Bangor University

DOCTOR OF PHILOSOPHY

Computer graphics studies of Islamic geometrical patterns and designs

Salman, Amer Shaker.

Award date:
1991

Awarding institution:
Bangor University

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal ?

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

COMPUTER GRAPHICS STUDIES
 OF ISLAMIC GEOMETRICAL PATTERNS AND DESIGNS

BY

AMER SHAKER SALMAN

8.Sc. Department of Mathematics University of Baghdad
M.Sc. School of Mathematics

University College of North Wales

MBCS, MEG.

A THESIS SUBMITTED FOR THE DEGREE OF PHILOSOPHIAE DOCTOR

Conleg 推ifysgal
(faglpdd $\mathbb{C H y m r u}^{\text {y }}$
finiuprsity $\mathbb{C o l l p g}$
of A̛orth 明ales

Bangor, Gwynedd UKK-TW DDEFNYDDIO YN I 1991

CONTAINS DISKETTE

UNABLE TO COPY

CONTACT UNIVERSITY

IF YOU WISH TO SEE
THIS MATERIAL

ACKNOWLEDGEMENTS

I take this opportunity to express my respectful appreciation of the contributions made by several persons towards the completion of this thesis.

First and foremost my supervisor Dr S.J. Abas for hls sustained interest, suggestions, encouragement, academic guldance and help with varlous difficulties which I had while writing this thesis.

I wish to express my appreciation of the useful assistance given to me by Mr. D. Roberts of Computer laboratory.

I would also like to thank Mr G. Owen for his assistance in setting up the machine required for this research and for his support, Mr F. Lahza for letting me use same of his data, and Miss A. Lastra for her language translation during my research trip to Spaln.

I appreciate the support given by the School of Mathematics staff and the computer laboratory staff who offered valuable and helpful comments.

Finally, my warmest thanks go to my brothers. Dr M.S. Salman, Mr J.S. Salman and Dr O.S. Salman for thelr finance and support. Thls research has been sponsored by the Hlgher Education Ministry of Iraq, whose financlal assistance ls gratefully acknowledged.

This thesis results from the following work:

(1) We have carrled out a comprehensive study of Islamic geometrical patterns. More then 300 patterns have been studied. We have given a critique of the work of previous authors on this subject and have discussed our own ideas on the evolution of Islamic geometrical designs.
(2) We have performed symmetry analysis on the patterns and classifled them according to their symmetry groups.
(3) We have extracted numerical data for efficient generation of the patterns based on the analysis in (2). The data for more than 300 patterns is provided on the disk.
(4) We have developed a mathematical formallsm based on group theory and constructed algorlthms sultable for the generation of the patterns using computer graphics.
(5) the algorithms have been proved by writing an Interactive computer graphic program called Islamic Geometrical Patterns 'IGP'. A llbrary of geometric Islamic patterns has been constructed.
(6) At the end of this thesis, in an Appendix, we have provided suggestions for further extension of this work.

TABLE OF CONTENTS

CHAPTER 1 : INTRODUCTION 1
1.1 INTRODUCTION 1
1.2 IMPORTANCE OF SYMMETRY. 3
1.3 SYMMETRY IN ISLAMIC ART 9
CHAPTER 2 : CLASSICAL METHODS OF ISLAMIC PATTERN DESIGN. 17
2.1 THE ORIGINS OF ISLAMIC PATTERNS 21
2.2 SOME ISLAMIC PATTERNS ARISING FROM SIMPLE SINGLE-SHAPED TILES 24
2.3 EXAMPLES OF PATTERNS PRODUCED FROM USING MULTIPLE-SHAPED TILES 27
2. 4 PATTERNS BASED ON OVERLAPPING TILES 29
2.5 USE OF GRIDS. 35
2.5.1 SQUARE GRID 36
2.5.2 ISOMETRIC TRIANGULAR GRID 39
2.5.3 EXAMPLES OF PATTERNS PRODUCED FROM USING MULTIPLE GRIDS 41
2.5.4 COMPLEX GRIDS. 43
CHAPTER 3 : MATHEMATICAL AND COMPUTER ALGORITHMS FOR THE FRIEZE AND CRYSTALLOGRAPHIC PATTERNS. 54
3.1 BASIC MATHEMATICAL CONCEPTS IN SYMMETRY 55
3.1.1 NET 55
3.1.2 TRANSFORMATION. 56
3.1.3 ISOMETRY 56
3.1.3.1 TRANSLATION. 57
3.1.3.2 ROTATION 57
3.1.3.3 MIRROR REFLECTION 57
3.1.3.4 GLIDE REFLECTION 57
3.1.4 SYMMETRY 58
3.1.4.1 SYMMETRY GROUP 59
3.2 SYMMETRIES OF FRIEZE AND CRYSTALLOGRAPHIC PATTERNS. 60
3.2.1 FRIEZE PATTERNS 60
3.2.2 FRIEZE GROUPS 60
3.2.3 CRYSTALLOGRAPHIC PATTERNS 61
3.2.4 CRYSTALLOGRAPHIC GROUPS. 61
3.2.5 INTERNATIONAL CRYSTALLOGRAPHIC NOTATION. 61
3.2.5.1 NOTATION FOR FRIEZE PATTERNS. 62
3.2.5.2 NOTATION FOR CRYSTALLOGRAPHIC PATTERNS 64
3.2.6 SYMMETRY GROUPS OF NETS 65
3.2.6.1 SYMMETRY GROUP OF A ONE-DIMENSIONAL NET. 65
3.2.6.2 SYMMETRY GROUPS OF FRIEZE PATTERNS. 66
3.2.6.3 SYMMETRY GROUP OF TWO-DIMENSIONAL NETS. 68
3.2.6.4 SYMMETRY GROUPS OF CRYSTALLOGRAPHIC PATTERNS. 73
3.3 COMPUTER ALGORITHMS FOR FRIEZE AND CRYSTALLOGRAPHIC PATTERNS 81
3.3.1 ALGORITHMS FOR FRIEZE PATTERNS 84
3.3.2 ALGORITHMS FOR CRYSTALLOGRAPHIC PATTERNS. 85
CHAPTER 4 : ANALYSIS OF ISLAMIC PATTERNS 87
4.1 THE USE OF AUTOCAD. 89
4.2 METHOD OF STUDY AND ANALYSIS 92
4.2.1 ANALYSIS OF A P4MM CRYSTALLOGRAPHIC PATTERN. 92
4.3 CONCLUSIONS. 114
4.4 LIBRARY OF ISLAMIC PATTERNS 116
CHAPTER 5 : THE PROGRAM: ISLAMIC GEOMETRIC PATTERNS 117
5.1 OVERVIEW 117
5.2 PROGRAM STRUCTURE 118
5.3 STEPS IN EXECUTION 121
5.4. INTERACTION. 124
5.5. MENU ITEMS. 125
5.5.1 JUMP 125
5.5.2 DRAW. 125
5.5.3 POLYGON. 126
5.5.4 FILL 126
5.5.5 INPUT 126
5.5.6 UNDO. 127
5.5.7 LIBRARY 127
5.5.8 CLEAR 127
5.5.9 MOTIF. 127
5.5.10 RETURNT 128
5.5.11 PATTERN 128
5.5.12 QUIT 128
5.6 SUMMERY OF UNITS, TYPES, PROCEDURES AND FUNCTIONS 128
5.6.1 DICTIONARY OF UNITS 128
5.6.2 DICTIONARY OF TYPES 132
5.6.3 DICTIONARY OF PROCEDURES AND FUNCTIONS 139
5.7 EXAMPLES OF ISLAMIC GEOMETRIC. DESIGN 167
APPENDIX SUGGESTIONS FOR FURTHER DEVELOPMENTS OF THIS WORK 183
REFERENCES 184

ERRATA

Symmetry groups of Nets, Frieze patterns and Crystallographic patterns have their elements listed in chapter 3. Corrected versions of these lists are given below, where $F_{p, q}$ denotes reflection in the line through q in direction p and $G_{p, q}$ denotes the glide having translation p and reflection $F_{p, q}$. Also, parameters α, β, γ are arbitrary integers with $\gamma \neq 0$.

Frieze Patterns

$$
\begin{aligned}
& \Xi_{p 111}=\left\{T_{\alpha h}\right\} \\
& \Xi_{p 112}=\Xi_{p 111} \cup\left\{R_{180, \alpha h / 2}\right\}
\end{aligned}
$$

$$
\Xi_{p m 11}=\Xi_{p 111} \cup\left\{F_{k, \alpha h / 2}\right\} \quad \text { where } k \perp h
$$

$$
\Xi_{p 1 m 1}=\Xi_{p 111} \cup\left\{F_{h, 0}, G_{\gamma h, 0}\right\}
$$

$$
\Xi_{p m m 2}=\Xi_{N_{F}}=\Xi_{p 112} \cup \Xi_{p m 11} \cup \Xi_{p 1 m 1}
$$

$$
\Xi_{p 1 a 1}=\Xi_{p 111} \cup\left\{G_{(2 \alpha+1) h / 2,0}\right\}
$$

$$
\Xi_{p m a 2}=\Xi_{p 1 a 1} \cup\left\{R_{180, \alpha h / 2}, F_{k,(2 \alpha+1) h / 4}\right\}
$$

Crystallographic Patterns

$$
\begin{aligned}
& \Xi_{p 1}=\left\{T_{\alpha u+\beta v}\right\} \\
& \Xi_{p 211}=\Xi_{N_{p}}=\left\{T_{\alpha u+\beta v}, R_{180, \alpha w / 2+\beta v / 2}\right\} \\
& \Xi_{p 1 m 1}=\left\{T_{\alpha u+\beta v^{\prime}}, F_{u, \beta v / 2}, G_{\gamma u, \beta v / 2}\right\} \text { or } \\
& \Xi_{p 1 m 1}^{-}=\left\{T_{\alpha u+\beta v^{\prime}} F_{v, \beta w / 2}, G_{\gamma v, \beta w / 2}\right\} \\
& \Xi_{p 2 m m}=\Xi_{N_{R}}=\Xi_{p 211} \cup \Xi_{p 1 m 1} u \Xi_{p 1 m 1}^{-} \\
& \Xi_{p 1 g 1}=\left\{T_{\alpha u+\beta v^{\prime}} G_{(2 \alpha+1) w / 2, \beta v / 2}\right\} \\
& \Xi_{p 1 g 1}^{-}=\left\{T_{\alpha u+\beta v^{\prime}}, G_{(2 \alpha+1) v / 2, \beta u / 2}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \Xi_{p 2 m g}=\Xi_{p 1 g 1} \cup \Xi_{p 1 m 1}^{-} \cup\left\{R_{180,(2 \alpha+1) w / 4+\beta v / 2}\right\} \\
& \Xi_{p 2 g g}=\Xi_{p 1 g 1} \cup \Xi_{p 1 g 1}^{-} \cup\left\{R_{180,(2 \alpha+1) w / 4+(2 \beta+1) v / 4}\right\} \\
& \Xi_{c 1 m 1}=\left\{T_{\alpha u+\beta v}, F_{u+v, \beta(u-v) / 2}, G_{\gamma(u+v), \beta(u-v) / 2},\right. \\
& \left.G_{(2 \alpha+1)(u+v) / 2,(2 \beta+1)(u-v) / 4}\right\} \\
& \Xi_{c 2 \operatorname{man}}=\Xi_{N_{C}}=\Xi_{c 1 m 1} \cup\left\{F_{u-v, \beta(u+v) / 2^{\prime}} G_{\gamma(u-v), \beta(u+v) / 2^{\prime}}\right. \\
& \left.G_{(2 \alpha+1)(u-v) / 2,(2 \beta+1)(u+v) / 4}, R_{180, \alpha u / 2+\beta v / 2}\right\} \\
& \Xi_{p 4}=\Xi_{p 211} \cup\left\{R_{ \pm 90, \alpha u+\beta v}, R_{ \pm 90,(2 \alpha+1) w / 2+(2 \beta+1) v / 2}\right\} \\
& \Xi_{p 4 m m}=\Xi_{p 4} u\left\{F_{u+v, \beta(u-v) / 2}{ }^{\prime} G_{\gamma(u+v), \beta(u-v) / 2^{\prime}}{ }^{F}(u-v), \beta(u+v) / 2^{\prime}\right. \\
& \left.G_{\gamma(u-v), \beta(u+v) / 2}, F_{u, \beta v / 2}, G_{\gamma u, \beta v / 2}, F_{v, \beta w / 2}, G_{\gamma v, \beta u / 2}\right\} \\
& \Xi_{p 4 \mathrm{gm}}=\Xi_{\mathrm{p} 4} \cup\left\{F_{u+v,(2 \beta+1)(u-v) / 4}, G_{\gamma(u+v),(2 \beta+1)(u-v) / 4}\right. \text {, } \\
& { }^{F}(u-v),(2 \beta+1)(u+v) / 4, G_{\gamma}(u-v),(2 \beta+1)(u+v) / 4, \\
& { }^{G}(2 \alpha+1) u / 2,(2 \beta+1) v / 4, G^{(2 \alpha+1) v / 2,(2 \beta+1) \omega / 4} \text {, } \\
& \left.G_{(2 \alpha+1)(u+v) / 2, \beta(u-v) / 2,} G_{(2 \alpha+1)(u-v) / 2, \beta(u+v) / 2}\right\} \\
& \Xi_{p 3}=\left\{T_{\alpha u+\beta v}, R_{ \pm 120, \alpha u+\beta v}, R_{ \pm 120,(3 \alpha+1) w / 3+(3 \beta+1) v / 3}{ }^{\prime}\right. \\
& \left.\mathrm{R}_{ \pm 120,(3 \alpha-1) \omega / 3+(3 \beta-1) v / 3}\right\} \\
& \Xi_{p 3 m 1}=\Xi_{p 3} \cup\left\{F_{u, \beta v^{\prime}} G_{\gamma u, \beta v^{\prime}} G_{(2 \alpha+1) w / 2,(2 \beta+1) v / 2^{\prime}}\right. \\
& F_{v, \beta u^{\prime}} G_{\gamma v, \beta u^{\prime}} G_{(2 \alpha+1) v / 2,(2 \beta+1) w / 2^{\prime}} \\
& \left.F_{u-v, \beta u}, G_{\gamma(u-v), \beta u} G_{(2 \alpha+1)(u-v) / 2,(2 \beta+1) w / 2}\right\} \\
& \Xi_{p 31 m}=\Xi_{p 3} \cup\left\{F_{u+v, \beta v^{\prime}} G_{\gamma(u+v), \beta v^{\prime}} G_{(2 \alpha+1)(u+v) / 2,(2 \beta+1) v / 2^{\prime}}\right. \\
& F_{2 u-v, \beta u^{\prime}} G_{\gamma(2 u-v), \beta u^{\prime}} G_{(2 \alpha+1)(2 u-v) / 2,(2 \beta+1) w / 2}, \\
& \left.F_{2 v-u, \beta v}, G_{\gamma(2 v-u), \beta v} G_{(2 \alpha+1)(2 v-u) / 2,(2 \beta+1) v / 2}\right\} \\
& \Xi_{p 6}=\Xi_{p 3} \cup\left\{R_{ \pm 60, \alpha u+\beta v}, R_{ \pm 180, \alpha u / 2+\beta v / 2}\right\} \\
& \Xi_{p 6 m m}=\Xi_{N_{H}}=\Xi_{p 6} \cup \Xi_{p 3 m 1} \cup \Xi_{p 31 m}
\end{aligned}
$$

1.1 INTRODUCTION

The work in this thesis sets out to achieve the following:
(1) To carry out a comprehensive study of Islamic geometrical patterns.
(2) To perform symmetry analysis on the patterns and to classify them according to their symmetry group.
(3) To extract numerical data for efficient generation of the patterns based on the analysis in (2).
(4) To develop a mathematical formalism for the construction of algorithms suitable for the generation of the patterns using computer graphics.
(5) To prove the algorithms developed in (4) by writing an interactive computer graphic program and by constructing a library of geometric Islamic patterns.

After the introduction in this opening section we discuss the importance of symmetry in general and then give examples of
symmetry in Islamic art. This is intended to explain the motivation for this work.

The purpose of chapter 2 is to present our own views on how the Islamic patterns originated and developed and to compare our thoughts with the views put forward by previous authors who have published in this subject.

The main aim of chapter 3 is to apply group theoretic methods of analysis and generation to Islamic geometrical patterns. Following our review of the subject, we develop a set of algorithms suited to interactive generations of frieze and crystallographic patterns. These algorithms are used in the computer program which is described in chapter 5.

