copy gene rpoB was downloaded from FunGene to use in normalising counts 

of each of the other genes. 

The command ‘hmmsearch’ from HMMER (Eddy 2011) was used to find matches for each 

HMM, using default parameters. The taxonomic affiliations of oxidase genes was determined 

by using blastp (Camacho et al. 2009) to search all matches to the HMM against the protein 

sequences in the family in question (downloaded from PFAM). The LCA algorithm in 

MEGAN (Huson et al. 2007) was then used to find the most likely phylum assignment for each 

of the blastp hits. 
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Gene numbers per cell were calculated by dividing the number of hits to each HMM of interest 

by the number of hits to the rpoB HMM. This gave a proportion which was arcsine transformed 

prior to fitting of a general linear model. Random effects were chosen by fitting the maximal 

model using two random effects terms (~1|core or ~core|time) as well as with fixed effects 

only, and comparing likelihood ratios of each.  

4.3 Results 

4.3.1 Read Counts and Coverage 

Following trimming and removal of the negative control a total of 349,042,939 read pairs 

remained, representing an average of 6,980,859 read pairs per sample (982,587,443 

nucleotides, or just under 1 gigabase). However, there was a large degree of variation in the 

number of reads per sample, with a minimum of 2,787,753 pairs and a maximum of 17,492,126 

pairs. A mean of 6,576,636 reads per sample passed quality control in MG-RAST. Samples 

contained a mean of 5,527,859 reads predicted to originate from proteins and 536,927 reads 

predicted to originate from rRNA sequences, of which on average 1,618,285 proteins and 

38,024 rRNA sequences could be identified (i.e. 29% of predicted proteins and 7% of predicted 

rRNAs could be annotated). However, the majority of BLAT hits were of poor quality, with a 

mean percentage identity of 48%. 

Table 4.2: Results of generalised linear models (glm) applied to test for the effect of 

drought on species and family richness of both bacteria and fungi in metagenomic 

shotgun sequencing dataset. 

Taxa Variable Factor d.f. p (> Chi) 

Bacteria Species Richness Time Point 4 0.002** 

  Treatment 1 0.001** 

  Time Point: 

Treatment 
4 0.1 

 Family Richness Time Point 4 0.3 

  Treatment 1 0.04* 

  Time Point: 

Treatment 
4 0.8 

Fungi Species Richness Time Point 4 0.1 

  Treatment 1 0.01* 

  Time Point: 

Treatment 
4 0.8 

 Family Richness Time Point 4 0.3 

  Treatment 1 0.02* 

  Time Point: 

Treatment 
4 0.8 
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Estimated coverage ranged from 30% to 78%, with a mean of 53%. Nonpareil estimated that 

to reach 95% coverage in this habitat an average of 6,672,189,963 base pairs would be required 

per sample, requiring three orders of magnitude more sequencing effort than in the current 

study.  

 

Figure 4.1: Mean proportion of reads in all cores at time point two (pre-drought) assigned 

to each domain of cellular life or to viruses by three methodologies: Phylosift (Darling et 

al. 2014), BLAT annotation of SSU reads in MGRAST (MGRAST-SSU) and BLAT 

annotation of all predicted genes in MGRAST (MGRAST-M5NR). Mean values were 

calculated across all mesocosm cores at time point 2 (pre-drought). 

 

4.3.2 Undisturbed Community Composition 

Bacteria were the most abundant domain in the metagenomes regardless of the methodology 

used to assign taxonomy, and comprised a mean of 61% of SSU reads (Figure 4.1). However, 

the three methodologies gave results which differed considerably in the relative importance of 

other high-level classifications: viruses formed a quarter of the community when taxonomy 

was assigned by Phylosift but made up a much smaller proportion of MG-RAST annotations. 

Conversely, eukaryotes made up a larger proportion of annotations from both MG-RAST 

workflows (43% of MGRAST-SSU annotations, and 32% of MGRAST-M5NR annotations) 

than from PhyloSift annotations. Archaea made up a very small proportion of the community, 

contributing less than 1% of MG-RAST annotations and 3% of annotations according to 

Phylosift. Fungi were the most abundant group of eukaryotes, although Streptophyta also made 
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up a large proportion of the community (Figure 4.2). Protists made up only a small proportion 

of the community: the most abundant protist group was the Apicomplexa, with 0.3% of total 

reads. 

 

Figure 4.2: Proportion of eukaryotic reads belonging to each of the most abundant 

eukaryotic groups. See figure 4.4 for fungal phyla. Only phyla which made up >1% of the 

community are shown, with the remainder summed as ‘Other’. Mean values were calculated 

across all mesocosm cores at time point 2 (pre-drought). 

 

Within the domain Bacteria, the three methodologies gave very different community 

compositions at phylum level (Figure 4.3). Proteobacteria were highly abundant regardless of 

methodology, but the proportion of the community composed of Proteobacteria ranged from 

69% (MGRAST-M5NR) to 22% (MGRAST-SSU). The proportion of Acidobacteria likewise 

varied considerably with methodology, ranging from 25% of Phylosift annotations to only 1% 

of MGRAST-M5NR annotations. According to MGRAST-SSU annotations, α-Proteobacteria 

dominated within the Proteobacteria (36% of total Proteobacteria), followed by β-

Proteobacteria (23%), γ-Proteobacteria (23%) and δ-Proteobacteria (14%). Both ε- and ζ-

Proteobacteria were rare, making up less than 1% of annotated Proteobacteria. Abundant orders 

within the Proteobacteria included Rhizobiales (α-Proteobacteria), Burkholderiales (β-

Proteobacteria), Neisseriales (β-Proteobacteria) and Pseudomonadales (γ-Proteobacteria). 

Within the Acidobacteria, Acidobacteriales and Solibacterales each made up approximately a 

third of annotations, while the remaining third could not be assigned to a class. Abundant orders 
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(> 1000 annotations) within other phyla included Actinomycetales (Actinobacteria), 

Bacteroidales (Bacteroidetes), Sphingobacteriales (Bacteroidetes), Bacillales (Firmicutes), 

Clostridiales (Firmicutes), Planctomycetales (Planctomycetes) and Verrucomicrobiales 

(Verrucomicrobia). 

 

 

 

Figure 4.3: Proportion of bacterial reads which belonged to each of the most abundant 

phyla within the domain Bacteria. Only phyla which made up >1% of the community are 

shown, with the remainder summed as ‘Other’. Mean values calculated across all mesocosm 

cores at time point 2 (pre-drought). 
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Figure 4.4: Proportion of fungal reads which belonged to each of the most abundant 

fungal phyla. Only phyla which made up >1% of the total are shown, with the remainder 

summed as ‘Other’. Mean values were calculated across all mesocosm cores at time point 2 

(pre-drought). 

 

 

Figure 4.5: Mean bacterial species richness in droughted and control mesocosm cores by 

time point. Error bars represent standard errors. 
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Table 4.3: Linear mixed-effects models to test for the effect of drought on the proportion 

of the dataset made up by the most abundant bacterial and fungal phyla. The random 

effects term in each case was “~1|Core”. Proportions were logit transformed prior to model 

fitting. 

Phylum Factor F d.f. p 

Acidobacteria Time Point 0.3 4, 32 0.9 

 Treatment 0.3 1, 8 0.6 

 Time Point: 

Treatment 

0.7 4, 32 0.6 

Actinobacteria Time Point 0.8 4, 32 0.5 

 Treatment 1.7 1, 8 0.2 

 Time Point: 

Treatment 

1.7 4, 32 0.2 

Firmicutes Time Point 0.8 4, 32 0.5 

 Treatment <0.1 1, 8 0.9 

 Time Point: 

Treatment 

2.4 4, 32 0.07. 

Proteobacteria Time Point <0.1 4, 32 1 

 Treatment 3.8 1, 8 0.09. 

 Time Point: 

Treatment 

1.7 4, 32 0.2 

Verrucomicrobia Time Point 1.7 4, 32 0.2 

 Treatment 0.2 1, 8 0.7 

 Time Point: 

Treatment 

0.3 4, 32 0.9 

Bacteroidetes Time Point 0.8 4, 32 0.5 

 Treatment <0.1 1, 8 0.9 

 Time Point: 

Treatment 

2.2 4, 32 0.1 

Ascomycota Time Point 0.7 4, 32 0.6 

 Treatment 1.5 1, 8 0.2 

 Time Point: 

Treatment 

0.5 4, 32 0.7 

Basidiomycota Time Point 0.9 4, 32 0.5 

 Treatment 0.1 1, 8 0.8 

 Time Point: 

Treatment 

0.5 4, 32 0.7 

 

Regardless of the methodology used for taxonomic assignment, Ascomycota were the 

dominant fungal phylum (Figure 4.4), making up between 59% (Phylosift) and 76% 

(MGRAST-M5NR) of fungi. Among the less abundant phyla there were large differences 

between methodologies: annotation of MGRAST-SSU sequences indicated a higher proportion 

of Basidiomycota (25%) than was suggested by MGRAST-M5NR (6%) or Phylosift (11%) 

annotations. Microsporidia and Blastocladiomycota made up a significant proportion of the 

community when Phylosift was used for taxonomic assignment, but were barely detected by 

MG-RAST (Figure 4.4). Within the MGRAST-SSU rRNA annotations, abundant classes 

(>1000 hits) within phylum Ascomycota were Leotiomycetes, Sordariomycetes, 
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Dothideomycetes and Eurotiomycetes and abundant families within phylum Basidomycota 

were Agaricomycetes and Tremellomcyetes. 

 

 

Figure 4.6: NMDS ordination of bacterial communities based on (A) species-level 

annotations and (B) family-level annotations. Ordination was based on Jaccard distances, 

and all annotations were carried out in MG-RAST against the SILVA SSU rRNA database.  
 

4.3.3 Effect of Drought on Taxonomic Composition (SILVA Annotations) 

Treatment had a significant effect on OTU and family richness of both bacteria and fungi 

(Table 4.2). Additionally, bacterial OTU richness varied significantly between sampling time 

points: bacterial OTU richness fell over time, and this fall was greatest in droughted cores 

(Figure 4.5). However, the interaction between time point and treatment was not significant for 

bacteria or fungi (Table 4.2). Neither time point nor treatment had a significant effect on the 

abundance of any of the most abundant bacterial phyla (Table 4.3), although the interaction 

between time point and treatment had a marginally significant effect on the abundance of 

Firmicutes (which decreased with time in all cores, but less so in droughted cores; p=0.07) and 
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treatment had a marginally significant effect on the abundance of Proteobacteria (more 

abundant in droughted cores; p=0.09). 

 

Table 4.4: PERMANOVA to test for effects of treatment, time point, and the interaction 

term on bacterial and fungal community composition. 

Taxa Factor F d.f. R2 p 

Bacteria Treatment 1.2 1 0.02 0.1 

 Time Point 0.9 4 0.08 0.8 

 Treatment: Time Point 0.9 4 0.07 1.0 

Fungi Treatment 1.4 1 0.03 0.007** 

 Time Point 1.0 4 0.08 0.8 

 Treatment: Time Point 0.9 4 0.08 0.9 

 

There was no significant effect of time point, treatment, or the interaction between time point 

and treatment on bacterial community composition (Table 4.4). Bacterial communities 

clustered by mesocosm core rather than treatment in NMDS ordinations, with a similar pattern 

shown regardless whether the ordination was based on OTU-level or family-level annotations 

(Figure 4.6). However, application of ‘envfit’ to the NMDS ordination of bacterial 

communities revealed that bacterial community composition was significantly correlated to 

treatment, phenol oxidase activity, β-glucosidase activity, redox potential and percentage cover 

of dwarf shrubs and bare ground (Figure 4.7; Table 4.5). There was also a significant 

relationship between the mesocosm core from which samples were collected and bacterial 

community composition (Figure 4.7; Table 4.5). OTUs showed a degree of clustering 

according to phyla: for example, the majority of Bacteroidetes had values on the first axis which 

are between 0 and -0.5, while Actinobacteria almost exclusively exhibited positive scores on 

at least one of the two axes shown. 

Next, NMDS ordinations were calculated based on rarefied abundances of OTUs within the 

five most abundant bacterial phyla (Proteobacteria, Acidobacteria, Actinobacteria, Firmicutes 

and Verrucomicrobia) and ‘envfit’ correlations calculated (Table 4.5). Community 

composition within phylum Proteobacteria showed a significant relationship with the 

concentration of phenolic compounds, redox potential, percentage cover of graminoids and 

core; community composition within phylum Actinobacteria showed a significant relationship 

with redox potential, the percentage cover of mosses, dwarf shrubs and bare ground, and core; 
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community composition within phylum Firmicutes showed a significant relationship with 

phenol oxidase, redox potential and core; and community composition within phylum 

Verrucomicrobia showed a significant relationship with β-glucosidase activity, core, and 

percentage cover of bare ground and dwarf shrubs. The direction of these relationships is shown 

in Figure 4.8. No significant relationships were found between Acidobacteria community 

composition and any environmental variable tested. 

 

Table 4.5: Results from application of ‘envfit’ to NMDS ordinations of communities, 

based on annotation of SSU rRNA genes against the SILVA database. NMDS ordinations 

were based on Jaccard distances of OTUs which were assigned by annotating SSU reads to 

species level. POX= phenol oxidase activity, b-gluc = β-glucosidase activity; redox = redox 

potential; shrubs = percentage cover of dwarf shrubs; bare/litter = percentage cover of bare 

ground and/or litter; mosses = percentage cover of all mosses; graminoids = percentage cover 

of all graminoids; core = the mesocosm core from which samples were taken. Only significant 

values are shown. A single outlying sample was removed from the Actinobacterial data prior 

to running ‘envfit’ model. 

 

Taxa Variable R2 p 

All Bacteria POX 0.3214 0.002** 

 B-gluc 0.2848 0.003** 

 Redox 0.5674 0.001*** 

 Shrubs 0.4185 0.001*** 

 Bare/Litter 0.2154 0.014* 

 Core 0.835 0.003** 

 Treatment 0.1029 0.022* 

Proteobacteria Phenol 0.1915 0.017* 

 Redox 0.1595 0.046* 

 Graminoids 0.1978 0.02* 

 Core 0.4361 0.001*** 

Actinobacteria Redox 0.1514 0.030* 

 Mosses 0.1516 0.048* 

 Shrubs 0.189 0.021* 

 Bare/Litter 0.2285 0.009** 

 Core 0.5936 0.001*** 

Firmicutes POX 0.1582 0.038* 

 Redox 0.1683 0.034* 

 Core 0.5004 0.001*** 

Verrucomicrobia B-gluc 0.3868 0.00*** 

 Shrubs 0.3651 0.001*** 

 Bare/Litter 0.1911 0.022* 

 Core 0.5143 0.001*** 

All Fungi Redox 0.1704 0.020* 

Ascomycetes Phenol 0.1984 0.023* 

 Core 0.3703 0.03* 
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Figure 4.7: NMDS ordination of bacterial communities, depicting (A) samples and (B) 

OTUs. Arrows depict the result of ‘envfit’ (i.e. correlations between community composition 

and environmental variables). Ordination was based on Jaccard distances, and all annotations 

were carried out in MG-RAST against the SILVA SSU rRNA gene database. B-gluc=β-

glucosidase activity; POX = phenol oxidase activity; Redox = redox potential; Drt = drought-

treated mesocosm cores; Ctrl= control mesocosm cores. 
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Figure 4.8: NMDS ordination of within-phylum community composition of samples, 

based on OTUs within four of the most abundant bacterial phyla: (A) Proteobacteria, (B) 

Actinobacteria, (C) Verrucomicrobia and (D) Firmicutes. Arrows depict the significant 

results of ‘envfit’ (i.e. significant correlations between community composition and 

environmental variables). Ordination was based on Jaccard distances, and all annotations were 

carried out in MG-RAST against the SILVA SSU rRNA gene database. B-gluc=β-glucosidase 

activity; POX = phenol oxidase activity; Redox = redox potential; Phenol =concentration of 

soluble phenolic compounds. 

 

PERMANOVA detected a significant effect of treatment on fungal community composition, 

although this was not accompanied by any significant effect of time point or of the interaction 

between time point and treatment (Table 4.4). Mesocosm cores clustered more weakly in 

NMDS ordinations of fungal communities than bacterial communities, although the majority 

of variation was dominated by two samples belonging to a single core (Figure 4.9). Application 

of ‘envfit’ to fungal NMDS found that fungal community composition was significantly related 
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to redox potential (Table 4.5), and treatments showed weak separation along the second axis 

(the direction of strongest correlation between community composition and both redox 

potential and percentage water; Figure 4.10). On an NMDS plot of OTUs, the two main phyla 

showed patterns along the second axis: the majority of Basidiomycota occupied the lower part 

of this axis, while Ascomycota dominated the centre of the plot. Ascomycota community 

composition was significantly related to concentration of soluble phenolic compounds and 

core. 

 

 

Figure 4.9: NMDS ordination of fungal communities based on (A) species-level 

annotations and (B) family-level annotations. Ordination was based on Jaccard distances, 

and all annotations were carried out in MG-RAST against the SILVA SSU rRNA gene 

database. 

 

Canonical correspondence analysis followed by permutation tests (function ‘cca.anova’) found 

that water table did not have a significant effect on either bacterial (χ2=0.05, d.f. = 2, p = 0.3) 

or fungal (χ2=0.15, d.f. = 2, p = 0.5) community composition. Wald tests performed on 

generalised estimation equation (GEE) models of rarefied OTU abundances found that 
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abundances were not significantly affected by the interaction between time point and treatment 

for any of the individual OTUs tested.  

 

Table 4.6: Results of tests for differential abundance between cores carried out in 

DESeq2. Phyla and domains were analysed separately. Adjusted p-values represent the result 

of likelihood ratio tests, adjusted using the Benjamini-Hochberg procedure. 

Level Taxon Mean Chi-sq. p.adj 

Domain Archaea 2814.6 71.0 <0.001*** 

Domain Eukaryota 42.8 55.5 <0.001*** 

Domain Bacteria 4497.7 40.6 <0.001*** 

Phylum Acidobacteria 523.8 63.8 <0.001*** 

Phylum Actinobacteria 419.0 54.4 <0.001*** 

Phylum Annelida 56.5 42.7 <0.001*** 

Phylum Arthropoda 85.0 66.6 <0.001*** 

Phylum Ascomycota 768.1 39.5 <0.001*** 

Phylum Bacillariophyta 5.6 21.8 0.03* 

Phylum Bacteroidetes 190.6 53.0 <0.001*** 

Phylum Basidiomycota 258.0 21.9 0.03* 

Phylum Blastocladiomycota 4.9 30.1 0.002** 

Phylum Brachiopoda 2.5 28.8 0.003** 

Phylum Chlorobi 2.6 37.6 <0.001*** 

Phylum Chordata 264.5 49.8 <0.001*** 

Phylum Crenarchaeota 4.3 55.4 <0.001*** 

Phylum Euryarchaeota 15.7 40.1 <0.001*** 

Phylum Firmicutes 325.3 38.2 <0.001*** 

Phylum Mollusca 4.4 28.8 0.003** 

Phylum Nitrospirae 11.0 65.7 <0.001*** 

Phylum Platyhelminthes 51.0 22.9 0.02* 

Phylum Proteobacteria 853.1 32.2 0.001** 

Phylum Streptophyta 700.4 43.9 <0.001*** 

Phylum Thaumarchaeota 3.8 55.5 <0.001*** 

Phylum Verrucomicrobia 204.6 47.6 <0.001*** 

Phylum Xanthophyceae 2.7 24.7 0.01* 

Phylum unclassified (derived from Archaea) 2.1 36.8 <0.001*** 

Phylum unclassified (derived from Bacteria) 1342.1 45.9 <0.001*** 

Phylum unclassified (derived from Eukaryota) 215.6 63.0 <0.001*** 

 

4.3.4 Effect of Mesocosm Core on Taxonomic Composition (SILVA Annotations) 

The abundances of all three domains (Bacteria, Archaea and Eukaryota) were found to show 

significant differences between mesocosm cores (Table 4.6; Figure 4.11; Figure 4.12). In 
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addition, six phyla were significantly differentially abundant between cores: Arthropoda, 

Acidobacteria, Actinobacteria, Annelida, Ascomycota and Bacillariophyta (Table 4.6). In 

particular, samples taken from core B10 contained a very low proportion of reads belonging to 

eukaryotes and a high proportion of archaea (Figure 4.11A). 

 

 

Figure 4.10: NMDS ordination of fungal communities, depicting (A) samples and (B) 

OTUs. Arrows depict the result of ‘envfit’ (i.e. correlations between community composition 

and environmental variables). Ordination was based on Jaccard distances, and all annotations 

were carried out in MG-RAST against the SILVA SSU rRNA gene database. B-gluc=β-

glucosidase activity; POX = phenol oxidase activity; Redox = redox potential; S=steady water 

table; F = falling water table; R = rising water table. 
 

4.3.5 Effect of Drought on Taxonomic Composition (EMIRGE Assemblies) 

In total, EMIRGE assembly followed by clustering of the obtained sequences at 97% similarity 

yielded a total of 2,652 sequences, each representing a full-length 16S rRNA gene (“EMIRGE-

assemblies”). By far the most abundant phyla amongst EMIRGE-assemblies was 

Proteobacteria, making up 40% of total sequences, followed by Acidobacteria (16%) (Figure 
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4.13). Considerable numbers of EMIRGE-assemblies were also assigned to Actinobacteria (7% 

of EMIRGE-assemblies), Bacteroidetes (5%), Firmicutes (4%), Planctomycetes (8%) and 

Verrucomicrobia (7%). In addition, several of the EMIRGE-assemblies belonged to rare phyla 

which were not detected by MG-RAST annotation of SSU reads: for example, candidate 

divisions OD1, OP11, OP3 and TM7. Candidate divisions are deeply-branching lineages with 

no cultured representatives, although in the case of TM7 isolates have been obtained since the 

initial identification of this lineage (Soro et al. 2014; He et al. 2015). 

 

Table 4.7: Results from application of ‘envfit’ to NMDS ordinations of “EMIRGE-

communities”, i.e. communities based on closed-reference OTU-picking against a 

database made up of full-length 16S rRNA genes assembled using EMIRGE. NMDS 

ordinations were based on Jaccard distances. %water= water content. Only significant values 

are shown. 

Taxa Variable R2 p 

All Bacteria %Water 0.1629 0.045* 

Proteobacteria pH 0.2189 0.013* 

 Treatment 0.1041 0.012* 

 

Non-metric multidimensional scaling (NMDS) ordination of EMIRGE-communities showed 

no strong clustering by treatment, although ‘envfit’ detected a significant correlation between 

community composition and water content (Table 4.7; Figure 4.14). However, this correlation 

ceased to be significant if a single outlier was removed (data not shown). Similar to the NMDS 

plot of MG-RAST SSU annotations, certain bacterial phyla clustered together on the NMDS 

plot of the EMIRGE-communities: in particular, most Actinobacteria exhibited negative values 

on the second axis. When the most abundant phyla were analysed individually, community 

composition of Proteobacteria was significantly related to both pH and treatment (Table 4.7). 