The first part of the work for this thesis involved an extensive study of more than 300 Islamic patterns. The majority of the patterns studied appear in the books by Bourgoin [9], Critchlow [13], El-Said \& Parman [63] and Wade [73]. Also, about ten patterns which do not occur in these references where collected by the author on a study tour of Islamic architecture to be found in Spain.

The patterns were studied using the CAD package AutoCAD and data was extracted to make it possible to recreate these patterns using the insights provide by symmetry analysis. Chapter 4 reports the first part of our work.

Finally in chapter 5 , we describe the interactive program Islamic Geometrical Pattern (IGP), which was written to utilize our data and our algorithms. Although the program was written specifically to recreate the Islamic geometrical patterns studied by us, it is in fact a general purpose program capable of
generating the full set of plane crystallographic patterns from template motif data given in a file or created interactively. The program allows for interactive modification and coloring of related patterns obtained from library data. Example of output produced by the program are given at the end of the Chapter.

The program listing and the numerical data are attached in a floppy disk.

In the next section we discuss the importance of the subject of symmetry which will be followed by examples of symmetry in Islamic art.

2.1 IMPORTANCE OF SYMMETRY

Symmetry is a vast subject. The term 'symmetry' is meaningful in ordinary every day occurrences, in the arts, in literature and also in exact sciences. In the arts and in ordinary language the term is used rather vaguely in two different ways; to express exact correspondence of size, shape, color etc between opposite sides of an object; to express harmony of proportion, balance and regularity between parts. Mathematicians, on the other hand, define it precisely in terms of invariance of a set under a group of automorphic transformations, see for example Coxeter[12a,b].

It is not our intention in this thesis to discuss the range of the subject of symmetry in great detail. This has been done elsewhere and the reader is referred to the classical monograph by Weyl[74] and the more recent collection of papers given in references (see authors, El-Said \& Parman [63], Jones [37]) as
sources for appreciating the range of application of symmetry. Our intention in this opening chapter is simply to indicate with the aid of figures the widespread occurrence of symmetric forms. This is done to justify the application of computer graphics to studies of symmetry which is the nature of the work carried out for this thesis.

We find symmetrical structures right at the micro-scale of living organisms and non living matter. Fig(1a) shows the chemical structures of certain compounds known as metallacarboranes. Fig(1b) shows the well known structure of the DNA molecule which is the basis of all living matter. Fig(1c) shows the five-fold symmetrical structure of a type of sea Urchin. This kind of symmetry is quite common in biological forms, particularly flowers.

Of course the most common association of symmetry is with beauty and in their search for beauty human artists and designers have always explored symmetry. Fig(2a) shows the Chinese character which means double happiness. One cannot imagine a great building which did not have symmetry. Fig(2b) shows a typical structure associated with the classical Greek architecture and fig(2c) shows the design of a modern sports stadium by Pier Luigi Nervi.

The study of geometry has always produced and continues to produce many beautiful symmetric forms. Fig(3a) represents seven cardioids generated by the formula $r=a(1-\cos (\alpha \phi))$, a cardioid of order 1 is the basic shape, increasing α increases the lobes in the patterns as shown in the figure. The availability of the computer has made it possible to explore many complex symmetric structures which could not be explored before. One growth area has
been in the field of Fractals invented by the French mathematician Benoit Mandelbort[46]. Fig(3b) shows an artistic rendering of the famous Mandelbrot set.

The above set of examples illustrate the range of symmetrical structures and We now move to our main interest in symmetry in this thesis which is the context of Islamic art.

a

b

fig(1)

b

c
fig(2)

08088

 \&\&
fig(3)

1.3 SYMMETRY IN ISLAMIC ART

It is useful to know first, what we mean by islamic art. The most useful definition of 'Islamic' is suggested by Grabar[27]: " Islamic refers to a culture or civilization in which the majority of the population, or at least the ruling element, profess the faith of Islam, the art produced by such a culture could then be called Islamic art ". We will accept this as our definition.

Islamic art, unlike the arts of other nations, has almost exclusively concentrated on symmetry, so that symmetry is the major unifying characteristics. With few exceptions, e.g. Persian miniatures, there are no human and animal images to be found in Islamic designs, which is the common practice in other cultures. The author suggest that there are three reasons for this.

One of the reasons has to do with religion. The Islamic artist is prohibited from representing human or animal forms according to the Hadith (the tradition concerning the actions and sayings of prophet Mohammed, collected by his followers). This does contain the admonition that the punishment of the people who paint any living thing will be very hard on the day of judgment. Another reason is that the Quran (the holy book of Islam, contains the words of Allah in the chosen language of Arabic). Arabic, thus came to have a sanctified position in Islamic society, especially when it was used by artists in calligraphically to quote verses from the Quran. The final reasons comes from the value placed on education in Islamic culture. Since geometry was regarded with great respect in education, the artist naturally thought that this was the correct way to express their
work.
Calligraphy is an integral part of design in Islamic culture which is its unique feature. Islamic artists have produced many calligraphic scripts and symmetrical calligraphic designs from the earliest times and continue to do so today.

Fig(4a) shows an example of a simple calligraphic design in the interior of Uiu Cami, Bursa, Turkey, from the Othoman period (1359-1420). Fig(4b) shows an example of a more complex design from a recent work by the Iraqi calligrapher Hashem Al-Khattat[39]. The calligraphic panel is structured in Jali Thuluth script. The text is a verse from the Surat Al-Omran in Quran enjoining Muslims to put their trust in God.

Of course, Islamic art is best known for the use of infinite repeat patterns in tiling. The Great Mosque in Baghdad, the palace of Alhambra in Spain and the Taj Mahal in India are well known examples of building which have been admired universally. In this area its achievements are greater than that of any previous culture and examples of all the seventeen Crystallographic groups are to be found (see Montesinos[50]) in Islamic tiling decoration. Bourgoin [9] was the first one to collect and publish a large collection of these designs. Since then many authors have written on this subject, and the recent work by Grunbaum and Shephard [28h] contains many examples from the work of Islamic artists.

Several photographic plates taken by the author, during a study tour of Spain are included here. Plate(1) shows a view of the court of the lions in the Alhambra palace at Granada (1354). This was one of the latest additions to the palace which served
the local rulers of that part of Spain.
Plate(2) shows an example of an infinite uni-directional repeat pattern from the Great Mosque at Cordova, The mosque was started in eighth century but has frequently been added to.

Plate(3) shows another infinite uni-directional repeat pattern. The combined use of geometry and calligraphy is very common in Islamic designs.

Another concern of Islamic art has been centered on the effective use of colour. It is surprising to discover that it was to record and display the colors of Islamic architecture that color lithography was first developed in Britain. Owen Jone's treatise on Alhambra in Spain, produced during (1836-1845), was the first color book to be produced in Britain.

Plate(4) shows a repeat pattern in two dimensions. Islamic artists used colors systematically to reflect different ideas and to create the Islamic feeling. This topic requires research to clarify the exact principles used, however, we can see that green, black and blue are very common colors used to produce a large set of designs. In calligraphy the verses from the Quran are written with white and blue in the background. White is associated with good and blue is intended to suggest the feeling of the sky. Plates(5) and (6) show two typical examples of repeat pattern decorations and surrounding borders. Plates(4),(5) and (6) where photographed by the author in Algiralda, Seville, Spain, which was built in 1248.

Apart from its aesthetic value, the importance of Islamic design in mathematics and other sciences, comes from the use of repeat patterns. The study of these can provide a pleasurable lead
into group theory which is the basis of advanced pure mathematics and also basis of modern thinking in physics.

Many highly creative teachers of mathematics in the West have in recent years discovered Islamic art to be an ideal medium for the teaching of mathematical concepts (see authors Jones[37], Makovicky[43], Niman \& Norman[54], Norman \& Stahl[55]). This has sadly not been appreciated to any extent in Islamic culture where the study of these patterns could be used to teach something of historical importance and which could also lead to modern thinking.

To conclude, in this chapter we have given a brief and general introduction to the subject of symmetry, Islamic art and the importance of repeat patterns. This was intended to show that an extensive study of symmetric Islamic repeat patterns using modern mathematics and computer graphics is a worthwhile task to attempt. We shall now proceed to carry out this task.

a
b

fig(4)

plate(1)

plate(3)

plate(4)

plate(5)

plate(6)

The reader who is unfamiliar with the subject will not know that the original artists who designed Islamic patterns were secretive and did not disclose their methods. Although some limited documents exist in a few libraries and museums (see authors, Christie [10,a,b], Chorbachi [11]), no comprehensive treatise on the subject has come down from the past. The methods proposed are therefore speculative in nature.

Several authors (see, : Bourgoin [9], Critchlow [13], El-Said \& Parman [63], Wade [73]) have published large collections of algorithms for Islamic patterns but the methods proposed are speculative in nature. In our view they rely unnecessarily on compass/ ruler and net based constructions.

From our extensive study of Islamic geometrical patterns, We have formulated our own view as to how the Islamic patterns originated. The purpose of this chapter is to present this view. We shall propose the concept of a 'tile' as being much simpler to explain the origin of the Islamic geometrical patterns. Both from the point of view of historical as well as mathematical
development, this seems to be a much more realistic and useful explanation.

The first major collection of Islamic patterns was published in 1856 in a book containing patterns from many cultures by Owen Jones [38]. Soon after, from 1869 through 1877, the French art historian Prisse D'Avennes [16] published L'art arabe, a sumptuous set of plates (of wood engravings, helio-gravures and color lithographs) illustrating a wide range of art treasures located in and around the city of Cairo (along with a few comparison pieces from European collections). Neither the book by Owen Jones nor the book by Prisse D'Aennes included any algorithms.

The pioneering work which contained a large collection of Islamic patterns together with suggested methods of construction was by Bourgoin [9], published in 1879. Whereas this work provides a rich source of patterns, it suffers from the fact that it is not always possible to work out the method of construction being proposed. For example, fig(1) below appears on page 152 of Bourgoin's book, the dotted construction lines are barely visible.

$f \lg (1)$

Christle's book [10b] which appeared in 1929 is another multi-cultural book and not exclusively concerned with Islamic patterns, but nevertheless it contains many islamic patterns. It does not give detalled algorithms but does give some general methods.

Three books on Islamic patterns appeared in 1976. They are by Critchlow [13], El-Sald \& Parman [63], and Wade [73]. All these books have something individual and interesting to offer.

El-Sald \& parman's book glves very clear geometrical constructions and also contains sections on calligraphy and architecture. There are many photographs of actual building
together with the patterns discussed. Critchlow's book is highly philosophical in character and relates Islamic patterns to symbolical meanings. Wade's book contains many highly attractive black and white filled compositions.

In our view the books by Critchlow and El-Sald \& Parman rely too heavily on compass / ruler constructions. Wade's work although attractive in individual composition suffers from an overall lack of unity. other fault in El-Sald \& Parman work is that they do not always glve the minimum repeat pattern needed to construct a design. For example, for the pattern shown below, El-said and Parman give the area marked (a) as the required repeat pattern, whereas a minimum repeat pattern is shown marked (b).

fig(2)

2.1 THE ORIGINS OF ISLAMIC PATTERNS

If one asks the question as to how the Islamic patterns originated, then it would seem most logical to start with the practical experience of tiling with simple shapes e.g. triangles, rectangles, squares, and hexagons. These shapes would have been decorated with simple colors and patterns.

From this beginning it would be natural to experiment with multiple shaped tiles, new shapes produced by overlapping tiles and to invent better colorings and patterns. Fig(3) shows an inside view of Sircali Madrassa, Konya in Turkey, and displays typically how various shaped tiles were used to experiment with patterns. Plates(1), (2) show examples of the use of simple shaped colored tiles. In these the mosaic work uses four different colors. These designs come from the palace of Alhambra in Granda, Spain.

fig(3)

plate(1)

plate(2)

The experience with simple colored tiles would then lead to abstraction in the design of patterns and give rise to the use of simple and complex nets. This development is summarized in the chart below and we shall evolve our description on this structure.

2.2 SOME ISLAMIC PATTERNS ARISING FROM SIMPLE SINGLE-SHAPED TILES:

Many Islamic patterns can be made quite easily from simple single shaped tiles. The hexagonal tile is the most familiar tile used in Islamic patterns and in fig(4a,b), we show two patterns which arise from the use of a single tile of this shape. We simply arrange the hexagons touching each other in rows. Of course, this
produces triangular holes which could be filled with another simple tile or we could think of the geometrical pattern by itself without any reference to tiles. If we were to remove every third hexagonal tile from such a row then star-shape holes are produced. This could be thought of as a tiling with a star-shape tile and a hexagonal-shape tlle or as a pattern, as shown in fig(4b).

To make clear the point we made earller regarding excessive use of compass/ruler by El-Sald \& Parman [63], the reader may like to compare the method suggested by us here with that given by El-Said \& Parman which is shown in fig(5).

fig(4)

$$
f \lg (5)
$$

El-said \& parman start with circle and proceed as show in this figure to obtain a decreased hexagonal tile from which they suggest making the pattern in fig(4c). Our method leads to the pattern directly.

Of course the decoration of tlles can lead to many interesting effects and varlations. For example, two variations obtained by decorating the tile used in fig(4) as shown in $f 1 g(6 a, b)$.

fig(6)

2.3 EXAMPLES OF PATTERNS PRODUCED FROM USING MULTIPLE-SHAPED TILES:

Some other well known patterns of Islamic art can be derived equally easily if we use multiple-shaped tiles. For example, if we introduce rectangular tiles with hexagonal tlles, which are very common, then we obtain the pattern shown in fig(7).

Fig(8) shows another example of a pattern produced by making use of square tiles and hexagonal tiles. Again the triangular holes that appear can be filled by using simple tiles in a tiling or we can ignore the difference between a tlle and hole, and see it as a pattern.

fig(7)

a

d

Fig(8)

2. 4 PATTERNS BASED ON OVERLAPPING TILES

One would expect that the avallabllity of simple tlles would
naturally lead to some experimentation with overlapping tiles.
Many interesting tile shapes and patterns would be discovered in this way. Fig(9) shows different patterns obtained by using different amounts of overlapping in the sides of hexagonal tiles. In $\mathrm{fig}(9 a)$ the overlap is by a third of the side. In $\mathrm{fig}(9 b)$ it is by half the side. In $\mathrm{fig}(9 \mathrm{c})$ it is by two thirds the side and in fig(9d) the overlap is by the whole side and a quarter.

o)

b)

d)

One very common enhancement used in Islamic patterns is the interlacing of lines. Figio(a, b, c) below show the interlacing patterns obtained by replacing the lines in fig4(a,b) and fig(9c) with interlaced lines.

fig(10)

The most common tile shape in Islamic world is the one obtained by superimposing two square tiles to obtain an octagonal star shape, shown in fig(11a). Related to it is the simple octagonal tile shown in flg(11b). Many patterns arlse from the use of these tiles. The most familiar pattern in Islamic would is obtained by using 8-pointed star shapes, placing them so that they touch each other as shown in fig(12). Fig(13) shows patterns obtained by placing octagonal tiles touching each other in two different ways.

fig(11)

flg(12)

fig(13)

Fig(14) shows two examples of patterns produced by overlapping octagonal tiles in two different ways.

fig(14)

Exactly as done with the square tlle, we can obtain a dodecagon tile from two hexagonal tiles by superimposing as shown in fig(15). Again, by different placing of this tile many of the Islamic patterns are generated. Some of these are shown in fig(16).

Note that the pattern produced in fig(16c) is identical to the one produced in fig(8d), where a different procedure was suggested. This emphasizes, the obvious point that there is no unique way to make any given pattern.

fig(15)

f1g(16)

Patterns obtained by placing dodecagons

2.5 USE OF GRIDS

The above discussion was intended to show how simple practical experience with tiles can give rise to a large class of patterns. This experience wlll undoubtedly lead to abstraction and the next stage would involve geometrical construction without
their being necessarlly any connection with tiles. Having shown how many of the patterns of Islamic art can be explained very simply in terms of tiles, we will now look at example of patterns which can be derived making use of simple grids. First We show examples based on two of the most common grids.

2.5.1 SQUARE GRID

The simplest grid is the square grid. It has a high degree of symmetry and is also very useful from the practical point of view because designs based on it can be translated easily into brick work.

Calligraphy is a very important feature of Islamic art and the square grid has been used extensively to design calligraphic patterns. Fig(17) shows typical calligraphic pattern based on the square grid. The pattern is made from the word 'All' which refers to the name of prophet Mhammad's son-in-law.

fig(17)

Fig(18) shows an example of a design which is often found in brick work. Its method of construction is shown in the right of the figure.

fig(18)

One class of patterns that has considerably attracted Islamic artists involves interlocking shape which are usually colored in two contrasting colors. Two example of such patterns which make use of the square grid are shown in fig(19).

a
b

An example of a very pleasing interlaced pattern based on the square grid is shownin $\mathrm{fig}(20 b)$ and its method of construction, are shown in the fig(20a). The pattern is obtain by replacing the line in fig(20a) by thick interlaced lines.

fig(20)

2.5.2 ISOMETRIC TRIANGULAR GRID

This is anther very popular grid and also has a high degree of symmetry. This give arise to a massive number of star patterns which occur very commonly in islamic art.