 

 

 



216 

 

 

 

Figure 4.11: Proportion of the community made up by (A) each domain, (B) bacterial 

phyla which comprised at least 1% of bacterial reads in a single sample, and (C) fungal 

phyla which made up at least 10% of fungal reads in at least one sample. Samples taken 

from each core are separated by white lines and are ordered according to time point (earliest to 

latest). 
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Figure 4.12: Proportion of the community made up by the six phyla which differed 

significantly between cores: (A) Arthropoda, (B) Actinobacteria, (C) Acidobacteria, (D) 

Annelida, (E) Ascomycota, and (F) Bacillariophyta. Error bars represent standard errors. 

Note the difference in scale along the y-axes of graphs E&F and A-D.Closed-reference OTU 

picking using EMIRGE-assembled 16S rRNA genes as a reference yielded 18,207 hits.  

 

The taxonomic composition of the obtained community (“EMIRGE-community”) was 

different to the taxonomic composition of the EMIRGE-assembled reads used as a reference: 
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Proteobacteria, Planctomycetes and ‘Other’ comprised a larger proportion of the EMIRGE-

assemblies than of the EMIRGE-community, while Acidobacteria showed the opposite pattern 

(Figure 4.13). In addition, the EMIRGE-community differed from the community determined 

by BLAT annotation against the SILVA database (Figure 4.13): for example, both 

Proteobacteria and Acidobacteria were more abundant in the EMIRGE-community than in the 

MGRAST-SSU annotations. 

 

 

Figure 4.13: Taxonomic distribution of full-length 16S SSU sequences assembled by 

EMIRGE (‘EMIRGE-Assemblies’) and of total reads within ‘EMIRGE OTUs’ 

(‘EMIRGE-Reads’), i.e. OTUs resulting from closed-reference clustering with EMIRGE-

assembled 16S sequences used as the reference. Only phyla which made up at least 5% of 

the community according to at least one method are shown. 
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Figure 4.14: NMDS ordination of bacterial communities based on EMIRGE OTUs, 

depicting ordination of (A) samples and (B) OTUs. Arrows depict the result of ‘envfit’ (i.e. 

correlations between community composition and environmental variables). OTUs were 

assigned by closed-reference clustering with full-length 16S assembled generated by EMIRGE. 

%Water = water content of peat. 

 

4.3.6 Functional Composition 

Protein metabolism was the most abundant SEED subsystem, and this was consistent across 

each of the most abundant phyla (Figure 4.15; Table 4.8). Protein metabolism accounted for 

59% of bacterial and 54% of eukaryotic functional assignments. Within both eukaryotic and 

prokaryotic SEED annotations the most important category within the protein metabolism 

module was protein biosynthesis (particularly SSU ribosomal DNA). Aside from protein 

metabolism the relative abundances of SEED subsystems varied between bacteria and 

eukaryotes. Carbohydrate metabolism made up 14% of functional annotations within the 
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domain Bacteria, with the remaining SEED subsystems each making up less than 3% of 

annotated bacterial genes. Within carbohydrate metabolism, the most abundant subsystems at 

level 2 of the SEED hierarchy were CO2 fixation (45%) and organic acid metabolism (27%). 

Abundant subsystems within the eukaryotic annotations were photosynthesis (19%), RNA 

metabolism (13%) and respiration (8%). Genes for nitrogen metabolism made up a relatively 

small proportion of total annotations and were not detected for eukaryotes, but within the 

bacteria the majority of genes in the nitrogen metabolism subsystem were in the pathways of 

allantoin utilisation and ammonium assimilation.  

 
Figure 4.15: Percentage abundance of Level 1 SEED subsystems (i.e. the highest level in 

the SEED hierarchy). Only subsystems which made up more than 1% of annotated reads are 

shown. 
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Table 4.8: Percentage of annotated reads within the five most abundant bacterial phyla 

which belong to SEED Level 1 subsystems. Proteo=Proteobacteria, Acido=Acidobacteira, 

Actino=Actinobacteria, Verru=Verrucomicrobia, Firmi=Firmicutes. 

Module Proteo Acido Actino Verru Firmi 

Amino Acids and Derivatives 2.9% 0.2% 3.2% 0.1% 2.2% 

Carbohydrates 22.3% 0.0% 7.8% 6.7% 3.4% 

Cell Division and Cell Cycle 2.2% 4.8% 0.7% 3.0% 2.1% 

Cell Wall and Capsule 1.7% 0.0% 1.2% 0.1% 3.7% 

Clustering-based subsystems 2.0% 0.8% 3.4% 0.8% 4.7% 

Cofactors, Vitamins, Prosthetic Groups, 

Pigments 2.6% 0.0% 0.4% 0.0% 0.4% 

DNA Metabolism 1.0% 0.0% 0.0% 0.1% 0.4% 

Dormancy and Sporulation 0.0% 0.0% 0.0% 0.0% 1.0% 

Fatty Acids, Lipids, and Isoprenoids 0.2% 0.0% 0.2% 0.0% 1.0% 

Iron acquisition and metabolism 1.3% 0.0% 0.2% 0.0% 4.2% 

Membrane Transport 3.2% 0.0% 0.4% 0.0% 2.8% 

Metabolism of Aromatic Compounds 0.5% 0.0% 0.0% 0.0% 0.0% 

Miscellaneous 2.0% 0.3% 0.1% 0.2% 2.8% 

Motility and Chemotaxis 0.4% 0.9% 0.1% 1.4% 0.5% 

Nitrogen Metabolism 1.6% 0.0% 1.2% 0.0% 0.3% 

Nucleosides and Nucleotides 2.8% 0.0% 4.5% 0.1% 1.1% 

Phages, Prophages, Transposable 

elements, Plasmids 0.1% 0.1% 0.0% 0.0% 2.4% 

Phosphorus Metabolism 0.2% 0.0% 0.2% 0.0% 0.1% 

Photosynthesis 0.0% 0.0% 0.0% 0.0% 0.0% 

Potassium metabolism 0.1% 0.0% 0.1% 0.0% 0.1% 

Protein Metabolism 46.6% 90.5% 72.5% 84.8% 50.2% 

Regulation and Cell signalling 1.2% 0.0% 1.4% 0.0% 2.1% 

Respiration 0.4% 0.2% 0.9% 0.5% 0.9% 

RNA Metabolism 1.9% 2.0% 0.8% 2.1% 1.2% 

Secondary Metabolism 0.1% 0.0% 0.2% 0.0% 0.0% 

Stress Response 1.6% 0.1% 0.1% 0.0% 0.9% 

Sulfur Metabolism 0.2% 0.0% 0.0% 0.0% 0.1% 

Virulence, Disease and Defense 0.9% 0.0% 0.5% 0.0% 11.6% 

 

Relationships between functional community composition and environmental variables were 

weak: there were no significant relationships between the overall functional composition and 

any environmental variable for either bacteria or eukaryotes (Table 4.9). NMDS ordination 

plots of the functional composition of both bacterial and eukaryote annotations show a large 

degree of overlap between cores and treatments (Figure 4.16; Figure 4.17). However, when the 

two most abundant bacterial SEED categories (‘Protein Metabolism’ and ‘Carbohydrates’) 

were analysed separately a weakly significant relationship was found between functional 
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composition within the carbohydrates module and two environmental variables: redox potential 

and phenol oxidase activity (Figure 4.18; Table 4.9). 

 

Figure 4.16: NMDS ordination of the functional potential of bacterial communities, 

depicting ordination of (A) samples and (B) OTUs. Arrows depict the result of ‘envfit’ (i.e. 

correlations between community composition and environmental variables). Ordinations are 

based on Level 3 SEED subsystems. 

 

 

Table 4.9: Results from application of ‘envfit’ to NMDS ordinations of SEED pathway 

abundances. Ordination within module ‘metabolism’ did not significantly correlate to any 

environmental variable. POX= phenol oxidase activity, b-gluc = β-glucosidase activity; redox 

= redox potential. Only significant values are shown. 

Taxa Subsystem Variable R2 p 

Bacteria All None 

significant 

n.s. n.s. 

 Protein 

Metabolism 

None 

significant 

n.s. n.s. 

 Carbohydrates POX 0.1485 0.048* 

  Redox 0.1646 0.035* 

Eukaryotes All None 

significant 

n.s. n.s. 
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Figure 4.17: NMDS ordination of the functional potential of eukaryotic communities, 

depicting ordination of (A) samples and (B) OTUs. Arrows depict the result of ‘envfit’ (i.e. 

correlations between community composition and environmental variables). Ordinations are 

based on Level 3 SEED subsystems. 

 

Very few SEED modules passed the abundance filtering step applied prior to fitting of GEE 

models: 6 modules for bacteria and 2 modules for eukaryotes. Of these, only bacterial 

subsystem SS11428 (ribosomal protein gene S12p) was significantly affected by the interaction 

effect between time point and treatment (χ2
4=18.9, adjusted p-value = 0.005): this subsystem 

was significantly more abundant in the control than drought mesocosm cores at T4 (z = 4.0, 
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p=0.0001) (Figure 4.19). There was no significant main effect of time point or treatment on the 

abundance of SS11428. 

 

 

Figure 4.18: NMDS ordination of functional potential within the carbohydrate 

metabolism subsystem of bacterial communities, depicting ordination of (A) samples and 

(B) OTUs. Arrows depict the result of ‘envfit’ (i.e. correlations between community 

composition and environmental variables). Ordinations are based on Level 3 SEED 

subsystems. 
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Figure 4.19: Number of S12p genes in rarefied dataset (containing a total of 482 

annotations per sample). Error bars represent standard errors. 

 

Table 4.10: Proportion of oxidase domains belonging to both prokaryotic and eukaryotic 

phyla. Phyla possessing <1% of every oxidase gene are summed in ‘other’. 

Group Phylum Cu-ox 

3 

Cu-ox 

4 

Dioxygenas

e 

Peroxidase Tyrosinase 

Bacteria Acidobacteria 44% 0% 0% 3% 1% 

Bacteria 

Actinobacteri

a 2% 0% 12% 5% 1% 

Bacteria Bacteroidetes 2% 0% 0% 0% 3% 

Bacteria 

Cyanobacteri

a 0% 0% 0% 0% 5% 

Bacteria 

Planctomycet

es 0% 0% 0% 41% 0% 

Bacteria 

Proteobacteri

a 24% 0% 79% 0% 34% 

Fungi Ascomycota 24% 0% 4% 10% 28% 

Fungi 

Basidiomycot

a 0% 0% 0% 3% 0% 

Other 

Eukaryote Streptophyta 2% 0% 0% 36% 4% 

Prokaryote

/Eukaryote Other 2% 0% 0% 0% 1% 

Unassigned Not assigned 1% 100% 3% 3% 25% 
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Figure 4.20: Mean abundance of HMMs representing genes involved in degradation of 

phenolic compounds, normalised by dividing number of hits by number of hits for rpoB, a 

universal single-copy gene. Gene/family names abbreviated as follows: cuo3 = copper oxidase 

type 3, cuo4 = copper oxidase type 4, pm = phenol mono-oxygenase, diox= dioxygenase, perox 

= peroxidase, tyros= tyrosinase, lcc-A = ascomycete laccase, lcc-B = basidiomycete laccase, 

lip = lignin peroxidase, mnp = Mn peroxidase, ppo = polyphenol oxidase, vp1= versatile 

peroxidase. 

 

4.3.7 Abundance of genes involved in degradation of phenolic compounds and anaerobic 

metabolism 

HMMs taken from PFAM yielded much higher numbers of hits than those taken from FunGene 

(Figure 4.20). The most abundant oxidase families were dioxygenase and peroxidase, closely 

followed by Cu-oxidase type 4. Taxonomic assignment of the matches to each PFAM HMM 

revealed that each oxidase gene had a different taxonomic distribution (Table 4.10). 

Acidobacteria, Proteobacteria and Ascomycota possessed the largest proportion of potential 

phenol oxidase domains, while Planctomycetes and Streptophyta possessed most peroxidase 

domains. A large proportion of reads within the phenol oxidases could not be assigned to 

phylum level: in particular, all copper oxidase type 4 genes and 25% of tyrosinase genes 

remained unassigned. Four HMMs were only present at very low abundances (pm, lip, mnp, 

vp1), and so were not analysed further. Of the remaining genes and gene families, none were 

significantly affected by drought (Table 4.11).  
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Table 4.11: Results of general linear models applied to test for the effect of drought on 

the number of oxidase genes per cell. Gene numbers per cell were calculated by dividing 

abundance of the gene in question by the abundance of rpoB, a universal single-copy gene. 

This gave a proportion which was arcsine transformed prior to fitting of a general linear model. 

Random effects were chosen by fitting the maximal model using two random effects terms 

(~1|core or ~core|time) as well as with fixed effects only, and comparing likelihood ratios of 

each. 

 

Gene Random 

Effects 

Factor F d.f. p-

value 

Bonferroni 

(n= 8) lcc-A ~time|core Treatment 0.8 1,8 0.4 1.0 

  Time 2.3 4,32 0.08 0.6 

  Treatment:Time 0.8 4,32 0.5 1.0 

lcc-B ~time|core Treatment 0.7 1,8 0.4 1.0 

  Time 2.3 4,32 0.08 0.6 

  Treatment:Time 0.8 4,32 0.6 1.0 

ppo ~time|core Treatment 1.5 1,8 0.3 1.0 

  Time 2.6 4,32 0.05 0.4 

  Treatment:Time 2.4 4,32 0.07 0.6 

cuo3 ~1|core Treatment 0.2 1,8 0.6 1.0 

  Time 0.8 4,32 0.5 1.0 

  Treatment:Time 0.7 4,32 0.6 1.0 

cuo4 ~1|core Treatment 1.0 1,8 0.3 1.0 

  Time 0.3 4,32 0.9 1.0 

  Treatment:Time 1.1 4,32 0.4 1.0 

diox None Treatment 0.2 1 0.6 1.0 

  Time 1.0 4 0.4 1.0 

  Treatment:Time 0.4 4 0.8 1 

perox ~time|core Treatment 0.7 1,8 0.4 1.0 

  Time 3.2 4,32 0.02 0.2 

  Treatment:Time 2.7 4,32 0.04 0.4 

tyros None Treatment 1.8 1,40 0.2 1.0 

  Time 1.0 4,40 0.4 1.0 

  Treatment:Time 1.0 4,40 0.4 1.0 

 

Of the anaerobic metabolism genes investigated, by far the most abundant was hydA which is 

involved in H2-evolving fermentation (Figure 4.21). The drought response of the four most 

abundant anaerobic metabolism genes (dsrA, hydA, nirK, nosZ) was investigated. Of these four 

genes, only hydA showed a significant interaction effect of time and treatment (Table 4.12), 

although a post-hoc test detected only a single marginally significant treatment effect at time 

point 9 (t8 = -2.1, p= 0.07). Mean abundance of hydA (normalised by dividing by number of 

rpoB copies) is shown in Figure 4.22. 
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The number of hits to the alkB HMM was not significantly affected by time point or treatment, 

or by the interaction between time point and treatment (Table 4.13). 

 

Table 4.12: Results of general linear models applied to test for the effect of drought on 

the copy numbers of selected anaerobic metabolism genes per cell. Gene numbers per cell 

were calculated by dividing abundance of the gene in question by the abundance of rpoB, a 

universal single-copy gene. This gave a proportion which was arcsine transformed prior to 

fitting of a general linear model. Random effects were chosen by fitting the maximal model 

using two random effects terms (~1|core or ~core|time) as well as with fixed effects only, and 

comparing likelihood ratios of each. 

HMM Random 

Effects 

Factor F d.f. p-

value 

Bonferroni 

(n=4) dsrA ~time|core Time Point 0.4 4,32 0.8151 1.0 

  Treatment 0.2 1,8 0.6917 1.0 

  Time Point: 

Treatment 
0.7 4,32 0.6007 1.0 

hydA ~1|core Time Point 3.4 4,32 0.0208 0.08. 

  Treatment 1.0 1,8 0.3572 1.0 

  Time Point: 

Treatment 
3.8 4,32 0.0121 0.048* 

nirK ~1|core Time Point 2.8 4,32 0.7596 1.0 

  Treatment 0.5 1,8 0.1482 0.6 

  Time Point: 

Treatment 
0.9 4,32 0.4963 1.0 

nosZ ~time|core Time Point 0.8 4,32 0.5208 1.0 

  Treatment 2.4 1,8 0.1603 0.6 

  Time Point: 

Treatment 
1.1 4,32 0.3769 1.0 

 

Table 4.13: Results of general linear models applied to test for the effect of drought on 

the copy number of alkB per cell. Gene numbers per cell were calculated by dividing 

abundance of alkB by the abundance of rpoB, a universal single-copy gene. This gave a 

proportion which was arcsine transformed prior to fitting of a general linear model. Random 

effects were chosen by fitting the maximal model using two random effects terms (~1|core or 

~core|time) as well as with fixed effects only, and comparing likelihood ratios of each. 

 

HMM Random 

Effects 

Factor F d.f. p-

value alkB ~1|Core Treatment 1.2 1, 8 0.3 

  Time 0.3 4, 32 0.9 

  Treatment: 

Time 

0.5 4, 32 0.7 
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Figure 4.21: Mean abundance of HMMs representing genes involved in anaerobic 

metabolism, normalised by dividing number of hits by number of hits for rpoB, a 

universal single-copy gene. Gene/family names abbreviated as follows: dsrA = dissimilatory 

sulphite reductase; hydA = subunit of hydrogen dehydrogenase (NADH-dependent 

hydrogenase); nirK = nitrite reductase (copper containing); nirS = nitrite reductase (heme-

containing); nosZ = nitrous oxide reductase; pmoA = particulate methane monooxygenase. 

 

 

4.4 Discussion 

4.4.1 Read Counts and Coverage 

Only a small proportion of predicted genes could be annotated, and of these the majority of hits 

were of low quality and thus likely represented either distant homologues or erroneous hits. 

The low proportion of reads which could be annotated is consistent with earlier metagenomic 

studies of the soil microbiome (Delmont et al. 2012; Lin et al. 2014a). Soil communities are 

highly diverse (Curtis and Sloan 2004; Frisli et al. 2013) and often dominated by specialist and 

“conditionally rare” taxa (Shade et al. 2014; Mariadassou et al. 2015), meaning that global soil 

microbial diversity is almost unimaginably vast. The sparse annotation of metagenomes against 

current databases illustrates the fact that only a fraction of microbial life is currently catalogued. 

Mean coverage estimated by Nonpareil (Rodriguez-R and Konstantinidis 2013) was 

approximately 53%. While the obtained coverage may seem like a relatively low proportion of 

the community, the majority of microbial diversity consists of rare species (Curtis and Sloan 

2004; Quince et al. 2008) and so abundant species will likely be well-represented even in 

datasets with relatively low overall coverage values. Previous peat metagenomic studies have 
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obtained consistent results using datasets with similar coverage values to the current study (Lin 

et al. 2014a), suggesting that complete coverage of soil metagenomes is not necessary. Using 

current methodologies, complete sequencing of soil metagenomes is rarely affordable. 

Nonpareil estimated that 6.6 gigabases of sequence data would be required to reach 95% 

coverage of the community in these samples: this estimate is considerably lower than earlier 

estimates of the coverage required to achieve 95% coverage of permafrost and active layers of 

tundra soils (Rodriguez-R and Konstantinidis 2013), but still represents a very large quantity 

of sequence data. This volume of sequencing is rarely, if ever, reached consistently even with 

modern high-throughput sequencing methods (Delmont et al. 2012; Lin et al. 2014a; Leff et 

al. 2015; Souza et al. 2015), although as sequencing throughput continues to increase reaching 

near-complete coverage of soil microbial communities will become more achievable.  

 

Figure 4.22: Mean counts of hydA gene, normalised using number of rpoB copies, in 

drought and control points at each time point sequenced. Error bars represent standard 

errors. 

 

4.4.2 Undisturbed Community Composition 

Bacteria made up the majority of annotated reads in the metagenomes (Figure 4.1). Bacteria 

almost invariably dominate soil metagenomes (Delmont et al. 2012; Tveit et al. 2013; Luo et 

al. 2014), but the proportion of bacterial reads in soil metagenomes is usually much higher than 

in the present study (often at least 90% of reads, compared to 61% in the current study) and a 

previous metagenomic study of two peatlands found approximately 90% of reads to belong to 

prokaryotes (Lin et al. 2014a). The relatively low proportion of bacterial sequences in the 
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current study was caused in part by the removal of the negative control: bacteria made up an 

average of 70% of annotated sequences prior to removal of potential contaminants, but this fell 

to 61% once sequences present in the negative control were removed. Removal of sequences 

matching to the negative control was considered to be an important step due to the near-

ubiquitous nature of contaminant sequences in metagenomic data (Salter et al. 2014), but may 

appear to have a disproportionate effect on the metagenome annotations if contaminant 

sequences belong to better-studied organisms than genuine peatland micro-organisms, as is 

likely. However, removal of the negative control does not fully explain the high proportion of 

eukaryotic sequences: prior to removal of potential contaminants the ratio of eukaryotic to 

bacterial reads was still much higher than earlier studies.  

The high ratio of eukaryotic to bacterial sequences suggests fungi may be important members 

of the microbial community in the bog, since the majority of eukaryotic sequences belonged to 

fungi (Figure 4.2). A number of studies have suggested that bacteria, rather than fungi, 

dominate peat metagenomes (Winsborough and Basiliko 2010; Lin et al. 2014a), biomass 

(Peltoniemi et al. 2015) and activity (Winsborough and Basiliko 2010). However, studies 

carried out across both bog and fen habitats find that fungi may dominate in bogs while bacteria 

dominate fens (Golovchenko et al. 2007; Amha et al. 2015). Certain aspects of the bog 

environment might be expected to favour a fungal-dominated ecosystem: in particular, low pH 

and a high organic matter content are characteristic of peat bogs, and both are associated with 

fungal dominance (Rousk et al. 2010; Rousk and Frey 2015). Nonetheless, waterlogging and 

low redox potentials could severely limit fungal growth and diversity in wetlands (Seo and 

DeLaune 2010a; Golovchenko et al. 2013). In the current study, bog mesocosm cores had 

considerably higher redox potentials than fen mesocosm cores (Chapter 2), and if strongly 

reducing conditions are characteristic of fen habitats then there is potential for redox potential 

to be a strong limiting factor for fungal growth in fen environments. 

Alongside fungi, Streptophyta were the only other group to make up a significant proportion 

of the eukaryotic community, with the majority of Streptophyta sequences likely originating 

from undecomposed plant material. The proportion of Protozoa (Stramenopiles, Rhizaria and 

Alveolata) in the current dataset was very low, corresponding to marker gene analysis (MGA) 

of the same samples (Chapter 3). However, Protozoa have been poorly studied and so it is 

likely that SSU rRNA gene databases for this group are incomplete (Pawlowski et al. 2012; 



232 

 

 

Burki and Keeling 2014). Given the high proportion of reads which could not be classified, it 

is possible that many protist OTUs were missed. 

Within the bacteria, the community composition was strongly affected by the methodology 

used to assign the taxonomic composition of the community (Figure 4.3). Although 

Proteobacteria were the most abundant phyla regardless of the method used for annotation, the 

proportion of the community comprised by Proteobacteria was much higher for MGRAST-

M5NR annotations than other methods (Figure 4.3). Proteobacterial dominance when all genes 

were used for annotation is likely due to bias within genome databases: Proteobacteria make 

up almost half of all sequenced bacterial genomes while far fewer members of the 

Acidobacteria and Verrucomicrobia have been fully sequenced 

(http://www.ncbi.nlm.nih.gov/genome/browse/, accessed 15/06/16). Given that only BLAT 

hits with percentage similarity values of at least 97% were included in analyses, only organisms 

with a close relative in the SILVA database will have been considered and this likely led to a 

bias towards more intensively-studied phyla such as the Proteobacteria. Taxonomic bias is 

likely to be less problematic for taxonomic assignment of SSU rRNA genes due to the larger 

number of available SSU rRNA gene sequences. Annotation of SSU rRNA genes alone found 

higher proportions of other phyla, including Acidobacteria, Actinobacteria and 

Verrucomicrobia. Despite a great deal of variation between bacterial communities in different 

bogs, the dominant phyla in the current study are similar to earlier studies of peatland microbial 

communities, although with a slightly higher proportion of Proteobacteria and lower proportion 

of Acidobacteria (Lin et al. 2012; Serkebaeva et al. 2013; Lin et al. 2014b). 

Within the fungi, Ascomycota was by far the dominant phylum (Figure 4.4), consistent with 

previous MGA (Lin et al. 2012; 2014b) and culture-based studies (Thormann 2006). 

Annotation of reads belonging to SSU rRNA genes indicates that Basidiomycota was the next 

most abundant phylum, comprising 25% of fungal reads, which is again consistent with 

previous results (Lin et al. 2014b). Each of the abundant fungal classes in the current study was 

well-represented in a global survey of fungi in soil habitats (Tedersoo et al. 2014), suggesting 

that peatlands are not qualitatively different from other soils. However, the proportion of 

Basidiomycetes in peat is much lower than the global average described by Tedersoo et al. 

(2014): in the latter study Agaricomycetes (a single class within the Basidiomycota) made up 

an average of 50% of soil fungi across all habitats surveyed. The relative rarity of members of 

http://www.ncbi.nlm.nih.gov/genome/browse/
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phylum Basidiomycota within peatlands (Thormann and Rice 2007; Lin et al. 2012; 2014b) is 

potentially relevant to the slow rates of decomposition observed in peatlands. Class 

Agaricomycetes in particular contains a wide diversity of decomposer taxa, including the 

majority of known brown-rot fungi (Riley et al. 2014) and are almost exclusively responsible 

for lignin peroxidases (Treseder and Lennon 2015). However, care should be taken when 

interpreting phylum-level trends: the ability to degrade lignin is not universal to all 

Agaricomycetes, and other decomposition-related traits (such as cellulose decomposition) are 

present in both Ascomycota and Basidiomycota (Treseder and Lennon 2015).  

Taxonomic assignment using Phylosift indicated that Blastocladiomycota and Microsporidia 

made up a significant proportion of the fungal community (5% and 7%, respectively), although 

both phyla were barely detected by MG-RAST. Both Blastocladiomycota and Microsporidia 

have been poorly studied, but it is plausible that that both would be present in peatlands: 

Blastocladiomycota were recently split from the Chytridiomycota (James et al. 2006), a 

phylum which is limited to aquatic or waterlogged habitats (Freeman et al. 2009), while 

Microsporidia are obligate parasites on either terrestrial or aquatic hosts (Vossbrinck and 

Debrunner-Vossbrinck 2005). The poor representation of Blastocladiomycota and 

Microsporidia in MG-RAST outputs may in part be due to relatively small numbers of 

reference sequences present in databases in comparison to the more effectively characterised 

Ascomycota and Basidiomycota. A threshold similarity of 97% was used for MG-RAST 

annotations, meaning that only organisms with close relatives in the database were able to be 

assigned. Conversely, Phylosift is more flexible: reads are aligned to protein sequences on a 

reference tree prior to calculation of the best ‘point of attachment’ to the tree, meaning that 

reads may be assigned based on more distant relatives. 

4.4.3 Effect of Drought on Taxonomic Composition (SILVA Annotations) 

Bacterial OTU richness was significantly affected by treatment and time point (Table 4.2; 

Figure 4.5), representing a fall in the number of OTUs during the rewetting period and lower 

OTU richness at the end of the experiment than the beginning. This fall in OTU richness 

corresponds to the findings of a recent study using marker gene analysis (MGA), which found 

that prokaryotic diversity falls following drying-rewetting cycles (Nunes et al. 2015). 

However, the latter study is not truly comparable: Nunes et al. (2015) carried out a water table 

manipulation using peat cores collected at 50cm depth, where the community is very different 
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to the community at 5cm depth (Lin et al. 2012), and which would be expected to respond 

negatively to drying. Fungal OTU richness in the current study was not significantly affected 

by drought. However, care should be taken in interpreting OTU richness data from the current 

data: only reads which could be assigned to species in the SILVA database with a high degree 

of confidence were included in the current analyses. Therefore, the OTU richness values 

obtained represent the number of known species rather than the total number of OTUs. Given 

the high proportion of reads which could not be annotated (Section 4.4.1), OTU richness based 

on de novo OTU clustering is likely a more accurate measure of total diversity and was found 

not to respond to drought (Chapter 3). 

None of the phyla tested showed a significant response to time point or treatment (Table 4.3), 

corresponding to the results of similar tests on phylum abundances within the MGA dataset 

(Chapter 3). In the MGA dataset, cyanobacteria/chloroplasts were the only phylum to respond 

to time point, but in the metagenomic dataset cyanobacteria were not one of the most abundant 

phyla and so were not analysed. However, it should be noted that both MGA and metagenomic 

analyses were limited by the difficulty of assigning taxonomy to soil bacteria: a high proportion 

of metagenomic SSU reads were not amenable to annotation, and a high proportion of the 

OTUs in the metagenomic dataset could likewise not be assigned to phylum level at the chosen 

confidence level (Chapter 3). Therefore, there is potential for community changes at the 

phylum level to have been missed. 

Despite the compounding effects of core, ‘envfit’ found a weakly significant effect of treatment 

on the bacterial community composition (Table 4.5). While samples did not obviously cluster 

by treatment, the community composition within each droughted mesocosm core shifted in the 

same direction between pre-drought (T2) and later time points (Figure 4.6), and the direction 

of change follows the direction of maximum correlation between the NMDS ordination and 

the direction of water table change (Figure 4.7). However, PERMANOVA did not find 

treatment to significantly affect community composition (Table 4.4), likely because the 

differences between the two treatments were small.  

Bacterial OTUs belonging to the same phyla exhibited weak clustering on the NMDS plot 

(Figure 4.7B), and a switch in phylum-level community composition occured along the first 

axis of the NMDS plot: many OTUs within the Actinobacteria had positive values on this axis, 

while Bacteroidetes had negative values. Positive values on the first axis also correspond 
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weakly to the drought treatment. Previous studies have demonstrated a strong link between 

Actinobacteria and water table depth, with Actinobacteria usually responding positively to 

water table drawdown (Jaatinen et al. 2007; Barnard et al. 2013) and negatively to rewetting 

(Placella et al. 2012; Barnard et al. 2015). Many Actinobacteria are aerobes and are highly 

sensitive to high CO2:O2 ratios which often occur in poorly aerated soils (Goodfellow and 

Williams 1983). An increase in the relative abundance of Actinobacterial OTUs may be 

relevant to carbon cycling within peat, as it has been suggested that Actinobacteria are 

important degraders of recalcitrant organic polymers such as lignocellulose (Goodfellow and 

Williams 1983) and in permafrost communities a large proportion of gene transcripts encoding 

cellulases, hemicellulases and debranching enzymes are assigned to Actinobacteria (Tveit et 

al. 2014). Actinobacteria appear to be of less importance in polysaccharide degradation in bogs 

and fens (Lin et al. 2014a), but this may in part be due to their relatively low abundance in 

peatlands compared to other soils. However, the number of reads belonging to each of these 

phyla was not significantly affected by time point or treatment (Table 4.3), suggesting that the 

effect of drought on the abundance of each phylum as a whole was weak and that any 

conclusions about the response of different bacterial phyla to drought should be interpreted 

with caution. 

Enzyme activities (phenol oxidase and β-glucosidase; Chapter 2) were strongly related to 

bacterial community composition (Table 4.5; Figure 4.7). Bacteria possess many of the genes 

for phenol oxidase and β-glucosidase enzymes in peatlands (Lin et al. 2014a), and so it is likely 

that bacterial community composition has an impact on enzyme activities. Conversely, both 

enzyme activity and bacterial communities may be controlled by similar suites of 

environmental variables, which were unmeasured in the current study. However, it should be 

noted that given the large number of environmental variables fitted with envfit there is a high 

probability of spurious p-values, and so such relationships should be interpreted with caution. 

To test for relationships between environmental variables and within-phyla community 

composition, NMDS ordination followed by ‘envfit’ analysis was carried out within each of 

the five most abundant bacterial phyla: Proteobacteria, Acidobacteria, Actinobacteria, 

Verrucomicrobia and Firmicutes. Community composition was significantly related to at least 

one environmental variable for every phyla except Acidobacteria. The weak response of 

Acidobacteria to environmental variables may be a result of the low diversity within the 
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Acidobacteria. Acidobacteria in peatlands commonly consist of a small number of highly 

abundant OTUs (Serkebaeva et al. 2013), and this appeared to be the case in the current study: 

out of a mean of 103 OTUs per sample, there were only 3-5 OTUs belonging to the 

Acidobacteria per sample (after rarefaction and removal of rare OTUs). Serkebaeva et al. 

(2013) suggest that the relatively low diversity of Acidobacteria in peatlands occurs because 

peat-inhabiting Acidobacteria all share very similar lifestyles (i.e. acidophilic chemo-

organotrophs with weak hydrolytic capabilities). While members of the Acidobacteria do show 

differences in pH optima (Jones et al. 2009) and substrate preferences (Pankratov et al. 2008), 

their responses to the environment are relatively uniform in comparison to certain other phyla 

(Fierer et al. 2007), and this may result in weak within-phylum changes in community 

composition. Additionally, Acidobacteria are underrepresented in sequence databases, likely 

resulting in many members of this phylum not being recognised by the current methodology. 

‘Envfit’ analyses found that the environmental variables which were significant for the highest 

number of phyla were redox potential, mesocosm core and the plant community. Each of these 

variables was significantly related to community composition within the majority of phyla 

tested (Table 4.5). This echoes results from MGA, where community differences between 

different mesocosm cores were strongly significant and related to vegetation differences 

between the cores (Chapter 3). The effect of redox potential is particularly relevant to the aims 

of this chapter and thesis: species-level community composition within three of the five most 

abundant phyla (Actinobacteria, Firmicutes and Proteobacteria) was significantly correlated 

with redox potential. However, treatment did not have a significant effect on community 

composition within any of the dominant phyla, suggesting that the drought did not cause redox-

driven community changes. Redox potential likewise has a strong impact on community 

composition in permafrost (Lipson et al. 2015), in particular because fermentative bacteria 

flourished at low redox potentials. Redox potential is additionally a strong driver of bacterial 

community composition in general. For example, Winogradsky columns demonstrate the 

development of distinct communities driven in part by a redox gradient (e.g. Rundell et al. 

2014). However, the large number of variables fitted with ‘envfit’ means that the results should 

be interpreted with caution, as the large number of tests leads to a high likelihood of a type I 

error. Nonetheless, the fact that redox potential, mesocosm core and plant community 

composition are consistently significant across a number of phyla makes the chances of a false 

positive less likely. 
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Although PERMANOVA detected a significant effect of treatment on fungal community 

composition, the fact that there was no significant effect of time point or of the interaction 

between time point and treatment suggests that the effect of treatment was due to pre-existing 

differences between mesocosm cores rather than to the drought itself. However, fungal 

community composition was significantly related to redox potential, but not to treatment, water 

table or water content (Table 4.5; Figure 4.10). Anoxic conditions restrict fungal biomass in 

wetlands (Seo and DeLaune 2010a) and so it can be hypothesised that conditions of low redox 

potential might favour fungi which are able to utilise alternative electron accepters such as 

nitrate (Hayatsu et al. 2008; Seo and DeLaune 2010b). Additionally, there was some evidence 

for phylum-level responses to redox potential: OTUs belonging to the Basidiomycota appear 

to cluster with samples that had high redox potential values (Figure 4.10B). Redox-driven 

selection for Basidiomycota has large potential implications for decomposition rates: the most 

abundant class within phylum Basidiomycota was the Agaricomycetes, members of which are 

highly important for the degradation of complex polymers and particularly for the degradation 

of lignin (Riley et al. 2014; Treseder and Lennon 2015). 

Although the abundances of certain OTUs from the MGA dataset were significantly affected 

by the interaction between time point and treatment (Chapter 3), none of the OTUs within the 

shotgun sequencing data were. Far fewer OTUs were affected by drought in the bog, which 

was chosen for shotgun sequencing, than in the fen. Additionally, a much smaller number of 

16S rRNA genes were present in the shotgun sequencing dataset (16S rRNA data was rarefied 

to 70,000 reads in the MGA dataset compared to 2,286 for shotgun sequencing data) and the 

number of OTUs was consequently lower. Many of the species which responded to drought in 

the MGA dataset were novel (few could be assigned to genus level with a high confidence 

value), meaning that OTU assignment by alignment against known species would have missed 

out important taxa. MGA analysis has the advantage of allowing de novo OTU clustering (as 

all reads come from the same region and thus can be aligned together), which may mean that 

MGA is better able to detect community changes in diverse and poorly studied habitats such 

as soils.  

4.4.4 Effect of Mesocosm Core on Taxonomic Composition (SILVA Annotations) 

Different mesocosm cores had different microbial community compositions (Figure 4.6; Table 

4.6). The abundance of all three domains and many phyla was significantly different between 
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the different mesocosm cores (Table 4.6), with core ‘B10’ showing the most obvious 

differences at domain level (Figure 4.11). The within-core homogeneity is interesting in the 

light of a recent study which found considerable differences between bacterial communities in 

adjacent centimetre squares (O'Brien et al. 2016). However, community differences between 

mesocosm cores were likely related to differences in vegetation and biogeochemistry observed 

between cores. Plant functional groups had a strong effect on microbial communities (Table 

4.5), corresponding to numerous previous studies which have found plant functional groups to 

exert a strong influence on belowground microbial communities (Jassey et al. 2014; Lange et 

al. 2014; Legay et al. 2014). The impact of plant functional groups on soil microbes is 

unsurprising: plants are responsible for the majority of organic matter inputs to soils, both as 

plant litter and as root exudates. Different plant functional groups differ in litter quality (Lang 

et al. 2009), and litter microbial communities may be adapted to the litter of a specific plant 

species (Ayres et al. 2009; Strickland et al. 2009). In addition, while vascular plants act as a 

source of root exudates, mosses do not (Hornibrook 2009; Kao-Kniffin and Zhu 2013). The 

effect of soil biogeochemistry was also important: for example, core ‘B1’ has a very different 

community composition to the other cores, potentially related to its high redox potential (Figure 

4.6). 

4.4.5 Effect of Drought on Taxonomic Composition (EMIRGE Assemblies) 

In order to include novel bacterial species which were absent from the SILVA database in 

analyses, full-length 16S rRNA genes were assembled using EMIRGE  and the resulting 

assemblies (hereafter “EMIRGE-assemblies”) used as a reference database for closed-

reference OTU-picking of metagenomic reads (“EMIRGE-community”). The taxonomic 

composition of both EMIRGE-assemblies and EMIRGE-communities were very different to 

the taxonomic composition obtained by MG-RAST SSU annotation (Figure 4.13). For 

example, both Proteobacteria and Acidobacteria comprised a larger proportion of the 

EMIRGE-community than of the MG-RAST annotations, and Acidobacteria were much more 

diverse in the EMIRGE-community than the MG-RAST annotations. EMIRGE additionally 

assembled 16S rRNA sequences belonging to rarer phyla such as candidate divisions OD1, 

OP11, OP3 and TM7, although candidate divisions made up a very small proportion of the 

community. Conversely, Firmicutes, Actinobacteria and Bacteroidetes made up a smaller 

proportion of the EMIRGE-community than of the MG-RAST annotations. It is likely that 
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many members of the candidate phyla and the Acidobacteria are missing from existing 16S 

rRNA databases, as these phyla were only discovered relatively recently (Ludwig et al. 1997; 

Hugenholtz et al. 2001) and lack cultured representatives (Hugenholtz et al. 1998; Kantor et 

al. 2013). Proteobacteria are relatively well studied, but are also highly diverse and so it is 

likely that many members remain to be discovered and added to sequence databases. 

Unlike ordination of the MGRAST-SSU annotations, ordination of EMIRGE bacterial 

communities did not reveal even a weak effect of treatment (Figure 4.14; Table 4.7). Although 

‘envfit’ did detect a significant relationship between community composition and peat water 

content, this relationship was not significant after removal of a single ‘outlier’ sample.  

Interestingly, OTUs belonging to the Actinobacteria appear to exhibit low values on the second 

axis, clustering with samples with low water content: this corresponds with the results of the 

ordination of SILVA-annotated reads, in which Actinobacteria appeared to cluster with 

droughted samples. The weaker effect of treatment on the EMIRGE-community compared to 

the community annotated using the MGRAST-SSU database seems to suggest that better-

studied bacterial taxa contained within the MGRAST-SSU database may respond more 

strongly to drought than do novel taxa whose 16S rRNA sequences were assembled using 

EMIRGE. 

4.4.6 Functional Composition 

Overall, protein metabolism was by far the most abundant SEED subsystem for both eukaryotic 

and bacterial genes, containing over 50% of annotated genes within both domains (Figure 4.15; 

Table 4.8). Within bacterial annotations, 60% of genes were involved in protein metabolism 

and 14% were involved in carbohydrate metabolism, with the remaining subsystems each 

comprising less than 3% of annotations. The extreme dominance of protein metabolism in 

functional annotations represents a very different pattern to previous soil metagenomic studies 

in which there is a more even spread of genes between subsystems and the most abundant 

SEED subsystems contain less than 20% of total annotations (Delmont et al. 2012; Bai et al. 

2014; Souza et al. 2015). The high proportion of functional annotations involved in protein 

metabolism could be indicative of nitrogen limitation, as microbial communities typically 

invest more in nitrogen-acquiring enzymes under conditions of nitrogen limitation (Sinsabaugh 

and Moorhead 1994) and there is some evidence that microbial carbon mineralisation in 

peatlands is nitrogen limited (Keller et al. 2006; Bragazza et al. 2012). However, other sources 
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suggest that phosphorus limitation may be more important (Hill et al. 2014). Alternatively, the 

high proportion of genes involved in protein metabolism could be due to a paucity of known 

genes in current databases. The majority of genes within the protein metabolism subsystem 

were SSU rRNA genes, and the importance of SSU rRNA as a marker gene in microbial 

ecology means that a larger number of SSU rRNA genes have been sequenced than functional 

genes or complete genomes. Within the five most abundant phyla, the proportion of genes 

within the protein metabolism subsystem increases as the number of genomes in the NCBI 

Genome Database (http://www.ncbi.nlm.nih.gov/genome/browse/; accessed 15/06/16) 

decreases. For example, 90.5% of annotated proteins within the Acidobacteria were assigned 

to the protein metabolism subsystem in comparison to 46.6% of annotated Proteobacteria 

genes; the NCBI Genome Database holds 34 and 31,547 genomes belonging to these two phyla, 

respectively. Quality filtering of annotations in the current study was much more stringent than 

many of the aforementioned studies, which used threshold identity cut-offs as low as 60% (e.g. 

Souza et al. 2015) rather than the 90% threshold used in the current study, and lower thresholds 

likely meant that genes belonging to unsequenced organisms could be assigned to distant 

homologues. Metagenomic annotation thus currently represents a trade-off between including 

poor quality and potentially erroneous annotations in analyses, or only being able to annotate 

a small proportion of each dataset. Such a trade-off highlights the need for continuing 

expansion of curated sequence datasets. 

Within the bacteria, carbohydrate metabolism was the next most abundant SEED subsystem 

after protein metabolism. Carbohydrate polymers dominate the carbon content of upper layers 

of peat (Lin et al. 2014a) and become degraded with increasing depth, although in bogs the 

process of decomposition is incomplete (Tfaily et al. 2013). In the current study, the most 

abundant carbohydrate metabolism subsystems at hierarchy level 2 were those involved in 

organic acid metabolism and CO2 fixation. In contrast, an earlier peat metagenomic study found 

genes for monosaccharide degradation to make up the majority of genes for carbohydrate 

metabolism (Lin et al. 2014b), implying that differences in peat chemistry between individual 

sites may drive differences in bacterial functional potential. Organic acids are likely present in 

bogs as a by-product of fermentation, which plays an important role in carbon flow in peatlands 

(Drake et al. 2009). The high proportion of genes for CO2 fixation was the result of genes 

involved in photosynthesis, and thus likely originated either from cyanobacteria DNA or from 

chloroplast DNA in undecomposed plant matter: chloroplasts originated as cyanobacterial 

http://www.ncbi.nlm.nih.gov/genome/browse/
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symbionts, and so many of the genes involved in photosynthesis within plant cells remain 

homologous to cyanobacteria (Martin et al. 2002). As photosynthesis is only feasible at the 

surface of the peat, this result might appear to suggest that DNA may be highly stable in peat 

ecosystems. However, a number of cyanobacteria are capable of heterotrophic growth (Smith 

1982), which would enable them to survive in underground peat. 

Few genes for nitrogen metabolism were found in the dataset, possibly reflecting the fact that 

phosphorus, rather than nitrogen, is the primary limiting nutrient in most peatlands (Hill et al. 

2014; Lin et al. 2014b). Of the nitrogen metabolising genes which were present, genes involved 

in ammonium assimilation were most abundant: ammonium is the dominant form of inorganic 

nitrogen in anoxic conditions (Vepraskas and Faulkner 2001). Genes for the utilisation of 

allantoin (a form of organic nitrogen which higher plants accumulate in tissue or release as root 

exudates) were even more abundant than genes for ammonia assimilation. Allantoin is rapidly 

degraded by microbial communities in rice paddy soil (Wang et al. 2007), but the relevance of 

allantoin in other soils and plants is currently poorly understood. 

Very few SEED subsystems passed abundance filtering prior to testing for the effects of time 

point and treatment, probably as a result of incomplete community coverage and of the limited 

number of reads which could be annotated (Section 4.3.1). Of the subsystems tested, only the 

gene for S12p (a ribosomal protein which is a part of the bacterial 30S subunit) showed a 

significant response to drought: abundances of the S12p gene were lower in droughted than 

control mesocosm cores at the fourth time point. The S12p gene was the only ribosomal gene 

to pass abundance filtering, and thus it is not possible to compare this result with other SSU 

genes. Unlike ribosomal RNA genes, ribosomal protein genes are rarely present in multiple 

copies (Yutin et al. 2012), and so it is possible that a change in the number of S12p genes in 

the rarefied data represents an increase in the mean genome size at this time point (although in 

this case similar patterns would be expected for other universal single-copy bacterial genes). 

However, the standard errors of the mean numbers of S12p genes at each time point were very 

large, making it difficult to draw firm conclusions about the behaviour of this gene. 