Fig(21) shows an example based on this grid. This pattern has been used to great effect in the stone work in the famous Jomah Masjed (Friday mosque) of Isfahan.

fig(21)

Figs(22) and (23) show examples of interlocking patterns based on the triangular grid. The pattern in fig(23) is very popular all over the Islamic world and is executed in the widest range of materials.

fig(22)

fig(23)

2.5.3 EXAMPLES OF PATTERNS PRODUCED FROM USING MULTIPLE GRIDS

After experience with tiles and simple grids, the next stage of development would naturally lead to some experimentation with multiple grids. One very interesting example of the use of multiple grids is star and cross grids which is derived easily from the best known tiling used in the Islamic world. Fig(24) shows the construction of this grid. We start with the star and cross tiling and then draw the blue lines. From this multiple grid, Islamic artists have created a large number of borders which were noted by Owen Jones [38], although he did not give any clear explanation as to how this grid has arisen. Figs(25) and (26) show examples of interlaced borders constructed on this grid.

fig(24)

fig(25)

fig(26)

2.5.4 COMPLEX GRIDS

We now come to describe the most complex patterns of Islamic art. These have been produced by distributing polygons and circles on grids and dividing them symmetrically. In some cases the grid used is itself obtained by such distributions. Imaginative joining of the divisions has lead to truly remarkable patterns.

To demonstrate the typical approach, we will give an algorithm (see fig(27)) for the pattern which emerges in the final stage shown in fig(28).

```
1- Start with an isometric grid, this gives rise to a set
of points which are to be used as centers of circles.
2- Draw circles centered at grid points and with radius
equal to one quarter of the grid interval.
3- Divide the circumference of each circle into ten equal
parts, the first point making an angle of 18 degree with
the horizontal. This produces a new set of grid points
which will be used in the construction.
4- Obtain a further set of points by joining the points
labelled 10,1 and 9,10 on adjacent circles as shown in
fig (27) and apply the same procedure symmetrically
to all corresponding points.
5- Draw lines joining the points obtained in step3 and 4
as shown in the figure.
```

By filling and by replacing single lines with interlaced lines, many variations can now be produced.

Fig(29) to (33) show more examples of patterns produced by following similar procedures to the one we have just described.

Finally, We will describe a procedure to produce the pattern in fig(34). This procedure was devised by the author to demonstrate the method which obtains auxiliary grid points by making use of initial distribution of polygons. This is intended to give an example which does not start with circles, the shape which occurs most frequently.

1. First distribute dodecagons and equilateral triangles constructed on their sides as shown in the first stage of the figure, (the squares appear automatically).
2. Select points in the middle of each sides of the dodecagons and the triangles as shown in the second stage of the figure. This gives a grid with one set of auxiliary points.
3. Draw L1 and L2 as shown to find the point A at their intersection. Similarly, find sets of points in region Q1, Q2 and Q3. Add these points to the auxiliary grid.
4. Draw lines join the grid points as shown in the fourth stage of the figure. This produces the simple line version of the pattern.

Again, fillings and interlacings lead to a variety of enhancement.

In this chapter we have given our explanation as to how
starting with tiles and using only simple geometry the patterns of Islamic art have arisen. In chapter three we shall approach the method from group theoretic point of view and of modern computer graphics.

fig(27)

fig(28)

fig(29)

fig(30)

fig(31)

fig(32)

fig(33)

$f \lg (34)$

We know turn to the task of developing a mathematical formalism from which we shall derive efficient algonthms for computer graphic generation of Islamic repeat pattern. This formalis:m will be based on group theoretic methods for analysis of plane crystallographic patterns. In this chapter we shall first collect together the basic mathematical notions that are relevant and summarise the well known results on symmetries of the frieze and crystallographic patterns. In our view the work by previous authors contains many misconceptions which will be commented on. Also, the subject has previously been discussed from a mathematical point of view rather than an algorithmic one. McGregor and Watt in their books [48a,b] have usedacomputer to produce frieze and crystallographic patterns but they have developed no formalism and their treatment is not suited to generalization to other types of symmetry such as color symmetry.

Following our review, we shall first develop a set of simple algorithms which are suited to interactive generations of these
patterns and wlll produce illustratlve examples. Finally, we shall develop a general purpose algorithms and again will give examples produced to illustrate. These algorithms are the ones that we have used to develop our computer program which will be discussed in next chapter.

3.1 BASIC MATHEMATICAL CONCEPTS IN SYMMETRY

3.1.1 NET

Given a vector $h \in \mathbb{R}$, a one-dimensional net is the set of points $N(h)=\{\alpha h \mid \alpha \in Z\}$. We say that h generates the net.

Given two non-parallel vectors $h_{1}, h_{2} \in \mathbb{R}^{2}$, a two-dimensional net is the set of points $N\left(h_{1}, h_{2}\right)=\left\{\alpha h_{1}+\beta h_{2} \mid \alpha, \beta \in Z\right\}$. In this case h_{1} and h_{2} generate the net. We wlll refer to any point of N as a node.

(b) otwo-dimensional nel

flg(1)

3.1.2 TRANSFORMATION

A transformation T on a set σ is an action which changes the initial state of σ to an image state $\bar{\sigma}$. We shall be interested in sets σ whose elements are geometrical entities, e.g. points, lines, polygons etc. and a state of σ will be defined by specifying the positions and orientations. In general other attributes could also be included, e.g. colors, styles, fill patterns etc. of the elements. The other types of sets that will be of interest are those whose elements are transformations.

We shall denote the action of the transformation T on σ by writing $\operatorname{T\sigma }=\bar{\sigma}$. If U is another transformation then by UTo we shall mean $U(T \sigma)$. The composite transformation UT will be referred to as the product of T and U .

3.1.3 ISOMETRY

An isometry A is a transformation which preserves distances, i.e. If p_{1}, p_{2} are any two points, then the distance between p_{1}, p_{2} is equal to the distance between their images $A p_{1}$ and $A p_{2}$. This implies that the corresponding angles between any two lines are also preserved, although the image of the angle may be in the opposite sense, in which case the isometry is called indirect otherwise it is call direct.

The identity isometry denoted by I is an isometry which transforms every point onto itself.

An invariant point of an isometry is one which remains unchanged after the isometry is performed.

It may be shown by Martin[47] and Coxeter[12a] that any isometry is one of four kinds:

3.1.3.1 TRANSLATION

A translation T_{r}, is an isometry in which each point is moved by the vector r, see $f i g(2 a)$. This isometry is direct and has no invariant points.

3.1.3.2 ROTATION

A rotation $R_{\varphi, c}$, is an isometry which rotates a points p_{1} by φ degrees in an anti-clockwise sense around the point c, which is called the center of rotation. The isometry $R_{\varphi, c}$ is direct as shown in $f i g(2 b)$. The rotation $R_{\varphi, c}$ always has the point c as the only invariant point.

When the angle of the rotation is $360^{\circ} / \mathrm{n}$ the rotation is called an N-fold rotation. When the angle Φ is 180 degrees, the rotation is called a half-turn.

3.1.3.3 MIRROR REFLECTION

A mirror reflection F_{L}, of a point p in the line L sends p to its mirror image $F_{L} p$. If p lies on L then it is left fixed, see fig(2c). We shall also use Fp, q to represent a reflection in the line passing through the points p and q.

3.1.3.4 GLIDE REFLECTION

A glide reflection G, q^{\prime} is the combination of a translation by the vector r and a mirror reflection in a line parallel to r and passing through the point q, see $f 1 g(2 d)$. We shall also use, $G_{p, q}$ to represent a glide reflection which involve a translation by distance pq followed by reflection in the line joining the points p and q. The isometry has no invariant points.

fig(2) four types of Isometry

3.1.4 SYMMETRY

A symmotry is an isometry transformation which produces an Image state which is indistinguishable from the initial state. If A is a symmetry of σ then $A \sigma=\sigma$. For example, any rotation about the center of a circular disk is. a symmetry of the disk, and so also is a reflection in any line through the center of the disk. In the case of a square, the reflections in the lines L_{1}, L_{2}, L_{3} and L_{4} are symmetries, see fig(3), as are rotations through angles $\pi / 2, \pi$ and $3 \pi / 2$ in a counterclockwise direction about its center c, which is a center of 4 -fold rotational symmetry.

$f 1 g(3)$
Reflections in the four llnes L_{1}, L_{2}, L_{3} and L_{4} are symmetries of the square. The other symmetries of the square are the identity isometry, and counterclockwise rotations through angles $\pi / 2, \pi$ and $3 \pi / 2$ about the center c.

3.1.4.1 SYMMETRY GROUP

The symmetry group Σ_{σ} of a set σ is the set that consists of all the symmetries of σ. The elements of Ξ_{σ} form a group, i.e. they satisfy the following:
(1) Given any two elements A, B in Ξ_{σ}, their product $A B$ is in Ξ_{σ}.
(11) Give any three elements A, B, C in $\Xi_{\sigma^{\circ}} A(B C)=(A B) C$.
(1i1) There is a special element $1 \ln \Xi_{\sigma}$, called the identity olement, such that $I A=A$ for every element $A \ln \Xi_{\sigma}$.
(iv) Given any element A in Ξ_{σ} there exists an element A^{-1} in
Ξ_{σ}, called the inverse of A, such that $A A^{-1}=A^{-1} A=I$.

We say that two elements A, B commute if $A B=B A . \Xi_{\sigma}$ is a commutative or abelian group if all the elements of Ξ_{σ} commute.

The order of the symmetry group Ξ_{σ}, denoted by $\left|\Xi_{\sigma}\right|$ is the number of elements in Ξ_{σ}.
Ξ_{σ} has symmetry, or is symmetric, if $\left|\Xi_{\sigma}\right| 22$. It is asymmetric if $\left|\Xi_{\sigma}\right|=1$, i.e if the symmetry group contains only the identity element I. $\Xi_{\sigma 1}$ has a greater degree of symmetry than $\Xi_{\sigma 2}$ if $\left|\Xi_{\sigma 1}\right| z\left|\Xi_{\sigma 2}\right|$.
Ξ_{σ} is said to be finite order if it has a finite number of element otherwise Ξ_{σ} has infinite order.

3.2 SYMMETRIES OF FRIEZE AND CRYSTALLOGRAPHIC PATTERNS

3.2.1 FRIEZE PATTERNS

Consider a set σ in \mathbb{R}^{2} with an arbitrary reference point \underline{r}_{0}. IF σ is copied by repeated translations onto a one-dimensional net to make \underline{r}_{0} coincide with the nodes then we obtain a frieze pattern, also called a band or a strip pattern.

3.2.2 FRIEZE GROUPS

A frieze group is the symmetry group of a frieze pattern. Theorem: There are seven different types of frieze groups.
(See for example, Martin[47])

3.2.3 CRYSTALLOGRAPHIC PATTERNS

Consider a set σ in \mathbb{R}^{2} with an arbitrary reference point \underline{r}_{0}. IF σ is copied by repeated translations onto a two-dimensional net to make \underline{r}_{0} coincide with the nodes then we obtain a crystallographic, also called a wallpaper pattern.

3.2.4 CRYSTALLOGRAPHIC GROUPS

A crystallographic group is the symmetry group of a crystallographic pattern.

Theorem: There are seventeen different types of crystallographic groups. (See for example, Martin [47]).

3.2.1 INTERNATIONAL CRYSTALLOGRAPHIC NOTATIONS

Several notations have been used to classify frieze and crystallogrphic patterns, see for example Doris Schattschneider [65] and Crowe \& Washburn [15]. In this work, we shall use the notation adopted by Henry \& Consdale [31]. The notation is made up of four symbols which will be explained below. While reading the next two sections the reader will find it helpful to refer to fig(4) and fig(5).

fig(4) The seven distinct types of fileze patterns.

3.2.1.1 NOTATION FOR FRIEZE PATTERNS

1. The first symbol is always denoted by ' \mathbf{p} ', for primitive. (The meaning of this term will be explained later when we come to the notation for crystallogrphic patterns).
2. The second symbol is an ' m ', for mirror reflection, if the pattern has vertical reflection lines. A ' 1 ' in this position indicates that there are no reflection lines.
3. The third symbol is an ' m ', if the central axis along the length of the pattern is a mirror reflection line, and an 'a' if a glide reflection takes place without mirror reflection being present. Again, a '1' indicates that the pattern has no such symmetries.

4- The fourth symbol is a '2', if the pattern had two-fold rotations as symmetries, otherwise the symbol is a' '.

Crowe [14a] and Zuslow [76] give useful flowcharts for

$\mathrm{pl} \quad \mathrm{p} 211$

ph mm

pIg
pr mg

fig(5) The seventeen distinct types of crystallographic pattern

3.2.1.2 NOTATION FOR CRYSTALLOGRAPHIC PATTERNS

1- In this case, the first symbol is either a 'p' or 'c' (for centered).

Note: In classifying two-dimensional patterns, we need to identify a unit cell which can generate the whole pattern by repeating. If the unit cell that is used is the basic cell generated by the net, which is a parallelogram, then the cell is called a primitive cell. In two cases it is more convenient to use a rectangular cell rather than a parallelogram. This choice makes the axis of reflection perpendicular to the cell boundaries. In these cases the cell is called a centered cell.

2- The second symbol denotes the highest order of rotation symmetry, which is the order of the n-fold rotation at the vertex of the repeat. The symbol is a '1' if no such symmetry is present.

3- The third symbol is an ' m ' for mirror reflection, if there are reflection lines perpendicular to the horizontal x axis, and a ' g ' if there is a glide reflection without mirror reflection being present. A ' 1 ' is used when there are no such symmetries.

4- The fourth position has an ' m ' for mirror reflection, if there are reflection lines at an angle ϕ to the horizontal x-axis, and a ' g ' if there is glide reflection in similar lines without a mirror reflection. Otherwise the symbol is '1'. The third and fourth symbols are ignored if there are no mirror reflections or glide reflections.

3.2.2 SYMMETRY GROUPS OF NETS

The symmetry groups of frleze and crystallographic patterns are constrained by the symmetries of the nets on which the patterns are constructed. We shall describe the symmetry groups of the varlous nets that are of interest. We write down below the notation that wlll be used in dlagrams to depicte various types of symmetries.

symbol	meoning
-	Line of mirror refection
0	Line of glide reflection
Δ	Center of 2-fold rotation
\square	Center of 3-fold rotation
0	Center of 4-fold rotation

3.2.2.1 SYMMETRY GROUP OF A ONE-DIMENSIONAL NET

Let N_{F} be a one dimensional net. The symmetry group of this net 1s:

$$
E_{N_{F}}=\left\{T_{\alpha h}, R_{180, \alpha h / 2}, F_{L}, G_{r, p} \mid \alpha \in Z\right\}
$$

1.e it contains the identity, the translations ah, 180 degree rotations about the points $\alpha h / 2$. mirror reflections in line L, where L is of the form $y=\alpha|h| / 2, \alpha \in Z$, or the x-axis, and gllde reflections. The glide vector r is of the form ah and passes through the axis of the frleze, see fig(6).

flg(6)

3.2.2.2 SYMMETRY GROUPS OF FRIEZE PATTERNS

p111

The symmetry group of a pi11 pattern is

$$
\Xi_{p 111}=\left\{\mathrm{T}_{\alpha h} \quad \mid \alpha \varepsilon \mathbb{Z}\right\}
$$

1.e it admits only translations.
p112

The symmetry group of a pi12 pattern is

$$
\Xi_{p 2}=\Xi_{p 111} \cup\left\{R_{180, \alpha h / 2} \mid \alpha \in Z\right\}
$$

1. e apart from translations it contains half turns about the nodes and about mid points between the nodes.
pm11
The symmetry group of a pmil pattern is

$$
\Xi_{p m 11}=\Xi_{p 111} \cup\left\{F_{L}\right\}
$$

1.e apart from translations it admits mirror reflections in the lines L whichare of the form $y=\alpha|h| / 2, \quad \alpha \in \mathbf{z}$.