Significant relationships were found between the functional composition within the 

carbohydrate metabolism subsystem of bacteria and both redox potential and phenol oxidase 

activity (Figure 4.18; Table 4.9). It is possible that phenol oxidase activity acts as an indicator 

of the quality or degree of decomposition of organic matter: as decomposition proceeds, the 
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aromaticity and lignin content of litter increases as the content of labile carbon falls (Bray et 

al. 2012) and higher lignin content results in higher phenol oxidase activity (DeAngelis et al. 

2011). Meanwhile, the relationship between carbohydrate metabolism and redox potential 

could be caused by a reduction in anaerobic carbohydrate metabolism systems under oxic 

conditions: both methanogenesis and fermentation are included within the category of 

carbohydrate metabolism in the SEED hierarchy. There was no relationship between water 

table and the composition of the carbohydrate metabolism subsystem, but the significant effect 

of drought on redox potential (Chapter 2) means that changes to the gene composition within 

the carbohydrate metabolism subsystem could be linked to drought-driven changes in carbon 

release. However, the relationship between the composition of carbohydrate metabolising 

genes and phenol oxidase was only marginally significant (p=0.48), meaning that further 

investigation would be required before drawing firm conclusions about the effect of aromaticity 

on community functional potential.   

There are several possible explanations for the lack of changes in functional potential during 

drought. Firstly, changes to the taxonomic community composition during drought were weak 

(Section 4.4.3), and thus it seems that in the current study drought did not have a large effect 

on microbial communities. The weak effect of drought either indicates that peatland microbial 

communities are relatively resilient to short-term drought, or that the current methodology was 

unable to detect changes which did occur. A recent study suggests that a large proportion of 

DNA in soil is extracellular, and likely is a ‘relic’ of dead organisms (Carini et al. 2016). It is 

unknown how long relic DNA persists in the environment, but it may obscure changes 

occurring over short term experiments such as the current study. The problem of relic DNA is 

likely compounded by the effect of dormant cells: many bacteria are able to become dormant 

in order to survive drought and other environmental stresses (Jones and Lennon 2010; Manzoni 

et al. 2014). Future studies could potentially incorporate transcriptomic methods: RNA has a 

more rapid turnover rate and thus is likely to give a better indicator of the ‘active’ community. 

(Moran et al. 2013). Additionally, difficulties in the annotation of metagenomic reads may 

have obscured changes in taxonomy and functional potential within the dataset. Only a third of 

predicted proteins were able to be annotated by the MG-RAST webserver, and only a fraction 

of these annotations met the minimum threshold values for percentage identity and coverage. 

In addition, these annotations are likely to be biased towards genes found in either model 
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organisms or micro-organisms of economic or medical importance (such as plant or human 

pathogens). 

4.4.7 Abundance of genes involved in phenol degradation 

Phenol oxidase enzymes in peatlands are of particular interest due to the role they play in 

degradation of the phenolic compounds, which are one of the factors hypothesised to inhibit 

decomposition in peat (Freeman et al. 2001; Fenner and Freeman 2011). Other enzymes which 

may play a role in the aerobic decomposition of phenolic compounds include peroxidases, 

which are involved in the depolymerisation of lignin (Sinsabaugh 2010), and dioxygenases 

(Bugg 2003), a category which includes catechol dioxygenase. The role of phenol oxidases in 

the decomposition of peat organic matter is well known, while the role of other phenol-

degrading enzymes in peatlands has been less well-studied. However, peroxidases often exhibit 

high activities in peat (Jassey et al. 2012; Gittel et al. 2014), and are known to exert a strong 

influence on organic matter decomposition in non-peat soils (Tian and Shi 2014). Peroxidase 

activity is strongly positively correlated to the concentration of phenolic compounds in 

porewater, suggesting that peroxidase enzymes may play a role in the regulation of phenolic 

compounds in peatlands (Romanowicz et al. 2015). However, it should be noted that 

peroxidases are also abundant in plants and play a role in lignin biosynthesis (Passardi et al. 

2005). 

In the current study dioxygenases were the most abundant oxidoreductase domain: 

dioxygenases play important roles in the degradation of phenolic compounds, including the 

cleavage of catechol rings, but also catalyse a wide range of other reactions. Peroxidase and 

Cu-oxidase type 4 (a family including laccases) domains were also abundant (Figure 4.20). 

However, while peroxidase domains were abundant very few hits were found for lignin 

peroxidase (lip) and manganese peroxidase (mnp; Figure 4.20), two peroxidases which are 

important in fungal lignin degradation (Sinsabaugh 2010). Therefore, it is likely that the 

majority of peroxidase genes identified in the current study play non-degradative roles, a 

conclusion supported by the high proportion of peroxidase domains which were assigned to 

the Streptophyta (Table 4.10): plant peroxidases play a wide variety of roles including cell wall 

formation, protection from oxidative stress and regulation of signalling pathways (Passardi et 

al. 2005). A previous peatland metagenomic study similarly found Cu-oxidase type 4 to be by 

far the most abundant oxidase domain in a North American bog (Lin et al. 2014a), suggesting 
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that this enzyme family is important across a wide variety of peatlands. However, no study has 

yet combined metagenomic analyses with assays for both peroxidases and phenol oxidase, and 

so it is not possible to draw conclusions about whether the number of genes for these enzymes 

relates directly to their expression and activity. 

Drought did not significantly affect the abundance of oxidative genes in peat (Table 4.11), 

although prior to the application of corrections for multiple comparisons there was a significant 

effect of drought on peroxidase enzymes. However, in the current experiment no significant 

change in phenol oxidase activities was found (Chapter 2), suggesting that the degradation of 

phenolic compounds was not the main driver of drought-driven carbon dioxide release in the 

mesocosms used for the current study. A previous study found that drought significantly 

increased the abundance and diversity of catechol 2,3-dioxygenase as measured by community 

fingerprinting (Fenner et al. 2005), suggesting that the effect of drought on phenol oxidase 

genes may be context dependent. 

4.4.8 Abundance of genes involved in anaerobic metabolism 

Under normal conditions, the majority of the peat profile in a wetland is anoxic as oxygen is 

unable to penetrate more than a few centimetres into waterlogged peat (Askaer et al. 2010). 

Waterlogging implies that organisms must rely on alternative electron acceptors to oxidise 

organic matter, which may be either inorganic (anaerobic respiration) or organic 

(fermentation). Of the marker genes for anaerobic metabolism investigated in the current study, 

by far the most abundant was hydA, a hydrogenase involved in the H2-evolving, NADH-

regenerating step of fermentation (Figure 4.21). Previous research suggests that fermentation 

is an important pathway in peatlands (Keller and Bridgham 2007; Drake et al. 2009; Keller et 

al. 2009), and fermentation genes were also found to be abundant in an earlier peat 

metagenomic study (Lin et al. 2014a). Dissimilatory sulfite reductase (dsrA) was only present 

at a slightly higher relative abundance than copper-containing nitrite reductase (nirK) genes, 

contrary to previous results which have found dsrA to be much more abundant than nirK in 

peatlands (Lin et al. 2014a). Nitrate concentrations are normally extremely low in peatlands, 

presumably limiting the rate of denitrification (Knorr et al. 2009; Palmer et al. 2010). However, 

in the present study mean nitrate concentration in the bog at 5 cm was 8 µmol L-1 (Chapter 2), 

much higher than previous studies, likely enabling higher rates of denitrification than are 

usually observed. Low counts of particulate methane monooxyganase (pmoA) genes were also 



245 

 

 

uncovered in this study. Coupled with low methane fluxes (Chapter 2), low numbers of pmoA 

genes suggest that the bog mesocosm cores had comparatively low rates of methanogenesis. 

Measured redox potential values were considerably above the expected redox potential at 

which methanogenesis occurs (McBride 1994).  

The only anaerobic metabolism gene to show a significant effect of treatment was the 

hydrogenase hydA. HydA was less abundant in droughted than control mesocosm cores at the 

final time point, potentially suggesting that fermentative micro-organisms were outcompeted 

by aerobes during drought. However, a post-hoc Tukey test found only a marginally significant 

difference between the two treatments, which appeared to be due in part to a rise in copy 

numbers in the control treatment as well as a fall in the drought treatment (Figure 4.22). Further 

work would therefore be required to draw conclusions about the effect of drought on 

fermentation in peatlands. 

Despite the fact that two of the drought-affected OTUs described in Chapter 3 were affiliated 

with alkane-degrading bacteria, alkB (a gene involved in alkane degradation) did not respond 

to drought. However, the potentially alkane-degrading OTUs only responded to drought in the 

fen habitat, so it is possible that shotgun sequencing in the fen would have detected a significant 

effect of drought on the abundance of alkane hydroxylase genes.  

4.5 Conclusions 

1. The microbial community at 5cm in the Marchlyn Mawr bog was dominated by 

bacteria, but bacterial dominance was weaker than previous metagenomic studies of peatlands 

(Lin et al. 2014a). Abundant bacterial phyla were Proteobacteria, Acidobacteria, 

Actinobacteria, Firmicutes and Verrucomicrobia. 

2. The taxonomic composition of bacterial and fungal communities differed between 

mesocosm cores as a result of differences in the plant communities. The proportion of Archaea 

was also affected by mesocosm core. 

3. There was a weak effect of the drought treatment on the taxonomic composition of 

bacterial communities, and drought responses were seemingly conserved at phylum level: 

NMDS ordination plots show Actinobacteria and Proteobacteria to cluster with droughted 

samples, while Bacteroidetes clustered with control samples. However, there was no significant 

effect of drought on the abundances of any of these phyla. The functional potential of microbial 
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communities did not respond to drought, suggesting either that a large degree of functional 

redundancy occurs in peatland microbial communities or that the methodology employed was 

unable to detect changes. 

4. Neither genes for phenol oxidase nor genes for peroxidase enzymes exhibited 

significant changes in abundance during drought. However, the abundance of hydA (a 

hydrogenase involved in H2-evolving fermentation) was lower in droughted than control 

mesocosm cores at the final time point, potentially representing a reduction in the importance 

of fermentation under oxic conditions. 
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5.1 Introduction 

For much of the history of microbiology, the cultivation of microorganisms has been the 

primary method of studying the properties of bacteria and fungi. However, it has long been 

known that easily cultivable microorganisms make up only a tiny fraction of overall microbial 

diversity: only an estimated 0.01-1% of microorganisms observed under the microscope can 

be cultured on traditional media (Garza and Dutilh 2015). The development of high-throughput 

sequencing and its subsequent application to the development of culture-independent 

methodologies for the study of microbial communities has thus been hugely beneficial to our 

knowledge of microbial diversity. As explored in previous chapters of the current work, both 

marker gene analysis (Chapter 3) and metagenomics (Chapter 4) can be used to determine the 

taxonomic composition of microbial communities, both prokaryotic and eukaryotic; while 

metagenomics can additionally be used to infer functional potential. A further application of 

metagenomic sequencing is the ability to assemble genome sequences from uncultivable 

organisms. 

Given that many bacterial and archaeal taxa have no cultured representatives (McDonald et al. 

2012; Kantor et al. 2013), genome assembly from metagenomes presents an opportunity to 

understand the functional potential of these organisms. For example, a recent study was able 

to obtain a number of archaeal genomes through metagenomic sequencing of groundwater and 

sediment taken from an aquifer, including the first complete genomes to be obtained from two 

phyla (Castelle et al. 2015). Other studies have obtained genomes from uncultured bacteria in 

a wide variety of habitats, including aquifer sediment (Wrighton et al. 2012; Kantor et al. 

2013), cow rumens (Hess et al. 2011) and brackish water bodies (Hugerth et al. 2015). 

Information from genome assemblies could additionally be used to guide targeted culturing 

efforts (Garza and Dutilh 2015). For example, analysis of genomes from the SAR11 clade of 

plankton suggested that members of this group required a source of reduced sulfur for growth, 

and addition of reduced sulfur sources greatly increased the number of SAR11 cells in culture 

(Tripp et al. 2008). 

The assembly of partial or complete genomes from metagenomes involves several steps: raw 

reads are first assembled into ‘contigs’ (‘contiguous consensus sequences’), and contigs are 

then binned (i.e. grouped into clusters, or ‘bins’, based on their characteristics). Finally, the 

contigs within each genome may be extended and joined if possible. Each genome assembled 
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in this way represents a population rather than an individual (Sangwan et al. 2016). In recent 

years a great deal of progress has been made on the assembly of short metagenomic reads into 

contigs: a large number of assembly algorithms have been developed specifically for use on 

metagenomic datasets, with examples including MetaVelvet (Namiki et al. 2012), Ray Meta 

(Boisvert et al. 2012) and IDBA_UD (Peng et al. 2012). The rapid rate of change in the field 

of bioinformatics means that online forums such as blogs are additionally of interest, providing 

rapid comparisons of new assemblers (e.g. http://ivory.idyll.org/blog/2014-how-good-is-

megahit.html; accessed 11/03/2016). Algorithms for binning contigs into genomes are also 

improving: many early studies binned contigs based solely on tetranucleotide frequencies (e.g. 

Hess et al. 2011; Kantor et al. 2013) or similarity in coverage within one or few samples (e.g. 

Tyson et al. 2004), while more recent methods combine between-sample variations in coverage 

with sequence composition. The addition of detailed coverage information can significantly 

improve genome bins: contigs from the same genome are expected to show similar patterns of 

abundance across multiple-sample datasets (Sangwan et al. 2016). A number of algorithms 

now exist to carry out genome binning based on both patterns of abundance and sequence 

information: one of the earliest was CONCOCT (Alneberg et al. 2014). Comparisons of these 

algorithms are currently lacking (Sangwan et al. 2016), but undoubtedly will soon begin to 

appear in the literature. 

In peatlands, two areas of particular interest are anaerobic metabolism and the degradation of 

phenolic compounds. The mean redox potential of bog mesocosm cores in the current study 

varied between +223 and +355mV under control (non-drought) conditions, while the redox 

potential under oxic conditions is roughly +350-+600mV at pH 7 and slightly higher at lower 

pH values (McBride 1994), such as those measured in bog mesocosm cores. While these redox 

potentials are on the borderline between oxic and anoxic metabolism, bog mesocosm cores 

exhibited a positive methane flux under control conditions (Figure 2.6). Methanogenesis only 

occurs at very low redox potentials (typically -200mV or below), and so the presence of a 

positive methane flux may suggest that the bog habitat contained ‘micro niches’ with much 

lower redox potential than that measured (Blodau and Moore 2003; Knorr and Blodau 2009; 

Askaer et al. 2010). Additionally, there was a rise in concentrations of sulfate and nitrate during 

droughted conditions (Figure 2.15; Figure 2.16), potentially suggesting that sulphur and 

nitrogen are present in reduced forms under submerged conditions. Therefore, it is likely that 

at least some of the micro-organisms inhabiting peat would have pathways for anaerobic 

http://ivory.idyll.org/blog/2014-how-good-is-megahit.html
http://ivory.idyll.org/blog/2014-how-good-is-megahit.html
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metabolism, such as anaerobic respiration or fermentation. Reduction of nitrate, sulfate and 

ferric iron have all been observed to occur in peatlands (Keller and Bridgham 2007; Knorr and 

Blodau 2009), and fermentation also accounts for a large fraction of anaerobic metabolism in 

peatlands (Vile et al. 2003; Hamberger et al. 2008) 

The degradation of phenolic compounds is of interest due to the role played by phenolic 

compounds in inhibiting the degradation of organic matter from peatlands (Freeman et al. 

2001), and it has been shown that phenol oxidase enzymes play a role in the release of carbon 

dioxide from peatlands during drought (Freeman et al. 2001; Fenner and Freeman 2011). The 

cleavage of catechol rings is also an important step in the degradation of phenol by soil micro-

organisms, with catechol being a frequent intermediate in the degradation of phenol (Varga 

and Neujahr 1970). Cellulose degradation is also of potential interest: as an important structural 

compound of plant cell walls, cellulose is a highly abundant polymer in plant matter (Paul and 

Clark 1989). A highly simplified model of cellulose degradation involves the breakdown of 

polymeric cellulose into cellobiose (a disaccharide) by endo- and exocellulases. Cellobiose 

may then be taken up by microorganisms or broken down into glucose monomers by 

extracellular β-glucosidase enzymes. β-glucosidase commonly increases in activity following 

drought, and may thus be involved in increased microbial carbon cycling and carbon dioxide 

release following peatland water table drawdown (Fenner and Freeman 2011). 

Aims and Objectives of Chapter 

The aim of this chapter was to assemble prokaryotic genomes from the metagenomes described 

in Chapter 4 in order to better understand the metabolic potential contained within 

metagenome-assembled genomes in the bog mesocosm cores taken from Marchlyn Mawr, both 

under normal conditions and during a simulated drought. Specific objectives were: 

1. To infer the metabolic potential of prokaryotic populations inhabiting the bog 

environment, with particular focus on anaerobic metabolism and the degradation of 

phenolic compounds and cellulose 

2. To identify whether functional potential is conserved at phylum level in peatland 

environments   

3. To identify metagenome-assembled genomes (MAGs) which respond to drought 
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5.2 Methods 

5.2.1 Sequence data 

The shotgun metagenome sequence dataset described in the current chapter is the same as that 

in Chapter 4. The dataset represents a replicated time series: ten bog mesocosm cores were 

sampled regularly over a period of approximately six months, with half subjected to a simulated 

drought and half maintained at high water table (Chapter 2). DNA extracted from samples 

taken at five time points was shotgun sequenced on an Illumina HiSeq 2500 in Rapid Run mode 

(Chapter 4).  

5.2.2 Contig Assembly and Binning 

Contigs were assembled from paired-end reads using MEGAHIT (Li et al. 2015) with the 

‘meta’ parameter combination (recommended for general assembly from metagenomes). Next, 

the CONCOCT algorithm (Alneberg et al. 2014) was used to bin contigs into genomes. 

CONCOCT combines information about sequence composition (tetranucleotide frequencies) 

with coverage information across multiple samples, as contigs originating from the same 

genome will share similar distribution patterns. The current dataset is highly appropriate for 

CONCOCT, as it represents a time series of samples taken from discrete mesocosm cores: this 

experimental design is expected to generate variations in coverage between both different 

sampling time points and different mesocosm cores. To achieve optimum results when binning 

with CONCOCT, short contigs (<2000bp) were first removed. Next, contigs of 20,000 base 

pairs or longer were fragmented into sections 10,000 base pairs long, with the exception of the 

final section of each contig which remained appended to the previous section to avoid 

generating contigs <10,000bp long. Secondly, the raw reads from each sample were mapped 

onto the contig sections using BWA-MEM with default parameters (Li and Durbin 2009). The 

BAM files generated by BWA-MEM were used to create a coverage file for input into 

CONCOCT. The CONCOCT algorithm was then run with default parameters in order to cluster 

contigs into what will hereafter be termed ‘metagenome-assembled genomes’ or MAGs.  

In order to estimate the completeness of each MAG, copy numbers of 36 single copy, 

universally conserved COGs (Single Copy Genes; hereafter SCGs) within each MAG were 

calculated as follows. Predicted protein-coding regions were extracted and translated using 
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Prodigal (Hyatt et al. 2010). Domains belonging to 

COGs were found within predicted protein sequences 

using RPS-BLAST v2.3.0 (Camacho et al. 2009) and 

the “Cog_LE” database of conserved domains 

(ftp://ftp.ncbi.nih.gov/pub/mmdb/cdd/little_endian/).  

The number of SCGs were then counted. A list of COGs 

considered to be SCGs is given in List 5.1. 

As the majority of the current analysis focused on 

complete and uncontaminated MAGs (i.e. those which 

contained single copies of all 36 SCGs), complete 

MAGs were visualised using anvi’o (Eren et al. 2015). 

Abundance profiling was carried out for all contigs 

belonging to near-complete MAGs based on the same 

BAM files as those used for binning in CONCOCT. 

Results of CONCOCT clustering (described above) 

were imported using the command ‘anvi-import-

collections’, and both mean coverage and variability of 

all MAGs was visualised using the ‘anvi-interactive’ 

interface.  

5.2.3 Taxonomy, Distribution and Functional 

Potential of MAGs 

To assign MAGs taxonomically, all MAGs containing 

33 or more SCGs (i.e. MAGs that were >90% complete) 

were used as input for phylogenetic tree reconstruction 

in PhyloPhlAn (Segata et al. 2013), using the reference 

database within PhyloPhlAn as the reference. Given the 

large number of MAGs which were assigned to the 

Acidobacteria and the relatively small number of 

Acidobacteria in the PhyloPhlAn reference database, an 

additional tree was generated for this phylum using 

twenty-eight genomes downloaded from the NCBI 

List 5.1: Single copy, 

universally conserved COGs 

(SCGs) which were used to 

assign the completeness of each 

MAG. List taken from 

https://github.com/BinPro/CON

COCT/blob/master/scgs/scg_cog

s_min0.97_max1.03_unique_gen

era.txt; accessed 05/04/2016. 
 

COG0016 

COG0048 

COG0049 

COG0051 

COG0052 

COG0060 

COG0072 

COG0080 

COG0081 

COG0087 

COG0088 

COG0089 

COG0090 

COG0091 

COG0092 

COG0093 

COG0094 

COG0096 

COG0097 

COG0100 

COG0102 

COG0103 

COG0130 

COG0184 

COG0185 

COG0186 

COG0197 

COG0198 

COG0200 

COG0201 

COG0244 

COG0256 

COG0504 

COG0532 

COG0541 

COG0552 

 

https://github.com/BinPro/CONCOCT/blob/master/scgs/
https://github.com/BinPro/CONCOCT/blob/master/scgs/
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genome database as reference sequences. Protein-coding amino acid sequences within the 

downloaded genomes were predicted with Prodigal (Hyatt et al. 2010), and the tree was 

generated using PhyloPhlAn. 

The mean coverage across all contigs within each MAG in each sample was calculated using 

the script “ClusterMeanCov.pl” which is packaged with CONCOCT (Alneberg et al. 2014). 

The coverages of all MAGs were used to generate an NMDS ordination of all samples 

(command ‘metaMDS’ within R package VEGAN (Oksanen et al. 2015)). Additionally, 

PERMANOVA was carried out (command ‘adonis’). To examine relationships between the 

distributions of near-complete MAGs which shared functional characteristics, NMDS 

ordination was additionally carried out using the coverages of only near-complete MAGs as 

input. 

The MAGs which contained single copies of all SCGs were selected for further analysis of 

genome-scale functional potential. Gene annotation was carried out using blastx in DIAMOND 

v0.7.11 (Buchfink et al. 2015) with default parameters against the KEGG gene database (Ogata 

et al. 1999). KEGG gene annotations were used to generate a list of the KEGG ontology 

identifiers present in each MAG, which was then used as input to the KEGG Mapper webserver 

(http://www.genome.jp/kegg/tool/map_pathway1.html). Pathways of interest were inspected 

manually.  

In the current chapter, particular emphasis was given to pathways of anaerobic metabolism, 

including three types of anaerobic respiration: dissimilatory nitrate reduction to ammonium 

(DNRA), dissimilatory sulfate reduction and iron reduction. The presence of pathways for 

dissimilatory nitrate and sulfate reduction, as well as fermentation, were inferred based on the 

output of the KEGG mapper. However, as the KEGG Mapper does not specifically cover iron 

reduction, a BLAST search was carried out to identify homologues of two outer membrane 

bound cytochromes involved in the reduction of ferric iron, omcB and omcS (Weber et al. 