The symmetry group of a p1m1 pattern is

```
\(\Xi_{\mathrm{p} 1 \mathrm{~m} 1}=\Xi_{\mathrm{p} 111} \cup\left\{\mathrm{~F}_{\mathrm{L}}\right\}\)
```

i.e apart from translations it contains mirror reflections in the line L which is the x-axis.
pmm2
The symmetry group of a pmm2 pattern is
$\Xi_{\mathrm{pmm} 2}=\Xi_{\mathrm{pm} 11} \cup \Xi_{\mathrm{p} 1 \mathrm{~m} 1} \cup\left\{\mathrm{R}_{180, \alpha h / 2} \mid \propto \varepsilon \mathbb{Z}\right\}$
it contains translations, half turns about nodes and about mid points between the nodes, and mirror reflections in the line L, which is of the form $y=\alpha|h| / 2, \alpha \varepsilon \mathbb{Z}$, or the x-axis. p1a1

The symmetry group of a piai pattern is

$$
\Xi_{p 1 a 1}=\Xi_{p 111} \cup\left\{G_{r, p}\right\}
$$

i.e apart of translations, it contains glide refections. The glide vector r is of the form αh and passes through the axis of the frieze.
pma2
The symmetry group of pma2 pattern is

$$
\Xi_{\mathrm{pma2}}=\Xi_{\mathrm{p} 121} \cup\left\{R_{180, \alpha \mathrm{~h}}, F_{\mathrm{L}} \mid \propto \varepsilon \mathbb{Z}\right\}
$$

it contains translation, half turns about the nodes and about the mid points between nodes, mirror reflections where line L is of the form $y=(\alpha|h|+1) / 2, \quad \alpha \varepsilon \mathbb{Z}$, and glide reflections. The glide
vector r is of the form ah and passes through the axis of the frieze.

3.2.2.3 SYMMETRY GROUP OF TWO-DIMENSIONAL NETS

There are five different types of nets categorised by their symmetrles as shown in flg(7). These are parallelogram, rectangle, rhombus, square and hexagon, we shall refer to them as N_{P}, N_{R}, N_{C}, N_{S} and N_{H} respectively. The points marked c wlll be used later when we construct algorithms for generating crystallographic patterns.

(a) parallelogram

(b) rectangle
(c) rhombus
(d) square

(e) hexagonal
flg(7) show flve types of nets

We give below the symmetry group of five different types of nets in two-dimension.

Vectors u, v generate five different types of nets which are categorlzed according to their symmetry groups. These are:
(1) A parallelogram net $N_{\dot{p}}$ which arlses when $|u| \neq|v|$ and
$u \cdot v \neq 0$,
The symmetry group of N_{p} is:

$$
\Xi_{N_{P}}=\left\{T_{\alpha u+\beta v} \cdot R_{180, \alpha u / 2+\beta v / 2} \mid \alpha, \beta \in Z\right\}
$$

1.e it contains the identity, the translations $\alpha u+\beta v$ and 180 degree rotations (half turns) about the vertices, the centers and the mid-points of the parallelogram cells of the net, see fig(8).

flg(8)
(11) A rectangular net N_{R} which arlses when $|u| \neq|v|$ and $u \cdot v=0$, The symmetry group of N_{R} Is:

$$
\Xi_{N_{R}}=\Xi_{N_{P}} \cup\left\{F_{L}, G_{r, p}\right\}
$$

where the line L is of the form $x=\alpha|u| / 2$ or $y=\beta|v| / 2, \alpha, \beta \in Z$, the glide vector r is of the form αu or βv with $\alpha, \beta \in Z, \alpha_{1} \beta \neq 0$ and p is any node point of the net, see fig(9).

fig(9)
(ii1) A centered rectangular net \mathbb{N}_{C} which arises when $|u|=|v|, u \cdot \mathbf{v} \neq 0$ and $u \cdot v /|u||v| \neq \pi / 3$,

The symmetry group of \mathbb{N}_{C} is:

$$
\Xi_{N_{C}}=\Xi_{W_{P}} \cup\left\{F_{L}\right\}
$$

where the L refers to two familles of lines parallel to the vectors $u+v$ and $u-v$ and passing through the nodes of the net, see fig(10).

fig(10)
(Iv) A square net which arises when $|u|=|\mathbf{v}|$ and $\mathbf{u} \cdot \mathbf{v}=0$.

The symmetry group of \mathbb{N}_{S} is:

$$
\begin{gathered}
\Xi_{\mathbb{N}_{S}}=\left\{\mathrm{T}_{\alpha \mathbf{u}+\beta \mathbf{v}}, \mathrm{R}_{90, \alpha \mathbf{u}+\beta \mathbf{v}}, \mathrm{R}_{90,((2 \alpha+1) / 2) \mathbf{u}+((2 \beta+1) / 2) v^{\prime}}\right. \\
\left.\mathrm{R}_{180,(1 / 2+\alpha) \mathbf{u}+\beta \mathbf{v}}, \mathrm{R}_{\left.180, \alpha \mathbf{u}+(1 / 2+\beta) \mathbf{v}, \mathrm{F}_{\mathrm{L}}, \mathrm{G}_{\mathbf{r}, \mathbf{p}}\right\}}\right\}
\end{gathered}
$$

where the symbols have the following meaning:

$$
\alpha, \beta \text { are integers 1.e. } \alpha, \beta \in \mathbb{Z}
$$

L refers to four families of lines whose equations are:

$$
\begin{aligned}
& \mathrm{x}=\alpha|\mathbf{u}| / 2 \\
& \mathrm{y}=\beta|\mathbf{v}| / 2
\end{aligned}
$$

$$
y=x+\alpha \quad y=-x+\alpha
$$

The glide vector \mathbf{r} can have the forms

$$
\mathbf{r}=\alpha \mathbf{u} \text { or } \mathbf{r}=\beta \mathbf{v} \text { with } \alpha, \beta \neq 0
$$

and finally p is any node 1.e p $\varepsilon \alpha u+\beta v$, see flg(11).

fig(11)

(v) A hexagonal net \mathbb{N}_{H} which arises when $|\mathbf{u}|=|\mathbf{v}|$ and $u \cdot v /|u||v|=\pi / 3$.

The symmetry group of \mathbb{N}_{H} is:
$E_{N_{H}}=\left\{T_{\alpha u+\beta v}, R_{60, \alpha u+\beta v}, R_{180},((2 \alpha+1) / 2) u+((2 \beta+1) / 2) v^{\prime}\right.$
$\left.R_{180,(1 / 2+\alpha) u+\beta v}, R_{180, \alpha u+(1 / 2+\beta) v}, R_{120, p}, F_{L}\right\}$
where $\alpha, \beta \in \mathbf{Z} ; \mathbf{p}$ refers to the set of points lying on lines parallel to the vectors $\mathbf{u + v}$ or $\mathbf{u - v}$ and passing through the nodes. The distances of the points \mathbf{p} measured from a node through which
the line passes are $(2 \gamma \pm 1)|\mathbf{u}| / \sqrt{ } 3+2 \gamma|\mathbf{u}| /(2 \sqrt{ } 3)$, where $\gamma \quad \mathrm{z}$. The lines 1 comprise 6 familles of lines passing through the nodes and parallel to the lines whose equations are:
$y=\tan (\varnothing) x, \quad \varnothing \varepsilon\{0, \pi / 6, \pi / 3, \pi / 2,2 \pi / 6,5 \pi / 6\}$
see fig(12).

fig(12)

3.2.2.4 SYMMETRY GROUPS OF CRYSTALLOGRAPHIC PATTERNS

The kind of symmetries that can arise in a periodic pattern depend on the symmetry group of the cell and the symmetry group of the net on which the cell is copled. This is discussed below.

The symmetry group of a p1 pattern is
$\Xi_{p 1}=\left\{T_{\alpha u+\beta v} \mid \alpha, \beta \in \mathbb{Z}\right\}$
i.e it admits only translations.

If the cell has no symmetries then a p 1 pattern is produced no matter what type of net is employed.

In a p1 pattern the cell does not contain a rotation of the same type as one admitted by a net. Since all nets admit dyadic rotations a cell which produces a pi pattern cannot have such a rotation. If the net is the square net \mathbb{N}_{S} then there can be no four-fold rotations in the symmetry group. If the net is the hexagonal net \mathbb{N}_{H} then there can be no three-fold rotations. Restrictions on reflections are that on the rectangular net \mathbb{N}_{R} a reflection line in the cell must not coincide with one of the axes and on an the rhombic net \mathbb{N}_{C} it must not coincide with a diagonal.
p211
The symmetry group of a p211 pattern is the same as the symmetry group of the net \mathbb{N}_{P}, i.e.

$$
\Xi_{p 211}=\left\{T_{\alpha u+\beta v}, R_{180, \alpha u / 2+\beta v / 2} \mid \alpha, \beta \varepsilon \mathbb{Z}\right\}
$$

Apart from translations it admits dyadic rotations (half turns) about the vertices, the centers and the mid-points of the parallelogram cells of the net.

For a p211 type pattern to arise, it is necessary that the cell has a dyadic rotation. On the net \mathbb{N}_{p} there is no further restriction on rotations and reflection which may occur in the
cell.
On an \mathbb{N}_{R} net the cell must not have a line of reflection which coincides with one of the axes to produce a p211 pattern.

On an \mathbb{N}_{S} net the cell must not possess any four-fold centers of rotation.

On an \mathbb{N}_{C} net the cell must not have any lines of reflections which coincide with the diagonals of the cells of the net.

Finally, on an N_{H} net the cell must not possess any three-fold centers of rotation if a p211 type pattern is to be produced.

P1mi

A plmi type pattern can be generated on the nets \mathbb{N}_{R} and \mathbb{N}_{S}. The symmetry group of the pattern is

$$
\Xi_{p 1 m 1}=\left\{T_{\alpha u+\beta v}, F_{L} \mid \alpha, \beta \varepsilon \mathbb{Z}\right\}
$$

where the lines L are a single family of lines of the form $x=\alpha|u| / 2$ or $y=\beta|v| / 2$ (but not both). The cell of such a pattern must have a line of reflection which can be made to coincide with the x or the y axis and must not have any two-fold centers of rotation.

P2mm
A p 2 mm type pattern, like the p 1 m 1 pattern arises on the nets \mathbb{N}_{R} and \mathbb{N}_{S}. The symmetry group of the pattern is

$$
\Xi_{p 2 m m}=\left\{T_{\alpha u+\beta v}, F_{L}, R_{180, \alpha u / 2+\beta v / 2} \mid \alpha, \beta \varepsilon \mathbb{Z}\right\}
$$

where the lines L comprise two family of lines of the form $x=\alpha|u| / 2$ and $y=\beta|v| / 2$. The cell of such a pattern must have two
lines of reflection at right angles which can be made to coincide with the x and the y axis.
p1g1
A pigi type pattern can be generated on nets \mathbb{N}_{R} and \mathbb{N}_{S}. The symmetry group of the pattern is

$$
\Xi_{p 1 g 1}=\left\{T_{\alpha u+\beta v}, G_{r, p} \mid \alpha, \beta \varepsilon \mathbb{Z}\right\}
$$

where the glide vector r of the form $r=u / 2$, and $p=(x=\alpha, y=(\beta / 2) v)$.
p2mg
A p2mg type pattern, like the pigi pattern arises on the nets \mathbb{N}_{R} and \mathbb{N}_{S}. The symmetry group of the pattern is
$\Xi_{p 2 m g}=\left\{T_{\alpha u+\beta v}, F_{L}, R_{180, \alpha u / 2+\beta v / 2}, G_{r, p} \mid \alpha, \beta \varepsilon \mathbb{Z}\right\}$
where the lines L are a single family of lines of the form $x=(2 \alpha+1)|u| / 4$ or $y=(2 \beta+1)|v| / 4$,

The glide reflection is
$\mathbf{r}=\mathbf{u} / 2$, or $\mathrm{r}=\mathrm{v} / 2$, and
$\mathbf{p}=((2 \alpha+1) \mathbf{u} / 4, \quad(2 \beta+1) \mathbf{v} / 4)$.
p2gg
A p2gg type pattern, like the p1gi pattern arises on the nets \mathbb{N}_{R} and \mathbb{N}_{S}. The symmetry group of the pattern is

$$
\begin{aligned}
& \Xi_{p 2 g g}=\left\{T_{\alpha u+\beta v}, R_{180, \alpha u / 2+\beta v / 2}, G_{r, p} \mid \alpha, \beta \varepsilon \mathbb{Z}\right\} \\
& \text { The glide reflection is } \\
& r=u / 2, r=v / 2, \text { and }
\end{aligned}
$$

```
p=((2\alpha+1)u/4, (2\beta+1)v/4).
```

c1m1
A clm1 type pattern can be generated on nets \mathbb{N}_{R} and \mathbb{N}_{S}. The symmetry group of the pattern is

$$
\Xi_{c 1 m 1}=\left\{T_{\alpha u+\beta v}, F_{L}, G_{r, p} \mid \alpha, \beta \varepsilon \mathbb{Z}\right\}
$$

where the lines L are a single family of lines which are parallel to $u+v$ and passes through any nodes. The glide vector r of the form $r=(u+v) / 2$, and $p=((2 \alpha+1) u / 2+\beta v)$.

c2mm

A c2mm type pattern, like the cim1 pattern arises on nets \mathbb{N}_{R} and \mathbb{N}_{S}. The symmetry group of the pattern is

$$
\Xi_{c 2 m m}=\left\{T_{\alpha u+\beta v}, F_{L}, G_{r, p} \mid \alpha, \beta \varepsilon \mathbb{Z}\right\}
$$

where the lines L comprise two families of lines. The first family are parallel to $u+v$, the second family are parallel to $u-v$ and passes through any nodes.

The glide vector r of the form
$r=(u+v) / 2, p=((2 \alpha+1) u / 2+\beta v)$
and

$$
r=(u-v) / 2, \quad p=(\alpha u+(2 \beta+1) v / 2) .
$$

p4
A p4 type pattern can be generated on nets \mathbb{N}_{S} only. The symmetry group of the pattern is
$\Xi_{p 4}=\left\{T_{\alpha u+\beta v}, R_{90, \alpha u+\beta v}, R_{90,((2 \alpha+1) / 2) u+((2 \beta+1) / 2) v^{\prime}}\right.$
$\left.R_{180,(1 / 2+\alpha) \mathbf{u}+\beta \mathbf{v}}, R_{180, \alpha u+(1 / 2+\beta) v} \mid \alpha, \beta \varepsilon \mathbb{Z} \quad\right\}$
p4mm
A p4mm type pattern, like the p 4 pattern arises on net \mathbb{N}_{S} only. The symmetry group of the pattern is

$$
\Xi_{p 4 m m}=\Xi_{p 4} \quad \cup\left\{F_{L}, G_{r, p}\right\}
$$

where the reflection lines L refer to four families of lines whose equations are:

$$
\begin{aligned}
& x=\alpha|u| / 2 \\
& y=\beta|v| / 2 \\
& y=x+\alpha \quad y=-x+\alpha
\end{aligned}
$$

The glide vector r of the form
$r=(u+v) / 2, p=((2 \alpha+1) u / 2+\beta v)$,
and $r=(u-v) / 2, p=(\alpha u+(2 \beta+1) v / 2)$.
p4gm
A p4gm type pattern, like the $\mathbf{p 4}$ pattern arises on net \mathbb{N}_{S} only. The symmetry group of the pattern is

$$
\Xi_{p 4 g m}=\Xi_{p 4} \quad \cup\left\{F_{L}, G_{r, p}\right\}
$$

where the reflection lines L refer to two families of lines whose equations are:

$$
y=x+\alpha / 2 \quad y=-x+\alpha / 2
$$

The glide vector r of the form
$r=u / 2, r=v / 2, p=((2 \alpha+1) u / 4,(2 \beta+1) v / 4)$.