2006). Proteins belonging to omcB and omcS were downloaded from the UniProt database and 

used to generate a BLAST database. Translated predicted protein-coding sequences output by 

Prodigal (Section 5.2.2) were searched against the database of omcB and omcS sequences using 

blastp (v2.3.0; Camacho et al. 2009). 

 

 

http://www.genome.jp/kegg/tool/map_pathway1.html
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Figure 5.1: Diagrams showing the biochemical reactions catalysed by catechol oxidase 

(A), laccase (B) and tyrosinase (C). Molecules were drawn using R package ‘rcdk’ v3.3.2 

(Guha 2007). 

 

Due to the importance of phenol oxidase and glycoside hydrolase enzymes in decomposition, 

protein sequences corresponding to both these categories were downloaded from the UniProt 
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database and used to generate custom BLAST databases (Consortium 2015). Phenol oxidase 

protein sequences were downloaded if they were taxonomically assigned to bacteria and 

corresponded to one of the following EC numbers: EC 1.10.3.1 (catechol oxidase), EC 1.10.3.2 

(laccase) and EC 1.14.18.1 (tyrosinase). These three enzymes were chosen as they represent 

well-characterised phenol oxidases, and the reactions catalysed by each of these enzymes are 

shown in Figure 5.1. In order to find potential cellulase genes, glycoside hydrolase protein 

sequences were identified as those which were cross-referenced to glycoside hydrolase families 

in the CAZy database (Lombard et al. 2014). Blastp (v2.3.0; Camacho et al. 2009) was used to 

find matches to the phenol oxidase and glycoside hydrolase protein sequences in translated 

predicted protein sequences (output by Prodigal, section 5.2.2). Following Berlemont & 

Martiny (2013), β-glucosidases were defined as genes belonging to families GH1 and GH3 

within the CAZy database, and endo- and exocellulases were defined as genes belonging to 

families GH5, GH6, GH9, GH12, GH44, GH45 and GH48. To estimate the subcellular location 

of the obtained phenol oxidase genes, protein sequences which were identified as phenol 

oxidase genes were input into the Gneg-mPloc webserver if they came from an MAG assigned 

to another phyla (Shen and Chou 2010). Gneg-mPloc infers the subcellular location of proteins 

based on homology to other proteins in the SwissProt database where possible. Gneg-mPloc is 

limited to the gram-negative bacteria, but all MAGs that contained hits to the phenol oxidase 

genes were assigned to phyla of gram-negative bacteria. Where significant homology to other 

proteins in the SwissProt database does not exist, the subcellular location is inferred based on 

the subcellular locations of matching functional domains and modelling of the evolutionary 

history of a protein (Shen and Chou 2010). 

5.2.4 Functional Potential of Phyla 

To examine functional differentiation between phyla, an NMDS plot was generated using a 

matrix with the number of proteins assigned to each KEGG orthologue (KO) as the ‘species’ 

and each near-complete MAG as a ‘sample’. NMDS plots were based on Bray-Curtis 

dissimilarity (function ‘metaMDS’ in R package VEGAN (Oksanen et al. 2015)). 

PERMANOVA was then applied to test the significance of between-phylum differences 

(function ‘adonis’ from R package VEGAN). 

 

 



271 

 

 

Table 5.1: Properties of all MAGs which contained single copies of 35 or 36 SCGs (out of 

a total of 36). Tax.Conf.: confidence level given to taxonomic assignment by PhyloPathia. 

Cov. (coverage) refers to total coverage across all samples. 

MAG No. of 

Contigs 

No. of 

SCGs 

Taxonomy Tax. 

Conf. 

Cov. 

C100 441 36 Bacteria; Nitrospirae; Nitrospira; Nitrospirales; 

Nitrospiraceae 

High 30.6 

C106 315 36 Bacteria; Bacteroidetes Low 11.2 

C153 303 36 Bacteria; Verrucomicrobia; Verrucomicrobiae; 

Verrucomicrobiales 

High 18.0 

C155 310 36 Bacteria; Bacteroidetes Medium 12.9 

C184 365 36 Bacteria; Acidobacteria; Acidobacteria; 

Acidobacteriales; Acidobacteriaceae 

High 20.5 

C239 303 36 Archaea; Euryarchaeota; Methanomicrobia; 

Methanomicrobiales; Methanoregulaceae 

High 9.3 

C33 256 36 Bacteria; Bacteroidetes Medium 16.5 

C351 410 36 Bacteria; Acidobacteria; Acidobacteria; 

Acidobacteriales 

High 12.6 

C364 462 36 Bacteria; Proteobacteria; Gammaproteobacteria; 

Xanthomonadales; Xanthomonadaceae 

Low 17.3 

C398 154 36 Bacteria; Firmicutes; Negativicutes; 

Selenomonadales; Veillonellaceae 

High 13.3 

C399 151 36 Bacteria;  Acidobacteria; Acidobacteria; 

Acidobacteriales; Acidobacteriaceae 

High 22.7 

C417 308 36 Bacteria; Acidobacteria; Acidobacteria; 

Acidobacteriales 

High 24.9 

C443 211 36 Bacteria; Proteobacteria; Betaproteobacteria Low 20.6 

C78 626 36 Bacteria; Proteobacteria; Deltaproteobacteria; 

Myxococcales 

High 16.3 

C84 387 36 Bacteria; Acidobacteria High 19.6 

C104 187 35 Bacteria; Acidobacteria; Acidobacteria; 

Acidobacteriales; Acidobacteriaceae 

High 22.7 

C129 662 35 Bacteria; Acidobacteria; Acidobacteria; 

Acidobacteriales 

High 65.0 

C207 259 35 Bacteria; Bacteroidetes High 10.4 

C285 346 35 Bacteria; Acidobacteria; Acidobacteria; 

Acidobacteriales; Acidobacteriaceae 

High 11.6 

C291 546 35 Bacteria; Acidobacteria High 18.8 

C303 425 35 Bacteria; Nitrospirae; Nitrospira; Nitrospirales; 

Nitrospiraceae 

High 12.7 

C330 510 35 Bacteria; Acidobacteria; Acidobacteria; 

Acidobacteriales; Acidobacteriaceae 

High 18.9 

C344 286 35 Bacteria; Acidobacteria; Acidobacteria; 

Acidobacteriales 

High 17.0 

C355 506 35 Bacteria; Acidobacteria; Acidobacteria; 

Acidobacteriales 

High 14.4 

C437 736 35 Bacteria; Proteobacteria; Gammaproteobacteria; 

Xanthomonadales; Xanthomonadaceae 

Low 22.1 

C52 409 35 Bacteria; Bacteroidetes; Bacteroidia; Bacteroidales High 10.4 

C87 562 35 Bacteria; Chloroflexi; Ktedonobacteria; 

Ktedonobacterales 

Low 11.7 
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To find out which KOs were significantly different between the three phyla which contained 

the most MAGs (Acidobacteria, Proteobacteria and Bacteroidetes), generalised linear models 

with Poisson distributions were fitted on the abundances of each KO that was present in at least 

five MAGs (KOs which were present in fewer MAGs were excluded in order to avoid spurious 

relationships). Significant differences were determined based on analysis of deviance, and 

corrected for multiple comparisons using Benjamini-Hochberg corrections. Where significance 

was found, Tukey’s post-hoc tests were carried out and only cases where post-hoc significance 

was found were examined further. 

5.2.5 Effect of Drought on MAGs 

Mean coverage values for all MAGs, regardless of the number of SCGs they contained, were 

calculated based on BWA mapping of reads to contigs (Section 5.2.2). MAG coverage values 

were used to generate NMDS plots using R package ‘VEGAN’ (command ‘metaMDS’) with 

default parameters. Two separate PERMANOVA tests were run (command ‘adonis’): one to 

test for an interaction effect between time point and treatment, and one to test for the main 

effect of core. Next, generalised linear models with Poisson distributions were fitted to test for 

the effect of drought on individual MAGs: in each case, both core and the interaction effect 

between time point and treatment were included as independent variables. Model statistics were 

extracted and the resulting p-values adjusted using Benjamini-Hochberg corrections. 

5.3 Results 

5.3.1 Contig Assembly and Binning 

Assembly with MEGAHIT generated a total of 9,875,881 contigs ranging in size from 200bp 

to 192,198bp with an N50 of 832. Of these, a total of 419,522 contigs were >2,000bp in length, 

representing a total of 1.75 billion base pairs. Clustering of all contigs >2,000bp in CONCOCT 

gave 445 clusters in total. When thirty-six SCGs were used to assess the completeness of each 

MAG (List 5.1), 15 MAGs contained a single copy of all SCGs and a further 12 contained 

single copies of all but one (Table 5.1). Hereafter, the 27 MAGs containing 35 or 36 SCGs will 

be referred to as ‘near-complete MAGs’. The coverage patterns of contigs within a given near-

complete MAG were highly similar (Figure 5.2), although there were exceptions: for example, 

a particular subset of contigs assigned to C84 showed high coverages in sample T2-B9 while 
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the coverage of other contigs within this MAG was much lower (leading to anvi’o clustering 

these contigs with C443 and C78 rather than C84). Overall coverage values for each near-

complete MAG are given in Table 5.1. Variability in coverage within contigs was low in almost 

all cases (Figure 5.3), suggesting that assembly with MEGAHIT was successful in yielding 

non-chimeric contigs. 

 

Figure 5.2: Anvi’o plot showing mean coverage across each contig in all samples within 

the dataset as well as mean GC content. Each radius (line from the centre to the outside of 

the circle) represents the properties of a single contig. In the outer fifty rings, colour intensity 

of a given radius represents coverage of that contig within each of the fifty samples sequenced, 

while in the ring labelled ‘GC-content’, the height of the green bar within each radius represents 

average GC content within each contig. Ordering of contigs is based upon hierarchical 

clustering within anvi’o, based on coverage and GC content, and this clustering is shown in the 

tree in the centre. Different coloured ‘slices’ represent different MAGs, each consisting of 

numerous contigs. 
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Figure 5.3: Anvi’o plot showing mean variance in coverage across each contig in all 

samples within the dataset as well as mean GC content. Each radius (line from the centre to 

the outside of the circle) represents the properties of a single contig. In the outer fifty rings, 

colour intensity of a given radius represents the level of variation in coverage of that contig 

within each of the fifty samples sequenced, while in the ring labelled ‘GC-content’, the height 

of the green bar within each radius represents average GC content within each contig. Ordering 

of contigs is based upon hierarchical clustering within anvi’o, based on coverage and GC 

content, and this clustering is shown in the tree in the centre. Different coloured ‘slices’ 

represent different MAGs, each consisting of numerous contigs. 
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Figure 5.4: Phylogenetic tree of phylum Acidobacteria, depicting both Acidobacteria 

taken from the NCBI Genome database and all near-complete MAGs that were assigned 

to Acidobateria. All MAGs which were assigned to Acidobacteria and which contained 33 or 

more SCGs were included in the tree, meaning that the total number of MAGs (clusters) is 

greater than that shown in Table 5.1.  The phylogeny was generated by PhyloPhlAn (Segata et 

al. 2013) and visualised in FigTree (http://tree.bio.ed.ac.uk/software/figtree/). The scale bar 

represents the estimated number of changes per site for a unit of branch length. 
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5.3.2 Taxonomy, Distribution and Functional Potential of MAGs 

The majority of near-complete MAGs were assigned to domain Bacteria, although a single 

MAG was assigned to the Archaea (C239; Table 5.1). A large proportion of near-complete 

MAGs were assigned to phylum Acidobacteria: a total of 12 MAGs. Other near-complete 

MAGs were assigned to phyla Bacteroidetes (5 MAGs), Proteobacteria (4), Nitrospirae (2), 

Firmicutes (1), Verrucomicrobia (1) and Chloroflexi (1). Of the MAGs assigned to 

Acidobacteria, several formed clusters distinct from all previously sequenced genomes on the 

phylogenetic tree, suggesting that they may represent novel diversity within phylum 

Acidobacteria (Figure 5.4). 

NMDS ordination based on the coverage of all MAGs suggested a strong effect of core (Figure 

5.5A), but with no noticeable effect of treatment or time (Figure 5.5B). Likewise, 

PERMANOVA found no significant effect of the interaction between time point and treatment 

(F4=0.3, p=1.0), and a second PERMANOVA test found that community composition was 

significantly different between mesocosm cores (F9=8.9, p=0.001, R2 =0.7). 

 

 

Figure 5.5: NMDS ordination of samples based on mean coverage of all MAGs, with 

colours representing (A) core and (B) treatment. 
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Figure 5.6: Heatmap depicting mean coverage of each near-complete MAG within each 

sample. 

 

The 27 near-complete MAGs were selected for further analysis of their distribution patterns 

and genome-scale functional potential. Each near-complete MAG showed a unique distribution 

pattern (Figure 5.6). Some MAGs were present at high abundances in a single sample but were 

absent or rare in other samples: for example, C239 was only abundant in sample T7-B10 and 

C52 was only abundant in sample T4-B3 (Figure 5.6). Others appeared to be most abundant in 

a single core: in particular, C399 was abundant in core B1 but only present at low abundances 

elsewhere. 
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Table 5.2: Functional potential for nitrogen metabolism within each near-complete MAG, 

as predicted by the KEGG Mapper using KO annotations. 

 Assimilatory Reduction Dissimilatory Reduction Denitrification Nitrogen Fixation 

MAG Nitrate Nitrite Nitrate Nitrite  

C78 Y N N N N N 

C84 N N N Y norBC, nosZ N 

C100 N Y Y Y narGHIJ, 

napAB, nirK 

nifK, nifH 

C106 N N N N norBC N 

C153 N N N N N N 

C155 N N N Y N nifD, nifH, nifK 

C184 N N N Y nirK nifD, nifH, nifK 

C239 N N N Y N nifH 

C33 N N N N nirK N 

C351 N N N Y nosZ N 

C364 N N N Y nirK N 

C398 Y N N Y N nifD, nifH, nifK 

C399 N N N Y N N 

C417 N N N Y N N 

C443 Y N Y Y narGHIJ nifD, nifH, nifK 

C104 N Y N Y norBC nifD, nifH, nifK 

C129 N N N N N N 

C207 N N N N N nifD, nifH, nifK 

C285 N N N N N nifD, nifH, nifK 

C291 N N N Y N N 

C303 N N Y Y narGHIJ, 

norBC 

nifD, nifH, nifK 

C330 N N N N N nifD, nifH, nifK 

C344 Y N Y Y narGHIJ, 

napAB, norBC 

N 

C355 N N N Y N N 

C437 N N N N N N 

C52 N N N N norBC nifD, nifH, nifK 

C87 N N N Y nirK N 

 

Near-complete MAGs represented a wide variety of lifestyles. One MAG, C239, was a putative 

methanogen: C239 lacked genes for proteins in both the electron transport chain and the TCA 

cycle and possessed a complete pathway for hydrogenotrophic methanogenesis, as well as for 

acetoclastic methanogenesis. Numerous other MAGs possessed genes for pathways of 

anaerobic respiration (Table 5.2-5.4) or fermentation (Table 5.5): four contained genes for all 

enzymes in pathways of dissimilatory nitrate reduction to ammonium (DNRA) and 

dissimilatory sulfate reduction/oxidatation (C100, C443, C303, C344), and one contained 

genes for a complete pathway of dissimilatory sulfate reduction but not DNRA (C104). 

Additionally, sixteen MAGs contained at least one pathway for fermentation (Table 5.5). Six 
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non-methanogenic MAGs were missing one to two genes for enzymes involved in the TCA 

cycle (also known as the Krebs or citric acid cycle): these MAGs were C100, C398, C443, 

C129, C207 and C303. Five of the MAGs which were lacking genes from the TCA cycle 

contained pathways for DNRA and/or dissimilatory sulfate reduction. 

 

Table 5.3: Details of hits to omcB and omcS, two outer-membrane cytochromes involved 

in reduction of ferric iron. Protein sequences of all known omcB and omcS sequences were 

downloaded from UniProt, and predicted protein sequences within each MAG were searched 

using blastp (see main text).  

  Top Hit    

Cluster Number of Hits UniProt ID % ID E-value Gene 

C129 1 A0A0M2HVV5 31.1 4.19E-35 omcB 

C303 7 B5EHF0 40.0 7.24E-18 omcS-3 

  A0A0A8WLR3 27.7 3.41E-06 omcB 

  Q74A86 40.8 3.28E-18 omcS 

  B5EHE9 43.6 3.75E-73 omcS-2 

  Q74A86 40.7 4.94E-92 omcS 

  A0A0K6L084 28.7 9.03E-24 omcB 

  Q749K5 30.2 1.10E-54 omcB 

C153 3 A0A0F2C7U7 36.8 3.47E-08 omcB 

  A0A0F2C7U7 26.3 1.27E-07 omcB 

  Q749K5 25.7 4.91E-06 omcB 

C351 3 A0A0F2C7U7 35.4 5.51E-09 omcB 

  A0A0F2C7U7 36.9 4.11E-06 omcB 

  A0A0F2C7U7 32.6 1.82E-64 omcB 

C417 3 A0A0M2HVV5 33.1 5.24E-06 omcB 

  A0A0M2HVV5 36.6 3.26E-11 omcB 

  A0A0M2HVV5 33.5 9.40E-35 omcB 

C78 1 A0A0F2C7U7 31.0 8.94E-08 omcB 

C104 2 Q749K5 30.7 2.11E-07 omcB 

  Q749K5 24.3 2.11E-08 omcB 

C344 2 A0A0A8WLR3 33.3 7.39E-06 omcB 

  A0A0F2C7U7 34.3 2.03E-09 omcB 

C437 1 A0A0F2C7U7 38.5 1.27E-13 omcB 

      

 

The genetic potential of each MAG for nitrogen metabolism is summarised in Table 5.2. Of 

particular note was the fact that seventeen MAGs possessed pathways for dissimilatory 

reduction of nitrite to ammonia but only four possessed the ability to reduce nitrate to nitrite. 

Relatively few MAGs possessed genes for assimilatory reduction of nitrate or nitrite to 

ammonia: four contained genes for assimilatory nitrate reduction and two contained genes for 
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assimilatory nitrite reduction. No MAG was found to contain genes for assimilatory reduction 

of both nitrate and nitrite. Twelve MAGs possessed at least one gene involved in 

denitrification, but none contained the complete pathway for denitrification. Ten MAGs 

possessed homologues to all three genes (nifD, nifH and nifK) coding for the subunits of the 

nitrogenase molybdenum-iron protein (Table 5.2). 

 

Table 5.4: Functional potential for sulfur metabolism within each near-complete MAG, 

as predicted by the KEGG Mapper using KO annotations. N = not present, Y = present, 

and P = partially present. ‘Dissimilatory reduction/oxidation’ refers to a pathway of three 

genes: sat, aprAB and dsrAB, and this pathway was considered present if at least one gene for 

each enzyme were found. The ‘assimilatory reduction’ pathway refers to a pathway of four 

steps, catalysed by the enzymes PAPSS/sat/cysND, PAPSS/cysC, cysH and cysJI/sir (where ‘/’ 

indicates that either enzyme may catalyse a relevant step), and was considered present if at 

least one gene for an enzyme catalysing each step was found. 

MAG Assimilatory 

reduction 

Dissimilatory 

reduction/oxidation 

Sulphur oxidation 

C78 P: APS -> PAPS N soxB, soxD 

C84 Y N soxD 

C100 P: Sulfate -> PAPS Y N 

C106 P: Sulfate -> PAPS N soxD 

C153 Y N soxD 

C155 N N N 

C184 Y N soxD 

C239 P: PAPS -> sulfite P: APS -> sulfite N 

C33 Y N soxD 

C351 Y N soxC 

C364 Y N soxY, soxD 

C398 P: Sulfate -> PAPS P: APS -> sulfide N 

C399 Y N soxD 

C417 Y N soxD 

C443 N Y soxA, soxB, soxD, soxY, soxZ 

C104 P: Sulfate -> PAPS Y N 

C129 P: Sulfite -> sulfide N soxD 

C207 Y N N 

C285 P: Sulfite -> sulfide N soxD 

C291 Y N soxC, soxD 

C303 Y Y soxD 

C330 P: PAPS -> sulfite N N 

C344 N Y soxD 

C355 Y N soxD 

C437 Y N soxD 

C52 Y N soxD 

C87 Y N N 
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Table 5.5: Functional potential for fermentation of pyruvate to lactate, acetate and 

propionate within each near-complete MAG, as predicted by the KEGG Mapper using 

KO annotations. N = not present, Y = present, and P = partially present. Following reactions 

within the MetaCyc database (Caspi et al. 2014), fermentation reactions were defined as 

follows. Fermentation of pyruvate to lactate was defined as EC 1.1.1.27; fermentation of 

pyruvate to acetate was defined as EC 2.3.1.8 + EC 2.7.2.1/EC 3.6.1.7 or EC 1.2.7.1 + EC 

6.2.1.13; fermentation of pyruvate to propionate was defined as EC 1.1.1.37 + EC 4.2.1.2 + EC 

1.3.5.4 + EC 2.8.3.- or EC 2.8.3.- + EC 4.2.1.54 + EC 1.3.1.95 + EC 2.8.3.1. 

Cluster Pyruvate -> 

Lactate 

Pyruvate -> 

Acetate 

Pyruvate -> Propionate 

C100 N Y N 

C104 Y Y P: Pyruvate -> Succinate 

C106 N N N 

C129 N N N 

C153 N Y P: Pyruvate -> Succinate 

C155 Y Y N 

C184 N Y N 

C207 Y Y P: Pyruvate -> Succinate 

C239 Y N P: Pyruvate -> Succinate 

C285 Y N P: Pyruvate -> Succinate 

C291 Y N N 

C303 N N P: Pyruvate -> Succinate 

C33 N N N 

C330 N N P: Pyruvate -> Succinate 

C344 Y Y N 

C351 N N N 

C355 N N P: Pyruvate -> Succinate 

C364 N N N 

C398 Y Y Y 

C399 N Y N 

C417 Y N N 

C437 N Y N 

C443 N N N 

C52 N Y N 

C78 N N N 

C84 N Y N 

C87 N N P: Pyruvate -> Succinate 

 

As omcB and omcS are both outer membrane bound cytochromes involved in iron reduction, a 

database comprising both genes was generated and predicted protein-coding sequences from 
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each MAG were searched against the database using blastp. A number of hits were obtained 

(Table 5.3), but the percentage identity of all hits was weak. 

Table 5.6: Functional potential for two steps of methanotrophy (methane oxidation) 

within each near-complete MAG, as predicted by the KEGG Mapper using KO 

annotations. 

Cluster Methane => Methanol Methanol => Formaldehyde 

C78 N N 

C84 N N 

C100 N N 

C106 N Y 

C153 N N 

C155 N N 

C184 N N 

C239 N N 

C33 N N 

C351 N N 

C364 N Y 

C398 N N 

C399 N N 

C417 N N 

C443 N N 

C104 N N 

C129 N N 

C207 N N 

C285 N N 

C291 N Y 

C303 N N 

C330 N N 

C344 N N 

C355 N N 

C437 N Y 

C52 N N 

C87 N Y 

 

All but three MAGs contained genes for the full or partial pathway of assimilatory sulfate 

reduction, while seven contained genes for dissimilatory sulfate reduction/oxidation and five 

contained the complete pathway for dissimilatory reduction/oxidation of sulfate (Table 5.4). 