A p3 type pattern can be generated on nets \mathbb{N}_{H} only. The symmetry group of the pattern is

$$
\Xi_{p 3}=\left\{T_{\alpha u+\beta v}, R_{120, \alpha u+\beta v}, R_{120, p} \mid \alpha, \beta \varepsilon \mathbb{Z}\right\}
$$

where p refers to the set of points lying on lines parallel to the vectors $u+v$ or $u-v$ and passing through the nodes. The distances of the points p measured from a node through which the line passes are $(2 \gamma \pm 1)|u| / \sqrt{ } 3+2 \gamma|u| /(2 \sqrt{3})$, where $\gamma \varepsilon \mathbb{Z}$.
p3m1
A p3m1 type pattern, like the p3 pattern arises on net \mathbb{N}_{H} only. The symmetry group of the pattern is

$$
\Xi_{p 3 m 1}=\Xi_{p 3} \cup\left\{F_{L}, G_{r, p}\right\}
$$

where The lines L comprise three families of lines passing through the nodes and parallel to the lines whose equations are:
$y=\tan (\varnothing) x, \varnothing \varepsilon\{\pi / 6, \pi / 2,5 \pi / 6\}$
The glide vector r of the form
$r=(u+v) / 2, p=((2 \alpha+1) u / 2, \quad(2 \beta+1) v / 2)$.
$r=(u-v) / 2, P=(\alpha u+(1 / 2+\beta) v)$, and
$r=v / 2, P=((1 / 2+\alpha) u+\beta v)$.
p31m
A p31m type pattern, like the $\mathbf{p} 3$ pattern arises on net \mathbb{N}_{H} only. The symmetry group of the pattern is

$$
\Xi_{p 31 m}=\Xi_{p 3} \cup\left\{F_{L}, G_{r, p}\right\}
$$

where The lines L comprise three families of lines passing through the nodes and parallel to the llnes whose equations are:

```
y=\operatorname{tan}(\varnothing)x, ø\varepsilon{0,\pi/3, 2\pi/6}
```

The glide vector r of the form

```
r=(u)/4, p=((2\alpha+1)u/4),
r=(v)/4, p=((2\beta+1)v/4),
r=(u+v)/4, r=(u+v)/2, p=((2\alpha+1)u/2+ \betav,\alphau+ (2\beta+1)v/2).
```

p6
A p6 type pattern can be generated on nets \mathbb{N}_{H} only. The symmetry group of the pattern is
$\Xi_{p 6}=\left\{S_{\alpha u+\beta v}, R_{60, \alpha u+\beta v}, R_{180},((2 \alpha+1) / 2) u+((2 \beta+1) / 2) v^{\prime}\right.$
$\left.R_{180,(1 / 2+\alpha) u+\beta v}, R_{180, \alpha u+(1 / 2+\beta) v}, R_{120, p} \mid \alpha, \beta \in \mathbb{Z}\right\}$
where p refers to the set of points lying on lines parallel to the vectors $u+v$ or $u-v$ and passing through the nodes. The distances of the points p measured from a node through which the line passes are $(2 \gamma \pm 1)|u| / \sqrt{ } 3+2 \gamma|u| /(2 \sqrt{ } 3)$, where $\gamma \varepsilon \mathbb{Z}$.
p6mm
A $\mathbf{p} 6 \mathrm{~mm}$ type pattern, like the p 6 pattern arises on net \mathbb{N} only. The symmetry group of the pattern is

$$
\Xi_{p 6 m m}=\Xi_{p 6} \cup\left\{F_{L}, G_{r, p}\right\}
$$

where p refers to the set of points lying on lines parallel to the vectors $u+v$ or $u-v$ and passing through the nodes. The distances of the points p measured from a node through which the line passes are $(2 \gamma \pm 1)|u| / \sqrt{ } 3+2 \gamma|u| /(2 \sqrt{ } 3)$, where $\gamma \varepsilon \mathbb{Z}$. The lines L comprise 6
families of lines passing through the nodes and parallel to the lines whose equations are:
$y=\tan (\varnothing) x, \quad \varnothing \varepsilon\{0, \pi / 6, \pi / 3, \pi / 2,2 \pi / 6,5 \pi / 6\}$
The glide refelction is of the same form of p 3 ml and p 3 ml .
3.3 COMPUTER ALGORITHMS FOR FRIEZE AND CAYSTALLOGRAPHIC PATTERNS:

By action set Ω we shall mean the isometries ($I, T_{r}, R_{\phi, c}$, $F_{L}, F_{p, q} \cdot G_{r, q}, G_{p, q}$) which define previously.

We can combine the elements of Ω to form expressions. These expressions are to be interpreted in the following way:

Let $A, B, C, D \in \Omega$ and $p \in \mathbb{R}^{2}$. We have already defined $A p$ as the result of applying the transformation A to p and ($A B$) p to mean $A(B p)$. By $(A+B) p$ we shall mean $A p \cup B p$ In expressions involving additions and products of the elements of Ω the distributive and associative laws apply. Thus $A(B+C) p=A B p+A C p$ and we can write $A(B+C)=A B+A C$. Similarly $\quad(A+B)(C+D)=A C+A D+B C+B D \quad$ and $A(B+C) D=A B D+A C D$.

A motif element is an ordered pair (E, m) where E is an expression involving elements from the action set Ω and m is a geometrical entity, e.g. a polyline.

A motif set is a set of motif elements $\left\{\left(E_{i}, m_{i}\right\} \mid i=1,2 \ldots n\right\}$.
A motif is the set of geometrical elements $\left\{m_{i} \mid i=1,2 \ldots n\right\}$ contained in a motif set.

Given a motif set, a template motif M (or more simply a template)is the set created from the actions of each E_{i} on m_{i} i.e.

$$
M=\sum_{i}^{n} E_{i} m_{i}
$$

where Σ is being used here to denote a union of sets.
Given a template motif \mathbb{M}, a unit motif \bar{M} is the set created from the action of an expression \bar{E} on M, i.e. $\bar{M}=\bar{E} M$.

A periodic pattern $\mathbb{P}=(\mathbb{N}, \bar{M})$ is created when a unit motif \bar{M} is copied on all the nodes of the net \mathbb{N}, i.e.

$$
\begin{aligned}
\mathbb{P} & =\sum_{\mathbf{w} \in \mathbb{N}} T_{\mathbf{w}} \bar{M} \\
\text { or } \quad \mathbb{P} & =\sum_{\mathbf{w}} \mathrm{T}_{\mathbf{w}} \bar{E} \sum_{i=1}^{n} E_{i} m_{i}
\end{aligned}
$$

The expression \bar{E} depends on the group type of the pattern and is supplied in the table below for frieze and crystallographic patterns. As we said earlier, \bar{E} is not unique and in general it is possible to write down several equivalent forms. The reader may refer to the symmetry diagrams as shown in fig(13) for elucidation. In this diagram the left figure show a suitable region for template motif and the right diagram shows all the isometries that are symmetries of each group.

c 2 mm

p211

02 mm

$\operatorname{OQ}\left[\begin{array}{l}- \\ -\cdots\end{array}\right]$
ps

psol

fig(13)

3.3.1 ALGORITHMS FOR FRIEZE PATTERNS:

Below we are given a set of algorithms to produce the seven frieze patterns. The template motif, the symmetry groups and the dimension of the cell used for the unit motif are shown in fig(14).

p112

pmm 2

pmo2

plal

f1g(14)

GROUP	EXPRESSION \bar{E}
p111	I
p112	$I^{\prime} R_{180, h} / 2,0$
p1m1	$I+F_{0,0, h, 0}$
pm11	$I+F_{h / 2,-k, h / 2, k}$
p2mm	$\left(I+F_{h / 2,-k, h / 2, k}\right)\left(I+F_{0,0, h, 0}\right)$
p1a1	$\left(I+G_{h / 2, h / 2,0}\right)$
pm2a	$\left(I+G_{h / 2, h / 2,0}\right)\left(I+F_{h / 4,-k, h / 2, k}\right)$

3.3.2 ALGORITHMS FOR CRYSTALLOGRAPHIC PATTERNS:

Refer to fig(7) for the notation and the dimensions of the nets being used, below we give a set of algorithms to produce the seventeen crystallographic patterns.

GROUP	NET TYPE	EXPRESSION \bar{E}
p1	\mathbb{N}_{p}	I
p211	N_{p}	$\mathrm{I}+\mathrm{R}_{180}$, c
p1mi	${ }^{N}$	$\mathrm{I}+\mathrm{F}_{\mathrm{O}, \mathrm{H}, 2 \mathrm{~L}, \mathrm{H}}$
p1g1	\mathbb{N}_{R}	$\mathrm{I}+\mathrm{G}, \mathrm{H}, \mathrm{L}, 2 \mathrm{H}$
p2mm	N_{R}	$\left(\mathrm{I}+\mathrm{F}_{\mathrm{L}, \mathrm{O}, \mathrm{L}, 2 \mathrm{H}}\right)\left(\mathrm{I}+\mathrm{F}_{0, \mathrm{H}, 2 \mathrm{~L}, \mathrm{H}}\right)$
p2mg	\mathbb{N}_{R}	$\left(\mathrm{I}+\mathrm{R}_{180}, \mathrm{c}\right)^{\left(\mathrm{I}+\mathrm{F}_{0}, \mathrm{H} / 2,2 \mathrm{~L}, \mathrm{H} / 2\right.}$)
p2gg	N_{R}	$\left(\mathrm{I}+\mathrm{R}_{180}, \mathrm{c}\right)\left(\mathrm{I}+\mathrm{G}_{\mathrm{L} / 2, \mathrm{H}, \mathrm{L} / 2,2 \mathrm{H}}\right.$
c1m1	${ }^{N}$	$\mathrm{I}^{+} \mathrm{F}_{\mathrm{O}, \mathrm{O}, \mathrm{c}}$
c2mm	${ }^{N}$	$\left(\mathrm{I}+\mathrm{F}_{u, \mathrm{v}}\right)\left(\mathrm{I}+\mathrm{F}_{0,0, c}{ }^{\text {) }}\right.$
p4	${ }^{N}$ S	
p 4 mm	\mathbb{N}_{S}	$\left(\mathrm{I}+\mathrm{R}_{90, \mathrm{c}}{ }^{\left.+\mathrm{R}_{180, \mathrm{c}}+\mathrm{R}_{270, \mathrm{c}}\right)\left(\mathrm{I}+\mathrm{F}_{0,0, \mathrm{~L}, \mathrm{~L}}\right)}\right.$
p4gm	${ }^{N}$	
p3	\mathbb{N}_{H}	$\mathrm{I}+\mathrm{R}_{120, \mathrm{c}}+\mathrm{R}_{240, \mathrm{c}}$
p3m1	N_{H}	$\left(\mathrm{I}+\mathrm{R}_{120, c}+\mathrm{R}_{240, c}\right)\left(\mathrm{I}+\mathrm{F}_{0,0, c}\right)$
p31m	\mathbb{N}_{H}	$\left(\mathrm{I}+\mathrm{F}_{u, v}\right)\left(\mathrm{I}+\mathrm{R}_{120, \mathrm{c}}+\mathrm{R}_{240, \mathrm{c}}\right)$
p6	\mathbb{N}_{H}	$\left(\mathrm{I}+\mathrm{R}_{180},(\mathrm{u}, \mathrm{v}) / 2\right)\left(\mathrm{I}+\mathrm{R}_{120, \mathrm{c}}+\mathrm{R}_{240, \mathrm{c}}\right)$
p6mm	${ }^{\mathrm{N}} \mathrm{H}$	

The first part of our study for this thesis involved an extensive study of a very large number of Islamic geometrical patterns. The majority of the patterns studied appear in the books by Bourgoin [9], Critchlow [13], El-Said \& Parman[63] and Wade [73]. Also, about ten patterns which do not occur in these references were collected by the author on a study tour of Islamic architecture to be found in Spain.

The patterns were studied using the $C A D$ package AutoCAD and data was extracted to make it possible to recreate these patterns using group theoretical methods which were described in the last chapter. The purpose of this chapter is to describe this first part of our work and to draw same conclusions from it.

We begin first by giving a brief history of the group theoretic studies of Islamic patterns. Most of these studies have considered only the patterns to be found in the Palace of Alhambra in Granada, Spain and until recently the conclusion drawn have been quite controversial.

Muller [51a] was the first one to carry out a study of the patterns to be found in Alhambra and she came to the conclusion that 11 types of pattern are to be found there. She was unable to
find the crystallographic patterns (P1g1, P211, P2gg, P3m1, P1m1, P4gm).

In contrast with Muller's findings, Coxeter [12b] claimed that 13 types of patterns occur in Alhambra whilst Belov [2], Toth [72] and Martin [47] claimed that all 17 types of patterns are to be found there. B. Grunbaum ,Z. Grunbaum \& Shephard [29] carried out anther study in 1982 and came to the conclusion that 13 crystallograpic patterns exist in the Palace of Alhambra. They were unable to find the crystallographic patterns (P1g1, P211, P2gg, P3m1).

It has been now established that all the 17 crystallographic patterns do exist in the Alhambra, see Montesinos [50]. The last crystallographic pattern P3m1 to be eliminated from the list of missing patterns was discovered by Gomez and Pareja [26].

The controversy described above is concerned with Moorish architecture in Alhambra and does not relate to patterns to be found elsewhere in the Islamic world. Lahza [41] and Bixler [5] have carried out studies of crystallographic patterns of Islamic art and Bixler has given examples of all the 17 types of pattern. Other work which have analysed Islamic patterns from a group theoretic point of view are by E. Makovicky [44], E. Makovicky \& M. Makovicky [43] and Chorbachi [11].

Comment: The point to be clearly understood in any discussions of analysis of crystallographic patterns to be found in art work is that the classification will depend on whether or not colors, decoration ... etc, are taken into account, most of the analysis does not concern itself with colors, decorations and so on.

4.1 THE USE OF AUTOCAD

AutoCAD is a well known Computer Alded Drafting package. It would be inappropriate to discuss in any detall as to how this package works. Here we will comment on same features that were found to be particularly useful in our work.

We recall that the classical methods of constructing Islamic patterns involve the use of various shaped tiles, grids and the facility to construct and position certaln shapes such as polygons and circles on these grids.

A CAD package is an ideal tool for these operations. The facility to construct shapes accurately, to manipulate them and do such operation as ERASE, MOVE, ROTATE, MIRROR, TRIM, EXTEND etc, are falrly commonly avallable in all CAD packages and are very suited in the context of the classical method.

One feature of AutoCAD which was found to the very useful in our work is the facility to draw tangential lines to circles and touching circles. Typical examples are shown below which were utilised in the work described in chapter 2 .

a) TAHGENT TO THREE LINES

b) IAhGitht Io two LINES \& A CIRCIE

c) TAHGENT TO IHREE CIRCLES

The facility to work in LAYERs is another feature which is highly useful in this kind of work. This allows for grids and intermediate constructions to be placed in separate layers which can be finally switched off when the pattern has emerged. Fig(2) shows an example of a construction which utilizes 5 layers to extract the final pattern.

Finally, perhaps the BLOCK facility is the one that also needs to mentioned as being highly useful. This allows for various geometrical entities to be grouped together into a single unit which can be manipulated as a whole. In particular multiple copies can be made on a grid and the object can be scaled and rotated during the process of copying. The reader may refer to fig(9) in chapter 2 where the BLOCK command was used to construct a variety of patterns by scaling a single shape.

fig(2)

4.2 METHOD OF STUDY AND ANALYSIS

We now describe the method followed by us to construct and analyse Islamic patterns which resulted in the library of template data. The method is first summarized in the flowchart below and we shall give one example to illustrate all the steps involved.

The reader should refer to chapter 3 for the notation and the symbols used in this section.

4.2.1 ANALYSIS OF A P4MM CRYSTALLOGRAPHIC PATTERN

Fig(3) shows the construction of the pattern as suggested by El-Said [63]. The method can be followed fairly easily in AutoCAD. Now, we examine the symmetries of the pattern for mirror
reflections, glide reflections and centers of rotations. These are shown in fig(4a). Once again, AutoCAD is very useful in that we are able, by performing the operations, to verify that we are in fact correct. This allows us to identify the unit motif and the symmetry group of this pattern, see fig(4b) (the repeat motif produced by a suggested classical method doesn't necessarily give the minimum unit motif. For example, the repeat motif produced by El-Said [63] for the pattern on page 15 is not a unit motif). Having identified the symmetry group and the unit motif, we can identify the region of the template motif and the template motif itself. This is shown in fig(4c).

The enquire function LIST in AutoCAD allows one to extract the coordinates of each of these point from which we can construct the polylines. The data for this template motif, which comprises two polylines, shown below.

```
PolyLine1: (.5,.4),(.289,269),(.129,.041),(.199,0),
    (.5,.175), (.4,.229), (.4, .4);
PolyLine2: (.5, 0), (.468,.098), (.098,.098);
```


fig(3)
o)

b)

c)

6 点

We now give example of each of 17 crystallographic patterns analysing in our work.

Template Motif Data

Polyinal: ($442, .164$), (.375,.131),(.319,.150),(.281,.141),(.310,.112),(.295,.075),(.329,.066),.352,.089)

[^0]
(.563. 296).(.54. 277).(. 512.286).(.498. 206).
include the doto h p211.1 in IDL

Generator Data

Polylinel:(1.0).(.875.0). Polyline2: ((.375,.832).(.375..75).(.25..75).(.25..875).(.343..875).
Polyine3: (.375.0).(.375..25).(.5..25).(.5.0). Polpine4:(.25.0).(.25..375).
Polyline5: (.625.0).(.625..25).(.75..25).(.752.0). Polyline6: (0.0).(.125.0).(.125..502).

Poly(hin7: (.533.625),(.25,.625).(.25,.5).(.627..5). Podyline8: (.125,..375).(.72..375).
Polyhe9: (.88,.16).(.88..125).(.907..125).

c1m1
$\wedge ~ X$

Template Motif Data

PolyLine1:(.785,.287),(.5..5),(.334,.334),(.334,.25),(.287,.215).

Template Motif Data
Polpinel: (.075..393).(.222..279).(.2,235).(.288,.303).(.362..285).(.426..333).(.5..316).

(.373..346).(.295,.364).(.28..395).(.233.297).(.079,.333).(.082..329).(.087..363).(.207..395).(.252..385)

p2mm

Template Motif Dota
Polplinel: (.5,0),(.439,.028).(.439,.18).(.414.205).(.329,.118).(.373,0).
Polyhe2: (0.205).(.081,.181).(.081,.024).(.083,0).(.169,.086).(.12.,205).

Polyhne3:(.024..057).(0..082).(.088..189).(208..121).(284..148).(.289..205).(.317.149).(.471..149).(.5..124)

Template Motif Data

Polyine9:(.448..255).(.375..286).(.288..348). Poppine10:(.38..288).(.411..34).
Porpinelt: (.321..186),(.181..278).(.5..235).(.348,.235).(.187..328).(.25..433).

Template Motif Doto
PolyLine1:(.5,.289),(.389,.096),(.833,.096),(.889,0).

p3

Template Motif Data
Polphel:(.5..75).(.601,.693).(.601,.808). Podeha2:(1..117).(.91..157).(.899..058).

Poly.ine3: (.5,.289),(.530,.366),(.554,.422).(.601,.489).(.671..455).(.751,.433),(.915..401).(1,.315).

Poly,ine4: (.767, 712),(.718, 701),(.601,.693),(.554,.678),(.526,.643),(.5,.601).
Polytine5: (1..401).(.915..401).(.791..583).(.845..0667).

Polytine6: (.5.289).(.61,.25).(.740..175).(.771..135)

Template Motif Data

Polphat:(0.1).(.052,.072).(.147,.079).(.236,.093).(.295,.003).(.332,.116).(.37..131).
Polyine2: (.203..297).(.187.275),(.172..231).(.117..163).(.081..131),(.052,.072),(0,0).

(.27..171).(.298,.204). Polyhet: (4.0).(.421..053).(.427..075).

Polythe5: (.5.0).(.421..053).(.361..070).(.332.116).(.27..172).(.219..189).(.172..231).(.095..258)
(.036,.257),(0..302),(.075,.352),(.13,371).

$$
\begin{aligned}
& \text { SQPQ } \\
& \text { SQBPBPBQBQBQBQR } \\
& \text { SQBQBQBQBQBQBQR} \\
& \text { SQ Q Q Q Q Q Q Q Q Q R } \\
& \text { SQBQBQBQBQBQBQR } \\
& \text { SQBQBQBQBQBQBRE} \\
& \text { SQBPBQBQBQBQBR } \\
& \text { SQBPBQBQBQBQBR }
\end{aligned}
$$

$$
\begin{aligned}
& \text { SQBPBQBQBQBQBQR }
\end{aligned}
$$

plmı
$\langle\lll \ll$

Template Motif Data
PolyLine1:(.15,0),(0.15),(.5,.666).(.319..816),(.5,.966).
PolyLine2: ($0, .516$), (.15, 666), (0., 816),(.5,1.332).
PolyLine $3:(.5,0),(319, .15),(.5, .3)$.
PolyLine4: (0,1.182),($.15,1.332$).

Template Motif Data
Polyhal: (.5. 414).(344.256).(.287..287).(.434..013).(.417.0).
Polyhe2: (.052.052).(238,.052).(.238, 018).(266,0).(.293,.018).(.293, 207).(.479..207).(.5.295).(.457..424)
$(.416, .416)(.368, .24),(.5, .156),(.451, .128)(.451, .045) .(.367 .045),(34,0)(.266, .133),(.197 .139) .(.182 . .161)$
(.129,.129).(.064,.02).(.093.0).(.226.077).(.219,.105).(.267..166).

p2gg

Template Motif Data

PolyLine1: (.5,0),(0,.288). PolyLine2: (.5,.191),(.328,.288).
Polyline3: $(0,0.99),(.166,192)$. Polyline4(.168,0),(.333,.096).
$0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{$

 $0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{$
 $0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{$
 $0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}$, $3 \leqslant 0\} \Leftrightarrow 0\} \Leftrightarrow 0\} \Leftrightarrow 0\} \leqslant$ $0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{$
 $0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{$
 $0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\} 4$ $\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0\}\{0$ p2mg

Template Motif Data

Polpine2: (.19..478).(.08,.552).

Polytine3: (.19..944).(.104..847).(.099..79).(.141..763).(.19..748).

p3m1

Template Motif Data
 $(.702, .677),(.665,68),(.626, .696) .(.647 .704),(.63, .702),(.62, .738),(.613, .755),(.616, .768),(.602, .773),(.598, .805)$ (.579..815).(.567..79).(.539..797).(.518..762).(.5..749).(.52..723).(.527..696).(.526..67).(.524..65).(.449..639) $(.564, .653),(.561, .625),(.585, .621),(.577, .601),(.6, .588),(.574, .587),(.607, .55),(.587, .542),(.576, .5),(.547 .514)$ (.54,.494),(.577.421),(.532,.389),(.334,.308). Polxhe2: (.54..498),(.513.478),(.5.49).

Podxine3: (.525,.677),(.589,.716),(.582..762),(.57..742),(.532..715),(.541, 42),(.526,.694).

p4

Template Motif Data

Polpinel: (.452,.319),(.5,347). Polpine2: (.347,.5),(.5,.238). Polphine2: (0,.5),(0..383).

Podyline9: (. 138,0). (. 136,136)

p1g1

Template Motif Data
PolyLine1: (.5, 234), (0,.234),(0,0),(.5,0).
PolyLine2: (.319,.234),(.319,0).

Template Motif data
Polytinel: $(.406,0),(.5 .114)$. Pot peline2: (.5.022),(.386..072).(.368.0).
Polyting3: (.5.076),(.429..178).(5. 221)

Polyhe5: (.393, 158),(.388, 02),(.282,.089).(.322,.142).(.393,.158).
Polpine6:(.1.0).(.156.092).(.199..092).(.269.0).(.339,.088).(.232..136).(.218,.019).(.181,0).(.087,.052).

4.3 CONCLUSIONS

The author examined more than 300 Islamic patterns and all the 17 crystallographic patterns were found. The distribution of numbers of pattern found in each group are shown graphically in the diagram below. We see that P 6 mm is the most favored symmetry in Islamic art followed closely by P4mm.

The table below gives data for the number of polylines that occur in template motifs and also the number of patterns found in each group.

Crystall graphic group	Number of templates contains polylines												Total
	1	2	3	4	5	6	7	8	9	10	11	12	in group
p6mm	48	30	11	6	1	1	1						98
p4mm	20	37	17	10		2	2						88
c2mm	12	7	8		3	3	1	1	1				36
p2mm	3	11	10	. 1	2								27
p6	4	9	2	2	1					1	1		20
p4	3	2	1	2		\therefore			1				9
p31m	2	2	2										6
p1m1		2		2				1					5
c1m1	2											1	3
p211						1	1		1				3
p4gm					1		1						2
p3		1			1	1							3
p2gg	1		1										2
p1g1		1											1
p1	1												1
p2mg			1										1
p3m1				1									1

An example to clarify the above table, in the row P 6 mm the number 6 indicates that in the library there are 6 patterns whose data is made up of 4 polylines.

4.4 LIBRARY OF ISLAMIC PATTERNS

This library named the Islamic Data Libraray (IDL) contains the template data for more than 300 patterns which were extracted as described above. The data is kept in the directory $c: \backslash I D L$ in files whose names have the following structure

SYMG. NUM

When SYMG is made up of up to 4 characters which specify the symmetry group of the pattern and NUM comprises up to 2 digits which stand for the pattern number. For example

P4MM. 26
stands for the pattern number 26 with symmetry group P4MM.

5.1 OVERVIEW

The analysis of Islamic patterns described in the last chapter led to a library of template motif data for more than 300 patterns. From this data the patterns can be created efficiently with this minimum information and using the algorithms developed in chapter three.

In this chapter we describe an interactive program ISLAMIC GEOMETRICAL PATTERNS (IGP), which was written to utilize our data. Although the program was written primarily to generate the Islamic geometrical design studied by us, it is in fact a general purpose program capable of generating the full set of plane crystallographic patterns from template motif data given in a file or created interactively. The program also allows for interactive modification of designs produced from library data.

The program was written in Turbo Pascal language and makes use of the Pluto II Graphic system. This system manufactured by Electronic Graphic LTD uses an Intel 8088 processor dedicated to graphics alone. The display frame buffer in its highest resolution mode has 768×576 pixels over 256 colors at any one time from a palette of over 16 million colors. The Pluto system in which the program was implemented was driven by a Viglen II IBM AT compatible machine with a VGA graphics card.

Of course, it would have been much preferable to have written the program so that it was machine independent. However, the graphics standard GKS was not available to the author and indeed is still not available on micro with Pascal binding at the time of writing this thesis. The hardware and software utilized by us was the best that was available to us and was the reason for our choice.

In this chapter we shall first give the overall structure of the program. Next we shall describe the method of its execution and will give examples of output produced by the program. The program listing and the numerical data are attached in a floppy disk but we shall give a brief description of the UNITS, TYPES, PROCEDURES and FUNCTIONS.

5.2 PROGRAM STRUCTURE

The general structure of the program is shown below.

Input

Symmetry group;
Net data;
N. of repeats;
Template motif
data from library
or produced
interctively;

Output
$\longrightarrow\left[\begin{array}{l}\text { Islamic library } \\ \text { pattern or user } \\ \text { designs } \\ \text { crystallographic } \\ \text { pattern; }\end{array}\right.$

The output for IGP can be fed to the Designer Package produced by the same company Electronics Graphics Ltd, which produce Pluto. This package allows for extensive interactive
facilities for coloring and other modifications.

The output from the Designer can than be utilized to print hard copy on a color printer using a suitable driver. The color output included in this thesis was produced on a Digital Laser Jet 250.

Input

Output file
from Designer

Output

Fig(1) shows a typical example of input data required by IGP and the corresponding output.

The processing in IGP can be summarized in the following steps.

1. Read input data from the islamic data library (IDL) or create it interactively.
2. Create the unit motif
3. Show the template motif and the unit motif if required.
4. Show tessellation if required.
5. Save pattern if required for decoration or hard copy.

5.3 STEPS IN EXECUTION

The execution of the program is summarized in the following.

The program starts with the display of a logo message, the user is invited to press carriage return to start. Next the following menu choices are offered.

```
GiveInformation (I)
Run (R)
Quit (Q)
```

I, gives helpful information about the nature of the program. The choice R leads to following message.

```
1- View an Islamic library pattern?
2- View your own pattern?
3- Create or modify pattern?
    Choose 1, 2 or 3 :
```

The choice 1 allows the user to view the patterns kept in IDL. If desired the user can decorate the pattern and produce a hard copy (explained in help information). The choice 2 allows the same as choice 1 on a pattern which is not part of IDL. The choice 3 allows for the creation of a new pattern or the modification of a pattern which may be from IDL.

If the choice 1 is made then the execution proceeds in the following way.

A: Pick group.
B: Pick pattern number.
C: Show template motif and unit motif (as in fig(2)).
D: Show pattern.
E: Quit, New start or Go to step C.
F: Run DESIGNER to decorate (See help information for steps F, G and H).

G: Save.
H: Produce hard copy.

If the cholce 2 is made then the execution proceeds as in the choice 1 but 1 t wlll ask the user to 'Glve flle name' instead of A and B.

If the cholce 3 is made then the execution proceeds in the following way
a: Pick group.
b: Enter extra data if required (A menu appears as shown in fig(3)).

C: Construct template motif.
d: construct unit motif and show the template \& unit motif.
e: Enter No. repeats in X and Y.
f: Display pattern.
g: Save template, Quit, New start or Go to step or d.

fig(3)

5.4. INTERACTION

Fig(3) shows the complete structure of the maln menu used by IGP. It occuples the top and right side of the graphics monitor whlle the drawing stage is active. This menu provides for interactive construction and modification of the template motif. The user can access the menu items in two ways:

1) Keyboard:

To select an item, simply press the key corresponding to the letter shown in capitals in the item name, or, move the cursor onto the item using the arrow keys. The item is highlighted and the user can than press ENTER.
2) Mouse:

A cursor is moved using the mouse in the usual way. Simply press the right button to move the highlighted bar one step to the right on the menu items, or, move the cursor onto the item to activate it. Again, the item is highlighted and the user can then press ENTER.

5.5. MENU ITEMS

The menu remains active on the graphic screen until the user selects the pAttern or the Quit option. Below is an explanation of each of the items.

5.5.1 JUMP

Selecting Jump allows the user to reposition the current coordinates of the cursor on the screen. Reference markers, (crosses) are drawn at these points to show the points picked in a construction. These markers are automatically deleted as soon as they are no longer needed.

5.5.2 DRAW

Selecting Draw from the menu allows the user to add lines to the template motif from the previous cursor position to it's
current position.

5.5.3 POLYGON

The user selects this item when he wants to draw a line from the current position of the cursor to close a set of lines to form a polygon.

5.5.4 FILL

To fill a polygon with color the user should select this item then press ENTER. He is then asked to select the vertices forming the polygon and press ENTER when finished. Next, a color menu appears on Pluto screen and the message Choose color - Press [CR] to accept, ESC to abort'. As the cursor in moved across the color menu the polygon is filled with the corresponding color. Finally, the user selects the color required from this menu by position the cursor at a color and pressing ENTER. To fill another polygon the user should follow the same procedure.

5.5.5 INPUT

This option is utilized when the user wants to type in the coordinates, rather than generate them using the mouse. The question appears
!i. (J)ump or (D)raw?
The user selects J if he requires to move to a new position without drawing and selects D if he requires to draw a line between the previous position and the new position. He is then asked to enter the coordinates.

This mode of input is repeated by continuing to press ENTER and is completed when the user selects a new item from the menu.

5.5.6 UNDO

Selecting Undo allows the user to remove lines from the template motif. The lines are removed in reverse order to which they were added so that the latest addition is the one which is removed at every use of Undo.

5.5.7 LIBRARY

The library item allows the user to call up a template motif. This template motif can be one of the Islamic library (IDL) or a template motif which has been created by the user at some earlier time and stored in a save file. On selecting this option, the following question will appear

Enter file name?
-:. Simply type the file name of the save file. The saved template will then appear in the template motif region on the screen (See section 4.4 for information on (IDL)).

5.5.8 CLEAR

This option clears the screen and initializes the indices of the array which draws the coordinates of the template motif. The user can then start to draw a new template motif.

5.5.9 MOTIF

Motif is used when the drawing of the template is finished
and it is required to see the unit motif.

5.5.10 RETURNT

ReturnT option allows the user to go back to the template motif and to modify it.

5.5.11 PATTERN

This option allows the user to view the complete periodic pattern.

5.5.12 QUIT

Used to quit IGP.

5.6 SUMMARY OF UNITS, TYPES, PROCEDURES AND FUNCTIONS

Having described the structure and the method execution of IGP, we shall now introduce the reader to the units, procedures and functions used in the program. Also, we list the type declarations utilized. The listing is arranged alphabetically.

5.6.1 DICTIONARY OF UNITS

It is appropriate to mention here that the units Doc, Crt and Graph of Turbo Pascal version IV have been utilized.

AidCmotf :

Purpose : provides
(1) Isometry transformation procedures.
(2) Procedures needed to load, save and draw
patterns.

AidIgpPr	
Purpose	(1) Set up initial value and menu data.
	(2) Display menu to create unit motif on the Pluto
	screen.
	(3) Call up pattern from IDL.
Used In : IGP.	
AidPlInt	
Purpose	(1) Plot menu item names.
	(2) Shows the cursor coordinates while it is moved
	on the screen.
Used In	: DisCurso, DisMenus.
CrUnMotf	
Purpose	: Uses the data of the template motif and the isometry transformations of a specific group to generate the
"	data of the unit motif.
Used In	: AidIGPPr, IGP.

DataStru :

Purpose : Set up the main linked list data structure of the program.

Used In : DisPolyg, CrUnMotf, AidCmotf, AidIGPPr, IGP.

DevCurso :

Purpose : Handles input from the mouse and the keyboard.

DisCurso :
Purpose : Used to
(1) Define the area where the items are on the screen and plot the current coordinates of the cursor on the Pluto screen.
(2) Create and control the movement of the cursor using the mouse and the keyboard.

Used In : DisPolyg, AidIGPPr.

DisImage :
Purpose : Saves a part of the image temporarily in the memory to provide part of the screen for the display of the color menu. Replaces the image back on the screen when the user removes the color menu, freeing the memory. Used In : LcolorTa.