Nineteen MAGs contained at least one gene within the sox operon, of which the most common 

was soxD. However, only C443 contained the full sox operon (Table 5.4). 
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No MAG contained the genetic potential for methane oxidation: none contained genes for 

enzymes to convert methane to methanol, although five the contained genetic potential for 

conversion of methanol to formaldehyde (Table 5.6).  

 

Table 5.7: Details of hits to the phenol oxidase genes laccase and tyrosinase. Protein 

sequences of known omcS sequences were downloaded from uniptot, and predicted protein 

sequences within each MAG were searched using blastp (see main text). Cellular locations of 

proteins which were matched to phenol oxidase genes were predicted using Gneg-mPLoc. 

MAG Total Cellular Location 
C106 1 Periplasm (1) 
C153 0  
C78 1 Periplasm (1) 
C84 2 Periplasm (1), cell inner membrane (1) 
C100 0  
C155 0  
C184 4 Periplasm  (4) 
C239 0  
C33 0  
C351 4 Periplasm (4) 
C364 5 Periplasm (4), cell inner membrane (1) 
C398 0  
C399 0  
C417 9 Periplasm (9) 
C443 1 Periplasm (1) 
C104 0  
C129 1 Periplasm (1) 
C207 0  
C285 0  
C291 2 Periplasm (2) 
C303 2 Periplasm (1), cell inner membrane (1) 
C330 0  
C344 5 Periplasm (5) 
C355 2 Periplasm (2) 
C437 3 Periplasm (3) 
C52 1 Cell inner membrane (1) 
C87 1 Cell inner membrane (1) 

 

An NMDS ordination of sites based on only the near-complete MAGs showed a gradient of 

roughly increasing redox potential moving from right to left on the first axis. At low values on 

the first axis, there was also a trend of increasing redox potential when moving from low to 

high values on the second axis (Figure 5.7A). In addition, there was strong clustering of 

samples by core (data not shown). The MAGs themselves clustered by lifestyle in some cases: 

for example, four MAGs (C344, C100, C443, and C303) which contained complete pathways 

for both dissimilatory nitrate and sulfate reduction clustered together at the right hand side of 

the plot (Figure 5.7B; Figure 5.7C). The sole MAG containing the potential for methanogenesis 
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(C239) was plotted in the top right-hand corner, distinct from all other MAGs. However, the 

MAGs containing complete pathways for fermentation did not form obvious clusters (Figure 

5.7D; Figure 5.7E). 

The total number of glycoside hydrolase genes (a group which contains cellulases) in each 

MAG varied from 11 to 169. All MAGs contained β-glucosidase genes (Figure 5.8A), but four 

were lacking in genes for the breakdown of endo- and exocellulases (Figure 5.8B). All four of 

the MAGs which contained no predicted endo- or exocellulase genes possessed pathways for 

anaerobic respiration or fermentation (Figure 5.8B). The MAGs with the most genes for β-

glucosidases did not necessarily correspond to the MAGs which contained the most endo- and 

exocellulase genes or the most phenol oxidase genes. 
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Figure 5.7: NMDS ordination of (A) samples and (B-E) MAGs, based on near-complete 

MAGs only. In plots B-E, MAG names are coloured ordering to the presence (red) or absence 

(red) of the fuctional potential for various traits: (B) complete dissimilatory nitrate reduction 

pathway; (C) complete dissimilatory sulfate reduction pathway; (D) fermentation of pyruvate 

to lactate; (E) fermentation of pyruvate to acetate. In plot (A), grey points represent samples 

where redox potential was not measured (i.e. samples taken at time point 2). 
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Figure 5.8: Number of predicted genes for (A) β-glucosidase enzymes, (B) endo- and 

exocellulase enzymes and (C) phenol oxidase per million base pairs (Mbp) of sequence in 

each MAG. The colour of each bar represents whether the MAG contains genes for anaerobic 

respiration (AR), fermentation (FERM), both (AR.FERM), or neither (AER). Denitrification 

is not included in anaerobic respiration, as no MAG contained a complete pathway for this 

function. 
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Table 5.8: Details of KEGG ontology categories which were significantly different 

between Acidobacteria, Bacteroidetes and Proteobacteria (three phyla which contained 

the majority of MAGs). B = Bacteroidetes; A = Acidobacteria; P = Proteobacteria; BCAA = 

branched-chain amino acid; p.adj = adjusted p-value. 

KO χ2 p.adj Post-hoc Function/Gene Pathway 

K10385 15.2 0.040 B > A Loricrin Eukaryotic cytoskeleton 

K12323 15.2 0.040 B > A ANPRA, NPR1 Purine metabolism 

K05989 29.0 0.000 B > A ramA; alpha-L-

rhamnosidase 

Glycosidases 

K07491 42.2 0.000 B > A & P putative transposase 

K09607 30.8 0.000 B > A ina Immune inhibitor 

K01187 15.6 0.036 B > P malZ; alpha-glucosidase Glycosidases 

K01212 22.8 0.002 B > A Levanase Glycosidases 

K01387 15.2 0.040 B > A colA Collagenase; microbial toxin 

K01728 17.1 0.022 B > A Pectate lyase Pentose and glucuronate 

interconversion 

K04485 15.3 0.039 P > A radA DNA repair 

K06045 24.4 0.001 A > P shc Metabolism of terpenoids 

and polyketides 

K07093 20.3 0.006 B & P > A uncharacterized protein 

K09667 32.7 0.000 A & P > B OGT; O-GlcNAc 

transferase 

Glycan biosynthesis and 

metabolism; transcriptional 

regulation 

K02453 23.1 0.002 A > B gspD Type II secretion 

K02482 21.2 0.004 A > B & P two-component system, NtrC family 

K00114 14.4 0.049 A > B Alcohol dehydrogenase 

K00995 18.7 0.012 B > A pgsA Lipid metabolism 

K00010 16.6 0.024 A > B & P iolG Streptomycin biosynthesis; 

inositol phosphate 

metabolism 

K10947 90.9 0.000 A & P > B padR Transcription regulator 

K12308 16.9 0.023 A > P beta-galactosidase Glycosidases 

K13587 37.4 0.000 A > P cckA Cell cycle signalling 

K02035 14.6 0.048 A > B ABC. PE.S Peptide/nickel transport 

system  

K02050 14.6 0.048 A > B ABC.SN.P NitT/TauT transport system 

K02488 35.4 0.000 A & P > B pleD Cell cycle signalling 

K03408 17.7 0.018 A & P > B cheW Purine-binding chemotaxis 

protein 

K03412 16.9 0.023 A > B cheB Two-component system, 

chemotaxis family 

K03413 20.8 0.005 A & P > B cheY Two-component system, 

chemotaxis family 

K00479 18.6 0.012 P > A Rieske 2Fe-2S family protein 

K01996 27.6 0.000 P > A livF BCAA transport system 

K01997 22.5 0.003 P > A & B livH BCAA transport system 

K01998 20.3 0.006 P > A livM BCAA transport system 

K01999 25.0 0.001 P > A & B livK BCAA transport system 

K07112 16.7 0.024 P > A uncharacterized protein 

K00799 137.5 0.000 P > A & B Glutathione S-transferase Glutathione metabolism 

K11179 27.6 0.000 P > A tusE, dsrC tRNA synthesis 
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K08086 15.2 0.040 P > A & B fimV Pilus assembly 

K00108 27.6 0.000 P > A Choline dehydrogenase Betaine biosynthesis 

K00119 15.9 0.033 P > A Unknown  

K08086 15.2 0.040 P > A & B fimV Pilus assembly 

K13924 15.5 0.037 P > A & B cheBR Two-component system, 

chemotaxis family 

K14986 21.8 0.003 P > A & B fixL Two-component system, 

LuxR family 

 

Due to the important role played by phenol oxidases in peatland carbon cycle, all MAGs were 

searched for phenol oxidase genes using blastp. Over half of MAGs were found to contain at 

least one hit to either laccase or tyrosinase (Table 5.7; Figure 5.8C), and laccase genes were far 

more common than tyrosinase genes (Table 5.7). No matches to catechol oxidase were found. 

Gneg-mPloc suggested that the majority of predicted phenol oxidase proteins occurred in the 

periplasm (the space between the inner and outer cell membranes in gram-negative bacteria; 

Table 5.7). Mapping of metabolic pathways with the KEGG mapper found that nine MAGs 

possessed the ability to cleave catechol rings: these were C33, C153, C184, C351, C364, C87, 

C129, C291, C355 and C437. MAGs with the potential to cleave catechol did not correspond 

to the MAGs with the most phenol oxidase genes found using blastp (Table 5.7), and several 

MAGs with the ability to cleave catechol did not contain any phenol laccase or tyrosinase genes 

(C33, C153; Table 5.7). Many MAGs did not contain any predicted phenol oxidase genes 

(Table 5.7). However, a number of MAGs containing phenol oxidase genes also possessed 

predicted pathways of anaerobic respiration and fermentation (Figure 5.8). 

 

5.3.3 Functional Potential of Phyla 

An NMDS plot of MAGs based on KEGG orthologues (KOs) showed that MAGs clustered by 

phylum (Figure 5.9). Significant differences in functional potential between phyla were 

confirmed by PERMANOVA (F6=2.8, R2=0.47, p = 0.001). 
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Figure 5.9: NMDS ordination of near-complete MAGs based on the abundance of KEGG 

ontology categories. The colour of each point represents the phylum to which that MAG was 

assigned by PhyloPhlan. 

 

The abundances of a number of KOs were significantly different between the Acidobacteria, 

Bacteroidetes and Proteobacteria (Table 5.8; Figure 5.10). Bacteroidetes contained higher 

numbers of genes for three different glycosidase enzymes (K05989, K001187, K01212), while 

Acidobacteria contained higher numbers of genes for beta-galactosidase (K12308). Several 

genes from the che operon (cheB, cheW, cheY) were more abundant in Proteobacteria and 

Acidobacteria than Bacteroidetes. Conversely, genes from the liv operon (livF, livH, livM, livK) 

were more abundant in Proteobacteria than either of the other phyla. 

5.3.4 Effect of Drought on MAGs 

Generalised linear models with Poisson distributions were fitted to test for the effect of drought 

on individual MAGs, regardless of the number of SCGs they contained. Prior to the application 

of corrections for multiple comparisons, the mean overall coverage of seventeen MAGs was 

significantly affected by the interaction between time point and treatment (Table 5.9; hereafter 

drought-affected MAGs), suggesting an effect of drought. However, following application of 

Benjamini-Hochberg corrections for multiple comparisons, the effect of the interaction 

between time point and treatment was not significant for any MAG (Table 5.9). Plotting the 

overall mean coverage of each drought-affected MAG revealed that in many cases, the 
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interaction effect is likely driven by the effect of a few cores with especially high coverage 

values (e.g. C353, Figure 5.11G; C299, Figure 5.11M). In other cases, MAG coverage changes 

with time in multiple cores (e.g. C137, Figure 5.11E; C150, Figure 5.11F). None of the near-

complete MAGs were affected by drought, and the majority of putatively drought-affected 

MAGs contained few or no SCGs (Table 5.9). 

 

 
Figure 5.10: Mean number of proteins within near-complete MAGs that were assigned to 

each protein that was differentially abundant between Acidobacteria, Proteobacteria and 

Bacteroidetes. Acidobacteria, Bacteroidetes and Proteobacteria are depicted as these three 

phyla contained the highest proportion of MAGs. 
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Figure 5.11: Mean coverage of each MAG whose coverage was significantly affected by 

the interaction between time point and treatment. Pink lines represent control cores and 

blue lines represent droughted cores. Coverages within each core are plotted separately in order 

to convey differences between cores. 
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Table 5.9: Details of cases where the effect of the interaction between time point and 

treatment on coverage of an MAG was significant. Number of multi-copy SCGs means the 

number of SCGs of which there were 2 or more copies. P.adj = adjusted p-value. Mean 

coverage of each MAG by core and time point is depicted in Figure 5.11. 

Cluster F p p.adj 

Number of 

SCGs 

Number of multi-

copy SCGs 

D306 5.1 0.003 0.7 0 0 

D90 4.6 0.005 0.7 9 0 

D116 4.6 0.005 0.7 0 0 

D308 4.0 0.010 1.0 4 0 

D137 3.7 0.014 1.0 15 0 

D150 3.6 0.016 1.0 0 0 

D353 3.5 0.018 1.0 15 0 

D284 3.4 0.020 1.0 0 0 

D177 3.4 0.020 1.0 0 0 

D367 3.2 0.025 1.0 1 0 

D37 3.1 0.031 1.0 27 7 

D149 2.9 0.038 1.0 24 0 

D299 2.9 0.039 1.0 4 0 

D77 2.9 0.039 1.0 0 0 

D36 2.8 0.043 1.0 0 0 

D10 2.8 0.044 1.0 25 2 

D41 2.7 0.046 1.0 11 0 

 

 

5.4 Discussion 

5.4.1 Contig Assembly and Binning 

Although clustering of contigs by CONCOCT was based on coverage across multiple samples 

as well as sequence composition (i.e. tetranucleotide frequency), coverage patterns within each 

MAG were not always consistent (Figure 5.2), and in some cases hierarchical clustering within 

anvi’o was not consistent with clustering by CONCOCT (e.g. C100, Figure 5.2). The 

discrepancy between methods was likely a result of differing clustering methodologies within 

each algorithm: CONCOCT incorporates both coverage and compositional information into 

PCA to reduce the number of dimensions in the data, extracts the minimum amount of principal 

components required to explain 90% of the variation, and then extracts clusters based on 

clustering within the PCA. Therefore, some relevant information about coverage or sequence 

composition may be lost during the PCA clustering step. Conversely, anvi’o uses hierarchical 
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clustering rather than a PCA step, but is primarily used for visualisation of contigs: it does not 

categorize the contigs into discrete clusters. Anvi’o includes functionality to manually ‘refine’ 

bins where coverage patterns are inconsistent. However, clustering and visualisation of contigs 

in anvi’o is highly computationally intensive and thus it is not currently possible to manually 

refine groupings for large numbers of contigs. Additionally, variation between the coverages 

of different contigs existed within all MAGs, even those with the most consistency in coverage 

values, suggesting that noise is likely unavoidable when generating MAGs from complex 

metagenomes such as soil. 

 

 

Figure 5.12: Subsection of the full PhyloPhlAn phylogeny containing phylum 

Bacteroidetes. The phylogeny was based on the PhyloPhlAn database of genomes. Red dots 

depict near-complete MAGs. 
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5.4.2 Distribution and Functional Potential of MAGs 

Each near-complete MAG was assigned to at least phylum level based on a phylogeny 

generated in PhyloPhlAn. Phylogeny generation in PhyloPhlAn is based on a set of >400 

conserved and highly informative proteins, and has been shown to provide accurate 

classifications (Segata et al. 2013). 

Of the 27 near-complete MAGs analysed in depth, twelve were assigned to Acidobacteria. The 

high proportion of MAGs assigned to Acidobacteria echoed the dominance of Acidobacteria 

in both marker gene analysis (Chapter 3) and in unassembled metagenomic reads (Chapter 4). 

Acidobacteria are both abundant and widely distributed in soils (e.g. Felske et al. 2000; Jones 

et al. 2009; O'Brien et al. 2016), including in peat (Lin et al. 2012; Lin et al. 2014), and 

additionally contain a large degree of morphological and taxonomic diversity (e.g. Hugenholtz 

et al. 1998; Jones et al. 2009). Nonetheless, relatively few genomes belonging to members of 

this phylum have been sequenced to date: the NCBI Genome database listed just 34 at the time 

of writing (http://www.ncbi.nlm.nih.gov/genome/browse/; accessed 5/5/2016). A number of 

the Acidobacteria-derived MAGs in the current study form branches on the phylogeny that are 

distinct from the genomes downloaded from the NCBI Genome database, suggesting that many 

of the Acidobacteria in peat belong to poorly studied lineages. It is possible that differences in 

methodology caused MAGs from the current study to cluster separately from the downloaded 

genomes. However, prediction of protein-coding regions was carried out using Prodigal for all 

genomes and the downloaded reference genomes encompass a wide variety of assembly 

methods and sequencing technologies. Novel diversity was also detected within other phyla: 

for example, many of the MAGs within phylum Bacteroidetes could not be assigned below 

domain level, although inspection of the phylogeny generated by PhyloPhlAn suggests that 

several may be related to Paludibacter propionicigenes (Figure 5.12) which is an obligate 

anaerobe isolated from a rice paddy soil (Ueki et al. 2006).  

The mesocosm core from which samples were taken had a clear and significant effect on overall 

community composition, while drought did not (Figure 5.5). This strong effect of mesocosm 

core on prokaryotic communities is similarly observed in both marker gene analysis of 16S 

rRNA (Chapter 3) and analysis of unassembled 16S rRNA gene reads from the shotgun 

sequencing data (Chapter 4), and is probably related to differences in biogeochemistry and 

vegetation between mesocosm cores (Chapter 3; Chapter 4). In particular, samples from core 

http://www.ncbi.nlm.nih.gov/genome/browse/
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B1 formed a distinct cluster (pink shapes; Figure 5.5) and core B1 had the highest redox 

potential of any non-droughted mesocosm core (Figure 5.13). Although redox potential was 

not measured until time point 4 (i.e. after the commencement of drought), it likely that the 

redox potential in the droughted cores only rose for a relatively short time period (i.e. during 

water table drawdown), while the redox potential in B1 may have been elevated for a longer 

period. Thus, while the persistence of dormant bacteria and relic DNA might obscure the short-

term effects of redox potential on the bacterial community in the droughted cores, the effect of 

redox potential on a longer timescale may be visible in the differences between the community 

in B1 and the other cores. However, confirming this link would require monitoring of redox 

potential over a longer period. 

 

Figure 5.13: Redox potential (mV) within each bog mesocosm core at all time points 

where it was measured. Note that the redox potential was not measured until time point T4. 

For further discussion of redox potential, see Chapter 2. C= control, D = drought. 

 

Ordination of all near-complete MAGs found that distribution patterns were related at least in 

part to redox potential: an NMDS plot depicting sites shows a gradient of approximately 

increasing redox potential when moving from high to low values on the first axis. Accordingly, 

visualisation of the MAGs themselves within the same ordination showed some clustering by 

lifestyle: the MAGs with the highest values on the first axis were the single methanogen (C239) 

and four MAGs with the potential for dissimilatory reduction of nitrate and sulfate (Figure 
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5.7B; Figure 5.7C). This suggests that populations possessing the potential to carry out 

anaerobic respiration may be selected for in environments with lower redox potentials, as 

would be expected. However, MAGs containing the potential for fermentation of pyruvate to 

lactate and acetate were less obviously clustered (Figure 5.7D; Figure 5.7E) and did not show 

clearly redox-driven patterns of distribution. 

Metagenome-assembled genomes contained the genetic potential for a variety of lifestyles, 

including both anaerobic and aerobic respiration. The majority of non-droughted mesocosm 

cores (with the exception of B1) exhibited redox potentials which were suggestive of anoxic 

conditions (Figure 5.13), and so it is unsurprising that many MAGs possessed the ability for 

anaerobic metabolism. Seven MAGs were lacking the complete set of genes involved in the 

TCA cycle: of these, one was likely a methanogen (C239), while five contained pathways for 

fermentation (C100, C398, C207; Table 5.5) and/or anaerobic respiration (C100, C443, C303; 

Table 5.5). While the TCA cycle does not require oxygen, it generates three molecules of 

NADH for each molecule of pyruvate entering the cycle, and these must be re-oxidised to 

NAD+ to allow glycolysis and the TCA cycle to continue. Therefore, the lack of a complete 

TCA cycle may in some cases suggest that MAGs represent organisms with obligately 

fermentative lifestyles (e.g. Wrighton et al. 2012). However, some anaerobic sulfate-reducing 

bacteria do contain a complete TCA cycle (Brandis-Heep et al. 1983), and so an incomplete 

pathway for the TCA cycle is a poor indicator of an anaerobic lifestyle in many cases. In 

addition, one of the MAGs which lacked a complete set of genes for the TCA cycle also 

contained no complete pathways for anaerobic metabolism (C129), suggesting that in this case 

the lack of genes for the TCA cycle may have resulted from incomplete binning or assembly. 

Conversely, several MAGs did not contain genes for the pathways of dissimilatory nitrate or 

sulfate reduction, denitrification or fermentation, and thus were potentially obligate aerobes 

(e.g. C330). Given the anoxic/microaerobic conditions which prevailed in non-droughted bog 

mesocosm cores (Chapter 2), it is possible that obligate aerobic members of the community 

persisted in a dormant state under anaerobic conditions (e.g. Lim et al. 1999) or that they 

inhabited aerobic microhabitats.  

Many of the MAGs contained partial pathways for denitrification and dissimilatory nitrate 

reduction to ammonium (DNRA), but few contained full pathways for either. No MAG 

contained a complete pathway for denitrification, while four contained full pathways for 

DNRA (Table 2). DNRA is expected to be more important than denitrification under constant 
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anoxic conditions: DNRA is typically the preserve of obligate anaerobes, while denitrification 

occurs in aerobes under conditions of temporary oxygen limitation (Tiedje 1988). Therefore, 

if oxygen concentrations in the bog were consistently low, as would be expected, low redox 

potential may have selected for organisms with the potential for DNRA rather than 

denitrification. Alternatively, the dominance of DNRA organisms in the current study could be 

an artefact of incomplete annotation of genes involved in denitrification. Interestingly, all 

MAGs containing full dissimilatory nitrate reduction pathways were also sulfate reducers, 

suggesting that anaerobic micro-organisms in peat may switch between electron acceptors 

depending on the conditions. 

It is unclear whether the large number of incomplete pathways for DNRA and denitrification 

was a result of missing annotations, or are genuinely a result of MAGs carrying genes for only 

certain steps in the nitrate reduction or denitrification processes. It is possible for organisms to 

contain incomplete pathways for denitrification: for example, it is common for denitrifiers to 

lack nosZ (Philippot et al. 2011) or to begin denitrification with nitrite rather than nitrate 

(Philippot et al. 2007), while some non-denitrifying bacteria possess functional nosZ without 

other genes in the denitrification pathway (Sanford et al. 2012). However, the proportion of 

MAGs containing incomplete pathways for denitrification is extremely high (13 of 27 near-

complete MAGs), and thus may result from incomplete annotation or assembly. A large 

proportion of the genes for denitrification in peatland soils are only distantly related to known 

sequences (Palmer et al. 2012). Unexpectedly, many MAGs which contained the genetic 

potential for dissimilatory reduction of nitrite to ammonium did not contain nitrate reductases: 

nitrite is rapidly degraded in acidic soils and thus is unlikely to be a viable substrate for 

anaerobic respiration in peat bogs.  