DisMenus :
Purpose : Defines the menu items and puts them on the Pluto screen, Highlights an item to confirm selection.

Used In : AidIGPPr.

DisPolyg :
Purpose : Provides the following facilities
(1) Draws the required polygon.
(2) Fills Polygon.

Used In : AidCmotf, AidIGPpr.

FiMotif :
Purpose : Reads the boundary data of the template motif and set up transformations used to create the unit motif data from the template motif data.

Used In : CrUnMotf, AidIGPPr, IGP.

GrafIntf :
Purpose : Used for plotting the Logo message, Help information and menus on the PC screen.

Used In : IGP.

LcolorTa :
Purpose : (1) Load color menu file from the hard disk.
(2) Display color menu on the Pluto screen.

Used In : AidIGPPr, IGP.

PlutIntf :
Purpose : Contains the Graphics Interface for Pluto II.
Used In : DisPolyg, AidPlInt, RealGraph, DisCurso, LcolorTa, DataStru, DisMenus, AidIGPPr, AidCmotf, FiMotif, DisImage, IGP.

RealGraph :
Purpose : Provides the procedures to
(1) Set up upto 50 windows and mappings to these windows.
(2) Make a particular window active.
(3) Draw lines, clear the window and draw a border in the active window.

Used In : DisPolyg, DisCurso, AidCmotf, AidIGPPr, IGP.

5.6.2 DICTIONARY OF TYPES

In this section; we list the type declarations which are utilized in the program IGP. The dictionary is provided to make the code of the program more easily comprehensible to a reader. On the left is given the type identifier and on the right is given the name of the unit where the identifier is declared. This is followed by the syntax, some helpful remakes where necessary and the names of any other units where the type is used.

```
Action
\begin{tabular}{ll} 
Syntax & Action \(=(\) Jump, Draw, Polygon, Fill); \\
Purpose & These are some of the item of the menu. \\
Used In & AidIGPPr.
\end{tabular}
```

Syntax	Boundray =Array [1..4, Xcoord. Ycoord] of Real;
Purpose	This is used to define the vertices of the template
	motif boundary.
Used In	IGP, AidIGPPr.

Syntax Cell =Record

Group	$:$ String[10];
NumSubCells	: $0 .$. MaxSubCells;
GeneratorRegion	: Region;

SubCells : Array [1..MaxSubCells] of
Subcell Cellfile = FILE of Cell;
End;
Purpose Used to store the unit motif information.
Used In AidIGPPr, CrUnMotf.

CellPart
FiMotif

Syntax CellPart =Record

End;
Purpose Generates the unit motif from the information on
a specific transformation and a specific template.

Coords	FiMotif
Syntax Purpose	coords $=($ Xcoord, Ycoord, Zcoord); Coordinate of the picture points. Zcoord is not used but it is included for future work.
ColourPlane	Plutintf
Syntax Used In	ColourPlane $=($ Blue, Green, Red); LcolorTa.
Device	DisCurso
Syntax	Device $=$ (KeyBoard, Mouse);
Purpose	Devices used as an input.

Item	$:$ Array[1..10] of MenuItem;
Keys	: Set Of Char;
Current	: Integer;
End;	
Defines the main menu.	
AidIGPPr.	

MenuItem	DisMenus
Syntax	MenuItem $=$ Record
	PosX, PosY : integer;
	Name : String[10];
	EventNo : Integer;
	Keys : Set OF Char;
	End;
Purpose	Used to define each item of the menu for which we
	need the position of the item on the screen, the
	name of the item, the number and the key associated
	with each item.

OverLap
RealGraph

Syntax Set of Side;
Remark Determines the clipping region.
where Side $=($ Left, Right, Bottom, Top);

```
Pointer DataStru
    Syntax Pointer =^Point;
            Point =Record
                X, Y : real;
                Prior, Next : Pointer;
                Move : Action;
                    polyline : Integer;
            colour : Integer;
                    End;
                            FigureFile = File of point;
Purpose The main data structure of the program.
Used In AidIGPPr, AidCmotf, DisPolyg, CrUnMotf, IGP.
Syntax Raster =^Block;
Block =Record
B : "Integer;
size : Word;
Nexit : Raster;
End;
\begin{tabular}{ll} 
Purpose & Used to get, save, put and free the image. \\
Used In & LcolorTa.
\end{tabular}
```

Syntax Side $=($ Left, Right, Bottom, Top);
Purpose Used in defining the clipping region.

Transformation
FiMotif

5.6.3 DICTIONARY OF PROCEDURES AND FUNCTIONS

Below is an alphabetical list of all the procedures and functions used in IGP.

PROCEDURE ActiveWindow

Syntax	ActiveWindow(Active : INTEGER);
Purpose	Used to make a specific window.

Syntax Clearwindow;
Purpose Saves the current color and finds the background color. Fills the window with the background color and sets the color back to the current color.

PROCEDURE ChangeCursor DisCurso

Syntax ChangeCursor (Symno : INTEGER);
Purpose Erases present cursor and replaces it with the new cursor SymNo. If new cursor can't be drawn on the screen then the call is ignored.

PROCEDURE ClipPoint

Syntax \quad ClipPoint(VAR	xs,ys,xf,yf	$:$ REAL;
VAR Edges	$:$ Overlap);	

Purpose
Pushes the point (Xf, Yf) into the window to produce
a new (Xf,Yf) if necessary.

Syntax	ClipTest(VAR Wx, Wy : REAL; VAR Outside : Overlap);
Purpose	Decides if a point in world coordinates is inside
	or outside the window. If it is outside then
	determines the side on which it lies.

Syntax CopyFigure(VAR Figure : POINTER) : POINTER;
Purpose Copies the data for a figure to apply an isometry transformation.

Syntax \quad CrossCoordinate(VAR CrossX, CrossY : REAL);
Purpose \quad Shows reference markers on the Pluto screen.
PROCEDURE CursorColour
Syntax \quad CursorColour (Col : INTEGER);
Purpose \quad Sets new color.

PROCEDURE DefineEventArea		DisCurso
Syntax	DefineEventArea (N, dx0, dx1, dy0, dy1	INTEGER;
Purpose	Defines an area of the screen to number N and draws a rectangle aro	BOOLEAN); the ev t.
PROCEDURE DelCrossCoordinate		AidIgpPr
Syntax Purpose	DelCrossCoordinate(VAR CrossX, Cross	REAL);
	Deletes reference markers from the	screen.
PROCEDURE DeleteFigure		AidCmotf
Syntax Purpose	DeleteFigure(VAR Figure : POINTER); Frees the memory occupied by a figure.	
PROCEDURE DeviceInput		DisCurso
Syntax Purpose	DeviceInput(VAR Data : InputData);	
	Moves the cursor around the scree mouse bottom is pressed or an even	11 a key urs.

```
PROCEDURE DrawCursor;
\begin{tabular}{ll} 
Syntax & DrawCursor: \\
Purpose & Draws the cursor at current position. Used to \\
& reactivate cursor after a call to ERASE-CURSOR.
\end{tabular}

\section*{PROCEDURE DrawFigure \\ AldCmotf}


PROCEDURE DrawTo RealGraph
\begin{tabular}{ll} 
Syntax & DrawTo( \(W x, W y:\) REAL); \\
Purpose & Draws a line from the current pen position to the \\
& point \((W x, W y)\) in world coordinates, clipping if
\end{tabular}
necessary.



Syntax FristTypeMenu;
Purpose Puts the first menu on the PC screen which involves
Give Information, Run and Quit.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{PROCEDURE GeNePatt} & AidIgpPr \\
\hline \multirow[t]{2}{*}{Syntax} & GeNePatt(VAR & SetDat & :FileName; & VAR & POINTER; \\
\hline & & Data & OINTER); & & \\
\hline Purpose & Used to creat & a new & pattern. & & \\
\hline
\end{tabular}

PROCEDURE GeOlPatt AidIgpPr
\begin{tabular}{ll} 
Syntax & GeOlPatt(VAR SetDat :FileName) \}; \\
Purpose \(\quad\) Use to show pattern from library.
\end{tabular}

PROCEDURE GetColour
LcolorTa

Syntax GetColour(ColourNumber: INTEGER;
VAR R,B,G : INTEGER);
Purpose Return the number associated with a color.
```

PROCEDURE GetFillLibrary

Syntax	GetFillLibrary(VAR Filllibrary :FileName; VAR
	CrystGroup : STRING; VAR XDim, YDim : INTEGER);
Purpose	Used in calling a library pattern.

```

PROCEDURE GetImage
DisImages
\begin{tabular}{|c|c|}
\hline Syntax & GetImage(x,y,width, height : INTEGER; \\
\hline & VAR Start : Raster); \\
\hline Purpose & Saves the image to memory when calling the color \\
\hline & \\
\hline
\end{tabular}

PROCEDURE GetKey
DevCurso
Syntax GetKey(VAR Pressed : BOOLEAN; VAR Code : INTEGER);
Purpose \(\quad\) Used to link the keyboard with the cursor.

PROCEDURE GetMeshPattern IGP
\begin{tabular}{ll} 
Syntax & GetMeshPattern(VAR Xsteps, Ysteps, \\
InXstep, InYstep : INTEGER); \\
Purpose & Gets the repetition in \(X\) and \(Y\) and calls \\
& PrintMeshPattern to echo on the PC screen.
\end{tabular}


PROCEDURE GetTempletFil
Fimltif

Syntax \(\quad\) GetTempletFil(VAR TheFile : FileName;
GetSx, GetSy : REAL);
Purpose Used to load unit motif information from file.
\begin{tabular}{ll} 
Syntax & GiveINformation; \\
Purpose \(\quad\) Gives help information about the program.
\end{tabular}

PROCEDURE GraphWindow
RealGraph
\begin{tabular}{|c|c|}
\hline Syntax & GraphWindow (M : INTEGER; \(\mathrm{x} 0, \mathrm{x} 1, \mathrm{y} 0, \mathrm{y} 1\) : REAL); \\
\hline Purpose & Defines an area of the graphics screen to be \\
\hline & window. [ \(\mathrm{XO}, \mathrm{X1}\) ] and [ \(\mathrm{YO}, \mathrm{Y} 1\) ] lie in the range [ 0,1\(]\), \\
\hline & the origin being taken to be the top left hand \\
\hline & corner. The Y axis points downwards. Thus \(\mathrm{XO}=0\), \\
\hline & \(\mathrm{X} 1=0.5, \mathrm{Y}=0 \mathrm{Y} 1=0.5\) and \(\mathrm{M}=5\) will define window \\
\hline & number 5 to be the top left hand quarter of the \\
\hline & device screen. \\
\hline
\end{tabular}

FUNCTION GReflect
AidCmotf

Syntax GReflect(VAR Figure : POINTER;
Gx0, Gy0, Gx1, Gy1, Gdx, Gdy : REAL );
Purpose Produces a glide reflection for a given figure about a given line by agiven distance. (GxO,GyO) and (Gx1,Gy1) are two points on the line. (Gdx,Gdy) represents the glide distance.
\begin{tabular}{ll} 
Syntax & HighlightItem ( VAR M : Menu; ItemNumber : INTEGER); \\
Purpose & Highlights an item when it is chosen by the mouse \\
& or the keyboard.
\end{tabular}

FUNCTION InEventArea DisCurso

PROCEDURE Initcursor DisCurso
\begin{tabular}{ll} 
Syntax & Initcursor ( Code , Col : INTEGER); \\
Purpose & Used in cursor initialization.
\end{tabular}
\begin{tabular}{ll} 
PROCEDURE InitialGraphPc & GrafIntf \\
Syntax & InitialGraphPc; \\
Purpose & Inititalises the graphics system and puts the \\
& hardware into graphics mode.
\end{tabular}
\begin{tabular}{ll} 
Syntax & InitialiseGraphics ( Mode : INTEGER); \\
Purpose & Initialises Pluto, sets the current work partition, \\
& clears Pluto screen, initialises window number 0 to \\
& be the whole screen and makes it the active window. \\
& If the value of the Mode equals zero the Pluto \\
& screen is set to resolution ( \(767 \mathrm{~W} \times 575 \mathrm{H}\) ) else to \\
& \((767 \mathrm{~W} \times 287)\).
\end{tabular}
```

PROCEDURE InitMouse

Syntax InitMouse (VAR Present : BOOLEAN)
Remark Initializes the mouse software and hardware.

PROCEDURE InitPlutoMouse
DevCurso


```
PROCEDURE InitTempalateMotifDraw
\begin{tabular}{ll} 
Syntax & InitTempalteMotifDraw; \\
Purpose & Sets up initial values and menu data.
\end{tabular}
```


PROCEDURE Library			AidIgpPr
Syntax	Library (State	: STRING;	
	VAR LibFile	: FileName;	
	VAR GroupNa	: STRING;	
	VAR Dnet, YDnet : INTEGER);		
Purpose	Allows the user to call up a pattern file from		
	library.		

FUNCTION LoadFigure AidCmotf

Syntax LoadFigure (Fname : Filename) : POINTER;
Purpose Loads a file used to save a figure.

```
PROCEDURE Logo
```

Syntax Logo;

```Purpose Plots Logo massage on PC screen.
```

PROCEDURE MapWindow
RealGraph
Syntax MapWindow(M : INTEGER; x0, x1,y0,y1 : REAL);Purpose Sets up a mapping on window number M which isdefined by a call to GraphWindow. UnlikeGraphWindow the origin is taken to be at the bottom
left hand corner and the Y axis points upwards.
FUNCTION MatchKeyToItem DisMenus

Syntax	MatchKeyToItem(VAR Code : CHAR; VAR M	Menu)
	: INTEGER;	
Purpose	Match the key board with the menu items.	

Syntax	MaxEvents ($N:$ INTEGER);
Purpose	Sets the maximum number of the menu items.

```
PROCEDURE MoveCursor
\begin{tabular}{ll} 
Syntax & MoveCursor(NewX, NewY : INTEGER); \\
Purpose & If both NewX and NewY are within the border, draw \\
& cursor at the new position after erasing the old \\
& position. If it is outside the screen then ignore \\
the call.
\end{tabular}
FUNCTION NearestPoint
DisPolyg
\begin{tabular}{|c|c|}
\hline \multirow[t]{2}{*}{Syntax} & NearestPoint(VAR Figure : POINTER; VAR X, Y : REAL) \\
\hline & : POINTER; \\
\hline Remark & Find the nearest coordinate point on the vertex of \\
\hline & the figure. \\
\hline
\end{tabular}
PROCEDURE Perform
AidIgpPr
\begin{tabular}{cc} 
Syntax & Perform ( Choice : INTEGER; VAR Px, Py : INteger; \\
VAR MutifData : POINTER); \\
Purpose \(\quad\) Set up menu item and carry out a choice.
\end{tabular}
```

Syntax	PlutoRealNumber (Number : REAL; Width, Decimals
	INTEGER);
Purpose	To plot the coordinates of the current cursor
	position on the Pluto screen.

PROCEDURE PolyFiller DisPolyg

Syntax	PolyFiller (VAR Col $:$ INTEGER; VAR Start $:$ POINTER);
Purpose	To fill in the current window the chosen polygon
	with the chosen color (See GetPolygon).

PROCEDURE PutImage
DisImages

Syntax	Putimage (X, Y, Width, Height : INTEGER;
	VAR Start : Raster);

Purpose Put the image back from memory when the color menu
is removed.

```
PROCEDURE PrintMeshPattern
IGP
```


PROCEDURE RemovePalette
LcolorTa

Syntax	RemovePalette;
Purpose	Store the background image when the color menu is
	$O N$, and take it back when the color menu is OFF.

[^1]Purpose Set the current background color, restore the original mode before graphics was initialized and free the graphics memory on the heap.

```
FUNCTION Rotate
```

AidCmotf

Syntax Rotate(VAR Figure : POINTER; X, Y, Phi : REAL) : POINTER;

Purpose Rotate the figure around (x, y) with Phi degrees. The positive direction is auticlockwise.

Syntax SaveFile(VAR NameFile :STRING;
VAR SaveFile : POINTER);
Purpose Save the pattern into disk ASCII format.
Syntax SaveLut(F : FileName);

Purpose Save the color menu to disk when it is turned off.

Syntax	SecondTypeMenu(VAR Selectoption : BOOLEAN);
Purpose	Puts the seconed menu on the PC screen which
	involves New start, Quit ect.

PROCEDURE Setcolour
LcolorTa

Syntax	SetMouseLimit(X0, Y0, X1, Y1 : INTEGER)
Purpose	Set the movement of cursor limited by min/max
	values for horizontal/vertical.

Syntax	SetPixelToMickey(X, Y : INTEGER)
Purpose	Set the mickey to pixel ratio.

FUNCTION SetSelectGroup IGP

Syntax	SetSelectGroup (VAR	NumberGroup	: INTEGER)
	: FileName;			
Purpose	Map numbers to	up	set the group	lect


```
PROCEDURE SizeFram IGP
Syntax SizeFram( Distance :INTEGER);
Purpose Set the thickness of the frame.
```



```
PROCEDURE TemplateMotifEnq AidIgpPr
```



```
\begin{tabular}{ll} 
Syntax & TemplateMotifEnq( VAR BounaryGenerator : boundary); \\
Purpose & Displays the template motif.
\end{tabular}
PROCEDURE TypeSelectGroup IGp
Syntax TypeSelectGroup;
Purpose Print select group menu on the the PC screen which associates a number with crystallographic group.
```

PROCEDURE TypeSelectPattern IGP

Syntax	TypeSelectPattern(VAR CrystallGroup : INTEGER);
Purpose	Print the number of the patterns available in IDL
	for each group.

PROCEDURE WhatToDo AidIgpPr

Purpose . Convert screen coordinates to world coordinates.

Syntax	WinEnq (M : INTEGER; VAR WinInfo : WinData);
Purpose	Return information on the normalized device
	coordinates of window M and the mapping associated
	with it.

Syntax WorldToWindow(VAR Wx, Wy $:$ REAL;
$\because \quad$ VAR Px, Py $: ~ I N T E G E R) ; ~$

Purpose Convert world coordinates to screen coordinates.

5.7 EXAMPLES OF ISLAMIC GEOMETRIC DESIGN

plate(1) p6mm

plate(2) p4gm

Pasencary $5+2+2+2$ $t 003001$ koreckex
 $3+5+2$, (2)

plate(6) p3m1

plate(8) p211

plate(9) p611

plate(10) p311

plate(11) c1m1

plate(12) p111

plate(13) p2mg

plate(14) p31m

plate(15) p411

plate(16) p1g1

plate(17) p2gg

This appendix is provided to help any future research worker who may wish to further develop the work carried out in this thesis. The extensive study carried out here and the data provided offer a strong base for further extension. Had the author had more time he would like to have explored some of the following.
i) Calligraphic decoration of tilings:

A key feature of Islamic art is the use of calligraphy and clearly this is the must obvious extension that could be carried out to this work.
ii) Systematic exploration of color and color symmetry:

Color was explored extensively by the original Islamic artists. Computer graphics offers much greater possibilities. An interesting extension of this work would involve the development of group theory algorithms for color symmetry.
iii) Tilings in $3-D$ and on surfaces:

The 2-D work in here could be extended to tilings on 3-D surfaces.
iv) Using CAD CAM to design real objects:

The data produced here could be used in CAD CAM to manufacture real objects. This would have considerable commercial possibilities.

REFERENCES

1. C. ASLET

1983 Art is Here: The Islamic Perspective, Leighton House, Country Life, 16(1983) 1642-1643.
2. N.V. BELOV

1956 Moorish Patterns of The Middle Ages and The Symmetry Groups [In Russian]. Kristallografiya, 1(1959) 610-613. English Translation: Soviet Physis-Crystallography 1(1956) 482-483.
3. A. BERENDESEN ET. AL

1964 Tiles, Faber and Faber, London, (1964).
4. M. BERGER

1986 Computer Graphics with Pascal, The Benjamin/Cummings Publishing Company, California, (1986).
1987 GeometryI, [-II], Springer-Verlag, NewYork, (1987).
5. H.N. BIXLER

1980 A Group Theoretic Analysis of Symmetry In Two Dimensional Patterns from Islamic Art, Ph.d Thesis, New York University, USA, (1980).
6. A. BRINE AND D. BUNYARD

1988 Islamic Art Vedic Square, Micromath, (1988) 10-13.
7. R.P. BURN

1985 A path to Geometry, Great Britain, (1985).
8. F.J. BUDDEN

1972 The Fascination of Groups, Cambridge University Press, Cambridge U.K, (1972).
9. J. BOURGION

1973 Arabic Geometrical Pattern \& Design, Dover Publecations, New York, (1973), First Published 1879.
10. A. H. CHRISTIE

1909a Pattern Designing: An Introduction to Decorative Art, Oxford University Press, London, (1909).
1929b Pattern Design. An Introduction to Study of Formal Ornament. Clarendon Press, Oxford (1929).
11. W. K. CHORBACHI

1989 In The Tower of Babel: Beyond Symmetry in Islamic Design, Computer Math. Applic, 17B(1989) 751-789.
12. H.S.M.COXETER

1961a Introduction to Geometry, Wiley, NewYork, (1961).
1981b The Geometric Vein: The Coxeter Festschrift/ edited by C. Davis, B. Grunbaum and F. A. Sherk, Springer-Verlag, New York, (1981).
13. K. CRITCHLOW

1976 Islamic Patterns. An Analytical and Cosmological Approach. Schocken Books, New York, (1976).
14.D.W. CROWE

1971a The Geometry of African Art. I. Bakuba Art. J. of Geometry 1(1971) 169-182.
1975b The Geometry of African Art. II. A Catalog of Benin patterns. Historia Math. 2(1975) 253-271.
1981c The Geometry of African Art. III. The Smoking Pipes of Begho, in The Geometric Vein: The Coxeter Festschrift, C. Davis et al., eds. Springer-Verlag, New York, (1981) 177-189.
1982d Symmetry in African Art, Ba Shiru. Journal of African Languages and Literature, 11(1982) 57-71.
1985e The Mosaic Patterns of H. J. Woods. M.C.Escher Congress, Rome, (1985).
15. D.W. CROWE AND D.K. WASHBURN

1983 The Geometry of Decoration on Historic San Ildefonso Puebo Pottery, in Native American Mathematics. Michael Closs, (1983).
16. P. D'AVENNES

1978 Arabic Art in Color, Dover Publications, New York, (1978).
17. C. DAVIS, B. GRUNBAUM AND F.A.SHERK

1985 The Seventeen Black And White Frieze Types, C. R. Math. Rep. Acad. Sci. Canada [I] [II], 5(1985).
18. T. T. DIECK

1987 Transformation Groups, W. De Gruyter, New York, (1987).
19. C. J. DU RY

1970 Art of Islam. Abrams, NewYork, (1970).
20. G. FEHERUARI

1985 Introduction to Islamic Art, The Egyptian Bulletin, Egyptian Education Bureau, 13(1985) 9-15.
21. P. FISHER

1971 Mosaic. History and Technique. McGraw-hill, New York, (1971).
22. J. D. FOLEY AND A. VAN DAM

1982 Fundamentals of Interactive Computer Graphics, Addison-Wesley, London, (1982).
23. J. D. FOLEY \& A. VAN DAM \& S.K. FEINER AND J.F. HUGHES
1990 Computer Graphics Principles and Practice,
Addison -Wesley, London, (1990).
24. E. I. GALYARSKI
1974 Mosaics for Two-Dimensional Similarity Symmetry and

Antisymmetry Groups [In Russian]. Investigations in
Discrete Geometry, A.M. Zamorzaev, ed. Stiinca,
Kisinev, (1976) 63-77.

25. A. GODARD

1962 L'art de l'Iran. Arthaud, Paris, 1962. English Translation: The Art of Iran. Praeger New York, (1965).
26. E.G.GOMEZ AND J. B. PAREJA

1969 La Alhambra: Palacio Real. Granada, Spain, Albaicin/Sadea Editores, (1969).
27. O.Grabar

1973 The Formation of Islamic Art. NewHaven And London: Yale University Press (1973).
28. B. GRUNBAUM AND G.C. SHEPHARD

1977a Tilings by Regular Polygons. Math. Magazine, 50(1977) 205-206.
1977b Classification of Plane Patterns. Mimeographed Notes Distributed at The Special Session on "Tilings, Patterns, and Symmetries, "Summer Meeting of The American Math. Soc., Seattle, August (1977) 66.
1978c Isohedral Tilings of The Plane by Polygons. Comment. Math. Helvet. 53(1978) 542-571.
1980d Satins and Twills: An Introduction to The Geometry of Fabrics. Math. Magazine, 53(1980) 139-161 and 313.
1982e Spherical Tilings with Transivity Properties, I The Geometric Vein-The Coxeter Festschrift. C. Daviset al., eds. Springer-Verlag, NewYork, (1982) 65-98.
$1983 f$ Tilings, Patterns, Fabrics and Related Topics in Discrete Geometry. Jahresber. Deutsch. Math. Verein, 85(1983) 1-32.
1985g A catalogue of Isonemal Fabrics. Annals of The New York Acad. Sciences, 440(1985) 297-298.
1987h Tiling and Patterns, Editor by ZDENKA and HELEN, W. H. FREEMAN, (1987).
29. B. GRUNBAUM, Z.GRUNBUM AND G.C.SHEPHARD

1986 Symmetry in Moorish and Other Ornaments, Comp.\& Math. With appls. 12B(1986) 641-653.
30. D. HEARN AND M. P. BAKER

1986 Computer Graphics, Prentice-Hall International, USA, (1986).
31. N. F. M. HENRY AND K. CONDALE

International Tables for X-ray Crystallography Vol.I. Symmetry Group, Kynoch, Birmingham, (1965).
32. D. HILL AND O. GRABAR

1962 Islamic Achitecture and its Decoration A.D. 800-1500, London (1962).
33. J. D. HOAG

1977 Islamic Architecture. Abrams, New York, (1977).
34. C. HUMBERT

1977 Islamic Ornamental Design, Faber and Faber, London, (1980).
35. M. S. IPSIROGLU

1971 Das Bild in Islam. A.Scholl, Vienna and Munich, (1971).
36. J.DJARRATT AND R.L.E.SCHWARZENBERGER

1981 Coloured Frieze Groups, Utilitas Mathematica, 19 (1981) (295-303).
37. L. JONES

1989 Mathematics and Islamic Art, Mathematics in School, Mathematical Association by Longman Group Ltd, 18(1989) 32-35.
38. O. JONES

1986 The Grammar of Ornament, Studio Editions, London, (1986). First Published 1856.
39. H. AL. KHATTAT

1978 Arabic Calligraphy, Iraqi, Cultural Center, (1978).
40. D. E. KNUTH

1973 Fundamental Algorithms: The Art of Computer Programing V. 1, Second Edition, Addison-Wesley, London, (1973).
41. F.M. LAHZA

1988 Computer Graphics Studies of Islamic Designs, M.sc. Thesis, Bangor University, Uk, (1988).
42. E. H. LOCKWOOD AND R.H. MACMLLLAN

1978 Geometric Symmetry, Cambridge University press, Cambridge, (1978).
43. E. MAKOVICKY AND M. MAKOVICKY

1977 Arabic Geometrical Patterns-Atreasury for Crystallographic Teaching. Jahrbuch fur Mineralogie Monatshefte, $2(1977)$ 58-68.
44. E.MAKOVICKY

1986 Symmetrology of Art: Coloured and Symmetries, Comp. \& Math. With Appls. 12b(1986) 949-980.
45. KH.S.MAMEDOV

1986 Crystallographic Patterns, Comp. \& Maths. With appls. 12b(1986) 511-529.
46. B. B. MANDELBROT

1977 Fractals. From, Chance and Dimension. W.H.Freeman, San Francisco, (1977).
1982 The Fractal Geometry of Nature. W.H.Freeman, San Francisco, (1982).
47. G. E. MARTIN

1982 Transformation Geometry: An Introduction to Symmetry, Springer-Verlag, New York, (1982).
48. J. McGREGOR AND A.WATT

1984a The Art of Microcomputer Graphics for the BBC Microlectron, Addison-wesley, London, (1984).
1986b The Art Of Graphics for The IBM PC, Addison-Wesley, London (1986).
49. E.E.MOISE

1974 Elementary Geometry from An Advanced Stand points, Second Edition, Addison-Wesley, London, (1974).
50. J.M.MONTESINOS

1987 Classical Tesselations and Three-Manifolds, Springer-Verlag, New York, (1987).
51. E.MULLER

1944a Gruppentheoretische Und Strukturanalytishe Untersuchungen Der Maurischen Ornamente Aus Der Alhambra in Granada. (Ph.D. Thesis, University of Zurich) Baublatt, Ruschlikon, (1944).
1946b El Estudio De Ornamentos Como Applicacion De la Teoria de Los Grupos de Orden Finito. Euclides (Madrid) 6(1946) 42-52.
52. S. H. NASR

1976a Islamic Science an Illustrated study, World of Islam Festival Publishing Company, (1976).
1978b Mathematics and Islamic art. Amer. Math. Monthly, 85(1978) 489-490.
53. N. NEWMAN AND R. SPROULL

1981 Principles of Interactive Computer Graphics, Second Edition, McGraw-Hill, Japan, (1981).
54. J.NIMAN AND J. NORMAN

1978 Mathematics and Islamic Art, Math. Monthly, 85(1978).
55. J. NORMAN AND S. STAHL

1979 The Mathematics of Islamic Art. A Pact For Teachers of Mathematics, Social Studies, and Art. Metropolitan Museum of Art, New York, (1979).
56. A. PACCARD

1980 Traditional Islamic Craft in Moroccan Architecture V. 1 \& 2, Edition Aceliers, Paris, (1980).
57. T. PAVLIDIS

1982 Algorithms for Graphics and Image Processing, Computer Science, USA, (1982).
58. R.A.PLASTOCK AND G. KALLEY

1986 Theory and Problems of Computer Graphics, McGraw-Hill Book Company, New York, (1986).
59. D. T. RICE

1965 Islamic Art, London, (1965).
60. D. F. ROGERS

1985 Procedural Elements for Computer Graphics, McGraw-Hill, USA, (1985).
61. J. ROSEN

1973a A.symmetry Primer for Scientists, John Wiley \& Sons, (1973).

1975b Symmetry Discovered: Concepts and Aplications in Nature and Science, Cambridge University Press, Cambridge, (1975).
62. E. ROZSA

1986 Symmetry in Muslim Arts, Comp. \& Maths. With appls. 12b(1986) 725-750.
63. I.EL-SAID AND A. PARMAN

1976 Geometric Concepts in Islamic Art. World of Islam Festival Publ. Co., London, (1976).
64. A.S. SALMAN

1988 Computer Graphics Studies of Islamic Geometrical Pattern, University of North Wales Bangor, (M.sc. Thesis), (1988).
65. D. Schattschneider

1987 The Plane Symmetry Groups: Their Recognition and Notation, The American Mathematical Monthly, 85(1987).
66. E.C.Semple

1989 Features of a specialized CADCAM System for The Manufacture of Decorative Effects on Buildings, Computer Aided Design, 21 (1989) 589-595.
67. M. SENECHAL

1979 Color Groups, Discrete Applied Mathematics, 1 (1979) 51-73.
68. A.V.SHUBNIKOV ANDV. A. KOPTSIK

1974 Symmetry in Science and Art, Plenum Press, NewYork, (1974).
69. M.Al. SODANEY

1986 Basic Arabic HandWritıng, Sodaney, London, (1986).
70. A. M. TENENBAUM AND M. J. AUGENSTEIN

1981 Data Structures Using Pascal, Prentic-Hall, USA, (1981).
71. S. THOSS

1986 S.\&H. design and Color in Islamic Architecture, Washington, (1968).
72. L. F. TOTH

1965 Regulare Figuren. Akademiai Kiado, Budapest, (1965). English Translation: Regular Figures. Pergamon, New York, (1964).
73. D. WADE

1976 Pattern in Islamic Art. Overlook Press, Woodstock. Ny, (1976).
74. H. WEYL

1952 Symmetry. Princeton University Press (1952).
75. D. WOOFTER

1986 Los Angeles County Museum, The international Magazine of Arab culture, Iraqi Cultural Center, 2(1986) 53-55.
76. B.ZASLOW

1977 A guide to Analyzing Prehistoric Ceramic Decorations by Symmetry and Pattern mathematics. Anthropological Research Paper No. 2, Arizona State University, Tempe (1977).
77. S. J. ABAS AND J.RANGEL-MODRAGON

1988 Communication of Symmetric Patterns in Computer Graphics, Automatika 29(1988) 1-2,19-24.
78. S. J. ABAS

1990 Computer Graphics Studies of Islamic Geometrical Patterns, Proceeding of the Fourth International Conference on Computer Graphics, Published in Automatica, 31-2 (1990) 11-24.
79. D.K.WASHBURN AND D.W.CROWE

1988 Symmetries of Culture, University of Washington Press, (1988).

[^0]: Polpiline3: $(1.131,681),(1.178, .634),(1.202, .582),(1.249 .634),(1.286,657),(1.296, .718)$.

[^1]: Syntax RestoreMode;