Iron reduction is another potentially important method of facultative anaerobic respiration, 

occurring at redox potentials between approximately +100 and -100 mV (McBride 1994). The 

importance of iron reduction in anaerobic peat ecosystems appears to be variable. One study 

found that iron reduction accounted for only a very small proportion of anaerobic carbon 

mineralisation across a gradient from bog to fen (Keller and Bridgham 2007), while other 

studies suggest that iron reduction may play an important role in fens (Knorr and Blodau 2009; 

Knorr et al. 2009) and permafrost (Lipson et al. 2010). In the current study, a number of 

matches were found to omcB and omcS (Table 5.3), two outer-membrane-bound cytochromes 

which are involved in oxidation of ferric iron in iron-reducing micro-organisms (Weber et al. 
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2006). This could suggest that some MAGs contain the genetic potential to reduce ferric iron. 

However, interpretation of these findings is further complicated by the fact that omcB also acts 

as an adhesin mediating host binding in intracellular parasites such as those within genus 

Chlamydia (Fadel and Eley 2007). Other enzymes involved in dissimilatory iron reduction, 

such as c-type cytochromes, also play roles in other redox reactions and so are similarly weak 

indicators that MAGs contain the genetic potential for the reduction of ferric iron. For example, 

cymA is involved in reduction of nitrate, iron(III), fumarate and manganese(IV) in Shewanella 

(Myers and Myers 1997). Therefore, we conclude that analysis of genetic potential for the 

reduction of ferric iron remains difficult, but future research into the genes underlying these 

pathways will make it easier to draw conclusions about ferric iron reduction from genetic data. 

Five MAGs contained genes for all enzymes in the KEGG pathway for dissimilatory sulfate 

reduction/oxidation: sat, aprAB and dsrAB. Of these, C443 was a likely sulfate oxidiser (see 

next paragraph) while the remaining four MAGs (C100, C104, C303 and C344) were potential 

sulfate reducers. Taxonomically, two of the four sulfate reducers were assigned to 

Acidobacteria (C104, C344) and two to Nitrospirae (C100, C303). To date, sulfate reduction 

has not been described in any cultured Acidobacteria. However, a large number of dsrAB genes 

(a commonly used marker gene of dissimilatory sulfate reduction) in wetlands and other 

habitats are not related to the dsrAB genes in known sulfate reducers (Pester et al. 2012), and 

it is possible to speculate that some of the unknown diversity in dsrAB genes could belong to 

Acidobacteria. However, it should be noted that possessing the genetic potential for 

dissimilatory sulfate reduction does not prove that organisms carry out sulfate reduction. For 

example, a number of bacterial species possess dsrAB but are not capable of dissimilatory 

sulfate reduction (Pester et al. 2012). Therefore, further research would be required to explore 

the role of Acidobacteria in peatland sulfur cycling. 

In addition to the five MAGs containing the dsrAB pathway, a single MAG (C443) was found 

to contain the genetic potential for sulphur oxidation through the sox operon (Table 5.4). Sulfur 

oxidation is potentially of great importance for sulfur cycling in wetlands: sulfate 

concentrations in wetlands are typically low, but sulfur oxidation in micro-niches with higher 

redox potentials can provide a constant supply of electron acceptors for sulfate reducers (Pester 

et al. 2012). C443 additionally contained full pathways for DNRA and dissimilatory sulfate 

reduction, and lacked two genes necessary for enzymes in the TCA cycle. Further clues to the 

lifestyle of C443 may come from the fact that it’s closest relative in the PhyloPhlAn database 
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is Thiobacillus denitrificans (Figure 5.14), a facultatively anaerobic chemolithotroph which is 

able to couple sulfur oxidation to reduction of molecular oxygen, nitrate, nitrite or nitrous oxide 

(Ghosh and Dam 2009).  Unlike T. denitrificans, C443 does not contain a complete 

denitrification pathway and instead contains genetic potential for DNRA, raising the possibility 

that C443 may potentially be able to link DNRA to sulfur oxidation. However, without 

isolation and characterisation of the organism in question, such suggestions remain speculative. 

While most MAGs contained the gene soxD (Table 5.4), the KEGG orthologue for this gene is 

also involved in apoptosis, meaning it is not a good indicator of sulfur oxidation.  

 

 

Figure 5.14: Subsection of full PhyloPhlAn phylogeny a section of Proteobacteria which 

includes C443 and Thiobacillus denitrificans. The phylogeny was based on the PhyloPhlAn 

database of genomes. Red dots depict near-complete MAGs. 

 

One of the MAGs, C239, belonged to a putatively methanogenic Archaea. Of the genomes 

included in the PhyloPhlAn tree, C239 was most closely related to Methanoregula boonei: a 

hydrogenotrophic methanogen adapted to the oligotrophic, low pH conditions present in peat 

bogs (Bräuer et al. 2015). Likewise, C239 appeared to have the ability to carry out 



300 

 

 

hydrogenotrophic methanogenesis. It also contained cdhC, a gene for acetyl-CoA 

decarbonylase synthase (ACDS), which is a crucial enzyme in the pathway of acetoclastic 

methanogenesis (methanogenesis which uses acetate as a substrate). However, homologues of 

cdhC with non-methanogenic functions are widespread amongst anaerobic Bacteria and 

Archaea (Ferry 2010), and all known acetoclastic methanogens belong to genera 

Methanosarcina or Methanosaeta (Liu and Whitman 2008). Given the placement of C239 

within genus Methanoregula, which contains hydrogenotrophic archaea, it is unlikely that it 

carries out acetoclastic methanogenesis. The assembly of a methanogen MAG from the dataset 

was unexpected: methanogenesis occurs at negative redox potentials (McBride 1994), while 

the redox potentials of bog mesocosm cores were typically positive (Figure 5.13; Chapter 2). 

However, methane production can occur in ‘microniches’ with especially low oxygen 

concentrations (Blodau and Moore 2003; Knorr and Blodau 2009; Askaer et al. 2010), meaning 

that overall redox potential of the peat may be a misleading measure of the potential for 

methanogenesis in a given environment. Alternatively, it is possible that disturbance during 

sampling allowed oxygen to access otherwise anoxic areas of the peat and led to misleadingly 

high measurements of redox potential. Mean methane fluxes from the bog mesocosm cores 

were much lower than those from the fen but were invariably positive (Chapter 2), suggesting 

that methanogenesis did occur in this habitat.  

In addition to the putative nitrate- and sulfate-reducers described above, a large number of 

MAGs contained the functional potential for fermentation: sixteen of the 27 MAGs contained 

pathways for fermentation of pyruvate to lactate or acetate. Fermentation pathways were 

present in MAGs both with and without pathways of anaerobic respiration, and occurred in a 

wide variety of taxa: MAGs which contained genes for complete fermentation pathways 

belonged to phyla Nitrospirae, Acidobacteria, Verrucomicrobia, Bacteroidetes, Euryarchaota, 

Firmicutes, Proteobacteria (γ-class) and Chloroflexi (Table 5.1; Table 5.5). Fermentation is an 

important pathway of anaerobic carbon metabolism in peatlands (Vile et al. 2003; Keller and 

Bridgham 2007; Hamberger et al. 2008), and so a high prevalence of fermenters among 

assembled MAGs is what would be expected. Pathways for fermentation of pyruvate to acetate 

were most common among the MAGs. Whilst research into the partitioning of organic carbon 

between pathways of fermentation have been limited, acetate production is an important 

pathway in many peatlands (Hines et al. 2001; Hamberger et al. 2008; Galand et al. 2010) and 
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at low hydrogen pressure fermentation of glucose to acetate is the most efficient pathway of 

ATP production via fermentation (Schink 1997). 

None of the assembled MAGs contained pathways for methanotrophy (methane oxidation). 

However, pmoA genes were detected within the unassembled shotgun sequencing data 

(Chapter 4), suggesting that methanotrophs were present in the environment but that individual 

mehanogenic species or strains were not abundant enough for contig assembly and binning. 

Methanotrophs decrease in abundance with decreasing pH and under anoxic conditions (Le 

Mer and Roger 2001). Therefore, bogs would be expected to represent a poor habitat for them, 

given the low pH and redox potential found in these habitats. However, a large proportion of 

the methane produced in bogs is oxidised before it is released (Freeman et al. 2002; Freitag et 

al. 2010), suggesting that many bogs nonetheless contain methanotrophic populations. 

Methane oxidation is typically limited to the aerobic layers of the peat (Krumholz et al. 1995; 

Freitag et al. 2010), while the redox potential of many of the current samples was slightly 

anoxic (Chapter 2). Therefore, assembly of the genomes of methane oxidisers would likely 

require sequencing of peat taken immediately below the surface, as oxygen does not typically 

penetrate more than a few centimetres into waterlogged peat (Askaer et al. 2010). 

All near-complete MAGs possessed β-glucosidase genes, suggesting that they are potentially 

able to use cellobiose as a carbon or energy source, and all but four contained genes for exo- 

or endocellulase enzymes. Therefore, a much higher proportion of the community than would 

be expected appeared to contain the genetic potential for cellulolysis. A previous study which 

looked at 5,123 bacterial genomes found that 20% possessed no β-glucosidase genes and 56% 

possessed β-glucosidase genes but not exo- or endocellulase genes, with only 24% containing 

exo- and endocellulases as well as β-glucosidase (Berlemont and Martiny 2013). The 

widespread presence of genes for cellulose utilisation in peat-inhabiting bacteria likely results 

from the importance of plant-derived carbon to the peat ecosystem: the genomes surveyed by 

Berlemont & Martiny (2013) represented a variety of lifestyles, including parasitism and 

autotrophy, both of which were associated with low numbers of cellulose genes. Conversely, 

subsurface peatland microbial communities are primarily based around the degradation of plant 

material, of which cellulose makes up a significant proportion. The proportion of genomes with 

the potential for cellulose degradation was nonetheless higher than expected. In the reindeer 

rumen, a habitat which is likewise dependent on plant material, the proportion of cultivable 

bacteria able to survive on cellulose is only 15-35% (Orpin et al. 1985), while in agricultural 
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soils only 17-40% of bacteria can degrade soluble cellulose (Ulrich and Wirth 1999). However, 

the peat microbiome is highly diverse and the MAGs presented in the current study represent 

only a small proportion of the community. Therefore, the current results do not necessarily 

contradict previous studies which found a much smaller proportion of the community to be 

cellulolytic. While most of the dominant members (i.e. those which were present at high 

enough abundances to be assembled) contained the functional potential for cellulolysis, it is 

possible that many of the unassembled community members could lack the potential for 

complete cellulose degradation. It should also be noted that micro-organisms containing the 

apparent genetic potential for cellulolytic activity will not necessarily exhibit cellulolytic 

activity in the environment. Some of the predicted genes may represent pseudogenes, some 

may only be expressed under particular conditions, and some may be involved in the 

degradation of polymeric compounds other than cellulose. A small percentage of genes 

contained within each GH family classified as containing cellulases are in fact involved in other 

processes (Berlemont and Martiny 2013).  

The majority of phenol oxidase genes detected within MAGs were laccases, and were predicted 

to be located within the periplasm of the cell (Table 5.7) by Gneg-mPLoc (Shen and Chou 

2010). The degradation of complex substrates in soil is typically attributed to extracellular 

enzymes (Sinsabaugh 2010), but genes for extracellular phenol oxidases were not detected in 

any of the MAGs analysed (Table 5.7). The role of periplasmic enzymes in the degradation of 

phenolic compounds remains unclear. Laccases from the periplasm may be involved in the 

degradation of environmental aromatic compounds (Ahmad et al. 1997; Rosconi et al. 2005) 

and small phenolic compounds are able to traverse the outer membrane, potentially exposing 

them to periplasmic enzymes (Sikkema et al. 1995). The periplasmic location of these enzymes 

may prevent competition for degradation products with ‘cheaters’, who use the products of 

degradation without themselves producing extracellular enzymes (Allison 2005). However, the 

primary purpose of many periplasmic phenol oxidases may be to protect cells from damage, 

for example by preventing the build-up of high levels of copper (Grass and Rensing 2001) or 

phenol-mediated damage to the cytoplasmic membrane (Sikkema et al. 1995). 

Numerous MAGs possessed both phenol oxidase genes and genes for anaerobic respiration or 

fermentation (Figure 5.8). Since phenol oxidase genes require oxygen to function, this suggests 

that these organisms are either facultative anaerobes or are adapted to survive periods of 

oxygenation. Although a number of bacteria are able to degrade phenolic compounds and other 
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aromatic compounds under anaerobic conditions, anaerobic degradation of aromatics in sulfate 

reducers and fermenters proceeds via reductive attacks involving dehydrogenation or 

carboxylation, rather than oxidation (Schink et al. 2000). Phenol oxidases fulfil a number of 

roles in facultative anaerobes: for example, they can provide protection from oxygen 

intermediates and free radicals under oxic conditions (Shivprasad and Page 1989). In addition, 

phenol oxidases are involved in the production of melanin which acts as an electron shuttle 

between insoluble Fe(III) and dissimilatory metal-reducing bacteria in genus Shewanella, 

although melanin production only occurs during aerobic growth (Turick et al. 2002). 

5.4.3 Functional Potential of Microorganisms with Assembled Genomes 

Non-metric multidimensional scaling based on counts of functional genes produced groupings 

of MAGs which roughly corresponded to phylogeny (Figure 5.9), and the association between 

phylogeny and function was confirmed by PERMANOVA. A similar relationship between 

phylogeny and function is seen for MAGs assembled from a brackish metagenome (Hugerth 

et al. 2015) despite the very different phylogenetic composition of the MAGs assembled from 

the brackish habitat. Phylogenetic clustering of bacterial function has also been observed using 

other methodologies: for example, the response to labelled substrates is often phylogenetically 

conserved at phylum level (Goldfarb et al. 2011; Morrissey et al. 2016), although many traits 

are conserved only at lower taxonomic levels (Martiny et al. 2015).  

Glycoside hydrolases were present at greater abundances in Bacteroidetes than other phyla, a 

finding that was also observed in brackish habitats (Hugerth et al. 2015) and river sediments 

(Baker et al. 2014), suggesting that Bacteroidetes may play an important role in carbohydrate 

degradation across a variety of habitats. Three genes within the che operon were significantly 

more abundant in Acidobacteria and Proteobacteria than Bacteroidetes. Each of these genes 

(cheW, cheB and cheY) is typically involved in controlling the response of bacterial flagellar 

movement to environmental stimuli. However, the cheY receiver domain is also a common 

regulatory protein for other genes (Hamer et al. 2010), and so is not necessarily linked to 

chemotaxis. Rather than indicating a lack of motility in Bacteroidetes within peat, this may 

indicate that the Bacteroidetes use different methods of motility, with different methods of 

regulation, than do Acidobacteria and Proteobacteria: for example, ‘gliding’ motility has been 

well studied within the Bacteroidetes, although it is also present in the Proteobacteria (Shrout 

2015). However, homologues of the che genes, the frz genes, are present in some gliding 
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bacteria (Zusman et al. 2007). Copy numbers of cheY are commonly higher than those of other 

proteins in the che system (Hamer et al. 2010), and this was also the case in the current study: 

more copies of cheY (K03413) were detected than of cheB (K03412) or cheW (K03408; Figure 

5.10). The three most abundant phyla also differed in the abundances of several transport 

proteins. For example, genes involved in the LIV-I transport system of branched-chain amino 

acids were significantly more abundant in the Proteobacteria than other phyla (Table 5.8). A 

peptide/nickel ABC transporter (K02035) was more abundant in Acidobacteria than 

Bacteroidetes, although was similarly abundant in both Proteobacteria and Acidobacteria 

(Figure 5.10). At least two of the KEGG ortholog groups found to differ between phyla 

corresponded to functions not found in bacteria: K10385 is described involved in the eukaryotic 

cytoskeleton, while K09607 is an immune inhibitor (Table 5.8). Therefore, both of these 

annotations are likely incorrect, or alternatively may represent distant homologues of 

eukaryotic genes that have not yet been catalogued in prokaryotes. 

5.4.4 Effect of Drought on MAGs 

Non-metric multidimensional scaling showed that the core from which samples were taken had 

a much greater effect on community composition than did drought; and there was no significant 

effect of the sampling time point or treatment on overall community composition (Section 

5.3.2). The lack of an overall community response to drought echoes similar results from 

marker gene analysis (Chapter 3) and analysis of unassembled metagenomics reads (Chapter 

4), and may be a result of dead or dormant microbial cells or of microbial resistance to drought. 

A recent preprint documented high levels of extracellular ‘relic’ DNA in soils, with the highest 

amounts of relic DNA found in soils that had a low pH and low concentrations of base cations 

(Carini et al. 2016). Both characteristics describe bog peat: peat slurry samples in the current 

experiment had mean pH values of 4-5 (Chapter 2) and while base cations were not measured 

directly, the concentration of extractable bases in bogs is typically low (Bridgham et al. 2000; 

Wang et al. 2015). Therefore, it is possible that peat taken from bogs contains high levels of 

relic DNA, obscuring the effects of drought. In addition, many bacteria may become dormant 

in response to unfavourable conditions, again leading to a weak drought response (Jones and 

Lennon 2010). To distinguish the effects of dormancy and relic DNA from the genuine 

community resistance to change, future studies should combine DNA-based analyses with 
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analysis of community RNA, which is less stable than DNA and therefore has a more rapid 

turnover time (Moran et al. 2013). 

While a number of MAGs showed a significant response to drought, none were significant 

following the application of corrections for multiple corrections. Furthermore, very few MAGs 

showed consistent responses to treatment and time across all cores (Figure 5.11). The two 

MAGs showing the most consistent response to time point and treatment were C150 (Figure 

5.11F) and C77 (Figure 5.11N). Both MAGs showed a similar response to time point as well 

as treatment across all mesocosm cores, suggesting that the effects observed were not due 

simply to differences between cores. The mean coverage of C150 decreased in control cores 

between the first two sampling time points but increased in droughted cores relative to control 

cores at time points T6 and T9. Conversely, the coverage of C77 rose with time in all control 

cores, but remained low in droughted cores. Both of these MAGs were incomplete, containing 

no SCGs (Table 5.9). The incomplete nature of both MAGs makes it difficult to draw 

conclusions about the functional potential of the populations to which they belong. C150 

contained a gene for β-glucosidase, an enzyme which typically increases in activity during 

drought (e.g.Fenner and Freeman 2011), although this was not observed in the current study 

(Chapter 2). However, the overall effect of drought on the abundance of MAGs was weak or 

non-existent, and in most cases significant effects of the interaction between time point and 

treatment appeared to be caused by random variations between cores and time points.  

5.5 Conclusions 

1. Twenty-seven metagenome-assembled genomes (MAGs) were produced. Amongst these 

MAGs, the most abundant phyla were Acidobacteria (12 MAGs), Bacteroidetes (5 MAGs) and 

Proteobacteria (4 MAGs). 

2. The MAGs contained the functional potential for a wide variety of lifestyles, spanning 

putatively obligate anaerobes, facultative anaerobes and obligate aerobes. Inference of 

metabolic pathways based on the KEGG mapper suggested that certain MAGs had the potential 

for dissimilatory nitrate and sulfate reduction, as well as fermentation of pyruvate to acetate 

and/or lactate. Analysis indicated that a single MAG was a putative chemolithotrophic sulfur 

oxidiser, while another was a methanogen related to Methanoregula boonei. 
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3. Phylogenetic patterns were observed in the functional potential of MAGs, similar to the 

pattern observed in brackish environments (Hugerth et al. 2015). In particular, Bacteroidetes 

appeared to contain genetic potential for the hydrolysis of polymeric carbohydrates. 

4. The effect of drought on the coverage of MAGs was negligible, while the mesocosm core 

from which samples were taken had a strong effect on community composition. 
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6.1 Introduction 

The application of nucleic acid-based methodologies has unveiled an extremely high level of 

diversity within soil microbial communities (Torsvik et al. 1990; Roesch et al. 2007), and led 

to increased interest in the role that underground microbial communities play in ecosystem 

processes/service delivery and in the effect of the environment on these communities. The 

effect of anthropogenic pressures, such as climate change, on ecosystem processes and 

microbial communities within the soil may be of particular concern. For example, there is 

potential for a positive feedback loop to be generated as warming and precipitation changes 

lead to an increase in soil respiration and CO2 fluxes (Rustad et al. 2001). Alternatively, the 

effect of warming on net carbon fluxes may be countered by an increase in plant primary 

production driven by a rise in soil nitrogen mineralisation by micro-organisms (Melillo et al. 

2002).  

Environmental change may affect ecosystem processes either directly or indirectly via effects 

on soil microbial communities (Figure 1). In many cases it is difficult to separate direct effects 

of the environment (top-down effects) from microbially-mediated (bottom-up) changes, but 

several approaches have been used to demonstrate clearly that microbial communities are 

important in both normal soil functioning and in determining the response of soil function to 

environmental change. For example, Allison et al. (2013) used a reciprocal transplant 

experiment to demonstrate that microbial communities from nitrogen-enriched plots exhibited 

higher decomposition rates in nitrogen-enriched plots than did communities from control plots; 

conversely, microbial communities from droughted plots showed lower decomposition rates 

than those from control plots regardless of the conditions. Similarly, Matulich & Martiny 

(2014) exposed leaf litter mesocosms containing randomly-specified inoculums to changes in 

moisture, nitrogen and temperature, and observed that changes in respiration rate with 

environmental change were related to both the inoculum and to changes in the community 

which occurred over time. Thus, it is clear that in many cases the microbial community has the 

potential to strongly influence carbon cycling in soils. Conversely, there is evidence that in 

some cases, functional redundancy occurs in soil microbial communities (e.g. Rousk et al. 

2009; Andert et al. 2012), weakening the interactions between environmental change, 

microbial community composition and soil functioning. Additionally, there is evidence that 

some functions may be affected by the environment but not by the microbial community: for 

example, the activity of β-glucosidase and phosphatase enzymes differed between peat types 
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but not between different inocula in a reciprocal transplant experiment (Dimitriu et al. 2010). 

Therefore, it is crucial that we understand the roles played by micro-organisms in the 

functioning of soil communities and the responses they will have to environmental change in 

order to predict and plan for the effects of climate change. 

 

 

Figure 6.1: Diagram depicting direct and microbially-mediated effects of environmental 

change on ecosystem processes. 

 

In peatlands, numerous links have already been demonstrated between anthropogenic 

environmental change and ecosystem processes. For example, peatland carbon fluxes are 

affected by warming (Silvola et al. 1996; Fenner et al. 2006; Kim et al. 2012), elevated carbon 

dioxide concentrations (Fenner et al. 2007; Ellis et al. 2009b) and water table (Silvola et al. 

1996; Fenner and Freeman 2011). Interactions between different types of environmental 

change may additionally affect the response: for example, warming and elevated CO2 

concentrations have a synergistic effect on dissolved organic carbon exports (Fenner et al. 

2007). Conversely, over longer time scales the effects of environmental change may cancel 

themselves out: for example, long-term water table drawdown in peatlands leads to an 

expansion of shrub growth, and the recalcitrant nature of shrub litter slows the decomposition 

rate (Wang et al. 2015). Each of these changes also has an effect on microbial communities 

(Mitchell et al. 2003; Kim et al. 2008; 2012; Wang et al. 2015), and given the known links 

between microbial communities and ecosystem processes it is reasonable to assume that 

microbial communities would play a key role in determining the effect of environmental 
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change on carbon fluxes and other response variables. However, a number of gaps remain in 

our knowledge of peatland microbial communities and the way they will respond to 

environmental change. 

Drought-driven carbon dioxide release has been the focus of a large number of studies in recent 

decades (e.g. Freeman et al. 1993a; 1993b; 2001; Ellis et al. 2009a; Fenner and Freeman 2011; 

Romanowicz et al. 2015). However, the microbial mechanisms underlying this process remain 

poorly understood. More generally, the composition of microbial communities in peatlands is 

also of interest: peatlands contain a large proportion of global soil carbon stores (Gorham 1991) 

and the unusual conditions within the peat environment (including anaerobic conditions, highly 

recalcitrant organic matter, and often low pH values) may also yield novel and exciting 

diversity. As described in the introductory chapter, the overall aims of the current thesis were 

to use second-generation sequencing methodologies to expand on current knowledge of the 

taxonomy and function of the communities inhabiting peatland ecosystems, and to identify 

drought-driven changes in the taxonomic composition and functional potential of microbial 

communities in peatland soils. To reach these goals both marker gene analysis (MGA; Chapter 

3) and metagenomic sequencing (Chapter 4; Chapter 5) were employed, alongside ARISA 

fingerprinting and biogeochemical assays (Chapter 2). The results obtained have provided 

insights into peatland microbial community composition and the effect of drought upon it, and 

generated numerous hypotheses to be tested in future research.  

6.2 The taxonomic and functional composition of microbial 

communities in peatlands 

Recently, several studies have emerged which use second-generation sequencing to 

characterise microbial communities in peat soils: Lin et al. (2012; 2014b) previously presented 

marker gene analyses of both bacterial and fungal communities at a variety of depths in bogs 

and fens, while Nunes et al. (2015) carried out marker gene analysis of the prokaryotic 

community in a French fen at 50cm depth. Lin et al. (2014a) additionally carried out shotgun 

sequencing of the peat profile in a North American bog. All MGA- and metagenomics-based 

studies to date indicate that peatland bacterial communities contain a high proportion of 

Acidobacteria and Proteobacteria, and in the current study both were highly abundant in MGA 

data (Chapter 3). In the bog at 5cm, Acidobacteria made up just over a third of reads in the 

MGA dataset but represented a much smaller proportion of metagenomic annotations when the 
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SILVA database was used as a reference (12%; Chapter 4). However, when assembled full-

length 16S rRNA genes were used as a custom reference database against which metagenomic 

reads were annotated, the proportion of Acidobacteria was similar to that in the MGA dataset. 

Acidobacteria additionally dominated metagenome-assembled genomes (MAGs; Chapter 5), 

suggesting that the relatively low proportion of Acidobacteria in SILVA annotations was a 

consequence of the limited number of sequences from this phyla which are contained in 

sequence databases. 

However, in other instances the results of the current study differ from those of Lin et al. (2012; 

2014a; 2014b). For example, Lin et al. (2012; 2014a; 2014b) found much higher abundances 

of Verrucomicrobia than the current study, while a much higher proportion of OTUs and 

metagenomic reads in the current study remained taxonomically unassigned. The analysis in 

the current study was designed to avoid false positives, with a stringent percentage identity cut-

off for annotations of SSU rRNA genes from shotgun sequencing reads (97% rather than 60%, 

the default) and the use of utax with a confidence threshold of 0.85 for the taxonomic 

assignment of OTUs in the marker gene datasets. However, these stringent thresholds likely 

prevented the annotation of many reads and OTUs, particularly those originating from poorly 

studied taxa. The high proportion of unassigned reads/OTUs in the current study therefore 

reflects the high proportion of microbial diversity which remains uncatalogued, as well as 

highlighting a trade-off between accuracy and completeness when annotating microbial 

sequence data. Within the MGA datasets, the proportion of unassigned reads was especially 

high for eukaryotes at 20cm depth: microbial eukaryote taxa likely contain a large amount of 

unknown diversity (Pawlowski et al. 2012; del Campo et al. 2016), and this may be especially 

true in anoxic habitats (Richards and Bass 2005). However, it is also possible that a number of 

the unassigned reads were a result of undetected sequencing errors or chimeric sequences. 

Community composition was strongly affected by habitat and depth in both the amplicon 

sequencing and ARISA fingerprinting data (shotgun sequencing was limited to one habitat and 

one depth). Differences between bogs and fens and between different depths along the peat 

profile have similarly been observed in previous studies (Lin et al. 2012; 2014b). Additionally, 

the community composition within each habitat varied between different mesocosm cores, with 

differences between cores making up a significant proportion of community variation. 

However, differences between different mesocosm cores were strongly related to differences 

in vegetation and biogeochemical variables between cores (Chapter 3; Chapter 4). 
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Relationships between the community composition of plant and microbial communities in soils 

are well documented, both in peats (Jassey et al. 2014; Lin et al. 2014b) and in other soils (e.g. 

Bonito et al. 2014). 

Although low phenol oxidase activity is thought to be one of the main causes of low rates of 

decomposition in peatlands (Freeman et al. 2001), the current study appears to suggest that a 

number of the micro-organisms present in peatlands may possess phenol oxidase genes. 

Predicted phenol oxidase genes were fairly widely distributed amongst metagenome-

assembled genomes (MAGs) and numerous dioxygenase, copper oxidase and peroxidase 

domains were detected in unassembled shotgun sequencing data. A previous metagenomic 

analysis of bog microbial communities at a similar depth below the surface likewise found 

abundant copper oxidase and dioxygenase domains, with roughly 0.16 and 0.12 copies 

respectively of each gene for each copy of rpoB, a conserved single-copy gene (Lin et al. 

2014a). However, these domains have a broad range of functions (Passardi et al. 2005), and so 

the current study used more specific hidden Markov models to additionally search for fungal 

laccases and for two fungal peroxidases commonly implicated in the degradation of lignin, a 

complex polyphenolic molecule (lignin and manganese peroxidases). Genes for lignin and 

manganese peroxidases were barely detected, suggesting that these enzymes are rarely present 

in peatlands. Low copy numbers of these enzymes may have important consequences for peat 

decomposition, as peroxidases are key for the degradation of lignin (which in peatlands may 

originate from grasses or dwarf shrubs, and potentially from Sphagnum moss in small 

quantities (Bland et al. 1968)) and the release of sugars and amino acids from humus 

encapsulation (Tian and Shi 2014). Laccases from both basidiomycetes and ascomycetes were 

more abundant than fungal peroxidases, but still made up only a small proportion of copper 

oxidases. Additionally, the presence of genes for a given function does not necessarily mean 

that these genes will be active in the environment, as enzyme activity requires transcription, 

translation, and appropriate conditions for enzyme activity: in particular, low redox potential 

and lack of oxygen in saturated peat would inhibit phenol oxidase activity. 

Shotgun sequencing detected diverse and abundant potential for anaerobic metabolism in 

bacterial communities in the bog. Fermentation appeared to be the most widespread pathway: 

genes for complete pathways of fermentation were present in at least sixteen of the twenty-six 

near-complete MAGs, including both obligate and facultative anaerobes. Amongst 

unassembled shotgun metagenomic sequencing reads, hydA (a gene for an enzyme which 
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carries out the hydrogen-producing step in fermentation) was abundant in both the current study 

and that of Lin et al. (2014a). Earlier studies of carbon metabolism in peat likewise suggest that 

fermentation is an important pathway in peatlands (Hines et al. 2001; Hamberger et al. 2008; 

Galand et al. 2010). Amongst unassembled metagenomic reads, genes for denitrification (nirK 

and nosZ) were slightly more abundant than the sulfate reduction gene dsrA, corresponding to 

the results of Lin et al. (2014a). Conversely, no MAG contained a complete pathway for 

denitrification while several contained pathways for dissimilatory sulfate reduction and 

dissimilatory nitrate reduction to ammonia (DNRA). Therefore, the presence of dissimilatory 

sulfate reduction and DNRA, but not denitrification, in MAGs may suggest that the genome 

assembly and binning process is skewed towards certain organisms, and that the MAGs are not 

necessarily representative of the community as a whole. In particular, it is possible that the 

genetic material of anaerobic organisms was most likely to be assembled into MAGs: 

denitrification is limited to facultative anaerobes, while DNRA is found in obligate anaerobes 

(Tiedje 1988). Reasons for this skew are unclear, but may suggest that individual 

populations/strains of aerobes present in the bog are rarer and thus less likely to be assembled. 

Interestingly, two of the MAGs assigned to Acidobacteria contained complete predicted 

pathways for dissimilatory sulfate reduction. As yet, Acidobacteria are not associated with 

dissimilatory sulfate reduction, and so may account for a proportion of wetland dsrA genes 

which cannot be assigned taxonomically. However, this conclusion cannot be proven based on 

MAGs alone. 

6.3 The effect of drought on microbial communities in peat soils 

Climate change is predicted to alter precipitation regimes, leading to increased potential for 

droughts (Douville et al. 2002; Bates 2008). In turn, drought has a strong impact on greenhouse 

gas emissions from peatlands (e.g. Freeman et al. 1993b; Fenner and Freeman 2011). In 

particular, drought increases the release of carbon dioxide from peatlands, an effect which is 

mediated by increased degradation of phenolic compounds (Freeman et al. 2001). Prior to the 

current work, drought had been shown to increase the diversity of genes for a particular 

phenolic-degrading enzyme, catechol 2,3-dioxygenase, in a Welsh gully mire (Fenner et al. 

2005); to decrease the abundance of 16S rRNA genes in both bogs and fens (Kim et al. 2008); 

and to have a negative impact on the abundance of nirS, a marker of denitrifying micro-

organisms (Kim et al. 2008). Conversely, drought has been found to increase bacterial growth 

rate and cell numbers (Fenner and Freeman 2011). Similarly, it had been demonstrated that 
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long-term drying of peatlands impacts bacterial and fungal communities in peatlands 

(Peltoniemi et al. 2012; 2015), and that fluctuating water tables lead to an altered bacterial 

community 50cm below the peat surface (Nunes et al. 2015).  

In the current study, automated ribosomal intergenic spacer analysis (ARISA) demonstrated a 

significant effect of drought on bacterial and fungal community composition, with the most 

significant effect during the rewetting period. Although Kim et al. (2008) did not detect a 

significant effect of drought on bacterial community composition, the longer duration of the 

current experiment and the inclusion of a rewetting period made it possible to detect this change 

using ARISA. However, despite the fact that ARISA fingerprinting detected community 

changes, marker gene analysis did not find a significant change in overall community 

composition during drought while shotgun sequencing revealed only a very weak overall effect 

of drought on community composition. There are several possible explanations for this 

discrepancy. Firstly, many of the amplicon sizes measured by ARISA fingerprinting are 

considerably larger than those which were sequenced (ARISA amplicon sizes ranged from 165-

1,580bp, while marker gene analysis was carried out on amplicons 300-350bp long and 

metagenomic sequencing was carried out on fragments of 300-500bp). In freshwater lakes, 

seasonal community changes are more rapidly detected by analysing large amplicons than 

smaller amplicons from environmental DNA (Bista et al., in revision), likely because the 

process of degradation is less likely to leave large amplicons intact over a period of time. 

Environmental DNA (eDNA) is trace DNA extracted from environmental samples without 

isolating organisms first. Therefore, it is possible that in the current study the smaller size of 

the amplicons prepared for sequencing made it more difficult to detect changes over short time 

scales. Secondly, ARISA fingerprinting represented only a small amount of diversity when 

compared with the sequencing dataset and so it is possible that several drought-responsive taxa 

happened to be picked up within the ARISA fingerprinting dataset, leading to an overall effect 

of drought. However, this would be highly improbable given that amplicon sequencing 

suggested only a small proportion of the community responded to drought (although it should 

be noted that the primers chosen for amplicon sequencing will not have been able to amplify 

DNA from all organisms present). 

Despite the lack of an overall community response in sequencing data, a subset of OTUs in the 

marker gene dataset responded significantly to drought, particularly in the fen at 5cm. Very 

few OTUs responded to drought in the bog habitat and at 20cm depth, and so no significant 
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effect of drought was found on the overall taxonomic or functional composition in the 

metagenomes. The weaker response of the bog community to drought could indicate that peat 

bogs contain a more drought-resistant community than fens, or could be caused by increased 

persistence of ‘relic’ DNA in the bog caused by low pH and low concentration of base cations 

in this habitat (Carini et al. 2016). Redox potential in the bog was typically higher than that in 

the fen, potentially leading to a community better able to adapt to more oxidised conditions 

caused by drought: however, analysis of metagenome-assembled genomes (MAGs) suggested 

that the bog contained a number of bacterial taxa which were potential obligate anaerobes. 

A number of patterns can be discerned amongst the OTUs found to respond to drought in the 

fen at 5cm. Both Bacteroidetes and Proteobacteria made up a higher proportion of drought-

affected OTUs than of the community as a whole, with Bacteroidetes typically responding 

negatively and Proteobacteria responding positively. Notably, both the Bacteroidetes and α-

Proteobacteria have previously been identified as phyla containing a low proportion of dormant 

members in the environment (Jones and Lennon 2010), potentially making these phyla 

especially responsive to environmental changes. Where it was possible to assign detailed 

taxonomy to the drought affected OTUs, negatively drought-affected OTUs were typically 

related to obligate anaerobes: for example, one was assigned to genus Geobacter, a genus of 

Fe3+ reducers, and another to Paludibacter, of which the only known member is an obligately 

anaerobic fermenter. Ecological patterns amongst positively drought-affected OTUs were more 

difficult to determine, although several appeared to be related to taxa that respond positively to 

the contamination of soil by hydrocarbons or the addition of labile substrates (discussed fully 

in Chapter 3). When the confidence values for the taxonomic assignments were ignored, four 

of seven drought-affected eukaryotic OTUs belonged to the Rhizaria. Together with a 

significant rise in the proportion of the 18S rRNA gene dataset made up of Rhizaria, this 

appeared to suggest a potential response of Rhizaria to drought. Rhizaria exhibit a range of 

lifestyles, including mixotrophy, bacterial grazing and predation of other protists (Burki and 

Keeling 2014; Gomaa et al. 2014). Therefore, Rhizaria may influence carbon cycling in several 

ways: e.g. by regulating bacterial communities via grazing (Glücksman et al. 2010), or by a 

community shift from autotrophic species to heterotrophs (Jassey et al. 2015). Although few 

OTUs were significantly affected by drought once corrections for multiple comparisons were 

applied, the patterns observed in the taxonomy and predicted function of many of these 
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organisms suggest a real effect. Therefore, the current thesis provides a set of novel hypotheses 

for future research into the effect of environmental change on peatland microbial communities. 

Within the shotgun sequencing data, there was a significant fall in the abundance of hydA, a 

gene involved in the hydrogen-generating step of fermentation, during drought. In addition, 

several of the negatively drought-affected OTUs were affiliated with taxa containing 

fermentative members such as Paludibacter and Pacearchaeota. However, the weak 

taxonomic resolution with which the majority of drought-affected OTUs were assigned makes 

it impossible to draw firm conclusions about the functional potential of these OTUs. Together, 

these results may suggest that drought reduces the functional potential of the community for 

fermentation. There was additionally an effect of drought on the number of copies of the 

ribosomal protein gene S12p, which was less abundant in droughted than control mesocosm 

cores at time point 4. A decrease in the relative abundance of ribosomal protein genes could 

potentially be an indication of an increase in genome size. However, further evidence would 

be required to confirm this link. 

6.4 Future Research Directions 

Effect of drought on the ‘active’ community 

While several studies have found a significant effect of drought using DNA-based 

methodologies, the effect of drought on the ‘active’ community (based on analysis of RNA 

rather than DNA) is stronger (Barnard et al. 2013; 2015). This is potentially a result of both 

microbial dormancy (Jones and Lennon 2010) and extracellular (‘relic’) DNA (Carini et al. 

2016): dormant and inactive micro-organisms and relic DNA make up a significant proportion 

of diversity in microbial communities (Jones and Lennon 2010; Dlott et al. 2015; Carini et al. 

2016). While previous research suggests that the majority of extracellular DNA is degraded 

within 30 days (Morrissey et al. 2015), it can be protected by binding to clay minerals 

(Morrissey et al. 2015) or humic substances (Crecchio and Stotzky 1998). Many of the 

characteristics of peat soils may lead to especially high levels of extracellular DNA: its high 

organic matter content leads to high cation exchange capacity (Bridgham et al. 2000), which 

in bogs is accompanied by low pH and low concentrations of exchangeable cations. Each of 

these three factors is correlated to the quantity of extracellular ‘relic’ DNA (Carini et al. 2016). 

The study of RNA rather than DNA can avoid many of these problems, as RNA is less stable 

than DNA (and thus more rapidly broken down) and can rapidly be produced in response to 
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environmental change (Moran et al. 2013). In addition to RNA-based analyses, techniques such 

as the degradation of extracellular DNA using propidium monoazide (PMA; Carini et al. 2016) 

or stable isotope probing (SIP) with heavy water to detect active taxa during the rewetting 

period (Aanderud et al. 2015) could be applied. 

Effect of drought on protists 

In the current study, Rhizaria (a phylum of protozoa) responded significantly to drought in the 

fen at 5cm. Protozoan abundance increases with water content, and the size of the response is 

taxon-dependent (Stefan et al. 2014). However, one study found that after one year, differences 

in depth to water table did not have a detectable impact on the density of testate amoeba in a 

Sphagnum-dominated peatland (Marcisz et al. 2014). The weak relationship between water 

table and protist density in peatlands may be because the water content in pristine peatlands is 

typically higher than that tested by Stefan et al. (2014): the effect of water content on protists 

is not linear and becomes weaker with increasing water content (Stefan et al. 2014). However, 

the community composition of testate amoebae in peatlands is affected by both long-term 

changes in water table (Marcisz et al. 2014) and warming (Jassey et al. 2015). To date, the 

majority of studies focusing on peatland protists have been based on morphological 

identification, enabling them to be easily categorised into functional groups such as large and 

small testate amoeba. However, functional group categorisation of protists based on MGA is 

more challenging, as only a small proportion of protistan diversity has been catalogued and 

databases of protist sequences remain incomplete (Pawlowski et al. 2012). Many protist 

functional and ecological characteristics are polyphyletic, making it even more difficult to draw 

meaningful conclusions about their functional potential from sequence data. However, protists 

can have significant impacts on carbon cycling both directly (Crotty et al. 2013; Jassey et al. 

2015) and indirectly, via their impacts on bacterial communities (Glücksman et al. 2010). 

Therefore, a fuller understanding of the effects of short-term drought on protist communities 

and activities would be extremely valuable. 

Confirmation of the effect of drought on drought-affected OTUs 

The marker gene analysis presented in Chapter 3 identified a number of OTUs which appeared 

to respond to drought in the fen at 5cm. However, the relatively small sample size used in the 

experiment greatly reduced the power of this part of the study (only six mesocosm cores from 

each habitat were able to be included in MGA, although samples taken at nine sampling time 
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points from these cores were analysed). In addition, the current results only represent a single 

site for each habitat, but it is possible that the microbial mechanisms underlying drought-driven 

carbon release differ between peatlands. Therefore, the current study should be considered as 

a hypothesis-generating exercise rather than as a confirmation of the response of these OTUs 

to drought. 

Effect of drought on fermentation 

In the current study, the relative abundance of hydA (a key gene in hydrogenogenic 

fermentation) in shotgun sequencing data was lower in droughted than control mesocosm cores 

at the last time point (Chapter 4). Additionally, a number of negatively drought-affected OTUs 

in the fen habitat were related to fermentative bacteria or archaea (Chapter 3). Since 

fermentation is an anaerobic process, a negative effect of drought on fermentation would be 

expected, although this has not been studied to date. Fermentation is an important pathway of 

carbon metabolism in peatlands (Vile et al. 2003; Keller and Bridgham 2007; Hamberger et al. 

2008), and provides substrates for both methanogens and sulfate reducers (Muyzer and Stams 

2008; Drake et al. 2009). Therefore, a reduction in functional genes for fermentation within 

the microbial community could potentially have a negative effect on anaerobic carbon cycling 

which outlast the effect of drought; however, while CH4 emissions are supressed following 

drought (Freeman et al. 1993b; Dowrick et al. 2006), CO2 emissions often remain elevated for 

a significant period following rewetting (Fenner and Freeman 2011). Therefore, the effect of 

drought on fermentation rates, both during water table drawdown and rewetting, merits further 

research. 

General advances in linking genetic data to taxonomy and function 

It is common for a large proportion of metagenomic reads to be unable to be assigned to either 

functional or taxonomic categories, particularly from soil environments (e.g. Delmont et al. 

2012; Lin et al. 2014a), and this was the case in the current study also. In addition, the use of 

utax, which assesses the accuracy of each taxonomic assignment based on the length and region 

of the reads, meant that a large proportion of taxonomic assignments of the 16S and 18S rRNA 

genes were recognised as poor quality. In part, the low proportion of the community able to be 

assigned is a result of the large proportion of microbial diversity which remains to be classified: 

for example, Locey and Lennon (2016) estimated that there are a total of 1 trillion (1012) 

microbial species globally. To compare, only ~104 species have been cultured, while sequences 
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belonging to ~105 species have been classified and catalogued (Locey and Lennon 2016). 

Therefore, it is crucial that we continue to expand our understanding of the microbial world: 

the extremely high diversity of micro-organisms makes this difficult, and will likely necessitate 

a combination of approaches including culture-free approaches alongside continued efforts to 

culture and characterise the micro-organisms present in the environment. 

6.5 Conclusions 

Major conclusions that can be drawn from the current work are as follows: 

 Both prokaryotic and eukaryotic communities were more diverse in the fen than the 

bog mesocosm cores, and the community composition was significantly different 

between the two habitats and between depths. 

 Archaea were only detected at very low abundances, although they were more abundant 

in the fen than the bog. 

 Acidobacteria and Proteobacteria were the dominant bacterial phyla in both bogs and 

fens. Fungi and Chloroplastida were the dominant eukaryotic phyla, with Ascomycota 

and Basidiomycota being the most abundant fungal groups. However, a large number 

of OTUs could not be assigned to phyla. 

 Phenol oxidase genes were widespread amongst metagenome-assembled genomes.  

 Genes for anaerobic respiration were present at relatively high abundances in both the 

unassembled shotgun-sequencing reads and metagenome-assembled genomes, 

especially genes for fermentation. Metagenome-assembled genomes included both 

facultative anaerobes and obligate anaerobes. 

 While the overall community composition either did not respond (MGA) or responded 

only weakly (metagenomic shotgun sequencing) to drought, a number of OTUs 

responded to the drought, especially in the fen at 5cm. Phyla containing the highest 

numbers of drought-responsive OTUs were Proteobacteria, Bacteroidetes and Rhizaria. 

 A gene involved in hydrogen-evolving fermentation, hydA, responded significantly to 

drought, as did the relative abundance of genes for the ribosomal protein S12p. 

To conclude, the current thesis significantly advances our knowledge of the taxonomic and 

functional composition of peatland microbial communities, and of the effect of drought on 

these communities. In particular, it is the first study to apply high-throughput sequencing to 
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characterise the effect of drought on microbial communities in the active layer of a peatland. 

Using this approach, the work presented here demonstrates that while the effect of drought on 

the overall community is weak, a subset of micro-organisms appear to respond significantly to 

drought. Our results therefore provide a novel insight into the microbial mechanisms 

underlying drought-driven carbon release from peatlands, and offer a number of avenues for 

future study. 
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